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Dynamiques Discrets

Sara RIVA

Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)
UMR7271 UCA CNRS

Présentée en vue de l’obtention du
grade de docteur en INFORMATIQUE

d’Université Côte d’Azur
et de Università degli Studi di Milano-
Bicocca

Dirigée par : Enrico FORMENTI, Pro-
fesseur, Université Côte d’Azur
Co-dirigée par : Alberto DENNUN-
ZIO, Maître de conférences, Università
degli Studi di Milano-Bicocca
Soutenue le : 21 novembre 2022

Devant le jury, composé de :
Julien CERVELLE, Professeur, Université Paris-Est Créteil
Stefan HAAR, Directeur de recherche, INRIA Saclay-Île de France
Sébastien VEREL, Professeur, Université du Littoral Côte d’Opale
Sylvain SENÉ, Professeur, Aix-Marseille Université
Pedro Paulo BALBI DE OLIVEIRA, Professeur, Universidade Presbi-
teriana Mackenzie
Sergiu IVANOV, Maître de conférences, Université d’Évry, Univer-
sité Paris-Saclay





FACTORISATION DE SYSTÈMES DYNAMIQUES DISCRETS

Factorisation of Discrete Dynamical Systems

Sara RIVA

./

Jury :

Président du jury
Julien CERVELLE, Professeur, Université Paris-Est Créteil

Rapporteurs
Stefan HAAR, Directeur de recherche, INRIA Saclay-Île de France
Sébastien VEREL, Professeur, Université du Littoral Côte d’Opale

Examinateurs
Sylvain SENÉ, Professeur, Aix-Marseille Université
Pedro Paulo BALBI DE OLIVEIRA, Professeur, Universidade Presbiteriana Macken-
zie
Sergiu IVANOV, Maître de conférences, Université d’Évry, Université Paris-Saclay

Directeur de thèse
Enrico FORMENTI, Professeur, Université Côte d’Azur

Codirecteur de thèse
Alberto DENNUNZIO, Maître de conférences, Università degli Studi di Milano-
Bicocca

Université Côte d’Azur



Sara RIVA

Factorisation de Systèmes Dynamiques Discrets
xii+222 p.

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : sommaire.tex – 22/12/2022 – 15:23

Révision pour la classe : these-ISSS.cls,v 2.10 2020/06/24 14:16:37 mpelleau



Factorisation de Systèmes Dynamiques Discrets

Résumé

Un Système Dynamique Fini à temps Discret (SDD) est constitué d’un ensemble fini X , dit es-
pace des états, et d’une fonction f , dite fonction de mise à jour (associant à un état v l’état f(v)).
Les SDD sont un outil formel pour modéliser de nombreux phénomènes en physique, en math-
ématique, en biologie, et, bien sûr en informatique. Si la formalisation mathématique et les ré-
sultats qui en découlent sont élégants et parlants, souvent, ces résultats sont peu applicables en
pratique à cause de leur coût computationnel élevé. Dans la littérature, il est connu que les SDD
équipés d’opérations de somme et de produit appropriées forment un semi-anneau commutatif.
Cette structure algébrique nous permet d’écrire des équations polynomiales dans lesquelles les
coefficients et les inconnues sont des SDD. En particulier, si nous sommes intéressés par une
certaine dynamique dérivée de données expérimentales, nous pouvons écrire une équation avec
celle-ci comme terme de droite constant et modéliser des hypothèses sur la fonction f (ou ses
propriétés) dans un terme de gauche polynomial. Trouver des solutions à cette équation permet de
mieux comprendre le phénomène et ses propriétés. Cette approche est intéressante mais pose des
limites computationnelles importantes. En effet, résoudre une équation polynomiale (à plusieurs
variables) est, en général, indécidable et même en se concentrant sur le cas de la validation des
hypothèses, le coût computationnel reste élevé. L’idée est alors de chercher des approximations
donnant des informations pertinentes sur les solutions de l’équation originale. Trois abstractions
(équations plus simples) sont introduites afin d’identifier : le nombre d’états des variables, le com-
portement asymptotique ou le comportement transient (comportement avant que le système se
stabilise). Chaque abstraction est construite d’un point de vue théorique et algorithmique dans le
but d’introduire une méthode pour effectuer la validation d’hypothèses sur SDD. Dans cette thèse,
il est montré qu’au moyen de transformations algébriques, il est possible d’énumérer les solu-
tions d’une équation polynomiale avec un terme droit constant par l’énumération d’un nombre fini
d’équations plus simples. Enfin, le lien entre la résolution ces équations simples et le problème
de la cancellation connu en théorie des graphes est exploré. Cela a permis de trouver une borne
supérieure linéaire sur le nombre de solutions.

Mots-clés : Systèmes Dynamiques Discrets, Complexité, Vérification.



Factorisation of Discrete Dynamical Systems

Abstract

A Finite Discrete-time Dynamical System (DDS) consists of a finite set X , called state space, and
a function f , called next-state map (which associates to a state v the state f(v)). DDS are a formal
tool for modelling phenomena that appear in Physics, Mathematics, Biology, and, of course, in
Computer Science. While the mathematical formalisation and the results that have been found up
to nowadays are elegant and meaningful, often they are not very suitable in practice because of
their high computational cost. In the literature, it is known that DDS equipped with appropriate
sum and product operations form a commutative semiring. This algebraic structure allows us to
write polynomial equations in which the coefficients and unknowns are DDS. In particular, if we
are interested in some dynamics derived from experimental data, we can write an equation with
this as a constant right-hand term and model assumptions about the function f (or its properties)
in a polynomial left-hand term. Finding solutions to this equation allow us to better understand
the phenomenon and its properties. This approach is interesting but it has important limitations
from a computational point of view. Solving a polynomial equation (with several variables) is, in
general, undecidable, and even if we focus on the case of hypothesis validation, the computational
cost remains high. The idea is then to look for approximations that give relevant information about
the solutions of the original equation. It is possible to introduce three abstractions (simpler equa-
tions) to identify: the number of states of the variables, the asymptotic behaviour, or the transient
behaviour (what happens before the system stabilises). Each one is built from a theoretical and
algorithmic point of view to introduce a method to perform hypothesis validation on DDS. In this
thesis, it is shown that through algebraic transformations, it is possible to enumerate the solutions
of a polynomial equation with a constant term by enumerating a finite number of simpler equa-
tions. Finally, the connection between the solution of these simple equations and the cancellation
problem known in graph theory is explored. This allowed us to find a linear upper bound on the
number of solutions.

Keywords: Discrete Dynamical Systems, Complexity, Formal Verification.



Fattorizzazione di Sistemi Dinamici Discreti

Riassunto

Un Sistema Dinamico finito a tempo Discreto (SDD) è costituito da un insieme finito X , chiamato
insieme degli stati, e da una funzione f che associa a uno stato v lo stato f(v). I SDD sono uno
modello formale per rappresentare fenomeni che compaiono in Fisica, Matematica, Biologia e,
naturalmente, in Informatica. Sebbene la formalizzazione matematica e i risultati ottenuti fino
ad oggi siano eleganti e significativi, spesso non sono molto adatti nella pratica a causa del loro
elevato costo computazionale. In letteratura è noto che i SDD, dotati di opportune operazioni
di somma e prodotto, formano un semianello commutativo. Questa struttura algebrica permette
di scrivere equazioni polinomiali in cui i coefficienti e le incognite sono SDD. In particolare, se
siamo interessati a una dinamica derivata da dati sperimentali, possiamo scrivere un’equazione con
la dinamica come termine destro costante e le ipotesi sulla funzione f (o sulle sue proprietà) in un
termine polinomiale a sinistra. La ricerca di soluzioni a questa equazione permette di comprendere
meglio il fenomeno e le sue proprietà. Questo approccio è interessante, ma presenta importanti
limitazioni dal punto di vista computazionale. La soluzione di un’equazione polinomiale (con di-
verse variabili) è, in generale, indecidibile e, anche se ci concentriamo sul caso della validazione
delle ipotesi, il costo computazionale rimane elevato. L’idea è quindi quella di cercare approssi-
mazioni che diano informazioni rilevanti sulle soluzioni dell’equazione originale. È possibile
introdurre tre astrazioni (equazioni più semplici) per identificare: il numero di stati delle variabili,
il comportamento asintotico o il comportamento transitorio (ciò che accade prima che il sistema si
stabilizzi). Ognuna di esse è costruita da un punto di vista teorico e algoritmico per introdurre un
metodo per eseguire la validazione delle ipotesi sui SDD. In questa tesi si dimostra che, attraverso
trasformazioni algebriche, è possibile enumerare le soluzioni di un’equazione polinomiale con un
termine costante enumerando le soluzioni di un numero finito di equazioni più semplici. Inoltre,
viene esplorata la connessione tra queste equazioni semplici e il problema della cancellazione
(noto nella teoria dei grafi). Infine, questo permette di trovare un limite superiore lineare al nu-
mero di soluzioni.

Parole chiave: Sistemi dinamici discreti, Complessità, Verifica Formale, Diagrammi di decisione,
Grafi funzionali.
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Introduction
Each of us observes and is surrounded by phenomena that evolve over time. Some are more
recognisable than others, but they are everywhere. Let us take a few examples that everyone has
experienced: a pandemic, a bank loan, or a simple bouncing ball.

Dynamical systems (DS) are mathematical models whose purpose is to describe a phenomenon
and how it evolves. Hence, they can be used, for example, to describe how a disease is transmitted,
the characteristics of infective agents, and connections with other social or physiological factors to
model the evolution of an infective disease [Ma (2009)]. In the same way, they can be used to de-
scribe how a debt situation with a bank changes (month after month) according to the interest rate
and the part of the loan already returned [Bournez et al. (2022)], or how a bouncing ball moves
through space (instant after instant) according to the rules of physics [Okninski and Radziszewski
(2010)]. Through these few examples, one can understand that DS have applications in various
fields, such as mathematics, physics, biology, chemistry, economics, medicine, and many others.
The Dynamical System Theory arose in the 19th century from an interest in phenomena coming
from astronomy. For this reason, it is common to find the birth of the study of DS indicated in
Newtonian Mechanics. However, it is widely recognised that the modern theory of dynamical sys-
tems derives from the work of Jules Henri Poincaré [Poincaré (1892), Poincaré (1893), Poincaré
(1899)] on the three-body problem of celestial mechanics i.e. the problem of determining (accord-
ing to an initial position, speed, and masses) the movements of three elements which attract each
other according to Newton’s laws of motion and universal gravitation.

Another aspect that the previous examples hint is the importance of time in a DS. Indeed,
DS can be divided into two large families: continuous-time and discrete-time dynamical systems.
Regardless of how time is defined, the idea of a DS is to associate a state (a “snapshot”) of the
system with each instant in time. The set of possible states of a system is called state space, and
the transitions within this set are governed by differential equations, in the continuous-time case,
and by relations, in the discrete one [Devaney (2018), Sandefur (1993)].

One of the main goals with these models has always been to study the long-term dynamics
of a modelled phenomenon in order to forecast future states and their properties. A fundamental
concept, in dynamical system theory, is the notion of orbit, namely, given an initial state, the
sequence of states that the system will pass through along time. This term also harkens back to
the origins of DS.

However, before the advent of computers, studying the evolution of DS required fine math-
ematical skills and could only be done for a few systems. Now, instead, one can study DS and
derive information about their future behaviour and predict, for example, whether the system will
enter a cyclic behaviour or whether it will stabilise (i.e., whether it will remain closer to a cer-
tain orbit). These are not trivial computations in many application cases, and researchers try to
introduce always new techniques to be able to perform increasingly more complex predictions
on real-life systems using more and more powerful machines and approximation techniques [An-
toulas (2004)]. For example, in 2009, two french researchers have been able to study the positions
of some planets of the solar system in 5 billion years [Laskar and Gastineau (2009)].

After modelling a phenomenon, asking what happens in the long-term dynamics is surely the
most natural question. Nevertheless, another interesting research goal consists in inferring the

1
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rules governing a DS from a few information about it [Wang et al. (2021), Ahmadi and Khadir
(2020)].

The advent of computers has also given greater importance to discrete-time dynamical systems
[Jakubczyk and Sontag (1990)]. Indeed, although there are phenomena that are more naturally
modelled by continuous-time DS, their discrete version is known to be an excellent approximation
as it is computationally simpler and still allows the study of certain aspects of the dynamics (such
as stability). Intuitively, the transition from continuous to discrete corresponds to a “sampling”,
meaning that the state of the system is observed after regular intervals of time.

In this thesis, we will focus on Discrete-time Dynamical Systems with a finite number of
states X , which we will call DDS. This type of dynamical systems can be seen as graphs, called
dynamics graphs, where the set of nodes is the set of states (i.e. the state space) and the pairs
(v, f(v)) with v ∈ X are the edges. Then, each node has one and only one outgoing arc (which
can be a self loop).

In graph theory, these oriented graphs are called functional graphs (FG). They correspond
to permutations or map models, from a phase space with a finite number of points to itself (i.e.
endofunctions). In this case, the set of nodes is finite, hence, each state is ultimately periodic i.e.
each long enough orbit originating in a state will eventually run into a cyclic behaviour. In the
literature, it is well known that these graphs are characterised by a finite number of components
with just one cycle. Then, the nodes of each component can be classified as periodic if they belong
to a cycle, or transient otherwise.

From a mathematical point of view, FG (or DDS) are simple combinatorial structures. How-
ever, they find important applications to represent the dynamics arising from models such as
Boolean automata networks, cellular automata [Sené (2012), Alonso-Sanz (2012), Adamatzky
et al. (2020)], as well as real-world phenomena such as genetic regulatory networks, epi-
demic models, plankton population, interactions between market demand and market supply for
a given good or service, and many others [Finkenstädt and Grenfell (2000), Bower and Bolouri
(2004), Kartal et al. (2016), Danca and Fečkan (2019)].

An important research direction has been to study the expected number of components of a
random map (i.e. random FG). This question has been opened by Metropolis and Ulam [Metropolis
and Ulam (1952)] and answered by Kruskal one year later [Kruskal (1954)]. Since then, a lot of
researchers have studied the number of cycles, trajectories, and the number and the dimension
of the components of random generated FG [Romero and Zertuche (2003), Romero and Zertuche
(2005), Derrida and Flyvbjerg (1987)] providing exact and asymptotic formulas. The goal of this
type of research is to try to answer questions such as “given any state, what is the likely amount of
states the system will pass through before exhibiting cyclic behaviour?” or “what is the probability
that the system will reach a fixed point?”, and similar. In the case of trajectories, typically, one can
try to identify the average number of different states that may be involved in the orbit of a state,
or the average number of nodes that may reach a state with their orbit. These questions have also
been studied directly on DDS corresponding to Boolean functions and explaining the meaning in a
biological context [Coste and Henon (1986)]. It is important to emphasise that given a number of
states n, the number of n-functional graphs, or the number of (non-isomorphic) DDS with n states
follows a known asymptotic formula [The Online Encyclopedia of Integer Sequences (1996)a].
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Considering functional graphs, the components are a decomposition of the set of nodes in dis-
joint minimal non-empty invariant sets1. Given this important aspect, Katz studied the probability
that a random mapping is indecomposable (i.e. the graph has just one component) [Katz (1955)].

Cycles of DDS (or FG) represent the asymptotic behaviour of the dynamics and they are
particularly important, for example, when the dynamics modelled in an FG arise from biologi-
cal applications. In fact, they have been linked to biological phenotypes and they can provide
important insights for biologists to understand molecular mechanisms underlying many cellular
processes such as cellular division, differentiation, and others [Schwab et al. (2020)b]. For this
reason, researchers propose algorithmic techniques to be able to extrapolate the cyclic behaviour
of a DDS arising from a biological context directly from networks able to model the interaction
between genes involved in a process, for example. Some of these techniques are based on the
SAT problem [Dubrova and Teslenko (2011)], others on Binary Decision Diagrams [Garg et al.
(2008), Zheng et al. (2013), Garg et al. (2007)].

In the state of the art, there are also works investigating the possibility of introducing algebraic
structures on DDS [Ginocchio (1998)]. In particular, in 2018, it was shown how DDS (up to iso-
morphism) equipped with sum and product operations form a commutative semiring [Dennunzio
et al. (2018)]. This result derives from the idea of being able to find dynamical systems that can
be combined to recreate a certain dynamical system of interest (up to isomorphism).

The most natural and intuitive way to combine two dynamics is to consider them either in
parallel, i.e. at each time step both systems change state synchronously, or in an alternative exe-
cution, i.e. one of the original dynamics is observed as time passes according to the initial state.
These two options of combining DDS, to create larger and more complex dynamics, correspond
exactly to the two operations of the semiring: product and sum. Specifically, the sum is defined
as the disjoint union of the components, while the product is defined from a Cartesian product of
the states of the original dynamics, and the possible transitions are hence given by the Cartesian
product of the original transitions.

Beyond the interesting algebraic result, this commutative semiring structure offers the pos-
sibility of investigating decompositions and/or factorisations of DDS. In fact, it naturally brings
to define polynomials over DDS in which both coefficients and unknowns terms are DDS. In
particular, it becomes possible to use a polynomial equation with a constant right-hand side to
investigate whether a certain dynamic (contained in the right-hand term) can be produced by other
DDS expressed by the polynomial. Only by finding values for the variables in the polynomial is
it possible to understand whether the DDS can be factorised and/or decomposed. As may have
already been guessed, these polynomial equations are particularly interesting as they allow one to
model even more complex hypotheses than simply "is it factorisable?", or "is it decomposable?".
This is thanks, for example, to the coefficients of the polynomial. Indeed, coefficients can be in-
terpreted as subdynamics that should cooperate to create the dynamics of interest. This can be
particularly useful in all those cases in which the DDS being studied is obtained based on partial
knowledge, or when one wishes, for example, to identify whether there are common subsystems
between different DDS.

The problem at this point becomes the complexity of solving equations on DDS. In [Dennun-
zio et al. (2018)], it was indeed shown that polynomial equations without a constant term are
undecidable and, in the case there is a constant term, they are in NP (and in some cases even
NP-complete).

1Given X ′ ⊆ X , X ′ is an invariant set if and only if f−1(X ′) ⊆ X ′.
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Since we have said that a DDS can be viewed as a functional graph, one might wonder why we
are not studying whether a DDS can be factorised using graph factorisation techniques. Indeed, the
product as defined in [Dennunzio et al. (2018)] corresponds to the direct product of graphs. The
problem of factorisation of graphs is widely studied from a theoretical point of view [Hammack
et al. (2011)], and some heuristics have been proposed for the factorisation of graphs with respect
to the direct product [Calderoni et al. (2021)]. However, this approach is not exactly equivalent
to studying factorisations and decompositions using multivariate polynomials and does not allow
us to take advantage of the fact that we are dealing with functional graphs, i.e. graphs whose
important property is that all nodes have outgoing degree one.

This thesis studies multivariate polynomial equations with a constant right-hand term. As a
starting point, equations in which there is one variable per monomial are considered, leaving the
more general case for future work. Therefore, the equations will be of form

A1 ·Xw1
1 +A2 ·Xw2

2 + . . .+Am ·Xwm
m = B

where coefficients Az , variables Xz , and the known dynamics B are DDS. Our goal is a solution
based on abstractions. The term abstraction derives from the fact that the equation on DDS will be
studied by means of other equations that will focus on specific properties of the systems involved
while ignoring other aspects. This is done to reduce the solution space one property at a time and
to give relevant information about the solutions of the original DDS equation. An additional goal
is set in this work: the enumeration of solutions. This is because the aim is to enumerate systems
capable of recreating a dynamics or validating a hypothesis modelled by an equation. It should
be noted that in order to enumerate the solutions of the original equation on DDS, one needs to
enumerate the solutions of the abstractions, since the original solutions have to satisfy all of them
(i.e. solutions can be found in the intersection of the solutions of all the abstractions).

We will study three main aspects of the dynamics involved in an equation: the cardinality of the
set of states, the cyclic behaviour, and the transient behaviour. For each of these, a specific equation
(c-abstraction, a-abstraction, and t-abstraction) is then introduced to identify the cardinalities of
the set of states, the cyclic or the transient behaviour of the different unknowns in the polynomial.
Each abstraction is studied, first, from a theoretical point of view to be able, later, to propose
methods to solve the equations over the abstraction and to perform hypothesis validation on DDS.

Recall that, in general, an equation models an hypothesis like “does the dynamics that we
observe B result from several independent smaller systems Az · Xwz

z , each of them having its
dynamics determined by the joint parallel action of a known part Az and an unknown part Xwz

z

to be computed?”.
This work leads to the implementation of a pipeline capable of validating hypotheses on DDS.

Through algebraic transformations, called contraction steps, we enumerate the solutions of a poly-
nomial equation with a constant right-hand term examining a finite number of simpler equations,
typically of the form A · X = B where A, X , and B are DDS. For each abstraction, we show
how to solve the corresponding basic equations, and how to combine their solutions to find the
solutions of the original equation. In the case of the number of states and of the asymptotic be-
haviour, Multi-valued Decision Diagrams (MDD) are used to identify the solutions. Furthermore,
it is also presented how to compute roots on the asymptotic behaviour of DDS. Finally, the con-
nection between the solution of simple equations on DDS and the cancellation problem in graph
theory is explored. Thanks to this connection, a linear upper bound on the number of solutions of
basic equations is introduced.
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In this work, we will therefore explore the connection between MDD and equations over
DDS. MDD are a generalisation of Binary Decision Diagrams (BDD) [Akers (1978), Bergman
et al. (2016)]. They are a data structure used to obtain efficient representations of functions (with
finite domains) or finite sets. In the last years, MDD have been applied in many disparate re-
search domains proving the potential of this structure. MDD are used, for instance, to improve
random forest algorithms by replacing the classic binary decision trees [Nakahara et al. (2017)],
to represent and analyse automotive product data of valid/invalid product configurations [Berndt
et al. (2012)], and to perform trust analysis in social networks [Zhang et al. (2019)]. MDD find
applications also in the analysis of discrete dynamical systems. Indeed, in [Naldi et al. (2007)],
MDD represents logic rules to analyse some properties and dynamics aspects in the case of regu-
latory networks (for example, to perform a stable states identification). A crucial aspect of MDD
is the exponential compression power of the reduction operation and the fact that many classical
operations (intersection, union, etc.) can be performed without decompression. These aspects will
be exploited in this thesis. In addition, a new algorithmic technique for calculating the intersection
on structures containing Cartesian products of sets of ordered solutions will be proposed in this
thesis.

This manuscript hence comprises three chapters for the state-of-the-art part. In particular:

• Chapter 1 introduces all the necessary concepts concerning DDS, the sum and product oper-
ations, the commutative semiring, and known complexity results about equations on DDS.
It also presents two examples of discrete dynamics obtained from Boolean networks and
cellular automata.

• Chapter 2 is concerned with useful concepts on the direct product of graphs and, in par-
ticular, on the cancellation problem. These notions will be useful to study the number of
solutions of an equation A ·X = B where A, X , and B are DDS with one component.

• Chapter 3 is a brief introduction to MDD. These structures will be used for the solution
enumeration of equations on the cardinality of the set of states and cyclic behaviour. For
this reason, useful operations on these structures are also presented such as reduction, inter-
section, Cartesian product, and others.

The main contributions of this thesis are contained in the next three chapters:

• Chapter 4 introduces the multivariate polynomial equations over DDS with constant right-
hand term that will be considered. It also explains the idea behind the introduction of the
abstractions and those that will be studied in the thesis work. Finally, it defines the c-
abstraction and an MDD-based method to enumerate its solutions.

• Chapter 5 is concerned with the a-abstraction. It introduced a handy notation to express the
cyclic part of DDS and studies the relation between these parts and the sum and product
operations. The chapter also presents the algebraic transformations (contraction steps) that
allow to enumerate the solutions of the abstraction via a finite number of basic equations.
Moreover, two algorithmic techniques for solving basic equations are presented. A first
technique that explores the connection with the change-making problem, and a second one
(based on MDD) that leads to better performances. Finally, Section 5.3 focus on the pipeline
required to enumerate the solutions of an a-abstractions equation, and Section 5.4 presents
a technique to compute roots on the cyclic part of DDS.
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• Chapter 6 is devoted to the t-abstraction on the transient behaviour and analyses the impact
of the product operation on the dynamics. It introduces the basic case by showing how the
algebraic transformations shown in the previous chapter can also be applied to the transient
part. Then, an upper bound on the number of solutions of basic equations over DDS is in-
troduced by exploiting a connection with the cancellation problem over graphs. The chapter
ends with the proposal of two algorithmic approaches: a polynomial one to enumerate the
solutions of basic equations on t-abstractions, and a second one to enumerate the solutions
(up to isomorphism) of a basic equation on DDS (having single components) which has
exponential complexity.

Finally, the Appendix A presents the results of research activities carried out during the thesis
period concerning Elementary Cellular Automata and their sensitivity to synchronism. In par-
ticular, the ratio between the different dynamics obtainable and the number of different feasible
asynchronous updates is investigated. For this analysis, asynchronous updates based on determin-
istic block-sequential update schedules are considered, meaning that the cells are partitioned into
disjoint blocks with different priorities of being updated.



Notations

Discrete Dynamical Systems

S = (X , f) A generic DDS
X ,Y Set of states
f Next state map
GS Dynamics graph of S
V Set of nodes
E Set of edges
f |Y Restriction of f to Y
(Y, f |Y) Dynamical subsystem induced by Y
v A generic state
P Set of periodic states
T Set of transient states
C Set of nodes of a cycle
p Length of a cycle
h Length of a transient
L Number of weakly connected components(
Xj , f |Xj

)
j-th component of a DDS, with j ∈ {1, . . . , L}

Cj j-th cycle of a DDS, with j ∈ {1, . . . , L}
Tj Transient points of the j-th component, with j ∈ {1, . . . , L}
D Commutative semiring of DDS
× Cartesian product
N A semiring isomorphic to the natural numbers

Equations over DDS

+ Sum operator
t Disjoint union of sets
· Product Operator
X Unknown DDS (a variable in the equation)
D[X] Semiring of polynomials over the indeterminate X
P (X1, . . . , Xν), Q(X1, . . . , Xν) Two polynomials of D[X1, . . . , Xν ]
ν Number of different variables in a polynomial
m Number of monomials in the equation
B Constant right-hand term of an equation
A Coefficient of a monomial in the equation
Sw Product of w copies of the DDS S

7
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Products and Cancellation over graphs and digraphs

G,H Graphs or Digraphs
V (G) Set of vertices of G
E(G) Set of edges (or arcs) of G
g A vertex of G
h A vertex of H
(g1, g2) An oriented arc of G
[g1, g2] An edge of G
G ·H Direct product of G and H
G�H Cartesian product of G and H
G�H Strong product of G and H
dG(g1, g2) Distance between two nodes in G
l Length of a walk or a path
ρi(g) i-th component of a state g ∈ V (G) with G = G1 · . . . ·Gk
L Number of cycles
g(G) gcd between cycles length in G
C Strong component
hom(J,G) Number of homomorphisms from J to G
∼= Isomorphism of graphs
ϕ An homomorphism
µ An anti-automorphism
Ant(G) Set of anti-automorphism of G
' Equivalence between anti-automorphisms
[µ] Equivalence class of anti-automorphisms containing µ
G! Factorial of a graph G
Perm(V (G)) Set of permutations of V (G)
π A permutation of Perm(V (G))
Cp Oriented cycle of length p
Pn Oriented path with n vertices and n− 1 arcs
V t
r ,Λtr Two non-isomorphic families of cancellation digraphs
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Binary Decision Diagrams & Multi-valued Decision Diagrams

fB Boolean formula
fM Multi-valued formula
bi i-th variable
0,1 false, true
⊥,> Terminal nodes of a BDD
root Root of a Decision Diagram
tt True terminal node of an MDD
M An MDD
N Set of nodes of an MDD
E Set of arcs of an MDD
α, β, ω Nodes of an MDD
E+
α Ordered set of outgoing arcs from the node α

E−α Ordered set of incoming arcs in the node α
r Number of variables in the formula
Di i-th variable domain
D Larger variable domain
d Element of a domain (label of an edge)
M1 ×M2 Cartesian product of MDD
M1 ∪M2 Union of MDD
M1 ∩M2 Intersection of MDD
M1 −M2 Difference between MDD
M1 4M2 Symmetric difference between MDD

Change-Making Problem

T Total integer sum
$ Coin system
ci The i-th coin
t Number of different coin denomination in $

C-abstraction
|S| C-abstraction of a DDS S
|S1|+ |S2| Sum of c-abstractions
|S1| · |S2| Product of c-abstractions
Bz Number of states of B generated by the z-th monomial
Di Possible labels of the outgoing arcs from a layer i of the MDD
`ab((α, β)) Label of the arc (α, β) of the MDD
val(α) Value associated to a node α
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A-abstraction
S̊ A-abstraction of a DDS S
S̊1 ⊕ S̊2 Sum of a-abstractions
S̊1 � S̊2 Product of a-abstractions
Cnp Union of any n disjoint cycles of length p
lS Number of different cycle lengths in S
m Number of different pairs (X̊, w) in the equation
`z Number of monomials with the z-th pair (X̊, w)
X̊z The z-th pair (X̊, w)
pz,i The i-th period length involved in a monomial with X̊z
nz,i Number of cycles of length pz,i
pj The j-th cycle length involved in B
nj Number of cycles of length pj in B
nz,ij Number of cycles of length pj generated by the monomial (z, i)
p, n, q Parameters of a basic equation C1

p � X̊ = Cnq
Crq Possible subset of Cnq with r ≤ n
s Number of cycles in a solution of a basic equation
p′ A cycle length in a solution
ph1

1 ph2
2 , . . . , phψψ Prime factorisation of p

factors(p) Set of factors p1, p2, . . . , pψ of p
nt11 nt22 , . . . , ntττ Prime factorisation of n
qo1

1 qo2
2 , . . . , qoιι Prime factorisation of q

ΠF(q, p) Function to compute the product of qojj with qj 6∈ factors(p)
ΠE(q, p) Function to compute the product of qhij with qj = pi
div(q, n) Set containing the divisors of q smaller than or equal to n
CTMp,q,n Solutions set returned by the Colored-Tree Method
EQp,q,n Solutions set of a basic equation
Mp,q,n SB-MDD of a basic equation
Dp,q Set of feasible divisors of a basic equation
Z Number of layer in a Mp,q,n

e(α) Label of the incoming edge of a node α in Mp,q,n

CS MDD containing all feasible systems according to the necessary
equations

CSj MDD containing all feasible ways to generate the Cnjpj cycles
using the monomials

Nj , Ej Nodes and arcs of CSj
Nj,(z,i) A Layer of CSj
Dpz,i ,pj Possible labels of the outgoing arcs of the level Nj,(z,i)
M Set containing SB-MDD and SB-Cartesian MDD
M An MDD in M
S Initial guess of the SB-Cartesian Intersection
S A solution in S
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T-abstraction
Š T-abstraction of a DDS S
g Indexing function for cycles
g(r) Periodic point with index r
Tz,j Set of transient points of the j-th component in a DDS z
T z,j Matrix of transient points of the j-th component in a DDS z
T z,jr,h Set of transient points of the j-th component in a DDS z with a

path of length h ending in g(r)
T z,j T-abstraction matrix of the j-th component of DDS z
T z,jr,h Multiset of the number of predecessors of each node in T z,jr,h

hmaxj Maximum length of a transient in the j-component
Tz Set of transient points of the connected DDS z
T z Matrix of transient points of the connected DDS z
T z T-abstraction matrix of a connected DDS z
Pz Periodic point of a DDS z
M A multiset of integers
d An element ofM
M+M′ Disjoint union of multisets
M⊗M′ Product of multisets
B̌ 1,1, B̌ 1,2, . . . , B̌m,Lm Elements of the partition of the multiset B̌
TA, TX , TB T-abstraction matrices of a basic equation
A ·X ⊇ B Product A ·X contains a subset of components isomorphic to B
Uv(S) Unroll of a DDS S from v
I An in-tree
V Set of vertices of an in-tree
E Set of edges of an in-tree
I1 ? I2 Product of in-trees
cut Function cut
Ca,t(A) The cut of an unroll Ua(A), at a level t
F A finite in-tree
Hom(G,F ) Set of homomorphisms from G to F
π A projection
a, x, b Periodic points of A, X , and B
R`(I) The roll (of length `) of I
pX Number of cyclic point in X
M1,M2,M3 Multisets for the reconstruction of X
Or,h Set of different origins of the nodes in a T Br,h
o An element of Or,h
T Br,h|o Set of all nodes T Br,h such that fB(v) has origin o
TBr,h|o Multiset of indegrees of the nodes in T Br,h−1|o
H (v) The height of the subtree rooted on v
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Cellular Automata & Boolean Networks
n number of components of a BN (or cells of a CA)
F Global rule
{0,1} Set of states for the components
JnK {0, . . . , n− 1}
xi The current state of the i-th automaton
x A configuration of the BN or of a CA
fi Local function of the i-th automaton
GF Interaction graph
α Number of a Elementary Cellular Automata (ECA)
rα Local function of a ECA
τι, τ%, τη, τ%η Tranformations to preserve dynamics of a ECA
Pn The set of ordered partitions of JnK cells
∆ Block-sequential update schedule
∆i A block of ∆
∆sync The synchronous update schedule
F (∆) Global rule according to ∆

Sensitivity to synchronism in ECA

xi Configuration obtained from x by flipping the state of compo-
nent i

ĜF GF without loops
DF (∆) Transition digraph
D(F ) Set of dynamics of a CA
UF (∆) Update digraph
lab∆((i, j)) label of the arc (i, j) in UF (∆)
U(F ) Set of equivalence classes of update schedules for a CA
µS(F ) The sensitivity to synchronism
f (∆)(x)i Updated value of the component i according to ∆
GECAn Interaction digraph of size n for ECA
UECA(F ) Set of valid labeling of GECAn

Fα,n Global function of an ECA α with n cells
µS(Fα,n) The sensitivity to synchronism of ECA rule number α
←−
d∆(i),−→d∆(i) Length of the chains of influences for a cell i

∆ ≡ ∆′ Update schedules equivalent
d∆(i) Cells on which the result of updating cell i depends
Du(F8,n) Partition of D(F8,n)
σ(∆) Left rotation
ρ(∆) Left/right exchange
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CHAPTER 1
Discrete Dynamical

Systems
Finite Discrete-time Dynamical Systems (DDS) are a formal model for studying complex
phenomena such as those appearing in Physics, Biology, Chemistry, etc. They are based
on a finite set of states and a function, called next-state map, that describes how a
phenomenon evolves from the current state to the next one. The dynamics, i.e. the overall
evolution of the system, can be represented with a functional graph, i.e. a digraph in
which all nodes have an outgoing degree equal to 1. These systems can be combined
using sum and product operations, which allow us to incorporate different dynamics in
alternative or in parallel executions. Finite Discrete-time Dynamical Systems equipped
with these operations form a commutative semiring. This algebraic structure naturally
leads to use polynomial equations over DDS for modelling questions on the dynamics
and the structure of the system. We will see that according to the structure of these
equations, the problem of deciding if they have solutions might span from undecidability
to decidability (with different degrees of complexity). The chapter will end with some
basic examples.
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1.1 Finite Discrete Dynamical Systems

A dynamical system (DS) is a formal model used to represent the evolution of a phenomenon over
time. To do so, by convention, time can be primarily discrete or continuous. Continuous-time DS
are governed by differential equations, contrarywise, in discrete-time DS, the evolution progress at
discrete time steps and ordinary continuous functions (or relations) are used. A dynamical system
is based on a state space i.e. the set of possible states of the system (the observed dynamics) at
some moment in time. State changes follow a fixed rule that describes how (according to certain
parameters) the system evolves. In other words, this rule defines the next state of the system.

This is a simple introduction to dynamical systems, for more details, the reader can delve into
the subject in one of the classic books [Devaney (2018), Sandefur (1993)].

In the following, we will always refer to dynamical systems with finite state space and discrete
time. We will call these Finite Discrete-Time Dynamical Systems, Discrete Dynamical Systems
(DDS) or dynamical systems for simplicity. This chapter is intended to introduce the essential
concepts, which will be useful in the next chapters.

1.1.1 Basic notions

Definition 1.1.1 (DDS). A Finite Discrete-Time Dynamical System S is a pair (X , f) where X
is a finite set of states, and f : X → X is a function, called next-state map, which defines the
successor for each state of X .

A DDS S = (X , f) can also be represented by a digraph GS = (V,E), called the dynamics
graph, where the vertices are the possible states of the system (i.e. V = X ), and the function
f defines the existing edges, or in other words, E = {(v, f(v)) | v ∈ V }. According to this
definition, all the nodes of the digraph have outgoing degree equal to 1, and it is planar. In the
literature, this type of graphs are also called functional graphs since they are the graph of the
corresponding functions.

Given any subset Y of X (such that for all v ∈ Y , f(v) ⊆ Y), the DDS (Y, f |Y) is said to
be the dynamical subsystem of (X , f) induced by Y (here, f |Y means the restriction of f to Y).
Clearly, the dynamics graph of (Y, f |Y) is the subgraph of GS induced by Y . Remark that the
most simple system is the empty dynamical system, in whichX is the empty set and f is the empty
function (a function whose domain is the empty set).

Since X is finite, each state v ∈ X is ultimately periodic, i.e. each long enough path in the
graph originating in v will run at some point into a cycle.

Let fn denote the n-th composition of the function f with itself, where f0 is the identity map
on X . The orbit of an initial state v0 ∈ X is the sequence (vn)n∈N where vn = fn(v0). A state
v ∈ X is a periodic point of S if there exists an integer p > 0 such that fp(v) = v. The smallest
such p is called the period of v. If p = 1, the state v is called a fixed point.

A cycle (of length p) of S is any set C = {v, f(v), ..., fp−1(v)} where v ∈ X is a periodic
point of period p. Then, formally, a point v is said to be ultimately periodic if fh+p(v) = fh(v)
for some integer h ∈ N and p > 0, or, in other words, if there exists a cycle C in GS such that
fh(v) ∈ C for some h ∈ N.
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Figure 1.1 – A dynamics graphGS corresponding to a DDS S with two cycles and some transients
nodes connected to both cycles. We have S = (X , f) with X = P ∪T , P = C1∪C2 = {v1, v2}∪
{v8, v9, v10} and T = T1 ∪ T2 = {v3, v4, v5, v6, v7} ∪ {v11, v12, v13, v14, v15, v16, v17, v18}. As
an example of a transient, we can consider the green nodes. Node v18 is contained in transient
{v18, v12} of length 2.

Clearly, the setP of all the periodic points can be viewed as union of disjoint cycles. Moreover,
both (C, f |C) and (P, f |P) are dynamical subsystems of S and their dynamics graphs just consist
of one among, resp., all, the strongly connected components1 of GS .

Given a cycle C and a v ∈ X , if h is the smallest natural number such that fh(v) ∈ C, we call
the set {v, f(v), . . . , fh−1(v)} a transient of length h and its points transient states. The orbit
of any point thus consists of at most two disjoint parts: its transient and a cycle. Clearly, if we
denote by P the set of periodic states and T the set of transient states of S, we have T ∪ P = X .
Figure 1.1 provides an example of the concepts introduced so far.

The GS graph of a DDS S may contain one to several weakly connected components (con-
nected components ignoring the orientation of the arcs [Pemmaraju et al. (2003), Hong et al.
(2013)]) but each of them will always be characterized by only one cycle. This is the typical form
of dynamic graphs in our context. Then, if we consider S with L cycles, the dynamics graph has
L weakly connected components. Each component

(
Xj , f |Xj

)
with j ∈ {1, . . . , L} has one cycle

Cj and Xj = Tj ∪ Cj . In the following for simplicity, we will use the term weakly connected
components and connected components as synonyms. The transient points Tj of a component j
are the nodes v ∈ T such that fh(v) ∈ Cj for some h > 0. In the following, with an abuse of
notation, we will refer to each component by its set Xj .

1.1.2 Isomorphism of DDS

Given the fact that, for this work, we are not interested in the precise nature of the different
states that characterise a given DDS, we can consider systems up to an isomorphism. Indeed, two
systems are isomorphic if and only if there is an isomorphism between their dynamics graphs.
From a graph theory point of view, an isomorphism of two graphs G and H (two dynamics graphs
in our case) is a bijection between the vertex sets of G and H such that any two vertices v1 and v2
are adjacent inG if and only if γ(v1) and γ(v2) are adjacent inH . When this happens, the systems
are indistinguishable from the dynamical point of view. In particular, periodic points and cycles

1A strongly connected component is the portion of a directed graph in which there is a path from each vertex to
another vertex.
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Figure 1.2 – All non-isomorphic DDS with three states.

of a system are in one-to-one correspondence with periodic points and cycles of the other system,
and the dynamical subsystems induced by them in the respective DDS are isomorphic too.

Formally, a DDS S1 = (X1, f1) is isomorphic to S2 = (X2, f2) if and only if there exists a
bijection γ such that f2 ◦ γ = γ ◦ f1.

Finite dynamical systems form a category D [Lawvere and Schanuel (1997), Article III]. Let
us recall that, a category is a collection of objects, here DDS, that are linked by arrows between
isomorphic systems. A category has two important properties: the ability to compose the arrows
associatively and the existence of an identity arrow for each object. This category has as its initial
object2 the empty dynamical system, and as terminal objects3 any single-state dynamical system
with the identity function as next-state map.

The relation of isomorphism between DDS is an equivalence relation. It is easy to see that, if
two systems are isomorphic, then the graphs associated with their dynamics are isomorphic too.
The quotient setD is derived from the collection of DDS by the equivalence relation. Remark that
this set is countable, and that considering dynamical systems up to isomorphism, we are defining
equivalence classes between DDS. Given a fixed number of states of a DDS, the number of non-
isomorphic DDS is given by the sequence A001372 of OEIS [The Online Encyclopedia of Integer
Sequences (1996)a]. Figure 1.2 shows an example for DDS with three states.

1.1.3 Algebraic operations

In order to manipulate and combine discrete dynamical systems, two different operations have
been defined: the sum and the product. Indeed, one can imagine that a certain complex dynamics
is the result of two independent sub-dynamics, as well as the result of collaboration, or interaction,
between different subsystems. The definition of operations thus serves precisely to be able to study
different types of interaction between systems and to study how complex dynamics can be broken
down or factorised into something smaller and therefore also easier to study. In fact, as we are
going to see, equations on DDS are introduced for this purpose. However, in order to be able to
investigate the solutions to these equations (i.e. different factorisations and decompositions), one
must know how the operations involved in these work. For more about the following concepts, the
reader can refer to [Dennunzio et al. (2018)].

2The initial object is an object of the collection such that there exists precisely one morphism to any other object.
3The terminal object is an object of the collection such that, from every object in the collection, there exists precisely

one morphism to itself.
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Figure 1.3 – Example of sum of two DDS. The resulting DDS contains all the original components
of the two systems. Remark that name of the states in the result are simplified in vi for all (vi, 0)
with i ∈ {1, . . . , 8} and in ui for all (ui, 1) with i ∈ {1, . . . , 9}.

1.1.3.1 Sum of discrete dynamical systems

Before introducing the sum of two DDS, let us recall that the disjoint union X1 tX2 between two
sets X1 and X2 is defined as (X1×{0})∪(X2×{1}). Intuitively, in this type of union all elements
are combined but the information about the original sets is not lost.

Definition 1.1.2 (Sum of DDS). The sum (X1, f1) + (X2, f2) of any two DDS S1 = (X1, f1) and
S2 = (X2, f2) is the DDS (X1 t X2, f1 t f2) where the function f1 t f2 : X1 tX2 → X1 tX2 is
defined as:

∀(v, i) ∈ X1 t X2, (f1 t f2)(v, i) =
{

(f1(v), i) if v ∈ X1 and i = 0,
(f2(v), i) if v ∈ X2 and i = 1.

Since we will use the equivalence between DDS and dynamics graphs, let us highlight that the
sum as defined above corresponds to the disjoint union of the components of the graphs. In fact,
the result of the sum operation between two systems is a new one containing both dynamics (see
Figure 1.3). In other words, the resulting system presents the two alternative behaviours of the
original systems, and according to the initial state, one of the two original dynamics will follow.

The empty dynamical system is the identity element, or neutral element, for this operation.
Remark that the sum of DDS is commutative and associative (up to isomorphism since the disjoint
union names the nodes of the result differently).

In the sequel, for any natural k > 0 and any DDS S, the sum S + . . . + S =
∑k
i=1 S of k

copies of S will be denoted by k S.

1.1.3.2 Product of discrete dynamical systems

The product between DDS is the direct product of dynamics graphs (sometimes also called tensor
product of graphs). In the graph community, this product of graphs is denoted with ×. Let us
clarify that, here, × is used to denote the Cartesian product of sets and · to denote the product
of DDS or the integer product. Chapter 2 contains more details about this specific graph product
and its known properties according to the graph literature. In addition, let us point out that if
one considers the adjacency matrices of the dynamics graphs, one can also refer to the Kronecker
product.
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Figure 1.4 – An example of product operation between two DDS with just one component each.
The result of the product operation contains just one component too because the cycle lengths are
coprime.

Definition 1.1.3 (Product of DDS). The product (X1, f1) ·(X2, f2) of any two DDS S1 = (X1, f1)
and S2 = (X2, f2) is the DDS (X1 ×X2, f1 × f2) where the function f1 × f2 : X1 × X2 →
X1 ×X2 is the standard product of functions defined as ∀(v1, v2) ∈ X1 ×X2, (f1 × f2)(v1, v2) =
(f1(v1), f2(v2)).

Let us precise that multiplying any dynamical system by the empty system gives the empty
system (i.e. the annihilation law holds), and that multiplying a dynamical system with a simple
fixed point produces a system isomorphic to the original one. In all other cases, the product of
DDS consists of a Cartesian product of the original sets of states and in a new next-state map.

As will be detailed in the next chapter, the number of components resulting from a product
operation depends on whether the cycle lengths involved are coprime or not [Hammack et al.
(2011)] [Dennunzio et al. (2020)]. This will be explored in more detail later on, but Figures 1.4
and 1.5 already show an example where only one component is obtained and another one where
several components are obtained.

The product operation of DDS is associative and commutative modulo isomorphism of dy-
namical systems. In fact, this operation needs a Cartesian product, as a consequence changing the
order of the operators changes the resulting set of states. However, the evolution of the resulting
systems are isomorphic (see Figure 1.6).

In the sequel, for any natural w > 0 and any DDS S, the product S · . . . · S =
∏w
i=1 S of

w copies of S will be naturally denoted by Sw. In this way, one can state the following proposi-
tion which is nothing but the counterpart in this setting of the well-known standard multinomial
theorem.
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Figure 1.5 – An example of product operation between two DDS with just one component each.
The result of the product operation contains different components because the cycle lengths are
not coprime.
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Figure 1.6 – The example shows the product of two DDS performed by changing the order of the
operands. Only some names of the states are shown to make the picture clearer. One can see how
the product in both cases leads to isomorphic dynamics, but the same state has different names.
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Proposition 1.1.1. For any positive naturals w and z, and any DDS S1, . . . , Sz , it holds that

(S1 + . . .+ Sz)w =
∑

k1+...+kz=w
0≤k1,...,kz≤w

(
w

k1, ..., kz

)
z∏
t=1

(St)kt .

To better understand the product of DDS, it is useful to refer to the Cayley table (part of it
is shown in Figure 1.7). It shows the result of different products among DDS by increasing the
number of nodes and evaluating the different functions that can be described within them.

Thanks to the Cayley table one can notice an important property. The elements of D do not
exhibit unique factorisation. Figure 1.8 highlights an example. At the same time, however, we
know that there are systems that we can define as irreducible, meaning that there is no nontrivial
factorisation for them [Dennunzio et al. (2018)]. In other words, one can find them in the Cayley
table only as the result of a product involving a fixed point (product identity). Note that, for
example, a DDS containing only one cycle of length two is irreducible. Intuitively, these systems
have a prime number of states (for example two) and to produce a set of states of prime cardinality,
one needs a set with a prime number of elements and another containing only one element. Hence,
any system with a prime number of states is irreducible. In addition, it has been shown that
given any integer number k, there is always at least one system admitting at least k different
factorisations in irreducible systems (see Figure 1.9). Let us point out that factorisation is a tricky
topic on this type of structure and product. Indeed, there are still several open questions [2].

1.2 The Semiring of Dynamical Systems

From the previous section, we know that (D,+) is a commutative monoid with the empty dynami-
cal system as the neutral element, and (D, ·) is a commutative monoid with a single fixed point sys-
tem as the neutral element. Moreover, products distribute over sums, i.e.A·(B+C) = A·B+A·C.

It has been proved that the set D equipped with these operations of sum and product is a
commutative semiring [Dennunzio et al. (2018), Hebisch and Weinert (1998)]. A semiring is
similar to a ring, but without the requirement that each element must have an additive inverse.
Indeed, the inverse of the sum is not defined in our semiring, because adding any two dynamical
systems can only increase or leave unchanged the total number of states. For this reason, it is not
possible to define the operation of subtraction.

More formally, a semiring is a set together with two binary operators (+, ·) satisfying the
following conditions:

• both operations are associative, then ∀A,B,C ∈ D :

(A+B) + C = A+ (B + C)

(A ·B) · C = A · (B · C)

• the sum is commutative, that is to say ∀A,B ∈ D :

A+B = B +A
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• left and right distributive, that is to say ∀A,B,C ∈ D :

A · (B + C) = (A ·B) + (A · C)

(B + C) ·A = (B ·A) + (C ·A)

Finally, D is a commutative semiring since the product is commutative too. In [Dennunzio et al.
(2018)], another interesting property of this semiring has been shown.

Proposition 1.2.1. The semiringD contains a subsemiringN isomorphic to the natural numbers.

× ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷0 states 1 state 2 states 3 states︷ ︸︸ ︷

Figure 1.7 – A portion of the Cayley table of the product of DDS, including products of all non-
isomorphic DDS in increasing order of size [Dennunzio et al. (2018)].
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Figure 1.8 – The dynamics graph consisting of only two cycles of length two is an example of
dynamics with non-unique factorisation (in black above). Indeed, it can be obtained by multiplying
two graphs each containing a cycle of length two, or by multiplying a cycle of length two with a
graph containing two fixed points. A DDS containing a cycle of length 2 is colored in orange, and
a DDS with two fixed points is in blue.
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Figure 1.9 – An example of system admitting at least k distinct factorisations in irreducible systems
for any k ∈ N [2].

Recall that the semiring of the natural numbers is initial in the category of commutative semir-
ings. This means that for each semiring there is just a homomorphism of naturals to the semiring.
Moreover, in this particular case it will be a monomorphism since it is injective too. This last
proposition is important when the objective is to solve equations over D.

Remark that D is also a N-semimodule. Indeed, it is easy to prove the semimodule axioms
since N is a sub-semiring of D. Moreover, it has a unique countably infinite base, the set of
all connected non-empty DDS. In fact, recall that a generic DDS can been seen as a multiset of
connected non-empty smaller DDS. This is also another important aspect when we want to solve
equations over D.

Having introduced the semiring structure on DDS, we can now study various problems through
polynomial equations. Note that polynomials over a commutative semiring are themselves com-
mutative semirings [Golan (2013), Chapter 1].

For example, one can study different ways to express a certain parametric behaviour (see Fig-
ure 1.10), or analyse a given dynamical system in terms of smaller (or simpler) components. In
Chapter 4, polynomial equations with a constant right-hand side (able to model this last prob-
lem) will be presented in greater details as they will be the main object of study in the following
chapters.
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Figure 1.10 – Equation 1.1 above allows us to express the parametric behaviour on the right as
different products of three components. A solution is given in 1.2.

1.2.1 Polynomial equations and Complexity

Since D is a commutative semiring, it is natural to define polynomials over it. In a more general
context, a polynomial is an expression consisting of variables (also called indeterminate) and
coefficients, that involve only the operations of addition, subtraction, multiplication. A polynomial
over D has variables and coefficients in D but involves only additions and multiplications. The
set D[X] is obtained adding to D a new element X ∈ D and closing the new set under sum and
multiplication. In other words, D[X] denotes the semiring of polynomials over the indeterminate
X .

In order to focus on the complexity results, let us distinguish the cases of polynomial equations
with and without a constant term. Recall that due to the lack of the subtraction operation, we
cannot move the terms between the two sides of an equation (as in equations over rings). Then,
the generic form of a polynomial equation over D is P (X1, . . . , Xν) = Q(X1, . . . , Xν) where
P (X1, . . . , Xν) and Q(X1, . . . , Xν) are two polynomials over D in the variables X1, . . . , Xν .

1.2.1.1 Generic polynomial equations: a fundamental theorem

Unfortunately, finding solutions to polynomial equations overD is, in general, a hard task. Indeed,
the following theorem proves the undecidability of establishing if a generic polynomial equation
over D has a solution.

Theorem 1.2.2 ( [Dennunzio et al. (2018)]). Given two polynomials P (X1, . . . , Xν) and
Q(X1, . . . , Xν) in D[X1, . . . , Xν ], consider the following equation:

P (X1, . . . , Xν) = Q(X1, . . . , Xν). (1.3)

The problem of finding a solution to Equation 1.3 is undecidable.
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It has been shown that the algorithmic solution of polynomial equations over D turns out to
be algorithmically impossible by reduction from Hilbert’s tenth problem [Matiyasevich (1993)].
Remark that, by implication, also finding a solution to such equations, when it exists, is undecid-
able. In brief, this result comes from a connection between equations over DDS and diophantine
equations. A diophantine equation is a polynomial equation in which only integer coefficients and
integer solutions are allowed. The diophantine equation is introduced by considering the number
of states in the DDS involved in the equation on D. Hilbert’s 10th problem asked if an algorithm
existed for determining whether an arbitrary Diophantine equation has a solution, but the impos-
sibility of obtaining a general solution was proven by Yuri Matiyasevich in 1970 [Matijaszevic
(1970)]. It has been proved that the problem of knowing if a diophantine equation has a natu-
ral number solution is undecidable by reduction from the 10th Hilbert’s problem [Matiyasevich
(1996)].

Moreover, if Equation 1.3 is linear or quadratic, it has been proved that the problem of finding
a solution is in NP . The idea is that by limiting the maximum degree of the equation, simpler
diophantine equations, e.g. linear, are considered. It is known that, by starting from the solutions
of linear diophantine equations (which can be calculated in polynomial time), one can guess the
solutions between the DDS of the dimension found and then check whether they are real solutions
of the equation.

1.2.1.2 Polynomial equations with constant term

Concerning polynomial equations with constant term over DDS, let us first consider the univariate
case. Given an equation P (X) = B, where P (X) ∈ D[X] and B is the empty dynamical
system, it is trivial since it has solution X , the empty DDS, just if there is no constant term in
the polynomial part. For single variable equations with all the coefficients and the constant side
consisting of self-loops, the equation is solvable in polynomial time [Dorigatti (2018)]. Then, in
the case of P (X) = B with a generic DDS B ∈ D, intuitively, one is able to perform a search
between all DDS with at most the same amount of states of B. In general, when solving equations
over DDS, it is important to point out that the difficulty comes from finding the “correct” systems
for the different variables and not from verifying the isomorphism between the two sides of an
equation (since this goes back to the problem of isomorphism between planar graphs) [Hopcroft
and Wong (1974), Datta et al. (2009)]. This idea holds also in the case of multivariate polynomial
equations.

Theorem 1.2.3 ( [Dennunzio et al. (2018)]). The problem of finding solutions of polynomial
equations over D with a constant side is in NP .

If we consider systems of linear equations with a constant side, it has been shown to be an
NP -complete problem by reduction to one-in-three-3SAT problem. This last problem consists of
deciding whether, given a 3CNF Boolean formula, there is an assignment such that there is only
one literal per clause that is true.

Through this first result, it was then shown that a linear equation with a constant side is also
NP -complete. As a consequence of the above, it is known that also multivariate equation with
bounded degree (greater than or equal to 1) are NP -complete [1].
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1.3 Examples of Dynamical Systems

Having presented DDS, their operations, the commutative semiring D and some complexity re-
sults, we now want to introduce two examples that allow us to understand how through a simple
model, such as DDS, we can study complex dynamics arising from different domains. This sec-
tion aims just to show how the dynamics that can be obtained from Boolean Networks and Cel-
lular Automata are the dynamic systems of interest to this study. For more complete information
about these models one can refer to, for instance, [Sené (2012), Paulevé (2020), Kari (2005), Fatès
(2014)] .

1.3.1 Boolean Networks

A Boolean Network (BN) of size n is an arrangement of n finite Boolean automata (or com-
ponents) interacting with each other according to a global rule F : {0,1}n → {0,1}n, which
describes how the global state changes after one time step. Let JnK = {0, . . . , n− 1}. Each
automaton is identified with a unique integer i ∈ JnK and xi denotes the current state of the
automaton. A configuration x ∈ {0,1}n is a snapshot of the current state of all automata and
represents the global state of the BN. For convenience, configurations are identified with words
on {0,1}n. Remark that the global function F : {0,1}n → {0,1}n of a BN of size n in-
duces a set of n local functions fi : {0,1}n → {0,1}, one per each component, such that
F (x) = (f0(x), f1(x), . . . , fn−1(x)) for all x ∈ {0,1}n.

Boolean networks are applied in various domains but a common application of this model is
in the biological field to describe the behaviour of genes, proteins, etc. Obviously, depending on
the application scenario, the interpretation of the states of the different components differs (see
Example 1.3.1). Local functions model the activation conditions of each component according to
the state of the network.

To describe a network, one usually starts by giving its architecture. To do so, it is possible
to represent the interactions between automata with a directed graph (called interaction graph
GF = (V,A)) whose vertices represent the set of automata and the arcs model the interactions
between them in the network. In this graph, an edge indicates that an automaton can influence
another one.

