
HAL Id: tel-03937239
https://theses.hal.science/tel-03937239

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolution of microservice-based applications : Modelling
and safe dynamic updating

Yuwei Wang

To cite this version:
Yuwei Wang. Evolution of microservice-based applications : Modelling and safe dynamic updating.
Artificial Intelligence [cs.AI]. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IPPAS009�.
�tel-03937239�

https://theses.hal.science/tel-03937239
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

S
00

9

Evolution of Microservice-based
Applications: Modelling and Safe

Dynamic Updating
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, France, le 27 October 2022, par

YUWEI WANG

Composition du Jury :

Thomas Ledoux

Professeur, IMT Atlantique (laboratoire LS2N) Président

Antoine Beugnard

Professeur, IMT Atlantique (laboratoire Lab-STICC) Rapporteur

Lionel Seinturier

Professeur, Université de Lille (laboratoire Cristal) Rapporteur

Fabienne Boyer
Maître de conférences (HDR), Université de Grenoble
(laboratoire LIG)

Examinatrice

Sophie Chabridon

Directrice d’Études, IPP/TSP (laboratoire SAMOVAR) Directrice de thèse

Denis Conan

Maître de conférences (HDR), IPP/TSP (laboratoire SAMOVAR) Co-encadrant de thèse

Kavoos Bojnourdi

Ingénieur de recherche, EDF R&D Co-encadrant (Invité)

Jingxuan Ma

Ingénieur de recherche, EDF R&D Co-encadrante (Invitée)

Acknowledgements

First and foremost, I would like to express my deep gratitude to my research super-
visors, Sophie Chabridon and Denis Conan, for their guidance to help me throughout
my PhD study. They steered me to the road of research thanks to their patience,
motivation, and immense knowledge. I could not have imagined having better advisors
and mentors for my PhD study. My sincere thanks also goes to my industry advisors,
Kavoos Bojnourdi and Jingxuan Ma, for sharing their expertise and giving me valuable
guidance during my PhD study.

I would like to thank Prof. Antoine Beugnard and Prof. Lionel Seinturier for spending
time to review my thesis. Their insightful comments and suggestions during the mini-
defense helped me to improve my thesis and widen my research from various perspectives.
I would also like to thank my other thesis committee members, Prof. Thomas Ledoux
and Prof. Fabienne Boyer.

In addition, I would like to mention Viktor Colas, Tsimafei Liashkevich and Julio
Guzmán Barraza for their contributions to the implementation of prototypes.

I take this opportunity to express gratitude to all the members of the ACMES group
of SAMOVAR lab and the I2A group of EDF for a cherished time spent together with
me in the lab and in the company. Many thanks to everyone in the Computer Science
department at Télécom Sudparis and the Seido Lab at EDF, particularly to Alexei
Mikchevitch for his help in administrative matters.

I am also grateful to my friends for their time, advice and moral support, and for all
the fun we have had over the past few years. Thanks to Silun Zhang for giving me the
strength and hope, and Yifang Dong for our seven years of studying abroad experience
in France together.

Last but not least, I would like to thank my parents, Guihong Chen and Hongbiao
Wang, for their unconditional love and encouragement in every moment of my life. As
well as my grandfathers Dingchun Chen and Wentai Wang who accompany me from
heaven. None of this could have happened without the great support of my family.
Special thanks to my dog Point for all the entertainment and emotional support.

i

Abstract
Microservice architectures contribute to building complex distributed systems as

sets of independent microservices. The decoupling and modularity of distributed
microservices facilitates their independent replacement and upgradeability. Since the
emergence of agile DevOps and CI/CD, there is a trend towards more frequent and
rapid evolutionary changes of the running microservice-based applications in response
to various evolution requirements. Applying changes to microservice architectures is
performed by an evolution process of moving from the current application version to a
new version. The maintenance and evolution costs of these distributed systems increase
rapidly with the number of microservices.

The objective of this thesis is to address the following issues: How to help engineers
to build a unified and efficient version management for microservices and how to trace
changes in microservice-based applications? When can microservice-based applications,
especially those with long-running activities, be dynamically updated without stopping
the execution of the whole system, and how should the safe updating be performed to
ensure service continuity and maintain system consistency?

In response to these questions, this thesis proposes two main contributions. The
first contribution is runtime models and an evolution graph for modelling and trac-
ing version management of microservices, which are built at design time and used
at runtime. It helps engineers abstract architectural evolution in order to manage
reconfiguration deployments, and it provides the knowledge base to be manipulated
by an autonomic manager middleware in various evolution activities. The second
contribution is a snapshot-based approach for dynamic software updating (DSU) of
microservices. The consistent distributed snapshots of running microservice-based
application are constructed to be used for specifying continuity of service, evaluating
the safe update conditions and realising the update strategies. The message complexity
of the DSU algorithm is not the message complexity of the distributed application, but
the complexity of the consistent distributed snapshot algorithm.

Keywords: Microservice architecture; Software evolution; Version management; Model
at runtime; Dynamic software updating; Snapshot-based update condition detection.

ii

Synopsis en Français

Ce synopsis est fourni en conformité avec la loi de 1994 relative à l’emploi de la
langue française. Il reprend la structure de la thèse et résume les chapitres un à un.

Chapitre 1:Introduction

Les architectures à base de microservices contribuent à la construction de systèmes
répartis complexes sous forme d’ensembles de microservices indépendants. La modularité
des microservices facilite leur remplacement de manière indépendante et leur mise
à niveau, ce qui permet une approche DevOps agile et une évolution continue. La
modélisation et la gestion des changements évolutifs rapides des applications basées
sur les microservices constituent la base des solutions permettant d’effectuer des mises
à jour dynamiques de ces applications avec un temps d’arrêt minimal.

Cette thèse étant soutenue par une Convention industrielle de formation par la
recherche (Cifre) en coopération avec EDF, nous avons identifié plusieurs besoins
industriels, liés à l’évolution, insuffisamment pris en compte jusqu’à présent :

— en raison de l’hétérogénéité des microservices dans l’écosystème de l’entreprise,
une représentation globale et unifiée des architectures de microservices devrait
être fournie aux architectes, développeurs et administrateurs ;

— l’évolution du logiciel pour les architectures de microservices devrait être modélisée
et suivre des règles bien définies lorsqu’un microservice change, ou que certaines
dépendances de microservices changent ;

— le système doit être capable de gérer les versions obsolètes des microservices afin
de libérer des ressources inutiles ;

— le système doit permettre la traçabilité des changements évolutifs du système et
rendre possible le passage à une version spécifique ou à une version précédente ;

iii

— le système doit fournir un service continu et minimiser autant que possible la durée
des interruptions du client. Il ne doit pas non plus bloquer les parties du système
non affectées par les reconfigurations d’un ensemble donné de microservices.

Nous répondons à une partie de ces besoins dans nos deux contributions visant, d’une
part, à aider les ingénieures et les ingénieurs à réaliser des activités de modélisation et
de gestion de versions pour les microservices, et d’autre part, à améliorer la continuité
de service lors de la mise à jour dynamique des applications basées sur les microservices.

Un prototype en logiciel libre été réalisé pour valider la première contribution :
MIMOSAE (pour “MIcroservices MOdel for verSion mAnagement with Evolution gra-
ph”), https://gitlabev.imtbs-tsp.eu/mimosae/mimosae. Une version préliminaire
d’un prototype mettant en œuvre la seconde contribution est également disponible :
ARBORE (pour “ARchitecting Based on microservice versiOns with REconfiguration”),
https://gitlabev.imtbs-tsp.eu/mimosae/arbore.

Chapitre 2 : État de l’art sur l’évolution logicielle dynamique
des architectures microservices

L’architecture logicielle, l’une des disciplines du génie logiciel, fournit un schéma
directeur pour les systèmes logiciels complexes. Elle fournit une abstraction de haut
niveau de la structure globale, du comportement et des propriétés des systèmes logiciels.

Les architectures logicielles ont évolué depuis les architectures monolithiques vers
différentes granularités de modularité : des objets aux composants et services, et
maintenant aux microservices. La modularité de l’architecture logicielle décrit le degré
auquel les éléments architecturaux peuvent être séparés et recombinés dans le but de
créer et de maintenir des modules exécutables indépendamment afin de maximiser la
réutilisation de leur code.

Les architectures logicielles des applications d’entreprise deviennent de plus en
plus grandes et complexes, et de nombreux efforts ont été faits pour répondre à cette
augmentation d’échelle. Les architectures à base de microservice sont l’un des modèles
architecturaux qui permet de concevoir, de développer et de déployer des systèmes
évolutifs et flexibles.

L’évolution des logiciels correspond au processus de développement, de maintenance
et de mise à jour des logiciels tout au long de leur cycle de vie. Les modifications et mises
à jour sont inévitables dans le développement des logiciels afin de répondre à l’évolution
des exigences, des performances, etc. Un domaine de recherche actif concerne la manière
de gérer et de contrôler les tâches d’évolution en limitant l’intervention humaine et en

iv

https://gitlabev.imtbs-tsp.eu/mimosae/mimosae
https://gitlabev.imtbs-tsp.eu/mimosae/arbore

minimisant les durées d’arrêt. Dans cette thèse, nous nous concentrons sur l’évolution
dynamique qui permet au système logiciel de s’adapter aux changements en cours
d’exécution et nous nous appuyons sur deux approches : la boucle de contrôle MAPE-K
pour l’automatisation et l’approche modèle-à-l’exécution pour refléter l’architecture de
l’application à faire évoluer.

L’approche MAPE-K permet d’automatiser ces tâches en proposant un modèle
générique d’une boucle de contrôle autonomique. Un gestionnaire autonomique organise
le processus de contrôle autour de quatre activités : “Surveiller”, “Analyser”, “Planifier”
et “Exécuter” qui partagent une “Base de connaissances”. L’activité de surveillance
collecte les données des éléments gérés et de leur environnement. L’activité d’analyse
détermine s’il y a lieu de procéder à une adaptation en utilisant les informations
provenant de l’activité de surveillance et de la base de connaissances. L’activité de
planification reçoit les décisions d’adaptation et détermine les actions de configuration
ou de déploiement nécessaires. L’activité d’exécution applique le plan d’adaptation au
système géré aux moments appropriés. La base de connaissances maintient et partage
les règles, les propriétés et les modèles. Notre travail est applicable à l’adaptation
semi-automatique où une partie du processus de contrôle est réalisée par les ingénieurs
et les ingénieures, et une autre partie par le gestionnaire autonomique.

Un modèle d’exécution fournit une représentation réduite des éléments logiciels
hétérogènes qui sont disponibles dans le référentiel d’implémentation et des éléments
gérés de l’application en cours d’exécution. Les adaptations logicielles sont appliquées
aux modèles maintenus au moment de l’exécution avant d’être exécutées dans les
applications gérées. L’abstraction de haut niveau de l’application à travers les modèles
d’exécution fournit une vue unifiée au gestionnaire autonomique et l’aide à construire
la base de connaissances partagée par la boucle de contrôle.

Les architectures de microservices mettent l’accent sur l’évolutivité, car la modularité
des microservices permet d’évoluer de manière indépendante et rend les microservices
plus faciles à modifier et à remplacer. Cependant, la mise à jour dynamique correcte des
architectures de microservices est encore un domaine de recherche ouvert et constitue
l’objet de cette thèse.

La mise à jour des microservices à l’exécution doit répondre à plusieurs exigences,
telles que la continuité de service, la correction, l’intégrité et la cohérence du système.
Dans notre travail, nous faisons les hypothèses suivantes : (i) nous ignorons les transferts
d’états nécessaires entre les versions des microservices, et (ii) notre système géré est
sans défaillance.

Afin de caractériser les changements, nous suivons la politique de SemVer pour
exprimer les numéros de version des éléments qui doivent être versionnés dans les

v

architectures de microservices. Nous complétons SemVer avec la classification des
évolutions en changements essentiels ou non essentiels en tenant compte des aspects
comportementaux du modèle du microservice.

Les solutions DSU (pour Dynamic Software Updating en anglais) de l’état de l’art,
qui répondent à la question de savoir quand une mise à jour peut être effectuée de
manière correcte et cohérente, présentent des caractéristiques communes. Toutes ces
solutions visent en effet la cohérence globale (de l’ensemble de l’application répartie)
et traitent la cohérence du système par l’évitement, c’est-à-dire en attendant un état
sûr (condition de mise à jour) avant de procéder à la mise à jour. Notre solution suit
également cette approche, mais elle se différencie par la manière d’atteindre et de
maintenir la condition de mise à jour, indiquant lorsque le système peut être mis à
jour en toute sécurité. Tous les algorithmes DSU existants dans la littérature sont dits
basés sur la dissémination, alors que notre contribution propose une nouvelle approche
basée sur les instantanés (ou snapshots).

Chapitre 3 : Modèles d’exécution et graphe d’évolution pour
la gestion des versions des microservices

Ce chapitre présente notre première contribution : la construction de modèles
d’exécution et de graphes d’évolution pour (i) aider les ingénieures et ingénieurs à
gérer la gestion des versions d’applications de microservices, et (ii) abstraire l’évolution
architecturale afin de gérer les déploiements de reconfiguration. Plus précisément, ces
besoins peuvent être affinés en fonction des besoins typiques suivants identifiés dans des
contextes industriels : (1) afin de rationaliser le coût d’évolution et de maintenance de
solutions logicielles hétérogènes, une vue globale et unifiée de l’évolution de l’écosystème
doit être fournie aux architectes, développeurs et administrateurs, et (2) les changements
évolutifs du système doivent être traçables et annulés en cas de configuration invalide
ou de toute autre anomalie.

Notre modélisation sépare la vue des types de celle des instances, ajoute la gestion des
versions à chaque élément du modèle et prend en compte les modes de communication
synchrones et asynchrones. Notre modèle est réifié au moment de l’exécution pour faire
partie de la base de connaissances de la boucle de contrôle MAPE-K. Les éléments
gérés sont alors reflétés dans le modèle d’exécution. Avec l’évolution de l’application
microservice, si des changements se produisent dans l’application, les modèles changent
également, d’abord le modèle de type puis le modèle d’instance, et vice versa.

Notre graphe d’évolution est utilisé pour suivre la trajectoire d’évolution de l’archi-
tecture de microservices. Chaque fois que les artefacts d’un type de microservice sont

vi

ajoutés ou retirés du référentiel d’implémentation, le modèle de type peut évoluer pour
prendre en compte l’évolution, et un nouveau nœud de type est créé et engagé dans le
graphe d’évolution. La validation n’est possible que si les types de microservices sont
instanciables. Le nouveau nœud représente l’ensemble des artefacts logiciels (microser-
vices, connecteurs, contrats, etc.) qui peuvent être utilisés pour construire le système
géré. La deuxième partie du graphe d’évolution correspond aux instantanés des confi-
gurations déployées. La validation n’est possible que si les instances de microservices
sont déployables. Chaque fois qu’une décision est prise par les architectes logiciels, un
nouveau nœud d’instance est créé et engagé dans le graphe d’évolution. Un tel un
nœud représente l’ensemble des entités déployées (instances déployées de microservices,
connecteurs, etc.) lorsque le plan de reconfiguration est calculé et exécuté pour modi-
fier efficacement l’application répartie. Enfin, notre solution est mise en œuvre dans
le prototype MIMOSAE (“MIcroservices MOdel for verSion mAnagement with Evo-
lution graph”) disponible sur https://gitlabev.imtbs-tsp.eu/mimosae/mimosae.
Lorsqu’une nouvelle configuration à déployer est inscrite dans le graphe d’évolution,
un planificateur calcule un plan d’actions de déploiement pour faire évoluer le système
vers cette nouvelle configuration. Ce plan est automatiquement exécuté pour effectuer
le déploiement.

Chapitre 4 : Mise à jour logicielle dynamique des microservices
basée sur les instantanés

Ce chapitre présente notre deuxième contribution, à savoir quand et comment la
reconfiguration pour la mise à jour des microservices peut être effectuée de manière
cohérente alors que les appels de services clients continuent d’arriver. Ce problème de
mise à jour dynamique du logiciel (DSU) peut être décomposé en deux sous-problèmes à
résoudre dans l’ordre : (i) modéliser l’application répartie et les changements de version,
et exprimer la condition de mise à jour dans ce modèle de manière à ce que la mise
à jour ne conduise pas à des incohérences sémantiques : par exemple, quels éléments
architecturaux de l’application répartie évoluent et doivent évoluer ensemble, qu’est-ce
qu’un appel de service client, et les microservices peuvent-ils être mis à jour au milieu
d’un appel de service client ? (ii) spécifier l’algorithme DSU qui surveille le système en
cours d’exécution pour atteindre la condition de mise à jour et qui effectue ensuite la
mise à jour en suivant une stratégie donnée : par exemple, le système permet-il aux
deux versions d’un microservice de s’exécuter simultanément, l’algorithme DSU doit-il
bloquer certains messages ou certains éléments architecturaux ?

Nous abordons le problème de la mise à jour dynamique du logiciel au niveau de la

vii

https://gitlabev.imtbs-tsp.eu/mimosae/mimosae

configuration pour les applications basées sur les microservices. En utilisant le modèle
d’exécution, le service intergiciel de gestion autonomique décide quand la mise à jour
des microservices peut être effectuée de manière correcte et comment les microservices
impactés sont maintenus dans un état cohérent. En outre, un tel service intergiciel
peut utiliser différentes stratégies de mise à jour afin de trouver un compromis entre la
caractérisation de l’impact des changements (par exemple, s’ils sont essentiels ou non)
et la minimisation de la durée des interruptions. L’application répartie évolue ensuite
de manière incrémentale d’une configuration à une autre.

Les algorithmes DSU existants dans la littérature sont basés sur la diffusion : que ce
soit en période hors mise à jour ou pendant la mise à jour, ils complètent l’application
avec des messages de contrôle pour détecter la condition de mise à jour. Ainsi, ces
algorithmes sont optimaux dans le pire des cas. Pour les architectures à base de
microservices, nous adoptons une approche différente : seulement de manière périodique
ou lorsque la condition de mise à jour doit être vérifiée, par exemple lorsqu’il y a une
demande de reconfiguration due à des changements de version, notre algorithme DSU
prend un instantané global périodique de l’application répartie. La justification de ce
choix est la suivante : (1) les applications de microservices peuvent être gourmandes en
messages, de sorte que cibler la complexité des messages dans le pire des cas est limitatif,
(2) la propriété bidirectionnelle des liens ne peut être obtenue de manière directe avec
les connecteurs de type publier-souscrire, et il n’est pas raisonnable de supposer que
les courtiers sont configurés à cette fin, (3) il est possible d’exprimer la condition de
mise à jour à l’aide d’états globaux cohérents du système, c’est-à-dire d’instantanés
répartis cohérents, et (4) l’algorithme DSU, qui utilise des primitives telles que la
suspension/reprise, l’exécution, la création et la suppression de microservices, la liaison
et la dissociation de microservices, etc., est classiquement basé sur des phases, qui sont
délimitées par des états globaux du système, c’est-à-dire des instantanés répartis.

Enfin, il existe des situations dans lesquelles une entité est spécifiquement conçue
pour être composée avec d’autres, et les deux entités doivent évoluer simultanément.
Certains travaux antérieurs ont abordé ce problème, mais uniquement du point de vue de
l’implémentation. Nous considérons la situation au moment de la spécification, et nous
formalisons la propriété de continuité du service. En outre, la connaissance des ensembles
de remplacement pour exprimer la continuité du service devrait également intéresser
les administrateurs de systèmes afin de permettre des stratégies de déploiement telles
que le déploiement blue/green ou l’approche Canari.

Notre solution DSU est mise en oeuvre dans une version préliminaire du prototype
ARBORE (“ARchitecting basée sur les versions de microservices avec REconfiguration”),
disponible sur https://gitlabev.imtbs-tsp.eu/mimosae/arbore.

viii

https://gitlabev.imtbs-tsp.eu/mimosae/arbore

Chapitre 5 : Conclusion

Nos contributions visent à aider les ingénieures et les ingénieurs à gérer plus facilement
et plus efficacement la gestion des versions des applications à base de microservices, et
à garantir une mise à jour dynamique sûre des logiciels. Nous résumons ci-dessous ce
qui fait l’originalité des solutions que nous proposons.

Spécification et modélisation d’une application basée sur des microservices pour la ges-

tion de versions. Le modèle de type décrit l’abstraction structurelle des architectures
de microservices, et le modèle d’instance capture les configurations de déploiement
spécifiques des applications basées sur les microservices. Chaque instance est conforme
à un type valide. Dans le modèle de type, nous vérifions que les types de microservices
sont instanciables. Dans le modèle d’instance, nous vérifions que les instances de micro-
services sont déployables. Ces modèles sont construits au moment de la conception par
les ingénieurs et utilisés au moment de l’exécution pour refléter les changements qui
se produisent dans l’application, selon l’approche modèle-à-l’exécution. Les éléments
architecturaux à versionner sont fournis dans le modèle de type avec un identifiant et un
numéro de version, ce qui suit explicitement la politique SemVer appropriée sur le plan
syntaxique. Ensuite, les éléments déployables dans le modèle d’instance qui instancient
les types sont également versionnés syntaxiquement. Nos modèles d’exécution prennent
également en charge deux mécanismes de communication couramment utilisés dans les
architectures de microservices, à savoir la communication synchrone client-serveur et la
communication asynchrone de type publier-souscrire.

Tracer les changements évolutifs dans les architectures de microservices. Un graphe
d’évolution enregistre la trajectoire et l’historique de l’évolution de l’application dans le
temps. Il est composé de deux parties : la première est constituée d’instantanés de types
de configuration construits à partir du modèle de type, et la seconde est constituée
d’instantanés d’instances de configuration construits à partir du modèle d’instance.
Lorsque des changements de version sont appliqués, de nouveaux instantanés du type
de configuration et de l’instance de configuration sont créés et enregistrés dans notre
graphe d’évolution. Chaque instantané d’instance de configuration est conforme à un
instantané de type de configuration. Dans le prototype MIMOSAE, une boucle de
contrôle MAPE-K semi-automatique est mise en œuvre dans laquelle nos modèles
servent de base de connaissances. Un planificateur IA est utilisé pour calculer un plan
contenant un ensemble d’actions à exécuter pour passer d’une configuration donnée à
une configuration cible.

ix

Formulation de la mise à jour dynamique basée sur des instantanés. Un modèle d’exé-
cution de microservices est mis en place pour indiquer les liens de dépendance entre
les microservices représentant les relations d’appel entre les microservices dans une
configuration, et les dépendances entre les types de messages qui sont utilisées pour
suivre la progression des échanges de messages tout en répondant aux appels des clients.
Ensuite, les changements de microservices sont caractérisés comme étant essentiels ou
non essentiels en utilisant ce modèle d’exécution : un changement est essentiel s’il a un
impact sur les échanges de messages. En ce qui concerne la continuité de service, nous
introduisons deux ensembles de remplacement (paires d’instances de microservices et
paires de liens de communication), et nous ajoutons une façade (front-end) entre les
clients et les microservices afin de passer facilement des instances de l’ancienne version
aux instances de la nouvelle version. Ensuite, avec l’introduction du concept d’instan-
tané réparti cohérent, nous formalisons la correction d’une mise à jour dynamique ainsi
que les conditions de mise à jour de la littérature (quiescence, freeness [en anglais],
qui permet la cohérence des versions, et freeness essentielle, qui prend en compte les
changements essentiels et non essentiels). En conséquence, il est possible d’évaluer la
condition de mise à jour uniquement en cas de besoin, ou périodiquement, en prenant
des photos (au lieu de compléter systématiquement tous les échanges applicatifs entre
microservices par des messages de contrôle). Ceci explique pourquoi notre deuxième
contribution est nommée d’après le concept de snapshot ou instantané.

Algorithme DSU par vague. L’algorithme DSU assure la correction des mises à
jour dynamiques en préservant l’achèvement correct des appels de service client
(collaborations) en cours et futurs. La base de l’algorithme DSU est un algorithme de
détection de terminaison répartie qui repose sur des instantanés répartis cohérents.
Les microservices comptent les messages applicatifs qui sont envoyés et reçus pour
chaque collaboration, et fournissent ces compteurs dans le cadre de leur instantané.
Ensuite, le gestionnaire autonomique prend un instantané réparti cohérent et détecte
la terminaison en utilisant ces compteurs. L’algorithme DSU est organisé en vagues :
par exemple, il informe tous les microservices et le front-end qu’une nouvelle exécution
de l’algorithme DSU commence, il crée les nouveaux microservices et les nouveaux
liens entre les microservices pour la prochaine configuration, il attend la validation
de la condition de mise à jour avant d’effectuer la reconfiguration, et enfin il informe
tous les microservices et le front-end que la mise à jour est terminée. Il est important
de noter que lors de l’attente de la condition de mise à jour, le rôle de l’algorithme
DSU est de faire en sorte que le gestionnaire autonomique reconfigure le système pour
que la condition de mise à jour devienne une propriété stable : une fois atteinte, la

x

condition de mise à jour reste valable jusqu’à l’exécution de la reconfiguration. De
plus, nous intégrons les quatre stratégies de mise à jour de la littérature (« versions
concurrentes », « messages bloquants », « collaborations bloquantes », et « attente (au
plus t secondes) »). Une première version de l’algorithme DSU est mise en œuvre dans
le prototype ARBORE.

Cette thèse ouvre plusieurs perspectives.

Benchmarking des microservices. Nous avons réalisé des prototypes pour valider la
faisabilité de nos propositions et pour démontrer notre solution. L’exécution de bench-
marks permettrait de comparer nos contributions avec d’autres solutions du domaine,
pour les métriques concernant notamment la complexité des messages, la rapidité de
mise à jour (le délai pour atteindre la condition de mise à jour), et la durée de mise à
jour (le temps total d’une mise à jour).

Prise en charge d’autres modèles d’interaction asynchrones. Notre travail considère
le mode d’interaction client-serveur pour la communication synchrone et le modèle
publier-souscrire pour les communications asynchrones. Nos modèles peuvent être
affinés pour ajouter d’autres modes d’interaction asynchrones comme la communication
par flux et les événements complexes.

Évolution au-delà des microservices métier. Dans cette thèse, nous considérons la mise
à jour des microservices métier, mais pas la mise à jour des autres parties du système.
Par exemple, nous pourrions considérer les changements de version des systèmes de
bases de données ou des connecteurs de type publier-souscrire. La particularité de ces
changements est que les éléments d’infrastructure sont généralement basés sur des
plateformes externes ou des technologies de tierces parties.

Stratégies de déploiement. La connaissance des ensembles de remplacement pour
exprimer la continuité de service devrait intéresser les administrateurs de systèmes
pour permettre des stratégies de déploiement telles que le déploiement blue/green ou
l’approche Canari. Certains outils de gestion existants permettent de gérer automati-
quement le déploiement et l’exécution de microservices qui sont enveloppés dans des
conteneurs ou d’autres abstractions technologiques spécifiques, par exemple Kubernetes
ou Cloud Foundry. Mais, ces outils ne sont pas conscients des comportements de l’ap-
plication. Un point de départ serait d’utiliser une approche basée sur une architecture
déclarative pour déployer des microservices sur des plateformes PaaS en appliquant
différentes stratégies de déploiement.

xi

Tolérance aux fautes. Nos contributions supposent que le système est exempt de fautes.
Cela peut être reconsidéré en ajoutant des fautes simples telles que des arrêts francs
dans un premier temps. Les défaillances des microservices peuvent, par exemple, être
traitées par le gestionnaire autonomique par le biais d’un processus de retour en
arrière qui exploite le graphe d’évolution et revient à une branche différente. Pour les
défaillances survenant pendant l’exécution de l’algorithme DSU, un retour en arrière
vers une vague précédente de l’algorithme DSU pourrait aussi être envisagé.

xii

Contents

Acknowledgements i

Abstract ii

Content xiii

List of Figures xvi

Listings xviii

1 Introduction 1
1.1 Research Context . 2
1.2 Industry Requirements . 4
1.3 Thesis Contributions . 6
1.4 Manuscript Organisation . 7

2 State of the Art on Dynamic Software Evolution of Microservice
Architectures 9
2.1 Software Architecture of Microservice-based Applications 10

2.1.1 Definitions of software architecture 10
2.1.2 From monolith to modularity 11
2.1.3 From objects to components, services and microservices 12
2.1.4 Microservice architecture . 14

2.2 Software Evolution of Software Architectures 16
2.2.1 Basic concepts of software evolution 16
2.2.2 Autonomic computing and model at runtime 18
2.2.3 Role of software architecture in evolution 20

xiii

2.2.4 Software evolution for microservice architectures 21
2.3 Dynamic Software Updating . 22

2.3.1 Objectives of DSU . 23
2.3.2 Characterisation of changes . 24
2.3.3 Distributed application model for DSU 25
2.3.4 Consistent update conditions 28
2.3.5 Reaching strategies . 32
2.3.6 Distributed termination algorithm 33

2.4 Conclusion . 34

3 Runtime Models and Evolution Graph for Version Management of
Microservices 36
3.1 Case Study GDE . 37
3.2 Runtime Models . 38

3.2.1 Model of types . 39
3.2.1.1 Configuration types view 39
3.2.1.2 Microservice types view 40
3.2.1.3 Contract types view 42

3.2.2 Model of instances . 46
3.3 Evolution Graph . 48

3.3.1 Overview of the graph building process 49
3.3.2 Illustrative scenarios . 50

3.3.2.1 Patch change . 52
3.3.2.2 Minor change . 53
3.3.2.3 Major change . 54

3.4 Implementation in MIMOSAE . 55
3.4.1 PDDL planner . 56
3.4.2 Executor . 59

3.5 Discussion . 60
3.6 Conclusion . 62

4 Snapshot-based Dynamic Software Updating of Microservices 64
4.1 DSU Problem . 66

4.1.1 GDE use case . 66
4.1.2 Role of the DSU algorithm . 66
4.1.3 Update conditions . 68

4.2 Distributed System and Application Models 69

xiv

4.2.1 Distributed system model . 71
4.2.2 Distributed application model 72

4.3 Snapshot-Based Update Setting . 74
4.3.1 Microservice execution model 74

4.3.1.1 Path of application messages 74
4.3.1.2 Link dependencies . 75
4.3.1.3 Message type dependencies 76

4.3.2 Adding continuity of service . 80
4.3.3 Essential and non-essential changes 81
4.3.4 Correct dynamic update . 83
4.3.5 Snapshot-based definitions of the update conditions 84

4.3.5.1 Quiescence . 84
4.3.5.2 Freeness . 85
4.3.5.3 Essential freeness . 85

4.4 Snapshot-Based DSU Algorithm . 86
4.4.1 Termination detection of collaborations 86
4.4.2 DSU algorithm and updating strategies 88

4.4.2.1 Overview of the DSU algorithm 89
4.4.2.2 DSU algorithm for quiescence 89
4.4.2.3 DSU algorithms for essential freeness and freeness . . . 90

4.5 Discussion . 92
4.6 Conclusion . 94

5 Conclusion and Perspectives 95
5.1 Contribution Summary . 95
5.2 Future Work . 98

Bibliography 100

Appendix 111

A Implementation Details of Planner and Executor in MIMOSAE 111
A.1 Full PDDL file for MIMOSAE . 111
A.2 Architecture of Executor in Autonomic Manager for MIMOSAE 116
A.3 Overview of the proposed Software Evolution Process 117

xv

List of Figures

2.1 MAPE-K control loop . 19
2.2 Causal connection between models at runtime and the managed system 20
2.3 Examples of transactions in sequence diagram 26
2.4 Examples of modelling transactions as workflow 27
2.5 State machine diagram of components 28
2.6 State machine diagram with quiescence 29
2.7 State machine diagram of the transition to the tranquillity property . . 30
2.8 Example illustrating several activation periods of the same component . 31

3.1 A global view of GDE illustrative application 38
3.2 Model of types: configuration types view 39
3.3 Model of types: microservice types view 41
3.4 Object diagram for the model of types applied to GDE: a part of

microservice types view . 43
3.5 Model of types: client-server contract types view 44
3.6 Model of types: publish-subscribe contract types view 45
3.7 Publish-subscribe contract types view: channel-based and topic-based . 47
3.8 Model of instances . 48
3.9 Evolution graph of configuration snapshots and configuration types . . 49
3.10 Example of object diagram of type model with a possible minor change 53
3.11 Example of object diagram of type model with a possible major change 55
3.12 Scenario implemented in MIMOSAE 58

4.1 Sequence diagram of the use case AttachFileToProject—publish-subscribe
communication . 67

4.2 Global view of DSU algorithm for microservices 68

xvi

4.3 Sequence diagram of use case AttachFileToProject—client-server commu-
nication . 70

4.4 Multigraph of message type dependencies for the use case scenario
AttachFileToProject . 79

A.1 Communication diagram of executor’s general functioning 116
A.2 Overview of software evolution process 118

xvii

Listings

3.1 Example of the PDDL domain file for MIMOSAE 57
3.2 Example of the PDDL problem file for the scenario of minor version

change . 59
3.3 Example of the plan generated by the PDDL planner 60
A.1 PDDL domain file for MIMOSAE . 111
A.2 PDDL problem file for creating GDE architecture with synchronous

client-server calls . 113
A.3 Configuration plan generated for creating GDE architecture with syn-

chronous client-server calls . 113
A.4 PDDL problem file for a minor revision with addition of logging in the

GDE architecture . 114
A.5 Configuration plan generated for the corresponding minor revision of

the GDE architecture . 115

xviii

Chapter 1

Introduction

Contents
1.1 Research Context . 2

1.2 Industry Requirements . 4

1.3 Thesis Contributions . 6

1.4 Manuscript Organisation . 7

Microservice architectures contribute to building complex distributed systems as
sets of independent microservices. The modularity of distributed microservices facili-
tates their independent replacement and upgradeability, enabling agile DevOps and
continuous evolution. Modelling and managing the rapid evolutionary changes of the
microservice-based applications is the basis of solutions to perform dynamic updates of
microservices with minimal halting time. This thesis aims at, on the one hand, helping
engineers to perform modelling and version management activities for microservices,
and on the other hand, improving continuity of service during dynamic updating of
microservice-based applications.

We begin this introduction chapter with the research context of this thesis (Sec-
tion 1.1). We establish the scope of our work and motivate the interest of the problems
that we address in this thesis. Because this thesis is supported by “Conventions indus-
trielles de formation par la recherche (Cifre)” that is a cooperation between a company
and a research laboratory, with the help of our our industry partner, Electricité de
France (EDF), we identify industrial requirements and provide them in Section 1.2.
We then summarise the contributions of our work in Section 1.3. Finally, we conclude
this chapter with the presentation of the structure of this manuscript (Section 1.4).

