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Introduction générale

Le problème du transport optimal constitue le principal objet d’étude de cette thèse. En
termes simples, ce problème peut être formulé de la manière suivante :

Étant données deux distributions d’une même quantité de masse sur un certain espace
et connaissant le coût de transfert d’une unité de masse depuis n’importe quel endroit
vers n’importe quel autre endroit, comment transporter toute la masse de la première
distribution à la seconde de la manière la moins coûteuse possible ?

Un tel problème présente une capacité évidente à modéliser des situations pratiques : la
masse évoquée peut être matérialisée par une foule de personnes, ou par une collection
de particules de gaz, ou par un ensemble de marchandises ; le coût peut correspondre à
une distance (pour mesurer un effort de déplacement), ou au carré d’une distance (pour
mesurer une énergie cinétique), ou simplement à un coût financier. En présence d’un
problème mathématique qui vise à modéliser des phénomènes physiques, il est pertinent
de vérifier si ce problème est bien posé au sens de Hadamard (Hadamard, 1902). Cette
notion informelle regroupe certaines des caractéristiques souhaitables qu’un problème
naturel doit présenter et qui doivent aider à sa résolution. Un problème donné est dit
bien posé si :

(i) il admet effectivement une solution ;

(ii) cette solution est unique ;

(iii) cette solution dépend continûment des données du problème.

En citant Evans dans l’introduction de son livre Partial Differential Equations (Evans,
2010), la condition (iii) "est particulièrement importante pour les problèmes issus
d’applications physiques : nous préférerions que notre solution (unique) ne change qu’un
peu lorsque les conditions spécifiant le problème changent un peu. Pour de nombreux
problèmes, en revanche, l’unicité n’est pas à espérer".

Dans sa formulation moderne, le problème du transport optimal est globalement bien
posé. Une solution à ce problème correspond à une méthode concrète pour effectivement
transporter toute la masse positionnée dans une première configuration vers une seconde
configuration tout en réalisant le plus faible coût global de transport possible. Nous ver-
rons plus loin que la propriété d’existence de la solution (i) est maintenant parfaitement
comprise et qu’il est démontré qu’elle est valable dans la plupart des cas intéressants. La
question (ii) de l’unicité de la solution a également été largement étudiée et de nombreux
cas où la solution est effectivement unique, ou à l’inverse où elle n’est pas susceptible de
l’être, ont été décrits. L’étude de la dernière propriété (iii) est cependant moins avancée.
Il existe en général des garanties abstraites de stabilité qui assurent que les solutions
de problèmes de transport optimal dépendent de manière continue des distributions de
masse qui définissent le problème. Cependant, sauf dans de très rares cas, ces garanties
ne sont pas quantitatives : nous ne savons pas en général comment un changement donné
dans ces distributions affecte les solutions de transport optimal correspondantes. Comme
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2 INTRODUCTION GÉNÉRALE

les applications modernes obligent presque toujours les praticiens à utiliser des approx-
imations statistiques ou informatiques des données d’intérêt, ce manque de garanties
quantitatives est problématique. L’objectif de cette thèse est de travailler à combler
cette lacune dans la théorie du transport optimal.

Théorie du transport optimal et applications : un (très) bref aperçu. Le
problème du transport optimal a été introduit pour la première fois par Monge en 1781,
avec en tête des applications militaires et d’ingénierie (Monge, 1781). Il a formulé le
problème général consistant à trouver le moyen le moins cher de transporter une quantité
donnée de terre d’un site d’extraction à un site de construction, le coût de transport de
chaque molécule de terre étant proportionnel à la distance qu’elle parcourt. L’étude de ce
problème l’a conduit à la découverte de concepts importants en géométrie des surfaces,
mais le problème est resté largement non résolu. Le problème du transport optimal a été
relancé par Kantorovich, qui a donné en 1942 (Kantorovich, 1942) sa formulation moderne
sous la forme d’un problème de programmation linéaire. En termes mathématiques bruts,
le problème de Kantorovich peut être décrit comme suit. Considérons un certain espace
Ω, typiquement un espace polonais compact, et deux mesures de probabilité ρ, µ dans
P(Ω) qui représentent chacune une distribution de masse. Étant donné une fonction
c(x, y) qui représente le coût du transfert d’une unité de masse d’un emplacement x dans
Ω à un emplacement y dans Ω, Kantorovich propose de résoudre

min
γ∈Γ(ρ,µ)

∫
Ω×Ω

c(x, y)dγ(x, y), (1)

où Γ(ρ, µ) est l’ensemble des plans de transport entre ρ et µ, c’est-à-dire l’ensemble
des mesures de probabilité sur Ω × Ω avec pour première marginale ρ et pour seconde
marginale µ. Un candidat γ dans Γ(ρ, µ) propose un plan pour transporter la masse
de ρ à µ en envoyant une portion dγ(x, y) de la masse dρ(x) d’un emplacement source
x à un emplacement cible y. La linéarité de la formulation de Kantorovich lui a per-
mis d’assurer, sous des hypothèses faibles sur c, l’existence de solutions à son problème
dans des espaces métriques compacts ainsi que d’établir une formulation duale et des
conditions d’optimalité. Kantorovich et d’autres auteurs ont rapidement compris que
la valeur du coût de transport optimal (1) entre deux mesures ρ et µ pouvait don-
ner une idée quantitative de la similarité entre ρ et µ. Il a été montré que lorsque
c(x, y) = dΩ(x, y)

p est la p-ième puissance d’une distance dΩ sur Ω pour un certain
p ≥ 1, la valeur de (1) correspond elle-même à la p-ième puissance d’une distance entre
ρ et µ. Cette distance, généralement appelée p-ième distance de Wasserstein1 et noté
Wp, confère à l’ensemble des mesures de probabilité P(Ω) une riche structure géométrique
hissée de l’espace de base Ω. Par exemple, un espace métrique compact (Ω, dΩ) est plongé
isométriquement dans l’espace de Wasserstein-p (P(Ω),Wp) par l’application x 7→ δx (où
δx désigne la masse de Dirac en x). La géométrie fournie par les métriques de Wasser-
stein sur les espaces de mesures de probabilité s’est avérée très pratique, tant pour des
considérations théoriques qu’appliquées. L’unique cas quadratique p = 2 sur Ω = Rd
a produit à lui seul une théorie très substantielle. Il a permis de définir des notions
d’interpolations (McCann, 1997) ou de barycentres (Agueh and Carlier, 2011) sur des

1l’attribution de ce nom à cette distance est souvent remise en question. Dans les travaux de Kan-
torovich, la première apparition d’une telle notion est dans son travail conjoint avec Rubinstein (Kan-
torovich and Rubinstein, 1958) pour le cas p = 1. Nous renvoyons aux notes bibliographiques du Chapitre
6 de (Villani, 2008) pour plus de détails.
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Figure 1: (Haut) Interpolation linéaire (1− t)ρ0+ tρ1 et (Bas) Interpolation par déplace-
ment ρt := argminµ∈P(R)(1−t)W2

2(ρ0, µ)+tW
2
2(ρ1, µ) de deux distributions Gaussiennes

ρ0, ρ1 sur (R, |·|), avec pour moyenne respective 0 et 15 et chacune de variance unitaire.
Dans beaucoup d’applications, le mouvement horizontal de l’interpolant par déplacement
est préférable au mouvement vertical de l’interpolant linéaire.

familles de mesures de probabilité présentant de fortes caractéristiques géométriques (voir
Figure 1). Plus généralement, la géométrie de l’espace Wasserstein-2 s’est révélée donner
une structure riemannienne physiquement pertinente aux espaces de mesures de prob-
abilité, dans laquelle certaines EDP d’évolution classiques (telles que les équations de
Fokker-Planck ou des milieux poreux) ont pu être exprimées comme les flots de gradi-
ent de fonctionnelles d’énergie bien choisies sur l’espace des distributions de probabilité.
D’autres EDP d’évolution importantes ont trouvé une formulation variationnelle dans les
espaces de Wasserstein, comme les équations d’Euler en dynamique des fluides (Brenier,
1989, 1999).

Parallèlement au développement de sa théorie, le problème du transport optimal a
fait de nombreuses incursions réussies dans les applications. Kantorovich a introduit son
programme linéaire (1) pour modéliser des problèmes courants d’allocation de ressources
survenant en économie, un domaine où le transport optimal suscite encore un vif intérêt
(Galichon, 2016). Dans ces applications, les ressources considérées sont souvent de nature
discrète et les mesures de probabilité ρ et µ peuvent être supposées à support fini. Dans
un tel contexte, le problème (1) correspond à un programme linéaire classique de di-
mension finie, un problème qui a rapidement été résolu numériquement avec l’algorithme
du simplex de Dantzig (Dantzig, 1949, 1951) et de manière plus efficace avec les algo-
rithmes pour les problèmes de flux à coût minimal (Ford and Fulkerson, 1962; Goldberg
and Tarjan, 1989). La version discrète du problème (1) est également étroitement liée
au problème d’assignement, qui a été résolu efficacement avec l’algorithme d’enchères de
Bertsekas (Bertsekas, 1981; Bertsekas and Eckstein, 1988). Depuis les années 2000, le
problème du transport optimal a également été de plus en plus utilisé pour résoudre di-
verses tâches de traitement de formes, d’images et de vidéos telles que le recalage (Haker
et al., 2004), la réduction de scintillement (Delon, 2006), le transfert de couleurs (Pitié
et al., 2007; Bonneel et al., 2016), le débruitage (Lellmann et al., 2014) ou la segmenta-
tion (Rabin and Papadakis, 2015). Dans le domaine de l’apprentissage automatique, le
transport optimal a été utilisé pour la recherche d’images par le contenu (Rubner et al.,
2000), l’apprentissage semi-supervisé (Solomon et al., 2014), la modélisation générative
(Arjovsky et al., 2017), l’adaptation de domaine (Courty et al., 2017) ou l’optimisation
robuste au sens des distributions (Kuhn et al., 2019). Le nombre de ces applications
a considérablement augmenté suite aux avancées algorithmiques dues à (Cuturi, 2013),
voir (Peyré and Cuturi, 2019) pour plus de références. Enfin, d’autres applications nota-
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bles du problème du transport optimal se trouvent en chimie quantique (Buttazzo et al.,
2012; Cotar et al., 2013), en conception optique (Oliker, 2003; Caffarelli and Oliker,
2008) et en statistique, où il a permis d’étendre les notions de quantiles aux variables
aléatoires multivariées (Carlier et al., 2016; Chernozhukov et al., 2017), de construire des
estimateurs de densité efficaces en inférence géométrique (Weed and Berthet, 2019; Divol,
2022) et d’analyser la convergence d’algorithmes d’échantillonnage tels que l’algorithme
de Langevin Monte Carlo (Dalalyan, 2017; Bernton, 2018) ou l’algorithme de descente
de gradient de Stein variationnel (Korba et al., 2020).

Caractère bien-posé du problème du transport optimal. La forte capacité du
problème du transport optimal à modéliser des phénomènes physiques soulève de manière
pressante la question de son caractère bien-posé : peut-on espérer une solution, la solution
est-elle unique et répond-elle de manière continue aux modifications des données du
problème ?

Nous avons déjà mentionné que Kantorovich a prouvé l’existence de solutions à (1)
dans des cas généraux. Ce résultat d’existence a été généralisé plus encore dans (Kellerer,
1984), et on peut s’attendre en général à ce que (1) admette des solutions par exemple
quand Ω est un espace polonais et c est semi-continue inférieurement et minorée.

L’unicité d’une solution à (1) n’est pas à attendre en général (voir la Figure 2 pour un
exemple). Il existe cependant des cas particuliers intéressants où l’unicité de la solution
est garantie. Le plus célèbre de ces cas est sans doute dû à Brenier (Brenier, 1987), qui
a montré pour Ω un sous-ensemble compact de Rd et c(x, y) = ∥x− y∥2 que lorsque
la mesure source ρ est absolument continue par rapport à la mesure de Lebesgue, la
solution de (1) est unique et, plus important encore, elle est supportée sur le graphe
du gradient d’une fonction convexe (voir également (Knott and Smith, 1984; Smith and
Knott, 1987; Rüschendorf and Rachev, 1990)). Incidemment, cette caractérisation a
permis d’adopter le point de vue EDP suivant sur le problème de transport optimal :
lorsque ρ et µ admettent des densités (notées avec les mêmes lettres), une fonction
régulière et strictement convexe ϕ dont le graphe du gradient supporte la solution de
transport optimal entre ρ et µ doit vérifier pour tout x de Ω la formule de changement
de variable suivante :

det(D2ϕ(x))µ(∇ϕ(x)) = ρ(x). (2)

Ceci correspond à une équation de Monge-Ampère en ϕ, dont la solution fournit la
solution au problème de transport optimal entre ρ et µ sous des conditions aux limites
appropriées. Le résultat de Brenier a ensuite été généralisé à des coûts et domaines plus
généraux, voir par exemple (Gangbo and McCann, 1996; Trudinger and Wang, 2001;
McCann, 2001; Caffarelli et al., 2002; Bernard and Buffoni, 2007; Fathi and Figalli,
2010).

La stabilité des solutions de problèmes de transport optimal par rapport aux données
qui les définissent est établie dans des cas généraux. Par exemple, le Théorème 5.19 de
(Villani, 2008) assure que pour Ω un espace polonais et c une fonction de coût continue
et bornée, la convergence faible des mesures source et cible ρn, µn dans P(Ω) vers des
limites respectives ρ, µ dans P(Ω) entraîne, à sous-suite près, la convergence faible de
solutions de transport optimal γn entre ρn et µn vers une solution de transport optimal γ
entre ρ et µ. D’autres résultats assurent également en général la stabilité d’autres quan-
tités de transport optimal telles que les interpolants et les barycentres dans les espaces de
Wasserstein mentionnés plus haut. Ces garanties ne sont pas anecdotiques : elles assurent
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[0, 1].
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Figure 3: Représentation par histogrammes de l’interpolation par déplacement ρ̂nt :=
argminµ∈P(R)(1 − t)W2

2(ρ̂
n
0 , µ) + tW2

2(ρ̂
n
1 , µ), où pour k ∈ {0, 1}, ρ̂nk = 1

n

∑n
i=1 δxik

avec
(xik)1≤i≤n ∼ ρk où n = 2000 et ρk pris comme en Figure 1.

par exemple qu’un plan de transport optimal approximatif entre deux mesures ρ et µ est
donné par un plan de transport optimal γ̂ entre deux approximations ρ̂, µ̂ de ρ, µ. Ceci
est particulièrement utile dans les applications, où l’utilisation d’approximations ρ̂, µ̂ au
lieu de ρ, µ peut être nécessaire soit en raison de limitations computationnelles, soit dans
un contexte statistique où seuls des échantillons des mesures d’intérêt sont disponibles.
Dans de telles applications cependant, les utilisateurs peuvent avoir besoin de garanties
quantitatives sur les approximations commises. Prenons l’exemple de l’interpolation par
déplacement présentée dans la Figure 3. Cette interpolation est une approximation statis-
tique de celle affichée dans la partie inférieure de la Figure 1, obtenue en approximant
les mesures des extrémités ρ0 et ρ1 avec des mesures empiriques ρ̂n0 et ρ̂n1 construites à
partir d’échantillons avant de calculer leur interpolation. Dans des contextes typiques,
des garanties statistiques sur la qualité des approximations de ρ0 et ρ1 en distance de
Wasserstein sont disponibles, c’est-à-dire que des bornes (en espérance ou avec grande
probabilité) sur W2(ρ0, ρ̂

n
0 ) et W2(ρ1, ρ̂

n
1 ) sont connues. Pour les applications en aval, il

peut alors être important de savoir si ces garanties de qualité sont transmises aux inter-
polants, c’est-à-dire si la distance W2(ρt, ρ̂

n
t ) pour un certain t ∈ (0, 1) peut être majorée

en termes de W2(ρ0, ρ̂
n
0 ) et W2(ρ1, ρ̂

n
1 ). Dans le cadre unidimensionnel des Figures 1 et

3, la réponse est positive et on peut toujours assurer le comportement Lipschitz suivant :

Wp(ρt, ρ̂
n
t ) ≤ (1− t)Wp(ρ0, ρ̂

n
0 ) + tWp(ρ1, ρ̂

n
1 ).

Cependant, cette borne est spécifique à Ω = Rd avec d = 1 et il n’existe pas de garantie
quantitative similaire dès lors que d ≥ 2. Cela soulève la question de la stabilité quanti-
tative générale du problème de transport optimal.

Pour certaines EDP elliptiques, la stabilité quantitative des solutions peut être dé-
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duite de garanties de forte ellipticité. Considérons par exemple sur un domaine régulier
borné Ω de Rd l’équation de Poisson

∆ϕ = f, (3)

avec une condition aux limites de Dirichlet nulle (ϕ = 0 sur ∂Ω). Dans cette équation, ∆
désigne l’opérateur laplacien, dont l’ellipticité donne l’inégalité de Poincaré sur Ω. Cette
inégalité assure en particulier qu’il existe une constante C telle que pour toute solution
faible ϕ, ϕ̂ ∈ H1(Ω) de (3) avec des seconds membres respectifs f, f̂ , on a

||ϕ−ϕ̂||2L2(Ω) ≤ C||∇ϕ−∇ϕ̂||
2
L2(Ω) = −C

∫
Ω
(ϕ−ϕ̂)(f−f̂)dx ≤ C||ϕ−ϕ̂||L2(Ω)||f−f̂ ||L2(Ω),

de sorte que |ϕ − ϕ̂||L2(Ω) ≤ C||f − f̂ ||L2(Ω). Une telle inégalité quantifie précisément
l’effet d’une perturbation de la donnée d’entrée f sur la solution correspondante ϕ dans
(3). Malheureusement, cette approche elliptique ne peut pas être facilement appliquée au
problème du transport optimal. Par exemple, nous avons mentionné que dans le contexte
quadratique et euclidien (qui correspond au cadre le plus étudié et sans doute le plus sim-
ple), le problème de transport optimal pouvait être reformulé dans certains cas en termes
de l’équation de Monge-Ampère (2). En général, cette équation est seulement dégénérée
elliptique, et des garanties de forte ellipticité ne sont disponibles que lorsque l’inconnue
ϕ est régulière et fortement convexe, ce qui est rarement le cas en pratique. Cela rend la
question de la stabilité quantitative du problème de transport optimal particulièrement
difficile.

Contributions principales. Dans cette thèse, nous suivons une approche classique
dans la théorie du transport optimal qui consiste à étudier le problème dual de (1)
pour obtenir des informations qualitatives et quantitatives sur les solutions de transport
optimal. Nous nous concentrons exclusivement sur le cadre euclidien et quadratique
(c’est-à-dire Ω = Rd et c(x, y) = ∥x− y∥2), laissant les généralisations de nos résultats
à des travaux futurs. Dans ce cadre, le problème dual de (1) correspond essentiellement
au problème de minimisation

min
ψ:Rd→R̄

∫
ψ∗dρ+

∫
ψdµ, (4)

où ψ∗ désigne la conjuguée convexe du potentiel ψ.

Au lieu de chercher directement des estimations quantitatives de stabilité pour (1),
nous cherchons d’abord des estimations quantitatives de stabilité pour (4). La fonction-
nelle ψ 7→

∫
ψ∗dρ apparaissant dans ce problème dual, que nous appelons fonctionnelle

de Kantorovich associée à une source ρ, est convexe. En tant que telle, des garanties
quantitatives sur la stabilité des minimiseurs de (4) peuvent être déduites d’estimations
de la forte convexité de cette fonctionnelle. Dans les Chapitres 2–4, nous obtenons
des estimations explicites de la forte convexité de la fonctionnelle de Kantorovich, en
nous appuyant principalement sur les inégalités de Brunn-Minkowski, Brascamp-Lieb et
Prékopa-Leindler. Il était déjà compris, depuis l’article précurseur de (McCann, 1997),
que ces inégalités géométriques et fonctionnelles sont liées au problème du transport
optimal puisqu’elles peuvent être déduites de la convexité géodésique de certaines fonc-
tionnelles d’énergie sur l’espace de Wasserstein-2. Cette thèse renforce ce lien, quelque
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peu dans une direction opposée, en utilisant ces inégalités pour quantifier la forte con-
vexité du dual du problème de transport optimal quadratique.

Ensuite, nous rassemblons dans les Chapitres 5–7 des conséquences des estimations
de forte convexité des Chapitres 2–4 concernant la stabilité quantitative de solutions de
problèmes de transport optimal par rapport aux données qui les définissent. En parti-
culier, nous obtenons des estimations quantitatives de stabilité pour les applications de
transport optimal par rapport à leurs mesures cibles et pour les barycentres de Wasser-
stein par rapport à leurs marginales. Au-delà des garanties qu’elles offrent pour les
applications numériques et statistiques, ces estimations donnent également de nouvelles
perspectives sur la géométrie de l’espace de Wasserstein-2 et sa plongeabilité dans un es-
pace de Hilbert, que nous exploitons dans des applications en apprentissage automatique
au Chapitre 8. Enfin, nous nous concentrons sur la variante du problème de transport
optimal obtenue en ajoutant un terme de régularisation entropique dans (1) pondéré
par un paramètre de température. Cette variante est connue pour être liée au problème
de Schrödinger en physique statistique et nous donnons, dans un cadre spécifique, des
estimations quantitatives de stabilité pour ses solutions par rapport au paramètre de
température.

Plan détaillé et résumé des contributions

Partie I : Forte convexité du problème de transport optimal quadratique

Dans la première partie de cette thèse, nous obtenons des estimations de forte convexité
pour le dual du problème de transport optimal quadratique sous différentes conditions et
en utilisant différentes techniques, et nous établissons les relations entre ces estimations.

Chapitre 1 : Transport optimal quadratique et forte convexité du dual

Ce chapitre donne une introduction à la première partie de cette thèse. Dans la Sec-
tion 1.1, nous rappelons les formulations de Monge et de Kantorovich du problème de
transport optimal quadratique dans Rd. Nous prouvons la formulation duale de Kan-
torovich (4), qui motive la définition de la fonctionnelle de Kantorovich Kρ : ψ 7→

∫
ψ∗dρ

associée à une mesure source ρ. Cette fonctionnelle est convexe, et elle caractérise
formellement un potentiel de Kantorovich ψµ entre ρ et µ solution au problème (4) par
la condition de premier ordre

∂Kρ(ψµ) + µ ∋ 0 ⇐⇒ ψµ ∈ (∂Kρ)−1(−µ). (5)

Cette caractérisation nous conduit à étudier les propriétés (sous-)différentielles de Kρ.
Nous accordons une attention particulière au cas où la mesure source ρ est absolument
continue par rapport à la mesure de Lebesgue et nous remarquons dans ce cadre que la
mesure signée −(∇ψ∗)#ρ est (formellement) dans le sous-différentiel de Kρ à ψ : Rd → R̄,
c’est-à-dire pour tout ψ̃ : Rd → R̄,

−⟨(∇ψ∗)|ψ̃ − ψ⟩ ≤ Kρ(ψ̃)−Kρ(ψ). (6)

Sous des hypothèses de compacité, nous montrons que −(∇ψ∗)#ρ correspond en fait
au gradient de Kρ à ψ (dans un sens à préciser). Ce fait, associé à la condition de
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premier ordre (5), assure que dans un tel cadre, ψµ est solution de (4) si et seulement
si (∇ψ∗

µ)#ρ = µ. Ceci nous permet de retrouver dans ce cadre le théorème de Brenier
(Brenier, 1987) que nous avons mentionné plus haut. Ces idées illustrent comment l’étude
de la fonctionnelle de Kantorovich peut aider à obtenir des informations qualitatives sur
les solutions des problèmes de transport optimal de Monge et de Kantorovich.

Dans la Section 1.2, nous proposons de pousser plus loin l’étude de la fonctionnelle de
Kantorovich afin d’obtenir également des informations quantitatives sur les solutions aux
problèmes de transport optimal de Monge et de Kantorovich. En particulier, nous nous
demandons dans cette section sous quelles conditions nous pouvons espérer des estima-
tions de convexité forte pour Kρ, c’est-à-dire des estimations qui quantifient l’écart dans
l’inégalité sous-différentielle (6). En raison de la condition d’optimalité (5), ces estima-
tions de convexité forte pourraient être directement traduites en estimations de stabilité
pour ψµ par rapport à µ. Cette question naturelle a déjà été abordée dans (Gigli, 2011)
et (Hütter and Rigollet, 2021) dans le contexte de l’étude de la stabilité des applications
de transport optimal, mais les estimations obtenues dans ces travaux n’étaient valables
qu’au voisinage de potentiels très réguliers (fortement convexes). Comme nous le verrons
juste après, ceci n’est pas optimal. Après avoir mentionné les conditions nécessaires sur la
source ρ pour assurer la forte convexité de Kρ, nous annonçons la forme des estimations
que nous calculons dans les Chapitres 2, 3 et 4. Essentiellement, ces estimations garan-
tissent que pour une mesure source ρ absolument continue à support compact et convexe,
on a pour tout potentiel de Kantorovich ψµ, ψν : Rd → R̄ entre ρ et µ, ν ∈ P2(Rd) la
borne

Varρ(ψ∗
ν − ψ∗

µ) ≲ Kρ(ψν)−Kρ(ψµ) + ⟨(∇ψ∗
µ)|ψν − ψµ⟩, (7)

à condition que µ et ν satisfassent certaines hypothèses de moment. Le calcul d’estimées
de la forme de (7) effectué dans les Chapitres 2, 3 et 4 repose principalement sur des in-
égalités géométriques et fonctionnelles bien connues (les inégalités de Brunn-Minkowsky,
Brascamp-Lieb et Prékopa-Leindler). Nous rappelons dans la Section 1.3 les énoncés de
ces inégalités et nous discutons succinctement de la manière dont elles ont déjà interféré
avec le transport optimal dans des travaux antérieurs. Nous donnons enfin dans la Sec-
tion 1.4 une extension de l’estimation (7) à des mesures sources ρ qui peuvent avoir un
support non-convexe mais qui satisfont une inégalité de Poincaré-Wirtinger et de faibles
hypothèses géométriques supplémentaires sur leur support.

Chapitre 2 : Une approche semi-discrète

Ce chapitre contient la preuve d’une première estimation de forte convexité de la forme
(7). Cette estimation n’est valable que pour des mesures cibles µ, ν à support compact
dans (7).

La preuve détaillée dans ce chapitre fonctionne par approximation. Nous supposons
d’abord dans la Section 2.2 que les mesures de probabilité cibles µ, ν sont discrètement
supportées sur un ensemble fini commun de N points. Ceci nous place dans le contexte
du transport optimal semi-discret, avec une source absolument continue ρ et des cibles
discrètes µ, ν. Dans ce contexte, la fonctionnelle de Kantorovich Kρ peut être vue comme
une fonction Kρ convexe de classe C2 sur RN pour laquelle le gradient et la hessienne sont
connus. Dans la Section 2.3, nous tirons parti de la structure laplacienne de la matrice
hessienne de Kρ pour donner une borne inférieure explicite à sa plus petite valeur propre
non nulle. Nous déduisons ensuite de cette borne inférieure combinée à l’inégalité de
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Brunn-Minkowski une estimation de forte convexité du type de (7), fonctionnant pour des
cibles discrètes. En utilisant un argument d’approximation, nous généralisons finalement
dans la Section 2.4 l’estimation de forte convexité de la Section 2.3 à toutes mesures
cibles supportées de manière compacte.

Chapitre 3 : Une approche continue

Ce chapitre donne la preuve d’une deuxième estimation de convexité forte de la forme
de (7). Cette seconde estimation est valable pour des mesures de probabilité cibles
µ, ν dans (7) qui sont telles que les conjuguées convexes ψ∗

µ, ψ
∗
ν de leurs potentiels de

Kantorovich dans le transport optimal entre ρ et µ, ν sont bornées sur le support compact
de ρ. D’après l’inégalité de Morrey et le plongement de Sobolev qui en résulte, c’est le cas
par exemple chaque fois que µ et ν admettent un moment fini d’ordre p > d. L’estimation
de ce chapitre couvre donc le cas des mesures cibles supportées de manière compacte et
non-compacte et peut être vue comme une extension de l’estimation du Chapitre 2.

La preuve de cette deuxième estimation est également effectuée par approximation.
Dans la Section 3.2, nous supposons que les cibles µ, ν dans (7) sont absolument continues
et suffisamment régulières pour que les potentiels de Kantorovich ψµ, ψν soient C2 et
fortement convexes. Cette hypothèse nous permet de calculer la dérivée seconde de la
fonctionnelle de Kantorovich en ψµ dans la direction ψν − ψµ. Nous utilisons ensuite
dans la Section 3.3 l’inégalité de Brascamp-Lieb (dite de concentration) pour obtenir
une borne inférieure explicite sur la valeur de cette dérivée seconde, de laquelle nous
déduisons une estimation de forte convexité du type de (7) fonctionnant pour des cibles
µ et ν suffisamment régulières. Enfin, dans la Section 3.4, nous généralisons par densité
l’estimation de forte convexité de la Section 3.3 à des cibles µ, ν qui sont seulement telles
que leurs potentiels de Kantorovich admettent des conjuguées bornées.

Chapitre 4 : Une approche entropique

Nous considérons dans ce chapitre la variante entropique du problème de transport op-
timal de Kantorovich obtenue en ajoutant un terme de régularisation entropique à (1) :

min
γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥2 dγ(x, y) + εKL(γ|ρ⊗ µ), (8)

où ε ≥ 0 est un paramètre de régularisation et KL désigne la divergence de Kullback-
Leibler ou l’entropie relative. Cette variante est liée au problème de Schrödinger en
physique statistique et elle a été popularisée ces dernières années dans les applications
pour ses avantages computationnels et statistiques. Nous montrons dans ce chapitre que
le dual de ce problème présente une fonctionnelle de Kantorovich entropique qui satisfait
des estimations de forte convexité rappelant celles présentées dans les Chapitres 2 et 3.

Dans la Section 4.2, nous définissons la fonctionnelle de Kantorovich entropique et
discutons le rôle joué par la mesure cible dans cette fonctionnelle. Cette discussion nous
amène à faire, à nouveau, une hypothèse semi-discrète et à ne considérer que des mesures
cibles discrètes. Sous cette hypothèse semi-discrète, nous calculons dans la Section 4.3 les
dérivées première et seconde de la fonctionnelle de Kantorovich entropique. L’inégalité
de Prékopa-Leindler est ensuite utilisée dans la Section 4.4 pour obtenir une borne in-
férieure sur la plus petite valeur propre de la hessienne de la fonctionnelle de Kantorovich
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entropique semi-discrète, à partir de laquelle une estimation de forte convexité de type
(7) est déduite. Nous exposons enfin dans la Section 4.5 comment cette estimation en-
tropique peut être utilisée pour retrouver l’estimation de forte convexité du Chapitre 3.

Partie II : Conséquences pour la stabilité de solutions à des problèmes
de transport optimal

Dans la deuxième partie de cette thèse, nous rassemblons des conséquences des estima-
tions de forte convexité de la Partie I pour la stabilité quantitative de solutions à des
problèmes de transport optimal par rapport à certaines des données qui les définissent.

Chapitre 5 : Stabilité quantitative des applications de transport optimal par
rapport à la mesure cible

Dans ce chapitre, nous donnons des estimations de stabilité quantitative pour
l’application de transport optimal quadratique entre une densité de probabilité fixe ρ
et une mesure de probabilité µ sur Rd, que nous désignons par Tµ, définie comme étant
le minimiseur de

min
T#ρ=µ

∫
Rd
∥T (x)− x∥2 dρ(x),

où T#ρ est la mesure image de ρ par T . En supposant que la densité de la source
ρ est bornée inférieurement et supérieurement sur un ensemble convexe compact, nous
prouvons que l’application µ 7→ Tµ est bi-Hölder continue par rapport à la métrique
de Wasserstein-2 sur de grandes familles de mesures de probabilité, comme l’ensemble
des mesures de probabilité dont le moment d’ordre p > d est borné par une certaine
constante. Un peu plus précisément, pour un certain p > d et tout µ, ν ∈ Pp(Rd) qui
admettent un p-ième moment borné par une constante commune, nous montrons que Tµ
et Tν satisfont des bornes du type

W2(µ, ν) ≤ ∥Tµ − Tν∥L2(ρ,Rd) ≲ W2(µ, ν)
p

6p+16d . (9)

où W2 désigne la métrique Wasserstein-2. Ces estimations de stabilité montrent que
la métrique W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd) de transport optimal linéarisé (Wang et al.,
2013) (pour laquelle les géodésiques correspondent à des géodésiques généralisées dans
(Ambrosio et al., 2008)) est bi-Hölder équivalente à la distance de Wasserstein-2 sur
de grands sous-ensembles de P2(Rd), ce qui justifie son utilisation dans les applications
(voir le Chapitre 8 pour des exemples d’applications). Ce résultat répond aussi partielle-
ment à la question de géométrie métrique de la plongeabilité de l’espace de Wasserstein
(P2(Rd),W2) dans un espace de Hilbert. Alors qu’un fort résultat négatif prouvé dans
(Andoni et al., 2018) assure que l’espace de Wasserstein-2 ne peut pas être entièrement
plongé dans un espace de Hilbert quelconque d’une manière bi-Hölder, nos estimations
assurent qu’au moins de grands sous-ensembles de (P2(Rd),W2) peuvent être explicite-
ment plongés dans un espace L2 avec un contrôle bi-Hölder de la distorsion induite sur
la métrique. Une dernière interprétation possible de l’estimation (9) est en termes de
l’interprétation riemannienne de l’espace (de dimension infinie) (P2(Rd),W2) : cette esti-
mation peut être vue comme une estimation quantitative de la continuité de l’application
exponentielle inverse µ ∈ (P2(Rd),W2) 7→ Tµ − id ∈ L2(ρ,Rd).

Afin de prouver les estimations du type de (9), nous tirons parti du fait que
l’application de transport optimal Tµ entre une source fixe ρ et une cible µ s’écrit
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Tµ = (∇ψ∗
µ)#ρ où ψµ est un potentiel de Kantorovich pour le problème de transport

entre ρ et µ, c’est-à-dire un minimiseur de (4). Dans la Section 5.2, nous déduisons
d’abord des estimations de stabilité pour µ 7→ ψµ et µ 7→ ψ∗

µ comme conséquences di-
rectes des estimations de forte convexité calculées dans la Partie I. La stabilité de µ 7→ Tµ
est ensuite obtenue dans la Section 5.3, en s’appuyant notamment sur une nouvelle iné-
galité de type Gagliardo-Nirenberg pour la différence de fonctions convexes prouvée dans
la Section 5.4 qui peut présenter un intérêt indépendant.

Chapitre 6 : Stabilité quantitative des barycentres de Wasserstein par rapport
à leurs marginales

Dans ce chapitre, nous donnons des estimations quantitatives de la stabilité des barycen-
tres de Wasserstein par rapport à leurs marginales. Les barycentres de Wasserstein sont
des moyennes de Fréchet dans les espaces de Wasserstein-2 : pour Ω un sous-ensemble
compact de Rd et P une mesure de probabilité sur l’ensemble des mesures de probabilité
sur Ω, c’est-à-dire P ∈ P(P(Ω)), un barycentre de Wasserstein de P est défini comme un
minimiseur µP de

min
µ∈P(Ω)

1

2

∫
P(Ω)

W2
2(ρ, µ)dP(ρ). (10)

De tels barycentres donnent des notions de moyennes de mesures de probabilité avec
de fortes caractéristiques géométriques. Leur utilisation est de plus en plus populaire dans
les domaines appliqués, tels que le traitement des images ou du langage ou en géométrie
computationnelle. Cependant, dans ces domaines, la mesure de probabilité d’intérêt P ∈
P(P(Ω)) n’est souvent pas accessible dans sa totalité et le praticien peut avoir à traiter
une approximation statistique ou informatique Q ∈ P(P(Ω)) à la place. Dans ce chapitre,
nous quantifions l’effet de telles approximations sur les barycentres correspondants. Nous
montrons que les barycentres de Wasserstein dépendent d’une manière Hölder-continue
de leurs marginales sous des hypothèses de régularité relativement faibles. Formellement,
notre résultat est le suivant: soit P ∈ P(P(Ω)) tel que P charge un ensemble de mesures
dont les fonctionnelles de Kantorovich associées (étudiées dans la Partie I) satisfont des
estimations de forte convexité de type (7). Alors pour tout Q ∈ P(P(Ω)), le barycentre
(unique) µP de P et tout barycentre µQ de Q satisfont

W2(µP, µQ) ≲W1(P,Q)1/6, (11)

où W1 désigne la métrique de Wasserstein-1 sur l’espace métrique (P(Ω),W2).

Avant de prouver cette estimation de stabilité, nous étudions dans la Section 6.1 sous
quelles conditions nous pouvons espérer un quelconque résultat de stabilité. Lorsque la
dimension ambiante d est supérieure à 2, nous montrons que des hypothèses de régularité
(telles que l’absolue continuité et la connexité du support) doivent être faites sur certaines
des mesures marginales de P ou de Q dans (11). Nous présentons ensuite la formula-
tion duale de (10) ainsi que nos principales hypothèses et estimations, et nous donnons
quelques conséquences immédiates mais utiles dans les applications. Nous montrons en-
suite que la preuve des estimations du type (11) peut être déduite de deux estimations
de stabilité : une première estimation de stabilité pour les solutions duales du problème
(10) par rapport aux mesures marginales, donnée dans la Section 6.2, et une seconde
estimation de stabilité pour l’opération poussé-en-avant par une application de transport
optimal (pas nécessairement régulière), donnée dans la Section 6.3. La Section 6.4 donne
enfin la preuve de la formulation duale de (10).
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Chapitre 7 : Stabilité quantitative des potentiels de Schrödinger par rapport
à la température dans le cadre semi-discret

Il est maintenant bien connu que pour un paramètre de régularisation suffisamment
grand, le problème de transport optimal entropique est plus facile à résoudre que son
équivalent non-régularisé et que les quantités associées ont un meilleur comportement
statistique. Le praticien peut donc être intéressé par l’approximation des quantités de
transport optimal classiques à l’aide de leurs versions entropiques. Ces pratiques néces-
sitent l’étude de l’erreur d’approximation qu’elles induisent. Dans le cas du transport
optimal discret (où la source et la cible sont discrètes), la littérature assure des vitesses de
convergence rapides et non-asymptotiques des quantités entropiques vers leurs analogues
classiques lorsque le paramètre de régularisation tend vers zéro. Le cas du transport
optimal semi-discret est cependant moins avancé : dans ce cadre, rien n’était connu
quantitativement de l’effet de la régularisation entropique jusqu’au travail récent de
(Altschuler et al., 2022) où des bornes asymptotiques ont été décrites. Dans ce chapitre,
nous améliorons ces limites pour obtenir des limites non asymptotiques et presque op-
timales. Nous nous donnons une densité de probabilité source fixe ρ supportée sur un
ensemble compact et convexe X et une mesure cible discrète fixe µ =

∑N
i=1 µiδyi sup-

portée sur un ensemble fini Y = {yi}1≤i≤N . Pour ces source et cible, nous considérons
pour tout ε ≥ 0 le problème de transport optimal régularisé par l’entropie (8) déjà étudié
dans le Chapitre 4 et notons γε sa solution (unique) ainsi que ψε ∈ RN la solution de
son problème dual vérifiant

∑N
i=1ψ

ε
i = 0 (une telle solution duale est souvent appelée

potentiel de Schrödinger ou de Sinkhorn). Nous montrons que dès que la densité source
ρ est α-Hölder continue pour un certain α > 0, l’application ε 7→ ψε est mieux que
Lipschitz : pour toute 0 < ε′ ≤ ε ≤ 1 et α′ ∈ (0, 1), nous assurons

||ψε −ψε′ ||∞ ≲ εα
′
(ε− ε′).

Ce fait peut constituer un premier pas vers une justification mathématique de
l’heuristique d’ε-scaling utilisée pour la résolution numérique du transport optimal semi-
discret régularisé, où ε est progressivement diminué au cours des itérations d’un algo-
rithme qui vise à résoudre le problème dual de (8). En laissant ε′ tendre vers zéro, cette
borne assure un taux de convergence superlinéaire en ε de ψε vers la solution non régu-
larisée ψ0. Ce résultat assure également qu’il existe une fonction c : X → R+ qui est
strictement positive ρ-presque partout et qui vérifie pour tout x ∈ X et y ∈ Y∣∣γε(x, y)− γ0(x, y)∣∣ ≲ e−c(x)/ε.

Ce résultat peut être considéré, dans le cadre semi-discret, comme une version non-
asymptotique du principe de grandes déviations montré récemment par (Bernton et al.,
2022). Enfin, les bornes présentées impliquent également un développement non asymp-
totique et optimal de la différence entre les coûts entropiques et non régularisés. A savoir,
en notant

W2,ε(ρ, µ) =

(∫
X×Y

∥x− y∥2 dγε(x, y)
)1/2

la distance de Wasserstein approximée entre ρ et µ, nous prouvons qu’il existe une con-
stante explicite C(ρ, µ) qui ne dépend que de ρ et µ telle que pour tout α′ ∈ (0, 1),∣∣W2

2,ε(ρ, µ)−W2
2(ρ, µ)− ε2C(ρ, µ)

∣∣ ≲ ε2+α
′
.
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Afin de prouver ces estimations, nous rappelons d’abord dans la Section 7.2 des
éléments de transport optimal semi-discret (entropique) des Chapitres 2 et 4 et énonçons
nos principaux résultats. La Section 7.3 donne l’EDO à partir de laquelle commence la
preuve de notre principale estimation. Cette EDO présente deux termes qui impliquent
tous deux la fonctionnelle de Kantorovich entropique semi-discrète introduite dans le
Chapitre 4. L’estimation de forte convexité de ce chapitre ainsi qu’une autre estimation
obtenue dans la Section 7.4 permettent alors de prouver notre principale estimation. Les
deux corollaires de cette estimation donnant les taux de convergence de ψε vers ψ0 et
de W2,ε vers W2 sont respectivement prouvés dans la Section 7.5 et la Section 7.6. La
Section 7.7 illustre enfin nos résultats théoriques avec des exemples numériques simples
uni-dimensionnels.

Partie III : Applications numériques : le cadre du transport optimal
linéarisé

Chapitre 8 : Transport optimal linéarisé et applications

Ce dernier chapitre rassemble des illustrations numériques et des expériences dans le cadre
transport optimal linéarisé (LOT) de (Wang et al., 2013), un cadre de transport optimal
approximatif qui est analysé dans une certaine mesure dans le Chapitre 5. Dans la Sec-
tion 8.2, nous illustrons les résultats théoriques du Chapitre 8.2 et observons la distorsion
de la métrique induite par le plongement LOT sur certains exemples bi-dimensionnels.
Nous mentionnons également comment le plongement LOT peut être utilisé pour ap-
procher les barycentres dans l’espace de Wasserstein-2. Ensuite, dans la Section 8.3,
nous donnons deux exemples d’extensions des méthodes classiques d’analyse de données
hilbertiennes à des mesures de probabilité dans le cadre du LOT. Ces extensions concer-
nent des problèmes de K-moyennes et d’apprentissage de dictionnaires dans l’espace de
Wasserstein-2.

Appendice

Chapitre A : Faits relatifs au transport optimal

Cette courte annexe rassemble certains faits relatifs au transport optimal qui sont utiles
dans cette thèse mais qui ne sont pas traités dans le Chapitre 1.

Publications

– Quantitative stability of optimal transport maps and linearization of the 2-
Wasserstein space. Q. Mérigot, A. Delalande, F. Chazal. Proceedings of the
23rd International Conference on Artificial Intelligence and Statistics (AISTATS),
PMLR 108:3186-3196, 2020.

– Quantitative stability of optimal transport maps under variations of the target mea-
sure. A. Delalande, Q. Mérigot. Under revision at the Duke Mathematical Journal.

– Nearly tight convergence bounds for semi-discrete entropic optimal transport. A.
Delalande. Proceedings of the 25th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), PMLR 151:1619-1642, 2022.
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– Quantitative stability of barycenters in the Wasserstein space. G. Carlier, A. Dela-
lande, Q. Mérigot. Preprint.

Ressources pour les expériences numériques

– https://github.com/alex-delalande/stability_ot_maps_and_
linearization_wasserstein_space

– https://github.com/alex-delalande/potentials-entropic-sd-ot

– https://github.com/alex-delalande/linearized_wasserstein_dictionary_
learning

https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space
https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space
https://github.com/alex-delalande/potentials-entropic-sd-ot
https://github.com/alex-delalande/linearized_wasserstein_dictionary_learning
https://github.com/alex-delalande/linearized_wasserstein_dictionary_learning


General introduction

The optimal transport problem corresponds to the main object of study of the present
thesis. In plain language, this problem can be formulated as follows:

Given two distributions of a same amount of mass over some space and given the
knowledge of the cost of transferring a unit of mass from any location to any other
location, how can we transport all the mass from the first distribution to the second in
the cheapest possible way?

Such a problem has the ability to model practical issues: the mass aforementioned may
be instantiated by a crowd of people, or by a collection of gas particles, or by a set of
commodities; and the cost may correspond to a distance (to measure a traveling effort),
or to the square of a distance (to measure a kinetic energy), or simply to a financial cost.
In the presence of a mathematical problem that aims at modeling physical phenomena,
it is relevant to verify whether this problem is well-posed in the sense of Hadamard
(Hadamard, 1902). This informal notion gathers some of the desirable features that a
natural problem should present and that should help its resolution. A given problem is
said to be well-posed if:

(i) it admits a solution;

(ii) this solution is unique;

(iii) this solution depends continuously on the data of the problem.

Quoting Evans in the introduction to his book Partial Differential Equations (Evans,
2010), condition (iii) "is particularly important for problems arising from physical ap-
plications: we would prefer that our (unique) solution changes only a little when the
conditions specifying the problem change a little. For many problems, on the other
hand, uniqueness is not to be expected.".

In its modern formulation, the optimal transport problem is overall well-posed. A solution
to this problem corresponds to a concrete plan to indeed morph all the mass positioned
in a first configuration into a second configuration while achieving the minimal overall
transportation cost. We shall see below that the existence of solution property (i) is by
now perfectly understood and shown to hold in most interesting cases. The question
(ii) of the uniqueness of the solution has also been extensively studied and many of
the instances where the solution is indeed unique, or conversely where it is not likely
to be unique, have been described. The study of the last property (iii) is however less
advanced. There are in general abstract stability guarantees that ensure that optimal
transport solutions do change continuously with the mass distributions that define the
problem. However, except in very rare cases, these guarantees are not quantitative: we do
not know in general how a given change in these distributions impacts the corresponding
optimal transport solutions. Because modern days applications almost always require
the practitioners to deal with statistical or computational approximations of the data of
interest, this lack of quantitative guarantees is problematic. The aim of this thesis is to
work towards closing this gap.

15
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Optimal transport theory and applications: a (very) brief overview. The
optimal transport problem was first introduced by Monge in 1781 with military and
engineering applications in mind (Monge, 1781). He formulated the general problem of
finding the cheapest way to transport a given amount of dirt from an extraction site to a
building site, the cost of transport of each molecule of dirt being proportional to the dis-
tance it travels. The study of this problem led him to the discovery of important concepts
in the geometry of surfaces, but the problem was left largely unresolved. The optimal
transport problem was revived with Kantorovich, who gave in 1942 (Kantorovich, 1942)
its modern formulation as a linear program. In raw mathematical terms, Kantorovich’s
problem may be described as follows. Consider some space Ω, typically a compact Polish
space, and two probability measures ρ, µ in P(Ω) that each represent a distribution of
mass. Then, given a function c(x, y) that represents the cost of transferring a unit of
mass from a location x in Ω to a location y in Ω, solve

min
γ∈Γ(ρ,µ)

∫
Ω×Ω

c(x, y)dγ(x, y), (12)

where Γ(ρ, µ) is the set of transport plans between ρ and µ, that is the set of probability
measures over Ω×Ω with first marginal ρ and second marginal µ. A candidate γ in Γ(ρ, µ)
proposes a plan to transport the mass from ρ to µ by sending a portion dγ(x, y) of the
mass dρ(x) from a source location x to a target location y. The linearity of Kantorovich’s
formulation allowed him to ensure, under mild assumptions on c, the existence of solutions
to his problem in compact metric spaces as well as to establish a dual formulation and
optimality conditions. He and other authors soon understood that the value of the
optimal transport cost (12) between two measures ρ and µ could give a quantitative idea
of how similar ρ and µ are. It was shown that when c(x, y) = dΩ(x, y)

p is the p-th power of
a distance dΩ on Ω for some p ≥ 1, the value of (12) corresponds itself to the p-th power of
a distance between ρ and µ. This distance, generally called the p-Wasserstein distance2

and denoted Wp, endows the set of probability measures P(Ω) with a rich geometric
structure lifted from the base space Ω. For instance, a compact metric space (Ω, dΩ)
embeds isometrically into the p-Wasserstein space (P(Ω),Wp) through the mapping x 7→
δx (where δx denotes the Dirac mass at x). The geometry provided by Wasserstein metrics
on spaces of probability measures has proven to be very convenient, both for theoretical
and applied considerations. The unique quadratic case p = 2 on Ω = Rd has by itself
produced a very substantial theory. It has allowed to define notions of interpolations
(McCann, 1997) or barycenters (Agueh and Carlier, 2011) on families of probability
measures coming with strong geometrical flavors (see Figure 4). More generally, the 2-
Wasserstein geometry revealed itself to give a physically relevant Riemannian structure
to spaces of probability measures, in which some well known evolution PDEs (such as
the Fokker-Planck or porous medium equations) could be expressed as gradient flows
of well-chosen energy functionals on the space of probability distributions (Otto, 1998;
Jordan et al., 1998; Otto, 2001). Other important evolution PDEs found a variational
formulation in Wasserstein spaces, such as Euler equations in fluid dynamics (Brenier,
1989, 1999).

In parallel to the development of its theory, the optimal transport problem has
made many successful incursions in applications. Kantorovich introduced his linear pro-
gram (12) to model common problems of resource allocation arising in economics, a field

2the attribution of this name to this distance is often questioned. In Kantorovich’s works, the first
appearance of such notion is in his joint work with Rubinstein (Kantorovich and Rubinstein, 1958) for
the case p = 1. We refer to the bibliographical notes in Chapter 6 of (Villani, 2008) for more details.
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Figure 4: (Top) Linear interpolation (1 − t)ρ0 + tρ1 and (Bottom) Displacement inter-
polation ρt := argminµ∈P(R)(1− t)W2

2(ρ0, µ) + tW2
2(ρ1, µ) of two Gaussian distributions

ρ0, ρ1 on (R, |·|), with respective mean 0 and 15 and unit variance each. In many ap-
plications, the horizontal movement of the displacement interpolant is preferable to the
vertical movement of its linear counterpart.

where optimal transport still draws vivid interest (Galichon, 2016). In these applica-
tions, the considered resources are often of discrete nature and the probability measures
ρ and µ can be taken finitely and discretely supported. In such a setting, problem (12)
corresponds to a classical finite-dimensional linear program, a problem that was soon
solved numerically with Dantzig’s simplex algorithm (Dantzig, 1949, 1951) and in more
efficient manners with algorithms for min-cost flow problems (Ford and Fulkerson, 1962;
Goldberg and Tarjan, 1989). The discrete version of problem (12) is also closely linked to
the assignment problem, which was solved efficiently with Bertsekas’ auction algorithm
(Bertsekas, 1981; Bertsekas and Eckstein, 1988). Since the years 2000, the optimal trans-
port problem has also been increasingly used to solve various tasks of shape, image and
video processing such as registration (Haker et al., 2004), flicker reduction (Delon, 2006),
color transfer (Pitié et al., 2007; Bonneel et al., 2016), denoising (Lellmann et al., 2014)
or segmentation (Rabin and Papadakis, 2015). In machine learning, optimal transport
was used for image retrieval (Rubner et al., 2000), semi-supervised learning (Solomon
et al., 2014), generative modeling (Arjovsky et al., 2017), domain adaptation (Courty
et al., 2017) or distributionally robust optimization (Kuhn et al., 2019). The number of
these applications vastly increased following the computational advances due to (Cuturi,
2013), see (Peyré and Cuturi, 2019) for more references. Finally, other notable applica-
tions of optimal transport can be found in quantum chemistry (Buttazzo et al., 2012;
Cotar et al., 2013), optics design (Oliker, 2003; Caffarelli and Oliker, 2008) and in statis-
tics, where it has helped to extend notions of quantiles to multivariate random variables
(Carlier et al., 2016; Chernozhukov et al., 2017), to build efficient density estimators in
geometric inference (Weed and Berthet, 2019; Divol, 2022) and to analyze the conver-
gence of sampling algorithms such as the Langevin Monte Carlo algorithm (Dalalyan,
2017; Bernton, 2018) or the Stein variational gradient descent algorithm (Korba et al.,
2020).

Well-posedness of optimal transport problems. The strong ability of optimal
transport to model physical phenomena raises urgently the question of its well-posedness:
can we hope for any solution, is the solution unique and does it respond continuously to
modifications of the problem data?

We have already mentioned that Kantorovich proved the existence of solutions to
(12) in general cases. This existence result was even more generalized in (Kellerer, 1984),
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µ

ρ

µ

ρ

Figure 5: In R2, consider ρ = 1
2(δ(−1,0) + δ(1,0)) and µ = 1

2(δ(0,−1) + δ(0,1)). The optimal
transport between ρ and µ with the Euclidean distance as ground cost (c(x, y) = ∥x− y∥)
is achieved by γ0 = 1

2(δ(−1,0)×(0,1)+δ(1,0)×(0,−1)) (left) as well as by γ1 = 1
2(δ(−1,0)×(0,−1)+

δ(1,0)×(0,1)) (right), or by any of the convex combination (1− t)γ0 + tγ1 for t ∈ [0, 1].

and one can expect that (12) admits solutions for instance whenever Ω is Polish and c is
lower semicontinuous and lower-bounded.

The uniqueness of a solution to (12) is not to be expected in general (see Figure 5
for an example). There are however interesting particular cases where uniqueness of the
solution holds. The most famous of these cases is undoubtedly due to Brenier (Brenier,
1987), who showed for Ω a compact subset of Rd and c(x, y) = ∥x− y∥2 that whenever
the source measure ρ is absolutely continuous with respect to the Lebesgue measure, the
solution to (12) is unique and, more importantly, it is supported on the graph of the
gradient of a convex function (see also (Knott and Smith, 1984; Smith and Knott, 1987;
Rüschendorf and Rachev, 1990)). Incidentally, this characterization allowed to adopt the
following PDE point of view on the optimal transport problem: whenever ρ and µ admit
densities (denoted with the same letters), a smooth and stricly convex function ϕ whose
gradient’s graph supports the optimal transport solution between ρ and µ must verify
for all x in Ω the change of variable formula

det(D2ϕ(x))µ(∇ϕ(x)) = ρ(x). (13)

This corresponds to a Monge-Ampère equation in ϕ, whose solution actually provides
the solution to the optimal transport problem between ρ and µ under suitable boundary
conditions. Brenier’s result was then generalized to more general costs and domains, see
for instance (Gangbo and McCann, 1996; Trudinger and Wang, 2001; McCann, 2001;
Caffarelli et al., 2002; Bernard and Buffoni, 2007; Fathi and Figalli, 2010).

The stability of optimal transport solutions with respect to the data that defines them
is established in general cases. For instance, Theorem 5.19 of (Villani, 2008) ensures that
for Ω a Polish space and c a continuous and bounded cost function, the weak convergence
of source and target measures ρn, µn in P(Ω) to respective limits ρ, µ in P(Ω) entails,
up to a subsequence, the weak convergence of optimal transport solutions γn between ρn
and µn to an optimal transport solution γ between ρ and µ. Other results also ensure in
general the stability of other optimal transport quantities such as the above mentioned
interpolants and barycenters in Wasserstein spaces. These guarantees are not anecdotal:
they ensure for instance that an approximate optimal transport plan between two mea-
sures ρ and µ is given by an optimal transport plan γ̂ between two approximations ρ̂, µ̂
of ρ, µ. This is particularly useful in applications, where opting for approximations ρ̂, µ̂
of ρ, µ can be necessary either because of computational limitations, or in a statistical
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Figure 6: Histogram representation of the displacement interpolation ρ̂nt :=
argminµ∈P(R)(1 − t)W2

2(ρ̂
n
0 , µ) + tW2

2(ρ̂
n
1 , µ), where for k ∈ {0, 1}, ρ̂nk = 1

n

∑n
i=1 δxik

with (xik)1≤i≤n ∼ ρk for n = 2000 and ρk as in Figure 4.

context where only samples of the measures of interest are available. In such applications
however, the practitioner may need to have quantitative guarantees on the committed
approximations. Consider for instance the displacement interpolation displayed in Fig-
ure 6. This interpolation is a statistical approximation of the one displayed in the bottom
row of Figure 4, obtained by approximating the end measures ρ0 and ρ1 with empirical
measures ρ̂n0 and ρ̂n1 built from samples before computing their interpolation. In typical
settings, the statistician is able to say something on the quality of the approximations of
ρ0 and ρ1 in Wasserstein distance, i.e. bounds (in expectation or with high probability)
on W2(ρ0, ρ̂

n
0 ) and W2(ρ1, ρ̂

n
1 ) are available. For downstream applications, it can then

be important to know whether these quality guarantees are transmitted to the inter-
polants, i.e. whether the distance W2(ρt, ρ̂

n
t ) for some t ∈ (0, 1) can be bounded in terms

of W2(ρ0, ρ̂
n
0 ) and W2(ρ1, ρ̂

n
1 ). In the one-dimensional setting of Figures 4 and 6, the

answer is positive and one can always ensure the following Lipschitz behavior:

Wp(ρt, ρ̂
n
t ) ≤ (1− t)Wp(ρ0, ρ̂

n
0 ) + tWp(ρ1, ρ̂

n
1 ).

However, this bound is specific to Ω = Rd with d = 1 and there is no similar quantitative
guarantee whenever d ≥ 2. This raises the question of the general quantitative stability
of the optimal transport problem.

For some elliptic PDEs, quantitative stability of solutions can be deduced from strong
ellipticity. Consider for instance on a smooth bounded domain Ω of Rd the Poisson
equation

∆ϕ = f, (14)

with zero Dirichlet boundary condition (ϕ = 0 on ∂Ω). In this equation ∆ denotes the
Laplace operator, whose ellipticity gives the Poincaré inequality on Ω. This inequality
ensures in particular that there exists a constant C such that for any weak solutions
ϕ, ϕ̂ ∈ H1(Ω) of (14) with respective second members f, f̂ , one has

||ϕ−ϕ̂||2L2(Ω) ≤ C||∇ϕ−∇ϕ̂||
2
L2(Ω) = −C

∫
Ω
(ϕ−ϕ̂)(f−f̂)dx ≤ C||ϕ−ϕ̂||L2(Ω)||f−f̂ ||L2(Ω),

so that ||ϕ − ϕ̂||L2(Ω) ≤ C||f − f̂ ||L2(Ω). Such an inequality quantifies precisely the
effect of a perturbation of the input data f on the corresponding solution ϕ in (14).
Unfortunately, this ellipticity approach cannot be readily applied to the optimal transport
problem. For instance, we have mentioned that in the quadratic and Euclidean setting
(which corresponds to the most studied and arguably the simplest setting), the optimal
transport problem could be reformulated in some cases in terms of the Monge-Ampère
equation (13). In general, this equation is merely degenerate elliptic, and strong ellipticity
only holds when the unknown ϕ is smooth and strongly convex, which is rarely the case
in practice. This makes the question of the quantitative stability of the optimal transport
problem a particularly difficult one.
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Main contributions. In this thesis, we follow a classical approach in optimal trans-
portation theory that consists in studying the dual problem of (12) to infer qualitative
and quantitative information about optimal transport solutions. We only focus on the
simpler Euclidean and quadratic setting (i.e. Ω = Rd and c(x, y) = ∥x− y∥2), leaving
the generalizations of our results to future work. In this setting, the dual problem of (12)
essentially corresponds to the minimization problem

min
ψ:Rd→R̄

∫
ψ∗dρ+

∫
ψdµ, (15)

where ψ∗ denotes the convex conjugate of the potential ψ.

Instead of directly looking for quantitative stability estimates for (12), we first look
for quantitative stability estimates for (15). The functional ψ 7→

∫
ψ∗dρ appearing in

this dual problem, which we call the Kantorovich functional associated to a source ρ, is
convex. As such, the derivation of stability estimates for minimizers of (15) can be carried
out through the estimation of the strong convexity of this functional. In chapters 2–4, we
derive explicit estimates of the strong convexity of the Kantorovich functional, mainly
relying on the Brunn-Minkowski, Brascamp-Lieb and Prékopa-Leindler inequalities. It
was already understood, since the seminal work of (McCann, 1997), that these well-
known geometric and functional inequalities are linked to the optimal transport problem
since they can be deduced from the geodesic convexity of some energy functionals on the
2-Wasserstein space. This thesis reinforces this link, somewhat in an opposite direction,
by using these inequalities to quantify the strong convexity of the dual quadratic optimal
transport problem.

Then, we gather in chapters 5–7 consequences of the strong convexity estimates of
chapters 2–4 regarding the quantitative stability of optimal transport solutions with
respect to the data that defines them. In particular, we derive quantitative stability esti-
mates for optimal transport maps with respect to their target measures and for Wasser-
stein barycenters with respect to their marginals. Beyond the guarantees they offer for
numerical and statistical applications, these estimates also give new insights about the
geometry of the 2-Wasserstein space and its embeddability in Hilbert spaces that we
leverage in machine learning applications in Chapter 8. Finally, we focus on the variant
of the optimal transport problem obtained by adding an entropic regularization term in
(12) weighted by a temperature parameter. This variant is known to be related to the
Schrödinger problem in statistical physics and we derive, in specific settings, quantitative
stability estimates for its solutions with respect to the temperature parameter.

Detailed outline and summary of contributions

Part I: Strong convexity of the quadratic optimal transport problem

In the first part of this thesis, we derive strong-convexity estimates for the dual quadratic
optimal transport problem under different conditions and using different techniques, and
we establish the relationships between these estimates.
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Chapter 1: Quadratic optimal transport and strong convexity of the dual

This chapter gives an introduction to the first part of this thesis. In Section 1.1, we recall
the Monge and Kantorovich formulations of the quadratic optimal transport problem in
Rd. We prove the Kantorovich duality formula (15), that motivates the definition of
the Kantorovich functional Kρ : ψ 7→

∫
ψ∗dρ associated to a source measure ρ. This

functional is convex, and it formally characterizes a Kantorovich potential ψµ between ρ
and µ solution to problem (15) through the first order condition

∂Kρ(ψµ) + µ ∋ 0 ⇐⇒ ψµ ∈ (∂Kρ)−1(−µ). (16)

This characterization leads us to study the (sub)differential properties of Kρ. We pay
particular attention to the case where the source measure ρ is absolutely continuous with
respect to the Lebesgue measure and we notice in such setting that the signed measure
−(∇ψ∗)#ρ is (formally) in the subdifferential of Kρ at ψ : Rd → R̄, that is for any
ψ̃ : Rd → R̄,

−⟨(∇ψ∗)|ψ̃ − ψ⟩ ≤ Kρ(ψ̃)−Kρ(ψ). (17)

Under compactness assumptions, we show that −(∇ψ∗)#ρ actually corresponds to the
gradient of Kρ at ψ (in a sense to be made precise). This fact together with the first order
condition (16) ensure that in such setting, ψµ is solution to (15) if and only if (∇ψ∗

µ)#ρ =
µ. This allows us to recover in this setting Brenier’s theorem (Brenier, 1987) that we
mentioned above. These ideas illustrate how the study of the Kantorovich functional can
help get qualitative information about the solutions to Monge and Kantorovich optimal
transport problems.

In Section 1.2, we propose to push further the study of the Kantorovich functional in
order to also get quantitative information about the solutions to Monge and Kantorovich
optimal transport problems. In particular, we wonder in this section under which con-
ditions we can hope for strong convexity estimates for Kρ, i.e. estimates that quantify
the gap in the subdifferential inequality (17). Because of the optimality condition (16),
such strong convexity estimates could be directly translated into stability estimates for
ψµ with respect to µ. This natural question has already been tackled in (Gigli, 2011)
and (Hütter and Rigollet, 2021) in the context of the study of the stability of optimal
transport maps, but the estimates derived in these works were only valid near very reg-
ular (i.e. strongly convex) potentials. As we shall see right after, this is not optimal.
After mentioning necessary conditions on the source ρ to ensure strong convexity of Kρ,
we announce the form of the estimates that we derive in the subsequent chapters 2, 3
and 4. In broad terms, these estimates ensure that for an absolutely continuous, com-
pactly and convexly supported source measure ρ, one has for any Kantorovich potentials
ψµ, ψν : Rd → R̄ between ρ and µ, ν ∈ P2(Rd) the bound

Varρ(ψ∗
ν − ψ∗

µ) ≲ Kρ(ψν)−Kρ(ψµ) + ⟨(∇ψ∗
µ)|ψν − ψµ⟩, (18)

provided that µ and ν satisfy some moment assumptions. The derivations of estimates of
the form of (18) carried out in chapters 2, 3 and 4 mainly rely on well-known geometric
and functional inequalities (the Brunn-Minkowsky, Brascamp-Lieb and Prékopa-Leindler
inequalities). We recall in Section 1.3 the statements of these inequalities and we discuss
succinctly how they have already interfered with optimal transport in previous works.
We finally give in Section 1.4 an extension of estimate (18) to source measures ρ that
may not be convexly supported but that satisfy a Poincaré-Wirtinger inequality and
additional mild geometric assumptions on their support.
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Chapter 2: A semi-discrete approach

This chapter contains the proof of a first strong convexity estimate of the form of (18).
This estimate is only valid for compactly supported target measures µ, ν in (18).

