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General introduction

The research theme of this manuscript is part of a dynamic context of research of new materi-
als. The current research needs in new materials can be explained by a growing desire to reduce the
use of fossil resources to advance in terms of energy transition. Our research projects are based
on an interdisciplinary collaboration involving chemistry and mathematics, and are particularly
interested in fullerenes molecules, mainly carbon compounds with high potential, whose discovery has
generated great interest. In order to exploit the complete potential of these materials, it is essential to
understand the relationships between the structural arrangements and the physico-chemical behaviors,
in other words their properties and reactivity.

Several challenges emerged when we chose to focus on these topics and we are at the very beginning
of the theme project. It fundamental to set up a systematic and rigorous methodology to classify the
different structural arrangements and the resulting properties. From classification and by exploiting
the mathematical results, in the mid-term objective of the project it would be possible to isolate 3D
structures with interesting electrical and mechanical properties. The long term objective is to develop
a database that will allow us to propose materials of interest for the improvement of batteries [1] or
the optimization of seawater purification membranes [2], to mention only two examples.

This manuscript represents a theoretical overview of three years of work and initiates investiga-
tions on these topics in our research team.

A first approach to these issues, prior to this thesis topic was to research and understand the possi-
ble deformations of graphene. Actually, it is known that deformations in the form of waves can modify
the intrinsic molecule properties. The first simulations performed in 2018 by the CAPT research group
of IPREM were able to show that deformations involving curvature influence the reactivity or conduc-
tivity of the material.

After a complete reminder in part I, the second major part of the work was focused on the
study of concepts developed by Robert C. Haddon [3], a pioneer in the research of the relationship
between curvature and reactivity of materials. He presents the question in both geometrical and
chemical terms, and shows that the way the object is curved seems to play a major role in its
reactivity, in particular on C60 fullerene. He proposes the construction of a pyramidalization angle
associated with the curvature. However, his concept shows limitations, the angle cannot be defined
in all possible situations. Based on these limitations, we have implemented an answer as generalist
as possible, redefining most of R. C. Haddon’s concepts and bringing a clarification to the POAV1
(⇡-Orbital Axis Vector 1) theory. This preliminary work resulted in the publication of our first article
[4] on this topic. This first article is illustrated by concrete examples from D. Tománek and Frederick’s
database [5]. Following this initial work, the study of other concepts developed by R. C. Haddon [6]
became obvious. The notion of POAV2 (⇡-Orbital Axis Vector 2) is a more generalized continuity
of POAV1 and shows that the notions established by R. C. Haddon are not clear and require further
and improved definitions. To allow the solving of some constraints, new and more precise definitions
related to the reactivity of fullerenes are presented in this manuscript.
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We can resume our first works such as the geometry of a system is not only a problem inherent to
the geometry of the object. There is in fact a coupling between the geometry and the orbital
information. It is then, possible to associate a discrete object with an object that can be called
continuous "geometrical-chemical".

A third major part of this manuscript concerns the study of aromaticity criteria according to
the theories stated by the researcher Erich Hückel. The properties of some carbon materials such as
graphene are based on ⇡-conjugation, aromaticity and therefore on the sp2 hybridization of the con-
stituent carbons. However, other visions in terms of aromaticity exist for cyclic molecules with sp2

hybridized carbons. The study of these different notions, developed in the 1960’s by Edgar Heilbronner
[7] and Howard Zimmerman [8], are proved to be of fundamental importance in our developments.
Based on this work, which is well accepted in the theoretical chemistry community, we have re-
established the general energy equations of the so-called Möbius systems as a function of the number
of electrons ⇡. The logical continuation of the work was the study of ⇡-orbitals of Möbius type sys-
tems. Recent works of the research team of the famous Nobel prize laureate Roald Hoffmann [9], have
particularly interested us. In effect, this work shows a relation between the orbitals of cyclic molecules
called "Möbius" and the orbitals of molecules called [n]-cumulenes. Our work presented here, provides
an explanation and a mathematical justification of the existence of this curiosity discovered by R.
Hoffmann et al. [9] which is called: the helical orbitals.
Mathematical developments were complemented by quantum calculations performed by DFT (Den-
sity Functional Theory) and by multi-configuration calculations of the CASPT2 (Theory of Pertur-
bation of the Complete Active Space) type aiming at clarifying and confirming the DFT results (in
particular those previously carried out by the team of R. Hoffmann [9]).

From a more applicative point of view, our work presents numerous and varied possibilities. First
in part II, we have performed precise cartographies of the properties of a large family of fullerenes,
and non-fullerenic molecules, using the notions of pyramidalization angle, curvature, hybridization,
and angular defect. It should be noted that the implementation of our illustrations is possible, with
the support of a visualization program [10] available for free online, that was specially developed for
the project by our research group at IPREM.
Then, in order to improve our understanding of the behavior of the curiosities represented by the
helical orbitals, we have carried out an important visualization work on [n]-cumulenes, various
molecules with and without hetero-atoms.

Publication and preprints associated to the thesis

• Relating the molecular topology and local geometry: Haddon’s pyramidalization angle and the
Gaussian curvature (J. Sabalot-Cuzzubbo, G. Salvato-Vallverdu, D. Bégué, and J. Cresson. Relat-
ing the molecular topology and local geometry: Haddon’s pyramidalization angle and the Gaussian
curvature. Journal of Chemical Physics, 152:244310, 2020)

• Etude des structures optimales et équivalentes de quelques molécules - le cas linéaire et le cer-
cle pour la distribution nulle ou de Möbius J. Sabalot-Cuzzubbo, J. Cresson, D. Bégué. 2020.
Preprint)

• Generation of helical states - Breaking of symmetries, Curie’s principle, and excited states (J.
Sabalot-Cuzzubbo, D. Bégué, J. Cresson. 2021. Preprint hal-03360966f)

• Haddon’s POAV2 versus POAV theory for non-planar molecules J. Sabalot-Cuzzubbo, J. Cresson,
D. Bégué. 2021. Preprint)
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Part I

Reminders
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This first part gives the necessary reminders for the understanding of the manuscript: reminders of
geometry and chemistry.

The geometry reminder gives an overview of the geometric-chemical structure of the molecules accord-
ing to the available information but also to give the criteria of a molecular skeleton.

The chemistry reminder includes the main points such as: the two Hückel methods with their charac-
teristics, the definition of the geometry of a molecule from a chemical point of view, the interactions
between atomic orbitals, and the context of Hückel matrices.

This last point gives a review of the:

• Schrödinger equation,

• wave functions,

• atomic orbitals,

• Hamiltonian matrix,

• interaction assumptions,

• eigenvalues and energies of molecular orbitals.

Finally, we present the necessary reminders concerning the methods of quantum computation.
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0.1 Problem of geometry

0.1.1 Geometrical-chemical structure of molecules

Molecules can be described according to different information: geometrical, chemical and electronic.

• The geometrical data concerns the curve on which the atoms are arranged. This open or closed
curve is of limited length in R

3.

• The chemical data relates to the orbital structures specific to the molecule.

• The electronic data is about the electrons available in the molecule to form chemical bonds.

From a geometrical point of view we studied the cases of N atoms arranged either on straight line
segments LN we will discuss about a linear chain, or circles which will be assimilated to cycles SN .

It should be noted that the geometrical point of view can be confusing. Indeed, the part we are interested
in is related to the symmetry group of the molecule. The use of a curve to describe the arrangement of
the atoms simplifies the study, but is not clearly representative of the molecule.

0.1.2 The skeleton of a molecule

For a molecule M made of N atoms noted Ai with i = 1, ..., N . We can characterize a molecule by a
set of points A in R

3 which will be represented by the position of the atoms. There exists a matrix R

such that Ri,j = 1 if Ai and Aj form a bond and Ri,j = 0 if there is no binding. We then associate a
molecule to M = (A ,R).
We associate for a molecule M a geometrical representation called skeleton of the molecule. By defini-
tion, we define the skeleton as the geometrical object in R

3 obtained by the plot of a segment between
atoms Ai and Aj if Ri,j = 1. We note S(M) the skeleton of M.

0.2 Problem of chemistry

From a chemical point of view, to correlate the adjacent matrices of the graphs associated with the
molecules seen previously, we consider the Hückel matrices, then Hückel methods.

0.2.1 Hückel methods

The study of Hückel matrices provides a first approximation to study only the molecular interatomic
distances but not the geometry, which requires further investigation of the Hückel method approach.
A hierarchy between the matrices is organized according to the consideration of the neighboring atoms
in the molecules. These matrices are associated with the graph theory.
A distinction is made between the simple Hückel method and the so-called extended method
[11]. First, in the simple method, it is the interactions between atoms of the same nature that are of
interest. In this case, only one orbital is involved, and finally allows the study of interatomic distances
between first neighbors.
The simple method leads only to relations with parameters ↵, �. Where ↵ is the coulombic integral,
a negative parameter which represents the energy of the atomic orbital (AO) before interaction and �
the negative resonance integral which is proportional to the overlap between two AOs and depends on
the distance between atoms. A non-zero value of the � parameter shows the influence of the overlap,
so the resonance integral must be used when two AOs are involved. It is then very complicated to
solve the system. This method is therefore preferred in cases where only identical atoms are present
and that only one AO is involved and that the interactions between neighbors are constant. The
example of ⇡-systems of hydrocarbons is to be preferred in this case. The advantage of the extended
Hückel method is that it is applicable to all molecules and does not make any other approximation
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than the monoelectronic Hamiltonian, but has some limitations. Indeed, the limitations are based
on the simplification of the Hamiltonian, where, for example the differentiation of the energies of the
distributions of two electrons between 2 degenerate molecular orbitals (MO) is not possible.

0.2.2 Geometry of molecules

As indicated at the beginning of the work 0.1.1, we consider molecules whose geometric structure is
carried by a curve in R

3 parameter such that: � : [0, l] ! R
3, where l > 0 is the length of the curve.

We have then: Γ = �([0, l]) the curve. Note that we use the curvilinear coordinate tools.

The atoms are uniformly positioned on the curve, we remind that N is the number of atoms whose
position is given as :

ti = (i� 1)

✓

l

(N � 1)

◆

(1)

with i = 1, ..., N

The first and the last atom constitute the beginning and the end of the curve.

Note that the N atoms are arranged in R
3, so if an atom has a bond or an interaction with another

atom then it is connected by a segment. A polygonal curve is obtained which sometimes be replaced by
a curve, a line or a circle.

We tried to describe the structure of the MOs of these molecules, so we used the Hückel methods as
in 0.2.1.

0.2.3 Interaction with the atomic orbitals

Let us consider an atom and the family of atoms interacting with it. The interaction takes place
between two AOs such that �a and �b. Two AOs interact to form an MO if their overlap integral is
non-zero [11].

Sa,b = h�a | �bi (2)

This result is obtained from the formula of Wolsberg-Helmhotz described in [11].

The literature studies mostly simple geometries of molecules where the interactions between AOs are
essentially between neighboring atoms arranged on the curve. In general, we consider an atom Ai

and its interactions with Ai�1 and Ai+1. Finally, the effective geometry does not play a role since
everything occurs locally.
The existence of overlap between orbitals is also related to the molecular geometry.

Let us illustrate this with a helix where the N atoms are arranged. For a circular helix the parameters
are:

8

<

:

x(t) = r cos (t)
y(t) = ✏r sin (t)
z(t) = bt

(3)

where ✏ is +1 or �1 which corresponds to the direction of the helix and b > 0 the pitch of the helix 2⇡b.

The interaction between atoms is given by the length li which is the distance at which two atoms
interact through their AO. The neighboring atoms of the curve will obviously interact and then we
consider the first, second neighbors etc. It is then possible to filter the structure to take into account
the longer interactions. The structure of the helix induces that if 2⇡b < li then, there will be interaction
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with an atom positioned further on the curve. This, will have some consequence on the shape of the
Hückel matrices for helical curves.

0.2.4 Hückel matrices

To be interested in Hückel matrices, we need to study the Schrödinger equation.

Schrödinger equation, wave functions and atomic orbitals

The Schrödinger equation associated to the Hamiltonian H is:

H.[Ψ] = E.Ψ (4)

Ψ being the MO and solutions of the equation. Moreover, the wave functions are eigenfunctions of
the Hamiltonian operator H.

The set of wave functions is defined as a vector space in C, denoted by O and a scalar product
defined for all � and  such that:

h�, i =
Z

∆

� ⇤  dx (5)

where dx is the volume element, ∆ the space in which we work and �⇤ = �̄ the complex conjugate of �.

Note �i (i = 1, ..., n) are the AOs associated to atoms Ai.

They verify:
h�i,�ii = 1 (6)

and
h�i,�ii = Si,j (7)

with i, j = 1, ..., N and where Si,j is the overlap integral of the AOs �i and �j.

Hückel’s hypothesis consists in using the AOs as the basis of the vector space O, i.e. to neglect the
overlap between 2 distinct orbitals. Any wave function Ψ 2 O is written as a linear combination of
the AOs with coefficients in C:

Ψ =

N
X

i=1

ci�i (8)

with ci 2 C.

The notion of normalization of Ψ is given by hΨ,Ψi = 1 is:

N
X

i=1

c2i = 1 (9)

The Hamiltonian : Matrix H

We also associate to the Hamiltonian operator H a matrix H using the orthonormal basis O. We note
this basis: �i, i = 1, ..., N and define such that:

H =

0

B

B

@

H11 H12 . . . H1N

H21 H22 . . . H2N

. . . . . . . . . . . .

HN1 HN2 . . . HNN

1

C

C

A

(10)
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where column i is the vector H[�i].

The coefficients Hij are obtained by the scalar product between �i and H[�i] :

Hij = h�i | H | �ji = h�i, H[�j ]i (11)

From a vector point of view the Schrödinger equation is written:

H.Ψ = E.Ψ (12)

The eigenvalues of the matrix H correspond to the eigenvalues of the operator H. The eigenvectors
of H are the coefficients of the eigenfunctions of H in the basis {�i}i=1,...,N .
The matrix H has some properties. If only one type of atom is involved in the molecule, i.e. if it is
homogeneous, we have for all i:

Hii = ↵ (13)

where ↵ depends only on the atom considered.

The mentioned parameter ↵ (in 0.2.1) represents the energy of an electron in the considered AO and
we have :

Hij = Hji (14)

Thus, the matrix is symmetric. As a consequence, the eigenvalues are real and the eigenvectors
orthogonal.

Interaction hypotheses, geometry and H matrix

Let us focus on the coefficients of the H matrix . The hypotheses are presented by Y. Jean and F.
Volatron in [11] :

• if two AOs are not carried by bounded atoms we have : Hij = 0,

• if two AOs are carried by bound atoms we have:

Hij = µij� (15)

where � is the total overlap of the two AOs and µij is 0 < µij  1 which depends of the overlap of
the two AOs.

Set :

µij = cos (�i) (16)

where �i is the distribution of the orbitals.

The matrix H is written as:
H = ↵IdN + �A� (17)

The matrix A� is :

A� =

0

B

B

B

B

B

B

B

@

0 cos(�1) 0 . . . . . . 0 cos(�N )
cos(�1) 0 cos(�2) 0 . . . . . . 0
0 cos(�2) 0 cos(�3) 0 . . . 0
...
0 . . . . . . 0 cos(�N�2)� 0 cos(�N�1)
cos(�N ) 0 . . . . . . 0 cos(�N�1) 0

1

C

C

C

C

C

C

C

A

(18)
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We note ⌫1(�)  · · ·  ⌫N (�) the real ordered eigenvalues of A� :

�i = ↵+ �⌫i(�) (19)

A� is of zero trace:
N
X

i=1

⌫i(�) = 0 (20)

and
N
X

i=1

�i = N↵. (21)

Eigenvalues and energy of molecular orbitals

To find the eigenfunctions of the Schrödinger equation it is necessary to determine the solutions of
the system: HΨ = EΨ.

Consider then for all E 2 R the matrix:

M(E) = H� EId (22)

where Id is the identity matrix of RN .

An eigenfunction of H is equivalent to the existence of a non-zero solution of the linear system:

E(E)Ψ = 0 (23)

A necessary and sufficient condition is that the characteristic polynomial of H is zero in E:

PH(E) =| M(E) |= 0 (24)

where | . | represents the determinant.

Indeed, in this case the matrix M(E) has a non-zero kernel and therefore non-zero solutions.
The matrix M(E) is symmetric, its eigenvalues are real, so we can order them:

�1  �2  · · ·  �N (25)

Also, the polynomial PH(E) can be written by factorization:

PH(E) = (E � �1) . . . (E � �N ) (26)

For more details, about the characteristic polynomial of H, refer to Appendix 2 section 1.

We can then determine the total energy E of the molecule such that:

E =
N
X

i=1

giEi (27)

where gi is the quantum number of the orbital Ψi which by the principle of exclusion of Pauli can take
the values 0, 1, or 2 since each orbital can at most 2 electrons.

Note ⇡(S) the number of electrons available to make bonds:

N
X

i=1

gi = ⇡(S) (28)

We can deduce the value of gi according to the parity of ⇡(S):
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• if ⇡(S) = 2m then gi = 2 for i = 1, . . . , ⇡(S)2 and gi = 0 if i = ⇡(S)
2 + 1, . . . , N

• if ⇡(S) = 2m + 1 then gi = 2 for i = 1, . . . , ⇡(S)�1
2 , gi = 1 for i = ⇡(S)+1

2 , . . . , N and gi = 0 for

i = ⇡(S)+1
2 + 1, . . . , N .

Thus,
Ei = ↵+ �⌫i(�) (29)

We have:

E = ⇡(S)↵+ �

N
X

i=1

gi⌫i(�) (30)

For more details, about the total energy of a molecule, refer to Appendix 2 section 2.

Distribution of a molecule

Associated to the notion of Hamiltonian, it is necessary to define the notion of distribution of a
molecule which we will use in the following.

The distribution of a molecule is determined following steps:

• the Hückel matrix must be written,

• calculate the scalar products Hij which are decomposed according to the formula 15.

The quantity corresponding to the distribution is then an angle �i, which is associated to Hi,i+1. As
the angle is not clearly identified, we have to take into account the basis of the wave functions used
with a vector basis in R

3.

0.3 Quantum computing methods

In all the work presented in this manuscript, we have carried out calculations using ab-initio and
density functional theory (DFT) implemented in the Gaussian code [12], we used in particular
the DFT Hamiltonian type B3LYP [13, 14]. We mainly used Gaussian which is a popular and widely
used quantum chemistry software. It is a gaussian based software ideally used for closed-shell systems
and can be used with different methods (DFT, Hartree-Fock, Moller-Plesset,...). In order to obtain
reliable energies on multi references systems calculations were also carried out in both CASSCF and
CASPT2 levels of theory. These calculations were performed using Molpro program packages [15].

0.3.1 Description of electronic structure of molecules

When one wants to determine electronic properties of atoms and molecules by the point of view of
molecular modeling, we have to remember that in the “quantum world” the Schrödinger equation
is the master equation that describes the behavior of all the bodies in submicroscopic scale. Based on
the De Broglie’s observations on the wave-particle behavior of the matter, the Schrödinger equation is
based on the fact that all bodies behave as waves with a certain wavelength.
This equation has some special characteristics:

• it is best solved as an algebraic partial differential equation, not as an analytical one

• it is an equation of eigenvalues, as the ones in algebraic mathematics and, for this, it needs linear
operators and functions that describes vector in an algebraic space
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• it needs the function to give the same function back, i.e., it needs a “guess” function to find this
same function itself after a cycle of calculation.

The last item states the basis of what is called the self-consistent field . The guess function is used
to solve Schrödinger equation, yielding eigenvalues and a function in a “better shape”.
In a realistic world, solving this equation is not possible for a system with more than two electrons.
It is in this point that “quantum chemistry” started to be developed more strongly with the introduc-
tion of approximations that allow one to solve the electronic structure of multi-electronic atoms and
molecules. These approximations can be divided into physical-mathematical approximations and phys-
ical approximations. The first physical approximation is the Born-Oppenheimer, that states
that as the nuclei of the atoms are much heavier than the electrons, they are much slower, so, they can
be considered as statistic while the electrons move. This results in the decoupling of partial equations
that would have needed to be calculated on both spatial coordinates (nuclei and electrons) before, and
now, with such approximation, they need to be calculated only on the nuclei coordinates or on the
electron coordinates.

By the third decade of XXth century, novel approaches have been proposed to determine the electronic
structure of molecular systems and solids. The first one was proposed by D. R. Hartree and Vladimir A.
Fock. The so-called Hartree-Fock method consists in treating the electrons and their wave-function
as a determinant called Slater’s determinant. This mathematics allowed the calculation to take place
considering that the multi-electronic problem could be resolved as “multi” problems of one electron.
This was introduced by an effective potential operator (Fock operator) which states a general field of
electrons. This means that one electron is sensible to the electromagnetic field of the nuclei and the
other N-1 electrons. This also does not take into account any relativistic effect that may happen.

This one-electron picture could then be implemented in a computational code to be solved iteratively
(based on the self-consistent field scheme). The electrons could be translated into mathematical func-
tions called basis set . These electrons could then be associated to specific orbitals (wave-functions)
respecting the Pauli’s exclusion theorem. The composition of the molecular orbitals was performed on
the basis of a linear combination of atomic orbitals (LCAO method). The basis set can then be
decorticated and designed to accommodate the needs of the physical problem being studied (number
of core functions, polarization effects, felxibility to accomodate ionic clouds, etc).

Because of the one-electron picture, the Hartree-Fock method lacks of description of the electronic
correlation in a many-body system. In this way, metallic systems and systems where electrons can
delocalize over a region of the space are poorly-described by this method. Many others, called post-
Hartree-Fock methods have tried, with different degrees of success, to incorporate these effects on the
Hartree-Fock scheme. This, has been accomplished by Perturbation theory, as it is the case on nth

order Moller-Plesset perturbation theory (MPn), coupled-cluster, configuration of interactions,
multi-configuration methods, and semi-empirical ones.

A common point between these methods, exception made for the semi-empirical ones, is the limitation
on the number of basis functions. These methods, although quite efficient on the description of the
electronic structure of molecules, mainly, scale quickly with the number of atoms and in this way, are
not practical for every system being studied, even though they would be very appropriate because
the description of both exchange and correlation would be the appropriate in many cases. The semi-
empirical methods, by their turn, can be employed for large systems, with a very low accuracy though.
This is due to the fact that multi-center integrals are not calculated "on the fly" but are replaced by
experimentally-obtained (or calculated with a higher level of theory method for model systems) values.
This has been bypassed in parts by the introduction of Density Functional Theory (DFT) and
this is discussed in the next section.
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0.3.2 Density Functional Theory (DFT)

The use of Density Functional Theory (DFT) became a common-place in the molecular modeling
of materials in the nanometric scale. In this method, the energy of a system is described as a func-
tional of the electronic density, skipping the direct wave-function calculation in the process. While
wave-function-based methods, such as Hartree-Fock (HF), solve a Schrödinger-like equation (the Fock
equation), DFT is based on the assumption that there is a relationship between the total electronic
energy and the overall electronic density.

Note that for the Fock equation, the same is valid for Perturbation Theory based methods, such as MP2,
and Coupled-Cluster one.

The first basis of this idea was already present in the Thomas-Fermi model, however the breakthrough
came by the Hohenberg-Kohn theorem in 1964, showing that the ground-state energy and other prop-
erties of a system were uniquely defined by the electron density. In other words, the energy E is hence
a functional of the density ⇢(~r) at the point ~r. Based on the definition of the electric potential, one
can write this as:

E[⇢(~r)] =

Z

Vext(~r)⇢(~r)d~r + F [⇢(~r)] (31)

The first term Vext(~r) arises from the interaction of the electrons with the external potential produced
by the Coulomb interaction with the nuclei. On the other hand, F [⇢(~r)] is the sum of the kinetic
energy of the electrons and the contribution from inter-electronic interactions.

The variational method can be applied in the solving of this equation, in which the minimum
value of E[⇢(~r)] represents the energy of the electron density of the ground-state. From this, it is a
common-sense that DFT is intrinsically incapable of describing excited-states without further physical-
mathematical considerations.

Then, in 1965, with the Kohn-Sham (KS) theorem, the term F [⇢(~r)] is suggested to be approximated
as the sum of three terms in the form:

F [⇢(~r)] = EKE [⇢(~r)] + EH [⇢(~r)] + EXC [⇢(~r)] (32)

where EKE [⇢(~r)] is the kinetic energy, EH [⇢(~r)] the electron-electron Coulombic energy (also known
as Hartree electrostatic energy), and EXC [⇢(~r)] a term responsible for describing the exchange and
correlation contributions.

The first term is further defined as the kinetic energy of a system of non-interacting electrons with
the same density ⇢(~r) as the real system. The second term associates theelectrostatic energy as
the classical interaction between two charged densities over all possible pairwise interactions. It is
interesting to note that this term is classical and do not take into account the quantum many-body
behavior of the electrons, i.e., as they are correlated to each other and the Heisenberg uncertainty
principle, for instance.
Finally, the last term is then responsible for accounting for this quantum behavior of electrons and it
is one of the master pieces of DFT, known as the exchange-correlation functional. As no analytical
form of this functional is known, several approximations are proposed to treat this quantum mechan-
ical problem and based on this, DFT cannot be considered always as an ab initio method, since the
definition of this functional can take into account empirical parameters. However, even simple approx-
imations to it can give favorable results and this is the key success of DFT.
Numerically, the electronic structure of the system is solved in a self-consistent way, in which a guess
of a initial electronic density is fed into the above equations. The application of the variational ap-
proach allows one to reach the ground-state electronic density and, consequently, energy by a so-called
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self-consistent field .
Calculating these specific energies for a multi-electronic system takes the form of multi-centered multi-
index integrals, what is responsible for a ready increase in the computation time (often in the order
of O(N4), where N is the number of atoms). In this way, treating large molecular systems becomes
almost non-practical.
Moreover, the combination of these two equations bears a striking resemblance to those of Hartree-
Fock theory. The difference between them is found on the fact that the HF has no correlation being
calculated whereas KS is a correlated method. To go former to the latter, one only needs to replace
the exchange energy by the exchange-correlation one.

0.3.3 The exchange-correlation functionals

The fact that the exchange-correlation functional is not known gives rise to the appearance of
several difference ready to be employed by the user. Choosing the most appropriate demands testing
it against the family of materials being studied and the nature of the physical-chemical issue.

The first functionals are based on two different approximations: the Local Density Approximation
(LDA) and Generalized Gradient Approximation (GGA). For the former, the electron density
varies locally whereas for the latter it also depends on gradient of it. In well-behaviored systems, the
electron density is smooth, almost constant, thus, it does not depend on its gradient, justifying the
use of LDA for these cases. For heteroatomic systems, this may not be true and GGA may become
needed.
To refine even more the quality of the results, mainly the atomization energies, bond lengths and vibra-
tional frequencies, functionals called hybrid have been developed over the three last decades. These
functionals incorporate a portion of the exact exchange in HF theory with exchange and correlation
from other sources such as LDA and GGA. These functionals are constructed by a linear combination
of the HF exact exchange functional and any other exchange-correlation functional. The weight of
participation of each component is typically found by fitting the predictions done by these functionals
to experimental results.

The most used hybrid functionals are B3LYP [16, 17], PBE0 [18, 19], HSE [20] and meta-hybrid
GGA (as the Minnesota functionals) [21, 22]. Specifically, the B3LYP functional which has been used
throughout this thesis, is written in the form of:

EB3LY P
XC = ELDA

X + a0(E
HF
X � ELDA

X ) + ax(E
GGA
X � ELDA

X ) + ELDA
C + ac(E

GGA
C � ELDA

C ) (33)

Where EB3LY P
XC stands for the exchange-correlation energy in the B3LYP scheme, ELDA

X the exchange
energy in the LDA scheme, EHF

X the exchange energy of HF, EGGA
X the exchange energy in GGA

scheme, ELDA
C the correlation energy in LDA scheme, and EGGA

C the correlation energy in GGA
scheme. The parameters a0, ax and ac are the weight of participation of each component and assume
the values of 0.20, 0.72 and 0.81, respectively. These parameters were determined beforehand by A.
Becke by fitting the analogous B3PW91 functional to a set of molecular parameters [13].

This functional has been widely used for description of ground state properties of molecular systems.
However, a serious low accuracy appears when trying to describe excited state properties and where
the self-interaction problem becomes pathological.

Note that the self-interaction problem consists on the fact that a electron can interact with itself. This
leads to problem of over-delocalization of the electron cloud since this electron tends to repulse itself.
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This drawback has limited the use of B3LYP functional for charge-transfer systems and problems
evolving the energies of the excited states for example.

0.3.4 Multi reference methods

Unlike the Restricted Hartree-Fock (RHF) solution which corresponds to the description of a
Slater determinant made up of N

2 doubly occupied orbitals the exact solution that we are trying to
describe by taking into account the correlation is in fact made up composed of an infinite number of
configurations that can be thought of as excitations with respect to the N-electron RHF determinant
in an infinitely large base. Of course, it is impossible to work in a complete or infinite basis. Various
methods are then proposed by theoretical chemists to evaluate as accurately as possible this correlation.
Three types of approaches are used :

• the methods aiming at solving variably the Schrödinger equation in the eigenstates by using a
basis of Slater determinants or configurations. These are Configuration Interaction (C.I.)
type approaches,

• perturbation methods requiring the definition of a minimal basis and a partition of the Hamil-
tonian operator adapted to ensure the convergence of the perturbation series in a Rayleigh-
Schrödinger type approach,

• pairwise methods which consist in evaluating the correlation energy of pairs of electrons as-
sumed without interactions (Independent Electron Pair Approximation - IEPA) or in interaction
(Coupled Pair Theory).

These approaches have all in common that they build the basis for the development of the desired
function from single-electron functions optimized at the Hartree-Fock level (generally monodeter-
minal ground state).

On the contrary, in the Multi Configurational Self Consistent Field (MCSCF) methods, the
objective is to optimize with the use of a variational method both the monoelectronic functions used
and the multiconfigurational development of the eigenfunction of the electronic Hamiltonian.

Among the numerous developments proposed, the Complete Active Space Self Consistent Field
(CASSCF) approaches lead to the development of the multiconfigurational wave function on the
totality of the configurations generated by the set of all possible excitations in a restricted space of
occupied and virtual molecular orbitals (active space).

The purpose of this paragraph is not to present the mathematical details of all these computations
method, but rather to set out the general considerations for the use of these approaches when one has
to describe one or more electronic states of more or less strongly correlated electrons. Thus, in a system
where static correlation is not involved, the RHF determinant remains a relatively good approximation
for the description of the wave function. The addition of a method taking into account the dynamic
correlation is done with this determinant (as for the DFT, methods ...). The RHF determinant is con-
sidered as the reference determinant. On the contrary, in the case of a system of strongly correlated
electrons several Slater determinants must be considered to describe this state. The wave function used
is most often a CAS wave function and the dynamic correlation is taken into account on the latter.
This CAS wave function being made of several determinants, the system has several references. The
term Multi-Reference (MR) thus translates the fact of considering the dynamic correlation on several
reference determinants.
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We dedicate this part to the theory of ⇡-orbital axis vectors, as we are interested in the ⇡-orbitals of
molecules. Their interest, is that they are involved in molecular reactivity.

But how to get interested in them?

• By using DFT calculation methods, however it is heavy and long in preparation and calculation
time, and it is not possible for large molecules.

• Therefore, we are interested in the work of Robert C. Haddon’s research team which proposes
simple calculation tools but not sufficiently generalized.

Thus, in this part of the manuscript we propose a detailed review, the extension and the interpretation
of these different tools.
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Introduction: Study of the Robert C. Haddon’s concepts

The interest of this part concerns the issue of reactivity which is a fundamental point for the
study of molecular structures. The goal is to carry out cartographies representing the reactivity.
Many current topics depend on the knowledge of this reactivity as for instance in the case of hydrogen
storage, or in some porous systems.
Generally, the obtention of these cartographies are performed by quantum calculations as DFT but
they are sometimes complex in the case of molecules with a large number of atoms, or by molecular
dynamics which is not sufficiently accurate.
To find the solution to these limitations, we must refer to the fundamental notions of reactivity. Chem-
ically, the reactivity is connected to the ⇡-system, it is therefore necessary to find one or more tools
in order to determine this system, without quantum calculations, in an explicit and algorithmic way
and in a not expensive way.

In the first chapter, we answer these questions by referring to the work of Robert C. Haddon, a
pioneer on these topics. Initially, R. C. Haddon tried to identify the planarity of molecules, to answer
this, he proposes a set of tools and notions.
The first notion is the pyramidalization angle well-known by chemists. First described by R. C. Had-
don in regular cases in his article "C60: sphere or polyhedron?" [3], we have chosen in this manuscript
to work also in less regular cases.
Then, it is the notion of ⇡-Orbital Axis Vector 1 (POAV1) illustrated by R. C. Haddon and L.
T. Scott [23] related to the pyramidalization angle that we investigate. The POAV1 is the vector tool
that best describes the direction of the ⇡-system of a molecule. It provides a more precise access to
the notion of system planarity even if the pyramidalization angle gives a first knowledge of it.
Hybridization, a well-known tool, is also studied in detail, in order to relate hybridization to the
POAV1. However, despite all these tools, there are some limitations. Tools from mathematics, and
more particularly from differential geometry, are useful. Concepts of curvature, and especially spher-
ical curvature are given. In addition, we also consider the angular defect.
We study precisely all the concepts developed by the researcher and consider some of his concepts in
a more general way with physical, geometrical and chemical meanings.

In the second chapter, we first explain the methods of implementation of the concepts that we
have used throughout this work. Then, we expose the application methods that we have developed
with the different concepts presented. We present among other things, our visualization program based
on the concepts applied to a database of fullerene. Finally, we present a large number of our results
according to all the notions on non-fullerenic molecules and along a reaction path of nitrile imine
molecule (energy, minimum and maximum values of pyramidalization angle, hybridization, angular
defect, spherical curvature, and the corresponding cartographies).

The third chapter, provides an opportunity to explore beyond the first concepts with a reflexion on
the POAV2 concept proposed by R. C. Haddon [6] as a complement to POAV1.
We conclude the chapter with an overview of possible applications of the concepts for the characteri-
zation of geometries, topologies, and reactivity of organic covalent molecules.
Then, we give a comparison between the two tools POAV1 and POAV2, in order to show which is
the most appropriate since there is no other method to characterize the ⇡-system and more specifically
the reactivity.



Chapter 1

The π-Orbital Axis Vector 1 (POAV1)
theory

In this chapter, we consider and study 3 main points:

1. the clarification of the notions of pyramidalization angle (Pyr), ⇡-Orbital Axis Vector (POAV1),
hybridization and curvature,

2. the extension to the notion of angular defect,

3. the properties of POAV1 and associated tools based on fullerenes and other non-fullerenic com-
pounds.

We used, among others [3][23][6], and results published in our first paper [4].

1.1 The π-Orbital Axis Vector (POAV1) of Robert C. Haddon

1.1.1 Pyramidalization angle and π-Orbital Axis Vector (POAV1)

Robert C. Haddon developed in 1990s the concept of pyramidalization angle (Pyr) and ⇡-Orbital
Axis Vector (POAV1) ([3, 23, 6]). In this series of articles, R. C. Haddon describes the concept for
molecules such as fullerenes and more particularly the C60 fullerene. He introduces a local concept,
i.e. specific to an atom. So from a geometrical point of view with respect to a vertex, since the
fullerene (illustrated in first approximation as a soccer ball by Kroto et al.[24]) can be apprehended as
a discrete sphere made of 20 hexagons and 12 polygons. We will then distinguish the use of the Pyr

and ⇡-Orbital Axis Vector (POAV1) in regular trivalent cases and in non-regular trivalent cases.

