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Introduction

The context of this PhD work is the mesoscopic modeling of active matter. One of the

challenges related to this topic is to understand how activity emerges from microscopic

considerations. The basic identified ingredient in most experimental systems is the pres-

ence of anisotropy. The body of literature related to the theoretical study of anisotropic

active particles is impressive. Yet, it is possible for an isotropic system to exhibit activity,

and a few theoretical studies concern isotropic objects. Moreover, it usually lacks in mi-

croscopic descriptions of the medium in which active particles are moving. The propulsion

of isotropic particles requires a spontaneous symmetry breaking of the environment of the

particle, which leads to an anisotropic situation. The aim of this PhD work is to propose

and to study a novel type of propulsion mechanism for an isotropic colloid.

The proposed model takes its origin in the identified hollow parts of the literature on

the topic, which are the study of isotropic active particles in general, and the explicit

description of the environment. The presented results in this work rely on numerical

simulations using Brownian dynamics. Initially, the topic of this PhD project was the

modeling of active polymers containing both active and passive monomers, with an explicit

description of the environment. This reflects the ambitious aim for the applications of the

proposed model, which is to be used to describe complex situations which often lack in

microscopic insight. The present PhD work is devoted to the construction of the model,

to the development of a Brownian dynamics code, and to the thorough understanding

of the propulsion mechanism based on the analysis of the simulated trajectories. Also,

the obtained results using an explicit description of the colloid environment are linked

to those obtained with standard theoretical descriptions of active matter via effective

Langevin equations.

The manuscript is organized as follows. Chapter 1 presents a panorama of existing
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Introduction

experimental and theoretical studies of active matter that allows one to understand the

genesis of the proposed model and its pertinence. In Chapter 2, the model is introduced,

and the numerical method used to simulate it is presented. First, the simplest system

is investigated in Chapter 3, where only one isotropic colloid is surrounded by explicit

solute particles. The influence of the parameters of the model on the dynamics of the

colloid is thoroughly investigated, and the mechanism at the origin of activity is unraveled.

In Chapter 4, the more complex situation of a suspension of active colloids is studied.

Preliminary work on an extension of the model, where different types of active monomers

are mixed together, is proposed in Chapter 5.
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Context

1.1 Brownian motion

1.1.1 Definition

In 1827, the botanist Robert Brown reported the erratic motion of organic as well

as inorganic particles in water. It was found that in a solvent, the motion of particles

originates from the collision with solvent molecules. The latter are agitated due to the

effect of the temperature T of the system. As it was later understood, more generally,

a particle of diameter σ in a fluid undergoes what is called Brownian motion, providing

that its size is:

• small enough so that thermal energy (kBT ) dominates the gravitational potential

energy (gρσ4), i.e :

gρσ4 < kBT =⇒ σ <

(
kBT

ρg

)1/4

∼ 10−6 m (1.1)

where g ∼ 10 m/s2 is the gravity constant, ρ is the effective particle mass density,

which has the same order of magnitude than the mass density of water, then ρ ∼
103 kg/m3, and kBT ∼ 4 ·10−21 m2kg/s2 is the thermal energy at room temperature.

• large enough, because the particle must be more massive than solvent particles,

which implies σ > 10−9 m.

This indicates that a colloid or a solute particle whose typical size is between a few

nanometers to a few micrometers can be sensitive to Brownian motion. This is at least

one order of magnitude larger than solvent molecules, which have usually a typical size

∼ 10−1 nm, for example water. Consequently, solvent molecules move much faster than

the colloid or the solute particles and collide relentlessly with them. The solvent molecules

in the solvent are densely packed. Therefore, the distance travelled between two collisions

is comparable to their radius R. The time between two collisions τC is thus estimated

by τC ∼ R/
√

⟨v2⟩, where the velocity v is linked to the kinetic energy of a molecule

Ekin = 3
2
kBT = 1

2
m ⟨v2⟩, with m its mass. The resulting force vector applied on a solute

is thus changing with time, at a very small characteristic time τC ∼ 10−13 s, leading to

the erratic motion of solutes.

1.1.2 A simple model to describe Brownian motion

Several scientists, such as Einstein or Smoluchowski, have contributed to build a frame-

work for Brownian motion, whose theories have later been confirmed in experiments car-

ried by Jean Perrin in 1910 [1]. Among them, Langevin has constructed an equation of
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motion to describe a colloidal particle in a solvent. Due to the timescales separation be-

tween the dynamics of the solvent and that of solute particles, the solvent can be seen as

a continuous medium. Derived from Newton’s second law: ma =
∑

F ext, the Langevin

equation proposes to describe the solvent implicitly and to account for its influence on

the solute particle dynamics via two contributions: a friction force and a random force.

The equation reads:

m
d

dt
v(t) = −mγv(t) +R(t), (1.2)

where m is the mass of the particle, v its velocity, and γ its friction coefficient. Langevin’s

equation takes into account the effect of the solvent by two terms:

• a friction force −mγv(t), which slows down the solute particles.

• a random force R called Langevin force, which represents the impacts with the

solvent molecules randomizing the particles orientation. The Langevin force is a

statistical description of the effect of the solvent. R is a Gaussian white noise and

satisfies :

– ⟨R(t)⟩ = 0, as the collisions are random with, in average, no preferred orien-

tation.

– ⟨R(t′) · R(t′′)⟩ = 2dmγkBTδ(t
′ − t′′), where d is the number of dimensions.

The time between two collisions being very small in comparison to the other

timescales of the problem, the correlation function of the noise is assumed to

be a delta function. The friction coefficient γ also appears in the correlation

function as both friction and random terms have the same origin: the solvent.

The relaxation time τR is the time needed by a colloid with an initial velocity v to be

slowed down by a factor e. At t ≫ τR the particle velocity is zero. At the considered

scale (between a few micrometers to a few nanometers), viscous effects dominate, which

is characterized by a low Reynolds number, so that for a colloidal particle τR ∼ 10−9 s is

very small. A usual approximation is to consider the overdamped limit of the Langevin

equation, where inertial effects are neglected. In this case, dv
dt

= 0, and from (1.2) the

equation becomes:

v(t) =
1

mγ
R(t). (1.3)

The overdamped Langevin equation is the starting point of Brownian dynamics simula-

tions that are described in Chapter 2.
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1.1.3 Transport properties of a Brownian particle

Transport properties of Brownian particles can be characterized by the translational

diffusion coefficient Dt, which quantifies the space explored during a unit of time, and the

rotational diffusion coefficient Dr, which quantifies the frequency of reorientation of the

particle. The diffusion is affected by temperature: when T increases, the solvent molecules

become more agitated, there are then more collisions, and the transport of colloids is

enhanced. Conversely, due to the collisions, the solvent also slows down the movement

of colloids. The Stokes-Einstein equation precises how the transport is dependent on the

solvent property, namely its viscosity η, the particle size R = σ/2 and temperature. For a

spherical particle in a Newtonian fluid (e.g.: water), the translational diffusion coefficient

reads:

Dt =
kBT

6πηR
. (1.4)

The fluctuation-dissipation theorem links the transport due to the thermal energy kBT

to the friction γ through the following relation:

Dt =
kBT

γm
. (1.5)

The rotational diffusion coefficient is:

Dr =
kBT

8πηR3
. (1.6)

The mean squared displacement of the particle, which characterizes the size of the ex-

plored region, increases linearly with time and is proportional to the translational diffusion

coefficient.

1.2 Active systems

1.2.1 What is activity?

In contrast to Brownian particles, which are passive, active particles are able to over-

come thermal fluctuations. Active particles take energy from their environment and con-

vert it into directed motion. Such a system is out of equilibrium. The difference can

be easily understood by comparing trajectories of active and passive particles. On Fig-

ure 1.1, the trajectories obtained on a time window of equal duration from an experiment

done by Howse et al. are shown [2]. On the top, the particles are passive, whereas on the

bottom, the particles are active. The particles used in this experiment are Janus particles.

Similarly as the Roman god, Janus particles possess two faces. One hemisphere catalyzes
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Figure 1.1: Example of trajectories from experimental data for a passive particle (top)
and for an active particle (bottom). From left to right, the activity intensity of the active
particles is enhanced. Extracted from [2].

H2O2, which serves as a fuel for propulsion. The activity intensity is thus proportional

to the concentration of H2O2, increased from left to right. For the most active case (last

column on the right) the difference is striking: while the motion of the passive particle on

the top exhibits the characteristics of erratic motion, the active particle, on the bottom,

clearly exhibits a persistent motion. This results in enhanced space exploration. The

mean squared displacement of the particle is proportional to an effective diffusion coeffi-

cient, which is higher than the one of passive particles predicted by the Stokes-Einstein

equation (Eq. (1.4)).

In the light of this example, an active colloid can be characterized by its mean squared

displacement which is different from its equilibrium counterpart. Particularly, its diffusion

coefficient at long time is higher.

1.2.2 Examples of active systems

In nature, activity is ubiquitous and exists at all scales. In the biological world, cells

are overflowed with proteins or macromolecules which use activity to achieve various tasks:

find nutrients, carry molecular cargo, avoid toxins etc. This metabolism is at the origin

of the cell motion itself. One of the main source of energy involved in biological processes

is ATP. An example of an ATP-based molecular motor is depicted on Figure 1.2a. ATP

is hydrolyzed in ADP, which generates the rotation of the top basis of the motor. This

motor can be linked to a flagellum, which produces the motion of bacteria such as E. Coli

[3]. Other examples of living microorganisms that self-propel are shown on Figure 1.2b.

Their swimming strategies have been detailed from a hydrodynamic perspective in [4].

Although progress has been made in the characterization of the mechanism at the

origin of the propulsion in living systems, numerous questions remain unanswered. Bi-
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(a) ATP based molecular motor, named
F0F1-ATP synthase, extracted from [3].

(b) Different biological micro-swimmers ex-
tracted from [4]. (a)-(d) bacteria, (e)-(f)
spermatozoa, (g) alga, and (h) unicellular
organism.

Figure 1.2: Examples of living organisms and artificial microswimmers.

ological swimmers evolve in complex environments, which makes the understanding and

the characterization of activity difficult. Inspired by nature and taking advantages of the

current knowledge, researchers have created man-made micro or nanoswimmers. On the

one hand, the study of artificial swimmers in a controlled environment can bring a new

insight on the analysis of activity in living systems. On the other hand, these artificial

objects can be designed and tuned for the purpose of diverse applications. The latter has

received a growing interest for biological applications such as drug delivery [5] or for the

industry and soil cleaning [6] to name just a few examples. Experimental work has suc-

ceeded to create artificial swimmers of various shapes: spherical particles, rods, L-shape

like particles [7]. Successful experiments of a nanomotor carrying cargos have also been

reported [8].

The diversity of existing systems is displayed on Figure 1.3 which shows living (yellow

diamonds) as well as artifical (orange circles) microswimmers of different sizes, shapes

and propulsion speeds.

1.2.3 Propulsion mechanisms

Mechanism based on phoretic effects

Several mechanisms have been identified as leading to the propulsion. One of the

promising route is phoretic motion, which refers to a particle driven by a gradient of an

external field Φ. The motion of the colloid is caused by the interaction of the ambient

fluid, namely the solvent, with the solute particles. Due to the colloid-solute particles

interaction at the colloid surface, there is an interfacial layer where the solute particles
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Figure 1.3: A map which summarizes the main active systems studied in the literature
and sorts them according to their propulsion speed and size. Examples of living mi-
croswimmers are represented by yellow diamonds and artificial particles by orange circles.
Extracted from [9].

structure is modified. This induces a tangential slip velocity vs of the solvent in the

interfacial region. The system is force free, which set the colloid in motion. This has been

demonstrated by Anderson, who has predicted that the velocity of a colloid is linked to

the slip velocity. He demonstrated that vs is proportional to the gradient at the surface

of the particle [10]:

vs = M∇sΦ. (1.7)

This is derived from the low-Reynolds limit of the Navier-Stokes equation, namely the

Stokes equation. The mobility M depends on the type of the considered phoretic effect.

In the case of diffusiophoresis, when a particle is in a gradient of concentration c, the

Stokes equation for the solvent velocity v is written:

−η∇2v = −∇p− c∇U, (1.8)

where p is the pressure field, and U is the interaction potential between the solute particles

and the colloid. In order to find M, some approximations are made:

� The concentration of solute particles follows a Boltzmann-like distribution, i.e.

c ∝ e
− U

kBT .

� The interaction potential is short-ranged and the interaction layer is much smaller

than the colloid size.

� The velocity and the potential are functions of the radial component only.
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� In the most simple approach, the advection is neglected as small Péclet numbers are

considered. The Péclet number is the ratio between advection over diffusion, and is

denoted by Pe.

This leads to:

M =
kBT

η
λ2,

where λ2 =
∫∞
0

(
1− e−U(r)/(kBT )

)
rdr is the Derjaguin length which include the effect of

the interactions between the solute particles and the colloid. λ2 can either be positive

or negative depending on the nature of the interactions (repulsive or attractive) [11].

Other derivations were made considering a temperature gradient (thermophoresis) and

an electric gradient (electrophoresis). In the original work of Anderson, the gradient was

imposed in the colloid environment by an external source.

Recently, a more interesting perspective has been exploited: a gradient generated by

the particle itself, what is referred to as self-phoretic effects. To do so, the particle needs to

have some built-in asymmetry. Particularly, particles with asymmetric surface properties

have been designed and studied, such as Janus particles. An example of a rod-like and of

a sphere-like Janus particle is shown on Fig. 1.4. Self-phoretic effects have been observed

in numerous experiments that are reviewed in [9]. Here are listed a few examples where

Janus particles generate a gradient:

• Self-electrophoresis: an example is depicted Fig. 1.4-top. A bimetallic nanorod, half

coated with platinum and half coated with gold, in a hydrogen peroxide solution

shows propulsion. The hydrogen peroxide is oxidized at the platinum end : H2O2 →
2H++2e−+O2. The protons and electrons are then consumed at the gold end with

the reduction of the hydrogen peroxide : H2O2 + 2H+ + 2e− → 2H2O. The two

reactions create an ionic flux, producing the propulsion of the nanorod [12]. This

experiment corresponds to the letter b on the graphic shown in Figure 1.3.

• Self-thermophoresis: a Janus particle, half coated with silica and half coated with

gold, is considered. A laser beam irradiates the solutions in which the particles

are placed. Only the golden cap of the particle heats up, generating a gradient of

temperature around it, which makes the particle self-propel [13]. This experiment

is represented by the point labelled g on Figure 1.3.

• Self-diffusiophoresis: the mechanism is illustrated on Fig. 1.4-bottom. A polystyrene

sphere, half coated with platinum, is in a hydrogen peroxide solution. The platinum

side catalyzes the reaction : H2O2 → H2O + 1/2O2 creating a gradient of con-

centration which leads to the self-propulsion of the particle [2]. This experiment
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corresponds to the point labelled d on Figure 1.3. The trajectories reproduced on

Fig. 1.1 were extracted from the same article.

Figure 1.4: Top: Example of self-electrophoresis. A Janus nanorod, half coated with
platinum and half coated with gold, self-propels in a hydrogen peroxide solution. At
the platinum end, the hydrogen peroxide is oxidized and at the other end it is reduced.
Bottom: Example of self-diffusiophoresis. A Janus polystyrene sphere, half coated with
platinum, is in a hydrogen peroxide solution. The hydrogen peroxide is decomposed at
the platinum end. Extracted from [14].

Mechanism based on a phase separation

Figure 1.5: Phase diagram of a water lutidine mixture, the demixing curve is represented
in the plane (temperature; concentration of lutidine in the mixture). Extracted from [15].

An alternative route for locomotion has been explored: propulsion caused by a phase

separation. In contrast to experiments involving a one-way reaction, such as the decom-
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position of hydrogen peroxide, the mechanism described here is not fuel-limited. The

set-up is the following: a Janus particle half coated with gold is in a binary mixture of

water lutidine. The gold cap is either made hydrophobic or hydrophilic. The mixture

is at the critical concentration and just below the critical temperature of demixing as

illustrated on the water lutidine phase diagram by the A point on Figure 1.5. The system

is illuminated, the light is absorbed by the gold cap. The gold cap heats up, which raises

the local temperature up to above the critical temperature, represented by the B point on

Fig. 1.5. Therefore, the binary mixture phase separates. If the golden cap is hydrophilic

(resp. hydrophobic), a water (resp. lutidine) rich phase forms on this side. The gradi-

ent of concentration leads to self-propulsion, which have been observed in [16, 15] in a

quasi-2D experiment and in 3D in [17, 18, 19].

1.3 Characterization of the physical principles at the

origin of self-propulsion

1.3.1 Continuum description theories

Theoretical descriptions have been proposed to decipher the origin of propulsion of

anisotropic particles. Anderson has shown that a particle in a gradient will self-propel due

to interfacial effects. On this basis, analytical derivations have been proposed to predict

what would be the propulsion speed in a system where the particle itself generates the

gradient. In these calculations, the solute particles are described in a continuous limit

considering the concentration field c(r, t). Most often, the concentration is supposed to

be stationary: c(r, t) = c(r). A simple model, considering a colloid with an active site at

its surface, is investigated in [20]. Solute particles are emitted from the active site. The

concentration field can be found using a diffusion equation and its value is substituted

in Eq. (1.7) to find the propulsion velocity. In another article [21], the authors find that

the velocity depends on the surface properties through: the mobility and the activity

mechanism. The conditions for an optimized propulsion are discussed. Such model has

also been studied under confinement [22] or in an active medium [23]. In [24], a squirmer

model is used to study the optimal propulsion of cells that is linked to their feeding

strategy. The computations are done under some hypothesis: the interaction layer where

the solute particles interact with the colloid is assumed to be much smaller than the

colloid size, the advective effects are neglected which decouples the Stokes equation from

the diffusion equation.

More recently, these usual approximations have been challenged in [25]. A more gen-

eral phoretic framework, which includes advective effects and arbitrary surface chemical
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properties, have been considered. It has been shown that advective effects enhanced the

swimming velocity, while the reactive effects penalize the propulsion. An analogous deriva-

tion has been done in [26] for a Janus particle which self-propels due to thermophoresis.

The authors characterize the flow pattern and point out the limit of the model. Still

based on the slip velocity defined by Anderson, in [27] the authors derive the mobility in

a case of phase separation due to a local increase of the temperature. The calculations

of [28] include the effects of advection and complete the theoretical description. The au-

thors find that conversely to the work of [27] the propulsion does not arise from a slip

velocity but from perpendicular forces to the surface. An alternative approach to study

this system suggests that the motion is not simply due to an asymmetric concentration

of solute particles, but also to an asymmetric dissipation [29].

1.3.2 Particle-based numerical simulations

In order to be more precise than continuous descriptions, which do not take into

account microscopic details, the use of numerical simulations have brought new insights

to the understanding of the problem. In particle-based simulations, the solute particles are

described explicitly and the solvent is implicit. However, though their interactions with

the colloidal particles are modeled, the interactions between solute particles are usually

not taken into account. The chemical reaction, which is supposed to occur at the colloid

surface, is also modeled and it is shown that the type of considered reaction is important.

In [30], the authors demonstrate that an exothermic reaction will lead to propulsion due to

self-thermophoresis while a dissociation reaction leads to self-diffusiophoresis. In [31], the

authors consider a dimer: one of the sphere catalyzes a reaction, the other does not. The

gradient of concentration generated by this asymmetric reaction results in self-propulsion.

The propulsion of a dimer has been investigated thoroughly: the parameters which have

an influence on the self-propulsion are characterized [32], the motion of the active dimer

is studied in an active medium [33] and in an external chemical gradient [34].

1.4 Is anisotropy necessary to achieve self-propulsion?

1.4.1 Symmetric contributions

So far, all the examples I mentioned were systems where the colloid is anisotropic.

In the case of an isotropic colloid releasing isotropically a solute, the fluctuations of the

solute concentration due to thermal effects would lead to a transiently anomalous diffusion

before reaching the diffusive regime. The measured diffusion coefficient is however larger

than the one predicted by Eq. (1.4), and is shown to be an increasing function of the
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release rate k of solute particles [35]. This prediction was then tested in Monte Carlo

simulations of an isotropic ”chucker” which emits isotropically solute particles [36]. The

authors have not captured the anomalous diffusion but have observed a larger diffusion

coefficient. Dt is however a non-monotonic function of the rate k. For large values of k,

the crowding induced by the solute particles slows the colloid down and Dt decreases with

k. Nevertheless, these effects are transitory. The fluctuations perturbate the short-time

dynamics, at long times the system returns to an isotropic state.

1.4.2 Isotropic systems

(a) Schematic representation of the mecha-
nism leading to the self-propulsion of water
droplets extracted from [37].

(b) Schematic representation of the mecha-
nism leading to the self-propulsion of col-
loid on which mobile enzymes that emit
a solute particles are attached, extracted
from [38].

Figure 1.6: Examples of spontaneous symmetry breaking mechanisms.

Recently, it was demonstrated that anisotropy is not necessary to achieve self-propulsion.

In contrast to the previous examples, it is shown that in an unstable isotropic system,

the fluctuations are amplified. The symmetry is spontaneously broken, generating at long

time an anisotropic situation where the propulsion velocity is higher than the predicted

equilibrium velocity and a transient ballistic behavior is observed. A more elaborated

description of the problem is required, in order to understand the origin of the symme-

try breaking. In particular, the equations must include the interplay between the colloid

motion and the advection of the solute particles. In [39], the authors demonstrate that

the non-linear coupling between the Stokes and the advection-diffusion equations leads to

instabilities. A small perturbation of the system, such as the position of the colloid which

fluctuates, creates a concentration gradient in its vicinity. Under suitable conditions, the

fluctuations are amplified and maintained, leading to long-time self-propulsion. Unstable

swimming modes exist above a critical Péclet value for repulsive interactions combined

with a surface which emits solute particles, or for attractive interactions combined with

absorption of solute particles at the colloid surface. The critical Péclet number implies
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a critical particle radius. The mechanism was observed in a simulation where a colloid

catalyzes a reaction isotropically. The product particles interact with the colloid more

repulsively than the reactant particles. Density fluctuations lead to the self-propulsion

of the colloid [40]. On the ground of the phoretic description, in [41], the authors have

derived a simple point source model also valid for interfacial swimmers. An experimental

set-up using camphor disks confirms the predictions. Numerous experiments have also

reported the self-propulsion of pure water droplets [42, 37]. A link was made with the

observations of [39], with Marangoni effects, which denote a flow induced by a gradient of

surface tension, in addition to the phoretic effects. The droplets isotropically emit solute

particles. Under suitable conditions, fluctuations of the solute concentration are ampli-

fied and the anisotropy is self-sustained leading to long-time propulsion as depicted on

Figure 1.6a. The conditions for the self-propulsion of droplets are reviewed in [43]. Again,

spontaneous symmetry breaking was also reported in [38] due to a non-linear coupling

in the equations. A colloid has mobile enzymes attached to its surface. The enzymes

catalyze a reaction releasing small solute particles which leads to a phoretic flow. The

enzymes distribution equation is thus coupled to the solute concentration due to advec-

tion effects. A small perturbation generates an imbalance of product around the colloid.

For some parameters, the inhomogeneities are maintained and the colloid self-propels as

depicted on Figure 1.6b.

1.5 Descriptions of activity at the mesoscale

1.5.1 Coarse-grained descriptions for a single active particle

For the study of long-time effects, the microscopic description of the origin of the

propulsion may not be necessary [44]. The dynamics can be coarse-grained by describing

only the colloid and not considering the solute particles. In these models, the activity

is postulated and added as an external force on the particle. The persistent motion is

characterized by a propulsion speed v0 along an orientation vector n. Most studies con-

sider simple problems where v0 is a constant and the dynamics is two-dimensional. These

models are particularly relevant to study collective motion of active particles. Indeed, the

study of collective properties requires a large number of particles in the system, which is

numerically very expensive.

The run-and-tumble particle (RTP) model captures well the motion of motile bacteria,

such as E. Coli. Such organism perform a run-and-tumble dynamics, which consists of a

succession of straight trajectory at a constant speed v0 followed by an abrupt reorientation

event which occurs at Poisson-distributed times [45].
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In contrast, artificial swimmers such as Janus particles exhibit another type of motion

which is well described by the active Brownian particle (ABP) model. The activity term

v0n is added to the overdamped Langevin equation. The ABP particles reorient smoothly

due to rotational diffusion [46].

A more elaborated model has recently received attention, the active Ornstein-Uhlenbeck

particle (AOUP) model. The equation of motion bears the same structure as for the ABP

model, but the velocity fluctuates as an Ornstein-Uhlenbeck process. This model is par-

ticularly relevant to take into account a complex environment such as a bacterial bath in

which the interactions with a colloidal particle would lead to a change in the amplitude

and orientation of the velocity [47, 48].

1.5.2 Collective effects

Interacting active particles exhibit a wide variety of collective behaviors. It is inter-

esting to see how the propulsion mechanisms evidenced in the previous paragraphs are

affected in this context. For instance, isotropic particles, whose characteristics are not

suitable for spontaneous symmetry breaking, will not self-propel by themselves. However,

an assembly of such particles is shown to form a propelling cluster [49]. Agglomerates of

Janus particles also exhibit a rich variety of trajectories such as spiraling [50]. The rich

phenomenology of collective motions is exemplified in biological systems. For instance,

active turbulence has been observed in a dense suspension of bacteria [51], or actine

filaments driven by molecular motors show polar patterns [52]. In particular, clusters

formation are detected in bacterial suspensions [53].

Experimental setups of artificial active colloids also exhibit clustering [54, 55, 56, 57].

A colloidal suspension of Janus particles is studied under gravity by Palacci et al. [58].

The self-propulsion is achieved by adding H2O2 in the system. At the Pt-coated side of

the particle, the chemical reaction decomposing the hydrogen peroxide occur, creating a

gradient of concentration. In the absence of H2O2, the colloids are passive and form a

dense phase at the bottom. In contrast, when activity is triggered, in addition to the dense

phase, different density regimes are realized. At low and intermediate densities, there is

a phase separation between a gaslike phase and clusters. The clusters are dynamical,

as particles leave, new ones enter the cluster. Clustering and motility induced phase

separation seems to be a generic feature of active systems [59].

Using the RTP or the ABP model, which are found to be in this case equivalent

[60], a self-trapping mechanism is discussed. The authors point out the role played by

the propulsion speed v0 relatively to the rotational diffusion Dr. Due to the persistent

motion, the particles block each other when colliding, until being freed by rotational

diffusion. The simplicity of the model underlines that the mechanism is athermal and
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does not need effective attraction between particles [45]. The effective forces exerted by

the other particles on a tagged particle can be described by a mean force, which can

be decomposed into a contribution along the particle orientation and along the density

gradient. This evidences an instability region in which particles tend to swim towards

high density region, hence the phase separation [61].

Numerical simulations of ABP particles are employed to characterize the phase tran-

sition between the different states observed experimentally. A freezing transition is evi-

denced as in equilibrium systems but the shift occurs at a lower density [62]. Using the

relevant parameters in this context: the surface fraction ϕ and the Péclet number Pe, a

phase diagram is drawn [63, 64]. In this context, the Péclet number quantifies the activity

intensity over the noise strength. Simulation reveals that eventually the clusters condense

in a unique large one. In experiments where the self-propulsion is achieved by the demix-

ing of water-lutidine, the dynamics of the system can be studied on larger timescales as

the experiment is not limited by the fuel. Under those conditions, the condensation state

has been observed [65]. 3D simulations also exhibit clustering [66, 67].

More elaborated theoretical work includes hydrodynamic and phoretic effects. Indeed,

each particle generates a flow field as well as a concentration gradient in case of diffu-

siophoresis. This perturbs their neighbors near-field, which has been shown to play a

significant role in determining pattern formation [68]. A polar ordering has for exam-

ple been observed in the collective motion of self-propelling liquid droplets. Moreover,

two phoretic swimmers can either attract or repel each others [69, 49, 70]. Including

the phoretic effects, a rich phenomenology of structure formations is found [71, 72, 73].

Simulation using particle-based methods include both phoretic and hydrodynamic effects

have been carried [74, 75] which complete the framework.

1.6 A new route for locomotion?

Despite the impressive body of literature on active colloids, the isotropic case has

received less attention. Moreover, from the literature review, the lack of microscopic de-

scription stands out. The solute particles are either described in a continuous limit or, if

described explicitly, their interactions are not taken into account. The role of interactions

on the dynamics at a microscopic scale is a typical questioning in the chemical physics

community. It is at the heart of the research thematics in the PHENIX laboratory, where

I carried out my PhD work. The arrival of a new member, Pierre Illien, who has a back-

ground in active matter, has led to a new research direction between my three supervisors.

The technics of multiscale modeling are already well established in the laboratory. Es-

pecially, Marie Jardat and Vincent Dahirel have an expertise on mesoscopic simulation
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methods such as multi-particle collision dynamics (MPCD) or Brownian dynamics (BD).

The idea of exploring an isotropic system where the symmetry breaking would emerge

from the interaction between solute particles have then naturally emerged and is at the

heart of my PhD work.

The goal of this PhD work is to construct a minimal model in which activity would

emerge from interactions within the environment of an isotropic colloid. The developed

strategy during this work in order to break the symmetry relies on the interactions between

solute particles: under suitable conditions, a phase separation can occur near the colloid,

which creates density fluctuations. First, the model has been designed, the interactions

have been carefully chosen, and the relevant parameters defining the phase separation

have been identified. I have developed a home-made code to match the specificities

of the designed model. The analysis of the simulations revealed that activity emerges.

The mechanism has been then characterized and compared to the literature. Secondly,

simulations show that activity still persists when there are many self-propelling colloids

in the system. The results have been compared to usual coarse-grained simulations that

do not account for solute particles explicitly as an attempt to link explicit and implicit

models.
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Summary
In this chapter, the model and the methods are presented. First, the general
principle of the design of the model is explained, and the involved parameters
are defined (the geometry of studied systems, the choice of the interaction
potentials, and the modeling of the reaction). The model is simulated using
Brownian dynamics (BD). This numerical method is based on the integration
of an overdamped Langevin equation. A home-made BD code was developed,
whose numerical implementation is detailed in this chapter. BD results will be
confronted to simulations of active Brownian particles, denoted by BD-ABP in
what follows. The equations used for the ABP model, as well as the numerical
implementation of the BD-ABP code, are also explained in this chapter. Both
codes are validated by running simulations of simple systems, for which results
exist in the literature. Finally, the simulation procedure is described.
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2.1 Introduction

In this chapter, I will introduce the model I studied and present the simulation method

used, called Brownian dynamics (BD). This numerical method is based on the integration

of coupled overdamped Langevin equations (see Chap. 1). In contrast, a common approach

in the literature to model active particles relies on a Langevin equation that contains an

additional force or noise generating activity and is known as the active Brownian particle

model (ABP) (see Chap. 1). In the ABP model, solute particles are modeled implicitly.

In following chapters BD results will be confronted to simulations of active Brownian

particles, denoted by BD-ABP in what follows. The chapter is organized as follows: In

Section 2.2, the model is presented, from a general perspective to a detailed description of

the parameters of the system. Section 2.3 describes the overdamped Langevin equation

used for the Brownian Dynamics code. The Langevin equation of the ABP model is

described in Section 2.4. Section 2.5 explains the numerical implementation of the BD and

BD-ABP algorithm, as well as the quantities computed during the simulation. I choose

the appropriate parameters to simulate the model in Section 2.6. In Sections 2.7 and 2.8,

I validate my code comparing some results with the literature. Last, in Section 2.9, I

describe the simulation procedure.

2.2 Model of an isotropic colloid in a phase-separating

environment

2.2.1 General considerations to design the model

In the case of an isotropic colloid, it has been shown that a symmetry breaking is

necessary so that activity emerges [39]. This occurs when fluctuations near the colloid are

maintained, leading to a spontaneous polarization of the environment of the colloid. As a

result, the colloid self-propels. The idea of this PhD work, based on the literature review

given in the preceding chapter, is to study a model where the symmetry breaking would

arise from the interactions between solute particles. The effect of the latter have indeed

always been left aside. That is why we choose to describe solute particles explicitly.