1

Chapter 1 - Introduction

1.1 Research Context

Many attempts and efforts have been made to respond to the growing scale and
evolution of software architectures of enterprise applications. One of the approaches
is modularity. During the last two decades, the software architecture domain has
gone through the process of transforming monolithic architectures into distributed
component-based architectures and service-oriented architectures, and more recently,
into microservice-based architectures. In recent years, microservices have become a
popular software architecture paradigm and have been successfully adopted by many
prominent large companies to achieve high agility, maintainability and sustainability
of their software systems. In this approach, each microservice provides one (small)
functionality with one (small) business objective, and can be leveraged by one or more
other microservices through lightweight communication [Newman, 2015]. Microservices
are built using different technology stacks and are managed by different teams. The
two commonly used protocols are HTTP request-response with resource APIs and
lightweight messaging [Lewis and Fowler, 2014]. With their modular design, microser-
vices act as independent units of development, deployment, evolution, and runtime
control.

In practice, while microservice architectures have brought several benefits, the
adoption path for microservices is not easy [Killalea, 2016]. Microservices need to
evolve continuously in response to various changes such as changes in human require-
ments, technology, and the application environment. The maintenance and evolution
costs of these distributed systems increase rapidly with the number of microservices.
Furthermore, since the emergence of agile development [Ebert et al., 2016] and contin-
uous practices (continuous integration, delivery, and deployment) [Humble and Farley,
2010], there is a trend towards even more frequent and rapid evolutionary changes of
microservice-based applications. As each microservice has its own life cycle, not all
microservices in an application evolve at the same pace. They can evolve independently
and frequently to introduce new features, remove existing obsolete features, change the
implementation of a given microservice to correct performance or security problems,
etc. Changes to microservices cannot be foreseen at the time of system creation, and
may occur when the microservices are active providing round-the-clock services.

Changes in a distributed system are usually specified declaratively in terms of
system structure. The specification of change is derived by comparing the desired
configuration with that of the current system [Kramer and Magee, 1990]. Similarly,
microservice-based applications can specify their changes in terms of their architectures,
which makes it possible to mirror changes as dynamic translations between architectural

2

1.1. Research Context

models and configurations. Applying one or more changes to microservice architectures
is performed by an evolution process of moving from the current application version
to a new version. Evolving a microservice means, from a development view, bringing
into play a new version of its artefacts, and from a configuration view, deploying
new instances, linking these new instances to other microservices, unlinking obsolete
instances before removing them, etc.

The changes applied to microservices make the system more complex over time so
that it is impossible for any one person to memorize every change. Also, microservices
in one application can be managed by different autonomous teams. Microservices
and their dependencies may not be controlled by only one team. Coordinating and
ensuring alignment among different teams becomes difficult. Traceability of evolutionary
changes enables to track changes in microservices across the lifecycle of development
and maintenance, that is, to track what is currently happening and what has already
been changed. It helps engineers understand how the system evolves, helps them choose
the appropriate version they want to use, and helps them source the reason of changes
when comparing two versions.

In addition to specifying and performing changes by modelling microservice ar-
chitectures and their version management, it is also necessary to provide approaches
for managing and controlling the evolutionary changes in the running microservice-
based applications. A traditional way to apply changes to running software systems is
stop-replace-restart, which is also called offline update. However, this offline approach
is not suitable for updating microservice-based applications, especially not for their
long-running or frequently-executed activities, because it can result in long service
interruptions that are unacceptable for customers. Thus, online updating is essential
to improve the continuity of services. Updating is said to be online or dynamic if the
updating process is carried out at runtime to adapt to changes in the execution envi-
ronment without stopping the execution of the whole system. This is called dynamic
software updating.

Dynamic software updating should not only guarantee that the resulting application
is correct, but it should also ensure that the ongoing activities are properly completed
before the system is configured, i.e. the involved stateful microservices should not be
active. Otherwise, the evolution would be considered unsafe and inconsistent. Since
the seminal work of [Kramer and Magee, 1990] who proposed an update condition to
maintain safe updating in component-based systems with synchronous communication,
this problem has received regular attention with contributions from time to time: the
works of [Vandewoude et al., 2007, Ma et al., 2011, Baresi et al., 2017] are contributions
to dynamic updating for synchronous distributed transactions in component-based

3

Chapter 1 - Introduction

systems; the very recent work of [Sokolowski et al., 2022] extended previous solutions to
asynchronous workflows. We want to mention that our contribution to dynamic software
updating with client-server and publish-subscribe interactions between microservices
has been prepared in parallel to this very recent publication.

The objective of this thesis is to address the following two issues: (i) How to
build a unified and efficient version management for microservices and how to specify
and realise the traceability of changes in microservice-based applications? (ii) When
can microservice-based applications, especially those with long-running activities, be
dynamically updated and how should the safe updating be performed to ensure service
continuity?

1.2 Industry Requirements

Microservice architectures have now been popularly applied in software companies,
such as Netflix, Amazon, etc., in regard to our industrial partner, Electricité de France
(EDF), an electric utility company whose primary business is electricity production
and supply, rather than the commercialisation of software products. An important
requirement for these non-software-oriented companies is to rationalise the cost of the
development and maintenance of their information systems, which are the supporting
tools to increase the productivity of their primary business. They promote the reuse
of existing heterogeneous software solutions that can be organised as microservices.
These microservices are said heterogeneous because they are developed and maintained
by different development teams and operation teams, which may be internal teams or
subcontractors, and because these teams may have different technology preferences. In
this situation, even simple changes in one microservice can lead to cross-team discussions
that require the sharing of software architecture artefacts that trace software evolution.
Microservice providers often deploy multiple versions in parallel, offering some specific
versions to certain customers or previous versions for legacy systems. In this case, the
updates of these heterogeneous microservices may go through organisational boundaries,
and add dynamics and complexity to software evolution.

There exist several frameworks or tools widely used for microservices in practice.
Even though each of them may focus on one aspect or may not be designed and
developed specifically for microservices, they can be of great help and be composed to
work together. We consider some categories of industry frameworks or tools that are able
to support evolutionary activities in one way or another: (i) container frameworks for
packaging and running microservices (e.g. Docker 1), (ii) container orchestration tools

1. Docker: https://www.docker.com/

4

https://www.docker.com/

1.3. Industry Requirements

for managing the life cycle of containers (e.g. Kubernetes 2), (iii) service mesh platforms
for governing service-to-service communication and message exchange through a sidecar
proxy added next to each microservice (e.g. Istio 3), (iv) cloud platforms for enabling
on-demand assembly of various predefined management solutions (e.g. Amazon Web
Services 4), and (v) automation tools for facilitating continuous integration, delivery,
and deployment (CI/CD) when releasing new versions of microservices (e.g. Jenkins
Pipeline 5).

These tools automate the process of getting microservices releases from a version
control system. They also realise automated roll-outs and rollbacks of containerised
microservices depending on the desired state in configuration files through some pre-
defined deployment strategies, such as rolling update [Alex, 2022], canary release [Sato,
2014], etc. Therefore, these tools simplify the deployment and production release
steps in the process of carrying out microservice updates. But before these steps can
take place, engineers still have many tasks to handle. Note that, in this thesis, we
limit ourselves to the evolution of business microservices themselves, but not focus on
changes in other parts, such as infrastructure, etc.

In collaboration with our industrial partner, we have identified several evolution-
related pending requirements:

— Due to the heterogeneity of microservices in the ecosystem of the company, a
global and unified representation of microservice architectures should be provided
to architects, developers, and administrators.

— Software evolution for microservice architectures should be modelled and follow
well-defined rules when a microservice changes, or some microservice dependencies
change.

— The system should be able to handle the deprecated versions of microservices in
order to free up unnecessary resources.

— The system should allow the traceability of the evolutionary changes to the system,
and make it possible to switch to a specific version or to a previous version.

— The system should provide a continuous service and minimise the duration of
client interruptions as much as possible. It should also not block parts of the
system not affected by reconfigurations of a given set of microservices.

2. Kubernetes: https://kubernetes.io/
3. Istio: https://istio.io/
4. AWS: https://aws.amazon.com/
5. Jenkins: https://www.jenkins.io/

5

https://kubernetes.io/
https://istio.io/
https://aws.amazon.com/
https://www.jenkins.io/

Chapter 1 - Introduction

1.3 Thesis Contributions

Based on the research context and industry requirements mentioned in the previous
sections, we work on the evolution of microservice-based applications and our main
contributions are the following ones:

1. Runtime models and evolution graph for modelling and tracing version
management of microservices. This contribution is awaited by engineers for
governing heterogeneous microservice evolution activities in a unified manner,
such as version management and reconfiguration deployments. We first propose
runtime models to describe the software architecture of evolving microservice-
based application. The software architecture is represented by two models: the
microservice type model for abstracting the structure of instantiable elements and
the microservice instance model for representing replicas of the corresponding
deployable elements. These two models are built by engineers at design time and
then used at runtime. Each element in the type model is syntactically assigned
a version number, and each element of the instance model conforms to a type
element and is also syntactically assigned a version number. In addition, our
models also distinguish synchronous (RPC calls) from asynchronous (publish-
subscribe) interactions within information systems. We then build up an evolution
graph for tracing evolution histories at the granularity of a configuration, which
includes a set of microservices, not just a single microservice. We record the
trajectory of how a microservice-based application evolves over time as changes
are applied. This evolution graph is composed similarly by two cross-linked sub-
graphs of configuration type snapshots and configuration instance snapshots. These
snapshots are photos “à la Git” of the evolution of the microservice architecture.

2. Snapshot-based dynamic software updating of microservices. The first
contribution provides a knowledge base to be manipulated by an autonomic
manager middleware service in various evolution activities for microservice-based
applications. Some additional efforts are required for safely and consistently
updating microservices at runtime, which is the focus of this second contribution.
During the evolution process of a running application evolving incrementally from
configuration to configuration, we propose a novel approach to determine the
answers to the two following questions: (1) When can updating be performed
safely (i.e. the update condition)? (2) How can the impacted microservices reach
and maintain a consistent state (i.e. updating strategies)? The novelty is in
answering these questions by constructing consistent distributed snapshots of the

6

1.4. Manuscript Organisation

microservice-based application. These snapshots are photos, i.e. global states,
of the execution of the distributed application; they must be consistent to be
meaningful. We use these consistent distributed snapshots for evaluating the
update conditions and realising the update strategies. In addition, since dynamic
software updating is expressed in terms of a configuration rather than of a single
component, we define continuity of service.

Two articles were published during this thesis and another article is in preparation.

— [Wang, 2019]: “Towards service discovery and autonomic version management in
self-healing microservices architecture”, Doctoral Symposium, in Proceedings of
the 13th European Conference on Software Architecture, Volume 2, pages 63–66,
Paris, France.

— [Wang et al., 2021]: Y. Wang, D. Conan, S. Chabridon, K. Bojnourdi, and J. Ma,
“Runtime models and evolution graphs for the version management of microservice
architectures”, in Proceeding of the 28th IEEE Asia-Pacific Software Engineering
Conference, pages 536–541, Taipei, Taiwan.

— (In preparation): Y. Wang, D. Conan, S. Chabridon, K. Bojnourdi, and J. Ma,
“Snapshot-based Dynamic Software Updating for Microservice-based Applications”

Also, an open source prototype has been implemented to validate the first contribu-
tion: MIMOSAE (for “MIcroservices MOdel for verSion mAnagement with Evolution
graph”), https://gitlabev.imtbs-tsp.eu/mimosae/mimosae. The implementation
of a second prototype is in progress for demonstrating the second contribution: AR-
BORE (for “ARchitecting Based on microservice versiOns with REconfiguration”),
and will be soon available at the following URL: https://gitlabev.imtbs-tsp.eu/
mimosae.

1.4 Manuscript Organisation

This manuscript is organised into four chapters.
In Chapter 2, we present the background knowledge and the state of the art of the

research fields addressed in this thesis. We position our work in the context of software
evolution, and we then go over the state of the art in software evolution of microservice
architectures and dynamic updating of microservice architectures.

In Chapter 3, we present the first contribution of this thesis: runtime models and
evolution graph for version management of microservices. It focuses on coping with the
requirements of modelling and tracking the evolution of heterogeneous microservices.
We begin with an illustrative microservice-based application from an industry project

7

https://gitlabev.imtbs-tsp.eu/mimosae/mimosae
https://gitlabev.imtbs-tsp.eu/mimosae
https://gitlabev.imtbs-tsp.eu/mimosae

Chapter 1 - Introduction

that involves different technology stacks and interaction modes. We then explain
our proposed runtime model that can be used to specify structural abstraction and
deployment configuration of microservice architectures, and an evolution graph that
is built to trace model element versions (microservices, etc.). Then, we implement
our approach with the help of an AI Planner in order to automatically generate a
reconfiguration plan, which is executed using Kubernetes and Docker APIs.

In Chapter 4, we present the second contribution of this thesis: a snapshot-based
approach for dynamically updating microservice architectures. It addresses the issue of
dynamic software updating (DSU) that guasantee both consistency during updating and
continuity of service. We complement our microservice architecture models of Chapter 3
in order to formulate properties such as continuity of service and essential change.
Then, we use the concept of consistent distributed snapshot of distributed systems to
express properties such as update conditions and update correctness. Furthermore,
our DSU algorithm is also based on consistent distributed snapshots to look for and
maintain safe update conditions with different update strategies.

In Chapter 5, we conclude this thesis and discuss several perspectives as future
works.

8

Chapter 2

State of the Art on Dynamic
Software Evolution of Microservice
Architectures

Contents
2.1 Software Architecture of Microservice-based Applications 10

2.1.1 Definitions of software architecture 10
2.1.2 From monolith to modularity . 11
2.1.3 From objects to components, services and microservices 12
2.1.4 Microservice architecture . 14

2.2 Software Evolution of Software Architectures 16
2.2.1 Basic concepts of software evolution 16
2.2.2 Autonomic computing and model at runtime 18
2.2.3 Role of software architecture in evolution 20
2.2.4 Software evolution for microservice architectures 21

2.3 Dynamic Software Updating . 22
2.3.1 Objectives of DSU . 23
2.3.2 Characterisation of changes . 24
2.3.3 Distributed application model for DSU 25
2.3.4 Consistent update conditions . 28
2.3.5 Reaching strategies . 32
2.3.6 Distributed termination algorithm 33

2.4 Conclusion . 34

9

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

This chapter presents the primary concepts, principles and solutions related to our
work. We position this thesis in the fields of the modelling and dynamic evolution of
microservice architectures.

In Section 2.1, we start by defining the concept of software architecture with the
mutation from monolithic architectures to different granularities of modularity: from
objects to components and services, and now to microservices. We then detail the
definitions and the characteristics of microservice-based architectures, as well as the
benefits and challenges of interest for our work.

In Section 2.2, we introduce software evolution by focusing on runtime software
evolution. We argue that software architecture can provide a foundation and play an
important role for systematic runtime software evolution.

In Section 2.3, we describe the dynamic software updating problem. Some interesting
requirements and goals of this problem are firstly introduced with the corresponding
terminology. Next, we present the state of the art on the dynamic update conditions
to be reached before updating may take place, the updating strategies, and the basic
algorithm of distributed termination detection.

In Section 2.4, we conclude by highlighting the assumptions and the choices made
by the approaches covered in this chapter.

2.1 Software Architecture of Microservice-based Applications

In Sections 2.1.1–2.1.3, we describe how the field of software architecture has devel-
oped and evolved, up to the emergence and popularity of microservice architectures. In
Section 2.1.4, we then introduce the fundamental concepts of a microservice architecture,
including its definitions, characteristics, benefits, and weaknesses.

2.1.1 Definitions of software architecture

As one of the fundamental disciplines in software engineering today, software ar-
chitecture gives a blueprint for complex software systems. It provides a high-level
abstraction of the overall structure, behaviour, and properties of software systems.
Software architecture typically plays an important role as a bridge between the require-
ments and the implementation [Garlan, 2000]. It supports early design decisions for
teams to satisfy all the technical and operational requirements, and to improve essential
software system qualities. It also helps stakeholders better understand and analyse
how software systems are designed, implemented and deployed, whether building a new
software system, evolving a current software system, or modernising a legacy software
system.

10

2.1. Software Architecture of Microservice-based Applications

The origin of the concept of software architecture can be traced back to the 1969
NATO Conference on Software Engineering Techniques (the report of this meeting can
be found in [Randell and Buxton, 1970]). Some of the most prestigious pioneers in the
field, such as Edsger Dijkstra, Per Brinch Hansen, Friedrich Bauer, were present at
this conference and emphasized the need to make the subject of software architecture
public and focused. Subsequently, software architecture as a distinct discipline has
emerged and flourished in both industry and academia in the 1990s.

A seminal work published in [Perry and Wolf, 1992] has formulated a typical model
of software architecture consisting of architectural elements, their form and rationale,
as a triple: “Software Architecture = {Elements, Form, Rationale}”. The Elements
are distinguished into the three classes of data, processing, and connection. The Form
highlights the constraints on these elements, including weighted relationships and
properties of the elements. And the Rationale explains the motivation for selecting
elements and their form, and satisfying the constraints ranging from basic functional
requirements to extra-functional requirements.

In this thesis, the definition we choose is the one provided in [Bass et al., 2003]:
“The software architecture of a system is the set of structures needed to reason about
the system, which comprise software elements, relations among them, and properties of
both ”. The software elements are for instance components, services, and microservices;
the relations among them are realized into connectors; and the properties configure
both software elements and connectors [Medvidovic and Taylor, 2010].

Meanwhile, the industry practitioners have also started to leverage architectural
design in the development of their products. For example, the work of [Soni et al.,
1995] discussed software architecture in industrial applications and separated different
engineering concerns into four views, while Kruchten proposed a model with five
concurrent views in the so-called “4+1 View Model” [Kruchten, 1995].

With the development and maturity of the discipline, several reusable and proven
good solutions are usually codified into architectural styles and patterns to address
recurring problems [Medvidovic and Taylor, 2010]. Some well-recognized examples,
which we talk about in the following sections, are monolithic architecture, component-
based software engineering, service-oriented architecture. Of course, the microservice
architecture we are targeting in this thesis is also one of them.

2.1.2 From monolith to modularity

The software applications that are designed in a single tier where all the elements
run in a process decomposed into threads that share the resources (memory, databases,

11

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

files, etc.) are called monoliths. This monolithic style is considered as a standard way
to start developing an application. It facilitates application development, deployment,
and updating as long as the size of the codebase is relatively small. However, without
modularity, the rapidly increasing software complexity leads to monster monoliths
becoming unmaintainable systems and caused a software crisis [Naur and Randell, 1969].
Any change in one element of a monolith may require redeploying and rebooting the
whole application. To resolve the side effects of a monolith, software system development
has then followed the way to modularity and shifted the emphasis from traditional
monoliths to distributed systems. The modularity of software architecture describes
the degree to which architectural elements can be separated and recombined [Schilling,
2000]. One of its objectives is to create and maintain independently executable modules
to maximize their code reuse.

2.1.3 From objects to components, services and microservices

The applications in object-oriented design are often modelled as complex hierarchies
and graphs of classes. The way to achieve reusability is to inherit code from an
existing base class and specialize its behaviour. This approach is typically referred to
as white-box reuse [Ravichandran and Rothenberger, 2003]. But once the classes are
compiled, the result is still a large monolithic binary code. Also, it is necessary to be
familiar with the details of the base class implementation when subclassing.

When the focus has shifted from the relationships between classes in source code to
independent and interchangeable binary building modules, component-based architec-
tures have emerged. We choose the well-known definition given by [Szyperski et al.,
2002] for this architectural style: “A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third
parties.”

The approach is based on black-box reuse, i.e. the implementation of each component
is entirely hidden behind interfaces that explicitly specify the provided functionalities
and context dependencies. The principle is then to build distributed applications as
functional building blocks (components) interacting with each other via the provided
and required interfaces. The software infrastructure needed to connect components and
to handle common requirements can be supported by some component technologies
platform or framework. In other words, components typically rely on platform-specific
development and runtime technologies [Erl, 2008]. For example, components can
be built using Distributed Component Object Model (COM/DCOM) [Thompson

12

2.1. Software Architecture of Microservice-based Applications

et al., 1997], Java Platform Enterprise Edition (Java EE) with Enterprise Java Bean
(EJB) [Oracle, 2022], Common Object Request Broker Architecture (CORBA) [OMG,
2022], .NET [Microsoft, 2022].

The combination of object-oriented programming (OOP) and component concepts
gave birth to Service Oriented Architectures (SOA) [Dragoni et al., 2017]. A service is
another granularity for achieving modularity besides object and component. In [Erl,
2016], the authors give the following definition of this style of architecture: “Service-
oriented architecture (SOA) encourages individual units of logic to exist autonomously
yet not isolated from each other. Units of logic are still required to conform to a set of
principles that allow them to evolve independently, while still maintaining a sufficient
amount of commonality and standardization. Within SOA, these units of logic are
known as services.”

It results that a service can be considered as an autonomous and independent
computational entity with well-known interfaces that logically realize a business activity
or a supporting task. Compared with components, which emphasize composition
and reusability, services highlight business abstraction and interactivity. Furthermore,
services are independent of vendors, technologies and platforms, whereas it is not always
the case for components. As a consequence, SOA is viewed as a framework or a design
pattern where enterprises build, deploy, and manage these services [de Giacomo et al.,
2021]. The conceptual model of SOA involves the three roles of service provider, service
consumer, and service repository. One of the common practices to implement SOA
is with Web services [Alonso et al., 2004], where services are defined by standardized
service contracts using for instance the Web Service Description Language (WSDL),
communicate through SOAP messaging protocol, and are discovered by a UDDI
(Universal Description Discovery & Integration) registry. The services interact with
each other to provide a more complex business process, also called a workflow. Specific
workflow languages allow to model and orchestrate the behaviour of these workflows, one
of the most well-known being the Web Services Business Process Execution Language
(WS-BPEL) [OAS, 2007]. In practice, an integration backbone called Enterprise Service
Bus (ESB) is often used as a middleware to provide technical infrastructures and tools
to facilitate hosting and implementing services for SOA, including message routing,
service orchestration, monitoring, versioning, and security [Chappell, 2004].

Because the focus shifts from encapsulation and componentization to independent
development and deployment, the term “microservice” was first introduced as a guideline
of a software architectural pattern in 2011 at a workshop of software architects [Dragoni
et al., 2017]. While there is some debate on whether microservices are just a variant
of SOA, it is safe to say that they are related because microservice architecture is

13

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

a further iteration of SOA, but that does not mean that they are the same. The
service granularity between the two architectures is significantly different. The size of
SOA services ranges from fine-grained application services to coarse-grained enterprise
services. The prefix “micro-” indicates that each service is fine-grained and limited to
a single business function, following the Unix philosophy of “doing only one thing and
doing it well” [Raymond, 2003]. Concerning sharing, for certain technical services such
as databases and logging, SOA tries to maximise sharing with enterprise-level services
and databases, while microservice architecture intends to minimize this sharing with the
concept of “bounded context”: each microservice typically has its own database, logging
system or other purely technical functions. Furthermore, SOA and microservices rely
on different technology stacks [Jamshidi et al., 2018]. Typically, SOA uses heavyweight
technologies such as SOAP, WSDL, ESB, whereas microservices tend to use lightweight
technologies such as REST, publish-subscribe broker, container.

2.1.4 Microservice architecture

Software architectures of enterprise applications are getting larger and more complex,
and many attempts and efforts have been made to respond to the growing scale of
software and increasing network requests. Microservice architecture is one of the
architectural pattern that makes it possible to design, develop and deploy scalable and
flexible systems. Now that it is clear where microservices come from along the way of
software architecture and why they came out, we present their principles and how they
can be used properly according to their advantages and challenges.

Presently, there is no agreed precise definition of a microservice architecture. We
list some of the interesting existing definitions in the following. A popular definition
was early described in [Lewis and Fowler, 2014] for microservice architectures: “The
microservice architectural style is an approach to developing a single application as
a suite of small services, each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API. These services are built around
business capabilities and independently deployable by fully automated deployment
machinery. There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use different data storage
technologies.”

This definition includes several characteristics that architects expect microservice
architectures to exhibit. Some other definitions of microservices also exhibit one or
more characteristics, such as:

14

2.1. Software Architecture of Microservice-based Applications

— “Microservices are small, autonomous services that work together” [Newman,
2015].

— “Amicroservice is a small application that can be deployed independently, scaled in-
dependently, and tested independently and that has a single responsibility” [Thönes,
2015].

— “A microservice is a cohesive, independent process interacting via messages. The
term ‘cohesive’ indicates that a service implements only functionalities strongly
related to the concern that it is meant to model. A microservice architecture is a
distributed application where all its modules are microservices” [Dragoni et al.,
2017].

Any architectural style requires trade-offs. Microservices provide benefits, but also
come with costs. It is a good practice to evaluate the strengths and weaknesses in
context before using it. We now list some common characteristics of microservice
architectures seen in the definitions.

Modular with independent services. Microservice architectures use services as the
unit of modularity, which has explicit offered and required interfaces and handles a
single responsibility. When modelled as services, their capabilities are exposed to
other collaborators by using remote call mechanisms over the network to enforce the
separation. Each service is a unit of deployment, and thus of scalability. Changes to
any single service are expected to only result in redeployment of that service or as
few services as possible because of its loose coupling. Even if changes in microservices
and their interfaces affect some coordination, the cohesive service boundaries and
additional evolution mechanisms in the service contracts could help minimize the impact.
For example, in practice, engineers can deploy updated versions of microservices to
production in a shorter time of rapidly changing business environments by using modern
container tools or other DevOps practices [Waseem et al., 2020].

Around Business Capabilities. As formulated in the Conway’s Law, working on big
problems with distributed cross-team and large codebases does not improve productivity:
“Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure” [Conway, 1968].
Thus, microservices organised around business capabilities may help to better align
the architecture with the organization and try to achieve the best balance of team
size and productivity. The size of a microservice should be “small enough and no
smaller” [Newman, 2015] to balance the benefits of small size with the resulting

15

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

complexity. A famous example is the view of Amazon’s two pizza teams that a team
should be fed with two pizzas [Chapman, 2014]. In addition, small teams organised
according to microservices need to be cross-functional to manage the whole lifecycle of
the services they are developing.

Lightweight communication. Two of the most common protocols used in microservice
architectures are HTTP request-response with resource APIs (e.g., HTTP REST) and
messaging via a message broker (e.g., AMQP [AMQP Consortium, 2010], Apache
Kafka 1, and MQTT [OASIS, 2019]). Then, the two ways to build collaborations
are orchestration and choreography [Peltz, 2003]. Orchestration requires a central
service that sends requests to services and oversees the business process by receiving
responses. Choreography considers no centralisation, uses events and the publish/sub-
scribe paradigm to establish collaboration, and track message sequences. The culture
of microservices tends to minimize centralisation and makes them more inclined to use
choreography.

Technology heterogeneity. Theoretically, each microservice has the freedom to select
a different set of technologies for programming languages, libraries, data stores, etc.
As a consequence, the initial technology choices should not severely limit the ability
to use new languages and frameworks in the future. Although microservices allow
teams to more easily embrace with new tools, too much is as bad as too little, most
organisations encourage the use of a limited set of technologies.

2.2 Software Evolution of Software Architectures

In this section, we introduce the research area of software evolution (Section 2.2.1).
We notice the changes that may occur at runtime, and investigate methods to automate
the system management and adaptation at runtime (Section 2.2.2). Furthermore, we
also highlight the role of software architecture in software evolution (Section 2.2.3),
and present some current works on software evolution for microservice architectures
(Section 2.2.4).

2.2.1 Basic concepts of software evolution

In software engineering, software evolution is referred to as the process of developing,
maintaining, and updating software in its entire life cycle. Software changes are

1. Apache Kafka: https://kafka.apache.org/

16

https://kafka.apache.org/

2.2. Software Evolution of Software Architectures

inevitable in software development in order to respond to evolving requirements,
performance and environmental pressures [Godfrey and German, 2008].

As a pioneer in the field of software evolution in the last century, Lehman and his
collaborators have formulated a set of observations about software evolution, called the
Lehman’s Laws of Software Evolution [Lehman, 1980, Lehman et al., 1997, Lehman
and Ramil, 2002]. Even though the software research area has changed a lot since then,
some of their rules, especially those on software size and complexity, still hold true:
for example the law observing that the size and complexity of a software system will
continue to increase over its lifecycle. Lehman’s work mainly focused on the nature
of software evolution and the properties of evolutionary phenomena for monolithic
systems produced by only one team. However, as the use of components, services, and
microservices becomes more common, researchers began to reconsider and continually
adapt Lehman’s Laws to modern software [Godfrey and German, 2014], including in the
context of open source projects [Yu and Mishra, 2013] and agile development [Sindhgatta
et al., 2010].

The work of [Mens et al., 2003] proposed a taxonomy of software evolution based
on the characteristics of software changes. In their taxonomy, the time at which the
change occurs greatly affects the approaches to software evolution:

— Compile-time evolution, also called static evolution [Cook et al., 2001], concerns
primarily the source code of the system: e.g. code modularization support for
maintainability [Parnas, 1971], code refactoring [Fowler, 2018]. Software in this
case needs to be recompiled for the changes in a new executable system.

— Load-time evolution considers the changes that occur when software elements are
loaded into an executable system: e.g. modifications of binary JAVA class files
during load-time [Chiba, 2000, Kniesel et al., 2001].

— Run-time evolution, also called dynamic evolution [Cook et al., 2001], allows
software to evolve dynamically by hot-swapping components and integrating new
components without stopping the execution of the distributed application.

The first two are not what we are going to discuss in this thesis, but we focus on
run-time evolution that allows the software system to adapt to changes at runtime.
We explore some issues of runtime evolution such as how these runtime changes are
specified and managed, and how to ensure consistency, correctness, or other desired
properties of these runtime changes.

17

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

2.2.2 Autonomic computing and model at runtime

The kinds of systems that can benefit from runtime software evolution include,
but are not limited to, long-time running systems that need online modification and
adaptive systems that need to adapt to changes in the execution environment [Oreizy
et al., 1998, Dowling and Cahill, 2001]. One of the trends of interest in the research
community is about how to manage and control the evolutionary activity of these
systems with minimal human intervention and less downtime. So, we introduce the
MAPE-K approach to automation and the model-at-runtime approach to reflect the
architecture of the distribution application to evolve.

Automation of evolution tasks. In fostering automation of the evolution tasks, the
concept of “autonomic computing” can be considered to enable software systems
to manage themselves to a certain degree based on high-level objectives. Among
the self-managing characteristics, also called self-abilities, self-management includes
activities such as configuration, optimisation, healing or protection that require no or
minimal human intervention by using some autonomic control mechanisms [Kephart
and Chess, 2003, Huebscher and McCann, 2008]. It makes it possible to free system
administrators and other stakeholders from maintaining long-time running systems
and frequent adaptive systems.

The structure of the self-adaptive process includes a control loop. A generic model
of the autonomic control loop is known as the MAPE-K control loop [Computing
et al., 2006]. Figure 2.1 presents the structure of an autonomic element that consists of
managed elements and an autonomic manager that controls the managed elements. In
our case, the managed elements are for instance microservices, connectors, and database
systems. The autonomic manager organises the control process around four activities
“Monitor”, “Analyse”, “Plan”, and “Execute” that share a “Knowledge base”. Note that
this centralised autonomic manager can be distributed by creating several instances.
For the sake of simplicity, we limit ourselves to one single autonomic manager in this
thesis.

The autonomic manager is in charge of the following activities:

— Monitor: The monitoring activity collects data from the managed elements and
its environment, and then aggregates the collected data according to the content
of the Knowledge element, which can be later manipulated by other activities.

— Analyse: The analysis activity determines decisions about the need for adaptation
and its goals by using information from the monitoring activity and from the
knowledge base.

18

2.2. Software Evolution of Software Architectures

ExecuteMonitor Knowledge

PlanAnalyse

Managed Element

Autonomic Manager

Figure 2.1 – MAPE-K control loop (adapted from [Kephart and Chess, 2003])

— Plan: The planning activity receives the adaptation decisions and builds a proce-
dure consisting of one or more necessary configuration or deployment actions to
achieve the adaptation goals.

— Execute: The execution activity applies the adaptation plan and applies changes
to the managed system at appropriate moments.

— Knowledge base: This is an element shared between the four activities, and it
maintains rules, properties, models and other kinds of data.

Three levels of adaptation can be distinguished. In manual adaptation, engineers
manually adapt the system, e.g. the work of [Buisson et al., 2016]. In automatic
adaptation, the system is a self-adaptive system, e.g. the work of [Florio and Di Nitto,
2016, Banijamali et al., 2020]. In semi-automatic adaptation, which lies between these
two extremes, one part of the control process is realized by engineers and another
part by the autonomic manager, e.g. in [Phung-Khac, 2010, Huynh, 2017], engineers
decide an adaptation target and an autonomic manager plans and then executes the
adaptation process. Our work is applicable to semi-automatic adaptation.

Model at runtime. A runtime model provides a reduced representation of the hetero-
geneous software elements that are available in the implementation repository and of
the managed elements of the running application. It plays a role as a live element to
reflect the state of the system and its execution. As defined in [Blair et al., 2009], “a
model@run.time is a causally connected self-representation of the associated system
that emphasizes the structure, behaviour, or goals of the system from a problem space
perspective.”

19

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

Using computational reflection [Maes, 1987], a runtime model is causally connected
with the underlying executing system, and every change in the runtime model will
correspondingly lead to a change in the structure or behaviour of the system, and vice
versa [Bencomo et al., 2019]. Figure 2.2 shows the causal connection between runtime
models and the system. Software adaptations are applied to models maintained at
runtime before being executed in the managed applications. The high-level abstraction
of heterogeneous application through runtime models provides a unified view for the
autonomic manager, and helps the autonomic manager to build the knowledge base
shared by the control loop.

Model

Runtime System

Causal Connection
Model

Runtime Infrastructure

Read / Write Read / Write

Maintain

Figure 2.2 – Causal connection between models at runtime and the managed system (adapted
from [Oreizy et al., 1998, Huang et al., 2009])

2.2.3 Role of software architecture in evolution

One of the goals of the software evolution research is to design and build models
that can be used to describe the evolution of software systems from the past to the
present and into the future, especially for runtime software evolution. Ideally, such
models can address both qualitative and quantitative properties of systems, as well as
some predictive power both in the short and long terms [Godfrey and German, 2008].