Regular trivalent case

The trivalent regular case is the simplest case that we can observe. It is the case studied by R.
C. Haddon in [3]. In fact, R. C. Haddon studies the specific case of C60, and assumes that all the
carbon-carbon bonds are identical thus that they are of the same length and that the angles between
bonds are equal.

The following figure illustrates the angle ✓AB associated to calculation of Pyr and the normal vector
(na) in the specific case of C60:

26
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Figure 1.1: Representation of the pyramidalization angle in a regular case

Trivalent regular case means that all the bonds are of equal lengths and that each atom of the molecule
is connected to three atoms.
In the case of any fullerene, the carbon atom studied are then always be bounded by 3 neighboring
carbon atoms.

For the construction of Pyr we consider an atom and its three neighbors as a polyhedron with ver-
tex A and the star of A (?(A)) containing the three neighbors B. We can calculate the angle of
pyramidalization in A such that :

Pyr(A) = ✓AB � ⇡

2
(1.1)

It should be noted that if Pyr(A) = 0 the molecule is considered as planar and if Pyr(A) 6= 0 the
molecule is non-planar.

The Pyr is by definition obtained for a given atom A in a molecule associated with the existence of
the particular vector called POAV1(A) vector which has the property to make a constant angle ✓AB

with each neighbors B connected to A [25]. Where, B 2 ?(A) such that ⇡
2 < ✓AB < ⇡.

Thus, the vector POAV1(A) is the normal vector to the plane formed by the neighboring B atoms at
the vertex A.

To prove the previous statements, let A be a given atom of the molecule M. As the molecule M is
trivalent, we have three connected atoms B1, B2, B3 connected to A. These three atoms define a
plane P(A). As the three bonds are equivalents, the atom A belongs to the intersection of each me-
diating plane, then in particular to the line passing trough A and the intersection of the mediating
line in the triangle defined by B1, B2 and B3. Let us denote by I the intersection point of all me-
diating line in the plane P(A). We define POAV1(A) as the unique unitary vector directed from I to A.
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To finish, from a more mathematical point of view we can refer to the works of Liu’s team [26]
and Romon’s manuscript [27]. Indeed, the existence of the vector POAV1(A) is associated with the
existence of a cone in A, which is tangent to the faces containing A. This is a mesh property which
can be denoted as cone mesh. All meshes whose vertices are trivalent are conical. Romon [27] also
shows that a mesh whose vertices are of order 4 is conical. We then understand that in such a case
the POAV1 can be determined.

Non-regular trivalent case

As we have just seen, R. C. Haddon defines the Pyr only in a certain case but not in a non-regular
trivalent case [3, 23, 6]. The construction in a trivalent non-regular case will depend on the existence
of a regularized star of a given atom in a molecule. Note that the POAV1 vector can be defined
even for non-regular trivalent molecule.

In fact, for a trivalent molecule M, and A the considered atom of M. We define for each neighboring
atom B 2 ?(A), a Reg✏(B) with ✏ > 0, a point of AB. We have then Reg ? (A) i.e a ✏-regularized
?(A) as in the following figure 1.4.

Figure 1.4: Representation of the regularized ?(A) [4]

Reg✏(B) is define by the relation:

�������!
AReg✏(B) =

✏

AB

��!
AB 8 2 ?(A) (1.4)

with

✏(A) = minB2?(A)AB (1.5)

which corresponds to the minimum of the bound lengths starting in A.

Finally, the regularization of the star of a given atom is extendable to the Pyr.
By definition, for a trivalent molecule M and A an atom of M, let ✏ > 0, the ✏-pyramidalization angle
of M in A is defined as the Pyr associated with A and the ✏-regularized star of A.
This definition depends only on ✏, and this is not sufficient.
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We have then, for the same type of trivalent molecule, a ✏ > 0 and POAV✏(A) be the vector defined in
1.1.1. The POAV✏(A) is independent of ✏.

The proof of this definition is developed in Appendix 2 section 3.

We can then deduce an essential point of the ✏ � Pyr : for M a trivalent molecule and for ✏ > 0, the
✏� Pyr in A is independant of ✏.

This property can be used to compute the Pyr in concrete cases where the bond lengths are not equals.

Note that this result is stated in the work of R. C. Haddon [3] p.1798.

1.2 Relationship with chemistry

The Pyr definition explained (1.1.1), is a pure geometrical construction. In fact, R. C. Haddon
and L. T. Scott [23] expressed that the Pyr provides a "convenient index of the degree of non-planirity"
of a given atom of a molecule. The major issue of R. C. Haddon is chemistry [3][23][6] and especially
the chemical properties of the molecules related to the geometry. The need is to interpret the Pyr in
this framework. As we seen in the previous section, the Pyr is related to the POAV1 but also with
others properties as the hybridization of atomic orbitals, and the measure of the local distortion
of a given ⇡-electron system in a given molecule.

1.2.1 Hybridization

The pyramidalization angle as defined previously, depends only on geometrical data and refers to the
non-planarity of molecules. It is thus also related to the hybridization of AO.

We are interested in non-planar systems, so non-planar conjugate systems. We have the system
of hybrid �-orbitals. These hybrid orbitals (h1, h2, h3) are linear combinations of the s and px, py, pz
orbitals. They are defined as:

hi = ci,1s+ ci,2px + ci,3py + ci,4pz (1.6)

The aim is to obtain the maximum overlap between orbitals, we must use pi vectors allowing this
condition.

We define the orbitals such that:
pi = ci,2px + ci,3py + ci,4pz (1.7)

with i = 1, 2, 3 and where ci is a vector ci = (ci,2, ci,3, ci,4) and each pi is directed along a internuclear
axis between A and an atom B of ?(A).

More generally, let :
hi = ci,1s+ �ipi (1.8)

with i = 1, 2, 3.

Based on the work of R. C. Haddon and L. T. Scott [23] and the approach of Radziszewski et al. [28],
we describe the hybrid ⇡-orbitals as:

h⇡ = c⇡s+ �⇡p⇡ (1.9)
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Hybrid ⇡�orbitals are related to the concept of POAV1 (for reminder POAV1 makes equal angles
with the �-bonds of the neighboring atoms). The connection between POAV1 and hybridization is
made by the angle ✓i,⇡ (with i = 1, 2, 3), which is the angle between p⇡ and pi such that:

✓1,⇡ = ✓2,⇡ = ✓3,⇡ (1.10)

We take then the first relation of the Pyr (eq. 1.1):

Pyr(A) = ✓�,⇡ � ⇡

2
(1.11)

If we refer to the work of R. C. Haddon [6], we also show that the orbitals of the �-bonds diverge from
the internuclear axis when the angles between the �-bonds are inferior or equal to 100�. In the case
of ⇡-orbitals this is valid only when the angles between bonds are close. However when the �-bonds
are really different R. C. Haddon suggests the use of another tool that he calls POAV2 , which takes
into account the orthogonality between � and ⇡-orbitals. The POAV1 matches the POAV2 only if the
bonds are equal.

To construct the geometrical model we have just described, we need to place it in a suitable reference
frame. We also need to consider the POAV1, and p⇡ collinear to pz as in eq. 1.9.

Thus, by indicating that the plane P is orthogonal to pz, the �-orbitals h1, h2 and h3 make an angle
made by Pyr(A) with the plane P as : ⇡

2 + Pyr(A).

If we refer to the work of R. C. Haddon and L. T. Scott [23], what we have just explained, can be
summarized as an intermediate hybridization between sp2 and sp3 depending on the angle of Pyr.
Then, we choose a reference frame to have the internuclear axis in the (x, z) plane such as:

hi = ci,1s+ ci,2px + ci,3py + ci,4pz (1.12)

with i = 1, 2, 3.

Orthogonality and normalization conditions

We define a condition of orthogonality between the hybrid orbitals described previously (section
1.2.1). In fact, the hybrid orbitals h1, h2, h3, and h⇡ are orthogonal to each other.

The orthogonality condition is:

ci,1c⇡ + ci,4�⇡ = 0 (1.13)

We also specify :

ci,1 = µi�⇡ (1.14)

and
ci,4 = �µic⇡ (1.15)

with i = 1, 2 3.

The angle between pz and each hi is the same, it implies:

µ1 = µ2 = µ3 = µ (1.16)
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The expressions of the �-orbitals are:

h1 = µ(�⇡s� c⇡pz) + c1,2px

h2 = µ(�⇡s� c⇡pz) + c2,2px + c2,3py (1.17)

h3 = µ(�⇡s� c⇡pz) + c3,2px + c3,3py

In order to normalize the ⇡-orbitals we have:

c2⇡ + �2⇡ = 1 (1.18)

In the same way the normalization according to s and pz:

h1 =
1p
3
(�⇡s� c⇡pz) + c1,2px

h2 =
1p
3
(�⇡s� c⇡pz) + c2,2px + c2,3py (1.19)

h3 =
1p
3
(�⇡s� c⇡pz) + c3,2px + c3,3py

The detailed proofs of the normalization are available in Appendix 2 section 4.

Relation between hybridization and the POAV1

We can determine the relationship between the hybridization coefficients presented just previously
and the POAV1 :

c⇡ =
p
3c1,2 tan(Pyr(A)) (1.20)

and

�⇡ =
q

1� 3c21,2 tan
2(Pyr(A)) (1.21)

We give the explicit formula of c⇡ and �⇡ determining the POAV1 vector. These coefficients are
related by the normalization condition and their values depend on the Pyr.

The proofs of the development of the coefficients is given in Appendix 2 section 5.

We note that the works of R. C. Haddon and L. T. Scott [23] show the existence of c⇡ in the case of
molecules with a C3v symmetry.

We proven what R. C. Haddon and L. T. Scott [23] expose in terms of hybridization in the precise case
of a C3v symmetry.

This specific symmetry requires an adapted reference frame:

c2,2 = c3,2 < 0

c2,3 = �c3,3 (1.22)

In this specific symmetry, there are three �v planes of symmetry in the plane (px, py) :

c22,2 + c22,3 = c21,2 (1.23)

This equality corresponds to the fact that we have an equilateral triangle with c1,2 > 0.



1.2. RELATIONSHIP WITH CHEMISTRY 33

The �-orbitals are:

h1 =
1p
3
(�⇡s� c⇡pz) + c1,2px

h2 =
1p
3
(�⇡s� c⇡pz) + c2,2px + c2,3py (1.24)

h3 =
1p
3
(�⇡s� c⇡pz) + c2,2px � c2,3py

If we normalize according to the sp3 hybridization conditions:

h1 =
1p
3
(�⇡s� c⇡pz) +

p
2p
3
px

h2 =
1p
3
(�⇡s� c⇡pz)�

1p
6
px �

1p
2
py (1.25)

h3 =
1p
3
(�⇡s� c⇡pz)�

1p
6
px +

1p
2
py

The proofs of these sp3 hybridization conditions is given in Appendix 2 section 6.

Relative weight and hybridization numbers

Knowing the hybridization of an atom, we have interested in the weight of each component of an
orbital, this is called the relative weight. We consider an orbital of type:

h = ass+ axpx + aypy + azpz (1.26)

with as, ax, ay, az the real coefficients and pi the weight of the AO pi 2 (s,x,y,z).

The aim is to compare the contribution of each orbital therefore, the relative weight between 2 given
orbitals.

We consider the relative weight of the AO of s in MO h compared to the AO x in MO h as:

ws,x(h) =
ws(h)

wx(h)
(1.27)

In the others cases we have the same approach:

ws,y(h) =
ws(h)

wy(h)
(1.28)

ws,z(h) =
ws(h)

wz(h)
(1.29)

The global weight denoting by p = axpx + aypy + azpz, is in this case the (s,p)-relative weight:

w(s,p) =
ws(h)

wx(h) + wy(h) + wz(h)
(1.30)

The important property of the relative weight is that there are invariant when the orbital is multiplied
by a scalar µ 2 R. This notion of weight for a given orbital can be extended to a finite family of orbitals
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representing a particular local geometry.

The relative weight of a system of orbitals is given by:

ws,?(h) =

4
X

i=1

ws,?(hi) (1.31)

with h = (hi)i=1,...,4 a family of orbitals, (s, ?) the relative weight of h and ? 2 {x,y,z}.

Still based on the work of R. C. Haddon and L. T. Scott [23], we are interested in hybridization
numbers that determine the weight of each orbital in a molecular system.

We define:
m =

1

�̃2⇡
(1.32)

and
n = �̃21 + �̃22 + �̃23 (1.33)

with �̃2 = �2
⇡

c2⇡
.

We have the set of orbitals:
h⇡ = N⇡(s+ �̃⇡p⇡) (1.34)

hi = Ni(s+ �ipi) (1.35)

where k pi k= 1 for i = 1,2,3.

Finally, the hybridization numbers m and n correspond to the relative weight of orbitals:

m = ws,z(h⇡) =
ws(h⇡)

wz(h⇡)
=

1

�̃2⇡
=

c2⇡
�2⇡

(1.36)

n = ws,z(h�) + wx(h�) + wy(h�) (1.37)

m =
2 tan2(Pyr(A))

1� 2 tan2(Pyr(A))
=

c2⇡
�2⇡

(1.38)

and,

wx(h�) = wy(h�) = 1, (1.39)

then,
n = 3m+ 2 (1.40)

From a computational point of view, the hybridization numbers can be used to describe the hybridiza-
tion of the �-orbital:

s�
2
⇡pn�3m

x,y pc
2
⇡
z (1.41)

and the ⇡-orbitals hybridization:
sc

2
⇡p�

2
⇡

z (1.42)

We are interested in the 2 classical cases of sp2 and sp3 hybridizations.
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In the sp2 case we have:
(sp2x,yp

0
z)�(s

0p1z)⇡ = (sp2)�(p
1
z)⇡

And in the sp3 case, we have �⇡ = 0.866 and c⇡ = 1
2 :

(s0.75p2x,yp
0.75
z )� = (s0.75p2.25)�(s

0.25p0.75)⇡

To be more applicative, we will show in the continuation of the manuscript the illustrations of all the
parameters described on fullerenes and non-fullerenic molecules.

From Robert C. Haddon’s point of view [29], the hybridization of the ⇡-orbitals will depend on the
parameter m and the proportion of the weight of the s orbital to the pz orbital as:

sc
2
⇡p�

2
⇡

z () s
c2⇡
�2⇡ pz (1.43)

If we consider the equation 1.38, again we find the parameter m : smp

In the case of hybridization of �-orbitals , we fix ñ :

ñ =
2

�2⇡
+m (1.44)

Then, we have:
ñ = 3m+ 2 (1.45)

Thus, considering this new parameter, the average hybridization of the �-orbitals is given by spñ

We also define another parameter Y called sigma hybridization in relation to m which indicates
the deviation of the conjugation of a system but also the contribution of the hybridization of the pz
orbital in each hi orbital which will take into account the topology of the system such as the Pyr(A):

Y = m
�2⇡
3

=
c2⇡
3

(1.46)

It is therefore possible to rewrite the hybridization of a system according to this new parameter, which
will not change anything from a chemical point of view.

1.3 Limitations of the pyramidalization angle and the POAV1

As we have seen previously, the pyramidalization angle and the POAV1 are closely related. The
definition of the Pyr is connected to the existence of the POAV1 vector. Indeed, both are determined
via an atom considered as a vertex in the molecule.

If we consider the case of the C60 fullerene proposed by R. C. Haddon [3], he places his work in a
particular and well defined situation where it is admitted that the atoms are all identical, the bond
lengths and the angles equal. However, it is obvious that the reality is different. We have therefore
seen that the Pyr could not be defined for arbitrary molecules.

More precisely, the pyramidalization angle can not be extend outside the family of admissible
molecules.
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The existence of a POAV1(A) vector implies that POAV1(A) has to be normal to any plane P✏(A).
In fact, if POAV1(A) exists and is different from nA, the unique unitary vector to all plane P✏(A),
then it makes a given angle ↵ > 0 with nA. The POAV1(A) vector then generate a cone based in A

by rotation around the axes nA corresponding to all the vectors v such that v makes an angle ↵ with
the normal axe. As a consequence, for each bond corresponds a different vector, except when ↵ = 0
corresponding to the normal vector (figure 1.5).

Figure 1.5: Representation of the pyramidalization angle [4].

From now, we assume that POAV1(A) is normal to any P✏(A). For each triple choice T of elements in
Reg✏(star(A)), the explicit construction of the POAV1(A) vector (section 1.1.1) gives a unique vector
POAVT 1(A) which is colinear to the vector ITA where IT is the intersection of the mediating line in
the triangle defined by T . In general, other choice of triples will lead to different IT . As A must belong
to each line perpendicular to P✏(A) and passing trough IT for each T , this is not possible in general
unless all the IT coincide, meaning that all the atoms of Reg✏(?(A)) belong to a circle.

The two characteristics correspond to the definition of admissible molecules.

As a consequence, one must think to other characterizations of the local geometry of a molecule in
order to study molecules of order � 4 in some atoms.

Admissible molecules

We define an admissible molecule as:
a molecule M is said to be admissible if for each atom A of M and ✏ > 0, there exists a plane P✏(A)
such as Reg✏(?(A)) ⇢ P✏(A).

The geometry of the previous conditions is resumed in figure 1.6. If the atom A does not belong to the
same plane as the atoms of Reg✏(?(A)), then it belongs to the intersection of all the mediating plane
of the line segment between two arbitrary atoms of Reg✏(?(A)).
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Figure 1.6: Geometry of an admissible molecule [4].

As the intersection of two planes define a line, it gives huge constraints on the positioning of each atom
of Reg✏(?(A)), in particular, they belong to a circle C✏ in the plane P✏(A). If we denote by O✏ the
center of C✏, then A belongs to the line passing through O✏ and normal to P✏(A).

The previous remark can be used to define the POAV1(A) vector in this general situation :
let M be an admissible molecule and A be an atom of M. Let ✏ > 0 be given. We denote by C✏ the circle
in P✏(A) such that Reg✏(?(A)) ⇢ C✏. We denote by O✏ the center of C✏. We denote by POAV1(A) the
normal unitary vector to P✏(A) defined by:

POAV 1(A) =
~O✏A

O✏A
(1.47)

As usual, the POAV1 vector is defined through quantities depending on ✏ so that it is not a priori
trivial that it gives a well-defined quantity. However, by construction, the set of points Reg✏(?(A))
and Reg✏0(?(A)) for two different ✏, and ✏0 are homothetics as Reg✏ is a homothety of center A for all
✏. In particular, homotheties are affine transformations that send a line to a parallel line.
As Reg✏(?(A)) belongs to a plane P✏(A), Reg✏0(?(A)) belongs to a plane P✏0(A) parallel to P✏(A) and
has the same normal vector. By normalization, we obtain a unique vector POAV1(A) normal to all
the plane P✏(A) for ✏ > 0.

Having the POAV1 vector, we can directly generalize the notion of Pyr as:
let M be an admissible molecule and A be a given atom of M. The Pyr in A denoted by Pyr(A) is the
angle between the vector POAV1(A) and each bond AB, B 2 ?(A).

The proofs of this definition is given in Appendix 2 section 7.

1.4 Haddon’s spherical Curvature

We note that the term curvature is well-defined in classical differential geometry for smooth (contin-
uous) surfaces. On the other hand, in the discrete case, i.e. for polyhedral surfaces, the definition is
more problematic. That is why, we are interested in the work of R. C. Haddon [3], especially concerning
the spherical curvature which is related to the pyramidalization angle.

1.4.1 Spherical curvature

To represent the shape of a molecule, the notions of Pyr and curvature are often confused, that is
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why R. C. Haddon expresses in his work [3] the notion of spherical curvature.

The simple notion of curvature is given for a smooth curve in R and related to the osculating circle.
The curvature is given by the parameter 1

R
where R is the radius of the osculating circle. The

objective is to approximate locally up to order 2 the curve by an arc of a circle. In R
3 it is necessary

to approximate the surface by a portion of sphere but it is not so simple.

If we propose a definition:
for an osculating sphere, let M be a regular molecule trivalent. For each atom A, there exists a unique
sphere S(A) such as A 2 S(A) and for all B 2 ?(A), B 2 S(A). The sphere S(A) is named the
osculating sphere to M in A, the following figure 1.7 represents the notion. Thus, by definition, the
spherical curvature is the quantity (A) :

(A) =
1

RA

(1.48)

where RA is the radius of the osculating sphere to M in A.

Figure 1.7: Representation of the osculating sphere and the spherical curvature [4]

We can therefore relate the spherical curvature to the Pyr by a non-linear relationship:

(A) =
2 sin(Pyr(A))

a
(1.49)

The proofs of this relation is given in Appendix 2 section 8.

We have then, when the Pyr is small the previous relation which became linear:

(A) ' 2

a
Pyr(A) (1.50)

1.4.2 Spherical curvature in non regular case

We can compute the spherical curvature in more general cases. The following figure describes the
situation:
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Figure 1.8: Spherical curvature in non-regular case [4]

In the case presented here, the osculating sphere is of center Oz (Oz = (0, 0, z) such as:

z =
L2 + z2A � l2

2za
(1.51)

where zA is the coordinate of A, l = OB = OC = OD and L = OzA.

Therefore, the spherical curvature is given by:

(A) =
1

r

l2 +
(L2+z2

A
�l2)2

4z2
A

=
1

r

l2 + (OA2�l2)2

4z2
A

(1.52)

The proofs of the relation in given in Appendix 2 section 9.

The spherical curvature gives access to the non-planarity of a molecule. However, we are always in
the case of trivalent molecules.

1.4.3 Limitations of the spherical curvature

In the classical trivalent case, the spherical curvature provides a nice way to characterize the non-
planarity of a given molecule. However, the generalization to molecules which are not trivalent leads
to severe difficulties and is in general impossible.

If we consider a molecule which has atoms of order 4. Let A be an atom of this type. Then ?(A)
is made of 4 points B, C, D and E. In order to generalize the notion of spherical curvature, one has
to construct a sphere interpolating the 5 points. The geometric construction of the osculating sphere
made in section 1.4.2 for trivalent molecules determine a unique sphere interpolating 4 atoms. As a
consequence, selecting any triple of points in ?(A) denoted by T, one construct a unique osculating
sphere in A with respect to T denoted by S(A)T . In general, all these spheres are different and there
exists no osculating sphere to the molecule in A.

Moreover, the spherical curvature describes the surface locally as a dome i.e a portion of a sphere. By
consequence, this quantity is not sufficient to capture the local geometry of molecules that admit a
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smooth representation, which have a negative Gaussian curvature, and that must be distinguished
from a molecule with a positive Gaussian curvature.

1.5 Angular defect

The angular defect is a well-known notion in discrete differential geometry. This notion is always
definable whereas the Pyr and the spherical curvature are not necessarily definable.
The angular defect is useful because it makes it possible to compute the local shape of a molecule.

To begin, we focus on the Gaussian curvature which can be defined as: a circle of radius r around
p, which implies that for a given metric d on Σ, and a set of point x 2 Σ as d(x, p) = r and P (r) the
circumference of the circle.

Note for more details that in terms of discrete curvature, the Gaussian curvature defines the local cur-
vature for any type of polyhedron with a number of neighbors superior to 3. It gives a measure of how
far the surface deviates from a plane surface at a vertex.

To determine the Gaussian curvature G(p), we need to compare the circumference of a circle in the
plane given by 2⇡r to the value of P on Σ.
The Gaussian curvature is given as:

P (r) = 2⇡r �G(p)⇡
r3

3
+ . . . (1.53)

We consider the following quantity K(p) to generalize what is mentioned above:

K(p) = 2⇡ � P (r)

r
(1.54)

Related to the Gaussian curvature, the angular defect is defined as:

K(A) = 2⇡ �
X

T2T (A)

↵T (1.55)

where ↵T is the angle at the vertex A of the face T 2 T (A), T (A) is the family of triangles Ti obtained
by connecting the vertices in ?(A) of two consecutive edges of A.

In reference to Romon’s work [27], we know that the angular defect is related to the Gaussian curva-
ture. Note that K(A) = 0 if and only if the surface is plane locally at a point A. If K(A) < 2⇡ the
vertex A is spherical.

As for the other concepts presented in this manuscript, we show the relation between the angular
defect and the Pyr.
Once again in the case of a regular molecule M and with l the length of the bond. We consider
A an atom of the molecule, a triangle AB1B2 (where B1 and B2 2 ?(A)) and ↵1(A), ↵2(A), ↵3(A)
respectively the angles at the vertex A of triangles AB1B2, B2AB3 and B3AB1.

We have by definition:

↵1(A) + ↵2(A) + ↵3(A) = 2⇡ �K(A) (1.56)
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And, the relationship between the Pyr and the angular defect is given by:

cos(Pyr(A))

3
X

i=1

sin

✓

✓i(A)

2

◆

=

3
X

i=1

sin

✓

↵i(A)

2

◆

(1.57)

cos↵F (A) = cos2 Pyr(A) cos ✓F (A) + sin2 Pyr(A) (1.58)

and
✓1(A) + ✓2(A) + ✓3(A) = 2⇡ (1.59)

with (↵i(A))i=1,2,3, (✓i(A))i=1,2,3 and we note by P(A) the plane defined by ?(A), by O the intersection
of the median line of the triangle defined by ?(A), by ✓1(A) the angle at vertex O of the triangle B1OB2,
and similarly by ✓2(A) and ✓3(A) the angle at vertex O of the triangle B2OB3 and B3OB1.

The proofs of this relationship is given in Appendix 2 section 10.

To complete these relations, we know that: ↵F (A) = ✓F (A) if and only if Pyr = 0. Furthermore,
we show the relationship between (A) and Pyr (eq. 1.57). The connection between the two notions
is quite complex, using the Taylor expansion up to order 3, we can have an approximation of the
relation:

cos(Pyr(A))

 

⇡ � 1

48

3
X

i=1

✓i(A)3

!

' 1

2
K(A)� 1

48

3
X

i=1

↵i(A)3 (1.60)

1.6 Conclusion

This chapter provides a complete presentation (detailed, clarified, generalized and proven) of tools
stated in many works of R. C. Haddon. We present the tools of pyramidalization angle and POAV1
first in the regular (perfect) case which is limited to trivalent cases which is not necessarily realistic
and rather limiting. And then, in the non-regular case (i.e. with different bond lengths) but still
trivalent. It opens to more cases but still remains limiting. The regularization method gives the
possibility to generalise a bit more.

The Pyr is a geometrical tool and the POAV1 gives access to the privileged direction of the ⇡-orbitals
within the system, which gives an indication on the probable deformation of the system, on the local
distortion, hence the relation with chemistry and more particularly with reactivity.

We associate these tools with hybridization, it gives the characterization of � and ⇡-hybrid orbitals
according to orthogonalization and normalization conditions and to highlight the intermediate hy-
bridization between sp2 and sp3.

The study being complete: the relative weights and hybridization numbers (m and n) are de-
scribed which give the composition of the hybrid orbitals involved in the planar or deformed systems.
Finally, the sigma hybridization which is introduced, gives indications on the conjugation deviation
of the system.

Obviously, these tools have some limitations, in particular we have defined the admissible molecules
where these tools are clearly applicable.
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These notions are associated with deformation, curvature, and in particular with spherical curvature
which we prove in the non-regular cases which are the most close to reality but not totally since it
remains in trivalent cases.

Finally, we showed that the angular defect tool is more universal since it is definable in most cases
but has meaning only when it is associated with the Pyr. In effect, the Pyr gives access to the POAV1
which best represents the local reactivity.

All these tools provide access to information on the characterization of systems by their deformation
and reactivity.



 

 

	 	

	



Chapter 2

Study of POAV1 over fullerenic and
non-fullerenic compounds

In this second chapter, we expose how the different tools presented in the first chapter are used to carry
out a complete and detailed study on various compounds:

1. fullerenic molecules,

2. non-fullerenic molecules.

We also present how the tools are used for an application on a reaction path of a ring expansion of a
nitrile imine.

Then, a complete conclusion about these studies is given to explain more clearly the results.

To obtain our results we used a software "Pychemcurv" especially developed for the project thesis [10].

We used data from the database of Tománek and Frederick [5], and results from our first paper [4], but
also results from publications of R. C. Haddon, A. R. Khamatgalimov et al. and C. Wentrup and al.
[23, 6, 30, 31, 32].

2.1 Methods of implementation of the concepts

To apply the notions developed in chapter 1, we used a software developed by our research team at
the Université de Pau et des Pays de l’Adour (UPPA) in the Institut des Sciences Analytiques et de
Physico-Chimie pour l’Environnement et les Matériaux (IPREM) and the Institut Pluridisciplinaire
de Recherches Appliquées (IPRA), under the supervision of Dr Germain Salvato-Vallverdu.

This collaboration with Dr Germain Salvato-Vallverdu allowed the effective implementation of the
POAV1 theory concepts, on a set of fullerenic or more non-fullerenic molecules.

The software developed called Pychemcurv [10] is a python program for structural analyzes of
molecular systems or solid state materials focusing on the local curvature at an atomic scale. The
hybridization of molecular orbitals are obtained by the computation of the local curvature (calculated
and mapped data). The software is easy to use since only the cartesian coordinates (.xyz file) of
the systems are required. The program is therefore applicable to most molecular systems. When the
.xyz files are loaded into the program, it gives access to all the local geometrical and hybridization
properties : Pyr, spherical curvature, angular defect, c2⇡, �

2
⇡, m, n, hybridization, hybridization sigma.

43



44CHAPTER 2. STUDY OF POAV1 OVER FULLERENIC AND NON-FULLERENIC COMPOUNDS

Note that the website dedicated to the software is available, which includes all the parameters accessible
in an explicative way [10].

In the rest of the chapter we illustrate our results obtained from the software.

Notice that all the computational techniques used to carry out our results are given in Appendix 1.

2.2 POAV1 analysis of the Tománek and Frederick database

Following our interest in the work of R. C. Haddon [3] on the C60 fullerene, we chose to work on
fullerenic molecular systems. We worked on a set of molecules without limiting only on the typical
C60 fullerene.

To apply the different notions associated to POAV1, we used a very extensive database of Cn fullerenes
[5] (with n being the number of atoms in the molecule). The database provides the cartesian coordi-
nates and the energy (in electronvolts eV) of the fullerenes admissible from C20 to C720 according to
their symmetries. The database is developed by Tománek and Frederick [5].
We remind that the associated energies of the database are defined according to the work of Guan et
al. [33].
The database shows three families of fullerenes that we call: small (between the C20 and C60),
medium (between C60 and C100) and large (between C100 and C720).

We have focused our analysis on different fullerenes including the C32, C40, C60, and C80 which are
part of the small and medium fullerenes family.

2.2.1 Database analysis

The database of Tománek and Frederick [5] presents 2487 isomers of fullerenes according to their
symmetries. The following figure represents the set of isomers of the database:

Figure 2.1: Representation of the number of atoms in function of the number of isomers in fullerenes
[4]

We observe that C100 and C52 have the highest number of isomers followed by C50, C98, C46, C94.
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On the contrary, the C20, C24, C26, C60, C70, C72, C74, C180, C240, C260, C320, C500, C540, C720 present
only one type of symmetry.

2.2.2 Analysis following the POAV1 notions

From a general point of view on the complete database, we note for our average parameters : a
Pyr of 10.49°, an angular defect (Ang Def) of 10.42°, a spherical curvature (Sph Curv) of 0.262,
the hybridization coefficients c2⇡ and �2⇡ are respectively of 0.074 and 0.926 and the hybridization
numbers m and n are of 0.084 and 2.252.
It allows to determine the hybridization (Hyb) as: (s0.926p2.000x,y p0.074z )� (s0.074p0.926z )⇡.

As mentioned in the section 0.3 and in the Appendix 1, we compute all the following results by using
DFT, implemented in the Gaussian code with the Hamiltonian type B3LYP with the orbital base
6-31G*.
The following tables display all the average parameters (after geometrical optimization) that we
have calculated for the fullerenes with only one symmetry.

Firstly for the large family of the database:

Fullerene Pyr(A) Ang Def Sph Curv c2⇡ �2⇡ m n Hybridization

C180 6.68 4.03 0.167 0.027 0.972 0.028 2.084 (s0.0972p2.000
x,y

p0.027
z

)σ (s0.027p0.972
z

)π

C240 5.78 3.03 0.145 0.021 0.979 0.021 2.063 (s0.979p2.000
x,y

p0.021
z

)σ (s0.021p0.979
z

)π

C260 5.56 2.80 0.140 0.019 0.981 0.019 2.058 (s0.981p2.001
x,y

p0.019
z

)σ (s0.019p0.981
z

)π

C320 5.02 2.29 0.126 0.015 0.985 0.016 2.047 (s0.985p1.999
x,y

p0.015
z

)σ (s0.015p0.985
z

)π

C500 4.03 1.49 0.101 0.010 0.990 0.010 2.030 (s0.990p2.000
x,y

p0.010
z

)σ (s0.010p0.990
z

)π

C540 3.89 1.38 0.098 0.009 0.991 0.009 2.028 (s0.991p2.001
x,y

p0.009
z

)σ (s0.009p0.991
z

)π

C720 3.38 1.07 0.086 0.007 0.993 0.007 2.021 (s0.993p2.000
x,y

p0.007
z

)σ (s0.007p0.993
z

)π

Table 2.1: Average descriptor parameters for the large fullerene family

For the medium family:

Fullerene Pyr(A) Ang Def Sph Curv c2⇡ �2⇡ m n Hybridization

C70 10.79 10.42 0.270 0.073 0.927 0.080 2.238 (s0.927p1.998
x,y

p0.073
z

)σ (s0.073p0.927
z

)π

C72 10.70 10.38 0.268 0.073 0.927 0.080 2.239 (s0.927p1.999
x,y

p0.073
z

)σ (s0.073p0.927
z

)π

C74 10.48 9.81 0.262 0.069 0.931 0.074 2.222 (s0.931p2.000
x,y

p0.069
z

)σ (s0.069p0.931
z

)π

C80 10.16 9.40 0.246 0.066 0.934 0.071 2.213 (s0.934p2.000
x,y

p0.066
z

)σ (s0.066p0.934
z

)π

Table 2.2: Average descriptor parameters for a selection of the medium fullerene family
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And for the small family:

Fullerene Pyr(A) Ang Def Sph Curv c2⇡ �2⇡ m n Hybridization

C20 20.90 36.01 0.513 0.292 0.708 0.413 3.238 (s0.708p1.999
x,y

p0.292
z

)σ (s0.292p0.708
z

)π

C24 18.90 30.77 0.465 0.244 0.756 0.340 3.021 (s0.756p2.001
x,y

p0.244
z

)σ (s0.244p0.756
z

)π

C26 18.13 28.13 0.447 0.218 0.782 0.286 2.857 (s0.782p1.999
x,y

p0.218
z

)σ (s0.218p0.782
z

)π

C40 14.73 19.45 0.352 0.145 0.855 0.177 2.531 (s0.855p2.000
x,y

p0.145
z

)σ (s0.145p0.855
z

)π

C60 11.64 12.00 0.281 0.085 0.915 0.093 2.278 (s0.915p1.999
x,y

p0.085
z

)σ (s0.085p0.915
z

)π

Table 2.3: Average descriptor parameters for a selection of the small fullerene family

Pyramidalization angle: On the entire database, the average Pyr is 10.49°. We notice that the
Pyr varies between 3.38° and 20.90°.
The largest Pyr values are measured in the case of small fullerenes, for n < 60.
Actually, in the case of small fullerenes the constraints are more important which induces a more
important curvature on the different vertices.
We note a clear difference between the family of large and medium fullerenes.
In the case of large fullerenes the Pyr values are lower and not close to the average value of C60 which
can be used as a reference. These large fullerenes are less constrained and therefore have fewer vertices
with strong pyramidalization.

The following figure displays the distribution of the Pyr values as a function of the number of atoms
present in the fullerenes (for n = 20 to 100 on the basis of the isomers). We note in dashed line the
value of the Pyr in the case of C60, and the sp2, sp3 hybridization situations.

