
HAL Id: tel-03937453
https://theses.hal.science/tel-03937453

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware support for energy awareness in the
Internet of Things (IoT)

Pedro Victor Borges Caldas da Silva

To cite this version:
Pedro Victor Borges Caldas da Silva. Middleware support for energy awareness in the Internet of
Things (IoT). Computer science. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IP-
PAS016�. �tel-03937453�

https://theses.hal.science/tel-03937453
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

S
01

6

Middleware support for energy
awareness in the Internet of Things (IoT)

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Évry, le 12 Décembre 2022, par

PEDRO VICTOR BORGES CALDAS DA SILVA

Composition du Jury :

Philippe Roose
Maı̂tre de Conférence, HDR, Université de Pau et des Pays de
l’Adour Rapporteur

Romain Rouvoy
Professeur, Université de Lille Rapporteur

Gordon Blair
Professeur, Lancaster University Examinateur

Anne Cécile Orgerie
Directrice de Recherche CNRS, IRISA Rennes Examinatrice

Sophie Chabridon
Professeure, Télécom SudParis (SAMOVAR) Examinatrice

Thais BATISTA
Professeure, Universidade Federal do Rio Grande do Norte (UFRN) Examinatrice

Chantal TACONET
Maı̂tre de Conférence, HDR, Télécom SudParis (SAMOVAR) Directrice de thèse

Abstract

The Internet of Things (IoT) is characterized by a myriad of geographically
dispersed devices and software components as well as high heterogeneity in
terms of hardware, data, and protocols. Over the last few years, IoT plat-
forms have been used to provide a variety of services to applications such as
device discovery, context management, and data analysis. However, the lack
of standardization makes each IoT platform come with its abstractions, APIs,
and interactions. As a consequence, programming the interactions between
a consuming IoT application and an IoT platform is often time-consuming,
error-prone, and depends on the developers’ level of knowledge about the IoT
platform. IoT middleware are proposed to alleviate such heterogeneity, provide
relevant services, and ease application development.

As the energy efficiency of digital technology becomes a priority, the in-
crease in IoT systems brings energy concerns. In this context, carefully design-
ing interactions between IoT consumer applications and IoT systems with an
energy-efficiency concern becomes essential. IoT middleware should not solely
consider energy efficiency as a non-functional requirement. Instead, it needs to
be at the solution’s core as the middleware is expected to be shared by many
applications and offer facilities to ease application development.

This work presents three contributions regarding energy-efficiency/awareness
in IoT middleware for IoT consumer applications. The first contribution is the
proposal of an IoT middleware for IoT consumer applications called IoTvar
that abstracts IoT virtual sensors in IoT variables that are automatically
updated by the middleware. The second contribution is the evaluation of the
energy consumption of the interactions between IoT consumer applications
and IoT platforms through the HTTP and MQTT protocols. This evaluation
has led to the proposal of guidelines to improve energy efficiency when
developing applications. The third contribution is the proposal of strategies
for energy efficiency to be integrated into IoT middleware. Those strategies
have been integrated into the IoTvar middleware to provide energy efficiency,
but also energy awareness through an energy model and the management of

I

II Abstract

an energy budget driven by user requirements. The implementations of the
IoT middleware architecture, with and without energy-efficiency strategies,
have been evaluated, and the results show that we have a difference of up
to 60% the energy used by IoT applications by applying strategies to reduce
energy consumption at the middleware level.

Preface

This thesis is the result of my PhD research 1 under the supervision of Prof.
Chantal TACONET and Prof. Thais BATISTA.

• Accepted publications

1. Mastering Interactions with Internet of Things Platforms through
the IoTVar Middleware [Borg19]
Authors: Borges, Pedro Victor and Taconet, Chantal and Chabri-
don, Sophie and Conan, Denis and Batista, Thais and Cavalcante,
Everton and Batista, Cesar

2. Analysis of the Impact of Interaction Patterns and IoT Protocols on
Energy Consumption of IoT Consumer Applications[Cane22] Au-
thors: Borges, Pedro Victor and Taconet, Chantal and Canek, Ro-
drigo

3. Energy-awareness and energy efficiency in Internet of Things
middleware: A systematic literature review [Accepted in Annals of
Telecommunications] Authors: Borges, Pedro Victor and Taconet,
Chantal and Chabridon, Sophie and Conan, Denis and Batista,
Thais and Cavalcante, Everton

• Under review publications

1. Taming Internet of Things Application Development with the IoTvar
Middleware [Under Major Review in ACM TOIT]
Authors: Borges, Pedro Victor and Taconet, Chantal and Chabri-
don, Sophie and Conan, Denis and Batista, Thais and Cavalcante,
Everton

1Funded by the “Futur & Ruptures” program from Institut Mines Télécom, Fondation,
Fondation Mines-Télécom and Institut Carnot.

III

IV Preface

2. Middleware supporting PIS: Requirements, solutions, and challenges
(Book chapter in “Evolution of Pervasive Systems”) [Under Press
Release in Springer]
Authors: Taconet, Chantal and Batista, Thais and Borges, Pedro
and Bouloukakis, Georgios, Cavalcante, Everton and Chabridon, So-
phie and Conan, Denis and Desprats, Thierry and Muñante, Denisse

V

List of Figures VIII

List of Tables XI

1 Introduction 1
1.1 Motivations . 1
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Outline of the document . 5

I IoT Middleware and Energy-Efficiency Background
and Related Work 7

2 IoT Middleware and Energy-Efficiency Background 9
2.1 Internet of Things . 10

2.1.1 IoT definitions . 10
2.1.2 IoT architecture . 10
2.1.3 IoT and context management 11

2.2 IoT Middleware Definition and Architecture 12
2.3 IoT Platform Definition and Architecture 13
2.4 Analysis of common features of three context management IoT

Platforms . 14
2.4.1 Description of the selected IoT platforms 14
2.4.2 Context data-model . 15

Orion data model . 15
OM2M data model . 17
muDEBS data model . 18
Synthesis . 20

2.4.3 Interaction patterns, APIs and protocols 20
Interactions with Orion 20
Interactions with OM2M 20
Interactions with muDEBS 21
Synthesis . 21

2.4.4 Discovery facilities and filtering capabilities 21
Discovering and filtering with Orion 21
Discovering and filtering with OM2M 22

VI Preface

Discovering and filtering with muDEBS 22
Synthesis . 22

2.4.5 Synthesis of the context management IoT platforms anal-
ysis . 22

2.5 Measuring software energy consumption 23
2.5.1 Wattmeter . 24

Electrodynamometer . 24
Induction . 25
Digital . 25
Wattmeter Usage . 26

2.5.2 RAPL . 27
2.5.3 LIKWID . 28
2.5.4 Power API . 28
2.5.5 JourlarJX . 29
2.5.6 Synthesis . 30

2.6 Conclusions . 31

3 IoT Middleware and Energy-Efficiency Related Work 33
3.1 Literature Review on energy-efficiency in IoT middleware 34

3.1.1 Research methodology 34
3.1.2 Results and discussion 42

Energy-aware and energy-efficient strategies in IoT mid-
dleware . 42

Abstractions for energy-awareness or energy efficiency in
IoT middleware 44

Evaluation of energy-aware/efficient IoT middleware . . . 45
Target of energy efficiency 46

3.1.3 Summary . 48
3.2 Energy-efficiency in HTTP and MQTT protocols 49

3.2.1 HTTP and MQTT overview 49
3.2.2 Synthesis of related works 50

3.3 IoT middleware for consumer applications 52
3.3.1 Domain Specific Language 52
3.3.2 Application Mashup . 53
3.3.3 IoT middleware . 53
3.3.4 Synthesis . 54

3.4 Conclusions . 54

VII

II IoT Middleware and Energy-Efficiency: Contribu-
tions 55

4 IoTVar 57
4.1 IoTVar Software Architecture 58

4.1.1 General architecture . 58
4.1.2 The cost of extending IoTvar 58
4.1.3 IoTVar proxies . 60

4.2 IoTvar abstractions for the developer 64
4.2.1 IoTvar variable declaration 64
4.2.2 IoTvar update listener 64
4.2.3 Gains in terms of lines of codes 65

4.3 IoTvar Evaluation . 66
4.3.1 Setup for the experimentation 67
4.3.2 Results for the synchronous interaction pattern 68
4.3.3 Results for the publish-subscribe interaction pattern . . . 71
4.3.4 Overview of the results 76

4.4 Conclusion . 78

5 Impact of Int. Patterns and IoT prot. 79
5.1 Experimental methodology . 80

5.1.1 Experimental setup . 80
Computers and network 80
Algorithms . 81

5.1.2 Process to isolate the communication energy consumption 83
5.1.3 Experimental plan . 83
5.1.4 Threats to validity . 85

5.2 Results . 86
5.2.1 Impact of the interaction pattern 86
5.2.2 Impact of the application protocol 87
5.2.3 Impact of the QoS in MQTT 88
5.2.4 Impact of the payload 89
5.2.5 Guidelines for IoT consumer application designers 91

Group several observations in one message 91
Favor the Publish-Subscribe interaction pattern 91
Favor the MQTT protocol over the HTTP protocol . . . 91
Choose the QoS appropriate for your application 92
Examples of benefits from those guidelines 92

5.3 Conclusion . 92

VIII Preface

6 Energy-efficiency/Awareness in IoTVar 95
6.1 Guidelines for energy-efficiency and energy-awareness in IoT

middleware . 96
6.1.1 Switch of communication protocols 96
6.1.2 Message grouping . 97
6.1.3 Refresh Time Adaptation 97
6.1.4 Interaction pattern switch 97
6.1.5 Energy Budget management 98

6.2 IoTvar Energy-efficient/Aware architecture 98
6.3 Energy-efficient/Aware mechanisms in IoTvar 98

6.3.1 Configuring IoTvar energy efficient mechanism 100
6.3.2 Network and variable status 100
6.3.3 Energy budget . 100
6.3.4 Energy model . 101
6.3.5 Energy aware Algorithm for energy efficiency 102

6.4 Evaluation . 103
6.4.1 Setup . 104
6.4.2 Results with the Wattmeter 105
6.4.3 IoTvar Energy Model calibration 107
6.4.4 Results with JoularJX 108

6.5 Discussion . 110
6.6 Conclusion . 110

7 Conclusions and future work 115
7.1 Conclusions . 115
7.2 Future Work . 117

Bibliography 119

III Appendix 133

Summary of selected primary studies in the SLR 135

Figures

2.1 IoT architecture . 11
2.2 IoT system basic architecture [Onor18] 13
2.3 Next Generation Service Interface (NGSI) entity model 16
2.4 OM2M generic data model. 17
2.5 muDEBS generic data model. 19
2.6 Electrodynamometer . 25
2.7 Induction wattmeter . 26
2.8 Digital wattmeter . 26
2.9 Power API architecture [Nour12] 29

3.1 Steps to select the relevant primary studies 38
3.2 Evaluation method and state of the implementation 46
3.3 Middleware deployment locations addressed in the selected pri-

mary studies . 48

4.1 IoTvar generic architecture . 59
4.2 IoTvar extension steps. 60
4.3 IoTvar sequence diagram for the Publish/Subscribe interaction

pattern. 62
4.4 IoTvar sequence diagram for the Request/Reply interaction pat-

tern. 63
4.5 IoTvar experimental setup . 68
4.6 IoT platforms synchronous consumption with and without IoT-

var . 69
4.7 IoT platforms pub/sub performance evaluation with and with-

out IoTvar . 72
4.8 IoT platforms pub/sub performance evaluation with and with-

out IoTvar . 73
4.9 Overall results of the IoTvar middleware 77

IX

X Figures

5.1 SetUp for the experiments . 80
5.2 Energy consumption measures 84
5.3 Energy consumption 24B, Interaction Pattern Comparison . . . 86
5.4 Energy consumption for a 24B payload, Protocol Comparison . 88
5.5 Energy consumption for a 24B payload, QoS Comparison 89
5.6 Bytes Received by Joule Payload Comparison 90

6.1 IoTvar architecture with energy-efficiency/awareness 99
6.2 Inside the IoTvar energy efficient/aware component 100
6.3 IoTvar energy-efficient experimental setup 104
6.4 IoTvar energy consumption using EE strategies 106
6.5 IoTvar CPU usage using EE strategies 107
6.6 IoTvar energy consumption using energy model 108
6.7 IoTvar energy consumption using JoularJX 109

Tables

2.1 Comparison table . 23
2.2 Comparison of energy measurement tools 31

3.1 List of selected studies . 39
3.2 Strategies and techniques for energy efficiency in IoT middleware 43
3.3 Target of energy efficiency in IoT middleware 47
3.4 Synthesis of the related work . 52

4.1 Number of lines of code by component 60
4.2 Number of lines of code when developing with and without IoT-

var . 65
4.3 Difference between using and not IoTvar for the synchronous

interaction pattern. 70
4.4 p-values from the U -test for the FIWARE synchronous interac-

tion pattern. 70
4.5 Magnitude from the U -test for the FIWARE synchronous inter-

action pattern. 70
4.6 p-values from the U -test for the OM2M synchronous interaction

pattern. 71
4.7 Magnitude from the U -test for the OM2M synchronous interac-

tion pattern. 71
4.8 Difference between using and not IoTvar for the publish-

subscribe interaction pattern. 74
4.9 p-values from the U -test for the FIWARE pub/sub interaction

pattern. 74
4.10 Magnitude from the U -test for the FIWARE pub/sub interaction

pattern. 75
4.11 p-values from the U -test for the OM2M pub/sub interaction pat-

tern. 75

XI

XII Tables

4.12 Magnitude from the U -test for the OM2M pub/sub interaction
pattern. 75

4.13 p-values from the U -test for the MUDEBS pub/sub interaction
pattern. 76

4.14 Magnitude from the U -test for the MUDEBS pub/sub interac-
tion pattern. 76

4.15 Difference in percentage between using and not IoTvar for the
supported platforms. 76

5.1 Families of experiments . 84
5.2 Synchronous pattern average overhead over the publish/sub-

scribe pattern . 87
5.3 HTTP vs MQTT average overhead with all the message rates . 87
5.4 MQTT QoS overheads . 88
5.5 Payload overhead from 24Bytes to 3120Bytes 90

6.1 IoTvar configuration file properties 101
6.2 Increase of Joules using IoTvar without energy-efficient strategies 105
6.3 p-values from the U -test for IoTvar and the FIWARE platform . 106
6.4 Magnitude from the U -test for IoTvar 106
6.5 Values of constants and modifiers of the energy model. 107
6.6 Estimation using the energy model and the wattmeter 108
6.7 Difference between using the wattmeter and JoularJX 109

Support des middleware pour la prise en compte de la

consommation énergétique dans l’Internet des objets

Résumé en français

L’Internet des objets (IoT) se caractérise par une myriade de dispositifs et de composants logiciels
géographiquement dispersés ainsi que par une grande hétérogénéité en termes de matériel, de format
de données et de protocoles. Au cours des dernières années, les plateformes IoT ont été proposées
pour fournir une variété de services aux applications, tels que la découverte de dispositifs, la ges-
tion du contexte et l’analyse des données. Cependant, le manque de standardisation fait que chaque
plateforme IoT propose ses propres abstractions, API et patrons d’interactions. Par conséquent, la pro-
grammation des interactions entre une application IoT consommatrice de données et une plateforme
IoT est complexe, sujette à des erreurs et demande un niveau de connaissance de la plateforme IoT
approfondi de la part des développeurs. Les intergiciels IoT peuvent atténuer cette hétérogénéité, ils
doivent fournir des services pertinents et ainsi faciliter le développement des applications.

L’efficacité énergétique de la technologie numérique devenant une priorité, l’augmentation du
nombre de systèmes IoT pose des problèmes énergétiques. Dans ce contexte, il est essentiel de concevoir
soigneusement les interactions entre les applications IoT grand public et les plateformes IoT en tenant
compte de l’efficacité énergétique. Les intergiciels IoT ne doivent pas uniquement considérer l’efficacité
énergétique comme une exigence non fonctionnelle laissée à l’application. Au contraire, parce qu’ils sont
utilisés par de nombreuses applications, l’efficacité énergétique doit être au cœur de leur conception.

Cette thèse présente trois contributions concernant l’efficacité énergétique et la sensibilisation à
l’énergie dans les intergiciels IoT pour les applications IoT consommatrices de données. La première
contribution est la proposition d’un intergiciel IoT appelé IoTvar qui abstrait les capteurs virtuels
IoT dans des variables IoT qui sont automatiquement mises à jour par l’intergiciel. La deuxième
contribution est l’évaluation de la consommation d’énergie des interactions entre les applications IoT
grand public et les plateformes IoT via les protocoles HTTP et MQTT. Cette évaluation a conduit à
la proposition de lignes directrices pour améliorer l’efficacité énergétique des interactions. La troisième
contribution est la proposition de stratégies d’efficacité énergétique pour des middleware IoT. Ces
stratégies ont été intégrées dans l’intergiciel IoTvar pour assurer l’efficacité énergétique, mais aussi la
sensibilisation à l’énergie par le biais d’un modèle énergétique et la gestion d’un budget énergétique
fonction des exigences des utilisateurs. Les implémentations de l’architecture middleware IoT, avec
et sans stratégie d’efficacité énergétique, ont été évaluées, et les résultats montrent que nous avons
une diminution allant jusqu’à 60% de l’énergie consommée par les applications IoT en appliquant des
stratégies pour réduire la consommation d’énergie au niveau du middleware.

Le document de thèse est composé de 7 chapitres couvrant une introduction, quelques éléments
de contexte dans les domaines de l’Internet des objets et de la consommation d’énergie des logiciels,
suivis d’une revue de l’état de l’art dans ces domaines, et de trois chapitres de contribution, avant de
conclure et de donner des perspectives des travaux.

Dans le chapitre 1 (Introduction), nous motivons les défis liés à l’efficacité énergétique et à la prise
de conscience énergétique dans les intergiciels pour l’IoT, puis nous présentons les quatre questions de
recherche considérées dans la thèse. Ces questions de recherche portent sur i) la proposition par les
intergiciels pour les applications consommatrices de données de l’IoT d’abstractions qui permettent
l’interaction avec les plates-formes IoT, ii) le coût en termes de ressources informatiques de ces inter-
giciels, iii) l’impact sur la consommation d’énergie des protocoles IoT et des patrons d’interaction, et
enfin iv) les stratégies visant à réduire la consommation d’énergie des applications IoT grand public.

Le chapitre 2 (Intergiciels pour l’IoT et efficacité énergétique) fournit ensuite le matériel de base
nécessaire lié à la définition et aux architectures communément adoptées dans le domaine des systèmes
IoT, intergiciels pour l’IoT et des plateformes IoT, ainsi que les notions liées à l’analyse de la consom-
mation énergétique des logiciels. Ce chapitre examine trois plates-formes de gestion de contenu IoT, à
savoir Orion, OM2M et muDEBS, afin d’étudier les fonctionnalités communément offertes et d’iden-

tifier les abstractions clés qui devraient être exposées aux applications consommatrices de l’IoT afin
qu’elles interagissent avec un grand nombre de plateformes IoT. Ces fonctionnalités clés comprennent
le modèle de données, les modèles d’interaction, les interfaces de programmation et les protocoles, la
découverte et les capacités de filtrage. Au-delà de ces caractéristiques, ce chapitre présente les besoins
énergétiques des applications IoT et examine les approches et les outils potentiels pour mesurer la
consommation énergétique des logiciels. Cette étude conclut que les développements récents des plate-
formes IoT conduisent à la fourniture de solutions hétérogènes qui rendent l’effort de développement
d’applications consommatrices de l’IoT difficile et sujet à des erreurs, rendant nécessaire la proposition
d’intergiciels pour ces applications.