This gives a static description of a DDS, and it remains to set the order in which components
are updated to get a dynamics. This may be done synchronously or asynchronously. Remark that
no matter how the components are updated, a BN of size n will always have 2n possible states.

The simplest way to update the components is the synchronous one in which all of them
change state in the same moment in time [Kauffman (1969)]. This corresponds to a deterministic
dynamics in which, for each configuration, there is just one possible configuration that will follow.
In other words, the resulting dynamics is a DDS as presented before in the chapter.

Another way to update the components is the asynchronous one, but in this case one must
define how the asynchronism is introduced. The fully asynchronous update procedure is based on
the idea that at each moment in time only one random component is updated [Thomas (1973)].
Then, from each state of the dynamics graph, one can reach up to n possible states. Asynchronous
updating is certainly more realistic, however it can lead to timings distant from the real ones
observed in the biological field. Moreover, it has been showed that synchronous updating may be
more relevant for evaluating some properties of the network [Schwab et al. (2020)a].
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Generalised asynchronous updating allows all the combinations of simultaneous updates sub-
sets of nodes, from single nodes to the synchronous scenario. Other updating modes like sequen-
tial or block-sequential have also been considered (see Example 1.3.2). Remark that these last
updating procedures are just some of the generalised asynchronous ones.

Example 1.3.1 – Let us consider three genes g0, g1 and g2. A Boolean network on size n = 3
can model the interactions between them. The state xi = 1 models that a gene gi is active
and the state 0 models the inactivity (with i ∈ {0, . . . , 2}). One can suppose that f0(x) = x1,
f1(x) = x0 ∧ x2 and f2(x) = ¬x0.

x0

x1x2

Figure 1.11 – The interaction graph of the BN.

The dynamics graph, based on the synchronous update procedure, have 23 states and edges
(see Figure 1.12). For example, considering the initial state x = 100, the following state will be
F (x) = (f0(100), f1(100), f2(100)) = (000) and the orbit will be {100, 000, 001}. Remark
that the result of the update procedure over x = 001 lead to identify 001 as a fixed point since
F (x) = (f0(001), f1(001), f2(001)) = (001). According to this reasoning, it is possible to
identify the following dynamics graph.

001 000 100 110 111 010 101 011• • • • • • • •

Figure 1.12 – The synchronous dynamics graph of the BN.

The dynamics graph differs if one consider, for example, the fully asynchronous update
procedure (see Figure 1.13). In this case, considering the initial state x = 100, the following
state will be F (x) = (f0(100), 0, 0) = (000), if the first automaton is updated, F (x) = (100)
if one of the others is updated. Remark that F (x) = (1, f1(100), 0) = (100) and F (x) =
(1, 0, f2(100)) = (000).
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Figure 1.13 – The fully asynchronous dynamics graph of the BN. The resulting dynamics graph
is not deterministic. The labels on the arcs therefore indicate which component is updated.
Thus, fi indicates that component i is updated. Remark that it is possible that updating different
cells brings at the same state.

1.3.2 Cellular Automata

Cellular automata (CA) are a discrete model invented in 1940 by Stanislaw Ulam and John von
Neumann. They are based on the idea of describing complex evolution by means of simple lo-
cal rules. Formally, Cellular automata are dynamical systems with discrete time and state vari-
ables. They are interesting mathematical and computational objects suitable for modeling real-
world complex systems. Despite their apparent simplicity, CA display non-trivial global emergent
behavior, and some of them can even reach computational universality [Cook (2004), Gardner
(1970)].

They are defined over a regular grid of cells of fixed dimension. For each of these dimensions
the number of cells can be finite or infinte. The dynamics of a CA is locally-defined: every cell
computes its next state (which belongs to a finite set of possible values) based upon its own state
and neighbors states (according to a specific definition of neighborhood). The snapshot of the
current states of cells is called configuration, as in the Boolean networks case. Here, there is
a fixed rule that decides how each cell is updated to a new state according to the values of the
neighborhood. Typically, this rule does not change over time.

For the sake of simplicity, CA will be presented here in the more general framework of Boolean
automata networks (with the notations presented before), but this is not always the case in the
literature. Moreover, here, we will consider CA with a finite number of cells.

Elementary cellular automata (ECA) are a subclass of BN in which, given a size n, the local
function r : {0,1}3 → {0,1} is the BN F such that

∀i ∈ JnK, fi(x) = r(xi−1, xi, xi+1)

where components are taken modulo n. Then, each ECA can be identified according to the con-
vention introduced by Wolfram to designate each of the 256 ECA local rule r : {0,1}3 → {0,1}
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as the number
w(r) =

∑
(x1,x2,x3)∈{0,1}3

r(x1, x2, x3) · 2(22x1+21x2+20x3).

The symbol rα denotes the Boolean function such that w(r) = α with α ∈ {0, . . . , 255}.
Given r : {0,1}3 → {0,1}, one can consider the following transformations over local rules:

τι(r)(x, y, z) = r(x, y, z), τ%(r)(x, y, z) = r(z, y, x), τη(r)(x, y, z) = 1− r(1− z, 1− y, 1− x)
and τ%η(r)(x, y, z) = 1 − r(1 − z, 1 − y, 1 − x) for all x, y, z ∈ {0,1}. It is known that these
transformations preserve the dynamics [Cattaneo et al. (1997)]. For this reason, one can consider
only 88 rules up to equivalences with τι, τ%, τη and τ%η to study the different dynamics of ECA.

Also considering CA, one can use the interaction graph to represent the interactions between
cells. The graph depends from the definition of neighborhood. However, only the effective de-
pendencies among the set of cells need to be represented. The cell i influences the cell j if
∃x ∈ {0,1}n such that the result of the update procedure of j is different according to whether
the state of component i is 0 or 1. According to this idea, the interaction digraph GF = (V,A) of
the function F is based on

V = JnK and A = {(i, j) | i influences j} .

Cellular automata are liable to different update procedures as BN. The different update proce-
dures already presented apply also to CA. However, over the last decade, asynchronous CA have
attracted increasing attention in the scientific community. In order to ensure compliance with the
definition of DDS provided here, deterministic asynchronous update procedures must be consid-
ered. As, an example one can cite the deterministic block-sequential update procedure [Aracena
et al. (2009), Aracena et al. (2011)]. In this case, the cells of a CA are partitioned into disjoint
blocks with different priorities of being updated. The initial updating order (priority scheme) is un-
changed throughout the temporal evolution. A possible cells partition is called a block-sequential
update schedule.

More formally, for n ∈ N, one can denote by Pn the set of ordered partitions of JnK and by F
a BN of size n. A block-sequential update schedule ∆ = (∆1, . . . ,∆k) is an element of Pn. It
defines the following dynamics F (∆) : {0,1}n → {0,1}n,

F (∆) = F (∆k) ◦ · · · ◦ F (∆2) ◦ F (∆1) with f (∆j)(x)i =
{
fi(x) if i ∈ ∆j ,

xi if i /∈ ∆j .

In other words, the components are updated in the order given by ∆: sequentially block by block,
and in parallel within each block. Remark that the synchronous update schedule is ∆sync = (JnK).
This update procedure is defined as fair, in the sense that all components are updated exactly the
same number of times, and periodic in the sense that the same ordered partition is repeated (see
Example 1.3.2).

In the case of block-sequential update schedules, one can observe that the dynamics according
to a certain ∆ can differ from the one obtained according to another ∆′ because they can introduce
different priorities between cells. A natural question is to understand the relationship between the
number of different dynamics one can obtain and the number of different block-sequential update
schedules. This require to be able to count the number of valid non-equivalent update schedules
(since some of them can introduce invalid update priorities) and also to detect which ∆,∆′ lead
to the same dynamics for a certain ECA. This aspect is analysed in Appendix A.
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Example 1.3.2 – Consider the ECA 146 and the visual representation of the rule provided in
Figure 1.14. As with all ECA, we consider a three-cell neighbourhood. For each possible value
of the latter, the new value of the cell is displayed below. Graphically, the black cells represent
the value 1 and the white cells represent 0.

Figure 1.14 – Visual representation of the ECA 146.

Consider an ECA with 4 cells and a block-sequential update schedule ∆ =
({0, 3} , {2} , {1}). When updating a cell in an ECA, the result depends on the state of
the cell itself and that of its left and right neighbours (as shown by the interaction graph in
Figure 1.15). The dynamics graph contains 24 states and for each one of them there is just one
result of the update procedure (see Figure 1.16).

0

3

2

1

Figure 1.15 – The interaction graph of the ECA presented in Example 1.3.2.

In the literature, the dynamics graph is often called transition digraph. In Figure 1.16, one
can see that the configuration 0011 is updated into 1100. In fact:

F (0011) = (r146(100), r146(r146(100), 0, r146(0, 1, r146(110))), r146(0, 1, r146(110)), r146(110))

= (1, r146(1, 0, r146(0, 1, 0)), r146(0, 1, 0), 0) = (1, r146(1, 0, 0), 0, 0) = 1100.

The updating order ∆ is unchanged throughout the temporal evolution, then considering all
possible configurations and the result of the update procedure over them, one can obtain the
dynamics graph for a certain ECA according to a fixed ∆.
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Figure 1.16 – The deterministic block-sequential dynamics graph of the ECA 146 with 4 cells
according to ∆ = ({0, 3} , {2} , {1}).





CHAPTER 2
Direct Product and the
Cancellation Problem

The Direct product is one of the several types of graph products that have been defined in
the literature, and it corresponds to the product defined between DDS. Then, according
to this product operation, this chapter introduces useful properties about the distance
between vertices, connectivity, and prime factorisations (for both graphs and digraphs).
Afterward, it introduces the problem of cancellation since it plays an important role to
study the uniqueness of a solution of an equation over graphs. In fact, given a specific
product of graphs ∗, the objective of this problem is to find under which conditions
G ∗H ∼= G′ ∗H implies G ∼= G′. To achieve this goal, this chapter will present a set of
conditions on H , G and G′ such that the cancellation property holds.
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2.1 The Direct Product

Graphs are objects that have been studied extensively in computer science, and various types of
products have been defined on them. A generic product is a binary operation over graphs (that
may or may not be oriented) based on a Cartesian product of the set of vertices and on specific
adjacency conditions to define the arcs in the resulting graph. The main three products studied in
the literature are: the Cartesian product, the Direct product and the Strong product.

Let V (G) the set of vertices of a graph G and let E(G) the set of edges (or arcs) of the same
graph. The Cartesian product between two graphs G and H , usually denoted G�H , defines two
states (g, h) and (g′, h′), with g, g′ ∈ G and h, h′ ∈ H , adjacent1 if g = g′ and (h, h′) ∈ E(H) or
if h = h′ and (g, g′) ∈ E(G).

The Strong product between two graphs G and H , usually denoted G�H , defines two states
(g, h) and (g′, h′), with g, g′ ∈ G and h, h′ ∈ H , adjacent if (g, g′) ∈ E(G) and (h, h′) ∈ E(H),
or g = g′ and (h, h′) ∈ E(H) (or the symmetric case). In other words, the edges of a Strong
product G�H can be seen as the union of the edges of G�H and G ·H (see Figure 2.1).

g1

g2

g3

g4

h1 h2 h3 h4

g1

g2

g3

g4

h1 h2 h3 h4

g1

g2

g3

g4

h1 h2 h3 h4

Figure 2.1 – Given two digraphsG andH , the Cartesian product (left), the Direct product (middle)
and the Strong product (right) are computed. The digraphs G and H are placed on two different
axes in such a way that the nodes of the resulting digraph are arranged in the form of the Cartesian
product of the vertices of the original digraphs. It should be noted that the Strong product contains
exactly the arcs of the Cartesian product (in blue) and those of the Direct product (in black).

The purpose of this first section is to introduce the direct product between graphs (and di-
graphs) and some of its properties. As previously specified, this is the product introduced for DDS
and it is commutative and associative. Let us recall that, in the literature this product is also known
as: tensor product, Kronecker product, cardinal product.

Given the objective of solving equations on dynamics graphs, it is important to study the
uniqueness of the solutions. Given an equation A ·X = B with A,X,B ∈ D. The uniqueness of
the value of the indeterminate X can be traced back to the cancellation problem. Then, the next
section deals with the introduction of this problem closely related to the study of the uniqueness of
the result of a product operation. The connection between the cancellation problem and the DDS
equations will be explored in Chapter 6. For further study of the product of graphs, one can refer
to several books, as for example [Hammack et al. (2011)].

It is noteworthy how the products definitions above can be applied both on graphs and di-
graphs. In the following, products will always involve oriented graphs (as we consider dynamics

1Two nodes (or vertices) of a graph are adjacent iff they are joined by an edge.
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graphs), however, the case of undirected graphs is also studied in this chapter since the properties
that apply to them are also relevant. Simply given the fact that an undirected graph corresponds
to a symmetric digraph in which for each pair of adjacent nodes there are both directed arcs. For
the sequel we recall that graphs like digraphs consist of a set of vertices, but in the former case the
arcs are not oriented (so we denote them with an unordered pair [g1, g2] such that g1, g2 ∈ V (G))
while in the latter they are (so we denote them with a pair (g1, g2) such that g1, g2 ∈ V (G)).

When studying the direct product over graphs, it is important to introduce some simple but
important properties. First, about fixed points, G ·H has a fixed point in (g, h) if and only if g and
h are fixed points in the original systems. Then, about the distance2 of vertices in the result of the
product operation and the distance in the original graphs, two properties are known [Lamprey and
Barnes (1974)].

Proposition 2.1.1 ( [Hammack et al. (2011), Proposition 5.7]). Suppose (g, h) and (g′, h′) ∈
V (G ·H), and l is an integer for which G has a walk3 from g to g′ of length l and H has a walk
from h to h′ of length l. Then G · H has a walk of length l from (g, h) to (g′, h′). The smallest
such l is dG·H((g, h), (g′, h′)). If it does not exist, dG·H((g, h), (g′, h′)) =∞.

Thanks to the associativity of this type of product operation, the previous proposition is valid
also in the case of a product between multiple graphs. Let ρi(g) denote the i-th component of
a state g of the resulting graph of a product operation G1 · G2 · . . . · Gk. More formally, let
ρi : G1 ·G2 · . . . ·Gk → Gi be a projection map such that ρi(g1, g2, . . . , gk) = gi.

Proposition 2.1.2 ( [Hammack et al. (2011), Proposition 5.8]). Consider g and g′ two states of
G = G1 ·G2 · . . . ·Gk. The distance dG(g, g′) is the min{l ∈ N | each Gi has a walk of lenght l
from ρi(g) to ρi(g′)}.

Let us underline that these properties introduced above are valid also in the case of digraphs
(see Figure 2.2). This ideas will make a difference in the study of the transients parts of DDS (in
Chapter 6).

Remark that if the distance between two different points of the result of a product
dG·H((g, h), (g′, h′)) can be ∞, the result of a product operation can be disconnected. In the
previous chapter, it was anticipated that the product between two connected DDS can produce a
digraph with one to several components. Given the fact that the direct product distributes over the
sum (i.e. disjoint union), it is interesting to study the result of multiplication operations between
connected graphs. Weichsel’s theorem provides a way to determine when the result of multiplying
two connected and undirected graphs (with possible loops) is itself connected or not [Weichsel
(1962)]. Recall that a graph is bipartite if the set of vertices can be partitioned into two disjoint
sets such that no two vertices within the same set are adjacent. In other words, it is bipartite iff it
is 2-colorable4.

Theorem 2.1.3 (Weichsel’s Theorem). The result ofG ·H is connected if at least one ofG andH ,
connected non trivial undirected graphs admitting loops, has an odd cycle. If both are bipartite,
G ·H has two components.

2The distance dG(g, g′) between two vertices g and g′ of G is the length of the shortest path between the two.
3A walk of length l in a graph is a sequence of l (adjacent) not necessarily distinct vertices of the graph.
4A 2-colorable graph is a graph in which each vertex can be assigned a color and none of its adjacent vertices have

the same color.
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G1

G2

G3

G4

Figure 2.2 – From the red node in G1 to the blue node there are paths of length {2, 3, 4, 5, 6, . . .}.
From the red node in G2 to the blue node there are paths of length {2, 4, 6, . . .}. In the result of
their direct product there are paths of length {2, 4, 6, . . .} from the red node to the blue node. The
same is also observed in the undirected case.

The idea is that if we consider two connected bipartite graphs, and consider two vertices of
their product (g, h) and (g′, h′) such that g and g′ belong to the same partition of G, and such that
h and h′ do not belong to the same partition of H, then the paths between the two nodes of G will
always have even lengths in contrast to those between h and h′. This fact leads to the conclusion
that the result is disconnected.

In the case of a multiplication between several connected graphs, it is known that a result with
2b−1 components is obtained (where b is the number of bipartite graphs involved). In other words,
the result is connected only if there is at most one bipartite graph involved.

If one wonders what are the possible factors (graphs involved in the product) of a certain
graph, it is important to point out that every nontrivial graph has prime factorisation with respect
to the direct product, but there is no unique prime factorisation of: undirected graphs with loops
at each vertex, connected undirected graphs admitting loops, and connected undirected graphs
without loops. Remark that a graph G is prime if and only if it can be generated by the product
G1 ·G2 of two graphs as long as one of them consists of only one loop (i.e. neutral element for the
product operation). Then, according to this definition, a prime factorisation involves just prime
factors. However, it has been proved that connected non-bipartite graphs admitting loops admit
a unique prime factorisation. For more details, the reader can check the Chapter 8 of [Hammack
et al. (2011)]. The lack of existence of a unique factorisation for connected oriented graphs was
anticipated in the previous chapter, but it is important to point out the state-of-art of undirected
graphs as well.

If we focus exclusively on directed graphs several problems become more complex. For ex-
ample, results obtained on connectivity (such as Theorem 2.1.3) can no longer be applied as such
given constraints imposed by the orientation of the arcs. Let g(G) be the gcd(|C1|, |C2|, . . . , |CL|)
of all cycle lengths present in a graph G with L cycles. Then, the following theorem allows
one to calculate how many components are obtained from the multiplication of a finite number
of strongly connected digraphs [McAndrew (1963)]. Let us recall that a strong component is a
maximal strongly connected sub-digraph of a digraph G.
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Theorem 2.1.4 ( [McAndrew (1963)]). The result of the Direct product G1 · G2 · . . . · Gk, with
G1, G2, . . . , Gk strongly connected digraphs, contains

g(G1) · g(G2) · . . . · g(Gk)
lcm(g(G1), g(G2), . . . , g(Gk))

strong components.

It is important to point out that in order to apply the theorem to the dynamics graphs of the
previous chapter, it is necessary to consider only the periodic (i.e., cyclic) part of the digraphs
(this will be explored in Chapter 5). In the literature, it has also been proved that G1 · G2 · . . . ·
Gk can be strongly connected iff each factor of the product is strongly connected too and iff
g(G1), g(G2), . . . , g(Gk) are co-prime [Hammack et al. (2011)].

To complete this presentation regarding the connectivity of the Direct product over digraphs,
one can consider in which caseG1 ·G2 · . . . ·Gk is unilaterally connected. A digraph is unilaterally
connected if for each pair of vertices there is a directed walk in one of the direction. It has been
proved thatG1 ·G2 · . . . ·Gk is unilaterally connected if and only if just one factorGi is unilaterally
connected (but not strongly connected), the result G′ of the product of the remaining factors is
strongly connected, and iff, for each strong component C of Gi, the product C · G′ is strongly
connected too [Harary and Trauth (1966)].

Considering the prime factorisation of digraphs, one must consider specific type of digraph
in order to have a unique factorisation. In fact, just finite digraphs in which any two vertices are
connected by even anti-walks5 admit unique prime factorisation [McKenzie (1971)].

2.2 Cancellation for the Direct Product

As anticipated, the objective in the sequel will be to solve polynomial equations over DDS with
a constant right-hand term. Given the distributivity of the product operation presented before,
Chapter 4 will detail that it is essential to study equations involving a single monomial. A first
question that may arise concerns the uniqueness of the solution. This question is tightly connected
with the cancellation problem in graph theory. In the cancellation problem one wants to study,
given a specific product of graphs ∗, under which conditions G ∗H ∼= G′ ∗H implies G ∼= G′. It
has been shown that cancellation holds for the Cartesian product [Hammack et al. (2011), Theorem
6.21, p.73] and Strong product [Hammack et al. (2011), Theorem 9.5, p.108], but does not hold
in general for the direct product [Hammack et al. (2011), p.426]. In particular, in the case of the
direct product, the problem is even more complex in the case of direct graphs [Hammack et al.
(2011)]. Consequently, in this section too, the non-oriented graphs are considered first and then
the oriented ones. Also in the literature, results were first introduced on graphs and then extended
to digraphs.

2.2.1 Cancellation over graphs

In the case of the cancellation problem over undirected graphs, it is known that when H is bipar-
tite, the cancellation property does not hold. An example is shown in Figure 2.3. Nevertheless,
a number of conditions have been provided to characterise in which situations the cancellation
property holds. Let us start to consider H .

5An anti-walk in a digraph is a walk in which the orientation of the arcs is alternated.
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H

G

H

G′

Figure 2.3 – An example where G ·H ∼= G′ ·H but G � G′.

The fundamental point of the reasoning is that G ∼= G′ if hom(J,G) = hom(J,G′) for all
directed graphs J admitting self loop, where hom(J,G) is the number of homomorphisms6 from
J to G [Lovász (1971), Theorem 1]. Moreover, it is known that hom(J,G · H) = hom(J,G) ·
hom(J,H).

Proposition 2.2.1. If G ·H ∼= G′ ·H and H has a self loop, then G ∼= G′.

The last proposition is based on the fact that, since G · H ∼= G′ · H , hom(J,G · H) =
hom(J,G′ ·H) and then hom(J,G) · hom(J,H) = hom(J,G′) · hom(J,H). However, for any
directed graph J there is always the homomorphism that maps all the nodes of J to the node with
loop of H . Then, hom(J,H) cannot be equal to 0 and hom(J,G) = hom(J,G′) which implies
G ∼= G′. In addition, this last proposition can be extended as follows [Lovász (1971), Theorem 6].

Proposition 2.2.2. If G ·H ∼= G′ ·H and there are homomorphisms from G to H and from G′ to
H , then G ∼= G′.

Corollary 2.2.3. If G ·H ∼= G′ ·H and G, H and G′ are bipartite, then G ∼= G′.

Studying the cancellation problem over undirected graphs, it is important to note that it has
been shown that if G · H ∼= G′ · H and there is a homomorphism from a graph H ′ to H , then
G ·H ′ ∼= G′ ·H ′. When H has at least one arc, the previous result allows to relate the problem
back to the case where H ′ is the complete graph with just two nodes (often denoted K2).

In [Lovász (1971), Theorems 9 and 7], two major generalisations of Proposition 2.2.1 have
been introduced.

Theorem 2.2.4. If G ·H ∼= G′ ·H and H has an odd cycle, then G ∼= G′.

Theorem 2.2.5. Given G, H and G′ undirected graphs (admitting self loops) and g ∈ V (G),
h ∈ V (H), and g′ ∈ V (G′). If G · H ∼= G′ · H , then there is a homomorphism from G · H to
G′ ·H of the form (g, h) 7→ (ϕ(g, h), h) for some homomorphism ϕ : G ·H → G′.

Let us point out that Theorem 2.2.4 implies that, when H bipartite, there exist G and G′ such
that G � G′. However, one can try now to provide more conditions over G and G′ to determine
other cases in which the cancellation property holds. This has been made thanks to the notions of
anti-automorphism and factorial.

6A homomorphism ϕ from J to G is a mapping from V (J) to V (G) for which [ϕ(j), ϕ(j′)] ∈ E(G) whenever
[j, j′] ∈ E(J).
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2.2.1.1 Anti-automorphism and Factorials

In [Hammack (2009)], given a graphG and a bipartite graphH , Hammack characterises the graphs
G′ for which the cancellation property holds. This consists, basically, in the identification of all
those G’s for which it is certain that G ·H ∼= G′ ·H implies G ∼= G′. These results complete the
characterisation given by Lovász. The idea is to exploit the concept of anti-automorphism.

Definition 2.2.1 (Anti-automorphism of a graph). An anti-automorphism of a graph G is a bijec-
tion µ : V (G)→ V (G) with the property that an edge [g, g′] ∈ E(G) iff [µ(g), µ−1(G′)] ∈ E(G)
for all g, g′ ∈ V (G).

The set of anti-automorphisms of a graphG isAnt(G). Additionally, letGµ be the graph with
V (Gµ) = V (G) and E(Gµ) = {[g, µ(g′)] | [g, g′] ∈ E(G)}.

Proposition 2.2.6 ( [Hammack (2009), Proposition 5]). If G · H ∼= G′ · H and H is a bipartite
graph with at least one edge, then G′ ∼= Gµ for some µ(G).

Among the various anti-automorphisms that can be defined on a graph G, it has been shown
that it is possible to introduce equivalence classes. Formally, given µ, µ′ ∈ Ant(G), one can
define the two anti-automorphisms equivalent (i.e. µ ' µ′) if and only if Gµ ∼= Gµ

′
.Then, given a

µ ∈ Ant(G), [µ] denotes the equivalence class containing µ.

Theorem 2.2.7 ( [Hammack (2009), Theorem 9]). If the equivalence classes of Ant(G) are
{[µ1], [µ2], . . . , [µk]}, then the isomorphism classes of the graphs G′ such that G · H ∼= G′ · H
are those in {Gµ1 , Gµ2 , . . . , Gµk}.

A related question asks to find G such that the cancellation property always holds (regardless
ofG′ andH , which however must have at least one edge). Such a G is called a cancellation graph.
According to the previous theorem, it is easy to understand that in the latter case Ant(G) contains
only one equivalence class that in its turn contains all anti-automorphisms. Another interesting
connection has been pointed out the connection between cancellation graphs and the factorial of
graphs. The factorial of a graph G (denoted G!) is a graph where V (G!) is the set of permutations
of V (G) (denoted Perm(V (G))), and E(G!) contains all (π, π′) ∈ V (G!) × V (G!) such that
(g1, g2) ∈ E(G)⇔ (π(g1), π′(g2)) ∈ E(G) for all g1, g2 ∈ V (G).

Theorem 2.2.8 ( [Hammack (2009), Theorem 10]). A graph G is a cancellation graph iff every
anti-automorphism µ of G can be factored into the composition µ = ππ′ where [π, π′] ∈ E(G!).

Moreover, it has been proved that if every anti-automorphism of G has odd order, then G is
a cancellation graph [Hammack (2009), Corollary 11]. As well as, a bipartite graph is a can-
cellation graph if and only if none of its components admits an involution that interchanges its
parts7 [Hammack (2009), Corollary 12].

2.2.2 Cancellation over digraphs

The cancellation still fails when considering direct products over digraphs (Figure 2.4 shows an
example). Moreover, it is well known that the cancellation problem over digraphs is even more

7A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets usually called the
parts of the graph.
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H

G

H

G′

Figure 2.4 – An example where G ·H ∼= G′ ·H but G � G′.

challenging. Considering digraphs, an important known result consists of the characterisation of
zero divisors. A graph H is a zero divisor if there exists non isomorphic digraphs G and G′ such
that G ·H ∼= G′ ·H . For example, according to the previous section, bipartite undirected graphs
are zero divisors. Let Cp an oriented cycle of length p and Pn a directed path between n vertices
(of length n− 1).

Theorem 2.2.9 ( [Lovász (1971), Theorem 8]). A digraph H is a zero divisor if and only if there
is a homomorphism H → Cp1 + Cp2 + . . .+ Cpk with p1, p2, . . . , pk prime numbers.

Then, the following objective can be to enumerate, for a certain G and a certain zero divisor
H , the digraphsG′ such thatG·H ∼= G′ ·H . In [Hammack and Toman (2010)], a first contribution
in this direction has been made. Considering H ∼= P2, they first introduce a construction to find
all the graphs G′ such that G · P2 ∼= G′ · P2 for a certain G. Given a permutation π of the
vertices V (G), the digraph Gπ has the same vertices of G and the edges (g1, π(g2)) such that
(g1, g2) ∈ E(G). This construction allows to identify all digraphs G′ such that G · P2 ∼= G′ · P2
(i.e. G · P2 ∼= Gπ · P2). Let us point out that Gπ can be non isomorphic to G (see Example 2.2.1).

Proposition 2.2.10 ( [Hammack and Toman (2010), Proposition 1]). If G,G′ are digraphs, G ·
P2 ∼= G′ · P2 iff G ∼= Gπ for some π ∈ Perm(V (G)).

Before continuing it is important to note that Theorem 2.2.5 and the fact that G ·H ∼= G′ ·H ,
such that there is a homomorphism from a graphH ′ toH , impliesG ·H ′ ∼= G′ ·H ′ are also true on
directed graphs. Consequently, we can replace P2 with all those graphs that admit homomorphism
to the latter. Hence, considering the digraphs G,G′, H such that there is a surjective homomor-
phism from H to P2, it holds that G · H ∼= G′ · H iff G′ ∼= Gπ for some π ∈ Perm(V (G)).
Then, considering a digraph H with at least one arc, only one direction of the previous statement
can be generalised, namely, if G ·H ∼= G′ ·H then G ∼= Gπ for some π ∈ Perm(V (G)). Thus,
there can be |V (G)|! potentially non-isomorphic G′. However, different permutations can lead to
isomorphic digraphs. To resolve this, the same work generalises the notion of factorial to digraphs
obtaining a similar theorem.

Theorem 2.2.11 ( [Hammack and Toman (2010), Theorem 4]). Suppose G and H are digraphs
and there is a surjective homomorphism H → P2. Let π1, π2, . . . , πk ∈ V (G!) be representatives
from the k equivalence classes of'. Then, the digraphsG′ (up to isomorphism) for whichG ·H ∼=
G′ ·H are exactly G′ ∈ {Gπ1 , Gπ1 , . . . , Gπk}.
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Even in the context of oriented graphs, G is defined as a cancellation digraph when there is
only one equivalence class that contains all possible permutations.

Example 2.2.1 – Consider a certain digraph G (see Figure 2.5). According to the definitions,
one have six possible permutations Perm(V (G)) = {id, 12, 01, 02, 012, 021}. For clarity, id
represents the identity and the others correspond to the following permutations π.

12→ π(0) = 0, π(1) = 2, π(2) = 1,

01→ π(0) = 1, π(1) = 0, π(2) = 2,

02→ π(0) = 2, π(1) = 1, π(2) = 0,

012→ π(0) = 1, π(1) = 2, π(2) = 0,

021→ π(0) = 2, π(1) = 0, π(2) = 1.

According to Proposition 2.2.10, with these permutations one obtains the following Gπ for
which G · P2 ∼= G′ · P2 (see Figure 2.6).

G
0 1 2

G12

0 1 2
G01

0 1 2
Gid

0 1 2

G02

0 1 2
G012

0 1 2
G021

0 1 2

Figure 2.5 – Examples of Gπ.

P2

Gid

P2

G12

Figure 2.6 – Direct products Gid · P2 and G12 · P2. Remark that Gid · P2 ∼= G12 · P2, where G
is defined in Figure 2.5.

It can be seen that four graphs are isomorphic to each other as well as the rest to each other.
This is also evidenced by the factorial of G.

G!

Gid G02 G12 G01 G012 G021

Figure 2.7 – Factorial of G (as defined in Figure 2.5).
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To complete this example, let us consider a digraph H that does not admit surjective homo-
morphism to P2 and another H ′ that does. As anticipated, in the first case the product result
may not be isomorphic. Whereas in the second case, we observe that the cancellation property
holds.

H

Gid

H

G12

Figure 2.8 – Direct products Gid ·H and G12 ·H . Remark that Gid ·H � G12 ·H , where G is
defined in Figure 2.5.

H ′

Gid

H ′

G12

Figure 2.9 – Direct products Gid ·H ′ and G12 ·H ′. Remark that Gid ·H ′ ∼= G12 ·H ′, where G
is defined in Figure 2.5.

To conclude the state of the art, it is important to note that two other families of digraphs,
denoted with V t

r and Λtr, have been shown to be cancellation digraphs. Given non-negative integers
r and t, the digraph V t

r is based on the disjoint union of a complete oriented digraph with t vertices
(admitting self loops) and r isolated nodes. Additionally, V t

r also contains arcs pointing from each
vertex of the complete sub-graph to every isolated vertex. Similarly, Λtr is based on the same two
sub-graphs but contains arcs pointing from each isolated vertex to every vertex of the complete
sub-graph.

V 3
2 Λ3

2

Figure 2.10 – Examples of V t
r and Λtr for r = 2 and t = 3.

To conclude, let us explore the problem of cancellation on dynamics graphs as introduced in
the previous chapter. We know thatH will always be a zero divisor according to Theorem 2.2.9. In
fact, by the distributivity of the product, we can always considerH as a dynamics graph containing
only one component and consequently only one cycle. It therefore admits homomorphism to a
disjoint union of cycles of prime length as required in the theorem. In particular, it is possible to
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map the cyclic nodes of the dynamics graph to a cycle of prime length CP (that divides the length
of cycle of the dynamics graph), and to map the transient nodes to Cp in such a way that distances
established by the next-state map are preserved. To do this, for every v ∈ T such that fh(v) = v′,
one needs to map v to the h-th predecessor of the node to which v′ is mapped.

However, a dynamics graph does not admit homomorphisms to P2 since a cycle cannot be
mapped. Finally, considering a dynamics graph G, it is not certain that all permutations would
be valid G′ such that G · H ∼= G′ · H . The connection between the cancellation and the set of
solutions of an equation over DDS will play a central role in Chapter 6.



CHAPTER 3
Multi-valued Decision

Diagrams
This chapter is a gentle introduction to Multi-valued Decision Diagrams (MDD). This
is a quite convenient data structure that allows compact representations of functions or
sets. We will review the main known algorithms to perform operations on MDD (reduc-
tion, intersection, difference, union, etc). As we will see, most of these operations can
be performed without decompressing the structure. This last feature and the exponential
compression that can be achieved by the reduction operation are some of the reasons
behind the success of MDD. The next chapters will also deeply exploit these features.
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3.1 BDD and MDD: useful data structures

Binary decision diagrams (BDD) were introduced by Lee in the second half of the 1990s [Lee
(1959)] and from then on they started to become popular for their various applications [Akers
(1978)]. They arise from the need to represent and manipulate Boolean functions that appear in
many computer science fields (such as artificial intelligence, combinatorics, etc.). Many questions
involving Boolean functions are pretty hard to solve (an NP-completeness is always lurking).
The idea is therefore to symbolically represent these functions and to introduce clever algorithms
which try to avoid the exponential aspect of the problems one wants to solve. In this sense,
the real milestone was the publication by Bryant in 1986 [Bryant (1986)]. He introduced the
ordering of variables in BDD to obtain a canonical form and present several efficient algorithms to
manipulate these structures. It was only at this point that this data structure was fully recognised
for its potential. Later, it has also been generalised to be applied to multi-valued functions. In
this case, one is dealing with Multi-valued Decision Diagrams (MDD). This is the version of the
data structure that will be used in the following. Hence, after an introduction to BDD, this chapter
presents MDD, its reduction (a fundamental operation of this structure), and certain operations
that will be useful later on. For further information, reference can be made to some classic books
[Knuth (2011), Bergman et al. (2016)]. Recent research on these topics can found in [Jung and
Régin (2022), Gillard et al. (2021)], for example.

3.1.1 Binary Decision Diagrams

A BDD is a Directed Acyclic Graph (DAG) used to represent a Boolean formula fB(b1, b2, . . . , br)
in a compact way. It comprises a root node (i.e. a node without incoming arcs) and a series of
internal nodes, also called branch nodes, usually characterised by a name (or a value) to refer to
one of the Boolean variables in the formula. Each node has two outgoing arcs to represent the
assignment of a 0 (false) or a 1 (true) to a certain variable. Finally, there are two terminal nodes
(also called sink nodes) which represent the final value of the Boolean function. In the literature,
the terminal nodes of BDD are denoted by 0 and 1 (or by⊥ and> to avoid confusion with respect
to the numbering of variables or the value assigned to them). Hence, in the whole structure, a
path from the root to a terminal node represents an assignment to the variables of the formula.
Figura 3.1 illustrates the fact that all assignments of a Boolean formula are represented by its truth
table, as well as, by the corresponding MDD. The aim here is to have a structure that is more
efficient in memory and allows us to answer certain problems or execute certain operations more
efficiently [Knuth (2011)].

Example 3.1.1 – Consider the Boolean variables b1, b2, b3, b4 and the Boolean formula
fB(b1, b2, b3, b4) = b1 ∧ b2 ∨ b3 ∧¬b4. In accordance with the definition of BDD provided, the
structure in Figure 3.1 (right) corresponds to the set of assignments contained in the truth table
of Figure 3.1 (left).

Consider the variables in order of appearance. The variable b1 is then evaluated first and
is modelled in the root node. A value of 0 or 1 can be assigned. In the case of BDD, one
often finds these two possibilities represented by different types of arcs. Here, a dashed arc
represents a 0-value assignment and a continuous arc represents a 1-value assignment. The
root shows a dashed arc and a continuous arc to represent the two possibilities for b1. Next, the
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same process is repeated on b2 and b3. Finally, in accordance with the assignment of the fourth
and last variable, the final value of the function is determined.

b1 b2 b3 b4 f

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

1

2 2

3 3 3 3

4 4 4 4 4 4 4 4

⊥ >

Figure 3.1 – A BDD associated with the function fB(b1, b2, b3, b4) = b1 ∧ b2 ∨ b3 ∧ ¬b4. The
name of the nodes here indicates which variable is assigned. A node i refers to the variable bi
of the formula.

Example 3.1.1 aims at showing how BDD are capable of representing the possible values of
variables and function in the structure. However, it is essential to highlight that, when we talk
about BDD, we are actually referring to Reduced Ordered Binary Decision Diagrams (ROBDD)
introduced by Bryant. The reduced term means that:

• all nodes with both outgoing arcs arriving at the same node are removed (as it signifies that
the assignment is irrelevant to the final value of the function);

• all nodes with same arcs and identical destination (i.e. equivalent nodes) are merged ;

• nodes that are not on a root-to-terminal node path are removed.

The term ordered indicates the fact that variables are assigned or evaluated only once, and this is
always done in the same order within the structure. This means that we cannot have sub-parts of
the structure in which variables are evaluated in different orders. For example, the BDD in Figure
3.1 is ordered but it is not reduced. Example 3.1.2 shows the reduced version and introduces the
idea behind an algorithm to reduce decision diagrams.

It is clear that different orders can lead to different BDD and, in particular, to BDD of different
size (in terms of number of nodes and arcs). Figure 3.2 shows an example. Moreover, finding the
order that minimises the size of the structure is known to be NP-complete. Given the previous
definitions and the example, one can understand that, in the worst case, a function needs a graph
of exponential size with respect to the number of arguments in order to be represented. These
are well-known problems with decision diagrams. However, it is has been shown how in many
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1
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Figure 3.2 – Two BDD associated with the function fB(b1, b2, b3, b4, b5, b6) = (b1 ∧ b2) ∨ (b3 ∧
b4)∨ (b5 ∧ b6) [Minato (2007)]. Both are reduced and ordered but they are based on two different
variable orderings.

functions derived from applications, this explosion in memory does not happen (also thanks to
the reduction process). It has also been observed that the choice of a good (though perhaps not
optimal) ordering of variables is possible thanks to a deeper knowledge of the problem or to the
use of heuristics. This reason further motivated the diffusion of BDD in applicative context among
which one can list, for instance, logic, verification, model checking, and optimisation [Wille and
Drechsler (2009), Drechsler et al. (2004), Chaki and Gurfinkel (2018)].

Thanks to the introduction of the order between variables, reduced BDD have a canonical
form (i.e. each function has only one possible representation). This implies that two BDD are
equivalent if and only if two Boolean functions are equivalent. This is not only important for
the equivalence problem, but also allows efficient algorithms to be introduced. For example, the
possibility of calculating Boolean operations between two functions, the complement of a func-
tion, testing implication, restricting the function according to specific values of certain variables,
composing functions, and many others. All of these operations respond to a closure property for
a fixed ordering of variables and are calculated by algorithms that scale well as the complexity is
limited, in a general way, by the size of the graphs representing the functions [Bryant (1986)].

Additionally, these decision diagrams owe their popularity to a number of other interesting
properties. These include:

• evaluating a function in at most r steps (where r is the number of variables). Indeed, one
just needs to go through the structure;

• find the lexicographically smallest solution that satisfies the formula by always traversing
the arc corresponding to 0 until it is found one that assigning 1 leads to the final > node
(thus only r steps);

• count the number of solutions satisfying the formula in linear time (with respect to the
number of nodes and variables in the formula);
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• generate a randomised solution or all solutions satisfying the formula in linear time (with
respect to the number of nodes and solutions in the formula).

Example 3.1.2 – Consider again the Boolean formula fB(b1, b2, b3, b4) = b1 ∧ b2 ∨ b3 ∧ ¬b4.
Reference is normally made to ROBDD. Then, we must reduce the previous BDD by removing
nodes where assigning the variable to 0 or 1 does not change the value of the function and by
merging those that are equivalent. The reduction is based on the idea of looking for these nodes
by traversing the structure from bottom to top.

Nodes highlighted in red are nodes where the assignment of the variable b4 has no impact
on the final value of the function (since both assignments lead to the same final node) and
then can be removed. When a node is removed, we remove its outgoing arcs and redirect its
incoming ones. As a result, here, the incoming arcs are redirected to the final nodes. The nodes
highlighted in purple are equivalent. They can therefore be merged into a single node.

Going up one level in the structure, the nodes in blue are the ones that become equivalent
(given the changes made at the lower level), and instead the brown node is still a case where a
different assignment does not change the final value.

In the end, the pink node becomes negligible by the time the two child nodes are turned into
the same node.

Through this reasoning, one gets the ordered and reduced version of the structure. Finally,
we stress that this is the form that it is normally meant by the term BDD.

1

2 2

3 3 3 3

4 4 4 4 4 4 4 4

⊥ >

1

2

3

4

⊥ >

Figure 3.3 – An unreduced BDD for the function fB(b1, b2, b3, b4) = b1 ∧ b2 ∨ b3 ∧ ¬b4 (left)
and its ROBDD (right).

3.1.2 Multi-valued Decision Diagrams

Multi-valued Decision Diagrams (MDD) are a generalisation of BDD [Bergman et al. (2016)]
used to obtain efficient representations of functions with finite domains or finite sets of tuples. In
the last years, MDD have been applied in many different research domains proving the potential
of this structure. MDD are used, for instance, to improve random forest algorithms replacing the
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classic binary decision trees [Nakahara et al. (2017)], to represent and analyse automotive product
data of valid/invalid product configurations [Berndt et al. (2012)], and to perform trust analysis in
social networks [Zhang et al. (2019)]. There are also applications related to mathematical models
like Multi-State Systems (MSS) [Zaitseva et al. (2013)]. In this case, MDD represent the MSS
structure in terms of Multi-Valued Logic to compute some measures. MDD find applications also
in the analysis of the discrete dynamical systems. Indeed, in [Naldi et al. (2007)], MDD represents
logic rules to analyse some properties and dynamics aspects in the case of regulatory networks (for
example, to perform a stable states identification).

An MDD is a rooted DAG created from a finite set of variables with specific domains. In
other words, it is a data structure to represent a multi-valued function fM : {0, . . . , t − 1}r →
{true, false}. Associating each variable with a level of the structure, the MDD represents a set
of feasible assignments as a path from the root (in the first layer) to the final true terminal node,
denoted tt (in the last one). Therefore, the data structure contains r + 1 layers and a path from the
root to the tt node represents a valid set of assignments. Each node is characterised by a variable
(represented in the layer), a value (if necessary), and at most d outgoing edges directed from an
upper layer to a lower one. An edge corresponds to an assignment of the variable to a certain value
specified by the label of the edge. In general, this version of the data structure presents only one
root and one leaf. In fact, the false terminal node, and the corresponding paths to reach this node,
are often omitted.

When constructing an MDD, the starting point is the domains of the variables. However,
depending on the problem (or function) to be represented, there are additional constraints on the
existence of the arcs in the structure. Example 3.1.3 shows an MDD for a sum problem (a problem
similar to the one we will see later), while Example 3.1.4 shows an MDD to find assignments
satisfying the All Different (Alldiff ) constraint. For this reason, more formal definitions of this
structure will be provided in Chapters 4 and 5, as they will be related to the problem whose
solutions will be modelled.

According to [Darwiche and Marquis (2002), Amilhastre et al. (2014)] , an MDD is normally
reduced and ordered as BDD. It is deterministic if all the nodes have pairwise distinct labels on
outgoing edges. In this manuscript, the structures in the following will always be of this type.

Example 3.1.3 – Consider three variables b1, b2 and b3 with domains D1 = {1, 2, 3, 5},
D2 = {2, 3, 5, 7} and D3 = {4, 5, 6}, respectively. The problem for this example is to find
all assignments such that b1 + b2 + b3 = 9. Let us see how one can build an MDD by exploring
the solution space (i.e. all assignments) to create a structure that will contain all ways to sum
the three variables to a total value of 9.

In this example (as in the following), each variable is related to a level and the values
within the nodes give us a specific useful information. In this case, the value within the nodes
represents the partial sum up to that point. The first level (containing the root node) corresponds
to b1, the second to b2 and the third to b3. The fourth and final level contains the final node tt.

One starts from the root node with the partial sum set to zero. One considers the possible
values d in the domain D1 of b1. If and only if the partial sum added to d is less than 9, one
creates corresponding node and arc (if this condition is not met, the choice of d is not part of a
solution). Therefore, here, all values in D1 are feasible elements of a solution to the problem.
Obviously in new nodes the partial sum is updated according to the value assigned to b1.
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0

1 2 3 5

1
2 3

5

Figure 3.4 – First layer of the MDD of Example 3.1.3. Labels over the outgoing arcs show the
possible values of b1. The label of a node represents the partial sum from the root to that node.

For each node in the newly created layer, all possible values for b2 (contained in D2) are
considered.
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Figure 3.5 – Construction of the second (on the left) and third levels (on the right) of MDD in
Example 3.1.3. The labels on the arcs outgoing from the nodes of the second layer show the
possible values of b2. The same is done in the third layer for b3. The arcs of the second level
are highlighted in different colours for clarity.

0

1 2 3

3 4 5

tt

1
2

3

2
3

2
3

2

6
5

4

Figure 3.6 – Reduced and ordered MDD of Example 3.1.3.

When the partial sum is set to 1, all values contained in D2 are admissible. If the partial
sum is 2, no outgoing arc with value 7 can be found since the total sum at 9 is expected in the
final node tt (once that also b3 is assigned). Remark that 0 6∈ D3. The problem requires to affect
to all variables in their domain so the node is not created. Let us stress that it is a choice of how
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one wants to model the problem. Other possible choices would have been to create the node and
let it be removed in the reduction step, or to allow only two variables to be used (thus allowing
a direct arc to tt). The process is finally repeated for b3. Figure 3.5 shows the result at the end
of the construction phase.

Since we refer to ordered and reduced MDD, it becomes necessary to remove all those parts
of the structure which do not bring to the final node. In this case, this is the only reduction
operation required. Figure 3.9 shows the result.

MDD can be created by, for example, exploring the solution space, from tuple sets, sub-
problems, dynamic programming, automaton, and other sources. To discover some methods of
creation, the reader may refer to [Perez (2017)].

A crucial feature of MDD is the exponential compression power of the reduction operation
and the fact that many classical operations (intersection, union, etc.) can be performed without
decompression [Perez (2017)].

Example 3.1.4 – Consider three variables b1, b2 and b3 with domains D1 = D2 = D3 =
{a, b, c, d}. The problem for this example is to find all assignments such that b1 6= b2 6= b3
(i.e. all assignments satisfying the Alldiff constraint). Let us see how one can build an MDD by
exploring the solution space.

In this case, the value within the nodes represents the set of values already chosen from the
domain to that point. The first level (containing the root node) corresponds to b1, the second to
b2 and the third to b3. The fourth and final level contains the final node tt.

One starts from the root node and considers the possible values d in the domain. All values
in D1 are feasible elements of a solution to the problem. In new nodes, the label of the nodes is
updated according to the value assigned to b1.

For each node in the newly created layer, all values for b2 are considered. For this problem,
we therefore consider all domain values not yet used. We therefore see how as the problem
changes, the condition for the creation of the arcs changes. The result of the construction
(following the reduction operation) is shown in Figure 3.7.

r

{a} {b} {c} {d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

tt

ac d b

a
b c

d

b c da a db c

c, d

b, d
b, c a, d

a, c
a, b

Figure 3.7 – Reduced and ordered MDD for b1 6= b2 6= b3 with D1 = D2 = D3 = {a, b, c, d}.



56 CHAPTER 3 — Multi-valued Decision Diagrams

3.2 The reduction operation

This section introduces the pReduce reduction algorithm, which is the algorithm used and imple-
mented in this thesis work [Perez and Régin (2015)]. For completeness sake, it is important to
note that there are other reduction algorithms proposed in the literature. For example, there are
several techniques based on a search (usually a DFS) and a structure able to memorise all the al-
ready visited nodes, but also other techniques based on the idea of building clusters of equivalent
nodes [Cheng and Yap (2010), Andersen (1997)].

The reduction is a fundamental operation over MDD. In fact, one can gain an exponential
factor in the use of memory. To illustrate the algorithm, let us show how the structure can be
modelled.

An MDD can be represented as an ordered lists of outgoing arcs of the different nodes. In
particular, let M = (N,E) be an MDD. A node α ∈ N has a list of outgoing arcs E+

α and a list
of incoming arcs E−α . Each arc can be viewed as a triple: initial node, arrival node, and arc label.
Then, for a node α ∈ N , E+

α is a list of pairs (d, β) with d ∈ Dα and β ∈ N where (α, β) is an
arc of M with label d.

Here, the list E+
α is then ordered according to the labels of the arcs.

Example 3.2.1 – According to the definitions provided, the MDD in Figure 3.8 (on the right)
corresponds to the data shown in the table (on the left).

Node E+

r {(1, a), (2, b), (3, c), (5, d)}
a {(2, f), (3, e)}
b {(2, f)}
c {(2, g), (4, h), (5, i)}
d {(2, g), (4, h), (5, i)}
e {(1, tt)}
f {(1, tt), (2, tt)}
g {(2, tt)}
h {(2, tt)}
i {}
tt {}
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Figure 3.8 – Newly constructed MDD that needs to be reduced.

The reduction aims at merging equivalent nodes (i.e. that have equivalent outgoing paths) to
reduce the dimension of the data structure but also to obtain a canonical form. Two nodes are
equivalent if they have the same label and destination for each edge.

Definition 3.2.1. Two nodes α, β ∈ M are equivalent (i.e. α ≡ β) iff |E+
α | = |E+

β | and for each
arch (d, ω) ∈ E+

α , there exists (d, ω) ∈ E+
β .

Algorithm 1 implements Definition 3.2.1 and thus provides a method for testing whether two
nodes are equivalent. We stress that the definition states the fact that if a node has a set of outgoing
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arcs that is a subset of the outgoing arcs of another, they cannot be equivalent and therefore cannot
be merged. In addition, nodes will be tested for equivalence level by level from bottom to top of
the MDD under consideration.

Algorithm 1: Equivalence
Input : α, β nodes of an MDD M
Output: true iff α and β are equivalent, false otherwise

1 if |E+
α | 6= |E+

β | then
2 return false;

3 forall i ∈
{
1, . . . , |E+

α |
}

do
4 if E+

α [i] 6= E+
β [i] then

5 return false ; . With 6= that can verify both label and node

6 return true;

At this point one needs to describe how the algorithm identifies the nodes to be tested for
equivalence. It implements the idea of dividing nodes into packs trying to construct groups of
equivalent nodes. A pack consists of a set of nodes and an integer z. The integer z indicates that
in a certain pack all nodes have the first z equivalent elements in the E+ lists.

The pReduce starts by putting all the nodes of the layer just above tt into a pack (see Algorithm
3). Reducing a layer begins by identifying all those nodes that do not have outgoing arcs. They
are removed as well as their incoming arcs (procedure Delete into Algorithm 4). Then, the pack
is divided into several sets by comparing the first outgoing edge (i.e. the one with the smallest
label). To perform this, the algorithm exploits two lists and two structures one indexed by values
and the other one by nodes. All the minimum values of the outgoing arcs of different nodes are
stored in Vlist. Then, VA memorises which nodes have a certain minimum label, for each of the
labels in Vlist. This creates an initial distinction between nodes based on the minimum label of the
outgoing arcs. Each of these groups is then re-divided based on the arrival node of the arc. The
Nlist stores the different arrival nodes andNA stores for each arrival node the associated departure
nodes. Now, the nodes have been divided into groups according to their arc with the smallest
value and its destination. At this point, in each group, there are two possibilities for each node:
all the outgoing arcs of the node have been analysed (in this case, the nodes would have only one
outgoing arc), or it has other outgoing arcs. All nodes with only one arc can be merged. While the
other nodes form a new pack with z equal to 1. This is because, we are sure that all nodes in the
pack have arcs with the same first outgoing arc. The procedure is repeated and the pack is split
according to the second arc in the E+ lists. And so on until one gets empty packs or all the arcs of
the nodes of a pack have been considered. In fact, once that all the edges are analysed, the nodes
are alone or in the same set with the equivalent nodes.

It is important to point out that when nodes are merged, the different incoming arcs of the
nodes being merged are redirected to the merged node (procedure Merge in Algorithm 2). In
addition, a Q queue is used to keep track of the packs that are generated and whose z + 1 arc has
yet to be investigated.
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Algorithm 2: ReducePack
Input : p pack, L[i] nodes of the layer, E+ lists of outgoing arcs, VA, NA, Vlist, Nlist

lists, and Q queue
Output: L[i] and E+ updated according to the equivalent nodes identified

1 i← index(p);
2 forall α ∈ nodes(p) do
3 val← value(E+

α [i+ 1]);
4 if VA[val] == ∅ then
5 add val to Vlist;

6 add α to VA[val];
7 forall val ∈ Vlist do
8 forall α ∈ VA[val] do
9 β ← node(E+

α [i+ 1]);
10 if NA[β] == ∅ then
11 add (val, β) to Nlist;

12 add α to NA[β];
13 VA[val]← ∅;
14 forall (val, β) ∈ Nlist do
15 if |NA[β]| > 1 then
16 p′ ← pack(∅, i+ 1);
17 setM ←

{
α ∈ NA[β] | |E+

α | = i+ 1
}

;
18 Merge(setM,L[i], E+);
19 add NA[β] \ setM to nodes(p′);
20 add p′ to Q;

21 NA[β]← ∅;
22 Nlist ← ∅;
23 Vlist ← ∅;
24 return L[i], E+;

It has been shown that the worst time and space complexity of this reduction algorithm is
O(|N |+ |E|+ |D|), linear therefore with respect to the number of nodes, the number of arcs, and
the dimension of D (the largest domain in the structure). For completeness sake, it should be said
that there exists a parallel version of the algorithm and that there exists a version which is able to
reduce a reduced MDD when it is modified.

Example 3.2.2 – Consider the MDD in Figure 3.8. To reduce it, the algorithm begins by putting
all the third-level nodes in a single pack ({e, f, g, h, i} , 0). The node i is removed since it has
no outgoing arcs. As a consequence, the arcs (5, i) in E+

c and in E+
d are removed too. As a

result, the ReducePack method is called on the pack ({e, f, g, h} , 0). Thanks to the first loop,
Vlist = {1, 2} is identified with VA[1] = {e, f} and VA[2] = {g, h}. Among the nodes with
minimum arc value 1, the only the possibility is to reach tt. In fact, Nlist = {(1, tt)} and
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NA[tt] = {e, f}. However, the node e presents only one arc while f two. This implies that
no node is merged. Even among the nodes with minimum arc value 2, all of them reach the tt
node. In fact, Nlist = {(2, tt)} and NA[tt] = {g, h}. Both g and h have only one outgoing arc.
Thus, they are merged into only one node. The incoming arcs are redirected to the latter. The
third level of the structure is now reduced.
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Figure 3.9 – The MDD of Figure 3.8 with reduced third layer.

The same process is repeated on the second level. To reduce it, the algorithm begins by
putting all the nodes into a single pack ({a, b, c, d} , 0). The ReducePack method is called on
it. Thanks to the first loop, Vlist = {2} and VA[2] = {a, b, c, d} are computed. All nodes have
minimum arcs of value 2 but some reach f and others g. In fact, Nlist = {(2, f), (2, g)} with
NA[f ] = {a, b} and NA[g] = {c, d}. However, node b has only one arc while a has two. Then,
a and b are not merged. To figure out whether c and d can be merged, the algorithm creates a
new pack ({c, d} , 1).
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Figure 3.10 – The reduced and ordered version of the MDD in Example 3.2.1.
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Reducing this pack results in Vlist = {4} and VA[4] = {c, d}. Through the arcs of value 4
of these nodes, h is always reached. In fact, Nlist = {(4, h)} and NA[h] = {c, d}. Being the
last arc of the two nodes, c and d are merged. The result of the reduction is shown in Figure
3.10.

Algorithm 3: pReduce
Input : L list of nodes in a MDD (according to the layer), and E+ outgoing arcs lists
Output: L and E+ corresponding to the reduced MDD

1 VA, NA, Vlist, Nlist ← ∅;
2 forall i ∈ {r, . . . , 1} do
3 L[i], E+ ← ReduceLayer(L[i], E+, VA, NA, Vlist, Nlist);

4 return L,E+;

Algorithm 4: ReduceLayer
Input : L[i] set of nodes of layer, E+ lists of outgoing arcs, and VA, NA, Vlist, Nlist lists
Output: L[i] and E+ corresponding to the reduced layer

1 forall α ∈ L[i] do
2 if |E+

α | == 0 then
3 Delete(L[i], α);

4 p← pack(L[i], 0);
5 Q← ∅;
6 L[i], E+ ← ReducePack(p, L[i], E+, VA, NA, Vlist, Nlist, Q);
7 while Q 6= ∅ do
8 L[i], E+ ← ReducePack(takeFirstElement(Q),L[i], E+, VA, NA, Vlist, Nlist, Q);

9 return L[i], E+;

3.3 More operations over MDD

Another big advantage of using MDD is that classical set operations such as Cartesian product,
complement1, intersection, union, difference, and many others can be performed without decom-
pressing the structure. For instance, the Cartesian product over MDD can be performed just by
merging the root of an MDD with the tt node of another one (see Figure 3.11 for an example).

