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Resume
Cavitation bubbles appear in numerous applications among several disciplines, yet the interac-
tion between the cavitaiton bubbles and their surroundings is not well understood. In this work,
we comprehensively study the process of nucleation and collapse of bubbles in contact with rigid
wall that leads to complex interaction between the bubble, the wall and the surrounding media.
We focus on the heterogeneous nucleation where the bubbles are known to generate from the
small unstable gas nuclei that can be trapped in the solid impurities. We assume that these nuclei
have spherical cap shape and examine their stability using the quasi-static theory in the limiting
conditions of contact line motion i.e. pinning and free movement. We show that the stability
of bubbles depend on the behavior of contact line and that the pinning effect stabilizes the gas
nuclei. We use direct numerical simulations with a Navier-slip model to study the dynamics of
nucleating bubbles and to resolve the visco-capillary effects close to the wall. The numerical simu-
lations reveal the appearance of a microlayer that grows at an asymptotic value in the limit of large
capillary numbers (of order one) for Ohnesorge numbers much smaller than unity. In the second
part, we focus on the characterization of the collapse of spherical cap shaped bubbles. We show
that the dynamic response of a spherical cap bubble in contact with a rigid wall depends on the
effective contact angle at the instant prior to collapse. This parameter allows us to discriminate
between two regimes in which the mechanisms of interaction between the collapsing bubble and
its surrounding medium differ markedly: When the contact angle is smaller than 90 degrees a clas-
sical jet directed towards the wall is observed whereas if the initial contact angle is larger than 90
degrees an annular re-entrant jet parallel to the wall appears. We show that this change of behavior
can be explained using the impulse potential flow theory for small times which shows the presence
of a singularity on the initial acceleration of contact line when the contact angle is larger than 90
degrees. In some circumstances, numerical and experimental results show that the collapse of flat
bubbles can eventually lead to the formation of a vortex ring that unexpectedly induces long-range
effects. We use the energy conservation equation to characterize the kinetic energy of liquid jets
formed during the non-spherical collapse of bubbles in contact with the rigid wall. Depending
upon the bubble shape, some amount of this kinetic energy can remain residual in the liquid bulk
at the instant of minimum volume penalizing the maximum gas pressures at this instant. We show
that this penalization effect becomes increasingly important as the pressure difference driving the
collapse increases. In the last part, we study the problem of multiple cavitation bubbles nucleating
and collapsing in the contact with a rigid wall. We discuss the asymmetry caused by the pressure
pulse as a function of effective speed of sound in the liquid phase. We hypothesize that the asym-
metry is caused by the finite speed of sound effects which result from the fact that the tiny bubble
fragments remain inside the liquid bulk in the subsequent cavitation experiments. These results
can find direct application in the control and optimization of techniques based on the cavitation
as well as understanding of naturally occurring phenomenon where cavitation bubbles appear.
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Resumé
Les bulles issues du phénomène de cavitation apparaissent dans d’innombrables applications

dans de différents domaines. Toutefois, leur interaction avec le milieu environnant n’est pas bien
comprise. Dans ce travail, nous étudions de manière approfondie le processus de nucléation et
d’effondrement des bulles en contact avec une paroi rigide, conduisant à une interaction com-
plexe entre la bulle, la paroi et le milieu environnant. Nous nous concentrons sur la nucléation
hétérogène. Dans ce processus, les bulles sont générées à partir de petites poches instables de
gaz potentiellement piégées dans les impuretés du solide. Nous supposons que ces poches ont
la forme d’une calotte sphérique et nous examinons leur stabilité grâce à la théorie quasi-statique
dans le cadre de la dynamique de la ligne de contact, à savoir le pincement et le libre déplacement.
Nous montrons que la stabilité des bulles dépend du comportement de la ligne triple de con-
tact et que le pincement stabilise les poches de gaz. Nous utilisons des simulations numériques
directes pour étudier la dynamique de la nucléation des bulles et pour déterminer les effets visco-
capillaires au voisinage de la paroi. Les simulations numériques révèlent que la croissance de cette
dernière tend vers une valeur asymptotique pour de grands nombres capillaires lorsque le nombre
d’Ohnesorge est plus petit que l’unité. Il est intéressant de noter que la valeur asymptotique de la
vitesse adimensionnelle de la ligne de contact varie avec le cube de l’angle de contact, ce qui est en
accord avec la théorie de Cox-Voinov. Dans la partie suivante, nous concentrons sur le phénomène
d’effondrement des bulles en forme de calotte sphérique. Nous montrons que la réponse dy-
namique d’une bulle en forme de calotte sphérique en contact avec une paroi rigide dépend de
l’angle de contact effectif à l’instant précédant l’effondrement. Ce paramètre nous permet de dis-
tinguer deux régimes dans lesquels les mécanismes d’interaction entre la bulle qui s’effondre et le
milieu qui l’entoure sont très différents : lorsque l’angle de contact est inférieur à 90 degrés, un jet
classique dirigé vers la paroi est observé tandis que pour un angle de contact initial supérieur à 90
degrés, un jet annulaire rentrant parallèle à la paroi apparaît. Nous montrons que ce changement
de comportement peut être expliqué en utilisant la théorie de l’écoulement potentiel impulsionnel
pour les petits temps qui montre la présence d’une singularité lors de l’accélération initiale de la
ligne de contact quand l’angle de contact est supérieur à 90 degrés. Dans certains cas, les résultats
numériques et expérimentaux révèlent que l’effondrement des bulles plates peut éventuellement
mener à la formation d’un anneau tourbillonnaire qui induit de manière inattendue des effets à
longue distance. Nous utilisons l’équation de conservation de l’énergie pour caractériser l’énergie
cinétique des jets de liquide formés pendant l’effondrement de bulles non-sphériques en contact
avec la paroi rigide. Selon la forme de la bulle, une petite quantité d’énergie cinétique demeure
dans la phase liquide lorsqu’on atteint le volume minimal, et pénalise donc la pression maximale
de gaz à cet instant. Dans la dernière partie, nous étudions le problème de la nucléation et de
l’effondrement de multiples bulles de cavitation au contact d’une paroi rigide. Nous discutons
de l’asymétrie résultant de l’impulsion de pression en fonction de la vitesse du son dans la phase
liquide. Nous supposons que cette asymétrie est causée par la vitesse finie des effets sonores, qui
résulte du fait que de minuscules bulles restent à l’intérieur de la phase liquide lors des successives
expériences de cavitation.
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1 Introduction

Cavitation is an important physics problem which spans over various disciplines of engineering
and science. It is the phenomenon of appearance and collapse of vapor/gas cavities in liquid phase
caused by pressure changes. The collapse can consequently release an enormous amount of energy
focused in a small volume, in the form of high speed liquid jets, shockwaves, rebounds of remain-
ing vapor/gas cavities and sometimes even light emissions [1, 2, 3, 4, 5]. Cavitation is distinguished
from boiling as in former the liquid is sub-cooled and the dynamics is primarily governed by liquid
inertia whereas in latter the liquid is super-heated and the latent heat flow controls the bubble dy-
namics [6]. In this manuscript, we discuss the several fundamental aspects of bubble nucleation
and collapse. Our results may find applications in several fields related to cavitation and bubble
dynamics.

1.1 Relevance of bubble dynamics and cavitation

Bubble dynamics plays a key role in plethora of industrial, engineering, geo-physical, biomedical
processes and several others. These applications extend over several scales of bubble sizes from
nanometers to a few meters. Some of these processes along with the scales of bubble size are en-
listed in figure 1.1. We also show the images of three bubbles of approximate size of a few microns,
a few millimeters and 1 meter taken from reference [1, 7, 8]. Here, we briefly review these appli-
cations in order to indicate the relevance of studying bubble dynamics and cavitation.

Very large bubbles (O ∼ m) are found in applications that are related to naval and defense
sector. For example, the phenomenon of underwater explosion has been studied in detail for its
relevance in the sub-marine warfare. In these explosions, meter sized bubbles can appear and re-
lease an enormous amount of energy during the collapse which can be extremely dangerous for
offshore structures [8, 9]. Kedrinskii [10] showed in detail the interaction of collapsing bubbles
and a free surface in underwater explosions. He studied the effect of the depth of explosion and
the bubble size. Large bubbles are also generated to create sound signals from seismic airguns
which are used for geo-physical explorations [11, 12, 13]. Another exciting application involving
large bubbles is supercavitation. In supercavitation, the torpedoes and underwater bullets are de-
signed in such a way that their body remains encapsulated inside a large bubble such that these
move in air instead of water reducing the skin friction drag. This phenomenon of supercavitation
is explained in detail by several researchers [14, 15, 16].

Intermediate size bubbles (O ∼ mm) are found in industrial and engineering applications.
Laser induced bubbles are often produced in this range to study the phenomenon of bubble col-
lapse and cavitation damage. An industrial application of intermediate sized bubbles is cavitation
shot peening. In this process, the collapse of bubbles near the solid surface cause mechanical stress
loading and plastic deformation which results in superior surface hardness [17, 18]. Cavitation
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Figure 1.1: The range of scales of bubble size and diverse fields where bubble dynamics and cavitation find
applications. Some examples of bubble shapes at different scales is also shown in the bottom row
taken from references [1, 7, 8]

shot peening is superior to traditional shot peening methods as it results in comparatively lesser
surface roughness. The bubbles collapsing in the vicinity of a wall can also derive strong shear
flows which can cause local cleaning action [19, 20]. Ohl et. al. [19] measured the averaged radial
velocity (responsible for cleaning action) at different stages of bubble collapse and showed that
large velocities are developed only for a small time periods comparable to the bubble collapse time
scales. During the collapse of these bubbles, the temperature and pressure can also momentarily
reach to very high values, this high energy has been used to catalyze or alter some chemical reac-
tions [21, 22]. Additionally, the bubbles of intermediate size appear in the low pressure regions
in turbines, pumps and other flow devices which is undesirable because it enhances the erosion.
This has been extensively studied experimentally [23, 24, 25] as well as numerically [26, 27, 28,
29].

Micron sized bubbles (O ∼ µm) have proved an ample potential in biomedical applications.
Bubbles can either appear naturally in biological systems such as cracking sound in joints, trau-
matic brain injury (see references [30, 31]) or they are injected artificially to fulfill a specific pur-
pose eg. drug delivery, high contrast ultrasound imaging etc (see reference [32, 33, 34]). A fas-
cinating and challenging application of micron sized bubbles is targeted drug delivery. In this
process, microbubbles of size similar to red blood cells (7 − 8µm) are generated and injected
in to the blood streams. These bubbles are stabilized with lipid coatings as they will circulate
in the blood vessels before reaching target location. Furthermore, these bubbles are made from
the insoluble per-fluoro-carbon gases to enhance their lifetime even more. The drugs are either
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incorporated inside or onto the shell of microbubbles which are sonicated at target location to
administer the drugs [35]. In the same application of drug delivery, the controlled damage from
the microbubble cavitation can also be used for disruption of biological membranes for targeting
the drug, this operation is generally known as sonoporation [36, 37, 38]. There are several other
extremely sophisticated biomedical techniques involving microbubbles for example noninvasive
treatment with high intensity focussed ultrasound (HIFU) and histotrpisy for lesion of tumor
cells and breaking of kidney stones, both these processes use damage caused by cavitation bubbles
as an important mechanism [39, 40, 41, 42]. All these techniques are highly complicated and new
frontiers are being achieved regularly with new and innovative ideas (see references [43, 44, 45])
and there is huge scope for many more.

Nanometric sized bubbles (O ∼ nm) are most recently discovered and debated as for so small
bubbles the Laplace pressures inside the bubbles is extremely high thus their existence is counter-
intuitive [46, 47, 48]. Borkent et. al. [46] showed that these bubbles can be extremely stable
even under enormous tensions of the order of−6MPa. The physics and application potential of
nanobubbles are yet to be fully discovered, some studies show that they can be potentially better
suited for aforementioned medical applications [45, 49, 50]. The nanobubbles have charged sur-
faces and these rise very slowly (owing to Brownian motion) through the liquid therefore these
are shown to have superior mass transfer properties making them suitable for processes like water
treatment and froth-flotation [51, 52, 53, 54].

Clearly the applications of bubbles spans over various disciplines and range of length and time
scales, therefore the fundamental understanding of the behavior of cavitation bubble and its in-
teraction with the surroundings is extremely relevant.

1.2 Motivation and background of current study

This research is part of the European commission project called ultrasound cavitation in soft ma-
terials abbreviated as UCOM. In this project, we focus on the interaction of bubbles formed in
ultrasound cavitation with soft biological materials with a motivation to gain better control over
the application concerning the biomedical fields. The project is a collaboration among 8 universi-
ties across the Europe and funding 15 PhDs divided broadly in to following work packages: Fun-
damental bubble collapse studies, bubble soft matter interactions and macroscopic cavitation in
tissues/tissue mimicking materials. The scope of current study lies in the first work package that
aims to understand the fundamentals of bubble nucleation, collapse and its interaction with the
surrounding media. In this section, we introduce some bubble collapse studies available in litera-
ture and indicate the identified gaps with an intend to lay the foundation for current study.

1.2.1 Ultrasound cavitation

We describe the phenomenology of a single cavitation bubble by taking an example from a study
of Bremond et. al. [55]. In their study, the nuclei is created artificially by drilling micron sized
hole (4µm diameter) in a silicon plate, this plate is then submerged in to a large water tank and
sonicated using a piezoelectric transducer (typically used in biomedical applications). A pressure
signal recorded by hydrophone in their experiments is shown in figure 1.2b. The response of the
air trapped in nuclei to the pressure pulse (captured by high speed imaging) is shown in figure 1.2a
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Figure 1.2: The figures are reproduced from the study of Bremond et. al. [55] (a) The front and top view
of a typical cavitation bubble nucleating from the pit and collapsing in the contact with a rigid
wall are shown in upper and lower row respectively. (b)The pressure waveform generated from
the piezoelectric transducer averaged over 50 cycles. (c)The bubble response represented by the
equivalent bubble radius obtained from experiments and from Rayleigh–Plesset (RP) model

and summarized as following: As the air trapped in the nuclei experiences the drop in pressure, it
undergoes a rapid expansion and reaches a maximum radius. This process is controlled by initial
nuclei size and the amplitude and frequency of the pressure pulse. This first part of bubble cycle
i.e. expansion from nuclei to maximum radius is referred to as nucleation in the current study.
As the bubble reaches maximum volume a spatially varying pressure field is developed around the
bubble as the pressure far from the bubble is at ambient value whereas inside the bubble the pres-
sure is comparatively lower, therefore the gas inside the bubble undergoes a rapid compression
until it reaches a minimum volume. The parameters influencing this process are the pressure in-
side the gas bubble at the instant of maximum volume, bubble size and the ambient pressure. This
part of (i.e. rapid compression from maximum volume to minimum volume) bubble cycle is re-
ferred to as the collapse stage in the current study. This is followed by less stronger expansion and
compression cycle until all the energy in bubble is dissipated and the thermodynamic equilibrium
is achieved.

1.2.2 Laser generated bubbles

The collapse of bubbles is often studied unconnected from the nucleation by using the lasers to
produce bubbles [1, 56, 57, 58, 59]. This process is related to several complicated mechanisms and
a variety of energy transfers processes [60]. The mechanisms associated with the collapse of such
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Figure 1.3: The experimental images of bubble collapse taken from Suponnen et. al. [1], the scale given in
each figure is equal to 1mm length. (a) The momentum focusing in to high speed liquid jets
that are generated during the non-spherical bubble collapse. (b)The experimental visualization
of the emission of shock waves that are generated during the bubble collapse.

bubbles is illustrated in the figure 1.3 with images taken from the study of Supponen et. al. [2].
During the collapse a bubble undergoes complex non-spherical topological changes and generate
liquid jets where the liquid momentum is focused, thus a part of the bubble energy is converted in
to the kinetic energy of liquid. Another part of bubble energy is converted in to the internal energy
of surrounding liquid in the form of shock waves generated during the collapse. The figure 1.3b
shows the shock-wave generating from the spherical collapse (see references [61, 62]). However,
the waves generated from the collapse of non-spherical bubbles is not understood yet because
an intricate pattern of shock waves and acoustic waves can occur as shown by Supponen et. al.
[56]. During the intense collapse the temperature inside the bubbles rises to very large values
being responsible for the light emission as comprehensively discussed and reviewed in references
[3, 4, 63, 64]. Some of the bubble energy is also converted into chemical, mechanical and thermal
energy. Finally, the leftover energy results into the next expansion and collapse cycle referred to as
rebound cycle [65].

In the current study, we present some experimental results from our collaboration with Dr.
Michel Arrigoni’s group in ENSTA Brest. The setup used is similar to Bourguille et. al. [66]. This
is an alternative approach to generate the bubbles from a laser, where an aluminum plate is kept at
the bottom of the liquid tank and the laser is impacts the outer face of the plate instead of a direct
focusing in to the liquid similar to the classical studies. The laser impact induces the cavitation on
the opposite face of the aluminum plate inside the liquid bath which is recorded using the high
speed imaging. The details of the experimental procedure and the setup will be shown in chapter
4. In figure 1.4, we show the top view of bubbles in one of these experiments at different instants
of time. A number of bubbles nucleate in contact with the aluminum plate, these bubble merge
and coalesce with each other to form a big bubble as seen in snapshot 3, which then collapses in
contact with the rigid wall. The collapse is again accompanied with the complicated processes
described above. The mechanism and hydrodynamics of the generation of these bubbles is yet
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Figure 1.4: The top view of bubbles nucleating in the liquid bath due to the laser impact on the opposite
side of aluminum plate obtained using setup shown in reference [66].

to be fully understood, which differs significantly from classical laser induced bubbles formed by
directly focusing the laser in liquid discussed above.

1.2.3 Understanding of cavitation and current gaps

The first formal study to understand the phenomenon of the cavitation can be found in the semi-
nal article of lord Rayleigh published in 1917 [67]. He derived and solved an ordinary differential
equation to relate the evolution of bubble radius with the changes in far field pressure in case of
the spherically symmetric gaseous bubble collapsing in an infinite mass of liquid. This study was
motivated by the understanding of cavitation damage. Over the last century, since 1917 the re-
searchers have tried to answer several questions to broaden the understanding of cavitation. Some
of these can be identified to be: In which situations does the cavitation bubbles appear? How does
these bubbles interact with the surroundings? What is the mechanism of damage caused by the
collapse of these bubbles? Can we control, predict and utilize the cavitation phenomenon? Now,
we briefly discuss how far we have reached to answer these questions, what is the current under-
standing and gaps related to the two fundamental aspects of cavitation i.e. bubble nucleation and
bubble collapse.

Heterogeneous bubble nucleation

The studies of the nucleation of bubbles and the underlying factors important for the genera-
tion of bubbles began with the influential work of Harvey [68, 69]. He aimed to explain the
decompression sickness among the aviators during the world-war at intermediate altitudes in the
absence of pressurized chambers. He hypothesized that small mass of gases (nuclei) can stick to
hydrophobic surfaces or surface impurities, and when the pressure difference exceeds the surface
tension the nuclei may become unstable. However, he did not perform the calculations for the
critical pressures beyond which these nuclei will become unstable. He also showed several other
phenomenon in which these nuclei could grow to large bubbles namely dissolution of excess gas
from the bulk similar to effervescence in the soda bottle, passage of intense sound waves, local drop
in hydrodynamics pressure due to constriction in pipe flows. These ideas laid the foundation for
the theory of heterogeneous nucleation. Several researchers attempted to measure the threshold
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beyond which noticeable cavitation activity occurs but the unified view was always lacking[70, 71,
72]. Apfel [73] provided a unified view and discussed the importance of several parameters such
as crevice size, surface properties, surface tension etc. He concluded that these previous experi-
mental results can not be considered as accurate quantitative predictions as one will always fail to
precisely know the shape, size and wettability of the motes used in the experiments. Crum [74]
showed that the experimental threshold could be predicted well from stability theory using an ap-
proximation for the wetting which gives the equilibrium contact angle and one fitting parameter
i.e. the pit angle. Atchley & Prosperetti [75] gave a more generalized and complete theoretical
model for predictions of cavitation thresholds for the spherical cap shaped bubbles evolving in
conical shaped crevices for quasi-static bubble evolution. Neppiras & Noltingk [76] and Holland
& Apfel [77] discussed the effect of frequency of pressure wave on the stability of the spherical
bubbles. Chappel et. al. [78] show the effect of geometry of pit on the prediction of nucleation
threshold from quasi-static theory. Fuster et. al. [79] discussed the stability of bubbly liquids
from energy approach and discussed the relation of stability with cavitation inception. Borkent
et. al. [80] created micron-sized pits in the silicon wafers with advanced machining operations
which act as well controlled nuclei and showed that the theoretically predicted cavitation thresh-
olds from quasi-static theory represent well the experimentally observed thresholds. They also
show that the mechanism of jetting during the collapse which lead to deactivation of nuclei for
following pressure cycle.

Most of the studies mentioned above have been focused on the prediction of nucleation thresh-
old for air bubbles and water. There are several works motivated from the biomedical applications
that predict the nucleation threshold for non-Newtonian fluids that mimic blood and tissues [81,
82, 83, 84]. There are also a few in-vivo studies of the cavitation [85, 86]. Clearly the problem
of nucleation is complicated as a lot of factors are convoluted and hard to control separately. The
problem of bubble nucleation has less often been studied using the Computational Fluid Dy-
namics (CFD) tools which can be convenient in such situations with enormous number of con-
trol parameters. Moreover, the numerical simulations can provide clues about the quantities and
flow-fields which are difficult to measure in the experiments. We aim to understand the the influ-
ence of characteristics of wall, shape of the nuclei, the amplitude as well as frequency of pressure
forcing and motion of contact line on the process of bubble nucleation and the resulting bubble
shapes. This is presented in detail in the third chapter.

Bubble collapse

Most of the studies investigate the collapse of bubbles unconnected to the nucleation phase. These
are focused on the consequences of the collapse of a gas/vapor cavity that has already reached a
given volume and shape. These studies are generally aimed towards the understanding of the de-
structive potential of the cavitation bubbles and their interaction with the surroundings. There
is a plethora of literature dedicated to the collapse of bubbles highlighting it’s significance. The
collapse problem studied by Lord Rayleigh is an idealized one as the bubble collapse is rarely spher-
ically symmetric and the asymmetry is commonly caused by the presence of boundary near or in
contact with the collapsing bubble that results in to high speed liquid jets. It is well known that
the jets formed during the collapse of bubbles in the presence of a nearby wall are directed towards
the wall and that the characteristics of these jets can be described well using the scaling laws given
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by [87] and [2]. The collapse of bubbles close to a rigid wall is generally modeled with the kelvin
impulse theory as for such a case the Kelvin impulse remain conserved if the external forces are
absent and the bubble remains simply connected [88, 89, 90]. These models are unable to predict
correct bubble dynamics when the distance between bubble and wall approaches to bubble size
(h/R0 ∼ O(1)) because the bubble deformation is more and more significant this fact limits the
applicability of such model for collapse of bubbles in contact with wall.

