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Chapter 1

General introduction

1.1 A short story of the fine-structure constant

The fine-structure constant α is a fundamental constant of physics given by

α =
e2

4πϵ0ℏc
(1.1)

where e is the elementary electric charge, ℏ is the reduced Planck constant, ϵ0 is vacuum
permittivity and c the speed of the light.

The constant α has been first introduced by Arnold Sommerfeld [68] in 1916 to explain
the splitting of the Balmer line observed in the hydrogen spectrum. A. Sommerfeld ex-
tended the Bohr model by considering the relativistic mass and elliptical orbits to describe
the electron’s trajectory. He quantified both the angular and the radial momenta of the
electron, which allowed him to introduce a second quantum number.

Of course, the Sommerfeld model was not correct because the spin of the electron was
not discovered yet, and the spin-orbit coupling was thus not considered. However, what is
remarkable is that the formula for the energy levels derived by Sommerfeld was exactly the
same as the one deduced from the Dirac equation. Moreover, the analysis of the hydrogen
spectrum allowed Sommerfeld to determine the structure-fine constant α to within a few
10−3.

Figure 1.1: Formula of hydrogen energy levels derived by A. Sommerfeld (extracted from the
reference [68].
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Chapter 1

The formula for the energy levels of the hydrogen atom derived from Dirac equation is:

E(n, j) = mec
2

1 + α2(
n− j − 1

2
+
√(

j + 1
2

)2 − α2

)2


−1/2

This equation can be expressed as a power series expansion of α

E(n, j) ≃ mec
2

[
1− α2

2n2
− α4

2n4

(
n

j + 1
2

− 3

4

)
+ ...

]

From this equation, we get the relation between the Rydberg constant R∞ and the fine-
constant α, that we use in our experiment to determine the constant α

hcR∞ =
1

2
meα

2c2 (1.2)

Dirac also predicted the magnetic moment of the electron with a Landé factor equal to 2,

µ⃗e = −ge
e

2me

S⃗, ge = 2

In 1947, two experiments undermined Dirac’s predictions, the first was the measure-
ment of a shift between the 2S1/2 and 2P1/2 energy levels of the hydrogen atom, namely
the Lamb shift [51]. The second is the experiment of Kush and Foley [50], which showed
from measurements of the Landé factors of Ga (galium), In (indium) and Na (sodium) that
the ge factor of the electron is slightly different from 2. These experimental observations
were explained by the interaction between the vacuum energy fluctuations and the elec-
tron.

The deviation of g-factor of the electron to Dirac prediction is called the electron mag-
netic moment anomaly ae. The first order of ae has been calculated by Schwinger [65]

ge
2

= 1 + ae ≃ 1 +
1

2

α

π

This correction depends only on the fine-structure constant α. These two experiments
and the Schwinger’s work mark the birth of quantum electrodynamics (QED). As we will
see in the next paragraph, higher order corrections including all the processes involved in
the interaction with virtual particles and photons of the quantum vacuum are accounted
for in a power law in α. This constant is the only parameter of quantum electrodynamics
that quantifies the strength of the electromagnetic interaction between elementary charged
particles.

2



Chapter 1 General introduction

Figure 1.2: Value and uncertainty of the coefficients A2n
i of (α/π), here n denotes the 2nth-order

of the perturbation theory of QED. This table is extracted form the reference[8]

1.2 Electron magnetic moment anomaly

1.2.1 Theoretical value of ae

The theoretical value of the electron magnetic moment anomaly has three contributions:
the electroweak, hadronic and QED contributions.

ae(theo) = ae(QED) + ae(Hadron) + ae(Weak)

The term ae(Weak) involves the weak bosons and the term ae(Hadron) account for
the interaction with quarks or hadrons without a weak boson. Since the electron is much
lighter than the weak bosons and hadrons, the major contribution comes from the QED
term. Indeed, ae(Weak) and ae(Hadron) accounts for only 0.026 ppb [35, 29, 30] and 1.47
ppb [58, 49], respectively, of the whole contribution.

The high-order QED corrections are formulated as a power series in α.

ae(QED) =
∞∑
n=1

A(2n)
e

(α
π

)n
+

∞∑
n=1

A(2n)
µ,τ

(
me

mτ

,
me

mµ

)(α
π

)n

In this formula, we distinguish the coefficients A(2n)
e independent of the mass which

involves only the electron and those depending on the mass of the two other leptons which
involves the creation and anihilation of those particles in antiparticle. These coefficients
are calculated to the fifth order using the technique of Feynmann diagrams. The table 1.2
summarises the most recent values of these coefficients.

Using the values of the fine structure constant published by the group of Holger Müller
in 2018 [59] and our group in 2011[18], one can calculate the theoretical value of the electron

3



Chapter 1

Figure 1.3: measurement principle of the electron magnetic moment anomaly . Left) the en-
ergy level of single electron submitted to the magnetic field. Right) experimental setup used by
Gabrielse group to measure cyclotron and spin frequencies. These two figures are extracted from
the reference [43]

magnetic moment anomaly. We obtain

ae (theo, α(Rb2011)) = 1159652182.037 (720)(11)(12)× 10−12

ae (theo, α(Cs2018)) = 1159652181.606 (229)(11)(12)× 10−12

where the uncertainties quoted are due respectively toα, numerical evaluation of the tenth-
order QED, and the hadronic contribution. Thus the uncertainty on the theoretical value
of the electron magnetic moment anomaly is dominated by the uncertainty on the fine
structure constant α.

1.2.2 Measurement of the electron magnetic moment anomaly

The ge factor of the electron is measured by only one group in the word, the group of
G. Gabrielse at Harvard university. The experiment measures directly the cyclotron and
abnormal frequencies using quantum-jump spectroscopy of a single electron trapped in
penning trap and submitted to a magnetic field (see figure 1.3).

ge
2

=

∣∣∣∣ µe

µB

∣∣∣∣ = νs
νc

= 1 +
νs − νc
νc

= 1 +
νa
νc

This method proposed by G. Dehmelt et al.[76, 77] has two main advantages, the mag-
netic field dependence drops out of the ratio and as the cyclotron and the spin frequencies
differ by 10−3, measuring the frequencies with an accuracy of 10−10 allows to reach an
accuracy of 10−13 on ge. In 2008, Gabrielse’s group obtained a measurement of ae with a
relative uncertainty of 0.28 part-per-trillion [43]

ae(exp) =
ge − 2

2
= 0.00115965218073 (28) [0.28 ppt]
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Chapter 1 General introduction

Figure 1.4: Theoretical and experimental values of the muon magnetic moment anomaly.

Dominant systematic effects come from the residual motion of the electron and the mag-
netic field gradient. Currently the group is building a new experimental setup to mitigate
these effects. In particular they will measured the spin and cyclotron transition frequencies
nearly simultaneously. They expect an improvement in uncertainty by a 10-fold factor [33]

1.3 The muon magnetic moment puzzle

Improving the uncertainties on the theoretical and experimental values of ae is partly mo-
tivated by the muon puzzle: the persistent discrepancy between the theory and the exper-
iment. Measurement of aµ is much trickier than for electron. Because it is short-lived, the
muon is less suitable for experiments using Penning traps, in which stable charged parti-
cles are confined by static magnetic and electric fields. Measurement of spin and cyclotron
frequencies are performed in a storage ring. Theoretical calculations are also more difficult,
especially the hadronic contributions which are more significant than for the electron be-
cause the muon is more massive. Recent measurement of aµ performed in 2021 at Fermi-lab
[1] confirmed the previous measurement in E821 Experiment at the Brookhaven [45] The
Figure 1.4 shows a persistent discrepancy of 4.2σ between experiment and theory that has
recently been thoroughly investigated [7],

δaµ = aµ(Exp)− aµ(SM) = (251± 59)× 10−11 (1.3)

If this discrepancy is the signature of new physics beyond the standard model, it should
be observed on the electron. Using a naive scaling [37, 72], one can evaluate the corre-

5



Chapter 1

sponding effect on the electron,

|δae| = |δaµ|
(
me

mµ

)2

≃ 5.8× 10−14 (1.4)

Thus to observe equivalent effect on the electron one must have a relative uncertainty on
ae(theo) and ae(exp) less than a few 10−14, which is not the case yet. This would require
an improvement by a factor of 10 in the ae experimental value and more importantly a
determination of the fine-structure constant with an accuracy of the order of 10−11.

1.4 Determination of the fine structure constant from
the recoil measurement

From equation 1.2, we can express the fine structure constant as a function of the ratio
h/me.

α2 =
2R∞
c

h

me

=
2R∞
c

Ar(at)

Ar(e)

h

mat

As it is difficult to measure the absolute mass of the electron, we introduce the relative
masses of an atom Ar(at) and the electron Ar(e) which are measured respectively with
a relative uncertainty of 7 × 10−11 for rubidium 87 [12] and 2.9 × 10−11 for the electron
[70]. Since the Rydberg constant is measured by hydrogen spectroscopy with an accuracy
of 1.9× 10−12 [73], the uncertainty on α is currently limited by the uncertainty of the ratio
h/mat. In our group we deduce this ratio from the measurement by atom interferometry of
the recoil velocity of an atom of mass mat that absorbs a photon of momentum ℏk, where
k is the wave vector.

vr =
ℏk
mat

(1.5)

The recoil velocity is 5.6 mm/s for rubidium 87 and 3.5 mm/s for caesium.

Currently, only two groups in the world measure atomic recoil to determine the fine-
structure constant. Holger Müller’s group at Berkeley measures the recoil of the caesium
133 atom. Our team started this project in 1998 using rubidium. We combine two techniques
to improve the precision of this recoil measurement.

• Coherent acceleration using Bloch oscillation in accelerated optical lattice. Thismethod
allows us to transfer about N = 1000 photon momenta to the atoms in 6 ms. The
transfer efficiency is 99.93% per Bloch oscillation. So we send a large amount N =
1000 of recoil velocities to the atom in a very short time. This way strongly reduce
our statistical uncertainty.

• Atom interferometry: we use a Ramsey Bordé interferometer to measure the Doppler
shift induced by N recoil velocity. It consists of 2 pairs of π/2 light pulses. Each one
induces a stimulated Raman transitions. The spacing time between the two pairs of
π/2 pulses is TR = 20ms which corresponds to a theoretical sensitivity

1

NBTR
= 0.05Hz (1.6)
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Chapter 1 General introduction

The results presented in this manuscript have been obtained with the third version of the
experimental set-up.

1.5 Plan of the manuscript

This manuscript is organised in two parts with five chapters. The part I is devoted to the
determination of the fine-structure constant with 81 ppt. It contains three chapters.

In chapter 2 , we will present the fundamental concepts of the experiment. We will
briefly present the principle of Raman transition and Bloch oscillations phenomena in an
accelerated optical lattice that are at the heart of the measurement. The different configu-
rations of atom interferometer will also be briefly introduced.

chapter 3 shows our experimental setup and howwe implement the conceptsmentioned
in chapter 1 on the experiment.

In chapter 4 , the experiment protocol is discussed andwe present our last determination
of α [55]. The statistical performance of our experiment is shown: currently we are not
limited by the statistical uncertainty but by the systematic effects. Subsequently, we will
discuss the three biggest systematic effects in our experiment, which is related with the
beam profile and cloud expansion.

We expect that the use of Bose-Einstein Condensates (BEC) will mitigate some system-
atic effects we mentioned in chapter 4. The following part is about the atom interferometer
with BEC and is made of two chapters.

In chapter 5, we will give some general information about Bose-Einstein Condensates
and show the expansion of the cloud calculated from Castin&Dum’s model in the Thomas-
Fermi regime. At the end we will show how we generate the BEC in our experiment.

In chapter 6, the effect of atomic interactions in BEC is studied by using a so-called
Mach-Zehnder atom interferometer. We proposed two different theoretical models to study
it: model A consists in solving the time dependant Gross-Pitaevskii Equation by using the
Castin&Dum’s model and model B consists in using the Feynman path integral approach
to study this effect. The two gives the same result but model B can also be used to study
the inhomogeneous spatial phase profile. The experiments are implemented and the theory
models reproduces well the experimental results.
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Determination of the fine-structure
constant with 81 ppt
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Chapter 2

The atom interferometry and atom
accelerator

In the introduction, I have explained the purpose of this experiment and what we do in our
experiment. If we want to use the determination of the α to test the Standard Model what
we can do is improving the accuracy of the recoil velocity measurement.

This idea used in our experiment to ameliorate the accuracy is very similar with mea-
suring the thickness of paper with a ruler. There are two things we can do to know better
the thickness of the paper.

I. We should choose the most precise ruler to measure it. And in our experiment, this
best quantum ruler or other words velocity sensor is atom interferometer with an accuracy
σ.

II. In order to decrease the statistical uncertainty, we would like to measure thousands
of papers together instead of just one paper. Our method is using Bloch oscillation to trans-
fer N recoil velocities to the atoms. We combine these 2 techniques working well in our
experiment and finally get a measure accuracy per sequence is

σvr =
σ

N
(2.1)

This chapter will first explain the counter propagating stimulated Raman transition acting
as a beam splitter and some fundamental concepts of atom interferometry. At the end we
will briefly talk about the Bloch oscillations.

2.1 Quantum ruler: Atom interferometer

2.1.1 Stimulated Raman transitions

The Rubidium 87Rb has two ground states |F = 1⟩ and |F = 2⟩ due to the hyperfine
structure with a energy frequency difference ωHFS. We consider only the excited state is

11



Chapter 2

52P3/2 |F = 2⟩ (D2 line). In the following discussion, these states will be called |1⟩, |2⟩
and |e⟩. In order to connect the two ground state, we use the two-photon transition in a Λ
scheme with two different laser fields [⃗k1, ω1] and [⃗k2, ω2].

E⃗i(r⃗, t) = E⃗i,0 exp
(
i
(
k⃗i · r⃗ − ωit+ ϕ0

))
(2.2)

where ϕ0 is the initial phase of the laser field, because these two lasers in our experiment are
well phase controlled so in the following we will conisder ϕi,0 = 0. Two photon transition
is a very useful tool in spectroscopy because it can be used to either enhance or suppress
the Doppler effect. The energy level is shown in Figure 2.1 .

(a) (b)

Figure 2.1: (a): Three level system for the description of Raman transitions. The excited state
is coupled to the two ground states through two beams that are detuned by ∆, which in our
experiment is ∼ 65 GHz. And the two different ground states is separated by νHFS ∼ 6.8 GHz.
The two photon detuning δ is set to select atoms with given velocity. (b):Example of a geometric
configuration where an atom is subjected to two beams. Extractedd from [54]

Resonant Condition

The two photon transition gives us a way to couple two hyperfine states, with laser source
in optical domain instead of microwave: when the atom transfers from |F = 1⟩ to |F = 2⟩
the atom will absorb a photon with [⃗k1, ω1] and stimulated emit a photon with [⃗k2, ω2].

Based on the momentum and energy conservation we can find out the resonant condi-
tion is :

δ = ω1 − ω2 − ωHFS =
p⃗i · k⃗eff
m

+
ℏ||⃗keff ||2

2m
(2.3)

where k⃗eff = k⃗1 − k⃗2. The second part of this equation is the Doppler shift induced by
the recoil velocity of the atoms. The effective wave vector k⃗eff can be different in two
configurations:

12



Chapter 2 The atom interferometry and atom accelerator

Co-propagating: k⃗1 and k⃗2 have the same direction, then keff has a magnitude very
small compared to |⃗k1| or |⃗k2|, then Doppler effect is negligible.

Counter-propagating: k⃗1 and k⃗2 the magnitude of keff ≈ k1 + k2, thus counter-
propagating Raman transition are more sensitive to the Doppler effect.

As what we want to measure is the recoil velocity, in our experiment we always use
the counter-propagating configuration. In this chapter we only focus on the counter-
propagating configuration where we can easily address the Raman transition to atoms with
a given velocity by scanning the two photon detuning δ.

Quantum dynamic description of Raman transition

Now we only consider the field [⃗k1, ω1] couples the state |1⟩ to |e⟩, the field [⃗k2, ω2] couples
the state |2⟩ to |e⟩. Of course a more realistic model should take into account the action
of field [k1, ω1] on |2⟩ and vice versa.([24, 17]). But in order to understand what happens
during the pulse, this simple model is enough.

Now we consider the atoms initial state |1, p⃗, n1, n2⟩, where we include the momentum
p⃗ of atoms and amplitude of the laser field [⃗k1, ω1] and [⃗k2, ω2]. Due to the Raman lasers,
three different state are coupled between each others:

|1⟩ = |1, p⃗, n1, n2⟩
|2⟩ = |2, p⃗+ ⃗ℏkeff , n1 − 1, n2 + 1⟩
|e⟩ = |e, p⃗+ ℏ⃗k1n1 − 1, n2⟩

where k⃗eff = k⃗1 − k⃗2 is the effective wave vector. When there is no extra field, the free
Hamiltonian of the subset {|1⟩, |2⟩, |e⟩} is

H0 = ℏ


δ + p⃗2

2m
0 0

0
(p⃗+ℏ ⃗keff)

2

2m
0

0 0 ∆ +
(p⃗+ℏk⃗1)

2

2m

 (2.4)

And now we add the two additional field [k1, ω1] and [k2, ω2], the coupling between the
ground states and excited state induced by the laser fields are:

V̂i = − ˆ⃗
d · ˆ⃗Ei (2.5)

where ˆ⃗
d is the dipole operator of the atom and ˆ⃗

Ei is the electric field operator associated to
the field.

ˆ⃗
Ei =

∑
i=1,2

ξ⃗i

(
eikix̂ai − e−ikix̂a†i

)
(2.6)

where ai are the annihilition operator of laser mode i.

13
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We define the Rabi frequencies which describe the coupling strength between the states.

Ω1

2
= 1

ℏ⟨e|V̂ |1⟩
Ω2

2
= 1

ℏ⟨e|V̂ |2⟩

which leads to a total Hamiltonian:

H = ℏ


δ + p⃗2

2m
0 Ω1

2

0
(p⃗+ℏ ⃗keff)

2

2m
Ω2

2

Ω∗
1

2

Ω∗
1

2
∆+

(p⃗+ℏk⃗1)
2

2m

 (2.7)

Because the Ωi ∼ 2π10MHz is much smaller than the one photon detuning ∆ ∼
2π65GHz, the population of the excited state should be very small : nearly all the atoms
stay in the two ground states |F = 1⟩ and |F = 2⟩. This allows us to simplify the three
level Hamiltonian into a two level Hamiltonian.

He = ℏ
[
δ + ΩLS

1
Ω12

2
Ω∗

12

2
ΩLS

2

]
(2.8)

where the ΩLS
i is the energy shift introduced by the defined field which is called light shift

in the later discussion. They are proportional to the corresponding Rabi frequency

ΩLS
i = −|Ωi|2

4∆
(2.9)

And the effective Rabi frequency coupling the state |F = 1⟩ and |F = 2⟩ is shown in below:

Ω12 = Ωe−iϕ = −Ω1Ω
∗
2

2∆
(2.10)

where ϕ = ϕ2 − ϕ1 is the difference phase of the two lasers.

Transition probabilities

Our three system can be simplified into an equivalent two level system. And we redefine
the a total detuning δtot that accounts for the Doppler effect δ shown in (2.3) and light shifts

δtot = δ + ΩLS
1 − ΩLS

2 (2.11)

Finally, we have the total effective Hamiltonian simplified as below (up to a constant
energy):

He = ℏ

[
δtot
2

Ωe−iϕ

2
Ωeiϕ

2
−δtot

2

]
(2.12)
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Chapter 2 The atom interferometry and atom accelerator

From the time dependant Schrödinger equation:

i
∂ψ

∂t
=
He

ℏ
ψ (2.13)

we find out the the evolution operator of the system is :

U(τ) =

[
cos
(
Ωeffτ
2

)
− isin(Ωeffτ

2
) δtot
Ωeff

−isin(Ωeffτ
2

)Ωe−iϕ

Ωeff

−isin(Ωeffτ
2

)Ωeiϕ

Ωeff
cos
(
Ωeffτ
2

)
+ isin(Ωeffτ

2
) δtot
Ωeff

]
(2.14)

where the Ωeff =
√

Ω2 + δ2tot is the effective Rabi frequency.