Example 3.3.1 – Consider an MDD containing the tuples {(1, 2, 2), (1, 2, 3), (2, 2, 3), (2, 3, 3)}
and another one with {(1, 2, 3), (1, 2, 2), (2, 3, 3), (2, 3, 2), (3, 3, 3), (3, 2, 3)}.
1see Algorithm Complementary Operation in [Perez and Régin (2015)]
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The Cartesian product procedure consists in merging the node tt of the first MDD with the
root of the second one into a single node. In fact, the resulting structure contains the solutions

{(1, 2, 2, 1, 2, 3), (1, 2, 2, 1, 2, 2), (1, 2, 2, 2, 3, 3), (1, 2, 2, 2, 3, 2), (1, 2, 2, 3, 3, 3),
(1, 2, 2, 3, 2, 3), (1, 2, 3, 1, 2, 3), (1, 2, 3, 1, 2, 2), (1, 2, 3, 2, 3, 3), . . . , (2, 3, 3, 1, 2, 3),
(2, 3, 3, 1, 2, 2), (2, 3, 3, 2, 3, 3), (2, 3, 3, 2, 3, 2), (2, 3, 3, 3, 3, 3), (2, 3, 3, 3, 2, 3)}.
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Figure 3.11 – Cartesian product between two MDD.

In [Perez and Régin (2015)], the Apply method is introduced to calculate: union, intersection,
difference, symmetric difference, union complement, and intersection complement. It is based on
the idea proposed by Bryant in [Bryant (1986)] but also on an intersection algorithm proposed
later [Bergman et al. (2014)]. In this algorithm, the intersection was computed by exploiting the
structure of graphs rather than the functions represented by them. The intuitive idea is to search
(level by level in a top-down fashion) for arcs in common between different nodes. To achieve
this goal, the first step creates a new root, and only the outgoing edges that are common between
the two structures are added. In this way, each new node is linked to two original nodes and the
process is iterated.

In the Apply method, the idea is basically the same but it allows to compute more than just the
intersection. In [Perez and Régin (2015)], it has been shown that the space and time complexity
of this method is linearly upper bounded by the size of the product of the two initial MDD. This
section presents this method in its different functionalities. In the sequel, we will mainly use
Cartesian products and intersections between MDD.
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op[1] op[2] op[3] op[4]
layer [1..r − 1] r [1..r − 1] r [1..r − 1] r [1..r − 1] r

A ∩B F F F F F F T T
A ∪B F F T T T T T T
A−B F F F F T T T F
A 4 B F F T T T T T F
A ∪B T T T F T F T F
A ∩B T T T T T T T F

Figure 3.12 – The values of op[i] defining the behaviour of the Apply method.

When two MDD are combined, each node in the result α (regardless of the type of operation) is
associated with two nodes, one in the first MDD α1 and one in the second α2. The method is based
on the fact that, given a node α = (α1, α2) and a value of a label d, there are four possibilities:

1) @e1 ∈ E+
α1 | value(e1) = d and @e2 ∈ E+

α2 | value(e2) = d;

2) @e1 ∈ E+
α1 | value(e1) = d and ∃e2 ∈ E+

α2 | value(e2) = d;

3) ∃e1 ∈ E+
α1 | value(e1) = d and @e2 ∈ E+

α2 | value(e2) = d;

4) ∃e1 ∈ E+
α1 | value(e1) = d and ∃e2 ∈ E+

α2 | value(e2) = d.

In other words, the arc with a certain label may be present for both nodes, for either one of them, or
for neither of them. In each of these cases, the behaviour of the algorithm must change according
to the operation that one is computing. For example, in the case of an arc which is present only in
the first MDD, the arc is preserved in the case of a union but removed in the case of an intersection.
Figure 3.12 shows how the op parameter of Algorithm 5 should be set according to the operation.
In fact, it will be this parameter that allows different operations to be computed with the same
algorithm. Beware that in some cases it may also have different values depending on the level i
within the structure. This is necessary in order to compute complements and differences. We will
denote op[operation, j, i] the value in the Figure 3.12 in the case j for level i (with j ∈ {1, 2, 3, 4}
corresponding to the four cases presented earlier).

It is also important to note that an efficient implementation of the algorithm takes advantage
of the fact that the lists of outgoing arcs are ordered. This is to make the comparison between the
arcs faster.

Let us clarify a few aspects of the procedure presented. TheNewArcNodemethod deals with
the creation of new nodes or arcs in the new MDD. This procedure checks, before creating a node,
whether that node (β1, β2) does not already exist within the new structure. In that case, only the
arc must be added.

In Algorithm 5, one can also see that this procedure is sometimes called on nodes nil. The
node nil is a node with no outgoing arcs. It is useful in all those cases where one needs to add a
node and an arc in the result of the operation but does not have the corresponding node in one or
both of the initial MDD. This happens, for example, in the case of complements. The intuitive idea
is that if we need to make a complement, we must add the arcs that did not exist. In other words,
arcs for which one does not know the destination node. Another example is when one wants to
compute the difference between two MDD. In this case, one wants to keep all the arcs that are part



3.3 – More operations over MDD 63

Algorithm 5: ApplyMDD
Input : M1,M2 MDD, op array, and operation to compute
Output: Resulting MDD M

1 L,E+ ← ∅;
2 root← CreateNode(root(M1), root(M2));
3 L[1]← root;
4 forall i ∈ {1, . . . , r} do
5 L[i]← ∅;
6 forall α ∈ L[i− 1] do
7 define α1, α2 such that α = (α1, α2);
8 V ← values(E+

α1 ∪ E
+
α2);

9 forall val ∈ V do
10 if @(val, β1) ∈ E+

α1 then
11 if @(val, β2) ∈ E+

α2 and op[operation, 1, i] then
12 NewArcNode(L, i, α, val, nil, nil);

13 if ∃(val, β2) ∈ E+
α2 and op[operation, 2, i] then

14 NewArcNode(L, i, α, val, nil, β2);

15 else
16 if @(val, β2) ∈ E+

α2 and op[operation, 3, i] then
17 NewArcNode(L, i, α, val, β1, nil);

18 if ∃(val, β2) ∈ E+
α2 and op[operation, 4, i] then

19 NewArcNode(L, i, α, val, β1, β2);

20 Merge(L[r]);
21 return pReduce(L,E+);

of solutions not contained in another MDD. So this requires to be able to define nodes that are
associated with one node in the first MDD and with none in the second.

Note that there may eventually be nodes without outgoing arcs or equivalent nodes. For exam-
ple, in the case of a difference operation (i.e.M1−M2), it may happen that by removing arcs from
some nodes, they are now equivalent to others on the same level. It is for these reasons that the
result must eventually be reduced. However, the reduction is important, in general, since the size
of the structure resulting from the method may be larger than the size of the original structures.

The following examples illustrate how the Apply method works on two basic set operations.

Example 3.3.2 – Let us see how the Apply method computes the difference between the two
MDD in Figure 3.13. At the first iteration, the values of the arcs coming out of the two roots
are considered. Thus V = {0, 1, 2}. Both MDD have an outgoing arc with 0 from the roots.
Therefore, we are in the case op[−, 4, 1] and a new node (a, i) is created with an arc from the
root having value 0. After that, only the first MDD has an arc of value 1 coming out. We are
then in the case op[−, 3, 1] where a new node (b, nil) with an arc of value 1 is created. The arc
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with value 2 is only present in the second MDD. We are therefore in the case op[−, 2, 1] and no
node is created. This is intuitively correct since we are only interested in the tuples contained in
the first structure and not in the second. The process is iterated considering nodes a and i. Arcs
and nodes are created for values V = {0, 1, 2}, but in the case of 1 a node nil is used since there
is no arc with label 1 leaving i. In the case b and nil, all arcs are conserved since they represent
a part of the first structure that is not found in the second. The next level requires a different
behaviour. In fact, the part of the structure from the root to the node (d, j) is preserved by the
method in order to keep any solutions that differ only in the last label from those contained in
the second MDD. The method thus retains only the arcs exiting d but not from j. In this case,
there are none. This explains why (d, j) (highlighted in grey in the Figure 3.13) has no outgoing
arcs, and why (c, nil) has arcs to tt labelled with 0 and 1. The node (d, j) will then be removed
by the reduction method. The nodes contained in the final layer will be merged into a unique
terminal node.
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Figure 3.13 – Difference operation between two MDD.

As mentioned above, the result of the Apply method requires to be reduced. For example,
the (d, j) node would then be eliminated.

Example 3.3.3 – Let us see how the Apply method computes the intersection between the two
MDD in Figure 3.14. At the first iteration, V = {1, 2, 3, 4, 5}. Both MDD have an outgoing arc
with 1 from the roots. Thus, we are in the case op[∩, 4, 1] and a new node (a, f) is created with
an arc from the root having value 1. After that, only the first MDD has an arc of value 2 coming
out. We are then in the case op[∩, 3, 1] where no node is created. This is intuitively correct
since we are only interested in the tuples contained in both MDD. It is the same in the cases of
arcs with value 3 and 5. If we look at the configuration of op in the intersection case, a node is
created only when there are the two arcs in the initial MDD. Both MDD have an outgoing arc
with 4 from the roots. Then, a new node (c, h) is created with an arc from the root having value
4.
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Figure 3.14 – Intersection between two MDD.

The process is iterated in the next layer. Considering the nodes a and f , the only common
arc is the one with label 1. Then, the node (e,m) is generated. Considering the nodes c and
h, the only common arc is the one with label 2. Then, the arc to (e,m) with latel 2 is added.
Finally, the nodes e and m have an arc with label 2. Then, the node (tt1, tt2) and the corre-
sponding arc are generated. In this case we obtain a result that is already reduced, but this is not
always the case.
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CHAPTER 4
Equations and

Abstractions over DDS
This chapter presents the polynomial equations with a constant right-hand term on D
that allow us to investigate if a certain known dynamics is the result of several indepen-
dent smaller systems interacting with each other. Given the complexity of the problem of
finding a solution to equations over D, the idea will be to study independently the char-
acteristics of the solutions (number of states, the asymptotic or the transient behaviour).
This will be made by a finite number of simpler equations (called abstractions) which
reduce the solution space of the original equation over DDS one property at a time.
Then, solutions of the original equation over DDS can be found in the intersection of the
solution spaces of the abstractions.
In this chapter, the first abstraction to study the cardinality of the set of states of the vari-
ables is formally introduced. Then, a solution method based on Multi-valued Decision
Diagrams is presented.

This chapter introduces the idea about abstractions and the first abstraction on the num-
ber of states of DDS presented in [Dennunzio et al. (2020), Dennunzio et al. (2022)].
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4.1 Polynomial Equations over Dynamical Systems

This chapter focus on polynomial equations with a constant right-hand term on D. Given the
results presented in Chapter 1 regarding the equations on DDS, the aim is to introduce a new
technique for finding solutions by exploring the solution space efficiently. As a starting point, the
goal is to identify the solutions of all those equations with a multivariate polynomial that does not
have products of several unknowns.

The aim is to express a certain DDS (contained in the constant term of the equation) as the
sum and product of other, smaller systems. In other words, an attempt is made to provide a finer
structure of the DDS in order to answer the following question, which is the central issue of this
work:

Question 4.1.1. Is the dynamics that we observe the action of a single basic system or does it
come from the cooperation between two or more simpler systems?

In this sense, a DDS can be viewed as a complex object with a certain intrinsic structure, i.e.,
the feature of resulting from cooperating basic components. It is crucial, of course, to precise the
meaning of the word "cooperation" in Question 4.1.1. In Chapter 1, two forms of cooperation have
been devised. The additive form, denoted by +, in which two DDS with independent dynamics
provide together an observed system, and the product one, denoted by ·, in which a system results
from the joint parallel action of two DDS.

Now, consider the semiring D[X1, . . . , Xν ] of polynomials over D in the variables
X1, . . . , Xν , naturally induced by D. Polynomial equations of the form (4.1) allow us to in-
vestigate whether a dynamics B can be recreated through the cooperation of simpler systems.

A1 ·Xw1
1 +A2 ·Xw2

2 + . . .+Am ·Xwm
m = B (4.1)

The coefficientsAz (with z ∈ {1, . . . ,m}) are hypothetical sub-dynamical systems that should co-
operate to produce the dynamics B. Finding valid values for the unknown terms in (4.1) provides
a finer structure for B.

From a purely theoretical point of view, these equations are a good starting point for studying
how one can solve equations on DDS. In fact, if we consider polynomials admitting monomials
with several variables (such as A · Xw · X ′w

′
for example), it would be possible to rewrite the

monomial as A ·Y , identify the solutions and then study Y = Xw ·X ′w
′
. Furthermore, in the case

of polynomials P (X1, . . . , Xν) that contain constant terms, we could look for the components
of the DDS B that are isomorphic to them, remove these components from B, and consider the
equation P (X1, . . . , Xν)′ = B′ in which P (X1, . . . , Xν)′ and B′ consists of P (X1, . . . , Xν) and
B after removal of the constants of the polynomial1. This gives the intuition of why we choose
to start from equations of the form (4.1). However, they are also interesting for the opportunity to
model hypotheses.

4.1.1 Hypothesis Validation

Given equations of form (4.1), we may investigate the relation between partial knowledge about a
phenomenon (contained in the coefficients) and the observed dynamics in an experimental phase

1If there are not components in B that are isomorphic to the known terms, one can conclude that the equation has
no solution.
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(contained in the right-hand term). We can thus investigate whether the right-hand term of an
equation is a more complex dynamics that is based on the collaboration of some known simpler
dynamics. In other words, we use an equation to model hypotheses about a certain dynamics
deduced from experimental data. Thus, the known term B is the dynamical system deduced from
experiments and solutions of the equation bring further knowledge about the phenomenon.

Also for these reasons, to face Question 4.1.1 it is quite natural to consider multivariate mono-
mials of the type A · Xw to represent a hypothesis about a finer structure of a given DDS. Here,
considering A ·Xw = B means that in the first place the observed DDS B is supposed to result
from the joint parallel action of a known DDS, i.e., the coefficientA, and w copies of some yet un-
known DDS X . Following this new point of view, a polynomial P (X1, . . . , Xν) is hence a more
complex and “realistic” hypothesis on the observed DDS B. Then Question 4.1.1 can rephrased
as:

Question 4.1.2. Does the dynamics that we observe (from experimental data for instance) result
from several independent smaller systems, each of them having its dynamics determined by the
joint parallel action of a known part and an unknown part to be computed? In other words, does
the equation P (X1, . . . , Xν) = B have a solution? If any, which are its solutions?

Therefore, from now on, we will consider equations composed of a polynomial part (which
can model the hypothesis) and a constant part (which is the object of study). The goal will be to
introduce an approach to enumerate the solutions of the equation (up to isomorphism). In fact, as
anticipated in Section 1.1.2, here we are not interested in the precise nature of the different states
that characterise a given DDS. Enumerating allows us not only to check whether an equation has
a solution (i.e., whether a hypothesis modelled in a polynomial is true) but also to obtain as much
information as possible about the dynamics B.

4.2 Abstractions over DDS

Answering to Question 4.1.2 is always possible since the constant right-hand side bounds the
space of admissible solutions. However, it might be highly non trivial to find the precise answer,
as illustrated in Chapter 1 for distinct classes of polynomial equations. Then, given the complexity
of the problem, the main idea is to study independently the different characteristics of a solution to
provide a solid and effective analysis tool to be used in applications that answers Question 4.1.2.
Three aspects of DDS can be investigated: the number of states, the asymptotic behaviour (i.e.,
the cyclic part of the dynamics) and the transient behaviour (what happens before the system
stabilises). For each of these characteristics, we want to reduce the solution space of the original
equation, to have an idea of the features of the solutions.

The approach here is that for each of these characteristics, an abstraction is introduced, i.e. an
equation corresponding to the original DDS equation but focusing only on a specific property. The
term abstraction arises from the fact that one wants to focus only on a specific property and thus
ignore other aspects of the dynamics. One therefore abstracts the dynamics of the coefficients and
the known term of an equation to determine some information about the dynamics of the variables.
This allows one to reduce the solution space as one is sure that the original solutions of the DDS
equation respect the characteristics found through the abstractions. The idea of abstractions can
be found in model checking [Clarke et al. (1994)], as well as in other areas of computer science
[Knoblock (1990)].
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In this work, three abstractions are introduced to solve equations of type (4.1): the c-
abstraction (Section 4.3), the a-abstraction (Chapter 5) and the t-abstraction (Chapter 6). Each
one provides specific properties of the solutions of an equation of type (4.1). Namely, the c-
abstraction focus on the cardinalities of the set of states of the variables. Then, it allows to reduce
the solution space to all those DDS that satisfy the condition on the cardinality of the state set in-
duced by the original equation. The a-abstraction provides the cyclic (or asymptotic) behaviour of
the dynamical systems X1, . . . , Xν . Thus, it allows to reduce the solution space to all those DDS
having a set of attractors that satisfies the equation. Finally, the t-abstraction provides the transient
behaviours in the variables. We stress that the set of the solutions of the equation (4.1) just turns
out be the intersection of the sets of DDS selected by these three abstractions. For this reason
and given the fact that the goal is the enumeration of solutions of an Equation (4.1) (according to
Question 4.1.2), the enumeration of all solutions of each abstraction is needed to reach the goal.

However, it must be emphasised that for an efficient search, it is best to solve the abstractions
in the order in which they are presented to reduce the search space for each abstraction. In this
way, for each variable, one first identifies its feasible number of states, then its cyclic behaviour
and finally reconstructs its transient behaviour. This is especially important given the fact that the
cost in terms of time and space increases from the first abstraction to the last one.

4.3 The c-abstraction

Given a polynomial equation over DDS, a natural abstraction concerns the number of states of
the systems which are involved in it. Performing such an abstraction leads to a new equation in
which the coefficients of the polynomial, the variables, and the constant term become those natural
numbers corresponding to the cardinalities of the sets of states of the DDS involved in the original
equation. This is the simplest of the three abstractions but allows us to introduce ideas that will be
useful later on.

Definition 4.3.1 (c-abstraction). The c-abstraction of a DDS S is the cardinality of its set of states.
With an abuse of notation, the c-abstraction of S is denoted by |S|.

The following lemma links c-abstractions with the operations over DDS described in Chapter
1 (see Section 1.1.3).

Lemma 4.3.1. For any pair of DDS S1 and S2, it holds that |S1 +S2| = |S1|+|S2| and |S1 ·S2| =
|S1| · |S2|.

The lemma is derived directly from the definition of sum and product over DDS (Definitions
1.1.2 and 1.1.3). The first operation requires a disjoint union of the sets of states, while the second
requires a Cartesian product.

Using the notion of c-abstraction and the previous lemma, Equation (4.1) turns into the fol-
lowing c-abstraction equation

|A1| · |X1|w1 + |A2| · |X2|w2 + ...+ |Am| · |Xm|wm = |B| . (4.2)

Recall that, to reach the overall goal, we need to enumerate all solutions of Equation (4.2) to
identify all cardinalities of the set of states of the variables in the original equation.

The following example illustrates the concepts just introduced.
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Example 4.3.1 – Consider the equation on DDS presented in Figure 4.1. Its c-abstraction is
5 · |X1|2 + 4 · |X2| = 293 since |A1| = 5, |A2| = 4, and |B| = 293.
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Figure 4.1 – An example of Equation (4.1). The coefficients A1, A2 and the know term B are
depicted by their dynamics graphs.

Let us proceed as follows. First of all, we present this problem from a combinatorial point of
view. Then, we will provide an algorithmic approach (based on Multi-valued Decision Diagrams)
allowing the enumeration of the solutions of an Equation (4.2) in an efficient way.

Let us consider the case with just one monomial (i.e., m = 1) corresponding to a simpler
equation of the form |A| · |X|w = |B| (basic case). It is clear that:

• if w = 0, then Xw consists of a system with one cycle of length one2 (a fixed point). Then,
|X|w = 1 and |A| = |B|, while the equation is impossible, otherwise;

• if w 6= 0, the equation admits a (unique) solution iff w
√
|B|/|A| is an integer number.

2For w equal to 0, we assume that S0 is equal to the single fixed point system, the neutral element for the product
operation.
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Given now an equation withm > 1 monomials, it is clear that each state of the DDSB must come
from one of the monomials. Remind that the sums between the different monomials correspond
to disjoint unions between the sets of states obtained by the product operations. Therefore, we
have to consider all the ways of arranging |B| states among m monomials. The number of such
arrangements is

(|B|+m−1
m−1

)
and the Stars and Bars (SB) is a graphical interpretation of this binomial

value [Jongsma (2019)].

Example 4.3.2 – The Stars and Bars concept takes its name from the graphical representation.
For example, the divisions of 4 elements in 3 boxes are

(4+3−1
3−1

)
= 15.

|| ? ? ? ? | ? | ? ?? | ? ?| ? ?
| ? ? ? |? | ? ? ? ?| ?| ? ? ? |
? ? | ? ?| ? ? ? | ? | ? ? ? ? ||
? ? ?||? ? ?|| ? ? ?|| ? ??
?| ? ?|? ? ?| ? |? ?| ? | ? ?

Let Bz be the number of states generated by the z-th monomial. Any arrangement consisting
of B1, . . . , Bm states (i.e., any weak composition3 ) gives rise to a system as follows

|A1| · |X1|w1 = B1

|A2| · |X2|w2 = B2
...

|Am| · |Xm|wm = Bm

, (4.3)

where
∑m
z=1Bz = |B| and each equation falls into the basic case.

To enumerate the solutions of the abstraction, we need an efficient method that solves all
feasible Systems (4.3) (i.e., those systems admitting a solution). Since any System (4.3) consists
of equations that are basic cases, and establishing whether each of them admits a solution is easy,
the method can be designed in such a way that the solution space to be explored is reduced.

Due to the combinatorial nature of the problem, we will use Multi-valued Decision Diagrams
(MDD) (presented in Chapter 3) to enumerate the solutions of equations over c-abstractions.

Consider an Equation (4.2) with m monomials and a number ν of distinct variables. We
associate such an equation with an MDD (N,E, `ab, val) in which there are ν + 1 layers (one
for each variable and one final layer for the tt node). Recall that, as explained in Chapter 3, the
structure is built according to a certain order Lo of variables. Let us start to define the structure.

The nodes of the structure are N = N1 + (
∑ν
i=2Ni) + Nν+1,

4 where N1 = {root}, Ni =⋃|B|
j=0Ni,j and Nν+1 = {tt}. Hence, each Ni is a level of the MDD.

3A weak composition of an integer |B| is a way of writing it as the sum of a sequence of m integers B1, . . . , Bm

greater than or equal to 0.
4It is important to note that to define the set of nodes in the structure, we used the sum and not the union. When

working with multisets, the union preserves the elements in the maximum multiplicity between the two sets, whereas
the sum adds the multiplicities.
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For any node α ∈ N , let val(α) = 0 if α = root, val(α) = |B| if α = tt, and val(α) = j
if α = Ni,j . In fact, the value val(α) associated with a node α represents the amount of states
obtained from a partial set of variable assignments, i.e., a set of assignments involving the variables
corresponding to the layers up to the one of α. Each of them corresponds to a path from root to
α. Indeed, the c-abstraction equation admits no solution if there is no path from root to tt on the
associated MDD.
The set of edges is

E = {(α, β) ∈ N ×N | ∃i ∈ {1, . . . , ν} s.t. α ∈ Ni, β ∈ Ni+1,

val(β) = val(α) +
m∑
z=1

var(i, z) · |Az| · dwz , and d ∈ {0, . . . , |B|}}

where var(i, z) = 1 if Xz is the i-th variable in the order Lo (i.e. if it corresponds to the i-th layer
of the structure), 0 otherwise. Lastly, the labelling function `ab : E → {0, . . . , |B|} is defined as
`ab((α, β)) = d where val(β) = val(α) +

∑m
z=1 var(i, z) · |Az| · dwz .

This definition is formally correct and allows us to describe the set of nodes, arcs as well as
the `ab and val functions. However, it leads to the potential creation of several isolated nodes and
unfeasible variables assignments which would be certainly deleted later in the reduction phase (see
Figure 4.2). Hence, we introduce a second definition of the structure by induction (i.e. level by
level) which is also more effective since it leads to avoiding unfeasible parts of the solutions space
considering the previous variable assignments (the algorithmic approach to building the structure
will be then based on it).

r

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

tt

0 1 2 3 4 5

5 4 3 2 1 0

r

0 2 4 6 8 10

0 2 4 6 8 10

tt

0 1 2 3 4 5

5 4 3 2 1 0

Figure 4.2 – Let us consider the equation 2 · |X1| + 4 · |X2| + 2 · |X3| = 10. On the left, we see
the (unreduced) MDD constructed according to the first definition. The (unreduced) MDD built
according to the second definition is on the right. Both MDD are constructed by considering the
variables in order of appearance in the equation, hence |X1|, |X2| and then |X3|. One can see how
the former explores non-feasible parts of the solution space that the latter does not. For the sake
of clarity, the labels of the arcs in the second layer are expressed through colours (the colour-value
correspondence is expressed in the first layer).
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The first level of the structure contains the root (i.e. N1 = {root}) with val(root) = 0. For
any d ∈ {0, . . . , |B|} such that

m∑
z=1

var(1, z) · |Az| · dwz ≤ |B|

we create a node in the following level. Hence, we have β ∈ N2 with val(β) =
∑m
z=1 var(1, z) ·

|Az| · dwz , and (root, β) ∈ E with `ab((root, β)) = d. The outgoing labels represent the values
(i.e. the number of states) for the variable corresponding to the first layer.

Now, let us consider a level i (with i ∈ {2, . . . , ν − 1}) already defined. For any α ∈ Ni and
any d ∈ N such that

val(α) +
m∑
z=1

var(i, z) · |Az| · dwz ≤ |B|

we potentially create a node β (with val(β) =
∑m
z=1 var(1, z) · |Az| · dwz ) in the following level.

In fact, if a node β′ such that val(β) = val(β′) exists, just a new edge is created. Indeed, it
represents the same amount of states obtained from a partial set of variable assignments. More
formally, if β 6∈ Ni+1 and β =

∑m
z=1 var(i, z) · |Az| · dwz + val(α), then Ni+1 = Ni+1 ∪ {β}

and (α, β) ∈ E with `ab((α, β)) = d. However, if β ∈ Ni+1, we just add (α, β) ∈ E with
`ab((α, β)) = d.

To conclude the definition of the structure, let us consider the level ν. For any α ∈ Nν and
any d ∈ N such that

val(α) +
m∑
z=1

var(ν, z) · |Az| · dwz = |B|

we create an arc between α and tt. Then, we have (α, tt) ∈ E with `ab((α, tt)) = d.

According to this second definition, the nodes of the structure (at the end) are the multiset
N =

∑
i∈{1,...,ν+1}Ni where N1 = {root}, Ni ⊆ {0, ..., |B|} with i ∈ {2, . . . , ν}, and Nν+1 =

{tt}.

Finally, the MDD is reduced by performing a pReduction (see Section 3.2) to merge equivalent
nodes and delete all nodes (and the corresponding edges) which are not on a path from root to tt.

An implementation of this construction is provided by Algorithm 6. It takes in input all the
necessary information about the equation: the coefficients, variables and exponents of the mono-
mials, as well as the order chosen for the variables in order to construct the structure, and the
number of states of B.

It is important to note that we did not require that the c-abstraction equation is in simplified
form. Indeed, the construction process presented is invariant with respect to whether the equation
is simplified or not.

The algorithm exploits the procedure NewArcNode which implements the allocation tech-
nique explained before. Indeed, a new node β is created if and only if another node with the same
value does not already exist, otherwise, just a new arc is created.

It is important to emphasise that as indicated in the pseudocode (lines 17 and 18) we consider
the values of d in ascending order and we stop at the first value that results in the creation of more
than |B| states.

Let us illustrates this MDD-based approach with an example (see Example 4.3.3).
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Algorithm 6: c-abstraction
Input : Lc list of coefficients, Lv list of variables, Le list of exponents, Lo order of

variables, and rterm corresponding to |B|
Output: M MDD with the solutions

1 M [1]← {root} ; . M[i] are the nodes of M in level i

2 val(root)← 0;
3 d← 0 ; . Current value to test

4 forall i ∈ {1, . . . , ν} do
5 forall α ∈M [i] do
6 creation← true;
7 while creation do
8 β ←

(∑m
z=1 var(Lo[i], Lv[z]) · Lc[z] · d Lo[z]

)
+ val(α);

9 if i 6= ν and β ≤ rterm then
10 NewArcNode(M, i+ 1, α, d, β);
11 d← d+ 1;
12 else
13 if i == ν and β == rterm then
14 NewArc(M,ν, α, d, β);
15 d← d+ 1;
16 else
17 creation← false;
18 d← 0;

19 return pReduce(M);

Example 4.3.3 – Consider the following equation:

2 · |X3|+ 5 · |X1|2 + 4 · |X2|+ 4 · |X1|4 + 4 · |X3|2 = 593.

By using SB, one can check that there are
(593+5−1

5−1
)

= 5.239776465 × 109 ways of arranging
|B| = 593 states among m = 5 monomials. However, not all of them are give rise to solutions.
The MDD produced by Algorithm 6 is presented in Figure 4.3. The first level of the structure
represents the feasible values of the variable |X1| associated to the inequality

∑5
z=1 var(1, 1) ·

|Az| · |Xz|wz = 5 · |X1|2 + 4 · |X1|4 ≤ 593. For this variable, different values of d are tested.

d = 0, 5 · 02 + 4 · 04 ≤ 593,
d = 1, 5 · 12 + 4 · 14 = 9 ≤ 593,
d = 2, 5 · 22 + 4 · 24 = 84 ≤ 593,
d = 3, 5 · 32 + 4 · 34 = 369 ≤ 593,
d = 4, 5 · 42 + 4 · 44 = 1104 > 593.
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In the second layer, the red edges along with the corresponding labels represent the values for
|X2|, when |X1| = 1. The blue ones are the assignments for |X2|, when |X1| = 3. The last
layer represents the feasible assignments of |X3|.
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tt
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41 141 128
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146

56
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51
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Figure 4.3 – The reduced MDD representing all the solutions of 2 · |X3|+ 5 · |X1|2 + 4 · |X2|+
4 · |X1|4 + 4 · |X3|2 = 593. There are ν = 3 variables, which are represented in the structure
in the following order: |X1|, |X2|, and |X3|. Here, the val of the nodes is the value reported
inside them.

We stress that the MDD allows the exploration of the solution space of the equation in a
efficient way. In fact, at each level only a part of the values for a variable are considered depending
on the feasible assignments of the variables of the previous levels. Moreover, the MDD can gain
up to an exponential factor in representation space through the reduction process (as explained in
Chapter 3).

The worst case time complexity is O(|B|2ν), for the construction part, and O(|B|ν + δ+D),
for the reduction one, where δ =

∑ν
i=1 |Di| · |B| and D is the bigger domain for a variable which

can be at most {0, . . . , |B|} (see Chapter 3). The worst case space complexity is O(|B|ν + δ), in
terms of number of nodes and edges. The pReduction reduces the total number of edges to δ′ � δ
and the bound of the number of nodes of any level to µ ≤ |B|, giving rise to a lower complexity
O(µν + δ′). Actually, this bound is never reached in our experiments. As an illustrative case,
consider Example 4.3.3. The MDD could have up to 1188 nodes and 352835 edges, but its reduced
version has only 10 nodes and 18 edges (see Figure 4.3).

Example 4.3.4 – For the sake of completeness, consider the equation of the Example 4.3.1.
Figure 4.4 depicts the MDD returned by Algorithm 6. There are ν = 2 variables, and hence 2
layers. The first level of the structure represents the assignments of the variable |X1| and the
second one |X2|. Then, the c-abstraction provides the following solutions:

|X1| = 7, |X2| = 12

|X1| = 5, |X2| = 42

|X1| = 3, |X2| = 62

|X1| = 1, |X2| = 72
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r

245 125 45 5

tt

7
5 3

1

12
42 62

72

Figure 4.4 – The reduced MDD representing all the solutions of 5 · |X1|2 + 4 · |X2| = 293.

In conclusion, the approach just presented permits the enumeration of all the solutions of a
c-abstraction equation and, hence, to understand the feasible cardinalities of the set of states for
the variables in an Equation (4.1).



CHAPTER 5
Asymptotic behaviour of

DDS
This chapter introduces the a-abstraction which aims to enumerate all possible cyclic
behaviours of the variables of multi-variate polynomial equations with constant right-
hand term onD. This is done by introducing a specific notation to express any DDS as a
function of its periodic part, studying how these parts of the systems are involved in sums
and products, but also by proving that we can relate back to a simpler problem. In fact, it
is shown that one can see any equation as a finite set of systems made by a finite number
of simpler equations, called basic equations. This result is achieved thanks to some
algebraic transformations, called contraction steps. The complexity of deciding whether
a basic equation has a solution, as well as the complexity of listing all its solutions are
also investigated. The chapter provides two algorithmic techniques to enumerate the
solutions of basic equations and, starting from them, it develops a complete MDD-based
pipeline to enumerate the solutions of any equation are introduced. Key points are: the
use of MDD to enumerate the solutions of the basic equations as it allows them to be
combined efficiently to find the solutions of the starting equation, and the introduction of
a technique to calculate roots on asymptotic behaviour of DDS.

This chapter focus on the a-abstraction, the colored-tree [Dennunzio et al. (2020)] and
the MDD-based approach [Formenti et al. (2021)], and the complete pipeline proposed
in [Dennunzio et al. (2022)].
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5.1 The a-abstraction

In this chapter we deal with a further abstraction, namely, the asymptotic one, describing the
long-term behaviour of a DDS, i.e., its periodic behaviour. In fact, we introduce the version
of Equation (4.1), called a-abstraction equation, obtained from the original one by removing
all transients states and their edges in coefficients, variables and constant right-hand term. This
chapter develops an algorithmic approach to enumerate the solutions of this new abstraction. We
thus obtain a method to validate hypotheses about the asymptotic behaviour of a phenomenon
modelled through a DDS. Before going into the details of the a-abstraction, let us provide the
notation that we will use to represent the cyclic behaviour of a DDS.

Notation. In the sequel, for any pair of positive integers n and p, Cnp will stand for the union of
any n disjoint cycles of length p of a DDS S. To stress that we are dealing with sets consisting of
union of disjoint cycles, each of them identifying a subsystem of S, the operations of disjoint union
and product of two of such sets, or, by identification, the sum and product of the corresponding
dynamical (sub)systems, will be denoted by ⊕ and � instead of + and ·, respectively. According
to this notation, it is clear that Cn1

p ⊕ Cn2
p = Cn1+n2

p for any pair of positive integers n1, n2.
Moreover, kCnp is a shortcut for Cknp for any positive integer k and n.

Definition 5.1.1 (a-abstraction). The a-abstraction of a DDS S, denoted by S̊, is the dynamical
subsystem of S induced by the set P of all its periodic points, or, by identification, the set P itself.

Then, the a-abstraction of a DDS S can be written as

S̊ =
l⊕

i=1
Cnipi ,

for some positive naturals l, n1, . . . , nl, and pairwise distinct positive naturals p1, . . . , pl, where,
for each i ∈ {1, ..., l}, ni is the number of disjoint cycles of length pi (see Figure 5.1 for an
illustrative example).

• •
•

•

• • •
•

•

•
•

• •
•
•
••

•
•
•
•

•
•

•
•

•
•

•
•

•

•

•

Figure 5.1 – A DDS S with four cycles. Its a-abstraction S̊ is (C1
1 ⊕ C2

2 ⊕ C1
3 ) in our notation.

It immediately follows from the previous definition that the a-abstraction of the sum, resp., the
product, of two DDS, is the sum, resp., the product of the a-abstractions of the two DDS. In fact,
we know that the periodic points of a DDS, resulting from a product operation, are all those points
arising from a Cartesian product between two periodic points of the DDS involved in the product.

Let us formalise these operations between a-abstractions. Let us consider pS,j the jth period
into the system S̊, and nS,j the number of cycles of length pS,j .
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Proposition 5.1.1. Given S1 = (X1, f1) (resp., S2 = (X2, f2)), let S̊1 =
l1⊕
i=1

C
n1,i
p1,i (resp., S̊2 =

l2⊕
j=1

C
n2,j
p2,j ). The following equivalence holds for S̊1 ⊕ S̊2

l1⊕
i=1

C
n1,i
p1,i ⊕

l2⊕
j=1

C
n2,j
p2,j = C

n1,1
p1,1 ⊕ . . .⊕ C

n1,l1
p1,l1
⊕ Cn2,1

p2,1 ⊕ . . .⊕ C
n2,l2
p2,l2

.

By Definition 1.1.2, (X1, f1) + (X2, f2) = (X1 t X2, f1 t f2) and each cycle of
(X1 t X2, f1 t f2) comes from either S1 or S2. The sum of the a-abstractions of (X1, f1)
and (X2, f2) is then by definition the a-abstraction of (X1 t X2, f1 t f2).

Proposition 5.1.2. Given S1 = (X1, f1) (resp., S2 = (X2, f2)), let S̊1 =
l1⊕
i=1

C
n1,i
p1,i (resp., S̊2 =

l2⊕
j=1

C
n2,j
p2,j ). Then, S̊1 � S̊2 is

l1⊕
i=1

C
n1,i
p1,i �

l2⊕
j=1

C
n2,j
p2,j =

l1⊕
i=1

l2⊕
j=1

C
n1,i
p1,i � C

n2,j
p2,j .

As stated in Chapter 1, the product distributes over the sum. However, it is now necessary to
be able to compute Cn1,i

p1,i � C
n2,j
p2,j (see Equation (5.2)). Let us consider directly the case in which

we need to multiply more than two sets of cycles.

Proposition 5.1.3. For any natural z > 1 and any positive naturals n1, . . . , nz , p1, . . . , pz , it
holds that

z⊙
i=1

Cnipi = C

∏z

i=1 ni ·
∏z

i=2 gcd(λi−1,pi)
λz

, (5.1)

where λi = lcm(p1, . . . , pi).

Proof. We proceed by finite induction over z. First of all, we prove that the statement is true for
z = 2, i.e.,

Cn1
p1 � C

n2
p2 = C

n1·n2 · gcd(p1,p2)
λ2

. (5.2)

Let us consider the case n1 = n2 = 1. Since C1
p1 and C1

p2 can be viewed as finite cyclic groups
of order p1 and p2, respectively, each element of the product of such cyclic groups has order
lcm(p1, p2) or, in other words, each element of C1

p1 �C
1
p2 belongs to some cycle of length λ2. So,

C1
p1 � C

1
p2 just consists of (p1 · p2)/λ2 = gcd(p1, p2) cycles, all of length λ2, and therefore

C1
p1 � C

1
p2 = C

gcd(p1,p2)
λ2

.

In the case n1 6= 1 or n2 6= 1, since the product is distributive over the sum, we get

Cn1
p1 �C

n2
p2 =

n1⊕
i=1

C1
p1�

n2⊕
j=1

C1
p2 =

n1⊕
i=1

n2⊕
j=1

(C1
p1�C

1
p2) =

n1⊕
i=1

n2⊕
j=1

C
gcd(p1,p2)
λ2

= C
n1·n2 · gcd(p1,p2)
λ2

.

Assume now that the equality holds for any z > 2. Then, we get

z+1⊙
i=1

Cnipi = C

∏z

i=1 ni ·
∏z

i=2 gcd(λi−1,pi)
λz

� Cnz+1
pz+1 =

= C

∏z+1
i=1 ni ·

∏z

i=2 gcd(λi−1,pi) gcd(λz ,pz+1)
lcm(λz ,pz+1) = C

∏z+1
i=1 ni ·

∏z+1
i=2 gcd(λi−1,pi)

lcm(λz ,pz+1) .

Therefore, the equality also holds for z + 1 and this concludes the proof.
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Remark 5.1.1. For any natural z > 1 and any positive naturals n1, . . . , nz , p1, . . . , pz , it holds
that

z⊙
i=1

Cnipi = C
1
λz
·
∏z

i=1(pini)
λz

, (5.3)

where λi = lcm(p1, . . . , pi).

Proof. According to Proposition 5.1.3,
z⊙
i=1

Cnipi = C

∏z

i=1 ni ·
∏z

i=2 gcd(λi−1,pi)
λz

.

However, one find that

1
λz
·
z∏
i=1

(pini) =
z∏
i=1

ni ·
z∏
i=2

gcd(λi−1, pi).

In fact, we get∏z
i=1 pi
λz

= gcd(p1, p2) · gcd(λ2, p3) · gcd(λ3, p4) · . . . · gcd(λz−1, pz)

that can be rewritten as follows∏z
i=1 pi
λz

= gcd(p1, p2) · λ2 · p3
λ3

· λ3 · p4
λ4

· . . . · λz−1 · pz
λz

.

Indeed,
z∏
i=1

pi = p1 · p2
λ2

· λ2 · p3 · p4 · . . . · pz.

We now consider the w-th power of a set of cycles of a certain lengths and the w-th power of
a generic set of cycles. These propositions will be fundamental to introduce the approach that will
permit us to calculate the X̊-value of a X̊w that appears in the equation. Before proceeding, for
any DDS S, we naturally define S̊0 as C1

1 , i.e., the neutral element of the product operation.

Lemma 5.1.4. For any natural numbers w ≥ 1, n > 0, and p ≥ 1, it holds that:

(Cnp )w = Cp
w−1nw
p .

Proof. Given w = 1, (Cnp )1 = Cn
1

p . Considering the lemma true for a generic w > 1, we show
that it is true also in the case of w + 1. Indeed, (Cnp )w+1 = (Cnp )w � Cnp = Cp

w−1nw
p � Cnp , and

according to Equation (5.2), Cp
w−1nw
p � Cnp = Cp

w−1nw·n·p
p = Cp

wnw+1
p .

Proposition 5.1.5. For any positive naturals l > 1, w > 1, n1, . . . , nl, and p1, . . . , pl, it holds
that (

l⊕
i=1

Cnipi

)w
=

⊕
k1+...+kl=w
0≤k1,...,kl≤w

(
w

k1, . . . , kl

)
C

∏
1≤i≤l:ki 6=0 p

ki−1
i n

ki
i ·
∏

2≤i≤l:ki 6=0 gcd(λ∗i−1,pi)
λ∗
l

where, for any tuple k1, . . . , ki, λ∗i is the lcm of those pj (with j ∈ {1, . . . , i}) such that kj 6= 0
(while λ∗i = 1 iff all kj = 0).
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Figure 5.2 – Operations of sums and products between DDS. Considering the a-abstractions of the
systems involved, one can see that the operations between a-abstractions gives the abstraction of
the result above. In fact, C1

2 �C1
3 ⊕C2

2 �C1
4 = C1

6 ⊕C4
4 (the colours here refer to the colours of

the periodic points of the systems above).

Proof. By Proposition 1.1.1, Proposition 5.1.3, and Lemma 5.1.4, we get(
l⊕

i=1
Cnipi

)w
=

⊕
k1+...+kl=w
0≤k1,...,kl≤w

(
w

k1, . . . , kl

)
l⊙

i=1
(Cnipi )ki

=
⊕

k1+...+kl=w
0≤k1,...,kl≤w

(
w

k1, . . . , kl

)
l⊙

i=1,ki 6=0
Cpi

ki−1niki
pi

=
⊕

k1+...+kl=w
0≤k1,...,kl≤w

(
w

k1, . . . , kl

)
C

(
∏l

i=1
ki 6=0

p
ki−1
i n

ki
i )(
∏l

i=2
ki 6=0

gcd(λ∗i−1,pi))

λ∗
l

.

Remark 5.1.2. According to Remark 5.1.1, for any positive naturals l > 1, w > 1, n1, . . . , nl,
and p1, . . . , pl, it holds that(

l⊕
i=1

Cnipi

)w
=

⊕
k1+...+kl=w
0≤k1,...,kl≤w

(
w

k1, . . . , kl

)
C

1
λ∗
l
·
∏l

i=1(pini)ki

λ∗
l

where, for any tuple k1, . . . , ki, λ∗i is the lcm of those pj (with j ∈ {1, . . . , i}) such that kj 6= 0
(while λ∗i = 1 iff all kj = 0).
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Now that we know how the operations of sum, product and exponentiation act on the cyclic
parts of systems, let us go back to Equation (4.1) which is the problem that we want to solve.
By considering just the asymptotic behaviour of all constants and variables, Equation (4.1) can be
rewritten as follows to obtain the a-abstraction equation

(
l1⊕
i=1

C
n1,i
p1,i � X̊1

w1)⊕ (
l2⊕
i=1

C
n2,i
p2,i � X̊2

w2)⊕ . . .⊕ (
lm⊕
i=1

C
nm,i
pm,i � X̊m

wm) =
lB⊕
j=1

C
nj
pj (5.4)

where, for each z ∈ {1, . . . ,m} the a-abstraction of the coefficient Az and the a-abstraction of the
known term B are

Åz =
lz⊕
i=1

C
nz,i
pz,i and B̊ =

lB⊕
j=1

C
nj
pj .

Then, let lz be the number of different length of cycles in the system Az with z ∈ {1, . . . ,m} (of
Equation (4.1)), pz,j be the jth different length of period in the system Az , and nz,j is the number
of cycles of length pz,j . Each monomial contains a variable Xz and its exponent wz . In the right
term B, there are lB different periods, where for the jth different period there are nj cycles of
period pj .

To solve the a-abstraction equation, we first carry out some simplifications. Indeed, we can
imagine a polynomial in which we have two monomials Åz · X̊wz

z and Åz′ · X̊
wz′
z′ such that X̊z =

X̊z′ and wz = wz′ (with z ∈ {1, . . . ,m}). Then, we consider the actual number m ≤ m of
distinct pairs (X̊z, wz) appearing in such an equation. In this way, Equation (5.4) can be rewritten
as

`1⊕
i=1

C
n1,i
p1,i � X̊1 ⊕

`2⊕
i=1

C
n2,i
p2,i � X̊2 ⊕ . . .⊕

`m⊕
i=1

C
nm,i
pm,i � X̊m =

lB⊕
j=1

C
nj
pj , (5.5)

where, for each z ∈ {1, . . . ,m}, X̊z denotes the z-th different variable-exponent pair X̊wz
z , and `z

is the number of the distinct cycle lengths involved in a monomial with X̊z . At this point, in this
simplified version, with an abuse of notation, nz,i is the number of cycles of the ith cycle length
pz,i involved in a monomial with X̊z .

In contrast to Chapter 4, here the a-abstraction equation is simplified before studying the so-
lutions because this allows us to limit the combinatorial complexity of the problem. This will be
evident in a moment.

Equation (5.5) is still hard to solve in this form. We can further simplify it by performing a
contraction step. This permits us to identify a set of systems such that the union of their solutions
is the set of solutions of Equation (5.5). In fact, this step consists in rewriting the simplified
equation as a set of Systems (5.6), one for each vector (n1,1

1 , . . . , n1,1
lB

) obtained by varying each
n1,1
j ∈ {0, . . . , nj} with j ∈ {1, . . . , lB}. Hence, the idea is to create a system for every possible

subset of the set of cycles in the right term.

C
n1,1
p1,1 � X̊1 =

lB⊕
j=1

C
n1,1
j

pj

C1
1 � Y̊ =

lB⊕
j=1

C
nj−n1,1

j
pj

(5.6a)

(5.6b)
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where Y̊ = (
`1⊕
i=2

C
n1,i
p1,i � X̊1)⊕ (

`2⊕
i=1

C
n2,i
p2,i � X̊2)⊕ . . .⊕ (

`m⊕
i=1

C
nm,i
pm,i � X̊m). Note that we use n1,1

j

to indicate the number of cycles of length pj that are associated with the monomial Cn1,1
p1,1 � X̊1.

At this point, let us repeat as long as possible the application of the contraction step over the
last equation of each system obtained by the previous contraction step. We stress that such an
application essentially consists in:

i) updating Y̊ by removing a term C
nz,i
pz,i � X̊z with z ∈ {1, . . . ,m} and i ∈ {1, . . . , `z},

ii) considering all possible vectors (nz,i1 , . . . , nz,ilB ) obtained varying each nz,ij with j ∈
{1, . . . , lB} from 0 to the remaining number of cycles of length pj of the right-hand side,

iii) introducing, for each of the above mentioned vectors, a new system obtained by adding the
following equation

C
nz,i
pz,i � X̊z =

lB⊕
j=1

C
nz,ij
pj

to the considered initial system just before the equation involving Y̊.

iv) updating the right-hand side of the equation involving Y̊ by removing nz,ij cycles from the
unions of cycles of length pj .

In this way, an Equation (5.5) can be equivalently rewritten as a set of systems, each of them
having the following form 

C
n1,1
p1,1 � X̊1 =

lB⊕
j=1

C
n1,1
j

pj

C
n1,2
p1,2 � X̊1 =

lB⊕
j=1

C
n1,2
j

pj

...

C
n1,`1
p1,`1

� X̊1 =
lB⊕
j=1

C
n

1,`1
j

pj

C
n2,1
p2,1 � X̊2 =

lB⊕
j=1

C
n2,1
j

pj

...

C
nm,`m
pm,`m � X̊m =

lB⊕
j=1

C
nm,`m
j

pj

. (5.7)

Intuitively, the system links each monomial to a specific subset of the cycles contained in the
right-hand term of the equation. Then, we stress that, for each j ∈ {1, ..., lB}, it holds that
nj =

∑m
z=1

∑`z
i=1 n

z,i
j , where nz,ij represents the number of cycles of length pj that the monomial

C
nz,i
pz,i � X̊z contributes to form. As a consequence, solving Equation (5.4) boils down to solve this

finite set of Systems (5.7).
For the sake of completeness, let us specify the number of different systems that exist. For

each different cycle length in the right-hand term, each cycle must have been generated by one of
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the monomials. By a similar reasoning to the one made for the c-astraction, we have a number of

lB∏
j=1

(
nj + (

∑m
z=1 `z)− 1

(
∑m
z=1 `z)− 1

)

different systems.

Now, to solve any equation Cnz,ipz,i � X̊z =
lB⊕
j=1

C
nz,ij
pj involved in a System (5.7), it is enough to

solve the following lB equations

C
nz,i
pz,i � X̊z = C

nz,i1
p1 ,

C
nz,i
pz,i � X̊z = C

nz,i2
p2 ,

...

C
nz,i
pz,i � X̊z = C

nz,i
lB

plB

and compute the Cartesian product among their solutions. We are in fact looking to enumerate all
possible ways to generate the cycles of each different length, and combine them (in all possible
ways) to enumerate the possible values of X̊z .

According to Equation (5.2), an equation Cnz,ipz,i � X̊z = C
nz,ij
pj can be rewritten as

C1
pz,i � X̊z = C

nz,ij /nz,i
pj . (5.8)

Obviously, an equation Cnz,ipz,i � X̊z = C
nz,ij
pj can have a solution only if nz,ij /nz,i is an integer.

In addition, to find the solutions of a System (5.7), we must also calculate the intersections
between the solutions found by the different equations for the same variable.

In conclusion, solving Equation (5.5) corresponds to identify all the Systems (5.7) and perform
the Cartesian products and intersections of the solutions of a certain number of simpler equations,
called basic equations, of the following form:

C1
p � X̊ = Cnq , (5.9)

where X̊ is some X̊z , p ∈ {p1,1 , p1,2 , . . . , pm,`m}, q ∈ {p1, . . . , plB}, and, making reference to
the right-hand side, n is smaller or equal to nj , i.e., the number of cycles of length q = pj .

Example 5.1.1 – Consider the equation

(C1
5 ⊕ C1

2 )� X̊1 ⊕ C1
3 ⊕ X̊2 = C2

6 ⊕ C1
15.

With an initial application of the contraction steps, we obtain the following systems{
C1

5 � X̊1 = C1
6

C1
1 � Y̊ = C1

6 ⊕ C1
15

{
C1

5 � X̊1 = C2
6

C1
1 � Y̊ = C1

15

{
C1

5 � X̊1 = C1
15

C1
1 � Y̊ = C2

6{
C1

5 � X̊1 = C1
6 ⊕ C1

15

C1
1 � Y̊ = C1

6

{
C1

5 � X̊1 = C2
6 ⊕ C1

15

{
C1

1 � Y̊ = C2
6 ⊕ C1

15
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where Y̊ = C1
2 � X̊1 ⊕ C1

3 ⊕ X̊2. Let us specify that a nz,ij equal to 0 implies that that the
monomial does not contribute to the creation of cycles of length pj .

To continue with the contraction steps, let us consider the first system shown above. The
monomial C1

2 � X̊1 is removed from Y̊. Considering all possible values of n1,2
j with j ∈ {1, 2}

we obtain the systems below (remark that the number of components remaining to be generated
for the monomial C1

1 � Y̊ is updated accordingly).
C1

5 � X̊1 = C1
6

C1
2 � X̊1 = C1

15

C1
1 � Y̊ = C1

6


C1

5 � X̊1 = C1
6

C1
2 � X̊1 = C1

6

C1
1 � Y̊ = C1

15

{
C1

5 � X̊1 = C1
6

C1
1 � Y̊ = C1

6 ⊕ C1
15

{
C1

5 � X̊1 = C1
6

C1
2 � X̊1 = C1

6 ⊕ C1
15

Iterating the contraction steps on the systems above again, we find that the monomial C1
1 � Y̊

is simply replaced by the monomial C1
3 ⊕ X̊2. We note how the same process must be applied

iteratively to all the first six systems found (in the beginning) in order to have the systems that
yield all the solutions of the original equation.

Contraction steps allow to find solutions to equations of type (5.5) at the price of solving a
huge number of equations of type (5.9). The enumeration of the solutions is necessary according
to the goal of this work. Therefore, we need to consider all the possible contraction steps and all
solutions of basic equations (5.9). Then, to solve Equation (5.5), we need an efficient method that:

• enumerates the solutions of all Equations (5.9),

• computes all Systems (5.7) and enumerates the solutions of each system (through Cartesian
products and intersections of the solutions of the basic equations),

• computes the solutions of X̊z from the set of solutions found for X̊wz
z .

5.2 Basic equations for the a-abstraction

In this chapter, we will see how we will enumerate the solutions of an equation on a-abstractions.
However, since we have realised that to solve an Equation (5.4) we must solve a finite number of
basic equations (5.9), the following section begins with the problem of enumerating the solutions
of a basic equation.

5.2.1 The SOBFID and EnumSOBFID problems

Let us formally introduce the problem of solving Equations (5.9) and investigating its computa-
tional complexity.

Definition 5.2.1 (SOBFID). SOBFID (SOlve equation on Bijective FInite DDS) is the deci-
sion problem which takes in input three positive integers p, q, n ∈ N \ {0} and returns true iff
Equation (5.9) admits a solution.

To prove the complexity of SOBFID, we need the following result which relates the exis-
tence of solutions of any basic equation to the prime factorisation of p, q, and n.
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Theorem 5.2.1. Consider the equation

C1
p �

s⊕
i=1

C1
p′i

= Cnq

where
⊕s

i=1C
1
p′i

is a set of cycles of possibly equivalent lengths, and the prime factorisations of p,
n and q are:

p = ph1
1 ph2

2 , . . . , phψψ with factors(p) = {p1, p2, . . . , pψ},
n = nt11 nt22 , . . . , ntττ with factors(n) = {n1, n2, . . . , nτ}, and
q = qo1

1 qo2
2 , . . . , qoιι with factors(q) = {q1, q2, . . . , qι}.

The equation has a solution if and only if p divides q, and ∀i ∈ {1, . . . , ψ}, phii ∈
{qo1

1 , q
o2
2 , . . . , qoιι } or phii divides n.

Proof. According to Proposition 5.1.3, to have a solution, p must divide q. This means that
factors(p) ⊆ factors(q) and the exponents of the elements in factors(p) will be less than or equal
to the corresponding exponents of the elements in factors(q).

(⇐) Given the factorisation of q and Proposition 5.1.3, we can rewrite Cnq as follows.

Cnq = C1
q � Cn1 = C1

qo11 qo22 ,...,qoιι
� Cn1 = C1

qo11
� C1

qo22
� . . .� C1

qoιι � C
n
1

Suppose now that one of phii is not contained in {qo1
1 qo2

2 , . . . , qoιι }. Then, it must be true that
pi = qj (for a certain j ∈ {1, . . . , ι}) with hi < oj , and if phii divides n then we have the following

C1
qo11
� C1

qo22
� . . .� C1

qoιι � C
n
1 = C1

qo11
� C1

qo22
� . . .� C1

qoιι � C
1
phii
� C

n(
phi
i

)
1 .

By repeating for all phii not included in {qo1
1 qo2

2 , . . . , qoιι }, we reach the goal since
⊕s

i=1C
1
p′i

will

contain a cycle C1
p′i

(with p′i equals qojj ) for any phii not included, and the set of self-loops.

(⇒) Let us suppose that the equation C1
p �

⊕s
i=1C

1
p′i

= Cnq holds for some p′1, p
′
2, . . . , p

′
s. Let

us assume that there exists i such that phii 6∈ {q
o1
1 qo2

2 , . . . , qoιι }. Then phii will be equal to a certain
qyj with y < oj . This implies that all p′1, p

′
2, . . . , p

′
s must contain exactly qojj as a factor, since the

lcm with p must be q. Thus we can write:

s⊕
i=1

C1
p′i

= C1
q
oj
j

�
s⊕
i=1

C1
p′
i(

q
oj
j

)
which leads us to the following.