Therefore, the model consists of one or several isotropic colloids in a bath of smaller

particles, denoted by solute particles in what follows, embedded in an implicit solvent.

The model is mainly studied in two dimensions (2D). The three-dimensional case is briefly

studied in order to confirm that the results obtained in 2D still hold in 3D.

How can interactions create strong fluctuations around the colloidal particle? Accord-

ing to the nature of the interaction potential between particles, they organize as a gas,
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a liquid or a solid. Typically, with a purely repulsive interaction potential, particles that

are not closely packed form a gas, but can separate into low and high density phases if

short-range attractions exist. The most used interaction potential to describe liquids is

the Lennard-Jones (LJ) potential. It involves two parameters: the particles diameter σ

and the depth of the minimum ε. According to these parameters and to the density of

particles, a liquid-gas phase separation can arise. At low ε/kBT , the fluid is a gas. At

sufficiently high ε/kBT , the fluid can separate into two phases: one dilute, typical of a

gas, and one dense, typical of a solid or a liquid. Based on this knowledge of the role of

interactions, our main research hypothesis is that strong density fluctuations of a phase

separating LJ fluid can be a source of symmetry breaking, leading to activity. To test

this hypothesis, we must design a model where the colloid is surrounded by a phase sep-

arating LJ fluid. The situation of a colloid in a LJ fluid close to a phase separation has

already been studied by simulation [76, 77]. In this situation, the dynamics of the colloid

is affected, but it does not present activity. We think that in such models, the colloidal

particle may not feel the fluctuations, since the latter may be located far from the colloid

surface. Therefore, in the proposed model, the LJ fluid is confined near the colloid. I will

denote by B the solute particles forming the LJ fluid. Far away from it, solute particles

would interact purely repulsively forming a gas phase, denoted by A in what follows. In

this case, a LJ fluid confined in the vicinity of a colloid, the behavior is expected to be

different.

<latexit sha1_base64="Ze6PdRxoJ7lGjsixZeb/aKVW7UA="></latexit>

A + C ! B + C

<latexit sha1_base64="X20WAoIFJSYRqStjfL5hpW79iq8="></latexit>

B ! A

Figure 2.1: Drawing of the designed model. The sketch describes what typically occurs
in the vicinity of a colloid: the isotropic colloid catalyzes the reaction A + C → B + C.
Farther, in the bulk, the reverse reaction B → A takes place. The solute particles A,
in violet, interact with each other through a purely repulsive potential. Conversely, the
solute particles B, in green, interact with each other through a LJ potential where short-
range interactions are controlled by ε.
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How can one design a simple model where a LJ fluid is confined close to a colloidal

particle? Based on the idea that, in literature, the surface of active colloids often plays

the role of a catalyst [14], we have considered the simplest route, where the LJ fluid would

originate from the colloid. To this end, the colloids catalyze the reaction A+C → B+C in

their vicinity. Once the LJ fluid formed, in order to maintain the fluid close to the surface

of the colloid, the reverse reaction B → A takes place in the bulk. This also mimics a

real system in which solute particles diffuse. The ones near a colloid, of type B, would

displace and disperse in the repulsive bath, while the one far away would come closer.

There is then a LJ fluid near the colloid in the reaction area, and a gas further away from

the colloid. This describes an out-of-equilibrium situation, which is maintained by the

reverse reaction, as the latter ensures a constant supply of reactant for each colloid to

catalyze the reaction. The model is schematically represented on the Figure 2.1.

2.2.2 Presentation of the key parameters of the model

Geometric considerations

The system is two-dimensional and is constituted of NC colloids, NA solute particles of

type A and NB solute particles of type B embedded in a solvent bath. In total, there are

N = NA+NB solute particles of the same diameter σA andNC colloids of diameter σC. The

N +NC particles are in a square simulation box of size lbox. Periodic boundary conditions

are used to model a bulk situation. The solute density of the system is ρ = N/l2box and is

one of the parameters determining the state of the LJ fluid.

Interaction potentials

As previously stated there are two types of interaction between the solute particles.

Consequently, there are two interaction potentials used: the Lennard-Jones potential to

model interactions between solute particles of type B, and the Weeks-Chandler-Anderson

(WCA) potential to model purely repulsive interactions between solute particles of type

A [78]. The LJ potential contains an attractive part as well as a repulsive part. The

attraction intensity, adjusted by the parameter ε, controls the phase of the LJ fluid.

Therefore, ε is a key parameter of the model along with the solute density ρ. The LJ

potential is a function of the distance between two particles rij = |ri−rj|, where ri (resp.

rj) is the position of the particle i (resp. j), and is described by the following equation:

ULJ(rij) =




4ε

[(
σA

rij

)12
−
(

σA

rij

)6]
if rij ≤ 2.5σA,

0 otherwise.

(2.1)
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A cutoff is set for rij ≥ 2.5σA to reduce computational costs, since the long-range effects

are here negligible [79]. The WCA potential is a truncated and shifted version of the

Lennard-Jones potential to keep only the repulsive part, which yields:

UWCA(rij) =




4ε′
[(

dij
rij

)12
−
(

dij
rij

)6]
+ ε′ if rij ≤ 21/6dij,

0 otherwise.

(2.2)

In the WCA potential, ε′ adjusts the repulsive intensity, and is a constant in the model. dij

represents the minimum interparticle distance to avoid interpenetration: dij = (σA+σC)/2

if i or j is the colloid, and dij = σA otherwise. The interaction between solute particles of

type A and solute particles of type B as well as the interactions between the colloid and

all the solute particles are modeled with the WCA potential. To sum up: A-A, A-B, A-C

and B-C are purely repulsive interactions modeled using the WCA potential, while B-B

interactions are modeled using the LJ potential.

Modeling of the reaction

The colloid isotropically catalyzes the reaction A + C → B + C. The reaction takes

places in a reaction area of radius rcut centered around the colloid. Particles of type A are

transformed into particles of type B after an average time τAB, when at a distance smaller

than rcut. Conversely, outside this reactive area, B is transformed back into A after an

average time τBA. The rates are kAB = 1/τAB for the A → B reaction and kBA = 1/τBA for

the B → A reaction. In the model, the rates are chosen so that the reactions are almost

instantaneous in comparison to the other timescales of the problem. The radius of the

reaction area is another key parameter of the model. Indeed, contrary to a bulk situation,

the phase diagram depends on the geometry of the reaction area, controlled here by rcut.

Conclusion on the key parameters

To conclude, the constructed model leads to the typical situation represented Fig. 2.2.

Close to the colloid, the solute particles of type B, in green on the figure, form a LJ fluid.

Further, the solute particles interact with each other purely repulsively and are of type

A, represented in violet on the figure. From this model, three parameters emerge, which

will influence the phase of the LJ fluid: ρ, ε and rcut. Their effects are analyzed in the

next chapter.
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x

y

rcut

σC

Figure 2.2: Snapshot of the system where solute particles of type A (violet) and B (green),
and colloids C (orange) are in a periodic square box. Zoom on one colloid, where the
reaction A + C → B + A takes place in the reaction area of radius rcut.

2.3 Langevin equation for Brownian motion

In this section I will present the equations used to simulate the dynamics of the

model, beginning with the general framework of the Langevin equation to its overdamped

limit, then presenting the numerical integration of the equations and concluding with the

dimensionless version.

2.3.1 The Langevin equation

For each of the N+NC particles of the system, the Langevin equation reads as follows:

mα
d

dt
vi(t) = −mαγαvi(t) +

∑

i ̸=j

F j→i(t) +Ri(t), (2.3)

where vi is the velocity of the considered particle, mα is the mass and γα the friction

coefficient of the particle of type α. F j→i is the interparticle force. The displacement of

each particle is measured by the distance traveled by the particle from its initial position

r(0) and is defined as ∆r(t) = r(t) − r(0). Calculations to characterize its dynamics

considering only one particle are detailed in Appendix C and lead to the following results:

� The mean displacement is shown to be zero as the motion of the particles is random,

⟨∆r(t)⟩ = 0, where ⟨.⟩ denotes the average over the noise realizations.
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� The mean squared displacement (MSD) represents the size of the region explored

by the particles. MSD(t) = ⟨∆r2(t)⟩ − ⟨∆r(t)⟩2 = ⟨∆r2(t)⟩. The MSD is shown to

be:

〈
∆r2(t)

〉
=

2dkBT

γ2m

(
γt+ e−γt−1

)
.

At short times, t ≪ γ−1, the MSD becomes:

〈
∆r2(t)

〉
=

dkBT

m
t2.

The MSD is proportional to t2 indicating a ballistic motion. Indeed, during this time

window, the friction has no effect, the particle motion is unhindered since it has not yet

collided with the solvent.

At long times, t → ∞, the MSD yields:

〈
∆r2(t)

〉
=

2dkBT

γm
t.

Using the fluctuation-dissipation theorem (Eq. (1.5)), the long-time MSD is also related

to the translational diffusion coefficient of the particle Dt by:

〈
∆r2(t)

〉
= 2dDtt. (2.4)

At long times, the motion is diffusive with a MSD proportional to the time t with a

slope proportional to the translational diffusion coefficient Dt. The translational diffusion

coefficientDt is the only relevant transport coefficient for isotropic particles. Hence, unless

explicit notation is necessary, I will refer to the translational diffusion coefficient by the

term diffusion coefficient and drop the subscript t in what follows.

2.3.2 The overdamped Langevin equation

The overdamped limit of the Langevin equation is considered here, since as discussed

in Chapter 1, inertial effects are neglected. In this case, dvi

dt
= 0, and from (2.3) the

equation becomes:

vi(t) =
1

mαγα

∑

i ̸=j

F j→i(t) +
1

mαγα
Ri(t). (2.5)
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Using the definition of the diffusion coefficient (Eq. (1.5)), the equation yields:

vi(t) =
Dα

kBT

∑
F j→i(t) +

Dα

kBT
Ri(t). (2.6)

The correlation of the noise can also be expressed with the diffusion coefficient Dα:

⟨Ri(t
′) ·Rj(t

′′)⟩ = 2d(kBT )
2

Dα

δijδ(t
′ − t′′),

where δij is the Kronecker symbol. Again the motion is characterized by considering only

one particle. Under this condition, the overdamped Langevin equation becomes:

v(t) =
D

kBT
R(t)

From which the position r(t) can be obtained:

r(t) =
D

kBT

∫ t

0

R(t′) dt′ + r(0)

The calculations of the mean displacement and of the mean squared displacement are

detailed in Appendix D and the results are:

� The mean displacement of the particle is null ⟨∆r(t)⟩ = 0.

� The mean squared displacement is ⟨∆r2(t)⟩ = 2dDt. In two dimensions, it becomes:

MSD(t) =
〈
∆r2(t)

〉
= 4Dt (2.7)

In the overdamped limit, since the inertial effects have been neglected, the MSD is linear

at all times, and its slope is proportional to the diffusion coefficient D.

2.3.3 Numerical integration of the overdamped Langevin equa-

tion

In the model of interest, there are N +NC colloids. Therefore, N +NC equations are

necessary to describe the dynamics of the system. The particles interact with each other,

coupling all the equations together. This N -body problem cannot be solved analytically,

so the equations are discretized with an Euler scheme and then numerically integrated.

In Cartesian coordinates, the position vector is r = (x, y), which can be projected in the

– 29 –



Model and simulation methods

base (ex, ey). For each dimension, the derivative of the position can be approximated by:

ẋi(t) =
xi(t+∆t)− xi(t)

∆t
,

where ∆t is the discretization time step. Consequently, knowing the position of a particle

i at time t, its positions at t+∆t can be computed with:

xi(t+∆t) = xi(t) + ∆t
Dα

kBT

∑

i ̸=j

Fx,j→i(t) +
Dα

kBT

∫ t+∆t

t

Rx,i(t
′)dt′

︸ ︷︷ ︸
B(∆t)

,

where Fx,j→i and Rx,i are the element along the vector ex of the vector F j→i and R,

respectively. B(∆t) is a random variable which follows a Gaussian distribution according

to the central limit theorem, since the integration of Rx,i can be seen as the sum of

random variables. In Appendix E, the mean of B is shown to be null and the mean

standard deviation to be:

√
⟨B2(∆t)⟩ = kBT

Dα

√
2Dα∆t.

The discretized equations become:

xi(t+∆t) = xi(t) + ∆t
Dα

kBT

∑

i ̸=j

Fx,j→i(t) +
√
2Dα∆t ηx,i(t).

In d dimensions, and considering that the forces are derived from a potential which de-

scribes the interaction between a particle of type α and a particle of type β, F = −∇Uαβ,

the discretized equations are:

ri(t+∆t) = ri(t)−∆t
Dα

kBT

∑

i ̸=j

∇Uαβ(rij) +
√

2Dα∆t ηi(t), (2.8)

where ηi follows a normal distribution of mean 0 and variance 1.

2.3.4 Dimensionless overdamped Langevin equation

The equations to simulate the motion of particles are set. As announced in Sec-

tion 2.2.2, the parameters of the model are those related to the interaction potential, dij

and ε′ for WCA, σA and ε for LJ, the density ρ, and the size of the reaction area rcut.

An extra parameter is the diffusion coefficient of each particle Dα which characterizes

the motion of each particle of type α. The diffusion coefficient is assumed to follow the

Stokes-Einstein relation (Eq. (1.4)), thus is inversely proportional to the particle radius

– 30 –



Model and simulation methods

Rα. This represents the diffusion coefficient at infinite dilution, i.e. for a unique particle

in an infinite solvent, which is denoted in what follows by D0
α. All the solute particles

have the same diffusion coefficient D0
A ∝ 1/RA. The diffusion coefficient of the colloid

is D0
C ∝ 1/RC. It is common to use dimensionless quantities in order to simplify the

interpretation of the relevant physical measures of the problem. Here, the chosen quanti-

ties to make the equations dimensionless are: the size of the solute particles σA as a unit

of length, the typical time taken by a solute particle to diffuse over its own size σ2
A/D

0
A

as a unit time, and the thermal energy kBT as a unit of the energy. The dimensionless

quantities are represented with a ∗. The following quantities: ri = r∗
iσA, ∆t =

∆t∗σ2
A

D0
A

,

Uαβ = U∗
αβkBT are replaced in Eq. (2.8):

σAr
∗
i (t

∗ +∆t∗) = σAr
∗
i (t

∗)− ∆t∗σ2
A

D0
A

D0
α

kBTσA

∑

i ̸=j

∇∗U∗
αβ(r

∗
ij)kBT +

√
2D0

α∆t∗
σ2
A

D0
A

ηi(t)

r∗
i (t

∗ +∆t∗) = r∗
i (t

∗)−∆t∗(D0
α)

∗
∑

i ̸=j

∇∗U∗
αβ(r

∗
ij) +

√
2(D0

α)
∗∆t∗ ηi(t)

ηi(t) is already dimensionless, (D0
α)

∗ = D0
α

D0
A
is the dimensionless diffusion coefficient, which

results in the ratio of their sizes (D0
α)

∗ = RA

Rα
. In what follows, each quantity is dimen-

sionless, the ∗ is removed for clarity.

To finish, the gradient of the potential is computed. In two dimensions with Cartesian

coordinates, the gradient is:

∇Uαβ(rij) =

(
∂
∂xi

Uαβ

∂
∂yi

Uαβ

)
=

(
∂rij
∂xi

∂Uαβ

∂rij
∂rij
∂yi

∂Uαβ

∂rij

)
,

with
∂rij
∂xi

=
xi−xj

rij
and

∂rij
∂yi

=
yi−yj
rij

. The partial derivative
∂Uαβ

∂rij
depends on the potential

considered:

∂Uαβ

∂rij
=





−4ε′

rij

[
12
(

dij
rij

)12
− 6

(
dij
rij

)6]
if Uαβ = UWCA,

− 4ε
rij

[
12
(

σA

rij

)12
− 6

(
σA

rij

)6]
if Uαβ = ULJ,

. (2.9)

Consequently, the final equation used in the code I have developed during my PhD thesis

is:

ri(t+∆t) = ri(t)−∆tD0
α

∑

i ̸=j

(ri − rj)
1

rij

∂Uαβ

∂rij
+
√
2D0

α∆t ηi(t). (2.10)
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In the Section 2.5, the numerical implementation is explained.

2.4 Langevin equation of the Active Brownian Par-

ticle model

In recent years, the overdamped Langevin equation has been adapted in order to

model active particles by adding a bias in the equation of motion [46]. ABP is a minimal

model that successfully captures the basic features of microswimmers and of synthetic

self-propelled particles [2]. The simplicity of this model makes the computation fast, so

that collective effects of large systems containing numerous active particles can be studied

[61, 65, 80, 64]. This PhD work aims at studying a system in which the activity is not

postulated, but emerges from the explicit description of the interactions between solute

particles. Nevertheless, some results will be confronted to the ABP model, as it provides

an interesting point of comparison. Therefore, I have also developed a BD-ABP code that

is based on the Langevin equation for the ABP model. In this section, the equations of

motion for this model are presented, from which the MSD can be computed. Then, just

as for the Brownian model, the equations are integrated with the Euler scheme and are

made dimensionless. Less details are given as the derivations are similar to the ones for

Brownian model.

2.4.1 Equation of motion

In this model, an extra degree of freedom appears, namely the rotation of particle

propulsion axis. Therefore, in this model, the translational diffusion coefficient is denoted

Dt,α, to differentiate it from Dr,α the rotational diffusion coefficient. Again, the motion

of particles is restricted to two dimensions. Each particle obeys the following equation of

motion:

dri(t)

dt
= −Dt,α

kBT

∑

i ̸=j

∇Uαβ(rij) + v0ni(t) +
Dt,α

kBT
Ri(t), (2.11)

where the vector ni = (cos θi, sin θi) is normal to the colloid surface. The angle θi denotes

the orientation of particle i regarding the axis ex, and v0, the self-propulsion speed, is a

parameter of the model. The dynamics of the orientation angle θi is also described by a

stochastic equation:

dθi(t)

dt
=
√

2Dr,α ηθ,i, (2.12)
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where ηθ,i is a random variable following a normal distribution of mean 0 and variance 1.

Particles have a persistent motion in the direction of ni at a velocity v0. The correlation

function of the orientation vector decays exponentially:

⟨ni(t
′) · ni(t

′′)⟩ = e−|t′−t′′|/τr,α , (2.13)

where τr,α = 1/Dr,α is the characteristic time during which the orientation persists. τr,α

is called persistence time in what follows.

2.4.2 Analysis of the MSD for the ABP model

v

v

<latexit sha1_base64="J1E3q45RFQ/y7mj7nys45XwHFV8="></latexit>⇠ v0⌧r

<latexit sha1_base64="IXlmBFFF3OSt7RAV/uVpJKmGmwA="></latexit>x

<latexit sha1_base64="AXlcIS5iu8vn5Tw6TeABiZyumh8="></latexit>y

(a) Schematic comparison between the tra-
jectory of a passive particle (purple) and
that of an active particle (orange).

log(t)

log(MSD(t)) ∼
(
v2

0τr + Dt

)
t

∼ v2
0t

2

∼ Dtt

(b) Comparison of the MSD. The dashed
black lines represent the short-time and
long-time asymptotes. The different
regimes are indicated.

Figure 2.3: Comparison of the characteristics of a passive particle (in purple) and an
active particle (in orange).

The dynamics of an active particle differs from its passive counterpart due to the

persistent motion in a given direction for a significant time ∼ τr. Figure 2.3a represents a

schematic comparison between the trajectory of a passive and that of an active particle.

The active particle has a persistent motion over a distance ∼ v0τr. For a single active

particle with no external force applied on it, the MSD can be calculated. First, the

position of the particle is deduced from Eq.(2.11) and is:

r(t) =

∫ t

0

(
v0n(t

′) +
Dt

kBT
R(t′)

)
dt′ + r(0),

and the displacement is:

∆r(t) = r(t)− r(0) =

∫ t

0

(
v0n(t

′) +
Dt

kBT
R(t′)

)
dt′.
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Then, the MSD is calculated:

〈
∆r2(t)

〉
= v20

∫ t

0

dt′
∫ t

0

dt′′ ⟨n(t′) · n(t′′)⟩+
(

Dt

kBT

)2 ∫ t

0

dt′
∫ t

0

dt′′ ⟨R(t′) ·R(t′′)⟩

+
v0Dt

kBT

∫ t

0

dt′
∫ t

0

dt′′ ⟨R(t′) · n(t′′)⟩︸ ︷︷ ︸
=0

+
v0Dt

kBT

∫ t

0

dt′
∫ t

0

dt′′ ⟨n(t′) ·R(t′′)⟩︸ ︷︷ ︸
=0

= v20

∫ t

0

dt′
∫ t

0

dt′′ e−Dr|t′−t′′| +

(
Dt

kBT

)2 ∫ t

0

dt′
∫ t

0

dt′′ ⟨Rx(t
′)Rx(t

′′) +Ry(t
′)Ry(t

′′)⟩

For convenience, the double integral is reduced to a simple integral, details are given in

Appendix B. The MSD becomes:

〈
∆r2(t)

〉
= 2v20

∫ t

0

du(t− u) e−Dru +2

(
Dt

kBT

)2 ∫ t

0

dt′
∫ t

0

dt′′2
(kBT )

2

Dt

δ(t′ − t′′)

= 2v20

([
− t

Dr

e−Dru

]t

0

+

[
u

Dr

e−Dru

]t

0

−
∫ t

0

du
1

Dr

e−Dru

)
+ 4Dtt

= 2v20

(
− t

Dr

e−Drt +
t

Dr

+
t

Dr

e−Drt −
[
− 1

D2
r

e−Dru

]t

0

)
+ 4Dtt

= 2v20

(
t

Dr

+
1

D2
r

e−Drt − 1

D2
r

)
+ 4Dtt

Finally, the computation leads to this expression for the MSD:

〈
∆r2(t)

〉
= 2

v20
D2

r

(
tDr + e−Drt −1

)
+ 4Dtt (2.14)

The MSD of the active particle exhibits a more complex behavior than the passive particle

one. As it is shown on Figure 2.3b, where the MSD is represented as a function of time in

a log-log scale, the MSD of an active particle (in orange) exhibits three distinct regimes

whereas the MSD of a passive particle (in purple) only has one.

For times small compared to the persistence time t ≪ τr, the MSD becomes:

〈
∆r2(t)

〉
= 2

v20
D2

r

(
tDr + 1−Drt+D2

r

t2

2
− 1

)
+ 4Dtt

= v20t
2 + 4Dtt

– 34 –



Model and simulation methods

Two regimes emerge, separated by a characteristic time 4Dt

v20
. For times smaller than

this characteristic time, the particle has a usual Brownian motion characterized by the

translational diffusion coefficient Dt. For
4Dt

v20
< t < τr the motion is ballistic.

For times larger than the orientation persistence time t ≫ τr, the MSD becomes:

〈
∆r2(t)

〉
=

(
2
v20
Dr

+ 4Dt

)
t. (2.15)

The motion is diffusive with an effective translational diffusion coefficient D′
t =

v20
2Dr

+Dt.

The different regimes are schematically represented on Figure 2.3b.

2.4.3 Numerical integration of the Langevin equation for the

ABP model

The equations Eq. (2.11) and Eq. (2.12) are integrated using the Euler scheme to be

solved numerically:





ri(t+∆t) = ri(t)−
Dt,α

kBT

∑

i ̸=j

∇Uαβ(rij)∆t+ v0ni(t)∆t+
√

2Dt,α∆t ηi(t)

θ(t+∆t) = θ(t) +
√

2Dr,α∆t ηθ,i(t)

(2.16)

The random variables ηi and ηθ,i are independent.

2.4.4 Dimensionless equations

In the ABP model, there are no solute particles, consequently the quantities are made

dimensionless in relation to the colloid: ri = r̃iσC, ∆t =
∆t̃σ2

C

Dt,C
, and Uαβ = ŨαβkBT . The

equations become:

σCr̃i(t̃+∆t̃) = σCr̃i(t̃)−
∆t̃σ2

C

Dt,C

Dt,α

σCkBT

∑

i ̸=j

∇̃Ũαβ(r̃ij)kBT + v0∆t̃
σ2
C

Dt,C

ni +

√
2Dt,α∆t̃

σ2
C

Dt,C

ηi(t)

r̃i(t̃+∆t̃) = r̃i(t̃)−∆t̃D̃t,α

∑

i ̸=j

∇̃Ũαβ(r̃ij) + ṽ0∆t̃ni(t) +

√
2D̃t,α∆t̃ ηi(t̃) (2.17)

and

θ(t̃+∆t̃) = θ(t̃) +

√
2Dr,α∆t̃

σ2
C

Dt,C

ηθ,i(t)

θ(t̃+∆t̃) = θ(t̃) +

√
2D̃r,α∆t̃ ηθ,i(t̃) (2.18)
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ηi, ηθ,i and θ are already dimensionless. Other dimensionless quantities emerge: the trans-

lational diffusion coefficient D̃t,α = Dt,α

Dt,C
, the rotational diffusion coefficient D̃r,α =

σ2
CDr,α

Dt,C
,

the velocity ṽ0 = v0σC

Dt,C
. In what follows, all the quantities are dimensionless, the˜ is re-

moved for clarity.

2.5 Numerical implementation of BD and BD-ABP

simulations

In this section, I explain the technical details and the particularities of the Brownian

dynamics and of the active Brownian particles codes I have developed. Firstly, the sim-

ulation parameters are introduced. Secondly, the general algorithm is presented on the

one hand for the BD code and on the other hand for the ABP code. Then the cell list

algorithm, a numerical trick making the code more efficient, is explained. Afterwards,

the numerical implementation to model the reactions is described. Finally, I will give an

overview of the quantities computed during the simulation.

2.5.1 Simulation parameters

New parameters of the problem appear when creating the code. In the model, the

solvent is represented using a statistical description. The particles, which are initially

randomly placed in the simulation box, follow a trajectory which contains a random

part. This corresponds to a realization of the noise. The different quantities computed

to characterize the system must then be averaged over different trajectories starting from

different initial positions that were produced by different noise realizations. The param-

eter nrealizations indicates the number of noise realizations to perform. The overdamped

Langevin equations are discretized with the Euler scheme to be solved, which introduces

a new parameter: the time step ∆t. Its choice is discussed in Section 2.6 since its value

must be carefully chosen in order to have an efficient numerical integration. The number

of time steps, nrun, the simulation runs, defines, with the time step, the length in time of

the simulation.

2.5.2 Brownian dynamics algorithm

All the needed parameters are written in an input file, which is read at the very

beginning of the simulation. For each realization, the time is initialized to 0 and the

particle positions are initialized randomly. Then, at each time step the code loops over
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each particle i, forces exerted by particles j are computed by looping for each particle

i over the other particles j ̸= i. Once the resultant force is known, the new position

ri(t+∆t) is computed. When the loop over the particles i is done, the positions ri(t) are

updated with ri(t + ∆t). The reaction occurs at this stage of the algorithm, after that

a new time step begins. Periodic boundary conditions are implemented, which consist of

copying the simulation box in every dimension infinitely in order to model a bulk system.

The distances are computed by taking, for each pair (i, j), the minimum distance between

the particle i and all the representations of the particle j. When the particle is displaced,

if the new position is outside the box, its image is replaced inside the simulation box. The

code I have written consists of one main code and about 30 routines, the whole containing

approximately 3700 lines. The routines for the cell list algorithm and the reaction will be

presented in the next paragraphs. The main code algorithm is presented here:

Initialization of parameters using the input file.

Loop irealizations over nrealizations realizations:

Time initialization t = 0.

Set initial configuration ri(t = 0) for each particle.

Loop t over nrun time steps:

Loop i over N particles:

Loop j ̸= i over N − 1 particles or loop j using cell list algorithm:

Compute and sum forces exert on particle i by all particles j.

End loop particles j.

Compute the new position of particle i, ri(t+∆t).

Apply the periodic boundary conditions.

End loop particles i.

Update positions ri(t) = ri(t+∆t).

Do reaction routine.

End loop time steps t.

End loop realizations irealizations.

The code has been implemented to be as general as possible. Flags in the input file indicate

whether the colloid catalyzes the reaction and whether the reverse reaction takes place.

Flags are also used to indicate which quantities are computed during the simulation. Each

flag is associated with a saving frequency. The code works in two or three dimensions, a

flag is used to define the number of dimensions d.

2.5.3 BD-ABP algorithm

Another code has been implemented in order to carry BD-ABP simulations for com-

parison purposes. The code is much simpler as it does not necessitate the implementation
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of a chemical reaction. The same implementation as for Brownian dynamics has been

done, replacing the equation of motion by Eq. (2.11), and adding the equation on the

orientation Eq. (2.12). The code I have written for this case also consists of one main

code and about 30 routines, the whole containing approximately 2300 lines. The choice

of the dynamic parameters v0 and Dr as well as the potential used in order to make a

valid comparison with the BD results are presented in Chapter 4.

2.5.4 Computation of interactions with the cell algorithm

The basic method to compute interactions between particles is to loop over all particles

i, and for each i to loop over all particles j ̸= i. Hence, the algorithm scales as N2, where

N the number of particles. The cell list algorithm is a clever way to compute interactions

for a system involving short-range interactions, and it reduces the algorithm order to N .

For instance, the intensity of the Lennard-Jones potential decays with (1/r)6. Therefore,

if the system is large enough, particles are far from each other and a cutoff is generally

implemented, typically 2.5σ for LJ. Only the computation of the interactions between a

particle and its nearest neighbors is necessary. The cell list algorithm implemented comes

from [79] and is described here.

The idea is to divide the system into square (2D) or cubic (3D) cells numbered from

1 to ncells, whose size is chosen to be of the same size as the LJ cutoff, i.e. 2.5σ. Each

particle belongs to a cell, and two arrays are used to record the distribution of particles

in cells. One represents the cells, each index of this array represents the corresponding

cell. The other one represents the particles indexes. Only one loop over the particles

is necessary to build these tables. The cells array stores the index of the particle which

was found last inside the cell, empty cells are filled with 0. In the particles array, for

each particle, the index of another particle in the same cell is saved. For the first particle

found inside the cell, the number is 0. Both arrays are constructed at each time step.

The construction algorithm is the following:

Initialization of the cells array to 0.

Initialization of the particles array to 0.

Loop i over N particles:

Compute the cell number xcell in which the particle i is.

In the particles array, replace the value at the position i with the value of

the cells array at xcell.

In the cells array update the value at xcell with the particle index i.

End loop particles i.
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During the computation of interactions, for each particle i, the algorithm loops over

all particles j inside the same cell and in the neighboring cells instead of in the whole

simulation box. There is for a 2D simulation nneighbors = 8 and for a 3D simulation

nneighbors = 26. For each cell, the reverse procedure is done. The last particle found

during the construction is the first one to be extracted using the cells array. Then, using

the particles array, the other particles of the same cell can be found. The algorithm for

the forces computation becomes:

Loop i over N particles:

Compute the cell number xcell in which the particle i is.

Find the nneighbors neighbors of the cell xcell.

Loop icell over the nneighbors + 1 neighboring cells and its own cell:

Collect the index j of the particle in the cells array at icell.

While j is not 0, do:

Compute and sum forces that particle j exert on particle i.

Find the next particle in the cell, j is updated with the value of the

particles array at j.

End loop neighboring cells icell.

End loop particles i.

An example is shown on Fig. 2.4 for a simulation box divided into ncells = 36, which

contains N = 20 particles. The drawing represents how both particles and cells arrays

would be filled by the algorithm for the particles 5, 13, 15, found in cell 26.

A flag must be set in the input file in order to use the cell list algorithm. This trick is

used in the simulation only if the system is large enough to have ncells > nneighbors. If this

condition is not fulfilled, the flag is unset and the basic double loop is carried.