As presented in Section 2.1, a software architecture models the structure and the
behaviour of a system, including the software entities and the relationships between
them. Architectures shift developer focus away from source codes to high-level architec-
tural abstractions. The authors of [Oreizy et al., 1998] have highlighted the need for a
systematic approach to support runtime changes, and argued that software architecture
can provide the basis for systematically handling runtime changes. Also, dynamic
software architectures can be used to build dynamically evolvable software systems by
supporting the self-management of systems at runtime and acting as the knowledge
base in the control loop [Dowling and Cahill, 2001].

20

2.2. Software Evolution of Software Architectures

Dynamic software architectures used for runtime software evolution can be modelled
by using several approaches, such as formal mathematical methods (e.g. [Wermelinger
and Fiadeiro, 2002, Grunske, 2005]), Architecture Description Language (ADL) specifi-
cation (e.g. [Barais et al., 2008, Garlan et al., 2009]), model at runtime (e.g. [Morin
et al., 2009, Vogel and Giese, 2010]). In our work, we bring to play the model-at-runtime
approach.

2.2.4 Software evolution for microservice architectures

Microservice architectures emphasize evolvability [Bogner et al., 2019], because the
modularity of microservices provides capability to evolve independently and makes
microservices easier to change and replace. Also, evolutionary design is proposed
by [Lewis and Fowler, 2014] as one of the main expected microservice characteristics.
These properties provide a beneficial theoretical basis for software evolution. In recent
years, the area of software evolution has offered concrete and universally applicable
solutions for microservices to support runtime evolution.

Examples that have been published so far include, but are not limited to, the
following studies.

The authors of [Sampaio et al., 2017, Sampaio et al., 2019] proposed a service
evolution modelling approach that combines static and dynamic information to generate
at runtime a representation of the evolving microservice-based system. The objective
is to trace software architecture evolution of running applications by monitoring the
system.

The authors of [Esparrachiari et al., 2018] discussed several strategies for tracking
and controlling microservices dependencies, and argued that tracking dependencies is a
passive approach and controlling dependencies is an active one.

The authors of [Tao, 2019, Boyer et al., 2018] proposed a declarative architecture-
based approach for microservices, called DMU. DevOps teams specify the desired target
architecture of the application and choose the strategy for reaching the target architec-
ture. The target architecture defines how microservices instances are configured over the
PaaS sites. The strategy defines how to reach the target architecture. A step-by-step
transition allows reaching the desired target architecture through a deployment strategy.
In case of failure when taking a step, DevOps teams can change some configuration in
the target architecture, rollback to the initial architecture, or roll forward to a new
target architecture.

The authors of [Ma et al., 2019] presented a tool for monitoring microservice-based
systems and generating visualized version-based service dependency graphs through

21

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

source code analysis. The dependency graph is computed through a series of chain
searches, and version management is based on chain manipulations.

The author of [Akbulut and Perros, 2019] focused on the API versioning of microser-
vices in their URI or HTTP headers, and extends the API gateway design pattern to
orchestrate the requests for different versions of APIs with a view to managing the
virtual hardware configuration of containers. They modified the Gateway entity by
installing several functionalities, such as intelligent routing, observing other ecosystem
entities, and scale up or down services based on fuzzy logic.

In the work of [Liu et al., 2020], a framework based on the specific Spring Cloud was
designed and implemented to simultaneously deploy multiple versions of microservices
in the computing environment. It extracts version information from source code to
build version dependencies and routes user requests to the desired deployed microservice
version at runtime.

In our work, besides modelling microservice-based applications with their version
information, we also target the traceability of microservice evolution through tran-
sitions between configuration types, i.e. sets of microservice artefacts present in an
implementation repository, and through transitions between configurations, i.e. sets
of running microservices. In addition, we take into account two main microservice
communication modes, not only client-server but also publish-subscribe. Another issue
in the field of software evolution for microservices concerns safe dynamic updating and
is still an open research area. It is the focus of this thesis.

2.3 Dynamic Software Updating

In the previous sections, we have presented an overview of concepts related to
software architecture and software evolution. In this section, we discuss the case of
dynamic software updating (DSU), which is considered as a specific subject in software
evolution, including the following topics: the definition and requirements of DSU
(Section 2.3.1), the characterisation of changes with their impacts (Section 2.3.2),
the type of distributed application considered, i.e. the distributed application model
(Section 2.3.3), an overview of existing approaches on when the updates can be
performed safely (Section 2.3.4), the presentation of strategies to reach update conditions
(Section 2.3.5), and an introduction to basic distributed algorithms for termination
detection of service calls used in DSU (Section 2.3.6).

22

2.3. Dynamic Software Updating

2.3.1 Objectives of DSU

DSU enables microservice updating at runtime in order to adapt to changing
environments without, whenever possible, the shutdown and the restarting of the
whole distributed application. DSU has been identified as a fundamental problem of
distributed systems in the seminal work of Kramer and Magee [Kramer and Magee,
1990]. In [Miedes and Munoz-Escoı, 2012, Seifzadeh et al., 2013, Ahmed et al., 2020],
the authors summarise a list of requirements and goals of DSU. We list below the ones
that we have selected for our work in an industrial setting:

— Continuity and Minimal Disruption: Updating should not interrupt the execution
of the software for a too long time. The best case is that the update process does
not block any client service call execution nor impact performance.

— Transparency: Besides expected results, DSU should have no other significant
impacts on its context, including final users, development teams or managed system.
Concerning the end users, i.e. “user transparency”, they do not need to know any
details of the updating mechanism, nor the specific skills to perform the updating.
Concerning the development teams, i.e. “programmer transparency”, updating
should not change the way of designing and developing the systems. Concerning
the software itself, i.e. “application transparency”, the update mechanism does
not impose any constraints on how the programs are implemented and does not
change any intended behaviour.

— Generality. A general update mechanism allows applying different types of updates
and changes at different granularity levels (e.g. interfaces, connections) on the one
hand, and updating heterogeneous system elements (e.g. different technologies,
programming languages, models) on the other hand.

— Consistency and Integrity. Consistency means that the distributed application
should be in the same state after the dynamic update as if the update were
performed offline, i.e. the system is shut down, updated, and restarted. Integrity
of dynamic updates means that the client service calls that are interrupted by
DSU should be properly terminated, as the microservice states are valid.

— Version Coexistence. It should be possible that the old version and the new version
of the same elements exist at the same time.

Some of the other requirements for DSU are state preservation (in our work, we
ignore state transfer between microservice “versions”), simultaneous updates, ability to
schedule (we consider semi-autonomic adaptation with engineers that explicitly request

23

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

when updating), ability to roll back in case of failure (our contributions assume that
the system is fault-free and that does not consider DSU failures).

2.3.2 Characterisation of changes

Different kinds of changes can lead to different approaches for performing the
dynamic updating. For example, breaking changes may always have wider impacts on
the rest of the system, requiring more attention when updating. We present two ways
to characterise the changes, one based on labels applied by developers during deliveries,
namely SemVer (Semantic Versioning), and another one based on model changes (the
structure and the behaviour) of the microservices, namely essential and non-essential
changes.

Semantic versioning. Semantic Versioning (SemVer) [Preston-Werner, 2013] is com-
monly used in software development and versioning to control the configuration and the
growth of version numbers [He et al., 2020, Ma et al., 2019]. This method introduces a
set of rules and requirements on how to assign version numbers and whether a new
version is backward compatible [Decan and Mens, 2019]. Considering the version
format of X.Y.Z (Major.Minor.Patch), SemVer informs software architects and system
administrators, and helps IT teams to anticipate potential breaking changes:

— Major (X): backward incompatible API changes that indicate that this version is
not necessarily compatible with previous major versions,

— Minor (Y): backward compatible API additions or changes that indicate that this
version is still compatible with previous minor versions,

— Patch (Z): bug fixes not affecting the API, where the backwards compatibility is
assured with previous minor versions.

The goal of SemVer is to give each new software version a unique number with
compatibility information. However, this version numbering presents limited structural
compatibility semantics. When it comes to characterising changes in terms of behaviour
changes, the SemVer approach is not sufficient.

Essential and non-essential changes. Another desired property of changes should take
into account the structural and the behavioural part of the model of the microservices.
This property depends on whether the possible execution of any future message in a
collaboration is to produce the same resulting state and side effects before and after
the update.

24

2.3. Dynamic Software Updating

The authors of [Kawrykow and Robillard, 2011] defined non-essential differences to be
low-level code changes as: (i) “naturally cosmetic”, (ii) “generally behavior-preserving”,
and (iii) “unlikely to yield further insights into the roles or relationships of the entities
they modify”. In their work, they consider code changes and documentation-related
updates, such as trivial type updates, local variable extractions, rename-induced
modifications, etc.

In the very recent work of [Sokolowski et al., 2022], the authors supplement the
previous definition of essential and non-essential changes by application-specific analyses
of whether the changes introduce semantic changes: the identification of essential and
non-essential changes can also be improved and refined by the insights from the
application and the developers. The work considers workflows executing on FaaS and
“an update of a component c ∈ C from version v to v′ is an essential change for a
workflow instance I [...], if the possible execution of any future task t [of the workflow]
on v′ is not guaranteed to produce the same resulting state and side effects as executing
t on v.” The authors demonstrate that leveraging the distinction between essential
and non-essential changes can introduce more possibilities to perform safe and efficient
updates when changes are not essential.

2.3.3 Distributed application model for DSU

Most of the previous works on DSU consider synchronous distributed transactions
in so-called component-based systems ([Kramer and Magee, 1990, Vandewoude et al.,
2007, Ma et al., 2011, Baresi et al., 2017]). The work of [Sokolowski et al., 2022] considers
asynchronous workflows, which are also translated to synchronous transactions by the
authors for comparison. In order to provide a sound basis for a discussion on existing
DSU solutions, we first present the involved concepts in this section, namely transactions
and system consistency.

Definition of transaction. The notion of transaction is inevitably brought up in dynamic
updates for distributed systems and contributes to understanding the consistent status
of the system. It refers to a set of synchronous messages that are related and should
be executed somewhat atomically. In [Kramer and Magee, 1990], the authors defined
a transaction as follows: “A transaction is an exchange of information between two
and only two [participants], initiated by one of the [participants]. It is assumed that
transactions complete in bounded time and that the initiator of a transaction is aware
of its completion.”

We can learn that a transaction consists of a sequence of messages and is initiated
when a participant invokes a service from other participants, where the participant can

25

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

be a component, a client or other architectural elements.
Figure 2.3 shows two representations of transactions in a sequence diagram. In

Figure 2.3a, a transaction is a sequence of horizontal arrows and a transaction relates
two components, e.g. transaction T1 relates to two components, namely A as an
initiator and B as a receiver, and T2 relates to B as an initiator and C as a receiver.
In Figure 2.3b, a transaction is a UML activation bar: e.g. transactions T1, T2, and T3

activated in components A, B, and C.

:A :B :C
Transation T1

Transation T2

(a) extracted from [Kramer and Magee, 1990]

:A

T1

:B

T2

:C

T3

(b) extracted from [Ma et al., 2011]

Figure 2.3 – Examples of transactions in sequence diagram

In [Ma et al., 2011, Baresi et al., 2017], the transaction T1 in both figures is
called a root transaction and T2 is a sub-transaction. In [Sokolowski et al., 2022],
workflows implement complex and long-running transactions. Asynchronous workflows
can emulate the synchronous transactions by splitting the parent transaction into
two child transactions before and after the sub-transaction. The authors adopt the
representation of transaction in [Ma et al., 2011, Baresi et al., 2017]. An example
is shown in Figure 2.4, where the transactions in Figure 2.4a can be modelled as in
Figure 2.4b. But then the granularity of the atomicity is not the same.

Application consistency. Application consistency is one of the most important prop-
erties to be preserved during DSU. The work of [De Palma et al., 2001] defined the
application consistency in the case of a reconfiguration as follows: “A distributed
application is defined by a set of global distributed calculations. An application is
consistent if the results of running calculations are not modified when a reconfiguration
occurs.” Consistency is evaluated on the states of the system and the correctness of
running activities before and after updating a component in the system.

Moreover, in [De Palma et al., 2001, Ketfi et al., 2002], the authors make a distinction
between local consistency and global consistency:

26

2.3. Dynamic Software Updating

:A :B :C

(a) Synchronous transaction

:A :B :C

(b) Asynchronous workflow

Figure 2.4 – Examples of modelling transactions as workflow (adapted from [Sokolowski et al., 2022])

— Local consistency is concerned with the internal computation of a component,
comprising neighbouring components, the local state, and the communication
channels.

— Global consistency is concerned with the global distributed calculations in the
whole system, referring to the collaborations of all components in the system.

The existing approaches to addressing system consistency fall into two major
categories [Moazami-Goudarzi, 1999]:

— Consistency through recovery: It allows inconsistency to occur, but relies on
recovery mechanisms to restore consistency after the update is complete. One
example of the use of recovery for dynamic evolution is presented in [Feiler and Li,
1998], which focused on offline analysis to determine configuration inconsistencies
and identify reconfiguration paths to recover to consistent configurations. This
approach requires that the developers provide a rollback recovery mechanism in
the application, which brings the work of recovery implementation to developers.

— Consistency through avoidance: It intends to prevent inconsistencies from occur-
ring in the first place. The system waits for an ideal time called a safe state to
execute the updates so that inconsistencies are not even introduced. Roughly
speaking, this approach: (i) identifies the part of the system being affected and
detect a safe state; (ii) deactivates the affected part of the system; (iii) performs the
reconfiguration; (iv) reactivates the affected part and returns to normal operation.
It helps to minimise system overhead, disruption, and programmer participation.

Our approach and the solutions that we will discuss in this thesis apply the second
approach for ensuring consistency through avoidance. Therefore, we present in the
next section the state of the art on the update conditions.

27

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

2.3.4 Consistent update conditions

The question of when an update can be performed consistently has been formulated
in four update conditions that are referenced many times in component-based systems,
three of which are safe, namely quiescence [Kramer and Magee, 1990], freeness [Ma
et al., 2011, Baresi et al., 2017] and essential freeness [Sokolowski et al., 2022], the
unsafe one being tranquillity [Vandewoude et al., 2007]. All these works define the
update condition for the version change of only one component in a distributed system.
We now present these four update conditions from the literature. All the definitions of
the update conditions below are expressed using a model of the distributed application
at runtime.

Quiescence. In [Kramer and Magee, 1990], a component is either active or passive.
Here follow the definitions of these two statuses (we use the term status instead of the
term state, where state refers to the internal state of a component and status refers to
the conditions related to the DSU algorithm):

— “A [component] in the active [status] can initiate, accept, and service transac-
tions”.

— “A [component] in the passive [status] must continue to accept and service
transactions, but (i) it is not currently engaged in a transaction that it initiated,
and (ii) it will not initiate new transactions.”

The transitions between active status and passive status by the activate and
passivate actions are described in the state machine diagram of Figure 2.5.

Active

Passive

new connection from s: link(s, this)
[connection closed from s]: unlink(s, this)

passivate activate

remove

Figure 2.5 – State machine diagram of components (adapted from [Kramer and Magee, 1990])

The passive status contributes to system consistency by completing transactions.
However, it is not sufficient for safe dynamic updating due to its possibility of processing

28

2.3. Dynamic Software Updating

transactions initiated by other components. Then, the stronger quiescence property
has been proposed and defined as follows: “A [component] is quiescent if:

1) it is not currently engaged in a transaction that it initiated,

2) it will not initiate new transactions,

3) it is not currently engaged in servicing a transaction, and

4) no transactions have been or will be initiated by other [components] which require
service from this [component].”

According to the definition, a component in the quiescent status is considered both
consistent and frozen. That is to say, the application state does not contain the results
of partially completed transactions, and will not be changed by new transactions. A
state machine diagram of the transition to quiescence is presented in Figure 2.6.

Quiescent

new connection from s: link(s, this)
[connection closed from s]: unlink(s, this)

Active

Passive

remove

end of reconfiguration

request reconfiguration
[consistent && frozen]

passivate activate

Figure 2.6 – State machine diagram with quiescence (extracted from [Kramer and Magee, 1990])

This quiescence property depends on the component itself as well as its directly or
indirectly connected components. In order to reach the quiescent status of a component,
the following conditions should be satisfied:

1) the component itself must be passive,

2) all components that can directly initiate a transaction on this component must be
passive,

3) all components that can initiate root transactions that result in sub-transactions
on this component must be passive.

The authors have proven that the quiescence update condition is reachable in
bounded time, as long as each transaction terminates within a bounded time and
deadlocks are avoided. Quiescence is a sufficient condition for safe and consistent
dynamic updating. However, it may lead to a significant disruption of the running
application for even a small update, because placing a component in a quiescent

29

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

status may require to passivate many other components (all the directly or indirectly
connected components).

Tranquillity. In order to reduce the disruption of quiescence, in [Vandewoude et al.,
2007], the tranquillity property is defined as follows: “A [component] is in a tranquil
status if:

1) it is not currently engaged in a transaction that it initiated,

2) it will not initiate new transactions,

3) it is not actively processing a request, and

4) none of its adjacent components are engaged in a transaction in which it has both
already participated and might still participate in the future.”

Note that regarding the black-box principle, all participants in a transaction either
are the initiator or are directly connected (also called adjacent) components. In other
words, the existence of indirectly connected components and of sub-transactions is
unknown to the initiator.

In some cases, it is possible that the component to be updated will never reach the
tranquil status. Such a situation is given in [Vandewoude et al., 2007]: the component
to be updated is used in an infinite sequence of interleaving transactions. If the
tranquillity is not reached, then an implemented fallback mechanism is applied to
return to quiescence. The transition between the status of a component is presented in
the state machine diagram of Figure 2.7.

Quiescent

entry: reconfigure()

Tranquil

entry: reconfigure()

Active

Passive

activate[reconfiguration ended]

activate[reconfiguration ended]

remove

remove

time out [tranquillity not detected]
/endTimer()

[tranquillity detected]
/endTimer()

passivate / startTimer() activate

Figure 2.7 – State machine diagram of the transition to the tranquillity property

The tranquillity condition has better update timeliness and less interruption than
quiescence. But it is not a safe property if the black-box principle is not respected.
Figure 2.8 shows an example of a possible unsafe updating that is permitted by
the tranquillity property. Transaction T1 is a root transaction. T2 and T3 are sub-
transactions of T1. T4 and T5 are sub-transactions of T3, so that they are “sub-sub-

30

2.3. Dynamic Software Updating

transactions” of T1. According to the black-box principle, T4 and T5 are not aware of
the existence of T1. Then, let look at component B at time t3. At t3, B has already
completed T2 and has not yet started to participate in T4. In the view of A, B will no
longer participate in other transactions in the future. So, B is said to be tranquil at
time t3. However, updating B at t3 is not safe because T2 has been executed with the
old version of B and T3 will be executed with the new version at t4. If the two versions
of B are semantically related (e.g. encryption and then decryption), the execution of
T4 might not get the expected result.

:A :B :C :D

T1

T4

T5

t1

T2

T3

t2

t3

t4

Figure 2.8 – Example illustrating several activation periods of the same component (Ti: transaction,
ti: time)

In addition, tranquillity only ensures local consistency, but not global consistency. To
address this shortcoming, in [Ghafari et al., 2012], the authors proposed an additional
“serenity” status. But since these update conditions are not safe when the black-box
principle is not used, we do not consider them further in this thesis.

Freeness and version consistency. In [Ma et al., 2011, Baresi et al., 2017], the authors
proposed “version consistency” as a sufficient global condition for the safety of dynamic
updating, and the corresponding local update condition is called “freeness”. A dynamic
update is version consistent if a transaction is entirely executed in the same configu-
ration: either the one before the change or the one after the change. A component is
said to be free if:
1) it is not hosting/executing any transactions, including the root transactions that

it initiated and all its direct and indirect sub-transactions,
2) all the transactions involving this component have already been executed,

31

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

3) there does not exist any transaction to be initiated on this component in the
future.

First of all, note that, compared to quiescence, freeness requires the knowledge of the
graph of transaction calls: the set of transactions in the future is calculated by knowing
which ongoing transactions may lead to a sub-transaction on the component. This is
why the authors of [Ma et al., 2011, Baresi et al., 2017] model the static dependencies
(links) and the dynamic dependencies (interactions) of the distributed application. The
dynamic dependencies are temporal relationships (past or future) between components
for ongoing computations and are manipulated at runtime. Therefore, freeness is
checked with the help of the dynamic dependencies on the component that is to be
updated, along with the direct and indirect sub-transactions of the component.

In the example of Figure 2.8, component B is free at times t1 and t4: at t1, B is
quiescent, and at t4, B has participated and will no more participate to root transaction
T1. Component B is not free at time t2 because it is active and, at time t3, because
potential transaction T4 on B may execute in the future.

Essential freeness and essential safety. The work presented in [Sokolowski et al., 2022]
considers asynchronous workflows. The authors introduced essential freeness by distin-
guishing between different types of updates: essential and non-essential changes. In case
of a non-essential change, the update of a component is safe as soon as the component
is passive. In case of an essential change, it returns to freeness. “A component is
essentially free if:

1) it is not active,

2) [either] a. it will not be active in a workflow instance in which it already executed
a task,
[or] b. its update is a non-essential change for all workflow instances in which it
already processed a task.”

Finally, an update guarantees essential safety only when the components that change
versions are essentially free. Essential safety is equivalent to version consistency if
all the updates are essential changes, and version consistency is a conservative over-
approximation of essential safety. In the example of Figure 2.8, component B can also
be updated at time t3 if the change is non-essential.

2.3.5 Reaching strategies

In order to reach and uphold the update condition, the following four reaching
strategies are being staged [Ma et al., 2011, Baresi et al., 2017, Sokolowski et al., 2022]:

32

2.3. Dynamic Software Updating

— Waiting : The system just waits for the update conditions to manifest themselves.
It is possible that the update condition of a component might never be reached,
for example when there are always transactions running on it.

— Blocking messages: The starting of sending messages to the component to be
updated is delayed until after the update. Deadlocks may appear because of the
concurrent execution of two transactions that are hosted on the same component
and need to access some shared resources.

— Blocking transactions or workflows: Instead of delaying message sending, the
starting of new root transactions or of new workflows that may involve the
component is delayed until after the update.

— Concurrent versions: This strategy lets two versions of a component co-exist
during the update. The old version remains available until no transaction or
workflow needs it anymore.

Since quiescence relies only on static information, the authors of [Kramer and Magee,
1990] can only discuss the “blocking transactions” strategy by passivating a set of
components, ensuring that no transaction will be invoked on the components in the
future. The work of [Vandewoude et al., 2007] is generally unsafe when using the
“blocking messages” strategy because of the possibility of deadlocks in transactions.
Thus, what they use is the “waiting” strategy, and if the tranquillity is not achieved,
they resort to “blocking transactions”. The work of [Ma et al., 2011, Baresi et al.,
2017] discusses all the strategies and the authors prefer “concurrent versions” whenever
applicable, and then “blocking messages”. The work of [Sokolowski et al., 2022] discusses
all these four strategies. Recall that when the update is an essential change, essential
safety is the same as version consistency.

2.3.6 Distributed termination algorithm

Many terms of the different update conditions are expressed as the detection of the
end of a client service call. Thus, the basis of any solution is a distributed termination
algorithm [Tel, 2002]. By analogy with the distributed termination problem, a service
call is terminated when all the architectural elements that may be involved are passive
(not running) and no application messages about that service call are in transit to
restart a passive microservice.

The literature distinguishes two families of distributed termination algorithms:
— Dissemination-based, also called computation-based, algorithms [Francez, 1980,

Dijkstra and Scholten, 1980]: These algorithms complement the application
algorithm with control messages. For instance, the algorithm of [Dijkstra and

33

Chapter 2 - State of the Art on Dynamic Software Evolution of Microservice Architectures

Scholten, 1980] builds a tree of the application algorithm and detects termination
when the tree is empty. Therefore, the message complexity of the termination
of a transaction is the message complexity of the transaction. As a consequence,
for long-running transactions that involve many messages, the termination is
expensive.

— Wave-based, also called snapshot-based, algorithms [Chandy and Lamport, 1985,
Dijkstra, 1987]: These algorithms repeatedly broadcast a wave to check whether
a condition is satisfied in each involved component. Therefore, the message
complexity of the termination of a transaction is the message complexity of the
wave, regardless the complexity of the running transactions.

To the best of our knowledge, the solutions of the literature (of [Ma et al., 2011, Baresi
et al., 2017, Sokolowski et al., 2022]) are all dissemination-based: Every transaction or
workflow is complemented with control messages, whether in periods without updating
or during updating. These algorithms are optimal in the worst case and they require
the channels to be bidirectional and FIFO. In contrast, our contribution proposes a
solution based on snapshots. Indeed, we intend to limit the overhead of our solution in
terms of the exchange of messages. We also leverage the behaviour of a DSU algorithm,
which is based on phases. These phases naturally delimit global system states, i.e.
distributed snapshots.

2.4 Conclusion

In this chapter, we have briefly introduced the background and concepts for under-
standing our work in this thesis.

First, we have outlined the history of microservices, i.e. where did microservices come
from and why this architectural style emerged, and also presented their definitions and
characteristics. We argued that one of the most interesting properties is the modularity
for their development, deployment and evolution.

In this thesis, we are interested in the research area of software evolution of
microservice-based applications. Thus, we have provided an overview of software
evolution, and focused on runtime evolution, where systems can adapt to changes
dynamically and evolve during execution. We have highlighted that software archi-
tectures, e.g. microservice architectures, play a critical role in runtime evolution. In
our work, we apply the principle of the MAPE-K control loop for automating our
evolution tasks. In order to control and trace changes, we follow the model at runtime
approach for the representation of microservice-based applications and their version
management, which acts as the Knowledge base in the MAPE-K loop. Considering

34

2.4. Conclusion

the degree of automation, our proposal can be regarded as semi-automatic: architects
and developers analyse the documentation or UML model plus the code to extract the
required information for building the knowledge base, and the planning and execution
are automatically performed.

Dynamic software updating (DSU) is one of the specific topics in software evolu-
tion. DSU enables microservice updating at runtime and should respond to several
requirements, such as continuity of service, independence from the context impacts or
system consistency. Some assumptions are made for DSU in our work: (i) we ignore
state transfer between microservice versions, and (ii) our managed system is fault-free.
We have then presented two ways to characterise the changes, which will both be used
in our solution. In our work, we follow the policy of SemVer to express the version
numbers for elements that need to be versioned in microservice architectures, and we
complement SemVer with the classification into essential or non-essential changes by
considering the behavioural aspects of the microservice model.

In addition, we have presented the state-of-the-art DSU solutions that respond
to the question of when an update can be performed safely and consistently. All
these solutions target global consistency (of the whole distributed application) and
address system consistency through avoidance, i.e. waiting for a safe status (update
condition) before updating. Our solution also follows this approach. In order to reach
and uphold the update condition, the reaching strategies and algorithms have also been
presented in this chapter. Finally, note that the basis of the solutions is a distributed
termination detection algorithm. All the previous DSU algorithms of the literature are
dissemination-based, while our contribution proposes a novel snapshot-based approach.

In the next two chapters, we will detail our two main contributions about the
modelling and the dynamic evolution for microservice architectures.

35

Chapter 3

Runtime Models and Evolution
Graph for Version Management of
Microservices

Contents
3.1 Case Study GDE . 37
3.2 Runtime Models . 38

3.2.1 Model of types . 39
3.2.1.1 Configuration types view . 39
3.2.1.2 Microservice types view . 40
3.2.1.3 Contract types view . 42

3.2.2 Model of instances . 46
3.3 Evolution Graph . 48

3.3.1 Overview of the graph building process 49
3.3.2 Illustrative scenarios . 50

3.3.2.1 Patch change . 52
3.3.2.2 Minor change . 53
3.3.2.3 Major change . 54

3.4 Implementation in MIMOSAE . 55
3.4.1 PDDL planner . 56
3.4.2 Executor . 59

3.5 Discussion . 60
3.6 Conclusion . 62

36

3.1. Case Study GDE

In this chapter, we present our first contribution: building runtime models and
evolution graphs to (i) help engineers manage microservice version management, and
(ii) abstract architectural evolution in order to manage reconfiguration deployments.
More precisely, these requirements can be refined into the following typical requirements
identified in industrial contexts: (1) in order to rationalise the cost of evolution and
maintenance of heterogeneous software solutions, a global and unified view of the
ecosystem evolution should be provided to architects, developers, and administrators,
and (2) the evolutionary changes to the system should be traceable and rolled back in
case of an invalid configuration or any other abnormality.

In Section 3.1, we introduce an illustrative application involving synchronous (RPC
calls or transactions) and asynchronous (publish-subscribe messages or events) interac-
tions within an information system. The distributed application is extracted from an
industry project and used to demonstrate our proposal.

In Section 3.2, we propose runtime models to represent the essential elements of
microservice architectures into two views: a microservice type model and a microservice
instance model. The microservice type model describes a structural abstraction of
microservice architectures and the instance model captures their specific deployment
configurations, which themselves conform to the type model. In addition, these models
support publish-subscribe communication in addition to client-server communication.

In Section 3.3, in order to allow the traceability of microservice versions and their
deployment, we build up an evolution graph into two parts: a sub-graph of configuration
type snapshots for tracing the software evolution of software artefacts (types) and a
sub-graph of configuration instance snapshots for tracing deployments of microservices
(instances), the two sub-graphs being linked through the relation “an instance conforms
to a type”.

In Section 3.4, we give an overview of the implementation of the proposal. It is
based on a model written in JAVA, reconfiguration plans constructed with an AI
planner, and the executor written in Go and using the Docker and Kubernetes APIs
for executing reconfiguration actions. The implementation is demonstrated with the
case study presented in Section 3.1.

3.1 Case Study GDE

To illustrate our contributions, we use a microservice-based application from the
EDF Labs context: GDE stands for Gestionnaire de Données d’Études in French. This
is a Scientific Research Data Management System. The global structure is displayed in
Figure 3.1. The main objective of this information system is to characterise scientific

37

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

research data that are produced or used by researchers and engineers during industrial
simulation activities. This application consists of six microservices. The Project Service

and File Service manage scientific simulation projects metadata and related research
data. The User Service manages the information on application users and the Permission

Service controls their access permissions. The Authentication Service verifies the users’
login and password via Single Sign-On and the Logger Service records login history.
Each Microservice has its own database and communicates with others through either
synchronous HTTP REST or asynchronous publish-subscribe interactions.

Project Service

V1.0.0

File Service

V1.1.0

Authentication

V1.0.0

Permission

Service

V1.0.0

User

Service

V1.0.0

Logger

V1.0.0

Microservice Database Synchronous
Communication

Asynchronous
Communication

Figure 3.1 – A global view of GDE illustrative application

3.2 Runtime Models

In this section, we present the models that we build at design time and use at
runtime for abstracting the microservice architecture and its versioning. We use
model at runtime concepts [Blair et al., 2009] to provide a unified representation of
up-to-date elements in the system driving evolutionary changes. Our proposed model
is divided into two parts: the type model (Section 3.2.1) and the instance model
(Section 3.2.2). The type model captures the structure of instantiable elements of the
evolving microservice application, and the instance model captures the replicas of the
corresponding deployable elements of the managed system.

38

3.2. Runtime Models

3.2.1 Model of types

The model of types plays the role of providing a configuration specification for the
system structure. All types that may be instantiated in the future deployment are
added to this model, that is, (1) which types of microservices can be contained in
a microservice-based application and in which version, (2) which interfaces can be
provided or required by each microservice, and (3) how these microservices can be
connected. In the following, we detail the different levels of data granularity of our
model of types, from top to bottom, including three main views: configuration types
view (Section 3.2.1.1), microservice types view (Section 3.2.1.2), and contract types
view (Section 3.2.1.3).

3.2.1.1 Configuration types view

The root class of the model of types is named ConfigurationType. As its name sug-
gests, a configuration type aggregates all the types that the configuration of a managed
microservice-based application may contain. As shown in Figure 3.2, these are the types
that are available, for example, as code artefacts or as container images in the implemen-
tation repositories: i.e. available microservice types (class MicroserviceType), available
connector types (class ConnectorType), available contract types (class ContractType), and
available database system types (class DataBaseSystemType).

DataBaseSystemType

-identifier: String
-version: Semver

DataBaseConnectorType

--identifier
-version: Semver

ConfigurationType

-identifier: String
-version: Semver

+isInstantiable(): bool

ClientServerConnectorType

-identfier: String
-version: Semver

+«abstract»isInstantiable(): bool

ProducerContractType

-identifier: String
-version: Semver
-mustHaveConsumers: bool

+isInstantiable: bool

ConsumerContractType

-identifier
-version: Semver

ClientContractType

-identifier: String
-version: Semver
-mustHaveConnectorAttached: bool

+isInstantiable(): bool

ServerContractType

-identifier: String
-version: Semver

PubSubConnectorType

-identifier
-version: Semver

+«abstract»isInstantiable: bool MicroserviceType

-identifier: String
-version: Semver

+isInstantiable(): bool

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

10..* 1 0..*

1

0..*

Figure 3.2 – Model of types: configuration types view

39

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

We follow the policy of Semantic Versioning (SemVer) [Preston-Werner, 2013] in
our models to express the version numbers of all the type elements that need to
be versioned in microservice architectures. The format of a version number is X.Y.Z

(Major.Minor.Patch). Naturally, all the types are uniquely identified by a name and a
version, e.g. a microservice type authentication_service in version 1.0.0 or a publish-
subscribe connector type rabbitmq in version 3.9.1. This identification of types is
represented in the class diagram of Figure 3.2 by the two attributes identifier and
version of each type. Other class attributes and methods represented in the diagram
will be introduced in the next section.

3.2.1.2 Microservice types view

The central concept of the model of types is the microservice type. Figure 3.3
provides the view that is centred on the microservice type (class MicroserviceType). Each
microservice type exposes a set of contract types, which are the “interfaces” provided
or required by an instance of the microservice type. These contracts are intermediate
entities to connectors [Mehta et al., 2000] and are where architects specify the quality
of service of the connections, e.g. for producer and consumer contracts [Lim et al.,
2015]. Considering different possible ways to set up communication in a microservice-
based application, we distinguish between synchronous interaction in client-server
mode (classes ClientContractType, ServerContractType, and ClientServerConnectorType)
and asynchronous interaction in producer-consumer mode (classes ProducerContractType,
ConsumerContractType, and PubSubConnectorType). Even though synchronous connectors
may be skipped in some way, the concept of connector for asynchronous communication
becomes more significant. We therefore keep it for both interaction modes.