The proof derived in this chapter works by approximation arguments. We first assume
in Section 2.2 that the target probability measures µ, ν are discretely supported on a
common finite set of N points. This places ourselves in the context of semi-discrete
optimal transport, with an absolutely continuous source ρ and discrete targets µ, ν. In
this context, the Kantorovich functional Kρ can be seen as a C2 convex function Kρ

on RN for which the gradient and Hessian are known. In Section 2.3, we leverage the
Laplacian structure of the Hessian matrix of Kρ to give an explicit lower-bound on its
smallest non-zero eigenvalue. We then deduce from this lower-bound combined with
the Brunn-Minkowski inequality a strong convexity estimate of type (18) working for
discrete targets. Using an approximation argument, we finally generalize in Section 2.4
the strong-convexity estimate of Section 2.3 to any compactly supported target measures.

Chapter 3: A continuous approach

This chapter gives the proof of a second strong convexity estimate of the form of (18).
This second estimate is valid for target probability measures µ, ν in (18) that are such
that the convex conjugates ψ∗

µ, ψ
∗
ν of their Kantorovich potentials in the optimal transport

between ρ and µ, ν are bounded on the compact support of ρ. From Morrey’s inequality
and the resulting Sobolev embedding, this is the case for instance whenever µ and ν
admit finite moments of order p > d. The estimate of this chapter thus covers the case of
compactly and non-compactly supported target measures and can be seen as an extension
of the estimate of Chapter 2.

The proof of this second estimate is also carried out by approximation. In Section 3.2,
we assume that the targets µ, ν in (18) are absolutely continuous and regular enough so
that the Kantorovich potentials ψµ, ψν are smooth and strongly-convex. This assumption
allows us to compute the second order derivative of the Kantorovich functional at ψµ in
the direction ψν − ψµ. We then use in Section 3.3 the Brascamp-Lieb concentration
inequality to get an explicit lower-bound on the value of this second derivative, from
which we deduce a strong-convexity estimate of type (18) working for regular enough
targets µ and ν. Finally in Section 3.4, we generalize with density arguments the strong
convexity estimate of Section 3.3 to targets µ, ν that are only such that their Kantorovich
potentials satisfy some boundedness assumptions.

Chapter 4: An entropic approach

We consider in this chapter the entropic variant of the Kantorovich optimal transport
problem obtained by adding an entropic regularization term to (12):

min
γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥2 dγ(x, y) + εKL(γ|ρ⊗ µ), (19)

where ε ≥ 0 is a regularization parameter and KL denotes the Kullback-Leibler diver-
gence or relative entropy. This variant is linked to the Schrödinger problem in statistical
physics and it has been popularized in the recent years in applied fields for its computa-
tional and statistical advantages. We show in this chapter that the dual of this problem
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features an entropic Kantorovich functional that enjoys strong-convexity estimates rem-
iniscent of the ones presented in chapters 2 and 3.

In Section 4.2, we define the entropic Kantorovich functional and discuss the role
played by the target measure in this functional. This discussion leads us to make, again,
a semi-discrete assumption and consider only discrete target measures. Under this semi-
discrete assumption, we compute in Section 4.3 the first and second derivatives of the
entropic Kantorovich functional. The Prékopa-Leindler inequality is then used in Section
4.4 to derive a lower-bound on the smallest eigenvalue of the Hessian of the semi-discrete
entropic Kantorovich functional, from which a strong convexity estimate of type (18)
is derived. We finally expose in Section 4.5 how this entropic estimate can be used to
recover the strong convexity estimate of Chapter 3.

Part II: Consequences for the stability of solutions to optimal transport
problems

In the second part of this thesis, we collect consequences of the strong-convexity estimates
of Part I regarding the quantitative stability of solutions to optimal transport problems
with respect to some of the data that defines them.

Chapter 5: Quantitative stability of optimal transport maps with respect to
the target measure

We derive in this chapter quantitative stability estimates for the quadratic optimal trans-
port map between a fixed probability density ρ and a probability measure µ on Rd, which
we denote Tµ, defined as being the minimizer of

min
T#ρ=µ

∫
Rd
∥T (x)− x∥2 dρ(x),

where T#ρ is the image measure of ρ by T . Assuming that the source density ρ is
bounded from above and below on a compact convex set, we prove that the map µ 7→ Tµ
is bi-Hölder continuous with respect to the 2-Wasserstein metric on large families of
probability measures, such as the set of probability measures whose moment of order
p > d is bounded by some constant. A bit more precisely, for some p > d and any
µ, ν ∈ Pp(Rd) that admit a p-th moment upper bounded by a common constant, we
show that Tµ and Tν satisfy bounds of the type

W2(µ, ν) ≤ ∥Tµ − Tν∥L2(ρ,Rd) ≲ W2(µ, ν)
p

6p+16d . (20)

These stability estimates show that the linearized optimal transport (Wang et al., 2013)
metric W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd) (with respect to which geodesic curves correspond
to generalized geodesics in (Ambrosio et al., 2008)) is bi-Hölder equivalent to the 2-
Wasserstein distance on large subsets of P2(Rd), justifying its use in applications (see
Chapter 8 for examples of applications). This result also partially answers the metric
geometry question of the embeddability of the Wasserstein space (P2(Rd),W2) into a
Hilbert space. While a strong negative result found in (Andoni et al., 2018) ensures that
the whole Wasserstein space cannot be embedded into any Hilbert space in a bi-Hölder
way, our bounds ensure that at least large subsets of (P2(Rd),W2) can be explicitly
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embedded into a L2 space with a controlled bi-Hölder distorsion. A final possible inter-
pretation of estimate (20) is in terms of the Riemannian interpretation of the infinite-
dimensional space (P2(Rd),W2): this estimate can be seen as a quantitative continuity
estimate for the inverse exponential map µ ∈ (P2(Rd),W2) 7→ Tµ − id ∈ L2(ρ,Rd).

In order to prove estimates of type (20), we leverage the fact the optimal transport
map Tµ between a fixed source ρ and a target µ reads Tµ = (∇ψ∗

µ)#ρ where ψµ is a
Kantorovich potential for the transport problem between ρ and µ, i.e. a minimizer of
(15). In Section 5.2, we first derive stability estimates for µ 7→ ψµ and µ 7→ ψ∗

µ as direct
consequences of the strong convexity estimates derived in Part I. The stability of µ 7→ Tµ
is then obtained in Section 5.3, relying in particular on a new Gagliardo-Nirenberg type
inequality for the difference of convex functions proven in Section 5.4 which might be of
independent interest.

Chapter 6: Quantitative stability of Wasserstein barycenters with respect to
the marginals

In this chapter we derive quantitative stability estimates for Wasserstein barycenters with
respect to their marginals. Wasserstein barycenters are Fréchet means in Wasserstein
spaces: for Ω a compact subset of Rd and P a probability measure on the set of probability
measures over Ω, i.e. P ∈ P(P(Ω)), a Wasserstein barycenter of P is defined as a
minimizer µP of

min
µ∈P(Ω)

1

2

∫
P(Ω)

W2
2(ρ, µ)dP(ρ). (21)

Such barycenters give geometrically meaningful notions of averages of probability
measures. Their use is increasingly popular in applied fields, such as image, geometry
or language processing. In these fields however, the probability measure of interest
P ∈ P(P(Ω)) is often not accessible in its entirety and the practitioner may have to deal
with a statistical or computational approximation Q ∈ P(P(Ω)) instead. In this chapter,
we quantify the effect of such approximations on the corresponding barycenters. We show
that Wasserstein barycenters depend in a Hölder-continuous way on their marginals under
relatively mild regularity assumptions. In rough terms, our result is the following. Let
P ∈ P(P(Ω)) be such that P gives mass to a set of measures whose associated Kantorovich
functional (studied in Part I) satisfy strong convexity estimates of type (18). Then for
any Q ∈ P(P(Ω)), the (unique) barycenter µP of P and any barycenter µQ of Q satisfy

W2(µP, µQ) ≲W1(P,Q)1/6, (22)

where W1 denotes the 1-Wasserstein metric on the metric space (P(Ω),W2).

Before we prove this stability estimate, we study in Section 6.1 under what conditions
we can hope for any stability result. Whenever the ambient dimension d is greater than
2, we show that regularity assumptions (such as absolute continuity and connectedness
of the support) must be made on some of the marginal measures of either P or Q in
(22). We then present the dual formulation of (21) as well as our main assumptions
and estimate, and we give some immediate but useful consequences of this result in
applications. We next show that the proof of estimates of type (22) can be deduced from
two stability estimates: a first stability estimate for the dual solutions to the Wasserstein
barycenter problem with respect to the marginal measures, derived in Section 6.2, and a
second stability estimate for the push-forward operation under a (not necessarily smooth)
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optimal transport map, derived in Section 6.3. Section 6.4 finally gives the proof of the
dual formulation of (21).

Chapter 7: Quantitative stability of Schrödinger potentials with respect to
the temperature in the semi-discrete setting

It is now well-known that for a large enough regularization parameter, the entropy-
regularized optimal transport problem is easier to solve than its non-regularized coun-
terpart and the associated quantities have a better statistical behavior. The practitioner
may thus be interested in approximating optimal transport quantities using their entropy-
regularized versions. These practices call for the study of the approximation error that
they induce. In the case of discrete optimal transport (where both the source and target
are discrete), the literature ensures fast and non-asymptotic converge rates of entropic
quantities toward their classical analogues as the regularization parameter goes to zero.
The case of semi-discrete optimal transport is however less ahead: in this setting, nothing
was known quantitatively of the effect of entropic regularization until the recent work
(Altschuler et al., 2022) where asymptotic bounds were derived. In this chapter, we im-
prove these bounds to non-asymptotic and nearly tight ones. We give ourselves a fixed
probability source density ρ supported over a compact and convex set X and a fixed dis-
crete target measure µ =

∑N
i=1 µiδyi supported over a finite set Y = {yi}1≤i≤N . For these

source and target, we consider for any ε ≥ 0 the entropy-regularized optimal transport
problem (19) already studied in Chapter 4 and denote γε its (unique) solution as well as
ψε ∈ RN the solution to the dual of this problem verifying

∑N
i=1ψ

ε
i = 0 (such a dual

solution is often called a Schrödinger or Sinkhorn potential). We show that whenever the
source density ρ is α-Hölder continuous for some α > 0, the mapping ε 7→ ψε is better
than Lipschitz : for any 0 < ε′ ≤ ε ≤ 1 and α′ ∈ (0, 1), we ensure

||ψε −ψε′ ||∞ ≲ εα
′
(ε− ε′).

Such fact may be a first step towards a mathematical justification of ε-scaling heuristics
used for the numerical resolution of regularized semi-discrete optimal transport, where
ε is gradually decreased over the course of the iterations of an algorithm that aims at
solving the dual of (19). Letting ε′ go to zero, this bound ensures a super-linear rate of
convergence in ε of ψε to the non-regularized solution ψ0. This result also ensures that
there exists a function c : X → R+ that is positive ρ-almost everywhere and that verifies
for all x ∈ X and y ∈ Y ∣∣γε(x, y)− γ0(x, y)∣∣ ≲ e−c(x)/ε.

This result may be seen, in the semi-discrete setting, as a non-asymptotic version of the
large deviations result shown recently in (Bernton et al., 2022). Finally, the presented
bounds also entail a non-asymptotic and tight expansion of the difference between the
entropic and the unregularized costs. Namely, denoting

W2,ε(ρ, µ) =

(∫
X×Y

∥x− y∥2 dγε(x, y)
)1/2

the approximated Wasserstein distance between ρ and µ, we prove that there is an explicit
constant C(ρ, µ) that depends only on ρ and µ such that for any α′ ∈ (0, 1),∣∣W2

2,ε(ρ, µ)−W2
2(ρ, µ)− ε2C(ρ, µ)

∣∣ ≲ ε2+α
′
.



26 GENERAL INTRODUCTION

In order to prove these estimates, we first recall in Section 7.2 elements of semi-
discrete (entropic) optimal transport from Chapters 2 and 4 and state our main results.
Section 7.3 derives the ODE from which starts the proof of our main bound. This ODE
presents two terms that both involve the entropic semi-discrete Kantorovich functional
introduced in Chapter 4. The strong-convexity estimate of this chapter together with
another estimate derived in Section 7.4 then allow to prove our main bound. The two
corollaries to this main bound giving rates of convergences of ψε to ψ0 and of W2,ε to
W2 are respectively proven in Section 7.5 and Section 7.6. Section 7.7 finally illustrates
our theoretical results on simple one-dimensional numerical examples.

Part III: Numerical applications: the Linearized Optimal Transport
framework

Chapter 8: Linearized optimal transport and applications

This final chapter gathers numerical illustrations and experiments revolving around the
linearized optimal transport (LOT) framework of (Wang et al., 2013), an approximated
optimal transport framework which is analyzed to some extent in Chapter 5. In Section
8.2, we illustrate the theoretical results of Chapter 8.2 and observe the metric distorsion
induced by the LOT embedding on some two-dimensional examples. We also mention
how the LOT embedding may be used to perform barycenter approximation in the 2-
Wasserstein space. Then in Section 8.3, we give two example extensions of classical
Hilbertian data analysis methods to probability measures within the LOT framework.
These extensions concernK-means and dictionary learning problems in the 2-Wasserstein
space.

Appendix

Chapter A: Optimal transport facts

This short appendix collects some optimal transport facts that are useful in this thesis
but not treated in Chapter 1.

Publications

– Quantitative stability of optimal transport maps and linearization of the 2-
Wasserstein space. Q. Mérigot, A. Delalande, F. Chazal. Proceedings of the
23rd International Conference on Artificial Intelligence and Statistics (AISTATS),
PMLR 108:3186-3196, 2020.

– Quantitative stability of optimal transport maps under variations of the target mea-
sure. A. Delalande, Q. Mérigot. Under revision at the Duke Mathematical Journal.

– Nearly tight convergence bounds for semi-discrete entropic optimal transport. A.
Delalande. Proceedings of the 25th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), PMLR 151:1619-1642, 2022.

– Quantitative stability of barycenters in the Wasserstein space. G. Carlier, A. Dela-
lande, Q. Mérigot. Preprint.
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Resources for the numerical experiments

– https://github.com/alex-delalande/stability_ot_maps_and_
linearization_wasserstein_space

– https://github.com/alex-delalande/potentials-entropic-sd-ot

– https://github.com/alex-delalande/linearized_wasserstein_dictionary_
learning

https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space
https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space
https://github.com/alex-delalande/potentials-entropic-sd-ot
https://github.com/alex-delalande/linearized_wasserstein_dictionary_learning
https://github.com/alex-delalande/linearized_wasserstein_dictionary_learning
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Notation

Spaces.

R̄ : extended real number line, also denoted R ∪ {−∞} ∪ {+∞} .
M(Ω) : set of Radon bounded measures supported over Ω ⊆ Rd.
M+(Ω) : set of positive Radon bounded measures supported over Ω ⊆ Rd.
Mp(Ω) : set of Radon bounded measures supported over Ω ⊆ Rd that admit

a finite p-th moment.
P(Ω) : set of Borel probability measures supported over Ω ⊆ Rd.
Pa.c.(Ω) : set of Borel probability measures supported over Ω ⊆ Rd that are

absolutely continuous w.r.t. the Lebesgue measure.
Pp(Ω) : set of Borel probability measures supported over Ω ⊆ Rd that admit

a finite p-th moment.
Pp,a.c.(Ω) : set of Borel probability measures supported over Ω ⊆ Rd that admit

a finite p-th moment and are absolutely continuous w.r.t. the
Lebesgue measure.

Cb(Ω) : set of continuous and bounded functions from Ω ⊆ Rd to R.
(1 + ∥·∥2)Cb(Ω) : set of continuous functions from Ω ⊆ Rd to R with at most quadratic

growth.
Ck(Ω) : set of functions from Ω ⊆ Rd to R admitting k ≥ 0 continuous derivatives.
Ck,α(Ω) : subset of functions of Ck(Ω) with α-Hölder continuous k-th derivative.
Lp(ρ) : set of Lp-integrable ρ-measurable functions from Rd to R ∪ {+∞}.
Lp(ρ,Rd) : set of Lp-integrable ρ-measurable functions from Rd to Rd.
Lipk(Ω) : set of k-Lipschitz functions from Ω ⊆ Rd to R.

Measures.

Mp(µ) : p-th moment of a probability measure µ ∈ P(Rd): Mp(µ) =
∫
Ω ∥x∥

p dµ(x).
Eµ(f) : expectation of f against µ (equal to

∫
Rd fdµ, possibly denoted ⟨f |µ⟩).

Varµ(f) : variance of f against µ (equal to
∫
Rd f

2dµ− (
∫
Rd fdµ)

2).
spt(ρ) : topological support of a probability measure ρ ∈ P(Rd).

Others.

diam(Ω) : diameter of Ω ⊂ Rd.
χΩ : for a subset Ω ⊂ Rd, denotes the indicator function of S, i.e. χΩ(x) = 1

if x ∈ Ω, and 0 else.
ιC : for a convex set C ⊂ Rd, denotes the convex characteristic function of C,

valued 0 on C and +∞ everywhere else.
diag(v) : for v ∈ RN , denotes the diagonal matrix of RN×N with v on the diagonal.
B(x,R) : Euclidean ball of Rd centered at x ∈ Rd and of radius R > 0.
ϕ⊕ ψ : for two functions ϕ, ψ : Ω ⊆ Rd → R, denotes the function from Ω× Ω to R

defined by ϕ⊕ ψ : (x, y) 7→ ϕ(x) + ψ(y).
⟨·|·⟩ : canonical pairing between dual spaces (in Rd, corresponds to the inner product).
Sd−1 : (d− 1)-sphere in Rd.
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Chapter 1

Quadratic optimal transport and
strong convexity of the dual

Abstract

This chapter stands as an introduction to the first part of this thesis. In a
first section (§1.1), we recall some well-known facts about quadratic optimal
transport and introduce what we call the Kantorovich functional, that ap-
pears in the dual formulation of the quadratic optimal transport problem. It
is shown that the study of this functional can be useful to derive qualitative
and quantitative properties of the solutions to quadratic optimal transport
problems. These ideas motivate in particular the study of the strong con-
vexity of this functional in a second section (§1.2), where a strong convexity
estimate is announced and the outline of the rest of the first part of this thesis
is given. The new strong convexity estimates derived in this thesis all follow
from well-known geometric and functional inequalities that are recalled in a
third section (§1.3). Finally, we give in a fourth section (§1.4) an extension
of the main result of the first part of this thesis.

1.1 Quadratic optimal transport

This section gives a brief introduction to the quadratic optimal transport problem, that
corresponds arguably to the most studied of the optimal transport problems and is the
focus of this thesis. This section does not present new results but introduces the main
objects and concepts at work in this dissertation. Complementary facts about optimal
transport (with possibly other costs than the quadratic one) are gathered in Chapter A
of the appendix. We also refer to the following monographs and chapters (from which
this section and Chapter A are inspired) for more general presentations of theoretical and
computational aspects related to the field: (Villani, 2003, 2008), (Santambrogio, 2015),
(Peyré and Cuturi, 2019) and (Mérigot and Thibert, 2021).

1.1.1 Monge and Kantorovich formulations

Monge formulation. The optimal transport problem, as introduced by Monge in 1781
(Monge, 1781), may be stated as follows. Let Ω ⊆ Rd. Given two probability measures

31
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ρ, µ ∈ P(Ω) that represent two different distributions of mass and given a cost function
c : Ω×Ω→ R+ that encodes with c(x, y) the cost of transporting a unit of mass from a
location x ∈ Ω to a location y ∈ Ω, look for a transport map T : Ω→ Ω that solves the
following non-convex optimization problem:

inf
T#ρ=µ

∫
Ω
c(x, T (x))dρ(x), (MP)

where T#ρ corresponds to the push-forward measure of ρ by T , which satisfies T#ρ(A) =
ρ(T−1(A)) for every ρ-measurable set A. The quadratic setting, that we consider from
now on, corresponds to choosing the squared distance as a ground cost:

c : (x, y) 7→ ∥x− y∥2 ,

where ∥·∥ denotes the Euclidean norm in Rd. When a minimizing map T exists for
problem (MP) with the quadratic cost as ground cost, such a map may be called either
an optimal transport map or a Monge map between ρ and µ. The weakness of formulation
(MP) is that such a map may not always exist. Indeed, one can first notice that there
does not always exist a transport map between any measures ρ and µ: for instance,
think of the case where ρ is a Dirac mass, which implies that T#ρ is also a Dirac mass
and prevents from satisfying the constraint T#ρ = µ unless µ is a Dirac mass itself.
Moreover, even when there exist transport maps between ρ and µ, the existence of a
minimizing one remains a challenging question in general: the push-forward constraint is
highly non-linear in T , which prevents from easily employ direct methods in the calculus
of variations to show existence of solutions (see Example 4.9 of (Villani, 2008) for a
concrete example where transport maps exist but no transport map is optimal).

Kantorovich formulation. In 1942, Kantorovich introduced a linear optimization
problem that latter on revealed itself to be a relaxed version of Monge’s problem (MP),
and that allowed to overcome its above-mentioned limitations. In Kantorovich’s version,
instead of looking for a transport map T : Ω→ Ω that sends all the mass located at x ∈ Ω
to a unique target location T (x) ∈ Ω, one look for a transport plan γ ∈ P(Ω × Ω) that
sends a fraction dγ(x, y) of the mass dρ(x) from a location x ∈ Ω to a location y ∈ Ω,
thus allowing to split the mass coming from the source measure during the transport
process. Less formally, introduce Γ(ρ, µ) the set of transport plans between ρ and µ, i.e.
the set of probability measures over Ω×Ω with first marginal ρ and second marginal µ:

Γ(ρ, µ) = {γ ∈ P(Ω× Ω)|∀ Borel set B ⊂ Ω, γ(B × Ω) = ρ(B), γ(Ω×B) = µ(B)}.

Kantorovich’s formulation of the quadratic optimal transport problem then corresponds
to the following convex optimization problem:

inf
γ∈Γ(ρ,µ)

∫
Ω×Ω
∥x− y∥2 dγ(x, y). (KP)

Problem (KP) is a relaxation of (MP) in the sense that if there exists a transport map
T between ρ and µ, then one can build an admissible transport plan γT from it: γT :=
(id, T )#ρ ∈ Γ(ρ, µ). Such transport plan verifies in particular∫

Ω×Ω
∥x− y∥2 dγT (x, y) =

∫
Rd
∥T (x)− x∥2 dρ(x),
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so that one always has (KP) ≤ (MP). In some cases, one can ensure that (KP) = (MP).
We will study in Section 1.1.3 (in particular with Theorem 1.12) the most famous of
these cases, that corresponds to the instance where the source measure ρ is absolutely
continuous. When a minimizing transport plan γ exists in (KP), such a plan is called
an optimal transport plan. A clear advantage of (KP) over (MP) is that whenever the
probability measures ρ, µ admit a finite second-order moment (which is automatically
the case when Ω is compact), an optimal transport plan always exists:

Theorem 1.1. Let Ω ⊆ Rd and ρ, µ ∈ P2(Ω). Then (KP) admits a solution.

This result can be shown using the direct method in the calculus of variations, i.e. by
looking at a minimizing sequence, extracting a converging subsequence by compactness
of the set of transport plans (deduced from Prokhorov’s theorem) and showing that the
limit of the subsequence is a minimizer thanks to the continuity of the quadratic cost,
see e.g. Proposition 2.1 of (Villani, 2003). Another advantage of formulation (KP) is
that it is a convex optimization problem: it admits as such a dual formulation, that we
present in the next subsection.

1.1.2 Dual formulation

For ρ, µ ∈ P2(Ω) having a finite second-order moment, we have observed that (KP) ad-
mits a minimizer. Developing the square in the integral term of (KP), one can notice that
solving this problem with ρ, µ ∈ P2(Ω) is equivalent to solving the maximum correlation
problem

max
γ∈Γ(ρ,µ)

∫
Ω×Ω
⟨x|y⟩dγ(x, y), (KP’)

with the relation (KP) =M2(ρ)+M2(µ)−2× (KP’). We can thus now focus exclusively
on problem (KP’). This problem presents the constraint that a candidate minimizer γ
must be a transport plan between ρ and µ and thus belong to Γ(ρ, µ). Such constraint
may be expressed using the method of Lagrange multipliers: for γ ∈M+(Ω× Ω),

inf
ϕ,ψ∈C0(Ω)

∫
Ω
ϕdρ+

∫
Ω
ψdµ−

∫
Ω×Ω

ϕ⊕ ψdγ =

{
0 if γ ∈ Γ(ρ, µ),

−∞ else,

where ϕ ⊕ ψ : (x, y) 7→ ϕ(x) + ψ(y). With this representation of the constraint, (KP’)
can be rewritten

(KP’) = sup
γ∈M+(Ω×Ω)

∫
Ω×Ω
⟨·|·⟩dγ + inf

ϕ,ψ∈C0(Ω)

∫
Ω
ϕdρ+

∫
Ω
ψdµ−

∫
Ω×Ω

ϕ⊕ ψdγ.

The Lagrangian dual problem of (KP’) is then obtained by exchanging the supremum
and infimum in this last formulation:

inf
ϕ,ψ∈C0(Ω)

∫
Ω
ϕdρ+

∫
Ω
ψdµ+ sup

γ∈M+(Ω×Ω)

∫
Ω×Ω

(⟨·|·⟩ − ϕ⊕ ψ) dγ. (1.1)

In this formulation, the supremum also represents a constraint:

sup
γ∈M+(Ω×Ω)

∫
Ω×Ω

(⟨·|·⟩ − ϕ⊕ ψ) dγ =

{
0 if ∀x, y ∈ Ω, ϕ(x) + ψ(y) ≥ ⟨x|y⟩,
+∞ else.
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The unconstrained dual problem (1.1) thus admits the following constrained formulation:

inf
ϕ,ψ∈C0(Ω)

{∫
Ω
ϕdρ+

∫
Ω
ψdµ | ∀x, y ∈ Ω, ϕ(x) + ψ(y) ≥ ⟨x|y⟩

}
. (DP)

From the constraints in the last dual problem, it is easy to check that (DP) ≥ (KP’)
so that naturally weak duality holds. The following result ensures that strong-duality
actually holds, i.e. (KP’) = (DP).

Theorem 1.2. Let Ω ⊆ Rd and ρ, µ ∈ P2(Ω). Then

max
γ∈Γ(ρ,µ)

∫
Ω×Ω
⟨·|·⟩dγ = inf

ϕ,ψ∈C0(Ω),ϕ⊕ψ≥⟨·|·⟩

∫
Ω
ϕdρ+

∫
Ω
ψdµ.

This strong duality result, often reffered to as Kantorovich duality, is well-known and
holds in much more general settings than our Euclidean setting with the squared distance
as a ground cost (see e.g. Theorem 5.9 of (Villani, 2008), reported partially in Theorem
A.5 of the appendix). We detail however a possible proof of this result, for completeness
and because we will use a similar approach to show another strong duality result in
Chapter 6. This approach is inspired from Section 2 of (Agueh and Carlier, 2011) and
from Section 1.6.3 of (Santambrogio, 2015), itself suggested by C. Jimenez and adapted
from Section 4 of (Bouchitté and Buttazzo, 2001). We will require the notion of convex
conjugation, or Legendre transformation:

Definition 1.3 (Convex conjugate). Let V be a real topological vector space and let
V ∗ be its dual space, with canonical pairing denoted ⟨·|·⟩ : V × V ∗ → R. The convex
conjugate, or Legendre transform, of a function f : V → R̄ is the function defined by

f∗ :

{
V ∗ → R̄,
v∗ 7→ supv∈V ⟨v|v∗⟩ − f(v).

As a supremum of linear functions, the convex conjugate is always convex and lower
semi-continuous. Moreover, from its definition, the biconjugate f∗∗ always satisfies f∗∗ ≤
f . In the proof of Theorem 1.2, we will use the equality case of this inequality given
by the Fenchel–Moreau theorem, that ensures that a proper function (a function is said
proper if it does not take the value −∞ and it is not equal to +∞ everywhere) f : V → R̄
satisfies f∗∗ = f if and only if f is convex and lower semi-continuous.

Proof of Theorem 1.2. We will prove a slightly stronger result by restricting the infimum
in (DP) and taking ϕ, ψ in the set (1 + ∥·∥2)Cb(Ω) of continuous functions over Ω with
at most quadratic growth. Define the functional

H :

{
(1 + ∥·∥2)Cb(Ω× Ω)→ R,
p 7→ infϕ,ψ∈(1+∥·∥2)Cb(Ω) {⟨ϕ|ρ⟩+ ⟨ψ|µ⟩ | ϕ⊕ ψ − ⟨·|·⟩ ≥ p} ,

and notice that by definition H is convex. Also notice that H(0) ≥ (DP). Let’s now
compute the Legendre transform of H. For any γ ∈M2(Ω× Ω), one has

H∗(γ) = sup
p
⟨p|γ⟩ −H(p)

= sup
p,ϕ,ψ
{⟨p|γ⟩ − ⟨ϕ|ρ⟩ − ⟨ψ|µ⟩ | ϕ⊕ ψ − ⟨·|·⟩ ≥ p} .
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If γ /∈M+(Ω×Ω), then there exists p0 ∈ (1 + ∥·∥2)Cb(Ω×Ω) verifying p0 ≤ 0 and such
that ⟨p0|γ⟩ > 0. Setting ϕ = ψ = 0 in the last supremum and p = pn = −⟨·|·⟩+ np0 for
n ≥ 0, this ensures that

H∗(γ) ≥ −
∫
Ω×Ω
⟨x|y⟩dγ(x, y) + n⟨p0|γ⟩ ≥ −M2(γ) + n⟨p0|γ⟩.

Letting n → +∞ in the last inequality shows that H∗(γ) = +∞ if γ /∈ M+(Ω × Ω).
Assume now that γ ∈M+(Ω×Ω). Then in the computation of H∗(γ), p may be chosen
as large as possible, i.e.

p = ϕ⊕ ψ − ⟨·|·⟩.
This ensures that for γ ∈M+(Ω× Ω),

H∗(γ) = −
∫
Ω×Ω
⟨x|y⟩dγ(x, y) + sup

ϕ,ψ
⟨ϕ⊕ ψ|γ⟩ − ⟨ϕ|ρ⟩ − ⟨ψ|µ⟩

= −
∫
Ω×Ω
⟨x|y⟩dγ(x, y) +

{
0 if γ ∈ Γ(ρ, µ),

+∞ else.

Thus for γ ∈ Γ(ρ, µ), H∗(γ) is the negative correlation induced by the coupling γ between
ρ and µ and we have

(KP’) = sup
γ∈M2(Ω×Ω)

−H∗(γ) = H∗∗(0).

We thus have shown so far

H(0) ≥ (DP) ≥ (KP’) = H∗∗(0),

so that equality between these terms will hold if we can show H∗∗(0) = H(0). Since H is
convex, this will follow from the continuity of H at 0 for the following supremum norm
for p ∈ (1 + ∥·∥2)Cb(Ω× Ω):

∥p∥ := sup
(x,y)∈Ω×Ω

|p(x, y)|
1 + ∥x∥2 + ∥y∥2

< +∞.

We can first notice that H never takes the value −∞: for p ∈ (1 + ∥·∥2)Cb(Ω × Ω) and
any ϕ, ψ ∈ (1 + ∥·∥2)Cb(Ω) such that ϕ⊕ ψ − ⟨·|·⟩ ≥ p, one has

⟨ϕ|ρ⟩+ ⟨ψ|µ⟩ ≥
∫
Ω×Ω

(p(x, y) + ⟨x|y⟩) dρ⊗ µ(x, y)

≥
∫
Ω×Ω

(
−(1 + ∥x∥2 + ∥y∥2) ∥p∥ − 1

2
(∥x∥2 + ∥y∥2)

)
dρ⊗ µ(x, y)

≥ −(1 +M2(ρ) +M2(µ)) ∥p∥ −
1

2
(M2(ρ) +M2(µ)) > −∞.

Thus H(p) > −∞. On the other hand, one can notice that H is bounded above in a
neighborhood of 0 in (1+∥·∥2)Cb(Ω×Ω): let p ∈ (1+∥·∥2)Cb(Ω×Ω) be such that ∥p∥ ≤ 1.
Then for all x, y ∈ Ω, p(x, y) ≤ 1 + ∥x∥2 + ∥y∥2. Thus choosing ϕ : x 7→ 1 + 3

2 ∥x∥
2,

ψ : y 7→ 3
2 ∥y∥

2 yields ϕ⊕ ψ − ⟨·|·⟩ ≥ p, so that

H(p) ≤ ⟨ϕ|ρ⟩+ ⟨ψ|µ⟩ ≤ 1 +
3

2
M2(ρ) +

3

2
M2(µ) < +∞.

A standard convex analysis result (Proposition 2.5 of (Ekeland and Témam, 1999)) then
ensures that H is continuous at 0, which ensures H(0) = H∗∗(0).
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Semi-dual formulation. One can notice that (DP) may be turned easily into an
unconstrained minimization problem. Indeed, for a given ψ ∈ C0(Ω) (resp. ϕ ∈ C0(Ω)),
it is interesting to choose ϕ (resp. ψ) as small as possible while satisfying the constraint,
that is:

∀x ∈ Ω, ϕ(x) = sup
y∈Ω
⟨x|y⟩ − ψ(y) (resp. ∀y ∈ Ω, ψ(y) = sup

x∈Ω
⟨x|y⟩ − ϕ(x)).

This corresponds to choosing ϕ = ψ∗ (resp. ψ = ϕ∗) (see Definition 1.3). Problem
(DP) thus admits the following unconstrained formulations, sometimes referred to as the
semi-dual formulations:

(DP) = inf
ψ∈C0(Ω)

⟨ψ∗|ρ⟩+ ⟨ψ|µ⟩ = inf
ϕ∈C0(Ω)

⟨ϕ|ρ⟩+ ⟨ϕ∗|µ⟩.

From the last remarks, a natural procedure to improve the value given by a candidate
ψ0 ∈ C0(Ω) in (DP) could be the following: first set ψ ← ψ0 and ϕ ← ψ∗. Then for all
k ≥ 1, alternate between ψ ← ϕ∗ and ϕ ← ψ∗. However such procedure converges at
iteration k = 1. Indeed, at this iteration, one sets ψ ← ψ∗∗

0 and ϕ ← ψ∗∗∗
0 . But by the

Fenchel-Moreau theorem, ψ∗∗∗
0 = ψ∗

0, so that we are back to right before iteration k = 1.
This fact thus prevents from easily solving (DP) from successive convex conjugations,
but it at least ensures the following: in the semi-dual formulation, one can impose that
ψ (resp. ϕ) is a proper convex function, so that ψ∗∗ = ψ (resp. ϕ∗∗ = ϕ). This idea
allows to prove the existence of solutions to the dual problem:

Theorem 1.4. Let Ω ⊆ Rd and ρ, µ ∈ P2(Ω). Then there exists a pair (ψ∗, ψ) of proper
lower semi-continuous (l.s.c.) conjugate convex functions on Rd such that

(DP) = ⟨ψ∗|ρ⟩+ ⟨ψ|µ⟩.

Before we mention how to prove this result, let us recall the definition of the sub-
differential of a function and state some convex analysis facts that allow to describe
qualitatively the minimizers of (DP).

Definition 1.5 (Subdifferential). Let V be a real topological vector space and denote
V ∗ its dual space. The subdifferential of a function f : V → R ∪ {+∞} at x ∈ V such
that f(x) < +∞ is defined by

∂f(x) = {g ∈ V ∗|∀y ∈ V, f(x) + ⟨g|y − x⟩ ≤ f(y)}.

Remark 1.6 (Convex analysis facts). A proper convex function ϕ : Ω→ R̄ is continuous
and locally Lipschitz on the interior of {x ∈ Ω|ϕ(x) < +∞}. Hence by Rademacher’s
theorem it is differentiable almost everywhere on this set. By definition of the convex
conjugate, it verifies the Fenchel-Young inequality:

∀x, y ∈ Ω, ϕ(x) + ϕ∗(y) ≥ ⟨x|y⟩.

Moreover, the Fenchel-Young equality case can easily be characterized: for all x, y ∈ Ω,

ϕ(x) + ϕ∗(y) = ⟨x|y⟩ ⇐⇒ y ∈ ∂ϕ(x) ⇐⇒ x ∈ ∂ϕ∗(y).

Finally, we see from this equivalence (or from the definition of the convex conjugation)
that the domain taken in the definition of the convex conjugate is important: if Ω ⊂ Rd
is compact and is included in a ball B(0, RΩ) centered at 0 and of radius RΩ > 0, the
convex conjugate of a function ϕ : Ω → R – which is defined on the whole Rd – is
RΩ-Lipschitz continuous.
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Theorem 1.4 is a consequence of the above remark. Indeed, we know that we can
assume that a candidate minimizer ψ in (DP) is a continuous proper convex function and
set ϕ = ψ∗. For Ω ⊂ B(0, RΩ) compact, Remark 1.6 ensures that any such candidate ψ
is RΩ-Lipschitz continuous, and it can be assumed to be bounded since for any constant
c ∈ R, a pair (ψ∗, ψ) performs as well in (DP) as the pair ((ψ+c)∗, ψ+c) = (ψ∗−c, ψ+c).
From a minimizing sequence in (DP), the Arzelà-Ascoli theorem then allows to extract
a uniformly converging subsequence, that is easily shown to be maximizing. The general
(non-compact) case is then obtained by approximation, see e.g. Theorem 2.9 of (Villani,
2003). Later on, the minimizers ψ or ψ∗ that appear in Theorem 1.4 may be called
Kantorovich potentials.

Remark 1.7 (Primal-dual relations). Let Ω ⊆ Rd and ρ, µ ∈ P2(Ω). For a primal solution
γ ∈ Γ(ρ, µ) to (KP’) as given in Theorem 1.1 and a dual solution (ψ∗, ψ) to (DP) as
given in Theorem 1.4, the strong duality result (KP’) = (DP) of Theorem 1.2 ensures
the equality ∫

Ω
ψ∗(x)dρ(x) +

∫
Ω
ψ(y)dµ(y) =

∫
Ω×Ω
⟨x|y⟩dγ(x, y).

Thus by the Fenchel-Young inequality and equality case (Remark 1.6), for γ-almost-every
(x, y) ∈ Ω × Ω, y ∈ ∂ψ∗(x) or, equivalently, x ∈ ∂ψ(y). This ensures that for µ-almost-
every y ∈ Ω, there exists x in the support spt(ρ) of ρ such that ψ(y) = ψ∗∗(y) =
⟨x|y⟩ − ψ∗(x), so that µ-almost-every y ∈ Ω satisfies

ψ(y) = sup
x∈spt(ρ)

⟨x|y⟩ − ψ∗(x).

Similarly, for ρ-almost every x ∈ Ω, ψ∗(x) = supy∈spt(µ)⟨x|y⟩−ψ(y). These facts show in
particular that whenever ρ is supported on a compact set X included in a ball B(0, RX )
of radius RX > 0, ψ can be assumed to be RX -Lipschitz continuous without any loss
of generality and without assuming that µ is compactly supported (to see this, consider
replacing ψ∗ with ψ∗+ιB(0,RX ) and observe that this does not change the value in (DP)).

We thus have shown that (KP’) = (DP) and that both of these problems admit
optimizers. In the next subsection, we derive immediate properties of the functional
being minimized in (DP) and present the questions we will try to answer in the rest of
the first part of this thesis.

1.1.3 The Kantorovich functional

In the preceding paragraphs, for Ω ⊆ Rd and ρ, µ ∈ P2(Ω), we have established that
solving the quadratic optimal transport problem (KP) between ρ and µ is equivalent to
solving the following (semi-)dual minimization problem

min
ψ:Ω→R̄

∫
Ω
ψ∗dρ+

∫
Ω
ψdµ, (DP’)

where ψ can be assumed to be proper, convex and lower semi-continuous. This du-
ality result, often called Kantorovich duality, motivates the definition of the following
Kantorovich functional defined for a given source measure ρ ∈ P2(Ω) by

Kρ :

{
R̄Ω → R̄,
ψ 7→

∫
Ω ψ

∗dρ.
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This functional has already been considered many times in the literature. It has been
leveraged in particular for the numerical resolution of (semi-discrete) optimal transport
problems (Aurenhammer et al., 1998; Mérigot, 2011; De Goes et al., 2012; Genevay et al.,
2016; Kitagawa et al., 2019).

Convexity of the Kantorovich functional. It is immediate to notice, from the
convexity of the convex conjugation ψ 7→ ψ∗, that the Kantorovich functional Kρ is
convex for any ρ ∈ P(Rd). We thus recover the fact that the functional being minimized
in (DP’), which is the addition of ψ 7→ Kρ(ψ) and the linear term ψ 7→ ⟨ψ|µ⟩, is convex.
Therefore, a bit formally, a minimizer ψ : Ω→ R̄ of (DP’) may be characterized by the
following first order condition:

0 ∈ ∂(Kρ(·) + ⟨·|µ⟩)(ψ) = ∂Kρ(ψ) + µ ⇐⇒ ψ ∈ (∂Kρ)−1(−µ).

Such fact, though formal, shows that the study of the Kantorovich functional may help
derive qualitative or quantitative information about the minimizers of (DP’) (and a
posteriori of (KP)). In the following, we observe settings where the subdifferential of the
Kantorovich functional can be properly derived.

Subdifferential and differential of the Kantorovich functional. In order to study
the (sub)differential properties of the Kantorovich functional, we need to restrict its
domain of definition to a relevant topological (or more conveniently normed) space. In
general, we can only assume that a minimizer of (DP’) is proper, l.s.c. and convex
(Theorem 1.4), but such fact does not indicate a natural normed space to work on.
Before we worry about this matter, let us state the following lemma that allows to find,
for a given convex potential, measures that satisfy the subdifferential inequality in very
general cases.

Lemma 1.8. Let Ω ⊆ Rd and let ρ ∈ P2(Ω). Let ψ0 : Ω → R̄ be a proper l.s.c. convex
function and denote ϕ0 = (ψ0)∗. Assume that the subdifferential of ϕ0 is not empty ρ-
almost-everywhere. Let g0 : Ω→ Ω be a measurable selection of the subdifferential of ϕ0,
i.e. for any x ∈ Ω,

g0(x) ∈ ∂ϕ0(x),

with the convention g0(x) = x0 for some x0 ∈ Ω if ∂ϕ0(x) = ∅. Then, the measure −g0#ρ
satisfies the subdifferential inequality of Kρ at ψ0: for any proper ψ1 : Ω→ R̄,

Kρ(ψ0) + ⟨ψ1 − ψ0| − g0#ρ⟩ ≤ Kρ(ψ1).

Proof. We have to check that for any proper ψ1 : Ω→ R̄, denoting ϕ1 = (ψ1)∗, we have

Kρ(ψ1)−Kρ(ψ0)− ⟨ψ0 − ψ1|g0#ρ⟩ =
∫
Ω
(ϕ1 + ψ1(g0)− ϕ0 − ψ0(g0))dρ ≥ 0.

But Fenchel-Young inequality and equality (Remark 1.6) give respectively for ρ-almost
every x ∈ Ω

ϕ1(x) + ψ1(g0(x)) ≥ ⟨x|g0(x)⟩ and ϕ0(x) + ψ0(g0(x)) = ⟨x|g0(x)⟩.

This proves the wanted inequality.
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We may now describe properly elements of the subdifferential of Kρ in the specific
compact setting. Whenever the domain Ω is compact and included in a ball B(0, RΩ)
centered at 0 and of radius RΩ > 0, we have observed in Remarks 1.6 and 1.7 that a
minimizer ψ of (DP’) can be assumed to be RΩ-Lipschitz continuous. This fact indicates
that under such compactness assumptions on Ω and for any ρ ∈ P(Ω), we may restrict
the domain of definition of Kρ to LipRΩ

(Ω) without any loss of generality in the resolution
of (DP’). We equip LipRΩ

(Ω) with the norm ∥·∥∞+ ∥·∥Lip, where each of these norms is
defined for f ∈ LipRΩ

(Ω) by

∥f∥∞ = sup
x∈Ω
|f(x)| and ∥f∥Lip = sup

x ̸=y∈Ω

|f(x)− f(y)|
∥x− y∥

.

Note that the topological dual of LipRΩ
(Ω) is included in the setM(Ω) of Radon bounded

measures supported over Ω ⊆ Rd. Now for any compact set Ω and ρ ∈ P(Ω), it is easy
to find from Lemma 1.8 elements of the subdifferential of

Kρ : (LipRΩ
(Ω), ∥·∥∞ + ∥·∥Lip)→ R.

Lemma 1.9. With the notation and assumptions of Lemma 1.8, assume additionaly
that Ω ⊂ B(0, RΩ) is a compact subset of Rd and that ψ ∈ LipRΩ

(Ω). Then, Kρ is
subdifferentiable at ψ0 in (LipRΩ

(Ω), ∥·∥∞ + ∥·∥Lip) and

−g0#ρ ∈ ∂Kρ(ψ0).

Proof. Lemma 1.8 already ensures that −g0#ρ satisfies the subdifferential inequality for
Kρ at ψ0. The statement thus follows from the fact that −g0#ρ is a negative Borel measure
with total mass −1, so that −g0#ρ ∈M(Ω).

Though simple, this lemma is informative: it ensures that in the compact setting, the
Kantorovich functional is subdifferentiable in many cases. Moreover, its subdifferential
may admit more than one element when ρ has atoms:

Example 1.10. In dimension d = 1 and with Ω = [−1, 1], set ρ = δ0 and ψ = 0. Then
for all x ∈ Ω, the conjugate ϕ = ψ∗ verifies ϕ(x) = |x| so that ∂ϕ(0) = [−1, 1]. Thus by
Lemma 1.8, for any g ∈ [−1, 1],

−δg ∈ ∂Kδ0(ψ).

On the other hand, whenever Ω is compact and ρ ∈ P(Ω) is absolutely continuous,
Lemma 1.8 describes way fewer elements of the subdifferential of Kρ. Indeed, for ψ ∈
LipRΩ

(Ω) convex, we know from Remark 1.6 that the conjugate ϕ = ψ∗ (which is also
convex) is differentiable almost-everywhere on {ϕ < +∞}, that is almost-everywhere
on Ω. Therefore, for an absolutely continuous source measure ρ, Lemma 1.8 describes a
single element of the subdifferential of Kρ at ψ, which may be denoted (slightly abusively)

−(∇ψ∗)#ρ.

We show in the following lemma that this signed measure is actually the unique element
of the subdifferential of Kρ at ψ, so that Kρ is differentiable at ψ and −(∇ψ∗)#ρ is its
Fréchet derivative.
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Lemma 1.11. Let Ω ⊂ B(0, RΩ) be a compact subset of Rd. Let ρ ∈ Pa.c.(Ω). Then Kρ
is weakly C1 on (LipRΩ

(Ω), ∥·∥∞ + ∥·∥Lip) and its Fréchet derivative reads:

∀ψ ∈ LipRΩ
(Ω), ∇Kρ(ψ) = −(∇ψ∗)#ρ.

Proof of Lemma 1.11. Let ψ ∈ LipRΩ
(Ω) and let a sequence (ψn)n≥0 ∈ LipRΩ

(Ω) that
converges to ψ in (LipRΩ

(Ω), ∥·∥∞ + ∥·∥Lip), i.e. such that

∥ψn − ψ∥∞ + ∥ψn − ψ∥Lip → 0.

The uniform convergence ∥ψn − ψ∥∞ → 0 entails ∥ψ∗
n − ψ∗∥∞ → 0, so that (using

the dominated convergence theorem), Kρ(ψn) → Kρ(ψ). The functional Kρ is thus
continuous on (LipRΩ

(Ω), ∥·∥∞ + ∥·∥Lip). Now recall that from Lemma 1.8, we have

−(∇ψ∗)#ρ ∈ ∂Kρ(ψ).

If we can show that the mapping ψ 7→ −(∇ψ∗)#ρ induces a continuous selection of
the subdifferential of Kρ (with the dual of (LipRΩ

(Ω), ∥·∥∞ + ∥·∥Lip) equipped with
the topology associated to the dual norm1), then this would show that Kρ is C1 on
(LipRΩ

(Ω), ∥·∥∞+∥·∥Lip) and the selection maps to the Fréchet derivative of Kρ (see e.g.
Corollary 4.5 of (Jourani et al., 2012)). We thus have to show that

sup
f∈LipRΩ

(Ω)

{
⟨f(∇ψ∗

n)− f(∇ψ∗)|ρ⟩ | ∥f∥∞ + ∥f∥Lip ≤ 1
}
→ 0.

But for any f ∈ LipRΩ
(Ω) such that ∥f∥Lip ≤ 1, one has∫

Ω
(f(∇ψ∗

n)− f(∇ψ∗))dρ ≤
∫
Ω
∥∇ψ∗

n −∇ψ∗∥ dρ.

The right-hand side of this inequality does not depend on f and it can be shown to
converge to zero using the dominated convergence theorem. Indeed, (ψ∗

n)n≥0, ψ
∗ are

RΩ-Lipschitz so that the integrand is bounded by 2RΩ. Moreover, the pointwise ρ-a.e.
convergence of the integrand to 0 may be deduced from the limit ∥ψ∗

n − ψ∗∥∞ → 0
together with the the convexity of ψ∗ and ψ∗

n for all n ≥ 0. Indeed, let x ∈ Ω where ψ∗

is differentiable (note that ρ-a.e. x ∈ Ω works), and let a sequence (gxn)n≥0 be such that
∀n ≥ 0, gxn ∈ ∂ψ∗

n(x). Let’s show that

gxn → ∇ψ∗(x).

For all n ≥ 0, ∥gxn∥ ≤ RΩ, so that (gxn)n≥0 is a bounded sequence from which we can
extract a converging subsequence. Let’s extract a converging subsequence (without re-
labelling) and denote gx∞ its limit. By definition of (gxn)n≥0, for any y ∈ Ω and for any
n ≥ 0,

⟨gxn|y − x⟩ ≤ ψ∗
n(y)− ψ∗

n(x).

If we let n go to ∞ in the last inequality we get for any y ∈ Ω,

⟨gx∞|y − x⟩ ≤ ψ∗(y)− ψ∗(x),

so that gx∞ ∈ ∂ψ∗(x) = {∇ψ∗(x)}. Thus any converging subsequence of the bounded
sequence (gxn)n≥0 converges to ∇ψ∗(x). This implies that the whole sequence (gxn)n≥0

converges to ∇ψ∗(x).

1Note that this dual norm is equal to the Dudley metric, which is equivalent to the flat norm.
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Interestingly, the computation of Lemma 1.11 together with the existence result of
Theorem 1.4 allow to recover the following well-known fact (only recovered in the compact
setting): for Ω ⊂ Rd compact, ρ, µ ∈ P(Ω) with ρ absolutely continuous, there exists a
proper l.s.c. convex function ψ : Ω→ R such that (ψ∗, ψ) is solution to (DP’), and such
ψ is characterized by the first order condition

(∇ψ∗)#ρ = µ.

Thus for any ψ satisfying this condition, the mapping T = ∇ψ∗ : Ω → Ω is a transport
map between ρ and µ, and it is an optimal one since we have for γT = (id, T )#ρ,

(KP’) ≥
∫
Ω×Ω
⟨x|y⟩dγT (x, y) =

∫
Ω
ψ∗dρ+

∫
Ω
ψdµ ≥ (DP’) = (KP’),

where we used the Fenchel-Young equality (Remark 1.6). Therefore when ρ is absolutely
continuous, (MP) = (KP) and Monge’s formulation admits a (unique) solution that is
characterized as being the gradient of a convex function. This corresponds to Brenier’s
theorem, which holds more generally in the non-compact case:

Theorem 1.12 (Brenier (1991)). Let Ω ⊆ Rd. Let ρ ∈ P2,a.c.(Ω) and µ ∈ P2(Ω). Then
there exists between ρ and µ a unique optimal transport map T and a unique optimal
transport plan γ, and these solutions are related by γ = (id, T )#ρ. Further, the map T
is the unique transport map that reads as the gradient of a convex function: T = ∇ϕ for
all convex functions ϕ : Ω→ R̄ that satisfy (∇ϕ)#ρ = µ.

Remark 1.13 (Brenier potentials and uniqueness). In this result, the convex functions
ϕ : Ω→ R that satisfy (∇ϕ)#ρ = µ may be called later on Brenier potentials. Note that
from the proof of Theorem 1.12 below, ϕ is a Brenier potential if and only if ψ = ϕ∗ is a
minimizer of (DP’). Note also that by Theorem 1.12, two Brenier potentials must have
that their gradient agree a.e. on spt(ρ): this entails that whenever spt(ρ) is the closure
of a bounded connected open set, there is a unique Brenier potential up to additive
constants (see e.g. Proposition 7.18 of (Santambrogio, 2015)).

Proof of Theorem 1.12. Let γ ∈ Γ(ρ, µ) be optimal for (KP’) and let ψ : Ω → R̄ be a
proper l.s.c. convex function that is optimal for (DP’). From the equality ⟨⟨·|·⟩|γ⟩ =
⟨ψ∗|ρ⟩ + ⟨ψ|µ⟩, γ is concentrated on the set {(x, y) ∈ Ω × Ω|ψ∗(x) + ψ(y) = ⟨x|y⟩}
(this corresponds to the primal-dual relation described in Remark 1.7). Therefore for
any (x0, y0) ∈ spt(γ) such that ψ∗ is differentiable in x0, one has y0 = ∇ψ∗(x0) by the
Fenchel-Young equality case (Remark 1.6). Since ψ∗ is proper l.s.c. convex on Ω, it is
differentiable ρ-a.e. (Remark 1.6). This entails that γ is induced by the map ∇ψ∗ in the
sense that γ = (id,∇ψ∗)#ρ. Since γ is an optimal transport plan, ∇ψ∗ is an optimal
transport map. Since ψ was not chosen depending on γ, there is a unique optimal
transport plan γ and a unique optimal transport map ∇ψ∗ defined ρ-a.e. Finally, any
proper l.s.c. convex function ϕ̃ : Ω → R̄ that satisfies (∇ϕ̃)#ρ = µ also induces a
transport plan γ̃ := (id,∇ϕ̃)#ρ ∈ Γ(ρ, µ) that satisfies∫

Ω×Ω
⟨x|y⟩dγ(x, y) ≤

∫
Ω
ϕ̃(x)dρ(x) +

∫
Ω
ϕ̃∗(y)dµ(y) =

∫
Ω×Ω
⟨x|y⟩dγ̃(x, y),

so that by optimality and uniqueness of γ, γ̃ = γ and ∇ϕ = ∇ϕ̃ ρ-almost-everywhere.
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Because of the (formal) first order condition

ψ ∈ (∂Kρ)−1(−µ)

that characterizes a minimizer ψ of the dual optimal transport problem (DP’) between
ρ, µ ∈ P2(Rd), we have seen that it is interesting to study the Kantorovich functional
Kρ to get information about such minimizer, and to get information a posteriori about
the solutions to the Monge (MP) or Kantorovich (KP) problems. In particular, in the
compact setting, we were able to recover Brenier’s theorem through the derivation of the
gradient of Kρ. This result allows to describe qualitatively the solutions to (MP) and
(KP) under regularity assumptions on the involved measures. In the following, we wonder
if we can push further the study of Kρ in order to also get quantitative information about
the solutions to (DP), (KP) and (MP).

1.2 Strong convexity of the Kantorovich functional

Let Ω ⊆ Rd. Let’s recall here the definition of the Kantorovich functional associated to
a given source measure ρ ∈ P2(Ω):

Kρ :

{
R̄Ω → R,
ψ 7→

∫
Ω ψ

∗dρ.

As mentioned on several occasions in the preceding section, Kρ is a convex functional
and a minimizer ψ of the dual quadratic optimal transport problem (DP’) between ρ, µ ∈
P2(Rd) is characterized formally by the first order condition

ψ ∈ (∂Kρ)−1(−µ).

Still formally, the (multivalued) mapping µ 7→ (∂Kρ)−1(−µ) may thus associate to a
target measure µ a set of solutions to the dual optimal transport problem (DP’) between
ρ and µ. Hence, the study of this mapping may help get information about solutions to
(DP’). In particular, getting (quantitative) continuity estimates for this mapping could
translate into (quantitative) stability estimates for the solutions to (DP’) with respect
to µ. As we will see in the rest of this thesis (in particular in Part II), such estimates
might be useful, be it theoretically, for the numerical resolution of (DP) or in statistical
contexts. The strongest notion of continuity we may hope is Lipschitz continuity. In
general, for a convex function F , the Lipschitz continuity of x 7→ (∂F )−1(x) is equivalent
to a notion of strong convexity of x 7→ F (x). Let’s recall these ideas for a function F
defined on Rd:

Definition 1.14 (Strongly convex function on Rd). A convex function F : Rd → R
is said (α-)strongly convex if there exists α > 0 such that for any x, y ∈ Rd, for any
gx ∈ ∂F (x), one has

α

2
∥x− y∥2 ≤ F (y)− F (x)− ⟨gx|y − x⟩, (1.2)

or, equivalently, for any t ∈ [0, 1],

t(1− t)α
2

∥x− y∥2 ≤ (1− t)F (x) + tF (y)− F ((1− t)x+ ty).
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Lemma 1.15. Let α > 0 and let F : Rd → R be an α-strongly convex function. Then
for any x∗, y∗ ∈ Rd, one has for x ∈ (∂F )−1(x∗) and y ∈ (∂F )−1(y∗) that

∥y − x∥ ≤ 1

α
∥y∗ − x∗∥ .

In particular, (∂F )−1(x∗) = {x} and (∂F )−1(y∗) = {y}.

Proof. By definition, x∗ ∈ ∂F (x) and y∗ ∈ ∂F (y). The strong convexity assumption on
F thus ensures

α

2
∥y − x∥2 ≤ F (y)− F (x)− ⟨x∗|y − x⟩ and

α

2
∥y − x∥2 ≤ F (x)− F (y)− ⟨y∗|x− y⟩.

Summing these inequalities and using Cauchy-Schwartz inequality yields

α ∥y − x∥2 ≤ ⟨y∗ − x∗|y − x⟩ ≤ ∥y∗ − x∗∥ ∥y − x∥ .

Remark 1.16. For any x, x∗ ∈ Rd, we know from Remark 1.6 that x∗ ∈ ∂F (x) if and only
if x ∈ ∂F ∗(x∗). Thus from Lemma 1.15, if F is α-strong convex, then F ∗ is differentiable
and ∇F ∗ = (∂F )−1 is 1

α -Lipschitz continuous. One can easily show the converse, so that
these properties are actually equivalent.

Beyond ensuring Lipschitz stability estimates for the inverse gradient map, the strong
convexity of a convex functional can be very useful for its (numerical) minimization.
Indeed, it leads to efficient gradient methods with fast rates of convergence (Nesterov,
2014; Boyd and Vandenberghe, 2004) and it offers a convenient framework for the study
of the gradient flows associated to the functional (Ambrosio et al., 2008; Santambrogio,
2017). We thus focus in the first part of this thesis on the derivation of strong convexity
estimates for the Kantorovich functional. This functional is not defined on Rd but on
the set of functions from Ω ⊆ Rd to R. As such, the notion of strong convexity of
Definition 1.14 does not apply directly and we will need to adapt it. Before we mention
existing strong convexity estimates and present our contributions, let us observe under
what conditions we can hope to derive such estimates.

1.2.1 Conditions for strong convexity

In general, the Kantorovich functional is not better than convex. This comes from the
fact that for any function ψ : Rd → R and constant c ∈ R, (ψ + c)∗ = ψ∗ − c. Thus for
ρ ∈ P2(Rd) and c ∈ R,

Kρ(ψ + c) = Kρ(ψ)− c,

and Kρ is affine in t on the path (ψ + tc)t∈[0,1]. The notion of strong convexity we look
for Kρ should thus work up to additive constants on ψ. Being aware of this, it is still
possible to find examples where Kρ fails in general to satisfy a strong convexity estimate.
This is for instance the case when the source ρ is discrete:

Example 1.17. Let X = {xi}1≤i≤N be a finite set of N ≥ 1 points in Rd and let ρ, µ
be probability measures supported over X . We consider the quadratic optimal transport
problem between ρ and µ. In this problem, we know from Remark 1.7 that we may
restrict the domain of a candidate Kantorovich potential and its conjugate to X without
loss of generality. Let’s build potentials ψ0, ψ1 : X → R such that Kρ is affine on the



44 CHAPTER 1. QUADRATIC OPTIMAL TRANSPORT

path ((1 − t)ψ0 + tψ1)t∈[0,1], so that it does not satisfy a strong convexity estimate.

Consider ψ0 : X → R, defined for all i ∈ {1, . . . , N} by ψ0(xi) = ∥xi∥2
2 . Then for any

i ∈ {1, . . . , N},

ψ0∗(xi) = max
1≤j≤N

⟨xi|xj⟩ −
∥xj∥2

2
=
∥xi∥2

2
.

Denote ε = 1
4 mini ̸=j ∥xi − xj∥2. Then, any potential ψ1 : X → R that is such that∥∥ψ1 − ψ0

∥∥
∞ ≤ ε satisfies for any t ∈ [0, 1]

Kρ((1− t)ψ0 + tψ1) = (1− t)Kρ(ψ0) + tKρ(ψ1). (1.3)

Indeed, consider such potential ψ1. Let t ∈ [0, 1] and introduce ψt = (1 − t)ψ0 + tψ1.
Notice that

∥∥ψt − ψ0
∥∥
∞ ≤ tε. Let’s show that for any i ∈ {1, . . . , N},

ψt∗(xi) = ⟨xi|xi⟩ − ψt(xi).

This would imply that ψt∗(xi) = (1 − t)ψ0∗(xi) + tψ1∗(xi) and consequently (1.3). For
any i ∈ {1, . . . , N}, one has

⟨xi|xi⟩ − ψt(xi) = ⟨xi|xi⟩ − ψ0(xi)− t(ψ1 − ψ0)(xi) ≥
∥xi∥2

2
− tε.

But by definition of ε, for any j ̸= i, ∥xi∥2
2 ≥ ⟨xi|xj⟩ − ∥xj∥2

2 + 2ε, so that for any j ̸= i,

⟨xi|xi⟩ − ψt(xi) ≥ ⟨xi|xj⟩ −
∥xj∥2

2
+ (2− t)ε ≥ ⟨xi|xj⟩ −

∥xj∥2

2
+ tε ≥ ⟨xi|xj⟩ − ψt(xj).

This shows that ψt∗(xi) = ⟨xi|xi⟩ − ψt(xi), which entails (1.3).

This example precludes from allowing discrete ρ in general. This motivates the choice of
an absolutely continuous source measure with bounds on its density, that prevent from
approaching the pathological discrete case by approximation arguments. We will make
the following assumption on the source measure:

Assumption 1.18. ρ is absolutely continuous w.r.t. the Lebesgue measure and its
density is bounded away from zero and infinity on its support.

Another necessary assumption on the source measure ρ can be established from the
following fact: strong convexity of Kρ is equivalent to strong convexity of the functional
being minimized in (DP’). Because strong convexity of a convex function implies in
general uniqueness of its minimizers (see e.g. Lemma 1.15), we have to be in a setting
where uniqueness (up to additive constants) of the solution to the dual quadratic optimal
transport problem (DP’) between ρ ∈ P2,a.c.(Ω) and any µ ∈ P(Ω) is ensured. As noticed
in Remark 1.13, this is guaranteed whenever the support of ρ corresponds to a connected
domain. In contrast, if ρ admits a support with several connected components, the
Brenier potentials from Theorem 1.12 are defined uniquely up to additive constants only
on these connected components. Thus for a given Brenier potential, adding to it a different
constant on each different connected component in such a way that the potential can still
be extended to a convex function on Rd does not affect its optimality, and potentials are
thus not unique up to a global additive constant. This motivates the assumption that
the source measure has a connected support, with bounds on the connectedness of this
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support that prevent from approaching with approximation arguments the case where
the this support has several connected components. This can be ensured by assuming
that the support of ρ has a non-zero (lower bounded) Cheeger constant, or equivalently
(Attouch et al., 2014) that ρ satisfies a Poincaré-Wirtinger inequality:

Assumption 1.19. ρ satisfies a Poincaré-Wirtinger inequality: for some p ≥ 1, there
exists a constant CPW (ρ, p) ∈ (0,+∞) depending only on ρ and p such that for any
f ∈ C1(Rd),

∥f − Eρ(f)∥Lp(ρ) ≤ CPW (ρ, p) ∥∇f∥Lp(ρ,Rd) .