Figure 2.2: Boxplot representation of the pyramidalization angle (in degrees) in function of the number
of atoms [4]

As mentioned by the graph, we observe that the Pyr angle decreases when the number of atoms
increases. In the case of the family of small fullerenes there is a greater standard deviation of the Pyr

than for the large family, this situation illustrates the presence of more isomers for the small fullerenes.
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Angular defect, spherical curvature and pyramidalization angle: The angular defect fol-
lows the same behavior as the Pyr.

In the case of the large fullerene family, the Ang Def is relatively small and decreases with the in-
creasing of the number of atoms.

This is also the case for the family of medium fullerenes.
For fullerenes with n < 60 the Ang Def is more important which is in accordance with the constraints
imposed by the geometry of small fullerenes.

The spherical curvature shows the same trend and a linear relationship between the Pyr and the
Sph Curv as previously proven in eq. 1.50.

Hybridization and pyramidalization angle: We observed that on the 3 families, the Pyr is
positioned in the situations commonly encountered between sp2 and sp3.
But some fullerenes have a hybridization beyond sp3 for Pyr > 19°.

Fullerenes visualization-Cartographies

As presented in the previous section 2.1, the software Pychemcurv [10] provides cartographies with
an adaptable color scale for each of the parameters.

We report here the cartographies that we carried out for the 3 families of fullerenes (small with
C20, medium with C70 and large with C180, C60 is used as a reference) of the database. We observe
the parameters presented in chapter 1: the pyramidalization angle , the angular defect , the spherical
curvature and the hybridization.

Figure 2.3: Cartographies of the pyramidalization angle for the fullerenes C20, C60, C70, C180

Figure 2.4: Cartographies of the angular defect for the fullerenes C20, C60, C70, C180
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Figure 2.5: Cartographies of the spherical curvature for the fullerenes C20, C60, C70, C180

Figure 2.6: Cartographies of the hybridization for the fullerenes C20, C60, C70, C180

2.3 Application to other compounds

In this section, we used non-fullerenic molecules proposed by Robert C. Haddon in two of his works
from 1986 [6] and 1990 [30]. We also studied molecules of a recent publication of the research team
of A. R. Khamatgalimov concerning the fullerenes C50 [31] . We are also focusing on the interesting
work of Han et al. [34] on chlorofullerenes.

In fact, all the POAV1 theory parameters presented in chapter 1 are applicable to both fullerenic and
non-fullerenic molecules as we illustrate in the following by 25 examples.
The molecules have been studied following the same method, by DFT B3LYP/6-311G* calculations
and visualizations of the properties of Robert C. Haddon’s concepts as in the previous section.

For more details on computation techniques see the Appendix 1 section 1.

It should be noted that we are positioned in the so-called cases of the ?(A) , i.e. the atom we are
interested in has only 3 neighbors. However, in some of the cases studied here we are in situations
beyond 3 neighbors which does not define correctly the ?(A). Our programs allow us to extract the
data of the studied properties are based on 3 neighbors in the case of Pyr, hybridization and spherical
curvature. Excluding the angular defect which permits to get free of the three neighbors situations.

2.3.1 Non-fullerenic molecules

Note that a geometry optimization was necessary for each of the molecules and the visualizations were
carried out by the software VESTA [35].

Notice that the number in brackets corresponds to each of the molecules in abscissa on the figure 2.57.

• Molecule C11H10: 1,6-methano-[10]-annulene (n°1) [6]
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The molecule presents 2 isomers. The first isomer (of Cs symmetry) has the following geometry (figure
2.7) including 2 bridged hexagons.

Figure 2.7: Representation of the molecule 1,6-methano-[10]-annulene (C11H10)

Parameter Minimum Maximum
Energy (u.a) -425.23

Pyr (°) 0.55 5.06
Hybridization 2.00 2.05

Angular defect (°) -72.66 2.31
Spherical curvature 0.01 0.12

Table 2.4: Set of minimum and maximum values of parameters of the 1,6-methano-[10]-annulene
(C11H10, Pyr, Hyb, AngDef , SphCur)

Figure 2.8: Cartographies of the parameters of 1,6-methano-[10]-annulene (C11H10)

We notice that the Pyr are higher on the carbons at the junction between the 2 hexagons than on the
carbons constituting the hexagons. The hybridization is uniform in the whole molecule around 2.00.
The angular defect gives access to situations where 4 neighboring atoms are present. Here we observe
especially a very negative value on the central atom. Finally, the spherical curvature is also more
pronounced at the junctions between hexagons and relatively weaker on the carbons of the remaining
skeleton.

• Molecule C11H10: 1,5-methano-[10]-annulene (n°2) [6]

The second isomer has the geometry illustrated in the figure 2.9, with 2 different "geometrical" patterns
of the molecule 1,6-methano-[10]-annulene:

Figure 2.9: Representation of the molecule 1,5-methano-[10]-annulene (C11H10)
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Parameter Minimum Maximum
Energy (u.a) -425.20

Pyr (°) 0.06 8.24
Hybridization 2.00 2.13

Angular defect (°) -72.31 6.08
Spherical curvature 0.002 0.20

Table 2.5: Set of minimum and maximum values of parameters of the 1,5-methano-[10]-annulene
(C11H10, Pyr, Hyb, AngDef , SphCurv)

This isomer of C1 geometry, has an energy of lower than the isomer 1,6-methano-[10]-annulene.

Figure 2.10: Cartographies of the parameters of 1,5-methano-[10]-annulene (C11H10)

Once again here, we remark that the Pyr values are higher at the carbons involved in the bridge than
in the rest of the molecular skeleton. The hybridization is on the entire molecule of sp2 type. The
angular defect and the spherical curvature follow the same trend as the previous properties.

• Molecule C11H8: 7bH-cyclopenta-[cd]-indene (n°3) [6]

Composed by 2 pentagons and 1 hexagon the molecule has a C1 symmetry:

Figure 2.11: Representation of the molecule 7bH-cyclopenta-[cd]-indene (C11H8)

Parameter Minimum Maximum
Energy (u.a) -424.01

Pyr (°) 0.39 12.11
Hybridization 2.00 2.30

Angular defect (°) -70.76 13.12
Spherical curvature 0.01 0.29

Table 2.6: Set of minimum and maximum values of parameters of the molecule 7bH-cyclopenta-[cd]-
indene (C11H8, Pyr, Hyb, AngDef , SphCurv)
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Figure 2.12: Cartographies of the parameters of 7bH-cyclopenta-[cd]-indene (C11H8)

Let us note here that the values of Pyr are the most important in the regions of junctions between
geometrical patterns i.e. where the molecule tends to bend. The hybridization values remain in the
same range, however we notice an increase concerning the carbon where the Pyr is the highest. The
angular defect is once again, higher at the carbon with the maximum of Pyr. The spherical curvature
is more important at the pentagon-pentagon junction where the curvature seems to be more significant.

• Molecule C16H14: syn-1,6,8,13-bismethano-[14]-annulene (n°4) [6]

This molecule (of symmetry C1) is constituted of 3 hexagonal patterns bridged together.

Figure 2.13: Representation of the molecule syn-1,6,8,13-bismethano-[14]-annulene (C16H14)

Parameter Minimum Maximum
Energy (u.a) -618.19

Pyr (°) 2.43 4.78
Hybridization 2.01 2.04

Angular defect (°) -67.57 2.07
Spherical curvature 0.07 0.13

Table 2.7: Set of minimum and maximum values of parameters of the molecule syn-1,6,8,13-
bismethano-[14]-annulene (C16H14, Pyr, Hyb, AngDef , SphCurv)

We observe here that the Pyr are more important at the extremities and in the core of the molecule
and the hybridizations are relatively uniform of sp2 type. The angular defect shows 2 trends. The
skeleton as a whole has relatively small values between 0 and 2, and only the 2 atoms at the bridge
vertices have much smaller values. The spherical curvature approximates the Pyr cartography in terms
of the distribution of values within the molecule.
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Figure 2.14: Cartographies of the parameters of syn-1,6,8,13-bismethano-[14]-annulene (C16H14)

• Molecule C20H20: trans-15,16-diethyldihydropyrene (n°5) [6]

This molecule has of formula C20H20 presents 2 substituents �CH2 � CH3, and has a symmetry C1.

Figure 2.15: Representation of the molecule trans-15,16-diethyldihydropyrene

All the information of the different properties are available in the cartographies:

Parameter Minimum Maximum
Energy (u.a) -774.28

Pyr (°) 0.18 4.32
Hybridization 2.00 2.03

Angular defect (°) -74.99 1.69
Spherical curvature 0.004 0.11

Table 2.8: Set of minimum and maximum values of parameters of the molecule trans-15,16-
diethyldihydropyrene (Pyr, Hyb, AngDef , SphCurv)

We note that the Pyr are relatively low on the whole molecule. The hybridizations are close to 2.00 so
of sp2-type. The angular defect shows 2 trends with values close to 1 within the hexagonal units and
very negative values on the atoms bonded to substituents. The spherical curvature is relatively low.

Figure 2.16: Cartographies of the parameters of trans-15,16-diethyldihydropyrene
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• Molecule C7H10: bicyclo-[2.2.1]-hept-2-ene (n°6) [6]

Figure 2.17: Representation of the molecule bicyclo-[2.2.1]-hept-2-ene

For this molecule of symmetry C1 we get the following data:

Parameter Minimum Maximum
Energy (u.a) -272.72

Pyr (°) 14.21 23.07
Hybridization 2.44 3.71

Angular defect (°) -75.02 49.28
Spherical curvature 0.38 0.53

Table 2.9: Set of minimum and maximum values of parameters of the bicyclo-[2.2.1]-hept-2-ene (Pyr,
Hyb, AngDef , SphCurv)

This molecule has 4 neighbors atoms and only 2 trivalent atoms where our parameters are computable.
The 2 calculated Pyr have quite high values and the hybridizations show situations higher than sp2

and sp3. The computable angular defects are negative on all atoms except the 2 atoms which are
trivalent.

Figure 2.18: Cartographies of the parameters of bicyclo-[2.2.1]-hept-2-ene

• Molecule C12H16: Tricyclo[4.2.2.22.5]dodecane (n°7) [30]

The following molecule has a D2h geometry:

Figure 2.19: Representation of the molecule C12H16
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For all the properties calculated next, we will note that only 2 values emerge, we thus identify carbons
in the center of the molecule and the 4 other carbons of the extremities.

Parameter Minimum Maximum
Energy (u.a) -466.93

Pyr (°) 11.17 -
Hybridization 2.25 -

Angular defect (°) -75.02 11.06
Spherical curvature 0.26 -

Table 2.10: Set of minimum and maximum values of parameters of the molecule C12H16 (Pyr, Hyb,
AngDef , SphCurv)

A unique value of Pyr and spherical curvature in this molecule 11.17° and 0.26. The hybridization
indicates a single carbon type with a sp2 tendency. The angular defect is negative on the external
carbons and positive on the central atoms.

Figure 2.20: Cartographies of the parameters of Tricyclo[4.2.2.22.5]dodecane

• Molecule C28H16: 9,9’,10,10’-tetrahydrodianthracene (n°8) [30]

Figure 2.21: Representation of the molecule C28H16

Parameter Minimum Maximum
Energy (u.a) -1076.74

Pyr (°) 0.02 16.79
Hybridization 2.00 2.67

Angular defect (°) 0.00 24.05
Spherical curvature 0.0004 0.38

Table 2.11: Set of minimum and maximum values of parameters of 9,9’,10,10’-tetrahydrodianthracene
(Pyra, Hyb, AngDef , SphCurv)

Of C2h symmetry, we notice that the Pyr are the highest in the center of the molecule at the junctions
which present the most important curvature on the 4 carbons. A similar behavior is observed for
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hybridizations close to 2.00 and increase up to 2.66 for the 4 central atoms. The situation is the same
for the 2 other parameters.

Figure 2.22: Cartographies of the parameters of 9,9’,10,10’-tetrahydrodianthracene

• Molecule C20H20: Sesquinorbornatriene (bridged down) (n°9) [30]

Figure 2.23: Representation of the molecule sesquinorbornatriene (bridged down)

Parameter Minimum Maximum
Energy (u.a) -773.92

Pyr (°) 4.04 18.12
Hybridization 2.03 2.82

Angular defect (°) -75.21 33.19
Spherical curvature 0.11 0.42

Table 2.12: Set of minimum and maximum values of parameters of sesquinorbornatriene (bridged
down) (Pyr, Hybr, AngDef , SphCurv)

The molecule is C1 symmetry, the Pyr have higher values in the deformed zone of the molecule, the
spherical curvature follows the same behavior but with values lower than 1. We observe 2 types of
carbons sp2 and sp3. The angular defect is calculable on all carbons, the deformed zone has the highest
values.

Figure 2.24: Cartographies of the parameters of sesquinorbornatriene (bridged down)
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• Molecule C20H20: Sesquinorbornatriene (bridged to the top) (n°10) [30]

Figure 2.25: Representation of the molecule sesquinorbornatriene (bridged to the top)

Parameter Minimum Maximum
Energy (u.a) -773.93

Pyr (°) 0.01 27.88
Hybridization 2.00 5.81

Angular defect (°) -74.71 71.74
Spherical curvature 0.0003 0.61

Table 2.13: Set of minimum and maximum values of parameters of the sesquinorbornatriene (bridged
to the top) (Pyr, Hyb, AngDef , SphCurv)

The Pyr are in the same order of importance as in the top-bridged case but slightly lower. The
hybridizations and the angular defect are higher. Finally, the spherical curvature is quite low, less
than 1.

Figure 2.26: Cartographies of the parameters of sesquinorbornatriene (bridged to the top)

• Molecule C8H14: Trans-cyclooctene (n°11) [30]

Of symmetry C1 the hybridization of the 2 carbon atoms is of type sp2, the angular defect is negative
and very weak except on the 2 trivalent atoms where it is lower than 1. The same behavior is observed
with values lower than 0.5.

Figure 2.27: Representation of the molecule Trans-cyclooctene
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Parameter Minimum Maximum
Energy (u.a) -313.35

Pyr (°) 1.41 3.10
Hybridization 2.00 2.02

Angular defect (°) -78.60 0.87
Spherical curvature 0.04 0.08

Table 2.14: Set of minimum and maximum values of parameters of the Trans-cyclooctene (Pyr, Hyb,
AngDef , SphCurv)

Figure 2.28: Cartographies of the parameters of C8H14: Trans-cyclooctene

• Molecule C24H24 (n°12) [30]

Figure 2.29: Representation of the molecule C24H24

Parameter Minimum Maximum
Energy (u.a) -929.13

Pyr (°) 7.05 -
Hybridization 2.09 -

Angular defect (°) -76.26 4.46
Spherical curvature 0.17 -

Table 2.15: Set of minimum and maximum values of parameters of the molecule C24H24 (Pyr, Hyb,
AngDef , SphCurv)
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Figure 2.30: Cartographies of the parameters of C24H24

The extrema are summarized for a C6h symmetry. The Pyr are identical throughout the molecule as
the sp2 hybridization. The angular defect is according to 2 values and the spherical curvature less than
1 uniformly.

• Molecule C20H10: Corannulene (n°13) [30]

Figure 2.31: Representation of the molecule of corannulene

Parameter Minimum Maximum
Energy (u.a) -768.32

Pyr (°) 0.03 0.07
Hybridization 2.00 -

Angular defect (°) 0.000088 0.0004
Spherical curvature 0.008 0.002

Table 2.16: Set of minimum and maximum values of parameters of corannulene (Pyr, Hy, AngDef ,
SphCurv)

Figure 2.32: Cartographies of the parameters of the corannulene
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The molecule of formula C20H10 of symmetry C5h, includes 5 hexagonal patterns surrounding 1 pen-
tagon. During the calculations we observe that the molecule bends progressively. The Pyr will be
more pronounced in the center of the molecule than in its periphery. The hybridization is uniform
showing a sp2 character. The angular defect is rather reliable being weaker on the carbons in periphery
than in the center. This agrees with the data of Pyr. The spherical curvature also correlates with the
previous results with a greater spherical curvature on the atoms forming the pentagon.

2.3.2 Fullerenic molecules

• Molecule C50-D3 (n°14) [31]

This molecule is a C50 fullerene with D3 symmetry, composed by pentagons and a majority of hexagons.

Figure 2.33: Representation of the molecule fullerene C50-D3

Parameter Minimum Maximum
Energy (u.a) -1894.39

Pyr (°) 12.06 13.86
Hybridization 2.30 2.42

Angular defect (°) 12.88 16.81
Spherical curvature 0.30 0.34

Table 2.17: Set of minimum and maximum values of parameters of the molecule fullerene C50-D3 (Pyr,
Hyb, AngDef , SphCurv)

The Pyr data are quite uniform with relatively close minimum and maximum values. The hybridiza-
tions are also relatively similar around 2.3. The angular defect and the spherical curvature have a
uniform behavior.

Figure 2.34: Cartographies of the parameters of fullerene C50-D3
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• Molecule C50-D5h (n°15) [31]

Figure 2.35: Representation of the molecule fullerene C50-D5h

This fullerene of D5h symmetry consists of pentagons and a majority of hexagons. The Pyr are in a
relatively close range of values, however we note that 2 pentagons on both sides of the molecule have
lower angles around 11°. The hybridizations are uniform. The angular defect values are wider. Finally
the spherical curvature remains lower than 0.5.

Parameter Minimum Maximum
Energy (u.a) -1894.38

Pyr (°) 11.12 13.59
Hybridization 2.25 2.40

Angular defect (°) 10.98 16.26
Spherical curvature 0.28 0.34

Table 2.18: Set of minimum and maximum values of parameters of the molecule fullerene C50-D5h

(Pyr, Hyb, AngDef , SphCurv)

We note few differences between the values of parameters of the 2 isomers.

Figure 2.36: Cartographies of the parameters of fullerene C50-D5h

• Molecule Chlorofullerene C50Cl10-D3 (n°16) [34]

This chlorofullerene, constituted of a C50 and 10 chlorine atoms on the equatorial zone, presents an
original structure called "saturne". It should be noted that this fullerene exists under 2 different
symmetries.
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Figure 2.37: Representation of the fullerenic molecule C50Cl10-D3

Parameter Minimum Maximum
Energy (u.a) -6475.74

Pyr (°) 9.66 10.92
Hybridization 2.18 2.24

Angular defect (°) -72.60 10.54
Spherical curvature 0.24 0.27

Table 2.19: Set of minimum and maximum values of parameters of the fullerenic molecule C50Cl10-D3

(Pyr, Hyb, AngDef , SphCurv)

Figure 2.38: Cartographies of the parameters of cholorofullerene D3

We observe 2 trends in the values of Pyr. The whole molecule is in the range of 10° except for the
carbons where the chlorine atoms are added where the Pyr reaches 24°. The hybridizations are of the
average of 2.2 on the quasi-totality of the molecule, however the carbons bounded with the chlorines
have hybridization of almost 4. Finally the angular defect and the spherical curvature have the same
behavior.

• Molecule Chlorofullerene C50Cl10-D5h (n°17) [34]

Figure 2.39: Representation of the fullerenic molecule C50Cl10-D5h
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Parameter Minimum Maximum
Energy (u.a) -6475.74

Pyr (°) 9.67 10.92
Hybridization 2.18 2.24

Angular defect (°) -72.60 10.54
Spherical curvature 0.23 0.27

Table 2.20: Set of minimum and maximum values of parameters of the fullerenic molecule C50Cl10-D5h

(Pyr, Hyb , AngDef , SphCurv)

Figure 2.40: Cartographies of the parameters of cholorofullerene D5h

This second molecule is similar but with a D5h symmetry. In all the cartographies we observe the
same behavior as for the previous molecule with lower values on the whole molecule but higher values
on the carbon atoms of the equatorial part where the chlorine atoms are added.

• Molecule of fullerene C64-C3v (n°18) [34]

Figure 2.41: Representation of the molecule C64-C3v

Parameter Minimum Maximum
Energy (u.a) -2424.79

Pyr (°) 11.61 16.43
Hybridization 2.28 3.50

Angular defect (°) 11.94 40.17
Spherical curvature 0.28 0.53

Table 2.21: Set of minimum and maximum values of parameters of the molecule C64-C3v (Pyr, Hyb,
AngDef , SphCurv)
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Figure 2.42: Cartographies of the parameters of the fullerene C64-C3v

This fullerene of 64 carbon atoms has a C3v symmetry. This fullerene is not perfectly spherical and
shows a deformation at one of its poles. We notice that the Pyr are the highest in 4 atoms at the top
which is deformed. The hybridizations are uniform of sp2 type but are beyond 3 at the top. For the
angular defect and the spherical curvature the same behavior is observed at the top.

• Molecule of fullerene C64-C2 (n°19) [34]

Figure 2.43: Representation of the molecule C64-C2

Parameter Minimum Maximum
Energy (u.a) -2425.03

Pyr (°) 7.06 22.97
Hybridization 2.10 3.68

Angular defect (°) 4.46 42.85
Spherical curvature 0.17 0.51

Table 2.22: Set of minimum and maximum values of parameters of the molecule C64-C2 (Pyr, Hyb,
AngDef , SphCurv)

We note once again that this C64 is not perfectly spherical, which will certainly induce variations in
the properties. The Pyr are more pronounced in the non-spherical regions. This deformed region also
shows higher hybridizations close to 4 while the rest of the molecule has sp2.
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Figure 2.44: Cartographies of the parameters of the fullerene C64-C2

• Molecule of fullerene C64-D2 (n°20) [34]

Figure 2.45: Representation of the molecule C64-D2

Parameter Minimum Maximum
Energy (u.a) -2425.05

Pyr (°) 7.77 22.79
Hybridization 2.12 3.64

Angular defect (°) 6.23 42.22
Spherical curvature 0.19 0.50

Table 2.23: Set of minimum and maximum values of parameters of the molecule C64-D2 (Pyr, Hyb,
AngDef , SphCurv)

Figure 2.46: Cartographies of the parameters of the fullerene C64-D2

We observe once again that the fullerene is not perfectly spherical, in particular by the pyramidal
angles which are clearly higher at the poles of the molecule. We note the same situation with the
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hybridizations which are close to 2 on the whole molecule and beyond 3 at the vertices. Concerning
the angular defect and the spherical curvature the situations are rather similar.

• Molecule of fullerene C64-Cs (n°21) [34]

Figure 2.47: Representation of the molecule C64-Cs

Parameter Minimum Maximum
Energy (u.a) -2425.04

Pyr (°) 6.94 22.79
Hybridization 2.09 3.64

Angular defect (°) 4.31 42.26
Spherical curvature 0.17 0.50

Table 2.24: Set of minimum and maximum values of parameters of the molecule C64-Cs (Pyr, Hyb,
AngDef , SphCurv)

Once again this C64 is not perfectly spherical. We thus observe higher pyramidal angles at the more
deformed poles of the molecule. The hybridizations are around 2.2 on the whole molecule except on
the extremities.

Figure 2.48: Cartographies of the parameters of the fullerene C64-Cs

As for the C50Cl10 molecules of the 2008 [34] publication reports chlorofullerenes said to be "pineapple-
shaped" from C64 and 4 chlorine atoms. We were able to study the possible cholofullerenes from the
different C64 studied which are not found in the "pineapple" category.
The first cholorofullerene is the one constructed from C3v symmetry which adopts the original shape
described by the publication [34].

• Molecule of fullerene C64Cl4-C3v (n°22) [34]

As already commented concerning the fullerene C64 the deformation of the molecule is accentuated
with the addition of chlorine atoms. We thus observe a zone where the values of the properties will be
more significant.
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Figure 2.49: Representation of the molecule C64Cl4-C3v

Parameter Minimum Maximum
Energy (u.a) -4257.59

Pyr (°) 7.43 11.92
Hybridization 2.11 2.29

Angular defect (°) -78.45 12.59
Spherical curvature 0.18 0.29

Table 2.25: Set of minimum and maximum values of parameters of the molecule C64Cl4-C3v (Pyr,
Hyb, AngDef , SphCurv)

Figure 2.50: Cartographies of the parameters of the fullerene C64Cl4-C3v

We note a maximum of 12° for the angles of pyramidalisation on the lower part of the chlorofullerene
and smaller angles towards the top. The hybridizations follow the same behavior with a maximum
hybridization of 2.3. The angular defect is calculable in each atom of the molecule, we note that it
reaches 13° on the main part of the molecule until the top which shows negative values.

• Molecule of fullerene C64Cl4-Cs (n°23) [34]

This second molecule has a different geometry because the chlorine atoms are not added on the same
carbon atoms as the previous molecule but on both sides of the molecule as we can see on the figure:

Figure 2.51: Representation of the molecule C64Cl4-Cs
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Parameter Minimum Maximum
Energy (u.a) -4257.52

Pyr (°) 6.94 13.33
Hybridization 2.12 2.38

Angular defect (°) -70.57 15.56
Spherical curvature 0.19 0.32

Table 2.26: Set of minimum and maximum values of parameters of the molecule C64Cl4-Cs (Pyr, Hyb,
AngDef , SphCurv)

The pyrmidalization angles range from 7° to 13° on the whole molecule. The hybridizations are uniform
on the whole molecule showing that the carbons are hybridized sp2. The angular defect is positive on
the whole carbon skeleton except on the 4 addition sites where the values are negative.

Figure 2.52: Cartographies of the parameters of the fullerene C64Cl4-Cs

• Molecule of fullerene C64Cl4-D2 (n°24)[34]

This chlorofullerene is presented in the same way as the previous one with the addition of 2 chlorine
atoms at each pole and presents the D2 symmetry.

Figure 2.53: Representation of the molecule C64Cl4-D2

Parameter Minimum Maximum
Energy (u.a) -4257.51

Pyr (°) 7.77 12.61
Hybridization 2.12 2.33

Angular defect (°) -70.47 14.00
Spherical curvature 0.19 0.31

Table 2.27: Set of minimum and maximum values of parameters of the molecule C64Cl4-D2 (Pyr,
Hyb, AngDef , SphCurv)
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Figure 2.54: Cartographies of the parameters of the fullerene C64Cl4-D2

Similar to the other chlorofullerenes, C64Cl4 with D2 symmetry shows non-uniform Pyr throughout
the molecule. The angular defect values are positive throughout the molecule but negative here as well
at sites of chlorine atom addition. Finally, the spherical curvature is not very uniform on the whole
molecule.

• Molecule of fullerene C64Cl4-C2 (n°25) [34]

Figure 2.55: Representation of the molecule C64Cl4-C2

Parameter Minimum Maximum
Energy (u.a) -4257.51

Pyr (°) 6.94 13.33
Hybridization 2.12 2.38

Angular defect (°) -70.57 15.56
Spherical curvature 0.20 0.50

Table 2.28: Set of minimum and maximum values of parameters of the molecule C64Cl4-C2 (Pyr, Hyb,
AngDef , SphCurv)

Figure 2.56: Cartographies of the parameters of the fullerene C64Cl4-C2
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We observe angles of pyramidalization between 7° and 13°. The hybridizations are uniform. In this
case again the angular defect is positive on the molecule except on the 4 addition sites of the chlorine
atoms.

Overview of the pyramidalization angle and hybridization: The two following graphs (figure
2.57) illustrate the data of the molecules according to the parameters of pyramidalization angle and
hybridization, taking into account the neighboring environment and the hybridization of each carbon.

Figure 2.57: Data of the pyramidalization angles and the hybridization of each molecule considering
the carbon environment
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2.4 Application to reactivity

2.4.1 Presentation of the ring expansion reaction path of a Nitrile Imine

The results presented in this section are based on data from the publication: "New rearrangements
of Nitriles Imines: Ring expansion of benzonitrile imines to cycloheptatetraenes and ring closure to
3-phenyl-3H-diazirines" [32].

Figure 2.58: Stages ring expansion calculated by DFT B3LYP-6-311G method [32]

The context of this study is based on nitrile imines which are important intermediates in 1,3-dipolar
cycloaddition reactions. They are known to undergo efficient, unimolecular rearrangements to 1H-
diazirines, imidoylnitrenes and carbodiimides under thermal and photochemical reaction conditions.
C. Wentrup et al. [32] have recently reported a competing rearrangement in which C-phenylnitrile
imines undergo ring expansion to 1-diazenyl-1,2,4,6-cycloheptatetraenes akin to the phenylcarbene -
cycloheptatetraene rearrangement. Amino-, hydroxy-, and thiol-groups in the meta positions of C-
phenylnitrile imine lower the activation energies so that this rearrangement becomes competitive with
cyclization to 1H-diazirines and hence rearrangement to carbodiimides. With two NMe2 groups in
the 3- and 5-positions, the activation energy for the ring expansion drops below 50 kcal/mol. The
diazenylcycloheptatetraenes so formed can rearrange further to 2-diazenyl-phenylcarbenes over modest
activation barriers, and these carbenes cyclize very easily to 2H- and 3H-indazoles, from which 6-
methylenecyclohexadienylidene, phenylcarbene, and fulvenallene are potentially obtainable. Moreover,
another new rearrangement of benzonitrile imine forms 3-phenyl-3H-diazirine, which is a precursor of
phenyldiazomethane and hence phenylcarbene. This reaction is competitive with the ring expansion.
The new rearrangements predicted by Wentrup et al., should be experimentally observable, e.g. under
FVP or matrix-photolysis conditions.

In this theoretical work authors sought to describe and compare three intramolecular rear-
rangement routes of aromatic nitrile imines, as set out in figure 2.59.
Route (i) describes the new ring expansion of benzonitrile imine (8a) to 1-diazenylcycloheptatetraene
(12a) and subsequent ring contraction to 2-diazenylphenylcarbene (16a).
Route (ii) is the previously investigated ring closure to 3-phenyl-1¬H-diazirine (18a) and further to
phenylcarbodiimide (20a).
Route (iii) is the new ring closure to 3-phenyl-3H-diazirine (22a), which results in the easy formation
of phenyldiazomethane (24 ) and then phenylcarbene (26 ).
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2.4.2 Results

2.4.3 Conformation 8aA - Allenic Benzonitrile Imine

Figure 2.60: Conformation 8aA and classification of atoms according to their environment and hy-
bridization

Figure 2.61: Cartographies and representation of the parameters of conformation 8aA

Environment C-C-C sp2 C5
Environment C-C-H sp2 C1 C2 C3 C4 C6
Environment C-C-N sp C7

E - -379.827126 u.a

Table 2.29: Set of environment and energy of conformation 8aA

Figure 2.62: Set of values of parameters of conformation 8aA (Pyr, Hyb, AngDef, SphCurv)
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Characterics of V1

Figure 2.63: Cartographies and representation of the parameters of conformation V1

Environment C-C-C sp2 C5
Environment C-C-H sp2 C1 C2 C3 C4 C6
Environment C-C-N sp C7

E - -379.816260 u.a

Table 2.30: Set of environment and energy of conformation V1

Figure 2.64: Set of values of parameters of conformation V1 (Pyr, Hyb, AngDef, SphCurv)

The "V1" state of the reaction path of figure 2.58 has been reached.
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Characterics of V2

Figure 2.65: Cartographies and representation of the parameters of conformation V2

Environment C-C-C sp2 C5
Environment C-C-H sp2 C1 C2 C3 C4 C6
Environment C-C-N sp C7

E - -379.792368 u.a

Table 2.31: Set of environment and energy of conformation V2

Figure 2.66: Set of values of parameters of conformation V2 (Pyr, Hyb, AngDef, SphCurv)

This point corresponds to point "V2" of the reaction path.
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Characterics of V3

Figure 2.67: Cartographies and representation of the parameters of conformation V3

Environment C-C-C sp2 C5
Environment C-C-H sp2 C1 C2 C3 C4 C6
Environment C-C-N sp C7

E - -379.774313 u.a

Table 2.32: Set of environment and energy of conformation V3

Figure 2.68: Set of values of parameters of conformation V3 (Pyr, Hyb, AngDef, SphCurv)

State "V3" of the reaction path is reached.
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Characterics of V4

Figure 2.69: Cartographies and representation of the parameters of conformation V4

Environment C-C-C sp2 C5
Environment C-C-H sp2 C1 C2 C3 C4 C6
Environment C-C-N sp C7

E - -379.768938 u.a

Table 2.33: Set of environment and energy of conformation V4

Figure 2.70: Set of values of parameters of conformation V4 (Pyr, Hyb, AngDef, SphCurv)

The transition state approaches the sp3 state.
The point coincides with the V4 state of the path in the figure 2.58.
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2.4.4 Conformation 2 : transition state TS9a

Figure 2.71: Cartographies and representation of the parameters of conformation TS9a

Environment C-C-C sp2 C5
Environment C-C-C-H sp3 C4
Environment C-C-H sp2 C1 C2 C3 C6
Environment C-C-N sp C7

E - -379.765890 u.a

Table 2.34: Set of environment and energy of conformation TS9a

Figure 2.72: Set of values of parameters of conformation TS9a (Pyr, Hyb, AngDef, SphCurv)

This point corresponds to the "TS9a" state of the path, so the conformation change takes place between
the point "V4" and "V6" of the path of figure 2.58.
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Characterics of V6

Figure 2.73: Cartographies and representation of the parameters of conformation V6

Environment C-C-C sp2 C5
Environment C-C-C-H sp3 C4
Environment C-C-H sp2 C1 C2 C3 C6
Environment C-C-N sp C7

E - -379.765726 u.a

Table 2.35: Set of environment and energy of conformation V6

Figure 2.74: Set of values of parameters of conformation V6 (Pyr, Hyb, AngDef, SphCurv)

We are at point "V6" of the path (figure 2.58).
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2.4.5 Conformation 3 - 10a - bicyclo[4.1.0]hepta-2,4,7-triene

Figure 2.75: Cartographies and representation of the parameters of conformation 10a

Environment C-C-C sp2 C5
Environment C-C-C-H sp3 C4
Environment C-C-H sp2 C1 C2 C3 C6
Environment C-C-N sp C7

E - -379.766669 u.a

Table 2.36: Set of environment and energy of conformation 10a

Figure 2.76: Set of values of parameters of conformation 10a (Pyr, Hyb, AngDef, SphCurv)

This is the "10a" point of the reaction path (figure 2.58).
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Characterics of TS11a

Figure 2.77: Cartographies and representation of the parameters of conformation TS11a

Environment C-C-C sp2 C5
Environment C-C-C-H sp3 C4
Environment C-C-H sp2 C1 C2 C3 C6
Environment C-C-N sp C7

E - -379.762883 u.a

Table 2.37: Set of environment and energy of conformation TS11a

Figure 2.78: Set of values of parameters of conformation TS11a (Pyr, Hyb, AngDef, SphCurv)

This point represents the TS11a state of the path.
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2.4.6 Conformation 4 - 12a cycloheptatetraene

Figure 2.79: Cartographies and representation of the parameters of conformation 12a

Environment C-C sp C6
Environment C-C-H sp2 C1 C2 C3 C4 C5
Environment C-C-N sp2 C7

E - -379.788760 u.a

Table 2.38: Set of environment and energy of conformation 12a

Figure 2.80: Set of values of parameters of conformation 12a (Pyr, Hyb, AngDef, SphCurv)

The last point of the path is reached point "12a".
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2.4.7 Comparative graphs

• Angle of pyramidalization

Figure 2.81: Graph displaying the angle of pyramidalization as a function of carbon atoms

Figure 2.82: Graph displaying the angle of pyramidalization as a function of carbon atoms (taking into
account the configurations)
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• Hybridization

Figure 2.83: Graph displaying the hybridization as a function of carbon atoms

Figure 2.84: Graph showing the hybridization and the energies as a function of transition states
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• Angular defect

Figure 2.85: Graph showing the angular defect as a function of carbon atoms

• Spherical curvature

Figure 2.86: Graph representing the spherical curvature as a function of carbon atoms



2.5. CONCLUSION 85

These analyses allow us today to propose a physical representation of the reaction path (see figure
2.87) of the route (i) directly connected to the classical expected description of the chemist in terms
of Lewis representation.