2.5.5 Implementation of the chemical reaction

Two reactions are defined in the system: A+C → B+C and B → A. The localization

of the species A or B regarding the colloid determines which reaction will occur. Close

to the colloid, the first one takes place while far away from the colloid, it is the other

one. The colloid is then the reference point around which a reaction area of radius rcut

is defined. The implementation of the reactions in this code performs more generally

any reaction which transforms a solute particle of type α into a solute particle of type β

catalyzed by a colloid C, i.e. the reaction α + C → β + C, inside a reaction area. For

reactions far away from the colloid, which occur outside the reaction area, the general

reaction α → β is implemented. Flags are set to indicate the type of reaction which will

be simulated. The probability for the reaction to occur is pαβ = ∆t/ταβ, where ταβ is
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Figure 2.4: Drawing of a simulation box divided into ncells = 36, containing N = 20
particles. Cells numbers are in regular font, particles numbers are in italic. The example
illustrate how both particles and cells arrays would be filled with the algorithm for particles
found in cell 26.

the average time after which a particle α is transformed into a particle β. This is correct

if the time step is much smaller than ταβ. In the limit ∆t → 0, ταβ are exponentially

distributed. Here, nreactions = 2 reactions occur in the system, one inside the reaction

area and one outside. Two routines have been written: one for inside reactions and one

for outside reactions. To implement the reactions, the type of each particle is stored and

updated at each time step. The types are initialized at the beginning of the simulation

from the input file. At the end of each time step, after the positions have been updated,

there is a loop over the nreactions reactions, according to the place of the reaction (inside

or outside) the corresponding routine is called. For each reaction the code loops over Nα,

all solute particles of type α and for each particle of type α over NC, all the colloids C.

The distance r between the colloid and the considered solute particle is computed. If

r < rcut, a random number is drawn and compared to the reaction probability pαβ. If the

probability is higher than the random number, the reaction occurs and the solute particle

type is updated. The algorithm for the inside routine is detailed here:

Loop k over Nα solute particles:

Loop c over NC colloids:

Compute the distance r between k and c.

If r < rcut:

Draw a random number x.

If x < pαβ:

Type of the particle k is updated to β.
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End loop colloids c.

End loop solute particles k.

When there are several colloids in the system, the reaction outside must be done only if

the considered solute particle is outside all the reaction areas. The routine for the outside

reaction is then slightly different, introducing a new flag is inside in order to take into

account this subtlety. The routine is the following:

Loop k over Nα solute particles:

Initialize the flag is inside to FALSE.

Loop c over NC colloids:

Compute the distance r between k and c.

If r < rcut:

Set the flag is inside to TRUE.

End loop colloids c.

If is inside is FALSE:

Draw a random number x.

If x < pαβ:

Type of the particle k is updated to β.

End loop solute particles k.

2.5.6 Detailed version of the algorithm

Initialization of parameters using the input file.

Loop irealizations over nrealizations realizations:

Time initialization t = 0.

Set initial configuration ri(t = 0) for each particle.

Set initial type α for each particle.

Loop t over nrun time steps:

Construct the cells and particles arrays.

Loop i over N particles:

Loop j ̸= i over N − 1 particles or loop j using cell list algorithm:

Compute and sum forces exert on particle i by all particles j.

If i is a colloid and j a solute particle: compute their respective

distance to compute polarity contact data.

If reaction: compute number of particles in the reaction area.

End loop particles j.

If flag save MSD set and saving frequency ok: Save ∆r.

If flag save gr and saving frequency ok: Compute gαβ(r).

If flag save cr and saving frequency ok: Compute cα(r).

Compute the new position of particle i, ri(t+∆t).
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Apply the periodic boundary conditions.

End loop particles i.

Update positions ri(t) = ri(t+∆t).

If reaction flag set:

Loop ireaction over nreactions:

If the inside reaction flag set: Do inside reaction routine.

If the outside reaction flag set: Do outside reaction routine.

Update the types.

End loop reactions ireaction.

End loop time steps t.

End loop realizations irealizations.

2.6 Choice of the simulation parameters

In this section, the different parameters are adjusted: the time step ∆t, and the size

of the simulation box lbox. To this end, I consider a simple system which consists of

only one type of solute particles. Simulations of N solute particles of type A interacting

through a WCA interaction potential are run at a fixed solute density ρ = 0.25. Values

for the time step ∆t, and the size of the simulation box lbox vary to find the appropriate

ones. The value of one parameter at a time is varied, keeping the others fixed. The

radial distribution function gαβ indicates the probability to find a particle of type α at a

distance r from a particle of type β. This quantity is computed during the simulation.

Here, the radial distribution function between solute particles of type A, gAA, is used as

an indicator to guide the choice of the simulation parameters.

2.6.1 Choice of the time step

To investigate the system dynamics, simulations must be as long as possible. There-

fore, to reduce the computational cost, the time step ∆t must be as large as possible.

However, a time step too large can induce numerical errors or a simulation which does

not represent a physical state. The time step must then be chosen carefully. Fig. 2.5a

shows the effect of the time step on the radial distribution function gAA. For the largest

time step ∆t = 0.001, the function gAA slightly differs from the other time steps tested.

Besides, another test was done at a higher solute density and the simulation crashed. A

suitable value for the time step is then ∆t = 0.0001, which is found to be reliable also

for higher solute density. This value is chosen to be the reference value. As the solute

density ρ is increased, the time step is adapted and decreased. As well, when increasing

the value of ε, which increases the attraction between solute particles, hence their local
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Figure 2.5: The radial distribution function gAA between solute particles of type A of a
system containing N solute particles of type A. The figure shows the effect of (a) the time
step ∆t and (b) the size of the box lbox.

density, ∆t is decreased. The numerical values of ∆t for each system investigated are

given in Section 3.2.

2.6.2 Choice of the size of the system

Using periodic boundary conditions to model a bulk system makes computation faster,

as a smaller system suffices to represent a much larger one. Nevertheless, the system

can not be too small in order to represent the bulk correctly and avoid finite size effects.

Fig. 2.5b illustrates the effect of the size of the simulation box lbox on the radial distribution

function gAA. In order to keep a fixed value for the solute density ρ, the number of solute

particles N in the system was adjusted. For lbox = 5 or lbox = 10, gAA has not converged,

the simulation box is too small. Moreover, each colloid is surrounded by a LJ fluid in its

reaction area. The reaction area can be up to 20 times larger than solute particles. Both

colloids and their reaction areas must be modeled in a bulk. Therefore, the minimum box

size lbox = 40 is chosen as it is at least twice larger than the colloids and their reaction

areas. For a lower value of the solute density lbox will be increased.

2.7 Validation of the BD code

In this section, I present the tests performed to ensure the correct modeling of physical

properties of the system. Initially, the validations are carried out on a simple system which
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has been well studied: a monodisperse suspension of passive particles interacting with a

WCA potential. Numerous analytical results have been derived for hard spheres in which

Uαβ = ∞ if the particles are in contact and is null otherwise. There is no simple expression

for the WCA potential, consequently the results from the simulation will be compared

qualitatively to the literature. For this system, I will compare the radial distribution

functions gAA, the MSDs and the diffusion coefficients obtained with the simulation to

analytical predictions found in the literature. Finally, I carry out tests with one colloid

in a bath of N solute particles. The dynamic behavior of the colloid is in the latter case

first investigated in the absence of reaction, and then with it.

2.7.1 Solution of WCA particles

For the comparison purpose, I introduce a new parameter: the surface (resp. volume)

fraction of the particles ϕ, which is related to the solute density by ϕ = πR2ρ in 2D (resp.

ϕ = 4πR3ρ
3

in 3D). For the validation process, several ϕ are investigated. To do so, the size

of the box is fixed lbox = 10 and lbox = 40 for 3D and 2D simulations, respectively. The

number of particles is adjusted to have the desired surface or volume fraction.

Radial distribution function between solute particles of type A

For a monodisperse suspension, analytical expression for the radial distribution func-

tion have been found in 3D [81] modeling the colloid as hard objects. Fig. 2.6 shows

simulation results compared to theoretical results for different volume fractions in 3D. An

excellent agreement is found between the theory and the simulation. Only a very small

difference appears near the peaks of gAA, due to the difference between the interaction

potentials: gAA between hard spheres contains a vertical line at the minimal distance of

approach due to the discontinuity of the interaction potential. The code implementation

is validated from a static insight.

Diffusion coefficient of solute particles

The dynamics of the system is verified by computing the mean squared displacements

of solute particles. Simulations are run in 2D for various values of the surface fraction ϕ at

a fixed simulation box size lbox = 40. Fig. 2.7a shows the MSDs for different values of ϕ. As

expected, the MSDs are linear in time. Fitting each with Eq. (2.7) the diffusion coefficients

of solute particles DA are extracted. The computed values of DA are normalized by

the diffusion coefficient at infinite dilution D0
A and are plotted as a function of ϕ on

Figure 2.7b. The diffusion coefficient is expected to decrease as the surface fraction ϕ

increases. Thorneywork et al. have demonstrated that the diffusion coefficient of hard
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Figure 2.6: In a three-dimensional system with only N solute particles of type A. The
radial distribution functions gAA between solute particles of type A are computed using
simulation of my code (blue lines) and using analytic results from [81] (orange lines) for
different volume fractions ϕ.

disks has a linear dependence with the surface fraction given by DA

D0
A
(ϕ) = 1 − aϕ where

a ≈ 1.74 in 2D for low fraction area [82]. Good agreements are found with this analytical

prediction, see Fig. 2.7b where a = 1.79.

2.7.2 One colloid in the presence of solute particles

Similarly, a system with one colloid in a bath of solute particles is explored in order

to validate the code. First the colloid does not catalyze a reaction, in this case the radial

distribution function gCA between the solute particles A and the colloid C, and the MSD

of the colloid can be analyzed as some features are expected. Then, the reaction is added,

but the interaction between solute particles are removed in order to compare concentration

profiles computed in the simulation to analytical derivations.

System without reaction

Simulations are in 2D, and the colloid is surrounded by N solute particles of type

A. Various solute densities ρ are investigated, to do so the number of particles is fixed

(N = 500) and the size of the box varies accordingly. Radial distribution functions

between solute particles and the colloid gCA are displayed Fig. 2.8a. The plot emphasizes
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Figure 2.7: Results from simulations of a system composed of N solute particles of type
A only. (a) Mean squared displacements of the solute particles as a function of time for
different values of ϕ, linear fit are done using Eq. (2.7). (b) Diffusion coefficients of solute
particles of type A, DA, normalized by the diffusion coefficient at infinite dilution D0

A as
a function of the surface fraction ϕ. Values measured in simulations are represented by
the red stars. The dashed line represents the linear fit with a = 1.79

that there is an increasing structuration around the colloid due to the increasing crowding

induced by the solute particles with the increase of ρ. This behavior is confirmed when

analyzing the plot showing the MSDs on Figure 2.8b. First, the MSDs are linear in time,

indicating that the colloid has typical Brownian motion. For each solute density, the

diffusion coefficient of the colloid DC is extracted by fitting the curves with Eq. (2.7).

The fits, represented by the dashed lines on the plot, are in good agreement with the

simulation data. The values found for the diffusion coefficient are normalized by the

diffusion coefficient at infinite dilution D0
C and are plotted as a function of ρ in the inset

of Figure 2.8b. The diffusion coefficient decreases as ρ increases as expected. Indeed, the

denser is the bath of solute particles, the slower is the colloid.

System with reaction

The concentration profiles of the solute particles around the colloid which catalyzes

the reaction around itself can be analytically determined, assuming the particles do not

interact with each others. The reaction A+C → B+C takes place in a reaction area rcut

centered around the colloid of diameter σC . In this domain, labelled 1 in the calculations

to come, the reaction occurs at a rate kAB. Under these conditions, the concentration of

solute particles A, c
(1)
A , and the concentration of solute particles B, c

(1)
B , obey the following
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reaction-diffusion equations:

{
∂
∂t
c
(1)
A (r, t) = D0

A∇2c
(1)
A (r, t)− kABc

(1)
A (r, t)

∂
∂t
c
(1)
B (r, t) = D0

A∇2c
(1)
B (r, t) + kABc

(1)
A (r, t)

,

whereD0
A is the diffusion coefficient of solute particles A and B at infinite dilution. Outside

the reaction area, the reverse reaction B → A takes place at a rate kBA. In this domain,

labelled 2, the reaction-diffusion equations for the concentration of solute particles A, c
(2)
A ,

and B, c
(2)
B , are:

{
∂
∂t
c
(2)
A (r, t) = D0

A∇2c
(2)
A (r, t) + kBAc

(2)
B (r, t)

∂
∂t
c
(2)
B (r, t) = D0

A∇2c
(2)
B (r, t)− kBAc

(2)
B (r, t)

The resolution of the concentration profiles for each type of solute particles in each domain

is explained in Appendix F. The radial concentration profile of solute particles of type α

around the colloid cα(r), is also computed during the simulation. Fig. 2.9 shows that the

concentration profiles of solute particles inside and outside the reaction area, as well as the

transitions between the two domains obtained with simulations are in good agreements
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with the results from theory, which validates the correct implementation of the reaction.
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Figure 2.9: The colloid of diameter σC catalyzes the reaction A + C → B + C at a rate
kAB in a reaction area of radius rcut, labelled 1. Outside, in the domain labelled 2, the
reverse reaction B → A takes place at a rate kBA. The concentration profiles of the solute
particles A, c

(γ)
A (r), and of solute particles B, c

(γ)
B (r), in each domain γ are shown. r being

the distance between the solutes and the colloid. The dashed lines represent the analytical
results, solid lines the simulation results.

2.8 Validation of the BD-ABP code

In this section, I present the tests performed to ensure the correct modeling of physical

properties of the system using the BD-ABP code. In the simulations of the ABP model,

only colloids are modelled. For the validation process, NC = 1. Figure 2.10a shows the

mean squared displacement of the colloid as a function of time. The data from simulation

are in good agreements with the analytical expression for the MSD of the ABP model for

one particle given by Eq. (2.14). The autocorrelation function of the orientation vector

n is shown as a function of time, ⟨n(t′) · n(t′ + t)⟩t′ , on Figure 2.10b. Again, simulation

data are in good agreements with the analytical prediction given by Eq. (2.13).
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confronted to Eq. (2.13)

2.9 Simulation procedure

In this section, the procedure executed for each system studied, whose results are

presented in this manuscript, is explained.

First, a system without reaction is simulated. One or several colloids are surrounded by

N solute particles of type A and do not catalyze a reaction. The solute density ρ is fixed.

The particles are randomly positioned in the simulation box, therefore equilibrium steps

need to be run. The time teq needed to equilibriate the system, is determined by looking at

the radial distribution function gAA between solute particles at different times. The WCA

fluid around the colloid has reached the equilibrium when the radial distribution function

has converged. It takes teq = 10. The positions of the particles at equilibrium are saved in

order to be the initial random equilibrated configuration for the next simulations. From

the equilibrium state, the simulation continues in order to produce several independent

configurations, each separated by teq. In total, a set of nrealizations configurations are saved

and will serve as a starting point for each noise realization of the studied systems. The

procedure is schematically represented on Figure 2.11.
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Summary
In this chapter, the dynamics of one colloid in a bath of solute particles is stud-

ied. This colloid catalyzes a reaction in its vicinity, which transforms purely

repulsive solute particles into Lennard-Jones (LJ) ones. The key parameters

of the model are varied: the solute density ρ, the intensity of the attraction

between LJ solute particles ε, and the reaction area radius rcut. First, the

mean squared displacement of the colloid is computed and exhibits character-

istics of activity: the diffusion coefficient at long times is enhanced compared

to the reference one in a system at equilibrium. A state diagram gathers the

results for all the parameters studied, which clarifies for which set of param-

eters activity emerges. Second, the microscopic mechanism is unveiled: the

LJ fluid demixes for suitable parameters, solute particles can aggregate and

form droplets. This leads to strong density fluctuations in the vicinity of the

colloid, which are quantified with the polarization vector p of solute particles

around the colloid introduced in this chapter. The autocorrelation function

of p is analyzed and shows that the fluctuations of orientation can persist

during a characteristic persistence time τp. On the basis of the ABP model,

a coarse-grained equation to model the dynamics of the colloid is proposed,

where the polarization vector p plays the role of the source of the biased mo-

tion. A thorough analysis of the MSD derived from this equation confirms the

identified mechanism: the persistence of the density fluctuations generates the

self-propulsion. A key parameter that controls whether there is activity and its

intensity emerges, namely the filling fraction of the reaction area. Indeed, at a

low filling fraction, the LJ fluid around colloids is in a gaseous state, droplets

cannot form, consequently there are no density fluctuations. In contrast, at

high filling fractions, the reaction area is densely filled, which hinders the col-

loid motion. At intermediate filling fractions, all the conditions are met for

self-propulsion and enhanced diffusion at long times. Finally, the robustness

of the model is challenged in this chapter by varying: the size ratio between

the colloid and the solute particles, the reverse reaction rate, and the location

of the reverse reaction. These modifications alter the geometry of the reaction

area, but the mechanism identified still holds and activity still emerges. A

3D simulation is also performed, where the colloid also self-propels due to the

demixing of the LJ fluid.
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3.1 Introduction

In this chapter, the case of the dynamics of a unique colloid in a phase separating

environment is investigated. The colloid is in a bath of N solute particles and catalyzes

the reaction A+C → B+C. The reverse reaction B → A also takes place far away from

it. Different systems are studied, varying the key parameters identified as controlling

the phase of the LJ fluid: the solute density ρ, the intensity of the attraction ε and the

reaction area radius rcut. The results obtained from the simulations of these reactive

systems are compared to a reference system, without reaction. For each solute density ρ,

the corresponding reference system is simulated and analyzed. The confrontation of the

mean squared displacement of the colloid between the reactive system and the reference

one, shows that activity emerges for some parameters when the reaction is triggered, which

can be explained from a microscopic insight. The mechanism leading to self-propulsion

is then shown to be robust. Besides, a quantity to interpret the data steps out from

this investigation. The chapter is organized as follows: in Section 3.2, the numerical

values of the parameters defining the system are given, as well as the range of the studied

parameters: ρ, ε and rcut. Section 3.3 describes the procedure to characterize the colloid

dynamics, which is then analyzed. In Section 3.4, the mechanism at the origin of the

self-propulsion is unveiled. A coarse-grained equation to describe the colloid dynamics is

proposed and analyzed in Section 3.5, which confirms the proposed intuitive mechanism.

In Section 3.6, some parameters, considered so far as fixed, are varied to challenge the

robustness of the identified mechanism.

3.2 Numerical values of the parameters of the system

In this chapter, the dynamics of only one colloid is investigated, NC = 1. The colloid

catalyzes the reaction A + C → B + C and the reverse reaction B → A takes place far

from it. Initially, the colloid is placed in a bath of N = NA solute particles of type A. NA

and NB evolves with time when the reaction is triggered, but N remains constant. The

effects of the key parameters, identified in the preceding chapter as controlling the phase

of the LJ fluid, are investigated. Consequently, the solute density ρ, the intensity of the

attraction ε, and the size of the reaction area rcut vary.

The number of solute particles in the system is fixed to N = 500. Various solute

densities ρ are investigated: N remains unchanged, while the size of the simulation box

lbox varies. The values are recorded in Table III.1.

The solute particles are of diameter σA = 1 and the colloid diameter is σC = 5.

Therefore, diffusion coefficients at infinite dilution used as input for the overdamped
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ρ 0.05 0.1 0.2 0.3
lbox 100 70 50 40

Table III.1: Size of the simulation box lbox for the corresponding solute density ρ = N/l2box.

Langevin equation are D0
A = 1 and D0

C = 0.2 for the solute particles and the colloid,

respectively. In Sect. 3.6, where the effect of the colloid size is investigated, σC changes.

0.0 0.2 0.4 0.6

ρ

0.2

0.4

0.6

0.8

1.0

1/
ε

Figure 3.1: Phase diagram of a (full) Lennard-Jones fluid in two dimensions. The black
line represents the coexistence curve in the plane (1/ε, ρ). Below the curve, there is a gas
phase and a liquid phase. Above the curve, the fluid is in a gaseous state. The curve was
drawn using values extracted from [83]. The red crosses correspond to the simulations
carried out in this PhD work.

The purely repulsive interactions of the system modeled using the WCA potential are

controlled by ε′ which remains the same in every case: ε′ = 10. For the LJ potential,

the choice of the attraction intensity, controlled by ε, is crucial in order to create a phase

separation. The range was chosen based on the phase diagram of a bulk LJ fluid in 2D,

as the equivalent for the particular confined geometry of our system does not exist. The

phase diagram is displayed on Figure 3.1. The black line symbolizes the coexistence curve

in the plane (1/ε, ρ). Below, the fluid exhibits both gas and liquid phases, above, the

fluid is in a gaseous state. Varying the attraction intensity ε amounts to change the

temperature T , as both quantities are linked through the relation T = 1/ε. Data comes

from [83], in which the authors have carried out simulations using the full LJ potential,
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and not the truncated LJ potential. This still gives a correct estimation, as the phase

diagram was used in order to have a qualitative idea of which values to target. The red

crosses indicate the parameters values for ε and ρ tested in the simulations. Two solute

densities ρ were investigated, ρ = 0.1 and ρ = 0.3, for which ε takes values between 1 and

5. Indeed, at these solute densities, at ε = 1 the LJ fluid is in a gaseous phase. When ε

increases, the coexistence curve is crossed, and a phase separation might occur.

The radius of the reaction area rcut, centered on the colloid, varies from 5.5 to 15.

This defines reaction areas, whose shape is a shell, of thickness between 3 and 12.5. The

averaged time for the reaction to occur, τAB, and the one for the reverse reaction to occur,

τBA, are fixed and equal: τAB = τBA = 0.1. This value is chosen so that the reactions

are instantaneous in comparison to the other timescales of the problem. In Sect. 3.6, the

reverse reaction characteristic time τBA is modified to slow it down in order to prove the

robustness of the model.

For a system without reaction, at the chosen solute densities, the maximum time step

accepted has been shown to be ∆t = 0.0001. As highlighted in what precedes, this value

must be adapted when the reaction is triggered. The solute particles B, which interact

with each other with attraction, will agglomerate, increasing the local solute density. This

attraction is enhanced with ε, therefore the time step depends on ε. The chosen values

are summarized in Table III.2.

ρ = 0.05
ε ∆t
3 0.00006

ρ = 0.1
ε ∆t

1, 1.5, 1.75, 2, 2.25 0.0001
2.5, 3, 5 0.00006

ρ = 0.2
ε ∆t
3 0.00005

ρ = 0.3
ε ∆t
1 0.00006
2 0.00005

2.5, 3 0.00003
5 0.00001

Table III.2: Values of the time step ∆t as a function of ρ and ε in the systems investigated.

3.3 Characterization of the colloid dynamics

For each studied solute density, a set of initial configurations at equilibrium has been

extracted from simulations without reaction. From then, either simulations without re-

action are carried on longer timescales, or the reaction is set. The former simulations will

serve as references. For the latter, for each solute density, various values of the intensity

of the attraction ε, and of the size of the reaction area rcut are investigated. After the

reaction is triggered, the reactive system rapidly reaches a steady state, during which

quantities to characterize the colloid dynamics are computed. In this section, I describe
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the procedure established to analyze the results from simulations. First, the steady state

is defined. Next, the dynamics of the system at steady state is presented. I explain how

I compute the diffusion coefficient in both reference and reactive systems, and I compare

the obtained results. Finally, all the examined combinations of parameters are assembled

on a state diagram, which clarifies how the emergence of self-propulsion depends on the

key parameters ρ, ε and rcut. A key observable is unraveled which controls the existence

and the intensity of activity: the filling fraction of the reaction area.

3.3.1 Definition of the steady state of the system
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Figure 3.2: The number of particles inside the reaction area normalized by Nmax as a
function of time, Nshell(t)/Nmax, at ε = 3 and various rcut for (a) ρ = 0.1 and (b) ρ = 0.3.
The dashed lines represent the exponential fits using Equation (3.2). Note that the time
is shown for (a) t < 1000 and (b) t < 300 to emphasize the interesting part.

The number of particles inside the reaction area, which is a circular shell, is de-

noted by Nshell. This quantity is actually an average over the noise realizations, Nshell =

⟨Nshell⟩nrealizations
. In order to compare the various systems with each other, the number

of particles inside the reaction area is normalized by the maximum number of particles

which would fill the reaction area at the maximum packing fraction, denoted by Nmax.

Nmax is defined by Equation (3.1) where ϕmax is the maximum surface packing fraction.

Nmax = ϕmax
r2cut − (σC/2)

2

(σA/2)2
(3.1)

For hard disks in 2D, ϕmax = π
√
3/6 ≃ 0.91. Figure 3.2 represents Nshell normalized by
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Nmax as a function of time for a fixed value of the interaction strength between LJ particles

(ε = 3), at ρ = 0.1 (Fig. 3.2a), and at ρ = 0.3 (Fig. 3.2b). These examples of the kinetics

of filling of the reaction area show that the number of particles inside the reaction area

increases, before reaching a plateau. Thus, this quantity is a relevant indicator to define

the steady state. Initially, Nshell,0 = Nshell(0) solute particles A are inside the reaction

area. The reaction disrupts the established solute equilibrium as a LJ fluid forms inside

the reaction area. Due to attractive interactions, more solute particles than the initial

number of solute particles agglomerate, Nshell increases. At some point, the number of

particles inside the shell saturates at the value Nshell,∞. Indeed, as the colloid moves, it

accumulates as much as it loses particles: a steady state is established. The curves can

be modeled by the following exponential behavior:

Nshell(t) = Nshell,∞ − (Nshell,∞ −Nshell,0) e
−t/τN (3.2)

The corresponding exponential fits, normalized by Nmax, are represented by the dashed

lines on Fig. 3.2 and are in good agreement with computed data. The steady state

is reached when the number of particles inside the reaction area is constant, at about

t = τN.

The filling fraction of the reaction area at steady state, measured here byNshell,∞/Nmax,

is represented for the various systems on Figure 3.3. The values of Nshell,∞ are reported

in Appendix H for all the studied systems. As a comparison, the equivalent ratio in the

simulation box is N/Nbox,max, where the maximum number of particles that would fill

the simulation box is Nbox,max = ϕmax
l2box−π(σC/2)

2

π(σA/2)2
. N/Nbox,max is equal to 0.08 and 0.27

for the solute densities ρ = 0.1 and 0.3, respectively. Nshell,∞/Nmax increases with ε as

it is expected: the stronger are the attractive interactions between solute particles, the

more they agglomerate, attracting increasingly new particles. Moreover, Nshell,∞/Nmax

increases with rcut, before reaching a maximum. This draws attention to the limits of the

simulations in which the system is finite. Indeed, as rcut increases, the filling fraction at

steady state of the reaction area is limited by the amount of available solute particles in

the bulk. The situation where the reaction area would absorb all the particles due to finite

size effect should be avoided. For instance, at ρ = 0.1, ε = 3, and rcut = 15, a simulation

was carried in a system containing twice as more particles (N = 1000 and lbox = 100).

The filling fraction at steady state is found to be in this case Nshell,∞/Nmax = 0.18 instead

of 0.17 in the smaller system. Similary, for the system at ρ = 0.3, ε = 5, and rcut = 10.5,

in simulations with twice more particles (N = 1000 and lbox = 57.7) Nshell,∞/Nmax = 0.66

instead of 0.65. These larger systems are represented on Figure 3.3 by the empty symbols.

To conclude, for some values of the parameters, a phase forms inside the reaction area
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Figure 3.3: The filling fraction of the reaction area, measured by the stationary num-
ber of particles in the reaction area normalized by the maximum number of particles,
Nshell,∞/Nmax, as a function of rcut for various ρ and ε. Empty symbols correspond to
simulations of larger systems.

which is denser than in the bulk as Nshell,∞/Nmax > N/Nbox,max. Yet, the reaction area

is not entirely filled, as Nshell,∞/Nmax < 1. This observation underlines that the model

successfully gathers the conditions for a phase separation to occur.

3.3.2 Dynamics of the colloid at steady state

The mean squared displacement of the colloid ⟨∆r2
C(t)⟩ is computed from simulations

at steady state, for each set of parameters (ρ, ε, rcut). The MSD is averaged over the noise

realizations, ⟨∆r2
C(t)⟩ = ⟨∆r2

C(t)⟩nrealizations
. The time is rescaled for these calculations so

that the initial simulation time tinit is tinit = 3τN, where τN is the time needed by the

system to reach the steady state. From then, all the other quantities are computed. The

MSDs for various systems at ρ = 0.1 are represented on Figure 3.4. On each plot, the

MSD of the reference system is in black. At a first glance, it is straightforward that for

some parameters presented on these plots, the diffusion of the colloid is enhanced, as the

MSDs are much larger than for the reference. For a fixed value of rcut (rcut = 7.5), it

appears on Figure 3.4a that the enhancement is amplified when ε increases. For a fixed

value of ε (ε = 3), on Figure 3.4b, it is amplified with rcut. In other words, for large values
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Figure 3.4: Mean squared displacements of the colloid as a function of time, for (a) a fixed
value of rcut (rcut = 7.5) and various values of ε, and for (b) a fixed value of ε (ε = 3)
and various values of rcut. Solid lines are guides for the eye. The time is rescaled in order
to compute the MSD at steady state. So the initial time tinit, here and in what follows,
corresponds to tinit = 3τN, where τN is the time needed to reach the steady state.

of ε and/or rcut, the diffusion of the colloid is greatly enhanced.

A closer look at the MSD, represented for one set of parameters (ρ = 0.1, ε = 3 and

rcut = 10.5) in a log-log scale on Figure 3.5, evidences three distinct regimes, whereas

the reference MSD on the same plot has only one. Interestingly, the MSD bears the

same structure as the MSD of an ABP model (Eq. (2.14)), although the propulsion is not

postulated in the constructed model. The three regimes are the following:

• On small timescales, both reference and reactive systems display a diffusive behavior

characterized by approximately the same diffusion coefficient, i.e. the same intercept

on the plot. Indeed, although the reaction triggered by the colloid creates a LJ fluid

of solute particles B, the interactions between B solute particles and the colloid are

the same as the interactions between solute particles A and the colloid. At these

timescales, the colloid has encountered at most its first neighbors. In some cases,

the diffusion coefficient of the reactive systems slightly deviates from the reference

value, since the local density is affected by rcut and ε as shown on Figure 3.3.

• At intermediate times, the trajectory of the colloid is ballistic. The MSD is pro-

portional to t2. This is the signature of activity. Surprisingly, despite the crowding

induced by the solute particles, the colloid self-propels. Density fluctuations arise in

the LJ fluid, which transiently favors a direction for the colloid displacement, hence
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Figure 3.5: MSDs of the colloid as a function of time in a log-log scale. Comparison
between the reference system without reaction at ρ = 0.1, and a system with reaction
where ρ = 0.1, ε = 3 and rcut = 10.5.

the ballistic intermediate behavior.

• On longer timescales, the colloid has a diffusive regime again, with a MSD which is

again linear in time. Indeed, at these timescales, the density fluctuations are ran-

domized, modifying the preferred direction. The enhanced diffusion is characterized

by an effective diffusion coefficient denoted by Deff , and whose definition is given in

the next paragraph.