We note that the necessity of this assumption may be justified in another manner with
considerations from Chapter 2. In this chapter, we will consider the setting where the
target measures µ are taken discrete with finite fixed support of size N ∈ N∗ (which
corresponds to the semi-discrete setting). In this setting, we will show that Kρ can be
seen as a C2 function on RN , whose second derivative features an Hessian matrix that
corresponds to the Laplacian matrix of a weighted graph over the support of µ. The
weights of this graph are proportional to the size of the intersections between cells of
a certain tessellation of the domain of ρ. Finding a strong convexity estimate in this
setting will thus reduce to finding a lower bound on the second smallest eigenvalue of
this Laplacian matrix, which will be non zero only if the considered weighted graph is
connected, i.e. only if the support domain of ρ is connected (see Section 5 of (Kitagawa
et al., 2019) for a similar discussion). Finally, we note that Assumption 1.19 already
appeared necessary in (Gunsilius, 2022) for the derivation of statistical convergence rates
for the estimation of Kantorovich potentials from empirical samples of ρ and µ (a question
that is closely related the strong convexity of Kρ, see Chapter 5).

1.2.2 A known case

Under Assumptions 1.18 and 1.19 of above, some authors have already established strong
convexity estimates for Kρ working near regular enough potentials. The following strong
convexity estimate was established in (Hütter and Rigollet (2021), Proposition 10) in
the context of the statistical estimation of smooth optimal transport maps. Note that
similar computations, due to Ambrosio, were reported in (Gigli (2011), Proposition 3.3)
to show the 1/2-Hölder behavior of optimal transport maps w.r.t. their target measure
for regular enough source and targets.

Proposition 1.20 (Gigli (2011); Hütter and Rigollet (2021)). Let ρ ∈ P2,a.c.(Rd) satis-
fying Assumption 1.19 with p = 2. Let α > 0 and let ψ0, ψ1 ∈ C1(Rd). Assume that ψ0

is convex and that ψ1 is α-strongly convex (Definition 1.14). Then, denoting ϕ0, ϕ1 the
convex conjugates of ψ0, ψ1 respectively, Kρ verifies

α

2Cρ
Varρ(ϕ1 − ϕ0) ≤

α

2

∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρ,Rd) ≤ Kρ(ψ

1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩,

where Cρ = CPW (ρ, 2) is the Poincaré constant from Assumption 1.19.

Remark 1.21. We have not rigorously defined what it means for the Kantorovich func-
tional to be strongly convex and yet we refer to the estimate of Proposition 1.20 as a
strong convexity estimate for this functional. This can be justified from the fact that,
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with the notation of this proposition, we already knew from Lemma 1.8 that −(∇ψ0)#ρ
satisfies the subdifferential inequality for Kρ at ψ0, that is for any ψ1 ∈ C1(Rd),

0 ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩.

The estimate of Proposition 1.20 quantifies the gap in this subdifferential inequality and
as such, it is reminiscent of the definition of strong convexity given in (1.2) for functions
defined on Rd. The presence of a variance instead of a squared L2 norm is to be expected
because of the contravariance of the Kantorovich functional with respect to addition
of a constant to its argument. The issue we face for a rigorous definition (or more
exactly verification) of the strong convexity of the Kantorovich functional is that in the
non-compact setting, we have not described the subdifferential of Kρ at ψ0 : Rd → R
(essentially because in such setting, there is no natural normed space to take as domain of
definition of the Kantorovich functional, see Section 1.1.3). Nonetheless, in the rest of this
thesis, the strong convexity estimates we will derive for the Kantorovich functional will
all take the form of the one presented in Proposition 1.20. Though not entirely rigorously
establishing strong convexity of Kρ, these estimates will find rigorous applications in Part
II of this thesis.

Proof of Proposition 1.20. Using that ρ satisfies Assumption 1.19 with p = 2 and that
ϕ0, ϕ1 are differentiable ρ-almost everywhere as convex functions, we have:

Varρ(ϕ1 − ϕ0) ≤ CPW (ρ, 2)

∫ ∥∥∇ϕ1 −∇ϕ0∥∥2 dρ.
In turn, the strong convexity assumption on ψ1 ensures the bound:

α

2

∫
Rd

∥∥∇ϕ1 −∇ϕ0∥∥2 dρ ≤ ∫ (ψ1(∇ϕ0)− ψ1(∇ϕ1)− ⟨∇ψ1(∇ϕ1)|∇ϕ0 −∇ϕ1⟩)dρ.

Now using the Fenchel-Young equality (Remark 1.6), ∇ψ1(∇ϕ1) = id and ϕ1 =
⟨id|∇ϕ1⟩ − ψ1(∇ϕ1). We thus have:

α

2

∫
Rd

∥∥∇ϕ1 −∇ϕ0∥∥2 dρ ≤ ∫ (ψ1(∇ϕ0) + ϕ1 − ⟨id|∇ϕ0⟩)dρ.

Again, by Fenchel-Young, ⟨id|∇ϕ0⟩ = ϕ0 + ψ0(∇ϕ0), so that:

α

2

∫
Rd

∥∥∇ϕ1 −∇ϕ0∥∥2 dρ ≤ ∫ (ψ1(∇ϕ0) + ϕ1 − ϕ0 − ψ0(∇ϕ0))dρ

= Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩.

Remark 1.22. Brenier’s theorem (Theorem 1.12) applies here: for k ∈ {0, 1}, ∇ϕk corre-
sponds to the optimal transport map between ρ and (∇ϕk)#ρ. The proof of Proposition
1.20 thus establishes an upper-bound on the L2(ρ,Rd) distance between the transport
maps ∇ϕ0 and ∇ϕ1, which can in turn be leveraged to establish the stability of these
transport maps w.r.t. their target measures (Gigli, 2011). The Poincaré inequality al-
lows here to translate this bound to a bound on the (conjugate of) the potentials ψ0, ψ1.
In the coming chapters, estimates will rather be directly obtained in terms of ψ0, ψ1 or
their conjugates and a Gagliardo-Nirenberg type inequality will be necessary in order to
translate these bounds to bounds on the optimal transport maps ∇ϕ0,∇ϕ1 (see Chapter
5).
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Proposition 1.20 is straightforward to obtain, but it might not be satisfactory in
practice. Indeed, it relies on the strong assumption that ψ1 is strongly convex, which,
seeing ϕ1 as a Brenier potential, is equivalent to require that the optimal transport map
∇ϕ1 is Lipschitz continuous (Lemma 1.15). Since we assumed the source measure to
be supported on a connected set in Assumption 1.19, having ∇ϕ1 Lipschitz continuous
requires at least that the target measure µ1 = (∇ϕ1)#ρ is also supported on a connected
set. Such an assumption is rarely satisfied in practice since it does not apply for instance
when µ1 is discretely supported. In addition, to prove that ∇ϕ1 is Lipschitz, one must
invoke the regularity theory for optimal transport maps, which requires very strong as-
sumptions on the measure µ1, in particular that its support is convex. Note however
that one may be able to prove weaker regularity results on the Brenier potentials under
weaker assumptions on the target measures: for instance, C1-type regularity results are
derived in (Jabin et al., 2021) for the Kantorovich potentials between possibly discrete
probability measures in the plane. This might constitute another direction for the deriva-
tion of the strong convexity of the Kantorovich functional from regularity estimates on
the potentials.

In the following chapters, we show that more general strong convexity estimates for
Kρ can be derived under less stringent assumptions on the involved potentials. Let us
summarize our results in the next subsection.

1.2.3 Contributions and outline of Part I

In the following chapters, several new strong convexity estimates are derived for the
Kantorovich functional and a variant. We quote here the most representative and general
of these estimates, proven in Chapter 3.

Theorem (Theorem 3.1). Let ρ be a probability density over a compact convex set X ,
satisfying 0 < mρ ≤ ρ ≤ Mρ. Let µ0, µ1 ∈ P2(Rd). For k ∈ {0, 1}, denote ϕk a Brenier
potential for the optimal transport between ρ and µk. Assume that

∀k ∈ {0, 1}, −∞ < mϕ ≤ min
X

ϕk ≤ max
X

ϕk ≤Mϕ < +∞.

Then the convex conjugates ψ0 and ψ1 of ϕ0 and ϕ1 verify

1

Cd(Mϕ −mϕ)

m2
ρ

M2
ρ

Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩, (1.4)

where Cd = e(d+ 1)2d−1.

Remark 1.23 (Convexity of the support of the source measure). The convexity of the
support of the source ρ is a very restrictive assumption. However, we show in Corollary
1.31 presented below that an estimate of the form of (1.4) may be derived when ρ satisfies
a Poincaré-Wirtinger inequality and its support corresponds to a finite union of convex
sets. This result is proven properly in Section 1.4 where explicit bounds on the constants
are given. Note that we conjecture that strong-convexity estimates of the form of (1.4)
actually hold for any absolutely continuous source measure ρ with density bounded away
from zero and infinity on its support and satisfying a Poincaré-Wirtinger inequality.

Corollary (Corollary 1.31). Let ρ be a probability density over a compact set X , satis-
fying 0 < mρ ≤ ρ ≤ Mρ. Assume that ρ satisfies a Poincaré-Wirtinger inequality with
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p = 1 (see Assumption 1.19) and that X corresponds to a connected finite union of convex
sets. Let µ0, µ1 ∈ P2(Rd). For k ∈ {0, 1}, denote ϕk a Brenier potential for the optimal
transport between ρ and µk. Assume that

∀k ∈ {0, 1}, −∞ < mϕ ≤ min
X

ϕk ≤ max
X

ϕk ≤Mϕ < +∞.

Then ψ0 and ψ1 verify

1

CdCρ(Mϕ −mϕ)

m2
ρ

M2
ρ

Varρ(ϕ1 − ϕ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩.

where Cd = e(d + 1)2d and Cρ is a constant depending on the density of ρ and the
geometry of its support.

Remark 1.24 (Variance). The left-hand side of (1.4) involves the variance of ψ1 − ψ0

instead of a squared L2 norm. As already mentioned in Remark 1.21, this is to be ex-
pected because of the contravariance of the Kantorovich functional under addition of
a constant. The choice of 1

2(µ
0 + µ1) as the reference measure for the variance term

in inequality (1.4) may seem unnatural, but we note that there is no natural reference
measure on the target. The choice of 1

2(µ
0 + µ1) as the reference measures proves rel-

evant for establishing the strong convexity estimate in terms of the Brenier potentials
ϕ0, ϕ1. Indeed, Proposition 1.30 presented in Section 1.4 bellow especially asserts that
Var 1

2
(µ0+µ1)(ψ

1 − ψ0) ≥ 1
2Varρ(ϕ

1 − ϕ0). We also note that, as detailed in the proof
of Theorem 3.1, the left-hand side of inequality (1.4) could actually be replaced by the
quantity

1

e(Mϕ −mϕ)

mρ

Mρ

∫ 1

0
Varµt(ψ1 − ψ0)dt,

where for t ∈ [0, 1], µt = ∇((1 − t)ψ0 + tψ1)∗#ρ interpolates between µ0 and µ1. This
inequality is tighter, but the interpolation t 7→ µt has no simple interpretation and is
quite difficult to manipulate. In particular, this curve is not a generalized geodesic in
the sense of Ambrosio, Gigli, Savaré (Ambrosio et al., 2008).
Remark 1.25 (Optimality of exponents). Estimate (1.4) is optimal in term of exponent of
Var 1

2
(µ0+µ1)(ψ

1 − ψ0). Indeed in dimension d = 1, for ε ≥ 0, denote ψε : y 7→ 1
2(y − ε)

2.
Then for ρ the uniform probability measure on the segment [0, 1] and µε = (∇(ψε)∗)#ρ,
one can show that for ε ≤ 1, both Var 1

2
(µ0+µε)(ψ

ε−ψ0) andKρ(ψε)−Kρ(ψ0)+⟨ψε−ψ0|µ0⟩
are of the order of ε2.
Remark 1.26 (Oscillation of the Brenier potentials). In Chapter 5, we will observe that
assuming for k ∈ {0, 1} that µk admits a finite moment of order p > d constitutes a
sufficient condition for ensuring that the Brenier potential ϕk has a bounded oscillation
on X (Proposition 5.7). This result is found in (Berman and Berndtsson, 2013) and is a
direct consequence of Morrey’s inequality (Theorem 11.34 and Theorem 12.15 in (Leoni,
2009)), that ensures for any p > d the embedding W 1,p(X ) ⊂ C0,1−

d
p (X ). We will also

notice in Remark 5.10 that such assumption is nearly optimal, since for any p < d, one
can find a measure µ with finite moment of order p and with unbounded Brenier potential
between ρ and µ.

Results of the form of Theorem 3.1 were obtained using different techniques and
in diverse settings in these three works: (Mérigot et al., 2020), (Delalande and Mérigot,
2021) and (Delalande, 2022). We present the results of these articles in the three following
chapters:
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• In Chapter 2, we present a preliminary version of Theorem 3.1 that was derived
in (Mérigot et al., 2020) and that only worked for compactly supported target
measures. The proof of this result relies on the Brunn-Minkowski inequality, a dis-
crete Poincaré-Wirtinger inequality and an approximation argument that consists
in taking the measures µ0, µ1 discretely supported (hence we name this chapter A
semi-discrete approach). Even thought the result from this chapter is weaker than
Theorem 3.1, we present it because its arguments are less technical.

• In Chapter 3, we give the proof of Theorem 3.1 that was derived in (Delalande
and Mérigot, 2021). This result is deduced from the Brascamp-Lieb concentration
inequality and an approximation argument that consists in taking the target mea-
sures µ0, µ1 absolutely continuous and regular enough (hence we name this chapter
A continuous approach).

• In Chapter 4, we present a strong convexity estimate for the entropic Kantorovich
functional, that appears in the dual of the entropy-regularized optimal transport
problem. This estimate follows from the Prékopa-Leindler inequality and was de-
rived in (Delalande, 2022). It might be useful per se for the study of entropy-
regularized transport problems (we will use it for instance in Chapter 7). We
mention however in Chapter 4 how one can recover the strong convexity estimate
of Theorem 3.1 by letting the entropic regularization parameter go to zero in this
estimate (hence we name this chapter An entropic approach).

Note from this outline that the main ingredients of the proofs of the different strong
convexity estimates to be presented are the Brunn-Minkowski inequality, the (concen-
tration) Brascamp-Lieb inequality and the Prékopa-Leindler inequality. Because of the
importance of these geometric and functional inequalities for these estimates, we present
them in the next section.

1.3 Some geometric and functional inequalities

In this section, we report some well-known geometric and functional inequalities that
constitute the main ingredients for the proofs of the strong-convexity estimates that we
present in Chapters 2, 3 and 4. There are many reviews in the literature that gather
possibly more general statements of these inequalities, proofs and potential consequences
in other areas of mathematics. Here, we limit ourselves to the statement of these in-
equalities in the settings of our interest and discuss succinctly these results. We refer
to the following surveys for more extended treatments: (Ball, 1997), (Gardner, 2001),
(Schneider, 2013), (Bakry et al., 2014).

1.3.1 Brunn-Minkowski inequality

The Brunn-Minkowski inequality (Brunn, 1887; Minkowski, 1896; Lusternik, 1935) is a
geometric inequality that ensures the log-concavity of the Lebesgue measure |·| on Rd:

Theorem 1.27 (Brunn-Minkowski inequality). Let A,B be two nonempty compact sub-
sets of Rd. Then, denoting A+B the Minkowski sum of A and B, it holds

|A+B|1/d ≥ |A|1/d + |B|1/d ,
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or, equivalently, for any λ ∈ [0, 1],

|(1− λ)A+ λB| ≥ |A|1−λ |B|λ .

When A and B are two axis-aligned boxes, e.g. A =
∏d
i=1[0, ai] and B =

∏d
i=1[0, bi],

one has easily
∏
(ai + bi)

1/d ≥
∏
a
1/d
i +

∏
b
1/d
i from the inequality of arithmetic and

geometric means. A possible proof of Theorem 1.27 consists in using this fact and ap-
proximate any nonempty compact sets A and B with finite unions of axis-aligned boxes
(Gardner, 2001). The Brunn-Minkowski inequality admits many consequences: it gives
much insight on the geometry of convex bodies (see e.g. Grünbaum’s inequality (Grün-
baum, 1960), that ensures that hyperplanes passing through the centroid of any convex
body divide it into not too small portions) and it can be used to prove isoperimetric
inequalities or concentration of measure results (Gardner, 2001).

1.3.2 Prékopa-Leindler inequality

The Prékopa-Leindler inequality (Prékopa, 1971; Leindler, 1972; Prékopa, 1973) corre-
sponds to the functional form of the Brunn-Minkowski inequality:

Theorem 1.28 (Prékopa-Leindler inequality). Let 0 < λ < 1 and f, g, h : Rd → R+ be
such that for any x, y ∈ Rd,

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ.

Then it holds ∫
Rd
h(x)dx ≥

(∫
Rd
f(x)dx

)1−λ(∫
Rd
g(x)dx

)λ
.

The Prékopa-Leindler inequality obviously entails the Brunn-Minkowski inequality
by taking f = χA, g = χB and h = χ(1−λ)A+λB, where χS denotes the indicator function
of a set S ⊂ Rd. However, one possible way to prove the Prékopa-Leindler inequality
is to proceed by induction on the dimension d, where the base case d = 1 results from
the one-dimensional Brunn-Minkowski inequality (Ball, 1997). These two inequalities
can therefore be considered to be equivalent. The Prékopa-Leindler inequality finds
applications in the theory of log-concave measures (where it ensures that log-concavity
is preserved by marginalization) and can also be used to show concentration of measure
results (Maurey, 1991, 2004) or transportation inequalities (Bobkov and Ledoux, 2000).

1.3.3 Brascamp-Lieb inequality

The Brascamp-Lieb concentration inequality (Brascamp and Lieb, 1976) corresponds to
a Poincaré-type estimate. We cite here a version of this inequality that will be adapted to
our context, i.e. that concerns log-concave probability measures supported over a com-
pact and convex set X . This statement is a special case of Corollary 1.3 of (Le Peutrec,
2017), where X is a convex subset of a Riemannian manifold. We also refer to Section
3.1.1 of (Kolesnikov and Milman, 2017).

Theorem 1.29 (Brascamp-Lieb inequality). Let X ⊂ Rd be a compact convex set. Let
ϕ ∈ C2(X ) be a strictly convex function. Let ρ be the probability measure defined by
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dρ = 1
Zϕ

exp(−ϕ)dx with Zϕ =
∫
X exp(−ϕ)dx. Then every smooth function s on X

verifies:
Varρ(s) ≤ Eρ⟨∇s|(D2ϕ)−1 · ∇s⟩.

This inequality was originally formulated in a non-compact setting (X = Rd) in
(Brascamp and Lieb, 1976) and was shown to be a consequence of the Prékopa-Leindler
inequality in (Bobkov and Ledoux, 2000). We develop here a possible argument2 in this
direction, that will inspire our approach to derive a strong-convexity estimate for entropic
optimal transport in Chapter 4. This argument is the following: for u : Rd → R a convex
function, define the functional

I : u 7→ log

∫
e−u

∗
.

(Note the similarity between I and Kρ : ψ 7→
∫
ψ∗dρ.) Then for λ ∈ [0, 1] and u, v

convex functions from Rd to R, one can deduct from the Prékopa-Leindler inequality
that I((1 − λ)u + λv) ≥ (1 − λ)I(u) + λI(v), i.e. I is a concave functional. For f :
Rd → R, assuming all the regularity necessary, this entails that the second derivative of
t 7→ I(u + tf) is non-positive. Computing this second derivative, setting u = ϕ∗ and
f = s ◦ ∇ϕ∗ and using that this derivative is non-positive then yields Theorem 1.29.

We also note that conversely, the Prékopa-Leindler inequality may be deduced from
the Brascamp-Lieb inequality by a local computation (Cordero-Erausquin, 2005). Thus,
quoting (Carlen et al., 2013), we may state that the Brascamp-Lieb inequality can be
seen as the local form of the Brunn-Minkowski inequality for convex bodies.

The Brascamp-Lieb inequality can finally also be seen as an extension of the Poincaré
inequality. Indeed for a strongly log-concave measure ρ in Theorem 1.29, i.e. assuming
that there exists α > 0 such that D2ϕ ⪰ αId, one recovers from the Brascamp-Lieb
inequality the following Poincaré inequality:

Varρ(s) ≤
1

α
Eρ ∥∇s∥2 .

As the two preceding inequalities, the Brascamp-Lieb inequality and its generaliza-
tions can be used to prove concentration and isoperimetry results, see e.g. (Bakry et al.,
2014).

1.3.4 Links with optimal transport

Several works have observed that (quadratic) optimal transport can serve as a tool to
prove the Brunn-Minkowski and Prékopa-Leindler inequalities. Indeed, McCann recov-
ered the Brunn-Minkowski inequality in (McCann, 1997) as a consequence of the dis-
placement convexity (i.e. convexity along a Wasserstein geodesic, see Chapter A) of
a well-chosen energy functional on the space of probability measures. In (McCann,
1997, 1994) and (Barthe, 1997), the Prékopa-Leindler inequality was also deduced from
displacement interpolation and the log-concavity of the determinant on the set of non-
negative symmetric matrices (deduced in turn from the arithmetic-geometric inequality).
This line of works has allowed to find Prékopa-Leindler type inequalities working on the

2Extracted from Exercise 2.2.11 of Bo’az Klartag’s lecture notes Regularity through convexity in high
dimensions (Klartag, 2013).
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sphere (Cordero-Erausquin, 1999) or more generally on Riemannian manifolds (Cordero-
Erausquin et al., 2001, 2006). We also note that optimal transport approaches have
allowed to derive and extend other types of geometric and functional inequalities, such
as (geometric) Brascamp-Lieb and Sobolev type inequalities – we refer to Chapter 6 of
(Villani, 2003) for a more extended treatment.

In the coming chapters, instead of using optimal transport as a tool to derive ge-
ometric and functional inequalities, we take the other way around and use the Brunn-
Minkowski, Brascamp-Lieb and Prékopa-Leindler inequalities as a tool to derive proper-
ties of optimal transport, namely strong-convexity of the Kantorovich functional.

1.4 Extension to source measures with non-convex support
(Proof of Corollary 1.31)

We first mention the following convex analysis fact, that allows to translate the estimate
(1.4) expressed in terms of the dual potentials ψ0, ψ1 into an estimate expressed in terms
of the Brenier potentials ϕ0, ϕ1.

Proposition 1.30. Let ρ be a probability density over a compact set X , and let ϕ0, ϕ1

be convex functions on X . For k ∈ {0, 1}, denote ψk the convex conjugate of ϕk and µk

the image of ρ under ∇ϕk. Then for any p > 0,∥∥ϕ1 − ϕ0∥∥
Lp(ρ)

≤
∥∥ψ1 − ψ0

∥∥
Lp(µ0+µ1)

.

In particular,
1

2
Varρ(ϕ1 − ϕ0) ≤ Var 1

2
(µ0+µ1)(ψ

1 − ψ0).

Proof of Proposition 1.30. Let A = {x ∈ X | ϕ1(x) ≥ ϕ0(x)} and let x ∈ A where ϕ1 is
differentiable. The Fenchel-Young inequality (and equality) give:

ψ0(∇ϕ1(x)) ≥ ⟨x|∇ϕ1(x)⟩ − ϕ0(x) = ψ1(∇ϕ1(x)) + ϕ1(x)− ϕ0(x),

which thus ensures that for almost every x ∈ A,

ψ0(∇ϕ1(x))− ψ1(∇ϕ1(x)) ≥ ϕ1(x)− ϕ0(x) ≥ 0.

Similarly, for almost every x ∈ X \A, we have

ψ1(∇ϕ0(x))− ψ0(∇ϕ0(x)) ≥ ϕ0(x)− ϕ1(x) ≥ 0.

From this, we deduce the first statement of the proposition:

∥∥ψ1 − ψ0
∥∥p
Lp(µ0+µ1)

=

∫
X

∣∣ψ1(∇ϕ0)− ψ0(∇ϕ0)
∣∣p dρ+ ∫

X

∣∣ψ1(∇ϕ1)− ψ0(∇ϕ1)
∣∣p dρ

≥
∫
X\A

(
ψ1(∇ϕ0)− ψ0(∇ϕ0)

)p
dρ+

∫
A

(
ψ0(∇ϕ1)− ψ1(∇ϕ1)

)p
dρ

≥
∫
X\A

(
ϕ0 − ϕ1

)p
dρ+

∫
A

(
ϕ1 − ϕ0

)p
dρ =

∥∥ϕ1 − ϕ0∥∥p
Lp(ρ)

.
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Let c ∈ R. Having established the previous inequality for any convex functions ϕ0, ϕ1 on
X , we may replace ϕ0 with ϕ0 − c in this inequality, and consequently replace ψ0 with
(ϕ0 − c)∗ = ψ0 + c. This yields thus for any c ∈ R,∥∥ϕ1 − ϕ0 + c

∥∥
Lp(ρ)

≤
∥∥ψ1 − ψ0 − c

∥∥
Lp(µ0+µ1)

.

Taking c that achieves the minimum on the right-hand side, for p = 2, we get

Varρ(ϕ1 − ϕ0) ≤
∥∥ϕ1 − ϕ0 + c

∥∥2
L2(ρ)

≤ 2
∥∥ψ1 − ψ0 − c

∥∥2
L2( 1

2
(µ0+µ1))

= 2Var 1
2
(µ0+µ1)(ψ

1 − ψ0).

Under the notation and assumptions of Theorem 3.1, Proposition 1.30 directly entails
the following strong convexity estimate:

1

2Cd(Mϕ −mϕ)

m2
ρ

M2
ρ

Varρ(ϕ1 − ϕ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩.

A consequence of this new estimate is the following corollary, which is an extension of
Theorem 3.1 to a non-convexly supported source measure ρ. The idea of this result is to
upper-bound the variance with respect to ρ by a sum of local variances with respect to
convexly supported measures: this is allowed when we assume that ρ satisfies a Poincaré-
Wirtinger inequality (Assumption 1.19) and that its support corresponds to a union of
convex sets. This result was originally obtained in (Carlier et al., 2022).

Corollary 1.31. Let ρ be a probability density over a connected compact set X ⊂
B(0, RX ), satisfying 0 < mρ ≤ ρ ≤ Mρ. Assume that ρ satisfies a Poincaré-Wirtinger
inequality with p = 1 (see assumption 1.19) and that there exists N ≥ 1 distinct convex
sets (Ci)1≤i≤N such that X =

⋃N
i=1Ci. Also assume that

ε := min

(
min

i,j|Ci∩Cj ̸=∅
ρ(Ci ∩ Cj),min

i
ρ (Ci \ ∪j ̸=iCj)

)
> 0.

Let µ0, µ1 ∈ P2(Rd). For k ∈ {0, 1}, denote ϕk a Brenier potential for the optimal
transport between ρ and µk. Assume that

∀k ∈ {0, 1}, −∞ < mϕ ≤ min
X

ϕk ≤ max
X

ϕk ≤Mϕ < +∞.

Then ψ0 and ψ1 verify

1

CdCρ(Mϕ −mϕ)

m2
ρ

M2
ρ

Varρ(ϕ1 − ϕ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩.

where Cd = e(d+ 1)2d and Cρ =
(
N2 +N7M3

ρ s
3
d−1R

3(d−1)
X CPW (ρ, 1)3ε−6

)
.

Proof. Let’s denote for now f = ϕ1−ϕ0. We will first exploit a discrete Laplacian over X
in order to upper bound Varρ(f) by a sum of variances of f w.r.t. probability measures
supported over the convex sets (Ci)i. We will then use Theorem 3.1 to conclude.
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For any i ∈ {1, . . . , N}, we denote ρi = 1
ρ(Ci)

ρ|Ci and mi =
∫
Ci
fdρi. Then one has the

following bound:

Varρ(f) =
1

2

∫
X×X

(f(x)− f(y))2dρ(x)dρ(y)

≤ 1

2

∑
i,j

∫
Ci×Cj

(f(x)− f(y))2dρ(x)dρ(y)

=
1

2

∑
i,j

∫
Ci×Cj

(f(x)−mi +mi −mj +mj − f(y))2dρ(x)dρ(y)

=

(∑
i

ρ(Ci)

)∑
i

∫
Ci

(f(x)−mi)
2dρ(x) +

1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj)

=

(∑
i

ρ(Ci)

)∑
i

ρ(Ci)Varρi(f) +
1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj). (1.5)

Introduce the graph G = ({Ci}1≤i≤N , {wij}1≤i,j≤N ) with vertices {Ci}1≤i≤N and
weighted edges {wij}1≤i,j≤N defined by

∀i, j ∈ {1, . . . , N}, wij = ρ(Ci ∩ Cj).

By construction, this graph has a single connected component. We introduce the weighted
Laplacian matrix L ∈ RN×N of G as follows:

∀i, j ∈ {1, . . . , N}, Lij =

{ ∑
k wik if i = j,

−wij else.

Then L is a symmetric and positive semi-definite matrix. Its null space is made of
constant vectors and we denote λ2(L) its second smallest eigenvalue, which is non-zero.
Denoting m = (mi)1≤i≤N ∈ RN , we introduce m̄ =

(
1
N

∑
imi

)
1N ∈ RN the constant

vector whose coordinates equal the mean of m (we use 1N = (1)1≤i≤N ∈ RN ). Notice
that m− m̄ is in the orthogonal to the null space of L, ensuring the following bound:

1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj) ≤ N2 1

2

∑
i,j

(mi −mj)
2 1

N2

= N ∥m− m̄∥2

≤ N

λ2(L)
⟨m− m̄|L (m− m̄)⟩

=
N

λ2(L)

∑
i,j

wij(m
2
i −mimj)

=
N

λ2(L)

∑
i,j

wij
2

(mi −mj)
2. (1.6)

But for any i, j such that wij > 0, denoting mi∩j =
1

ρ(Ci∩Cj)
∫
Ci∩Cj fdρ, one has

1

2
(mi −mj)

2 ≤ (mi∩j −mi)
2 + (mi∩j −mj)

2.
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And for such i, j,

(mi∩j −mi)
2 =

(
1

ρ(Ci ∩ Cj)

∫
Ci∩Cj

(f −mi)dρ

)2

≤ 1

ρ(Ci ∩ Cj)

∫
Ci

(f −mi)
2dρ

=
ρ(Ci)

wij
Varρi(f),

where we used Jensen’s inequality and the fact that Ci ∩ Cj ⊂ Ci. A similar bound can
be shown for (mi∩j −mj)

2, and plugging these into (1.6) yields

1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj) ≤

N

λ2(L)

∑
i

∑
j|Ci∩Cj ̸=∅

(
ρ(Ci)Varρi(f) + ρ(Cj)Varρj (f)

)
≤ 2N2

λ2(L)

∑
i

ρ(Ci)Varρi(f).

Injecting this into (1.5) yields

Varρ(f) ≤
(
N +

2N2

λ2(L)

)∑
i

ρ(Ci)Varρi(f). (1.7)

Now recalling that f = ϕ1 − ϕ0, we have by Theorem 3.1 and Proposition 1.30 for any
i ∈ {1, . . . , N} that

1

Cd(Mϕ −mϕ)

m2
ρ

M2
ρ

Varρi(ϕ
1 − ϕ0) ≤ Kρi(ψ1)−Kρi(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρi⟩,

where Cd = e(d + 1)2d . Weighting this last inequality with ρ(Ci) and summing over
i ∈ {1, . . . , N}, this raises

1

NCd(Mϕ −mϕ)

m2
ρ

M2
ρ

N∑
i=1

ρ(Ci)Varρi(ϕ
1 − ϕ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩,

Using (1.7) eventually gives

1

CdCN,L(Mϕ −mϕ)

m2
ρ

M2
ρ

Varρ(ϕ1 − ϕ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩. (1.8)

where CN,L =
(
N2 + 2N3

λ2(L)

)
.

Finally, we lower bound the eigenvalue λ2(L) in terms of the Poincaré-Wirtinger constant
CPW (ρ, 1) of the probability measure ρ. For this, we will rely on an intermediate quantity:
the weighted Cheeger constant ρ, defined by

h(ρ) = inf
A⊂X

|∂A|ρ
min(ρ(A), ρ(X \A))

,

where |∂A|ρ =
∫
∂A∩int(X ) ρ(x)dH

d−1(x) and where the infimum is taken over Lipschitz
domains A ⊂ int(spt(ρ)) with boundary of finite Hd−1-measure. Quoting (Kitagawa
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et al., 2019) (Lemma 5.3), we note that this constant is positive because ρ admits a finite
Poincaré-Wirtinger constant CPW (ρ, 1), by the inequality

h(ρ) ≥ 2

CPW (ρ, 1)
, (1.9)

which is a result coming from properties of functions with bounded variations (Attouch
et al., 2014). We first use the following result from (Friedland and Nabben, 2000) (Corol-
lary 2.2):

λ2(L) ≥
1

2

min
i

∑
j

wij

 i(G)2, (1.10)

where i(G) corresponds to the weighted Cheeger constant of G:

i(G) = min
∅≠U⊊{1...,N}

∑
i∈U,j∈Ū wij

min
(∑

i∈U
∑

j ̸=iwij ,
∑

i∈Ū
∑

j ̸=iwij

) ,
where Ū = {Ci}i \ U . There are two terms in (1.10) that need to be lower bounded in
terms of h(ρ). We first lower bound mini

∑
j wij . Notice that for any i ∈ {1, . . . , N},∑

j

wij =
∑
j

ρ(Ci ∩ Cj).

By assumption, we have for any j such that Ci ∩ Cj ̸= ∅, ρ(Ci ∩ Cj) ≥ ε (and such a j
always exists since X is assumed to be connected). On the other hand, for any such j,
noticing that Ci is a convex subset of B(0, RX ), one has

|∂Ci ∩ Cj |ρ ≤Mρsd−1R
d−1
X ,

where sd−1 denotes the surface area of the unit sphere in Rd. Therefore, for j such that
wij > 0, we get the bound

ρ(Ci ∩ Cj) ≥
ε

Mρsd−1R
d−1
X
|∂Ci ∩ Cj |ρ .

Hence for any i ∈ {1, . . . , N},∑
j

wij ≥
ε

Mρsd−1R
d−1
X

∑
j|Ci∩Cj ̸=∅

|∂Ci ∩ Cj |ρ =
ε

Mρsd−1R
d−1
X
|∂Ci|ρ .

Now using that |∂Ci|ρ ≥ h(ρ)min(ρ(Ci), ρ(X \ Ci)) ≥ h(ρ)ε, we have the bound

min
i

∑
j

wij ≥
ε2

Mρsd−1R
d−1
X

h(ρ). (1.11)

Similarly, we now lower bound i(G) in terms of h(ρ). For a given subset ∅ ≠ U ⊊
{1 . . . , N}, define A =

⋃
i∈U Ci. Then, as in what precedes we can notice that∑

i∈U,j∈Ū

wij =
∑

i∈U,j∈Ū

ρ(Ci ∩ Cj) ≥
∑

i∈U,j∈Ū

ε

Mρsd−1R
d−1
X
|∂Ci ∩ Cj |ρ

=
ε

Mρsd−1R
d−1
X
|∂A|ρ . (1.12)
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Then, we have∑
i∈U

∑
j ̸=i

wij =
∑
i∈U

∑
j ̸=i

ρ(Ci ∩ Cj) ≤ N
∑
i∈U

ρ(Ci) ≤ N2ρ(A).

Similarly, one can show∑
i∈Ū

∑
j ̸=i

wij =
∑
i∈Ū

∑
j ̸=i

ρ(Ci ∩ Cj) ≤ N2 ≤ N2

ε
ρ(X \A),

where we used the assumption that mini ρ (Ci \ ∪j ̸=iCj) ≥ ε. Using that ε ≤ 1 the two
last bounds yield

min

∑
i∈U

∑
j ̸=i

wij ,
∑
i∈Ū

∑
j ̸=i

wij

 ≤ N2

ε
min(ρ(A), ρ(X \A)). (1.13)

Hence combining (1.12) and (1.13), we have the bound∑
i∈U,j∈Ū wij

min
(∑

i∈U
∑

j ̸=iwij ,
∑

i∈Ū
∑

j ̸=iwij

) ≥ ε2

Mρsd−1R
d−1
X N2

|∂A|ρ
min(ρ(A), ρ(X \A))

≥ ε2

Mρsd−1R
d−1
X N2

h(ρ).

Minimizing over U on the left-hand side then yields

i(G) ≥ ε2

Mρsd−1R
d−1
X N2

h(ρ). (1.14)

Combining (1.11) and (1.14) into (1.10) finally yields

λ2(L) ≥
ε6

2M3
ρ s

3
d−1R

3(d−1)
X N4

h(ρ)3.

Using finally the comparison (1.9) between the weighted Cheeger constant of ρ and its
Poincaré-Wirtinger constant CPW (ρ, 1), this ensures:

λ2(L) ≥
4ε6

M3
ρ s

3
d−1R

3(d−1)
X N4CPW (ρ, 1)3

.

This last bound together with (1.8) thus ensures

1

CdCρ(Mϕ −mϕ)

m2
ρ

M2
ρ

Varρ(ϕ1 − ϕ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ϕ0)#ρ⟩,

where Cρ =
(
N2 + N7

2ε6
M3
ρ s

3
d−1R

3(d−1)
X CPW (ρ, 1)3

)
.





Chapter 2

A semi-discrete approach

Abstract

This chapter reports the proof of a first strong convexity estimate for the
Kantorovich functional, established in (Mérigot et al., 2020). This estimate
holds when the Kantorovich functional is evaluated on Kantorovich poten-
tials associated to compactly supported target measures. The proof of this
strong convexity estimate is first derived in the semi-discrete setting where
the targets are assumed to be discrete, and it is generalized by a density
argument. The main proof ingredients are the Brunn-Minkowski inequality
and a discrete Poincaré-Wirtinger inequality that emanates from the stability
analysis of finite volumes discretizations of elliptic PDEs.

2.1 Introduction

In this chapter, we prove a first strong convexity estimate for the Kantorovich functional
that appears in the dual quadratic optimal transport problem (see Sections 1.1.3 and 1.2).
We recall that the Kantorovich functional associated to a source measure ρ ∈ P2(Rd)
reads

Kρ :

{
(Rd → R̄) → R̄,
ψ 7→

∫
Rd ψ

∗dρ.

The following estimate was established in (Mérigot et al., 2020):

Theorem 2.1. Let ρ be a probability density over a compact convex set X , satisfying
0 < mρ ≤ ρ ≤ Mρ. Let Y be a compact subset of Rd and let µ0, µ1 ∈ P(Y). For
k ∈ {0, 1}, denote ϕk a Brenier potential between ρ and µk. Then the convex conjugates
ψ0 and ψ1 of ϕ0 and ϕ1 verify

1

Cd,X ,Y

m2
ρ

M3
ρ

Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩, (2.1)

where Cd,X ,Y = ωd(d + 1)2d−1diam(X )d+1diam(Y) and ωd denotes the volume of the
d-dimensional unit ball.

This result requires that the probability measures µ0, µ1 are supported on a known
compact set in order to use a Poincaré-Wirtinger type inequality to find a lower bound on

59
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the Hessian of the Kantorovich functional. In terms of the Brenier potentials between ρ
and µ0, µ1 (Remark 1.13), this is equivalent to require that these potentials are Lipschitz
continuous. In Chapter 3, we will show that similar strong convexity estimates can be
found under the weaker assumption that these potentials only have a bounded oscillation
on the compact support of ρ, which can in turn be obtained from the assumption that
these potentials are Hölder continuous. Theorem 2.1 can thus be seen a preliminary
version of Theorem 3.1 presented in Chapter 3.

Remark 2.2 (Numerical optimal transport). As mentioned above, estimate (2.1) follows
from an explicit lower-bound on the Hessian of the Kantorovich functional (established in
the semi-discrete setting and presented in Proposition 2.4). This corresponds to guaran-
tees on the conditioning on this Hessian, which may be leveraged to improve the analysis
of Newton’s methods used to solve semi-discrete optimal transport problems (Kitagawa
et al., 2019).

Outline. Our strategy to prove Theorem 2.1 is the following: first, we assume that the
probability measures µ0, µ1 are discretely supported on a common finite set of N points.
This places ourselves in the context of semi-discrete optimal transport, with an abso-
lutely continuous source ρ and discrete targets µ0, µ1. In this context, the Kantorovich
functional can be seen as a convex function on RN for which the gradient and Hessian are
known (§2.2). We show that an explicit lower-bound on the smallest non-zero eigenvalue
of this Hessian can be found, from which the strong convexity estimate of Theorem 2.1 is
deduced in the semi-discrete setting (§2.3). We finally prove Theorem 2.1 in the general
case by a density argument (§2.4).

2.2 Semi-discrete optimal transport

In this section and the following, we work in the semi-discrete setting, assuming that
for k ∈ {0, 1}, the measure µk of Theorem 2.1 is supported on a (fixed) finite set Y =
{y1, . . . , yN}. For RY such that Y ⊂ B(0, RY), the Brenier potential ϕk is RY -Lipschitz
so that it is differentiable ρ-almost everywhere. Fenchel-Young equality ensures then that
for ρ-a.e. x ∈ X ,

ϕk(x) = ⟨x|∇ϕk(x)⟩ − ψk(∇ϕk(x)).

The assumption that µk = (∇ϕk)#ρ is supported on the set Y then entails that for ρ-a.e.
x ∈ X , there exists i ∈ {1, . . . , N} such that ∇ϕk(x) = yi so that

ϕk(x) = ⟨x|yi⟩ − ψk(yi).

Fenchel-Young inequality then ensures that for ρ-a.e. x ∈ X ,

ϕk(x) = max
1≤i≤N

⟨x|yi⟩ − ψk(yi).

Note that in this context, ϕk is piece-wise affine. To simplify the notation, we will conflate
in this section and the following the function ψk with the vector ψk ∈ RN defined by
ψki = ψk(yi). This vector ψk defines a partition of the domain X into so-called Laguerre
cells, described for all 1 ≤ i ≤ N by

Lagi(ψ
k) = {x ∈ X | ∀j,ψkj ≥ ψki + ⟨yj − yi|x⟩}.
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Figure 2.1: (Left) The source ρ is the Lebesgue measure on X = [0, 1] × [0, 1] and the
target measure µ is the uniform discrete measure with N = 4 support points positioned
at the blue crosses. (Middle) Voronoï tesselation of X with respect to the support points
of µ. (Right) Laguerre tesselation of X with respect to the support points of µ for an
optimal potential (the area of each cell is 1

4).

This partition is such that

Kρ(ψk) =
N∑
i=1

∫
Lagi(ψ

k)
(⟨x|yi⟩ −ψki )dρ(x),

so that the Kantorovich functional evaluated in ψk only depends on the finite dimensional
vector ψk ∈ RN (as already observed more generally in Remark 1.7). The Kantorovich
functional thus verifies Kρ(ψk) = Kρ(ψ

k), where

Kρ : ψ ∈ RN 7→
N∑
i=1

∫
Lagi(ψ)

(⟨x|yi⟩ −ψi)dρ(x) ∈ R. (2.2)

Notice that the above defined Laguerre cells verify for all 1 ≤ i ≤ N ,

Lagi(ψ
k) = {x ∈ X | ∀j, ∥x− yi∥2 + 2ψki − ∥yi∥

2 ≤ ∥x− yj∥2 + 2ψkj − ∥yj∥
2}.

As such, one can think of the Laguerre cells as modified Voronoï cells, which are defined
for each i ∈ {1, . . . , N} by

Vori = {x ∈ X | ∀j, ∥x− yi∥ ≤ ∥x− yj∥}.

The Voronoï tesselation of X with respect to the finite set Y partitions X into cells
consisting of all points of X closer to a given point in Y than to any other. The Laguerre
tesselation modifies this partition by inflating or deflating the distance to each point of
Y. See Figure 2.1 for an illustration.

Gradient of Kρ. By Theorem 1.1 in (Kitagawa et al., 2019) (see also (Aurenhammer
et al., 1998)), the Kantorovich functional (2.2) seen as a function on RN has the following
gradient:

∀ψ ∈ RN , ∇Kρ(ψ) = −(ρ(Lagi(ψ))1≤i≤N ∈ RN . (2.3)

Note that this corresponds to the gradient formula of Lemma 1.11. Given a potential
ψ ∈ RN , we introduce the corresponding probability measure:

µψ =
∑

1≤i≤N
ρ(Lagi(ψ))δyi .
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With this notation, note that we recover the measures µk = µψk = (∇ϕk)#ρ for k ∈
{0, 1}. In particular, the mass that ρ gives to Lagi(ψ

k) is equal to µk(yi) (this corresponds
to the first order condition ∇Kρ(ψ) + µ

k = 0, where µk = (µk(yi))1≤i≤N ).

Hessian of Kρ. It is also possible to compute the Hessian of Kρ. For this, we consider
the set S+ ⊆ RN of potentials ψ such that all Laguerre cells Lagi(ψ) contain some mass,
defined by

S+ = {ψ ∈ RN | ∀i, ρ(Lagi(ψ)) > 0}. (2.4)

From Theorems 1.3 and 4.1 in (Kitagawa et al., 2019), we know that the map ∇Kρ is C1
on the set S+. By Theorem 1.3 in (Kitagawa et al., 2019), if ψ ∈ S+, its derivatives are
given by 

∂2Kρ

∂ψi∂ψj
(ψ) = −

∫
Lagi(ψ)∩Lagj(ψ)

ρ(x)
∥yj−yi∥dH

d−1(x) for i ̸= j,

∂2Kρ

∂2ψi
(ψ) = −

∑
j ̸=i

∂2Kρ

∂ψi∂ψj
(ψ).

(2.5)

Notice from this definition that the Hessian matrix ∇2Kρ(ψ) corresponds to the Lapla-
cian matrix of a weighted graph, where the vertices correspond to the support points
(yi)1≤i≤N and the weight wij between two different vertices yi and yj corresponds to the
(normalized) size of the intersection between the Laguerre cells Lagi(ψ) and Lagj(ψ)
according to ρ:

wij =
1

∥yj − yi∥

∫
Lagi(ψ)∩Lagj(ψ)

ρ(x)dHd−1(x).

2.3 Proof of Theorem 2.1 in the semi-discrete case

We prove here Theorem 2.1, assuming that for k ∈ {0, 1}, the measures µk = (∇ϕk)#ρ
are supported on the fixed and common set Y = {y1, . . . , yN}. We will require two
preliminary results. The next lemma follows from the Brunn-Minkowski inequality (see
Section 1.3 and in particular Theorem 1.27). This inequality has already appeared in
the numerical analysis of Monge-Ampère equations, see (Benamou et al., 2016; Nochetto
and Zhang, 2019).

Lemma 2.3. Let ψ0,ψ1 ∈ S+ and consider ψt = (1− t)ψ0+ tψ1. Define the probability
measure µt = µψt ∈ P(Y). Then µt satisfies

µt ≥ min(1− t, t)dmρ

Mρ
(µ0 + µ1).

In particular, ψt ∈ S+.

Proof. Let i ∈ {1, . . . , N} and x0 ∈ Lagi(ψ
0) and x1 ∈ Lagi(ψ

1). Then, for all j ∈
{1, . . . , N}, {

ψ0
j ≥ ψ0

i + ⟨yj − yi|x0⟩,
ψ1
j ≥ ψ1

i + ⟨yj − yi|x1⟩.

Taking the convex combination of these inequalities we get for all j ∈ {1, . . . , N},

ψtj ≥ ψti + ⟨yj − yi|(1− t)x0 + tx1⟩.
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This shows that (1− t)x0 + tx1 ∈ Lagi(ψ
t) (note that we use the convexity of X here).

Thus,
(1− t)Lagi(ψ0) + tLagi(ψ

1) ⊆ Lagi(ψ
t).

Taking the measure ρ on both sides and applying Brunn-Minkowski’s inequality gives(
µt(yi)

)1/d
= ρ(Lagi(ψ

t))1/d ≥ m1/d
ρ

∣∣(1− t)Lagi(ψ0) + tLagi(ψ
1)
∣∣1/d

≥ m1/d
ρ

(
(1− t)

∣∣Lagi(ψ0)
∣∣1/d + t

∣∣Lagi(ψ1)
∣∣1/d)

≥
(
mρ

Mρ

)1/d (
(1− t)

(
µ0(yi)

)1/d
+ t
(
µ1(yi)

)1/d)
.

This finally yields:

µt(yi) ≥
mρ

Mρ

(
min(1− t, t)

((
µ0(yi)

)1/d
+
(
µ1(yi)

)1/d))d
≥ min(1− t, t)dmρ

Mρ

(
µ0(yi) + µ1(yi)

)
.

The next proposition gives an explicit lower bound on the smallest non-zero eigenvalue
of the Hessian matrix

∇2Kρ(ψ) =

(
∂2Kρ

∂ψi∂ψj
(ψ)

)
1≤i,j≤N

∈ RN×N ,

whose terms have been defined in (2.5). The proof of this proposition follows from the
stability analysis of finite volumes discretization of elliptic PDEs, see Lemma 3.7 in
(Eymard et al., 2000). We report this proof at the end of this section, with very minor
adaptations to our case. The compacity assumption made on the target measures is used
in this result (note the explicit dependence of the constant on the diameter of the target
domain Y).

Proposition 2.4 (Discrete Poincaré-Wirtinger inequality). Consider ψ ∈ S+ and v ∈
RN . Then,

Varµψ(v) ≤ Cd,X ,Y,ρ⟨∇
2Kρ(ψ)v|v⟩

where Cd,X ,Y,ρ = ωddiam(Y)diam(X )d+1M
2
ρ

mρ
, with ωd the volume of the d-dimensional

unit ball.

Remark 2.5. As expected, ∇2Kρ(ψ) is positive semidefinite, since its smallest non-zero
eigenvalue is greater than a variance. This can also be seen from the definition of
∇2Kρ(ψ) as a Laplacian matrix, or simply from Gershgorin’s circle theorem and the
explicit formula for ∇2Kρ(ψ) recalled in (2.5).

With these two results at hand, we can now show the strong convexity estimate of
Theorem 2.1 in the semi-discrete case, that we phrase as the following proposition:

Proposition 2.6. With the notation and assumption of Theorem 2.1, assume addition-
ally that the set Y is finite and that µ0, µ1 give mass to all points in Y. Then, (2.1)
holds.
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Proof. We denote Y = {y1, . . . , yN}. With the notation of Section 2.2, the assumptions
entail that for k ∈ {0, 1}, the vector ψk = (ψk(yi))1≤i≤N is in S+. Again with the
notation of this section, one has:

Kρ(ψ1)−Kρ(ψ0) + ⟨µ0|ψ1 − ψ0⟩ = Kρ(ψ
1)−Kρ(ψ

0)− ⟨∇Kρ(ψ
0)|ψ1 −ψ0⟩.

Denote v = ψ1 − ψ0 ∈ RN and ψt = ψ0 + tv ∈ RN for t ∈ [0, 1]. Using that for all
t ∈ [0, 1], ψt ∈ S+ by Lemma 2.3 and that Kρ is C2 on S+ (Section 2.2), one has from
the fundamental theorem of calculus:

Kρ(ψ
1)−Kρ(ψ

0)− ⟨∇Kρ(ψ
0)|ψ1 −ψ0⟩ =

∫ 1

0

∫ s

0
⟨∇2Kρ(ψ

t)v|v⟩dtds.

Using again that for any t ∈ [0, 1],ψt ∈ S+, Proposition 2.4 ensures

Kρ(ψ
1)−Kρ(ψ

0)− ⟨∇Kρ(ψ
0)|ψ1 −ψ0⟩ ≥ 1

Cd,X ,Y,ρ

∫ 1

0

∫ s

0
Varµψt (v)dtds,

where Cd,X ,Y,ρ = ωddiam(Y)diam(X )d+1M
2
ρ

mρ
. From Lemma 2.3, we have for any t ∈ [0, 1]

the comparison
Varµψt (v) ≥ 2min(1− t, t)dmρ

Mρ
Var 1

2
(µ0+µ1)(v),

so that ∫ 1

0

∫ s

0
Varµψt (v)dtds ≥

1

(d+ 1)2d−1

mρ

Mρ
Var 1

2
(µ0+µ1)(v).

This finally ensures the bound:

Kρ(ψ1)−Kρ(ψ0) + ⟨µ0|ψ1 − ψ0⟩ ≥ 1

Cd,X ,Y

m2
ρ

M3
ρ

Var 1
2
(µ0+µ1)(ψ

1 − ψ0),

where
Cd,X ,Y = ωd(d+ 1)2d−1diam(Y)diam(X )d+1.

We finally proceed with the proof of Proposition 2.4.

Proof of Proposition 2.4. This proof is a straightforward adaptation of a stability result
for finite volume discretization of elliptic PDEs, see Lemma 3.7 in (Eymard et al., 2000).
We consider the function u on X defined a.e. by u|Lagi(ψ) = vi. Then,

Varµψ(v) =
∑
i

v2i µψ(yi)−

(∑
i

viµψ(yi)

)2

=

∫
X
u2dρ−

(∫
X
udρ

)2

=
1

2

∫
X×X

(u(x)− u(y))2dρ(x)dρ(y),

so it suffices to control the right hand side of this equality. Given (i, j) ∈ {1, . . . , N} and
(x, y) ∈ X , we denote

χij(x, y) =

{
1 if Lagi(ψ) ∩ Lagj(ψ) ∩ [x, y] ̸= ∅ and ⟨yj − yi|y − x⟩ ≥ 0,

0 if not.
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Then, u(y)− u(x) =
∑

i ̸=j(vj − vi)χij(x, y). We introduce

dij = ∥yj − yi∥ , cij,z =

∣∣∣∣⟨ z∥z∥| yj − yi∥yj − yi∥
⟩
∣∣∣∣ ,

and we apply Cauchy-Schwarz’s inequality to get

(u(y)− u(x))2 =

∑
i ̸=j

(vj − vi)χij(x, y)

2

≤
∑
i ̸=j

(vj − vi)2

dijcij,y−x
χij(x, y)

∑
i ̸=j

dijcij,y−xχij(x, y).

In addition, when χij(x, y) = 1, we have ⟨y − x|yj − yi⟩ ≥ 0 so that

dijcij,y−x = ∥yj − yi∥ ⟨
y − x
∥y − x∥

| yj − yi
∥yj − yi∥

⟩ ≥ 0,

and ∑
i ̸=j

dijcij,y−xχij(x, y) =
∑
i ̸=j
⟨ y − x
∥y − x∥

|yj − yi⟩χij(x, y) ≤ diam(Y).

Therefore,∫
X×X

(u(y)− u(x))2dρ(x)dρ(y)

≤ diam(Y)
∫
X×X

∑
i ̸=j

(vj − vi)2

dijcij,y−x
χij(x, y)dρ(x)dρ(y)

≤Mρdiam(Y)
∫
B(0,diam(X ))

∑
i ̸=j

(vj − vi)2

dijcij,z

(∫
X
χij(x, x+ z)dρ(x)

)
dz.

Moreover, denoting mij =
∫
Lagi(ψ)∩Lagj(ψ) ρ(x)dH

d−1(x), we get for any z ∈
B(0,diam(X )),∫

X
χij(x, x+ z)dρ(x) ≤Mρ

∫
X
χij(x, x+ z)dx

≤Mρvol
d−1(Lagi(ψ) ∩ Lagj(ψ)) ∥z∥ cij,z

≤ Mρ

mρ
mij ∥z∥ cij,z.

This gives

1

2

∫
X×X

(u(y)− u(x))2dρ(x)dρ(y) ≤ ωddiam(Y)diam(X )d+1
M2
ρ

mρ

1

2

∑
i ̸=j

mij

dij
(vj − vi)2,

where ωd denotes the volume of the d-dimensional unit ball. Define H ∈ RN×N with
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coefficients Hij = −mij
dij

, Hii = −
∑

j ̸=iHij . Then, ∇2Kρ(ψ) = H, and notice that:

1

2

∑
i ̸=j

mij

dij
(vj − vi)2 =

1

2

∑
i ̸=j
−Hij(vj − vi)2

=
∑
i ̸=j
−Hijvi(vi − vj)

=
∑
i

Hiivivi +
∑
j ̸=i

Hijvivj


=
∑
i,j

Hijvivj

= ⟨∇Kρ(ψ)v|v⟩.

We finally obtain

Varµψ(v) ≤ ωddiam(Y)diam(X )d+1
M2
ρ

mρ
⟨∇Kρ(ψ)v|v⟩.

2.4 From the semi-discrete case to the general case

We now turn to the proof of Theorem 2.1 in the general case. This results from a simple
density argument, which is summarized in the following lemma.

Lemma 2.7 (Semi-discrete approximation). Under the notation and assumptions of
Theorem 2.1 and for k ∈ {0, 1}, there exists sequences of Brenier potentials (ϕkN )N≥1 ∈
C0(X ) with associated convex conjugates (ψkN )N≥1 ∈ C0(Y) such that:

(i) The measures µ0N = (∇ϕ0N )#ρ and µ1N = (∇ϕ1N )#ρ have the same finite support,

(ii) limN→+∞Kρ(ψ1
N )−Kρ(ψ0

N ) = Kρ(ψ1)−Kρ(ψ0),

(iii) limN→+∞⟨ψ1
N − ψ0

N |µ0N ⟩ = ⟨ψ1 − ψ0|µ0⟩,

(iv) limN→+∞Var 1
2
(µ0N+µ1N )(ψ

1
N − ψ0

N ) = Var 1
2
(µ0+µ1)(ψ

1 − ψ0).

Proof. For any N > 0, we consider a finite partition Y = ⊔1≤i≤NYNi , and we let εN =
maxi diam(YNi ). We assume that limN→+∞ εN = 0. Then, we define

µkN =
∑

1≤i≤N

[(
1− 1

N

)
µk(YNi ) +

1

N2

]
δyNi

,

where yNi ∈ YNi . It is easy to check that the support of the measures µ0N and µ1N is the
set {yN1 , . . . , yNN }. For k ∈ {0, 1} and N ≥ 1, denote ϕkN ∈ C0(X ) a Brenier potential for
the quadratic optimal transport between ρ and µkN chosen such that ⟨ϕkN |ρ⟩ = ⟨ϕk|ρ⟩:
ϕkN is a convex function that satisfies µkN = (∇ϕkN )#ρ (see Theorem 1.12). Then ϕkN and
its convex conjugate ψkN are Kantorovich potentials for the optimal transport problem
between ρ and µkN . Introduce

µ̃kN =
∑

1≤i≤N
µk(YNi )δyNi

,
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and notice that

W1(µ
k
N , µ

k) ≤W1(µ
k
N , µ̃

k
N ) +W1(µ̃

k
N , µ

k)

≤ diam(Y)
∥∥∥µkN − µ̃kN∥∥∥

TV
+ εN

≤ 2diam(Y)
N

+ εN ,

so that limN→+∞W1(µ
k
N , µ

k) = 0 (here, ∥·∥TV denotes the total variation distance
and we used the comparison W1 ≤ diam(Y) ∥· − ·∥TV valid for probability measures
supported on Y). Standard stability results of optimal transport (Theorem A.10) then
ensure that ϕkN , ψ

k
N converge uniformly to Kantorovich potentials ϕ̃k, ψ̃k between ρ and

µk on X and Y respectively. However, in our setting where ρ is supported on the
whole convex set X , the Kantorovich potentials between ρ and µk are unique up to
additive constants (Proposition 7.18 of (Santambrogio, 2015), see Remark 1.13). Thus
the condition

⟨ϕk|ρ⟩ = lim
N→+∞

⟨ϕkN |ρ⟩ = ⟨ϕ̃k|ρ⟩,

ensures that ϕ̃k = ϕk, which entails in turn ψ̃k = ψk. Using that for k ∈ {0, 1}, ϕkN
converges uniformly to ϕk on X then ensures together with the dominated convergence
theorem the limit

∫
(ϕ1N −ϕ0N )dρ→

∫
(ϕ1−ϕ0)dρ so that Kρ(ψ1

N )−Kρ(ψ0
N )→ Kρ(ψ1)−

Kρ(ψ0). Then notice that∣∣⟨ψ1
N − ψ0

N |µ0N ⟩ − ⟨ψ1 − ψ0|µ0⟩
∣∣ ≤ ∣∣⟨ψ1

N − ψ0
N |µ0N − µ0⟩

∣∣
+
∣∣⟨(ψ1

N − ψ0
N )− (ψ1 − ψ0)|µ0⟩

∣∣ .
As Legendre transform of ϕkN ∈ C0(X ), ψkN is RX -Lipschitz where RX is such that
X ⊂ B(0, RX ) (see Remarks 1.6 and 1.7). Therefore by the Kantorovich-Rubinstein
duality result (Proposition A.8),∣∣⟨ψ1

N − ψ0
N |µ0N − µ0⟩

∣∣ ≤ 2RXW1(µ
0
N , µ

0)→ 0.

One has the limit
∣∣⟨(ψ1

N − ψ0
N )− (ψ1 − ψ0)|µ0⟩

∣∣ → 0 from the uniform convergence of
ψkN to ψk on Y for k ∈ {0, 1} and the dominated convergence theorem. The exact same
arguments allow to show the limit ⟨ψ1

N−ψ0
N |

1
2(µ

0
N+µ1N )⟩ → ⟨ψ1−ψ0|12(µ

0+µ1)⟩. Finally,
one shows very similarly the limit ⟨(ψ1

N −ψ0
N )

2|12(µ
0
N +µ1N )⟩ → ⟨(ψ1−ψ0)2|12(µ

0+µ1)⟩,
using that (ψ1

N−ψ0
N )

2 is Lipschitz continuous since ψ1
N−ψ0

N is 2RX -Lipschitz continuous
and uniformly bounded (since it converges uniformly to the function ψ1 − ψ0, which is
Lipschitz on the compact set Y and thus bounded).

Proof of Theorem 2.1. Let (ϕkN )N≥1 ∈ C0(X ) be the sequence of Brenier potentials from
Lemma 2.7 that are such that the measures µ0N = (∇ϕ0N )#ρ and µ1N = (∇ϕ0N )#ρ have
the same finite support. Then for all N ≥ 1, Proposition 2.6 ensures the inequality

1

Cd,X ,Y

m2
ρ

M3
ρ

Var 1
2
(µ0N+µ1N )(ψ

1
N − ψ0

N ) ≤ Kρ(ψ1
N )−Kρ(ψ0

N ) + ⟨(∇ϕ0N )#ρ|ψ1
N − ψ0

N ⟩.

By Lemma 2.7, taking N to +∞ in the preceding inequality establishes (2.1) in the
limit.





Chapter 3

A continuous approach

Abstract

This chapter details the proof of a second strong convexity estimate for
the Kantorovich functional originally derived in (Delalande and Mérigot,
2021). This result holds when the Kantorovich functional is evaluated on
Kantorovich potentials whose convex conjugates present a bounded oscil-
lation. The proof of this strong convexity estimate is first derived under
strong regularity assumptions on the evaluated potentials, and it is general-
ized by a density argument. The main elements of proof are deduced from
the Brascamp-Lieb inequality and the log-concavity of the determinant on
the set of non-negative symmetric matrices.

3.1 Introduction

Once again, we prove in this chapter a strong convexity estimate for the Kantorovich
functional that appears in the dual quadratic optimal transport problem (see Sections
1.1.3 and 1.2). We recall that the Kantorovich functional associated to a source measure
ρ ∈ P2(Rd) reads

Kρ :

{
(Rd → R̄) → R̄,
ψ 7→

∫
Rd ψ

∗dρ.

We prove the following result, originally established in (Delalande and Mérigot, 2021):

Theorem 3.1. Let ρ be a probability density over a compact convex set X , satisfying
0 < mρ ≤ ρ ≤ Mρ. Let µ0, µ1 ∈ P2(Rd). For k ∈ {0, 1}, denote ϕk a Brenier potential
between ρ and µk. Assume that

∀k ∈ {0, 1}, −∞ < mϕ ≤ min
X

ϕk ≤ max
X

ϕk ≤Mϕ < +∞.

Then the convex conjugates ψ0 and ψ1 of ϕ0 and ϕ1 verify

1

Cd(Mϕ −mϕ)

m2
ρ

M2
ρ

Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩, (3.1)

where Cd = e(d+ 1)2d−1.
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The main assumption in this result is that the probability measures µ0, µ1 are such
that their Brenier potentials for the transport between ρ and themselves have a bounded
oscillation on the compact set X . As noted in Remark 1.26, by Morrey’s inequality, such
assumption is satisfied whenever the measures µ0, µ1 admit a finite p-th moment for some
p > d.

Outline. In order to prove Theorem 3.1, we take the following steps: first, we assume
that the probability measures µ0, µ1 are such that the Brenier potentials ϕ0, ϕ1 are smooth
and strongly convex – which requires at least that µ0 and µ1 are absolutely continuous
and compactly supported. In this regular context, we compute the first and second
derivatives of Kρ along the path ((1 − t)ψ0 + tψ1)t∈[0,1] (§3.2). We then show that the
Brascamp-Lieb inequality gives an explicit lower-bound on the second derivative of Kρ,
from which we deduce Theorem 3.1 in the regular context (§3.3). Finally, we prove that
Theorem 3.1 holds in the general case by density arguments (§3.4).

3.2 Derivatives of the Kantorovich functional for regular po-
tentials

The strong convexity estimate (3.1) will be derived from a local estimate – a Poincaré-
Wirtinger type inequality for the second derivative of Kρ – which will be shown to be
a consequence of the Brascamp-Lieb inequality in the following section. To make the
connection with the Brascamp-Lieb inequality clearer, we first compute the first and
second order derivatives of Kρ along the path ((1 − t)ψ0 + tψ1)t∈[0,1], under regularity
and strong convexity hypotheses.

