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1

Introduction to Matrix Theory

M
atrix theory has been under study for a long time, it has been a fundamental tool in

mathematical disciplines presenting interesting and challenging problems. The most

common example of using matrices is solving simultaneous linear equations, wherein

solving n = 2 simultaneous linear equations is simple while n ≥ 3 is complicated and requires

the matrix method to be solved. We treat the numbers as 1 × 1 matrices, consequently we

always try to generalize definitions, properties and operations for matrices same as numbers. In

this book, we will focus on one class of matrices which is the set of all positive semi-definite

matrices, in this case these matrices will generalize the non-negative numbers.

The main topics of this thesis are determinantal inequalities, eigenvalue and singular value in-

equalities and the geometric mean of two positive definite matrices. These concepts arise in

many research areas and they play a decisive role in the diffusion tensor imaging field, proba-

bility and statistics, information theory, theoretical computer science, quantum mechanics and

other mathematical fields.

The thesis is divided to five chapters.

Chapter 1, consists of six sections, highlights basic definitions, notations and properties for ma-

trices that are essential for our work through the thesis.

Section 1.1 presents the most essential and well-known properties of Hermitian, unitary and

positive semi-definite matrices, it also present the famous matrix decomposition as spectral de-

composition and polar decomposition. Section 1.2 deals with matrix norms, unitarily invariant

norms in particular. Section 1.3 shows the importance of Schur complement of a 2 × 2 complex

block matrix. Section 1.4 deals with two types of matrix functions. Section 1.5 focuses on the

geometric mean of two positive definite matrices, and Section 1.6 introduces the concepts of

majorization relation and the log-majorization relation.

Chapter 2, consists of five sections, deals with determinantal inequalities related to a determi-

nantal inequality arisen in the study of interpolation methods for image processing in diffusion

tensor imaging established by Audenaert. These determinantal inequalities are proved for any

two positive semi-definite matrices.

Section 2.1 presents determinantal inequalities and two conjectures posed by Lin regarding Au-
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1. Introduction to Matrix Theory

denaert’s inequality. Section 2.2 shows the preliminaries needed in our investigation. Section

2.3 presents generalizations of the determinantal inequalities established by Audenaert and Lin,

various related inequalities are shown. Section 2.4 concerns with the two conjectures, it gives

an affirmative answer to the first conjecture in a slightly more general setting namely in the

case when the two matrices are Hermitian. In addition, it presents the solution of the second

conjecture in two different approaches. To be more precise the first approach gives a partial

answer and the second approach gives the answer in the affirmative. Furthermore, a certain

log-majoriation was investigated due to its important role in solving the conjectures and im-

plying several inequalities. Lastly, Section 2.5 settles new conjectures concerning determinantal

inequalities.

Chapter 3, consists of four sections, presents several applications for some obtained majorization

inequalities established in Chapter 2.

Section 3.1 focuses on a new positive definite quantity for two positive definite matrices that

has a connection with the geometric mean. Section 3.2 presents an upper bound for a Golden-

Thompson type inequality established by Hiai and Petz. Section 3.3 deals with some new results

related to the Rényi divergences as an application of the obtained majorization inequalities. Sec-

tion 3.4 presents some upper bounds for a unitarily invariant norm inequality conjectured by

Bhatia, Lim and Yamazaki which was subsequently proved by Dinh, Dumitru and Franco for

Schatten p-norms.

Chapter 4, consists of three sections, deals with majorization inequalities concerning the ge-

ometric mean based on a previous work done by Zou, Hiai, Lin, Lemos and Soares. These

majorization relations concerns eigenvalues and singular values of matrices.

Section 4.1 presents some new inequalities like generalizations of Zou’s and Hiai-Lin majorization

relations, as well as a reverse Lemos-Soares type inequality. Section 4.2 provides an example in

which it shows that one of the conjectures introduced by Lemos and Soares is not valid in its

current setting, it also presents a further generalization of Lemos-Soares majorization relation

precisely in all the cases where it has been proven valid. Lastly, Section 4.3 deals with several

inequalities related to another conjecture posed by Lemos and Soares.

Chapter 5, which consists of two sections, presents singular value inequalities related to a recent

result of Lin and a conjecture.

Section 5.1 introduces the concepts of completely positive maps, partial transpose of a block

matrix and Liebian functions, it also deals with several properties for 2 × 2 block matrices. Sec-

tion 5.2 presents a singular value inequality that gives in particular a solution to Lin’s conjecture

when one of the diagonal blocks commute with the off diagonal of a 2 × 2 positives semi-definite

block matrix.

As a general rule, the results throughout the thesis are all new. Whenever the result is not

new, it is presented with a reference.
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1. Introduction to Matrix Theory

1.1. Matrix Theory Fundamentals

The basic definitions, notations and results can be found in [61]. For every natural number

n we denote the set of n × n matrices with entries in the field C of complex numbers by Mn(C),

but we can simply write Mn, and its identity element is denoted by In also known as the identity

matrix. The vector space of all n- dimensional complex vectors (all vectors are column vectors)

denoted by Cn is a Hilbert space with the inner product

⟨x, y⟩ = y∗x =
n∑

k=1

xkyk

where x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T .

In this thesis we consider bold lower-case letters and upper case letters to denote vectors and

matrices, respectively. The transpose of a matrix A = [aij ]ni,j=1 ∈ Mn is denoted and defined by

AT = [aji]ni,j=1. The conjugate transpose of a matrix A = [aij ]ni,j=1 ∈ Mn sometimes called the

adjoint matrix is symbolized by A∗ and defined by A∗ = [aji]
n
i,j=1.

Definition 1.1. A matrix A = [aij ]ni,j=1 ∈ Mn is said to be:

(i) Diagonal matrix if aij = 0 when i ̸= j.

(ii) Invertible matrix if there exists an matrix B of order n × n such that AB = In. In

case A is invertible, we say that A has a unique inverse matrix A−1 ∈ Mn such that

A−1A = AA−1 = In.

(iii) Normal matrix if AA∗ = A∗A.

(iv) Unitary matrix if AA∗ = A∗A = In.

(v) Hermitian matrix if A = A∗.

(vi) Positive semi-definite matrix if ⟨Ax, x⟩ ≥ 0 for all x ∈ Cn.

(vii) Positive definite matrix if ⟨Ax, x⟩ > 0 for all x ∈ Cn\¶0♢.

Definition 1.2. Let A and B be two complex matrices of the same order. We say that A and

B commute if

AB = BA.

Definition 1.3. Let A ∈ Mn. A is said to be a singular matrix if A is not invertible.

The next definition shows a partial order well-known as the Löwner order in which it com-

pares Hermitian matrices of the same order.
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1. Introduction to Matrix Theory

Definition 1.4. (Löwner Order) Let A and B be two Hermitian matrices of same order n.

We say that A ≥ B if and only if A − B is a positive semi-definite matrix.

Remark 1.1. We can just say that A ≥ 0 if and only if A is a positive semi-definite matrix. If

A is a positive definite matrix, then we can write A > 0.

Definition 1.5. (Eigenvalues) A complex number λ is said to be an eigenvalue of a matrix

A corresponding to its non-zero eigenvector x if

Ax = λx.

The multiset of the eigenvalues of A is denoted by Sp(A) and known as the spectrum of A.

Remark 1.2. Note that any square matrix of order n×n has exactly n eigenvalues. In general,

we denote the eigenvalues of the matrix A as λj(A) for j = 1, 2, . . . , n.

Theorem 1.1. Let A ∈ Mn be a positive semi-definite matrix, then A has a unique square root

matrix B ∈ Mn such that A = B2. We denote the square root by A
1
2 .

Definition 1.6. (Matrix Modulus and Singular values) The modulus of a matrix A ∈ Mn

is the square root of the matrix A∗A denoted by

♣A♣ = (A∗A)
1
2 .

The eigenvalues of ♣A♣ are known as the singular values of A and they are denoted as σj(A)

for j = 1, 2, . . . , n.

Proposition 1.1. Let A, B ∈ Mn. We have

(1) Sp(AB) = Sp(BA).

(2) If A is a Hermitian matrix then Sp(A) ⊂ R.

(3) A is a positive semi-definite (respectively positive definite) if and only if A is a Hermitian

matrix and Sp(A) ⊂ R+ (respectively Sp(A) ⊂ R+\¶0♢).

(4) X∗X ≥ 0 for all X ∈ Mn.

(5) If A, B ≥ 0 then Sp(AB) ⊂ R+.

Remark 1.3. Due to the fact of Part (3) and Part (4) of the previous proposition, we can notice

that the singular values of any matrix are non-negative.

Throughout this thesis we will arrange the singular values of a matrix A ∈ Mn in decreasing

order that is

σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A).
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1. Introduction to Matrix Theory

In addition, if the eigenvalues λ1(A), λ2(A), . . . , λn(A) of A are real then we will always

assume that they are also arranged in non-increasing order, that is

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

For a Hermitian matrix A ∈ Mn, we shall denote

λ(A) = (λ1(A), λ2(A), . . . , λn(A))T

which is clearly a real column vector of order n, and so is the vector

σ(A) = (σ1(A), σ2(A), . . . , σn(A))T .

Theorem 1.2. Let A ∈ Mn. Then

(1) (Spectral decomposition) A is a normal matrix if and only if there exists a unitary

matrix U ∈ Mn such that U∗AU = D where D is a diagonal matrix, and its diagonal

entries are the eigenvalues of A.

(2) (Polar decomposition) There exists a unitary matrix U ∈ Mn and a positive semi-

definite matrix P ∈ Mn such that

A = UP.

Moreover, if A is invertible then U is unique.

Definition 1.7. (Determinant, Trace) For a given matrix A = [aij ]ni,j=1 ∈ Mn with Sp(A) =

¶λ1, λ2, . . . , λn♢. We have

• The determinant of A is denoted and defined by

det(A) =
∑

ρ∈Sn

(
sgn(ρ)

n∏

i=1

aiρi


=

n∏

j=1

λj .

where Sn is the set of all permutations ρ of the set S = ¶1, 2, . . . , n♢. A permutation ρ

is a function that rearrange S, the integer in the ith position in ρ is denoted by ρi. The

signature of a permutation ρ, denoted and defined by sgn(ρ) = (−1)ν where ν is the number

of interchanges needed to obtain ρ from S.

• The trace of A is denoted as Tr(A) and is defined as the sum of the of the diagonal entries

of A

Tr(A) =
n∑

i=1

aii =
n∑

j=1

λj .

Proposition 1.2. Let A ∈ Mn. A is a positive semi-definite matrix if and only if for all P ∈ Mn

invertible matrices P ∗AP is a positive semi-definite matrix.
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1. Introduction to Matrix Theory

Proposition 1.3. Let A, B ∈ Mn be two Hermitian matrices with Sp(A) = ¶λ1, λ2, . . . , λn♢ and

Sp(B) = ¶µ1, µ2, . . . , µn♢. Then

(a) If A > 0 and B > 0, then A ≥ B if and only if B−1 ≥ A−1.

(b) If A ≥ B, then X∗AX ≥ X∗BX for every X ∈ Mn.

(c) If A ≥ B, then λj ≥ µj for each j = 1, 2, . . . , n.

(d) If A ≥ B ≥ 0, then Tr(A) ≥ Tr(B) ≥ 0.

(e) If A ≥ B ≥ 0, then det(A) ≥ det(B) ≥ 0.

1.2. Matrix Norms

A function ♣♣ · ♣♣ : Mn → R is said to be a matrix norm if for all A, B ∈ Mn and ∀ α ∈ C we

have:

(1) ♣♣A♣♣ ≥ 0.

(2) ♣♣A♣♣ = 0 if and only if A = 0.

(3) ♣♣αA♣♣ = ♣α♣ · ♣♣A♣♣.

(4) ♣♣A + B♣♣ ≤ ♣♣A♣♣ + ♣♣B♣♣.

In addition, a matrix norm is said to be sub-multiplicative matrix norm if

♣♣AB♣♣ ≤ ♣♣A♣♣ · ♣♣B♣♣.

Definition 1.8. (Unitarily invariant norm) A matrix norm is said to be a unitarily invari-

ant norm if for every A ∈ Mn, we have ♣♣UAV ♣♣ = ♣♣A♣♣ for all U, V ∈ Mn unitary matrices. It

is denoted as ♣♣♣ · ♣♣♣.

Let A = [aij ]ni,j=1 ∈ Mn. The following unitarily invariant norms are frequently used:

(i) The operator norm of A, defined by

♣♣♣A♣♣♣op =
√

λ1(A∗A) = σ1(A).

(ii) The Frobenius norm of A also known as the Hilbert-Schmidt norm is defined as

♣♣♣A♣♣♣F =




n∑

i,j

♣aij ♣2



1
2

=




n∑

j=1

σ2
j (A)




1
2

=
√

tr(A∗A).
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1. Introduction to Matrix Theory

(iii) The Ky Fan norms, defined as

♣♣♣A♣♣♣(k) =
k∑

j=1

σj(A) for k = 1, 2, . . . , n.

(iv) For every 1 ≤ p ≤ ∞, the Schatten p-norm of the matrix A is defined as

♣♣♣A♣♣♣p =




n∑

j=1

σp
j (A)




1
p

.

Of special importance are the cases p = 1 named the trace norm, p = 2 the Hilbert-Schmidt

norm. For p = ∞ we can see that

lim
p→∞

♣♣♣A♣♣♣p = lim
p→∞

(σp
1(A) + σp

2(A) + · · · + σp
n(A))

1
p

= σ1(A) lim
p→∞

(
1 +

(
σ2(A)

σ1(A)

)p

+ · · · +
(

σn(A)

σ1(A)

)p) 1
p

= σ1(A)

= ♣♣♣A♣♣♣op.

Now we will introduce one of the most basic theorem for unitarily invariant norms. The

theorem is known as the Ky Fan dominance theorem. See more well-known Ky Fan inequalities

in [52]

Theorem 1.3. (Ky Fan dominance theorem) Let A and B be any two n × n matrices. The

inequalities

♣♣♣A♣♣♣(k) ≤ ♣♣♣B♣♣♣(k) (k = 1, 2, . . . , n) hold if and only if ♣♣♣A♣♣♣ ≤ ♣♣♣B♣♣♣

for all unitarily invariant norms ♣♣♣ · ♣♣♣.

1.3. Schur complement

The set of m × m block matrices whose entries are matrices of order n × n with complex

entries is denoted as Mm (Mn(C)). Let A ∈ Mm (Mn(C)). Then A is written as

A =




A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm




.
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1. Introduction to Matrix Theory

If A ∈ M2 (Mn(C)), we can say that A is a 2 × 2 block matrix, and it can be written as

A =


A11 A12

A21 A22

]
.

Consider these two 2 × 2 block matrices

M :=


A B

B∗ C

]
and P :=


In −A−1B

0 In

]

where A, B and C ∈ Mn such that A is invertible.

Now, clearly we have

P ∗MP =


A 0

0 C − B∗A−1B

]
. (1.1)

Proposition 1.4. Let X and Y be two square matrices of order n. The 2 × 2 block matrix


X 0

0 Y

]
≥ 0 if and only if X ≥ 0 and Y ≥ 0.

Remark 1.4. Due to the fact of Proposition 1.2, Proposition 1.4 as well as the decomposition

in (1.1), it is worthy to note that the matrix M is positive semi-definite if and only if the 2 × 2

block matrix 
A 0

0 C − B∗A−1B

]

is a positive semi-definite matrix.

Definition 1.9. (Schur Complement) The Schur complement of A is denoted and defined

by

Ã = C − B∗A−1B.

Proposition 1.5. Let M be a 2 × 2 block matrix written as

M :=


A B

B∗ C

]

with A > 0. Then M ≥ 0 if and only if Ã = C − B∗A−1B ≥ 0.

As a consequence of the previous proposition, we have the following results which can be

found in [62]. But we will include the proof here for the sake of clarification.

Proposition 1.6. Let X, Y ∈ Mn. We have:

(i)


♣X♣ X∗

X ♣X∗♣

]
≥ 0.

12



1. Introduction to Matrix Theory

(ii)


X X

X X

]
≥ 0 if and only if X ≥ 0.

(iii) If X and Y Hermitian matrices. Then, the 2 × 2 block matrix


X Y

Y X

]
≥ 0 if and only if X ≥ Y and X ≥ −Y.

Proof. (i) By appealing to Shcur complement, our claim is to show that

♣X∗♣ ≥ X♣X♣−1X∗.

Using the polar decomposition of the matrix X gives

X = U ♣X♣ where U is a unitary matrix.

Now, observe that X∗ = ♣X♣U∗, U = X♣X♣−1 and U∗ = ♣X♣−1X∗. Hence, we have

♣X∗♣ = (XX∗)
1
2

= (U ♣X♣♣X♣U∗)
1
2

= (U ♣X♣2U∗)
1
2

= U ♣X♣U∗

= X♣X♣−1♣X♣♣X♣−1X∗

= X♣X♣−1X∗.

This completes the proof.

(ii) It is obvious here to check it using Schur complement.

(iii) For the sake of simplicity, let M =


X Y

Y X

]
. The sufficient condition is by using Schur

complement. Assume that X is invertible, so our claim is to show that

X > 0 and X − Y X−1Y ≥ 0.

Due to our given, we can see that

2X = X + X ≥ Y − Y = 0

which gives X > 0 since X is invertible and X ≥ 0.

13



1. Introduction to Matrix Theory

Now, noticing that X−1 ≤ Y −1 gives

Y = Y Y −1Y ≥ Y X−1Y.

Hence, M ≥ 0.

For the necessary condition, consider the following decomposition

(√
1

2


In −In

In In

]
X Y

Y X

](√
1

2


In In

−In In

]
=


X − Y 0

0 X + Y

]
.

So, the eigenvalues of M are the union of the eigenvalues of X − Y and X + Y , since the

2 × 2 block matrix √
1

2


In In

−In In

]
is a Unitary matrix.

Therefore, X − Y and X + Y are positive semi-definite matrices. Thus

X ≥ Y and X ≥ −Y.

■

Proposition 1.7. Let A, B and C be any three complex matrices. If

M :=


A B

B∗ C

]
≥ 0, then


det(A) det(B)

det(B∗) det(C)

]
≥ 0.

Proof. Without loss of generality we will assume that A is invertible. By appealing to Schur

complement we have

A > 0 and C ≥ B∗A−1B

which implies that

det(A) > 0 and det(C) ≥ det(B∗A−1B).

Hence, det(A) > 0 and det(C) ≥ (det(B))∗(det(A))−1(det(B)). Again, by using Schur

complement we get for A invertible


det(A) det(B)

det(B∗) det(C)

]
≥ 0.

In case A is singular. The continuity argument states that there exists a strictly positive

real number δ such that for all 0 < ϵ < δ, we have

Aϵ = A + ϵIn is invertible.

14
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Now, take

Mϵ :=


Aϵ B

B∗ C

]
.

Here, Mϵ is a positive semi-definite 2 × 2 block matrix since

Mϵ =


A B

B∗ C

]
+


ϵIn 0

0 0

]
.

We can now apply the previous case for Mϵ, so


det(Aϵ) det(B)

det(B∗) det(C)

]
≥ 0.

Therefore, we obtain the result since the determinant function is continuous. ■

1.4. Matrix Functions

The first matrix function we are interested in is f : Mn → Mn which is in fact the extension

of the scalar functions. For a given I ⊂ R, let f : I → R. For every A ∈ Mn Hermitian matrix

with Sp(A) = ¶λ1, λ2, . . . , λn♢ ∈ I. Using the spectral decomposition we have

f(A) = U∗f(D)U

where f(D) is a diagonal matrix with diagonal elements ¶f(λ1), f(λ2), . . . , f(λn)♢.

Corollary 1.1. Let A ∈ Mn be a positive semi-definite matrix with Sp(A) = ¶λ1, λ2, . . . , λn♢.

Then, for every r ∈ [0, ∞)

Sp(Ar) = ¶λr
1, λr

2, . . . , λr
n♢.

Definition 1.10. Let A, B ∈ Mn be two Hermitian matrices with spectrum in I ⊂ R. A function

f : I → R is said to be an operator monotone if

A ≤ B implies f(A) ≤ f(B).

Theorem 1.4. (Löwner-Heinz Inequality [47]) Let A and B be two positive semi-definite

matrices such that A ≤ B. Then

Ar ≤ Br, 0 ≤ r ≤ 1.

These are some monotone and non-monotone matrix functions:

(i) f(A) = ln(A) is an operator monotone function.

15
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(ii) For every 0 ≤ r ≤ 1, f(A) = Ar is an operator monotone function.

(iii) f(A) = A2 is not a monotone function.

The second matrix function we need is an operation on a matrix producing a scalar such as

trace and determinant. Later in Chapter 5, we need the definition of functions of class L from

[8, p.268]; in fact these functions were first defined by E.H. Lieb [39] and they are called Liebian

functions.

Definition 1.11. A continuous complex-valued function f on the space of matrices is called a

Liebian function if f satisfies these two conditions:

1. If A ≥ B then f(A) ≥ f(B).

2. ♣f(A∗B)♣2 ≤ f(A∗A)f(B∗B) for all A, B.

These functions are examples of Liebian functions:

(i) f(A) = det(A).

(ii) f(A) = Tr(A).

(iii) For all 1 ≤ k ≤ n, f(k)(A) =
k∏

j=1
σj(A).

1.5. Geometric Mean

Average operations are of interests in the context of matrices as well, and various notions of

means of two positive definite matrices A and B have been studied, see [9, Chapter 4].

Definition 1.12. The geometric mean of two non-negative numbers x and y is denoted and

defined by

G(x, y) =
√

xy.

The following theorem shows some properties of

Theorem 1.5. For all x, y ∈ R+ and ∀ α ∈ R+, we have:

1. G(x, y) ≥ 0.

2. If 0 ≤ x ≤ y then x ≤ G(x, y) ≤ y.

3. G(x, y) = G(y, x).

4. G(αx, αy) = αG(x, y) and G(αxᾱ, αyᾱ) = αG(x, y)ᾱ.

5. G(x, y) ≤ G(x′, y) if x ≤ x′ and G(x, y) ≤ G(x, y′) if y ≤ y′.

16



1. Introduction to Matrix Theory

In general, the matrix product of any two Hermitian matrices A and B is not Hermitian

except when A and B commute. Then the square root of AB is neither Hermitian nor unique,

and so it is not possible to define the matrix geometric mean of A, B ≥ 0 by (AB)
1
2 . However,

for a, b > 0 the positive quantity
√

ab can be also written as:

√
ab =

√
a

1
2 ba

1
2 =

√
aa− 1

2 ba− 1
2 a = a

1
2

√
a− 1

2 ba− 1
2 a

1
2 = a

1
2 (a− 1

2 ba− 1
2 )

1
2 a

1
2 .

Definition 1.13. (Geometric Mean [55]) Let A and B be two positive definite matrices.

The geometric mean of A and B is denoted and defined by

A#B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

As it is well known, this can be extended to the positive semi-definite matrices as follows

A#B = lim
ϵ→0+

(A + ϵIn)#(B + ϵIn).

Theorem 1.6. (Riccati Equation [53]) Let A and B be two positive definite matrices. The

unique positive solution of the quadratic equation defined by

XA−1X = B

known as the Riccati equation is A#B.

The next proposition shows another formula of the geometric mean of two positive definite

matrices.

Proposition 1.8. Let A and B be two positive definite matrices. Then

A#B = max

{
X : X∗ = X,


A X

X B

]
≥ 0

}
.

Proposition 1.9. For all A, B, X ∈ Mn such that A, B > 0 and α, β ≥ 0.

(i) A#B > 0.

(ii) (A#B)−1 = A−1#B−1.

(iii) If A, B commutes then A#B = A
1
2 B

1
2 .

(iv) A ≥ B > 0 then A ≥ A#B ≥ B.

(v) A#B = B#A.

(vi) If B1 ≥ B2 > 0 then A#B1 ≥ A#B2.

(vii) (αA)#(βB) =
√

αβ(A#B).

17



1. Introduction to Matrix Theory

(viii) (X∗AX)#(X∗BX) = X∗(A#B)X for every invertible matrix X.

The following example shows that last part of Proposition 1.9 is not valid for X singular

matrix.

Example 1.1. Consider A =


4 0

0 1

]
, B =


20 6

6 2

]
and X =


1 0

0 0

]
. Then

X∗(A#B)X =


8 0

0 0

]
̸= (X∗AX)#(X∗BX) =

 √
80 0

0 0

]
.

A matrix connection is a binary operation on the set of positive definite matrices denoted

by γ and defined by F. Kubo and T. Ando [35].

Definition 1.14. A binary operation γ is said to be a connection if it satisfies the following

conditions for all A, B, C, D > 0

(i) If A ≥ C and B ≥ D, then AγB ≥ CγD.

(ii) X∗(AγB)X ≤ (X∗AX)γ(X∗BX) for invertible matrix X ∈ Mn.

(iii) If An ↓ A and Bn ↓ B, then (AnγBn) ↓ AγB where An, Bn ∈ Mn.

For each connection γ, there exists a unique matrix monotone function f : R+ → R+, such

that f(x)In = Inγ(xI) for x ∈ R+, and for A, B ≥ 0 such that A is invertible, AγB can be

presented as

AγB = A
1
2 f(A− 1

2 BA− 1
2 )A

1
2 . (1.2)

It can be extended to any singular matrix A by continuity as follows

AγB = lim
ϵ→0+

(A + ϵIn)γB.

A special case of (1.2) and a generalization of the geometric mean is the well known weighted

geometric mean

A#tB = A
1
2 (A− 1

2 BA− 1
2 )tA

1
2 0 ≤ t ≤ 1.

In particular, when t = 1
2 we get the well known geometric mean, that is, A# 1

2
B = A#B.

The weighted geometric mean appears in the study of the Riemannian manifold of positive

invertible matrices, see [17, 36].

1.6. Majorization Relation

In this section we will define the majorization relation that compares two vectors x, y ∈ Rn.