3.3.3 Definition of activity

As underlined before, the presence of activity in the system can be noticed on the

MSD by the intermediate ballistic trajectory. However, this criterion is qualitative rather

than quantitative. Moreover, for some systems, the intermediate regime is not easily

identifiable. Therefore, the activity of the system is quantified by comparing the effec-

tive diffusion coefficient at long times Deff to the reference one denoted by Dno reac. A

systematic procedure is done to measure the diffusion coefficient. For the systems with

reaction, it is first important that the last linear regime has been reached in order to

determine the effective diffusion coefficient. Simulations must be run long enough, which
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Figure 3.6: (a) In orange:
⟨∆r2

C(t)⟩
4t

. In red: mean squared displacements of the colloid as
a function of time, ⟨∆r2

C(t)⟩. The type of line: dotted, dashed or plain differentiates the
subset from which each MSD comes. The vertical line indicates the time from which the
orange curve reaches a plateau, tlin. The plot corresponds to a system with reaction for
the parameters (ρ, ε, rcut) = (0.1, 3, 7.5). Graphically, tlin = 1000. (b) In this plot, there
is no reaction in the system. MSDs for each subset, differentiated as in (a) by the line
styles, are displayed as function of time. The colors indicate the solute density ρ of the
system.

can be verified by plotting 1
4t
⟨∆r2

C(t)⟩ as a function of time. From this plot, the time from

which the MSD enters the last diffusive regime, tlin, is defined graphically. An example

is shown on Figure 3.6a in orange for the parameters (ρ, ε, rcut) = (0.1, 3, 7.5). The linear

time is obtained choosing the time from which the curve presents a plateau, which yields

tlin = 1000 for this example. Afterwards, for t > tlin, the MSD is fitted using Eq. (2.7)

and a diffusion coefficient can be extracted. The effective diffusion coefficient is thus the

long time slope of the MSD and is defined by:

Deff ≡ lim
t→∞
t>tlin

1

4t

〈
[rC(t)− rC(0)]

2〉 (3.3)

Values for tlin are reported in Appendix H for all the studied systems.

For both systems, with and without reaction, the accuracy of the computation of the

diffusion coefficient depends on the average made over the noise realizations. There must

be enough repetitions for the results to be representative of the physical state. Therefore,

for each system nrealizations noise realizations are made. For a system containing a single

colloid at ρ = 0.1, the number of noise realizations is typically nrealizations = 1000. For each
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realization, it takes about 8 hours to run until t = 1000. The simulations are run in series,

i.e they are distributed on several processors. The number of processors being limited,

the noise realizations are grouped and are launched one at a time. Typically, the 1000

noise realizations are split on 10 processors, and on each processor 100 noise realizations

are run. In total, to reach tlin in the case presented here takes about 800 hours, which

corresponds to a month.

Dno reac and Deff , the diffusion coefficient of the colloid in the reference system and

in the reactive system, respectively, as well as the associated errors, denoted by δDno reac

and δDeff , are computed by the means of the following method. I took three subsets of

realizations which contains typically 0.7nrealizations realizations each, and computed the

corresponding MSDs. An example is shown on Figure 3.6b which displays the MSDs of

a colloid in a passive system for various solute densities. Another example for a reactive

system is shown in red on Fig. 3.6a, for the parameters (ρ, ε, rcut) = (0.1, 3, 7.5). The

type of line (plain, dashed or dotted) represents the subset from which the MSD comes.

I extracted the diffusion coefficient of the colloid fitting each MSD using Eq. (2.7) at all

times for the reference system, and using Eq. (3.3) for the reactive system. Dno reac or Deff

is then the average of the three values, and the associated error is the standard deviation

of this sample. The values for both the diffusion coefficient and the associated error for

the reference system are displayed in Table III.3, for each solute density ρ investigated in

this PhD work. The error is very small, indicating enough noise realizations have been

done.

The reactive systems showing activity will be referred to as active systems, whereas

systems where the colloid does not self-propel will be referred to as passive systems.

In order to discriminate between passive and active systems, I have decided to use the

following criterion:




if Deff − δDeff > Dno reac + δDno reac, the system is active

otherwise, the system is passive.
(3.4)

ρ 0.05 0.1 0.2 0.3
Dno reac 0.163 0.124 0.094 0.072
δDno reac 0.002 0.004 0.001 0.001

Table III.3: Values of the diffusion coefficient of the colloid and of the associated error
for the reference systems. The colloid is in a bath of solute particles at a density ρ, and
does not catalyze a reaction.
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3.3.4 State diagram of the studied systems
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Figure 3.7: State diagram of the studied systems at ρ = 0.1 (top) and ρ = 0.3 (bottom).
Colors indicate the value of Deff/Dno reac, where Deff is the long-time diffusion coefficient
of the colloid (defined in Eq. (3.3)) and Dno reac its value in the absence of reaction.
From lower values (blue) to higher ones (dark orange). Square symbols indicate systems
where activity was reported, circles systems without activity. Colloid displays activity if
Deff − δDeff > Dno reac + δDno reac.

A wide range of parameters is investigated for both solute densities ρ = 0.1 and ρ = 0.3,

varying the attraction intensity ε and the size of the reaction area rcut. For each system,

the effective diffusion coefficient Deff is computed from the MSD. Values are recorded in

Appendix H. As previously stated, for some systems the presence of activity is obvious

and can be affirmed after a quick overview of the MSD. For other systems, the ballistic

part is small and the enhanced diffusion limited, so that whether the system is active or

not is less obvious. By the means of the criterion previously defined (Eq. (3.4)), I have

constructed a state diagram, represented on Figure 3.7, which summarizes the influence

of the parameters for ρ = 0.1 (Fig. 3.7a) and ρ = 0.3 (Fig. 3.7b). The color represents

the relative value of the effective diffusion coefficient compared to its equilibrium value,
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Dno reac. Symbols indicate if activity is observed (squares where activity occurs, circles if

not). Colors are ranging from blue for passive systems to dark orange for Deff ≫ Dno reac.

As it appears on Fig. 3.7a, at a relatively low solute density (ρ = 0.1), activity occurs

for all the parameters tested (except at ε = 1 and rcut = 5.5), and is increased when ε or

rcut increases. The results obtained at a higher density of solute, ρ = 0.3, are displayed

on Fig. 3.7b. At this solute density, the propulsion is more difficult to achieve, as the

range of parameters where Deff is significantly higher than Dno reac is more restricted. For

example, activity occurs for all values of rcut investigated here at ε = 2.5, but disappears

for large reaction areas (rcut ≥ 7.5) at ε = 3. Indeed, at a solute density ρ = 0.3, the

reaction area is more likely to be densely filled with B particles than when ρ = 0.1. The

dense fluid, which occupies the reaction area, tends to hinder the motion of the colloid.
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Figure 3.8: Intensity of the activity measured by Deff/Dno reac as a function of the at-
traction strength ε, for various reaction area radii rcut, at ρ = 0.1 (a) and ρ = 0.3 (b).
Deff/Dno reac is also presented as a function of rcut for various ε, at ρ = 0.1 (c) and at
ρ = 0.3 (d). On these plots, the values at rcut = ∞ correspond to simulations where
the reaction area is larger than the simulation box. The colloid is then in a bulk of a
LJ fluid. On all the plots, the dashed red line marks the limit between active systems
Deff/Dno reac > 1 and passive systems Deff/Dno reac < 1. The estimated errors on the
diffusion coefficients are represented by the black error bars.

Figure 3.8 brings another perspective to the state diagram. The intensity of the self-

propulsion is measured by the ratio Deff/Dno reac and is represented as a function of the

key parameters ε and rcut in another way. On the left part, the plots show the evolution

of Deff/Dno reac as a function of ε for various rcut, at ρ = 0.1 on Figure 3.8a and ρ = 0.3

on Figure 3.8b. Note that on Figure 3.8a, rcut = 12 and rcut = 15 are not shown since
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these radii have only been studied at ε = 3. On the right part, the plots show the

evolution of Deff/Dno reac as a function of rcut for various ε, at ρ = 0.1 on Figure 3.8c and

ρ = 0.3 on Figure 3.8d. On all the plots, the dashed red line delimits passive systems,

Deff/Dno reac < 1 (corresponding to the circle points on Figure 3.7), from active systems,

Deff/Dno reac > 1, (corresponding to the square points on Figure 3.7). Fig. 3.8a and 3.8b

depict two different behaviors of the activity as a function of ε:

� At all the reaction area radii considered at ρ = 0.1 on Fig. 3.8a and for rcut = 5.5 at

ρ = 0.3 on Fig. 3.8b, Deff/Dno reac increases with ε. At first, the ratio increases

slowly, and its value indicates that the self-propulsion of the colloid is limited.

Indeed, the effective diffusion coefficient is of the same order as the reference one:

the ratio Deff/Dno reac is on the dashed line or just above. Then, from a threshold

value of ε, Deff/Dno reac increases sharply with ε. The threshold value for ε seems

to vary as a function of rcut. For instance on Fig. 3.8a, Deff/Dno reac is noticeably

increased from ε = 2 at rcut = 10.5, while the change seems to occur around ε = 2.5

at rcut = 6.5. From the data exposed here, the threshold value of ε seems to be in

the interval [2, 3]. For higher ε, the diffusion of the colloid is significantly increased

and the effective diffusion coefficient reaches values up to ten times the reference

value. The threshold value for ε can be interpretated as a crossover between a

gaseous state of the LJ fluid in the reaction area to a state of liquid-gas coexistence,

which induces large fluctuations, hence a significant self-propulsion.

� The results for values of rcut > 5.5 at ρ = 0.3 shown on Figure 3.8b, evidence

another behavior of the effective diffusion coefficient with ε: the activity is a non-

monotonic function of ε. Initially, the systems present activity, although it is limited

(Deff/Dno reac ∼ 1), and the intensity of the activity increases with ε. Deff/Dno reac

reaches a maximum, whose value depends on rcut, after which the self-propulsion

decreases until crossing Deff/Dno reac = 1. This indicates that there is no activ-

ity anymore, the colloid is even slower than in the system without reaction. The

maximum is located around ε = 2 for the systems considered here.

Fig. 3.8c and 3.8d show how the activity is influenced by rcut. On both plots, the points

at rcut = ∞ for ε = 3 correspond to a system where the reaction area is larger than

the simulation box. This leads to a situation where the colloid is in a bulk fluid of LJ

particles. In a world with infinite computational resources, the real case rcut = ∞ would

be to simulate an infinitely huge system at the chosen solute density with a very large

reaction area regarding the colloid size. By this means, the LJ fluid in this infinite reaction

area would not be at the same solute density as in the bulk. Indeed, the reaction area

is in principle more densely filled than the bulk due to the attractive interactions. The
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Figure 3.9: Snapshots of systems at ε = 3 and at a solute density (a) ρ = 0.1 and (b)
ρ = 0.3. Here, rcut = ∞ corresponds to systems where the reaction area is larger than
the simulation box. This leads to a situation where the colloid is in a bulk of LJ solute
particles.

two systems with a bulk of LJ solute particles aim at giving an idea of what would be

the diffusion of the colloid in an infinitely large reaction area. The investigation at both

solute densities shows that the diffusion of the colloid is comparable to the diffusion in

the reference system. Snapshots of these systems are shown on Figure 3.9. There are two

phases which coexist in the bulk of LJ solute particles: a dense liquid phase and a gas

phase. However, the density fluctuations are not confined near the colloid, which is free

to move. Now that I have discussed the case rcut = ∞, I come back to the study of the

activity as a function of rcut shown on Figure 3.8 which also brings to light two different

behaviors:

� At ρ = 0.1 (Fig. 3.8c), Deff/Dno reac is a non-monotonic function of rcut at ε = 3.

It increases as a function of rcut before reaching a maximum between rcut = 12 and

rcut = 15. The point at rcut = ∞ for ε = 3 confirms that an optimum value for

rcut exists. As discussed in a previous paragraph, for rcut > 10.5, there is finite size

effect due to the large size of the reaction area regarding the simulation box size.

Nevertheless, a simulation under the same conditions at rcut = 15 in a larger system

is shown by the empty symbol linked at rcut = 12 by the dashed line. Qualitatively,

the results are unchanged: there is a decrease of activity, and an optimum value for

rcut exists. Although large values of rcut have not been investigated for other values

of ε, a similar behavior is expected.
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� Results at ρ = 0.3 (Fig. 3.8d) show an opposite behavior, Deff/Dno reac decreases

with rcut. The point rcut = ∞ for ε = 3 suggests the existence of a minimum

value for the diffusion coefficient, which seems to be around rcut = 10.5. The larger

system investigated at rcut = 10.5, ε = 5 is not shown as the same effective diffusion

coefficient than in the smaller system was found. Although the case rcut = ∞ was

not investigated for other values of ε, a similar behavior is expected.

From this analysis, the dependence of the effective diffusion coefficient Deff on the key

parameters becomes clearer. The systems can be classified in three categories: passive

systems for which Deff/Dno reac < 1, active systems where the self-propulsion is limited

characterized byDeff/Dno reac ∼ 1, and active systems with a significant enhanced diffusion

for which Deff/Dno reac > 1.

3.3.5 A normalized local density as a key parameter to predict

activity
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Figure 3.10: Long-time diffusion coefficient of the colloid Deff divided by the value without
reaction Dno reac as a function of the filling fraction of the reaction area, measured by the
stationary number of particles in the reaction area normalized by the maximum number
of particles, Nshell,∞/Nmax. Results obtained with a solute density (a) ρ = 0.1 and (b)
ρ = 0.3. All data, corresponding to different sets of parameters ε, and rcut, are collected
here. Each symbol corresponds to a value of the Lennard-Jones parameter ε.
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Figure 3.10 shows the long-time diffusion coefficient of the colloid divided by its value

in the absence of reaction, Deff/Dno reac as a function of the number of particles inside

the reaction area, normalized by the maximum number of particles which would fill the

reaction area, Nshell,∞/Nmax. The dashed line represents the threshold (Deff/Dno reac = 1)

above which the colloid is active. All the data obtained for different values of rcut, ε and

ρ are shown here.

Interestingly, it appears that using the filling fraction of the reaction area at steady

state, Nshell,∞/Nmax, all the data can be collapsed on a single line, at a given solute density.

This representation underlines that the filling fraction is a key parameter that controls

whether there is activity, and its intensity. The influence of the filling fraction of the

reaction area is subtle, and three situations can be distinguished, as already mentionned.

The first regime can be seen on Fig. 3.10a for Nshell,∞/Nmax < 0.12 and on Fig. 3.10b

for Nshell,∞/Nmax < 0.35. At small filling fractions, solute density fluctuations in the

vicinity of the colloid are very small, as only a gas phase is present. Thus, the relative

increase of the diffusion coefficient is limited. A second regime is observed at intermediate

values of the filling fraction, where propulsion appears. In this range, a phase separation

can occur, resulting in a highly enhanced diffusion. In this regime, Deff/Dno reac is an

increasing function of the filling fraction. At relatively low bath concentration (ρ = 0.1,

Figure 3.10a), only these two regimes are observed and the second regime corresponds to

Nshell,∞/Nmax > 0.12. At a larger bath concentration (ρ = 0.3, Figure 3.10b), the second

regime appears in the range 0.35 < Nshell,∞/Nmax < 0.45. Interestingly, at ρ = 0.3, a

non-monotonous behavior is observed, revealing a third regime for Nshell,∞/Nmax > 0.45.

When the filling fraction reaches the critical value of 0.45, the activity starts to decrease.

Actually, for high filling fractions, activity is suppressed due to the formation of a dense

crystal around the colloid, as shown on the snapshot on Fig. 3.11. A special case occurs

for ρ = 0.3, ε = 5 and rcut = 5.5, for which a huge propulsion is observed, due to an

artifact of the model. Under these conditions, the reaction area is not large enough to

form a closed crystal which leads to a particular geometry of the shell of B particles,

which favors an enhanced diffusion.

3.4 Analysis of the propulsion mechanism

3.4.1 Qualitative analysis of the mechanism

A microscopic analysis of the mechanism at the origin of activity is proposed and is

schematically represented on Figure 3.12. The LJ fluid undergoes local phase transition

in the vicinity of the colloid, creating density fluctuations. Solute particles polarize,
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forming one or several droplets which push the colloid in the opposite direction. The

persistence time of the droplets orientation is denoted by τp. If τp is large enough, the

motion of the colloid is transiently ballistic. On longer timescales, the droplets orientation

is randomized. The motion of the colloid is diffusive again characterized by an effective

diffusion coefficient, Deff , higher than the reference one, Dno reac.
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Figure 3.11: Snapshot of the system at ρ = 0.3, ε = 5 and rcut = 10.5. A dense crystal
forms in the reaction area, which is not centered around the colloid. The asymmetric
filling propels the colloid, yet, activity is not observed for this system. Indeed, the shell
is closed, and the side in the opposite direction from the propulsion of the colloid hinders
its movement. The polarity vector −p, defined in Section 3.4, is represented by the black
arrow.

3.4.2 Polarization vector of the solute density around the colloid

The phase separation in the vicinity of the colloid polarizes its local environment.

Solute density fluctuations arise, which breaks the symmetry of the system and leads

to the self-propulsion of the colloid. A polarization vector p is introduced in order to

quantify the polarization of solute particles in the colloid environment:

p(t) =
∑

i∈P

[ri(t)− rC(t)] , (3.5)
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Figure 3.12: Sketch of the identified mechanism as being at the origin of the self-propulsion
of the colloid. Droplets form in the vicinity of the colloid, which push it away in the
opposite direction. The droplets orientation is characterized by a persistence time τp. For
t < τp, the motion of the colloid is ballistic. On longer timescales, the droplets orientation
is randomized, leading to a diffusive motion with enhanced diffusion.

where P defines a proximal circular area around the colloid C, where the solute particles

i interact directly with it. The solute particles interact purely repulsively with the col-

loid, however, the potential used here is softer than a hard sphere potential. In order to

capture the solute particles interacting directly with the colloid, the proximal area must

be larger than (σA+σC)/2. Several trials have led to the conclusion that a suitable value

for the area radius is (3σA + σC)/2. To estimate the persistence time of the droplets

orientation, the autocorrelation function of the polarization vector ⟨p(t) · p(t+ t′)⟩t′ is

computed. The average runs over the noise realizations nrealizations and the initial time

t′, ⟨p(t′) · p(t′ + t)⟩t′ = ⟨p(t′) · p(t′ + t)⟩nrealizations,t′ . This autocorrelation function is plot-

ted on Figure 3.13 for various systems where activity is observed, and for the reference

system for comparison. The study of the effective diffusion coefficient as a function of

the filling fraction of the reaction area, Nshell,∞/Nmax, has highlighted that two categories

emerge among active cases. In the first one, for low values of Nshell,∞/Nmax, the activity
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Figure 3.13: Autocorrelation functions of the polarization vector as a function of time
⟨p(t′) · p(t′ + t)⟩t′ for various parameters where activity is observed. The black curve
represents the reference system. Inset: the log-log representation of the autocorrelation
functions.

is limited and Deff is hardly larger than Dno reac. In constrast, active systems belonging

to the second category present a significantly enhanced diffusion, Deff ≫ Dno reac. The

analysis of the autocorrelation function of the polarization vector confirms this separation.

Figure 3.13 represents the autocorrelation functions as a function of the time for various

active systems. The parameters ρ = 0.1, ε = 1 and rcut ∈ {5.5, 7.5, 10.5}, correspond
to systems belonging to this first category. For these cases, ⟨p(t′) · p(t′ + t)⟩t′ exhibits
the same characteristics as the reference system: it decays as a power law at all times,

as shown in the inset. This fast decrease comes from the fluctuations of the positions of

the solute particles in the vicinity of the colloid due to Brownian motion, thus the ab-

sence of correlation of the polarization vector. For the parameters ρ = 0.1, ε ∈ {2.5, 3, 5}
and all the rcut values, corresponding to systems belonging to the second category, the

autocorrelation functions display two regimes: a power law decay at short times and an

exponential decay at longer timescales. The crossover between the two regimes occurs at

a characteristic time denoted by t0. The second regime appears at longer times in active

systems where the solute particles have merged in droplets. The droplets diffuse much

slower than a single solute particle, consequently the droplets orientation is persistent
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regarding the other timescales at stake, as indicated by the exponential tail of the auto-

correlation function. For active systems of the first category, small density fluctuations

appear, but the parameters are not favorable to droplets formation, hence the absence of

exponential regime. The characteristic time of decay of the exponential behavior repre-

sents the persistence time τp of the droplets orientation, and can be found by fitting the

autocorrelation function with an exponential function. The autocorrelation function is

entirely described by:

⟨p(t′) · p(t′ + t)⟩t′ =





A
(t+c)α

if t ≤ t0,

B exp
(

−t
τp

)
else.

The autocorrelation function is continuous in t0, hence:

A

(t0 + c)α
= B e−t0/τp ⇐⇒ B =

A

(t0 + c)α
et0/τp .

The autocorrelation function can also be written:

⟨p(t′) · p(t′ + t)⟩t′ =





A
(t+c)α

if t ≤ t0,

A
(t0+c)α

exp
(

−(t−t0)
τp

)
else.

(3.6)

The autocorrelation function is fitted at all times by the power law in systems where

only one regime is present. In any case presenting the two regimes, t0 is obtained graphi-

cally. A fit is then performed on the autocorrelation function using the short-time equation

for t < t0 and using the long-time equation, for t ≥ t0. The following parameters can be

extracted from the fits: A, c, α and τp. Examples of fits are shown Fig. 3.14, which are

in good agreements with the simulation data. The polarization vector was not computed

for all the systems investigated in this PhD work. The values of the fitted parameters

for all the systems where p exists are summed up in Table III.4. If τp can not be ex-

tracted, no value is indicated. It is difficult to draw conclusions on the values found for

the parameters of the power law regime. The interpretation will focus on the persistence

time of orientation τp for which a physical meaning is associated and is detailed in a next

paragraph.

3.4.3 Situations without activity

The autocorrelation function, ⟨p(t′) · p(t′ + t)⟩t′ , for various passive systems is plotted

on Figure 3.15. Its analysis surprisingly reveals two behaviors. As expected for some

parameters, the autocorrelation functions display only the first power law regime (for
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ρ ε rcut t0 A c α τp Activity?

0.1

1 5.5 10 6.3 0.2 0.9 - No
1 7.5 10 6.4 0.2 1.0 - Yes
1 10.5 10 6.8 0.3 1.0 - Yes
1.5 7.5 10 7.5 0.2 0.9 - Yes
1.75 7.5 10 8.2 0.2 0.9 - Yes
2.5 6.5 10 10.7 0.1 0.6 16.4 Yes
2.5 7.5 25 13.2 0.1 0.5 43.6 Yes
2.5 9 10 16.7 0.2 0.6 88.7 Yes
2.5 10.5 15 17.3 0.2 0.6 142.9 Yes
3 7.5 20 18.0 0.1 0.4 48.0 Yes
3 9 10 21.2 0.1 0.4 99.6 Yes
3 10.5 15 21.0 0.2 0.5 161.9 Yes
5 7.5 10 28.5 0.1 0.3 60.8 Yes

0.3

1 7.5 5 6.0 0.2 1.4 - Yes
1 10.5 5 7.4 0.2 1.4 - Yes
2 7.5 5 6.2 0.2 1.3 18.7 Yes
2 10.5 5 12.4 0.4 1.7 - Yes
2.5 6.5 5 5.7 0.1 1.1 - Yes
2.5 7.5 5 6.3 0.3 1.7 - Yes
2.5 9 3.3 10.0 0.4 1.8 - Yes
2.5 10.5 2 13.0 0.3 1.6 - Yes
5 5.5 2 56.9 0.0 0.1 19.2 Yes
5 6.5 15 2.2 0.0 0.5 16.1 No
5 7.5 5 3.8 0.0 0.2 25.8 No
5 9 5 20.8 0.0 0.1 371.0 No
5 10.5 10 43.7 0.0 0.3 521.3 No

Table III.4: Parameters found using Eq. (3.6) to fit the computed autocorrelation function
of the polarization vector ⟨p(t′) · p(t′ + t)⟩t′ . τp is found with an exponential fit on systems
where the second regime is observed. If not applicable, no value is indicated.
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Figure 3.14: Examples using Eq. (3.6) to fit the autocorrelation functions of the polariza-
tion vector as a function of time ⟨p(t′) · p(t′ + t)⟩ when activity is observed.
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Figure 3.15: Autocorrelation functions of the polarization vector as a function of time
⟨p(t′) · p(t′ + t)⟩t′ for various passive systems. The solute density is (a) ρ = 0.1 and (b)
ρ = 0.3.

instance ρ = 0.1, ε = 1, and rcut = 5.5 on Fig. 3.15a, or ρ = 0.3, ε = 5, and rcut ∈
{6.5, 7.5} on Fig. 3.15b). This shows that no droplets form, or on the contrary, the
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droplet forms a closed shell around the colloid. Thus, there is no longer persistence of the

density fluctuations which results in the absence of activity. However, the autocorrelation

functions of some passive systems exhibit an exponential tail, and their fitting reveals

large values for τp. This can be explained by looking at the snapshot on Fig. 3.11, where

the polarity vector is represented by a black arrow. There are still density fluctuations

as the crystal is not centered on the colloid. The formed shell is very large, leading to a

very slow diffusion, hence large orientation persistence times. But, the side of the crystal

situated in the same direction as the polarization vector hinders the motion of the colloid

and suppresses the activity. This occurs at large values of ε and/or rcut at a rather high

solute density, for instance on Fig. 3.15b ρ = 0.3, ε = 3 and rcut ∈ {9, 10.5}.

3.4.4 The persistence orientation time in light of the normalized

local density
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Figure 3.16: The persistence time of the polarization vector orientation τp as a function
of the filling fraction at steady state of the reaction area Nshell,∞/Nmax is represented by
the brown points. Deff/Dno reac as a function of Nshell,∞/Nmax is represented by the green
points. The estimated errors on the diffusion coefficients are represented by the black
error bars, which are smaller than the size of the symbols. All the data for which the
polarization vector was computed for different values of rcut, ε and ρ are shown here.

Figure 3.16 shows the long-time diffusion coefficient of the colloid divided by its value

in the absence of reaction as a function of Nshell,∞/Nmax in green and the persistence

orientation time τp as a function of Nshell,∞/Nmax in brown. The estimated errors on

the diffusion coefficients are represented by the black error bars, which are smaller than
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the size of the symbols. The circles represent passive systems, while the squares indi-

cate systems where activity occurs. All the data for which the polarization vector was

computed for different values of rcut, ε and ρ are shown here. For systems with no expo-

nential regime, τp can not be extracted. That is the case at small filling fractions. Solute

density fluctuations in the vicinity of the colloid are very small, the polarization vector

fluctuates and its autocorrelation function does not present an exponential tail. This is

typically represented on Fig. 3.16a for Nshell,∞/Nmax < 0.12. The activity is limited as

Deff/Dno reac < 1.5 and there is no associated value for τp. In the second regime, there are

enough particles in the vicinity of the colloid to form persistent droplets. τp is an increas-

ing function of Nshell,∞/Nmax. As the filling fraction of the reaction area increases, the

size of the droplets grows. The latter diffuse then more slowly raising τp. The increase

of τp is correlated to the increase of Deff/Dno reac which is also an increasing function

of Nshell,∞/Nmax in this regime. This corresponds to values of Nshell,∞/Nmax > 0.12 on

Fig. 3.16a. At higher filling fractions at ρ = 0.3 (Fig. 3.16b), the first regime is repre-

sented by the two green points with no associated values for τp at Nshell,∞/Nmax ≈ 0.35.

Less data are available for the second regime. In the third regime, only visible at ρ = 0.3,

corresponding to data where Nshell,∞/Nmax > 0.46, Deff/Dno reac and τp are not correlated

anymore. Indeed, at this filling fraction of the reaction area, a close shell has formed.

As evidenced in the previous paragraph, some closed shells are not centered on the col-

loid. This results in density fluctuations characterized by a large persistence time τp, as

it can be observed on Fig. 3.16b for Nshell,∞/Nmax > 0.6 where τp = 500 at its highest.

For 0.46 < Nshell,∞/Nmax < 0.6, the reaction area is densely filled and a closed shell has

probably formed. The absence of exponential tail for these cases indicates that if a shell

has formed, it is probably centered on the colloid.

3.5 Effective description of the colloid dynamics

3.5.1 Effective Langevin equation

The analysis of the polarization vector reveals that the features of the model share

similarities with the classical ABP description I have presented in Section 2.4. Although

the dynamics of the polarization vector is more complex than in ABP model, as it presents

two regimes, the long-time behavior is exponential with a characteristic time τp analogous

to τr in Eq. (2.13). On the basis of the ABP model, a coarse-grained equation to model

the dynamics of the colloid is proposed, where the polarization vector p plays the role of
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the source of the biased motion:

drC(t)

dt
= −Kp(t) + ξ(t). (3.7)

The effective Langevin equation written here bears the same structure as the ABP

Langevin equation (Eq. (2.11)). The term Kp(t) results from an effective active force,

and the noise ξ(t) represents the fluctuations of the bath. K is a propulsion coefficient

which links the velocity to the polarization vector.

The idea is to analyze the dynamics of a colloid whose motion is controlled by Eq. (3.7)

by computing its MSD. The position of the colloid is obtained by integrating the equation

of motion: rC(t) = −K
∫ t

0
dt′p(t′) +

∫ t

0
dt′ξ(t′) + r(0), from which the MSD yields:

〈
∆r2

C(t)
〉
= K2

∫ t

0

dt′
∫ t

0

dt′′ ⟨p(t′) · p(t′′)⟩+
∫ t

0

dt′
∫ t

0

dt′′ ⟨ξ(t′) · ξ(t′′)⟩

−K

∫ t

0

dt′
∫ t

0

dt′′ (⟨p(t′) · ξ(t′′)⟩+ ⟨ξ(t′) · p(t′′)⟩) .

I define ∆ab(t) ≡
∫ t

0
dt′
∫ t

0
dt′′ ⟨a(t′) · b(t′′)⟩ and I write the MSD as the sum of three

contributions:

〈
∆r2

C(t)
〉
= K2∆pp(t) + ∆ξξ(t)−K (∆pξ(t) + ∆ξp(t)) . (3.8)

K2∆pp(t) is the contribution of the polarization vector, ∆ξξ(t) of the noise and−K (∆pξ(t) + ∆ξp(t))

of the cross-correlation between the noise and the polarization. The computation of

the different contributions can be done either analytically or using the simulation data.

Both approach are presented in what follows. In this section, the discussion will fo-

cus on a smaller set of parameters: the solute density is ρ = 0.1, ε ∈ {2.5, 3, 5}, and
rcut ∈ {7.5, 9, 10.5}.

3.5.2 Analysis of the MSD for the effective model

In contrast to the ABP model, the autocorrelation function of the orientation vector

is not purely exponential. Therefore, in this part, the goal is to compute analytically

the MSD and to analyze the consequences of the power law regime on the short times of

the autocorrelation function of p. Under some hypotheses listed below, the MSD can be

computed from Eq. (3.8):

1. The autocorrelation function of the polarization vector is supposed to be defined by

Eq. (3.6).
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2. The autocorrelation function of the noise, which represents uncorrelated fluctuations

of the bath, is approximated by a delta function:

⟨ξ(t′) · ξ(t′′)⟩ = δ(t′ − t′′). (3.9)

3. The contribution of the cross-correlation between the noise and the polarization is

assumed to vanish.

−K (∆pξ(t) + ∆ξp(t)) = 0. (3.10)

The MSD is calculated (see details in Appendix G) and results in:

〈
∆r2

C(t)
〉
=





4DCt+
2AK2

(1−α)(2−α)
[(t+ c)2−α − t(2− α)c1−α − c2−α] if t ≤ t0,

4DCt

+2AK2

1−α
[(t− t0)(t0 + c)1−α − tc1−α] + 2AK2

(1−α)(2−α)
[(t0 + c)2−α − c2−α]

+2AK2τp
(t0+c)α

[
(t− t0) + τp

(
e−(t−t0)/τp −1

)]
else.

(3.11)

DC represents the diffusion coefficient of the colloid (the choice of its numerical value

is discussed in a next paragraph). The different regimes of the analytical MSD are also

computed in appendix G. The analysis reveals five regimes separated by four characteristic

times, which are:

• t1 =
4DCc

α

K2A

• t0, which is the time from which the autocorrelation function of the polarization

vector becomes exponential.