Proposition 3.2. Let ϕ0, ϕ1 ∈ C2(Rd) be strongly convex functions. Define ψ0 = (ϕ0)∗,
ψ1 = (ϕ1)∗ and v = ψ1 − ψ0. For t ∈ [0, 1], define ψt = ψ0 + tv and finally ϕt = (ψt)∗.
Then, ϕt is a strongly convex function, belongs to C2(Rd), and

d

dt
Kρ(ψt) = −

∫
X
v(∇ϕt(x))dρ(x), (3.2)

d2

dt2
Kρ(ψt) =

∫
X
⟨∇v(∇ϕt(x))|D2ϕt(x) · ∇v(∇ϕt(x)⟩dρ(x). (3.3)

Proof of Proposition 3.2. We assume that ϕ0, ϕ1 are both α-strongly convex and belong
to C2(Rd). Then, the convex conjugates ψ0 = (ϕ0)∗, ψ1 = (ϕ1)∗ are C2 with 1/α-
Lipschitz gradients and satisfy D2ψ0 > 0,D2ψ1 > 0 everywhere on Rd. Hence their
linear interpolates ψt = (1− t)ψ0 + tψ1 enjoy the same properties. This in turn implies
that for all t ∈ [0, 1], the convex conjugate ϕt of ψt belongs to C2(Rd) and is α-strongly
convex.

We will now prove that the map G : (t, x) 7→ ∇ϕt(x) has class C1. Let F : [0, 1]×Rd×
Rd → Rd be the continuously differentiable function defined by F (t, x, y) = ∇ψt(y)−x. A
well-known property of the convex conjugate is that ∇ϕt is the inverse of ∇ψt, implying
that G(t, x) is uniquely characterized by F (t, x,G(t, x)) = 0. Since D2ψt > 0, the
Jacobian DyF (t, x, y) = D2ψt(y) is invertible and the implicit function theorem thus
implies that G has class C1. Differentiating the relation F (t, x,G(t, x)) = 0 with respect
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to time, we get
d

dt
∇ϕt(x) = −D2ϕt(x) · ∇v(∇ϕt(x)). (3.4)

By Fenchel-Young’s equality case, one has for any x ∈ X and t ∈ [0, 1],

ϕt(x) = ⟨x|∇ϕt(x)⟩ − ψt(∇ϕt(x)),

so that ϕt is at least C1 with respect to time. We can actually differentiate this equation
with respect to time twice and using (3.4) we get

d

dt
ϕt(x) = ⟨x| d

dt
∇ϕt(x)⟩ − v(∇ϕt(x))− ⟨∇ψt(∇ϕt)| d

dt
∇ϕt(x)⟩ = −v(∇ϕt(x)),

d2

dt2
ϕt(x) = −⟨∇v(∇ϕt(x))| d

dt
∇ϕt(x)⟩ = ⟨∇v(∇ϕt(x))|D2ϕt(x) · ∇v(∇ϕt(x))⟩.

Since Kρ(ψt) =
∫
X ϕ

t(x)dρ(x), we get the result by differentiating twice under the inte-
gral.

3.3 Proof of Theorem 3.1 in the regular case

In this section we find a positive lower-bound on the second-order derivative of Kρ ex-
pressed in equation (3.3) using the Brascamp-Lieb inequality ((Brascamp and Lieb, 1976),
see Theorem 1.29). This allows to prove Theorem 3.1 under additional regularity as-
sumptions on the Brenier potentials ϕ0, ϕ1, a result that we summarize in the following
statement.

Proposition 3.3. In addition to the assumptions of Theorem 3.1, assume that the func-
tions ϕ0, ϕ1 are strongly convex, belong to C2(Rd), and that ∇ϕ0 and ∇ϕ1 induce diffeo-
morphisms between X and a closed ball Y. Then, inequality (3.1) holds.

Proof. Under the assumptions on ϕ0, ϕ1, Proposition 3.2 ensures that the function ϕt

it defines is strongly convex and belongs to C2(Rd) for any t ∈ [0, 1]. Proposition 3.2
ensures that

d

dt
Kρ(ψt)

∣∣∣∣
t=0

= −⟨ψ1 − ψ0|µ0⟩.

By the fundamental theorem of calculus, again with the notation of Proposition 3.2, we
thus have:

Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩ =
∫ 1

0

∫ s

0

d2

dt2
Kρ(ψt)dtds. (3.5)

From Proposition 3.2, we have the following expression for the second derivative of Kρ:

d2

dt2
Kρ(ψt) = Eρ⟨∇v(∇ϕt)|(D2ϕt) · ∇v(∇ϕt)⟩.

We introduce ṽt = v(∇ϕt) for any t ∈ [0, 1], which belongs to C1(Rd) as the composition
of v = ψ1 − ψ0 ∈ C2(Rd) and ∇ϕt ∈ C1(Rd). We have ∇ṽt = D2ϕt · ∇v(∇ϕt), where
(D2ϕt) is invertible by strong convexity. Thus,

d2

dt2
Kρ(ψt) = Eρ⟨∇ṽt|(D2ϕt)−1 · ∇ṽt⟩. (3.6)
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We now introduce ρ̃t = exp(−ϕt)/Zt where Zt =
∫
X exp(−ϕt(x))dx, which is the density

of a log-concave probability measure supported on X . The Brascamp-Lieb inequality,
recalled in Theorem 1.29, then ensures that

Varρ̃t(ṽt) ≤ Eρ̃t⟨∇ṽt|(D2ϕt)−1 · ∇ṽt⟩. (3.7)

We assumed that for any k ∈ {0, 1} and x ∈ X , mϕ ≤ ϕk(x) ≤ Mϕ. We claim that this
property is transferred to ϕt for any t ∈ [0, 1]. Indeed, on the one hand for all t ∈ [0, 1],

ϕt =
(
(1− t)ψ0 + tψ1

)∗ ≤ (1− t)(ψ0)∗ + t(ψ1)∗ = (1− t)ϕ0 + tϕ1 ≤Mϕ,

where we used the convexity of the convex conjugation. On the other hand, for any
x ∈ X , we have by definition:

ϕt(x) = sup
y∈Rd
⟨x|y⟩ − ψt(y) ≥ −ψt(0) = −(1− t)ψ0(0)− tψ1(0).

By definition, ψk = (ϕk)∗. Thus, for k ∈ {0, 1}, ψk(0) = supx∈X −ϕk(x) ≤ −mϕ,
ensuring that ϕt ≥ mϕ for all t ∈ [0, 1]. The inequality mϕ ≤ ϕt ≤ Mϕ allows us to
compare the densities ρ and ρ̃t:(

exp(−Mϕ)

MρZt

)
ρ ≤ ρ̃t ≤

(
exp(−mϕ)

mρZt

)
ρ.

This comparison and equation (3.7) thus give:(
exp(−Mϕ)

MρZt

)
Varρ(ṽt) ≤

(
exp(−mϕ)

mρZt

)
Eρ⟨∇ṽt|(D2ϕt)−1 · ∇ṽt⟩,

where we used that for any absolutely continuous ρ1, ρ2 ∈ P2(Rd) and f : Rd → R, the
density comparison ρ1 ≤ Cρ2 for some C > 0 yields

Varρ1(f) = min
c∈R
∥f − c∥2L2(ρ1)

≤ Cmin
c∈R
∥f − c∥2L2(ρ2)

= CVarρ2(f).

Therefore, using ṽt = v(∇ϕt), µt = (∇ϕt)#ρ, v = ψ1 − ψ0 and expression (3.6):

Varµt(ψ1 − ψ0) ≤ Mρ

mρ
exp(Mϕ −mϕ)

d2

dt2
Kρ(ψt). (3.8)

Note that µt = ∇((1 − t)ψ0 + tψ1)∗#ρ interpolates between µ0 in t = 0 and µ1 in
t = 1, but this interpolation is neither a displacement interpolation in the sense of
McCann (McCann, 1997) nor a generalized geodesic in the sense of Ambrosio, Gigli,
Savaré (Ambrosio et al., 2008). Recalling equation (3.5), this equation is similar to that
of (3.1), except that we would like to replace µt by 1

2(µ0+µ1). For this purpose, we will
prove that

µt ≥ mρ

Mρ
min(t, 1− t)d(µ0 + µ1). (3.9)

This will be done using an explicit expression for µt. By smoothness and strong convexity
of the function ϕt, the restriction of ∇ϕt to X is a diffeomorphism on its image. This
implies that µt is absolutely continuous with respect to the Lebesgue measure. Moreover,
by e.g. (Villani, 2003, p.9), for any x ∈ X the density of µt with respect to Lebesgue,
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also denoted µt, is given by µt(∇ϕt(x)) det(D2ϕt(x)) = ρ(x). Setting y = ∇ϕt(x) in this
formula, we get

∀y ∈ ∇ϕt(X ), µt(y) = ρ(∇ψt(y)) det(D2ψt(y)).

By assumption, for k ∈ {0, 1}, ∇ϕk is a diffeomorphism from X to Y and so is ∇ψk from
Y to X . Thus by convexity of X , ∇ψt(Y) ⊂ X , which entails Y ⊂ ∇ϕt(X ). The equality
above then gives

∀k ∈ {0, 1}, ∀y ∈ Y, µk(y) ≤Mρ det(D
2ψk(y)).

On the other hand, the same equality gives

∀t ∈ [0, 1], ∀y ∈ Y, µt(y) ≥ mρ det(D
2ψt(y)).

Using the two inequalities above and the concavity of det1/d over the set of non-negative
symmetric matrices, we get for every y ∈ Y,

µt(y) ≥ mρ det(D
2ψt(y))

≥ mρ

(
(1− t) det(D2ψ0)1/d + tdet(D2ψ1)1/d

)d
≥ mρmin(t, 1− t)d(det(D2ψ0(y)) + det(D2ψ1(y)))

≥ mρ

Mρ
min(t, 1− t)d(µ0(y) + µ1(y)).

Using that spt(µ0) = spt(µ1) = Y, this directly implies (3.9), which in turn gives us

Varµt(v) ≥ 2min(t, 1− t)dmρ

Mρ
Var 1

2
(µ0+µ1)(v).

Combined with inequality (3.8), this gives:

2min(t, 1− t)dVar 1
2
(µ0+µ1)(v) ≤

M2
ρ

m2
ρ

exp(Mϕ −mϕ)
d2

dt2
Kρ(ψt).

After integrating over t ∈ [0, s] and s ∈ [0, 1], this ensures with (3.5) the inequality:

1

(d+ 1)2d−1
Var 1

2
(µ0+µ1)(v) ≤

M2
ρ

m2
ρ

exp(Mϕ −mϕ)
(
Kρ(ψ1)−Kρ(ψ0) + ⟨v|µ0⟩

)
, (3.10)

where we recall that v = ψ1 − ψ0. We finally leverage an in-homogeneity in the scale of
the Brenier potentials ϕ0, ϕ1 in the last inequality in order to improve the dependence
on Mϕ−mϕ. For any λ > 0, introduce for k ∈ {0, 1} the Brenier potential ϕkλ = λϕk and
denote µkλ = (∇ϕkλ)#ρ the corresponding probability measure and ψkλ = (ϕkλ)

∗ its convex
conjugate. Then using the formula ψkλ = λψk(·/λ), one can notice that for any λ > 0,

Var 1
2
(µ0λ+µ

1
λ)
(ψ1

λ − ψ0
λ) = λ2Var 1

2
(µ0+µ1)(ψ

1 − ψ0),

Kρ(ψ1
λ)−Kρ(ψ0

λ) + ⟨ψ1
λ − ψ0

λ|µ0λ⟩ = λ(Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩),
∀x ∈ X , ∀k ∈ {0, 1}, λmϕ ≤ ϕkλ(x) ≤ λMϕ.

Thus applying inequality (3.10) to ψ0
λ, ψ

1
λ and the associated quantities yields for any

λ > 0

1

(d+ 1)2d−1
Var 1

2
(µ0+µ1)(ψ

1−ψ0) ≤
M2
ρ

m2
ρ

exp(λ(Mϕ −mϕ))

λ

(
Kρ(ψ1)−Kρ(ψ0) + ⟨v|µ0⟩

)
.
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Choosing λ = 1
Mϕ−mϕ in the last inequality finally gives

1

e(d+ 1)2d−1
Var 1

2
(µ0+µ1)(ψ

1−ψ0) ≤
M2
ρ

m2
ρ

(Mϕ−mϕ)
(
Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩

)
.

3.4 From the regular case to the general case

To deduce the general case of Theorem 3.1, we need to approximate the convex potentials
ϕ0, ϕ1 on X with strongly convex potentials ϕ0n, ϕ1n that belong to C2(Rd) and that are
such that their gradients ∇ϕ0n,∇ϕ1n induce diffeomorphisms between X and a closed ball
Yn. A regularization that uses a (standard) convolution does not seem directly feasible.
Indeed, ϕk is defined on X only, and its gradient may explode on the boundary of X
when µk has non-compact support, so that any convex extension of ϕk to Rd has to take
value +∞ in this case.

Our strategy is as follows. First, we resort to Moreau-Yosida’s regularization to ap-
proximate the functions ϕ0, ϕ1 by regular convex functions defined on Rd. Then, we
regularize the target probability measures associated to these approximated potentials
and resort to Caffarelli’s regularity theory to guarantee smoothness and strong convex-
ity. Caffarelli’s regularity theory results require smoothness assumptions on the source
probability measure and strong convexity and smoothness assumption on the domain.
We make these assumptions in the next proposition, but we will later show that these
can be relaxed to get the general case of Theorem 3.1.

Proposition 3.4. Let X be a compact, smooth and strongly convex set, let ρ be a smooth
probability density on X and assume that ρ is bounded away from zero and infinity on
this set. Let µ0, µ1 ∈ P2(Rd). For k ∈ {0, 1}, denote ϕk the Brenier potentials for the
quadratic optimal transport from ρ to µk, and assume that there exists mϕ,Mϕ ∈ R such
for k ∈ {0, 1} and any x ∈ X ,

mϕ ≤ ϕk(x) ≤Mϕ.

Then there exists a sequence of strongly convex functions (ϕ0n)n∈N, (ϕ
1
n)n∈N in C2(Rd)

such that if one introduces µkn = (∇ϕkn)#ρ, ψkn = (ϕkn)
∗ and µk = (∇ϕk)#ρ, then:

(i) let mϕn = minX mink ϕ
k
n, and Mϕn = maxX maxk ϕ

k
n. Then,

mϕ ≤ lim inf
n→+∞

mϕn ≤ lim sup
n→+∞

Mϕn ≤Mϕ,

(ii) limn→+∞Kρ(ψ1
n)−Kρ(ψ0

n) + ⟨ψ1
n − ψ0

n|µ0n⟩ = Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩,

(iii) limn→+∞Var 1
2
(µ0n+µ

1
n)
(ψ1

n − ψ0
n) = Var 1

2
(µ0+µ1)(ψ

1 − ψ0),

(iv) there exists a closed ball Yn such that for k ∈ {0, 1}, ∇ϕkn is a diffeomorphism
between X and Yn.

Before proving this proposition, we recall some facts regarding Moreau-Yosida’s reg-
ularization of convex functions. Quoting Section 3.4 of (Attouch, 1984), the Moreau-
Yosida regularization of parameter λ > 0 of a closed and proper convex function
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f : Rd → R ∪ {+∞} is defined for all x ∈ Rd by infimum convolution of the function f
with 1

2λ ∥·∥
2:

fλ(x) = min
u∈Rd

f(u) +
1

2λ
∥u− x∥2 .

The next lemma gathers a few properties of the Moreau-Yosida regularisation.

Lemma 3.5. Let f : Rd → R ∪ {+∞} be a closed and proper convex function and let
λ > 0. Then,

(i) fλ = (f∗ + λ
2 ∥·∥

2)∗,

(ii) for all x ∈ Rd, limλ→0 fλ(x) = f(x),

(iii) fλ ∈ C1,1(Rd) and more precisely, ∇fλ is 1
λ -Lipschitz,

(iv) if f is differentiable at x ∈ Rd, then limλ→0∇fλ(x) = ∇f(x),

(v) if f is differentiable at x ∈ Rd, then ∥∇fλ(x)∥ ≤ ∥∇f(x)∥.

Proof. Point (i) is found in Proposition 3.3 of (Attouch, 1984), points (ii) and (iii) are
found in Theorem 3.24 of (Attouch, 1984) and (iv) and (v) can be found in Proposition
2.6 of (Brézis, 1973). We include here the proof of (v) because this property is not
very well-known. Let x be a point of Rd where f is differentiable. By Theorem 3.24 of
(Attouch, 1984), there exists a unique point xλ ∈ Rd such that

fλ(x) = f(xλ) +
1

2λ
∥xλ − x∥2 ,

which satisfies gλ := ∇fλ(x) = 1
λ(x−xλ) ∈ ∂f(xλ). By monotonicity of the subdifferential

of f , this gives

0 ≤ ⟨x− xλ|∇f(x)− gλ⟩ = ⟨x− xλ|∇f(x)⟩ −
1

λ
∥x− xλ∥2

≤ ∥x− xλ∥ ∥∇f(x)∥ −
1

λ
∥x− xλ∥2 = ∥x− xλ∥ (∥∇f(x)∥ − ∥∇fλ(x)∥).

Proof of Proposition 3.4. First regularization and truncation. Let k ∈ {0, 1}. We will
first approximate the convex function ϕk with elements of C1,1(Rd). To do so, we denote
by ϕkα the Moreau-Yosida regularization of ϕk with parameter α. We let µkα = (∇ϕkα)#ρ
and define ψkα as the convex convex conjugate of ϕkα. By Lemma 3.5, ∇ϕkα is Lipschitz on
the bounded domain X , implying that for k ∈ {0, 1}, the images of∇ϕkα(X ) are contained
in a closed ball Yα = B(0, Rα). We now prove the claimed convergences (i)-(iii), relying
mainly on the dominated convergence theorem. We first note that if f : Rd → R satisfies
the growth condition |f(x)| ≤ C(1 + ∥x∥2) for some constant C,

⟨f |µkα⟩ =
∫
X
f(∇ϕkα)dρ −−−→

α→0

∫
X
f(∇ϕk)dρ = ⟨f |µk⟩. (3.11)

Indeed, Lemma 3.5.(iv) ensures that for every point x ∈ X where ϕk is differentiable,
thus for ρ-almost every point x, one has limα→0∇ϕkα(x) = ∇ϕk(x). Besides, for all such
x, Lemma 3.5.(v) gives∣∣∣f(∇ϕkα(x))∣∣∣ ≤ C (1 + ∥∥∥∇ϕkα(x)∥∥∥2) ≤ C (1 + ∥∥∥∇ϕk(x)∥∥∥2) .
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Moreover,∫
X

(
1 +

∥∥∥∇ϕk(x)∥∥∥2) dρ(x) ≤ 1 +M2(∇ϕk(x)#ρ) = 1 +M2(µ
k) < +∞.

Thus, the dominated convergence theorem ensures that (3.11) holds.

(i) We note that for k ∈ {0, 1} and x ∈ X , mϕ ≤ ϕkα(x) ≤ Mϕ. This is a simple
consequence of the definition of the Moreau-Yosida regularization ϕkα as an infimum
convolution. Indeed for any x ∈ X , we have on one hand:

ϕkα(x) = inf
x′∈X

(
ϕk(x′) +

1

2α

∥∥x− x′∥∥2) ≥ inf
x′∈X

ϕk(x′) + inf
x′∈X

1

2α

∥∥x− x′∥∥2 ≥ mϕ.

On the other hand,

ϕkα(x) = inf
x′∈X

(
ϕk(x′) +

1

2α

∥∥x− x′∥∥2) ≤ ϕk(x) + 1

2α
∥x− x∥2 ≤Mϕ.

(ii) By Lemma 3.5.(i),

ψ0
α − ψ1

α = ϕ0∗α − ϕ1∗α = ψ0 +
α

2
∥·∥2 − ψ1 − α

2
∥·∥2 = ψ0 − ψ1.

Since ψ0, ψ1 are convex conjugates of functions defined on the compact set X , the func-
tions ψ0 and ψ1 are (globally) Lipschitz on Rd (Remark 1.6). Thus f = ψ1

α−ψ0
α = ψ1−ψ0

is also Lipschitz, and therefore satisfies a growth condition of the form |f | ≤ C(1+ ∥x∥).
By an application of (3.11), we get

lim
α→0
⟨ψ1

α − ψ0
α|µ0α⟩ = lim

α→0
⟨ψ1 − ψ0|µ0α⟩ = ⟨ψ1 − ψ0|µ0⟩.

Moreover, for k ∈ {0, 1}, Kρ(ψkα) =
∫
ϕkαdρ. We just noticed that for all α ≥ 0,

∣∣ϕkα∣∣ ≤
Mϕ. Therefore, using the limit limα→0 ϕ

k
α(x) = ϕk(x) for all x ∈ X given in Lemma

3.5.(i), we have with the dominated convergence theorem

Kρ(ψkα) −−−→
α→0

Kρ(ψk).

(iii) We use Varµ(f) =
∫
f2dµ− (

∫
fdµ)2. Letting f as in the previous item, we get

Var 1
2
(µ0α+µ

1
α)
(ψ1

α − ψ0
α) = ⟨f2|

1

2
(µ0α + µ1α)⟩ − ⟨f |

1

2
(µ0α + µ1α)⟩2,

Var 1
2
(µ0+µ1)(ψ

1 − ψ0) = ⟨f2|1
2
(µ0 + µ1)⟩ − ⟨ψ1 − ψ0|1

2
(µ0 + µ1)⟩2.

Since f is Lipschitz, both f and f2 satisfy the growth condition allowing us to apply
(3.11). We therefore get

lim
α→0

Var 1
2
(µ0α+µ

1
α)
(ψ1

α − ψ0
α) = Var 1

2
(µ0+µ1)(ψ

1 − ψ0).

We have all the desired properties (i)-(iii) but the potentials ϕkα are not strongly
convex and C2 on Rd: they are merely C1,1. Moreover, the property (iv) does not hold.
These properties will be obtained thanks to a second regularization.
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Second regularization. From now on, we fix some α > 0, and we denote Yα = B(0, Rα)
a closed ball that contains the supports of µ0α and µ1α. To construct the regulariza-
tion of ϕkα we will regularize the measures µkα and solve an optimal transport problem.
We first note that it is straightforward, e.g. using a simple convolution and trunca-
tion, to approximate the probability measures µkα on Yα by smooth probability den-
sities µkα,β supported on Yα, bounded away from zero and infinity on Yα and such
that limβ→0W2(µ

k
α,β, µ

k
α) = 0. By Caffarelli’s regularity theory (e.g. Theorem 3.3 in

(De Philippis and Figalli, 2014)), the optimal transport map Tα,β between ρ and µkα,β
is the gradient of a strongly convex potential ϕkα,β belonging to C2(X ) and is actually a
diffeomorphism between X and Yα. By Theorem 4.4 in (Yan, 2014), the potential ϕkα,β
can be extended into a C2 strongly convex function on Rd. By stability of Kantorovich
potentials (Theorem A.10), taking a subsequence if necessary, we can assume that ϕkα,β
converges uniformly to ϕkα on X as β → 0. Since ∇ϕkα,β sends ρ to the measure µkα,β ,

which is supported on B(0, Rα), we get
∥∥∥∇ϕkα,β∥∥∥ ≤ Rα. Moreover, since the convex

function ϕkα,β converges uniformly to ϕkα as β → 0, we get

for a.e. x ∈ X , lim
β→0
∇ϕkα,β(x) = ∇ϕkα(x).

This convergence result is also induced by the stability of optimal transport maps (see
(Villani, 2008, Corollary 5.21) or Corollary A.11), since limβ→0W2(µ

k
α,β, µ

k
α) = 0 and

∇ϕkα,β (resp. ∇ϕkα) is the optimal transport map between ρ and µkα,β (resp. ρ and µkα).
From these two properties we get as above the desired convergence properties:

(i) For k ∈ {0, 1}, mϕ ≤ lim infβ→0minX ϕ
k
α,β(x) ≤ lim supβ→0maxX ϕ

k
α,β(x) ≤Mϕ.

(ii) limβ→0⟨ϕ1α,β−ϕ0α,β|ρ⟩+⟨(ϕ1α,β)∗−(ϕ0α,β)∗|µ0α,β⟩ = ⟨ϕ1α−ϕ0α|ρ⟩+⟨(ϕ1α)∗−(ϕ0α)∗|µ0α⟩.

(iii) limβ→0Var 1
2
(µ0α,β+µ

1
α,β)

((ϕ1α,β)
∗ − (ϕ0α,β)

∗) = Var 1
2
(µ0α+µ

1
α)
((ϕ1α)

∗ − (ϕ0α)
∗).

The sequence in the statement of the proposition is finally constructed using a diag-
onal argument.

Proposition 3.6. In addition to the assumptions of Theorem 3.1, assume that X is a
smooth and strongly convex set and that the density ρ is smooth. Then, (3.1) holds.

Proof. Let ϕ0n, ϕ1n be the sequence of C2 and strongly convex potentials constructed by
Proposition 3.4, converging respectively to ϕ0 and ϕ1, and such that ∇ϕ0n,∇ϕ1n are dif-
feomorphisms from X to a ball Yn. By Proposition 3.3, (3.1) holds for ϕ0n, ϕ1n:

Var 1
2
(µ0n+µ

1
n)
(ψ1

n − ψ0
n) ≤ Cd

M2
ρ

m2
ρ

(Mϕn −mϕn)
(
Kρ(ψ1

n)−Kρ(ψ0
n) + ⟨ψ1

n − ψ0
n|µ0n⟩

)
.

By the claims (i)-(iv) in Proposition 3.4, all the terms in this inequality converge as
n→ +∞ and establish (3.1) in the limit.

Proof of Theorem 3.1. Let X be a bounded convex set and assume that ρ is a probability
density supported on this set and satisfying mρ ≤ ρ ≤ Mρ on it. We extend ρ by mρ

outside of X . One can construct a sequence Xn of smooth and strongly convex sets
included in X and converging to X in the Hausdorff sense as n→ +∞ (Schneider, 2013,
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§3.3). Let K be a smooth, non-negative and compactly supported function, Kn(x) =
ndK(nx) and define

ρn =
1

Zn
(ρ ∗Kn)|Xn ,mρn =

mρ

Zn
,Mρn =

Mρ

Zn
,

where Zn is a constant ensuring that ρn belongs to P(Xn). We define µkn = (∇ϕk)#ρn.
Applying Proposition 3.6 to (Xn, ρn) and (ϕ0, ϕ1), we have:

Var 1
2
(µ0n+µ

1
n)
(ψ1−ψ0) ≤ Cd

M2
ρn

m2
ρn

(Mϕ−mϕ)
(
Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0n⟩

)
. (3.12)

By construction, limn→+∞ Zn = 1 and ρn converges to ρ in L1(X ). Thus up to sub-
sequences, ρn converges pointwise almost everywhere to ρ. Setting f = ψ0 − ψ1, we
have

⟨ψ0 − ψ1|µ0n⟩ =
∫
X
f(∇ϕ0)ρn(x)dx

n→+∞−−−−−→
∫
X
f(∇ϕ0)ρ(x)dx = ⟨ψ0 − ψ1|µ0⟩.

The limit in the above equation is proven as in Proposition 3.4, using that f is Lipschitz,
that M2(µ0) < +∞ and applying the dominated convergence theorem. All the terms can
be dealt with in a similar manner. Taking the limit n→ +∞ in (3.12) gives the desired
estimate (3.1).



Chapter 4

An entropic approach

Abstract

This chapter considers the entropy-regularized quadratic optimal trans-
port problem. The dual of this problem is shown to feature an entropic
Kantorovich functional, that enjoys a non-trivial strong convexity estimate
reminiscent of the estimates presented in Chapters 2 and 3 for the classical
Kantorovich functional. This estimate, originally obtained in (Delalande,
2022), is derived properly in the semi-discrete setting and is shown to be a
consequence of the Prékopa-Leindler inequality. It is finally shown that this
estimate may be used, thanks to density arguments, to recover the strong
convexity estimate of Chapter 3 for the classical Kantorovich functional.

4.1 Introduction

In this chapter, we consider the entropic regularization of the optimal transport problem.
Let X ,Y be subsets of Rd. For two probability measures ρ ∈ P2(X ), µ ∈ P2(Y), the
quadratic optimal transport problem between ρ and µ with entropic regularization of
weight ε ≥ 0 reads

min
γ∈Γ(ρ,µ)

∫
X×Y

∥x− y∥2 dγ(x, y) + εKL(γ|ρ⊗ µ), (4.1)

where Γ(ρ, µ) denotes the set of couplings between ρ and µ and KL denotes the Kullback-
Leibler divergence or relative entropy (up to an additive term):

KL(γ|ρ⊗ µ) =
∫
X×Y

(
log

(
dγ

dρ⊗ µ
(x, y)

)
− 1

)
dγ(x, y)

if γ ≪ ρ ⊗ µ and +∞ otherwise. When ε = 0, problem (4.1) coincides with the usual
quadratic optimal transport problem between ρ and µ introduced in Chapter 1. Problem
(4.1) thus corresponds to the optimal transport problem regularized with the 1-strongly-
convex entropic penalty γ 7→ KL(γ|ρ⊗µ), whose weight is controlled by the parameter ε.
When ε > 0, problem (4.1) can be shown to be equivalent to the static Schrödinger prob-
lem (Léonard, 2014) which was initially considered by Schrödinger in statistical physics
(Schrödinger, 1931). Very formally, this problem studies a collection of gas particles in
Rd, whose spatial configurations at two moments t = 0 and t = 1 are known and given by
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the measures ρ and µ respectively. Assuming that the particles evolve at a temperature
ε > 0 (i.e. they are subject to a Brownian motion), Schödinger wondered what were
the most probable paths of each particle between these two instants. The (unique) solu-
tion of (4.1) convolved with a Brownian bridge gives the path measure solution to this
problem (Föllmer, 1988). In the recent years, problem (4.1) was revisited by (Cuturi,
2013), who initiated a fruitful line of works that took benefit from the computational and
statistical advantages of problem (4.1) with ε > 0 over classical optimal transport. We
refer to Chapter 7 for a greater emphasis on these advantages, and more generally to the
monograph (Peyré and Cuturi, 2019) or lecture notes (Nutz, 2022) for an introduction
to entropy-regularized optimal transport.

In this chapter, we show that the entropic Kantorovich functional that appears in
the dual formulation of (4.1) may enjoy a non-trivial strong-convexity estimate that is
reminiscent of the estimates of Chapters 2 and 3. For technical and practical reasons
justified in Section 4.2, we will limit ourselves to the semi-discrete setting and assume
that the source ρ is absolutely continuous and supported on a compact convex X ⊂ Rd
and that the target µ is discretely supported on a finite set Y = {y1, . . . , yN} ⊂ Rd. In
this setting, we will show that the semi-discrete entropic Kantorovich functional Kε

ρ :

RN → R involved in the dual problem of (4.1) (defined properly in Section 4.3) is twice
differentiable and satisfies the following strong convexity estimate, originally established
in (Delalande, 2022):

Theorem (Theorem 4.4). Let ρ be a probability density over a compact convex set X ,
satisfying 0 < mρ ≤ ρ ≤Mρ and let Y = {y1, . . . , yN} ⊂ Rd. Let ε > 0 and let ψ ∈ RN .
Define

ψc,ε : x ∈ X 7→ ε log

(
N∑
i=1

e
⟨x|yi⟩−ψi

ε

)
∈ R, Kε

ρ : ψ ∈ RN 7→
∫
X
ψc,εdρ ∈ R,

and denote mϕ = minX ψ
c,ε and Mϕ = maxX ψ

c,ε. Then Kε
ρ is C2 and there exists a

discrete measure µεψ ∈ P(Y) depending only on ψ and ε such that for any v ∈ RN ,

Varµεψ(v) ≤
(
e(Mϕ−mϕ)Mρ

mρ
+ ε

)
⟨v|∇2Kε

ρ(ψ)v⟩.

Remark 4.1. The measure µεψ is known explicitly and we refer to Section 4.4 for its
definition.

Such strong convexity estimate is interesting in its own right for the study of entropic
optimal transport problems (with ε > 0 fixed). We show however at the end of this
chapter that taking the limit ε → 0 of this estimate also allows to recover the strong
convexity estimate of Theorem 3.1 proven in Chapter 3.

Outline. In order to prove Theorem 4.4, we proceed as follows. First, we define the
entropic Kantorovich functional and discuss the role played by the target measure in
this functional (§4.2). This discussion leads us to the semi-discrete assumption, under
which we compute the first and second derivatives of the entropic Kantorovich functional
(§4.3). The Prékopa-Leindler inequality is then used to derive a lower-bound on the
smallest eigenvalue of the Hessian of the semi-discrete entropic Kantorovich functional,
from which Theorem 4.4 is deduced (§4.4). This theorem is then shown to entail the
strong convexity estimate of Theorem 3.1 for the classical Kantorovich functional (§4.5).
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4.2 Entropic Kantorovich functional

Similarly to classical optimal transport, developing the square in the integral term of
(4.1) shows that the regularized quadratic optimal transport problem with regularization
parameter 2ε is equivalent to the following regularized maximum correlation problem:

max
γ∈Γ(ρ,µ)

∫
X×Y
⟨x|y⟩dγ(x, y)− εKL(γ|ρ⊗ µ). (4.2)

When ε > 0, this problem is strongly-concave (by strong-convexity of γ 7→ KL(γ|ρ ⊗
µ)) and thus admits a unique solution. Moreover it admits the following (semi-)dual
formulation and strong duality holds (see for instance Sections 2 of (Genevay et al.,
2016; Bercu and Bigot, 2020)):

min
ψ∈C0(Y)

∫
X
ψc,ε,µdρ+

∫
Y
ψdµ+ ε,

where ψc,ε,µ corresponds to the following (c, ε, µ)-transform of ψ: ∀x ∈ X ,

ψc,ε,µ(x) = ε log

(∫
Y
e

⟨x|y⟩−ψ(y)
ε dµ(y)

)
.

Introducing the entropic Kantorovich functional Kερ,µ : ψ 7→
∫
X ψ

c,ε,µdρ + ε, the dual
formulation can be rewritten

min
ψ∈C0(Y)

Kερ,µ(ψ) + ⟨ψ|µ⟩. (4.3)

Using Hölder’s inequality, one can show that the mapping ψ 7→ ψc,ε,µ(x) is convex for
any x ∈ Rd (see the next section). This ensures that the entropic Kantorovich functional
Kερ,µ is convex. We now wonder, as we did for the classical Kantorovich functional in
Chapters 2 and 3, if this functional is strongly convex.

Entropic Kantorovich functional and target measure. In order to study the
strong convexity of Kερ,µ, it is tempting to try to proceed as we did in Chapters 2
and 3: first, consider two different target measures µ0, µ1 and select two correspond-
ing minimizers ψ0, ψ1 in (4.3). Then, try to differentiate twice Kερ,µ along the path
((1− t)ψ0 + tψ1)t∈[0,1] and look for a lower-bound on the second derivative of Kερ,µ along
this path. However, this approach fails when the probability measures µ0 and µ1 have
incomparable support. Indeed, first notice that the potentials ψ0 and ψ1 are defined on
the supports of µ0 and µ1 respectively, so that the interpolant (1− t)ψ0 + tψ1 may not
be well-defined. One could extend the domains of ψ0, ψ1 by means of double (c, ε, ·)-
transform-like operations, but there would remain another problem: the target measure
actually appears in the definition of the entropic Kantorovich functionalKερ,µ (through the
(c, ε, µ)-transform): in order to differentiate this functional along ((1− t)ψ0+ tψ1)t∈[0,1],
it is thus not clear what should be the target measure taken in the definition of the
(c, ε, µ)-transform.

A possible workaround is the following: introduce a fixed reference positive measure
σ ∈M+(Y) and denote Pσ2 (Y) the set of probability measures with finite second moment
that are equivalent to σ:

Pσ2 (Y) = {µ ∈ P2(Y)|µ≪ σ and σ ≪ µ}.
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Then notice that for any ρ ∈ P2(X ) and µ ∈ Pσ2 (Y), one has for any γ ∈ Γ(ρ, µ),

KL(γ|ρ⊗ µ) = KL(γ|ρ⊗ σ)−KL(µ|σ).

This means that for µ ∈ Pσ2 (Y), problem (4.2) is equivalent to the following problem:

max
γ∈Γ(ρ,µ)

∫
X×Y
⟨x|y⟩dγ(x, y)− εKL(γ|ρ⊗ σ),

which admits the following dual problem:

min
ψ∈C0(Y)

∫
Rd
ψc,εdρ+

∫
Rd
ψdµ+ ε,

where ψc,ε corresponds to the following (c, ε)-transform of ψ (that depends on the fixed
reference σ): ∀x ∈ X ,

ψc,ε(x) = ε log

(∫
Y
e

⟨x|y⟩−ψ(y)
ε dσ(y)

)
. (4.4)

With a fixed reference σ for the targets, the entropic Kantorovich functional may now
be denoted Kερ : ψ 7→

∫
X ψ

c,εdρ+ε, so that for all µ ∈ Pσ2 (Y), the dual formulation reads

min
ψ∈C0(Y)

Kερ(ψ) + ⟨ψ|µ⟩. (4.5)

Semi-discrete assumption. Now choosing µ0, µ1 ∈ Pσ2 (Y), it is possible to interpo-
late two corresponding minimizers ψ0, ψ1 of (4.5) and differentiate twice Kερ along the
path ((1 − t)ψ0 + tψ1)t∈[0,1]. One may then lower-bound the second derivative of Kερ
along this path using the Prékopa-Leindler inequality and thus derive a strong convexity
estimate for the entropic Kantorovich functional. In the following, we do this under the
assumption that the set Y is finite and σ is the counting measure on Y. As in Chapter
2, this places ourselves in the semi-discrete setting with an absolutely continuous source
and a discrete target. We make this assumption for two reasons: these semi-discrete
computations will prove useful in Chapter 7; and by density arguments already devel-
oped in Chapters 2 and 3, they allow to recover the general strong convexity estimate of
Theorem 3.1 for classical optimal transport. We emphasize again that the computations
that follow could be done very similarly without a semi-discrete assumption.

4.3 Semi-discrete entropic Kantorovich functional

From now on, we assume that X is a compact convex subset of Rd and ρ ∈ P(X ) is an
absolutely continuous probability measure on X . We consider Y = {y1, . . . , yN} ⊂ Rd a
set of N points in Rd and we let σ be the counting measure associated to this set, i.e.
σ =

∑N
i=1 δyi . Let µ =

∑N
i=1 µiδyi ∈ P(Y) where for all i, µi ≥ µ > 0. In this setting,

problem (4.5) reads

min
ψ∈C0(Y)

∫
X
ε log

(
N∑
i=1

e
⟨x|yi⟩−ψ(yi)

ε

)
dρ(x) +

N∑
i=1

ψ(yi)µi.

In this problem, the function ψ is defined and evaluated only at the points of Y, so that
it can be conflated with the vector ψ = (ψ(yi))1≤i≤N ∈ RN . For such ψ, we abuse the
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notation and denote for all x ∈ X , ψc,ε(x) = ψc,ε(x) (defined in (4.4)). This allows us
to introduce the semi-discrete entropic Kantorovich functional :

Kε
ρ : ψ ∈ RN 7→

∫
X
ψc,εdρ+ ε ∈ R.

In the considered setting, (4.5) is thus equivalent to the following finite-dimensional
problem:

min
ψ∈RN

Kε
ρ(ψ) + ⟨ψ|µ⟩, (4.6)

where µ is conflated with the vector (µi)1≤i≤N ∈ RN . For any ψ,φ ∈ RN and λ ∈ (0, 1),
Hölder’s inequality ensures

Kε
ρ(λψ + (1− λ)φ) =

∫
X
ε log

(
N∑
i=1

(
e

⟨x|yi⟩−ψi
ε

)λ (
e

⟨x|yi⟩−φi
ε

)1−λ)
dρ(x)

≤
∫
X
ε log

( N∑
i=1

e
⟨x|yi⟩−ψi

ε

)λ( N∑
i=1

e
⟨x|yi⟩−φi

ε

)1−λ dρ(x)

= λKε
ρ(ψ) + (1− λ)Kε

ρ(φ),

with equality if and only if there exists a measurable function α : X → R∗
+ such that for

ρ-almost-every x ∈ X , for all i ∈ {1, . . . , N},

e
⟨x|yi⟩−ψi

ε = α(x)e
⟨x|yi⟩−φi

ε .

After simplifying by e
⟨x|yi⟩
ε , we notice that this is possible only if α is constant ρ-a.e.,

and it is equivalent to require ψi = φi + ε logα for all i ∈ {1, . . . , N}, that is to require
that ψ and φ only differ by a constant vector. The functional Kε

ρ is thus convex on RN

and strictly convex on (1N )
⊥, where 1N denotes the all-ones vector of RN . Problem

(4.6) thus admits a unique solution up to a constant, and such solution (up to a con-
stant) will be we denoted ψε. Note that in the literature, these solutions are sometimes
called Schrödinger potentials (in reference to the above-mentioned Schrödinger prob-
lem) or Sinkhorn potentials (in reference to Sinkhorn’s algorithm that one can use for
the numerical resolution of (4.6), see (Peyré and Cuturi, 2019)). It is then possible to
characterize ψε with a first-order condition in (4.6). For this, we need to compute the
gradient of Kε

ρ.

Derivatives of the semi-discrete entropic Kantorovich functional. Let us recall
the definition of the semi-discrete entropic Kantorovich functional: for any ψ ∈ RN ,

Kε
ρ(ψ) =

∫
X
ψc,εdρ =

∫
X
ε log

(
N∑
i=1

e
⟨x|yi⟩−ψi

ε

)
dρ(x).

In order to differentiate Kε
ρ, one can try to differentiate the mapping

ψ 7→ ψc,ε(x) = ε log

(
N∑
i=1

e
⟨x|yi⟩−ψi

ε

)

for all x ∈ X . The following lemma ensures that this mapping is C2 and gives its first
and second derivatives.
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Lemma 4.2. Let ε > 0. For any x ∈ X , the mapping ψ 7→ ψc,ε(x) is C2 on RN . For
any ψ ∈ RN and x ∈ X , introduce the vector γεx(ψ) ∈ RN defined for any i ∈ {1, . . . , N}
by

γεx(ψ)i =
e

⟨x|yi⟩−ψi
ε∑N

j=1 e
⟨x|yj⟩−ψj

ε

.

Then one has for any x ∈ X ,

∇ψ[ψc,ε(x)] = −γεx(ψ),

∇2
ψ[ψ

c,ε(x)] =
1

ε

(
diag(γεx(ψ))− γεx(ψ)γεx(ψ)⊤

)
.

Remark 4.3. Intuitively, γεx(ψ)i is a smoothed version of the indicator function associated
to the i-th Laguerre cell of ψ introduced in Section 2.2 of Chapter 2. It actually corre-
sponds to the ratio of mass sent from x to yi by the coupling derived from the proposed
potential ψ in the ε-entropic transport.

Before proving Lemma 4.2, let us note the following consequence: by this lemma,
ψ 7→ Kε

ρ(ψ) is C2 on RN , and it admits the following derivatives:

∇Kε
ρ(ψ) = −Ex∼ργεx(ψ), (4.7)

∇2Kε
ρ(ψ) =

1

ε
Ex∼ρ

(
diag(γεx(ψ))− γεx(ψ)γεx(ψ)⊤

)
. (4.8)

This ensures that a minimizer ψε of (4.6) is characterized by the following first order
condition:

µ = Ex∼ργεx(ψε), (4.9)

where we conflated again µ ∈ P(Y) with the vector (µi)1≤i≤N ∈ RN . Interestingly, the
probability measure γε on X × Y defined for any x ∈ X and i ∈ {1, . . . , N} by

dγε

dρ⊗ σ
(x, yi) = γεx(ψ

ε)i

is a coupling between ρ and µ. Moreover, this coupling satisfies∫
X×Y
⟨x|y⟩dγε(x, y)− εKL(γε|ρ⊗ σ) = Kε

ρ(ψ
ε) + ⟨ψε|µ⟩,

so that there is no duality gap and γε is the unique solution to the primal problem (4.2).

Proof of Lemma 4.2. For any x ∈ X , the mapping ψ 7→ ψc,ε(x) is obviously C2 on RN
and one has for any i ∈ {1, . . . , N},

∂ψi [ψ
c,ε(x)] = − e

⟨x|yi⟩−ψi
ε∑N

j=1 e
⟨x|yj⟩−ψj

ε

= −γεx(ψ)i,

which gives the gradient formula. The second derivative of ψ 7→ ψc,ε(x) for any x ∈ X
is deduced from the following computations: for any i ∈ {1, . . . , N},

∂2ψi [ψ
c,ε(x)] =

1

ε

 e
⟨x|yi⟩−ψi

ε∑N
j=1 e

⟨x|yj⟩−ψj
ε

−

 e
⟨x|yi⟩−ψi

ε∑N
j=1 e

⟨x|yj⟩−ψj
ε

2
=

1

ε

(
γεx(ψ)i − γεx(ψ)2i

)
.
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And for any i ̸= j,

∂ψi∂ψj [ψ
c,ε(x)] = −1

ε

e
⟨x|yi⟩−ψi

ε∑N
k=1 e

⟨x|yk⟩−ψk
ε

e
⟨x|yj⟩−ψj

ε∑N
k=1 e

⟨x|yk⟩−ψk
ε

= −1

ε
γεx(ψ)iγ

ε
x(ψ)j .

4.4 Strong convexity of the semi-discrete entropic Kan-
torovich functional

In this section, we derive a strong convexity estimate for the semi-discrete entropic Kan-
torovich functional Kε

ρ. In order to state our estimate, we need to introduce the target
probability measure associated to a potential : for any ψ ∈ RN and ε > 0, let µεψ ∈ P(Y)
be defined for any yi ∈ Y by

µεψ(yi) = Ex∼ργεx(ψ)i.

Notice then that from (4.9), ψε ∈ RN is a minimizer of (4.6) if and only if µεψε = µ. The
preceding computations then allow to show the following strong-convexity estimate for
Kε
ρ.

Theorem 4.4 (Strong convexity of Kε
ρ). Let ρ be a probability density over a compact

convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ and let µ ∈ P(Y) where Y = {y1, . . . , yN} ⊂
Rd. Let ε > 0 and let ψ ∈ RN . Denote mϕ = minX ψ

c,ε and Mϕ = maxX ψ
c,ε. Then for

any v ∈ RN ,

Varµεψ(v) ≤
(
e(Mϕ−mϕ)Mρ

mρ
+ ε

)
⟨v|∇2Kε

ρ(ψ)v⟩. (4.10)

Remark 4.5 (Bounds on ψc,ε). Notice that in our compact semi-discrete context, ψc,ε is
bounded so that −∞ < mϕ ≤ Mϕ < +∞. Indeed, observe that for any ψ ∈ RN , the
mapping x 7→ ψc,ε(x) is C1 and has for gradient

∇x[ψc,ε(x)] =
N∑
i=1

yiγ
ε
x(ψ)i ∈ Rd.

This ensures that ψc,ε is a RY -Lipschitz function on X , where RY is such that Y ⊂
B(0, RY). The mapping x 7→ ψc,ε(x) is thus bounded on the compact set X and satisfies

Mϕ −mϕ ≤ RYdiam(X ).

Note that estimate (4.10) without constants involving the geometry of Y will be useful
in Section 4.5 to retrieve the non-entropic and non-compact strong convexity result of
Theorem 3.1.

The strong convexity estimate presented in Theorem 4.4 is reminiscent of the one pre-
sented in Theorem 3.1 for the classical Kantorovich functional. We recall that the main
tool to derive this estimate was the Brascamp-Lieb inequality (Theorem 1.29), which
almost readily gave a lower-bound on the second derivative of the classical Kantorovich
functional. In our semi-discrete entropic setting, the Hessian of the Kantorovich func-
tional is also available (4.8), but this second derivative does not look like the second term
in the Brascamp-Lieb inequality. However, we saw in Section 1.3 that it is possible to
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retrieve the Brascamp-Lieb inequality from the Prékopa-Leindler inequality. In particu-
lar, the Brascamp-Lieb inequality may be deduced from the concavity of a well-chosen
functional I, the concavity of I being showed in turn with the Prékopa-Leindler inequal-
ity (Exercise 2.2.11 of (Klartag, 2013)). Here, we derive the estimate of Theorem 4.4 in
a similar fashion. Let’s first define the functional I, show its concavity thanks to the
Prékopa-Leindler inequality and compute its Hessian.

Proposition 4.6. The functional I : RN → R,ψ 7→ log(
∫
X e

−ψc,ε) is C2 and concave.
In particular, its Hessian is negative semi-definite:

∇2I(ψ) =Ex∼ρεψγ
ε
x(ψ)γ

ε
x(ψ)

⊤ − Ex∼ρεψγ
ε
x(ψ)Ex∼ρεψγ

ε
x(ψ)

⊤

− 1

ε
Ex∼ρεψ(diag(γ

ε
x(ψ))− γεx(ψ)γεx(ψ)⊤) ⪯ 0,

where ρεψ := e−(ψ)c,ε∫
X e−(ψ)c,ε .

Proof. By Lemma 4.2, we know that for any x ∈ X the mapping ψ 7→ ψc,ε(x) is C2.
This ensures that I : ψ 7→ log

(∫
X e

−ψc,ε) is a C2 function on RN . Its derivatives read:

∇I(ψ) =
−
∫
X ∇ψ[ψ

c,ε(x)]e−ψ
c,ε(x)∫

X e
−ψc,ε ,

and

∇2I(ψ) =
−
∫
X ∇

2
ψ[ψ

c,ε(x)]e−ψ
c,ε(x)∫

X e
−ψc,ε +

∫
X ∇ψ[ψ

c,ε(x)]∇ψ[ψc,ε(x)]⊤e−ψ
c,ε(x)∫

X e
−ψc,ε

−

(∫
X ∇ψ[ψ

c,ε(x)]e−ψ
c,ε(x)∫

X e
−ψc,ε

)(∫
X ∇ψ[ψ

c,ε(x)]e−ψ
c,ε(x)∫

X e
−ψc,ε

)⊤

,

which entails the claimed expression for ∇2I(ψ) using the formulas of Lemma 4.2.

We now show that I is a concave function on RN . Let ψ,φ ∈ RN . Let 0 < λ < 1.
Notice that for any u, v ∈ X we have:

(
λψ + (1− λ)φ

)c,ε
(λu+ (1− λ)v) = ε log

(
N∑
i=1

e
⟨λu+(1−λ)v|yi⟩−(λψ+(1−λ)φ)(yi)

ε

)

= ε log

(
N∑
i=1

(
e

⟨u|yi⟩−ψ(yi)

ε

)λ (
e

⟨v|yi⟩−φ(yi)

ε

)1−λ)

≤ ε log

( N∑
i=1

e
⟨u|yi⟩−ψ(yi)

ε

)λ( N∑
i=1

e
⟨v|yi⟩−φ(yi)

ε

)1−λ
= λψc,ε(u) + (1− λ)φc,ε(v),

where the inequality corresponds to Hölder’s inequality. Denoting

h(u) = e−(λψ+(1−λ)φ)c,ε(u),

f(u) = e−ψ
c,ε(u),

g(u) = e−φ
c,ε(u),
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we thus have shown that

h(λu+ (1− λ)v) ≥ f(u)λg(v)1−λ.

Using that X is convex, the Prékopa–Leindler inequality (see Section 1.3 and in particular
Theorem 1.28) then ensures that∫

X
h ≥

(∫
X
f

)λ(∫
X
g

)1−λ
.

This leads to the concavity of I:

I(λψ + (1− λ)φ) = log

(∫
X
h

)
≥ λ log

(∫
X
f

)
+ (1− λ) log

(∫
X
g

)
= λI(ψ) + (1− λ)I(φ).

Proposition 4.6 implies Theorem 4.4. Indeed, in the expression of ∇2I(ψε), one can
notice that the last term almost corresponds to −∇2Kε

ρ(ψ
ε), while the sum of the first

and second terms almost corresponds to a p.s.d. matrix whose associated bilinear form
corresponds to the covariance w.r.t. µεψ = Ex∼ργεx(ψε). The difference with those terms
resides in the presence of ρεψ instead of ρ. The bounds on ψc,ε allow to bound ρεψ in
terms ρ, giving Theorem 4.4.

Proof of Theorem 4.4. Let v ∈ RN . Notice that

⟨v|1
ε
Ex∼ρεψ

(
diag(γεx(ψ))− γεx(ψ)γεx(ψ)⊤

)
v⟩ =

∫
X

1

ε
Varγεx(ψ)(v)dρ

ε
ψ(x),

⟨v|Ex∼ρεψγ
ε
x(ψ)γ

ε
x(ψ)

⊤v⟩ − ⟨v|Ex∼ρεψγ
ε
x(ψ)Ex∼ρεψγ

ε
x(ψ)

⊤v⟩ = Varx∼ρεψ(Eγεx(ψ)(v)).

Thus Proposition 4.6 ensures that

Varx∼ρεψ(Eγεx(ψ)(v)) ≤
∫
X

1

ε
Varγεx(ψ)(v)dρ

ε
ψ(x), (4.11)

where we recall

ρεψ =
e−(ψ)c,ε∫
X e

−(ψ)c,ε
=
e−(ψ)c,ε

Z
.

The bound
−∞ < mϕ ≤ ψc,ε ≤Mϕ < +∞

then gives the control
e−Mϕ

Z
≤ ρεψ ≤

e−mϕ

Z
.

Recalling that mρ ≤ ρ ≤Mρ we thus have:

e−Mϕ

ZMρ
ρ ≤ ρεψ ≤

e−mϕ

Zmρ
ρ.

This control, (4.8) and (4.11) thus give

Varx∼ρ(Eγεx(ψ)(v)) ≤ e(Mϕ−mϕ)Mρ

mρ

∫
X

1

ε
Varγεx(ψ)(v)dρ(x)

= e(Mϕ−mϕ)Mρ

mρ
⟨v|∇2Kε

ρ(ψ)v⟩. (4.12)
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Recall the following expression of µεψ:

µεψ = Ex∼ργεx(ψ).

Hence using the associativity of variances we have:

Varµεψ(v) = Varx∼ρ(Eγεx(ψ)(v)) +

∫
X
Varγεx(ψ)(v)dρ(x),

so that using again (4.8),

Varx∼ρ(Eγεx(ψ)(v)) = Varµεψ(v)− ε⟨v|∇
2Kε

ρ(ψ)v⟩.

Injecting this last equality into (4.12) yields the desired result.

4.5 From the semi-discrete entropic case to the classical case

We finally mention briefly how the strong convexity estimate for the semi-discrete en-
tropic Kantorovich functional of Theorem 4.4 may allow to recover the general strong-
convexity estimate of Theorem 3.1 for the (classical) Kantorovich functional. This is
simply the result of a series of three approximation arguments, allowing to go from the
semi-discrete entropic case to the semi-discrete non-regularized case, then from the semi-
discrete case to the compact case and finally from the compact case to the general case.
Since we have already developed the last two approximation arguments in the preceding
chapters (in Lemma 2.7 and Proposition 3.4 precisely), we only mention here how to go
from the entropic semi-discrete estimate to the non-regularized semi-discrete estimate.

The transition from the entropic case to the non-regularized case can be done using a
recent result from (Altschuler et al., 2022). This result ensures that the semi-discrete
Schrödinger potentials for a regularization parameter ε converge, as ε goes to 0, to
Kantorovich potentials and this convergence happens at a speed greater than ε. Note
that we will quantify this rate of convergence in Chapter 7, relying in part on the strong
convexity estimate of Theorem 4.4.

Proposition 4.7. With the notation and assumptions of Theorem 3.1, assume addi-
tionally that the target measures µ0, µ1 are commonly supported on a finite set Y =
{y1, . . . , yN} ⊂ Rd. Then (3.1) holds.

Proof. For ε > 0, denote ψε,0 and ψε,1 minimizers of (4.6) with target measures µ0 and
µ1 respectively. For k ∈ {0, 1}, denote ϕε,k the (c, ε)-transform of ψε,k and assume that
ψε,k is chosen such that ⟨ϕε,k|ρ⟩ = ⟨ϕk|ρ⟩. For vε = ψε,1 −ψε,0 and t ∈ [0, 1], introduce
ψε,t = ψε,0 + tvε. Then the fundamental theorem of calculus ensures:∫ 1

0

∫ s

0
⟨∇2Kε

ρ(ψ
ε,t)vε|vε⟩dtds = Kε

ρ(ψ
ε,1)−Kε

ρ(ψ
ε,0)− ⟨∇Kε

ρ(ψ
ε,0)|ψε,1 −ψε,0⟩.

Denote mϕε = mink∈{0,1}minX ϕ
ε,k and Mϕε = maxk∈{0,1}maxX ϕ

ε,k. Theorem 4.4
together with the first order condition ∇Kε

ρ(ψ
ε,0) = −µ0 then ensure the inequality(

e(Mϕε−mϕε )Mρ

mρ
+ ε

)−1 ∫ 1

0

∫ s

0
Varµε

ψε,t
(vε)dtds ≤ ⟨ϕε,1 − ϕε,0|ρ⟩+ ⟨µ0|ψε,1 −ψε,0⟩.

(4.13)
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Since ρ, µ0 and µ1 are compactly supported, the Arzelà-Ascoli theorem ensures that for
k ∈ {0, 1}, ϕε,k converges uniformly to ϕk and ψε,k converges to ψk as ε goes to 0 (where
ψk =

(
ψk(yi)

)
1≤i≤N ) (see e.g. (Nutz and Wiesel, 2021)). This ensures the limits:

Mϕε −mϕε −−−→
ε→0

Mϕ −mϕ,

⟨ϕε,1 − ϕε,0|ρ⟩ −−−→
ε→0

⟨ϕ1 − ϕ0|ρ⟩,

⟨µ0|ψε,1 −ψε,0⟩ −−−→
ε→0

⟨µ0|ψ1 −ψ0⟩.

There now only remains to handle the limit of the measure µεψε,t as ε → 0. Notice that
by definition, for any i ∈ {1, . . . , N} and t ∈ [0, 1],

µεψε,t(yi) =

∫
X
e

⟨x|yi⟩−ψ
ε,t
i

−ϕε,t(x)
ε dρ(x) ≥

∫
Lagi(ψ

t)
e

⟨x|yi⟩−ψ
ε,t
i

−ϕε,t(x)
ε dρ(x),

where ψt = (1 − t)ψ0 + tψ1 and Lagi(ψ
t) denotes the i-th Laguerre cell of ψt, defined

in Section 2.2. Using the inequality ex ≥ 1 + x then gives the bound

µεψε,t(yi) ≥ ρ(Lagi(ψ
t)) +

1

ε

∫
Lagi(ψ

t)
(⟨x|yi⟩ −ψε,ti − ϕ

ε,t(x))dρ(x).

Notice that for x ∈ Lagi(ψ
t), one has ⟨x|yi⟩ = ϕt(x) +ψti where ϕt = ((1− t)ψ0 + tψ1)∗.

This leads to

1

ε

∫
Lagi(ψ

t)
(⟨x|yi⟩ −ψε,ti − ϕ

ε,t(x))dρ(x) =
1

ε

∫
Lagi(ψ

t)
(ϕt(x)− ϕε,t(x) +ψti −ψ

ε,t
i )dρ(x)

Let’s show that the limit of this quantity is 0. Theorem 1.3 of (Altschuler et al., 2022)
ensures the limits

1

ε

∥∥ψt −ψε,t∥∥∞ −−−→ε→0
0 and

1

ε

∣∣ϕt − ϕε,t∣∣ −−−→
ε→0

0,

where the last limit is point-wise. In order to apply the dominated convergence theorem,
there only remains to show that 1

ε

∣∣ϕt − ϕε,t∣∣ is bounded by an integrable function on
Lagi(ψ

t): for all x ∈ Lagi(ψ
t),

1

ε

∣∣ϕt(x)− ϕε,t(x)∣∣ ≤ 1

ε

∣∣ϕt(x)− (ψt)c,ε(x)
∣∣+ 1

ε

∣∣(ψt)c,ε(x)− ϕε,t(x)∣∣
=

∣∣∣∣∣log
(∑

i

e
⟨x|yi⟩−ψ

t
i−ϕ

t(x)

ε

)∣∣∣∣∣+
∣∣∣∣∣∣log

 ∑
i e

⟨x|yi⟩−ψ
t
i

ε∑
i e

⟨x|yi⟩−ψ
ε,t
i

ε

∣∣∣∣∣∣
≤ logN +

1

ε

∥∥ψt −ψε,t∥∥∞ .

We can thus apply the dominated convergence theorem and give the limit

1

ε

∫
Lagi(ψ

t)
(⟨x|yi⟩ −ψε,ti − ϕ

ε,t(x))dρ(x) −−−→
ε→0

0.

We thus has proven that for all i ∈ {1, . . . , N},

lim
ε→0

µεψε,t(yi) ≥ ρ(Lagi(ψ
t)) := µt(yi).
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Taking the limit ε→ 0 of (4.13) and using the comparison µt ≥ min(1−t, t)d mρMρ
(µ0+µ1)

of Lemma 2.3 then gives the estimate:

1

Cde
(Mϕ−mϕ)

m2
ρ

M2
ρ

Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≤ Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩,

where Cd = (d+1)2d−1. Finally, using the same homogeneity argument as in the end of
the proof of Proposition 3.3, we know that we can replace e(Mϕ−mϕ) with e(Mϕ−mϕ) in
the last inequality, which gives (3.1).
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Chapter 5

Quantitative stability of optimal
transport maps with respect to the

target measure

Abstract

This chapter, extracted from (Delalande and Mérigot, 2021), studies the
quantitative stability of the quadratic optimal transport map between a fixed
probability density ρ and a probability measure µ on Rd, which we denote
Tµ. Assuming that the source density ρ is bounded from above and below on
a compact convex set, we prove that the map µ 7→ Tµ is bi-Hölder continuous
w.r.t. the 2-Wasserstein metric on large families of probability measures, such
as the set of probability measures whose moment of order p > d is bounded
by some constant. These stability estimates show that the linearized optimal
transport metric W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd) is bi-Hölder equivalent to
the 2-Wasserstein distance on such sets, justifying its use in applications.

5.1 Introduction

In Part I, we have introduced the quadratic optimal problem between ρ and µ, which
corresponds to the following minimization problem:

min
γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥2 dγ(x, y).

The square root of the value of this problem is called the 2-Wasserstein distance between
ρ and µ and is denoted W2(ρ, µ) (see Chapter A). Brenier’s theorem (Brenier, 1991)
(reported in Theorem 1.12) asserts that if ρ is absolutely continuous with respect to
the Lebesgue measure, the minimizer of the optimal transport problem is unique, and is
induced by a map T = ∇ϕ, where ϕ is a convex function that verifies ∇ϕ#ρ = µ. We
recall that T#ρ denotes the image measure of ρ under the map T . In our precise setting,
where the density ρ is bounded from above and below on a compact convex set, the
potential ϕ is uniquely defined in L2(ρ) up to an additional constant (see Remark 1.13
and note that square-summability of ϕ follows from the Poincaré-Wirtinger inequality
on X .).
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Definition 5.1 (Potentials and maps). We fix a probability measure ρ ∈ P2(Rd), which
we assume to be absolutely continuous with respect to the Lebesgue measure and sup-
ported over a compact convex set X . We assume that the density of ρ is bounded from
above and below by positive constants on X . Given µ ∈ P2(Rd), we call

• Monge or Brenier map and denote Tµ the (unique) optimal transport map between
ρ and µ;

• Brenier potential the unique lower semi-continuous convex function ϕµ ∈ L2(X )
such that Tµ = ∇ϕµ and which satisfies

∫
X ϕµdρ = 0;

• dual potential the convex conjugate of ϕµ, denoted ψµ:

∀y ∈ Rd, ψµ(y) = max
x∈X
⟨x|y⟩ − ϕµ(x),

where the maximum is attained by lower semi-continuity of the convex function ϕµ
on the compact convex set X .

Since µ is the image of ρ under Tµ, the mapping{
(P2(Rd),W2) → L2(ρ,Rd),
µ 7→ Tµ,

is obviously injective. Using that (Tµ, Tν)#ρ is a coupling between µ and ν, one can
actually prove that this mapping increases distances, namely

∀µ, ν ∈ P2(Rd), W2(µ, ν) ≤ ∥Tµ − Tν∥L2(ρ,Rd) .

This mapping is also continuous: if a sequence of probability measures (µn)n converges to
some µ in (P2(Rd),W2), then Tµn converges to Tµ in L2(ρ,Rd). This continuity property
is for instance implied by Corollary 5.21 in (Villani, 2008) (reported in Corollary A.11),
together with the dominated convergence theorem. However, we note that the arguments
used to prove this general continuity result are non-quantitative.

5.1.1 Linearized Optimal Transport

The continuous and reverse-Lipschitz behavior of the map µ 7→ Tµ motivated its use
to embed the metric space (P2(Rd),W2) into the Hilbert space L2(ρ,Rd) (Wang et al.,
2013). This approach is often referred to as the Linearized Optimal Transport (LOT)
framework and has shown great results in applications to image processing:

• (Wang et al., 2013; Kolouri et al., 2016; Basu et al., 2014; Cai et al., 2020) used
this idea to perform pattern recognition in images for various tasks, including dis-
crimination of nuclear chromatin patterns in cancer cells; detection of differences
in facial expressions, bird species, galaxy morphologies, sub-cellular protein distri-
butions; detection and visualization of cell phenotype differences from microscopy
images; or finally jets tagging of collider data in collider physics.

• (Park and Thorpe, 2018) considered this framework for generative modelling of
images, with experiments showcasing the generative modelling of digits and faces
images, PET scans in the context of Alzheimer’s disease neuroimaging, or thyroid
nuclei images.
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• (Kolouri and Rohde, 2015) followed this approach for improving the resolution of
faces images.