Le chapitre 3 (État de l’art concernant les middleware pour l’IoT et leur efficacité énergétique)
présente un état de l’art en 3 volets : i) un examen systématique de la littérature sur l’efficacité
énergétique des solutions middleware pour l’IoT, ii) les travaux connexes concernant l’efficacité énergétique
des interactions (protocoles IoT consommatrices et patrons d’interaction) entre les applications consom-
matrices et les plateformes IoT, et enfin iii) les familles de middleware IoT pour les applications grand
public. La revue de la littérature est plus spécifiquement couverte sous l’angle de l’efficacité énergétique
et de la prise en charge de la sensibilisation à l’énergie des middleware IoT existants, qui est une exigence
clé dans ce travail. La revue systématique a permis de recueillir et d’analyser 22 articles récents dans
le domaine. Les études sélectionnées sont comparées en fonction des stratégies énergétiques qu’elles
proposent pour i) l’adaptation en termes d’interactions et de protocoles, ii) le déplacement de tâches,
iii) la sélection des nœuds IoT actifs, iv) l’apprentissage automatique concernant la mise à jour ded
données et v) le filtrage des données. Le résultat de cet examen est que la plupart des études proposent
au plus une stratégie pour réduire la consommation d’énergie, qui est mise en œuvre sous forme d’adap-
tation des interactions ou de déplacement des tâches dans la plupart des cas. Cependant, la plupart
des études ne proposent aucune sensibilisation à l’énergie ou d’abstractions économes en énergie pour
les applications IoT et, surtout, la plupart des études ont fourni des évaluations ciblées de la consom-
mation d’énergie, manquant ainsi une évaluation plus systémique des économies globales réalisées par
les solutions middleware fournies. Dans son deuxième volet, le chapitre souligne également le manque
d’études empiriques sur la consommation d’énergie des protocoles HTTP et MQTT, qui sont large-
ment adoptés par les applications consommatrices de l’IoT. Enfin, le chapitre motive l’adoption d’une
approche middleware comme une approche plus flexible pour la mise en œuvre d’applications IoT, par
rapport aux langages spécifiques au domaine ou aux approches mashup.

Les conclusions du chapitre 3 préparent le terrain pour la première contribution de la thèse présentée
au chapitre 4 (IoTvar). IoTvar est un nouvel intergiciel qui propose des variables de type IoT et des
proxys qui gèrent l’ensemble des interactions entre les plateformes IoT et les applications consomma-
trices de l’IoT. Plus précisément, IoTvar agit en tant que mandataire pour gérer la découverte des
objets IoT, la mise à jour automatique des valeurs collectées (interactions, protocoles, présentation des
données mises à jour, appel des listeners associés le cas échéant). Le coût de l’intégration d’une nouvelle
plateforme IoT dans l’intergiciel est discuté et illustré sur les trois plateformes IoT sélectionnées au
chapitre 2. Il est intéressant de noter qu’une grande partie du code traitant des modèles d’interaction et
des protocoles peut être mise en œuvre indépendamment de ces plateformes, ce qui démontre un champ
d’application plus large. Les abstractions d’intergiciel offertes par IoTvar sont prototypées dans le lan-
gage de programmation Java sous la forme d’un ensemble de classes et de primitives qui permettent
à un développeur de déclarer facilement des variables IoT et d’enregistrer des listeners à déclencher
pour traiter les données mises à jour le cas échéant. Par rapport au code écrit sans IoTvar, on peut
observer que la quantité de code écrit est réduite d’un ordre de grandeur. En ce qui concerne l’impact
sur la consommation d’énergie, on peut observer que IoTvar introduit une surcharge raisonnable qui
peut être expliquée par le coût du mécanisme de proxy proposé.

Le chapitre 5 (Impact énergétique des patrons d’interaction et de protocoles IoT) approfondit la
question de l’efficacité énergétique des protocoles IoT en réalisant une étude expérimentale et une com-
paraison des protocoles de réseau existants et des modèles d’interaction traditionnellement adoptés par
les applications consommatrices IoT. Un protocole d’expérimentation est proposé et les résultats de
l’expérimentation sont analysés. La combinaison de protocoles IoT (HTTP ou MQTT) et de modèles
d’interaction (synchrone ou publication/souscription avec différentes exigences de qualité de service) est
explorée et comparée dans différents contextes. Le chapitre conclut que le patron d’interaction publica-
tion/souscription est plus économe en énergie que le modèle d’interaction synchrone, et que le protocole
MQTT surpasse HTTP de 20% en moyenne pour des interactions de type publication/souscription.

On peut également observer que le surcoût énergétique est proportionnel au niveau de qualité de ser-
vice attendu, qui est corrélé au nombre de messages échangés. Enfin, l’impact de la charge utile d’un
message bien que non négligeable montre que le nombre d’octets par joule progresse favorablement
avec la taille de la charge utile. Cette analyse permet de fournir des indications intéressantes pour
les concepteurs d’applications IoT, afin de réaliser d’importantes économies d’énergie. Ce résultat de-
vrait guider le développement des futures applications IoT en proposant des modèles d’application qui
adoptent de telles décisions par défaut.

Cette orientation est couverte par le chapitre 6 (Stratégies d’efficacité et de conscience énergétique
dans IoTvar), qui traite de la mise en œuvre de diverses stratégies d’efficacité énergétique et de sensi-
bilisation à l’énergie dans l’intergiciel IoTvar. Ces stratégies, à savoir le choix du protocole de commu-
nication, le regroupement de messages pour plusieurs variables, le changement de modèle d’interaction
pour l’adaptation au temps de rafrâıchissement et la gestion du budget énergétique, sont d’abord
décrites, puis intégrées à l’intergiciel IoTvar, soit en tant que nouvelle couche énergétique, soit en tant
qu’extensions de couches existantes. Il est intéressant de noter que l’intergiciel IoTvar est doté de la
capacité de raisonner sur le coût énergétique des actions prises en charge pour ajuster sa configura-
tion en fonction d’un budget énergétique donné. L’évaluation effectuée sur l’intergiciel IoTvar compare
différentes configurations d’une application IoT par rapport à une base de référence sans stratégie.
Alors que la version de base de l’intergiciel IoTvar présentait une surconsommation d’énergie par rap-
port aux plateformes IoT originales, les extensions d’efficacité énergétique et de sensibilisation d’IoTvar
ont permis de réduire de manière significative la consommation d’énergie des applications IoT testées,
jusqu’à 60%.

Enfin, le dernier chapitre propose une conclusion résumant les principales contributions apportées
par ce travail et énumère quatre perspectives pertinentes pour ce travail, soulignant le potentiel d’ex-
tensions supplémentaires du middleware IoTvar pour prendre en charge les interfaces matérielles et
réseau, mais aussi la généralisation des stratégies d’efficacité énergétique/sensibilisation proposées à
un champ plus large de composants applicatifs, au-delà du champ des systèmes IoT.

XVI Tables

Chapter 1

Introduction

1.1 Motivations
Nowadays the world is experiencing a huge surge of things connected to the
internet known as the Internet of Things (IoT). It is estimated that by the
end of 2025 the world will be drawing near the mark of 100 billion IoT de-
vices [Atti19, Okra15]. The Internet of Things (IoT) is a wide term referring
to smart objects, services, and applications that collude to provide value-added
content and services for end-users and systems.

The world is also experiencing a continuous increase need for the produc-
tion of electricity, which has doubled in the last three decades of the past cen-
tury [Bere07]. In 2012 the total energy consumption of Information and Com-
munication Technology (ICT) reached 4.6% of the total worldwide electricity
consumption, amounting to approximately 920 TWh [Lann13, VH14], and is es-
timated to account for more than 20% of global energy use by 2030 [Andr15].
The relentless increase in computing and communication requirements at a
time when energy efficiency is a major concern for society is a paradox. In this
context, the energy efficiency of digital technology becomes a priority.

The increase in IoT also brings energy concerns. The global energy con-
sumption of IoT devices increases by 20% per year and it is estimated that it
will represent about 46 TWh in 2025 [EAI16]. Thus, handling energy awareness
and energy efficiency in the IoT context as first-class concepts is imperative for
the Information Technology (IT) domain [Shai17b].

Internet of Things usually works based on small devices, and as explained
by Benhamaid et al., “IoT devices are usually small and battery limited and the
exchange of massive information between these devices gives rise to enormous
energy requirements. These requirements are often not supported by IoT devices

1

2 CHAPTER 1. INTRODUCTION

and can quickly lead to battery depletion and the network’s death.” [Benh22].
That is why energy efficiency has firstly been taken into account in the design
of software deployed on IoT devices [Muno19]. However, reducing software
energy consumption in IoT may not be bounded only to IoT devices. It has
been estimated that IoT devices generated around 67 zettabytes of data in
2020 [dbHF19]. Part of this volume of data is consumed by IoT applications.
Thus, carefully designing interactions between IoT applications and IoT sys-
tems with an energy-efficiency concern is also essential.

Designing and implementing IoT applications is complex because it ad-
dresses different concerns: proper identification of various stakeholders’ roles
at the different phases of application development, heterogeneity in IoT sys-
tems, and handling of a vast amount of data from disparate devices [Pate15].
Furthermore, energy efficiency is a new requirement to be handled by IoT sys-
tem designers. This gets even more challenging because developers still lack
knowledge about software energy consumption [Pang16].

The complexity of developing IoT applications can be mitigated as devel-
opers can take advantage of IoT middleware that provides an abstraction layer
between devices and developers, managing devices and protocols heterogene-
ity [Chaq12]. Middleware specialized for the IoT provides (i) abstractions
for accessing volatile physical devices and managing the data produced by
these devices, (ii) virtualization and aggregation functions of many devices
into IoT systems, and (iii) interoperability patterns for managing software en-
tities [Blai16, Ngu17, Razz16, Boul19]. The diverse role of middleware makes
them suitable for integrating IoT applications with energy-efficient/aware so-
lutions.

To facilitate the communication and data flow between IoT applications
and devices, developers can also use IoT platforms [Mine16]. These platforms
provide interfaces, interaction patterns, communication protocols, and compu-
tational capabilities to support the development of IoT applications. They also
include middleware services that provide functionalities such as device discov-
ery, context management, and data analysis [Ray16]. Context management
IoT platforms, constitute a subset of IoT platforms that provide middleware
components for accessing IoT data. Similarly, IoT consumer applications take
advantage of the capabilities of both IoT platforms and middleware to access
IoT data.

However, even with the support of IoT platforms and middleware, devel-
oping an IoT consumer application remains challenging. As an example, to
display the current temperature at the Eiffel Tower in Paris, application de-
velopers have to program the interactions with an IoT platform that shows up

1.2. RESEARCH QUESTIONS 3

several virtual entities providing updated temperature data around the area.
Even if most of the platforms provide similar features, developers need to learn,
for each platform, specific APIs, data models, and communication protocols.
Other development tasks include selecting and handling the appropriate inter-
action pattern (e.g., request/reply or publish/subscribe), (un) marshaling data,
and manipulating sensor identifiers and metadata, such as quality attributes of
sensor data. Furthermore, they may have to tune the frequency of interactions
to limit the usage of computational resources.

Noureddine et al. [Nour13] highlight that middleware for distributed ap-
plications could contribute to optimizing or reducing the energy consumption
of hardware devices, software services, and the platform itself. Thus, IoT
middleware should not solely consider energy efficiency as a non-functional re-
quirement. Instead, it needs to be at the solution’s core as the middleware is
expected to be shared by many applications and offer facilities to ease applica-
tion development. IoT end-user applications need to work with green protocols
and algorithms to ensure that the energy consumption is kept at only what is
necessary for the expected functionalities. This idea becomes possible with the
support of an energy-efficient middleware since it may provide the necessary
services for such requirements.

In this context, it is also important to consider energy-awareness, i.e.,
understanding the energy consumption and how efficient this consumption
is [Hass09]. With an energy-aware IoT middleware, an IoT application could
know the energy efficiency of the application or even parts of the code itself.
This facility contributes to easing the task of decreasing energy consumption.
This capability is also relevant considering that application developers and
users often have limited knowledge of how much energy their software con-
sumes and which parts use the most energy [Pang16].

1.2 Research Questions
To be able to provide a solution for energy-efficiency/awareness in an IoT mid-
dleware some Research Questions (RQ) were raised. These RQs help to widen
the view of the different aspects of IoT middleware and give an implemented,
evaluated, and usable energy-efficient middleware for IoT application develop-
ers.

RQ1 : How can a middleware support common abstractions when interacting
with IoT platforms?

4 CHAPTER 1. INTRODUCTION

– IoT platforms provide services through specific API and data mod-
els, indicating a learning phase for developers. The answer to this
research question will help conceive a solution usable by developers
that hide the complexity of the underlying IoT platforms, leaving
details of the implementation at the middleware level instead of the
application level.

RQ2 : What is the cost, in terms of CPU usage, memory usage, and energy
consumption, of abstracting IoT platforms using IoT middleware?

– Having an abstraction to an IoT platform doing the processing of
the information and communication comes at a cost. This RQ will
give us answers regarding what is the overhead caused by the IoT
middleware and how it can impact the resource consumption of an
IoT application that chooses to use it.

RQ3 : What is the impact on the energy consumption of widely used protocols
by IoT applications and with different interaction patterns?

– This research question will help to understand the behavior of IoT
protocols used by IoT applications. In a second step, it should
provide guidelines to build energy-efficient strategies that rely on
the features of the IoT protocols inside IoT middleware.

RQ4 : What are the strategies to be proposed by an IoT middleware to reduce
the energy consumption of IoT consumer applications?

– To provide energy-efficient/aware strategies to an IoT middleware,
new components are added or modified in its architecture. These
new components will provide the necessary implementation for the
strategies and an evaluation is made to ensure a lower energy con-
sumption by IoT applications using the middleware. This solution
will give more credibility not only to the usage of the IoT middle-
ware by IoT applications but also to provide future perspectives on
the usage of certain energy-efficient strategies in other areas of IT.

1.3 Contributions
This work proposes three contributions regarding those RQs towards an energy-
efficient/aware IoT middleware for IoT applications. These contributions start

1.4. OUTLINE OF THE DOCUMENT 5

with the conception of an IoT middleware, then we continue with the anal-
ysis of message patterns and IoT protocols to finally reach the confection of
an energy-efficient/aware middleware that introduces strategies to lower the
energy consumption at the application side.

The first contribution of this Ph.D. is an IoT middleware (IoTvar) lo-
cated between IoT-consuming applications and IoT platforms. IoTvar
proposes the paradigm of IoT variables able to manage all the interactions with
virtualized sensors in IoT platforms. The interactions with the platform are
managed by proxies on the application side. A generic architecture has been de-
signed, the IoTvar middleware has been implemented and integrated with three
IoT platforms: FIWARE, OM2M, and MuDEBS. We also report the results of
experiments performed to evaluate IoTVar, showing that IoTVar reduces the
effort required to declare and manage IoT variables. The experiments show
the impact of IoTvar in terms of CPU, memory, and energy consumption.

The second contribution is an experimental analysis of the energy
consumption of the interactions between an IoT-consuming applica-
tion and an IoT platform through two protocols proposed for inter-
actions between an IoT application and IoT platforms: the HTTP
and MQTT protocols. For the HTTP protocol, we have studied both the
publish-subscribe and the request-reply interaction patterns. For MQTT, we
have studied the publish-subscribe interaction pattern with the three available
Quality of Service. We also examine the impact of message payload on energy
consumption.

The third contribution proposes to integrate energy-efficiency/awareness
strategies inside an IoT middleware such as the IoTvar middleware.
This is done by implementing new components inside the middleware that
support the energy-efficient strategies as well as adding energy awareness
to it. The components for energy efficiency/awareness are integrated into
a new architecture of IoTvar and tests are done to gather data on the
energy consumption of the middleware. The results gathered are then
statistically analyzed, comparing the IoTVar middleware with and without
the energy-efficient/aware mechanisms.

1.4 Outline of the document
The first part of the document presents the background and related works
concerning IoT middleware and energy efficiency.

Chapter 2 provides the necessary vocabulary, definitions, and background informa-

6 CHAPTER 1. INTRODUCTION

tion concerning: (i) IoT middleware definition and architecture, (ii) IoT
platform definition, architecture, and analysis, (iii) Analysis of measuring
software energy consumption tools.

Chapter 3 analyses related works on three aspects, featuring a systematic literature
review on energy efficiency in IoT middleware, works regarding energy
efficiency in IoT protocols between IoT consumer applications and IoT
platforms, and IoT middleware for consumer applications.

The second part of the document presents the contributions of the Ph.D.

Chapter 4 presents the architecture, implementation, and evaluation of the IoT-
Var middleware, a middleware that provides abstractions for managing
interactions between IoT consumer applications and IoT platforms. It
provides the results regarding CPU, memory, and energy consumption.

Chapter 5 presents the results of experiments conducted to evaluate the impact of
interaction patterns and IoT protocols on energy consumption of IoT
consumer applications, and from those results draw some guidelines to
build new interaction strategies.

Chapter 6 discusses the implementation of energy-efficiency/awareness strategies
inside the IoTVar middleware and the results from an evaluation
comparing an application using IoTVar with and without energy-
efficiency/awareness strategies.

Finally, Chapter 7 presents the conclusion of the work along with future
work to further enhance energy efficiency and energy awareness in IoT middle-
ware.

Part I

IoT Middleware and
Energy-Efficiency Background and

Related Work

7

Chapter 2

IoT Middleware and
Energy-Efficiency Background

2.1 Internet of Things . 10
2.1.1 IoT definitions . 10
2.1.2 IoT architecture . 10
2.1.3 IoT and context management . 11

2.2 IoT Middleware Definition and Architecture . 12
2.3 IoT Platform Definition and Architecture . 13
2.4 Analysis of common features of three context management IoT Platforms 14

2.4.1 Description of the selected IoT platforms . 14
2.4.2 Context data-model . 15
2.4.3 Interaction patterns, APIs and protocols . 20
2.4.4 Discovery facilities and filtering capabilities . 21
2.4.5 Synthesis of the context management IoT platforms analysis 22

2.5 Measuring software energy consumption . 23
2.5.1 Wattmeter . 24
2.5.2 RAPL . 27
2.5.3 LIKWID . 28
2.5.4 Power API . 28
2.5.5 JourlarJX . 29
2.5.6 Synthesis . 30

2.6 Conclusions . 31

This chapter provides the necessary vocabulary, definitions, and background
information concerning energy-efficiency and IoT middleware. Section 2.1 de-
tails the IoT concept. Section 2.2 introduces the concepts and architecture of
IoT middleware. Section 2.3 presents IoT platforms and Section 2.4 analyses
common abstractions of context management IoT platforms with a comparison
among three of them. Section 2.5 shows different tools for energy measure-
ments, providing information on how they work and their purpose. Section 2.6
contains final conclusions about the background.

9

10CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

2.1 Internet of Things

2.1.1 IoT definitions
Internet of Things is the concept that aims to extend the regular Internet to
real-world physical objects. In this paradigm, all the objects are either tem-
porarily or permanently connected to a global network infrastructure. The
IoT has been defined in different ways such as “The Internet of Things is
a worldwide intelligent infrastructure which links things and related infor-
mation” [Atzo10], “Things having identities and virtual personalities operat-
ing in smart spaces using intelligent interfaces to connect and communicate
within social, environmental, and user contexts” [Infs08], and “a network of
networks which enables the identification of digital entities and physical ob-
jects — whether inanimate (including plants) or animate (animals and human
beings) — directly and without ambiguity, via standardized electronic iden-
tification systems and wireless mobile devices, and thus make it possible to
retrieve, store, transfer and process data relating to them, with no discontinu-
ity between the physical and virtual worlds” [Beng12].

The perception of the IoT has evolved by extending the fundamental defini-
tions of this paradigm. Originally, the IoT was mainly thought of as the ability
to automatically integrate into a system data related to the identity, location,
and state of some physical entities. Recently, many authors characterize the
IoT as a concept that encompasses a variety of technologies and research areas
that aim to extend the current Internet to the real world.

2.1.2 IoT architecture
Figure 2.1 presents a classical IoT system distributed architecture such as those
considered in this work. An IoT system consists of (1) IoT devices (sensors
and actuators), (2) end-user applications (in this work, we focus on applica-
tions that consume sensor data that we call IoT consumer applications), (3)
IoT platforms, gateways, and IoT middleware, standardized intermediates for
interacting with IoT devices that deal with the high degree of hardware and
software heterogeneity in IoT environments.

In the architecture, IoT applications are distributed on IoT devices
(equipped with sensors and actuators) and end-user devices. Sensors are
devices that detect external information (physical phenomena) and replace it
with an electrical pulse that determines the measured value. Actuators are
devices that convert electrical input into physical action. In this type of IoT

2.1. INTERNET OF THINGS 11

Figure 2.1. IoT distributed architecture

architecture, devices act autonomously and are interconnected to other nodes
either directly with an IoT platform or through gateways. Both IoT platforms
and gateways are connected to the Internet and make data available to end
users’ IoT applications.