C1
p �

s⊕
i=1

C1
p′i

= C1
p � C1

q
oj
j

�
s⊕
i=1

C1
p′
i(

q
oj
j

)
= C1

p(
qy
j

) � C1
qyj
� C1

q
oj
j

�
s⊕
i=1

C1
p′
i(

q
oj
j

)
= C1

p(
qy
j

) � C(qyj )(
q
oj
j

) � s⊕
i=1

C1
p′
i(

q
oj
j

)
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Then, according to Proposition 5.1.3, phii (i.e. qyj ) must divide n.

This theorem allows us to provide a condition to decide whether a solution can exist. To
determine the complexity of verifying whether or not the condition is fulfilled by a certain SOBFID
instance, we introduce two important remarks. We emphasise that these will be applied to the
problem we are studying but they are true for any pair of integers.

Remark 5.2.1. Let q = qo1
1 qo2

2 , . . . , qoιι with factors(q) = {q1, q2, . . . , qι}, and p =
ph1

1 ph2
2 , . . . , phψψ with factors(p) = {p1, p2, . . . , pψ} be two positive integers, and let F be the

set of all qojj such that qj ∈ factors(q) and qj 6∈ factors(p). Algorithm 7 computes ΠF =
∏

f∈F f
without knowing the factorisations of q and p.

Algorithm 7: ΠF
Input : q and p integers
Output:

∏
f∈F f integer

1 if gcd(q, p) == 1 then
2 return q;
3 else
4 return ΠF( q

gcd(q,p) , gcd(q, p));

Remark 5.2.2. Let q = qo1
1 qo2

2 , . . . , qoιι with factors(q) = {q1, q2, . . . , qι}, and p =
qh1

1 qh2
2 , . . . , qhψψ with factors(n) = {q1, q2, . . . , qψ} be two positive integers with hi ≤ oj for

all qi = qj , and let E be the set of all qhii such that hi < oj . Algorithm 8 computes ΠE =
∏

e∈E e
without knowing the factorisations of q and p.

Algorithm 8: ΠE
Input : q and p integers
Output:

∏
e∈E e integer

1 i← 1;
2 div ← q

p ;
3 g ← gcd(divi, p);
4 g′ ← gcd(divi+1, p);
5 while gi 6= gi+1 do
6 i← i+ 1;
7 g ← g′;
8 g′ ← gcd(divi+1, p);

9 return gi;
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Theorem 5.2.2. SOBFID is in P .

Proof. We can solve SOBFID ,without knowing the factorisations of q, p, and n, by means of
Algorithm 9. In fact, according to Proposition 5.1.3, p must divide q (Algorithm 9 line 1). Then,
factors(p) ⊆ factors(q) and the exponents of the elements in factors(p) will be less than or equal
to the corresponding exponents of the elements in factors(q). However, to get lcm equals q, all
factors contained in q, such that p has a strictly lower exponent, must be contained in the solution.
For this reason, ΠF(q, p) looks for the factors which are only present in q and then finds, by doing

q
ΠF(q,p) , all those common between q and p. However, by doing this, we find the factors with the

exponent they have in q. It is then the function ΠE( q
ΠF(q,p) , p) which finds all the factors qhji which

will have to be contained in the solution and which will have to divide n according to Proposition
5.1.3 (Algorithm 9 line 4).

Algorithm 9: DecisionSOBFID
Input : p, n, and q integers
Output: true iff C1

p � X̊ = Cnq has solution, false otherwise

1 if p - q then
2 return false;
3 else
4 if ΠE( q

ΠF(q,p) , p) | n then
5 return true;
6 else
7 return false;

Example 5.2.1 – Consider the following equation

C1
8400 � X̊ = C6000

8316000

where p = 8400, q = 8316000 and n = 6000. Let us first see how by means of the presented
algorithms we can verify the condition of Theorem 5.2.1 without knowing the factorisations of
the numbers. Later we will see how the methods act at the level of the factorisations.

In this case p divides q, so we want to calculate ΠE( 8316000
ΠF(8316000,8400) , 8400). Let us begin

by considering ΠF(8316000, 8400). Since 8316000 and 8400 are not coprime, the method is
interated, i.e. ΠF( 8316000

gcd(8316000,8400) , gcd(8316000, 8400)) = ΠF(990, 8400). Again, 990 and
8400 are not coprime, we call recursively the function ΠF( 990

gcd(990,8400) , gcd(990, 8400)) =
ΠF(33, 30) which brings us to ΠF( 33

gcd(33,30) , gcd(33, 30)) = ΠF(11, 3). Since 11 and 3 are
coprime, the method returns 11.

Let us therefore study ΠE(8316000
11 , 8400) = ΠE(756000, 8400). With i = 1, div =

756000
8400 = 90, g = gcd(90, 8400) = 30 and g′ = gcd(902, 8400) = gcd(8100, 8400) =

300. Since g 6= g′, i becomes 2, g takes value 300 and g′ becomes gcd(903, 8400) =
gcd(729000, 8400) = 600. Hence, since g and g′ are still not equivalent, the method continues
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as follows.

i = 3, g = 600, g′ = gcd(904, 8400) = gcd(65610000, 8400) = 1200

i = 4, g = 1200, g′ = gcd(905, 8400) = gcd(5904900000, 8400) = 1200

Since g and g′ are equivalent, the method returns 1200. Finally, since 1200 divides n = 6000
we know that the equation admits of solution.

Let us now see what happens, from the point of view of the factorisations, by applying these
methods. Considering the values in input of this example, the factorisations are:

p = 24 · 3 · 52 · 7, q = 25 · 33 · 53 · 7 · 11, n = 24 · 3 · 53

The goal of ΠF is to calculate the product of all qojj such that qj ∈ factors(q) and qj 6∈
factors(p), and in fact the method calculates the following.

ΠF(25 · 33 · 53 · 7 · 11, 24 · 3 · 52 · 7) =

= ΠF( 25 · 33 · 53 · 7 · 11
gcd(25 · 33 · 53 · 7 · 11, 24 · 3 · 52 · 7) , gcd(25 · 33 · 53 · 7 · 11, 24 · 3 · 52 · 7))

= ΠF(2 · 32 · 5 · 11, 24 · 3 · 52 · 7)
white

ΠF(2 · 32 · 5 · 11, 24 · 3 · 52 · 7) =

= ΠF( 2 · 32 · 5 · 11
gcd(2 · 32 · 5 · 11, 24 · 3 · 52 · 7) , gcd(2 · 32 · 5 · 11, 24 · 3 · 52 · 7))

= ΠF(3 · 11, 2 · 3 · 5)
white

ΠF(3 · 11, 2 · 3 · 5) =

= ΠF( 3 · 11
gcd(3 · 11, 2 · 3 · 5) , gcd(3 · 11, 2 · 3 · 5))

= ΠF(11, 3) = 11.

Once ΠF has been calculated, through q
ΠF(q,p) we obtain the product of all qojj such that qj ∈

factors(q) and qj ∈ factors(p), i.e. 25 ·33 ·53 ·7. Then, the goal of ΠE is to calculate the product
of all qhji such that pj = qi hj < oi. Note that 90 = 2 · 32 · 5.

i = 1, g = gcd(2 · 32 · 5, 24 · 3 · 52 · 7) = 2 · 3 · 5, g′ = gcd(22 · 34 · 52, 24 · 3 · 52 · 7) = 22 · 3 · 52,

i = 2, g = 22 · 3 · 52, g′ = gcd(23 · 36 · 53, 24 · 3 · 52 · 7) = 23 · 3 · 52,

i = 3, g = 23 · 3 · 52, g′ = gcd(24 · 38 · 54, 24 · 3 · 52 · 7) = 24 · 3 · 52,

i = 4, g = 24 · 3 · 52, g′ = gcd(25 · 310 · 55, 24 · 3 · 52 · 7) = 24 · 3 · 52.
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Let us now turn our attention to the enumeration version of the problem.

Definition 5.2.2 (EnumSOBFID). EnumSOBFID is an enumeration problem which takes in input
p, q, n ∈ N \ {0} and returns the list of all solutions to Equation (5.9).

The following result classifies our enumeration problem in EnumP i.e., the complexity class
of enumeration problems for which a solution can be verified in polynomial time. EnumP can
be seen as the enumeration counterpart of the NP complexity class. For more on the complexity
classes of enumeration problems, the reader may refer to [Mary and Strozecki (2019)].

Proposition 5.2.3. EnumSOBFID is in EnumP.

Proof. Given an equation C1
p � X̊ = Cnq and a solution X̊ =

⊕l
i=1C

ni
pi , the verification requires

the following computations:

l∑
i=1

gcd(p, ni) = n and ∀i ∈ {1, . . . , l} lcm(p, pi) = q

All those computations can be made in polynomial time, hence EnumSOBFID ∈ EnumP .

5.2.2 The Colored-tree method and the Change-Making problem

In this section, we present a first technique to enumerate all the solutions of an EnumSOBFID
instance. As explained before, this is the first essential step in introducing a technique to list the
solutions of an Equation (5.4). The method is based on two principal phases: tree building and
solutions aggregation. During the first phase, we explore the solution space of interest using a tree,
and in the second one, the solutions of the equation represented in the tree are computed. This
is a very simple algorithmic technique based on the connection between the enumeration of the
solutions of interest and the Change-Making problem (CMP). We will see that one can improve
this method from a memory usage point of view, as well as, from a time point of view. However, it
allows us to introduce the main idea and concepts that will be used in the MDD-based technique.

The CMP is known as an optimisation problem which takes in input a sequence $ =
{c1, c2, . . . , ct} of positive integers, named the coin system, and an integer T . In these inputs,
each ci represents a coin denomination and T is a sum which has to be expressed as a combination
(or sum) of the given coins. This means that we have a number of coins of different denomina-
tions at our disposal but CMP requires to use the least number of coins to meet the target total T .
Remark that CMP is a special case of the integer knapsack problem [Martello and Toth (1990)].
It is like having t item types and a knapsack, where ci is the weight of an item of type i and T
the capacity of the knapsack. CMP has been demonstrated NP-hard by a polynomial reduction
to the knapsack problem, but may be solved in pseudo-polynomial time by dynamic program-
ming [Wright (1975)]. It is well known that a greedy approach provides an easier algorithm but
it may fail to find the optimal solution (consider for example T = 11 and $ = {9, 6, 5, 1}, the
solution computed by a greedy approach is [9, 1, 1] but the optimal one is [6, 5]).

In the literature, we also find other versions of this problem. For example, the enumeration
version of the CMP consists in finding all the possible representations of a certain T under a certain
$.

The colored-tree method aims at enumerating solutions for equations of type C1
p � X̊ = Cnq . It

needs as input three integer values n, p and q (which are the quantities involved in the equation).



96 CHAPTER 5 — Asymptotic behaviour of DDS

Algorithm 10: DynamicCMP
Input : T integer, $ increasingly ordered coin system
Output: sol an optimal solution for the CMP

1 many ← ∅;
2 last← ∅;
3 sol← ∅;
4 many[0]← 0;
5 last[0]← 0;
6 forall i ∈ {1, . . . , T} do
7 c← $[0];
8 j ← 1;
9 while $[j] ≤ i and j < |$| do

10 c← $[j];
11 many[i]← many[i− c] + 1;
12 last[i]← c;

13 add(sol, last[T ]);
14 l← last[T ];
15 while l 6= 0 do
16 add(sol, last[T − l]);
17 l← last[T − l];
18 return sol;

The connection with the CMP starts here. We have to generate n cycles of length q. Thus, T
corresponds to n while q gives us some information to construct the coins system.

According to Equation 5.2 and Proposition 5.1.2, we know that

C1
p �

s⊕
i=1

C1
p′i

= C
gcd(p,p′1)
lcm(p,p′1) ⊕ . . .⊕ C

gcd(p,p′l)
lcm(p,p′

l
) = Cnq

where, for a certain value s, lcm(p, p′i) = q for all p′i with i ∈ {1, . . . , s}. If we want to search
for a p′i, an intuitive search space is, in fact, the divisors of q. Knowing that gcd(p, p′i) ≤ n,
we consider only those smaller than or equal to n. Let us call the set of such divisors div(q, n).
Moreover, both p and p′i must be divisors of q and then gcd(p, p′i) is a divisor of q too. In other
words, we need to decompose n as a sum of divisors of q. Then, the set div(q, n) is the coin
system here.

In this method, a data structure is generated to explore the feasible solutions space and to com-
pute all the possible solutions of the equation. This structure is a table (for an easier representation
and for saving memory) which can be seen as colored tree. The table contains, for each node
r of the tree, the set of CMP solutions computed for T = r and $ = div(q, n), the solution X̊
containing only one cycle (such that C1

p � X̊ = Crq ) and the solutions for the same equation where
X̊ consists of more cycles (called subtree solutions set).
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Algorithm 11: CTM
Input : p, n, q integers
Output: solutions of C1

p � X̊ = Cnq

1 $← div(q, n);
2 Node, toDecompose← {n};
3 CMPsolutions,NodeSolution, SubtreeSol← ∅;
4 while toDecompose 6= ∅ do
5 r ← toDecompose[0];
6 dec← DynamicCMP(r,$);
7 remove r from toDecompose;
8 add dec to CMPsolutions[r];
9 if ListToSet(dec) 6= {1} then

10 forall c ∈ ListToSet(dec) do
11 if Node.contains(c) == false then
12 add c in Node;
13 if c 6= 1 then
14 add c to toDecompose;
15 else
16 CMPsolutions[1]← ∅;

17 else
18 if Node.contains(1)== false then
19 add c to Node;
20 CMPsolutions[1]← ∅;

21 CompletenessCheck(n, $, CMPsolutions);
22 forall r ∈ Node do
23 if gcd(p, qp · r) = r and lcm(p, qp · r) = q then
24 NodeSolution[r]← C1

q
p
·r;

25 else
26 NodeSolution[r]← ∅;

27 SubtreeSol[1]← {NodeSolution[1]};
28 forall r ∈ Node.ascendingOrder \ {1} do
29 sol← ∅;
30 forall dec ∈ CMPsolutions[r] do
31 CartesianElements← ∅;
32 forall elem ∈ dec do
33 add SubtreeSol[elem] to CartesianElements;

34 add CartesianProduct(CartesianElements) to sol;

35 add sol and NodeSolution[r] to SubtreeSol[r];
36 return SubtreeSol[n];
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The idea is to find all possible solutions increasing, step by step, the number of cycles in the
variable X̊. For this reason, starting from the root n (first line of the table), an optimal solution of
the CMP with T = n is computed with a dynamical programming approach (an example is shown
in Algorithm 10) [Wright (1975)]. The dynamical approach is necessary because, as anticipated,
a greedy approach may fail to obtain an optimal split.

According to the optimal solution, the set of cycles Cnq is divided into smaller sets, one for
each j-th coin involved into the optimal CMP solution computed. This corresponds to the fact that
the solutions of equation C1

p � X̊ = Cnq will be identified by solving equations C1
p � X̊ = C

cj
q ,

one for each coin cj . For each chosen coin, a child node is created and the process is iterated. The
method stops when the CMP when all coins have value 1. The tree is represented in the table with
a line for each possible subset of the n cycles and the edges are represented by the solution of the
CMP at every step (see Example 5.2.2). In this way, even if there are duplicate nodes in the tree
(with the same r value), they are represented in the table only once.

After this first phase, a check of completeness is applied to ensure the completeness of the
exploration carried out. This procedure checks if all the possible ways to make the change of the
node n are represented in the structure, if a combination is not represented, it is added in the CMP
solution set of the node n and a new subtree is computed (i.e. the decomposition is iterated). This
new subtree can be denoted with a new color to recall that is a new independent part of the solution
space that must be explored.

Example 5.2.2 – Consider the equation C1
6 � X̊ = C6

6 . Algorithm 11 consists of two distinct
phases: tree building and solutions aggregation. In the first phase, the algorithm computes the
coin system div(q, n) = {6, 3, 2, 1}. Then, it solves an instance of the CMP problem in which
the total sum is 6 and the allowed set of coins is div(q, n) \ {6}. It decomposes 6 as 3 + 3.
Then, the same idea is applied recursively (always using div(q, n)\{3} as the set of coins). We
obtain that 3 is decomposed as 2 + 1, and later 2 as 1 + 1.

6

3 3

12 1 2

1 1 1 1

Node CMP solutions Node solution Subtree solutions set

6 [3,3]
3 [2,1]
2 [1,1]
1 ∅

Figure 5.3 – The tree resulting from the CMP solutions for $ = {3, 2, 1} and T = 6 together
with the corresponding table used to model the structure.
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At this point, a check is performed to ensure that all possible ways of decomposing 6 using
div(q, n) are present in the structure (this is necessary to explore the whole solutions space). In
our case, we already have [3, 3] found by the first run and we also recursively found: [3, 2, 1],
[2, 2, 1, 1], [1, 1, 2, 1, 1], [1, 1, 1, 1, 1, 1]. By performing the check, we discover that the de-
composition of 6 as [2, 2, 2] is not represented. For this reason, [2, 2, 2] is added to the set of
decompositions of 6. As illustrated in Figure 5.4, the missing decomposition is assigned a new
color and a recursive application of the CMP problem is started on the newly added nodes. This
is made only if it is necessary, in other words, only if they are not already represented in the
structure. In this case, a node of value 2 (and its possible decompositions) is already represented
in the structure, so the process stops. A new check ensures that all decompositions are present.
This ends the building phase. The resulting structure is reported in Figure 5.4.

6

3 3 2 2 2

12 1 2 1 1 1 1 1 1

1 1 1 1

Node CMP solutions Node solution Subtree solutions set

6 [3,3] [2, 2, 2]
3 [2,1]
2 [1,1]
1 ∅

Figure 5.4 – The tree resulting at the end of the construction phase and the corresponding table
able to model the structure for $ = {3, 2, 1} and T = 6.

When also the check procedure is terminated, the computation of the solutions starts (the
solution aggregation phase). In this phase, the first step consists in the computation of the single-
cycle solution, called the node solution, for each node r. According to Equation (5.2), we aim at
finding a p′ such that C1

p �C1
p′ = Crq , then p′ = q

p · r. As a consequence, for each node r, C1
q
p
·r is

the node solution if and only if gcd(p, qp · r) = r and lcm(p, qp · r) = q.
To enumerate all solutions, the last part of the method consists in the computation, for each

node, of the set of solutions represented in the subtrees. In this method, the aggregation of the
solutions is divided into two steps: the first one computes the Cartesian product of the subtree
solution sets between nodes of the same color (in the same CMP solution), where each combi-
nation of the product corresponds to a sum between the components, and the second one builts
in the union of the solutions provided by different colored subtrees (different CMP solutions), if
more than one exists. This procedure is applied in each node of the structure (or, equivalently, in
each line of the table). At the end of the execution, the set of solutions is contained in the subtree
solutions set of the node n.
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Example 5.2.2 – Continuing the previous example, after the of construction of the tree, the
aggregation of solutions starts. Remark that each node r represents the equation C1

p � X̊ =
Crq . According to Equation (5.2), the single-cycle solution is C1

q
p
·r iff gcd(p, qp · r) = r and

lcm(p, qp · r) = q. For example, for r = 3 one finds X̊ = C1
3 .

Node CMP solutions Node solution Subtree solutions set

6 [3,3][2,2,2] C1
6

3 [2,1] C1
3

2 [1,1] C1
2

1 ∅ C1
1

Figure 5.5 – Table status after the calculation of the single-cycle solutions.

Moreover, for each equation C1
p � X̊ = Crq , one needs to compute the solutions represented

in the subtree that has root r. To find all the solutions for the current node, it is necessary to take
the Cartesian product of the solutions sets of nodes in the subtrees of the same color and then
the union of the solution sets of different CMP solutions. For example, considering the node 3,
its subtree solutions set is composed by: the node solution C1

3 , and the solutions coming from
the subtree solutions set of 2 and 1 (i.e. C1

1 ⊕ C1
2 or C1

1 ⊕ C2
1 ). All the solutions can be found

in Table 5.6.

Node CMP solutions Node solution Subtree solutions set

6 [3,3][2,2,2] C1
6

{C1
6 , C

2
3 , C

1
1 ⊕ C1

2 ⊕ C1
3 , C

1
3 ⊕ C3

1 ,
C1

2 ⊕ C4
1 , C

6
1 , C

3
2 , C

2
1 ⊕ C2

2}
3 [2,1] C1

3
{
C1

3 , C
1
1 ⊕ C1

2 , C
3
1
}

2 [1,1] C1
2

{
C2

1 , C
1
2
}

1 ∅ C1
1

{
C1

1
}

Figure 5.6 – Final data-structure storing the result of the CMP execution.

The impossibility of an equation can be detected with a subtree solutions set empty. This
happens if there exists a node (table line) such that there is no single solution and the subtree
cannot represent valid solutions. Moreover, in this case, another valid independent subspace of
solutions does not exist. If this property is propagated from a node to the root, then the equation
has no solutions.

Example 5.2.3 – Consider the equation C1
2 � X̊ = C5

4 . In the first phase, the algorithm enu-
merates all the divisors {4, 2, 1} and constructs the corresponding CMP-tree like in the previous
example. The method starts by decomposing 5 as [4, 1] (which is the optimal decomposition).
The procedure is then applied recursively always using the div(q, n) as the set of coins to de-
compose each node. We obtain 5 = 4 + 1, 4 = 2 + 2 and 2 = 1 + 1 as reported in Figure
5.7.
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5

4 1

2 2

1 111

Node CMP solutions Node solution Subtree solutions set

5 [4,1] ∅ ∅
4 [2,2] ∅

{
C2

4
}

2 [1,1] C1
4

{
C1

4
}

1 ∅ ∅ ∅

Figure 5.7 – Final data-structure storing the result of the CMP execution.

By performing the check, we discover that all the possible decompositions of 5 are repre-
sented in the current tree. This ends the building phase. The resulting tree is reported in Figure
5.7.

After this first phase of construction of the tree, the aggregation of solutions starts. Remark
that if in the Cartesian product an empty set is involved, the result of the operation is the empty
set. For r = 5, the final solution set is the empty set, since r = 1 is involved (with empty
subtree solutions set) and we do not have a node solution. Then, the equation has no solution.

If we denote, for any n, p, q ∈ N?, EQp,q,n the set of solutions of Equation (5.9) and CTMp,q,n

the set of solutions returned by the colored-tree method, then the following propositions ensure
the soundness, completeness and termination of the colored-tree method.

Proposition 5.2.4 (Soundness). For all n, p, q ∈ N?, CTMp,q,n ⊆ EQp,q,n.

Proof. Let us prove the soundness by induction on the depth of the tree from leaves to root.
Induction base: if there is only one node, we know by Equation (5.2), that the solution found is
the node solution, if it exists. Induction hypothesis: let us assume that we have CTMp,q,r ⊆ EQp,q,r

for each node r into a certain level. Let us show that we can obtain real solutions at upper layer.
Induction step: A solution of a node r′ in the upper layer can be a single-cycle solution or a solution
that is generated from the subtrees. In the first case, the solution will be also into CTMp,q,r′

according to Equation (5.2). In the second one, this came from a certain split, and this means that
the solution comes from a Cartesian product between the set of solutions of some nodes (between
nodes of the same color). Since all decompositions are represented in the structure, we know that
the solution will be also into CTMp,q,r′ .

Proposition 5.2.5 (Completeness). For all n, p, q ∈ N?, EQp,q,n ⊆ CTMp,q,n.

Proof. By contradiction, let us assume that there exists a solution that is in EQp,q,n but not in
CTMp,q,n. This means that the colored-tree method does not return it. This implies that there exists
a decomposition of n, which leads to the solution, such that this decomposition is not in the tree.
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This is impossible since, an exhaustive check is performed to assure that all the decompositions
are there. Therefore, all solutions are returned.

Proposition 5.2.6 (Termination). The colored-tree method always terminates.

This last proposition follows from the fact that the building phase always terminates since the
dimension of the structure is related to the solutions set of the CMP. Moreover, the aggregation
phase always terminates since it performs a finite number of operations per each node of the
structure.

This method has hence allowed us to introduce the connection with the Change-Making
problem. It represents the first method introduced to enumerate the solutions of a basic equa-
tion (5.9) [Dennunzio et al. (2020)] but, as pointed out, it has important weaknesses. Some
important parameters that affect the computational time of the algorithm are the number of nodes
in the colored tree (gives an idea of the number of Cartesian products and unions that are necessary
to find the solutions set), and the check that ensures that all the decompositions are present (this is
particularly time- and memory-consuming). We therefore present a more efficient technique based
on Multi-valued Decision Diagrams.

5.2.3 A SB-MDD-based method

The previous method exploits a connection between EnumSOBFID and the well-known Change-
making problem coupled with a completeness-check (running in exponential time) to explore the
feasible solutions space. An efficient enumeration of solutions for Equation (5.4) is essential for
solving more complex a-abstraction equations. In order to achieve this, we use MDD to boost up
the enumeration. Recall that we are interested to find all the possible ways to generate Cnq cycles
starting with one cycle of length p. A cycle C1

p′ generates Crq cycles in the right part iff r divides
q, p′ = q

p · r, gcd(p, qp · r) = r and lcm(p, qp · r) = q. From now on, a cycle C1
p′ with the previous

properties will be called feasible and r a feasible divisor of q.
Let Dp,q = {d1, . . . , dt} be the set of feasible divisors (w.r.t. Equation (5.9) of course). There

is a solution to (5.9) iff there exist y1, . . . , yt such that
∑t
i=1 di ·yi = n (i.e. there is a solution to the

Change-making problem for a total amount n and a coins system Dp,q). To solve EnumSOBFID
we need to enumerate all solutions of the previous Change-making problem. At this point MDD
come into play. We are going to use them to have a compact and handful representation of the set
of all solutions to Equation (5.9). Based on what we saw in Chapter 4, let us define the structure
level by level.

The MDD Mp,q,n, containing all solutions to Equation (5.9), is a labelled digraph
(N,E, `ab, val) with Z = b n

minDp,q c + 1 levels. In fact, the number of levels depends on
the maximum number of coins one can use and on the fact of having a final level for the tt node.
Graphically, each layer Ni in Mp,q,n represents the choice of a new coin, and each node α (or
val(α)) represents the sum of the coins chosen from the root to the node. As a consequence, for
this construction we do not need a variable order in input.
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The first level of the structure contains the root (i.e. N1 = {root}) with val(root) = 0. For
any d ∈ Dp,q,

• if d < n, we create a new node β ∈ N2 with val(β) = d and (root, β) ∈ E with
`ab((root, β)) = d;

• if d = n, then (root, tt) ∈ E with `ab((root, tt)) = d.

Note that since we need to enumerate all ways to reach the total amount n, val(tt) = n and the
basic equation has solution just if there is a path from the root to the tt.

Now, let us consider a level i (with i ∈ {2, . . . , Z − 2}) already defined. For any α ∈ Ni and
any d ∈ Dp,q, we have:

• if val(α) + d < n and @β′ ∈ Ni+1 such that val(β′) = val(α) + d, a new node β is
added to Ni+1 (i.e. Ni+1 = Ni+1 ∪ {β}) with val(β) = val(α) + d, and (α, β) ∈ E with
`ab((α, β)) = d;

• if val(α) + d < n and ∃β′ ∈ Ni+1 such that val(β′) = val(α) + d, then (α, β′) ∈ E with
`ab((α, β′)) = d;

• if val(α) + d = n, then (α, tt) ∈ E with `ab((α, tt)) = d.

To conclude the definition of the structure, let us consider the level Z − 1. For any α ∈ NZ−1
and any d ∈ Dp,q, if val(α) + d = n, then (α, tt) ∈ E with `ab((α, tt)) = d.

According to this definition, the nodes of the structure (at the end) are the multiset N =∑Z
i=1Ni, where N1 = {root}, Ni ⊆ {1, . . . , n− 1} for i ∈ {2, . . . , Z − 1}, and NZ = {tt}.

Note that in this structure we authorise direct arcs from a generic level to the final node tt.
This choice arises from the fact that we are representing in each level the i-th coin chosen and the
number of coins used to arrive at n is variable among the solutions. An alternative choice would be
to insert a 0-value coin into the coin system. We choose the former to limit (even if only slightly)
the size of the structure to be built and reduced.

Once Mp,q,n is built and reduced according to the pReduction algorithm (Section 3.2), all the
solutions of the considered basic equation can be computed. Each solution corresponds to the
sequence of the edge labels of a path from root to tt consisting of possibly repeated values of Dp,q

with sum equal to n. To obtain the corresponding solution for X̊, it is sufficient, for each label
d belonging to a path from the root to tt, to consider the corresponding C1

q
p
·d. It is important to

emphasise that authorising direct arcs to the tt does not affect the functionality of the reduction
procedure.

Remark that Mp,q,n contains duplicated solutions, indeed, it contains all the permutations of a
solution but according to Equation (5.9) different permutations lead to the same solution. For this
reason, we impose a symmetry breaking constraint: for any node α (different from tt), let e(α)
be the label of the incoming edge; the only allowed outgoing edges of α are those with labels
of value smaller or equal to e(α). In this way all the paths of the MDD will be ordered, each
solution is represented in the structure only once, and the size of the MDD will be smaller. An
SB-MDD is an MDD which satisfies the symmetry breaking constraint. It should therefore be
noted that the nodes belonging to a level are therefore multisets since two nodes with the same
value but different incoming arcs can no longer be considered equivalent (in the construction of
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the structure) since they give rise to different possible outgoing arcs. Obviously, if during the
reduction phase, one finds that they have equivalent outgoing arcs they can be merged. Let us
present the formal definition of the SB-MDD, and then let us illustrate the construction by an
example.

The definition of the first level (i.e. the choice of the first coin) remains unchanged, but for
each node β that is created we define e(β) = d. However, let us consider a level i (with i ∈
{2, . . . , Z − 2}) already defined. For any α ∈ Ni and any d ∈ Dp,q where d ≤ e(α), we have:

• if val(α) + d < n and @β′ ∈ Ni+1 such that val(β′) = val(α) + d or ∃β′ ∈ Ni+1
such that val(β′) = val(α) + d and e(β′) 6= d, a new node β is added to Ni+1 (i.e.
Ni+1 = Ni+1 + {β}) with val(β) = val(α) + d and e(β) = d, and (α, β) ∈ E with
`ab((α, β)) = d;

• if val(α) + d < n and ∃β′ ∈ Ni+1 such that val(β′) = val(α) + d and e(β′) = d, then
(α, β′) ∈ E with `ab((α, β′)) = d;

• if val(α) + d = n, then (α, tt) ∈ E with `ab((α, tt)) = d.

To conclude the definition of the structure, for any α ∈ NZ−1 and any d ∈ Dp,q where
d ≤ e(α), if val(α) + d = n, then (α, tt) ∈ E with `ab((α, tt)) = d.

According to this definition, the nodes of a SB-MDD structure (at the end) are the multiset
N =

∑Z
i=1Ni, where N1 = {root}, Ni is a multiset of {1, . . . , n− 1} for i ∈ {2, . . . , Z − 1},

and NZ = {tt}.
Let us see through an example, the impact of choosing coins in an increasing way.

Example 5.2.4 – Consider the simple equation C1
2 � X̊ = C6

6 . The set of divisors of q (smaller
or equal to n) is {6, 3, 2, 1}. However, Dp,q = {1, 2}. Indeed, we have

r = 6, p′ = 18→ gcd(2, 18) 6= 6 and lcm(2, 18) 6= 6
r = 3, p′ = 9→ gcd(2, 9) 6= 3 and lcm(2, 9) 6= 6
r = 2, p′ = 6→ gcd(2, 6) = 2 and lcm(2, 6) = 6
r = 1, p′ = 3→ gcd(2, 3) = 1 and lcm(2, 3) = 6

Let us look at the construction of the MDD both with and without the constraint to break the
symmetries of the problem. Starting from the root, we evaluate which can be the first coin. As
we start from val(root) = 0, both values contained in Dp,q are candidate to be the first chosen
coin. Two nodes are then created in the next level. One with a partial sum of value 2 and the
other with a value of 1. Without the additional constraint of ordering paths, the same process
is iterated on the two child nodes, hence creating three nodes in the next level (with values 4, 3
and 2). In the case of an SB-MDD, on the other hand, only after choosing a coin of value 2,
we can choose between a coin of value 2 or one of value 1. However, in the case that the first
coin chosen was 1, we can only choose a second coin of the same value to have an ordered path.
Hence, we obtain the same set of nodes but with different arcs. This idea is repeated until a total
sum of 6 is reached, i.e. until tt is reached.
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Figure 5.8 shows M2,6,6 in its classic form (left) and in its SB-MDD form (right). Remark
that in Figure 5.8 (left) many solutions are duplicated. For example, the solution [2, 2, 1, 1] (in
red) is represented (more than) twice.

Once M2,6,6 is built and reduced, reading solutionsa correspond to the sequence of labels
of paths from root to tt: {[2, 2, 2], [2, 2, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]}. Each coin corre-
sponds to a cycle of a certain length p′. For example, the solution [2, 2, 2] says that 6 is
changed with 3 coins of value r = 2. Recalling that p′ = q

p · r we can express the solution
in term of dynamics graphs as C3

6 . Operating similarly for all the other solutions, we find{
C3

6 , C
2
6 ⊕ C2

3 , C
1
6 ⊕ C4

3 , C
6
3
}
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Figure 5.8 – The MDD representing all the solutions of C1
2 � X̊ = C6

6 in its classic form (left)
and in its SB-MDD form (right).

aSolution reading consists of traversing the Z levels of the structure to enumerate the solutions represented. In
general, one can upper bound the cost of reading to O(S# ·Z) (where S# is the number od solutions), but the actual
cost also depends on the shape of the structure. For this reason, we will see later that we will leave solution reading
as one of the final steps when solving a-abstraction equations.

The method detects the impossible instances by exploiting some properties:

• if p cannot divide q,

• if Dp,q is an empty set (recall that if n is a feasible divisor, it is involved in Dp,q),

• if, after the reduction process, the SB-MDD structure has no valid path from the root to the
tt node.

The following example shows how the method can detect the impossibility of an equation.

Example 5.2.5 – Consider the simple equation C1
2 � X̊ = C5

4 . The set of divisors of q (smaller
or equal to n) is {4, 2, 1}. However, Dp,q = {2}. Indeed, we have

r = 4, p′ = 8→ gcd(2, 8) = 2 and lcm(2, 8) = 8
r = 2, p′ = 4→ gcd(2, 4) = 2 and lcm(2, 4) = 4
r = 1, p′ = 2→ gcd(2, 2) = 2 and lcm(2, 2) = 2
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Figure 5.9 shows M5,4,2 before the reduction procedure. The red part is deleted into the re-
duction phase. The SB-MDD has no paths from the root to tt node and this is one of the
characterisations of an impossible instance.

r

2

2

tt

2

2

Figure 5.9 – The SB-MDD (before reduction) for C1
2 � X̊ = C5

4 . The red part will be deleted
by the pReduction algorithm.

Algorithm 12: SB-MDD
Input : p, n, q integers
Output: M MDD with the solutions of C1

p � X̊ = Cnq

1 M [1]← {root} ; . M[i] are the nodes of M in level i

2 val(root)← 0;
3 e(root)←∞ ;
4 M [Z]← {tt};
5 val(tt)← n;
6 Dp,q ← ∅;
7 forall r ∈ div(q, n) do
8 if gcd(p, qp · r) = r and lcm(p, qp · r) = q then
9 add r to Dp,q;

10 forall i ∈ {1, . . . , Z − 1} do
11 forall α ∈M [i] do
12 forall d ∈ Dp,q s.t. d ≤ e(α) do
13 if val(α) + d < n and i 6= Z − 1 then
14 β ← val(α) + d ; . NewArcNode verifies also e(β)
15 NewArcNode(M, i+ 1, α, d, β);

16 if val(α) + d == n then
17 NewArc(M,Z, α, d, n);

18 return pReduce(M);
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Figure 5.10 – The reduced SB-MDD that represents the solutions of C1
4 � X̊ = C12

12 with Dp,q =
{4, 2, 1}. Note how nodes with equal values but different incoming arc labels give rise to different
coins choices.

Experimental evaluations show how the new method can achieve interesting performance in
time and memory. Concerning equations of the form C1

p � X̊ = Cnq , in our experiments, we
set p = q since this grants the existence of at least a solution. Using the MDD, it is possible
to outperform the Colored-Tree method (CTM) w.r.t. both memory and time. If we compare
the dimension (in terms of nodes) of a colored-tree with the corresponding SB-MDD for a given
equation, the second one is smaller. CTM presents some out of memory cases even for equations
with n, q, and p smaller than 30 and memory limit of 30GB (see Figure 5.11 (left)). Using MDD,
we solved equations with n, q, and p up to 100 without any out of memory case and only 6GB
RAM limit (see Figure 5.11 (right)).

Analysing the time to solve equations with parameters up to 30, it turns out that the new
technique is already faster than the previous one (see Tables 5.1, 5.2, and 5.3). The reason is
that CTM requires a time consuming check procedure to ensure the completeness of the solutions
which is not necessary in the MDD case.

Due to too high memory and time costs, CTM is unsuitable to solve simple equations coming
from contractions steps. The new method [Formenti et al. (2021)] fixes these issues allowing the
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introduction of a complete pipeline to solve abstractions over the asymptotic behaviour of generic
polynomial equations.
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Figure 5.11 – The number of nodes for the colored-tree with memory limit of 30GB (left) and for
the SB-MDD with memory limit of 4GB (right) in the case of equation for type C1

q � X̊ = Cnq .
Remark that the black square in the rightmost part of the left diagram are out of memory cases.

q,p
n 2 3 4 5 6 7 8 9 10

2 56|0 56|0 54|0 54|0 53|0 54|0 54|0 54|0 53|0
3 54|1 54|0 55|1 54|0 55|1 54|0 55|1 54|0 55|1
4 55|2 54|1 56|2 53|0 57|2 54|0 55|2 55|1 55|2
5 55|2 56|2 59|2 54|0 61|30 54|0 58|2 55|3 56|2
6 58|2 56|2 60|2 58|1 63|9 55|0 60|2 56|2 62|2
7 60|3 58|2 63|19 56|1 78|21 54|0 63|29 60|2 61|2
8 63|2 59|2 96|10 60|2 107|20 56|1 97|9 61|2 65|2
9 66|3 60|3 106|21 57|2 153|22 57|1 168|21 60|3 76|20
10 84|3 62|2 140|11 58|2 185|21 57|2 369|11 70|2 120|17

Table 5.1 – Computation times (millisec) of CTM (left) and MDD (right) over different input
parameters. Symbols ‘-’ represent out of memory cases.

q,p
n 11 12 13 14 15 16 17 18 19 20

11 55|0 824|25 55|0 116|3 74|21 406|22 55|0 1071|22 57|0 1334|23
12 58|1 17678|26 57|0 132|4 88|21 4105|12 56|0 6022|22 56|0 3672|22
13 61|2 177894|27 56|0 246|21 92|21 4163|27 55|0 5967|24 56|0 3332|24
14 59|2 1277979|26 61|1 900|11 116|22 19895|24 56|0 27381|27 56|0 96997|26
15 60|2 -|28 60|2 3721|22 169|22 19711|25 56|0 637457|26 59|0 419000|25
16 62|2 -|29 61|2 19900|12 502|23 -|13 57|0 1185947|26 60|0 759365|26
17 62|2 -|30 62|2 25908|24 554|23 -|26 57|0 -|27 57|0 -|27
18 64|2 -|46 62|2 164167|13 1102|22 -|26 61|2 -|28 61|0 -|30
19 66|2 -|32 63|2 226315|25 950|24 -|27 62|2 -|34 57|0 -|39
20 68|2 -|32 65|2 1707299|25 2749|24 -|16 63|2 -|31 62|2 -|29

Table 5.2 – Computation times (millisec) of CTM (left) and MDD (right) over different input
parameters. Symbols ‘-’ represent out of memory cases.
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q,p
n 21 22 23 24 25 26 27 28 29 30

21 2712|23 343542|26 60|0 -|35 95|4 389971|7 2034|12 -|28 58|0 -|37
22 23399|24 -|14 62|0 -|36 103|4 381929|7 2711|24 -|30 59|0 -|35
23 27430|24 -|27 59|0 -|38 134|4 -|7 2712|24 -|31 59|0 -|37
24 149296|25 -|16 64|2 -|39 149|4 -|8 20641|14 -|42 59|0 -|41
25 162413|25 -|28 65|2 -|40 160|4 -|26 24632|24 -|34 59|0 -|39
26 212277|25 -|16 66|2 -|42 403|5 -|15 24177|25 -|33 60|0 -|40
27 -|25 -|27 69|2 -|45 454|4 -|33 -|15 -|34 59|0 -|45
28 -|26 -|17 70|2 -|47 488|5 -|16 -|25 -|35 60|0 -|44
29 -|28 -|28 69|2 -|66 506|5 -|28 -|27 -|36 61|1 -|46
30 -|26 -|27 69|3 -|51 838|6 -|17 -|17 -|38 65|2 -|48

Table 5.3 – Computation times (millisec) of CTM (left) and MDD (right) over different input
parameters. Symbols ‘-’ represent out of memory cases.

5.3 An MDD-based pipeline to solve a-abstraction equations

We have shown how MDD can be used to compute the solutions set of basic equations. In this
section and the next one, we introduce the missing steps to obtain a pipeline to enumerate the
solutions of Equations (5.4), i.e. to validate hypotheses over the long-term behaviour of DDS.
Recall that the goal is the enumeration of the solutions. The pipeline consists in the following
steps:

• simplification of an Equation (5.4) to an Equation (5.5) as explained in Section 5.1;

• identification and resolution of the necessary equations (i.e. basic equations with at least a
solution);

• enumeration of the contractions steps (with an MDD);

• computation of the solutions of each System (5.7) with a particular technique to compute
the intersection between SB-MDD;

• computation of the X̊ values for all X̊w.

The algorithmic pipeline illustrated in Figure 5.12 just performs all these tasks.

5.3.1 Necessary equations

As we have already seen, to solve a generic equation over a-abstractions, we need to enumerate
the solutions of a finite number of systems obtained with the contraction steps (Systems (5.7)).
Each system is based on a finite number of basic equations. Since many contraction steps and
a finite (but potentially large) number of basic equations have to be solved, the pipeline is de-
signed in order that first of all the basic equations admitting solution are identified. In this way,
Systems (5.7) involving basic equations without solutions are avoided, or, in other words, only
feasible Systems (5.7) generated by contraction steps are considered. Moreover, note that a single
basic equation appears several times while searching for all Systems (5.7) solutions.

Therefore, the method starts with the computation of the set of basic equations that can be in-
volved in the result of a contraction step. This amounts to compute all the SB-MDDMpz,i , pj ,

n
nz,i

with pz,i ∈ {p1,1, p1,2, . . . , pm,`m}, pj ∈ {p1, . . . , plB}, for all n ∈ {1, . . . , nj}. Recall that n
nz,i

comes from Equation (5.8). In this way, even if a basic equation is involved in many contraction
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INPUT
Equation (5.4)

Simplification phase
Equation (5.4) is
simplified into
Equation (5.5)

Identification and Resolution
of Basic Equations (5.9)

All SB-MDD Mpz,i , pj ,
n
nz,i

are generated

No Equation (5.9)
has solutions

OUTPUT
∅

Identification of feasible
Contraction Steps (Systems (5.7))

Generation of all Systems (5.7) by the
MDD CS = CS1 × CS2 × . . . × CSlB

No path in CS

Solve a System (5.7)
(Cartesian Products and Intersections)

For each Cnz,ipz,i � X̊z =
lB⊕
j=1

C
nz,ij
pj ,

a Cartesian product of SB-MDD is
computed. Suitable intersections of
the sets of solutions involving the

same variable X̊z are then performed.

No System (5.7)
has solutions

wz-th roots

The wz-th roots of X̊z
wz are computed. No Root exists

OUTPUT
Solutions of

Equation (5.4)

Figure 5.12 – The MDD-based algoritmic pipeline for solving a-abstraction equations.
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steps, it is solved only once. Then, there are
∑m
z=1 `z ·

∑lB
j=1 nj potential necessary equations for

an Equation.
An Equation (5.9) with at least one solution is called necessary equation. It is important to

notice that it is not necessary to explore an SB-MDD to decide if a solution exists. Indeed, by
construction, an SB-MDD exists if and only if there is at least one path from the root to the tt after
the reduction process.

Example 5.3.1 – Consider the following equation:

C1
4 � X̊1 ⊕ C1

2 � X̊2 = C4
2 ⊕ C4

4 ⊕ C7
6 ⊕ C7

12

with m = 2, lB = 4. There are 44 distinct basic equations.

C1
4 � X̊1 = C

n1,1
1

2 with n1,1
1 ∈ {1, 2, 3, 4} ,

C1
2 � X̊2 = C

n2,1
1

2 with n2,1
1 ∈ {1, 2, 3, 4} ,

C1
4 � X̊1 = C

n1,1
2

4 with n1,1
2 ∈ {1, 2, 3, 4} ,

C1
2 � X̊2 = C

n2,1
2

4 with n2,1
2 ∈ {1, 2, 3, 4} ,

C1
4 � X̊1 = C

n1,1
3

6 with n1,1
3 ∈ {1, 2, 3, 4, 5, 6, 7} ,

C1
2 � X̊2 = C

n2,1
3

6 with n2,1
3 ∈ {1, 2, 3, 4, 5, 6, 7} ,

C1
4 � X̊1 = C

n1,1
4

12 with n1,1
4 ∈ {1, 2, 3, 4, 5, 6, 7} ,

C1
2 � X̊2 = C

n2,1
4

12 with n2,1
4 ∈ {1, 2, 3, 4, 5, 6, 7} .

However, only 27 of them are necessary equations. Indeed, besides the basic equations with
p = 4 and q ∈ {2, 6} (which have no solution because q does not divide p), the following
ones have no solutions: C1

2 � X̊2 = C1
4 , C1

2 � X̊2 = C3
4 , C1

2 � X̊2 = C1
12, C1

2 � X̊2 = C3
12,

C1
2 � X̊2 = C5

12, and C1
2 � X̊2 = C7

12.

5.3.2 Contractions steps

Once the set of necessary equations has been computed, we create an MDD to enumerate all the
contractions steps that must be taken into account to enumerate the solutions of an Equation (5.5).
Such an MDD is CS = CS1 × . . . × CSlB , i.e., the Cartesian product of lB MDD, where each
CSj aims at providing, according to the set of the necessary equations, all the feasible ways by
which the monomials can concur to form the nj cycles of length pj of the known term B̊. As a
consequence, by definition, the whole MDD CS will provide all the feasible ways by which all
the cycles of B̊ can be formed according to the necessary equations computed.

Each CSj is a labelled digraph (Nj , Ej , `abj , valj) with m+1 layers (one for each monomial
C
nz,i
pz,i � X̊z from the left-hand side of Equation (5.5), and one final layer for the tt node). To define



112 CHAPTER 5 — Asymptotic behaviour of DDS

the outgoing edges of any level, we associate each monomial (z, i) with the set Dpz,i,pj = {d ∈
N | 1 ≤ d ≤ nj and Mpz,i , pj ,

d
nz,i

corresponds to a necessary equation} ∪ {0}, i.e. the number

of cycles of length pj that the monomial is able to create. Now, we can define the structure level
by level.

Consider Nj,(1,1) = {root} the first layer of the MDD. For any d ∈ Dp1,1,pj , we create a
node in the next layer Nj,i′ where i′ = (1, 2) iff `1 > 1, and i′ = (2, 1) otherwise. Then,
Nj,i′ = Nj,i′ ∪ {β} where valj(β) = d, and (root, β) ∈ Ej with `abj((root, β)) = d.

Also for this MDD, the value valj(α) associated with a node α of a path from root to tt is the
number of cycles of length pj formed by the monomials encountered on the subpath from root to
α.

Now, let us consider a generic level Nj,(z,i) (with (z, i) 6= (m, `m) such that z ∈ {1, . . . ,m},
i ∈ {1, . . . , `z} ) already created, and its following layer Nj,i′ where i′ = (z, i+ 1) iff i < `z , and
i′ = (z + 1, 1) otherwise. For any α ∈ Nj,(z,i) and any d ∈ Dpz,i,pj :

• if valj(α) + d ≤ nj and @β′ ∈ Nj,i′ such that valj(β′) = valj(α) + d, we create a new
node β in Nj,i′ (i.e. Nj,i′ = Nj,i′ ∪{β}) with valj(β) = valj(α) + d, and (α, β) ∈ Ej with
`abj((α, β)) = d;

• if valj(α) + d ≤ nj and ∃β′ ∈ Nj,i′ such that valj(β′) = valj(α) + d, then (α, β′) ∈ Ej
with `abj((α, β′)) = d.

To conclude the definition of the structure, let us consider the level Nj,(m,`z). For any node
α ∈ Nj,(m,`z) and any d ∈ Dpm,`z ,pj

, if and only if valj(α) + d = nj , (α, tt) ∈ Ej with
`abj((α, tt)) = d and tt ∈ Nj,(m+1,1).

According to this definition, the nodes of an MDD CSj are the multiset Nj =
(
∑
z∈{1,...,m} i∈{1,...,`z}Nj,(z,i)) + Nj,((m+1),1) where Nj,(1,1) = {root}, Nj,((m+1),1) = {tt},

and all others Nj,(z,i) ⊆ {0, . . . , nj}.
We stress that any edge outgoing from vertexes of the level (z, i) represents the cycles of length

pj that the monomialCnz,ipz,i �X̊z can contribute to form together with the monomials corresponding
to the other edges encountered on a same path from root to tt. Then, it is just the number nz,ij .
Remark that a label 0 means that the monomial is not involved in the generation of the cycles of
length pj and that the sum of the labels of each path from the root to the tt node will be equal to
nj , because nj cycles of length pj must be generated.

Example 5.3.2 – Resuming from the previous example, let us illustrate the construction of one
CSj . Let us consider j = 2, or, in other words, the MDD providing all the possible ways by
which the two monomials of the given equation can concur to form C4

4 . Thus, CS2 has 3 levels,
one for each monomial and one for the final terminal node. Any edge outgoing from a level
represents the number of cycles of length 4 that the monomial corresponding to that level can
contribute to form. The first level, corresponding to the monomial C1

4 � X̊1, only contains the
node root (which with its value at 0 represents the fact that no cycle of length 4 has yet been
generated). According to the necessary equations defined p = 4 and q = 4 (see Example 5.3.1),
the first monomial is able by itself to form n1,1

2 cycles of length 4 where n1,1
2 ∈ {1, 2, 3, 4}.

Regarding the second monomial, it is able by itself to form either n2,1
2 = 2 or n2,1

2 = 4 cycles
of length 4. As Figure 5.13 shows, the MDD CS2 also represents the cases n1,1

2 = 0 and/or
n2,1

2 = 0, i.e., where at least one of the two monomials does not contribute to the generation of
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such cycles at all. Any path from root to tt provides a feasible way by which the two monomials
concur to form n2 = 4 cycles of length p2 = 4.

r

2 3 410

tt

0
1 2 3

4

4
2

0

Figure 5.13 – The MDD CS2 represents all the possible ways by which, according to the set of
necessary equations, the two monomials can concur to form C4

4 . The red part is deleted by the
pReduction procedure. The value val(α) associated with each node α is also reported inside
the nodes. Recall that val(root) = 0 and val(tt) = nj .

Figure 5.14 illustrates the MDD CS = CS1×CS2×CS3×CS4 associated with the given
equation and obtained by stacking each CSj on top of CSj+1. Any path from the root to the
terminal node of CS represents a possible way by which the monomials of the left-hand side of
the given equation can concur to form all the cycles of its known term.

r C1
4 � X̊1 ⊕ C1

2 � X̊2 = C4
2

C1
4 � X̊1 ⊕ C1

2 � X̊2 = C4
4

C1
4 � X̊1 ⊕ C1

2 � X̊2 = C7
6

C1
4 � X̊1 ⊕ C1

2 � X̊2 = C7
12

tt

0

4

2
40

0
2

4

0

7

7
53

1

0
24

6

Figure 5.14 – The MDD CS represents all the feasible ways by which, according to the set
of necessary equations, the monomials of the equation can concur to form its right-hand side.
According to the Cartesian product of MDD, the yellow nodes are at the same time the tt node
of a CSj and the root node of CSj+1. The four MDD are depicted by different colours (the
red MDD corresponds to that from Figure 5.13). In each CSj , the first (resp., second) level
corresponds to the monomial C1

4 � X̊1 (resp., C1
2 � X̊2). The values val(α) associated to nodes

are omitted for simplicity.

In conclusion, let us recall that each path from the root of CS to its final node represents a
system obtainable with the contraction steps which does not contain impossible basic equations.
For example, the path highlighted in red in Figure 5.14 corresponds to the following system:
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{
C1

4 � X̊1 = C4
4 ⊕ C1

12
C1

2 � X̊2 = C4
2 ⊕ C7

6 ⊕ C6
12

.

At this point, we have now enumerated all the systems obtainable with the contraction steps
(not containing impossible basic equations). As we have anticipated, enumerating the solu-
tions of these systems corresponds to enumerating the solutions of the original equation over
a-abstractions. However, we must now understand for each system how one can find all its possi-
ble solutions. This is the matter of the next section.

5.3.3 Solving a system of equations

Each path from the root to tt in CS corresponds to the result of a contraction step, i.e. a Sys-
tem (5.7). Solving any equation

C
nz,i
pz,i � X̊z =

lB⊕
j=1

C
nz,ij
pj

of a System (5.7) means computing the Cartesian product among the solutions of the lB basic
equations involved. In its turn, according to Section 5.2.3, solutions to a basic equation are repre-
sented by a SB-MDD. Therefore, we can be perform a Cartesian product between SB-MDD. As
usual, such a Cartesian product is obtained by stacking the SB-MDD on top of each other. We will
call SB-Cartesian MDD an MDD resulting from a Cartesian product between SB-MDD. Remark
that, however, an SB-Cartesian MDD is not a SB-MDD. In fact, although it is satisfied by each of
its component SB-MDD, the order constraint among the edge labels of any path from the root to
the terminal node of an SB-Cartesian MDD does not necessarily hold (see Figure 5.15).

Example 5.3.3 – Consider the equationC1
2�X̊2 = C4

2⊕C7
6⊕C6

12 whereDp,q = D2,4 = {1, 2},
D2,6 = {1, 2}, and D2,12 = {2}. Recall that each d ∈ Dp,q corresponds to a C1

p′ such that
p′ = q

p · d. Then, the solutions of the equation are contained in the SB-Cartesian MDD of
Figure 5.15 and they are:

{C4
1 ⊕ C7

3 ⊕ C3
12, C

4
1 ⊕ C5

3 ⊕ C1
6 ⊕ C3

12, C
4
1 ⊕ C3

3 ⊕ C2
6 ⊕ C3

12,

C4
1 ⊕ C1

3 ⊕ C3
6 ⊕ C3

12, C
2
1 ⊕ C1

2 ⊕ C7
3 ⊕ C3

12, C
2
1 ⊕ C1

2 ⊕ C5
3 ⊕ C1

6 ⊕ C3
12,

C2
1 ⊕ C1

2 ⊕ C3
3 ⊕ C2

6 ⊕ C3
12, C

2
1 ⊕ C1

2 ⊕ C1
3 ⊕ C3

6 ⊕ C3
12, C

2
2 ⊕ C7

3 ⊕ C3
12,

C2
2 ⊕ C5

3 ⊕ C1
6 ⊕ C3

12, C
2
2 ⊕ C3

3 ⊕ C2
6 ⊕ C3

12, C
2
2 ⊕ C1

3 ⊕ C3
6 ⊕ C3

12}

This example shows how solutions of an equation Cnz,ipz,i � X̊z =
lB⊕
j=1

C
nz,ij
pj are contained into a

SB-Cartesian MDD.
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Figure 5.15 – SB-Cartesian MDD of equation C1
2 � X̊2 = C4

2 ⊕C7
6 ⊕C6

12. From top to bottom
we find the SB-MDD of the equations: C1

2 � X̊2 = C4
2 ,C1

2 � X̊2 = C7
6 , and C1

2 � X̊2 = C6
12.

Nodes highlighted in yellow are those arising from the merge of a root node with a tt node.

Now that we know the solutions of each equation of a System (5.7), we need to compute the
intersection between the different sets of solutions found for the same variable X̊z . Let us point
out that at most `z equations of the system contain X̊z with z ∈ {1, . . . ,m}, and that m is the
number of different variable-power pairs that appear in the original equation. Here, the difficulty
arises from the fact that each monomial containing X̊z may be responsible for the generation of
cycles of one or more different lengths. In the case of a monomial generating cycles all of the
same length, the solutions are represented in an SB-MDD, but in the case of different lengths, we
are dealing with an SB-Cartesian MDD. Hence, the intersection must be calculated between MDD
that may at times be normal SB-MDD and at times SB-Cartesian MDD.

Notice that the classic algorithm to perform the intersection over MDD (presented in Section
3.3) cannot be used if the goal is the intersection between MDD issued by a Cartesian product (i.e.
SB-Cartesian MDD) because the result depends on the order of the structures (see Figure 5.16).
For this reason, we propose here a new algorithm to perform this task independently from the
order.