• t2 =
4DC(t0+c)α

AK2 + 2(t0+c)
1−α

[
1−

(
t0+c
c

)α−1
]
− 2t0

• τp the characteristic re-orientation time of the droplets in the shell.

The different regimes are:

• At t < t1, the MSD is linear, indicating a diffusive motion:

〈
∆r2

C(t)
〉
∼ 4DCt (3.12)

• At t1 < t < t0, the MSD is proportional to t2, indicating a ballistic motion:

〈
∆r2

C(t)
〉
∼ AK2c−αt2 (3.13)
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• At t0 < t < t2, the MSD is linear again, indicating a diffusive motion:

〈
∆r2

C(t)
〉
∼
[
4DC +

2AK2

1− α

(
(t0 + c)1−α − c1−α

)
− 2t0AK

2

(t0 + c)α

]
t (3.14)

• At t2 < t < τp, the MSD is proportional again to t2, indicating a ballistic motion:

〈
∆r2

C(t)
〉
∼ AK2

(t0 + c)α
t2 (3.15)

• At t > τp, the MSD is linear again, indicating a diffusive motion:

〈
∆r2

C(t)
〉
∼
(
4DC +

2AK2

1− α

[
(t0 + c)1−α − c1−α

]
+

2AK2τp
(t0 + c)α

)
t (3.16)
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Figure 3.17: (a) Analytical MSD using Eq. (3.11) as a function of time ⟨∆r2
C(t)⟩, the

parameters DC, K, c, t0, τp, α, and A are chosen arbitrarly in order to observe the
different predicted regimes. (b) Exponent of the MSD as a function of time, with
β(t) = log ⟨∆r2

C(t)⟩ / log t.

The analysis of the MSD derived from the effective Langevin equation emphasizes that

the dynamics is much richer than the one from the ABP model. First, the simulation

results are left aside. The analytical MSD is computed using parameters, which are chosen

so that the five regimes are well separated in order to visualize them. To determine the

suitable values, the crossover times must be approximately: t1 ∼ 10, t0 ∼ 100, t2 ∼ 1000,

and τp ∼ 10000. t0 and τp are fixed to the expected values, thus t0 = 100 and τp = 10000.

t1 and t2 depends on the other parameters: DC, K, c, α, and A. The following parameters
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are fixed: DC = 0.125, K = 0.0374, c = 5, α = 0.95 DC = 0.125, while A remains a free

parameter and is adjusted to obtain the correct time separation between the different

regimes. A suitable value is found to be A = 500, which yields t1 = 3.3 and t2 = 452.5.

The MSD as well as the different regimes are computed and are shown on Figure 3.17a.

The 5 regimes are observed.

Writing out that ⟨∆r2
C(t)⟩ ∝ tβ, the exponent is computed and plotted on Figure 3.17b.

The crossover times are indicated by the red dotted lines. Interestingly, the exponent does

not reach the value of 2, which would be expected in the ABP model, provided that τr is

large enough. Here, there is an alternation of β = 1 regimes, which corresponds to the

minima at the beginning, the middle (t0 < t < t2), and the end, and β = 2 regimes, which

corresponds to the maxima between t1 and t0, and between t2 and τp. Yet, the different

regimes are not totally separated, consequently the exponent never reaches 1 nor 2. This

figure underlines that for more than one intermediate regime, there is an overlap, yielding

a more complex behavior of the MSD.

Then, the exponent β is computed with the simulation data, and is plotted as a

function of time on Figure 3.18 for the systems investigated in this section. In contrast

with Fig. 3.17b, the figure emphasizes that there is a superposition of the various regimes

as there is only one maximum around 102. In order to go further, I will compute and plot

the analytical MSD to compare it with the simulation data.
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Figure 3.18: Exponent of the MSD as a function of time, with β(t) = log ⟨∆r2
C(t)⟩ / log t.
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3.5.3 Reconstruction of the MSD from semi-analytical calcula-

tions

All the parameters involved in the effective Langevin equation, defined by Eq. (3.7),

are known, using values extracted from the autocorrelation functions of p in Table III.4.

The only unknown quantity is the propulsion coefficient K which is here determined

analytically from simple considerations.

The droplets, which form inside the reaction area, push the colloid in the same orien-

tation. Consequently, the velocity of the colloid vC is, during a time window, denoted in

what follows τ0, smaller than τp, proportional to the polarization vector: vC = −Kp. The

velocity of the colloid, in Brownian dynamics using Eq. (2.6) and neglecting the noise, is

vC(t) ∝ −D0
C

∑N
i=1∇U(rC,i(t)), with U the interaction potential between the colloid C

and the solute particles i. D0
C is the diffusion coefficient at infinite dilution of the colloid,

used as an input in the Brownian dynamics code. The polarization vector is given by

Eq. (3.5). Both vectors, vC and p, can be written in the continuous limit and computed.

To do so, polar coordinates r = (r, θ) are used in the coordinate system (er, eθ), where

er is the normal vector at the surface of the colloid and eθ is the tangential vector. The

following usual assumptions are made:

• The solute particles are described using a continuous concentration field c(r, t).

• The concentration of solute particles is assumed to be time independent

c(r, t) = c(r).

• The concentration follows a Boltzmann distribution along the radial axis:

c(r) = C(θ) e−U(r), where U is the interaction potential between solute particles and

the colloid.

• The potential, U , is invariant along the axial axis, i.e U(r) = U(r). Consequently:

∇U(r) = ∂U(r)
∂r

er +
1
r
∂U(r)
∂θ

eθ =
∂U(r)
∂r

er.

Using this, the velocity of the colloid in a continuous limit becomes:

vC(t) = D0
C

∫
c(r)∇U(r)dr

= D0
C

∫ 2π

0

C(θ)dθ
∫ ∞

0

r
∂U(r)

∂r
e−U(r) dr er
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Figure 3.19: MSDs from simulations (plain lines) compared to the analytical results given
by Eq. (3.11). The dashed lines represent the analytical MSDs computed with DC =
Dno reac. The dotted lines show the short times using DC = D0

C. Results obtained for
the various systems investigated in this section are presented. The curves are vertically
shifted for more clarity.

Similarly, the continuous form of the polarization vector yields:

p(t) =

∫

P
rc(r) dr

=

∫ 2π

0

C(θ)dθ
∫ (3σA+σC)/2

σC/2

r2 e−U(r) dr er

The velocity and the polarization vectors are linked through the relation vC = −Kp,

from which K can be deduced:

K =
D0

C

∫ 21/6(σA+σC)/2

0
(1− e−U(r))dr

∫ (3σA+σC)/2

σC/2
r2 e−U(r) dr

(3.17)

The integrals can be numerically solved taking the WCA potential, and doing so, K =

0.0374.

All the parameters of the effective Langevin equation (Eq. (3.11)) are now known. For

the diffusion coefficient of the colloid, DC, two options are possible. The first one is to take

the diffusion coefficient at infinite dilution, D0
C, and the other one is to take the value of the

reference system, Dno reac. In order to take into account the effect of the solute particles in

this coarse-grained description, the latter is chosen, DC = Dno reac. The analytical MSDs

are plotted for various systems with the dashed lines on Figure 3.19, where it is confronted

to the MSDs obtained with the simulations (plain lines). The analytical MSDs do not
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fit well the data. They fail to reproduce the different intermediate regimes. Anyway,

the long-time slopes of the MSDs are correctly predicted by the analytical computations.

Both indicate a diffusive regime, however, the analytical MSDs fail to predict the correct

value of Deff , as the intercepts are not the same. This observation holds also for the short

times. The short-time approximations can be improved using the diffusion coefficient

at infinite dilution in Eq. (3.11), DC = D0
C. The analytical MSDs using this value are

represented on Fig. 3.19 by the dotted lines and predict well the short times, t < 0.02.

Indeed, at short times, the movement of the colloid is free, as it has not yet encountered

solute particles. The first linear regime described by Eq. (3.12) seems to last until t ∼ 2

for all cases presented here. This regime is in fact composed of two first linear regimes.

The first one for t < 0.02 where DC = D0
C and the second one for 0.02 < t < 2, where

DC = Dno reac. The crossover between the two first linear regimes can be observed on the

figure.

Table III.5 sums up the characteristic times for each case. This table stresses that

the timescales are not clearly separated, as suggested by Fig. 3.18. For example, for the

first three cases presented in Table III.5, t2 > τp, therefore the second ballistic regime

cannot be observed. Moreover, for all the cases, t1 and t0 are not clearly separated, which

induces a ballistic regime with β < 2. The overlaps of timescales can explain the mismatch

between the analytical MSD and results from simulation.

ε rcut t1 t0 t2 τp
2.5 6.5 9.7 10 154.6 16.4
2.5 7.5 8.3 25 196.8 43.6
2.5 9 8.0 10 99.1 88.7
2.5 10.5 8.5 15 129.7 142.9
3 7.5 7.0 20 87.4 48.0
3 9 7.1 10 59.4 99.6
3 10.5 7.8 15 82.5 161.9
5 7.5 5.8 10 34.6 60.8

Table III.5: Characteristic times: t1, t0, t2 and τp, which separate the various regimes
found in the MSD, computed from analytical expressions given in the paragraph 3.5.2.
Only parameters of the investigated cases in this section appear in the table.

3.5.4 Reconstruction of the MSD from explicit simulations

The semi-analytical MSD fails to capture all the regimes emerging from simulations.

Another approach in order to reconstruct the MSD obtained in the simulations is pre-

sented here. First, the idea is to use the simulation data to compute the terms of the
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effective Langevin equation proposed in Eq. (3.7). Second, the assumptions made on

the autocorrelation function of the noise (Eq. (3.9)) and on the contribution of cross-

correlation function (Eq. (3.10)) can be verified. Last, the contributions identified in

Eq. (3.8) are computed and are compared to the MSD computed in the simulation.

Method

In order to compute the different contributions of the MSD identified in Eq. (3.8),

several steps are carried out and are presented here.

1. The different terms of the effective Langevin equation are computed. The polar-

ization vector p, which intervenes in the effective Langevin equation, is an output

of the simulation. The noise vector ξ is constructed from the effective Langevin

equation (3.7):

ξ(t) ≈ ∆r(t)

∆t
+Kp(t). (3.18)

In this approximation, the velocity is estimated for a time step ∆t sufficiently small

by: v ≈ ∆rC

∆t
. The propulsion coefficient, K is, in this approach, determined numer-

ically. The hypothesis states that the ballistic motion of the colloid originates from

the active force defined in Eq. (3.7), −Kp. According to the hypotheses made on

the mechanism of propulsion, the velocity is proportional to the polarization vector

during a time window τ0. The propulsion coefficient is then also estimated from the

computed data using the following equation:

K = −
〈⟨p(t)⟩τ0 · ⟨v(t)⟩τ0

| ⟨p(t)⟩τ0 |2
〉

t

,

where ⟨.⟩t represents the average over time. The choice of τ0 is detailed in the

next paragraph. The characteristic time τ0 corresponds to the time window where

the velocity is proportional to the polarization vector. This implies that τ0 must

be smaller or comparable to τp, since the orientation of the polarization vector

is randomized at long times. In addition, the average of the noise vector, which

represents the fluctuations of the bath, should vanish on a large enough time window.

Consequently, the choice of τ0 must also be long enough to have ⟨ξ⟩τ0 = 0. Under

these conditions, one can write ⟨v(t)⟩τ0 = −K ⟨p(t)⟩τ0 , where ⟨.⟩τ0 represents the

average over a time of duration τ0.

2. The autocorrelation functions: ⟨p(t′) · p(t′ + t)⟩t′ , ⟨ξ(t′) · ξ(t′ + t)⟩t′ , ⟨p(t′) · ξ(t′ + t)⟩t′ ,
and ⟨ξ(t′) · p(t′ + t)⟩t′ , are computed from the simulation data once ξ(t) is deter-

mined.
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3. The contributions: ∆pp(t), ∆ξξ(t), ∆pξ(t), and ∆ξp(t) are computed from simu-

lations. To do so, the autocorrelation functions are numerically integrated, trans-

forming the double integral into a single one for convenience:∫ t

0
dt′
∫ t

0
dt′′ φ(|t′ − t′′|) = 2

∫ t

0
du (t− u)φ(u). This can be done as the autocorrela-

tion functions are in reality functions of the difference |t′ − t′′|. The transition from

double to simple integral is given in Appendix B.

4. The different contributions are plotted, and are compared to the MSD.
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Figure 3.20: Example of several MSD reconstructions for various τ0 = xτp chosen which
leads to various Kx values. The objective is for the cross correlation to be negligible in
comparison to the other quantities. The set of the chosen parameters here is (ρ, ε, rcut) =
(0.1, 3, 10.5). The more suitable choice is τ0 = 0.6τp.

The accuracy of the reconstruction depends on the choice of τ0, since the validity of

the assumptions rely on an appropriate choice of the time window. The method to find

the appropriate τ0 is empirical. Several values τ0 = xτp, varying x, are tried. I have

fixed x ∈ [0.4, 0.8]. The limits of this range correspond to the upper and lower values

of the constraints imposed on τ0. In order to reduce the number of trials, I have only

considered values of x with a digit of precision. For each τ0, K the propulsion coefficient

is computed, from which the noise vector ξ is deduced using Eq. (3.18). Then, the

contribution of the cross-correlation functions, −K (∆ξp(t) + ∆pξ(t)) is computed. The

value of x is selected in order to have the best agreement with the assumptions made, i.e.

to have −K (∆ξp(t) + ∆pξ(t)) ≈ 0, or at least negligible in front of the other quantities.
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The computed contributions using different values of τ0 are then plotted, and the most

appropriate value is chosen graphically. An example for the parameters

(ρ, ε, rcut) = (0.1, 3, 10.5) is shown on Figure 3.20. Only three out of the five tried values

are shown: x = 0.6, x = 0.7 and x = 0.8. Graphically, the more suitable choice is

x = 0.6, since for this value the contribution of the cross-correlation functions is negligible

regarding the other quantities. The values of τ0 and K for each investigated case, are

summarized in Table III.6. Interestingly, the numerical values of K are of the same order

of magnitude as the one computed from analytical considerations.

ε rcut x τ0 K
2.5 7.5 0.8 34.9 0.0326
2.5 9 0.8 71 0.0419
2.5 10.5 0.8 114.23 0.0422
3 7.5 0.8 38.4 0.0425
3 9 0.7 69.7 0.0459
3 10.5 0.6 97.1 0.0431

Table III.6: Summary of the chosen values for x, τ0, and the associated values for the
proportionality coefficient K. This analysis was only done at ρ = 0.1.

Computation of the correlation functions

Once τ0 is chosen, all the terms of the effective Langevin equation are known. The

autocorrelation function ⟨ξ(t′) · ξ(t′ + t)⟩t′ is computed and plotted on Figure 3.21a for

each system of interest in this section. The autocorrelation functions vary on timescales

very small compared to the other timescale of the problem. This validates the approxi-

mation made considering it as a delta function. The cross-correlation functions are also

computed and plotted on Figure 3.21b. The cross-correlation functions are almost zero

at all times, as expected with the made choices.

Reconstruction of the MSD

Finally, the MSD can be reconstructed from the numerical computations. Figure 3.22

shows the reconstruction for the set of parameters (ρ, ε, rcut) = (0.1, 3, 10.5), in a log-log

scale on Fig. 3.22a and in a linear-linear scale on Fig. 3.22b. Both representations under-

line that at short times, the contribution of the noise ∆ξξ dominates. The contribution

of the polarization vector ∆pp is responsible for the transient ballistic part and matches

the long time diffusion. This confirms that the polarization vector is at the origin of the

propulsion, and it validates the identified intuitive mechanism.
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Figure 3.21: (a) Autocorrelation functions of the noise vector as a function of time
⟨ξ(t′) · ξ(t′ + t)⟩t′ . (b) Cross-correlation functions of the noise and the polarization vector
as a function of time ⟨p(t′) · ξ(t′ + t)⟩t′ + ⟨ξ(t′) · p(t′ + t)⟩t′ . Data correspond to systems
discussed in this section. Data are shown for t < 200 to emphasize the interesting part.
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Figure 3.22: The MSD as a function of time ⟨∆r2
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Linear-linear scale. The parameters represented here are
(ρ, ε, rcut) = (0.1, 3, 10.5).
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3.6 Robustness of the model

A wide range of parameters have been studied, which have evidenced the range where

a phase transition of solute particles for the particular geometry investigated here can

occur, leading to a significant enhanced diffusion. The filling fraction of the reaction area

at steady state, Nshell,∞/Nmax, is a quantity which takes into account both the size of the

reaction area rcut and the attraction intensity ε, and is found to be relevant to collapse

all the data together. This underlines that the presence of activity is strongly dependent

on the geometry of the problem. The reaction area radius rcut, as well as the diameter

of the colloid σC, control the geometry of the reaction area. Besides, one may wonder

how the mechanism is dependent on the relative solute-colloid size. The geometry of

the reaction area also depends on the reverse reaction. If the reverse reaction is slowed

or located elsewhere, the shape of the reaction area will be modified. In this section,

parameters considered as fixed so far will be modified in order to challenge the robustness

of the mechanism. Therefore, the following changes are made: the size of the colloid σC is

increased, the reverse reaction rate τBA is slowed, and the location of the reverse reaction

is displaced at the edge of the simulation box. When a parameter is modified, the other

remain unchanged and keep the default value exposed in Section 3.2. Finally, simulations

are carried out in three dimensions, showing that the mechanism is also valid.

3.6.1 Influence of the size of the colloid σC

The influence of the size of the colloid is investigated, increasing its diameter by a

factor 2 (σC = 10 instead of σC = 5 previously). For each system presented in this

paragraph, the average solute density is ρ = 0.1, and the attraction intensity is ε = 3

as the enhanced diffusion was strong for these parameters for a smaller colloid. Several

values of rcut are chosen, larger than in the previous section, to account for the larger size

of the colloid. The values of rcut vary between 8 and 13, these values corresponding to

shells of about the same thickness as those obtained with rcut = 5.5 and rcut = 10.5 for

a colloid twice smaller. A corresponding reference system has been simulated in order to

compute the reference diffusion coefficient, which is found to be Dno reac = 0.05 and the

associated error δDno reac = 0.001.
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Figure 3.23: (a) Nshell/Nmax(t) for various rcut at ρ = 0.1, ε = 3 and σC = 10. The dashed
lines represent the fits using Eq. (3.2). (b) Nshell,∞/Nmax as function of Nmax for σC = 5
(circles) and σC = 10 (diamonds).

The kinetics of the filling of the reaction area is plotted on Figure 3.23a for various

rcut. Nshell is normalized by the maximum number of particles that would fill the shell

Nmax, whose expression is given by Eq. (3.1). The dashed lines represent the fits using

Equation (3.2) which are in good agreements with the simulation data. The filling fraction

of the reaction area at steady state Nshell,∞/Nmax as a function of Nmax is shown on

Figure 3.23b for both σC. Nmax is used as a measurement of the surface of the reaction

area in order to compare results from the simulation where σC = 5 to the results for

σC = 10. In both cases, Nshell,∞/Nmax increases before reaching a plateau value. This is

due to an artifact of the model as discussed in Section 3.3, but as demonstrated before

it does not change qualitatively the obtained results. The kinetics of the filling of the

reaction area remains unchanged while increasing the size of the colloid by a factor 2.

From the steady state, the time is rescaled so that tinit = 3τN . Values of Nshell,∞ and tinit

are reported in Table III.7.

Figure 3.24a represents the mean squared displacements of the colloid as a function

of time in a log-log scale for various rcut. As before, the MSDs have an intermediate

ballistic regime, which indicates that the colloid is self-propelled. On longer timescales,

the colloid displays an enhanced diffusion with a maximum ratio Deff/Dno reac = 20. The

intermediate ballistic regime is particularly visible for the highest reaction areas (red and
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purple curves). Using the criterion whose definition is recalled by:




if Deff − δDeff > Dno reac + δDno reac, the system is active

otherwise, the system is passive.

All the systems are found to be active. Values of tlin used to compute Deff , as well as Deff

and its associated error δDeff are shown in Table III.7.
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Figure 3.24: (a) Mean squared displacements of the colloid as a function of time in a log-log
scale. Data are shown for t > 100 to emphasize the interesting part. (b) Autocorrelation
functions of the polarization vector as a function of time in a semi-log scale. Data are
shown for different value of rcut at ρ = 0.1 and ε = 3. Here σC = 10.

The autocorrelation functions of the polarization vector are shown on Figure 3.24b as

a function of time. An exponential tail is observed for the more active cases (red and

purple curves) from which the persistence orientation time τp can be extracted, values are

displayed in Table III.7.

The ratio Deff/Dno reac, as well as τp are plotted as a function of the steady state filling

rate of the reaction area Nshell,∞/Nmax on Figure 3.25. The green points correspond to

Deff/Dno reac and the brown points to τp. The estimated errors on the diffusion coefficients

are represented by the black error bars. The dashed line represents the limit between

active and passive system. Data for σC = 5 at ε = 3 are represented by the circles while

data at σC = 10 are represented by diamonds. The results obtained with both values of

σC coincide very well. All systems present activity, as all the green points are above the

dashed line. At this density, only two regimes are reachable and are visible on this figure.

The first regime, which corresponds to systems where activity is limited, can be seen for
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Nshell,∞/Nmax < 0.14. Indeed, for all the points, except at (Nshell,∞/Nmax ≈ 0.13), there

are no associated values of τp as the exponential regime is no present. In the second regime,

for Nshell,∞/Nmax > 0.14, τp and Deff/Dno reac are increasing functions of Nshell,∞/Nmax.

Data at σC = 10 follow the same trend as data at σC = 5. Again, this shows that the

enhanced diffusion is mainly controlled by the filling rate of the reaction area.

Finally, no significant changes are observed while increasing the ratio σC/σA by a

factor two. The mechanism which causes an enhanced diffusion is thus a robust feature

of the modeled system.
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Figure 3.25: The persistence time of the polarization vector orientation, τp, as a function
of the steady state filling rate of the reaction area, measured here by Nshell,∞/Nmax is
represented by the brown points. The long-time diffusion coefficient of the colloid divided
by its value without reaction, Deff/Dno reac, as a function of Nshell,∞/Nmax is represented
by the green points. The estimated error on the diffusion coefficients is represented by
the black error bars which are smaller than the size of the symbols. The dashed red line
marks the limit above which the colloid is considered as active. Results obtained for both
ratio σC are displayed, for ρ = 0.1 and ε = 3.

3.6.2 Influence of the reverse reaction rate τBA

Another important parameter of the model is the one which controls the kinetics of

the reaction B → A. One may wonder in particular if the activity still holds if this

reaction is slowed, which is expected to create a cloud of B particles behind the colloid

– 93 –



Dynamics of an isotropic colloid in a phase-separating environment

ρ = 0.1, ε = 3, σC = 10
rcut tinit Nshell,∞ tlin Deff δDeff τp
8 126 12 200 0.059 0.000 −
9 132 26 600 0.093 0.001 24.7
10 158 47 2000 0.247 0.005 85.5
11.5 165 83 2450 0.727 0.010 189.3
13 166 121 2150 0.988 0.010 320.9

Table III.7: Summary of the quantities of interest: tinit the initial simulation time from
steady state, Nshell,∞ the number of particles inside the reaction area at steady state, tlin
the time from which the last linear regime of the MSD is reached and from which Deff

can be computed, Deff the effective diffusion coefficient, δDeff the associated error, and τp
the persistence time.

as it moves. To investigate this, the case ρ = 0.1, ε = 3 is considered, and the reverse

reaction rate is changed in order to make the reverse reaction 100 times slower: τBA = 10

instead of τBA = 0.1. The study is restricted to only two reaction area radii: rcut = 7.5

and rcut = 10.5.
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Figure 3.26: Number of particles in the reaction area divided by the maximum value,
Nshell,∞/Nmax as a function of time for different values of τBA. The dashed line is the fit
using Equation (3.2). The parameters of the model are: ρ = 0.1, ε = 3, (a): rcut = 7.5,
(b): rcut = 10.5.

First, the amount of particles in the reaction area is monitored as a function of time.

Results are displayed on Figure 3.26a for rcut = 7.5 and on Figure 3.26b for rcut = 10.5. On

these plots, Nshell is normalized by Nmax. The systems where τBA = 0.1 are represented by

the blue curves, while systems where τBA = 10 are in orange. For both values of rcut, the
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Figure 3.27: Mean squared displacements of the colloid as a function of time, in a log-
log scale for the systems with ρ = 0.1, ε = 3, σC = 5 and two different values of the
characteristic time τBA of the reverse reaction B → A. (a): rcut = 7.5. (b): rcut = 10.5.
Note that the initial time here corresponds to the steady state of the system.

filling rate of the reaction area increases when the kinetics of the reverse reaction is slowed.

Exponential fits agree well with simulation data, and the characteristic timescale needed

to reach the steady state, τN, is slightly increased when the reverse reaction is slowed. At

rcut = 7.5, τN = 35 for τBA = 10, instead of τN = 31 for τBA = 0.1, and at rcut = 10.5,

τN = 41, instead of τN = 36. Again, the time is rescaled, so that tinit = 3τN . From then

the other quantities are computed. The reaction areas are more densely filled for τBA = 10

than for τBA = 0.1. Indeed, as the B particles are not immediately transformed back into

A particles when outside the reaction area, the formed droplets go over the edge of the

reaction area. At the border, there are particles, which was not the case before. Values

of tinit and Nshell,∞ for systems presented on Fig. 3.26 are shown in Table III.8.

Figure 3.27 compares the MSDs obtained with τBA = 0.1 and with τBA = 10 for

rcut = 7.5 (Fig. 3.27a) and for rcut = 10.5 (Fig. 3.27b). The colloid again displays an

intermediate ballistic regime, indicating activity. The effective diffusion coefficient, Deff ,

computed from tlin, its associated error δDeff , as well as tlin are reported in Table III.8.

At rcut = 7.5, the colloid has an effective diffusion coefficient Deff = 0.861 at τBA = 10,

which is higher than at τBA = 0.1 (Deff = 0.657). Conversely, at rcut = 10.5, the effective

diffusion coefficient is slightly decreased at τBA = 10, Deff = 1.038 instead of Deff = 1.136

at τBA = 0.1.

Figure 3.28 shows the autocorrelation functions of the polarization vector p for the

systems investigated here in a semi-log scale. In every case, there is an exponential decay
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at long times, from which a characteristic time of correlation, τp, is extracted. The values

are recorded in Table III.8. It appears clearly that this correlation time increases for both

values of rcut. When the reverse reaction rate is slowed, τp = 100 and τp = 213 instead of

τp = 48 and τp = 162 at rcut = 7.5 and rcut = 10.5, respectively.
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Figure 3.28: Autocorrelation functions of the polarization vector p as a function of time in
a semi-log scale, for the systems with ρ = 0.1, ε = 3, σC = 5 and two different values of the
characteristic time τBA of the reverse reaction B → A. (a): rcut = 7.5. (b): rcut = 10.5.

The filling fraction of the reaction area at steady state for τBA = 10 is: Nshell,∞/Nmax =

0.203 and Nshell,∞/Nmax = 0.222 at rcut = 7.5 and rcut = 10.5, respectively. In this range,

τp and Deff are increasing functions of Nshell,∞/Nmax. The results observed at rcut = 7.5

follows this trend. In contrast, at rcut = 10.5, τp increases while Deff/Dno reac decreases as

a function of the filling fraction. This can be intuitively understood. When the reverse

reaction is slowed, the total number of solutes B in the system is higher than Nshell and

the LJ fluid goes over the edge of the reaction area. This yields the formation of a larger

droplet of solutes B in the vicinity of the colloid, which acts as an effective rcut higher

than the real one. If the reaction area becomes too large, the droplet can detach from

the colloid, decreasing the force induced by the polarization vector p, thus the effective

diffusion coefficient is not significantly increased.

3.6.3 Influence of the localization of the reverse reaction

Up to here, the system was partitioned in two: inside the reaction area delimited by

rcut, where the reaction A+C → B+C takes place, and outside the reaction area, where

the reverse reaction B → A occurs. In this paragraph, a new parameter comes into play,
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ρ = 0.1, ε = 3, τBA = 10
rcut tinit Nshell,∞ tlin Deff δDeff τp
7.5 105 37 2500 0.861 0.013 100
10.5 124 84 2000 1.038 0.012 213

Table III.8: Summary of the quantities of interest: tinit the initial simulation time from
steady state, Nshell,∞ the number of particles inside the reaction area at steady state, tlin
the time from which the last linear regime of the MSD is reached and from which Deff

can be computed, Deff the effective diffusion coefficient, δDeff the associated error, and τp
the persistence time.
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A + C ! B + C

Figure 3.29: Drawing of the system, which illustrates the different reaction zones. Inside
the green area, the reaction A + C → B + C occurs, while the reaction B → A occurs
inside the purple area. No reaction occurs inside the blank area.

the reverse reaction cutoff, rreverse cut, which defines a third zone. Figure 3.29 represents

schematically where the different reactions occur in the system. The reaction areas are:

� for r < rcut, the following reaction occurs: A+C → B+C, represented by the green

area on Fig. 3.29.

� for rcut < r < rreverse cut, no reaction occurs, represented by the blank area on

Fig. 3.29.

� for r > rreverse cut, the reverse reaction B → A takes place, represented by the purple

area on Fig. 3.29.

The purpose is to investigate the influence of the location of the reverse reaction, in

particular when it occurs far away from the colloid, thus in a restricted domain. Therefore,
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the value rreverse cut = lbox/2 = 35 is chosen. The reverse reaction only occurs at the edge

of the simulation box (in the colloid reference frame). Two systems are studied at ρ = 0.1

and ε = 3: rcut = 7.5 and rcut = 10.5.
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Figure 3.30: (a) Number of particles inside the system as a function of time, Nshell(t).
Comparison between systems where rreverse cut = rcut (dotted lines) and where rreverse cut =
35 (plain lines). (b) Number of solute particles of type α ∈ {A,B} in the system as a
function of time Nα(t). Note that data on this plot start at t = 750. On both plots, the
results are shown for rcut = 7.5 in red and rcut = 10.5 in orange.

Figure 3.30a shows the number of particles inside the reaction area as a function of time

Nshell(t) for the two reaction area radii studied: rcut = 7.5 (red) and rcut = 10.5 (orange).

The results are compared to the reference situation: rreverse cut = rcut, represented on

the figure by the dotted lines. The kinetics for both reaction area radii is clearly very

different from their corresponding reference systems. First, the number of particles inside

the reaction area increases, then, in contrast to the systems where rreverse cut = rcut, it

decreases. The process can no longer be fitted by an exponential function (Eq. (3.2)).

Nevertheless, Nshell(t) reaches a plateau and can still be used as an indicator to define

the steady state. In these systems, the initial simulation time tinit is defined graphically

from the plot Nshell(t): at rcut = 7.5, tinit = 1700; at rcut = 10.5, tinit = 1430. The time to

reach the steady state is much longer than in the reference systems, which is tinit = 92 and

tinit = 108 for rcut = 7.5 and rcut = 10.5, respectively. Values of the initial simulation time

are recorded in Table III.9. This can be explained: it takes about t ≈
(
lbox
2

)2 1
D0

A
= 1225

for a solute particle to diffuse from the reaction area to the reverse reaction area when

these two domains are separated by a distance about
(
lbox
2

− rcut
)
. On the contrary, the

typical time needed for a solute particle to leave the reaction area is t ≈ r2cut
D0

A
, which yields
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t = 56 and t = 110 for rcut = 7.5 and rcut = 10.5, respectively.

Figure 3.30b shows the number of solute particles of type A (circles) and B (diamonds)

inside the system as a function of time for rcut = 7.5 (red) and rcut = 10.5 (orange). This

quantity was not monitored from the start, as its relevance appeared during the analysis

of the first data of these systems. Therefore, note that the time starts at 750 on this plot.