Synchronous channels, using for example HTTP-based REST communication, are
represented by client-server connector types. A client-server connector type brings
together a client contract type and a server contract type, where the multiplicity is set
to 1 on the side of ServerContractType and ClientContractType. The mustHaveConnector-

Attached attribute in the client contract type indicates whether the connection to a
server microservice is mandatory, i.e. whether the client may operate in degraded mode
without a connection to a compatible server. In Figure 3.1 of the GDE case study,
microservice type authentication_service provides server contract types to others, and
requires a client contract type that is connected with a server contract type from
microservice type user_service through a client server connector type.

In the context of this thesis, asynchronous communication is limited to publish-
subscribe systems. Some other asynchronous modes, such as message streaming, are
not discussed in this thesis. Therefore, asynchronous channels are represented by the

40

3.2. Runtime Models

MicroserviceType

-identifier: String
-version: Semver

+isInstantiable(): bool

DataBaseConnectorType

-identifier
-version: Semver

DataBaseContractType

-identifier
-version: Semver

+isInstantiable(): bool

DataBaseSystemType

-identifier: String
-version: Semver

ClientServerConnectorType

-identfier: String
-version: Semver

+«abstract»isInstantiable(): bool

ProducerContractType

-identifier: String
-version: Semver
-mustHaveConsumers: bool

+isInstantiable(): bool

ConsumerContractType

-identifier
-version: Semver

ClientContractType

-identifier: String
-version: Semver
-mustHaveConnectorAttached: bool

+isInstantiable(): bool

ServerContractType

-identifier: String
-version: Semver

PubSubConnectorType

-identifier
-version: Semver

+«abstract»isInstantiable(): bool

1

0..*

0..*

1

persistence

1

0..*

0..*

1

0..*

1

0..*

1..*

0..*

1..*

i n p u t s

1

0..*

 outputs
1 0..*

requi res

1

0..*

o f fe rs
1 0..*

Figure 3.3 – Model of types: microservice types view

publish-subscribe connector types, typically using message broker technologies, e.g.
MQTT [OASIS, 2019] and AMQP [AMQP Consortium, 2010] brokers. A publish-
subscribe connector type brings together a collection of producer contract types and
a collection of consumer contract types, so that, the multiplicity is set to 1..* on the
side of ProducerContractType and ConsumerContractType. Producers post messages to an
intermediary message broker, and consumers register subscriptions with that broker,
letting the broker perform the filtering. Providers are not aware of the consumers. Based
on different common forms of filtering, we differentiate channel-based, topic-based and
content-based publish-subscribe systems [Eugster et al., 2003, Mühl et al., 2006], the first
two of which will be detailed in the next sections. A similar mustHaveConsumers attribute
given in producer contract type indicates whether the logical link to some consumer
microservices via a broker is mandatory, i.e. whether the producer microservice can
operate in degraded mode with no consumers with a subscription filter matching the
routing key of its messages. In the GDE case study, the file_service microservice
type publishes its logs, which are forwarded to the logger_service microservice type
(because the logger accepts all the logs).

Another category of connector types is the database connector types. Database
contract types are where architects specify the connections to database systems. Every
declared database contract types of a microservice type is mandatory. Taking the exam-
ple of the GDE application in Figure 3.1, microservice type authentication_service does
not have any database system type. On the contrary, microservice types user_service,
permission_service, project_service and file_service have their own SQL database

41

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

system type PostgreSQL in version 14.5.0, and microservice logger_service has a NoSQL
database system type Redis in version 7.0.4.

As mentioned earlier, all of these types of microservices, database systems, contracts
and connectors constitute a configuration type of the application so that any version
change of a microservice creates a new microservice type with the same identifier but a
changed version. It is up to the software architects to decide which microservice types
with which versions can be included in the current configuration type.

Every time a change is committed in the type model, the instantiable property is
checked by the isInstantiable() method to verify whether the current configuration type
is valid and ready to be instantiated. We define that a configuration type is instantiable,
namely an instance model can be created that conforms to these types if and only if
all the microservice types in this configuration type are instantiable. The property
“instantiable” is defined using the property “compatible”. The property “compatible”
is formalised and defined later in Section 3.2.1.3. For the sake of comprehension,
intuitively, a client contract type is compatible with a server contract type if all the
operation declarations of the client contract type can be found in the server contract
type; a producer contract type is compatible with a set of consumer contract types
if all the event types produced are accepted by one of the corresponding consumer
contract types and their filtering matches (this will be detailed later according to
different filtering mechanisms). Thus, concretely, microservice types are instantiable if:
(i) client contract types are compatible to attached server contract types, (ii) client
contract types that must have connectors attached are indeed linked, (iii) producer
contract types are compatible with connected consumer contract types, (iv) producer
contract types that must have consumers actually have consumers, (v) all the database
contract types are indeed connected to database systems via database connectors.

A part of the example of applying our GDE case study to the model of types
is presented in Figure 3.4. This object diagram includes microservice types of
authentication_service and user_service, along with their contract types and connector
types that link these two microservice types.

3.2.1.3 Contract types view

Contracts of microservices always exist in order to achieve effective communication,
operated by either contract owners or contract consumers. According to the state of
practise in microservice-based applications for different mechanisms of synchronous
and asynchronous communication pattern, we select client-server and publish-subscribe
patterns, and distinguish them in the contract type view. The two are respectively
introduced in the following.

42

3.2. Runtime Models

connector2:ClientServerConnectorType

-identifier=as_us_connector
-version=1.0.0

connector1:ClientServerConnectorType

-identifier=us_as_connector
-version=1.0.0

uSrPermScheck:ClientContractType

-identifier=US_Req_PermS_CheckPermission
-version: 1.0.0

uSrAgetlogin:ClientContractType

-identifier=US_Req_AS_GetLogin
-version=1.0.0

uSusersgroups:ServerContractType

-identifier=UserService_UsersGroups
-version=1.0.0

uScheckpasswd:ServerContractType

-identifier=UserService_CheckPassword
-version=1.0.0

uSgroups:ServerContractType

-identifier=UserService_Groups
-version=1.0.0

uSusers:ServerContractType

-identifier=UserService_Users
-version=1.0.0

uS:MicroservicesType

-identifier=user_service
-version=1.0.0

aLogin:ServerContractType

-identifier=Authentication_Login
-version=1.0.0

aGetlogin:ServerContractType

-identifier=Authentication_GetLogin
-version=1.0.0

arUSCheckpassword:ClientContractType

-identifier=AS_Req_US_CheckPassword
-version=1.0.0

auth:MicroservicesType

-identifier=authentication_service
-version=1.0.0

requi res

requi res

o f f e r s

o f f e r s

o f fe rs

o f f e r s

requi res

o f fe rs

o f fe rs

Figure 3.4 – Object diagram for the model of types applied to GDE: a part of microservice types view,
including authentication_service and user_service

43

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

Client-Server contract types view. As depicted in Figure 3.5, server contract types
and client contract types contain a collection of operation declarations, which include
an operation name, a list of arguments, and a return type, i.e. op = (name, args, rt).
The type of arguments and the return type are either primitive types or object
types. By definition, considering invariance in static type checking [Beugnard et al.,
1999], two operation declarations are compatible with each other if and only if they
have the same name, the same argument list, and the same return type, formally,
isCompatible(op1, op2)

def= (op1.name = op2.name) ∧ (op1.rt = op2.rt) ∧ (∀k, 1 ≤
k ≤ |args| , op1.args[k] = op2.args[k]). Then, we can define that a client contract type
is compatible with a server contract type if and only if all the operation declara-
tions of the client contract type are present in the server contract type. Formally,
isCompatible(cct, sct) def= ∀opc ∈ cct.ops, ∃ops ∈ sct.ops, isCompatible(opc, ops), where
cct and sct means respectively a client contract type and a server contract type that
contain a set of operation declarations ops.

ClientContractType

-mustBeConnected: boolean

+isCompatibleWith(ServerContractType): bool
+isInstantiable(): bool

ServerContractType

«abstract»
ClientServerContractType

-identifier: String
-version: Semver

FullyQualifiedClass

-className: String

«interface»
OperationType

«enum»
PrimitiveType

Boolean
Byte
Char
Short
Int
Long
Float
Double

OperationSignature

-name: String
OperationDeclaration

+isCompatibleWith(OperationDeclaration)
 has return type

1

0..*

0..*0..*
0..*1

1..*

0..*

Figure 3.5 – Model of types: client-server contract types view

Publish-Subscribe contract types view. The process of selecting messages for consump-
tion and processing is called filtering in the publish-subscribe pattern. Based on
message filtering mechanisms [Mühl et al., 2006], the publish-subscribe model divides
the producer contract types and the corresponding consumer contract types into three
categories: channel-based, topic-based, and content-based, as shown in Figure 3.6.

Channel-based filtering is the simplest form of identifying sets of event types. As
presented in Figure 3.7a, producers select a named channel into which an event is
published, consumers also select a channel, and they will get all events published in

44

3.2. Runtime Models

«abstract»
ProducerContractType

+«abstract»isCompatibleWith(ConsumerContract): bool

ContentBased
StructuredDataModel

ProducerContractType

+isCompatibleWith(ConsumerContract): bool

ContentBased
SemiStructuredDataModel

ProducerContractType

+isCompatibleWith(ConsumerContract): bool

TopicBased
ProducerContractType

+isCompatibleWith(ConsumerContract): bool

«abstract»
ContentBased

ProducerContractType

ChannelBased
ProducerContractType

+isCompatibleWith(ConsumerContract): bool

«abstract»
ConsumerContractType

ContentBased
Structured
DataModel

ConsumerContractType

ContentBased
SemiStructured

DataModel
ConsumerContractType

TopicBased
ConsumerContractType

«abstract»
ContentBased

ConsumerContractType

«abstract»
PubSubContractType

-version: Semver

ChannelBased
ConsumerContractType

Figure 3.6 – Model of types: publish-subscribe contract types view

it. We can thereby define the compatibility of a producer contract type with a set of
consumer contract types. It is important to note that the compatibility of a producer
contract type is not asserted with a consumer contract type, but with a set of contract
types, i.e. the whole set of produced event types must be consumed, but it is not
necessary that the consumption is carried out as a whole by a single consumer contract
type. Considering channel-based filtering, a producer contract type is compatible
with a set of consumer contract types if and only if the channel names are equal and
all the event types produced are accepted by one of the consumer contract types.
Formally, isCompatible(pct, cocts) def= ∀evtp ∈ pct.evts,∃coct ∈ cocts,

(
pct.channel =

coct.channel
)
∧
(
∃evtc ∈ coct.evts, evtp = evtc

)
, where pct and coct means respectively

a producer contract type and a consumer contract type that contain a channel (identified
by its name) and a set of event types evts.

Topic-based filtering (a.k.a. subject-based filtering) uses string pattern matching for
event selection, which is currently the most used by IT industry for application-layer
distributed-event based systems. As shown in Figure 3.7b, providers produce topics that
consumers can subscribe to, and consumers can receive all events that are published to
matching topics they subscribe to. In other words, an event type sent with a particular

45

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

topic (in MQTT terminology) or routing key (in AMQP terminology) will be delivered
to all objects that are bound with a matching topic filter (in MQTT terminology) or
binding key (in AMQP terminology). Then, it follows that a producer contract type
is compatible with a set of consumer contract types if and only if its topic or routing
key (resp. in MQTT and AMQP) matches one of the topic filters or binding keys
(resp. in MQTT and AMQP), and all the event types produced are accepted by the
corresponding consumer contract types. Formally, isCompatible(pct, cocts) def= ∀evtp ∈
pct.evts, ∃coct ∈ cocts,

(
coct.filter(pct.topic) = true

)
∧
(
∃evtc ∈ coct.evts, evtp = evtc

)
,

where pct means a producer contract type that contains a topic (a string decomposed
into words) and a set of event types that can be produced, i.e. pct = (topic, evts), and
coct means a subscription filter (a string decomposed into words, which can be jokers)
and a set of event that can be consumed, i.e. coct = (filter , evts).

Another way of filtering is content-based, a.k.a. property-based, filtering. This
filtering mechanism improves on topics by introducing a subscription scheme based on
the actual content of the considered events [Eugster et al., 2003]. Some examples of
solutions are template matching, extensible filter expressions on attribute/value pairs,
XPath expressions on XML schemas [Cugola and Margara, 2012, Etzion and Niblett,
2011]. They can be categorized into content-based semi-structured and structured data
models (see Figure 3.6). This last filtering mechanism is much more expensive and
more adequate for complex event processing and streaming, which is not considered in
this thesis.

3.2.2 Model of instances

A part of the model of instances is shown in Figure 3.8, which can be considered as a
specialization of microservices types view (presented in Figure 3.3). The grey elements
in the figure come from the model of types. Each instance in this model of instances
conforms to a type in the model of types. The root class is named Configuration and
conforms to a ConfigurationType. A configuration is composed of a set of microservice
instances, connector instances, and database system instances. A microservice type
may have multiple microservice replicas that represent deployed microservice instances
(class Microservice). Similarly, a database system type may have multiple instances,
and a publish-subscribe connector type may also have multiple instances. Microservice
instances are created from the microservice type, i.e. the type acts as a template such
that, for each contract type of the microservice type, a contract instance is created.

In the model of types, the contract types and database system types are created first;
then, microservice types and connector types are created. In the model of instances,

46

3.2. Runtime Models

ChannelBasedConsumerContractType ChannelBasedProducerContractType

+isCompatibleWith(ConsumerContractType): boolean

ChannelBased
Filter

-channelIdentifier

+isCompatibleWith(EventFilter): bool

EventType

1

0..*

 a l l ows
1..*

0..*

a l l ows
1..*

0..*

1

0..*

(a) Channel-based

TopicBasedProducerContractType

+isCompatibleWith(ConsumerContract): boolean

«abstract»
TopicBasedAdvertisementFilter

-routingKey: String

+isCompatibleWith(EventFilter): boolean

«abstract»
TopicBasedSubscriptionFilter

-subscription: String
-pattern: Pattern

TopicBasedConsumerContractType

EventType a l lows
1..*

0..*

a l l ows
1..*

0..*

1

0..*

1

0..*

(b) Topic-based

Figure 3.7 – Publish-subscribe contract types view: channel-based and topic-based

47

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

DatabaseSystem
Type

DatabaseSystem

-identifier: String

DatabaseConnector
Type

DatabaseConnector

-identifier: String

ProducerContract
Type

DatabaseContract

-identifier: String

+isDeployable(): bool

Microservice
Type

ClientServer
Connector

Type

ClientServerConnector

-identifier: String

ProducerContract

-identifier: String

+isDeployable(): bool

ConsumerContract

-identifier: String

ClientContract

-identifier: String

+isDeployable(): bool

ServerContract

-identifier: String

PubSubConnector

-identifier: String Microservice

-identifier: String

+isDeployable(): bool

ProducerContract
Type

ConsumerContract
Type

PubSubConnector
Type

ClientContract
Type

ServerContract
Type

0..* 1 conforms to
10..*

conforms to
0..*1

1

0..1

conforms to

0..*

 1

persistence

1

 0..*

conforms to *

1..*

conforms to
10..*

1

0..1

0...*

1

0..*

1..*

1..*

0..*

 i npu ts
1

0..*

 outputs

1

 0..*

requires
1

0..*

o f fe rs

1

0..*

conforms to
1 0..*

conforms to
0..*1

conforms to
0..*1

conforms to
10..*

conforms to
10..*

Figure 3.8 – Model of instances

database systems and connectors are created first; then microservices with their
contracts are instantiated; and finally, microservice contracts are linked to connectors
or database systems.

Whenever there are changes occurring in the current configuration, architects can
check whether the instances are deployable. A microservice is deployable if and only if
(i) its client contracts are deployable, i.e. the contract is attached to a connector when
its type specifies that it must have a connector attached, (ii) its producer contracts
are deployable, i.e. the producer contract has at least one consumer when its type
specifies that it must have consumers, (iii) its database contracts are deployable. The
property is checked by the isDeployable() method every time a change is committed
in the instance model. Therefore, a model of instances represents the topology of the
managed system with deployable microservices, connectors and database systems.

3.3 Evolution Graph

In order to trace the evolution trajectory of a microservice-based application, we
propose an evolution graph, also from the two points of view of types and instances,
that is, based on the runtime models of types and instances. Configuration types and
configurations are organised in an evolution graph as depicted in Figure 3.9. We record
the trajectory and history of how the system evolves over time at the granularity of a

48

3.3. Evolution Graph

configuration, which includes a set of microservices, not just for a single microservice.
Each node in the evolution graph corresponds to a snapshot of the current system
configuration as version changes are applied. These snapshots are photos “à la Git”
that trace software evolution.

C1
CT1

CT2

CT4

CT3

C2

C3: last deployed
C4:

abandoned
configuration

Current Configuration

Reconfiguration
Plan

Configuration Configuration Types

Conforms to

Figure 3.9 – Evolution graph of configuration snapshots and configuration types

3.3.1 Overview of the graph building process

The main process of applying a sequence of version changes by building the evolution
graph is described as follows. When version changes are adopted in the code base,
architects take a sequence of actions based on changes in the model of types, such as
adding a new microservice type or a new connector type into the current configuration
type. This creates the next configuration type to commit. A configuration type can
be committed only if it is instantiable. This means that some errors can be detected
and avoided at design time when committing a configuration. Once the commit of
the configuration type is made, a new node representing a valid configuration type
is created in the evolution graph (see circles with solid line in the right branch of
configuration types in Figure 3.9 such as the node CT4).

Regarding the configurations from the instance model, each node corresponds to a
configuration and has a unique link to a configuration type, i.e. to the configuration
type it conforms to. Every configuration node, except the current configuration in
preparation (see circles with a thick blue line in Figure 3.9 such as node Current

Configuration), represents a deployable configuration, and each commit creates a

49

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

new node in the evolution graph (see circles with a solid line in the left branch of
configurations in Figure 3.9 such as node C3).

The evolution graph of Figure 3.9 possesses several branches, one of which is for the
abandoned nodes represented by dotted circles, e.g. configuration type CT3 is abandoned
and configuration C4 conforming to CT3 is also abandoned. In some specific situations
such as security issues, it makes possible to mark the abandoned nodes as obsolete and
then go back to precedent or specific nodes of the configuration and configuration type.

Practically, a reconfiguration plan is generated by a planner, and it expresses how
to transit from a departure configuration node (source architecture) to an arrival
configuration node (target architecture). The generated plan can then be transmitted
to the executor of the autonomic manager for automatic deployment. More details
on how to automate the generation and deployment of a reconfiguration plan can be
found in Section 3.4.

3.3.2 Illustrative scenarios

Considering using SemVer with version numbering of X.Y.Z, we put in action the
evolution graph composed of configuration type nodes and configuration nodes into
three scenarios: impactless patch changes, i.e. Z-changes (Section 3.3.2.1), compatible
minor changes, i.e. Y-changes (Section 3.3.2.2), and incompatible major changes, i.e.
X-changes (Section 3.3.2.3). We give an example of each one taken from the GDE case
study to illustrate how each category of version changes can be performed using our
evolution graph.

In order to apply a version change, we propose that architects act as follows, at first
from the type view and then from the instance view:

S1) In the type view, create and commit a new configuration type node.
S2) In the instance view, create and commit a new configuration node that conforms

to a configuration type by choosing which instances are replaced for executing the
new version, and which instances keep executing the previous version.

S3) In the case where a problem occurs when executing the reconfiguration plan, it is
possible to return to the previous configuration.

Importantly and as per usual, note that configuration type nodes and configuration
nodes that are already committed in the evolution graph can not be modified any more,
and that, before being deleted, a microservice type should be considered “deprecated”
during at least one configuration type.

As presented in S2), when creating and committing a new configuration node, a
choice must be made of which instances are being replaced and will execute the new

50

3.3. Evolution Graph

version, and of which instances keep executing the previous version. We define a
percentage (x) of instances of the previous version that will be replaced for executing
the new version in the next configuration, so that we have three main strategies:

— Zero-replacement/addition strategy (x = 0): We do not remove any instances from
the previous version, and the new version and the previous version are co-existing.
The new instances will execute the new version, and we change nothing for the
instances that execute the previous version.

— Partial-replacement/replace strategy (x ∈]0, 1[): The new version and the previous
version are co-existing, but only x percent of instances of the previous version will
be replaced for executing the new version in the next configuration.

— Total-replacement/removal strategy (x = 1): all instances of the previous version
are moved to executing the new version in the next configuration.

For each strategy, the actions that should be performed in the next configuration
to commit are different. The strategy is used to build the new configuration from the
previous one. Let define m ≥ 0 as the number of instances of the previous version
and n ≥ 0 the number of instances of the new version. Note that whatever strategy is
chosen, the number of instances of the new version does not necessarily have to be less
than the number of instances of the previous version.

Before the development of the strategies, recall that, for the client-server pattern,
we link/unlink a client to/from a server, and for the publish-subscribe pattern, we
link/unlink a producer to/from a broker and link/unlink a consumer to/from a broker,
where a broker is a publish-subscribe connector and the relationship between a producer
and a consumer is “many to many”. We now list for each strategy the actions that can
be followed to build the next configuration in our evolution graph:

— Zero-replacement/addition strategy:

1) Create n new version microservice instances.

2) For each new version instance: link client and server, link producer and
consumer to publish-subscribe connector.

— Partial-replacement/replace strategy:

1) Create n new version microservice instances.

2) For each new version instance: link client to server, link producer and consumer
to publish-subscribe connector.

3) Calculate and choose m× x microservice instances of the previous version to
be replaced for executing the new version.

51

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

4) For each instance to be replaced, unlink client from server, unlink producer
and consumer from publish-subscribe connector.

5) Remove the instances of the previous version.

— Total-replacement/removal strategy:

1) Create n new version microservice instances.

2) For each instance of the new version, link client to server, link producer and
consumer to publish-subscribe connector.

3) For all m microservice instances of the previous version, unlink client from
server, unlink producer and consumer from publish-subscribe connector.

4) Remove these m instances of the previous version.

Then, in the next sections, we illustrate with examples from the GDE case study
the possible actions that can be taken for each category of version changes.

3.3.2.1 Patch change

Patch changes are for example due to correcting bugs or improving implementation,
and have no impact on other elements. It is the simplest scenario because only
microservice types and microservice instances will change, no other elements like
contracts or connectors need to change. With the case study of Figure 3.1, let us
suppose that a new version, e.g. 1.0.1, of the authentication_service microservice
comes out. The previous version 1.0.0 will continue to be supported and may still be
instantiated.

We list below the detailed steps to follow with this “patch” scenario:

1) Create a new microservice type Auth_1_0_1, of which Auth_1_0_1.identifier =

authentication_service and Auth_1_0_1.version = 1.0.1.

2) Add this new microservice type Auth_1_0_1 into the next configuration type CT.

3) Check the CT.isInstantiable() property, and if so, commit this configuration type
to the evolution graph, so that a new node CT is available.

4) Create a new configuration C, and set the new committed configuration type CT as
its reference type, i.e. C.type = CT.

5) Choose a strategy of which instances are being replaced and will execute the new
version (the value of x). All of three strategies are valid.

6) Perform the actions of the chosen strategy to build the new configuration C. For
example, if we choose “zero-replacement strategy”, then we create one microservice
instance of new version, i.e. as_1 and as_1.type = Auth_1_0_1, and we link this

52

3.3. Evolution Graph

new instance as_1 by a client-server connector to another instance us_1 that is
also linked to the previous version instance.

7) Check the C.isDeployable() property, and if so, commit this configuration to the
evolution graph, so that a new node C is available for being a configuration for
the reconfiguration planner.

3.3.2.2 Minor change

Minor changes are backward-compatible changes. It becomes more complex because
other elements, such as contracts or connectors, also have to change. In the case study
of Figure 3.1, we imagine a simple concrete example illustrated by an object diagram
in Figure 3.10 (the orange objects in the diagram are of the new version). In the initial
type model, we have two microservice types, AuthT1 and UserT1, that are connected by
a client-server connector type in the configuration type. A microservice type AuthT1

consumes a client contract type cct1 provided by another microservice type UserT1

through the corresponding server contract type sct1. Initially, all elements are in
version 1.0.0.

CT2: ConfigurationType

sct2:ServerContractType

-name=serverContractType1
-version: 1.1.0

UserT2: MicroserviceType

-name=UserService
-version=1.1.0

sct1:ServerContractType

-name: serverContractType1
-version: 1.0.0

csct1:ClientServerConnectorType

-name=csConnctorType1
-version=1.0.0

cct1:ClientContractType

-name=clientContractType1
-version: 1.0.0
-mustBeConnected=true

CT1: ConfigurationType

UserT: MicroserviceType

-name=UserService
-version=1.0.0

AuthT1: MicroserviceType

-name=AuthService
-version=1.0.0

Figure 3.10 – Example of object diagram of type model with a possible minor change

Then, we develop the scenario of a minor change from this initial configuration type
CT1 to a new configuration type CT2: server contract type sct1 is changed compatibly
from version 1.0.0 to 1.1.0, which introduces a new server contract type sct2. This
new server contract type may have no connector attached. A possible example of minor
changes in server contract type are adding a new operation declaration in this contract
type. We list the detailed steps to operate this “minor” change:

53

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

1) Create a new microservice type UserT2, of which UserT2.identifier = user_service

and UserT2.version = 1.1.0.
2) Create a new server contract type sct2 for microservice type UserT2 with

sct2.identifier = serverContractType1 and sct2.version = 1.1.0.
3) Add the new microservice type UserT2 and the new client contract type sct2 into

the next configuration type CT2.
4) Check the CT2.isInstantiable() property, and if so, commit this configuration type

into the evolution graph so that a new node CT2 is available.
5) Create a new configuration C with C.type = CT2;
6) Choose and apply the strategy of which instances are being replaced and will

execute the new version (the value of x). All of the three strategies are valid.
7) Perform actions of the chosen strategy to build the new configuration C. For

example, if we choose “zero-replacement strategy”, then we create one microservice
instance of the new version, i.e. as and as.type = AuthT2, and we link this new
instance as to another instance us, us.type = UserT1 that is also linked to the
instance of the previous version.

8) Check the C.isDeployable() property, and if so, commit this configuration to the
evolution graph so that the new node C is available for being a configuration for
the reconfiguration planner.

3.3.2.3 Major change

Major changes are changes that are incompatible. This type of changes can cause a
series of changes in other elements, including contracts and connectors. Usually, major
changes will lead to the changes of other microservices. We imagine a simple example
illustrated by the object diagram in Figure 3.11. We use the same initial type model
as the example in previous section of minor changes. Then, we suppose a scenario of a
major change from this initial configuration type CT1 to a new configuration type CT2:
client contract type cct1 is changed incompatibly from version 1.0.0 to 2.0.0. This also
leads to a major version change for microservice types, connected server contract type,
and the connector type. A possible example of a major change in a client contract type
is modifying an operation declaration in the client contract type so that it is no more
compatible with the linked server contract type. We list the steps to proceed with this
“major” scenario:
1) Create new microservice types AuthT2 and UserT2, of which AuthT2.identifier

= authentication_service and AuthT2.version = 2.0.0, and UserT2.identifier =

user_service and UserT2.version = 2.0.0.

54

3.4. Implementation in MIMOSAE

2) create a new client contract type cct2 for microservice type AuthT2 with
cct2.identifier = clientContractType1 and cct2.version = 2.0.0.

3) Create the corresponding server contract type sct2 for UserT2 with
sct2.identifier = serverContractType1 and sct2.version = 2.0.0, and satisfying
cct2.isCompatible(sct1) = false ∧ cct2.isCompatible(sct2) = true.

4) Add AuthT2, UserT2, cct2, and sct2 into the configuration type CT2.

5) Check CT2.isInstantiable() before committing.

6) Create a new configuration C with C.type = CT2.

7) Choose and apply the strategy of which instances are being replaced and will
execute the new version (the value of x), all of three strategies are valid.

8) Perform the actions to build the new configuration C. For example, if we choose
“zero-replacement strategy”, then we create as with as.type = AuthT2, us with
us.type = UserT2, and we link as with us;

9) check C.isDeployable() befor committing.

csct2:ClientServerConnectorType

-name=csConnctorType1
-version=2.0.0

sct2:ServerContractType

-name: serverContractType1
-version: 2.0.0

UserT2: MicroserviceType

-name=UserService
-version=2.0.0

CT2: ConfigurationType

cct2:ClientContractType

-name=clientContractType1
-version: 2.0.0
-mustBeConnected=true

+isCompatibleWith(sct1)=false

AuthT2: MicroserviceType

-name=AuthService
-version=2.0.0

sct1:ServerContractType

-name: serverContractType1
-version: 1.0.0

csct1:ClientServerConnectorType

-name=csConnctorType1
-version=1.0.0cct1:ClientContractType

-name=clientContractType1
-version: 1.0.0
-mustBeConnected=true

CT1: ConfigurationType

UserT: MicroserviceType

-name=UserService
-version=1.0.0

AuthT1: MicroserviceType

-name=AuthService
-version=1.0.0

Figure 3.11 – Example of object diagram of type model with a possible major change

3.4 Implementation in MIMOSAE

To validate the feasibility of our runtime models and evolution graph, we engineer
our solutions in a prototype. We implement the MAPE-K control loop, but in a
semi-automatic way, that is, we manually provide the necessary information about
the version change, such as a source configuration node and a target configuration
node, so that the planning and execution of the evolution can then be performed in an
automatic manner.

55

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

The implementation of the prototype, named MIMOSAE (for MIcroservices MOdel
for verSion mAnagement with Evolution graph), can be found at the following URL:
https://gitlabev.imtbs-tsp.eu/mimosae/mimosae [Mim, 2022]. Technically, in
this prototype implementation, the planning is performed using a PDDL AI plan-
ner [Haslum et al., 2019], and the executor uses the Kubernetes API 1 and the Docker
API 2 to deploy and reconfigure the managed application. We describe below the
planner and the executor.

3.4.1 PDDL planner

In this section, we first introduce what is the Planning Domain Definition Language
and some of the PDDL concepts. Then, we give a general domain description of our
proposed runtime models of microservice-based applications. We demonstrate next
how to use PDDL problem description files to define the scenarios of version changes
from one configuration to another in our GDE case study. Finally, we show the results
with the obtained reconfiguration plan generated by the PDDL planner with the above
domain file and problem file. The full version of the domain file and problem files can
be found in Appendix A.

Introduction to PDDL

PDDL is designed to solve automated planning and scheduling [Haslum et al., 2019],
a branch of Artificial Intelligence (AI). As a formal representation language to express
general planning tasks and models, it can also be used for architectural evolution path
generation problems [Barnes et al., 2013, Méhus, J.-E. and Batista, T. and Buisson, J.,
2012].

PDDL specifies what needs to be done for a planning problem rather than how to
do it. As an entry to the PDDL solver, a planning task is organised according to a list
of objects under consideration and predicates that are the properties of objects. It is
then described by an initial state as a starter, a goal to achieve, and a list of actions
that can be executed. Each action has pre-conditions that define the constraints on
the states before an action can be performed, and post-conditions, also called effects,
that are the state changes after the execution of the action. The result of the PDDL
solver is an ordered list of sets of actions, which can be performed in parallel.

A PDDL specification declares planning problems in two separated files:

(1) a domain file that defines a general model of behaviours and operators for a
specific application, including predicates and possible actions.

1. The Kubernetes API: https://kubernetes.io/docs/concepts/overview/kubernetes-api/
2. Docker Engine API: https://docs.docker.com/engine/api/

56

https://gitlabev.imtbs-tsp.eu/mimosae/mimosae
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://docs.docker.com/engine/api/

3.4. Implementation in MIMOSAE

(2) a problem file that defines a specific problem instance in the domain, including
specific objects, initial state, and goal condition.

PDDL domain description for microservices

In MIMOSAE, the architectural entities such as microservices, contracts, connectors
are encoded as objects. The relationships between these entities are defined as predicates,
which are facts that can be true or false. Each reconfiguration operation, such as create
and remove microservices, or link and unlink microservices, is described into a PDDL
action explaining the preconditions and effects in terms of the above predicates.

We only display in Listing 3.1 part of the definitions in the domain file in order to
explain the main idea, the full version being available in Appendix A.1.

A domain description file always starts by the declaration of its name preceded
by the domain keyword: microservice_planner_domain. Then, the requirements of this
domain are defined: usage of types for objects and some ADL features, i.e. disjunctions
and quantifiers in preconditions and goals, and quantified and conditional effects.

Listing 3.1 Example of the PDDL domain file for MIMOSAE

1 (define (domain microservice_planner_domain)
2 (:requirements :adl :typing)
3 (:types
4 a r c h i t e c t u r a l e n t i t y − ob j e c t
5 m i c r o s e rv i c e − a r c h i t e c t u r a l e n t i t y
6 pubsubconnector − connector
7 . . .
8)
9 (:predicates
10 (m i c r o s e r v i c e ?m − mic ro s e rv i c e)
11 (c l i e n t_s e rv e r_ l i nk ?mc − mic ro s e rv i c e ?ms − mic ro s e rv i c e)
12 . . .
13)
14 (:action c r ea t e_mic ro s e rv i c e
15 :parameters (?m − mic ro s e rv i c e)
16 :precondition (and (not (m i c r o s e r v i c e ?m)))
17 : e f f e c t (and (m i c r o s e r v i c e ?m))
18)
19 . . .
20)

The primitive types of a domain definition, identified by the types keyword, rep-
resent objects existing in the planning problem. Similar to classes and subclasses in
object-oriented programming, it is possible to derive the necessary types, for instance,
microservice and architecturalentity.

The predicates section contains state binary variables that denote facts about
objects: e.g., the predicate (microservice ?m) to state that the microservice m already
exists, client_server_link to state that there exists a client-server link between two

57

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

microservices.
Actions define operators to transition between states. Each action has parameters,

preconditions that define the state when the action is applicable, and effects that
constrain the state after the action is applied. For example, action (create_microservice)

is applicable only when (microservice ?m) is false and specifies that (microservice ?m)

becomes true.

PDDL problem description for GDE scenarios

We demonstrate a complete scenario of a reconfiguration in the GDE system due to
a version change. This scenario focuses on the transition from one source configuration
to a target configuration, without considering when this transition can be performed
safely (this is the concern of Chapter 4). The process of this scenario consists of several
steps:

S1) Create an empty initial configuration that contains five microservices, all in version
1.0.0: Authentication Service, User Service, Project Service, File Service.