Example 5.3.4 – This example shows the problem of the intersection algorithm on SB-
Cartesian MDD. Consider the two SB-Cartesian MDD in Figure 5.16. The two structures
contain exactly the same set of solutions. It is only the Cartesian product that is performed
in a different order. By applying the classical top-down intersection algorithm (keeping just
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common edges level by level), the only common solution is hence the red one. This is because
the algorithm depends on the order in which the variables are represented in the structure.

r1

2 4

4

tt

1 2 3

2 3

3

tt1

2 4

2

2

2

1
2

3

1

1

1

1

1

2
1

r2

2 4

4

tt

1 2 3

2 3

3

tt2

2 4

2

2

2

1
2

3

1

1

1

1

1

2
1

Figure 5.16 – Two SB-Cartesian MDD representing the same set of solutions.

SB-Cartesian Intersection Consider a set M of MDD in which some are SB-Cartesian MDD
and others are not. We propose an algorithm (Algorithm 13) which computes the intersection of
all the elements in M . Our algorithm needs to be started with an initial set of candidate solutions
S (initial guess). If M contains at least a simple SB-MDD (i.e. one which is not a SB-Cartesian
MDD), then S is the set of solutions contained in the MDD resulting from the classical intersection
between all SB-MDD in M ; otherwise S is the set of solutions read in an arbitrarily chosen SB-
Cartesian MDD of M . We emphasise that the fact that SB-MDD have arcs directed towards the
terminal node is not a problem when computing the intersection as presented in Section 3.3.

Using S, we will compute the intersection between the remaining SB-Cartesian MDD. The
idea is to search all solutions into each SB-Cartesian MDD and update each time the remaining
solutions. In fact, each candidate solution is ordered and recursively searched in a SB-Cartesian
MDD in M (Algorithms 14 and 15). If it is not found, then it is removed from the set of candidate
solutions. Given a SB-Cartesian element M of M , a candidate solution S of S is validated if
it possible to visit each SB-MDD involved in M using a subset of the elements of the solution.
Starting from the biggest elements of S , we try to find a path from the root to the first tt node
(recall that we are visiting a SB-Cartesian MDD). We proceed in this way because the paths of
each SB-MDD are ordered. After having gone through the first SB-MDD, we need to recursively
repeat the procedure with the remaining elements of S .
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Algorithm 13: SB-Cartesian Intersection

Input : M , set of MDD (some SB-MDD and some SB-Cartesian MDD)
Output: S, solutions of the intersection in M

1 Cartesian← ∅;
2 Traditional← ∅;
3 forall M ∈M do
4 if M is a SB-Cartesian MDD then
5 add M to Cartesian;
6 else
7 add M to Traditional;

8 S ← ∅;
9 if |Traditional|> 0 then

10 if |Traditional| == 1 then
11 S ← Traditional[0].readSolutions();
12 else
13 MddIntersected←ClassicIntersection(Traditional[0], T raditional[1]);
14 forall M ∈Traditional \ {Traditional[0], T raditional[1]} do
15 MddIntersected←ClassicIntersection(MddIntersected,M );

16 S ←MddIntersected.readSolutions();

17 else
18 S ← Cartesian[0].readSolutions();
19 remove 0 from Cartesian;

20 if |S|6= 0 then
21 forall M ∈Cartesian do
22 CartesianSearch(S,M );

23 return S

Two special cases need our attention:

• a generic node in which it is not possible to find a common element between the remaining
elements of a solution and the outgoing edges;

• a node (different from the final tt node) in which there are no more elements of S to compare
with the outgoing edges.

In both cases, it is necessary to backtrack in the visited nodes until there is another possible outgo-
ing edge that can be taken into consideration. Once the search arrives at the last SB-MDD of M ,
a linear search is performed with the remaining elements, and S is one of the solutions contained
in M if there exists a path from the last root to the final tt node following the remaining elements
of S (Algorithm 16). If the linear search fails, then we return to the first node with a different
feasible outgoing edge. If no different feasible edges exist, then S is not a solution. The previous
procedure is performed over each candidate solution of the initial guess.

We stress that in the worst case, for a given candidate solution, our algorithm explores only
the subgraph of a SB-Cartesian MDD made of feasible edges.
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Algorithm 14: CartesianSearch

Input : S set of solutions, M a SB-Cartesian MDD
Output: S ′ solutions involved in M

1 S ′ ← ∅;
2 forall S ∈ S do
3 S.order();
4 find←FindSolution(S, 0,M );
5 if find then
6 add S to S ′;

7 return S ′;

Algorithm 15: FindSolution
Input : S solution, 0 ≤ i < |M |, M a SB-Cartesian MDD
Output: true if S ∈M, false otherwise

1 return FindSolutionNode(S,M [i].root, i,M );

Algorithm 16: FindSolutionNode
Data: S ′ sub-solution, α node, 0 ≤ i < |M |, M a SB-Cartesian MDD
Result: true if S ′ ∈M , false otherwise

1 find← false;
2 if α is not a tt node then
3 forall s ∈ S ′.removeDuplicates() and find==FALSE do
4 if α has an outgoing edge with label s then
5 newSubSolution← S ′ \ {s} ;
6 find←FindSolutionNode(newSubSolution, α.children(s),i);

7 else
8 i← i+ 1;
9 if i== |M |−1 then

10 valid←LinearSearch(S ′,root(M [i]));
11 if valid then return true ;
12 else
13 return FindSolution(S ′,i);

14 return find;

The presented approach introduces a way to compute the intersection between MDD with
ordered paths. It is suitable for our needs, and its improvement constitutes an interesting future
research direction. However, we need to precise an additional aspect concerning our application.

As explained above, an SB-MDD (corresponding to a simple equation) has labels based on the
feasible divisors set (or feasible coins) and each label corresponds to a certain cycle C1

p′ . However,
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two different coins of two different simple equations can correspond to the same C1
p′ as well as the

same coin may correspond to different cycles lengths for different simple equations. Therefore,
when searching for a solution in a SB-Cartesian MDD, we must take into account these cases. In
our application, two divisors/coins are considered equivalent if they correspond to the same C1

p′

both by computing the classical intersection between MDD and the SB-Cartesian intersection.

Example 5.3.5 – Consider a set M containing the two SB-Cartesian MDD of Figure 5.17.
Since there are only SB-Cartesian MDD, reading the set of solutions represented in the first
MDD gives us the initial guess:

S = {[4, 2, 2, 2], [4, 2, 2, 1, 1], [1, 1, 1, 1, 2, 2, 2], [1, 1, 1, 1, 2, 2, 1, 1]}

Each solution is then searched in the second SB-Cartesian MDD M , hence the
CartesianSearch(S,M ) method is called (Algorithm 14). Each solution is sorted in descending
order to be searched in the structure using the FindSolution method (Algorithm 16). Let us take
the solution S = [2, 2, 2, 1, 1, 1, 1] as an example.

r

2

4

4

tt

2

tt

1

tt

1

1

1

4

1

2

2

1

2

1

r

1 2 3

2 3 4 4 5

3 4 5

4 5

5

tt

2

tt

1
2

3

1
1 2

1
2

1 1
1 1

1 1

1

1

1

1
2 1

6

2

2

Figure 5.17 – Two SB-Cartesian MDD contained in a set M .

Initially, the method tries to cross the first SB-MDD composing the SB-Cartesian MDD.
Then, we search S ′ = [2, 2, 2, 1, 1, 1, 1] in the first (i.e. i = 0) SB-MDD of M (the SB-
Cartesian MDD on the right in Figure 5.17) starting from the r root node. The biggest el-
ement s of S is 2. Hence, since the root has an outgoing arc with label value 2, the solu-
tion to be searched for is updated to S ′ = [2, 2, 1, 1, 1, 1] and the procedure is iterated (i.e.
FindSolutionNode([2, 2, 1, 1, 1, 1], 2, 0,M ) where 2 is the node reachable from r by follow-
ing the arc labelled 2). The process is iterated and brings us through the structure following
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the path highlighted in green in Figure 5.17. Once the root of the second SB-MDD of M is
reached, LinearSearch over [1, 1, 1, 1] is called and hence false is returned. Going back in the
recursive calls, another possible value for s is then considered. The first choice is to consider
s = 1 and to take the arc outgoing from the node of value 4 in the third level of the structure.
FindSolutionNode([2, 1, 1, 1], 4, 0,M ) is then calculated. The process is iterated and brings
us through the structure following the path highlighted in blue in Figure 5.17. However, by
reaching the node of value 2 of the second SB-MDD we find ourselves in the situation where
S ′ = [1, 1] and the only arc exiting the node has a 2-value label. As a consequence, false is
returned. Going back again, one tries to consider s = 1 and to take the arc outgoing from the
node of value 2 in the second level of the structure. The process is iterated and brings us through
the structure following the path highlighted in red in Figure 5.17. This leads us to the final node
of the structure and thus to decide that S = [2, 2, 2, 1, 1, 1, 1] is one of the solutions contained
in M .

Once a set of solutions is assigned to a X̊z (which we recall to be the z-th variable-power pair),
we need to compute the wz-th root for each value of X̊z (i.e., X̊z such that X̊z

wz = X̊z). The root
procedure is not a trivial step. Indeed, the inverse operations of sum and product are not definable
in the commutative semiring of DDS. Therefore, we need an algorithmic technique to compute
the result of the w-th root of X̊z . We will therefore present how the root of a a-abstraction can be
calculated in the final part of this chapter.

The root procedure tries to calculate the wz-root of all solutions found for a X̊z and hence
returns a set containing the roots found. Recall that each variable X̊z may appear in the original
equation at different degrees. To conclude, it then becomes necessary to calculate an intersection
between the solutions sets of the different roots calculated to obtain the set of solutions for each
variable X̊z .

We conclude this section with a few considerations about the performance of the pipeline. If
the computation of the roots is not performed then everything depends on the number of mono-
mials and the number of distinct sizes of cycles in the right-hand side of the equation. If these
quantities grow also the number of contraction steps to consider grows. The solutions space is
limited by considering only contraction steps that are feasible according to the necessary equa-
tions. For example, if we consider the equation C1

5 � X̊2⊕C1
4 � X̊2

2⊕C1
3 � X̊1

2⊕C1
2 � X̊1

3 =
C3

10⊕C68
4 ⊕C9

3 ⊕C9
6 ⊕C136

12 , the number of contraction steps is≈ 2, 42 · 1016, but only 6665400
are considered. Furthermore, each basic equation is solved only once and the solutions of the sys-
tems are calculated from the solutions of the basic equations. For each system, Cartesian product
operations, classical and SB-Cartesian intersections between SB-MDD and SB-Cartesian MDD
are required. The former have reduced computational and memory cost (see Chapter 3) and the
latter operation is defined to limit the search space, and therefore its computational cost.

The pipeline introduced above is the first complete technique to solve equations and validate
hypotheses over the long-term behaviour of dynamics graphs showing an interesting interaction
between MDD and DDS, and adding one more item to the growing list of successful applications
of MDD [Formenti et al. (2021)].
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5.4 Roots over a-abstractions

We now deal with the problem of retrieving the value of each DDS X̊z once the possible values of
X̊z

wz have been computed. We are going to introduce the concept of w-th root in the semiring of
DDS and provide an algorithm for computing the w-th roots of the a-abstractions of DDS.

First of all, let us formally define the notion of w-root of a general DDS.

Definition 5.4.1. Let w ≥ 2 be a natural number. The w-th root of a DDS S is a DDS having w-th
power equal to S.

Clearly, the a-abstraction of the w-th root of a DDS is the w-th root of the a-abstraction of that
system. The goal is now to compute the w-th root of the a-abstraction of any DDS. Namely, for
any given a-abstraction

Co1
q1 ⊕ . . .⊕ C

ot
qt ,

with 0 < q1 < q2 < . . . < qt, we want to solve the equation

X̊w = Co1
q1 ⊕ . . .⊕ C

ot
qt , (5.10)

where the unknown is expressed as

X̊ = Cn1
p1 ⊕ . . .⊕ C

nl
pl
,

for some naturals l, p1, . . . , pl, n1, . . . , nl (with p1 < . . . < pl) to be determined. From now on,
without loss of generality, we will assume p1 < . . . < pl, and q1 < . . . < qt.

Since providing a closed formula for X̊ seems quite complicated, we are going to compute
the sets Cnipi one by one starting from i = 1. Such a computation will be iteratively performed by
comparing the Co1

q1 ⊕ . . .⊕C
ot
qt with the w-th power of the sum of sets Cnipi found up to a certain i.

Proposition 5.4.1. If X̊ = Cn1
p1 ⊕ . . .⊕C

nl
pl

is a solution of the equation X̊w = Co1
q1 ⊕ . . .⊕C

ot
qt ,

then the following facts hold:

(i) l ≤ t and {p1, . . . , pl} ⊆ {q1, . . . , qt}
(ii) p1 = q1 and p2 = q2;

(iii) n1 is the integer solution of w
√

o1
qw−1
1

;

(iv) n2 is the integer solution of
w√q2o2+q1o1− w√q1o1

q2
∈ N, if lcm(q1, q2) = q2,

w
√

o2
qw−1
2
∈ N, otherwise.

(5.11)

Proof.
(i): According to Proposition 5.1.5, for each i ∈ {1, . . . , l}, a set Coλ∗

l
with λ∗l = pi appears

in X̊w when the tuple (k1, . . . , kl) with ki = w and ki′ = 0 (for all i′ 6= i) is involved in the sum.
Hence, {p1, . . . , pl} ⊆ {q1, . . . , qt} and l ≤ t.

(ii): Since p1 is the smallest value among all possible lcm λ∗l from Proposition 5.1.5 and q1 is
the smallest among the lengths q1, . . . , qt of the cycles to be generated when the w-th power of X̊
is performed, it must necessarily hold that p1 = q1 in order that cycles of length q1 are generated.
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Moreover, since p2 and q2 follow in ascending order p1 and q1, respectively, and p2 is also the
successor of p1 among all the above mentioned lcm, it must also hold that p2 = q2 in order that
cycles of length q2 are generated too.

(iii): It holds that (Cn1
q1 )w = Co1

q1 , which, by Lemma 5.1.4, is equivalent to Cq
w−1
1 nw1
q1 = Co1

q1 .
This implies that qw−1

1 nw1 = o1 and, hence, n1 is equal to w
√

o1
qw−1
1

iff integer.

(iv): If gcd(q1, q2) 6= q1, then lcm(q1, q2) > q2. Thus, when computing the w-th power
of X̊ , by Proposition 1.1.1, Cn1

p1 does not contribute to form Co2
q2 and, necessarily, it holds that

(Cn2
q2 )w = C

qw−1
2 nw2
q2 = Co2

q2 . So, we get qw−1
2 nw2 = o2, the latter implying that n2 = w

√
o2

qw−1
2

iff

integer. Otherwise, it follows that lcm(q1, q2) = q2 and both Cn1
p1 and Cn2

p2 contribute to Co2
q2 . In

particular, it holds that (Cn1
p1 ⊕ C

n2
p2 )w = Co1

q1 ⊕ C
o2
q2 . By Proposition 1.1.1, one finds

(Cn1
p1 )w ⊕

(
w−1⊕
k=1

(
w

k

)
(Cn1

p1 )k � (Cn2
p2 )w−k

)
⊕ (Cn2

p2 )w = Co1
q1 ⊕ C

o2
q2 .

Since (Cn1
p1 )w = Co1

q1 and by Remark 5.1.2, the last equation can be seen as follows

Cp2w−1n2w
p2 ⊕

(
w−1⊕
k=1

(
w

k

)
C

1
lcm(p1,p2) ·p1in1ip2w−in2w−i

lcm(p1,p2)

)
= Co2

q2 .

Recalling that gcd(q1, q2) = q1, lcm(q1, q2) = q2, p1 = q1 and p2 = q2, the latter equality is true
iff

q2
w−1n2

w +
w−1∑
k=1

(
w

k

)
q1
in1

iq2
w−i−1n2

w−i = o2 ,

i.e., once both sides are first multiplied by q2 and then added to the term (q1n1)w, iff

(q1n1 + q2n2)w = q2o2 + (q1n1)w .

By (i) and (iii), we get

n2 =
w
√
q2o2 + q1o1 − w

√
q1o1

q2
.

This last proposition provides some information on the possible solution. Note that if it is not
possible to find integer values for n1 or n2, this means that there is no X̊ = Cn1

p1 ⊕ . . . ⊕ C
nl
pl

solution of the equation X̊w = Co1
q1 ⊕ . . .⊕ C

ot
qt .

The following theorem explains how to compute ni+1 and pi+1 once n1, . . . , ni and p1, . . . , pi
are also known.

Theorem 5.4.2. Let X̊ = Cn1
p1 ⊕ . . .⊕C

nl
pl

be a solution of the equation X̊w = Co1
q1 ⊕ . . .⊕C

ot
qt .

For any fixed natural i with 2 ≤ i < l, if n1, . . . , ni, p1, . . . , pi are known, t′ ∈ {i, . . . , t}, and
o′1, . . . , o

′
t′ , q
′
1, . . . , q

′
t′ are positive integers such that (Cn1

p1 ⊕C
n2
p2 ⊕ . . .⊕C

ni
pi )w = C

o′1
q′1
⊕Co

′
2
q′2
⊕

. . .⊕ C
o′
t′
q′
t′

, then the following facts hold:

(1) pi+1 = qξ , where ξ = min{j ∈ {1, . . . , t} with qj > pi | qj > q′t′ ∨ (qj = q′z′ for some
1 ≤ z′ ≤ t′ with o′z′ < oj)};
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(2) ni+1 is the solution of

ni+1 =


w
√
qξoξ +Q∗i −

∑i
j=1 pjnj

qξ
, if lcm(p1, . . . , pi+1) = pi+1,

w
√
qξoξ +Q∗∗i −

∑j−1
e=1 pienie

qξ
, otherwise ,

(5.12)

where

Q∗i =
∑

k1+...+ki=w
0≤k1,...,ki≤w
λ∗i 6=pi+1

(
w

k1, . . . , ki

)
i∏
t=1

(ptnt)kt ,

with λ∗i as in Proposition 5.1.5,

Q∗∗i =
∑

ki1+...+kij−1=w
0≤ki1 ,...,kij−1≤w

λ∗∗ij−1
6=pi+1

(
w

ki1 , . . . , kij−1

) j−1∏
t=1

(pitnit)kit ,

and, regarding Q∗∗i , the set {i1, . . . , ij} is the maximal subset of {1, . . . , i + 1} such
that i1 < . . . < ij , ij = i + 1, and pie divides pi+1 for each 1 ≤ e ≤ j (i.e.,
lcm(pi1 , . . . , pij ) = pi+1), and where, for each 1 ≤ e ≤ j and for any tuple ki1 , . . . , kie ,
λ∗∗ie denotes the lcm of those piε with ε ∈ {1, . . . , e} and kiε 6= 0 (while λ∗∗ie = 1 iff all
kiε = 0).

Proof.
(1) We deal with the following two mutually exclusive cases a) and b).

Case a): for some j ∈ {1, . . . , t} the following condition holds: there exists z′ ∈ {1, . . . , t′}
such that qj = q′z′ and o′z′ < oj . This means that, when the w-th power is performed, the cycles
(Cn1

p1 ⊕ . . . ⊕ C
ni
pi ) give rise to a number o′z′ of cycles of length q′z′ = qj where o′z′ is lower than

the number oj of cycles of length qj that are expected once the w-th power of the whole solution
is computed. Consider the minimum among all the indexes j satisfying the above introduced
condition. It is clear that ξ is just such a minimum and qξ is the minimum among the values qj
corresponding to those indexes j. Since by item (i) of Proposition 5.4.1, pi+1 comes from the set
{q1, . . . , qt}, and it is the successor of pi, we get that pi+1 can be nothing but qξ, or, equivalently,
i+ 1 = ξ. Indeed, according to Proposition 5.1.5, if cycles of length greater than qξ were added to
(Cn1

p1 ⊕ . . .⊕C
ni
pi ), instead of cycles of length qξ, they would give rise to cycles of greater length,

preventing the generation of the missing cycles of length qξ.
Case b): there is no index j ∈ {1, . . . , t} such that qj = q′z′ and o′z′ < oj . Similar arguments

from case a) over the values qj and the corresponding indexes j such that qj > q′t lead to the
conclusion that ξ is the minimum of such indexes, i+ 1 = ξ, and pi+1 = qξ.
(2) We deal with the following two mutually exclusive cases:

Case 2.1): lcm(p1, . . . , pi+1) = pi+1. By Remark 5.1.2, we can write

(Cn1
p1 ⊕ . . .⊕ C

ni+1
pi+1 )w =

⊕
k1+...+ki+1=w
0≤k1,...,ki+1≤w

(
w

k1, k2, ..., ki+1

)
C

1
λ∗
i+1

∏i+1
t=1(ptnt)kt

λ∗i+1
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Among all the addends of the latter sum, only the ones with a multinomial coefficient defined
by k1, . . . , ki+1 such that λ∗i+1 = pi+1 give rise to cycles of length pi+1, where pi+1 = qξ. In
particular, it holds that

⊕
k1+...+ki+1=w
0≤k1,...,ki+1≤w
λ∗i+1=pi+1

(
w

k1, . . . , ki+1

)
C

1
λ∗
i+1

∏i+1
t=1(ptnt)kt

λ∗i+1
= C

oξ
qξ ,

and, hence, ∑
k1+...+ki+1=w

0≤k1,k2,...,ki+1≤w
λ∗i+1=pi+1

(
w

k1, . . . , ki+1

)
· 1
λ∗i+1

·
i+1∏
t=1

(ptnt)kt = oξ . (5.13)

Since λ∗i+1 = qξ, when both sides of Equation (5.13) are first multiplied by qξ and then summed
to the quantity

∑
k1+...+ki+1=w
0≤k1,...,ki+1≤w

λ∗i+1 6=pi+1 ∧ ki+1=0

(
w

k1, . . . , ki+1

)
i+1∏
t=1

(ptnt)kt =
∑

k1+...+ki=w
0≤k1,...,ki≤w
λ∗i 6=pi+1

(
w

k1, . . . , ki

)
i∏
t=1

(ptnt)kt = Q∗i ,

Equation (5.13) becomes

∑
k1+...+ki+1=w
0≤k1,...,ki+1≤w

(
w

k1, . . . , ki+1

)
i+1∏
t=1

pktt n
kt
t = qξoξ +Q∗i . (5.14)

Indeed, by the assumption that lcm(p1, . . . , pi+1) = pi+1, there can be no tuple (k1, . . . , ki+1)
from the sum of Equation (5.14) such that both the conditions ki+1 6= 0 and λ∗i+1 6= pi+1 hold.
Now, Equation (5.14) can be rewritten as

(p1n1 + . . .+ pini + pi+1ni+1)w = qξoξ +Q∗i .

Since Q∗i does not depend on ni+1, and, in particular, Q∗i can be computed on the basis of
n1, . . . , ni, we get

ni+1 =
w
√
qξoξ +Q∗i −

∑i
j=1 pjnj

qξ

Case 2.2): lcm(p1, . . . , pi+1) > pi+1. When computing the w-th power of X̊ the set Coξqξ = C
oξ
pi+1

can be formed only by the contribution of those sets C
ni1
pi1

, . . . , C
nij
pij

(including Cni+1
pi+1 ) such that

i1 < . . . < ij , ij = i+1, and pie divides pi+1 for each 1 ≤ e ≤ j. Since lcm(pi1 , . . . , pij ) = pi+1,
we can proceeding in the same way as the case 2.1) but with the indexes i1, . . . , ij instead of 1,
. . . , i+ 1, respectively. Therefore, it holds that

∑
ki1+...+kij=w
0≤ki1 ,...,kij≤w

(
w

ki1 , . . . , kij

) j∏
t=1

(pit)kit (nit)kit = qξoξ +Q∗∗i , (5.15)
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where

Q∗∗i =
∑

ki1+...+kij−1=w
0≤ki1 ,...,kij−1≤w

λ∗∗ij−1
6=pi+1

(
w

ki1 , . . . , kij−1

) j−1∏
t=1

(pitnit)kit ,

and, hence, Equation (5.15) can be rewritten as

(pi1ni1 + . . .+ pij−1nij−1 + pijnij )w = qξoξ +Q∗∗i .

Since Q∗∗i does not depend on ni+1 = nij , and, in particular, Q∗∗i can be computed on the basis
of ni1 , . . . , nij−1 , we get

ni+1 =
w
√
qξoξ +Q∗∗i −

∑j−1
e=1 pienie

qξ
.

The proposition and the theorem introduced in this section allow to compute the w-root of a
sub-dynamical system induced by its periodic points.

At this point it is clear that the w-th root of a DDS is always unique, if it exists (i.e., if all ni’s
turn out to be natural numbers).

Example 5.4.1 – Consider the following equation

X̊2 = C8
2 ⊕ C48

3 ⊕ C424
6 ⊕ C63

7 ⊕ C12
14 ⊕ C24

21 ⊕ C36
42 .

According to Proposition 5.4.1, p1 = q1 = 2 and p2 = q2 = 3.
Then, n1 = 2

√
8
2 = 2 and n2 = 2

√
48
3 = 4.

At this point X̊ contains C2
2 ⊕ C4

3 . Since (C2
2 ⊕ C4

3 )2 = C8
2 ⊕ C48

3 ⊕ C16
6 , pi+1 = 6.

According to Theorem 5.4.2,

ni+1 =
w
√

6 · 424 + (22 · 22 + 42 · 32)− (2 · 2 + 4 · 3)
6 = 6.

Hence, X̊ contains also C6
6 . Given the fact that

(C2
2 ⊕ C4

3 ⊕ C6
6 )2 = C8

2 ⊕ C48
3 ⊕ C424

6 ,

pi+1 = 7. However, since lcm(p1, . . . , pi+1) 6= pi+1,

pi+1 =
w
√

63 · 7
7 = 3.

Now, X̊ = C2
2 ⊕ C4

3 ⊕ C6
6 ⊕ C3

7 and, since

(C2
2 ⊕ C4

3 ⊕ C6
6 ⊕ C3

7 )2 = C8
2 ⊕ C48

3 ⊕ C424
6 ⊕ C63

7 ⊕ C12
14 ⊕ C24

21 ⊕ C36
42 ,

we have the value of X̊ .





CHAPTER 6
Transient behaviour of

DDS
This chapter introduces the last abstraction, the t-abstraction, which aims at enumerat-
ing all transient behaviours of the variables of multi-variate polynomial equations with
constant right-hand term onD. As for the other abstractions, this is done by introducing
a specific notation, studying how the transient parts are involved in sum and product
operations, but also by introducing a basic t-abstraction equation. In this chapter, a
first upper bound to the number of solutions of a basic equation over t-abstractions is
investigated by exploring the connection with the cancellation problem on graphs. Since
the goal is the enumeration of the solutions, a first polynomial algorithmic technique for
finding all t-abstraction solutions of the basic equations is presented. An exponential
approach to enumerate the DDS solutions (up to isomorphism) of any basic equation
concludes the chapter.

This chapter presents the t-abstractions of DDS and the two algorithmic approaches
proposed in [Doré et al. (2022)].
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6.1 The t-abstraction

In this chapter, we introduce the third and last abstraction, the t-abstraction. Its goal is to identify
the transient behaviour of the variables in an Equation (4.1). As in the previous chapters, we begin
by introducing the t-abstraction of a generic DDS S. Recall that, as stated in Chapter 1, we refer
to each j-th component of S by its set Xj .

First of all, let us fix an arbitrary indexing function for cycles. Given a cycle Cj (for j ∈
{1, . . . , L}), fix a node v ∈ Cj and define the index function g : {0, . . . , |Cj | − 1} −→ Cj such
that g(r) = f r(v). Denote T jr,h the set of transient nodes of Xj for which there exists a path of
length h ending in g(r) and made only of transients nodes except for the last one. From now
on, we will refer to this set as the nodes at the layer (or level) h for the periodic point g(r).
Remark that j, r and h respect the specific ranges, namely j ∈ {1, . . . , L}, r ∈ {0, . . . , |Cj | − 1},
and h ∈

{
1, . . . , hmaxj

}
(where hmaxj is the maximum length of a transient in the j-component).

These sets can be conveniently represented by a matrix T j of sets in which an element at position
(r, h) is given by

T jr,h =

f
−1(g(r)) \ Cj if h = 1,⋃
v∈T j

r,h−1
f−1(v) if h > 1.

Remark that Tj refers to the set of transient points of a component j while T j refers to the same
information but in matrix form (i.e. with additional information about their height and their first
periodic state in the orbit).

Definition 6.1.1 (t-abstraction). The t-abstraction of a DDS S, denoted by Š, is the multiset
[T 1, T 2, . . . , TL] where T j (with j ∈ {1, . . . , L}) is the matrix, corresponding to the j-th compo-
nent

(
Xj , f |Xj

)
, in which the element at the position (r, h) is the multiset

T jr,h =
{

[|f−1(g(r))|] if h = 1,
[|f−1(v)| : v ∈ T jr,h−1] if h > 1.

According to this definition, for each component j, we represent some information about the
transient part of the system by a matrix T j with |Cj | lines and hmaxj + 1 columns, where each

element of is a multiset T jr,h (with r ∈ {0, . . . , |Cj | − 1} and h ∈
{

1, . . . , hmaxj + 1
}

) containing

the number of predecessors of each node in T jr,h−1. Remark that multisets, here, are denoted
with square brackets, for example, [2, 2, 3] denotes the multiset containing the symbol 2 with
multiplicity 2 and 3 with multiplicity 1. For h = 1, the number of predecessors of the periodic
node g(r) includes its predecessor in the cycle Cj .

Example 6.1.1 – Consider the connected DDS S in Figure 6.1 with a cycle of length 4 and
hmax1 equals to 3. Let us consider the index function g(r) = vr+1 to introduce the t-abstraction
of the DDS.
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Figure 6.1 – A connected DDS with a cycle of length 4.

The transient points of the system can be represented in the following matrix.

T 1 =

1 2 3


0 {v5} {v14} ∅
1 {v6, v7} {v15, v16, v17, v18} {v23, v24, v25}
2 {v8, v9} {v19, v20} {v26, v27, v28, v29}
3 {v10, v11, v12, v13} {v21, v22} ∅

where r is represented on the rows and h on the columns.
For example, the states v10, v11, v12, and v13 are the transient predecessors of the node with

index 3 (i.e. g(3) = v4). Indeed, they are contained in the T 1
3,1 set. Considering the upper layers,

T 1
3,2 contains only v21, v22, while T 1

3,3 = ∅ since v21 and v22 are both leaves.

The t-abstraction of the system T 1 corresponds to the matrix

T 1 =

1 2 3 4


0 [2] [1] [0] ∅
1 [3] [2, 2] [1, 1, 1, 0] [0, 0, 0]
2 [3] [1, 1] [3, 1] [0, 0, 0, 0]
3 [5] [0, 0, 1, 1] [0, 0] ∅

where r is represented on the rows and h on the columns.
Remark that the elements in the first column represent the number of incoming edges of the

cyclic nodes including the edge coming from the previous periodic point. For example, T 1
3,1 is

equal to 5 since v4 has 4 incoming arcs from v10, v11, v12, and v13, and one from v3.
Moreover, T 1

3,2 is computed considering the incoming edges of the nodes in T 1
3,1, and then

it is equal to [0, 0, 1, 1]. However, let us point out the difference between a 0 in a multiset and
an empty one. The first case occurs when leaves are present in the layer, while the second case
models an empty layer.
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Note that |T 1
r,h| is always equal to |T 1

r,h−1| since each element of T 1
r,h represents the number

of predecessors of a node in T 1
r,h−1.

6.1.1 Sum and Product of t-abstractions

As with the other abstractions, let us see how the operations of the semiringD involve the transient
part of the dynamics. In particular, let us show how the sum of t-abstractions is the disjoint union
of the multisets of matrices and how the product between t-abstractions can be computed. From
now on, let us denote T z,j the t-abstraction matrix of the j-th component of a system z.

Proposition 6.1.1. Given S1 = (X1, f1) (resp., S2 = (X2, f2)), let Š1 =
∑L1
j=1 T

1,j (resp.,
Š2 =

∑L2
i=1 T

2,i). Then,

Š1 + Š2 =
L1∑
j=1

T 1,j +
L2∑
i=1

T 2,i = T 1,1 + . . .+ T 1,L1 + T 2,1 + . . .+ T 2,L2 .

According to this last proposition, the result of a sum operation is a multiset containing the
t-abstractions of the components (of both systems) with multiplicities given by the sum of the
multiplicities in the two original t-abstractions. Hence, the sum of the t-abstractions is by definition
the t-abstraction of the sum.

Let us now consider the product operation, for example S3 = S1 · S2. Recall that (v1, v2) is a
periodic point of S3 if and only if v1 and v2 are periodic points of S1 and S2, respectively. Then,
we can also conclude that the transient nodes of S3 involve the Cartesian states (v1, v2) where
both v1, v2 are transient nodes of S1 and S2, respectively, or just one of them is a periodic point
(see Example 6.1.2).

Given the fact that the product operation between DDS is distributive over the sum, let us
introduce how the product of the t-abstractions of two connected DDS can be computed (see
Figure 6.1.3). Note that, in a connected DDS, there is just one cycle C and P = C. From now on,
we will then denote Cz (or Pz) the cyclic states of a connected DDS Sz , Tz the sets of its transients
nodes, and T z , T z the matrices of the same system.

For two multiset of natural numbers M = [d1, . . . , dn] and M′ = [d′1, . . . , d′m], we denote
their disjoint union asM+M′ and we define the productM⊗M′ = [d · d′ | d ∈M, d′ ∈M′].

Proposition 6.1.2. Assume Š1 = [T 1] (with |C1| rows and hmax1 columns) and Š2 = [T 2] (with
|C2| rows and hmax2 columns). Then, the t-abstraction Š3 of the product S3 = S1 · S2 is a
multiset of matrices [T 3,1, . . . , T 3,gcd(|C1|,|C2|)]. Each matrix T 3,i has lcm(|C1|, |C2|) rows and
max {hmax1 , hmax2 } columns, and each element is computed from Š1 and Š2 as

T 3,i
r,h = T 1

r,h ⊗

h−1∑
j=0

T 2
r−j+(i−1),h−j

+ T 2
r+(i−1),h ⊗

h−1∑
j=1

T 1
r−j,h−j

 (6.1)

where the lines indices r and r − j (respectively r − j + (i− 1) and r + (i− 1)) are interpreted
modulo |C1| (respectively |C2|).
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Proof. It has been proved that the product operation between two connected components gives
gcd(|C1|, |C2|) components with cycle length lcm(|C1|, |C2|). At this point, we need to prove that
the maximum transient length of the resulting components is max {hmax1 , hmax2 }.

Let us consider two connected DDS S1 = (X1, f1) and S2 = (X2, f2). According to defini-
tions over DDS, we know that fh

max
1

1 (v1) ∈ P1 for all v1 ∈ X1, otherwise, with a smaller number
of application of f1, the resulting state can be a transient state. If we suppose hmax1 ≥ hmax2 , for
all h ≥ hmax2 , fh2 (v2) ∈ P2 for all v2 ∈ X2. Then, a state (v1, v2) of the resulting system (with
v1 ∈ T 1

r1,hmax1
for some r1 ∈ {0, . . . , |C1| − 1}) is a transient node that requires hmax1 applications

of f3 = f1 × f2 to obtain a periodic node. Then, for all v2 ∈ X2, (f1 × f2)hmax1 (v1, v2) ∈ P3
and (f1 × f2)h(v1, v2) 6∈ P3 with h < hmax1 . For this reason, hmax3 = hmax1 . Remark that,
since the statement is true for all v2, all the components T 3,i will have maximal transient length
hmax1 . Symmetrically, if we consider hmax1 ≤ hmax2 , one obtains all T 3,i having hmax2 , for all
1 ≤ i ≤ gcd(|C1|, |C2|).

Let g1, g2, and g3 be the index functions of the three systems. By considering a state (v1, v2) ∈
X1 ×X2, if (v1, v2) ∈ T 3,i

r,h and (f1 × f2)h(v1, v2) = (p1, p2), we know that g3(r) = (p1, p2) and
at least one of the following conditions holds:

• v1 ∈ T 1
r1,h

with g1(r1) = p1;

• v2 ∈ T 2
r2,h

with g2(r2) = p2.

Suppose v1 ∈ T 1
r1,h

with g1(r1) = p1. Then, if we are interested in the elements of T 3,i
r,h including

v1, we need to consider all the feasible values of v2. In order for (v1, v2) to belong to T 3,i
r,h , the

state v2 must satisfy fh2 (v2) = p2. Then v2 must necessarily belong to one of T 2
r2,h

, T 2
r2−1,h−1,

T 2
r2−2,h−2, . . ., T 2

r2−(h−1),1 or be the periodic point g2(r2 − h).
The reasoning is similar for the case v2 ∈ T 2

r2,h
. Since either v1 ∈ T 1

r1,h
, or v2 ∈ T 2

r2,h
, or

both, the predecessors (in terms of multiplicity) can be computed, for the component i containing
(p1, p2), by

T 3,i
r,h = T 1

r,h ⊗

h−1∑
j=1

T 2
r−j,h−j

+ T 2
r,h ⊗

h−1∑
j=1

T 1
r−j,h−j

+ T 1
r,h ⊗ T 2

r,h.

Suppose, once again, that v1 ∈ T 1
r1,h

. In order to generate all components, we must con-
sider the fact that there might exist a state v′2 such that (f1 × f2)h(v1, v

′
2) = (p1, f2(p2)) with

(f1 × f2)h′(p1, p2) 6= (p1, f2(p2)) for all h′ ∈ N; this means that (v1, v2) and (v1, v
′
2) be-

long to different components of S3. In order for (v1, v
′
2) to belong to T 3,i

r,h , state v′2 must sat-
isfy fh2 (v′2) = f2(p2) with g2(r2) = p2. Then v′2 must necessarily belong to one of T 2

(r2+1),h,
T 2

(r2+1)−1,h−1, T 2
(r2+1)−2,h−2, . . ., T 2

(r2+1)−(h−1),1 or be the periodic point g2((r2 + 1)− h).
In general, we can consider a state u such that (f1 × f2)h(v1, u) = (p1, f

i
2(p2)) with 1 ≤ i ≤

gcd(|C1|, |C2|) and (f1 × f2)h′(p1, p2) 6= (p1, f
i
2(p2)) for all h′ ∈ N. If (v1, u) ∈ T 3,i

r,h, u must
be a state such that fh2 (u) = f i2(p2) with g2(r2) = p2. Then u must necessarily belong to one
of T 2

r2+(i−1),h, T 2
r2+(i−1)−1,h−1, T 2

r2+(i−1)−2,h−2, . . . , T 2
r2+(i−1)−(h−1),1 or be the periodic point

g2(r2 + (i− 1)− h). As a consequence, we can compute each element of the t-abstraction of an
arbitrary component i, with 1 ≤ i ≤ gcd(|C1|, |C2|), as
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T 3,i
r,h = T 1

r,h ⊗

h−1∑
j=1

T 2
r−j+(i−1),h−j

+ T 2
r+(i−1),h ⊗

h−1∑
j=1

T 1
r−j,h−j

+ T 1
r,h ⊗ T 2

r+(i−1),h.

Since g2(r − j + (i− 1)) and g2(r + (i− 1)) represent periodic points of S2, and thus exhibit a

cyclic behaviour, they must be interpreted modulo |C2|, and similarly g1(r) and g1(r− j) modulo
|C1|.

Example 6.1.2 – An example of product operation between connected DDS S1 and S2. For the
sake of visual clarity, only the names of some nodes are shown.
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Figure 6.2 – Product operation between connected DDS

According to the cycles lengths of the two systems, the result of the product operation
S1 · S2 consists of gcd(2, 4) components with cycles of length lcm(2, 4). Intuitively, we can
see the two resulting cycles as the two different "parallel" executions of the cyclic dynamics
({(1, a), (2, b), (1, c), (2, d)} or {(2, a), (1, b), (2, c), (1, d)}). The set of vertices of the result-
ing graph is the Cartesian product X1 × X2. A generic node (v1, v2) is cyclic in the result iff
v1 is a cyclic node of S1 and v2 is a cyclic node of S2, otherwise (v1, v2) is transient. One way
to understand the transients connected to a cyclic node (v1, v2) is to retrace the edges of the
original graphs backwards (i.e. combinatorially consider all the predecessors). For example,
the set of predecessors of the node (1, a) is the Cartesian product of predecessors 1 and of a
({2, 3, 4} and {d, e}). In fact, we see that (1, a) has 6 incoming edges. Note that backtracking
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the edges in the transient nodes only will produce a transient with a depth equal to the minimum
of the original transients depth ({(5, f), (3, e)} is an example). However, by backtracking only
in cyclic nodes of either one graph and only in transient nodes of the other graph, we obtain a
copy of the transient ({(2, g), (1, f), (2, e)} and {(5, c), (3, d)} are examples).

Example 6.1.3 – An example of product operation between t-abstractions T 1 and T 2. Above in
Figure 6.3 there are the two t-abstractions and the corresponding connected DDS. Below there
is the resulting t-abstraction T 3 computed according to Proposition 6.1.2.
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1 2 3 4
0 [1] ∅ ∅ ∅
1 [3] [1, 0] [1] [0]
2 [3] [2, 1] [1, 0, 0] [0]
3 [4] [0, 0, 0] ∅ ∅


 ·




1 2 3
0 [2] [0] ∅
1 [2] [2] [0, 0]
2 [3] [0, 0] ∅


 =




1 2 3 4
0 [2] [0] ∅ ∅
1 [6] [2, 0, 2, 2, 0] [0, 0, 0, 0, 0, 3] [0, 0, 0]
2 [9] [0, 0, 0, 0, 0, 0, 4, 2] [2, 0, 0, 2, 0, 0] [0, 0, 0, 0]
3 [8] [0, 0, 0, 0, 0, 0, 0] ∅ ∅
4 [2] [8] [0, 0, 0, 0, 0, 0, 0, 0] ∅
5 [9] [0, 0, 0, 0, 0, 0, 2, 0] [2, 2] [0, 0, 0, 0]
6 [6] [0, 0, 0, 6, 3] [0, 0, 0, 0, 0, 0, 2, 0, 0] [0, 0]
7 [8] [0, 0, 0, 0, 0, 0, 6] [0, 0, 0, 0, 0, 0] ∅
8 [3] [0, 0] ∅ ∅
9 [6] [0, 0, 3, 0, 0] [0, 0, 2] [0, 0]

10 [6] [4, 2, 4, 2, 6] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0] [0, 0, 0]
11 [12] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ∅ ∅




Figure 6.3 – Product of t-abstractions T 1 and T 2.

Let us suppose that we have already computed all T 3
r,h with r ∈ {0, . . . , 11} and h = 1,

and also all T 3
r,h with r ∈ {0, . . . , 9} and h = 2. Then, we need to compute T 3

10,2 (in yellow).
According to the proposition, T 3

10,2 = T 1
2,2⊗(T 2

1,2 +T 2
0,1)+T 2

1,2⊗T 1
1,1 = [2, 1]⊗([2, 2])+[2]⊗

[3] = [4, 2, 4, 2, 6]. Intuitively, we should follow the diagonal of elements in the two original
matrices until we reach the first column (as shown in yellow). Note that if we need to calculate
an element T 3

r,h such that one of the two matrices does not have a column h, we still consider
the elements on the diagonal (with h′ < h). An example is T 3

2,4 = T 1
1,4 ⊗ (T 2

0,3 + T 2
2,2 + T 2

1,1)
(in green in the matrices).
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Considering now general DDS, the t-abstraction of a product operation can be computed ac-
cording to the distributivity of the operation and the previous proposition.

Proposition 6.1.3. Given S1 = (X1, f1) (resp., S2 = (X2, f2)), let Š1 =
∑L1
j=1 T

1,j (resp.,
Š2 =

∑L2
i=1 T

2,i). Then, Š1 · Š2 is

L1∑
j=1

T 1,j ·
L2∑
i=1

T 2,i =
L1∑
j=1

L2∑
i=1

T 1,j · T 2,i.

Now that we know how the operations of sum and product act on the transient parts of systems,
let us go back to Equation (4.1) which is the problem that we want to solve. According to the t-
abstraction definition, it can be rewritten as follows to obtain the t-abstraction equation

L1∑
i=1

T 1,i · X̌w1
1 +

L2∑
i=1

T 2,i · X̌w2
2 + . . .+

Lm∑
i=1

T m,i · X̌wm
m =

LB∑
j=1

TB,j (6.2)

Chapter 5 shows that to solve a generic equation over the asymptotic behaviour of DDS one
needs to solve a finite number of basic equations. Formally, this is possible thanks to algebraic
transformations, called contractions steps. Let us show how a similar idea can also be applied to
solve equations over the t-abstractions.

6.1.2 Contraction Steps over t-abstractions

Since each component of the right-hand side is the result of a product operation inside a mono-
mial, then solving an Equation (6.2) is equivalent to solving a finite number of systems of the
following form, one for each possible partition B̌ 1,1, B̌ 1,2, . . . , B̌m,Lm of the multiset B̌ =
[T B,1, . . . , T B,LB ]. This transformation from an Equation (6.2) to a finite number of systems
of the form (6.3) correspond to the contraction steps.

In a system, a multiset B̌ z,i represent the subset of components of the right term generated by
the z, i monomial (with z ∈ {1, . . . ,m} and i ∈ {1, . . . , Lz}).

T 1,1 · X̌w1
1 = B̌1,1

T 1,2 · X̌w1
1 = B̌1,2

...
T 1,L1 · X̌w1

1 = B̌1,L1

T 2,1 · X̌w2
2 = B̌2,1

...
T m,Lm · X̌wm

m = B̌m,Lm

(6.3)

Indeed, the problem boils down to be able to solve equations of the form

T z,i · X̌wz
z = B̌z,i

(with z ∈ {1, . . . ,m} and i ∈ {1, . . . , Lz}). This last equation is based on a coefficient that is
a connected dynamics graph and a right-hand side with multiple components. In order to solve
it, we can start from the fact that when two components are multiplied they generate one or more
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components but all with the same period. Then, we can further simplify the equation as for the
cyclic case. Let p1, p2, . . . , pl be the lengths of periods involved in a B̌z,i. At this point, finding
X̌wz
z corresponds to solving l simpler equations.

T z,i · X̌p1 =
|B̌z,i|∑

j=1, |C(z,i),j |=p1

T (z,i),j

T z,i · X̌p2 =
|B̌z,i|∑

j=1, |C(z,i),j |=p2

T (z,i),j

...

T z,i · X̌pl =
|B̌z,i|∑

j=1, |C(z,i),j |=pl

T (z,i),j

Then, X̌wz
z will be the Cartesian product of the X̌p computed, with p ∈ {p1, p2, . . . , pl}. Up to

this point, the reasoning is similar to that for a-abstractions. However, the last steps change.
Each one of these equations

T z,i · X̌p =
|B̌z,i|∑

j=1, |C(z,i),j |=p
T (z,i),j (6.4)

is characterised by components with the same cycle length p in the right-hand side. To solve them,
we return again to the fact that the product distributes over the sum. Let us therefore consider the
variable to be a connected DDS X ′ too. By choosing a generic component of the right-hand side
TB

′
, we obtain an inequality of the following form

T z,i · TX′ ⊇ TB′ (6.5)

In fact, according to Proposition 6.1.2, we know that T z,i·TX′ can lead to one or more components.
For this reason, we denote T z,i ·TX′ ⊇ TB′ , since our goal is then to find TX

′
that, once multiplied

with T z,i, generates a DDS having at least a component isomorphic to TB
′
.

If T z,i · TX′ generates all the components of period p of the Equation (6.4), the simplification
process stops since we found the solution. If some components are not involved in the result of
the product operation, the process can be iterated on the remaining components solving

T z,i · TX′′ ⊇ TB′′ , (6.6)

with TB
′′ ∈

∑|B̌z,i|
j=1, |C(z,i),j |=p

T (z,i),j \ (T z,i ·TX′), to find the missing components of X̌p. In fact,

this means that Xp contains more than one component, in particular X̌p contains TX
′

and TX
′′

at
least. This process is iterated until all the components in the right-hand side of an Equation (6.4)
are generated.

In the end, solving a system of the form (6.3) requires to be able to solve a finite number of
inequalities of the from (6.5). Remark that, if the goal is the enumeration of the solution set of an
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Equation (6.2) (or of an Equation (4.1)), it is necessary to enumerate the solutions of Equations
(6.5) too. For the t-abstraction, we will then consider the following basic equation

TA · TX ⊇ TB (6.7)

where TA, TX , and TB are the t-abstractions of three connected DDS A, X and B such that
A ·X ⊇ B.

Here, as in the case of equations over a-abstractions, it would be better to consider a simplified
equation to limit the computations that have to be done. However, remember that it could be even
better to apply the t-abstraction only after studying the solutions of the corresponding a-abstraction
equation since it limits the solution space giving the feasible cycle length of the solutions (as
explained in Chapter 4). For this reason, the number of cyclic nodes in X of a basic t-abstraction
equation will be a given parameter.

6.2 Basic t-abstraction equations

This section aims at studying the problem of solving an Equation (6.7). In the beginning, the
goal is to identify the number of solutions of a basic t-abstraction equation and then introduce
different algorithmic approaches. First, a polynomial method to find all feasible t-abstractions of
the solutions and another exponential to identify the real solutions up to isomorphism.

Before going into details, let us recall that, as anticipated, in this thesis work, DDS are always
considered up to isomorphism. However, in the following section, we will follow the ideas of
graph theory presented in Chapter 2 and hence we will express the isomorphism by means of the
symbol ∼=.

6.2.1 The Cancellation Problem over Transients

In this section, we aim to introduce a first upper bound of the number of solutions of a basic
equation A · X ⊇ B over connected DDS. We will represent such a dynamics with an infinite
anti-arborescence (or in-tree). An in-tree is a directed rooted tree where the edges are directed
towards the root. We call this in-tree the unroll of a DDS (see Figure 6.4 for an example).

Definition 6.2.1 (Unroll of a DDS). Given a connected DDS S = (X , f) and a periodic node v
of S, the unroll of S from v is an infinite tree Uv(S) = (V, E) with vertices V =

⋃
i∈N Vi, where

V0 = {(v, 0)} and Vi+1 = {(u, i + 1) | u ∈ f−1(v) for some (u, i) ∈ Vi}, and edges between
vertices (u, i+ 1) and (f(u), i) on two consecutive levels i+ 1 and i (with i ∈ N).

Remark that, starting from a generic connected DDS (with just one cycle of length p), we can
introduce p different unrolls, one for each node v ∈ P . Let us introduce a product of (finite or
infinite) in-trees to be applied over unrolls to obtain the (finite or infinite) in-tree modelling the
dynamics of the result of a direct product over DDS. Intuitively, this product is the direct product
applied layer by layer (see Figure 6.5).

Definition 6.2.2 (Product of in-trees). Consider two infinite or finite in-trees I1 = (V1, E1) and
I2 = (V2, E2) with roots r1 and r2, respectively. The product of in-trees I1 ? I2 is the in-tree
(V, E) such that (r1, r2) ∈ V and, for all (v, u) ∈ V , if there exist v′ ∈ V1 and u′ ∈ V2
such that (v′, v) ∈ E1 and (u′, u) ∈ E2, then (v′, u′) ∈ V . The set of edges is defined as
E = {((v′, u′) , (v, u)) | (v′, v) ∈ E1 and (u′, u) ∈ E2}. Notice that I1 ? I2 is an infinite in-tree iff
I1 and I2 are infinite in-trees.
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v1v2 v3
v4

v5v6

v7

• • •
•

•

•
•

(v1, 0)

(v2, 1) (v3, 1)

(v1, 2) (v4, 2) (v5, 2)

(v2, 3) (v3, 3) (v6, 3) (v7, 3)

. . .

Figure 6.4 – The unroll Uv1(S) (right) of the connected DDS S (left). The root (v1, 0) of the
infinite in-tree is in the bottom layer of the structure. Intuitively, the unroll shows all the trajectories
which reach at some point the root state.

? =

(v0, 0)

(v2, 1)(v1, 1) (v3, 1)

(v0, 2) (v5, 2)(v4, 2)

(v1, 3) (v2, 3) (v3, 3)

(v0, 4) (v4, 4) (v5, 4)

(v1, 5) (v2, 5) (v3, 5)

(v0, 6) (v4, 6) (v5, 6)

(u0, 0)

(u1, 1)

(u2, 2) (u3, 2) (u4, 2)

(u0, 3) (u5, 3) (u6, 3)

(u1, 4)

(u2, 5) (u3, 5) (u4, 5)

(u0, 6) (u5, 6) (u6, 6)

(v0, u0)

(v1, u1)(v2, u1) (v3, u1)

(v0, u2)(v0, u3) (v0, u4)(v4, u2) (v4, u3) (v4, u4) (v5, u2) (v5, u3) (v5, u4)

(v1, u0)(v1, u5) (v1, u6) (v2, u0) (v2, u5) (v2, u6) (v3, u0) (v3, u5) (v3, u6)

(v0, u1)(v4, u1) (v5, u1)

(v1, u2)(v1, u3) (v1, u4) (v2, u2) (v2, u3) (v2, u4) (v3, u2) (v3, u3) (v3, u4)

(v0, u0) (v0, u5) (v0, u6) (v4, u0) (v4, u5) (v4, u6) (v5, u0) (v5, u5) (v5, u6)

Figure 6.5 – Example of product ? (Definition 6.2.2) over infinite in-trees (in this case two unrolls
Uv0(G1) and Uu0(G2)). The product is intuitively equivalent to the direct product applied level by
level. The roots of the unrolls and their infinite paths are highlighted in red.

Considering an instance of Equation (6.7), we can now introduce a corresponding equation
over unrolls, and study whether there can be more than one solution. For the moment, let us
consider a generic cyclic node of A, X and B (let a, x and b be respectively these three states).
Suppose that there exists X such that Ua(A) ? Ux(X) ∼= Ub(B), and Y (not isomorphic to X)
such that Ua(A) ? Uy(Y ) ∼= Ub(B) (with y also a generic cyclic node of Y ). If Ux(X) � Uy(Y ),
it means that there is a difference at some minimal level between the two infinite in-trees. Given
a generic infinite in-tree I (such as an unroll), we define the function cut which gives the finite
subtree up to the layer t. Then, the result of cut(I, t) (with t ∈ N) is a finite sub-in-tree induced
by the set of vertices having at most distance t from the root. We will denote the cut of an unroll
Ua(A), at a level t, by Ca,t(A). Remark that the cut distributes over the ? product. In our problem,
if Ux(X) � Uy(Y ), then there exists a minimum t ∈ N\{0} such that Cx,t(X) � Cy,t(Y ) and
Cx,t−1(X) ∼= Cy,t−1(Y ).

As presented in Chapter 2, an important result of graph theory is that two graphsG1 andG2 are
isomorphic iff, for all graphG, hom(G,G1) = hom(G,G2), where hom(G,G1) is the number of
homomorphisms fromG toG1 [Lovász (1971)]. Then, in our case, ifCa,t(A)?Cx,t(X) ∼= Cb,t(B)
and Ca,t(A)?Cy,t(Y ) ∼= Cb,t(B), we must have hom(G,C(a,x),t(A?X)) = hom(G,C(a,y),t(A?
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Y )) = hom(G,Cb,t(B)) for all G. Then, it is necessary to understand how hom(G,Ca,t(A) ?
Cx,t(X)) and hom(G,Ca,t(A) ? Cy,t(Y )) can be computed. As a convention, we will use F to
denote finite in-trees (such as infinite in-trees after a cut operation).

Theorem 6.2.1. For any graph G, hom(G,F1 ? F2) = hom(G,F1) · hom(G,F2).

To prove this theorem, we need the following lemma. In the following, Hom(G1, G2) will
denote the set of homomorphisms from G1 to G2.

Lemma 6.2.2. If τ ∈ Hom(G,F1 ? F2) with τ(u) = (u1, u2), then π1 ◦ τ ∈ Hom(G,F1) and
π2 ◦ τ ∈ Hom(G,F2), where π1(u1, u2) = u1 and π2(u1, u2) = u2.

Proof. If (u, v) is an arc of G, (τ(u), τ(v)) must be an arc of F1 ?F2. Let us suppose that τ(u) =
(u1, u2) and τ(v) = (v1, v2). Then, from the product definition, the fact that ((u1, u2), (v1, v2)) is
an arc of F1?F2 implies that (u1, v1) is an arc of F1 and (u2, v2) is an arc of F2. Then, by applying
the projection π1, we obtain (π1 ◦ τ)(u) = u1 and (π1 ◦ τ)(v) = v1. Then, π1 ◦ τ ∈ Hom(G,F1).
By same reasoning we obtain π2 ◦ τ ∈ Hom(G,F2).

Proof of Theorem 6.2.1. Let ϕ : Hom(G,F1 ? F2) → Hom(G,F1) × Hom(G,F2) be the func-
tion defined by ϕ(τ) = (π1 ◦ τ, π2 ◦ τ); by Lemma 6.2.2 this is indeed a well-defined function.
We prove that ϕ is a bijection. We first show that ϕ is surjective, let (τ1, τ2) ∈ Hom(G,F1) ×
Hom(G,F2); we need to find τ ∈ Hom(G,F1 ? F2) such that ϕ(τ) = (τ1, τ2). Let τ(v) =
(τ1(v), τ2(v)). Then, ϕ(τ)(v) = (π1(τ(v)), π2(τ(v))) = (π1(τ1(v), τ2(v)), π2(τ1(v), τ2(v)))
= (τ1(v), τ2(v)) implies ϕ(τ) = (τ1, τ2). Let us now prove that ϕ is also injective, i.e.
ϕ(τ) = ϕ(τ ′) implies τ = τ ′. We have ϕ(τ)(v) = (π1(τ(v)), π2(τ(v))) and ϕ(τ ′)(v) =
(π1(τ ′(v)), π2(τ ′(v))). If ϕ(τ) = ϕ(τ ′) then π1(τ(v)) = π1(τ ′(v)) and π2(τ(v)) = π2(τ ′(v)),
which implies τ = τ ′.