Figure 2.87: Representation of the reaction path of route (i) 2.58

2.5 Conclusion

In this chapter we studied a large range of examples following tools giving access to all the information
necessary to characterize the deformation and the reactivity of the systems. 3 major categories of
molecules are studied: non-fullerenic, fullerenic and nitrile imines.

In the case of the non-fullerenic molecules we observed that:

• the Pyr are more important at the vertices, at the junctions of the patterns and at the bridged
zones,

• the hybridization is generally uniform around 2.00 which means sp2 atoms hybridization. The
case n°13 corannulene is totally uniform with all atoms hybridized sp2. But in some cases the
hybridization > 3 in bridged molecules,

• the spherical curvature is still < 1.

In general, we observe limitations of the methods for atoms whose degree is > 3. The angular defect
provides a way to go beyond this limit but presents negative values. On the set of these molecules, the
deformation is more significant on the junction zones which seem then more susceptible to be reactive.

For the fullerenic molecules we note that:

• the Pyr is quite uniform on this type of spherical molecule but the Pyr is never > 6 but is higher
when the fullerene is a few distorted at the poles,

• the hybridization is around 2 but is still < 4 on the poles atoms,

• the angular defect is calculable on all the atoms but negatives values on the atoms of degree
> 4,
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• the spherical curvature is still < 1.

The same general limitations are observed with the atoms of degree > 3.
In a general way, fullerenic molecules seem to be more adapted to the use of the set of tools and are
potentially more reactive on more deformed molecular regions.

We note an obvious limitation of our tools with the angular defect, since even if the angular defect is
computable in all cases, the negative values observed have no physical meaning. This is an important
point which requires additional research beyond this thesis work.

Concerning the 2 figures (2.57) (for reminder the non-fullerenic molecules are of number 1 to 13 and
the fullerenic molecules from 14 to 25):

For the Pyr, the 2 groups are clearly observed: the non-fullerenic with rather low pyr values between 0
and 10° for an environment with sp2-hybridized carbon-carbon-hydrogen type atoms and the fullerenic
with higher Pyr between 8 and 15° for an environment predominantly carbon sp2 hybridized environ-
ment. This observation is logical since the non-fullerenic exhibit less curvature.

For hybridization we also have 2 groups for the same environment as Pyr:
Non-fullerenes molecules have a hybridization between 2 and 2.5. For the fullerenes the hybridization
is also between 2.05 and 2.6 but we observe much higher and less classic values with sp4-type hy-
bridizations.

For the nitrile imines molecules:

We show that the parameters are useful in the case of study of reaction path, and allow to follow
the evolution of the bonds of a system. By the different graphs, we observe that a complete study of
the system can be carried out.

We show by this specific example that the use of the tools described in this work is simple and gives
access to useful geometrical and chemical information along reaction path.



Chapter 3

Beyond the π-Orbital Axis Vector: the
POAV2 theory

In this chapter we look beyond the theories presented in the 2 previous chapters. We expose the POAV2
theory revised, initially developed by R. C. Haddon in 1986 [6].

We give a complete derivation of the POAV2 theory with complete proofs according to different param-
eters:

• the � and ⇡-orbitals,

• the existence and uniqueness of POAV2,

• the orthogonality,

• and the hybridization numbers.

Then, we make a partial comparison between POAV1 and POAV2 theories and an exploration with
possible applications.

We used results from the work of R. C. Haddon [6] and our preprint work on POAV2 [36].

3.1 Study of POAV2 theory

As proven in the previous chapters, the POAV1 theory gives tools to identify the local geometry of
a molecule by emancipating from the bond lengths, angles between bonds of neighboring atoms and
laborious quantum computations.

If we consider the situation of POAV1, it is a very particular case, typically the C3v symmetry. The
use of POAV1 is perfectly valid for the description of local properties but for a more global description
we have to generalize the notion. It is judicious to take into consideration more information such as
the length and angles between bonds. This is what R. C. Haddon proves in his 1986 article [6]. The
POAV1 is a pure geometric object and its construction depends only on the local geometry for
a vertex and therefore for a considered atom. The relation with the electronic structure depends on
the chosen basis of molecular orbitals. By the concept POAV2 , R. C. Haddon describes the charac-
teristics in a more physical way.

According to R. C. Haddon, the description of the �-system is possible by choosing a set of orbitals
in the direction of the bonds. Then, an orbital is added to define the ⇡-system. The family of orbitals
has an orthogonality with a certain vector v. The validity of the existence of v depends on the angles
between bonds.

87
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Thus, R. C. Haddon introduced two notions to study non-planar molecules and their electronic struc-
ture: the POAV1 for ⇡-orthogonal average vector theory and then, the POAV2 theory aiming to solve
some particular problems related to the POAV1 theory.

3.1.1 σ and π-orbitals

We consider a trivalent molecule as we have defined it in section 0.1 as a set of atoms Ai (with
i = 1, . . . , n) and 3 atoms Bi (with i = 1, 2, 3), and ✓i,j the angle between the bonds ABi and ABj(with
i and j 2 {1, 2, 3}).
We set �-orbitals as previously in section 1.2.1, hi such as:

hi = cis+ �iui (3.1)

with i = 1, 2, 3 and where ui is the unitary vector along the internuclear axes between A and Bi in a
trivalent case, ui 2 R

3 and �i > 0. ABi = �iui with �i = kABik and kuik = 1.

Then, the ⇡-orbital is given as:
h⇡ = c⇡s+ �⇡u⇡ (3.2)

where u⇡ is the unitary vector.

The u⇡ vector is, when it exists, an unitary vector of R2 such that the family of orbitals {h⇡, h1, h2, h3}
is orthogonal, meaning that hhi, hji = 0 and hhi, h⇡i = 0 for i and j 2 {1, 2, 3} and hhi, h⇡i = 0 for i
= 1, 2, 3, where h., .i is the classical scalar product on R

3.

We know that such a vector exists when the molecule possesses a C3v symmetry and is given by the
POAV1 vector. However, the existence of such a vector in the general case or its uniqueness is not
trivial.

3.1.2 Existence, uniqueness of POAV2 and orthogonality conditions

Contrary to the POAV1, the existence and uniqueness of POAV2 does not follow pure geometric
considerations. It shows by the fact that the 2 theories have very different basis.
In fact, the POAV1 vector satisfies only a partial orthogonality condition. Precisely, orthogonality is
only required between the orbitals h⇡ and hi with i = 1, 2, 3. We recover a complete orthogonality
only in the sp3 case.

The POAV2 vector exists and is unique up to orientation.
The orientation of the POAV2 vector can be fixed as : if the molecule determine an orientable surface
then one can defined a coherent family of normal in each atom. We then, choose the orientation of a
u⇡ vector in accordance with this orientation.

We then define the POAV2 more precisely as:

The family of orbitals used {h⇡, h1, h2, h3} is orthogonal to u⇡ the unitary vector of R2 when it exists.
This means that hhi, hji = 0 and hhi, h⇡i = 0 for i and j 2 {1, 2, 3}.

The conditions on orthogonality are given as:

Hi,⇡ : cic⇡ + �i�⇡ cos(✓i,⇡) = 0 (3.3)

with i = 1, 2, 3.
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Hi,j : cicj + �i�j cos(✓i,j) (3.4)

with i 6= j 2 {1, 2, 3}.

By the relations given for the conditions of orthogonality, we can notice a strong relation between the
angles of the bonds and the angles that u⇡ does with the bonds.

Proofs of these relations are in Appendix 2 section 11.

Then, we get the relations between the angles ✓i,j and i, j 2 {1, 2, 3, ⇡} :

cos(✓j,k) cos(✓i,⇡) = cos(✓j,⇡) cos(✓i,k) (3.5)

with i, j 2 {1, 2, 3} and i 6= k, j.

We find this previous relation in the work of R. C. Haddon [6] (eq. 15) and the complete proofs are
given in Appendix 2 section 12.

We note that if a molecule has a C3v symmetry then the angles between the bonds and the u⇡ vector
are equal. This is the only case where POAV1 and POAV2 are identical.

Proofs of this statement is given in Appendix 2 section 13.

The components of the vector u⇡ = (x⇡, y⇡, z⇡) (in an orthogonal reference system) are the solutions
of a linear system whose coefficients will depend on the unit vectors ui (xi, yi, zi) along the bonds and
the angles between bonds (with i = 1, 2, 3).

The POAV2 is a solution of the linear system M.u⇡ = 0 , with u⇡ of coordinates (x⇡, y⇡, z⇡):

M =

0

@

x3 cos ✓1,2 � x2 cos ✓3,1 y3 cos ✓1,2 � y2 cos ✓3,1 z3 cos ✓1,2 � z2 cos ✓3,1
x1 cos ✓2,3 � x3 cos ✓1,2 y1 cos ✓2,3 � y3 cos ✓1,2 z1 cos ✓2,3 � z3 cos ✓1,2
x2 cos ✓3,1 � x1 cos ✓2,3 y2 cos ✓3,1 � y1 cos ✓2,3 z2 cos ✓3,1 � z1 cos ✓2,3

1

A (3.6)

The kernel of the matrix is of dimension 1 in the case of a non-planar molecule meaning that the bonds
u1, u2, u3 define a 3-dimensional vector space. By consequence, there is u⇡ 2 ker(M) as ker(M) = 1
there exists a unitary vector u such that ker(M) = hui unique up to orientation.

This system is given by R. C. Haddon in [6] (eq. 16) and the complete proofs are in Appendix 2 sections
14 and 15.

Concerning the orientation of POAV2, the molecule defines an orientable surface thus we can define
a family of normals to each atom. The orientation of POAV2 will depend on the orientation of u⇡.

3.1.3 Hybridization numbers

As mentioned in chapter 1, the hybridization numbers are related to the �- and ⇡-orbitals which
were described at the beginning of this section (eq. 3.1 and 3.2).

We can determine the hybridization number ni associated to the �-orbitals. We find in the publication
about POAV2 of R. C. Haddon [6] the connection with hybridization under the label n1, n2 and n3.
Moreover R. C. Haddon refers to spn hybridization as the p-part of the �-orbitals and to smp as the
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s-part of the ⇡-orbitals.

Here, we show that in the case of hi the number of hybridization n.

The idea is precisely to measure in some sense the weight of the orbital p with respect to s in hi seen
as sc

2
i p�

2
i where c2i and �2i are the weight of the orbitals s and p in the sense proposed by R. C. Haddon

[6] putting all the weight on p as sp

�
2
i

c2
i = spni .

We have a hybridization of the spni -type as:

ni =
�2i
c2i

(3.7)

Then, we note for ni with i = 1, 2, 3 :

n1 = � cos ✓2,3
cos ✓1,2 cos ✓1,3

n2 = � cos ✓3,1
cos ✓2,3 cos ✓2,1

(3.8)

n3 = � cos ✓1,2
cos ✓3,1 cos ✓3,2

These formula coincides with the one given by R. C. Haddon [6] (eq. 10).

We give the proofs of these formula in Appendix 2 section 16.

In the case of h⇡, the hybridization is of type smp and the number of hybridization associated is m as:

m =
c2⇡
�2⇡

(3.9)

Once again, this definition is different to the one given by R. C. Haddon [30] (eq. 3) but follows the
same idea.

The number m can be understood as a measure of the s orbital with respect to the p content in the

h⇡ orbital, i.e. considering h⇡ as sc
2
⇡p�

2
⇡ and finally s

c2⇡
�2⇡ p which corresponds to smp.

Imposing a normalization of the s content in the three hybrids, i.e. as:

3
X

i=1

c2i
c2i + �2i

+
c2⇡

c2⇡ + �2⇡
= 1 (3.10)

this is called by R. C. Haddon the sp3 normalization in section 1.2.1.

We obtain then, the expression of the quantity W� for the ⇡-hybridization number:

W� =
3
X

i=1

1

1 + ni
(3.11)
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Then, we set under the sp3 normalization condition, the ⇡-hybridization number is given following m

such that:

m =
1

W�
� 1 (3.12)

The proof is given in Appendix 2 section 17, the formula looks like the one given by R. C. Haddon in
[30] (eq. 14).

3.2 Comparison of the POAV1 and POAV2

We know that the POAV theory allows to predict the maximum direction of the reactivity by the
local study of the ⇡-system. As we have presented, 2 approaches exist to determine the ⇡-system: by
quantum calculations and by the POAV theory.
The choice of the POAV method is obvious since it is simpler. The selection between POAV1 and
POAV2 is relatively trivial since POAV2 involves more parameters and this is what we try to show in
this section.

The work on POAV2 theory has not yet been explored sufficiently at this time of the thesis to
provide complete conclusions. We present here partial results. This part of the work has been
possible thanks to our collaboration with Dr Germain Salvato-Vallverdu who realized computations
and python programs in order to carry out this section.

3.2.1 Relative variation of POAV2 versus POAV1

As we know the POAV theory provides the study of the planarity of molecules and here we are trying
to know if the POAV2 is more adapted than the POAV1. It should be noted that the POAV1 theory
is more widely used (as examples some recent works using POAV1 [37][38][39]).

The POAV2 theory takes into account additional parameters compared to POAV1. We therefore
wanted to know if there was a real observable difference between the POAV1 and POAV2 theories.
The first idea was to make a comparison between the 2 vectors.

Our first exploration was on the molecule n°3 (from section 2.3.1) from the work of R. C. Haddon [6]:

Figure 3.1: Representation of the molecule C11H8 with the POAV1 (in green) and POAV2 (in red)
vectors

The molecule being symmetrical we have represented the vectors on only a part of the molecule to make
it clearer.

On this figure we observe that the 2 vectors are very close in fact the maximum variation is of 4°.
The difference is observed on the atom n°10 which is finally the most interesting since it is at the
junction between 2 pentagons and according to our detailed study (section 2.3.1) it is where Pyr is
the highest.
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Figure 3.2: Representation of the molecule C11H8 with the POAV1 (in pink) and POAV2 (in grey)
vectors and the HOMO

The figure represents the Highest Occupied Molecular Orbital (HOMO) of the molecule n°3. We ob-
serve the isosurfaces for values ranging from 0.02 (in red) to 0.09 (in magenta). We note that around
the atom n°10 it is quite isotropic.
These images were carried out by DFT calculations and by extracting data from the generated .cube
files. These calculations have been done with fine grids at a distance of 1 Å and with angles between
2 points of 1°.

The main difficulty consists in the size of the grid used on which the wave function is computed, it must
be fine enough to make comparison possible and is not necessarily adaptable in Gaussview software.
On this illustration we note a difference between the 2 vectors but it remains minor. Based only on
this example we cannot decide if the POAV2 is more appropriate than the POAV1.

3.2.2 Quality of POAV1 versus POAV2 to predict the direction of the π-system

To investigate the comparisons, we used a simpler system: ethylene.

The first step was to calculate by classical DFT quantum methods, the ⇡-system of the molecule, what
we call the "real" ⇡-system.

By taking into account again the HOMO of the molecule (with an isovalue of ±0.03Å, in blue the
negative part and in red the positive part) and the nodal surface (the white grid) of the system, the
following figure obtained with VMD software [40] illustrates the molecule in 3D:

Figure 3.3: Representation of the HOMO and the nodal surface of the ethylene molecule in 3D

To determine and carry out each of the constructions (POAV1, POAV2, ⇡-system), we investigated
different methods by linear interpolation.
The first approach was to perform a linear regression to obtain a fitted line on the intersection between
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the nodal surface and a chosen plane.
The other possibility was to look for the normal vector (the "real" ⇡-system) to the mean plane fitted
on the points of the nodal surface around a given atom.
The goal is to see if the normal vector to the nodal surface is in the plane defined by POAV1 and
POAV2. As a result, it is essential to have a very fine grid to obtain precise results.
By linear interpolation and by the second approach, we made figures (figure 3.4) in the plane. The
circle points represent the atoms: black for carbon and grey for hydrogen. In the left figure, we observe
the HOMO in the plane in red and blue. The isosurface is represented by the curve in grey (at ±
0.03 Å). Finally, the black curve is the intersection between the plane and the nodal surface, which
represents the plane defined by POAV1 and POAV2.

Figure 3.4: Representation of the linear interpolation for the ethylene molecule

Using a fine grid (in the right figure), i.e. a distance between 2 points of 0.005 Å, the grid is located
around an atom of interest and the dotted curve represents the nodal surface.

Figure 3.5: Representation by linear interpolation of POAV1 and POAV2 (in blue the normal, in green
the POAV1 and in red the POAV2)
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To clarify the construction of this last figure: we consider the closest point on the nodal surface, i.e.
the orthogonal projection of the atom on the nodal curve. This means that we take the tangent to the
curve and the vector we are interested in is the one that is normal to this tangent. Once this vector is
determined, we relate it to the atom and compare its direction with POAV1 and POAV2.

We note in this case studied more precisely, that there is a difference between POAV1 and POAV2.
This difference has not been quantified but merits to be quantified. We notice that the POAV2 is closer
to the "real" ⇡-system than the POAV1. Thus, by comparison the POAV2 seems more accurate
for the considered atom.

3.3 To reach further...

By the tools presented since the beginning of this manuscript, we can consider using them to charac-
terize the geometries and topologies of different kind of systems as Covalent Organic Frameworks
(COFs) and Metal-organic frameworks (MOFs) for their reactivity. This is in line with a strategy
of decarbonization and energy transition. The systems could be integrated into hydrogen or methane
storage or CO2 capture processes. The purpose of these processes is not the same. Hydrogen and
methane are intended to be stored for use primarily as an energy source. CO2 capture is aimed at
reducing anthropogenic emissions directly at the source.

We will make some reminders about MOFs and COFs. These complexes are crystalline solids said to
be porous. Their structure makes them promising complexes for gas storage by physisorption. These
materials are listed in two main databases: from Cambridge University [41, 42] and Northwestern
University [43], both listing about 255,000 structures. These materials with high sorption properties
can be used in surface chemistry and their reactivity can be controlled generating new electronic and
chemical properties. The high number of existing structures, leads to a problem of identification of
structures for a specified application. Therefore, with our tools we could propose a topological and
geometrical identification according to a given property.

We could provide a selection process for COFs and MOFs based on tools whose scientific development
is clear in order to organize the COFs and MOFs bases in the best possible way.
The steps that could be implemented would be based: 1 - on the development of a tool analyzing the
reactivity properties of the COFs and MOFs of all the databases, 2 - then, the extraction of specific
indicators such as reactivity and 3 - then, validate these tools by experimentation.

Steps 1 and 2 can be completed by our POAV tools to connect the geometrical and topological structure
of the molecules with the electronic and chemical properties. In fact, POAV vectors intrinsically include
all the quantum and orbital information that allow to study the chemical reactivity of the atoms of
the material. The POAV vectors are computable from the local geometrical structure without using
quantum calculations. The simplicity of use leads to a pretty large scale database, as we have done
previously for our first article on the fullerene database [4]. In a simple way, it allows to detect on the
materials the most reactive sites and to cartography them (as we have already achieved). Thus, we
suggest the use of POAVs to cartography the structures of COFs and MOFs.
Following these cartographies, it will be necessary to obtain different indicators which will reflect the
reactivity and selectivity of COFs and MOFs for a given target. Statistical by nature, these indicators
will show the properties of the POAVs, in particular for the density of the highly reactive sites and for
the average reactivity of the structure.
Finally, the last step, step 3, will validate and complete the theoretical data.
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3.4 Conclusion

In this chapter, we take up the POAV1 theory with the POAV2 which completes in a physical way
the POAV1 which is more local.
We have proven as precisely as possible mathematically the work of R. C. Haddon on the POAV2,
on the basis of � and ⇡-orbitals but also on the conditions of orthogonality and based on the tools
previously developed as the hybridization numbers.
The comparison of the work initiated here between the 2 tools shows from a more practical point of
view and from the molecular point of view that the consequences are not significant between POAV1
and POAV2. In fact for our example, there is only 4° difference between the 2 vectors, it is then,
complicated to conclude only on this observation.
However, when we compare the difference between POAV1 and the ⇡-system and between POAV2 and
the ⇡-system it is more significant. We can clearly see that POAV2 is closer to the ⇡-system. From
this point of view the POAV2 theory is more interesting since it is more representative of the system.
This is in accordance with the general observations related to molecules with large bond angles, POAV2
is quite different from POAV1 but this is logical since the bond parameters are taken into account.

The observations from these comparisons are clearly not conclusive and the development of the
proofs related to these tools having required a long work it seems interesting to focus on it in the
future.
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Conclusion of the part II

This part II concerns the POAV theories. It gives a complete study of the tools and methods avail-
able to the chemistry community to understand and determine the information of molecular systems
related to deformation, hybridization and reactivity.

Chapter 1 and 2 are complementary since the notions and tools (pyramidalization angle, POAV1,
hybridizations...) are used in the wide range of examples in chapter 2 and are clearly studied, gener-
alized and proven. Chapter 2 gives a concrete idea of the use of these tools from a computational and
illustrative point of view with meaningful cartographies on a large panel of molecules. We show that
the evolution of the transformations of the bonds (formation, weakening...) can be followed in simple
ways and thus allow the understanding of the reactivity.

Chapter 3 is an extension of POAV1 theory with the introduction of POAV2 theory which seems
theoretically more complete but does not provide clearly any practical benefit for the moment.
This remains to be investigated since the study of this last chapter is not completed.

In a general way, this part answers the initial issues generated by R. C. Haddon’s work about pla-
narity and reactivity, and it is important to mention that all the methods and tools presented in this
manuscript are useful and easily implementable by chemists.



Part III

Aromaticity, helical states and
applications
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In this third part, we are interested both in the aromaticity criteria, and in the curiosity of helical
electronic states.

The aromaticity criteria are studied :

• in a general way by the Hückel rules,

• by the 2 visions of Hückel and Möbius in the case of annulenes.

We review these criteria from a mathematical point of view with Hückel and Möbius by distinguishing
the cases of linear molecules and cyclic molecules.

Then, we go beyond these aromaticity criteria with the study of Möbius systems according to Roald
Hoffmann and show the criteria and the existence of helicoidal states.

Finally, applications and visualizations of helical states are presented.

The main results of this part come from the work of R. Hoffmann’s research team [9] and from our
preprint work [44].
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Introduction

This third part gives the opportunity to go through different aspects, both theoretical and ap-
plicative. The study of concepts related to molecular deformation and tools for understanding the
reactivity are associated with the aromaticity topics.

Chapter 4 leads us back to the theory with the aromaticity criteria (of cyclic molecules among
others) according to the rules stated by Hückel. These famous Hückel’s rules are widely used in
chemistry and in particular by organic chemists.
We have relied on Hückel’s rules to highlight the comparison between the so-called Hückel and
Möbius model systems. First, we prove the geometrical construction of these systems, and then
their optimal and equivalent structures. To improve the comprehension and to put in evidence more
details, we needed to review some mathematical tools. In particular, concerning the Hückel matrices
according to different cases. In fact, we have chosen to work according to different situations, namely in
cyclic situations (to get closer to an annulenic system) or in linear situations (as cumulenic systems).
After these different steps, and a brief review of the Möbius molecules, we established the energy
equations according to the two model systems. To complete the study, we took into account both in
the Möbius and Hückel case the number of electrons of the system: even or odd.
In the Möbius systems, we observe a rotation of the orbitals along the cycle, and by consequence dif-
ferent angle distributions. We have therefore decided to study these distributions and the influence
of the C2 symmetry on them.
To be more precise and applicative, we conclude with some simple examples to prove the calculation
of the distribution of angles.

Chapter 5, presents how Möbius systems have found interest in recent years from research teams,
in particular the Nobel prize laureate Roald Hoffmann.
It is due to the attention given to the work of R. Hoffmann that we are particularly interested in the
linear systems called cumulenes and the curiosities that they provide with the helical molecular
orbitals. We then details associated to the concepts concerning the helical states. We prove math-
ematically in a precise way the angle distributions in the general case and in the cumulene cases. The
rest of the chapter presents the criteria of existence of helices from a mathematical and then by a
chemical way.

Then, the last chapter provides a link with the chapter 5 by different applications. The chapter
presents the applications and visualizations that we carried out on cumulenes and on more complex
molecules. All these investigations are very complete since we have performed DFT and multideter-
minental CASSCF(CASPT2 single points) calculations both in fundamental and excited states, to be
confident that the helices observed by DFT were not dependent on the method used.



Chapter 4

Criteria of aromaticity - theory

In this chapter we discuss :

• the criteria of aromaticity,

• reminders of mathematical tools for Hückel matrices,

• and, the determination of energy equations according to the Hückel and Möbius systems.

For the criteria of aromaticity we expose:

� Hückel’s rules,

� the 2 visions of Hückel and Möbius concerning the annulenic systems.

Concerning the mathematical tools necessary to understand the Hückel matrices we review:

� Hückel matrices for cyclic (S1
N (�)) and linear (LN (�)) molecules.

Finally, for the determination of the energy equations of Möbius and Hückel systems, we expose:

� reminders about Möbius molecules,

� results concerning the cases of cyclic molecules with zero distribution (S1
N (0)) and with angle

distribution (S1
N (�)),

� the energetic comparison of the 2 cases and their stability,

� the study of the molecule with angle distribution following a C2 symmetry invariance,

� the results for linear molecules with null distribution (LN (0)) and angle distribution (LN (�)),

� the study of optimal distribution for cyclic molecules (S1
N (�)),

� the study of the distribution of linear molecules (LN (�)) equivalent to cyclic molecules with angle
distribution (S1

N (�)),

� the asymptotic study of the angle distribution on a linear chain.

All the results of this chapter are based on R. Hoffmann’s work [9] and from our preprint dedicated to
the study of the optimal structures and equivalences of some molecules [45]. This chapter has required
a lot of work and time.
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4.1 Hückel aromaticity

We have presented the Hückel method in part I, but here we are interested in another aspect: the
aromaticity according to Hückel [46, 47].

Different approaches to Hückel’s rules exist both on criteria based on the number of electrons, but
also based on the geometrical construction related to the distribution of orbitals within the system.

4.1.1 Hückel rules

From the point of view of organic chemists, Hückel’s rules are well-known. It is in 1931 that Erich
Hückel proposes the theory of determination of the aromatic compounds in the case of plane cyclic
molecules (also called annulenes). These aromaticity criteria are based on several points: the
molecule must be cyclic, must be plane, must be conjugated and must satisfy the relation 4N+2.

For more details, in a simple way, the conjugation is the alternation of single (�) and double bonds
(⇡) and the relation is equal to the number of ⇡-electrons of the molecule.

The aromaticity reflects the stability and consequently simplifies certain reactions such as substitu-
tions.
In the fundamental state for a cyclic molecule, if the electronic system has 4N + 2 electrons then, the
system is said to be aromatic and stable. On the contrary, if the electronic system has 4N electrons,
the system is called anti-aromatic.

The 4N + 2 rule applies when there is an even number of electrons. These systems are then called
Hückel systems.
To illustrate this rule, we can take the simple example of benzene which is the well-known conjugated
cyclic molecule. Containing 6 ⇡-electrons, there are 2 electrons on the first lowest energy orbital and
then the remaining 4 electrons are distributed on the following orbitals, as shown in the following
diagram:

Figure 4.1: Simplified energetic diagram of the benzene

In this simple example, 4N + 2 = 6 then, N = 1, we obtain a positive integer, the rule is respected.
The Hückel rule is used to determine the aromaticity thus, it only considers the ⇡-electrons, i.e. the
electrons involved in the ⇡-bonds. The atoms implied are therefore sp2-hybridized.
For these cyclic systems, a simple mnemonic circle method proposed by Frost and Musulin [48] in 1953
allows access to the energies of the molecular orbitals.
In 1966, on the basis of the method of Frost and Musulin [48], Zimmerman [8] proposes according to
the 4N + 2 rule of Hückel, that the systems satisfying the rule will be called of Hückel but that
those satisfying 4N electrons will be called systems of Möbius [8].
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4.1.2 Two visions of annulenes : Hückel and Möbius

Geometrical construction

As we have already mentioned in part I with a geometrical point of view, we can study different cases
of arrangement of atoms.

The atoms of a molecule can be disposed following two possibilities:

• a line segment (LN ) which corresponds to a linear chain (as allene molecule)

• a circle (S1
N ) which corresponds to cyclic molecule (as annulene molecule)

We are interested in two distributions depending on the arrangement of the atoms. These distribu-
tions have a fundamental role.

A distribution is defined along a molecule � constituted by N atoms noted s (a preliminary definition
is given in the reminder 0.2.4). The distribution is given in R

3 as a family of vectors v {v1,...,vN} in
the planes {Ps1 , ...,PsN }.

Figure 4.2: Schematic representation of the distribution along a molecule �

In fact if we have: � : s 2 [a,b] �! �(s) 2 R
3 a regular curve of R3 on which are uniformly disposed

N atoms. We note si 2 [a,b] the position �(si) of the atom Ci (with i = 1, ..., N).
We assume that s0 = a and sN = b:

si = a+ (i� 1)
b� a

N � 1
(4.1)

Set a family of vectors ui in �(si) contained in the plane normal to the tangent vector �0(si) to the
� curve in si. These vectors will represent in our case, particular orbitals in each atom. For each
i = 1, ..., N , let us note Di the segment described by:

t 2 [�1, 1] �! �(si) + t
ui

|| ui ||
2 R

3 (4.2)

We note that Di(0) = �(si) and that the line segment is symmetrical about this point.

A homotopy is carried out between each Di and Di+1 (with i = 1, ..., N � 1) in the following way:

we denote D(s) the continuous family of segments defined for s 2 [a, b] by:

D(s) =

⇢

t 2 [�1, 1] �! D(s)(t) = �(s) + t



si+1 � s

si+1 � si

ui

|| ui ||
+

s� si

si+1 � si

ui+1

|| ui+1 ||

�

2 R
3

�

(4.3)

with s 2 [si, si+1].

Note that D(si) = Di for i = 1, ..., N . We thus generate a connected parameter surface of R3 associated
with the data of � and the family of vectors (u1, ..., uN ) noted �N (u1, ..., uN ) such as:
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�N (u1, ..., uN ) = s 2 [a, b] �! D(s)(t) (4.4)

In the situation where the � curve is closed, i.e. �(a) = �(b), the surface described is not necessarily
continuous. To be continuous, it is necessary to have uN = ±u1 so that D(a) = D(b) and thus, that
there is recollection of the segments, when the curve is crossed.

In the case where the vectors ui are associated with a given � = (�1, ...,�N ) distribution such as:

ui+1 = ej�iui (4.5)

with j2 = -1, i = 1,..., N.

In the case where � = 0 it is enough to take ui = u1 for i = 2, ..., N . We obtain then in the case where
� is the segment �(s) = A+ sB with A and B 2 R

3, B 6= A, s 2 [0, 1] the parameter surface generated
by the transfer of the segment :

D(s) =

⇢

t 2 [�1, 1] �! D(s)(t) = �(s) + t
u1

|| u1 ||
2 R

3

�

(4.6)

along the � segment which represents a strip.

If we assume that: LN is a linear chain with N atoms and S1
N is a cyclic molecule with N uniformly

distributed atoms.

We consider the following geometries:

• the zero distribution, noted � = (0, ..., 0) or � = 0 is represented by a ribbon or a strip which
is called "Hückel"-type distribution.

• the "Möbius"-type distribution � = ( ⇡
N
, ..., ⇡

N
) which is a Möbius ribbon i.e. a twisted strip

of angle ⇡ [47].

Figure 4.3: Illustration of the 2 distributions: Hückel and Möbius-types [49]

The terminology ("Hückel" or "Möbius") comes from the geometric construction.

In the case of a Möbius distribution we have:

ui+1 = ej
⇡

N ui (4.7)

with j2 = -1 and i = 1,..., N.

The D(s) segment is given for s 2 [0, 1] by :

D(s) =

⇢

t 2 [�1, 1] �! D(s)(t) = �(s) + tejs
⇡

N
u1

|| u1 ||
2 R

3

�

(4.8)
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which represents a 180° twisted strip.

This same construction in the case where � is a circle gives respectively a ribbon and the famous
Möbius ribbon which is a continuous surface since in this case uN = �u1.

Optimal structures

For a given S1
N (�) structure, several questions arise: intuitively, we expect the zero distribution to be

the most energetically stable, i.e. it carries out the minimum of the molecular energy LN (�) or S1
N (�)

over all possible distributions. However, it can be proven that for some values of N, this minimum is
realized by a Möbius-type distribution. Moreover, the calculations comparing these two particular
distributions do not answer the question.

By definition, for a given S and N, we characterize the set of � distributions such as SN (�) satisfies the
minimum energy. In this manuscript we study the problem in all generality for S = S1 and S = L.

We specify the previous problem by writing explicitly the optimization problem for a given N and � a
given distribution. We note E(S1

N (�)) the energy of the S1
N (�) molecule.

We notice Emin the quantity:

Emin = min�E(S1
N (�)) (4.9)

In fact, we are looking for the set of distributions such as : E(S1
N (�)) = Emin.

The strategy to solve the question, is to determine the structure of the orbitals for a molecule with
N atoms on the circle with a given distribution �. The approximation of the MOs are obtained using
the Hückel method. The energy of the molecule is then calculated on the set of distributions. In a
simpler way one can compare for a given geometry and type of atom, the energy stability for two
fixed distributions.
We can easily compare for a given geometry and type of atom, the geometrical stability for two
fixed distributions. We explicitly note a comparison between S1

N (0) and S1
N (�M ) in the case of carbon.

We specify here �M , it describes the Möbius-type distribution.

Equivalent structures

From a point of view of equivalent representations, we can represent the geometry of the ⇡-orbitals
of the molecules of the allene type (called cumulenes) either by a linear chain or a circle.

Note that a cumulene, which will be mainly discussed in the continuation of the manuscript, are carbon
molecules with only double bonds.

For a given cumulene, how to describe precisely the equivalent linear and circular representations? In
particular, how to specify the distribution associated with each of the representations?

To specify the previous question it is necessary to take in consideration the symmetries of the
molecule. The problem of equivalent representations is expressed by the research of a geome-
try adapted to a minor symmetry than the initial molecule.
The computations to obtain the structure of the orbitals in the case of the circle can be used to deter-
mine the distribution of a linear chain whose structure of the orbitals is imposed by the decomposition
obtained for the configuration of the circle in a given distribution �. We then obtain for any � on the
circle, a distribution LN (�) on a chain.
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4.2 Reviews of mathematical tools with Hückel matrices

4.2.1 Hückel matrices for molecules as S1
N(φ), LN(φ)

To better understand the systems S1
N (�) and LN (�), in the following, we express the Hückel matrices

of the 2 situations.

Molecules S1
N (�)

As presented in part I, the atoms Ai (with i = 1, ..., N) are positioned on a circle and to simplify, we
have the notations:

AN�1 = AN (4.10)

AN+1 = A1 (4.11)

To simplify the construction of the Hückel matrix, for a given atom, only two neighboring atoms
on the curve have a significant overlap, thus, a given atom Ai is bonded to the atom Ai�1 and Ai+1

for i = 1,..., N.