If all atoms are in the state |1⟩ at the beginning, then after a pulse with duration τ , the
probability to find atom in state |2⟩:

P1→2 = |⟨2|U(τ)|1⟩|2 (2.15)

=
Ω2

Ω2
eff

sin2
(
Ωeff

τ

2

)
When Ωeffτ = π (π pulse) then all atoms are transferred to |F = 2⟩ and the trajectopry

of the cloud could be changed. While when Ωτ = π
2
(π
2
pulse) the output will be a half and

half superposition (|F = 1⟩ + |F = 2⟩)/
√
2 which can act as quantum splitter. So with

the combination of π and π
2
pulses we can make a atom interferometry with cold atoms

which will be discussed just later.

This Rabi spectra is plotted in Figure 2.2. From this we can see that the coupling width
is proportional to the Rabi frequency. And also we notice that the width of the spectra
scales inversely with the pulse duration. This can be interpreted as an illustration of the
Heisenberg principle: as the pulse duration increases, its resonance frequency gets defined
with a better precision. But even if we fix the pulse Ωeffτ = π then we find that the width
selected is proportional to the Rabi frequency.:

∆v ≈ Ω

keff
(2.16)

This gives us an idea how to do a velocity sleclection before our atom interferometer. In our
experiment the rabi frequency Ω can variate from several 5 kHz to 20 kHz. If we continue
discuss two situation co or counter propagating with a given Rabi frequency around 5 kHz
then we have

• Co Propagating: ∆vCo ≈ 220m/s

• Counter Propagating: ∆vCounter ≈ 2× 10−3m/s

In our experiment, between the end of generation of molasses with temperature 4 µK
and the beginning of the atom interferometer we use two counter propagating pulses with
Rabi frequency 5 kHz to do a velocity preselection, which we will explain in chapter 4.
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Figure 2.2: Transition probability after a single Raman pulse. The solid lines are π pulse where
Ωeffτ = π and the dashed line is π/2 pulse where Ωeffτ = π/2. The solid lines with different
colors correspond different Rabi frequency

2.1.2 Atom interferometer

With the development of laser cooling, the first generation of the atomic interferometers
[48] made a milestone of the precision measurement. Compared with the optical interfer-
ometry, the advantage of atom interferometry is that the matter wave, or equivalent the
ultra cold atoms, is sensitive to forces. So this is a very good way to detect some tiny force,
for example van der Waals force, the gravity or even the gravity gradient and the gravita-
tional waves and so on. The principle is still the same, the interferometry signal depends
on the phase difference between the two different trajectory.

In the following, I will give some general information about atom interferometry. The
two arms of the atom interferometer is plotted in Figure 2.3. The total phase difference
between two trajectories A and B can be divided into two parts: the phase due to the free
propagation of the the atoms during between the pulses and the phase induced by the laser.

• Free propagation: This phase difference can be written as

∆ϕL = (SA
L − SB

L)

where SL is the Lagrange integral along the each path

SL =

∫ tf

ti

L(z(t), ż(t))

with the Lagrangien given by

L(z(t), ż(t)) = mż2

2
− V (z)
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A

B

t

Figure 2.3: Schema of the different path of atom interferometer. The first pulse separates the
atoms cloud and the last pulse make the two clouds recombine and close the atom interferometer

where the V (z) is the potential the atoms felt at position z, which can also written
in a formula with acceleration V (z) = −maz. If we have a uniform acceleration in
the area of the interferometer, it can be shown that this part ∆ϕL vanishes.

• Laser phase: This part comes from the interaction between the atoms and fields.
From (2.14) when at resonance we have the laser phase transfer to the atoms

ϕl(ti) =


ϕlaser(ti) if |1⟩ → |2⟩
−ϕlaser(ti) if |1⟩ → |2⟩
0 if |i⟩ → |i⟩

(2.17)

where the laser is ϕlaser(t) = k⃗eff(t) · r⃗(t)− (ω1 − ω2) t.
AT the output of the interferometer the total phase shift on each path due to laser is

ϕlaser =
∑
i

ϕl(ti) (2.18)

Then the phase difference at the output of the interferometry is :

∆ϕ = ∆ϕL +∆ϕlaser (2.19)
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Usually, the atom interferometer is closed and symmetric. Therefore, the propagation
is zero ∆ϕL = 0. More detail is explained in [46].

• 2 pulses configuration - Ramsey sequence

• 3 pulses configuration - Mach-Zehnder interferometry

• 4 pulses configuration - Ramsey Bordé interferometry

2.1.3 Ramsey Sequence

Let’s start with the 2 pulses configuration: Ramsey sequence

2 2

Figure 2.4: Pulse sequence of the Ramsey sequenceπ2 − π
2 . The time delay between the two pulses

is TR

If we assume that the initial state is |F = 1⟩ and after these two π
2
pulses the transfer

probability will be (more calculation details in [54]):

P1→2 =
1 + cos(δ × TR +∆ϕ)

2
(2.20)

where ∆ϕ = ϕ1 − ϕ2 is the phase difference between the two lasers. Because these two
lasers are phase locked between each others, this phase is well controlled. To simplify the
calculation in the later discuss, we assume ∆ϕ = 0. δ is the detuning seen by the atoms
has already shown in (2.3). If in this measurement the resonant condition is satisfied, we
should find out the central fringe and know the center velocity of the atoms. This should
be discussed in two different situations:
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Chapter 2 The atom interferometry and atom accelerator

• Co Propagating: The width in velocity space of the transition allows to address all
the atoms and the inhomogeneous phase induce by the Doppler width is∆vkeffTR ≈
40mrad with a 4 µK molasses and TR = 10ms. These phase shifts may result in a
loss of contrast but at this order of magnitude, they do not damage the fringes signal.
So this way can also be used to detect other systematic effects on the atoms, For
example, the 2nd order zeeman effect.

• Counter Propagating: We suppose before the Ramsey sequence, we have already
finished the velocity preselection, the Doppler width is ∼ Ω12 and then the inhomo-
geneous phase induce by the Doppler width is Ω12TR ≈ 50 rad which is extremely
big and totally destroy the signal. So Ramsey sequence in counter propagating con-
figuration is not possible. But we can use two Ramsey Sequence to close this atom
interferomter called Ramsey Bordé configuration, in this configuration the output is
no longer sensitive with the entry velocity of cloud but the velocity change between
these two Ramsey Sequences.

2.1.4 Mach-Zehnder Configuration

Now let’s assume the atom feels some force so it will have an acceleration a⃗, and the laser
propagation direction superposes with this acceleration. Mach-Zehnder interferometry is
popular in the measurement of acceleration, for example the gravity. The pulse sequence
is shown in the Figure 2.5.

In the Mach-Zehnder configuration, the last pulse closes the interferometer and it’s
symmetric. So the phase due t the propagation is zero ϕL = 0. The phase difference at the
end is ∆ϕ = ∆ϕlaser. If during the interferometer we don’t modulate the frequency of the
laser, we can calculate the phase difference :

∆ϕ = keffaT
2 (2.21)

where keff is the effective wave vector. From this equation we can see that the sensitivity
of acceleration a is∝ 1/(keffT

2) and depends on time delay between each pulse. So we can
increase the sensitivity by increasing the time delay TR.

Now we sweep linearly the frequency of the laser ω = ω0 + βt with a sweep rate β.
The final phase difference will be

∆ϕ = (keffa− β)T 2 (2.22)

So by scanning the rate β and measure the value for which ∆ϕ = 0, we can at the end
get the value of acceleration a = β/keff . This is an efficient way to measure acceleration
precisely, for example the gravity g⃗.

2.1.5 Ramsey Bordé Configuration

What we used in our experiment is a Ramsey Bordé configuration, the pulse sequence is
shown in Figure 2.6. Instead of a π pulse in the middle of the interferometer, we use two
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A

B

t

Figure 2.5: Pulse sequence of the Mach-Zehnder sequenceπ2 − π − π
2 . The time delay between

each pulse is TR

π/2 pulses. A very big advantage of Ramsey Bordé configuration is that the internal state
of the atoms between the two Ramsey sequence are the same and a lot of experimental
manipulation can be applied in between, for example a velocity kick given by Bloch Oscil-
lations.

At the output the phase difference between the two arms A,B will only depend on the
laser phases which can be written as:

∆ϕ = TR(keff∆v − δω) (2.23)

where∆v is the velocity change between the first and third pulses and δω is the frequency
difference between the two Ramsey sequences. Different from single Ramsey sequence,
Ramsey Bordé sequence can determine the center fringe by scanning the frequency dif-
ference δω between the first and second pair of laser pulses. This gives us a good way to
measure the recoil velocity.

h/m measurement

As we said in the introduction, we are doing the h/mmeasurement by measuring the atom
recoil velocity vr. In our experiment ∆v contains the velocity change due to the gravity
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A

B

t

Figure 2.6: Pulse sequence of the Ramsey Bordé sequenceπ2 − π
2 − π

2 − π
2 . The time delay in each

Ramsey sequence is TR and the time delay between two Ramsey sequence is TD

and the acceleration of Bloch oscillations that transfer to atoms 2NBvr. So at the output
of the atom interferometer, the phase difference can be written more precisely (more detail
will be presente in chapter 4):

∆ϕ = TR(keff(gTD + 2NBvr)− δω) (2.24)

2.2 Atom accelerator: Bloch oscillations

We have the precise ’quantum ruler’: atom interferometry, now we should think about
how we sum up thousand recoil velocities together to reduce the statistical uncertainty.
The technique we use in the experiment is the Bloch Oscillations.

Here, a simple image can be used to understand the Bloch oscillations quickly: it is like
a succession of counter propagatingΛ transitions but with the atoms remaining in the same
internal state. We display the energy-momentum diagram of such a process in Figure 2.7
(More details are shown in [20]).

Our experiment uses two vertical counter propagating Bloch lasers to generate a vertical
optical lattice. From the Figure 2.7, we know that if wewant to continuously apply the Bloch
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L1 L2

Figure 2.7: Energy momentum diagram of repeated Bloch oscillations. L1 and L2 are the cor-
responding Bloch lasers. Once the atoms are resonant with the lasers then it will do one Bloch
oscillation and get two additional photon momentum 2ℏk.

oscillations to the atoms, we should sweep the frequency of Bloch lasers with δω(t). Those
two laser frequency is swept in opposite direction, which will shown in subsection 3.3.3.
Then we can write the expression of the lasers’ amplitude:

E± = E0exp

(
i

(
±
(
k ±

∫
δω(t)

c

)
z −

(
ωt±

∫
δω(t)dt

)
+ ϕ±

))
(2.25)

where the sign ± shows the propagating direction of the beams: upward (+) or downward
(-) and because these two lasers share the same laser source (seen in subsection 3.3.3) so the
ϕ+ = ϕ−. They will generate a moving optical lattice with the potential [40].

V = V0 cos
2
(
kz −

∫
δω(t)dt

)
with V0 =

3πc2

2ω3
atom

Γ

∆
4I0 (2.26)

where the ωatom is atom resonance and ∆ = ωlaser − ωatom is the detuning of laser. In
our experiment, it is blue detuned ∆ > 0, which means the atoms will be trapped at a
minimum intensity to reduce the spontaneous emission caused by the Bloch lasers. In order
to minimize the spontaneous emission, we far tune the Bloch from the atom resonance
∆ ∼ 40GHz.

Here we define the recoil energy Er = (ℏk)2/2m. Then we discuss the potential depth
in two different situations:

• Weak binding limit V0 ≪ 4Er: Lattice potential can be treated as a perturbation to
the free case.

• Tight binding limit V0 ≫ 4Er: The atoms are trapped in the potential wells. The
higher the potential is, the harder for the atoms to escape from the potential.
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Chapter 2 The atom interferometry and atom accelerator

In our experiment for each beam we have around 300mW power that can generate a very
deep potential V0 ∼ 80Er. In this situation, the atoms are tightly trapped in the lattice.
We image that now the atoms are closed in a box made by the optical lattice, so atoms will
follow the motion of the optical lattice.

Now let us look back at the Equation 2.26. When we chirp the Bloch laser frequencies,
we create a moving optical lattice at an acceleration:

a =
λ

2π

dδω

dt
(2.27)

where λ is the wavelength of the Bloch laser. Using this chirping principle, one can com-
pensate for the motion of the free-falling atoms by setting a = −g and taking gravity into
account during the acceleration of the lattice. This compensation is used in the experiment
when performing BO. Once we know the acceleration, we can deduce the Bloch oscillation
period τB = (2ℏkB)/2ma.

Typically in our experiment, the τB ∼ 12 µs and NB = 500, which means that now we
can transfer 1000 recoil velocities to the atom is around 6ms. And each Bloch oscillation
has a very high-efficiency 99.93%. This atom accelerator gives us an easy way to control
the atoms precisely.
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The Experiment Set up

This research project, ’Measurement of h/m’, started in 1998 in our group. During these 20
years, three versions of the experimental setup have been used to measure the ratio h/m.
The previous version setup issued the determination of α with a relative uncertainty of
6.6 times10−10 in 2011. In order to improve the accuracy of this determination, a new design
setup was started in 2013 and has been detailed in the previous PhD thesis of Courvoisier
and Jannin([27],[46]).

Duringmy PHD study, this last version of the experimentwas alreadywell implemented
and ready to do the measurement. This chapter will give a description of our experiment
setup.

In this chapter, we start by presenting the part about atom interferometer with laser
cooled atoms using a molasses (the BEC setup will be described later).

• The vacuum cell and the setup to produce the atomic cloud

• The detection part: Time of flight detection.

• The interferometer laser system in our experiment.

3.1 Atomic sample generation

This experiment can prepare two different types of atomic sample: a molasses and a Bose-
Einstein condensate (BEC).

• Molasses: within 1 second, we have 108 atoms in the atom cloud with temperature
4µK and a size r ≈ 600µm

• BEC:within 3.2 seconds, we have 220 000 atoms in the atom cloud with temperature
80 nK. This will be explained in the next part.
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Magnetic
shield

Figure 3.1: Left: Wood panel box protecting the experiment from the environment perturbation.
Right: µ−metal magnetic shield for the interferometer tube

3.1.1 Vacuum cell and outlook of set up

The schematic presentation of the vacuum cell is shown in Figure 3.2: Our vacuum cell is
L-shape: the horizontal part is a 2D MOT which precools the atoms before they enter the
main chamber. The center of the ’L’ is themain chamberwhere the atom sample is prepared.
The vertical part is the interferometry area where we implement the atom interferometry
measurement.

The requirement of the vacuum cell is a pressure below 10−9 mbar to allow the trapped
atom lifetime over 10s. We use NEXTorr pumps and an ion pump to meet this requirement.
This way, we obtained a vacuum cell with 2× 10−10 mbar continuously running for 4 years.

Finally, the vertical part is a tube surrounded by a solenoid to create a bias field along the
vertical axis. Because we do the atom interferometer in the vertical part, we need to have
a very controlled magnetic field that is well isolated from the surrounding environment.
A two-layer cylindrical µ−metal magnetic shield is used. The residual magnetic field is
estimated below 100 µG. Between the atom interferometer tube and the main chamber, a
square chamber is used to detect the atoms.

Finally, the vacuum cell is surrounded by an aluminum profile system. We use wood
panels to protect it from environmental noise (mainly air flow).
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Interferometry area

Detection cell

Atom source
Rubidium cell

2D-MOT Cell

Main chamber:
MOT

Optical molasses

NEXTorr pumps Agilent ion pump

MOT coils
position

z

Figure 3.2: Schematic of the vacuum cell and main experiment part of our atom interferometer.
The vertical bias field is generated by a solenoid wrapped around the tube of the interferometry
area. It is isolated from the surrounding magnetic field by a magnetic shield not shown in this
picture. Extracted from [54]
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Figure 3.3: Measurement (blue dots) of the magnetic field as a function of the position. The orange
line corresponds to an interpolation of the data by an unified spline.

Magnetic field measurement

The stability of magnetic field in the interferometer tube is important for our final accuracy
of the determination of h/m. After the installation of the magnetic shield, we use the
transition |F = 1,mF = ±1⟩ → |F = 2,mF = ±1⟩, which is sensitive to the magnetic
field with sensitivity of 1.4MHz ·G−1 [69]. The details of measurement is seen in [54].

On the edges of the interferometer area, as such of the solenoid and the magnetic shield,
the magnetic field exhibits significant variations. However, in the center of this area, in a
45 cm long distance, we have a well controlled magnetic field with local gradients less than
4mG/m where we can run our atom interferometer.

3.1.2 Atom trapping lasers

In the magneto-optical trap, two lasers are used. One is the cooling laser which makes a
σ+ transition from |F = 2⟩ → |F ′

= 3⟩ such that the atoms cannot fall back to |F = 1⟩
and remain trapped. Another one is the repump laser, because |F = 2⟩ → |F ′

= 2⟩
transition is not strictly forbidden and from |F ′

= 2⟩ the atoms may fall back into |F = 1⟩.
In order to put all atoms back to |F = 2⟩, this repump laser is set resonant with transition
|F = 1⟩ → |F ′

= 2⟩. The frequency of laser used in the experiment is shown in Figure 3.4.

The property of our atom sample is highly related to the frequency of the cooling laser.
Then the important thing is to well control the frequency of the two lasers.
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Figure 3.4: The frequency of Repump and Cooling lasers are presented with 87Rb D2 transition
hyperfine structure, with frequency splittings between the hyperfine energy levels.

Repump and Cooling laser system

The two lasers are generated through laser diodes (Thorlabs L785P090) in Extended Cavity
Diode Laser (ECDL) configuration [14]: the laser diode is placed in a Fabry-Pérot cavity.
One end of the cavity is a mirror, and the other is the diode itself. Inside the cavity, an
interference filter is used to filter a lasing mode at 780 nm. This system’s output is around
20 mW per diode. The output passes through a Faraday isolator to protect the diode from
feedback light and then split into different parts for frequency manipulation on the lasers.

• First, a small part of the repump is split and sent to the saturated absorption box
to lock the repump laser frequency on the crossover of the |F ′

= 1⟩ and |F ′
=

2⟩[52]. Because the frequency difference between the |F ′
= 1⟩ and |F ′

= 2⟩ is
around 160MHz, the 80MHz difference between the crossover could be compensated
through the acoustic optical modulator (AOM) later in our experiment.

• Part of the cooling and repump lasers are superposed and sent to a photodiode to
produce a beat note. This beat note is then frequency locked with a variable reference
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Figure 3.5: The module of trapping laser frequency control.

microwave signal such that we have a dynamic control on the cooling laser frequency.

• Most of the repump and cooling power is sent directly to the Master oscillator power
amplifier (MOPA) after passing through a Faraday isolator. During my phd, we had
tp remove the fiber coupler because we changed to a new MOPA which needs more
input power. Moreover, this configuration reduces the power fluctuation after the
Faraday isolator before the input of MOPA.

For now, we have a very stable laser frequency lock system which can continuously run
for many hours without jumping out of the lock.

Magnetic optical trap

Optical cooling is an efficient way to cool down the atoms and get an ultra cold atom cloud.
With 6 laser beams we can cool down the atom cloud in three dimensions and obtain an
optical molasses in the experiment. By this way we can cool down the atoms to get a cloud
at temperature ∼ 4µK [75, 31]. However, with only an optical trap, the atoms will be
placed everywhere with a very low density. In order to circumvent this problem, we add
a magnetic field to form a magneto-optical trap (MOT)[32, 62] and have a 3D MOT after a
2D MOT[63]. This configuration allows for higher density and loading rate.

This magnetic field is generated from a pair of coils in an anti-Helmholtz configuration.
The current through the coils is controlled by an analog signal which allows us to tune it up
to∼ 15G/cmmaximum. Moreover, we need tomake the center of themagnetic quadrupole
overlap with the center of molasses to have efficient molasses. We used three pairs of coils,
each corresponding to a spatial direction, to compensate for the residual magnetic field.
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Figure 3.6: Schematic representation of the MOT tables.The input of the MOPA is directly from
Figure 3.5. This table contains not only the lasers used in the MOT but also the lasers for the
detection.
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Figure 3.7: Steps sequence for the optical molasses

Generation of molasses

All the lasers used in the generation of molasses are presented in Figure 3.6, including the
lasers used for detection.