This allows us to write hom(G,C(a,x),t(A ? X)) = hom(G,C(a,y),t(A ? Y )) =
hom(G,Cb,t(B)) as hom(G,Ca,t(A))·hom(G,Cx,t(X)) = hom(G,Ca,t(A))·hom(G,Cy,t(Y )) =
hom(G,Cb,t(B)). Now, we need an additional lemma to continue our reasoning.

Lemma 6.2.3. Consider any graph G and any finite in-tree F , then hom(G,F ) 6= 0 iff
hom(G,Ps) 6= 0 where Ps is just a directed path with s edges and s is the height of F .

Proof. An homomorphism from an in-tree F to Ps always exists with s being height of F : one
can map all the nodes of the i-th level of the tree to the i-th node of the path. Conversely, a homo-
morphism from Ps to F exists by choosing any path of length s in F . Therefore, by composition
of homomorphisms, hom(G,F ) 6= 0 iff hom(G,Ps) 6= 0.

We are studying when hom(G,Ca,t(A)) · hom(G,Cx,t(X)) = hom(G,Ca,t(A)) · hom(G,
Cy,t(Y )) = hom(G,Cb,t(B)) implies Cx,t(X) ∼= Cy,t(Y ). This is a special case of the can-
cellation problem presented in Chapter 2. Here, we aim at studying the cancellation over DDS
through the ? product over unrolls. At this point of the reasoning, we can reduce our problem to a
corresponding one over finite trees.

Theorem 6.2.4. For any finite in-trees F , X , and Y of the same height, F ? X ∼= F ? Y implies
X ∼= Y .
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Proof. According to Theorem 6.2.1, since F ? X ∼= F ? Y , we have hom(G,F ) · hom(G,X) =
hom(G,F ) · hom(G, Y ) for all graph G. If hom(G,F ) 6= 0, we can divide by it to ob-
tain hom(G,X) = hom(G, Y ). If hom(G,F ) = 0, according to Lemma 6.2.3, we have
hom(G,Ps) = 0 where s is the height of F . Since F , X , and Y have the same height, also
hom(G,X) = 0 and hom(G, Y ) = 0.

Theorem 6.2.4 over finite trees can then be generalised to infinite trees (including unrolls).

Theorem 6.2.5. I ? X ∼= I ? Y implies X ∼= Y , for all infinite in-trees X,Y , and I .

Proof. If X � Y , there exists a minimum t ∈ N \ {0} such that Ct(X) � Ct(Y ) and Ct−1(X) ∼=
Ct−1(Y ). Then, since I ? X ∼= I ? Y , we have Ct(I ? X) ∼= Ct(I ? Y ). Since the cut operation
is distributive over product, we have Ct(I) ? Ct(X) ∼= Ct(I) ? Ct(Y ). According to the previous
theorem, this means that Ct(X) ∼= Ct(Y ) which is a contradiction.

Up to now, we have proved that considering two equations over unrolls Ua(A) ? Ux(X) ∼=
Ua(A) ? Uy(Y ) ∼= Ub(B) implies Ux(X) ∼= Uy(Y ). This means that given a basic equation
of unrolls and given a and b, the solution, if any, is unique. Now, we want to show how many
equations over unrolls we need to study to enumerate the solutions of A · X ⊇ B. Note that, in
the case of A ·X with gcd(|PA|, |PX |) 6= 1, the result of the product of the unrolls of A and X
will be the unroll of only one component of A ·X , which is in accordance with Equation (6.7).

Let us fix b and study, for every a ∈ PA, the corresponding equation over unrolls. This gives
us |PA| equations to study. If we fix a, we have |PB| equations to consider. Hence, fixing b is more
efficient, since |PB| ≥ |PA|. The question is now to determine if it is necessary to try another b′.
To answer this, we will introduce the notion of roll, which is intuitively the opposite of an unroll
(see Figure 6.6 for an example).

Definition 6.2.3 (Roll of an infinite in-tree). Let I = (V, E) be an infinite in-tree with root r and
only one infinite path (. . . , vn, vn−1, . . . , v2, v1 = r), and let ` ≥ 1 be an integer. Let J = (V, E ′)
with E ′ = (E \ {(v`+1, v`)}) ∪ {(r, v`)}. Then J = I ′ + J ′ where I ′ is an infinite in-tree and J ′

is a finite, connected dynamics graph with a cycle of length `. We call J ′ the roll (of length `) of
I , in symbols R`(I).

Notice that, for all a ∈ P(A), we have R|PA|(Ua(A)) ∼= A, that is, by rolling up at length
|PA| the unroll of A in any of its periodic points we obtain the initial dynamics A.

Lemma 6.2.6. Let A · X ⊇ B with lcm(|PA|, |PX |) = |PB|. Suppose that Ua(A) ? Ux(X) ∼=
Ub(B) for some a ∈ PA, x ∈ PX , and b ∈ PB . Also suppose that Ua′(A) ? Uy(Y ) ∼= Ub′(B)
for some connected DDS Y with y ∈ PY , |PY | = |PX | and a′ = fkA(a) and b′ = fkB(b) for some
k ∈ N. Then X ∼= Y .

Proof. Let k′ such that fk
′

B (b′) = fk
′

B (fkB(b)) = b. Since |PB| is a multiple of |PA|, this also
implies fk

′
A (a′) = fk

′
A (fkA(a)) = a. This means that Ub(B) is the unroll of the same DDS as

in Ub′(B) but taking the k′-th successor of b as the root, and similarly for Ua(A) and Ua′(A).
According to the same reasoning, Uy′(Y ) with y′ = fk

′
Y (y) satisfies Ua(A) ? Uy′(Y ) ∼= Ub(B).

Then, by Theorem 6.2.5, we have Uy′(Y ) ∼= Ux(X). Then, R|PY |(Uy′(Y )) ∼= R|PX |(Ux(X))
implies Y ∼= X .
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(u0, 0)

(u1, 1)

(u2, 2) (u3, 2) (u4, 2)

(u0, 3) (u5, 3) (u6, 3)

(u1, 4)

(u2, 5) (u3, 5) (u4, 5)

(u0, 6) (u5, 6) (u6, 6)

Figure 6.6 – According to Definition 6.2.3, given an infinite in-tree (or an unroll as in this case)
and an integer ` (here equal to 2), we can define the roll as the connected component with a cycle
of length `+ 1 obtained by deleting the edge from (u0, 3) to (u2, 2) and adding another one from
(u0, 0) to (u2, 2), in this case.
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Figure 6.7 – The result of the roll operation on the three unrolls in Figure 6.5 is shown here (with `
equal to 2, 3, and 6 respectively). It can thus be seen that the product ? of the unrolls is equivalent
to the product of the DDS.
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Now if we try to fix b′ = fkB(b), and if we consider again a k′ such as fk
′

B (b′) = fk
′

B (fkB(b)) =
b, every pairing of b′ with an a ∈ PA will lead, by Lemma 6.2.6, to the same solution as fixing
fk
′

B (b′) = b and fk
′

A (a), which has already been done since we already considered every a ∈ PA
with b. Thus, fixing one b is sufficient to check all solutions.

Theorem 6.2.7. Given an inequalityA·X ⊇ B withA,B connected DDS and an integer pX ≥ 1,
the inequality admits at most |PA| connected solutions X having |PX | = pX .

Corollary 6.2.8. An inequality A · X ⊇ B with A, B connected DDS admits at most |PA| con-
nected solutions X with |PX | = pX for each pX ≥ 1 such that lcm(|PA|, pX) = |PB|.
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Figure 6.8 – An example of A ·X ⊇ B with multiple solutions. The DDS A, multiplied with one
of the Xi, generates 4 components, one of which will be isomorphic to B. For one Xi, the cyclic
alignment resulting in B will be the one overlaying the periodic point with a transient in A with
the periodic point without ones in Xi (i.e. the red ones). Note that this example can be generalised
to create instances of A ·X ⊇ B with an arbitrary large number of solutions for X .

The Figure 6.8 shows an example in the case of gcd(|PA|, |PX |) > 1 where the number of
solutions approaches the upper bound of Theorem 6.2.7, but we actually conjecture that a stronger
statement holds when gcd(|PA|, |PX |) = 1.

Conjecture 1. An equation A ·X = B with A, B connected DDS admits at most one solution.

Having introduced Theorem 6.2.7, the goal then becomes to provide an algorithmic approach
for finding solutions to an inequality A ·X ⊇ B over connected DDS. We begin by considering it
in its t-abstraction version (i.e. TA · TX ⊇ TB).

6.2.2 A polynomial algorithm for basic t-abstraction equations

In this section, we introduce a polynomial time algorithm to find all TX (if they exists) such that
TA · TX ⊇ TB . Recall that according to Proposition 6.1.2, the product of TA and TX generates
a multiset, in which we want TB to be one of its elements. The algorithm takes the t-abstraction
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of two connected dynamics graphs A and B and a value pX (an admissible length of the cycle of
X) to reconstruct inductively the feasible t-abstractions of X . Remark that pX can be any positive
natural number such that lcm(|PA|, pX) = |PB|.

As explained in the previous section, we have at most |PA| solutions since the upper bound to
the number of solutions for DDS also applies for t-abstractions (i.e. each solution can potentially
have a different t-abstraction). Then, we can take the matrix TB as it is, and try to reconstruct TX

for each cyclic permutations of the lines of TA. This corresponds to what was explained in the
previous section, i.e. fixing a b ∈ PB and checking whether a solution exists for a ∈ PA.

The algorithm goes through every element TBr,h, column by column, to compute TX column
by column. We know that:

TBr,h = TXr,h⊗M1 +M2, whereM1 =
h−1∑
j=0

TAr−j+i−1,h−j andM2 = TAr+i−1,h⊗ (
h−1∑
j=1

TXr−j,h−j).

As the algorithm proceeds level by level increasing the value of h, for each TBr,h, it computes the
corresponding TXr,h where theM2 is known, since all the TXr′,h′ (for all h′ ∈ {1, . . . , h− 1} and
r′ ∈ {0, . . . , pX − 1}) have already been computed in a previous step of the algorithm. Note that,
due to how the matrix is defined, it is always possible to know the expected cardinality of a TXr,h.
It is the sum of the elements in TXr,h−1 due to the fact that, for each node, we have to calculate the
number of predecessors.

This is the general idea. However, it may happen, when we go through the TBr,h with r >
pX − 1, that the corresponding TXr,h has already been computed, since its row index is considered
modulo pX . In this case, we only check if the product holds (an example of this mechanism is
shown in Example 6.2.1).

At this point, the goal is to compute TXr,h such that TBr,h −M2 = TXr,h ⊗M1
1. Find such TXr,h

can be done as follows. LetM3 be the multiset TBr,h −M2, and d, d′ be the maximum elements
of respectivelyM1 andM3. Then, if TB does indeed satisfies the product TA · TX , there must
exists a y ∈ TXr,h which satisfies d · y = d′, so we know that d

d′ is an element of TXr,h. We can save
it and updateM3 to beM3 − [ dd′ ]⊗M1. We continue until eitherM3 = ∅ orM3 contains only
zeros. In this last case, all the missing y must be zeros too. Indeed, |M3|

|M1| zeros must be added to
TXr,h. This procedure computes non ambiguously all the elements of TXr,h.

As for integer division, we have to consider the case where the denominator is zero (i.e.M1
filled with only zeros). For such case, it is impossible to define with certainty our TXr,h, since
every multiset with the suitable cardinality would satisfy the equation. Fortunately, this particular
scenario cannot happen in our case becauseM1, as defined above, contains the multiset TAr−h+1,1
which necessarily contains a positive integer. We will call msDivision the process of finding TXr,h
such thatM3 = TXr,h ⊗M1.

At any point of the algorithm, if a contradiction is detected, it stops and tries another i (i.e.
another cyclic permutations of the lines of TA). Such contradictions occur, for instance, when we
compute a difference between two multisets and the second one is not included in the first one,

1For two multisets M and M′, we denote their subtraction as M−M′. It contains all those elements present
in both sets such that the multiplicity in the former is greater than the one in the latter (with a multiplicity that is the
difference of the original ones).
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when the computed value d
d′ is not an integer, or when the cardinality of the multiset returned by

msDivision does not match the expected one.

An implementation of the approach just outlined is presented in Algorithm 17.

Algorithm 17: Polynomial t-abstraction

Input : TA, TB matrices of integer multisets, and pX positive natural number
Output: A list of solutions for TX

1 solutions← ∅;
2 forall i ∈ {1, . . . , | CA |} do
3 h← 1;
4 complete← false;
5 error ← false;
6 expectedCardinalities← [1] ∗ pX ;
7 TX ← emptyMatrix(pX , hmaxB );
8 while complete==false and error==false do
9 complete← true;

10 forall r ∈ {0, . . . , | CB | −1} do
11 if r < pX then
12 if expectedCardinalities[r]=0 then
13 continue;

14 M2 ← TAr+i−1,h ⊗ (
∑h−1
j=1 T

X
r−j,h−j);

15 error, TXr,h ←msDivision(TBr,h −M2,
∑h−1
j=0 T

A
r−j+i−1,h−j);

16 nextCardinality ←sum(TXr,h);
17 error ← error ∨ (| TXr,h |6= expectedCardinalities[r]);
18 if h == 1 then
19 expectedCardinalities[r]← nextCardinality − 1;
20 else
21 expectedCardinalities[r]← nextCardinality;

22 if nextCardinality > 0 then
23 complete← false;

24 else
25 R← TAr,h ⊗ (

∑h−1
j=0 T

X
r−j+(i−1),h−j) + TXr+(i−1),h ⊗ (

∑h−1
j=1 T

A
r−j,h−j);

26 error ← (TBr,h 6= R);

27 if error then
28 break;

29 h← h+ 1;

30 if error == false then
31 add TX to solutions;

32 return solutions;
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Example 6.2.1 – Let us explain how to reconstruct the TX (with pX = 3) considering the
following TA and TB .

TA =
1 2 3( )0 [2] [0] ∅

1 [5] [0, 0, 0, 1] [0]

TB =




1 2 3 4 5 6
0 [4] [0, 0, 10] [2] [1] [0, 0, 0, 0, 0, 0, 0, 0] [0, 0]
1 [20] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2] [0, 0] ∅ ∅ ∅
2 [6] [0, 0, 0, 0, 5] [0, 0, 0, 0, 0] ∅ ∅ ∅
3 [10] [0, 0, 0, 0, 0, 0, 2, 3, 4] [0, 0, 0, 0, 0, 0, 0, 0, 5] [0, 0, 0, 2, 4] [0, 0, 0, 0, 0, 5] [0, 0, 0, 0, 0]
4 [8] [0, 0, 0, 0, 0, 0, 0] ∅ ∅ ∅ ∅
5 [15] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4] [0, 0, 0, 0, 0, 0, 0] ∅ ∅ ∅




The algorithm starts by creating an empty matrix TX , with pX rows and hmaxB columns, and
an expectedCardinalities vector. Then, at the beginning of the algorithm the only information
known about TX is that pX equals 3. We thus start by initialising a matrix with 3 lines and 6
columns (the number of columns of TB) filled with empty multisets.

The expectedCardinalities array, which stores at any time the mandatory cardinalities of the
multisets at the next layer, is filled with pX ones. We start by considering i = 1.

TX =

1 2 3 4 5 6 0 ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ ∅ ∅ ∅ ∅
2 ∅ ∅ ∅ ∅ ∅ ∅

,

expectedCardinalities =
0, 1, 2,

[ ]1, 1, 1 .

For the first layer, i.e. h = 1, let us consider the computation made by the algorithm for r
up to 2:

r = 0→M2 = TA0,1 ⊗ ∅ = [2]⊗ ∅ = ∅,
TX0,1 = msDivision(TB0,1 − ∅, TA0,1) = msDivision([4], [2]) = [2];

r = 1→M2 = TA1,1 ⊗ ∅ = [5]⊗ ∅ = ∅,
TX1,1 = msDivision(TB1,1 − ∅, TA1,1) = msDivision([20], [5]) = [4];

r = 2→M2 = TA0,1 ⊗ ∅ = [2]⊗ ∅ = ∅,
TX2,1 = msDivision(TB2,1 − ∅, TA0,1) = msDivision([6], [2]) = [3].

Recall that the lines indices of TA are interpreted modulo |CA|.
Since we are on the first layer, the expectedCardinalities is updated to have the sum of the

computed multisets minus 1 (since the cyclic preimage will be not considered). We will thus
have

expectedCardinalities =
0, 1, 2,

[ ]1, 3, 2 .
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From r = 3, the algorithm will now enter in a verification phase, and we will have:

r = 3→ TA1,1 ⊗ TX0,1 = TB3,1, [5]⊗ [2] = [10];
r = 4→ TA0,1 ⊗ TX1,1 = TB4,1, [2]⊗ [4] = [8];
r = 5→ TA1,1 ⊗ TX2,1 = TB5,1, [5]⊗ [3] = [5].

Recall that also the lines indices of TX are interpreted modulo pX .
At this point, we have

TX =

1 2 3 4 5 6 0 [2] ∅ ∅ ∅ ∅ ∅
1 [4] ∅ ∅ ∅ ∅ ∅
2 [3] ∅ ∅ ∅ ∅ ∅

.

For the second layer, i.e. h = 2, the algorithm proceeds in the same way:

r = 0→M2 = TA0,2 ⊗ TX2,1 = [0]⊗ [3] = [0],
TX0,2 = msDivision(TB0,2 − [0], TA1,1 + TA0,2) = msDivision([0, 10], [0, 5]) = [2];

r = 1→M2 = TA1,2 ⊗ TX0,1 = [0, 0, 0, 1]⊗ [2] = [0, 0, 0, 2],
TX1,2 = msDivision(TB1,2 − [0, 0, 0, 2], TA0,1 + TA1,2) =
= msDivision([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2]) = [0, 0, 0];

r = 2→M2 = TA0,2 ⊗ TX1,1 = [0]⊗ [4] = [0],
TX2,2 = msDivision(TB2,2 − [0], TA1,1 + TA0,2) =
= msDivision([0, 0, 0, 5], [0, 5]) = [0, 1].

No error is triggered since the cardinalities of the computed multisets match the expected
ones. The excpectedCardinalites array is then updated to be

expectedCardinalities =
0, 1, 2,

[ ]2, 0, 1 .

We can again check if these multisets work for the remaining lines.

r = 3→TA1,2 ⊗ TX0,2 + TA0,1 ⊗ TX0,2 + TA1,2 ⊗ TX2,1 = TB3,2

[0, 0, 0, 1]⊗ [2] + [2]⊗ [2] + [0, 0, 0, 1]⊗ [3] = [0, 0, 0, 0, 0, 0, 2, 3, 4]
r = 4→TA0,2 ⊗ TX1,2 + TA1,1 ⊗ TX1,2 + TA0,2 ⊗ TX0,1 = TB4,2

[0]⊗ [0, 0, 0] + [5]⊗ [0, 0, 0] + [0]⊗ [2] = [0, 0, 0, 0, 0, 0, 0]
r = 5→TA1,2 ⊗ TX2,2 + TA0,1 ⊗ TX2,2 + TA1,2 ⊗ TX1,1 = TB5,2

[0, 0, 0, 1]⊗ [0, 1] + [2]⊗ [0, 1] + [0, 0, 0, 1]⊗ [4] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4]
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No contradiction is found, the algorithm can go on.

TX =

1 2 3 4 5 6 0 [2] [2] [0, 1] [2] [0, 1] [0]
1 [4] [0, 0, 0] ∅ ∅ ∅ ∅
2 [3] [0, 1] [0] ∅ ∅ ∅

In this example, we have shown how the first two columns of the matrix can be computed. If
one continues, the values shown in grey in the matrix are obtained.

Let us now analyse the complexity of the algorithm. Each update of M3 in msDivision
requires linear time w.r.t. the size of M3. We repeat it for each element of TXr,h, namely, |M3|

|M1|
times, with |M1| possibly equal to 1. Therefore, msDivision complexity is in O(|M3|2). Due to
the definition of t-abstractions, we know that TB contains |XB| integer values partitioned into the
different TBr,h. Since the msDivision is applied to all M3 (or TBr,h - M2 with M2 potentially
empty), the worst case is when msDivision is applied to oneM3 containing |XB| elements. If
we consider also that we go through the matrix, for a certain i, the complexity is in O(|PB| ·
hmaxB + |XB|2). Since we evaluate i from 0 to |PA| − 1, the total complexity of the algorithm is
O(|PA| · (|PB| · hmaxB + |XB|2)). Note that this algorithm does not ensure that the corresponding
equation over DDS has a solution. However, it ensures that if the latter has solutions, they satisfy
one of the t-abstractions found by the algorithm.

6.2.3 An exponential algorithm for basic equations over DDS

This section introduces an exponential time algorithm which takes in input the dynamics graphs
of A and B, and an integer pX and outputs all X which satisfy A · X ⊇ B. The polynomial
algorithm of the previous section is able to find, all TX such that TA · TX ⊇ TB , if they exist.
Unfortunately, these solutions lack information to reconstruct instantly the dynamics of X . Since
the multisets are not ordered, we cannot know which indegree of a TXr,h is related to which node in
T Xr,h−1. The Figure 6.9 shows this potential ambiguity.

( 1 2 3 4
0 [3] [2, 1] [0, 0, 1] [0]
1 [4] [0, 0, 2] [0, 0] ∅

)

• •
•

•
•

•

• •

•
•
•

•

•
• •

•

•
•

•

•

•
•
•
•

•

•

Figure 6.9 – Two non-isomorphic graphs (top) having the same t-abstraction (bottom).
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6.2.3.1 Naive reconstruction

The most intuitive way to reconstruct the graphX , starting from a TX (computed with the polyno-
mial algorithm), is to test all the connected DDS satisfying the t-abstraction. This corresponds to
test all the ways to connect the elements of a TXr,h to the elements of T Xr,h−1 (level by level). Since,
|TXr,h| = |T Xr,h−1|, for a level h and an index r of a node in the cycle, we have |TXr,h|! possibilities.
Then, there are ∏

(r,h)∈{0,...,pX−1}×{1,...,hmaxx }
(|TXr,h|!)

possible systems (not up to isomorphism). However, we know that the polynomial algorithm
returns at most one t-abstraction solution for each cyclic permutation of TA (i.e. one for each
cyclic alignment of A on B). Then, according to Theorem 6.2.7, for each TX returned by the
polynomial method, there is just one feasible graph that is solution of A ·X ⊇ B. To verify if a
system is a solution, one can verify if, in the graph obtained from the product of itself with A, the
component corresponding to the alignment considered before is isomorphic to B.

6.2.3.2 An improved approach

Knowing the full dynamics of A and B allows us to associate a certain degree in a multiset of TA

or TB with the corresponding node in the graph. In practice, this can be done by providing the
multisets with an order such that the k-th node in a T Ar,h have the corresponding k-th indegree in
TAr,h+1 (the same applies for B). In the same way as the polynomial algorithm, this new algorithm
(Algorithms 18 and 19) will go through every layer h of the transients, and for each one of them,
reconstructs the layer of X .

At the beginning,X contains just a cycle of length pX . At level h = 1, the multisets computed
by the polynomial algorithm are sufficient to reconstruct the dynamics of the first layer of X .
Indeed, all the TXr,1 have only one element d. Then, we just attach, to the r-th cyclic node, d
new nodes. At h = 2, the multisets computed by the polynomial algorithm are still sufficient to
reconstruct the dynamics because all nodes in T Xr,1 are equivalent from a dynamics point of view.
Then, for each d ∈ TXr,2, we assign d predecessors to an arbitrary node in T Xr,1 (which must still be
a leaf). Now, the nodes in T Xr,2 are potentially no longer equivalent. For this reason, starting from
h = 3, the algorithm will make assumptions on which node of X at the layer h has generated
which node of B at the same layer. These assumptions allows to reconstruct the next layer of X
without ambiguity. We will call these assumptions the origins of the nodes of B. From a graph
point of view, the origins will be only labels on nodes of X and B such that all the nodes in B
with origin o are supposed to be generated by the node with label o in X . Let Or,h be the set of
origins of the nodes in a certain T Br,h.

We now consider the computation of a generic layer h ≥ 3. Let suppose that we know the
origins of the nodes in T Br,h−2 (we will explain later how origins can be initialised). With this
information, we can partition the multiset TBr,h into submultisets depending on the origin of the
nodes in T Br,h−2. Let T Br,h|o be the set of all v ∈ T Br,h such that fB(v) has origin o. Then, let TBr,h|o
be the multiset of indegrees of the nodes v ∈ T Br,h−1|o. According to these definitions, TBr,h =∑
o∈Or,h−2

TBr,h|o. We can also partition the multiset of unknowns TXr,h, as TXr,h =
∑
o∈Or,h−2

TXr,h|o.
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Hence, we can rewrite the equivalence of Proposition 6.1.2 as follows:

∑
o∈Or,h−2

TBr,h|o =
∑

o∈Or,h−2

TXr,h|o ⊗ h−1∑
j=0

TAr−j,h−j

+ TAr,h ⊗
h−1∑
j=1

TXr−j,h−j . (6.8)

Note that there are some nodes in T Br,h−1 which are not generated from a node in T Xr,h−1.
These nodes are marked with a special origin (noted −1). The indegrees of these nodes are the
ones found in the second term, i.e. TAr,h⊗

∑h−1
j=1 T

X
r−j,h−j , which we denoteM2 as in the previous

section. The peculiarity of−1 origin is that all the nodes attached to a−1 origin will also have−1
as origin. In fact, these are the nodes (belonging to a level of B) that come from the multiplication
of lower levels of X with the last level of A. Then, we should always have TBr,h|−1 =M2 (line 20
Algorithm 18).

By considering the same definition ofM1 of Section 6.2.2, we can now decompose the product
formula into smaller ones, by grouping together the multisets which have the same origin. We thus
have TBr,h|o = TXr,h|o ⊗M1 for all o ∈ Or,h−2 \ {−1}, meaning that we can compute each TXr,h|o
with the msDivision. Then, we have to assign to each node of T Xr,h−1|o one degree from TXr,h|o.
However, we can notice that we brought the problem back to the special case of h = 2. Indeed,
each node of T Xr,h−1|o have the exact same successor, the only one with the label o. This means
that we can again, for each d ∈ TXr,h|o, attach d new nodes to an arbitrary node of T Xr,h−1|o (line
25 Algorithm 18). This mechanism is the key to reconstruct X layer by layer without ambiguity.
Incidentally, each time we add a k-th new node v in X , we set its label equal to k. This is handled
by the attachNewNodes method which, in addition to create the nodes, assigns to them the
corresponding origin and returns true if at least a node is created (Note that the cyclicGraph
function also automatically assign origins while creating the nodes). Hence, this ensures that
all nodes in X have a unique label. The returned value, for its part, allow us to know if X is
completely constructed.

It remains now an issue: how to assign origins to the nodes in the layer of B. Up to now, we
assigned to each node in T Xr,h−1 a number of predecessors. This means that we also know for each
node v ∈ T Xr,h−1|o, all the degrees induced in TBr,h|o. Indeed, if v has an incoming degree d, there is
a submultisetMv = [d]⊗M1 included in TBr,h|o. We must then apply the label of v as the origin
of all the corresponding nodes in T Br,h−1|o. However, several choices may be possible. Intuitively,
for each element d′ inM1, we assign the label of v as origin to any node w in T Br,h−1|o that has
d · d′ predecessors but two nodes in T Br,h−1|o can have the same amount of predecessor, and both
can be valid choices at this point2. An approach is to choose one, and try to reconstruct the layers
above (lines 31 and 33 Algorithm 19). If at a further level it is not possible to reconstruct the layer
of X , the algorithm backtracks to the last choice made, and tries another origin assignation (lines
35 and 36). The enumeration of all the valid choices for each layer is the cause of the exponential
time complexity.

Note that the −1 origins have to be initialised at some point. The first layer whereM2 term
appears is at height h = 2. The origins are not needed here to construct X but must be affected

2The enumerateAssignemt function takes as parameters a list of constraints over origins. The constraints are
triplets made of 1. the name of the origin, 2. the multiset Mv of indegrees on which the origins must be assigned, and
3. a set of nodes among which we can assign it. It outputs then all the valid assignments (as hashmaps linking nodes to
origins).
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Algorithm 18: FindSolutionAlignment
Input : i ∈ {1, . . . , | CA |}, A, B, X connected DDS and h positive natural number
Output: true if a solution has been reconstructed, false otherwise

(X is modified to be the solution, if it exists, and is not returned)

1 originsData← ∅;
2 nodeAttached← false;
3 forall r ∈ {1, . . . , |CX |} do
4 if h == 1 then
5 error, TXr,1 ← msDivision(TBr,1, TAr+i−1,1);
6 nodeAttached← attachNewNodes(gX(r), TXr,1[0]− 1);
7 originsData.append((getOrigin(gX(r)), TBr,1, [gB(r)]));

8 if h == 2 then
9 M1 ← TAr+i−2,1 + TAr+i−1,2;

10 error, TXr,2 ← msDivision(TBr,2 − (TAr+i−1,2 ⊗ TXr−1,1),M1);

11 forall k ∈
{

0, . . . , |TXr,2| − 1
}

do
12 nodeAttached← attachNewNodes(T Xr,1[k], TXr,2[k]);
13 originsData.append((getOrigin(T Xr,1[k]), TXr,2[k]⊗M1, T Br,1));

14 originsData.append((−1, TAr+i−1,2 ⊗ TXr−1,1, T Br,1));

15 if h > 2 then
16 M1 ←

∑h−1
j=0 T

A
r−j+i−1,h−j ;

17 M2 ← TAr+i−1,h ⊗ (
∑h−1
j=1 T

X
r−j,h−j);

18 forall o ∈ Or,h−2 do
19 if o == −1 then
20 error ← (M2 6= TBr,h|−1);
21 originsData.append((−1,M2, T Br,h−1|−1)) ;
22 else
23 error, TXr,h|o ←msDivision(TBr,h|o,M1);

24 forall k ∈
{

0, . . . , |TXr,h|o| − 1
}

do
25 nodeAttached← attachNewNodes(T Xr,h−1|o[k], TXr,h|o[k]);
26 originsData.append((getOrigin(T X

r,h−1|o[k]), TX
r,h|o[k]⊗M1, T B

r,h−1|o));

27 if error or ¬(truncate(A, h) ·X ⊇ truncate(B, h)) then
28 return false;

29 if ¬nodeAttached and (A ·X ⊇ B) then
30 return true;

31 forall origins ∈ enumerateAssignements(originsData) do
32 applyOrigins(B, origins);
33 if FindSolutionAlignment(i, A,B,X, h+ 1) then
34 return true;

35 detachOrigins(B, origins);

36 X ← truncate(X,h− 1);
37 return false;
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for the layer h = 3. We proceed as explained for h = 2 and then we only affect a −1 origin to all
the nodes in T Br,1 remaining without origins.

For the verification part, at each height h after having reconstructed the layer, we check that
X , multiplied by A considered only up to layer h, contains B (again only up to height h). The
truncation of the graphs, consisting in returning subgraphs by removing transients in higher levels,
and (in Algorithm 19) it is done by the function truncate.

As for the polynomial algorithm, we actually repeat this whole mechanism for all cyclic align-
ments (Algorithm 19). According to Section 6.2.1, considering each value of a ∈ CA as the first
attractor, we can enumerate the solutions of the equation A · X ⊇ B. For this reason, even if
we have not tested all the feasible origin assignments for a certain a, after finding a solution the
algorithm starts calculating a new solution for another a.

Algorithm 19: ExponentialSolver
Input : A, B connected functional graphs, and pX positive natural number
Output: A list of solutions for X

1 solutions← ∅;
2 forall i ∈ {1, . . . , | CA |} do
3 X ← cyclicGraph(pX) ; . cyclicGraph also assign new origins on X

4 if FindSolutionAlignment(i, A,B,X, 1) then
5 solutions.append(clone(X)) ; . A copy of X is saved as a solution

6 return solutions;

Before introducing an optimisation, let us use an example to clarify what has been explained
so far.

Example 6.2.2 – Let us show an example for the reconstruction of one layer of X (the red
one in Figure 6.10) and the feasible origin assignments on B. To construct this third layer of
the dynamics of X , TB0,3 is divided by the origins of the nodes of T B0,1: 1, 2 and −1. Firstly,
TB0,3|1 = [4, 2, 2, 1, 0, 0] (the indegrees of v0 to v3 plus the ones of the two leaves v9 and v10),
and also TB0,3|2 = [2, 1, 0] and TB0,3|−1 = [0, 0, 0]. We then computeM1 = TA0,3 +TA0,2 +TA0,1 =
[0] + [1] + [2] and M2 = TA0,3 ⊗ (TX0,2 + TX0,1) = [0] ⊗ ([2, 1] + [3]) = [0, 0, 0]. After
checking thatM2 is equal to TB0,3|−1, we can now compute, with msDivision, TX0,3|1 such that
M1 ⊗ TX0,3|1 = TB0,3|1 or [2, 1, 0] ⊗ TX0,3|1 = [4, 2, 2, 1, 0, 0]. We found that TX0,3|1 = [1, 2],
which we can directly apply to the nodes in X with label 3 and 4. We compute in the same way
TX0,3|2 = [1]. Finally, we assign to the nodes in T B0,2 the origins 3, 4 and 5. v4,v5 and v11 will
receive the origin 5 and v6,v7 and v8 will receive the origin −1 since there is no choice. For the
origins 3 and 4, we can fix one of each for the two nodes v9 and v10 (the choices for the leaves
do not matter). For the nodes (v0, v1, v2, v3), since both nodes in X can produce a degree 2 in
B, we will have to test the two assignments (3, 3, 4, 4) and (3, 4, 3, 4).
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Figure 6.10 – Three DDS A, X and B (origins are shown in parentheses).

6.2.3.3 Optimised origins affectation

To reduce the number of possibilities and to avoid impossible affectations, we consider the height
of the transients in A and B. For a generic node v of a DDS, let H (v) be the height of the
subtree (which is an in-tree) rooted on v (with just the root that can be a cyclic node, in the
case of v ∈ C). For each node v ∈ T Xr,h−1|o with d predecessors, we know that it generates the
subset Mv = [d] ⊗M1. Let us consider an element d′ of M1 and the corresponding node u
in A. According to our reasoning, one can give the label of v to any node in T Br,h−1|o with d · d′
predecessors. However, according to the product definition, a node w of B, generated by u of A
and v of X , have H (w) = min {H (u),H (v)}. Then, we can only choose nodes w in T Br,h−1|o
with d · d′ predecessors and such that H (w) ≤ H (u). In line with the direct product definition,
we can use this optimisation technique just if u and v are transients nodes.

Example 6.2.3 – After having computed the second layer of X , one needs to assign one origin
among three possible ones (1, 2 and −1) for each of the eight nodes wi in B.

A X B
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Figure 6.11 – Three DDS A, X and B (origins are shown in parentheses).
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Let us compute, for each origin, the multiset of degreesMv.

o = −1→ TA0,2 ⊗ TX0,1 = [1, 2]⊗ [3] = [3, 6];
o = 1→ [2]⊗ (TA0,2 + TA0,1) = [2]⊗ [1, 2, 3] = [2, 4, 6];
o = 2→ [1]⊗ (TA0,2 + TA0,1) = [1]⊗ [1, 2, 3] = [1, 2, 3].

Following only the rules on the indegrees, some nodes can be given origins without ambiguity.
The node w0, being the only one having indegree 4 must have origin 1 and w4, with indegree 1,
must have origin 2. However, several possibilities exist for the other ones:

• w1 and w3 (with both indegree 2) can either have the origin 1 or 2,

• w5 and w7 (with both indegree 3) can either have the origin −1 or 2,

• w2 and w6 (with both indegree 6) can either have the origin −1 or 1.

This gives us 8 possible affectations. However, by looking at the heights, we can reduce the
number of feasible affectations to only one.

First, the nodes wi in B originating from a node in u ∈ T A0,1 and the cyclic point of X (and
hence having a −1 origin), must have H (wi) = H (u). As previously said, the height can
not be higher. Moreover, there must also be, in the subtree rooted in wi, a subtree which is the
exact copy of the corresponding one rooted in u. This is true since that we are considering the
Cartesian states with the cyclic point ofX and the nodes in the subtree of A. As a consequence,
between w5 and w7, just w5 can take origin −1. Then, w2 takes origin −1 too since we need to
find the copy of the subtree containing the highest transient of A. In conclusion, w6 and w7 can
not have the origin −1.

In the second hand, the node having indegree 2 and origin 1 in B, can not have a rooted
subtree of height exceeding 1 since it is supposed to originate from the node u′ (in T A0,1) with
just one predecessor and H (u′) = 1. Therefore, w1 can be excluded. Indeed, the only feasible
affectation of origins, for the nodes from w0 to w7, is 1, 2, -1, 1, 2, -1, 1 and 2.

To compute the complexity, we must study the total number of assignation for a certain layer.
To do so, one have to know the number of distinct TBr,h|o at this layer and their lengths. The first
corresponds to the number of possible origins (i.e. the number of node in X in a layer), which
is |XX |hmaxB

(hmaxX will be at most hmaxB ). For their sizes, the number of nodes in a layer of B can

be bounded as |XB |hmaxB
. However, the algorithm consider only the first pX values of r, then we

have |XB |·pX
hmaxB ·|CB | . From the explanation of the algorithm, the combinatorial affectation of origins is

computed on the equal indegrees in a TBr,h|o. We assume that the number of different incoming
degrees is the maximum one, which we will denote as dmax. Therefore, the total number N

of feasible assignments of origins for a layer is
(

|XB |·pX
|XX |·|CB |·dmax !

) |XX |·dmax
hmax
B . Since the origin are

computed in every layer and this whole process is repeated for each alignment of A and B, the
total complexity is in O(|CA| · (NhmaxB )).
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6.2.3.4 An experimental evaluation

Let us evaluate the exponential version of the algorithm to investigate the performances over dif-
ferent instances3. The results are shown in Figure 6.12. For this experimental evaluation, random
instances of equations over connected DDS based on different parameters have been generated.
For the three plots above in Figure 6.12, cases with |CA| and pX prime numbers (this ensures
gcd(|CA|, pX) = 1) have been tested, since they represent the worst-case scenario in which all the
nodes of B are in one connected component. As the total number of nodes is always the same
for A and X , one can remark that the axes also give the information on the number of transient
points, (inversely proportional to the cycle lengths). The naive reconstruction algorithm of X (left
column of Figure 6.12) has been compared to the presented approach, with (right) and without
(middle) height optimisation. As one might have guessed, the naive algorithm strongly depends
on the number of transient nodes of X . Indeed, the naive one does not take into account the infor-
mation on the dynamics of B and A, but just their t-abstractions to compute TX . The approach
explained above, on the other hand, applies the combinatorial reasoning on elements of B instead
of X . It thus depends on the number of transient of A and X , as B does. As explained in the sec-
tion above, the TBr,h|o comes from a multiplication ofM1, which comes from A, and TXr,h|o which
comes from X . If one of the two is smaller, the resulting TBr,h|o will be smaller as well. This will

3The experiments have been done on an AMD EPYC 7301 processor running at 2.2GHz, with 128GiB of RAM and
16 cores. The algorithm has been implemented in Python 3.9.12 and runs with version 7.3.9 of PyPy.

Figure 6.12 – Plots showing the proportion of random instances solved in less than 1 second over
the 50 cases executed for each box. The three plots above are based on 30000 instances with A
and X of 100 nodes each, and B of 10000 nodes, with increasing cycle lengths for A (x-axis) or
X (y-axis). The three plots below are on 9500 instances with A, X and B having only one cyclic
node and an increasing number of nodes (x-axis) and maximum indegree (y-axis), for both A and
X .
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decrease the number of feasible affectations. The drawback is when X has much fewer transient
points than A. In this case, the combinatorics on X would be more efficient, which explains why
the naive algorithm has better results in the far left region of the plots. The optimisation over the
origins affectation turns out to be relevant to delay the exponential growth of the algorithm. Note
that, in emphasis on the conjecture, the time is considered up to the moment that the first solution
has been found. If the goal is the enumeration of all the solutions, the time would be multiplied
by a linear factor.

As smaller cycle lengths tends to increase the execution time, the extreme case of |CA|, |CX |
and |CB| equal to 1 is studied too (i.e. the plots below). As in the previous study, the naive algo-
rithm depends almost exclusively on the number of transient points of X . It appears to be efficient
only when the incoming degree equals 2. It is a special case where a lot of symmetries are involved
and where a great number of distinct permutations lead to isomorphic dynamics. In the two other
plots, the incoming degree plays a greater role. One may think that greater indegrees imply wider
layers and more combinatorics. Surprisingly, the maximum incoming degree is associated with
a shorter execution time. Actually, the combinatorial aspect is correlated to the number of nodes
with the same indegree. This allows us to have much better results than the naive approach as the
maximum indegree grows. One can notice that also in these cases the combinatorial optimisation
improves the performance of the algorithm. 4

In conclusion, we experimentally observed that this algorithm has good results in most cases
and can compute solutions of equations with large number of nodes in the known term, despite
its exponential runtime. We also introduced some further optimisations by considering interesting
properties of the direct product computed over functional graphs, and succeeded to push back a
little more the exponential cost. However, also the polynomial approach is interesting since it finds
all solutions of basic equations over t-abstractions and identifies some impossible equations over
DDS in polynomial time. In fact, if there are no possible solutions according to the abstraction,
one can be sure that the equation over dynamics graphs is impossible too.

4The performance loss for low degrees comes from the graph generation routine which tends to create balanced
in-trees. Thus, the height upgrade cannot overcome the extra time of the optimisation itself.





Conclusion et
Perspectives

In this thesis, an abstractions-based approach to solving multivariate polynomial equations (with a
constant right-hand term and one variable per monomial) is proposed. These equations are chosen
as they prove to be a good starting point for investigating this type of approach and allow hypothe-
ses on DDS to be modelled. In this manuscript, it is also intended to enumerate the solutions of
a DDS equation to be able to obtain the maximum amount of information from it (different fac-
torisations/decompositions or values for the unknowns supporting the hypothesis modelled by the
polynomial).

Three abstractions are introduced.
The c-abstraction is concerned with the number of states of the unknowns of the polynomial.

It transforms the original equation in a new one in which each DDS (i.e. coefficients, unknowns,
and right-hand side) is replaced by the cardinality of the set of states of the corresponding system.
In Chapter 4, we saw that sums and products of DDS correspond to sums and products of the
c-abstractions (i.e. natural numbers), and that the enumeration of the solutions of the abstraction
can be done with a Multi-valued Decision Diagram.

After finding the potential number of states for each variable, the goal becomes to reconstruct
the feasible dynamic behaviour between them.

The a-abstraction focus on the dynamics between the periodic points. Indeed, it allows to
identify the number of periodic points and the cyclic behaviour of the variables. Concerning the
operations of the semiring, the sum of DDS turns out to be just the disjoint union of the cycles
of the addends, while, the result of a product operation depends on the lengths and the number
of cycles involved. An important part of Chapter 5 shows that enumerating the solutions of an
a-abstraction equation corresponds to enumerating the solutions of a finite number of systems in-
volving just equations of the form C1

p � X̊ = Cnq (i.e. basic equations). This is possible thanks to
some algebraic transformations called contraction steps. Indeed, a fundamental step becomes to be
able to enumerate the solutions of a basic equation. Then, Section 5.2.1 explores the complexity of
deciding if a basic equation admits solutions and the complexity to list all of them, while Sections
5.2.2 and 5.2.3 point out the connection with the Change-Making problem and provide two algo-
rithmic solutions. The solution based on MDD proves to be interesting from a memory and time
point of view. Then, we conceived a pipeline to enumerate the solutions of general a-abstraction
equations. It is based on the idea to avoid unfeasible systems (i.e. which contain impossible basic
equations) and on the combination of the solutions (of the basic equations) performing Cartesian
products and intersections directly on MDD. Hence, this allows us to control the number of opera-
tions to retrieve the set of values for each X̊w in the a-abstraction equation. The last but non-trivial
step is the introduction of a technique to compute roots over the cyclic behaviours of DDS. Let
us recall that, since we are in a commutative semiring, inverse operations do not exist. For this
reason, being able to compute the roots over cyclic parts of DDS is a key point in the suitability of
the pipeline to be able to solve polynomial equations with a degree greater than one.
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Finally, the t-abstraction is presented. This abstraction is founded on the idea of representing
the transient behaviours of a DDS with a multiset of matrices modelling the transient part of
each component of a system. Transient dynamics is more precisely represented through multisets
containing the number of predecessors of transient nodes with a certain distance from a certain
periodic node. This last abstraction is certainly the one that proves most insidious when trying
to understand how transients are involved in the product operation. However, by exploring the
connection with the cancellation problem on graphs, we introduced a linear upper bound to the
number of solutions of basic equations over t-abstractions, as well as over connected DDS. This
result is particularly important because it allows us to limit the combinatorics when trying to find
solutions to basic equations. Indeed, in Section 6.2.2 we provided a polynomial algorithm to list
all solutions of a basic t-abstraction equation, and in Section 6.2.3 an exponential one to find all
solutions (up to isomorphism) of basic equations over connected DDS.

Several questions arise at this point, as well as, prospects for future works.
Concerning the t-abstraction, it would be important to be able to prove Conjecture 1. From

the experiments carried out, no counterexamples have been found unless there are symmetries
between the solutions. Proving it would allow the algorithms presented in Chapter 6 to stop at the
first solution found, hence limiting the calculations. Therefore, it would become interesting and
useful to find conditions to establish which alignment is most likely to yield a solution.

Another important step is certainly to introduce a pipeline to combine the solutions of the basic
equations to reconstruct the solutions of a t-abstraction equation. The general idea of the pipeline
would be similar to the one showed for the a-abstraction, but with two extra features. It would have
to take into account the solutions calculated for the basic equations over connected DDS instead
of the t-abstraction ones, and provide an additional step for calculating the solutions of equations
with a right-hand term containing several components with cycles of the same length (Equation
(6.4)). This would allow us to solve more complex equations than simple basic ones. However, to
solve equations of a degree greater than one, it is necessary to study the root computation on the
transient part in accordance with what has been studied on the product. In other words, one would
have to be able to solve

TX + . . .+ TX ⊇ TB

and also, in this case, one would have to be able to solve it on t-abstractions, as well as, reconstruct
the corresponding DDS. It is indeed important to emphasise that it has already been shown that, if
the solution TX exists, it is unique [Imrich et al. (2007)].

Another target, concerning the algorithms presented in Chapter 6, could be to introduce a
parallel version. It is in fact possible to parallelise the computation between different alignments
(for both the polynomial and the exponential algorithm). For the exponential version, also the
computations with different affectations of origins can be parallelised. However, the trade-off
between the “cost” of the treads and the computations they perform would have to be explored.
In any case, parallelisation would allow the exponential to be pushed a little further and this could
be particularly significant because it allows DDS with larger sizes to be solved (and this is very
important from an application point of view).

To conclude on t-abstraction, it would be interesting to study the complexity of the prob-
lems involved. Given the algorithms presented, we know that deciding whether a solution on
t-abstrations exists is in P , while on connected DDS, it is in NP . Nevertheless, it would be useful
to explore further into the complexity of knowing whether an equation admits solutions before
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enumerating which ones. The complexity of the enumeration problems can also be better inves-
tigated. Based on what we have seen in Chapter 6, we know that they are both in EnumP , as
verification can be done in polynomial time, but they could also be part of other classes. Enumer-
ation problems can be classified according to: the total time (depending on the size of the input
and/or output) needed for the enumeration, the average time (total time divided by the number
of solutions), the delay (time between two solutions), or even according to the time to find the
first k solutions. For each of these criteria, there are different classes that have been already de-
fined [Strozecki (2021)]. This analysis would also be interesting for the enumeration problems
presented in Chapters 4 and 5.

Other future developments, now considering the a-abstraction, would be to study alternatives
for the computation of the intersection of SB-Cartesian MDD and the introduction of parallelism in
the pipeline. With regard to the intersection, one could imagine testing, for example, an approach
based on an initial non-deterministic MDD that would allow to use the classical intersection, or
to try to “reorganise” the result of a Cartesian product in such a way that it is an SB-MDD. On
the other hand, as far as the pipeline is concerned, one could parallelise the computation of the
solutions of the different basic equations and of the solutions of the different systems (i.e. root-
tt paths in CS), and also the roots for the different values found for each X̊w. Both of these
improvements would be just implementative, but significant for performance.

Finally coming to consider the research directions opened up in Chapter 4, we come to the
somewhat more general questions.

An important step would be to compare experimentally the approach based on the indepen-
dent resolution of abstractions (followed by an intersection) and the guided search based on the
resolution of abstractions in the order presented to better understand the gain.

Furthermore, one could consider multivariate polynomial equations with constant right term
and several variables per monomial. One approach would be to consider each monomial as the
result of multiplying the coefficient and the unknown part Y , and then solving Y = Xw1

1 . . . Xwk
k

afterwards. This is possible on the basis of what has been learned about the product operation in
the three abstractions, but needs to be formalised.

Another interesting direction aim is to investigate the possibility of introducing “equivalence
classes” based on assumptions modelled in a polynomial equation. In other words, identify dy-
namical systems that respect a certain property represented in the polynomial side and can hence
be defined as belonging to the same “class”. Obviously, an important step would be to write the
polynomial according to what one wants to study.

Evaluating the provided methodology in an application context would also be an important
step to better understand the modelling phase of a hypothesis and the significance of the solutions
found to the equation.

Finally, one could try to extend the abstractions-based solution to other types of dynamics
(i.e. other than functional graphs). This would require reverifying the existence of an algebraic
structure to be able to formulate polynomial equations and also review all abstractions from both a
theoretical and an implementation point of view. This is certainly an ambitious goal, but it would
allow us to apply the idea presented in this thesis to a much larger class of DDS, namely the
non-deterministic finite DDS.
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A Non-maximal sensitivity to synchronism in ECA: exact asymptotic
measures

This appendix presents the results of research activities carried out during the thesis period con-
cerning Elementary Cellular Automata and their sensitivity to synchronism. The results presented
here are the outcome of a collaboration with Kévin Perrot, Dr. HDR (Université Aix-Marseille,
France), Professor Pedro Paulo Balbi de Oliveira, Dr. (Universidade Presbiteriana Mackenzie,
São Paulo, Brazil), Eurico Ruivo, Dr. (Universidade Presbiteriana Mackenzie, São Paulo, Brazil),
and Professor Enrico Formenti, Dr. HDR (Université Côte d’Azur, France) and they have been
published in [Balbi et al. (2020), Balbi et al. (2022)].

As presented in Chapter 1, Cellular automata (CA) are dynamical systems and interesting
mathematical and computational objects suitable for modelling real-world complex systems. The
dynamics of a CA is locally-defined: every cell computes its next state based upon its own state
and neighbours states (according to a specific definition of neighbourhood). Here, we deal with
deterministic block-sequential updates [Aracena et al. (2009), Aracena et al. (2011)], as presented
in Section 1.3.2. Recall that, under these updating schemes, the cells of a CA are partitioned
into disjoint blocks with different priorities of being updated. The initial updating order (priority
scheme) is unchanged throughout the temporal evolution. A possible cells partition is called a
block-sequential update schedule. For a complete presentation of asynchronous CA, the reader
can refer to Nazim Fatès analysis [Fatès (2014)].

In the context of asynchronous CA, a natural question concerns the number of different possi-
ble dynamics.

In the literature, several analyses are proposed to answer this question. McAuley et al. study
asynchronous CA focusing on periodic points of the dynamics [Macauley et al. (2011), Macauley
et al. (2007)]. According to them, a rule is π-independent if the set of periodic points is inde-
pendent of the asynchronous update procedure (permutations of cells). They characterised 104
elementary cellular automata rules (ECA) as being π-independent.

Remark that one can extend this analysis also to non-periodic behaviour. Indeed, we fill this
gap by considering two dynamics as non-equivalent if there is at least a configuration with a cell
that can be updated differently (according to different update procedures).

Considering this definition, a possible way to study the number of different dynamics is
through the notion of sensitivity to synchronism [Perrot et al. (2019), Ruivo et al. (2018)]. In this
case, the idea is to investigate the number of dynamics over the number of valid block-sequential
update schedules. A CA rule has been defined as max-sensitive to synchronism when each different
block-sequential update schedule corresponds to a different dynamics.

Concerning the 256 ECA, 200 present maximum sensitivity [Ruivo et al. (2020)].
Therefore, it is natural to investigate the degree of sensitivity for the remaining 56 rules
(0, 3, 8, 12, 15, 28, 32, 34, 44, 51, 60, 128, 136, 140, 160, 162, 170, 200 and 204).
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We prove that these rules form four classes (insensitive, low-sensitive, medium-sensitive, and
almost max-sensitive) according to their sensitivity to synchronism. We also characterise their
sensitivity function w.r.t. periodic and bi-infinite configurations.

The results exhibit an interesting range of sensitivity functions (see Table 2). We show that
some rules can have a number of dynamics that can be constant, exponential with respect to the
number of cells (with base 2), equal to the number of valid update schedules minus a function of
the number of cells, or equal to an exponential function with the golden ratio as a base.

This appendix is organised as follows. Section A.1 presents fundamental definitions and re-
sults on Boolean networks, update digraphs, and elementary cellular automata. Considering con-
figurations of arbitrary size, Section A.2 provides formal expressions to the sensitivity to synchro-
nism of the four classes. Concluding remarks are drawn in Section A.3.

A.1 Definitions

Finite elementary cellular automata will be presented in the more general framework of Boolean
automata networks, for which the variation of update schedule benefits from useful considerations
already studied in the literature. Figure A.13 illustrates the definitions.

A.1.1 Boolean networks

A Boolean Network (BN) of size n is an arrangement of n finite Boolean automata (or com-
ponents) interacting with each other according to a global rule F : {0,1}n → {0,1}n, which
describes how the global state changes after one time step. Let JnK = {0, . . . , n− 1}. Each
automaton is identified with a unique integer i ∈ JnK and xi denotes the current state of the au-
tomaton i. A configuration x ∈ {0,1}n is a snapshot of the current state of all automata and
represents the global state of the BN.

For convenience, we identify configurations with words on {0,1}n. Hence, for example,
01111 or 014 both denote the configuration (0,1,1,1,1). Remark that the global function
F : {0,1}n → {0,1}n of a BN of size n induces a set of n local functions fi : {0,1}n → {0,1},
one per each component, such that F (x) = (f0(x), f1(x), . . . , fn−1(x)) for all x ∈ {0,1}n. This
gives a static description of a discrete dynamical system, and it remains to set the order in which
components are updated in order to get a dynamics. Before going to update schedules, let us first
introduce interaction digraphs.

The component i influences the component j if ∃x ∈ {0,1}n : fj(x) 6= fj(xi), where xi is the
configuration obtained from x by flipping the state of component i. The component i influences
the component j if ∃x ∈ {0,1}n such that the result of the update procedure of j is different
according to whether the state of component i is 0 or 1. Note that in the literature one may also
consider positive and negative influences, but they will not be useful for the present study. The
interaction digraph GF = (V,A) of a BN F represents the effective dependencies among its set
of components

V = JnK and A = {(i, j) | i influences j} .

It will turn out to be pertinent to consider ĜF = (V,A), obtained from GF by removing the loops
(arcs of the form (i, i)).

For n ∈ N, one can denote by Pn the set of ordered partitions of JnK and by F a BN of size
n. A block-sequential update schedule ∆ = (∆1, . . . ,∆k) is an element of Pn. It defines the
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Figure A.13 – Left: interaction digraph GECA
6 of the ECA rule 128 for n = 6, with local functions

fi(x) = xi−1∧xi∧xi+1 for all i ∈ {0, . . . , 5}. Right: update digraph corresponding to the update
schedules ∆ = ({1, 2, 3}, {0, 4}, {5}) and ∆′ = ({1, 2, 3}, {0}, {4}, {5}), which are therefore
equivalent (∆ ≡ ∆′). For example, f (∆)(111011) = 110000 whereas for the synchronous
update schedule we have f (∆sync)(111011) = 110001.

following dynamics F (∆) : {0,1}n → {0,1}n,

F (∆) = F (∆k) ◦ · · · ◦ F (∆2) ◦ F (∆1) with f (∆j)(x)i =
{
fi(x) if i ∈ ∆j ,

xi if i /∈ ∆j .

In words, the components are updated in the order given by ∆: sequentially block by block, and
in parallel within each block. The parallel or synchronous update schedule is ∆sync = (JnK). In
this article, since only block-sequential update schedules are considered, they are simply called
update schedule for short. They are

• “fair” in the sense that all components are updated exactly the same number of times,

• “periodic” in the sense that the same ordered partition is repeated.

Given a BN F of size n and an update schedule ∆, the transition digraph DF (∆) = (V,A) is
such that

V = {0,1}n and A = {(x, F (∆)(x)) | x ∈ {0,1}n}.
It describes the dynamics of F under the update schedule ∆. The set of all possible dynamics of
the BN F , at the basis of the measure of sensitivity to synchronism, is then defined as

D(F ) = {DF (∆) | ∆ ∈ Pn} .

A.1.2 Update digraphs and equivalent update schedules

For a given BN, some update schedules always give the same dynamics. Indeed, if, for example,
two components do not influence each other, their order of updating has no effect on the dynamics
(see Example A.13 for a detailed example). The notion of update digraph has been introduced in
a previous work in order to study update schedules [Aracena et al. (2009)].

Given a BN F with loopless interaction digraph ĜF = (V,A) and an update schedule ∆ ∈ Pn,
define lab∆ : A→ {⊕,	} as

∀(i, j) ∈ A, lab∆((i, j)) =
{
⊕ if i ∈ ∆a, j ∈ ∆b with 1 ≤ b ≤ a ≤ n,
	 if i ∈ ∆a, j ∈ ∆b with 1 ≤ a < b ≤ n.
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In other words, a 	-label on the arc (i, j) means that the cell i will be updated before the cell j.
Similarly, a ⊕-label means that the cell i will be updated at the same time or after the cell j.