At this stage, the good practical behavior of the linearized optimal transport framework
is not justified from a mathematical viewpoint. A practical benefit of the embedding is
to enable the use of the classical Hilbertian statistical toolbox on families of probability
measures while keeping some features of the Wasserstein geometry. A particularly nice
feature of the embedding µ 7→ Tµ is that its image in L2(ρ,Rd) is convex, i.e. barycenters
of optimal transport maps are optimal transport maps. Working with this embedding is
equivalent to replacing the Wasserstein distance by the distance

W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd) .

We note that the geodesic curves with respect to the distance W2,ρ are called the gen-
eralized geodesics in the book of Ambrosio, Gigli, Savaré (Ambrosio et al., 2008). The
choice of the Brenier map between a reference measure ρ and a measure µ as an embed-
ding of µ may also be motivated by the Riemannian interpretation of the Wasserstein
geometry (Otto, 2001; Ambrosio et al., 2008). In this interpretation, the tangent space
to (P2(Rd),W2) at ρ is included in L2(ρ,Rd) and defined by

TρP2(Rd) = {λ(∇ϕ− id)|λ > 0, ϕ ∈ C∞c (Rd), ϕ convex}
L2(ρ,Rd)

.

The Brenier map minus the identity, Tµ − id, can thus be regarded as the vector in the
tangent space at ρ which supports the Wasserstein geodesic from ρ to µ. In the Rieman-
nian language again, the map µ 7→ Tµ − id would be called a logarithm, i.e. the inverse
of the Riemannian exponential map: it sends a probability measure µ in the (curved)
manifold P2(Rd) to a vector Tµ − id belonging to the linear space L2(ρ,Rd). This estab-
lishes a connection between the linearized optimal transport framework idea and similar
strategies used to extend statistical inference notions such as principal component anal-
ysis to manifold-valued data, e.g. (Fletcher et al., 2004; Cazelles et al., 2018). Finally,
we note that the work in (Chernozhukov et al., 2017) also proposes to use optimal trans-
port maps in a statistical context to overcome the lack of a canonical ordering in Rd
for d > 1. Notions of vector-quantile, vector-ranks and depth are defined based on the
transport maps (and there inverses) between a reference measure defined as the uniform
distribution on the unit hyperball and the d-dimensional samples of interest.

It is quite natural to expect that the embedding µ 7→ Tµ retains some of the geometry
of the underlying space, or equivalently that the metric W2,ρ is comparable, in some
coarse sense, to the Wasserstein distance. The main difficulty, which we study in this
chapter, is to establish quantitative (e.g. Hölder) continuity properties for the mappings
µ 7→ Tµ and µ 7→ ϕµ. We note that such stability estimates are also important in
numerical analysis and in statistics, where a probability measure of interest µ ∈ P2(Rd)
is often approximated by a sequence of finitely supported measures (µn)n. Consider
for instance the problem of computing the map Tµ for some µ ∈ P2(Rd): a natural
approximation consists in computing instead the map Tµn for some sequence of measures
(µn)n with finite supports such that limn→+∞W2(µ, µn) = 0. This corresponds to the
semi-discrete approach, which can be traced back to Minkowski and Alexandrov and was
developed in many works from the 1990s (Cullen et al., 1991; Gangbo and McCann,
1996; Oliker and Prussner, 1989; Caffarelli et al., 1999). This approach was revisited and
popularized by recent development of efficient algorithms to solve semi-discrete optimal
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transport problems (Aurenhammer et al., 1998; Mérigot, 2011; De Goes et al., 2012;
Lévy, 2015; Kitagawa et al., 2019; Genevay et al., 2016). In this approach, convergence
rates of quantities related to the sequence (Tµn)n toward a quantity related to Tµ may
be directly deduced from quantitative stability estimates controlling ∥Tµn − Tµ∥L2(ρ,Rd)
with W2(µn, µ).

5.1.2 Existing results

We focus here on the already known stability results on the mapping µ 7→ Tµ, starting
with negative results.

Negative results. We first note that explicit examples show that the mapping µ 7→ Tµ
is in general not better than 1

2 -Hölder, see §4 in (Gigli, 2011) or the following lemma
(Lemma 5.1 in (Mérigot et al., 2020)):

Lemma 5.2. Let ρ be uniform on the unit disc X ⊆ R2. Then, there is a curve θ ∈
[0, 2π]→ µθ ∈ P(X ) such that ∥Tµθ − Tµ0∥L2(ρ,Rd) ≥W2(µθ, µ0)

1/2.

Proof. Given θ ∈ R, we denote xθ = (cos θ, sin θ) and µθ = 1
2(δxθ + δ−xθ). Then, the

optimal transport map between ρ and µθ is given by

Tµθ(x) =

{
xθ if ⟨x|xθ⟩ ≥ 0

−xθ if not.

One can easily check that for |θ| ≤ π
2 one has W2(µ0, µθ) ≤ |θ|. For θ > 0 we set

Dθ = {x ∈ R2 | ⟨x|x0⟩ ≥ 0 and ⟨x|xθ⟩ ≤ 0}.

Then, on Dθ, Tµθ ≡ x−θ and Tµ0 ≡ x0, giving

∥Tµθ − Tµ0∥
2
L2(ρ,Rd) ≥

∫
Dθ

∥x−θ − x0∥2 dx = |Dθ| ∥x−θ − x0∥2 .

Moreover, if |θ| ≤ π
2 one has ∥x−θ − x0∥2 ≥ 2. This gives

∥Tµθ − Tµ0∥
2
L2(ρ,Rd) ≥ 2 |Dθ| = 2

|θ|
2π
|X | = |θ| .

A much stronger negative result comes from Andoni, Naor and Neiman (Andoni
et al., 2018, Theorem 7) showing that one cannot construct a bi-Hölder embedding of
(P2(Rd),W2), d ≥ 3, into a Hilbert space:

Theorem (Andoni, Naor, Neiman). (P2(R3),W2) does not admit a uniform, coarse or
quasisymmetric embedding into any Banach space of nontrivial type.

This theorem implies in particular that one cannot hope to prove that µ 7→ Tµ is
bi-Hölder on the whole set P2(Rd) of probability measures with finite second moment.
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Positive results. Existing quantitative stability results can be summed up under the
two following statements. A first result due to Ambrosio and reported in (Gigli, 2011),
shows a local 1/2-Hölder behaviour near probability densities µ whose associated Brenier
map Tµ is Lipschitz continuous. We have already noticed in Part I that such setting
induces a strong convexity estimate for the Kantorovich functional when evaluated near
ψµ (Proposition 1.20). This strong convexity estimate directly entails the result of (Gigli,
2011). We quote here a variant of this statement, from (Mérigot et al., 2020):

Theorem (Ambrosio). Let ρ be a probability density over a compact set X . Let Y ⊂ Rd
be a compact set and µ, ν ∈ P(Y). Assume that the Brenier map Tµ from ρ to µ is
L-Lipschitz. Then,

∥Tµ − Tν∥L2(ρ,Rd) ≤ 2
√
diam(X )LW1(µ, ν)

1/2.

Proof. Assuming that Tµ = ∇ϕµ is L-Lipschitz continuous is equivalent to assume that
ψµ = (ϕµ)

∗ is 1
L -strongly convex (Remark 1.16). We know in these conditions from

Proposition 1.20 that Kρ satisfies the following strong convexity estimate at ψν near ψµ:

1

2L
∥Tµ − Tν∥2L2(ρ,Rd) ≤ Kρ(ψµ)−Kρ(ψν) + ⟨ψµ − ψν |ν⟩.

We also know by Lemma 1.8 that −µ belongs to the subdifferential of Kρ at ψµ, that is

0 ≤ Kρ(ψν)−Kρ(ψµ) + ⟨ψν − ψµ|µ⟩.

Summing the last two inequalities thus yields
1

2L
∥Tµ − Tν∥2L2(ρ,Rd) ≤ ⟨ψµ − ψν |ν − µ⟩.

Using that ψµ and ψν are the convex conjugates of ϕµ and ϕν respectively, both defined
on X , one can show that ψµ−ψν is diam(X )-Lipschitz continuous. This ensures, together
with the Kantorovich-Rubinstein duality formula (Proposition A.8), the bound

1

2L
∥Tµ − Tν∥2L2(ρ,Rd) ≤ diam(X )W1(µ, ν).

As already noticed after the statement of Proposition 1.20, assuming Lipschitzness of
the Brenier map is rather strong: it requires at least that the support of µ is connected –
so that the previous theorem cannot be applied when both µ and ν are finitely supported
– and in order to prove that Tµ is Lipschitz, one has to invoke the regularity theory for
optimal transport maps, which requires very strong assumptions on µ. A more recent
result, due to Berman (Berman, 2020), proves quantitative stability of the map µ 7→ Tµ
under milder assumptions on the target probability measures. Berman assumes that the
source measure ρ is the restriction of the Lebesgue measure to a compact convex set
X with unit volume. Under this assumption, he proves a stability result on the inverse
transport maps when the target measure is required to remain in a fixed compact set
(Berman, 2020, Proposition 3.2). This result implies the following quantitative stability
of the Brenier maps (first reported in (Mérigot et al., 2020)):

Theorem (Berman). Let X be a compact convex subset of Rd, let ρ ∈ Pa.c.(X ) with den-
sity bounded from above and below by positive constants. Let Y be a bounded connected
open subset of Rd with a Lipschitz boundary. Then there exists a constant Cd,ρ,X ,Y de-
pending only on d, ρ, X and Y such that for any µ, ν ∈ P(Y),

∥Tµ − Tν∥L2(ρ,Rd) ≤ Cd,ρ,X ,YW1(µ, ν)
1

2(d−1)(d+2) .
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Proof. Let µ, ν ∈ P(Y). Proposition 3.2 of (Berman, 2020) asserts that there exists
Cρ,X ,Y depending only on ρ, X and Y such that

∥∇ψµ −∇ψν∥2L2(Y,Rd) ≤ Cρ,X ,Y
(∫

Y
(ψν − ψµ)d(µ− ν)

) 1

2d−1

.

Because ψµ = ϕ∗µ and ψν = ϕ∗ν , ∂ψµ and ∂ψν are valued in X (Remarks 1.6 and 1.7). The
difference ψν −ψµ is thus diam(X )-Lispchitz continuous, so that using the Kantorovich-
Rubinstein formula (Proposition A.8) together with the Poincaré-Wirtinger inequality
on the compact set Y in the last inequality, there exists Cρ,X ,Y depending only on ρ, X
and Y such that

∥ψµ − ψν∥2L2(Y) ≤ Cρ,X ,YW1(µ, ν)
1

2d−1 , (5.1)

where we assumed for simplicity that
∫
Y ψµdy =

∫
Y ψνdy. Again, because ψν − ψµ is

diam(X )-Lipschitz continuous on the Lipschitz domain Y, one can show that there exists
a constant Cd,X ,Y > 0 that depends on the dimension d and the domains X and Y such
that

∥ψµ − ψν∥L∞(Y) ≤ Cd,X ,Y ∥ψµ − ψν∥
2
d+2

L2(Y)
. (5.2)

Then using that ϕµ = ψ∗
µ and ϕν = ψ∗

ν , one easily has

∥ϕµ − ϕν∥L∞(X ) ≤ ∥ψµ − ψν∥L∞(Y) . (5.3)

We finally quote Theorem 22 of (Chazal et al., 2017), that ensures that there exists a
constant CX depending only on X such that for any f and g convex functions on X ,

∥∇f −∇g∥L2(X ,Rd) ≤ CX ∥f − g∥1/2L∞(X ) (∥∇f∥
1/2

L∞(X ,Rd) + ∥∇g∥
1/2

L∞(X ,Rd)).

Setting f = ϕµ and g = ϕν in this inequality and using that ∇ϕµ,∇ϕν take their image
in Y then yields that there exists CX ,Y depending only on X and Y such that

∥∇ϕµ −∇ϕν∥L2(X ,Rd) ≤ CX ,Y ∥ϕµ − ϕν∥1/2L∞(X ) . (5.4)

Therefore, using that ρ is bounded away from zero and infinity on X and that ∇ϕµ = Tµ
and ∇ϕν = Tν , one has with inequalities (5.1), (5.2), (5.3) and (5.4) the existence of a
constant Cd,ρ,X ,Y depending only on d, ρ, X and Y such that

∥Tµ − Tν∥L2(ρ,R) ≤ Cd,ρ,X ,YW1(µ, ν)
1

2d−1(d+2) .

Unlike in Ambrosio’s theorem, the Hölder behavior deduced from Berman’s stability
result does not depend on the regularity of the transport map Tµ. On the other hand,
the Hölder exponent depends exponentially on the ambient dimension d. As we will see
below, this is not optimal.

5.1.3 Contributions

In this chapter, we prove quantitative stability results for quadratic optimal transport
maps between a probability density ρ and target measure µ. We do not assume that
µ is compactly supported. Introducing Mp(µ) =

∫
Rd ∥x∥

p dµ(x) the p-th moment of
µ ∈ P2(Rd), we prove in particular the following theorem. We denote by Ca1,...,an a
non-negative constant which depends on a1, . . . , an.
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Theorem (Theorems 5.14, 5.12, Corollary 5.8). Let X be a compact convex set and let
ρ be a probability density on X , bounded from above and below by positive constants.
Let p > d and p ≥ 4. Assume that µ, ν ∈ P2(Rd) have bounded p-th moment, i.e.
max(Mp(µ),Mp(ν)) ≤Mp < +∞. Then

∥Tµ − Tν∥L2(ρ,Rd) ≤ Cd,p,X ,ρ,MpW1(µ, ν)
p

6p+16d ,

∥ϕµ − ϕν∥L2(ρ) ≤ Cd,p,X ,ρ,MpW1(µ, ν)
1/2.

If µ, ν are supported on a compact set Y, we have an improved Hölder exponent for the
Brenier map:

∥Tµ − Tν∥L2(ρ,Rd) ≤ Cd,X ,Y,ρW1(µ, ν)
1
6 .

Remark 5.3 (Comparison between W1 and W2). We note that since W1 ≤ W2, the
estimates in all the previous theorems indeed imply a bi-Hölder behaviour of the map
µ 7→ Tµ on subsets of P2(Rd) with respect to both Wasserstein distances W1 and W2.
Remark 5.4 (Linearized Optimal Transport). As an example application, we will show
in Part III (Section 8.3) that our bi-Hölder embedding result can be used to analyze the
behaviour of clustering algorithms in the linearized optimal transport framework.
Remark 5.5 (Constants). The constants appearing in the above theorem may all be
tracked down and all feature the product of three terms that depend respectively on
the dimension d, the diameter and perimeter of X , and the bounds mρ,Mρ > 0 on
ρ that are such that mρ ≤ ρ ≤ Mρ. If µ, ν are supported on a compact set Y, the
constants also feature a factor that only depends on the smallest positive real RY such
that Y ⊂ B(0, RY). For instance in such compact setting, the constant controlling the
L2(ρ) distance between ϕµ and ϕν reads:

Cd,p,X ,ρ,Mp = Cd,p,X ,ρ,Y = e(d+ 1)2d
M2
ρ

m2
ρ

diam(X )2RY .

In the non-compact setting, a factor involvingMp appears, as well as a factor involving the
Poincaré constant of order p of X and the p-th power of the ratio RX

rX
, where rX , RX > 0

are the largest and smallest reals such that B(0, rX ) ⊂ X ⊂ B(0, RX ) (assuming without
any loss of generality X contains the origin).

A large class of probability measures verifies the moment assumption, such as sub-
Gaussian or sub-exponential measures (see Remark 5.9). A preliminary version of this
theorem was announced in (Mérigot et al., 2020) (not reported in this thesis), with a
different proof strategy, relying on the study of the case where both µ, ν are supported
on the same finite set. The proof in (Mérigot et al., 2020) led to a worse Hölder exponent
in the compact case, and couldn’t deal with non-compactly supported measures. We do
not know whether the Hölder exponents in this theorem are optimal.

Outline. To prove these stability estimates, we use the fact that the dual poten-
tials solve a convex minimization problem involving the Kantorovich functional K(ψ) =∫
ψ∗dρ studied in Part I. We use the strong convexity estimate for the Kantorovich

functional derived in Chapter 3, which holds under the assumption that the Brenier
potentials are bounded, to give a stability estimate concerning the dual and Brenier po-
tentials (§5.2). The stability of Brenier maps is then obtained (§5.3), relying in particular
on a Gagliardo-Nirenberg type inequality for the difference of convex functions (§5.4),
which might be of independent interest.
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5.2 Stability of potentials

A direct consequence of the strong convexity estimate of the Kantorovich functional
derived in Chapter 3 (Theorem 3.1) is a quantitative stability result on the dual potential
ψµ with respect to the target measure µ. This estimate on dual potentials is readily
transferred to the Brenier (primal) potentials thanks to Proposition 1.30 of Chapter 1,
for which we recall a statement here:

Proposition (Proposition 1.30). Let ρ be a probability density over a compact convex
set X , and let ϕ0, ϕ1 be convex functions on X . Denote ψk the convex conjugate of ϕk

and µk the image of ρ under ∇ϕk. Then for any p > 0,∥∥ϕ1 − ϕ0∥∥
Lp(ρ)

≤
∥∥ψ1 − ψ0

∥∥
Lp(µ0+µ1)

.

In particular,
1

2
Varρ(ϕ1 − ϕ0) ≤ Var 1

2
(µ0+µ1)(ψ

1 − ψ0).

The stability estimates resulting from Theorem 3.1 and this proposition are expressed
in Corollary 5.6 in terms of variance for the potentials and 1-Wasserstein distance for
the target measures. Assuming that one of the target measures is absolutely continuous
with respect to the other, these estimates can also be expressed in term of χ2 or Kagan’s
divergence of the target measures. The χ2 divergence reduces to the χ2 test-statistic
used for goodness of fit testing when the compared measures are finitely and commonly
supported and one of them is observed empirically. Note that such divergence can be
interpreted as the square of a divergence, noting for instance that the total variation
distance is only 1

2 -Hölder stable with respect to it (Peyré and Cuturi, 2019).

Corollary 5.6 (Stability of potentials). Let ρ be a probability density over a compact
convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ and let µ0, µ1 ∈ P2(Rd). For k ∈ {0, 1},
denote ϕk = ϕµk the Brenier potential between ρ and µk. Assume that

∀k ∈ {0, 1}, −∞ < mϕ ≤ min
X

ϕk ≤ max
X

ϕk ≤Mϕ < +∞.

Denote ψ0 and ψ1 the convex conjugates of ϕ0 and ϕ1. Then,

Varρ(ϕ1 − ϕ0) ≤ 2Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≤ Cd,ρdiam(X )(Mϕ −mϕ)W1(µ
0, µ1)

with Cd,ρ = e(d+ 1)2d
M2
ρ

m2
ρ
. Assuming additionally that µ1 is absolutely continuous w.r.t.

µ0, then

Varρ(ϕ1 − ϕ0) ≤ 2Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≤ C2
d,ρ(Mϕ −mϕ)

2Dχ2(µ1|µ0)

where Dχ2(µ1|µ0) stands for the χ2 or Kagan’s divergence from µ1 to µ0.

Proof. Proposition 1.30 combined with Theorem 3.1 give the inequalities

Varρ(ϕ1 − ϕ0) ≤ 2Var 1
2
(µ0+µ1)(ψ

1 − ψ0)

≤ e(d+ 1)2d
M2
ρ

m2
ρ

(Mϕ −mϕ)
(
Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|µ0⟩

)
,
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where Kρ : ψ 7→ ⟨ψ∗|ρ⟩ denotes the Kantorovich functional associated to ρ and studied
in Part I (see Section 1.1.3). From Lemma 1.8, we know that −µ1 = −(∇ϕ1)#ρ satisfies

Kρ(ψ1) + ⟨ψ0 − ψ1| − µ1⟩ ≤ Kρ(ψ0).

Combining the last two inequalities thus yields

Varρ(ϕ1 − ϕ0) ≤ Cd,ρ(Mϕ −mϕ)⟨ψ0 − ψ1|µ1 − µ0⟩,

where Cd,ρ = e(d+ 1)2d
M2
ρ

m2
ρ
.

The first estimate follows from Kantorovich-Rubinstein duality result: for any x ∈ Rd
and k ∈ {0, 1}, for any gk ∈ ∂ψk(x), one has gk ∈ X (see Remarks 1.6 and 1.7) so
that ψ1 − ψ0 is diam(X )-Lipschitz continuous. Kantorovich-Rubinstein duality formula
(Proposition A.8) then ensures

⟨ψ0 − ψ1|µ1 − µ0⟩ ≤ diam(X )W1(µ
0, µ1).

The second estimate follows from the fact that, if µ1 is absolutely continuous with
respect to µ0, then we have for any constant c ∈ R:

⟨ψ0 − ψ1|µ1 − µ0⟩ = ⟨ψ0 − ψ1 − c|µ1 − µ0⟩

=

∫
Rd
(ψ0 − ψ1 − c)(dµ

1

dµ0
− 1)dµ0

≤
(∫

Rd
(ψ0 − ψ1 − c)2dµ0

)1/2(∫
Rd
(
dµ1

dµ0
− 1)2dµ0

)1/2

=
∥∥ψ0 − ψ1 − c

∥∥
L2(µ0)

Dχ2(µ1|µ0)1/2

≤
√
2
∥∥ψ0 − ψ1 − c

∥∥
L2( 1

2
(µ0+µ1))

Dχ2(µ1|µ0)1/2.

The second estimate comes after minimizing with respect to c in the last inequality:

⟨ψ0 − ψ1|µ1 − µ0⟩ ≤
√
2Var 1

2
(µ0+µ1)(ψ

1 − ψ0)1/2Dχ2(µ1|µ0)1/2.

All the stability estimates that have been established so far involve the oscillation of
the Brenier potentials Mϕ −mϕ. It is then natural to wonder under what assumption
on a measure µ ∈ P2(Rd) can we control this oscillation. The next proposition, found
in (Berman and Berndtsson, 2013), shows that a sufficient condition is that µ admits a
finite moment of order p > d. This assumption seems nearly tight : Remark 5.10 below
shows that there exists a measure µ such that Mp(µ) < +∞ with p < d, whose associated
Brenier potential is unbounded.

Proposition 5.7 (Proposition 2.22 in (Berman and Berndtsson, 2013)). Let ρ be a
probability density over a compact convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ and let
µ ∈ P2(Rd). Denote ϕ the Brenier potential for the quadratic optimal transport between
ρ and µ. Assume that there exists p > d and Mp < +∞ such that

Mp(µ) =

∫
Rd
∥y∥p dµ(y) ≤Mp.
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Then ϕ is Hölder continuous and verifies for all x, x′ ∈ X :

∣∣ϕ(x)− ϕ(x′)∣∣ ≤ Cd,p,X (Mp

mρ

)1/p ∥∥x− x′∥∥1− d
p .

In particular, there exists mϕ,Mϕ ∈ R that can be chosen such that for any x ∈ X ,
mϕ ≤ ϕ(x) ≤Mϕ and such that

Mϕ −mϕ ≤ Cd,p,X
(
Mp

mρ

)1/p

diam(X )1−
d
p .

Before proving Proposition 5.7, let us mention the following consequence when com-
bined with Corollary 5.6.

Corollary 5.8 (Stability with enough moments). Let ρ be a probability density over
a compact convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ. For any µ ∈ P2(Rd), de-
note ϕµ the Brenier potential for the optimal transport between ρ and µ. Let p > d.
Then the restriction of the mapping µ 7→ ϕµ to the set of probability measures with
bounded p-th moment is 1/2-Hölder with respect to the W1 distance. More precisely, if
max(Mp(µ

0),Mp(µ
1)) ≤Mp < +∞, then∥∥ϕµ1 − ϕµ0∥∥L2(ρ)

≤ Cd,p,X ,ρ,MpW1(µ
0, µ1)1/2.

Remark 5.9. A large class of probability distributions admit a finite moment of order
p > d. For instance, sub-exponential measures, which encompass most of the commonly
used heavy-tailed distributions fall into this class. We say that a measure µ ∈ P

(
Rd
)

is
sub-exponential with variance proxy σ2 for σ > 0 if it has zero mean and if for all r > 0,

µ({x ∈ Rd | ∥x∥ ≥ r}) ≤ 2e−2r/σ.

We refer to Proposition 2.7.1 in (Vershynin, 2018) for equivalent characterization. The
moments of such a measure are all bounded, and more precisely,

Mp(µ) ≤ 2p!
(σ
2

)p
.

We report the proof of Proposition 5.7 from (Berman and Berndtsson, 2013) for
completeness.

Proof of Proposition 5.7. The gradient ∇ϕ corresponds to the optimal transport map
between ρ and µ. Using that µ is the image of ρ under ∇ϕ, the moment assumption
gives,

∥∇ϕ∥pLp(X ) =

∫
X
∥∇ϕ(x)∥p dx ≤ 1

mρ

∫
X
∥∇ϕ(x)∥p dρ(x) ≤ Mp

mρ
.

We can add a constant to ϕ so that
∫
X ϕ(x)dx = 0 without changing its modulus of conti-

nuity. The Poincaré-Wirtinger inequality then ensures that ∥ϕ∥Lp(X ) ≤ Cp,X ∥∇ϕ∥Lp(X ) .

In particular, the potential ϕ belongs to the Sobolev space W 1,p(X ). Morrey’s inequality
(Theorem 11.34 and Theorem 12.15 in (Leoni, 2009)) ensures that ϕ is (1 − d

p)-Hölder
and that there exists a constant depending only on d, p and X such that

∀x ̸= x′ ∈ X , |ϕ(x)− ϕ(x′)|

∥x− x′∥1−
d
p

≤ Cd,p,X ∥ϕ∥W 1,p(X ) ≤ Cd,p,X
(
Mp

mρ

)1/p

.
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Remark 5.10 (Morrey’s inequality for convex functions). Since the Brenier potentials
ϕ are convex, one may wonder whether Morrey’s inequality and the resulting Sobolev
embedding can be improved when restrictected to the class of convex functions. However,
one can show that for X = [0, 1]d and p < d, for α ∈

(
0, dp − 1

)
, the potential

ϕ :

{
X → R
(x1, . . . , xd) 7→ (x1 + · · ·+ xd)

−α

is convex, belongs to W 1,p(X ), but obviously neither Hölder continuous nor even
bounded. In other words, assuming that Mp(µ) < +∞ for p < d does not guarantee that
the Brenier potential from ρ to µ is α-Hölder, or even bounded.

5.3 Stability of optimal transport maps

In this section, we derive quantitative stability estimates on optimal transport maps with
respect to the target measures from the stability estimates on Brenier potentials given
in the preceding section. This derivation relies on a Gagliardo–Nirenberg type inequality
on the difference of convex functions, which is reported here but will be proven in Section
5.4.

Proposition 5.11. Let K be a compact domain of Rd with rectifiable boundary and let
u, v : K → R be two Lipschitz functions on K that are convex on any segment included
in K. Then there exists a constant Cd depending only on d such that

∥∇u−∇v∥2L2(K,Rd) ≤ CdH
d−1(∂K)

2
3 (∥∇u∥L∞(K,Rd) + ∥∇v∥L∞(K,Rd))

4
3 ∥u− v∥

2
3

L2(K)
,

where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure.

With this proposition at hand, the stability result for Brenier potentials can readily
be transferred to stability of the corresponding optimal transport maps – that is, to
their gradient – at least when the target measures are compactly supported. Indeed,
Proposition 5.11 together with Corollary 5.6 directly imply:

Theorem 5.12 (Stability of the Brenier map, compact case). Let X ,Y be compact
subsets of Rd with X convex, let ρ be a probability density over X bounded from above
and below by positive constants and let µ0, µ1 ∈ P(Y). Denoting Tµk the Brenier map
from ρ to µk, we have

W2(µ
0, µ1) ≤

∥∥Tµ0 − Tµ1∥∥L2(ρ,Rd) ≤ Cd,ρ,X ,YW1(µ
0, µ1)

1
6 .

In particular, the embedding µ ∈ P2(Y)→ Tµ ∈ L2(ρ,Rd) is bi-Hölder continuous.

Remark 5.13 (bi-Hölder embedding via potentials). The previous theorem and Proposi-
tion 5.11 together with Corollary 5.6 also ensure the following bi-Hölder behavior for the
Brenier potentials (with zero mean against ρ on X ):

∀µ0, µ1 ∈ P(Y), W2(µ
0, µ1)3 ≲

∥∥ϕ1 − ϕ0∥∥
L2(ρ)

≲ W1(µ
0, µ1)

1
2 ,

where the ≲ notation hides multiplicative constants depending on d, ρ,X ,Y.
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We now phrase a similar stability result for probability measures whose Brenier poten-
tial is Hölder continuous and that admit a bounded fourth order moment. This includes
a large class of probability measures, as noticed in Proposition 5.7 and Remark 5.9.

Theorem 5.14 (Stability of the Brenier map). Let ρ be a probability density over a
compact convex set X ⊂ Rd, satisfying 0 < mρ ≤ ρ ≤ Mρ. Let µ0, µ1 ∈ P2(Rd) and
denote ϕ0, ϕ1 the Brenier potentials for the quadratic optimal transport between ρ and
µ0, µ1 respectively. Assume that there exists Mα > 0 and α ∈ (0, 1) such that for all
x, x′ ∈ X and k ∈ {0, 1}, ∣∣∣ϕk(x)− ϕk(x′)∣∣∣ ≤Mα

∥∥x− x′∥∥α .
Assume that there exists 0 < M < +∞ such that for k ∈ {0, 1}, M4(µ

k) ≤M. Then

W2(µ
0, µ1) ≤

∥∥∇ϕ1 −∇ϕ0∥∥
L2(ρ,Rd) ≤ Cd,ρ,X ,α,Mα,MW1(µ

0, µ1)
1

2(11−8α) . (5.5)

Remark 5.15. The assumption M4(µ
k) < +∞ comes from a use of the Cauchy-Schwarz

inequality in the proof of Theorem 5.14. However, one could use Hölder’s inequality
instead, under different moment assumption and show that for any q ≥ 1, assuming that
M2q(µ

k) ≤M2q < +∞ for k ∈ {0, 1}, one has∥∥∇ϕ1 −∇ϕ0∥∥
L2(ρ)

≤ Cd,ρ,X ,Mα,α,M2qW1(µ
0, µ1)

q−1
2(q(7−4α)−3) .

Since the exponent is an increasing function of q, a stronger stability can be obtained at
the cost of stronger moment assumptions.

Theorem 5.14 and Proposition 5.7 directly imply the following.

Corollary 5.16 (Stability with enough moments). Let ρ be a probability density over
a compact convex set X ⊂ Rd, satisfying 0 < mρ ≤ ρ ≤ Mρ. For µ ∈ P2(Rd), denote
∇ϕµ the optimal transport map for the quadratic optimal transport between ρ and µ.
Let p ∈ R and assume p ≥ 4 and p > d. Then, the map µ 7→ Tµ is Hölder when
restricted to the set of probability measures with bounded p-th moment. More precisely,
if max(Mp(µ

0),Mp(µ
1)) ≤Mp < +∞, then

W2(µ
0, µ1) ≤

∥∥∇ϕµ1 −∇ϕµ0∥∥L2(ρ,Rd) ≤ Cd,p,X ,ρ,MpW1(µ
0, µ1)

p
6p+16d .

To prove Theorem 5.14, we first show that whenever a Brenier potential defined on
the compact and convex set X is Hölder continuous, it is possible to control its Lipschitz
constant on erosions of X . We recall that for η > 0, the η-erosion of X , denoted X−η,
corresponds to the set of points of X that are at least at a distance η from ∂X . The
proof of this proposition is inspired by Proposition 3.3 in (Klartag, 2014).

Proposition 5.17 (Lipschitz behavior on erosion). Let ρ be a probability density over a
compact convex set X ⊂ Rd, satisfying 0 < mρ ≤ ρ ≤Mρ. Let µ ∈ P2(Rd) and denote ϕ
the Brenier potential for the quadratic optimal transport between ρ and µ. Assume that
there exists Mα > 0 and α ∈ (0, 1) such that for all x, x′ ∈ X ,∣∣ϕ(x)− ϕ(x′)∣∣ ≤Mα

∥∥x− x′∥∥α .
Then, ϕ is R-Lipschitz on the erosion X−ηR with ηR =

(
Mα
R

) 1
1−α .
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Proof. Let x ∈ X be such that d(x, ∂X ) ≥ ηR, and let g ∈ ∂ϕ(x). We will show that
∥g∥ ≤ R, thus implying the statement. Denoting ψ = (ϕ)∗, the Fenchel-Young equality
and inequality ensures that{

ψ(g) = ⟨g|x⟩ − ϕ(x),
ψ(g) ≥ ⟨g|x′⟩ − ϕ(x′) for all x′ ∈ X .

Putting these equations together, we get that for any x′ ∈ X ,

⟨g|x′ − x⟩ ≤ ϕ(x′)− ϕ(x) ≤Mα

∥∥x′ − x∥∥α , (5.6)

where we used the Hölder continuity assumption on ϕ. We now choose x′ to be the unique
point in the intersection between the ray x+R+g and ∂X , so that ⟨g|x′−x⟩ = ∥x− x′∥ ∥g∥
and in (5.6),

∥g∥ ≤ Mα

∥x− x′∥1−α
.

Now using ∥x′ − x∥ ≥ d(x, ∂X ) ≥ ηR in this last inequality yields ∥g∥ ≤ R.

Proposition 5.17 allows to control the Lipschitz constant of the restriction ϕk to X−η
assuming that ϕk is α-Hölder continuous. Combining it with the inequality of Proposition
5.11, we get a stability estimate for the restriction of the transport map to X−η. To
conclude the proof of the theorem, we will rely on an upper bound on the volume of the
symetric difference betwen X and its erosion X−η given in the next proposition.

Proposition 5.18 (Volume of boundary slices). Let X ⊂ Rd be a compact convex set
containing the origin, and denote rX > 0 and RX > 0 the largest and smallest radii such
that B(0, rX ) ⊆ X ⊆ B(0, RX ). Then, for all η ≥ 0,

vold(X\X−η) ≤ 2Sd−1(RX + rX )
d−1RX

rX
η,

where Sd−1 denotes the surface area of the (d− 1)-dimensional unit sphere.

We quote a lemma extracted from (Matheron, 1978) that allows to control the volume
of the difference between a convex X and its η-erosion X−η using the volume of η-dilation
of X , denoted X+η = {x ∈ Rd | d(x,X ) ≤ η}.

Lemma 5.19 ((Matheron, 1978), Lemma 1). For all η ≤ rX , vold(X\X−η) ≤
vold(X+η\X ).

This lemma, together with Steiner’s formula already implies that vold(X \X−η) grows
linearly in η for small values of η. We provide a direct proof below.

Proof of Proposition 5.18. This result is proven using the radial function of X , ΛX (x) =
max{λ ≥ 0|λx ∈ X}. Since x ∈ Sd−1 7→ ΛX (x)x is a radial parametrization of ∂X , we
have:

vold(X ) =
∫
X
1dx =

∫
Sd−1

∫ ΛX (u)

0
rd−1drdu =

1

d

∫
Sd−1

ΛX (u)
ddu.
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Combined with Lemma 5.19, this implies that for any 0 ≤ η ≤ rX ,

vold(X\X−η) ≤ vold(X+η\X ) =
1

d

∫
Sd−1

(
ΛX+η(u)

d − ΛX (u)
d
)
du

=
1

d

∫
Sd−1

(
ΛX+η(u)− ΛX (u)

)(d−1∑
k=0

ΛX+η(u)
d−1−kΛX (u)

k

)
du

≤ 1

d

∫
Sd−1

(
ΛX+η(u)− ΛX (u)

)
d · (RX + rX )

d−1du.

Using the inclusions B(0, rX ) ⊆ X ⊆ B(0, RX ), one can prove that for any η > 0 and for
any unit vector u,

0 ≤ ΛX+η(u)− ΛX (u) ≤
(r2X +R2

X )
1/2

rX
η ≤ 2RX

rX
η.

This can be seen from the worst case where X is an ice cream cone made from the
convex hull of B(0, rX ) and a point at distance RX of the origin. This finally gives, for
η ∈ [0, rX ],

vold(X\X−η) ≤
∫
Sd−1

2RX
rX

η(RX + rX )
d−1du = 2Sd−1(RX + rX )

d−1RX
rX

η.

One can easily check that in the case η ≥ rX the inequality also holds.

Proof of Theorem 5.14. In the following, the ≲ notation hides multiplicative constants
that might depend on d, ρ,X , α,Mα,M . We get the left inequality of (5.5) by recalling
that

W2(µ
0, µ1)2 = min

γ∈Π(µ0,µ1)

∫
Rd×Rd

∥x− y∥2 dγ(x, y),

and by noticing that the optimal transport maps ∇ϕ0,∇ϕ1 between ρ and µ0, µ1 yield
an admissible coupling γ0,1 := (∇ϕ0,∇ϕ1)#ρ ∈ Π(µ0, µ1), which leads to:

W2(µ
0, µ1)2 ≤

∫
Rd×Rd

∥x− y∥2 dγ0,1(x, y) =
∫
X

∥∥∇ϕ1 −∇ϕ0∥∥2 dρ.
We now prove the right inequality of (5.5). We recall that ηR =

(
Mα
R

) 1
1−α . Then,

denoting ρR the restriction of ρ to X−ηR and ρ⊥R = ρ− ρR,∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρ,Rd) =

∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρR,Rd)

+
∥∥∇ϕ1 −∇ϕ0∥∥2

L2(ρ⊥R ,Rd)
.

On X−ηR , Proposition 5.17 ensures that
∥∥∇ϕk∥∥ ≤ R for k ∈ {0, 1}. This fact thus

ensures with Proposition 5.11 that for any c ∈ R:∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρR,Rd)

≲ R4/3
∥∥ϕ1 − ϕ0 − c∥∥2

L2(ρR)
.

Note that we used the inequality Hd−1(∂X−ηR) ≤ Hd−1(∂X ) obtained from the inclusion
of the convex set X−ηR into X , where the convexity of X−ηR is visible from X−ηR =⋂

∥e∥=ηR(X − e). Minimizing over c in the last inequality thus ensures∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρR,Rd)

≲ R4/3Varρ(ϕ1 − ϕ0)1/3 ≲ R4/3W1(µ
0, µ1)1/3, (5.7)
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where we used Corollary 5.6 to get the second inequality. On the other hand, notice that∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρ⊥R ,Rd)

≤ 2
∥∥∇ϕ1∥∥2

L2(ρ⊥R ,Rd)
+ 2

∥∥∇ϕ0∥∥2
L2(ρ⊥R ,Rd)

.

By the Cauchy-Schwartz inequality we have for k ∈ {0, 1}∥∥∥∇ϕk∥∥∥2
L2(ρ⊥R ,Rd)

=

∫
X\X−ηR

∥∥∥∇ϕk∥∥∥2 dρ
≤

(∫
X\X−ηR

∥∥∥∇ϕk∥∥∥4 dρ)1/2(∫
X\X−ηR

12dρ

)1/2

≲M4(µ
k)1/2vold(X \ X−ηR)

1/2.

Proposition 5.18 ensures that for any R ≥ 0, we have

vold(X \ X−ηR) ≲ ηR =

(
Mα

R

)1/(1−α)
.

This gives thus the estimation∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρ⊥R ,Rd)

≲ R−1/2(1−α) (5.8)

Estimations (5.7) and (5.8) thus give for R ≥ 0∥∥∇ϕ1 −∇ϕ0∥∥2
L2(ρ,Rd) ≲ R4/3W1(µ

0, µ1)1/3 +R−1/2(1−α). (5.9)

Solving for R4/3W1(µ
0, µ1)1/3 = R−1/2(1−α) yields R = W1(µ

0, µ1)
−2(1−α)
11−8α . Injecting this

value of R in (5.9) yields the desired estimate.

We finally prove that if the target measures µ0, µ1 are supported on a compact set
Y ⊂ Rd, if they are absolutely continuous and if their densities are bounded away from
zero and infinity, then the Hölder exponents can be slightly improved.

Corollary 5.20. Let X ,Y be compact subsets of Rd, and assume that X is convex and
that Y has a rectifiable boundary. Let ρ be a probability density over X satisfying 0 <
mρ ≤ ρ ≤Mρ < +∞ and let µ0, µ1 be probability densities over Y satisfying

∀k ∈ {0, 1}, 0 < cµ ≤ µk ≤ Cµ < +∞.

Then, if ϕk (resp. T k) is the Brenier potential (resp. Brenier map) from ρ to µk, we
have

W2(µ
0, µ1)6 ≲ Varρ(ϕ1 − ϕ0) ≤ 2Var 1

2
(µ0+µ1)(ψ

1 − ψ0) ≲ W2(µ
0, µ1)

6
5 ,

W2(µ
0, µ1) ≤

∥∥T 1 − T 0
∥∥
L2(ρ,Rd) ≲ W2(µ

0, µ1)
1
5 ,

where the ≲ notation hides multiplicative constants depending on d, ρ,X ,Y, cµ and Cµ.

This corollary will be a consequence of the following lemma from (Maury et al., 2010),
which we will use as a replacement of the Kantorovich-Rubinstein inequality.
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Lemma 5.21 (Lemma 3.5 in (Maury et al., 2010)). Assume that µ0 and µ1 are abso-
lutely continuous measures on the compact Y, whose densities are bounded by a common
constant Cµ. Then, for any function f ∈ H1(Y), we have the following inequality:∫

Y
fd(µ1 − µ0) ≤

√
Cµ∥∇f∥L2(Y)W2(µ

0, µ1).

Proof of Corollary 5.20. Because Y is compact, the Brenier potentials ϕ0, ϕ1 are RY -
Lipschitz continuous for any RY ∈ R+ such that Y ⊂ B(0, RY). One can thus find
mϕ,Mϕ ∈ R such that for k ∈ {0, 1},mϕ ≤ ϕk ≤Mϕ on X and Mϕ−mϕ ≤ RYdiam(X ).
Setting ψ0 = (ϕ0)∗, ψ1 = (ϕ1)∗, we thus have from Theorem 3.1:

Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≲ ⟨ψ0 − ψ1|µ1 − µ0⟩. (5.10)

For c ∈ R such that
∥∥ψ1 − ψ0 − c

∥∥2
L2( 1

2
(µ0+µ1))

= Var 1
2
(µ0+µ1)(ψ

1−ψ0), estimation (5.10)
and Lemma 5.21 ensure that:∥∥ψ1 − ψ0 − c

∥∥2
L2( 1

2
(µ0+µ1))

≲
∥∥∇ψ1 −∇ψ0

∥∥
L2(Y)

W2(µ
0, µ1). (5.11)

But Proposition 5.11 applied to the convex and Lipschitz functions ψ0 + c, ψ1 ensures
that ∥∥∇ψ1 −∇ψ0

∥∥
L2(Y)

≲
∥∥ψ1 − ψ0 − c

∥∥1/3
L2( 1

2
(µ0+µ1))

.

Injecting this estimation into (5.11) yields∥∥ψ1 − ψ0 − c
∥∥2
L2( 1

2
(µ0+µ1))

≲ W2(µ
0, µ1)6/5.

This gives thus with Proposition 1.30

Varρ(ϕ1 − ϕ0) ≤ 2Var 1
2
(µ0+µ1)(ψ

1 − ψ0) ≲ W2(µ
0, µ1)6/5.

Finally, a last use of Proposition 5.11 also ensures that under these assumptions on the
targets µ0, µ1 we have

W2(µ
0, µ1) ≤ ∥∇ϕ1 −∇ϕ0∥L2(ρ,Rd) ≲ Varρ(ϕ1 − ϕ0)

1
6 ≲ W2(µ

0, µ1)
1
5 .

5.4 Gagliardo–Nirenberg type inequality for difference of
convex functions

We prove here Proposition 5.11, a sort of reverse Poincaré inequality which allows to
control the L2 distance ∥∇u−∇v∥L2(K,Rd) between the gradients of Lipschitz convex
functions u, v using the L2 distance beween these functions ∥u− v∥L2(K). This proposi-
tion is a refinement of Theorem 3.5 in (Chazal et al., 2010), in which the upper bound
involved the uniform distance ∥u− v∥∞. Proposition 5.11 is first proven in dimension
d = 1 and on a segment (Lemma 5.24) and then generalized to higher dimensions using
arguments from integral geometry (Lemma 5.25).
Remark 5.22 (Relation to the Gagliardo–Nirenberg inequality). Although the estimate
of Proposition 5.11 resembles the Gagliardo–Nirenberg inequality, it cannot be deduced
form it. More precisely, we note that without convexity of u and v, the inequality in
(5.11) does not hold. One can see this by taking u = 0 and vn(x) = 1/n sin(nx) on
K = [0, 1].
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Remark 5.23 (Optimality of exponents). The inequality proposed in Proposition 5.11 is
sharp in term of the exponents of the norms ∥∇u∥L∞(K) + ∥∇v∥L∞(K) and ∥u− v∥L2(K)

in the right-hand side. In the case d = 1, let L > 0, ε > 0 and define on K = [0, 1],
u(x) = L|x− 1

2 | and v = max(u, ε). Then u, v are convex and L-Lipschitz and we have:

∥u− v∥2L2([0,1]) =
2

3

ε3

L
and

∥∥u′ − v′∥∥2
L2([0,1])

= 2Lε.

so that ∥u′ − v′∥2L2([0,1]) = 121/3L4/3 ∥u− v∥2/3
L2([0,1])

.

Lemma 5.24. Let I ⊂ R be a compact segment and let u, v : I → R be two convex
functions with uniformly bounded gradients on I. Then∥∥u′ − v′∥∥2

L2(I)
≤ 8(

∥∥u′∥∥
L∞(I)

+
∥∥v′∥∥

L∞(I)
)4/3 ∥u− v∥2/3

L2(I)
. (5.12)

Proof. We first assume that I = [0, 1]. Using a simple approximation, we may assume
that u, v are C2 on I to get the following integration by part:∥∥u′ − v′∥∥2

L2([0,1])
= [(u− v)(u′ − v′)]10 −

∫
[0,1]

(u− v)(u′′ − v′′).

The convexity hypothesis then allows to get a L∞ estimate. Indeed,∣∣[(u− v)(u′ − v′)]10∣∣ ≤ 2(∥u′∥L∞ + ∥v′∥L∞) ∥u− v∥L∞ , and by convexity∣∣∣∣∣
∫
[0,1]

(u− v)(u′′ − v′′)

∣∣∣∣∣ ≤ ∥u− v∥L∞

(∫
[0,1]

∣∣u′′∣∣+ ∫
[0,1]

∣∣v′′∣∣)

= ∥u− v∥L∞

(∫
[0,1]

u′′ +

∫
[0,1]

v′′

)
≤ 2(

∥∥u′∥∥
L∞ +

∥∥v′∥∥
L∞) ∥u− v∥L∞ .

This gives ∥∥u′ − v′∥∥2
L2([0,1])

≤ 4(
∥∥u′∥∥

L∞ +
∥∥v′∥∥

L∞) ∥u− v∥L∞ . (5.13)

We now bound the L∞ norm of u− v with its L2 norm using that the Lipschitz constant
of u− v is less than L = ∥u′∥L∞ + ∥v′∥L∞ . Let ϵ = ∥u− v∥L∞ and let x∗ ∈ [0, 1] where
the maximum of |u− v| is attained. Since Lip(u− v) ≤ L, one gets |u(x)− v(x)| ≥ ε

2 on
the interval I∗ = I ∩ [x∗ − ε

2L , x
∗ + ϵ

2L ]. The length of I∗ is at least min( ε
2L , 1), so that

∥u− v∥2L2([0,1]) ≥
1

4
min(

ϵ

2L
, 1)ε2. (5.14)

Assume first that ε ≤ 2L. Then, equation (5.14) gives ε3 = ∥u− v∥3∞ ≤
8L ∥u− v∥2L2([0,1]), thus implying

∥u− v∥L∞ ≤ 2(
∥∥u′∥∥

L∞ +
∥∥v′∥∥

L∞)1/3 ∥u− v∥2/3
L2([0,1])

.

This gives, with equation (5.13):∥∥u′ − v′∥∥2
L2([0,1])

≤ 8(
∥∥u′∥∥

L∞ +
∥∥v′∥∥

L∞)4/3 ∥u− v∥2/3
L2([0,1])

. (5.15)
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On the other hand, if ε ≥ 2L, then ∥u− v∥L2([0,1]) ≥
ε
2 by equation (5.14), so that

8(
∥∥u′∥∥

L∞ +
∥∥v′∥∥

L∞)4/3 ∥u− v∥2/3
L2([0,1])

≥ 8L4/3
(ε
2

)2/3
≥ L4/3+2/3 = L2,

which allows to conclude using L2 ≥ ∥u′ − v′∥2L2([0,1]). We get inequality (5.12) for a
general interval I = [a, b] by an affine change of variable.

The one-dimensional result from Lemma 5.24 is generalized to higher dimensions
thanks to two formulas from integral geometry that allow to rewrite the L2 norms of the
scalar-field u − v and vector-field ∇u − ∇v over set K ⊂ Rd using integrals over lines
intersecting K.

Integral geometry. Denote Vd the volume of the unit d-ball and Sd−1 the area of the
unit (d − 1)-sphere. Let Ld be the set of oriented affine lines ℓ in Rd, identified to the
submanifold of R2d consisting of pairs of directions and offsets (e, p) ∈ Rd × Rd, with
e ∈ Sd−1 and p in the hyperplane {e}⊥, and endowed with the induced Riemannian
metric. The volume measure dLd is invariant under rigid motions. Denoting Hk the
k-dimensional Hausdorff measure, the usual Crofton formula – see for instance the first
paragraph of Chapter 5 in (Hug and Weil, 2020) – states that for any Hd−1-rectifiable
subset S of Rd,

Hd−1(S) =
1

4Vd−1

∫
ℓ∈Ld

#(ℓ ∩ S)dLd(ℓ), (5.16)

where #X is the cardinality of the set X. We denote Lde the set of oriented lines with a
fixed direction e ∈ Sd−1, endowed with the (d − 1)-dimensional Lebesgue measure dLde
on {e}⊥, so that for any ϕ : Ld → R,∫

ℓ∈Ld
ϕ(ℓ)dLd(ℓ) =

∫
e∈Sd−1

∫
p∈{e}⊥

ϕ((e, p))dLde(p)dSd−1(e).

We will also use the following formula, which easily follows from Fubini’s theorem: if K
is a measurable subset of Rd, then for any fixed direction e ∈ Sd−1,

Hd(K) =

∫
ℓ∈Lde
H1(ℓ ∩K)dLde(ℓ). (5.17)

We begin with an elementary lemma.

Lemma 5.25. Let K be a compact subset of Rd and f ∈ L2(K). Then,

∥f∥2L2(K) =
1

Sd−1

∫
ℓ∈Ld

∫
y∈ℓ∩K

f(y)2dydLd(ℓ). (5.18)

Similarly, for any vector field F ∈ L2(K,Rd), one has

∥F∥2L2(K,Rd) = Cd

∫
ℓ∈Ld

∫
y∈ℓ∩K

⟨F (y)|e(ℓ)⟩2dydLd(ℓ), (5.19)

where for ℓ ∈ Ld, e(ℓ) ∈ Sd−1 is the oriented direction of ℓ, and Cd depends only on d.
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Proof. Piecewise constant functions (resp. vector fields) are dense in L2(K) (resp.
L2(K,Rd)). Using this fact and the continuity of equations (5.18), (5.19), it is therefore
enough to prove these equations when f and F are of the form f = χK′ and F = xχK′

for some fixed measurable set K ′ ⊂ K and x ∈ Sd−1, where χK′(u) = 1 if u ∈ K ′ and 0
else. We have for f = χK′ , using formula (5.17):

Sd−1 ∥f∥2L2(K) = Sd−1Hd(K ′) =

∫
e∈Sd−1

∫
ℓ∈Lde
H1(ℓ ∩K ′)dLde(ℓ)de

=

∫
e∈Sd−1

∫
ℓ∈Lde

∫
y∈ℓ∩K′

dydLde(ℓ)de

=

∫
ℓ∈Ld

∫
y∈ℓ∩K

f(y)2dydLd(ℓ),

which proves equation (5.18). Now for F = xχK′ , we get for e ∈ Sd−1:

⟨x|e⟩2 ∥F∥2L2(K,Rd) = ⟨x|e⟩
2Hd(K ′) = ⟨x|e⟩2

∫
ℓ∈Lde
H1(ℓ ∩K ′)dLde(ℓ)

=

∫
ℓ∈Lde

∫
y∈ℓ∩K

⟨F (y)|e⟩2dydLde(ℓ).

Hence we get:(∫
e∈Sd−1

⟨x|e⟩2de
)
∥F∥2L2(K,Rd) =

∫
ℓ∈Ld

∫
y∈ℓ∩K

⟨F (y)|e(ℓ)⟩2dydLd(ℓ).

The first integral does not depend on x, thus establishing the result.

We are now ready to prove the Gagliargo-Nirenberg type inequality of Proposition
5.11.

Proof of Proposition 5.11. We apply formula (5.19) from Lemma 5.25 to (∇u−∇v):

∥∇u−∇v∥2L2(K,Rd) = Cd

∫
ℓ∈Ld

∫
y∈ℓ∩K

⟨(∇u−∇v)(y)|e(ℓ)⟩2dydLd(ℓ).

For any ℓ ∈ Ld, denote uℓ = u|ℓ∩K , vℓ = v|ℓ∩K , and notice that the last equation reads:

∥∇u−∇v∥2L2(K,Rd) = Cd

∫
ℓ∈Ld

∥∥u′ℓ − v′ℓ∥∥2L2(ℓ∩K)
dLd(ℓ).

Given any oriented line ℓ ∈ Ld, denote nℓ ∈ N∪ {+∞} the number of connected compo-
nents of ℓ ∩K. Then, nℓ ≤ #(ℓ ∩ ∂K) so that by Crofton’s formula,∫

ℓ∈Ld
nℓdLd(ℓ) ≤

∫
ℓ∈Ld

#(ℓ ∩ ∂K)dLd(ℓ) < +∞.

This implies that for almost every ℓ ∈ Ld, the set ℓ ∩K may be decomposed as a finite
union of nℓ segments, i.e. ℓ ∩K =

⋃nℓ
i=1 I

i
ℓ. This gives

∥∥u′ℓ − v′ℓ∥∥2L2(ℓ∩K)
=

nℓ∑
i=1

∥∥u′ℓ − v′ℓ∥∥2L2(Iiℓ)
; ∥uℓ − vℓ∥2L2(ℓ∩K) =

nℓ∑
i=1

∥uℓ − vℓ∥2L2(Iiℓ)
.
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Lemma 5.24 combined with Jensen’s inequality then ensure that we have for for almost
every l ∈ Ld:

∥∥u′ℓ − v′ℓ∥∥2L2(ℓ∩K)
≤ 8(

∥∥u′ℓ∥∥L∞(ℓ∩K)
+
∥∥v′ℓ∥∥L∞(ℓ∩K)

)4/3
nℓ∑
i=1

∥uℓ − vℓ∥
2/3

L2(Iiℓ)

≤ 8(
∥∥u′ℓ∥∥L∞(ℓ∩K)

+
∥∥v′ℓ∥∥L∞(ℓ∩K)

)4/3n
2/3
ℓ ∥uℓ − vℓ∥

2/3
L2(ℓ∩K)

.

This leads to the inequality

∥∇u−∇v∥2L2(K) ≤ 8Cd(2L)
4/3

∫
ℓ∈Ld

n
2/3
ℓ ∥uℓ − vℓ∥

2/3
L2(ℓ∩K)

dLd(ℓ),

where L = max(∥∇u∥L∞(K) , ∥∇v∥L∞(K)). But Hölder’s inequality together with formula
(5.18) give∫

ℓ∈Ld
n
2/3
ℓ ∥uℓ − vℓ∥

2/3
L2(ℓ∩K)

dLd(ℓ) ≤
(∫

ℓ∈Ld
nℓdLd(ℓ)

)2/3

S
1/3
d−1 ∥u− v∥

2/3
L2(K)

.

The conclusion comes after using again that nℓ ≤ #(ℓ∩∂K) and Crofton’s formula (5.16)∫
ℓ∈Ld

nℓdLd(ℓ) ≤
∫
ℓ∈Ld

#(ℓ ∩ ∂K)dLd(ℓ) = 4Vd−1Hd−1(∂K).



Chapter 6

Quantitative stability of Wasserstein
barycenters with respect to the

marginals

Abstract

This chapter, extracted from (Carlier et al., 2022), derives quantita-
tive stability estimates for Wasserstein barycenters with respect to their
marginals. Wasserstein barycenters define averages of probability measures
in a geometrically meaningful way. Their use is increasingly popular in ap-
plied fields, such as image, geometry or language processing. In these fields
however, the probability measures of interest are often not accessible in their
entirety and the practitioner may have to deal with statistical or compu-
tational approximations instead. In this chapter, we quantify the effect of
such approximations on the corresponding barycenters. We show that the
Wasserstein barycenter depends in a Hölder-continuous way on its marginals
under relatively mild assumptions. Our proof relies on the strong convexity
estimates for the Kantorovich functional presented in Part I and a new result
quantifying the modulus of continuity of the push-forward operation under
a (not necessarily smooth) optimal transport map.

6.1 Introduction

Wasserstein barycenters are Fréchet means in Wasserstein spaces: they define averages
of families of probability measures that are consistent with the optimal transport geom-
etry and generalize to more than two measures the fundamental notion of displacement
interpolation due to McCann McCann (1997). As such, they average out probability
measures in a geometrically meaningful way and appear as a relevant tool to interpo-
late or summarize measure data. Such notion of barycenter have indeed found many
successful applications, for instance in image processing (Rabin et al., 2011), geometry
processing (Solomon et al., 2015), language processing (Dognin et al., 2019; Colombo
et al., 2021; Lian et al., 2020), statistics (Srivastava et al., 2018) or machine learning
(Cuturi and Doucet, 2014; Ho et al., 2017). We refer the readers to existing surveys
(Peyré and Cuturi, 2019; Panaretos and Zemel, 2020) for further applications. In such
applications however, the probability measures of interest are often not accessible in their
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entirety. They may be accessible for instance only through noisy samples in a statistical
context, or they may be approximated in order to use existing computational methods
that estimate Wasserstein barycenters (see e.g. (Carlier, Guillaume et al., 2015; Ben-
amou et al., 2015; Cuturi and Doucet, 2014; Altschuler and Boix-Adsera, 2021)) while
paying an affordable computational cost. This means that in addition to the computa-
tional error induced by the algorithm used to calculate the barycenter, the practitioner
may be subject to an extra statistical or approximation error that corresponds to the
approximation of the marginal measures of interest. While works focusing on the com-
putation of Wasserstein barycenters may now come with guarantees on the first type of
error (see e.g. (Altschuler and Boix-Adsera, 2021)), very little is known on the second
type of error, which corresponds broadly speaking to a stability error since it quantifies
the effect of a perturbation of the marginals on the corresponding barycenters. In this
chapter, we focus on this kind of error and show that the Wasserstein barycenter depends
in an Hölder-continuous way on its marginal measures under regularity assumptions on
(some of) the latter.

Outline. In the remaining of this section, we define Wasserstein barycenters and the
setting we focus on. We then show that mild regularity assumptions are necessary in
order to hope for any stability result. Next, we announce the dual formulation of the
Wasserstein barycenter problem in our context, that is necessary to present our main
assumption. This assumption and our main result are then stated and we give some
immediate but useful consequences of this result. We conclude this section with the
principal elements of proof to our main result, that are made of two stability estimates:
a stability estimate for the dual solutions to the Wasserstein barycenter problem (justified
in §6.2) and a stability estimate for the push-forward operation (justified in §6.3). The
proof of the dual formulation is postponed to the end of this chapter (§6.4).

6.1.1 Wasserstein barycenters

Introduced in (Agueh and Carlier, 2011) for finite families of probability measures sup-
ported over a Euclidean space, the definition of Wasserstein barycenters have been ex-
tended to infinite families of probability measures in (Bigot and Klein, 2018; Pass, 2013),
possibly supported over a Riemannian manifold in (Kim and Pass, 2017; Le Gouic and
Loubes, 2017). In this work, we focus on families of probability measures supported over
a compact Euclidean domain. Let Ω = B(0, RΩ) ⊂ Rd be the ball of Rd centered at zero
and of radius RΩ > 0 and denote P(Ω) the set of Borel probability measures over Ω. We
endow P(Ω) with the 2-Wasserstein distance W2 defined for any ρ, µ ∈ P(Ω) by

W2(ρ, µ) =

(
min

γ∈Γ(ρ,µ)

∫
Ω×Ω
∥x− y∥2 dγ(x, y)

)1/2

,

where the minimum is taken over the set Γ(ρ, µ) of transport plans between ρ and µ
(see e.g. Chapter A for more details about Wasserstein distances). We equip P(Ω) with
the the topology induced by W2 (i.e. the weak topology) and denote P(P(Ω)) the set
of corresponding Borel probability measures over P(Ω). A Wasserstein barycenter of
P ∈ P(P(Ω)) is then defined as a minimizer µP of

min

{
1

2

∫
P(Ω)

W2
2(ρ, µ)dP(ρ), µ ∈ P(Ω)

}
= (P)P.
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Such a minimizer always exists, and it is uniquely defined whenever P(Pa.c.(Ω) > 0),
where Pa.c.(Ω) denotes the set of probability measures over Ω that are absolutely contin-
uous with respect to the Lebesgue measure (Kim and Pass, 2017; Le Gouic and Loubes,
2017).

6.1.2 Stability of Wasserstein barycenters

As mentioned above, the population of interest P ∈ P(P(Ω)) may not always be accessible
in practice, and one may have to deal with another measure Q ∈ P(P(Ω)) instead. The
stability question that then comes up is the following: can we bound a distance between
minimizers µP of (P)P and µQ of (P)Q in terms of a distance between P and Q? While
the above-defined 2-Wasserstein distance gives a natural metric to compare µP and µQ,
there remains to choose a metric in order to compare P and Q. For this, we will use the
following 1-Wasserstein distance over P(P(Ω)), defined for any P,Q in P(P(Ω)) by

W1(P,Q) = min
γ∈Γ(P,Q)

∫
P(Ω)×P(Ω)

W2(ρ, ρ̃)dγ(ρ, ρ̃).

This choice of distance is justified by the fact that Wasserstein distances are naturally
defined for probability measures on the compact metric space (P(Ω),W2) and that they
allow to compare measures that have incomparable support. The 1-Wasserstein dis-
tance being the weakest of the Wasserstein distances, our bounds are ensured to be the
sharpest in terms of this optimal transport geometry. We are thus interested in bounding
W2(µP, µQ) in terms of W1(P,Q) for P,Q ∈ P(P(Ω)).

Consistency of Wasserstein barycenters. Before looking for any quantitative sta-
bility result, one may first wonder if the barycenters depend at least in a continuous way
on their marginals. This question, framed under the notion of consistency of Wasserstein
barycenters, has been answered positively in (Bigot and Klein, 2018; Boissard et al.,
2015) in some specific settings and in (Le Gouic and Loubes, 2017) in the most general
setting. Theorem 3 of (Le Gouic and Loubes, 2017) ensures in particular the following:

Theorem (Le Gouic, Loubes). Let P ∈ P(P(Ω)) and a sequence (Pn)n≥1 ∈ P(P(Ω)) be
such that

W1(Pn,P) −−−−−→
n→+∞

0.

For all n ≥ 1, denote µPn a barycenter of Pn. Then the sequence (µPn)n≥1 is precompact
in (P(Ω),W2) and any limit is a barycenter of P.

This result ensures the continuity of Wasserstein barycenters with respect to the marginal
measures, at least in our setting, so that we can now legitimately look for bounds that
quantify this continuity.

Quantitative stability in dimension d = 1. In dimension d = 1, the derivation
of quantitative stability bounds for Wasserstein barycenters is straightforward. Indeed,
in such setting W2 is Hilbertian, which ensures a Lipschitz behavior of the barycenters
with respect to their marginals. More precisely, denoting F−1

ρ the quantile function of
a measure ρ ∈ P(Ω) (i.e. the generalized inverse of its cumulative distribution function
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ρ1

ε/2

ε/2

ρε2

µPε

ρ1

ε/2

ε/2

ρ−ε2

µP−ε

Figure 6.1: Let ρ1 = 1
2(δ(0;1) + δ(0;−1)). For ε > 0 and xε = (1; ε/2) ∈ R2, let ρε2 =

1
2(δxε + δ−xε). Introduce Pε = 1

2(δρ1 + δρε2). Then for ε ≤ 1
2 , W2(µPε , µP−ε) = 1 while

W1(Pε,P−ε) ≤ ε.

Fρ), one has for any measures ρ, µ ∈ P(Ω),W2(ρ, µ) =
∥∥F−1

ρ − F−1
µ

∥∥
L2([0,1])

. This leads
for any P ∈ P(P(Ω)) to a simple formula for the unique barycenter:

µP =

(∫
P(Ω)

F−1
ρ dP(ρ)

)
#

λ[0,1],

where λ[0,1] denotes the Lebesgue measure over [0, 1]. Using this fact and the triangle
inequality, one immediately obtains the following Lipschitz stability result, that actually
holds for any families of measures in the set P2(R) of probability measures supported
over R that admit a finite second moment:

Proposition. Let P,Q ∈ P(P2(R)) and denote µP, µQ their respective barycenters. Then

W2(µP, µQ) ≤ W1(P,Q).