2.1.3 IoT and context management
Nowadays, more and more applications consume high-level context informa-
tion, obtained after processing, fusing, and filtering a large number of low-level
context data collected from the user environment. This happens also because
applications are becoming more distributed and able to consume more data.
Villegas and Muller [Vill10] define context as follows: “Context is any informa-
tion useful to characterize the state of individual entities and the relationships
among them. An entity is any subject that can affect the behavior of the sys-
tem and/or its interaction with the user. This context information must be
modeled in such a way that it can be pre-processed after its acquisition from
the environment, classified according to the corresponding domain, handled to
be provisioned based on the system’s requirements, and maintained to support
its dynamic evolution”. The importance of the notion of context for pervasive
computing has been identified in Coutaz et. al. [Cout05] which shows that con-
text information can enrich human activities with new services able to adapt
to the circumstances in which they are used.

The IoT impacts pervasive computing and context management because of
the huge amount of data becoming available. The data need to be processed
before being consumed by applications. Context management is essential for
IoT applications, it collects, transforms, and aggregates the data. Components
of an IoT system such as IoT platforms and IoT middleware, which have the
role of abstracting communication between IoT applications and IoT devices,
are crucial when it comes to context management.

12CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

2.2 IoT Middleware Definition and Architecture

Middleware can be defined as a “software that resides between applications,
services, and their underlying distributed architecture and platforms” [Blai16]
and a distributed software layer that sits above the network operating system
and below the application layer and abstracts the heterogeneity of the under-
lying environment. [Mahm04]. Therefore, the role of middleware is to man-
age the complexity and heterogeneity of distributed infrastructures providing
a straightforward programming environment for distributed-application devel-
opers [Camp99]. With the growth of distributed devices in the IoT, the role of
middleware is even more important to manage the massive data consumed by
applications.

A remarkable characteristic of the IoT paradigm is the high heterogene-
ity in terms of hardware and software, encompassing devices with different
capabilities, functionalities, and network protocols. To tackle such heterogene-
ity, IoT middleware have been proposed in the last years towards abstracting
away specificities of devices from applications and users, promoting interoper-
ability, and providing services and interfaces to leverage application develop-
ment [Blai16, Lee15, Ngu17].

There are several definitions for IoT middleware such as “a software system
designed to be the intermediary between IoT devices and applications” [Ngu17]
and “the software technology that has been used as the basis for the develop-
ment, management, and integration of both heterogeneous devices and appli-
cations in IoT environments” [Amar16]. Following these definitions and the
common characteristics of IoT middleware [Marq17, Razz16] we can define it
as a software layer residing between the application and physical sensing layers
(see Fig. 2.2) that provides abstractions for accessing physical devices (Physical
Sensing Layer) and managing data produced by them, thereby enabling devel-
opers to focus on the application development itself (Application Layer). IoT
middleware mainly provides (i) support to the interactions between devices and
users, it handles interoperability for managing hardware and software entities
(IoT Middleware Layer); (ii) virtualization of devices (Device Discovery); (iii)
data collection and aggregation (Context Management).

IoT middleware is a glue layer in the IoT architecture that will enable
communication between IoT devices and IoT applications, abstracting and
moving the complexity from the application to the middleware.

2.3. IOT PLATFORM DEFINITION AND ARCHITECTURE 13

Figure 2.2. IoT system basic architecture [Onor18]

2.3 IoT Platform Definition and Architecture

Asghari and co-authors [Asgh18] mention that a new generation of applications
such as smart buildings, smart cities, agriculture, logistics, and supply chain
manufacturing, all share common requirements such as interacting with IoT
devices according to various IoT protocols. In addition, applications should
all offer extra-functional requirements such as security, fast response time, low
energy consumption, availability, reliability, and high throughput. In that
context, the usage of IoT platforms to support IoT application deployment is
a recent trend: IoT platforms provide services to deploy and run applications
on top of a hardware and/or software suite [Nakh15]. IoT platforms have been
proposed to deal with the high degree of hardware/software heterogeneity in
IoT environments, providing the necessary services for IoT applications to be
built on top of them. They may be deployed and shared by many applications.

There are several definitions spread through the published research about
IoT platforms: “It is middleware and the infrastructure that enable the end-
users to interact with smart objects” [Mine16]. This first definition introduces
the IoT platform as a way to connect to IoT devices (or smart objects) by
providing an infrastructure where IoT applications can be built on top. “It is
software that enables communication with remote devices through the Internet,
and provides services such as programming frameworks, M2M integration, data,
and device management, security and storage” [Sing17]; The second is more
detailed about the features an IoT platform needs to have to be considered
as a platform. “It is software that connects the edge of devices, gateways, and
data networks to cloud services and applications” [Heja18]. Finally, the third
definition shows the central position of the platform between the distributed
components of an IoT system.

14CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

2.4 Analysis of common features of three context
management IoT Platforms

For this work, we consider context management IoT platforms, which consti-
tute a subset of IoT platforms that provide middleware components for ac-
cessing IoT data. Context management platforms provide virtualization and
abstraction of the sensors (a virtual representation of a sensor in software), the
discovery of sensors, and the provision of context data to the applications.

We have selected three context management IoT platforms, two of them
are widespread platforms used by the community (i.e. Orion and OM2M),
the third one is a research platform (muDEBS). For those three platforms,
we have studied their common features. The objective of this study was to
determine which abstractions should be provided by an IoT middleware that
interacts with those platforms. We present the three selected IoT platforms in
Section 2.4.1, then we study the common abstractions provided by those three
platforms: context data models in Section 2.4.2, interaction patterns, APIs
and protocols in Section 2.4.3, then we present their discovering and filtering
capabilities in Section 2.4.4. Finally, we present a synthesis of this study in
Section 2.4.5.

2.4.1 Description of the selected IoT platforms

In this section we briefly present the ecosystem and main characteristics of three
context management IoT platforms: (i) FIWARE comes from the European
community, (ii) OM2M is an M2M standard, and (iii) muDEBS is a research
platform focusing on scalability for heterogeneous systems. These platforms
were selected based on the services they provide to enable IoT applications to be
either built on top of them or for a part of the complexity of the communication
with IoT devices to be abstracted by the platform.

FIWARE is an IoT platform supported by the European Community. It is
a generic, open-source solution, and it provides many extensible, reusable and
interoperable components to enable easy system development in different appli-
cation domains, the so-called Generic Enablers (GEs). FIWARE encompasses
GEs for purposes such as context entity management, device management, his-
torical data storage, event processing, security, and the creation of dashboards.
The main FIWARE GE is the Orion Context Broker (or simply Orion), which
is the context management IoT platform.

The OM2M platform is an open-source implementation of the oneM2M

2.4. ANALYSIS OF COMMON FEATURES OF THREE CONTEXT MANAGEMENT IOT PLATFORMS15

standard [oneM]. It provides a Machine-2-Machine service that offers develop-
ers the capability to develop services independently of the underlying network.
Furthermore, it is built as a modular architecture. oneM2M provides a hori-
zontal Service Common Entity (CSE) that can be deployed in an M2M server,
a gateway, or a device. Each CSE provides application enablement, security,
triggering, notification, persistence, device inter-working, and device manage-
ment. The platform exposes an API providing many other services such as
resource discovery, application registration, and context data management.

muDEBS stands for Multiscale Distributed Event-Based System and it is
a research IoT platform designed for allowing the dissemination of data in
large-scale and heterogeneous systems involving clouds, cloudlets, desktops,
laptops, mobile phones, and smart objects of the Internet of Things. The
muDEBS platform introduces multi-scoping for limiting the broadcasting of
subscription filters and enabling to forward notifications only to relevant scopes
of the overlay network of brokers. The platform brings into play producer
and consumer contracts. Broker nodes form an overlay that supports cycles
and delimits scopes to implement localized scalability—i.e., filters and data are
tagged with scoping meta-data that are specified in the producer and consumer
contracts, and they are then broadcast only to relevant scopes, not to the whole
system.

2.4.2 Context data-model
The IoT domain is characterized by a high degree of heterogeneity because of
the many available technologies [Li15]. Devices from different manufacturers
expose their data following various data models and using different protocols.
One challenge for the IoT platform is to provide a unified data model. The
model must include location data, e.g. the current location of the device, and
quality attributes (e.g., freshness, resolution). Furthermore, a well-defined data
model facilitates the development of wrappers and adaptors to parse the data
in IoT applications. We present below the context data models used by the
three studied IoT platforms.

Orion data model

Orion follows the Next Generation Service Interface (NGSI) data model [NGSI]
to standardize information exchange and to allow for interoperability among
components. In NGSI, the information is structured generically through enti-
ties that can be used to represent both physical and virtual elements such as a

16CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

building, a car, sensors, and actuators. As depicted in Figure 2.3, an NGSI En-
tity has an identifier, a type, and a list of attributes. Attributes have a name,
a type, a value, and a list of metadata, which have the same data structure as
the attributes.

Figure 2.3. Next Generation Service Interface (NGSI) entity model

The generic model is serialized in JSON. Listing 2.1 shows the representa-
tion of an entity and its attributes. The entity is a sensor near the Eiffel Tower;
the attributes are the recorded temperature (Line 4), the location (Line 14),
and the temperature resolution (Line 18). All the attributes are specified as
additional properties in JSON and support metadata declaration. Further-
more, Orion’s data model provides support for localized data: When entities
are registered through the API, they can send their geographical coordinates
as an attribute.

Listing 2.1. "Representation of temperature sensor data in Orion"
1 {
2 "id": " temperature_eiffel_tower_310 ",
3 "type": "LM35",
4 " temperature ": {
5 " value ": 23.3 ,
6 "type": " Float ",
7 " metadata ": {
8 "Unit": {
9 " value ": " Celsius ",
10 "type": " String "
11 }
12 }
13 },
14 " location ": {
15 " value ": " 48.6223426 , 2.4404356 ",
16 "type": "geo: point "
17 },
18 " temperature_resolution ": {
19 " value ": "0.1",
20 "type": " Float "
21 }
22 }

An important point to highlight is the capability to model quality at-
tributes. This information can be represented as attributes of the entity or
as metadata. temperature_resolution is a quality attribute (Line 18) and is
represented in the example as an attribute, but Celsius (Line 9) is represented

2.4. ANALYSIS OF COMMON FEATURES OF THREE CONTEXT MANAGEMENT IOT PLATFORMS17

as metadata. This gives more flexibility to the developer to virtualize the
sensor/device.

OM2M data model

The OM2M IoT platform conforms to the data model of the oneM2M specifi-
cation. Figure 2.4 shows the generic model used in the OM2M platform. The
model contains ResourceType that includes child resource types and specifically
named resource attributes, with each specific attribute having its value.

Figure 2.4. OM2M generic data model.

Listing 2.2 shows the data model being used in a concrete example to rep-
resent a sensor resource inside the platform. The resource contains named
attributes such as creation time (ct, Line 7), resource name (rn, Line 3), and
child resources (ch, Line 18)) that are linked to the values that the sensor is
sending to the platform. The sensor named temperature_eiffel_tower_310 gives
readings about its temperature (Line 19), location (Line 23) and temperature
resolution (Line 27). These values are accessible via the link in attributes
named “val” (Lines 21, 25, and 29).

18CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

Listing 2.2. "Representation of temperature sensor data in oneM2M"
1 {
2 "m2m:ae" : {
3 "rn" : " temperature_eiffel_tower_310 ",
4 "ty" : 2,
5 "ri" : "/in -cse/ CAE413477219 ",
6 "pi" : "/in -cse",
7 "ct" : " 20200520T163516 ",
8 "lt" : " 20200520T163516 ",
9 "lbl" : [
10 " Category / temperature ",
11 " Location /home",
12 "Type/ sensor "
13],
14 "acpi" : ["/in -cse/acp - 385742697 "],
15 "et" : " 20210520T163516 ",
16 "api" : "app - sensor ",
17 "aei" : " CAE413477219 ",
18 "ch" : [{
19 "nm" : " temperature ",
20 "typ" : 3,
21 "val" : "/in -cse/cnt - 432974030 "
22 }, {
23 "nm" : " location ",
24 "typ" : 3,
25 "val" : "/in -cse/cnt - 490739007 "
26 }, {
27 "nm" : " temperature_resolution ",
28 "typ" : 3,
29 "val" : "/in -cse/cnt - 970640701 "
30 }],
31 "rr" : false
32 }
33 }

There is no limit to what data can be included in the data model. For
instance, quality attributes and location data can also be included as Resource
Specific Attributes.

muDEBS data model

The muDEBS platform uses a semi-structured data model “à la” XML and
then allows XPATH expressions in scripts written in the JavaScript language.
Devices and clients exchange any kind of data. Clients publish contracts to
the brokers connected through the IoT platform and any device that has data
that is interesting for the IoT application is forwarded to applications by bro-
kers: data filters are expressed in JavaScript. Figure 2.5 shows the data model
used inside muDEBS to represent entities. A context report aggregates a set of
context observations, with a context observable defining what is observed, e.g.
a temperature sensor. The observable is linked to a context entity that can

2.4. ANALYSIS OF COMMON FEATURES OF THREE CONTEXT MANAGEMENT IOT PLATFORMS19

have a relation with other entities. Furthermore, the model also contains an
optional MultiscalabilityReport including the scope (e.g., geographically, admin-
istratively) of the report that may be used by muDEBS for filtering purposes.

Figure 2.5. muDEBS generic data model.

Listing 2.3 shows what an entity that represents a temperature sensor in
the Eiffel Tower looks like when going from the metamodel to a concrete model.
There is a ContextReport that contains attributes (id, value and date) and ob-
servables. The attributes are characteristics of the entity that can be looked
up by consumers while observables are values that can be observed by client
applications to receive updates over these values.

Listing 2.3. "Representation of temperature sensor data in muDEBS"
1 <ContextReport>
2 <Observat ion>
3 <id>temperature</ id>
4 <value>
5 <temperature>23 .3</ temperature>
6 <r e s o l u t i o n>0 .1</ r e s o l u t i o n>
7 </value>
8 <date>22´02´2022´15:13:55</date>
9 <obse rvab l e>
10 <name>temperature_ei f fe l_tower_310</name>
11 <unity>Ce l c iu s</unity>
12 <ur i>http : / / 1 9 2 . 1 6 8 . 0 . 1 / temperature</ u r i>
13 <ContextEntity>
14 <name>E i f f e l Tower</name>
15 <ur i>http : / / 1 9 2 . 1 6 8 . 0 . 1</ u r i>
16 </ContextEntity>
17 </ obse rvab l e>
18 </Observation>
19 </ContextReport>

The model offered by the muDEBS platform also makes it possible to pro-
vide localized data and quality attributes. When the contract sent by the client
contains the need for a device to send the location and a given quality of the
attributes, brokers may filter out context reports that do not contain these

20CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

data.

Synthesis

The three presented data models allow IoT system designers to define meta-
data for the sensors (e.g, location of the sensor, unity, resolution) as well as
for the sensed values (e.g. freshness). However, the meta-models used by
the platforms are different. As a consequence, applications should be able to
unmarshal collected data differently for each IoT platform.

2.4.3 Interaction patterns, APIs and protocols
In this section, we present the interaction patterns, APIs, and protocols pro-
vided by the three studied IoT platforms. Two interaction patterns are com-
monly provided by IoT platforms: synchronous requests and publish/subscribe.
In the synchronous pattern, a client application consumes IoT data by sending
a request to the IoT platform, which responds to the request. In the publish/-
subscribe pattern, a consumer application registers to the IoT platform and
asynchronously receives publications when they are available [Reev13].

All the IoT platforms propose one or several APIs, i.e. a set of functions
that may be called by client applications, and protocols used for interactions
between IoT platforms and IoT consumer applications.

Interactions with Orion

In FIWARE, Orion provides both synchronous and publish/subscribe interac-
tion patterns. The platform provides REST APIs for interactions with context
producers and IoT application consumers [FIWA]. HTTP is used both for
synchronous and publish/subscribe interactions. When using the synchronous
pattern, the application developers make HTTP calls to the API following a
request/response behavior. On the other hand, for the publish/subscribe in-
teraction pattern, the consumer application uses the HTTP API to subscribe
to content and waits for HTTP requests from the broker to receive data.

Interactions with OM2M

The OM2M platform provides the two interaction patterns. The synchronous
pattern uses a REST API: The consumer application makes HTTP requests
and receives data [OM2M]. The publish/subscribe pattern uses the MQTT pro-
tocol [OASI15]: A consumer application subscribes to topics using the MQTT

2.4. ANALYSIS OF COMMON FEATURES OF THREE CONTEXT MANAGEMENT IOT PLATFORMS21

protocol, and then the OM2M platform sends publications to the subscribed
consumer applications. As a consequence, the platform benefits from MQTT
characteristics such as different qualities of services (from “at least once” to
“exactly once”), clean sessions, and retaining flags for managing disconnections.

Interactions with muDEBS

The muDEBS platform provides the publish/subscribe interaction pattern
through an API that is ad hoc. The synchronous mode is emulated by
providing a consumer application with the data that have last been produced
by producers: These data are returned to the consumer when the subscription
filter of the consumer is installed onto access brokers; such brokers manage
direct connections to producers.

Synthesis

The APIs offered by the 3 platforms are different and they support interaction
patterns implemented through different IoT protocols. Applications have to
adapt themselves to each platform’s interaction capabilities.

2.4.4 Discovery facilities and filtering capabilities

IoT platforms include services to find context producers and also to filter the
data from these producers. Filtering data ensures better control over the qual-
ity and the amount of data received by applications, avoiding unnecessary
interactions with the IoT platform. In this section, we present the facilities
provided by the three IoT platforms.

Discovering and filtering with Orion

Using FIWARE, via the Orion Context Broker, application developers make
HTTP requests to the API by providing parameters such as identifier, type,
and attributes, to select entities. The filtering capability uses a Simple Query
Language, which is easy to implement and use (e.g. q=temperature>40;
humidity>40), and also Geographical Queries that allow to filter by geo-
graphical location (e.g. all the entities located closer than 5 km from a
point is expressed by georel=near; minDistance:5000 & geometry=point &
coords=-40.4,-3.5).

22CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

Discovering and filtering with OM2M

The discovery functionality in OM2M is implemented using a HTTP GET
request passing parameters such as fu, which stands for “filter usage”, and
lbl, which stands for “label”. For instance, to get a temperature sensor, the
application would use fu=1 & lbl=Type/sensor, where fu=1 indicates that it is
a discovery request. Furthermore, the discovery functionality enables retrieval
of the set of resource URIs matching a specific filter criterion. The OM2M
platform is not able to filter data that is sent by the sensors, leaving a gap
for unneeded data to be sent to the application. Although, when using the
publish/subscribe pattern, the application can specify the maximum frequency
of notifications.

Discovering and filtering with muDEBS

muDEBS does not need any discovery functionality because context reports de-
scribe observable entities and filters are content-based, i.e. subscription filters
can select the entities from which data are to be received (e.g. temperature
greater than 20 degrees Celsius at the Eiffel Tower). In addition, muDEBS
filtering functionality is extended into (producer and consumer) contracts to
include quality of data [Mari14] and privacy concerns [Deni20]: e.g. good pre-
cision of air quality data only, or only authorized end-users. Brokers make sure
that only relevant data are forwarded to consumers.

Synthesis

Filtering capabilities of the three studied platforms vary: content-based fil-
tering is possible with muDEBS and Orion while OM2M is able to limit the
frequency of the notifications.

2.4.5 Synthesis of the context management IoT platforms
analysis

Table 2.1 summarizes important features that the FIWARE, OM2M and
muDEBS platforms bring into play. These features are: (i) Interaction
Pattern that are separated into synchronous or publish/subscribe patterns;
(ii) Application Protocols, showing how many and what are the protocols
supported by the platform for applications to communicate with; (iii) Data
Models, the standards used by the platforms to send/receive data from/to
applications; (iv) Discovery Service, the process of automatically finding

2.5. MEASURING SOFTWARE ENERGY CONSUMPTION 23

appropriate services and their providers by taking into consideration the
context and QoS (Quality of Service) of requests; and (v) Filtering Capabil-
ities, indicating how the platform can refine data sent/received from sensors,
devices, and applications.

In summary, in this section, we have shown that the FIWARE, OM2M, and
muDEBS platforms provide different data models. As a consequence, an IoT
middleware should provide specific data unmarshallers for each IoT platform.
Furthermore, the IoT platforms have each their way of communicating. The
Orion platform relies on HTTP to do synchronous and Pub/Sub communica-
tion. The OM2M platform relies on HTTP for synchronous communication
and MQTT for Pub/Sub communication. The muDEBS platform uses its pro-
tocol based on the AMQP specification. With each IoT platform having its
communication protocol, the effort to develop IoT applications increases as it
is more time-consuming to understand and implement each protocol. An ab-
straction on top of these different IoT platforms could be provided by an IoT
middleware in order to lower the effort necessary for the developer to imple-
ment the interactions with IoT platforms. In this Ph.D. we have designed such
a middleware that we present in Chapter 4.