It is an important tool in deriving determinantal (see [42, 56]), trace inequalities (see [19, 20])

18



1. Introduction to Matrix Theory

and norm inequalities (see [4]). A good review on the theory of majorization was given by

Marshall, Olkin and Arnold in [48].

Definition 1.15. Let x = (x1, x2, . . . , xn)T be a vector in Rn. By rearranging the components

of x in decreasing order we get the vector x↓ = (x↓
1, x↓

2, . . . , x↓
n)T ∈ Rn where

x↓
1 ≥ x↓

2 ≥ ... ≥ x↓
n.

Example 1.2. If x =




1

4

2

0




, then x↓ =




4

2

1

0




.

Definition 1.16. Let x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T be two vectors in Rn. We

say:

1. x is weakly majorized by y, denoted by x ≺w y or y ≻w x if

k∑

i=1

x↓
i ≤

k∑

i=1

y↓
i k = 1, 2, . . . , n (1.3)

2. x is majorized by y, denoted by x ≺ y if (1.3) is true for k = 1, 2, . . . , n − 1 and equality

holds for k = n.

Proposition 1.10. The majorization relation is:

(i) Reflexive and transitive, however it is not anti-symmetric.

Example: Let x =




1

2

3


 and y =




3

1

2


. Then x ≻ y and x ≺ y, but x ̸= y.

(ii) Not a total relation.

Example: Let x =




3

4

1


 and y =




5

1

0


. We have x ⊁ y and x ⊀ y.

Remark 1.5. If x is majorized by y, then x′ is majorized by y′, where x′ and y′ are two vectors

in Rn having the same components as the vectors x and y, respectively.

Definition 1.17. Let x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T be two vectors in (R+\¶0♢)n.

If for all 1 ≤ k ≤ n, we have
k∏

i=1

x↓
i ≤

k∏

i=1

y↓
i , (1.4)
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then we say x is weakly log-majorized by y denoted by x ≺wlog y. The vector x is log-majorized

by y written as x ≺log y if (1.4) is true for 1 ≤ k ≤ n − 1 and equality is valid for k = n.

Remark 1.6. For given vectors x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T ∈ (R+\¶0♢)n, the

log-majorization (respectively weakly log-majorization) relation of x and y is in fact the ma-

jorization (respectively weakly majorization) relation of the the vectors

ln x = (ln x1, ln x2, . . . , ln xn)T and ln y = (ln y1, ln y2, . . . , ln yn)T .

A very useful relation between the log-majorization inequalities and majorization inequalities

is the following theorem.

Theorem 1.7. ([61, Theorem 10.15]) Let x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T ∈
(R+\¶0♢)n. Then

x ≺wlog y ⇒ x ≺w y.

That is,

k∏

i=1

xi ≤
k∏

i=1

yi, k = 1, 2, . . . , n ⇒
k∑

i=1

xi ≤
k∑

i=1

yi, k = 1, 2, . . . , n.
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2

Determinantal Inequalities

T
he main contributions to this thesis is presented in this chapter. We study a deter-

minantal inequality arisen in the study of interpolation methods for image processing

in diffusion tensor imaging showed by Audenaert [3]. Motivated by Audenaert’s re-

sult, Lin [40] proved a generalization and complement of Audenaert’s inequality, and introduced

two conjectures concerning determinantal inequalities. We provide a further generalization of

Audenaert’s inequality as well as generalizations of Lin’s inequalities. We then give affirmative

answers to the conjectures. Various related inequalities are established. Lastly, we propose some

new conjectures based on the work done in this chapter. Throughout this chapter we give step

by step the results obtained in this research for the sake of solving these conjectures.

2.1.
A Determinantal Inequality Arising

from Diffusion Tensor Imaging

In 2015, Audenaert [3] proved the following determinantal inequality.

Theorem 2.1. Let A and B be two positive semi-definite matrices. Then

det(A2 + ♣BA♣) ≤ det(A2 + AB). (2.1)

As a result, he was able to show the following corollary.

Corollary 2.1. Let A and B be two n-square positive semi-definite matrices and U is a specified

unitary matrix such that BA = U ♣BA♣. Then

det(A + U∗B) ≤ det(A + B). (2.2)

Proof. Without loss of generality we will assume that A is a positive definite matrix. Dividing

both sides of (2.1) with det(A) > 0 gives (2.2).
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2. Determinantal Inequalities

Now, for A ≥ 0, for A singular to be precise. The continuity argument states that there

exists a strictly positive real number δ such that for all 0 < ϵ < δ, we have

Aϵ = A + ϵIn

is invertible, that is, Aϵ > 0. Then, det(Aϵ + U∗
ϵ B) ≤ det(Aϵ + B) where Uϵ is a unitary matrix

such that

BAϵ = Uϵ♣BAϵ♣.

As a matter of fact, the set of all unitary matrices is a compact group, then every sequence

has a convergent sub-sequence, hence Uϵ converges into a unitary matrix U as ϵ → 0+. So, we

get the outcome as the two functions f(A) = Ap and g(A, B) = ♣BA♣p are continuous for all

p ≥ 0, as well as the determinant function. ■

In fact, inequality (2.2) was arisen in the study of interpolation methods for image process-

ing in diffusion tensor imaging. Audenaert compared geodesics introduced by different metrics

and the matrices studied here are the so called statistical covariance matrices. These covariance

matrices are real, positive semi-definite matrices of order n = 3, which means inequality (2.2)

is actually more general than what is needed as it holds for any complex positive semi-definite

matrices of all dimensions n ≥ 1. See [3] for more details on how inequality (2.2) was formulated.

In 2017, M. Lin [40] proved a generalization and a complement of (2.1).

Theorem 2.2. Let A and B be two positive semi-definite matrices. Then, for all 0 ≤ p ≤ 2

det(A2 + ♣BA♣p) ≤ det(A2 + ApBp). (2.3)

Theorem 2.3. Let A and B be two positive semi-definite matrices. Then

det(A2 + ♣AB♣) ≥ det(A2 + AB). (2.4)

Clearly, inequalities (2.1) and (2.4) imply that

det(A2 + ♣BA♣) ≤ det(A2 + ♣AB♣). (2.5)

In the same paper, it was asked whether it is possible to find a generalization of (2.5) and

put forward the following conjecture.

Conjecture 2.1. Let A and B be two positive semi-definite matrices. Then, for all p ≥ 0

det(A2 + ♣BA♣p) ≤ det(A2 + ♣AB♣p).

In addition, he introduced the following conjecture which is a generalization of (2.4) and a

complementing result for (2.3).
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2. Determinantal Inequalities

Conjecture 2.2. Let A and B be n × n positive semi-definite matrices. Then, for 0 ≤ p ≤ 2 it

holds that

det(A2 + ♣AB♣p) ≥ det(A2 + ApBp).

Lin [40] was able to prove Conjecture 2.1 for p = 1 and for all p positive even integers,

and Conjecture 2.2 for p = 1 and p = 2, the case p = 0 is obvious. All other cases for both

conjectures remain unsolved.

From the first look at these conjectures, it is obvious that for A, B ≥ 0 such that A is

singular, we have for k, p ≥ 0

det(Ak + ♣BA♣p) = det(Ak + ApBp) ≤ det(Ak + ♣AB♣p).

We can see it simply by using the spectral decomposition for the matrix A, that is, there

exists U unitary matrix and D diagonal matrix such that A = UDU∗, and noticing that for

k, p ≥ 0 we can write

det(Ak + ApBp) = det(UDkU∗ + UDpU∗Bp)

= det[U(Dk + DpU∗BP U)U∗]

= det(Dk + DpX)

where X = U∗BpU is a positive semi-definite matrix.

We can also write

det(Ak + ♣BA♣p) = det(Ak + (AB2A)
p

2 )

= det(UDkU∗ + (UDU∗B2UDU∗)
p

2 )

= det(UDkU∗ + U(DU∗B2UD)
p

2 U∗)

= det[U(Dk + (DU∗B2UD)
p

2 )U∗]

= det(Dk + (DY D)
p

2 )

where Y = U∗B2U is a positive semi-definite matrix.

The singularity of the matrix A implies that D has at least one zero eigenvalue and so are

Dk and Dp, then DpX and (DY D)p/2 have a zero row on the same position as that of Dk, thus

Dk + DpX and Dk + (DY D)p/2 have a zero row. So, for all k, p ≥ 0, we have

det(Ak + ApBp) = det(Ak + ♣BA♣p) = 0.

The determinantal quantity det(Ak + ♣AB♣p) is greater than or equal to zero in general, and

it is not necessary equal to zero for same conditions above (see the example below), thus we get
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in case A is singular

det(Ak + ♣AB♣p) ≥ det(Ak + ApBp) = det(Ak + ♣BA♣p) = 0 for k, p ≥ 0.

Example 2.1. Let A =

 √
2 0

0 0

]
and B =


1 2

2 5

]
. We have for k = p = 2

det(A2 + BA2B) = 16 ̸= 0.

The conjectures are not simply observed in other cases.

2.2. Preliminaries

In this section, we will introduce some definitions and theorems we need in our work.

Definition 2.1. (Hadamard Product) Let A = [aij ]ni,j=1 and B = [bij ]ni,j=1 be two complex

matrices of order n. The Hadamard product of A and B is defined by

A ◦ B =




a11b11 a12b12 . . . a1nb1n

a21b21 a22b22 . . . a2nb2n

...
...

. . .
...

an1bn1 an2bn2 . . . annbnn




.

As we can see, the Hadamard product is simply entrywise multiplication. Note that both A

and B need to be of same size. The Hadamard product can also be defined for vectors as

x ◦ y = (x1y1, x2y2, . . . , xnyn)T

where x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T are vectors in Cn. We will refer to [34, 51]

for more information about this product.

Definition 2.2. 1. Let X and Y be two Hermitian matrices with

λ(X) = (λ1(X), λ2(X), . . . , λn(X))T and λ(Y ) = (λ1(Y ), λ2(Y ), . . . , λn(Y ))T .

Then

λ(X) ◦ λ(Y ) = (λ1(X)λ1(Y ), λ2(X)λ2(Y ), . . . , λn(X)λn(Y ))T .

2. For each matrix X ∈ Mn. The modulus of the vector λ(X) is defined as

♣λ(X)♣ = (♣λ1(X)♣, ♣λ2(X)♣, . . . , ♣λn(X)♣)T .
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2. Determinantal Inequalities

Notice that the vector λ(X) ◦ λ(Y ) is not automatically arranged in decreasing order after

the Hadamard product, that is,

λ1(X)λ1(Y ) ≥ λ2(X)λ2(Y ) ≥ · · · ≥ λn(X)λn(Y ) (2.6)

as the following example shows.

Example 2.2. Take A and B two Hermitian matrices such that

λ(A) = (5, 3, −3)T and λ(B) = (4, 2, −10)T .

Then

λ3(A)λ3(B) = 30 > λ1(A)λ1(B) = 20.

However (2.6) is valid for A and B positive semi-definite matrices.

The next two lemmas are very useful for deriving log-majorization inequalities and their

proofs can be found in [61, p. 352, p.353].

Lemma 2.1. Let M =


X Y

Y ∗ Z

]
≥ 0. Then

♣λ(Y )♣ ≺log λ(X)
1
2 ◦ λ(Z)

1
2 and σ(Y ) ≺log λ(X)

1
2 ◦ λ(Z)

1
2 .

In particular, we have

♣λ1(Y )♣ ≤ λ1(X)
1
2 · λ1(Z)

1
2 and σ1(Y ) ≤ λ1(X)

1
2 · λ1(Z)

1
2 .

Lemma 2.2. Let X be any matrix of order n. Then

♣λ(X)♣ ≺log σ(X).

Now, we will show an interplay between majorization relations and determinantal inequali-

ties, but first we need the following theorem whose proof can be found in [61, p. 343].

Theorem 2.4. Let x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T ∈ Rn. Then

(i) x is majorized by y if and only if
n∑

i=1
f(xi) ≤

n∑
i=1

f(yi) for every convex function f .

(ii) x is weakly majorized by y if and only if
n∑

i=1
f(xi) ≤

n∑
i=1

f(yi) for all convex and increasing

functions f .

The next lemma is proved by M. Lin in [40, (P1), (P2)]. To cover every aspect, we add the

proof here.

Lemma 2.3. Let A and B be two positive semi-definite matrices. Then
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(i) If λ(A), λ(B) ∈ (R+\¶0♢)n such that λ(A) ≺ λ(B), then det(A) ≥ det(B).

(ii) If λ(A) ≺wlog λ(B), then det(In + A) ≤ det(In + B).

Proof. (i) Let f(x) = − ln x. Clearly f is a convex function on R+\¶0♢. Applying Theorem 2.4

gives

λ(A) ≺ λ(B) ⇒
n∑

i=1

(− ln λi(A)) ≤
n∑

i=1

(− ln λi(B))

⇒
n∑

i=1

ln λi(A) ≥
n∑

i=1

ln λi(B)

⇒ ln

(
n∏

i=1

λi(A)


≥ ln

(
n∏

i=1

λi(B)



⇒
n∏

i=1

λi(A) ≥
n∏

i=1

λi(B)

(since the function ex is monotone on R+)

⇒ det(A) ≥ det(B).

(ii) Let f(x) = ln(1 + ex), then f ′(x) = ex

1+ex ≥ 0 and f ′′(x) = ex

(1+ex)2 ≥ 0 so f is a convex

and increasing function on R. Hence

λ(A) ≺wlog λ(B) ⇒ ln λ(A) ≺w ln λ(B)

⇒
n∑

i=1

f(ln λi(A)) ≤
n∑

i=1

f(ln λi(B))

⇒
n∑

i=1

ln(1 + λi(A)) ≤
n∑

i=1

ln(1 + λi(B))

⇒ ln

(
n∏

i=1

(1 + λi(A))


≤ ln

(
n∏

i=1

(1 + λi(B))



⇒
n∏

i=1

(1 + λi(A)) ≤
n∏

i=1

(1 + λi(B))

⇒ det(In + A) ≤ det(In + B).

■

Remark 2.1. The majorization condition in Part (i) of Lemma 2.3 is essential since the weakly

majorization does not imply the determinantal inequality as shown in the following example.

Example 2.3. Let A =


1 0

0 4

]
, B =


1 0

0 5

]
∈ M2. Then

λ(A) = (4, 1)T ≺w λ(B) = (5, 1)T , but det(A) = 4 < det(B) = 5.
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2. Determinantal Inequalities

Definition 2.3. Let r = 1, 2, . . . , n. The rth anti-symmetric tensor product of a matrix A ∈ Mn

denoted by ∧rA is the restriction of the rth tensor power of A denoted by ⊗rA, to the totally

anti-symmetric subspace of (Cn)⊗r.

The following are some essential properties of this product where the first one is known as

the Binet-Cauchy formula.

Proposition 2.1. Let A and B be any two n × n matrices. We have

(i) ∧r(AB) = ∧rA ∧r B.

(ii) (∧r(A))∗ = ∧rA∗.

(iii) (∧rA)−1 = ∧rA−1 in case A invertible.

(iv) (∧rA)p = ∧rAp for every A ≥ 0 and p > 0.

(v) If A is positive semi-definite or Hermitian matrix then so is ∧rA.

(vi) If A ≥ 0, then λ1(∧rA) =
∏r

i=1 λi(A).

The well known Löwner-Heinz inequality mentioned before states that

0 ≤ A ≤ B ensures 0 ≤ Ar ≤ Br for 0 ≤ r ≤ 1.

However, 0 ≤ A ≤ B does not always ensure that 0 ≤ Ar ≤ Br for r ≥ 1. In 1987, T. Furuta

[23] proved a genius extension of Löwner-Heinz inequality (see [26] for the elementary proof).

This operator inequality can be applied in the theories of other operator inequalities as well as

norm inequalities, see [2, 24, 25, 49] for some applications.

Lemma 2.4. (Furuta Inequality) Let X and Y be two positive semi-definite matrices such

that X ≥ Y . Then, for all p ≥ 1, r ≥ 0,

X(p+2r)/p ≥ (XrY pXr)1/p.

The following lemma is a fundamental inequality commonly attributed to Araki, Lieb and

Thirring whose proof can be found in [8, p. 258].

Lemma 2.5. Let X and Y be two positive semi-definite matrices. Then for every unitarily

invariant norm, we have

♣♣♣XtY tXt♣♣♣ ≤ ♣♣♣(XY X)t♣♣♣ 0 ≤ t ≤ 1, (2.7)

and

♣♣♣XtY tXt♣♣♣ ≥ ♣♣♣(XY X)t♣♣♣ t ≥ 1 (2.8)

Next, we prove the following elementary lemma which in fact is a slight generalization of

Lemma A on page 129 of [27].
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2. Determinantal Inequalities

Lemma 2.6. Let X and Y be two invertible matrices. Then, for all t ∈ R,

(X∗Y ∗Y X)t = X∗Y ∗(Y XX∗Y ∗)t−1Y X.

Proof. Let X∗Y ∗ = U ♣X∗Y ∗♣ be the polar decomposition of the matrix X∗Y ∗, where U is uni-

tary. Then, clearly we obtain U = X∗Y ∗♣X∗Y ∗♣−1, U∗ = ♣X∗Y ∗♣−1Y X, and Y X = ♣X∗Y ∗♣U∗.

(X∗Y ∗Y X)t = (U ♣X∗Y ∗♣♣X∗Y ∗♣U∗)t

=
(
U ♣X∗Y ∗♣2U∗

)t

= U ♣X∗Y ∗♣2tU∗

= X∗Y ∗♣X∗Y ∗♣−1♣X∗Y ∗♣2t♣X∗Y ∗♣−1Y X

= X∗Y ∗(Y XX∗Y ∗)t−1Y X.

■

2.3. Related Determinantal Inequalities

We start this section with a summary of the determinantal inequalities proved by Audenaert

and Lin which are stated in Section 1.

Proposition 2.2. Let A and B be two positive semi-definite matrices. Then

(1) (Audenaert) det(A2 + ♣BA♣) ≤ det(A2 + AB).

(2) (Lin) det(A2 + ♣BA♣p) ≤ det(A2 + ApBp) for 0 ≤ p ≤ 2.

(3) (Lin) det(A2 + ♣AB♣) ≥ det(A2 + AB).

(4) (Lin) det(A2 + ♣AB♣2) ≥ det(A2 + A2B2).

One would ask if Part (2) of Proposition 2.2 is valid for p > 2, which is not as the next

example shows.

Example 2.4. Take A =


1 0

0 2

]
and B =


1 1

1 2

]
. A simple check shows that

det(A2 + ♣BA♣3) = 139.86 > det(A2 + A3B3) = 136.

However, it turns out that there is a general relation between the two determinantal quan-

tities

det(A2 + ♣BA♣)p and det(A2 + ApBp) for every p ∈ R and with A, B ≥ 0.
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2. Determinantal Inequalities

In this section, first we will show how the above relation behaves for any p ∈ R. Next, we

will show a further generalization for Part (1) of Proposition 2.2. And motivated by this further

generalization, we will show similar generalizations for Part (3) and Part (4) of Proposition 2.2.

We will also show a refinement for Part (4) of Proposition 2.2.

P.S. The techniques used in the proof of these related results guided us later to find affirmative

answers to Conjecture 2.1 and Conjecture 2.2.

2.3.1. Comparing det(A2 + ♣BA♣p) with det(A2 + A
p
B

p)

The main purpose here is to study the relation between the two determinantal quantities

det(A2 + ♣BA♣p) and det(A2 + ApBp) for p ∈ R and with A, B ≥ 0.

We shall start with the following lemma which is obtained from a result proved by A.

Matsumoto, R. Nakamoto and M. Fujii [50] by using anti-symmetric tensor product argument.

Lemma 2.7. Let X and Y be two positive semi-definite matrices. Then,

(i) λ(Xk+tY t) ≺log λ(X
k
2 (X

1
2 Y X

1
2 )tX

k
2 ) for all 0 ≤ t ≤ 1 and k ≥ 0.

(ii) λ(Xk+tY t) ≻log λ(X
k
2 (X

1
2 Y X

1
2 )tX

k
2 ) for all t ≥ 1 and 0 ≤ k ≤ 1.

Proof. (i) The authors in [50] proved the following interesting operator norm inequality for

all k ≥ 0

♣♣♣X k+t
2 Y tX

k+t
2 ♣♣♣op ≤ ♣♣♣X k

2 (X
s
2 Y sX

s
2 )

t
s X

k
2 ♣♣♣op for 0 ≤ t ≤ s (2.9)

which is in fact a generalized norm inequality proved by N. Bebiano, R. Lemos and J.

Providencia in [6].

Now, using the anti-symmetric tensor product, we have for 1 ≤ r ≤ n

∧r
(
Xk/2(Xs/2Y sXs/2)

t
s Xkt/2

)
= (∧rX)k/2

(
(∧rX)s/2(∧rY )s(∧rX)s/2

) t
s (∧rX)k/2

and

∧r
(
X

k+t
2 Y tX

k+t
2

)
= (∧rX)

k+t
2 (∧rY )t(∧rX)

k+t
2 .

Replacing X and Y with ∧rX and ∧rY , respectively, in (2.9) gives

λ1

(
∧r
(
X

k+t
2 Y tX

k+t
2

))
≤ λ1

(
∧r
(
X

k
2 (X

s
2 Y sX

s
2 )

t
s X

k
2

))
.
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2. Determinantal Inequalities

So, for all 1 ≤ r ≤ n − 1, we have

r∏

i=1

λi

(
X

k+t
2 Y tX

k+t
2

)
≤

r∏

i=1

λi

(
X

k
2 (X

s
2 Y sX

s
2 )

t
s X

k
2

)
.

In general, det
(
X

k
2 (X

s
2 Y sX

s
2 )

t
s X

k
2

)
= det

(
X

k+t
2 Y tX

k+t
2

)
, we obtain

n∏

i=1

λi

(
X

k
2 (X

s
2 Y sX

s
2 )

t
s X

k
2

)
=

n∏

i=1

λi

(
X

k+t
2 Y tX

k+t
2

)
.

Therefore,

λ
(
X

k
2 (X

s
2 Y sX

s
2 )

t
s X

k
2

)
≺log λ

(
Xk+tY t

)
.

Thus, we get the desired inequality by taking s = 1.

(ii) The proof here is done in a similar way as the previous one, but this time by using the

operator norm inequality also proved in [50]

♣♣♣X k+t
2 Y tX

k+t
2 ♣♣♣op ≥ ♣♣♣X k

2 (X
s
2 Y sX

s
2 )

t
s X

k
2 ♣♣♣op for 0 ≤ k ≤ s ≤ t.

■

As a consequence, we have the next theorem.

Theorem 2.5. Let A and B be two positive semi-definite matrices. We have

(1) In case A and B invertible. Then

• det(A2 + ♣BA♣p) ≤ det(A2 + ApBp) for p ∈ (−∞, −2], and

• det(A2 + ♣BA♣p) ≥ det(A2 + ApBp) for p ∈ [−2, 0].

(2) If p ∈ [0, 2], then det(A2 + ♣BA♣p) ≤ det(A2 + ApBp).

(3) If p ∈ [2, 4], then det(A2 + ♣BA♣p) ≥ det(A2 + ApBp).

(4) If p ∈ [4, ∞), then det(A2 + ♣BA♣p) ≤ det(A2 + ApBp).

Proof. (1) • Taking k = 1, t = −p
2 and replacing X and Y with A−2 and B−2, respectively

in Part (ii) of Lemma 2.7 gives

λ(A−1(AB2A)
p

2 A−1) ≺log λ(Ap−2Bp) p ≤ −2.

Now, using Part (ii) of Lemma 2.3 on the above majorization relation yields

det(In + A−1(AB2A)
p

2 A−1) ≤ det(In + Ap−2Bp) p ≤ −2. (2.10)

Hence, the result is obtained after multiplying both sides of (2.10) with det(A2).
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2. Determinantal Inequalities

• For p ∈ [−2, 0] the proof can be done in a similar fashion as in the first case by making

use this time of Part (i) of Lemma 2.7.

(2) The proof for the case where 0 ≤ p ≤ 2, is due to [40].

(3) Without loss of generality, we shall assume that A is a positive definite matrix as the

singular case of A is true. For 2 ≤ p ≤ 4, we can write

λ
(
A−1(AB2A)

p

2 A−1
)

= λ
(
A−1(AB(BA2B)

p

2
−1BA)A−1

)

= λ
(
B(BA2B)

p

2
−1B

)

= λ

(
(B2)

1
2

(
(B2)

1
2 (A2)(B2)

1
2

)p

2
−1

(B2)
1
2

)

≻log λ
(
(B2)1+ p

2
−1(A2)

p

2
−1
)

= λ
(
Ap−2Bp

)
.

Here, the first equality follows from Lemma 2.6 by substituting X and Y with A and B,

respectively, and the inequality follows from replacing X with B2 and Y with A2, and

taking t = p
2 − 1 in Part (i) of Lemma 2.7.

So,

λ(A−1(AB2A)
p

2 A−1) ≻log λ(Ap−2Bp). (2.11)

Next, applying Part (ii) of Lemma 2.3 on (2.11) gives

det(In + A−1(AB2A)
p

2 A−1) ≥ det(In + Ap−2Bp). (2.12)

Multiplying both sides of (2.12) by det(A2) > 0 completes the proof of this case.

(4) The case where p ≥ 4 can be done with similar methods as the previous case by making

use this time of Part (ii) of Lemma 2.7.

■

Remark 2.2. In the previous theorem, equality holds for p ∈ ¶−2, 0, 2, 4♢.

2.3.2. Generalization of Audeanart’s Determinantal Inequality

We will show a generalization for Part (1) and Part (2) of Proposition 2.2, but first we need

the following lemma.

Lemma 2.8. Let A and B be two positive definite matrices. Then, for all 0 ≤ t ≤ 1 and k > 1,

we have

λ
(
Akt/2(A−1/2BA−1/2)tAkt/2

)
≺log λ

(
A(k−1)tBt

)
. (2.13)
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2. Determinantal Inequalities

Proof. To achieve (2.13), it is enough to show that

A
(k−1)t

2 BtA
(k−1)t

2 ≤ In ⇒ Akt/2(A−1/2BA−1/2)tAkt/2 ≤ In.