This fact was exploited in (Bigot et al., 2018) to characterize the statistical rate of
convergence of empirical Wasserstein barycenters towards their population counterpart
in an asymptotic setting for probability measures supported over the real line.

Quantitative stability in dimension d ≥ 2. In dimension d ≥ 2, the derivation of
any quantitative stability bound turns out to be much more difficult. This may first
come from the fact that without any assumption on P and Q, the barycenters µP and µQ
may not be uniquely defined, which makes hopeless the derivation of any stability result.
Even when uniqueness of the barycenters is ensured, one can easily build examples where
no quantitative stability bound holds, see for instance the setting illustrated in Figure
6.1. This example relies on barycenters with only discrete marginals, and recovers in the
limit ε = 0 the pathological case where the barycenter is not uniquely defined. One may
circumvent this issue by ensuring, even in the limit ε = 0, uniqueness of the barycenter.
As mentioned above, this may be done by imposing that some of the marginal measures
are absolutely continuous. Nevertheless, even under such assumption on the marginals,
one can find an example where the barycenter achieves an Hölder behavior with respect to
its marginal, but with an arbitrary low Hölder exponent, see Figure 6.2. These negative
results show that, even in dimension d = 2, some regularity assumptions on the marginals
P,Q are necessary in order to hope to derive stability estimates for their barycenters.
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ρ1

ρ02

µP0

c0

ρ1

ρε2

µPε

ε
ε

cε

Figure 6.2: Let ρ1 = 1
2(δ(0;1) + δ(0;−1)). For a ∈ (0, 1) and ε > 0, let cε =

[1 − a
2 ; 1 +

a
2 ] × [−a

2 + ε; a2 + ε] and ρε2 the probability measure with density ρε2(x, y) =
α

21−2αa1+2α

(
|y − ε|2α−1

1cε(x, y) + |y + ε|2α−1
1−cε(x, y)

)
for some α > 0. Introduce

Pε = 1
2(δρ1 + δρε2). Then for ε ≤ a

2 , W2(µP0 , µPε) ∼ εα while W1(P0,Pε) ≤ ε.

Previous works. Consistently with the above remarks, previous works having dealt
with the stability of Wasserstein barycenters have either worked under stringent assump-
tions on the marginal measures or regularized the barycenter problem in order to ensure
more regular solutions. In (Ahidar-Coutrix et al., 2020; Le Gouic et al., 2022) for instance,
the question of the rate of convergence of the empirical barycenter in a Wasserstein space
toward its population counterpart has been answered at the cost of assumptions that re-
quire in particular to have guarantees on the regularity of the (unknown) population
barycenter (see sub-section 6.1.5 for more details). In (Bigot et al., 2019b; Carlier et al.,
2021), a regularization of the barycenter functional has been considered and stability
bounds and central limit theorems were deduced for the solutions to these regularized
problem. In this work, we do not regularize the barycenter functional and work under
less restrictive assumptions on the marginal measures than previous works having dealt
with the stability of Wasserstein barycenters. In order to state these assumptions, we
first need to introduce the dual problem to (P)P.

6.1.3 Dual formulation

Building from (Agueh and Carlier, 2011), we show that (P)P admits the following dual
formulation with strong duality (the proof is deferred to the last section of this chapter,
Section 6.4):

Proposition 6.1 (Dual formulation). For any P ∈ P(P(Ω)), problem (P)P satisfies

(P)P =
1

2

∫
P(Ω)

M2(ρ)dP(ρ)− (D)P,

where M2(ρ) = ⟨∥·∥2 |ρ⟩ is the second moment of ρ and where (D)P corresponds to the
dual value

(D)P = min

{∫
P(Ω)
⟨ψ∗

ρ|ρ⟩dP(ρ), (ψρ)ρ ∈ L∞(P;W 1,∞(Ω)),

∫
P(Ω)

ψρ(·)dP(ρ) =
∥·∥2

2

}
.

In the expression above, ψ∗
ρ(·) = supy∈Ω{⟨·|y⟩ − ψρ(y)} corresponds to the convex conju-

gate of ψρ and L∞(P;W 1,∞(Ω)) denotes the set of essentially bounded P-measurable map-
pings from P(Ω) to the Sobolev space W 1,∞(Ω) of bounded Lipschitz continuous functions
from Ω to R.
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Remark 6.2. Note that in the above minimization problem, (ψρ)ρ is to be understood as
the following mapping, defined P-almost everywhere:

(ψρ)ρ :

{
P(Ω) →W 1,∞(Ω),
ρ 7→ ψρ.

Remark 6.3. By Kantorovich duality (see Chapter 1 or (Villani, 2008)), for P ∈ P(P(Ω)),
the collection of functions (ψρ)ρ solving (D)P give solutions to the (dual) quadratic opti-
mal transport problems between P-a.e. ρ ∈ P(Ω) and any barycenter µP ∈ argmin (P)P:

1

2
W2

2(ρ, µP) =
1

2
M2(ρ) +

1

2
M2(µP)−

(
⟨ψ∗

ρ|ρ⟩+ ⟨ψρ|µP⟩
)

=
1

2
M2(ρ) +

1

2
M2(µP)−

(
min

ψ∈C0(Ω)
⟨ψ∗|ρ⟩+ ⟨ψ|µP⟩

)
. (6.1)

As such, we know from Chapter 1 that ψρ = ψ∗∗
ρ for P-a.e. ρ, so that this function –

that we call later on a (Kantorovich) potential – is convex and Lipschitz continuous with
Lipschitz constant smaller than RΩ. When P(Pa.c.(Ω) > 0) and ρ ∈ spt(P) ∩ Pa.c.(Ω),
the convex function ψ∗

ρ corresponds to a Brenier potential ((Brenier, 1991) or Theorem
1.12) and its gradients achieves the optimal transport from ρ to the unique barycenter
µP: (

∇ψ∗
ρ

)
#
ρ = µP, and W2

2(ρ, µP) =
∥∥∇ψ∗

ρ − id
∥∥2
L2(ρ,Rd) .

6.1.4 Contributions

As studied in Part I, the minimization problem that appears in (6.1) is convex but it is
not, in general, globally strongly-convex. Our main result relies on the assumption that
one marginal distribution, say P, gives positive mass to a set of absolutely continuous
measures that are such that problem (6.1) presents a form of local strong-convexity. In
particular, for ρ ∈ P(Ω), following Part I and denoting Kρ : ψ 7→ ⟨ψ∗|ρ⟩ the associated
Kantorovich functional appearing in the minimization problem (6.1) (which is convex
and whose gradient reads ∇Kρ(ψ) = −(∇ψ∗)#ρ by Lemma 1.11), we will make the
following assumption:

Assumption 6.4. The measure P ∈ P(P(Ω)) is such that there exists constants αP > 0,
cP,perP,mP,MP ∈ (0,+∞) and a measurable set SP ⊂ P(Ω) verifying P(SP) = αP such
that for all ρ ∈ SP,

(i) ρ ∈ Pa.c.(Ω),

(ii) mP ≤ ρ|spt(ρ) ≤MP,

(iii) spt(ρ) has a Hd−1-rectifiable boundary and Hd−1(∂spt(ρ)) ≤ perP,

(iv) ∀ψ, ψ̃ ∈ C0(Ω), cPVarρ(ψ̃∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ)− ⟨ψ − ψ̃|(∇ψ∗)#ρ⟩,

where spt(ρ) denotes the support of ρ, ∂spt(ρ) denotes the topological boundary of this
support and Hd−1 denotes the (d− 1)-dimensional Hausdorff measure.

For a population of marginals P ∈ P(P(Ω)) satisfying Assumption 6.4, we prove that the
Wasserstein barycenters depend in a Hölder-continuous way on their marginals near P:



6.1. INTRODUCTION 119

Theorem 6.5. Let P,Q ∈ P(P(Ω)) and assume that P satisfies Assumption 6.4. Let µP
be the barycenter of P and µQ be a barycenter of Q. Then

W2(µP, µQ) ≲
1

α
1/4
P

W1(P,Q)1/6,

where ≲ hides the multiplicative constant

Cd,RΩ,mP,MP,perP,cP = Cd(1 +MP)
1/4(1 +RΩ)

d
4
+1(1 +

M
1/2
P per

1/3
P

c
1/6
P m

1/6
P

)

and Cd is a constant that depends only on d.

Before discussing consequences of this result, we make some comments on our main
Assumption 6.4. This assumption mainly corresponds to the assumption that the popu-
lation P gives positive mass to a set of marginals ρ that are such that the Kantorovich
functionals Kρ : ψ 7→ ⟨ψ∗|ρ⟩ associated to them satisfies a strong convexity estimate in
the sense adopted in Part I. More prosaically, the conditions (i), (ii) and (iii) speak for
themselves, and conditions under which (iv) holds are given in Theorem 3.1 or Corol-
lary 1.31. In particular, if a measure ρ ∈ P(Ω) already satisfies (i), (ii) and (iii), then
property (iv) will be satisfied at the moment ρ satisfies a Poincaré-Wirtinger inequality
and its support is convex or is made of a finite connected union of convex sets. On a
more technical side, we note that the Borel measurability of a set SP ⊂ P(Ω) as de-
fined in Assumption 6.4 needs to be checked depending on the application. Obviously,
measurability holds when the number of marginals is finite (P is discrete).

6.1.5 Consequences of Theorem 6.5

Statistical estimation of barycenter with a finite number of marginals. For a
probability measure ρ ∈ P(Ω) and an i.i.d. sequence (xj)j=1,...,n sampled from ρ, it is
well-known that the empirical measure ρ̂n = 1

n

∑n
j=1 δxj converges weakly to ρ almost-

surely as n → ∞ (Varadarajan, 1958). By Theorem 1 of (Fournier and Guillin, 2015),
the rate of this convergence can be controlled in Wasserstein distance: there exists a
constant Cd depending only on d such that

EW2
2(ρ̂

n, ρ) ≤ CdR2
Ω


n−1/2 if d < 4,

n−1/2 log(n) if d = 4,

n−2/d else,

where the expectation is taken with respect to (xj)j=1,...,n ∼ ρ⊗n. Theorem 6.5 together
with a double use of Jensen’s inequality allows to translate these rates to the statistical
estimation of a Wasserstein barycenter with a finite number of marginals:

Corollary 6.6. Let Pm =
∑m

i=1 αiδρi ∈ P(P(Ω)) satisfying Assumption 6.4. For all
i ∈ {1, . . . ,m}, denote ρ̂ni = 1

n

∑n
j=1 δxi,j an empirical measure built from an i.i.d.

sequence (xi,j)1≤j≤n sampled from ρi. Then the barycenters µPm of Pm and µP̂nm
of

P̂nm =
∑m

i=1 αiδρ̂ni verify

EW2
2(µP̂nm

, µPm) ≲
1

α
1/2
Pm


n−1/12 if d < 4,

n−1/12 log(n)1/6 if d = 4,

n−1/(3d) else,

where ≲ hides a multiplicative constant depending on d,RΩ,mP,MP, perP, cP.
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Convergence rate of empirical barycenters in Wasserstein spaces. Another
statistical question occurs in the setting where the population of marginals P ∈ P(P(Ω))
is only known through samples (ρi)1≤i≤m ∼ P⊗m. Introducing the plug-in estimator
Pm = 1

m

∑m
i=1 δρi , it is natural to wonder how well µPm approaches µP in terms of m.

This question, asked in the more general framework of barycenters in Alexandrov spaces,
has been the object of recent research (Ahidar-Coutrix et al., 2020; Le Gouic et al.,
2022). In Wasserstein spaces, the authors of (Le Gouic et al., 2022) show in particular
that EW2(µP, µPm) may converge at the parametric rate m−1/2 under the assumption
that P admits a barycenter µP that it is such that there exists a bi-Lipschitz optimal
transport map between any ρ ∈ spt(P) and µP, and that the Lipschitz constants of these
maps and their inverses do not differ by a value more than 1. Under similar assumptions,
the authors of (Chewi et al., 2020) derive a strong-convexity estimate of the barycen-
ter functional at its minimum which helps them derive rates of convergence of gradient
descent algorithms for the (stochastic) estimation of barycenters. Such assumptions
however require to have strong guarantees on the regularity of a barycenter of P. These
guarantees can be obtained when restricted to specific families of probability measures
(e.g. Gaussian measures), but are difficult to get in more general cases. For instance,
barycenters of measures with convex support may not have a convex support (Santam-
brogio and Wang, 2016), which hampers a straightforward use of Caffarelli’s regularity
theory. In contrast, our stability result entails that for barycenters µP of P and µPm of
Pm,

EW2(µP, µPm) ≲
1

α
1/4
P

EW1(P,Pm)1/6,

whenever P satisfies Assumption 6.4. This implies that any rate of convergence of
EW1(P,Pm) w.r.t. m is readily transferred to EW2(µP, µPm), up to an exponent. How-
ever, P(Ω) is an infinite dimensional space and there is no general convergence rate for
EW1(P,Pm). Nonetheless, assuming some structure on the population P may help to
derive bounds. One may use for instance the notion of upper Wasserstein dimension of P
introduced in (Weed and Bach, 2019) (Definition 4), defined from quantities depending
on the covering numbers of (subsets of) the support of P. Assuming that this dimension
is strictly upper bounded by s > 0, the authors of (Weed and Bach, 2019) show that

EW1(P,Pm) ≲ m−1/s,

where ≲ hides a multiplicative constant that depends on RΩ and s.

Error induced by a discretization of the marginals. Let ρ ∈ P(Ω) and let h > 0
be a discretization parameter. Denoting (xhi )1≤i≤Nh an h-net of Ω and (V h

i )1≤i≤Nh
the corresponding Voronoi tessellation of Ω, it is easy to verify that the discretization
ρh =

∑Nh
i=1 ρ(V

h
i )δxhi

verifies

W2(ρ, ρ
h) ≤ h.

Such kind of discretization, with controlled error bound, may be useful in practice for
computational purposes. The stability result of Theorem 6.5 allows to translate the error
bound made when discretizing the marginals to the corresponding barycenter:

Corollary 6.7. Let Pm =
∑m

i=1 αiδρi ∈ P(P(Ω)) satisfying Assumption 6.4. Let h > 0

and for all i ∈ {1, . . . ,m}, denote ρhi =
∑Nh

j=1 ρi(V
h
j )δxhj

a discretization of ρi built from
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the h-net (xhj )1≤j≤Nh. Then the barycenters µPm of Pm and µPhm of Phm =
∑m

i=1 αiδρhi
verify

W2(µPhm , µPm) ≲
1

α
1/4
Pm

h1/6,

where ≲ hides a multiplicative constant depending on d,RΩ,mP,MP,perP, cP.

6.1.6 Main elements of proof for Theorem 6.5

The derivation of Theorem 6.5 is decomposed into two separate sub-problems. Introduce
(ψρ)ρ, (ψ̃ρ̃)ρ̃ solutions to the dual problems (D)P, (D)Q with respective populations P,Q.
For an optimal γ ∈ Γ(P,Q) such that W1(P,Q) =

∫
P(Ω)×P(Ω)W2(ρ, ρ̃)dγ(ρ, ρ̃), recalling

that P(SP) = αP, one can notice the following:

W2(µP, µQ) =
1

αP

∫
SP×P(Ω)

W2(µP, µQ)dγ(ρ, ρ̃)

≤ 1

αP

∫
SP×P(Ω)

(
W2(µP, (∇ψ̃∗

ρ̃)#ρ) +W2((∇ψ̃∗
ρ̃)#ρ, µQ)

)
dγ(ρ, ρ̃). (6.2)

Because ρ ∈ SP is absolutely continuous, we may replace µP by (∇ψ∗
ρ)#ρ in the first

term of (6.2), using Remark 6.3. Bounding the first term of (6.2) will thus amount to
quantify how ∇ψ∗

ρ deviates from ∇ψ̃∗
ρ̃ in terms of W1(P,Q). This corresponds to getting

a quantitative estimate on the stability of the solutions to (D)P, for which the local-strong
convexity assumption made for measures in SP almost readily gives the following bound,
proven in Section 6.2:

Proposition 6.8. Let P,Q ∈ P(P(Ω)) and assume that P satisfies Assumption 6.4. Let
γ ∈ Γ(P,Q) be such that W1(P,Q) =

∫
P(Ω)×P(Ω)W2(ρ, ρ̃)dγ(ρ, ρ̃) and let (ψ̃ρ̃)ρ̃ be a

solution to (D)Q. Then the barycenter µP of P satisfies

1

αP

∫
SP×P(Ω)

W2(µP, (∇ψ̃∗
ρ̃)#ρ)dγ(ρ, ρ̃) ≲

(
W1(P,Q)

αP

)1/6

,

where ≲ hides the multiplicative constant Cd,RΩ,mP,MP,perP,cP =
(
CdR

5
ΩM

3
Pper

2
P

mPcP

)1/6
, and Cd

is a constant that depends only on d.

In the second term of (6.2), we may replace formally µQ by (∇ψ̃∗
ρ̃)#ρ̃. Bounding the

second term of (6.2) thus amounts to finding a stability estimate for the push-forward
operation under the mapping ∇ψ̃∗

ρ̃. Proposition 6.12 of Section 6.3 gives such estimates
and allows to get the following bound.

Proposition 6.9. Let P,Q ∈ P(P(Ω)) and assume that P satisfies Assumption 6.4. Let
γ ∈ Γ(P,Q) be such that W1(P,Q) =

∫
P(Ω)×P(Ω)W2(ρ, ρ̃)dγ(ρ, ρ̃) and let (ψ̃ρ̃)ρ̃ be a

solution to (D)Q. Then any barycenter µQ of Q satisfies

1

αP

∫
SP×P(Ω)

W2((∇ψ̃∗
ρ̃)#ρ, µQ)dγ(ρ, ρ̃) ≲

(
W1(P,Q)

αP

)1/4

,

where ≲ hides the multiplicative constant Cd,RΩ,MP = Cd(1+MP)
1/4(1+RΩ)

d+1
4 , and Cd

is a constant that depends only on d.

The proof of Theorem 6.5 is then immediate from bound (6.2) and Propositions 6.8 and
6.9.
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6.2 Stability of potentials

6.2.1 Lipschitz behavior of the primal and dual values

A first immediate fact is the Lipschitz behavior of the primal and dual values with respect
to the marginals P,Q, that holds without any assumptions on their regularity.

Proposition 6.10. For any P,Q ∈ P(P(Ω)), the following bounds hold:

|(P)Q − (P)P| ≤ 3RΩW1(P,Q),

|(D)Q − (D)P| ≤ 4RΩW1(P,Q).

Proof. Let γ ∈ Γ(P,Q) be such that W1(P,Q) =
∫
P(Ω)×P(Ω)W2(ρ, ρ̃)dγ(ρ, ρ̃). By defini-

tion of (P)P and using the triangle inequality we have:

(P)P ≤
1

2

∫
P(Ω)

W2
2(ρ, µQ)dP(ρ)

=
1

2

∫
P(Ω)×P(Ω)

W2
2(ρ, µQ)dγ(ρ, ρ̃)

≤ 1

2

∫
P(Ω)×P(Ω)

(W2(ρ, ρ̃) +W2(ρ̃, µQ))
2 dγ(ρ, ρ̃)

=
1

2

∫
P(Ω)×P(Ω)

(
W2

2(ρ, ρ̃) + 2W2(ρ, ρ̃)W2(ρ̃, µQ) +W2
2(ρ̃, µQ)

)
dγ(ρ, ρ̃).

Now using that Ω is compact and included in a ball centered at the origin and of radius
RΩ > 0, we have for any ρ, ρ̃ ∈ P(Ω) the upper bound W2(ρ, ρ̃) ≤ 2RΩ. We thus get the
bound

(P)P ≤
1

2

∫
P(Ω)×P(Ω)

(
6RΩW2(ρ, ρ̃) +W2

2(ρ̃, µQ)
)
dγ(ρ, ρ̃)

= 3RΩ

∫
P(Ω)×P(Ω)

W2(ρ, ρ̃)dγ(ρ, ρ̃) +
1

2

∫
P(Ω)

W2
2(ρ̃, µQ)dQ(ρ̃)

= 3RΩW1(P,Q) + (P)Q.

The first inequality of the statement is then deduced by symmetry. From this bound on
the primal values, we can deduce the following bound on the dual values:

(D)P =
1

2

∫
P(Ω)

M2(ρ)dP(ρ)− (P)P,

≤ 1

2

∫
P(Ω)

M2(ρ)dP(ρ)− (P)Q + 3RΩW1(P,Q)

Then, using the triangle inequality:∫
P(Ω)

M2(ρ)dP(ρ) =
∫
P(Ω)×P(Ω)

M2(ρ)dγ(ρ, ρ̃)

≤
∫
P(Ω)×P(Ω)

(|M2(ρ)−M2(ρ̃)|+M2(ρ̃))dγ(ρ, ρ̃)
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Notice that for all ρ, ρ̃ ∈ P(Ω), one has

|M2(ρ)−M2(ρ̃)| =
∣∣W2

2(ρ, δ0)−W2
2(ρ̃, δ0)

∣∣
≤ 2RΩ |W2(ρ, δ0)−W2(ρ̃, δ0)|
≤ 2RΩW2(ρ, ρ̃).

We thus have
∫
P(Ω)M2(ρ)dP(ρ) ≤ 2RΩW1(P,Q) +

∫
P(Ω)M2(ρ̃)dQ(ρ̃), from which we

deduce:

(D)P ≤
1

2

∫
P(Ω)

M2(ρ̃)dQ(ρ̃)− (P)Q + 4RΩW1(P,Q) = (D)Q + 4RΩW1(P,Q).

The second inequality of the statement then follows by symmetry.

6.2.2 Stability of the dual solutions

Denote (ψρ)ρ and (ψ̃ρ̃)ρ̃ solutions to the dual problems (D)P, (D)Q with respective pop-
ulations P,Q. These families of potentials verify

(D)P =

∫
P(Ω)
Kρ(ψρ)dP(ρ) and

∫
P(Ω)

ψρ(·)dP(ρ) =
∥·∥2

2
,

(D)Q =

∫
P(Ω)
Kρ̃(ψ̃ρ̃)dQ(ρ̃) and

∫
P(Ω)

ψ̃ρ̃(·)dQ(ρ̃) =
∥·∥2

2
.

We can then show that (ψ̃ρ̃)ρ̃ is almost a minimizer for (D)P wheneverW1(P,Q) is small:

Proposition 6.11. Let P,Q ∈ P(P(Ω)) and (ψρ)ρ, (ψ̃ρ̃)ρ̃ respective solutions of
the dual problems (D)P, (D)Q. Let γ ∈ Γ(P,Q) be such that W1(P,Q) =∫
P(Ω)×P(Ω)W2(ρ, ρ̃)dγ(ρ, ρ̃). Then∣∣∣∣∣

∫
P(Ω)×P(Ω)

(Kρ(ψρ)−Kρ(ψ̃ρ̃))dγ(ρ, ρ̃)

∣∣∣∣∣ ≤ 5RΩW1(P,Q).

Proof. Using the triangle inequality, we have∣∣∣∣ ∫
P(Ω)×P(Ω)

(Kρ(ψρ)−Kρ(ψ̃ρ̃))dγ(ρ, ρ̃)
∣∣∣∣ ≤

∣∣∣∣∣
∫
P(Ω)×P(Ω)

(Kρ(ψρ)−Kρ̃(ψ̃ρ̃))dγ(ρ, ρ̃)

∣∣∣∣∣
+

∣∣∣∣∣
∫
P(Ω)×P(Ω)

(Kρ̃(ψ̃ρ̃)−Kρ(ψ̃ρ̃))dγ(ρ, ρ̃)

∣∣∣∣∣ . (6.3)

Using that γ ∈ Γ(P,Q), the first term of sum (6.3) is equal to∣∣∣∣∣
∫
P(Ω)
Kρ(ψρ)dP(ρ)−

∫
P(Ω)
Kρ̃(ψ̃ρ̃)dQ(ρ̃)

∣∣∣∣∣ = |(D)P − (D)Q| ,

which can be upper bounded by 4RΩW1(P,Q) using Proposition 6.10. The second term
in (6.3) can then be upper bounded by RΩW1(P,Q) using the Kantorovich-Rubinstein
duality result (Proposition A.8), which ensures that for any ρ, ρ̃ ∈ P(Ω), since ψ̃∗

ρ̃ is
RΩ-Lipschitz,

Kρ(ψ̃ρ̃)−Kρ̃(ψ̃ρ̃) = ⟨ψ̃∗
ρ̃|ρ− ρ̃⟩ ≤ RΩW1(ρ, ρ̃) ≤ RΩW2(ρ, ρ̃).
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6.2.3 Proof of Proposition 6.8

Proof of Proposition 6.8. Let ρ ∈ spt(P) and π ∈ Γ(ρ, µP) be an optimal coupling for the
quadratic optimal transport between ρ and µP. Then by (6.1) we have:∫

Ω×Ω
⟨x|y⟩dπ(x, y) = Kρ(ψρ) + ⟨ψρ|µP⟩. (6.4)

On the other hand, the Fenchel-Young inequality ensures that for any ρ̃ ∈ spt(Q), for
any pair of points x, y ∈ Ω,

⟨x|y⟩ ≤ ψ̃∗
ρ̃(x) + ψ̃ρ̃(y).

This ensures ∫
Ω×Ω
⟨x|y⟩dπ(x, y) ≤ Kρ(ψ̃ρ̃) + ⟨ψ̃ρ̃|µP⟩.

Injecting (6.4) into this last inequality then yields

⟨ψρ − ψ̃ρ̃|µP⟩ ≤ Kρ(ψ̃ρ̃)−Kρ(ψρ). (6.5)

When ρ belongs to SP, Assumption 6.4 allows us to improve the previous bound:

⟨ψρ − ψ̃ρ̃|µP⟩+ cPVarρ(ψ̃∗
ρ̃ − ψ∗

ρ) ≤ Kρ(ψ̃ρ̃)−Kρ(ψρ). (6.6)

Hence, weighting (6.5) and (6.6) by dγ(ρ, ρ̃) and summing over (ρ, ρ̃) ∈ P(Ω) × P(Ω),
we get

⟨
∫
P(Ω)

ψρdP(ρ)−
∫
P(Ω)

ψ̃ρ̃dQ(ρ̃)|µP⟩+ cP

∫
SP×P(Ω)

Varρ(ψ̃∗
ρ̃ − ψ∗

ρ)dγ(ρ, ρ̃)

≤
∫
P(Ω)×P(Ω)

(Kρ(ψ̃ρ̃)−Kρ(ψρ))dγ(ρ, ρ̃).

Using that
∫
P(Ω) ψρ(·)dP(ρ) =

∫
P(Ω) ψ̃ρ̃(·)dQ(ρ̃) = ∥·∥2

2 and Proposition 6.11, this leads
to

cP

∫
SP×P(Ω)

Varρ(ψ̃∗
ρ̃ − ψ∗

ρ)dγ(ρ, ρ̃) ≤ 5RΩW1(P,Q). (6.7)

We now recall the Galiardo-Niremberg type inequality of Proposition 5.11, that ensures
that there exists a constant Cd depending only on d such that for any compact domain
K of Rd with Hd−1-rectifiable boundary and u, v : K → R two Lipschitz functions on K
that are convex on any segment included in K,

∥∇u−∇v∥6L2(K) ≤ CdH
d−1(∂K)2(∥∇u∥L∞(K) + ∥∇v∥L∞(K))

4 ∥u− v∥2L2(K) .

This inequality can be used to bound from below the left-hand side term of equation
(6.7). Indeed, measures belonging to SP are assumed to have a support which has a
Hd−1-rectifiable topological boundary. This ensures the following for any ρ ∈ SP and
ρ̃ ∈ P(Ω): ∥∥∥∇ψ̃∗

ρ̃ −∇ψ∗
ρ

∥∥∥6
L2(ρ)

≤ Cdper2PR4
Ω

M3
P

mP
Varρ(ψ̃∗

ρ̃ − ψ∗
ρ), (6.8)
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where Cd is a constant that only depends on the dimension d. Therefore, using that for
any ρ ∈ SP and ρ̃ ∈ P(Ω),

W2(µP, (∇ψ̃∗
ρ̃)#ρ) = W2((∇ψ∗

ρ)#ρ, (∇ψ̃∗
ρ̃)#ρ) ≤

∥∥∥∇ψ̃∗
ρ̃ −∇ψ∗

ρ

∥∥∥
L2(ρ)

,

the combination of bounds (6.7) and (6.8) with Jensen’s inequality yields:

1

αP

∫
SP×P(Ω)

W2(µP, (∇ψ̃∗
ρ̃)#ρ)dγ(ρ, ρ̃) ≤

(
CdR

5
ΩM

3
Pper

2
P

mPcP

)1/6(W1(P,Q)

αP

)1/6

.

6.3 Stability of push-forwards

We prove the following proposition, which is more general than Proposition 6.9, and which
entails the latter by a direct use of Jensen’s inequality. In this statement, p1 : (x, y) 7→ x
and p2 : (x, y) 7→ y are the projections onto the first and second coordinates respectively.

Proposition 6.12. Let ρ, ρ̃ ∈ P(Ω) and assume that ρ is absolutely continuous with
density bounded above by Mρ ∈ (0,+∞). Let ϕ ∈ C0(Ω) be a convex RΩ-Lipschitz
function. Let γ̃ ∈ P(Ω × Ω) be such that (p1)#γ̃ = ρ̃ and assume that γ̃ is concentrated
on

∂ϕ = {(x, y)|ϕ(x) + ϕ∗(y) = ⟨x|y⟩}.

Then
W2((∇ϕ)#ρ, (p2)#γ̃) ≤ Cd,RΩ,MρW2(ρ, ρ̃)

1/4,

where Cd,RΩ,Mρ = Cd(1 +Mρ)(1 +RΩ)
d+1, with Cd a constant that depends only on d.

Remark 6.13. Whenever ϕ is differentiable ρ̃-almost-everywhere, Proposition 6.12 ensures
the following stability result for the push-forward operation by ∇ϕ:

W2((∇ϕ)#ρ, (∇ϕ)#ρ̃) ≤ Cd,RΩ,L,MρW2(ρ, ρ̃)
1/4.

We will rely on the following lemma, whose proof is deferred to the end of this section.
Note that this proof heavily relies on the proof of Lemma 3.2 of (Carlier et al., 2021).

Lemma 6.14. Let ϕ be a convex Lipschitz function over Rd. Then for any x ∈ Rd and
r > 0,

diam(∂ϕ(B(x, r))) ≤ 12

ωdrd
∥∇ϕ∥L1(B(x,4r)) ,

where ωd denotes the volume of the unit ball of Rd.

We are now ready to prove Proposition 6.12.

Proof of Proposition 6.12. Denote γ̃ = γ̃x ⊗ ρ̃ the disintegration of γ̃ with respect to ρ̃,
i.e. the collection of measures (γ̃x)x∈Ω that satisfy for any function ξ : Ω× Ω→ R,∫

Ω×Ω
ξ(x, y)dγ̃(x, y) =

∫
Ω

∫
Ω
ξ(x, y)dγ̃x(y)dρ̃(x).
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Notice that for ρ̃-almost-every x ∈ Ω, if y ∈ spt(γ̃x), then y ∈ ∂ϕ(x) by assumption
on γ̃. Introduce S : Rd → Rd the optimal transport map from ρ to ρ̃ and the measure
γ = γ̃S(x) ⊗ ρ, that satisfies for any function ξ : Ω× Ω→ R,∫

Ω×Ω
ξ(x, y)dγ(x, y) =

∫
Ω

∫
Ω
ξ(x, y)dγ̃S(x)(y)dρ(x).

The measure γ is a coupling between ρ and (p2)#γ̃, which implies that (∇ϕ, id)#γ is a
coupling between (∇ϕ)#ρ and (p2)#γ̃. We therefore have the bound:

W2
2((∇ϕ)#ρ, (p2)#γ̃) ≤

∫
Ω×Ω
∥∇ϕ(x)− y∥2 dγ(x, y)

=

∫
Ω

∫
Ω
∥∇ϕ(x)− y∥2 dγ̃S(x)(y)dρ(x)

=

∫
x∈Ω

∫
y∈∂ϕ(S(x))

∥∇ϕ(x)− y∥2 dγ̃S(x)(y)dρ(x),

where to get to the last line, we used that for ρ-almost-every x ∈ Ω, if y ∈ spt(γ̃S(x))

then y ∈ ∂ϕ(S(x)). For η ∈ (0, (2RΩ)
3/4], we will find an upper bound on the right-hand

side by splitting the integral over Ω into two integrals: one on Ωη and one on Ωcη, where

Ωη = {x ∈ spt(ρ)| ∥S(x)− x∥2 ≥ η2}, Ωcη = spt(ρ) \ Ωη.

Upper bound on Ωη. The optimal transport map S from ρ to ρ̃ satisfies

∥S − id∥L2(ρ) = W2(ρ, ρ̃).

Then by Markov’s inequality, ρ(Ωη) ≤
W2

2(ρ,ρ̃)
η2

, so that∫
x∈Ωη

∫
y∈∂ϕ(S(x))

∥∇ϕ(x)− y∥2 dγ̃S(x)(y)dρ(x) ≤
∫
x∈Ωη

4R2
Ωdρ(x)

≤
4R2

Ω

η2
W2

2(ρ, ρ̃). (6.9)

Upper bound on Ωcη. By definition of Ωη, for any x ∈ Ωcη, ∥S(x)− x∥ ≤ η, i.e. S(x) ∈
B(x, η). Then for any such x, ∂ϕ(S(x)) ⊂ ∂ϕ(B(x, η)). Therefore for any g ∈ ∂ϕ(x) and
y ∈ ∂ϕ(S(x)), one has

∥g − y∥ ≤ diam (∂ϕ(B(x, η))) ,

which leads to∫
x∈Ωcη

∫
y∈∂ϕ(S(x))

∥∇ϕ(x)− y∥2 dγ̃S(x)(y)dρ(x) ≤
∫
x∈Ωcη

diam (∂ϕ(B(x, η)))2 dρ(x).

(6.10)

For α > 0, introduce Xα = {x ∈ Ωcη | diam (∂ϕ(B(x, η))) ≥ ηα}. We will quantify
ρ(Xα) by finding an upper bound on its covering number. Let (Xα)pack4η ⊂ Xα be a max-
imal (4η)-packing of Xα, i.e. a finite subset of Xα such that for any x, y ∈ (Xα)pack4η , x ̸=
y,B(x, 4η) ∩ B(y, 4η) = ∅ and such that for any z ∈ Xα, there exists x ∈ (Xα)pack4η
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such that B(z, 4η) ∩ B(x, 4η) ̸= ∅. We denote Npack
4η (Xα) the cardinal of (Xα)pack4η . By

definition of Xα, for any x ∈ (Xα)pack4η ⊂ Xα, one has

ηα ≤ diam (∂ϕ(B(x, η))) .

Lemma 6.14 then ensures that for any c ∈ Rd,

ηα ≤ 12

ωdηd
∥∇ϕ− c∥L1(B(x,4η)) . (6.11)

Choosing c = 1
|B(x,4η)|

∫
B(x,4η)∇ϕ(u)du, the Poincaré-Wirtinger inequality on B(x, 4η)

ensures

∥∇ϕ− c∥L1(B(x,4η)) ≤ 4η

∫
B(x,4η)

∥∥D2ϕ(u)
∥∥
1,1

du.

Using that for any positive semi-definite d × d matrix M , ∥M∥1,1 ≤ dtr(M), we then
have

∥∇ϕ− c∥L1(B(x,4η)) ≤ 4ηd

∫
B(x,4η)

∆ϕ(u)du,

where ∆ stands for the Laplace operator. Injecting this last bound into (6.11) yields

ηα ≲
1

ηd−1

∫
B(x,4η)

∆ϕ(u)du,

where ≲ hides multiplicative constants depending on d,Mρ and RΩ. Summing the last
bound over x ∈ (Xα)pack4η then yields

Npack
4η (Xα) ≲ η1−d−α

∑
x∈(Xα)pack4η

∫
B(x,4η)

∆ϕ(u)du

≲ η1−d−α
∫
Ω+B(0,4η)

∆ϕ(u)du

≲ η1−d−α
∫
∂(Ω+B(0,4η))

⟨∇ϕ(u)|nu⟩du,

where nu is the outward pointing unit normal at u ∈ ∂(Ω + B(0, 4η)). Using that
∥∂ϕ∥ ≤ RΩ, one then has

Npack
4η (Xα) ≲ η1−d−α.

We can now upper bound the (8η)-covering number of Xα, denoted N cov
8η (Xα), with its

(4η)-packing number:

N cov
8η (Xα) ≤ Npack

4η (Xα).

Hence for any minimal (8η)-covering of Xα denoted by (Xα)cov8η , one has

ρ(Xα) ≤ ρ

 ⋃
x∈(Xα)cov8η

B(x, 8η)

 ≤ N cov
8η (Xα)Mρωd(8η)

d ≲ η1−α.
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We can finally write∫
x∈Ωcη

diam (∂ϕ(B(x, η)))2 dρ(x) =

∫
x∈Ωcη∩Xα

diam (∂ϕ(B(x, η)))2 dρ(x)

+

∫
x∈Ωcη∩X c

α

diam (∂ϕ(B(x, η)))2 dρ(x)

≤ 4(RΩ)
2ρ(Xα) +

∫
Ωcη∩X c

α

η2αdρ(x)

≲ η1−α + η2α.

Choosing α = 1
3 then yields in (6.10):∫

x∈Ωcη

∫
y∈∂ϕ(S(x))

∥∇ϕ(x)− y∥2 dγ̃S(x)(y)dρ(x) ≲ η2/3.

Combining this last bound with (6.9) leads to

W2
2((∇ϕ)#ρ, (p2)#γ̃) ≲

1

η2
W2

2(ρ, ρ̃) + η2/3.

Setting η = W2(ρ, ρ̃)
3/4 then gives us

W2
2((∇ϕ)#ρ, (p2)#γ̃) ≲ W2(ρ, ρ̃)

1/2.

We now prove Lemma 6.14, which is key to the proof of Proposition 6.12.

Proof of Lemma 6.14. Let x ∈ Rd and r > 0. One has by definition:

diam(∂ϕ(B(x, r))) = max
y,y′∈B(x,r)

max
g∈∂ϕ(y),g′∈∂ϕ(y′)

∥∥g − g′∥∥
≤ max

y,y′∈B(x,r)
max

g∈∂ϕ(y),g′∈∂ϕ(y′)
∥g∥+

∥∥g′∥∥
= 2 max

y∈B(x,r)
max
g∈∂ϕ(y)

∥g∥

= 2 ∥∂ϕ∥L∞(B(x,r)) .

But for any y, y′ ∈ Rd and g ∈ ∂ϕ(y), the convexity of ϕ entails

⟨g|y′ − y⟩ ≤
∣∣ϕ(y′)− ϕ(y)∣∣ .

Therefore, choosing y ∈ B(x, r) and g ∈ ∂ϕ(y) such that ∥∂ϕ∥L∞(B(x,r)) = ∥g∥, one has
for y′ = y + r g

∥g∥ ∈ B(y, r) ⊂ B(x, 2r) the following bound:

r ∥g∥ ≤
∣∣ϕ(y′)− ϕ(y)∣∣ ≤ oscB(x,2r)(ϕ),

where oscK(f) = supu,v∈K |f(u)− f(v)|. We thus have shown

diam(∂ϕ(B(x, r))) ≤ 2

r
oscB(x,2r)(ϕ). (6.12)

We conclude exactly as in the proof of Lemma 3.2 of (Carlier et al., 2021), that we report
here only for completeness: let y0 ∈ argminB(x,2r) ϕ, y1 ∈ argmaxB(x,2r) ϕ, g1 ∈ ∂ϕ(y1).
Then by convexity of ϕ, for any y ∈ Rd and g ∈ ∂ϕ(y) one has

ϕ(y1) + ⟨g1|y − y1⟩ ≤ ϕ(y) ≤ ϕ(y0) + ⟨g|y − y0⟩.
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It follows that

∥g∥ ≥
oscB(x,2r)(ϕ) + ⟨g1|y − y1⟩

∥y − y0∥
.

Introducing Wr(y1, g1) = {y ∈ B(y1, 2r)|⟨g1|y − y1⟩ ≥ 0} ⊂ B(x, 4r), one then has

∥∇ϕ∥L1(B(x,4r)) ≥
∫
Wr(y1,g1)

∥∇ϕ∥dy

≥
∫
Wr(y1,g1)

oscB(x,2r)(ϕ)

∥y − y0∥
dy

≥ oscB(x,2r)(ϕ)

∫
Wr(y1,g1)

1

∥y − y1∥+ ∥y1 − y0∥
dy

≥
oscB(x,2r)(ϕ)

6r

∫
B(y1+r

g1
∥g1∥

,r)
dy

= ωd
rd−1

6
oscB(x,2r)(ϕ),

where ωd denotes the volume of the unit ball of Rd and where we used the fact that
B(y1 + r g1

∥g1∥ , r) ⊂Wr(y1, g1). Plugging this last bound into (6.12) finally yields

diam(∂ϕ(B(x, r))) ≤ 12

ωdrd
∥∇ϕ∥L1(B(x,4r)) .

6.4 Dual formulation

In this final section, we justify the dual formulation we claimed in Proposition 6.1. Note
that we use a very similar approach to the one we used to prove Kantorovich duality for
quadratic optimal transport in Theorem 1.2 of Chapter 1.

Proof of Proposition 6.1. Instead of showing directly the formulation of Proposition 6.1,
we will rather show

(P)P = max

{∫
P(Ω)
⟨ϕcρ|ρ⟩dP(ρ), (ϕρ)ρ ∈ L∞(P;W 1,∞(Ω)),

∫
P(Ω)

ϕρ(·)dP(ρ) = 0

}
,

where for any ρ ∈ P(Ω), ϕcρ denotes the following c-transform of ϕρ:

∀x ∈ Ω, ϕcρ(x) = inf
y∈Ω

1

2
∥x− y∥2 − ϕρ(y).

Such a formulation entails the result of Proposition 6.1 by the change of variable

(ψρ)ρ =

(
∥·∥2

2
− ϕρ

)
ρ

∈ L∞(P;W 1,∞(Ω)).

Duality. Let’s first show that (P)P is equal to the value of the following supremum

(̃P)P := sup

{∫
P(Ω)
⟨ϕcρ|ρ⟩dP(ρ), (ϕρ)ρ ∈ L1(P; C0(Ω)),

∫
P(Ω)

ϕρ(·)dP(ρ) = 0

}
,
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where L1(P; C0(Ω)) denotes the set of P-measurable and Bochner integrable mappings
from P(Ω) to the space (C0(Ω), ∥·∥∞) of continuous function from Ω to R equipped with
the supremum norm. Introduce the functional H : C0(Ω)→ R defined for all φ ∈ C0(Ω)
by

H(φ) = inf

{
−
∫
P(Ω)
⟨ϕcρ|ρ⟩dP(ρ), (ϕρ)ρ ∈ L1(P; C0(Ω)),

∫
P(Ω)

ϕρ(·)dP(ρ) = φ(·)

}
.

Notice then that (̃P)P = −H(0). On the other hand, notice that H has the following
convex conjugate: for ν ∈ P(Ω),

H∗(ν) = sup
{
⟨φ|ν⟩ −H(φ), φ ∈ C0(Ω)

}
= sup

{
⟨φ|ν⟩+

∫
P(Ω)
⟨ϕcρ|ρ⟩dP(ρ), φ ∈ C0(Ω), (ϕρ)ρ ∈ L1(P; C0(Ω)),

∫
P(Ω)

ϕρ(·)dP(ρ) = φ(·)

}

= sup

{∫
P(Ω)
⟨ϕρ|ν⟩dP(ρ) +

∫
P(Ω)
⟨ϕcρ|ρ⟩dP(ρ), (ϕρ)ρ ∈ L1(P; C0(Ω))

}

=

∫
P(Ω)

(
sup

ϕρ∈C0(Ω)

⟨ϕρ|ν⟩+ ⟨ϕcρ|ρ⟩

)
dP(ρ)

=

∫
P(Ω)

1

2
W2

2(ν, ρ)dP(ρ),

where we used the Kantorovich duality formula (see Theorems 1.2 or A.5 or for instance
(Villani, 2008)) to get to the last line. By definition of (P)P we then have

(P)P = inf
ν∈P(Ω)

H∗(ν) = −H∗∗(0).

Therefore, showing that (P)P = (̃P)P corresponds to show that H(0) = H∗∗(0). Since H
is convex (by concavity of the c-transform operation), this will follow from the continuity
of H at 0 for the supremum-norm over C0(Ω) (Proposition 4.1 of (Ekeland and Témam,
1999)). For this, we can first notice that H never takes the value −∞: for any φ ∈ C0(Ω)
and (ϕρ)ρ ∈ L1(P; C0(Ω)) such that

∫
P(Ω) ϕρ(·)dP(ρ) = φ(·), one has

∀ρ ∈ P(Ω), −ϕcρ(x) = sup
y∈Ω

ϕρ(y)−
1

2
∥x− y∥2 ≥ ϕρ(0)−

1

2
∥x∥2 .

If follows that
H(φ) ≥ φ(0)−

∫
P(Ω)

M2(ρ)

2
dP(ρ) > −∞.

On the other hand, notice that H is bounded from above in a neighborhood of 0 in C0(Ω):
let φ ∈ C0(Ω) be such that ∥φ∥∞ ≤ 1. Then for any x ∈ Ω,

φc(x) = inf
y∈Ω

1

2
∥x− y∥2 − φ(y) ≥ inf

y∈Ω

1

2
∥x− y∥2 + inf

y∈Ω
−φ(y) ≥ 0 + 1,

so that −φc(x) ≤ 1. Thus

H(φ) ≤ −
∫
P(Ω)
⟨(φ)c|ρ⟩dP(ρ) ≤ 1.
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A standard convex analysis result (Proposition 2.5 in (Ekeland and Témam, 1999)) then
ensures that H is continuous at 0, so that H(0) = H∗∗(0) and (P)P = (̃P)P.
Restriction to L∞(P;W 1,∞(Ω)). We show here that we can run the supremum (̃P)P
only over L∞(P;W 1,∞(Ω)) instead of L1(P; C0(Ω)), that is

(̃P)P = sup

{∫
P(Ω)
⟨ϕcρ|ρ⟩dP(ρ), (ϕρ)ρ ∈ L∞(P;W 1,∞(Ω)),

∫
P(Ω)

ϕρ(·)dP(ρ) = 0

}
.

Let (ϕρ)ρ ∈ L1(P; C0(Ω)) be an admissible solution to (̃P)P, i.e. (ϕρ)ρ satisfies∫
P(Ω)

ϕρ(·)dP(ρ) = 0. (6.13)

Then we can construct from (ϕρ)ρ another admissible solution (ϕ̃ρ)ρ that belongs to
L∞(P;W 1,∞(Ω)) and that performs better at (̃P)P, i.e. that verifies∫

P(Ω)
⟨ϕ̃cρ|ρ⟩dP(ρ) ≥

∫
P(Ω)
⟨ϕcρ|ρ⟩dP(ρ). (6.14)

Indeed, introduce (ϕ̂ρ)ρ := (ϕccρ )ρ. Then for all ρ ∈ P(Ω), ϕ̂ρ = ϕccρ is 2RΩ-Lipschitz
continuous (as a c-transform over Ω = B(0, RΩ)) and satisfies ϕ̂cρ = ϕcρ and ϕ̂ρ ≥ ϕρ (as
a double c-transform). Using then (6.13), one has that

α(·) :=
∫
P(Ω)

ϕ̂ρ(·)dP(ρ) ≥ 0,

where α is also 2RΩ-Lipschitz. Now denoting ϕ̃ρ = ϕ̂ρ−α for all ρ ∈ P(Ω), the mapping
(ϕ̃ρ)ρ ∈ L1(P; C0(Ω)) is admissible to (̃P)P by construction and satisfies ϕ̃ρ ≤ ϕ̂ρ for all
ρ ∈ P(Ω), so that ϕ̃cρ ≥ ϕ̂cρ = ϕcρ (using that the c-transform is order-reversing). For
each ρ ∈ P(Ω), up to subtracting ϕ̃ρ(0) to ϕ̃ρ (this operation leaves (ϕ̃ρ)ρ admissible to
(̃P)P and does not change its value), one can assume that ϕ̃ρ(0) = 0. Noticing that ϕ̃ρ is
4RΩ-Lipschitz by construction, we thus have the bound∥∥∥ϕ̃ρ∥∥∥

W 1,∞(Ω)
=
∥∥∥ϕ̃ρ∥∥∥

∞
+
∥∥∥∇ϕ̃ρ∥∥∥

∞
≤ 4RΩ(RΩ + 1).

We thus have built an admissible (ϕ̃ρ)ρ ∈ L∞(P;W 1,∞(Ω)) from an admissible (ϕρ)ρ ∈
L1(P; C0(Ω)) that satisfies (6.14), which shows that we can run the supremum (̃P)P only
over L∞(P;W 1,∞(Ω)) instead of L1(P; C0(Ω))
Existence of a maximizer. There now remains to show that the supremum in (̃P)P
can be replaced by a maximum. Let

(
(ϕnρ )ρ

)
n≥1

be a maximizing sequence to (̃P)P, and
assume from what precedes that this sequence belongs to L∞(P;W 1,∞(Ω)) and satisfies
for all n ≥ 0 and ρ ∈ P(Ω),

∥∥ϕnρ∥∥W 1,∞(Ω)
≤ 4RΩ(1 + RΩ). Further assume that this

sequence verifies for all n ≥ 1,∫
P(Ω)
⟨(ϕnρ )c|ρ⟩dP(ρ) ≥ (̃P)P −

1

n
. (6.15)

For any n ≥ 1, the mapping (ρ, x) 7→ ϕnρ (x) is bounded in L2(P ⊗ λ) where λ denotes
the Lebesgue measure over Ω. Therefore, by Banach-Alaoglu theorem, the sequence
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(
(ϕnρ )ρ

)
n≥1

(seen as a sequence in L2(P ⊗ λ)) admits a weakly converging subsequence
in L2(P ⊗ λ), that we do not relabel and for which we denote (ϕ∞ρ )ρ the weak limit in
L2(P⊗λ). Using Mazur’s lemma, we know that there exists a sequence of integers (Nn)n≥1

and coefficients ((λn,k)n≤k≤Nn)n≥1 ≥ 0 satisfying for all n ≥ 1,
∑Nn

k=n λn,k = 1 such that
the sequence

(
(ϕ̄nρ )ρ

)
n≥1

defined for all n ≥ 1 and ρ ∈ P(Ω) by ϕ̄nρ :=
∑Nn

k=n λn,kϕ
k
ρ

converges strongly toward (ϕ∞ρ )ρ in L2(P⊗λ). By concavity of the c-transform operation
and equation (6.15), we then have for all n ≥ 1 the bound∫

P(Ω)
⟨(ϕ̄nρ )c|ρ⟩dP(ρ) ≥

Nn∑
k=n

λn,k

∫
P(Ω)
⟨(ϕkρ)c|ρ⟩dP(ρ)

≥
Nn∑
k=n

λn,k

(
(̃P)P −

1

k

)
≥ (̃P)P −

1

n
. (6.16)

The sequence
(
(ϕ̄nρ )ρ

)
n≥1

is therefore also a maximizing sequence of (̃P)P and it also
satisfies for any n ≥ 1 and ρ ∈ P(Ω) the bound∥∥ϕ̄nρ∥∥W 1,∞(Ω)

≤ 4RΩ(1 +RΩ). (6.17)

Since the sequence
(
(ϕ̄nρ )ρ

)
n≥1

strongly converges to (ϕ∞ρ )ρ in L2(P⊗λ), one can extract a
subsequence (that we do not relabel) such that for P-almost-every ρ ∈ P(Ω), the sequence
(ϕ̄nρ )n≥1 converges to ϕ∞ρ in L2(λ). Using bound (6.17) and Arzelà-Ascoli theorem, we
deduce that for P-almost-every ρ ∈ P(Ω), the sequence (ϕ̄nρ )n≥1 converges uniformly to
ϕ∞ρ in C0(Ω) and that ∥∥ϕ∞ρ ∥∥W 1,∞(Ω)

≤ 4RΩ(1 +RΩ).

In particular, (ϕ∞ρ )ρ belongs to L∞(P;W 1,∞(Ω)) and we have the limit

0 =

∫
P(Ω)

ϕ̄nρ (·)dP(ρ) −−−→n→∞

∫
P(Ω)

ϕ∞ρ (·)dP(ρ),

so that (ϕ∞ρ )ρ is admissible to (̃P)P. Eventually, for P-almost-every ρ ∈ P(Ω), we have
the limit

⟨(ϕ̄nρ )c|ρ⟩ −−−→n→∞
⟨(ϕ∞ρ )c|ρ⟩, (6.18)

so that by Lebesgue’s dominated convergence theorem and bound (6.16),∫
P(Ω)
⟨(ϕ∞ρ )c|ρ⟩dP(ρ) = lim

n→+∞

∫
P(Ω)
⟨(ϕ̄nρ )c|ρ⟩dP(ρ) = (̃P)P,

which proves that (ϕ∞ρ )ρ ∈ L∞(P;W 1,∞(Ω)) is a maximizer for (̃P)P.



Chapter 7

Quantitative stability of Schrödinger
potentials with respect to the

temperature in the semi-discrete
setting

Abstract

This chapter, extracted from (Delalande, 2022), derives nearly tight and
non-asymptotic convergence bounds for solutions of entropic semi-discrete
optimal transport. These bounds quantify the stability of the dual solutions
of the regularized problem (sometimes called Sinkhorn or Schrödinger po-
tentials) with respect to the regularization parameter, for which we ensure a
better than Lipschitz dependence. Such facts may be a first step towards a
mathematical justification of ε-scaling heuristics for the numerical resolution
of regularized semi-discrete optimal transport. These results also entail a
non-asymptotic and tight expansion of the difference between the entropic
and the unregularized costs.

7.1 Introduction

Optimal transport and the distances it defines are now widely acknowledged as important
tools for machine learning (Canas and Rosasco, 2012; Arjovsky et al., 2017; Genevay
et al., 2018; Flamary et al., 2018; Alaux et al., 2019; Gordaliza et al., 2019) and statistics
(Ramdas et al., 2015; Cazelles et al., 2018; Bigot et al., 2019a; Weed and Berthet, 2019).
In these fields, it is also recognized that the original formulation of the transport problem
suffers in general from poor computationability and statistical behavior with respect to
the dimension, and that some form of regularization can be helpful. In this state of mind,
the entropic regularization of the optimal transport problem that we have already studied
in Chapter 4 has proven to be a relevant choice of regularization. Let us recall in this
chapter the formulation of this regularized problem and some of its attractive features.
For two compact subsets X ,Y of Rd, two probability measures ρ ∈ P(X ), µ ∈ P(Y),
and for ε ≥ 0, the quadratic optimal transport problem between ρ and µ with entropic

133
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regularization of parameter ε reads

min
γ∈Γ(ρ,µ)

∫
X×Y

∥x− y∥2 dγ(x, y) + εKL(γ|ρ⊗ µ), (Pε)

where Γ(ρ, µ) denotes the set of couplings between ρ and µ and KL denotes the Kullback-
Leibler divergence or relative entropy (up to an additive term):

KL(γ|ρ⊗ µ) =
∫
X×Y

(
log

(
dγ

dρ⊗ µ
(x, y)

)
− 1

)
dγ(x, y)

if γ ≪ ρ ⊗ µ and +∞ otherwise. When ε = 0, problem (Pε) corresponds to the usual
quadratic optimal transport problem between ρ and µ, and the value of (Pε) defines in
this case the square of the 2-Wasserstein distance W2 between ρ and µ (see Chapter A).
However, choosing ε > 0 in (Pε) has several advantages: first, it turns problem (Pε) in a
ε-strongly-convex minimization problem, which enables the use of fast algorithms for its
resolution (Cuturi, 2013; Altschuler et al., 2017; Dvurechensky et al., 2018; Peyré and
Cuturi, 2019; Schmitzer, 2019). Second, problem (Pε) enjoys better statistical properties
when ε > 0 rather than when ε = 0, with improved sample complexity for its value
(Genevay et al., 2019; Mena and Niles-Weed, 2019) and better guarantees when using
stochastic optimization algorithms for its resolution (Genevay et al., 2016; Bercu and
Bigot, 2020). Thus, with ε > 0, introducing the quantity

W2,ε(ρ, µ) =

(∫
X×Y

∥x− y∥2 dγ(Pε)(x, y)
)1/2

,

where γ(Pε) is the solution to (Pε), one may hope that W2,ε approximates W2 well when ε
is not too large. This fact has been the object of a long line of works, going to very recent
developments. The convergence of W2,ε to W2 as ε goes to zero is established in general
settings (Mikami, 2004; Léonard, 2012; Nutz and Wiesel, 2021; Bernton et al., 2022), and
it has been quantified in more specific settings. In the continuous setting where both ρ
and µ are absolutely continuous, (Adams et al., 2011; Duong et al., 2013; Erbar et al.,
2015; Pal, 2019) gave first order asymptotics for W2,ε in terms of ε and thus showed in
this setting an asymptotic linear rate of convergence of W2,ε to W2. These results were
recently refined in (Conforti and Tamanini, 2021) where second order asymptotics have
been given: the authors of (Conforti and Tamanini, 2021) have shown in particular that
if ρ and µ are absolutely continuous with bounded densities, then

W2
2,ε(ρ, µ) + εKL(γ(Pε)|ρ⊗ µ) = W2

2(ρ, µ)−
ε

2
(KL(ρ|λ) + KL(µ|λ))− ε

2
d log(πε)

+
ε2

16
I(ρ, µ) + o(ε2),

where λ denotes the Lebesgue measure on Rd and I(ρ, µ) is the integrated Fisher infor-
mation along the 2-Wasserstein geodesic connecting ρ and µ. In contrast, in the discrete
setting where both ρ and µ are finitely supported, the rate of convergence of W2,ε to W2

was shown to be asymptotically exponential in (Cominetti and Martín, 1994) in the con-
text of the analysis of exponentially penalized finite dimensional linear programs. This
result was then refined with a tight non-asymptotic analysis in (Weed, 2018), where it
was shown that for ρ and µ discrete, there exists (explicit) positive constants Cρ,µ, C̃ρ,µ
depending only on ρ and µ such that for any ε > 0,

0 ≤W2
2,ε(ρ, µ)−W2

2(ρ, µ) ≤ Cρ,µ exp(−C̃ρ,µ/ε).
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Notably, such non-asymptotic result may allow to choose ε in terms of the data in order to
compute the unregularized cost W2 to a wanted precision from an entropic approximation
W2,ε.

Very different regimes are thus observed between the continuous setting (with an
asymptotic linear convergence rate) and the discrete setting (with a non-asymptotic
exponential convergence rate). However, very few was known – until recently (Altschuler
et al., 2022) – on the intermediate setting of semi-discrete optimal transport, where ρ
is absolutely continuous and µ is finitely supported, that is of particular importance in
some applications. In statistics, it corresponds to the case where one wants to compare
an empirical sample to a given probability measures, and it can serve to extend notions of
quantiles and ranks to multivariate measures (Chernozhukov et al., 2017). In numerical
analysis, the semi-discrete setting gives a natural framework to approximate the solution
of the optimal transport problem between a probability density ρ and a probability
measure µ that consists in approximating µ by a sequence of measures (µN )N≥1 with
finite support such that limN→+∞W2(µ, µN ) = 0 (Oliker and Prussner, 1989; Cullen
et al., 1991; Gangbo and McCann, 1996; Caffarelli et al., 1999; Mirebeau, 2015). Finally
in image processing, semi-discrete transport has proven useful for texture synthesis and
style transfer (Galerne et al., 2017, 2018; Leclaire and Rabin, 2020). We thus focus
in this chapter on the semi-discrete setting, and show that we can improve the recent
asymptotic bounds given in (Altschuler et al., 2022) under slightly stronger regularity
assumptions on the source measure. In particular, we produce a non-asymptotic analysis
of the dual solutions to problem (Pε) in terms of ε, which may be important in itself
for the resolution of semi-discrete optimal transport using ε-scaling techniques. We then
deduce non-asymptotic bounds for W2,ε in terms of ε in this semi-discrete framework.

Outline. Section 7.2 succinctly recalls elements of semi-discrete (entropic) optimal
transport from Chapters 2 and 4 and state our main results. Section 7.3 derives the
ODE from which starts the proof of our main bound. This ODE presents two terms
that both involve the entropic semi-discrete Kantorovich functional of Chapter 4. The
strong-convexity estimate of Chapter 4 together with another estimate derived in Sec-
tion 7.4 then allow to prove our main bound. This main bound admits two corollaries
giving rates of convergences of entropic semi-discrete solutions to their non-regularized
counterpart (proven in Section 7.5) and rates of convergence of the entropic cost to the
classical cost (proven Section 7.6). Section 7.7 finally illustrates our theoretical results
on simple one-dimensional numerical examples.

7.2 Convergence bounds for semi-discrete entropic optimal
transport

7.2.1 Semi-discrete (Entropic) Optimal Transport

Let X be a compact subset of Rd and ρ ∈ P(X ) be an absolutely continuous probability
measure on X . Let Y = {y1, . . . , yN} ⊂ Rd be a set of N points in Rd and let σ be the
counting measure associated to this set, i.e. σ =

∑N
i=1 δyi . Let µ =

∑N
i=1 µiδyi ∈ P(Y)

where for all i, µi ≥ µ > 0. Note that we will denote RX , RY > 0 the smallest constants
such that the X ⊂ B(0, RX ),Y ⊂ B(0, RY) respectively, as well as diam(X ), diam(Y)
the respective diameter of X ,Y.
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We noticed in Chapters 1 and 4 that developing the square ∥x− y∥2 in (Pε) and
using that γ belongs to Γ(ρ, µ), this problem is equivalent to the following regularized
maximum correlation problem:

max
γ∈Γ(ρ,µ)

∫
X×Y
⟨x|y⟩dγ(x, y)− εKL(γ|ρ⊗ σ), (P′

ε)

with the relation (P2ε) =M2(ρ) +M2(µ)− 2εH(µ)− 2× (P′
ε), where M2(·) denotes the

second moment of a probability measure andH(·) its Shannon entropy. By either ε-strong
concavity (when ε > 0) or Brenier’s theorem (Brenier, 1991) (when ε = 0, using that
ρ is absolutely continuous), we can ensure that problem (P′

ε) admits a unique solution
that we denote γε. Moreover, we know from Chapters 1, 2 and 4 that (P′

ε) admits the
following (semi-)dual formulation and strong duality holds (see also for instance Sections
2 of (Genevay et al., 2016; Bercu and Bigot, 2020)):

min
ψ∈RN

∫
X
ψc,εdρ+ ⟨ψ|µ⟩+ ε,

where µ is conflated with the vector (µi)i=1,...,N ∈ (R∗
+)

N and where ψc,ε corresponds to
the (c, ε)-transform of ψ when ε > 0 and to its Legendre transform when ε = 0: ∀x ∈ X ,

ψc,ε(x) =

{
ε log

(∑N
i=1 e

⟨x|yi⟩−ψi
ε

)
if ε > 0,

maxi=1,...,N ⟨x|yi⟩ −ψi = ψ∗(x) if ε = 0.

This dual problem is invariant to addition of constant vectors to ψ. We fix this invariance
by adding the constraint that ⟨ψ|1N ⟩ = 0 without any loss of generality, where 1N
denotes the all-ones vector of RN . As in Section 2.2 of Chapter 2 and Section 4.3 of
Chapter 4, introducing the semi-discrete (entropic) Kantorovich functional Kε

ρ : ψ 7→∫
X ψ

c,εdρ+ ε, one can then rewrite the dual formulation as

min
ψ∈RN ,⟨ψ|1N ⟩=0

Kε
ρ(ψ) + ⟨ψ|µ⟩. (Dε)

From Sections 2.2 and 4.3 we know that the functional Kε
ρ is convex on RN and strictly

convex on (1N )
⊤: problem (Dε) admits a unique solution denoted ψε (that we call later

on a potential). We also know from Sections 2.2 and 4.3 that Kε
ρ is C2 on RN , with

first and second order derivatives available in (2.3), (2.5), (4.7) and (4.8). The unique
solution ψε of (Dε) thus verifies the following first-order condition:

∇Kε
ρ(ψ

ε) = −µ. (7.1)

More precisely, this first-order condition means that for all i ∈ {1, . . . , N}, if ε > 0,

µ({yi}) =
∫
x∈X

e
⟨x|yi⟩−ψ

ε
i−(ψε)c,ε(x)

ε dρ(x) (7.2)

and if ε = 0, µ({yi}) =
∫
x∈X 1Lagi(ψ

0)(x)dρ(x), where for any ψ ∈ RN , Lagi(ψ) denotes
the i-th Laguerre cell w.r.t. ψ:

Lagi(ψ) = {x ∈ X |∀j, ⟨x|yi⟩ −ψi ≥ ⟨x|yj⟩ −ψj}.

Note that the Laguerre cells are convex polytopes intersected with X and they define a
tesselation of X :

⋃
i Lagi(ψ

ε) = X .
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Finally, the primal-dual relationship that links the solution ψε of problem (Dε) to the
solution γε of problem (P′

ε) is the following: for all Borel set A ⊂ X , all i ∈ {1, . . . , N},
if ε > 0,

γε(A, {yi}) =
∫
x∈A

e
⟨x|yi⟩−ψ

ε
i−(ψε)c,ε(x)

ε dρ(x), (7.3)

and if ε = 0, γ0(A, {yi}) =
∫
x∈A 1Lagi(ψ

0)(x)dρ(x).