To get efficient optical molasses, we follow a few steps shown in Figure 3.7. First, we
have around 600ms MOT loading time, which is limited by the duration of the sequence.
During the loading process, the detuning of the cooling laser is set to ∼ −1.9Γ and the
magnetic gradient is around 9G · cm−1. Then we quickly increase the magnetic gradient
to maximum 15G · cm−1 while the cooling frequency is swept to ∼ −3.3Γ. We call this
process ’Compress MOT’, which can slightly compress the cloud to get a higher density.
This process lasts for 25ms and maximizes the density of the atom cloud.

Then the magnetic field is switched to zero in 20ms, and simultaneously the cooling is
detuned from −3.3Γ to −6Γ. Now we reach the molasses phase, and then we detune the
cooling laser frequency to be−22Γ and wait for 15ms. Finally, we shut down the power of
the laser and release the cloud by ramping down the laser’s intensity 15% of its maximum
value in 10 ms before an abrupt shutoff. The total duration of this stage is approximately
80ms, so the total time to get the final optical molasses with 4 µK is around 700ms.

3.2 Detection

In our experiment we have two different ways to detect atoms: Absorption imaging and
light sheets detect.

• Absorption imaging: Detect the atom sample in the main chamber. We will talk
about it in the next part dedicated to the BEC.
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Figure 3.8: Schematic of the detection setup from a view from the side. On top the picture shows
the counterpropagating circularly polarized light sheets. As the atom falls, the figure reads from
top to bottom. The atoms in|F = 2⟩ are detected in the first light sheet and blown away thanks to
the mask on the retro reflecting mirror. The remaining atoms, in |F = 1⟩ , are then repumped and
detected. On the bottom, a view of the imaging system : the atom cloud is imaged on photodiodes,
whose signals are then amplified and recorded.

• Light sheets detection: Detect the atom sample falling down after the atom inter-
ferometer.

3.2.1 Light sheets detection

As we discussed before, when we do the measurement of h/m, the atom interferometer
sequence happens in the vertical tube where the magnetic field B⃗ is well controlled. When
it falls back, the minimum velocity of the cloud is around 3m/s, and it is no longer possible
and suitable to detect them by using absorption imaging. In this situation, we use the col-
lection of fluorescence photons emitted by the atoms in a probe light sheet. The schematic
presentation is shown in Figure 3.8:

To present this detection process, let us imagine that the atom cloud finished the atom
interferometer, and now it has two components of atoms in |F = 1⟩ and |F = 2⟩. When
the atoms pass through the first probe light sheet, the atoms in |F = 2⟩will get excited and
blown away, but it will not affect the atoms in |F = 1⟩. So the remaining atoms in |F = 1⟩
will be repumped to |F = 2⟩ in the repump light sheet and detected in the second probe
light sheet.

The probe laser is σ+ polarization which can avoid the atoms falling back into |F = 1⟩.
And a tiny bottom part of the probe light sheet is blocked by black paper, which can blow
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away the atoms in |F = 2⟩ from the detection area. A lens system, which is made up of
two Thorlabs AC508-080-b achromatic lenses, collects all the spontaneous emissions from
the probe light sheets and sends them to two different photodiodes. An example of a signal
is plotted in Figure 3.9
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Figure 3.9: Signals obtained with the light sheets detection. Top: raw signals of each photo diodes.
Bottom: differential signal for processing and its fit with two gaussians.

We analyze the difference between the two signals to cancel the common noise on these
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two photodiodes. Then this difference can be fitted with two different gaussian functions:

f(t) = −a2exp
(
−
(
t− t2
w2

)2
)

+ a1exp

(
−
(
t− t1
w1

)2
)

+ offset (3.1)

In this equation the subscript 1,2 correspond to the internal state of atoms |F = 1⟩ and
|F = 2⟩. In particular, the widths of the two signal are very close w1 ≈ w2 so that we take
the amplitudes a1 and a2 as the atom numbers.

3.3 Interferometry laser system

In the previous sections, we discussed the experimental part of generating the atom sample
and detection. We will talk about another essential part of our experiment: the interfer-
ometry laser system. This part includes 4 different lasers used during the interferometry.
They are:

• Raman lasers used to do the Raman transition

• Bloch lasers used to do the bloch oscillations

• The vertical blow away laser derived from the MOT cooling laser

• The vertical repump laser derived from the MOT repump laser

All the lasers are prepared on the interferometry table (shown in Figure 3.10) and prop-
agate vertically along the vertical tube where we do the atom interferometry (shown in
Figure 3.11).

Because the third and fourth lasers are a fraction of the cooling and repump lasers
discussed before so in this section, we only talk about the Raman and Bloch lasers.

3.3.1 Laser preparation

Amplifier and double frequency

In order to obtain a high-power laser at 780nm for Raman and Bloch lasers, we use a
Muquans laser, an amplifier doubling module seeded with a narrow bandwidth laser at
1560nm.

First, the seed laser is sent to the Erbium-Doped Fiber Amplifier (EDFA)[57]. The target
is highly amplified due to stimulated emissions in EDFA. Then this amplified laser is sent to
Periodically Poled Lithium Niobate (PPLN) to make Second Harmonic Generation, which
gives a laser at 780nm. The whole process is presented in Figure 3.12
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Figure 3.10: Schematic representation of the interferometry table
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Figure 3.11: Schematic of the interferometry laser path. The two Bloch beams are distinguished
by their direction of propagation (Downwards (D) or Upwards (U)). Each Raman beam is indicated
next to its input fiber with its corresponding linear polarization axis. One of the Raman is reflected
by the reflecting mirror on the vibration table (Minus-K table) to do the counter-propagating
Raman transition. This table can reduce the ground vibration noise. It is well explained by the
previous PhD student in our group [6].

However, under such a high pump, the ions also have nonnegligible spontaneous emis-
sions during the amplification. Although this process is supposed to be random, there are
also a lot of random photons coupled into the fiber and amplified subsequently. This pro-
cess will produce a significant background shown in Figure 3.12, which we call amplified
spontaneous emission (ASE) background.

At the end we can get for each Bloch and Raman laser around 800 mW output power
at 780 nm, this power allow us to use a larger beam size to reduce the systematic effects
in our experiment. Our next step is using an even more powerful laser for our Bloch and
Raman laser, with an expected 2W output power.
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Figure 3.12: The amplifier double frequency module based on a seed laser at 1560nm. The row
above presents the amplifier and double frequency part and the row below shows the spectrum
and power after each process.

Frequency stabilisation

The h/m measurement is based on the measurement of the recoil velocity of an atom vr,
so the stabilization of the Raman and Bloch lasers is essential in our group.

vr =
ℏk
m

(3.2)

For the last measurement of h/m the Raman and Bloch lasers are locked onto a cavity
stabilized on an atomic transition [6] and their frequencies are periodically measured using
a frequency comb because the frequecy comb of our team was not enough to lock the laser
continuously. By this way we observed a long term variation of the lasers’ frequencies by
∼ 10 kHz.

Recently this frequency stabilisation setup is changed and the Raman and Bloch lasers
are frequency-locked on reference 1560nm ultra-stable frequency comb with only 2Hz line
width coming from the group of L. Hilico.

The seed lasers at 1560nm of Raman and Bloch are separated into two parts at the
beginning. Most part is sent to do the EDFA, and the rest 10% power is sent to phase lock
with 1560nm frequency comb. The whole system is presented in Figure 3.13.

The 1560 nm ultra-stable laser is split half and half andmixed with the Bloch and Raman
laser to get a Beat note signal∆f ∼ 15MHz. The repetition rate of this frequency comb is
200 MHz, so 15 MHz is a good choice, allowing us to know which tooth we are locking on.
The Beat note passes through a low pass filter to remove the high-frequency component,
and then this signal is sent to the redpitaya where the frequency is measured to create an
error signal for each laser. Each signal is completed with a PID controller to individually
feedback on the NKT lasers of Raman and Bloch.

This way, we can know precisely the frequency of our Bloch and Raman lasers. And the
frequency lock is very stable which can keep locked without jumping for more than two
days.
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Figure 3.13: The frequency stabilisation system

3.3.2 Raman phase lock

In our experiment, we use two lasers whose frequency difference should be the hyperfine
splitting of the two ground states |1⟩ and |2⟩ to perform the two photon Raman transition.
Because we want to know precisely the velocity of the atom cloud and follow the atom’s
motion, we need to have good control of the frequency difference between these two lasers’
frequencies. One good way is to phase lock one laser on another.

For our Raman laser system, we have two different sources. One is an NKT laser with
a narrow width whose absolute frequency is locked with the previous ultra-stable laser.
This laser we call Raman 1. Then we have a second RIO diode laser with a broader width
but fast response time that can allow us to do quick frequency modulation on the laser
frequency, called Raman 2. We phase lock the RIO laser frequency on the NKT laser. The
whole schematic is shown in Figure 3.14

We superpose the beams of Raman 1 and Raman 2 and send a small part of their su-
perposition to a fast photodiode in order to generate a beat note signal with a frequency
around 6.834 GHz. After amplification by 35 dB, a small part is used for observation, and
most of the signal is directly mixed with a signal∼ 6.514GHz and passes through a low pass
filter. We then have only the signal at∼ 320MHz. This signal is divided by 4 and sent to the
Phase Comparator device. The synchronization input of the phase comparator is fed with
a RedPitaya output set in a direct digital synthesizer. This device outputs a 40 MHz signal
which is frequency-doubled. We obtain two 80 MHz signals to implement phase locking.
The PLL is then completed with a PID controller to feedback on the RIO diode laser and lock
its phase to the first Raman laser. The frequency and phase of the Raman laser is precisely
controlled by the DDS in the RedPitaya.
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Figure 3.14: Raman Phase Lock Loop (PLL) frequency chain. Extracted from [54]

3.3.3 Bloch lasers preparation

Bloch laser uses the same technology as the Raman to get a high-power at 780 nm. The
different is that, in order to generate a stable and moving lattice and implement the Bloch
oscillations, it is better to use the same laser source: another narrow width NKT laser. We
want an extensive frequency scanning range that can allow us to implement more Bloch os-
cillations in our experiment. Instead of using double-pass AOMof 780 nmwhere power will
be lost, we do the frequency tuning before the laser is amplified and double in frequency.
The schema is shown on Figure 3.15. In this way, we can have more power.

The frequency of the Bloch frequency is given by:

f± = 2(fNKT + f 0
AOM ± δf) (3.3)

Different from the Raman pulses, whose duration is the order of µs, each Bloch pulse
has a duration around severalms. So if there is a part in the ASE background resonant with
the atoms, it will induce a spontaneous emission which cause decoherence of our atom
cloud. Consequently, it decreases the contrast of the final interferometry signal. To solve
this problem, we let the Bloch lasers pass through a heated Rubidium cell before it touches
the atom cloud. The preparation schema is presented in Figure 3.16.

Since our Bloch lasers are far blue detuning from the resonant by ∆ ∼ 40GHz, this
heated Rubidium cell will not attenuate this target signal. The reason to heat it is to increase
the pressure in the cell so that resonant part in the ASE part will be more absorbed by the
atoms.
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Figure 3.15: The Laser system for the implementation of the Bloch Oscillation process.A single
source split into two amplification-doubling modules. The control of frequency of the lasers at
780 nm is achieved by the frequency command of AOMs placed before the amplifiers. We tune
the two lasers same absolute value but with opposite sign in order to make sure the sum of these
two Bloch frequency is always the same.
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Figure 3.16: Both beam pass through a Rubidium cell for ASE background filtering

Now by those techniques, we can send 1000 photon momenta to the atoms in just 6ms
with high efficiency of 99.93% per Bloch oscillation.What’s more, this atom accelerator
gives us an easy way to control the atoms precisely.
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h/m measurement and systematic
effects

Matter-wave interferometry has been used to measure with extreme precision and accu-
racy several physical quantities e.g., gravity, inertial forces and fundamental constants [64,
59, 55] enabling advanced tests of general relativity [11] and quantum electrodynamics [55,
59]. This technology, which has not yet reached its full potential, is also at the heart of large
scale or space instruments, that are being built, with the target of significantly improved
performance for testing fundamental physics with unprecedented accuracy, detecting grav-
itational waves [3, 21, 78], exploring exotic forces [39, 38, 9, 10, 44] and mapping the Earth’s
gravity field from satellites [34, 4, 15]. Furthermore, large momentum atomic beamsplliters
by using ultra-cold source [25, 56, 23, 36] is a pontential way to increase the accuracy of
atom interferometry.

In the previous chapters, we have shown the main principle of the measurement of
the recoil velocity: the combination of the Ramsey Bordé interferometer with the Bloch
oscillations technique. This provide us a good way to measure the ratio h/m to determine
the fine structure constant α.

In this chapter, we will discuss the experiment process in more detail and show three
main systematic effects of our experiment.

4.1 The h/mmeasurement

4.1.1 Experiment protocol

From the Equation 2.23, we know that the phase difference at the output of the interferom-
eter depends on the velocity change between the two Ramsey sequence. Bloch Oscillations
allows us to transfer thousand of recoil velocity vr to the atoms, but in the experiment, the
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atoms is also affected by gravity. The more precise expression of the phase difference is :

∆ϕ = TR

(
ϵRkR

(
ϵB2NB

ℏ
m
kB − gTD

)
− δω

)
(4.1)

where δω is the frequency detuning shift between the two Ramsey sequences and ϵR = ±1
describe the direction of the Raman beam and ϵB = ±1 the direction of the acceleration. The
exchange of direction of the laser beam and Bloch acceleration are: Gravity cancellation
and Systematic effect reduction. The trajectory of each different laser beam is shown in
Figure 4.1.

Gravity cancellation

A simple way to understand it is that the Doppler shift causes the phase shift due to the
velocity changes between two Ramsey sequences. From Equation 4.1, we can see that this
velocity difference has two contributions: the shift controlled by the Bloch oscillations and
the gravity. By combining the two Bloch acceleration directions, we can eliminate the
impact of gravity and obtains the h/m ratio:

h

m
=
δω(ϵB = 1)− δω(ϵB = −1)

2NBkRkB
(4.2)

In this way, we can remove the effect of gravity. But if we do the sum of the two Bloch
acceleration directions, we can also extract the gravity precisely.

Systematic effect reduction

If everything in our experiment is ideal, thenwe only need to remove the gravity tomeasure
the h/m ratio. But we explained in chapter 2 that the phase shift also depends on the atomic
internal energy difference. Of course, this phase is zero if this energy difference is constant
over the entire interferometer. The Bloch acceleration makes an immediate velocity kick
in 6ms reaches ∼ 6m/s. This abrupt and big velocity change leads to a quite different
trajectory for different Bloch directions. Consequently, the magnetic field inhomogeneity
and light shift can induce an additional phase shift.

• B⃗ inhomogeneity: Evenwith the so-calledmagnetic insensitive statemF = 0, there
is still 2nd order Zeeman that should be taken into account.

δω2nd = ±KB(z)2

2
(4.3)

whereK = 575.15Hz/G, and δω2nd is positive if atom is in |F = 1,mF = 0⟩ or neg-
ative if atom is in |F = 2,mF = 0⟩. So if the spatial distribution of the magnetic field
is not inhomogeneous, this will introduce a big shift. But as we showed in Figure 3.3,
the magnetic field in the tube is very stable. And by using a precise computation of
the atomic trajectories for each interferometer and the measured magnetic field along
the interferometer area, we obtain a relative correction on h/m that is below 10−12

(shown in Figure 4.6).
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• Light shift: A big velocity shift between the two Ramsey sequence will cause a
two photon light shift difference (More details is shown in [54]). At the end, a more
explicit expression of the phase shift is

∆ϕ = TR

(
ϵRkR

(
ϵB2NB

ℏ
m
kB − gTD

)
− δω

)
+ δϕ(ϵB) (4.4)

Where δϕ(ϵB) is the phase shift depending on the direction of Bloch oscillations. The
technique to reduce the phase shift is to invert the Raman direction and combine the
two results.

h

m
=
δω(ϵR = 1)− δω(ϵR = −1)

2NBkRkB
(4.5)

So in our experiment, for a determination of the ratio h/m we have four different con-
figurations of ϵR, ϵB . Combining these four results, we find out:

h

m
=

1

4NBkBkR

∑
|δωϵR,ϵB | (4.6)

4.1.2 Experiment sequence

Our experiment begins with Molasses with a temperature 4 µK. To transfer atoms in the in-
terferometer area, we use an atomic elevator that consists of two Bloch oscillations pulses.
One is to accelerate the atoms, and the other is to decelerate the atoms. By adjusting the
parameters of the elevator (number of Bloch oscillations and delay), we can precisely con-
trol the initial position z0 and velocity v0 of the cloud when it enters the interferometer.
Between the two Bloch oscillations pulses of the elevator, we apply a pair of Raman π pulses
with a blow-away pulse. With this sequence, atoms are prepared in the magnetically in-
sensitive state mF = 0, and by controlling the intensity and duration of the first Raman
π pulse, we set the width of the vertical velocity distribution of the atomic cloud. These
steps are the preparation sequence before our atom interferometer. After the preparation
sequence, 500 000 atoms remain in the cloud.

The interferometer consists of four π/2 Raman pulses of the same duration arranged
in two identical Ramsey sequences with time delay TR separated by a duration T . The
Bloch oscillation pulse is applied between the two Ramsey sequences. The pulse sequence
is shown in the Figure 4.1c. All the interferometer sequence happens in the interferometer
area where the magnetic field is well controlled. This is shown in chapter 3. After the
interferometer finishes, we let the atom free fall into the time of flight detection part so that
we can measure the ratio N2/(N1 +N2). Then we repeat this sequence time by time. Each
time we randomly change the δω between the two Ramsey sequences to get the spectra.

As we discussed before, we have to measure four different spectra by inverting the
direction of Raman lasers and Bloch acceleration to do gravity cancellation and systematic
effect reduction. These points are sampled randomly to avoid systematic effects due to
potential drifts during the data collection. We use a sinusoidal function to fit the fringes
and extract the estimations of the δω. All the results are shown in Figure 4.2.
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Figure 4.1: a. Design of the vacuum chamber, the detection zone and atom interferometer area
- a 70 cm long magnetically shielded tube. b.The pulse sequence of the experiment and atom
trajectory changes with the time. c. The trajectory of atoms with different Bloch acceleration
direction.
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Figure 4.2: Typical spectra set for h/m determination. The direction of Raman ϵR and Bloch ϵB
are shown in each figure. The blue points are the experimental data. The uncertainty on the
central fringe is deduced from the fitting procedure, each of them is around 0.05 Hz. From the
combination of the four spectra, we deduce a value of h/mwith an estimated relative uncertainty
of 1.5× 10−9.
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Figure 4.3: Left : Set of h/m determinations (678 points) taken over 48 hours. Each point corre-
spond to∼ 5minutes of integration. Right : Four integrated h/m values. Each points corresponds
to 12h of integration.

4.1.3 The result of the measurement

For each sequence, we can get a typical relative uncertainty around 1.5 × 10−9 on h/m
in around 5 minutes. In order to know the statistical uncertainty, we keep the experiment
running for a weekend. The raw data is shown in Figure 4.3. This data set is taken at
TR = 20ms and 500 Bloch oscillations. Here we can see our experiment is very stable for
48 hours.

We also plot the Allan deviation of the data set to study the stability of this experiment
(Figure 4.4). We can fit this deviation with a σ = β√

T
function, β is the slope of the linear

fitting curve in the log-log scale. Our slope is 6×10−10
√
h. This way, we can estimate that

the relative statistical uncertainty over 48h is 8.5× 10−11.

Thank to our experiment sensitivity on h/m, we have run 8 different configurations
whose details are shown in the Table4.1 and their final experimental results are presented
in Figure 4.5. At the end we extract the final statistical uncertainty of the h/m ratio, which
is around 4.8 × 10−11. It has therefore a contribution to the determination of α relative
uncertainty of 2.4× 10−11

Then we studied the systematic effects in our experiment, all the relative uncertainty
contributions are shown in our error budget Figure 4.6.

Subsequently, we are going to discuss the three biggest systematic effects in our ex-
periment: Phase shifts in Raman phase lock loop, wavefront distortion, Residual
Raman Phase shift.
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Figure 4.4: Comparison between the data Allan deviation and the expected behavior in the case
of a white noise induced data distribution.