Assume that A
(k−1)t

2 BtA
(k−1)t

2 ≤ In, so 0 ≤ Bt ≤ A−(k−1)t and by applying Furuta inequality,

we get

A−(k−1)t(p+2r)/p ≥
(
A−(k−1)trBtpA−(k−1)tr

)1/p
.

Now, by replacing p with 1
t ≥ 1 and r with 1

2(k−1)t > 0 we obtain

A
−(k−1)t2

(
1
t
+ 1

(k−1)t

)
≥
(
A−1/2BA−1/2

)t

which implies

A−kt ≥
(
A−1/2BA−1/2

)t
.

Therefore Akt/2(A−1/2BA−1/2)tAkt/2 ≤ In.

Let a = λ1(A
(k−1)t

2 BtA
(k−1)t

2 ). If a = 0, then it is obvious that (2.13) is true.

If a > 0, we observe that

A
(k−1)t

2 BtA
(k−1)t

2 ≤ a In and
(

1

a1/kt
A

) (k−1)t

2
(

1

a1/kt
B

)t ( 1

a1/kt
A

) (k−1)t

2

≤ In.

This yields

(
1

a1/kt
A

)kt/2
(

1

a1/kt
A

)−1/2 ( 1

a1/kt
B

)(
1

a1/kt
A

)−1/2
]t (

1

a1/kt
A

)kt/2

≤ In.

Thus

Akt/2(A−1/2BA−1/2)tAkt/2 ≤ a In.

And hence

λ1

(
Akt/2(A−1/2BA−1/2)tAkt/2

)
≤ λ1

(
A

(k−1)t

2 BtA
(k−1)t

2

)
.

Now, using the anti-symmetric tensor product argument, and observing that

det
(
Akt/2(A−1/2BA−1/2)tAkt/2

)
= det

(
A

(k−1)t

2 BtA
(k−1)t

2

)
,

we get the desired inequality. ■
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Theorem 2.6. Let A and B be two positive semi-definite matrices. Then, for all 0 ≤ p ≤ 2

and for all k > 1

det(Akp + ♣BA♣p) ≤ det(Akp + ApBp) (2.14)

Proof. By applying Part (ii) of Lemma 2.3 on the log-majorization relation in Lemma 2.8 we

get

det(In + Akt/2(A−1/2BA−1/2)tAkt/2) ≤ det(In + A(k−1)tBt). (2.15)

Taking A = A−2, B = B2 and t = p
2 in (2.15) gives

det(In + A−kp/2(AB2A)p/2A−kp/2) ≤ det(In + A−kp+pBp) (2.16)

Multiplying both sides of (2.16) by det(Akp) leads to the result for k > 1 and 0 < p ≤ 2.

Finally, it is easy to see that (2.14) is true for p = 0. ■

Remark 2.3. Note that inequality (2.13) is equivalent to

λ
(
Ak/2(A−1/2BA−1/2)tAk/2

)
≺log λ

(
Ak−tBt

)
for 0 ≤ t ≤ 1 and k > t. (2.17)

It is worthy to mention here that the log-majorization relation (2.17) was first proved by T.

Furuta [25, Corollary 3.1], and for k = 1 it was obtained earlier by J.S. Matharu and J.S. Aujla

[49, Theorem 2.10]. Later, for k = 2 and t = 1
2 , it was reobtained by Bhatia, Lim and Yamazaki

[12, Theorem 2], and also for k = 2 it was reobtained by D.T. Hoa [31, Proposition 2.1].

Theorem 2.7. Let A, B be two positive semi-definite matrices. Then, for 0 ≤ p ≤ 2,

det(Ap + ♣BA♣p) ≤ det(Ap + ApBp) (2.18)

Proof. Again, we can assume that A is an invertible matrix, the case of A singular is true.

Replacing X with A−1, Y with AB2A and t with p
2 in (2.7) and using spectral norm gives

λ1

(
A−

p

2 (AB2A)
p

2 A−
p

2

)
≤ λ1

(
(A−1AB2AA−1)

p

2

)
= λ1(Bp).

As det(A−
p

2 (AB2A)
p

2 A−
p

2 ) = det(Bp), and by a similar use of the anti-symmetric tensor

product argument, we have

λ
(
A− p

2 (AB2A)
p

2 A− p

2

)
≺log λ(Bp) 0 ≤ p ≤ 2. (2.19)

Applying Part (ii) of Lemma 2.3 for (2.19) yields

det(In + A−p/2(AB2A)p/2A−p/2) ≤ det(In + Bp).

Again, we multiply both sides by det(Ap) to obtain the result. ■
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2. Determinantal Inequalities

The following corollary (we later knew it was first proved in [37]) is a result of Theorem 2.6

and Theorem 2.7.

Corollary 2.2. Let A and B be two positive semi-definite matrices. Then, for all 0 ≤ p ≤ 2

and k ≥ p

det(Ak + ♣BA♣p) ≤ det(Ak + ApBp). (2.20)

We will show that inequality (2.20) is not true for k = 0, however the reverse is true as the

next theorem shows.

Theorem 2.8. Let A and B be two positive semi-definite matrices. Then for 0 ≤ p ≤ 2,

det(In + ♣BA♣p) ≥ det(In + ApBp) (2.21)

Proof. Take X = B2, Y = A and the spectral norm in (2.7) gives

λ1(BtA2tBt) ≤ λ1((BA2B)t) 0 ≤ t ≤ 1.

By anti-symmetric tensor product argument and since

det((AB2A)t) = det(AtB2tAt),

we have for all 0 ≤ t ≤ 1

λ(AtB2tAt) ≺log λ((AB2A)t).

It is enough to assume that A is positive definite matrix. For t = p
2 and by Part (ii) of

Lemma 2.3 we get

det(In + ApBp) = det(In + A
p

2 BpA
p

2 ) ≤ det(In + ♣BA♣p).

■

With a similar proof of Theorem 2.7 and Theorem 2.8 but using this time (2.8), inequalities

(2.18) and (2.21) are reversed for p ≥ 2.

Theorem 2.9. Let A, B be two positive semi-definite matrices. Then, for all p ≥ 2

• det(Ap + ♣BA♣p) ≥ det(Ap + ApBp).

• det(In + ♣BA♣p) ≤ det(In + ApBp).

2.3.3. Generalization of Lin’s Determinantal Inequalities

We will start with a generalization for Part (3) of Proposition 2.2, which is also a complement

of Corollary 2.2 when p = 1.
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2. Determinantal Inequalities

Theorem 2.10. Let A and B be two positive semi-definite matrices. Then for every k ≥ 1

det(Ak + ♣AB♣) ≥ det(Ak + AB).

Proof. Reminding that for k ≥ 0 and X, Y ∈ Mn(C) such that Y ≥ 0 (see Proposition 1.6), then


♣X∗♣ X

X∗ ♣X♣

]
≥ 0 and


Y k Y k

Y k Y k

]
≥ 0.

Now, replacing X with AB and Y with A, respectively gives


♣BA♣ AB

BA ♣AB♣

]
+


Ak Ak

Ak Ak

]
≥ 0.

Then, 
Ak + ♣BA♣ Ak + AB

Ak + BA Ak + ♣AB♣

]
≥ 0.

By using Proposition 1.7 we have


det(Ak + ♣BA♣) det(Ak + AB)

det(Ak + BA) det(Ak + ♣AB♣)

]
≥ 0.

This yields

det(Ak + ♣BA♣) · det(Ak + ♣AB♣) ≥ det(Ak + AB)2.

The required determinantal inequality follows by noting that for all k ≥ 1, we have

det(Ak + ♣BA♣) ≤ det(Ak + AB).

■

We can find a more general complement for Corollary 2.2 when k = 4 and p = 2 as the

following theorem shows.

Theorem 2.11. Let A and B be two Hermitian matrices. Then,

det(A4 + ♣AB♣2) ≥ det(A4 + A2B2).

Proof. Assume that A is an invertible matrix, the general case is due to a continuity argument.

Using Schur complement we get M =


BA−2B B2A−2

A−2B2 A−2BA2BA−2

]
≥ 0. Then by Lemma 2.1

λ1(B2A−2)2 ≤ λ1(BA−2B) · λ1(A−2BA2BA−2).
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2. Determinantal Inequalities

If λ1(B2A−2) = 0, then the desired determinantal inequality is true.

Noticing that λ1(B2A−2) = λ1(BA−2B) = λ1(A−1B2A−1), and dividing both sides by

λ1(B2A−2) > 0 gives

λ1(A−1B2A−1) ≤ λ1(A−2BA2BA−2).

By the usual anti-symmetric tensor product argument, and as det(A−1B2A−1) = det(A−2BA2BA−2)

we obtain

λ(A−1B2A−1) ≺log λ(A−2BA2BA−2).

Using Part (ii) of Lemma 2.3 gives

det(In + A−1B2A−1) ≤ det(In + A−2BA2BA−2).

Multiplying both sides by det(A4) yields

det(A4 + A2B2) ≤ det(A4 + BA2B) = det(A4 + ♣AB♣2).

■

The next theorem is a refinement for Part (4) of Proposition 2.2.

Theorem 2.12. Let A and B be two positive semi-definite matrices. Then

det(A2 + ♣BA♣2) = det(A2 + A2B2) ≤ det(A2 + (AB)2) ≤ det(A2 + ♣AB♣2).

Proof. Notice that

det(A2 + (AB)2) = det(A2 + ABAB)

= det(A) · det(A + BAB)

= det(A) · det((A1/2)2 + ♣A1/2B♣2)

≥ det(A) · det((A1/2)2 + (A1/2)2B2)

(using Part (4) of Proposition 2.3.1)

= det(A) · det(A + AB2)

= det(A2 + A2B2).

Now, for proving the second inequality we realize that using Schur complement we have


♣BA♣2 (AB)2

(BA)2 ♣AB♣2

]
≥ 0.

Then 
A2 A2

A2 A2

]
+


♣BA♣2 (AB)2

(BA)2 ♣AB♣2

]
≥ 0.
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2. Determinantal Inequalities

So, 
A2 + ♣BA♣2 A2 + (AB)2

A2 + (BA)2 A2 + ♣AB♣2

]
≥ 0.

Hence 
det(A2 + ♣BA♣2) det(A2 + (AB)2)

det(A2 + (BA)2) det(A2 + ♣AB♣2)

]
≥ 0.

Therefore,

det(A2 + ♣BA♣2) · det(A2 + ♣AB♣2) ≥ det(A2 + (AB)2)2.

Since det(A2+(AB)2) ≥ det(A2+A2B2) = det(A2+♣BA♣2), we obtain the second inequality.

■

One can ask if it is possible to find a generalization for Theorem 2.11 and Part (4) of Propo-

sition 2.2, as well as a generalization of the new refinement in Theorem 2.12.

Question 1. Let A be a positive semi-definite matrix and B be a Hermitian matrix. Then, for

all k ≥ 0

det(Ak + A2B2) ≤ det(Ak + ♣AB♣2).

Question 2. Let A be a positive semi-definite matrix and B be a Hermitian matrix. Then, for

all k ≥ 1

det(Ak + A2B2) ≤ det(Ak + (AB)2).

The following log-majorization inequality given in the next lemma, stands for a larger set

of matrices than the one originally proved by L. Plevnik in [54]. The steps in the proof are

essentially the same, but we include them here for the sake of completeness and also to assert

our claim that it is valid for a wider class of matrices.

Lemma 2.9. Let X, Y be in Mn. If either one of the following two conditions

(1) X is Hermitian, Y ≥ 0 and p, q ∈ [0, ∞), or

(2) X, Y are Hermitian and p, q are even positive integers,

is satisfied, then it holds that

λ(XY pXY q) ≺log λ(X2Y p+q).

Proof. By appealing to a standard argument (anti-symmetric tensor product), then it suffices

to prove that

λ1(XY pXY q) ≤ λ1(X2Y p+q).
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Without loss of generality, we shall assume that X is invertible as the general case can be done

by continuity argument. In addition, we shall assume that q ≤ p (p > 0) and λ1(X2Y p+q) = 1.

Now, obviously proving our claim is equivalent to showing that

λ1(XY pXY q) ≤ 1.

The fact that the largest eigenvalue of the matrix X2Y p+q is equal to 1, clearly implies that

λj(X2Y p+q) ≤ 1 for all 1 ≤ j ≤ n.

But this is equivalent to XY p+qX ≤ In which in turn gives

Y p+q ≤ (X−1)2. (2.22)

Next, applying Löwner-Heinz inequality on (2.22) for a power 0 ≤ p
p+q ≤ 1, yields

(Y p+q)
p

p+q ≤ ((X−1)2)
p

p+q .

Obviously, for both cases in the lemma we see that (Y p+q)
p

p+q = Y p, and here it is worthy to

draw the attention to the fact that ((X−1)2)
p

p+q is defined since (X−1)2 > 0. Thus, we obtain

Y p ≤ ((X−1)2)
p

p+q . (2.23)

Again, taking a power 0 ≤ q
p ≤ 1 in both sides of (2.23), we get

(Y p)
q

p ≤
(
((X−1)2)

p

p+q

) q

p
.

As before, in both cases of the lemma we have

Y q ≤
(
(X−1)2

) q

p+q =
(
(X2)

q

p+q

)−1
.

Hence,

(X2)
q

p+q ≤ Y −q. (2.24)

Therefore,

λ1(XY pXY q) = λ1

(
Y q/2XY pXY q/2

)

≤ λ1

(
Y q/2X((X−1)2)

p

p+q XY q/2
)

(using (2.23))

= λ1

(
(Y q/2(X2)

q

p+q Y q/2
)

≤ λ1(In) (using (2.24))

= 1.
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■

Now, we prove the following lemma which turns out to be an essential result.

Lemma 2.10. Let X, Y be in Mn. If either one of the following two conditions

(1) X is Hermitian, Y > 0, p, q ∈ [0, ∞) and p ≥ 2q.

(2) X, Y are Hermitian, q and p ≥ 2q are even positive integers,

is satisfied, then we have

λ(X2Y p−q) ≺log λ(XY pXY −q).

Proof. By Schur complement, we know that

M =


Y

p

2 XY −qXY
p

2 Y
p

2 X2Y
p

2
−q

Y
p

2
−qX2Y

p

2 Y
p

2
−qXY qXY

p

2
−q

]
≥ 0.

Applying Lemma 2.1 on the positive semi-definite matrix M gives

λ1

(
Y −

q

2 X2Y p−
q

2

)2
≤ λ1

(
Y −

q

2 XY pXY −
q

2

)
· λ1

(
Y p−

q

2 XY −pXY p−
p

2

)
.

That is,

λ1(X2Y p−q)2 ≤ λ1(Y pXY −qX) · λ1(Y p−2qXY qX). (2.25)

In view of Lemma 2.9, and keeping in mind that either Condition (1) or (2) is satisfied, it is

worthy to observe that

λ(XY p−2qXY q) ≺log λ(X2Y p−q).

which is certainly implies that

λ1(Y p−2qXY qX) ≤ λ1(X2Y p−q).

Therefore, using (2.25) we conclude that

λ1
(
Y pXY −qX

)
≥ λ1

(
X2Y p−q

)
.

By a standard anti-symmetric tensor product argument, and realizing that

det
(
Y pXY −qX

)
= det

(
X2Y p−q

)

the proof is achieved. ■

As a result of the previous two lemmas, we have the following theorem.

Theorem 2.13. Let A be a positive semi-definite matrix and B be a Hermitian matrix. Then
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(i) If 0 ≤ k ≤ 1, then det(Ak + ♣AB♣2) ≥ det(Ak + A2B2).

(ii) If k ≥ 4, then det(Ak + ♣AB♣2) ≥ det(Ak + A2B2).

Proof. We shall assume first that A is invertible, and then the general case follows easily by a

continuity argument.

1. Let 0 ≤ k ≤ 1:

Replacing X with B, Y with A, q with k, and p with 2 (notice that the chosen real numbers

p, q sutisfy p ≥ 2q) in Lemma 2.10 gives

λ(B2A2−k) ≺log λ(BA2BA−k).

Now using Part (ii) of Lemma 2.3 yields

det(In + B2A2−k) ≤ det(In + BA2BA−k).

By multiplying both sides by det(Ak) > 0, we obtain the result.

2. Let k ≥ 4:

Taking X = B, Y = A−1, q = 2, and p = k ≥ 2 · 2 = 4 in Lemma 2.10 gives

λ
(
B2(A−1)k−2

)
≺log λ

(
B(A−1)−2B(A−1)k

)
.

Again using first Part (ii) of Lemma 2.3 which yields

det(In + B2A2−k) ≤ det(In + BA2BA−k),

and then multiplying both sides by det(Ak) > 0, will prove the result.

■

For our purposes, we need the next two lemmas.

Lemma 2.11. Let A, B ∈ Mn such that A is positive semi-definite and B is Hermitian, and let

α1 and β1 be any two real numbers. If, for all k ∈ [α1, β1],

det(Ak + ♣AB♣2) ≥ det(Ak + A2B2), (2.26)

then,

det(Ak′

+ (AB)2) ≥ det(Ak′

+ A2B2),

for all k′ ∈ [α2, β2] with α2 = α1
2 + 1 and β2 = β1

2 + 1.

Proof. Let k′ ∈ [α1
2 + 1, β1

2 + 1], then 2(k′ − 1) ∈ [α1, β1].
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Now, replacing A with A1/2 and k with 2(k′ − 1) in inequality (2.26) gives

det
(
(A1/2)2(k′−1) + ♣A1/2B♣2

)
≥ det

(
(A1/2)2(k′−1) + (A1/2)2B2

)
. (2.27)

On the other hand, we can write

det(Ak′

+ (AB)2) = det(Ak′

+ ABAB)

= det(A) · det(Ak′−1 + BAB)

= det(A) · det
(
(A1/2)2(k′−1) + ♣A1/2B♣2

)

≥ det(A) · det
(
(A1/2)2(k′−1) + (A1/2)2B2

)
(using (2.27))

= det(A) · det(Ak′−1 + AB2)

= det(Ak′

+ A2B2).

■

Lemma 2.12. Let A, B ∈ Mn such that A is positive semi-definite and B is Hermitian, and let

α and β be any two positive real numbers. If

det(Ak + (AB)2) ≥ det(Ak + A2B2)

is true for k ∈ [α, β], then

det(Ak + ♣AB♣2) ≥ det(Ak + (AB)2) ≥ det(Ak + A2B2)

is also true for k ∈ [α, β].

Proof. Using Schur complement, we can see that


♣BA♣2 (AB)2

(BA)2 ♣AB♣2

]
≥ 0 and


Ak Ak

Ak Ak

]
≥ 0.

So, 
Ak + ♣BA♣2 Ak + (AB)2

Ak + (BA)2 Ak + ♣AB♣2

]
≥ 0,

and then 
det(Ak + ♣BA♣2) det(Ak + (AB)2)

det(Ak + (BA)2) det(Ak + ♣AB♣2)

]
≥ 0.

Using the fact that det(Ak + (AB)2) = det(Ak + (BA)2), we conclude that

det(Ak + ♣BA♣2) · det(Ak + ♣AB♣2) ≥ det(Ak + (AB)2)2.
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As det(Ak + ♣BA♣2) = det(Ak + A2B2) ≤ det(Ak + (AB)2) for all k ∈ [α, β], then we obtain

det(Ak + ♣AB♣2) ≥ det(Ak + (AB)2).

Thus, for all real numbers k ∈ [α, β], we have that

det(Ak + ♣AB♣2) ≥ det(Ak + (AB)2) ≥ det(Ak + A2B2).

■

Now, we are ready to prove Question 1.

Theorem 2.14. Let A, B ∈ Mn such that A is positive semi-definite and B is Hermitian. Then,

for k ∈ [0, ∞), we have that

det(Ak + ♣AB♣2) ≥ det(Ak + A2B2). (2.28)

Proof. For the proof, we distinguish between the two cases: k ∈ [2, ∞) and k ∈ [0, 2].

Case 1: Let k ∈ [2, ∞). We construct a recursive sequence (αn)n≥1 with α1 = 4, and αi+1 = αi

2 +1.

Then, in view of Part (ii) in Theorem 2.13, we know that (2.28) is true for all k ∈ [α1, ∞).

Next, we shall show in two steps the validity of inequality (2.28) for k ∈ [α2, ∞), where

the new interval is wider, that is, [α1, ∞) ⊃ [α2, ∞).

Step 1: Combining Part (ii) of Theorem 2.13 and Lemma 2.11, implies that for all

k ∈ [α2, ∞) where α2 = α1
2 + 1 = 3, we have

det(Ak + (AB)2) ≥ det(Ak + A2B2).

Step 2: Making use of Lemma 2.12, we first conclude that (2.28) is true for all k ∈ [α2, ∞).

Repeating the same process as before, we see that inequality (2.28) is true for all

k ∈ [α3, ∞) ,

(
α3 =

α1

22
+

1

2
+ 1 =

5

2

)

k ∈ [α4, ∞) ,

(
α4 =

α1

23
+

1

22
+

1

2
+ 1 =

9

4

)

...

k ∈ [αn+2, ∞) ,

(
αn+2 =

α1

2n+1
+

1

2n
+

1

2n−1
+ · · · +

1

2
+ 1 = 2 +

1

2n

)
.

As n approaches ∞, the sequence (αn)n tends to 2. Therefore, (2.28) is true for k ∈ [2, ∞).

Case 2: Let k ∈ [0, 2]. Here we construct another recursive sequence (αn)n≥1 with α1 = 0, and

αi+1 = αi

2 + 1. Again, Part (i) of Theorem 2.13 says that (2.28) is true for all k ∈ [α1, α2].
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Using a similar argument as earlier, we conclude that inequality (2.28) is valid for all

k ∈ [α2, α3],
(

α3 = 1 +
1

2

)

k ∈ [α3, α4],
(

α4 = 1 +
1

2
+

1

22

)

k ∈ [α4, α5],
(

α5 = 1 +
1

2
+

1

22
+

1

23

)

...

k ∈ [αn−1, αn],
(

αn = 1 +
1

2
+

1

22
+ · · · +

1

2n
= 2 − 1

2n

)
.

As n approaches ∞, the sequence αn also tends to 2. Thus, for all A ≥ 0, B Hermitian

matrix and for k ∈ [0, 2], we have that

det(Ak + ♣AB♣2) ≥ det(Ak + A2B2).

■

As a consequence of the previous theorem and Lemma 2.11, we have the following corollary

which gives an affirmative answer to Question 2.

Corollary 2.3. Let A be a positive semi-definite matrix and B be a Hermitian matrix. Then

for all k ∈ [1, ∞)

det(Ak + (AB)2) ≥ det(Ak + A2B2).

We are tempted to study inequality (2.28) for a larger class of matrices, and to see when it

might fail.

Theorem 2.15. Let A and B be two Hermitian matrices. Then for all positive even integers k,

det(Ak + ♣AB♣2) ≥ det(Ak + A2B2).

Proof. The proof for even integers k ≥ 4 is similar to that of Part (ii) in Theorem 2.13, we just

need to apply the second case of Lemma 2.10 when A and B are Hermitian matrices and q,

p ≥ 2q are even integers. To close the proof, we still have to show the inequality for k = 0 and

k = 2. However, for k = 0, it is easy to see that

det(In + ♣AB♣2) = det(In + A2B2).

Next, for k = 2, assume first that A and B are invertible matrices. Observe that in this case

A2 + BA2B > 0 and A2 + AB2A > 0 for all A and B invertible Hermitian matrices. So that

λ(A2 + BA2B), λ(A2 + AB2A) ∈ Rn
+\¶0♢.
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From [41], the authors proved the following majorization inequality

λ(XX∗ + Y Y ∗) ≺ λ(X∗X + Y ∗Y )

for every X and Y belongs to Mn such that X∗Y Hermitian.

Now substituting X and Y with A and BA, respectively, gives

λ(A2 + BA2B) ≺ λ(A2 + AB2A). (2.29)

Now, applying Part (i) of Lemma 2.3 on (2.29) yields

det(A2 + ♣AB♣2) ≥ det(A2 + AB2A) = det(A2 + A2B2).

Finally, by a continuity argument, the proof is complete. ■

Remark 2.4. It is worthy to note the following.

(1) For Hermitian matrices A and B and for positive odd integers k, the inequality

det(Ak + ♣AB♣2) ≥ det(Ak + A2B2)

as well as its reverse, are not true in general. This can be easily seen by taking

A =




−3 0 0

0 1 0

0 0 4


 and B =




2 1 0

1 2 −1

0 −1 −1


 ,

and then a simple check shows that

• for k = 1, det(A + A2B2) = 4872 < det(A + ♣AB♣2) = 5766, and

• for k = 3, det(A3 + A2B2) = −1872 > det(A3 + ♣AB♣2) = −10650.

(2) On the other hand, for Hermitian matrices A and B, the following inequality

det(Ak + (AB)2) ≥ det(Ak + A2B2)

may also fail for even integers k ≥ 0. This can be easily seen by taking first

A =




−1 0 0

0 −2 0

0 0 −3


 and B =




−1 2 3

2 0 −i

3 i 2


 .

A simple inspection shows that k = 2, we have

det(A2 + (AB)2) = 14082 > det(A2 + A2B2) = 12708.
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Secondly, if A =




−1 0 0

0 2 0

0 0 −1
2


 and B =




0 0 3

0 0 −i

3 i 2


, then again for k = 2, a simple

check shows that

det(A2 + (AB)2) = 82.75 < det(A2 + A2B2) = 125.

2.4.
Lin’s Conjectures Concerning

Determinantal Inequalities

Let us recall the two conjectures formulated by M. Lin [40]. For any positive semi-definite

matrices A and B the conjectures are stated as follows

det(A2 + ♣AB♣p) ≥ det(A2 + ♣BA♣p) for p ≥ 0;

det(A2 + ♣AB♣p) ≥ det(A2 + ApBp) for 0 ≤ p ≤ 2.