The investigations on the collapse of a bubble initially attached to a wall are reported less of-
ten therefore many aspects remain unexplored. Naude & Ellis [91] discuss the collapse of bubble
initially in contact with wall by writing the higher order perturbation solutions to potential flow
model. They also show the collapse dynamics of such bubbles experimentally by producing bub-
bles with electric spark in the liquid close to wall. Hupfeld et. al. [58] presented experimental
results for laser induced bubbles using ultra-high speed photography in the high capillary number
regimes. They study both expansion and collapse phase in several liquids to understand the effect
of viscosity on the growth, collapse and bubble shapes including liquid microlayer and contact
line evolution. Both Naude & Ellis and Hupfeld show that during the collapse the jet is directed
towards the solid whereas Li et. al. [92] show that the jet can be directed in opposite direction
when a collapsing bubble is in contact with a spherical solid particle. Similar problem is studied
numerically by Lechner et.al. [93], who also include the effect of bubble expansion and the liquid
microlayer that results in to different nature of bubble collapse and jetting. This problem has also
been briefly discussed in numerical studies of Lauer et. al. and Koukouvinis et. al. [94, 95] who
observe the change in jetting behavior as a function of bubble shape but they do not show jets op-
posite to the wall. Reuter et. al. [96] speculate the appearance of a jet parallel to the wall during the
secondary collapse and consequently the generation of vortex ring, although no direct experimen-
tal observation is reported. In chapter 4, we numerically, experimentally and theoretically study
the problem of collapse of bubbles in contact with rigid wall as a function of the properties of
wall and understand the change in jetting behavior. We also characterize the liquid jets direction
and the strength in terms of the kinetic energy accumulated in them at the instant of minimum
radius.

1.3 Manuscript outline

This manuscript is organized in 6 chapters, the brief outline of the contents of each chapter is as
follows:

In chapter 2, we present the governing equations for a generic two-phase compressible flow
problem. We detail out the intricate details of the numerical method that we use to perform the
numerical simulations and describe the Navier-slip model used to model the contact line. We
also derive basic thermodynamic relations that must be satisfied during the expansion/collapse of
bubbles using the first law of thermodynamics. The non-dimensional numbers relevant for the
problem of expansion/collapse of bubbles are also introduced at the end of this chapter.

In chapter 3, we discuss the numerical and theoretical results for the estimation of the het-
erogeneous nucleation threshold for spherical cap nuclei attached to a wall. We understand the
dependence of nucleation threshold on the behavior of contact line by discussing the two extreme
conditions of freely moving contact line and pinned contact line. We also discuss the finite pulse
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1.3 Manuscript outline

duration effects on the explosive growth of spherical bubbles. Then, we describe the dynamics of
microlayer formation when the bubbles nucleate under a pressure much lower than the critical
threshold using a Navier-slip model for the contact line motion. We show several aspects of the
microlayer formation and growth which is governed by visco-capillary effects close to the wall.

In chapter 4, we focus on describing the collapse dynamics of spherical cap bubbles in contact
with a rigid wall. We use an inviscid impulse theory to predict the acceleration of the bubble inter-
face at very short times which reveals that the acceleration at the contact line is singular for certain
bubble shapes. Using direct numerical simulations, we clarify the effect of viscosity at short times
and discuss the collapse dynamics at longer times. The influence of non-spherical effects on the
peak gas pressures reached during the collapse are also discussed using DNS and the fundamen-
tal energy relations obtained in Chapter 2. Then, we directly compare the numerical results with
experiments for the collapse of bubbles attached to a wall and understand the phenomenon of jet-
ting. We show that in some special circumstances, these jets can lead to the formation of a vortex
ring that induces long range effects caused by a cavitation bubble.

In chapter 5, we revisit the problem of multi-bubble cavitation using three-dimensional nu-
merical simulations. We study the case of bubble pairs, five bubbles in a line and a cluster of thirty
seven bubbles in an hexagonal arrangement. In particular, we investigate the asymmetry during
the expansion and collapse phase in these cases. Numerical simulations reveal that much smaller
speed of sound is required to accurately reproduce the dynamics of the bubbles observed in the
experiments. For a particular example of bubble pair, we show that the asymmetry scales well
with the Bjerknes forces in the expansion phase, and is affected by Rayleigh–Taylor instabilities
during the collapse phase. We also discuss the effect of the size of nuclei on the asymmetry for
this particular case. In the end, we present the dynamics of the expansion and collapse of multiple
bubbles.

In chapter 6, we give the concluding remarks and the future perspectives of current work.

Figure 1.5: The bubble size and driving pressure considered in different chapters

In figure 1.5, we pictorially depict the length scales of bubbles and scales of driving pressure
(difference in pressure inside the bubble and the liquid pressure) that is studied in the chapters
mentioned above. In the nucleation problem, we consider the nuclei of nanometer to few mi-
crons in size subjected to very high tensions. In the collapse problem, we focused mainly on the
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millimeter size bubbles collapsing under the action of atmospheric pressure. In the multibubble
cavitation, these scales corresponds to previous experiments of Bremond et. al. [55]. There the
pressure is as low as −14MPa and the bubbles are micrometer in size.

1.4 Journals and conferences

There is a journal article that is already published from the current work three others are in the
progress.

• Saini, M., Tanne, E., Arrigoni, M., Zaleski, S., & Fuster, D. (2022). “On the dynamics of a
collapsing bubble in contact with a rigid wall". Journal of Fluid Mechanics, 948, A45.[97]

• Saini Mandeep, Saade Youssef, Fuster Daniel, & Lohse Detlef. “Finite speed of sound ef-
fects on asymmetry in multibubble cavitation."(In prepration)

• Saini, Mandeep, Zaleski Stephane and Fuster Daniel. “Dynamics of microlayer formation
in hetrogeneous bubble nucleation: Numerical study with slip model" (In prepration)

• Saini, Mandeep, Zaleski Stephane and Fuster Daniel. “Non-spherical effects during the
collapse of bubble in contact with wall" (In planning)

The part of current work is also presented to the fluid mechanics community during following
conferences

• Saini, Mandeep, Zaleski Stephane and Fuster Daniel. “Direct numerical simulation of
heterogeneous bubble nucleation" 11th International Cavitation Symposium (CAV2021),
2021. [98].

• M Saini, D Fuster. “Singularity influences jet direction during the collapse of bubbles in
contact with walls". APS Division of Fluid Dynamics Meeting Abstracts, H21. 010

• D Fuster, M Saini, E Tanne, M Arrigoni. “Contact line singularity triggers far field pertur-
bations during bubble collapse" APS Division of Fluid Dynamics Meeting Abstracts, P21.
001

• M Saini, D Fuster. “Viscous and capillary effects on the dynamics of sub-micron bubbles
attached to walls" Nanobubble production 7, 37

10



2 Governing equations and
Numerical methods

In this chapter, we present the basic governing equations and the numerical method used to solve
these equations. We write the differential form of the compressible Navier–Stokes for a generic
two-component system. These are integrated numerically using the finite volume method and
the all-Mach formulation generalized for two-phase flows by Fuster et. al. [99]. The solver is
available as a part of the state of the art Basilisk partial differential equation solver, that uses the
quad/oct tree grid structure which makes it apt for problems involving multiple length scales [100,
101]. The interface between the two fluids is represented by the volume of fluid (VOF) method
[102]. The conservative quantities are consistently advected along with a geometric VOF, and we
also consider effect of both viscosity and surface tension. This solver has been used to describe
the bubble dynamics in several problems [103, 104]. We also discuss the modeling of the contact
line using the Navier-slip model intrinsic to volume of fluids methods. The integral form of the
energy conservation equation is presented for a system of a gas bubble of arbitrary shape expand-
ing/collapsing in a weakly compressible liquid to aid the interpretation of DNS results. Finally,
we show the relevant non-dimensional numbers that we have used in the next chapters to discuss
the results.

2.1 Governing equations

The fundamental equations of mass, momentum and energy conservation govern the fluid flow
dynamics in each component. In the absence of mass transfer these equations can be written for
two-component (i ∈ {1, 2}) setup as following

∂ρi
∂t

+∇ · (ρiui) = 0, (2.1)

∂ρiui

∂t
+∇ · (ρiuiui) = −∇pi +∇ · τ i, (2.2)

∂(ρiEi)

∂t
+∇ · (ρiEiui) = −∇ · (uipi) +∇ · (τ iui), (2.3)

where the subscript ‘i’ represent the value of particular variable for ith component, other sym-
bols have usual meaning, u is the velocity vector field, ρ is the density, p is the pressure field, E
is the total energy per unit volume which is defined as sum of internal energy and kinetic energy
(ρiei +

1
2ρiui · ui) and τ i = µi(∇ui + (∇ui)

T − 2
3∇ · uiI) is the viscous stress tensor.
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2 Governing equations and Numerical methods

The system of equations is closed by the equation of state for each component. We use stiffened
gas equation of state (EOS) similar to Johnsen & Colonius and Cocchi et. al. [105, 106], given as

ρiei =
pi + ΓiΠi

Γi − 1
, (2.4)

whereΓ andΠ are empirical parameters, for waterΓ = 5.5 andΠ = 4921 bar and for an ideal
gas Γ = γ and Π = 0. This defines the speed of sound as

ci =

√
Γi

pi +Πi

ρi
. (2.5)

Note that the stiffened gas EOS is an empirical equation which captures compressibility ef-
fects well for common liquids such as water but it suffers from inaccuracies when used to predict
the thermal effects. Alternative EOS are also available in literature eg. Nobel–Abel-stiffened-gas
(NASG) EOS, Gilmore–NASG etc [107, 108], and also available in the Basilisk solver [109].

The interface between the two immiscible fluids is mathematically represented by the heavy-
side function (H) which takes value 1 in the reference component and 0 in the non-reference
component [110]. The evolution of the interface is described by the advection equation

∂H
∂t

+ u ·∇H = 0, (2.6)

where u is the average local velocity of the interface which is imposed to be equal to local fluid
velocity. The interface conditions required to couple the motion of fluids in each component,
in the absence of mass transfer effects these are as follows: the velocity is continuous across the
interface such that [[u]] = 0, where [[.]] represent the jump in the particular quantity across the
interface. The pressure in both the components is related by the Laplace equation

[[p]] = −σκ+ [[nI · τ · nI ]], (2.7)

where σ is the surface-tension coefficient, κ is the curvature of the interface and nI is the unit
vector normal to the interface. We also assume that there is no heat transfer across the interface so
the normal derivative of internal energy remains continuous across the interface i.e. [[∂e/∂n]] =
0.

In the current formulation, we also solve for a pressure equation which leads to a time implicit
method and removes the stringent acoustic Courant–Ferdrichs–Lewy (CFL) restriction [111].
This equation is derived from a general equation of state (see reference [62, 99]) and is given as

1

ρc2 e,i

Dpi
Dt

= −∇ · ui +
βiΦν

ρicp,i
, (2.8)

where we define 1
ρc2 e,i

= γi
ρic2i

− β2
i T

ρicp,i
, γ is the ratio of specific heats, β is the thermal di-

lation coefficient, T is the temperature, cp is the specific heat measured at constant pressure,
Φν = τ : ∇u is the viscous dissipation function. Note that for ideal gas β = 1/T and for water
γ = 1 & β ≈ 0, therefore for these fluids we can approximate 1

ρc2 e
≈ 1

ρc2
in such cases.
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2.2 Numerical method

2.2 Numerical method

In this section, we discuss the details of numerical method used to integrate the equations de-
scribed in previous section on the finite volume grids and in time. The framework of the numeri-
cal method is based on following choice of primitive variables: the density ρi, average momentum
ρu, the total energy of each component ρiEi and volume fractionC . The viscosityµi and surface
tensionσ are assumed to be constants. This choice of primitive variables leave the average pressure
p as an auxiliary variable. Note that since the density is the primitive variable whereas pressure is an
auxiliary, the current method is a density based solver among the classical distinction of pressure
and density based solvers [112, 113, 114]. The current formulation naturally recovers the standard
projection methods in the incompressible limit (i.e. c → ∞) of Navier–Stokes equations [115,
116].

2.2.1 Interface representation

The interface between the two fluids is represented by the VOF method which was first described
by Hirt and Nicolas [102]. In this method, the integration of the heavyside function on the dis-
crete volumes (cells) is approximated as the color function [110] given as

Ci,j,k ≈ 1∫
V dV

∫
V
H(x, y, z)dV, (2.9)

were i, j, k represent the indices that determine the location of the control volumes. C takes
value 0 or 1 far from the interface and an intermediate fractional value in the mixed cells (cells
containing interface). To calculate the advection fluxes, we use the direction split method of Wey-
mouth and Yue [117] which is proved to be fully conservative in the limit of incompressible flows.
Therefore the advection equation for color function is given as

∂C

∂t
+∇·(uC) = C ∇· u. (2.10)

The term on right hand side accounts for compressibility effects. Note that since the velocity
is continuous across the interface it is convenient to define average velocity field i.e. u everywhere
in the domain instead of ui for each component. After solving equation 2.10, the interface is
reconstructed from the color function field using piece wise linear interface construction (PLIC)
in which the interface is represented as lines (in 2D) and planes (in 3D) in each control volume.

2.2.2 Advection step

In the beginning of each time integration step, we solve the advection equation for color function
and other conservative quantities. We use first order forward Euler method for discretization of
temporal term and divergence theorem to convert the volume integral into the surface integrals.
Thus obtained semi-discrete form of equation 2.10 can be written as∫

V

Cn+1 − Cn

∆t
dV = −

∫
S
uCdS+

∫
V
C ∇· udV (2.11)
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2 Governing equations and Numerical methods

In the direction split method (see reference [117]) the discrete form of the advection equation
takes following form

Cn+1 = Cn −
∑
f

Fc(uf∆t/∆x,C) + ∆tC∗∑
f

∇fu, (2.12)

where subscript ‘f ’ refers to the value of particular quantity evaluated at the faces centers, Fc

is the net flux of the reference fluid out of the control volume of size ∆x × ∆x × ∆x (in 3D)
evaluated geometrically and sequentially in all the direction, C∗ is a constant defined on the basis
of cell center value of C .

To have a consistent formulation, we solve the advection equation for the conservative quanti-
ties simultaneously with the color function field using the direction split algorithm, therefore the
discrete integral form of advection equation for conservative quantities can be written as

Y(adv) = Yn
c −

∑
f

F(adv)(∆tuf/∆x,C,Yc) (2.13)

where Y = [Ci, Ciρi, Ciρiu, CiρiEi]
T for i ∈ {1, 2}, F(adv) is the vector of flux of the

quantities Y across the face during ∆t. The advection of conservative quantities is linked to the
advection of the color functionC , so the flux is expressed asF(adv) = Fc(uf∆t/∆x,C)F

(adv)
Y ,

where Fc is already calculated equation 2.12 and the F(adv)
Y is calculated using the second order

accurate Bell–Colella–Glaz (BCG) scheme [116] given for reference component (subscript 1) as
following

F
(adv)
Y =

{
Yc +

1
2 sign(uf )min

(
1, 1− sign(uf )

uf∆t
∆x

)
∂Yc
∂x ∆x, if C > 0,

0, otherwise.
(2.14)

Naturally, for the non-reference component (subscript 2) the first condition in equation 3.1
changes (1− C) > 0. The numerical scheme proposed above is fully conservative in the discrete
framework, consistent in the flux calculation of the conservative quantities along with the color
function and avoids numerical diffusion during this step. These properties are essential for nu-
merical stability when two fluids have large density contrast such as air-water [118, 119, 120, 121].
Note that the equation 2.1 is an advection equation therefore equation 2.13 gives density field at
the end of time-step t+∆twhereas the momentum and energy are only provisional/intermediate
fields that will be used to calculate the respective values at the t+∆t.

2.2.3 Prediction step

At the end of advection step, we calculate the average momentum using arithmetic averaging for-
mula ρu = ρ1uC+ρ2u(1−C), and thereafter we solve for the equation of average momentum
given as

∂ρu

∂t
+∇·(ρuu) = −∇p+∇ · τ + Fσ, (2.15)
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2.2 Numerical method

where Fσ is the surface tension force. In this step, we find a prediction of velocity (un+1
p )

at t + ∆t using the advected momentum ρu(adv), surface-tension contribution at Fn+1
σ and

pressure from previous time step pn. We start by calculating the surface tension contribution at
n+ 1th time step. The surface tension force can be obtained using Frenet formula (dt = κnds)
for any curvilinear coordinate s, as following [110, 122]

Fσ =

∮ B

A
σdt =

∮
s
σκnds =

∫
Ω
σκnδs, (2.16)

whereΩ is control volume intersected by interface atA,B, δs is surface Dirac function concen-
trated at the interface which can represented with the gradient of heavyside function
∇H(x− xs)(y − ys) where xs, ys is the interface position. We use the volumetric formula-
tion using Continuum Surface Model (CSF) model of Brackbill et. al. [123], where the gradient
of heavyside function is numerically approximated with gradient of color function (gradient of
eq 2.9) thus Fσ =

∫
V σκ∇C . To predict the curvature accurately, we use the height function

method [122, 124, 125], which is proven to be well-balanced, meaning that, the steady equilib-
rium solution is recovered and the numerical spurious currents decay up to machine accuracy
within viscous time scales. This method relies on the fact that in local coordinates curvature can
be estimated as following

κ =
h′′y

(1 + h′y)3/2
, (2.17)

given that hy is discretely defined using the color function, one can obtain the curvature with
high accuracy. As the surface tension contribution is time explicit, the time step is restricted by
the time scale of the fastest capillary waves [126, 127], so for stability

∆t <

√
(ρ1 + ρ2)∆3

4πσ
. (2.18)

Finally, we calculate the prediction for the velocity (un+1
p ) by solving full Navier–Stokes equa-

tion using the multigrid solver which is already implemented in Basilisk,

un+1
P − u(adv)

∆t
= − 1

ρn+1
(∇p)n +

1

ρn+1
∇ ·

(
µ
(
∇uP + (∇uP )

T
))n+1

+
1

ρn+1
Fn+1
σ ,

(2.19)
where, we use harmonic mean to define average viscosity ( 1µ = C

µ1
+ 1−C

µ2
) as it results in faster

convergence of multigrid viscous solver, and arithmetic mean for density ρ = Cρ1+(1−C)ρ2.

2.2.4 Projection step

In this step, we solve the evolution equation of average pressure to obtain pn+1 and finally the
momentum (ρu)n+1. We define the average pressure using the arithmetic average i.e. p = p1C+
p2(1− C). The average pressure obeys
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1

ρc2 e

(
∂p

∂t
+ u · ∇p

)
= ∇·u+

βTΦν

ρcp
, (2.20)

where we define the average for parameters of EOS using the arithmetic mean as

1

Γ− 1
=

C

Γ1 − 1
+

1− C

Γ2 − 1
, (2.21)

ΓΠ

Γ− 1
= C

Γ1Π1

Γ1 − 1
+ (1− C)

Γ2Π2

Γ2 − 1
, (2.22)

this further gives the effective speed of sound in the mixed cells (0 < C < 1) as

1

ρc2 e
=

1
Γ−1

p
(

1
Γ−1 + 1

)
+ ΓΠ

Γ−1

. (2.23)

In the current formulation, we have neglected the viscous dissipation term in the pressure equa-
tion for simplicity. Thus the semi-discrete form of pressure evolution equation obtained from
equation 2.20 is given as

1

ρc2 e

(
pn+1 − pn

∆t
+ u · ∇p

)
= ∇ · un+1, (2.24)

In order to simplify this equation we use the correction equation for the momentum

(ρu)n+1 = (ρu)∗ −∆t∇pn+1, (2.25)

In the spirit of the projection step in classical incompressible formulation, we divide equation
2.25 by the average density ρ = Cρ1 + (1−C)ρ2 and take the divergence of resulting equation
to obtain

∇ · un+1 = −∇ ·
(
∆t

ρ
∇p

)
+∇ · u∗, (2.26)

where u∗ is computed from the provisional velocity un+1
P obtained in previous section

u∗ = un+1
P +

∆t

ρn+1
∇pn. (2.27)

After substitution of equation 2.26 into equation 2.24, we obtain an advection-diffusion-
reaction equation for pressure as

1

ρc2 e

(
pn+1 − pn

∆t
+ u · ∇p

)
= −∇ ·

(
∆t

ρ
∇p

)
+∇ · u∗, (2.28)

Writing the semi-discrete advection equation for pressure to obtain advection pressure (p(adv))
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p(adv) − pn

∆t
= −u · ∇p (2.29)

we can substitute p(adv) into equation 2.28 to obtain

1

ρc2 e

pn+1 − p(adv)

∆t
= −∇ ·

(
∆t

ρ
∇p

)n+1

+∇ · u∗. (2.30)

This is an Helmholtz–Poisson equation, which in the incompressible limit ce → ∞ reduces
to the standard Poisson equation solved in projection method for incompressible flows.

In practice, to solve for equation 2.29 we use the advected values of primitive variables and EOS
to approximate p(adv) as [128]

p(adv) ≈ ρE(adv) − 1

2
ρu · u(adv) − ΓΠ

Γ− 1
, (2.31)

where we again use arithmetic averaging to write average energy

ρE(adv) = Cρ1E
(adv)
1 + (1− C)ρ2E

(adv)
2 ,

and 1/2ρu · u(adv) is obtained from the average density ρ and advected momentum ρu(adv).
Note that, using the EOS to predict p(adv) also couples the energy and momentum equations.

The value of ρc2e is computed using equation 2.23 leaving pn+1 as the only unknown in equa-
tion 2.30, that is solved using the multigrid solver of Basilisk. Once pn+1 is obtained, we compute
(ρu)n+1 using equation 2.25. Finally, to obtain (ρiEi)

n+1, we find the pressure for each fluid
from the average pressure using the Laplace equation (equation 2.7) while neglecting the jump in
pressure due to viscous stresses

p1 = p+ (1− C)σκ, (2.32)
p2 = p− Cσκ. (2.33)

Thus we get the estimates of total energy at n+ 1th time step for each component as

(ρiEi)
n+1 = (ρiEi)

(adv) +∆t(−∇ · (upi) +∇ · (τ i · u))n+1, (2.34)

Once we have obtained the values of all the variables at t+∆t, we check if the stopping criteria
for the simulation is reached, and otherwise we march to next time step. The complete algorithm
is shown in figure 2.1. In the cases where we use adaptive mesh refinement, we refine and coarsen
the mesh based on values of second order derivatives of certain quantities compared to the case
specific thresholds before marching to next time step.
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Problem initialization

Set ∆t

Consistent advection of VOF and other primi-
tive variables using using equation 2.12 and 2.13

Calculate the curvature and obtain the Fσ

using equation 2.16

Obtain a prediction velocity un+1
P

2.19 and compute u∗ equation 2.27

Calculate p(adv) using the equation 2.31
and solve equation 2.30 to pressure pn+1

Update the momentum and compute
ρun+1 using equation 2.25

Compute the pressure in each phase
and (ρEn+1) using equation 2.34

t < tend?

Yes

No

Stop

Figure 2.1: The algorithm for all-Mach solver
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2.3 Numerical model for moving contact lines

The surface tension is the macroscopic manifestation of the imbalance of inter-molecular forces
of attraction at the interfaces of different fluids or fluid-solid pairs. A number of setups have been
studied in past (eg. dip coating, plunging plate, drop spreading etc.) where the three component
co-exist at a line (in 3D) [129, 130, 131, 132]. The line joining three components (two fluids and
a solid) is commonly called contact line and the angle between the interfaces measured in the ref-
erence fluid is called contact angle. In an thermodynamic equilibrium state of partially wetted
homogeneous solid, the contact angle (αE) observed at macroscopic scale is well defined (see ref-
erence [129]) and results from the balance of tension along the interfaces given as

cos (αE) =
σsg − σsl

σlg
, (2.35)

where σlg , σsg and σsl are the surface tensions for the gas-liquid, gas-solid and liquid-solid
surface respectively. In reality, the surfaces are non-homogeneous which can cause pinning ef-
fects that induce hysteresis in the contact line motion such that αa < α < αr where αa & αr

are advancing and receding contact angles [130]. The problem of moving contact lines is more
complicated as the thermodynamic equilibrium between the components can no longer be estab-
lished and the contact angle is given by the dynamic force balance at the molecular scales. In such a
case, it is convenient to define an apparent contact angle (αapp) which is observed at macroscopic
scales, generally at few microns. At these length scales (of the micro meter order), the interface
slope (αapp) is often predicted from the balance of viscous and capillary forces [133, 134]. The
actual physics at length scales smaller than few microns is not well understood and it is generally
assumed that the inter-molecular forces lead to an microscopic angle (αm) for homogeneous sur-
face. Moreover, the hydrodynamic theory with no-slip boundary condition applied to moving
contact lines results in logarithmic divergence of viscous stresses upon approaching the contact
line [110, 135].