Table 2.1. Comparison table

Characteristics
Platforms

FIWARE/Orion OM2M muDEBS

Interaction Patterns Sync / PubSub Sync / PubSub PubSub(/Sync)
Application Protocols HTTP / HTTP HTTP / MQTT ad hoc
Data Models NGSI oneM2M ad hoc, semi-structured
Discovery Service

‘ ‘ ‘

Filtering Capabilities
‘

ˆ̂̂
‘

2.5 Measuring software energy consumption
Nowadays, there is a challenge for measuring the energy consumed by software.
One objective to use energy measurement tools is to increase the knowledge of
where in the application there is a need for reducing energy consumption and
drive better development towards energy-efficient/aware strategies.

More particularly, in this study, we aim to measure and reduce the energy
consumption of IoT consumer applications. As those applications deal with
a considerable amount of received data, a part of their energy consumption

24CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

comes from their communications. Additionally, any software used by the
application, and especially the IoT middleware, impact the energy consumption
of the application. One of our objectives will be to identify and reduce the
energy consumption of IoT middleware themselves.

The energy consumption could be measured with different tools. A classical
tool to measure energy consumption in devices is the Watmetter, but there are
also several software tools such as RAPL, Likwid, PowerAPI and JoularJX.
Each of those tools provides different levels of detail from the total consumption
of a computer to a fine analysis of the consumption of portions of codes (e.g.,
analysis between two lines of code or methods). In this section, we study some
of those tools with their particularities, aiming to better choose the tool to be
used in our contributions.

2.5.1 Wattmeter
Wattmeters are hardware devices widely used to measure the energy of any
type of device. A typical wattmeter can measure voltage (V), current (A),
power (W), power factor (pf), and energy consumption (kWh). The measure-
ment accuracy usually varies within the range of ˘1% to ˘5% depending on
the brand and model of the device. As an example, a wattmeter with a mea-
surement accuracy of ˘2% can show the power of 100 W between 98 W or 102
W. There are three basic types of wattmeters, (i) Electrodynamometer, (ii)
Induction, and (iii) Digital, each with their characteristics.

Electrodynamometer

The Electrodynamometer wattmeter has two coils i.e., fixed and moving coils.
The fixed coil is connected in series with the circuit to measure power con-
sumption. The supply voltage is applied to the moving coil. Current across
the moving coil is controlled with the help of a resistor, which is connected in
series with it. The moving coil on which the pointer is fixed is placed in between
fixed coils. Two magnetic fields are generated due to the current and voltage in
the fixed coil and moving coil. The pointer deflects as the two magnetic fields
interact. The deflection is proportional to the power that is flowing through
it. Figure 2.6 shows the basic circuit diagram of the electrodynamometer, this
design is simple, reliable, and rugged. The wattmeter takes a current I from a
power supply and is separated into two other currents, Ic for the current coil,
which links to where the energy “LOAD” is used, and Ip which is the pressure
coil linked to a resistance.

2.5. MEASURING SOFTWARE ENERGY CONSUMPTION 25

Figure 2.6. Electrodynamometer

Induction

The induction wattmeter, shown in Figure 2.7, consists of two electromagnets
with a laminated core made of steel silicon: shunt and series magnets. Between
these electromagnets, there is a thin disk of aluminum, the aluminum disk
receives a variable magnetic field and an induced current appears on the disk.
The induced current in the presence of a magnetic field produces a torque on
the disk, that is connected to a pointer. The copper rings on the shunt magnet
have adjusted position so that the generated flux and supply voltage has a
phase difference of 90 degrees. This type of wattmeter can only be used when
the frequency, voltage, and temperature are constant. However, this wattmeter
can only operate at the frequency that was designed. On the other hand, it
does not suffer the effects of external magnetic fields.

Digital

Digital wattmeters measure current and voltage electronically thousands of
times a second (depending on the supplier), multiplying the results in a micro-
controller to determine watts. The controller can also perform statistics such
as peak, average, low watts, and kilowatt-hours consumed depending on the
brand used. Furthermore, with the enhanced capabilities of having a micro-
controller, they can monitor the power line for voltage surges, and outages,
and even communicate with external systems. Figure 2.8 shows a basic dia-
gram of how a digital wattmeter can be structured by receiving voltage and
current from the device that needs to be measured and passing this through a
microcontroller that will output energy data such as energy consumption.

26CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

Figure 2.7. Induction wattmeter

Figure 2.8. Digital wattmeter

Wattmeter Usage

The choice of using a type of wattmeter for energy measures can be dependent if
the type of the current is alternating current (AC) or direct current (DC). The
electrodynamometer is an AC and DC power measurer that is better used with
high power factors and where there is no external magnetic field to impact the
results, ensuring high accuracy and uniform scale. Differently, the induction
wattmeter can only be used for AC power and is unaffected by stray magnetic
fields, but high temperatures can cause errors and have lower accuracy. Finally,
the digital wattmeter works on a different principle that uses a microprocessor
to sample the voltage and current thousands of times a second for either AC
or DC. For each sample, the voltage is multiplied by the current at the same
instant. Digital wattmeters vary considerably in correctly calculating energy

2.5. MEASURING SOFTWARE ENERGY CONSUMPTION 27

as its dependent on the brand and how it is constructed.
Concerning IoT consumer applications, the choice of using the wattmeter

nowadays is mainly to use a digital wattmeter. There is a high amount of
different brands of wattmeters and the choice will be mainly over the charac-
teristics such as refresh rate, maximum current, working voltage, and accuracy.
Moreover, there could be also a consideration of how these measures can be
retrieved. Some brands of wattmeter provide APIs that can be used to read the
energy data, which could ease the development of code to analyze the energy
consumption of IoT consumer applications.

2.5.2 RAPL
The thermal design power (TDP) represents the maximum amount of power
(heat) the cooling system in a computer is required to dissipate. For example,
for an Intel processor with a TDP of 35W, Intel guarantees the Original Equip-
ment Manufacturer (OEM) that if it implements a chassis and cooling system
capable of dissipating that much heat, the chip will operate as intended. How-
ever, processors can operate over the TDP limit and consume more energy for
a short amount of time, but it will also increase the amount of heat generated.
This won’t necessarily violate the TDP, but the processor needs to have more
heat dissipated to keep the processor running at the speed it was designed for
as too much heat can potentially break it.

To overcome heating problems, the Power Control Unit (PCU) inside the
CPU uses internal models and counters to predict the actual and estimated
power consumption. The Sandy Bridge microarchitecture from Intel added on-
board power meter capability that exports power meters and power limits used
in its calculations through MSRs (Machine Specific Registers). This interface
is called Running Average Power Limit (RAPL).

RAPL provides a way to set power limits on processor packages and DRAM.
It enables monitoring, controls programs, and dynamically limits max aver-
age power, matching the expected power and cooling limits for the processor.
RAPL can do this using a set of counters that provide energy and power con-
sumption information. It is not an analog power meter, as it uses a software
power model. This model estimates energy usage by using hardware perfor-
mance counters and I/O models which are accurate to actual power measure-
ments [Rote12].

Although RAPL uses information from the CPU and can accurately mea-
sure its consumption, the energy consumption information is still limited to
the amount of processing passed to the cores of the processor. Other energy

28CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

consumption information from sources such as network cards and disks is not
accounted for without an external tool. For measuring the energy consumption
of network heavy applications, such as IoT consumer applications, the network
energy consumption could be an imperative indicator to see better what is the
impact of the application on the energy consumption.

2.5.3 LIKWID
LIKWID (“Like I Knew What I’m Doing”) [Trei10] is a set of easy-to-use
command line tools to support optimization. It is targeted toward performance-
oriented programming in a Linux environment. It does not require any kernel
patching and is suitable for Intel and AMD processor architectures. In the case
of Intel processors, LIKWID is capable of reading the RAPL information and
provides a tool called “likwid-powermeter” which allows you to query the energy
consumed within a package for a given period and computes the resulting power
consumption among other resources such as TDP, active cores, the temperature
of CPU cores, etc.

LIKWID also offers instrumentation support called MarkerAPI, for C,
C++, and Lua. This instrumentation consists of function calls and also
enables the measuring of code regions to get a better insight into the system’s
activities executing the code. A developer that uses the MarkerAPI will be
able to declare markers inside the code and LIKWID will be able to measure
CPU time usage. Moreover, the MarkersAPI works with the “likwid-perfctr”
tool which will enable the developer to have much information about the CPU
usage including energy.

It is important to highlight that LIKWID measures the resource usage of the
whole processor (core) and for accurate measures, there is a need to make sure
that the process being measured is running on one or more cores that LIKWID
is currently gathering information from. This is especially important for multi-
threaded processes as there is a need to bind the process to a fixed number of
cores to ensure both the proper functioning of the process and LIKWID. This
could become an issue when dealing with multithreaded applications which
would imply the usage of available cores by the Operational System (OS) unless
there is an external way to modify this behavior.

2.5.4 Power API
PowerAPI [Bour13, Nour12] is an application programming interface (API) to
monitor the energy consumption of applications at the granularity of system

2.5. MEASURING SOFTWARE ENERGY CONSUMPTION 29

processes. The API uses power models for estimating the energy consump-
tion of processes and software blocks of code. The models and estimations
are divided by hardware resources and by software applications. Concretely,
PowerAPI can estimate the energy consumption of a running process for the
CPU, the hard disk, or both or more hardware resources.

The architecture of Power API is shown in Figure 2.9. The architecture
is modular and contains some modules such as the power module that can be
started and stopped at runtime whenever needed. A set of sensor modules
(e.g., CPU, network) collect raw information about hardware resource utiliza-
tion, either directly from the devices or through the operating system. This
information is then exposed to another set of independent formula modules that
use the power models and provide an estimation of the energy consumption of
the computer resources.

Figure 2.9. Power API architecture [Nour12]

The usage of Power API to measure energy consumption will be detailed
across hardware such as CPU, Disk, and RAM. However, the details are still
linked to the process itself leaving a gap in more specific energy measures from
pieces of the code. Detailed energy data over code could lead to a better view
of what parts of the software running are using more energy and show the
developer where to focus when there is a problem with energy constraints.

2.5.5 JourlarJX
JoularJX [Nour22] is a Java-based agent for power monitoring at the source
code level with support for modern Java versions and multi-OS to monitor the
power consumption of hardware and software. Using JoularJX, an applica-
tion developer simply hook it to the Java Virtual Machine when starting the

30CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

Java program being tested. To get power readings, JoularJX uses a custom
“PowerMonitor” 1 program on Windows, and “Intel RAPL” on GNU/Linux.
Furthermore, it supports Raspberry Pi devices (multiple models) running with
GNU/Linux and the energy consumption calculations are estimated using a
research-based regression model provided by the developers of the tool.

When an application is running using JourlaJX as a Java Agent, the mea-
sures are retrieved every 10ms by reading the stacktrace of the Java code,
then CSV files are generated during runtime with real-time power data of each
method and are overwritten each second with the new power data. When the
program exits, JoularJX generates two new CSV files with the total energy
of all monitored methods. The first file contains power or energy data for all
methods in the code, including internal java methods. The second contains a
filtered file that only includes the power or energy data of selected methods.

Having detailed energy data about the methods in the code is a strategy
to introduce more information about the general health of software, especially
with high energy constraints. JoularJX can give this detailed energy infor-
mation, but it is limited to the processor and DRAM energy consumption.
Depending on the software, other hardware components of the computer could
be used a lot (Disk, network card, etc). This extra information on energy
consumption could point to other pieces of code that need a change to fulfill
possible energy constraints the software might have.

Considering IoT consumer applications, the usage of JoularJX can bring
many advantages given that the application itself is developed using Java.
The information on the methods of the code in detail can pinpoint the energy
consumption issues that the application has and enable easier implementation
of energy-efficient/aware strategies.

2.5.6 Synthesis
Measuring the energy consumption of software is possible as hardware evolves
to integrate sensors and models. Software tools for energy measurement are
also improving to give more precise information. This scenario enables the
development of frameworks to be able to save energy by knowing how much
energy is consumed by software. Table 2.2 summarises the main differences
among the different tools presented (Wattmeter, RAPL, LIKWID, Power API,
and JourlarJX). These are the levels of measure that can be computer, CPU,
process, or code, and also how the calculation is done.

1https://www.intel.com/content/www/us/en/developer/articles/tool/
power-gadget.html

2.6. CONCLUSIONS 31

Table 2.2. Comparison of energy measurement tools

Tool Computer
level measure

Processor+DRAM
level measure

Process
level measure

Code
level measure Calculation

Wattmeter
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ External
Hardware

RAPL ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ Sensor + Power
Model

LIKWID ˆ̂̂
‘ ‘ ‘

RAPL
Power API ˆ̂̂

‘ ‘

ˆ̂̂ Power Models
JourlarJX ˆ̂̂ ˆ̂̂

‘ ‘

RAPL/Power
Models

The tools for energy measurement gathered for the presented comparison
show that when dealing with software tools, the tools built upon RAPL (i.e.
JoularJX and LIKWID) are focused on the CPU and DRAM consumption.
Two tools (i.e. JoularJX and LIKWID) deal with code-level energy consump-
tion. Furthermore, the wattmeter is usually used for computer-level measure-
ment (it could also be capable of CPU-level measures, but this would involve
complex hardware modifications in the CPU to allow the connection with a
wattmeter). Also, although it measures the whole computer energy consump-
tion, the data of the energy consumed is very close to the real consumption,
whereas the other tools are based on estimations through power models. Fi-
nally, using a wattmeter, it is possible to measure the consumption of any
computer with any processor, but using RAPL, only Intel processors can be
used. LIKIWID, Power API, and JourlarJX support different types such as
Intel, AMD, and ARM. The support for multiple CPUs is an essential require-
ment for software energy measuring tools to foment the need for further energy
efficiency in hardware and software.

2.6 Conclusions
The IoT paradigm is a popular domain that encompasses multiple smaller
domains including IoT platforms, middleware, and protocols. The IoT ap-
plications that are being developed need interaction with many heterogeneous
components that not only present different IoT protocols but also different com-
munication patterns such as publish/subscribe and request/reply. To overcome
this, IoT systems provide software and infrastructure such as IoT platforms to
hide IoT complexities, lowering the effort necessary to build IoT applications.

32CHAPTER 2. IOT MIDDLEWARE AND ENERGY-EFFICIENCY BACKGROUND

However, the lack of standardization has led each IoT platform to propose
its abstractions, APIs, and data models. As a consequence, programming
interactions between an IoT consumer application and an IoT platform are
time-consuming, error-prone, and depend on the developers’ level of knowledge
about the IoT platform. In addition, application developers should also tame
energy consumption constraints. For this concern, tools for energy measure-
ment like wattmeters and software measurement tools provide a set of features
that can be an interesting complement to mastering energy consumption and
learning the best strategies for interacting with IoT platforms.

Chapter 3

IoT Middleware and
Energy-Efficiency Related Work

3.1 Literature Review on energy-efficiency in IoT middleware . 34
3.1.1 Research methodology . 34
3.1.2 Results and discussion . 42
3.1.3 Summary . 48

3.2 Energy-efficiency in HTTP and MQTT protocols . 49
3.2.1 HTTP and MQTT overview . 49
3.2.2 Synthesis of related works . 50

3.3 IoT middleware for consumer applications . 52
3.3.1 Domain Specific Language . 52
3.3.2 Application Mashup . 53
3.3.3 IoT middleware . 53
3.3.4 Synthesis . 54

3.4 Conclusions . 54

This chapter presents an analysis of related work concerning IoT middle-
ware and energy-efficiency/awareness in IoT middleware and IoT protocols.
Section 3.1 presents the main findings over an extensive search using a system-
atic literature review (SLR) method about energy-efficiency/awarenss in IoT
middleware. Although, with this study we were able to present findings over
the current literature on energy-efficiency/awarenss in IoT middleware, other
more general works regarding IoT platforms and IoT middleware in general are
not included. Section 3.2 shows an analysis of papers that present evaluations
over HTTP and MQTT protocols showing the energy consumption of these
protocols under different conditions. Section 3.3 shows different types of IoT
middleware for consumer applications and how they are able to abstract the
complexity of interactions with other IoT services through different strategies.
Finally, Section 3.4 gives the summary and final remarks of the chapter.

33

34CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

3.1 Literature Review on energy-efficiency in IoT
middleware

The literature presents many studies related to energy-efficiency/awareness in
areas such as Big Data [Wei14, Wu16], communication technologies [Bian12,
Chao11, Mogh15, Wu18], industry [Shen15, Wang16], and general energy-
saving techniques [Este15, Shai17a]. However, as far as it is concerned, there
is still no study offering an overview of the state of the art on how IoT mid-
dleware platforms can contribute to energy efficiency and energy-awareness in
IoT systems. Such an overview can enable researchers and practitioners to
critically reflect on the current state of the art, identify critical issues to drive
future research on energy requirements in IoT systems. To fill this gap, a
systematic literature review (SLR) on energy-awareness and energy efficiency
in IoT middleware was done. The review was carried out by following a sys-
tematic, rigorous procedure driven by well-established guidelines for collecting,
selecting, and analyzing primary studies while proving scientific value to the
obtained findings [Kitc11, Pete08].

The systematic literature review on energy-efficiency/awareness aimed to
investigate: (i) what is currently provided at the middleware level to better
manage the energy consumption of IoT systems; (ii) which abstractions exist
at the IoT middleware level to enable energy-awareness; (iii) how the existing
proposals have been evaluated and their maturity; and (iv) how to deploy
IoT middleware with different strategies for limiting energy consumption and
enabling energy efficiency in IoT systems.

To present the literature review in this chapter, the sections are structured
as follows. Section 3.1.1 presents the research methodology adopted in this
work in terms of the research questions to be answered and study search se-
lection strategies, as well as details on how the relevant primary studies were
selected. Section 3.1.2 presents a synthesis resulting from the analysis of the
selected primary studies as answers to the research questions. Finally, Sec-
tion 3.1.3 summarizes the main findings of this work along with some conclud-
ing remarks.

3.1.1 Research methodology

The SLR was carried out considering well-defined, consolidated guidelines avail-
able at the literature [Kitc16, Pete08]. Three basic steps were followed: (i)
planning, which gives rise to a protocol defining the research questions to an-

3.1. LITERATURE REVIEW ON ENERGY-EFFICIENCY IN IOT MIDDLEWARE35

swer, the search strategy to be adopted, the criteria to be used to select pri-
mary studies, and the data extraction and synthesis methods; (ii) execution,
in which studies are identified, selected, and analyzed according to the proto-
col; and (iii) reporting, which aggregates information extracted from relevant
studies considering the research questions and outlines conclusions based on
them.

Research questions. Four research questions (RQs) were proposed aiming
at finding primary studies to understand and summarize pieces of evidence
about energy-efficiency and energy-awareness in IoT middleware:

RQ1: How energy-efficiency has been addressed by IoT middleware?
Rationale: To identify proposals that consider energy efficiency in IoT
middleware.

RQ2: What abstractions are provided by middleware for enabling energy-
awareness or energy efficiency of IoT systems?
Rationale: To identify any synergy between IoT middleware and
applications atop them either for energy-awareness or energy-efficiency
transparently provided by middleware.

RQ3: How have existing energy efficiency proposals been evaluated?
Rationale: To identify how to measure or evaluate energy consumption
within the many components of an IoT system.

RQ4: Which part/component of the distributed architecture is considered in
the middleware solution for energy efficiency?
Rationale: To identify where the IoT middleware is deployed, what is
measured, and for which component of an IoT system the energy con-
sumption is reduced.

Answering RQ1 aims to result in a catalog of strategies and techniques
that have been used so far in IoT middleware for energy efficiency. Answering
RQ2 gathers data about how the research community deals with the software
level when considering middleware and energy-awareness and energy efficiency.
Answering RQ3 gathers knowledge on how the energy efficiency of IoT mid-
dleware and systems built with their support have been evaluated. Answering
RQ4 aims to provide information on where energy-related measurements are
made and which components are affected by the energy efficiency techniques
adopted by IoT middleware platforms.