The main goal of this section is to confirm the first conjecture (Conjecture 2.1) in a slightly

more general setting namely in the case when A and B are Hermitian, and also to present two

different approaches to prove Conjecture 2.2. The first approach gives a partial answer to the

conjecture, when 0 ≤ p ≤ 4
3 to be precise, and the second approach gives a solution to the

conjecture in the affirmative. First, we need to extend a majorization inequality established in

the previous section (see Lemma 2.10) due to its important role in the proof of both conjectures.

More several inequalities are established in this chapter, Chapter 3 and Chapter 4 as applications

of this majorization relation. Furthermore, we study the relation between the two determinantal

quantities

det(A2 + ♣AB♣p) and det(A2 + ApBp) for p ∈ R and with A, B ≥ 0,

which is motivated by the relation observed in Section 2.3 between the two determinantal quan-

tities det(A2 + ♣BA♣p) and det(A2 + ApBp) for every p ∈ R and with A, B ≥ 0.

2.4.1. An Extension of a Log-Majorization Relation

The key for the solution of Conjecture 2.1 and Conjecture 2.2 is in fact Lemma 2.10. Although

Lemma 2.10 is incomplete in its current form as it states that for p, q ≥ 0 such that p ≥ 2q, we

have

λ(XY pXY −q) ≻log λ(X2Y p−q).

where X is a Hermitian matrix and Y is a positive definite matrix. The log-majorization in-

equality above should be true for every p, q ≥ 0 to be considered complete. Revisiting the proof
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of Theorem 2.14, we used an argument to extend the interval for which inequality (2.28) is

verified. We kept extending the interval by repeating the argument and at the end we obtained

the result as the repetition approaches infinity.

The next theorem is the complete version of Lemma 2.10 by using this time of a new argu-

ment.

Theorem 2.16. Let Y be a positive definite matrix and X be a Hermitian matrix. Then for all

p, q ∈ [0, ∞)

λ(XY pXY −q) ≻log λ(X2Y p−q). (2.30)

Proof. The proof will be divided into three cases.

Case 1: Let q ≥ 2p. Replacing Y with Y −1 in Lemma 2.9 gives the result for the first case.

Case 2: Let p ≤ q ≤ 2p. The idea of the proof here depends on writing the interval [p, 2p] =
∞⋃

k=2
[k+1

k p, 2p] and then proving (2.30) for each subinterval. We start with case k = 2 i.e.

for 2p ≥ q ≥ 3p
2 . Then,

λ(Y pXY −qX) = λ
(
Y

3p

2 (Y − p

2 XY − p

2 )Y p−q(Y − p

2 XY − p

2 )Y
p

2

)

= λ
(
Y 2p(Y − p

2 XY − p

2 )Y −(q−p)(Y − p

2 XY − p

2 )
)

= λ
(
(Y −1)−2p(Y − p

2 XY − p

2 )(Y −1)q−p(Y − p

2 XY − p

2 )
)
.

Now considering this last expression and noticing that 2p ≥ 2(q − p) ≥ 0, then in view of

Case 1; replacing Y with Y −1, X with Y −
p

2 XY −
p

2 , q with 2p and lastly p with q − p, we

obtain

λ(Y pXY −qX) ≻wlog λ
(
Y 3p−q(Y − p

2 XY − p

2 )2
)

= λ
(
Y 2p−qXY −pX

)

≻log λ(Y p−qX2) (again using Case 1 as p ≥ 2(2p − q) ≥ 0).

Next, using a similar argument, we prove (2.30) is true for k = 3 i.e. for 2p ≥ q ≥ 4p
3 . As
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earlier, we can write

λ(Y pXY −qX) = λ
(
Y

3p

2 (Y − p

2 XY − p

2 )Y p−q(Y − p

2 XY − p

2 )Y
p

2

)

= λ
(
Y 2p(Y − p

2 XY − p

2 )Y −(q−p)(Y − p

2 XY − p

2 )
)

= λ
(
(Y −1)−2p(Y − p

2 XY − p

2 )(Y −1)q−p(Y − p

2 XY − p

2 )
)

≻log λ
(
Y 3p−q(Y − p

2 XY − p

2 )2
)

(in view of of Case 1 as 2p ≥ 2(q − p) ≥ 0)

= λ
(
Y 2p−qXY −pX

)

≻log λ(Y p−qX2)

(similarly in view of Case k = 2 as p ≥ 3

2
(2p − q) ≥ 0).

Now to complete this case, we need to show that for any positive integer k inequality (2.30)

is true for all q, p ≥ 0 with 2p ≥ q ≥ k+1
k p. In other words, we will assume that inequality

(2.30) is true for all q, p ≥ 0 with 2p ≥ q ≥ k0
k0−1p where k0 is a positive integer. Our

purpose now is to show that (2.30) is still valid for q, p ≥ 0 with 2p ≥ q ≥ k0+1
k0

p. Again,

notice that

λ(Y pXY −qX) = λ
(
Y 2p(Y − p

2 XY − p

2 )Y −(q−p)(Y − p

2 XY − p

2 )
)

= λ
(
(Y −1)−2p(Y − p

2 XY − p

2 )(Y −1)q−p(Y − p

2 XY − p

2 )
)

≻log λ
(
Y 3p−q(Y − p

2 XY − p

2 )2
)

(in view of of Case 1 as 2p ≥ 2(q − p) ≥ 0)

= λ
(
Y 2p−qXY −pX

)

≻log λ(Y p−qX2)

(similarly in view of Case k = k0 − 1 as p ≥ k0

k0 − 1
(2p − q) ≥ 0).

Finally, the proof for this case can be achieved by letting k tends to infinity.

Case 3: Let q ≤ p. To complete the proof of this case, it suffices to apply the preceding two cases

on Y −1.

■

As applications of Theorem 2.16 and Lemma 2.9, we will show the relation between the three

determinantal quantities

det(Ak + ♣AB♣2), det(Ak + A2B2), and det(Ak + (AB)2) for k ∈ R.
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We can also see that Theorem 2.16 gives a simpler proof for Theorem 2.14.

Theorem 2.17. Let A be a positive semi-definite matrix and B be a Hermitian matrix. Then

(1) If 0 ≤ k ≤ 1, then det(Ak + ♣AB♣2) ≥ det(Ak + A2B2) ≥ det(Ak + (AB)2).

(2) If k ≥ 1, then det(Ak + ♣AB♣2) ≥ det(Ak + (AB)2) ≥ det(Ak + A2B2).

(3) For k ≥ 0, and in the event of A being invertible, we have

(i) det(A−k + A2B2) ≥ det(A−k + (AB)2) ≥ det(A−k + ♣AB♣2) if 0 ≤ k ≤ 1.

(ii) det(A−k + A2B2) ≥ det(A−k + ♣AB♣2) ≥ det(A−k + (AB)2) if k ≥ 1.

Proof. Assume that A is invertible. Replacing X with B and Y with A respectively, and taking

p = 2 and q = −k in Theorem 2.16 and Lemma 2.9 give

λ(A−kBA2B) ≺log λ(A2−kB2) k ≤ 0; (2.31)

λ(A−kBA2B) ≻log λ(A2−kB2) k ≥ 0. (2.32)

Now using Part (ii) of Lemma 2.3 yields for (2.31) and (2.32)

det(In + A−kBA2B) ≤ det(In + A2−kB2) k ≤ 0; (2.33)

det(In + A−kBA2B) ≥ det(In + A2−kB2) k ≥ 0. (2.34)

Hence, multiplying both sides with det(Ak) > 0 of (2.33) and (2.34) gives

det(Ak + ♣AB♣2) ≤ det(Ak + A2B2) k ≤ 0; (2.35)

det(Ak + ♣AB♣2) ≥ det(Ak + A2B2) k ≥ 0. (2.36)

As a consequence of inequality (2.36) as well as Lemma 2.11 we have

det(Ak + (AB)2) ≥ det(Ak + A2B2) k ∈ [1, ∞) (2.37)

We can also write for k ≤ 1

det(Ak + (AB)2) = det(A) · det
(
(A

1
2 )2(k−1) + ♣A 1

2 B♣2
)

≤ det(A) · det
(
(A

1
2 )2(k−1) + (A

1
2 )2B2

)
(using (2.35))

= det(Ak + A2B2).

So,

det(Ak + (AB)2) ≤ det(Ak + A2B2) k ≤ 1 (2.38)

(1) Let 0 ≤ k ≤ 1. The first inequality is a case of (2.36), and the second inequality is a case

of (2.38).
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(2) Let k ≥ 1. The first inequality here is also a case of (2.36), and the second inequality is

actually inequality (2.37).

(3) (i) Let 0 ≤ k ≤ 1. The first inequality is a case of inequality (2.38) by replacing k with

−k. Now, to prove the second inequality, it is suffices to show that

λ(Ak+1BAB) ≻log λ(AkBA2B) 0 ≤ k ≤ 1. (2.39)

For 0 ≤ k ≤ 1, we have

λ(AkBA2B) = λ
(
Ak−1(A

1
2 BA

1
2 )A(A

1
2 BA

1
2 )
)

≺log λ
(
Ak(A

1
2 BA

1
2 )2

)

(using Theorem 2.16 for p = 1 and q = 1 − k ≥ 0)

= λ(Ak+1BAB).

Hence, applying Part (ii) of Lemma 2.3 on (2.39), then multiplying both sides with

det(A−k) gives the second inequality.

(ii) Let k ≥ 1. The first inequality here is a case of inequality (2.35) by taking k = −k,

and the second inequality can be proved with a similar fashion as in the previous

case, however using this time of Lemma 2.9 for p = 1 and q = k − 1 ≥ 0.

■

2.4.2. Solution for the First Conjecture

The following result is due to the log-majorization relation in Theorem 2.16 in which it gives

an affirmative answer to Conjecture 2.1.

Theorem 2.18. Let A and B be two Hermitian matrices. Then, for all p ∈ [0, ∞), we have

det(A2 + ♣BA♣p) ≤ det(A2 + ♣AB♣p).

Proof. As usual, we shall assume that A and B are invertible, the general case is by continuity

argument. As a consequence of Lemma 2.6, substituting X with A, Y with B and t with p
2

respectively, we have for all p ∈ [0, +∞)

(AB2A)
p

2 = AB(BA2B)
p

2
−1BA.
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Then,

λ
(
A−1(AB2A)

p

2 A−1
)

= λ
[
A−1

(
AB(BA2B)

p

2
−1BA

)
A−1

]

= λ
(
B2(BA2B)

p

2
−1
)
.

Now considering this last expression, if we replace X with B, Y with BA2B, p with p
2 and

q with 1 in Theorem 2.16, we obtain

λ
(
B2(BA2B)

p

2
−1
)

≺log λ
(
B(BA2B)

p

2 B(BA2B)−1
)

= λ
(
A−1(BA2B)

p

2 A−1
)
.

Hence,

λ
(
A−1(AB2A)

p

2 A−1
)

≺log λ
(
A−1(BA2B)

p

2 A−1
)
.

Next, applying Part (ii) of Lemma 2.3 on the above inequality gives

det(In + A−1(AB2A)
p

2 A−1) ≤ det(In + A−1(BA2B)
p

2 A−1).

Finally, multiplying both sides with det(A2) > 0 yields for all p ∈ [0, ∞)

det(A2 + ♣BA♣p) ≤ det(A2 + ♣AB♣p).

■

Remark 2.5. In [40], M. Lin asked whether the following majorization inequality is true for

all A, B ≥ 0:

λ(A2 + ♣AB♣p) ≺ λ(A2 + ♣BA♣p) for every p ≥ 0 ?

Applying Part (i) of Lemma 2.3 on the above majorization relation (if it is valid) implies

Conjecture 2.1, which make it another approach for the solution other than the one we presented

above.

2.4.3. Comparing det(A2 + ♣AB♣p) with det(A2 + A
p
B

p)

Motivated by Section 2.3, our purpose here is to find for what values p ∈ (−∞, +∞), the

two determinantal quantities det(A2 + ♣AB♣p) and det(A2 + ApBp) have a general relation.

In the next theorem we can see that the determinantal inequality of Theorem 2.18 is reversed

when p ≤ 0 provided that A and B are invertible.

Theorem 2.19. Let A and B be two invertible Hermitian matrices. Then, for all p ≤ 0, we

have

det(A2 + ♣BA♣p) ≥ det(A2 + ♣AB♣p).
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Proof. For all p ∈ (−∞, 0], we have

λ
(
A−1(BA2B)

p

2 A−1
)

= λ
(
A−1B−1A−1(AB2A)

p

2
+1A−1B−1A−1

)

(using Lemma 2.6)

= λ
(
(A−1BA−1)2(AB2A)

p

2
+1
)

≺log λ
(
(A−1B−1A−1)(AB2A)1(A−1B−1A−1)(AB2A)

p

2

)

(using Theorem 2.16)

= λ
(
A−1(AB2A)

p

2 A−1
)
.

Similarly as in Theorem 2.18, after using Part (ii) of Lemma 2.3 and multiplying both sides

with det(A2), we obtain the desired inequality for every p ≤ 0. ■

As an analogue of Theorem 2.5, Theorem 2.18, and Theorem 2.19, we have the following

result.

Theorem 2.20. Let A and B be two positive semi-definite matrices. We have

(1) In case A and B invertible matrices, then for every p ≤ 0,

det(A2 + ♣AB♣p) ≤ det(A2 + ApBp).

(2) If 0 ≤ p ≤ 4, then det(A2 + ♣AB♣p) ≥ det(A2 + ApBp).

Proof. 1. The proof of the first case is divided into two cases.

Case 1: Let p ≤ −2. Combining Part (1) of Theorem 2.5 with Theorem 2.19 implies that for

all p ≤ −2

det(A2 + ♣AB♣p) ≤ det(A2 + ♣BA♣p) ≤ det(A2 + ApBp).

Case 2: Let −2 ≤ p ≤ 0. As usual, to prove the desired determinantal inequality we need to

prove a log-majorization that implies it, which is

λ(A
1
2 (B

1
2 AB

1
2 )tA

1
2 ) ≺wlog λ(A1+tBt) 0 ≤ t ≤ 1. (2.40)

And to prove this log-majorization relation it is enough to show that for 0 ≤ t ≤ 1

B
t
2 A1+tB

t
2 ≤ In ⇒ A

1
2 (B

1
2 AB

1
2 )tA

1
2 ≤ In.

Assuming that B
t
2 A1+tB

t
2 ≤ In gives A1+t ≤ B−t. Using Löwner-Heinz inequality

for 0 ≤ 1
1+t ≤ 1 gives

A ≤ B− t
1+t and B

t
1+t ≤ A−1.
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So,

A
1
2 (B

1
2 AB

1
2 )tA

1
2 ≤ A

1
2 (B

1
2 B− t

1+t B
1
2 )tA

1
2

= A
1
2 B

t
1+t A

1
2

≤ In.

Hence, λ1(A
1
2 (B

1
2 AB

1
2 )tA

1
2 ) ≤ λ1(A1+tBt) 0 ≤ t ≤ 1.

Thus, (2.40) is true by an anti-symmetric tensor product argument. Now, replacing

A with A−2, B with B−2 and taking t = −p
2 , we get

λ(A−1(BA2B)
p

2 A−1) ≺wlog λ(Ap−2Bp) − 2 ≤ p ≤ 0.

Finally, applying Part (ii) of Lemma 2.3 and then multiplying both sides with det(A2),

we get the desired determinantal inequality.

2. As a result of Theorem 2.18 and Part (3) of Theorem 2.5, we have for all 2 ≤ p ≤ 4

det(A2 + ♣AB♣p) ≥ det(A2 + ♣BA♣p) ≥ det(A2 + ApBp).

The proof for the case where 0 ≤ p ≤ 2 is in the next subsection.

■

The next example shows that there is no general relation between the two determinantal

quantities det(A2 + ♣AB♣p) and det(A2 + ApBp) for p ∈ [4, ∞).

Example 2.5. (1) For A =


1 0

0 1
2

]
, B =


1 1

1 2

]
and p = 6, we have

det(A2 + ♣AB♣6) = 23.09 < det(A2 + A6B6) = 26.15.

(2) For A =


1 0

0 2

]
, B =


1 1

1 2

]
and p = 6, we have

det(A2 + ♣AB♣6) = 17388 > det(A2 + A6B6) = 15336.

2.4.4. Solution for the Second Conjecture

In this subsection, our purpose is to find for what values of k and t the following majorization

inequality

λ(A
k
2

−tBt) ≺log λ(A
k
4 (B

1
2 A−1B

1
2 )tA

k
4 ) (2.41)
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is valid, where A and B are positive definite matrices. The first approach gives an indirect

proof by showing inequality (2.41) for the case k ≥ 4t with 0 ≤ t ≤ 1 and the case k ≥ 6t with
1
2 ≤ t ≤ 1. In the second approach we give a direct proof for a slightly more general result stated

as

λ(Ak−tBt) ≺log λ(A
k
2 (B

s
2 A−sB

s
2 )

t
s A

k
2 ) 0 ≤ t ≤ s ≤ k.

4.4.1 First Approach

The next theorem shows that (2.41) is valid for all 0 ≤ t ≤ 1 and k ≥ 4t.

Theorem 2.21. Let A and B be two positive definite matrices. Then, for all 0 ≤ t ≤ 1 and

k ≥ 4t

λ(A
k
2

−tBt) ≺log λ(A
k
4 (B

1
2 A−1B

1
2 )tA

k
4 ).

Proof. Let 0 ≤ t ≤ 1 and k ≥ 4t. Using Schur complement, we know that

M =


A

k
4

−tBt(B− 1
2 AB− 1

2 )tBtA
k
4

−t A
k
4

−tBtA
k
4

A
k
4 BtA

k
4

−t A
k
4 (B

1
2 A−1B

1
2 )tA

k
4

]
≥ 0.

Applying Lemma 2.1 on the the matrix M gives

(
λ1(A

k
2

−tBt)
)2

≤ λ1

(
A

k
4 (B

1
2 A−1B

1
2 )tA

k
4

)
· λ1

(
A

k
4

−tBt(B− 1
2 AB− 1

2 )tBtA
k
4

−t
)

. (2.42)

As mentioned earlier, in order to prove our claim, then it is enough to prove that

λ1

(
A

k
2

−tBt
)

≥ λ1

(
A

k
4

−tBt(B− 1
2 AB− 1

2 )tBtA
k
4

−t
)

, (2.43)

which is in turn equivalent to showing that

B
t
2 A

k
2

−tB
t
2 ≤ In ⇒ A

k
4

−tBt(B− 1
2 AB− 1

2 )tBtA
k
4

−t ≤ In.

For this, let B
t
2 A

k
2

−tB
t
2 ≤ In, then A

k
2

−t ≤ B−t.

First, making use of Löwner-Heinz inequality for 0 ≤ t
k
2

−t
≤ 1 gives

At ≤ B
− t2

k
2 −t .

Next, applying Furuta inequality yields

(
B

− t2

k
2 −t

 p+2r

p

≥
(

B
− t2

k
2 −t

r

(At)p

(
B

− t2

k
2 −t

r] 1
p

.
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Now, replacing p with 1
t ≥ 1 and r with

k
2

−t

2t2 ≥ 0 gives

B
−

kt
2

k
2 −t ≥ (B− 1

2 AB− 1
2 )t.

Pre-post multiplying both sides by Bt > 0 implies that

(Bt)

k
2 −2t

k
2 −t = BtB

−
kt
2

k
2 −t Bt ≥ Bt(B− 1

2 AB− 1
2 )tBt. (2.44)

However, A
k
2

−t ≤ B−t, so that A−( k
2

−t) ≥ Bt. By again appealing to Löwner-Heinz inequality

for 0 ≤
k
2

−2t
k
2

−t
≤ 1 we obtain

(A−( k
2

−t))

k
2 −2t

k
2 −t ≥ (Bt)

k
2 −2t

k
2 −t ,

which gives

A−( k
2

−2t) ≥ (Bt)

k
2 −2t

k
2 −t . (2.45)

Now it is worthy to observe that inequalities (2.44) and (2.45) yield

A−( k
2

−2t) ≥ Bt(B− 1
2 AB− 1

2 )tBt.

Hence,

A
k
4

−tBt(B− 1
2 AB− 1

2 )tBtA
k
4

−t ≤ In,

and therefore, (2.43) is true for all 0 ≤ t ≤ 1 and k ≥ 4t.

On the other hand, using (2.42) and (2.43) gives

λ1

(
A

k
2

−tBt
)

≤ λ1

(
A

k
4 (B

1
2 A−1B

1
2 )tA

k
4

)
, 0 ≤ t ≤ 1, k ≥ 4t.

Thus, by a standard anti-symmetric tensor product argument, we get

λ
(
A

k
2

−tBt
)

≺wlog λ
(
A

k
4 (B

1
2 A−1B

1
2 )tA

k
4

)
, 0 ≤ t ≤ 1, k ≥ 4t.

Finally, the proof is complete by making use of the fact that

det
(
A

k
2

−tBt
)

= det
(
A

k
4 (B

1
2 A−1B

1
2 )tA

k
4

)
.

■

Our next goal is to show that (2.41) is also true for all 1
2 ≤ t ≤ 1 and k ≥ 6t − 2. First, we

need the following lemma.
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Lemma 2.13. Let A and B be two positive definite matrices. Then, for all 1
2 ≤ t ≤ 1 and

k ≥ 6t − 2, we have

λ

(
A

k+2t

4

(
A− 1

2 BA− 1
2

)2t
A

2t+k

4

)
≻log λ(A

k
2

−tB2t).

Proof. As in similar situations, it is enough to prove that for all 1
2 ≤ t ≤ 1 and k ≥ 6t − 2

λ1

(
A

k+2t
4

(
A− 1

2 BA− 1
2

)2t
A

2t+k
4

)
≥ λ1(A

k
2

−tB2t).

First, in view of Lemma 2.6, we obtain the following equality:

A
2t+k

4

(
A− 1

2 BA− 1
2

)2t
A

2t+k
4 = A

2t+k−2
4 B

1
2

(
B

1
2 A−1B

1
2

)2t−1
B

1
2 A

2t+k−2
4 .

For the sake of clarification, we shall use the following notation. For all 1
2 ≤ t ≤ 1 and

k ≥ 6t − 2, let

X = A
2t+k−2

4 B
1
2

(
B

1
2 A−1B

1
2

)2t−1
B

1
2 A

2t+k−2
4 ,

Y = A
2t+k−2

4 B2tA
k−6t+2

4 , and

Z = A
k−6t+2

4 B2t− 1
2 (B− 1

2 AB− 1
2 )2t−1B2t− 1

2 A
k−6t+2

4 .

Now by making use of Schur complement, the following 2 × 2 block matrix

M =


X Y

Y ∗ Z

]

is positive semi-definite and hence λ1(X) · λ1(Z) ≥ λ1(Y )2. Our next goal is to show that

λ1(Z) ≤ λ1(Y ) which in turn gives λ1(X) ≥ λ1(Y ). Noticing that λ1(Y ) = λ1(BtA
k
2

−tBt), then

in order to prove λ1(Z) ≤ λ1(Y ), it is suffices to show that

BtA
k
2

−tBt ≤ In ⇒ Z ≤ In.

For this purpose, let BtA
k
2

−tBt ≤ In, then clearly A
k
2

−t ≤ B−2t. Using Löwner-Heinz inequality

for 0 ≤ 2t−1
k
2

−t
≤ 1 gives

A2t−1 ≤ B
−

2t(2t−1)
k
2 −t .

Now, applying Furuta inequality yields

(
B

−
2t(2t−1)

k
2 −t

 p+2r

p

≥
(

B
−

2t(2t−1)
k
2 −t

r

(A2t−1)p

(
B

−
2t(2t−1)

k
2 −t

r] 1
p

.
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Next, taking p = 1
2t−1 ≥ 1 and r =

k
2

−t

4t(2t−1) ≥ 0 implies that

B
−

( k
2 +t)(2t−1)

k
2 −t ≥ (B− 1

2 AB− 1
2 )2t−1.

Pre-post multiplying both sides with B2t− 1
2 > 0 gives

B2t− 1
2 B

−
( k

2 +t)(2t−1)

k
2 −t B2t− 1

2 =
(
B2t

) k−6t+2
2

k
2 −t ≥ B2t− 1

2 (B− 1
2 AB− 1

2 )2t−1B2t− 1
2 .

Again, noticing that A
k
2

−t ≤ B−2t implies that A−( k
2

−t) ≥ B2t, then by appealing to Löwner-

Heinz for 0 ≤
k−6t+2

2
k
2

−t
≤ 1 we obtain

(A−( k
2

−t))

k−6t+2
2

k
2 −t ≥ (B2t)

k−6t+2
2

k
2 −t

which gives

A−( k−6t+2
2

) ≥ B2t− 1
2 (B− 1

2 AB− 1
2 )2t−1B2t− 1

2 .

Hence,

Z = A
k−6t+2

4 B2t− 1
2 (B− 1

2 AB− 1
2 )2t−1B2t− 1

2 A
k−6t+2

4 ≤ In.

Therefore, for all 1
2 ≤ t ≤ 1 and k ≥ 6t − 2,

λ1(X) ≥ λ1(Y ).

Thus, by an anti-symmetric tensor product argument and by the fact that det(X) = det(Y ),

we get

λ(X) ≻log λ(Y ).