The amount of reactant (solute particles A), decreases with time as they are consumed

during the reaction, whereas the amount of product (solute particles B) increases as they

are created. The quantity of A and B stabilizes around tinit = 1700 and tinit = 1430, for

rcut = 7.5 and rcut = 10.5, respectively. This corresponds to the steady state. In systems

where rreverse cut = rcut, the number of B particles is equal to the number of particles

inside the reaction area, i.e. Nshell,∞ = NB. Indeed, since the reverse reaction takes place

outside the reaction area, a B particle is transformed back into an A particle as soon as it

leaves the reaction area. This is not the case here, when a B particle leaves the reaction

area it can diffuse freely until reaching r = rreverse cut where it is transformed back into

A. The area where B particles can exist is larger than the reaction area which leads to

NB > Nshell,∞.
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Figure 3.31: Mean squared displacements ⟨∆r2
C(t)⟩ as a function of time. Comparison

between systems where rreverse cut = 35 (plain lines) and the active reference systems for
which rreverse cut = rcut (dashed lines). Time for the active reference systems are shown
until t = 1500 for clarity. The passive reference is indicated by the black dotted line. (a)
rcut = 7.5. (b) rcut = 10.5.

The dynamics of the systems is shown on Figure 3.31. The MSDs are represented

as a function of time for rcut = 7.5 on Fig. 3.31a, and for rcut = 10.5 on Fig. 3.31b.

The reference systems where rreverse cut = rcut are represented by the brown dashed line
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on each plot. The passive reference is also indicated by the dotted black line. Both

plots stress a drastic decrease of the activity for rreverse cut = 35. Though, the long-time

diffusion is slightly enhanced as the orange and red curves deviate from the black curves

at the end. Deff is measured in both systems, values are reported in Table III.9. The

ballistic part of each MSD is very long, and despite the long simulations run, the MSDs

have still not reached the final linear regime. Therefore, the computed values represent

a lower bound for the real value of Deff . In both cases, Deff = 0.162 which is superior

to Dno reac = 0.124, but smaller than Deff of the cases where rreverse cut = rcut which is

Deff = 0.66 and Deff = 1.14 at rcut = 7.5 and rcut = 10.5, respectively.
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Figure 3.32: Autocorrelation functions of the polarization vector: ⟨p(t′) · p(t′ + t)⟩t′ .
Comparison between systems where rreverse cut = 35 (plain lines) and the active refer-
ence systems for which rreverse cut = rcut (dotted lines). The passive reference is indicated
by the black dotted line. The exponential fits using Eq. (3.6) are represented by the
dashed lines. (a) rcut = 7.5. (b) rcut = 10.5.

Figure 3.32 represents the autocorrelation functions of the polarization vector p as a

function of time. ⟨p(t′) · p(t′ + t)⟩t′ is shown for the system at rcut = 7.5 on Fig. 3.32a,

and for the system at rcut = 10.5 on Fig. 3.32b. The brown dashed line represents the

results for the corresponding active reference systems in which rreverse cut = rcut. The case

of the passive reference system is indicated by the black dotted line. An exponential tail

is observed as well for systems with rreverse cut = 35, which can be fitted using Eq. (3.6).

The fit is represented by the dashed lines and is in good agreement with the data. The

persistence time τp is extracted, whose values are recorded in Table III.9. The persistence

times of systems where the reverse reaction is far away from the colloid are much larger

than cases where the reverse reaction takes place outside the reaction area. τp = 225
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vs τp = 48 at rcut = 7.5, and τp = 434 vs τp = 162 at rcut = 10.5. Similarly to the

previous situation investigated, where τBA is increased, the droplet formed goes beyond

the reaction area. The motion of such a large object is slow, hence a large value for τp.
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Figure 3.33: Snapshots of the system at t = 2450. (a) rcut = 7.5. (b) rcut = 10.5.

Snapshot of the system at t = 2400 are shown on Figure 3.33. This confirms the

formation of a large droplet. It shows also that the droplet detaches from the surface

of the colloid, which empties the reaction area. The filling fraction of the reaction area

at steady state for rreverse cut = 25 is: Nshell,∞/Nmax = 0.09 and Nshell,∞/Nmax = 0.12 at

rcut = 7.5 and rcut = 10.5, respectively. This corresponds to a regime where the enhanced

diffusion is limited, as the density fluctuations are not strong enough to generate ballistic

motion.

Finally, in this paragraph, the changes made to the system modify the location of the

reverse reaction, which is conceptually different from the changes made in the previous

paragraph which has modified the characteristic time of the reverse reaction. Yet, the

effects observed are similar. It is expected that the situation of τBA → ∞ tends towards

the extreme case shown in this paragraph.

3.6.4 Propulsion in three dimensions

So far, all the presented results concern 2D simulations. As the mechanism of droplet

formation and the persistence time of the droplet may depend on the dimension of the

system, simulations for the same model in three dimensions were also performed. The

simulation box is cubic, with lbox = 22. In 3D simulations, the solute density is ρ = 0.05,
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ρ = 0.1, ε = 3, rreverse cut = 35
rcut tinit Nshell,∞ tlin Deff δDeff τp
7.5 1700 17 2000 0.182 0.004 225
10.5 1430 45 2900 0.196 0.004 434

Table III.9: Summary of the quantities of interest: tinit the initial simulation time from
steady state, Nshell,∞ the number of particles inside the reaction area at steady state, tlin
the time from which the last linear regime of the MSD is reached and from which Deff

can be computed, Deff the effective diffusion coefficient, δDeff the associated error, and τp
the persistence time.

Figure 3.34: Snapshot of the studied system in three dimensions at steady state. The
density of solute particles is ρ = 0.05, the intensity of the LJ attraction is ε = 3, and the
size of the reaction area is rcut = 7.5.

the strength of the attraction of the LJ potential is ε = 3 and the reaction area radius is

rcut = 7.5. A snapshot of the system at steady state is shown on Figure 3.34. Qualitatively,

as it can be seen on the figure, droplets of B particles around the colloid are observed, as

it was obtained in 2D. The kinetics of the filling of the reaction area can still be modeled

using Equation (3.2) as shown on Figure 3.35. The number of particles inside the reaction

area Nshell is normalized by Nmax which is defined in 3D by Eq. (3.19) where ϕmax is the

maximum packing fraction. For hard spheres in 3D, ϕmax = π
3
√
2
≃ 0.74. The simulation

data are well-fitted using Equation (3.2).

Nmax = ϕmax
r3cut − (σC/2)

3

(σA/2)3
, (3.19)
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Figure 3.35: Nshell(t)/Nmax for a 3D simulation where ρ = 0.05, ε = 3, and rcut = 7.5.
The dashed line is the fit using Equation (3.2).

The mean squared displacement of the colloid as a function of time at steady state

is given on Figure 3.36a. A behavior similar to 2D systems is observed. The MSD has

a transiently ballistic behavior at intermediate times and becomes linear in time at long

times. The colloid self-propels, with a long-time enhanced diffusion Deff/Dnoreac ∼ 11 for

the parameters used here. The autocorrelation function of the polarization vector p is

shown on Figure 3.36b in a semi-log scale. It is linear at long times, and characterized by

a persistence time τp = 33 of the same order of magnitude as in 2D. It appears thus that

all the essential features of the 2D propulsion mechanism still hold in 3D: droplets form

in the reaction area, which push the colloid with a persistent orientation. All the values

of the quantities of interest are summed up in Table III.10.
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Figure 3.36: Dynamic quantities obtained at steady state for a 3D system with the solute
density ρ = 0.05, the LJ attraction ε = 3, and the reaction area of radius rcut = 7.5.
The case with reaction, which displays activity (in red) is compared to the case without
reaction (in green). (a) Mean squared displacement of the colloid as a function of time in
a log-log scale. (b) Autocorrelation function of the polarization vector p as a function of
time for the system with reaction.

tinit Nshell,∞ tlin Dno reac δDno reac Deff δDeff τp
12 172 225 0.125 0.001 1.283 0.004 33

Table III.10: Summary of the quantities of interest: tinit the initial simulation time from
steady state, Nshell,∞ the number of particles inside the reaction area at steady state, tlin
the time from which the last linear regime of the MSD is reached and from which Deff can
be computed, Dno reac the reference diffusion coefficient and δDno reac the associated error,
Deff the effective diffusion coefficient and δDeff the associated error, and τp the persistence
time.
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Properties of suspensions of active colloids
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Summary
In this chapter, collective effects of suspensions of active colloids are investi-
gated. The key parameters for activity (the solute density ρ, the intensity of
the attraction ε, and the reaction area rcut) are fixed. First, simulations of
several systems are performed, varying the surface fraction of colloids. The
results are compared to those obtained for an assembly of passive colloids.
The radial distribution functions reveal that in the active systems, an effective
attraction at short distances exists, that is much stronger than in suspensions
of passive colloids. A shoulder at larger distances indicates a structuration.
A cluster analysis is performed, which shows that there is formation of small
aggregates. The dynamics of the systems is also investigated. Although the
colloids are still active at all the surface fractions studied, the long-time dif-
fusion coefficients measured are strongly decreased in comparison to the case
of a single colloid. In addition, implicit simulations (BD-APB) which do not
describe explicitly the solute particles are performed. The parameters of the
BD-ABP simulations are inferred from the explicit simulations. The proce-
dure is presented in this chapter. Strong differences are observed between
results obtained from BD and BD-ABP simulations. In the latter, the systems
present less structuration. Only a small attraction peak at short distances on
the radial distribution functions exists and the clusters are smaller. Finally,
the influence of the radius of the reaction area is studied. This does not change
much the structural and dynamical results obtained from explicit simulations,
while implicit simulation results are affected. This indicates that implicit sim-
ulations overestimate the activity intensity since it does not take into account
the blockage due to solute particles.
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4.1 Introduction

The model I built exhibits activity and the mechanism of propulsion has been charac-

terized in Chapter 3 for one colloid. In experimental works, the behavior of a collection

of active particles is usually studied. The following step is thus to study an assembly of

such colloids, which raises several questions. Will activity persist? How the mechanism

that leads to self-propulsion will be affected? Which collective effects will emerge? To ad-

dress these questions, simulations are run using the developed BD code, where the solute

particles as well as their interactions are explicitly described. These BD simulations will

be referred to as explicit simulations. As discussed in Chapter 1, the literature on active

systems is rich, but coarse-grained descriptions, which ignore the microscopic details, are

mainly used in theoretical works. Our approach is well suited to a rigorous attempt to link

explicit and implicit models. In this end, simulations of a corresponding active Brownian

particle (ABP) model are also performed and will be referred to as BD-ABP simulations

or implicit simulations. The chapter is organized as follows: in Section 4.2 a new rel-

evant parameter for the description of collective effects, namely the surface fraction, is

introduced, and the numerical values of the chosen parameters are given. Section 4.3

describes the parameterization of the ABP model to map the dynamics as well as the

interactions onto the explicit model. Section 4.4 is devoted to the definition of the steady

state. Section 4.5 and 4.6 present structural and dynamical properties of the system. In

Section 4.7, the influence of the size of the reaction area is investigated.

4.2 Numerical values of the parameters

In the previous chapter, the parameters favorable to self-propulsion have been iden-

tified. In this chapter, the key parameters for activity are fixed: the solute density ρ,

the intensity of the attraction ε, and the reaction area rcut. The chosen solute density is

ρ = 0.1, the attraction intensity is ε = 3. Since the time step depends only on ρ and ε, its

value is fixed to ∆t = 0.00006. At ε = 3, the reaction area radius for which the diffusion

is the most enhanced is about rcut = 12. However, as several colloids are in the system,

if the reaction areas are too large, they will cover all the simulation box, a situation that

must be avoided. Therefore, the chosen reaction area radius is rcut = 7.5. In Section 4.7,

where the effect of the reaction area is investigated, this value will be modified. The

other parameters remain fixed: the colloid diameter is σC = 5, the characteristic times of

reactions are τAB = τBA = 0.1, and the reverse reaction takes place for r > rcut.

The quantities of interest in this chapter involve timescales and length scales larger

than in a system with one colloid. Moreover, in the coarse-grained model, it is not relevant
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to use a unit system based on the solute particles since they are not explicitly described.

Therefore, in this chapter, all the quantities will be in units related to the colloid as

presented in Chapter 2. The lengths are expressed in terms of colloid diameter, and

the time in terms of time needed for the colloid to explore an area about the size of its

diameter. By denoting r∗ and r̃, the distances in units relative to a solute particle and to

the colloid, respectively, the two unit systems are related through:

r̃ = r∗
σA

σC

.

Similarly, the time in units related to the solute particles is denoted t∗ and t̃ in units

related to the colloid. The two are linked through:

t̃ = t∗
σ2
A

D0
A

Dt,C

σ2
C

.

In what follows, all the quantities are in units related to the colloid and ˜ is removed

for clarity. In this unit system, the colloid size is σC = 1. The reaction radius area is

then rcut = 1.5 and, in Section 4.7, rcut = 1.3. The time step of BD simulations is then

∆t = 2.4× 10−7. In BD-ABP simulations, since the solute particles are not described, a

larger time step is acceptable, ∆t = 0.0001.
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Figure 4.1: (a) Radial distribution functions gCC between colloids. (b) MSDs as a function
of time ⟨∆r2

C(t)⟩. ϕC = 0.02, for different system sizes: NC = 5 and lbox = 14, NC = 10
and lbox = 19.8, and nc = 25 and lbox = 31.3.
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A new relevant parameter is introduced, namely the surface fraction of colloids ϕC

which is defined by:

ϕC =
πσ2

CNC

4l2box
.

The number of colloids NC must be large enough, so it is meaningful to investigate col-

lective effects, and the size of the simulation box large enough to avoid finite size effects.

Nevertheless, at fixed ϕC, increasing NC also increases the size of the box lbox. The num-

ber of solute particles N is then adjusted to have ρ = 0.1. Thus, the numerical cost is

greatly enhanced when increasing NC. A compromise must be found. Various system

sizes were tried for each studied ϕC. To guide the choice, the radial distribution function

gCC between colloids and the mean squared displacement of the colloids ⟨∆r2
C(t)⟩ are

computed. These quantities should be unaffected by the size of the system.

Figure 4.1 illustrates for ϕC = 0.02 the reasoning behind each choice. The radial

distribution functions gCC between the colloids are displayed on Fig. 4.1a and the mean

squared displacement of the colloid as a function of time ⟨∆r2
C(t)⟩ on Fig. 4.1b. Three

sizes were tested: NC = 5 and lbox = 14, NC = 10 and lbox = 19.8, and nc = 25 and

lbox = 31.3. Differences are observed between the system with NC = 5 and the others.

This system is thus too small. For this case, NC = 10 is chosen, as both gCC and MSD are

very close to those obtained with NC = 25. The larger system with NC = 25 requires too

long simulations, therefore it is discarded. NC = 10 colloids is sufficient for the purpose

of the study.

Table IV.1 lists the various surface fractions of colloids ϕC that were investigated, and

all the tested sizes of the systems: NC, and lbox. The number of solute particles N is also

indicated, as its value is adjusted in order to have ρ = 0.1. The systems for which results

are presented in what follows are in bold.

ϕC 0.008 0.01 0.02 0.03 0.04 0.1
NC 2 4 10 25 5 10 25 8 25 10 50 25 100
lbox 14 19.8 31.3 44.2 14 19.8 31.3 14 24.4 14 31.3 14 44.2
N 500 980 2455 4885 500 980 2455 500 1500 500 2455 500 4885

Table IV.1: Size of the tested systems in terms of number of particles NC for each surface
fraction of colloids ϕC. The size of the simulation box lbox and the number of particles N
are indicated for the corresponding ϕC.
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4.3 Coarse-graining of active colloids: computation

of effective parameters for non-equilibrium situ-

ations

4.3.1 Dynamical parameters

There are many routes to access parameters of a coarse-grained model for which a

finer model is available. In colloidal sciences, one of the usual methods is to extract an

effective interaction potential by computing the so-called potential of mean force between

two colloids in an infinite bath [84, 85, 86]. A similar route is followed here to determine the

effective parameters for the ABP model (see Eq. (2.11) and Eq. (2.12) in Chapter 2). Both

rotational and translational diffusion coefficients, Dr,C and Dt,C, as well as the propulsion

velocity v0 are obtained through the analysis of trajectories that were generated through

BD simulations of one colloid. This defines an active colloid at infinite dilution. The

translational diffusion coefficient at infinite dilution is denoted by D0
t,C in what follows.

The rotational diffusion coefficient Dr,C is linked to the reorientation time, τr. In

the explicit model, the orientation of the colloid has been shown to be determined by

the polarization vector p which represents the droplets orientation (see Chapter 3). A

characteristic persistence time τp emerges from the autocorrelation function of the polar-

ization vector p, analogous to τr of the ABP model. τp has been computed, therefore the

rotational diffusion coefficient is set to Dr,C = 1/τp.

The inference procedure is based on the fitting of the mean squared displacement of

a single active colloid in an infinite bath of solute particles. As discussed in Chapter 3,

the obtained MSD differs from the one predicted by the ABP model. Particularly, the

transient ballistic regime is shorter and less intense. Therefore, it is not possible to fit the

MSD with Eq. (2.14) to extract the three dynamic parameters. Another possibility is to

fit the different regimes independently. In Chapter 2, the asymptotic developments of the

MSD at long times and at short times have evidenced three regimes:

� At short times, the MSD is linear in time:

〈
∆r2

C(t)
〉
∼ 4D0

t,Ct. (4.1)

The dynamics is dominated by the translational diffusion coefficient of the colloids

D0
t,C. The effects of activity are not yet detected. This translational diffusion

coefficient is about the same as the reference diffusion coefficient, Dno reac, introduced

in Chapter 3. Yet, discrepancy is observed in systems where ρ = 0.1, ε = 3 due to

a local increase of the solute density caused by the attractive interactions between
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B solute particles as discussed in Chapter 3. For more precision, it will be fitted

here, and the fitted value denoted by D0
t,C will be used as an input of BD-ABP

simulations.

� At intermediate times, the MSD is ballistic:

〈
∆r2

C(t)
〉
∼ v20t

2. (4.2)

The magnitude of the propulsion speed determines the ballistic behavior.

� At long times, the MSD is again diffusive:

〈
∆r2

C(t)
〉
∼
(
4D0

t,C + 2
v20
Dr,C

)
t. (4.3)

All the parameters are involved at this timescale.
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Figure 4.2: Comparison between MSDs from BD simulations (dashed lines) and Eq. (2.14)
(plain lines). NC = 1, ε = 3, rcut = 1.3 (red) and rcut = 1.5 (pink). The curves are
vertically shifted for more clarity.

The MSD of a single colloid exhibits long and short times that are both linear in time,

similarly to the long and short times of the ABP model. Therefore, the dynamic param-

eters will be inferred from the fits of the first and of the last regimes. The translational
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diffusion coefficient of the colloid D0
t,C is extracted from the short-time fit, and the propul-

sion velocity v0 is extracted by fitting the last linear regime of the MSD. These quantities

are in units related to the solute particles and must be then converted in units related

to the colloid, as described in Section 4.2. The procedure is done for both reaction radii

rcut = 1.3 and rcut = 1.5 that are used in this chapter. The values found for the dynamic

parameters are displayed in Table IV.2. Figure 4.2 represents the MSDs of the colloid

from the explicit simulations compared to the MSDs computed with Eq. (2.14) using the

fitted parameters v0, D
0
t,C, and Dr,C. The two systems used in this chapter are shown,

rcut = 1.3 and rcut = 1.5. There is a good agreement between the two MSDs at short

times and at long times. The dynamics of the ABP model is thus perfectly mapped onto

the explicit model.

rcut 1.3 1.5
D0

t,C 1.0 1.0

Dr,C 7.3 3.2
v0 3.6 4.5

Table IV.2: Values of the parameters of the ABP model. They are fitted to reproduce
the MSDs, which are obtained from explicit BD simulations at short and long times.

4.3.2 Depletion potential

In addition to effective dynamical parameters, the coarse-grained model also requires

the effective interactions between the colloidal particles, which take into account the in-

fluence of small solute particles. Nevertheless, the exact definition of such interactions is

not obvious for non-equilibrium systems, since activity affects their structural and ther-

modynamic properties. The implicit effective potential between colloids is then computed

from equilibrium simulations of the explicit model, i.e. when the colloids do not catalyze

a reaction and are in a purely repulsive bath of solute particles. Simulations are run at the

various studied ϕC for the passive systems. The radial distribution functions gCC between

colloids are shown on Figure 4.3. At all surface fractions, a peak is observed close to the

contact distance r = 1. This indicates an effective attraction between the colloids, which

is an expected consequence of solute depletion, which occurs when colloids get close to

each other [87]. The peak is increasingly high as the surface fraction of colloids rises. A

shoulder even appears for ϕC = 0.1 at the distance r = 1.3, indicating a structuring of

the system.

The idea is to have an effective potential that takes into account the effective attraction

between colloids due to the solute depletion, so that both the ABP model and the explicit

simulations have the same initial structural and dynamical parameters. For simplicity and
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Figure 4.3: Radial distribution functions gCC between colloids for different surface frac-
tions ϕC. Data are from BD simulations of equilibrium systems, with colloids and solute
particles. The colloids do not catalyze the reaction. Data are shown for r < 5 to empha-
size the interesting part.

because the ABP model is only employed for comparison purposes, the effective potential

will be modeled by a Lennard-Jones potential. The attraction intensity εABP will be

set in order to match the height of the peak of the gCC function of explicit simulations.

This is done empirically for the most dilute system studied, i.e. ϕC = 0.008, and the

same effective interaction potential is kept for all other surface fractions. The inference

procedure to find εABP is the following. Simulations using the BD-ABP code are run,

fixing the activity term of Eq. (2.11), v0, to 0, so the colloids are passive. There are

only colloids, which interact through a LJ potential, whose expression has been given in

Chapter 2 by Eq. (2.1). The attraction intensity εABP is initially set with an arbitrary

value. The simulation is run, then the radial distribution function is plotted and compared

to the one from explicit simulations of the equilibrium system with solute particles. If

the peak is too high, the attraction intensity is reduced, in contrast if it too small, the

attraction intensity is increased. A new simulation is run and this goes on until the

two peak heights match. Figure 4.4 represents the radial distribution functions between

colloids from BD-ABP simulations for various εABP (colored, plain lines) and the target

gCC from BD simulation (dashed, black line). It is found that the correct value for εABP
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to recover the same attraction peak is εABP = 0.15. This value is then used for the other

studied surface fractions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

g C
C

(r
)

εABP

0.20

0.15

0.50

0.10

reference
BD simulation

Figure 4.4: Radial distribution functions gCC between colloids of passive systems at ϕC =
0.008. In BD simulations (plain lines), the colloids interact purely repulsively and are in
a purely repulsive bath. In BD-ABP simulations, colloids interact with a LJ potential
where the attraction intensity εABP is varied.

4.4 Definition of a steady state

The filling of the reaction area for each colloid is monitored by computing the number

of solute particles inside the reaction area Nshell of each colloid as a function of time.

In this chapter, the quantity is averaged over noise realizations, and over the number

of colloids, Nshell = ⟨Nshell⟩NC,nrealizations
. Figure 4.5 displays Nshell(t) for the various ϕC

investigated (plain colored lines). The system of reference, which contains a single active

colloid, is represented by the black dashed line for comparison. Interestingly, Nshell,∞

is a decreasing function of the surface fraction. Indeed, when ϕC increases, the space

available for solute particles inside the reaction area is reduced because of exclusion zones

that emerge due to the depletion. The kinetics of filling of the reaction area can still

be fitted by an exponential function (Eq. (3.2)). The corresponding exponential fits

are represented by the colored dashed lines on Fig. 4.5 and are in good agreement with
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Figure 4.5: The number of solute particles inside the reaction area as a function of time,
Nshell(t). The figure shows various surface fractions ϕC, where each curve is averaged over
noise realizations and over the colloids. The colored dashed lines show the exponential
fits using Eq. (3.2). The black dashed line shows Nshell(t) for the system containing a
single colloid as a reference.

computed data. In particular, the number of particles inside the reaction area still reaches

a steady state characterized by Nshell,∞. However, while Nshell converges, it is possible that

more collective quantities, related to inter-colloidal interactions, are still time dependent.

Therefore, Nshell(t) might be insufficient to characterize the steady state of the systems,

as it is the collective dynamics which is looked at.

There is an additional larger timescale involved in the many-body problem, because

once the shell has formed around each colloid, colloids start moving due to activity. The

radial distribution functions gCC is measured on different time intervals, to evaluate if a

steady state is reached. The collective steady state time, ts,col, is determined graphically

by plotting gCC(r) at different times for each system, and by looking at the time for which

it becomes constant. The same procedure is carried out for BD-ABP simulations. An

example for the system at ϕ = 0.1 is depicted on Figure 4.6, which represents the radial

distribution functions gCC between colloids for different time intervals. Fig. 4.6a shows

results from BD simulations. First, gCC evolves in time, the peak at r = 1 and the shoulder

at r = 2.5 becomes increasingly high. From t = 1, the function gCC is constant over time.
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Figure 4.6: Radial distribution functions between colloids gCC from different time intervals
for the system ϕC = 0.1. Only data for r < 6 are shown to emphasize the most interesting
part.

Fig. 4.6b shows results from BD-ABP simulations. All the curves are superimposed, gCC

converges immediatly and ts,col = 0. Thus, this quantity is a relevant indicator to define

the collective steady state. Values of steady state times are summarized in Table IV.3.

The time is rescaled in what follows so that the initial time tinit = ts,col. The structural

and dynamic properties of the system are studied for t > tinit. Therefore, from the steady

state, the radial distribution functions are averaged over noise realizations and over time

gCC = ⟨gCC⟩nrealizations,t
.

Explicit simulations
ϕC 0.008 0.01 0.02 0.03 0.04 0.1
tinit 2.4 3.0 1.8 1.8 1.2 1.2

Implicit simulations
ϕC 0.008 0.01 0.02 0.03 0.04 0.1
tinit 0 0 2 0 0 0

Table IV.3: Values of the initial simulation time from which a steady state is reached for
explicit and implicit simulations.
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4.5 Structural properties

4.5.1 Comparison of radial distribution functions for both mod-

els at various surface fractions
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Figure 4.7: Radial distribution functions between colloids gCC for various ϕC obtained
with BD simulations. Data from systems where the colloids are active are represented by
the plain lines, while systems where the colloids are passive are represented by the dashed
lines.

Figure 4.7 compares the structure of passive systems and active systems for various

ϕC, computed from explicit BD simulations. At short distances (r = 1.12), there is a peak,

which is a signature of an effective attraction between colloids. The figure underlines that

in active systems, at all packing fraction, the peak is much higher than that induced by

depletion at equilibrium. The intensity of the peak is a decreasing function of the surface

fraction, which is typical of a fluid of hard attractive spheres with pair additive potentials

[88]. Moreover, the active systems are more structured, as a shoulder at long distances

(r ≈ 2.3) appears in all cases.

In order to interpret the role of propulsion in the appearance of density peaks, the

results of explicit solute particles simulations (BD) are compared with implicit solute

particles description (BD-ABP). BD-ABP simulations using a potential that takes into
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account the depletion are performed. In addition to BD-ABP simulations using the de-

pletion potential, simulations using purely repulsive potential (WCA) are also run, as a

comparison. This is done in the perspective of decoupling the contribution of activity and

the contribution of the depletion in the gCC peaks. The results are shown on Figure 4.8,

where the radial distribution functions gCC between colloids are plotted for various ϕC

and various types of simulations. A peak is also observed at short distances in the BD-

ABP simulations. For all surface fractions, the peak is shifted and larger for simulations

using the depletion potential because the LJ potential contains a rather wide well. The

sharp increase begins at r = 0.82 and reaches a maximum at r = 1.10, whereas for the

other cases, the increase starts at r = 1.10 and the maximum is at r = 1.12. This is

due to the choice made for the fitting of the depletion potential, as the priority was to

recover the first peak intensity. Both BD-ABP simulations fail to reproduce the behavior

of the gCC of explicit simulations. The intensity of the first peak is reduced, for instance,

at ϕC = 0.02, gCC reaches a maximum intensity of 5.2 in explicit simulations, whereas

both peaks of the BD-ABP simulations are around 1.6. Moreover, the shoulders do not

appear. This indicates that implicit simulations yield less structured suspensions than

explicit simulations. The radial distribution functions of the BD-ABP simulations using

the depletion potential are similar to the one using the WCA potential. It was expected

that the simulations that take into account the depletion potential, show an enhanced

peak. The results demonstrate that the choice of the potential does not influence the

structuration in BD-ABP simulations. In what follows, the results presented of BD-ABP

simulations are obtained using the depletion potential.

4.5.2 Analysis of the structure of the suspensions in terms of

clusters

In order to get a better insight on the structure that creates the correlation peak of

the radial distribution function in explicit simulations, a cluster analysis was performed.

Only systems where NC ≥ 25 are analyzed.

A simple definition of clusters following the example of [89, 72] is considered: a cluster

is an assembly of two or more bounded particles. Two particles are considered as bounded

when their interparticle distance rij is smaller than a cutoff distance dc. The cutoff

distance must be large enough to detect the neighbors, but not too large, otherwise all

the particles would be considered to belong to the same cluster. Two values were tried:

dc = 1.5 and dc = 2. At first, the analysis was made using both cutoff. It turned out that

the cutoff dc = 2 was too permissive. For a more visual explanation, two snapshots of the

same configuration of the system at ϕC = 0.1 are shown on Figure 4.9. The cluster cutoff
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Figure 4.8: Radial distribution functions between colloids gCC for various ϕC obtained
with BD simulations (plain lines), confronted to BD-ABP simulations using depletion
potential (dashed line) and WCA potential (dotted lines). Only data for r < 5 are shown
to emphasize the most interesting part.
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Figure 4.9: Snapshot of the system ϕC = 0.1, for clarity solute particles are not repre-
sented. Colloids belonging to the same cluster are colored with the same color. The gray
colloids do not belong to a cluster. The dashed orange circle represents the cluster cutoff
distance dc. (a) dc = 1.5. (b) dc = 2.

– 119 –



Properties of suspensions of active colloids

dc is marked by the yellow dashed circles around each colloid, and the solute particles

are not represented for clarity. The colloids which belong to the same cluster are colored

evenly, whereas the isolated colloids are in gray. Fig. 4.9a shows the results of the cluster

analysis for dc = 1.5, and Fig. 4.9b, the results for dc = 2. This example illustrates that

the value dc = 2 is too large.
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Figure 4.10: Statistic of clusters as a function of time for various ϕC. (a) ⟨nc⟩ (t), with nc

being the number of colloids in a cluster. (b)
√

⟨n2
c⟩ − ⟨nc⟩2 (t).

The clusters are computed from the positions of colloids which are saved at a fre-

quency large enough so that two configurations are independent (the time δt between two

configurations is δt = 0.04 for BD simulations, and δt = 0.1 for BD-ABP simulations).

The number of particles inside a cluster, which is denoted by nc, is monitored during

the simulation. nc is averaged over noise realizations ⟨nc⟩ = ⟨nc⟩nrealizations
. Figure 4.10

displays the evolution of the clusters size with time for various ϕC. Fig. 4.10a shows the

mean size as a function of time ⟨nc⟩ (t) and Fig. 4.10b the standard deviation as a function

of time
√
⟨n2

c⟩ − ⟨nc⟩2 (t). The number of particles inside the clusters is stationary, as it

is expected at steady state. The quantities are then averaged over noise realizations and

time from the steady state, so in what follows ⟨nc⟩ = ⟨nc⟩nrealizations,t
.

Figure 4.11 shows the cluster distribution, the mean size of clusters ⟨nc⟩ and the stan-

dard deviation
√

⟨n2
c⟩ − ⟨nc⟩2 as a function ϕC. The active systems are compared to the

passive systems, which serve as references. All the values are summed up in Appendix H.