We obtain a symmetrical matrix M
⇥

S1
N (�)

⇤

(E) as :
0

B

B

B

B

B

B

B

@

↵� E cos(�1)� 0 . . . . . . 0 cos(�N )�
cos(�1)� ↵� E cos(�2)� 0 . . . . . . 0
0 cos(�2)� ↵� E cos(�3)� 0 . . . 0
...
0 . . . . . . 0 cos(�N�2)� ↵� E cos(�N�1)�
cos(�N )� 0 . . . . . . 0 cos(�N�1)� ↵� E

1

C

C

C

C

C

C

C

A

(4.12)

By posing x = ↵�E
�

, there is the reduced matrix U
⇥

S1
N (�)

⇤

(x) defined by :
0

B

B

B

B

B

B

B

@

x cos(�1) 0 . . . . . . 0 cos(�N )
cos(�1) x cos(�2) 0 . . . . . . 0
0 cos(�2) x cos(�3) 0 . . . 0
...
0 . . . . . . 0 cos(�N�2) x cos(�N�1)
cos(�N ) 0 . . . . . . 0 cos(�N�1) x

1

C

C

C

C

C

C

C

A

(4.13)

The two matrices can be linked as:

M
⇥

S1
N (�)

⇤

(E) = �U
⇥

S1
N (�)

⇤

(x) (4.14)

To simplify, we have the family of so-called Hückel matrices of type S1 and parameter a (a =
(a1, ..., aN ) 2 R

N ):

Ua =

0

B

B

B

B

B

B

B

@

x a1 0 . . . . . . 0 aN
a1 x a2 0 . . . . . . 0
0 a2 x a3 0 . . . 0
...
0 . . . . . . 0 aN�2 x aN�1

aN 0 . . . . . . 0 aN�1 x

1

C

C

C

C

C

C

C

A

(4.15)

The matrix Ua is the matrix associated with the simple Hückel matrix of type S1 where a1 =
... = aN = a with the parameter a 2 R.
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Molecules LN (�)

In this configuration, the atoms are arranged on a line and the following simplifying hypothesis is
admitted: for a given atom, only two neighboring atoms on the curve have a significant overlap, i.e. a
given atom Ai is bounded to atom Ai�1 and Ai+1 for i = 2, ..., N � 1. The atom A1 is bounded to A2

and the atom AN to AN�1.

By this hypothesis, the Hückel matrix M [LN (�)] (E) is purely tridiagonal:

0

B

B

B

B

B

B

B

@

↵� E cos(�1)� 0 . . . . . . 0 0
cos(�1)� ↵� E cos(�2)� 0 . . . . . . 0
0 cos(�2)� ↵� E cos(�3)� 0 . . . 0
...
0 . . . . . . 0 cos(�N�2)� ↵� E cos(�N�1)�
0 0 . . . . . . 0 cos(�N�1)� ↵� E

1

C

C

C

C

C

C

C

A

(4.16)

The matrix reduction leads to U
⇥

S1
N (�)

⇤

(x) :

0

B

B

B

B

B

B

B

@

x cos(�1) 0 . . . . . . 0 0
cos(�1) x cos(�2) 0 . . . . . . 0
0 cos(�2) x cos(�3) 0 . . . 0
...
0 . . . . . . 0 cos(�N�2)� x cos(�N�1)
0 0 . . . . . . 0 cos(�N�1) x

1

C

C

C

C

C

C

C

A

(4.17)

As in the previous case S1
N (�), we have the Hückel matrix of type L1, of parameter a (with a =

(a1,..., aN�1)) and of dimension N ⇥N such that :

Ma =

0

B

B

B

B

B

B

B

@

0 a1 0 . . . . . . 0 0
a1 0 a2 0 . . . . . . 0
0 a2 0 a 0 . . . 0
...
0 . . . . . . 0 aN�2 0 aN�1

0 0 . . . . . . 0 aN�1 0

1

C

C

C

C

C

C

C

A

(4.18)

Here also, we have a1 = ... = aN�1, the Hückel matrix L1 is called simple.

4.3 Determination of energy equations Möbius - Hückel

4.3.1 Reviews of Möbius molecules

The so-called Möbius molecules have their origins in the first works published by A. F. Möbius
and J. B. Listing about projective planes and one-sided surfaces in 1858 [50, 51]. Probable conflicts
of publications between the 2 researchers are at the origin of the name of "Möbius" ribbon and not
"Listing".
Most of the mathematical objects are two-dimensional and we are familiar with, i.e. they have an
inside and an outside surface. But the Möbius ribbon is an exception since it is a closed strip with
an odd number of unilateral 180° twists and an even number of bilateral 180° twists. This
means that the Möbius ribbon is a non-orientable system [47].
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Figure 4.4: Illustrative representation of the Möbius ribbons [47]

Note that the works of Möbius and Listing have inspired many artists in terms of non-orientable sur-
faces.

From a chemical point of view, to define a twisted plane it is necessary to have a ⇡-system. In
this type of twisted ⇡-system, the unilateral surface is defined along the nodal plane of the ⇡-system.
This type of molecule are Möbius annulenes. We note that the so-called Hückel annulenes have
p-orbitals which are associated in order to create interactions. In the case of Möbius there will be at
least one sign inversion of the system which will result in a 180° twist.

As a reminder, annulenes are conjugated cyclic molecules. The simplest example is the benzene which
is aromatic or the cyclobutadiene which is anti-aromatic. These 2 examples are perfectly plane.

For an ideal Möbius ribbon, the twist is uniformly distributed, therefore, the inversion point is not
precisely defined. If we assimilate the Möbius ribbon to an origami type model, the sign inversion will
be observed in the most twisted region. For an example of an origami Möbius annulene, the system
is not planar and shows the shape of a 8 along a C2 axis of symmetry. Being non-planar, the ⇡ and
�-systems are not orthogonal.
Möbius ⇡-systems have been particularly studied by Heilbronner in 1964 [7] who highlights the aro-
maticity according to Hückel which we have already discussed in this manuscript (section 4.1.1).

Figure 4.5: Scheme representing a Hückel and Möbius type annulene [47]

As shown in the Herges review [47] and in figure 4.5, for the Hückel case, the ⇡-plane has two sides,
thus, there are two ⇡ clouds on either side of the annulene. In the Möbius case, there is only one
⇡-system. The presence of the torsion generates a sign inversion so a rotation of the p-orbitals.

Note that Heilbronner gives a rather good precision to the stability of the large Möbius annulenes [7].

Finally, the properties of aromaticity and anti-aromaticity are largely proven by the work of Zim-
merman and Frost-Musilin that we have mentioned previously (section 4.1.1).

There are different types of Möbius ribbons: we can mention the cyclacenes (purely theoretical, the
synthesis being complicated). They are composed exclusively of benzene units which makes them
highly unstable but remain very interesting by their electronic structures.
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Figure 4.6: Representation of a polyacene, a cyclacene and a Möbius cyclacene [47]

Simpler than cyclacenes, polycyclic aromatic hydrocarbons are more interesting. But they present
more isomers and the ways to introduce the torsions are numerous. This type of system is therefore
more complex. For example, the smallest system is the Möbius coronene.

Figure 4.7: Representation of a coronene and a Möbius coronene [47]

Concerning the synthesis, it was necessary to wait 40 years between their discovery in 1964 and the first
attempts of synthesis [52, 53]. The main difficulty consists in the synthesis agents which are annulenes
which are stable in their non-twisted conformations. The stabilization of Möbius annulenes is based
on the rigidification of the molecular frame. The synthesized systems have large ⇡-systems and some
have C2 symmetries.
Möbius annulenes have two types of aromaticity: "normal" and "in the plane". Respectively, either
the atoms are sp2-hybridized in a planar trigonal configuration, or sp2-hybridized atoms pyramidal
with a certain sp3 character.

Figure 4.8: Representation of Möbius annulene [47]

Note that we have to distinguish the topology and the aromaticity criteria.
From a topological point of view: we differentiate the so-called "normal" case, also called the Hückel
case in the literature and here the ribbon case, from the Möbius case.
In terms of aromaticity, whether it is the ribbon or the Möbius system, it is a Hückel system, i.e.
only one p-orbital participates per carbon atom. Indeed it is according to the closure of the ring that
will give the meaning to the aromaticity (i.e. the value of the sign of the off-diagonal elements of the
Hückel matrix) [9].

To finish, there are other topologies, as Möbius annulenes with double twists. Different examples exist:
heterooctaphyrins or the theoretically predicted [14]-annulene.
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4.3.2 Cases of the molecules S1
N(0) and S1

N(φM)

We have determined the electronic structures of the molecules S1
N (0) and S1

N (�M ) for all N. How-
ever, first, we were interested in the computation of the energies according to the configurations.

Trigonometry reminder

First of all, we remind some useful information of trigonometries, by detailed proofs.

For all ✓ 2 R and m 2 N:

m
X

k=0

sin(k✓) = sin

✓

m
✓

2

◆

sin
�

(m+ 1) ✓2
�

sin
�

✓
2

� (4.19)

Here is the proof which seems to be the fastest:

m
X

k=0

sin(k✓) = Im

"

m
X

k=0

ejk✓

#

(4.20)

where j2 = -1 and Im[z] refers to the imaginary part of a complex number z 2 C.

We then study, the complex geometric serie
Pm

k=0(e
j✓)k, the classical result gives :

m
X

k=0

zk =
1� zm+1

1� z
(4.21)

For this proof we get:

m
X

k=0

(ej✓)k =
1� ej✓(m+1)

1� ej✓
(4.22)

It is possible to simplify the expression by using the arc moieties such as :

1� ej✓ = ej
✓

2 (e�j ✓

2 � ej
✓

2 ) = ej
✓

2 2j sin

✓

✓

2

◆

(4.23)

Then,
1� ej✓(m+1)

1� ej✓
=

ej(m+1) ✓
2

ej
✓

2

sin((m+ 1) ✓2)

sin
�

✓
2

� (4.24)

as,
ej(m+1) ✓

2

ej
✓

2

= ejm
✓

2 (4.25)

we get:
m
X

k=0

(ej✓)k = ejm
✓

2
sin((m+ 1) ✓2)

sin
�

✓
2

� (4.26)

By considering the imaginary part of this expression, we obtain the expected equality:

m
X

k=0

sin(k✓) = sin

✓

m
✓

2

◆

sin((m+ 1) ✓2)

sin
�

✓
2

� (4.27)
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This concludes the proof.

The result of this trigonometry relations is used in the following of the manuscript.

Energy proof

For all ✓ 2 R and m 2 N:
m
X

k=0

sin(2k + 1)✓ =
1

sin ✓
[sin((m+ 1)✓)]2 (4.28)

We use the trigonometry reminders,

Im

"

m
X

k=0

ej(2k+1)✓

#

= ej✓
m
X

k=0

e2jk✓ (4.29)

By using the relation 4.26:
m
X

k=0

e2jk✓ = ej(m+1)✓ sin((m+ 1)✓)

sin ✓
(4.30)

To conclude the proof, by taking the imaginary part:

m
X

k=0

sin((2k + 1)✓) =
1

sin ✓
[sin((m+ 1)✓)]2 (4.31)

Energy level structure and conditions on N

The two configurations S1
N (0) and S1

N (�M ) are different in the structure of the energy levels of the
molecule.

In the Möbius case S1
N (�M ), we get energy levels which are given by pairs. We fill several levels

when ⇡(S1
N (�M )) (⇡(S): number of electrons, see the part I to complete explanations) is a multiple of 4.

In the ribbon case S1
N (0), we have a minimal energy level followed by energy levels in pairs. In

the same way, we saturate several energy levels if ⇡(S1
N (0))� 2 is a multiple of 4.

This is resumed by what is called electronic saturation where x ⌘ y [mod.4] meaning that x is
congruent to y modulo 4 ie x = y + 4m,m 2 N.

To remind, we use here the terms of "Möbius" and "ribbon" applied for the study of aromaticity
criteria.

The electronic saturation is defined as: the energy levels are saturated for S1
N (�M ) if ⇡(S1

N ) ⌘ 0
[mod.4] and for S1

N (0) if ⇡(S1
N )� 2 ⌘ 0 [mod.4].

We have studied different cases according to the number of electrons, the case called "even" ⇡(S1
N ) ⌘ 0

[mod.4] and the "odd" case ⇡(S1
N ) 6⌘ 0 [mod.4].

Even case ⇡(S1
N ) ⌘ 0 [mod.4]: In this paragraph, the energy levels of a structure S are noted k

and the energy associated to this energy level for an electron is ✏k(S).
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⇡(S1
N

)

4
�1

X

k=0

✏k(S
1
N (�M )) =

N�1
X

k=N�⇡(S1
N

)

4

✏k(S
1
N (�M )) (4.36)

Then,

E(S1
N (�M )) = 4

⇡(S1
N

)

4
�1

X

k=0

✏k(S
1
N (�M )) (4.37)

We can therefore substitute ✏k(S1
N (�M )) by its expression in eq. 4.34.

In the ribbon case: In the ribbon case S1
N (0), the structure of the energy levels is different.

As a reminder, the eigenvalues of the Hückel matrix are given by :

�k = x+ 2a cos

✓

2⇡
k

N

◆

(4.38)

with k = 0, ..., N � 1, notice that the numeration of the eigenvalues from k = 1 to N is equivalent to
k = 0 to N � 1.

As in the previous case, we study the structure of the energy levels such as, �i = �j if and only if
j = N � i and i = 1, ..., N � 1.

The proof is given Appendix 2 section 19.

We get the energy level corresponding to �0 and degenerate levels grouped by 2, �i = �N�i for i =
1,..., N-1.

We represent this situation by the diagram:

Figure 4.10: Distribution of the energy levels of S1
N (0) in the case of ⇡(S1

N ) ⌘ 0 [mod.4]

As expected, this is a non-saturated case with two available electrons on the last two energy levels.

We know that the ✏k(S1
N (0)) energy of an electron on the k-energy level of S1

N (0) is given by:

✏k(S
1
N (0)) = ↵+ 2� cos

✓

2k⇡

N

◆

(4.39)
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The energy E(S1
N (0)) of the molecule S1

N (0) is given by:

E(S1
N (0)) = �2✏0(S

1
N (0)) + 2✏⇡(S1

N
)

4

(S1
N (0)) + ↵⇡(S1

N ) + 8�

⇡(S1
N

)

4
�1

X

k=0

cos

✓

2k⇡

N

◆

(4.40)

with ✏0(S1
N (0)) = ↵+ 2� and ✏⇡(S1

N
)

4

(S1
N (0)) = ↵+ 2� cos

�

⇡(S1
N ) ⇡

2N

�

.

To prove this relation, we know that:

E(S1
N (0)) = 2✏0(S

1
N (0))+

⇡(S1
N

)

4
�1

X

k=1

2✏kS
1
N (0))+

N�1
X

N�⇡(S1
N

)

4
+1

2✏k(S
1
N (0))+✏⇡(S1

N
)

4

(S1
N (0))+✏

N�⇡(S1
N

)

4

(S1
N (0))

(4.41)
We get the relations:

✏⇡(S1
N

)

4

(S1
N (0)) = ✏N�⇡(S1

N
)4(S

1
N (0)) (4.42)

and,
⇡(S1

N
)

4
�1

X

k=1

2✏k(S
1
N (0)) =

N�1
X

k=N�⇡(S1
N

)

4
+1

2✏k(S
1
N (0)) (4.43)

Thus,

E(S1
N (0)) = 2✏0(S

1
N (0)) + 4

⇡(S1
N

)

4
�1

X

k=1

✏k(S
1
N (0)) + 2✏⇡(S1

N
)

4

(S1
N (0)) (4.44)

If the sum begins at k = 0, we have:

E(S1
N (0)) = �2✏0(S

1
N (0)) + 4

⇡(S1
N

)

4
�1

X

k=0

✏k(S
1
N (0)) + 2✏⇡(S1

N
)

4

(S1
N (0)) (4.45)

If we substitute ✏k(S1
N (0)) by its expression we obtain the relation eq. 4.40.

Odd case ⇡(S1
N ) 6⌘ 0 [mod.4]: The situation of this paragraph is more complicated because

it considers cases where there is saturation of the electronic levels in the ribbon case. Moreover,
⇡(S1

N ) 6⌘ 0 [mod.4] indicates that there exists � 2 {1, 2, 3} such as ⇡(S1
N ) = 4k + � (with k the energy

levels).

In the Möbius case : Set � 2 {1, 2, 3}, we get m = ⇡(S1
N (�M )) � �. By hypothesis, we have

m ⌘ 0 [mod.4].

We are in a non-saturated situation, for example in the case � = 3 we have the representation as:
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Figure 4.11: Distribution of the energy levels of S1
N (�M ) in the case of ⇡(S1

N ) 6⌘ 0 [mod.4]

The energy of this Möbius situation E(S1
N (�M )) of the molecule S1

N (�M ), with � 2 1, 2, 3 as
⇡(S1

N )� � ⌘ 0 [mod.4] is given by:

E(S1
N (�M )) = ↵(⇡(S1

N )� �) + 8� cos
⇣ ⇡

N

⌘

⇡(S1
N

)��

4
�1

X

k=0

cos
⇣

(2k + 1)
⇡

N

⌘

�✏⇡(S1
N

)��

4

(S1
N (�M )) (4.46)

For proof of this expression, we are interested in the first contribution of the energy given by the
saturated energy levels associated with the ⇡(S1

N )�� first electrons. To calculate this contribution, we
have to use the result of the ⇡(S1

N ) ⌘ 0 [mod.4] case (eq. 4.34) by substituting ⇡(S1
N ) by ⇡(S1

N )� �.

We obtain a term such as:

↵(⇡(S1
N )� �) + 8� cos

⇣ ⇡

N

⌘

⇡(S1
N

)��

4
�1

X

k=0

cos
⇣

(2k + 1)
⇡

N

⌘

(4.47)

Then, it remains � electrons on the ⇡(S1
N )��

4 level. These electrons contribute to the energy given by:

�✏⇡(S1
N

)��

4

(S1
N (�M )) (4.48)

We then deduce by summing the different terms:

E(S1
N (�M )) = ↵(⇡(S1

N )� �) + 8� cos
⇣ ⇡

N

⌘

⇡(S1
N

)��

4
�1

X

k=0

cos
⇣

(2k + 1)
⇡

N

⌘

�✏⇡(S1
N

)��

4

(S1
N (�M )) (4.49)

In the ribbon case: This is the more complex case because three situations can happen
according to the value of � 2 1, 2, 3 defined by ⇡(S1

N )� � ⌘ 0 [mod.4].

Section 4.3.2, the electronic saturation gives a particular status to the case � = 2 since in this case
(and only this one) the energy levels of the ribbon are saturated.
We will therefore see in the energy formula the implementation of � in relation to � = 2. For this, we in-
dicate µ 2 {�1, 0, 1} and we put � = 2+µ. The case µ = 0 corresponds then to the saturated situation.
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� 2✏0(S
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N
)��

4

(S1
N (0)) + ↵(⇡(S1

N )� �) + 8�

⇡(S1
N

)��

4
�1

X

k=0

cos

✓

2k⇡

N

◆

(4.52)

According to the value of µ we can add or subtract the contribution of the energy levels. More precisely,
we have a corrective term to the energy value of the saturated case with ⇡(S1

N )��

4 + 2 electrons defined
as follows:

8

>

>

<

>

>

:

�✏⇡(S1
N

)��

4

(S1
N (0)), if µ = �1,

0, if µ = 0,
+✏⇡(S1

N
)��

4
+1

(S1
N (0)), if µ = 1

(4.53)

If we combine these contributions we obtain the expected formula eq. 4.50.

4.3.3 Energetic comparison of structures S1
N(0) and S1

N(φM) - stability

Using the calculations of the previous section, we can determine which of the structures S1
N (0) and

S1
N (�M ) is the most energetically favorable. We note that the number of electrons (⇡(S1

N )) available
in the structure takes on a primordial role.

The ⇡(S1
N ) ⌘ 0 [mod.4] case

We obtain the next result which is quite surprising, if we assume that ⇡(S1
N ) ⌘ 0 [mod.4], then:

E(S1
N (�M ))� E(S1

N (0)) = 0 (4.54)

In this electronic configuration, from an energetic point of view, the Möbius case is equivalent to
the ribbon structure which is the natural situation to be expectable.

For proof we use the previously proven formulas (section 4.3.2) we have:

E(S1
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4

(S1
N (0))

◆

(4.55)

As a trigonometric reminder we know that : cos(a) cos(b) = 1
2(cos(a� b) + cos(a+ b)).

By this trigonometric reminder we can rewrite the equality such as:
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N
)

4

(S1
N (0))

◆

(4.56)

If we consider once again the trigonometric formula, we know that for all a, b 2 R, 2 sin(a) sin(b) =
cos(a� b)� cos(a+ b).
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By setting: a = (2k + 1) ⇡
N

and b = ⇡
N

, we have: �2 sin
�
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By substituting the previous equality in the expression of E(S1
N (�M ))� E(S1

N (0)), we obtain:
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We finally get:
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In addition,
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and,
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⌘2
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Then, as ⇡(S1
N ) = N , we get:

E(S1
N (�M ))� E(S1

N (0)) = 0 (4.61)

The ⇡(S1
N ) 6⌘ 0 [mod.4] case

This is the most complicated situation, because each energy equation in the Möbius and ribbon
case is composed of a part corresponding to the case presented earlier and of corrective terms. The
energy difference in the ⇡(S1

N ) 6⌘ 0 [mod.4] case is equal to zero, thus, the comparison of the two
energies is equivalent to the comparison of the corrective terms.

If we assume that ⇡(S1
N ) 6⌘ 0 [mod.4] then:
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(4.62)

These expressions indicate that in this case, the sign of the energy difference is not fixed and depends
explicitly on N. We are therefore, in the situation where the Möbius configuration is the most stable
compared to the ribbon case.

For proof, by using the previous results, we can obtain the energy difference as:
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For � = 1 or 2, the expression is now:
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By using the expression of the energy levels:
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If we use once again the trigonometry equality, (2 cos(a) cos(b) = cos(a+ b) + cos(a� b)), with
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This expression can be simplified by using the relation, for all a, b 2 R, 2 sin(a) sin(b) = cos(a � b) �
cos(a+ b).

By taking, a =
⇣

⇡(S1
N )��

2 + 1
⌘

⇡
N

and b = ⇡
N

, we have:
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◆
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◆
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(4.67)

Thus, we get a term as:

E(S1
N (�M ))� E(S1

N (0)) = 2�� sin
⇡

N
sin

✓✓

⇡(S1
N )� �

2
+ 1

◆

⇡

N

◆

(4.68)

2✏⇡(S1
N

)��

4

(S1
N (0)) + ✏⇡(S1

N
)��

4
+1

(S1
N (0)), if � = 3. (4.69)

4.3.4 Molecule S1
N twisted by a distribution and a C2 invariance

Geometry of a twisted molecule S1
N

The geometry of a molecule S1
N twisted by a � distribution (� = (�1, ...,�N )) is characterized by

two families of angles. Firstly, a family of ✓i angles related to the position of the atoms on the
circle, and the �i angles providing the orientation of the orbitals in relation to each other in each
atom taking as reference the first one.We give some precisions in the rest of the manuscript.

Parametrization of the circle and ✓i angles: We consider a reference frame (x, y, z) of R3 and a
circle in the (y, z) plane centered in O = (0, 0, 0) of radius R > 0 parametrized by an angle ✓i 2 [0, 2⇡]
as:

CR = {(0, R sin(✓i),�R cos(✓i))} (4.70)

with ✓i 2 [0, 2⇡[.
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Note that x is normal to the plane containing the circle.

We get a � = (�1, ...,�N ) distribution. We dispose N atoms Ci along the circle and we note ✓i
(with i = 1,..., N ) the angles corresponding to this distribution. The Ci atoms have the coordinates
(0, R sin(✓i),�R cos(✓j)) with j2 = -1.

� distribution and representation: Let ni be the tangent vector to the circle at point Ci i.e.
ni = (0, R cos(✓i), R sin(✓i)). Let Pi be the normal plane to ni at point Ci. Let ui be a family of
vectors in the normal plane to ni. A basis of R3 at the point Ci consists of e1 = (1, 0, 0), ni and the
vector OCi. The vectors e1 and OCi form a basis of Pi. A vector ui 2 Pi is therefore represented by
a vector Ui of R2 whose coordinates are given by the coordinates of ui in the basis he1, OCii.

Figure 4.13: Evolution of the orbitals along the circle - Möbius case

Using these notations, the � distribution is related to the vectors ui by identifying the planes Pi by
the relation:

\Ui, Ui+1 = �i (4.71)

with i=1,. . . , N-1.

With the vector u1 fixed, we get the vector uk by positioning the vector in the Pk plane:

Uk = e�j(�1+···+�k�1)U1 (4.72)

At this step of the manuscript, we have not imposed any particular symmetry, we will then impose the
C2 invariant molecule.

Note that in many publications, the direction of the circle is clockwise, which is contrary to the usual
trigonometric direction used in mathematics. This is what explains the presence of the "-" in the
rotation that expresses Uk as a function of U1. It is also what explains the particular form of the
parameterization of the circle.

C2 invariance of a twisted molecule

We are interested in identifying the conditions imposed by the C2 invariance condition on the data
of the twisted molecule.

Axis positioning: The first evident but important result indicates the potential axis around which
the molecule S1

N (�) can be eventually C2 invariant.

We can define if a molecule S1
N (�) is C2 invariant then, the axis of symmetry depends:
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• either to the plane of the molecule, i.e. a line passing through the center of the circle

• or, is perpendicular to the plane of the molecule passing through the center of the circle

For proof, the molecule being S1
N (�), the set of atoms corresponds to the plane containing the circle.

The image of this molecule by a C2 symmetry whose the axis is outside the plane does not belong to
the molecule unless the axis is perpendicular to the plane and through the center of the circle.
If we are not in this situation, we consider an axis in the plane containing the circle. In the same way,
the circle is invariant by a reflection around an axis if and only if this axis passes through the center
of the circle.
The two situations are represented in the following figures:

Figure 4.14: Position of the C2 axis - transverse to the plane (on the left) and in the plane (on the
right)

We can thus assume that the axis of C2 symmetry is carried by the z-axis and that the molecule is
contained in the x = 0 plane.

Restrictions on the positions of the atoms: We suppose that the invariant C2 molecule is subject
to the action of a rotation of angle ⇡ around the axis carried by z.
We note this rotation: rz(⇡) and it is given by:

rz(⇡) =

0

@

�1 0 0
0 �1 0
0 0 1

1

A (4.73)

The first family of constraints imposed by the C2 invariance is on the position and number of
atoms.
We define the geometric constraints for a C2 invariance. Let S1

N (�) be a C2 molecule invariant by a
rotation of angle ⇡ carried by the x = y = 0 axis.

Then, we have the two following properties:

• let k be the number of atoms on the x = y = 0 axis. We have k = 1 or 2. Then, there exists
n 2 N such as the number of atoms N is given by N = 2n+ k.

• let Ci be an atom whose position is marked by the angle ✓i then its image by rz(⇡) is indicated
by the angle 2⇡ � ✓i.

For proof, these properties are relatively trivial. The molecule is by definition symmetric to the axis
x = y = 0 in the plane x = 0. If we get n atoms outside the axis in the ✓i 2]0,⇡[ part, then we have the
images of these atoms by symmetry in the ✓i 2]0, 2⇡[ part. Therefore, we have 2n atoms by symmetry
for the molecule out of the axis, which justifies our result.

Moreover, rz(⇡)[(0, R sin(✓i),�R cos(✓i))] = (0,�R sin(✓i),�R cos(✓i)) corresponds to an angle ✓̃ be-
tween [0, 2⇡[ equals to ✓̃i = 2⇡ � ✓i.
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Orbital constraints and orbitals distribution: Regarding the constraints on the atomic or-
bitals carried by the atoms and associated to ui (with i = 1, ..., N) vectors data, the first obvious
constraint is : let S1

N be a C2 invariant molecule where the axis is carried by z. If an atom Ci is part
of the rotation axis, then its uC vector is of the form (0, 0, a) for a certain a 2 R.

For proof, the molecule being C2 invariant, rz(⇡)[Ci] has to belong to the molecule. As Ci is carried
by the axis, it is invariant by rz(⇡)[Ci] = Ci . The image of the orbital uC = (↵,�, �) has to verify
the invariance condition, which is i.e. rz(⇡)[uC ]. This is only possible if uC is of the form (0, 0, a) for
a given a 2 R. In fact, rz(⇡)[uC ] = (�↵,��, �) thus, ↵ = � = 0.

The constraint implies the following corollary:
let S1

N be a C2 invariant molecule where the axis is carried by z. If a Ci atom has a uC orbital which
is not carried by the axis of symmetry, then the considered atom cannot be on the axis of symmetry.

Structure of molecules S1
N - C2 invariant: In most of the Möbius type molecules, we consider

the first atom with a u1 = (1, 0, 0) orbital along the x axis. This atom has to be positioned out of
the symmetry axis, since we assume that the C2 symmetry is carried by the z axis. We thus have to
consider the first atom with a given ✓i 6= 0 coordinate.

We consider the following situation:
let the molecule S1

N made of N atoms whose first C1 is denoted by an angle ✓ 6= 0 and carrying a
vector u1 = (1, 0, 0). There are n atoms with ✓i 2]0,⇡[ coordinates and thus n atoms by symmetry
with ✓i 2]⇡, 2⇡[ coordinates.

There are two possible situations:

• either there is an atom on the axis which in this case has an orbital belonging to the axis.
We then have N = 2n + 1, and the distribution has to satisfy �1 + ... + �n+1 = ⇡

2 in order to
guarantee that the image of u1 = (1, 0, 0) by the successive rotations of angles �i gives a vector
belonging to the z axis.

• either there are no atoms on the axis and N = 2n.
A global constraint on the distribution comes from the fact that the image of u1 = (1, 0, 0) by
rz(⇡) corresponds to the orbital of the atom N, i.e. uN = (�1, 0, 0) which imposes the distribu-
tion as �1+ ...+�N�1 = ⇡. Moreover, the C2 symmetry refers the Ci atom to the CN�i+1 atom,
thus, we have ✓N�i+1 = 2⇡ � ✓i.

We can summarize these results as follows:

let a molecule S1
N (�), C2 invariant by a symmetry carried by the z-axis. We suppose u1 = (1, 0, 0),

then we have :

• the � distribution has to satisfy �1 + ...+ �N�1 = ⇡,

• the C1 atom is not on the axis,

• if the number of atoms is of the form N = 2n, then there is no atom on the symmetry axis,

• if the number of atoms is as N = 2n + 1, then n + 1 is on the axis and its orbital is carried by
the axis. We have then �1 + ...+ �n = ⇡

2 ,

• and, the positions of the atoms are related by the relation ✓N�i+1 = 2⇡ � ✓i.
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The hypothesis that a molecule S1
N (�) is C2 symmetric, imposes a Möbius condition if the vector

u1 = (1, 0, 0).

The C2 symmetry imposes other constraints as well:

Let S1
N (�) be a C2 molecule invariant by a rotation of angle ⇡ carried by the axis x = y = 0. Then,

we have the property of the torsion distribution such that:

�N�i+1 = �i (4.74)

with i = 1, ..., N � 1.

The simple proof of this relation is given in Appendix 2 section 20.

At this stage of the manuscript we can describe some distributions widely found in the literature.
The standard Möbius case is obtained by imposing a constant angle and the C2 symmetry of
axis carried by z.

A molecule S1
N (�) is a standard Möbius if it is invariant by C2 symmetry of axis carried by z and, if

N = 2n and �1 = ... = �n.

To show the standard Möbius, we know that by invariance we get �1+...+�2n = ⇡ and �1+...+�n = ⇡
2 .

The symmetry relation on the angles implies �n+1 + ...+ �2n = �1 + ..+ �n.

As �1 = ... = �n = �, we obtain N�1
2 � = ⇡

2 or � = ⇡
N�1 .

Molecule S1
N (�) constituted of one type of atoms and C2 invariance: All the definitions

presented previously do not assume any specificity on the atoms positioned on the circle. However,
the fact of considering a molecule with only one type of atom or with several type of atoms does not
have the same consequences.
Let us suppose that the molecules are constituted of only one type of atom. Then, the length of
the bonds between the successive atoms should a priori be constant (or approximately constant).
This imposes the distribution of ✓i angles involving the atoms, such as:

✓i+1 � ✓i = ✓2 � ✓1 (4.75)

with i = 1,..., N.

We have used the ✓N+1 = ✓1 convention. In other words, each atom is uniformly distributed on the
circle, which implies:

✓i+1 � ✓i =
2⇡

N
(4.76)

with i = 1, ..., N .

Concerning the positioning of the C1 atom: if we still consider an C2-invariant S1
N (�) molecule com-

posed of only one type of atoms, we have, ✓i+1 � ✓i =
2⇡
N

(with i = 1, ..., N) and ✓1 = ⇡
N

.

To prove this situation, we consider a single atom which is in relation by symmetry with its predecessor
is C1 which is referred to CN . Now, the angle between CN and C1 is 2✓1 and we then obtain:
✓N+1 � ✓i = 2✓1 =

2⇡
N

or ✓1 = ⇡
N

.
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4.3.5 Molecules LN(0) and LN(φ)

Geometry of the molecules LN (�)

We get N atoms on a linear segment and a � distribution for the orbitals along the molecular chain.
We consider a reference frame (x, y, z) of R3 such as the atoms are arranged along the z-axis with the
C1 atom at z = 0. We then assume u1 = (1, 0, 0).

Note that the above hypothesis is not restrictive since the data of u1 simply depends on the reference
frame (x, y, z) to localize the first orbital.

We can ask, why studying these linear molecules?

As we have seen in this manuscript, S1
N (�) molecules of Möbius-type cannot be C2 invariant.

A Möbius-type S1
N (�) molecule verifies the C2 invariance conditions globally at the geometric

level but partially at the orbital level. Only the C1 atom placed on the axis obstructs the global
symmetry. One idea is therefore to look for a geometry that gets around this difficulty. To do so, it
is necessary to divide an S1

N (�) molecule of Möbius type at the level of the C1 atom which causes the
problem. We then obtain a linear invariant C2 molecule whose axis of symmetry passes through the
middle of the chain and is orthogonal to it.

In the continuation of the manuscript, we study in all generality the characterization of C2 invariant
LN (�) molecules.

Twisted C2 invariant LN (�) molecules

We look for distributions such as LN (�) is C2 invariant.
Using the previous definitions of C2 invariance, we adapt it to LN (�) molecules.

By definition, if LN (�) is C2 invariant then, its symmetry axis is orthogonal to the molecule.

By proof, if the axis coincides neither with the chain or with the orthogonal direction, a given atom of
LN (�) is moved by the action of the symmetry out of LN (�). It is therefore impossible.
On the other hand, if the axis coincides with the chain, then as C1 is returned to C1, the vector u1
has to be returned to itself. However, by the action of C2 it is returned to �u1 which implies u1 = 0.
However, we have assumed u1 = (1, 0, 0) and we have a contradiction. The only possible case is when
the axis of symmetry is orthogonal to the chain.

Let LN (�) a C2 invariant linear chain. Thus, we have the following properties:

• if N = 2n, we get n atoms symmetrically distributed around the axis passing through the
middle of the chain.

• if N = 2n+1, then the axis passes through the atom n+1 which is positioned in the middle of
the chain with un+1 carried by the axis. The 2n remaining atoms are symmetrically distributed
on the chain around this axis.

To prove this, for reasons of symmetry, if the axis does not pass through the center of the chain, we
necessarily have atoms whose reflection by the symmetry is outside the chain. We therefore assume
that the axis passes through the center of the chain. If we have n atoms on one side, then their images
also belong to the chain and so we have 2n atoms on the chain. Two cases are to be studied: the one
where there is an atom on the middle of the chain and the one where there is not.
In the case where there are no atoms in the center of the chain, we necessarily have an even number
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of atoms N = 2n. If an atom Ci is placed in the middle, then the previous proposition imposes that
the associated vector uc is situated along the axis.

We specify more precisely the action of the C2 symmetry of axis carried by y passing through the
center of the chain. For that, we note l = Nd the length of the chain (where d is the distance between
two consecutive atoms). The atoms Ci are represented in the reference frame (x, y, z) of R

3 whose
origin is situated in C1 and such that x = 0, y = 0 carries the chain. The coordinates of Ci are of the
form: (0, 0, zi), zi = (i� 1)d, i = 1, ..., N .
The vectors ui are of the form (xi, yi, zi). By symmetry, the atom Ci is projected on the atom CN�i+1

and the vector ui on uN�i+1. But, the image of ui is given by (�xi, yi, zN�i+1). We note Ui the vectors
of R2 given by (xi, yi). The angle �i is the angle between the vector Ui and Ui+1.