Figure 4.5: Collection of h/m determinations with 8 different configurations mentioned in Ta-
ble4.1. The circles and diamonds correspond to two different laser intensities
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Configuration A⃝ B⃝ C⃝ D⃝
TR 20 10 20 20 ms
NB 500 500 250 250 BOs
τdigital 12 12 24 24 µs

tdelay 32.9 ms
telev,1 9 ms
Nelev,1 +650 BOs
tprep,1 110 ms
τprep,1 189 µs

tprep,2 120 ms
τprep,2 63 µs

telev,2
Spectra 1, 2 154.910 msSpectra 3, 4 131.528 131.946 137.492 136.984

Nelev,2
Spectra 1, 2 -1185 -1010 -1185 -1185 BOsSpectra 3, 4 -635 -515 -735 -735

tinterf. 175 ms

τinterf.
Raman power: Low 80

µsRaman power: High 35
tacc. 197.9 ms

Table 4.1: Parameters used for the data collection for the different configurations and spectra.
The times are indicated with respect to the release of the atomic cloud from the optical molasses.

Source Correction [10−11]
Relative

uncertainty [10−11]

Gravity gradient -0.6 0.1
Alignment of the beams 0.5 0.5
Coriolis acceleration 1.2
Frequencies of the lasers 0.3
Wave front curvature 0.6 0.3
Wave front distortion 3.9 1.9
Gouy phase 108.2 5.4
Residual Raman phase shift 2.3 2.3
Index of refraction 0 < 0.1
Internal interaction 0 < 0.1
Light shift (two-photon transition) -11.0 2.3
Second order Zeeman effect 0.1
Phase shifts in Raman phase lock loop -39.8 0.6
Global systematic effects 64.2 6.8
Statistical uncertainty 2.4
Relative mass of 87Rb 16 : 86.909 180 531 0(60) 3.5
Relative mass of the electron 14 : 5.485 799 090 65(16) · 10−4 1.5
Rydberg constant 14 : 10 973 731.568 160(21)m−1 0.1
Total: α−1 = 137.035 999 206(11) 8.1

1Figure 4.6: The error budget of our final determination of α
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4.2 Systematic effects

4.2.1 Phase shifts in Raman phase lock loop

Theoretical principle

As we have discussed before (see in subsection 3.3.2), the Raman phase lock loop (PLL)
relies on the beat note between the frequency difference of the Raman lasers measured on
a photodiode and a microwave generator. We use a phase comparator seed with the RF
signal ωRF(t) synthesized in a Redpitaya module. This beat note frequency is

ωBN = ωMW + 8ωRF

= ωHFS + ϵRkRv(t) +
ℏk2R
2m

(4.7)

The second part ϵRkRv(t) is the dynamical frequency change in order to compensate
for gravity and frequency jump caused by the Bloch oscillations. The frequency ramp is
shown in Figure 4.7. This frequency always changes with time, and because the beat note
signals pass through filters and it is the source of this systematic effect. Let us models this
with a simple low pass filter whose transfer function is

H(ω) =
1

1 + i (ω/ωc)
(4.8)

From the Equation 4.8, we can calculate that passing through this low pass filter will
introduce a phase shift.

δϕ(ω) = − arctan(
ω

ωc

) (4.9)

Combining the four Raman pulses, at the end this will result in a total phase shift.

δϕtot = δϕ(ω1)− δϕ(ω2)− δϕ(ω3) + δϕ(ω4) (4.10)

The two Ramsey sequences have the same time delay TR = 20ms in our normal exper-
iment. The frequency sweep rate for the gravity is 25 kHz/ms. At the end the frequency
difference δf ∼ 500 kHz which is much smaller than the Raman frequency fi ∼ 20MHz.
So we can simplify this formula:

δϕtot =

(
dδϕ

dω

∣∣∣∣
ω3

− dδϕ

dω

∣∣∣∣
ω1

)
δω

=

(
1

1 + (ω1/ωc)
2 − 1

1 + (ω3/ωc)
2

)
δω

ωc

(4.11)

So one way to reduce this effect is to make the absolute value of ω1 and ω3 the same
or close as possible. So we change the Raman frequency sweep configuration from an
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Figure 4.7: Frequency ramps performed by the RedPitaya generator for ϵB = 1. Left: ωMW is
constant and the ωRF frequency ramp is not symmetric. Right: ωMW is changed when inverting
the Raman direction ϵR and the ωRF frequency ramp is symmetric.

unsymmetric configuration to a symmetric configuration where we can reduce this phase
shift.

ω1(ϵR) = ω4(−ϵR) (4.12)
ω2(ϵR) = ω3(−ϵR) (4.13)

This condition is achieved by changing the frequency of the microwave ωMW with the
Raman direction ϵR. Experimentally, we ensure that the offset value of ωRF is always the
same. Due to the Bloch oscillations, the atom velocity will significantly change in a short
time so that there is a frequency jump for the reference frequency ramp. This modification
ofωRF , or the frequency jump, is placed∼ 250 µs before we put the third pulse. We checked
that no modification of the measured phase shift occurred by reducing this duration by
100 µs.

Experimental measurement

In our experiment, we make an independent measurement of the phase of the beat note
signal and study how this effect will affect our final result. The set up is shown in Fig-
ure 4.8. The beat note signal is lowered in frequency by mixing it with another microwave
synthesizer. We then record this signal by a 100-MHz-bandwidth oscilloscope (Tektronix
DPO 3014) and demodulate each pulse by computing its two quadratures with a numeri-
cally computed signal. The time base of the oscilloscope was calibrated by analyzing the
signal of 10-MHz reference coming from SYRTE.
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Figure 4.8: Top left: laser arrangement used to extract a beat note between the two lasers. Bottom
left: radio-frequency chain for the phase lock. Right: setup used for the measurement of the phase
between the two lasers. Figure extracted from [54]

The steps of this phase analysis consists of two parts: Time scale calibration and
Phase measurement

Time scale calibration:

• The 10-MHz reference signal is sent to one channel of the oscilloscope, sref = Acos(ωreftosc+
ϕ0)where the tosc is the real time scale on the oscilloscope that we need to figure out.

• We record this oscilloscope signal and mix it with digital signals in quadratures at
same frequency with time step tdigital, we have the two signals

s1 =
1

2
(cos (ωref (tosc − tdigital + ϕ0)) + cos (ωref (tosc + tdigital + ϕ0))) (4.14)

s2 =
1

2
(sin (ωref (−tosc + tdigital + ϕ0)) + sin (ωref (tosc + tdigital + ϕ0)))(4.15)

• We then remove the high frequency part by averaging the signal:qi(t) = ⟨si⟩. We
get1

ωref (tosc − tdigital + ϕ0) = arctan(−q2(t), q1(t)) (4.16)

• Since the signals are digitalized, we write tosc = jdtosc (resp. digital), where j is the
index of the data. Then we get the true time scale dtosc:

arctan(−q2, q1)(j) = ωref(dtosc − dtdigital)j + ϕ0 (4.17)

Phase measurement

1We use arctan(y, x) for the notation of the arc tangent of y/x choosing the quadrant correctly
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• The beat note signal is sent to the oscilloscope. We only record the signal during the
pulse duration sBN

i , where the subscripts refer to the pulse order.

• The record signal is digitally mixed with two digital signals in quadratures with the
same frequency ramp and the time scale by the time scale calibration. The β is the
sweep rate to compensate the gravity.

s1 = sBN
i ·

(
cos
(
ωi(t− ti) + β · (t− ti)

2 /2
))

(4.18)
s2 = sBN

i ·
(
sin
(
ωi(t− ti) + β · (t− ti)

2 /2
))

(4.19)

• We remove the high frequency part by averaging the signal: qi(t) =
〈
sref(t) · sdig,i(t)

〉
and use the arctan(−q2, q1) to get the phase ϕi of this pulse.

• After we extracted the phase of each pulse, we use the formula ϕpll = ϕ1−ϕ2−ϕ3+ϕ4

to deduce the effect on h/m by

h

m
=

ϕpll

4NBkBkR
(4.20)

Result

We confirmed that the oscilloscope did not induce a bias by reducing its bandwidth to
20 MHz, and we did not detect shifts on h/m at the level of 0.01 ppb.

We studied the relationship between the phase of the beat note and the interferometric
measurement in the following way: using 600 determinations of h/m performed continu-
ously over about 60 h, we divided the set into six quantiles sorted by the beat note phase.
For each quantile, we averaged this phase and the interferometric phase(see in Figure 4.9).

At the end we found a correction on h/m with (−82.1 ± 1.2) × 10−11 with number
of Bloch oscillation NB = 500. In Figure 4.9 it shows the relationship between these two
quantities, and their fluctuations are identical (slope of 1). In the end, we calculate that the
effect creates a shift on α

∆α

α
= (−39.8± 0.6)× 10−11 (4.21)

4.2.2 Beam Profile

Gouy Phase

Another significant systematic effect comes from the beam profile. We do not have a perfect
plan wave, but we have in the lab a beam that is approximately Gaussian:

E⃗(r, z) = E0
w0

w(z)
exp

( −r2
w(z)2

)
exp

(
−i
(
kz + k

r2

2R(z)
− ϕ(z)

))
(4.22)
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Figure 4.9: Average interferometric phase with respect to the average correction deduced from
the phase of the beat note.

Figure 4.10: Schematic of a Gaussian beam. Extracted from Wikipedia

where r is the radial distance from the center axis of the beam, w(z) is the 1/e radius at
position z, zR = πw2

0/λ is called the Rayleigh length, R(z) = z(1 + (zR/z)
2) is the radius

of curvature of the beam’s wavefront at position z, ϕ(z) = arctan(z/zR) is the Gouy phase.

The effective wave vector is the derivative of the spatial phase keff = −i∂ϕ
∂z
[24]. Then

there is a shift :

δk = keff − k = − 2

kw(z)2

(
1− r2

R(z)2

(
1−

(
z

zR

)2
))

(4.23)

The first part is the effect of the Gouy phase. The second part is due to the variation
of the transverse spatial phase. In our experiment, the waist w0 is around 5mm which
gives us zR ∼ 40 km and R ∼ 1 km so that the second part in Equation 4.23 is negligible
compare to the first part. So the main effect comes from the Gouy phase. We put the beam
profile measured in our lab into our Monte Carlo simulation, and we get an estimation of

54



Chapter 4 h/m measurement and systematic effects

the correction on α is
∆α

α
= (108.2± 5.4)× 10−11

Wavefront distortion

In 2018 the group found a very interesting phenomena: if we reduce the efficiency of the
Bloch oscillation by decreasing the Bloch laser power, we get a smaller value of h/m. This
effect causes an order of 2 × 10−8 relative shift on h/m, for a 25% reduction of the Bloch
oscillation efficiency.

This effect was then interpreted as the wave-front distortion[13]. We already knew that
the wave vector we measured in the experiment had a shift due to the beam profile. In fact,
this effective wave vector can be rewritten in a formula as the sum of the deviation of the
transverse intensity and phase:

δk = − 1

2k
|∇̃⊥ϕ|2 +

1

2k

∆⊥A

A
(4.24)

where ϕ is the spatial phase of a gaussian beam shown in Equation 4.22 and A is the local
amplitude of the field. This equation makes this phenomenon more interesting: we always
think that if we can have a plan wave used in the experiment instead of a gaussian beam,
the correction due to the beam profile will be canceled. But Equation 4.24 tells us a different
but interesting thing: even if we can have a Gaussian beam with an infinitely large waist
that is infinitely close to a plan wave. But as the phase noise or amplitude noise will still
exist, so Equation 4.24 is non zero.

We should first note that the spatial phase and amplitude fluctuations are mixed during
propagation. Even a wave-front distortion caused by optics will appear as amplitude fluctu-
ations after propagation. Furthermore, the relative fluctuations of the amplitude and phase
fluctuation are in the same order. As in the Equation 4.24 the first part is square of relative
phase fluctuation, so the term due to the phase noise is negligible compared to the term
due to the local amplitude noise. This is very interesting because when we consider the
effect due to the beam profile, we always think the dominant part is due to the diffraction
of the wave vector, which comes from the spatial phase fluctuation. However, in fact the
dominant part is the amplitude fluctuation of the field. This will be proved in the next part.

The amplitude fluctuation depends on the amplitude variations, which induce negative
corrections to the wave vector at local intensity maxima and positive corrections at local
intensity minima. In contrast, the first term, which is due to the spatial phase fluctuation
can only cause a negative correction.

At the output of the interferometer, we are sensitive to the average ⟨δk⟩ over the whole
atom cloud that survives the Bloch pulses and the efficiency of Bloch Oscillations depends
on the local laser intensity. We can get this effective wave vector correction:

⟨δk⟩ = ⟨δk(r⃗)P (I(r⃗))⟩
⟨P (I(r⃗))⟩ (4.25)

55



Chapter 4

The systematic effect is due to the correlation between δk(r⃗) and the survival probability
P (I(r⃗)) after all Bloch oscillations.

Assuming that we are not limited by spontaneous emission, the efficiency increases
with the Bloch laser power. This allows us to select where the surviving atoms are and test
this systematic effect.

The experiment check:

Here I will briefly describe the experimental results that was obtained and validate this
approach.

The recoil measurements are repeated by scanning the intensity of the Bloch beams
each time to extract the efficiency of Bloch oscillation by measuring the fraction of atoms
at the output of the atom interferometer. The Ramsey-Bordé interferometer consists of four
Raman π/2 pulses. Between the first and second pair of pulses, BOs are used to accelerate
atoms. Here we have two experiments to test this extra recoil velocity in the high and low
local intensity regions.

Because the Bloch oscillations efficiency depends sharply on the intensity of the laser,
if we do the typical experiment (sequence shown in Figure 4.11(a)) then atoms that survive
at the end are the atoms in the higher intensity regions. We expect a negative recoil ve-
locity correction. Because the phase noise can also create a negative correction, in order
to confirm that this effect is coming from the amplitude fluctuation, we add an aperture
of diameter 3 mm on the path of one of the Bloch beams to amplify the intensity fluctu-
ations. The experiment results are shown with the theoretical calculation based on the
Equation 4.25 in Figure 4.11.

We can see that the experimental results agree with the theoretical calculation values.
And it can prove that this effect comes from the amplitude fluctuation but not the phase
fluctuation. But what is more interesting is that Equation 4.24 predicts that a positive cor-
rection is possible if the surviving atoms are in the weaker intensity area.

So subsequently, another experiment was done. Unlike the standard experiment, this
time a small Bloch oscillation pulse with low power was used to remove the atoms in the
high-intensity area so that the remaining atoms are all in the low-intensity region, see
Figure 4.12.

In ths experiment, a positive correction on the recoil velocity was observed, which again
proves that this effect comes from the amplitude fluctuation of the field.

Effect on the final determination of α

The previous work on the observation of extra recoil velocity shows a new systematic
effect in our experiment: the wavefront distortion. From the previous study, we know
that this effect is highly related to the beam amplitude noise and the efficiency of Bloch
oscillation, or the power of Bloch beams.

We need to know the beam profile to estimate and mitigate this effect in our h/m exper-
iment. We use a CCD camera (IDS UI-5340CP-NIR-GL) to study the beam profile. And we
found that if we let the beam propagate for a long distance, the wavefront will be smoother
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(b)

(a)

Figure 4.11: a: Temporal sequence for the measurement of the recoil velocity. The intensity of
the Bloch beams is reduced in order to select atoms in the high intensity region. b:The relative
recoil velocity variation δνr/vr as a function of efficiency η. Dots correspond to experimental data
which are obtained in two cases: with and without clipping one of the Bloch beams. The deviation
in the momentum from the usual wave front is larger when the beam is clipped due to amplified
fluctuations. Line: calculated correction due to the change in momentum ℏδk/m as a function of
the efficiency of Bloch Oscillations. Extracted from [13].

(see in Figure 4.13). So in order to reduce the intensity, we let the laser freely propagate for
3m before it touches the atoms.

Our team has developed a Monte-Carlo simulation to study this effect with the beam
profile acquired by the CCD camera at the given position where the atoms meet the Bloch
beam. The results are shown in Figure 4.14. From this picture, we conclude that the lower
the Bloch laser power, the bigger the shift. So in the experiment, we put the maximum
power on the Bloch lasers to reduce this effect. At the end, by using the Monte-Carlo
simulation, we have a calculated correction due to the wave distortion is

∆α

α
= (3.9± 1.9)× 10−11
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(b)

(a)

Bloch oscillation efficiency, 

Figure 4.12: a: Temporal sequence for the measurement of the recoil velocity. the BO pulse A is
used to remove atoms in the high intensity region and the pulse B at fixed intensity is used to the
measurement of the recoil velocity. b:Measurement of the relative recoil in a distorted field obtained
by removing atoms in the high intensity regions of the Bloch beams.

a. b.

Figure 4.13: Beam profile acquired from CCD camera and cross section of the center of the beam.
(a): Free propagation 30 cm. (b): Free propagation 3m
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Figure 4.14: Left: Image of the beam profile obtained with a CCD camera. Right: Characterisation
of the short scale noise on the beam intensity. The intensity of the laser used for Bloch oscillation
is reduced, leading to losses of atoms in the experiment (bottom graph). This induces a systematic
effects on the recoil measurement (upper graph).
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4.2.3 Residual Raman phase shift

In the last part, we have discussed the systematic effect of the technique and beam profile.
Now we will talk about the effect of the internal energy shift due to the interaction with
the field, which we call it light shift.

In chapter 2, we know that the two-photon transition couples the two hyperfine struc-
tures |1⟩ and |2⟩. The off-diagonal part of evolution operator Equation 2.14 correspond the
change of the state. After the transition, the atom will get the phase off-diagonal part is the
phase of the laser. This gives us a way to get information about atoms by controlling the
phase of the laser.

But what is interesting is that the diagonal part of Equation 2.14 is not a real number
but a complex number. It depends onΩ and δtot. This means even non-diffracted atoms will
get a phase due to the applied laser field. The phases are:

δϕ1→1 = arg (⟨1|U(τ)|1⟩) = −arctan

(
δtot
Ωeff

tan

(
Ωeffτ

2

))
(4.26)

δϕ2→2 = arg (⟨2|U(τ)|2⟩) = arctan

(
δtot
Ωeff

tan

(
Ωeffτ

2

))
(4.27)

whereΩeff =
√
Ω2 + δ2. The δ = δDoppler + δLS is the detuning which contains the Doppler

effect and light shift due to the light pulse that includes the one photon and two photon
light shift. In our experiment, we sweep the laser frequency to follow the motion of the
atom cloud so the δDoppler = 0. And the two photon light shift δ2γ is much smaller than
the one photon light shift δ1γ , δ1γ ≫ δ2γ . As these two-phase share the same formula but
different signs, in the following we will take δϕ2→2 as example.

So we can simplify the formula Equation 4.27 into :

δϕ = arcran

 δ1γ√
Ω2 + δ21γ

tan

(
Ωeffτ

2

)+
δ2γ
Ω

√
Ω2 + δ21γ

2δ21γ + Ω2
(4.28)

The first constant part is the phase induced by the one photon light shift, and the second
part is due to the two photon light shift.

The two photon light shift is well explained in the previous thesis of Léo Morel [54].
Here wewill focus on the one photon light shift, which is noted asResidual Raman phase
shift in the error budget.

One photon light shift

The one photon light shift comes from the energy shift between the ground states |1⟩, |2⟩
and excited state |e⟩, if we write them in the expression with the laser intensity.
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Ω =
Γ2

16∆

√
I1I2
Is

(4.29)

δ1γi =
Γ2

8∆

Ii
Is

(4.30)

where Is is the saturation intensity. If the two lasers are equilibrated, which is true in our
experiment, then the one photon light shift is twice the Rabi frequency. Fortunately, the
light shift applies on both hyperfine levels, so in the experiment, we really care about the
differential light shift due to the lasers, where the difference is related to the hyperfine
energy shift νHFS.

δ1γdif,i =
Ii
Is

Γ2νHFS

8∆2
(4.31)

In the counter propagating configuration, three laser beams are applied to the atoms.
One is the reflection of one laser, so the total one photon light shift is a sum of them.

During the whole atom interferometer, the total phase shift due to this one photon light
shift can be written as:

δϕtot = −δϕI − δϕII + δϕIII + δϕIV (4.32)

where the index refers different order pulses.