7.2.2 Non-asymptotic Behavior of Potentials

The authors of (Altschuler et al., 2022) recently tackled the question of the rate of
convergence of W2,ε to W2 in the specific semi-discrete setting. They showed that,
mainly assuming that the absolutely continuous source ρ is such that the interior of its
support is connected, the boundary of its support has zero Lebesgue measure, and ρ has
positive density on the interior of its support, then the following asymptotic expansion
holds (Theorem 1.1 in (Altschuler et al., 2022)):

W2
2,ε(ρ, µ) = W2

2(ρ, µ) + ε2
π2

12

∑
i<j

wij
∥yi − yj∥

+ o(ε2),

where wij =
∫
Lagi(ψ

0)∩Lagj(ψ0) ρ(x)dH
d−1(x). In order to show this, they demonstrated

that the convergence of ψε to ψ0 as ε goes to 0 happens at a rate faster that ε (Theorem
1.3 in (Altschuler et al., 2022)):

lim
ε→0

1

ε
(ψε −ψ0) = ψ̇ε

∣∣∣
ε=0

= 0,

where ψ̇ε = ∂
∂εψ

ε. As discussed in (Altschuler et al., 2022), this result is unexpected
because false in general optimal transport and stems from the particular setting of semi-
discrete optimal transport with a positive source. Quoting (Altschuler et al., 2022), we
notice indeed that when ρ and µ are discrete, the quantity 1

ε (ψ
ε −ψ0) may converge to

a non-zero limit in general (see e.g. Proposition 5.5 of (Cominetti and Martín, 1994)).
The authors of (Altschuler et al., 2022) also notice that the assumption that ρ is positive
on the interior of its support is essential for this asymptotic result to hold, and that if ρ
does not satisfy this assumption then is is possible to find examples where 1

ε (ψ
ε − ψ0)

may diverge (taking for instance ρ decaying to zero at different rates on opposite sides
of one of the hyperplane boundaries Lagi(ψ

0) ∩ Lagj(ψ
0)).

In this work, we show that the result of Theorem 1.3 in (Altschuler et al., 2022) can be
extended and quantified to get a non-asymptotic control of ψ̇ε, i.e. not only when ε→ 0
but for ε ∈ R∗

+. As in (Altschuler et al., 2022), we notice that regularity assumptions
on the source measure ρ are necessary to proceed with such controls. In particular, we
make the following assumption (stronger than the one in (Altschuler et al., 2022)):

Assumption 7.1. The compact set X is convex. The source measure ρ ∈ P(X ) is
absolutely continuous and its density (also denoted ρ), is bounded away from zero and
infinity, i.e. there exist mρ,Mρ such that on X ,

0 < mρ ≤ ρ ≤Mρ < +∞.



138 CHAPTER 7. STABILITY OF SCHRÖDINGER POTENTIALS

Under this assumption and an Hölder continuity assumption on the density of ρ, we show
the following behavior:

Theorem 7.2. Let ρ ∈ P(X ) satisfying Assumption 7.1 with an α-Hölder continuous
density for some α ∈ (0, 1] and let µ ∈ P(Y). Then for any ε ≤ 1, α′ ∈ (0, α), the
solutions ψε to problem (Dε) verify: ∥∥∥ψ̇ε∥∥∥

2
≲ εα

′
,

where ψ̇ε = ∂
∂εψ

ε and ≲ hides multiplicative constants that depend on X , ρ,Y, µ. Besides,
for any ε ≥ 1, ∥∥∥ψ̇ε∥∥∥

2
≲ 1

Remark 7.3 (Constants). A (very) rough upper bound on the hidden constants is given
by the quantity

N

µ

Mρ

mρ
eRYdiam(X )

(
NRXdiam(Y) + log

1

µ

+N2Mρdiam(X )d−1(1 +
Cρ
δα

+RXdiam(Y) + log
1

µ
)

+N3Mρ
diam(X )d−2diam(Y)4

cos(θ/2)δ4
(1 +RXdiam(Y) + log

1

µ
)

)
,

up to a multiplicative constant that depends only on the dimension. In this formula, Cρ
is such that for any x, x′ ∈ X , |ρ(x)− ρ(x′)| ≤ Cρ ∥x− x′∥α, δ is the minimum distance
between two points in Y and θ is the maximum angle formed by three not-aligned points
in Y. The dependence on N is rather bad and it may be improved by replacing the
N2 term with N times the maximum number of (d − 1)-facets a Laguerre cell has in
the tessellation

⋃
i Lagi(ψ

0) and the N3 term with N times the maximum number of
(d− 2)-facets a Laguerre cell has in this tessellation.

Remark 7.4 (Assumptions on the source measure). The source measure ρ is assumed to
satisfy some restrictive regularity assumptions, namely it should be at least absolutely
continuous with bounded density supported on a compact convex set. These assumptions
are required essentially to be able to apply at some point the strong convexity estimate
of Theorem 4.4 from Chapter 4. We note that the convexity assumption made on the
support of ρ may be relaxed to some extent as in Section 1.4: the bound of Theorem 7.2
holds more generally if ρ is absolutely continuous with bounded density supported on a
compact set made of a finite union of convex sets and it satisfies a Poincaré-Wirtinger
inequality.

The behavior of Theorem 7.2 is a consequence of the analysis of an ODE satisfied by the
map ε 7→ ψε, and it is proven in Section 7.3. An immediate consequence of this result
concerns the quantitative stability of the mapping ε 7→ ψε. It also gives quantitative
convergence results for ψε, (ψε)c,ε and γε toward their different limits as ε goes to zero
– results that are reminiscent of the asymptotic ones of (Cominetti and Martín, 1994)
in the study of solutions of exponentially penalized finite dimensional linear programs.
The proof of the following corollary follows rather directly from Theorem 7.2 and it is
deferred to Section 7.5.
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Corollary 7.5. Let 0 < ε′ ≤ ε ≤ 1. Under assumptions of Theorem 7.2, denote ψε′ ,ψε

the solutions to problem (Dε) with regularization ε′, ε respectively. Then for any α′ ∈
(0, α), ∥∥∥ψε −ψε′∥∥∥

∞
≲ εα

′
(ε− ε′).

In particular, letting ε′ go to 0 yields∥∥ψε −ψ0
∥∥
∞ ≲ ε1+α

′
,∥∥(ψε)c,ε − (ψ0)∗

∥∥
∞ ≲ ε.

Additionally, for ρ-a.e. x ∈ X ,∣∣(ψε)c,ε(x)− (ψ0)∗(x)
∣∣ ≲ ε1+α

′
,∣∣γε(x, ·)− γ0(x, ·)∣∣ ≲ e−cx/ε,

where cx = mini∈{1,...,N}{(ψ0)∗(x)− ⟨x|yi⟩+ψ0
i | ⟨x|yi⟩ −ψ0

i ̸= (ψ0)∗(x)} > 0.

Remark 7.6 (ε-scaling). Corollary 7.5 may be a first step, in the semi-discrete context,
towards a mathematical justification of ε-scaling or ε-scheduling techniques used in the
numerical resolution of optimal transport. Such techniques, reported for instance in
(Kosowsky and Yuille, 1994; Schmitzer, 2019; Feydy, 2020) in the context of Sinkhorn’s
algorithm for solving the assignment or discrete optimal transport problems using en-
tropic regularization, are used to reduce the number of iterations necessary to compute
a regularized solution. They consist in solving (Pε) with a starting large regularization
parameter ε0, and then gradually decrease the regularization parameter over the course
of the optimization, with a geometric decrease – typically, εk+1 = εk/2. The idea is that
ψε

k (or an approximation of it) is supposed to be a good starting point for an optimiza-
tion algorithm that aims at estimating the solution ψεk+1 . This technique was introduced
for Bertsekas’ auction algorithm (Bertsekas, 1981; Bertsekas and Eckstein, 1988) for the
resolution of the assignment problem, and it proved to reduce the worst case complexity
from O

(
N2

ε

)
to O

(
N3 log

(
1
ε

))
in order to get an ε-approximate solution, where N de-

notes the number of agents/tasks. Although successful in practice, similar reduction of
the worst-case complexity of Sinkhorn’s algorithm using the ε-scaling strategy could not
be proved, see the discussions in (Schmitzer, 2019; Feydy, 2020) for more details.
Remark 7.7 (Exponential convergence of γε). The convergence of γε(x, yi) to γ0(x, yi) at
the rate e−cx/ε for ρ-a.e. x and i ∈ {1, . . . , N} matches in our semi-discrete setting the
result of (Bernton et al., 2022) that showed this rate of convergence, only asymptotically
and for (x, yi) not in the support of γ0, but in a much more general setting.

7.2.3 Non-asymptotic Expansion of the Difference of Costs

Another consequence of the new bounds of Theorem 7.2 for ε ≤ 1 is an improvement of
the asymptotic result on the convergence of the difference of costs proven in (Altschuler
et al., 2022), to the following tight non-asymptotic result:

Theorem 7.8. Under assumptions of Theorem 7.2, for any α′ ∈ (0, α) and ε ≤ 1,∣∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)− ε2
π2

12

∑
i<j

wij
∥yi − yj∥

∣∣∣∣∣∣ ≲ ε2+α
′
.

This result and its tightness are proven in Section 7.6.
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7.3 A governing ODE

Similarly to (Cominetti and Martín, 1994), we show Theorem 7.2 by leveraging the
fact that ε 7→ ψε satisfies a specific ODE that is deduced from the stationary equation
(7.1). Let’s fix ε > 0 and recall in this case the expression of the entropic semi-discrete
Kantorovich’s functional Kε

ρ : RN → R: for all ψ ∈ RN ,

Kε
ρ(ψ) =

∫
X
ε log

(
N∑
i=1

exp

(
⟨x|yi⟩ −ψi

ε

))
dρ(x) + ε. (7.4)

From Lemma 4.2, we know that Kε
ρ is a C2 function from RN to R. Its derivatives when

evaluated in ψ ∈ RN read from equations (4.7), (4.8):

∇Kε
ρ(ψ) = −Ex∼ργεx(ψ),

∇2Kε
ρ(ψ) =

1

ε
Ex∼ρ

(
diag(γεx(ψ))− γεx(ψ)γεx(ψ)⊤

)
,

where for any x ∈ X and ψ ∈ RN , γεx(ψ) is a vector of RN whose components read for
all i ∈ {1, . . . , N}

γεx(ψ)i =
exp

(
⟨x|yi⟩−ψi

ε

)
∑N

j=1 exp
(
⟨x|yj⟩−ψj

ε

) . (7.5)

As noticed in Section 4.3, one can interpret x 7→ γεx(ψ)i as a smoothed version of the
indicator function associated to the i-th Laguerre cell of ψ: it represents the ratio of
mass sent from x to yi proposed by the candidate solution ψ to problem (Dε). One can
also easily prove that for any ψ ∈ RN , ε 7→ ∇Kε

ρ(ψ) is a C1 function from R∗
+ to RN ,

with the formula

∂

∂ε
(∇Kε

ρ)(ψ) =
1

ε
Ex∼ρ

(
diag(γεx(ψ)) log γ

ε
x(ψ)− γεx(ψ)γεx(ψ)⊤ log γεx(ψ)

)
. (7.6)

We can then show:

Proposition 7.9. For any ε ≥ 0, denote ψε the solution to problem (Dε). The mapping
ε 7→ ψε is a C1 function from R∗

+ to (1N )
⊥ that satisfies for any ε > 0 the ODE

∇2Kε
ρ(ψ

ε)ψ̇ε +
∂

∂ε
(∇Kε

ρ)(ψ
ε) = 0. (7.7)

Proof. Since for any ε > 0, ψ 7→ Kε
ρ(ψ) is a C2 convex function from RN to R, one can

characterize ψε with the first order condition (7.1):

∇Kε
ρ(ψ

ε) = −µ.

Using that ψ 7→ Kε
ρ(ψ) is C2 on RN , ε 7→ ∇Kε

ρ(ψ) is C1 on R+
∗ , and that Kε

ρ is strictly
convex on (1N )

⊥ (see Section 4.3), the implicit function theorem asserts that ε 7→ ψε is
a C1 function from R∗

+ to (1N )
⊥. We can therefore differentiate the stationary equation

(7.1) with respect to ε and obtain that ψε satisfies ODE (7.7).
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Using (7.7), one can see that controlling ||ψ̇ε|| amounts to finding a lower bound on
the p.s.d. matrix ∇2Kε

ρ(ψ
ε) and an upper bound on the second term ∂

∂ε(∇K
ε
ρ)(ψ

ε). The
strong-convexity estimate of Theorem 4.4 proven in Chapter 4 readily give the first lower
bound. Let’s recall the statement of this result here, specialized to the case ψ = ψε:

Theorem (Theorem 4.4). Let ρ ∈ P(X ) satisfying Assumption 7.1 and let µ ∈ P(Y).
Then for any ε > 0, the solution ψε to problem (Dε) verifies for any v ∈ RN

Varµ(v) ≤
(
eRYdiam(X )Mρ

mρ
+ ε

)
⟨v|∇2Kε

ρ(ψ
ε)v⟩.

Remark 7.10 (Dependence on ε). We already know from Chapter 4 that this estimate
allows to recover as ε → 0 the similar strong-convexity estimate of Chapter 3 for the
unregularized Kantorovich functional. This estimate may also be compared to two other
similar strong-convexity estimates for entropic optimal transport, found in Theorem 4
of (Luise et al., 2019) (in the discrete context) and in Lemma A.1 of (Bercu and Bigot,
2020) (that is not explicit) that both diverge as ε goes to zero. Note also that as ε goes
to ∞, our estimate deteriorates: in this limit, Kε

ρ gets flat around its minimum.

The second control we derive in this chapter gives a uniform bound on the second term
of ODE (7.7). It is proven in Section 7.4.

Theorem 7.11. Let ρ ∈ P(X ) satisfying Assumption 7.1 with an α-Hölder continuous
density for some α ∈ (0, 1) and let µ ∈ P(Y). Then for any ε ≤ 1, α′ ∈ (0, α), the
solutions ψε to problem (Dε) verify:∥∥∥∥ ∂∂ε(∇Kε

ρ)(ψ
ε)

∥∥∥∥
∞

≲ εα
′
,

where ≲ hides multiplicative constants that depend on X , ρ,Y, µ. Besides, for any ε ≥ 1,∥∥∥∥ ∂∂ε(∇Kε
ρ)(ψ

ε)

∥∥∥∥
∞

≲
1

ε
.

With these results, the proof of Theorem 7.2 falls directly.

Proof of Theorem 7.2. For any ε > 0, we can apply Proposition 7.9 to ψε and observe
the relation

∇2Kε
ρ(ψ

ε)ψ̇ε = − ∂

∂ε
(∇Kε

ρ)(ψ
ε).

Taking the scalar product of the last expression with ψ̇ε this gives:

⟨ψ̇ε|∇2Kε
ρ(ψ

ε)ψ̇ε⟩ = −⟨ψ̇ε| ∂
∂ε

(∇Kε
ρ)(ψ

ε)⟩.

Applying Theorem 4.4 with v = ψ̇ε ensures that

Varµ(ψ̇ε) ≤ −
(
eRYdiam(X )Mρ

mρ
+ ε

)
⟨ψ̇ε| ∂

∂ε
(∇Kε

ρ)(ψ
ε)⟩. (7.8)
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Denote µ > 0 a positive real such that for all i ∈ {1, . . . , N}, µ(yi) ≥ µ. Notice then that
the facts that µ ≥ µ1N and that ⟨ψ̇ε|1N ⟩ = 0 (because ⟨ψε|1N ⟩ = 0) entail

Varµ(ψ̇ε) = min
m∈R

∥∥∥ψ̇ε −m1N∥∥∥2
L2(µ)

≥ µmin
m∈R

∥∥∥ψ̇ε −m1N∥∥∥2
2
= µ

∥∥∥ψ̇ε∥∥∥2
2
.

Using this inequality together with the Cauchy-Schwartz inequality in equation (7.8) we
thus have ∥∥∥ψ̇ε∥∥∥

2
µ ≤

(
eRYdiam(X )Mρ

mρ
+ ε

)∥∥∥∥ ∂∂ε(∇Kε
ρ)(ψ

ε)

∥∥∥∥
2

≤ N
(
eRYdiam(X )Mρ

mρ
+ ε

)∥∥∥∥ ∂∂ε(∇Kε
ρ)(ψ

ε)

∥∥∥∥
∞
.

Applying Theorem 7.11 to the last inequality yields the wanted result.

7.4 Proof of Theorem 7.11

In this section, we prove Theorem 7.11 that gives a uniform bound on the second term
∂
∂ε(∇K

ε
ρ)(ψ

ε) ∈ RN in ODE (7.7). For simplicity, we will use γεx instead of γεx(ψε) since
ψε will be the only potential of interest. For any j ∈ {1, . . . , N}, we introduce the
function

f εj : x ∈ X 7→ ⟨x|yj⟩ −ψεj ∈ R.

Notice that for any j ∈ {1, . . . , N}, γεx,j satisfies the following equality and inequality:

γεx,j =
exp(

fεj (x)

ε )∑
k exp(

fεk(x)

ε )
≤ exp

(
f εj (x)−maxℓ f

ε
ℓ (x)

ε

)
.

Finding a uniform bound on the second term of (7.7) then consists in finding a bound
for any i ∈ {1, . . . , N} on the quantity

[
∂

∂ε
(∇Kε

ρ)(ψ
ε)]i =

∫
X

1

ε
[(diag(γεx)− γεx(γεx)⊤) log γεx]idρ(x)

=

∫
X

∑
j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,idρ(x). (7.9)

Recall that the first order condition (7.2) entails that e
ψεi
ε µi =

∫
X e

⟨x|yi⟩−(ψε)c,ε(x)

ε dρ(x),

which ensures
∣∣∣ψεi −ψεj ∣∣∣ ≤ RX |yi − yj | + ε

∣∣∣log( µiµj )∣∣∣ (see e.g. the proof of Proposition
7.13). Thus for any x ∈ X and j ∈ {1, . . . , N},∣∣f εi (x)− f εj (x)∣∣ ≤ 2RXdiam(Y) + ε

∣∣log(µ)∣∣ .
Hence for ε ≥ 1, ∣∣∣∣[ ∂∂ε(∇Kε

ρ)(ψ)]i

∣∣∣∣ ≲ 1

ε
.
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We now look for a more informative bound in the limit ε→ 0. The quantity (7.9) being
an integral over X , it will be in our interest to partition X into different subdomains
where we can control the integrand. To this end, the Laguerre tessellation

⋃
i Lagi(ψ

ε)
already provides a first interesting partition. Recall the definition of the Laguerre cells
with our new notation:

Lagi(ψ
ε) = {x ∈ X |∀j, f εi (x) ≥ f εj (x)}.

Figure 7.1 gives an illustration of Laguerre cells, where the boundary of those cells are
indicated by the plain black lines. In the control of (7.9), we will see that for x in the
interior of Lagi(ψ

ε), γεx,j is very small for any j ̸= i, and conversely for x far from
Lagi(ψ

ε), γεx,i is very small. We will thus introduce two sets of points X εi,η,+,X εi,η,−
corresponding respectively to the points of Lagi(ψ

ε) and X \ Lagi(ψε) that are at a
distance at least η from the boundary of Lagi(ψε). These sets are illustrated in Figure
7.1 in green and blue respectively. Now for x close from the boundary of Lagi(ψε) (i.e.
x ∈ X \ (X εi,η,+∪X εi,η,−), we will see that γεx,i cannot be too small and there always exists
a j ̸= i such that γεx,j is not small neither. A finer treatment of those points close from
the boundary of Lagi(ψ

ε) has to be carried out. For some ζ > 0, we will first define
a set Aεi,η,ζ of points that lie near the intersection between Lagi(ψ

ε) and another cell
Lagj(ψ

ε), but that are at a distance at least ∼ ζ from the other cells (i.e. Aεi,η,ζ excludes
the corners of Lagi(ψε)) . This set is represented in yellow in Figure 7.1. On this set,
only γεx,i and γεx,j are not small and we show that their contributions to integral (7.9)
get compensated by symmetry w.r.t. the interface Lagi(ψ

ε)∩Lagj(ψε). Finally, we will
denote the rest of X by Bε

i,η,ζ = X \ (X εi,η,+ ∪X εi,η,− ∪Aεi,η,ζ): this set corresponds to the
areas in red in Figure 7.1. We will control (7.9) on this set by leveraging two facts: its
points are close from Lagi(ψ

ε) and its volume scales as ∼ ζ2.

ζ

ζ

η

η

yi

yj

ζ

ζ

Figure 7.1: Partition of X : X εi,η,+ is in green, X εi,η,− is in blue, Aεi,η,ζ is in yellow and
Bε
i,η,ζ is in red.

We make precise the definitions of the above mentioned sets in the proof of the
following proposition, that allows to get the following bound:

Proposition 7.12. Under assumptions of Theorem 7.11, for 0 < ε ≤ 1, i ∈ {1, . . . , N}
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and for any η, ζ > 0,∣∣∣∣[ ∂∂ε(∇Kε
ρ)(ψ)]i

∣∣∣∣ ≲ 1

ε2
e−η/ε +

η2+α

ε2
+
ζ2

ε2

(
η + e−η/ε

)
+

1

ε2
e−ζ̃/ε

(
η + εηeη/ε − ε2(eη/ε − 1)

)
,

where ζ̃ = ζδ − diam(Y)2

δ η and δ = min
i ̸=j
∥yi − yj∥ > 0.

Before proving Proposition 7.12, let us mention that the proof of the "ε ≤ 1" side of
Theorem 7.11 follows from this proposition and an arbitrage on the quantities ζ, η:

Proof of Theorem 7.11. Here we assume that ε ≤ 1. In the inequality on
∣∣[ ∂∂ε(∇Kε

ρ)(ψ)]i
∣∣

provided by Proposition 7.12, we set ζ = η
δ

(
diam(Y)2

δ + 2
)

for some η > 0. This yields∣∣∣∣[ ∂∂ε(∇Kε
ρ)(ψ)]i

∣∣∣∣ ≲ η2+α + η3

ε2
+
e−η/ε

ε2

(
1 + η2 + εη − ε2 + (η + ε2)e−η/ε

)
.

Then, for any β ∈ ( 2
2+α , 1), choosing η = εβ yields∣∣∣∣[ ∂∂ε(∇Kε

ρ)(ψ)]i

∣∣∣∣ ≲ ε(2+α)β−2 +
e−1/ε1−β

ε2
.

With α′ = (2 + α)β − 2, we get that for any α′ ∈ (0, α),∣∣∣∣[ ∂∂ε(∇Kε
ρ)(ψ)]i

∣∣∣∣ ≲ εα
′
+
e−1/ε

α−α′
2+α

ε2
≲ εα

′
.

Proof of Proposition 7.12. We introduce for any i ∈ {1, . . . , N} and parameter η > 0 the
sets:

X εi,η,+ = {x ∈ Lagi(ψ
ε)|∀j ̸= i,

f εi (x)− f εj (x)
∥yi − yj∥

≥ η},

X εi,η,− = {x ∈ X |∀j ∈ argmax
ℓ
f εℓ (x),

f εj (x)− f εi (x)
∥yj − yi∥

≥ η},

that correspond respectively to the points of Lagi(ψε),X \Lagi(ψε) that are at a distance
at least η from the boundary of Lagi(ψε) and that are illustrated in green and in blue in
Figure 7.1. We then define for any j ̸= i the common boundary between Lagi(ψ

ε) and
Lagj(ψ

ε):
Hij = Lagi(ψ

ε) ∩ Lagj(ψ
ε).

Next, for a parameter ζ > 0, define the set of points of Hij that are at a distance at least
ζ from the other Laguerre cells:

H−ζ
ij = {x0 ∈ Hij |∀k ̸= i, j, f εi (x

0) = f εj (x
0) ≥ f εk(x0) + ζmax(∥yi − yk∥ , ∥yj − yk∥)}.

Then define

Aεi,η,ζ =
⋃
j ̸=i
{x0 + tdij , x

0 ∈ H−ζ
ij , t ∈ [−η ∥yi − yj∥ ,+η ∥yi − yj∥]}

where dij =
yi−yj

∥yi−yj∥2
. This set corresponds to the areas in yellow in Figure 7.1. Define

finally Bε
i,η,ζ = X \ (X εi,η,+ ∪ X εi,η,− ∪ Aεi,η,ζ): this set corresponds to the areas in red in

Figure 7.1.
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Control on X εi,η,+. For x ∈ X εi,η,+, we have for any j ̸= i,

γεx,j ≤ exp

(
f εj (x)− f εi (x)

ε

)
≤ e−η∥yi−yj∥/ε ≤ e−ηδ/ε.

This gives in equation (7.9) the control

∀x ∈ X εi,η,+,
N∑

j=1,j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,i ≲

1

ε2
e−ηδ/ε ≲

1

ε2
e−η/ε. (7.10)

Control on X εi,η,−. For x ∈ X εi,η,−, we have

γεx,i ≤ exp

(
f εi (x)−maxj f

ε
j (x)

ε

)
≤ e−ηδ/ε.

This gives in equation (7.9) the control

∀x ∈ X εi,η,+,
N∑

j=1,j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,i ≲

1

ε2
e−η/ε. (7.11)

Control on Aεi,η,ζ . For any x ∈ Aεi,η,ζ , there exists j ∈ {1, . . . , N}, x0 ∈ H−ζ
ij and

t ∈ [−η ∥yi − yj∥ ,+η ∥yi − yj∥] such that

x = x0 + tdij .

For such a point, we have

f εi (x)− f εj (x) = ⟨x0 + tdij |yi − yj⟩ −ψεi +ψεj
= f εi (x

0)− f εj (x0) + t⟨dij |yi − yj⟩
= t. (7.12)

Moreover, for any k ̸= i, j we have by definition of H−ζ
ij

f εi (x)− f εk(x) = f εi (x
0)− f εk(x0) + t⟨dij |yi − yk⟩

≥ ζ ∥yi − yk∥ − |t|
diam(Y)

δ

≥ ζδ − diam(Y)2

δ
η := ζ̃. (7.13)

In the same way,

f εj (x)− f εk(x) ≥ ζδ −
diam(Y)2

δ
η = ζ̃. (7.14)

The integral we want to control on Aεi,η,ζ reads:

∑
j

∫
x0∈H−ζ

ij

∫ η∥yi−yj∥

t=0
(gεi (x

0 − tdij) + gεi (x
0 + tdij))dtdHd−1(x0) (7.15)
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where gεi (x) =
∑N

j=1,j ̸=i

(
fεi (x)−fεj (x)

ε2

)
γεx,jγ

ε
x,iρ(x).

Let’s find an upper bound on
∣∣gεi (x0 − tdij) + gεi (x

0 + tdij)
∣∣. To simplify the notation,

denote x− = x0− tdij and x+ = x0+ tdij . Using equation (7.12), we have the expression

gεi (x
−) =

(
f εi (x

−)− fj(x−)
ε2

)
γεx−,jγ

ε
x−,iρ(x

−) (7.16)

+
∑
k ̸=i,j

(
f εi (x

−)− fk(x−)
ε2

)
γεx−,kγ

ε
x−,iρ(x

−)

=
−t
ε2
γεx−,jγ

ε
x−,iρ(x

−) + S(x−), (7.17)

where S(x) =
∑

k ̸=i,j

(
fεi (x)−fk(x)

ε2

)
γεx,kγ

ε
x,iρ(x). Notice that from (7.13) and (7.14), for

k ̸= i, j, γεx−,k ≤ e
−ζ̃/ε. This gives the bound

∣∣S(x−)∣∣ ≲ 1

ε2
e−ζ̃/ε. (7.18)

Similarly, we have

gεi (x
+) =

t

ε2
γεx+,jγ

ε
x+,iρ(x

+) + S(x+), (7.19)

where S(x+) verifies ∣∣S(x+)∣∣ ≲ 1

ε2
e−ζ̃/ε. (7.20)

From equations (7.17) and (7.19), we thus have the control∣∣gεi (x−) + gεi (x
+)
∣∣ ≤ t

ε2

∣∣∣γεx+,jγεx+,iρ(x+)− γεx−,jγεx−,iρ(x−)∣∣∣+ ∣∣S(x−)∣∣+ ∣∣S(x+)∣∣
≤ t

ε2

∣∣∣γεx+,jγεx+,i − γεx−,jγεx−,i∣∣∣ ρ(x+) + t

ε2
γεx−,jγ

ε
x−,i

∣∣ρ(x+)− ρ(x−)∣∣
+
∣∣S(x−)∣∣+ ∣∣S(x+)∣∣ (7.21)

Now, notice that

γεx+,i =
exp

(
fεi (x

+)
ε

)
exp

(
fεi (x

+)
ε

)
+ exp

(
fεj (x

+)

ε

)
+
∑

k ̸=i,j exp
(
fεk(x

+)

ε

)
=

1

1 + e−t/ε + Si(x+)
,

where Sℓ(x) =
∑

k ̸=i,j exp
(
fεk(x)−f

ε
ℓ (x)

ε

)
. Similarly, we have

γεx+,j =
1

1 + et/ε + Sj(x+)
,

γεx−,i =
1

1 + et/ε + Si(x−)
,

γεx−,j =
1

1 + e−t/ε + Sj(x−)
.
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Moreover, remark that for ℓ ∈ {i, j} and x ∈ {x−, x+} we have the bound

Sℓ(x) ≲ e−ζ̃/ε.

From these expressions we deduce the following bound:∣∣∣γεx+,jγεx+,i − γεx−,jγεx−,i∣∣∣ ≲ e−ζ̃/εet/ε. (7.22)

Now using that ρ is α-Hölder, we know that there exists a constant Cρ > 0 such that

∣∣ρ(x+)− ρ(x−)∣∣ ≤ Cρ ∥∥x+ − x−∥∥α = Cρ ∥2tdij∥α ≤ Cρ
(
2

δ

)α
tα. (7.23)

Plugging the bounds (7.18), (7.20), (7.22) and (7.23) into (7.21) then yields:∣∣gεi (x+) + gεi (x
−)
∣∣ ≲ 1

ε2

(
te−ζ̃/εet/ε + t1+α + e−ζ̃/ε

)
.

Injecting these bounds into integral (7.15) entails∣∣∣∣ ∫
Aεi,η,ζ

1

ε

N∑
j=1,j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,iρ(x)dx

∣∣∣∣ ≲ ∫ ηdiam(Y)

0

1

ε2

(
te−ζ̃/εet/ε + t1+α + e−ζ̃/ε

)
dt

≲
η2+α

ε2
+

1

ε2
e−ζ̃/ε

(
η + εηeη/ε − ε2(eη/ε − 1)

)
. (7.24)

Control on Bε
i,η,ζ . We first derive a uniform bound on the integrand

N∑
j=1,j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,i

on the domain Bε
i,η,ζ , that is included in the η-neighborhood of Lagi(ψε). For x ∈ Bε

i,η,ζ ,

for any j ̸= i, either
∣∣∣f εi (x)− f εj (x)∣∣∣ ≤ η(diam(Y) + 1), and in this case∣∣∣∣f εi (x)− f εj (x)ε2

∣∣∣∣ γεx,jγεx,i ≲ η

ε2
,

or
∣∣∣f εi (x)− f εj (x)∣∣∣ > η(diam(Y) + 1), which entails γεx,j ≤ e−η/ε. To see this, denote

k ∈ argmaxℓ f
ε
ℓ (x). Since x is in a η-neighborhood of Lagi(ψε), we have

0 ≤ f εk(x)− f εi (x) ≤ η ∥yk − yi∥ ≤ ηdiam(Y).

Hence ∣∣f εj (x)− f εk(x)∣∣ ≥ ∣∣∣∣f εj (x)− f εi (x)∣∣− |f εk(x)− f εi (x)|∣∣ ≥ η.
The inequality γεx,j ≤ e−η/ε then comes from the fact that γεx,j ≤ exp

(
fεj (x)−fεk(x)

ε

)
. From

these remarks we can therefore write for x ∈ Bε
i,η,ζ :

N∑
j=1,j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,i ≲

1

ε2

(
η + e−η/ε

)
.
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Finally, notice that Bε
i,η,ζ is made of a union of corners of η-neighborhoods Lagi(ψ

ε),
where corner is meant for intersection of 2 hyperplanes. There are at most

(
N−1
2

)
≤ N2

such corners. Denote θ = argmaxi,j,k|∠yiyjyk<γ ∠yiyjyk, i.e. the maximum angle that can
be formed from a triplet of points in the support of the target that do not lie on a same
line. Then the corners that constitute Bε

i,η,ζ are actually included in cylinders of length

at most diam(X ) and of radius at most 2ζ
cos(θ/2) , that is of volume at most 4πdiam(X )d−2

cos(θ/2)2
ζ2.

All these considerations allow us to write the following bound:∣∣∣∣∣∣
∫
Bεi,η,ζ

1

ε

N∑
j=1,j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,iρ(x)dx

∣∣∣∣∣∣ ≲ ζ2

ε2

(
η + e−η/ε

)
. (7.25)

Conclusion. Finally, using equations (7.10), (7.11), (7.24), (7.25) we get the wanted
control:

∣∣∣∣∣[ ∂∂ε(∇Kε
ρ)(ψ)]i

∣∣∣∣∣ =
∣∣∣∣∣∣
∫
X

1

ε

N∑
j=1,j ̸=i

(
f εi (x)− f εj (x)

ε2

)
γεx,jγ

ε
x,iρ(x)dx

∣∣∣∣∣∣
≲

1

ε2
e−η/ε +

η2+α

ε2
+
ζ2

ε2

(
η + e−η/ε

)
+

1

ε2
e−ζ̃/ε

(
η + εηeη/ε − ε2(eη/ε − 1)

)
.

7.5 Proof of Corollary 7.5

Before proving Corollary 7.5, let us prove the following proposition that ensures the
convergence of ψε to ψ0 as ε goes to zero. This fact holds in much more general settings
(Nutz and Wiesel, 2021) and we include its proof in our context only for completeness.

Proposition 7.13. The solutions ψε to problem (Dε) verify:

lim
ε→0

ψε = ψ0.

Proof. Let’s first prove that for any ε ≥ 0, the solution ψε to problem (Dε) verifies:

∥ψε∥∞ ≤ RXdiam(Y) + ε log(1/µ).

For ε > 0, recall that the first order condition (7.2) entails that

e
ψεi
ε µi =

∫
X
e

⟨x|yi⟩−(ψε)c,ε(x)

ε dρ(x).

The right-hand side of this equality corresponds to a RX -Lipschitz function of yi. There-
fore we have the bound:∣∣ψεi −ψεj ∣∣ ≤ RX |yi − yj |+ ε

∣∣∣∣log(µiµj )
∣∣∣∣ ≤ RXdiam(Y) + ε log(1/µ). (7.26)

Now recall that ⟨ψε|1N ⟩ = 0, which means that the components of ψε ∈ RN take both
positive and negative values. This entails for any i ∈ {1, . . . , N}:

|ψεi | = |ψεi − 0| ≤ max
j

∣∣ψεi −ψεj ∣∣ ≤ RXdiam(Y) + ε log(1/µ).
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When ε = 0, the bound (7.26) comes from the fact that ψ0 is a RX -Lipschitz func-
tion from Y to R because the dual solution is equal to its biconjugate: for any
i ∈ {1, . . . , N}, ψ0

i = ((ψ0)∗)∗(yi). We conclude similarly to the case ε > 0 to ensure∥∥ψ0
∥∥
∞ ≤ RXdiam(Y).

Now consider a sequence (εk)k > 0 such that limk→∞ εk = 0. By what precedes, the
sequence (ψεk)k is bounded and one can extract a converging subsequence (that we do
not relabel). Notice now that for any x ∈ X and ψ ∈ RN , the (c, ε)-transform ψc,ε(x)
corresponds to a rescaled LogSumExp (or smooth maximum) of the vector (⟨x|yi⟩ −
ψi)i=1,...,N :

ψc,ε(x) = εLSE

(
(⟨x|yi⟩ −ψi)i=1,...,N

ε

)
,

where LSE(z1, . . . , zN ) = log(exp(z1) + . . . exp(zN )). Bounds on LSE allow us to write
that for any ψ ∈ RN , x ∈ X and ε > 0 we have

ψ∗(x) ≤ ψc,ε(x) ≤ ψ∗(x) + ε logN,

where we recall that ψ∗(x) = maxi=1,...,N ⟨x|yi⟩ − ψi denotes the Legendre transform of
ψ evaluated in x. Thus if we consider k ∈ N, we have by optimiality of ψ0, ψεk for their
respective problems the inequalities:

⟨(ψ0)∗|ρ⟩+ ⟨ψ0|µ⟩ ≤ ⟨(ψεk)∗|ρ⟩+ ⟨ψεk |µ⟩
≤ ⟨(ψεk)c,εk |ρ⟩+ ⟨ψεk |µ⟩+ εk

≤ ⟨(ψ0)c,εk |ρ⟩+ ⟨ψ0|µ⟩+ εk

≤ ⟨(ψ0)∗|ρ⟩+ ⟨ψ0|µ⟩+ εk(1 + logN).

Hence we have the limit:

lim
k→∞
⟨(ψεk)∗|ρ⟩+ ⟨ψεk |µ⟩ = ⟨(ψ0)∗|ρ⟩+ ⟨ψ0|µ⟩.

By uniqueness of the solution of the unregularized problem on (1N )
⊥, this proves that

lim
k→∞

ψεk = ψ0.

There is thus only one accumulation point for the bounded sequence (ψεk)k, which shows
that the whole sequence converges to this point.

Proof of Corollary 7.5. Following Theorem 7.2, let C > 0 (depending on X , ρ,Y, µ) be
such that

∥∥∥ψ̇η∥∥∥
2
≤ Cτα′ for τ ∈ [ε′, ε]. Then notice

∥∥∥ψε −ψε′∥∥∥
∞
≤
∥∥∥ψε −ψε′∥∥∥

2
=

∥∥∥∥∫ ε

ε′
ψ̇τdτ

∥∥∥∥
2

≤
∫ ε

ε′

∥∥∥ψ̇τ∥∥∥
2
dτ ≤ Cεα′

(ε− ε′).

Letting ε′ go to 0 and using Proposition 7.13 yields∥∥ψε −ψ0
∥∥
∞ ≤ Cε

1+α′
.

For the second result, we use∥∥(ψε)c,ε − (ψ0)∗
∥∥
∞ ≤

∥∥(ψε)c,ε − (ψ0)c,ε
∥∥
∞ +

∥∥(ψ0)c,ε − (ψ0)∗
∥∥
∞
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One can easily show with the definition of the (c, ε)-transform that
∥∥ψε −ψ0

∥∥
∞ ≤

Cε1+α
′ entails ∥∥(ψε)c,ε − (ψ0)c,ε

∥∥
∞ ≤ Cε

1+α′
.

On the other hand,
∥∥(ψ0)c,ε − (ψ0)∗

∥∥
∞ ≤ ε logN is a LogSumExp property (see the

above proof of Proposition 7.13). This property can be refined to get to the third result:
we have for all x ∈ X

(ψ0)∗(x) ≤ (ψ0)c,ε(x) = (ψ0)∗(x) + ε log

 N∑
j=1

e
⟨x|yj⟩−ψ

0
j−(ψ0)∗(x)
ε

 .

But for ρ-almost every x ∈ X , there is only one i ∈ {1, . . . , N} that satisfies (ψ0)∗(x) =
⟨x|yi⟩ −ψ0

i . Thus for such x, denoting cx = minj ̸=i(⟨x|yi⟩ −ψ0
i )− (⟨x|yj⟩ −ψ0

j ) > 0, we
have

N∑
j=1

e
⟨x|yj⟩−ψ

0
j−(ψ0)∗(x)
ε ≤ 1 + (N − 1)e−cx/ε.

We thus get:

(ψ0)∗(x) ≤ (ψ0)c,ε(x) ≤ (ψ0)∗(x) + (N − 1)εe−cx/ε.

From this we deduce that for ρ-a.e. x ∈ X ,∣∣(ψ0)c,ε(x)− (ψ0)∗(x)
∣∣ ≲ εe−cx/ε ≲ ε1+α

′
.

Finally, we use the notation of Section 7.4 that denotes

dγε

dρ⊗ σ
(x, yi) = γεx,i.

Let x ∈ X be such that cx > 0. Notice that for any i ∈ {1, . . . , N},

γ0x,i =

{
1 if ⟨x|yi⟩ −ψ0

i ≥ ⟨x|yj⟩ −ψ0
j ∀j,

0 else.

If γ0x,i = 0, then using
∥∥ψε −ψ0

∥∥
∞ ≤ Cε

1+α′ and
∑

j e
⟨x|yj⟩−ψ

0
j

ε ≥ e
(ψ0)∗(x)

ε ,

∣∣γεx,i − γ0x,i∣∣ = γεx,i =
e

⟨x|yi⟩−ψ
ε
i

ε∑
j e

⟨x|yj⟩−ψεj
ε

≤ e2Cεα
′ e

⟨x|yi⟩−ψ
0
i

ε∑
j e

⟨x|yj⟩−ψ0
j

ε

≤ e2Cεα
′
e−cx/ε ≲ e−cx/ε.

If γ0x,i = 1, then

∣∣γεx,i − 1
∣∣ = ∑

j ̸=i e
⟨x|yj⟩−ψ

ε
j

ε∑
j e

⟨x|yj⟩−ψεj
ε

≤ e2Cεα
′
∑

j ̸=i e
⟨x|yj⟩−ψ

0
j

ε∑
j e

⟨x|yj⟩−ψ0
j

ε

≤ e2Cεα
′ ∑
j ̸=i

e
⟨x|yj⟩−ψ

0
j−(ψ0)∗(x)
ε .

We thus get, using that (ψ0)∗(x) = ⟨x|yi⟩ − ψ0
i and that cx = minj ̸=i(⟨x|yi⟩ − ψ0

i ) −
(⟨x|yj⟩ −ψ0

j ) > 0,∣∣γεx,i − γ0x,i∣∣ = ∣∣γεx,i − 1
∣∣ ≤ e2Cεα′ (N − 1)e−cx/ε ≲ e−cx/ε.

This proves that for ρ-a.e. x ∈ X and all i ∈ {1, . . . , N},
∣∣∣γεx,i − γ0x,i∣∣∣ ≲ e−cx/ε.
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7.6 Proof of Theorem 7.8 and its tightness

7.6.1 Expansion of the difference of costs (Theorem 7.8)

The proof of Theorem 7.8 follows very closely the proof of Theorem 1.1 in (Altschuler
et al., 2022) and we thus make numerous mentions of results from this paper.

Proof of Theorem 7.8. Let ε ∈ (0, 1] and recall that W2
2,ε(ρ, µ) is computed using the

solution of the regularized maximum correlation problem (P′
ε) with regularization pa-

rameter ε
2 :

W2
2,ε(ρ, µ) = E(x,y)∼γε/2 ∥x− y∥

2 .

Now notice that as in Lemma 5.2 in (Altschuler et al., 2022) we can write by strong
duality

Eγ0⟨x|y⟩ = Ex∼ρ(ψ0)∗(x) + Ey∼µψ0(y)

= E(x,y)∼γε/2
(
(ψ0)∗(x) +ψ0(y)

)
.

Therefore the difference of costs reads

W2
2,ε(ρ, µ)−W2

2(ρ, µ) = Eγε/2 ∥x− y∥
2 − Eγ0 ∥x− y∥2

= 2
(
Eγ0⟨x|y⟩ − Eγε/2⟨x|y⟩

)
= 2E(x,y)∼γε/2

(
(ψ0)∗(x) +ψ0(y)− ⟨x|y⟩

)
= 2

∑
i,j

∫
Lagi(ψ

0)

(
(ψ0)∗(x) +ψ0

j − ⟨x|yj⟩
)
γ
ε/2
x,j dρ(x)

=
∑
i,j

∫
Lagi(ψ

0)
∆ij(x)γ

ε/2
x,j dρ(x),

where we denoted for x ∈ Lagi(ψ
0),

∆ij(x) = 2
(
(ψ0)∗(x) +ψ0

j − ⟨x|yj⟩
)
= 2

(
⟨x|yi − yj⟩ −ψ0

i +ψ
0
j

)
≥ 0.

Using Theorem 7.2 and its Corollary 7.5 we know that there exists C > 0 depending on
X , ρ,Y, µ such that for α′ ∈ (0, α),∥∥∥ψε/2 −ψ0

∥∥∥
∞
≤ C

(ε
2

)1+α′

.

From this bound, using that γε/2x,j =
exp

(
⟨x|yj⟩−ψ

ε/2
j

ε/2

)
∑
ℓ exp

(
⟨x|yℓ⟩−ψ

ε/2
ℓ

ε/2

) we deduce the bounds

e−2C(ε/2)α
′ e−∆ij(x)/ε∑

ℓ e
−∆iℓ(x)/ε

≤ γε/2x,j ≤ e
2C(ε/2)α

′ e−∆ij(x)/ε∑
ℓ e

−∆iℓ(x)/ε
.

Hence we deduce the following control:∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)−
∑
i,j

∫
Lagi(ψ

0)
∆ij(x)

e−∆ij(x)/ε∑
ℓ e

−∆iℓ(x)/ε
dρ(x)

∣∣∣∣∣
≲ εα

′∑
i,j

∫
Lagi(ψ

0)
∆ij(x)

e−∆ij(x)/ε∑
ℓ e

−∆iℓ(x)/ε
dρ(x).
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Lemma 6.4 found in (Altschuler et al., 2022) then asserts that

∑
i,j

∫
Lagi(ψ

0)
∆ij(x)

e−∆ij(x)/ε∑
ℓ e

−∆iℓ(x)/ε
dρ(x) = ε2

π2

12

∑
i<j

wij
∥yi − yj∥

+ o(ε2).

Directly injecting this into the last control would lead to the exact same asymptotic
result as the one given in Theorem 1.1 in (Altschuler et al., 2022). We refine this last
asymptotic development to a non-asymptotic one by leveraging the fact that we assumed
the source ρ to be α-Hölder continuous.

For any i, j ∈ {1, . . . , N}, denote Iij =
∫
Lagi(ψ

0)∆ij(x)
e−∆ij(x)/ε∑
ℓ e

−∆iℓ(x)/ε
dρ(x). Then notice

that for i ̸= j,

Iij ≤
∫
Lagi(ψ

0)
∆ij(x)

e−∆ij(x)/ε

1 + e−∆ij(x)/ε
dρ(x) (7.27)

Similarly to (Altschuler et al., 2022), introduce for a > 0

Sij(a) = {x ∈ Lagi(ψ
0) | ∀k ̸= i, j,∆ik(x) ≥ a}.

Notice that Sij(0) = Lagi(ψ
0), and that for some a > 0:

Iij ≥
∫
Sij(a)

∆ij(x)
e−∆ij(x)/ε

1 + (N − 2)e−a/ε + e−∆ij(x)/ε
dρ(x)

≥
∫
Sij(a)

∆ij(x)
e−∆ij(x)/ε

c(a) + e−∆ij(x)/ε
dρ(x), (7.28)

for c(a) = 1 + (N − 2)e−a/ε > 1. The quantity Iij is thus bounded by integrals of the
form ∫

Sij(a)
∆ij(x)

e−∆ij(x)/ε

c+ e−∆ij(x)/ε
dρ(x)

for some a ≥ 0 and c ≥ 1. Let’s find a non-asymptotic control of such integrals in terms
of ε.

Recall that for x ∈ Lagi(ψ
0), ∆ij(x) = 2

(
⟨x|yi − yj⟩ −ψ0

i +ψ
0
j

)
. The coarea for-

mula then ensures:∫
Sij(a)

∆ij(x)
e−∆ij(x)/ε

c+ e−∆ij(x)/ε
dρ(x) =

1

2 ∥yi − yj∥

∫ ∞

0
t
e−t/ε

c+ e−t/ε
hij(t; a)dt (7.29)

where we denoted hij(t; a) =
∫
Sij(a)∩(∆ij)−1(t) ρ(x)dH

d−1(x) similarly to (Altschuler et al.,
2022) (one can already notice that hij(0; 0) = wij). Notice then from Lemma 6.2 in
(Altschuler et al., 2022) that∣∣∣∣∣

∫ ∞

0
t
e−t/ε

c+ e−t/ε
hij(t; a)dt−ε2hij(0; a) (−Li2(−1/c))

∣∣∣∣∣
= ε2

∣∣∣∣∫ ∞

0
u

e−u

c+ e−u
(hij(εu; a)− hij(0; a))du

∣∣∣∣ ,
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where Li2 denotes the dilogarithm function. We now focus on the difference hij(εu; a)−
hij(0; a):

hij(εu; a)− hij(0; a) =
∫
Sij(a)∩(∆ij)−1(εu)

ρ(x)dHd−1(x)−
∫
Sij(a)∩(∆ij)−1(0)

ρ(x)dHd−1(x)

One can notice that there exists a set Rij(εu), that is a subset of an hyperplane, and
whose (d− 1)-area is (at most) linear in εu, such that either

Sij(a) ∩ (∆ij)
−1(εu) =

(
Sij(a) ∩ (∆ij)

−1(0) + (εu)nij
)
∪Rij(u),

or
Sij(a) ∩ (∆ij)

−1(εu) =
(
Sij(a) ∩ (∆ij)

−1(0) + (εu)nij
)
\Rij(u),

where nij =
yi−yj

∥yi−yj∥ . Hence we have:

|hij(εu; a)− hij(0; a)| ≤
∫
Sij(a)∩(∆ij)−1(0)

|ρ(x+ (εu)nij)− ρ(x)| dHd−1(x)

+

∫
Rij(εu)

ρ(x)dHd−1(x)

Recalling that ρ is α-Hölder continuous, we have |ρ(x+ (εu)nij)− ρ(x)| ≲ εαuα. Hence
we deduce

|hij(εu; a)− hij(0; a)| ≲ εαuα + εu.

We thus have shown that∣∣∣∣∣
∫ ∞

0
t
e−t/ε

c+ e−t/ε
hij(t; a)dt− ε2hij(0; a) (−Li2(−1/c))

∣∣∣∣∣ ≲ ε2
∫ ∞

0
u

e−u

c+ e−u
(εαuα + εu)du

≲ ε2+α,

where we used that c ≥ 1 and ε ≤ 1.

We finally bound the distance between hij(0; a) (−Li2(−1/c)) and
hij(0; 0) (−Li2(−1)). We have the following inequality:

|hij(0; a) (−Li2(−1/c))− hij(0; 0) (−Li2(−1))| ≤ |−Li2(−1)| |hij(0; a)− hij(0; 0)|
+ |hij(0; a)| |−Li2(−1/c)− (−Li2(−1))|

The quantity |hij(0; a)− hij(0; 0)| obviously scales linearly with a. Then one can notice
that on [1, c], the function t 7→ −Li2(−1/t) is (−Li2(−1))-Lipschitz. These facts ensure
the following control:

|hij(0; a) (−Li2(−1/c))− hij(0; 0) (−Li2(−1))| ≲ a+ |c− 1| .

This allows to write∣∣∣∣∣
∫ ∞

0
t
e−t/ε

c+ e−t/ε
hij(t; a)dt− ε2hij(0; 0) (−Li2(−1))

∣∣∣∣∣ ≲ ε2+α + ε2(a+ |c− 1|).

Thus, setting a = εα, we get c(a) = 1 + (N − 2)e−1/ε1−α and
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∣∣∣∣∣
∫ ∞

0
t

e−t/ε

c(a) + e−t/ε
hij(t; a)dt− ε2hij(0; 0) (−Li2(−1))

∣∣∣∣∣ ≲ ε2+α.

Thus, using the controls (7.27), (7.28) on Iij together with the formula of (7.29) and the
last control, we have:

∣∣∣∣Iij − ε2 hij(0; 0)

2 ∥yi − yj∥
(−Li2(−1))

∣∣∣∣ = ∣∣∣∣Iij − ε2 wij
∥yi − yj∥

π2

24

∣∣∣∣ ≲ ε2+α.

Eventually, recalling the bound

∣∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)−
∑
i,j

Iij

∣∣∣∣∣∣ ≲ εα
′∑
i,j

Iij ,

we obtain the wanted control for ε ≤ 1:∣∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)− ε2
π2

12

∑
i<j

wij
∥yi − yj∥

∣∣∣∣∣∣ ≲ ε2+α.

7.6.2 Tightness of Theorem 7.8

We now show that Theorem 7.8 is tight on a simple one-dimensional example.

Theorem 7.14. In Theorem 7.8, there exists ρ, µ such that for ε ≤ 1,

∣∣∣∣∣∣W2
2,ε(ρ, µ)−W2

2(ρ, µ)− ε2
π2

12

∑
i<j

wij
∥yi − yj∥

∣∣∣∣∣∣ ≳ ε2+α.

Proof. Once again, we rely on results from (Altschuler et al., 2022) (Section 3), where
the following formula for the difference of costs for the transport between a continuous
symmetric density ρ supported on [−1, 1] and the target µ = 1

2(δ{−1} + δ{+1}) is given:

W2
2,ϵ(ρ, µ)−W2

2(ρ, µ) = 8

∫ 1

0

x

1 + e4x/ε
ρ(x)dx.

We consider, for α ∈ (0, 1] the following α-Hölder density for the source:

ρ(x) =
1 + α

2α
(1− |x|α)χ1[−1,1].



7.7. NUMERICAL ILLUSTRATIONS 155

We can then derive the difference between the suboptimality and its asymptote for ε ≤ 1:∣∣∣∣W2
2,ϵ(ρ, µ)−W2

2(ρ, µ)−
π2ρ(0)

24
ε2
∣∣∣∣ = ∣∣∣∣8∫ 1

0

x

1 + e4x/ε
ρ(x)dx− ρ(0)ε

2

2
(−Li2(−1))

∣∣∣∣
≥
∣∣∣∣8 ∫ 1

0

x

1 + e4x/ε
(ρ(x)− ρ(0))dx

∣∣∣∣
−
∣∣∣∣8ρ(0)∫ 1

0

x

1 + e4x/ε
dx− ρ(0)ε

2

2
(−Li2(−1))

∣∣∣∣
=

∣∣∣∣81 + α

2α

∫ 1

0

x1+α

1 + e4x/ε
dx

∣∣∣∣−
∣∣∣∣∣ρ(0)ε22

∫ ∞

4/ε

te−t

1 + e−t
dt

∣∣∣∣∣
≥ 4(1 + α)

α

(ε
4

)2+α ∫ 4/ε

0

t1+α

1 + et
dt− 4ρ(0)εe−4/ε

≥ 4(1 + α)

α

(ε
4

)2+α ∫ 4

0

t1+α

1 + et
dt− 4ρ(0)εe−4/ε

≥ 2(1 + α)

α

(
2

(1 + e4)(2 + α)
ε2+α − εe−4/ε)

)
.

Thus for ε small enough we get:∣∣∣∣W2
2,ϵ(ρ, µ)−W2

2(ρ, µ)−
π2ρ(0)

24
ε2
∣∣∣∣ ≳ ε2+α.

7.7 Numerical illustrations

The code that generated the illustrations of this section is available at https://github.
com/alex-delalande/potentials-entropic-sd-ot.

7.7.1 Difference of Costs

Figure 7.2 gives an illustration of Theorem 7.8 for a target µ = 1
2(δ−1 + δ1) and for

four different source measures: 1. Lebesgue: ρ(x) ∝ χ[−1,1](x); 2. Rescaled Gaussian:
ρ(x) ∝ e−x

2/2σ2
χ[−1,1](x); 3. Rescaled Laplace: ρ(x) ∝ e−|x|χ[−1,1](x); 4. 1

2 -Hölder
density: ρ(x) ∝ (1 − |x|1/2)χ[−1,1](x). For all these sources, we plot the absolute value
of the difference of costs minus its asymptote as functions of ε and compare their rate of
convergence to zero as ε goes to zero to the rate predicted in Theorem 7.8. The difference
of costs is computed using the following formula given in Section 3 of (Altschuler et al.,
2022):

W2
2,ε(ρ, µ)−W2

2(ρ, µ) = 8

∫ 1

0

x

1 + e4x/ε
ρ(x)dx.

Note that in these examples, ε 7→ ψε is constant because of the symmetry of the prob-
lems. One can notice that for the cases of a Lebesgue or rescaled Gaussian source, the
convergence of the difference of costs to its asymptote seems faster than the guaranteed
ε3 of Theorem 7.8. However, one can observe that Theorem 7.8 seems to give tight rates
of convergence in the cases of a rescaled Laplace source or a 1

2 -Hölder source.

https://github.com/alex-delalande/potentials-entropic-sd-ot
https://github.com/alex-delalande/potentials-entropic-sd-ot


156 CHAPTER 7. STABILITY OF SCHRÖDINGER POTENTIALS

10−2 10−1 100

ε

10−16

10−13

10−10

10−7

10−4

10−1

102

Lebesgue

Cε3

|W2
2, ε(ρ, μ) −W2

2(ρ, μ) −
π2ρ(0)
24 ε2|

10−2 10−1 100

ε

10−8

10−6

10−4

10−2

100

102

Rescaled Gaussian

Cε3

|W2
2, ε(ρ, μ) − W2

2(ρ, μ) − π2ρ(0)
24 ε2|

10−2 10−1 100

ε

10−7

10−5

10−3

10−1

101

Rescaled Laplace
Cε3

|W2
2, ε(ρ, μ) − W2

2(ρ, μ) − π2ρ(0)
24 ε2|

10−2 10−1 100

ε

10−6

10−4

10−2

100

102

1
2 -Hölder

Cε2.5

|W2
2, ε(ρ, μ) −W2

2(ρ, μ) −
π2ρ(0)
24 ε2|

Figure 7.2: Convergence of the difference of costs to its asymptote for the four different
sources. The target is µ = 1

2(δ−1 + δ1).
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Figure 7.3: Behavior of ε 7→
∥∥∥ψ̇ε∥∥∥

∞
for the 4 different sources of Section 7.7.1 and

µ = 1
5

∑5
i=1 δyi with (yi)i=1,...,5 randomly chosen.
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Figure 7.4: Convergence of ψε to ψ0 for the four same examples as in Figure 7.3.

7.7.2 Behavior of ε 7→ ψε

Figures 7.3 and 7.4 give an illustration of Theorem 7.2 and its Corollary 7.5 respec-
tively. We consider the same one dimensional sources as in the preceding section (up
to restriction of their support to limit numerical errors). We consider a target µ with 5
support points randomly chosen in the support of the source. We compute ψε using the
L-BFGS-B quasi-Newton method from SciPy (Virtanen et al., 2020), where all integrals
(appearing for instance in gradient computations) are also approximated using this pack-
age. Figure 7.3 represents the behavior of ||ψ̇ε||∞ with respect to ε and compares the
empirical results to the theoretical rates of Theorem 7.2. The derivative ψ̇ε is computed
as the only solution in (1N )

⊥ to the linear system induced by the ODE (7.7). Note that
in Figure 7.3, the long-time bound ||ψ̇ε||∞ ≲ 1 for ε ≥ 1 seems to be loose, but this is
specific to the setting where the target is uniform and this bound seems tight in general1.
The short-time case ε < 1 however yields in the case of the Laplace and 1

2 -Hölder sources
practical rates that seem to match the theoretical rate ||ψ̇ε||∞ ≲ εα. Figure 7.4 gives
an illustration of the convergence of ψε to ψ0. One can observe that the Lebesgue and
Gaussian sources seem to enjoy faster rates of convergence than our theoretical rates.
However, the Laplace and 1

2 -Hölder sources seem to yield potentials ψε that converge to
ψ0 as fast as predicted in Corollary 7.5.

1Further experiments with a non-uniform target led to match empirically the long-time bounds of
Theorem 7.2, see the GitHub repository.
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Chapter 8

Linearized optimal transport and
applications

Abstract

In the Linearized Optimal Transport framework of (Wang et al., 2013),
probability measures from (P2(Rd),W2) are embedded into a Hilbert space
L2(ρ,Rd) where ρ is a given reference probability measure. In Chapter 5, we
studied theoretically this embedding and showed under regularity assump-
tion on ρ that it does not distort too much the 2-Wasserstein distance in
general. In this chapter, we gather numerical illustrations showcasing how
the LOT embedding performs in practice. We first compare its distance
approximation performances to what we predicted in Chapter 5. Then, we
give examples of how this embedding may be used to extend some classi-
cal Euclidean data analysis methods to measure data, consistently with the
Wasserstein geometry. Namely, we tackle K-means and dictionary learning
problems in the Wasserstein space.

8.1 Introduction

Numerous data analysis problems involve the comparison of point clouds, i.e. sets of
points that lie in a metric space and for which the spatial distribution is of interest.
Seeing the point clouds as discrete probability measures in a metric space, it is natural to
compare them using Wasserstein distances. These distances have indeed been successfully
used in a variety of applications in machine learning (Canas and Rosasco, 2012; Arjovsky
et al., 2017; Gordaliza et al., 2019; Genevay et al., 2018; Flamary et al., 2018; Alaux
et al., 2019) and in statistics (Weed and Berthet, 2019; Cazelles et al., 2018; Bigot et al.,
2019a; Ramdas et al., 2015). In the discrete setting, many efficient algorithms have been
proposed to compute or approximate the Wasserstein distances, such as Sinkhorn-Knopp
and auction algorithms – see (Peyré and Cuturi, 2019) and references therein. However
efficient these algorithms are, they still represent high computational costs when dealing
with large databases of point clouds. For instance, when there are k point clouds, 1

2k(k−
1) optimal transport problems must be solved to get the distance matrix of the database.
In addition, such methods provide good approximations of Wasserstein distances but they
do not allow for the direct use of machine learning algorithms based on the Wasserstein
geometry. In (Wang et al., 2013), the Linearized Optimal Transport (LOT) framework
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was introduced in order to circumvent both of these problems. In this framework, for
a fixed absolutely continuous reference probability measure ρ ∈ P2,a.c.(Rd), an explicit
embedding of the metric space (P2(Rd),W2) into the Hilbert space L2(ρ,Rd) is computed.
This embedding may be defined as follows:{

(P2(Rd),W2) → L2(ρ,Rd),
µ 7→ Tµ,

where for any µ ∈ P2(Rd), Tµ denotes the optimal transport map from ρ to µ. By
Brenier’s theorem ((Brenier, 1991), see Theorem 1.12), this embedding is well defined.
Moreover, as already mentioned in Section 5.1 of Chapter 5 (see in particular §5.1.1),
this embedding is reverse-Lipschitz and continuous. In Chapter 5, we have quantified
the continuity of this embedding under restrictions on its domain of definition and under
some regularity assumptions on the reference ρ. For instance, Theorem 5.12 asserts that
assuming that the reference ρ is supported on a compact convex set X and that its
density is bounded away from zero and infinity, for any compact set Y ⊂ Rd, the LOT
embedding is bi-Hölder continuous on (P2(Y),W2):

∀µ, ν ∈ P2(Y), W2(µ, ν) ≤ ∥Tµ − Tν∥L2(ρ,Rd) ≲ W2(µ, ν)
1/6,

where ≲ hides a multiplicative constant that depends on d, ρ,X and Y. A LOT approach
may have a cheaper computational cost than usual optimal transport based approaches
used for data analysis on measure datasets. For instance, the computation of the distance
matrix of a database of k point clouds in this framework only requires the resolution of
k optimal transport problems in order to compute the embeddings, and a number of
1
2k(k − 1) Hilbertian (Euclidean in practice) distance computations, which are generally
cheap to compute. Second, the LOT framework presents the advantage of enabling the
use of the classical Hilbertian statistical toolbox on families of probability measures while
keeping some features of the Wasserstein geometry.

Outline. As mentioned in Section 5.1, the LOT framework has already found many
successful applications (see this section for references). In this chapter, we give comple-
mentary illustrations of the LOT embedding. In Section 8.2, we illustrate the theoretical
results of Chapter 5 and observe the metric distorsion induced by the LOT embedding on
some two-dimensional examples. We also mention how the LOT embedding may be used
to perform barycenter approximation in the Wasserstein space. Then in Section 8.3, we
give two example extensions of classical Hilbertian data analysis methods to probability
measures within the LOT framework. These extensions concern K-means and dictionary
learning problems in the Wasserstein space.

Setting. Most of the examples in this chapter are two-dimensional. In this case, the
source measure ρ is fixed and corresponds to the Lebesgue measure on the the unit
square, i.e. ρ ≡ 1 on X = [0, 1] × [0, 1]. The databases of probability measures we
consider are only made of discrete probability measures that are taken uniform unless
stated otherwise. In this context, the images of the above defined LOT embedding
correspond to semi-discrete optimal transport maps that we estimate with a damped
Newton’s algorithm (Kitagawa et al., 2019). The embeddings Tµ are infinite dimensional
objects that are approximated by their block approximation over a uniform block par-
tition of X : for m a positive integer defining the blocks side 1

m , the blocks are defined
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Figure 8.1: W2,ρ vs. W2 between point clouds sampled from Gaussian, Mixture of 4
Gaussian and Uniform distributions.

by Xs,t = [ s−1
m , sm ]× [ t−1

m , tm ] for s, t ∈ {1, . . . ,m} and Tµ is approximated by the vector
Tµ := (ρ(Xs,t)−1/2

∫
Xs,t Tµdρ)s,t∈{1,...,m} of size 2m2. We can notice that the stability

results of Chapter 5 on the maps Tµ ∈ L2(ρ,Rd) can be directly applied to the vectors
Tµ. Indeed these vectors correspond to the projections of Tµ on a subspace of L2(ρ,Rd)
of piece-wise constant functions on X : as a projection this mapping is 1-Lipschitz, which
allows to write ∥Tµ − Tν∥2 ≤ ∥Tµ − Tν∥L2(ρ,Rd).

