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Abstract XV

APPLICATION OF OPTIMAL CONTROL TECHNIQUES TO NATURAL SYSTEMS MANAGEMENT
Abstract

Optimal control techniques have numerous applications in engineering and real world problems. This thesis is de-
voted to using these techniques in two contexts, mining and epidemiology, dividing this document in two respective
parts.

In the first part related to mining, we work with the continuous formulation of the Open Pit Problem consisting of
finding the optimal shape of an opencast mine representing its profile by a continuous function. Optimality in this
context corresponds to maximizing the profit of mineral extraction. We introduce for the first time optimal control
models of this problem. We present optimality conditions of solutions along with numerical experiments using local
and global methods.

Another relevant problem in this context corresponds to the Sequential version of the Open Pit Problem, which con-
sists of scheduling an extraction program over consecutive time frames (for example, a profile each 6 months), finding
nested profiles maximizing a discounted profit. We proposed a novel semi-continuous model to obtain solutions of
the sequential problem and we use it to present for the first time, to the best of our knowledge, numerical solutions
of a three dimensional case (a possible real world mine) including the original Open Pit Problem (case with a single
time-frame).

In the second part we deal with optimal control problems minimizing the maximum value of a state. This problematic
was inspired by Covid-19, where hospitals and ICU beds were overcrowded due to a high amount of simultaneous
infections. We present four different reformulations of this kind of optimal control problem as a Mayer one, each one
having its pros and cons. We present the numerical performance of each formulation in an academic example and in
a more realistic SIR model where the problem corresponds to minimizing the peak of infectious compartment with
integral constraint in the control. With respect to the latter problem, we prove analytically that the structure of the
optimal control is null-singular-null and we used it to assess numerical solutions.

Keywords: optimal control, natural system management, mining, epidemiology

Résumé

Les techniques de contrdle optimale ont plusieurs applications dans le domaines de 1’engenierie et les problemes de
la vie pratique. Cette thése est consacrée a 1’utilitation de ces techniques dans deux contextes, I’exploitation miniere
et I’épidémiologie, divisant ce document en deux parties respectives.

Dans la premiere partie relative a 1’exploitation miniere, nous travaillons avec la formulation continue du probleme
Final Open Pit consistant a trouver la forme optimale d’une mine a ciel ouvert représentant son profil par une fonction
continue. L optimalité dans ce contexte correspond a maximiser le bénéfice de I’extraction minérale. Nous présentons
pour la premiere fois des modeles de contrdle optimal pour ce probleme. Nous présentons des conditions optimales
de solutions avec des simulations numériques utilisant des méthodes locales et globales.

La version séquentielle du Final Open Pit est également tres pertinent dans le contexte de cette thése. Le probleme
consiste a planifier un programme d’extraction sur des périodes de temps consécutives (par exemple, un profil tous
les 6 mois), en trouvant des profils imbriqués maximisant un bénéfice actualisé. Nous avons formulé un nouveau
modele semi-continu permettant d’obtenir des solutions du probléme séquentiel et que nous utilisons pour proposer
des solutions numériques dans un cas tridimensionnelle ( une mine possible du monde réel) y compris le probleme
Open Pit original (cas avec une seule période de temps). Cela, a notre connaissance, n’avait jamais été fait auparavant.
Dans la deuxieme partie, nous traitons les problemes de contrdle optimal minimisant la valeur maximale d’un état.
Ce probleme a été inspiré par le contexte sanitaire tres difficile suite a la covid-19, ol avoir de beaucoup infectés
en méme temps sature les hopitaux et les lits de soin intensif. Nous présentons quatre reformulations différentes de
ce type de probleme comme un Mayer de contrdle optimal, ayant chacun ses avantages et ses inconvénients. Nous
évaluons la performance numérique de chaque formulation dans un exemple académique et dans un modele SIR plus
réaliste ou le probleme correspond a minimiser le pic du compartiment infecté avec une contrainte intégrale dans le
contrdle. En ce qui concerne ce dernier probleme, nous prouvons analytiquement que la structure du contréle optimal
est null-singular-null et nous 1’avons utilisé pour évaluer les solutions numériques.

Mots clés : contrdle optimal, gestion du systéme naturel, exploitation miniere, épidémiologie

Laboratoire Jacques-Louis Lions
Sorbonne Université — Campus Pierre et Marie Curie — 4 place Jussieu — 75005 Paris — France
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Chapter 1

Introduction

For decades optimal control theory has been an important tool to apply in real world problems and en-
gineering. A main motivation to develop this theory came from aerospace engineering in the context of
the aerospace race in the Cold War, to solve problems such as the minimization of the fuel or time spent
by an aircraft going from an initial position to another one. Many other examples exist in domains of
aeronautics, chemical processes, vehicles and transportation, energy, biological systems, etc. Some of
them are showed in [73, 91, 96, 97].

This work consists of applying analytical as well as numerical optimal control techniques to two
specific problems. The first one corresponds to the Open Pit problem, well-known in context of mining,
but using a new continuous formulation in contrast to the classical binary formulation. The second one
arises during the pandemic motivated by overcrowded hospitals due to many infected individuals at the
same time, therefore, the idea was to use optimal control tools in order to minimize the peak of infections.

This introduction is devoted to presenting the main optimal control techniques used and at the end,
a brief explanation of each chapter. We refer to Chapters 2 and 5 as introductions to Parts I and II
respectively.

1.1 General background in optimal control

Consider a time interval [0, 7], and (x(¢),u(t)) € R" x R™ ¥Vt € [0, T] denoting x for the state and u for the
control. An optimal control problem in a Bolza form is written as follows:

T
Minimize @ (x(T))+ /0 £, x(0), u(0))dr

() over all x€e €0, T)andu € %
satisfying ~ %(¢) = f(¢,x(¢),u(r)) for a.e.
x(0) =x0, x(T) € E

where the set of admissible controls is usually % = {u : [0,7] — U,u € L*}. In this formulation, bound-
ary conditions are represented by a fixed initial state x(0) = xo and a final state x(7) belonging to a set E
which typically correspond to {y € R"|c;(y) = 0,c2(y) < 0} where ¢; and ¢, are continuously differen-
tiable functions with values in R¥1 and R¥2 respectively.

Additionally, we can consider optimal control problems with constraints in the state written as

(t,x(1)) € A.

1



2 CHAPTER 1. Introduction

We then say that it is an optimal control problem with state constraints. Typically, state constraints are
represented by g(x(¢)) < 0,z € [0,T] with g regular enough. In this same way, we define an optimal
control problem with mixed constraints when we add (Py) to the expression:

(t,x(2),u(t)) €A

We do not focus on existence results for our problems, however those interested can refer to [34, 35,
73, 96]. In the following sections we will briefly recall the principle of 3 main classes of methods in
optimal control, furthermore, we present Bocop solver, used in numerical experiments of this thesis.

1.1.1 Pontryagin Maximum Principle and indirect shooting methods

After its discovery (see [50] for a review of the history), many versions of Maximum Principle can
be found in the literature. Here we present one of them, but other versions are shown throughout this
document when necessary. Firstly, we introduce the costate p, of the same dimension as the state x and
define the Hamiltonian associated to (Py) as

H(t,x,p,p°,u) = p° fOt,x,p) + p" f(t,x,u).
Let /9 f,¢ be €' class and u € L™, the Maximum Principle is stated as follow

Theorem 1.1.1. Under previous assumptions, if the pair (x(t),u(t)) is optimal for (Py) then there exists
an absolutely continuous function p : [0,T] — R" and a real value p° < 0 such that:

1. (p(-),p°) #0.
2. %(t) = 0pH (1,x(t), p(t),p°u(t)),  —p(t) = dH(t,x(t), p(t), p°,u(t))
3. H(tvx(t)’p(t)vpoau(t)):mavaUH(tax(t)7p(t)’povV)

4. p(T) € p°Vo(x(T)) +Ng(x(T))

5. SH(x(),ple), P, ult)) = A 1,(0), pl0), )

A proof of this theorem can be seen in [34, 73]. Note that this base version does not consider state
constraints although these will appear in the Final Open Pit problem, therefore, we will present more
general versions where appropriate.

Shooting method is based on the Pontryagin Maximum Principle and it is part of the indirect methods
(for more detail see [10, 28, 34]). To explain this method, assume the normal case, i.e., po #0. and free
final conditions on x, that means, E = R". The idea of the shooting method is to solve the boundary value
problem derived from the Maximum Principle:

(BVP)

using the control i obtained in point 3 of theorem 1.1.1 when it can be written depending explicitly on
x(t),p(t), i.e. u(t) =¥ (x(z), p(t)) for a certain function ¥. We introduce the shooting function associated
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to this system as the functional that returns p(7) — Vo(%(T')) for a value z, where (X, p) are solutions of
the following Initial value problem

(1) = f(t,x(1), W(x(2), p(t)))
(IVP) p(l‘) = —BXH(Lx(t),p(t),po,‘I’(x(t),p(t)))
“1x(0) = xo

If we call S:z— p(T)— Vo (x(T)) the shooting function, then, the shooting method consists in
solving S(z) = 0, which is equivalent to solving the system (BVP) and therefore, obtaining a pair (x, p)
fulfilling the conditions of theorem 1.1.1.

This idea can be generalized to a different set £ and a more general optimal control problem, for
instance, when x is not fix but belongs to a set F/ C R”. In a more general case state constraints can be
considered but the generalization is far more difficult.

1.1.2 Direct transcription approach

The so-called direct approach transforms the infinite dimensional optimal control problem (Fp) into a
finite dimensional optimization one (typically non linear). The idea is to discretize the time interval [0, T]
in {tp =0,...,tx =t} and apply it to the state and control variables, obtaining the finite dimensional
variable X = {Xg,..., XN, U0, ..., UN_] }-

Several options exist to discretize the Ordinary Differential Equation (ODE) of x, for instance, using
Euler explicit form and considering an equidistant discretization on time, where we obtain

Xiy1 =X +hf(xi,u;).

Finally, we get the following nonlinear programming problem:

N-1
min  @(xy)+ Z O (t:,xi,u7)
i=0

(NLP){ s.a Xip1 =xi +hf(xi,u;) Vie{0,.,N—1}
u el Vie{0,.,N—1}
Xo =X, xy € E
State and mixed constraints can be incorporated directly in each discretization point. These methods
are widely used in industrial applications because they are more straightforward to apply than indirect

methods. We refer the reader to [19] and [85] for more details on direct transcription methods and NLP
algorithms.

1.1.3 Hamilton-Jaccobi-Bellman equation

To introduce this results it is necessary to define the value function associated to (F). Then, for ¢ € [0, T]
and £ € R", the value function V (¢, &) is defined by:

T
V(&) = min { (7)) [ 7°65(6).u(5)ds 5(5) = £, 4(5) ) v € [ Tlaxe) £ }.

uew

It corresponds to the optimal value of (Py) taking the initial time and position as ¢ and & respectively. The
main result is then
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Theorem 1.1.2. The value function V(t,&) is a solution (in some specific sense) of the equation

OV +miney H(1,&,0:V,—1,v) =0, V(1,€) € (0,T) x R”
v(T, &) = o(&)

An important tool in finding the value function is the Dynamic Programming Principle which corre-
sponds to the following expression

uewU

V(t,€) = min { / Tf°<s,u<s>,y<s>>ds+v<y<r>,r>}. (1)

Many methods mix the HIB equation and dynamic principle giving a global solution unlike direct
transcription which is local, but the computational effort is normally higher.

For a complete introduction to the subject see [13, 92], considering state-constraints [2, 32] and the
link with Maximum Principle [37]. This approach is not mainly used in this thesis except for numerical
simulations using the HIB version of Bocop, the solver that we are going to present now.

1.1.4 Bocop toolbox

In most of the numerical simulation of this thesis we use Bocop, an open source toolbox for optimal
control problems, developed by Inria and which can be downloaded directly from https://www.bocop.
org/. On the official web-page there is the option to choose between two different packages.

The first and original package implements a local optimization method. The optimal control problem
is approximated by a finite dimensional optimization problem (NLP) using a time discretization (the
direct transcription approach, see section 1.1.2). The NLP problem is solved by the well known software
Ipopt [98], using sparse exact derivatives computed by CppAD [18]'. In Figure 1.1 its interface is shown
and it is possible to observe several options and functionalities of Bocop.

The second package BocopHJB implements a global optimization method. Similarly to the Dynamic
Programming approach, the optimal control problem is solved in two steps. First we solve the Hamilton-
Jacobi-Bellman equation satisfied by the value function of the problem. Then we simulate the optimal
trajectory from any chosen initial condition. The computational effort is essentially taken by the first step,
whose result, the value function, can be stored for subsequent trajectory simulations.. Figure 1.2 shows
interface of BocopHJB.

Bocop runs under Linux, Mac and Windows, besides, in both interfaces it is possible to export solu-
tions in a specified data format allowing its treatment in Matlab or Python. We also take advantage of
their interpolation tools, mainly in the mining context, where we have discretized data to be incorporated
in the continuous optimal control model. A well detailed user guide for both packages can be found in
https://www.bocop.org/download/.

1.2 Dissertation Outline

In this section we present how the manuscript is organized and the main subjects of each chapter.

Part I of this thesis begins with Chapter 2 where we introduce the Open Pit problem in mining. The
focus of this chapter is to show the classical binary programming formulation introduced by Johnson in
1968 and the newer formulation introduced by Alvarez et al. in 2011. The last one, which uses continuous
functions to retrieve the profile of a mine, will be the seminal model for Chapters 3 and 4.

In Chapter 3 we reformulate the continuous model of Alvarez et al, looking for optimal profiles
among absolutely continuous functions rather than continuous ones. This allowed us to write the Liptchitz

Explication obtained from Bocop user guide in https: //www.bocop.org/download/
Zsee footnote 1
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Figure 1.1: Bocop interface and some options

modulus L, (x), introduced in equation (2.1), as a derivative of p. Using this slight reduction in the
functional space, we can use optimal control tools to obtain optimality conditions for profiles in 2D and
3D. This is the main result of this chapter and corresponds to theorems 3.2.1 and 3.3.1.

On the other hand, Chapter 4 focuses on a numerical study of the Open Pit problem and its Sequential
version. In this chapter we propose a new semi-continuous formulation, presented in section 4.2.2, of
the Sequential Open Pit problem. This formulation is based on a discretization of the space domain
and then the profile is represented by a finite set of variables at the discretization nodes. The explicit
models (SOP)3PC and (SOP)3PC are shown in section 4.2. We present in this chapter several numerical
experiments using local and global methods (using Bocop and BocopHJB) for the two dimensional case
and for the first time in literature, a numerical solution for a 3 dimensional case in a continuous framework
using this new semi-continuous model (see section 4.4.3).

Moving to Part II, in Chapter 5 we introduce two compartmental models for epidemiological purposes.
The first one corresponds to the classical SIR model, which we used in Chapters 6 and 7. The second
one is a small contribution developed in the context of a OPS (Organizacién Panamericana de la salud)
project where we set a compartmental model that considers vaccination ans booster status (see section
5.2).

In Chapter 6 we work with optimal control problems consisted of minimizing the maximum of a
state. We provide four alternative formulations to this problem in the Mayer form, two of which use
state constraints, with one using mixed constraints and the other using differential inclusion. For the last
one we formulated a family of more regular optimal control problems that approximate from below the
optimal value. We compare the numerical performance of each one over both, an academic example and
the minimization of peak of infectious in a SIR model with a L' constraint on the control. We summarize
advantages and drawbacks of the different formulations for numerical computations in Table 6.8 section
6.6.

Chapter 7 shows proof that the optimal control that minimizes the peak of I, with a L! constraints in
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Figure 1.2: BocopHJB interface and some options

the control, has the structure null-singular-null showed in equation (6.5.2). We also compare this solution
with the one obtained by Morris et al that impose just one interval of time where the intervention can
happen.

Finally, in Chapter 8 we show conclusion and perspectives for each part of this manuscript.



Part I

Mining context and the Open Pit
problem






Chapter 2

The Open Pit problem

Mining is among the main Chilean economic activities, according to the technical report Anuario de la
mineria de Chile prepared by Sernageomin [7], the governmental agency of geology and mining in Chile.
It represented 12.5% of the CDP in 2020, mostly thanks to copper exports, of which Chile is the world’s
leading producer. Because of this, there exists in Chile a very active community of mining research which
motives the first part of this work.

The Final Open Pit problem (FOP) consists of finding the optimal shape of an open pit mine (in Figure
2.1 an example), in order to maximize the extraction profit while complying with a slope constraint which
ensures the mine does not collapse. From this base problem, many other more complex ones can be set,
for example, if we add a capacity in the number of blocks, the problem is called Capacitated Final Open
Pit (CFOP). Another well studied problem considers the time periods for which we would like to obtain
the shape of the mine, thus, obtaining an excavation plan. This problem is called Dynamical Final Open
Pit (DFOP) which we also call Sequential Open Pit (SOP).

Figure 2.1: Chuquicamata mine, the biggest open pit mine in the world located in Atacama region of
Chile

We will present in the next section the classical formulation of the FOP, an integer programming prob-

9
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lem based on a block model introduced in 1968 by Johnson in [61], and then the continuous framework
introduced in 2011 by Alvarez et al. [3], which is the seminal paper of our work.

2.1 Integer programming formulation

Let % be a set of blocks where for every i € & we know its benefit of extraction called b;. To extract
a block i it is necessary to take other blocks in order to respect the slope constraint. This information is
stored as an arc in a direct graph (£,A), i.e., (i, ) € A if and only if to extract block i you have to take
block j, in which case j is a predecessor of i. This is shown in Figure 2.2.

~ R
Maximal .

slope i
Predecessors /‘

Revenue b; (block i)

Figure 2.2: Block model example.

To set the optimization problem we define the following variables for each block i € % :

1 if block i is chosen for extraction
Xi =
! 0 if not

therefore, the binary optimization problem is:

(FOP()) Z b,'x,'

€A

xj—x; >0 V(i,j)EA'
x €{0,1} Vie®

adding a maximal capacity C of extraction in terms of total mass, the model can be modified as

(CFOPy) max Z bix;
i€

xj—x; >0 V(l,]) €A
Zpixi <C
ieN

xiE{O,l} Vie #
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where p; is the density of block i. To pose the dynamical problem we consider T time periods. For each
time 7 € {1,..,T} and each block i € # we define the variable:

. 1 ifblock i is extracted at time ¢
X = . .
0 if not

So, for a discount factor @ € (0,1) the Dynamical Final Open Pit, named also by us as Sequential
Open Pit (SOP), is written as follow

T b:
(SOR)) max} )" ’

S5 0+a)! i

T

Y d<1 Vie B

t=1

t
Y x—x>0 Y(i,j)eA, t=1,..T
=1

Y i <G t=1,...T

i€

xe{0,1} Vie B,t=1,..,T

These kinds of formulations have been studied for several years and many others constraints and
conditions can be added (see for example [44, 60, 90]). A complete review of theses models can be found
in [84]. In the following section, we will present a newer and less exploited model, which is based of the
first part of this thesis.

2.2 Continuous framework

The formulation presented in this section comes from [3] and we start by introducing the notation used.
Let Q be the region of interest in R! or R?, supposed to be open and bounded. The border of a pit shall be
determined by a continuous function p : Q — R that is called profile and where p(x) represents the depth
of the pit at point x € Q.

The slope of the pit at point x € Q will be computed as the Lipschitz modulus L, (x) defined as follows

p(¥) = p()]

. —-p
L,(x) :=limsu —
p( ) i—>x<—)l§ |\X—x|

2.1

and it will be bounded by a function w writing L, (x) < w(x, p(x)),Vx € Q. The natural shape of the
ground will be represented by a continuous function py, therefore, each feasible profile has to be deeper
than this initial one and it has to connect with pg in the borders. That condition correspond to the following
constraints:

p(x) —po(x) >0,Vx € Q
p(x) — po(x) =0, Vx € Q.

In Figure 2.3 it is possible to observe the previous description. To finally set the optimization problem,
the effort and gain density functions are defined as e(x,z) > ¢, > 0, g(x,2) €R, V(x,z) € Q X Z, supposed
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uniformly bounded, and the functionals

q(x) q(x)
Glp.q) = / / g(x,z)dzdx, E[p,q] = / / e(x,z)dzdx
QJp(x) QJp
G

4] := G[po,q] E[q] := E[po.4]

Figure 2.3: Explication image from [3].

The Final Open Pit problem in this continuous framework is then posed as:

(FOPC) maxG[p]
p(x)—po(x) >0, VxeQ
p(x) —po(x) =0, VxeaQ
Ly(x) <w(x,p(x)) VxeQ
pPEE(Q)

and after adding the capacity constraint, the Capacitated Final Ope Pit correspond to:

(CFOF;) max G[p]
p(x) —po(x) >0, VxeQ
p(x)—po(x) =0, VxedQ
Ly(x) <w(x,p(x)) VxeQ
E[p]<C
PEF(Q)

To model the dynamical problem in [3] they consider a continuous interval of time [0, 7] and for each
time 7 € [0,T], p(z,-) is a feasible profile of (FOF;). Let also ¢ € L*(0,T), c(¢) > 0 be the capacity at
time ¢ and

C(s,t) = /:c(f)dr

the total capacity in the interval [s, ] C [0, T]. Introducing a monotonically decreasing function ¢ €
%€'(0, T] representing the discount factor, such that (0) = 1 and 0 < @(T) < 1 (typically @(t) = e~

s
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for a given & > 0), and noting P(¢)(x) := p(t,x), the present value of the gain is then:

/ /g x,p(t,x))dxdP(t / / o(t)g(x, p(t x))%(t,x)dtdx.

Finally, the dynamical problem in the continuous framework can be written as:

(SOP.) max /Q /0 T(p(t)g(x,p(t,x))%(t,x)dtdx

p(t,x) = po(x) Vx €dQ, t €[0,T]
(1) (X) < w(x, p(t,x)) VxeQ, te€]0,T)
po=p(0,) <p(s,") <plt,-) Vs, t €10,¢t],s <t
Jo J2) e(x, 2)dzdx < C(s. 1) Vs, €[0,1],s <t
P(l,') €' (Q)

Remark 2.2.1. The objective function of (SOP,) suggest that p(t,x) must be differentiable with respect
tot, so, to avoid that requirement, it can be written in the following form (expression obtained integrating

by parts):
o’ p(Tx) o p(t,x)
T)// g(x,z)dzdx+// - (t)/ g(x,z)dzdtdx
Q/p(0.x) QJo p(0.x)

In this work the authors proved existence results for previous problems (see propositions 6 and 11
in [3]) but neither was any characterization of solutions nor numerical experiments shown. These two
subjects are the novelty of Part I of this thesis.
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Chapter 3

Analysis of optimality conditions for
2D and 3D Final Open Pit

This chapter corresponds to the article [4] entitled "Optimality conditions for the continuous model of the
final open pit problem"

3.1 Introduction

The long term planning of a mine operation consists of defining a sequence for the extraction of material
from the mine in order to maximize profit. As a first step in this process, decision-makers usually must
decide the final pit limit, which corresponds to the identification of a maximum value on the total mass
to be extracted from the site, which enables an upper bound on the discounted value of the profit over
several periods to be defined. This first step is called the Final Open Pit or Ultimate Open Pit problem. A
very early contribution to the practical resolution of this problem was proposed by Lerchs and Grossman
[74] and, since then, a great variety of models and algorithms have been proposed. See Hustrulid et al
[59] and Newman et al [84] for a more thorough introduction to open pit mine planning. The first effort
to formally describe a practical mathematical model to solve this problem in an integrated way seems to
be the work by Johnson [61].

Three different problems are usually considered for the economic valuation, design and planning of
open pit mines. The first is the Final Open Pit (FOP) problem, which aims at finding the region of maximal
economic value under geotechnical stability constraints. Another more realistic problem is what we call
here the Capacity Final Open Pit (CFOP), which adds an additional constraint on the total capacity for
extraction. The third problem is a multi-period version of the latter, which we call the Capacity Dynamic
Open Pit (CDOP) problem, with the goal of finding an optimal sequence of volumes to be extracted with
bounded capacities during each period.

The usual formulation of these problems consists of describing an ore reserve as a three-dimensional
block model. Each block corresponds to a unitary volume of extraction, characterized by several physical
and economic attributes, most of which are estimated from experimental sampling. Block models can
be represented as directed graphs where nodes represent the blocks and arcs determineblock precedence
(order of extraction). Block precedence is essentially induced by operational constraints, such as those
derived from slope stability. This discrete approach usually gives rise to huge, combinatorially large-scale
instances of Integer Programming, such as that presented by Cacetta [29]. A great number of publications
dealing with discrete block modeling for open pit mines have been published over the last 60 years. The
seminal methodology for obtaining the ultimate pit limit, introduced by Lerchs and Grossman [74], has

15
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been extensively applied in real mines for many years. The capacity dynamic problem is more difficult to
solve and many methods using discrete optimization techniques have been proposed by Boland et al [22],
Cacetta and Hill [30] and Hochbaum and Chen [58]. This problem is beyond the scope of this chapter,
but we can mention some dynamic programming formulations, for instance, Johnson and Sharp [62] and
Wright [101]. Metaheuristic and evolutionary algorithms have also been extensively tested by Denby and
Schofield [39] and Ferland et al [47].

In this chapter we use an alternative approach to the above mentioned (CFOP) problem based on
a continuous framework, proposed by Alvarez et al [3]. The basic idea is to describe pit contours by
a continuous real-valued function, which maps each pair of horizontal coordinates to the correspond-
ing vertical depth. Slope stability is ensured by means of a spatially distributed constraint on the local
Lipschitz constant of the profile function. The maximal feasible local slope may vary throughout the
site, depending on the geotechnical properties of the mineral deposit. The extraction capacity and op-
erational costs are described by a possibly discontinuous effort density, a scalar function defined on the
three-dimensional mining site. Concerning the continuous approach, we mention here the contribution by
Ekeland and Queyranne [43], who proposed an alternative approach based on determining an optimum
pit from an optimum dual solution of a particular transportation problem. Additionally, in [55], the au-
thors derive duality results for the stationary open pit problem in the continuous framework, employing
an additional condition called convex-likeness. The same authors, in [93], propose a partial differential
equation model and show that, under suitable assumptions, the physically stable excavation path is the
solution of a certain Hamilton-Jacobi equation.