In the numerical models generally employed for the contact line motion a slip is assumed to
occur at the smallest length scale of grid size (∆x) which relax the standard no-slip boundary
condition and remove the stress singularity. In volume of fluid methods, a slip length of ∆x/2 is
introduced implicitly because the interface moves at the non-zero velocity of the cell center located
half a grid cell away from solid boundary. This results in grid dependent solutions for the motion
of the contact line, Nevertheless, the influence of this numerical effect decays logarithmically with
the distance from contact line at large length scales. Another commonly used method is to employ
a grid independent slip using Navier-slip boundary condition [136]

uT + Ub = λ
∂uT
∂n

, (2.36)

where uT is the velocity component tangent to the solid boundary and n is the normal direc-
tion. This model leads to the grid convergent results for the motion of contact line, the solution
still develop on the slip-length. Note that it is computationally very expensive to reach the physi-
cally relevant slip-length and is not possible with the current state of computational resources.

In the numerical models, we also impose a contact angle (α∆ ) as a boundary condition at the
length scale of grid cells and the non-equilibrium effects in the contact angle are neglected at the
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2 Governing equations and Numerical methods

scale of grid size similar to [137, 138, 139]. This angle can be seen as a numerical equivalent of
the microscopic contact angle αm. This model is shown to recover the the results from molecular
dynamics in case of shear droplet and those Cox–Voinov theory for small capillary number regime
[138, 140]. The implementation of contact angles boundary condition in 2-dimensions is straight
forward as

∂h

∂x
= − tan(α∆), (2.37)

where h is the interface height and x is the distance along solid boundary in the reference fluid,
for method described above h is simply the value of height function. In three dimensions, the
contact angle implementation using height functions was given by Afkhami et. al. [141].
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Figure 2.2: (a)The radius of curvature at end of simulation for different angles of contact where analytical
results are obtained from Laplace equation and mass conservation (b) The interface shape at
end of simulation for various angles of contact

The contact angle boundary condition is already implemented in Basilisk and tested extensively
for with the incompressible solver. We check the compatibility of this model with the all–Mach
solver by setting up the classical test case of sessile bubble attached to wall spreading under the
effect of surface tension forces. For simplicity, we neglect the jump of density and viscosity across
the interface. Other parameters are as following: the bubble size R0 = 0.5, viscosity of bubble
and surrounding medium µ1 = µ2 = 1, density of bubble and the surrounding medium ρ1 =
ρ2 = 1, surface tension σ = 1, therefore the Ohnesorge number is Oh = µ√

ρσR0
= 1.5, and

the parameters for the EOS are Γ1 = 1.4, Γ2 = 7.14, Π1 = 300, Π2 = 0. We test the model
for several contact angles from 30◦ to 150◦ at an interval of 15◦, each bubble is initialized out of
equilibrium (hemispherical shape) which then evolves to the equilibrium state. At equilibrium
state, the volume of each 2D shape is analytically given as V = R2

0(α∆ − sin(α∆) cos(α∆)).
This is verified in the figure 2.2a, the numerically obtained volume match well with the analytical
predictions showing that the bubble is evolved to the equilibrium state. The equilibrium bubble
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2.4 Energy conservation for a gas bubble in a weakly compressible liquid

shapes at the end of simulation for all the contact angles is shown in 2.2b. The interface is well
represented and does not show any spurious oscillations at the end of simulations.

2.4 Energy conservation for a gas bubble in a weakly
compressible liquid

In this section, we derive some basic relations from the energy conservation principle applied to
expansion/collapse of a gas bubble surrounded by an weakly compressible, Newtonian liquid. We
will use these relations in the upcoming chapters to analyze and discuss the results obtained from
DNS. The potential energy can be used to predict the stability of gas nuclei in liquid which gives
the nucleation threshold (chapter 3). Regarding the collapse of a non-spherical bubbles the con-
servation of energy allows us to obtain the upper bounds of peak (gas) pressures reached during
the bubble collapse (chapter 4).

The first law of thermodynamics states that net rate of change of total energy (E) for the system
is equal to summation of the rate of work done (Ẇext), heat transfer (Q̇in), and energy dissipation
(Ėdiss) due to irreversible processes

dE

dt
= Ẇext + Q̇ext − Ėdis, (2.38)

Figure 2.3: The control volumes for gas and liquid considered at a particular instant to write the energy
conservation principle.

where Edis is always a positive quantity. The system contains an arbitrary shape gas bubble
attached to wall inside a liquid bulk as shown in figure 2.3. The control volume for bubble and
liquid are also shown separately with blue and red color respectively which are assumed to be
moving with the local flow velocities. Let Vg & Vl are the volume of bubble and liquid control
volumes respectively, Sg & Sl represent the surface area enclosing these control volumes and ng

& nl shows the unit normal to these surfaces pointing outward from the control volume. Thus,
we can write energy equation for either of the control volumes represented by subscript i ∈ (l, g)
as

d

dt

∫
Vi

ρieidV +
d

dt

∫
Vi

1

2
ρiu

2
i dV =

∫
Si

−piui · nidS −
∫
Vi

ĖdisdV, (2.39)
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2 Governing equations and Numerical methods

We impose the following assumptions to simplify the equations:

• The bubble expansion and collapse process is adiabatic and mass transfer effects are negli-
gible.

• The effect of body force terms (eg. gravity) is assumed to be negligible.

• The bubble pressure is assumed to be uniform and bubble contains an ideal gas.

Let us first consider the bubble control volume. The internal energy evolution term for the
bubble can be integrated as

d

dt

∫
Vg

ρgegdV =
d

dt

∫
Vg

pg
γ − 1

dV =
d

dt

∫
Vg

pg,0V
γ
g,0

γ − 1
V −γdV =

pg,0V
γ
g,0

γ − 1

dV 1−γ
g

dt
,

(2.40)
where pg,0 and Vg,0 are the gas pressure and volume for some reference equilibrium state. We

can simplify the term representing work done in bubble compression/expansion using the mass
conservation for the bubble as∫

Sg

−pgug · ngdS = −pg

∫
SI

uI · nIdS = −pg
dVg

dt
, (2.41)

where uI is the interface velocity and nI is the normal to interface pointing from gas to liquid.
Let us denote the integral of the gas kinetic energy and viscous dissipation over the bubble control
volume as Ek,g =

∫
Vg

1
2ρgu

2
gdV and ϕD,g =

∫
Vg

ĖdisdV . Thus the equation 2.39 for the gas
phase is given as

pg,0V
γ
g,0

γ − 1

dV 1−γ
g

dt
+

dEk,g

dt
= −pg

dVg

dt
+ ϕD,g. (2.42)

Now we consider the liquid control volume. The internal energy of the liquid in weakly com-
pressible regime can be obtained as [142]

ρe ≈ (ρe)0 +

(
e0 +

p0
ρ0

)
(ρ− ρ0) +

1

2
(ρ− ρ0)

c2

ρ0
. (2.43)

where subscript ‘0’ represent the reference state, c is the speed of sound. In the weakly com-
pressible regime for liquid, (ρ− ρ0) = (p− p0)/c

2, therefore

d

dt

∫
Vl

ρleldV =
d

dt

∫
Vl

1

2

(pl − p0)
2

ρ0c2l
dV (2.44)

To evaluate the work done in liquid, let us define Sl,I as the surface of liquid control volume
just outside the bubble interface, andS∞,l represent the surface faraway surface as shown in figure
2.3. It can be readily shown from the mass conservation that

−
∫
Sl,I

ul,I · nl,IdS =

∫
Sl,∞

ul,∞ · nl,∞dS =
dVg

dt
.

22



2.4 Energy conservation for a gas bubble in a weakly compressible liquid

The liquid pressure pl,I is related to the gas pressure by Laplace law (equation 2.7). Hence, the
term representing work done on the liquid can be written as

∫
Sl

−plu · nldS =

∫
Sl,I

−pl,IuI,l · nl,IdS −
∫
Sl,∞

p∞ul,∞ · nl,∞dS,

=

∫
Sl,I

−(pg − σκ+ [[nI · τ · nI ]])ul,I · nl,IdS − p∞
dVg

dt
,

= −
∫
I
σκuI · nIdS +

∫
I
[[nI · τ · nI ]]uI · nIdS

+ (pg − p∞)
dVg

dt
, (2.45)

Let us now denote Ee,l =
∫
Vl

1
2
(pl−p0)2

ρ0c2l
dV , Ek,l =

∫
Vl

1
2ρlu

2
l dV and

ϕD,l =

∫
Vl

ĖdisdV +

∫
I
[[nI · τ · nI ]]uI · nIdS,

to write equation 2.39 for the liquid phase as

d(Ee,l + Ek,l)

dt
= −

∫
I
σκuI · nIdS + (pg − p∞)

dVg

dt
− ϕD,l, (2.46)

Adding equations 2.42 and 2.46 we readily obtain the total energy evolution equation for the
system of a gas bubble in a liquid as

d(Ee,l + Ek,l + Ek,g)

dt
+

pg,0V
γ
g,0

γ − 1

dV 1−γ
g

dt
= −

∫
I
σκuI · nIdS + (pg − p∞)

dVg

dt
− (ϕD,l + ϕD,g),

(2.47)

Equation 2.47 mathematically shows various energy exchanges that take place during the ex-
pansion and collapse of a cavitation bubble. The terms (ϕD,l+ϕD,g) are always positive as some
energy is always dissipated due to irreversible effects.

If p∞ is constant, we can integrate the equation 2.47 in time, and further using a definition for
total dissipation as ΦD =

∫
t ϕD,ldt+

∫
t ϕD,gdt, we obtain the final form as

Ee,l + Ek,l + Ek,g + Es +
pg,0V

γ
g,0

γ − 1
dV 1−γ

g − (pg − p∞)dVg = −ΦD + E0, (2.48)

where E0 is the integration constant which can be computed from the energy at the reference
state and

Es =

∫
t

∫
I
σκuI · nIdSdt
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2 Governing equations and Numerical methods

is the surface energy. Using∫
I
κuI · nIdS = −

∫
∇s · udS +

∫
u · pdl

withp = n× t and t the tangent to the surface at the interface contour considered (see reference
[110]), it is easy to show that in the case of a bubble that is not in contact with the wall the surface
energy reduces to Es = σSI . Otherwise, the surface energy cannot be explicitly integrated and
we need to account for the energy associated to the contact of both phases with the solid wall. In
absence of dissipation and for an incompressible liquid, this equation can be cast in the form of

Ek + Ep = Em

where Em is the mechanical energy of the system which is constant and Ep is the potential en-
ergy of the system at a given state that depends on the bubble geometrical parameters (volume,
surface...).

2.5 Relevant non-dimensional numbers

Finally, we introduce the relevant non-dimensional numbers that will be used in next chapters
to characterize the problem. We consider that the shape of initial bubble/nuclei is spherical cap
(figure 2.4) which is motivated by the fact that for a spherical cap the bubble geometry is defined
only by two parameters, the bubble radius of curvature Rc,0 and the contact angle α. This sim-
plifies the discussion of the results compared to more complex shapes (e.g. ellipsoids) that could
be focus of future investigations. We consider the three-dimensional Rayleigh problem where the
bubble/nuclei is in thermodynamic equilibrium with the surroundings and the pressure far from
the bubble p∞ is changed suddenly for infinite time. In the context of bubble nucleation by ul-
trasound waves, this is equivalent to case where characteristic frequency of the ultrasound pulse
is small as compared to the natural frequency of the bubble ωp

ωb
≪ 1. This situation is also analo-

gous to the collapse of low pressure bubble formed at the end of expansion phase which collapses
at the constant ambient pressure. We also assume that the time scales for the diffusion of heat and
mass are very large compared to the characteristic time of bubble response i.e. ωpR2

c,0

D ≪ 1, where
D is Fickian constant for diffusion.

In this framework, the general response of a bubble to pressure change depends upon the initial
radius of curvature Rc,0, the contact angle α, the liquid pressure just outside the bubble at equi-
librium state pL,0, time t, pressure far from the bubble p∞, the densities of liquid and gas phase
ρl and ρg respectively, µl and µg i.e. the dynamic viscosity of liquid and gas phase respectively,
σ the surface tension force per unit length for the liquid and gas pair, and finally cl the speed of
sound in the liquid phase. Note that the initial gas pressure pg,0 is related to ambient pressure at
equilibrium state via Laplace law i.e. pg,0 = pL,0 +

2σ
Rc,0

. Let bubble volume V at time t can be
represented as some functional relation

V (t) = F(p∞, pL,0, ρl, ρg, µl, µg, σ, Rc,0, α, cl), (2.49)
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2.5 Relevant non-dimensional numbers

Figure 2.4: The setup for studying bubble dynamic problems, at equilibrium position p∞ = pL,0, for
expansion p∞ < pL,0 and for collapse p∞ > pL,0

There are eleven dimensional parameters controlling the problem and the three fundamental
dimensions upon which the solution depends. The Buckingham Π theorem implies that there
are eight independent non dimensional parameters relevant for the problem, therefore the non-
dimensional bubble volume (V ∗)

V ∗(t∗) = G(p∗, ρ∗,m,Re,We,Ma, α),

where
t∗ =

tUc

Rc,0
, p∗ =

p∞
pL,0

, ρ∗ =
ρl
ρg

, m =
µl

µg

Re =
ρlUcRc,0

µl
, We =

ρlU
2
cRc,0

σ
, Ma =

Uc

cl
, α.

The Reynolds number (Re) is the ratio of inertial to viscous forces and Weber number (We)
is the ratio of inertial and the surface tension forces. When discussing the contact line dynamics,
it is common to use the capillary number (Ca) and the Ohnesorge number (Oh) defined as

Ca =
µUc

σ
,Oh =

µ√
ρlσRc,0

from which the Reynolds and Weber number can be eventually obtained as

Re =
Ca

Oh2
We =

Ca2

Oh2
.

Both, capillary and Ohnesorge number compare viscous and surface-tension effects in a dynamic
and static configuration. Note that the capillary number is defined using a characteristic velocity
and Ohnesorge number is defined using a characteristic length. Hence, for a given system with
fixed physical properties, the capillary number depends only on the pressure difference (driving
the bubble) and not on the size of the bubble, while the Ohnesorge number is given by the size
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2 Governing equations and Numerical methods

and is not influenced by the pressure difference. For the sake of simplicity, we fix the value of den-
sity ratio ρ∗ = 103, viscosity ratio m = 102 and Mach number Ma = 0.003. These are not
changed throughout the manuscript unless explicitly mentioned.

Note that Uc is the characteristic velocity of a given problem. We define Uc differently in each
chapter: In chapter 3, we will take Uc =

√
2/3|p∞|/ρl as this velocity represents the asymptotic

growth rate of a spherical bubble in a low pressure environment obtained from the RP model.
In chapter 4, we will use Uc =

√
p∞/ρl which is the collapse velocity of a low pressure bubble

under the action of ambient pressure. In chapter 5, we will use a wave of amplitude ∆p to excite
the bubble, which introduces a characteristic velocity Uc =

√
∆p/ρl.

26



3 Heterogeneous bubble nucleation

Bubble nucleation is the primary aspect of cavitation and an integral part of understanding the
collapse dynamics of the bubbles as it depends upon the bubble history and nucleation dynamics.
In this chapter, we focus on the process of heterogeneous nucleation in which bubbles appear
heterogeneously and spatially biased towards the solid walls/impurities. We approach the problem
from the lenses of Computational Fluid Dynamics (CFD) in order to understand the effect of
forcing and wall properties on the dynamics of the bubbles during first instants of the nucleation
process.

Figure 3.1: The schematic diagram for the different scenario of how a nucleus can respond to the ultrasound
pressure drop. These three cases will discussed in detail in this chapter.

In figure 3.1, we schematically show three representative situations which can arise when a gas
nuclei is exposed to pressure forcing. In this chapter, we investigate these three cases in detail as a
function of the following control parameters: the size of nuclei, the shape of nuclei, the amplitude
and frequency of the pressure forcing. In the first case, the nuclei remains stable and does not grow
explosively to a large bubble. In second case, the bubble becomes unstable and therefore grows
explosively, a liquid microlayer does not from underneath the bubble. In the third case, the bubble
grows explosively and a liquid microlayer is formed underneath the bubble. We aim to understand
the range of control parameters in non-dimensional space that favor these situations. We solve for
the Rayleigh-problem as mentioned in chapter 2 where we assume that the pressure far from the
bubble decreases suddenly and is kept at a low value for infinite time, and the effect of a finite
pulse duration will be briefly discussed in section 3.1.3 for the spherical bubble case.
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3 Heterogeneous bubble nucleation

3.1 Nucleation threshold

In the heterogeneous nucleation, the bubbles can appear from the air nuclei trapped in the solid
impurities when the pressure falls below a critical value [73, 75]. This process is analogous to
the spherical bubble in the bulk of liquid suddenly exposed to low pressure. The response of a
spherical bubble to the pressure drop can be stable or unstable depending upon the critical pres-
sure corresponding to the bubble size. A stable bubble grows only slightly whereas an unstable
bubble grows explosively to very large volume (few orders of magnitude). This phenomenon is
very well illustrated for spherical bubbles in the film notes of national committee for fluid me-
chanics films [143]. The unstable situation arises when the expanding forces (eg. the pressure
inside the bubble, liquid inertia) becomes greater than the collapsing forces (eg. liquid pressure,
the surface-tension forces) acting on the bubbles. Similarly, an air nuclei trapped in the solid im-
purities can also become unstable if the pressure drops below the critical threshold referred to as
the nucleation threshold. This process of bubbles appearing from the nuclei attached to wall as
the pressure drop below the nucleation threshold is called heterogeneous nucleation. This phe-
nomenon is experimentally illustrated by Borkent et. al. [80]. In this section, we theoretically and
numerically predict the nucleation threshold for the spherical cap shaped nuclei attached to the
wall as a function of bubble size (Rc,0), contact angle (α), and the boundary condition for the
motion of contact line.

3.1.1 Theoretical predictions of the bubble nucleation threshold

The theoretical developments for the prediction nucleation threshold rely on the assumption
of quasi-static bubble growth [73, 75, 80]. The quasi-static evolution of bubble is given by the
Laplace equation which is given as following

p∞ = pg,0

(
V0

Vb

)γ

− σκ, (3.1)

where Vb is the instantaneous bubble volume, V0 is the initial bubble volume and pg,0 is the
initial gas pressure, ρl is the density of liquid phase, σ is surface tension between liquid and gas
phase, γ is the polytropic coefficient, p∞ is the liquid pressure far away from the bubble and
κ is the local curvature. Note that we have assumed an adiabatic bubble expansion in order to
write above equation. For the sake of simplicity, we restrict ourselves to the cases where curvature
remains uniform so that we can write κ = 2Cκ/V

1/3
b . For instance Cκ = (4/3π)1/3 for a

spherical bubble while for spherical cap Cκ = g(α)1/3 where g(α) is a function of contact angle
(α) of spherical cap with the solid wall given as (π3 (2 + 3 cos(α)− cos3(α))). In such a scenario
the dimensional Laplace equation is

p∞ = pg,0

(
V0

Vb

)γ

− 2σCκ
1

V
1/3
b

, (3.2)

Let us write the non-dimensional form of the equation 3.2 using following non-dimensional
variables: σ∗ = σCκ/pL,0V

1/3
0 , V ∗ = Vb/V0, p∗∞ = p∞/pL,0
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p∞∗ = (1 + 2σ∗)
(

1

V ∗

)γ

− 2σ∗

V 1/3
, (3.3)

where pL,0 as is the equilibrium pressure in the liquid just outside the bubble given by Laplace
law as pL,0 = pg,0 − 2σ/V

1/3
0 at equilibrium state. For fixed system of liquid and gas the non-

dimensional number σ∗ characterize the initial volume of the the nuclei.

Figure 3.2: The non-dimensional Laplace pressure and second derivative in non-dimensional potential en-
ergy w.r.t bubble volume is plotted against radius of bubble for quasi-static expansion of a spher-
ical bubble and representative case of 1/σ∗ = 0.32.

We begin by discussing the well known case of the spherical bubble evolution such that the non-
dimensional bubble radius R∗ = V ∗1/3. In figure 3.2, we show the bubble radius evolution as a
function of far field pressure as given by eq. 3.3 for 1/σ∗ = 0.32. The point (p∗∞ = 1, R∗ = 1)
is initial equilibrium position of bubble, as the pressure decreases (quasi-statically) the bubble
expands to a new equilibrium radius until the far field pressure reaches a critical threshold value
(p∗cr in figure 3.2) below which no equilibrium position exists anymore. Any small pressure drop
beyond this point leads to sudden, unstable expansion of the bubble. This threshold can be found
by minima of equation 3.3 and is given as

p∗cr = −
(

3

2σ∗γ(1 + 2σ∗)
) 1

1−3γ

2σ∗
(
1− 1

3γ

)
. (3.4)

Note that the critical pressure beyond which the bubble expansion is unstable is characterized
by a critical value of the bubble radius given as

R∗
cr =

(
3

2σ∗γ(1 + 2σ∗)
)3γ−1

, (3.5)

which is also shown in figure 3.2 with the black line. Since this threshold was first identified by
Blake [76] these are also called Blake’s radius and Blake’s threshold respectively.
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3 Heterogeneous bubble nucleation

The stability of the bubbles can also be discussed by considering the energy equation 2.48
which in the case of reversible quasi-static evolution of bubble with uniform curvature reduces
to

pg,0V
γ
0

γ − 1
V 1−γ
b = −3σCκV

2/3
b − p∞Vb + E0. (3.6)

In this case, the potential energy is

Ep =
pg,0V

γ
0

(γ − 1)
(Vb)

1−γ + 3σCκ(Vb)
2/3 + p∞Vb, (3.7)

which can be cast in to the non-dimensional form as

E∗
p =

1 + 2σ∗

γ − 1
(V ∗)1−γ + 3σ∗(V ∗)2/3 + p∗∞V ∗, (3.8)

where E∗
p = Ep/pL,0V0. The sign of second derivative of the potential energy w.r.t volume

gives the stability condition for the bubble (see reference [79]). The bubble is unstable if the
d2Ep/dV

2
b < 0, where

d2E∗
p

dV ∗2 = γ(1 + 2σ∗)V ∗−1−γ − 2

3
σ∗V ∗−4/3, (3.9)

In figure 3.2, we plot the evolution of second derivative for a particular case of spherical bubble
where we clearly see that for bubble size larger than critical bubble size the second derivative of
energy is negative while it is positive otherwise. We can also obtain the critical bubble size by
solving equation d2E∗

p/dV
∗2 = 0 which yields same criterion as equation 3.4.