Finally, noting that

λ(X) = λ

(
A

k+2t

4

(
A− 1

2 BA− 1
2

)2t
A

2t+k

4

)
and λ(Y ) = λ(A

k
2

−tB2t),

the proof is complete. ■

Theorem 2.22. Let A and B be two positive definite matrices. Then, for all 1
2 ≤ t ≤ 1 and

k ≥ 6t − 2

λ

(
A

k
4

(
B

1
2 A−1B

1
2

)t
A

k
4

)
≻log λ(A

k
2

−tBt).
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Proof. Let 1
2 ≤ t ≤ 1 and k ≥ 6t − 2. Then, we can write

λ

(
A

k
4

(
B

1
2 A−1B

1
2

)t
A

k
4

)
= λ

(
A

k
4

(
A

1
2 (A− 1

2 B
1
2 A−1B

1
2 A− 1

2 )A
1
2

)t
A

k
4

)

≻log λ

(
A

k
2

+t
(
A− 1

2 B
1
2 A−1B

1
2 A− 1

2

)t
)

= λ

(
A

k
2

+t
(
A− 1

2 B
1
2 A− 1

2

)2t
)

= λ

(
A

k+2t

4

(
A− 1

2 B
1
2 A− 1

2

)2t
A

k+2t

4

)

≻log λ
(
A

k
2

−t(B
1
2 )2t

)
(by Lemma 2.13)

= λ
(
A

k
2

−tBt
)
.

The first inequality is due to replacing X with A and Y with A− 1
2 B

1
2 A−1B

1
2 A− 1

2 , respectively,

in Part (i) of Lemma 2.7. ■

As a result of Theorem 2.21 and Theorem 2.22, we have the following corollary.

Corollary 2.4. Let A and B be two positive semi-definite matrices. Then, for (0 ≤ p ≤ 2 and

k ≥ 2p) or for (1 ≤ p ≤ 2 and k ≥ 3p − 2) we have

det(Ak + ♣AB♣p) ≥ det(Ak + ApBp).

Proof. Without loss of generality we may assume that A and B are positive definite matrices,

the general case is by continuity argument. Suppose that 0 ≤ p ≤ 2 and k ≥ 2p. Then, replacing

A with A−2, B with B2 and t with 0 ≤ p
2 ≤ 1 in Theorem 2.21 gives

λ(Ap−kBp) ≺log λ(A− k
2 (BA2B)

p

2 A− k
2 ). (2.46)

Applying Part (ii) of Lemma 2.3 on (2.46) yields

det(In + A− k
2 (BA2B)

p

2 A− k
2 ) ≥ det(In + Ap−kBp).

Next, multiplying both sides with det(Ak) > 0, we obtain

det(Ak + ♣AB♣p) ≥ det(Ak + ApBp), 0 ≤ p ≤ 2, k ≥ 2p.

For the case when 1 ≤ p ≤ 2 and k ≥ 3p − 2, the proof can be done in a similar fashion by

making use this time of Theorem 2.22. ■

As an analogue of Corollary 2.4, we have the following result which gives a partial answer of

Conjecture 2.2.
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Theorem 2.23. Let A and B be two positive semi-definite matrices. Then, for all 0 ≤ p ≤ 4
3 ,

the following holds

det(A2 + ♣AB♣p) ≥ det(A2 + ApBp).

4.4.2 Second Approach

We will establish the following log-majorization relation.

Lemma 2.14. Let A, B be two positive definite matrices. Then for all 0 ≤ t ≤ s ≤ k,

λ(A
k
2 (B

s
2 A−sB

s
2 )

t
s A

k
2 ) ≻wlog λ(Ak−tBt).

Proof. As usual in such situation, by a standard anti-symmetric tensor product argument, it is

enough to prove that for all 0 ≤ t ≤ s ≤ k

λ1(A
k
2 (B

s
2 A−sB

s
2 )

t
s A

k
2 ) ≥ λ1(Ak−tBt).

Without loss of generality, we assume

λ1(A
k
2 (B

s
2 A−sB

s
2 )

t
s A

k
2 ) = 1.

This is equivalent to

A
k
2 (B

s
2 A−sB

s
2 )

t
s A

k
2 ≤ In

which in turn gives

(B
s
2 A−sB

s
2 )

t
s ≤ A−k. (2.47)

Now obviously proving our claim is equivalent to showing that

λ1(Ak−tBt) ≤ 1.

Clearly, inequality (2.47) gives

Ak ≤ (B− s
2 AsB− s

2 )
t
s .

Now using Löwner-Heinz inequality for 0 ≤ k−t
k ≤ 1, we obtain

Ak−t ≤ (B− s
2 AsB− s

2 )
t(k−t)

sk . (2.48)

58



2. Determinantal Inequalities

Thus, we can write

λ1

(
Ak−tBt

)
= λ1

(
B

t
2 Ak−tB

t
2

)

≤ λ1

(
B

t
2 (B− s

2 AsB− s
2 )

t(k−t)
sk B

t
2

)

≤ λ1

(
B

s
2 (B− s

2 AsB− s
2 )

k−t
k B

s
2

) t
s

= λ1

(
B

s
2 (B

s
2 A−sB

s
2 )

t
k

−1B
s
2

) t
s

≤ λ1

(
B

s
2 (B

s
2 A−sB

s
2 )−1B

s
2 (B

s
2 A−sB

s
2 )

t
k

) t
s

= λ1

(
A

s
2 (B

s
2 A−sB

s
2 )

t
k A

s
2

) t
s

≤ λ1

(
A

k
2 (B

s
2 A−sB

s
2 )

t
s A

k
2

) t
k

= (1)
t
k

= 1.

Here, the first inequality follows from (2.48), the second and the last inequality follow from

Lemma 2.5 by substituting 0 ≤ p = t
s ≤ 1 and 0 ≤ p = s

k ≤ 1, respectively, and the third

inequality follows from taking q = 1, p = t
k and replacing X with B

s
2 and Y with B

s
2 A−sB

s
2 in

Theorem 2.16. ■

Finally, we are in a position to present a generalization of Conjecture 2.2.

Theorem 2.24. Let A and B be two positive semi-definite matrices. Then, for all 0 ≤ p ≤
s ≤ k,

det(Ak + ♣A s
2 B

s
2 ♣

2p

s ) ≥ det(Ak + ApBp).

Proof. We shall assume again that A and B are positive definite matrices as the general case

can be obtained by a continuity argument.

With this in mind, replacing now A with A−1 and taking t = p in Lemma 2.14 give

λ(A− k
2 (B

s
2 AsB

s
2 )

t
s A− k

2 ) ≻wlog λ(At−kBt), 0 ≤ t ≤ s ≤ k. (2.49)

Applying Part (ii) of Lemma 2.3 to (2.49) yields

det(In + A−k/2(B
s
2 AsB

s
2 )

p

s A−k/2) ≥ det(In + Ap−kBp), 0 ≤ p ≤ s ≤ k.

Therefore, multiplying both sides with det(Ak) > 0 implies

det(Ak + ♣A s
2 B

s
2 ♣

2p

s ) ≥ det(Ak + ApBp), 0 ≤ p ≤ s ≤ k.

■
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2. Determinantal Inequalities

2.5. Open Problems

The following results were presented in this chapter:

det(Ak + ♣BA♣p) ≤ det(Ak + ApBp) for 0 ≤ p ≤ 2, and k ≥ p; (2.50)

det(A2 + ♣AB♣p) ≥ det(A2 + ♣BA♣p) for p ≥ 0; (2.51)

det(A2 + ♣AB♣p) ≤ det(A2 + ♣BA♣p) for p ≤ 0; (2.52)

det(Ak + ♣AB♣2) ≥ det(Ak + A2B2) for k ≥ 0; (2.53)

det(Ak + ♣AB♣2) ≤ det(Ak + A2B2) for k ≤ 0; (2.54)

det(Ak + ♣AB♣p) ≥ det(Ak + ApBp) for 0 ≤ p ≤ 2, and k ≥ 2. (2.55)

where A and B are two positive semi-definite matrices (A and B are invertible in (2.52) and

(2.54)).

As analogue of (2.53) and (2.55), we can introduce our first problem.

Conjecture 2.3. Let A and B be two positive semi-definite matrices. Then, for all k ≥ 0

det(Ak + ♣AB♣p) ≥ det(A2 + ApBp) 0 ≤ p ≤ 2.

As a result of (2.51) and noting that (2.50) and (2.55) implies

det(Ak + ♣AB♣p) ≥ det(Ak + ♣BA♣p) 0 ≤ p ≤ 2 and k ≥ 2,

we can formulate the following conjecture.

Conjecture 2.4. Let A and B be two positive semi-definite matrices. Then, for all k, p ≥ 0

det(Ak + ♣AB♣p) ≥ det(Ak + ♣BA♣p).

Motivated by some recent work in [37], we will show a determinantal inequality related to

inequality (2.55). More explicitly, our main goal here is to show that with the same setting, the

inequality in Theorem 2.24 is reversed when replacing Ak by A−k provided that A is invertible.

The starting point here is the following lemma.

Lemma 2.15. Let A and B be two positive definite matrices. Then for all 0 ≤ t ≤ s ≤ k,

λ(A
k
2 (B

s
2 AsB

s
2 )

t
s A

k
2 ) ≺wlog λ(Ak+tBt).
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2. Determinantal Inequalities

Proof. As in similar situations, it is enough to prove that for all 0 ≤ t ≤ s ≤ k,

λ1(A
k
2 (B

s
2 AsB

s
2 )

t
s A

k
2 ) ≤ λ1(Ak+tBt).

Again, without loss of generality, we shall assume that λ1(Ak+tBt) = 1. As mentioned

earlier, our task now is equivalent to proving

B
t
2 Ak+tB

t
2 ≤ In,

which is in turn equivalent to showing that

Ak+t ≤ B−t.

By appealing to Lemma 2.1 for 0 ≤ k
k+t ≤ 1, we obtain

Ak ≤ B− tk
k+t . (2.56)

Then, using again a power s
k where 0 ≤ s

k ≤ 1 on (2.56), we get

As ≤ B− ts
k+t . (2.57)

Now, we can write

λ1

(
A

k
2 (B

s
2 AsB

s
2 )

t
s A

k
2

)
≤ λ1

(
A

k
2 (B

s
2 B− st

k+t B
s
2 )

t
s A

k
2

)
(by using (2.57))

= λ1

(
A

k
2 B

tk
k+t A

k
2

)

= λ1

(
B

tk
2(k+t) AkB

tk
2(k+t)

)

≤ λ1

(
B

tk
2(k+t) B

− tk
(k+t) B

tk
2(k+t)

)
(by using (2.56))

= λ1(In)

= 1.

As before, applying anti-symmetric tensor product argument gives for all 0 ≤ t ≤ s ≤ k,

λ(A
k
2 (B

s
2 AsB

s
2 )

t
s A

k
2 ) ≺wlog λ(Ak+tBt).

■

As a result, we have the following theorem.

Theorem 2.25. Let A and B be two n × n complex matrices such that A is positive definite

and B is positive semi-definite matrix. Then for all 0 ≤ p ≤ s ≤ k, it holds that

det(A−k + ♣A s
2 B

s
2 ♣

2p

s ) ≤ det(A−k + ApBp).
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Proof. As usual we shall assume that B is a positive definite matrix. Applying Lemma 2.2.3 to

the majorization inequality of Lemma 2.15 gives

det(In + Ak/2(B
s
2 AsB

s
2 )

t
s Ak/2) ≤ det(In + At+kBt), 0 ≤ t ≤ s ≤ k.

Taking t = p and multiplying both sides with det(A−k) > 0 yield

det(A−k + ♣A s
2 B

s
2 ♣

2p

s ) ≤ det(A−k + ApBp), 0 ≤ t ≤ s ≤ k.

■

As a consequence of Theorem 2.25, inequality (2.52) and inequality (2.54), we can introduce

the following two conjectures.

Conjecture 2.5. Let A and B be two invertible Hermitian matrices. Then, for all p ≤ 0 and

k ≥ 0

det(Ak + ♣AB♣p) ≤ det(Ak + ♣BA♣p).

Conjecture 2.6. Let A and B be two n × n complex matrices such that A is positive definite

and B is positive semi-definite matrix. Then, for all k ≤ 0

det(Ak + ♣AB♣p) ≤ det(Ak + ApBp) 0 ≤ p ≤ 2.
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3

Applications of Some Obtained Majorization Relations

I
n the previous chapter, we have established some majorization relations to prove our desired

determinantal inequalities. In this chapter, we provide some applications to these obtained

majorization inequalities. First, we introduce a new positive definite quantity recently

defined by Lin [40]. We study basic properties of this quantity and show its relation with the

geometric mean. We also provide majorization inequalities concerning the eigenvalues of this

new quantity compared with that of the geometric mean. We then give a complement of a

Golden-Thompson type inequality posed by Hiai and Petz in [30]. Furthermore, we show an

application to Rényi divergences. Lastly, we present a complement of a unitarily invariant norm

inequality which was conjectured by Bhatia, Lim and Yamazaki [12] and recently proved by

Dinh, Dumitru and Franco [18] for the Schatten p-norm with 1 ≤ p ≤ ∞.

3.1. A Positive Definite Quantity Related to
the Matrix Geometric Mean

The following quantities was first introduced by M. Lin [40] for any n × n positive definite

matrices A and B.

Definition 3.1. Let A and B be two positive semi-definite matrices with A invertible. The

matrix A♮B is defined by

A♮B = A
1
2 (B

1
2 A−1B

1
2 )

1
2 A

1
2 .

As usual, it can be extended to any singular matrix A by continuity argument as follows:

A♮B = lim
ϵ→0+

(A + ϵIn)♮B.

Definition 3.2. Let A and B be two positive definite matrices. The weighted version of A♮B is

denoted and defined by

A♮tB = A
1
2 (B

1
2 A−1B

1
2 )tA

1
2 for t ∈ R,
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3. Applications of Some Obtained Majorization Relations

and it can be extended to A ≥ 0 by continuity as follows:

A♮tB = lim
ϵ→0+

(A + ϵIn)♮tB.

In particular, when t = 1
2 , we have A♮ 1

2
B = A♮B.

Here are some obvious properties of this new quantity.

(i) A♮tB > 0.

(ii) For t = 0 and t = 1 we have A♮0B = A and A♮1B = A
1
2 B

1
2 A−1B

1
2 A

1
2 .

(iii) f(A, B) = A♮tB is continuous for all A, B > 0.

(iv) (αA)♮t(βB) = α1−tβt(A♮tB) for all α, β ∈ R\¶0♢.

(v) A♮tB = A1−tBt in case AB = BA.

(vi) (A♮tB)−1 = A−1♮tB
−1.

The following proposition shows a relation between the two quantities A♮B and B♮A as well

as the geometric mean.

Proposition 3.1. Let A and B be two positive definite matrices. Then

A♮B = A
1
2 B

1
2 (A#B)−1B

1
2 A

1
2 , and

A♮B = A
1
2 B

1
2 A− 1

2 B− 1
2 (B♮A)B− 1

2 A− 1
2 B

1
2 A

1
2 .

Proof. It is easy to see using Lemma 2.6 that

A
1
2 (B

1
2 A−1B

1
2 )

1
2 A

1
2 = A

1
2 B

1
2 A− 1

2 (A− 1
2 BA− 1

2 )− 1
2 A− 1

2 B
1
2 A

1
2 .

So, clearly we have A♮B = A
1
2 B

1
2 (A#B)−1B

1
2 A

1
2 .

Now, for the second equality we have due to the first equality and the fact that the geometric

mean is symmetric

A♮B = A
1
2 B

1
2 (A#B)−1B

1
2 A

1
2

= A
1
2 B

1
2 (B#A)−1B

1
2 A

1
2

= A
1
2 B

1
2 A− 1

2 B− 1
2 B

1
2 A

1
2 (B#A)−1A

1
2 B

1
2 B− 1

2 A− 1
2 B

1
2 A

1
2 .

Hence, we obtain the desired equality since B♮A = B
1
2 A

1
2 (B#A)−1A

1
2 B

1
2 . ■

Remark 3.1. As a consequence of Proposition 3.1, the positive definite quantity A♮B is not

symmetric as A♮B = B♮A is not true in general. However, A♮B = B♮A is just valid when A

and B commute.
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3. Applications of Some Obtained Majorization Relations

Remark 3.2. It is easy to check that the binary operation γ = ♮ is not a connection since the

function f(A, B) = A♮B is not monotone for A, B > 0, that is, A1♮B1 ≤ A2♮B2 is not true in

general for every A1 ≤ A2 and B1 ≤ B2.

Example 3.1. Take three positive definite matrices such that A ≤ C

A :=


1 0

0 2

]
, B :=


1 1

1 2

]
and C :=


1 0

0 3

]
.

Then A♮B =


0.86 0.53

0.53 1.95

]
and C♮B =


0.85 0.61

0.61 2.46

]
, but

A♮B ≰ C♮B.

Proposition 3.2. Let A and B be two positive definite matrices. Then

(1) • A ≤ A♮B ≤ A
1
2 B

1
2 A−1B

1
2 A

1
2 if A ≤ B and

• A
1
2 B

1
2 A−1B

1
2 A

1
2 ≤ A♮B ≤ A is valid when B ≤ A.

In particular, when B ≤ A we have

λ1(B) ≤ λ1(A♮B) ≤ λ1(A).

(2) The matrix A♮B has a very similar property as the geometric mean

A♮B = max



X : X = X∗,


 A X

X
(
A− 1

2 B
1
2 A

1
2

)∗ (
A− 1

2 B
1
2 A

1
2

)

 ≥ 0



 .

(3) The quantity A♮B is the unique positive solution of the equation

XA−1X = A
1
2 B

1
2 A−1B

1
2 A

1
2 .

Proof. (1) • The left inequality is easily obtained by the fact that A ≤ B. Now, to prove

the right inequality, we can see that by Lemma 2.6

A♮B = A
1
2

(
B

1
2 A−1B

1
2

) 1
2 A

1
2

= A
1
2 B

1
2 A− 1

2

(
A− 1

2 BA− 1
2

)− 1
2 A− 1

2 B
1
2 A

1
2

= A
1
2 B

1
2 A− 1

2

(
A

1
2 B−1A

1
2

) 1
2 A− 1

2 B
1
2 A

1
2

≤ A
1
2 B

1
2 A− 1

2

(
A

1
2 A−1A

1
2

) 1
2 A− 1

2 B
1
2 A

1
2

= A
1
2 B

1
2 A−1B

1
2 A

1
2 .
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3. Applications of Some Obtained Majorization Relations

• The proof of this inequality is done by similar steps as in the case of A ≤ B. For the

particular case, we can easily observe with the help of the fact that X ≤ Y implies

λj(A) ≤ λj(B) for every j = 1, 2, . . . , n. So, we have

λ1

(
A

1
2 B

1
2 A−1B

1
2 A

1
2

)
≤ λ1(A♮B) ≤ λ(A).

Now, by using Theorem 2.16 for X = B
1
2 and Y = A, we get

λ1

(
A

1
2 B

1
2 A−1B

1
2 A

1
2

)
= λ1

(
AB

1
2 A−1B

1
2

)
≥ λ1(B).

Therefore,

λ1(B) ≤ λ1(A♮B) ≤ λ1(A).

(2) Let S :=



X : X = X∗,


 A X

X
(
A− 1

2 B
1
2 A

1
2

)∗ (
A− 1

2 B
1
2 A

1
2

)

 ≥ 0



. Our proof is divided

into two steps. The first step is to show that the quantity A♮B satisfies

M :=


A A♮B

A♮B A
1
2 B

1
2 A−1B

1
2 A

1
2

]
≥ 0.

The second step is to verify that every element X in S satisfies

X ≤ A♮B.

step 1: The matrix M can be written as


A

1
2

A
1
2 (B

1
2 A−1B

1
2 )

1
2

] 
A

1
2

A
1
2 (B

1
2 A−1B

1
2 )

1
2

]∗

=


A A♮B

A♮B A
1
2 B

1
2 A−1B

1
2 A

1
2

]
.

Hence, A♮B ∈ S.

Step 2: Let us assume that X is an element of S. Then


A X

X A
1
2 B

1
2 A−1B

1
2 A

1
2

]
≥ 0.

By using Schur’s complement we have A
1
2 B

1
2 A−1B

1
2 A

1
2 − XA−1X ≥ 0. So

A
1
2 B

1
2 A−1B

1
2 A

1
2 ≥ XA−1X.

Pre-post multiplying both sides with A− 1
2 > 0 gives

B
1
2 A−1B

1
2 ≥ A− 1

2 XA−1XA− 1
2 = (A− 1

2 XA− 1
2 )2.
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3. Applications of Some Obtained Majorization Relations

Now applying Löwner-Heinz inequality for r = 1
2 yields

(B
1
2 A−1B

1
2 )

1
2 ≥ A− 1

2 XA− 1
2 .

Therefore, after pre-post multiplying both sides with A
1
2 > 0, we obtain

A♮B ≥ X.

(3) First, one can simply see that A♮B is a solution of the equation

XA−1X = A
1
2 B

1
2 A−1B

1
2 A

1
2 . (3.1)

Next, our purpose is to show the uniqueness. We will assume that there exist two solutions

X and Y of (3.1), then

XA−1X = Y A−1Y = A
1
2 B

1
2 A−1B

1
2 A

1
2 .

Then XA−1X = Y A−1Y . Pre-post multiplying both sides with A− 1
2 > 0 gives

A− 1
2 XA−1XA− 1

2 = A− 1
2 Y A−1Y A− 1

2 ,

which is equivalent to

(A− 1
2 XA− 1

2 )2 = (A− 1
2 Y A− 1

2 )2.

So,

A− 1
2 XA− 1

2 = A− 1
2 Y A− 1

2 .

Finally, pre-post multiplying both sides with A
1
2 yields X = Y , which assures the unique-

ness of the solution of the equation (3.1).

■

Theorem 3.1. For any n × n positive definite matrices A and B. We have

(i) If 0 ≤ t ≤ 1 then λ(A#tB) ≺log λ(A1−tBt) ≺log λ(A♮tB).

(ii) If −1 ≤ t ≤ 0 then λ(A#tB) ≻log λ(A1−tBt) ≻log λ(A♮tB).

(iii) If t ≥ 0 then λ(A#tB) ≺log λ(A♮tB).

(iv) If t ≤ 0 then λ(A#tB) ≻log λ(A♮tB).

Proof. Before we start the proof, let us recall some majorization relations from Chapter 2. In

Section 2.3, Part (i) of Lemma 2.7 and Lemma 2.8 state that for every A, B > 0 we have for all
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3. Applications of Some Obtained Majorization Relations

0 ≤ t ≤ 1,

λ(A
kt
2 (A− 1

2 BA− 1
2 )tA

kt
2 ) ≺log λ(A(k−1)tBt) k > 1; (3.2)

λ(A
k
2 (A

1
2 BA

1
2 )tA

k
2 ) ≻log λ(Ak+tBt) k ≥ 0. (3.3)

In Section 2.4 and Section 2.5, we established two majorization relations (see Lemma 2.14

and Lemma 2.15) that show that for any positive definite matrices A and B we have for all

0 ≤ t ≤ s ≤ k

λ(Ak−tBt) ≺wlog λ(A
k
2 (B

s
2 A−sB

s
2 )

t
s A

k
2 );

λ(Ak+tBt) ≻wlog λ(A
k
2 (B

s
2 AsB

s
2 )

t
s A

k
2 ).

In particular, when s = 1, the following relations hold for all 0 ≤ t ≤ 1 and k ≥ 1

λ(Ak−tBt) ≺wlog λ(A
k
2 (B

1
2 A−1B

1
2 )tA

k
2 ); (3.4)

λ(Ak+tBt) ≻wlog λ(A
k
2 (B

1
2 AB

1
2 )tA

k
2 ). (3.5)

(i) Our purpose is to show that for all 0 ≤ t ≤ 1,

λ(A
1
2 (A− 1

2 BA− 1
2 )tA

1
2 ) ≺log λ(A1−tBt) ≺log λ(A

1
2 (B

1
2 A−1B

1
2 )tA

1
2 ). (3.6)

It is clear that for t = 0 and t = 1 the left inequality is true. Now, for 0 < t < 1,

substituting k = 1
t > 1 in (3.2) we get the left inequality. The inequality on the right is

obtained after taking k = 1 and s = 1 in (3.3) and noting that det(A1−tBt) = det(A♮tB).

(ii) In this case, our object is to prove that (3.6) is reversed when −1 ≤ t ≤ 0. The desired

is obtained after replacing B with B−1 and t with −t and taking k = 1 in (3.3) and (3.5)

and noting that det(A1−tBt) = det(A♮tB).

(iii) For t ≥ 0, our aim is to show that

λ(A
1
2 (A− 1

2 BA− 1
2 )tA

1
2 ) ≺log λ(A

1
2 (B

1
2 A−1B

1
2 )tA

1
2 ).

As a result of Lemma 2.6, we can write

A
1
2 (A− 1

2 BA− 1
2 )tA

1
2 = A

1
2

(
A− 1

2 B
1
2 (B

1
2 A−1B

1
2 )t−1B

1
2 A− 1

2

)
A

1
2 .
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Then

λ
(
A

1
2 (A− 1

2 BA− 1
2 )tA

1
2

)
= λ

[
A

1
2

(
A− 1

2 B
1
2 (B

1
2 A−1B

1
2 )t−1B

1
2 A− 1

2

)
A

1
2

]

= λ
(
B(B

1
2 A−1B

1
2 )t−1

)

≺log λ
(
B

1
2 (B

1
2 A−1B

1
2 )tB

1
2 (B

1
2 A−1B

1
2 )−1

)

= λ
(
A

1
2 (B

1
2 A−1B

1
2 )tA

1
2

)
.

Here, the log-majorization inequality follows from Theorem 2.16 by taking X = B
1
2 ,

Y = B
1
2 A−1B

1
2 , p = t and q = 1.

(iv) Let t ≤ 0. We can write

λ
(
A

1
2 (B

1
2 A−1B

1
2 )tA

1
2

)

= λ
(
A

1
2 B− 1

2 A
1
2 (A− 1

2 BA− 1
2 )t+1A

1
2 B− 1

2 A
1
2

)

= λ
(
(A

1
2 B− 1

2 A
1
2 )2(A− 1

2 BA− 1
2 )1−(−t)

)

≺log λ
(
(A

1
2 B− 1

2 A
1
2 )(A− 1

2 BA− 1
2 )1(A

1
2 B− 1

2 A
1
2 )(A− 1

2 BA− 1
2 )−(−t)

)

= λ
(
A

1
2 (A− 1

2 BA− 1
2 )tA

1
2

)
.