The economic value of the blocks is given by a gain density defined on the deposit, which can also
be a discontinuous function. Our goal here is to extend the existence results develop by Alvarez et al [3]
to the qualitative properties of the optimal solutions. This qualitative characterization is derived from the
optimality conditions in the calculus of variations and control theory.

The chapter is organized as follows. In Section 3.2 we describe the stationary problem in terms of
continuous profile functions and we establish the basis of our approach, in the context of a "2D-mine",
which permits to give a simple motivation of the real 3D problem and to derive relevant results that can
be generalized to the real case. Section 3.3 is devoted to the study of the realistic 3D instance, extending
the main results of the previous section. By using tools from the calculus of variations, we derive an
operational characterization of the optimal profile, particulary to show that the gain function must take
the value zero along the border of the optimal profile, unless the capacity or slope constraints are active.
In Section 3.4 we briefly summarize the main contributions of this chapter and indicate some avenues for
future research.

3.2 The 2D open pit problem

To fix ideas, we begin by considering the idealized case of an open pit on the plane, that is, the framework
where the profiles are modeled using a continuous function that depends only on a single space variable
(denoted x for simplicity). Generically, we denote a profile of an open pit by p : [a,b] — R, where a and
b are the extreme points of the open pit (there is no loss of generality in taking a < b) and where p(x)
represents the depth of the profile at the point x € [a, b]; see Figure 3.1.

3.2.1 Statement of the problem

For the sake of notation, we assume that the depth of a profile is always positive. In this framework, an
admissible profile is a function p : [a,b] — R that must satisfy some conditions, the first one being as
follows: given an initial profile pg : [a,b] — R an admissible profile has to satisfy

po(x) < p(x), Vx € [a,b].
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—

a T b
* -—- I

Ground level --@-----------------------———— - ( ***************

' p(x)

Figure 3.1: Profile of an open pit on the plane

which means that a feasible profile must be deeper than the initial profile py.
Given a profile p : [a,b] — R, we define its slope at the point x € [a,b] as the Lipschitz modulus of p
at x (see for example Dontchev and Rockafellar [42, Section 1D] ), that is,

Ly(x) :=limsup 7“)()(2 — 13(x)| .
Foxe i | — %]
Due to the risk of landslides, the slope of a profile cannot be too steep. Note that the maximal slope
allowed may change depending on the position and depth in the pit. This constraint is then represented

via the condition
Ly(x) < k(x,p(x)), VxE€l[a,b],

where K(x,z) represents the maximal slope at the point (x,z) allowed for a profile p : [a,b] — R to be
admissible. Note that if the profile is continuously differentiable on (a,b), then the slope agrees with the
absolute value of the profile’s derivative (see [42, Section 1D] ), that is,

Ly(x) = [p(x)], V€ (a.b).

However, in our setting, working with smooth functions is too restrictive. For this reason we choose to
work with a broader class of functions, namely, the collection of continuous functions whose derivatives
exist almost everywhere on [a, b] and which satisfy

p(x) = p(a) + /axp(s)ds, Vx € [a,b].

This class of functions is the so-called set of absolutely continuous functions, which we denote by
/€ |a,b]. It turns out that absolutely continuous functions are well behaved with respect to the slope, in
the sense that the slope agrees almost everywhere with the derivative of an absolutely continuous profile.

Lemma 3.2.1. Let p € /6|a,b), then L,(x) = |p(x)| almost everywhere on [a, D).

On the other hand, due to physical or economic constraints, the capacity of extraction is indeed
limited. Given a position x, the effort associated with extracting a block at depth z > po(x) can be
represented by a nonnegative quantity e(x,z). Thus, given a maximal budget cimax > 0, the capacity
constraints associated with a profile p : [a,b] — R can be expressed via the condition

b rp(x)
/ / e(x,z)dzdx < Cmax.
a Jpo(x)

Concerning optimality, the marginal profit at each x € [a,b] of an admissible profile p : [a,b] — R is
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given by
p(x)
/ 8(x,2)dz
P

0(x)

where g(x,z) represents the profit earned (or gain) for carrying out extraction at the block (x,z) for any
z € [po(x), p(x)]. Therefore, the total profit associated with an admissible profile p : [a,b] — R is given

by
b rp(x)
/ / g(x,z)dzdx.
a Jpo(x)

We are now in a position to formally state the 2D Final Open Pit problem:

o b rp(x)
Maximize / / g(x,2)dzdx
a Jpo(x)
over all p € &% [a,b] subject to p(a) = po(a), p(b)= po(b)
po(x) < p(x), forallx € [a,b], (P2p)
[p(x)] < x(x,p(x)) forae. x € [a,b]

b rp(x)
/ / e(x,z)dzdx < cmax-
a Jpo(x)

3.2.2 Standing Assumptions

Throughout the remainder of this section, unless otherwise stated, we will assume —eo < a < b < +o0 and
Cmax > 0 are fixed parameters of the problem. The initial profile py : [¢,b] — R is a given continuously
differentiable function.

The profit objective function g : [a,b] x R is assumed to be a nonnegative, bounded and piecewise
continuous function. The marginal cost of extraction e : [a,b] X R — R is assumed to be a nonnegative,
bounded and continuous function. Also, the maximal slope allowed « : [a,b] x R — R is assumed to be
continuous, nonnegative and bounded with p — x(x, p) being continuously differentiable for any x € [a, b]
fixed and such that (x,q) — V,k(x,q) is bounded on [a,b] x R".

Under these assumptions, the existence of an optimal profile is ensured, as proved by Alvarez et al
[3]. Moreover, the fact that an optimal profile is absolutely continuous (Lipschitz continuous actually) is
enforced by the boundedness and continuity of the maximal slope k. This existence result concerns as
well the 3D case studied in §3.3.

Remark 3.2.1. In the light of Alvarez et al [3, Lemma 1], the feasible set of (Pop) without the capacity
constraint, is convex provided 7 — K(x,z) is concave for any x € |a, D] fixed. Moreover; by [3, Proposition
5], if 2+ e(x,7) is monotonically increasing and z — g(x,z) is monotonically decreasing (for x € |a, D)
fixed), then the problem (Pyp) turns out to be a convex one. The previous paragraph can also be applied
to the 3D case. However, under the assumptions we have done so far, these hypotheses cannot be assured.
As a matter of fact, the problem (Pyp) may have several local minima, which are not necessarily global.
It worths to mention then that in general setting of this manuscript we deal with non-convex problems.
The previous comment also applies to the 3D case.

3.2.3 Basics on state constrained optimal control

Let us point out that the formulation of (P,p) is slightly more restrictive than what has been treated in
Alvarez et al [3]. Essentially, we restrict our analysis to a small class of functions, those that are absolutely
continuous. The main advantage of doing so is that now the Final Open Pit problem can be treated as an
optimal control problem with state constraints, and optimality conditions can be derived by fairly standard
methods.
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For the sake of completeness, we state the main tool from optimal control theory we are going to use
in the analysis provided in this section. Let us consider a general Mayer optimal control problem on R":

Minimize (q(b))

over all q € 2/€"|a,b] and measurable functions u
q(x) = f(x,q(x),u(x)), forae. x € [a,b],
(x) €U, forae. x € [a,b],

h(x,q(x)) <0, for any x € [a,b],

)
(¢(a),q(b)) € E.

satisfyin
ying (Pw)

<

Here, g € &/¢" [a,b] means that ¢ : [a,b] — R" and if g = (g1, . .., ¢, ), then each component ¢; € &/ € [a, b].
Furthermore, for the purposes of our analysis, we only need to consider the case in which:

* ¢ : R" — R is a continuously differentiable function,

o f:]a,b] x R" x R™ — R" is such that, x — f(x,§,4) is measurable, ¢ — f(£,q,4) is Lipschitz
continuous (uniformly with respect to (£,4)) and u — f(%,§,u) is continuous for any (£,4,4) €
[a,b] x R" x U fixed,

* h:la,b] x R" — R is continuous, with ¢ — (%, q) being differentiable for any £ € [a, b] fixed and
such that (x,q) — V4h(x,q) is continuous on [a,b] x R",

* U CR™is a given nonempty compact set,
e E CR"x R"is a nonempty closed convex set.
It is worth recalling that the (convex) normal cone to a set S C R is defined by

Ns(s):={n e RF| (n,5§—5)<0,V5€S}, Vses.

In particular, given sg € R, we have

{0} if s < s0
N —oo, 8 - . d N S, == R
(-0l (8) { [0,400) if s =0, o (o0} (50)

Definition 3.2.1. An arc § € o/€"[a,b] admissible for (Py) is said to be a weak local minimizer of the
problem (related to an optimal control i) if there is € > 0 such that

q € /6" (a,b] is admissible for (Py) and ||g—gl|ly11 <€ =  @(3(b)) < @(q(b)).

Here || - ||w1.1 stands for the usual norm of the Sobolev space W' ([a, b]; R").

It turns out that, in this setting, weak local minimizers of (Pyp) satisfy Maximum Principle for State
Constrained problems (Vinter [97, Theorem 9.3.1]).

Lemma 3.2.2. Under the conditions stated above, if § € </€"[a,b] is a weak local minimizer of (Pym)
related to the optimal control i, then there exist A € &/¢"[a,b], n € {0,1}, a (positive) Radon measure
U on [a,b], and a Borel measurable function y: [a,b] — R" satisfying

Y(x) = V4h(x,q(x)), for p-a.e. x € [a,b],

such that
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1. (A,p,m) #(0,0,0);

2. —A(x) € ICH (x,G(x),E (x),a(x)  for a.e. x € [a,b];

3. (Ala),=E(b)) € {0} x {nVe(q(b))} + Ne(q(a),q(b));

4. H(x,q(x),&(x),i@(x)) = maxuep H (x,g(x),E(x),u) fora.e. x € [a,b];
5. supp(i) € {x € [a,] | h(x,q(x)) = 0}.

Here H (x,q,&,u) = (&, f(x,q,u)) and

5(x)=l(X)+/[ax[Y(S)#(dS) Vx€la,b[ and G(b)=A(b)+ sl Y(s)u(ds)

3.2.4 Optimality conditions for the 2D open pit problem

In this part of the chapter, we analyze the behavior of an optimal profile by using the tools from optimal
control theory described earlier. The following result can in principle be stated for local optima as well.
However, to keep the presentation of the chapter simple, we prefer to present it only for a global optimum.

Theorem 3.2.1. Let p € </C[a,b] be an optimal profile of the problem (Pyp). Then there are § &
€la,b], n € {0,1}, A <0 and a (positive) Radon measure W on [a,b], with at least one of them not
equal to zero, such that

—{(x) € NG(x, p(x)) + Ae(x, p(x)) + |u([a,x]) = £ (x)|9pk(x, p(x)),  a.e. on [a,b],
with supp(pt) C {x € [a,b] | po(x) = p(x)}, and where
G(x,p) =co{g(x,p"),8(x,p")}, Vx€la,bl,VpeR.

Furthermore, we also have

_ b )
A (/ / e(x,z)dzdx — cmax> =0
a Jpo(x)

and (§(x) — (la,x)) ([p(x)| = k(x, p(x))) = 0 for a.e. x & [a,b].

Proof. The proof of the result is based on a transformation of the Final Open pit problem (P,p) into a
Mayer problem such as (Py), for which p provides a weak local minimizer related to the optimal control

7ﬁ(x) if x(x, p(x
()= | x(opl) PO

0 otherwise.

3.1

We divide the proof into several parts for the sake of exposition.

1. First we show that (P,p) is an instance of the Mayer problem (Pyr). The key points here are to
interpret the slope condition as a controlled ordinary differential equation and to be able to handle
the capacity constraints

b rp(x)
/ / e(x,z)dzdx < cmax (3.2)
a Jp

0(x)
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as an end-point constraint of an additional state. Let p € &/%¢[a,b] be a given profile. On the

one hand, note that for any x € [a,b] such that x(x, p(x)) # 0, the condition |p(x)| < k(x, p(x)) is
p(x)

K(x, p(x))

equivalent to —1 < u(x) := < 1. This implies then that the condition |p(x)| < k(x, p(x))

is actually equivalent to

p(x) =u(x)x(x,p(x)), with —1<u(x) <1, forae. x€[a,b].

On the other hand, note that (3.2) is actually an isoperimetric inequality constraint. To deal with it,
we introduce a new auxiliary state. Let q; : [a,b] — R be given by

t rp(x)
q1(1) :/ / e(x,z)dzdx, Vt € la,b].
a Jpo(x)

Thus, it is clear that (3.2) can be written as g (b) < cmax. Furthermore, ¢;(a) = 0 and the velocity
of g1 is given by the expression

p(x)
gi1(x) = / e(x,z)dz, forae.x€ [a,b].
po(x)

Also, by defining g3 : [a,b] — R via the formula

t rp(x)
q2(1) :/ / g(x,z)dzdx, Vrt € |a,b],
a Jpo(x)
it is clear that the total profit is given by ¢2(b), and that this new state satisfies

p(x)
Gga(x) = / ( )g(x,z)dz, for a.e. x € [a,b], with g2 (a) = 0.
J polX

Therefore, setting g(x) = (¢1(x),g2(x), p(x)) for any x € [a,b], we see that (P,p) is an instance of
the Mayer problem (Py) with ¢(g) = —¢qa, h(x,q) = po(x) — g3, U = [—1,1],

q3 q3
f(x,q,u) = (/ : e(x7Z)dz7/ z g(x,Z)dz,uK(qu))
Jpo() po(x)

and
E = {(Oﬂ,ﬁ) ER3xR3 |y =0 =0, oz = pola),Bi < cmax and B3 Zpo(b)}.

2. Now, since p is assumed to be an optimal solution of (P,p), it follows that p provides a weak local
minimizer of (Pyr), related to the optimal control defined in (3.1).

Moreover, the condition under which Lemma 3.2.2 has been stated are satisfied by the data provided
in the preceding part; the Lipschitz continuity of g — f(£,q,#) (uniformly with respect to (£,4) €
[a,b] x U) comes from the fact that e and g are measurable bounded functions and «x is Lipschitz
continuous in the second variable, uniformly with respect to the first one. Therefore, we can apply
Lemma 3.2.2, and so, there exist A € &76>[a,b], n € {0, 1}, a (positive) Radon measure u on [a, b],
and a Borel measurable function ¥ : [a,b] — R? fulfilling the conditions in Lemma 3.2.2. Note first
that the Hamiltonian does not depend on ¢ nor on ¢, and also that

V4h(x,q) = (0,0,—1).
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Because of point 2 in Lemma 3.2.2 and the definition of x ~— &(x), we can deduce that there are
A1,A2 € R such that

él(x) = )vl (x) = 11 and 52()6) = lz(x) = 12, Vx € [a,b},

and

S3(x) =A3(x) —p(la,x]), Vxela,b[,  and &(b) =A3(b) — pu(la,b]).
Note also that V@(g) = (0,—1,0) and

Ne (G(a),q(b)) =R* x {B € R¥ | By >0, Bi(q1(b) — cmax) = 0 and o =0} .

By point 3 in Lemma 3.2.2, we have that A, =1 € {0,1} and 4; < 0 with

_ b rp(x)
M (/ / e(x,z)dzdx — cmax> =0.
a Jpo(x)

By point 4 in Lemma 3.2.2 we have, since k is nonnegative, that

S ()a(x)k(x, p(x)) = [63(x) [k (x, p(x)), forae. x € [a,b].

Note that whenever k(x, 5(x)) # 0 (a.e. on [a,b]) we have that

S3(0)P(x) = &3 () [ (x, p(x)).

This implies that whenever p(x) < k(x, p(x)), then necessarily &3 (x) = 0, and so
& (%) (P(x) —k(x,p(x))),  forae. x € a,b].

Finally, note that since e is continuous and x is continuously differentiable in the second variable,
for any x € [a,b] & € R and u € [—1, 1] fixed, such that p — g(x, p) is continuous at p = g3, we
have

VqH(x7Qa 5714) = (0707 §1e(x,q3) + 52g(x7 CI3) + 53”817'(()(7 CI3))

In particular, by point 2 in Lemma 3.2.2, for a.e. x € [a,b] such that p — g(x, p) is continuous at
p = p(x) we have

—A3(x) = hre(x, p(x)) +ng(x, p(x)) + &3 (x)i(x) Iy (x, 5(x))

because in this case g — H(x,q, & (x),i(x)) is continuously differentiable at

x P x )
q= (/ / e(i,Z)dzdi,/ / g(f,z)dzdi,p(x)),
¢ Jro(d) a Jpo(®

Since the functions g is piecewise continuous, for any x € [a,b], if p — g(x, p) is not continuous at
p = p(x) we have that

8qCH(xaCI7€’M) = {(O’O)} X (éle(x’ q3) +€2G(x7q3) + 53’49;7’(()67613))

where
G(x,p) =co{g(x,p”),g(x,p")},  Vx€la,b], peR.
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Also, on the one hand, by Maximum Principle (point 4 in Lemma 3.2.2), for a.e. x € [a,b] such
that x(x, p(x)) > 0 we must have that &3(x)i(x) = |€3(x)|. On the other hand, if x(x, p(x)) = 0, we
must have that d,k(x, p(x)) = 0 because p = p(x) is a local minimum of p — x(x, p). Combining
these two issues we get

& (¥)a(x),K(x (x)) = & WIdpK(x.p),  forae. x € [a,b).

Therefore, setting A = A; and { = A3 the conclusion follows.
O

We now state a direct consequence of the preceding theorem in the case when the slope condition is
not active, and the state constraint is only active at the end-points.

Corollary 3.2.1. Let p € &/€[a,b] be an optimal profile of the problem (Pap). Suppose that
po(x) < p(x), Vx€la,b] and |p(x)| < K(x,p(x)), fora.e x€la,b]. (3.3)
Then there are n € {0,1} and A <0, such that

0 € nG(x,p(x)) +Ae(x, p(x)), a.e. onla,b].

_ b rp(x)
A (/ / e(x,z)dzdx—cmax> =0.
a Jpo(x)

In particular, if p — g(x, p) is continuous for any x € |a, b fixed, then the condition reduces to

with

ng(x, p(x)) + Ae(x, p(x)) =0, Vx € [a,b].
Moreover,

1. if the marginal cost associated with extracting a block at any depth is zero (there is no capacity
constraint), that is, e(x,z) = 0 for any x € [a,b] and z > po(x), then the marginal gain of extracting
a block at any depth must be zero on the subsection |a,b], that is,

g(x,p(x)) =0, Vx€la,b].

2. if the marginal cost associated with extracting a block at any depth is positive (there is an effective
capacity constraint), that is, e(x,z) > 0 for any x € [a,b] and z = po(x), then N = 1 and

g(x, p(x)) —&—ie(x,ﬁ(x)) =0, Vx€la,b].

Proof. 1t is enough to apply directly Theorem 3.2.1, and check that {(x) = u([a,x[) for a.e. x € [a,b] and
note that t([a,x[) = 0 for a.e. x € [a,b] because supp(u) C {a,b}. O O

3.3 The 3D open pit problem

We now turn into the more realistic case of an open pit in the 3D space. The profiles in this framework
are modeled using a continuous function that depends on the two horizontal space variable (denoted x
and y for simplicity). Generically, we denote a profile of an open pit by p : Q — R where Q C R? is the
bounded domain in R? that represents the open pit and where p(x,y) represents the depth of the profile at
the point (x,y) € Q.



24 CHAPTER 3. Analysis of optimality conditions for 2D and 3D Final Open Pit

3.3.1 Statement of the problem

As done for the 2D case, we assume that the depth of a profile is always positive. The final open pit
problem in the 3D case has the same structure as in the 2D case. This means that for a given initial profile
po :  — R, the total profit and total extraction associated with an admissible profile p : Q — R are given

respectively by
/ / g(x,y,z)dzdxdy and / / e(x,y,z)dzdxdy.
po(x po(x.y)

The maximal slope allowed is also considered to be bounded, and thus profiles are Lipschitz continuous
mappings. The associated constraint is then represented via the condition

Ly(x,y) = limsup |P( ¥) — p(&,9)|

X,y, plX, ,
Iy e AR

Therefore, the Final Open Pit problem in the 3D case is the following:

Y(x,y) € Q.

x,y)
Maximize / / g(x,y,z)dzdxdy
polx

over all peE L1p )
subjectto  p(x,y) = po(x,y), forany (x,y) € 9Q
po(x y) <plxy), forany(x,y)€Q,
) K(x,,p(x,y)) forany (x,y) € Q

/ / e(x,y,z)dzdxdy < cmax-
po(x

Remark 3.3.1. A more general model that considers profiles having a time dependance has been studied
by Alvarez et al in [3]. The analysis of this problem, called Capacitated Dynamic Open Pit, becomes
more difficult and we plan to study it in details elsewhere.

(P3p)

Remark 3.3.2. Similarly as for the 2D case, a control setting can be introduced to deal with the 3D case;
see the proof of Theorem 3.2.1. This is certainly a suitable approach to handle Theorem 3.3.1, however, in
this setting the control is distributed and also subject to constraints; see the discussion in §3.4. Moreover,
optimality conditions for problems of this kind are known to be harder to handle and for this reason we
take another path to prove Theorem 3.3.1 base on classical calculus of variations.

3.3.2 Standing Assumptions

Throughout the remainder of this section, unless otherwise stated, we will assume Q C R? is an open
bounded domain and cpax > 0 is fixed parameter of the problem. The initial profile po : Q — R is a given
continuously differentiable function.

The densities of gain and effort are now g: Q xR and e : Q x R — R, respectively. They are assumed
to be bounded, measurable and the second one (the densities of effort) nonnegative. Also, the maximal
slope allowed x : Q x R — R is assumed to be continuous, nonnegative and bounded with p — Kk(x, p)
being continuously differentiable for any x € Q fixed and such that (x,q) — d,Kk(x,p) is bounded on
Q x R,

3.3.3 Optimality conditions

We now present some necessary optimality conditions that extend the one given for the 2D case. The
conditions obtained in this case do not require the continuity of the gain function g nor the continuity
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of the effort e. However, because of the nonholonomic character of the slope constraints, the result we
present is only valid for the case when optimal profiles do not saturate this condition (see assumption (3.4)
below). Nonholonomic constraints are hard to handle in calculus of variations of multiple integral and
require technical assumptions which may be too strong for the scope of this chapter. The main difficulty
is that the construction of suitable variations is not always ensured; see for instance [52, Chapter 2].
It remains then as an open problem and future work to provide necessary optimality conditions for the
general case where nonholonomic restriction may be active.

Theorem 3.3.1. Let p € Lip (ﬁ) be an optimal profile of (P3p). Assume that p # po and let Qy C Q be
the open domain of R* given by

Q= {(XaY) eR? | po(x,y) < ﬁ(x,y)}.

If the slope constraints is not active on Q, that is,

sup {Lp(x,y) — Kk(x,y,p(x,y)) } <O, (3.4)
(va)EQO

then there is A < 0 such that

g(x,y, p(x,y)) + Ae(x,y, p(x,y)) =0, ctp.inQy.

Furthermore, A satisfies the following properties:
pxy) -
1 If/ / e(x,y,7)dzdxdy < cmax then A = 0.
Q Jpo(x.y)

2. A can be taken to be any value A = —/ g(x,y, p(x,y))w(x,y)dxdy, provided that v € 6;°(Q) is
Q
such that/ e(x,y, p(x,y)y(x,y)dxdy = 1.
Q

Proof. The proof follows rather standard arguments in calculus of variations, adapted to be able to handle
the integral inequality constraint of isoperimetric type. Assume first that e(x,y, p(x,y)) is not identically
zero in Q. Take some Yy € €;°(€o) such that

. et el dsdy =1

Since e(x,y, p(x,y)) = 0 in (x,y) € Qo and it is not identically zero, the existence of such function y is
guaranteed. Now take @ € 6;°(Qo) arbitrary and define for s, € R the profile p,, € Lip (Q) given by
Pst(x,y) = p(x,y) +s@(x,y) +1y(x,y). Consider the functions (s,r) — f(s,t) and (s,t) + h(s,t) defined
on R? via the formulas

Psit (x.y)
/ e(x,y,z)dzdxdy.
pPo (x.,y)

Py (%))
Sf(s,1) ::/ / g(x,y,z)dzdxdy and h(s,t) ::/
Qo

Po(x.y) Qo

By the definition of Qy, the continuity of p — k(x,y, p) and (3.4), it follows then that there is § > 0 such
that for any (x,y) € Qo and any s,¢ € (—3,8) we have

Pst(x,y) > po(x,y) and L, (x,y) < K(x,y, pss(x,y))-

Since p is an optimal profile for the final open pit problem (P3p), it follows that (0,0) is a local maximum
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of the problem
Maximize f(s,t) over all 5,7 € R subject to A(s,?) < cmax-

This nonlinear optimization problem satisfies the so-called Mangasarian-Fromovitz condition because
o(0.0) = [ ey, ) y)dady = 1.
0

Where the first equality is justified by the Dominated Convergence Theorem and the fact that e € L™ (Q x
R). Therefore, by the Karush-Kuhn-Tucker theorem, there is A <0, which in principle depends on v and
¢, such that

V£(0,0)+2AVAh(0,0)=0 and A(h(0,0) — cmax) = O.

Moreover, similarly as justified above, it is not difficult to see that
O(0.0) = [ ely,plx.))g(x.y)dndy,
0
d5f(0,0) = /Q g(x,,p(x,y))@(x,y)dxdy,
0

05(0,0) = [ gx.3,px.3)) wlx.y)dxdy

0

On the one hand, by the condition over the partial derivatives with respect to the ¢ variable we get A does
not depend on ¢ because

[ ey, pey))wir)dady = ,£(0.0) = ~A9h(0.0) = -
0
On the other hand, by the condition over the partial derivatives with respect to the s variable we get

L, (83 P(5,9)) + Ry, B, )) (. )dsdy = 0.

But, since ¢ € 65°(Q) is arbitrary and (x,y) — g(x,y, 5(x,y)) + Ae(x,y, p(x,y)) belongs in particular to
LZ(QO), by the fundamental lemma of the calculus of variations (cf. [66, Lemma 3.2.3]) the conclusion
follows.