S2) Change from the initial configuration created in the first step to a new configuration.
The changes include: replace microservice File Service with a minor version, from
1.0.0 to 1.1.0, create a new microservice Logger Service in version 1.0.0, and
connect the new version of File Service with Logger Service via a publish-subscribe
connector. This process is shown in Figure 3.12.

S3) Transition from the current configuration to an empty configuration that ends the
distributed application.

Project Service

V1.0.0

File Service

V1.0.0

Authentication

V1.0.0

Permission

Service

V1.0.0

User

Service

V1.0.0

Project Service

V1.0.0

File Service

V1.1.0

Authentication

V1.0.0

Permission

Service

V1.0.0

User

Service

V1.0.0

Logger

V1.0.0

Figure 3.12 – Scenario implemented in MIMOSAE (described in step S2)

In our implementation, we generate the problem description file programmatically
from runtime models. An example of part of the programmed problem file for S2) is
shown in Listing 3.2, the full version being available in Appendix A.1.

The problem description, like the domain description, is named by a problem key-
word: microservice_planner_problem. It includes a reference to the associated domain

58

3.4. Implementation in MIMOSAE

Listing 3.2 Example of the PDDL problem file for the scenario of minor version change

1 (define (problem microservice_planner_problem)
2 (:domain microservice_planner_domain)
3 (:objects
4 fsi_fs_1_0_0 − mic ro s e rv i c e
5 fsi_ps_1_1_0 − mic ro s e rv i c e
6 pubsubci_pubsubconnector_1_0_0 − pubsubconnector
7 . . .
8)
9 (: i n i t

10 (m i c r o s e r v i c e fsi_fs_1_0_0)
11)
12 (:goal (and
13 (m i c r o s e rv i c e fsi_fs_1_1_0)
14 (pubsubconnector pubsubci_pubsubconnector_1_0_0)
15 (producer_to_connector_link fsi_fs_1_1_0 pubsubci_pubsubconnector_1_0_0)
16 . . .
17)
18 . . .
19)

file. The body part of the problem description starts by listing objects that will be
used in the initial state and in the goal: e.g. fsi_fs_1_0_0 and fsi_ps_1_1_0, and
pubsubci_pubsubconnector_1_0_0. Then, the init section defines the initial state of the
problem instance by a list of facts, and the goal section defines a condition that should
be satisfied at the end of a valid plan: e.g., the initial state fsi_fs_1_0_0 that is an
instance of File Service in version 1.0.0, and the goal contains File Service in new
version 1.1.0 and linked it to a publish-subscribe connector.

Reconfiguration plan generated by PDDL planner

The solution to a planning problem is a plan, and a plan is a sequence of sets of
parallel actions. Listing 3.3 shows an example of a generated reconfiguration plan. It
is the part that presents how the scenario of Figure 3.12 will change step by step from
a configuration (identified by d543944ce9...) to another configuration (identified by
cddf8368b8...). The actions in one “in parallel” section can be executed concurrently,
and the sequence of “in parallel” sections is executed sequentially.

3.4.2 Executor

The plan generated by the planner is automatically processed by an executor to
perform the reconfiguration and redeployment. Technically, we implement the executor
by using Docker and Kubernetes APIs. Docker is a tool that allows the containerization
of one or multiple services, and Kubernetes is a container orchestration tool. The
main steps of our executor are executed as follows (the communication diagram of the

59

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

Listing 3.3 Example of the plan generated by the PDDL planner

1 From d543944ce99c8c0760c1b28b554cd6 . . . to cddf8368b811326a693f0b0bbc400c . . .
2 in p a r a l l e l :
3 [a c t i on=create_pubsubconnector , a rgs=[pubsubci_pubsubconnector_1_0_0]]
4 . . .
5 in p a r a l l e l :
6 [a c t i on=unl ink_c l i ent_server , a rgs=[fsi_fs_1_0_0 , ai_auth_1_0_0]]
7 [a c t i on=disconnect_microservice_from_databasesystem , args=[fsi_fs_1_0_0 ,

dbfsi_dbfs_1_0_0]]
8 [a c t i on=unl ink_c l i ent_server , a rgs=[fsi_fs_1_0_0 , usi_us_1_0_0]]
9 [a c t i on=unl ink_c l i ent_server , a rgs=[fsi_fs_1_0_0 , permsi_perms_1_0_0]]
10 [a c t i on=unl ink_c l i ent_server , a rgs=[psi_ps_1_0_0 , fsi_fs_1_0_0]]
11 [a c t i on=create_microse rv i ce , args=[fsi_fs_1_1_0]]
12 [a c t i on=create_microse rv i ce , args=[logsi_ls_1_0_0]]
13 . . .
14 in p a r a l l e l :
15 [a c t i on=remove_microservice , a rgs=[fsi_fs_1_0_0]]
16 [a c t i on=l ink_c l i en t_se rve r , a rgs=[psi_ps_1_0_0 , fsi_fs_1_1_0]]
17 [a c t i on=l ink_c l i en t_se rve r , a rgs=[fsi_fs_1_1_0 , ai_auth_1_0_0]]
18 [a c t i on=l ink_c l i en t_se rve r , a rgs=[fsi_fs_1_1_0 , usi_us_1_0_0]]
19 [a c t i on=l ink_c l i en t_se rve r , a rgs=[fsi_fs_1_1_0 , permsi_perms_1_0_0]]
20 [a c t i on=connect_microservice_to_databasesystem , args=[fsi_fs_1_1_0 ,

dbfsi_dbfs_1_0_0]]
21 [a c t i on=link_producer_to_pubsubconnector , a rgs=[fsi_fs_1_1_0 ,

pubsubci_pubsubconnector_1_0_0]]
22 [a c t i on=link_consumer_to_pubsubconnector , a rgs=[logsi_ls_1_0_0 ,

pubsubci_pubsubconnector_1_0_0]]
23 . . .

implemented executor can be found in Appendix A.2):

1) Receive a reconfiguration plan from the planner via the executor front-end.

2) Validate the correctness of the plan (this is a kind of “defensive programming”).

3) Create in parallel the actions extracted from the plan.

4) For each action, look for the configuration files from the codebase of the project
(Kubernetes .yaml configuration files and Dockerfiles).

5) Build Docker images by using Docker APIs.

6) Parse Kubernetes .yaml configuration files to create different Kubernetes entities
and to initiate an internal graph of dependencies between these Kubernetes entities.

7) Call Kubernetes APIs to deploy all entities respecting dependencies.

3.5 Discussion

As detailed in the previous sections, our runtime model separates types from
instances and considers both client-server and publish-subscribe (either channel-based
or topic-based publish/subscribe systems) communication modes. In addition, the
evolution graph tracks the evolution trajectory of the microservice architecture.

60

3.5. Discussion

Some recent works have considered multi-version microservice management with
contributions complementary to ours. The authors of [Sampaio et al., 2017] propose
to build a microservice evolution model by observing the managed system under
execution. The model combines type and instance elements, i.e. with no separation of
concerns, which makes it difficult to trace software evolution. In addition, the model
includes versioning of only some of the model elements, namely, application, service,
and operation. Similarly, the model in [Sorgalla et al., 2018] is derived in a bottom-up
approach from the concepts of a specific ecosystem of microservice technologies. The
two works only focus on synchronous interactions between microservices, thus, for
instance, ignoring the concept of connector (because connectors are not mandatory in
client-server connections). By contrast, our proposal separates the type model from
the instance model and exposes the validity of the two models (resp. the “instantiable”
and “deployable” properties), and the conformity between the two models. Then, all
the elements of the type model are versioned. In addition, we include database systems
and asynchronous communication.

The authors of [Ma et al., 2019] track microservice dependencies and versions by
analysing code (JAVA annotations) and runtime entities (JAVA reflection mechanism).
They are capable to detect dependency errors at runtime. The dependency graph is
computed through a series of chain searches, and version management is based on
chain manipulations. Communications can be synchronous or asynchronous, but only
in the context of the Spring Cloud ecosystem. In our work, the dependency graph is
included in the model so that errors are detected at design time when committing a
configuration, and version management is based on the manipulation of model elements
and is logged.

In all the previous works, graphs and models represent microservice architectures
at a given instant. In our proposal, we record the trajectory and history of how the
system evolves over time. Each node in our evolution graph is a snapshot of the running
system configuration as version changes are applied.

The authors of [He et al., 2020] propose a formal model of version dependency
for multi-version coexisting microservice systems. The model is generated from con-
figuration files and is used in a greedy-based optimisation algorithm to generate an
optimal deployment plan. The authors of [Rajagopalan and Jamjoom, 2015] propose a
tool to record microservice dependencies at every version update by taking an OS-like
package management approach. They create a version timeline per microservice that
includes version dependencies to record revision histories, e.g. major or minor updates
and dependency requirements about compatible versions with other microservices. In
our work, we present microservice relationships in a more detailed manner, and we

61

Chapter 3 - Runtime Models and Evolution Graph for Version Management of Microservices

trace evolution histories at the granularity of a configuration, which includes a set of
microservices in applications, not just at a single microservice.

The authors of [Tao, 2019, Boyer et al., 2018] propose a data structure modelling
the architecture of a microservice-based application, which specifies how microservices
are deployed on PaaS sites and how they are configured with PaaS-common and
PaaS-specific configuration attributes. The main goal of their architectural model is
to represent microservices running on heterogeneous PaaS platforms in the context
of the Cloud, which context is different from ours 3. To manipulate microservices,
their solution relies on the operations provided by PaaS sites. In our work, our
runtime models and evolution graphs do not focus on the infrastructures for deploying
microservices, but rather on the microservices.

Besides model-at-runtime, another way to model software architecture is Architecture
Description Language (ADL). The work of [Huynh, 2017] applies this approach to
model software architectures and their variability. However, this work contributes to
another related research domain: software product lines (SPLs), which is out of the
scope of this thesis.

3.6 Conclusion

In this chapter, we have presented our contributions to the runtime model and
evolution graphs for microservices and their version management. Our modelling
separates the view of types from the view of instances, adds version management to
every model element, and considers both synchronous and asynchronous communication
modes. Our model is reified at runtime to be part of the Knowledge base of the MAPE-
K control loop. Managed elements are then mirrored in the runtime model. With
the evolution of the microservice application, if there are changes occurring in the
application, the models will also change, first the type model and then instance model,
and vice versa. 4

Our evolution graph is used to track the evolution trajectory of the microservice
architecture. Every time the artefacts of a microservice type is added or removed
from the implementation repository, the type model can evolve to take into account
the evolution, and a new type node is created and committed in the evolution graph.
Validation is only possible if the microservice types are instantiable. The new node
represents the set of software artefacts (microservices, connectors, contracts, etc.) that

3. In Chapter 4 about our second contribution, we describe the distributed application model we focus on: a
distributed application is contained in one and only one distributed component (e.g. Clouds), the other distributed
components acting as actors for this distributed application

4. To obtain a fully causal relationship, the model should change when the managed elements change, e.g. in case of
failure. But, this part is out of the scope of this thesis.

62

3.6. Conclusion

can be used for building the managed system. The second part of the evolution graph
corresponds to the snapshots of deployed configurations. Validation is only possible if
the microservice instances are deployable. Every time a decision is made by software
architects, a new instance node is created and committed in the evolution graph. Such
a node represents the set of deployed entities (deployed instances of microservices,
connectors, etc.) when the reconfiguration plan is computed and executed to effectively
change the distributed application.

Finally, our solution is implemented in the prototype named MIMOSAE (for “MI-
croservices MOdel for verSion mAnagement with Evolution graph”). It can be found
at the following URL: https://gitlabev.imtbs-tsp.eu/mimosae/mimosae. When
a new configuration to deploy is committed in the evolution graph, an AI Planner
can compute a plan of deployment actions to transition the system towards this new
configuration. This plan is automatically executed to perform the deployment.

In the next chapter, we will present our second contribution about when and how
the reconfiguration for updating microservices can be performed consistently while
client service calls keep arriving. This problem is named dynamic software updating.

63

https://gitlabev.imtbs-tsp.eu/mimosae/mimosae

Chapter 4

Snapshot-based Dynamic Software
Updating of Microservices

Contents
4.1 DSU Problem . 66

4.1.1 GDE use case . 66
4.1.2 Role of the DSU algorithm . 66
4.1.3 Update conditions . 68

4.2 Distributed System and Application Models 69
4.2.1 Distributed system model . 71
4.2.2 Distributed application model . 72

4.3 Snapshot-Based Update Setting . 74
4.3.1 Microservice execution model . 74

4.3.1.1 Path of application messages . 74
4.3.1.2 Link dependencies . 75
4.3.1.3 Message type dependencies . 76

4.3.2 Adding continuity of service . 80
4.3.3 Essential and non-essential changes 81
4.3.4 Correct dynamic update . 83
4.3.5 Snapshot-based definitions of the update conditions 84

4.3.5.1 Quiescence . 84
4.3.5.2 Freeness . 85
4.3.5.3 Essential freeness . 85

4.4 Snapshot-Based DSU Algorithm 86
4.4.1 Termination detection of collaborations 86
4.4.2 DSU algorithm and updating strategies 88

4.4.2.1 Overview of the DSU algorithm 89
4.4.2.2 DSU algorithm for quiescence . 89

64

4.1.

4.4.2.3 DSU algorithms for essential freeness and freeness 90

4.5 Discussion . 92

4.6 Conclusion . 94

This chapter addresses the issue of dynamic software updating (DSU) for
microservice-based applications, a process for safely modifying a running system
in place without stopping it, especially for long-time running or frequently-executed
activities [Seifzadeh et al., 2013]. The DSU problem can be decomposed into the
following two sub-problems to be solved in order:

(i) Model the distributed application and version changes, and express the update
condition in this model in such a way that the update does not lead to semantic
inconsistencies: e.g. which architectural elements of the distributed application
evolve and which must evolve together, what is a client service call, and can
microservices be updated in the middle of a client service call?

(ii) Specify the DSU algorithm that monitors the running system for the update
condition and that performs the update using a given strategy: e.g. does the
system allow both versions of a microservice to run simultaneously, should the
DSU algorithm block certain messages, or certain architectural elements?

In Section 4.1, we provide an overview of the DSU problem, including an illustrative
case study, the role of the DSU algorithm in distributed applications, and a reminder
of the meaning of the three safe update conditions that will be reformulated using
snapshots in this chapter.

In Section 4.2, we introduce the distributed system model and the distributed
application model. The former model presents the assumptions of the distributed
system and introduces the concept of consistent distributed snapshot. The latter model
describes common elements of distributed applications, including architectural elements
such as the front end and an abstraction of the algorithm of microservices.

In Section 4.3, we complement the models of types and instances of Chapter 3
with an execution model of microservices to be capable of answering the following two
questions: (i) what are the messages to be sent in the future of an in-progress client
service call? (ii) is a microservice change an essential one or not? We then formulate
the properties of continuity of service, essential change, correct dynamic update, and
we give snapshot-based definitions of the update conditions of the literature.

In Section 4.4, we present our snapshot-based DSU algorithm that contains the
detection of termination of collaborations and the maintenance of update conditions
with different update strategies.

65

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

4.1 DSU Problem

The goal of this section is to provide background information before detailing our
solutions about the DSU problem. We begin with detailing a use case of GDE case
study in Section 4.1.1 to help us illustrate more clearly the proposed concepts and
algorithms. Then, in Section 4.1.2, we outline the DSU algorithm for microservice-based
applications to give a global overview. Finally, in Section 4.1.3, we informally remind
the three update conditions defined in previous research, but this time illustrated with
our use case.

4.1.1 GDE use case

Throughout the Sections 4.2 to 4.4, in order to better explain our proposals, we use
the illustrative use case “attach a file to a project” of the GDE case study. The GDE
use case has been introduced in Chapter 3.1 for its global structure; it is a system to
manage scientific research data. It contains six microservices. We imagine a scenario
of attaching a simulation file to a specific project. To service the AttachFileToProject

request from an actor, the authentication and authorization services should be firstly
verified respectively through Authentication Service and Permission Service. Then, it
should check whether the project and associated files already exist in the system; this
is done by calling Project Service and File Service. If everything goes well, Project

Service performs the action and returns a result to the actor.
Figure 4.1 presents the UML sequence diagram with the message exchanges, with

some interesting local states and with coloured portions of lifelines that we will refer to
throughout this chapter, and more particularly in Section 4.2.1. The design of the use
case “attach a file to a project” is asynchronous in this sequence diagram: messages
are events, and for the sake of simplicity, we ignore the broker (assuming that there is
only one broker in the architecture). In other words, the diagram depicts the exchange
of events between microservices and every event is published to the broker, which
forwards the event to the interested microservice.

4.1.2 Role of the DSU algorithm

Conceptually, the role of the DSU algorithm is to move a microservice-based
application from a source configuration to a target configuration without shutting
down the system, e.g. from configuration C to C ′ in Figure 4.2. The DSU algorithm is
executed by the autonomic manager [Kephart and Chess, 2003]. It involves distributed
algorithms whose role is to detect the update condition and to reconfigure the distributed

66

4.1. DSU Problem

opt

opt

ps:ProjectService

isProjectLocked(pid)

addFileToProject(pid,fid)

as:Authentication

as3

as4

attachFileToProject

(pid, fid, login_token)

getLogin(token)

Login

pms:Permission

Service

pms6

checkUserPermission(login)

permissionChecked

us: UserService

us4

userFound

findUser(login)

fs: FileService

findValidFileById(fid)

fs4

doesFileExist(fid,login)

fileExists

permissionChecked

checkUserPermission(login)

findUser(login)

userFound

ps1 as1 pms1 us1
fs1

ps2

ps3

ps4

ps5

as2

pms2

pms3

pms4

pms5

us2

us3

fs2

fs3

[authentication and
authorization passed]

[authorization
passed]

fileAttached

Figure 4.1 – Sequence diagram of the use case AttachFileToProject—publish-subscribe communica-
tion (blue points: local states of microservices; coloured portions of lifelines: safe periods for updating
microservices according to different update conditions)

67

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

application using primitives such as create/remove microservices and link/unlink
microservices. These distributed algorithms are not constrained by links between
microservices, i.e. they may not use microservice links and the autonomic manager has
bidirectional links with all microservices.

Autonomic
Manager

F

Actor

c/s

p/s

C

C'

(app. alg.)

ms1

(app.alg.)

ms2

c/s

(app. alg.)

ms1'

(app. alg.)

ms2

(app. alg.)

ms3

(DSU control algo.)

C

C'

Front-end

(app. alg.)

microservice c/s
 client-server
connector p/s

publish-subscribe
connector (app. alg.)

application
algorithm (DSU control algo.)
 control

algorithm

Figure 4.2 – Global view of DSU algorithm for microservices

There are two categories of messages: application messages are due to application
actions, namely the application or microservice algorithm (“app. algo.” in Figure 4.2),
and control messages are sent by the DSU algorithm, namely the control algorithm
(“DSU control algo.”). The application messages are sent either through client-server
connectors (“c/s”) or publish-subscribe connectors (“p/s”). To achieve continuity of
service during updates, clients access the application through a front-end. The role of
the front-end is to redirect messages to the microservice ms1 in configuration C to its
replacement ms′1 in the next configuration C ′. For the sake of simplicity, we consider
that there is only one front-end, denoted by F , for the distributed application.

4.1.3 Update conditions

Update conditions, which respond to the question of when updating can be performed
safely, have been the focus of previous research. There are four update conditions
that have been introduced in Section 2.3.4. What we are interested in are the three
conditions that are safe, namely quiescence, freeness and essential freeness. As a
reminder, we present again these three update conditions briefly and illustrate them in
Figure 4.1 with our use case “attach a file to a project”.

68

4.2. Distributed System and Application Models

The authors of [Kramer and Magee, 1990] define quiescence as the property that
must be true of a component state such that a version change is permitted and is
guaranteed to be safe: the component must not be serving transactions or initiate
new transactions, and neither must every component that is directly nor indirectly
capable of initiating transactions on this component. For example, in Figure 4.1,
participant pms is quiescent at global state (ps1, as1, pms1, us1, fs1) and at global state
(ps5, as4, pms6, us4, fs4), but not somewhere in between. Quiescence corresponds to the
orange bars in the figure.

In [Ma et al., 2011, Baresi et al., 2017], the authors propose version consistency as a
global condition for safe updating and freeness as the corresponding local (component)
condition. Considering a client service call, a component is free up to the receipt of
the first transaction request and after servicing the last transaction request of the
call. Thus, in Figure 4.1, participant pms is free at state (ps3, as2, pms1, us1, fs1) and
at global state (ps4, as2, pms5, us3, fs2). Freeness corresponds to the green bars in the
figure.

The authors of [Sokolowski et al., 2022] introduce the essential freeness property
for systems based on both synchronous and asynchronous workflows. They distin-
guish between essential and non-essential changes. In case of a non-essential change,
a component can be replaced as soon as it is not currently executing a task. In
case of an essential change, the update condition is the same as for freeness. In Fig-
ure 4.1, if the change is non-essential, participant pms can be replaced at global state
(ps3, as2, pms2, us1, fs1), which is between the first participation in the client service
call and the second one. Essential freeness corresponds to the red bars in the figure.

Later in Section 4.3.5, these three update conditions will be formalised using the
concept of consistent distributed snapshot, which is explained in the next section, and
using our model of a distributed application.

By comparison, we depict in Figure 4.3 the update conditions in the sequence
diagram of the same use case as of Figure 4.1, but using client-server synchronous
communication. It demonstrates by an example why architects favour publish-subscribe
communication: there exist more opportunities for updating in case of non-essential
changes.

4.2 Distributed System and Application Models

In Sections 4.2.1 and 4.2.2, we define respectively the distributed system model,
which, in a nutshell, is fault-free and asynchronous, and the distributed application
model, which patterns the interactions around client-server and publish-subscribe

69

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

as:Authentication

as4

opt

opt

ps:ProjectService

isProjectLocked(pid)

addFileToProject(pid,fid)

ps1

ps2
as2

ps5

attachFileToProject

(pid, fid, login_token)

getLogin(token)

return login

pms:Permission

Service

pms6

checkUserPermission(login)

checked

us: UserService

us4

found

findUser(login)

fs: FileService

findValidFileById(fid)

fs4

doesFileExist(fid, login)

found

checked

checkUserPermission(login)

findUser(login)

return found

as1
pms1 us1 fs1

ps3

ps4

pms3

pms2

pms4

pms5

us2

us3

fs2

fs3

[authentication and
authorization passed]

[authorization
passed]

as3

fileAttached

Figure 4.3 – Sequence diagram of use case AttachFileToProject—client-server communication (blue
points: local states of microservices; coloured portions of lifelines: orange for quiescence, green for
freeness, red for essential freeness in case of non-essential changes)

70

4.2. Distributed System and Application Models

exchanges, and introduces the generic algorithm of microservices.

4.2.1 Distributed system model

The different parts of the distributed system may span multiple data centres, such
that they constitute what we call distributed components. In this study, we focus on
distributed applications that are contained in one and only one of these distributed
components, and the other distributed components act as actors (in the UML sense of
the term), the other actors being the end-users. Thus, the autonomic manager is not a
bottleneck. In addition, we consider only fault-free distributed systems. Communication
channels are reliable with no message creation, duplication, or alteration, and are such
that they ensure that when a microservice sends a message to another entity, being
another microservice or another architectural entity (front-end, publish-subscribe
connector, or autonomic manager), the message is eventually delivered to the remote
entity, and vice-versa. Finally, microservices and the other architectural entities are
not subject to failures.

In order to simplify the presentation of the model without loss of generality, we
assume the existence of a global clock that is not accessible by the architectural
entities. We take the range T of the clock’s ticks to be the set of natural numbers N.
Then, following [Lamport, 1978], the execution of a microservice is abstracted as a
sequence σ = a0a1a2 . . ., a.k.a. trace, of atomic steps ai, a.k.a. actions, that are either
internal computations, reactions to the receipt of a message, or the emission of an
application message. The actions of microservices are related by the happened before
relation [Lamport, 1978] denoted by 7→.

In addition, since our solution is “snapshot-based”, we introduce the definition of
a consistent distributed snapshot. A distributed snapshot s locates a global state of
the distributed application and is composed of a snapshot per microservice, say ms,
with each microservice snapshot, denoted by s[ms], that identifies the local state of
the microservice ms. The set of microservices is denoted by S. According to [Chandy
and Lamport, 1985], a distributed snapshot s is consistent if and only if there is no
message seen as received but not sent in the global state, formally consistent(s) =
∀ms1 ∈ S,@ms2 ∈ S, s[ms1] 7→ s[ms2]. In other words, the recorded microservice and
link states form a meaningful global state that may have existed. In Figure 4.1,
distributed snapshots for the GDE case study are composed of microservice snapshots
(psi, asj, pmsk, usm, fsn). For example, distributed snapshot s = (ps3, as2, pms3, us1, fs1)
is inconsistent because it exhibits message log(UserFound) that is seen as received in
s[pms3] without being seen as emitted in s[us1]. Functionally speaking, an external

71

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

observer cannot evaluate the progress of the client service call “attach a file to a project”
by considering distributed snapshot s: i.e. s has never existed in reality and corresponds
to a “fake” photo of the distributed application. On the contrary, distributed snapshot
s = (ps3, as2, pms3, us2, fs1) is consistent and can be used as a basis for evaluating for
example update condition freeness.

The happened before relation on atomic steps is extended to consistent distributed
snapshots as follows. Consistent distributed snapshot si happens before consistent dis-
tributed snapshot sj if and only if sj advances the execution of si in at least one microser-
vice, formally si→ sj = consistent(si)∧ consistent(sj)∧

(
∃ms ∈ S, si[ms] 7→ sj [ms]

)
∧(

∀ms ∈ S, si[ms] = sj[ms] ∨ si[ms] 7→ sj[ms]
)
. Sequences of distributed snapshots that

are related by the happened before relation are written by sisi+1si+2.... For example, in
Figure 4.1, sA = (ps1, as1, pms1, us1, fs1)→ sB = (ps2, as1, pms1, us1, fs1) because both
snapshots are consistent and sA[ps] 7→ sB[ps], the other local snapshots being equal.
We also use intervals, for instance to specify that a distributed snapshot occurs between
two others, e.g. s ∈]sbegin, send [.

4.2.2 Distributed application model

As done in Chapter 3, the autonomic manager that is in charge of version management
maintains two models of the distributed application: type and instance models. These
two models are specified at design time and are available at runtime. It is important
to note that when replacing a microservice, the correctness of the replacement is
ensured by checking for type conformity. The deployed microservices constitute the
configuration of the distributed application.

Since microservices are not subject to failures, the role of DSU is to transition
the distributed application from a configuration C satisfying specification SC to a new
configuration C ′ satisfying specification SC′ . We limit this study to updating due to
version changes of microservices, and as done in [Ma et al., 2011] and in similar works,
we assume that the same updating, but performed offline—that is, the system is shut
down, updated, and restarted— is correct. Microservices may be stateful and have
access to stable storage to enable state transfer: the state of a microservice is a set
of values, i.e. conceptually a set of pairs (name, value). However, as patterned in
microservice-based architectures [Newman, 2015], in most cases, the stable storage
system stays local to a microservice and is not centralised, e.g. every microservice may
be attached to a local database.

As we said before, we have application messages manipulated by the application
algorithm and control messages sent by the control algorithm. Since one of the roles of

72

4.2. Distributed System and Application Models

the control algorithm is to observe the execution of the application algorithm, it must
not influence the computation of the application algorithm. For the sake of brevity
and without lack of generality, we ignore brokers and consider that published events
are broadcast to consumers, i.e. the receiver of a published event is a microservice,
even if it transits via a broker. In Figure 4.1, microservice ps publishes messages to
microservice as and the intermediate broker is not depicted as a participant of the
sequence diagram. Then, the application messages are the transaction requests (req)
and replies (rep) of the client-server exchanges, and the published events (evt) of the
publish-subscribe exchanges. Importantly, messages are sent following the FIFO order:
FIFO order is easily implemented in request-response exchanges, for instance using
TCP but cannot reasonably be assumed using topic-based brokers such as the ones
implementing the AMQP or MQTT specifications. Therefore, following the end-to-end
argument [Saltzer et al., 1984], we assume that FIFO order is implemented at the
microservice level. Since we ignore communication failures, FIFO order is trivially
implemented using, for instance, TCP links or sequence numbers, and for this reason,
it is not shown in our algorithms.

For the termination detection of client service calls, and after [Tel, 2002], the set of
states of a microservice is partitioned into two subsets, the active and passive states.
Termination detection and updating are only allowed in passive states. More precisely,
a microservice is active if an internal computation or the sending of an application
message is applicable, and passive otherwise (e.g. the microservice is not executing an
internal computation and is waiting for the receipt of an application message). In a
passive state, only receipt actions are enabled, and microservices may send application
messages to other microservices only when active. Initially, each microservice is active
because it executes its initialization phase. For the sake of simplicity, we ignore the
messages sent during the initialisation phase of the microservice.

Therefore, the application algorithm of microservice ms is abstracted in event-
driven Algorithm 1, which consists of three actions:

— Action Rms is enabled when an application message has arrived and ms is passive.
It makes ms active and it is the receipt of an application message.

— The sending of an application message in Action Sms is enabled only when ms is
active, that is messages are not sent spontaneously but during an Action Sms that
is called by an Action Rms.

— When the receipt of an application message finishes, Action Ims is enabled and
ms becomes passive, that is the next step of ms is the receipt of an application
message.

73

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

Algorithm 1 Initial application algorithm — code at ms
1: Local variables:
2: status ∈ {active, passive}
3: R: {App. msg 〈m〉 has arrived at ms from mss ∧ status = passive}
4: receive 〈m〉 from mss

5: status ← active; treatment of 〈m〉, including calls of S

6: S: {App. msg 〈m〉 is being sent to msd ∧ status = active}
7: send 〈m〉 to msd

8: I: {status = active}
9: status ← passive

Algorithm 1 is going to be complemented for DSU (see Section 4.4.1).

4.3 Snapshot-Based Update Setting

In this section, we present a formal model for the updating of microservices in
microservice-based architectures. On one hand, we complement the model of Chapter 3:
the execution model of microservices (Section 4.3.1), the identification of their version
changes (Section 4.3.3), and the definition of the correctness of a software dynamic
update (Section 4.3.4). On the other hand, using the concept of consistent distributed
snapshot, we formalise the properties to reach before updating a microservice: quies-
cence, freeness and essential-freeness (Section 4.3.5). Finally, since we consider version
changes of a set of microservices (in a configuration), we can formulate the property of
continuity of service (Section 4.3.2).

4.3.1 Microservice execution model

At design time, architects and developers build a model of the distributed application
that is going to be used at runtime to detect the update condition. This model is
decomposed into three parts: application messages including client-server messages
and publish-subscribe messages, which can be nested (Section 4.3.1.1), microservice
links, which define dependencies into configurations (Section 4.3.1.2), and message type
dependencies, which allow tracking the termination of exchanges of messages when
servicing a client call (Section 4.3.1.3).

4.3.1.1 Path of application messages

The application messages that are exchanged in the distributed application belong
to three categories (requests, replies, and events) and implement two interaction modes
(client-server and publish-subscribe). We are interested in modelling the reaction to
application messages that leads to the execution of actions Rms of Algorithm 1.

74

4.3. Snapshot-Based Update Setting

In the client-server interaction mode, a caller sends a request message to the callee
and the caller waits for the reply from the callee. The service of the transaction request
by the callee may lead to the sending of requests that form sub-transactions, that are
also called nested transactions. In other words, there exist paths of messages.

In the publish-subscribe interaction mode, a producer asynchronously sends an
event to consumers, whose identities are unknown to the producer, i.e. the routing is
done by a broker according to a filtering mechanism. The consumption of an event
may lead to the publication of new events, and according to the Event Collaboration
pattern [Fowler, 2006], these events form a flow of events.

Of course, the two interaction modes can be mixed, such that the treatment of a
transaction may lead to the production of events and the consumption of an event may
lead to the sending of transaction requests.

It is important to observe that a client service call initiated by a message, being
a request or an event, requires the execution of a termination detection algorithm.
Following [Kramer and Magee, 1990], cycles in the path of messages are not forbidden,
but we assume that the application is designed so that the execution of a path of
messages is bounded and free of deadlocks.

Moreover, we assume that every message that starts a path of messages, being
initiated by an actor or a microservice, is tagged with a collaboration identifier (similar
either to a correlation identifier for transactions [Hohpe and Woolf, 2003], or to an
asynchronous completion token for events [Schmidt et al., 2001], or else to the tagging
of the so-called root transaction [Ma et al., 2011, Baresi et al., 2017]). When the
message comes from an actor, it is the front-end F that tags the message with a new
collaboration identifier. Thereafter, all the application messages of a collaboration are
tagged with its collaboration identifier. We denote by cid(m) the collaboration identifier
of the application message m, by firstmsg(cid) the first message of collaboration cid,
and by firstms(cid) the first microservice that receives firstmsg(cid).

4.3.1.2 Link dependencies

From the configuration in the instance model (presented in Section 3.2.2), we get
the set S of microservices and the set L of links between microservices. These links
constitute what we call the link dependencies. They are also called static dependencies
in [Ma et al., 2011, Baresi et al., 2017], but we prefer avoiding using the terms “static”
and “dynamic” dependencies because both are specified at design time in our approach.
As in Chapter 3, two classes of links model the two types of connectors that we consider
in our work.

Firstly, a client-server link connects a client microservice to a server microservice

75

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

through a chain of the following model elements: a client contract, which is attached
to the client microservice, a client-server connector, and a server contract, which is
attached to the server microservice. Thus, a client-server link is defined by a caller
mscaller ∈ S, a client contract ccli ∈ Ccli , a server contract cser ∈ Cser and a callee
mscallee ∈ S, and we denote the set of client-server links by Lcs.

Secondly, a publish-subscribe link connects a producer microservice to a consumer
microservice through a chain of the following model elements: a producer contract,
which is attached to the producer microservice and contains a topic or routing key (resp.
in MQTT and AMQP terminology) for the publication of events via this contract,
a publish-subscribe connector, and a consumer contract, which is attached to the
consumer microservice and contains a subscription filter or binding key (resp. in MQTT
and AMQP terminology). Then, a publish-subscribe link is defined by a producer
msprod ∈ S, a producer contract cprod ∈ Cprod , a consumer contract ccons ∈ Ccons and a
consumer mscons ∈ S. We denote the set of publish-subscribe links by Lps. Finally, we
have L = Lcs ∪ Lps.