The first equality follows from Lemma 2.6, and the inequality follows from substituting X

with A
1
2 B

1
2 A

1
2 and Y with A− 1

2 BA− 1
2 respectively, and taking p = 1 and q = −t > 0 in

Theorem 2.16.

■

Remark 3.3. It is worthy to mention here that the left inequality in Part (i) of Theorem 3.1

was first proved by J.S. Matharu and J.S. Aujla [49, Theorem 2.10], and the right inequality was

first proved by M. Lin [40] in case t = 1
2 .

Proposition 3.3. Let X, Y ∈ Mn such that σ(X) ≺log σ(Y ). Then

♣♣♣X♣♣♣ ≤ ♣♣♣Y ♣♣♣,

is valid for every unitarily invariant norm ♣♣♣ · ♣♣♣.
Proof. Let us recall the fact that x ≺log y implies x ≺w y for every x, y ∈ Cn (see Theorem 1.7),

which implies
k∑

j=1

σj(X) ≤
k∑

j=1

σj(Y ) for k = 1, 2, . . . , n.

This can be written equivalently as

♣♣♣X♣♣♣(k) ≤ ♣♣♣Y ♣♣♣(k) for k = 1, 2, . . . , n.

69



3. Applications of Some Obtained Majorization Relations

Therefore, using the well-known Ky Fan Dominance Theorem (see Theorem 1.3) we obtain

our final result. ■

As analogue of Theorem 3.1 and Proposition 3.3, we have the following unitarily invariant

norms.

Corollary 3.1. For any n × n positive definite matrices A and B. We have

(i) If 0 ≤ t ≤ 1 then ♣♣♣A#tB♣♣♣ ≤ ♣♣♣B t
2 A1−tB

t
2 ♣♣♣ ≤ ♣♣♣A♮tB♣♣♣.

(ii) If −1 ≤ t ≤ 0 then ♣♣♣A#tB♣♣♣ ≥ ♣♣♣B t
2 A1−tB

t
2 ♣♣♣ ≥ ♣♣♣A♮tB♣♣♣.

(iii) If t ≥ 0 then ♣♣♣A#tB♣♣♣ ≤ ♣♣♣A♮tB♣♣♣.

(iv) If t ≤ 0 then ♣♣♣A#tB♣♣♣ ≥ ♣♣♣A♮tB♣♣♣.

3.2.
A Complement of a Golden-Thompson

Type Inequality

The well-known Golden-Thompson trace inequality independently proved in 1965 by S.

Golden [33] and C.J. Thompson [58] states that

Tr(eA+B) ≤ Tr(eAeB) (3.7)

where A and B are two Hermitian matrices (see [7, 22] and references therein for more details

on this trace inequality).

In 1993, F. Hiai and D. Petz [30] established a lower bound of (3.7) in terms of the geometric

mean of matrices as follows

Tr
(
epA#epB

) 2
p ≤ Tr

(
eA+B

)
p ≥ 0.

In fact, they have proved for all p ≥ 0 and 0 ≤ t ≤ 1

Tr
(
epA#te

pB
) 1

p ≤ Tr
(
e(1−t)A+tB

)
.

In this subsection, we will complement this result for p ≥ 1 as the following theorem shows.

Theorem 3.2. Let A and B be two Hermitian matrices. Then for all p ≥ 1 and 0 ≤ t ≤ 1

Tr
(
e(1−t)A+tB

)
≤
(
e(1−t)AetB

)
≤ Tr

(
epA♮te

pB
) 1

p .
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Proof. The first inequality is due to Golden-Thompson inequality. Now for the second inequality,

replacing A and B with epA and epB, respectively in the right inequality of Part (i) of Theorem 3.1

gives

λ
(
(epA)1−t(epB)t

)
≺log λ

(
epA♮te

pB
)
.

So,

λ
(
e(1−t)pA+tpB

)
≺w λ

(
epA♮te

pB
)
.

This implies

Tr
(
e(1−t)pA+tpB

)
≤ Tr

(
epA♮te

pB
)

. (3.8)

Now, if we substitute X and Y with (etB)
1
2 and e(1−t)A, respectively, and we take t = p in

Lemma 2.5, we have for p ≥ 1

♣♣♣(etB)
1
2 e(1−t)A(etB)

1
2 ♣♣♣ ≤ ♣♣♣

(
(etB)

p

2 (e(1−t)A)p(etB)
p

2

)1/p
♣♣♣.

Hence,

Tr
(
(etB)

1
2 e(1−t)A(etB)

1
2

)
≤ Tr

(
(etB)

p

2 (e(1−t)A)p(etB)
p

2

)1/p
(3.9)

Therefore,

Tr
(
e(1−t)AetB

)
= Tr

(
(etB)

1
2 e(1−t)A(etB)

1
2

)

≤ Tr
(
(etB)

p

2 (e(1−t)A)p(etB)
p

2

)1/p
(using (3.9))

= Tr
(
e(1−t)pAetpB

)1/p

≤ Tr
(
epA♮te

pB
)1/p

(using (3.8)).

■

We conclude this subsection with the next corollary.

Corollary 3.2. Let A and B be two Hermitian matrices. Then for all p ≥ 1

Tr
(
epA#epB

)2/p
≤ Tr

(
eA+B

)
≤ Tr

(
epA♮epB

)2/p
.

3.3.
Some Applications to Rényi

divergences

In this section, we give some new results related to the Rényi divergences. First we present

some definitions that came from different types of Rényi divergences. In fact, these definitions

are of special interest for density matrices. A matrix is called a density matrix if it is a positive

71



3. Applications of Some Obtained Majorization Relations

semi-definite matrix with its trace equal to one. See [29] and the references therein for more

information in this topic.

Definition 3.3. Let A, B be two positive definite matrices with B invertible, and let α, z > 0

with α ̸= 1. We have

(i) Pα(A, B) := B#αA = B
1
2 (B− 1

2 AB− 1
2 )αB

1
2 .

(ii) Qα,z(A, B) := (B
1−α

2z A
α
z B

1−α
2z )z.

In particular, the following two variable matrix functions are special versions of Qα,z(A, B):

(a) Qα(A, B) := Qα,1(A, B) = B
1−α

2 AαB
1−α

2 .

(b) Q̃α(A, B) := Qα,α(A, B) = (B
1−α
2α AB

1−α
2α )α.

Definition 3.4. Let A, B be two positive definite matrices with B invertible and A ̸= 0, and let

α, z > 0 with α ̸= 1. We have

(i) The standard α-Rényi divergence is defined as

Dα(A♣♣B) :=
1

α − 1
log Tr Qα(A, B).

(ii) The sandwiched α-Rényi divergence is defined as

D̃α(A♣♣B) :=
1

α − 1
log Tr Q̃α(A, B).

(iii) The α-z-Rényi divergence is a generalization of the previous two definitions and it is defined

as

Dα,z(A♣♣B) :=
1

α − 1
log Tr Qα,z(A, B).

(iv) The maximal α-Rényi divergence is defined as

D̂α(A♣♣B) :=
1

α − 1
log Tr Pα(A, B).

The next theorem was recently proved by F. Hiai in [29]. It shows a norm relation between

the two matrix functions Pα(A, B) and Qα,z(A, B) for all α, z ≥ 0.

Theorem 3.3. Let A, B be two positive semi-definite matrices with B invertible, and let ♣♣♣ · ♣♣♣
be any unitarily invariant norm.

(1) Assume that 0 ≤ α ≤ 1. Then for every z > 0,

♣♣♣Pα(A, B)♣♣♣ ≤ ♣♣♣Qα,z(A, B)♣♣♣.
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(2) Assume that α > 1. Then for every 0 ≤ z ≤ min¶α/2, α − 1♢,

♣♣♣Pα(A, B)♣♣♣ ≤ ♣♣♣Qα,z(A, B)♣♣♣.

(3) Assume that α > 1. Then for every z ≥ max¶α/2, α − 1♢,

♣♣♣Qα,z(A, B)) ≤ ♣♣♣Pα(A, B)♣♣♣.

As consequence, he showed a relation between

Dα(A♣♣B), D̃α(A♣♣B) and D̂α(A♣♣B) for all A, B > 0.

Theorem 3.4. Let A, B be two positive semi-definite matrices with B invertible, and A ̸= 0.

We have

(1) If 0 ≤ α ≤ 2 and α ̸= 1 then

D̃α(A♣♣B) ≤ Dα(A♣♣B) ≤ D̂α(A♣♣B).

(2) If α ≥ 2 then

D̃α(A♣♣B) ≤ Dα(A♣♣B) ≤ D̂α(A♣♣B).

Motivated by Hiai’s results, we will complement these results for some α, z ≥ 0 using our

new log-majorization relations. But, first we will introduce a new definition that is related to

the mentioned types of Rényi divergences.

Definition 3.5. Let A, B be two positive semi-definite matrices with B invertible and A ̸= 0,

and let α, z > 0 with α ̸= 1. A matrix function Dα is defined as

Dα(A♣♣B) :=
1

α − 1
log Tr P α(A, B)

where P α(A, B) := B♮αA := B
1
2 (A

1
2 B−1A

1
2 )αB

1
2 .

Theorem 3.5. Let A, B be two positive definite matrices with B invertible. Then for any

unitarily invariant norm we have

(1) If α ≥ 0, then ♣♣♣Pα(A, B)♣♣♣ ≤ ♣♣♣P α(A, B)♣♣♣.

(2) If 0 ≤ α ≤ 1 and z ≥ max¶α, 1 − α♢, then ♣♣♣Qα,z(A, B)♣♣♣ ≤ ♣♣♣P α(A, B)♣♣♣.

Proof. (1) As an application of Part (iii) of Corollary 3.1, substituting A with B, B with A

and t with α respectively gives

♣♣♣B#αA♣♣♣ ≤ ♣♣♣B♮αA♣♣♣.
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(2) The proof will be divided into two cases here.

Case 1: Let 0 ≤ α ≤ 1 and max¶α, 1 − α♢ ≤ z ≤ 1. As earlier, using the Ky Fan Dominance

Theorem our claim is to show that

σ
(
A

α
z B

1−α
z A

α
2z

)z
≺log σ

(
B

1
2 (A

1
2 B−1A

1
2 )αB

1
2

)
.

As usual, by a standard anti-symmetric tensor product argument, it is enough to

prove that for all 0 ≤ α ≤ 1 and max¶α, 1 − α♢ ≤ z ≤ 1

σ1

(
A

α
z B

1−α
z A

α
2z

)z
≤ σ1

(
B

1
2 (A

1
2 B−1A

1
2 )αB

1
2

)
. (3.10)

Notice that by the homogeneity on the degree of both expressions of (3.10), our claim

is equivalent to showing that

σ1

(
B

1
2 (A

1
2 B−1A

1
2 )αB

1
2

)
= 1 ⇒ σ1

(
A

α
z B

1−α
z A

α
2z

)z
≤ 1.

Without loss of generality, we assume that

σ1

(
B

1
2 (A

1
2 B−1A

1
2 )αB

1
2

)
= 1.

This implies

B ≤ (A
1
2 B−1A

1
2 )−α.

Now using Löwner-Heinz inequality for 0 ≤ 1−α
z ≤ 1, we have

B
1−α

z ≤ (A
1
2 B−1A

1
2 )−α· 1−α

z . (3.11)

So, we can write

σ1

(
A

α
z B

1−α
z A

α
2z

)z
= λ1

(
A

α
z B

1−α
z A

α
2z

)z

≤ λ1

(
A

α
z (A

1
2 B−1A

1
2 )−α· 1−α

z A
α
z

)z

(using (3.11))

≤ λ1

(
A

1
2 (A

1
2 B−1A

1
2 )α−1A

1
2

)α

(using Lemma 2.5 for 0 ≤ p =
α

z
≤ 1)

≤ λ1

(
A

1
2 (A

1
2 B−1A

1
2 )−1A

1
2 (A

1
2 B−1A

1
2 )α
)α

(using Theorem 2.16 for p = α and q = 1)

= λ1

(
B

1
2 (A

1
2 B−1A

1
2 )αB

1
2

)α

= (1)α

= 1.
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Therefore, we obtain the desired norm inequality for the studied case.

Case 2: Let 0 ≤ α ≤ 1 and z ≥ 1. Notice that using Araki-Lieb-Thirring inequality (see

Lemma 2.5 inequality (2.7)) for 0 ≤ 1
z ≤ 1, we have

♣♣♣Qα,z(A, B)♣♣♣ = ♣♣♣
(
B

1−α
2z A

α
z B

1−α
2z

)z
♣♣♣ ≤ ♣♣♣B 1−α

2 AαB
1−α

2 ♣♣♣. (3.12)

On the other hand, observe that

♣♣♣B 1−α
2 AαB

1−α
2 ♣♣♣ ≤ ♣♣♣B♮αA♣♣♣ = ♣♣♣P α(A, B)♣♣♣. (3.13)

Thus, the combination of (3.12) and (3.13) yields our final result.

■

Corollary 3.3. Let A, B be two positive semi-definite matrices with B invertible. Then for any

unitarily invariant norm we have

(1) If 0 ≤ α ≤ 1 and z ≥ max¶α, 1 − α♢, then

♣♣♣Pα(A, B)♣♣♣ ≤ ♣♣♣Qα,z(A, B)♣♣♣ ≤ ♣♣♣P α(A, B)♣♣♣.

(2) If α ≥ 1 and z ≥ max¶α/2, α − 1♢, then

♣♣♣Qα,z(A, B)♣♣♣ ≤ ♣♣♣Pα(A, B)♣♣♣ ≤ ♣♣♣P α(A, B)♣♣♣.

Corollary 3.4. Let A, B be two positive semi-definite matrices with B invertible and A ̸= 0,

and let α, z > 0 with α ̸= 1. We have

(1) If 0 ≤ α < 1 and z ≥ max¶α, 1 − α♢, then

Dα(A♣♣B) ≤ Dα,z(A♣♣B) ≤ D̂α(A♣♣B).

(2) If α > 1 and z ≥ max¶α/2, α − 1♢, then

Dα,z(A♣♣B) ≤ D̂α(A♣♣B) ≤ Dα(A♣♣B).

Theorem 3.6. Let A, B be two positive semi-definite matrices with B invertible and A ̸= 0.

We have

(1) If 0 ≤ α ≤ 1
2 then

• Dα(A♣♣B) ≤ Dα(A♣♣B) ≤ D̂α(A♣♣B), and

• D̃α(A♣♣B) ≤ Dα(A♣♣B) ≤ D̂α(A♣♣B).

(2) If 1
2 ≤ α < 1 then Dα(A♣♣B) ≤ D̃α(A♣♣B) ≤ Dα(A♣♣B) ≤ D̂α(A♣♣B).
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(3) If 1 < α ≤ 2 then D̃α(A♣♣B) ≤ Dα(A♣♣B) ≤ D̂α(A♣♣B) ≤ Dα(A♣♣B).

(4) If α ≥ 2 then

• D̃α(A♣♣B) ≤ D̂α(A♣♣B) ≤ Dα(A♣♣B), and

• D̃α(A♣♣B) ≤ D̂α(A♣♣B) ≤ Dα(A♣♣B).

3.4. A complement of a norm inequality

In [12], R. Bhatia, Y. Lim and T. Yamazaki showed the following norm inequality for all

A, B ≥ 0,

♣♣A + B + 2(A♯B)♣♣p ≤ ♣♣A + B + A
1
2 B

1
2 + B

1
2 A

1
2 ♣♣p p = 1, 2, ∞. (3.14)

Then they conjectured that it is true for every unitarily invariant norm, which was recently

proved by T.H. Dinh, R. Dumitru and J.A. Franco [18] for the Schatten p-norms with 1 ≤ p ≤ ∞.

First, we shall recall the following basic result (see Part (iii) of Proposition 1.6).

Proposition 3.4. Let M :=


A B

B A

]
where A and B are in Mn. Then, the eigenvalues of M

are the union of the eigenvalues of A + B and A − B.

Theorem 3.7. Let A, B and C be positive definite matrices of order n such that C ≥ A + B.

Then for all j = 1, 2, . . . , n,

sj(C + A
1
2 B

1
2 + B

1
2 A

1
2 ) ≤ sj(C + A#B + A♮B).

Proof. Let M =


A#B B

1
2 A

1
2

A
1
2 B

1
2 A♮B

]
≥ 0. Then N =


A♮B A

1
2 B

1
2

B
1
2 A

1
2 A#B

]
≥ 0.

Hence,

T = M + N +


C C

C C

]
=


C + A#B + A♮B C + A

1
2 B

1
2 + B

1
2 A

1
2

C + A
1
2 B

1
2 + B

1
2 A

1
2 C + A#B + A♮B

]
≥ 0.

From the preceding proposition, we conclude that

C + A
1
2 B

1
2 + B

1
2 A

1
2 ≤ C + A#B + A♮B and − (C + A

1
2 B

1
2 + B

1
2 A

1
2 ) ≤ C + A#B + A♮B.

Thus,

λj(C + A
1
2 B

1
2 + B

1
2 A

1
2 ) ≤ λj(C + A#B + A♮B).
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Consequently, from the fact that

C + A
1
2 B

1
2 + B

1
2 A

1
2 ≥ A + B + A

1
2 B

1
2 + B

1
2 A

1
2 = (A

1
2 + B

1
2 )2 ≥ 0,

we get the desired result. ■

The following corollary can be considered as a complement of inequality (3.14) when replacing

C by A + B in Theorem 3.7.

Corollary 3.5. Let A and B be two positive definite matrices of order n. Then for all unitarily

invariant norms,

♣♣♣A + B + A
1
2 B

1
2 + B

1
2 A

1
2 ♣♣♣ ≤ ♣♣♣A + B + A#B + A♮B♣♣♣.

Next, we present a further complement of the preceding corollary.

Theorem 3.8. Let A and B be two positive definite matrices of order n. Then for p = 1, 2

♣♣A + B + A#B + A♮B♣♣p ≤ ♣♣A + B + 2(A♮B)♣♣p.

Before presenting the proof, we shall consider the following log-majorization relations. The

first lemma is a special case of Theorem 3.1.

Lemma 3.1. Let A and B be two positive definite matrices. Then,

λ(A#B) ≺log λ(A♮B).

Lemma 3.2. Let A and B be two positive definite matrices. Then,

λ(A(A#B)) ≺log λ(A(A♮B)).

Proof. Recalling first the inequality from Lemma 2.8 which can be stated for A, B > 0 as follows

λ
(
A

kt
2 (A− 1

2 BA− 1
2 )tA

kt
2

)
≺log λ

(
A(k−1)tBt

)
0 ≤ t ≤ 1 and k > 1

which is equivalent to

λ
(
A

k
2 (A− 1

2 BA− 1
2 )tA

k
2

)
≺log λ

(
Ak−tBt

)
0 ≤ t ≤ 1 and k > t. (3.15)

Recalling another one from Lemma 2.14 which is a complement of (3.15) and can be stated

as

λ
(
Ak−tBt

)
≺log λ

(
A

k
2 (B

1
2 A−1B

1
2 )tA

k
2

)
0 ≤ t ≤ 1 and k ≥ 1. (3.16)

Now, taking k = 2 and t = 1
2 in both inequalities (3.15) and (3.16), we obtain

λ
(
A(A− 1

2 BA− 1
2 )

1
2 A
)

≺log λ
(
A

3
2 B

1
2

)
≺log λ

(
A(B

1
2 A−1B

1
2 )

1
2 A
)

(3.17)
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which gives the desired result. ■

Lemma 3.3. Let A and B be two positive definite matrices. Then

λ(B(A#B)) ≺log λ(B(A♮B)).

Proof. By Schur complement we know that

M =


B

1
2 A

1
2 (B

1
2 A−1B

1
2 )

1
2 A

1
2 B

1
2 B

1
2 A

1
2 B

BA
1
2 B

1
2 B(B− 1

2 AB− 1
2 )

1
2 B

]
≥ 0.

Next, by appealing to Lemma 2.1, we obtain

λ1

(
B

3
2 A

1
2

)2
≤ λ1

(
B

1
2 A

1
2 (B

1
2 A−1B

1
2 )

1
2 A

1
2 B

1
2

)
· λ1

(
B(B− 1

2 AB− 1
2 )

1
2 B
)

= λ1

(
B

1
2 (A♮B)B

1
2

)
· λ1

(
B(B− 1

2 AB− 1
2 )

1
2 B
)

≤ λ1(B(A♮B)) · λ1(B
3
2 A

1
2 ) (by using (3.17))

but this implies that

λ1(B(A#B)) ≤ λ1(B
3
2 A

1
2 ) ≤ λ1(B(A♮B)).

Finally, we obtain the result with a standard anti-symmetric tensor product argument. ■

Now, we are in position to prove Theorem 3.8.

proof of Theorem 3.8. Using Lemma 3.1, it is easy to see that

Tr(A + B + A#B + A♮B) ≤ Tr(A + B + 2(A♮B)),

so that for p = 1, the inequality is satisfied. Now, for p = 2, it is enough to show that

Tr(A#B) ≤ Tr(A♮B);

Tr(A(A#B)) ≤ Tr(A(A♮B));

Tr(B(A#B)) ≤ Tr(B(A♮B)),

which, in view of the previous lemmas, these are all true. This completes the proof. ■

Based on our work in this section, we conclude the paper with the following conjecture.

Conjecture 3.1. Let A and B be two positive definite matrices of order n. Then for 1 ≤ p ≤ ∞

♣♣A + B + A#B + A♮B♣♣p ≤ ♣♣A + B + 2(A♮B)♣♣p.
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Finally, it is worthy to observe that the validation of the previous conjecture would imply

that for all 1 ≤ p ≤ ∞,

♣♣A + B + 2(A#B)♣♣p ≤ ♣♣A + B + A
1
2 B

1
2 + B

1
2 A

1
2 ♣♣p ≤ ♣♣A + B + 2(A♮B)♣♣p.
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4

New Log-Majorization Inequalities

T
he main objective of this chapter is to present new log-majorization results related to

some obtained inequalities by Zou, Hiai, Lin, Lemos and Soares. These majorization

relations concerns eigenvalues and singular values of matrices. First, we introduce these

results and the two conjectures posed by Lemos and Soares. We then present several new

inequalities like generalizations of Zou’s and Hiai-Lin majorization relations, as well as a reverse

Lemos-Soares type inequality. In addition, we provide an example in which it shows that one

of the conjectures is not valid in its current setting, we also present a further generalization

of Lemos-Soares majorization relation precisely in all the cases where it has been proven valid.

Lastly, we show several inequalities related to the other conjecture.

4.1.
More majorization inequalities

concerning the geometric mean

In 2016, L. Zou [63] proved some singular values inequalities. Among these inequalities, he

established the following theorem.

Theorem 4.1. Let A and B be two n × n positive semi-definite matrices. Then

k∏

j=1

σj

(
A

1
2 (A#B)B

1
2

)
≤

k∏

j=1

σj(AB), k = 1, 2, . . . , n. (4.1)

Remark 4.1. Inequality (4.1) was proved again by R. Lemos and G. Soares [38, Corollary 7.2].

It is worth to mention here that Corollary 7.2 in [38] deals with a more general result.

Another similar inequality concerning the geometric mean was established by F. Hiai and

M. Lin [28].

Theorem 4.2. Let A and B be two n×n positive semi-definite matrices. Then for all 0 ≤ t ≤ 1

k∏

j=1

λj [(A#tB)(A#1−tB)] ≤
k∏

j=1

λj(AB), k = 1, 2, . . . , n. (4.2)
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In the same paper, the authors asked whether it is possible to replace the eigenvalues with

singular values.

Conjecture 4.1. Let A and B be two n × n positive semi-definite matrices. Then for all

0 ≤ t ≤ 1
k∏

j=1

σj [(A#tB)(A#1−tB)] ≤
k∏

j=1

σj(AB), k = 1, 2, . . . , n. (4.3)

In 2018, R. Lemos and G. Soares [37] gave another proof of (4.1), and asked whether it

is possible to find some generalization of it. More explicitly, their question gives rise to the

following conjecture.

Conjecture 4.2. Let A and B be two positive semi-definite matrices. Then

σ
(
At(A#tB)B1−t

)
≺log σ(AB), 0 ≤ t ≤ 1. (4.4)

In the same paper they gave the following notation.

Definition 4.1. Let A and B be two positive semi-definite matrices with A invertible. Then

A#s,tB = A
s
2 (B

1
2 A−1B

1
2 )tA

s
2 for s, t ∈ R.

As usual it can be extended to any singular matrix A by continuity argument as follows

A#s,tB = lim
ϵ→0+

(A + ϵIn)#s,tB.

They also generalized inequality (4.2) as the next theorem shows.

Theorem 4.3. Let A and B be two n × n positive semi-definite matrices. Then for all r, s ∈ R

λ [(A#r,tB)(A#s,1−tB)] ≺log λ(Ar+s−1B), 0 ≤ t ≤ 1. (4.5)

More generally, R. Lemos and G. Soares [37] conjectured the following inequality.

Conjecture 4.3. Let A and B be two n×n positive semi-definite matrices. Then for all r, s ∈ R
then

σ [(A#r,tB)(A#s,1−tB)] ≺log σ
(
Ar+s−1B

)
, 0 ≤ t ≤ 1. (4.6)

Remark 4.2. The case r = s = 1 was proved by F. Hiai and M. Lin precisely for 1
4 ≤ t ≤ 3

4 in

[28]. Later, R. Lemos and G. Soares [37] showed that Conjecture 4.3 is valid for r, s ≥ 0 and
r

r+s ≤ 2t ≤ 2r+s
r+s . For the latter case, we shall prove further generalization of (4.6).