Let LN (�) be a C2 invariant linear chain, we have :

• �1 + ...+ �N�1 = ⇡

• �i = �N�i (with i = 1, ..., N-1).

In other words, the existence of a C2 symmetry for the molecule means that we are in a Möbius-type
configuration.

By proof, the rotation of axis y passing through M = (0, 0, l
2) puts Ci on CN�i+1. As by hypothesis

u1 = (1, 0, 0), its image is the vector (�1, 0, 0). Thus, we have a total rotation of angle ⇡ between the
atom C1 and CN . As the vector un is obtained from u1 by a rotation of angle �1 + ...+ �N�1, we get
�1 + ...+ �N�1 = ⇡. We are then in a Möbius-type configuration.
The C2 symmetry being an isometry, it preserves the geometrical angles (i.e. not oriented) between
the vectors.
Then, we have :

�i = \Ui, Ui+1 = \UN�i+1, UN�i = �N�i (4.77)

We can specify according to the number of atoms the configuration if N = 2n + 1 then the molecule
LN (�) is invariant if �1 + ...+ �n = �

2 .

To prove this, it is sufficient to use the previous proposition by noticing that �1 = �N�1, ...,�n = �n+1,
or �1 + ...+ �N = 2(�1 + ...+ �n) = ⇡ and �1 + ...+ �n = ⇡

2 . The standard linear Möbius is obtained
by assuming that a chain has N = 2n+ 1 atoms, is of constant distribution and C2 invariant.

If LN (�) is a molecule of constant distribution � and C2 invariant then � = ⇡
N�1 . If N = 2n+ 1 then

� = ⇡
2n and the central orbital is carried by y i.e. �1 + ...+ �n = ⇡

2 .

As we can see, C2 invariance in this type of geometry practically imposes a Möbius configuration.

4.3.6 Optimal distribution of S1
N(φ) molecules

In the following, we study whether there is only an optimal distribution or several distributions
for S1

N (�) molecules in the C2 invariant case. We distinguish here: the standard Möbius case
(symmetrical) and the Möbius case (with a variable distribution). Against all expectations, the
standard Möbius distribution which is at the origin of the study of structures of this type, is not the
optimal distribution.

Optimal distributions C2 invariant

We interested in two cases N = 3 and N = 4.
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N = 3 case: We consider an invariant S1
3(�) C2 molecule. We get �1 = �2 and �1 + �2 = ⇡ thus,

�1 = �2 =
⇡
2 .

Let relax this condition and just assume that we have the �1+�2 = ⇡ relation providing that we have
a Möbius type molecule.

A � = (�1,�2) distribution, gives the Hückel matrix of the form:

0

@

x cos(�1) � cos(�1)
cos(�1) x cos(�2)
� cos(�1) cos(�2) x

1

A (4.78)

We need to have �1 + �2 = ⇡, and cos(�2) = � cos(�1). Note that a = cos(�1), the Hückel matrix is
of the form:

0

@

x a �a

a x �a

�a �a x

1

A (4.79)

We obtain the eigenvalues: �1 = �2 = a and �3 = �2a

The energy is then given by: E = 2�1 + �2 = 3a if a > 0 and E = 2�3 + �1 = �3a if a < 0

By plotting the function of �1 obtained, we see that the minimum is reached for �1 = 0. We then
obtain: among the S1

3(�) molecules such as �1 + �2 = ⇡, the one that carries out the minimum of
energy corresponds to the � = 0 and �2 = ⇡ distribution.

In other words, the optimal distribution is not the Möbius distribution.

N = 4 case: We consider the S1
4(�) molecule as:

�1 = �3 (4.80)

and,
�1 + �2 + �3 = ⇡ (4.81)

The Hückel matrix is given by:

0

B

B

@

x cos(�1) 0 � cos(�1)
cos(�1) x cos(�2) 0

0 cos(�2) x cos(�3)
� cos(�1) 0 cos(�3) x

1

C

C

A

(4.82)

Symmetry constraints gives:

cos(�3) = cos(�1) and cos(�2) = cos(⇡ � 2�1) = � cos(2�1) = 1� 2(cos(�1))
2.

By posing a = cos(�1), we get the simplified Hückel matrix:

0

B

B

@

x a 0 �a

a x 1� 2a2 0
0 1� 2a2 x a

�a 0 a x

1

C

C

A

(4.83)
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The energy of the molecule is:

E(a) = �2
p
2a� 2

p
2
p

1� a2 = �2
p
2(cos(�1) + sin(�1)) (4.93)

As E0(�1) = �2
p
2(� sin(�1) + cos(�1)), the extremums are situated on cos(�1) = sin(�1), then,

�1 =
⇡
4 because �1 2 [0, ⇡2 ].

It is a minimum because E00(�1) = �E(�1) then, E00(⇡4 ) = 4 > 0.

Thus, we have: for N = 4, the optimal distribution among the symmetrical distributions of Möbius
type is given by the standard Möbius.

Möbius case N = 4: In the Möbius case, we have the Hückel matrix as:

0

B

B

@

x cos(�1) 0 � cos(�1)
cos(�1) x sin(�1) 0

0 sin(�1) x cos(�3)
� cos(�1) 0 cos(�3) x

1

C

C

A

(4.94)

By posing a = cos(�1) and b = cos(�3), the matrix is:
0

B

B

@

x a 0 �a

a x
p
1� a2 0

0
p
1� a2 x b

�a 0 b x

1

C

C

A

(4.95)

The eigenvalues are given by:

�± = �
p
2

2

q

1 + a2 + b2 ±
p
∆, µ± =

p
2

2

q

1 + a2 + b2 ±
p
∆ (4.96)

where,
∆ = 5a4 � 2a2b2 � 8a2b

p

1� a2 � 2a2 + (1 + b2)2 (4.97)

The molecule energy is:

E(a, b) = �
p
2

q

1 + a2 + b2 +
p
∆+

q

1 + a2 + b2 �
p
∆

�

(4.98)

If we set b = 1, we get the energy E(a, 1):

Figure 4.18: Representation of the energy E(a, 1) for a Möbius case
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We note that on the section in b = 1 the energy increases, but in the direction of b the energy is always
decreasing as we can see on the following figure:

Figure 4.19: Representation of the energy E(a, b) for a Möbius case

We therefore expect to obtain a minimum of the energy for a value of b = 1 and a value of a close but
different from 1. This is what the research of the minimum proves.

For N = 4, the Möbius-type optimal distribution is given by �1 = 0.3831 rad, �2 = ⇡
2 ��1, �3 = 0

and �4 = ⇡
2 .

In fact for E(a, b), a and b 2 [0, 1] the minimum in a = 0.9275 and b = 1 which is equal to �1 = 0.3831
rad and �3 = 0 rad, thus we understand the result.

The angle �1 is about 21.951°. The energy of the optimal Möbius distribution is �4.6513 u.a which is
quite below the energy of the symmetric Möbius which is �4 u.a.

Note that unlike the symmetric Möbius case, the optimal Möbius case is non-degenerate.

4.3.7 Distribution of an LN(φ) molecule equivalent to a S1
N(φM) molecule

In this section, we study the distribution of an LN (�) molecule equivalent to a standard Möbius-
type S1

N (�M ) molecule. In other words, we consider the effect of imposing the C2 invariance
condition on the description of the molecule. In this manuscript, obtaining a C2 invariant representation
complicates the shape of the distribution. From a uniform distribution for the S1

N (�M ) Möbius case,
we progress to an irregular distribution for the equivalent LN (�).
A precise description of this distribution is given for any N. We also study the asymptotics of these
distributions, which corresponds to the structure of an infinite linear chain.

Notion of equivalent molecule

The problem of equivalence is not easy because the notion requires a formal definition which is not
a priori available in the literature. Before giving the definition that we will use, we will take classical
examples as the conjugated polyenes.

In the case of a planar molecule, we take into account the separation between the ⇡ and �-systems
which is possible. The ⇡-system is constituted by the set of MOs said to be antisymmetric with
respect to the plane of the molecule and each carbon atom participates in its formation via a single
pz-orbital (if x and y constitute the molecular plane) (chap. 9 [11]).
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Equivalence of polygonal Hn and cyclic CnHn: For n � 3, the linear molecules Hn and linear
CnHn+2 or cyclic CnHn are equivalent in the following meaning:

• they have the same symmetry group,

• the coefficients of the MOs decomposition of Hn according to the 1sH orbitals of each hydrogen
atom are the same as the coefficients of the MO decomposition of CnHn in the ⇡-system.

• the relative energy of the ⇡-MOs of CnHn is equal to the model system Hn.

In the linear case Hn, the notion of equivalence changes slightly.

(Weak) equivalence of linear Hn and linear CnHn+2: For n � 3, the linear Hn and linear
CnHn+2 molecules are equivalent as:

• the coefficients of the MOs decomposition of Hn according to the 1sH orbitals of each hydrogen
atom are the same as the coefficients of the MOs decomposition of CnHn in the ⇡ system.

• the relative energy of the ⇡-MOs of CnHn is equal to the Hn model system.

This weak equivalence is therefore about the fact that the molecule has not conserved the symmetry
group of the initial molecule. Nevertheless, the MOs of a "hypothetical" linear version of CnHn+2

differ slightly from those of CnHn+2. We can then, reason on an "ideal" linear version of CnHn+2 and
thus, establish the "usual" equivalence of the molecules.

We can now specify the notion of equivalence that we will use in the rest of the manuscript.

Equivalence of a molecule M1 and a molecule M2: Let M1 be a molecule of symmetry group
G1 and M2 a molecule of symmetry group G2. Let G be a mutual subgroup of G1 and G2.
We impose that M1 is equivalent to M2 modulo G if:

• the coefficients of the MOs decomposition of M1 according to the orbitals of each atom of M1

are the same as the coefficients of the MOs decomposition of the molecule M2 in the ⇡-system.

• the relative energy of the ⇡-MOs of M2 is equal to that of its model system M1.

In the continuation, we investigate equivalent molecules and study what changes in the deformation of
the adopted geometry.

4.3.8 Equivalence between S1
N(φM) and LN(φ)

The issue that we study here, is to identify a linear chain LN (�) that is equivalent to a Möbius-type
S1
N (�M ) molecule. As we have already indicated, it is sufficient to consider the coefficients obtained

in the decomposition of the S1
N (�) molecular orbitals and to assume that they are also obtained in

the LN (�) case. The question is then to know how the � distribution will diverge from the standard
Möbius distribution on LN (�).

Properties of the coefficients an:

Let a linear chain of atoms numbered from 1 to N + 1. We identify an atom of the chain by an
integer n between 1 and N + 1. The following calculations depend on an integer k. We adopt the
convention: a quantity q associated to the atom n, naturally depends on k and N and the complete
notation is then: qn(N, k).
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We define the family of coefficients {an}n=1,...,N and {bn}n=1,...,N given as:

an =

r

2

N + 1
sin

✓

n
k⇡

N + 1

◆

(4.99)

and
bn+1 = an (4.100)

n = 1, ..., N and b1 = 0.

These coefficients have symmetry properties that explain the behavior of the angles for the orbitals
along the molecular chain.

We get for all l = 1, ..., N , the symmetry relation:

aN�(l�1) = (�1)k+1al (4.101)

and
bN+1�(l�1) = (�1)k+1bl+1 = (�1)k+1al (4.102)

For proof, we have:

aN�(l�1) =

r

2

N + 1
sin

✓

(N + 1� l))
k⇡

N + 1

◆

=

r

2

N + 1



sin(k⇡) cos

✓

l
k⇡

N + 1

◆

� cos(k⇡) sin

✓

l
k⇡

N + 1

◆�

(4.103)

=

r

2

N + 1
(�1)k+1 sin

✓

l
k⇡

N + 1

◆

= (�1)k+1al

We have the following relations for N = 4:

• if k is odd, then a1 = a4 and a2 = a3 and of course a5 = 0

• if k is even, then a1 = �a4 and a2 = �a3 and always a5 = 0

In the case of a chain of infinite length, the previous results are expanded by periodicity in the
structure, i.e. the symmetry is found at a multiple of N + 1 in the coefficients.

Torsion angle and properties:

The vector associated to the atom numbered n is defined by:

un =
1p
2

✓

bn
an

◆

(4.104)

Let us remark for more details, that the expression of un represents the decomposition of the associated
MO according to the local basis used in each atom. Moreover, we consider only the contribution carried
by the px and py orbitals (along the chosen axes), which corresponds to a part located only in the plane.

We consider as reference vector u1 given by
p
2u1 = (0, a1), and we observe the angle formed by the

vector un with u1 noted �1,n. A simple calculation gives the expression of �1,n.
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The angle �1,n has for expression:

�1,n = arccos

 

✏(a1)✏(an)
|↵n|

p

1 + ↵2
n

!

(4.105)

where ✏(a1) and ✏(an) give the sign of a1 and an respectively and ↵n is given by:

↵n =
an

bn
(4.106)

The proof of the expression of the angle �1,n is given in Appendix 2 section 21.
We can note some points about the signs of a1 and an.

The sign of a1 is positive if:
(N + 1)2l  k  (N + 1)(1 + 2l) (4.107)

for any integer l 2 N.

We notice by eq. 4.107, when N tends to infinity, the condition will always be verified and the sign of
a1 will therefore not intervene. This will also be true for 0  k  (N + 1) which includes for example
the case k = 3 when N = 4 studied by the research team of R. Hoffmann [9].

The situation is more complicated for an. The positivity condition which depends explicitly on k is:

(N + 1)2l  nk  (N + 1)(1 + 2l) (4.108)

We can say that the observable angles are obtained from the family of angles:

�n = arccos

 

|↵n|
p

1 + ↵2
n

!

(4.109)

The following formula (eq. 4.110) shows that the angles can be obtained from the �n family, optionally
adding the family of conjugate angles ⇡ � �n :

arccos(�x) = ⇡ � arccos(x) (4.110)

In order to analyze how the angles are distributed, we prove some properties of the vectors un.

For l = 1,..., N+1 we have:
kuN+1�(l�1)k = kulk (4.111)

The proof of this relation is based on the fact that (except for the sign), we have:

aN+1�(l�1) = (�1)k+1al�1 = (�1)k+1bl (4.112)

bN+1�(l�1) = (�1)k+1bl+1 = (�1)k+1al (4.113)

and then the vector uN+1�(l�1) is obtained from ul by axial symmetry y = x and multiplication by
(�1)k+1 gives:

uN+1�(l�1) = (�1)k+1 1p
2

✓

al
bl

◆

(4.114)

From the previous result we deduce symmetries on the distribution of angles between �1 and �N+1.

Precisely, noting by �l,l+1 the angle between ul and ul+1 we get for l = 1, ..., N :

�l,l+1 = �N+1�l,N+1�(l�1) (4.115)

The proof of this expression relies on the symmetry property of the coefficients given in Appendix 2
section 22.



4.3. DETERMINATION OF ENERGY EQUATIONS MÖBIUS - HÜCKEL 133

Some examples with N = 4 and k = 1, 2, 3, 4

In the following, we show how the parity on k affects the arrangement of the orbitals along the
chain. We consider the simplest cases: N = 4 and k = 1, k = 2, k = 3 and k = 4.

Case N = 4 and k = 1: In this situation, we have: a1 = 0.37 and a2 = 0.6 and by the relations:
a3 = a2 and a4 = a1.

The angle between the vector u1 = (0, a1) and u5 = (b5, 0) = (a4, 0) = (a1, 0) is 90°.

We find via the symmetry relations on the angles: �1,3 =
�1,5

2 = 45° which is the analog of the sym-
metry of the even case showing the angle of 135°.

By calculations: �1,2 = 31.7°, then, by using the symmetrical relations: �1,4 = 2�1,3 � �1,2 = 58.3°.

Case N = 4 and k = 2: In this case, we have : a1 = 0.60 and a2 = 0.37 which gives : a3 = �a2 and
a4 = �a1.

The angle between the vector u1 = (0, a1) and u5 = (a4, 0) = (�a1, 0) is 270°.

The previous relations imply that: �1,2 = �4,5 and �2,3 = �3,4.

As �1,5 = �1,2 + �2,3 + �3,4 + �4,5 = 2(�1,2 + �2,3), then, �1,2 + �2,3 = �1,3 = 135°.

It is necessary to calculate one of the �1,2 or �2,3 angles to obtain all the information.

We have �1,2 = 58°, thus: �1,4 = �1,3 + �3,4 = �1,3 + �2,3 = 2�1,3 � �1,2 = 270� 58 = 212°.

Case N = 4 and k = 3: By setting k = 3, then, a1 = 0.60 and a2 = 0.37.

We still have : a4 = a1 and a3 = a2.

The angle �1,5 is 90° but we need to understand this angle as: 360 + 90 because following the vectors
u1 to u5 on the trigonometric circle, we carry out a complete rotation and it is a significant difference.

In particular, when we write via the symmetrical relations: �1,3 =
�1,2+�2,3+�3,4+�4,5

2 , that we previ-
ously used: �1,2+�2,3+�3,4+�4,5 = �1,5 which is true but modulo 2⇡, i.e. to a certain integer number
of turns.

Here: �1,3 = 360+90
2 = 225°. The angle �1,2 gives by calculations, �1,2 = 122°.

We deduce, �2,3 = �1,3 � �1,2 = 225 � 122 = 103°, so, �1,4 = �1,3 + �3,4 = �1,3 + �2,3 = 225 + 103 =
328°.
We note that, �4,5 = 360 + 90� 328 = 122° = �1,2 as expected.

This situation corresponds to the case k = 1 but for vectors rotated by �90°.

Case N = 4 and k = 4: Now, let k = 4 then a1 = 0.37 ; a2 = �0.60 ; a4 = �a1, and a3 = �a2.

The angle �1,5 is still 270°. Once again by following the vectors u1 to u5 we perform a turn of the
circle and the angle �1,3 = 315°.
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The angle �1,2 is given by calculations at 148°. We then obtain: �1,4 = �1,3 + �3,4 � 360 = 120°.

We verify again that: �4,5 = 270� 122 = 148° is equal to �1,2.

To sum up: To resume the 4 previous examples:

k �1 �2 �3 �4 �5
1 0 32 45 58 90
2 0 58 135 212 270
3 0 122 225 328 90
4 0 148 315 122 270

Table 4.1: Overview of the angles (in degrees) of the 4 examples

Figure 4.20: Orbital distributions for N = 4 and k = 1, 2, 3, 4

For a general remark both on the cases k even or odd. We note an asymmetry between the even and
odd cases k which is always present for any value of N .

4.3.9 Asymptotic distribution of angles along a chain

Orbital cases of the form (bn, an)

The angle �1,n converges for fixed n and k when N tends to infinity to the angle:

�1,n = arccos

 

n
p

n2 + (n� 1)2

!

(4.116)

The proof is given is Appendix 2 section 23.

We note that this angle corresponds to the situation of an infinite chain and that it is independent
of k. We obtain the following values for the atoms of the chain (with n = 1,...,7):
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n �1,n
1 0
2 26.57
3 33.69
4 36.87
5 38.66
6 39.81
7 40.6

Table 4.2: Examples of angles values (in degrees) along a molecular chain

Figure 4.21: Representation of asymptotic angles

These symptomatic angles only have meaning in the case of an infinite chain which is a purely
abstract object. We note a progressive stabilization around an angle of 45° which is easily proved
as: the angles are accumulated when n becomes large around ⇡

4 .

The proof is direct,

lim
n�!1

n
p

n2 + (n� 1)2
=

1p
2

(4.117)

then,

lim
n�!1

�1,n = arccos
1p
2
=
⇡

4
(4.118)

Case of orbitals of the form (bn,�an)

As in the previous case, we can introduce the family of angles which considers the fact that the sign
of an is replaced by "-" in the expression:

�n = arccos� |↵n|
p

1 + ↵2
n

(4.119)

4.4 Conclusion

This chapter is very dense in information. Our interest was focused on the different aspects of aro-
maticity since it is related to the reactivity of the molecule. The criteria of aromaticity are linked
to the rules stated by Hückel and associated with the systems that we distinguish as "Möbius" and
"Hückel".
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Generally, we have either linear LN or cyclic S1
N chains, where each of these representations will have

different orbital distributions: either null (0) (called ribbon or Hückel), or with angle distribution
(�) (called twisted ribbon or Möbius).
All these distributions are detailed and proven as generally as possible in order to determine the equiv-
alent and most optimal structure depending on the energy parameter.

Using mathematical details on the Hückel matrices in each of the cyclic and linear cases, we showed
how the energies of each system were determined and compared. In fact, the energy difference
between the cyclic case with null distribution and the Möbius case with electronic saturation is
null, which shows that the two cases are equivalent.
On the contrary, with the case of electronic unsaturation, it is more complex. The comparison takes
into account � corrective terms. It results that the comparison depends mainly on the parameter
N (i.e. the number of atoms).

To be precise in the understanding of the twisted cyclic systems S1
N (�), we took into account the C2

symmetry with a set of parametrizations, showing that the optimal distribution is not the Möbius
distribution (which contradicts what is intuitively stated in the work of Hoffmann et al. [55]).
Analogously, for the linear cases LN , the same steps are followed (determination of the energy and
taking into account the symmetry). Among other things, the C2 invariance symmetry imposes a
configuration with Möbius distribution.

The notion of equivalence between linear and cyclic molecules is shown by different classical examples
and clearly detailed to identify how the divergence between the standard Möbius distribution S1

N (�)
and the linear case LN (�) is presented.

Finally, we define the properties and expression of the �n torsion angles for all systems as well as for
infinite linear chains.



Chapter 5

Beyond aromaticity criteria - Helical
states

In this chapter we go beyond the aromaticity criteria and focus on helical states. In a first approach
we discuss the following points:

• the Möbius systems following R. Hoffmann,

• the linear cases with cumulenes,

• helical molecular orbitals,

• molecular orbitals in even and odd cases (in terms of number of double bonds).

Then, we expose:

• the properties of helical states,

• the criteria for the existence of helices.

All these results come from the work of R. Hoffmann [9], Solomon et al. [56], Jin et al. [57] and our
preprint [44].

5.1 Möbius systems according to the study of Roald Hoffmann

In this section we refer to recent 2018 work of the Nobel prize laureate research team Roald Hoffmann
which we considered as particularly interesting [9].
As we saw in the previous chapter, section 4.3.5, Möbius systems are based on p-orbitals where there
is a continuous overlap (as shown figure 4.5) which forms a continuous ribbon that closes upon sign
inversion. Following the discovery of these original systems in 1964 [7], other researchers such as Fisher
and Kollmar in 1968 [58] and Zimmerman in 1971 [46], have shown with the theory of Hückel, that the
topology of Möbius systems have a similarity of behavior with the orbitals of allene type molecules.
In parallel, in 1968, Buenker, showed with ab initio studies of MOs, the rotation barrier of the allenes
[59]. Then, in 1976 it is semi-empirical calculations which are carried out to demonstrate the optical
properties of rotation of allenes [60].

As a reminder, allenic molecules are linear hydrocarbons containing only consecutive double bonds.
From a reactivity point of view this type of system is more reactive than those composed by an alterna-
tion of single and double bonds. Moreover, note that the allenes display an axial chirality.

The following figure illustrates the parallel between the fictive Möbius cyclic systems and the
linear allene systems. We observe the rotation and the change of sign of the orbitals within the
systems.

137
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Figure 5.1: Comparison between the behavior of orbitals in Möbius ribbons and allenes (here a cy-
clobutadiene and a [2]-cumulene) [9]

On the left-hand side of the figure, we observe the rotation of the p-type orbitals along a Möbius
cyclobutadiene. Analogously, on the right-hand side, the rotation of the orbitals of the allene, which can
be described as a so-called coarctate system. The term coarctate is proposed by Herges to describe two
fused ⇡-systems (as related to the breaking and creation of bonds on one or more atoms simultaneously),
an action that takes place in pericyclic reactions (alternating cyclic sequence processes) [61].

5.1.1 [n]-cumulenes : linear case

To be more precise, here, when we refer to allenic molecules, the most appropriate term is cumulene.
As explained in the previous paragraph, the cumulenes are linear systems constituted exclusively of
double bonds between the carbons and can be substituted at the end of the chain.

To detail the following figure, the molecule is composed of N carbon atoms sp-hybridized with C0

and CN are sp2-hybridized since they are at the end of the chain. To be precise, the chain of atoms
is oriented along the z-axis. We note that L1, L2 and R1 and R2 are the left and right substituents
of the chain ends, which can simply be hydrogens but can also be more complex as we will discuss in
the continuation of the manuscript.

Figure 5.2: Representation of a [n]-cumulene

To complete, in terms of nomenclature we note [n]-cumulene, [n] corresponds to the number of double
bonds and N the number of carbons involved in the molecule. In our study we have studied even and
odd cumulenes i.e. composed by an even or odd number of atoms.

We simulated the ⇡-system with a basis set composed by px and py-orbitals for each atom of the chain.
Then, the pz-orbitals are directed along the direction of the chain and is included in the �-system.
An illustration of this hybrid system is given in the following figure 5.3. We observe in the case of
a [4]-cumulene for the HOMO-1, HOMO and LUMO, the mixing of the px and py-systems which are
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at the origin of the formation of the curiosity of helical orbitals whose the detailed study is in the
continuation of the manuscript.

Figure 5.3: Representation of the hybrid systems at the origin of the formation of orbitals in helix
(lower part : px and py-systems are represented schematically, the green and red lobes indicate the sign
- higher part: the representation of the orbitals by DFT computations)

Concerning the synthesis of this type of molecule: we note that the literature is rich in terms of
synthesis of allenes since they are useful complex molecular targets (for example: as precursor in cy-
cloadditions, or as redox reagent) in many fields such as pharmaceuticals, nanomaterials or electronics.
Among their advantages, they present fundamental properties that are interesting both for structural
electronic properties and in terms of reactivity [62].
There is a great variety of [n]-cumulenes. In terms of even cumulenes it has been possible to synthesize
from [4]-cumulene to metallo-[6]-cumulene. For odd cumulenes, we note synthesis up to [9]-cumulene.
Substituted cumulenes have also generated a lot of interest (such as S-↵,!-dimethyl-[n]-cumulene).
We quote here only some examples since we do not focus on the synthesis work [63, 64, 65, 66, 67].

It should be noted, however, by studying the cumulene litterature, Hendon et al. [63] proves a difference
between the terms of allenes and cumulenes. According to them, allenes have an odd number of carbon
atoms with orthogonal chain ends showing an electrohelicity (a term whose meaning will be explained
in the rest of this work). On the other hand, cumulenes with an even number of carbons are planar
and without orbital helicity. By misuse of language we will use the term cumulene in a generic way
and will demonstrate the presence of orbital helicity in the continuation of the manuscript.

5.1.2 Helical molecular orbitals

The major curiosity for cumulenes is the presence of helical frontier orbitals. The important point
is that these orbitals are not due to a helical molecular structure.

According to the literature, in particular the study carried out by Hoffmann et al. [9], the research
team shows that cumulenes have two perpendicular ⇡-systems along their molecular axis.
Thus, for unsubstituted [n]-cumulenes (with even [n]), the ⇡-systems are equivalents and the ends
chain are perpendicular to each other providing a D2d symmetry and then, ⇡-MOs all degenerated.

However, when a substitution is applied at the ends of the chain we observe a relaxation of the
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degeneracy reducing the symmetry to C2 resulting in a chiral molecule.
Notice that the same behavior is observed when a mechanical constraint is imposed, for example a
torsion of the terminal carbons. The mechanical constraint such as setting the two ends perpendicular
to each other resulting in the appearance of helical orbitals has been highlighted recently in 2013 by
Hendon and Walsh research team [63]. Indeed, the forced torsion of the terminal groups lowers the
symmetry of D2d to D2, which will generate helical orbitals.

It is particularly on the aspect of mechanical constraint that we have focused. We tried to obtain
all possible configurations in order to achieve helical MOs. The final aim being to obtain new prop-
erties of materials since the helical MOs provide a delocalization of ⇡-electrons all along the twisted
chain.
It should be noted that the electrohelicity phenomenon shown by Hendon [63] can be discussed
according to different methods, in a classical way following the Hückel theory [9] that we have seen
previously (section 0.2.1) or in a more complex method from a physical point of view by the Hamilto-
nian [68].

Note that the phenomenon of electrohelicity is said for a system that presents perpendicular end groups
and that the system shows helical frontier orbitals.

We are interested in the helical MOs specific to the linear carbon chain with no specific terminal
substituents.

Finally, it should be noted that there are contradictions in the literature since many articles specify
that the presence of helices is only visible for odd cumulenes [63]. However, we show in the continuation
of the manuscript that helical MOs are present independently for the even or odd case.

Helical molecular orbitals in even and odd cases

Most publications examine several even-odd cases and parallel-perpendicular chain ends.

Publications dealing with even systems and perpendicular extremities are numerous [9, 63, 69,
70, 62, 71]. There are several examples showing that the helical behaviour is observable only when
the chain ends [9] are twisted at a certain angle (i.e. the ends are no longer flat [63]), and others
depending on the nature of the substituents of the chain ends [9, 62, 55, 71]. The substituents listed
may be –dimethyl [9, 71], -dichloro [55], or -nitrogen [62]. The cumulenes studied range from [n] =
2 [63, 69, 62, 55, 71] to [n] = 8 [70]. The case mentioned by Imamura et al. [70] shows a certain
influence of the angle of twist of the CH2 end groups in the formation of helixes. The presence of non-
hydrocarbon substituents provides a break in symmetry with free pairs, allowing different interactions
resulting in a helical character [62]. The even parallel cases seem to show helixes from a certain angle
or even no helix for ketone substituents [72]. According to Garner et al. [56], the axial torsion angle is
a crucial factor in the constitution of helical orbitals (between 30° and 150°).

The analysis of the odd cases between [n] = 3 to [n] = 9 with perpendicular chain ends, shows once
again the impact of the torsion angle to see the existence of helixes [70]. Parallel cases show the
same behaviour with the presence of helix at a certain angle [9, 56] and others not [63, 55].

It is obvious that the helical shape of an electronic system will depend on the molecular symmetry.
But finally, it is also true that the definition of a cylindrical helical system is quite subjective, this
is why it is imperative to define parameters to quantify them and that is what we try to do in this
manuscript.
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5.2 Helical states

5.2.1 Properties of helical states

General case

As discussed previously (section 5.1.2), the helical MOs are visible on the [n]-cumulenes. From a
general point of view, we can formalize mathematically the criteria of appearance of these helical
systems.

Let E the energy of a molecule and z the position of the atoms on the linear chain with z = 0 corre-
sponding to the left end chain, and z = N the right end chain.

We define the MO as  (z) associated to the atoms as :

 (z) =

✓

 x(z)
 y(z)

◆

= MR(z!)v0 (5.1)

v0 a fixed two-dimensional unit vector, ! 2 R, R(z!) the rotation matrix of angle z! and M a real
symmetric matrix.

The helices mainly found are said to be classical, and are sometimes called perfect helices [56], but
it is difficult to estimate the perfect cylindrical shape of a helix.

We can therefore define the shape of a helix as:

x(t) = r(t) cos(t)
y(t) = ✏r(t) sin(t)
z(t) = P (t)

(5.2)

with P (t) a smooth increasing function and r(t) an arbitrary function corresponding to a non-constant
radius, so r : R �! R

+.

The best approximation of the helix is finally obtained in a non-linear context, i.e. by using poly-
nomial functions P (t) and r(t).

There are different morphologies of helical MOs. Actually, helices are not necessarily "perfect" as
we will see in the continuation of the manuscript.

Distributions of angles

Let a linear chain of atoms Ci oriented according to z, we define the distributions of angles accord-
ing to the numerical and theoretical point of view, which are respectively part of the continuous
and discrete geometry.

Numerically, the distribution depends on the choice of basis such as z 2 [0, N], then, it exists the
MOs  (z) which give the distribution DBase according to a chosen basis: { (z1)... (zN )}.

Theoretically, the distribution called Hückel distribution DHuckel, valid on each atoms, we have
 (Ci) orbitals depending on pxi and pyi. The Hückel distribution is such that z = {z1...zN}.

We can define the distribution of a constant helix such as:

Dhelix = {�(zi) =
zi

b
} (5.3)
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with b the constant pitch and i = 0,..., N.

We consider the cumulated angle �c as:

�c(i) =
i
X

1

| �(zi)� �(zi�1) | (5.4)

If we have �c(z0) = 0,

�c(z) =
1

b
z (5.5)

This corresponds to a straight line passing through the origin with a constant slope 1
b
.

We compare the set of points {(zi,�c(zi)) (with i = 0, ..., N)} for a given helical distribution with
a set of helical points (zi,

zi
b
) by minimizing a parameter as:

L(b) =

n
X

i=0

(�c(i)� fi)
2 (5.6)

with fi =
zi
b

by using a regression method analysis to obtain a fitted straight line as:

�c = ↵(z � z0) + �0 (5.7)

where ↵ 2 R determined following the values of �c(zi).

The shape of the line is imposed by the initial point (z0,�c(0)) which is the first value of the cumulative
angle distribution.

Finally, the first atom is positioned at z0 = 0 and �c(0) = 0, thus, the optimization issue is reduced
to:

� = ↵z (5.8)

Which fits the results of �c(zi).

We based our work on the study carried out by the team of Solomon et al. [56], who define the
mean of the absolute deviation as the MAD index. To be informative the MAD index is used
to determine how much an orbital helix deviates from the so-called perfect helix. A high MAD means
that the studied helix deviates strongly from a perfect helix and a low MAD value shows the MO is
very close to the perfect helix.
The mean of the absolute deviation is given as:

| �c(zi)� fi | (5.9)

We give an analytical solution as:

↵ =
�(�c(z), z) + �c(z)z

�2(z)
(5.10)

If we have two mathematical series: x = (x0, ..., xN ) and y = (y0, ..., yN ):

x =
1

N + 1

N
X

i=0

xi (5.11)
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�(x, y) =
N
X

i=0

(xi � x)(yi � y)

N + 1
(5.12)

�2(x) =

N
X

i=0

(xi � x)2

N + 1
(5.13)

Each of these equations represent the mean of x (x), the covariance of x and y (�(x, y)) and the vari-
ance of x (�2(x)) respectively.

We also defined the correlation factor as:

⇢(x, y) =
�(x, y)

�(x)�(y)
(5.14)

By linear regression, we have the approximation approach such that ⇢(�c(z), z), ⇢2(�c(z), z) must be
close to 1.

For reminder, to determine the quality of a measurement we use linear regression by approximating a
straight line, and the correlation coefficient has to be greater than 0.95 which represents a very good
approximation.

We therefore propose an indicator of helicity (HEL) such as:

HEL = ⇢(�c(z), z) (5.15)

We prove by this indicator that the correlation coefficient is sufficiently well-known to be easily inter-
preted even if it is subject to discussion, is well documented. Moreover, the values of HEL can easily
be compared to the data of linear regressions since HEL 2 [0, 1]. This is more convenient than the
MAD index since the MAD values can be arbitrary which is not obvious to interpret and compare.

Distribution of angles for twisted [n]-cumulenes

We studied the angle distribution of p-orbitals along [n]-cumulene twisted with a Hückel distribution.
The twisted term used here corresponds to a rotation between 0 and ⇡

2 of one of the chain ends. Indeed,
we have shown before in the manuscript that helical MOs are visible in the case of rotation of one of
the extremities of the chain (seen in section 5.1.2).