Remark 8.1. We can note that in dimension d, the approximation Tµ is of size dmd: this
limits the use of this approximation to small values of d. Lighter representations of the
map Tµ could however be considered. In particular one could leverage the fact that, in
this semi-discrete context, Tµ is piece-wise constant. Moreover, it is defined properly by
a dual potential that can be seen as a vector of size equal to the number of points in the
support of µ (see Chapter 2).

8.2 Behavior of the LOT embedding

The code that generated the experiments of this section can be found at https://github.
com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space/.

8.2.1 Distance approximation

We first compare the LOT distance W2,ρ(µ, ν) = ||Tµ − Tν ||L2(ρ,Rd) against W2(µ, ν)
in specific settings to illustrate the Hölder stability results of Chapter 5. We consider
three different settings corresponding to three different families of distributions. In each
setting, 50 point clouds of 300 points are sampled, each from a random distribution that
belongs to the given family, and pairwise W2 and W2,ρ distances on the 50 point clouds
are computed (W2 distances are computed exactly with the network simplex algorithm
implemented in the Python Optimal Transport library (Flamary et al., 2021)). The
distances ||Tµ − Tν ||L2(ρ,Rd) are approximated with ||Tµ − Tν ||2 with m = 500. The
three families of distributions we consider are all truncated to belong to P([0, 1]2) and
are built from Gaussian distributions, mixtures of four Gaussian distributions and the
uniform distribution. Note that for each point cloud sampling in the two first settings
the parameters of the sampled distribution are selected randomly. We report in Figure
8.1 the comparisons between W2,ρ and W2. We observe that, as expected, W2,ρ is always
greater than W2 but does not distort too much the 2-Wasserstein distance. These figures
do not allow however to investigate whether or not the Hölder exponent of 1

6 of Theorem
5.12 is optimal.

https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space/
https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space/
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and Uniform distributions and sampling distance ||Tµ − TµN ||L2(ρ,Rd) as a function of N

8.2.2 Statistical behavior

In practice, a measure of interest µ ∈ P(X ) (where X = [0, 1]2) may be unknown and
one may only have access to samples (xi)i=1,...,N from this distribution. Denoting µN =
1
N

∑N
i=1 δxi the corresponding empirical distribution, it is well-know that µN converges

weakly almost surely to µ as N goes to infinity (Varadarajan, 1958). In dimension d = 2,
Theorem 1 of (Fournier and Guillin, 2015) indicates that the rate of this convergence in
expected Wasserstein distance is at least in N−1/2: there exists a constant C > 0 such
that

EW2
2(µ, µN ) ≤ CN−1/2.

(Note that this is a worst case bound: for instance, when µ = ρ = λ[0,1]2 , this bound is
known to improve asymptotically to logN

N (Ambrosio et al., 2019)). From Theorem 5.12,
the empirical transport map TµN should thus approach Tµ in L2(ρ,Rd) distance at a rate
at least (N−1/4)1/6. We observe this by plotting the quantity ||Tµ − TµN ||L2(ρ,Rd) as a
function of N in again three different settings, where now the ground truth maps Tµ are
prescribed. The three maps are chosen as gradients of convex functions and transport
the unit square to measures resembling a disk, a cross and a square (Figure 8.2). For the
different values of N the experiments are repeated 25 times and the standard deviations
define the shaded areas surrounding the curves. In the right hand side log-plot of Figure
8.2, we observe slopes of about −0.4, which corresponds to faster rates than the expected
(and worst case) rate − 1

24 . In a more statistical context, we observe in Figure 8.3 the
same quantities when the target measures are a Gaussian, a mixture of 4 Gaussians
and the uniform distribution, all truncated to X . Since the ground truth maps Tµ are
unknown in these cases, we approximate them with a map TµM for M = 10000. Again,
we observe slopes of about −0.4.
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Figure 8.4: LOT barycenters of four point clouds. Weights (λs)s are bilinear with respect
to the corners of the square.

8.2.3 Barycenter approximation

Computing means and barycenters is often necessary in many data analysis tasks. For
point cloud or more generally measure data, we have seen in Chapter 6 that the Wasser-
stein distance is a natural choice to define such barycenters. We recall that for (µs)s=1,...,S

a set of S discrete probability measures (corresponding to S point clouds), the barycenter
of (µs)s=1,...,S with non-negative weights (λs)s=1,...,S summing to one is the solution of
the following minimization problem:

min
µ

S∑
s=1

λsW
2
2 (µ, µs).

This problem does not have an explicit solution and its solution needs to be computed
every time the weights are changed. Using transport maps from a reference measure ρ,
it is natural to consider

µ =

(
S∑
s=1

λsTµs

)
#

ρ

as the barycenter of the (µs)s=1,...,S , and one can indeed check that this µ minimizes

∑
s

λs ∥Tµ − Tµs∥
2
L2(ρ,Rd) .

We illustrate this idea with the computation of barycenters of four point clouds in Figure
8.4. Again, operations are performed on the vectorized transport maps Tµ with m = 200.
These barycenters are in general not equal to their Wasserstein counterparts but they
seem to retain the geometric information contained in the point clouds.



166 CHAPTER 8. LINEARIZED OPTIMAL TRANSPORT

8.3 Applications to clustering, interpolation and classifica-
tion in the Wasserstein space

In this final section, we give two examples of Euclidean data analysis methods that can
easily be extended to probability measures within the LOT framework.

8.3.1 Wasserstein K-means

We give here an illustrative application of the proven bi-Hölder stability results of Chapter
5 to a classical data analysis task of clustering in the space of probability measures
endowed with the Wasserstein distance.

Several applications involve decomposing a finite family of probability measures into
clusters, using the p-Wasserstein distances as a guiding geometry. These applications
include classification of images (Fukunaga and Kasai, 2021; Ye et al., 2017; Ho et al.,
2017), of tomographic projections (Rao et al., 2020), of time-series (Yang et al., 2018; Ho
et al., 2017), of textual documents (Ye et al., 2017) or of cloud regime histograms (Staib
and Jegelka, 2017). In order to keep the computational cost reasonable, many of these
works involve approximations that are not analyzed theoretically in terms of clustering
quality. The objective of this section is to establish a (simple) guarantee on the clustering
quality that one can obtain in the Linearized Optimal Transport framework, relying on
Theorem 5.14.

K-means clustering in metric spaces. In a general metric space (M,dM ), the K-
Means clustering of N data points x1, . . . , xN ∈M consists in finding a set of K centroids
(also called means) c = (c1, . . . , cK) ∈MK minimizing the distortion

RM (c) =
1

N

N∑
i=1

min
j=1,...,K

dM (xi, cj)
2.

A set of centroids c ∈MK induces a clustering of the set {xi}1≤i≤N using Voronoi cells:

∀j ∈ {1, . . . ,K}, Vj(c) = {xi | ∀ℓ ∈ {1, . . . ,K}, dM (xi, cj) ≤ dM (xi, cℓ)}.

The K-Means clustering problem thus consists in finding a clustering of the data at hand
that minimizes the within-cluster variance, obtained by minimizing RM . A popular algo-
rithm used to find a local minimum of RM is Lloyd’s algorithm (Lloyd, 1982). However,
because of its non-convexity, minimizing the objective RM is in general NP-hard (Ma-
hajan et al., 2012). Performance guarantees in terms of clustering error for K-means
algorithms can still be obtained, but only under assumptions of well-clusterabilty of the
data and good initialization of the centroids. A popular initialization method is offered
by the K-Means++ (Arthur and Vassilvitskii, 2007) randomized seeding technique, and
is described in Algorithm 1.

The (random) output ĉ = (ĉ1, . . . , ĉK) of Algorithm 1 comes with the following
guarantee in expectation in term of the K-Means objective (Nielsen and Sun, 2019,
Theorem 4):

EĉRM (ĉ) ≤ 16(logK + 2) min
c∈M

RM (c). (8.1)
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Algorithm 1: K-Means++ randomized seeding technique (Arthur and Vassil-
vitskii, 2007)

Data: Dataset {x1, . . . , xN}
Result: Set of initialized centroids ĉ
Select an initial centroid ĉ1 uniformly at random from {x1, . . . , xN} and set
C1 = {ĉ1};

for j ← 2 to K do
Select ĉj = xi ∈ {x1, . . . , xN} with probability dM (xi,Cj−1)

2∑N
i′=1 dM (xi′ ,Cj−1)2

;

Set Cj = Cj−1 ∪ {ĉj};
end

where Eĉ denotes the expectation with respect to the random variable ĉ following the
law described in Algorithm 1. Combined with clusterability assumptions, this estimate
yields performance guarantees in terms of clustering quality when using ĉ as a set of
centroids.

Theorem 8.2. Let x1, . . . , xN ∈ M partitioned into K ′ disjoint non-empty clusters
(Cj)j=1,...,K′, and assume that there exists ϵ > 0 and f ≥ 1 such that for all ℓ, ℓ′ ∈
{1, . . . ,K ′} with ℓ ̸= ℓ′,

∀(xi, xj) ∈ Cℓ × Cℓ, dM (xi, xj) ≤ ϵ,
∀(xi, xj) ∈ Cℓ × Cℓ′ , dM (xi, xj) ≥ fϵ.

Denote ĉ the set of centroids given by the K-Means++ seeding and τerr(ĉ) the proportion
of misclassified points using the centroids ĉ, i.e.

τerr(ĉ) =
1

N

K∑
j=1

min
j′=1,...,K′

∣∣∣Vj(ĉ) ∩ (Cj′)C∣∣∣ .
Then for g ≥ 1, we have

Pĉ
(
τerr(ĉ) ≤

1

g

)
≥ 1− 16(logK + 2)g

f2

Proof. First notice that Markov’s inequality and the K-Means++ guarantee (8.1) ensure

Pĉ
(
RM (ĉ) ≥ f2

g
min
c∈M

RM (c)

)
≤ gEĉRM (ĉ)

f2minc∈M RM (c)
≤ 16(logK + 2)g

f2
.

Thus with probability greater than 1− 16(logK+2)g
f2

, we have RM (ĉ) ≤ f2

g minc∈M RM (c).
However, the clusterability assumptions imply that

min
c∈M

RM (c) ≤ ϵ2 and RM (ĉ) ≥ τerr(ĉ)f2ϵ2.

Hence with probability greater than 1− 16(logK+2)g
f2

, τerr(ĉ)f2ϵ2 ≤ f2

g ϵ
2.
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Figure 8.5: (Top) Example images of upercase A, B, and C from the EMNIST dataset
(Cohen et al., 2017). (Bottom) Push-forwards of the 6 centroids.

K-Means with Linearized OT. The performance guarantee given in Theorem 8.2
holds for a general metric space (M,dM ) and it is thus possible to choose (M,dM ) =
(P2(Rd),W2). A dataset µ1, . . . , µN ∈ (P2(Rd),W2) satisfying the clusterability assump-
tions of Theorem 8.2 can therefore be clustered with the K-Means++ seeding at the cost
of solving O(KN) optimal transport problems in order to compute the seeding probabil-
ities. For settings with relatively large values of N or K, these computations might be
prohibitive and it might be interesting to choose to embed (P2(Rd),W2) into L2(ρ;Rd)
using the mapping µ 7→ Tµ. Indeed, doing this requires solving only N optimal transport
problems to compute the embeddings and then computing O(KN) Hilbertian distances.
Performance guarantees for K-Means++ seeding on the dataset Tµ1 , . . . , TµN ∈ L2(ρ;Rd)
can still be obtained from Theorem 8.2 by assuming stronger clusterability assumptions
on the dataset µ1, . . . , µN ∈ (P2(Rd),W2). Indeed, assume first that µ1, . . . , µN belong
to a subset S ⊂ P2(Rd) that is such that there exists (CS , αS) ∈ R∗

+ × (0, 1) such that

∀µ, ν ∈ S, W2(µ, ν) ≤ ∥Tµ − Tν∥L2(ρ,Rd) ≤ CSW2(µ, ν)
αS .

Theorem 5.14 and Corollary 5.16 give examples of such sets S. Then assume that
µ1, . . . , µN is partitioned into K disjoint non-empty clusters (Cj)j=1,...,K , and that there
exists ϵ > 0 and f ≥ 1 such that for all ℓ, ℓ′ ∈ {1, . . . ,K} with ℓ ̸= ℓ′,

∀(µi, µj) ∈ Cℓ × Cℓ, W2(µi, µj) ≤
(
ϵ

CS

)1/αS

,

∀(µi, µj) ∈ Cℓ × Cℓ′ , W2(µi, µj) ≥ fϵ.

Then one can apply Theorem 8.2 to the dataset Tµ1 , . . . , TµN ∈ L2(ρ;Rd).

We give an illustration of the described techniques by performing a clustering of
images of handwritten letters. We extract from the EMNIST dataset (Cohen et al.,
2017) 2, 000 images of each of the uppercase letters A, B and C (Figure 8.5) and convert
each image into a discrete probability measure of X = [0, 1]2 by treating the pixels as
Dirac masses. Taking ρ to be the Lebesgue measure on X , we then compute for each
measure its optimal transport map from ρ to itself. We eventually perform a clustering
with the K-means++ algorithm on the vectorized maps, looking for K = 6 clusters. The
push-forwards of the 6 centroids are displayed in Figure 8.5 where each class seems to
be recovered and where intra-class variation might be explained from the use or not of
italic writing.
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8.3.2 Wasserstein dictionary learning

In this final subsection, we propose to approximately solve Wasserstein dictionary learn-
ing problems, introduced in (Schmitz et al., 2018), using the LOT embedding and clas-
sical Euclidean linear dictionary learning tools. The presentation of dictionary learning
methods we make in this section is heavily inspired from (Schmitz et al., 2018). Note
that the code for the different experiments of this subsection is available at https:
//github.com/alex-delalande/linearized_wasserstein_dictionary_learning.

Consider a classical Euclidean data analysis problem on a dataset of N elements
living in Rd. It is well-known that when the dimension d is large with respect to the
number of samples N , the inference of statistical information from the dataset tends
to be difficult. This is often referred to as the curse of dimensionality phenomenon,
which essentially corresponds to the fact that volumes in Rd increase exponentially with
d, so that any (statistical) reconstruction from samples need in general a number of
samples that is exponential in the dimension to achieve a given precision. Many modern
days datasets take the form of high dimensional data (think for instance of images with
millions of pixels or genomics data with millions of gene features). However in many
cases, a dataset can be embedded almost isometrically into a low-dimensional Euclidean
space (which corresponds to Johnson–Lindenstrauss lemma) or more generally into a
low-dimensional manifold. Consider for instance a three seconds high-resolution video of
a swinging pendulum. This video is naturally encoded with a finite set of images (say
N = 3× 30 for a 30 FPS camera) containing each millions of pixels (d ∼ 106). However,
because of the periodic nature of the shot, this set of images can easily be though of as
a sequence of points that describe a one dimensional circle in a proper embedding space.
Dimensionality reduction techniques aim at finding such low-dimensional embeddings or
representations of high-dimensional datasets. Such representations have the advantage
of needing less memory storage in a computer than higher-dimensional representations,
and they may help alleviate the above mentioned curse of dimensionality for subsequent
data analysis. The most famous of these dimensionality reduction techniques comprise
principal component analysis (PCA), independent component analysis, manifold learning
techniques, autoencoders, or dictionary learning methods. In this section, we focus on
the last of these methods and describe how the LOT framework may help extend it
straightforwardly to measure data.

Dictionary learning. Many dimensionality reduction methods propose to project a
given dataset into a fixed predefined orthogonal basis. This is for instance the case of
Fourier or wavelet transforms (Mallat, 2009). The projection basis can be thought of as a
dictionary comprising words in terms of which the dataset may be expressed. Dictionary
learning methods go beyond this approach and propose to learn the dictionary into which
the data is projected, so that its words are well-chosen to represent the dataset at hand.
A bit less formally, for a dataset gathered in a matrix X ∈ Rd×N , one tries to find a
dictionary D ∈ Rd×k of k atoms in Rd (or words) and a list of codes Λ ∈ Rk×N (or
projection coordinates) such that X ≈ DΛ. The similarity between X and DΛ may be
measured in various ways, but the Frobenius norm constitutes a usual choice of measure
of similarity. Making this choice, the dictionary learning problem corresponds to the
optimization problem

min
D∈Rd×k,Λ∈Rk×N

∥X −DΛ∥2F . (8.2)

https://github.com/alex-delalande/linearized_wasserstein_dictionary_learning
https://github.com/alex-delalande/linearized_wasserstein_dictionary_learning
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When no additional constraint is imposed on D or Λ, solving this problem corresponds
to computing a low-rank approximation of X. By the Eckart–Young–Mirsky theorem,
this problem admits a closed form solution in terms of the singular value decomposition
of X. In practice, one may want to solve the dictionary learning problem with D or Λ
satisfying additional constraints. For instance, one may impose that the codes Λ satisfy
some sparsity properties in order to select only a few atoms in each representation of the
data, in which case one recovers the sparse PCA problem (d’Aspremont et al., 2007). One
may otherwise impose that both D and Λ have positive coefficients, in which case one
recovers the Nonnegative Matrix Factorization (NMF) problem (Lee and Seung, 1999).
From a computational perspective, problem (8.2) is convex separably in D and Λ, so that
it is amenable in most cases to (projected) coordinate descent.

Other variants of the dictionary learning problem arise when considering alternative
measures of similarity, such as for instance the Kullback-Leibler divergence (Lee and
Seung, 1999) or Wasserstein distances (Rolet et al., 2016). Finally, more variants of the
dictionary learning problem can be obtained by considering different ways of performing
the reconstruction from the dictionary and the codes. In the classical dictionary learning
problem, the reconstruction DΛ is linear in the atoms gathered in D since linear combi-
nations of columns of D are expected to give good reconstruction of columns of X. This
reconstruction term DΛ may however be replaced by a non-linear reconstruction term
R(D,Λ), where R is a non-linear function of its inputs. This can be particularly relevant
for datasets that lie on Riemannian manifolds, where linear interpolations are expected
to be replaced by geodesic interpolations (see (Schmitz et al., 2018) for more references
on this topic). In the following, we consider the Wasserstein dictionary learning variant
introduced in (Schmitz et al., 2018). In this problem, the dataset is made of probability
measures equipped with a Wasserstein distance. As such, the atoms of the dictionary
are expected to also be probability measures, and reconstruction of input measures from
these atoms is not expected to be linear. In the same way, the similarity between a
measure and its reconstruction may not be measured in Frobenius norm.

Wasserstein dictionary learning. For a given family of k ≥ 1 probability measures
D = (dj)1≤j≤k ∈ P2(Rd)k and any vector λ ∈ ∆k, where ∆k denotes the k-simplex

∆k = {p ∈ (R+)
k|

k∑
j=1

pj = 1},

introduce the 2-Wasserstein reconstruction operator

RW2(D,λ) ∈ argmin
µ

k∑
j=1

λjW
2
2(µ, dj).

This operator associates to the family of measures D a Wasserstein barycenter with
weights λ (Agueh and Carlier, 2011). Such barycenter always exists so that RW2 is
well-defined. The Wasserstein dictionary learning problem, introduced in (Schmitz et al.,
2018), may be stated a follows. Let (µi)1≤i≤N be a dataset of N ≥ 1 probability measures
supported over Rd with finite second-order moments. Then solve

min
D∈P2(Rd)k,Λ∈(∆k)N

N∑
i=1

W2
2(µi,RW2(D,Λi)). (8.3)
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Figure 8.6: (Top) Histograms of each µi, computed with 100 bins over the interval
[−4, 16]. (Bottom) 200-Quantiles of each µi.
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Figure 8.7: Results for dictionary learning on (µi)1≤i≤5 using their histogram represen-
tation. (Left) Atoms. (Right) Original (in green) and reconstructed (in red) histograms.

As with classical dictionary learning, the resolution of this problem can be seen as way
to reduce the dimensionality of the input dataset (µi)1≤i≤N , by representing each µi by
a vector of codes Λi ∈ ∆k.

A one dimensional example. The relevance of considering the Wasserstein geometry
for the dictionary learning problem may easily be illustrated with the following one
dimensional example. Let (µi)1≤i≤5 be a dataset of N = 5 probability measures. Assume
that for each i ∈ {1, . . . , 5}, µi = 1

m

∑m
j=1 δxi,j is a discrete probability measure, built

from m = 2000 points (xi,j)1≤j≤m sampled from a Gaussian N (2i, 1) of mean 2i and
variance 1. The normalized histograms of each µi are gathered in the top row of Figure
8.6.

One may identify each µi with its histogram and notice that these five probability
measures are approximately translated versions of one another. We wonder if we can
recover computationally this structure and look for a dictionary of k = 2 atoms such
that each µi corresponds to a convex combination of these atoms. We first do this
in the histogram domain, i.e. we represent each µi with a vector of dimension d = 100
comprising the value of its normalized histogram computed with 100 bins over the interval
[−4, 16]. We then solve (8.2) with the constraint that each Λi belongs to ∆2 using a
projected coordinate descent (see below for more details on the used algorithm). The
learned atoms (represented as histograms) as well as the proposed reconstruction of each
µi are displayed in Figure 8.7.

From Figure 8.7, we observe a general poor reconstruction quality, in particular for
the intermediate measures µ2, µ3, µ4. This could be expected: convex combinations
of unimodal Gaussian densities do not yield unimodal Gaussian densities but rather
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Figure 8.8: Results (in the histogram domain) for dictionary learning on (µi)1≤i≤5 using
their quantile representation. (Left) Atoms. (Right) Original (in green) and recon-
structed (in red) histograms.

densities of mixtures of Gaussians. The L2 comparison of the densities thus fails to recover
the translations that explain the dataset variations. On the opposite, the 2-Wasserstein
distance between a measure and its translation simply corresponds to the norm of this
translation. We thus consider the Wasserstein dictionary learning problem of (8.3) and
look for k = 2 measures that solve this problem. In our one-dimensional setting, the 2-
Wasserstein distance between measures µ, ν is known to be equal to the L2([0, 1]) distance
between their quantile functions F−1

µ , F−1
ν (i.e. their inverse cumulative distribution

function). As such, solving (8.3) for the dataset (µi)1≤i≤5 is approximately equivalent to
solving (8.2) for the dataset (F−1

µi
)1≤i≤5, where each F−1

µi
is a vectorized representation

of F−1
µi , computed from a uniform evalutation of F−1

µi on 200 points on [0, 1]. These
uniformly sampled versions of the quantile functions are represented in the bottom row of
Figure 8.6. We thus solve (8.3) on the dataset (µi)1≤i≤5 with k = 2 and report in Figure
8.8 the learned atoms as well as the reconstructions (all represented in the histogram
domain). We observe in this figure that the two learned atoms seem to corresponds
to the leftmost and rightmost measures of the dataset. The convex combinations of
their quantiles, in the quantile domain, naturally yield good reconstruction results. This
could be expected from the quantile representations given in the bottom row of Figure
8.6, where quantiles of each µi for i ∈ {2, 3, 4} can easily be seen to be recovered as a
convex combination of quantiles of µ1 and µ5.

Linearized Wasserstein dictionary learning. The above example of translated uni-
dimensional Gaussians illustrates how the Wasserstein dictionary learning formulation
(8.3) of (Schmitz et al., 2018) might be relevant to retrieve the geometric variations that
underlie a dataset of probability measures. In the one-dimensional setting, we were able
to solve easily (8.3) by leveraging the fact that W2 is Hilbertian, so that we could reformu-
late (8.3) as a classical dictionary learning problem of form (8.2). However, for probability
measures supported over Rd with d ≥ 2, the 2-Wasserstein distance is not Hilbertian and
we cannot find equivalence between (8.3) and (8.2) in general. In (Schmitz et al., 2018),
the authors propose to solve (8.3) relying on entropic regularization, automatic differ-
entiation and a quasi-Newton method to update simultaneously the atoms and codes.
More precisely, Wasserstein distances are replaced by their entropic approximation for
a certain fixed entropic regularization parameter (see the introduction of Chapter 7), so
that the estimation of Wasserstein distances and barycenters can be done using a finite
number of iterations of Sinkhorn-like updates (Peyré and Cuturi, 2019). Being given a set
of codes and atoms, these considerations allow to compute the reconstructions and the
cost in (8.3). This cost is then minimized using a quasi-Newton descent (L-BFGS), where
gradients are estimated using automatic differentiation through the Sinkhorn loops. Al-
though showing successful results in (Schmitz et al., 2018), this approach may not always
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be satisfactory in practice. First, it may be quiet involved to implement and it does not
allow to use existing efficient algorithms tailored for usual Euclidean linear dictionary
learning. Second, an entropic regularization parameter must be chosen and constitutes
a trade-off between sharpness of the outputs and duration of execution (with additional
implementation difficulties when the value of this parameter is small). Third, once a dic-
tionary is learned, the computation of the codes associated to a new probability measure
(not present in the training dataset) necessitates the resolution of a new Wasserstein
barycenter problem, which may not ensure rapidness of use of the method at test time.
Here, we propose instead to leverage again (8.2) in order to approximately solve (8.3). In
the one-dimensional case, we observed above that solving (8.3) for a dataset (µi)1≤i≤N is
equivalent to solving (8.2) for the dataset (F−1

µi )1≤i≤N . Denoting ρ = λ[0,1] the Lebesgue
measure on [0, 1], it is well-known that the quantile function F−1

µi is a non-decreasing
mapping that satisfies (F−1

µi )#ρ = µi, that is by Brenier’s theorem F−1
µi = Tµi is the

optimal transport map from ρ to µi. We propose here to extend this idea to dimension
greater than one and to represent each measure from the dataset by its LOT embedding:
for d ≥ 1, denote ρ the Lebesgue measure on the unit cube [0, 1]d and consider a dataset
(µi)1≤i≤N ∈ P2(Rd). For all i ∈ {1, . . . , N}, denote Tµi the optimal transport map from
ρ to µi and Tµi its vectorized version with a certain grid size parameter m ≥ 1 (see the
introduction of this section for the definition of this vectorization). We then propose
to approximately solve the Wasserstein dictionary learning problem (8.3) on the dataset
(µi)1≤i≤N by solving the following Linearized Wasserstein dictionary learning :

min
D∈Rdmd×k,Λ∈(∆k)N

N∑
i=1

∥Tµi −DΛi∥22 = ∥T −DΛ∥2F , (8.4)

where T ∈ Rdmd×N is a matrix whose i-th column contains the vectorized transport map
Tµi . Intuitively, the atoms in D are expected to represent the most salient transport
maps of the dataset. However, there is no reason in general that, for a given set of codes
Λ ∈ (∆k)

N , a minimizer D of problem (8.4) yields atoms that are themselves transport
maps. In the following, we will enforce this by imposing that each column of D reads
as a convex combination of the elements of the dataset (Tµi)1≤i≤N . Indeed, convex
combinations of gradients of convex functions are gradients of convex functions, so that
atoms built from convex combinations of optimal transport maps are optimal transport
maps. We thus introduce a weight matrix W ∈ (∆n)

k such that

D = D(W ) = TW ∈ Rdm
d×k.

Hence our Linearized Wasserstein dictionary learning problem reads

min
W∈(∆n)k,Λ∈(∆k)N

∥T −D(W )Λ∥2F , (8.5)

Another advantage of choosing atoms of D as convex combinations of elements of the
dataset is that the total size of the unknowns in (8.5) is 2Nk, which is less in general than
the size (dmd+N)k of the unknowns in (8.4). The objective L(W,Λ) = ∥T −D(W )Λ∥2F
appearing in (8.5) is convex separately in W and Λ, but not jointly in (W,D). As such,
we propose to use a projected coordinate descent for its minimization, taking a gradient
step with respect to W and Λ alternatively and projecting their value to their respective
simplex (∆n)

k and (∆k)
N using the projection algorithm of (Duchi et al., 2008). The
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following gradients can easily be computed:

∂WL(W,Λ) = −2T⊤(T − TWΛ)Λ⊤,

∂ΛL(W,Λ) = −2W⊤T⊤(T − TWΛ).

Both of these gradients can easily be set to zero in closed form when the other variable
is fixed. We will leverage this only for the update of Λ, and we will use a simple gradient
step for the update of W . This proved to yield better results in practice, and it may
be explained intuitively by the fact that setting gradients to zero rapidly lead to a local
minima of L, i.e. it enforces a rapid definitive choice of both Λ and W , which might not
be optimal when starting from random values for both these unknowns. We report our
overall projected coordinate descent algorithm for the resolution of (8.5) in Algorithm 2.
Note that in this algorithm, the projection onto simplex is done using the algorithm of
(Duchi et al., 2008) and for a matrix M , the matrix M † denotes its pseudo-inverse. We
now illustrate the use of the linearized Wasserstein dictionary learning method on two
concrete examples.

Algorithm 2: Projected coordinate descent for linearized Wasserstein dictio-
nary learning.

Data: Dataset of vectorized Monge maps T ∈ Rdmd×N , number of atoms k,
step-size α, number of iterations niter.

Result: Dictionary D ∈ Rdmd×k, codes Λ ∈ Rk×N
Select W uniformly at random in [0, 1]N×k;
Project each column of W onto ∆N ;
Select Λ uniformly at random in [0, 1]k×N ;
Project each column of Λ onto ∆k ;
for t← 1 to niter do

W ←W + 2αT⊤(T − TWΛ)Λ⊤ ;
Project each column of W onto ∆N ;
D ← TW ;
Λ← (D⊤D)†D⊤T ;
Project each column of Λ onto ∆k ;

end

Cardiac MRI frames. This example is extracted from (Schmitz et al., 2018). In this
work, the authors consider a sequence of MRI frames that summarize a beating heart
cycle. Seeing each MRI frame (which is a black and white image) as a two-dimensional
probability measure over a pixel grid, the authors of (Schmitz et al., 2018) use their
Wasserstein dictionary learning algorithm to proceed with the search of a dictionary of
four atoms, each atom being expected to represent a key frame of the sequence. Because
the 4-dimensional learned codes Λi lie in the simplex ∆4, the authors of (Schmitz et al.,
2018) propose to visualize each code Λi in a three-dimensional space (ignoring for instance
the last coordinate) without any loss of information. Doing so, they notice that the
frames describe a cycle when represented with these barycentric coordinates. As such,
the Wasserstein dictionary learning method is able to recover the periodic nature of
the sequence of frames. We proceed here with the same task and consider N = 30 MRI
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Frame 0 - Original

Frame 0 - Reconstruction

Frame 6 - Original

Frame 6 - Reconstruction

Frame 12 - Original

Frame 12 - Reconstruction

Frame 18 - Original

Frame 18 - Reconstruction

Frame 24 - Original

Frame 24 - Reconstruction

Figure 8.9: (Top) Five example cardiac MRI frames from the sequence. (Bottom) Recon-
structions of the first row frames from a learned linearized Wasserstein dictionary with
k = 4 atoms.

frames of a beating heart cycle1 (note that we could not find the same sequence of images
as the one considered in (Schmitz et al., 2018)). We report in the first row of Figure
8.9 some examples of these frames. For i ∈ {1, . . . , 30}, we then consider the i-th image
as a discrete probability measure µi supported over the pixel grid and where each pixel
intensity indicates the weight of the corresponding Dirac mass. The LOT embeddings
and corresponding vectorized transport maps (Tµi)1≤i≤N are then computed as described
in the beginning of this chapter, with a grid size parameter m = 1500. We finally
solve the linearized Wasserstein dictionary learning problem defined above on the dataset
(Tµi)1≤i≤N using Algorithm 2, with k = 4, α = 7 × 10−6 and niter = 50. The bottom
row of Figure 8.9 displays example reconstructions. Comparing these reconstructions to
the original images in the first row indicates that the method seems to yield satisfactory
results. We report in Figure 8.10 the learned atoms (represented as probability measures,
i.e. as black and white images, obtained from the push-forwards of ρ by the learned
atoms) and the path followed by the sequence in the barycentric coordinates obtained
from the codes. This path approximately follows edges of the 3-simplex: this could be
expected from the fact that in formulation (8.5), the atoms of the dictionary are by design
convex combinations of elements of the dataset. Figure 8.10 shows that the learned atoms
actually correspond to elements of the dataset since there are frames at each vertex of the
3-simplex. This figure also shows that the whole sequence may be roughly recovered from
Wasserstein geodesic interpolations between the four atoms (linear interpolations in the
right representation of Figure 8.10 actually correspond to linear interpolations between
transport maps, i.e. they correspond to generalized Wasserstein geodesic interpolations).

Face recognition. This last example reproduces the face recognition experiment of
(Sandler and Lindenbaum, 2011) and (Rolet et al., 2016) on the ORL dataset (Samaria
and Harter, 1994). This dataset contains 400 face pictures of 40 different people (with
10 pictures per person). We give in Figure 8.11 example pictures from this dataset.

In (Sandler and Lindenbaum, 2011) and (Rolet et al., 2016), the authors propose
to use a dictionary learning method to perform face recogniation on the ORL dataset.
To do this, they evenly split the whole dataset set into a training set and a test set
of 200 pictures each and each containing 5 pictures of the same person. This splitting
is performed randomly and affects the subsequent classification performances. As such,
only the best performances are reported in (Sandler and Lindenbaum, 2011) and (Rolet

1found here: https://www.mhvi.com/wp-content/uploads/2018/09/MRI-anim.gif.

https://www.mhvi.com/wp-content/uploads/2018/09/MRI-anim.gif
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Figure 8.10: (Left) Learned atoms represented as images. (Right) Path followed by the
frames in barycentric coordinates obtained from the codes (each point corresponds to a
frame i and its coordinates ((Λi)1, (Λi)2(Λi)3) are the three first coordinates of Λi ∈ ∆4).

23 36 24 24 9 34 32 16 8 26

Figure 8.11: Example pictures from the ORL dataset (after downsampling), with people’s
ID shown above the pictures.

et al., 2016) and we will proceed as well in what follows. On the training set, a dictionary
of a given number of atoms is learned together with the 200 training codes representing
the pictures of the training set in the learned dictionary basis. Then, face recognition
on the test set is performed as follows: each test picture is projected in the learned
dictionary basis, yielding a test code. An ID is then attributed to each test picture using
the ID of the training code that is the closest from its test code.

Seeing the pictures as vectors in a Euclidean space already allows to use classical
dictionary learning methods (formulated in (8.2)) to perform face recognition as we just
described. However, the L2 comparison of images needs a perfect alignment of the faces
as well as similar poses to be effective. This is because the L2 distance between an image
and its translation can be very large even for small translations. The consideration
of a Wasserstein distance to compare the pictures is thus preferred in (Sandler and
Lindenbaum, 2011) and (Rolet et al., 2016), where dictionary learning is performed
using such distance to measure similarity (but where reconstruction of histograms is
performed in a linear way). We proceed with the same face recognition task using our
linearized Wasserstein dictionary learning formulation (8.5) solved with Algorithm 2. As
in (Sandler and Lindenbaum, 2011) and (Rolet et al., 2016), the pictures from the original
ORL dataset are downsampled (by a factor of 3) and seen as discrete probability measures
supported over the pixel grid where each pixel intensity indicates the weight attributed to
the corresponding Dirac mass. Again, we represent these probability measure using their
LOT embedding (with reference ρ = λ[0,1]×[0,1]) and use the vectorization of the transport
maps described in the beginning of this chapter, with a discretization parameter m = 50.
We use the same procedure for splitting the dataset into training and testing sets as well
as to perform face recognition. Dictionary learning with k ≥ 1 atoms is performed on the
training set Ttrain ∈ R2m2×200 using algorithm 2, which yields a dictionary D ∈ R2m2×k

and a set of codes Λtrain ∈ Rk×200. Projection of the test set Ttest ∈ R2m2×200 on the
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Value of k (number of
atoms)

2 5 8 10 20 30 40 50

(Sandler and Linden-
baum, 2011)

8.5 70.5 87.5 94.5 90.5 95 96.5 97 ≤ 20min

(Rolet et al. (2016),
γ = 1/30)

93 95.5 97 96.5 96 ∼ 20s

(Rolet et al. (2016),
γ = 1/50)

91 95 95 97 94.5 ∼ 90s

Linearized Wasserstein
dictionary learning

14.5 78.5 95.5 97 97.5 98 98 97.5 < 7s

Natural images 18 76.5 94 94 94.5 96 96 95.5 < 0.3s
Method Classification accuracy (%) Run time

Table 8.1: Face recognition performances on the ORL dataset.

dictionary atoms D ∈ R2m2×k is done through

Λtest := (D⊤D)†D⊤Ttest ∈ Rk×200,

and each column of Λtest is then projected onto ∆k. Finally, as in (Sandler and Lin-
denbaum, 2011), each column of Λtrain and Λtest are normalized so as to have a unit
Euclidean norm before performing nearest neighbor search to assign IDs to test images.
We report in Table 8.1 the obtained classification results and compare them to the re-
sults of (Sandler and Lindenbaum, 2011) and (Rolet et al., 2016), as well as to the results
obtained from the same dictionary learning approach applied to natural images with a
L2 measure of similarity and linear reconstruction. We also report in the last column the
execution time of each method (the language and CPU used for these implementations
are respectively: Matlab on a 2.5GHz Intel Core 2 Quad for (Sandler and Lindenbaum,
2011), Matlab on a 2.4 GHz Intel Quad core i7 for (Rolet et al., 2016) and Python on a
2.6 GHz Intel Core i7 6-Core for our methods). We can first note that the straightforward
linear dictionary learning method with a L2 measure of similarity, which can be taken as
a baseline, already yields very good performance results. This might be due to the fact
that in the ORL dataset, faces are already well centered and there are few pose varia-
tions. Moreover, the execution time of this baseline method is very short, since there is
no optimal transport computation. However, the performances of this L2 method should
be affected from small geometric variations applied to the dataset, while such variations
should not affect much the methods based on optimal transport distances. We note that
our linearized Wasserstein dictionary learning approach consistently yields good classi-
fication results and short run times with respect to the other optimal transport based
approaches. This may motivate the use of the LOT framework for this kind of data
analysis tasks.





Conclusion

In the optimal transport community, the issue of the quantitative stability of optimal
transport quantities could be thought of as the elephant in the room: in most applications,
it is assumed that such quantities can be approximated from approximations of the
problem data, but the blatant lack of quantitative guarantees to back this assumption
is hardly ever mentioned. In this thesis, we have given the first piece of answer to this
quantitative stability question. Nonetheless, this issue remains far from being completely
understood.

In Part I, we have derived explicit strong convexity estimates for the dual of the
optimal transport problem, exclusively in the quadratic Euclidean setting and relying
mainly on the Brunn-Minkowski and cousin inequalities. There remains many open ques-
tions surrounding this sole issue. A first question concerns the necessary and sufficient
conditions on a source measure to ensure strong convexity estimates for its associated
Kantorovich functional. We conjectured that being absolutely continuous (with bounds
on the density) and satisfying a Poincaré-Wirtinger inequality should represent such nec-
essary and sufficient conditions, but this remains to be proven. Similar conditions can
also be sought after for the class of potentials on which a Kantorovich functional satisfies
strong convexity estimates. Another natural inquiry concerns the extension of the strong
convexity estimates of Part I to other domains and ground costs. The semi-discrete ap-
proach of Chapter 2 has a strong geometrical flavor and relies on the convexity of the
Kantorovich potentials that is peculiar to quadratic optimal transport. Similarly, the
continuous approach of Chapter 3 essentially builds on the Brascamp-Lieb inequality,
giving a crucial role to the convexity of the Kantorovich potentials. The adaptation
of these two first proofs to more general contexts of costs and domains may thus not
easily be carried out. The entropic proof of Chapter 4 based on the Prékopa-Leindler
inequality is probably the most prone to adaptations to other costs and domains: it re-
lies essentially on algebraic manipulations and there are neither geometric estimates nor
use of the convexity of potentials. The simplicity gained in these derivations from the
entropic regularization of the original transport problem may motivate the investigation
of other types of regularizations as an approach for proving strong convexity estimates in
optimal transport. It could also be relevant to examine if similar estimates can be found
in unbalanced optimal transport. Finally, there are natural algorithmic consequences
of the strong convexity estimates of Part I that have not been investigated in this the-
sis, concerning in particular the analysis of Newton methods used in the resolution of
semi-discrete optimal transport problems.

In Part II, we have built on the estimates from Part I to derive quantitative stability
bounds for certain optimal transport quantities. In Chapter 5, we have given bi-Hölder
stability estimates for optimal transport maps with respect to their target measure. In
the derivation of these estimates, a series of inequalities has been used where each of
the inequality was shown to be tight in terms of exponents. However, we do not know
whether the final Hölder exponents for the stability of optimal transport maps w.r.t. their
target are tight: this constitutes an open question. We also saw that we could interpret
the results of Chapter 5 as embeddability guarantees for parts of the 2-Wasserstein space
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(P2(Rd),W2) in a L2 space with a controlled bi-Hölder distorsion. A previous strong neg-
ative result showed that the whole 2-Wasserstein space cannot admit such an embedding
and, consistently with this result, we have found an embedding with controlled distortion
only on (large) subsets of the 2-Wasserstein space. A remaining open question is that of
the largest possible subset of (P2(Rd),W2) that admits a bi-Hölder embedding in a L2

space. In particular, we found distorsion guarantees for a L2 embedding of p-Wasserstein
balls BWp(δ0,Mp) for some p > d and Mp > 0, but it would seem more natural to
find similar guarantees for the same embedding of 2-Wasserstein balls BW2(δ0,M2) with
M2 > 0. In Chapter 6, we have derived quantitative stability estimates for barycenters
in the 2-Wasserstein space with respect to their marginals. These estimates have been
derived under compactness assumptions and it would be natural to wonder whether these
results can be extended to non-compact settings. However, the current proof strongly
relies on the compactness assumption. One could also wonder if such estimates could
be found for Wasserstein barycenters defined using other Wasserstein distances than the
quadratic one. This constitutes a difficult question. First, the strong convexity estimates
of Part I should also be extended to these settings, and we saw in the preceding para-
graph that such extensions may not be straightforward. Second, we relied in Chapter 6
on a quantitative stability estimate for the push-forward operation under an optimal
transport map: there, the fact that such map reads as the gradient of a convex function
appeared to be important in the proof. The extension of this result could thus also stir
up some trouble. It is finally worth noticing that the results of chapters 5 and 6 both
suggest natural multi-scale strategies for the numerical resolution of optimal transport
problems, where the probability measures of interest are discretized and the quality of
the discretization is improved over the course of the iterations of an optimal transport
solver. Eventually, we have exposed in Chapter 7 convergence bounds for semi-discrete
entropic optimal transport solutions with respect to the regularization parameter. As
mentioned in the chapter, these bounds could help justify ε-scaling strategies where the
regularization parameter is gradually decreased during the numerical resolution of the
regularized optimal transport problem. Another interesting numerical approach for the
resolution of optimal transport, not limited to the semi-discrete setting, is suggested
in Chapter 7. Indeed, by differentiating the optimality condition of the dual entropic
problem with respect to the regularization parameter, we have exposed an ODE. This
ODE suggests a central path following approach reminiscent of interior point methods:
the regularized optimal transport problem could be solved for an initial large value of
the regularization parameter and the solution would then be updated using the ODE in
order to move along a path of regularized solutions toward a solution of the unregularized
problem. It is however not clear how to carry out the analysis of such an approach and
whether it would yield significant computational advantages, the system represented by
the ODE being possibly of large size depending on the context.

We have finally dedicated Part III to the exposition of illustrations and applications
of the Linearized Optimal Transport (LOT) framework. We have seen in this final part
that the bounds of Chapter 5 on the metric distorsion induced by the LOT embedding
could be used to prove performance guarantees on data analysis algorithms within this
framework. There remains however important computational challenges associated to
this approach. Indeed, existing algorithms allow an efficient computation of semi-discrete
optimal transport maps in small dimensions (d = 2 or 3), but there are no such efficient
algorithms in higher dimensions. Several stochastic optimization methods have been
proposed, but their convergence can be quite slow in practice. Another difficulty posed by
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large values of the dimension lies in the computational representation of optimal transport
maps. In Chapter 8, we opted for a uniform sampling over a grid. This approach does not
scale well to large dimensions, and other representations should be considered, leveraging
in particular the dual Kantorovich potentials whose representations do not depend on
the ambient dimension.
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Appendix A

Optimal transport facts

This chapter gathers some (well-known) optimal transport facts that are useful (but
tangential) to this thesis. The presentation done here is more general than the one done
in Chapter 1 because not limited to the quadratic cost. No new result is presented in this
chapter and we refer to the following monographs and chapters (from which this chapter is
inspired) for more general presentations of theoretical and computational aspects related
to the field: (Villani, 2003, 2008), (Santambrogio, 2015), (Peyré and Cuturi, 2019) and
(Mérigot and Thibert, 2021).

A.1 Monge and Kantorovich formulations

A.1.1 Monge formulation.

Let ρ, µ ∈ P(Rd) that represent two different distributions of mass and a cost function
c : Rd ×Rd → R+ that encodes with c(x, y) the cost of transporting a unit of mass from
a location x to a location y. Monge’s formulation of the optimal transport problem with
ground cost c is the following: look for a transport map T : Rd → Rd that solves the
following non-convex optimization problem:

inf
T#ρ=µ

∫
Rd
c(x, T (x))dρ(x), (A.1)

where T#ρ corresponds to the push-forward measure of ρ by T , which satisfies T#ρ(A) =
ρ(T−1(A)) for every ρ-measurable set A.

A.1.2 Kantorovich formulation.

Kantorovich’s formulation of the optimal transport problem with ground cost c is the
following convex optimization problem:

inf
γ∈Γ(ρ,µ)

∫
Rd×Rd

c(x, y)dγ(x, y). (A.2)

Problem (A.2) is a relaxation of (A.1) in the sense that if there exists a transport map
T between ρ and µ, then one can build an admissible transport plan γT from it: γT :=
(id, T )#ρ ∈ Γ(ρ, µ). Such transport plan verifies in particular∫

Rd×Rd
c(x, y)dγT (x, y) =

∫
Rd
c(x, T (x))dρ(x),

A-1
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so that one always has (A.2) ≤ (A.1).

Remark A.1. It is natural to wonder under what conditions on ρ, µ and c do the Monge
and Kantorovich formulations coincide, i.e. when do we have (A.2) = (A.1)? A well-
known case corresponds to the case where the source ρ is absolutely continuous and c is
of the form c(x, y) = h(x − y) for some strictly convex function h, see Theorem 1.17 of
(Santambrogio, 2015) for a precise statement.

Under very mild conditions on the cost function c, an optimal transport plan always
exists:

Theorem A.2 (Villani (2008), Theorem 4.1). Let c : Rd×Rd → R∪{+∞} be lower semi-
continuous and assume that there exists upper semi-continuous functions a ∈ L1(ρ), b ∈
L1(µ) such that

∀(x, y) ∈ Rd, c(x, y) ≥ a(x) + b(y).

Then problem (A.2) admits a solution.

A.2 Dual formulation

The following dual formulation of (A.2) can be recovered using the method of Lagrange
multipliers for the constraints:

sup
(ϕ,ψ)∈L1

c(ρ,µ)

∫
Rd
ϕdρ+

∫
Rd
ψdµ, (A.3)

where L1
c(ρ, µ) = {(ϕ, ψ) ∈ L1(ρ) × L1(µ)|∀(x, y) ∈ Rd, ϕ(x) + ψ(y) ≤ c(x, y)}. From

the definition of L1
c(ρ, µ), it is immediate to check that weak duality holds, i.e. (A.3) ≤

(A.2). Before we mention cases of strong-duality (i.e. when (A.3) = (A.2)) and existence
of solutions to (A.3), we first notice that problem (A.3) may be turned easily into an
unconstrained maximization problem. Indeed, for a given ϕ ∈ L1(ρ) and y ∈ Rd, it is
interesting when maximizing (A.3) to choose ψ(y) as large as possible and satisfying the
constraint in L1

c(ρ, µ), i.e. to choose

ψ(y) = inf
x∈Rd

c(x, y)− ϕ(x).

One can think of a similar choice for ϕ when ψ is fixed and such choices correspond to
taking ψ and ϕ as c/c̄-transforms of each other:

Definition A.3. Let c : Rd×Rd → (−∞,+∞]. The c-transform of ϕ : Rd → R∪{+∞}
is the function ϕc defined by

∀y ∈ Rd, ϕc(y) = inf
x∈Rd

c(x, y)− ϕ(x).

The c̄-transform of ψ : Rd → R ∪ {+∞} is the function ψc̄ defined by

∀x ∈ Rd, ψc̄(x) = inf
y∈Rd

c(x, y)− ψ(y).

A function ψ : Rd → R∪{+∞} is then said c̄-concave if there exists ϕ such that ψ = ϕc,
and similarly, ϕ : Rd → R ∪ {+∞} is said c-concave if there exists ψ such that ϕ = ψc̄.



A.2. DUAL FORMULATION A-3

Remark A.4. If the family of functions y 7→ c(x, y) all share the same modulus of conti-
nuity for any x ∈ Rd, then the c-transform ϕc also shares this modulus of continuity as
an infimum over this (translated) family. The same holds for the c̄-transform ψc̄ and the
modulus of continuity of x 7→ c(x, y) for any y ∈ Rd.

In very general cases, such choices can always be made. It allows then to reformulate
(A.3) as an unconstrained maximization problem and to show that strong-duality holds:

Theorem A.5 (Villani (2008), Theorem 5.9). Let c : Rd×Rd → R∪{+∞} be lower semi-
continuous and assume that there exists upper semi-continuous functions a ∈ L1(ρ), b ∈
L1(µ) such that

∀(x, y) ∈ Rd, c(x, y) ≥ a(x) + b(y).

Then strong-duality holds and (A.3) may be replaced by an unconstrained problem:

(A.2) = (A.3) = sup
ϕ∈L1(ρ)

∫
Rd
ϕdρ+

∫
Rd
ϕcdµ = sup

ψ∈L1(µ)

∫
Rd
ψc̄dρ+

∫
Rd
ψ.

Under slightly more restrictive assumptions on the cost function, one can then show
existence of solution to (A.3). Further, it is possible to characterize these solutions and
their links with solutions to (A.2) using again the notion of c/c̄-transform of Definition
A.3 and the related notion of c-subdifferential:

Definition A.6. Let ϕ : Rd → R ∪ {+∞}. Its c-subdifferential is the set defined by

∂cϕ = {(x, y) ∈ Rd × Rd|ϕ(x) + ϕc(y) = c(x, y)}.

The c-subdifferential of ϕ at point x ∈ Rd is then

∂cϕ(x) = {y ∈ Rd|(x, y) ∈ ∂cϕ}.

Theorem A.7 (Villani (2008), Theorem 5.9). Let c : Rd × Rd → R be lower semi-
continuous and assume that there exists c1 ∈ L1(ρ), c2 ∈ L1(µ) and upper semi-
continuous functions a ∈ L1(ρ), b ∈ L1(µ) such that

∀(x, y) ∈ Rd, a(x) + b(y) ≤ c(x, y) ≤ c1(x) + c2(y).

Then both (A.2) and (A.3) admit solutions, so that

(A.2) = min
γ∈Γ(ρ,µ)

∫
Rd×Rd

c(x, y)dγ(x, y) = max
ϕ∈L1(ρ)

∫
Rd
ϕdρ+

∫
Rd
ϕcdµ = (A.3),

where one might impose that ϕ is c-concave. If in addition, a, b and c are continuous,
then any γ ∈ Γ(ρ, µ) and c-concave ϕ ∈ L1(ρ) are optimal for (A.2), (A.3) respectively if
and only if γ is concentrated on ∂cϕ.

The specialization of Theorem A.7 to specific choices of cost functions allows us to
get the following well-known results.
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Kantorovich-Rubinstein duality formula. When c(x, y) = ∥x− y∥, it is clear that
the sets of c- and c̄-concave functions coincide and correspond to the set of 1-Lipschitz
functions. A consequence of this fact and of Theorem A.7 is the following formula, known
as Kantorovich–Rubinstein duality result (Kantorovich and Rubinstein, 1958):

Proposition A.8 (Villani (2008), Particular Case 5.15). Let ρ, µ ∈ P1(Rd). Then

min
γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥dγ(x, y) = max
f∈1−Lip(Rd)

∫
Rd
fdρ−

∫
Rd
fdµ.

This formula shows in particular that the optimal transport cost for the ground cost
c(x, y) = ∥x− y∥ corresponds to a dual norm on the space of signed measures with
vanishing total mass.

Quadratic cost and Legendre transforms. For the quadratic cost c(x, y) =
∥x− y∥2, the notions of c/c̄-transforms may be related to the usual notion of Legen-
dre transform or convex conjugate of convex analysis (see Remark 1.6). Indeed, it was
already noticed in Section 1.1 that working with the quadratic cost c(x, y) = ∥x− y∥2
is equivalent to working with the (negative) bilinear cost c(x, y) = −⟨x|y⟩. With such
cost, it is easy to check that the c-transform (which is equal to the c̄-transform) verifies
for any ϕ : Rd → R ∪ {+∞},

ϕc = ϕc̄ = −(−ϕ)∗.

These considerations, together with Theorem A.7 and a manipulation of the signs, allow
to recover the semi-dual formulation of the quadratic optimal transport described in
Section 1.1.

A.3 Stability of solutions

In order to study the stability properties of solutions to problems (A.1), (A.2) and (A.3),
we need a notion of convergence for probability measures supported over Rd and we will
consider the one in duality with Cb(Rd):

Definition A.9 (Weak convergence of probability measures). A sequence (ρn)n≥0 ∈
P(Rd) is said to converge weakly to ρ ∈ P(Rd) (denoted ρn ⇀ ρ) if and only if for any
ϕ ∈ Cb(Rd),

∫
Rd ϕdρn →

∫
Rd ϕdρ.

Thanks to Theorem A.7 and the optimality conditions it yields for solutions to (A.2)
and (A.3), it is possible to show the following stability result in the compact setting:

Theorem A.10 (Villani (2008), Theorem 5.19, and Santambrogio (2015), Theorems
1.51 and 1.52). Let Ω be a compact subset of Rd and c : Ω × Ω → R continuous. Let
(ρn)n≥0, (µn)n≥0 be sequences in P(Ω) and assume that ρn ⇀ ρ ∈ P(Ω) and µn ⇀ µ ∈
P(Ω). Then for each n ≥ 0, denoting γn ∈ Γ(ρn, µn) an optimal transport plan and
ϕn ∈ L1(ρn) a Kantorovich potential for the transport problem between ρn and µn w.r.t.
c, one has, up to a subsequence:

(i) γn ⇀ γ ∈ Γ(ρ, µ), where γ is an optimal transport plan between ρ and µ w.r.t. c.

(ii) minγ∈Γ(ρn,µn)
∫
cdγ → minγ∈Γ(ρ,µ)

∫
cdγ.
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(iii) ∥ϕn − ϕ∥L∞(Ω) → 0 and ∥ϕcn − ϕc∥L∞(Ω) → 0, where ϕ ∈ L1(ρ) is a Kantorovich
potential between ρ and µ w.r.t. c.

In Theorem A.10, (i) is proven using Prokhorov’s theorem and the optimality condi-
tions of Theorem A.7 to show existence and optimality of a limit γ. Point (ii) is then
a direct consequence of point (i). Point (iii) is finally obtained by exhibiting a limit ϕ
using that c-concave functions have the same modulus of continuity as c (see Remark
A.4) and the Arzelà-Ascoli theorem, the optimality of the limit being shown eventually
using point (ii). Theorem A.10 thus ensures the stability of problems (A.2), (A.3); and
it can be used to show the stability of Monge’s original problem (A.1) in the case (A.1)
= (A.2):

Corollary A.11 (Villani (2008), Corollary 5.21). With the same assumptions and no-
tation of Theorem A.10, further assume that there exist measurable maps Tn, T : Ω→ Ω
such that

γn = (id, Tn)#ρn, γ = (id, T )#ρ,

and γ is the unique optimal transport plan between ρ and µ. Then

∀ε > 0, ρn({x ∈ Ω, ∥Tn(x)− T (x)∥ > ε}) −−−−−→
n→+∞

0.

In particular, if ρn = ρ for all n, then Tn converges to T in ρ-probability.

A.4 Wasserstein distances and spaces

The value of (A.2) represents the cost of transporting ρ to µ when the ground cost is c.
Thus, intuitively, this value gives a quantitative idea of how similar ρ and µ are, in the
sense that the cheaper it is to transport ρ to µ, the more similar they are likely to be.
When the cost is the p-th power of the Euclidean distance, this intuition is made rigorous
since the value of (A.2) defines an actual distance between probability measures:

Definition A.12 (Wasserstein distances). Let p ≥ 1. For any two probability measures
ρ, µ ∈ Pp(Rd), the Wasserstein distance of order p between ρ and µ is defined by

Wp(ρ, µ) =

(
min

γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥p dγ(x, y)
)1/p

.

One can quite easily check that Wp satisfies the axioms of a distance over Pp(Rd),
see e.g. Proposition 5.1 of (Santambrogio, 2015).
Remark A.13. For any 1 ≤ p ≤ q, one has Wp ≤Wq using Jensen inequality.

Having defined a distance on Pp(Rd), we can then naturally define the following
metric space:

Definition A.14 (Wasserstein spaces). The Wasserstein space of Ω ⊆ Rd of order p ≥ 1
is the metric space (Pp(Ω),Wp) of probability measures supported over Ω with finite p-th
moment, endowed with the Wasserstein distance of order p.

For Ω ⊆ Rd, the metric space (Pp(Ω),Wp) is naturally endowed with the topology
induced by the metric Wp. An interesting consequence of the stability result of Theorem
A.10 is that whenever Ω is compact, this topology coincides with the weak topology on
Pp(Ω):
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Theorem A.15 (Santambrogio (2015), Theorem 5.10). If Ω ⊂ Rd is compact and p ≥ 1,
in the space (Pp(Ω),Wp) we have ρn ⇀ ρ if and only if Wp(ρn, ρ)→ 0.

Wasserstein distances are thus said to metrize the notion of weak-convergence of
compactly supported probability measures. In the case of non-compactly supported
probability measures, they metricize a stronger notion of convergence:

Theorem A.16 (Santambrogio (2015), Theorem 5.11). Let p ≥ 1. In the space
(Pp(Rd),Wp) we have Wp(ρn, ρ)→ 0 if and only if ρn ⇀ ρ and Mp(ρn)→Mp(ρ).

A final attractive feature of Wasserstein distances of order p ≥ 1 is that they define a
geometry on Pp(Rd). In fact, one can show that for p ≥ 1, the metric space (Pp(Rd),Wp)
is a geodesic space:

Theorem A.17 (Santambrogio (2015), Theorem 5.27). Let p ≥ 1 and ρ, µ ∈ Pp(Rd).
Let γ ∈ Γ(ρ, µ) be an optimal transport plan w.r.t. the cost c(x, y) = ∥x− y∥p and
define the maps πt : (x, y) 7→ (1 − t)x + ty for t ∈ [0, 1]. A constant speed geodesic
connecting ρ and µ in (Pp(Rd),Wp) is the curve ρt := (πt)#γ. In particular if there
exists an optimal transport map T such that γ = (id, T )#ρ, the curve can be obtained as
ρt = ((1− t) + tT )#ρ.
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Sankhyā: The Indian Journal of Statistics (1933-1960), 19(1/2):23–26.

Vershynin, R. (2018). High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press.

Villani, C. (2003). Topics in Optimal Transportation. Graduate studies in mathematics.
American Mathematical Society.

Villani, C. (2008). Optimal transport: old and new, volume 338. Springer Science &
Business Media.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,



BIBLIOGRAPHY A-21

Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde,
D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors
(2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Na-
ture Methods, 17:261–272.

Wang, W., Slepčev, D., Basu, S., Ozolek, J. A., and Rohde, G. K. (2013). A linear
optimal transportation framework for quantifying and visualizing variations in sets of
images. Int. J. Comput. Vision, 101(2):254–269.

Weed, J. (2018). An explicit analysis of the entropic penalty in linear programming. In
Bubeck, S., Perchet, V., and Rigollet, P., editors, Conference On Learning Theory,
COLT 2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine
Learning Research, pages 1841–1855. PMLR.

Weed, J. and Bach, F. (2019). Sharp asymptotic and finite-sample rates of convergence
of empirical measures in Wasserstein distance. Bernoulli, 25(4 A):2620–2648.

Weed, J. and Berthet, Q. (2019). Estimation of smooth densities in Wasserstein distance.
In Beygelzimer, A. and Hsu, D., editors, Proceedings of the Thirty-Second Conference
on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pages
3118–3119. PMLR.

Yan, M. (2014). Extension of Convex Function. Journal of Convex Analysis, 21(4):965–
987.

Yang, C., Delcher, C., Shenkman, E., and Ranka, S. (2018). Clustering Inter-Arrival
Time of Health Care Encounters for High Utilizers. In 2018 IEEE 20th International
Conference on e-Health Networking, Applications and Services (Healthcom), pages 1–6.

Ye, J., Wu, P., Wang, J. Z., and Li, J. (2017). Fast Discrete Distribution Clustering
Using Wasserstein Barycenter With Sparse Support. IEEE Transactions on Signal
Processing, 65(9):2317–2332.





Titre: Stabilité quantitative en transport optimal quadratique

Mots clés: Transport optimal, Stabilité quantitative, Analyse convexe, Optimisation, Géométrie
métrique, Apprentissage automatique

Résumé: L’étude du problème de transport op-
timal permet de définir des métriques sur des es-
paces de mesures de probabilité qui ont de fortes
interprétations physiques et géométriques. Ce prob-
lème et ses métriques (appelées distances de Wasser-
stein) ont trouvé de nombreuses applications, al-
lant de la physique quantique, la mécanique des flu-
ides, la conception optique, l’économie et les statis-
tiques, à l’apprentissage automatique. Le profond
ancrage physique du problème de transport opti-
mal appelle à l’étude de son caractère bien posé. Si
l’existence et l’unicité des solutions du problème de
transport optimal ont été largement étudiées dans
des travaux antérieurs, l’étude de sa stabilité est
moins avancée. Des résultats de stabilité généraux
et abstraits garantissent que les solutions de trans-
port optimal dépendent continûment des données
du problème qui les définit. Cependant, ces résul-
tats ne sont presque jamais quantitatifs, ce qui est
problématique dans les applications, où les données
sont souvent disponibles de manière approximative.
Cette thèse vise à combler cette lacune. En se con-
centrant dans un contexte euclidien sur le problème

de transport optimal quadratique, nous donnons
dans une première partie des estimations de la forte
convexité du problème dual de Kantorovich en nous
appuyant sur des inégalités géométriques et fonc-
tionnelles bien connues. Nous rassemblons ensuite
dans une deuxième partie des estimations quanti-
tatives de la stabilité des applications de transport
optimal par rapport à leur mesure cible, des barycen-
tres de Wasserstein par rapport à leurs mesures
marginales et des potentiels de Schrödinger par rap-
port au paramètre de température dans le trans-
port optimal entropique semi-discret. Ces estima-
tions suggèrent toutes des applications naturelles en
transport optimal numérique et statistique. Elles
donnent également de nouvelles indications sur la
plongeabilité de l’espace Wasserstein-2 dans un es-
pace de Hilbert avec une distorsion de la métrique
contrôlée. Dans une dernière partie, nous ex-
ploitons cette dernière idée dans des applications
d’apprentissage automatique et proposons des ap-
proches pour résoudre approximativement des prob-
lèmes de K-moyennes et d’apprentissage de diction-
naire dans l’espace Wasserstein-2.

Title: Quantitative Stability in Quadratic Optimal Transport

Keywords: Optimal Transport, Quantitative Stability, Convex Analysis, Optimization, Metric Geom-
etry, Machine Learning.

Abstract: The study of the optimal transport
problem allows to define metrics on spaces of prob-
ability measures that come with strong geometrical
and physical interpretations. This problem and its
metrics (called Wasserstein distances) have found
many applications, ranging from quantum physics,
fluid dynamics, optics design, economics and statis-
tics, to machine learning. The profound physical
rooting of the optimal transport problem calls for
the study of its well-posedness. While the existence
and uniqueness of solutions to the optimal trans-
port problem have been extensively studied in pre-
vious works, the investigation of its stability is less
advanced. General and abstract stability results en-
sure that optimal transport solutions change con-
tinuously with the problem data. Yet these results
are hardly ever quantitative, which is problematic in
applications, where the data is often approximated.
This thesis works towards closing this gap. Focus-

ing in a Euclidean context on the quadratic optimal
transport problem, we derive in a first part strong
convexity estimates for the Kantorovich dual prob-
lem relying on well-known geometric and functional
inequalities. We then collect in a second part quanti-
tative stability estimates for optimal transport maps
with respect to their target measure, for Wasserstein
barycenters with respect to their marginals and for
Schrödinger potentials with respect to the temper-
ature parameter in semi-discrete entropic optimal
transport. These estimates all suggest natural ap-
plications in computational and statistical optimal
transport. They also give new insights on the em-
beddability of the 2-Wasserstein space in a Hilbert
space with a controlled distorsion. In a last part,
we leverage this last idea in machine learning ap-
plications and propose approaches to approximately
solve K-means and dictionary learning problems in
the 2-Wasserstein space.
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