The criterion obtained above (equation 3.3 and 3.9) can be easily extended for spherical cap
shaped bubble nuclei attached to a homogeneous wall. In classical nucleation theories, this rep-
resents the case of nuclei that has moved out of the crevice and also the case in which the nuclei
volume is much larger than the volume of any irregularity present in the wall so that the bubble
can be assumed to lie in a flat surface. We further assume that the bubble nuclei remains as a spher-
ical cap during the first instants before the bubble enters into an unstable regime. The geometry
of a spherical cap is defined by two independent parameters: we choose radius of curvature (Rc)
and angle of contact with solid (α), such that the bubble volume is Vb = R3

cg(α). The Laplace
equation for a spherical cap bubble is

p∞ = pg,0

(
R3

c,0g(α0)

R3
cg(α)

)γ

− 2σ

Rc
, (3.10)

where Rc,0 and α0 are the parameters that controls the bubble shape and size and hence the
Laplace pressure. Furthermore, we impose an additional constraints to describe the motion of the
contact line in order to reduce the problem into a single variable minimization problem. Here, we
impose the conditions corresponding to two limiting scenarios a) The free slip boundary condi-
tion which imposes that the contact line moves freely and maintains a constant angle of contact
therefore α = α0, where α0 is the initial contact angle b) The no-slip/pinning boundary condi-
tion which imposes that the contact line is pinned at the initial location and it does not moves, in
this situation Rc sin(α) = Rc,0 sin(α0) at all the times. Under these conditions, it is possible to
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3.1 Nucleation threshold

numerically find the minima of equation 3.10 subjected to pinning and free slip boundary con-
dition. In figure 3.3, we plot the critical pressure as a function of the initial radius of curvature
and the contact angle for air bubbles at normal temperature and pressure conditions. The panel
a and b correspond to free slip and no slip boundary condition.

Figure 3.3: The critical pressure drop required for unstable growth of spherical cap shaped air bubbles in
contact with rigid wall and in water at normal temperature and pressure conditions. The critical
pressure drop predicted from minima of equation 3.10 (colormap) is shown for several bubble
shapes and size are characterized by radius of curvature Rc,0 and contact angle α0. An isobar
for pcr = −2MPa is also shown with the black curve. The bubbles in panel (a) are subjected to
free slip boundary condition whereas in panel (b) are subjected to pinning boundary condition
for motion of contact line.

The differences between values reported in figure 3.3a and b reveal that the nucleation thresh-
old depends on boundary condition for the motion of contact line for certain range of bubble
sizes. In case of the free-slip boundary condition, the critical pressure for the nucleation is inde-
pendent of the contact angle (also predicted previously by Atchley and Prosperetti [75]), while
in the case of pinned bubbles the contact angle introduces a correction that becomes significant
for small bubbles and large contact angles. The isobar for the pressure drop of pcr = −2MPa
is also shown with black dots in figure 3.3a and b. All the bubbles whose initial sizes lie on the
left of this isobar (black curve) are stable, whereas all the bubbles which lie on the right of this
curve are unstable if p∞ = −2MPa. In other words, figure 3.3 characterizes (for given pressure
drop) the size of nuclei active for nucleation among several nuclei that can be present on a wall.
The differences between the isobars between the figure 3.3a and b, indicate the regions where the
stability depends on the boundary conditions.

3.1.2 Numerical predictions of the nucleation threshold

The theory of heterogeneous bubble nucleation presented above imposes certain conditions (e.g.
inertial effects are neglected) that need to be verified numerically. In this section, we use DNS to
obtain the critical pressure drop beyond which the bubble becomes unstable. We solve for the
Rayleigh problem where the pressure far from the bubble is assumed to be dropped suddenly to
a lower value p∞ < pL,0 and kept constant. In such conditions, an unstable bubble will keep
on growing for infinite amount of time (here, till the end of simulation) whereas a stable bubble
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3 Heterogeneous bubble nucleation

will expand to new equilibrium and oscillate around the new equilibrium position due to inertia
and viscosity. We start by presenting a simple case of spherical bubble in the bulk of liquid. Later,
we show numerical results for spherical cap bubbles evolving in contact with wall to explain the
pinning effect in detail. We also present results for expansion of spherical bubble subjected to time
varying pressure field to show the effect of finite duration of pulse.

Single spherical bubble in bulk of liquid

The numerical setup for the problem is shown in figure 3.4a. The simulation domain is 3D axi-
symmetric with left boundary as the axis of symmetry. The size of domain is 100 times the initial
bubble radius. The set of non-dimensional parameters used to setup the problem are given in table
3.1. The liquid pressure field at t = 0 is initialized as solution to Rayleigh problem at equilibrium
position (R = R0) such that at any location r initial pressure, pr,0 = p∞ + (pL,0 − p∞)R0

r .
When the external pressure is lower than the initial bubble pressure, p∞ < pL,0, bubble expands,
in figure 3.4b we show the evolution of bubble radius for two values of the pressure drop slightly
above and below the critical value predicted by equation 3.4 for 1/σ∗ = 0.32. The red line shows
the case where p∞/pcr > 1 and the bubble grows explosively till the end of simulation whereas
the green line shows the evolution of a bubble when p∞/pcr < 1 and as expected the bubble
oscillates around the new equilibrium radius.

ρl/ρg ρ
√

pL,0/ρlR0/µ 1/σ∗ = pL,0R0/σ c∗l =
√
ρlc

2
l /pL,0 pcr/pL,0

1000 ∞ ∈ {0.16, 0.24, 0.32, 0.64} 0.05 -2.9

Table 3.1: Non-dimensional parameters used for simulations of spherical bubble expansion

To numerically predict the dependence of critical pressure drop on the bubble size (represented
withσ∗ for given gas-liquid pair), we perform similar numerical simulations changing the pressure
drop and 1/σ∗. In figure 3.4c, each point corresponds to one numerical simulation, the case
where the bubble expands unstably are shown with red crosses and the case where the bubble
oscillates stably about new equilibrium radius are shown with green circles. The critical pressure
drop given by the quasi-static theory (equation 3.4), shown with the dashed line, indicate that the
numerical results agree well with the theoretical estimates. The numerically obtained threshold
for unstable growth is slightly under-predicted in comparison to the theoretical estimates because
of the inertial effects which promote the bubble growth and thus bubbles attain the critical size at
slightly higher pressure and become unstable. Note that the inertial effects were neglected while
deriving the quasi-static theory.

Bubbles attached towall

We use similar procedure to predict the numerical threshold for bubbles attached to wall with
different contact angle α0. In the theoretical model, the bubble shape remains spherical cap and
therefore α0 is a geometric parameter that defines the shape of the bubble. For DNS, this angle
α0 is set as the boundary condition at the smallest grid size α∆. The numerical setup is shown in
figure 3.5a and the dimensionless parameters are same as table 3.1. We start by imposing free slip
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3.1 Nucleation threshold

Figure 3.4: (a) The numerical setup for the single bubble expansion liquid bulk (b) Radius evolution for
spherical bubble exposed to pressure slightly more than and less than the critical pressure in the
case 1/σ∗ = 0.32 (c) The numerical prediction of critical pressure drop for transition form
stable to unstable behavior shown for different bubble sizes characterized by σ∗

boundary condition at the wall thus the contact line moves with the initially imposed contact an-
gle the angle that remain constant throughout the simulation. Similar to the spherical bubble case,
we vary p∞ close to the critical pressure drop predicted with the quasi-static theory. In figure 3.5b,
we show the temporal evolution of the dimensionless bubble equivalent radius (V/V0)

1/3 for sev-
eral pressure drops. Consistent with the spherical bubble case, the numerical obtained threshold
is slightly lower than the theoretical predictions (minima of equation 3.10).

An important conclusion from figure 3.3 is that in the limiting case when the bubble expands
with constant contact angle (α = α0), the nucleation threshold is independent of angle of contact
and is function of radius of curvature Rc,0 only. We verify this with numerical simulations for
bubbles with same Rc and varying contact angle α (see figure 3.5c). Analogous to the theoretical
curve (black dashed line) the numerical predictions are shown to be horizontal lines independent
of the contact angle α and are slightly under-estimated due to inertia.

Pinning effects

We have predicted in figure 3.3 that the boundary condition at the wall alters the nucleation
threshold and pinning of contact line can act as a stabilizing mechanism for the nuclei. In fig-
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3 Heterogeneous bubble nucleation

Figure 3.5: (a) The numerical setup for simulations for expansion of bubbles attached to wall. (b) The
evolution of dimensionless bubble volume for representative bubble with α = 150◦ and
Rc,0σ/pL,0 = 1.4 for different pressure drops compared the critical pressure drop p∞/pcr
shown in legend. (c) The numerical predictions of critical pressure drop for bubbles with dif-
ferent contact angles, the unstable bubbles are shown with red points where as the stable ones
with green, black dash line corresponds to critical pressure drop predicted from equation 3.10.

ure 3.6a, we plot the isobars for the critical pressure pcr/pL,0 = −0.86 (obtained for σ∗ = 1)
for both pinning and free slip boundary conditions. We can identify the following three regions:
Region i: where the bubbles are stable irrespective of the behavior of the contact line.
Region ii: where the stability of the bubble depends on how the contact line moves at the wall
and thus numerically its response is sensitive to the boundary condition imposed at the wall.
Region iii: where the bubbles are always unstable and grow explosively irrespective of the re-
sponse of the contact line.

ρl/ρg pcr/pL,0 1/σ∗ ρ
√

pL,0/ρlR0/µ
√

ρlc
2
l /pL,0

1000 0.86 1.4 10 0.05

Table 3.2: The dimensionless parameters for predicting thresholds of bubbles attached to wall

To demonstrate the effect of boundary condition numerically, we choose a representative bub-
ble from region ii given by Rc,0pL,0/σ = 1.4 and α = 2π/3 (red cross in figure 3.6a). We
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3.1 Nucleation threshold

Figure 3.6: (a) Isobars for critical pressure drop of pcr/pL,0 = −0.86 for bubbles subjected to the two
limiting boundary conditions for motion of contact line, the red point is chosen as representa-
tive of intermediate region where the stability of bubble depends on the boundary condition.
(b) The DNS results for evolution of bubble volume for a bubble from intermediate region (red
point in figure 3.6a) subjected critical pressure drop and the limiting boundary conditions.

numerically simulate the growth of this bubble at critical pressure drop in the two limiting sit-
uations of contact line boundary conditions and for parameters given in table 3.2. The pinning
effect is introduced in the code by putting zero velocities and pressure gradients in cells next to
wall. The actual situation of contact line motion may be in middle of these two extreme cases
considered here, this test only aims to demonstrate that the wall boundary condition can influ-
ence the threshold for bubble nucleation. The evolution of the dimensionless equivalent radius in
these limiting conditions is shown in figure 3.6b. As expected the bubble behaves unstably when
using the free slip boundary condition but it is stabilized when the contact line is pinned and thus
oscillates about the new equilibrium shape/size.

Figure 3.7: The comparison is drawn between same bubble (pL.0Rc,0/σ = 1.4, α = 2π/3) subjected to
same pressure drop but different limiting boundary conditions. (a) The evolution of Laplace
pressure with the bubble volume obtained from the DNS shown with the thick lines and the
dashed line is obtained from the quasi-static theory. (b) The interface contours obtained from
DNS at various instances of time where left half is the case of pinning boundary condition and
right half is the case of free slip boundary condition.
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3 Heterogeneous bubble nucleation

The effect is more evident from the evolution of Laplace pressure in these limiting situations
(see figure 3.7). Note that the liquid pressure at the interface (pL) is computed using the Laplace
law while assuming that the gas pressure is uniform and equal to average pressure in the bubble.
Because the bubbles evolve as spherical caps, the liquid pressure outside the interface is also uni-
form. The dashed lines are obtained from quasi-static theory (equation 3.10) and the thick lines
from direct numerical simulations. The pinned bubble does not reach the minima in the Laplace
curve and oscillates in the stable part of the diagram. When the same bubble was subjected to
a free slip boundary condition the bubble size exceeds the critical size and advance into the un-
stable growth regime. In figure 3.7b, we show the bubble evolution in these two situations by
plotting bubble shapes as obtained from DNS for visual depiction of the numerical experiments.
We choose the limiting cases i.e. the pinned contact line and infinite slip whereas the contact line
dynamics lies in the the gray area between these two extreme conditions therefore in reality the
critical threshold is expected to lie somewhere in the region ii (of figure 3.6a) depending up on
the mobility of the contact line.

3.1.3 Finite pulse duration effects

In the previous sections, we have assumed that the bubble is suddenly exposed to a low pressure
for infinite amount of time (zero frequency case). In reality the pressure is dropped gradually
by an external source (eg. transducer in reference [80]) and then recovered back to the ambient
condition. In this case, the ratio of time scale associated with external excitation and the natural
time period of the bubble oscillation can influence the bubble nucleation event. To mimic the
physical situation of ultrasound cavitation, we set up a test cases where the bubble is excited by a
linear and planar Gaussian perturbation in ambient pressure. Figure 3.8a shows the setup for this
case where the color scale represent the pressure field in the domain and the inset view shows the
initial bubble. The simulations are axisymmetric about the bottom boundary and the pressure

perturbation is given as pL/pL,0 = 1. − pm/pL,0e
−
(

t+t0
Tp

)
where pm is the maximum gauge

pressure of the pulse. This pulse travels towards the bubble with the speed of sound, hence the
pressure around bubble is lowered for a characteristic timeTp = 6Sg/cl whereSg is the standard
deviation of the Gaussian perturbation and cl is speed of sound.

Although a Gaussian perturbation is not a wave we define the parameter FR analogous to fre-
quency ratio in the classical case of bubble oscillations as

FR =
1

tp

R0√
3γpg,0/ρl

,

such thatFR → 0 corresponds to sudden pressure drop for infinite time. We perform parametric
study for several values of pm close to the critical pressure and for FR ∈ {0.08, 0.25, 0.8} and
show the maximum bubble radiusRmax in figure 3.8bwith dots. The dashed lines correspond to
the results from Rayleigh-Plesset model and the color code gives the amplitude of wave compared
to critical pressure predicted from the quasi-static model (−pm/pcr). When FR > 1 the bubble
pressure is not lowered for enough time to over come the inertia of the heavier liquid around
the bubble interface and the bubble growth is insignificant, as FR decreases and pressure is lower
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3.1 Nucleation threshold

Figure 3.8: (a) Setup for studying bubble expansion from Gaussian pressure perturbation (b) Max radius
plotted against FR for several pressure amplitude for different p∞/pcr shown with the col-
ormap (c) Bubble population active for cavitation depending upon the initial bubble radius
and the two limiting criterion posed by surface tension forces (equation 3.5) and finite pulse
duration.

than the critical pressure and the bubbles show explosive growth. Thus, there is a limit for FR to
observe significant cavitation which is FR ≈ 0.1 in this case.

There are two important criterion for bubble size to observe unstable growth for a given ultra-
sound pulse i.e. fixed amplitude of perturbation and the characteristic time. Equation 3.5 shows
that for known equilibrium pressure and gas-liquid pair σ∗ represents all the initial nuclei sizes
that are present in the problem and in the low frequency limit bubbles nucleate whenR0 > Rcr.
On other hand, we have seen that transient effects imply that to observe significant bubble growth,
we need to satisfy FR < 0.1, which implies that R0 <

√
3γpg,0

ρl

Tp

10 . These two conditions are
illustrated in figure 3.8c where some probability distribution function of nuclei size is plotted
against the nuclei sizes that may exist. All the bubbles active for cavitation are shown in red color
and inactive bubble sizes in green. Arguably, ifFR of pulse is such that the two constraints overlap
any significant bubbles are not observed independent of amplitude of this pulse.
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3 Heterogeneous bubble nucleation

3.2 Unstable bubble growth and microlayer formation

The discussion on bubble nucleation in the previous section (except section 3.1.2) has been fo-
cused on the inviscid flow dynamics such that the contact line could move freely. The viscous
effects introduce the resistance to the motion of contact line and may result in the formation
of a microlayer (case 3 in figure 3.1). In this section, we investigate the dynamics of microlayer
formation during the growth of the unstable bubbles in the Rayleigh problem using the Navier
slip model for the contact line motion (see section 2.3). This model has been extensively used to
mimic the contact line motion in references [137, 138, 139]. We use the set up described in figure
3.5. For the ease of representation, we use α instead of α∆ for the numerical contact angle which
can be different form the actual microscopic equilibrium contact angle αe in a physical setup. It
is well known that in the Rayleigh problem the bubble expands at an asymptotic rate given as
Ṙ =

√
2
3
∆p
ρl

, which can be estimated by neglecting the acceleration term in Rayleigh–Plesset
model [144]. In this section, we choose this asymptotic growth rate as characteristic velocity of
the problem Uc =

√
2
3
∆p
ρl

, where ∆p = pL,0 − p∞ ≈ |p∞| is the effective pressure drop that
the bubble experiences.

The viscous effects are generally concentrated near the wall within the viscous boundary layer
whose thickness scales with

√
νt where ν is the kinematic viscosity and t is the time. Therefore

the problem of bubble nucleation is intrinsically a multiscale problem similar to other contact
line problems studied extensively in past such as boiling, plunging/pulling plate, spreading drop-
s/bubbles etc [130, 131, 145, 146, 147]. In figure 3.9, we show a particular example of an unstable
bubble expansion in a low pressure liquid, where the non-dimensional velocity field is shown
with the colormap as |u|/Uc ∈ (0, 1), the mesh is shown in the background with gray color. We
can readily recognize the multiscale nature of the problem. Three different regions based on the
length scales can be identified where the dynamics can differ significantly from each other. These
are discussed as following

• At large length scales i.e. comparable to the bubble size generally greater than a few microns,
the bubble dynamics is mainly governed by the liquid inertia effects, surface-tension only
plays secondary role during the first instants after the nucleation. The viscous effects are
negligible in this region as this region generally lies outside the viscous boundary layer.

• At an intermediate length scale, generally ranging few hundred nano meters to few microns
close to the wall, the dynamics is governed by the complex interplay between the viscous
and the surface tension stresses, the interface is highly curved and the thin film equations
are often used to model the dynamics in this region.

• Finally, at scales smaller than few hundred nano meters, the fluids are known to slip on
the solid surface up to a few nano-meters, the molecular forces control the dynamics of the
contact line motion. This region is often modeled by specifying the boundary conditions
in the numerical simulations. The accurate boundary conditions for mimicking the physics
of the contact line motion is unknown and is an area of active research (see references [138,
148, 149, 150]).

38



3.2 Unstable bubble growth and microlayer formation

Figure 3.9: The figure shows the bubble shape in the regime where the microlayer forms during the bubble
expansion, zoom in the intermediate scale is shown in the bottom right panel and zoomed in
view of the smallest scale is also shown in bottom left panel.

3.2.1 Theoretical description of microlayer

Figure 3.10: Schematic illustration of the interface close to wall approximated as the thin film often used
to model the dynamics of interface at the intermediate length scale.

The theoretical models for the contact line motion and the interface shape are frequently devel-
oped using the lubrication approximations to the Navier–Stokes equations [133, 142, 151, 152]. If
we assume that the interface can be represented as free surface, the velocity field is one dimensional
u = {ur, 0, 0}, the gradient of velocity in direction perpendicular to the wall in z direction is
large as compared to the direction parallel to the wall in r direction (z and r shown in figure 3.10),
and the liquid is incompressible, in such scenario the Navier–Stokes equation reduces to (see ref-
erence [153] for detailed explanations)

ρ
∂ur
∂t

= −∂p

∂r
+ µ

∂2ur
∂z2

, (3.11)
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3 Heterogeneous bubble nucleation

which is a linear differential equation for ur(z, t). The boundary conditions for this equation
are given as following

ur − λ
∂ur
∂z

= 0, at r = 0 (3.12)

∂ur
∂z

= 0, at y = hf (3.13)

p = −σκ, at y = hf (3.14)

where the interface curvature κ can be represented in terms of interface height (hf ) using lu-
brication approximation as

κ =
∂2hf
∂r2

+
1

r

∂hf
∂r

(3.15)

Simplifying (see reference [152]), one can obtain the thin film equation for the interface shape
as

3µ

σ

∂hf
∂t

+
1

r

∂

∂r

[
(h3f + 3λh2f )r

∂

∂r

(
∂2hf
∂r2

+
1

r

∂hf
∂r

)]
= 0 (3.16)

The steady state solution in the limit of capillary numbers much smaller than unity for equation
3.16 is of form (see reference [131])

α3
app = α3

m + 9
µuCL

σ
ln(r/λ), (3.17)

where αapp is the apparent contact angle approximated as ∂hf

∂r and uCL is the steady contact
line velocity. This relation is commonly referred to as Cox–Voinov law. An important differ-
ence in the current study and the classical experiments of liquid coating over the solid surfaces
(for which these theories are developed) is that the characteristic velocity is not an independent
parameter (as velocity of solid). It depends implicitly on the driving pressure ∆p which takes a
steady value asymptotically. Moreover, the characteristic velocity of bubble expansion is generally
of the orders of 10m/s which is much larger than the classical coating experiments. Cooper &
Lloyd [154] in their Appendix A, used unsteady 1-D model with uniform pressure (eq. 3.11 as-
suming dp/dr = 0) to obtain the 1-D conduction equation that can be solved by separation of
variable, this solution predicts flow velocity inside microlayer to be

ur =
∞∑

m=1

[
Umsin(2m+ 1)

π

2
y exp

(
−(2m+ 1)2

π2

4

νt

δ2

)]
, (3.18)

where Um is an integration constant, and first term is the predominant term that decays expo-
nentially in time (ur ∝ exp(−νt)). The zoomed in view of microlayer in the bottom left panel
of figure 3.9 suggests that after the microlayer has formed, there exist a region where the interface
is parallel to the wall dp/dr ≈ 0 and the velocity is very small.
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3.2 Unstable bubble growth and microlayer formation

3.2.2 Direct numerical simulations

In this section, we discuss the DNS results for expansion of bubbles from small spherical cap
nuclei. We choose the capillary number (Ca = µUc/σ) and the Ohnesorge number (Oh =
µ/
√

ρσRc,0)) as characteristic non-dimensional numbers of the problem in this section. For a
laboratory experiment with fixed fluids (eg. air bubble in water) if the nuclei size is fixed then one
moves along the constant Oh lines, while if the amplitude of pressure forcing is fixed one would
move along constant capillary number lines. Along with the Ca and Oh, we show the effect of
numerical slip length (λnum) and contact angle (α) on the process of formation of microlayer.
The ranges of these parameters considered in this study are as following: Ca ∈ (0.005, 1.4),
Oh ∈ (0.372, 0.01), α ∈ (30◦, 135◦) and λnum/Rc,0 ∈ (0.02, 0.003). We start by com-
prehensively describing the bubble growth and the microlayer formation process for small Oh
numbers by choosing a representative bubble with Oh = 0.037, α = 90◦, λnum/Rc,0 = 0.01
and varying Ca. Note that increasing Ca at constant Oh results in increase of both Re = Ca/Oh2

and We = (Ca/Oh)2. The simulations are run on the swiss super computer Piz Daint and a
typical simulation for bubble expansion runs on 360 CPUs in around 5 hours.

Overall bubble dynamics

The overall growth rate of the bubble is governed by inertial effects. This is consistent with the
experimental study of bubble expansion from pits, Bremond et. al. [55] could predict the growth
of an hemispherical cap shaped bubble growing in contact with the wall using simple expression
for asymptotic growth Ṙ = Uc =

√
2/3∆p/ρl. In figure 3.11a, we plot the non-dimensional

equivalent bubble radius defined from the volume ratio R/R0 = (V/V0)
1/3 against the non-

dimensional time tUc/Rc,0. After an initial transient the slope of curve does not change which is
indicative of the asymptotic bubble growth regime. Since, all of the curves overlap and the slope
of the curves is unity, we can conclude that in this regime the bubble growth rate (represented
with equivalent radius) scales with Uc.