Combining Equation 4.28 we can write this formula in a more explicit way:

δϕ1γ
tot = −arctan

(
δDoppler+δ1γ

Ω2
eff

tan
(
Ωeffτ
2

))
(4.33)

−arctan
(

δDoppler+δ1γ
Ω2

eff
tan
(
Ωeffτ
2

))
+arctan

(
δDoppler+δ1γ

Ω2
eff

tan
(
Ωeffτ
2

))
+arctan

(
δDoppler+δ1γ

Ω2
eff

tan
(
Ωeffτ
2

))

As we know, if the atom interferometer is closed, then the output phase shift should
not depend on the initial velocity of the atom cloud. But this formula shows that due to
the diagonal part of Hamiltonian, we have a phase shift depending on the initial velocity
of the atom cloud. Of course, this effect is canceled when the four laser intensity is kept
constant along the interferometer. But as the cloud expands in the Gaussian beam during
the interferometer, the mean intensity seen by the atom cloud will decrease. To see this
effect in our experiment, we scanned the initial mean velocity of the atom cloud. This is
performed by tuning the frequency of the preselection Raman pulse.

Moreover, when presenting the Ramsey-Bordé interferometer, we saw that the natural
variable to scan was the frequency of the second Ramsey sequence. However, in these
conditions, the Rabi spectra probed by the atomic velocity distribution may vary sharply
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Figure 4.15: Dispersion behavior of the output phase of a Ramsey-Bordé interferometer by scan-
ning the initial velocity of the atoms. The points are the experimental results and the orange line
corresponds a fit with Equation 4.33. Extracted from [54]

with the pulse frequency. Hence, by scanning the frequency, the Rabi spectra shape may
induce an additional shift of the central fringe. In order to prevent this effect, we scanned
the phase of the last pulse. The experimental data and fit curves are plotted in Figure 4.15.

From the Figure 4.16 we can see a significant effect when we change the initial velocity
of the atom when it enters the atom interferometer and the Equation 4.33 fits quite well
with experimental data. To mitigate the effect, we linearly increase the intensity during
the experiment to keep a constant mean intensity seen by the atoms. This measurement is
performed under the same experimental condition as h/m but without Bloch oscillations.
The experiment results is shown in Figure 4.16

We observed that when the intensity sent to the vacuum chamber is 10% higher for
the last pulse than for the first pulse, the slope of the variation with the initial velocity is
significantly reduced as well as the systematic effect induced by this phase shifts.

This effect is similar for each spectra and therefore should be canceled between the
inversion of the direction of both the Raman beams and the Bloch acceleration. This com-
pensation is not perfect for two reasons:

I. the temporal sequence being different when the Bloch acceleration is inverted, then
the size of the cloud is slightly different.

II. the retro-reflected beam, which contributes twice, is different when the direction
of the Raman beams is inverted.

A Monte Carlo simulation is used to precisely compute the light shift effect in these 8
different configurations, and the results are shown in Figure 4.17. These results are plotted
as a function of the velocity of the cloud, detuning δD with respect to the resonance and
run under three different light shift imbalance ϵ, which express the one photon light shift
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Figure 4.16: a: The decrease of the mean intensity seen by the atom cloud due to the cloud ex-
pansion. b: In order to keep a constant intensity we increase the intensity between the first and
last pulse by δI. c: center phase measured with different intensity ramp, the label number tells
the intensity increase between first and last pulse. For example, the green points means the last
pulse intensity is 10% higher than the first pulse.

difference between two different Raman directions. We can see that different ϵ has quite
different effect.

Using the results of the Monte Carlo simulation at zero Doppler detuning, we compute

Figure 4.17: Results of the Monte Carlo simulation for the estimation of the effect of the one-
photon light shift for different initial velocity and Raman inversion compensation (orange points:
perfect compensation; blue and green points: one-photon light shift is 20% greater for one or the
other Raman direction). The simulation was performed for all interferometer configurations.

63



Chapter 4

the dependency of the systematic error with respect to the ϵ. The error then is

∆(h/m)

h/m
= (κ1 + κ2⟨δD⟩)ϵ (4.34)

where δD is the average Doppler shift of the atomic distribution. We estimate the light shift
imbalance ϵ to be 0.1 ± 0.1. The values of κ1 and κ2 are extracted from the Monte Carlo
simulation for each of the eight configurations. In the end, we get the correction on the α

∆α

α
= (2.3± 2.3)× 10−11 (4.35)

4.3 Conclusion:

After finishing all the systematic effect measurement, calculate from the error budget we
got h/m(87Rb) = 4.591 359 258 90(65) × 10−9m2/s. As in the international system of
units adopted in 2019, the planck constant h is fixed so this also means we obtains the most
accurate atomic mass measurement so farm(87Rb) = 1.443 160 897 76(21)×10−25kg.

we have obtained the determination of α with relative uncertainty 8.1× 10−11.

α−1 = 137.035 999 206(11)
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LKB 2011

Harvard 2008
RIKEN 2019

Berkeley 2018

LKB 2020
(This work)

Stanford 2002

Wash. 1987

h/m(87Rb)

ae

h/m(133Cs)

h/m(87Rb)

h/m(133Cs)

ae

8.9 9.0 9.1 9.2

h/m(87Rb)

ae

h/m(133Cs)

h/m(87Rb)

Figure 4.18: Comparison of most precise determinations of the fine-structure constant so far. The
red points are from ge − 2 measurements and QED calculations, and the green and blue points
are obtained from measurements of caesium and rubidium atomic recoils, respectively.

Using our measurement of the fine-structure constant, the standard-model prediction
of the anomalous magnetic moment of the electron becomes

ae = 1159 652 180.252(95)× 10−12

The relative uncertainty on ge is below 0.1 ppt, which is the most accurate prediction
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Figure 4.19: Comparison of most precise determinations of the ae so far. The red points are from
ge−2measurements , and the green and blue points are obtained from measurements of caesium
and rubidium atomic recoils, respectively.

of the standard model. Comparison with the direct experimental measurement of ae,exp
[a_emeasure].

δae = ae,exp − ae(α2020) = (4.8± 3.0)× 10−13

where we have a 1.6σ difference between these two values. We expect a better test on
the Standard Model in next years as an improvement of one order of magnitude is expected
for the accuracy of the measurement of ae[2].

Here I want to mention the two discrepancies:

• First our recent value is quite different from what the group got in 2011. The reason
is the three new systematic effect discussed in this this manuscript. Unfortunately in
2011 the experiment set up is different from what we used now and we didn’t have
the relative data about the beam profile and Raman phase lock.

• Our recent result has a 5.6σ difference from the previous caesium recoil measurement
done in Berkeley. More studies should be made to understand this.

For our next step, as we see in our error budget this uncertainty contribution from the
h/m measurement is 2.4× 10−11 (statistical) and 6.8× 10−11. We are more limited by the
systematic effects than the statistical. And the three biggest effects are related with the
cloud size and expansion. So if we want to try a better measurement, doing the h/m with
Bose Einstein condensate (BEC) will be a good option. In the next chapter, I will talk about
the atom interferometer with Bose Einstein condensate, which is also mymain contribution
on this experiment during my PHD study.
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Bose-Einstein Condensate and atomic
interaction

In Chapter III, we have shown that the transverse expansion of the cloud in the beam is re-
sponsible for one of the biggest source of uncertainty: the residual one-photon light shift.
In order to mitigate this effect, Bose-Einstein condensates (BEC) are ideal sources due to
their low transverse velocity. In addition, using BEC also increases the efficiency of large
momentum atomic beam splitters which is a promising tools for reaching very high sensi-
tivities[25, 56, 23, 36]. Moreover, atomic interactions that are inherent in such dense cloud
can generate spin squeezing, which seems a promising strategy to surpass the standard
quantum limit [71, 60, 42, 53].

However atomic interaction will also induce a detrimental phase shift that can under-
mine the benefits of using BEC for precision measurements with atom interferometry. Un-
derstanding and controlling the effects of atomic interaction is thus crucial when we use
BEC in light-pulse atom interferometers. Some work has already shown that this interac-
tion can not only create a total phase shift at the output of the interferometer but also a
non-uniform spatial phase profile.[42, 16, 74, 66]. This phase, which depends on the density
of the BEC, impacts the accuracy of measurements performed with atom interferometers.
In the next two chapters, I will first present the production of a BEC source and details of
this interaction effect.

In this chapter, I first give a general information about the BEC and a general way to
generate a BEC. Then some theoretical explanation on the atomic interaction in BEC and
free fall expansion of the BEC in the Thomas-Fermi regime. At the end I will show how we
produce a BEC in a short evaporation sequence.

5.1 General aspects of Bose-Einstein condensates

In this section, we briefly present the main concepts concerning atomic Bose-Einstein con-
densates, in particular, the regime (the so-called Thomas-Fermi regime) in which the Ru-
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bidium condensates are used in atomic interferometry experiments are found. We also
present the experimental setup and the protocol we used to produce our 87Rb condensate
in the F = 1,mf = 0 of the 5S1/2 electronic ground state.

Bose-Einstein statistics tells us that the mean atom number Ni in an individual state i
of energy ϵi can be written as:

Ni =
1

exp(β(ϵi − µ))− 1
(5.1)

In this equation, β = 1/kBT where kB is Boltzmann constant and T is the temperature, µ
is the chemical potential. Let’s define z = exp(βµ) then the formula above can written as

Ni =
z

exp(βϵi)− z
(5.2)

As the ground state energy ϵ = 0 andN0 cannot be negative, we have 0 ⩽ z < 1. The total
atom number of this system is the sum over all the states.

Ntot =
z

1− z
+
∑
i ̸=0

gi
z

exp(βϵi)− z
(5.3)

Where the first part is the atom number in the ground state N0 and the second part is the
atom number in the excited states Nex and gi is the degeneracy of the energy ϵi. From
Equation 5.2, it’s easy to see that the number of excited atoms increases with z. Since
0 ⩽ z < 1, the excited atom numbers reach its maximum value when z = 1.

Nex ⩽ Nmax =
∑
i ̸=0

gi
exp(βϵi)− 1

(5.4)

This shows us a fascinating condensation phenomenon: imagine that the volume of a box V
and the temperature T can be fixed so that we have a definedNmax which is non-infinite. If
we continually add atoms into this system, whenNtot > Nmax there is at leastNtot−Nmax

atoms which fall into the ground states. So once the threshold N = Nmax is reached,
every new atom added into this system must be accommodated by the ground state and
the population of the ground state N0 = z/(1 − z) can never be saturated because z can
be infinitely close to 1. If Ntot is sufficiently large then we can consider that nearly all the
atoms are in the ground state. By this way, we get the Bose-Einstein Condensate (BEC).

Critical temperature

Instead of increasing the atom number with fixed volume V and temperature T, it is also
possible to decrease Twith fixed volumeV and atom numberN. Suppose T is progressively
decreased from a high value. In that case, Nmax also decreases from a large initial value
until it becomes equal to the atom numberN for a certain value of T called the BEC critical
temperature Tc, which is defined for a given N as the temperature below which the BEC
appears. Because if we continue decreasing the temperature T, then Nmax will be smaller
than N and then more and more atoms will fall into ground state.
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Now we consider that the atoms are in an infinite big system where the energy differ-
ence is negligible compared to kBT. So the last part of Equation 5.3 can be written as an
integral and assuming that the degeneracy gi is one:

N = N0 +

∫ ∫ ∫
ze−βϵnx.ny,nz

1− ze−βϵnx.ny,nz
dnxdnydnz (5.5)

and the excited part can be written as below [26]:

Nex =
V

λ3T
g3/2(z) (5.6)

where gn (z) =
∑∞

l+1(z
l/ln) ismaximalwhen z=1, g3/2(1) ∼ 2.612, andλT =

√
2πℏ2/mkBT

is the de Broglie wavelength. So with a given atom number and volume when we decrease
to the critical temperature we have

ρλ3Tc ≃ 2.612 (5.7)

The de Broglie wavelength can be understood as the width of the wave packet, and the
density relates the distance between atoms. So here, a very interesting thing happens is that
the atoms’ wave-packets are overlapped where we cannot distinguish each atom. They are
all identical.

Of course if we continue decreasing the temperature then more and more atoms will
fall into the ground state. The proportion of atoms in the ground state is:

N0

N
= 1−

(
T

Tc

)3

(5.8)

5.2 Atomic interactions : Gross-Pitaevskii Equation

The description of a Boson assembly without interaction allows an intuitive understanding
of the condensation phenomena. However, it does not allow for a description of the case
of a degenerate gas where interactions are present. Even weak interactions significantly
modify the wave function of the Bose-Einstein condensate.

Now there areN identical Bosons trapped in a potentialV, and as all of them are in the
ground state, we can write the wave function of the system as

|ψ⟩ = |φ⟩ ⊗ |φ⟩ ⊗ |φ⟩ · · · ⊗ |φ⟩ (5.9)

The Hamiltonian of the system can be expressed as below:

Ĥ =
1

2m

N∑
i=1

P2
i +V(r, t) +

1

2

∑
j ̸=i

Vint(ri − rj)) (5.10)

where the second term is the trapping potential, which is usually approximated by a har-
monic trap:
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V (r, t) =
1

2

∑
j=x,y,z

mω2
j (t)r

2
j (5.11)

where ωj are the trapping frequencies. The last term of equation 5.10 is the two-body
interaction between the atoms. In our experiment, na3 ≈ 10−5 ≪ 1 means that our cloud
is a dilute gas and the distance between each atom ismuch bigger than the s-wave scattering
length a. So we can replace the interaction potential with a Dirac function δ(ri−rj). It tells
us that the interaction happens only if these two wave functions overlap. In other words,
they have a collision. The pseudo-potential can be written as:

Vint(ri − rj) = gδ(ri − rj) with g =
4πℏ2a
m

(5.12)

Then we can rewrite the Hamiltonian of the system:

Ĥ =
1

2m

N∑
i=1

P2
i +V(r, t) +

1

2

∑
j ̸=i

gδ(ri − rj) (5.13)

Because the bosons are all in the ground state, the system energy should be minimised,
which means,

∂(⟨ψ|Ĥ|ψ⟩ − ⟨ψ|µ|ψ⟩)
∂φ

= 0 (5.14)

In this way we get the time-independent Gross-Pitaevskii Equation:

− ℏ2

2m
∇⃗2φ+ V (r, t)φ+ g(N − 1)|φ|2φ = µφ (5.15)

This equation looks like a non-linear Schrödinger equation. It gives us the evolution of
each atom in the trapping potential and the mean-field potential created by theN−1 other
atoms surrounding it, which is related to the atom density ρ = N |φ|2 (N ≫ 1).

5.3 Description of theBECunder theThomas-Fermi regime

5.3.1 Thomas-Fermi regime

This interaction potential creates a repulsive force between each atom. Consequently, this
repulsive force will make the cloud bigger, which means the more atomic interaction we
have, or in other words, the more atoms we have in the condensate, the bigger cloud wewill
have, which means a smaller kinetic energy (because the wave function has a larger spatial
width) but a larger interaction energy. Suppose we continually increase the atom numbers
in the condensate with a given trapping potential V then there must be a situation where
among the three energies involved in the Gross-Pitaevskii equation, only the interaction
and potential energies contribute to the properties of the condensate and the kinetic energy
becomes negligible. This regime is called the Thomas-Fermi regime.
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For a condensate in an isotropic trap of spatial extension R, the kinetic energy term is
of the order of ℏ2/2mR2, and the interaction term is of the order of gρ ∼ (Ng)/(R3). For
the Thomas Fermi criteria is

Ng ≫ ℏ2R
2m

The spatial extension of the ground state in an harmonic trap is aoh = ℏ√
mω̄

, where
ω̄ = (ωxωyωz)

1/3. One can deduce a criteria for the Thomas Fermi regime:

N0a/aoh ≫ 1 (5.16)

In the Thomas-Fermi regime, the density profile of the atomic cloud can be solved from
the time-independent Gross-Pitaevskii rewritten below:

(V(r,0) + gN |φ|2)φ = µTFφ (5.17)

Where the µTF is the chemical potential in the Thomas-Fermi approximation. Then it’s
easy to get the wave function

N |φ(r, 0)|2 =
µTF

g

[
1−

(
x

XTF

)2

−
(

y

YTF

)2

−
(

z

ZTF

)2
]

× Θ

(
1−

(
x

XTF

)2

−
(

y

YTF

)2

−
(

z

ZTF

)2
)

(5.18)

wherewe have defined the Thomas-Fermi lengths of the condensate asXTF =
√
2µTF/mωx

(resp. y, z) and Θ(s) is the Heaviside function where Θ(s) = 1 when s > 0 otherwise it
equals zero.

Finally the chemical potential µTF is determined by the normalisation of the |φ|2 to the
number of atoms N

µTF =
ℏω̄
2

(
15Na

√
mω̄

ℏ

) 2
5

(5.19)

5.3.2 Expansion of theBose-Einstein condensate inCastinDummodel

If we want to know the expansion after removing the trapping potential, we need to solve
out the time dependant Gross-Pitaevskii Equation

iℏ
∂φ

∂t
= − ℏ2

2m
∇⃗2φ+ V (r, t)φ+ gN |φ|2φ (5.20)

The model proposed by Castin and Dum [22] gives a relevant description of the wave-
function of the BEC after release from the trap. In the trap each atom experiences a force
which is the gradient of the potential:

73



Chapter 5

x

y

z

Figure 5.1: Surface plot of the shape of the wave function of the BEC trapped by an harmonic trap
in Thomas-Fermi regime Equation 5.18.

F(r, t) = ∇V (r, t) +
1

2
gN∇ρ(r, t) with ρ(r, t) = N |φ(r, t)|2 (5.21)

Before the trapping potential is switched off the atoms are in an equilibrium condition
F⃗ = 0 so the solution of this classical model coincides with the wave function of the
Thomas-Fermi regime. The Castin Dummodel relies on the assumption that the condensate
dilates like a balloon according to the following scaling laws

rj(t) = λj(t)rj(0) (j = x, y, z) (5.22)
where the rj(0) correspond to the initial position of the atom and the velocity of the atom
is v(t) = λ̇(t)rj(0). Using Newton’s law, mr̈(t) = F(r, t), we can deduce the differential
equation of λ(t) in an harmonic trap.

λ̈j =
ω2
j (0)

λjλxλyλz
− λjω

2
j (t) (5.23)

At t ⩾ 0, we turn off the harmonic trap so the ωj(t) = 0. Then we get the numerical result
of λ(t).

From Figure 5.2, we can see that at the beginning the atom doesn’t move (λ(t) ≈ 1). This
is because in the Thomas-Fermi regime, the kinetic energy is zero. However λ̇(t) increases
quickly which means that after we remove the trapping potential, the interaction potential
begins to convert into kinetic energy immediately. At the end, all the interaction energy
turns into kinetic energy and the velocity of the atoms stays constant.

We now consider a simple case: we have only one component BEC and the solution of
Equation 5.20 is given below.

φ(r, t) = e−iβ(t)eim
∑

j rj(t)
2 ˙λj(t)/2ℏλj(t)

φ(r, 0)√
λx(t)λy(t)λz(t)

(5.24)
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Figure 5.2: Time evolution of λz(t) (left) and of λ̇z(t) (right)

where ℏβ̇(t) = µ/(λx(t)λy(t)λz(t)) and φ(r, 0), which can be derived from Equa-
tion 5.18, is the wave function at time t = 0 when the trap is switched off.

5.4 The BEC production in an all-optical trap

5.4.1 Evaporative cooling

Evaporative cooling is a very efficient and commonly used method to produce a BEC. The
principle is to remove the most energetic atoms from the upper tail of the energy distri-
bution and profit from the subsequent thermalization of the remaining atoms by elastic
collisions. The process is illustrated in figure 5.3: atoms with an energy higher than the
trap depth U0 escape the trap and thermalization of the atom cloud to a lower temperature
occurs via elastic collisions. By continuously decreasing the trap depth U0, one can force
the evaporation process until all atoms are in the ground state.