Finally, for the case that e(x,y, 5(x,y)) is identically zero in Qy it is enough to define s — f(s) on R

via the formula
(x,y)+s@(x.y)
/ / g(x,v,z)dzdxdy,
Qo /po(x

with @ € 6;°(Qo) arbitrary and check that s = 0 is a local minimum of f. Then the conclusion follows
by using the Fermat rule (f(0) = 0) and fundamental lemma of the calculus of variations. O O

Remark 3.3.3. Note in particular that Theorem 3.3.1 says that if the marginal cost associated with
extracting a block at any depth is zero (there is no capacity constraint), that is, e(x,y,z) = 0 for any
(x,y) € Qand z > po(x,y), then the marginal gain of extracting a block at any depth must be zero on the
subsection Q, that is,

g(x7yap(x7y)) :07 Cfp-inQo.
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3.4 Future work and final remarks

In this chapter we have provided necessary optimality conditions for a profile of an open pit mine to be an
optimum for the final open pit problem in the 2D as well as on the 3D. Both settings involve isoperimetric
restriction, which are hard to handle in general. Nonholonomic restrictions, such as the slope condition
has been treated only for the 2D case. The 3D case remains as an open question that deserves some
attention, and which we plan to address in a future work.

Obtaining numerical solutions is still an open problem. For this purpose, a classical direct method or
an indirect method using the results of this chapter can be implemented. Preliminary simulations have
been done with the help of the INRIA solver for optimal control problems BOCOP [27]. This is an issue
that need to be investigated in more details.

Finally, let us mention that, similarly as done for the 2D case, the maximal slope condition in the 3D
can actually be subsumed by a control type condition

Vp(x,y) = k(x,y,p(x,y)) (cos(0),sin(0)), forae. (x,y) €Q, 6 €[0,27).

Thus, a possible way to address the final open pit problem is to study the optimal control problem associ-
ated with this constraints. This issue needs to be investigated in details.
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Chapter 4

Numerical study of 2D and 3D Final
and Sequential Open Pit

This chapter corresponds to the submitted pre-print [80] titled "Optimal control approaches for Open Pit
planning"

4.1 Introduction

In long-term planning of mine operation, a common task consists in determining the profile of the total
mass of material to be extracted from the site to optimally design an opencast mine. This so-called Final
Open Pit problem was introduced in the early works Ref. [74, 61], with a more recent overview in Ref.
[84].

The typical approach used to solve this problem is based on a discrete block model of the site, each
block having an associated extraction cost and profit value, based on topographical and geological data.
Using a graph of block precedence (i.e. order of extraction) allows to take into account slope constraints
for the mine stability, and gives rise to large Integer Programming problems, see for instance Ref. [29].
The dynamic programming approach was also investigated in this framework, see e.g. Ref. [101]. An-
other approach presented in Ref. [93] uses a PDE formulation for time labeling functions.

The present chapter follows the continuous approach introduced in Ref. [3] with the reformulation of
the Open Pit using a calculus of variation framework, and then in Chapter 3 as an optimal control problem.
The main contributions of the present work include the analysis of the Final Open Pit (FOP from now)
with capacity, slope and initial profile constraints, using Pontryagin’s Maximum Principle to extend the
results previously obtained in chaper 3. Then we introduce a new semi-continuous formulation that
can handle the Sequential Open Pit problem (SOP from now) ,i.e. optimization of the mine profile over a
sequence of several time-frames, for a 2D space domain (3D mine profile). Finally, numerical simulations
are provided for both the continuous and semi-continuous approaches, including global optimization for
the 2D FOP case, and to our knowledge the first results for the 3D profile optimization as an optimal
control problem. The outline of the chapter is as follows. After the introduction presenting context,
Section II covers the SOP problem statement with the continuous approach, and introduces the semi-
continuous formulation. Section III presents the FOP analysis using Pontryagin’s Maximum Principle
and in particular discusses the control structure in terms of bang, constrained and singular arcs. Section
IV present the numerical simulations for three test cases: 2D FOP, 2D SOP and 3D SOP, and is followed
by the conclusions.

29
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4.2 Problem statement

For a given spatial domain 2, we consider a continuous function p : Q — R called profile that delimits the
shape of the mine pit. The aim is to determine the profile that maximizes the gain from the excavated soil,
while respecting some limits for the excavated capacity and maximal slope of the mine. We recall now
the continuous approach for open pit planning, and introduce a new semi-continuous approach that can
handle the 3D profile case. Both of these approaches lead to optimal control formulations of the problem.

4.2.1 Continuous formulation

The key idea in the so-called continuous formulation, originally introduced in [3], is to use the distance
(position along the x-axis) as independent variable, which allows to define the mine profile as a function
of this new ’time’. Introducing a suitable dynamics for this function, with the associated control function,
allows to formulate the open pit planning as an optimal control problem (OCP).

Final open pit planning problems (FOP)

For the 1-dimensional case, the domain Q = [a,b] will correspond to the independent variable or time’ of
the optimal control problem. Consider the state variables P,c : [a,b] — R for the depth profile of the pit
and the excavated capacity of the mine. Let us also denote Py € €' > 0 the initial profile corresponding
to the natural shape of the ground. We set the state constraint P(¢) > Py(t),Vt € [a,b], and the boundary
conditions P(a) = Py(a),P(b) = Py(b). An additional final condition is that the total excavated capacity
is limited, i.e. ¢(b) < Ciax-

We also introduce « : [a,b] x R — R* such that k(¢,z) is the maximal pit slope at position ¢ and depth
z. Instead of the original dynamics P = u, we choose to use a normalized control u : [a,b] — [—1, 1] which
is a bit simpler than having the mixed state-control constraint |u(z)| < x(¢,P(¢)) for the maximal slope.
As part of the soil characteristics, we also note g, e : [a,b] x R — R the densities of gain and effort for
excavating at a given position and depth. The optimal control formulation of (FOP) is then as follows:

b pP(t)
max/ / g(t,z)dzdt
a Py (l)

P(t) = u(t)k(t,P(t)) Vt € [a,b]

é(t) :/P(t)e(t,z)dz vt € [a,b]
(FOP) ()

u(t) € [-1,1] Vi € |a,b)

Py(t)—P(t) <0 vt € [a,b]

P(a) = P(a), P(b) = Py(D)

c(a) =0, ¢(b) < Cmax

Remark 4.2.1. In the following we take the basic effort function e = 1. The gain function g is typically
defined by interpolation over tabular data, and has to be integrated numerically along the depth z.

Sequential open pit planning (SOP)

We introduce now an extended version of (FOP), in which we want to schedule an extraction program
over N consecutive time-frames. This case is quite relevant in mine planning since mining companies
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divide the digging process into periods for operational purposes. We extend the notations of (FOP) to the
multi-frame framework, and note P; the mine profile at time-frame i, with the associated control u;, while
ci is the excavated capacity during time-frame /. Each mine profile has to be deeper than the previous
one, i.e. the constraint P > Py from (FOP) is generalized as P, > P,_;,i = 1...N. The capacity limit ¢},
is now enforced at each individual time-frame. Finally, the objective functlon now takes into account a
depreciation rate & > 0 over time, with the gains for the more distant time-frames being valued less than
for the more immediate time-frames. This new optimal control problem reads as follows

Pi(t
/ / T dzdt

i=1 Pii(
ful P(1)) Vt € la,b], i=1,....N
,f/ e(t,z)dz vVt €la,b], i=1,....N

(Sop) P

u;(t) € [-1,1], Vt € [a,b], i=1,....N
P_i(t)—P(() <0 Vt €la,b], i=1,....N
Pi(a) = Py(a), P,(b) = Py(b) i=1,...,N
ci(a) =0, ¢i(b) < chyux i=1,...,N

Remark 4.2.2. Note that (SOP) with N = 1 corresponds to (FOP). Numerically, the multi-process
(SOP) can be reformulated by duplicating the state and control variables (as well as the constraints) for
each time-frame. Adding the proper linking constraints between the final and initial conditions of the suc-
cessive time-frames, we obtain a single process version of (SOP) that can be solved by standard methods.
The overall problem dimension, however; is higher, therefore computationally expensive methods such as
global optimization may be able to handle (F OP) but not (SOP), see section 4.4.

Remark 4.2.3. For the discrete (block) formulation, it is known (see for instance Ref. [30] and [79])
that each profile (or ’pit’) which is solution of (SOP) is not deeper than the optimal pit of (F OP) with the
same parameters and infinite capacity. A similar result has been obtained for the continuous framework
in Ref. [3].

4.2.2 Semi continuous formulation for SOP

The main limitation of the continuous approach is that using the independent variable to represent the
position in space makes it difficult to handle the 3D profile case, both in terms of dynamics / controls and
profile slopes. This is why we introduce a new approach called the semi-continuous formulation, based
on an explicit discretization of the space domain Q. The mine profile is therefore represented by a finite
set of variables at the discretization nodes, as illustrated in Figure 4.1. Control variables are defined as
the excavation effort at each discretization node. Slope constraints are modeled as state constraint linking
each node with their neighbors. The independent variable is here standard time, expressed in time-frames
such that the final time 7 is the total number of time-frames. Since SOP is a multi-phase problem, one
standard way to formulate it is to normalize the time interval to [0, 1] and duplicate the variables for each
time-frame. This approach yields another optimal control formulation of the Sequential Open Pit prob-
lem, for which extension from 1D to 2D space domain is rather straightforward, at the cost of an increase
in overall problem dimension.

Notations. In the context of the semi-continuous approach, for functions of both space and time such
as profile, controls and slopes, we will typically use subscripts for the space discretization node in 2, and



32 CHAPTER 4. Numerical study of 2D and 3D Final and Sequential Open Pit

exponents for the time-frame of the multi-phase Sequential Open Pit. For instance, Pik will represent the
profile depth at node i and time-frame k, and P* := (Pk ),i =0,...,N refers to the mine profile at time-
frame k. Similarly, Ulk will denote the digging at node i and time-frame k, with U* := (Pl-"),i =0,....,.N
corresponding to the overall excavation effort over the domain Q at time-frame k. We will also denote by

jﬁkH the integral of a function between the two mine profiles at time-frames k and k+ 1; for 2D profiles
this is a 2D integral along x and the depth z, and a 3D integral along x,y, z for 3D profiles.

N intervals for €

- A N x M intervals for

Figure 4.1: 1D / 2D Space discretization of the mine profile

One dimensional profile space domain

Discrete profile. We discretize the space domain Q = [a,b] into N equal intervals of length Ax = ,
with N+ 1 discretization nodes (x;), and note I = {0, ..., N} the set of indices for the nodes. We define the
state variables for the profile nodes (P;);c; as functions of time. We also introduce the control variables
at each node (U;);e; > 0, corresponding to the excavation effort, so that the profile variables follow the
simple dynamics

B(t)=U(t),Viel, vt €[0,T]. 4.1)

Gain. The achieved gain during time-frame k is the integral of g between the current profile PX and
the previous P~!. Taking into account the depreciation rate ¢ introduced in 4.2.1, the overall gain to be
maximized is

Z/ 1+au = dxd. (4.2)

The computation of this objective is detailed in 4.6.

Slope. We denote S{-‘ the slope at node i and time-frame k, which is a function of time. The maximal
slope condition writes as

k
1< Si(1)

_ 2 <y Viel,Vk=0...T ,Vte0,1 43
S ey S [0,1] 4.3)
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In the 2D case we will use the simple slope formula
S = (P —PL,)/Ax (4.4)
and the slope limits are state constraints.

Capacity. The excavation effort at each time-frame k corresponds to the integral of the effort £
between the two consecutive profiles PX~! and P¥, and the capacity limit writes as

Pk
/k Jelx,2)dxdz < Gy, Vhk=1,....T. (4.5)
.

The computation of this integral is detailed in 4.6.
Initial profile. This is now a standard initial condition of the form
PY(0) = po(x;), Vi€EL (4.6)
We obtain the following multi-phase problem (SOP)%? with Fig. 4.2 illustrating the profile discretiza-

tion in the 2D case, with N =7 and T = 2. Implementation details regarding the approximation of the
various integrals are presented in 4.6

T .pk
g(x,2)
max dxdz
kzl./Pkl (1+a)k!
PE(t) =UK@), icl, k=1,....,T, t€]0,1]
k
,1§K<ff§f,2([)§1, icl, k=1,....,T, te[0,1]
(SOP)3e o
Pk
/le(x,z)dxdngk, k=1,...,T
i
P(0) = po(x), iel
Ukt) >0, icl, k=1,....,T, t€]0,1]

Remark 4.2.4. Setting T = 1 corresponds to the Final Open Pit problem with a single time-frame.

Remark 4.2.5. The boundary condition Fyq = 0 is in practice built in directly in the problem formulation
by eliminating the profile and control variables at the nodes corresponding to the boundary of the space
domain.

Remark 4.2.6. Moreover, the constraint that each profile must be deeper than the previous one, which
was a state constraint in the continuous formulation, is now simply enforced by the conditions U; > 0.

Remark 4.2.7. The step size Ax for the discretization of Q in the semi-continuous approach can be seen
as the analogue of the time step At for the continuous approach, which uses distance as independent
variable.
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N intervals

Figure 4.2: Tllustration of the 2D profile model discretized w.r.t. space and time as a set of Pl-k state vari-
ables with i =0,...,N profile nodes and k = 0,...,T time-frames. Controls Uik are the depths excavated
from the previous time-frame at each node. Slopes Sff between neighbor nodes must be smaller than the
local maximal slopes i.e. k(X;, PX).

Two dimensional profile space domain

For the two dimensional case, the extraction domain considered is Q = [a, ] X [c,d]. Generalizing the 2D
case, we discretize [a,b] and [c,d] into N and M intervals of length Ax = 254 and Ay = € respectively,
and obtain a grid with (N + 1) x (M + 1) nodes. Noting J = {0,...,M}, we introduce the state variables
(functions of time) (P, ;); jerxs representing the mine depth at each node (x;,y;) := (a+iAx,c+ jAy). The
mine profile at time-frame k is now a surface represented by the set of points P¥ := (sz j(O)). We intro-
duce the (N +1) x (M + 1) non-negative controls U} ;20 1,j€IxJ, with the same dynamics Plk = Ui’f -

Initial profile conditions are written as:

PY,(0) = po(xi,yj) , i,j €% J. (4.7)

The objective and capacity limit are similar to the 2D case, except that the integrals of g and e between
two consecutive profiles are now in 3D instead of 2D. The relevant implementation details are provided
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in 4.6.

The main adjustment concerns the slope constraint: for each point F; ; of the profile we now choose
to consider two slopes §; ; and T; ;, in the x-axis and y-axis directions respectively. Using the same basic
forward finite differences as in 2D, we obtain the two sets of slope constraints at time-frame k:

k k
i< Py (1) =B

< <1, Vi=0,...,.N—1, j=0,....M—1, Vte[0,1. (4.8)
i (i3, P (1) Ax
Pk (1) — Pk (¢
1< Lt () =P 0 <1, Vi=0,...,N—1, j=0,...M—1, Yie[0,1]. (4.9

i (o0 (1)) Ay

Note that more sophisticated choices could be used for the slopes, such as centered differences formulas
or increasing the number of slopes considered at each point. The formulation of (S OP)gg is summarized
below, with Fig. 4.3 illustrating the profile discretization in the 3D case with N =5 and M = 3.

T Pk
g(x,y,2)
max —————dxdydz
kz’]/Pkl (14 o)k 1"
Pl(t) = Ul ), V(i,j)elxJ, k=1,....,T, t€][0,1]
S§;(0) ..
1< = <1, V(i,j)elxJ, k=1,...,T, t€]0,1]
K(xzw)'ppl;j(f))
k
soP{ —1< 0 oy V(i,j)elx], k=1,...T, t€[0,1]
(o P )
Pk
/k 1e(x,y,z)dxa’ydzSCk, k=1,...,T
i
E(?j(o) :Po(xid’j)a V(l,]) elxJ
Uk.(t) >0, Y(i,j)elxJ, k=1,....,T, t€]0,1]

L] -

4.3 Analysis and optimality conditions for FOP

We study the final open pit problem in continuous formulation (FOP) by applying Pontryagin’s Maxi-
mum Principle (Ref. [87]), and look at the possible control structure of optimal profiles.

Optimality conditions for (SOP) are not detailed here, and are more involved in particular due to the
state constraint P < Py being generalized over the sequence of time-frames, i.e. P, < P_j,i=1,...,N.

4.3.1 Applying Pontryagin’s Maximum Principle

Following the formulation in Ref. [25], we now state the PMP for (F OP). We denote y the state variables,
p the associated costate variables, / the running cost, f the dynamics and % the state constraint. In all the
following we assume the so-called normal case, i.e. the multiplier associated to the cost is nonzero and
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Q
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N
THAUE
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Figure 4.3: Illustration of the 3D profile model with N =5 and M = 3. View is from ’above’, with the

state variable Pi’f ; giving the profile depth at node (xi,y;) at time-frame k. Slopes Sﬁ-‘yj, Ti{‘j with neighbors
along the x-axis and y-axis must be smaller than the maximal allowed slopes given by the function k.

The control Ul-’f ; (along the z-axis) corresponds to the excavated depth from the same profile node at the

previous time-frame Pf;' .

can be normalized to 1. Let us define the pre-Hamiltonian, omitting the argument ¢ of functions u,y, p for
clarity:

H(t7u>y7p):l(t7u,y)+p-f(t,y7u) (410)
P(1)
= —/P " g(t,2)dz+ ppux(t,P) + p.(P(t) — Po(t)) (4.11)
0

Noting the function of bounded variation y € BV (0,T) the multiplier associated with the state constraint,
the adjoint equation writes as

—dP(t) = V,H(t,u,y,p)dt +Vyh(t,y)du(t) (4.12)

Then for any local optimum (¥, i), there exists a non-trivial set of multipliers (5, 1) such that the
following relations are satisfied:

i) Adjoint equation
dpp(t) = (8(t,P) — pp(t)a(t)kp(t,P) — pc(t))dt +di(r) (4.13)
dpe(t) =0 (4.14)
ii) Transversality conditions

pp(a), pp(b), pc(a) are free; p.(b) > 0 with p(b) = 0if ¢(b) < cimax (4.15)



4.3. Analysis and optimality conditions for FOP 37

iii) Hamiltonian minimization

i(t) € argmin H(t,w,5(t), p(t)) a.e. on (a,b) (4.16)

w

iv) State constraint complementary relations

b
a(0) 20, [ (Ryfe) = P(x))dfa(r) =0 and u(b) =0 4.17)
a
i.e. [ is an non-decreasing function and is constant when the state constraint is not active.

Remark 4.3.1. The state constraint is of order 1 since the control appears in its first time derivative
h = —ux. We refer the reader to, for instance, Ref. [25] for a more in-depth analysis of state constraints
in the PMP framework, and especially the so-called "alternate adjoint” formulation.

4.3.2 Inactive case: bang/singular control

We start by studying the case when the state constraint is not active. Since per (4.16) the optimal control
minimizes the pre-Hamiltonian which is linear in the control, solutions typically consist in a sequence of
bang (saturated control) and/or singular control arcs. We introduce the switching function whose sign
will determine the optimal control

w(t) == Hy(1) = pp(t)x(z, P(1)) (4.18)
As x has strictly positive values we obtain the control law:

| if pp(t) <0
a(t)=49—-1 if pp(t)>0 (4.19)
us(t) if pp(t) = 0 over an interval
The value of the singular control u; is traditionally determined from the fact that y and all its time
derivatives vanish over a singular arc.

Over a singular arc, ¥ vanishes and the first time derivative of the switching function can be reduced
to

W(t) = (8(1,P(1)) — pe) (1, P(1)) (4.20)
and similarly, by plugging y/(¢) = 0 in the second derivative and recalling p. = 0, we obtain

W(r) = (&, P(t)) +urgp(t,P(1))) K (4.21)

Solving {(z) = 0 for the singular control leads to

_ &(t,P@))
ug(t) = Ol (4.22)

We can now derive the two following lemmas concerning singular arcs.

& (t,P)
K8

o P) | > 1, and in particular when gp(t,P) = 0.

Lemma 4.3.1. A singular arc is not admissible when |

Proof. Immediate consequence of (4.22) and the control constraint u € [—1,1] O
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Lemma 4.3.2. Let P be an optimal profile solution of (FOP), then, over a singular arc the curve (t,P(t))
follows the geodesic of g. Moreover, when maximal capacity is not reached, singular arcs follow more
specifically the geodesics of null gain g = 0.

Proof. From (4.20), over a singular arc the equation ¥ = 0 indicates that the derivative ¢ := g, (¢, P(r)) +
Pgp(t,P(t)) vanishes, therefore the mine profile will follow the geodesics of g. If the maximal capacity
constraint is not active, then the associated costate p, is zero (see (4.15)), and = 0 then gives g =0. [

These lemmas expand the analysis of singular arcs obtained in Chapter 3 with calculus of variations
techniques.

4.3.3 Active state constraint case

Over a constrained arc, the control u. is such that the constraint remains active, i.e. h = Py— P = 0,
leading to the expression

Mc(t) = ” PO(t)

(t,P(1))

Note that a constrained arc can only occur if the . is admissible, i.e. |Py(t)| < k(,P(t)). This simply
means that the initial profile must satisfy the maximal slope constraint.

(4.23)

4.3.4 Control structure summary

To summarize, the optimal profile, in terms of control structure, is a sequence of bang, singular and/or
constrained arcs. Constrained arcs are where the profile is the same as the initial one, meaning there was
no further excavation on these parts of the domain. Bang arcs correspond to the parts of the profile where
the slope reaches its maximal allowed value, i.e. the digging is as steep as possible. Singular arcs, on the
other hand, follow the geodesics of the gain function, meaning the gain is constant along these parts of
the profile. Moreover, if the capacity limit is not reached, then this geodesic is more specifically the one
of null gain, i.e. the digging stops where excavation is not profitable anymore.

Optimality conditions for the semi-continuous formulation are more involved and remain to be
investigated thoroughly. The main complications arise from the spatial discretization of the profile, lead-
ing to maximal slope limits now being state constraints that involve adjacent nodes variables (including
controls).

4.4 Numerical simulations

We present now the numerical simulations that illustrate the continuous and semi-continuous formula-
tions of the Open Pit problem. After a brief description of the algorithms used for the global and local
optimizations, we detail three test cases. First is the 2D FOP with limited capacity, that we solve with the
continuous (both global and local optimization) and semi-continuous formulation (local optimization).
The second example is the 2D SOP with limited capacity, for which we compare the results of both con-
tinuous and semi-continuous formulations (both with local optimization). Finally, we present a test case
for the 3D SOP problem with the semi-continuous formulation. All simulations were carried out on a
standard laptop, with numerical settings for all methods recalled in Table 4.1 p.39.
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4.4.1 Numerical methods

Global optimization: FOP with continuous formulation

The Final Open Pit problem is low-dimensional, with only two state variables (not counting the running
cost) and one control variable. Therefore it makes sense to try a global optimization method such as
dynamic programming, or the so-called Hamilton-Jacobi-Bellman (HIB) approach. We use here the soft-
ware BOCOPHIJB [27], and refer to for instance Ref. [46] for a detailed description of the HIB method.
In this approach the value function of a fully discretized (time, state and control variables) version of the
problem is computed, with the global optimum then being reconstructed from this information.

Local optimization: FOP and SOP with continuous and semi-continuous formulations

Since the numerical cost of the global method is too high for the Sequential Open Pit problem, we also
use a local optimization method, namely the direct transcription approach. This method approximates
the original (OCP) problem by a discretized reformulation as a nonlinear optimization problem (NLP),
using a discretization of the time interval. We refer interested readers to for instance Ref. [19] for a review
of direct methods. We use here the software BOCOP [26], based on the solver IPOPT [98] with sparse
derivative computed by the automatic differentiation tool CPPAD [18]. This local optimization method is
also used for the semi-continuous formulation with explicit discretization of the space domain.

Numerical settings
In Table 4.1 are the settings for the different numerical methods used in the simulations.
2D FOP (global) ‘ t: 123 steps; P : 50 steps, e : 210 steps; u : 100 steps

2D FOP/SOP (local) | 1 : 123 steps; tol = 10~"°; maxiter = 10000

2D SOP SC (local) | r: T steps; N = 123 nodes; rol = 10~ 10;maxiter = 10000
3D SOP SC (local) t : T steps; 30 x 10 nodes; tol = 10_6;maxiter = 10000

Table 4.1: Numerical settings for the continuous and semi continuous formulations

4.4.2 Final open pit (2D): global and local optimization

We start with the 2D FOP as first example, since it is the only one for which all formulations, including
global optimization, are available. We set a maximal capacity c,qx = 20.000. The gain function g is
interpolated from values found in the Marvin block model of MINELIB, a publicly available library of
test problem instances for open pit mining problems (see [45]).

Remark 4.4.1. Solutions for the unlimited capacity case, with a different control structure (i.e. singular
arcs), are shown in 4.7, with both constant and variable maximal slope.

2D FOP with global optimization for continuous approach

The solution obtained by the global optimization is displayed in Figure 4.4. At first glance, the control
structure seems to be of the form Constrained-Bang-Bang-Constrained. On both sides the constraint
P = Py is active, meaning there is no additional digging from the initial profile. In the middle, digging
occurs with maximal slope, leading to the two bang arcs.

Remark 4.4.2. The non zero control around x = 200 simply follows the existing initial profile Py, and is
part of the first constrained arc. See 4.4.2 for more details.
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Remark 4.4.3. It is worth noting that an estimate of the PMP costate can be derived from the gradient
of the value function computed by the global method, see for instance Refs. [37, 38]. In the present
case however, the gradient turns out to be quite noisy and of little practical use. This could be improved
by increasing the discretizations, although the increase in computational times would not be competitive
with respect to using a direct method.

1000 . _
FINAL PROFILE
900 [ |= = =INITIAL PROFILE 08
> GAIN MAP
800 - 06 |
700 | 04 |
600 - 4 02F
E i
o 500 | E 0
L Z
o (@)
400 | O .02+
300 |- 04 |
200 | 0.6
100 | 0.8
0 : -1 : ‘
0 500 1000 0 500 1000 1500
DISTANCE DISTANCE

Figure 4.4: 2D profile with limited capacity - global optimization (HJB method)

2D FOP with local optimization for continuous approach

The solution from the local optimization is displayed in Figure 4.5 with the optimal profile and control as
well as the PMP costate check. This solution is actually extremely close to the one in section 4.4.2, which
indicates that the direct method actually found the global optimum as well, with the benefit of a more
accurate solution. In particular, we can here clearly see that the first two arcs with nonzero control around
x = 200 are not bang arcs since |u| < 1: they are actually part of the first constrained arc and correspond
K(ffl(,t()t)) from (4.23) is not just zero.