The update digraph UF (∆) of the BN F for the update schedule ∆ ∈ Pn is the loopless
interaction digraph decorated with lab∆, i.e. UF (∆) = (V,A, lab∆). Note that loops are removed
because they bring no meaningful information: indeed, an edge (i, i) would always be labeled ⊕.
Now we have that if two update schedules define the same update digraph then they also define
the same dynamics.

Theorem A.1 ( [Aracena et al. (2009)]). Given a BN F and two update schedules ∆,∆′, if
lab∆ = lab∆′ then DF (∆) = DF (∆′) .

A very important remark is that not all labelings correspond to valid update digraphs (i.e. such
that there are update schedules giving these labelings). For example, if two arcs (i, j) and (j, i)
belong to the interaction digraph and are both labeled 	, it would mean that i is updated prior to
j and j is updated prior to i, which is contradictory. Fortunately there is a nice characterisation of
valid update digraphs.

Theorem A.2 ( [Aracena et al. (2011)]). Given F with ĜF = (V,A), the label function
lab : A→ {⊕,	} is valid if and only if there is no cycle (i0, i1, . . . , ik), with i0 = ik and k > 0,
such that

• ∀0 ≤ j < k :
(
(ij , ij+1) ∈ A and lab((ij , ij+1)) = ⊕

)
or
(
(ij+1, ij) ∈ A and

lab((ij+1, ij)) = 	
)

,

• ∃0 ≤ i < k : lab((ij+1, ij)) = 	.

In words, Theorem A.2 states that a labeling is valid if and only if the multi-digraph where
the labeling is unchanged but the orientation of 	-arcs is reversed does not contain a cycle with at
least one arc labeled 	 (forbidden cycle).

According to Theorem A.1, update digraphs define equivalence classes of update schedules:
∆ ≡ ∆′ if and only if lab∆ = lab∆′ . Given a BN F , the set of equivalence classes of update
schedules is therefore defined as

U(F ) = {UF (∆) | ∆ ∈ Pn} .

A.1.3 Sensitivity to synchronism

The sensitivity to synchronism µs(F ) of a BN F quantifies the proportion of distinct dynamics
with respect to non-equivalent update schedules. The idea is that when two or more update sched-
ules are equivalent then µs(F ) decreases, while it increases when distinct update schedules bring
to different dynamics. More formally, given a BN F we define

µs(F ) = |D(F )|
|U(F )| .

Obviously, it holds that 1
|U(F )| ≤ µs(F ) ≤ 1, and a BN F is as much sensible to synchronism

as it has different dynamics when the update schedule varies. The extreme cases are a BN F with
µs(F ) = 1

|U(F )| that has always the same dynamicsDF (∆) for any update schedule ∆, and a BN F

with µs(F ) = 1, which has a different dynamics for different update schedules (for each ∆ 6≡ ∆′
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0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29,
30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 50, 51, 54, 56, 57, 58, 60,
62, 72, 73, 74, 76, 77, 78, 90, 94, 104, 105, 106, 108, 110, 122, 126, 128, 130, 132,
134, 136, 138, 140, 142, 146, 150, 152, 154, 156, 160, 162, 164, 168, 170, 172, 178,
184, 200, 204, 232

Table 1 – ECA local rules up to τι, τ%, τη and τ%η.

it holds that DF (∆) 6= DF (∆′)). A BN F is max-sensitive to synchronism iff µs(F ) = 1. Note that
a BN F is max-sensitive if and only if

∀∆,∆′ ∈ Pn, (∆ 6≡ ∆′)⇒ ∃x ∈ {0,1}n and ∃i ∈ JnK such that f (∆)(x)i 6= f (∆′)(x)i .
(A.9)

A.1.4 Elementary cellular automata

In this study we investigate the sensitivity to synchronism of elementary cellular automata (ECA)
over periodic configurations. Indeed, they are a subclass of BN in which all components (also
called cells in this context) have the same local rule, as follows. Given a size n, the ECA of local
function r : {0,1}3 → {0,1} is the BN F such that

∀i ∈ JnK, fi(x) = r(xi−1, xi, xi+1)

where components are taken modulo n (this will be the case throughout all the appendix without
explicit mention). We use the convention introduced by Wolfram to designate each of the 256
ECA local rule r : {0,1}3 → {0,1} as the number

w(r) =
∑

(x1,x2,x3)∈{0,1}3
r(x1, x2, x3)2(22x1+21x2+20x3).

We denote by rα the Boolean function such that w(r) = α with α ∈ {0, . . . , 255}. Given a
Boolean function r : {0,1}3 → {0,1}, consider the following transformations over local rules:
τι(r)(x, y, z) = r(x, y, z), τ%(r)(x, y, z) = r(z, y, x), τη(r)(x, y, z) = 1− r(1− z, 1− y, 1− x)
and τ%η(r)(x, y, z) = 1 − r(1 − z, 1 − y, 1 − x) for all x, y, z ∈ {0,1}. It is known that these
transformations preserve the dynamics [Cattaneo et al. (1997)]. It is not difficult to see that
they also preserve sensitivity to synchronism. For this reason we consider only 88 ECA rules up
to equivalences with τι, τ%, τη and τ%η. Table 1 reports these equivalence classes of ECA, the
smallest Wolfram number per class is indicated.

The definitions of Subsection A.1.3 are applied to ECA rules as follows. Given a size
n, the ECA interaction digraph of size n GECA

n = (V,A) is such that V = JnK and A =
{(i+ 1, i), (i, i+ 1) | i ∈ JnK}.

In [Perrot et al. (2019), Ruivo et al. (2018)], it is proved that

|UECA(n)| = 3n − 2n+1 + 2.

where UECA(n) is the set of valid labelings of GECA
n . The sensitivity to synchronism of ECA is

measured relatively to the family of ECA, and therefore relatively to this count of valid labelings
of GECA

n , even for rules where some arcs do not correspond to effective influences (one may think
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of rule 0). Except from this subtlety, the measure is correctly defined by considering, for an ECA
rule number α and a size n, that rα : {0,1}3 → {0,1} is its local rule, and that Fα,n : {0,1}n →
{0,1}n is its global function on periodic configurations of size n, which is defined as follows

∀x ∈ {0,1}n,∀i ∈ JnK, fα(x)i = rα(xi−1, xi, xi+1).

(a) ∆ = {(34, 30, 6, 46), (26, 5), (17, 13, 49, 48, 21, 29, 19,
44), (1, 37, 20, 23, 47, 36), (31, 28, 25), (24, 22, 42, 7, 11,
45, 14, 27, 15, 2, 40, 12), (35, 33, 43, 18, 32), (16, 39, 38,
41, 3, 10, 4, 8, 9, 0)}.

(b) ∆′ = {(1, 6, 25), (3, 17, 36, 31, 47, 7, 4, 40, 38), (15,
48, 23, 24, 29, 42), (19, 18, 13, 45, 49, 20, 43, 5), (12, 34,
32, 46, 2, 11, 9, 21, 8, 30, 44), (16, 37, 28), (27, 14, 26, 22,
33, 0, 10, 39, 35, 41)}.

Figure A.14 – Space-time diagrams for ECA rule 162 w.r.t. two non-equivalent update schedules
∆ and ∆′ (starting from the same configuration). We see that ∆ and ∆′ lead to different dynamics.
Indeed, ECA rule 162 is sensitive (see Section A.2.4).

(a) Initial configuration x updated according to the same ∆
as in Figure A.14.

(b) Initial configuration x updated according to the same ∆′
as in Figure A.14.

Figure A.15 – Space-time diagrams for ECA rule 200 w.r.t. two non-equivalent update schedules
∆ and ∆′ (starting from the same configuration). We see that ∆ and ∆′ lead to the same dynamics.
Indeed, ECA rule 200 is insensitive to synchronism (see Section A.2.1).
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Then, the sensitivity to synchronism of ECA rule number α is given by

µs(Fα,n) = |D(Fα,n)|
3n − 2n+1 + 2 .

Figures A.14 and A.15 show examples of a ECA rule that is sensitive to synchronism and one that
is not.
An ECA rule number α is ultimately max-sensitive to synchronism when

lim
n→+∞

µs(Fα,n) = 1.

The following result provides a first overview of sensitivity to synchronism in ECA.

Theorem A.3 ( [Perrot et al. (2019), Ruivo et al. (2018)]). For any size n ≥ 7, the nineteen
ECA rules 0, 3, 8, 12, 15, 28, 32, 34, 44, 51, 60, 128, 136, 140, 160, 162, 170, 200 and 204
are not max-sensitive to synchronism. The remaining sixty-nine other rules are max-sensitive to
synchronism.

Theorem A.3 gives a precise measure of sensitivity for the sixty-nine maximum sensitive rules,
for which µs(Fα,n) = 1 for all n ≥ 7, but for the nineteen that are not maximum sensitive it
only informs that µs(Fα,n) < 1 for all n ≥ 7. In the rest of this appendix, we study the precise
dependency on n of µs(Fα,n) for these rules, filling the huge gap between 1

3n−2n+1+2 and 1. This
will offer a finer view on the sensitivity to synchronism of ECA. The results are summarised in
Table 2.

Class Rules (α) Sections Sensitivity (µs(Fα,n)) Sensitivity (µs(Fα))

I 0, 51, 200, 204 A.2.1 1
3n−2n+1+2 for any n ≥ 3 0

II
3, 12, 15, 34, 60, 136, 170

A.2.2 2n−1
3n−2n+1+2 for any n ≥ 4 0

28, 32, 44, 140
III 8 A.2.3 φ2n+φ−2n−2n

3n−2n+1+2 for any n ≥ 5 0

IV 128, 160, 162 A.2.4 3n−2n+1−cn+2
3n−2n+1+2 for any n ≥ 5 1

Table 2 – The rules are divided into four classes (φ is the golden ratio and c is a constant).

Finally, remark that the notion of sensitivity to synchronism µs(Fα,n) that we defined over con-
figurations of size n with periodic boundary conditions can be naturally extended to bi-infinite
configurations by setting

µs(Fα) = lim
n→+∞

µs(Fα,n).

Indeed, configurations of size n with periodic boundary conditions can be seen as bi-infinite con-
figurations with spatial period n. These configurations are dense in the set of bi-infinite config-
urations whenever they are equipped with the standard Cantor topology. In other words, for any
bi-infinite update schedule u there exists an infinite sequence pn of periodic schedules such that
limn→∞ pn = u. Of course, in order to grant consistency, one should require that u is such that if
we take a segment of size, say 2n + 1, centered in 0, then we see all integers between −n and n
in the considered segment.
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Figure A.16 – Illustration of the chain of influences for some update sched-
ule ∆. According to Equation A.10, the result of the update of the cell i is
rα(rα(rα(rα(xi−4, xi−3, xi−2), xi−2, xi−1), xi−1, xi), i, rα(xi, xi+1, rα(xi+1, xi+2, xi+3))).

A.2 Theoretical measures of sensitivity to synchronism

This section contains the main results of [Balbi et al. (2020), Balbi et al. (2022)], regarding the
dependency on n of µs(Fα,n) for ECA rules that are not max-sensitive to synchronism.
As illustrated in Table 2, the ECA rules can be divided into four classes according to their sensi-
tivity functions. Each class will require specific proof techniques but all of them have interaction
digraphs as a common denominator.
As a warm up, one can consider the case of ECA rules having an interaction digraph, which
is a proper subgraph of GECA

n . Indeed, when considering them as BN many distinct update
schedules give the same labelings and hence, by Theorem A.1 and the definition of µs(Fα,n),
they cannot be max-sensitive. This is the case of the following set of ECA rules S =
{0, 3, 12, 15, 34, 51, 60, 136, 170, 204}. Indeed, denoting by GFα,n = (JnK, AFα,n) the interaction
digraph of ECA rule α of size n, one finds that the graph GFα,n for rules 0, 51 and 204 contains
no arcs as these rules do not depend on the left and right neighbour. Similarly, the other rules only
depend on the left or right neighbours. This reasoning will allow us to study the sensitivity of the
first two classes in Table 2.
Let us now introduce some useful results and notations that will be widely used in the following.
Given an update schedule ∆, in order to study the chain of influences involved in the computation
of the image at cell i ∈ JnK, define

←−
d∆(i) = max {k ∈ N | ∀j ∈ N, 0 < j < k =⇒ lab∆((i− j, i− j + 1)) = 	}
−→
d∆(i) = max {k ∈ N | ∀j ∈ N, 0 < j < k =⇒ lab∆((i+ j, i+ j − 1)) = 	} .

These quantities are well defined because k = 1 is always a possible value, and moreover, if←−
d∆(i) or−→d∆(i) is greater than n, then there is a forbidden cycle in the update digraph of schedule

∆ (Theorem A.2). Note that for any ∆ ∈ Pn

lab∆((i−←−d∆(i), i−←−d∆(i) + 1)) = ⊕ and lab∆((i+−→d∆(i), i+−→d∆(i)− 1)) = ⊕.

See Figure A.16 for an illustration.
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The purpose of these quantities is that it holds that, for any x ∈ {0,1}n,

( , xi, )f
(∆)
α (x)i = rα

rα( , xi−1, xi) rα(xi, xi+1, )

. . . . . .

rα(x
i−←−d∆(i), xi−←−d∆(i)+1, xi−←−d∆(i)+2) rα(x

i+−→d∆(i)−2, xi+−→d∆(i)−1, xi+−→d∆(i))

(A.10)

i.e. the quantities ←−d∆(i) and −→d∆(i) are the lengths of the chain of influences at cell i for the
update schedule ∆, on both sides of the interaction digraph. If the chains of influences at some cell
i are identical for two update schedules, then the images at iwill be identical for any configuration,
as stated in the following lemma.

Lemma A.4. For any ECA rule α, any n ∈ N, any ∆,∆′ ∈ Pn and any i ∈ JnK, it holds that if
←−
d∆(i) =←−d∆′(i) and

−→
d∆(i) = −→d∆′(i), then ∀x ∈ {0,1}n, f (∆)

α (x)i = f
(∆′)
α (x)i.

Proof. This is a direct consequence of Equation A.10, because the nesting of local rules for ∆ and
∆′ is identical at cell i.

For any rule α, size n, and update schedules ∆,∆′ ∈ Pn, it holds that

∀i ∈ JnK, ←−d∆(i) =←−d∆′(i) and −→d∆(i) = −→d∆′(i) ⇐⇒ ∆ ≡ ∆′ (A.11)

and this implies D
F

(∆)
α,n

= D
F

(∆′)
α,n

. Remark that it is possible that←−d∆(i) + −→d∆(i) ≥ n in which

case the image at cell i depends on the whole configuration. Moreover, the previous inequality
may be strict, meaning that the dependencies on both sides may overlap for some cell. This will
be a key in computing the dependency on n of the sensitivity to synchronism for rule 128 for
example. Let

d∆(i) = {j ≤ i | i− j ≤ ←−d∆(i)} ∪ {j ≥ i | j − i ≤ −→d∆(i)}

be the set of cells that i depends on under the update schedule ∆ ∈ Pn. When d∆(i) 6= JnK then
cell i does not depend on the whole configuration, and d∆(i) describes precisely ∆, as stated in
the following lemma.

Lemma A.5. For any ∆,∆′ ∈ Pn, it holds that if ∀i ∈ JnK, d∆(i) = d∆′(i) 6= JnK, then ∆ ≡ ∆′.

Proof. If d∆(i) 6= JnK then←−d∆(i) and −→d∆(i) do not overlap. Moreover, remark that←−d∆(i) and−→
d∆(i) can be deduced from d∆(i). Indeed,

←−
d∆(i) = max {j | ∀k ∈ JjK, i− j + k ∈ d∆(i)}
−→
d∆(i) = max {j | ∀k ∈ JjK, i+ j − k ∈ d∆(i)} .

The result follows since knowing −→d∆(i) and ←−d∆(i) for all i ∈ JnK allows one to completely
reconstruct lab∆, which would be the same as lab∆′ if d∆(i) = d∆′(i) for all i ∈ JnK (For-
mula A.11).
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A.2.1 Class I: Insensitive rules

This class contains the simplest dynamics, with sensitivity function 1
3n−2n+1+2 , and it is a good

starting point for our analysis.

Theorem A.6. For any n ≥ 1 and α ∈ {0, 51, 204}, µs(Fα,n) = 1
3n−2n+1+2 .

Proof. The result for ECA rule 0 is obvious since ∀n ≥ 1 and ∀x ∈ {0,1}n, F0,n(x) = 0n. The
ECA Rule 51 is based on the Boolean function r51(xi−1, xi, xi−1) = ¬xi and ECA rule 204 is
the identity. Therefore, similarly to ECA rule 0, for any n their interaction digraph has no arcs.
Hence, there is only one equivalence class of update digraph, and one dynamics.

The ECA rule 200 also belongs to Class I. It has the following local function r200(x1, x2, x3) =
x2∧(x1∨x3). Indeed, it is almost equal to the identity (ECA rule 204), except for r200(0,1,0) =
0. It turns out that, even if its interaction digraph has all of the 2n arcs, this rule produces always
the same dynamics, regardless of the update schedule.

Theorem A.7. For any n ≥ 1, µs(F200,n) = 1
3n−2n+1+2 .

Proof. We prove that F (∆)
200,n(x) = F

(∆sync)
200,n (x) for any configuration x ∈ {0,1}n and for any

update schedule ∆ ∈ Pn. For any i ∈ JnK such that xi = 0, the ECA rule 200 is the identity,
therefore it does not depend on the states of its neighbours, which may have been updated before
itself, i.e. f (∆)

200 (x)i = 0 = f
(∆sync)
200 (x)i. Moreover, for any i ∈ JnK such that xi = 1, if its two

neighbours xi−1 and xi+1 are both in state 0 then they will remain in state 0 and f (∆)
200 (x)i = 0 =

f
(∆sync)
200 (x)i, otherwise the ECA 200 acts as the identity rule and the two neighbours of cell i also

apply the identity, thus again f (∆)
200 (x)i = 1 = f

(∆sync)
200 (x)i.

A.2.2 Class II: Low-sensitivity rules

This class contains rules whose sensitivity function equals 2n−1
3n−2n+1+2 . This is a interesting class

that demands the development of specific arguments and tools. However, the starting point is
always the interaction digraph.

One-way ECA.

The following result counts the number of equivalence classes of update schedules for ECA rules
α having only arcs of the form (i, i + 1), or only arcs of the form (i + 1, i) in their interaction
digraph GFα,n .

Lemma A.8. For the ECA rulesα ∈ {3, 12, 15, 34, 60, 136, 170}, it holds that |U(Fα,n)| ≤ 2n−1.

Proof. The interaction digraph of these rules is the directed cycle on n vertices (with n arcs).
There can be only a forbidden cycle of length n, in the case that all edges are labeled 	 (see
Theorem A.2). Except for the ⊕-cycle (which is valid), any other labeling prevents the formation
of an invalid cycle, since the orientation of at least one arc is unchanged (labeled ⊕), and the
orientation of at least one arc is reversed (labeled 	).

In the following, we are going to exploit Lemma A.8 to obtain one of the main results of this
section. The idea is to show that, considering two valid and non-equivalent update schedules, it is
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always possible to construct a configuration x such that there will be at least a cell with different
values after the update procedure. The ECA rule 170 (left shift), which is based on the following
Boolean function: r170(xi−1, xi, xi+1) = xi+1, shows the way.

Theorem A.9. For any n ≥ 2, µs(F170,n) = 2n−1
3n−2n+1+2 .

Proof. Let F = F170,n and n ≥ 2. By definition, one finds that for any two non-equivalent update
schedules ∆ 6≡ ∆′ it holds that

∃i0 ∈ JnK lab∆((i0 + 1, i0)) = ⊕ and lab∆′((i0 + 1, i0)) = 	.

Furthermore, since having lab∆′((i+ 1, i)) = 	 for all i ∈ JnK creates an invalid cycle of length
n, there exists a minimal ` ≥ 1 such that lab∆′((i0 + `+ 1, i0 + `)) = ⊕ (this requires n > 1). A
part of the update digraph corresponding to ∆′ is pictured below.

. . . . . . . . .

i0 i0 + 1 i0+`−1 i0+` i0+`+1

	 	 	 	 ⊕

By definition of the labels and the minimality of `, we have that

∀0 ≤ k < `, f (∆′)(x)i0+k = xi0+`+1.

Since, for the update schedule ∆, we have f (∆)(x)i0 = xi0+1, it is always possible to construct
a configuration x with xi0+1 6= xi0+`+1 such that the two dynamics differ, i.e. f (∆)(x)i0 6=
f (∆′)(x)i0 . The result holds by Formula A.9.

Generalising the idea behind the construction used for ECA rule 170, one may prove that ECA
rules 3, 12, 15, 34, 60, 136 have identical sensitivity functions.

Theorem A.10. For any n ≥ 2 and for all α ∈ {3, 12, 15, 34, 60, 136}, µs(Fα,n) = 2n−1
3n−2n+1+2 .

Proof. We present the case when the interaction digraph has only arcs of type (i + 1, i) (such as
rule 170), the case (i, i+1) is symmetric. Fix n ≥ 2 and choose two update schedules ∆,∆′ ∈ Pn
such that ∆ 6≡ ∆′, then it holds that:

∃i0 ∈ JnK, lab∆((i0 + 1, i0)) = ⊕ and lab∆′((i0 + 1, i0)) = 	,

∃` ∈ JnK, (∀0 ≤ k < `, lab∆′((i0 + k + 1, i0 + k)) = 	) and (lab∆′((i0 + `+ 1, i0 + `)) = ⊕).

Fix α ∈ {3, 12, 15, 34, 60, 136} and let r be the corresponding Boolean function. Moreover let
F = Fα,n. We know that, for any x ∈ {0,1}n, we will have f (∆)(x)i0 = r(b, xi0 , xi0+1) for any
b ∈ {0,1}. Our goal is to construct a configuration x ∈ {0,1}n such that f (∆)(x)i0 6= f (∆′)(x)i0 .
In order to start, we need

∃xi0 , xi0+1, o1, o2 ∈ {0,1},∀b, b′ ∈ {0,1}, r(b, xi0 , xi0+1) 6= r(b′, xi0 , o1)
and r(xi0 , xi0+1, o2) = o1.

(A.12)

In other words, we can choose xi0 , xi0+1 so that there is a target output o1 for f (∆′)(x)i0+1, such
that if f (∆′)(x)i0+1 = o1 then f (∆)(x)i0 6= f (∆′)(x)i0 (the values of b and b′ do not matter).
Similarly, given xi0 , xi0+1, o1, there is a target output o2 for f (∆′)(x)i0+2. We can now construct
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x by finite induction by expressing such target outputs. In order to continue we want (the idea is
to use this by induction for all 0 < k ≤ `)

∀xi0+k−1, ok ∈ {0,1}, ∃xi0+k, ok+1 ∈ {0,1}, r(xi0+k−1, xi0+k, ok+1) = ok. (A.13)

If Formulas A.12 and A.13 hold then we can construct the desired configuration x. Indeed,
Formula A.12 gives xi0 , o1, xi0+1, o2, and by induction, knowing xi0+k−1, ok Formula A.13
gives xi0+k, ok+1 for 0 < k ≤ `. The construction ends with xi0+`+1 = o`+1. A sequence
(xi, oi) ∈ {0,1}2 for i ∈ J`K, which satisfies both Formulas A.12 and A.13, is called a witness
sequence. Given a witness sequence (xi, oi)i∈J`K it holds that f (∆)(x)i0 6= f (∆′)(x)i0 , and hence,
by Formula A.9 we have the result. We end by providing the witness sequences for all the local
rules in the hypothesis. We start by those rules which have an interaction digraph made by arcs of
type (i+ 1, i).

• Rule 34 :

– Formula (A.12): xi0 = 0, xi0−1 = 1, o1 = 1, o2 = 1.

– Formula (A.13): (xi0+k, ok+1) = (0,1).

• Rule 136 :

– Formula (A.12): xi0 = 1, xi0−1 = 1, o1 = 0, o2 = 0.

– Formula (A.13): (xi0+k, ok+1) =
{

(0,0), if k is even
(1,1), otherwise

We conclude with the witness sequences for the rules which have interaction digraph made by arcs
of type (i, i+ 1).

• Rule 3 :

– Formula (A.12): xi0 = 0, xi0+1 = 0, o−1 = 1, o−2 = 0.

– Formula (A.13): (xi0−k, o−k−1) =
{

(0,1), if k is even
(0,0), otherwise

• Rule 12 :

– Formula (A.12): xi0 = 1, xi0+1 = 1, o−1 = 0, o−2 = 1.

– Formula (A.13): (xi0−k, o−k−1) =
{

(0,0), if k is even
(1,0), otherwise

• Rule 15 :

– Formula (A.12): xi0 = 0, xi0+1 = 0, o−1 = 1, o−2 = 0.

– Formula (A.13): (xi0−k, o−k−1) =
{

(0,1), if k is even
(0,0), otherwise

• Rule 60 :

– Formula (A.12): xi0 = 0, xi0+1 = 0, o−1 = 1, o−2 = 1.
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– Formula (A.13): (xi0−k, o−k−1) =
{

(0,0), if k is even
(0,1), otherwise

Example A.1 – Consider the ECA rule α = 34 and a size n = 6. Given the two distinct update
schedules ∆ = ({3, 4}, {5}, {2}, {0, 1}) and ∆′ = ({3, 4}, {5}, {0, 1, 2}). Let i0 = 1 and
` = 2. The following is a witness sequence (see the proof of Theorem A.10): xi0−1 = 1, xi0 =
0, o1 = 1, xi0+1 = 0, o2 = 1, xi0+2 = 0, o3 = 1, and finaly xi0+3 = o3 = 1. By construction
it ensures (the value of xi0+4 is set, arbitrarily, to 0)

f (∆′)(100010)i0 = r(1,0, r(0,0, r(0,0,1))) = r(1,0, r(0,0,1)) = r(1,0,1) = 1

6=f (∆)(100010)i0 = r(100) = 0.

Exploiting patterns in the update digraph

In this subsection, we are going to develop a proof technique, which characterises the number of
non-equivalent update schedules according to the presence of specific patterns in their interaction
digraph. We will show in which cases the differences between two update schedules lead to
differences in the dynamics and in which cases they do not. Consequently, the proofs for the
different rules will be similar in structure but different in the details depending on which rule is
considered. This will concern ECA rules 28, 32, 44 and 140.
We begin with the ECA Rule 32, which is based on the Boolean function r32(x1, x2, x3) = x1 ∧
¬x2 ∧ x3.

Lemma A.11. Fix n ∈ N. For any update schedule ∆ ∈ Pn, for any configuration x ∈ {0,1}n
and for any i ∈ JnK, the following holds:

f
(∆)
32 (x)i = 1 ⇐⇒ lab∆((i+ 1, i)) = lab∆((i− 1, i)) = ⊕ and (xi−1, xi, xi+1) = (1,0,1).

Proof.
(⇐) Since lab∆((i+1, i)) = lab∆((i−1, i)) = ⊕ (see Figure A.17) this means that cells i−1 and
i + 1 are updated at the same time or after the cell i, therefore f (∆)

32 (x)i = r32(xi−1, xi, xi+1) =
r32(1,0,1) = 1.
(⇒) Choose x ∈ {0,1}n such that f (∆)

32 (x)i = 1. Assume that lab∆((i + 1, i)) = lab∆((i −
1, i)) = ⊕ but (xi−1, xi, xi+1) 6= (1,0,1). By the same reasoning as above, we have f (∆)

32 (x)i =
r32(xi−1, xi, xi+1) = 0, since (xi−1, xi, xi+1) 6= (1,0,1). Now, assume lab∆((i+ 1, i)) = 	 or
lab∆((i− 1, i)) = 	. Then,

f
(∆)
32 (x)i =


r32(0,0,1) = 0, if lab∆((i− 1, i)) = 	 and lab∆((i+ 1, i)) = ⊕
r32(1,0,0) = 0, if lab∆((i− 1, i)) = ⊕ and lab∆((i+ 1, i)) = 	
r32(0,0,0) = 0, if lab∆((i− 1, i)) = 	 and lab∆((i+ 1, i)) = 	

which contradicts the hypothesis.
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i−1 i i+1

. . . . . .

⊕

⊕

Figure A.17 – Labeling presented in the Lemma A.11. This is the only situation in which we can
obtain a cell updated to 1.

Corollary A.12. Fix n ∈ N. For any update schedule ∆ ∈ Pn, for any configuration x ∈ {0,1}n

and i ∈ JnK, if lab∆((i− 1, i)) = 	 or lab∆((i+ 1, i)) = 	, then f (∆)
32 (x)i = 0.

Lemma A.13. For any n ∈ N. Consider a pair of update schedules ∆,∆′ ∈ Pn. Then, D
F

(∆)
32,n
6=

D
F

(∆′)
32,n

if and only if there exists i ∈ JnK such that: lab∆((i + 1, i)) = lab∆((i− 1, i)) = ⊕ and

either lab∆′((i+ 1, i)) = 	 or lab∆′((i− 1, i)) = 	, or the symmetric condition (on ∆′,∆).

Proof.
(⇐) Without loss of generality, suppose that lab∆((i + 1, i)) = lab∆((i − 1, i)) = ⊕ and
lab∆′((i + 1, i)) = 	 or lab∆′((i − 1, i)) = 	 (the other case is the same where ∆ and ∆′

are exchanged). Then, by Lemma A.11 one can find f
(∆)
32 (x)i = 1 and by Corollary A.12,

f
(∆′)
32 (x)i = 0. Therefore, D

F
(∆)
32,n
6= D

F
(∆′)
32,n

.

(⇒) Suppose that for every i ∈ JnK one of the following holds:

(Case 1) lab∆((i+ 1, i)) = lab∆((i− 1, i)) = lab∆′((i+ 1, i)) = lab∆′((i− 1, i)) = ⊕
(Case 2) (lab∆((i+1, i)), lab∆((i−1, i))) 6= (⊕,⊕) 6= (lab∆′((i+1, i)), lab∆′((i−1, i))).

We will show that in both cases D
F

(∆)
32,n

= D
F

(∆′)
32,n

. Let j ∈ JnK and consider a configuration x ∈

{0,1}n such that: (xj−1, xj , xj+1) 6= (1,0,1), then by Lemma A.11, f (∆)
32 (x)j = f

(∆′)
32 (x)j =

0. Now suppose (xj−1, xj , xj+1) = (1,0,1). If we are in Case 1, then f (∆)
32 (x)j = f

(∆′)
32 (x)j =

1. If we are in Case 2, then f (∆)
32 (x)j = f

(∆′)
32 (x)j = 0. By the generality of j, F (∆)

32,n(x) =
F

(∆′)
32,n (x) and by the generality of x, D

F
(∆)
32,n

= D
F

(∆′)
32,n

.

For the ECA rules 28, 44 and 140 we are going to develop a similar construction as the one for ECA
rule 32 but before let us recall the Boolean functions which they are based on. We start with ECA
rule 44, which is based on the Boolean function r44(x1, x2, x3) = (¬x1 ∧ x2)∨ (x1 ∧¬x2 ∧ x3),
which implies that r44(1,0,1) = r44(0,1,1) = r44(0,1,0) = 1.

Notation. Let us call ? a possible value of a cell in the configuration that has no effect on the
result of the update procedure over the cells under consideration. At the same time, we will use
a letter to represent the value of a cell in the configuration that is unknown and that affects the
result of the update procedure over cells under consideration.
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y 1 1 ?. . . . . .

⊕

	

i−2 i−1
z−

i

0

i+1

. . . . . .

⊕

	

y 1 1 ?. . . . . .

⊕

⊕

i−2 i−1
z+

i

0

i+1

. . . . . .

⊕

⊕

Figure A.18 – On the left, starting from a configuration (y,1,1, ?), the schedule ∆ updates the
cell i before cell i − 1. Therefore, the cell i becomes 0 and the cell i − 1 is updated to z− =
r44(y,1,0). On the right, according to ∆′, the cells i and i − 1 are updated at the same time and
z+ = r44(y,1,1).

y 1 0 w. . . . . .

⊕

	

i−2 i−1
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i

zb

i+1

. . . . . .

⊕

	

y 1 0 w. . . . . .

⊕

⊕

i−2 i−1
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i
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i+1

. . . . . .

⊕

⊕

Figure A.19 – On the left, starting from a configuration (y,1,0, w), the schedule ∆ updates the
cell i before cell i−1. Therefore, the cell i becomes zb = r44(1,0, w), and the cell i−1 is updates
to za = r44(y,1, zb). On the right, according to ∆′, the cells i and i − 1 are updated at the same
time. Therefore, zc is equal to r44(y,1,0) and zb is equal to r44(1,0, w).

Lemma A.14. Given two update schedules ∆ and ∆′, if there exists i ∈ JnK such that

• lab∆((i, i− 1)) = 	 and lab∆′((i, i− 1)) = ⊕,

• lab∆((i− 1, i)) = lab∆′((i− 1, i)) = ⊕,

• lab∆((j, j − 1)) = lab∆′((j, j − 1)) and lab∆((j − 1, j)) = lab∆′((j − 1, j)) for each
j 6= i, j ∈ JnK,

then D
F

(∆)
44,n

= D
F

(∆′)
44,n

.

Proof. Given two update schedules ∆ and ∆′, we prove that (f (∆)
44 (x)i−1 = f

(∆′)
44 (x)i−1) and

(f (∆)
44 (x)i = f

(∆′)
44 (x)i) for every possible starting configuration x.

Starting from the case with xi−1 = xi = 1 (see Figure A.18), one obtains cells i − 1 and i
updated to states r44(y,1,0) and 0 (respectively) according to the ∆ update schedule and to
states r44(y,1,1) and 0 (respectively) according to the ∆′ update schedule. According to the
rule, we know that r44(0,1,0) = r44(0,1,1) = 1 and r44(1,1,0) = r44(1,1,1) = 0, as a
consequence, the equivalence holds in the case of xi−1 = xi = 1.
If we consider xi−1 = 1 and xi = 0 (see Figure A.19), one obtains cells i − 1 and i updated to

states r44(y,1, r44(1,0, w)) and r44(1,0, w) (respectively) according to the ∆ update schedule
and to states r44(y,1,0) and r44(1,0, w) (respectively) according to the ∆′ update schedule. Like
in the previous case, the result of the update procedure depends only on the y value, which will be
the same in ∆ and in ∆′, as a consequence, the equivalence holds in this case. If we consider the
opposite case xi−1 = 0 and xi = 1 (see Figure A.20), one obtains cells i−1 and i updated to states
r44(y,0,1) and 1 (respectively) according to the ∆ update schedule and to states r44(y,0,1) and
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y 0 1 ?. . . . . .

⊕

	

i−2 i−1
z−

i
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i+1

. . . . . .

⊕

	

y 0 1 ?. . . . . .

⊕
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. . . . . .

⊕

⊕

Figure A.20 – On the left, starting from a configuration (y,0,1, ?), the schedule ∆ updates the
cell i before cell i−1. Therefore, the cell i becomes r44(0,1, ?) = 1, and the cell i−1 is updated
to z− = r44(y,0,1). On the right, according to ∆′, the cells i and i − 1 are updated at the same
time. Therefore, xi becomes 1 and xi−1 is updated to z+ = r44(y,0,1).

? 0 0 ?. . . . . .

⊕

	

i−2 i−1
0

i

0

i+1

. . . . . .

⊕

	

? 0 0 ?. . . . . .

⊕

⊕

i−2 i−1
0

i

0

i+1

. . . . . .

⊕

⊕

Figure A.21 – On the left, starting from a configuration (?,0,0, ?), the schedule ∆ updates updates
the cell i before cell i − 1. Therefore, the cell i becomes 0, and the cell i − 1 is updated to
r44(?,0,0). On the right, according to ∆′, the cells i and i − 1 are updated at the same time.
Remark that r44(0,0, ?) = r44(?,0,0) = 0.

1 (respectively) according to the ∆′ update schedule, as a consequence, the equivalence holds also
in this case. The last case corresponds to xi−1 = xi = 0 (see Figure A.21), one obtains cells
i − 1 and i updated to states 0 and 0 according to ∆ and ∆′, as a consequence, the equivalence
holds. The two different update schedules give the same configurations independently from the
initial configuration, in other words D

F
(∆)
44,n

= D
F

(∆′)
44,n

.

Lemma A.15. Given two update schedules ∆ and ∆′, D
F

(∆)
44,n
6= D

F
(∆′)
44,n

⇐⇒ ∃i ∈ JnK such that

lab∆((i− 1, i)) = 	 and lab∆′((i− 1, i)) = ⊕, or such that the symmetric condition (on ∆′,∆)
is valid.

Proof. We can consider lab∆((i, i − 1)) = lab∆′((i, i − 1)) = ⊕ because according to Lemma
A.14 the value of lab∆′((i, i − 1)) cannot change the dynamics that we are considering and the
value of lab∆((i, i− 1)) must be ⊕ given the 	 in the opposite sense.
We can consider equal labelings over the other transitions.
Let j be a cell such that lab∆′((j, j + 1)) = ⊕ and lab∆′((j + k, j + k + 1)) = 	 for all
1 ≤ k ≤ i − j − 1. Such a j must exist since otherwise we would have a 	−cycle of length n.
Now, let x ∈ {0,1}n be any configuration of length n such that

x[j,i+1] =
{
1(1)(i−1)−j−1011, if (i− 1)− j − 1 mod 2 = 0 or j = i− 2
0(1)(i−1)−j−1011, otherwise

. (A.14)
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Then we have

(
f

(∆)
44 (x)[j+1,i]

)
=


0(10)b

(i−1)−j−2
2 c110, if (i− 1)− j − 1 mod 2 = 0

10, if j = i− 2
1(01)b

(i−1)−j−2
2 c10, otherwise

.

In general we can always obtain f (∆)
44 (x)i = 0 (see Figure A.22). The update schedule ∆′ gives

f
(∆′)
44 (x)i = 1. Therefore, f (∆)

44 (x)i 6= f
(∆′)
44 (x)i and D

F
(∆)
44,n
6= D

F
(∆′)
44,n

.

1 1 1 0 1 1. . . . . .

i−4
1

i−3
0

i−2
1

i−1
1

i

0

i+1

1. . . . . .

i−4

?

i−3

0

i−2

1

i−1

0

i

1

i+1

1. . . . . .

? 0 1 1 0 1. . . . . .

? ? ? 0 1 1. . . . . .

⊕

i−4
?

i−3
?

i−2
?

i−1
0

i

1

i+1

1. . . . . .

⊕

Figure A.22 – Blue double-circled and red triple-circled labels show the different cases of Equation
A.14 and the black ones represent ∆′. Recall that we cannot have a	-cycle in the labeled interac-
tion digraph of update schedule ∆′ and then there must be a cell j such that lab∆′((j, j+ 1)) = ⊕
and lab∆′((j + k, j + k + 1)) = 	 for all 1 ≤ k ≤ i− j − 1.

Consider now the ECA rule 28, it is based on r28(x1, x2, x3) = (¬x1 ∧ x2) ∨ (x1 ∧ ¬x2 ∧ ¬x3)
and hence r28(1,0,0) = r28(0,1,1) = r28(0,1,0) = 1. Remark that Lemma A.14 holds also
for this rule. The only difference is in the proof, for completeness we show the equivalence that
holds for every possible starting configuration (see Figure A.23).
For this rule also Lemma A.15 can be applied. The main idea is the same. In fact, let x ∈ {0,1}n
be any configuration of length n such that

x[j,i+1] =
{
1(1)(i−1)−j−1100, if (i− 1)− j − 1 mod 2 = 0 or j = i− 2
0(1)(i−1)−j−1100, otherwise

. (A.15)
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Then we have

(
f

(∆)
28 (x)[j+1,i]

)
=


(01)b

(i−1)−j
2 c00, if (i− 1)− j − 1 mod 2 = 0

00, if j = i− 2
1(01)b

(i−1)−j−2
2 c00, otherwise

.

In general we obtain f (∆)
28 (x)i = 0. The update schedule ∆′ gives f (∆′)

28 (x)i = 1. Therefore,
f

(∆)
28 (x)i 6= f

(∆′)
28 (x)i and D

F
(∆)
28,n
6= D

F
(∆′)
28,n

.

Let us now focus our attention on ECA rule 140, which is based on the Boolean function
r140(x1, x2, x3) = (¬x1 ∨ x3)∧ x2, that is to say r140(1,1,1) = r140(0,1,1) = r140(0,1,0) =
1.

Lemma A.16. For any n > 3, given two update schedules ∆,∆′ ∈ Pn, if there exists i ∈ JnK
such that

• lab∆((i, i+ 1)) = 	 and lab∆′((i, i+ 1)) = ⊕
• lab∆((i+ 1, i)) = lab∆′((i+ 1, i)) = ⊕
• lab∆((j, j − 1)) = lab∆′((j, j − 1)) and lab∆((j − 1, j)) = lab∆′((j − 1, j)) for each
j 6= i+ 1, j ∈ JnK

then D
F

(∆)
140,n

= D
F

(∆′)
140,n

.

Proof. Given the two update schedules ∆,∆′ ∈ Pn, using the same reasoning as for Lemma A.14,
one can prove that f (∆)

140 (x)i = f
(∆′)
140 (x)i and f (∆)

140 (x)i+1 = f
(∆′)
140 (x)i+1 for every possible starting

configuration x ∈ {0,1}n. It is easy to see from the Figures A.24, A.25, A.26 and A.27 that the
equivalence holds for every possible initial configuration. The two different update schedules give
the same configurations independently from the initial configuration, in other words D

F
(∆)
140,n

=
D
F

(∆′)
140,n

.

Remark A.1. The ECA rule 140 is such that r140(x1,0, x2) = 0 for any x1, x2 ∈ {0,1}, hence
for any given update schedule ∆ a cell that is in state 0 will remain in such a state throughout the
whole evolution.

Lemma A.17. Given two update schedules ∆ and ∆′, D
F

(∆)
140,n

6= D
F

(∆′)
140,n

⇐⇒ ∃i ∈ JnK such

that lab∆((i+ 1, i)) = 	 and lab∆′((i+ 1, i)) = ⊕, or the symmetric condition (on ∆′,∆).

Proof. Choose n,∆ and ∆′ as in the hypothesis. We are going to prove that there exists
a configuration such that f (∆)

140 (x)i 6= f
(∆′)
140 (x)i. Consider the following initial configura-

tion (xi−1, xi, xi+1, xi+2) = (1,1,1,0) and assume that lab∆((i − 1, i)) = ⊕ (according to
Lemma A.16, this is not changing the dynamics). Moreover, assume that lab∆((i + 1, i)) 6=
lab∆′((i+ 1, i)) is the only difference between the two update schedules. According to ∆′, i and
i+1 are updated together, therefore the final configuration is (1,1,0,0). In the case of ∆, the cell
i+ 1 is updated before than i holding r140(1,1,0) = 0. In a second moment, the cell i is updated
and r140(1,1,0) = 0. It follows that f (∆)

140 (x)i 6= f
(∆′)
140 (x)i and D

F
(∆)
140,n

6= D
F

(∆′)
140,n

. Remark that

the cell i+ 1 can be influenced from a 	-chain, but a cell with value 0 is frozen at this state.
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Figure A.23 – Starting from every possible configuration, a difference in a label over the edge
between i+ 1 and i is insufficient to obtain different final configurations for rule 28. In the figure:
za = r28(y,1,0), zb = r28(y,1,1), zc = r28(1,0, w), zd = r28(y,1, zc) and ze = r28(w,0,0).
We need also to consider that za = zb = y and zc = zd = 0 if y = 1, zc = zd = 1 otherwise.
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⊕
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⊕

Figure A.24 – On the left, starting from a configuration (?,1,1, y), the schedule ∆ updates the
cell i before cell i+ 1. Therefore, the cell i becomes r140(?,1,1) = 1, and the cell i+ 1 becomes
z = r140(1,1, y). On the right, according to ∆′, the cells i and i+ 1 are updated at the same time.
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y 1 0 ?. . . . . .
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i−1 i
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i+1
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i+2

. . . . . .
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⊕
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i+1
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. . . . . .

⊕

⊕

Figure A.25 – On the left, starting from a configuration (y,1,0, ?), the schedule ∆ updates the
cell i before cell i + 1. Therefore, the cell i becomes za = r140(y,1,0), and the cell i + 1 s
updated to r140(r140(y,1,0),0, ?) = 0. On the right, according to ∆′, the cells i and i + 1 are
updated at the same time. Remember that r140(1,0, ?) is equal to 0.
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i+1
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. . . . . .

⊕

⊕

Figure A.26 – On the left, starting from a configuration (?,0,1, ?), the schedule ∆ updates the
cell i before cell i+1. Therefore, the cell i becomes 0 (in fact r140(?,0,1) = 0), and the cell i+1
is updated to r140(0,1, ?) = 1. On the right, according to ∆′, the cells i and i+ 1 are updated at
the same time.

The previous lemma is sufficient to determine that two update schedules that differ in at least one
cell i such that lab∆((i + 1, i)) = 	 and lab∆′((i + 1, i)) = ⊕ generate two different dynamics.
Indeed, one can focus on one of these cells to build a configuration in which the cell updated
produces different values.
We are now ready to state the result regarding rules 28, 32, 44, 140.

Theorem A.18. For any n > 3 and for all α ∈ {28, 32, 44, 140}, µs(Fα,n) = 2n−1
3n−2n+1+2 .

Proof. Given a configuration of length n > 3, we have necessary and sufficient conditions to count
the number of different dynamics according to the update schedules only (Lemma A.13 for ECA
rule 32, Lemma A.15 for ECA rules 28 and 44, and Lemma A.17 for ECA rule 140). Intuitively,
these conditions are expressed in terms of local labeling patterns, which may be present at k cells

? 0 0 ?. . . . . .

	

⊕

i−1 i

0

i+1
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i+2

. . . . . .

	

⊕

? 0 0 ?. . . . . .

⊕

⊕
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i+1

0

i+2

. . . . . .

⊕

⊕

Figure A.27 – On the left, starting from a configuration (?,0,0, ?), the schedule ∆ updates the cell
i before cell i+ 1. Therefore, the cell i becomes 0, and the cell i+ 1 becomes r140(0,0, ?) = 0.
On the right, according to ∆′, the cells i and i + 1 are updated at the same time. Remark that
r140(?,0,0) = 0 and r140(0,0, ?) = 0.



ANNEXE 201

i

⊕

⊕
pattern A

i

⊕

	
pattern B

i

	

⊕
pattern C

i

	

	
pattern D

Figure A.28 – Lemma A.13 defines two equivalence classes of patterns at each position i ∈ JnK:
the class {A} and the class {B,C,D}.

out of n. Therefore, there are
∑n
k=0

(n
k

)
= 2n possible different dynamics (one of which actually

corresponds to a forbidden labeling).
Let us start with rule 44. Lemma A.15 states that it is necessary and sufficient to have a different
labeling on an arc of the form (i− 1, i) for some i ∈ JnK. As a consequence, there are at most 2n
possibilities. However, all-	-labels gives a forbidden cycle, and any other combination of at most
n−1	-labels on arcs of the form (i−1, i) can be encountered on a valid labeling (by labeling all
arcs of the form (i, i− 1) with ⊕, and if there is at least one 	-label on (i− 1, i) then label 	 one
arc (j, j − 1) such that (j − 1, j) is labeled ⊕). Hence the exact count is 2n − 1. Rule 28 has the
same caracterisation (Lemma A.15 again), and rule 140 has a symmetric caracterisation on arcs of
the form (i+ 1, i) (Lemma A.17).
Regarding rule 32, let A,B,C,D be the patterns defined on Figure A.28, then Lemma A.13
states there are two equivalence classes of patterns at each position i ∈ JnK: class {A} and class
{B,C,D}, and that it is necessary and sufficient to have patterns from different classes at some
i ∈ JnK. As a consequence, there are at most 2n possibilities. However, any combination of n
patterns from the class {B,C,D} gives a forbidden cycle:

• a B at i ∈ JnK can only be followed by a B at i + 1 to avoid a forbidden cycle of length
two, and by induction it gives a forbidden cycle of length n (counter-clockwise),

• a C at i ∈ JnK can only be preceded by a C at i − 1 to avoid a forbidden cycle of length
two, and by induction it gives a forbidden cycle of length n (clockwise),

• a D at i ∈ JnK can only be followed by a B at i + 1 and by the first case this leads to an
impossibility.

We deduce that the number of different dynamics is at most 2n−1, and now argue that it is at least
2n − 1:

• if there is no pattern from the class {B,C,D} it gives a valid labeling (all ⊕),

• if there is one pattern from the class {B,C,D} then choose D and it is valid,

• if there are between two and n− 1 patterns from the class {B,C,D}, then there is i ∈ JnK
such that we can set pattern A at i and pattern C at i+ 1, and for the other positions always
choose B from the class {B,C,D} (and of course A from the class {A}): this is valid.

We conclude that the exact count is again 2n − 1.

A.2.3 Class III: Medium-sensitivity rules

This subsection is concerned uniquely with ECA Rule 8, which is based on the following Boolean
function r8(x1, x2, x3) = ¬x1 ∧ x2 ∧ x3. As we will see, finding the expression of sensitivity
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function for this rule is somewhat peculiar and require to develop specific techniques. Although
the trajectory of limn→+∞ µs(F8,n) is different from the low-sensitive rules, it also tends to 0 for
rule 8.

Remark A.2. For any x1, x3 ∈ {0,1}, it holds that r8(x1,0, x3) = 0. Hence, for any update
schedule a cell that is in state 0 will remain in state 0 forever.

We will first see in Lemma A.19 that as soon as two update schedules differ on the labeling of an
arc (i, i − 1), then the two dynamics are different. Then, given two update schedules ∆,∆′ such
that lab∆((i, i− 1)) = lab∆′((i, i− 1)) for all i ∈ JnK, Lemmas A.20 and A.21 will respectively
give sufficient and necessary conditions for the equality of the two dynamics.

Lemma A.19. Consider two update schedules ∆,∆′ ∈ Pn for n ≥ 3. If there exists i ∈ JnK such
that lab∆((i, i− 1)) 6= lab∆′((i, i− 1)), then D

F
(∆)
8,n
6= D

F
(∆′)
8,n

.

Proof. Choose n ≥ 3 and fix some i ∈ JnK. Without loss of generality, assume that lab∆((i, i −
1)) = ⊕ and lab∆′((i, i − 1)) = 	 and take x ∈ {0,1}n such that (xi−2, xi−1, xi) = (0,1,1).
Cell i−2 will not change its state, hence when it is time for cell i−1 to be updated it will have a 0
at its left (cell i− 2) in both cases. For ∆, when cell i− 1 is to be updated, its neighbourhood will
be (0,1,1), and its state will become 1 after the iteration. As for ∆′, when cell i is to be updated,
cell i − 1 is still in state 1, therefore its state will become 0 and when its time for cell i − 1 to
be updated, it will have a 0 at its right (cell i) and its state will become 0 after the iteration. We
conclude that f (∆)

8 (x)i−1 6= f
(∆′)
8 (x)i−1 and the result follows.

Now consider two update schedules ∆,∆′ whose labelings are equal on all counter-clockwise arcs
(i.e. of the form (i, i − 1)). Lemma A.20 states that, if ∆ and ∆′ differ only on one arc (i − 1, i)
such that lab∆((i + 1, i)) = lab∆′((i + 1, i)) = 	, then the two dynamics are identical. By
transitivity, if there are more differences but only on arcs of this form, then the dynamics are also
identical.

Lemma A.20. Suppose ∆ and ∆′ are two update schedules over a configuration of length n ≥ 3
and there is i ∈ JnK such that

• lab∆((i+ 1, i)) = lab∆′((i+ 1, i)) = 	;

• lab∆((i− 1, i)) 6= lab∆′((i− 1, i));

• lab∆((j1, j2)) = lab∆′((j1, j2)), for all (j1, j2) 6= (i− 1, i).

Then D
F

(∆)
8,n

= D
F

(∆′)
8,n

.

Proof. Fix n ≥ 3 and choose i ∈ JnK. Without loss of generality, suppose that lab∆((i−1, i)) = ⊕
and lab∆′((i−1, i)) = 	. By Theorem A.2 and the fact that lab∆((i+1, i)) = lab∆′((i+1, i)) =
	, it follows that lab∆((i, i+ 1)) = lab∆′((i, i+ 1)) = ⊕, otherwise a forbidden cycle of length
two is created. See Figure A.29 for an illustration of the setting.
The two update schedules ∆ and ∆′ are very similar. Indeed, for any cell j ∈ JnK \ {i} the
chain of influences are identical, i.e.

←−
d∆(j) = ←−d∆′(j) and −→d∆(j) = −→d∆′(j). We deduce

from Lemma A.4 that for any configuration x ∈ {0,1}n and any j 6= i the images under update
schedules ∆ and ∆′, i.e. f (∆)

8 (x)j = f
(∆′)
8 (x)j . As a consequence, it only remains to consider
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i−1 i i+1

. . . . . .

	

⊕

Figure A.29 – Illustration of lab∆ (blue double-circled label) and lab∆′ (red triple-circled label)
in Lemma A.20. All other labels are equal (the label of arc (i+ 1, i) is	 in both update schedules
by hypothesis).

cell i. Let x ∈ {0,1}n be any configuration (if n ≤ 2 then i−1 = i+ 1, but lab∆((i−1, i)) = ⊕
whereas lab∆((i+ 1, i)) = 	).
By Remark A.2, if xi = 0, then f (∆)

8 (x)i = f
(∆′)
8 (x)i = 0. Now suppose xi = 1. Since

lab∆((i, i + 1)) = lab∆′((i, i + 1)) = ⊕, by the time cell i + 1 is updated, there is a 1 at its left
(cell i) in both cases, hence f (∆)

8 (x)i+1 = f
(∆′)
8 (x)i+1 = 0. Then, when cell i is updated in both

cases, there will be a 0 at its right (cell i+ 1), therefore f (∆)
8 (x)i = f

(∆′)
8 (x)i = 0.

We conclude that for all x ∈ {0,1}n and all j ∈ JnK we have f (∆)
8 (x)j = f

(∆′)
8 (x)j , i.e.D

F
(∆)
8,n

=
D
F

(∆′)
8,n

.

Lemma A.21 states that, as soon as ∆ and ∆′ differ on arcs of the form (i − 1, i) such that
lab∆((i+ 1, i)) = lab∆′((i+ 1, i)) = ⊕, then the two dynamics are different (remark that in this
case we must have lab∆((i, i − 1)) = lab∆′((i, i − 1)) = ⊕ otherwise one of ∆ or ∆′ has an
invalid cycle of length two between the nodes i − 1 and i). This lemma can be applied if at least
one cell of the configuration contains the pattern.

Lemma A.21. For n ≥ 5, consider two update schedules ∆,∆′ ∈ Pn such that lab∆((j, j−1)) =
lab∆′((j, j − 1)), for all j ∈ JnK. If there exists at least one cell i ∈ JnK such that

• lab∆((i+ 1, i)) = lab∆′((i+ 1, i)) = ⊕;

• lab∆((i− 1, i)) 6= lab∆′((i− 1, i));

then D
F

(∆)
8,n
6= D

F
(∆′)
8,n

.

0

i−3
1

i−2
1

i−1
1

i

1

i+1

. . . . . .

⊕

Figure A.30 – Illustration of lab∆ (blue double-circled label) and lab∆′ (red triple-circled label) in
Lemma A.21. Other labels on arcs of the form (j− 1, j) are a priori unknown (they may be equal
or different in ∆ and ∆′), however, labels on arcs of the form (j, j − 1) are equal by hypothesis.
States inside the nodes correspond to a configuration x such that the image of cell i under update
schedule ∆ is 0, whereas under update schedule ∆′ it is 1.
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Proof. Choose n,∆ and ∆′ as in the hypothesis. Without loss of generality, assume that lab∆((i−
1, i)) = ⊕ and lab∆′((i − 1, i)) = 	 for i ∈ JnK. See Figure A.30 for an illustration of the
setting. We are going to construct a configuration x ∈ {0,1}n such that f (∆)

8 (x)i = 0 whereas
f

(∆′)
8 (x)i = 1, i.e. such that the two dynamics differ in the image of cell i.

The construction of x ∈ {0,1}n only requires to set the pattern (xi−3, xi−2, xi−1, xi, xi+1) =
(0,1,1,1,1). Regarding ∆, from the⊕-labels of arcs (i−1, i) and (i+1, i) we have f (∆)

8 (x)i =
r8(xi−1, xi, xi+1) = r8(1,1,1) = 0. Regarding ∆′, let us deduce by denoting y the image of x
(i.e. yi = f

(∆′)
8 (x)i) that whatever the value of←−d∆′(i) we have f (∆′)

8 (x)i = 1 (i.e. yi = 1).

• If←−d∆′(i) = 2 then cell i− 1 is first updated and then cell i,

– yi−1 = r8(xi−2, xi−1, xi) = r8(1,1,1) = 0,

– yi = r8(yi−1, xi, xi+1) = r8(0,1,1) = 1.

• if←−d∆′(i) = 3 then cell i− 2 is updated then cell i− 1 and then cell i,

– yi−2 = r8(xi−3, xi−2, xi−1) = r8(0,1,1) = 1,

– yi−1 = r8(yi−2, xi−1, xi) = r8(1,1,1) = 0,

– yi = r8(yi−1, xi, xi+1) = r8(0,1,1) = 1.

• if←−d∆′(i) ≥ 4 then cell i− 3 is updated then cell i− 2 then cell i− 1 and then cell i,

– yi−3 = 0 by Remark A.2 since xi−3 = 0,

– yi−2 = r8(yi−3, xi−2, xi−1) = r8(0,1,1) = 1,

– yi−1 = r8(yi−2, xi−1, xi) = r8(1,1,1) = 0,

– yi = r8(yi−1, xi, xi+1) = r8(0,1,1) = 1.