Ni, Ti, ωi Nf, Tf, ωf

Nf < Ni

Tf < Ti

ωf < ωi

Figure 5.3: The evaporation process to get BEC. The atom number in the trapped gas and its
temperature are reduced, as well as the potential height and confinement frequency. Extracted
from [27]

In our experiment we use an optical trap to do the evaporative cooling, the details are
well explained in [27, 46]. In order to avoid strong magnetic field in our experiment, we
choose optical instead of magnetic trap.
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Figure 5.4: We use the absorption imaging system to detect atoms at the same detection time
tdet = 33ms. The bottom pictures are extracted at different time of the experimental evaporation
cooling process. The top pictures are the corresponding 3D plots. From left to right is thermal
gas, the first appearance of BEC and the BEC.

During my thesis I improved the evaporative cooling so that we can generate 220 000
atoms in the BECwith 3.2 s (1.5 s loading of theMOT and 1.7 s evaporation) compared to the
previous result with the production of 120 000 atoms in a BEC with a 3.5 s(1.5 s loading of
theMOT and 2 s evaporation)[54]. Furthermore, the stability of the BEC is highly improved,
before the BEC production system requires daily adjustment while now this system can be
stable for almost two months with a relative atom fluctuation about 8%. .

5.4.2 The spin distillation technique

To run the interfeometer, we want to have a nonmagnetic state at the output of the evap-
orative cooling. Unfortunately, the dipole trap is nonsensitive to the hyperfine Zeeman
sublevels. So if we only use the dipole beam to do evaporative cooling, we will have all the
threemF = 0,±1 levels at the end, which means only 33% atoms can be used.

To solve this problem, we use the spin distillation technique [28]. During the evapora-
tion process, we turn on the magnetic field slowly from 0 to maximum value in 0.5 s and
turn it off just 160 ms before the end of the evaporation. The principle is that the collision
between atoms will redistribute the spin of atoms. For example, collision of mF = 1 and
mF = −1 can turns them into two atoms in mF = 0. Moreover, due to the additionnal
magnetic field, the potential of the magnetic sensitive mF = ±1 is lowered at the edge of
the trap (see Figure 5.5) which makes these two states easily fall out of the dipole trap ; all
atoms in mF = ±1 will evaporate from the dipole trap first and only mF = 0 can remain.
Now at the end of evaporation, we have a pure BEC inmF = 0 state with 70% initial atom
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Principle of spin distillation
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Figure 5.5: Potential felt by the atoms in differentmF states shown in different colors. The adding
magnetic field doesn’t affect the potential felt by the atom inmF = 0 but does affect the magnet-
ically sensitive statesmF = ±1 and lower the potential height.

left. This technique double the atoms inmF = 0.

5.4.3 Diplole potential created by a gaussian beam

5.4.4 Crossed Dipole trap

Two types of conservative trapping potentials. In our experiment we use a far-red detuned
laser with a wavelength of 1064 nm to do a optical trap. and the total power of 50W is sep-
arated into three different beams to create a crossed dipole trap to improve the evaporation
efficiency.

The dipole potential created by one gaussian laser

When an atom is placed in a laser field with angular frequency ω far away from atomic
resonance ω0, the dipole potential seen by the atom can be written as below:

U(r) =
3πc2

2ω3
0

Γ

∆
I(r) (5.25)

where c is speed of light, Γ is the natural linewidth, ∆ = 1
ω−ω0

− 1
ω+ω0

, and I(r) is the
intensity of the laser field. If we consider a gaussian laser beam focused on the atom, which
propagates along the z direction and with a waist w0 and power P, I(r) is given by:

I(r) =
2P

πw2(z)
e
−2 r2

w2(z) (5.26)
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Figure 5.6: Schematic representation of the optical tables surrounding the main chamber (top view).
inset:image of the three dipole beams through the observation of atoms that are trapped at 1ms time
of flight. The image is saturated so that the tails of the trap are distinguishable.
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Figure 5.7: The potential created by one gaussian laser in plan XZ. Here the ratio
zR/w0 ≈ 315

where w2(z) = w0

√
1 + (z/zR)2, zR = πw2

0/λ is the rayleigh length of the laser and λ is
the wavelength of the laser. From these expressions, we can rewrite the dipole potential as
below:

U(r, z) = − U0

1 + ( z
zR
)2
e
−2 r2

w2(z) with U0 =
3πc2

2ω3
0

Γ

|∆|
2P

πw2
0

(5.27)

Because the dipole laser is far-red detuned (∆ ≪ 0), we can neglect the spontaneous
emission caused by the laser. All the atoms feel a dipole force towards the center of the
beam. The focus of the laser beam can be adjusted to ensure that it coincide with the center
of the the molasses. Under this condition, for z ≈ 0 and r ≈ 0, equation Eq. 5.27 can be
simplified as below:

U(r, z) ≈ −U0 ×
(
1− 2

(
r

w0

)2

−
(
z

zR

)2
)

(5.28)

Under this approximation, the potential is harmonic and we can define two trapping
frequencies along the longitutindal direction ωz/2π and the transverse direction ω⊥/2π:

ωz =

√
2U0

mz2R
and ω⊥ =

√
4U0

mw2
0

(5.29)

With our experimental parameters λ = 1064 nm and w0 = 107 µm the ratio between these
two trapping frequencies ωz/ω⊥ = λ/(

√
2πw0) ≈ 2 × 10−3. This corresponds to a very

anisotropic trap, which means that the atoms will be strongly confined in the transverse
dimension but not along the beam direction as shown clearly in the Figure 5.7.

Dipole potential created by crossed laser beams

Theoretically, we can use only one laser to trap the atoms and do the evaporation cooling
to generate the BEC. But the strong anisotropic trap will cause many problems. In order to
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Figure 5.8: Left: configuration of two crossed dipole deams. Right: The potential created by two
crossed gaussian lasers. Extracted from [46]

reduce this anisotropy, we use two laser beams crossing with an angle θ.

In this configuration, the trapping frequencies along x, y, z are given by the formulae
below:


ωx =

√
(1− cos(θ))ω2

⊥ + (1 + cos(θ))ω2
z

ωy =
√
(1 + cos(θ))ω2

⊥ + (1− cos(θ))ω2
z

ωz =
√
2ω⊥

(5.30)

where ω⊥ and ωz are given by Equation 5.29. From the Equation 5.30, we can see that
by increasing the crossing angle between the two beams, the tapping frequencies in each
direction get closer.

In our actual experiment, we cross a laser beam with a tight waist of 28 µm called dim-
ple and two beams with large waists of 170 µm called reservoirs with 60◦ to reduce this
anisotropic. The two reservoir beams cross with a small angle ∼ 5.6◦ to increase the trap-
ping volume of our optical trap to trap more atoms. Moreover, with this configuration
(shown in 5.6), we can generate a deep trapping potential and have a high-efficiency evap-
orative cooling.

The total potential generated by these three beams has a wine-glass shape shown in
Figure 5.9, the small waist of the dimple beam creates a deep potential which can highly
increase the collision rate between the atoms. At the same time, the relatively big waist of
the reservoir beams can still trap the atoms that escape from the dimple beam. This way,
we can have effective evaporation and decrease the atom loss rate. Typically at the end
of our 1.7s evaporation cooling, we have trapping frequencies (50,115,115)Hz with around
220 000 condensed atoms.
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Figure 5.9: The total potential created by the dimple and reservoir beams.

5.4.5 Experimental implementation

Our dipole trap is turned on during the molasses phase. There are two ways to trap more
atoms at the beginning: increasing the dipole beams’ power to increase the depth of the
potential or producing a colder and denser atom cloud. We use the process shown in Fig-
ure 5.10 to achieve this goal.

We always start with molasses in |F = 2⟩, and then we increase the magnetic field to its
maximum to compress the cloud to get a higher density in a phase called compressed MOT.
The repumping light in the trapping beams amplified by the MOPA is then mechanically
shut down, and after the compress MOT, our dipole beam is switched on with full power
in the reservoir beams but without dimple. First, we want to use big reservoir beams to
trap as many atoms as possible in the dipole trap. But we do not turn on the dimple beam
because a small dimple beam will highly increase the density of atoms at the beginning of
the dipole trap and consequently enhance the three-body losses.

The repump amplitude is controlled through the auxiliary channels shared with the
absorption imaging system. This repump amplitude is immediately shut down at the end
of the dipole loading stage. Ultimately, all the atoms fall into |F = 1⟩ and are no longer
sensitive to the cooling laser. Since there is no photon pressure this cloud gets colder and
denser. We call this process a ’Dark molasse’. In this way, we increase the density of the
cloud, and once the atoms fall into the ’Dark molasses’, they will immediately be trapped
by the dipole beams. As our dipole beam is far-red detuned from the resonance, we can
neglect the spontaneous emissions caused by the dipole lasers.

And thenwe slowly sweep the power in the reservoirs and dimple to load atoms into the
dimple beam, which can later give us quick and effective evaporation and then retrapped by
the reservoir beams, shown in Figure 5.11. Simultaneously we switch on the Magnetic field
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Figure 5.10: Steps sequence for the efficient loading of the dipole trap. At the end of the sequence,
the trapping and repump laser are abruptly shut offwhile the dipole laser powers are then ramped
for the evaporation sequence.

to implement the spin distillation. After around 1.7s evaporation, at the output, we have a
BEC containing 220,000 atoms in an insensitive magnetic state with trapping frequencies
[50, 115, 115]Hz.
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Figure 5.11: The power(normalized) sweep of the reservoir beams and dimple beam. We first trap
the atoms in the reservoir beams and then slowly decrease the power in reservoirs simultaneously
increase the power in the dimple beam to do efficient evaporative cooling. The pictures shows
the phase transfer from a thermal cloud to an ’atom laser’ BEC.
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5.4.6 Absorption imaging

The principle of absorption imaging is to expose the atom cloud to a resonant beam, which
we call a probe beam. In the low saturation regime, where the laser intensity is lower than
saturation intensity of the the addressed transition, the ratio between the output and input
optical intensity can be written below:

Iout(x, y)

Iin(x, y)
= e−n(x,y)σ (5.31)

where σ is the absorption cross section of an atom, and n(x, y) is the density integrated
over the laser propagating direction z. So the absorption imaging provides us not only
the spatial information of atom cloud but also the total atom number by doing the spatial
integral

Na =
1

σ

∫
Iout(x, y)

Iin(x, y)
dxdy (5.32)

Pulse sequence of absorption imaging

A lens system and a CCD camera are combined for absorption imaging. We have three
different beams to do this detection: a probe beam derived from the cooling beam, a repump
beam and a blow away beam that removes atoms in |F = 2⟩. Usually, in our experiment,
we have two component atoms in |F = 1⟩ and |F = 2⟩ at the end. The pulse sequence is
shown in Figure 5.12

• For the first image, at a given time tdet, the first probe beam derived from the cooling
laser is sent to detect atoms in |F = 2⟩, we have IF=2(x, y).

• We put the second pulse 500µs just after the first probe pulse to remove the atoms de-
tected in the first step. Otherwise, these detected atoms will later affect the detection
for atoms in |F = 1⟩.

• For the second image, time delay around TD ≈ 3ms (This time delay depends on
the size of picture transfer) after the first pulse. We first use a repump pulse to pump
atoms from |F = 1⟩ to |F = 2⟩ then a probe pulse to detect atoms. This gives us
IF=1(x, y).

• For the third image, there are no atoms in the detection area, and we send a probe
pulse directly to the camera to have a background Iprobe(x, y)

• For the fourth image, no light is sent to the camera. We have Ibackground(x, y)

• The density of the atom cloud is given by:

ρF=2 =
1

σ

∫
IF=2 − Ibackground
Iprobe − Ibackground

dxdy (5.33)

ρF=1 =
1

σ

∫
IF=1 − Ibackground
Iprobe − Ibackground

dxdy (5.34)
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Probe
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a.

b.

Figure 5.12: The top picture is the pulse sequence of the absorption imaging. The bottom pictures,
from left top to right bottom, is the absorption image of atoms in |F = 2⟩, |F = 1⟩, the probe in
and background. The last two picture is the density of the atom cloud in |F = 2⟩ and |F = 1⟩
based on Equation 5.33

By using Equation 5.31 we can know how many atoms are in |F = 1⟩ and |F = 2⟩ and get
the probability in each state |i⟩ by measuring the ratio Ni/(N1 +N2).

5.5 Conclusion

After some efforts to improve the dipole evaporation cooling, we can now produce BECs
of 220 000 atoms with an evaporation sequence of 1.7s only. In the end, we obtain an atom
cloud with a trapping frequencies (50,100,100) Hz, which corresponds to a final cloud with
a temperature around 70 nK.

Currently, our BEC’s atom number, temperature, and cloud size are sufficient to per-
form a measurement of h/m with the BEC. But the atomic interactions in this dense cloud
will affect our final result. So before we begin the new measurement, a study of atomic
interaction is necessary. To do so, we decided to use the Mach-Zehnder interferometer and
observed an interesting phenomena in our experiment (see figure 5.13).

From these pictures, we can see that the atomic interaction in the BEC causes a non-
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Figure 5.13: The absorption image of the cloud |F = 1⟩ at the end of the atom interferometer
when we scan different phase of the last pulse of Mach-Zehnder interferometer ϕL

negligible phase shift. Second, we see that the cloud center is moving when we scan the
phase of the last pulse of the Mach-Zehnder interferometer. In fact the Equation 5.24 pre-
dicts this effect which shows a spatial dependant phase in the wave function. In the next
chapter, we will prove that atomic interactions are responsible for both of these effects.
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Phase shift due to interactions in an
atom interferometer

Although the BEC has a great potential for metrology, atomic interactions induce a detri-
mental phase shift that can undermine the benefits of using Bose-Einstein condensates for
precision measurements with an atom interferometer. Several groups have studied the ef-
fects of interactions theoretically and experimentally to understand their impact on the
phase of Bose-Einstein condensates during free evolution[42, 74, 16, 67, 41, 19]. W.D. Philips
group showed that after the release from the trapping potential, the BEC expands due to
repulsive interactions and develops a non-uniform phase profile [66]. A more recent work
studied local modification of the condensate phase due to mutual interactions and showed
that modifications occur only in the region where the wave packets overlap[19].

This chapter is devoted to the precise evaluation of the phase shift induced by the atomic
interactions at the output of the interferometer. It consists of two parts: In the first part, I
will present twomodels to evaluate the phase shift in the Thomas-Fermi regime: ModelA is
based on the evolution of the phase of the condensate wave function using the GP equation
and model B uses a perturbation approach and the Feynman path integral method[61].

The second part presents the measurements of this phase shift made by varying some
experimental parameters: imbalance of the two populations in the two arms of the inter-
ferometer, the trapping frequencies and the release time of the condensate.

6.1 Theoretical Models

Figure Fig.6.1 shows the light pulse sequence of the atom interferometer used in our the-
oretical models and experiments. It consists of three counter propagating Raman pulses
θ − π − θ. Each pulse induces Raman transition between internal states |1⟩ and |2⟩. We
control the atom population imbalance between the two trajectories (A and B) by changing
the duration τθ of the first pulse (the pulse area is given by θ = Ωτθ). Note that the duration
of the last pulse is changed as well. Here we define the imbalance factor α:
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Figure 6.1: At time t0 we remove the dipole trap, and the BEC begins to free fall. After a free
time TF we apply the pulse sequence θ− π− θ, by detecting the probability of atoms in |1⟩ with
different phase of the last pulse we extract the phase shift caused by the atomic interaction.

1

2
+ α = sin2

(
Ωτθ
2

)
(6.1)

where Ω is the effective Rabi frequency.

In our experiment, the atoms are first prepared in |1⟩, which corresponds to the hyper-
fine state |F = 1,mF = 0⟩ of the electronic ground state of the rubidium 87. After the first
Raman light pulse θ, the BEC is in a coherent superposition of two different states |1⟩ and
|2⟩ with amplitude probabilities C1 and C2 respectively

|ψ⟩ = C1|1⟩+ C2|2⟩

Atoms that are transferred by the Raman transition get a recoil velocity 2vr, and the
two clouds separate. We have two BECs in two different internal states that evolve along
two trajectories during the interferometer sequence. Their wave functions φ1 and φ2 are
governed by the following GP equations:

iℏ
∂φ1

∂t
=

[
− ℏ2

2m
∇⃗2 + |C1|2g11N |φ1|2 + |C2|2g12N |φ2|2

]
φ1

iℏ
∂φ2

∂t
=

[
− ℏ2

2m
∇⃗2 + |C1|2g12N |φ1|2 + |C2|2g22N |φ2|2

]
φ2

(6.2)

The separation and recombination processes change the overlap of the two atom clouds, so
that the interaction potential seen by the atoms also changes with time during the interfer-
ometer. All these affect the wave function. Here wemake an assumption: Because when we
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Figure 6.2: The mean field potential at cloud center normalized by the initial mean field. The
mean-field vanishes quickly with the expansion of the cloud. When TF = 3ms there is only 16%
mean field left.

apply the atom interferometer, the mean-field decreases a lot and most interaction energy
transfers into kinetic energy (almost 85% translate into kinetic energy, see in Figure 6.2),
so we can assume that atomic interaction will not change the cloud shape, the way of ex-
pansion and center trajectory of each cloud but only introduce a small phase ϕk (r, t) on
the wave function, where k corresponds the different pathA or B. Using the wave function
derived from Castin&Dum’s model, we can write the wave function of the cloud traveling
along path (k) is

φk (r, t) = eiϕk(r,t)e−iβ(t)eim
∑

j rj(t)
2λ̇j(t)/2ℏλj(t)

φ (r, 0)√
λx (t)λy (t)λz (t)

(6.3)

Where ℏβ̇ (t) = µ/ (λx (t)λy (t)λz (t)) and φ (r, 0) is initial wave function when we re-
move the dipole trap potential that is same as the wave function with the dipole potential
which is derived from Equation 5.18 is same for each path.

Wewant to calculate the phase shift between the two arms of the interferometer induced
by the atomic interactions. In the next sections, I will describe two models for evaluating
this phase shift.

6.1.1 Model A: Evolution of the phase of the BEC wave function
using GP equation

We switch off the dipole trap at time t0. To calculate the evolution of the phase of the
BEC wavefunction we inject the wave function Equation 6.3 in GP equation and we make

89



Chapter 6

a coordinate transform ri0 = ri (t) /λi (t) , i = x, y, z, in fact here ri0 = ri (0) is the initial
position of the particle in the cloud and the center of cloud is zero. We obtain

iℏ
∂φk

∂t
=

(
− ℏ2

2m

1

λ2i
∂2i0 + |CA|2gϵk(t),ϵA(t)N |φA|2 + |CB|2gϵk(t),ϵB(t)N |φB|2

)
φk (6.4)

where the ϵA/B (t) represents the internal state of the atom (|1⟩ or |2⟩) along the respec-
tive trajectory at time t, CA/B (t) is the proportion of atoms in each trajectory, the gϵk(t),ϵA(t)

is the coupling constant between different states and the φA/B is the wave function along
different path.

We then put the wave function Equation 6.3 into Equation 6.4 and by using λ̈i =
ω2
i / (λiλxλyλz) we can get the expression of the phase shift on path k :

ℏϕ̇k (r, t) =− ℏ2

2m

∑
i=x,y,z

1

λ2i

(
∂

∂2ri0
ϕk (ri0, t)−

∂

∂2ri0
|φ (ri0, 0) |2

)
+

1

λxλyλz

(
−µ+

∑
mω2

i r
2
i

2
+ g11N |φ (ri0, 0) |2

)

− 1

λxλyλz

(
g11N |φ (ri0, 0) |2 −

∑
l=A,B

|Cl|2Ngϵk(t),ϵl(t)|φ (ri0, 0) |2
)

(6.5)

The first part of the right hand of the equation is the spatial derivation of the additional
phase ϕk, which is very small compared with the atomic interaction potential and will be
proved later. So here we neglect it first. The last part of the right hand of the equation is
the interaction between the two clouds. If we look at the second part, it recalls the time-
independent Gross-Pitaevskii Equation (5.20). Then this complex formula can be simplified
as below:

ℏϕ̇k (r, t) =− ℏ2

2m

∑
i=x,yz

(
1

λ2i
− 1

λxλyλz

)
∂

∂2ri0
|φ (ri0, 0) |2

− 1

λxλyλz

(
g11N |φ (ri0, 0) |2 +

∑
l=A,B

|Cl|2Ngϵk(t),ϵl(t)|φ (ri0, 0) |2
) (6.6)

Because in Tomas Fermi regime, the kinetic energy is negligible so that the first part is
zero, and we got the final expression of the phase shift

ℏϕ̇k (r, t) = − 1

λxλyλz

(
g11N |φ (ri0, 0) |2 −

∑
l=A,B

|Cl|2Ngϵk(t),ϵl(t)|φ (ri0, 0) |2
)

(6.7)

This equation shows that if we do not apply any Raman pulses to the atoms and all atoms
rest in the initial state |1⟩, it will have only one trajectory left, which is the trajectory B in
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Figure 6.1. Then we have CB = 1 for the whole atom interferometer sequence, leading
to the result ϕk = 0. We have no additional phase shift because we have no separation
and combination in this situation. We will get the same wave function as Castin&Dum’s
paper [22]. Because in the atom interferometer, what is important is the phase difference
between the two paths. Because the first part of the formula is the same for each path, it
will be reasonable to remove it at the output of the atom interferometer. In the following
calculations, we can neglect this part during the atom interferometer, which allows us to
rewrite the phase shift:

ℏϕ̇k (r, t) =
1

λx(t)λy(t)λz(t)

∑
l=A,B

|Cl|2Ngϵk(t),ϵl(t)|φ (ri0, 0) |2 (6.8)

Equation 6.8 gives a way to express the phase shift due to the atomic interaction of an
atom with a given position r at time t. As in the experiment, we detect the total atoms in
the atom cloud, so the phase shift measured is a phase shift average over the whole cloud.