The bubble shapes for Ca = 0.72 (representative case) at different non-dimensional times
shown with different colors in figure 3.11b. In the asymptotic growth regime a major part of bub-
ble lies outside the boundary layer and the macroscopic bubble shape can be approximated as a
hemispherical cap. To confirm the self-similar nature of the bubble, we rescale the bubble shapes
with non-dimensional length Uct/Rc,0 in the direction normal to the interface (see 3.11c). The
shapes are self similar except for slight off set which decreases with time. This can be attributed
to the fact that

√
2/3∆p/ρl is the asymptotic value of growth rate which not exactly reached

during the initial transient considered here.

Dynamics of microlayer formation

The dynamics at the intermediate length scales are controlled by visco-capillary effects. The capil-
lary number is defined as the ratio of viscous stresses and the surface-tension stresses. The viscous
stresses inhibit the motion of fluids and contact line near the wall and the surface-tension stress
prevents the fluid interface from bending. Therefore, we expect more propitious conditions for
the formation of microlayer at high capillary numbers. The problem of microlayer formation is
similar to the the deposition of thin liquid film on the the solid surface, famously known as the
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3 Heterogeneous bubble nucleation

Figure 3.11: Results for bubble expansion in the case of α = 90◦,Oh = 0.037,λnum/Rc,0 = 0.01 and
varying Ca. (a) The evolution of non-dimensional equivalent bubble radius R = (V/V0)

1/3

for different capillary numbers (color-map). (b) The interface contours for different non-
dimensional times shown with the color-map (c) The interface shapes re-scaled with the char-
acteristic velocity Uct/Rc,0 in the normal direction

Landau–Levich–Derjaguin (LLD) film [155, 156] which has been studied extensively in past us-
ing setups where a plate is suddenly pushed in to or pulled out of the liquid and is well understood
in these configurations[131, 138, 151, 157]. In context of the bubble nucleation the liquid film is
known as the microlayer because the height of this film is generally of orders of a few micrometers.
The problem of microlayer is also important in boiling where it enhance the evaporation rates and
boiling heat transfer rates significantly [137, 158]. However, the study of microlayer formation in
cavitation bubble nucleation is relatively rare ([58]).

In order to describe the effect of capillary number on the microlayer formation, we identify
three characteristic points on the bubble interface as shown in figure 3.12 and defined as following:
(a) The point where the bubble interface meets the z axis, it is the measure of bubble height h(t),
the velocity of this point is defined as the time derivative bubble height uh = dh/dt. (b) The
point where the bubble interface meets r axis, it gives the length of contact at the wall c(t) and
characterize the motion of contact line. The velocity of this point is defined as uCL = dc/dt. (c)
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3.2 Unstable bubble growth and microlayer formation

Figure 3.12: The definition of relevant points on the bubble interface that are used for describing the bub-
ble expansion and formation of microlayer

Figure 3.13: Results for bubble expansion in the case of α = 90◦,Oh = 0.037,λnum/Rc,0 = 0.01 and
varying Ca. This figure characterize the motion of the interface using three points defined in
figure 3.12. (a) The velocity of axial point defined as 1

Uc

dh
dt (b) The velocity of contact point

defined as 1
Uc

dc
dt (c) The velocity of the point corresponding to cmax defined as 1

Uc

dcmax

dt

The third point is defined as the interface point at the maximum radial distance (cm(t)) from the
z axis. The velocity of this point is defined as ucm = dcm/dt.

The evolution of velocity of these three points non-dimensionalized with the characteristic
velocity of bubble growth are plotted in figure 3.13a,b and c, for different capillary numbers (col-
ormap). The point h(t) lies outside the boundary layer for all values of Ca and is therefore in-
dependent of the capillary number. The height evolves with velocity Uc after an initial transient
that is of the order of convective time (tUc/Rc,0 ∼ 1). The contact line velocity shown in fig-
ure 3.13b evolves similar to the h(t) for small flow capillary numbers, i.e. the contact line velocity
approaches the characteristic velocity Uc after an initial transient. As expected in this case, the
interface is unable to bend and the microlayer formation is inhibited (see figure 3.14 (a) - (d)).
In such a case the Rayleigh–Plesset model can be used to describe the overall bubble dynamics.
However as the capillary number increases, the viscous stresses becomes important and impede
the motion of contact line resulting in the temporally decayinguCL after the initial transient. The
contact line velocity decays faster for large values of the capillary numbers. Note that the equation
3.18, also predict the similar trend for the velocity at some distance from the no-slip wall due to
viscous effects u ∝ e−νt. Also, at large Ca the surface tension stresses are reduced which promote
the bending of the interface and the formation of microlayer as seen from figure 3.14(e) − (h).
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3 Heterogeneous bubble nucleation

Figure 3.14: Results for bubble expansion in the case of α = 90◦,Oh = 0.037,λnum/Rc,0 = 0.01
and varying Ca. The zoomed-in view of the evolution of bubble interface close to the
wall, each panel corresponds to different capillary numbers Ca represented with the col-
ormap. In each of the panel, the interface evolves from left to right and each lines corre-
sponds to different non-dimensional time. The non-dimensional time tUc/Rc,0 interval
between the curves in each panel is 0.408 therefore contours in each panel are shown at
tUc/Rc,0 ∈ {0, 0.41, 0.82, 1.22, 1.63, 2.04, 2.44}

During the time scales associated with the microlayer formation, the steady contact line velocity
is not reached and the standard models for predicting the dewetting transition based on steady
contact line velocity (eg. reference [157]) are expected to be inaccurate. An interesting future
perspective could be to compare the current DNS calculations with the steady contact line the-
ory in order to estimate the effect of time dependence of uCL on the transition into microlayer
formation regimes.

Finally, the velocity for the point cm exhibits a behavior similar to contact line (c(t)) for small
capillary numbers, while the response resembles that of the axial point (h(t)) for large capillary
numbers (see figure 3.13c). This fact is more clear in figure 3.15 a, where we show the velocity of
these three points h, c, cm in the same plane at an instant tUc/Rc,0 = 1.22 (sufficiently larger
then the initial transient time). The rate of microlayer formation can be quantified as the dif-
ference between the velocity ucm and the contact line velocity. For Ca > 0.24, ucm is equal to
Uc and therefore the rate of microlayer formation depends on the unknown contact line velocity
(uCL). This velocity is shown to decrease monotonically with the Ca and consequently the rate
of microlayer formation i.e. difference between red circles and blue crosses increases with Ca.

Inside microlayer the flow is mainly governed by visco-capillary effects, where σ/µ is expected
to be more important velocity scale in this region. In figure 3.15b, we plot the evolution of the
local contact line capillary number, Ca(uCL) = µuCL/σ. As expected for small global capillary
numbers (Ca < 0.24 in this case), the contact line capillary number is approximately equal to the
global capillary number Ca(uCL ≈ ca) after the initial transient. Interestingly, at tUc/Rc,0 ∼
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Figure 3.15: Results for bubble expansion in the case of α = 90◦,Oh = 0.037,λnum/Rc,0 = 0.01 and
varying Ca. (a) The non-dimensional velocity of three interface points defined in figure 3.12
at non-dimensional time tUc/Rc = 1.22 is shown for different values of capillary numbers.
(b) The evolution contact line capillary number Ca(uCL) = µuCL

σ for different values of
capillary numbers (color-map). (c) Local capillary numbers for three interface points defined
in figure 3.12 at non-dimensional time tUc/Rc = 1.22 is shown for different values of global
capillary numbers. The dotted line is Ca = Calocal and the solid is fitting using harmonic
averaging i.e. 1

1

Ca+ 1

Ca∞

1.5 (region highlighted with red circle in figure 3.15b) the contact line capillary number converges
asymptotically both in terms of non-dimensional time and in global capillary numbers for Ca >
0.24. A similar asymptotic behavior was observed in the numerical simulations of Guion [159],
who proposed that Ca(uCL) can be represented with a harmonic average formula as

Ca(uCL) =
1

1
Ca + 1

Ca∞

, (3.19)

for all values of Ca. In figure 3.15c, we show the contact line capillary number (blue cross) at
tUc/Rc,0 = 1.22 as well as equation 3.19 with a thick black line. Equation 3.19 captures well
the regimes of both small and large global capillary numbers as well as the transition between the
two. It also allows us to find the asymptotic value Ca∞ for Ca(uCL) in the limit Ca → ∞. The
local Ca for other points in figure 3.12 (forhwe define as Ca(uh) = µuh/σ and for cm we define
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3 Heterogeneous bubble nucleation

Figure 3.16: Results for bubble expansion in the case of α = 90◦,Oh = 0.037,λnum/Rc,0 = 0.01 and
varying Ca. The minimum value of apparent angle defined as the angle between the tangent
to the interface and the radial axis r at a given microlayer thickness (hf ).

Ca(ucm) = µucm/σ) are also shown to be equal to Ca (see figure 3.15c red and green points) as
one would expect for Uc = 1.

The bending of the interface can be quantified by computing the apparent contact angle de-
fined in figure 3.10(angle between the tangent to the interface and the axis parallel to wall in the
liquid phase). For the spherical cap (at tUc/Rc,0 = 0) this angle would vary from α to π, as the
interface bends and deviates from spherical cap shape, this angle can decrease below α. In figure
3.16, we plot the evolution of the minimum value of αapp (indicator of maximum bending) over
the interface. For small values of Ca, the minimum value of αapp decreases slightly below the α.
As Ca increases the interface bends more and this angle decreases at faster rates, for Ca > 0.42
it decreases to zero value indicating that the interface becomes parallel to the wall in the region
where the microlayer is formed.

Effect of equilibrium contact angle

The Cox–Voinov solution (equation 3.17) obtained by solving steady state thin film equation in
the limit Ca ≪ 1 shows that the apparent contact angle depends strongly on the microscopic
contact angle (see section 3.2.1). The angle α is the numerical equivalent of microscopic contact
angle αm therefore, we study the microlayer formation as a function of α ∈ (30◦, 135◦) and
Ca ∈ (0.07, 0.55) for constant Oh = 0.037 andλnum/Rc,0 = 0.01. In figure 3.17a, we plot the
contact line capillary number Ca(uCL)with circles as function of global capillary number Ca for
several contact angle boundary conditions α (color-map), and fitting with the harmonic average
formula (dotted lines). The black line corresponds to Ca(uCL) = ca which is the upper limit
for the value of Ca(UCL). The DNS reveals that small α favors the formation of microlayer, in
particular forα < 60◦, the velocity of contact line remains small for all range of capillary numbers
tested and the microlayer forms almost instantaneously. The numerically obtained asymptotic
values of contact line capillary number Ca∞ (red crosses in figure 3.17b) is well represented as a
cubic function 0.12 × α3 (α in rad). A similar trend was observed by Guion et. al. [159] for
α < π/2, surprisingly the cubic dependence holds for large angles. Note that, if we suppose that
Cox–Voinov law (originally obtained in small Ca regime) is valid and try to predict Ca(uCL) such
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3.2 Unstable bubble growth and microlayer formation

Figure 3.17: Results for bubble expansion in the case of Oh = 0.037,λnum/Rc,0 = 0.01 and varying Ca
as well asα. The effect of contact angle on the asymptotic growth regime of microlayer (a)The
numerical results (circles) for contact line capillary number Ca(uCL) as a function of global
capillary number Ca, the dashed lines show the fitting curves obtained using Ca = 1

1

Ca+ 1

Ca∞
for different contact angle boundary conditions (color-map). (b) The fitting parameter Ca∞
that represents the global capillary number for asymptotic microlayer growth is plotted as a
function of α, along with the fitted curve ∝ α3 (dashed line).

that at interface heightL, αapp = 0 as seen from figure 3.16, we can obtain a relation between the
Ca(uCL) and α as

Ca(uCL) =
1

9log(L/λ)
α3, (3.20)

which recovers the cubic dependence of Ca(uCL) on the contact angle. Further matching
the numerical and theoretical prefactors i.e. 1

9log(L/λ) = 0.12 results in L/λ = 2.5, which is
not physically meaningful (as the λ is generally nanometer length scale and L is few microme-
ters). This discrepancy might be caused by two main reasons a) the capillary numbers are not
small enough to neglect the higher order terms in Ca, b) The numerical slip length that we put
in the simulations λnum = 0.012Rc,0 (which is smallest permissible with current computa-
tional resources) might not be small enough to capture the separation of length scales between
the slip length and the microlayer region. An important take away from above results for con-
stant Oh = 0.037 is that the slip model predicts an asymptotic value of contact line capillary
number Ca(uCL) for all values of α considered which varies with the cube of α. As the asymp-
totic regime is achieved when Ca → ∞ at fixed Oh, it can also be understood as regime where
Re → ∞ and We → ∞.

Finite Reynolds andWeber number effects

The dynamics of microlayer formation can be discussed in terms of the capillary number only
in the limit of large Reynolds and Weber numbers. In real applications, the bubble nuclei can
be smaller than 10 micron and this condition might not be fulfilled. Because both, Re and We
are going to be increasingly small as the size of the nuclei decreases. In this section, we will use
as characteristic quantity of the problem as Ohnersorge number, which is of the order of 1 for
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3 Heterogeneous bubble nucleation

Figure 3.18: Results for bubble expansion in the case ofα = 90◦,Ca = 0.57,λnumρσ/µ2 = 0.00012 and
varying Oh. The effect of Ohnesorge number on the microlayer formation at constant Ca. (a)
The velocity of three important interfacial points is plotted as a function of Ohnesorge num-
ber. (b)The evolution of minimum interface slope is shown for different Ohnesorge numbers
(colormap)

nanometric nuclei. For constant capillary number, the Reynolds and Weber number can be ex-
pressed as a function of Oh as Re = ca/Oh and We = ca/Oh2. We vary Oh at fixed the capillary
number Ca = 0.7 (chosen arbitrarily), slip length λnumρσ/µ2 = 0.00012 and contact angle
α = π/2. In figure 3.18a, we show the the velocity of the interfacial points, h, c, cm (figure 3.12)
at non-dimensional time tUc/Rc,0 = 1.45 (sufficiently larger then the initial transient time).
The previously described asymptotic behavior for microlayer growth is recovered at the small Oh.
As the Oh increases, the finite Re and We effects start to appear. The velocity of cm decreases
and that of contact line increases, when both become comparable, the microlayer growth is sup-
pressed. Therefore the asymptotic theory is valid for Oh ≪ 1 at a fixed Ca. It would also be an
interesting future perspective to understand the finite viscosity and capillary effects. In the figure
3.18, we show the evolution of the minimum of interface slope for varying Oh shown in the color-
map, the interface slopes decays faster for small Oh and increasing Oh results in less bending of
the interface.

The microlayer formation is suppressed when the Oh increase at constant Ca or when Ca de-
creases at constant Oh. In both these cases we move closer to the critical pressure drop required
for the unstable bubble growth. The critical pressure equation (equation 3.4) can be transformed
into the Oh − Ca plane, therefore we can obtain a critical Capillary number Cac corresponding
to Ohnesorge numbers for which we expect the bubble to become unstable

Cac = Oh

√√√√2

(
1− 1

3γ

)[
3

2

(
Ca0
Oh

)2

γ

(
1 + 2

(
Oh
Ca0

)2
)]1/(1−3γ)

, (3.21)

where Ca0 is defined as Ca0 ≡ µ
σ

√
pL,0/ρl. In figure 3.19 we show the stable region obtained

from equation 3.21 with the shaded region, the representative bubble (a) in this region is also
shown to be stable. Far from the critical region the bubble exhibits the microlayer formation at
asymptotic rate as also seen form representative case (c), when the bubble lies in the unstable re-
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3.2 Unstable bubble growth and microlayer formation

Figure 3.19: The non-dimensional velocity difference between interface point cm and the contact line
is shown in the phase map of Oh-Ca plane. The shaded region corresponds to the stable
region as predicted by equation 3.21, the solid color lines are isolines for different values
(ucm − uCL)/Uc calculated from the numerically obtained values (points). The bubble evo-
lution is also shown for three representation cases marked as (a),(b) and (c) with the color
code representing the bubble interface at different times.

gion but closer to the stability curve the microlayer formation is inhibited even though the bubble
becomes unstable.

Effect of slip length

The effect of numerical slip-length is summarized in this section by focusing on a representative
case with Ca = 0.54, α = π/2 and Oh = 0.0373. The slip length is varied from 0.001Rc,0 to
0.024Rc,0, and we plot the results in figure 3.20. The velocity of the three points defined in figure
3.12 is shown in figure 3.20a, as expected the effect of slip-length is local to the contact line and
does not influence the motion of cm andh. Also, the increase in slip length facilitates the mobility
of the contact point, thus the contact line velocity increases causing decrease in microlayer growth
rate. This conclusion is supported by the evolution of minimum interface slope represented by
αapp in figure 3.20b. Therefore the the asymptotic values of the contact line capillary number is
a function of the slip length imposed in the numerical simulations.

3.2.3 Structure ofMicrolayer

Here, we consider the bubble shape in the microlayer formation regime and match the same with
the known solutions from the literature. The bubble interface obtained from DNS for a repre-
sentative case of Ca = 1.14,Oh = 0.0327, α = π/2, λnum = 0.012Rc,0 is plotted at non-
dimensional time tUc/Rc,0 = 2.65 with black cross on the linear and log-log axis in figure 3.21a
and b respectively. The axis are non-dimensionalized with the capillary length Lσ = σ/∆p. The
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3 Heterogeneous bubble nucleation

Figure 3.20: Results for for bubble expansion in the case of α = 90◦,Oh = 0.037, Ca = 1.4 and varying
λnum/Rc,0. The effect of slip length on the microlayer formation regime. (a) the velocity of
three important interfacial points is plotted as a function of non-dimensional slip-length. (b)
The evolution of the minimum interface slope for various slip-length (color-map)

three distinguishable features or the interface can be described as following: The bubble shape
outside microlayer which remains hemispherical and is well represented with a curve with con-
stant radius of curvature centered at the initial center of curvature of nuclei as shown with the
blue curve. The interface close to wall is highly curved and a bulge is formed similar to one ob-
served in previous numerical results of reference [137, 158]. In the microlayer region, the classical
Cox–Voinov law fails to even qualitatively predict the interface shape in the intermediate region
as it predicts a convex interface shape, whereas the interface forms a concave shape following the
cusp/bulge region. Guion et. al. [137] also obtained an concave shape and obtained an alterna-
tive solution for the interface shape in the microlayer region by scaling the inertial and viscous
forces. This yielded the microlayer height hf = C0

√
r where C0 is some constant and r is the

Figure 3.21: Results for for bubble expansion in the case of α = 90◦,Oh = 0.0327,λnum/Rc,0 = 0.01
and Ca = 1.4. The interface shape obtained from the direct numerical simulations (black
cross) and the models proposed for interface shape are also shown with thick lines in (a) linear
scale (b) log-log scale.
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3.2 Unstable bubble growth and microlayer formation

non-dimensional radial distance from the contact line. Surprisingly, this scaling describes the in-
terface shape reasonably well in the microlayer region (red curve in figure 3.21), this fact really
questions the basic assumption in the theoretical models for prediction of interface shape i.e. in
the intermediate scale the inertial effects are negligible.
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4 Bubble collapse

The process of bubble nucleation, discussed in the previous chapter, is followed by the collapse of
the cavity formed. In this chapter, we investigate the dynamics of the collapse of a single bubble
that is in contact with a rigid wall. Particularly, we show that the bubble shape at the instant
of maximum radius is a critical parameter that governs the direction of jets created during the
bubble collapse. We show that for a spherical cap bubble, when the contact angle is larger than
90 degrees a classical jet directed towards the wall is observed whereas when the contact angle
is larger than 90 degrees an annular re-entrant jet appears. We explain this change of behavior
using the impulse potential flow theory for small times which shows the presence of a singularity
on the initial acceleration of the contact line when the contact angle is larger than 90 degrees.
Direct numerical simulations show that although viscosity regularizes the solution at t > 0, the
solution remains singular at t = 0 even for finite Reynolds numbers. In these circumstances,
numerical and experimental results show that the collapse of flat bubbles can eventually lead to
the formation of a vortex ring that induces unexpected long-range effects. Using the numerical
simulations and the energy conservation principle, we also characterize the strength of collapse by
considering different energy exchange that takes place during the collapse of the bubble. When the
bubble collapse is not spherically symmetric the kinetic energy accumulated inside the liquid can
significantly penalize the maximum gas pressures reached during the collapse. The effect of kinetic
energy becomes increasingly important as the pressure difference driving the collapse increases.

Figure 4.1: The collapse dynamics of a spherical cap bubble in contact with rigid wall explained in terms of
3 time scale (a) the short time scale which is much smaller than the bubble collapse time scales
(b) The time scales comparable with the bubble collapse time scale (c) The time scales much
larger than the collapse time scales

In figure 4.1, we start by showing the phenomenology of collapse of a flat bubble in contact with
a rigid wall obtained from direct numerical simulations. We draw the bubble interface contour
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4 Bubble collapse

with black curves and the vorticity field with colormaps. The bubble dynamics can be described
in three stages corresponding to three time scales shown in panels a,b & c respectively. At short
time after the beginning of collapse phase t ≪ tc the bubble interface experiences a non-uniform
acceleration due to asymmetry caused by the wall. This leads to the appearance of liquid jets at
the time scales comparable with the collapse time scales (t ∼ tc). These jets are responsible for
cavitation damage and accumulate the kinetic energy which can further penalize the maximum gas
pressure reached during the bubble collapse. In certain situations, this jet can generate a secondary
jet opposite to the wall that can result in a vortex ring formation at t ≫ tc. Figure 4.1 also lay an
outline for the contents of this chapter. To understand the dynamics at short time scales (t ≪ tc),
we use impulse potential theory characterize the acceleration of fluid interface that turns out to
be singular at the contact line. To describe the dynamics at longer time scales (t ∼ tc), we use
DNS and energy balance equation to understand the energy transfers in to various forms during
the collapse. We also study the change in jetting direction as a function of bubble shape from
the DNS results and compare these to the experiments of laser induced bubbles. At much longer
time scales t ≫ tc, we illustrate the formation of vortex ring using DNS and clarify that it is a
surprising consequence of bubble shape and singularity at t ≪ tc.

4.1 Problem setup

We focus on the classical three dimensional Rayleigh problem for the bubble attached to wall that
has a shape of spherical cap. We restrict this study to an axi-symmetric configuration which allow
us to focus the computational resources to resolve complex flow fields near the wall. The problem
and the relevant non-dimensional numbers are described in detail, in chapter 2, wherep∞ > pL,0
results in the collapse of bubble. The characteristic velocity of the bubble collapse is chosen to
be Uc =

√
p∞ − pL,0/ρl. For a low pressure bubble (assuming pL,0 ≪ p∞) collapsing in

water under the action of the ambient pressure, the characteristic velocity is Uc = 10m/s, and
therefore both the Reynolds and Weber number are determined only by the radius of curvature
of the bubble. In particular, for the experiments considered in this study, the radius of curvature
remains to be of the order 1 cm obtaining characteristic values of the Weber and Reynolds number
of the order of We ∼ O(104) and Re ∼ O(105). The influence of finite values of Reynolds
number will be discussed at the end of the chapter.