Search strategy. An automated search process was carried out over five
electronic publication databases to retrieve relevant studies to answer the posed

36CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

RQs. The used databases were: IEEEXplore1, ACM Digital Library2, Scopus3,
Science Direct4, and Web of Science5. These sources are among the most
popular publication databases in Computer Science and Engineering and have
good coverage of the literature [Dybå07, Kitc16]. Other relevant criteria were
the quality of the results returned by the automated search procedure, the
availability of the full text of the studies, ease of use, up-to-dateness of contents,
and versatility to export results.

Based on the defined RQs, three main terms were initially identified, namely
Internet of Things, middleware, energy efficiency, and energy-awareness. The
following search string was built considering synonyms and alternative terms:

middleware AND (energy consumption OR energy efficiency OR energy
awareness OR green) AND (Internet of Things OR IoT)

Selection criteria. Selection criteria were used to assess the relevance of
each primary study to answer the established RQs. Inclusion criteria define
circumstances that make a study relevant, whereas exclusion criteria exclude
studies that are unrelated to the RQs. Four inclusion criteria (ICs) and five
exclusion criteria (ECs) were defined. In this work, a given primary study was
regarded as relevant if it did not meet any EC and met at least one IC.

IC1: The study addresses energy efficiency or energy-awareness in the IoT
context.

IC2: The study presents an energy efficiency proposal relying on middleware
or middleware models.

IC3: The study presents a proposal to reduce energy consumption in IoT ap-
plications or middleware.

IC4: The study concerns software that connects systems to reduce energy con-
sumption.

EC1: The study is not related to IoT or middleware platforms in this context.
EC2: The study is a previous version of a more recent study on the same

research.
EC3: The study does not have an abstract, or the full text is unavailable.
EC4: The study is a table of contents, foreword, tutorial, editorial, keynote

talk, or summary of conference/workshop.
1http://ieeexplore.ieee.org
2http://dl.acm.org
3http://www.scopus.com
4https://www.sciencedirect.com/
5https://www.webofknowledge.com/

3.1. LITERATURE REVIEW ON ENERGY-EFFICIENCY IN IOT MIDDLEWARE37

EC5: The study is not written in English, the most common language in sci-
entific papers.

Data extraction. A data extraction sheet was built with items related
to the RQs and other relevant information to extract data from the selected
primary studies. Besides basic information such as title, publication year, and
venue, extracted data concerned (i) the proposal of the presented middleware,
(ii) where the middleware is deployed, (iii) the impact of the energy efficiency
strategy, (iv) the metrics used to evaluate the middleware, and (v) where the
energy consumption is measured.

Selection process. The search and selection processes considered primary
studies published until June 2022. In the automated search process, the search
string has undergone minor changes to make it compatible with the specificities
of each database engine. Next, the automated search procedure was performed
over each electronic database according to the adapted search string. The
search procedure was limited to title, abstract, and keyword fields.

Fig. 3.1 depicts the steps to select the relevant primary studies. The auto-
mated search procedure over the five electronic databases retrieved 237 results.
Duplicates were removed, thus resulting in a set with 167 studies. These stud-
ies were submitted to a preliminary selection based on the selection criteria
applied to the title, abstract, and keywords. Whenever the relevance of a
study was in doubt, both the introduction and conclusion sections were also
analyzed. This resulted in a set of 114 studies. ECs played a significant role
in removing studies that would not be relevant for this SLR. Forty-five results
were excluded for being unrelated to IoT or middleware (EC1), and eight re-
sults were excluded because they did not represent a primary study (EC4). No
results were removed for the other ECs.

The snowballing technique [Jala12], which uses the reference list of a study
or citing references to identify additional studies, was applied to each full-
read selected study to retrieve additional studies. The snowballing resulted
in the inclusion of one additional study. Another additional study identified
by experts6 and not retrieved in the previous steps was included in the set
of potentially relevant studies. The remaining 116 studies were analyzed in
full regarding their conformance to the selection criteria of this SLR. The final
set contained 22 studies selected to fill out the data extraction sheet. The
number of relevant studies seems to be low since energy efficiency and energy-
awareness in IoT middleware are recent topics but worthwhile investigating

6An expert is a researcher with experience in both IoT middleware and energy-efficiency
strategies.

38CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

Automatic Search

IEEEXplore, Scopus, ACM
Digital Library, ScienceDirect

and Web of Knowledge

Filtering

Removal of studies indexed by more
than one source

Selection

Application of inclusion / exclusion
criteria on title, abstract and keywords

/ introduction and conclusion

Snowballing

Inclusion of referenced studies not
retrieved by the search procedure

Selection

Application of inclusion / exclusion
criteria on full paper

237

Search results

222

Found studies

114

Filtered studies

116

Filtered studies

70 studies
excluded

53 studies
excluded

94 studies
excluded

22

Selected studies

167

Found studies

Expert Selection

Addition of relevant papers
115

Filtered studies

1 study
included

1 study
included

Figure 3.1. Steps to select the relevant primary studies

3.1. LITERATURE REVIEW ON ENERGY-EFFICIENCY IN IOT MIDDLEWARE39

for future research. Table 3.1 lists the selected studies, identified as S1 to S22.
Interested readers can go to Appendix III for a summary of each selected study.

Table 3.1. List of selected studies

ID Reference Citation count
(Google Scholar,
Jul. 2022)

S1 Aazam, M., Islam, S.U., Lone, S.T., Abbas, A.:
Cloud of Things (CoT): Cloud-Fog-IoT task of-
floading for sustainable Internet of Things. IEEE
Transactions on Sustainable Computing 7(1), 87–
98 (2022) [Aaza20]

8

S2 Song, Z., Le, M., Kwon, Y.-W., Tilevich, E.:
Extemporaneous micro-mobile service execution
without code sharing. In: Proceedings of the 37th
IEEE International Conference on Distributed
Computing Systems Workshops, pp. 181–186.
IEEE, USA (2017) [Song17]

3

S3 Kalbarczyk, T., Julien, C.: Omni: An applica-
tion framework for seamless device-to-device inter-
action in the wild. In: Proceedings of the 19th In-
ternational Middleware Conference, pp. 161–173.
ACM, USA (2018) [Kalb18]

7

S4 Al-Roubaiey, A., Sheltami, T., Mahmoud, A.,
Yasar, A.: EATDDS: Energy-aware middleware
for wireless sensor and actuator networks. Fu-
ture Generation Computer Systems 96, 196–206
(2019) [AR19]

7

S5 Akkermans, S., Bachiller, R., Matthys, N., Joosen,
W., Hughes, D., Vučinić, M.: Towards efficient
publish-subscribe middleware in the IoT with IPv6
multicast. In: Proceedings of 2016 IEEE Inter-
national Conference on Communications. IEEE,
USA (2016) [Akke16]

23

40CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

S6 Shekhar, S., Chhokra, A., Sun, H., Gokhale, A.,
Dubey, A., Koutsoukos, X.: URMILA: A perfor-
mance and mobility-aware fog/edge resource man-
agement middleware. In: Proceedings of the 22nd
IEEE International Symposium on Real-Time Dis-
tributed Computing, pp. 118–125. IEEE, USA
(2019) [Shek19]

11

S7 Jeon S., Jung, I.: Mint: Middleware for co-
operative interaction of things. Sensors 17(6)
(2017) [Jeon17]

31

S8 Cecchinel, C., Fouquet, F., Mosser, S., Collet, P.:
Leveraging Live Machine Learning and Deep Sleep
to support a self-adaptive efficient configuration of
battery powered sensors. Future Generation Com-
puter Systems 92, 225–240 (2019) [Cecc19]

10

S9 Padhy, S., Chang, H.-Y., Hou, T.-F., Chou, J.,
King, C.-T., Hsu, C.-H.: A middleware solution for
optimal sensor management of IoT applications on
LTE devices. In: J.-H. Lee, S. Pack (eds.) Qual-
ity, Reliability, Security and Robustness in Het-
erogeneous Networks, ser. Lecture Notes of the
Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering, vol. 199,
pp. 283–292. Springer International Publishing,
Switzerland (2017) [Padh17]

0

S10 Oliveira, E.A., Delicato, F., Mattoso, M.: An
energy-aware data cleaning workflow for real-time
stream processing in the Internet of Things. In:
Anais do IV Workshop de Computação Urbana,
pp. 71–83. SBC, Brazil (2020) [dO20]

1

S11 S. Pasricha.: Overcoming energy and reliability
challenges for IoT and mobile devices with data an-
alytics. In: Proceedings of the 31st International
Conference on VLSI Design and 17th International
Conference on Embedded Systems, pp. 238–243.
IEE, USA (2018) [Pasr18]

4

3.1. LITERATURE REVIEW ON ENERGY-EFFICIENCY IN IOT MIDDLEWARE41

S12 Sarkar, C., Rao, V.S., Venkatesha Prasad, R.,
Das, S.N., Misra, S., Vasilakos, A.: VSF: An
energy-efficient sensing framework using virtual
sensors. IEEE Sensors Journal 16(12), 5046–5059
(2016) [Sark16]

29

S13 Aazam, M., Zeadally, S., Feo Flushing, E.:
Task offloading in edge computing for Machine
Learning-based smart healthcare. Computer Net-
works 191 (2021) [Aaza21]

19

S14 Mukherjee, A., Dey, N., De, D.: EdgeDrone: QoS
aware MQTT middleware for mobile edge com-
puting in opportunistic Internet of Drone Things.
Computer Communications 152 (2020) [Mukh20]

35

S15 Li, W., Delicato, F.C., Pires, P.F., Lee, Y.C.,
Zomaya, A.Y., Miceli, C., Pirmez, L.: Effi-
cient allocation of resources in multiple heteroge-
neous wireless sensor networks. Journal of Paral-
lel and Distributed Computing 74(1), 1775–1788
(2014) [Li14]

108

S16 Podnar Zarko, I., Antonic, A., Pripužic, K.: Pub-
lish/subscribe middleware for energy-efficient mo-
bile crowdsensing. In: Proceedings of the 2013
ACM Conference on Pervasive and Ubiquitous
Computing Adjunct Publication, pp. 1099–1110.
IEEE, ACM (2013) [PZ13]

46

S17 Al-Madani, B., Shahra, E.: An energy aware
plateform for IoT indoor tracking based on
RTPS. Procedia Computer Science 130, 188–195
(2018) [AM18]

0

S18 Banouar, Y., Monteil, T., Chassot C.: Analytical
model for adaptive QoS management at the mid-
dleware level in IoT. In: Proceedings of the 2017
IEEE Symposium on Computers and Communica-
tions, pp. 1201–1208. IEEE, USA (2017) [Bano17]

9

S19 Huang Z., Lin, K.J., Han L.: An energy sentient
methodology for sensor mapping and selection in
IoT systems. In: Proceedings of the 23rd IEEE In-
ternational Symposium on Industrial Electronics,
pp. 1436–1441. IEEE, USA (2014) [Huan14]

14

42CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

S20 Pasricha S.: Overcoming energy and reliability
challenges for IoT and mobile devices with data
analytics. In: Proceedings of the 31st Interna-
tional Conference on VLSI Design and 2018 17th
International Conference on Embedded Systems,
pp. 238–243. IEEE, USA (2018) [Pasr18]

4

S21 Ramachandran, G.S., Proença, J., Daniels, W.,
Pickavet, M., Staessens, D., Huygens, C., Joosen,
W., Hughes, D.: Hitch Hiker 2.0: A binding model
with flexible data aggregation for the Internet-of-
Things. Journal of Internet Services and Applica-
tions 7 (2016) [Rama16]

13

S22 Elhabbash, A., Elkhatib, Y.: Energy-aware place-
ment of device-to-device mediation services in IoT
systems. In: H. Hacid, O. Kao, M. Mecella, N.
Moha, H.Y. Paik (eds.) Service-Oriented Com-
puting. Lecture Notes in Computer Science, vol.
13121, pp. 335–350. Springer Nature Switzerland
AG, Switzerland (2021) [Elha21]

0

3.1.2 Results and discussion
This section summarizes and discusses the results of the SLR considering the
four RQs introduced in Section 3.1.1 and the data extracted and synthesized
from the analyzed primary studies. Answers to each RQ concern strategies,
abstractions, evaluation, and target of the IoT middleware.

Energy-aware and energy-efficient strategies in IoT middleware

The analysis of data extracted from the selected primary studies allowed iden-
tifying several strategies and techniques for energy efficiency in IoT middleware
to answer RQ1. Table 3.2 lists these strategies and techniques.

The main strategies used in the studies for providing energy efficiency and
awareness are network adaptation (9/22) and task offloading (8/22). Net-
work adaptation refers to introducing new protocols or modifying existing
ones, making network optimizations (e.g., choosing the network technology),
and reducing network usage at the middleware level. As examples of network
adaptations, study S4 modifies the Data Distribution Service (DDSTM) proto-
col [PC03] to improve energy efficiency, while studies S5, S9, and S12 propose

3.1. LITERATURE REVIEW ON ENERGY-EFFICIENCY IN IOT MIDDLEWARE43

Table 3.2. Strategies and techniques for energy efficiency in IoT middleware

Strategies and
techniques

Studies
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

Network
adaptation

ˆ̂̂ ˆ̂̂
‘ ‘ ‘

ˆ̂̂
‘

ˆ̂̂
‘

ˆ̂̂ ˆ̂̂
‘

ˆ̂̂
‘ ‘

ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

Task offloading
‘ ‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘ ‘

ˆ̂̂
‘

Active node
selection

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

Machine
Learning

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂

Data filtering ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘ ‘ ‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂

a protocol adaptation by using new algorithms. In study S5, the capabilities of
IPv6 multicast are used with a publish-subscribe interaction, resulting in lower
network and energy consumption. Task offloading means using the network
to transfer processes or data to other locations. For example, an application
running on a mobile phone could send data to a server or other mobile phones
for data processing purposes. Studies S1, S2, and S6 propose offloading pro-
cesses or code to other parts of the system (such as servers and fogs) to save
energy on some nodes. Similarly, study S11 runs a virtual machine in a cloud
environment to execute applications instead of running them on local network
devices.

Active node selection is a strategy used by IoT middleware for sensor net-
works (3/22). In active node selection, a given node (connected objects, cloud,
fog, etc.) can be selected to process data, and this node can change when
needed to extend the lifetime of the entire IoT system. This refers to balanc-
ing the energy usage across multiple objects in the same network and knowing
the energy capabilities of each object. Therefore, the system will select the ones
with the highest energy available to process data, thus increasing the time the
system will be fully alive (with all nodes working). Studies S8 and S12 pro-
pose changing the number of active nodes in a sensor network according to
observations sent by these nodes and the overall communication (data) over
the network. In contrast, study S4 proposes simulating the energy available in
each node of a sensor network and periodically selecting the active ones.

Machine Learning is used in 3/22 studies to build a model based on input
data towards making adaptations to save energy. These data can be made
of information such as network conditions, CPU load in devices, amount of
device communication, data sent by devices, etc. Building the model allows

44CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

for adaptations to the application’s behavior to save energy or allow the model
to improve and better manage data to provide the expected energy saving.
Study S8 uses Machine Learning to increase the energy efficiency of the entire
network and the lifespan for long periods. It can do it by determining an
optimal configuration of sensors for extending their battery life using sensor
sampling frequency and network usage data.

The data filtering capability offered by some middleware (5/22 studies) pro-
poses processing data to reduce the amount of data transmitted or to limit the
size of the message according to specific criteria (network load, CPU usage,
energy usage, etc.). Studies S10, S15, S16, S17, and S21 use a data filtering
strategy to continuously remove unused data to reduce the amount of data
to be processed/transmitted, thereby reducing energy consumption in the sys-
tem. For example, study S10 provides an energy-aware data collection that can
reduce the amount of data processed and sent to the network while maintain-
ing accurate data flow for applications that need high QoS, such as real-time
applications.

Main findings (RQ1). Several strategies and techniques have been pro-
posed in the literature for energy efficiency in IoT middleware. Most studies
have focused on performing adaptations at the network level or offloading
tasks. Moreover, most studies use only one strategy, i.e., combining different
strategies and techniques has not been much addressed.

Abstractions for energy-awareness or energy efficiency in IoT middleware

RQ2 concerns identifying any synergy between applications (i.e., at the soft-
ware level) and IoT middleware when considering energy-awareness or energy
efficiency. Only four studies (S2, S3, S7, and S20) focus on providing ways for
an IoT application to easily use energy-awareness (S2) or energy efficiency (S3,
S7, and S20) strategies with the middleware through programming abstrac-
tions. Study S2 proposes an energy-aware abstraction, while studies S3, S7,
and S20 propose energy-efficient abstractions. These proposals are presented
as libraries, frameworks, or well-defined APIs abstracting away the specificities
needed for an energy-aware/efficient implementation from the developer.

In study S2, application developers should provide their energy constraints
for component offloading (i.e., minimum battery level) through a configura-
tion file, and application developers and the middleware calculate the energy
requirement for choosing the hosts suited for offloading. In study S3, an asyn-
chronous API is proposed to send and receive data to multiple peers. Appli-

3.1. LITERATURE REVIEW ON ENERGY-EFFICIENCY IN IOT MIDDLEWARE45

cations choose between two methods that implement different strategies for
energy efficiency purposes: either to periodically distribute small context data
to all their neighbors or to transfer a large volume of data to specific peers at one
time. The middleware transparently chooses the most efficient device-to-device
wireless network technology (e.g., Wi-Fi or Bluetooth) in terms of energy for
the application’s use. In study S7, the middleware provides a high-level API for
developing IoT device applications. The middleware transparently chooses the
most efficient communication strategy and adapts the application’s behavior
according to the data received from neighboring devices.

The solutions providing energy-aware/efficient abstractions (S2, S3, S7, and
S20) are based on neighboring devices that periodically send data that are used
or analyzed by the middleware to manage the energy-awareness/efficiency in
the application. The studies work with those data to better communicate
between the application and neighboring devices.

Main findings (RQ2). Most studies do not consider any energy-
aware/efficient abstraction, leading to a concern about how easily an
IoT application can enable an energy-efficient/aware strategy through
middleware.

Evaluation of energy-aware/efficient IoT middleware

RQ3 is interested in identifying how the energy efficiency of IoT middleware and
IoT systems built with their support have been evaluated through experimen-
tation or simulation. All the studies concerned evaluating the IoT middleware
regarding energy-awareness/efficiency. Seven of the selected studies considered
using simulation to evaluate the energy consumption of the middleware. In
contrast, fifteen studies present an evaluation based on testbeds and scenarios
that use real-world sensors and experiments based on concrete implementa-
tions. This indicates a tendency to experiment with concretely implemented
solutions gathering the information from real-case scenarios.

The data extraction process also provided information regarding the current
state of the middleware, whether the middleware is implemented and working
in an IoT system or an abstract architecture presents it with no concrete im-
plementation. Nineteen of the selected studies described an implemented mid-
dleware deployed and used in a real-world scenario. In contrast, three studies
explained the middleware and proposed models without a concrete implemen-
tation in IoT systems. Fig. 3.2 shows the correlation between the evaluation
methods and the state of the proposed energy-aware/energy-efficient middle-

46CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

Figure 3.2. Evaluation method and state of the implementation

ware proposed in the selected primary studies. It is possible to notice that
most of the concretely implemented middleware has been experimented in real-
world scenarios, while the proposals abstractly described have been evaluated
via simulation.

Main findings (RQ3). Most solutions present a concrete implementation
and can be used in real-world scenarios with IoT systems. In contrast, there
are few studies addressing evaluation with simulation.

Target of energy efficiency

RQ4 aims to identify the target of the energy efficiency of the IoT middleware.
Four main targets were observed: (i) end-user application, representing the
device used by the user to access an IoT application; (ii) connected objects, such
as sensors and actuators; (iii) server, referring to middleware usually deployed
in fogs or clouds; and (iv) sensor network, related to techniques to reduce
energy consumption over the whole sensor network. Table 3.3 summarizes the

3.1. LITERATURE REVIEW ON ENERGY-EFFICIENCY IN IOT MIDDLEWARE47

Table 3.3. Target of energy efficiency in IoT middleware

Energy efficiency
target

Studies
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

End-user
application

ˆ̂̂
‘ ‘

ˆ̂̂
‘ ‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘ ‘

ˆ̂̂
‘

ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘ ‘

ˆ̂̂

Connected objects ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘ ‘ ‘ ‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘ ‘

ˆ̂̂
‘

ˆ̂̂
‘

ˆ̂̂ ˆ̂̂
‘

Server
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

Sensor network ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ ˆ̂̂
‘

ˆ̂̂
‘

ˆ̂̂
‘

ˆ̂̂ ˆ̂̂ ˆ̂̂

target of the selected primary studies concerning energy efficiency.
The middleware presented in studies S1 and S11 saves energy at the server

level. For instance, the one described in study S1 has data processed at the
cloud/fog level, and only the necessary data is sent to the server. Ten other
studies do it on the end-user application side, and nine studies focus on the con-
nected object side. For example, study S8 proposes a deep sleep of connected
objects to save network usage. Studies S4, S8, S12, S15, S17, and S19 propose
to reduce the energy consumption in the sensor network, e.g., by changing
communication among nodes in the same network.