Therefore, we model the link dependencies of a configuration in a directed multigraph
GL = (S, L, φL), where S is the set of vertices, L is the set of edges, and φL is the
incidence function mapping every edge to an ordered pair of vertices, here the function
mapping the link (ms1, c1, c2,ms2) ∈ L to the pair (ms1,ms2) ∈ S2 with (c1, c2) being
either in Ccli × Cser or in Cprod × Ccons. We denote by pathsTo(ms) the set of paths to
microservice ms using the set of edges L.

4.3.1.3 Message type dependencies

We complement the type model (presented in Section 3.2.1) with message type
dependencies, i.e. we consider that application designers provide the set of message
type dependencies that are typically extracted both from source code and sequence
diagrams as follows.

Microservice types “receive” message types through server and consumer contract
types; these types define the offered API of a microservice. For each message type
of the offered API, architects and developers describe the potential sequences of
message types that may be sent:

(i) They are sequences of message types that are exchanged via FIFO links so that
offsets can be used to know the messages that may have already been received
and the messages that may be received in the future;

(ii) There are several sequences of such message types so that the corresponding UML
sequence diagram may contain alt fragments.

76

4.3. Snapshot-Based Update Setting

The description is then a conservative over-approximation of the set of messages
to be sent when receiving a message of a given type. For instance, the expression
(τ1, µ1) ::= (τ2, µ2)(τ3, µ3)2(τ4, µ4)|(τ2, µ2)(τ5, µ5) specifies that the microservice of type
τ1 receiving a message of type µ1 may lead to either the sending of a message of type
µ2 to a microservice of type τ2, then of two messages of type µ3 to the same or two
different microservices of type τ3, and finally of a message of type µ4 to a microservice
of type τ4, or the sending of a message of type µ2 to a microservice of type τ2 and of a
message of type µ5 to a microservice of type τ5.

The number of consecutive repetitions is noted with an exponent (‘∗’ for an unknown
number of consecutive repetitions greater than 1) and is ignored if it is equal to 1. The
reason for sequencing the sent message types and for adding the number of consecutive
repetitions is to be capable of answering the following question: “may a microservice
that has already been involved in a collaboration cid continue to participate in that
collaboration (in the future) before cid ends?”

From the sequence diagram of Figure 4.1, we extract the following expressions
describing what will happen after receiving the message type attachFileToProject by
the microservice type ProjectService participant. The microservice type names are
shortened to participant names with upper case letters, that is ProjectService into PS,
etc., and we use F to name (the type of) the front-end. Observe that we must ignore
local synchronous messages isProjectLocked, findValidFileById, and addFileToProject.
Here follows the expressions:

(PS,attachFileToProject) ::= (AS,getLogin),

(AS,getLogin) ::= (PS, login),

(PS, login) ::= (PmS, checkUserPermission),

(PmS, checkUserPermission) ::= (US, findUser)2,

(US, findUser) ::= (PmS, userFound)2,

(PmS, UserFound) ::= (PS, permissionChecked) | (FS, permissionChecked),

(PS, permissionChecked) ::= (FS, doesFileExist),

(FS, doesFileExist) ::= (PmS, checkUserPermission),

(FS, permissionChecked) ::= (PS, fileExists),

(PS, fileExists) ::= (F, fileAttached).

These expressions give all the potential sequences of message types that may occur
in the future when ProjectService receives the message attachFileToProject. Especially,
the receipt of checkUserPermission by microservice type PmS may lead to the sending of
two messages of type findUser to the same or two microservices of type US 1. Similarly, the

1. It may be different microservices (instances) in the case of redundancy of the user service for tolerating failures
(the state transfer or coordination between the replicas being out of the scope of our work).

77

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

receipt of findUser by microservice type US may lead to two messages of type userFound

to the same or two microservices of type PmS. Observe also that (PmS, userFound) has
two sequences, which we number seq.1 and seq.2 for (PS, permissionChecked) and (FS,

permissionChecked), respectively.
We denote by T the set of microservice types, by M the set of message types, and

by a slight abuse of notation, F is also the type of the front-end. Therefore, a message
type dependency is defined by the following terms:

1) a microservice type τr ∈ T that “receives” µr,

2) a “received” message type µr ∈M ,

3) a “sent” message type µs ∈M that τr “sends” in reaction to µr,

4) a microservice type or the front-end τs ∈ T ∪ {F} that “receives” µs,

5) the alternative sequence (a number),

6) the offset in the alternative sequence, and

7) the number of consecutive repetitions nrep of the sending of µs.

We denote a message type dependency by δ =
(
(τr, µr), (τs, µs), seq, offset, nrep

)
and

the set of message type dependencies by ∆. For example, in the previous expression for
(PmS, UserFound), the offset of (FS, permissionChecked) in the second sequence (seq = 2)
is 1 (offset = 1).

Hereafter, we build the directed multigraph G∆ =
(
(T ∪ {F})×M,∆, φ∆

)
, where

(T∪{F})×M is the set of vertices, ∆ is the set of edges, and φ∆ is the incidence function
mapping every edge to an ordered pair of vertices, here the function mapping the message
type dependency

(
(τr, µr), (τs, µs), seq, offset, nrep

)
∈ ∆ to the pair

(
(τr, µr), (τs, µs)

)
∈

T × (T ∪ {F}).
At a given consistent distributed snapshot s, we assume that we can calculate the

potential message types of the messages that a given microservice may receive or send
to terminate the collaboration. More precisely, a solution can trace the collaborations in
which a microservice participates and the messages that this microservice has already
received and sent before s. In other words, from G∆ of configuration C, when an
application message mr, with mr.type = µr, is sent by msr, with msr.type = τr, to
mss, with mss.type = τs, by knowing cid(m), it is possible to calculate the potential
message types, denoted by pmsgt(cid(m)), that may be used for the treatment of m.
For this calculation, the numbers seq and nrep are used (see below in the example).

Figure 4.4 depicts the multigraph of message type dependencies for the use
case “attach a file to a project” of Figure 4.1. The triples on the edge of the

78

4.3. Snapshot-Based Update Setting

graph represent the three last terms (seq, offset, nrep) of the message type depen-
dency. From this multigraph, we can calculate the paths reachable from a given
vertice. For example, when receiving message userFound after snapshot pms2, we
have permissionChecked ∈ pmsgt(cid(userFound)). As another example, at snap-
shots pms3 or pms4, the edge from (PmS,checkUserPermission) to (US,findUser)) has
been crossed once, and by nrep = 2 we can deduce that pmsgt(cid(findUSer)) =
{userFound, permissionChecked, fileAttached, doesFileExist, checkUserPermission, findUser},
i.e. microservice pms may be called in the future in the context of the same collabora-
tion. Whereas, at snapshot pms5, the edge from (PmS,checkUserPerm.) to (US,findUser)
has been crossed once, and by nrep = 2 we can deduce that pmsgt(cid(findUSer)) =
{userFound, permissionChecked, fileAttached, doesFileExist, checkUserPerm.}, i.e. pms
will no more participate in the future to the collaboration.

PS, attachFileToProject AS, getLogin
(1,1,1)

PS, login

(1,1,1)

PmS, checkUserPermission
(1,1,1)

US, findUser

(1,1,2)

PmS, userFound
(1,1,2)

PS, permissionChecked FS, permissionChecked

(1,1,1) (2,1,1)

FS, doesFileExist

(1,1,1)
(1,1,1)

(1,1,1)

PS, fileExists

F, fileAttached

(1,1,1)

Figure 4.4 – Multigraph of message type dependencies when receiving the message type
attachFileToProject in the use case AttachFileToProject as modelled in Figure 4.1

Consequently, since we presented in Section 4.3.1.1 the collaboration as an abstraction
of a graph of messages (requests, replies, and events), we can define the specification of
a configuration as follows.

79

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

Definition 1 (Specification of a configuration). The specification SC of configuration C
is composed of the directed multigraph of message type dependencies C.type.G∆ (C.G∆

in short) of its configuration type C.type, the set of microservices C.S, the set of links
C.L, and the directed multigraph of link dependencies C.type.GL (C.GL in short), i.e.
S=(C.type, C.G∆, C.S, C.L, C.GL).

4.3.2 Adding continuity of service

Since a dynamic software update is expressed in terms of configurations, i.e. a source
configuration C to a target configuration C ′, we do not limit ourselves to the version
changes of only one microservice. Architects may want to specify service continuity:
some replacement microservices and links are created before the old versions are
removed so that there is always an instance, running either the old or new version,
that is available and ready to receive messages. This information should also be of
interest to system administrators in order to bring into play deployment strategies
such as Blue Green deployment [Fowler, 2010] or Canary release [Sato, 2014]. But,
deployment strategies are out of the scope of this thesis.

To express continuity of service requirements, software architects provide the follow-
ing information in the software update request for a new configuration C ′:

1) The multigraphs C ′.GL of the link dependencies and C ′.G∆ of the message type
dependencies, the multigraphs C.GL and C.G∆ being already known.

2) The set RS of pairs of microservices (ms,ms′) indicating that microservice ms in
configuration C is being replaced by microservice ms′ in configuration C ′.

3) Assuming that ms 6= ms′, the set RL of pairs of links(
(mso, co, c,ms), (mso, c

′
o, c
′,ms′)

)
indicating that link (mso, co, c,ms) in configu-

ration C is being replaced by link (mso, c
′
o, c
′,ms′) in C ′.

InRL, the case ms = ms′, which corresponds to a connector change, is not considered
here because we limit the study to microservice changes. Microservice ms that is linked
with microservices ms1,ms2... that do not evolve is replaced by microservice ms′. The
links between ms and ms1,ms2... are either replaced or removed. In case of replacement,
these replacements belong to RL. We assume that the information provided in the
software update request is correct by construction of the type and instance models at
design time. The role of the replacement sets is to express service continuity as follows.

When a microservice is an entry point to the distributed application and changes
version, the old version and the current version may run in parallel in an intermediate
configuration so that, for instance, collaborations that are started in the source con-
figuration can terminate, and collaborations are executed in the new configuration as

80

4.3. Snapshot-Based Update Setting

soon as the microservice of the new version is operational. Observe that there may
exist intermediate and transient configurations between a source configuration and a
target configuration.

Definition 2 (Continuity of service). When transitioning from configuration C
to configuration C ′ with replacement sets RS and RL, a dynamic update satisfies
service continuity if and only if the actors (through front-end F) or the neighbouring
microservices always have access to one of the new or old versions of the microservices
in RS using links in RL.

When expressing continuity of service, we do not specify which version of a mi-
croservice takes part to a given collaboration, the old or new versions. For instance,
can we change the version of a microservice while a collaboration is in progress? This
depends on the definition of essential and non-essential changes that we now introduce
from [Sokolowski et al., 2022].

4.3.3 Essential and non-essential changes

Without dynamic software updating, because a configuration C conforms to its
configuration type C.type, by using C.GL and C.G∆, a collaboration can safely be
executed in C. But in case of dynamic software updating, the configuration C, the
configuration type C.type, and the multigraphs of links C.GL and of message type
dependencies C.G∆ may change during the execution of a collaboration. Note that
nothing for the moment forces a collaboration cid to be fully executed in current
configuration C or in next configuration C ′ with C ′.type 6= C.type and C ′.G∆ 6= C.G∆.
This is the role of the DSU algorithm to control the execution of collaborations when
updating.

According to [Sokolowski et al., 2022] and extrapolating from workflow tasks to
microservice messages, “a change is an essential change for a [collaboration cid] if the
possible execution of any future message [in the next configuration] is not guaranteed
to produce the same resulting state and side effects as executing [cid in current
configuration]”. Therefore, observe that an essential change is one that changes the
message type dependencies of a collaboration, and the dynamic software updating
algorithm must consider essential changes of collaborations that have already started
and that are not terminated when the updating is started.

By a slight abuse of language, we speak of a version change of a microservice
instead of the more complete formulation “microservice type change from τ to τ ′ with
replacement of a microservice ms of type τ by a new instance ms′ that conforms to the
new type τ ′”. Microservice ms possesses offered APIs that specify the message types it

81

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

may receive. If ms of type τ may receive a message of type µ from a microservice of
type τi in configuration C, then the change is essential if this is no more the case of
ms′ of type τ ′ in configuration C ′. Likewise, ms possesses required APIs that specify
the message types it can send. If ms can send a message of type µ in configuration C
to a microservice of type τi, then the change is essential if this is no more the case of
ms′ of type τ ′ in configuration C ′. In a dual manner, message types can be added into
C ′ and change the behaviour (of the specification). A dynamic update from C to C ′ is
defined as the tuple (C, SC, C ′, SC′ ,RS,RL).

Definition 3 (Essential change). In the context of dynamic update
(C, SC, C ′, SC′ ,RS,RL), a version change of microservice ms in configuration C and
with ms.type = τ into microservice ms′ in configuration C ′ and with ms.type = τ ′ is
an essential change w.r.t. collaboration cid if a potential message type µcid that ms
may send or receive when involved in cid no longer exists in C ′.G∆ as it is in C.G∆ or
appears as new in C ′.G∆. Formally,

essentialchange(ms, cid) =
∃(ms,ms′) ∈ RS, ∃τi ∈ T, ∃µcid ∈ pmsgt(cid),
∧ms.type = τ ∧ms′.type = τ ′ ∧ τ 6= τ ′ ∧ τi ∈ T ′

∧ ∨ ⊕ ∃
(
(τi, ∗), (τ, µcid), ∗, ∗, ∗

)
∈ C.G∆

⊕ ∃
(
(τi, ∗), (τ ′, µcid), ∗, ∗, ∗

)
∈ C ′.G∆

∨ ⊕ ∃
(
(τ, µcid), (τi, ∗), ∗, ∗, ∗

)
∈ C.G∆

⊕ ∃
(
(τ ′, µcid), (τi, ∗), ∗, ∗, ∗

)
∈ C ′.G∆

As a first example, let the microservice fs of type File Service change version to
remove authorisation. Considering C.G∆ and C ′.G∆, removing the authorisation is
equivalent to removing the edge from (FS,doesFileExist) to (PmS,checkUserPerm.) plus
removing the vertice (FS,permissionChecked). If fs is replaced at snapshot fs2 then fs
cannot consume message permissionChecked and the collaboration is in error.

As a second example, imagine that microservice ps of type Project Service is
changed so that the authentication getLogin must be performed by a synchronous
request. So, (PS, attachFileToProject) ::= (AS, getLogin) is changed into expression
(PS, attachFileToProject) ::= (AS, getLogin)(PmS, checkUserPermission). Considering
C.G∆ and C ′.G∆, this is equivalent to adding an edge from (PS,attachFileToProject) to
(AS,getLogin) plus removing the vertice (PS,Login). If the replacement of ps occurs at
snapshot ps2, then ps cannot consume message Login and the collaboration is in error.

82

4.3. Snapshot-Based Update Setting

4.3.4 Correct dynamic update

First, recall that we assume that the same update, but performed offline, is correct
and that, differently from [Ma et al., 2011, Baresi et al., 2017], a dynamic update tran-
sitions the distributed application from a source configuration to a target configuration,
i.e. involving not only one microservice but a set of microservices. The definition
must then consider microservices that are removed in addition to version-changing
microservices.

In addition, since the approach is based on a model at runtime, depending on the
strategy chosen for the transition, e.g. concurrent version [Baresi et al., 2017], the type
model may contain both current and next microservice types. Accordingly, the DSU
algorithm may transition the distributed application from a source configuration C
to a target configuration C ′ via an intermediate configuration, denoted by C+, that
instantiates both current and next types. Importantly, we assume that specifications SC
and SC′ are built so that SC+ , which constrains C+, are correct, i.e. all the type models
can be instantiated, and the corresponding application is functionally meaningful. We
denote by I (s) the set of collaborations in progress, a.k.a. ongoing collaborations,
at a given snapshot. We consider that, using C.G∆, every microservice is capable of
knowing whether it has already participated in a collaboration cid ∈ I (s), and if so,
whether it may participate again to cid before the termination of the collaboration.
More precisely, we can calculate the set pmsgt(cid) of potential message types of the
messages that a given microservice may receive or send to terminate the collaboration.

Next, using multigraph C.G∆, the following information can be derived. We denote
by pp(C.G∆, s, cid) the set of past participants (microservices) that have already par-
ticipated in collaboration cid in the context of configuration C and before consistent
snapshot s, and by fp(C.G∆, s, cid) the set of potential future participants (microser-
vices) necessary to terminate collaboration cid in the context of configuration C and
from consistent snapshot s (this set does not include microservices that have already
participated in cid before s and that will no more participate). For example, by the
expression (US, findUser), microservice pms knows that it may participate twice by
receiving a message userFound.

In order to formalise the various situations using consistent distributed snapshots,
we label some of them. sr denotes the logical time of the replacement of microservices,
e.g. sr[ms] and sr[ms′] for the replacement of ms by ms′. sd denotes the logical time
of the deletion of microservices, e.g. sd[ms] for the deletion of ms. In the case of
creation, the new microservice is operational, but it is up to the architect or the system
administrator to decide whether it receives application messages or not. In the case

83

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

of replacement, the state transfer from ms to ms′ is performed, ms can be stopped,
and ms′ can receive application messages. We denote by Cids the set of collaboration
identifiers.

Definition 4 (Correct dynamic update). A dynamic update d =
(C, SC, C ′, SC′ ,RS,RL) is correct if and only if:
— if ms is going to be removed then no ongoing collaborations may involve again

ms from snapshot sd[ms],
— if ms is going to be replaced by ms′ and the version change is essential for an

ongoing collaboration, say cid, then no ongoing collaborations, say cid i, are such
that ms has already participated in cid i at snapshot sr[ms] and may again be
involved to cid i from snapshot sr[ms].

Formally,
correct(d) = ∀ms ∈ C.S,
∧ms /∈ C ′.S =⇒ @cid ∈ Cids,ms ∈ fp(C.G∆, sd, cid)
∧ ∧ ∃(ms,ms′) ∈ RS

∧ ∃cid ∈ I (s), essentialchange(ms, cid)
=⇒ ∀cid i ∈ I (s), ∧ ms /∈ pp(C.G∆, sr, cid i)

∧ ms /∈ fp(C.G∆, sr, cid i)

In the use case “attach a file to a project” modelled in Figure 4.1, microser-
vice pms cannot be deleted at snapshot s = (ps4, as2, pms4, us2, fs2) because pms ∈
fp(C.G∆, s, cid(attachFileToProject)). Concerning microservice ps, it cannot be re-
placed at snapshot ps2 if the change is essential, for example, as seen previously, in the
case of the new version assuming that the getLogin asynchronous message is replaced
by a client-server request.

4.3.5 Snapshot-based definitions of the update conditions

In this section, the three safe state-of-the-art update conditions that we are interested
in, i.e. quiescence (Section 4.3.5.1), freeness (Section 4.3.5.2) and essential freeness
(Section 4.3.5.3), are reformulated following our snapshot-based approach.

4.3.5.1 Quiescence

According to [Kramer and Magee, 1990] and extrapolating from transaction de-
pendencies to message dependencies, DSU algorithm involves the establishment of a
quiescence region that is specified as the set of microservices that must remain passive,
not participate in ongoing collaborations, and not initiate collaborations during the
update, i.e. these microservices are blocked. Given a microservice ms, this set is

84

4.3. Snapshot-Based Update Setting

composed of the microservices that belong to paths of message dependencies in GL

that include ms.

Definition 5 (Quiescence). In the context of dynamic update (C, SC, C ′, SC′ ,RS,RL)
and at consistent distributed snapshot s, microservice ms of configuration C is quiescent
if ms and all the microservices that can directly or transitively send messages to ms
are passive, and if none of these microservices has initiated a collaboration that is not
terminated. Formally, quiescent(ms) = ∀msi ∈ pathsTo(ms) ∪ {ms}, passive(msi) ∧(
@cid ∈ I (s), firstms(cid) = msi

)
For example, in Figure 4.1, microservice pms depends upon microservice ps (through

message checkUserPermission), i.e. ps ∈ pathsTo(pms), ps itself depends upon as
(through login), etc. Indeed, we have pathsTo(pms) = {ps, as, pms, us, fs}, and then
pms is quiescent before the beginning and after the end of the collaboration, respectively
at consistent distributed snapshots (ps1, as1, pms1, us1, fs1) and (ps5, as4, pms6, us4, fs4).

4.3.5.2 Freeness

According to [Ma et al., 2011, Baresi et al., 2017] and again extrapolating from
transaction dependencies to message dependencies, to be free at the global state locating
the deletion or replacement of the ms microservice, ms must not be involved in any
ongoing collaboration that might require its participation again. Freeness implies that
a collaboration is entirely executed either in the context of source configuration C or in
the context of target configuration C ′.

Definition 6 (Freeness). In the context of dynamic update (C, SC, C ′, SC′ ,RS,RL)
and at consistent distributed snapshot s, microservice ms of configuration C is free if it is
passive, and no ongoing collaboration has already involved ms at s and may involve again
ms from s. Formally, free(ms) = passive(ms) ∧ @cid ∈ I (s),ms ∈ fp(C.G∆, s, cid).

For example, in Figure 4.1, the participation of pms in the collaboration starts after
snapshot ps2 and the sending of checkUserPermission, and ends, in case of failure, after
snapshot pms3, and in case of success, after snapshot pms5. Therefore, compared to qui-
escence, pms is also free before consistent distributed snapshot (ps3, as2, pms1, us1, fs1),
and after consistent distributed snapshot (ps4, as2, pms5, us3, fs2).

4.3.5.3 Essential freeness

In [Sokolowski et al., 2022], the authors add the distinction between essential and
non-essential changes. Updating microservice ms with non-essential changes can be
done as soon as ms is passive, and updating ms with essential changes must be done
in a version consistent manner.

85

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

Definition 7 (Essential-Freeness). In the context of dynamic update
(C, SC, C ′, SC′ ,RS,RL) and at consistent distributed snapshot s, microservice ms of
configuration C is essentially free if it is passive, and it is free or its change is non-
essential w.r.t. the ongoing collaborations at s. Formally, essentiallyFree(ms) =
passive(ms) ∧

(
free(ms) ∨ ∀cid ∈ I (s),¬essentialchange(ms, cid)

)
.

For example, in Figure 4.1, compared to freeness, if the change is non-
essential, pms is also essentially free for instance at consistent distributed snapshots
(ps3, as2, pms2, us2, fs1), and (ps4, as3, pms4, us3, fs2).

4.4 Snapshot-Based DSU Algorithm

The role of the DSU algorithm is, first, to compute the set of ongoing collaborations
at a given consistent distributed snapshot and detect the termination of collabora-
tions (Section 4.4.1), second, to maintain the update condition while managing the
reconfiguration (Section 4.4.2). The central entity of our solution is the autonomic
manager. The autonomic manager should block microservices as little and as briefly
as possible. This is why, in addition to the three different update conditions, four
updating strategies are presented. Our snapshot-based DSU algorithm is safe because
we verify by construction that every dynamic update is a correct one (cf. Definition 4).

4.4.1 Termination detection of collaborations

A collaboration cid is terminated when all the microservices and the front-end that
may be involved in cid are passive and no application messages about cid are in transit.
Snapshot-based distributed detection algorithms count the number of application
messages that are sent and received, and build a consistent distributed snapshot to
get these counters in order to check whether the collaboration is terminated [Chandy
and Lamport, 1985, Dijkstra, 1987]. It is possible to build snapshots only when
the termination of the collaborations must be asserted or periodically. Consistent
distributed snapshots are initiated by the autonomic manager and triggered in ActionM
of Algorithm 2. We do not include the algorithm of front-end F , as it is very similar.

For each global state of the distributed system, we denote the number of application
messages that are in transit for collaboration cid by inTransit[cid]. The termination
of cid is detected when all microservices plus F are passive and inTransit[cid] equals 0.
To count the number of in-transit messages, every microservice ms and F are equipped
with counters of application messages mc, one counter per collaboration identifier, e.g.
mcms[cid] and mcF . The microservices plus F collectively maintain the invariant P1

86

4.4. Snapshot-Based DSU Algorithm

defined as:
P1 : ∀cid ∈ Cids, inTransit[cid] = mcF + Σms∈S mcms[cid]

Invariant P1 is obtained when mc[cid] are initially 0 and by the following rule (with
a similar rule for F):
— Rule 1: When microservice ms sends (resp. receives) an application message for

collaboration cid, it increments (resp. decrements) mcms[cid].
The autonomic manager, microservices and F possess a snapshot counter, which the

autonomic manager increments when launching a new consistent distributed snapshot.
The autonomic manager broadcasts a snapshot message to all microservices plus F .
The microservices obey the following rules (with similar rules for F):
— Rule 2: Every application message is tagged with the snapshot counter of the

sending microservice.
— Rule 3: A microservice takes a snapshot and sends a snapshot message to the

autonomic manager once per distributed snapshot and as soon as it receives either
a snapshot message from the autonomic manager or an application message that
is tagged with a snapshot counter of a greater value.

— Rule 4: A microservice only sends a snapshot message when it is passive.
The counting of the number of application messages is per collaboration, and the

sum in Invariant P1 is computed by the autonomic manager from the values of the
counters recorded by the microservices and F . Clearly, the number of messages can
be counted incrementally, i.e. from snapshot to snapshot as long as the following two
conditions are respected:
— The autonomic manager does not start a distributed snapshot until the previous

one is finished.
— The distributed snapshots are consistent: no application message is counted

“received” and not “sent” in the global state that corresponds to the snapshot.
The pseudo-code at microservices for the application algorithm of DSU and the

termination detection algorithm is written in Algorithm 2, which complements the
basic Algorithm 1 (see Section 4.2.2).

Lemma 1. Algorithm 2 builds a consistent distributed snapshot in finite time.

Proof. (Sketch) Since the autonomic manager broadcasts a snapshot message to every
microservice and to F , by Rule 2, and by the fault-free hypothesis of the distributed
system model, all microservices plus F eventually receive a snapshot message or an
application message with an incremental snapshot counter. Therefore, by Rule 3, all
microservices and F eventually take a snapshot of the counters and send it to the
autonomic manager. So, the autonomic manager eventually receives a snapshot from

87

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

Algorithm 2 Microservice with termination detection—code at ms
1: Local variables:
2: status ∈ {active, passive} // passive allows to snapshot
3: sc ∈ N init 0 // Snapshot counter
4: mc ∈ Cids → N init ∅ // Message counter of appli. msgs, per cid
5: R: {〈cid, scs, m〉 has arrived from s ∧ status = passive}
6: receive 〈cid, scs, m〉 from s
7: mc[cid]← mc[cid]− 1 (* Rule 1 *)
8: if sc < scs then
9: send 〈snapshot, scs, mc〉 to am (* Rules 3 and 4 *)
10: sc ← scs

11: status ← active; treatment of m, including calls to S

12: S: {〈cid, sc, m〉 is being sent to d ∧ status = active}
13: mc[cid]← mc[cid] + 1 (* Rule 1 *)
14: send 〈cid, sc, m〉 to d (* Rule 2 *)
15: I: {status = active}
16: status ← passive
17: M : {〈snapshot, scam〉 has arrived from am ∧ status = passive}
18: receive 〈snapshot, scam〉 from am
19: if sc < scam then
20: send 〈snapshot, scam, mc〉 to am (* Rules 3 and 4 *)
21: sc ← scam

all the microservices and F : the distributed snapshot is completed in finite time. In
addition, by the FIFO order of the links, every application message sent after a local
snapshot of the sender is received after the local snapshot of the receiver. Thus, the
distributed snapshot is consistent.

Theorem 2. Algorithm 2 is a correct termination-detection algorithm for collabora-
tions.

Proof. (Sketch) By applying Rule 1, the algorithm is designed so that predicate P1 is
an invariant of the algorithm for every collaboration. By Lemma 1 and Rule 4, the
evaluation of the predicate by the autonomic manager is done in a consistent way
and using local snapshots at which all microservices and F are passive. Therefore,
the autonomic manager eventually detects that there are no more messages in transit,
and all microservices and F no more participate in the given collaboration, i.e. the
termination of the collaboration is safely and eventually detected.

4.4.2 DSU algorithm and updating strategies

In this section, we first outline the three main phases of our DSU algorithm (Sec-
tion 4.4.2.1). Then, we present different versions of DSU algorithm for different update
conditions with different reaching strategies: in Section 4.4.2.2 for quiescence and in
Section 4.4.2.3 for freeness and essential freeness.

88

4.4. Snapshot-Based DSU Algorithm

4.4.2.1 Overview of the DSU algorithm

We make sure that two executions of the DSU algorithm do not overlap one another.
It is achieved simply by means of an execution counter that is incremented at each
startup, and with control messages from previous executions being ignored. In the
sequel of the section, DSU execution counters are omitted.

The DSU algorithm is decomposed into phases. Each phase is structured into a
wave algorithm [Tel, 2002], i.e. each termination action of the wave at the autonomic
manager is causally preceded by an action in each microservice. The initiator of the
wave (phase) is the autonomic manager. The followers of the wave are the microservices
plus front-end F . The properties of a wave algorithm are the following ones:

(1) Termination: Each wave is finite.

(2) Decision: Each wave contains at least one decide action.

(3) Dependence: In each wave, each decide action is causally preceded by an action
in each follower.

The decide action of the wave is the end of the phase at the autonomic manager. The
first receive action of the followers is the phase action of the microservice or front-end.
The send action of a follower to the initiator is to declare the end of the contribution of
the microservice or front-end to the phase. In addition, we also constrain the wave so
that the first receive actions of the followers happen at a global state that is consistent,
in order to build a consistent distributed snapshot, so that the detection of the property
to reach is meaningful.

In the following, we present the different versions of the DSU algorithm according
to the different properties to reach before updating (quiescence, freeness and essential
freeness), and according to the different reaching strategies. When waiting for the
update condition, the autonomic manager periodically launches a collaboration termi-
nation detection using Algorithm 2. Practically speaking, note that Algorithm 2 must
be completed to trace the messages received in a collaboration by using the offset and
nrep attributes of message type dependencies.

4.4.2.2 DSU algorithm for quiescence

The quiescence property is interesting when the message type dependencies are not
or cannot be modelled, i.e. the DSU algorithm can only rely on GL and G ′L. In that
situation, practically speaking, since the updating is expensive, we assume that the
replacement set RS specifies a set of microservices that must be replaced together, i.e.
atomically w.r.t. collaborations. In other words, quiescence is used when there is no

89

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

other way to updating and by defining the smallest set of microservices to be jointly
evolved. Clearly, if new collaborations that may involve microservices to be replaced are
blocked by the front-end F , then the quiescence property becomes a stable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable property.
Then, let define the quiescent set qs(ms) as the set of microservices to passivate in order
to reach the condition quiescent(ms), thus we have qs(ms) = ⋃

(ms,∗)∈RS

quiescent(ms).

The DSU algorithm for quiescence is decomposed into the following phases:
P1) Inform all the microservices and the front-end F that a new instance of the DSU

algorithm starts.
P2) Create the new microservices and the new microservice links for C ′.
P3) From now on, block new collaborations in order to passivate microservices in⋃

(ms,∗)∈RS

quiescent(ms).

P4) When quiescence is reached for all the microservices to be replaced, perform all
the replacements.

P5) Inform all the microservices and F to start execution in C ′.
P6) Delete microservices and links that have been replaced.
P7) Inform all the microservices and F that the updating is finished.

4.4.2.3 DSU algorithms for essential freeness and freeness

First of all, recall that essential freeness and freeness are local properties, i.e. they
can be stated at the local snapshot of a microservice. However, they may not be stable
properties, i.e. although every collaboration completes in finite time, there could always
be collaborations running on a microservice.

Following [Baresi et al., 2017] and [Sokolowski et al., 2022], here is the list of
strategies that we consider: “concurrent versions”, “blocking messages” and “block-
ing collaborations” (resp. “blocking tasks” and “blocking instances” in the case of
workflows [Sokolowski et al., 2022]), and “waiting (at most t seconds)”.

Concurrent versions, blocking messages/collaborations updating strategies. In the
“concurrent versions” strategy, microservice ms and its replacement ms′ can run concur-
rently so that ms terminates the execution of ongoing collaborations and ms′ takes care
of new collaborations. Therefore, essential freeness or freeness become a stable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable property.
It is worth noting that it is the only strategy that allows service continuity.

In the “blocking messages” strategy, microservice ms and its replacement ms′ cannot
run concurrently, e.g. they must operate exclusively. Locally, ms traces its participation
in collaborations and is able to state whether it is free (resp. essentially free). For ms
to stop participating in new collaborations, neighbouring microservices block messages

90

4.4. Snapshot-Based DSU Algorithm

of new collaborations and for ms. Then, freeness or essential freeness becomes a
stable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable property. The replacement may include a state transfer during which ms and
ms′ must synchronise.

In the “blocking collaborations” strategy, microservice ms and its replacement ms′

cannot run concurrently. No new collaboration that may involve ms may be started so
that freeness or essential freeness becomes a stable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable propertystable property. Again, the replacement
may include a state transfer during which ms and ms′ must synchronise.

The DSU algorithm for strategies “concurrent versions” and “blocking messages/-
collaborations” is decomposed into the following phases:
P1) Inform all the microservices and the front-end F that a new execution of the DSU

algorithm starts.
P2) Create the new microservices and the new microservice links for configuration C ′.
P3) From now on:

— microservices that will disappear cannot initiate new collaborations, and
— in strategy “concurrent versions”, new collaborations are executed in the

context of configuration C ′ using the new microservices and microservice links,
— in strategy “blocking messages”, microservices and F block messages of new

collaborations and for microservices to replace,
— in strategy “blocking collaborations”, microservices and F block new collabo-

rations that may involve microservices to be replaced.
P4) When freeness (resp. essential freeness) is reached for microservices in RS to be

replaced, perform the replacements.
P5) Wait for all the replacements to be done in order to delete microservices and links

that have been replaced.
P6) Inform all the microservices and the front-end F that the updating is finished.

Waiting (at most t seconds) updating strategy. A microservice ms and its replacement
ms′ cannot run concurrently. When the freeness (resp. essential freeness) property is
true, ms tries to maintain the property up to the blocking of all incoming messages
from its neighbours. If the synchronisation with neighbours succeeds, the microservice
asks the autonomic manager for the replacement. As done in [Vandewoude et al., 2007],
in order to ensure the liveness property of the updating in finite time, we switch after t
seconds to a blocking solution, i.e. either the DSU algorithm for strategy “blocking
messages” or “blocking collaborations”, or even the DSU algorithm for quiescence.