4.2 Short time dynamics

The dynamics of a collapsing bubble at short time scales after reaching the instant of maximum
volume corresponds to first stage in figure 4.1. From the analytical perspective, the system of
equations can be simplified if we consider the interface as a free surface, i.e. we neglect inertial and
viscous effects inside the bubble, which is a reasonable assumption given that µg/µl ≪ 1 and
ρg/ρl ≪ 1. The velocity at small times remains negligible therefore the convective terms can be
neglected as compared with temporal derivatives of velocity and spatial pressure gradients [160,
161]. This hypothesis remains true when the time scales under consideration are smaller than the
advection time scales i.e. tsUc

Rc
≪ 1. Under these assumptions, we can obtain velocity field by

integrating the linearized momentum equation as
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4.2 Short time dynamics

u(ts) = −1

ρ

∫ ts

0
∇p+

1

ρ

∫ ts

0
∇ · τ . (4.1)

It is classical for the linear system to decompose the velocity field into a potential part (uϕ) and a
viscous correction (uν) i.e. u = uϕ+uν . The potential flow theory givesuϕ whereas the viscous
contribution requires more complex analysis [160, 162, 163]. For the short times and large enough
Reynolds numbers, the viscous contributions to velocity are relevant only in the small region of
thickness δ ∼ O(

√
νt) near the solid boundary. Thus for large Reynolds and short times, we

expect the solution to be governed by the potential part, the viscous part being only a correction
in a thin region close to the wall.

4.2.1 Potential flow solution

The potential flow solution is obtained by solving the inviscid part of the linearized momentum
equation

∂uϕ

∂t
= −1

ρ
∇p. (4.2)

Assuming that the liquid is an incompressible substance, we can take the divergence of Equa-
tion 4.2 to obtain the Laplace equation for pressure as

∇2p = 0. (4.3)

The magnitude of the initial pressure gradient field (or acceleration field) at short infinitesimal
times govern the dynamics of bubble collapse at a finite time. The solution to Laplace problem is
referred to as the "free surface model". The geometry of the problem setup and boundary condi-
tions are shown in Figure 4.2 and is given as following: The bubble interface is assumed to be at a
constant pressure pL,0 and far-away from the bubble the pressure is p∞ > pL,0.

Figure 4.2: The setup for the problem where the bubble shape is spherical cap. The coordinate system used
in describing the flow field i.e. (rw, θw) centered at wall and (rs, θs) centered at the contact
point are also shown.

We introduce the dimensionless pressure p̃ =
p−pL,0

p∞−pL,0
to obtain the acceleration in the free

surface model. Note that in the limiting case of linear problem the interface does not move, there-

55



4 Bubble collapse

fore surface tension effects at short times only introduce a correction on the scaling prefactor
(p∞ − pL,0) upon which the solution depends. The boundary conditions required to solve the
Laplace equation for p̃ are: p̃ = 1 far away from the bubble, p̃ = 0 at the bubble interface and
∂p̃
∂n = 0 at the solid boundary. The above approximations lead to only one free non-dimensional
parameter i.e. the contact angle (α).

Figure 4.3: (a) Isocontours of the magnitude acceleration for bubble with contact angle α = 2π/3: The
left half isocontours are obtained from free surface model and in the right half isocontours ob-
tained from DNS at infinite Reynolds. (b) Non-dimensional acceleration magnitude along the
wall obtained for same case using the free surface model.

In figure 4.3a, we present the isocontours of the magnitude of the non-dimensional acceler-
ation field (|∇p̃|) obtained for a spherical cap bubble with contact angle α = 2

3π, while figure
4.3b shows the profile of the acceleration along the wall in the liquid phase with respect to the
distance from the contact line obtained from free surface model. The isocontours in the left half
are obtained numerically from the free surface model, while on the right half are obtained from
the full direct numerical simulation of the Navier–Stokes equations accounting for the presence
of a gas with non-zero density and a finite value of viscosity at tUc

Rc
= 2.07 · 10−6. Good agree-

ment between the two solutions support the argument that equation 4.3 is a good representation
of the bubble response at very short times. We clearly distinguish two separate regions: the far-
field where the pressure gradient contours are hemispherical caps centered at the axis of symmetry,
and the near field where the contours for pressure gradient are intricate and diverges as the flow
approaches the triple contact point. Next, we characterize each of these regions:

Near field

The numerical solution for local non-dimensional acceleration magnitude at bubble interface
|a|/a0 is shown in figure 4.4a where a0 =

p∞−p0,L
ρRc

is the acceleration for a spherical bubble
with radius Rc and a known pressure difference. We use the angle with respect to the wall θw to
parameterize the interface position, θw = 0 corresponding to the point of contact between the
interface and the solid wall and θw = π/2 being the intersection of the interface with the axis of
symmetry. We choose four representative cases with α = π/3, π/2, 2π/3, 3π/4. As expected,
in the case of α = π/2, the numerical solution recovers the Rayleigh–Plesset solution and the
non-dimensional acceleration is uniform and equal to one all over the interface. When α < π/2
the interface acceleration (thus velocity) tends to zero at the contact line, and therefore it seizes to
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4.2 Short time dynamics

Figure 4.4: (a)Non-dimensional acceleration magnitude, |aI |/a0 along the interface parameterized using
the angle θw (measured in the counter-clockwise direction from the point of contact of wall and
the axis of symmetry) for α = π

3 ,
π
2 ,

2
3π,

3
4π. Dots represent the numerical solution from free

surface model and the thick lines are predictions using equation 4.5 evaluated at the interface.
(b) Exponent b0 and coefficient C0 obtained from fitting the pressure gradient obtained from
the free surface model along the wall for different α. (c) Non-dimensional averaged interface
acceleration magnitude as a function of the contact angle using different methods: analytical
expression given by equation 4.7 (blue line), the solution from the free surface model (yellow
line), the DNS solution of the Euler equations (black crosses), and the DNS solution of the
Navier–Stokes solver for Re = 100 (red crosses).

move even in the potential flow problem with a slip wall. For α > π/2, the appearance of the
singularity is evident because the acceleration diverges as we approach the θw → 0 limit.

To interpret this result one must keep in mind that the general solution of the Laplace equation
in spherical coordinates can be obtained by separation of variables that leads to an infinite series.
This series sometimes diverges at the edge where Dirichlet and Neumann boundary conditions
meet due to the appearance of a singularity [164]. This singularity was reviewed extensively in
the past [142, 165, 166, 167, 168, 169] but the studies where this singularity appears in the bubble
dynamics problems are rare. The asymptotic solutions close to the point where homogeneous
Dirichlet and Neumann boundary conditions meet can be alternatively expressed by using the
general solution of the Laplace equation [164, 168, 170] and takes the form of

57



4 Bubble collapse

p̃s =
∞∑
k

Ckr̃
bk
s cos(bkθs), (4.4)

where r̃s = rs/Rc is the non-dimensional distance from the contact line and bk = π
α(k+1/2).

Taking the derivative with respect to the normal of the interface, we readily find the interface
acceleration magnitude near the contact line as

|aI | =
1

ρ
| ∂p
∂nI

| ≈ a0C0b0r̃
b0−1
s , (4.5)

This expression exhibits a singularity at the contact point (rs → 0) when b0 = π
2α < 1 (or

α > π/2) implying that the acceleration at the triple contact point is infinite. In these conditions
the first term in the expansion is the leading order term that eventually dominates the solution in
the region rs ≤ Rc. This can also be clearly seen in figure 4.3b where the fitting curve shown
with solid line is obtained using the first term of the series solution (i.e. parameters C0 and b0 in
equation 4.5). We repeat the fitting procedure for various α to verify that the numerical values
of b0 match well with theoretical predictions and find C0 which is a constant of order one that
slightly increases withα (figure 4.4b). In this report, we will focus on characterization of the pecu-
liar cases where the singularity appears using equation 4.5. Figure 4.4a shows that the numerical
solution (dots) is well described by equation 4.5 evaluated at the interface (solid lines), showing
excellent agreement close to the contact point, i.e. small values of θw. Near the axis of symmetry
(e.g. θw → π/2 and r̃s ≈ 1), the errors become apparent and the first term in the series does not
suffice to describe accurately the acceleration field.

Far field solution

The far field flow created by the bubble resembles to a punctual sink sitting at the intersection
between the wall and the axis of symmetry. The integration of the momentum equation in the
radial coordinate provides the magnitude of pressure gradient generated by a punctual sink at an
arbitrary distance from the sink as∣∣∣∣dp̃far

dr̃w

∣∣∣∣ = |aI |
a0

(1 + cos(α))

r̃2w
, (4.6)

where |aI | is the magnitude of averaged acceleration along the interface, which determines the
strength of the punctual sink. Figures 4.3b clearly shows that this equation captures well the decay
of the pressure gradient with the distance r̃w = r̃s +Rc cos(α) far from the interface.

Because the first term of the series in equation 4.5 predicts the interface acceleration reasonably
well, we obtain an estimation of the averaged acceleration magnitude for bubbles with α > π/2
as

|aI | =
∣∣∣∣ 1Sb

∫
−1

ρl

∂p

∂nI
dSb

∣∣∣∣ = a0C0b0G(α), (4.7)
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4.2 Short time dynamics

where Sb stands for the bubble interface surface and G(α) is a geometrical factor that can be
numerically computed assuming that the first term in the series is indeed the leading order term
along the entire bubble interface which is approximated as a straight line with contact angle α,
this gives

G(α) =
1

1 + cos(α)

∫ π/2

α−π/2

(
cos(α) + sin(θ)

sin(α)

)b0−1

cos(θ)dθ.

Figure 4.4c shows that the averaged non-dimensional interface acceleration magnitude obtained
using this model compares well with the full numerical results of the free surface model and the
DNS solution of the (both viscous and inviscid) Navier–Stokes equations. The results of the
simplified model are obtained using the value ofC0 numerically computed and reported in figure
4.4a. For α > π/2, |a| increases with α. The three proposed models agree well for the angles
tested implying that the free surface model as well as the simplified expression given in equation 4.7
capture well the averaged bubble response at short times for sufficiently large Reynolds numbers.

4.2.2 Viscous correction

The potential flow solution is only formally exact at the initial time t = 0, when the interface
is at rest. As soon as the interface is set into motion a thin boundary layer immediately develops
regularizing the flow close to the contact point. To investigate the influence of viscosity on the
dynamic response of the bubbles, we use the results from the DNS of the Navier–Stokes equations
at short times. We use the numerical setup shown in figure 4.5a and the grid refined progressively
near the interface to a minimum grid size of ∆xmin/Rc = 0.0007

Figure 4.5: (a) The numerical setup for DNS (b) Results from the DNS for α = 2π/3 and Re = 100.
Time averaged interface acceleration in direction parallel to the wall, ar,I = ur,I/t, as a func-
tion of the distance from the wall at 5 different times (in color where tUc/Rc,0 ∈ [7.27 ·
10−5, 3.6 · 10−4]). For reference we include the potential flow solution given by equation 4.5
evaluated at the interface (solid black line). The inset represents a zoom into the viscous bound-
ary layer generated close to the wall.
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4 Bubble collapse

In figure 4.5b we characterize the bubble motion at short non-dimensional time tUc/Rc by
showing the evolution of the time averaged interface acceleration magnitude parallel to the wall,
defined as ar(t) = ur(t)/t, as a function of the normal distance from the wall. The results
shown with colored dots are obtained from DNS for α = 2π/3 and Re = 100 where color
scale represents the non-dimensional time varying between 7.27 · 10−5 and 3.6 · 10−4. The inset
figure with zoomed view shows the clear development of a boundary layer very close to the wall
where the maximum velocity defines the thickness of this layer. Outside this region the free surface
potential flow solution shown with a solid black curve (Eq. 4.5) predicts the interface acceleration
obtained from DNS relatively well.

In figure 4.6a, we show that the velocity of the contact line (ucL) changes as the mesh is refined
since slip length changes implicitly (λ = ∆xmin/2) because interface moves with the cell center
velocity in our numerical method (here the slip-length is not defined explicitly). Thus, inside the
viscous boundary layer, the interface acceleration is sensitive to the slip length imposed and also
to the movement of the contact line. In this region, the solution of free surface model at t = 0
cannot be extrapolated to predict the flow field near the contact line at short times.

Figure 4.6: The grid convergence of viscous solution (a)The evolution of velocity of contact line is plotted
for different grid-size. (b) The evolution of jet velocity is plotted for various grid size.

Despite the sensitivity of the contact line motion to the slip length imposed, figure 4.6b reveals
that the peak interface velocity (jet velocity ujet) is converged and therefore independent of the
slip length. This fact together with slight dependence of the average acceleration with Re (figure
4.4c) confirms that for large enough Reynolds numbers, the bubble dynamic response is mainly
governed by the potential flow solution. In these conditions, the free surface potential flow model
at t = 0 is a useful tool to predict the average dynamics of the interface at small times.

In order to characterize the jet formation process we extract the maximum interface velocity
magnitude from DNS data, which we name as jet velocity ujet. This velocity can be fitted using
a power law function of the form (figure 4.7a)

ujet
Uc

= A

(
tUc

Rc

)q

, (4.8)

Where A is a constant. A theoretical estimation of coefficients q can be obtained from the
singular solution described in the previous section as follows: The jet velocity after small time
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4.3 Long time dynamics

Figure 4.7: (a)Evolution of jet velocity for different contact angles from (dots) DNS and (solid lines) fitting
using Eq. 4.8. (b) Exponent q from DNS fitting and predictions of Eq. 4.9.

(ts) can be approximated from the initial acceleration evaluated at the interface at height equal
to thickness of boundary layer z = δ(ts). As δ is given approximately by the solution of the
Stokes problem for the flow near the flat plate that is impulsively started from rest, it is logical to
impose that δ(ts) ≈ Cδ

√
νts where Cδ is a constant of order unity. In this case the jet velocity is

estimated as

ujet(ts) = ar,I(t = 0, zI = δ(ts)) ts

where we assume that the interface quickly decelerates as soon as it enters inside the viscous
boundary layer. Thus, the coefficient q is readily obtained as

q =
1

2
+

π

4α
. (4.9)

As shown in Figures 4.7b this model captures well the evolution of the jet velocity at small times
found from DNS simulations for α > π/2. The exponent q (figure 4.7c) decreases asα increases
because the acceleration gradient in the normal direction increases with α as seen in figure 4.4b.
Note that q < 1 for α > π/2 and therefore the jet acceleration is singular at t = 0 even in the
presence of viscous effects.

4.3 Long time dynamics

After describing the dynamic response of collapsing bubble at short times in detail, we investigate
the dynamics of bubbles at longer times i.e. fig 4.1b and c. We present the discussion on the peak
gas pressures and the description of phenomenology induced by non-spherical effects during the
bubble collapse and the comparison of DNS results with the experiments.
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4 Bubble collapse

4.3.1 Peak gas pressures and jetting during the collapse of a bubble

For an ideal gas, pressure is directly related to internal energy through equation of state, for in-
stance during the collapse of a bubble the gas is compressed and its internal energy increases. Part
of energy focused during the process of bubble collapse is released in the form of high speed liq-
uid jets and shockwaves. These are generally responsible for the cavitation damage, and therefore
understanding these energy transactions can potentially improve the understanding of cavitation
damage. In this section, we present the theoretical and DNS results to understand the energy
exchanges during non-spherical bubble collapse in contact with a rigid wall.

Theoretical background

The energy conservation equation (2.48) can be used to understand the energy exchanges during
the bubble collapse. If we assume that the the surface tension effects are negligible, liquid is incom-
pressible, and that the gas is very light in comparison with the liquid such that the Ek,g ≪ Ek,l,
where Ek,g and Ek,l are the kinetic energies of gas and liquid phase respectively. We can obtain
equation relating the non-dimensional liquid kinetic energy with bubble volume (Vg) as

Ek,l

p∞Vg,0
=

1

γ − 1

pg,0
p∞

(
1−

(
Vg

Vg,0

)1−γ
)

+

(
1− Vg

Vg,0

)
− ΦD, (4.10)

where Vg,0 is the maximum bubble volume at the end of expansion phase, pg,0 is the initial gas
pressure at instant of maximum volume ΦD is the energy dissipated due to the irreversible effects.
Assuming zero dissipation (reversible process), we can find the roots of equation 4.10 numerically
to obtain the bubble volume at the instant when kinetic energy in liquid is null. These states
include the instant of maximum radius (Vg = Vg,0) and the instant of minimum volume in case
the bubble collapses with spherical symmetry (Ṙ = 0). In the limit, p∞ ≫ pg,0 and Vg ≪ Vg,0,
the right hand side of equation 4.10 reduces to unity, hence the upper bound of liquid kinetic
energy in the collapse process is Ek, l/p∞V0 = 1.

Furthermore, if we use the adiabatic law to write the volume ratio in terms of pressure ratio it
is possible to obtain an equation that relates the instantaneous gas pressure and the kinetic energy
in the liquid as

(
pg
pg,0

)(γ−1)/γ

+ (γ − 1)
p∞
pg,0

(
pg
pg,0

)−γ

= 1 + (γ − 1)
p∞
pg,0

− (γ − 1)

(
Ek,l

pg,0V0
+ΦD

)
,

(4.11)
we could find the roots of this equation numerically for known values ofEk,l andΦD to predict

the gas pressure during the collapse. However, at the instant of maximum gas pressure (minimum
bubble volume), the first term on the left hand side is significantly more important as compared
to the second term (as pmax ≫ pg,0) therefore we can further simplify equation 4.11 to obtain
pmax as

pmax

pg,0
≈
[
1 + (γ − 1)

p∞
pg,0

− (γ − 1)

(
Ek,R

pg,0V0
+ΦD

)] γ
γ−1

, (4.12)
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4.3 Long time dynamics

where Ek,R is the kinetic energy at the instant of minimum volume. In the limiting case of
reversible spherical bubble collapse Ek,R = 0,ΦD = 0 and p∞ ≫ pg,0 we recover the classical
expression for the maximum pressure (see reference [171])

pmax/pg,0 = ((γ − 1)p∞/pg,0)
γ/(γ−1) (4.13)

This expression reveals that the non-dimensional peak pressure reached during the spherical bub-
ble collapse, pmax/pg,0, depends on p∞/pg,0 only and not on the bubble size. Note that energy
dissipation and residual kinetic energy in liquid (Ek,R) are always positive, therefore the gas pres-
sure in non-spherical collapse is always less than that of the spherical collapse. Both Ek,R and ΦD

represent the energy that has been transferred into the liquid which otherwise could have been
used for the compression of the gas. The residual liquid kinetic energy concentrated inside the
high speed jets at instant of maximum compression and can be linked to the cavitation damage.

Figure 4.8: we show the vorticity in color map and velocity vectors obtained from DNS after short time
short time ( tUc

Rc
= 0.11) for Re = 1000 and (a) α = 2π/3 and (b) α = 5π/12.

It is interesting to note that for our axisymmetric system the residual kinetic energy is directly
related to the presence of vorticity in the liquid (see reference [162] section 3.11) at the instant
when the bubble reaches the minimum radius. At this instant the averaged velocity induced by
the bubble is zero and therefore the there is no net flux across the far away boundary. In these
conditions, the kinetic energy is related to vorticity as

Ek = π

∫ ∫
ωθ

Ψ

r
drdz (4.14)

where Ψ is the streamfunction. Vorticity is generated at the wall and also at the bubble inter-
face [172, 173], and then diffused towards the liquid bulk due to viscosity. Thus there is a direct
link between the emission of vorticity into the liquid and the penalization of the peak pressures
reached during the collapse of a bubble. At short times vorticity is concentrated in a sheet vortex
at the interface. By assuming zero stress condition at the interface for t = 0, the only non-zero
component of the vorticity can be written as

ωθ = − 2

Rc

∂uI
∂nI

or equivalently
∂ωθ

∂t
= − 2

Rc

∂aI(t = 0)

∂nI
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4 Bubble collapse

where nI is the normal to the interface and uI and aI in the interface velocity and acceleration
in the normal direction. It immediately follows from the potential flow solution (figure 4.4a)
that the sign of the acceleration gradient changes depending on the initial contact angle is greater
or less than π/2, reverting the sign of the vortex sheet generated at the interface. This behavior
is indeed observed from the numerical simulations as shown in figure 4.8 (a and b), where the
strength of the vortex sheet is plotted with saturated color maps. The change in dominant color
represents the opposite sign of vorticity at interface between the two cases. Thus, we can conclude
that the presence of a free surface acts as a source of vorticity that diffuses into the liquid bulk and
eventually penalize the peak pressures reached during the collapse of the bubble.

Direct numerical simulations

Figure 4.9: The grid convergence is demonstrated for a representative case p∞/pg,0 = 8, Re = ∞, We =
∞ (a)Non-dimensional kinetic energy (b)Average bubble pressure (c)The bubble shapes for
different driving pressures and smallest possible grid size as obtained from DNS using setup
from figure 4.5a.

The relative importance of the residual kinetic energy and the viscous and acoustic dissipation
mechanisms cannot be easily anticipated theoretically. Instead, we can use DNS to understand the
characteristics of bubble collapse and energy exchange in the regime where Re = ∞, We = ∞ in
order to limit dissipation mechanisms to liquid compressibility effects only. From the dimensional
analysis of chapter 2, we see that α and p∞/pg,0 are the free and independent non-dimensional
parameters that control the bubble collapse. The numerical setup is the same as the one shown
in figure 4.5a. The important time scale for the collapse process was given by lord Rayleigh [67]
which is used to non-dimensionalize time, it is given as tr = 0.915R0

√
ρl/(p∞ − pg,0). The
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4.3 Long time dynamics

grid convergence study for the evolution of kinetic energy integrated over the liquid control vol-
ume and the average bubble pressure for a representative case of p∞/pg,0 = 8, α = 2/3π is
shown in figure 4.9a,b. The overall convergence for these quantities is good, the results remain
slightly grid dependent in at the instant of minimum kinetic energy and maximum pressure (min-
imum volume). These points are hard to converge, specially at larger pressure ratios because of the
non-spherical collapse and jet formation. Very thin structures start appearing during the close to
minimum volume which are poorly resolved even for the finest grid. The bubble interface for dif-
ferent pressure ratios for the finest grid are shown in 4.9c, note that p ∝ 1/V 3γ therefore even
small changes in volume are amplified as gas pressure, due to this we have restricted the discussion
in current section to relatively small driving pressure.

Figure 4.10: The DNS results for collapse of bubbles with different α and for p∞/pg,0 = 8,Re = ∞,
We = ∞. The top row shows the evolution of bubble shapes contours for (a) α = 0 (b)
α = π/3 (c) α = π/2 (d) α = 2/3π. The snapshot of bubble at the instant of minimum
volume is given in bottom row where the interface is shown with black curve ,the kinetic energy
in liquid phase is shown with linear color map in right half and the velocity vectors in left half
for (e) α = 0 (f) α = π/3 (g) α = π/3 (h) α = 2/3π

We start by discussing the effect of initial contact angle by fixing p∞/pg,0 = 8. In figure 4.10
the panels (a−d), we show the bubble interface evolution at various times forα ∈ {0, π/3, π/2, 2π/3}
and panel (e − h) shows the snapshot at the instant of minimum volume displaying the bubble
interface with the black contour, the colormap of liquid kinetic energy in the right half and the
velocity vectors in the left half. Two important observations from figure 4.10 are (a) all the bub-
bles except α = π/2 loose the spherical symmetry and liquid jets are present at the instant of
the minimum radius which implies that the kinetic energy in not null. (b) The jet direction is
different depending on the initial contact angle: the jet is directed towards the wall for α < π/2
whereas an annular jet appears parallel to wall in case α > π/2.