In the selected studies, the middleware in the IoT system is deployed in
different locations (see Fig. 3.3). Studies S2, S9, S11, S13, and S20 propose
deploying the middleware at the end-user application side. On the other hand,
studies S3, S6, and S16 propose a middleware deployed in both the end-user
applications and the cloud, while studies S7, S12, S15, S19, and S21 deploy the
middleware in the connected objects. It is also possible to notice that servers
have been used to deploy the middleware without being the target of energy
efficiency in the proposals.

Studies S4, S8, S17, and S22 present middleware on the cloud side. In
contrast, studies S1, S5, S10, and S18 present middleware deployment in a
gateway, whereas study S14 deploys its middleware in the gateway and the
connected object. The choice to deploy the middleware on the cloud, gateway,
or other parts of a system is highly influenced by the implemented solution, and
there is no rule to choosing the right place. Furthermore, studies S3, S6, and
S16 deploy their middleware in multiple places so that the placement of the
middleware is related to how the middleware energy-aware/efficient strategy
works.

Main findings (RQ4). Most of the selected studies present solutions work-
ing on the end-user application side, thereby showing a more significant

48CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

Figure 3.3. Middleware deployment locations addressed in the selected primary
studies

concern related to the lifetime of battery-constrained devices (e.g., smart-
phones). A few studies concern more than one target, leading to concerns
regarding the distribution of energy awareness and efficiency in an IoT sys-
tem.

3.1.3 Summary
The IoT paradigm offers promising opportunities to improve daily life through
continuous, dynamic cooperation between systems and physical objects. How-
ever, properly dealing with the development of IoT systems means providing
solutions to significant challenges such as energy efficiency and resource con-
sumption while facilitating development. Addressing the energy-efficiency chal-
lenge at the middleware level can reduce the energy consumption of systems
supported by that middleware while relieving application developers from this
concern. Furthermore, energy-awareness in middleware will impact the effi-
ciency of the applied strategies as there will be more context about where and
how the energy is being used, providing valuable knowledge for lowering the
energy usage through middleware.

This section has presented the results of an SLR to identify and understand

3.2. ENERGY-EFFICIENCY IN HTTP AND MQTT PROTOCOLS 49

essential features for energy efficiency and energy-awareness in IoT middleware.
The systematic selection and analysis of 22 studies systematically selected and
analyzed have shown increasing concern for energy efficiency in IoT middleware.
However, a few works consider energy-related issues from the perspective of
developing IoT applications. Considering that IoT middleware is the layer that
links IoT applications to other components of an IoT system, the abstraction
of energy-efficiency/awareness inside IoT applications is an issue that needs to
be further developed.

3.2 Energy-efficiency in HTTP and MQTT proto-
cols

The usage of IoT protocols through many IoT software in the many layers
of an IoT system have an impact over the energy consumption that can be
vital to IoT applications. Having a better view of how the handling of the
data exchanged between IoT protocols can widen the knowledge of application
developers to have care more about how much energy their code is consuming.

In order to propose an energy efficient middleware between IoT consumer
applications and IoT platforms, we have to study the energy efficiency of
the protocols used for those interactions. As shown in Section 2.4.3, and in
Disdarevi et. al [Dizd19], the protocols commonly used in this context are
MQTT [OASI15] and HTTP [Niel99].

Regarding HTTP and MQTT, an analysis of the related works concerning
their energy efficiency was done. Four research papers were selected that in-
clude energy consumption measures in the evaluation of HTTP and/or MQTT.
We have to mention that, to the best of our knowledge, the number of papers
on this subject is low and the measures do not isolate the consumption on the
consumer side. Furthermore, none of them study the impact of the interaction
pattern on the energy consumption.

Section 3.2.1 presents briefly the HTTP and MQTT protocols and Sec-
tion 3.2.2 presents the analysis or the related works.

3.2.1 HTTP and MQTT overview
HTTP (HyperText Transfer Protocol) is the footing of the client-server archi-
tecture in the Web [Niko20]. It is a standard working over TCP/IP that can
be used to provide data of any kind of data, for example, XML or JavaScript

50CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

Object Notation (JSON) in payloads from IoT objects to applications and vice-
versa. When it comes to using the protocol, it is mostly used in its Request/Re-
ply interaction pattern. However, as an example, the FIWARE platform also
uses HTTP for the publish-subscribe interaction pattern, where the client is
an open listener and the server posts available data.

MQTT is a lightweight protocol with the publish/subscribe interaction pat-
tern. It originated in 1999 proposed by IBM 7 and was standardized by OASIS 8

in 2013. It is an open standard protocol that can work over TCP/IP and in-
volves three main components: publisher, subscriber and broker. Publishers
and subscribers exchange messages. Brokers are responsible to filter incoming
messages and distribute them properly according to the message topics. MQTT
implements three different models of message exchange known as Quality of
Service, where the delivery with QoS 0 being at most once, QoS 1 being at
least once, and QoS 2 being exactly once.

HTTP and MQTT are both high-level protocols that work at the applica-
tion level and enable applications to communicate over a network. They have
different ways of providing this communication and their usage by IoT appli-
cations is dependent of what are the requirements. On one side HTTP has
been used for a long time and is well structured, coming with multiple features
that could facilitate the development of communication over the internet. On
the other hand, MQTT has shown to be a good protocol with very little over-
head as it allows for messages to structure themselves leaving this task for IoT
applications to marshal/unmarshal data received.

3.2.2 Synthesis of related works
A synthesis of the study is presented in Table 3.4. For those related works, the
following points have been analyzed. Since our objective is to study the con-
sumer side of an IoT architecture, we indicate whether the study is conducted
on the producer side (P), on the consumer side (C), or on both sides. We
mention which IoT protocols were compared in the work. We also indicate the
experimental conditions: the device where the measure was conducted and the
type of network. The last aspect concerns the type of the evaluation, analytical
or experimental and, if experimental, the tool they have used to measure the
energy consumption.

Bandyopadhyay and Bhattacharyya present an analysis of MQTT and
CoAP [Band13]. They examine the resource usage including energy consump-

7https://www.ibm.com/
8https://www.oasis-open.org/

3.2. ENERGY-EFFICIENCY IN HTTP AND MQTT PROTOCOLS 51

tion according to the message size and the packet loss ratio. The energy
consumption of the most reliable configurations was measured on a Wide Area
Network for the protocols CoAP and MQTT with QoS 2. They show that
with a perfect network without any loss, MQTT with QoS2 is more than ten
times more consuming than CoAP. Concerning energy efficiency, they only
study MQTT with QoS2. They do not define whether the measures are done
on the producer or/and consumer side, which makes it difficult to know which
side of the architecture was studied. They also do not mention how the energy
consumption was measured.

Toldinas et al. perform a dedicated study of MQTT QoS levels and their
energy consumption [Told19]. They use a ESP-WROOM-02 hardware device
connected to the network through Wifi 802.11 and acting both as producer
and consumer. For each level of QoS, the remaining battery voltage level was
measured using a digital multimeter as an indicator of energy consumption.
This study provides a good indication of the percentage increase in energy
consumption for each level of the QoS compared to the previous one. However,
it does not allow effective energy-consumption conclusions to be drawn about
the behavior of a consumer or a producer as the same device is used for both
tasks.

Hofer and Pawaska studied the impact of MQTT and HTTP protocols on
CPU, RAM, and energy consumption [Hofe18]. The device used is a Raspberry
Pi connected by Ethernet, that acts both as a producer and a consumer, as a
consequence they can not isolate the energy consumption on the consumer side.
They do not mention what QoS was used for MQTT. For the energy evaluation,
the authors studied the Ampere per second in the device using an oscilloscope.
The study proved that MQTT outperformed HTTP RESTful in terms of data
overhead which is the amount of extra data needed to be sent to a client (e.g
HTTP Headers, MQTT headers, etc), a nearly four times higher throughput.
Furthermore, MQTT also had lower resource consumption and significantly
lower energy consumption. As HTTP is used with the synchronous interaction
pattern and MQTT is used with the publish/subscribe interaction pattern, it
is not possible to isolate the impact of the interaction pattern from the impact
of the protocol.

Joshi et al. presented a comparison in terms of protocol impact on through-
put and battery consumption between MQTT (QoS not specified), CoAP and
HTTP RESTful [Josh17]. The device used was a Raspberry Pi, which acted
only as a producer. For energy consumption, the percentage of battery con-
sumption per hour was taken as a reference. However, it was not mentioned
how it was calculated. The conclusions are: (i) HTTP consumes more energy

52CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

than MQTT, and (ii) with the same amount of battery it is possible to send
100 times more messages with MQTT compared to HTTP. Although the work
was not dedicated to the study of energy consumption, it lacks details on how
the measures were implemented as well as the conditions of the experiment
(e.g. network type).

Ref Network P/C MQTT QoS HTTP Evaluation0 1 2 Sync Pub/sub
[Band13] WAN em. ? ˆ̂̂ ˆ̂̂

‘

ˆ̂̂ ˆ̂̂ ?
[Told19] Wifi P+C

‘ ‘ ‘

ˆ̂̂ ˆ̂̂ simulation
[Hofe18] Ethernet P+C ? ? ?

‘

ˆ̂̂ oscilloscope
[Josh17] Wifi P

‘

ˆ̂̂ ˆ̂̂
‘

ˆ̂̂ calculated

Table 3.4. Synthesis of the related work

This related work study shows that there is a lack of experiments for isolat-
ing the energy consumption of HTTP and MQTT on consumer applications.
We will present our contribution on this subject in Chapter 5.

3.3 IoT middleware for consumer applications
The IoT research area is wide with protocols, standards, and platform specifica-
tions. Software developers need to learn many technologies while being careful
with application resource usage. In that context, several works propose generic
abstractions in order to ease the development of IoT applications. We orga-
nize the related work presentation in three parts: Domain Specific Language
(DSL) (Section 3.3.1), Application Mashup (Section 3.3.2), IoT middleware
(Section 3.3.3).

3.3.1 Domain Specific Language
In order to provide application abstractions for non developer specialists, many
domain specific dedicated programming languages are used nowadays. More
specifically, some middleware solutions provide their own Domain Specific Lan-
guage (DSL) to provide abstractions for building IoT applications. Boujbel and
co-authors [Bouj14] present MuScADeL (MultiScale Autonomic Deployment
Language), a domain specific language dedicated to multiscale and autonomic
IoT system deployment. MuScADeL allows designers to declare multiscale de-
ployment properties without exact knowledge of the deployment domain, pro-

3.3. IOT MIDDLEWARE FOR CONSUMER APPLICATIONS 53

viding for example the deployment of mass market smart applications over the
IoT. Similarly, Delicato and co-authors [Deli13] propose the Programming and
Execution Module (PEM) solution that provides a Web Mashup DSL specifi-
cally tailored for Wireless Sensor Networks (WSNs), as well as an interpreter
for this DSL. The Web Mashup allows ad-hoc Web applications to be built
upon the combination of real-time information (data, presentation, and func-
tionality) through the composition of available services such as publishing and
discovering the capacities of available WSNs.

DSLs allow developers to generate useful and repetitive lines of codes, how-
ever developers have to learn new languages and integrate new development
tools, and keep limited to the DSL goals.

3.3.2 Application Mashup
Using open application programming interfaces (API), Web Mashup favors easy
and fast integration of data sources to produce augmented results that were
not considered when producing raw data [Bens08]. One example of an IoT
Web Mashup is Wirecloud [WIRE21], an end-user Web-centered application
mashup platform aimed at allowing end users, with no programming skills,
to easily create Web applications and dashboards/cockpits, e.g. to visualize
their data of interest or to control their smart home or environment. Node-
RED [NODE21] is another Web application mashup that allows wiring together
hardware devices, APIs, and online services. It provides a Web browser-based
flow editor, which can be used to create JavaScript functions. Elements of
applications can be saved or shared for re-use.

Application mashups have advantages of a user-friendly graphical devel-
opment that comes with fast composition, however they are limited to the
available graphical components that may rapidly limit the IoT application de-
signer.

3.3.3 IoT middleware
IoT applications require the use of a great number of technologies (IoT proto-
cols, IoT platforms, IoT devices). A manner to abstract away the complexity
is to use a middleware and the Proxy pattern [Diaz08]. Soundararajan and
Robert [Soun08] show how the Proxy pattern can help to implement a bench-
marking application. They provide a client-side Proxy pattern that hides the
complexity of protocols and encapsulates the knowledge of how to contact the
servers. Similarly, Sutra and co-authors [Sutr17] have built the CRESON sys-

54CHAPTER 3. IOT MIDDLEWARE AND ENERGY-EFFICIENCY RELATED WORK

tem that creates a Proxy at the client side in order to contact databases over the
Internet. It abstracts the communication protocols involved while preparing
to transfer and process data required by the application.

3.3.4 Synthesis
Several methods can be considered for masking the complexities of building
IoT consuming applications. DSLs and Mashup are promising ones, however
they may limit the development and deployment of the applications. Propos-
ing a middleware is the approach that we adopt in this PhD. We present in
Chapter 4 the IoTvar middleware that propose taming IoT consuming appli-
cation development through the paradigm of IoT variables handled by specific
proxies.

3.4 Conclusions
Building energy efficient IoT consuming applications is a difficult task. In
this related work chapter we have highlighted the need for high level pro-
gramming abstractions for IoT application developers. As shown by the SLR
(Section 3.1), a low amount of IoT middleware consider programming abstrac-
tions, which could lead to a high complexity to use IoT specific middleware.
This complexity could also extend to the IoT protocols being used (e.g HTTP
and MQTT) and worsen the time necessary to develop software. Furthermore,
there are energy efficiency/awareness concerns to be taken into account by the
developer. In this PhD, our contributions are the proposition of high level ab-
stractions for developing IoT consuming applications, made available through
an IoT middleware. The middleware layer is the level where we propose en-
ergy efficient and energy aware mechanisms. We take into account the Network
adaptation mechanism to provide strategies for energy-efficiency/awareness in
IoT middleware for consumer applications and show these strategies in Chap-
ter 6.

Part II

IoT Middleware and
Energy-Efficiency: Contributions

55

Chapter 4

IoTVar

4.1 IoTVar Software Architecture . 58
4.1.1 General architecture . 58
4.1.2 The cost of extending IoTvar . 58
4.1.3 IoTVar proxies . 60

4.2 IoTvar abstractions for the developer . 64
4.2.1 IoTvar variable declaration . 64
4.2.2 IoTvar update listener . 64
4.2.3 Gains in terms of lines of codes . 65

4.3 IoTvar Evaluation . 66
4.3.1 Setup for the experimentation . 67
4.3.2 Results for the synchronous interaction pattern . 68
4.3.3 Results for the publish-subscribe interaction pattern 71
4.3.4 Overview of the results . 76

4.4 Conclusion . 78

This chapter presents the first contribution of the Ph.D. that aims at an-
swering two of the research questions introduced in Section 1.2: (RQ1) How
can a middleware support common abstractions for interacting with IoT plat-
forms? (RQ2) What is the cost, in terms of CPU usage, memory usage, and
energy consumption, of abstracting IoT platforms using an IoT middleware?
The objectives are (1) to lower the learning and development costs of developing
an IoT consumer application, while (2) maintaining the cost of the middleware
itself reasonable in terms of additional CPU, memory, and energy.

For those purposes, we propose IoTvar [Borg19], an IoT middleware de-
signed to abstract the interactions of consumer IoT applications with context
management IoT platforms through the proxy design pattern [Shap86]. IoTvar
allows developers to declare IoT variables that enable the discovery of data-
producer objects virtualized on IoT platforms, while transparently dealing with
automatic updates of those variables through transparent interactions with the
IoT platforms.

57

58 CHAPTER 4. IOTVAR

In Section 4.1, we present the generic software architecture of IoTvar, de-
signed to easily integrate new IoT platforms. Then, we present the role of the
IoTvar proxies in Section 4.1.3. Section 4.2 presents the abstractions manipu-
lated by an IoT application developer using IoTvar and evaluates the gain in
terms of the line of codes to be written. Finally, Section 4.3 presents an eval-
uation of the IoTvar middleware in terms of additional costs (CPU, memory,
energy) for three IoT platforms.

4.1 IoTVar Software Architecture
The IoTvar middleware is architecturally designed to ease the integration of
new IoT platforms by exposing common interfaces. It has been implemented for
the three IoT platforms analysed in Section 2.4: Orion, OM2M and muDEBS.

4.1.1 General architecture
Figure 4.1 shows the main components of the IoTvar middleware which pro-
poses several components organized in layers.

The two bottom layers are shared by all the platforms. The protocol layer
defines components that interact with protocols commonly used between IoT
consumer applications and IoT platforms such as HTTP and MQTT; Other
protocols could be added, if necessary. Then, the interaction layer provides
two components that manage the interaction patterns, i.e. request/reply and
publish/subscribe regardless of the IoT platform.

The top layers contain components specific to IoT platforms: the API layer
and the unmarshaller layer act as a glue that maps the API calls and data
structures to the IoT platforms; the discovery layer provides functionalities for
discovering devices and managing filtering mechanisms.

When the middleware is started, IoTvar creates a pool of threads with size
equals to the number of available processors. For the request/reply interaction
pattern, each variable is scheduled to be managed by the pool of threads with
a period given by the refresh time. On the other hand, the publish/subscribe
pattern depends on the IoT platform and protocols used.

4.1.2 The cost of extending IoTvar
The IoTvar architecture allows the addition of further IoT platform extensions.
Fig. 4.2 depicts the steps to integrate a new platform with IoTvar. If there is

4.1. IOTVAR SOFTWARE ARCHITECTURE 59

Figure 4.1. IoTvar generic architecture

no support for a protocol in use by the platform, the developer has to provide
a generic implementation of this protocol. Because each IoT platform comes
with its own data model and API, a specific data unmarshaller and an API
adapter have to be provided.

The amount of lines of code needed to add an extension varies from platform
to platform. We show, in Table 4.1, the number of lines of code necessary to
implement the IoTvar components generics and specifics for the three platforms.
To understand the numbers, it is important to highlight that muDEBS provides
a separate library with its context data model and the unmarshaler is done
outside IoTvar. Furthermore, Orion was the element that necessitated the most
lines of code especially because of its discovery component, which supports
many features of the API such as searching, filtering, and geolocation.

60 CHAPTER 4. IOTVAR

Figure 4.2. IoTvar extension steps.

Table 4.1. Number of lines of code by component

Component Lines of code
generic muDEBS OM2M Orion

Platform Specific Discovery - 97 98 406
Platform Specific API adapter - 102 198 185
Platform Specific Unmarshaler - - 50 153
Synchronous Handler 235 - - -
Pub/Sub Handler 154 - - -
Synchronous HTTP 139 - - -
Pub/Sub HTTP 238 - - -
Pub/Sub MQTT 202 - - -

Total 917 199 346 744

4.1.3 IoTVar proxies
IoT variables are linked to a proxy representing an entity of an IoT platform.
The proxy activates the handler in charge of interacting with the IoT platform.
The main tasks of the proxy are: (1) to discover the virtualized IoT device in
the platform (2) to manage the updates with new observations, which includes
unmarshalling the received data. Figures 4.4 and 4.3 show the sequence di-
agram of IoTvar from the creation of a variable until the data from the IoT

4.1. IOTVAR SOFTWARE ARCHITECTURE 61

platform is returned for the Request/Reply and Publish/Subscribe interaction
pattern, respectively.

62 CHAPTER 4. IOTVAR

Figure
4.3.

IoTvarsequence
diagram

forthe
Publish/Subscribe

interaction
pattern.

4.1. IOTVAR SOFTWARE ARCHITECTURE 63

Fi
gu

re
4.

4.
Io
Tv

ar
se
qu

en
ce

di
ag
ra
m

fo
rt

he
Re

qu
es
t/
Re

pl
y
in
te
ra
ct
io
n
pa
tt
er
n.