Remark that n ≥ 5 is required by the consideration of cells i− 3 to i+ 1 in the third case.

For rule 8, Lemmas A.19, A.20 and A.21 completely characterise the cases when two update
schedules ∆,∆′ lead to

• the same dynamics, i.e. D(F (∆)
8,n ) = D(F (∆′)

8,n ), or

• different dynamics, i.e. D(F (∆)
8,n ) 6= D(F (∆′)

8,n ).

Indeed, Lemma A.19 shows that counting |D(F8,n)| can be partitioned according to the word
given by lab∆((i, i− 1)) for i ∈ JnK. Then, for each labeling of the n arcs of the form (i, i− 1),
Lemmas A.20 and A.21 provide a way of counting the number of dynamics. We first give an
example of application, and then the general counting result establishing a relation to the bisection
of Lucas numbers.

Example A.2 – Consider the set of non-equivalent update schedules ∆ ∈ P10 such that(
lab∆((i, i− 1))

)
i∈J10K = (⊕,	,⊕,⊕,⊕,	,⊕,	,	,⊕).

We have the following disjunction for i ∈ JnK (see Figure A.31):

A- if lab((i, i− 1)) = 	 then lab((i− 1, i)) = ⊕ according to Theorem A.2, else
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B- if lab((i+ 1, i)) = 	 then lab((i− 1, i)) does not change the dynamics according
to Lemma A.20,

C- if lab((i + 1, i)) = ⊕ then the two possibilities for lab((i − 1, i)) each lead to
different dynamics according to Lemma A.21.

Therefore, on overall, there are 23 = 8 different dynamics for such update schedules.

9 0 1 2 3 4 5 6 7 8 9

⊕

B

	

A

⊕

C

⊕

C

⊕

B

	

A

⊕

B

	

A

	

A

⊕

C

Figure A.31 – Counting the number of different dynamics for ECA rule 8 when the labeling of
arcs (i − 1, i) for i ∈ J10K is (⊕,	,⊕,⊕,⊕,	,⊕,	,	,⊕). Labels A are enforced to be ⊕
by Theorem A.2, labels B have no influence according to Lemma A.20, and any combination
of labels C gives a different dynamics according to Lemma A.21.

Theorem A.22. For any n ≥ 5, µs(F8,n) = φ2n+φ−2n−2n
3n−2n+1+2 with φ = 1+

√
5

2 the golden ratio.

Proof. According to Lemma A.19, sets

Du(F8,n) =
{
DF (∆) | ∆ ∈ Pn and

(
lab∆((i, i− 1))

)
i∈JnK = u

}
for u ∈ {⊕,	}n

form a partition ofD(F8,n). That is, inDu(F8,n) the labels of arcs of the form (i, i−1) for i ∈ JnK
are fixed according to some word u ∈ {⊕,	}n. Therefore we have

|D(F8,n)| =
∑

u∈{⊕,	}n
|Du(F8,n)|.

Then, given some word u ∈ {⊕,	}n \ {⊕n,	n}, according to Theorem A.2 and Lemmas A.20
and A.21 we have (see Example A.2 for details)

|Du(F8,n)| = 2|u|⊕−|u|⊕	

where |u|⊕ is the number of ⊕ in word u, and |u|⊕	 is the number of ⊕	-factors in word u
considered periodically, i.e. |u|⊕	 = |{i ∈ JnK such that ui = ⊕ and ui+1 = 	}|.
According to Theorem A.2, the cases u ∈ {⊕n,	n} are particular. Indeed, for any n:

• all labels 	 (i.e., u = 	n) is an invalid cycle hence |D	n(F8,n)| = 0,

• all labels ⊕ (i.e., u = ⊕n) forces the labels of all arcs of the form (i − 1, i) for i ∈ JnK to
be also labeled ⊕ otherwise a forbidden cycle is created, hence |D	n(F8,n)| = 1.

Given that 2|	n|⊕−|	n|⊕	 = 20 = 1 (instead of 0) and 2|⊕n|⊕−|⊕n|⊕	 = 2n (instead of 1), we
deduce that

|D(F8,n)| =

 ∑
u∈{⊕,	}n

2|u|⊕−|u|⊕	
− 2n. (A.16)

In order to study the summation term in Equation A.16, let us denote it by S(n). We will con-
sider recurrence relations according to the following partition of the set {⊕,	}n: for σ, σ′ ∈
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{⊕,	} let Lσσ′(n) be the set of words beginning with label σ and ending with label σ′, i.e.
Lσσ′(n) = {u = u0 . . . un−1 ∈ {⊕,	}n | u0 = σ and un−1 = σ′}. Denoting

Sσσ′(n) =
∑

u∈Lσσ′
2|u|⊕−|u|⊕	

the recurrence relations are, for all n ≥ 1 (although Equation A.16 holds only for n ≥ 5, the value
starting from which Lemmas A.19, A.20 and A.21 hold),

• S⊕⊕(n+ 1) = 2S⊕⊕(n) + 2S⊕	(n),

• S⊕	(n+ 1) = 1
2S⊕⊕(n) + S⊕	(n),

• S	⊕(n+ 1) = 2S	⊕(n) + S		(n),

• S		(n+ 1) = S	⊕(n) + S		(n),

and we have S(n) = S⊕⊕(n) + S⊕	(n) + S	⊕(n) + S		(n). Indeed, for example regarding
S⊕⊕(n + 1), consider a word u = u0 . . . un−1 ∈ {⊕,	}n and the concatenation of a label
σ ∈ {⊕,	} at the end of u, then u′ = u0 . . . un−1σ) ∈ L⊕⊕(n + 1) if and only if σ = ⊕ and
u0 = ⊕, i.e. σ = ⊕ and (u ∈ L⊕⊕(n) or u ∈ L⊕	(n)). It follows that,

• if u ∈ L⊕⊕(n) then |u′|⊕ = |u|⊕ + 1 and |u′|⊕	 = |u|⊕	,

• if u ∈ L⊕	(n) then |u′|⊕ = |u|⊕ + 1 and |u′|⊕	 = |u|⊕	,

which gives the first recurrence. A similar reasoning leads to the three other recurrence relations.
Also remark that by symmetry we always have S⊕	(n) = S	⊕(n), though this fact will not be
used in the coming proof.
In order to solve the recurrence, we establish a relation to known formulas by remarking that
S(n) = 3S(n − 1) − S(n − 2), which corresponds to the bisection of Fibonacci-like integer
sequences (aka Lucas sequences):

S(n) = S⊕⊕(n) + S⊕	(n) + S	⊕(n) + S		(n)

= 2S⊕⊕(n− 1) + 2S⊕	(n− 1) + 1
2S⊕⊕(n− 1) + S⊕	(n− 1)

+ 2S	⊕(n− 1) + S		(n− 1) + S	⊕(n− 1) + S		(n− 1)

= 3S⊕⊕(n− 1) + 3S⊕	(n− 1) + 3S	⊕(n− 1) + 3S		(n− 1)

− 1
2S⊕⊕(n− 1)− S		(n− 1)

= 3S(n− 1)− S⊕⊕(n− 2)− S⊕	(n− 2)− S	⊕(n− 2)− S		(n− 2)
= 3S(n− 1)− S(n− 2).

Finally, since we have S(1) = 2 and S(2) = 3 we deduce that S(n) is the bisection of Lucas
numbers, sequence A005248 of OEIS [The Online Encyclopedia of Integer Sequences (1996)b].
The nice closed form involving the golden ratio is a folklore adaptation of Binet’s formula to Lucas
numbers, and Equation A.16 gives the result.

We conclude our consideration of ECA rule number 8 with the study of its asymptotic sensitivity
(this study is trivial for other rules).

Theorem A.23. µs(F8) = 0.
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Proof. According to the definitions and Theorem A.22, with φ = 1+
√

5
2 we have

µs(f8) = lim
n→+∞

φ2n + φ−2n − 2n

3n − 2n+1 + 2 .

Dividing both terms of the fraction by 3n, we observe that the denominator tends to 1, whereas the
numerator tends to 0 (because φ2n

3n = (φ3 )n and φ2 < 3).

A.2.4 Class IV: Almost max-sensitive rules

This last class contains three ECA rules, namely 128, 160 and 162, for which the sensitivity
function tends to 1. The study of sensitivity to synchronism for these rules is based on the charac-
terisation of pairs of update schedule leading to the same dynamics. An unordered pair of update
schedules {∆,∆′} ∈ Pn × Pn is isomer for rule α if ∆ 6≡ ∆′ but D

F
(∆)
α,n

= D
F

(∆′)
α,n

. We will

count the isomer pairs for rules 128, 160 and 162 to quantify the number of different dynamics
|D(Fα,n)|. Indeed, the sensitivity function of these rules is given by 3n−2n+1+2−|In|

3n−2n+1+2 where In is
the set of isomer pairs considering n cells.
Given an update schedule ∆ ∈ Pn, let us define the left rotation σ(∆) and the left/right exchange
ρ(∆) ,such that, ∀i ∈ JnK, it holds that labσ(∆)((i, j)) = lab∆((i+1, j+1)) and labρ(∆)((i, j)) =
lab∆((j, i)). It is clear that if a pair of update schedules {∆,∆′} ∈ Pn × Pn is isomer then
{σ(∆), σ(∆′)} is also isomer. Furthermore, when rule α is left/right symmetric (meaning that
∀x1, x2, x3 ∈ {0,1} we have rα(x1, x2, x3) = rα(x3, x2, x1), which is the case of rules 128
and 162, but not 160) then {ρ(∆), ρ(∆′)} is also isomer. We say that isomer pairs in a set S are
disjoint when no update schedule belongs to more than one pair, i.e., if three update schedules
∆,∆′,∆′′ ∈ S are such that both {∆,∆′} and {∆,∆′′} are isomer pairs then ∆′ = ∆′′. When it
is clear from the context, we will omit to mention the rule relative to which some pairs are isomer.

ECA rule 128

The Boolean function associated with the ECA rule 128 is r128(x1, x2, x3) = x1 ∧ x2 ∧ x3. Its
simple definition will allow us to better illustrate the role played by isomer pairs.

Remark A.3. When d∆(i) = JnK for some cell i, the only possibility to get f (∆)
128 (x)i = 1 is

x = 1n. However, for x = 1n we have f (∆)
128 (x)i = 1 for any ∆.

The previous remark combined with an observation in the spirit of Lemma A.5, gives the next
characterisation. Let us introduce the notation d∆ = d∆′ for cases in which d∆(i) = d∆′(i) holds
in every cell i ∈ JnK.

Lemma A.24. For any n ∈ N, choose ∆,∆′ ∈ Pn such that ∆ 6≡ ∆′. Then, d∆ = d∆′ if and
only if D

F
(∆)
128,n

= D
F

(∆′)
128,n

.

Proof. For n ∈ {1, 2, 3} we have d∆(i) = d∆′(i) = JnK for all i ∈ JnK, and only one dynamics,
therefore the result holds. Now, consider n ≥ 4.



208 ANNEXE

(⇒) Assume d∆ = d∆′ . Given i ∈ JnK, two cases are possible:

• d∆(i) 6= JnK. In this case, one can deduce from d∆(i) = d∆′(i) that −→d∆(i) = −→d∆′(i) and
←−
d∆(i) =←−d∆′(i) (see the proof of Lemma A.5). From Formula A.10 it follows f (∆)

128 (x)i =
f

(∆′)
128 (x)i for any x ∈ {0,1}n.

• d∆(i) = d∆′(i) = JnK. In this case, in order to have f (∆)
128 (x)i 6= f

(∆′)
128 (x)i one must

have one of them equal to 1 and the other equal to 0. Without loss of generality, assume
f

(∆)
128 (x)i = 1. From the definition of the ECA rule 128 and Formula A.10, since d∆(i) =

JnK the only possibility is x = 1n, but this also implies f (∆′)
128 (x)i = 1.

We conclude that f (∆)
128 (x)i = f

(∆′)
128 (x)i for any x ∈ {0,1}n and i ∈ JnK, which is equivalently

formulated as D
F

(∆)
128,n

= D
F

(∆′)
128,n

.

(⇐) Assume d∆(i) 6= d∆′(i) for some i ∈ JnK. Then, without loss of generality, there
exists j ∈ JnK such that j ∈ d∆(i) \ d∆′(i). The configuration x, where all the cells are in state 1
except cell j, gives (again by Formula A.10) that f (∆)

128 (x)i 6= f
(∆′)
128 (x)i. Indeed,

• the image of i under the update schedule ∆ depends on xj = 0, which (by the definition of
the ECA rule 128) ensures that f (∆)

128 (x)i = 0, and

• the image of i under the update schedule ∆′ depends only on cells in state 1, which (by the
definition of the ECA rule 128) ensures that f (∆′)

128 (x)i = 1.

As a consequence, D
F

(∆)
128,n

6= D
F

(∆′)
128,n

.

Lemma A.24 characterises exactly the pairs of non-equivalent update schedules for which the
dynamics of rule 128 differ, i.e., the set of isomer pairs {∆,∆′} ∈ Pn × Pn for rule 128 such that
∆ 6≡ ∆′ but d∆ = d∆′ . Computing µs(F128,n) is now a combinatorial problem of computing the
number of possible d∆ for ∆ ∈ Pn.

Remark A.4. Lemma A.24 does not hold for all rules, since some of them are max-sensitive even
though there exist ∆ 6≡ ∆′ with d∆(i) = d∆′(i) for all i ∈ JnK.

We are going to prove that for any n > 6, there exist 10n disjoint isomer pairs of schedules of
size n (Lemma A.27). We will first argue that isomer pairs differ in the labeling of exactly one
arc (Lemma A.26), then exhibit 10n isomer pairs of schedules of size n (which come down to five
cases up to rotation and left/right exchange) and finally argue that these pairs are disjoint. This
will lead to Theorem A.28. The coming proofs will make a heavy use of the following lemma (see
Figure A.32).

Lemma A.25. For any n ≥ 4, consider an isomer pair {∆,∆′} ∈ Pn × Pn for rule 128 such
that lab∆((i + 1, i)) = ⊕ and lab∆′((i + 1, i)) = 	 for some i ∈ JnK. It holds that, for all
j ∈ JnK \ {i, i+ 1, i+ 2}, lab∆((j, j + 1)) = 	 and lab∆((j + 1, j)) = ⊕.

Proof. From Lemma A.24, we must have d∆ = d∆′ . Hence, in particular, d∆(i) = d∆′(i).
However, from the hypothesis on the labelings of arc (i+1, i), the only possibility is that d∆(i) =
d∆′(i) = JnK. Indeed, we have i + 2 ∈ d∆′(i), but on ∆ to the right we have −→d∆(i) = 0
thus for the chain of influences of cell i to contain cell i + 2 we must have ←−d∆(i) ≥ n − 2,
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Figure A.32 – Illustration of Lemma A.25, with lab∆ in blue double-circled labels and lab∆′ in
red triple-circled labels. For ∆, the hypothesis on the label of arc (1, 0) forces a chain of 	-labels
on arcs of the form (j, j + 1), and a chain of ⊕-labels on arcs of the form (j + 1, j).

which corresponds to lab∆((j + 1, j)) = 	 for all j ∈ JnK \ {i, i+ 1, i+ 2}. It follows that,
for these j, we have lab∆((j, j + 1)) = ⊕ otherwise an invalid cycle of length two is created
(Theorem A.2).

Lemma A.26. For any n > 6, if {∆,∆′} ∈ Pn × Pn is an isomer pair for rule 128 then ∆ and
∆′ differ on the labeling of exactly one arc.

Proof. First, by definition of isomer pair, we have ∆ 6≡ ∆′. Hence, ∆ and ∆′ must differ on the
labeling of at least one arc. Up to rotation and right/left exchange, let us suppose without loss
of generality that lab∆((1, 0)) = ⊕ and lab∆′((1, 0)) = 	. Now, for the sake of contradiction,
assume that they also differ on another arc, and consider the following cases disjunction (remark
that the order of the case study is chosen so that cases make reference to previous cases).

(a) If lab∆((i, i + 1)) = ⊕ and lab∆′((i, i + 1)) = 	 for some i ∈ JnK, then by applying
Lemma A.25 to the two arcs where ∆ and ∆′ differ leads to a contradiction on the labeling
of some arc according to ∆. Indeed, Lemma A.25 is applied to two arcs in different direc-
tions, one application leaves three arcs of the form (j, j + 1) not labeled 	 in ∆ and three
arcs of the form (j + 1, j) not labeled ⊕ in ∆, the converse for the other application, hence
starting from n = 7 these labelings overlap in a contradictory fashion.

(b) If lab∆((i+ 1, i)) = 	 and lab∆′((i+ 1, i)) = ⊕ for some i ∈ JnK \ {0}, then i ∈ {2, 3}
otherwise there is a forbidden cycle of length two in ∆ with some 	-label given by the
application of Lemma A.25 to the arc (1, 0). However, for i ∈ {2, 3} the application of
Lemma A.25 to the arc (i + 1, i) gives lab∆′((0, 1)) = 	, creating a forbidden cycle of
length two in ∆′.

(c) If lab∆((i + 1, i)) = ⊕ and lab∆′((i + 1, i)) = 	 for some i ∈ JnK \ {1}, then applying
Lemma A.25 to the two arcs where ∆ and ∆′ differ leads to a forbidden cycle of length n
in ∆ (contradiction Theorem A.2). Indeed, if i /∈ {1, 2} then we have 	-labels on arcs of
the form (j, j + 1) for all j ∈ JnK, and if i = 2 then the forbidden cycle contains the arc
(3, 2) labeled ⊕. The case i = 0 is not a second difference.

(d) If lab∆((i, i + 1)) = 	 and lab∆′((i, i + 1)) = ⊕ for some i ∈ JnK, then applying
Lemma A.25 to arc (1, 0) gives lab∆((j+1, j)) = ⊕ for all j ∈ JnK\{0, 1, 2}, and applying
Lemma A.25 to arc (i, i+ 1) gives lab∆′((j+ 1, j)) = 	 for all j ∈ JnK \ {i, i− 1, i− 2}.
Starting from n = 7 we have (JnK \ {0, 1, 2}) ∩ (JnK \ {i, i− 1, i− 2}) 6= ∅ and, as a
consequence, there is an arc ((j + 1, j)) in the case of Item (c).

(e) If lab∆((2, 1)) = ⊕ and lab∆′((2, 1)) = 	, then applying Lemma A.25 to arc (2, 1)
gives lab∆((0, 1)) = 	, however, since by hypothesis lab∆′((1, 0)) = 	 we also have
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Figure A.33 – Seven labelings of arcs (1, 2), (2, 3), (2, 1) and (3, 2) giving a forbidden cycle of
length two, in the proof of Lemma A.27.

lab∆′((0, 1)) = ⊕ otherwise there is a forbidden cycle of length two in ∆′ (Theorem A.2).
As a consequence, the arc (0, 1) is in the case of Item (d).

We conclude that in any case a second difference leads to a contradiction, either because an invalid
cycle is created, or because repeated applications of Lemma A.25 give contradictory labels (both
⊕ and 	) to some arc for some update schedule.

Lemma A.27. For any n > 6, there exist 10n disjoint isomer pairs of schedules of size n for rule
128.

Proof. Fix n ≥ 6 and consider the set of isomer pairs {∆,∆′} ∈ Pn × Pn in which we
have a difference between ∆ and ∆′ on the labeling of arc (1, 0) (with lab∆((1, 0)) = ⊕ and
lab∆′((1, 0)) = 	). Lemma A.25 fixes the labels of many arcs of ∆, and from Lemma A.26 the
same labels hold for ∆′ since there is already a difference on arc (1, 0). Therefore, we have:

for all j ∈ JnK \ {0, 1, 2}, lab∆((j, j + 1)) = lab∆′((j, j + 1)) = 	
and lab∆((j + 1, j)) = lab∆′((j + 1, j)) = ⊕.

Furthermore the labeling of arc (1, 0) is given by our hypothesis, and from Theorem A.2 (to avoid
a forbidden cycle of length two in ∆) and Lemma A.26 (equality of lab∆ and lab∆′ except for
the arc (1, 0)) we also have lab∆((0, 1)) = lab∆′((0, 1)) = ⊕. As a consequence, it remains to
consider 24 possibilities for the labelings of arcs

(1, 2), (2, 3), (2, 1) and (3, 2)

(which are equal on ∆ and ∆′, again by Lemma A.26).
Among these possibilities, seven create a forbidden cycle of length two when the labels of the two
arcs between cells 1 and 2, or 2 and 3, are both 	 (see Figure A.33).
Among the remaining possibilities, four create a forbidden cycle of length n in ∆, when the labels
of arcs (2, 1) and (3, 2) are set to ⊕ (see Figure A.34).
The five remaining possibilities are presented on Figure A.35, one can easily check that they
indeed correspond to isomer pairs. In fact:
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Figure A.34 – Four labelings of arcs (1, 2), (2, 3), (2, 1) and (3, 2) giving a forbidden cycle of
length n in ∆ (see the proof of Lemma A.27). Blue double-circled labels are involved in lab∆,
and red triple-circled labels are involved in lab∆′ . Squared green labels are on the arcs on which
we consider the 24 possibilities. The remaining labels are those in common between lab∆ and
lab∆′ . For any combination of ⊕ and 	-labels on arcs (1, 2) and (2, 3), the forbidden cycle is
0 	→ −1 	→ −2 	→ . . .

	→ 5 	→ 4 	→ 3 ⊕→ 2 ⊕→ 1 ⊕→ 0 (recall that the orientation of 	-arcs is
reversed, Theorem A.2).

• neither ∆ nor ∆′ contain a forbidden cycle. Hence, they are pairs of non-equivalent update
schedule,

• for any i ∈ JnK \ {0}, we have←−d∆(i) = ←−d∆′(i) and −→d∆(i) = −→d∆′(i). Hence, d∆(i) =
d∆′(i), and for cell 0 we have d∆(0) = d∆′(0) = JnK.

We have seen so far that there are exactly five isomer pairs with their unique difference
(Lemma A.26) on arc (1, 0). Let us call them the five base pairs and denote them by {∆b,∆′b}
for b ∈ J5K. When we consider the n rotations plus the left/right exchange (recall that rule 128 is
symmetric), we obtain 10n pairs:

ρk(σj(∆b)), ρk(σj(∆′b)) for b ∈ J5K, j ∈ JnK, k ∈ J2K. (A.17)

Let us finally argue that these pairs are disjoint, i.e. an update schedule belongs to at most one pair.
First, one can straightforwardly check on Figure A.35 that the ten update schedules with a differ-
ence on arc (1, 0) are all distinct, hence the five base pairs are disjoint.
Second, the n rotations of these ten update schedules are all distinct when n > 6, as can be noticed
from n letter words on alphabet {⊕,	} given by(

lab∆((i, i+ 1)))i∈JnK for some ∆.

Indeed, each of these words contains a unique factor 	 	 	⊕, which allows one to identify the
number of left rotations applied to some ∆b or ∆′b with b ∈ J5K in order to obtain ∆. As a
consequence, two distinct base update schedules remain distinct when some rotation is applied to
one of them.
Third, the left/right exchange of these 5n update schedules (base plus rotations) give 10n distinct
update schedules, as can be noticed on the number of 	-labels on arcs of the form (i, i + 1) for
i ∈ JnK. Indeed, denoting

|∆|	 = |{(i, i+ 1) | i ∈ JnK and lab∆((i, i+ 1)) = 	}|,

we have for any n > 6 that |∆|	 > n − 3 when ∆ is a base update schedule, the quantity
is preserved by rotation, i.e. |σ(∆)|	 = |∆|	, but it holds that |∆|	 > n − 3 if and only if
|ρ(∆)|	 < n− 3. As a consequence, two distinct update schedules (among the 5n update sched-
ules σj(∆b), σj(∆′b) for b ∈ J5K and j ∈ JnK) remain distinct when the left/right exchange is
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Figure A.35 – Five base isomer pairs {∆,∆′} ∈ Pn × Pn for rule 128 (see the proof of
Lemma A.27). Blue double-circled labels are involved in lab∆, and red triple-circled labels are
involved in lab∆′ . Squared green labels are on the arcs on which we consider the five remaining
possibilities. The remaining labels are those common between lab∆ and lab∆′ .

applied to one of them. When the left/right exchange is applied to both of them then the situation
is symmetric to the previous considerations.
We conclude that the 10n pairs given by Formula A.17 are isomer and disjoint.

As a consequence of Lemma A.27, we have | {d∆ | ∆ ∈ Pn} | = 3n − 2n+1 − 10n + 2 for any
n > 6, and the result follows from Lemma A.24.

Theorem A.28. For any n > 6, µs(F128,n) = 3n−2n+1−10n+2
3n−2n+1+2 .

ECA rule 162

The ECA rule 162 is expressed as the Boolean function r162(x1, x2, x3) = (x1 ∨ ¬x2) ∧ x3. Let
F be a shorthand for F162,n when the context is clear.
The structure of the reasoning is to first prove that for any isomer pair {∆,∆′} ∈ Pn × Pn for
rule 162, the labelings of arcs of the form (i + 1, i) for all i ∈ JnK are identical in ∆ and ∆′
(Lemma A.29). Second, given a difference on the labels of some arc (i, i+ 1), we will prove that
it forces all other labels both in ∆ and in ∆′ (Lemma A.30). Third, for the remaining case, we
will prove that it is indeed an isomer pair, thus generating n disjoint isomer pairs by rotation (for
any n ≥ 5), leading to Theorem A.31.

Lemma A.29. For any n ≥ 2, if {∆,∆′} ∈ Pn × Pn is an isomer pair for rule 162, then for all
i ∈ JnK we have lab∆((i+ 1, i)) = lab∆′((i+ 1, i)).
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i i + 1
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Figure A.36 – Illustration of the setting for the contradiction in Lemma A.29. Blue double-circled
labels are part of lab∆, and red triple-circled labels are part of lab∆′ .
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Figure A.37 – The isomer pair {∆,∆′} ∈ Pn × Pn for rule 162 in Lemma A.30, with lab∆((i−
1, i)) = ⊕ and lab∆′((i − 1, i)) = 	 for some i ∈ JnK. Blue double-circled labels are part of
lab∆, and red triple-circled labels are part of lab∆′ . The remaining labels are those in common
between lab∆ and lab∆′ .

Proof. By contradiction, assume that there exists i ∈ JnK such that, without loss of generality,
lab∆((i+1, i)) = ⊕ whereas lab∆′((i+1, i)) = 	. This implies lab∆′((i, i+1)) = ⊕ otherwise
there is a forbidden cycle of length two in ∆′ (Theorem A.2). See Figure A.36 for an illustration
of the setting.
Consider some x ∈ {0,1}n with xi = 0 and xi+1 = 1 (this require n ≥ 2)). From our knowledge
of ∆ we have for some unknown yi−1 ∈ {0,1} that

f (∆)(x)i = r162(yi−1, xi, xi+1) = r162(yi−1,0,1) = 1.

From our knowledge of ∆′ we have for some unknown yi−1, yi+2 ∈ {0,1} that

f (∆′)(x)i = r162(yi−1, xi, r162(xi, xi+1, yi+2)) = r162(yi−1,0, r162(0,1, yi+1))
= r162(yi−1,0,0) = 0.

Thus f (∆)(x)i 6= f (∆′)(x)i, a contradiction to the fact that {∆,∆′} is an isomer pair.

From Lemma A.29 and the fact that ∆ 6≡ ∆′, we will now consider an isomer pair with a difference
on some arc (i, i + 1) for i ∈ JnK, and prove that this first difference enforces all the other labels
(both in ∆ and in ∆′).

Lemma A.30. For any n ≥ 3, there is a unique isomer pair {∆,∆′} ∈ Pn × Pn for rule 162
with lab∆((i − 1, i)) 6= lab∆′((i − 1, i)) for some i ∈ JnK, and its labels are those depicted on
Figure A.37.

Proof. Without loss of generality, as on Figure A.37, assume that lab∆((i − 1, i)) = ⊕ and
lab∆′((i − 1, i)) = 	. We deduce that lab∆′((i, i − 1)) = ⊕ otherwise there is a forbidden
cycle of length two in ∆′ (Theorem A.2) and from Lemma A.29 it follows that we also have
lab∆((i, i− 1)) = ⊕.
We are going to prove that this forces all the other labels of ∆ and ∆′, i.e. there is a unique such
isomer pair. From the hypothesis that {∆,∆′} is an isomer pair, we will use the fact that for all
x ∈ {0,1}n and for all j ∈ JnK we have f (∆)(x)j = f (∆′)(x)j .
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From Lemma A.29, we deduce that at the time cell i is updated, the state of its right neighbour
(cell i + 1) is identical under update schedules ∆ and ∆′. Let us denote by yi+1 ∈ {0,1} this
state for the rest of this proof.
By contradiction, assume that it is possible to have some configuration x ∈ {0,1}n such that

xi−1 = 0 and xi = 1 and yi+1 = 1 (A.18)

(this requires n ≥ 3). In this case we have

f (∆)(x)i = r162(xi−1, xi, yi+1) = r162(0,1,1) = 0

but for some unknown yi−2 ∈ {0,1}n we always have

f (∆′)(x)i = r162(r162(yi−2, xi−1, xi), xi, yi+1) = r162(r162(yi−2,0,1),1,1)
= r162(1,1,1) = 1

i.e. f (∆)(x)i 6= f (∆′)(x)i, which contradicts the hypothesis that {∆,∆′} is an isomer pair. We
conclude that it must be impossible to have simultaneously xi−1 = 0, xi = 1 and yi+1 = 1. This
hints at the fact that the value of −→d∆(i) = −→d∆′(i) must be close to n so that the constraints on
xi−1 and xi make it impossible to obtain yi+1 = 1 when updating the chain of influence to the
right of cell i. This is what we are going to prove formally, via the following case disjunction.

• If −→d∆(i) = −→d∆′(i) < n − 1 then consider x ∈ {0,1}n with xi−1 = 0 and xi = xi+1 =
· · · = x

i+−→d∆(i) = 1. From our current hypothesis on −→d∆(i) and for n ≥ 3, such a
configuration exists. We deduce from the definition of rule 162 that the updates (in this
order, both in ∆ and ∆′) of cells i+−→d∆(i), i+−→d∆(i)− 1, . . . , i+ 1 all give state 1, i.e.
in particular yi+1 = 1, leading to a contradiction as developed from Equation A.18.

• If −→d∆(i) = −→d∆′(i) ≥ n then there is a forbidden cycle of length n in ∆:

i
	→ i+ 1 	→ . . .

	→ i− 2 	→ i− 1 ⊕→ i (A.19)

(recall that the orientation of 	-arcs is reversed, see Theorem A.2). As a consequence, we
discard this case.

• If −→d∆(i) = −→d∆′(i) = n − 1 then it means that we have lab∆((j + 1, j)) = lab∆′((j +
1, j)) = 	 for all j ∈ JnK\{i−2, i−1}, and lab∆((i−1, i−2)) = lab∆′((i−1, i−2)) = ⊕,
but also lab∆((j, j + 1)) = lab∆′((j, j + 1)) = ⊕ for all j ∈ JnK \ {i − 2, i − 1} from
Theorem A.2.
Therefore it only remains to consider the labels of arc (i− 2, i− 1) in schedules ∆ and ∆′.
To avoid a forbidden cycle of length n in ∆, similar to Equation A.19 with i − 2 ⊕→ i − 1,
we need to set lab∆((i− 2, i− 1)) = 	. It only remains to consider lab∆′((i− 2, i− 1)).
Suppose for the contradiction that lab∆′((i− 2, i− 1)) = ⊕, then similarly to our previous
reasoning, for some x ∈ {0,1}n with xi−2 = 0, xi−1 = 1 and xi = 1, we have for some
unknown yi−3 ∈ {0,1} that

f (∆)(x)i−1 = r162(r162(yi−3, xi−2, xi−1), xi−1, xi) = r162(r162(yi−3,0,1),1,1)
= r162(1,1,1) = 1

whereas
f (∆)(x)i−1 = r162(xi−2, xi−1, xi) = r162(0,1,1) = 0

thus f (∆)(x)i−1 6= f (∆′)(x)i−1, contradicting the fact that {∆,∆′} is an isomer pair.
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We conclude that there is only one remaining possible isomer pair with a difference on the label-
ings of arc (i− 1, i), and that it is the one given on Figure A.37.
Let us finally prove that this is indeed an isomer pair. One easily checks on Figure A.37 that the
update schedules of this pair have no forbidden cycle and are non-equivalent. For any j ∈ JnK\{i},
we have←−d∆(j) =←−d∆′(j) and−→d∆(j) = −→d∆′(j), i.e. the chain of influences are identical hence,
for all x ∈ {0,1}n, we have f (∆)(x)j = f (∆′)(x)j .
Regarding cell i, we have −→d∆(i) = −→d∆′(i), meaning that at the time cell i is updated, its right
neighbour (cell i+ 1) will be in the same state (denoted by yi+1) in both update schedules. Given
some x ∈ {0,1}n, we proceed to a case disjunction.

• If yi+1 = 0 then

f (∆)(x)i = r162(xi−1, xi, yi+1) = r162(xi−1, xi,0) = 0

and for some unknown yi−1 ∈ {0,1} we have

f (∆′)(x)i = r162(yi−1, xi, yi+1) = r162(yi−1, xi,0) = 0

therefore we conclude f (∆)(x)i = f (∆′)(x)i.
• If yi+1 = 1 then, from the reasoning we have just made above, and since cell i + 2 is

updated prior to cell i + 1, we deduce that cell i + 2 is updated to state 1, otherwise cell
i+ 1 would be updated to state 0 (in both ∆ and ∆′, contradicting our last hypothesis that
yi+1 = 1). This applies to cell i + 3, etc., until cell i − 2 (which must also be updated to
state 1). Finally, cell i− 1 must be in state 1, i.e. xi−1 = 1.
We deduce from yi+1 = 1 and xi−1 = 1 that

f (∆)(x)i = r162(xi−1, xi, yi+1) = r162(1, xi,1) = 1.

Regarding cell i in the update schedule ∆′, we proceed to a last case disjunction.

– If xi = 0 then for some unknown yi−1 ∈ {0,1} we have

f (∆′)(x)i = r162(yi−1, xi, yi+1) = r162(yi−1,0,1) = 1

and we conclude f (∆)(x)i = f (∆′)(x)i.
– If xi = 1 then we can use our prior deduction that cell i − 2 is updated to state 1,

therefore

f (∆′)(x)i = r162(r162(1, xi−1, xi), xi, yi+1) = r162(r162(1,1,1),1,1)
= r162(1,1,1) = 1

and we also conclude f (∆)(x)i = f (∆′)(x)i in this ultimate case.

We have seen that for any x ∈ {0,1}n, F (∆)(x) = F (∆′)(x). Thus, {∆,∆′} is an isomer pair,
and, from the first part of this proof, it is unique.

Theorem A.31. For any n ≥ 3, µs(F162,n) = 3n−2n+1−n+2
3n−2n+1+2 .
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Proof. From Lemmas A.29 and A.30 there are n pairs of isomer pairs for rule 162 (no pair with
a difference on the label of an arc of the form (i + 1, i) for some i ∈ JnK by Lemma A.29, and
exactly one pair with a difference on arc (i, i + 1) for each i ∈ JnK by Lemma A.30). Denoting
{∆,∆′} the isomer pair given by Lemma A.30 with a difference on the arc (0, 1), the n isomer
pairs are {σj(∆), σj(∆′)} for j ∈ JnK. Lemmas A.29 and A.30 hold for any n ≥ 3, and for any
such n one easily checks by considering the word formed by the labels of arcs (i−1, i) for i ∈ JnK
(this word is identical for both schedules of each isomer pair, by Lemma A.29) that these pairs
are disjoint: these words contain exactly one factor ⊕⊕ whose position differs for any rotation
of ∆,∆′. It follows that among the 3n − 2n+1 + 2 non-equivalent update schedules, we have
D(F162,n) = 3n − 2n+1 + 2− n, as stated.

ECA rule 160

The ECA rule 160 is somewhat similar to the ECA rule 128. Indeed, it is based on the Boolean
function r160(x1, x2, x3) = x1 ∧ x3.

Remark A.5. It is clear from the definition of r160 that for any update schedule ∆ and any con-
figuration x ∈ {0,1}n such that xi = xi+1 = 0 (or xi−1 = xi = 0) for some i ∈ JnK, it holds
f

(∆)
160 (x)i = 0.

We are going to adopt a reasoning analogous to rule 128 for the study of the sensitivity to syn-
chronism of rule 160. Lemma A.32 will be the first stone showing that as soon as two update
schedules form an isomer pair for rule 160, the position of their difference enforces the labels of
many other arcs. Then, Lemma A.33 will use applications of Lemma A.32, according to some
carefully crafted case disjunction, in order to prove that an isomer pair with more than one dif-
ference among the two update schedules (i.e. differences on the labels of at least two arcs) is
contradictory. Finally, Lemma A.34 will use these previous results to characterise exactly the iso-
mer pairs of update schedules for rule 160, which comes down to six disjoint base isomer pairs,
leading to 12n isomer pairs (when considering left/right exchange and rotations). This will give
Theorem A.35.

Lemma A.32. For any n > 4, consider an isomer pair {∆,∆′} ∈ Pn × Pn for rule 160
such that lab∆((i + 1, i)) = ⊕ and lab∆′((i + 1, i)) = 	 for some i ∈ JnK. For all
j ∈ JnK \ {i, i+ 1, i+ 2, i+ 3}, it holds that lab∆((j, j + 1)) = 	, lab∆((j + 1, j)) = ⊕
and also lab∆′((i+ 2, i+ 1)) = 	, lab∆′((i+ 1, i+ 2)) = ⊕.

Proof. Let us prove that, with the hypothesis of the statement, we must have ←−d∆(i) ≥ n − 4
(which implies the 	-labels on ∆) and also lab∆′((i + 2, i + 1)) = 	. The complete result
follows by application of Theorem A.2 to get the ⊕-labels (in order to avoid any forbidden cycle
of length two).

For the first part, if←−d∆(i) < n−3 then we can construct the following configuration x ∈ {0,1}n
without a contradiction on the states of cells i−←−d∆(i) and i+ 3:

• xi+2 = xi+3 = 0

• xi = xi−1 = · · · = x
i−←−d∆(i) = 1.

This requires n ≥ 5, see Figure A.38 for an illustration. Regarding ∆′, it follows from Remark A.5
that cell i+ 2 remains in state 0, and as a consequence, regardless of the label of arc (i+ 2, i+ 1),
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Figure A.38 – Illustration of Lemma A.32 with lab∆ (blue double-circled labels) and lab∆′ (red
triple-circled label). The hypothesis on the label of arc (1, 0) implies: many 	-labels on arcs of
the form (j, j + 1) (for ∆), ⊕-labels on arcs of the form (j + 1, j) (for ∆), and 	-labels on arcs
(2, 1) and (1, 2) (for ∆′). Inside the cells are depicted the states corresponding to a contradictory
configuration (having different images on cell 0) when←−d∆(0) ≤ n− 4.

cell i + 1 is updated to state 0, then so is i. However, in ∆, we have xj = 1 for all j ∈ d∆(i),
i.e. cell i depends only on cells in state 1, and we deduce that it is updated to state 1. Thus
f

(∆)
160 (x)i 6= f

(∆′)
160 (x)i, a contradiction to the fact that {∆,∆′} is an isomer pair.

For the second part, suppose for the contradiction that lab∆′((i + 2, i + 1) = ⊕, and consider
the configuration x ∈ {0,1}n with xi+1 = 0 and state 1 in all other cells. In ∆, at time cell
0 is updated it has a state 0 on its right (cell i + 1, not yet updated), and f (∆)

160 (x)i = 0. In
∆′, cell i + 1 is updated prior to its left and right neighbours (from Theorem A.2 again we have
lab∆′((i, i+ 1)) = ⊕) thus it goes to state 1. We can deduce from this that all the cells will go to
state 1 because they all have two neighbours in state 1 at the time they are updated. Therefore, in
particular f (∆′)

160 (x)i = 1, again a contradiction.

Let us recall that rule 160 is symmetric, therefore Lemma A.32 also applies with a left/right
exchange.

Lemma A.33. For any n > 8, if {∆,∆′} ∈ Pn × Pn is an isomer pair for rule 160 then ∆ and
∆′ differ on the labeling of exactly one arc.

Proof. Up to rotation and right/left exchange, let us suppose without loss of generality that
lab∆((1, 0)) = ⊕ and lab∆′((1, 0)) = 	. Now, for the sake of contradiction, assume that they
also differ on another arc, and consider the following cases disjunction (remark that the order of
the case study is chosen so that cases make reference to previous cases).

(a) If lab∆((i, i + 1)) = ⊕ and lab∆′((i, i + 1)) = 	 for some i ∈ JnK, then according
to Lemma A.32 one obtains a contradiction on the labeling of some arc according to ∆.
Indeed, Lemma A.32 is applied twice centred on the two arcs with different labels, one
application leaves four arcs of the form (j, j + 1) not labeled 	 in ∆ and three arcs of the
form (j + 1, j) not labeled ⊕ in ∆, the converse for the other application, hence starting
from n = 8 these labelings overlap in a contradictory fashion.

(b) If lab∆((i+ 1, i)) = 	 and lab∆′((i+ 1, i)) = ⊕ for some i ∈ JnK \ {0}, then i ∈ {1, 2, 3}
otherwise there is a forbidden cycle of length two in ∆ with some 	-label given by the
labeling of Lemma A.32 with a difference on the arc (1, 0). However, for i ∈ {2, 3, 4}, the
application of Lemma A.32 centred in the arc (i+ 1, i) gives lab∆′((0, 1)) = 	, creating a
forbidden cycle of length two in ∆′.

(c) If lab∆((i+ 1, i)) = ⊕ and lab∆′((i+ 1, i)) = 	 for some i ∈ JnK \ {1, 2}, then applying
Lemma A.32, centred in the two arcs where ∆ and ∆′ differ, leads to a forbidden cycle of
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length n in ∆ (contradiction Theorem A.2). Indeed, if i /∈ {1, 2, 3} then we have 	-labels
on arcs of the form (j, j + 1) for all j ∈ JnK, and if i = 3 then the forbidden cycle contains
the arc (4, 3) labeled ⊕. The case i = 0 is not a second difference.

(d) If lab∆((i, i + 1)) = 	 and lab∆′((i, i + 1)) = ⊕ for some i ∈ JnK, then applying
Lemma A.32 centred in the arc (1, 0) gives lab∆((j+1, j)) = ⊕ for all j ∈ JnK\{0, 1, 2, 3},
and applying Lemma A.32 centred in the arc (i, i + 1) gives lab∆′((j + 1, j)) = 	 for all
j ∈ JnK \ {i, i− 1, i− 2}. Starting from n = 9 we have (JnK \ {0, 1, 2, 3}) ∩ (JnK \
{i, 1− 1, i− 2}) 6= ∅, and, as a consequence, there is an arc ((j + 1, j)) in the case of
Item (c).

(e) If lab∆((2, 1)) = ⊕ and lab∆′((2, 1)) = 	, then applying Lemma A.32 centred in the arc
(2, 1) gives lab∆((0, 1)) = 	, however, since by hypothesis lab∆′((1, 0)) = 	 we also
have lab∆′((0, 1)) = ⊕ otherwise there is a forbidden cycle of length two in ∆′ (Theo-
rem A.2). As a consequence, the arc (0, 1) is in the case of Item (d). The arc (3, 2) is
involved in the same situation.

We conclude that in any case a second difference leads to a contradiction, either because an invalid
cycle is created, or because repeated applications of Lemma A.32 give contradictory labels (both
⊕ and 	) to some arc for some update schedule.

Lemma A.34. For any n > 8, there exist 12n disjoint isomer pairs of schedules of size n for rule
160.

Proof. The structure of this proof is similar to Lemma A.27. Fix n > 8 and consider the set of
isomer pairs {∆,∆′} ∈ Pn×Pn (with a difference between ∆ and ∆′ on the labeling of arc (1, 0),
and lab∆((1, 0)) = ⊕ and lab∆′((1, 0)) = 	). Lemma A.32 fixes the labels of many arcs of ∆,
and from Lemma A.33 the same labels hold for ∆′ since there is already a difference on arc (1, 0).
Therefore, we have:

for all j ∈ JnK \ {0, 1, 2, 3}, lab∆((j, j + 1)) = lab∆′((j, j + 1)) = 	,
lab∆((j + 1, j)) = lab∆′((j + 1, j)) = ⊕,

lab∆((1, 2)) = lab∆′((1, 2)) = ⊕,
and lab∆((2, 1)) = lab∆′((2, 1)) = 	.

Furthermore, the labeling of the arc (1, 0) is given by our hypothesis, and from Theorem A.2 (to
avoid a forbidden cycle of length two in ∆) and Lemma A.33 (equality of lab∆ and lab∆′ except
for the arc (1, 0)) we also have lab∆((0, 1)) = lab∆′((0, 1)) = ⊕. As a consequence, it remains
to consider 24 possibilities for the labelings of arcs

(2, 3), (3, 4), (3, 2) and (4, 3)

(which are equal on ∆ and ∆′, again by Lemma A.33).
Among these possibilities, seven create a forbidden cycle of length two when the labels of the two
arcs between cells 1 and 2, or 2 and 3, are both 	 (see Figure A.33 relative to rule 128; the seven
possibilities for rule 160 are analogous with the four respective arcs we are now considering).
Among the nine remaining possibilities, three do not correspond to isomer pairs, as we will prove
now by exhibiting for each of them a configuration x ∈ {0,1}n such that the images at cell 0
differ in ∆ and ∆′. These three possibilities are depicted on Figure A.39, let us denote them by
{∆e,∆′e} for e ∈ J3K.
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Figure A.39 – Three pairs {∆e,∆′e} for e ∈ J3K for rule 160 ({∆0,∆′0} on the top; {∆1,∆′1} in
the middle; {∆2,∆′2} on the bottom) not corresponding to isomer pairs because for each of them
there exists a configuration x ∈ {0,1}n such that f (∆e)

160 (x)0 = 1 6= 0 = f
(∆′e)
160 (x)0. The states

of configuration x are given inside the cells.

• For {∆0,∆′0} we have x ∈ {0,1}n with x2 = 0 and all other cells in state 1,

• For {∆1,∆′1} we have x ∈ {0,1}n with x2 = 0 and all other cells in state 1,

• For {∆2,∆′2} we have x ∈ {0,1}n with x3 = 0 and all other cells in state 1.

One can check that in these three cases e ∈ JnK with these three respective configurations, we
have f (∆e)

160 (x)0 = 1 but f (∆′e)
160 (x)0 = 0, because in both update schedules of each pair the left

neighbor of cell 0 (cell −1) will be updated to state 1, and the right neighbor of cell 0 (cell 1) will
be updated to state 0 before the update of cell 0 in ∆′e whereas it is still in state x1 = 1 when cell
0 is updated in ∆e.
The six remaining possibilities are presented on Figure A.40. Let us argue that they indeed corre-
spond to isomer pairs:

• neither ∆ nor ∆′ contain a forbidden cycle. Hence, they are pairs of non-equivalent update
schedule,

• for any i ∈ JnK\{0}, we have←−d∆(i) =←−d∆′(i) and−→d∆(i) = −→d∆′(i). Hence, f (∆)
160 (x)i =

f
(∆′)
160 (x)i for any x ∈ {0,1}n (Lemma A.4). For cell 0, let us show that f (∆)

160 (x)0 =
f

(∆′)
160 (x)0 for any x ∈ {0,1}n. In order to have a difference in the update of cell 0, one of

the two update schedules must update it to state 1. Now, remark that, given the definition
of rule 160, the only possibility for cell 0 to be updated to state 1 in some update schedule
(recall that ←−d∆(0) = ←−d∆′(0)) is that x0 = x−1 = x−2 = · · · = x−←−d∆(0)−2 = 1, and
x−←−d∆(0) = 1. Indeed, if any of these cells is in state 0, then at some point in the update

of the chain of influence to the left of cell 0 (in this order: cell −←−d∆ then −←−d∆ + 1 then
. . . then −1 and finally 0) some cell will be updated to state 0, and then all subsequent cells
will be updated to state 0 as well. Given that ←−d∆(0) = ←−d∆′(0) ≥ n − 3, this would
enforce the states of all cells in x except (in the order of Figure A.40):

– cells 1 and 3 for the first and third pairs,
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– cells 1, 2 and 4 for the second, fourth and fifth pairs,

– cell 2 for the sixth pair.

A straightforward exhaustive analysis of these 2 × 22 + 3 × 32 + 2 cases would convince
the reader that, for any configuration x ∈ {0,1}n where cell 0 may be updated to state 1 in
∆ or in ∆′ (otherwise f (∆)

160 (x)0 = f
(∆′)
160 (x)0 = 0), it turns out that f (∆)

160 (x)0 = f
(∆′)
160 (x)0

(this is tedious but reveals the nice combinatorics of green labels on Figure A.40).
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Figure A.40 – Six base isomer pairs {∆,∆′} for rule 160 in the proof of Lemma A.34. Blue
double-circled labels are part of lab∆, and red triple-circled labels are part of lab∆′ . Squared
green labels are on the arcs on which we consider the six remaining possibilities. The remaining
labels are those commons between lab∆ and lab∆′ .

We have seen so far that there are exactly six isomer pairs with their unique difference
(Lemma A.33) on the arc (1, 0). Let us finally argue that these six base pairs for rule 160 give
12n distinct pairs when considering their rotations and left/right exchange, i.e. an update schedule
belongs to at most one pair.
It is clear from Figure A.40 that all the base pairs are all disjoint. Moreover, considering the
pattern 				⊕⊕ and any of the 24n update schedules, for any n > 8 either it appears exactly
once on arcs of the form (i, i+ 1), or its mirror appears exactly once on arcs of the form (i+ 1, i),
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but not both. This allows us to uniquely determine the left/right exchange and rotations applied
to some base pair, and the remaining labelings straightforwardly allow to determine one of the six
base isomer pair, and one of ∆ or ∆′. Therefore all isomer pairs are disjoint.

As a consequence of Lemma A.34, we have the following result.

Theorem A.35. For any n > 8, µs(F160,n) = 3n−2n+1−12n+2
3n−2n+1+2 .

A.3 Conclusion and perspectives

Asynchrony highly impacts the dynamics of CA and new original dynamical behaviours are in-
troduced. However, not all schedules produce original dynamics. For this reason, a measure to
quantify the sensitivity of ECA w.r.t. to changes of the update schedule has been introduced [Ruivo
et al. (2018)]. All ECA rules were then classified into two classes: max-sensitive and non-max
sensitive.
This appendix provided a finer study of the sensitivity measure with respect to the size of the
configurations. We found four classes (see Table 2). In particular, it is interesting to remark that
each class is characterised by a different base of the exponential in the numerator of the sensitivity
measure. Class I has base 1 (and indeed it contains the simplest dynamical behaviours); class II
and IV have base 2 and 3, respectively. Finally, class III contains only the ECA rule 8 and presents
a contrast between the simple dynamical behaviour of ECA rule 8 and φ (the golden ratio) as a
base of the numerator of the sensitivity function.
Moreover, remark that in the classical case, the limit set of the ECA rule 8 (class III) is the same
as ECA rule 0 (class I) and it is reached after just two time steps. This suggests that further
research should be performed to understand what are the relations between the limit set (both in
the classical and in the asynchronous cases) and the sensitivity to synchronism. A similar idea has
been investigated in works on block-invariance [Goles et al. (2018), Goles et al. (2015)], with
the difference that it concentrates only on the set of configurations in attractors, and discards the
transitions within these sets.
In the literature one can find a notion similar to sensitivity to synchronism called π-indepen-
dence [Macauley et al. (2011), Macauley et al. (2007)]. However, π-independence is defined on
asynchronous updates that are permutations of the set of cells. Consequently, these are only some
of the possible asynchronous updates that can be introduced thanks to block-sequential update
schedules. Remark that a max-sensitive rule can be π-independent. This implies that each block-
sequential update schedule with blocks of size 1 generates at least a difference in the non-periodic
dynamics. The four classes introduced here allow to further distinguish the 56 not max-sensitive
rules, which are reduced to 21 if one considers topological conjugacy. Of these 21 rules, 13 are
π-independent and 6 are not. Among the π-independent rules, we can now distinguish four in-
sensitive (0, 51, 200, 204), six low-sensitive (12, 28, 32, 60, 136, and 140), one medium-sensitive
(rule 8), and two almost max-sensitive (128 and 160) rules. Furthermore, the remaining insen-
sitive rules (3, 15, 34, 44, and 170) and the remaining almost max-sensitive rules (rule 162) are
not π-independent. This implies that even with an update schedule with one cell per block forces
differences even in the periodic dynamics.
We stress that this study focuses on block-sequential updating schemes. A promising research
direction consists in investigating how the sensitivity functions change when different updating
schemes are considered such as block-parallel ones [Demongeot and Sené (2020)].
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Another interesting research direction would consider the generalisation of our study to larger
classes of CA in order to verify if a finer grained set of classes appears or not. From experi-
ments, it seems that the set of possible sensitivity functions is tightly related to the structure of the
neighbourhood.
An ambitious research program would try to extend the analysis performed here to other sets of
configurations. A good starting point might be bi-periodic configurations, i.e. infinite configura-
tions that admit an integer z ∈ Z such that all cells with index greater than z have different periodic
pattern than all cells with index less than or equal to z (consider for example a configuration which
is 0 for all i ≤ 0 and 1 for all i > 0). An even more ambitious research would consider arbitrary
infinite configuration in the spirit of [Ruivo et al. (2020)]. We think that the approach by “fair”
measures could be a good starting point [Dennunzio et al. (2012), Dennunzio et al. (2013)].





Factorisation de Systèmes Dynamiques Discrets
Sara RIVA

Résumé

Un Système Dynamique Fini à temps Discret (SDD) est constitué d’un ensemble fini X , dit es-
pace des états, et d’une fonction f , dite fonction de mise à jour (associant à un état v l’état f(v)).
Les SDD sont un outil formel pour modéliser de nombreux phénomènes en physique, en math-
ématique, en biologie, et, bien sûr en informatique. Si la formalisation mathématique et les ré-
sultats qui en découlent sont élégants et parlants, souvent, ces résultats sont peu applicables en
pratique à cause de leur coût computationnel élevé. Dans la littérature, il est connu que les SDD
équipés d’opérations de somme et de produit appropriées forment un semi-anneau commutatif.
Cette structure algébrique nous permet d’écrire des équations polynomiales dans lesquelles les
coefficients et les inconnues sont des SDD. En particulier, si nous sommes intéressés par une
certaine dynamique dérivée de données expérimentales, nous pouvons écrire une équation avec
celle-ci comme terme de droite constant et modéliser des hypothèses sur la fonction f (ou ses
propriétés) dans un terme de gauche polynomial. Trouver des solutions à cette équation permet de
mieux comprendre le phénomène et ses propriétés. Cette approche est intéressante mais pose des
limites computationnelles importantes. En effet, résoudre une équation polynomiale (à plusieurs
variables) est, en général, indécidable et même en se concentrant sur le cas de la validation des
hypothèses, le coût computationnel reste élevé. L’idée est alors de chercher des approximations
donnant des informations pertinentes sur les solutions de l’équation originale. Trois abstractions
(équations plus simples) sont introduites afin d’identifier : le nombre d’états des variables, le com-
portement asymptotique ou le comportement transient (comportement avant que le système se
stabilise). Chaque abstraction est construite d’un point de vue théorique et algorithmique dans le
but d’introduire une méthode pour effectuer la validation d’hypothèses sur SDD. Dans cette thèse,
il est montré qu’au moyen de transformations algébriques, il est possible d’énumérer les solu-
tions d’une équation polynomiale avec un terme droit constant par l’énumération d’un nombre fini
d’équations plus simples. Enfin, le lien entre la résolution ces équations simples et le problème
de la cancellation connu en théorie des graphes est exploré. Cela a permis de trouver une borne
supérieure linéaire sur le nombre de solutions.

Mots-clés : Systèmes Dynamiques Discrets, Complexité, Vérification.

Abstract

A Finite Discrete-time Dynamical System (DDS) consists of a finite set X , called state space, and
a function f , called next-state map (which associates to a state v the state f(v)). DDS are a formal
tool for modelling phenomena that appear in Physics, Mathematics, Biology, and, of course, in
Computer Science. While the mathematical formalisation and the results that have been found up
to nowadays are elegant and meaningful, often they are not very suitable in practice because of
their high computational cost. In the literature, it is known that DDS equipped with appropriate
sum and product operations form a commutative semiring. This algebraic structure allows us to
write polynomial equations in which the coefficients and unknowns are DDS. In particular, if we
are interested in some dynamics derived from experimental data, we can write an equation with
this as a constant right-hand term and model assumptions about the function f (or its properties)
in a polynomial left-hand term. Finding solutions to this equation allow us to better understand
the phenomenon and its properties. This approach is interesting but it has important limitations
from a computational point of view. Solving a polynomial equation (with several variables) is, in
general, undecidable, and even if we focus on the case of hypothesis validation, the computational
cost remains high. The idea is then to look for approximations that give relevant information about
the solutions of the original equation. It is possible to introduce three abstractions (simpler equa-
tions) to identify: the number of states of the variables, the asymptotic behaviour, or the transient
behaviour (what happens before the system stabilises). Each one is built from a theoretical and
algorithmic point of view to introduce a method to perform hypothesis validation on DDS. In this
thesis, it is shown that through algebraic transformations, it is possible to enumerate the solutions
of a polynomial equation with a constant term by enumerating a finite number of simpler equa-
tions. Finally, the connection between the solution of these simple equations and the cancellation
problem known in graph theory is explored. This allowed us to find a linear upper bound on the
number of solutions.

Keywords: Discrete Dynamical Systems, Complexity, Formal Verification.
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