Figure 4.11a compares the cluster distribution P (nc) for various ϕC and simulations: ex-

plicit simulations of active systems (plain lines), explicit simulations of passive systems
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Figure 4.11: (a) Cluster sizes distribution P (nc), colors indicate the surface fraction.
The plot compares results from explicit simulation of active colloids (plain lines), explicit
simulation of passive colloids (dashed lines) and implicit simulations of active colloids

(dotted lines). (b) Average cluster size ⟨nc⟩ and standard deviation
√

⟨n2
c⟩ − ⟨nc⟩2 as

a function of ϕC. Circles represent data from explicit simulations of active systems,
diamonds data from explicit simulations of passive systems, and stars data from implicit
simulations with activity.

(dashed lines), and implicit simulations of active systems (dotted lines). Figure 4.11b

shows the mean size of clusters ⟨nc⟩ and the standard deviation
√
⟨n2

c⟩ − ⟨nc⟩2 as a func-

tion of ϕC. Again, different types of simulations are compared. The clusters mean size is

at all surface fractions larger in active systems than in passive systems. As it is usually

observed in active systems, more clusters form than in their passive counterparts [58, 63].

The model with explicit solute description also presents this feature. The comparison

between explicit and implicit simulations underline that on average, the number of par-

ticles inside a cluster ⟨nc⟩ is higher for explicit solute models. A large majority of small

clusters, with two or three particles, is observed. For explicit models though, the cluster

size distribution differs by the presence of larger clusters. The standard deviation of the

distribution is high, indicating a wider range of cluster sizes compared to the implicit

solute model (ABP). These results lead to similar conclusions: the explicit solute model

leads to more structuring. All in all, the explicit presence of solute particles seems to in-

crease the size of colloidal particle aggregates, which may be the signature of an enhanced

depletion.
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4.6 Dynamics: influence of colloid density on activity
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Figure 4.12: MSDs as a function of time ⟨∆r2
C(t)⟩ averaged over the noise realizations

and over the colloids. On this plot, one active system at ϕC = 0.02 (in orange, plain line)
is compared to its corresponding references: at infinite dilution (in black, dotted line) and
the corresponding equilibrium system (red, dashed line).

Using the same method as in Chapter 3, the dynamics of the colloids is characterized by

computing the mean squared displacement ⟨∆r2
C(t)⟩. It is computed for each colloid and

averaged over noise realizations and over the colloids, so ⟨∆r2
C(t)⟩ = ⟨∆r2

C(t)⟩nrealizations,NC
.

For the dynamic properties, two references are considered:

� Equilibrium reference: an equilibrium situation at the same colloid density, where

the colloids do not trigger a reaction.

� Infinite bath reference: a non-equilibrium situation with a single colloid (the sit-

uation for which the effective dynamic parameters of the ABP model have been

determined).

Figure 4.12 represents the MSDs for a system where ϕC = 0.02, as well as for the cor-

responding reference systems. The MSD of the equilibrium reference case is linear at

all time, as expected. The value of diffusion coefficient Dno reac,col is extracted from the

slope using Eq (2.7). The reference value for the system at ϕC = 0.02 is found to be
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Dno reac,col = 0.131. When the reaction is triggered, the MSD displays a ballistic part at

intermediate times (MSD ∝ t2), a signature that activity still exists in a suspension of

active colloids. The enhanced diffusion on longer timescales is computed as explained in

Chapter 3 and is denoted for the collective system as Deff,col. The time tlin, from which

the last linear regime begins, used for each system to compute Deff,col is summarized in

Appendix H. In this case, the effective diffusion coefficient is found to be Deff,col = 0.527.

The plot underlines that the activity is decreased compared to the case of one colloid in

an infinite bath, i.e. Deff = 0.660, and thus shows that the surface fraction ϕC has an

effect on the dynamics.

The reference diffusion coefficient, Dno reac,col, as well as the effective diffusion coeffi-

cient Deff,col are computed for all the systems investigated. The effective diffusion coeffi-

cients of the BD-ABP simulations, denoted by Dt,eff , are also computed from the tlin. The

estimated errors on the diffusion coefficients are represented by the black error bars, which

are smaller than the size of the symbols. All the values are plotted as a function of the

surface fraction on Figure 4.13. These values can also be found in Appendix H. First, the

systems investigated from explicit simulations present activity for all the surface fractions

investigated, as Deff,col > Dno reac,col, even for the larger surface fraction ϕC = 0.1. Yet,

activity progressively decreases with the surface fraction. This may originate from sev-

eral factors. First, the overall increase of the density usually hinders diffusion in passive

colloidal systems, and the observed effect might be a similar consequence of the reduction

of space availability around moving active colloids. Secondly, in addition to the effect of

the average density, the colloids may also be part of local clusters. In the latter case, the

propelling velocity may point towards the center of the cluster, hence strongly reducing

the propulsion. Last but not least, the increase of colloid density also leads to the su-

perposition of the regions around colloids where the chemical reaction takes place. As a

consequence, it may become more likely that the structure of the solute cloud around the

colloid become less asymmetric as colloids get closer to each other. Therefore, the density

fluctuations at the origin of activity may change in nature, and lead to less important

pressure gradients at the surface of the colloids. The BD-ABP simulations also present

enhanced diffusion, and the dynamics is characterized by an effective diffusion coefficient

higher than for BD simulations. However, interestingly, the effect of the surface fraction

ϕC is less dramatic in implicit simulations. In contrast to Deff,col, Dt,eff is less impacted

by the surface fraction. This result stresses the limitation of implicit simulations that are

widely used in the active matter community. It is interesting to have a model that takes

into account the effect of the crowding induced by active colloids and their droplets in

order to analyze biological systems, especially cells where crowding effects are important.
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Figure 4.13: Long-time effective diffusion coefficient as a function of ϕC. The diffusion
coefficients of the equilibrium references from explicit simulations Dno reac,col are repre-
sented by the diamonds and are linked by the brown dashed line. The effective diffusion
coefficients from explicit simulations Deff,col are represented by the circles and are linked
by the red plain line. The effective diffusion coefficients from implicit simulations Dt,eff

are represented by the stars and are linked by the orange dotted line. The estimated er-
rors on the diffusion coefficients are represented by the black error bars, which are smaller
than the size of the symbols.

4.7 Influence of the reaction area size

Figure 4.14 shows the radial distribution functions gCC at ϕC = 0.1, rcut = 1.3 (red)

and rcut = 1.5 (brown). Fig. 4.14a presents the results from BD simulations. The influence

of rcut is limited: the intensity of the peak is unaffected, and a slight difference is observed

on the shoulder, which is wider for rcut = 1.5. Fig. 4.14b presents the results from BD-

ABP simulations. On the contrary, there is a significant change of the behavior of gCC.

The intensity of the peak at short distances is stronger at rcut = 1.5 than rcut = 1.3.

Moreover, a shoulder is observed at rcut = 1.5 at a distance r = 2.1 which is not observed

at rcut = 1.3.

Figure 4.15 shows the distribution of the cluster size nc for rcut = 1.3 (red) and

rcut = 1.5 (brown). Results from explicit simulation are shown by the plain lines and

are confronted to the implicit simulations results, represented by the dotted lines. The
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Figure 4.14: Radial distribution functions gCC at ϕC = 0.1, rcut = 1.3 (red) and rcut = 1.5
(brown). (a) Explicit simulation results. (b) Implicit simulation results.
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cluster distribution is the same regarding the reaction area radius for explicit simulations.

The mean size is ⟨nc⟩ = 3.07 for rcut = 1.3 and ⟨nc⟩ = 3.08 at rcut = 1.5. In contrast, for

implicit simulations, the clusters are smaller in BD-ABP simulations. The mean size is

⟨nc⟩ = 2.63 for rcut = 1.3 and ⟨nc⟩ = 2.75 at rcut = 1.5. Indeed, it has been shown that

the clusters size is a increasing function of the propulsion velocity v0. Here, v0 = 4.5 at

rcut = 1.5 which is higher than the one at rcut = 1.3, v0 = 3.6. The results displayed on

this figure are consistent with the radial distribution functions.
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Figure 4.16: Mean squared displacements as a function of time ⟨∆r2
C(t)⟩ at ϕC = 0.1,

rcut = 1.3 (red) and rcut = 1.5 (brown). (a) Explicit simulation results. (b) Implicit
simulation results.

Figure 4.16 shows the MSDs ⟨∆r2
C(t)⟩ at ϕC = 0.1, rcut = 1.3 (red) and rcut = 1.5

(brown). Fig. 4.16a presents the results from BD simulations, and Fig. 4.16b results

from BD-ABP simulations. For BD simulations, at this surface fraction, similarly to

rcut = 1.5, the activity in the system at rcut = 1.3 is reduced. There is a discrepancy at

infinite dilution, i.e. when the colloid is alone, that disappear when studying collective

effects. At ϕC = 0.1, the measured effective diffusion coefficients are Deff,col = 0.994

and Deff,col = 1.063 at rcut = 1.3 and rcut = 1.5, respectively. Conversely, in BD-ABP

simulations, there is a difference in both cases. The self-propulsion is slightly slowed down

due to the effect of the high surface fraction. However, as it has been discussed, activity

in implicit simulations is not drastically affected by the increase of the surface fraction.

Since the propulsion input in the ABP model is higher for rcut = 1.5 than rcut = 1.3, at

ϕC = 0.1 the difference still holds. All the values can be found in Appendix H.
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Preliminary work on a mixture of colloids
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Summary
This chapter presents the preliminary results of an extension of the model
containing a mixture of colloids. There are two types of colloids in the system:
CAB colloids, around which the reaction A + C → B + C is more probable,
and CBA colloids, around which the reverse reaction B + C → A + C is more
probable. Only one colloid of type CAB is modeled, and NBA, the number of
colloids of type CBA, varies. The colloid of type CAB is expected to be active.
The objective is to investigate the effect of NBA on the active colloid dynamics.
The preliminary work exposed in this chapter indicates that an optimal value
for NBA exists. Indeed, for low values of NBA, the B species is predominant,
droplets form but detached from the colloid surface. The density fluctuations
are not confined to the vicinity of the colloid, which suppresses the propulsion.
Conversely, for large value ofNBA, the crowding induced by the colloids hinders
the active colloid motion, reducing its activity.
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5.1 Introduction

In this chapter, an extension of the model of active colloids is presented, that is inspired

by biological systems, in particular intracellular life. In a cell, many particles are active:

one component may self-propel by catalyzing a reaction, while another takes its energy for

self-propulsion by catalyzing the reverse reaction. This ensues a continuous activity. In

the model studied in previous chapters, all the colloids were of the same nature, catalyzing

the reaction A + C → B + C, which implies that B is more stable than A. The reverse

reaction that occurred in the bulk was implemented to mimic the diffusion of the product

particles in an infinite bath of reactants. This could also describe the situation inside a

cell, where the reverse reaction would be catalyzed from another component. This model

has been well characterized in this PhD work. Here, we propose to extend this model to a

more complex situation, which is also closer to reality. The properties of a mixture of two

types of colloids that catalyze inverse chemical reactions is investigated. One species of

colloids, denoted by CAB catalyzes the reaction A+C → B+C. In a real out-of-equilibrium

system, a source of energy, such as the hydrolysis of ATP, coupled to a catalyst maintains

the species B predominant. Far from the CAB catalysts, which are coupled to the energy

source, no energy is consumed and the A species may be predominant. To model this

situation, another kind of catalyst is introduced. These colloids, denoted by CBA, are

independent of the energy source. For simplicity, as the reaction shall effectively lead to

the predominance of A species close to CBA catalysts, this type of colloids only catalyzes

the reverse reaction B+C → A+C. Only the CAB species is expected to be active, as the

other type will be surrounded only by purely repulsive solute particles, by construction.

Preliminary results on this system are presented in this chapter. The results obtained

can be intuitively understood and analyzed based on the knowledge of the mechanism.

However, the study of this case should be continued after my PhD to assert the hypothesis

stated in this section. The work presented in this section gather data from simulations

run by both myself and Sophie Devos, a second year intern who spent one month in the

laboratory (June 22) under the supervision of Vincent Dahirel. The chapter is organized

as follows: the model is described in Section 5.2, a steady state is defined in Section 5.3

and the dynamics of the CAB colloid is investigated in Section 5.4. Finally, conclusion

and perspectives on this preliminary work are presented in Section 5.5.

5.2 Description of the model

Figure 5.1 illustrates where the different reactions occur in the system. There are

two species of colloids: the colloid of type CAB which catalyzes the reaction A + C →
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<latexit sha1_base64="Ze6PdRxoJ7lGjsixZeb/aKVW7UA="></latexit>

A + C ! B + C

<latexit sha1_base64="LuGXeFNCvu/yo5o+I1yDaITh3fk="></latexit>

B + C ! A + C

Figure 5.1: Illustration of where the different reactions occur. The colloid of type CAB is
represented in orange and catalyzes the reaction A+C → B+C in the green reaction area.
The colloids of type CBA are represented in red and catalyze the reaction B+C → A+C
in the purple reaction areas. When two reaction areas overlap, the reaction B+C → A+C
is done.

B+C, represented in orange on the snapshot, and the colloids of type CBA which catalyze

B + C → A + B, represented in red. Both reactions occur in a reaction area delimited

by rcut centered around a colloid. rcut = 7.5 is fixed and is the same for both reactions.

Both reaction rates are equal and remain unchanged: τAB = τBA = 0.1. In the situation

where two colloids of different type are close enough so that their reaction area overlap, the

reaction B+C → A+C has the priority. This choice was made arbitrary and the influence

of the prior reaction can be investigated in a future work. There are NC = NAB + NBA

colloids. The number of solute particles N is fixed in order to have the solute density

ρ = 0.1. NAB = 1 remains constant, and the number of CBA colloids varies. The following

values were investigated: NBA = 1, NBA = 9, NBA = 14 and NBA = 24. The size of the

simulation box remains constant (lbox = 70), consequently the surface fraction of colloids

ϕC varies. Table V.1 summarizes the systems investigated and the corresponding surface

fraction. The attraction intensity of the LJ potential between B solute particles is fixed

to ε = 3 and the time step of simulations to ∆t = 0.0006.

The goal is to have a glimpse of the behavior of the colloid CAB, which is expected to

be active. Indeed, as seen before, the propulsion relies on density fluctuations that must

be confined in its vicinity. However, in Chapter 3, it has been shown that the location of

the reverse reaction dramatically affects the activity. The purpose here is to investigate

how the behavior of one active colloid is influenced by the passive colloids.
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5.3 Understanding of the steady state
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Figure 5.2: (a) Number of solute particles (A or B) inside the reaction area, averaged
over noise realizations for CAB colloids and over noise realizations and colloids for CBA

colloids, as a function of time Nshell(t). Dotted lines represent the exponential fits using
Eq. (3.2) when applicable. (b) Number of solute particles of type α as a function of time.
Plain lines represent NA(t), dashed line NB(t). In both plots, NAB = 1 and NBA varies.

The steady state in systems with one colloid is reached when the flux of A particles

going inside the reaction area and being transformed into B particles is equal to the flux

of B particles leaving the reaction area and being transformed into A particles. It leads

to a steady state value of the number of particles inside the reaction area, Nshell,∞. Here,

the situation is different, as the reverse reaction depends on the number of colloids of type

CBA and is coupled to their dynamics. In order to understand how the system evolves

towards a steady state, the number of solute particles (A or B) inside the reaction area

Nshell, as well as the number of particles of type A and of type B inside the system, NA

and NB, respectively, are monitored. These quantities are averaged over noise realizations

for the CAB colloid, and over noise realizations and the colloids for the CBA colloids. The

kinetics of the filling of the reaction area is represented on Figure 5.2a. The data show

the number of particles inside the reaction area around the colloid CAB (plain lines) and

around the colloids CBA (dashed lines). According to the catalyzed reaction, the reaction

area will be filled with A particles for the CBA colloids, or with B particles for the CAB

colloids. The evolution of the number of solute particles of type A, NA (plain lines), and

B, NB (dashed lines), is shown on Figure 5.2b for the various systems. Note that for
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NBA = 1, the data are only available for t > 300. On both plots, the colors indicate

which system is considered, which corresponds to the number of colloids of type CBA it

contains. Snapshot of the systems were also analyzed in order to interpret the results.

Figure 5.3 displays snapshots of the system for different values of NBA. The active colloid

is represented in orange and the passive colloids are in red. Solute particles A are in purple

and B are in green. The figure only displays one noise realization, but it is chosen in order

to represent the typical situation that is found on a majority of snapshots. Fig. 5.2 and

Fig. 5.1, point out a similar behavior of the systems NBA = 9, 14, 21, whereas the case

NBA = 1 is different.

x

y

NBA = 1

x

NBA = 9

x

NBA = 14

Figure 5.3: Snaphots of the system for NAB = 1 in orange, and NBA = 1, 9, 14 in red.

First, the discussion concerns the cases NBA = 9, 14, 24. Fig 5.2a shows that Nshell

is almost a constant for the passive colloids (dashed lines). This is expected, as the

colloids CBA is only surrounded by repulsive solute particles. The kinetics of the filling

of the reaction area of the active colloid (plain lines), is similar to what was obtained

with one active colloid. It increases due to the attractive interactions between the B

particles, before reaching a steady state. All the systems start with NA = 500. Fig 5.2b

shows that NA decays as a function of time whereas NB increases, until both quantities

stabilize. Indeed, B particles are created in the reaction area of the colloid CAB, the

CBA colloids maintain the systems out of equilibrium by transforming the B particles

into A. The steady state is reached when there is a balance between the A → B and

B → A transformations. The plateaux observed for the systems NBA = 24 and NBA = 14

on both plots indicate that the simulation has already converged towards steady state.

These curves can be fitted by an exponential using Eq. (3.2), from which the steady state

time τN is extracted. The corresponding fits are indicated by the dotted lines on Fig. 5.2.
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These results suggest that the system with NBA = 9 is about to also reach a plateau, but

simulation was not run long enough. The time needed to reach steady state is larger for

systems with less CBA colloids. Indeed, τN is linked to the time needed for all the passive

colloids to explore the space, which is shorter when the surface fraction increases. For

these cases, snapshots reveal that the B particles are confined near the colloid, as there

are enough passive colloids to perform the reverse reaction homogeneously in the bulk.

The case NBA = 1 is particular. The steady state is far from being reached, as on

both plots the curves have not yet converged. Fig. 5.2a shows that the number of B

particles inside the reaction area is a decreasing function of time, while Fig. 5.2b shows

that there is an increasing number of B particles inside the system. This indicates that

a LJ droplet grows until detaching and displacing inside the system, as shown on the

snapshot on Figure 5.3.

5.4 A glimpse at the dynamics of the active colloid
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Figure 5.4: Mean squared displacements as a function of time, ⟨∆r2
C(t)⟩, from the steady

state. The time is rescaled so that tinit = 3τN . Results are shown for NBA = 14, and
NBA = 24.

First, the dynamics of the CAB colloid is investigated for systems where a steady state
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has been defined, i.e. for NBA = 14 and NBA = 24. The MSD, ⟨∆r2
C(t)⟩, is computed,

where ⟨.⟩ denotes the average over noise realizations for the CAB colloid, and over noise

realizations and the colloids for the CBA colloids. For these cases, the time is rescaled so

that the initial simulation time tinit is 3τN , where τN is the time needed by the system to

reach steady state. For these cases, values of tinit are reported in Table V.1. Figure 5.4

shows the MSDs of these systems for both types of colloids, CAB (plain lines) and CBA

(dashed lines). The MSD of an active colloid alone at the same set of parameters (ρ = 0.1,

ε = 3 and rcut = 7.5) is displayed for comparison (dotted line).
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Figure 5.5: Mean squared displacements as a function of time, ⟨∆r2
C(t)⟩. The MSD is

either computed from the beginning of the simulation to the final time tf (colored lines),
or from a threshold time tf/2 to tf (black lines). The plain lines represent the MSD of
the active colloid, the dashed lines of the passive colloids. Results are shown for: (a)
NBA = 1, (b) NBA = 9, and (c) NBA = 14.

Second, the cases NBA = 9 and NBA = 1 are discussed. A steady state has not

been clearly defined for these systems. Nevertheless, the mean squared displacements are

computed as a function of time for the various systems in order to see briefly if activity

subsists and how it is influenced by the number of CBA colloids. The MSDs are computed

both for the entire simulation time available, from t = 0 to t = tf (colored lines on Fig. 5.6),

and from a threshold time, which has been chosen arbitrarily as tf/2, to the end tf (black

lines on Fig. 5.6). The plain lines represent the MSDs of active colloids, the dashed lines

of passive colloids. The figure shows results for the system NBA = 1 (Fig. 5.5a), and

NBA = 9 (Fig. 5.5b). The figure emphasizes that for the system at NBA = 1, the behavior

of the colloid evolves in time. Thus, it confirms that the steady state is not reached for
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NBA = 1, as for this case, the MSD computed at all times is very different from the MSD

computed at the end of the simulation.
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Figure 5.6: Mean squared displacements as a function of time, ⟨∆r2
C(t)⟩, of various sys-

tems. The MSD is computed from a threshold time tf/2 to tf . The plain lines represent
the MSD of the active colloid, the dashed lines of the passive colloids.

Figure 5.6 represents the MSDs of the active colloid (plain lines) and of the passive

colloids (dashed lines) computed from the threshold time tf/2. The results cannot be

rigorously analyzed, as the steady state is not reached for all the systems presented in

this section. However, several interesting features can be commented on:

� The MSDs of passive colloids are linear in time, as it is expected, characterized by a

diffusion coefficient DBA. Table V.1 sums up the values found by fitting the MSDs

using Eq. (2.7). Table V.1 also presents the diffusion coefficient of the corresponding

passive systems, Dno reac,col, if available. The latter are composed of the same number

of colloids NC = NAB +NBA at the same surface fraction ϕC, where the colloids do

not trigger a reaction. The diffusion coefficients of the passive systems, Dno reac,col,

are computed as a reference. The values are similar, which confirms the passive

nature of the CBA colloids.

� The CAB colloid in the system NBA = 1 has a transient active behavior, but is

passive on longer timescales (see Fig. 5.5a). The transient behavior corresponds
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to the filling of the reaction area, characterized by the first increasing regime of

Nshell(t). During this time window, conditions are favorable for propulsion. Then,

when the droplet detaches, the colloid activity reduces.

� Fig. 5.6 seems to indicate a non-monotonic behavior of the activity with NBA. Ef-

fective diffusion coefficients of the active colloids DAB are computed on the last 100t

of each MSD. These values are purely indicative as the MSDs are not linear in time.

Nevertheless, the effective diffusion coefficient of NBA = 1 and NBA = 24 are smaller

than for the systems NBA = 9 and NBA = 14. For NBA = 1, DAB is expected to

decrease as activity disappear on longer timescales. For NBA = 24, DAB is expected

to be unchanged, as the steady state seems to be reached. However, NBA = 9 and

NBA = 14 are still in a transient ballistic behavior, thus the effective diffusion co-

efficients are expected to be increased. Therefore, the non-monotonic behavior is

expected to be robust. The interpretation is not clear at this stage of the study. In

particular, ϕC is not constant and can maybe explain the decrease of the activity at

NBA = 24.

NBA 1 9 14 24
ϕC 0.008 0.04 0.06 0.1
tinit − − 108 108
DAB 0.149 0.204 0.177 0.2
DBA 0.130 0.122 0.120 0.104

Dno reac,col 0.127 0.120 − 0.105

Table V.1: Summary of the computed quantities in this chapter for the studied systems.
Values are indicated if available.

5.5 Conclusion

To conclude, in this chapter, the reverse reaction process is modified, as the reverse

reaction is restricted to the vicinity of CBA colloids. This preliminary work indicates an

optimal value for the number of colloids performing the reverse reaction. This suggests

that the surface fraction is expected to play an important role on the obtained results.

Indeed, for low surface fractions, the distances between colloids are larger and the space

available for B solute particles to exist is wider. This is exemplified by the situation

studied in this chapter at NBA = 1, which corresponds to a surface fraction ϕC = 0.008.

The number of B particles measured in this case is about NB = 300 and is still increasing.

This represents the 60 percent of the total of solute particles, whereas at NBA = 24
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(ϕC = 0.1) B particles represent only 5 percent of the total solute particles. From this

ensues the formation of large droplets that eventually detach from the surface of the CAB

colloid. This affects the propulsion of the colloid since the density fluctuations are not

confined in its vicinity, thus the activity is reduced. Interestingly, although the way the

reverse reaction is modified is different from in Section 3.6, the emerging behaviors are

very similar. In the end, it leads to the same situation: B particles are free to move

outside the reaction area, they agglomerate in a droplet that goes beyond the reaction

area. For critical values of the parameters involved for each situation: low ϕC, high τBA,

or high rreverse cut, it leads to a drastic reduction of activity.

The results from this chapter are obtained on the basis of the knowledge of the mech-

anism and are expected to be confirmed by a more extensive study. The mixture of CAB

and CBA colloids paves the way to new possibilities. As an example of future possible

studies, Sophie Devos, the second year intern, has started to investigate other combina-

tions by varying NAB. She has also started to look deeper into the importance of the prior

reaction when two reaction areas overlap.
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The first objective of this PhD work was to build a minimal model for an isotropic

active colloid, whose activity would emerge from interactions within the bath of solute

particles. Inspired by the literature on Janus particles in a binary mixture that demixes

[15], the simplest route was considered: density fluctuations would appear from a phase

separation in the vicinity of the colloid. To do so, the constructed model describes explic-

itly the interactions between the solute particles. The colloid is initially immersed in a

bath of purely repulsive particles. It catalyzes isotropically a reaction around itself, which

changes the nature of the interactions between solute particles by adding attractions. The

solute particles near the colloid are then forming a Lennard-Jones fluid. Several key pa-

rameters are identified and varied, the solute density ρ, the attraction intensity ε and

the reaction area size rcut. For suitable parameters, the LJ fluid phase separates and the

system exhibits activity as required.

Secondly, the mechanism of propulsion of this model has been well characterized in

this manuscript using a variety of parameters. It has been shown that the propulsion relies

on fluctuations of the solute density that must be localized in the vicinity of the colloid.

In the studied model, the density fluctuations arise due to the formation of droplets inside

the reaction area. The orientation of the droplet is characterized by a polarization vector.

A characteristic persistence time can be extracted from the autocorrelation function of

the polarization vector, which stresses the link between the propulsion and the droplets.

The filling fraction of the reaction area has been found to be a relevant indicator for the

prediction of activity. The droplets must fulfill some conditions in order to trigger self-

propulsion, which are characterized by intermediate filling fractions of the reaction area.

The conditions have been fully understood and are the following:

� The droplet must stay in contact with the colloid. By varying the place of the
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reverse reaction in Section 3.6 of Chap. 3 or in the preliminary work presented in

Chap. 5, it has been demonstrated that if the droplets are no longer confined in the

reaction area, activity decreases or disappears. In such situations, the droplets grow

and eventually detach from the colloid, so that the colloid is not self-propelled. The

same behavior is expected when increasing the reverse reaction rate τBA as discussed

in Sect. 3.6 in Chapter 3. All of these situations are characterized by a low filling

fraction of the reaction area.

� The droplets must be large enough to push the colloid. The state diagram presented

in Sect 3.3. in Chap. 3, as well as the behavior of the effective diffusion coefficient

as a function of the filling fraction, underline that when ε and/or rcut are small,

the filling fraction area is also very low. Moreover, for this set of parameters, the

persistence time of the droplet orientation is also small. Therefore, such conditions

are not favorable to form persistent droplets, thus there is no propulsion.

� Yet, the droplets must not be too large. Indeed, a critical value for the filling fraction

has been evidenced: if the droplet fills the entire reaction area, it hinders the colloid

motion, hence the propulsion is suppressed.

After that, suspensions of active colloids have been studied. The solute density and

the attraction intensity between solute particles have been fixed. Several surface fractions

of colloids has been studied. The system still exhibits activity, which is unexpectedly

sensitive to surface fraction increase. Implicit simulations in which the solute particles

are not explicitly described have been run for comparison. The parameters used in those

simulations have been calibrated so that a single colloid exhibit the same dynamic behavior

and so that the interaction potential takes into account the solute depletion at equilibrium.

Nevertheless, strong discrepancies are observed, which indicates the importance of the role

played by the solute particles. This underlines the limitation of implicit simulations that

are widely used in the active matter community.

Finally, a preliminary work has been presented on a mixture of colloids composed

of two types of catalytic colloids. One creates solute particles that will form the LJ

fluid, whereas the others are catalyzing the opposite reaction. Interestingly, this complex

situation shares similarities with simpler systems studied in Chapter 3, which shows that

by tuning the different parameters of the simple model, more complex situations can

be reproduced. The results seem to indicate an optimum surface fraction for enhanced

diffusion.

The last chapter of the manuscript actually constitutes an introduction to the per-

spectives offered by the model designed during my PhD. By considering a mixture of

colloids with different properties, other combinations can be tested. The case of only

– 140 –



Conclusion

one colloid performing the direct reaction (repulsive towards LJ fluid) has been investi-

gated, the study can be extended to several colloids of this type. Moreover, the current

results are preliminary as only the dynamics of the active colloid has been investigated.

Larger systems can be analyzed as interesting features can emerge from collective effects

[90, 91, 92]. It would be interesting to see if the predicted behavior is observed when

explicitly describing the solute particles. The model can be then made more complex by

considering linked colloids, to form a dimer or a polymer [32, 93, 94]. Another aspect that

has been left out of this work could be looked at. Indeed, for the study of collective effects

and of a mixture, the parameters defining activity were chosen in order to maximize it.

However, it can be possible for a suspension of passive isotropic colloids to form active

clusters, [49]. Another aspect that could be deepened is the link with biological systems.

In the cells, liquid-liquid phase separations have recently aroused the interest of the sci-

entific community, since it is an important mechanism for the intracellular organization

[95]. Links between experimental observations of long-range directed motion due to the

formation of droplets [96] and this model can be made.
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Technical computation details

B.1 Details about the integration of a delta function

δ(x)

The noise correlation function is represented by a delta function:

⟨R(t1)R(t2)⟩ = δ(t1 − t2). Numerous computations involve the integration of a noise

correlation function. Here, the principle is presented, based on an example. The following

function is considered:

F (t1, t2) =

∫ t1

0

dt′1

∫ t2

0

dt′2δ(t
′
1 − t′2).

First, the limits of the integral are modified by making a Heaviside function to appear.

F (t1, t2) =

∫ ∞

0

dt′1

∫ ∞

0

dt′2δ(t
′
1 − t′2)Θ(t1 − t′1)Θ(t2 − t′2)

� If t1 > t2, and defining G(t′1) = θ(t1 − t′1), from the definition of the delta function:∫∞
0

G(t′1)δ(t
′
1 − t′2) dt

′
1 = G(t′2). Therefore, F becomes:

F (t1, t2) =

∫ ∞

0

dt′2Θ(t1 − t′2)Θ(t2 − t′2).
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Θ(t1 − t′2) = 1 since t1 > t2, and the second Heaviside function is removed by

modifying again the limits of the integral.

F (t1, t2) =

∫ t2

0

dt′2

Finally the function can be easily integrated, yielding:

F (t1, t2) = t2.

� If t2 > t1, and defining G(t′2) = θ(t2 − t′2), the first integration made is on t′2:∫∞
0

G(t′2)δ(t
′
1 − t′2) dt

′
2 = G(t′1), consequently F becomes:

F (t1, t2) =

∫ ∞

0

dt′1Θ(t1 − t′1)Θ(t2 − t′1)

F (t1, t2) =

∫ t1

0

dt′1

F (t1, t2) = t1.

To conclude:

F (t1, t2) = min(t1, t2).