The rest of the chapter is organized as follows. In this section, we present new generalizations

of Theorem 4.1 and Theorem 4.2. In Section 4.2, we first disprove Conjecture 4.3 in its current

setting by providing a counterexample. Then we give a further generalization of (4.3) as well as

(4.6) in the cases where its has been shown to be valid. In Section 4.3, new results related to

Conjecture 4.2 are established.
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4.1.1. A Generalization of Zou’s Majorization Relation

Proposition 4.1. Let A and B be two positive definite matrices. Then

σ
(
At(A#tB)Bt

)
≺log λ

(
AB2t

)
, 0 ≤ t ≤ 1

2
.

Proof. Consider the following matrix

M =


BtABt Bt(A#tB)At

At(A#tB)Bt At+ 1
2 X2tAt+ 1

2

]
.

Then clearly M can be rewritten as

M =


 BtA

1
2

At+ 1
2

(
A− 1

2 BA− 1
2

)t




 BtA

1
2

At+ 1
2

(
A− 1

2 BA− 1
2

)t




∗

≥ 0.

Applying Lemma 2.1 on the 2 × 2 block matrix M gives

σ
(
At(A#tB)Bt

)
≺wlog λ

(
BtABt

)1
2

◦ λ

(
At+ 1

2

(
A− 1

2 BA− 1
2

)2t
At+ 1

2

)1
2

= λ
(
AB2t

)1
2

◦ λ

(
A

2t+1

2

(
A− 1

2 BA− 1
2

)2t
A

2t+1

2

)1
2

≺log λ
(
AB2t

)1
2

◦ λ
(
AB2t

)1
2

= λ
(
AB2t

)
.

Here, the second inequality follows from substituting k = 2t+1 and 0 ≤ t = 2t ≤ 1 in (2.17).

Now taking into account that the determinants of At(A#tB)Bt and AB2t are equal we get

the desired log-majorization inequality. ■

As a consequence of Proposition 4.1, we have the following theorem which shows a general-

ization of Theorem 4.1 different than the inequality (4.4) in Conjecture 4.2.

Theorem 4.4. Let A and B be two positive definite matrices. Then

σ
(
At(A#tB)Bt

)
≺log σ

(
AB2t

)
, 0 ≤ t ≤ 1

2
. (4.7)

Proof. Recalling the fact that ♣λ(X)♣ ≺log σ(X) is true for any X ∈ Mn gives for all 0 ≤ t ≤ 1
2

σ
(
At(A#tB)Bt

)
≺log λ

(
AB2t

)
≺log σ

(
AB2t

)
.

■
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The next theorem is also a consequence of Proposition 4.1, which shows that replacing the

singular values with eigenvalues in (4.7) is valid.

Theorem 4.5. Let A and B be two positive definite matrices. Then

♣λ
(
At(A#tB)Bt

)
♣ ≺log λ

(
AB2t

)
, 0 ≤ t ≤ 1

2
.

Proof. Similarly, we have for all 0 ≤ t ≤ 1
2

♣λ
(
At(A#tB)Bt

)
♣ ≺log σ

(
At(A#tB)Bt

)
≺log λ

(
AB2t

)
.

■

4.1.2. A Generalized Hiai-Lin Majorization Inequality

For the sake of simplicity, throughout this chapter we shall use the following notation

X := A− 1
2 BA− 1

2 ,

whenever A and B are are both fixed positive semi-definite matrices in Mn.

Theorem 4.6. Let A and B be two n × n positive semi-definite matrices. Then

λ [(A#t1
B)(A#t2

B)] ≺log λ
(
A2−(t1+t2)Bt1+t2

)
, 0 ≤ t1, t2 ≤ 1.

Proof. We shall assume that A is a positive definite matrix, and the general case can then be

deduced by a continuity argument. In addition, we shall divide the proof into two cases.

Case 1: If 0 ≤ t1 + t2 ≤ 1, then observe that

λ [(A#t1
B)(A#t2

B)] = λ
(
A

1
2 (A− 1

2 BA− 1
2 )t1A(A− 1

2 BA− 1
2 )t2A

1
2

)

= λ
(
A(A− 1

2 BA− 1
2 )t1A(A− 1

2 BA− 1
2 )t2

)

≺log λ
(
A2(A− 1

2 BA− 1
2 )t1+t2

)

= λ
(
(A

1
2 )2(A− 1

2 BA− 1
2 )t1+t2(A

1
2 )2

)

≺log λ
(
A2−(t1+t2)Bt1+t2

)
.

Here, the first inequality follows from Lemma 2.9 by replacing X and Y with A and

A− 1
2 BA− 1

2 , respectively, and the last inequality follows from taking 0 ≤ t = t1 + t2 ≤ 1

and k = 2 ≥ t1 + t2 in (2.17).

Case 2: Let 0 ≤ t1, t2 ≤ 1 such that t1 + t2 ≥ 1. Our aim is to show that for all 0 ≤ t1, t2 ≤ 1 such
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4. New Log-Majorization Inequalities

that t1 + t2 ≥ 1,

λ1 [(A#t1B)(A#t2B)] ≤ λ1

(
A2−(t1+t2)Bt1+t2

)
.

Notice that λ1

(
A2−(t1+t2)Bt1+t2

)
= λ1

(
A1−

t1+t2
2 Bt1+t2A1−

t1+t2
2

)
and

λ1 [(A#t1B)(A#t2B)] = λ1

(
X

t2
2 AXt1AX

t2
2

)
.

As in similar situations, proving our claim is now equivalent to showing that

A1−
t1+t2

2 Bt1+t2A1−
t1+t2

2 ≤ In ⇒ X
t2
2 AXt1AX

t2
2 ≤ In.

Without loss of generality, let us assume that A1−
t1+t2

2 Bt1+t2A1−
t1+t2

2 ≤ In, then this

implies that

Bt1+t2 ≤ At1+t2−2.

Now Appealing to Löwner-Heinz inequality for 0 ≤ 1
t1+t2

≤ 1 we obtain

B ≤ A
1− 2

t1+t2 . (4.8)

Next, multiplying both sides of (4.8) with A− 1
2 > 0 yields

X ≤ A
− 2

t1+t2 ,

and by appealing again to Löwner-Heinz inequality this time for 0 ≤ t1 ≤ 1 and 0 ≤ t2 ≤ 1,

respectively, we obtain

Xt1 ≤ A
−

2t1
t1+t2 , (4.9)

and

Xt2 ≤ A
−

2t2
t1+t2 . (4.10)

Now, observe that

X
t2
2 AXt1AX

t2
2 ≤ X

t2
2 AA

−
2t1

t1+t2 AX
t2
2 (by using (4.9))

= X
t2
2 A

2t2
t1+t2 X

t2
2

≤ In (by using (4.10)).

Therefore, for all 0 ≤ t1, t2 ≤ 1 such that t1 + t2 ≥ 1,

λ1 [(A#t1B)(A#t2B)] ≤ λ1

(
A2−(t1+t2)Bt1+t2

)
. (4.11)
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Using the anti-symmetric tensor product, we have for 1 ≤ r ≤ n

∧r
(
A2−(t1+t2)Bt1+t2

)
= (∧rA)2−(t1+t2) (∧rB)t1+t2 ,

and

∧r [(A#t1B)(A#t2B)] = [(∧rA)#t1(∧rB)] [(∧rA)#t2(∧rB)] .

Replacing A and B with ∧rA and ∧rB, respectively, in (4.11) gives

λ1 [(∧rA#t1 ∧r B) (∧rA#t2 ∧r B)] ≤ λ1

[
(∧rA)2−(t1+t2) (∧rB)t1+t2

]
.

This is equivalent to

λ1 (∧r [(A#t1B)(A#t2B)]) ≤ λ1

[
∧r
(
A2−(t1+t2)Bt1+t2

)]
.

So, for all 1 ≤ r ≤ n, we have

r∏

i=1

λi [(A#t1B)(A#t2B)] ≤
r∏

i=1

λi(A
2−(t1+t2)Bt1+t2).

In general, det [(A#t1B)(A#t2B)] = det(A2−(t1+t2)Bt1+t2).

Thus we get the desired inequality for this case.

■

4.1.3. A Reverse Lemos-Soares Type Inequality

We will show that Theorem 4.3 is reversed when t ≥ 1 or t ≤ 0.

Theorem 4.7. Let A and B be two n × n positive semi-definite matrices. Then for all t ≥ 1 or

t ≤ 0

λ [(A#r,tB)(A#s,1−tB)] ≻log λ(Ar+s−1B), r, s ∈ R.

Proof. First, observe that

λ [(A#r,tB)(A#s,1−tB)] = λ(A
r+s

2 XtA
r+s

2 X1−t).

Now, substituting X with A
r+s

2 and Y with X, respectively, in Theorem 2.16 to get

λ(A
r+s

2 XtA
r+s

2 X1−t) ≻log λ(Ar+sX) = λ(Ar+s−1B).

Thus we get the desired. ■
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Definition 4.2. Let A and B be two positive semi-definite matrices with A singular. The

quantity A♮s,tB is defined by

A♮s,tB = A
s
2 (B

1
2 A−1B

1
2 )tA

s
2 for s, t ∈ R.

As usual, this quantity can be extended to any singular matrix A by continuity argument.

It is interesting to investigate the relation between the positive quantity A♮s,tB and the

generalized geometric mean A#s,tB. We shall present two relations between the vectors

λ [(A♮r,tB)(A♮s,1−tB)] and λ(Ar+s−1B) for r, s, t ∈ R.

Theorem 4.8. Let A and B be two n × n positive semi-definite matrices. Then for all r, s ≤ 0

λ [(A♮r,tB)(A♮s,1−tB)] ≺log λ(Ar+s−1B), 0 ≤ t ≤ 1.

Proof. Let r, s ≤ 0 (i.e −r − s ≥ 0) and 0 ≤ t ≤ 1. We can write

λ [(A♮r,tB)(A♮s,1−tB)] = λ
(
A

r+s

2 (B
1
2 A−1B

1
2 )tA

r+s

2 (B
1
2 A−1B

1
2 )1−t

)

≺log λ
(
Ar+s(B

1
2 A−1B

1
2 )t+1−t

)

= λ
(
(A−1)−r−sB

1
2 (A−1)1B

1
2

)

≺log λ
(
(A−1)−r−s+1B

)

= λ(Ar+s−1B).

Here, both inequalities follow from Lemma 2.9. The first inequality is by replacing X with

A
r+s

2 and Y with B
1
2 A−1B

1
2 , respectively, and the second inequality is by taking X = B

1
2 and

Y = A−1. ■

Theorem 4.9. Let A and B be two n × n positive semi-definite matrices. Then for all r, s ≥ 0

λ [(A♮r,tB)(A♮s,1−tB)] ≻log λ(Ar+s−1B), t ≥ 1 or t ≤ 0.

Proof. Let r, s ≥ 0 and t ≥ 1 (i.e t − 1 ≥ 0). Then

λ [(A♮r,tB)(A♮s,1−tB)] = λ
(
A

r+s

2 (B
1
2 A−1B

1
2 )tA

r+s

2 (B
1
2 A−1B

1
2 )1−t

)

= λ
(
A

r+s

2 (B
1
2 A−1B

1
2 )tA

r+s

2 (B
1
2 A−1B

1
2 )−(t−1)

)

≻log λ
(
Ar+sB

1
2 A−1B

1
2

)

≻log λ
(
Ar+s−1B

)
.

This time both inequalities follow from Theorem 2.16. The first inequality is by replacing X

with A
r+s

2 and Y with B
1
2 A−1B

1
2 , respectively, and the second inequality is by taking X = B

1
2
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and Y = A.

The proof in case t ≤ 0 is done with similar steps. ■

4.2. Results regarding Conjecture 4.3

This section deals first with presenting a counterexample to Conjecture 4.3. Then some

generalization result related to Conjecture 4.3 is given. Finally, based on our results, we conclude

with formulating an alternative conjecture.

4.2.1. Case when Conjecture 4.3 fails

The following example shows that Conjecture 4.3 is not valid in its current setting.

Example 4.1. Consider two real numbers r and s such that s − 1 ≤ 0 (i.e 1 − s ≥ 0) and

2r + s − 1 ≥ 0. As a consequence of Theorem 2.16, we have for any A > 0 and B ≥ 0

λ
(
A2r+s−1BA−(1−s)B

)
≻log λ(A2r+2s−2B2). (4.12)

Now substituting these fixed r and s in the left-hand side of (4.6) for t = 0 leads to

σ [(A#r,0B)(A#s,1−0B)]2 = σ
(
A

r
2 (A− 1

2 BA− 1
2 )0A

r+s

2 (A− 1
2 BA− 1

2 )1−0A
s
2

)2

= σ
(
A

2r+s−1

2 BA
s−1

2

)2

= λ
(
A2r+s−1BAs−1B

)

= λ
(
A2r+s−1BA−(1−s)B

)

≻log λ(A2r+2s−2B2) (by using (4.12))

= σ
(
Ar+s−1B

)2
.

Hence, there exist two real numbers r and s such that

σ [(A#r,0B)(A#s,1−0B)] ≻log σ
(
Ar+s−1B

)
.

4.2.2. A further Generalization of Lemos-Soares Majorization Inequality

In order to prove our main result of this section, the next lemma is needed and it is known

as the Furuta inequality with negative powers, whose proof can be found in [57].
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Lemma 4.1. Let X, Y be two invertible matrices satisfying 0 < Y ≤ X. Let 0 < p′ ≤ 1, 0 <

q′ ≤ 1 and −1 ≤ r′ < 0. Then, it holds that

X
p′+r′

q′ ≥
(

X
r′

2 Y p′

X
r′

2

) 1
q′

as long as the real numbers p′, r′ and q′ satisfy

− r′(1 − q′) ≤ p′ ≤ q′ − r′(1 − q′), (4.13)

and one of the following two conditions:

1

2
≤ q′ ≤ 1 (4.14)

or

0 ≤ q′ ≤ 1

2
and

−r′(1 − q′) − q′

1 − 2q′
≤ p′ ≤ −r′(1 − q′)

1 − 2q′
. (4.15)

Now we are in a position to present our first result which generalizes inequality (4.5) and

gives a further generalization of inequality (4.6) precisely in all the cases where it has been

proven valid.

Theorem 4.10. Let A and B be two positive semi-definite matrices. Then, for all 1 ≤ p ≤ 2,

r, s ∈ R with similar signs and t ∈ R such that rp−r
(r+s)p ≤ t ≤ rp+s

(r+s)p , we have

λ[(A#r,tB)p(A#s,1−tB)p] ≺log λ(Ar+s−1B)
p
.

Proof. Without loss of generality, we shall assume that A and B are positive definite matrices

as the general case can be then obtained by a continuity argument. Let r, s ∈ R with similar

signs and t ∈ R such that rp−r
(r+s)p ≤ t ≤ rp+s

(r+s)p . Note that in order to finish the proof in this case,

it is enough to show that for all A, B > 0 the following is true

A
r+s−1

2 BA
r+s−1

2 ≤ In ⇒ (A#s,1−tB)
p

2 (A#r,tB)p(A#s,1−tB)
p

2 ≤ In. (4.16)

Now assume that A
r+s−1

2 BA
r+s−1

2 ≤ In. Then clearly, this is equivalent to

0 < A− 1
2 BA− 1

2 ≤ A−(r+s). (4.17)

Applying Lemma 4.1 on (4.17) with X = A−(r+s) and Y = A− 1
2 BA− 1

2 , we then obtain

(
A−(r+s)

) p′+r′

q′ ≥
(

A−(r+s)
) r′

2
(
A− 1

2 BA− 1
2

)p′ (
A−(r+s)

) r′

2

] 1
q′

. (4.18)

Now taking p′ = t, r′ = − r
r+s and q′ = 1

p in (4.18) for which conditions (4.13) and (4.14) are
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satisfied, we get

Arp−(r+s)pt ≥
(
A

r
2 (A− 1

2 BA− 1
2 )tA

r
2

)p

which is the same as

(A#r,tB)p ≤ Arp−(r+s)pt. (4.19)

Again, replacing this time p′ with 1−t, r′ with − s
r+s and q′ with 1

p in (4.18) where conditions

(4.13) and (4.14) are also satisfied, yields

A(r+s)pt−rp ≥
(
A

s
2 (A− 1

2 BA− 1
2 )1−tA

s
2

)p
= (A#s,1−tB)p,

which is equivalent to

Arp−(r+s)pt ≤ (A#s,1−tB)−p. (4.20)

Therefore, we can write

(A♯s,1−tB)
p

2 (A♯r,tB)p(A♯s,1−tB)
p

2

≤ (A♯s,1−tB)
p

2 Arp−(r+s)pt(A♯s,1−tB)
p

2 (using (4.19))

≤ (A♯s,1−tB)
p

2 (A♯s,1−tB)−p(A♯s,1−tB)
p

2 (using (4.20))

= In.

Let a = λ1(Ar+s−1B)p > 0. We observe that
(
A

r+s−1
2 BA

r+s−1
2

)p
≤ aIn, which is equivalent

to (
1

a
1

2p(r+s−1)

A

 r+s−1
2

(
1

a
1

2p

B

(
1

a
1

2p(r+s−1)

A

 r+s−1
2

≤ In.

For simplicity, we will replace
(

1

a
1

2p(r+s−1)

A

)
and

(
1

a
1

2p

B

)
with A′ and B′, respectively, then

(A′)
r+s−1

2 (B′)(A′)
r+s−1

2 ≤ In

which using (4.16) implies that

(A′#s,1−tB
′)

p

2 (A′#r,tB
′)p(A′#s,1−tB

′)
p

2 ≤ In.

So,
1

a

[
(A#s,1−tB)

p

2 (A#r,tB)p(A#s,1−tB)
p

2

]
≤ In.

Hence,

(A#s,1−tB)
p

2 (A#r,tB)p(A#s,1−tB)
p

2 ≤ λ1(Ar+s−1B)pIn.

Thus, for all 1 ≤ p ≤ 2 and for all r, s ∈ R with similar signs and such that rp−r
(r+s)p ≤ t ≤ rp+s

(r+s)p ,

we have that

λ1 [(A#r,tB)p(A#s,1−tB)p] ≤ λ1

(
Ar+s−1B

)p
.
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Finally, as usual by an anti-symmetric tensor product argument the proof is achieved. ■

Remark 4.3. It is worthy to note here that as a result of Theorem 4.10 and Araki-Lieb-Thirring

inequality (see Lemma 2.5), we can conclude that for all 1 ≤ p ≤ 2 and rp−r
(r+s)p ≤ t ≤ rp+s

(r+s)p , the

following inequality holds

λ [(A#r,tB)p(A#s,1−tB)p] ≺log λ
(
Ar+s−1B

)p
≺log λ

(
Ap(r+s−1)Bp

)
. (4.21)

Clearly, the particular cases p = 1 and p = 2 in (4.21) correspond to R. Lemos and G. Soares

results.

The following corollary is a consequence of Theorem 4.10 for the case r = s = 1.

Corollary 4.1. Let A and B be two positive semi-definite matrices. Then for all 1 ≤ p ≤ 2

λ[(A#tB)p(A#1−tB)p] ≺log λ(AB)p,
p − 1

2p
≤ t ≤ p + 1

2p
.

The proof of the next theorem can be done in a similar fashion as that of Theorem 4.10 with

only minor changes; namely by making use of condition (4.15) instead of (4.14) in Lemma 4.1.

Theorem 4.11. Let A and B be two positive semi-definite matrices. Then for all p ≥ 2, it

holds that

λ[(A#tB)p(A#1−tB)p] ≺log λ(AB)p,
p − 1

2p
≤ t ≤ p + 1

2p
.

Taking into account Example 4.1 and in view of Theorem 4.10 as well as Theorem 4.11, we

conclude this section with the following more general conjecture.

Conjecture 4.4. If A, B > 0, 0 ≤ t ≤ 1, p ≥ 1 and (r, s ≥ 1 or r, s ≤ 0), then

λ[(A#r,tB)p(A#s,1−tB)p] ≺log λ(Ap(r+s−1)Bp).

4.3. Results related to Conjecture 4.2

This section deals with some results related to Conjecture 4.2. In particular, we shall show

that replacing the singular values with eigenvalues in (4.4) is true. However, Conjecture 4.2 is

still an open problem.

Theorem 4.12. Let A and B be two positive semi-definite matrices. Then

∣∣∣λ
(
At(A#tB)B1−t

)∣∣∣ ≺log λ(AB), 0 ≤ t ≤ 1.

Proof. As usual, we shall assume that A is a positive definite matrix, and the general case can

then be deduced by a continuity argument. In addition, we shall divide the proof into two cases.

91



4. New Log-Majorization Inequalities

Case 1: If 0 ≤ t ≤ 1
2 , then let

M =


B

1
2 AB

1
2 B

1
2 At(A#tB)B

1
2

−t

B
1
2

−t(A#tB)AtB
1
2 B

1
2

−t(A#tB)A− 1
2 A2tA− 1

2 (A#tB)B
1
2

−t

]
,

which can be rewritten in terms of X = A− 1
2 BA− 1

2 as

M =


B

1
2 AB

1
2 B

1
2 A

1
2 AtXtA

1
2 B

1
2

−t

B
1
2

−tA
1
2 XtAtA

1
2 B

1
2 B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t

]
.

Moreover, M can be also rewritten as ZZ∗ ≥ 0, where

Z =


B

1
2 A

1
2

B
1
2

−tA
1
2 XtAt

]
,

so that M ≥ 0.

Now, applying Lemma 2.1 on the matrix M gives

∣∣∣λ
(
At(A#tB)B1−t

)∣∣∣ ≺wlog λ
(
B

1
2 AB

1
2

)1
2

◦ λ
(
B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t
)1

2
.

(4.22)

Next, our goal is to prove that for all 0 ≤ t ≤ 1
2 ,

λ
(
B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t
)

≺wlog λ (AB),

for which, by using an anti-symmetric tensor product argument, is sufficient to show that

for all 0 ≤ t ≤ 1
2 ,

λ1

(
B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t
)

≤ λ1 (AB) .

Without loss of generality, we shall assume that λ1(AB) = 1. Obviously, proving our claim

is now equivalent to showing that

λ1

(
B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t
)

≤ 1.

As λ1(AB) = 1, then this implies that

A
1
2 BA

1
2 ≤ In

which in turn gives that

B ≤ A−1. (4.23)
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Applying Löwner-Heinz inequality on (4.23) for 0 ≤ 1 − 2t ≤ 1 we obtain

B1−2t ≤ A2t−1. (4.24)

Next, multiplying both sides of (4.23) with A− 1
2 > 0 yields

X ≤ A−2,

and by appealing again to Löwner-Heinz inequality this time for 0 ≤ t ≤ 1
2 , we obtain

Xt ≤ A−2t (4.25)

Now, we can write

λ1

(
B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t
)

= λ1

(
AtXtA

1
2 B1−2tA

1
2 XtAt

)

≤ λ1

(
AtXtA2tXtAt

)
(using (4.24))

= λ1

(
A2tXtA2tXt

)

= λ1(A2tXt)2

= λ1(AtXtAt)2

≤ λ1(In)2 (using (4.25))

= 1.

Therefore,

λ
(
B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t
)

≺log λ (AB), 0 ≤ t ≤ 1

2
. (4.26)

On the other hand, using (4.22) and (4.26) gives

∣∣∣λ
(
At(A♯tB)B1−t

)∣∣∣ ≺wlog λ
(
B

1
2 AB

1
2

)1
2

◦ λ
(
B

1
2

−tA
1
2 XtA2tXtA

1
2 B

1
2

−t
)1

2

≺wlog λ(B
1
2 AB

1
2 )

1
2 ◦ λ(AB)

1
2

= λ(AB).

Making use of the fact that the determinants of the matrices on the left and on the right

are equal, we finally arrive at
∣∣λ
(
At(A#tB)B1−t

)∣∣ ≺log λ(AB).

Case 2: Let 1
2 ≤ t ≤ 1. Replacing A with B, B with A and t with 1 − t in first case, yields

∣∣∣λ
(
B1−t(B#1−tA)A1−(1−t)

)∣∣∣ ≺log λ(BA) 0 ≤ 1 − t ≤ 1

2
.
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By noting that A#tB = B#1−tA and that ♣λ(X)♣ = ♣λ(X∗)♣ for all X ∈ Mn, we thus

have that for all 1
2 ≤ t ≤ 1,

∣∣∣λ
(
At(A#tB)B1−t

)∣∣∣ =
∣∣∣λ
(
B1−t(B#1−tA)At

)∣∣∣

≺log λ(BA)

= λ(AB).

■

Our next goal is to show a result that strengthens Conjecture 4.2.

Theorem 4.13. Let A and B be two positive definite matrices. Then,

1. σ
(
At(A#tB)B1−t

)
≺log σ

(
A

3
2 BA− 1

2

)
for 1

2 ≤ t ≤ 1,

2. σ
(
At(A#tB)B1−t

)
≺log σ

(
B

3
2 AB− 1

2

)
for 0 ≤ t ≤ 1

2 .

Proof. 1. Let 1
2 ≤ t ≤ 1. Without loss of generality, we shall again assume that

λ1

(
A

3
2 BA−1BA

3
2

)
= 1.

As earlier, our claim now amounts to proving that

λ1

(
At(A#tB)B2(1−t)(A#tB)At

)
≤ 1.

Noting that λ1

(
A

3
2 BA−1BA

3
2

)
= λ1

(
A2X2A2

)
= 1, which clearly implies that X2 ≤ A−4,

then by appealing to Löwner-Heinz inequality we obtain

X2t ≤ A−4t (4.27)

and

B2(1−t) ≤ A−2(1−t). (4.28)

Now, we can write

λ1

(
At(A#tB)B2(1−t)(A#tB)At

)

≤ λ1

(
At+ 1

2 XtA2t−1XtAt+ 1
2

)
(using (4.28))

= λ1

(
A2t+1XtA2t−1Xt

)

≤ λ1

(
A4tX2t

)
(using Lemma 2.9)

= λ1

(
A4tX2t

)

≤ λ1(In) (using (4.27)).
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Hence,

λ1

(
At(A#tB)B2(1−t)(A#tB)At

)
≤ λ1

(
A3BA−1B

)
,

1

2
≤ t ≤ 1. (4.29)

Applying square root on both sides of Inequality (4.29) gives

σ1

(
At(A#tB)B1−t

)
≤ σ1

(
A

3
2 BA− 1

2

)
,

1

2
≤ t ≤ 1.