Simple example: First of all, let us take an simple example for the angle distributions obtained for
equivalent [4]-cumulene version of Möbius systems when n = 1 is:

D4,1 = {0, 32, 45, 58, 90} (5.16)

The associated cumulated distribution is:

�c = {0, 32, 77, 135, 225} (5.17)

The "best" perfect helix fitting this set of data and the correlation factor which shows very good
agreement are:

�(z) = 49.7z (5.18)

⇢(z, ⇢c(z)) = 0.98872 (5.19)
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Figure 5.4: Best fitted helix for distribution of equivalent [4]-cumulene version of Möbius system and
n=1

The same approach can be done for the distribution of the equivalent [4]-cumulene version of Möbius
system when n=2. In this situation, the distribution is:

D4,2 = {0, 58, 135, 212, 270} (5.20)

The associated cumulated distribution is given by:

�c = {0, 58, 193, 405, 675} (5.21)

The "best" perfect helix fitting and the correlation factor of this set of data which again show a very
good fit are:

�(z) = 145.3z (5.22)

⇢(z, ⇢c(z)) = 0.97942 (5.23)

Figure 5.5: Best fitted helix for distribution of equivalent [4]-cumulene version of Möbius system and
n=2

Hückel distribution of 0 < ✓ < ⇡
2 : The Hückel distribution for [n]-cumulene twisted is obtained

by vectors as:

 n(z) = anR

✓

✓

2

◆

D bn
an

R(knz + �n) (5.24)

with D bn
an

: R2 �! R
2.

D bn
an

corresponds to the dilatation map of weight bn
an

defined as (x, y) �! (x, bn
an
y).
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�n and kn are given as:

tan(�n) = �an

bn
tan

✓

✓

2

◆

(5.25)

sin2((N + 1)kn) = cos2(✓) sin2(kn) (5.26)

with 1  n  2N .

Generally, it is not possible to obtain angle distribution values except in the cases ✓ = 0 and ✓ = ⇡
2 ,

one can only give indications on the structure with the following.

We can then define the Hückel distribution DHuckel according to N and ✓:

�(N � z)� �

✓

N

2

◆

= �

✓

N

2

◆

� �(z) (5.27)

with z = 0, ..., N .

This angle distribution has an axis of symmetry along the �
�

N
2

�

vector.

For �(0) = 0 and �(N) = ✓, this axis will be at ✓
2 or ✓

2 + ⇡
2 in accordance with the number of turns

and the direction of winding of the helix.

Finally, the distribution of angles obtained is from a circular distribution as:

�n(z) = knz + �n (5.28)

Note that with respect to zero, the distribution is:

�n(N � z) = ��n(z) (5.29)

with z = 0, ..., N .

We know that rotations are angle-preserving transformations, but dilatations do not preserve
the angles but preserve the structure of a circular distribution.
In our case, the circular distribution provides the DHuckel(✓) by dilatation (D b

a
) along the vectors :

vn(z) = aei�n(z) with i2 = �1 followed by a rotation of ei
✓

2 .

The previous observation can be justified by the work of Gunasekaran et al. [68] with circular polarized
MOs. They increase the coupling between the terminal p-orbitals from t to

p
2t rather than a constant

coupling between atoms of the molecule and thus consider a modified Hückel matrix.

The mathematical analysis is simplified for distributions �n(0) = 0 and �n(N) = ✓:

�n(z) = knz (5.30)

Nkn =

⇢

✓ +m⇡, n = 2m+ 1
m⇡ � ✓, n = 2m

(5.31)

with z = 1, ..., N � 1.

We have for z 2 {1, .., N � 1}:

�n(z) = Nkn
z

N
=

8

>

>

<

>

>

:

(✓ +m⇡)
z

N
, n = 2m+ 1

(m⇡ � ✓)
z

N
, n = 2m

(5.32)
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We define for z = N
2 :

�n

✓

N

2

◆

=

8

>

>

<

>

>

:

(✓ +m⇡)
1

2
, n = 2m+ 1

(m⇡ � ✓)
1

2
, n = 2m

(5.33)

The Hückel distribution DHckel(✓) satisfies:

�n

✓

N

2

◆

� �n(z) =

8

>

>

>

>

<

>

>

>

>

:

(✓ +m⇡)

✓

1

2
� z

N

◆

, n = 2m+ 1

(m⇡ � ✓)

✓

1

2
� z

N

◆

, n = 2m

(5.34)

and,

�n(N � z)� �n(
N

2
) =

8

>

>

>

>

<

>

>

>

>

:

(✓ +m⇡)

✓

1� z

N
� 1

2

◆

, n = 2m+ 1

(m⇡ � ✓)

✓

1� z

N
� 1

2

◆

, n = 2m

= �n

✓

N

2

◆

� �n(z) (5.35)

Hückel distribution in the cases ✓ = 0 or ✓ = ⇡
2 : As explained, the helical MOs are only observed

when we impose a deformation constraint or substituents at the ends of the [n]-cumulenes. Thus,
when the constraint is at ✓ = 0 or ⇡

2 there are no helices. In reality, we know that the helices are due
to the coupling of the ⇡x and ⇡y systems in a C2 symmetry. We note that the distribution in a cyclic
Möbius case is quasi-perfect, but this is not valid for its [n]-cumulene analogue.

Case ✓ = ⇡
2 : The px part is defined from z = 1 to z = N and, the py part from z = 0 to z = N�1.

The coefficients related to the wave function for z = 1 to N are given as:

cN,n(z) =

r

2

N + 1
aN,n(z) (5.36)

with aN,n(z) = sin(knz) and z = 1, ..., N .

and with:
kn =

n⇡

N + 1
(5.37)

with 1  n  N .

In this case we have a Hückel matrix implying the coefficients cx(z) and cy(z):

cx(z) =

r

2

N + 1
aN,n(z) (5.38)

with z = 1, ..., N .

cy(z) =

r

2

N + 1
aN,n(z + 1) (5.39)
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with z = 0, ..., N � 1.

We notice that cx(0) = 0 and cy(N) = 0.

For proof we refer to [73], if we get a classical N ⇥N matrix corresponding to a chain of atoms as:

AN (w) =

0

B

B

B

B

B

B

B

@

w 1 0 . . . 0

1 w
. . . . . .

...

0
. . . . . . . . . 0

... 1
0 . . . 0 1 w

1

C

C

C

C

C

C

C

A

(5.40)

with w = ↵��
�

and SN (�) the secular determinant of the Hückel matrix HN as SN (�) = det(HN ��Id)
(with Id the identity matrix).

Then, the secular determinant is:

SN (�) = �N (PN (w))2 (5.41)

with PN (w) = det(AN (w)).

The solutions of SN (�) are symmetric and doubly-degenerated such as:

�n = ↵+ 2� cos (kN,n) (5.42)

with kN,n = n⇡
N+1 .

In the case where C2 symmetry is reached, we have wave functions  +,n and  �,n that can be
described according to the direction of winding of the helix respectively to the right (+) and to the
left (�):

 +,n =
1p
2
(cy(z)py + cx(z)px) (5.43)

 �,n =
1p
2
(cy(z)py � cx(z)px) (5.44)

If we focus on the  +,n,  n(z) is:

 n(z) =

r

2

N + 1

✓

aN,n(z)
aN,n(z + 1)

◆

(5.45)

Then, we deduce  n(N � z):

 n(N � z) =

r

2

N + 1

✓

aN,n(N � z)
aN,n(N � z + 1)

◆

(5.46)

For more details, for z = 0,...,N and N � 1, we can prove that an:

aN,n(N � z + 1) = (�1)n+1aN,n(z) (5.47)

We know that:

an(z) = sin

✓

zn⇡

N + 1

◆

(5.48)
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Then,
an(N � z + 1) = sin

⇣

(N � z + 1) n⇡
N+1

⌘

= sin
⇣

(N+1)n⇡
N+1 � zn⇡

N+1

⌘

= sin (n⇡) cos
⇣

zn⇡
N+1

⌘

� cos (n⇡) sin
⇣

zn⇡
N+1

⌘

= � cos (n⇡) sin
⇣

zn⇡
N+1

⌘

= (�1)n+1an(z)

(5.49)

Thus,

 n(z) = (�1)n+1

r

2

N + 1

✓

aN,n(z + 1)
aN,n(z)

◆

(5.50)

By using an axial symmetry along x = y, we have the diagonal symmetry S : (x, y) �! (y, x), the
wave function  +,n(N � z) is given as:

 +,n(N � z) = (�1)n+1S( +,n(z)) (5.51)

We get the Hückel distribution relation eq. 5.27.

We give an expression of the angles along the distribution according to the various parameters con-
sidered.
Thus, we note by AN,n,+,0,z the angle between  +,n(0) and  +,n(z).
The angle will have the formula:

AN,n,+,0,z = cos�1

0

B

B

@

✏(aN,n(1))✏(aN,n(z + 1))
r

1 +
⇣

aN,n(z)
aN,n(z+1)

⌘2

1

C

C

A

(5.52)

AN,n,+,0,N = (�1)n+1⇡

2
(5.53)

with z = 0, ..., N � 1 and ✏(x) is a function of the same sign of x, equal to 1 when x > 0 and equal to
-1 when x < 0.

The proof of this relation is given in Appendix 2 section 24.

Case ✓ = 0: In this situation, the px part will be between z = 1 and z = N � 1 and the py part
from z = 0 to z = N , thus, the [n]-cumulenes are composed by N + 1 atoms.

The following coefficients depend on the form of the Hückel matrix:

cy(z) =

r

2

N + 2
sin

✓

n⇡(1 + z)

N + 2

◆

(5.54)

cx(z) =

r

2

N
sin

✓

(n� 1)⇡z

N

◆

(5.55)

we note that cx(0) = 0 and cx(N) = 0.
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The proofs of these relations are available in Appendix 2 section 25.

If we are interested in MOs with C2 symmetry,  +,n:

 +,n =

0

B

B

@

r

2

N
sin

✓

(n� 1)⇡z

N

◆

r

2

N + 2
sin

✓

n⇡(z + 1)

N + 2

◆

1

C

C

A

(5.56)

with z = 1, ..., N � 1.

If we consider the values that n can take we have the angles:

AN,n,+,0,N =
(1� (�1)n+1)

2
⇡ =

⇢

0 if n is odd
⇡ otherwise

(5.57)

In the continuation of the manuscript we show different examples of distributions as defined here.

5.3 Criteria for the existence of helices

As we have seen previously in this chapter, the literature shows specific cases in which helices appear.
In this section, we indicate the necessary criteria to obtain helices following two approaches: physical
and chemical.

5.3.1 By a physical approach : Löwdin partitioning technique

This section is based on the work of Gunasekaran and al. [68] which presents a discussion of the
existence of helical states studying directly the eigenstates of the Schrödinger equation associated to
the molecule. We prove using their approach that molecules admits generically helical states.

In terms of mathematics, we have to be interested in the so-called Löwdin partitioning technique
[74][57] for matrices. This is applied to Hamiltonian matrices which we can write in the case of a
cumulenic system. The technique is to compute a Hamiltonian matrix of the part of the molecule that
we are interested in, which then allows to return to a Hamiltonian matrix taking into account the total
space.

A schematic example to improve the meaning of the Hamiltonian matrix is given in the work of Jin
and Song [57]:

Figure 5.6: Schematic illustration of a molecule to define a Hamiltonian square matrix in the Löwdin
partitioning technique [57] (the graph consists of two branch graphs a and b in cyan and a center graph
c in black - the dashed edges in red represents the connections between them, with A and B being the
branch-root nodes).
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Then for a complete system we define the Hamiltonian square matrix as:

H =

0

@

Haa Hac 0
Hca Hcc Hcb

0 Hbc Hbb

1

A (5.58)

Note that Ht
ca = Hac with t is the transpose.

As a reminder, our system is composed of a linear chain with 2N orbitals with a left (L) and right
(R) part as we have shown in the schematic figure 5.2 and more generally in figure 5.6. The elements
of the left part is noted a and those of the right part b. Thus, we have on the left pa = (p1, ..., pa)
orbitals and on the right pb = (p01, ..., p

0
b) orbitals. Then, we have 2(N � 2) orbitals as px,i and py,i

(with i = 1,...,N-1 ), constituting the vector pc.

As we know the Schrödinger equation, we have :

 =

a
X

i=1

cipi + cLpL +

n
X

i=1

cx,ipx,i + cy,ipy,i + cRpR +

b
X

j=1

cjp
0
j (5.59)

We get the linear system as follows:
8

<

:

Haapa +Hacpc = Epa
Hcapa +Hccpc +Hcbpb = Epc
Hbpc +Hbbpb = Epb

(5.60)

If we consider once again the identity matrix Id, with d > 0 the Id matrix is of size d. For a given E

the matrices EIa �Haa and EIb �Hbb are invertible, we get pa, pb and pc as:

pa = (EIa �Haa)
�1Hacpc (5.61)

pb = (EIb �Hbb)
�1Hbcpc (5.62)

We then replace in the linear system eq. 5.60 :

Hca(EIa �Haa)
�1Hacpc +Hccpc +Hcb(EIb �Hbb)

�1Hbcpc = Epc (5.63)

We can then, join the respective terms of the left and right parts of the molecule, it results in a
Hamiltonian term called effective:

Heff = ΣL +Hc + ΣR (5.64)

with ΣL(E) and ΣR(E) the 2N ⇥ 2N matrix depending on the coupling of the terminal groups as:

ΣL = Hca(EIa �Haa)
�1Hac (5.65)

and
ΣR = Hcb(EIb �Hbb)

�1Hbc (5.66)

Gunasekaran et al. [68] gives the following criterion of existence of helical MOs, it is a physical
criterion: to obtain helical states it is necessary that the matrices ΣL and ΣR do not commute i.e.:

[ΣL,ΣR] 6= 0 (5.67)
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where [, ] denotes the brakets on matrices defines by [A,B] = AB �BA.

The condition eq. 5.67 is open because generically we have helices, it is only necessary to introduce
the right substituents at the end of the chain.

It should be noted that the calculation of the 2 matrices ΣL and ΣR is relatively complex [57] and are
computable only in very simple cases.

5.3.2 By chemistry: using molecular symmetries

In this section, we bypass the computational problem linked with the matrices ΣL and ΣR by stating
a criterion based on the symmetry group of the molecule.

We consider a linear chain molecule LA containing N atoms denotes by Ai (with i = 1, ..., N).
We can denote by the set A = {Ai}i=1,...,N whose coordinates depend on the z axis.

Figure 5.7: Schematic representation of a linear chain depending on the z axis

We get n atoms being two-dimensional, with a basis set px, py, pz orbitals participating in the �-system.
For a linear molecule, there are two planes Px and Py which contain the family of p orbitals as px(z)
and py(z) orbitals according to their position on the z axis.

In this case, using symmetry, we have therefore frontier orbitals on the left (py = p0) and on the
right (pN ) of the linear chain at N = n+ 2 atoms oriented in the xy-plane.

The Hückel matrix of a molecule as LA takes the form of a basis set p0 = px, pix, p
i
y, pN with i = 1,

...,n such as:

(5.68)

where the matrix Ax and Ay are given such as (the matrix of Ay is given as example):
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(5.69)

We can decoupled the characteristic polynomial of the Hamiltonian matrix in two situations:

• �k = 0 corresponds to the situation where pN is orthogonal to pNx (i.e. pN = py). The matrix of
mixing is reduced to :

(5.70)

with the characteristic polynomial:

P (x) = PA(x)PA?,�?(x). (5.71)

• �? = 0 corresponds to the situation where pN is orthogonal to pNy (i.e. pN = px). The mixing
matrix is reduced to:

(5.72)

with the characteristic polynomial is given by:

P (x) = PA?(x)PA,�k(x) (5.73)

Thus, the first case is the orthogonal configuration of the ethylene and the other one to the planar
configuration.

Finally in others configurations, the necessary condition to obtain helical MOs is to have a mixing
of the components of the px and py orbitals.

Note that it is obvious that the presence of the px, py and pz orbitals limit the method to certain ele-
ments of the periodic table, in particular to those of the p-block.

The mixing of these orbitals seems simple but the point to keep in mind is the symmetry. Indeed,
the presence of a helicogenic axis [9], i.e. an axis of symmetry C2 is necessary. This axis implies
that : C2(px) = py and and this axis is involved in the formation of helical orbitals.

For instance, we consider the case of ethylene which doesn’t present helical MOs. In its orthogonal
configuration, ethylene has mirror plane symmetry, and 3 C2 axes of rotation: one along the
molecular chain and 2 axes (dihedral) helicogenics. In this situation, there is a mixing generated by the
axes, but due to the mirror plane symmetry, the characteristic polynomial is factorized which induces
a disconnection between the family of the px and py orbitals. By consequence, there are no helical MOs.

In its planar configuration, there are 3 C2 axes (one along the molecular chain and 2 passing through
the centre directed the x and y axes), none of these axes are helicogenics. The symmetries don’t induce
mixing of orbitals then, we cannot wait helical MOs.
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We deduce by this example, that the absence of a mirror plane in the molecule is necessary from
a symmetric point of view to obtain helical orbitals.

Other point of symmetry, in the linear case of [n]-cumulenes, which present helical MOs, [n]-
cumulenes do not have a mirror plane, but a C2 axis of symmetry. In addition, the absence of
mirror plane, implies that the molecule is chiral.

As a reminder, the chirality of a molecule indicates that the image of the molecule by a mirror plane
is not invariant.

We then define a symmetry criterion for helical states as:
for a linear chain LA chiral and satisfying the structural hypothesis, admitting a C2 helicogenic axis
presents explicit helical MOs.

With these different criteria of symmetry we can refer to Curie’s principle [75]. This principle stated
in a paper of 1894 by Pierre Curie proves the relationship between the symmetry of an effect and
its cause: "when certain causes produce certain effects, the elements of symmetry of the causes must
be found in the effects produced". The Curie’s principle gives a physical support to the sentence of
Garner et al. [55]: "the formation of helical symmetry-adapted MOs requires chirality; not surprising
considering a helix is a chiral object" this is not surprising indeed and is a consequence of the Curie’s
principle.
More details about the validity of the Curie’s principle are given in the work of Chalmers [76] and
Ismael [77].

5.3.3 In the non-planar linear molecules

As discussed, in linear molecules the criteria of appearance of helical MOs are well-defined but
what about in the case of other molecules?

In the case of molecules that do not naturally have helical MOs, the molecular main chain has 2 helical
axes C2, one axis C2 along the chain and 3 orthogonal planes. The presence of mirror planes
does not permits helices. It is therefore necessary to bypass these mirror planes. From the point of
view of the symmetry of molecules, the orthogonal planes are noted mirror planes such as : �xy, �xz
and �yz.

Thus, to respect the helicity criteria, we need to break the mirror planes. For example, if we break
the �xz plane, then the molecule is no more plane.
Each terminal fragment (L1, L2) and (R1, R2) (as terminal groups denoted in the figure 5.2) has to be
taken into account. Considering for example the fragments L in the plane of symmetry �xz. Then, if
this mirror plane is broken the fragment R will not be contained in the plane Py defined in the previous
section.
These different actions will generate "mechanical" constraints that we see as torsions of the chain ends
(as we have seen in the literature). As we will see in the next chapter, we show that we can prove the
existence of helical MOs on this type of systems in their ground states.
We have to take into consideration that the symmetry of the molecule also depends on the energy
state.
Thus, if we examine a symmetry group whose symmetry elements are valid for the helicity criteria, it
is then possible to see helical MOs in energy states other than the fundamental.
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5.4 Conclusion

This chapter is very dense in information. The first part of the chapter is very informative on Möbius
systems following the work of R. Hoffmann. Based on the linear case of [n]-cumulenes and the curiosi-
ties of the helical orbitals that this type of carbon systems presents.

In the second part of the chapter, we provide a detailed description of the properties of the helical
states such as the angle distribution or the helicity index (HEL). We detail the angle distribu-
tion of [n]-cumulenes according to the rotation of one of the chain end substituents.

Finally, the last part presents the criteria of existence of helices: by physical and chemical approach.
The physical approach is based on the Löwdin partitioning technique which shows the use of
Hamiltonian matrices: in particular the criterion of non commutation of the matrices of each of
the extremities of the molecular system. This computational step being complex, it can only be applied
in very simple cases.

The chemical approach uses the symmetries of the molecules. The necessary condition to obtain
helices is the mixing of the px and py orbitals but also the presence of a helical axis: that is to say an
axis of symmetry of type C2. The last point related to symmetry is the absence of a mirror plane.
The link with Curie’s principle is then established with respect to the criterion of symmetry of
helical states. Finally, in the case of non-planar linear molecules, the criterion of helicity is applicable
in any energy state.



Chapter 6

Applications and visualizations

In this chapter, we use the points discussed in the previous chapter 5 and present our results in an
illustrated way.

We expose results on:

• [n]-cumulenes (with n = 3, 4, 11): in the fundamental and excited states,

• [n]-hetero-cumulenes (with n = 2, 3): in the fundamental state,

• [B=N] or [N=B]-cumulenes: in the fundamental and excited states,

• DPBD, tolanophane and molecules with metals.

The results illustrate among other the work of R. Hoffmann [9], Escudié et al. [78], Toyota et al. [79],
Garner et al. [55], Caviglasso et al. [80], Cretu et al. [81] and our preprint [44].

Our studies present in a simple way the possibility of reaching helical orbitals within simple native
systems but summarize most of the cases. The systems considered are [n]-cumulenes with [n] =
3 and [n] = 4 without substituents at the ends of the chains. The interest focuses on the terminal
hydrogen and on the singlet or triplet energy state of the [n]-cumulene, which is clearly not mentioned
in the bibliography.
Then, we display the presence of such helices in the case of [n]-cumulenes composed of hetero-
elements and more complex carbon molecules as diphenylbutadiyne and tolanophane.

Our results prove the presence of helix orbitals in all the cases studied, all the properties are represented
by our systems. The bibliography does not rely on simple cases to answer precisely to the questions.

Most publications refer to DFT calculations to determine the presence of helical orbitals. Our work
is based for the ground and excited-states geometries, both on DFT calculations (B3LYP exchange-
correlation functional with 6-311G(d.p) basis set using Gaussian 09 program package) [82] but also on
a more solid calculation program with results obtained by Molpro CASPT2 (10.8/6-311G(d.p) using
Molpro program packages) [15]. These computations allow us to confirm the validity of the DFT results.

The procedure followed for the calculations is given in detail in Appendix 1.
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6.1 Results on [n]-cumulenes

We describe the results obtained for [n]-cumulenes with [n] = 3, [n] = 4 and [n] = 11 (i.e. containing
3, 4 or 11 successive double bonds).

We study several cases: either the ends of the chains are parallel, or perpendicular and into
energetic states singlet or triplet.

6.1.1 Fundamental states

We distinguish the positions of the chains ends, by imposing rotation from 0° to 90°. We
observe the shape of the orbitals and the evolution of changes throughout the rotations. We note that
the calculations are carried out in a C2 symmetry to satisfy the helicity criteria.

We notice that the investigation of the helical states required a long research work, since the helical
MOs are generally visible between HOMO-1 and LUMO+1.

[3]-cumulene

DFT computations: To describe the molecule : the core linear chain composed by 3 double bounds
and 4 carbon atoms, has 2 C2 helicogenic axes and a C2 axis along the chain.

In addition, the linear chain possesses 3 orthogonal mirror planes (�xy, �xz and �yz).

Figure 6.1: Representation of helical MOs of a [3]-cumulene at different states of rotation (0, 50°, 90°

carried out by DFT computations) in the ground state
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Figure 6.2: Molecular orbitals and energies of a [3]-cumulene associated for rotations from 0° to 90°

(carried out by DFT computations) in the ground state

As we expose in the chapter 5, the figure 6.1 illustrates perfectly the fact that the torsional con-
straint of one of the chain ends induces the appearance of a helix. Indeed in the extreme cases, at 0°

plane and 90° perpendicular case we see the electronic clouds on both sides of the plane of the molecule.
But at 50° when there is mixing of the px and py orbitals the helices are perfectly defined. It should
obviously be noted that as we see in the previous figure (6.2), all cases of intermediate rotation (the
calculations of the rotations with steps of 1° were carried out) also show helices.

The helical orbital criterion is satisfied, in fact we have broken the mirror planes symmetries by
torsional constraints.

[4]-cumulene

DFT computations: In the case of [4]-cumulene we are in the same situation and the same
observations can be reported as for the [3]-cumulene case, but the molecule contains 4 double bounds
and 5 carbon atoms.
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Figure 6.3: Representation of helical MOs of a [4]-cumulene at different states of rotation (0, 50°, 90°

carried out by DFT computations) in the ground state

Figure 6.4: Molecular orbitals and energies associated for rotations from 0° to 90° (carried out by DFT
computations) in the ground state
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Once again as in the case of [3]-cumulene the helical orbital criterion is satisfied.

For more details in these 2 cases presented, the criterion is satisfied thanks to the breaking of the
symmetries of the mirror planes. Actually, it depends on the fragments of the chain ends and it is
done in several conditions:

• the mirror plane �xz is broken which means that the molecule is no longer a planar linear chain,

• considering the left fragment L of the molecule which is contained in the �xz plane which is
broken implies that the right fragment R is not contained in the Py plane. This, also implies the
breaking of the �xy mirror plane.

There is therefore an axial torsion of the terminal group of the linear chain which generically induces
helical MOs.

[11]-cumulene

DFT calculations: We considered the case of a longer [n]-cumulene and at only 10° of rotation
of one of the chain ends. We also see in this case the presence of helices and even if the constraint is
not very high (10° of rotation), the helical orbital criterion is satisfied.

Note for a better visualization the transparency of the helices.

Figure 6.5: Helical molecular orbitals for a rotation of 10° (carried out by DFT computations) in the
ground state
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6.1.2 Excited states

As in the previous section, we performed the same DFT calculations, but in a triplet excited state,
which has not been proven in the literature. This excited state results in the MOs being in 2 different
spins ↵ and �.

[3]-cumulene

DFT computations: We are in the case where the [n]-cumulene is in an excited state, i.e. in a
triplet state (multiplicity µ = 3). We notice here also that as in the ground state situations, when
the rotations are of 0° and 90°, we do not observe helices but at 50° of rotation the helices are
clearly present under the 2 multiplicities.

Note that the shape, the number of turns and the direction of winding of the helices are not the same
in the ↵ and �-spin state.

Figure 6.6: Representation of helical MOs of a [3]-cumulene at different states of rotation (0, 50°, 90°

carried out by DFT computations) in a triplet state.
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[4]-cumulene

DFT computations: The same behaviours are observed.

Figure 6.7: Representation of helical MOs of a [4]-cumulene at different states of rotation (0, 50°, 90°

carried out by DFT computations) in a triplet state.

We note in the 2 situations of the figures 6.6 and 6.7, that the helical MOs are more defined under
↵-spin than �-spin.

We know that the symmetry group of the MOs of a molecule depends on its energy state. Therefore
if the symmetry group of the molecule does not have helical MOs but contains symmetry elements that
satisfy the criterion for the existence of helices, then there will be excited states of the molecule with
helical MOs that will fit the symmetry. In the same way, this statement also applies for the electronic
multiplicities.
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6.2 Molecules with hetero-elements and more examples

6.2.1 [n]-hetero-cumulenes

[n]-cumulenes being molecules with a linear carbon chain, we chose to work with more varied [n]-
cumulenes. By referring to the literature [78] where 15 families of [n]-cumulenes are reviewed, we
studied [n]-cumulenes containing in the principal linear chain (from atoms C0 to CN ): silicon, ger-
manium, phosphorus, arsenic or more simply oxygen or nitrogen.

We resume all the studied [n]-hetero-cumulenes in the following table:

C0 / CN L1 L2 R1 R2

[n]-cumulene C / C H H H H

[2]-heterocumulene:
Phosphaallene P / C H - H H
Diphosphaallene P / P H - H -
Phosphaazallene P / N H - H -
Arsaallene As / C H - H H
Arsaphosphaallene As / P H - H -
Diarsaallene As / As H - H -
Siaallene Si / C H H H H
Phosphasilaallene Si / P H H H -
Silaketene Si / O H H - -
Germaallene Ge / C H H H H
Germaphosphaallene Ge / P H H H -

[3]-heterocumulene:
Phosphabutatriene P / C H - H H
Diphosphabutariene P / P H - H -
Arsabutariene As / C H - H H
Silabutariene Si / C H H H H

Table 6.1: Set of studied [n]-hetero-cumulenes

For more details concerning the table: we note [2]-hetero-cumulene and [3]-hetero-cumulene constituted
by hetero-elements (P : phosphorus, N: nitrogen, As: arsenic, Si: silicon, Ge: germanium, O: oxygen)
and the presence or absence of hydrogen in terminal groups.

[2]-hetero-cumulenes

DFT calculations: The representation of the MOs of the [2]-hetero-cumulenes from the table 6.1,
shows the existence of helices between the HOMO-1 and the LUMO+1, for a rotation of 25°

of only one of the terminal group.
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Figure 6.8: Representation of helical MOs of [2]-hetero-cumulenes at 25° of torsion by DFT computa-
tions in the ground state

We observe for most of the molecules that the helices exist for both HOMO and LUMO but the shapes
and windings of LUMO and LUMO+1 seem more complex.

[3]-hetero-cumulenes

DFT calculations: Here, also for a 25° of torsion, we represented the MOs between the HOMO-1
and the LUMO+1.

In this case, the helices are existing and better defined for HOMO-1 and HOMO.
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Figure 6.9: Representation of helical MOs of [3]-hetero-cumulenes at 25° of torsion by DFT computa-
tions in the ground state

In the 2 figures presented 6.8 and 6.9 we observe that the helical MOs are less well-defined than in
the cases of [2] and [3]-hetero-cumulenes.

6.2.2 [B = N ] or [N = B]-cumulenes

After using hetero-elements, we chose to design linear chains as [n]-cumulenes from boron and ni-
trogen only, based on the work of Cretu et al. [81]. These linear boron nitride chains highlight the
existence of non-standard helices.

Note that bron nitride nanostructures are known to present a wide diversity of chemical and physical
properties.

Here, we see a large variety of MOs in helices according to the number of atoms and the alternation
between boron and nitrogen in the ground and excited states.

Figure 6.10: Representation of the molecular orbitals of the B=N=B=N=B-cumulene (by DFT
computations) for a rotation of 30° (charge 0 - doublet and quadruplet states)
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Figure 6.11: Representation of the molecular orbitals of the N=B=N=B=N-cumulene (by DFT
computations) for a rotation of 30° (charge 1 - singlet and triplet states)

Figure 6.12: Representation of the molecular orbitals of the B=N=B=N=B=N-cumulene (by
DFT computations) for a rotation of 30° (charge 0, 1 and 2 - singlet, doublet and triplet states)

6.2.3 Other examples

For other examples, there is also interest in diphenylbutadiyne (DPBD) [83] which has a linear
chain combining single and triple bonds and phenyl end groups.

The tolanophane molecule is also interesting because it is composed by 2 units of diphenylethyne
with 2 linear chains [79].
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DPBD molecule

The following figure 6.13 presents the representation of the MOs from HOMO-1 to LUMO+1 according
to the C2 symmetry for rotations from 0° to 90° which highlights the helices. The helices are only
present on the linear chain where the helical orbital criterion can be applied.

We note that the helices are well defined for the LUMO+1 between 20° and 80° of rotation and once
again that the rotation of one of the chain ends induces the appearance of helices.

Figure 6.13: Representation of the molecular orbitals of the DPBD molecule (by DFT computations)

Tolanophane molecule

In the following figure, the molecule of symmetry C2 is rotated by one end of the chain. As indicated
at 0° there are no helices but for intermediate angles helices are present.

Beyond 65° the helices are less well defined. We note that the helices are clearly visible only on the
LUMO+3 orbitals and once again along the linear chains where the criterion of helical orbitals is
applicable.
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Figure 6.14: Representation of the molecular orbitals LUMO+3 of the tolanophane molecule (by DFT
computations)

Molecules with metals

As discussed in the previous chapter, to study the helical MOs, we focused on the p-orbitals of the
systems. But it is also possible to be interested in these same states in the case of d-orbitals [56].
For this type of orbitals, it is the metals that carry them thus, we have to be attentive to the metal-
cumulenes.

The study of MOs in helices in molecules with metal-like atoms is more confidential. In a re-
cent paper by Garner et al. [56] the research team highlights the possibility of obtaining heli-
cal states with d-type orbitals. They propose complex systems based on ruthenium such as:
trans� [EtC = (C =)4C = Ru = (C =)4CMe]2+.

To try to prove this as well, we have carried out different calculation tests with metals, such as
[M2X8]

2� [80]. We have worked on metal complexes from rhenium [Re2H8]
2�. We have chosen to

carry out our analysis in a lower energy configuration with eclipsed hydrogen atom ligands, thus
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in D4h symmetry. This configuration provides a better overlap of the sigma systems between metals.
The formation of the helical MOs is observed at the region of the rheniums and leads to the breaking
of the applied symmetry.

Figure 6.15: Representation of the molecular orbitals HOMO and HOMO-5 of the rhenium complex
[Re2H8]

2� (by DFT computations)

6.3 Conclusion

In this 6th chapter, we applied the elements presented and proven in chapter 5 with concrete examples:
[n]-cumulenes, [n]-hetero-cumulenes and more complex molecules especially with metals.

We show the results of DFT calculations for [n]-cumulenes with 3, 4, and 11 double bonds in ground
and excited states following chain end rotations.

In parallel, we have carried out CASPT2 type calculations which also confirm the presence of helices,
and proves that the formation of helices does not depend on the computation method.

We give illustrations of the formation of helices for each of the examples except for the 0° and 90°

rotation cases.The so-called criterion for obtaining helices is thus satisfied.

In the case of [n]-hetero-cumulenes the helices are studied for a rotation of 25° and helices are
obtained in most situations. We note that for silaketene the helices are not clearly visible between
HOMO-1 and LUMO+1.

The cases of [B=N] and [N=B]-cumulenes show non-standard helices of the different energetic
states.

The examples of DPBD and tolanophane are complementary. They show that the formation of
helices depends on the mixing of px and py induced by the multiple bonds of the central linear chain
during the rotation of one of the chain ends, whether it is the extremities are complex or not.

Finally to complete the study, we studied d-type orbitals with metal-cumulenes. These metallic
complexes present pseudo-helices but further investigations for these situations could be considered.

To conclude on these results, we note that the influence of the rotation of the chain ends is essential in
the existence of helices and that the complexity of the substituents and the number of atoms or double
bonds (odd or even) are not determining factors.
Finally, the formation of such helices provides a different electronic distribution which certainly has an
influence on the molecular reactivity. This gives access to new perspectives that require investigations
beyond this manuscript.



6.3. CONCLUSION 169

Conclusion of the part III

This part III is composed of 3 chapters very dense in information.

Chapter 4 is theoretical and identifies all the elements and tools necessary to understand aromaticity
for linear and cyclic systems in different situations.

Chapter 5 focuses on helical states which interested us a lot and required some ressources. We expose
the properties of these helical states and the ways to characterize them (HEL, AN,n,±,0,z for example).
Moreover, we determine and prove the criteria of existence of helices based on mathematical (Löwdin)
and chemical (Hückel and symmetries) works.

Chapter 6 gives a series of illustrated examples to summarize what we have shown by theory and to
validate hypotheses concerning the nature of the substituents and the atoms constituting the system
and on the constraints to be applied to provide helices.
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General conclusion

170



171

This manuscript is the result of three years of work, which required a great investment and a close
collaboration between the work of chemists and mathematicians to provide general tools easily usable
by the scientific community.

The 3 parts of this manuscript are complementary and were detailed for a good understanding.

The reminder gives a general basic review of what is needed to understand in this work. The
reminders related to the Schrödinger equation, the Hückel matrices, the atomic and molecular orbitals
are essential for the subjects studied in this thesis. In addition, the computational methods used for
this work are also largely explained.