64 CHAPTER 4. IOTVAR

4.2 IoTvar abstractions for the developer
The IoTvar middleware is available through a Java library. We show below the
code to be written by a java developer to interact with an IoT platform. As
an example, we rely on the case of an IoT consumer application that displays
the current temperature in the vicinity of the Eiffel Tower in Paris.

4.2.1 IoTvar variable declaration
The usage of IoTvar is shown in Listings 4.1 and 4.3 with code in the JAVA
programming language to display the up-to-date temperature in the vicinity
of the Eiffel Tower. Listing 4.1 shows an example for the declaration of the
IoT variable (Lines 1–9) and the registration of a listener for this variable
(Line 10). To declare an IoT variable, the developer provides IoTvar with the
identifier (Line 2) and type (Line 3) of the searched-for sensor (Temperature at
Line 4), the location of the Eiffel Tower (Line 5), the required refresh time as a
quality parameter (Line 6), the size of the local history of values (Line 7), addi-
tional filters to be provided to the platform (e.g temperature>10;humidity>10
at Line 7), the configuration parameter of the IoT platform (Line 7), the in-
teraction strategy with the IoT platform (Line 8), and the class to be used for
unmarshalling purposes (Line 9). The location is defined by the latitude, the
longitude plus the radius in meters.

Listing 4.1. Declaring a variable using IoTvar
1 IoTVariableFiware <Integer > temperatureEiffelTower =
2 new IoTVariableFiware <>(" temperature_eiffel_tower_310 ", // ID
3 "LM35", // Type
4 " Temperature ", // Attribute
5 new Location (" location ", 48.6223426 , 2.4404356 , 100.0) ,
6 new RefreshTime (10 , TimeUnit . SECONDS),
7 10, null , orionConfiguration , // History size , filters and plat. config .
8 HandlerStrategy .SYNC // Or PubSub
9 Integer . class);

10 temperatureEiffelTower . registerIoTListenerP (display);

4.2.2 IoTvar update listener
IoTvar automatically activates a listener when the temperature observation is
updated, i.e. either when a refresh has been requested (in the synchronous
strategy) or when a notification has been received (in the publish-subscribe
strategy). Listing 4.2 displays the basic interface for an observer with the
onUpdate and updateIssue methods. The former method is called each time
a new observation is provided by IoTvar, whereas the latter is called when

4.2. IOTVAR ABSTRACTIONS FOR THE DEVELOPER 65

the update cannot comply with the specified constraints, leaving the developer
with the error to be treated.

Listing 4.2. Interface of a listener
1 public interface IoTVarObserver {
2 void onUpdate (Observation newObservation);
3 void updateIssue (String issue);
4 }

Listing 4.3 presents the code of a simple observer class, TextDisplay, which
implements the IoTVarObserver interface and displays the temperature around
the Eiffel Tower. In this example, the observer simply logs the observation
with the received temperature (Line 4), and, then, logs any error (networking
error, data error, etc.) shown in Line 7.

Listing 4.3. Declaration of a listener
1 public class TemperatureDisplay <Meteo > implements IoTVarObserver {
2 private static final Logger logger = LogManager . getLogger (TextDisplay .

class);
3 public void onUpdate (Observation newObservation) {
4 logger .info(" Current temperature around the Eiffel Tower : " +

newObservation);
5 }
6 public void updateIssue (String issue) {
7 logger .info(" There was an error updating the sensor : " + issue);
8 }
9 }

4.2.3 Gains in terms of lines of codes
Table 4.2 shows the high differences for one variable regarding the number
of lines of code that application developers need to write to directly use the
APIs of FIWARE, OM2M, or muDEBS, or if they use IoTvar. It is clear the
advantage of using IoTvar.

Table 4.2. Number of lines of code when developing with and without IoTvar

Interaction pattern Lines of code
With IoTvar Without IoTvar

Synchronous FIWARE 15 450
Publish-subscribe FIWARE 15 600
Synchronous OM2M 15 400
Publish-subscribe OM2M 15 200
Publish-subscribe muDEBS 15 450

66 CHAPTER 4. IOTVAR

4.3 IoTvar Evaluation
This section reports a quantitative evaluation of IoTvar and its integration
within the FIWARE, OM2M, and muDEBS platforms. This evaluation involves
a performance assessment that considers the same application written with and
without IoTvar (i.e., directly accessing the IoT platform) aiming at measuring
the overhead of the middleware in terms of CPU, memory, and energy usage.
The application goal is to receive and display in the console the data that is
returned from a temperature sensor around the Eiffel Tower. The tests done
with this application vary the number of sensors from 25 to 200 in a 25 sensors
step (25, 50, . . . , 200), with a refresh time of 1 second for each sensor, and
having a small local history of the 10 latest values for each sensor.

We collect the performance measurements (CPU, memory, and energy con-
sumption) by wrapping both the method called by the synchronous handler and
the method to handle notifications sent by FIWARE, OM2M, and muDEBS.
This is implemented using AspectJ [Kicz01], which provides an encapsulation
around the main methods of the IoTvar structure, which is woven into the
IoTvar code. This is done to be able to measure CPU and memory usage of
only the methods which perform the data processing and also communication
without modifying the code of the middleware.

Currently, no software for energy measurement includes the consumption
of the network interface in the energy consumption measurements. Some tool
such as RAPL can perform energy measurements but are still limited to CPU
and RAM energy consumption. Making it difficult the usage of those tools
for our study. As a consequence, we decided to use a Yocto wattmeter [Yoct]
to measure the energy consumption of the whole computer. The wattmeter
counter is reset at the beginning of the tests, and at the end the total energy
consumed is retrieved and saved in a file along with CPU and memory con-
sumption. As the wattmeter measures the consumption of the whole computer,
we have another test to get the energy consumption of the computer running
without the application (idle consumption) and isolate the consumption of the
application. The difference between the whole computer and idle time is then
used for the analysis.

For quantitative analysis purposes, we performed hypothesis testing. To
decide about the test to use, we first perform the Shapiro-Wilk test [Shap65],
a powerful statistical test to verify if a sample follows a normal distribution.
For the significance level α “ 0.05, we notice that the values do not follow a
normal distribution, thus leading us to perform a non-parametric hypothesis
test.

4.3. IOTVAR EVALUATION 67

Thereafter, we choose Mann Whitney’s U -test [Mann47], one of the most
used non-parametric tests, to verify if there are differences between the two
independent samples. The null hypothesis states that the means of the values
in the samples are the same, i.e. there is no statistically significant difference
between the samples. The t-test returns a p-value that is compared to the
adopted significance level α “ 0.05. If the p-value ă α, then the null hypoth-
esis is rejected and the alternative hypothesis is accepted, otherwise it is not
possible to conclude if there is a statistically significant difference between the
analyzed samples. In other words, when the returned p´value is less than
0.05, we reject the null hypothesis and conclude that there is a statistically
significant difference in terms of using or not using IoTvar.

To better check, the measuring strength of the claims gathered from the
U -test, an effect-size statistical analysis is run over the test data using the
A´index by Delaney and Vargha [Varg00]. The analysis gives us the levels of
the effect size that are interpreted with Hess and Kromrey magnitude [Hess04]
that can present the following levels: (i) Negligible, (ii) Small, (iii) Medium,
and (iv) Large.

In Section 4.3.1, we describe the setup for the tests with the structure
and an explanation of the tests. In Sections 4.3.2 and 4.3.3, we present the
results and the statistical testing for the synchronous interaction, and for the
publish/subscribe interaction, respectively. Finally, in Section 4.3.4, we give
an overview of the results and conclusions of the statistical analysis.

4.3.1 Setup for the experimentation
Data for each measure (CPU, memory, and energy) are collected during 30 exe-
cutions of five-minute testing. The first minute of the test is the warm-up phase
and it is not recorded: it ensures that the class loading is complete in the Java
Virtual Machine (JVM) in order to avoid interference in the results [Geor07].
The last four minutes constitute the effective run phase.

Fig. 4.5 illustrates the setup of the tests. The computer that executes the
client application consuming IoT data is a Dell notebook with an i7-8665U
CPU @ 1.90GHz, 32GB ram with Debian 9 OS. The server computer is for
executing the IoT platform and the IoT data producers, which simulate IoT
sensors that send IoT data through the IoT platform. It has an i7-4770K
CPU @ 3,9 GHz, 16 GB ram with Ubuntu 16.04 OS. Furthermore, the client
computer is plugged into a YoctoPuce YoctoWatt wattmeter to collect energy-
related measures. The client application communicates with the server through
a local isolated WiFI network.

68 CHAPTER 4. IOTVAR

Figure 4.5. IoTvar experimental setup

The different versions of the IoT application (with or without IoTvar) get
sensor data either through synchronous calls or publish-subscribe notifications.
In the former interaction pattern, the IoT application with IoTvar creates an
IoT variable for each sensor and the middleware sends one request per second
to get data for each declared sensor. In the latter interaction pattern, the IoT
application with IoTvar creates an IoT variable for each sensor, the middleware
registers to the corresponding entity, and the IoT platform notifies IoTvar about
all the updates.

4.3.2 Results for the synchronous interaction pattern

The CPU performance of synchronous calls is displayed in Figures 4.6a for
the three IoT platforms. IoTvar increases the demand for CPU and memory
because more processing is necessary to handle the pool of threads and to
maintain the collection of IoT variables (search, update, and maintain the
history). As a consequence, the energy consumption with IoTvar is greater
than without IoTvar due to the amount of overall CPU and memory usage
by IoTvar in order to provide a usable abstraction to application developers.
The difference between using or not IoTvar are displayed, in percentages, in
Table 4.3.

Concerning the FIWARE platform, Table 4.4 shows the results of the U -test
with respect to CPU, memory, and energy. Based on the returned p-values, we
reject the null hypothesis and conclude that there is a statistically significant
difference for memory and energy, that is, the overhead put by the IoTvar
abstraction does affect the overall performance. For CPU, we have p-values
greater than 0.05 for 75, 150, and 175 variables, thus indicating that there
is no statistical difference for the overhead caused by IoTvar in these cases.
Furthermore, the overhead size caused by the usage of IoTvar is shown in
Table 4.5 with the results from the A´index test. In total, there are 5 cases

4.3. IOTVAR EVALUATION 69

(a) Synchronous CPU consumption

(b) Synchronous memory consumption

(c) Synchronous energy consumption

Figure 4.6. IoT platforms synchronous consumption with and without IoTvar

70 CHAPTER 4. IOTVAR

Table 4.3. Difference between using and not IoTvar for the synchronous interaction
pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU FIWARE 12.38% 7.29% 5.07% 3.79% 3.68% 2.15% 2.94% 6.29%
Memory FIWARE 6.22% 3.97% 3.6% 4.85% 5.81% 3.57% 4.55% 3.23%
Energy FIWARE 1.79% 4.08% 5.53% 4.98% 4.92% 8.67% 4.13% 4.9%

CPU OM2M 16.21% 13.92% 13.8% 11.59% 35.14% 34.02% 33.16% 26.86%
Memory OM2M 4.01% 5.61% 5.62% 4.71% 1.41% 3.05% 6.09% 1.78%
Energy OM2M 5.7% 4.91% 2.45% 4.59% 7.27% 5.23% 5.39% 4.39%

with a small impact, 10 cases with a medium impact, and 9 cases with a large
impact.

Table 4.4. p-values from the U -test for the FIWARE synchronous interaction pat-
tern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU 0.00231 1.68e-07 0.0892 0.0287 0.00677 0.052 0.0869 0.0189
Memory 5.09e-06 0.0034 0.00175 0.00881 0.00175 0.0113 0.00241 0.131
Energy 0.0121 0.000356 3.01e-08 3.55e-11 1.92e-11 3.14e-11 2.06e-09 3.88e-09

Table 4.5. Magnitude from the U -test for the FIWARE synchronous interaction
pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU medium large small small medium small small medium
MEM large medium medium medium medium medium medium small
Energy medium large large large large large large large

Concerning the OM2M platform, Table 4.6 shows the results of the U -
test with respect to CPU, memory, and energy. Based on the returned p-
values, we reject the null hypothesis and conclude that there is a statistically
significant difference for CPU and energy, that is, the overhead put by the
IoTvar abstraction does affect the overall performance. For memory, we have
p-value greater than 0.05 only for 150 variables, thus indicating that there is no
statistical difference for the overhead caused by IoTvar in this case, but for the

4.3. IOTVAR EVALUATION 71

rest of the values, the test indicated that there is an overhead. Furthermore, the
overhead caused by the usage of IoTvar is shown in Table 4.7 with the results
from the A´index test. In total, there are 2 cases with negligible impact, 1
case with small impact, 3 cases with medium impact, and 18 cases with a large
impact.

Table 4.6. p-values from the U -test for the OM2M synchronous interaction pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU 1.52e-06 0.0159 0.00494 2.65e-07 0.498 0.497 3.33e-12 3.34e-11
Memory 0.00176 1.69e-05 3.57e-05 0.00681 0.197 0.0545 1.31e-05 3.34e-11
Energy 2.27e-09 1.41e-08 1.1e-05 1.18e-10 3.27e-12 5.87e-10 3.31e-12 8.56e-05

Table 4.7. Magnitude from the U -test for the OM2M synchronous interaction
pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU large medium large large large large large large
MEM medium large large medium negligible small large negligible
Energy large large large large large large large large

4.3.3 Results for the publish-subscribe interaction pattern
Figure 4.7a shows that CPU usage with IoTvar is higher than without using
IoTvar. The overhead induced by the middleware comes from the validations
done inside the code to ensure the correct update of variables inside the code,
as well as handling multiple potential error cases. In addition, because of the
number of proxy objects created and error objects that are created, memory
consumption is shown in Figure 4.7b also presented an increase in the memory
used by IoTvar. As a consequence, Figures 4.8a and 4.8b also display an
overhead in energy consumption for all the three IoT platforms. The differences
between using and not using IoTvar are displayed, in percentage, in Table 4.8.

Concerning the FIWARE platform, Table 4.9 shows the results of the U -test
with respect to CPU, memory, and energy. For CPU, all the values rejected
the null hypothesis, thus concluding that for CPU, the usage of IoTvar does
have an impact when used. The memory usage shows a similar behavior, but

72 CHAPTER 4. IOTVAR

(a) Publish/Subscribe CPU consumption

(b) Publish/Subscribe memory consumption

Figure 4.7. IoT platforms pub/sub performance evaluation with and without IoTvar

4.3. IOTVAR EVALUATION 73

(a) Publish/Subscribe energy consumption (Orion and OM2M)

(b) Publish/Subscribe energy consumption (muDEBS)

Figure 4.8. IoT platforms pub/sub performance evaluation with and without IoTvar

74 CHAPTER 4. IOTVAR

Table 4.8. Difference between using and not IoTvar for the publish-subscribe in-
teraction pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU FIWARE 4.39% 8.19% 4.94% 7.23% 9.55% 13.99% 10.93% 13.45%
Memory FIWARE 0.68% 2.13% 2.1% 1.52% 3.12% 3.08% 2.43% 4.41%
Energy FIWARE 1.15% 1.36% 2.82% 4.5% 12.81% 7.65% 5.23% 11.51%

CPU OM2M 10.96% 10.72% 16.4% 12.73% 8.37% 4.11% 9.87% 5.92%
Memory OM2M 16.54% 10.56% 9.76% 8.82% 7.92% 8.86% 9.18% 8.91%
Energy OM2M 4.89% 4.46% 4.64% 4.53% 4.61% 4.86% 4.89% 4.65%

CPU muDEBS 7.42% 6.99% 9.28% 4.29% 4.16% 3.56% 3.95% 2.66%
Memory muDEBS 2.86% 5.61% 3.22% 3.7% 5.44% 3.85% 4.18% 3.31%
Energy muDEBS 7.46% 8.21% 5.18% 2.88% 4.93% 3.74% 1.87% 3.86%

with 75 variables the tests show that there is no impact as it has a p´value of
0.0909. Similarly, energy consumption shows that IoTvar increases the energy
consumption in some of the usages, however, it is also important to highlight
that with 25 and 50 declared variables we have a p´value greater than 0.05.
The results show that there is no significant impact in the tests for this case.
Furthermore, the overhead caused by the usage of IoTvar is shown in Table 4.10
with the results from the A´index test. In total, there are 2 cases with negli-
gible impact, 5 cases with small impact, 5 cases with medium impact, and 12
cases with a large impact.

Table 4.9. p-values from the U -test for the FIWARE pub/sub interaction pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU 0.0119 4.05e-07 0.000467 0.00999 0.000175 7.2e-09 4.03e-09 2.36e-08
Memory 0.259 0.0197 0.0909 0.282 0.0498 0.0211 0.129 0.0371
Energy 0.118 0.0706 0.00751 1.78e-05 3.32e-07 1.24e-07 5.58e-08 4.59e-08

Concerning the OM2M platform, Table 4.11 shows the results of the U -test
with respect to CPU, memory, and energy. For all the tests, the U -test showed
p´values lower than 0.05, rejecting the null hypothesis and thus showing that
using IoTvar has an impact. Furthermore, the overhead size caused by the
usage of IoTvar is shown in Table 4.12 with the results from the A´index test.
In total, there were no cases with negligible impact, 1 case with small impact,
no cases with medium impact, and 23 cases with a large impact.

4.3. IOTVAR EVALUATION 75

Table 4.10. Magnitude from the U -test for the FIWARE pub/sub interaction pat-
tern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU medium large large medium large large large large
MEM negligible medium small negligible small medium small medium
Energy small small large large large large large large

Table 4.11. p-values from the U -test for the OM2M pub/sub interaction pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU 7.01e-12 7.73e-10 1.51e-11 3.25e-11 3.61e-08 0.0216 1.51e-08 3.13e-09
Memory 7.01e-12 6.72e-10 1.51e-11 3.25e-11 2.32e-11 8.5e-12 7.35e-12 1.73e-10
Energy 1.6e-09 1.34e-08 2.32e-11 2.01e-10 1.03e-09 1.27e-10 2.24e-10 7.44e-09

Table 4.12. Magnitude from the U -test for the OM2M pub/sub interaction pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU large large large large large small large large
MEM large large large large large large large large
Energy large large large large large large large large

Concerning muDEBS platform, Table 4.13 shows the results of the U -test
with respect to CPU, memory, and energy. Differently from the other plat-
forms, the CPU tests show a statistically significant difference only for 50, 75,
and 200 variables. Similarly, for memory consumption, the difference is signif-
icant only for 50 variables, while the other numbers of variables do not show
p´values over 0.05. The energy consumption shows that the null hypothesis
is only accepted for 50, 100, and 175 variables, indicating that for these values
there is an impact caused by IoTvar that was statistically noticeable. Further-
more, the overhead size caused by the usage of IoTvar is shown in Table 4.14
with the results from the A´index test. In total, there are no cases with neg-
ligible impact, no cases with small impact, 3 cases with medium impact, and
21 cases with a large impact.

76 CHAPTER 4. IOTVAR

Table 4.13. p-values from the U -test for the MUDEBS pub/sub interaction pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU 0.0981 0.0404 0.0404 0.0952 0.191 0.0606 0.191 0.0383
Memory 0.0715 0.0404 0.331 0.331 0.0952 0.0952 0.191 0.0952
Energy 0.0101 0.0952 0.0404 0.134 0.0404 0.0404 0.0952 0.0404

Table 4.14. Magnitude from the U -test for the MUDEBS pub/sub interaction
pattern.

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU medium large large large large large large large
MEM large large medium medium large large large large
Energy large large large large large large large large

4.3.4 Overview of the results

The tests and analysis for the IoTvar middleware show how it behaves in some
scenarios over different interaction patterns. The overall results from the tests
are shown in Figures 4.9a, 4.9b and 4.9c with the percentage of the magnitude
for each tested IoT platform. From these values, we check that IoTvar puts in
most cases a bigger load when abstracting the IoT platform. Table 4.15 gives
a view over the difference in using and not using IoTVar in percentage showing
the overhead caused by IoTvar in percentage.

Table 4.15. Difference in percentage between using and not IoTvar for the sup-
ported platforms.

Metric FIWARE SYNC FIWARE Pub/Sub OM2M SYNC OM2M Pub/Sub muDEBS Pub/Sub

CPU 5.45% 9.08% 23.09% 9.88% 5.29%
Memory 4.47% 2.43% 4.03% 10.07% 4.02%
Energy 4.88% 5.88% 4.99% 4.69% 4.77%

Global 4.93% 5.8% 10.7% 8.22% 4.69%

4.3. IOTVAR EVALUATION 77

(a) FIWARE results (b) OM2M results

(c) muDEBS results

Figure 4.9. Overall results of the IoTvar middleware

78 CHAPTER 4. IOTVAR

4.4 Conclusion
The heterogeneity of the IoT platforms presents a significant challenge to find-
ing, selecting, and using IoT resources, e.g., devices, sensors, services, and
context data. Therefore, it is important to provide techniques that enable
clients to easily discover, retrieve and use data produced by them. Due to
the different types of data provided by IoT platforms and the various ways
to interact with them, it is valuable to be able to gather those data at a low
development cost.