B.2 From a double integral to a simple

Let I be the double integral of a function of a difference between two variables

φ(|t′ − t′′|), I =
∫ t

0
dt′
∫ t

0
dt′′ φ(|t′ − t′′|). The double integral can be reduced to a single

integral I = 2
∫ t

0
du(t− u)φ(u) as shown in this paragraph. First, the following change of

variable is made:

� u = t′ − t′′

� du = −dt′′

The integral becomes I = −
∫ t

0
dt′
∫ t′−t

t′
du φ(|u|) =

∫ t

0
dt′
∫ t′

t′−t
du φ(|u|). The absolute

value of u can be split:

I =

∫ t

0

dt′

[∫ 0

t′−t

du φ(−u) +

∫ t′

0

du φ(u)

]
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The area represented by the first and the second double integral can be delimited choosing

other bounds for the ingrals:

I =

∫ 0

−t

du

∫ u+t

0

dt′ φ(−u) +

∫ t

0

du

∫ t

u

dt′ φ(u)

=

∫ 0

−t

du (u+ t)φ(−u) +

∫ t

0

du (t− u)φ(u)

For the first member of I, the following change of variable is made:

� v = −u

� dv = −du

Using this the first part becomes
∫ 0

−t
du(u+ t)φ(−u) =

∫ t

0
(t− v)φ(v). Consequently :

I = 2

∫ t

0

du (t− u)φ(u) (B.1)
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Mean squared displacement of the Langevin equation

The Langevin equation in one dimension for a single particle subjected to no external

force is:

mv̇(t) +mγv(t) = R(t). (C.1)

R(t) is a Gaussian white noise with the following properties:

• ⟨R(t)⟩ = 0, where ⟨.⟩ denotes the average over noise realizations.

• ⟨R(t′)R(t′′)⟩ = 2mγkBTδ(t
′ − t′′)

Integrating Eq. (C.1) with the initial condition v(t = 0) = v0 yields:

v(t) = v0 e
−γt+

1

m

∫ t

0

e−γ(t−t′) R(t′) dt′ (C.2)

The initial conditions are the following:

� The initial position x(0) is unknown.

� The initial velocity v0 = v(t = 0) is supposed to have a Maxwellian distribution

P (v0) =
(

m
2πkBT

)2
e

−mv20
2kBT , centered around zero, whose mean is ⟨v0⟩ = 0 and ⟨v20⟩ =

kBT
m

.

Using the initial conditions, the mean velocity is ⟨v(t)⟩ = 0, and the variance is

σ2
v = ⟨v2(t)⟩ − ⟨v(t)⟩2 = ⟨v2(t)⟩. The mean squared velocity ⟨v2(t)⟩ is found by first
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computing the correlation function:

⟨v(t1)v(t2)⟩ = ⟨v20 e−γ(t1+t2) +v0 e
−γt1

1

m

∫ t1

0

e−γ(t1−t′1) R(t′1) dt
′
1

+ v0 e
−γt2

1

m

∫ t2

0

e−γ(t2−t′2) R(t′2) dt
′
2 +

1

m2

∫ t1

0

e−γ(t1−t′1) R(t′1) dt
′
1

∫ t2

0

e−γ(t2−t′2) R(t′2) dt
′
2⟩

⟨v(t1)v(t2)⟩ =
〈
v20
〉
e−γ(t1+t2) +

1

m2

∫ t1

0

dt′1

∫ t2

0

dt′2 e
−γ(t1−t′1) e−γ(t2−t′2) ⟨R(t′1)R(t′2)⟩

⟨v(t1)v(t2)⟩ =
kBT

m
e−γ(t1+t2) +

2γkBT

m

∫ t1

0

dt′1

∫ t2

0

dt′2 e
−γ(t1−t′1) e−γ(t2−t′2) δ(t′1 − t′2)

⟨v(t1)v(t2)⟩ =
kBT

m
e−γ(t1+t2) +

2γkBT

m
e−γ(t1+t2)

∫ t1

0

dt′1

∫ t2

0

dt′2 e
γ(t′1+t′2) δ(t′1 − t′2)

⟨v(t1)v(t2)⟩ =
kBT

m
e−γ(t1+t2) +

kBT

m
e−γ(t1+t2)

(
e2γmin(t1,t2) −1

)

⟨v(t1)v(t2)⟩ =
kBT

m
e−γ|t1−t2|

Details about the integration of the delta function are given in Appendix B. From the

correlation function, taking t1 = t2 = t, ⟨v2(t)⟩ can be deduced:

⟨v2(t)⟩ = kBT

m
(C.3)

The position is obtained by integrating Eq. (C.2):

x(t) =
v0
γ
(1− e−γt) +

1

m

∫ t

0

dt′
∫ t′

0

dt′′ e−γ(t′−t′′) R(t′′) + x(0) (C.4)

The displacement is then:

x(t)− x(0) =
v0
γ
(1− e−γt) +

1

m

∫ t

0

dt′
∫ t′

0

dt′′ e−γ(t′−t′′) R(t′′) (C.5)

The mean displacement is zero, ⟨x(t)− x(0)⟩ = 0, therefore the mean squared displace-

ment is MSD(t) = ⟨(x(t)− x(0))2⟩ − ⟨x(t)− x(0)⟩2 = ⟨(x(t)− x(0))2⟩. Using the correla-
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tion function of the velocity, ⟨(x(t)− x(0))2⟩ =
∫ t

0
dt1
∫ t

0
dt2⟨v(t1)v(t2)⟩:

〈
x2(t)

〉
=

∫ t

0

dt1

∫ t

0

dt2
kBT

m
e−γ|t1−t2|

〈
(x(t)− x(0))2

〉
=

kBT

m

[∫ t

0

dt1

∫ t1

0

dt2 e
−γ(t1−t2) +

∫ t

0

dt1

∫ t

t1

dt2 e
−γ(t2−t1)

]

=
kBT

γm

[∫ t

0

[
e−γ(t1−t2)

]t1
0
dt1 −

∫ t

0

[
e−γ(t2−t1)

]t
t1
dt1

]

=
kBT

γm

∫ t

0

2− e−γt1 − e−γ(t−t1) dt1

=
kBT

γm

[
2t1 +

1

γ
e−γt1 −1

γ
e−γ(t−t1)

]t

0

=
kBT

γm

(
2t+

1

γ
e−γt−1

γ
− 1

γ
+

1

γ
e−γt

)

=
2kBT

γ2m

(
tγ + e−γt−1

)

The mean squared displacement displays two regimes. At short times t ≪ γ−1:

〈
(x(t)− x(0))2

〉
∼ 2kBT

γ2m

(
tγ + 1− tγ + γ2 t

2

2
− 1

)

〈
(x(t)− x(0))2

〉
∼ kBT

m
t2

At long times t → ∞:

〈
(x(t)− x(0))2

〉
∼ 2kBT

γm
t

The results can be generalized in d dimensions. Each element of the velocity vector satisfies

Eq. (C.2), therefore ⟨vx(t1)vx(t2)⟩ = ⟨vy(t1)vy(t2)⟩ = ⟨vz(t1)vz(t2)⟩. In three dimensions,

d = 3, the correlation function yields: ⟨v(t1) · v(t2)⟩ = ⟨vx(t1)vx(t2)⟩ + ⟨vy(t1)vy(t2)⟩ +
⟨vz(t1)vz(t2)⟩ = 3 ⟨vx(t1)vx(t2)⟩ = 3kBT

m
. In two dimensions, ⟨v(t1) · v(t2)⟩ = 2kBT

m
. Simi-

larly, in d dimensions:

MSD(t) =
〈
(r(t)− r(0))2

〉
=

2dkBT

γ2m

(
tγ + e−γt−1

)
.
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APPENDIXD

Mean squared displacement of the overdamped Langevin equation

The overdamped Langevin equation in one dimension, for one particle subjected to no

external force is:

v(t) =
D

kBT
R(t). (D.1)

It can easily be integrated to obtain the position of the particle:

x(t) =
D

kBT

∫ t

0

R(t′)dt′ + x(0). (D.2)

The displacement of the particle is:

∆x(t) = x(t)− x(0) =
D

kBT

∫ t

0

R(t′)dt′ (D.3)

R(t) is a Gaussian white noise with the following properties:

• ⟨R(t)⟩ = 0,

• ⟨R(t′)R(t′′)⟩ = 2 (kBT )2

D
δ(t′ − t′′).

The mean displacement of the particle is given by:

⟨∆x(t)⟩ =
〈

D

kBT

∫ t

0

R(t′)dt′
〉

=
D

kBT

∫ t

0

⟨R(t′)⟩ dt′ = 0.
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The correlation function of the displacement is given by:

⟨∆x(t1)∆x(t2)⟩ =
(

D

kBT

)2 ∫ t1

0

dt′1

∫ t2

0

dt′2 ⟨R(t′1)R(t′2)⟩

= 2D

∫ t1

0

dt′1

∫ t2

0

dt′2δ(t
′
1 − t′2)

= 2Dmin(t1, t2)

The mean squared displacement of the particle can be deduced from the previous calcu-

lations taking t = t1 = t2.

MSD(t) =
〈
∆x2(t)

〉
− ⟨∆x(t)⟩2 =

〈
∆x2(t)

〉
= 2Dt (D.4)

In d-dimensions the mean squared displacement becomes: ⟨∆r2(t)⟩ = 2dDt.
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APPENDIX E

Numerical integration of the Gaussian white noise

The overdamped Langevin equation is discretized using the Euler scheme yielding:

xi(t+∆t) = xi(t) + ∆t
Dα

kBT

∑

i ̸=j

Fx,j→i(t) +
Dα

kBT

∫ t+∆t

t

Rx,i(t
′)dt′

︸ ︷︷ ︸
B

(∆t).

The integration of Rx,i can be seen as a sum of random variables, therefore, according to

the central limit theorem B(∆t) follows a Gaussian distribution. The mean is:

⟨B⟩ =
∫ t+∆t

t

⟨Rx,i(t
′)⟩ dt′ = 0.

The variance is:

⟨B(t1)B(t2)⟩ =
∫ t1+∆t1

t1

dt′1

∫ t2+∆t2

t2

dt′2⟨Rx,i(t
′
1)Rx,i(t

′
2)⟩

=
2(kBT )

2

Dα

∫ t1+∆t1

t1

dt′1

∫ t2+∆t2

t2

dt′2δ(t
′
1 − t′2)

=
2(kBT )

2

Dα

min(∆t1,∆t2)

〈
B2(t)

〉
=

2(kBT )
2

Dα

∆t

The standard deviation :
√

⟨B2(t)⟩ = (kBT )
Dα

√
2Diα∆t.
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APPENDIX F

Computation of the concentration profiles

A colloid, of diameter σC, is in a bath of solute particles of type A or B. Both species

are of diameter σA. The solute particles diffuse with a diffusion coefficient D0
A. The colloid

catalyzes isotropically the reaction A+C → B+C in a circular reaction area of radius rcut

centered around itself. This domain is labelled in what follows 1. The reaction occurs at

a rate kAB. Outside the reaction area, in the domain label 2, the reverse reaction B → A

occurs at a rate kBA. The interactions between particles are not taken into account,

but the solute particles cannot interpenetrate with the colloid. Under these conditions,

the concentration profiles of the solute particles A and B can be estimated analytically.

The concentration profile of solute particles A (resp. B) in domain 1 is denoted by c
(1)
A

(resp. c
(1)
B ) and in domain 2 by c

(2)
A (resp. c

(2)
A ). The concentrations obey the following

reaction-diffusion equations in domain 1:

{
∂
∂t
c
(1)
A (r, t) = D0

A∇2c
(1)
A − kABc

(1)
A

∂
∂t
c
(1)
B (r, t) = D0

A∇2c
(1)
B + kABc

(1)
A

,

and in domain 2:

{
∂
∂t
c
(2)
A (r, t) = D0

A∇2c
(2)
A + kBAc

(2)
B

∂
∂t
c
(2)
B (r, t) = D0

A∇2c
(2)
B − kBAc

(2)
B
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We consider the steady state, and suppose that the concentration profile is axially sym-

metric. In polar coordinates, the system of equations becomes:





D0
A

∂2

∂r2
c
(1)
A + 2

D0
A

r
∂
∂r
c
(1)
A − kABc

(1)
A = 0

D0
A

∂2

∂r2
c
(1)
B + 2

D0
A

r
∂
∂r
c
(1)
B + kABc

(1)
A = 0

D0
A

∂2

∂r2
c
(2)
A + 2

D0
A

r
∂
∂r
c
(2)
A + kBAc

(2)
B = 0

D0
A

∂2

∂r2
c
(2)
B + 2

D0
A

r
∂
∂r
c
(2)
B − kBAc

(2)
B = 0

We assume the following boundary conditions:

• No normal flux at the colloid surface:

∂c
(1)
A

∂r

∣∣∣
r=σC

=
∂c

(1)
B

∂r

∣∣∣
r=σC

= 0

• The concentration profiles, as well as their derivative, are continuous at the bound-

ary between the two domains:

c
(1)
A (r = rcut) = c

(2)
A (r = rcut)

c
(1)
B (r = rcut) = c

(2)
B (r = rcut)

∂c
(1)
A

∂r

∣∣∣
r=rcut

=
∂c

(2)
A

∂r

∣∣∣
r=rcut

∂c
(1)
B

∂r

∣∣∣
r=rcut

=
∂c

(2)
B

∂r

∣∣∣
r=rcut

• At r → ∞, the concentration profiles are finite:

lim
r→∞

c
(2)
A (r) = cA,∞

lim
r→∞

c
(2)
B (r) = cB,∞
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The solutions are:

c
(1)
A =

1

r
(C3 sinh(r/λ) + C4 cosh(r/λ))

c
(1)
B =

1

r
(−C1 + C2r − C3 sinh(r/λ)− C4 cosh(r/λ))

c
(2)
A =

1

r
(−B1 +B2r −B3 sinh(r/L)−B4 cosh(r/L))

c
(2)
B =

1

r
(B3 sinh(r/L) +B4 cosh(r/L)) ,

where λ =
√
D0

A/kAB, L =
√
D0

A/kBA, and B1, B2, B3, B4, C1, C2, C3, C4 are constant.

Using the boundary conditions, the constant are found to be:

� B1 = 0

� B2 = c0

� B3 =
c0λ2kAB

l2LkBA
e−rcut

2L−λ
Lλ

[
(rcut − λ)(σC + λ) e2rcut/λ−(rcut + λ)(σC − λ) e2σC/λ

]

� B4 = −B3

� C1 = 0

� C2 = c0

� C3 =
1
l2
(rcut + L)c0

[
(σC − λ) e2σC/λ−σC − λ

]
λ e−rcut/λ

� C4 = − 1
l2
(rcut + L)c0

[
(σC − λ) e2σC/λ+σC + λ

]
λ e−rcut/λ

with l2 = (σC − λ)(L− λ) e
2σC−2rcut

λ −(σC + λ)(L+ λ)
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APPENDIXG

Analysis of the mean squared displacement of the effective

Langevin equation

In the main text, the MSD is shown to be the sum of three contributions:

〈
∆r2

C(t)
〉
= K2∆pp(t) + ∆ξξ(t)−K (∆pξ(t) + ∆ξp(t)) , (G.1)

where ∆ab(t) ≡
∫ t

0
dt′
∫ t

0
dt′′ ⟨a(t′) · b(t′′)⟩. The computation of each contribution is de-

tailed in this chapter. Then, asymptotic developments at short times and at long times

are performed to analyze the different regimes of the MSD.

G.1 Computation of the contribution of the polar-

ization vector

The vector p is defined as:

⟨p(t′) · p(t′ + t)⟩t′ =





A
(t+c)α

if t ≤ t0,

A
(t0+c)α

exp
(

−(t−t0)
τp

)
else.

(G.2)
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The contribution of the polarization vector is then:

∆pp(t) =

∫ t

0

dt′
∫ t

0

dt′′ ⟨p(t′) · p(t′′)⟩

= 2

∫ t

0

(t− u)φ(u) du

=




2
∫ t

0
(t− u) A

(u+c)α
du if t ≤ t0

2
∫ t0
0
(t− u) A

(u+c)α
du+ 2

∫ t

t0
(t− u) A

(t0+c)α
e−(u−t0)/τp du else.

If t ≤ t0:

∆pp(t) = 2

∫ t

0

(t− u)
A

(u+ c)α
du

= 2

∫ t

0

tA

(u+ c)α
du− 2

∫ t

0

uA

(u+ c)α
du

=
2At

1− α

[
(u+ c)1−α

]t
0
− 2A

1− α

[
u(u+ c)1−α

]t
0
+

2A

1− α

∫ t

0

(u+ c)1−α du

=
2At

1− α

(
(t+ c)1−α − c1−α

)
− 2At(t+ c)1−α

1− α
+

2A

(1− α)(2− α)

[
(u+ c)2−α

]t
0

= −2Atc1−α

1− α
+

2A

(1− α)(2− α)

(
(t+ c)2−α − c2−α

)

=
2A

(1− α)(2− α)

(
(t+ c)2−α − t(2− α)c1−α − c2−α

)
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If t > t0, then the first integral yields:

2

∫ t0

0

(t− u)
A

(u+ c)α
du = 2At

∫ t0

0

(u+ c)−α du− 2A

∫ t0

0

u(u+ c)−α du

=
2At

1− α

[
(u+ c)1−α

]t0
0
− 2A

1− α

[
u(u+ c)1−α

]t0
0
+

2A

1− α

∫ t0

0

(u+ c)1−α du

=
2At

1− α

(
(t0 + c)1−α − c1−α

)
− 2At0(t0 + c)1−α

1− α

+
2A

(1− α)(2− α)

[
(u+ c)2−α

]t0
0

=
2At

1− α

(
(t0 + c)1−α − c1−α

)
− 2At0(t0 + c)1−α

1− α

+
2A

(1− α)(2− α)

(
(t0 + c)2−α − c2−α

)

=
2A

1− α

(
(t− t0)(t0 + c)1−α − tc1−α

)
+

2A

(1− α)(2− α)

(
(t0 + c)2−α − c2−α

)

And the second integral yields:

2

∫ t

t0

(t− u)
A

(t0 + c)α
e−(u−t0)/τp du =

2At

(t0 + c)α

∫ t

t0

e−u/τp du− 2A

(t0 + c)α

∫ t

t0

u e−(u−t0)/τp du

=
2At

(t0 + c)α
[
−τp e

−(u−t0)/τp
]t
t0
+

2Aτp
(t0 + c)α

[
u e−(u−t0)/τp

]t
t0

− 2Aτp
(t0 + c)α

∫ t

t0

e−(u−t0)/τp du

=
−2Atτp
(t0 + c)α

(
e−(t−t0)/τp −1

)
+

2Aτp
(t0 + c)α

(
t e−(t−t0)/τp −t0

)

+
2Aτ 2p

(t0 + c)α
[
e−(u−t0)/τp

]t
t0

=
2Atτp

(t0 + c)α
(t− t0) +

2Aτ 2p
(t0 + c)α

(
e−(t−t0)/τp −1

)

=
2Aτp

(t0 + c)α
(t− t0) +

2Aτ 2p
(t0 + c)α

[
e−(t−t0)/τp −1

]

=
2Aτp

(t0 + c)α
(
(t− t0) + τp

(
e−(t−t0)/τp −1

))
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In conclusion:

∆pp(t) =





2A
(1−α)(2−α)

[(t+ c)2−α − t(2− α)c1−α − c2−α] if t < t0
2A
1−α

((t− t0)(t0 + c)1−α − tc1−α) + 2A
(1−α)(2−α)

((t0 + c)2−α − c2−α)

+ 2Aτp
(t0+c)α

(
(t− t0) + τp

(
e−(t−t0)/τp −1

))
else.

G.2 Contribution of the noise vector

The Gaussian white noise ξ(t) is defined by:

{
⟨ξ(t)⟩ = 0

⟨ξ(t′) · ξ(t′′)⟩ = 2DCδ(t
′ − t′′)

Therefore the contribution of the noise is:

∆ξξ(t) =

∫ t

0

dt′
∫ t

0

dt′′ ⟨ξ(t′) · ξ(t′′)⟩

=

∫ t

0

dt′
∫ t

0

dt′′ (⟨ξx(t′) · ξx(t′′)⟩+ ⟨ξy(t′) · ξy(t′′)⟩)

= 2

∫ t

0

dt′
∫ t

0

dt′′2DCδ(t
′ − t′′)

= 4DCt

G.3 Contribution of the cross term between the noise

and the polarization vector

The cross-correlation functions are supposed to be ⟨p(t′) · ξ(t′′)⟩ = 0 and ⟨ξ(t′) · p(t′′)⟩ =
0, therefore ∆pξ(t) = ∆ξp(t) = 0

G.4 Sum of all the contributions

All in all, the mean squared displacement is:

〈
∆r2

C(t)
〉
=





4DCt+
2AK2

(1−α)(2−α)
[(t+ c)2−α − t(2− α)c1−α − c2−α] if t ≤ t0,

4DCt

+2AK2

1−α
[(t− t0)(t0 + c)1−α − tc1−α] + 2AK2

(1−α)(2−α)
[(t0 + c)2−α − c2−α]

+2AK2τp
(t0+c)α

[
(t− t0) + τp

(
e−(t−t0)/τp −1

)]
else.
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G.5 Analysis of the different regimes

if t < t0 :

The case t → 0 is considered. The term (t+ c)2−α can be developed using the Taylor

expansion:

(t+ c)2−α ∼ c2−α + (2− α)tc1−α + (2− α)(1− α)c−α t
2

2
.

As a consequence:

〈
∆r2

C(t)
〉
∼ AK2c−αt2 + 4DCt.

There is a crossover between t and t2 in t1 =
4DCc

α

K2A
.

if t > t0 :

• First, at intermediate times, for τp large: t ≪ τp and t0 ≪ τp. Therefore, the Taylor

expansion of e−(t−t0)/τp yields:

e−(t−t0)/τp ∼ 1− t− t0
τp

+
(t− t0)

2

2τ 2p
,

and the last term of the MSD becomes:

(t− t0) + τp
(
e−(t−t0)/τp −1

)
∼ (t− t0) + τp

(
1− t− t0

τp
+

(t− t0)
2

2τ 2p
− 1

)

∼ (t− t0)
2

2τp
.

Consequently, at intermediate times, the MSD becomes:

〈
∆r2

C(t)
〉
∼
(
4DC +

2AK2

1− α

(
(t0 + c)1−α − c1−α

)
− 2t0AK

2

(t0 + c)α

)
t+

AK2

(t0 + c)α
t2

A crossover occurs between t and t2 in t2 =
4DC(t0+c)α

AK2 + 2(t0+c)
1−α

[
1−

(
t0+c
c

)α−1
]
−2t0.

• Second, at long times, t ≫ τp: (t− t0) ∼ t and e−(t−t0)/τp ∼ 0, the MSD becomes:

〈
∆r2

C(t)
〉
∼ 4DCt+

2AK2

1− α
t
[
(t0 + c)1−α − c1−α

]
+

2AK2τp
(t0 + c)1−α

t

∼
(
4DC +

2AK2

1− α

[
(t0 + c)1−α − c1−α

]
+

2AK2τp
(t0 + c)α

)
t
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Conclusion

To conclude there are five regimes separated by four characteristic times: t1,t0,t2, and

τp.

• At t < t1, the MSD is linear, indicating a diffusive motion:

〈
∆r2

C(t)
〉
∼ 4DCt (G.3)

• At t1 < t < t0, the MSD is proportional to t2, indicating a ballistic motion:

〈
∆r2

C(t)
〉
∼ AK2c−αt2 (G.4)

• At t0 < t < t2, the MSD is linear again, indicating a diffusive motion:

〈
∆r2

C(t)
〉
∼
[
4DC +

2AK2

1− α

(
(t0 + c)1−α − c1−α

)
− 2t0AK

2

(t0 + c)α

]
t (G.5)

• At t2 < t < τp, the MSD is proportional again to t2, indicating a ballistic motion:

〈
∆r2

C(t)
〉
∼ AK2

(t0 + c)α
t2 (G.6)

• At t > τp, the MSD is linear again, indicating a diffusive motion:

〈
∆r2

C(t)
〉
∼
(
4DC +

2AK2

1− α

[
(t0 + c)1−α − c1−α

]
+

2AK2τp
(t0 + c)α

)
t (G.7)
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Summary of simulation data
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Summary of simulation data

ρ = 0.1
ε rcut tinit Nshell,∞ tlin Deff δDeff

1
5.5 24 7 300 0.129 0.003
7.5 117 17 100 0.136 0.001
10.5 136 37 100 0.138 0.002

1.5 7.5 170 19 600 0.145 0.006
1.75 7.5 122 21 600 0.149 0.003

2

5.5 110 8 100 0.145 0.003
6.5 112 14 200 0.162 0.004
7.5 140 23 900 0.190 0.002
8.25 173 31 800 0.202 0.002
9 188 39 1000 0.232 0.003

10.5 245 59 1000 0.249 0.004

2.25

5.5 50 8 300 0.146 0.002
6.5 97 15 300 0.177 0.002
7.5 134 25 600 0.235 0.006
8.25 198 35 900 0.302 0.003
10.5 213 67 1950 0.497 0.004

2.5

5.5 60 8 100 0.152 0.002
6.5 120 16 1100 0.225 0.007
7.5 115 28 800 0.367 0.003
8.25 138 38 800 0.493 0.014
9 147 49 1000 0.648 0.002

10.5 143 72 2000 0.870 0.015

3

5.5 67 9 300 0.175 0.004
6.5 98 18 500 0.328 0.004
7.5 92 30 1000 0.657 0.006
8.25 94 41 1000 0.846 0.010
9 94 52 2000 1.05 0.005

10.5 108 77 1500 1.136 0.011
12 136 99 2400 1.153 0.021
15 191 135 3000 0.927 0.015

5 7.5 79 36 800 0.888 0.011

Table H.1: Summary of the quantities of interest of Chapter 3 at ρ = 0.1, tinit the initial
steady state simulation time, Nshell,∞ the number of particles inside the reaction area at
steady state, tlin the time from which the last linear regime of the MSD is reached and
from which Deff can be computed, Deff the effective diffusion coefficient, and δDeff the
associated error.
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Summary of simulation data

ρ = 0.3
ε rcut tinit Nshell,∞ tlin Deff δDeff

1
5.5 22 26 300 0.080 0.002
7.5 28 63 200 0.082 0.001
10.5 36 131 200 0.087 0.001

2
5.5 49 31 400 0.107 0.001
7.5 28 83 150 0.106 0.002
10.5 41 180 150 0.098 0.002

2.5

5.5 20 33 150 0.152 0.001
6.5 23 61 150 0.122 0.002
7.5 26 93 150 0.098 0.002
9 31 146 150 0.084 0.001

10.5 40 202 150 0.078 0.001

3

5.5 23 36 200 0.224 0.005
6.5 25 67 100 0.104 0.001
7.5 26 100 100 0.062 0.001
9 33 160 70 0.039 0.001

10.5 45 230 30 0.022 0.000

5

5.5 44 40 500 2.110 0.010
6.5 30 80 40 0.024 0.001
7.5 46 118 10 0.007 0.000
9 42 183 5 0.005 0.000

10.5 56 246 15 0.004 0.000

Table H.2: Summary of the quantities of interest of Chapter 3 at ρ = 0.3, tinit the initial
steady state simulation time, Nshell,∞ the number of particles inside the reaction area at
steady state, tlin the time from which the last linear regime of the MSD is reached and
from which Deff can be computed, Deff the effective diffusion coefficient, and δDeff the
associated error.

Passive explicit simulations

ϕC 0.008 0.01 0.02 0.03 0.04 0.1

⟨nc⟩ − 2.02 − 2.10 2.13 2.41√
⟨n2

c⟩ − ⟨nc⟩2 − 0.12 − 0.33 0.38 0.77

Dno reac,col 0.829 0.791 0.766 0.747 0.778 0.665

δDno reac,col 0.006 0.006 0.013 0.000 0.006 0.006

Table H.3: Summary of the quantities of interest of Chapter 4 for passive explicit simu-

lations: ⟨nc⟩ the mean clusters size and the standard deviation
√
⟨n2

c⟩ − ⟨nc⟩2, the equi-

librium diffusion coefficient Dno reac,col, and δDno reac,col the associated error.
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Summary of simulation data

Active explicit simulations rcut = 1.5

ϕC 0.008 0.01 0.02 0.03 0.04 0.1

⟨nc⟩ − 2.13 − 2.39 2.46 3.08√
⟨n2

c⟩ − ⟨nc⟩2 − 0.38 − 0.78 0.86 1.65

tlin 5.2 7.8 4.6 7.8 3.8 2.5

Deff,col 3.335 3.266 2.532 2.101 1.816 1.063

δDeff,col 0.013 0.013 0.025 0.019 0.006 0.006

Table H.4: Summary of the quantities of interest of Chapter 4 for active explicit simula-

tions at rcut = 1.5: ⟨nc⟩ the mean clusters size and the standard deviation
√

⟨n2
c⟩ − ⟨nc⟩2,

tlin the time from which the last linear regime of the MSD is reached and from which
Deff,col is computed, the effective diffusion coefficient Deff,col, and δDeff,col the associated
error.

Active explicit simulations
ϕC = 0.1 and rcut = 1.3

⟨nc⟩
√

⟨n2
c⟩ − ⟨nc⟩2 tlin Deff,col δDeff,col

3.07 1.63 3.2 0.994 0.006

Table H.5: Summary of the quantities of interest of Chapter 4 for explicit simulations
at ϕC = 0.1 and rcut = 1.3: ⟨nc⟩ the mean clusters size and the standard deviation√

⟨n2
c⟩ − ⟨nc⟩2, tlin the time from which the last linear regime of the MSD is reached and

from which Deff,col is computed, the effective diffusion coefficient Deff,col, and δDeff,col the
associated error.

Implicit simulations rcut = 1.5

ϕC 0.008 0.01 0.02 0.03 0.04 0.1

⟨nc⟩ − 02.05 − 2.18 2.25 2.75√
⟨n2

c⟩ − ⟨nc⟩2 − 0.23 − 0.47 0.57 1.22

tlin 5.3 5.5 4.3 6 6.3 4.4

Dt,eff 3.931 3.872 3.836 3.787 3.735 3.265

δDt,eff 0.003 0.007 0.007 0.004 0.020 0.021

Table H.6: Summary of the quantities of interest of Chapter 4 for implicit simulations

at rcut = 1.5: ⟨nc⟩ the mean clusters size and the standard deviation
√
⟨n2

c⟩ − ⟨nc⟩2, tlin
the time from which the last linear regime of the MSD is reached and from which Dt,eff

is computed, the effective diffusion coefficient Dt,eff , and δDt,eff the associated error.
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Summary of simulation data

Implicit simulations
ϕC = 0.1 and rcut = 1.3

⟨nc⟩
√

⟨n2
c⟩ − ⟨nc⟩2 tlin Dt,eff δDt,eff

2.63 1.05 3 1.605 0.005

Table H.7: Summary of the quantities of interest of Chapter 4 for implicit simulations
at ϕC = 0.1 and rcut = 1.3: ⟨nc⟩ the mean clusters size and the standard deviation√

⟨n2
c⟩ − ⟨nc⟩2, tlin the time from which the last linear regime of the MSD is reached

and from which Dt,eff is computed, the effective diffusion coefficient Dt,eff , and δDt,eff the
associated error.
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[25] Sébastien Michelin and Eric Lauga. Phoretic self-propulsion at finite Péclet numbers.

Journal of Fluid Mechanics, 747:572, 2014.

[26] Thomas Bickel, Arghya Majee, and Alois Würger. Flow pattern in the vicinity of

self-propelling hot Janus particles. Physical Review E, 88:012301, 2013.

[27] Alois Würger. Self-Diffusiophoresis of Janus Particles in Near-Critical Mixtures.

Physical Review Letters, 115:188304, 2015.
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Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven mo-

tion. Phys. Rev. Lett., 113:248302, 2014.

[38] Marco De Corato, Ignacio Pagonabarraga, Loai K. E. A. Abdelmohsen, Samuel

Sánchez, and Marino Arroyo. Spontaneous polarization and locomotion of an ac-

tive particle with surface-mobile enzymes. Physical Review Fluids, 5:122001, 2020.
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