Moreover, we can now check that the Constrained-Bang-Bang- Constrained control structure is
consistent with the switching function and the path constraint. We observe a perfect match between
the adjoint estimate from the discretized problem and the recomputed PMP costate. Figure 4.5 shows the
value of the state constraint &7 = Py — P and its associated multiplier d . We retrieve du from the multiplier
of the state constraint in the discretized problem (the correspondence can be inferred from comparing the
expression of the PMP Hamiltonian and the Lagrangian of the NLP problem). In accordance with (4.17),
the multiplier du is positive, and null when the constraint is not active. We also observe that the costate
pp is continuous at the junctions between bang and singular arcs, while the control is discontinuous.

to the region where Py varies, thus the control u.(f) =

Remark 4.4.4. In this particular case, the solution has no singular arcs, which is due to the capacity
limit that prevents reaching the null gain region. The examples with unlimited capacity in 4.7 and 4.7.2
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illustrate solutions with singular arcs where the optimal profile follows the geodesic g = 0.
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Figure 4.5: 2D profile with limited capacity - local optimization (direct method) and optimality conditions

2D FOP with semi-continuous approach

We finally present the solution obtained for the same problem using the semi-continuous formulation with
a single phase (i.e T = 1). As can be seen in Figure 4.6 and Table 4.2, the solution is similar to the global
and local optimizations using the continuous approach, with close values for the objective. CPU times
are of the same order of magnitude for the two local optimizations with continuous and semi-continuous
formulation, while global optimization is significantly slower (two orders).

Method Objective CPU
2D FOP Global optim. 10846  369s
2D FOP Local optim. 11093 3s
2D FOP SC Local optim. 11100 2s

Table 4.2: Solutions for the 2D FOP with limited capacity.

4.4.3 Sequential Open Pit (2D and 3D): local optimization

In this section we present solutions for the Sequential Open Pit. First we solve a 2D example using
both the continuous and semi-continuous formulations. Then we show a solution for a more realistic 3D
problem using the semi-continuous formulation. To our knowledge, this is the first attempt to tackle the
3D case in an optimal control framework.
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Figure 4.6: 2D profile, limited capacity - local optimization using semi-continuous formulation

2D SOP with continuous and semi-continuous approach

Continuous approach. We solve the 2D SOP problem for 12 time-frames, with a constant function k¥ = 1
,arate o = 0.1 and a maximal capacity c¢,,x = le4 for each time-frame. The solution indicates that most
of the excavation effort is concentrated in the high gain regions of the domain, which is not surprising.
Semi continuous approach. We now solve the same SOP problem with the semi-continuous formulation.
Both approaches give similar solutions, as can be seen in Figure 4.7. The objective values showed in Table
4.3 are quite close with a difference of 1.3%, while CPU times are in the same order of magnitude.

Method Objective | CPU
Continuous 89939 31s
Semi-continuous | 91153 43s

Table 4.3: Solutions for the 2D SOP problem.

3D SOP with semi continuous approach

For the 3D case we consider a domain Q = [0,1200] x [0,400] and an analytical gain density function
stated by

§(x.9.2) = 1000~/ (x— 600)2 + (y— 200)2 + (2 — 350)? (4.24)

that reaches its maximal value in (600,200,350) and which decreases radially from this point. The initial
profile used in this instance is showed in Figure 4.8.

We set a discount factor ¢ = 0.1 and solve the 3D SOP for different capacity limits and number of
time-frames, using a 30 x 10 discretization of Q. Figures 4.9 and 4.10 illustrate the optimal sequence of
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Figure 4.7: 2D SOP: continuous and semi-continuous formulations.
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Figure 4.8: Initial profile for the 3D SOP case

3D profile corresponding to ¢,uec = 10° and 5 - 10 respectively, with T = 2,3, 6 time-frames. Table 4.4
shows the objective values and CPU times. Results are consistent overall, with solutions trying to reach
the region of highest gain as fast as allowed by the slope and capacity constraints. Increasing the capacity
limit and / or the duration of the time interval both yield better objective values, as expected. CPU times
are still reasonable, with the longest run at 139s.
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Figure 4.9: 3D profile optimization with limited capacity C = 1¢6, for T = 2,3 and 6 time-frames.

PROFILE PROFILE PROFILE

00
s 00,00 5050

53085905 01570900, 5?97

P A 19%00 ) so 005N Ce

120
foogyoq
OSTance 400

1200090,

i
o0 s
DT 800 200 o g 300850

Figure 4.10: 3D profile optimization with limited capacity C = 5e6, for T = 2,3 and 6 time-frames.

Capacity limit: 10% | Capacity limit : 5-10°

Times-frames | Objective | CPU Objective CPU
T=2 69954.88 | 1ls | 73089.311 53s
T=3 100103.04 | 38s | 104684.29 124s
T=6 175132.64 | 31s | 183583.57 139s

Table 4.4: 3D SOP: solutions from the semi-continuous formulation, for different time intervals and
capacity limit per time-frame.

4.5 Conclusions

In the present chapter we focused on the Open Pit problem in an optimal control framework. We ex-
tended some previous results on the optimality conditions for the Final Open Pit, and introduced a new
semi-continuous formulation that handles the 3D profile sequential optimization. Numerical simulations
are provided for the continuous and semi-continuous approaches on several test cases. The 2D FOP
case showed a good consistency between global and local optimization for the continuous approach, as
well as local optimization for semi-continuous, and matched the optimality conditions from Pontryagin’s
Principle. Then the 2D SOP case again indicated a good match for the continuous and semi-continuous
formulations. Finally we solved a 3D SOP test case, to our knowledge for the first time in an optimal
control framework. Perspectives in the continuation of the present work include solving a more complete
3D SOP example using 3D interpolated data for the gain and maximal slope, as well as studying the
optimality conditions for the semi-continuous approach. The latter could prepare for the use of indirect
shooting methods such as HAMPATH [31], especially since the local optimization method used here can
provide the knowledge of the optimal control structure and a costate approximation.
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4.6 Implementation details for the semi-continuous approach

Time discretization. The Sequential Open Pit for the semi-continuous approach described in 4.2.2 is a
multi phase problem. Instead of duplicating the variables for each time-frame, we use here in practice
a more compact implementation, by using a time step Az of 1 time-frame, i.e. the time discretization
tr = 0...T is the sequence of time-frames. This choice makes sense from the operational point of view,
since the sequential open pit planning precisely consists in determining the optimal mine profile at each
time-frame. It also simplifies a lot the computation of the integrals of the gain and effort functions
between two successive mine profiles. We choose an implicit Euler scheme for the time discretization,
which gives the trivial discrete dynamics

pik+1 =P+ Uik“ (4.25)
that easily gives the next / previous mine profile when needed in the computations.

Gain. An additional state variable g is added to represent the gain realized along the time-frames,
whose dynamics can be written as

1 Pt
g(tk) = W /Pk—l g(X,Z)dXdZ, Vk = 1, ceey T (426)

The objective is then to maximize g(7T'). For the 2D case, we approximate the 2-dimensional integral of g
by trapezoidal rule over x then along z. In the 3D profile case, the 3D integral of g for the computation of
the gain is approximated using a 2D trapezoidal rule along (x,y) then a standard trapezoidal rule along z.

Capacity. At each time-frame, the integral of the excavation effort over the domain Q can be approx-
imated by

P

i

Pk N Pk
[, elnddrdz~ IS [ etz (4.27)

Since E = 1 and from the discrete dynamics Pl.k = P!"l + Uik , we can use the following formula
pk N-1 .
/P _, elx.2)dxdz ~ Ax ;O Uf. (4.28)
Similarly, for the 3D profile case, the excavation effort at time-frame k is approximated as

P N—1M-1
/Pk 1 e(x,y,2)dxdydz ~ AxAy Z Z U,»Ifj. (4.29)
- i=0 j=0

4.7 Additional examples for the final open pit - continuous formu-
lation

4.7.1 FOP with infinite capacity and constant slope

We show here the basic example with unconstrained capacity, namely c;qx = o. Fig. 4.11 shows the
solution obtained by the global method, and Fig.4.12 shows the solution from the local method, and
we observe that both solutions match. With infinite capacity, the solution, as expected, digs as much as
possible with respect to the maximal slope, until it reaches negative gain. This corresponds to the observed
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Bang-Singular-Bang control structure (neglecting the two very small constrained arcs P = Py = 0 at the
extremities). As stated in Lemma 2, the singular arc in the middle follows the geodesic g = 0. The
corresponding control also matches the theoretical expression of the singular control (4.19), despite some
oscillations at the junctions with the bang arcs.
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900 [ |= = =INITIAL PROFILE 0.8
> GAIN MAP

800 | 0.6

700 | 0.4

600 - 02
: 2
o 500 | E 0
L Z
o (@)

400 O .02}
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100 0.8

0 L _ L . |
0 500 1000 0 500 1000 1500
DISTANCE DISTANCE

Figure 4.11: 2D profile with infinite capacity - global optimization (HJB method)

4.7.2 FOP with infinite capacity and variable slope

Here we illustrate a case with a non-constant maximal slope k. For this, we consider following arbitrary
Kk function:
0.5 x€][0,330)
K(x,z)=4¢1  x€[330,960) (4.30)
5  x€[960,1230]

We chose a piece-wise constant function so that the assumption in section 4.3 is satisfied almost every-
where. The solutions from the global and local optimizations are shown in Fig. 4.13 and Fig. 4.14 respec-
tively. This time we obtain a control structure that includes all possible types of arcs: Bang-Singular-
Bang-Constrained. The main difference compared to the constant slope case is that the optimal profile
digs less ground on the right side region where the gain is negative, as a steeper slope is allowed there.
As for the previous examples we observe that the singular control and costate from the solution closely
match their formal expressions from the PMP.
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Figure 4.12: 2D profile with infinite capacity - local optimization (direct method) and consistency with
PMP optimality condition
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Figure 4.13: 2D profile with infinite capacity and variable maximal slope - global optimization (HJB
method)
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Chapter 5

Compartmental models

Since the Covid-19 outbreak, numerous research works have coupled optimal control techniques with
epidemiological models for the study and management of the pandemic, such as reducing the number
of infected people (see for example [20, 56, 67, 71, 72, 86]). In the context of this PhD, I had the
opportunity to contribute to the study of the so-called overcrowding problem, which is a significant issue
for hospitals. More precisely, our main objective was to minimize the peak of infections in order to keep
the health system below saturation levels.

We worked with the most widespread compartmental model in epidemiology called the SIR model,
which we recall in the following section. More specifically we started from the work of Morris et al. [83]
on peak minimization for the SIR model, which despite not using optimal control techniques per se, is
closely related to control theory in its formulation.

After the classical SIR model we introduce a new compartmental model that takes vaccination into
account. This model was developed in the framework of a Pan American Health Organization' project
by a joint team of mathematicians and doctors devoted to the evaluation of the vaccination campaign of
which I was a part of. We hope that this new model can be used in future works.

5.1 SIR model

The so-called SIR model introduced in 1927 by Kermack and McKedrick [69] is the most widespread
model for the study of directly transmitted infectious diseases that spread through contact from an indi-
vidual to another, such as, for instance, flu, tuberculosis, MERS-CoV and Covid-19.

The model derives its name from partitioning a given population into three compartments, namely
Susceptible, Infected and Recovered individuals. We note respectively S(¢), I(z) and R(¢) the size at time
t € [0,T] of each group. Many assumption can be made modifying the final model, we consider here the
case of a constant population, i.e. without any natural births or deaths. Normalizing the total population,
we have the relation S(¢) +1(t) +R(¢) = 1, Vr > 0.

The dynamic of the three groups follows the ODE system:

S =-BSI
I =BSI—vyI 5.
R =vI,

with constants 8 > 0 and y > 0 corresponding to transmission and recovery rates respectively. The
so-called basic reproductive number %, defined as the average number of secondary infection cases

'In Spanish Organizacién Panamericana de la Salud (OPS)
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caused by a single primary case in a susceptible population, is therefore given by %, = 8 /v in the SIR
model. An obvious property of the model is that a disease will spread among the population when % > 1,
making this case the most relevant for study. We refer readers interested in more properties of SIR models
and basic reproductive number to for instance [5, 63, 69, 100].

In order to fight the pandemic, local governments have implemented a variety of measures to reduce
the transmission of the disease. These efforts can typically be categorized as non-pharmaceutical, such as
lock-downs and quarantines, and pharmaceutical such as vaccines and treatments. The first kind can be
introduced in the SIR model as a control variable b(¢) € [0, 1] applied as a factor to the transmission rate
beta:

S =—b(r)BSI
I =b(t)BSI—yI (5.2)
R =yl

In this case, b = 1 corresponds to no intervention, while an identically null control b = 0 will com-
pletely contain the infection, however, this is a hardly applicable policy at large scale, since it would
amount to cutting off contact between individuals completely. This is why a more realistic constraint
is usually imposed on the control, for example, in Chapters 6 and 7 we considered a maximal budget
limit Q imposed on the L! norm of the policy intensity 1 — b. This is somewhat less restrictive that the
original constraint in [83] that limited the control effectively applied (i.e b < 1) to a certain time window
[fi,2; + 7] to be determined. With this constraint, the authors main result on the peak minimization, i.e.
min, max,eo,7)1(t), in [83] was:

Proposition 5.1.1. The optimal intervention which is a solution of min, max,c(o 7] 1(t) is:

Y
bop (1) = { BS(t)’
0, tE€ i+ fr1,t;+ 1]

ret,ti+f1)

for a certain f € [0,1].

This was our starting point to study the peak minimization in the SIR model, and in Chapter 7 we
present our results and compare them to this original work.

Regarding pharmaceutical measures, we studied how to include vaccine programs in compartmental
models. The result of this research will be presented in the next section and it corresponds to an original
model posed by our team.

5.2 A new compartmental model including vaccines

We introduce here an extension of the SIR model that includes the effect of vaccination campaigns.
This model was developed in the framework of a project supported by the OPS and the MINSAL (Chile
ministry of health). The aim of this model is to evaluate the effectiveness of different.

Many extensions of the original SIR model, typically with more compartments, have been proposed,
see for instance [6, 9, 53, 88]. The main novelty of the model presented here is the partition of the individ-
uals into three so-called fundamental parts, according to their vaccination status: (i) not fully vaccinated,
(i) fully vaccinated and (iii) fully vaccinated with additional booster injection. This division follows the
idea that the disease dynamics are altered by vaccination. Each fundamental part is further modeled with
6 compartments (state variables): susceptible (S), asymptomatic infected (I*), symptomatic infected (1),
asymptomatic recovered (R“), symptomatic recovered (R*) and deceased (D). To distinguish variables
from the three fundamental parts, we add the subscripts N (non fully vaccinated), V (fully vaccinated)
and V, (vaccinated with booster).
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‘e

Figure 5.1: Schema of one fundamental part as a 6-compartment model: susceptible (S), asymptomatic
infected (I?), symptomatic infected (I*), asymptomatic recovered (R?), symptomatic recovered (R*) and
dead (D). Red arcs represent the loss of immunity after infection.

Figure 5.1 shows the compartments and transitions inside of each fundamental part. The complete
model that we will call base structure has 18 compartments (6 for each part) as shown in Figure 5.2, with
the connections between the three fundamental parts corresponding to vaccination actions.

We suppose the population modeled by the base structure is homogeneous (meaning there is no age
structure in the model), isolated, susceptible to only one variant circulating and constant (no natural
birth or death). We denote the transmission rates by B for i € {N,V,Vx} and k € {a,s}, using a for
asymptomatic and s for symptomatic individuals. For example, B§; represents the transmission rate after
contact with a non-vaccinated, asymptomatic, infected person. The overall transmission rate for the
susceptible partition S; with i € {N,V,Vg} will noted A; defined as:

Ai(t):(l_fi(t))< ) ((1—M(f))ﬁfjlf‘(f)ﬂl—M)ﬁijlf(f))>Si(t) i€ {N,V.V;}.

JE{NV.V:}

Here u € [0, 1] represents the portion (assumed constant) of infected, symptomatic population that is
completely isolated. The factor u(¢) € [0, ] corresponds to non pharmaceutical measures, similar to b(t)
in the basic SIR model except it only affects now the asymptomatic individuals, since the symptomatic
portion are assumed to be in maximum isolation.

We also denote by f;(¢) the vaccine effectiveness to reduce transmission, being fy(z) = 0 for the non-
fully vaccinated part. Noting esy (7), erq (7), gy, (T) € [0, 1] the effectiveness for the compartments (S ),
(Ry) and (RY), respectively, T days after becoming fully vaccinated, and vs, (t), vge (t) and vgy, (t) the
vaccination rates for each compartment, then the overall effectiveness f; is modeled similarly as in [88]
by the equation:
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) ( ) /Otflv (esN(T)VSN (t - T) +€R§’V (T)VR;(/ (l‘ — T) +eRfV(T)VRf\,(t _ T)) dt
vit) =

t—ty t>ty,
/ Vs, (8) +vga(s) + vgs (s)ds
0 1 1

where #y is the start of the vaccination plan.

Similarly, for a booster we note rs, (7), rge (), r&; (7) € [0,1] the effectiveness in (Sy), (Rj,) and
(Ry ), respectively, T days after applying the booster dose and v, (t), vga () and vy, (¢) the booster injec-
tion rates for each relevant compartment, then the total effectiveness of a booster dose is given by:

/oHV (st (T)vsy (1 =)+ reg (T)veg (1 — T) + gy, (T)vgy, (1 — T)) dt

/0 T o () (s)ds

fu(t) =

tZtV7

Finally we describe the remaining parameters of the model:

* Recovery rates: We denote ¥, with i € {N,V,V,} and k € {a,s} the recovery rates of infected
individuals who are in the fundamental part i and could be symptomatic (s) or asymptomatic (a).
A natural assumption is that recovery should be quicker for vaccinated people (as reported for
example in [78]), leading to the following inequalities

W<W<W, ke{as}

* Death rates: We denote 9;, with i € {N,V,V,} the death rates in the infected population in funda-
mental part i. Once again assuming vaccination reduces the mortality (as the evidence show in [8,
77, 68, 89]), we have the inequalities

Oy, < oy < dy.

* Loss of immunity rates : The rate of loss of immunity for a recovered individual will be denoted
by ¢¥ with i € {N,V,V,} and k € {a,s}.

* Probability of being asymptomatic: The probability of a susceptible individual, belonging to the
fundamental part i € {N,V,V,}, to be asymptomatic after infection will be denoted by ¢; € [0,1].
These probabilities should fulfill

¢NS¢V§¢VN

because the probability of being asymptomatic should increase as vaccination advances as it is
shown in [1, 94] .

Table 5.1 shows a summary of the parameters used in this model.
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Notation ‘ Description

BF Transmission rates, i € {N,V,Vg} and k € {a,s}.

u Portion of population which is infected, symptomatic and is completely isolated
u(t) Factor in transmission rate due to non pharmaceutical measures.
fi(®) Effectiveness of vaccines in transmission, i € {N,V,Vz}

v Recovery rates of infected individuals, i € {N,V,V,} and k € {a,s}

1o Death rates, i € {N,V,V,}.

g~ Rate of loss of immunity for a recovered individual, i € {N,V,V,} and k € {a,s}.
o; Probability of being asymptomatic, i € {N,V,V,}

Table 5.1: Parameters used in the model.

Fundamental part (), non vaccinated:

v
=
—
-~
=
I

—An(t )+11NR“ (£) + gy Ry (1) — vsy (1)
() = onAn(r) — Wi (1)
) = ( *‘PN)AN( ) = (m +8w)Iy (1)
RY(t) = WIN(t) — gy Ry (1) — veg (1)
( Win(t) — qNRS () —vgy, (1)
Dy(t) = Oonly(1);

Fundamental part (V), vaccinated without booster:

.

29}

N
1

Sv(t) = —Av(t)+qyRy (1) +qy Ry (1) +on(r) —vs, ()
) = evAv(t) —wi(r)

Ly(t) = (1=¢v)Av(t)— (% + )L (1)

Ry(t) = Wh(1) —qiRY (1) —vro (1)

Ry(1) = W) —qyRy(t) —vey (1)

Dy(1) = OvIy(1);

Fundamental part (V,), vaccinated with booster:

Sv,(t) = —Av, (1) +qf, Ry, (1) +aqy, R, (t) + v (1)
() = ¢vAv () %I (1)

E(t) = (1=¢v)Av.(1) = (W, + O, )L, (1)

Ry (1) = WI (1) —qy,RY (1)

Ry (1) = WL,t)—ayRy (1)

Dy.(t) = &Ly, (1).
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Figure 5.2: Base structure with 3 fundamental parts and 18 compartments in total. Green arcs indicate
vaccination actions that link the three parts, red arcs correspond to loss of immunity.



Chapter 6

A Mayer formulation for peak
minimization problems

This chapter corresponds to the accepted pre-print [82] titled "Equivalent formulations of optimal con-
trol problems with maximum cost and applications" to appear in Journal of Optimization Theory and
Applications.

6.1 Introduction

We consider the optimal control problem which consists in minimizing the maximum of a scalar function
over a time interval

infesssupy(r)
u() teft,T]

where y(1) = 6(t,&(¢)) and &(-) is the solution of a controlled dynamics & = ¢(&,u), &(ty) = &. This
problem is not in the usual Mayer, Lagrange or Bolza forms of the optimal control theory, and therefore
is not suitable to use the classical necessary optimality conditions of Pontryagin Maximum Principle or
existing solving algorithms (based on direct method, shooting or Hamilton-Bellman Jacobi equation).
However, this problem falls into the class of optimal control with L™ criterion, for which several char-
acterizations of the value function have been proposed in the literature [15, 16, 54]. Typically, the value
function is solution, in a general sense, of a variational inequality of the form

min (a,v +inf; V.o (x,u) , V — e) —0

without boundary condition. Nevertheless, although necessary optimality conditions and numerical pro-
cedures have been formulated [14, 40, 41, 51], there is no practical numerical tool to solve such problems
as it exists for Mayer problems, to the best of our knowledge. The aim of the present work is to study dif-
ferent reformulations of this problem into Mayer form in higher dimension with possibly state or mixed
constraints, for which existing numerical methods can be used. Indeed, it has already been underlined in
the literature that discrete-time optimal control problems with maximum cost do not satisfy the Principle
of Optimality but can be transformed into problems of higher dimension with additively separable objec-
tive functions [65, 64]. We pursue here this idea but in the continuous time framework, which faces the
lack of differentiability of the max function.

This manuscript is organized as follows. In Section 6.2, we establish the setup and the hypotheses
of this article, and define the problem. In Section 6.3, we provide equivalent formulations of the stud-
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ied problem in the form of two Mayer problems with fixed initial condition, and under state or mixed
constraint. In Section 6.4, we propose another formulation in terms of differential inclusion but without
constraints, and then we show how the optimal value can be approximated from below by a sequence of
more regular Mayer problems. Section 6.5 is devoted to numerical illustrations. We consider two prob-
lems for which the optimal solution can be determined explicitly (one borrowed from epidemiology),
which allows to estimate and compare the numerical performances of the different formulations. These
problems have been chosen linear with respect to the control variable in order to present discontinuous
optimal controls, which are known to be numerically more sensitive. More precisely, the optimal solution
of the first problem has pure bang-bang controls, while the second one possesses a singular arc. We dis-
cuss the issues arising in the numerical implementations of the different formulations, and also compare
numerically with L? approximations. Finally, we discuss in Section 6.6 about the potential merits of the
different formulations as practical methods to compute optimal solution of L™ control problems.

6.2 Problem and hypotheses

We shall consider autonomous dynamical systems defined on a invariant domain 2 of R"*! of the form

X = f(x,yu)
{ y=g(x,y,u) 1)

(where g is a scalar function) where the values of the control u(-) belong to a given set U C R”. More
specifically, throughout the chapter, we shall assume that the following properties are fulfilled.

Assumption 1.
i. U isacompact set.
ii. The maps f and g are C' on 2 x U.

iti. The maps f and g have linear growth, that is there exists a number C > 0 such that

1 oy, )l + lgCx, )| SCA+|x][+|y]), (v,y) € 2, ueU

For instance, y(-) can be a smooth output of a dynamics

x:f(x7”)7 y= h(x)

which can be rewritten as
y=g(x,u) == Vh(x)" - f(x,u)

Let % be the set of measurable functions u(-) : [0,7] — U and consider (xp,yo) € Z, T > 0. Under
the usual arguments of the theory of ordinary differential equations, Assumption 1 ensures that for any
u(-) € % there exists a unique absolutely continuous solution (x(-),y(-)) of (6.1) on [0, T] for the initial
condition (x(0),y(0)) = (xo,y0) (see for instance [48]). Define then the solutions set

{ %= fxu)

S = {(x(-),y(")) € Z€([0,T],R"™), sol. of (6.1) for u(-) € % with (x(0),y(0)) = (x0,y0)}.

We consider then the optimal control problem which consists in minimizing the "peak" of the function

y():

P inf max y(t) | = inf max y(t) | .
u(-) e <l€[07T]y( )) (()y()es (IE[OT]y( )>
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6.3 Formulations with constraint

A first approach considers the family of constrained sets of solutions
Fo={lxy) €, y(t) <z, €[0,T]}, (z€R)
and to look for the optimization problem
inf{z; .7, # 0}.

This problem can be reformulated as a Mayer problem

P inf (T
0 u(~)€“//Z( )
for the extended dynamics in & x R
X= f(xayv u)
y=g(xyu)
z=0

under the state constraint
E: z(t)—y(@)>=>0,t€]0,T]

where z(0) is free. Direct methods can be used for such a problem. However, as z(0) is free, solutions are
not sought among solutions of a Cauchy problem, which prevents using other methods based on dynamic
programming such as the Hamilton-Jacobi-Bellman equation.