The next step, we can apply spatial and time integral to get this average phase shift. The
cloud is separated vertically into two when the first Raman pulse is applied, so the distance
between the atom in the two clouds can be written as below:

∆Z(t) = rAi0 − rBi0 =

{
2vr (t− ti) when ti < t < t1

2vr (tf − t) when t1 < t < tf
(6.9)

Based on the (6.8) and (6.9), after the spatial and time integral we have the final phase shift
at the output of the interferometer on path k (A or B):

ϕk (t) =

∫
dt
∑
l

|Cl|2
gϵk(t),ϵl(t)N

ℏ

∫
|φl

(
rli0, 0

)
|2|φk

(
rki0, 0

)
|2drki0 (6.10)

From the equation above (6.10) this phase shift can be understood as the interaction between
the two clouds, so the overlap of the two clouds will affect this phase shift a lot. Let’s
define the normalized vertical distance is ∆z = ∆Z(t)/ (λz (t)ZTF) and normalize the
three dimension by ri0 = ri (t) / (λi (t)Ri,TF) , i = x, y, z. Then we put the Eq. 5.18 into
the integral (6.10) then we get the final expression of the phase shift:

ϕk =
∑
l

|Cl|2ωϵk(t),ϵl(t)

∫
dtG (t)

∫ 1

∆z(t)
2

∆z (t)
(
1− z2

)(
z − ∆z (t)

2

)
+

(1− z2)
3

3
dz

(6.11)
whereCl corresponds portion of atoms stay in each path so |CA|2 = 1

2
+α and |CB|2 = 1

2
−α,

and we define the atomic interaction frequency

ωϵk(t),ϵl(t) = 2π
gϵk(t),ϵl(t)µ

2XTFYTFZTF

ℏNg211
the functionG (t) = 1/ (λx (t)λy (t)λz (t)) shows how the density dilutes with the expan-
sion of the cloud and the last integral on z dimension, we discuss in two situation:
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• When l=k, the cloud overlaps with itself then ∆z(t) = 0, we call it self-interaction,
and we define

fself (t) =

∫ 1

0

(
1− z2

)3
/3 = 16/105 (6.12)

the phase shift due to the self-interaction can be written as follows:

ϕk,self = |Ck|2ωkk

∫
fself (t)G (t) dt (6.13)

• When l ̸= k, it’s the interaction between different clouds then ∆z(t) ̸= 0, so we call
it mutual-interaction then ∆z ̸= 0, and we define

fmut (t) =
∆z7 (t)

1120
− ∆z5 (t)

60
+

∆z3 (t)

6
− 4∆z2 (t)

15
+

16

105
(6.14)

likewise, we have the phase shift due to the mutual interaction :

ϕk,mut = |Ck|2ω12

∫
fmut (t)G (t) dt (6.15)

The total phase shift due to the atomic interaction on each path is the sum of the self-
interaction and mutual-interaction respectively:

ϕk,tot = ϕk,self + ϕk,mut (6.16)

The relevant quantity is the phase difference between two trajectories at the output of
the interferometer, if we have pulse sequence θ − π − θ shown in Figure 6.6, the phase
difference caused by self and mutual interaction is calculated respectively below:

In the experiment the pulse duration τ ≈ 40µs and TR ≈ 5ms, τ ≪ TR so we can
neglect the phase acquisition during the Raman pulse [47].

• The phase difference caused by the self-interaction (∆z = 0) is

∆ϕself = ϕA,self − ϕB,self

=
ω22 − ω11

2

(∫ t1

ti

fself (t)G (t)−
∫ tf

t1

fself (t)G (t)

)
+ α (ω22 + ω11)

∫ tf

ti

fself (t)G (t)

(6.17)

where ti and tf is the start time and end time of the atom interferometer.

• The phase difference caused by the the mutual-interaction (∆z ̸= 0) is

∆ϕmut = ϕA,self − ϕB,self

= −2αω12

(∫ tmax
s

ti

G (t) fmut (t) +

∫ tf

tmin
c

G (t) fmut (t)

) (6.18)
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The first and second part shows the separation and recombination of the clouds. The
corresponding time tmax

s is when the two clouds are totally separated, and tmin
c is

when the two clouds begin recombining. They are calculated from:

tmax
s : 2ZTFλz (ts) = 2vr (ts − ti)

tmin
c : 2ZTFλz (tc) = 2vr (tf − tc) (6.19)

The total phase difference at the output the interferometer is

∆ϕtot = ∆ϕself +∆ϕmut (6.20)

This result is same as what shown in the previous result of our group [47], the difference
is that we assumed the atoms are in a Gaussian distribution before while in this calculation
we assume the wave function of the BEC is given by Castin & Dum formula [22].

In this model, the effect due to the mutual interaction is overestimated because the sep-
aration and recombination times are also vertical position z-dependant, which means that
the atoms at a different position in the cloud will have different separation and recombina-
tion times. This will be explained in the next model. But this little effect can be neglected
between these two models under certain situations that are validated in our experiment.
The comparison of the two models will prove this.

6.1.2 Model B: Feynman path integral approach

In the second model, instead of doing spatial integral of the cloud to get the average phase
shift of the whole cloud, we calculate the phase acquisition of each atom at a given position
r = (x, y, z) in the cloud by doing the Feynman path integral SA/B along each arm of the
atom interferometer. Then we can calculate not only the average phase shift of the whole
cloud but also the local phase gradient of the cloud. More details of this model are shown
in Appendix 6.5:

The Feynman path integral method states that: An initial wave packet with a phase
ϕ (r (t0) , t0) at time t0, the phase at time t can be calculated by integrating the Lagrangian
L along the classical trajectory r (t) :

ϕ (r (t) , t)− ϕ (r (t0) , t0) =
S (L)
ℏ

=
1

ℏ

∫ t

t0

L (ṙ (t) , r (t) , t) dt (6.21)

with
L (ṙ (t) , r (t) , t) =

1

2
mṙ2 (t)− V (r, t) (6.22)

V is the potential experienced by an atom of mass m. The trajectory should match the
initial velocity of the cloud (ṙ (t0) = −iℏ∇ϕ).

The Lagrangian of our system is given by

L (ṙ (t) , r (t) , t) =
1

2
mṙ2 (t)−W (r (t) , t)− VMF (r (t) , t) (6.23)
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Figure 6.3: In red and blue represents trajectoryA and trajectoryB respectively. Solid line state
|1⟩, dashed line state |2⟩. Thick line : trajectoriesRA/B of the center of mass of the atomic wave
packet. Thin line : trajectory rA/B used to integrate the Lagrangian for a given position rref in
the cloud.

Where the first term is the kinetic energy of atom ofmassm, themotion of it is explained
in Castin & Dum’s model ṙA/B = ṘA/B + rref(t0)λ̇i.

The second part W (r (t) , t) is an an effective potential that presents the interaction
with the Raman pulses. For the three pulses interferometer of figure 6.3, this potential is
given for each path by:

WA (r, t) = ℏ ((keff · rA (ti)− ωti)− (keff · rA (t1)− ωt1)) (6.24)

WB (r, t) = ℏ ((keff · rB (t1)− ωt1)− (keff · rB (tf )− ωtf )) (6.25)
Where keff is the wave vector of the Raman laser beam, When an atom performs a Raman
transition from |1⟩ to |2⟩, the effective phase of the laser is added to the phase of its wave
function. It is subtracted when the atom is transferred from state |2⟩ to |1⟩. With this
effective potential, the trajectory that extremizes the action, accounts for the recoil induced
by each Raman transition.

The last part is the atomic interaction potential. In the mean-field approximation, the
interaction potential is proportional to the cloud density.

ρA/B

(
rA/B, t

)
= cA/B (t)Nρref (rref , t) (6.26)

where ρref is derived from Equation 5.18 and cA/B is portion of atoms stays in the path.
In the configuration depicted in figure 6.3, cA = 1/2 + α and cB = 1/2 − α where α is
imbalance in population between the two arms of the interferometer.

In our experiment, the Raman transition couples two internal states, namely |2⟩ and
|1⟩, and an atom after the first Raman pulse is in a superposition of two wave packets
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that propagate along the reference trajectories rA and rB . To calculate the phase in our
interferometer, we should consider that the total mean field experienced by an atom in
path k is the sum of the mean field induced by the atoms in the same internal state from
its atomic cloud (the so-called self-interaction) and the one induced by the atoms in the
different internal state in another path l (the so-called mutual interaction) (see figure 6.3).
It can be written as:

VMF,k (rk, t) =
∑
l

Ngϵk(t),ϵl(t)ρl (rl, t) (6.27)

During the atom interferometer sequence shown in Figure 6.3, at different time the
mean field potential felt by the atom in different path is expressed below:

For ti < t < t2

VA (rA, t) = NcAg22ρref (r, t) +NcBg21ρref (r +∆R (t) , t)

VB (rB, t) = NcBg11ρref (r, t) +NcAg12ρref (r −∆R (t) , t) (6.28)

For t2 < t < tf

VA (rA, t) = NcAg11ρref (r, t) +NcBg21ρref (r +∆R (t) , t)

VB (rB, t) = NcBg22ρref (r, t) +NcAg12ρref (r −∆R (t) , t) (6.29)

We want to calculate the phase difference at a given observation position robs and time
tobs (see figure6.3), the spatially dependent phase difference between the two wave packets
is given by :

∆ϕ (robs, tobs) =
1

ℏ

∫ tobs

t0

(LA (ṙA, rA, t)− LB (ṙB, rB, t)) dt (6.30)

Based on the assumption we made before: Because when we apply the atom interfer-
ometer, the mean field decreases a lot, and most interaction energy has already transferred
into kinetic energy (almost 90% mean field energy is transferred into kinetic energy when
free fall time TF = 3ms), so we can assume that the cloud expansion in two clouds is same,
so does the two cloud shape rA

ref = rB
ref . we can write rA/B (t) = RA/B (t) + rref (t). In the

absence of any perturbation, the two trajectories are symmetric, and the total phase shift
at the output of the atomic interferometer is zero. In the first order, the total phase shift
could be calculated by integrating the perturbation along the unperturbed trajectories [61].
These trajectories overlap for t < ti and t > tf and the potential is the same t(atoms are in
the same state), we can therefore restrict the integral to ti < t < tf and

∆ϕ (robs, tobs) =
1

ℏ

∫ tf

ti

(LA (ṙA, rA, t)− LB (ṙB, rB, t)) dt (6.31)
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By doing the integral above, we will find out that the kinetic and laser phase part is canceled
out at the end of the interferomter. So the final phase difference is written as the integral
of the mean field potential:

∆ϕ (robs) =

∫ tf

ti

(
V pert
A (RA (t) + rref (t) , t)− V pert

B (RB (t) + rref (t) , t)
)
dt (6.32)

By separating contributions from the mutual and the self-interaction, we obtain

∆Φself (robs) =
1

ℏ
Nα (g11 + g22)

∫ tf

ti

ρref (r, t) dt+
1

ℏ
N

2
δg

[∫ t1

ti

ρref (r, t) dt−
∫ tf

t1

ρref (r, t) dt

]
(6.33)

∆Φmut (robs) =
1

ℏ
Ng21

(
1

2
− α

)[∫ tAs

ti

ρref (r +∆R (t) , t) dt+

∫ tf

tAc

ρref (r +∆R (t) , t) dt

]

− 1

ℏ
Ng12

(
1

2
+ α

)[∫ tBs

ti

ρref (r −∆R (t) , t) dt+

∫ tf

tBc

ρref (r −∆R (t) , t) dt

]
(6.34)

where α = |cA (t)− cB (t) |/2 is the population imbalance between the two arms of the
interferometer and δg = g22 − g11, for rubidium | (a22 − a11) /a11| is around 6%, which is
measured in our experiment and will be shown at the end of this chapter. The boundaries
of the integrals (6.33) and (6.34) account for the finite extension and separation of the two
interfering clouds: tAs (resp. tBs ) is the separation time when atom on trajectory A (resp. B)
leaves the overlap zone and tAc (resp. tBc ) is the recombination time when atom on trajectory
A (resp. B) enters the overlap zone(seen in Figure 6.4). They depend on the expansion and
the separation velocities of the two interfering condensates.

Figure 6.4: The trajectory of each cloud. The different separation and recombination times
are shown for an atom with a given position z. In this picture, we show the z>0, but as
the cloud is symmetric so the same situation can be used for the atom in z<0

And these times satisfy the equations below:
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tAs : (zTF − z0)λz
(
tAs
)
= 2vr

(
tAs − ti

)
tBs : (zTF + z0)λz

(
tBs
)
= 2vr

(
tBs − ti

)
tAc : (zTF − z0)λz

(
tAc
)
= 2vr

(
tf − tAc

)
tBc : (zTF + z0)λz

(
tBc
)
= 2vr

(
tf − tBc

)
(6.35)

Two models comparison

Two simulations are written in python to simulate this effect using these two different
models. We put the same initial parameters for each model and changed the free-fall time
to see the phase difference at the output of the interferometer, the simulation results are
shown below:

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
TF/ms

0.0

0.2

0.4

0.6

0.8

/ra
d

model A
model B

Figure 6.5: The initial parameters are θ = 0.3π, [50 ,105 ,105 ]Hz, Na = 180, 000. The points
and solid line are the simulation results from model A and model B respectively.

From Figure 6.5 we can see that when the free-fall time is short Tf = 3ms these two
models have a small difference. Comparing Equation 6.19 and Equation 6.35, it’s easy to
find out tAs < tmax

s and tAc > tmin
c , so the reason is that because in model A the time integral

scale of mutual interaction is overestimate and the ∆ϕmut and ∆ϕself they have opposite
sign. Hence, model B gives a slightly bigger value when the free fall is small where the
atomic interaction magnitude is big. But when TF > 3ms, these two modes give the same
value as the atomic interaction extinguishes quickly with time. In our experiment, because
of some limitations of the experimental setup, the minimum free-fall time is 3ms, so in our
experiment, we can say these two models do not have any difference.

This result shows that the phase of the Castin & Dum’s model (modelA) can be recov-
ered from the method of Feynman path integral (modelB). Model B also gives us a way to
study the local phase of the cloud, which is shown in next section section 6.3.
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6.1.3 Principle of phase measurement

After switching off the trapping laser, the atom cloud will fall due to gravity. In the mean-
time, the repulsive force caused by the atomic interaction makes the cloud expand.

Figure 6.6: At time t0 we remove the dipole trap, and the BEC begins to free fall. After a free time
TF we apply the first θ raman pulse to begin our atom interferometer.

We know that the atomic interaction potential will convert into kinetic energy as time
goes by. So in the experiment, we can variate the atomic interaction magnitude when the
cloud enters the atom interferometer by changing the free-fall time TF . From the Equa-
tion 6.17 and Equation 6.18 we know that the final phase shift varies with unbalance factor
α. So we use 5 different pulse duration τθ from .3π to 0.7π to change the imbalance between
the two arms to verify whether our theoretical models are correct or not.

We detect the atoms in |F = 1⟩ and |F = 2⟩ at fixed observation time tobs = 33ms
by absorption imaging. We make this measurement by scanning the laser phase of the last
pulse ϕL. Then we integrate image over yz axis (x axis being the direction of the probe
laser beam). From the number of atom in each state |1⟩ and |2⟩, we deduce the fraction of
atom in F = 1 and then the probability P (F = 1) to detect atoms in |1⟩.

Then we repeat the experiment with differentΦL from−π to π to get the atomic fringes
signal. By fitting this signal by a sinusoidal function, we get the phase shift due to the atomic
interaction (seen in the orange curve in Figure 6.7)

P (F = 1) =
1− α2

2
(1 + cos(∆ϕ− ΦL)) (6.36)

Before running the experiment, the trapping frequency ismeasured as [50 , 115 , 115 ]Hz,
and this critical parameter is set in our simulation codes. As we discussed before, there is
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Figure 6.7: The points are the experimental data and the orange solid curves is the sinusoid fit
curves. Both figures are manipulated with θ = 0.3π but with different free fall time( Left: 3ms,
Right: 20ms). Their fringe centers are written on the top of each figure.

no difference between models A and B. So we use model A to do the simulation because it
is much faster than model B.

Then experiment is run randomly with different [θ, TF]. The whole experimental data
and simulation results are shown in Figure 6.8.
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Figure 6.8: Total phase shift accounting for both mutual and self interactions as a function of the
release time TF, for different values of the Raman pulse area θ (from 0.3π to 0.7π), with TR =
6ms. The square points are the experimental data with each point is an average of 7 experimental
points. The shaded curve is the range of calculated total interaction phase shift, accounting for
uncertainty on the pulse area and the trapping frequencies.

Because our Raman lasers are phase-locked and the phase of the last laser pulse ϕL is
scanned, so the effective phase felt by the atom is ϕeff = ϕR1 − ϕR2 = −ϕL. That is why in
this picture, this phase shifts ∆ϕ has the opposite sign of the theoretical values, where the
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phase shift should be negative (positive) when θ < 0.5π (θ > 0.5π) in our model.

From Fig. 6.8, it shows us that the theoretical model works very well with experiment.
We can conclude:

First, the mean-field effect vanishes quickly with the fall time increases. After 20ms, the
interaction effect is weak (20 mrad left) and can be neglected. So in the experiment, we can
leave the cloud to expand for a longer time to reduce the effect.

Second even α = 0, we still can see a clear phase shift due to the mean-field. This is
because of the difference between scattering length a11 and a22 and because the free-fall
time is small, so the atomic potential is powerful (TF = 3ms)that makes the partω22−ω11 ̸=
0 in ∆ϕself is no longer negligible.

6.2 Effect of the trapping frequency

We always think that the higher atomic interaction, the more phase shift generated at the
end, which seems right in Fig.6.8 where this effect decreases with the free-fall time. But is
that always true?

Instead of changing the free-fall time to variate the magnitude of the atomic interaction,
this time, we keep the atom number constant and change the trapping frequency of the
dipole trap to change the atomic interaction magnitude in the cloud. The way is shown in
Figure 6.9.

Figure 6.9: In the experiment, we first do evaporation cooling to a fixed potential depth (mid
picture) and let it stabilize for a while, then change the dimple dipole laser power to variate the
trapping frequency (the last picture) without changing the atom number.

This way, we can change vertical trapping frequency from 80Hz to 200Hz with atom
number fluctuates between 120,000 and 150,000. Then we do the same pulse sequence θ −
π − θ shown in Figure 6.6 with fixed θ = 0.35π and measure the phase shift due to the
atomic interaction using the same way mentioned in before.

From theFigure 6.10, the result is contra intuitive. The phase shift does not simply
increase with the trapping frequency but first increases with the trapping frequency and
then decreases with the trapping frequency.
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Figure 6.10: Variation of interaction phase shift with the vertical trapping frequency νz . The blue
points are the experimental data, each points is average of 50 repetitions. The shaded orange
curve is the range of calculated total interaction phase shift, accounting for uncertainty on the
number of atoms and the trapping frequencies. Parameters are TF = 3ms, TR = 6ms and θ =
0.35π.