In figure 4.11a, we show the evolution of non-dimensional equivalent bubble radius, which
shows that the minimum of equivalent radius is only weakly linked with the bubble shape whereas
the non-dimensional time of bubble collapse time depends significantly onα. The bubble collapse
time (see figure 4.11b) for hemispherical bubble compares well with the Rayleigh collapse time, for
bubbles with α < π/2, it is relatively constant and around 1.25tR, and for α > π/2 it decreases
sharply. The prolongation in the bubble collapse compared to Rayleigh collapse time is discussed
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4 Bubble collapse

Figure 4.11: The DNS results for p∞/pg,0 = 8,Re = ∞, We = ∞ and varying contact angle. (a) Non
dimensional equivalent radius of the bubble. (b)The non-dimensional collapse time is plotted
as function of α. (c) The temporal evolution of the dimensionless kinetic energy integrated
over liquid control volume. (d)The residual kinetic energy at the instant of minimum volume
for different α.

in detail by Reuter et. al. [174] for laser generated bubbles, interestingly they also report similar
factor of around 1.2 for 0.5 < d/Rmax < 1 (where d is standoff distance for laser focus and
Rmax is the maximum bubble radius), even though the setup and shapes of bubbles are very
different. In figure 4.11c, we show the temporal evolution of the non-dimensional kinetic energy
integrated over the liquid control volume. The non-dimensional liquid kinetic energy increases as
the liquid accelerates in the beginning of collapse phase and starts to decrease in the later part when
the liquid decelerates close to the minimum volume. As expected, the kinetic energy does not
decay to zero at the minimum volume for α ̸= π/2 as there is some kinetic energy accumulated
inside the liquid jets, which we designated as the residual kinetic energy Ek,R. This is plotted in
figure 4.11d, the value of Ek,R is minimum for α = π/2 (not exactly zero) and it increases when
we move away from thin point. Numerical results predict that the residual kinetic energy form
smaller angles can be more than 10% of the upperbound of Ek,l predicted previously from the
theory.

Equation 4.10, derived from the energy conservation gives the relation between the liquid ki-
netic energy and the bubble volume, we verify this relation in figure 4.12a (assuming ΦD = 0).
The equation predicts the evolution of liquid kinetic energy very well in the be beginning of the
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4.3 Long time dynamics

Figure 4.12: The DNS results for p∞/pg,0 = 8,Re = ∞, We = ∞ and varying contact angle. (a) The
evolution of kinetic energy with the bubble volume is shown along with equation 4.10 taking
ΦD = 0. (b) The maximum pressure is plotted for various values of α as obtained from
DNS (red curve), we also the solution of equation 4.12 assuming ΦD = 0, the blue curve
is obtained by calculating the integral of kinetic energy form DNS and black line is obtained
assuming Ek,R = 0.

collapse phase, some differences becomes visible after the maximum kinetic energy. These are due
to the numerical energy dissipation and the liquid compressibility effects which becomes increas-
ingly important towards the end of collapse phase. Supponen et. al. [56] showed the gradual
buildup of liquid pressure during the last stages of collapse resulting in to increasing importance
of liquid compressibility effects. Therefore equation 4.12 slightly overpredicts the liquid the ki-
netic energy. Also the residual kinetic energy is clearly visible and even for α = 0, we never reach
the zero kinetic energy because of the numerical dissipation and liquid compressibility. In order to
gain further insight into the influence of the angle on the peak pressures reached. In figure 4.12b,
we plot the maximum pressure vs α obtained from DNS with red curve. As expected, the highest
pressure is reached for the 90 degrees case which corresponds to a spherical bubble as EK,R ≈ 0.
The solution of equation 4.12 is also plotted assuming ΦD = 0: while the blue line shows the
points for which the residual kinetic energy is obtained from numerical simulations, the black
line is obtained with the assumption that the residual kinetic energy is also zero. Clearly, the blue
curve predicts well the trend in pressure reduction due to the liquid kinetic energy. A consistent
shift between the red and blue curves is attributed to the damping due to liquid compressibility
and numerical viscosity.

In figure 4.13a, we plot the residual liquid kinetic energy for differentp∞/pg,0 and for different
α. The residual kinetic energy increases as the p∞/pg,0, therefore the penalization of gas pressure
is also expected to increase. Moreover, Saade et. al. [109] showed that for spherical bubbles the
effect of liquid compressibility also becomes more important for larger values of p∞/pg,0. These
effects are reflected in figure 4.13b where we plot the maximum pressure as a function of driving
pressure p∞/pg,0 for various α ∈ {0, π/6, π/3, 2π/3} alongside the equation 4.12 is also plot-
ted considering Ek,R = 0,ΦD = 0 (black line). As expected, the influence of the contact angle
on the peak pressures is increasingly important as the pressure ratio increases that is why the peak
pressures reached are significantly lower when the collapse is very intense (note that the plot is
shown in log-scale) due to effects mentioned above. An future prospect of current study would

67



4 Bubble collapse

Figure 4.13: The DNS results for varying p∞/pg,0 = 8,Re = ∞, We = ∞ and different contact angle.
(a)The residual liquid kinetic energy at the instant of minimum volume is plotted for various
α (colormap) and p∞/pg,0. (b) The maximum pressure is plotted as a function of p∞/pg,0
for different alpha (colormap), the black curve corresponds to equation 4.12 assuming ΦD =
0, Ek,R = 0

be to understand the relative importance of these individual mechanisms (liquid compressibility,
kinetic energy and dissipation) as function of α and p∞/pg,0.

4.3.2 Experimental comparison

Now, we compare the numerical results with experiments and explain the dependence of jet direc-
tion on the initial bubble shape. Figure 4.14 shows the experimental setup described briefly here,
more details are available in references [66] & [175]. The experiments were conducted in ENSTA
Bretagne with Dr. Michel Arrigoni’s group using a pulsed Nd:YAG laser (model quanta ray pro
350-10) that provides maximum of 3.5J of energy with Gaussian distribution in time having half
maximum at 9.2 ns. This laser beam passes through a quarter wave plate and polarizer for modu-
lating the energy and then focused using a plano-convex lens of focal length 250mm that creates
a focal spot of 4mm in diameter on the aluminum plate. For bubbles shown with α > π/2 the
laser is focused on the water droplet attached to bottom of an aluminum plate (1 mm thick) kept
at bottom of a water tank and for the bubbles with α < π/2 the laser if focused on the top of
this aluminum plate kept at the bottom of same tank. The laser energy is set to 50% of maximum
in case where α < π/2 and we observe the cavitation phenomenon in the water tank using high
speed camera.

First we discuss the case where the singularity is present (e.g. α > π/2). The generation of
bubbles with α > π/2 is investigated using the setup described briefly above. The cavitation in
the water drop induces shock waves in aluminum plate that leads to the appearance of multiple
bubbles in the water tank, these bubbles interact to form a flat bubble with shape similar to spher-
ical cap at maximum volume (figure 4.15 a). The snapshots are taken at every 0.1ms, the interface
from the second snapshot is extracted and fitted with an approximate spherical cap which gives
Rc = 7.56× 10−3m and α = 0.727π.

We reproduce the experimental conditions numerically using the numerical setup described in
section 4.2.2. The minimum mesh size of∆x = 60µm, the far field pressure p∞ is 1 atm and the
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4.3 Long time dynamics

Figure 4.14: Experimental setup used to create flat bubbles.

pressure inside bubble is set to a low value (0.1 atm) selected by matching the collapse time from
the experiments and the numerical simulations. We consider both surface tension and viscous
effects in the numerical simulations with Re ≈ 75600 and We ≈ 10500. The numerically
obtained bubble shapes plotted with red contours and scaled to bubble size in snapshot 2, these
are subsequently overlaid on the experimental snapshots after 0.1ms. A very good agreement is
seen between the numerical and the experimental bubble shapes, small differences subsist because
of the simplification of the bubble shape during the bubble expansion, the influence of gravity,
mass transfer and other effects that are not considered in the numerical simulations.

At the beginning of collapse phase the highest interface velocity is developed at edge of the
viscous boundary layer (see figure 4.5b) that leads to the appearance of an annular jet parallel to the
wall that further leads to a mushroom-like shape of the interface contour (see figure 4.15a). These
results are consistent with previous numerical works of Lauer et. al. [94] and Koukouvinis et. al.
[95]. Remarkably, when the collapse is strong enough and the jet reaches the axis of symmetry,
a stagnation point appears there leading to a secondary upward jet normal to the wall. The re-
entrant jet observed for α > π/2 is not very conventional in cavitation and generates vortex ring
structures similar to those observed by Reuter et. al. [96] which are persistent in nature and can
travel large distances in comparison to bubble size. The generation of this vortex ring is illustrated
numerically in figure 4.16a where the color maps show the vorticity field. A clear annular re-
entrant jet is observed, followed by a mushroom like structure and the bubble detaches from the
wall, consequently generates a jet in the upwards direction which eventually leads to formation
of vortex ring. In the experiments we visualize this vortex by adding the dye in the bottom of the
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Figure 4.15: The snapshots of bubble shape are shown for the two representative cases, the numerical bub-
ble shapes shown with red curves are overlaid at same times and scaled to same length as in
experiments. (a) Case where α > π/2, each snapshots are taken every 0.1ms (b) Case where
α < π/2, each snapshots are taken every 0.125ms.

tank (figure 4.16b) during the collapse of a flat bubble. This vortex ring can travel to long distance
and induce unusual long range effects like free surface waves and jetting (see figure 4.16c).

The dynamics of bubbles with α < π/2 (figure 4.15b) can be obtained using a classical experi-
ment where a laser is focused directly in to the liquid very close to the wall. The bubble shape from
snapshot 2 in figure 4.15b is approximated with a spherical cap that gives Rc = 7.63 × 10−3m
and α = 0.389π. The interface contours obtained numerically are shown with the red curves
and are scaled to size of the bubble size in first snapshot. In this case, the interface acceleration
is minimum at the contact line and maximum at the tip of the spherical cap leading to a conven-
tional high-speed liquid jet directed towards the wall (see figure 4.15b). This jet developed towards
the wall impinges in to the solid surface causes cavitation damage. Similar dynamics have been de-
scribed in several of previous studies by Naudè & Ellis and recently by Gonzalez et. al. [57, 91].

If the vortex dipole shown in figure 4.16 reaches a free surface, a jet is observed at the free surface.
The appearance of this jet is significantly delayed with respect to the instant of the bubble collapse.
Thus quite remarkably for bubbles with α > π/2, the singularity in the potential flow solutions
at very short time t ≪ tc leads to an alteration in jet direction at times comparable to bubble
collapse time t ∼ tc which eventually leads to the formation of this vortex ring that can induce
effects at time scales much larger the the collapse time t ≫ tc. Therefore the shape of bubble just
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Figure 4.16: (a) Bubble interface in black curve and the vorticity field in the col-
ormap as obtained from DNS is shown at (consecutively from left to right)
tUc

Rc
= 0, 0.19, 0.3, 0.81, 1.00, 1.45, 1.95, 4.90. The results are plotted for α = 2π/3 and

Re = ∞ (b) The visualization of liquid flow field obtained by adding dye at the bottom of
tank resulting from collapse of bubble is shown at every 2.5ms. (c) Interaction of vortex ring
with the free surface as observed from the experiments.

before the beginning of collapse phase turns out to be a very critical parameter that governs the
overall bubble dynamics and its interaction with surrounding media.

4.3.3 Finite Reynolds number effects

Popinet & Zaleski [87] showed that for the small bubbles collapsing in the vicinity of a rigid wall,
the jets can be suppressed due to the viscous effects. In this section, we use the DNS to quantita-
tively predict the range of size for which the viscous effect becomes important and the secondary
jet opposite to the wall is suppressed. We take an ideal case of an air bubble with pb,0 = 0.1 atm
and constant contact angle equal to 120 degrees collapsing in water at an ambient far field pres-
sure. In this situation, the characteristic velocity of the collapse process stays constant and equal
to 10 m/s and the initial radius of curvature is left as the unique parameter controlling the values
of the Reynolds and Weber number.

In figure 4.17a we show the maximum non-dimensional velocity reached during the collapse
as a function of the Reynolds number. For Reynolds numbers above a given critical value Re >
Rec = 100 the influence of Reynolds on the peak velocities is only marginal. However, when
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Figure 4.17: The DNS results for p∞/pg,0 = 10, varying Re, varying We and varying contact angle. (a)
Peak of the non-dimensional velocity as a function of Reynolds number for an air bubble at
p0 = 0.1 atm collapsing in water at atmospheric pressure. (b) Interface contours as a func-
tion of the Reynolds number at the instant of minimum radius. (c) The critical Reynolds for
appearance of jet opposite to the wall is shown as a function of contact angle, (red squares)
are the points where the jet appear opposite to the wall and (green circles) corresponds to the
points where the jet parallel to wall does not appear.

the Reynolds is below this critical value, the jet velocity drops dramatically further decaying with
decreasing Re . This sudden change in the peak velocities is controlled by the appearance of jetting,
which is not visible in numerical simulations for Re ≤ 100 (see figure 4.17b). For a low pressure
air bubble collapsing in water at atmospheric pressure these results reveal that the reversed re-
entrant jet disappears for bubbles larger than Rc > 10µm. In a similar study we show the effect
of α on Rec for infinite We, we mark the cases for which the jet appears with red squares and the
ones for which it does not appear with green circles in figure 4.17c. Independent of the α and We
the numerical simulations predict that the Rec = 100 for α < 5π/6, and for very flat bubbles
α ≥ 5π/6 this no longer holds and the viscous effects become important even at slightly larger
values of Reynolds number as bubble height decreases significantly.
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5 Multibubble cavitation

In this chapter, we use three dimensional numerical simulations to revisit the problem of multi-
bubble cavitation discussed experimentally by Bremond et. al. (Phys. Fluids 17, 091111 (2005)
Phys. Rev. Lett. 96, 224501 (2006)). In particular, we focus on understanding the asymmetry
observed during the expansion and collapse of the bubbles. Numerical simulations reveal that the
asymmetry during the expansion can be attributed to Bjerknes forces which result from the fi-
nite characteristic length of the pulse imposed by the finite effective speed of sound. These effects
are amplified during the collapse due to Rayleigh–Taylor instabilities. We compare the numerical
and experimental results of the asymmetry to clarify the role of the effective speed of sound on
the process. Preliminary results show that the effective speed of sound in experimental conditions
was smaller than the speed of sound in the pure liquids. The values of effective speed of sound
estimated are consistent with the classical theory of wave propagation in the bubbly liquids, where
small amount of the gas drastically reduces the effective speed of sound in the medium. To sup-
port this theory, we also show several tiny bubbles that stay in liquid bulk from the fragmentation
of large bubbles during the subsequent experiments. This asymmetry is also shown to change the
direction of the liquid jet generated during the last stages of collapse.

Figure 5.1 shows the experimental snapshots taken from the reference [55, 176], where the pits
of 4 micron are created on silicon plate which is submerged in a large water tank. The pressure is
dropped by a pulse generated from piezo-transducer similar to signal shown in figure 1.2b. The
decrease in pressure causes the nuclei to become unstable and bubbles of the order of 100 micron
are formed from the pit. Here, we show the top view of three cases: Two pits drilled at a distance
of 200 micron shown in figure 5.1a left, two pits separated by a distance of 400 micron is shown
in the figure 5.1b, thirty seven pits drilled in an hexagonal arrangement of pitch 200 micron shown
in the figure 5.1b. The asymmetry in the pressure field can be caused by the pressure pulse itself or
by the nearby bubbles which can result into asymmetric bubble shapes. In order to understand
the source of asymmetry in the experiments, we perform three dimensional simulations under
conditions similar to the experiments. Instead of the pits, we initialize a hemispherical cap shaped
nuclei with the radius Rc,0 of 20 micron. The three dimensional simulations are costly and cur-
rent computational resources do not permit us to resolve scales smaller the the 5 micron, therefore
we are limited to use 20 micron nuclei in order to well resolve the initial nuclei with a minimum
8 point per diameter.

In the experiments, we speculate that the asymmetry for bubbles can be caused by following
mechanisms: (a) Bjerknes forces and (b) Rayleigh–Taylor instabilities acting during the collapse
stage only. In case of a single bubble exposed to the pressure waves, it is well known that the wave
of finite length induces a force that is responsible for the translation of the bubbles. This force is
known as primary Bjerknes (see reference [177, 178, 179, 180, 181]) force given as
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5 Multibubble cavitation

Figure 5.1: The top view of multiple cavitation bubbles nucleating from pits (4µm diameter) and col-
lapsing in contact with the rigid wall. (a) A pair of bubbles nucleating from two pits sepa-
rated by a distance of 200µm and 400µm is shown in left and right panel respectively. The
snapshots from top to bottom rows in both columns belong subsequently to time, t(µs) ∈
{5, 8, 13, 17, 22, 23, 24}. (b) A cluster of thirty seven bubbles nucleating from the pits drilled
in a hexagonal arrangement having a pitch distance of 200µm. The snapshots are numbered
from 1 − 6 which correspond to time, t(µs) ∈ {4, 9, 17, 31, 38, 44}. The figure is adopted
from experiments of Bremond et. al. [55, 176].
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Fb = −⟨V (t)∇p(x, t)⟩t, (5.1)

where V (t) is the bubble volume at instant t, ∇p(x, t) is the pressure gradient at location x
and instant t and ⟨.⟩t is the temporal average. If the bubble is attached to a wall, the friction causes
the resistance to the movement of contact line and the force induces asymmetry at the bubble in-
terface. In the case of multiple bubbles, the pressure gradients can also result from nearby bubbles
resulting into the secondary Bjerknes forces. It is also well known that the small non-spherical
disturbances in the bubble shape can grow unstably (only) during the acceleration phase of the
collapsing bubbles, famously known as Rayleigh–Taylor (RT) instabilities [171, 182]. Therefore
during the expansion, the asymmetry is attributed only to the Bjerknes forces, and these distur-
bances are amplified during the collapse phase due to RT instabilities.

5.1 Setup

The simplified 2D schematic of the problem is shown in figure 5.2a. The initial nuclei (shown
with circles) of radius Rc,0 are separated by a distance d and exposed to a 1D pressure pulse of
amplitude ∆p = 15MPa and a characteristic length (Lp)(defined from the pulse duration (Tp)
given from hydrophone measurements). The pressure pulse propagates with an effective speed of
sound ce towards the nuclei in the direction normal to the line joining these nuclei as shown in
with red arrow. Note that problem is symmetric about the x = 0. The non-dimensional param-
eters relevant for the problem are same as shown in chapter 2 where the characteristic velocity is
defined with the amplitude of pressure pulse as Uc =

√
∆p/ρl. In addition, the separation dis-

tance (d) between the bubbles and the characteristic length of the pressure pulse yields two more
non-dimensional numbers i.e. d/Rc,0 and Lp/Rc,0. The non-dimensional numbers that we ex-
plore in this chapter are Re, We, Lp/Rc,0, d/Rc,0. As a physical justification to change in Lp,
we hypothesize the existence of small gas bubbles fragmented from bigger bubbles in subsequent
cavitation experiments that might be responsible for changing ce in the liquid media. Both ce
andLp are linearly related to each other such thatLp = Tpce for constant duration of pulse (Tp)
measured in the experiments, therefore we interchangeably use both Lp and ce to describe the
effect of pressure pulse. Also note thatLp/Rc,0 is not an independent non-dimensional number,
it is an alternative to Mach number defined in chapter 2.

The computational setup used for the problem is shown in figure 5.2b. We use a cubic domain
of size varying from 26mm in the case of bubble pairs to 130mm in the case of bubbles cluster.
The color map shows the projection of the initial pressure field that is taken from the hydrophone
measurements of the Bremond et. al. [55]. The pressure perturbation p′ is transformed into spa-
tial domain as p(y) = p0+ p′(y0+ cet). Other primitive variables are initialized using the linear
plane wave solution for small perturbation (see reference [142]). The bottom boundary is consid-
ered as wall where we initialize the hemispherical nuclei of size in the range Rc,0 ∈ (20, 50)µm
and α = 90◦. We use the Navier-slip model (see section 2.3) for the contact line where we have
the numerical slip length (λnum = 5µm). For other boundaries, we have used standard reflecting
boundary conditions. We make huge domains in order to make sure that the reflected pressure
pulse never affects the simulation till the end of the simulations. A zoomed view of the bottom
boundary is also shown for a particular case of bubble pair. In the zoomed view, we show the
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5 Multibubble cavitation

initial nuclei and the projection of the grid on the bottom boundary. The grid is progressively
refined from to 40µm to the smallest grid size of 5µm near the nuclei. Note that owing to the
mesh refinement capabilities of Basilisk, it is possible to resolve the large scale separation between
the characteristic length of the pressure pulse and the bubble (up to 3 orders of magnitude). In
this framework, we study the dynamics of bubbles as a function of effective speed of sound in
liquid ce, size of initial nuclei Rc,0, numerical slip length λnum, d and compare our numeri-
cal results with the the experimental results. The simulations are run on Swiss super computer
Piz Daint where a typical 3D simulation takes around 15h on 7200 processors with hyperthread-
ing and includes around 1.3 Million grid points.

Figure 5.2: (a) The simplified 2D schematic of the problem where the initial nuclei (shown with circles)
of radius Rc,0 are separated by a distance d and exposed to a 1D pressure pulse of amplitude
∆p = 15MPa and a characteristic length (Lp) (defined from the pulse duration (Tp) given
from hydrophone measurements). The direction of wave propagation is shown with red arrow.
(b) The 3D computational setup used in current study where the projected color-map corre-
sponds to the initial pressure field taken from the experiments (reference [176]). A zoomed-in
view of initial nuclei and the projection of the numerical grid on the bottom boundary of the
domain are shown in the inset figure.

5.2 Bubble pair

In this section, we focus on the problem of a pair of bubbles separated by some distance and we
investigate the effect of d,ce and Rc,0.
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5.2 Bubble pair

5.2.1 Description of Asymmetric behavior

We start by discussing the numerical results for bubble evolution of bubble pairs in four different
cases where d ∈ {200, 400}µm and ce ∈ {500, 1500}m/s. The speed of sound in water at
normal temperature and pressure conditions is around 1500m/s, but here we also show ce =
500m/s for the reasons that become clear later. We fix the size of nuclei to 20µm and slip length
to λnum = 5µm.

In figure 5.3a and b we show the snapshots of the top view of the bubbles at different times for
d = 200µm and 400µm respectively. The left row in each panel corresponds to ce = 1500m/s
while right row is obtained for ce = 500m/s. The isobars are also shown with color contours.
The pressure pulse travels in y direction and causes first a drop in pressure resulting into a rapid
expansion of bubbles. At later times, the bubbles reach their maximum radius and then collapse
under the action of ambient pressure. Qualitatively, the numerical results for ce = 500m/s is bet-
ter representation of the bubble shapes observed in experiments (figure 5.1) for both d equal to
200 and 400µm. Especially, the asymmetric behavior of the bubble observed during the collapse
stage which is insignificant in the case of ce = 1500m/s. In order to quantify the asymmetric
response of bubble, we define the asymmetry parameter (Ay) as the shift in the centroid of bub-
bles in the direction of the motion of pressure pulse, such that Ay = yc(t) − y0 where yc(t) is
the bubble centroid at an instant t (see figure 5.3c). In figure 5.3d, we show the evolution of Ay

obtained numerically (lines) for all the cases. At beginning of expansion phase, Ay becomes neg-
ative indicating that the bubble centroid shifts downwards resulting from expansion being biased
towards the lower half (y < y0). Then, Ay changes sign indicating that the collapse followed by
expansion of bubbles is also biased in the lower half (y < y0). This causes cone like asymmetric
bubble shape at t = 22 and 23µs for ce = 500m/s, while this effect remains insignificant in the
case of ce = 1500m/s. Clearly the experimental values of Ay (dots in figure 5.4d) in both cases
(d = 200 and d = 400µm) are well represented by ce = 500m/s.