We propose another extended dynamics in & x R with an additional control v(-) with values in [0, 1]

X = f(x,yu)
y= g(xvya “) 6.2)
z= max(g(X,y,u),O)(l 7‘))

Let ¥ be the set of measurable functions v : [0,T] — [0,1]. Note that under Assumption 1, for any
(x0,¥0,20) € 2 xR and (u,v) € % x ¥, there exists an unique absolutely solution (x(-),y(-),z(-)) of
(6.2) on [0,T] for the initial condition (x(0),y(0),z(0)) = (x0,¥0,20). Here, we fix the initial condition
with zo = yo and consider the Mayer problem

P inf z(T) under the constraint €
(u()v(-)ew xv

and shows its equivalence with problem . We first consider fixed controls u(-).
Proposition 6.3.1. For any control u(-) € %, the optimal control problem

in£ z(T) under the constraint € (6.3)
Ve

admits an optimal solution. Moreover, an optimal solution verifies

o(T) = tgﬁ;]y(t), (6.4)

and is reached for a control v(-) that takes values in {0,1}.
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Proof. From equations (6.2), one get that any solution z(+) is non decreasing, and as z satisfies the con-
straint z > y, we deduce that one has

T) > .
z(T) Q&’}]y(t) (6.5)

for any solution of (6.2), and thus

max y(t) < inf z(T') under the constraint z(¢) > y(z), t € [0,T].
1€[0,7] vey

Let x(-), y(-) be the solution of (6.1) for the control u(-) and let I be the set of invisible points from the
left of y, that is
1:={r€(0,T); y(t') > y(t) for some t' <1}.

Consider then the control

1, t€int/
=< ’ 6.6
V) {0, t ¢ int/ (6.6)

When [ is empty, y(-) is a non decreasing function and, when v(¢) =0 for all ¢ € [0, T], one has z(r) = y(¢)
for any ¢ € [0, T]. Therefore, one has

A(T)=y(T) = tg[lgl;]y(t)

When [ is non empty, there exists, from the sun rising Lemma [95], a countable set of disjoint non-empty
intervals I, = (ay,by) of [0,T] such that

- the interior of / is the union of the intervals ,,,
- one has y(a,) =y(b,) if by # T,
- if b, =T, then y(a,) = y(by).

Note that when 7 ¢ int/, one has y(r) > y(¢') for any ¢’ < r. Therefore, the solution z with control (6.6)

verifies
(), t¢intl
(1) =
y(an), t €I, forsomen

(see Figure 6.1 as an illustration). Let € [0, 7] be such that

y(f) = l§3§]y(t),

which implies that any point #/ > 7 in [0,7] is invisible from the left. Then, one has z(T) = z(7) < y(7).
Thus, from (6.5), we obtain
t)=2z(T
trer[13>;]y( )=2(T)
and deduce
max y(t) = inf z(T) under the constraint €.
t€[0,T] v(-)er

O

Remark 6.3.1. The proof of Proposition 6.3.2 gives an optimal construction of z(-) which is the lower
envelope of non decreasing continuous functions above the function y(-), as depicted on Figure 6.1.
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\

Figure 6.1: Illustration of the function z (in red) corresponding to a function y (in blue) with the control
given by expression (6.6)

However, there is no uniqueness of the optimal control v(-). Any admissible solution z(-) that is above
¥(+) and such that z(t) =y for t > = min{t € (0,T],y(t) = §}, where y := maxc(o 1) ¥(s), is also optimal.

We then obtain the equivalence between problems &7 and & in the following sense.

Proposition 6.3.2. If (u*(-),v*(+)) is optimal for Problem 2, then u*(-) is optimal for Problem .
Conversely, if u*(-) is optimal for Problem 22, then (u*(-),v*(+)) is optimal for Problem &7 where v*(-)
is optimal for the problem (6.3) for the fixed control u*(.).

Let us give another equivalent Mayer problem but with a mixed constraint (this will be useful in the
next section). We consider again the extended dynamics (6.2), with a control v(-) which values belong to
[0, 1] and the initial conditions (x(0),y(0),z(0)) = (x0,y0,Y0). Define then the mixed constraint

Gm: max(y(t) —z(¢),0)(1—v(t)) +z(t) —y(t) >0, ae.tc[0,T]
and the optimal control problem

Py inf z(T) under the constraint %,,.
(u()v())ew xv

Proposition 6.3.3. Problems &2 and &7 are equivalent.

Proof. One can immediately see that for any admissible solution that satisfies constraint 4, the constraint
%m is necessarily fulfilled as max(y — z,0) is identically null.

Conversely, fix an admissible control u(-) and consider a control v(-) that satisfies &,,. We show that
this implies that the solution (y(-),z(+)) verifies necessarily z(¢) > y(¢) for any 7 € [0, T]. If not, consider
the non-empty set

E:={t€]0,T]; z(t) — y(t) < 0},

which is open as z —y is continuous. Note that one has z(¢) — y(t) > O for a.e. r € E. Therefore z —y
is non decreasing in E and we deduce that for any ¢ € E, the interval [0,¢] is necessarily included in E,
which then contradicts the initial condition z(0) = y(0). O
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6.4 Formulation without state constraints

We posit IT = (x,y,z) € 2 X R and consider the differential inclusion

, Fey,u)
Mer:= Y g(x,y,u) (6.7)
w)eux[o,1] | h(x,y,z,u,v)

with
h(xay7zvuav) = max(g(x,y,u),O)(l _VHARJr(Z_y))

where ¥+ is the indicator function

1, £>0

“‘R+(C>={O £ <0

Let Iy = (x0,v0,y0) and denote by .#; the set of absolutely continuous solutions of (6.7) with I1(0) =
Ilp € 2 x R. We consider the Mayer problem

Py . inf z(T).
30 i, 50

Assumption 2.

V(x,y) €2, G(x,y):= MLEJU [ﬁjﬁ:i;m is convex.

Proposition 6.4.1. Under Assumption 2, problem &3 admits an optimal solution. Moreover, any optimal
solution TI(+) = (x(-),y(-),z(+)) verifies

«(T) = tgmg(f)

with (x(+),y(+)) solution of (6.1) for some control u(-) € %, that in turn is optimal for problem 2.

Proof. We fix the initial condition IT(0) = ITy and consider the augmented dynamics

. flx,y,u)
e F(I):= U gl yu) (6.8)
(uy,0)eUx[0,1]2 | AT (x,y,2,u,v, &)

with
ht (x, 3, z,u,v, ) = (1 — a)h(x,y,z,u,v) + (xmal)](h(x,y,z,w, 0).
we

Under Assumption 2, the values of F' are convex compact. One can straightforwardly check that the
set-valued map F is upper semi-continuous' with linear growth. Therefore, the reachable set %T(T)
(where 5’,— denotes the set of absolutely continuous solutions of (6.8) with I1(0) = ITy) is compact (see
for instance [11, Proposition 3.5.5]). Then, there exists a solution IT*(-) = (x*(-),y*(+),z*(:)) of (6.8)
which minimizes z(T).

A set-valued map F : 2" ~» % is upper semi-continuous at & € .2 if and only if for any neighborhood .4 of F(&), there
exists 17 > 0 such that for any &' € By (&,1) one has F (&) C 4" (see for instance [11]).
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Note that any admissible solution (x(-),y(-),z(-)) of system (6.2) that satisfies the constraint 4, be-
longs to . C %T. We then get the inequality

2(T) < inf{z(T); (x(-),y(-),z()) sol. of (6.2) with &, }. (6.9)
Let us show that any solution I1(-) = (x(-),y(-),z(+)) in .} verifies

> .
dT)/Qgﬁ%yU) (6.10)

We show that one has z(r) > y(r) for any ¢ € [0,T]. We proceed by contradiction, as in the proof of
Proposition 6.3.3. If the set E = {t € (0,T); z(t) — y(¢) < 0} is non-empty, one has z(¢) — y(¢) > 0 for
a.e. t € E which implies, by continuity, that z(s) — y(s) < 0Vs € (0,7),7 € E and then z(0) — y(0) < 0
which contradicts the initial condition z(0) = y(0). Moreover, as the map h is non-negative, z(-) is non
decreasing and we conclude that (6.10) is verified.

On another hand, thanks to Assumptions 1 and 2, we can apply Filippov’s Lemma to the set-valued
map G, which asserts that (x(-),y(-)) is solution of (6.1) for a certain u(-) € % . With(6.10), we obtain

(1) max () > inf {,‘e‘f&%y(’” (x(-),¥()) sol. of <6.1>} 6.11)

where (x*(-),y*(+)) is solution of (6.1) for a certain u*(-) € % .

Finally, inequalities (6.9) and (6.11) with Propositions 6.3.2 and 6.3.3 show that z*(T') is reached by
a solution of (6.2) under the constraint %, and that «*(-) is optimal for problem 2. We also conclude
that the optimal value z*(T') is reached by a solution in .}, which is thus optimal for problem &7;. [

Remark 6.4.1. Let us stress that the function h is not continuous, which does not allow to use Filippov’s
Lemma for the set valued map F. This means that one cannot guarantee a priori that an absolutely contin-
uous solution T1(-) = (x(+),y(+),z(:)) can be synthesized by a measurable control (u(-),v(+)). Proposition
6.4.1 shows that (x(-),y(+)) is indeed a solution of system (6.1) for a measurable control u(-), but one
cannot guarantee a priori that z(-) can be generated by a measurable control v(-), which is irrelevant for
our purpose.

We end this section by exhibiting an approximation scheme from below of the optimal cost. These
approaches are of major interest for minimization problems because, since upper bounds are commonly
obtained via any sub-optimal control of problem #y, &, &, or &5 (provided typically by a numerical
scheme), they are useful to frame the optimal value of the problem. This will be illustrated in Section 6.5.

Let us consider the family of dynamics parameterized by 6 > 0

x=f(x,y,u)
y=g(x,y,u) (6.12)
= h@(-xvyaz7uav)

with

he(x,y,z,u,v) = max(g(x,y,u),0)(1 — vefemax(yfz“o)).

Here the expression e~ @™3x0=29) plays the role of an approximation of g+ (z—y) when 0 tends to +oo.
We then define the family of Mayer problems

P29 . inf T
3 m%yf()

where .7 denotes the set of absolutely continuous solutions I1(+) = (x(-),y(+),z(-)) of (6.12) for the
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initial condition I1(0) = ITy. Let us underline that, for problems with Lipschitz dynamics and without
state constraints, necessary conditions based on Pontryagin Maximum Principle can be derived, leading
to shooting methods that are known to be very accurate. They can be initialized from numerical solutions
of problems & or &, that in turn can be obtained, for instance, through direct methods.

Proposition 6.4.2. Under Assumption 2, for any increasing sequence of numbers 6, (n € N) that tends to
+oo, the problem 3”39 " admits an optimal solution, and for any sequence of optimal solutions (x,(+),yn(+),22)(*))

of P the sequence (x,(-),yn(:)) converges, up to sub-sequence, uniformly to an optimal solution
(x*(-),y*()) of Problem 2, and its derivatives weakly to (x*(-),y*()) in L*>. Moreover, z,(T) is an
increasing sequence that converges to maxc(o.7]y* (t).

Proof. As in the proof of Proposition 6.4.1, we consider for any 6 > 0 the convexified dynamics
Jx,y,u)

X
y=g(x,y,u)
2= hly(x,y,z,u,v, @) 1= (1 — &)hg(x,y,2,u,v) + maxyey ho (x,y,2,w,0)

where o € [0, 1]. Then, there exists an absolutely continuous solution (xj(-),y5(-),25(-)) and a measur-
able control (uj(-),vg(-), 05 (-)) that minimize z(T'). For the control (uj(-),vj(-),0), the solution is given
by (x5(-),v5(-),Z5(-)) where Zj(-) is solution of the Cauchy problem

2= 1g(1,2) := Iy (x (1), (1), 3 (1), 5 (1),0), 2(0) = y(0)

while zj () is solution of

2=1(1,2) == hj (x5 (1), ¥ (1), 2,15 (1),V5 (1), 05 (1)), 2(0) = ¥(0).
One can check that the inequality
l~9([7Z)<19(I,Z), IG[O,T],ZER

is fulfilled, which gives by comparison of solutions of scalar ordinary differential equations (see for
instance [99]) the inequality
Zp(t) < zh(t), te€]0,7T).

We deduce that (xj(-),y5(-),25(+)) is necessarily a solution of (6.12).

Let
y:= inf { max y(t); (x(+),y(+)) sol. of (6.1)}

uew \ 1e[0,7)
By Proposition 6.4.1, we know that there exists an optimal solution (x(-),y(-),z(+)) of problem &3 such
that z(T') = y. Clearly, this solution belongs to .# for any 6, and we thus get

7(T) <. (6.13)

Let
f(x,y,u)
FO(H) = g(X,y,u)
(u)eUx[0,1] | hg(x,y,z,u,v)

and note that one has

Jlim_d(Fo(I).F(I) =0, €7 xR (6.14)
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Consider an increasing sequence of numbers 6, (n € N), and denote IT, () = (x,(+),y1(+),z,(-)) an optimal
solution of problem 3339”. Note that one has

S

n+1

C S, C Sy (6.15)

Therefore, the sequence IT,(+) is bounded, and IT,,(-) as well. As F is upper semi-continuous, we obtain
that IT,(-) converges uniformly on [0,7], up to a sub-sequence, to a certain IT*(-) = (x*(-),y*(+),z*(*))
which belongs to .7} (see for instance [36, Th. 3.1.7]). From property(6.15), we obtain that z,(7') is a non
decreasing sequence that converges to z*(7'), and from (6.13), we get passing at the limit

Z(T)<y
On another hand, (x*(-),y*(:),z*()) belongs to .7 and we get from Proposition 6.4.1 the inequality
(T) =5

Therefore, one has z*(7T) = 7 and (x*(-),y*(:),z*(-)) is then an optimal solution of problem Z?3. From
Proposition 6.4.1, we obtain that one has necessarily

* T — * .
Z(T) max y (t)

Finally, the sequence (%,(),y,(-)) being bounded, it converges, up to a sub-sequence, weakly to (3*(-),y*(-))
in L? thanks to Alaoglu’s Theorem. O

6.5 Numerical illustrations

Our aim is to illustrate the different formulations on problems for which the optimal solution is known.

6.5.1 A particular class of dynamics
We consider dynamics of the form
(Z):{{f(x) xeR uelU

y=g(x,u)

Proposition 6.5.1. A feedback control x — §*(x) such that
8(x,¢"(x)) = ming(x,u), xR’
ue
is optimal for problem 4.
Proof. For a given xj in R”, let x(-) be the solution of x = f(x), x(0) = xo independently to the control
u(+). Then, for any solution y(-), one has
t

y(1) = y(0) +/tg(x(’c),u(f))dr >y(0)+ [ ming(x(7),v)dt, t>0
0 0 veU

Let y*(-) be defined as

t

y (1) :==y(0)+ | ming(x(7),v)dt, >0
0 veU
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Clearly, one has
mtaxy(t) > mtaxy* (1)

where y*(-) is a solution of X for any measurable control #*(-) such that

gx(®),u™(2)) = rvréi‘r/lg(x(t),v), ae. r>0.

We conclude that y*(-) is an optimal trajectory of problem & for the control generated by the feedback
™. O

As a toy example, we have considered the system

x=1,x0)=0
{ y=(1-x)2-x)(4—x)(14u/2), y(0) =0 ue[=1,1]

for which

9*(x) = —sign ((1-1)(2-x)(4—x))

is an optimal control which minimizes max;¢|o 7] ¥(t). The optimal control is thus pure bang-bang. Re-
mark that this problem can be equivalently written with a scalar non-autonomous dynamics

y=(1-02—-1)(4—1)(14+u/2)
for which the open-loop control
(1) = —sign ((1 —t)(2—t)(4—t))
is optimal.

For T =5, we have first computed the exact optimal solution of problem & with the open-loop u*(+),
by integrating the dynamics with Scipy in Python software (see Figure 6.2). Effects of perturbations

-0.251

=0.50 1

=0.754

=51 -1.004

Figure 6.2: Optimal solution: y(-) on the left, u*(-) on the right

on the switching times of the control are presented in Table 6.1, which show a quite high sensitivity
of the optimal control for this problem (as it often the case for bang-bang controls). Then, we have
solved numerically problems Z to &7, with a direct method (Bocop software using Gauss II integration
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disturbance

trer[lg);] ¥(1) error
0 2.24985 0
0.001% 2.24985 | 4.107%%
0.01% 2.25010 0.01%
0.1% 2.69457 20%

Table 6.1: Sensitivity to the optimal switching

scheme) for 500 time steps and an optimization relative tolerance equal to 107!, For problem 2%, as
the dynamics is not continuous, direct methods do not work well and we have used instead a numerical
scheme based on dynamic programming (BocopHJB software) with 500 time steps and a discretization
of 200 x 200 points of the state space. For the additional control v, we have considered only two possible
values 0 and 1 as we know that the optimal solution is reached for v € {0,1} (see Proposition 6.3.1).
The numerical results and computation times are summarized in Table 6.2, while Figure 6.3 presents the

corresponding trajectories.

15
TS u open loop
2 -~ A,
- R
-------- -~ RN - uP
7 - 4 —
1 S TN \‘\\ 1.0 ur
/ N - upr,
/ W
0 W - ups
n 0.5
1 .
2 0.04 |
|
3 y open loop H
- |
--= yPo -0.5 H
_4 yPy |
T YP2 ¥
=51 """ Y73 -1.04 A
0 1 2 3 4 5 1 2 3 5
, 109 7T v
|
H ! ! v,
1
1 1 ! H VPs3
081 1 i ;
! 1
0 ! i i
" ' A S
0.61 1 i
-1 ! ! N i
1 k 1 N\, !
! H nooN i
-2 ' - A
049 1 ! | =
3 y open loop | i ' |
- i
B | i ! :
024 1 i i
—a zP; ! ! : i
- zP H H ! H
) 1 1 ! H
-5 ZP3 004 —m 11 L
0 1 2 3 4 5 0 1 2 3 4 5

Figure 6.3: Comparisons of the three methods on y(-), u(-), z(-) and v(-).

We note that the direct method give very accurate results, and the computation time for problem 4
is the lowest because it has only one control. The computation time for problem %, is slightly higher
than for &2 because the mixed constraint %, is heavier to evaluate. The numerical method for problem
P is of completely different nature as it computes the optimal solution for all the initial conditions on
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problem | max y(r) | error | computation time
1€(0,7]
&P 2.24705 0 —
P 2.249888 | 0.126% 0.5
P 2.24998 | 0.130% 1.8s
P 2.249941 | 0.129% 3.8s
P 2.26778 0.8% 248s

Table 6.2: Comparison of the numerical results

the grid, which explains a much longer computation time. The accuracy of the results is also directly
related to the size of the discretization grid and can be improved by increasing this size but at the price of
a longer computation time.

On Figure 6.3, one may notice some difference between the obtained trajectories. Let us underline
that after the peak of y(-), there is no longer uniqueness of the optimal control.

6.5.2 Application to an epidemiological model

The SIR model is one of the most basic transmission model in epidemiology for a directly transmitted
infectious disease (for a complete introduction, see for instance [100]) and it retakes great importance
nowadays due to covid-19 epidemic.

Consider on a time horizon [0, 7] variables S(¢), I(r) and R(r) representing the fraction of suscep-
tible, infected and recovery individuals at time 7 € [0,T], so that one has S(¢) +1(t) + R(t) = 1 with
S(¢),1(t),R(t) > 0. Let B > 0 be the rate of transmission and ¥ > 0 the recovery rate. Interventions as
lock-downs and curfew are modeled as a factor in rate transmission that we denote u and which represents
our control variable taking values in [0, t4¢] With tpg, € (0,1), where u = 0 means no intervention and
U = Upqy the most restrictive one which reduces as much as possible contacts among population. The SIR
dynamics including the control is then given by the following equations:

S=—(1—u)BSI (6.16)
I=1—u)BSI—vyl (6.17)
R=7l (6.18)

When the reproduction number % = 3/7 is above one and the initial proportion of susceptible is above
the herd immunity threshold S, = %, ! it is well known that there is an epidemic outbreak. Then, the
objective is to minimize the peak of the prevalence

1
tlel%(?:);] (t)

with respect to control u(-) subject to a L' budget

/ un <0 6.19)

on a given time interval [0,7] where T is in chosen large enough to ensure the herd immunity of the
population is reached at date 7. Note that one can drop the R dynamics to study this problem. If the
constraint (6.19) were not imposed, then the optimal solution would be the trivial control u(t) = uqy, t €
[0,T], which is in general unrealistic from a operational point of view. A similar problem has been
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considered in [83] but under the constraint that intervention occurs only once on a time interval of given
length, that we relax here. Note that the constraint (6.19) can be reformulated as a target condition,
considering the augmented dynamics

S=—(1—u)BSI (6.20)
= (1—u)BSI—yI (6.21)
C=—u(t) (6.22)

with initial condition C(0) = Q and target {C > 0}. Extension of the results of Sections 6.3 and 6.4 to
problems with target do not present any particular difficulty, and is left to the reader.

For initial conditions Iy = I(0) > 0 and Sp = S(0) > S}, the optimal solution has been determined in
Chapter 7 as the feedback control

~3 iff=Tand S> S
0 otherwise

where
o+ So—Sy—Sulog ()
I .=
Qﬁsll+1

is the optimal value of the peak. The proof of the optimality of this feedback is out of the scope of the
present chapter and can be found in Chapter 7. This control strategy consists in three phases:

1. no intervention until the prevalence I reaches I (null control),
2. maintain the prevalence I equal to 7 until S reaches S}, (singular control),
3. no longer intervention when S > S, (null control)

as illustrated in Figure 6.4 for the parameters given in Table 6.3. Note that differently to the previous

Suceptible S Infected | Optimal control u

Figure 6.4: The optimal solution for the SIR problem

example, this control strategy is intrinsically robust with respect to a bad choice of I: the maximum value
of I is always guaranteed to be equal to . However, a mischoice of I has an impact on the budget (see
Chapter 7 for more details).

Adding the z-variable, we end up with a dynamics in dimension four, which is numerically heavier
than for the previous example. In particular, methods based on the value function are too time consuming
to obtain accurate results for refined grids in a reasonable computation time. So we have considered direct
methods only. We do not consider here problem 73, but instead its regular approximations 3239 suitable
to direct methods. For direct methods that use algebraic differentiation of the dynamics, convergence and
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Bl vy [T]o] 5O [HO] T
0.21 [ 0.07 [ 300 [ 28 [ 1—=107° [ 10® ]| 0.105

Table 6.3: Parameters used in numerical computations and optimal value of the peak

accuracy are much better if one provides differentiable dynamics. This is why we have approximated the
max(-,0) operator for problems &2 and &, by the Laplace formula

log (e’l‘5 + 1)
— 7 5 max(£,0), E€R
A A—r+Foo

with A = 100 for the numerical experiments. For problem 222, one has to be careful about the interplay
between the approximations of max(-,0) and the sequence 6, — oo, to provide approximations from
below of the optimal value. The function hg is thus approximated by the expression

A ,
log (6 18 4 1) (1 B Ve)f’zlog(elz()'z)+1))

h@(xay7z7u7v) = Al

which depends on three parameters A1, A, and 6. Posit for convenience
o= 0
=

and consider the function
(&) = emolos(¢ 5 41) g R

which approximates the indicator function ¥+. One has the following properties.

Lemma 6.5.1.

wO{ .7[,2

1. For any positive numbers o, A, the function @, ;, is increasing with

lim o =0, lim o, =1
éi}lzlm 0672,2(5) ’ {:irfoo lx,kz(é)

2. Forany € € (0,1), one has 0q 3, (—€*) = € and ¢ ,(0) = 1 — & exactly for

B log(l —¢) B log(e‘é —1)
= _710};(2) , A= — (6.23)

Proof. One has first
eflzx

w(/x,lz(é) = 7L2O‘mwa,/lz(§) >0

and the function @, ;,(+) is thus increasing. From

lim —alog(e ™5 4+1) = —oo

Ermen

one get
lim wa712(§) =0
&——oo



6.5. Numerical illustrations 71

and similarly
lim —alog(e ™4 +1)=0
E—roo
implies
lim @, (&) =1
§—rfeo

Finally, with simple algebraic manipulation of the conditions @, 3, (—82) =¢€and Wy y,(0) =1 —¢, one
obtains straightforwardly the expressions (6.23). O

We have taken A; = 5000 and considered a sequence of approximations of the indicator function for
the values given in Table 6.4 according to expressions (6.23) of Lemma 6.5.1 (see Figure 6.5).