In order to understand this, the Figure 6.11 plots the self-interaction and mutual inter-
action variation with trapping frequency in model A.
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Figure 6.11: The self interaction and mutual interaction changes with the trapping frequency.

When the trapping frequency is infinitely small ωi ≈ 0, the mean-field potential is also
infinitely small, whichmeans µ ≈ 0. That is why at the beginning, we do not see any atomic
effect at the end of the atom interferometer. With the increase of the trapping frequency,
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the mean-field µ ∝ ω̄(7/5), ω̄ = (ωxωyωz)
(1/3) will increases immediately. Although the

expansion of the cloud will increase with the trapping frequency (seen in Figure 5.2) the
λi (t) can be approximated as

√
1 + (ωit)

2 , this vanishing time of the atomic interaction
t ∝ 1/ωi is big when the trapping frequency is very small, so we can approximate during
the interferometer the cloud size doesn’t change. This results in both the self interaction
and mutual interaction increase.

But when the trapping frequency is minor, the expansion of the cloud is slow while
the split speed between the two clouds is always the same 2vr, so these two clouds will
separate very quickly. Hence, in the self interaction, the time integral range is bigger than in
mutual interaction, then the magnitude of self interaction increases quicker than in mutual
interaction giving rise to the ∆ϕtot increasing at the very beginning of this picture.

After then, the trapping frequency increases more and more, and the expansion of the
cloud gets quicker and quicker, so the mean-field decreases very quickly. This effect de-
creases with the trapping frequency after one point and infinitely goes to zero.

6.3 Phase gradient in the cloud

We discussed the average phase on the whole cloud, but as we discussed in the model
B when the cloud is separating or combining the atom at the different positions will see
different atomic interactions, whichmeans that this phase should be spatial dependent. The
motion of the cloud when we scan the phase of the last pulse (seen in Fig.5.13) is proof of
the phase gradient of the cloud.

Because model A cannot simulate this phenomenon, we use model B to study it.

The simulation result shown in Fig.6.12 gives us the same cloud motion in the experi-
ment: the cloud center moves when we scan the phase of the last pulse, which means the
phase of the cloud is not homogeneous. Then we extract the phase gradient of the experi-
ment data and simulation result and show them below:

From this picture the simulation result fits not bad with the experimental data, the small
disagreement (for the area z<0 in θ = 0.3π) is due to the second π pulse can’t transfer all the
atoms into another state. So after this π pulse there is still some atoms rest in the previous
state.

From the experimental and simulation results, they have a not bad agreement and we
can find out that the phase gradient is a parabola function which is related with the imbal-
ance factor α. The simulation results shows that the ratio when

µ ≈ 107 × ℏ2

2m

∂2ϕ (r, t)

∂2r
≫ ℏ2

2m

∂2ϕ (r, t)

∂2r
when α = 0.5

µ ≈ 3× 105 × ℏ2

2m

∂2ϕ (r, t)

∂2r
≫ ℏ2

2m

∂2ϕ (r, t)

∂2r
when α = 0.3

so that the assumption in the model A: ∂
∂2
r
ϕ (r, t) can be negligible with respect to the
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Figure 6.12: Scan the phase of the last pulse from −π to π. We put the experiment parame-
ters into simulation model B without any adjusting. The trapping frequency is [50, 102,102]Hz,
Na = 220, 000, TR = 6ms, θ = 0.3π and free fall time TF = 5ms. The first two rows are the
experimental results and the last two rows are the simulation results.
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Figure 6.13: Variation of the phase shift at the output of the interferometer along the vertical
z-axis, for different Raman pulse area θ. The points are the experimental data and each points
are an averange of 7 points. The shaded area accounts for the fluctuation of the pulse area and
trapping frequency.
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chemical potential is correct.

Because in the usual atom interferometer, the imbalance factor α = 0, so after then we
try to understand more about this phase gradient when θ = 0.5π.

Because this phase gradient comes from the separation of the two clouds and this means
that this effect is only due to themutual interaction. Herewewill only care about themutual
interaction.

In model B, we know that the average potential felt by atoms with a given vertical
position z is integral of Equation 6.27 over xy coordinate.

V̄k (z, t) =

∫∫
g12Nρl|φk (x, y, z) |2 dxdy∫∫

|φk (x, y, z) |2 dxdy
(6.37)

The potential V̄k (z, t) present the mutual potential felt by atom in path k (A or B). With
the time integral V̄ (z) =

∫
V̄ (z, t) dt and do the phase difference between the two paths

then we can get the local phase of atom at vertical position z.

Nowwe consider an atomwith initial position (x0, y0, z0), where ri,0 = ri(t)
λi(t)

. Due to the
symmetry of the cloud, we can first consider the situation z0 > 0 then the same calculation
can be used for z0 < 0.

The trajectory and mutual interaction potential of the atom at position z in each path
is shown in Figure 6.14:

We can see that the difference is only the blue part shown in Figure 6.14. It is easy to
conclude that this phase difference is position z-dependant. The further the atom is away
from the cloud center, the more significant phase difference it has at the end of the atom
interferometer.

From Figure 6.14, it is clear that the phase difference between the two paths (the blue
part in the picture) is highly related to when the atom can not feel (separation) and fell
again (recombination) the mutual potential from another cloud. The different separation
and combination times of the with position z0 they satisfy:

tAs : (zTF − z0)λz
(
tAs
)
= 2vr

(
tAs − ti

)
tB

′

s : 2z0λz

(
tB

′

s

)
= 2vr

(
tB

′

s − ti

)
tBs : (zTF + z0)λz

(
tBs
)
= 2vr

(
tBs − ti

)
tAc : (zTF − z0)λz

(
tAc
)
= 2vr

(
tf − tAc

)
tBc : (zTF + z0)λz

(
tBc
)
= 2vr

(
tf − tBc

)
tB

′

c : 2z0λz

(
tB

′

c

)
= 2vr

(
tf − tB

′

c

)
(6.38)

And each separation time should be shorter than the mid-time of interferometer t1 =
ti + TR. Otherwise, it will be equal to t1, which means the atoms at the center always see
the mutual interaction from another cloud during the whole atom interferometer.
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Figure 6.14: Figure A shows the trajectory of the two different cloud on z direction. The red part
in figure B shows shows the atomic interaction potential integral for the atom at position z in
the up cloud (Path A). The sum of blue and yellow part in figure C shows the atomic interaction
integral for the atom at position z in the bottom cloud (Path B). The blue part shows the difference
potential integral for up and bottom cloud.

The phase difference can be written as:

∆ϕ =

(∫ tBs

ti

(
V̄ A
s (z, t)− V̄ B

s (z, t)
)
dt−

∫ tB
′

s

ti

(
V̄ B′

s (z, t)− V̄ B
s (z, t)

)
dt−

∫ tBs

tAs

V̄ A
s (z, t) dt

)
+(∫ tf

tAc

(
V̄ A
s (z, t)− V̄ B

s (z, t)
)
dt−

∫ tf

tB′
c

(
V̄ B′

s (z, t)− V̄ B
s (z, t)

)
dt−

∫ tAc

tBc

V̄ A
c (z, t) dt

)
(6.39)

Now we make our reasonable assumption to simplify this calculation: The atom is
close to the center of the cloud z0 ≈ 0.

Then we found out that tB′
s ≈ ti, tB

′
c ≈ tf and tAs ≈ tBs , tAc ≈ tBc which highly simplify

the expression of phase difference:

∆ϕ =

∫ tBs

ti

(
V̄ A
s (z, t)− V̄ B

s (z, t)
)
dt+

∫ tf

tAc

(
V̄ A
s (z, t)− V̄ B

s (z, t)
)
dt (6.40)

This formula is easy to understand as the phase difference is the time integral of the average
mutual potential difference on paths A and B. So if z0 ≈ 0, then∆ϕ ≈ 0 which is validated
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Figure 6.15: Evolution of the quantity F (∆ZR(t))µ(t) during the interferometer sequence for
different values of the trapping frequencies and release time TF

in both experimental and simulation results. But what we care about is the phase gradient
of the cloud, which is non-zero, shown in Fig.6.12. So it is enough to only consider the first
order of z0

Subsequent, we put average potential Equation 6.37 into Equation 6.40 then this expres-
sion can be written as :

∆ϕmut =
2

ℏ
a12
a11

z0µ

∫ tf

ti

G(t)F (∆ZR)dt (6.41)

withF (x) =

{
x(x4 − 1) if x < 1

0 otherwise
(6.42)

where the µ(t) = µ/G(t) shows the dilution of the mean field with the cloud expansion,
∆ZR = ∆Z(t)/(ZTFλz(t)) expresses the separation and combination during the atom
interfereometer where the cloud distance is shown in Equation 6.9.

The form of Equation 6.41 is interesting as it dissociates the effects of the chemical po-
tential with the expansion G(t) and of the separation of the two condensates F (∆ZR(t)).
The temporal evolution of these two terms depends on the expansion dynamics of the con-
densate, which is set by the trap frequencies. In Figure 6.15 we plot F (∆ZR(t))µ(t) for two
sets of trapping frequencies and two different release times TF. We observe that the mutual
interaction is significant at the beginning of the interferometer and that it declines as the
condensates dilute. So we also expect a rapid decrease of the phase gradient with the TF
increasing.

At the end, for each free fall time from 3ms to 20ms, we use a linear curve fit to extract
the centre phase gradient∇(ϕ) with pulse area θ = 0.5π. We have it shown in Figure 6.16.
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Figure 6.16: Phase gradient as function of release time TF . The orange shaded curve is the range
of calculated phase gradient accounting for the uncertainty on the trapping frequencies.

6.4 Measurement of the scattering lenghts

In the previous sections we have discussed how the mean-field affects during the θ−π− θ
atom interferometer and the phase gradient due to the atomic interaction. In Figure 6.8 we
see the phenomena due to the scattering length difference δa = a11 − a22 ̸= 0. In this

Figure 6.17: Schema presentation of θ−θ Ramsey sequence. At the time t0, we remove the dipole
trap, and the BEC is released and begins to free fall. After a free time TF we apply the pulse
sequence θ → θ with time delay TR. We measured the total atoms in |1⟩ and |2⟩ by absorption
imaging.
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Figure 6.18: The points are the experimental data and the orange solid curves is the sinusoid
fit curves. Both figures are manipulated with θ = 0.3π but with different free fall time( Left:
3ms, Right: 21ms). Their fringe centers are written on the top of each figure. The phase shift is
calculated from ∆ϕ = f0TR

section, we are going to use the θ− θ atom interferometer ( seen in Figure 6.17) to measure
relatively the scattering length.

In this experiment, we use the microwave transition instead of two photon transition,
so the clouds do not have separation during the atom interferometer. Unlike the previ-
ous experiment with two photon transition who scans the laser pahse, now we scan the
frequency of the microwave to find the phse shift caused by the interaction. For each scan-
ning frequency f , we can measure the probability of an atom in |1⟩ by absorption imaging.
Then we repeat the experiment with different scanning frequencies and extract the center
fringe f0 (seen in Figure 6.18) later, then deduce the phase shift ∆ϕ = f0TR due to atomic
interaction.

Without separation between the two clouds, we can deduce that in model A we have
ts = tc = t0 + TR and fmut (t) = fself (t) = 16/105 in Equation 6.18. The phase difference
at the output of the interferometer is:

∆ϕtot (α) =
16

105

[
ω22 − ω11

2
+ α (ω22 + ω11 − 2ω12)

] ∫ ti+TR

ti

g (t) (6.43)

From Equation 6.43, the phase difference at the interferometer’s output varies with the
imbalance factor α, which can be done by varying the θ pulse. The offset and slope of
this curve will give us information about the scattering length a11, a12 and a22. But one
issue is the second-order Zeeman effect in our experiment will also introduce a phase shift
∆ϕzeeman.

In order to know the second-order Zeeman effect, we let the atom cloud-free fall for
a long time so that the mean-field will be negligible. From the Fig.6.8 we know that the
mean-field has already vanished when TF = 21ms, so we experiment with two different
free-fall times.

• TF = 0.1ms the dephasse is caused by the 2nd order zeeman effect and themean-field
effect ∆ϕ1 (α) = ∆ϕMF (α) + ∆ϕzeeman
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• TF = 21ms is only caused by the 2nd order zeeman effect ∆ϕ2 = ∆ϕzeeman.

These two results are shown in Figure 6.19:

Figure 6.19: The phase shift due to the atomic interaction by changing different imbalance factor
α and two different free fall times. a: The free fall time TF = 0.1ms, b: The free fall time
TF = 21ms

To get ∆ϕMF (α), we just do ∆ϕ1 (α)− ∆̄ϕ2 and then compare the slope and offset of
this curve we can deduce the ratio (a11 − a22)/(a11 + a22 − 2a12).

At the end we determine the ratio a11−a22
a11+a22−2a12

= 1.351 ± 0.063, and in my numer-
ical calculation I used the scattering length a11 = 100.9a0, a12 = 96.9a0, a22 = 94.9a0
[5], which gives the theoretical value of this ratio is 1.5. And the recent measurement of
J.Dalibard’s is 1.16(9)[79]. Our result agrees with these two results.
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Figure 6.20: ∆ϕMF varies with the imbalance factor α. The points are the experimental data, the
green curve is a linear curve fit function based on the experimental results. The orange curve is
the simulation result of model A with setting scattering length a11 = 100.9a0, a12 = 96.9a0,
a22 = 94.9a0

6.5 Conclusion

In this chapter, we have investigated in detail both theoretically and experimentally the
phase shift due to atomic interactions in an atom interferometer.

First, by comparing the two different models, we prove that Feynman integral approach
can give the same result as the approach based on the evolution of the BEC phase given
by Gross-Pitaevskii equation and Castin & Dum’s model. Our theoretical models can be
used to derive general formulas for phase shifts related to self-interaction and mutual in-
teraction. Our models are general and accounts for the effect of a population imbalance
between the two arms of the interferometer as well as of the difference in scattering lengths
of the hyperfine states. It allows to evaluate precisely the interaction phase shifts know-
ing the time evolution of the spatial density of the Bose-Einstein condensate. Relying on
the Castin-Dum model, which describes the temporal evolution of the BEC spatial density
in the Thomas-Fermi regime, we calculated the phase shift induced by the atomic interac-
tions and in particular, the phase gradient (modelB) resulting from the mutual interaction.
We measured experimentally the phase gradient and the total phase shift (accounting for
mutual and self interactions) by varying the experimental parameters (BEC release time,
trapping frequencies and Raman coupling). The theoretical curves reproduce the experi-
mental data well without adjusting the parameters.

In particular, the work presented in this paper has enabled us to evaluate the phase
gradient due to the mutual interactions between the two interfering condensates. It also
provides theoretical tools, validated by the experiment, to evaluate the phase shifts induced
by atomic interactions. The treatment of the interaction effect by the Feynman path inte-
gral approach can be generalized to other atom interferometer configurations and offers a
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the simple way to accurately evaluate the related systematic effect that could affect high-
precision measurements with atom interferometry.
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Conclusion and outlooks

The first part of this manuscript presents our last measurement of the ratio h/m by atom
interferometry. This measurement relies on the combination of an atom interferometer
with Bloch oscillations in an accelerated optical lattice. After presenting these concepts we
described our experimental setup.

This measurement allowed to determine the fine-structure constant α with a relative
accuracy of 81 ppt. Notably, this unprecedented accuracy also improves the theoretical
value of the electron magnetic moment anomaly ae(theo). For the first time, the theoret-
ical value of ae(theo) has better accuracy than the experimental value ae(exp). However,
our new value of the fine-structure constant ddiffers by 5.4σ from from the value of α ob-
tained from the caesium recoil measurement. This discrepancy needs to be clarified and
this motivates the further investigations by the team using a Bose-Einstein condensate and
also the rubidium isotope 85

We demonstrated that our experimental setup is robust with unprecedented statistical
uncertainty. It is limited by different systematic effects.

Three new systematic effects were discovered, and two of them: the gouy phase and
residual Raman light shift, are supposed to be mitigated by using a colder and smaller
atom source. This motivates us to experiment with Bose-Einstein Condensates.

During my PhD, I improved both the efficiency and the stability of our optical evapo-
rative cooling to generate BEC with 220 000 atoms within 3.2 s. However, in such a dense
cloud, the atomic interactions are significant and could induce a detrimental phase shift that
can undermine the benefits of using Bose-Einstein condensates for precision measurements
with atom interferometry.

To understand how the atomic interaction affects the atom interferometer, we proposed
two different models that can reproduce our experimental data well without adjusting any
parameters. Moreover, we can use it to study the phase gradient due to the mutual interac-
tion.

Our model predicts that the impact of the atomic interactions is negligible for our h/m
measurement if we apply the atom interferometer long after the BEC is released from the
trap. The BEC production is stable enough to run the h/m measurement over one day. We
checked that the h/mmeasurement’s uncertainty for one sequence using the BEC is similar
to the one obtained using a molasses (apart from the difference in the total experiment cycle
time due to the longer preparation sequence to produce a BEC). However, the statistical
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Figure 6.21: Top: Set of h/m determinations taken over 60 hours. Each point correspond to ∼ 13
minutes of integration. Bottom: Comparison between the data Allan deviation and the expected
behavior in the case of a white noise induced data distribution.

uncertainty is slightly lower than the one of our last measurement with molasses. But as
this is just a preliminary result, some improvements could be made in the future

In the meantime we also developed a more powerful laser system that will help us to
reduce some of the main systematic effects by using larger beams. As a perspective after
completing the h/m measurement with the BEC, we plan to redo the measurement with
the other isotope 85Rb.
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Annexe

.1 Model B

• For a given atom number Na in |F = 1⟩ and trapping frequencies ωx,y,z , using the
Thomas-Fermi regime |φ|2 =

√
µ− 1

2

∑
mωj(t)2r2j

g11N
, we get the initial 3D probability distri-

bution (matrix 100× 100 × 100). we have the probability distribution of the atom cloud
.

• After then based on the Castin-Dum formula

λ̈j =
ω2
j (0)

λjλxλyλz
− λjω

2
j (t)

we can calculate the cloud expansion when we remove the trapping potential which means
ω2
j (t) = 0

• At time t0 we put our first Raman pulse to transfer the atoms into a superposition
state C1|F = 1⟩+C2|F = 2⟩, and the atoms in |F = 2⟩ will get a additional split velocity,
which is double recoil velocity 2v⃗r. So after the first pulse the cloud is separated into two
path, the up path and bottom path, and they recombine at the last raman pulse.

• For an atom with its initial position rj0, we calculate the phase due to the atomic
interaction by doing the Lagrange integral along each arm of the atom interferometer:

ϕatom =
1

ℏ

∫
mv2

2
− V dt

For the kinetic part the expansion velocity is λ̇rj0. During the atom interferometer only
when the atoms are in the state |F = 2⟩ the velocity is λ̇rj0 + 2vr otherwise the velocity
is λ̇rj0. And the V can be splitted into two part: one is self interaction (between the same
internal state) and another is mutual interaction (between the two different internal state).
Then we calculate ϕup

atom and ϕbottom
atom

• During the atom interferometer, we have three raman lasers at time t1 = t0, t2 =
t0 + TR, t3 = t0 + 2TR. The laser phase is translated to the atoms when the atom changes
its internal state. So the final dephase due to the laser is

∆ϕup
laser = kR(t1) · rj(t1)− kR(t2) · rj(t2) + kR(t3) · rj(t3) + ϕscan
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∆ϕbottom
laser = kR(t2) · rj(t2)

• At the end the two cloud is overlapped, and based on what we did before we know
the wave function ψ. The probability to detect |F = 1⟩ is

|⟨ψ|F = 1⟩|2 = µ− 1
2

∑
mωj(t)

2r2j
g11N

|((1
2
− α)ej(ϕ

up
atom+ϕup

laser) + (
1

2
− α)ej(ϕ

bottom
atom +ϕbottom

laser ))|2

And in the simulation we scan the phase of the last laser pulse from −π to π.

• For each scan phase at the endwe have a 3D probability distribution, we integral along
XY dimensions and for each position Z we can calculate phase shift due to the meanfield.
By this way we get the phase gradient of the atom cloud.
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