5.2.2 Effect of effective speed of sound

In order to discuss the effect of effective speed of sound in detail, we focus on a particular case
of bubble nucleating from pair of hemispherical nuclei of size 20µm separated by a distance of
200µm, λnum = 4.4µm and varying ce in range (208, 3333)m/s. The temporal evolution of
the asymmetry parameter is shown in figure 5.4 for different values of ce. The temporal behavior
of Ay is very similar in all the cases, as described before. The experimental measurement of Ay

(black cross) is also overlaid, and the inset figure shows a comparison between the numerical (red
points) and the experimental bubble shapes at t = 22µs and 23µs. The comparison of numerical
and experimental results for Ay suggests that ce ≈ 500m/s best represent the asymmetry in the
experiments which explains the choice of an effective speed of sound ce ≈ 500m/s in figure 5.3.

As mentioned previously, the asymmetry is the result of Bjerknes forces during the expansion
phase. The symmetry of the problem in y−z plane implies that the secondary Bjerknes forces act
only in x direction hence it does not affect Ay . Therefore, the primary Bjerknes forces remains
to the main mechanism controlling Ay by the elimination process. The component of primary
Bjerknes force in y direction at an instant is
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5 Multibubble cavitation

Figure 5.3: In this figure, we compare the numerical results for two different values of effective speed of
sound i.e. ce = 1500m/s and ce = 500m/s. The bubble pair is evolving from hemi-
spherical nuclei of size 20µm and λnum = 5µm. In panel (a) and (b), the top view of
the bubble shape and pressure field are displayed subsequently from top to bottom at time,
t(µs) ∈ {0, 3.5, 8.7, 13, 22, 23, 24}. (a) When the separation distance between the nuclei
equals to 200µm with ce equal to 1500m/s on left and ce equal to 500m/s on right. (b) When
the separation distance between the nuclei equal to400µm with ce equal to1500m/s on left and
ce equal to 500m/s on right. (c)A particular snapshot showing the definition of the asymmetry
parameter Ay defined as shift of the bubble centroid in y direction. (d) The time-evolution of
Ay obtained from the numerical simulations for all the cases discussed in figure 5.3 a and b is
presented along with its comparison with experimental data, the error bars are equal to the one
pixel size (1.53µm) in the experiment snapshots.

Fb,y = −Vb
∂p

∂y
≈ −2Vb

∆p

Lp
, (5.2)
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5.2 Bubble pair

Figure 5.4: Effect of effective speed of sound on the asymmetry for a particular case where bubbles are evolv-
ing from a pair of hemispherical nuclei of size20µm each, separated by a distance of200µm and
λnum = 5µm. (a) The time evolution of Ay is shown as a function of the effective speed of
sound in liquid (colormap), alongside the experimentally obtained values (black crosses). The
experimental bubble shapes overlaid with their numerical counterpart (red dots) at t = 22µs
and 23µs are illustrated in the inset figure. (b) The evolution of non-dimensional Ay obtained
using the scaling predicted from equation 5.3 for different ce (color scale) (c) The max value
of the asymmetry parameter (max(Ay)) is plotted as function of the effective speed of sound
along with the experimental point (black cross) where its ce is obtained by matching max(Ay)
with the numerical data. A fit of overall data (dashed line) is also plotted to show max(Ay) de-
cays like c−1

e as predicted by equation 5.3. (d) The bubble shapes at the instant of max(Ay) in
figure are shown for different effective speed of sound in the liquid. (e) The semi-transparent
bubble shapes are shown to visualize the jet generated during the last stages of collapse whose
direction is highlighted with red arrows.
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5 Multibubble cavitation

where we approximate pressure induced by the pulse varies linearly in y direction. A decrease
inLp (∝ ce) causes stronger gradients of pressure thus an increase of the Bjerknes force and asym-
metry as seen in figure 5.4. Assuming that the bubble deformation scales with the Bjerknes force
as Fb,y ∼ ρb,0Vb,0(yc − y0)/T

2
p , we get a scaling for asymmetry parameter as

Ay ∼ −2
Tp

ρb,0

∆p

ce
. (5.3)

In figure 5.4b, we show the evolution of non-dimensional Ay obtained using the scaling given
by equation 5.3. Since, all curves for different ce overlap, the asymmetry scales well with the Bjerk-
nes forces specially during the expansion phase (tUc/Rc,0 < 6.5). Some differences are detectable
during the collapse phase (tUc/Rc,0 > 6.5) which can be an outcome of RT instability which is
known to grow during when the interface accelerates during the collapse phase. As expected from
equation 5.3, max(Ay) also scales well with 1/ce (see figure 5.4c) with some differences due to
RT instabilities. The bubble shape at the instant of maximal asymmetry in these cases (different
ce) also shown in figure 5.4d. The collapse of the pair of bubbles during the last stages is shown to
form a liquid jet parallel to the wall in figure 5.4e (for similar reasons described in chapter 4). The
direction of the jet changes as an outcome of the bubble asymmetry which is highlighted with the
arrows. At sufficiently small values of theAy , the jet is directed along the line joining the centroids
of two bubbles. However, for large values of Ay , this jet shifts in the direction of the propagation
of pressure pulse.

Figure 5.5: (a) The decrease in the effective speed of sound for a mixture of liquid and dispersed gas is
shown as function of the volume fraction of the gas phase (αg given by the equation 5.4), the
point obtained by matching Ay from experiments and numerical simulations is also drawn
with black cross. (b) The variation of max(Ay) with the volume fraction of the dispersed gas
phase calculated from the effective speed of sound using equation 5.4. (c) The tiny fragmented
bubbles seen during the cavitation experiments are highlighted with red circles along with the
big bubbles nucleating from the pits for the case of two pits and five pits on left and right re-
spectively.
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5.2 Bubble pair

Why do we need to set low values of ce to better reproduce the asymmetry effects from the
experiments? It is well known that the presence of a small concentration of gas can dramatically
decrease the speed of sound (see references [171, 183]). This can be predicted from the linear
theory of wave propagation for homogeneous and mono-dispersed gas concentrations (αg) as

1

c2e
= [αgcg + (1− αg)cl]

[
αg

ρgc2g
+

1− αg

ρlc
2
l

]
(5.4)

In figure 5.5a, we plot the equation 5.4 in the log-log scale where the value ce = 500m/s esti-
mates anαg = 5×10−4. Such a small gas concentration can result from the fragmentation of the
bubbles during the series of experiments carried out at very small intervals of time (∼ 1µs). Note
that these experiments were repeated rapidly to capture the images of bubbles from consecutive
experiments by means if stroboscopy technique (owing to repeatability). Extremely small bubbles
of the order of 1µm are observed to remain in the liquid media from the previous experiments (see
figure 5.5c). Equation 5.4 is applicable when the pulse has small amplitude and the characteris-
tic frequency of the pulse is much smaller the bubble resonance frequency (ωp/ωb << 1). In
the experiments, the size of small bubbles is few microns and the characteristic time scale of the
pressure pulse (or the duration of low pressure) is approximately 5µs, and therefore the ratio of
frequencies is smallωp/ωb ≈ 0.037. It is also important to remark that the theory assumes an ho-
mogeneous mixture, while in experiments the gas concentration can vary locally. Both non-linear
effects and gradient concentrations will certainly introduce some uncertainties in the use of the
very simplified model used here.

Figure 5.5b quantifies the influence of the gas concentration on the asymmetry of the bubble
response. As we can see, most likely the experiments were done in a regime where the results were
significantly influenced by presence of small amounts of the gas phase in the bulk phase.

5.2.3 Effect of the size of nuclei

Figure 5.6: The numerical results for the particular case where the effective speed of sound is assumed to be
333m/s, λnum = 5µm, d = 200µm and varying Rc,0. (a) The time evolution of parameter
Ay is shown for different size of initial nuclei depicted with the colormap. A zoomed-in view
around the max(Ay) is also shown in the inset figure. (b)The value of max(Ay) corresponding
to the maximum in figure 5.6a is plotted as a function of the size of the nuclei.
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Bremond et. al. [55] showed that the bubble evolution is represented accurately by the Rayleigh–
Plesset model and they calculated the equivalent radius of initial hemispherical nuclei (input for
RP model) as R0 = (3HD2/8)1/3, where D is the pit diameter and H is the pit height. This
givesR0 = Rc,0 ≈ 5µm, whereas in the current study we are limited by computational resources
to resolve length scale smaller than 20µm. In order to understand the effect of the initial nuclei
size, we do a parametric study for the case where pair of nuclei is separated by 200µm by fixing
ce = 333m/s, λnum = 5µm, and vary Rc,0 in the range (20, 50)µm. The evolution of Ay and
the max(Ay) are shown in figure 5.6 a and b respectively. In the range of Rc,0 considered the Ay

varies little with the size of initial nuclei and its effect is secondary in comparison to the effect of
ce. Moreover, max(Ay) is increasing as the nuclei size decreases and further saturates for smaller
Rc,0. The decrease in Ay upon increasing Rc,0 is probably due to the increased shielding effect
caused by the neighboring bubble which is increasingly important for fixed inter-bubble distance
(d = 200µm). Note that if these results for Ay were to be extrapolated to 5µm nuclei, the previ-
ous estimates of ce would have been under-predicted, hence the Ay in the experiments could be
explained from even smaller gas concentration. Another important outcome of changing the nu-
clei size is that the cavitation process lasts slightly longer for bigger nuclei in comparison to smaller
ones. This is in agreement with the results of Bremond et. al. [55] (see figure 3 in their article) for
single bubble and varying nuclei size. This effect is caused by the liquid inertia which increases in
case of bigger nuclei.

5.3 Multiple bubbles setup

Now, we solve more challenging problems with multiple bubbles. Firstly, we solve for the problem
of five bubbles in a line and secondly, a cluster of thirty seven bubbles in a hexagonal arrangement
that are nucleating from the hemispherical nuclei. We repeat the the same procedure of varying
the effective speed of sound to investigate the influence of ce on the asymmetry by fixing Rc,0 =
20µm, λnum = 5µm.

5.3.1 Five bubbles in a line

In the case of five bubble in a line, the best correspondences among the numerical and experimen-
tal results is observed for ce = 667m/s. In figure 5.7a, we show the top view of the experimental
and the numerical bubbles left and right panel respectively. A very similar dynamics is observed
for both numerical and the experimental snapshots except for the t = 4µs, where the numerical
bubbles are comparatively bigger. This effect is due to the difference in the size of initial bubble
nuclei for the experiments and the numerical simulations. Similar to the bubble pair, the bubbles
expand and collapse with a bias towards the y < y0, and the jet generated during the last stages of
collapse is also directed at an angle to the line joining the centroids of initial nuclei. We again use
Ay i.e. shift of centroid of gas mass to quantify asymmetry (figure 5.7b) that matches well with
the experiments.
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5.3 Multiple bubbles setup

Figure 5.7: (a)The top view of the five bubbles in straight line configuration, as discussed in reference [55].
The numerical results are shown in left panel, where the bubble expands from 20µm hemi-
spherical nuclei, λnum = 5µm and the effective speed of sound is assumed to be 667m/s. The
experimental bubble shapes are also shown in the right panel. In both columns, each row from
from top to bottom correspond to time t(µs) ∈ {4, 9, 15, 21, 24, 28}. (b) The evolution of
asymmetry parameter obtained from the numerical simulations (solid line) and the experiments
(cross), the error bar is equal to one pixel size (i.e. 1.53µm) in the experiment snapshots.

5.3.2 Cluster of bubbles

Finally, we simulate the most challenging case of a cluster of thirty seven bubbles in a hexago-
nal arrangement where we repeat exactly same procedure of varying ce for 20µm hemispherical
nuclei and λnum = 5µm in order to reproduce experimental measurements. Remarkably, the
largest admissible value, 1480m/s, is found to better reproduce the experimental results. The cor-
responding numerical results are shown in figure 5.8. Similar to the previous case, the bubbles
in the lower half domain(y < y0) nucleate earlier reaching larger negative values of Ay com-
pared to all the previous cases. This effect is clearly seen in both the experimental and numerical
results (Figure 5.1b and 5.8). Consistent with the previous observations, the numerical results pre-
dict the change in the sign of Ay which shift from negative to positive during the collapse phase.
However, the numerical simulation results during the collapse phase differ significantly from ex-
periments, where the collapse process is more chaotic (see figure 5.1b) and the the parameter Ay

does not match as satisfactory as in previous cases (see figure 5.8b). The disparity in the numerical
and experimental results during the collapse phase could be because of following reasons: In the
experiments, the transducer creates a spherical pressure pulse which can lead to more complex in-
teraction with the cluster as compared to the 1D wave assumed in the numerical study. Also the
cavitation process for the cluster of bubbles lasts much longer and there might be some reflected
waves from the walls of container that can promote the asymmetries in other directions causing
chaotic bubble collapse.
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5 Multibubble cavitation

Figure 5.8: (a) Top view of the cluster of 37 bubbles in hexagonal arrangement expanding from 20µm
hemispherical nuclei,λnum = 5µm. Assumed effective speed of sound is 1480m/s, iso-
bars are shown with colormap and the panels are numbered 1 − 6 at time t(µs) ∈
{3, 20, 28, 42, 52, 55}. (b) The evolution of asymmetry parameter obtained from the numer-
ical simulations (solid line) and the experiments (cross) are also shown.

Finally, it is also important to remark that the effective speed of sound required to reproduce the
experiments with a small number of bubbles (500m/s for bubble pairs, 667m/s for five bubbles)
was significantly smaller than in this case (1480m/s). One possible explanation for this behavior
might be that while the large scale interactions between the bubble cluster and the pressure pulse
are modified by the effective speed of sound in medium, the direct bubble-bubble interactions
between bubbles take place almost instantaneously and we introduce errors when modifying the
effective speed of sound of the medium. Thus, when the number of bubbles present in the system
is large, direct bubble interactions become important, and the best fitted value of ce tends to the
value of a pure liquid at expenses of representing less accurately the interaction between the overall
bubble cluster and the external pulse. When the number of bubbles is reduced, the interaction
between the bubble cluster and the external wave become increasingly important to determine the
asymmetry which results in a decrease in the effective speed of sound of the medium. Nevertheless,
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5.3 Multiple bubbles setup

this case is extremely delicate and difficult to control, hence this discrepancies during the collapse
phase are not surprising rather, the agreements during the expansion phase are remarkable.

Appendix A: Effect of numerical slip length
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Figure 5.9: The time evolution of parameterAy is shown for varying values of numerical slip length for the
bubble pair case.

We also study the effect on slip-length on the asymmetry (see figure 5.9) for a particular case
where the pair of initial nuclei is separated by 200µm, ce = 333m/s and Rc,0 = 20µm and
varyingλnum in the range (1.1, 17.5)µm. As expected the slip length and the contact line motion
does not influence the bubble shapes, similar to the results of chapter 3 and chapter 4. This is an
indirect verification that the ideas discussed in this chapter are not sensitive to the modeling of
contact line.
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6 Conclusions and future
perspectives

In this work, we focused on understanding the dynamics of cavitation bubbles attached to a rigid
wall. The study is structured into in three problems attributed to different aspects of the cavita-
tion bubbles: Single bubble heterogeneous nucleation, single bubble collapse and multi-bubble
nucleation and collapse dynamics. Here, we discuss the conclusions and future perspectives of
each one of these, the major takeaway messages from each chapter are highlighted with color boxes
for a quick reference.

In chapter 3, we investigate the stability of spherical cap shaped gas nuclei attached to a rigid
wall and subjected to a sudden pressure drop. Using the quasi-static theory and two limiting be-
haviors of the contact line i.e. freely moving contact line and the pinned contact line, we show
that the response of bubble can result in one of the three situations (a) Bubble finds a new equi-
librium size and oscillate near it (b) Bubble can become unstable and grows explosively (c) Bubble
response is stable or unstable depending upon the mobility of contact line. The bubble response
and the critical threshold for unstable expansion depends upon the size of nuclei and the ampli-
tude of the pressure forcing. The direct numerical simulations of spherical bubbles subjected to
a Gaussian pressure pulse reveal that the finite duration of the pressure pulse imposes an upper
bound on bubble size available for explosive growth. Only specific bubble sizes in between these
two criterion are active for nucleation. During the unstable bubble growth, the bubble interface
and flow near the wall depends upon the complex interplay between the viscous and capillary
stresses. We use the Navier-slip model to mimic the moving contact line and to resolve these ef-
fects. Upon fixing the Ohnesorge number at values much smaller than unity, we show that the
transition to microlayer formation regimes is governed only by capillary numbers (similar to clas-
sical Landau–Levich flim experiments). When the capillary number is of the order unity or larger,
a liquid microlayer is shown to grow at an asymptotic rate. This regime corresponds to large val-
ues of both Reynolds and Weber numbers. Interestingly, the asymptotic growth rate is shown
to vary with the cube of equilibrium contact angle. Increasing the Ohnesorge number results in
finite Reynolds and finite Weber number effects that suppress the microlayer formation. It form
only when the capillary number is much larger then the critical capillary number for the explosive
growth corresponding to the Ohnesorge number.

There are several interesting future perspectives of the study on heterogeneous nucleation:
• The finite pulse duration effects for the bubbles attached to wall could provide meaningful

insights of the resonance frequencies of bubbles attached to wall, how the bubble shape
influences this parameter and its importance on the process of bubble nucleation.

• Finite values of the Reynolds and Weber number significantly alter the microlayer forma-
tion dynamics. Although this work already presents some preliminary investigations of
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these effects, further studies should be carried out to understand the relative importance
of viscosity and surface tension on the process of microlayer formation. Eventually, the
experiments reported by Hupfled et. al. [58] may be used for comparison.

• The motion of contact line is another interesting aspect which is not well understood.
There are several sophisticated models proposed in the literature (eg. generalized Navier
boundary condition, super slip) which can yield C2 continuous velocity field. Changing
the contact line modeling can provide interesting cues about the microlayer formation and
can further clarify if the asymptotic growth observed in current study is a special case of
Navier-slip model or it is a more general phenomenon.

Heterogeneous bubble nucleation

• The threshold for heterogeneous nucleation is influenced by the motion of contact
line for small bubbles. In general, pinning effects increase the stability of bubbles
to negative pressures, although this remains to be a secondary effect in comparison
to the classical theory of heterogeneous nucleation.

• When a large negative pressure is imposed for sufficiently large time, numerical sim-
ulations with the Navier slip model for contact line indicates that a microlayer is
formed and grows at an asymptotic velocity for capillary numbers of order unity
and Ohnesorge numbers much smaller than unity.

In chapter 4, we show that the impulsive potential flow theory can be used to discuss the in-
fluence of the bubble shape on the dynamic response of collapsing bubbles for sufficiently large
Reynolds and Weber numbers. This theory, can be used to discuss the influence of the initial
bubble shape on the process of collapse in a general setup. As an example, we present the results
obtained for the collapse of spherical cap bubbles. We show that the effective contact angle at the
instant of maximum expansion controls the interface acceleration at the beginning of the collapse
phase and the jetting direction observed in direct numerical simulations and experiments. When
α > 90 degrees the potential flow solution at short times shows the appearance of a singularity
which causes extremely high accelerations close to the contact line and a change in vorticity di-
rection with respect to the α ≤ 90 degrees case. In the former case, an unconventional jetting
mechanism is observed which is shown to be responsible for the appearance of a vortex dipole
traveling in the direction opposite to the wall. We also use direct numerical simulations and the
energy conservation equation to characterize the strength of the jets. Particularly, we calculate the
residual liquid kinetic energy that remains inside the liquid at the instant of minimum volume
which penalizes the maximum gas pressures achieved during the collapse. This penalization ef-
fect is directly related to non-spherical effects and becomes increasingly important with increase
in pressure driving the collapse. Therefore, the nature of interaction between the bubble and the
surrounding medium is strongly influenced by the bubble shape at the instant before collapse, ap-
pearing as a critical parameter if one wants to control or model the physical phenomena triggered
by the collapse of bubbles attached to a wall.

Some future perspectives of bubble collapse study include:
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Figure 6.1: Expansion and collapse of bubble in contact with rigid wall. The snapshots 1-8 are numbered
in increasing time.

• We have not completely understood the formation of the vortex-dipole from the collapse
of bubble withα > 90 degrees. This is relevant to understand the conditions of formation
of this dipole and characterize its strength.

• The cavitation damage is expected to be linked with the strength of the liquid jets deter-
mined by the bubble shapes.

• It could be interesting to establish correlations among the bubble shape, the residual liquid
kinetic energy and the peak pressures using the energy conservation equation, and eventu-
ally link it with the cavitation damage.

• It is well known that the moving contact line exhibits a force singularity because standard
no-slip boundary condition predicts logarithmically diverging shear stresses [135]. Intu-
itively, there might be a relation between the singularity of potential flow and the force
singularity which may inspire new ideas.

• The expansion process can result in bubble shapes that differ from a spherical cap. For
instance, in chapter 3 we have shown that a liquid microlayer is formed (see chapter 3).
Thus, it could be interesting to understand the effect of microlayer drainage on the jetting
and bubble collapse dynamics. One such case is shown in figure 6.1.

Bubble collapse

• The bubble shape at the instant of maximum volume is a critical parameter that
governs the collapse dynamics and direction of liquid jet.

• The impulse potential flow theory predicts infinite/singular contact line accelera-
tion at short times after the beginning of the collapse for spherical cap bubbles with
contact angle larger than 90 degrees. The first term of the series proposed is shown
to provide an accurate representation of the full interface evolution.

• The kinetic energy accumulated inside the liquid and liquid compressibility effects
penalize the maximum gas pressures during the collapse, being the former more
important for low Mach number collapses of non-spherical bubbles.
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In chapter 5, we revisit the problem of multiple bubble cavitation using the numerical simula-
tions. In particular, we explain the asymmetry observed during the expansion and collapse of bub-
bles is related to primary Bjerknes forces induced by the finite length of pressure pulse (controlled
by finite speed of sound) effects. The experimental results for the asymmetry are reproduced with
numerical simulations at relatively lower values of speed of sounds compared to speed of sound in
pure liquid. This can be attributed to the presence of tiny gas bubbles in the liquid bulk which are
known to drastically influence the speed of sound in the gas-liquid mixture. These tiny bubbles
are expected to be fragmented form the bigger bubbles in the subsequent cavitation experiments.

Some future perspectives of the multi-bubble cavitation studies are:

• The use of an effective medium theory has limitations. While the effective reduction of
the speed of sound seems to be sufficient to capture the interactions between the wave and
the bubble cluster for systems with a small number of bubbles, this model is probably not
very accurate to model the direct interactions between bubbles inside the cluster. Further
investigations to the applicability of simplified approaches to systems with clear distinct
zones of different concentration seem compulsory.

• It is not clear if the non-linear effects related to the wave propagation are present in the
experiments and how these can influence the asymmetry effects. It could be interesting to
study the effect of multiple bubbles on the wave propagation to understand the mecha-
nisms that result in lower effective speed of sound.

• One could also study the effect of the mass transfer and ratio of bubble frequency and the
characteristic frequency of the pulse on wave propagation. The mass transfer effects and
high frequency ratios are known to influence the the wave propagation speeds [184].

Multibubble cavitaiton

• The primary Bjerknes forces induced by finite speed of sound effects are responsible
for the asymmetry in bubble shapes during the expansion of bubbles attached to
wall.

• The asymmetry effects become more relevant when tiny fragments of bubbles re-
main inside the liquid bulk that can drastically influence speed of sound.
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