DSU algorithm for strategy “waiting” is composed of the following phases:
P1) Inform all the microservices and the front-end F that a new execution of the DSU

algorithm starts.

91

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

P2) Create the new microservices and the new microservice links for configuration C ′.
P3) During at most t seconds, when freeness (resp. essential freeness) is reached at a

microservice to be replaced, synchronise with neighbours to block all incoming
messages, and if synchronisation succeeded (i.e. freeness or essential freeness still
holds) perform the replacement.

P4) If some microservices have not been replaced before the deadline of t seconds,
then move either to the DSU algorithm for blocking messages/collaborations at
Phase 3 or to the DSU algorithm for quiescence at Phase 3.

P5) Delete microservices and links that have been replaced.
P6) Inform all the microservices and the front-end F that the updating is finished.

4.5 Discussion

In this chapter, we have tackled the problem of dynamic software updating at
the configuration level for microservice-based applications. Using our complemented
runtime model, the autonomic manager middleware service decides when the updating
of microservices can be performed safely and how the impacted microservices are
kept in a consistent state. In addition, such a middleware service can use different
updating strategies to trade-off between characterising the impact of changes (e.g.
whether essential or not) and minimising the duration of interruptions. The distributed
application evolves incrementally from a configuration to another.

In [Ma et al., 2011, Baresi et al., 2017], the authors model what they call dynamic
dependencies to trace the execution of transactions with past/future edges that are
added or removed at runtime: past edges for already executed transactions and future
edges for transactions that may be sent afterwards. In our work, we define message type
dependencies from which we can calculate the potential past and future participants of
collaborations. In addition, their work is limited to updating only one component at a
time in transaction-based systems, where, in our work, a dynamic update concerns not
only one microservice but a set of microservices, and not only transactions but also
events.

In [Sokolowski et al., 2022], the developers manually tag component changes to
be essential or not. In our proposal, developers complement the runtime model of
Chapter 3, and we formalise the category of changes of being essential or not by
computing microservice changes as the comparison of the set of received message types
and of the set of sent message types (in reaction to the received message types). In
addition, the workflow tasks can be called synchronously or asynchronously, then not
limiting to client-server synchronous transactions. In our work, we bring into play

92

4.6. Discussion

microservice architectures that contain both client-server (synchronous) interactions
and publish-subscribe (asynchronous) interactions. We formulate essential freeness for
these systems. In their work, the software architecture follows the Function-as-a-Service
style for workflow-based applications. The DSU algorithm uses the pattern of diffusing
computations of the workflows in order to add control messages sent by workflow
engines that evaluate the update condition and can, for example, block components or
messages.

In conclusion, previous DSU algorithms of the literature are dissemination-based:
whether in periods without updating or during updating, they complement the ap-
plication algorithm with control messages to detect the update condition [Ma et al.,
2011, Baresi et al., 2017, Sokolowski et al., 2022]. These algorithms are optimal in the
worst case.

For microservice-based architectures, we take a different approach: only periodically
or when the update condition must be asserted, for instance because there is a recon-
figuration request due to version changes, our DSU algorithm takes a periodic global
snapshot of the distributed application. The rationale for this choice are the following:
(1) microservice applications can be message-intensive so targeting the worst-case mes-
sage complexity is limiting, (2) the bidirectional property of links cannot be obtained
in a straightforward way with publish-subscribe connectors, and it is not reasonable
to assume that brokers are configured for this purpose, (3) it is possible to express
the update condition using consistent global system states, i.e. consistent distributed
snapshots, and (4) the DSU algorithm, which uses primitives such as suspend/resume
execution, create/delete microservices, link/unlink microservices, etc., is classically
based on phases, which are naturally delimited by global system states, i.e. distributed
snapshots.

Finally, there exist situations in which an entity is specifically designed to be
composed with others, and both entities must evolve simultaneously. Apart from [Van-
dewoude et al., 2007], previous works [Ma et al., 2011, Baresi et al., 2017, Sokolowski
et al., 2022] do not consider the version change of a set of microservices. In [Vandewoude
et al., 2007], the problem is approached from the implementation point of view. In our
work, we consider the situation at the time of specification, and we formalise the service
continuity property. In addition, the knowledge of replacement sets to express service
continuity should also be of interest to system administrators to enable deployment
strategies such as blue/green deployment or canary release. Deployment strategies are
out of the scope of this thesis, but will be in our future work.

93

Chapter 4 - Snapshot-based Dynamic Software Updating of Microservices

4.6 Conclusion

To conclude this chapter, our contributions to the DSU problem for microservice-
based applications are summarized as follows:

— We propose a general model for dynamic updating of microservice-based appli-
cations with client-server and publish-subscribe interactions. It includes link
dependencies and message type dependencies that are built at design time and
are part of the model at runtime.

— We give a definition of dynamic updates in terms of configurations, i.e. sets of
microservices, not only one microservice. In order to express continuity of service,
we also introduce two replacement sets of pairs of microservices instances and of
communication links.

— We use a novel snapshot-based approach to define the correctness of a dynamic
update in microservices, the concept of essential and non-essential changes, and
the three state-of-the-art update conditions: namely quiescence, freeness, and
essential freeness.

— We propose a snapshot-based DSU algorithm that is decomposed into phases and
takes consistent distributed snapshots when necessary. The DSU algorithm is
expressed for the three update conditions and for the four updating strategies
of the literature: namely “concurrent versions”, “blocking messages”, “blocking
collaborations”, and “waiting (at most t seconds)”. For instance, using “concurrent
versions”, we ensure continuity of service.

In addition, a prototype of our DSU solution, and which is a proof of concept (not a
middleware), is currently being implemented. It is named ARBORE (for “ARchitecting
Based on microservice versiOns with REconfiguration”) and will be soon available at
the following URL: https://gitlabev.imtbs-tsp.eu/mimosae.

A conclusion of our two contributions and some perspectives for future works are
presented in the next chapter.

94

https://gitlabev.imtbs-tsp.eu/mimosae

Chapter 5

Conclusion and Perspectives

We begin this concluding chapter with a summary of the main contributions of our
work (Section 5.1). We then discuss some possible future works to extend our proposals
(Section 5.2).

5.1 Contribution Summary

In this thesis, we have addressed the software evolution of microservice-based
applications. We proposed solutions for modelling and tracking the evolutionary
changes of microservice architectures, and for dynamically updating the microservice
applications. The goal of our work and the industry requirements are summarised in
two issues. On the one hand, we help engineers to more easily and more efficiently
manage microservice version management by abstracting architectural evolution, tracing
changes, and calculating reconfiguration plans. On the other hand, we tackle software
updating at the level of the configuration of a running application, and we make the
dynamic software updating approach more easily applicable and practical to use. Our
main contributions have responded to the objectives as follows.

Specifying and modelling microservice-based application for version management. We
have proposed runtime models for representing microservice-based applications and
facilitating their version management. Our runtime model has two parts: one is the
type model that describes the structural abstraction of microservice architectures, and
the other is the instance model that captures the specific deployment configurations
of microservice-based applications. Every instance conforms to a valid type. In the
type model, we check that microservice types are instantiable. In the instance model,
we check that microservice instances are deployable. These models are built at design
time by engineers and used at runtime to mirror changes that occurr in the application,

95

Chapter 5 - Conclusion and Perspectives

following the “model at runtime” approach. The architectural elements to be versioned
are provided in the type model with an identifier and a version number, which explicitly
follows the syntactically well-defined SemVer policy. Then, deployable elements in the
instance model that instantiate the types are also syntactically versioned. Our runtime
models also support two communication mechanisms commonly-used in microservice
architectures, namely client-server synchronous communication and publish-subscribe
asynchronous communication.

Tracing evolutionary changes in microservice architectures. In order to trace evolution-
ary changes into microservice-based applications, we construct an evolution graph that
records the trajectory and history of how the application evolves over time. Our evolu-
tion graph also has two parts: the first one is made of configuration type snapshots built
from the type model, and the second one is made of configuration instance snapshots
built from the instance model. As version changes are applied, new snapshots of the
configuration type and of the configuration instance are created and committed to our
evolution graph. Every configuration instance snapshot conforms to a configuration
type snapshot. Practically speaking, an evolution is firstly traced in the type snapshots
of the graph, i.e. new microservice implementations are added in the implementation
repository, and, secondly, traced in the instance snapshots of the graph, i.e. a new
configuration of the microservice application is prepared before being deployed. Thus,
the evolution is considered as a transition from a source configuration to a target
configuration. Engineered in a prototype called MIMOSAE, a semi-automatic MAPE-
K control loop is implemented where our models act as its Knowledge base. An AI
Planner is used to compute a plan from a given configuration to a target configuration,
which contains a set of actions to be executed in order to reconfigure and redeploy the
managed system. In this first prototype, client service calls are stopped during updating.
Dynamic updating, i.e. while clients keep requesting the microservice application, is
the subject of the second contribution.

Snapshot-based formulation of dynamic updating. In order to answer the questions of
when dynamic updating can be performed safely and how the impacted microservices
can reach and maintain a consistent state, we have first complemented our runtime
models with a microservice execution model. This execution model includes microser-
vice link dependencies that represent calling relationships between microservices in a
configuration, and message type dependencies that are used to track the progress of
message exchanges while servicing client calls. Then, microservice changes are charac-
terised to be essential or non-essential by using the added execution model: roughly

96

5.2. Contribution Summary

speaking, an essential change is one that impacts message exchanges. Concerning
continuity of service, we have introduced two replacement sets (pairs of microservices
instances and pairs of communication links), and we have added a front-end entity
between clients and microservices in order to smoothly switch from old version instances
to new version instances. Then, with the introduction of the concept of consistent
distributed snapshot, we have formalised the correctness of a dynamic update and
the update conditions of the literature (quiescence, freeness, which allows version
consistency, and essential freeness, which allows essential safety). As a consequence, it
is possible to evaluate the update condition only when needed or periodically by taking
photos (instead of systematically complementing all application exchanges between
microservices with control messages). This explains why our second contribution is
named after the concept of snapshot.

Wave-based DSU algorithm. The DSU algorithm not only ensures the correctness of
dynamic updates by preserving the correct completion of ongoing and future client
service calls (collaborations). The basis of the DSU algorithm is a distributed termi-
nation detection algorithm that is based on consistent distributed snapshots. Mainly,
microservices count applications messages that are sent and received for each collab-
oration, and provide these counters as part of their snapshot. Then, the autonomic
manager takes a consistent distributed snapshot and calculates termination detection
by using the counters provided by the microservices. In the context of a consistent
distributed snapshot, the autonomic manager evaluates the update conditions from
the termination detection of collaborations. Next, the DSU algorithm is organised
into waves: for instance, it informs all the microservices and the front-end that a
new execution of the DSU algorithm starts, it creates the new microservices and the
new links between microservices for the next configuration, it waits for the validation
of the update condition before performing the reconfiguration, and finally it informs
all the microservices and the front-end that the updating is finished. Importantly,
when waiting for the update condition, the role of the DSU algorithm is to make the
autonomic manager reconfigure the system so that the update condition becomes a
stable property: once reached, the update condition still holds up to performing the
reconfiguration (due to version changes). This is what is called the update strategy,
and we integrate the four update strategies of the literature (“concurrent versions”,
“blocking messages”, “blocking collaborations”, and “waiting (at most t seconds)”).
The DSU algorithm is currently being implemented in a prototype named ARBORE.

97

Chapter 5 - Conclusion and Perspectives

5.2 Future Work

We envisage the following future works.

Benchmarking microservices. We implement prototypes to validate the feasibility of
our proposals and to demonstrate our solution. After the complete implementation
of the second contribution, we plan a more systematic evaluation of our proposals
by running benchmarks. The authors of [Aderaldo et al., 2017] have defined a set
of benchmark requirements for microservice architectures and compared some open
source candidates. Some existing works ([Gan et al., 2019, Grambow et al., 2020])
have proposed their approaches for defining microservice benchmarks. We can apply
benchmarking to compare our contributions with other state-of-the-art solutions, for
the metrics of message complexity, update timeliness (the delay to reach the update
condition), and update duration (the overall time of an update).

Supporting more asynchronous communication patterns. Our work considers client-
server interaction mode for synchronous communication and publish-subscribe pattern
for asynchronous communication. In the field of distributed event-based systems, we
could also consider complex event processing and streaming, which are not considered in
this thesis. Therefore, in our future work, we plan to refine the models by adding other
asynchronous communication modes (such as stream communication), and position
technologies such as Kafka, which provides more than one communication mode, or
such as service mesh platforms (like Istio), which bring into play software defined
networking entities in microservice architectures.

Evolution beyond business microservices. In this thesis, we only consider the update of
business microservices, but not the update of other parts of the system. For example, we
could consider the version changes of the database systems or of the publish-subscribe
connectors. The particularity of the changes is that infrastructure elements are usually
based on external platforms or technologies from third-parties. Supporting such updates
constitutes another perspectives of our work.

Deployment strategies. The knowledge of replacement sets to express service continu-
ity should be of interest to system administrators to enable deployment strategies such
as blue/green deployment or canary release. These deployment strategies are out of
the scope of this thesis and can be introduced in future work. Some existing manage-
ment tools are developed to automatically manage the deployment and execution of
microservices that are wrapped into containers or other technology specific abstraction,

98

5.2. Future Work

e.g. Kubernetes or Cloud Foundry. But these tools are not aware of the behaviours of
the application. On this aspect, the work of [Tao, 2019, Boyer et al., 2018] provides a
starting point to use a declarative architecture-based approach to deploy microservices
on PaaS platforms by applying different deployment strategies.

Fault tolerance. Our contributions assume that the system is fault-free. Microservices,
connectors, etc. are not subject to failures, nor are the front-end and the autonomic
manager. We can start by considering simple faults such as crashes [Avizienis et al.,
2004]. This last future work can be divided into two directions. On the one hand, we can
consider microservice faults that appear after updating and try to mask them [Gärtner,
1999]. For example, a microservice may crash just after an update, thus indicating
that the new microservice version is not bug-free. In this case, the new microservice is
monitored to observe whether there is a failure just after updating. The autonomic
manager can then launch a rollback process to the previous configuration, to an
intermediate configuration, etc. The rollback policies can be leveraged by using the
evolution graph: several branches, rollback to a different branch, etc. On the other
hand, faults may happen during the execution of the DSU algorithm. In this case, we
can roll back to a previous wave of the DSU algorithm, etc. [Elnozahy et al., 2002]

99

Bibliography

[OAS, 2007] (2007). Web Services Business Process Execution Language Version
2.0 - OASIS Standard. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html. Accessed: 2022-07-21.

[Mim, 2022] (2022). Mimosae project on gitlab. https://gitlabev.imtbs-tsp.eu/
mimosae/mimosae.

[Aderaldo et al., 2017] Aderaldo, C. M., Mendonça, N. C., Pahl, C., and Jamshidi,
P. (2017). Benchmark requirements for microservices architecture research. In
2017 IEEE/ACM 1st International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering (ECASE), pages 8–13.
IEEE.

[Ahmed et al., 2020] Ahmed, B. H., Lee, S. P., Su, M. T., and Zakari, A. (2020).
Dynamic software updating: a systematic mapping study. IET Software, 14(5):468–
481.

[Akbulut and Perros, 2019] Akbulut, A. and Perros, H. G. (2019). Software versioning
with microservices through the api gateway design pattern. In 2019 9th International
Conference on Advanced Computer Information Technologies (ACIT), pages 289–292.
IEEE.

[Alex, 2022] Alex, N. (2022). What Is a Rolling Release? https://www.
easytechjunkie.com/what-is-a-rolling-release.htm. last accessed: 2022-09-
05.

[Alonso et al., 2004] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web
services. In Web services, pages 123–149. Springer.

[AMQP Consortium, 2010] AMQP Consortium (2010). AMQP 1.0 revision 0, Recom-
mendation. Standard, AMQP Consortium.

100

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://gitlabev.imtbs-tsp.eu/mimosae/mimosae
https://gitlabev.imtbs-tsp.eu/mimosae/mimosae
https://www.easytechjunkie.com/what-is-a-rolling-release.htm
https://www.easytechjunkie.com/what-is-a-rolling-release.htm

5.2. BIBLIOGRAPHY

[Avizienis et al., 2004] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1):11–33.

[Banijamali et al., 2020] Banijamali, A., Kuvaja, P., Oivo, M., and Jamshidi, P. (2020).
Kuksa: Self-adaptive microservices in automotive systems. In International Confer-
ence on Product-Focused Software Process Improvement, pages 367–384. Springer.

[Barais et al., 2008] Barais, O., Meur, A. F. L., Duchien, L., and Lawall, J. (2008).
Software architecture evolution. In Software Evolution, pages 233–262. Springer.

[Baresi et al., 2017] Baresi, L., Ghezzi, C., Ma, X., and La Manna, V. P. (2017).
Efficient Dynamic Updates of Distributed Components Through Version Consistency.
IEEE Trans. on Software Eng., 43(4):340–358.

[Barnes et al., 2013] Barnes, J., Pandey, A., and Garlan, D. (2013). Automated plan-
ning for software architecture evolution. In Proc. 28th IEEE/ACM ASE.

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software architecture
in practice. Addison-Wesley Professional.

[Bencomo et al., 2019] Bencomo, N., Götz, S., and Song, H. (2019). Models@ run.
time: a guided tour of the state of the art and research challenges. Software &
Systems Modeling, 18(5):3049–3082.

[Beugnard et al., 1999] Beugnard, A., Jezequel, J.-M., Plouzeau, N., and Watkins, D.
(1999). Making components contract aware. IEEE Computer, 32(7).

[Blair et al., 2009] Blair, G., Bencomo, N., and France, R. B. (2009). Models@ run.
time. Computer, 42(10):22–27.

[Bogner et al., 2019] Bogner, J., Fritzsch, J., Wagner, S., and Zimmermann, A. (2019).
Assuring the evolvability of microservices: insights into industry practices and
challenges. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 546–556. IEEE.

[Boyer et al., 2018] Boyer, F., de Palma, N., Tao, X., and Etchevers, X. (2018). A
Declarative Approach for Updating Distributed Microservices. In Proc. of the 40th
Int. Conf. on Software Engineering: Companion Proceeedings, ICSE ’18, pages
392–393, Gothenburg, Sweden.

[Buisson et al., 2016] Buisson, J., Dagnat, F., Leroux, E., and Martinez, S. (2016).
Safe reconfiguration of coqcots and pycots components. Journal of Systems and
Software, 122:430–444.

101

Chapter 5 - BIBLIOGRAPHY

[Chandy and Lamport, 1985] Chandy, K. M. and Lamport, L. (1985). Distributed
Snapshots: Determining Global States of Distributed Systems. ACM Transactions
on Computer Systems, 3(1):63–75.

[Chapman, 2014] Chapman, D. (2014). Introduction to DevOps on AWS. Amazon
Web Services.

[Chappell, 2004] Chappell, D. (2004). Enterprise service bus: Theory in practice.
O’Reilly.

[Chiba, 2000] Chiba, S. (2000). Load-time structural reflection in java. In European
Conference on Object-Oriented Programming, pages 313–336. Springer.

[Computing et al., 2006] Computing, A. et al. (2006). An architectural blueprint for
autonomic computing. IBM White Paper, 31(2006):1–6.

[Conway, 1968] Conway, M. (1968). How do committees invent. Datamation, 14(4):28–
31.

[Cook et al., 2001] Cook, S., He, J., and Harrison, R. (2001). Dynamic and static views
of software evolution. In Proceedings IEEE International Conference on Software
Maintenance. ICSM 2001, pages 592–601. IEEE.

[Cugola and Margara, 2012] Cugola, G. and Margara, A. (2012). Processing Flows of
Information: From Data Stream to Complex Event Processing. ACM Computing
Surveys (CSUR), 44(3):15:1–15:62.

[de Giacomo et al., 2021] de Giacomo, G., Lenzerini, M., Leotta, F., and Mecella, M.
(2021). From Component-based Architectures to Microservices: A 25-years-long
Journey in Designing and Realizing Service-based Systems. In Next-Gen Digital
Services. A Retrospective and Roadmap for Service Computing of the Future, pages
3–15. Springer.

[De Palma et al., 2001] De Palma, N., Laumay, P., and Bellissard, L. (2001). Ensuring
dynamic reconfiguration consistency. In Proc. 6th International ECOOP Workshop
on Component-Oriented Programming, pages 18–24.

[Decan and Mens, 2019] Decan, A. and Mens, T. (2019). What do package dependen-
cies tell us about semantic versioning? IEEE TOSE.

[Dijkstra, 1987] Dijkstra, E. W. (1987). Shmuel Safra’s version of termination detection.
EWD—Note 998. circulated privately, http://www.cs.utexas.edu/users/EWD/
ewd09xx/EWD998.PDF.

[Dijkstra and Scholten, 1980] Dijkstra, E. W. and Scholten, C. S. (1980). Termination
detection for diffusing computations. Information Proc. Letters, 11(1):1–4.

102

http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

5.2. BIBLIOGRAPHY

[Dowling and Cahill, 2001] Dowling, J. and Cahill, V. (2001). Dynamic software evo-
lution and the k-component model.

[Dragoni et al., 2017] Dragoni, N., Giallorenzo, S., Lafuente, A., Mazzara, M., Montesi,
F., Mustafin, R., and Safina, L. (2017). Microservices: yesterday, today, and tomorrow.
Present and ulterior software engineering, pages 195–216.

[Ebert et al., 2016] Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. (2016).
DevOps. IEEE Software, 33(3):94–100.

[Elnozahy et al., 2002] Elnozahy, E., Alivisi, L., Wang, Y.-M., and Johnson, D. (2002).
A Survey of Rollback-Recovery Protocols in Message-Passing Systems. ACM Com-
puting Surveys, 34(3):375–408.

[Erl, 2008] Erl, T. (2008). SOA Design Patterns (paperback). Pearson Education.

[Erl, 2016] Erl, T. (2016). Service-oriented architecture: Analysis and Design for
Services and Microservices. Pearson Education Incorporated Upper Saddle River.

[Esparrachiari et al., 2018] Esparrachiari, S., Reilly, T., and Rentz, A. (2018). Tracking
and controlling microservice dependencies: Dependency management is a crucial
part of system and software design. Queue, 16(4):44–65.

[Etzion and Niblett, 2011] Etzion, O. and Niblett, P. (2011). Event Processing in
Action. Manning.

[Eugster et al., 2003] Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.-M.
(2003). The Many Faces of Publish/Subscribe. ACM Comp. Surveys, 35(2).

[Feiler and Li, 1998] Feiler, P. and Li, J. (1998). Consistency in dynamic reconfiguration.
In Proceedings. Fourth International Conference on Configurable Distributed Systems
(Cat. No. 98EX159), pages 189–196. IEEE.

[Florio and Di Nitto, 2016] Florio, L. and Di Nitto, E. (2016). Gru: An approach to
introduce decentralized autonomic behavior in microservices architectures. In 2016
IEEE International Conference on Autonomic Computing (ICAC), pages 357–362.
IEEE.

[Fowler, 2006] Fowler, M. (2006). Event Collaboration. https://martinfowler.com/
eaaDev/EventCollaboration.html. last accessed: 2022-08-09.

[Fowler, 2010] Fowler, M. (2010). Blue Green Deployment. https://martinfowler.
com/bliki/BlueGreenDeployment.html. last accessed: 2022-08-09.

[Fowler, 2018] Fowler, M. (2018). Refactoring: improving the design of existing code.
Addison-Wesley Professional.

103

https://martinfowler.com/eaaDev/EventCollaboration.html
https://martinfowler.com/eaaDev/EventCollaboration.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

Chapter 5 - BIBLIOGRAPHY

[Francez, 1980] Francez, N. (1980). Distributed Termination. ACM Transactions on
Programming Languages and Systems, 2(1):42–55.

[Gan et al., 2019] Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki,
N., Bruno, A., Hu, J., Ritchken, B., Jackson, B., et al. (2019). An open-source
benchmark suite for microservices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
3–18.

[Garlan, 2000] Garlan, D. (2000). Software architecture: a roadmap. In Proc. of the
International Conference on the Future of Software Engineering, pages 91–101.

[Garlan et al., 2009] Garlan, D., Barnes, J. M., Schmerl, B., and Celiku, O. (2009).
Evolution styles: Foundations and tool support for software architecture evolution.
In 2009 Joint Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture, pages 131–140. IEEE.

[Gärtner, 1999] Gärtner, F. C. (1999). Fundamentals of fault-tolerant distributed
computing in asynchronous environments. ACM Computing Surveys (CSUR), 31(1):1–
26.

[Ghafari et al., 2012] Ghafari, M., Jamshidi, P., Shahbazi, S., and Haghighi, H. (2012).
An architectural approach to ensure globally consistent dynamic reconfiguration of
component-based systems. In Proceedings of the 15th ACM SIGSOFT symposium
on Component Based Software Engineering, pages 177–182.

[Godfrey and German, 2008] Godfrey, M. and German, D. (2008). The past, present,
and future of software evolution. In Proc. of the Conference on Frontiers of Software
Maintenance, pages 129–138. IEEE.

[Godfrey and German, 2014] Godfrey, M. and German, D. (2014). On the evolution
of Lehman’s Laws. Journal of Software: Evolution and Process, 26(7):613–619.

[Grambow et al., 2020] Grambow, M., Meusel, L., Wittern, E., and Bermbach, D.
(2020). Benchmarking microservice performance: a pattern-based approach. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing, pages
232–241.

[Grunske, 2005] Grunske, L. (2005). Formalizing architectural refactorings as graph
transformation systems. In Sixth International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Network, pages 324–329.
IEEE.

104

5.2. BIBLIOGRAPHY

[Haslum et al., 2019] Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C. (2019).
An introduction to the planning domain definition language. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 13(2):1–187.

[He et al., 2020] He, X., Tu, Z., Liu, L., Xu, X., and Wang, Z. (2020). Optimal
evolution planning and execution for multi-version coexisting microservice systems.
In International Conference on Service-Oriented Computing, pages 3–18. Springer.

[Hohpe and Woolf, 2003] Hohpe, G. and Woolf, B. (2003). Enterprise Integration
Patterns. Addison-Wesley.

[Huang et al., 2009] Huang, G., Song, H., and Mei, H. (2009). Sm@rt: towards
architecture-based runtime management of internetware systems. In Proceedings of
the First Asia-Pacific Symposium on Internetware, pages 1–10.

[Huebscher and McCann, 2008] Huebscher, M. C. and McCann, J. A. (2008). A survey
of autonomic computing – degrees, models, and applications. ACM CSUR, 40(3).

[Humble and Farley, 2010] Humble, J. and Farley, D. (2010). Continuous delivery:
reliable software releases through build, test, and deployment automation. Pearson
Education.

[Huynh, 2017] Huynh, N. T. (2017). A development process for building adaptative
software architectures. PhD thesis, Ecole nationale supérieure Mines-Télécom Atlan-
tique.

[Jamshidi et al., 2018] Jamshidi, P., Pahl, C., Mendonça, N., Lewis, J., and Tilkov,
S. (2018). Microservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35.

[Kawrykow and Robillard, 2011] Kawrykow, D. and Robillard, M. P. (2011). Non-
essential changes in version histories. In 2011 33rd International Conference on
Software Engineering (ICSE), pages 351–360. IEEE.

[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. M. (2003). The Vision of
Autonomic Computing. IEEE Computer, 36(1):41–50.

[Ketfi et al., 2002] Ketfi, A., Belkhatir, N., and Cunin, P.-Y. (2002). Automatic
adaptation of component-based software. In Second Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications, pages
1365–1371. Citeseer.

[Killalea, 2016] Killalea, T. (2016). The Hidden Dividends of Microservices: Microser-
vices aren’t for every company, and the journey isn’t easy. ACM Queue, 14(3):25–34.

[Kniesel et al., 2001] Kniesel, G., Costanza, P., and Austermann, M. (2001). Jmangler-
a framework for load-time transformation of java class files. In Proceedings First

105

Chapter 5 - BIBLIOGRAPHY

IEEE International Workshop on Source Code Analysis and Manipulation, pages
98–108. IEEE.

[Kramer and Magee, 1990] Kramer, J. and Magee, J. (1990). The evolving philosophers
problem: dynamic change management. IEEE TOSE, 16(11).

[Kruchten, 1995] Kruchten, P. (1995). The 4 + 1 view model of architecture. IEEE
software, 12(6):42–50.

[Lamport, 1978] Lamport, L. (1978). Time, clocks and the ordering of events in a
distributed system. Communications of the ACM, 21(7).

[Lehman, 1980] Lehman, M. (1980). Programs, life cycles, and laws of software evolu-
tion. Proceedings of the IEEE, 68(9):1060–1076.

[Lehman and Ramil, 2002] Lehman, M. and Ramil, J. (2002). Software evolution and
software evolution processes. Annals of Software Engineering, 14(1):275–309.

[Lehman et al., 1997] Lehman, M. M., Ramil, J., Wernick, P., Perry, D., and Turski,
W. (1997). Metrics and laws of software evolution-the nineties view. In Proc. of the
4th IEEE International Software Metrics Symposium, pages 20–32. IEEE.

[Lewis and Fowler, 2014] Lewis, J. and Fowler, M. (2014). Microservices - a def-
inition of this new architectural term. https://martinfowler.com/articles/
microservices.html.

[Lim et al., 2015] Lim, L., Marie, P., Conan, D., Chabridon, S., Desprats, T., and Man-
zoor, A. (2015). Enhancing Context Data Distribution for the Internet of Things using
QoC-awareness and Attribute-Based Access Control. Annals of Telecommunications,
71(3):121–132.

[Liu et al., 2020] Liu, L., He, X., Tu, Z., and Wang, Z. (2020). Mv4ms: A spring cloud
based framework for the co-deployment of multi-version microservices. In 2020 IEEE
International Conference on Services Computing (SCC), pages 194–201. IEEE.

[Ma et al., 2019] Ma, S.-P., Liu, I.-H., Chen, C.-Y., Lin, J.-T., and Hsueh, N.-L. (2019).
Version-based microservice analysis, monitoring, and visualization. In 2019 26th
Asia-Pacific Software Engineering Conference (APSEC), pages 165–172. IEEE.

[Ma et al., 2011] Ma, X., Baresi, L., Ghezzi, C., Panzica La Manna, V., and Lu,
J. (2011). Version-Consistent Dynamic Reconfiguration of Component-Based Dis-
tributed Systems. In 19th ACM SIGSOFT Symp. and 13th European Conf. on
Foundations of Software Engineering, pages 245–255, Szeged, Hungary.

[Maes, 1987] Maes, P. (1987). Concepts and experiments in computational reflection.
ACM Sigplan Notices, 22(12):147–155.

106

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

5.2. BIBLIOGRAPHY

[Medvidovic and Taylor, 2010] Medvidovic, N. and Taylor, R. (2010). Software ar-
chitecture: foundations, theory, and practice. In Proc. of the 32nd ACM/IEEE
International Conference on Software Engineering, volume 2, pages 471–472. IEEE.

[Mehta et al., 2000] Mehta, N., Medvidovic, N., and Phadke, S. (2000). Towards a
Taxonomy of Software Connectors. In 22nd ACM ICSE, Ireland.

[Méhus, J.-E. and Batista, T. and Buisson, J., 2012] Méhus, J.-E. and Batista, T. and
Buisson, J. (2012). ACME vs PDDL: Support for Dynamic Reconfiguration of
Software Architectures. In French Conf. on Software Architectures (CAL), pages
48–57.

[Mens et al., 2003] Mens, T., Buckley, J., Zenger, M., and Rashid, A. (2003). Towards
a taxonomy of software evolution. In Proc. of the International Workshop on
Unanticipated Software Evolution, number CONF.

[Microsoft, 2022] Microsoft (2022). .Net: Free Cross-platform Open source – A de-
veloper platform for building all your apps. https://dotnet.microsoft.com/.
Accessed: 2022-07-20.

[Miedes and Munoz-Escoı, 2012] Miedes, E. and Munoz-Escoı, F. D. (2012). Dynamic
software update. Instituto Universitario Mixto Tecnológico de Informática, Universi-
tat Politècnica de València, Technical Report ITI-SIDI-2012/004.

[Moazami-Goudarzi, 1999] Moazami-Goudarzi, K. (1999). Consistency preserving dy-
namic reconfiguration of distributed systems. PhD thesis, Imperial College London
(University of London).

[Morin et al., 2009] Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., and Solberg, A.
(2009). Models@ run. time to support dynamic adaptation. Computer, 42(10):44–51.

[Mühl et al., 2006] Mühl, G., Fiege, L., and Pietzuch, P. (2006). Distributed Event-
Based Systems. Springer.

[Naur and Randell, 1969] Naur, P. and Randell, B. (1969). Software engineering:
Report of a conference sponsored by the nato science committee, garmisch, germany,
7th-11th october 1968.

[Newman, 2015] Newman, S., editor (2015). Building Microservices: Designing Fine-
Grained Systems. O’Reilly Media.

[OASIS, 2019] OASIS (2019). MQTT Version 5.0. Standard, OASIS Consortium.
[OMG, 2022] OMG (2022). Common Object Request Broker Architecture (CORBA).

https://www.corba.org/. Accessed: 2022-07-20.
[Oracle, 2022] Oracle (2022). Java EE at a Glance. https://www.oracle.com/java/

technologies/java-ee-glance.html. Accessed: 2022-07-20.

107

https://dotnet.microsoft.com/
https://www.corba.org/
https://www.oracle.com/java/technologies/java-ee-glance.html
https://www.oracle.com/java/technologies/java-ee-glance.html

Chapter 5 - BIBLIOGRAPHY

[Oreizy et al., 1998] Oreizy, P., Medvidovic, N., and Taylor, R. N. (1998). Architecture-
based runtime software evolution. In Proceedings of the 20th international conference
on Software engineering, pages 177–186. IEEE.

[Parnas, 1971] Parnas, D. (1971). Information distribution aspects of design methodol-
ogy.

[Peltz, 2003] Peltz, C. (2003). Web services orchestration and choreography. IEEE
Computer, 36(10):46–52.

[Perry and Wolf, 1992] Perry, D. and Wolf, A. (1992). Foundations for the study of
software architecture. ACM SIGSOFT Software engineering notes, 17(4):40–52.

[Phung-Khac, 2010] Phung-Khac, A. (2010). A model-driven feature-based approach to
runtime adaptation of distributed software architectures. PhD thesis.