A second part of this thesis work is based on the understanding of the reactivity and its repre-
sentation by the ⇡-Orbital Axis Vector (POAV) theory initially proposed by R. C. Haddon.
We have worked to implement an adapted, clarified and generalized response of the tools related to
POAV1. This answer gives the possibility to avoid heavy computational methods in the case of com-
plex molecules, and to predict the reactivity, essential information for chemists.
All of this work also, gave us the opportunity to publish our first article on the subject of the pyrami-
dalization angle, the POAV1 and the associated tools. This work has been illustrated with fullerenic,
non-fullerenic and nitrile imines molecules by the means of the Pychemcurv software developed in the
context of the thesis and which is detailed in chapter 2. This illustrative dense chapter shows clearly
the extent of the work that has been done and the investments of our research team.
POAV2 theory’s work has not been fully finalized and will certainly require additional time for
analysis and research, particularly the quantified difference of POAV2 versus POAV1. The theoreti-
cal difference between the two theories has clearly been established by our work, however the results
of comparisons are not sufficient enough to make clear conclusions at this stage. This leads to the
following question, is the computational cost of the algorithm compensated by the precision’s degree
obtained? It doesn’t, meaning that POAV1 can be used without any problem. The struggle being
majorly on the reactivity cartographies of molecules, the result is important because they can be car-
ried out without difficulties on large molecules. At this time, a preprint of our work on POAV2 is in
progress and we should have solutions to the unsolved questions.

The third part of this manuscript is focused on aromaticity and helical states.
The study of aromaticity is closely related to the reactivity issues encountered in part II and aromatic
molecules will be privileged for many useful reactions.
The work on the aromaticity criteria has required an important research work by using old works
of Hückel and Zimmerman. We have established with the help of mathematics all the definitions and
relations in order to make the presentation and the link between the visions of Hückel and Möbius,
to establish relations and energetic comparisons. Moreover, we make the distinction according to the
electronic configuration between the cyclic and linear cases in a complete way by many parameters.
The work related to aromaticity has emphasized the curiosity of the helical orbitals studied by R.
Hoffmann. We have spent a lot of time for understanding these particular electronic states. All the
properties of these states such as the distribution of angles, could be studied in different situations
in particular according to the rotational constraint applied to the molecular ends which proved to be
essential. In a physical and chemical way, we have established the criteria of existence of these helices
related to the molecular symmetry. The last chapter illustrates this important work and gives the
opportunity to validate properties and observations.

The manuscript provides an important contribution of information on the theoretical level and gives
simple tools to establish the link between different major notions as curvature, reactivity and aromatic-
ity. It therefore, opens perspectives for the determination of the reactivity and the characterization of
new materials.
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Appendix 1 : Chemistry part

This first appendix presents the detailed computational techniques used to perform this work and, the
different molecule representations used for the quantum calculations of the third part of this thesis
manuscript chapter 6.

Computational techniques

The different simulations of molecules carried out in this manuscript were possible thanks to the
cartesian coordinates (x, y, z) of each molecule under a precise symmetry of sections 2.2, and 2.3, and
in a precise torsion angle in the particular case of the third part chapter 6. We make available in a
supplementary information file all the cartesian data that we have generated to perform the simulations.

For all the simulations carried out in the application part of the database of Tománek and Frederick
(section 2.2), the cartesian coordinates were available in free access [5].

However, for the coordinates used in the applications to the compounds resulting from the work of R.
C. Haddon (section 2.3), and in the case of [n]-cumulenes and the other examples associated to chapter
6 it was necessary to create molecular structures (in 3D) files.

By consequence, the data files were generated by modeling the molecules, by creating each of the
molecular structures in 3D by the Avogadro or VMD [84][40] software. For each molecule, their
geometry was optimized on the software. Then, the cartesian data of the molecules are extracted in
a .xyz file. These data are the cartesian coordinates (x, y, z) of each molecule under precise constraints.

Note that a lot of work has been necessary to select and design all these molecules.

When all the cartesian data were obtained, we used them for the Gaussian [12] quantum calculations.
For each of the molecules, we created .com type calculation launching files in order to obtain all the
necessary information in terms of energy, frequency, and orbitals in .out and .fchk type output files.
The exploitation (in particular the visualization of the orbitals) of the .out files was carried out by
Molden [85] and the .fchk files by the Gaussview software [86] which give access to 3D structural
data of the molecules, energy and orbital data but also give information on the viability of the molecules
designed. All the calculations were performed by DFT at a B3LY P�6�311G⇤ level but also CASPT2
calculations have completed and validated certain of the previous results.

All the simulations of computations were carried out on the scientific computing cluster Pyrene of the
university. All the information related to the cluster is easily accessible [87].

Notice that the theoretical details about the quantum computation methods are given in the reminder
part of the manuscript 0.3.

Representation of the molecules used for DFT computations in chapter 6

The representations of this section, concern the molecules used for the DFT calculations presented
for all of the [3]-cumulene, [4]-cumulene, [11]-cumulene, [2]-heterocumulenes, [3]-heterocumulenes,
[B=N]-cumulenes, [N=B]-cumulenes, DPBD molecule, and tolanophane molecule following the de-
tailed method presented in the first section of the appendix.

All the representations of the molecules are provided for molecules with 0°, 25°, 30° of rotation.
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Appendix 2 : Technical and proofs part of the results used

For the convenience of the reader, proofs of the results are detailed in this appendix and some of the
results in this thesis are provided from our article and preprints [4, 44, 36].

1-Proofs associated to the section 0.2.4: Characteristic polynomial of H

Note that by using the graph approach for Hückel’s calculations, we are in the case of uniform distri-
bution:

H = ↵IdN + � cos(�)A(G) (a2.1)

Taking �1, . . . ,�n the real ordered eigenvalues of A(G), since A(G) is symmetrical, we obtain the
relation between the eigenvalues of H and A(G) :

�i = ↵+ � cos(�)�i (a2.2)

with i = 1, . . . , N .
Assuming that H is diagonalizable, P is the passing matrix between the initial basis and the eigenvector
basis such that:

D = P�1
HP (a2.3)

where D is the diagonalizable matrix.

D =

0

@

�1 0 . . . 0
. . . . . . . . . . . .

0 . . . 0 �N

1

A (a2.4)

If we multiply on each side the relation a2.1 and using P�1P = IdN , we have:

D = ↵IdN + � cos(�)P�1
A(G)P (a2.5)

The matrix P�1
A(G)P must be diagonal and of eigenvalues �i, i = 1, . . . , N which results in the

relation on the eigenvalues of H and A(G).

2-Proofs associated to the section 0.2.4: Total energy of a molecule

This relation is simplified when we assume a uniform distribution �i = � because ⌫i(�) = cos(�)�i
where the �i are the eigenvalues of the adjacent matrix of the graph G of the molecule:

E = ⇡(S)↵+ � cos(�)
N
X

i=1

gi�i (a2.6)

Note that in most interesting cases, we can relate the value of gi to the sign of �i via the rule gi = 2
if �i > 0 and gi = 0 if �i < 0.

In this case, the energy is: E = ⇡(S)↵+2� cos(�)
PN

i=1 �i1�i>0 where 1�i>0 is the indicator of �i > 0.
By separating the eigenvalues  0, noted �1, . . . ,�k, for a certain k, from the positive eigenvalues
�k+1, . . . ,�N and by using the relation (�1 + · · ·+ �k) + (�k+1 + · · ·+ �N ) = 0, we rewrite the energy
as:
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E = ⇡(S)↵+ 2� cos(�)

N
X

i=1

�i1�i>0

= ⇡(S)↵+ 2� cos(�)
N
X

i=k+1

�i

= ⇡(S)↵+ � cos(�)

"

N
X

i=k+1

�i +

N
X

i=k+1

�i

#

= ⇡(S)↵+ � cos(�)

"

N
X

i=k+1

�i �
k
X

i=1

�i

#

= ⇡(S)↵+ � cos(�)
N
X

i=1

| �i |

(a2.7)

The quantity E(G) =
PN

i=1 | �i | is called energy of the graph G of the molecule. We have then the
relation:

E = ⇡(S)↵+ � cos(�)E(G) (a2.8)

which explains that in some simple configurations, the G graph contains all the information of the
orbitals.

3-Proofs associated to the section 1.1.1: POAV✏(A)

The POAV✏(A) vector is only defined by the local geometry of the molecule in a given atom A

and precisely only on the relative angles of the bonds starting in A. By construction, all regularized
vector

�������!
AReg✏(B) for B 2 ?(A) satisfy the relation (1.4) meaning that if POAV✏(A) makes a constant

angle with all the vectors
�������!
AReg✏(B) for B 2 ?(A), this vector makes also a constant angle with all

vectors in
�������!
AReg✏0(B) with B 2 ?(A) for any ✏0 > 0. As a consequence, the vector POAV (A)✏ vector

is independent of ✏.

4-Proofs associated to the section 1.2.1: Condition of normalization

The normalization on the s component of (h1, h2, h3, h⇡) gives:

c2⇡ + 3µ2�2⇡ = 1, (a2.9)

and the one on the pz component gives:

�2⇡ + 3µ2c2⇡ = 1. (a2.10)

We then obtain by addition of the two previous equations:

(c2⇡ + �2⇡)(1 + 3µ2) = 2 (a2.11)

As c2⇡ + �2⇡ = 1, this gives:

µ =
1p
3

(a2.12)

This concludes the proof.
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5-Proofs associated to the section 1.2.1: Hybridization coefficients and POAV1

The POAV1 vector is such that the angle between the h⇡ orbital and each orbital h1, h2, h3 is:

⇡

2
+ Pyr(A)

The vector associated to h⇡ is v⇡ = (0, 0,�⇡) and the one with h1 is v1 = (c1,2, 0,
�c⇡p

3
).

The scalar product between the two vectors gives v⇡ · v1 = � 1p
3
c⇡�⇡.

This scalar product is also equal to k v⇡ k k v1 k cos(v⇡, v1).

As k v⇡ k2= �2⇡ and k v1 k2=
3c21,2+c2⇡

3 , we obtain taking the square on each side of the equality:

�2⇡c
2
⇡

3
=

3c21,2 + c2⇡

3
�2⇡ cos

2
⇣⇡

2
+ Pyr(A)

⌘

(a2.13)

We then have:

�2⇡

h

c2⇡ � (3c21,2 + c2⇡) cos
2
⇣⇡

2
+ Pyr(A)

⌘i

= 0 (a2.14)

As �⇡ 6= 0, we obtain:

c2⇡

⇣

1� cos2
⇣⇡

2
+ Pyr(A)

⌘⌘

= 3c21,2 cos
2
⇣⇡

2
+ Pyr(A)

⌘

(a2.15)

Using the fact that:
1� cos2

⇣⇡

2
+ Pyr(A)

⌘

= sin2
⇣⇡

2
+ Pyr(A)

⌘

and the equality:

cos
⇣⇡

2
+ Pyr(A)

⌘

= � sin(Pyr(A)

and
sin
⇣⇡

2
+ Pyr(A)

⌘

= cos(Pyr(A))

We deduce:

c2⇡ cos
2(Pyr(A)) = 3c21,2 sin

2(Pyr(A)) (a2.16)

Assuming that Pyr(A) 6= ⇡
2 , we obtain:

c2⇡ = 3c21,2
sin2(Pyr(A))

cos2(Pyr(A))
= 3c21,2 tan

2(Pyr(A)), (a2.17)

which concludes the proof.

6-Proofs associated to the section 1.2.1: sp3 hybridization conditions

This follows from c22,3 + c23,3 = 2c22,3 = 1, which gives for example c2,3 = ± 1p
2

and c3,3 = ± 1p
2
.

The second normalization gives c21,2 + 2c22,2 = 1.

The symmetry condition (eq. 1.23) with c22,3 = 1
2 leads to the relation c22,2 +

1
2 = c21,2. Putting this

expression in the normalization equation gives c22,2 +
1
2 + 2c22,2 = 1.

We deduce that 3c22,2 =
1
2 or c22,2 =

1
6 and so c21,2 =

2
3 .
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7-Proofs associated to the section 1.3: Admissible molecules

The proof of this angle is well-defined, and follows the same line as in the trivalent case. Let ✏ > 0 be
given and denoted by zA,✏, the distance O✏A. Then, we have for a given bond AB, B 2 ?(A), as:

sin(Pyr(A)) =
zA,✏

✏
(a2.18)

This quantity does not depend on B and is, in fact, independent of ✏. Indeed, let us consider ✏0 = �✏,
then zA,✏0 = �zA,✏ and

znA,✏0

✏0
=

zA,✏

✏
.

The previous definition is, of course, far from being satisfied as it works for a very restrictive class of
molecules. We discuss more precisely the restriction associated with the use of the pyramidalization
angle in the section 1.3.

8-Proofs associated to the section 1.4.1: Non-linear relationship between the spher-
ical curvature and the pyramidalization angle

B 2 ?(A) and I the middle between A and B and, O the center of the osculating sphere of radius RA.

We have AB = a, AI = a
2 and AO = RA.

In the triangle AIO, we have the angle [OAI = ⇡
2 � Pyr(A).

By consequence, cos
�

⇡
2 � Pyr(A)

�

= AI
AO

= a
2RA

,

thus, cos
�

⇡
2 � Pyr(A)

�

= sin(Pyr(A)).

9-Proofs associated to the section 1.4.2: Spherical curvature in non-regular case

By definition, in the figure 1.8 the line L corresponds to the set of points at equal distance of B, C
and D. The center of the osculating sphere must belong to L. The center Oz is then of the form
Oz = (0, 0, z) with z 2 R in the reference frame R.

We look for a point Oz such that OzA = OzB = OzC = OzD.

As OzB = OzC = OzD by construction, we have only to ensure OzA = OzB.

By the Pythagorean theorem, we have OzB
2 = z2 + l2 and,

OzA
2 = OzO

2
zA

+OzAA
2 = L2 + (zA � z)2 = L2 + z2A + z2 � 2zzA thus,

OzB
2 = OzA

2 implies 2zzA = L2 + z2A � l2.

As A 62 P then zA 6= 0 and z =
L2+z2A�l2

2zA
.

This concludes the proof.

10-Proofs associated to the section 1.5: Relationship angular defect and pyrami-
dalization angle

By definition, we have:
✓1(A) + ✓2(A) + ✓3(A) = 2⇡ (a2.19)
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By construction, we have OB1 = OB2 = OB3 = R, with R the radius of the circumcircle for the
triangle B1B2B3.

The triangle AOB1 is rectangle in O by construction. By definition of the Pyr, we have:

OB1 = l cos(Pyr(A)) (a2.20)

Then,
R = l cos(Pyr(A)) (a2.21)

Using this quantity, one can compute the quantity B1B2+B2B3+B3B1 which is the perimeter of the
triangle B1B2B3 in P(A). We have two ways to compute this quantity:

- First, using the fact that in the triangle B1OB2, the length B1B2 is given by 2R sin
⇣

✓1(A)
2

⌘

and
similar expressions for B2B3, B3B1. We then obtain:

B1B2 +B2B3 +B3B1 =

2R



sin

✓

✓1(A)

2

◆

+ sin

✓

✓2(A)

2

◆

+ sin

✓

✓3(A)

2

◆�

(a2.22)

- Second, using the fact that in the triangle B1AB2, the length B1B2 is given by 2l sin
⇣

↵1(A)
2

⌘

and
similar expressions for B2B3, B3B1. We then obtain:

B1B2 +B2B3 +B3B1 =

2l



sin

✓

↵1(A)

2

◆

+ sin

✓

↵2(A)

2

◆

+ sin

✓

↵3(A)

2

◆�

(a2.23)

Replacing R by its expression, and writing the equality of these two expressions, we deduce:

cos(Pyr(A))



sin

✓

✓1(A)

2

◆

+ sin

✓

✓2(A)

2

◆

+ sin

✓

✓3(A)

2

◆�

=



sin

✓

↵1(A)

2

◆

+ sin

✓

↵2(A)

2

◆

+ sin

✓

↵3(A)

2

◆�

(a2.24)

The Pyr is then understood as a measure of the difference between the angles ✓i(A) and ↵i(A),
i = 1, 2, 3.

Denoting by I1 the middle of the segment B1B2 and by using the triangle AOI1 which is rectangle in
O, we obtain using the Pythagorean theorem:

cos↵F (A) = cos2 Pyr(A) cos ✓F (A) + sin2 Pyr(A) (a2.25)

This concludes the proofs.
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11-Proofs associated to the section 3.1.2: Conditions of orthogonality

We have by definition: s orbitals and the set {px, py, pz} of orbitals as: ui = ui,2px + ui,3py + ui,4pz
and u⇡ = u⇡,2px + u⇡,3py + u⇡,4pz where ui,k and u⇡,k, k = 1, 2, 3 are scalars.

We identify the orbital ui with the vector (ui,2, ui,3, ui,4) of R3 as well for u⇡.

By definition, we have hs, si = 1, hpx, pxi = 1, hpy, pyi = 1, hpz, pzi = 1 and hpx, py = hpx, pzi =
hpy, pzi = 0.

We then deduce that: hui, uii = 1 and hu⇡, u⇡i = 1 as the vectors ui and u⇡ are unitary.
Moreover, we have by definition: the angle ✓i,j as hui, uji = cos(✓i,j). In the same way, we obtain
hui, u⇡i = cos(✓i,⇡).

As a consequence, we obtain:

hhi, hji = cicjhs, si+ �i�jhui, uji
= cicj + �i�j cos(✓i,j)

(a2.26)

As hhi, hji = 0 by orthogonality conditions, we obtain the first set of conditions (Hi,j).

The set of conditions (Hi,⇡) follows the same lines.

12-Proofs associated to the section 3.1.2: Relation between the angles θi,j

This is a simple computation, we have orthogonality between h⇡ and the hi:

�⇡ = � cic⇡

�i cos(✓i,⇡)
,

thus,
ci

�i cos(✓i,⇡)
=

cj

�j cos(✓j,⇡)

for i, j 2 {1, 2, 3}.

We deduce:

cj�i cos ✓i,⇡ = ci�j cos ✓j,⇡ (a2.27)

for i, j 2 {1, 2, 3}.

Moreover, the orthogonality condition between the hi orbitals leads to:

ci = ��i�k cos(✓i,k)
ck

for all i 6= k 2 {1, 2, 3}. (a2.28)

Replacing ci and cj in eq. a2.27 by these expressions for k 6= i or j, we obtain:

�j�i�k

ck
cos(✓j,k) cos(✓i,⇡) =

�i�j�k

ck
cos(✓i,k) cos(✓j,⇡) (a2.29)

for i, j 2 {1, 2, 3},

which leads to:
cos(✓j,k) cos ✓i,⇡ = cos(✓i,k) cos(✓j,⇡) (a2.30)

This concludes the proof.
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13-Proofs associated to the section 3.1.2: C3v symmetry

If the angles between the vector u⇡ and the bonds are equal, then we obtain directly using eq. 3.5 that
✓i,k = ✓j,k and the molecule possesses a C3v symmetry.

If the molecule possesses a C3v symmetry, we have ✓i,k = ✓j,k and as a consequence using relation 3.5,
✓i,⇡ = ✓j,⇡ for all i, j.
This concludes the proof.

14-Proofs associated to the section 3.1.2: Components of the u⇡ vector solutions of
linear system

The proof is a simple computation.

We have ui.u⇡ = xix⇡ + yiy⇡ + ziz⇡ = cos ✓i,⇡, (with i=1, 2, 3) by definition of the angles ✓i,⇡ and the
fact that the ui and u⇡ are unitary.
Multiplying the previous equation for i by cos ✓j,k and subtracting for j multiplied by cos ✓i,k, we obtain
the relation:

(xi cos ✓j,k � xj cos ✓i,k)x⇡ + (yi cos ✓j,k � yj cos ✓i,k)y⇡ + (zi cos ✓j,k � zj cos ✓i,k)z⇡ (a2.31)

= cos(✓j,k) cos(✓i,⇡)� cos(✓j,⇡) cos(✓i,k)

which is equal to zero by eq. 3.5.

15-Proofs associated to the section 3.1.2: Linear system M.u⇡ = 0

The determinant of M is zero. Indeed, if we denote by M = (mi,j)i,j2{1,2,3}, we observe that
m2,i � m1,i = m3,i for i=1, 2, 3. As a consequence, the matrix M has a kernel of dimension 1 or
2.

A condition for the kernel to be of dimension 2 is that the rank of the matrix M is 1. This can be
done if all the 2 by 2 minor of the matrix have a determinant equal to zero. A direct computation of
these determinants lead to three conditions corresponding to the determinant of three minors.

Precisely, we have:
�

�

�

�

x3 cos ✓1,2 � x2 cos ✓3,1 y3 cos ✓1,2 � y2 cos ✓3,1
x1 cos ✓2,3 � x2 cos ✓3,1 y1 cos ✓2,3 � y2 cos ✓3,1

�

�

�

�

= cos ✓1,2 cos ✓2,3 (x3y1 � y3x1)+cos ✓1,2 cos ✓3,1 (y3x2 � y2x3)+cos ✓2,3 cos ✓3,1 (x1y2 � y1x2) (a2.32)

In the same way, we obtain:

cos ✓1,2 cos ✓2,3 (y3z1 � z3y1) + cos ✓1,2 cos ✓3,1 (z3y2 � z2y3) + cos ✓2,3 cos ✓3,1 (y1z2 � z1y2) (a2.33)

and

cos ✓1,2 cos ✓2,3 (x3z1 � z3x1) + cos ✓1,2 cos ✓3,1 (z3x2 � z2x3) + cos ✓2,3 cos ✓3,1 (x1z2 � z1x2) (a2.34)

As u1^u3 = (y1z3�y3z1, x3z1�x1z3, x1y3�x3y1) we can resume the previous equality by the following
vector relation:

cos ✓1,2 cos ✓2,3u1 ^ u3 + cos ✓1,2 cos ✓3,1u2 ^ u3 + cos ✓2,3 cos ✓3,1u1 ^ u2 = 0 (a2.35)
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This relation can be rewritten as:

u1 ^ (cos ✓1,2 cos ✓2,3u3 + cos ✓2,3 cos ✓3,1u2) = � cos ✓1,2 cos ✓3,1u2 ^ u3. (a2.36)

The vector u2 ^ u3 is orthogonal to the plane P2,3 generated by u2 and u3.
As w = cos ✓1,2 cos ✓2,3u3 + cos ✓2,3 cos ✓3,1u2 belongs to P2,3, the vector u1 ^w is perpendicular to the
plane P2,3 if and only if u1 belongs to this plane, meaning that u1, u2 and u3 belongs to P2,3 and the
molecule is planar.

16-Proofs associated to the section 3.1.3: Hybridization numbers n1, n2, n3

We give the proof only for n1, the other ones following the same strategy.

We remind that due to eq. 3.3 and 3.4, we have the following system of relations:

c1c2 + �1�2 cos ✓1,2 = 0
c1c3 + �1�3 cos ✓1,3 = 0
c2c3 + �2�3 cos ✓2,3 = 0

(a2.37)

The first equation gives:
�1

c1
= � c2

�2

1

cos ✓1,2
(a2.38)

Using the third equation, we obtain the relation:

c2

�2
= ��3

c3
cos ✓2,3 (a2.39)

it can be used to replace c2
�2

in eq. a2.38, then we have:

�1

c1
=
�3

c3

cos ✓2,3
cos ✓1,2

(a2.40)

Using the second equation, we explicit �3
c3

as:

c3

�3
= ��1

c1
cos ✓1,3 (a2.41)

Replacing in eq. a2.40, we finally obtain:

�1

c1
= � c1

�1

cos ✓2,3
cos ✓1,2 cos ✓1,3

(a2.42)

which leads to:
�21
c21

= � cos ✓2,3
cos ✓1,2 cos ✓1,3

(a2.43)

This concludes the proof.

17-Proofs associated to the section 3.1.3: sp3 normalization

The sp3 normalization condition (eq. 3.10) can be rewritten as:

3
X

i=1

1

1 + ni
+

m

m+ 1
= 1 (a2.44)

By factorizing c2i in the third first terms and �2⇡ in the last one.
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We then obtain:
m

m+ 1
= 1�W� (a2.45)

using the definition of W�, which leads to:

m =
1�W�

W�
(a2.46)

18-Proofs associated to the section 4.3.5: Study of the degeneracies of the energy
levels in the even case π(S1

N) ⌘ 0 [mod.4] for the Möbius case

For proof, the solutions correspond to i and j such as:

cos

✓

(2k + 1)⇡
i

N

◆

= cos

✓

(2k + 1)⇡
j

N

◆

This leads to,

(2i+ 1)
⇡

N
= �(2j + 1)⇡

j

N
+ 2l⇡ (a2.47)

Thus,
2i+ 1 = �2j � 2 + lN

As i and j 2 0,..., N-1, there is l = 1.

We then, have:

j =
N

2
� 1� i (a2.48)

if N is an even number.

19-Proofs associated to the section 4.3.5: Study of the degeneracies of the energy
levels in the even case π(S1

N) ⌘ 0 [mod.4] for the ribbon case

The solutions of �i = �j correspond to i and j as:

cos

✓

2⇡i

N

◆

= cos

✓

2⇡j

N

◆

This last equation gives:
2⇡i

N
= �2⇡j

N
+ 2l⇡

Thus, i = �j + lN .

As, i, j 2 0, ..., N � 1, l = 1, therefore, j = N � i and 1  i  N � 1.

20-Proofs associated to the section 4.3.5: Structure of molecules S1
N C2 invariant,

property of torsion distribution

�N�i+1 = �i (a2.49)

with i = 1, ..., N � 1.

To prove this, it is a simple computation. Each vector ui (with i = 1, ..., N), is obtained in a reference
frame centered in the atom Ci by giving the tangent vector ni in the direction of the curve and the
normal plane in which we note by convention the coordinates by (x, y), and the coordinate x being
normal to the plane of the molecule. Each vector ui is then, in its adapted reference frame of the form
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(ai, bi, 0) which is identified with a vector of R2 noted Ui = (ai, bi). By convention, we have U1 = (1, 0).

By definition of the � distribution, the angle �i is such as Ui+1 = e�j�iUi. The C2 symmetry of axis z
refers the atom Ci to the atom CN�i+1. By invariance we also have Ui = UN�i+1. Moreover, the C2

symmetry being an isometry, it maintains the angles and we have :

�i = \Ui, Ui+1 = \UN�i+1, UN�i = �N�i+1 (a2.50)

with i = 1,..., N-1.

In other words, we obtain the relation:
�i = �N�i+1 (a2.51)

with i = 1,..., N-1.

21-Proofs associated to the section 4.3.9: Torsion angle and properties - φ1,n relation

This angle is computed in the plane (x, y) by the formula:

cos (�1,n) =
u1.un

k u1 k k un k =
a1an

| a1 |
p

b2n + a2n
(a2.52)

then,

�1,n = arccos

 

a1an

| a1 |
p

b2n + a2n

!

(a2.53)

An other way to write this formula is:

�1,n = arccos

 

✏(a1)✏(an)
| ↵n |

p

1 + ↵2
n

!

(a2.54)

where ✏(a1) et ✏(an) give the sign of a1 et an respectively and ↵n is given by:

↵n =
an

bn
(a2.55)

This concludes the proof.

22-Proofs associated to the section 4.3.9: Torsion angle and properties - φl,l+1

Since the norms of the vectors involved in the calculation of the angle are preserved, we just have to
check if the scalar product is the same.

We have:
un+1�l · un+1�(l�1)

= bn+1�lbn+1�(l�1) + an+1�lan+1�(l�1) (a2.56)

= (al+1al + bl+1bl)(�1)2k+2

= ul · ul+1

This gives the result.
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23-Proofs associated to the section 4.3.9: Orbital cases of the form (bn, an): φ1,n

We can study the asymptotics of this angle by investigating the evolution of ↵n.

We have:

↵n =
an

bn
=

sin
⇣

nk⇡
n+1

⌘

sin
⇣

(n�1)k⇡
n+1

⌘ (a2.57)

As we have:

sin

✓

nk⇡

n+ 1

◆

= sin

✓

(n� 1)k⇡

(n+ 1)
+

⇡k

(n+ 1)

◆

(a2.58)

= sin

✓

(n� 1)k⇡

(n+ 1)

◆

cos

✓

⇡k

(n+ 1)

◆

+ cos

✓

(n� 1)k⇡

(n+ 1)

◆

sin

✓

⇡k

(n+ 1)

◆

We get:

↵n = cos

✓

⇡k

n+ 1

◆

+ cos

✓

(n� 1)k⇡

n+ 1

◆ sin
⇣

⇡k
n+1

⌘

sin
⇣

(n�1)k⇡
n+1

⌘ (a2.59)

For all n and k fixed, we have N going to infinity: ⇡k
n+1 and (n�1)k⇡

n+1 which tend to zero.

We can then use the equivalents:

sin

✓

⇡k

n+ 1

◆

⌘ ⇡k

n+ 1
,

and,

sin

✓

(n� 1)k⇡

n+ 1

◆

⌘ (n� 1)⇡k

n+ 1
(a2.60)

which gives by using the fact that: cos( ⇡k
n+1) tends to 1 when N tends to infinity:

lim
N!1

↵n = 1 +
1

n� 1
(a2.61)

By adding back into the formula of �1,n, we finally get:

lim
N!1

�1,n = arccos

 

n
p

n2 + (n� 1)2

!

(a2.62)

by using the fact that the sign of a1 and an are positives for large values of N .

24-Proofs associated to the section 5.2.1: AN,n,+,,z Angle between ψ+,n(0) and ψ+,n(z)

For proof, we have:

AN,n,+,0,z = cos�1

✓

 n(0). n(z)

k n(0)kk n(z)k

◆

(a2.63)

 n(0) and  n(z) are two vectors such as:

 0(z) =

r

2

N + 1

✓

0
an(1)

◆

(a2.64)

 n(z) =

r

2

N + 1

✓

an(z)
an(z + 1)

◆

(a2.65)
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For more details, the scalar product and the norm of the vectors give:

 n(0). n(z) =
2

N + 1
an(1)an(z + 1) (a2.66)

k n(0)k =

r

2

N + 1
| an(1) | (a2.67)

k n(z)k =

r

2

N + 1

p

(an(z)2 + (an(z + 1))2 (a2.68)

Then,

AN,n,+,0,z = cos�1

 

an(1)an(z + 1)

| an(1) |
p

(an(z))2 + (an(z + 1))2

!

(a2.69)

We know that an(z + 1) 6= 0 and z = 1, ..., N � 1, then:

AN,n,+,0,z = cos�1

0

B

B

@

✏(an(1))✏(an(z + 1))
r

1 +
⇣

an(z)
an(z+1)

⌘2

1

C

C

A

(a2.70)

For z = N we have:
an(N + 1) = sin(n⇡) = 0 (a2.71)

thus,
AN,n,+,0,N = cos�1(0) = ±

⇡

2
(a2.72)

For z = N , we get:
AN,n,+,0,N = (�1)n+1⇡

2
(a2.73)

The sign will depend on the symmetry (see eq. 5.51).

25-Proofs associated to the section 5.2.1: Hückel distribution coefficients in the
case θ = 0

The coefficients are detailed and depend on the form of the Hückel matrix:

cy(z) =

r

2

N + 2
aN+1,n(z + 1) =

r

2

N + 2
sin

✓

n⇡(1 + z)

N + 2

◆

(a2.74)

cx(z) =

r

2

N
aN�1,n�1(z) =

r

2

N
sin

✓

(n� 1)⇡z

N

◆

(a2.75)

with cx(0) = 0 and cx(N) = 0.

For more details, we consider the secular determinant of the Hückel matrix SN (�):

SN (�) = �NPN+1(w)PN�1(w) (a2.76)

Note that we have for solution 2N non-degenerate roots. PN�1(w) and PN+1(w) are symmetric roots
corresponding respectively to the systems px and py and � being as we have previously seen the total
overlap.
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English version:

Title

Structural and Electronic Chemistry: Role of Symmetries and Curvature

Abstract

This thesis is the result of 3 years of work based on the subject: "Structural and Electronic Chemistry:
Role of Symmetries and Curvature".

The originality of the topic consists in the multidisciplinary nature of the subject which involves both
chemists theoreticians and mathematicians. An important part of the work is based on the under-
standing of theoretical chemistry and its use by modeling.
One of the objectives attributed to this work, is the understanding of molecular systems by geomet-
rical tools mainly initiated by Robert C. Haddon in 1997. We first propose a clarification and a
generalization of these tools based on carbon materials such as fullerenes whose study of topological
characteristics is largely exploited in this manuscript.
All the theoretical points and tools developed (the pyramidalization angle, the spherical curvature,
the angular defect, and the hybridization) are widely illustrated with cartographies by the use of
programming tools and softwares which provide the study of the deformation, the curvature and the
investigation of the chemical and physical properties of the systems.
The use of the tools resulting from this work will facilitate the simulation of molecules without size
limitation and for systems whose modelisation by ab-initio or DFT calculations remains inaccessible.
We also tried to show the relation which could exist between the geometry of the systems and the
orbital information. We were interested in many systems as examples most of them are carbon-based
and potentially aromatic.
Consequently, we propose the study of the criteria of aromaticity according to the theories stated
among others by Hückel. By this study, we focus on less known linear systems: the [n]-cumulenes
which present the curiosity of helical orbitals. We established the criteria for the existence of this type
of helices according to the molecular symmetry.

The aim in fine was to establish the link between the topological characteristics and the chemical
reactivity of these molecules and materials.
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Chimie Structurale et Electronique: Rôle des Symétries et de la Courbure

Résumé

Cette thèse est le fruit de 3 années de travail reposant sur le sujet intitulé : "Chimie Structurale et
Electronique: Rôle des Symétries et de la Courbure".

L’originalité de la thématique abordée dans ce travail se trouve dans la pluridisciplinarité du sujet qui
fait appel à la fois aux chimistes théoriciens et aux mathématiciens. Une importante partie des travaux
se base sur la compréhension de la chimie théorique et de son utilisation par modélisation.
Un des objectif alloué à ce travail, est la compréhension des systèmes moléculaires par des outils
géométriques principalement initiés par Robert C. Haddon dès 1997. Nous avons tout d’abord pro-
posé une clarification et une généralisation de ces outils basées sur des matériaux carbonés comme les
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sphérique, le défaut angulaire, et l’hybridation) ont été largement illustrés avec des cartographies par
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ABSTRACT 

This thesis is the result of 3 years of work based on the subject: "Structural and Electronic Chemistry: Role of 

Symmetries and Curvature".  
 

The originality of the topic consists in the multidisciplinary nature of the subject which involves both theoretical 

chemists and mathematicians. An important part of the work is based on the understanding of theoretical chemistry 

and its use by modeling.  

One of the objectives attributed to this work, is the understanding of molecular systems by geometrical tools mainly 

initiated by Robert C. Haddon in 1997. We first propose a clarification and a generalization of these tools based on 

carbon materials such as fullerenes whose study of topological characteristics is largely exploited in this manuscript. 

All the theoretical points and tools developed (the pyramidalization angle, the spherical curvature, the angular defect, 

and the hybridization) are widely illustrated with cartographies by the use of programming tools and softwares which 

provide the study of the deformation, the curvature and the investigation of the chemical and physical properties of 

the systems.  

The use of the tools resulting from this work will facilitate the simulation of molecules without size limitation and for 

systems whose modelisation by ab-initio or DFT calculations remains inaccessible. 

We also tried to show the relation which could exist between the geometry of the systems and the orbital information. 

We were interested in many systems as examples most of them are carbon-based and potentially aromatic.  

Consequently, we propose the study of the criteria of aromaticity according to the theories stated among others by 

Hückel. By this study, we focus on less known linear systems: the [n]-cumulenes which present the curiosity of helical 

orbitals. We established the criteria for the existence of this type of helices according to the molecular symmetry.  
 

The aim in fine was to establish the link between the topological characteristics and the chemical  

reactivity of these molecules and materials. 
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