€ | | 22
0.2 0.32 124
0.15 0.234 | 360
0.1 0.152 | 1514
0.075 | 0.112 | 4094
0.05 0.074 | 16193

Table 6.4: Values of parameters o, A, for different €

Yl — eg=02 [7 Yl — eg=02
£=0.15 £=0.15

%1 — £=0.1 81 £=0.1

— £=0.05

0.6 —_—— 1 0.6
Ry

0.4 0.4

0.2 0.2

0.0 ~ 0.01

-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00 -0.4 -0.2 0.0 0.2 0.4

Figure 6.5: Approximation of the indicator function with different values of € (zoom on the abscissa axis
on the right)

Computations have been performed with Bocop software on a standard laptop computer (with a Gauss
IT integration scheme, 600 time steps and relative tolerance 107'%). As one can see in Figure 6.6 and
Table 6.5 problems %y, &, &, give the peak values with a very good accuracy, and present similar
performances in terms of computation time. In Figure 6.7 and Table 6.6, the numerical solutions of 3239
are illustrated for the values of o and A, given in Table 6.4. As expected, the numerical computation of
the family of problems ,9239 provides an increasing sequence of approximation from below of the optimal
value and thus complements the computation of problems &2, & or £2,. From Figures of Tables 6.5 and
6.6, one can safely guarantee that the optimal value belongs to the interval [0.1010,0.1015]. However,
the trajectories found for 3339 are not as closed as the ones of problems #y, & or &,. This can be
explained by the fact that problems 929 are not subject to the constraint z(t) > y(¢) and thus provides
trajectories for which z(7') is indeed below max, y(z).
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Figure 6.6: Comparisons of numerical results for the methods &y, &1, &,

problem | max y(#) | computation time
1€(0,7]
P 0.1015 10s
P 0.1015 125
P 0.1015 135

Table 6.5: Comparison of performances for problems &y, &, &,

€ Z(T) max y(z) | computation time
t€[0,T]
0.2 | 0.0684 0.1038 80s
0.15 | 0.0823 0.1038 65s
0.1 0.0954 0.1037 51s
0.075 | 0.0993 0.1050 83s
0.05 | 0.1010 0.1036 97s

Table 6.6: Comparison of performances for problem ﬁf

Finally, we have compared our approximation technique with the classical approximation of the L™
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Control u State z

State |

— upy 010
- =02
£=015
- e=01
-- £=0.075
-~ £=005 006

Figure 6.7: Comparison of the numerical results for problem 939

criterion by L? norms
Py inf t
we it IO,
with the same direct method. To speed up the convergence, we have used the Bocop facility which allows
a batch mode which consists in initializing the search from a solution found for a former value of p,
that have been taken p € {2,5,10,15} (see Figure 6.8). Besides, to ensure convergence it was necessary
take 1200 time step instead of 600 as in previous simulations. The total time of the process is 78s after

state | control

0.12 ; I 064 —n
| L2 L2
——— LS ——— LS
0.10 054
-—— LIO ——— LlO
o35 IS L
0.08 044
0.06 034
0.04 024
0.02 0.11
0.00 0.01
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure 6.8: Numerical solutions for problems &1 »

summing computation times given in Table 6.7. However, one can see that the trajectory found for p = 15

p | max y(r) | |[y(#)||p | computation time
1€[0,T]

2 | 0.119653 | 1.0222 34s

5 | 0.105244 | 0.2474 145

10 | 0.105375 | 0.15678 13s

15 | 0.105170 | 0.13549 17s

Table 6.7: Comparison of the numerical results with the L” approximation

is quite far to give a peak value close from the other methods. Moreover, the same method for p = 15 but
initialized from the solution found for p = 2 gives poor results for a computation time of 50s (see Figure
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6.9). We conclude that the L” approximation is not practically reliable for this kind of problems.

state | control

—_— P 0.6 1
L1

P
L5

0.15

0.10 —

Figure 6.9: Numerical solution for &, s without batch iteration (computation time 50s)

6.6 Discussion and conclusions

In this work, we have presented different reformulations of optimal control problems with maximum
cost in terms of extended Mayer problems, and tested them numerically on two examples whose optimal
solution has bang-bang controls and singular arcs. We have proposed two kinds of formulations: one
with state or mixed constraints suitable to direct methods, and another one without any constraint but
less regular and suitable to dynamical programming type methods. Moreover, for the latter one, we have
proposed an approximation scheme generated by a sequence of regular Mayer unconstrained problems,
which performs better than approximations based on L? norms. However, although this second approach
requires larger computation time, it complements the first one providing approximations of the optimal
value from above.

This first work puts in perspective the study of necessary optimality conditions for the maximum cost
problems with the help of these formulations, which will be the matter of a future work.

Finally, we summarize advantages and drawbacks of the different formulations for numerical compu-
tations in Table 6.8, that could help practitioners in the choice of the method.

Formulation ‘ P ‘ Py or Py ‘ Py ‘ @f
suitable to direct methods yes yes no | yes
suitable to Hamilton-Jacobi-Bellman methods no yes yes | yes
suitable to shooting methods without constraint | no no no | yes
provides approximations from below no no no | yes

Table 6.8: Comparison of the different formulations



Chapter 7

A feedback strategy for peak
minimization in SIR model

This chapter corresponds to the accepted pre-print [81] titled "An optimal feedback control that minimizes
the epidemic peak in the SIR model under a budget constraint" to appear in Automatica journal.

7.1 Introduction

Since the pioneering work of Kermack and McKendrick [70], the SIR model has been very popular in
epidemiology, as the basic model for infectious diseases with direct transmission (see for instance [100,
75] as introductions on the subject). It retakes great importance nowadays due to the recent coronavirus
pandemic. In face of a new pathogen, non-pharmaceutical interventions (such as reducing physical dis-
tance in the population) are often the first available means to reduce the propagation of the disease, but
this has economic and social prices. In [83, 76], the authors underline the need of control strategies for
epidemic mitigation by “flattering the epidemic curve”, rather than eradication of the disease that might
be too costly. Several works have applied the optimal control theory considering interventions as a control
variable that reduces the effective transmission rate of the SIR model, and studied optimal strategies with
criteria based on running and terminal cost over fixed finite interval or infinite horizon [17, 24, 23, 67, 86,
20, 33, 49, 71, 21]. However, the highest peak of the epidemic appears to be the highly relevant criterion
to be minimized (especially when there is an hospital pressure to save individuals with severe forms of
the infection). In [83], the authors studied the minimization of the peak of the infected population under
the constraint that interventions occur on a single time interval of given duration. In the present work,
we consider the same criterion, but under a budget constraint on the control (as an integral cost) that we
believe to be more relevant as it takes into account the strength of the interventions and does not impose
an a priori single time interval of given length for the interventions to take place (although we have been
able to prove that the optimal solution consists indeed in having interventions on a single time interval but
with a control strategy different that the one obtained in [83]). Let us also mention a more recent work
[12] that considers a kind of "dual" problem, which consists in minimizing an integral cost of the control
under the constraint that the epidemic stays below a prescribed value and an additional constraint on the
state at a fixed time. The structure of the optimal strategy given by the authors in [12] is similar to the
one we obtained without having to fix a time horizon and a terminal constraint. All the cited works rely
on numerical methods to provide the effective control. Here, we give an explicit analytical expression of
the optimal control.

Let us stress that optimal control problems with maximum cost are not in the usual Mayer, Lagrange
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or Bolza forms of the optimal control theory [34], for which the necessary optimality conditions of Pon-
tryagin’s Principle apply, but fall into the class of optimal control with L™ criterion, for which charac-
terizations have been proposed in the literature mainly in terms of the value function (see for instance
[15]). Although necessary optimality conditions and numerical procedures have been derived from the-
ses characterizations (see for instance [14, 41]), these approaches remain quite difficult and numerically
heavy to be applied on concrete problems. On the other hand, for minimal time problems with planar
dynamics linear with respect to the control variable, comparison tools based on the application of the
Green’s Theorem have shown that it is possible to dispense with the use of necessary conditions to prove
the optimality of a candidate solution [57]. Although our criterion is of different nature, we show in the
present work that it is also possible to implement this approach for our problem.

The chapter is organized as follows. In the next section, we posit the problem of peak minimization
to be studied. In Section 7.3, we define a class of feedback strategies that we called "NSN", and give
some preliminary properties. Section 7.4 proves the existence of an NSN strategy which is optimal for
our problem, and makes it explicit. Finally, Section 7.5 illustrates the optimal solutions on numerical
simulations and discusses about the optimal strategy.

7.2 Definitions and problem statement

We consider the SIR model

S=—BSI(1—u)
[=BSI(1—u)—yI (7.1)
R=yI

where S, I and R denotes respectively the proportion of susceptible, infected and recovered individuals
in a population of constant size. The parameters 3 and y are the transmission and recovery rates of the
disease. The control u, which belongs to U := [0, 1], represents the efforts of interventions by reducing
the effective transmission rate. For simplicity, we shall drop in the following the R dynamics. Throughout
the chapter, we shall assume that the basic reproduction number % is larger than one, so that an epidemic
outbreak may occur.

Assumption 3.
%() = E > 1.
Y

For a positive initial condition (S(0),7(0)) = (So,lo) with So+ Iy < 1, we consider the optimal control
problem which consists in minimizing the epidemic peak under a budget constraint

inf max/(z), 7.2
u(-)e% t}(;( ®) (7.2

where % denotes the set of measurable functions u(-) that take values in U and satisfy the L' constraint

oo
/ u(t)dr < Q

JO

Remark 7.2.1. From equations (7.1), one can easily check that the solution 1(t) tends to zero when t
tends to +oo whatever is the control u(-), so that the supreme of 1(-) over [0,+o0) in (7.2) is reached.
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Equivalently, one can consider the extended dynamics.

S=—BSI(1—u)
I=BSI1—u)—yl (7.3)
C=—u

with the initial condition (S(0),7(0),C(0)) = (So, 1o, Q) and the state constraint
C(t)>0, 1>0. (7.4)

A solution of (7.3) is admissible if the control u(-) takes its values in U and the condition (7.4) is fulfilled.

7.3 The NSN feedback

Let us denote the immunity threshold

Spi=ay =L <1

B

Note that S(-) is a non increasing function and that one has I < 0 when S < S, whatever is the control.
If Sp < S}, the maximum of I(-) is thus equal to Iy for any control u(-), which solves the optimal control
problem. We shall now consider that the non-trivial case.

Assumption 4.
So > Sp.

Under this assumption, we thus know that for any admissible solution, the maximum of /() is reached
for § > Sj,. For the control # = 0, one can easily check that the following property is fulfilled

S(t)+1(r) — Splog(S(r)) = So+ 1o — Splog(So), >0, (7.5)

and the maximum of /(+) is then reached for the value

S
Iy .= Iy +So— S — Sy log <S;J> .
d

We define the "NSN" (for null-singular-null) strategy as follows.

Definition 7.3.1. For I € [Iy, 1), consider the feedback control

1-% fr1=Tand $> s,

7.6
0 otherwise. (7.6)

WI_(LS) = {
We denote the L' norm associated to the NSN control
+oo _
2= [ wiodr, Te lhh,
0

where uVi(-) is the control generated by the feedback (7.6).
This control strategy consists in three phases:

1. no intervention until the prevalence I reaches I (null control),
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2. maintain the prevalence I equal to I until S reaches S}, (singular control),

3. no longer intervention when S < S, (null control)

Remark 7.3.1. There is no switch of the control between phases 2 and 3, because u(t) tends to zero when
S(t) tends to Sy, according to expression (7.6).

One can check straightforwardly the following properties are fulfilled.

Lemma 7.3.1. For any I € [ly, 1), the maximal value of the control u¥i(-) is given by

S
umax(l_) ::1_§h<17

where S is solution of
S_fShIOgS_:SoJrI()fSthgSofI_.

Moreover, any solution given by the NSN strategy verifies

maxI(t) =1.
max (t)

7.4 Optimal strategy

We first show that the function .Z can be made explicit.

Proposition 7.4.1. One has B

I —1

B’
Proof. Note first that whatever is I, S(-) is decreasing with the control (7.6). One can then equivalently
parameterize the solution /(-), C(-) by

2= 1€ [lo, 1) .7

o(t):=8y—S(t)
instead of ¢. Posit o), := 6(t;,) = So — Si.

As long as I < I, one has u = 0 which gives

dl

To=rfo)=1- s >0
dc

— =0

do

Remind, from the definition of I, that the solution /() with u = 0 reaches Ij, in finite time. Therefore,
one can define the number
6:=inf{c >0, I(c) =1} < oy,

which verifies

5
/ flo)de =1—1I. (7.8)
0
For ¢ € [6,0p], one has u = 1 — S, /S, that is
dl
— =0
do
ac _ S\ _ _ fo)
%**mi(“sﬂ) = s <Y
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One then obtains

2(1) = C(0) — () = @ / Zf)ﬂc)do

and with (7.8) one can write

2() = ﬁ </06”f(a)do+10—i> .

On the other hand, one has
Oy, Sh
f(O')dO':Gh-i-Sthg — | =1—1
0 So

which finally gives the expression (7.7). O

Then, the best admissible NSN control can be given as follows.

Corollary 7.4.1. When Q < g’s_h 5‘; the smallest I € [Iy, 1] for which the solution with the NSN strategy is

admissible, is given by the value
- 1
(R

T 0BS+1 79

and one has

2(I"(Q)) = 0. (7.10)

We give now our main result that shows that the NSN strategy is optimal.
Proposition 7.4.2. Let Assumptions 3 and 4 be fulfilled. Then, the NSN feedback is optimal with

Tx [h_IO
I= {I (@), 0< BSilo

In—1ly
IOa Q 2 BSulo

where I*(Q) is defined in (1.9), and I is the optimal value of problem (7.2).

Proof. When Q > g’s_h i‘;, the NSN strategy is admissible and the corresponding solution verifies

max /(1) = I
max (t) =1Io

which is thus optimal.

Consider now Q < ;37157, 2 Let (S*(-),I*(-),C*(-)) be the solution generated by the NSN strategy with

I =TI*(Q), and denote u*(-) the corresponding control. Let

§:=§*(f) where f = inf{t > 0, I"(t) = I}

and
ty =inf{r > 7, S*(t) = Sp}.

We consider in the (S,1) plane the curve

G = {(S(1),I"(1)); t € 0,13}
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For S > §, the control (7.6) is null and a upward normal to €’ is given by the expression

A(S,I) = { Bséy’l } , (S,1) € €* with S € [S, o).

On the other hand, the vector field in the (S,7) plane of any admissible solution is
- | —BSI(1—u)
V(S ,u) = [ BSI(1—u)—yl |

Then, one has
(S, 1) -¥(S,1,u) = —BySI*u <0,

V(S,1) € €* with S € [§,So], which shows that any admissible solution is below the curve ¢ in the (S, 1)
plane for S € [§,So]. For S € [S,S], the curve €™* is an horizontal line with / = I. Therefore, if there
exists an admissible solution (S(-),1(+),C(+)) with max, I(¢) < I, its trajectory in the (S,1) plane has to be
below the curve €™ for any S € [S,, So]. Let

ty :=1inf{t > 0, S(¢) = S),}.
One has thus I(1;) < I. Define

1 I
T:=t;+-lo () >t
" Y . I(th) "

and consider the non-admissible solution (S(-),1(-),C(-)) of (7.3) on [0, 7] defined by the control

(1) = {u*(t), 1€0,1)

1, tely,T)
One can straightforwardly check with equations (7.3) that the solution (S(¢),1(¢),C(t)) is

{<s*(,),p<,),c*<t)>, re[0,17)
(S, Texp(—y(t —1)),C*(i}) +1; —1), 1€ [}, T].

Remind, from Corollary 7.4.1, that one has C*(t;) = 0 by equation (7.10)). Clearly, one has (S(7),1(T)) =
(S, 1(t)) and C(T) < 0. We consider now in the (S,7) plane the simple closed curve I" which is the con-
catenation of the trajectory (S(-),(+)) on forward time with the trajectory (S(-),1(-)) in backward time:

= {(S(1),I(1), t€[0,T]}U
{(S(T+ty,—1),[(T +1t,—1)), T€[T,T+1,)}

that is anticlockwise oriented by 7 € [0, T +1;,]. Then one has
C(T) = Clty) = 7{ dc.
r
From equations (7.3), one gets

_ ds _ ds dS+dl __ Si\ dS dl
dC=— g5 —dr = 5+ 9SE0 = (1-4) B4+ 4

and thus
E(T) - Cliy) = }é P(S,1)dS + Q(S,1)dI
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with S . |
_(1_2r) _
P(SJ)—<1 S) o=

By the Green’s Theorem, one obtains

C(T)—C(ty,) ://j aag(S,I)—(;f(S,I)> dsdl

Sp\ 1
= 1—22) — dsdr
//Q S)Wzdscz

where 2 is the domain bounded by I (see Figure 7.1 as an illustration). This implies C(z;) < C(T) < 0 and
thus a contradiction with the admissibility condition (7.4) of the solution (S(-),1(-),C(-)). We conclude
that (S*(+),I*(-),C*(-)) is optimal. O

Sh

Figure 7.1: The closed curve I is composed of the trajectory (S*(-),I*(-)) in blue up to to the point (Sj, 1),
the additional part (S(-),7(-)) in red and the hypothetical better trajectory (S(-),(-)) in backward time in
green.

7.5 Numerical illustrations and discussion
We have considered the same parameters and initial condition as in [83] (see Table 7.1). For these values,

B | v | S0 | 10
0.21 ‘ 0.07 ‘ 1—10°6 ‘ 106

Table 7.1: SIR parameters and initial condition

one computes

e%0 = 37 Sp= 3’
Figure 7.2 presents a simulation of the optimal solution for the budget Q = 28, as an example (the mini-
mum peak is reached for I ~ 0.1015). As a comparison, the optimal strategy obtained by Morris et al. in
[83] for a fixed time duration of interventions without consideration of any budget is quite different (see
Figure 7.3). It consists in four phases: no intervention, maintain / constant, apply the maximal control

Ih ~0.3.



82 CHAPTER 7. A feedback strategy for peak minimization in SIR model
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Figure 7.2: Optimal solution for Q = 28.

(i.e. u = 1) and stop the intervention. This control presents thus three switches and relies on a full break
of the transmission, differently to the NSN strategy which presents only one switch (see Remark 7.3.1)
and does not require a full break (see the maximal value of the control given in Lemma 7.3.1). Applying

same budget same duration

—L1 —L1
—— Morris et al 014 —— Morris et al

0.08
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0.02 o 0.02 A
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Figure 7.3: Comparison of the time evolution of the infected population / between the optimal NSN
strategy and the optimal one of Morris et al.

an NSN strategy appears thus less restrictive to be applied in practice. The strategy proposed by Morris et
al. induces also a second peak: after the third phase, the prevalence I increases again up to a peak which
has to be equal to the level maintained during the second phase if it is optimally chosen. But this second
peak turns out to be non robust under a mischoice (or mistiming) of the second phase (see [83] for more
details). Comparatively, the NSN is naturally robust with respect to a bad choice of I: the maximum value
of I is always guaranteed to be equal to . However, a mischoice of I has an impact on the budget of the
NSN strategy, given by expression (7.7) and illustrated in Table 7.2 (for model parameters given in Table
7.1 and Q = 28).

In case of a new epidemic among a large population, one can consider that the initial number of
infected individuals is very low, while all the remaining population is susceptible. Therefore, one has
So+ 1o = 1 with Iy very small, and the optimal value of / can be well approximated by its limiting



7.5. Numerical illustrations and discussion 83

I-r | -10% —5% —1% +5% +10%
ZLN-0+17% +8% +15% —1% —14%

Table 7.2: Variation of the control budget of the NSN strategy under a mischoice of [

expression for Iy = 0, that is
[ 1—-8,+S, log(Sh)
~ oBS+1
From property (7.5), one also gets an approximation of the value Sy of S when I reaches I, with u = 0, as
the solution of the equation

(7.11)

So+1i— Sylog(S)) =1,
and then an approximation of the duration of the intervention is given by
S8

dy: _
! Yl

)

(one can easily check that along the singular arc I = I, one has S = —7I). For the parameters of Table 7.1,
one obtains the limiting values given in Table 7.3. This means that depending on the budget Q only, one
can determine the minimal peak and the optimal strategy to apply, without the knowledge of the initial
size of the infected population, provided that parameters 8 and y of the disease are known.

I | S | d
0.1015 ‘ 0.8406 ‘ 71.39

Table 7.3: The limiting optimal values for arbitrarily small Iy (with Q = 28)

The question of parameters estimation in the SIR model from data is out of the scope of the present work.
However, while reaching I = I, without intervention, one may expect refinement of the estimates and thus
an adjustment of the value of I;.

Note that if it is rather the height of the peak I that is imposed, the corresponding effort can be
determined with expression (7.11), that is

B 1 l—Sh_
Qﬁsh< I 1>’

as well with the duration of the intervention.

To have a better insight of the impacts of the available budget Q on the course of the epidemic, we
have considered four characteristics numbers:

* ¢;: the starting date of the intervention,
¢ d: the duration of the intervention,
« I: the height of the peak,

* Unaxc: the maximal value of the control,
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of the optimal solution, depicted on Figure 7.4 as a function of Q for Iy = 107 and Sy + Iy = 1. Let us
note that the maximal budget Q under which it is not possible to immediately slow down the progress of
the epidemic is given, according to Proposition 7.4.2, by

I —1
BSulo

which is quite high. Moreover, the maximal value of the control is bounded by the value

Omax := ~ 43105,
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Figure 7.4: Characteristics numbers as functions of Q.

umax(l_) <1-=8§,= 57
far from the value 1 (that would consists in a total lockdown of the population). On Figure 7.4, one can see
that the peak I can be drastically reduced under a reasonable budget, and that taking larger budgets slows
down the decrease of the peak, while the duration of the intervention carries on increasing, almost linearly.
Indeed, remind that one has d = (S — S;,)/(yI) and for an optimal value of 7, one has Q = (I, —I)/(vI)
from (7.9). Then one gets

5-s,

d= h
I,—1

0,

but for large values of Q, I is small and S closed to one, which gives an approximation of d as the linear
function of Q
1-8,

I

This implies that for a long duration, fixing the budget Q or the duration d tends to be equivalent. There-
fore, for a same large duration, the optimal peak gets closed from the optimal one of the strategy of Morris
et al. which constraints the duration only, but the difference of the budgets of these two strategies gets
increasing with always a lower one for the NSN strategy, as one can see on Figure 7.5.

d~

0~2.1940.

Finally, this analysis highlights (as already mentioned in [83, 76]) the importance to do not intervene
too early (unless one has a very large budget) and to choose the "right" time to launch interventions. We
believe that curves as in Figure 7.4 might be of some help for decision makers.
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Chapter 8

Conclusion and perspectives

The objective of this thesis was to apply optimal control techniques in resource management problems.
In particular we worked in two contexts, mining and epidemiology. Now, we will present the main results
obtained and open problems which we identified.

We begin with the mining context corresponding to Part 1 of this document.

* Conclusions: In Chapter 3, we proposed a formulation based on the continuous framework of [3],
where the only change was to reduce the functional space of profiles from continuous to abso-
lutely continuous functions. Then, we characterized analytically optimal profiles of (FOP) in 2D
(Theorem 3.2.1) and 3D (Theorem 3.3.1), both being, main results of that section.

In Chapter 4 we showed (FOP) and (SOP) versions in a 2D case assuming continuity in densities
g and e. Then we recovered Theorem 3.2.1 for these hypotheses. Moreover, we proposed a new
version of the sequential problem (SOP) that we called Semi continuous formulation consisting in
discretizing the space domain Q and in each point of this discretization take a continuous function
characterizing the depth at that point. This formulation is applied on 2D ((SOP)32) and 3D cases
((SOP)3P) and allows us to manipulate the 3D case numerically.

We showed numerical experiments for the 2D case, comparing both formulations and methods of
resolution (local optimization and HBJ). Besides, we present, for the first time in literature to our
knowledge, numerical solutions of (SOP) in the 3D case.

* Perspectives: The hypothesis in Theorem 3.3.1 are a bit strong, therefore, the search for weaker
hypotheses remains an open problem. An option would be work with profiles parameterized in
each coordinate by another variable, reducing then the dimension of the optimal control problem
space.

In the analytical part, another open problem is to explore optimality conditions for ((SOP)32) and
((SOP)32) which could give extra information of optimal profiles.

With respect to the numerical part, there does not exists a density function g in literature built from
real data. That information is found in blocks as it was presented in the Introduction. A challenge
is to design an efficient interpolation tool to pass from a block model to a continuous function g,
and then use the same optimization tools used in Chapter 4 to solve an academic example.

Now, the epidemiology context corresponding to Part 2 of this document.

* Conclusions: In Chapter 6 we worked with general optimal control problems consisting of min-
imizing the maximum value of a state which appear in epidemiology to minimize the peak of
infected individuals after an outbreak disease. We presented four different equivalent formulations
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as a Mayer optimal control problem with and without state constraints. These formulations let us
apply classical optimal control tools.

We showed the numerical experiment in an academic example and in a more realistic SIR problem.
We compared performance among each formulation and L” approximation, used to approximate
L™ norm. The main advantages and disadvantages in a numerical sense are summarized in the
following table.

Formulation ‘ Kz ‘ P or P, ‘ D3 ‘ @39
suitable to direct methods yes yes no | yes
suitable to Hamilton-Jacobi-Bellman methods no yes yes | yes
suitable to shooting methods without constraint | no no no | yes
provides approximations from below no no no | yes

Table 8.1: Comparison of the different formulations

In Chapter 7 we worked the particular problem of minimizing the peak of infected individuals over
a SIR model with a L' cost in the control. We found the analytical expression for the optimal
strategy which we called NSN (null-singular-null) and which corresponds to the feedback control
(6.5.2).

Finally we presented numerical experiment and a parametric analysis of solutions comparing the
budget Q with the duration of the intervention and height of the optimal peak.

Perspectives: Chapter 6 was focused on modeling and numerical experiments, therefore, there is
still work to be done in finding optimality conditions using one of the four formulations.

The strategy NSN presented in Chapter 7 seems possible to extend to more general planar optimal
control problems and it is a work in progress. Besides it would be interesting investigate the per-
formance of this strategy with other related problems, for example, minimizing the final value of
susceptible S(T) as in [21].

The compartment model introduced in section 5.2 has not been exploited in an optimal control
sense which would be the following step to take. For example, it would be interesting to study
what happens with results of Chapters 6 and 7 using this new model rather than the SIR one or
indeed consider the vaccination rate as a control to be optimize.