Therefore, with an anti-symmetric tensor product argument the proof can be achieved.

2. If 0 ≤ t ≤ 1
2 , then as was done earlier, replacing A with B, B with A and t with 1 − t in

the preceding case gives

σ
(
B1−t(B#1−tA)At

)
≺log σ

(
B

3
2 AB− 1

2

)
.

Finally, to complete the proof it is enough to notice that B#1−tA = A#tB.

■

Before we close this section, it is worthy to note that in view of Theorem 2.16, we conclude

that for all A, B > 0,

σ(AB) ≺log σ(A
3
2 BA− 1

2 ) and σ(AB) ≺log σ(B
3
2 AB− 1

2 ).
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5

Singular Value Inequalities

T
he study of eigenvalue and singular value inequalities is of central importance in matrix

theory. The Cauchy’s interlacing theorem [8, page 52] is one of the well known theorems

in which it derived some basic eigenvalue and singular value inequalities. Another useful

theorem is the Weyl’s Monotonicity theorem [8, Page 63]. There is also inequalities shown by

R. Bhatia, F. Kittaneh and Drury (see [13, 14, 15, 21]). In 2016, M. Lin [43] conjectured that if


A B

B∗ C

]
∈ M2(Mn)

is a positive semi-definite matrix then

σj(Φ(B)) ≤ σj(Φ(A)♯Φ(C)), j = 1, 2, . . . , n,

where Φ(X) = X +Tr(X)In. In this chapter, we confirm this conjecture in more general setting

in case A and B commute. Some related inequalities are also investigated.

5.1. Preliminaries

In 2014, Lin proved in [44] that the linear map

Φ(X) = X + Tr(X)In

is completely PPT (see the definition below). This result made us curious about other maps.

As we know, the definition of completely positive maps is given for linear maps, so the question

is about the use of the definitions (i), (ii) and (iii) (see the definition below) for non-linear maps.

Definition 5.1. A linear map Φ : Mn → Mk is said to be

(i) positive if A ≥ 0 then Φ(A) ≥ 0.
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5. Singular Value Inequalities

(ii) m-positive if




A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm




≥ 0 then




Φ(A11) Φ(A12) . . . Φ(A1m)

Φ(A21) Φ(A22) . . . Φ(A2m)
...

...
. . .

...

Φ(Am1) Φ(Am2) . . . Φ(Amm)




≥ 0.

(iii) completely positive if it is m-positive for any integer m ≥ 1.

More explanations and results about completely positive maps can be found in [9].

Definition 5.2. Let A ∈ Mk(Mn) such that

A =




A11 A12 . . . A1k

A21 A22 . . . A2k
...

...
. . .

...

Ak1 Ak2 . . . Akk




.

The partial transpose of A is defined as

Aτ =




A11 A21 . . . Ak1

A12 A22 . . . Ak2
...

...
. . .

...

A1k A2k . . . Akk




.

Remark 5.1. Notice that the partial transpose of a block matrix is different than the usual

transpose which is defined as

AT =




AT
11 AT

21 . . . AT
k1

AT
12 AT

22 . . . AT
k2

...
...

. . .
...

AT
1k AT

2k . . . AT
kk




.

Definition 5.3. Let A ∈ Mm(Mn) be a positive semi-definite matrix. The matrix A has a

positive partial transpose if Aτ ∈ Mm(Mn) are positive semi-definite. For simplicity we say that

A has a PPT .

Definition 5.4. A map Φ : Mn → Mk is said to be completely PPT if Φ is completely positive

and for all A ∈ Mm(Mn) positive semi-definite matrix (m ≥ 1), A has a PPT .
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Now before presenting our essential maps Ψf we need to recall the definition of the Liebian

functions defined by E.H. Lieb [39] (or functions of class L defined in [8, page 268]).

Definition 5.5. A continuous complex-valued function f on the space of matrices is said to be

a Liebian function if f satisfies these two conditions:

1. If A ≥ B then f(A) ≥ f(B).

2. ♣f(A∗B)♣2 ≤ f(A∗A)f(B∗B) for all A, B.

An equivalent result about these Liebian functions is the following.

Proposition 5.1. A continuous complex-valued function f is a Liebian function if and only if

f satisfies the following two conditions

1. f(A) ≥ 0 for all A ≥ 0,

2. ♣f(B)♣2 ≤ f(A)f(C) for all A, B, C ∈ Mn such that


A B

B∗ C

]
≥ 0.

Example 5.1. The following well-known functions are examples of Liebian functions:

(i) f(X) = det(X).

(ii) f(X) = Tr(X).

(iii) For all 1 ≤ k ≤ n, f(k)(X) =
k∏

j=1
σj(X).

In the sequel, we define a generalized map of the linear map Φ(X).

Definition 5.6. Let X ∈ Mn and let f be any Liebian function. The map Ψf (X) is defined as

Ψf (X) = X + f(X)In.

Before we continue to the next section, we need the following lemmas which are essential in

our analysis. The first lemma is proved by T. Ando in [1], second one is the necessary condition

of Part (iii) of proposition 1.6, third lemma is obtained from the well known Weyl’s monotonicity

theorem [8, page 63], the fourth is a theorem proved by Y. Tao in [59], and the last lemma is

Hiroshima’s theorem.

Lemma 5.1. Let j = 1, 2. We have

If


Aj B

B∗ Cj

]
≥ 0 then


A1#A2 B

B∗ C1#C2

]
≥ 0.

Lemma 5.2. Let H and K be two Hermitian matrices of the same size such that


H K

K H

]
≥ 0.

Then H ≥ K and H ≥ −K.
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Lemma 5.3. If A ≥ B, then λj(A) ≥ λj(B) j = 1, 2, . . . , n.

Lemma 5.4. Let M =


A B

B∗ C

]
∈ M2(Mn) be a positive semi-definite matrix. Then

2σj(B) ≤ σj(M) j = 1, 2, . . . , n.

Lemma 5.5. (Hiroshima’s Theorem) Let M =


A B

B∗ C

]
∈ M2(Mn) be a positive semi-

definite matrix. If M has a PPT , that is, M =


A B∗

B C

]
is also positive semi-definite matrix,

then

♣♣♣M ♣♣♣ ≤ ♣♣♣A + C♣♣♣

is valid for any unitarily invariant norm.

Observing that Lemma 5.4 and Lemma 5.5 give the following proposition.

Proposition 5.2. Suppose that M =


A B

B∗ C

]
has a PPT . Then

2♣♣♣B♣♣♣ ≤ ♣♣♣A + C♣♣♣.

5.2.
Results Related to Geometric Mean

and Singular Values

M. Lin introduced in his work [43] the following conjecture.

Conjecture 5.1. If M =


A B

B∗ C

]
∈ M2(Mn) is positive semi-definite matrix then

σj(Φ(B)) ≤ σj(Φ(A)#Φ(C)) j = 1, 2, . . . , n

where Φ(X) = X + Tr(X)In.

It has been shown that the weaker case of the conjecture. It is a special case of [1, Theorem

3.3] and [45, Theorem 4.3].

Theorem 5.1. If


A B

B∗ C

]
∈ M2(Mn) is positive semi-definite matrix. Then

♣♣♣Φ(B)♣♣♣ ≤ ♣♣♣Φ(A)#Φ(C)♣♣♣.
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5.2.1. Solution of Conjecture 5.1 when AB = BA

One of the main results in this section is the following theorem which is a generalization of

the Conjecture 5.1, when A and B commute. Noted that some interesting results for 2 × 2 block

matrices with the commutative condition are given in [16].

Theorem 5.2. If


A B

B∗ C

]
∈ M2(Mn) is positive semi-definite matrix with A and B commute

(or B and C commute). Then

σj(Ψf (B)) ≤ σj(Ψf (A)#Ψf (C)), j = 1, 2, . . . , n. (5.1)

Proof. Without loss of generality we can assume that Ψf (B) is invertible, the general case is

due to continuity argument. Using the polar decomposition of Ψf (B) gives

Ψf (B) = U ♣Ψf (B)♣ for some unitary matrix U.

Notice that A and B commute and since A = A∗ then A and (Ψf (B))∗ commute, so we get A

and (Ψf (B))∗(Ψf (B)) commute.

By consequently, A and ♣Ψf (B)♣ = [(Ψf (B))∗(Ψf (B))]1/2 commute. Finally,

AU∗Ψf (B) = U∗Ψf (B)A = U∗AΨf (B)

and thus AU∗ = U∗A (that is Ψf (A) and U∗ commute).

Now as f is a Liebian function then

K =


f(A)In f(B)In

f(B)In f(C)In

]
≥ 0.

Therefore, 
Ψf (A) Ψf (B)

(Ψf (B))∗ Ψf (C)

]
≥ 0.

Consider the following decomposition


U∗ 0

0 In

] 
Ψf (A) Ψf (B)

(Ψf (B))∗ Ψf (C)

] 
U 0

0 In

]
=


U∗Ψf (A)U ♣Ψf (B)♣

♣Ψf (B)♣ Ψf (C)

]

=


Ψf (A) ♣Ψf (B)♣

♣Ψf (B)♣ Ψf (C)

]
.
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This decomposition implies that

Tf =


Ψf (A) ♣Ψf (B)♣

♣Ψf (B)♣ Ψf (C)

]
≥ 0 and Rf =


Ψf (C) ♣Ψf (B)♣

♣Ψf (B)♣ Ψf (A)

]
≥ 0.

Therefore, by applying Lemma 5.1 on Tf and Rf , we obtain


Ψf (A)#Ψf (C) ♣Ψf (B)♣

♣Ψf (B)♣ Ψf (A)#Ψf (C)

]
≥ 0.

Thus, by Lemma 5.2, Ψf (A)#Ψf (C) ≥ ♣Ψf (B)♣, and Ψf (A)#Ψf (C) ≥ −♣Ψf (B)♣.

Consequently, from Lemma 5.3, we get for all j = 1, 2, . . . , n

σj(Ψf (A)#Ψf (C)) = λj(Ψf (A)#Ψf (C)) ≥ λj(♣Ψf (B)♣) = σj(Ψf (B)).

The inequality (5.1) is still true when B and C commute with a similar proof. ■

M. Lin also proved in [43] the following result.

Theorem 5.3. Let M =


A B

B∗ C

]
be a positive semi-definite matrix. If M has a PPT then

σj(Φ(B)) ≤ σj(Φ(A#C)) j = 1, 2, . . . , n. (5.2)

The next theorem shows that the inequality (5.2) also holds true when A and B commute.

Theorem 5.4. If


A B

B∗ C

]
≥ 0 such that A and B commute (or B and C commute), then

σj(Ψf (♣B♣)) ≤ σj(Ψf (A#C)), j = 1, 2, . . . , n.

In particular, we have σj(Φ(B)) ≤ σj(Φ(A#C)), for j = 1, 2, . . . , n, (ΨT r = Φ).

Proof. As we have mentioned before, Tf ≥ 0 and Rf ≥ 0 when A and B commute. Then for

f = 0 (i.e Ψ0(X) = X for all X ∈ Mn) we have

T0 =


A ♣B♣

♣B♣ C

]
≥ 0 and R0 =


C ♣B♣

♣B♣ A

]
≥ 0.

Lemma 5.1 gives


A#C ♣B♣
♣B♣ A#C

]
≥ 0 and hence


Ψf (A#C) Ψf (♣B♣)
Ψf (♣B♣) Ψf (A#C)

]
≥ 0.
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By applying Lemma 5.2, we get

Ψf (A#C) ≥ Ψf (♣B♣)

which gives

σj(Ψf (♣B♣)) ≤ σj(Ψf (A#C)) j = 1, 2, . . . , n.

If f(X) = Tr(X), that is, ΨT r = Φ, we have

σj(Φ(♣B♣)) = σj (♣B♣ + Tr(♣B♣)In)

= λj (♣B♣ + Tr(♣B♣)In)

= λj(♣B♣) + Tr(♣B♣)
= σj(B) + Tr(♣B♣)
≥ σj(B) + ♣Tr(B)♣
≥ σj (B + Tr(B)In)

= σj(Φ(B)).

Consequently,

σj(Φ(B)) ≤ σj(Φ(♣B♣)) ≤ σj(Φ(A#C)), j = 1, 2, . . . , n.

■

Remark 5.2. If f is a Liebian function such that f(♣X♣) ≥ ♣f(X)♣, then

σj(Ψf (B)) ≤ σj(Ψf (♣B♣)) ≤ σj(Ψf (A#C)).

M. Lin also proved in [43] the following interesting theorem.

Theorem 5.5. If


A B

B∗ C

]
∈ M2(Mn) is positive semi-definite matrix then

σj(Φ(A) + Φ(C)) ≥ 2σj(Φ(B)) j = 1, 2, . . . , n.

As we can see, Conjecture 5.1 implies the above theorem. So, Theorem 5.4 can give us a

generalization of the above result when A and B commute (or C and B commute), but first we

need the following basic result.

Proposition 5.3. Let X and Y be two positive semi-definite matrices. Then

X#Y ≤ X + Y

2
.

103



5. Singular Value Inequalities

Proof. In Chapter 1, Proposition 1.8 implies that for all X ≥ 0 and Y ≥ 0 we have


X X#Y

X#Y Y

]
≥ 0,

which gives 
Y X#Y

X#Y X

]
≥ 0.

Hence 
X + Y 2(X#Y )

2(X#Y ) X + Y

]
≥ 0.

Thus, using Lemma 5.2 gives the desired result. ■

Theorem 5.6. Let


A B

B∗ C

]
∈ M2(Mn) be a positive semi-definite matrix such that A and B

commute. Then for all Liebian functions f we have

σj(Ψf (A) + Ψf (C)) ≥ 2σj(Ψf (B)), j = 1, 2, . . . , n. (5.3)

Proof. By appealing to the previous proposition and since A and B commute, we obtain

♣Ψf (B)♣ ≤ Ψf (A)#Ψf (C) ≤ Ψf (A) + Ψf (C)

2
.

Hence

σj(Ψf (B)) ≤ σj(Ψf (A)#Ψf (C)) ≤ σj

(
Ψf (A) + Ψf (C)

2

)
.

■

This means inequality (5.1) is stronger than (5.3).

5.2.2. Theorem 5.6 fails when AB ̸= BA

The next example shows that (5.3) is not necessary true without the commutative condition

of A and B.

Example 5.2. The determinant is a Liebian function. Take

A =




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




, C =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




and B =




0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0




.
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Observe that A ≥ 0, C ≥ 0 and 
A B

B∗ C

]
≥ 0.

We can easily check that

det(A) = det(B) = det(C) = 0

which gives

σ1(A + C + [det(A) + det(C)]In) = 1 < 2σ1(B + det(B)In) = 2.

The above example also shows that for all


A B

B∗ C

]
≥ 0,

σj(A + C + det(A + C)In) ≥ 2σj(B + det(B)In)

does not hold true, however it is true in case A and B commute or (B and C commute). In

general we have for all X ≥ 0 and Y ≥ 0 (see [61, Theorem 7.7])

det(X + Y ) ≥ det(X) + det(Y ).

So,

A + C + det(A + C)In ≥ A + C + [det(A) + det(C)]In.

The last inequality gives, for all 1 ≤ j ≤ n,

σj(A + C + det(A + C)In) ≥ σj(A + C + [det(A) + det(C)]In) ≥ 2σj(B + det(B)In).

Motivated by M. Lin’s results in [44, 46], one can ask if the defined map Ψf has a PPT . Let

us start the investigation with the map Ψdet(X) = X + det(X)In. Indeed, the considered map

is completely positive (see [32, page 445, P25]). Unfortunately, we can see from Example 5.2

that the following norm inequality

♣♣♣A + C + [det(A) + det(C)]In♣♣♣ ≥ 2♣♣♣B + det(B)In♣♣♣

is not always true, hence from Proposition 5.2, it is impossible for the 2 × 2 block matrix


A + det(A)In B + det(B)In

B∗ + det(B)In C + det(C)In

]

which is positive semi-definite to have a PPT . In other words, the map

Ψdet(X) = X + det(X)In

is not completely PPT in general.
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The inequality (5.3) also failed for the following known Liebian functions:

f(X) = ♣♣♣X♣♣♣op and f(2)(X) =
2∏

i=1

σi(X)

Example 5.3. (1) If we choose A, B and C as the previous example and f(X) = ♣♣♣X♣♣♣op,

we find

♣♣♣A♣♣♣op = ♣♣♣C♣♣♣op = ♣♣♣B♣♣♣op = 1 and

σ1(A + C + 2In) = 3 < 2σ1(B + In) =
√

5 + 1.

(2) If f(2)(X) =
2∏

i=1
σi(X), and A, B, C ≥ 0 such that

A =




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




, C =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1




and B =




0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 0




.

We have

σ1(A) = σ1(B) = σ1(C) = 1 and σ2(A) = σ2(B) = σ2(C) = 1

which gives

f(2)(A) = f(2)(B) = f(2)(C) = 1 and

σ1(A + C + 2In) = 3 < 2σ1(B + In) =
√

5 + 1.

With a similar analysis made for the map Ψdet(X) = X + det(X)In, we conclude that the

two maps

Ψ1(X) = X + ♣♣♣X♣♣♣opIn and Ψ2(X) = X + f(2)(X)In

are not completely PPT as well.

5.2.3. More singular value inequalities

We end this chapter with the next result.

Theorem 5.7. Let M =


A B

B∗ C

]
∈ M2(Mn) be a positive semi-definite matrix such that A

and B commute, and let fi, for all 1 ≤ i ≤ t, be Liebian functions. Then, for all j = 1, 2, . . . , n,

we have:

(i) σj

(
A + C +

[
t∏

i=1
fi(A) +

t∏
i=1

fi(C)
]

In

)
≥ 2σj

(
B +

t∏
i=1

fi(B)In

)
.
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(ii) σj

(
A + C +

[
t∑

i=1
fi(A) +

t∑
i=1

fi(C)
]

In

)
≥ 2σj

(
B +

t∑
i=1

fi(B)In

)
.

(iii) σj(A + C + f(A)A + f(C)C) ≥ 2σj(B + f(B)B).

Proof. Let h =
t∏

i=1
fi and g =

t∑
i=1

fi. It is obvious that h is a Liebian function. To show that g

is a Liebian function, we need to prove that g(X) ≥ 0, for X ≥ 0, and

♣g(Y )♣2 ≤ g(X)g(Z) for all X, Y, Z ∈ Mn such that


X Y

Y ∗ Z

]
≥ 0.

The first condition is clear, now observe that

H =


g(X) g(Y )

g(Y ) g(Z)

]
≥ 0.

Therefore det(H) ≥ 0 which implies the second condition and then g is a Liebian function.

Applying Theorem 5.6 for f = h and f = g gives inequalities (i) and (ii) respectively. The

positivity of the matrix M gives

L =


f(A)Jn f(B)Jn

f(B)Jn f(C)Jn

]
≥ 0,

where Jn =




1 . . . 1
...

. . .
...

1 . . . 1


 is the n × n matrix whose all entries are ones.

Recall that the Hadamard product of two positive semi-definite matrices X and Y , denoted

by X ◦ Y , is a positive semi-definite matrix. Therefore

M + M ◦ L =


A + f(A)A B + f(B)B

B∗ + f(B)B∗ C + f(C)C

]
≥ 0.

Notice that if A and B commute, so is A + f(A)A and B + f(B)B. And with similar steps

as before, we get 
A + f(A)A ♣B + f(B)B♣

♣B + f(B)B♣ C + f(C)C

]
≥ 0.

Therefore


A + C + f(A)A + f(C)C 2♣B + f(B)B♣
2♣B + f(B)B♣ C + A + f(C)C + f(A)A

]
≥ 0,

which gives A+C+f(A)A+f(C)C ≥ 2♣B+f(B)B♣ and so the third inequality is proved. ■
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Open Problems

Through out the thesis, the following problems were introduced. We add them all here.

Problem 1. (Chapter 2) Let A and B be two positive semi-definite matrices. Then, for all

k ≥ 0

det(Ak + ♣AB♣p) ≥ det(A2 + ApBp) 0 ≤ p ≤ 2.

Problem 2. (Chapter 2) Let A and B be two positive semi-definite matrices. Then, for all

k, p ≥ 0

det(Ak + ♣AB♣p) ≥ det(Ak + ♣BA♣p).

Problem 3. (Chapter 2) Let A and B be two invertible Hermitian matrices. Then, for all

p ≤ 0 and k ≥ 0

det(Ak + ♣AB♣p) ≤ det(Ak + ♣BA♣p).

Problem 4. (Chapter 2) Let A and B be two n × n complex matrices such that A is positive

definite and B is positive semi-definite matrix. Then, for all k ≤ 0

det(Ak + ♣AB♣p) ≤ det(Ak + ApBp) 0 ≤ p ≤ 2.

Problem 5. (Chapter 3) Let A and B be two positive definite matrices of order n. Then for

1 ≤ p ≤ ∞
♣♣A + B + A#B + A♮B♣♣p ≤ ♣♣A + B + 2(A♮B)♣♣p.

Problem 6. (Chapter 4) If A, B > 0, 0 ≤ t ≤ 1, p ≥ 1 and (r, s ≥ 1 or r, s ≤ 0), then

λ[(A#r,tB)p(A#s,1−tB)p] ≺log λ(Ap(r+s−1)Bp).

• Problem 1 is proved for all k ≥ 2 and 0 ≤ p ≤ 2. It remains unknown for all 0 ≤ k ≤ 2

and 0 ≤ p ≤ 2.

• Problem 2 is proved for k = 2 and p ≥ 0.

• Problem 3 is proved for all k = 2 and p ≤ 0.

• Problem 4 is proved for all k ≤ −2 and 0 ≤ p ≤ 2. It remains unknown for all −2 ≤ k ≤ 0

and 0 ≤ p ≤ 2.

109



5. Singular Value Inequalities

• Problem 5 is only shown for p = 1 and p = 2.

• Problem 6 is proved for all 1 ≤ p ≤ 2 and r, s ∈ R with similar signs and t ∈ R such that
rp−r

(r+s)p ≤ t ≤ rp+s
(r+s)p . It is also valid for r = s = 1 and p ≥ 1.
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Titre : Contributions aux inégalités matricielles et quelques applications 

Mots clés :  matrice semi-définie positive, log-Majorisation, inégalité déterminentielle, valeurs 
propres, moyenne géométrique 

Résumé : La théorie matricielle est à l'étude 
depuis longtemps, elle a été un outil 
fondamental dans les disciplines mathématiques 
présentant des problèmes intéressants et 
stimulants. Dans cette thèse, nous nous 
concentrons sur une classe de matrices qui est 
l'ensemble de toutes les matrices semi-définies 
positives. Les sujets principaux sont les 
inégalités déterminantales, les inégalités aux 
valeurs propres et aux valeurs singulières et la 
moyenne géométrique de deux matrices définies 
positives. Ces concepts apparaissent dans de 
nombreux domaines de recherche et jouent un 
rôle décisif dans la théorie de l'information, la 
mécanique quantique et d'autres domaines 
mathématiques. Le point de départ de notre 
travail est les deux inégalités déterminantes non 
confirmées suivantes introduites par M. Lin 
(2017) pour toute matrice semi-définie positive 

A et B du même ordre : 
det(A2 + |AB|p) ≥ det(A2 + Ap Bp)  pour 0 ≤ p ≤ 2; 

det(A2 + |AB|p) ≥ det(A2 + |BA|p)  pour  p ≥ 0. 

Nous avons montré que la seconde inégalité 
est vraie pour un plus grand ensemble de 
matrices ; Matrices hermitiennes. Nous avons 
également démontré un résultat plus général 
de la première inégalité énoncé comme suit : 
det(Ak + |AB|p) ≥ det(Ak + ApBp) pour k≥2,0≤p≤ 2 

L'idée principale de la preuve est d'établir des 
relations de log-majorisation, nous donnons 
également quelques applications pour ces 
relations, plus précisément une borne 
supérieure pour une inégalité de type Golden-
Thompson établie par Hiai et Petz, et quelques 
nouveaux résultats liés aux divergences de 
Rényi. Plus de conjectures concernant les 
inégalités de valeurs singulières sont étudiées. 

 

Title : Contributions to Matrix Inequalities and Some Applications 

Keywords :  positive semi-definite matrix, log-Majorization, determinantal inequalities, eigenvalues, 
geometric mean 

Abstract : Matrix theory has been under study for 

a long time, it has been a fundamental tool in 

mathematical disciplines presenting interesting and 

challenging problems. In this thesis, we focus on 

one class of matrices which is the set of all positive 

semi-definite matrices. The main topics are 

determinantal inequalities, eigenvalue and singular 

value inequalities and the geometric mean of two 

positive definite matrices. These concepts arise in 

many research areas and they play a decisive role 

in information theory, quantum mechanics and 

other mathematical fields. The starting point of our 

work is the following two unconfirmed  

determinantal inequalities introduced by M. Lin 

(2017) for all positive semi-definite matrices  

 

A and B of the same order : 

det(A2 + |AB|p) ≥ det(A2 + Ap Bp)  for 0 ≤ p ≤ 2; 

det(A2 + |AB|p) ≥ det(A2 + |BA|p)   for  p ≥ 0. 

We have shown that second inequality is true 
for a larger set of matrices; Hermitian matrices. 
We have also proved a more general result of 
the first inequality stated as follows: 
det(Ak + |AB|p) ≥ det(Ak + Ap Bp) for k≥2,0≤p≤ 2. 

The main idea of the proof is to establish log-

majorization relations, we also give some 

applications for these relations, more precisely, an 

upper bound for a Golden-Thompson type 

inequality established by Hiai and Petz, and some 

new results related to the Rényi divergences. More 

conjectures regarding singular values inequalities 

are investigated. 
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