[Preston-Werner, 2013] Preston-Werner, T. (2013). Semantic versioning 2.0.0.
http://semver.org.

[Rajagopalan and Jamjoom, 2015] Rajagopalan, S. and Jamjoom, H. (2015). App–
Bisect: Autonomous Healing for Microservice-Based Apps. In Proc. of the 7th
USENIX Workshop on Hot Topics in Cloud Computing.

[Randell and Buxton, 1970] Randell, B. and Buxton, J. (1970). Software Engineering
Techniques: Report of a conference sponsored by the NATO Science Committee,
Rome, Italy, 27th-31st October 1969.

[Ravichandran and Rothenberger, 2003] Ravichandran, T. and Rothenberger, M.
(2003). Software reuse strategies and component markets. Communications of
the ACM, 46(8):109–114.

[Raymond, 2003] Raymond, E. (2003). The art of Unix programming. Addison-Wesley.

[Saltzer et al., 1984] Saltzer, J. H., Reed, D. P., and Clark, D. D. (1984). End-to-end
arguments in system design. ACM Trans. on Comp. Syst., 2(4):277–288.

[Sampaio et al., 2017] Sampaio, A. R., Kadiyala, H., Hu, B., Steinbacher, J., Erwin, T.,
Rosa, N., Beschastnikh, I., and Rubin, J. (2017). Supporting Microservice Evolution.
In Proc. of the 33rd IEEE Int. Conf. Software Maintenance and Evolution, pages
539–543.

[Sampaio et al., 2019] Sampaio, A. R., Rubin, J., Beschastnikh, I., and Rosa, N. S.
(2019). Improving microservice-based applications with runtime placement adaptation.
Journal of Internet Services and Applications, 10.

[Sato, 2014] Sato, D. (2014). Canary update strategies. https://martinfowler.com/
bliki/CanaryRelease.html. last accessed: 2022-08-09.

108

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html

5.2. BIBLIOGRAPHY

[Schilling, 2000] Schilling, M. (2000). Toward a general modular systems theory and
its application to interfirm product modularity. Academy of management review,
25(2):312–334.

[Schmidt et al., 2001] Schmidt, D.C., S., M., Rohnert, H., and Buschmann, F. (2001).
Pattern-Oriented Software Architecture: Volume 2, Patterns for Concurrent and
Networked Objects. Wiley.

[Seifzadeh et al., 2013] Seifzadeh, H., Abolhassani, H., and Moshkenani, M. S. (2013).
A survey of dynamic software updating. Journal of Software: Evolution and Process,
25(5):535–568.

[Sindhgatta et al., 2010] Sindhgatta, R., Narendra, N., and Sengupta, B. (2010). Soft-
ware evolution in agile development: a case study. In Proc. of the ACM international
conference companion on Object oriented programming systems languages and appli-
cations companion, pages 105–114.

[Sokolowski et al., 2022] Sokolowski, D., Weisenburger, P., and Salvaneschi, G. (2022).
Change Is the Only Constant: Dynamic Updates for Workflows. In 44nd ACM Int.
Conf. on Software Engineering, Pittsburgh, PA, USA.

[Soni et al., 1995] Soni, D., Nord, R., and Hofmeister, C. (1995). Software architecture
in industrial applications. In Proc. of the 17th International Conference on Software
Engineering, pages 196–196. IEEE.

[Sorgalla et al., 2018] Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., and
Zündorf, A. (2018). Ajil: enabling model-driven microservice development. In
Proceedings of the 12th European Conference on Software Architecture: Companion
Proceedings, pages 1–4.

[Szyperski et al., 2002] Szyperski, C., Gruntz, D., and Murer, S. (2002). Component
software: beyond object-oriented programming. Pearson Education.

[Tao, 2019] Tao, X. (2019). Reliability of changes in cloud environment at PaaS level.
PhD thesis, Université Grenoble Alpes.

[Tel, 2002] Tel, G. (2002). Introduction to Distributed Algorithms, 2nd Edition, chapter
Termination detection. Cambridge University Press.

[Thompson et al., 1997] Thompson, D., Exton, C., Garrett, L., Sajeev, A., and
Watkins, D. (1997). Distributed component object model (DCOM). Monash Univer-
sity, Department of Software Development, Melbourne, Australien.

[Thönes, 2015] Thönes, J. (2015). Microservices. IEEE software, 32(1):116–116.

109

Chapter - BIBLIOGRAPHY

[Vandewoude et al., 2007] Vandewoude, Y., Ebraert, P., Berbers, Y., and D’Hondt, T.
(2007). Tranquility: A low disruptive alternative to quiescence for ensuring safe
dynamic updates. IEEE Trans. on Software Eng., 33(12):856–868.

[Vogel and Giese, 2010] Vogel, T. and Giese, H. (2010). Adaptation and abstract
runtime models. In Proceedings of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pages 39–48.

[Wang, 2019] Wang, Y. (2019). Towards service discovery and autonomic version
management in self-healing microservices architecture. In Proceedings of the 13th
European Conference on Software Architecture-Volume 2, pages 63–66, Paris, France.

[Wang et al., 2021] Wang, Y., Conan, D., Chabridon, S., Bojnourdi, K., and Ma,
J. (2021). Runtime models and evolution graphs for the version management of
microservice architectures. In Proceedings of the 28th IEEE Asia-Pacific Software
Eng. Conf., pages 536–541, Taipei, Taiwan.

[Waseem et al., 2020] Waseem, M., Liang, P., and Shahin, M. (2020). A systematic
mapping study on microservices architecture in devops. Journal of Systems and
Software, 170:110798.

[Wermelinger and Fiadeiro, 2002] Wermelinger, M. and Fiadeiro, J. L. (2002). A graph
transformation approach to software architecture reconfiguration. Science of Com-
puter Programming, 44(2):133–155.

[Yu and Mishra, 2013] Yu, L. and Mishra, A. (2013). An empirical study of Lehman’s
law on software quality evolution.

110

Appendix A

Implementation Details of Planner
and Executor in MIMOSAE

A.1 Full PDDL file for MIMOSAE

Listing A.1 PDDL domain file for MIMOSAE

1 (define (domain microservice_planner_domain)
2 (:requirements :adl :typing)
3 (:types
4 a r c h i t e c t u r a l e n t i t y − o b j e c t
5 m i c r o s e r v i c e − a r c h i t e c t u r a l e n t i t y
6 databasesystem − a r c h i t e c t u r a l e n t i t y
7 connector − a r c h i t e c t u r a l e n t i t y
8 pubsubconnector − connector
9)

10 (:predicates
11 (m i c r o s e r v i c e ?m − m i c r o s e r v i c e)
12 (databasesystem ?db − databasesystem)
13 (pubsubconnector ? c − pubsubconnector)
14 (c l i e n t _ s e r v e r _ l i n k ?mc − m i c r o s e r v i c e ?ms − m i c r o s e r v i c e)
15 (producer_to_connector_link ?m − m i c r o s e r v i c e ? c − pubsubconnector)
16 (consumer_to_connector_link ?m − m i c r o s e r v i c e ?p − pubsubconnector)
17 (database_connection ?mc − m i c r o s e r v i c e ?db − databasesystem)
18)
19 (:action c r e a t e _ m i c r o s e r v i c e
20 :parameters (?m − m i c r o s e r v i c e)
21 :precondition (and (not (m i c r o s e r v i c e ?m)))
22 : e f f e c t (and (m i c r o s e r v i c e ?m))
23)
24 (:action create_databasesystem
25 :parameters (? db − databasesystem)
26 :precondition (and (not (databasesystem ?db)))
27 : e f f e c t (and (databasesystem ?db))
28)
29 (:action remove_microservice
30 :parameters (?m − m i c r o s e r v i c e)
31 :precondition (and (m i c r o s e r v i c e ?m))
32 : e f f e c t (and (not (m i c r o s e r v i c e ?m)))
33)

111

Chapter A - Implementation Details of Planner and Executor in MIMOSAE

34 (:action remove_databasesystem
35 :parameters (? db − databasesystem)
36 :precondition (and (databasesystem ?db))
37 : e f f e c t (and (not (databasesystem ?db)))
38)
39 (:action l i n k _ c l i e n t _ s e r v e r
40 :parameters (?mc − m i c r o s e r v i c e ?ms − m i c r o s e r v i c e)
41 :precondition (and (m i c r o s e r v i c e ?mc)
42 (m i c r o s e r v i c e ?ms)
43 (not (c l i e n t _ s e r v e r _ l i n k ?mc ?ms)))
44 : e f f e c t (and (c l i e n t _ s e r v e r _ l i n k ?mc ?ms))
45)
46 (:action u n l i n k _ c l i e n t _ s e r v e r
47 :parameters (?mc − m i c r o s e r v i c e ?ms − m i c r o s e r v i c e)
48 :precondition (and (m i c r o s e r v i c e ?mc)
49 (m i c r o s e r v i c e ?ms)
50 (c l i e n t _ s e r v e r _ l i n k ?mc ?ms))
51 : e f f e c t (and (not (c l i e n t _ s e r v e r _ l i n k ?mc ?ms)))
52)
53 (:action create_pubsubconnector
54 :parameters (? c − pubsubconnector)
55 :precondition (and (not (pubsubconnector ? c)))
56 : e f f e c t (and (pubsubconnector ? c))
57)
58 (:action remove_pubsubconnector
59 :parameters (? c − pubsubconnector)
60 :precondition (and (pubsubconnector ? c))
61 : e f f e c t (and (not (pubsubconnector ? c)))
62)
63 (:action l ink_producer_to_pubsubconnector
64 :parameters (?m − m i c r o s e r v i c e ? c − pubsubconnector)
65 :precondition (and (m i c r o s e r v i c e ?m)
66 (pubsubconnector ? c)
67 (not (producer_to_connector_link ?m ? c)))
68 : e f f e c t (and (producer_to_connector_link ?m ? c))
69)
70 (:action unlink_producer_from_pubsubconnector
71 :parameters (?m − m i c r o s e r v i c e ? c − pubsubconnector)
72 :precondition (and (m i c r o s e r v i c e ?m)
73 (pubsubconnector ? c)
74 (producer_to_connector_link ?m ? c))
75 : e f f e c t (and (not (producer_to_connector_link ?m ? c)))
76)
77 (:action l ink_consumer_to_pubsubconnector
78 :parameters (?m − m i c r o s e r v i c e ? c − pubsubconnector)
79 :precondition (and (m i c r o s e r v i c e ?m)
80 (pubsubconnector ? c)
81 (not (consumer_to_connector_link ?m ? c)))
82 : e f f e c t (and (consumer_to_connector_link ?m ? c))
83)
84 (:action unlink_consumer_from_pubsubconnector
85 :parameters (?m − m i c r o s e r v i c e ? c − pubsubconnector)
86 :precondition (and (m i c r o s e r v i c e ?m)
87 (pubsubconnector ? c)
88 (consumer_to_connector_link ?m ? c))
89 : e f f e c t (and (not (consumer_to_connector_link ?m ? c)))
90)
91 (:action connect_microservice_to_databasesystem
92 :parameters (?ms − m i c r o s e r v i c e ? dbs − databasesystem)
93 :precondition (and (m i c r o s e r v i c e ?ms)
94 (databasesystem ? dbs)
95 (not (database_connection ?ms ? dbs)))
96 : e f f e c t (and (database_connection ?ms ? dbs))
97)

112

A.1. Full PDDL file for MIMOSAE

98 (:action disconnect_microservice_from_databasesystem
99 :parameters (?ms − m i c r o s e r v i c e ? dbs − databasesystem)

100 :precondition (and (m i c r o s e r v i c e ?ms)
101 (databasesystem ? dbs)
102 (database_connection ?ms ? dbs))
103 : e f f e c t (and (not (database_connection ?ms ? dbs)))
104)

Listing A.2 PDDL problem file for creating GDE architecture with synchronous client-server calls

1 (:domain microservice_planner_domain)
2 (:objects
3 DBUSi_DBUS_1_0_0 − databasesystem
4 DBPSi_DBPS_1_0_0 − databasesystem
5 DBFSi_DBFS_1_0_0 − databasesystem
6 DBPERMi_DBPERM_1_0_0 − databasesystem
7 PermSi_PermS_1_0_0 − m i c r o s e r v i c e
8 Ai_Auth_1_0_0 − m i c r o s e r v i c e
9 FSi_FS_1_0_0 − m i c r o s e r v i c e

10 USi_US_1_0_0 − m i c r o s e r v i c e
11 PSi_PS_1_0_0 − m i c r o s e r v i c e
12 microservice_dummy − m i c r o s e r v i c e
13)
14 (: i n i t
15 (m i c r o s e r v i c e microservice_dummy)
16)
17 (:goal
18 (and
19 (databasesystem DBUSi_DBUS_1_0_0)
20 (databasesystem DBPSi_DBPS_1_0_0)
21 (databasesystem DBFSi_DBFS_1_0_0)
22 (databasesystem DBPERMi_DBPERM_1_0_0)
23 (m i c r o s e r v i c e PermSi_PermS_1_0_0)
24 (c l i e n t _ s e r v e r _ l i n k PermSi_PermS_1_0_0 Ai_Auth_1_0_0)
25 (c l i e n t _ s e r v e r _ l i n k PermSi_PermS_1_0_0 USi_US_1_0_0)
26 (database_connection PermSi_PermS_1_0_0 DBPERMi_DBPERM_1_0_0)
27 (m i c r o s e r v i c e Ai_Auth_1_0_0)
28 (c l i e n t _ s e r v e r _ l i n k Ai_Auth_1_0_0 USi_US_1_0_0)
29 (m i c r o s e r v i c e FSi_FS_1_0_0)
30 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 Ai_Auth_1_0_0)
31 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 USi_US_1_0_0)
32 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 PermSi_PermS_1_0_0)
33 (database_connection FSi_FS_1_0_0 DBFSi_DBFS_1_0_0)
34 (m i c r o s e r v i c e USi_US_1_0_0)
35 (c l i e n t _ s e r v e r _ l i n k USi_US_1_0_0 PermSi_PermS_1_0_0)
36 (c l i e n t _ s e r v e r _ l i n k USi_US_1_0_0 Ai_Auth_1_0_0)
37 (database_connection USi_US_1_0_0 DBUSi_DBUS_1_0_0)
38 (m i c r o s e r v i c e PSi_PS_1_0_0)
39 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 FSi_FS_1_0_0)
40 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 PermSi_PermS_1_0_0)
41 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 Ai_Auth_1_0_0)
42 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 USi_US_1_0_0)
43 (database_connection PSi_PS_1_0_0 DBPSi_DBPS_1_0_0)
44)
45)
46)

Listing A.3 Configuration plan generated for creating GDE architecture with synchronous client-
server calls

113

Chapter A - Implementation Details of Planner and Executor in MIMOSAE

1 in p a r a l l e l :
2 Action [actionName=create_databasesystem , arguments =[dbusi_dbus_1_0_0]]
3 Action [actionName=create_databasesystem , arguments =[dbpsi_dbps_1_0_0]]
4 Action [actionName=create_databasesystem , arguments =[dbfsi_dbfs_1_0_0]]
5 Action [actionName=create_databasesystem , arguments =[dbpermi_dbperm_1_0_0]]
6 Action [actionName=c r e a t e _ m i c r o s e r v i c e , arguments =[permsi_perms_1_0_0]]
7 Action [actionName=c r e a t e _ m i c r o s e r v i c e , arguments =[ai_auth_1_0_0]]
8 Action [actionName=c r e a t e _ m i c r o s e r v i c e , arguments =[usi_us_1_0_0]]
9 Action [actionName=c r e a t e _ m i c r o s e r v i c e , arguments =[fsi_fs_1_0_0]]

10 Action [actionName=c r e a t e _ m i c r o s e r v i c e , arguments =[psi_ps_1_0_0]]
11 in p a r a l l e l :
12 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[permsi_perms_1_0_0 , ai_auth_1_0_0]]
13 Action [actionName=connect_microservice_to_databasesystem , arguments =[permsi_perms_1_0_0 ,

dbpermi_dbperm_1_0_0]]
14 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[permsi_perms_1_0_0 , usi_us_1_0_0]]
15 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_0_0 , ai_auth_1_0_0]]
16 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_0_0 , usi_us_1_0_0]]
17 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_0_0 , permsi_perms_1_0_0]]
18 Action [actionName=connect_microservice_to_databasesystem , arguments =[fsi_fs_1_0_0 ,

dbfsi_dbfs_1_0_0]]
19 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[ai_auth_1_0_0 , usi_us_1_0_0]]
20 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[usi_us_1_0_0 , permsi_perms_1_0_0]]
21 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[usi_us_1_0_0 , ai_auth_1_0_0]]
22 Action [actionName=connect_microservice_to_databasesystem , arguments =[usi_us_1_0_0 ,

dbusi_dbus_1_0_0]]
23 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[psi_ps_1_0_0 , fsi_fs_1_0_0]]
24 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[psi_ps_1_0_0 , permsi_perms_1_0_0]]
25 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[psi_ps_1_0_0 , ai_auth_1_0_0]]
26 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[psi_ps_1_0_0 , usi_us_1_0_0]]
27 Action [actionName=connect_microservice_to_databasesystem , arguments =[psi_ps_1_0_0 ,

dbpsi_dbps_1_0_0]]

Listing A.4 PDDL problem file for a minor revision with addition of logging in the GDE architecture

1 (define (problem microservice_planner_problem)
2 (:domain microservice_planner_domain)
3 (:objects
4 DBUSi_DBUS_1_0_0 − databasesystem
5 DBPSi_DBPS_1_0_0 − databasesystem
6 DBFSi_DBFS_1_0_0 − databasesystem
7 DBPERMi_DBPERM_1_0_0 − databasesystem
8 PermSi_PermS_1_0_0 − m i c r o s e r v i c e
9 Ai_Auth_1_0_0 − m i c r o s e r v i c e

10 FSi_FS_1_0_0 − m i c r o s e r v i c e
11 USi_US_1_0_0 − m i c r o s e r v i c e
12 PSi_PS_1_0_0 − m i c r o s e r v i c e
13 LogSi_LS_1_0_0 − m i c r o s e r v i c e
14 FSi_FS_1_1_0 − m i c r o s e r v i c e
15 PubSubCi_PubSubConnector_1_0_0 − pubsubconnector
16)
17 (: i n i t
18 (databasesystem DBUSi_DBUS_1_0_0)
19 (databasesystem DBPSi_DBPS_1_0_0)
20 (databasesystem DBFSi_DBFS_1_0_0)
21 (databasesystem DBPERMi_DBPERM_1_0_0)
22 (m i c r o s e r v i c e PermSi_PermS_1_0_0)
23 (c l i e n t _ s e r v e r _ l i n k PermSi_PermS_1_0_0 Ai_Auth_1_0_0)
24 (c l i e n t _ s e r v e r _ l i n k PermSi_PermS_1_0_0 USi_US_1_0_0)
25 (database_connection PermSi_PermS_1_0_0 DBPERMi_DBPERM_1_0_0)
26 (m i c r o s e r v i c e Ai_Auth_1_0_0)
27 (c l i e n t _ s e r v e r _ l i n k Ai_Auth_1_0_0 USi_US_1_0_0)
28 (m i c r o s e r v i c e FSi_FS_1_0_0)

114

A.1. Full PDDL file for MIMOSAE

29 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 Ai_Auth_1_0_0)
30 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 USi_US_1_0_0)
31 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 PermSi_PermS_1_0_0)
32 (database_connection FSi_FS_1_0_0 DBFSi_DBFS_1_0_0)
33 (m i c r o s e r v i c e USi_US_1_0_0)
34 (c l i e n t _ s e r v e r _ l i n k USi_US_1_0_0 PermSi_PermS_1_0_0)
35 (c l i e n t _ s e r v e r _ l i n k USi_US_1_0_0 Ai_Auth_1_0_0)
36 (database_connection USi_US_1_0_0 DBUSi_DBUS_1_0_0)
37 (m i c r o s e r v i c e PSi_PS_1_0_0)
38 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 FSi_FS_1_0_0)
39 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 PermSi_PermS_1_0_0)
40 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 Ai_Auth_1_0_0)
41 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 USi_US_1_0_0)
42 (database_connection PSi_PS_1_0_0 DBPSi_DBPS_1_0_0)
43)
44 (:goal
45 (and
46 (databasesystem DBUSi_DBUS_1_0_0)
47 (databasesystem DBPSi_DBPS_1_0_0)
48 (databasesystem DBFSi_DBFS_1_0_0)
49 (databasesystem DBPERMi_DBPERM_1_0_0)
50 (m i c r o s e r v i c e PermSi_PermS_1_0_0)
51 (m i c r o s e r v i c e Ai_Auth_1_0_0)
52 (not (m i c r o s e r v i c e FSi_FS_1_0_0))
53 (not (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 Ai_Auth_1_0_0))
54 (not (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 USi_US_1_0_0))
55 (not (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_0_0 PermSi_PermS_1_0_0))
56 (not (database_connection FSi_FS_1_0_0 DBFSi_DBFS_1_0_0))
57 (m i c r o s e r v i c e USi_US_1_0_0)
58 (m i c r o s e r v i c e PSi_PS_1_0_0)
59 (not (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 FSi_FS_1_0_0))
60 (c l i e n t _ s e r v e r _ l i n k PermSi_PermS_1_0_0 Ai_Auth_1_0_0)
61 (c l i e n t _ s e r v e r _ l i n k PermSi_PermS_1_0_0 USi_US_1_0_0)
62 (database_connection PermSi_PermS_1_0_0 DBPERMi_DBPERM_1_0_0)
63 (c l i e n t _ s e r v e r _ l i n k Ai_Auth_1_0_0 USi_US_1_0_0)
64 (m i c r o s e r v i c e LogSi_LS_1_0_0)
65 (c l i e n t _ s e r v e r _ l i n k USi_US_1_0_0 PermSi_PermS_1_0_0)
66 (c l i e n t _ s e r v e r _ l i n k USi_US_1_0_0 Ai_Auth_1_0_0)
67 (database_connection USi_US_1_0_0 DBUSi_DBUS_1_0_0)
68 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 FSi_FS_1_1_0)
69 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 PermSi_PermS_1_0_0)
70 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 Ai_Auth_1_0_0)
71 (c l i e n t _ s e r v e r _ l i n k PSi_PS_1_0_0 USi_US_1_0_0)
72 (database_connection PSi_PS_1_0_0 DBPSi_DBPS_1_0_0)
73 (m i c r o s e r v i c e FSi_FS_1_1_0)
74 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_1_0 Ai_Auth_1_0_0)
75 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_1_0 USi_US_1_0_0)
76 (c l i e n t _ s e r v e r _ l i n k FSi_FS_1_1_0 PermSi_PermS_1_0_0)
77 (database_connection FSi_FS_1_1_0 DBFSi_DBFS_1_0_0)
78 (pubsubconnector PubSubCi_PubSubConnector_1_0_0)
79 (producer_to_connector_link FSi_FS_1_1_0 PubSubCi_PubSubConnector_1_0_0)
80 (consumer_to_connector_link LogSi_LS_1_0_0 PubSubCi_PubSubConnector_1_0_0)
81)
82)
83)

Listing A.5 Configuration plan generated for the corresponding minor revision of the GDE architecture

1 in p a r a l l e l :
2 Action [actionName=create_pubsubconnector , arguments =[pubsubci_pubsubconnector_1_0_0]]
3 in p a r a l l e l :
4 Action [actionName=u n l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_0_0 , ai_auth_1_0_0]]

115

Chapter A - Implementation Details of Planner and Executor in MIMOSAE

5 Action [actionName=disconnect_microservice_from_databasesystem , arguments =[fsi_fs_1_0_0 ,
dbfsi_dbfs_1_0_0]]

6 Action [actionName=u n l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_0_0 , usi_us_1_0_0]]
7 Action [actionName=u n l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_0_0 , permsi_perms_1_0_0]]
8 Action [actionName=u n l i n k _ c l i e n t _ s e r v e r , arguments =[psi_ps_1_0_0 , fsi_fs_1_0_0]]
9 Action [actionName=c r e a t e _ m i c r o s e r v i c e , arguments =[fsi_fs_1_1_0]]

10 Action [actionName=c r e a t e _ m i c r o s e r v i c e , arguments =[logsi_ls_1_0_0]]
11 in p a r a l l e l :
12 Action [actionName=remove_microservice , arguments =[fsi_fs_1_0_0]]
13 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[psi_ps_1_0_0 , fsi_fs_1_1_0]]
14 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_1_0 , ai_auth_1_0_0]]
15 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_1_0 , usi_us_1_0_0]]
16 Action [actionName=l i n k _ c l i e n t _ s e r v e r , arguments =[fsi_fs_1_1_0 , permsi_perms_1_0_0]]
17 Action [actionName=connect_microservice_to_databasesystem , arguments =[fsi_fs_1_1_0 ,

dbfsi_dbfs_1_0_0]]
18 Action [actionName=link_producer_to_pubsubconnector , arguments =[fsi_fs_1_1_0 ,

pubsubci_pubsubconnector_1_0_0]]
19 Action [actionName=link_consumer_to_pubsubconnector , arguments =[logsi_ls_1_0_0 ,

pubsubci_pubsubconnector_1_0_0]]

A.2 Architecture of Executor in Autonomic Manager for MI-
MOSAE

Figure A.1 presents a communication diagram that represents the general functioning
of executor in our prototype. The implementation and documentation can be found at
the URL: https://gitlabev.imtbs-tsp.eu/mimosae/mimosae/-/tree/main/Code/
AutonomicManager/Executor.

<<new>>

c:Configuration

:Orchestrator

:Implementation
registry

<<new>>
ae: Architectural

Entity

:DockerClient

:Kubernetes
Handler

Actor

3.i.1.1: c=create(...)

3.i.2: buildDockerImages(...)
3.i.3: ae=initializeArchitecturalEntity()

This entity is responsible for
parsing YAML files

3.i.4: initDependencyGraph(...)
3.i.5: createDependencies()

3.i.6: manipulateArchitecturalEntity(ae, ...)

This entity is responsible
for calling the Kubernetes

API

:Executor
Frontend

1:ok =validatePlan(plan)
2:[ok]pActions=extractParallelActions(plan):Action[]

3.i : *[action : pActions]: createArchitecturalEntity(action)

3.i.2.1: buildDockerImages(...)

3.i.1: c=createConfiguration(argument)

3.i.3.1: ae=create(...)

executeConfigurationPlan(plan)

Figure A.1 – Communication diagram of executor’s general functioning

116

https://gitlabev.imtbs-tsp.eu/mimosae/mimosae/-/tree/main/Code/AutonomicManager/Executor
https://gitlabev.imtbs-tsp.eu/mimosae/mimosae/-/tree/main/Code/AutonomicManager/Executor

A.3. Overview of the proposed Software Evolution Process

A.3 Overview of the proposed Software Evolution Process

Figure A.2 represents an overview of our proposed software evolution process. At
design time, the developer teams provide different versions of microservices in the
code base, and then the architects build and manipulate the models for microservice
architectures. These models are built at design time, and will be used at runtime.
Our process is considered semi-automatic with a MAPE-K control loop at runtime.
Semi-automatic means that one part of the control process is realized manually by
engineers and another part is performed automatically by the autonomic manager.
Here, we can see that we ignore the monitoring and analyzing steps, and instead get
the necessary information about the version changes of microservices from the design
time, that is our runtime models act as the knowledge base in the control loop. The
architects manually provide a source configuration and a target configuration of the
microservice architecture, so that the planning can compute a configuration plan of
the version changes, and this reconfiguration plan can be then executed and applied to
the running application.

117

Chapter A - Implementation Details of Planner and Executor in MIMOSAE

ExecuteMonitor Knowledge

PlanAnalyse

Managed Microservice-based Application

Autonomic Manager

Runtime

Design time

Microservice
Architecture

Microservices

Developer Teams

Architects
Models

Codebase

Figure A.2 – Overview of software evolution process

118

Titre : Évolution des Applications à base de Microservices : Modélisation et Mise à jour dynamique
correcte

Mots clés : Architecture à base de microservices ; Évolution des logiciels ; Gestion des versions ;
Modèle à l’exécution ; Mise à jour dynamique des logiciels ; Détection des conditions de mise à jour
basée sur des instantanés.

Résumé : Les architectures à base de microser-
vices permettent de construire des systèmes répar-
tis complexes composés de microservices indépen-
dants. Le découplage et la modularité des micro-
services facilitent leur remplacement et leur mise
à jour de manière indépendante. Depuis l’émer-
gence du développement agile et de l’intégration
continue (DevOps et CI/CD), la tendance est aux
changements de version plus fréquents et en cours
d’exécution des applications. La réalisation des
changements de version est effectuée par un pro-
cessus d’évolution consistant à passer de la version
actuelle de l’application à une nouvelle version. Ce-
pendant, les coûts de maintenance et d’évolution
de ces systèmes répartis augmentent rapidement
avec le nombre de microservices.
L’objectif de cette thèse est de répondre aux ques-
tions suivantes : Comment aider les ingénieurs à
mettre en place une gestion de version unifiée et
efficace pour les microservices et comment tracer
les changements de version dans les applications
à base de microservices ? Quand les applications
à base de microservices, en particulier celles dont
les activités sont longues, peuvent-elles être mises
à jour dynamiquement sans arrêter l’exécution de
l’ensemble du système ? Comment la mise à jour
doit-elle être effectuée pour assurer la continuité

du service et maintenir la cohérence du système ?
En réponse à ces questions, cette thèse propose
deux contributions principales. La première contri-
bution est constituée de modèles architecturaux
et d’un graphe d’évolution pour modéliser et tra-
cer la gestion des versions des microservices. Ces
modèles sont construits lors de la conception et
utilisés durant l’exécution. Cette contribution aide
les ingénieurs à abstraire l’évolution architecturale
afin de gérer les déploiements lors d’une reconfigu-
ration, et fournit la base de connaissances néces-
saire à un intergiciel de gestion autonomique des
activités d’évolution. La deuxième contribution
est une approche basée sur les instantanés pour
la mise à jour dynamique (DSU) des applications
à base de microservices. Les instantanés répartis
cohérents de l’application en cours d’exécution
sont construits pour être utilisés dans la spécifi-
cation la continuité du service, l’évaluation des
conditions de mise à jour sûre et dans la mise en
œuvre des stratégies de mise à jour. La complexité
en nombre de messages de l’algorithme DSU n’est
alors pas égale à la complexité de l’application
répartie, mais correspond à la complexité de l’al-
gorithme de contruction d’un instantané réparti
cohérent.

Title : Evolution of Microservice-based Applications : Modelling and Safe Dynamic Updating

Keywords : Microservice architecture ; Software evolution ; Version management ; Model at runtime ;
Dynamic software updating ; Snapshot-based update condition detection.

Abstract : Microservice architectures contribute
to building complex distributed systems as sets
of independent microservices. The decoupling and
modularity of distributed microservices facilitates
their independent replacement and upgradeability.
Since the emergence of agile DevOps and CI/CD,
there is a trend towards more frequent and rapid
evolutionary changes of the running microservice-
based applications in response to various evolution
requirements. Applying changes to microservice
architectures is performed by an evolution process
of moving from the current application version
to a new version. The maintenance and evolution
costs of these distributed systems increase rapidly
with the number of microservices.
The objective of this thesis is to address the fol-
lowing issues : How to help engineers to build a
unified and efficient version management for micro-
services and how to trace changes in microservice-
based applications ? When can microservice-based
applications, especially those with long-running ac-
tivities, be dynamically updated without stopping
the execution of the whole system? How should

the safe updating be performed to ensure service
continuity and maintain system consistency ?
In response to these questions, this thesis pro-
poses two main contributions. The first contribu-
tion is runtime models and an evolution graph
for modelling and tracing version management of
microservices. These models are built at design
time and used at runtime. It helps engineers abs-
tract architectural evolution in order to manage
reconfiguration deployments, and it provides the
knowledge base to be manipulated by an auto-
nomic manager middleware in various evolution
activities. The second contribution is a snapshot-
based approach for dynamic software updating
(DSU) of microservices. The consistent distributed
snapshots of microservice-based applications are
constructed to be used for specifying continuity of
service, evaluating the safe update conditions and
realising the update strategies. The message com-
plexity of the DSU algorithm is not the message
complexity of the distributed application, but the
complexity of the consistent distributed snapshot
algorithm.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Acknowledgements
	Abstract
	Content
	List of Figures
	Listings
	Introduction
	Research Context
	Industry Requirements
	Thesis Contributions
	Manuscript Organisation

	State of the Art on Dynamic Software Evolution of Microservice Architectures
	Software Architecture of Microservice-based Applications
	Definitions of software architecture
	From monolith to modularity
	From objects to components, services and microservices
	Microservice architecture

	Software Evolution of Software Architectures
	Basic concepts of software evolution
	Autonomic computing and model at runtime
	Role of software architecture in evolution
	Software evolution for microservice architectures

	Dynamic Software Updating
	Objectives of DSU
	Characterisation of changes
	Distributed application model for DSU
	Consistent update conditions
	Reaching strategies
	Distributed termination algorithm

	Conclusion

	Runtime Models and Evolution Graph for Version Management of Microservices
	Case Study GDE
	Runtime Models
	Model of types
	Configuration types view
	Microservice types view
	Contract types view

	Model of instances

	Evolution Graph
	Overview of the graph building process
	Illustrative scenarios
	Patch change
	Minor change
	Major change

	Implementation in MIMOSAE
	PDDL planner
	Executor

	Discussion
	Conclusion

	Snapshot-based Dynamic Software Updating of Microservices
	DSU Problem
	GDE use case
	Role of the DSU algorithm
	Update conditions

	Distributed System and Application Models
	Distributed system model
	Distributed application model

	Snapshot-Based Update Setting
	Microservice execution model
	Path of application messages
	Link dependencies
	Message type dependencies

	Adding continuity of service
	Essential and non-essential changes
	Correct dynamic update
	Snapshot-based definitions of the update conditions
	Quiescence
	Freeness
	Essential freeness

	Snapshot-Based DSU Algorithm
	Termination detection of collaborations
	DSU algorithm and updating strategies
	Overview of the DSU algorithm
	DSU algorithm for quiescence
	DSU algorithms for essential freeness and freeness

	Discussion
	Conclusion

	Conclusion and Perspectives
	Contribution Summary
	Future Work

	Bibliography
	Appendix
	Implementation Details of Planner and Executor in MIMOSAE
	Full PDDL file for MIMOSAE
	Architecture of Executor in Autonomic Manager for MIMOSAE
	Overview of the proposed Software Evolution Process