Appendix A

Codes global optimization (BocopHJB)

A.1 1D FOP - continuous formulation

A.1.1 Problem definition

# This file defines all dimensions and parameters for your problem:
# Dimensions:

state.dimension 2

control.dimension 1

constant .dimension 2

; brownian.dimension 0

# Variable Names
state.0 x
state.l ¢
control.0 u

; # Constants

constant .0 effort_max 1e9
constant .1 K O

# Time discretization

¢ time.initial O

time.final 1230

) time.steps 123

» # State discretization: uniform grid

H*+ o H

state.0.lowerbound O

state.0.upperbound 500

state.0.steps 50

state.l.lowerbound O

state.l.upperbound 1e6
1

state.l.steps 210

0 # value function for points outside the state grid:

# final cost ; projection; infinity; user_function
valueFunction.out.of .grid infinity

Control discretisation

uniform ;

components_user_file; components_user_function; control_set_user_file;
control_set_user_function; control_set_user_function_state_dependent
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90 APPENDIX A. Codes global optimization (BocopHIB)

control.set uniform

# uniform case
control.0.lowerbound -1
control.0.upperbound 1
control.0.steps 100

# System modes (>=1) and admissible transitions for switching between modes

# all_transitions; user_file; user_function

# state jumps at transitions: none; user_function
system.modes 1

admissible.transitions all_transitions
state.jumps none

# Value function save files:

# Previous steps type: resume; overwrite; ask
# Output format type: text; binary; none

# Output path: . --> here; other repertoire
valueFunction.previous.steps overwrite
valueFunction.output.format text
valueFunction.output.path valueFunction/

# SimulatedTrajectory:

# Computation: none; after_valueFunction; read_valueFunction

# Noise: none; gaussian; user_function

# Starting mode: best_mode; user_function; value:[0, nbmode-1]
# Output path: . -->here; other repertoire

simulatedTrajectory.computation after_valueFunction
simulatedTrajectory.output.path trajectory/
simulatedTrajectory.noise gaussian
simulatedTrajectory.starting.mode 0
simulatedTrajectory.starting.state.0 0.001
simulatedTrajectory.starting.state.1 0.1
simulatedTrajectory.other_output 0

# ProcessLaw:

# Computation: true; false

# Output Path: . -->here; other repertoire
processlLaw.computation false

processLaw.output.path processLaw/
processLaw.initial.path processLaw/initialDistribution/

HD.option false

A.1.2 Objective

// This code is published under the Eclipse Public License

// Authors: Daphne Giorgi, Benjamin Heymann, Jinyan Liu, Pierre Martinon,

Tissot
// Inria Saclay and Cmap Ecole Polytechnique
// 2014-2017

// Function for the running cost

// Input

// time : current time t

// initial_time : 0

// final_time : tf

// state : vector of state variables x

// control : vector of control variables u
// mode : mode of the system i

// constants : vector of constants

Olivier
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// dim_constant : dimension of the vector constants
// Output
// running_cost : running cost 1(t,x,u,i)

#include "dependencies.hpp"
#include "publicTools.hpp"

#include "header_runningCost"

{

double depth = statel[0];

double distance = time;

double p0O = interpolation(distance, distance_grid, pO_values);
running_cost = - G_depth_integral(pO,depth,distance);

}

// Function for the final cost
// Input

// initial_time : tO

// final_time : tf

// final_state : vector of state variables x_f

// final_mode : final mode of the system i_f

// constants : vector of constants

// dim_constant : dimension of the vector constants
// QOutput

// final_cost : final cost g(tO0,tf,x_f,i_f)
#include "header_finalCost"

{

// final condition xf = 0

double xf = final_state[0];

if (abs(xf) <= 1e0)
final_cost = 0eO0;

else
final_cost

1e20;

// Function for the switching cost

// Input

// current_mode : current mode

// next_mode : next mode

// constants : vector of constants

// dim_constant : dimension of the vector constants
// QOutput

// switching_cost : switching cost s(i_k,i_k+1)
#include "header_switchingCost"
{

switching_cost = 0e0;

}

A.1.3 Dynamics

// This code is published under the Eclipse Public License

// Authors: Daphne Giorgi, Benjamin Heymann, Jinyan Liu, Pierre
Tissot

// Inria Saclay and Cmap Ecole Polytechnique

// 2014-2017

// General dynamics

Martinon ,

Olivier

// dy/dt = drift(t,y,u)dt + volatility(y,u)dWt where Wt is the standard Brownian

motion
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// Function for the drift (deterministic dynamics)

// Input

// time : current time t

// initial_time : 0

// final_time : tf

// state : vector of state variables x

// control : vector of control variables u

// mode : mode of the system i

// constants : vector of constants

// dim_constant : dimension of the vector constants
// QOutput

// state_dynamics : drift f(t,x,u,i) ie deterministic dynamics

#include "publicTools.hpp"

#include "header_drift"

{
double distance = time;
double depth = statel[0];
double u = control[0];

double pO = interpolation(distance, distance_grid, pO_values);
double K = constants[1];
if (K == 0)

K = interpolation2D(distance, depth, distance_grid, depth_grid, K_values);
state_dynamics [0] = u * K;
state_dynamics [1] = depth - pO;

// Function for the volatility (stochastic dynamics)

// Input

// time : current time t

// initial_time : 0

// final_time : tf

// state : vector of state variables x

// control : vector of control variables u

// mode : mode of the system i

// constants : vector of constants

// dim_constant : dimension of the vector constants
// Qutput

// volatility_dynamics : vector giving the volatility expression of the volatility

// Remember that this is a matrix of dimension dim_state x dim_brownian and you
have to fill every coefficient.

#include "header_volatility"

{

}

void generic_noise_dynamics (const double time, const vector<double>& state, const
vector<double>& control,
const int mode, const vector<double> noise, const
vector<double >& constants, vector<double>& dynamics)

RN

A.1.4 Constraints

// This code is published under the Eclipse Public License

// Authors: Daphne Giorgi, Benjamin Heymann, Jinyan Liu, Pierre Martinon, Olivier
Tissot

// Inria Saclay and Cmap Ecole Polytechnique

// 2014-2017
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#include "publicTools.hpp"

// Function for the state admissibility

// Input

// time : current time (t)

// state : vector of state variables (x)

// mode : current mode of the system (i)

// constants : vector of constants

// dim_constant : dimension of the vector constants
// Output

// true if the state is admissible
// false if it is not
#include "header_checkAdmissibleState"
{
double depth = state[0];
double distance = time;
double p0 = interpolation(distance, distance_grid,
if (depth < pO)
return false;
else
return true;

// Function for the (control,state) admissibility

// Input

// time : current time (t)

// state : vector of state variables (x)

// control: vector of control variables (u)

// mode : current mode of the system (i)

// constants : vector of constants

// dim_constant : dimension of the vector constants
// Output

// true if the (control,state) pair is admissible
// false if it is not

#include "header_checkAdmissibleControlState"

{

return true;

// Function for the final state admissibility
// Input
// time : current time (t)
// final_state : vector of state variables (x)
// control: vector of control variables (u)
// mode : current mode of the system (i)
// constants : vector of constants
// dim_constant : dimension of the vector constants
// QOutput
// true if the (control,state) pair is admissible
// false if it is not
#include "header_checkAdmissibleFinalState"
{
double final_effort = final_state[1];
double effort_max = constants [0];
if (final_effort > effort_max)
return false;
else
return true;

pO_values);
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A.1.5 Other functions

#include
#include

"publicTools.hpp"
"dependencies .hpp"

using namespace std;

#include

{

"header _preProcessing"

// intialize interpolations for p0, G and K
readFileToVector ("data/distance.data", distance_grid);
readFileToVector ("data/p0.data", pO_values);
readFileToVector ("data/depth.data", depth_grid);
readCVSToMatrix("data/gain.csv",G_values,’;’,0,1);
readCVSToMatrix("data/slope.csv",K_values,’;’,0,1);

return 0;
}
// This code is published under the Eclipse Public License
// Authors: Daphne Giorgi, Benjamin Heymann, Jinyan Liu, Pierre Martinon,
Tissot
// Inria Saclay and Cmap Ecole Polytechnique

// 2014-2017

// Function to define the value function outside of the state grid
// Input
// time current time (t)
// state vector of state variables
// constants : vector of constants
// dim_constant : dimension of the vector constants
// Output
// result double representing the user interpolation formula
#include "header_userOutOfGridValueFunction"
{
result = 1e20;
}

/** User
#include

vector
return

/** User
#include

{

function for component-wise control discretization */
"header_userControlDiscretization"

<vector<double> > control_discretization;
control_discretization;

function for the set of discretized controls*/
"header_userControlSet"

vector< vector<double> > control_set;

return

}

/** User
#include

{

control_set;

function for the set of discretized controls (state dependent) */

"header_userControlSetStateDependent"

vector< vector<double> > control_set;

Olivier
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return control_set;

/** User function for the set of admissible transitions between system modes */

#include "header_userAdmissibleTransition"”

{
vector<vector<int> > admissibleTransitionSet;
return admissibleTransitionSet;

}

/*% User function for state jump */
#include "header_stateJumpAtSwitching"
{
// vector ’state’ can be modified here
// example: if state[0] counts the number of switchings
// if (current_mode != next_mode)
// state[0] = state[0] + 1;

/** User noise */

#include "header_userNoise"
vector<double> noise;
return noise;

}

void other_outputs(double time, vector<double> state, vector<double> control,
vector<double> noise, vector<double> constants, vector<double>& output)

{

}

#include "dependencies.hpp"

vector<double> distance_grid;

vector<double> depth_grid;

vector<double> pO_values;

vector< vector<double> > G_values, K_values;

#include <cmath>
#include "publicTools.hpp"

double G_depth_integral(const double pO, const double depth, const double distance

)
{

// compute integral of g over [pO,depth] at x=distance
double g_sum = 0Oe0;
if (depth < pO)

return g_sum;

// limit indices for integral along depth
int jO = locateInArray(p0O,depth_grid.data(),depth_grid.size());
int j1 = locateInArray(depth,depth_grid.data(),depth_grid.size());

// partial first interval (pO,depth_grid[jO+1])
double d0 = pO0;
double di = depth_grid[jOo+1];
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double GO = interpolation2D(distance, dO, distance_grid, depth
double G1 = interpolation2D(distance, dl, distance_grid, depth
g_sum += 0.5e0 * (GO + G1) * (di - d0);

// complete intervals (depth_grid[j],depth_grid[j+1])

for (int j=jO+1;j<jl;j++)

{
d0 = depth_grid[j];
dl = depth_grid[j+1];
GO = interpolation2D(distance, dO, distance_grid, depth_grid
Gl = interpolation2D(distance, dl, distance_grid, depth_grid
g_sum += 0.5e0 * (GO + G1) x (d1 - d0);

¥

// partial last interval (depth_grid[j1],detph)

d0 = depth_grid[j1];

dl = depth;

GO = interpolation2D(distance, d0, distance_grid, depth_grid,
G1 = interpolation2D(distance, dl, distance_grid, depth_grid,
g_sum += 0.5e0 * (GO + G1) * (d1 - d0);

// rescale
return g_sum / 1e6;

_grid, G_values);
_grid, G_values);

, G_values);
, G_values);

G_values);
G_values);



Appendix B

Codes local optimization (Bocop)

B.1 1D SOP - continuous formulation

B.1.1 Problem definition

# Definition file

; # Dimensions

dim.state 3

5 dim.control 1

, dim.boundaryconditions 6
dim.pathconstraints 1
dim.parameters 0
dim.constants 2

# Time interval
initial.time O
final.time 1230

# Constants
constant .0 1 # slope type (value or ’0° for table)
constant.l 0 # quadratic regularization. effect not clear...

o # Time discretisation NB; singular case, CV not necessarily better when increasing
steps from 1000 to 2000
) time.steps 1000

» # Bounds for constraints

>3 boundarycond.0.lowerbound 0
boundarycond.0.upperbound 0
»s boundarycond.l.lowerbound O
» boundarycond.l.upperbound 0
boundarycond.2.lowerbound 0
22 boundarycond.2.upperbound 0
boundarycond.3.lowerbound 0
) boundarycond.3.upperbound 0
boundarycond.4.lowerbound 0

boundarycond .5.upperbound 2e4
: pathconstraint.O0.lowerbound 0

# Bounds for variables
state.0.upperbound 500

97
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control.0.lowerbound -1
control.0.upperbound 1

#

Initialization for discretized problem

state.0.init 0.1
state.l.init O.

1
state.2.init 0.1
control.O0.init O.

#

1

Names

state.0.name depth
state.l.name gain
state.2.name effort

#

Ipopt

ipoptIntOption.print_level 5
ipoptIntOption.max_iter 2000
ipoptStrOption.mu_strategy monotone
ipoptNumOption.tol le-12

#
ad

B.

Misc
.retape 1

1.2 Problem functions

+++DRAFT+++ This class implements the OCP functions

It derives from the generic class bocop30CPBase

0CP functions are defined with templates since they will be called

from both the NLP solver (double arguments) and AD tool (ad_double arguments)

#include <0CP.h>

//
st
st
st

s {

}

data for interpolations
d::vector <double> depth_grid, pO_values, distance_grid;
d::vector <std::vector <double> > G_values;
d::vector <std::vector <double> > K_values;

» template<typename Variable> Variable getG(const double distance, const Variable

depth)

// basic 2D linear interpolation

int verbose = 0;

Variable distance_ad = distance;

Variable G = bcp::interpolation2Dbilinear(distance_ad, depth, distance_grid,
depth_grid, G_values, verbose);

// rescale
return G / 1le6;

» template<typename Variable> Variable getK(const double distance, const Variable

{

depth)

// basic 2D linear interpolation

int verbose = 0;

Variable distance_ad = distance;

Variable K = bcp::interpolation2Dbilinear(distance_ad, depth, distance_grid,
depth_grid, K_values, verbose);

return K ;
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; template<typename Variable> Variable G_depth_integral(const Variable pO, const

Variable depth, const double distance)

// compute integral of g over [p0O,depth] at x=distance +++ use rectangle instead

? (’right’/implicit rectangle 7)
Variable g_sum = 0e0;

// limit indices for integral along depth

int verbose = 0;

int jO = bcp::locate(p0,depth_grid,verbose);
int jl1 = becp::locate(depth,depth_grid,verbose);
double d0, di;

Variable GO, G1;

// partial first interval (pO,depth_grid[jO+1])
dl = depth_grid[jOo+1];

GO = getG(distance, p0);

Gl = getG(distance, dl);

g_sum = g_sum + (GO + G1) / 2e0 * (di - pO0);

// complete intervals (depth_grid[j],depth_grid[j+1])
for (int j=jO+1;j<jl;j++)

{

d0 = depth_grid[jl;

dl = depth_grid[j+1];

GO = getG(distance, d0);

Gl = getG(distance, di);

g_sum = g_sum + (GO + G1) / 2e0 * (d1 - dO);
¥

// partial last interval (depth_grid[j1],depth)
d0 = depth_grid[j1];

GO = getG(distance, dO0);

Gl = getG(distance, depth);

g_sum = g_sum + (GO + G1) / 2e0 * (depth - d0);

return g_sum;

template<typename Variable> Variable E_depth_integral(const Variable depthO,

Variable depthl)

> {

// NB. the first branch (then) blocks convergence -_- o0
//if (depthl <= depthO0)
// return 0e0;
//else
return depthl - depthO;
}
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template <typename Variable>

const

inline void OCP::finalCost(double initial_time, double final_time, const Variable

*initial_state, const Variable *final_state, const Variable *parameters,

double *constants, Variable &final_cost)
{
// maximize integral of G (sum of all 2nd final state of each timeframe)
final_cost = - final_state[1] - final_state[4];
}

template <typename Variable>

const
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inline void OCP::dynamics(double time,

const Variable x*
Variable *

const Variable x*state,
const double *constants,

control, const Variable *parameters,
state_dynamics)

{
// LAYOUT: 3 states and 1 control
// - depth profile for current timeframe
// - gain from previous timeframe
// - effort from previous timeframe
// - control is slope derivative for the depth profile
double distance = time;
Variable depth = state[0];

Variable u = control[0];
int verbose =
Variable pO

verbose) ;

0;
becp::interpolationiDlinear (distance,

constants [0];

Variable K =

if (K 0)
K = getK(distance, depth);

double eps_reg = constants([1];

state_dynamics [0]
state_dynamics [1]
state_dynamics [2] =

u *x K;
G_depth_integral (p0O,
E_depth_integral (p0,

depth, distance) -

depth);
}

template <typename Variable>

inline void OCP::boundaryConditions(double initial_time,
Variable *initial_state, const Variable *final_state,
parameters, const double *constants,

effort

// initial and final conditions for depth, gain,

size_t dim_state = 3;
for (int i=0; i<dim_state; i++)
{
boundary_conditions[i] = initial_statel[i];
boundary_conditions [dim_state+i] = final_statel[i];
¥

}

template <typename Variable>

inline void OCP::pathConstraints(double time,
Variable *control, const Variable *parameters,
Variable *path_constraints)

// initial profile
int verbose = 0;
double distance =
double p0 =
verbose) ;
path_constraints [0] =

contraint x >= p0

time;
becp::interpolationiDlinear (distance,

state [0] - pO;

void OCP::preProcessing ()

{
// intialize interpolations for p0 and G
becp::readFileToVector ("data/distance.data", distance_grid);
bcp::readFileToVector("data/p0.data", pO_values);

distance_grid,

double final_time,
const Variable *
Variable *boundary_conditions)

const Variable *state,

distance_grid,

pO_values,

eps_reg*u*xu;

const

const double *constants,

pO_values,

const
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becp::readFileToVector ("data/depth.data", depth_grid);

bep::readCSVToMatrix("data/gain.csv",G_values,’;’,0,1);

bep::readCSVToMatrix("data/slope.csv",K_values,’;’,0,1);
¥
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// explicit template instanciation for template functions, with double and
double_ad
// +++ could be in an included separate file ?
// but needs to be done for aux functions too ? APPARENTLY NOT !
template void OCP::finalCost<double>(double initial_time, double final_time, const
double *initial_state, const double *final_state, const double *parameters,
const double *constants, double &final_cost);
template void OCP::dynamics<double>(double time, const double *state, const double
*control, const double *parameters, const double *constants, double *
state_dynamics);
template void OCP::boundaryConditions <double>(double initial_time, double
final_time, const double *initial_state, const double *final_state, const
double *parameters, const double *constants, double *boundary_conditions);
template void OCP::pathConstraints<double>(double time, const double *state, const
double *control, const double *parameters, const double *constants, double *
path_constraints);

template void OCP::finalCost<double_ad>(double initial_time, double final_time,
const double_ad *initial_state, const double_ad *final_state, const double_ad
*parameters, const double *constants, double_ad &final_cost);

template void OCP::dynamics<double_ad>(double time, const double_ad *state, const
double_ad *control, const double_ad *parameters, const double *constants,
double_ad *state_dynamics);

template void OCP::boundaryConditions <double_ad>(double initial_time, double
final_time, const double_ad *initial_state, const double_ad *final_state,
const double_ad *parameters, const double *constants, double_ad *
boundary_conditions);

template void OCP::pathConstraints<double_ad>(double time, const double_ad *state,

const double_ad *control, const double_ad *parameters, const double *

constants, double_ad *path_constraints);

B.2 1D SOP - semicontinuous formulation

B.2.1 Problem definition

# Definition file

# Dimensions

dim.state 100

dim.control 99
dim.boundaryconditions 101
dim.pathconstraints 101
dim.parameters 0
dim.constants 3

# Time interval
initial.time O
final.time 1

# Constants
constant .0 100
constant .1 20000.0
constant.2 0.1
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B.

# Time discretisation
ode.discretization euler_implicit
time.steps 1

# Bounds for comnstraints
boundarycond .0.lowerbound 0
boundarycond.0.upperbound 0

boundarycond .99.lowerbound 0
boundarycond .99.upperbound 0
boundarycond .100. lowerbound 5000.0
pathconstraint.0.lowerbound -1
pathconstraint.0.upperbound 1

pathconstraint .99.lowerbound -1
pathconstraint .99.upperbound 1
pathconstraint .100. lowerbound 0

# Bounds for variables
state.0.lowerbound 0
state.0.upperbound 500

state .98.upperbound 500
state.99.lowerbound 0
control.0.lowerbound 0
control.0.upperbound 500

control.99.lowerbound 0
control.99.upperbound 500

# Initialization for discretized problem
state.0.init 100

state .99.init 100
control.0.init 0.1

control.98.init 0.1

# Names

# Ipopt

ipoptIntOption.print_level 5
ipoptIntOption.max_iter 10000
ipoptStrOption.mu_strategy monotone

ipoptNumOption.tol le-6

# Misc
ad.retape 1

2.2 Problem functions

+++DRAFT+++ This class implements the O0CP functions
It derives from the generic class bocop30CPBase

OCP functions are defined with templates since they will be called
from both the NLP solver (double arguments) and AD tool (ad_double

#include <O0CP.h>

//

gloabl N, DX, T ?

arguments)
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// data for interpolations
std::vector <double> depth_grid, pO_values, distance_grid;
std::vector <std::vector <double> > G_values;

{

}

depth)

// basic
int verb
Variable
Variable

: template<typename Variable> Variable getG(const double distance, const Variable

2D linear interpolation
ose = 0;

distance_ad = distance;

G = bcp::interpolation2Dbilinear(distance_ad, depth, distance_grid,

depth_grid, G_values, verbose);

// resca
return G

le
/ le6;

template<typename Variable> Variable G_depth_integral(const Variable pO, const

{

s {

Variab

// compu
? (Or
Variable

// limit
int verb
int jO =
int j1 =
double d
Variable

// parti
dl = dep
GO get
G1 get
g_sum =

// compl
for (int

{

le depth, const double distance)

te integral of g over [pO,depth] at x=distance +++ use rectangle instead
ight ?/implicit rectangle 7)
g_sum = 0e0;

indices for integral along depth
ose = 0;
becp::locate(p0,depth_grid,verbose);
bcp::locate(depth,depth_grid,verbose);
0, di;
GO, Gi1;

al first interval (pO,depth_grid[jO+1])
th_grid[jO+1];

G(distance, p0);

G(distance, dl);

g_sum + (GO + G1) / 2e0 * (d1 - pO);

ete intervals (depth_grid[j],depth_grid[j+1])
J=30+1;3<i155+4)

d0 = depth_grid[j];
dl = depth_grid[j+1];

GO = g
Gl = g
g_sum

}

// parti
d0 = dep
GO get
G1 get
g_sum =

return g

const

// NB.
“k+1

etG(distance, d0);
etG(distance, di1);
= g_sum + (GO + G1) / 2e0 * (d1 - d0);

al last interval (depth_grid[ji],depth)
th_grid[j1];

G(distance, d0);

G(distance, depth);

g_sum + (GO + G1) / 2e0 * (depth - d0);

_sum;

> template<typename Variable> Variable gain_at_timeframe(const Variable *state,

Variable *control, const int N)

if using implicit euler then state is at the end of the time step aka P
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// previous state P~k is recomputed via the control

// gain for current timeframe
// G = sum DX (g_i~k + g_i+1"k) / 2
// with g_i~k = int_Pik~Pik+1 G(Xi,p) dp

double DX = 1230 / N;

Variable gain = 0e0;

Variable Gi, Giplus, depth_start, depth_end;
double distance;

for (int i=-1; i<=N-2; i++)

{
// Gi = int_Pik~Pik+1 G(Xi,p) dp
if (i==-1)
Gi = 0e0;
else
{
depth_end = statel[i];
depth_start = depth_end - control[i];
distance = DX * (i+1);
Gi = G_depth_integral(depth_start,depth_end,distance);
¥

// Gi+1 = int_Pi+1k~Pi+1k+1 G(Xi+1,p) dp
if (i==N-2)
Giplus = 0eO;
else
{
depth_end = state[i+1];
depth_start = depth_end - control[i+1];
distance = DX *x (i+2);
Giplus = G_depth_integral (depth_start,depth_end,distance);
¥
gain += DX / 2 * (Gi + Giplus);
¥
return gain;

}
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template <typename Variable>
inline void OCP::finalCost(double initial_time, double final_time, const Variable
*initial_state, const Variable *final_state, const Variable *parameters, const
double *constants, Variable &final_cost)
{
// maximize final gain
final_cost = - final_state[stateSize() -1];

}

template <typename Variable>

inline void OCP::dynamics(double time, const Variable *state, const Variable *
control, const Variable *parameters, const double *constants, Variable *
state_dynamics)

int N = (int) constants[0];

// digging progress: p_i~“k+1l - p_i“k = u_i“k (not for extremities which are
fixed to 0)

for (int i=0; i<=N-2; i++)

state_dynamics[i] = controll[i];
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}

// gain at timeframe TIME STEP SHOULD BE EQUAL TO 1 (or gain will be scaled
wrongly)

// NB. if using implicit euler the state will correctly be the profile at the
end of the time step (NOT if using midpoint !)

double alpha = constants[2];

state_dynamics [N-1] = gain_at_timeframe(state, control, N) / pow(leO+alpha,time
-1e0);

template <typename Variable>
inline void OCP::boundaryConditions (double initial_time, double final_time, const

}

Variable *initial_state, const Variable *final_state, const Variable x*
parameters, const double *constants, Variable *boundary_conditions)

int N = (int) constants [0];
// initial profile P(t0) = PO

double distance, PO;
double DX = 1230 / N;

int verbose = 1;

for (int i=0; i<=N-2; i++)

{
distance = DX * (i+1);
PO = bcp::interpolationiDlinear(distance, distance_grid, pO_values, 0, verbose
boundary_conditions[i] = initial_state[i] - PO;

¥

// gain

boundary_conditions[N-1] = initial_state[N-1];

boundary_conditions [N] = final_state[N-1];

template <typename Variable>
inline void OCP::pathConstraints(double time, const Variable *state, const

Variable *control, const Variable *parameters, const double *constants,
Variable *path_constraints)

int N = (int) constants[0];
double DX = 1230 / N;
double kappa = 1e0; // max slope (+++ use table interpolation here)

// N profile constraints according to space discretization

// at time t_k for 0=1..N-1 (p_i+1~k+1 - p_i~k+1)/DX/kappa = s_i~k with p_0 =
p_N = 0 at extremities

// IMPORTANT: note that constraint involves ’next’ state p~k+l since p~0 is
fixed by bounday conditions

// last call of pathcond occurs at penultimate time t_T-1, so constraint will be
properly enforced for last state p~T

// recompute next state at end of time step
Variable next_state[N-1];
for (int i=0; i<N-1; i++)
next_state[i] = state[i] + control[i];

// slope constraints
path_constraints [0] = (next_state[0] - 0e0) / DX / kappa;
path_constraints[N-1] = (0e0 - next_state[N-2]1) / DX / kappa;
for (int i=1; i<=N-2; i++)

path_constraints[i] = (next_state[i] - next_state[i-1]) / DX / kappa;

// capacity constraint for current timeframe TIME STEP SHOULD BE EQUAL TO 1 (or
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Cmax will be scaled wrongly)
// E = sum DX u_i"k
Variable capacity = 0e0;
double Cmax_per_time_step = constants[1];
for (int i=0; i<=N-2; i++)
capacity += DX * controll[i];
path_constraints[N] = Cmax_per_time_step - capacity;

void OCP::preProcessing()

{
// intialize interpolations for p0 and G
bcp::readFileToVector ("data/distance.data", distance_grid);
bep::readFileToVector ("data/p0.data", pO_values);
bep::readFileToVector ("data/depth.data", depth_grid);
bep::readCSVToMatrix("data/gain.csv",G_values,’;’,0,1);

// +++ constants seems unaffected at this call -_- (0CP::initialize())

}

[0 1177707077007 77777777777 7777777777777777777777777777777777777777777

// explicit template instanciation for template functions, with double and
double_ad

// +++ could be in an included separate file ?

// but needs to be done for aux functions too ? APPARENTLY NOT !

template void OCP::finalCost<double>(double initial_time, double final_time, const
double *initial_state, const double *final_state, const double *parameters,
const double *constants, double &final_cost);

template void OCP::dynamics<double>(double time, const double *state, const double
*control, const double *parameters, const double *constants, double *
state_dynamics);

template void OCP::boundaryConditions<double>(double initial_time, double
final_time, const double *initial_state, const double *final_state, const
double *parameters, const double *constants, double *boundary_conditions);

template void OCP::pathConstraints<double>(double time, const double *state, const
double *control, const double *parameters, const double *constants, double *
path_constraints);

template void OCP::finalCost<double_ad>(double initial_time, double final_time,
const double_ad *initial_state, const double_ad *final_state, const double_ad
*parameters, const double *constants, double_ad &final_cost);

template void OCP::dynamics<double_ad>(double time, const double_ad *state, const
double_ad *control, const double_ad *parameters, const double *constants,
double_ad *state_dynamics);

template void OCP::boundaryConditions<double_ad>(double initial_time, double
final_time, const double_ad *initial_state, const double_ad *final_state,
const double_ad *parameters, const double *constants, double_ad *
boundary_conditions);

template void OCP::pathConstraints <double_ad>(double time, const double_ad *state,

const double_ad *control, const double_ad *parameters, const double *

constants, double_ad *path_constraints);

B.3 Local optimization (bocop) for 2D SOP - semicontinuous for-
mulation

B.3.1 Problem definition
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# Definition file

# Dimensions

dim.state 172

dim.control 171
dim.boundaryconditions 173
dim.pathconstraints 401

dim.parameters 0
dim.constants 4

# Time interval

initial.time
final.time 2

# Constants

constant .0 20
constant.1l 10

0

constant .2 1000000.0
constant.3 0.1

# Time discretisation
ode.discretization euler_implicit

time.steps 2

# Bounds for
boundarycond
boundarycond

boundarycond.
boundarycond.
boundarycond.
pathconstraint.O.
pathconstraint.0.

pathconstraint
pathconstraint
pathconstraint

constraints

171.
171.
172,

.0.lowerbound 0
.0.upperbound 0

lowerbound
upperbound
lowerbound
lowerbound
upperbound

# Bounds for variables
state.0.lowerbound O
state.0.upperbound 500

state.170.upperbound 500
state.171.lowerbound 0
control.0.lowerbound 0
control.O0.upperbound 500

control.170.lowerbound 0
control.170.upperbound 500

1000.0
-1

.399.lowerbound -1
.399.upperbound 1
.400.lowerbound 0

# Initialization for discretized problem

state.0.init

state.171.init 10

10

control.O.init 1

control.170.init 1

# Names

# Ipopt

ipoptIntOption.print_level
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ipoptIntOption.max_iter 5000
ipoptStrOption.mu_strategy monotone
ipoptNumOption.tol 1e-06

# Misc
ad.retape

# .def file

1

generation for mine problem (’PDE formulation’) 3D CASE

import bocop

# parameters

filename =
N = 20
M = 10
T = 2
steps = T

’problem.def’

Cmax_per_time_unit = 1le6
objective_lowerbound = 1e3 #1leb

alpha = 0.1
snorm = 1
# ipopt

maxiter = 5000

tol = le-6

# values
dim_state =
dim_control

(N-1)*(M-1) + 1 # interior grid points for profile + gain
= (N-1)*(M-1) # digging effort for interior grid points

dim_boundaryconditions = (N-1)*(M-1) + 2 # initial interior profile + initial
gain + final gain
dim_pathconstraints = 2*M*N + 1 # X/Y slopes for points except farther boundaries
+ capacity limit

# later use

default options 7

with open(filename,’w’) as deffile:

deffile

deffile

deffile.

deffile

deffile.

deffile
deffile
deffile

deffile.
deffile.
deffile.

deffile
deffile

deffile.
deffile.
deffile.

deffile.
deffile.
deffile.

deffile

.write(’# Definition filel\n\n’)

.write(’# Dimensions\n’)

write(’dim.state ’ + str(dim_state) + ’\n?)
.write(’dim.control ’ +str(dim_control) + ’\n?)
write(’dim.boundaryconditions ’ +str(dim_boundaryconditions) +
.write(’dim.pathconstraints ’ +str(dim_pathconstraints) + ’\n’)
.write(’dim.parameters 0\n?’)

.write(’dim.constants 4\n’)

write(’\n# Time intervall\n’)
write(’initial.time O0\n?)
write(’final.time ’> +str(T)+’\n’)

.write(’\n# Constants\n’)

.write(’constant .0 ’ +str(N)+’\n’)

write(’constant.l ’ +str(M)+’\n’)

write(’constant.2 ’ +str(Cmax_per_time_unit * T / steps)+’\n’)
write(’constant .3 ’ +str(alpha)+’\n?)

write(’\n# Time discretisation\n?)
write(’ode.discretization euler_implicit\n?)

write(’time.steps ’ +str(steps)+’\n’)

.write(’\n# Bounds for constraints\n’)

# initial profile and gain
for i in range(dim_boundaryconditions -1):
deffile.write(’boundarycond.’+str(i)+’.lowerbound 0\n’)

:\n’)
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54 deffile.write(’boundarycond.’+str(i)+’.upperbound 0\n’)

55 # final gain

56 deffile.write(’boundarycond.’+str (dim_boundaryconditions -1)+’.lowerbound ’+str
(objective_lowerbound)+’\n’)

57 # profile slope constraints

58 for i in range(dim_pathconstraints-1):

59 deffile.write(’pathconstraint.’+str(i)+’.lowerbound -’+str(snorm)+’\n?)

60 deffile.write(’pathconstraint.’+str(i)+’.upperbound ’+str(snorm)+’\n’)
61 # capacity constraint
62 deffile.write(’pathconstraint.’+str(dim_pathconstraints-1)+’.lowerbound 0\n’)

64 deffile.write(’\n# Bounds for variables\n’)

65 # profile bounds

66 for i in range(dim_state-1):

67 deffile.write(’state.’+str(i)+’.lowerbound 0\n?’)

68 deffile.write(’state.’+str(i)+’.upperbound 500\n’)
69 # gain

70 deffile.write(’state.’+str(dim_state-1)+’.lowerbound 0\n’)
7 # digging bounds

72 for i in range(dim_control):

73 deffile.write(’control.’+str(i)+’.lowerbound O\n’)
74 deffile.write(’control.’+str(i)+’.upperbound 500\n?)

76 deffile.write(’\n# Initialization for discretized problem\n?’)
77 for 1 in range(dim_state):

78 deffile.write(’state.’+str(i)+’.init 10\n?)

79 for 1 in range(dim_control):

80 deffile.write(’control.’+str(i)+’.init 1\n?’)

81

82 deffile.write(’\n# Names\n\n# Ipopt\n?’)

83 deffile.write(’ipoptIntOption.print_level 5\n’)

84 deffile.write(’ipoptIntOption.max_iter ’+str(maxiter)+’\n’)
85 deffile.write(’ipoptStrOption.mu_strategy monotone\n’)
86 deffile.write(’ipoptNumDption.tol ’+str(tol)+’\n’)

o

88 deffile.write(’\n# Misc\n’)

89 deffile.write(’ad.retape 1\n?’)

B.3.2 Problem functions

// +++DRAFT+++ This class implements the OCP functions
> // It derives from the generic class bocop30CPBase
// 0OCP functions are defined with templates since they will be called
4+ // from both the NLP solver (double arguments) and AD tool (ad_double arguments)
s //#pragma once

7 #include <0CP.h>

N A NN

i1 // space domain is discretized on a X/Y grid with N x M intervals

2 // this means (N+1)(M+1) points on the grid including the boundaries

5 // since profile is equal to 0 on the boundary, only the (N-1)(M-1) interior
points are modeled as state variables

4 // this matrix is stored by columns ie 1D index is 1 = j x (N-1) + i

15

16 // constants: [N, M, Cmax_per_time_unit, alphal

.

15 double X_length

19 double Y_length

1230;
400;
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std::vector <double> distanceX_grid, distanceY_grid, distanceZ_grid;
std::vector<std::vector<double> > p0_2D_values, G_blob;
std::vector<std::vector<std::vector<double> > > G_3D_values;

template<typename Variable> Variable getG(const double distanceX, const double
distanceY, const Variable depth)
{

// custom 3D linear interpolation: first two interp2D on depth Di and Di+1 then
interpolate between these two
int verbose = 0;
/* int k = bcp::locate(depth, distanceZ_grid, verbose);
double GO = bcp::interpolation2Dbilinear(distanceX, distanceY, distanceX_grid,
distanceY_grid, G_3D_values[k], verbose);
double G1 = bcp::interpolation2Dbilinear(distanceX, distanceY, distanceX_grid,
distanceY_grid, G_3D_values[k+1], verbose);
Variable r = (depth - distanceZ_grid[k]) / (distanceZ_grid[k+1] -
distanceZ_grid[k]);
Variable G = (1e0 - r) * GO + r * G1;

*/
Variable r = pow(pow(distanceX - 600,2)+pow(distanceY - 200,2)+pow(depth -
350,2),0.5);
Variable G = -r+1000;

// rescale
return G/le6 ;

template<typename Variable> Variable G_depth_integral(const Variable pO, const
Variable depth, const double distanceX, const double distanceY)

s {

// compute integral of g over [p0O,depth] at x=distance and y=width +++ use
rectangle instead ? (’right’/implicit rectangle ?)
Variable g_sum = 0e0;

// limit indices for integral along depth

int verbose = 0;

int jO = bcp::locate(p0, distanceZ_grid, verbose);
int jl1 = bep::locate(depth, distanceZ_grid, verbose);
double dO, di;

Variable GO, G1;

// partial first interval (pO,distanceZ_grid[jO+1])
dl = distanceZ_grid[jO+1];

GO = getG(distanceX, distanceY, pO0);

G1 getG(distanceX, distanceY, d1);

g_sum = g_sum + (GO + G1) / 2e0 *x (d1 - p0);

// complete intervals (distanceZ_grid[j],distanceZ_grid[j+1])
for (int j=jO+1; j<jl; j++)

{

d0 = distanceZ_grid[j];

dl = distanceZ_grid[j+1];

GO = getG(distanceX, distanceY, d0);

Gl = getG(distanceX, distanceY, di1);

g_sum = g_sum + (GO + G1) / 2e0 * (d1 - dO);
¥

// partial last interval (distanceZ_grid[jl],depth)
d0 = distanceZ_grid[ji1];
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74 GO = getG(distanceX, distanceY, d0);
75 Gl = getG(distanceX, distanceY, depth);
76 g_sum = g_sum + (GO + G1) / 2e0 * (depth - d0);

78 return g_sum;

79 }

80

81

22 template<typename Variable> Variable G_depth_integral_indices(const Variable *
state, const Variable *control, const int i, const int j, const int N, const

int M)

g3

84 // note: on boundary the depth profile is always O so the integral of G along
depth is 0 as well

85 Variable G = 0e0;

86

87 // full grid is (N+1) (M+1) points with i|j indices from 0 to N[M

88 // interior is (N-1)(M-1) points with il|j indices from 1 to N-1]|M-1

89 // interior point

90 if ((i > 0) && (i < N) && (j > 0) && (j < M))

91 {

92 int 1 = (j-1) * (N-1) + (i-1);

93 Variable depth_end = state[l];

94 Variable depth_start = depth_end - control[1l];

95 double distanceX = X_length / N * ij;

9% double distanceY = Y_length / M * j;

97 G = G_depth_integral(depth_start, depth_end, distanceX, distanceY);

98 3

99

100 /* if ((i>-1) and (j>-1) and (i<N-2) and (j<M-2))

101 {

102 double DX = X_length / N;

103 double DY = Y_length / M;

104 int 1 = j * (N-1) + i;

105 Variable depth_end = state[l];

106 Variable depth_start = depth_end - control[l];

107 double distanceX = DX*(i+1);

108 double distanceY = DYx(j+1);

109 G = G_depth_integral(depth_start, depth_end, distanceX, distanceY);

110 T

i */

112 return G;

13}

114
115 template<typename Variable> Variable gain_at_timeframe(const Variable *state,
const Variable *control, const int N, const int M)

e {

117 // NB. if using implicit euler then state is at the end of the time step aka P
“k+1

18 // previous state P~k is recomputed via the control

119

120 // gain for current timeframe +++ CHECK THIS ONE

121 // G = DX DY sum (g_ij"k + g_i+1j"k + g_i+1j+1°k + g_ij+1"k) / 4
122 // with g_i"k = int_Pik~Pik+1 G(Xi,p) dp

123 Variable gain = 0eO;

124

125 double DX = X_length / N;
126 double DY = Y_length / M;
127 Variable GOO, GO1, G110, Gi1;
128 double distanceX, distanceY;

130 // full grid is (N+1) (M+1) points with i|j indices from 0 to N[M
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// interior is (N-1)(M-1) points with il|j indices from 1 to N-1[M-1
// summation for gain is done for indices i=0..N-1 and j=0..M-1 since we take
[1,i+1]1x[j,j+1] cells
//+++ use something more centered here, with loop on all interior points
exactly 7
//for (int i=-1; i<=N-2; i++)
// for (int j=-1; j<=M-2; j++)
for (int i=0; i<=N-1; i++)
for (int j=0; j<=M-1; j++)

{
// GOO ie g_i_j
GO0 = G_depth_integral_indices(state, control, i, j, N, M);
// GOl ie g_i_j+1
GOl = G_depth_integral_indices(state, control, i, j+1, N, M);
// G10 ie g_i+1_j
G10 = G_depth_integral_indices(state, control, i+1, j, N, M);
// G11 ie g_i+1_j+1
Gl1l1 = G_depth_integral_indices(state, control, i+1, j+1i, N, M);
// update gain with current cell integral
gain += DX * DY/ 4 * (GOO + GO1 + G11 + G10);

¥

return gain;

}

// get profile at grid point (i,j) ie X= i DX and Y= j DY
template<typename Variable> Variable getPij(const int i, comnst int j, std::vector<
Variable> state, const int N, const int M)

{
// profile is O on boundary
Variable Pij = 0e0;
// interior point: retrieve profile value from 1D vector
// NB. first state (index 0) is grid point (1,1) since boundary is omitted !
// full grid is (N+1)(M+1) points with il|j indices from O to N|M
// interior is (N-1)(M-1) points with il|j indices from 1 to N-1[|M-1
if ((i > 0) && (i < N) && (j > 0) && (j < M))
Pij = statel[(j-1) * (N-1) + (i-1)];
return Pij;
}

template <typename Variable>
inline void OCP::finalCost(double initial_time, double final_time, const Variable
*initial_state, const Variable *final_state, const Variable *parameters, const
double *constants, Variable &final_cost)
{
// maximize final gain
final_cost = - final_state[stateSize() -1];

}

template <typename Variable>

inline void OCP::dynamics(double time, const Variable *state, const Variable #*
control, const Variable *parameters, const double *constants, Variable *
state_dynamics)

int N = (int) constants [0];
int M = (int) constants[1];

// 2D (N-1)x(M-1) grid stored by columns ie 1D index is 1 = j * (N-1) + i
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186 // digging progress: p_ij~k+l - p_ij~k = u_ij "k (not for boundaries which are
fixed to 0)

187 for (int 1=0; 1<(N-1)*(M-1); 1++)

188 state_dynamics[1] = control[l];

189

190 // gain at timeframe TIME STEP SHOULD BE EQUAL TO 1 (or gain will be scaled
wrongly)

191 // NB. if using implicit euler the state will correctly be the profile at the
end of the time step (NOT if using midpoint !)

192 double alpha = constants[3];

193 state_dynamics [(N-1)*(M-1)] = gain_at_timeframe(state, control, N, M) / pow(leO+
alpha,time-1e0);

194 }

195

196

197 template <typename Variable>

198 inline void OCP::boundaryConditions(double initial_time, double final_time, const
Variable *initial_state, const Variable *xfinal_state, const Variable x*
parameters, const double *constants, Variable *boundary_conditions)

199 {

200 int N = (int) constants[0];

201 int M = (int) constants[1];

202 double DX = X_length / N;

203 double DY = Y_length / M;

205 // initial profile P(t0) = PO

206 double distanceX, distanceY, PO;
207 int verbose = 1;

208 int 1;

209 for (int i=0; i<=N-2; i++)

210 for(int j=0; j<=M-2; j++)

211 {

212 distanceX = DX * (i+1);

213 distanceY = DY * (j+1);

214 PO = bcp::interpolation2Dbilinear(distanceX, distanceY, distanceX_grid,
distanceY_grid, p0O_2D_values, verbose);

215 1 = j*(N—1)+i;

216 boundary_conditions[1l] = initial_state[l] - PO;

217 }

219 // gain CI and CF

220 boundary_conditions [(N-1)*(M-1)] = initial_state [(N-1)*(M-1)];
21 boundary_conditions [(N-1)*(M-1)+1] = final_state[(N-1)=*(M-1)];
0}

25 template <typename Variable>

26 inline void OCP::pathConstraints(double time, const Variable #*state, const
Variable *control, const Variable *parameters, const double *constants,
Variable #*path_constraints)

27 o

228 // profile constraint: normalized slopes at each point must be in [-1,1] (NB.
2 slopes per point, so twice the constraints !)

229 double kappa = 1e0; // max slope (+++ use table interpolation here)

30

231 // compute the two X,Y slopes at each point Xi,Yj

232 int N = (int) constants [0];

233 int M = (int) constants[1];

234 double DX = X_length / N;

235 double DY = Y_length / M;

237 // recompute next state at end of time step



114 APPENDIX B. Codes local optimization (Bocop)

238 //Variable next_state[(N-1)*(M-1)];
239 std::vector <Variable> next_state ((N-1)*(M-1));

241 // note: could also use two i,j loops here...

242 for (int 1=0; 1<(N-1)*(M-1); 1++)

243 next_state[l] = state[l] + control[l];

244

245 // slopes by forward difference ie (Pi+1,j - Pij) / Dx, same for j and Dy

246 // all points except boundaries i=N and j=M, ie i=0..N-1 x j=0..M-1

247 // total 2MN slopes constraints (some of which are trivial since P=0 on the i
=0, j=0 boundaries, but simpler this way)

248 int k = 0;

249 for (int i=0; i<=N-1; i++)

250 for (int j=0; j<=M-1; j++)

251 {

252 // X slope

253 path_constraints [k++] = (getPij(i+1, j ,next_state, N, M) - getPij(i,
j,next_state, N, M)) / DX / kappa;

254 // Y slope

255 path_constraints[k++] = (getPij(i, j+1 ,next_state, N, M) - getPij(i,
j,next_state, N, M)) / DY / kappa;

256 T

258 // capacity constraint for current timeframe TIME STEP SHOULD BE EQUAL TO 1 (

or Cmax will be scaled wrongly)
259 // E = sum DX DY u_ij"k
260 Variable capacity = 0e0;
261 double Cmax_per_time_step = constants[2];
262 for (int 1=0; 1<(N-1)*(M-1); 1++)
263 capacity += DX * DY * control[l];

264 path_constraints [2¥*M*N] = Cmax_per_time_step - capacity;

265

266 }

267

268 void OCP::preProcessing()

260 {

270 // NB. constants are not available here -_-

271

272 // PO is now 2D X,Y

273 std::cout << "read distanceX" << std::endl;

274 bep::readFileToVector("data/distanceX.data", distanceX_grid);
275 std::cout << "read distanceY" << std::endl;

276 bep::readFileToVector("data/distanceY.data", distanceY_grid);
277 std::cout << "read p0 2D" << std::endl;

278 bep::readCSVToMatrix("data/p0_2D.csv",p0_2D_values,’;’,0,1);
279

280 // G is now 3D Z,X,Y

281 std::cout << "read distanceZ" << std::endl;

282 becp::readFileToVector("data/distanceZ.data", distanceZ_grid);
284

285 std::cout << "read gain 3D" << std::endl;

286 becp::readCSVToMatrix("data/gain_3D.csv",G_blob,’;’,0,1);

287 // reshape G in 3D

288 G_3D_values.resize(distanceZ_grid.size());

289 for (int k = 0; k<distanceZ_grid.size(); k++)

290 {

291 G_3D_values[k].resize(distanceX_grid.size());

292 for (int i = 0; i < distanceX_grid.size(); i++)

293 {

294 G_3D_values[k][i].resize(distanceY_grid.size());

205 for (int j=0; j < distanceY_grid.size(); j++)
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314

316

B.3. Local optimization (bocop) for 2D SOP - semicontinuous formulation 115

G_3D_values[k][i]1[j] = G_blob[k*distanceX_grid.size() + il[j];
T
}
std::cout << "Gain 3D is " << G_3D_values.size() << " x " << G_3D_values[0].
size() << " x " << G_3D_values[0][0].size() << std::endl;

}

11 1177777777077 777777777777770777777777777777777777777777777777717177777
// explicit template instanciation for template functions, with double and
double_ad
// +++ could be in an included separate file ?
// but needs to be done for aux functions too ? APPARENTLY NOT !
template void OCP::finalCost<double>(double initial_time, double final_time, const
double *initial_state, const double *final_state, const double *parameters,
const double *constants, double &final_cost);
template void OCP::dynamics<double>(double time, const double *state, const double
*control, const double *parameters, const double *constants, double *
state_dynamics);
template void OCP::boundaryConditions <double>(double initial_time, double
final_time, const double *xinitial_state, const double *xfinal_state, const
double *parameters, const double *constants, double *boundary_conditions);
template void OCP::pathConstraints<double>(double time, const double #*state, const
double *control, const double *parameters, const double *constants, double *
path_constraints);

template void OCP::finalCost<double_ad>(double initial_time, double final_time,
const double_ad #*initial_state, const double_ad *final_state, const double_ad
xparameters, const double *constants, double_ad &final_cost);

template void OCP::dynamics<double_ad>(double time, const double_ad *state, const
double_ad *control, const double_ad *parameters, const double *constants,
double_ad *state_dynamics);

template void OCP::boundaryConditions <double_ad>(double initial_time, double
final_time, const double_ad *initial_state, const double_ad *final_state,
const double_ad *parameters, const double *constants, double_ad *
boundary_conditions);

template void OCP::pathConstraints<double_ad>(double time, const double_ad #*state,
const double_ad *control, const double_ad *parameters, const double *
constants, double_ad *path_constraints);

too long
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APPLICATION OF OPTIMAL CONTROL TECHNIQUES TO NATURAL SYSTEMS MANAGEMENT
Abstract

Optimal control techniques have numerous applications in engineering and real world problems. This thesis is de-
voted to using these techniques in two contexts, mining and epidemiology, dividing this document in two respective
parts.

In the first part related to mining, we work with the continuous formulation of the Open Pit Problem consisting of
finding the optimal shape of an opencast mine representing its profile by a continuous function. Optimality in this
context corresponds to maximizing the profit of mineral extraction. We introduce for the first time optimal control
models of this problem. We present optimality conditions of solutions along with numerical experiments using local
and global methods.

Another relevant problem in this context corresponds to the Sequential version of the Open Pit Problem, which con-
sists of scheduling an extraction program over consecutive time frames (for example, a profile each 6 months), finding
nested profiles maximizing a discounted profit. We proposed a novel semi-continuous model to obtain solutions of
the sequential problem and we use it to present for the first time, to the best of our knowledge, numerical solutions
of a three dimensional case (a possible real world mine) including the original Open Pit Problem (case with a single
time-frame).

In the second part we deal with optimal control problems minimizing the maximum value of a state. This problematic
was inspired by Covid-19, where hospitals and ICU beds were overcrowded due to a high amount of simultaneous
infections. We present four different reformulations of this kind of optimal control problem as a Mayer one, each one
having its pros and cons. We present the numerical performance of each formulation in an academic example and in
a more realistic SIR model where the problem corresponds to minimizing the peak of infectious compartment with
integral constraint in the control. With respect to the latter problem, we prove analytically that the structure of the
optimal control is null-singular-null and we used it to assess numerical solutions.

Keywords: optimal control, natural system management, mining, epidemiology

Résumé

Les techniques de contrdle optimale ont plusieurs applications dans le domaines de 1’engenierie et les problemes de
la vie pratique. Cette these est consacrée a I’utilitation de ces techniques dans deux contextes, 1’exploitation miniere
et I’épidémiologie, divisant ce document en deux parties respectives.

Dans la premiere partie relative a 1’exploitation miniere, nous travaillons avec la formulation continue du probleme
Final Open Pit consistant a trouver la forme optimale d’une mine a ciel ouvert représentant son profil par une fonction
continue. L’optimalité dans ce contexte correspond a maximiser le bénéfice de 1’extraction minérale. Nous présentons
pour la premiere fois des modeles de contrdle optimal pour ce probleme. Nous présentons des conditions optimales
de solutions avec des simulations numériques utilisant des méthodes locales et globales.

La version séquentielle du Final Open Pit est également tres pertinent dans le contexte de cette thése. Le probleme
consiste a planifier un programme d’extraction sur des périodes de temps consécutives (par exemple, un profil tous
les 6 mois), en trouvant des profils imbriqués maximisant un bénéfice actualisé. Nous avons formulé un nouveau
modele semi-continu permettant d’obtenir des solutions du probleéme séquentiel et que nous utilisons pour proposer
des solutions numériques dans un cas tridimensionnelle ( une mine possible du monde réel) y compris le probleme
Open Pit original (cas avec une seule période de temps). Cela, a notre connaissance, n’avait jamais été fait auparavant.
Dans la deuxieme partie, nous traitons les problemes de contrdle optimal minimisant la valeur maximale d’un état.
Ce probleme a été inspiré par le contexte sanitaire tres difficile suite a la covid-19, ou avoir de beaucoup infectés
en méme temps sature les hopitaux et les lits de soin intensif. Nous présentons quatre reformulations différentes de
ce type de probléeme comme un Mayer de contréle optimal, ayant chacun ses avantages et ses inconvénients. Nous
évaluons la performance numérique de chaque formulation dans un exemple académique et dans un modele SIR plus
réaliste ou le probleme correspond a minimiser le pic du compartiment infecté avec une contrainte intégrale dans le
contrdle. En ce qui concerne ce dernier probléme, nous prouvons analytiquement que la structure du contréle optimal
est null-singular-null et nous I’avons utilisé pour évaluer les solutions numériques.

Mots clés : contrdle optimal, gestion du systéme naturel, exploitation miniere, épidémiologie
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