This chapter has presented the IoTvar middleware, which provides appli-
cation developers with a way of interacting with an IoT platform using a few
lines of code. For this purpose, IoTvar encompasses proxies representing IoT
platform virtual entities. These proxies handle the complexity of interacting
with the IoT platform in both synchronous and publish-subscribe interaction
patterns. Additionally, IoTvar offers a bypass for the need of understanding
the underlying IoT platform-specific API and data model. We have described
not only the integration of IoTvar with the FIWARE, OM2M, and muDEBS
IoT platforms but also detailed its architecture and how it can be expanded
for other platforms.

An evaluation of IoTvar has been performed with all the three supported
platforms addressing the balance between the relative cost of IoTvar for both
synchronous and publish-subscribe handling of information as well as the ben-
efits for developers. Concerning the cost, the results of the statistical analysis
revealed that there is an impact for most of the cases when it comes to CPU,
memory, and energy consumption. Furthermore, the results show a global dif-
ference of around 5% of increase when using IoTvar. However, these values,
although significant, could be acceptable depending on the application charac-
teristics and objectives.

Chapter 5

Impact of Interaction Patterns and
IoT protocols on energy
consumption

5.1 Experimental methodology . 80
5.1.1 Experimental setup . 80
5.1.2 Process to isolate the communication energy consumption 83
5.1.3 Experimental plan . 83
5.1.4 Threats to validity . 85

5.2 Results . 86
5.2.1 Impact of the interaction pattern . 86
5.2.2 Impact of the application protocol . 87
5.2.3 Impact of the QoS in MQTT . 88
5.2.4 Impact of the payload . 89
5.2.5 Guidelines for IoT consumer application designers . 91

5.3 Conclusion . 92

This chapter presents the second contribution of this Ph.D. that is intended
to respond to research question 3 (RQ3) introduced in Section 1.2: What
is the impact on the energy consumption of widely used protocols by IoT
applications and with different interaction patterns? A way of answering this
research question is to measure the energy consumption costs induced by the
interactions between an IoT consumer application and an IoT platform. As
it has been shown in Section 3.2, there is a lack of experiments for isolating
the energy consumption of HTTP and MQTT on consumer applications. To
fill this gap, we have realized some energy measurements on IoT consumer
applications connected to the Internet with a WiFi (802.11n) interface. This
application uses the MQTT and HTTP protocols, which are the most common
protocols between IoT consumer applications and IoT platforms (as discussed

79

80 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

in Section 3.2). With the results of those experiments, we aim at giving some
guidelines for consumer applications and IoT middleware designers.

The chapter is structured as follows. Section 5.1 explains the experimental
methodology used to gather energy consumption data from IoT applications.
Section 5.2 shows the results gathered and explains, in detail, what can be
learned from them to be used in an IoT middleware. Section 5.3 concludes the
chapter.

5.1 Experimental methodology
This section presents the methodology used in the experiments for measuring
the energy consumption of interactions in IoT consumer applications. Sec-
tion 5.1.1 presents the experimental conditions in terms of computer, network,
energy measurement tool, software, and algorithms. Section 5.1.2 shows the
process that allows isolating the energy consumption of the communication
part. Section 5.1.3 presents the plan for the experiments with details on the
variables that influence each test. Section 5.1.4 discusses the threats that may
affect the validity of the experimentation.

5.1.1 Experimental setup
Computers and network

Figure 5.1. Experimental setup

As shown in Figure 5.1, three computers were used to perform the experi-
ments.

1. The Yocto Wattmeter, the same wattmeter as shown in Section 4.3, is
located between the consumer computer power cable and the wall power

5.1. EXPERIMENTAL METHODOLOGY 81

outlet. The Yocto-wattmeter is connected to the energy measurement
computer via a USB cable. It uses the Yocto software API to read energy
consumption measures and reset the current counter when needed.

2. The Consumer Computer used for running the consumer application.
The Consumer Computer is connected to the network through a Wifi
interface.
The characteristics of this computer are the following: Dell Latitude
E6320 v:01 with 5.68GiB of RAM, a Broadcom (BCM4313 802.11bgn)
Wireless Network Adapter driver, and Ubuntu 20.10 Operating system.
Furthermore, the battery was fully charged and the computer was always
plugged into the electricity.

3. The Producer Computer is used for simulating an IoT platform. It
runs a process that produces data. It is a fixed computer connected to
the Internet through an Ethernet interface.

4. The Script Computer was used (i) for running the scripts responsible
for starting all applications on the client and server computers, and (ii)
for reading the energy consumption measures on the Wattmeter.

For MQTT, we use the Mosquitto broker version 3. The producer and
the consumer were developed using the open-source Eclipse Paho library for
Java. For HTTP Request/Reply, the consumer uses HTTP/1.1 with the
java.net.http.HttpClient Java library. ForHTTP Publish/Subscribe we also
use HTTP/1.1 and the consumer includes an Undertow Server to receive HTTP
publications. We highlight that in a real scenario, the consumer application
does not choose the version of the HTTP protocol used by the server nor does
the configuration of the server concerning connection management. In this
context, the usage of HTTP/1.1 is widely supported by servers and clients
whereas other versions such as HTTP/2 are still less common.

Algorithms

We present first the algorithms on the consumer application side for the two
interaction patterns, request/reply (Algorithm 1) and publish/subscribe (Algo-
rithm 2), and then the algorithm on the producer (Algorithm 3) that simulates
an IoT platform. For the request/reply algorithm, the period input is equiva-
lent to the refresh time, the period between two requests. On the other hand,
for the publish/subscribe pattern, this rate is controlled by the producer and

82 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

its period of publications. Moreover, the payload size is the second input of the
producer algorithm.

Algorithm 1: Consumer Request/Reply
Main(period)
begin

producer Ð httpInitialisationpURIq

while true do
valueÐ producer.getV aluepq

sleeppperiodq

end
end

Algorithm 2: Consumer publish/subscribe
Main(void)
begin

server Ð initializeServerpURI, handlerq

end
handler(receiver)
begin

valueÐ receiver.getV aluepq

end

Algorithm 3: Producer
Main(period, payload)
begin

dest=initializeServer(URI)
while true do

dest.send(payload)
sleeppperiodq

end
end

Finally, a script runs on the measuring computer. It takes as input the
period between two publications, the payload size, and the duration of the

5.1. EXPERIMENTAL METHODOLOGY 83

experiment. The script starts the consumer and the producer, then sleeps
for one minute for initialization and consumer warmup purposes. Then, the
energy meter on the wattmeter is reset and is ready to start gathering the
energy measure at the end of the experiment. Finally, the script reads the
consumed energy on the consumer application from the wattmeter and stops
the producer and the consumer.

5.1.2 Process to isolate the communication energy con-
sumption

Using a wattmeter has the following disadvantage: there is no isolation of the
application or any particular process in the measurement, as the wattmeter
measures the energy consumption of the computer as a whole. For proper
measurement of the impact of an application, it is necessary to make two mea-
sures: (1) the measure of the energy consumption without the application, and
(2) the measure of the energy consumption with the application. In Figure 5.2,
we present the following measures of energy consumption of the consumer com-
puter:

• Midle`jvm: we start the Consumer computer with the consumer applica-
tion but without any interaction with the producer application (blue +
orange on Figure 5.2)

• Midle`jvm`interactions: we start the Consumer computer with the full con-
sumer application (blue + orange +green on Figure 5.2)

The results that are presented in Section 5.2 only show the interaction cost
(the upper part in green on Figure 5.2). We obtain this value with this formula:
Midle`jvm`interactions´Midle`jvm. As a consequence, the standard deviation of
the result is the addition of the standard deviation of the two measures.

5.1.3 Experimental plan
Table 5.1 presents the combinations of interaction patterns and protocols for
which we have handled 5 families of experiments. We measure: (1) the impact
of the interaction pattern through families F1 and F2; (2) the impact of the
protocol with families F2 and F3, and (3) the impact of the QoS for MQTT
with families F3, F4, and F5.

84 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

Figure 5.2. Energy consumption measures

Family Interaction pattern Protocol
F1 Synchronous HTTP
F2 Publish/Subscribe HTTP
F3 Publish/Subscribe MQTT QoS0
F4 Publish/Subscribe MQTT QoS1
F5 Publish/Subscribe MQTT QoS2

Table 5.1. Families of experiments

The message rates used in the experiments were 1, 2, 4, 8, and 16 messages
by second. The tests at 32, 64, and 128 messages per second with both inter-
action patterns using HTTP started to receive a significantly lower amount of
messages, as a consequence, we did not keep those results.

The payload used in the experiments were 24, 48, 240, 1320, and 1560
bytes. We start with 24 bytes since it is assumed that this payload is about
the usual value for an IoT payload. The last two values were chosen considering
the MTU, which was measured at 1500 bytes for our experiments. One lower
than this value and the other higher for comparison purposes on the energy-
consumption influence of such a scenario.

We run 125 experiments: 5 families of experiments (see Table 5.1)* 5 mes-
sage rates * 5 payloads. For each experiment, we compute the mean and
standard deviation among 30 measures. Three more measures were done with
the consumer application also running Wireshark to analyze the obtained re-
sults if necessary. As the usage of Wireshark increases the energy consumption

5.1. EXPERIMENTAL METHODOLOGY 85

of the machine, we do not include those tests for computing the mean and the
standard deviation. In total, we performed 33*125= 4 125 tests.

Each measuring test had a total duration of 8 minutes. This was orga-
nized with one minute for warm-up, where the producer started the message
exchange with the consumer. This part is followed by a measurement of the
energy consumption for 5 minutes while the producer was exchanging data with
the consumer. Finally, two more minutes of sleep time to reset the experiment,
and slow down the computer and the network conditions before starting the fol-
lowing test. 4 125 tests of duration 8 minutes necessitate around one full month
of experiments. Additionally, for Midle`jvm, 60 tests were performed, and we
double the number of tests to obtain low standard deviation and confidence
intervals.

5.1.4 Threats to validity

We present below potential threats to the validity of our study and how we
propose to minimize their effects.

Computer conditions: The activity of the computer cannot be fully con-
trolled. As a consequence, we report some discrepancies in the measured values.
To reduce these discrepancies, we have shut down or disabled all unnecessary
processes of the operating system as well as using the lowest brightness and
connecting to the device via ssh to reduce user tampering. To minimize the
standard deviation and obtain a more consistent result, each of the experiments
was run a total of 30 times.

Network conditions: The conditions of the network while doing the tests
were optimal. The gathered data showed that there was no packet loss during
the tests and the latency remained low and stable at around 23ms.

Temperature at which the experiments are conducted: during the initial
experiments, the climate did not rise above 25 degrees Celsius. However, on
some days when the external temperature rose between 28 and 32 degrees,
the fluctuations in energy consumption increased. These fluctuations may be
due to the need for the equipment cooling systems to increase their output to
keep the components of the equipment in the correct temperature conditions.
To address this threat, the client’s computer was moved to an air-conditioned
room where the computer was always at a cold temperature. This resulted in a
reduction of the standard deviations of the measurements, making the results
more stable. The experiments realized in the air-conditioned room were for the
message rate of 8m/s and the payloads of 1320B, 1560B, and 3120B.

86 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

Figure 5.3. Energy consumption 24B, Interaction Pattern Comparison

5.2 Results
This section shows the results of the experiments. Section 5.2.1 gives details
on how the interaction pattern can affect energy consumption. Section 5.2.2
shows how the choice of the protocol for the application can affect energy
consumption. Section 5.2.3 is focused on the MQTT protocol and shows what
are the differences in energy consumption when considering different QoS for
it. Section 5.2.5 presents guidelines dedicated to developers of IoT consumer
applications considering the results shown.

5.2.1 Impact of the interaction pattern
For a fair comparison of the interaction patterns, we compared only the results
obtained with the HTTP protocol for which we measured the two interaction
patterns.

Figure 5.3 presents the results of the energy consumption for a 24Bytes
payload for both interaction patterns. Table 5.2 presents, in percentage, the
synchronous pattern overhead over the publish/subscribe pattern. This is a
synthesis of all the realized measures (all the message rates).

The results of the experiments show that with the same number of received
observations, the synchronous pattern consumes around 92% (mean of all the
message rates and payloads results) more energy than the publish/subscribe
interaction pattern, being almost two times less efficient. This happens as the
client needs to process the request for the server and wait for a reply whereas

5.2. RESULTS 87

Payload Overhead in %
24B +94.03%
48B +89.96%
240B +106.90%
1320B +85.16%
1560B +85.50%
Mean +92.31%

Table 5.2. Synchronous pattern average overhead over the publish/subscribe pat-
tern

in pub/sub it will only need to wait for notifications from the server.

5.2.2 Impact of the application protocol
For the comparison of the protocols, it was desired to conduct a fair comparison
of the two protocols, comparing the MQTT QoS 0 and HTTP Pub/Sub as
they both propose an “at most once” semantics. As observed in Figure 5.4 and
Table 5.3, MQTT outperforms HTTP in terms of energy consumption and the
number of bytes by Joule.

We observe that in terms of energy, the MQTT protocol outperforms HTTP
by 20% on average while having the same interaction pattern and the same
semantics. This happens because of the purpose of each protocol. While HTTP
has more processing on top of the data received by the client, as it needs to
look into further validations (e.g size variable header, parameters, etc), MQTT
is proposed with a more lightweight structure that, for example, has fixed
headers, enabling less intensive processing by the client.

Payload HTTP vs MQTT in %
24B +28.07%
48B +23.40%
240B +31.05%
1320B +2.58%
1560B +18.63%
Mean +20.75%

Table 5.3. HTTP vs MQTT average overhead with all the message rates

88 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

Figure 5.4. Energy consumption for a 24B payload, Protocol Comparison

5.2.3 Impact of the QoS in MQTT
In Figure 5.5, we compare the measures of energy consumption for the three
MQTT QoS with the 24B payload. Table 5.4 presents a synthesis of the over-
heads for all the payloads.

Payload QoS1/QoS0 QoS2/QoS1 QoS2/QoS0
24B +24.64% +46.58% +79.72%
48B +17.76% +51.09% +78.20%
240B +58.67% +27.08% +104.46%
1320B +12.16% +88.10% +111.76%
1560B +21.83% +53.31% +86.45%
Mean +27.01% +59.77 % +92.12%

Table 5.4. MQTT QoS overheads

Taking into consideration all the measures realized, meaning all the mes-
sage rates and payloads, the comparison of QoS shows that QoS 0 consumes
around 27% less energy than QoS 1 and 92% compared to QoS 2 with the
same number of received observations. QoS 2 consumes 60% more energy than
QoS 1. Having similar results in the comparisons of QoS 0, QoS 1, and QoS 2,
to what was observed in the related work [Told19]. The difference is that we
can measure the consumer side only while they use the same device as producer
and consumer and as a result, can not differentiate consumer from producer
energy consumption.

A deeper look at the results shows that the impact of the QoS using MQTT
is related to the number of messages exchanged during the experiment. QoS

5.2. RESULTS 89

Figure 5.5. Energy consumption for a 24B payload, QoS Comparison

0 had the smallest amount of messages exchanged between the broker and
the consumer because of the fire-and-forget mechanism (Sending messages and
not verifying the arrival) it implements and resulting in the lowest energy
consumption. MQTT QoS 1 followed a similar path but as it increased the
number of messages, due to the acknowledgments of the client, it resulted in
bigger energy consumption when compared to MQTT QoS 0. Finally, QoS
2 with its bigger amount of messages exchanged between the broker and the
client doubled the number of packets exchanged and ended up almost doubling
the amount of energy used.

5.2.4 Impact of the payload
Figure 5.6 presents the bytes/Joule for different payloads for the fixed rate of
8 messages per second for the 5 families of experiments.

The usage of a payload up to 3120 bytes presented a moderate increase
in the experiments (mean 9%), having cases with even lower consumption for
HTTP. The fragmentation of the messages according to the MTU (1500 bytes)
does not seem to have a relevant impact on energy consumption. The exper-
iment impacted the most by the increase was MQTT QoS 0, having up to
21.89% more energy consumption. Concerning HTTP publish-subscribe and
request-reply, both seemed unaffected by the changes in the payload as the
payload of 24B was slightly higher than the one with 3120B (Table 5.5), which
had the message broken into 3 fragments according to the size of the MTU.
The behavior of the payload seen in HTTP is further confirmed when checking

90 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

Figure 5.6. Bytes Received by Joule Payload Comparison

Family of experiment Overhead in %
HTTP synchronous -1.36%
HTTP Pub/sub -1.32%
MQTT QoS0 +21.89%
MQTT QoS1 +15.45%
MQTT QoS2 +11.24%

Mean +9,18%

Table 5.5. Payload overhead from 24Bytes to 3120Bytes

the number of TCP connections with 24 bytes and 3120 bytes which remained
the same. Furthermore, MQTT is more impacted by the payload because the
protocol created only one TCP connection through all the test phases and ex-
changed messages in this established connection. This causes the payload to
become a bigger part of the energy consumption considering that MQTT has
a 2 bytes fixed header, while the HTTP header does not have a limit (A limit
can be set by the server), but in the case of the tests done, it is around 106
Bytes. Besides those differences by family of experiments, the lesson of this
comparison is that the number of Bytes by Joule is augmented significantly for
all the families while augmenting the payload. An explanation for this result
comes from the cost of the software call stack necessary to handle one message
whatever the size of the message is. To better verify this, a possibility is to
increase the amount of data exchanged by bigger amounts and compare it with

5.2. RESULTS 91

energy measurements from lower amounts of data.

5.2.5 Guidelines for IoT consumer application designers
From the results of the experiments, we provide in this section guidelines for
IoT consumer application designers to reduce energy consumption at the end
user device side.

Group several observations in one message

We have shown that using different payloads, from 24 up to 3120 bytes, has a
small impact on the energy consumption of the application. If the application
needs multiple sensor observations, we advise combining the different observa-
tions into one single message. Some IoT platforms, such as FIWARE/Orion,
provide the possibility to query (or subscribe to) a group of sensors. This
possibility has clearly to be chosen by application developers. Furthermore,
the usage of such a strategy at the middleware level can lower the amount of
consumption for IoT applications that use it, while still lowering the cost of
development of the application because of the usage of middleware to handle
communication with IoT platforms.

Favor the Publish-Subscribe interaction pattern

The comparison of interaction patterns showed that for the same frequency of
requests and notifications, the publish/subscribe pattern consumed on average
92% less energy than the request/reply pattern. As a consequence, we advise
favoring the publish/subscribe pattern.

We have to mention that this advice may depend on the IoT application and
the IoT platform. If the frequency of requests is far lower than the frequency
of publications, the synchronous pattern can be an option because the client
can better control the number of messages being exchanged. This happens due
to IoT platforms lacking features of filtering information, thus increasing the
amount of data sent to the applications. This highlights that the filtering of
information is an important feature of IoT platforms for both synchronous and
publish/subscribe patterns.

Favor the MQTT protocol over the HTTP protocol

For the publish/subscribe pattern, the comparison of the MQTT and HTTP
protocols shows that MQTT has 20% less energy overhead in comparison to

92 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

HTTP. The advice is then to favor the MQTT protocol for the publish/sub-
scribe pattern. For IoT platforms, this information highlights the importance
of supporting not only multiple protocols but also providing the applications
with different choices of interaction patterns.

Choose the QoS appropriate for your application

With the MQTT protocol, if your IoT application supports losing some ob-
servations, prefer QoS 0 since it involves less energy consumption. If the ap-
plication cannot afford to lose observations, use QoS 1 instead of QoS 0 as it
provides a complementary service to TCP’s reliability by ensuring that each
message is received at least once. Keep the QoS2 for exactly-once semantic re-
quirements as it presents an overhead of 92% and should be used in conditions
that require no duplication of messages.

Examples of benefits from those guidelines

The benefits of those guidelines to develop IoT applications can be better seen
when viewing with a bigger space of time. As an example, an IoT application
running for one year using HTTP pub/sub sending 4 messages per second
with a payload of 24B will consume around 31,01 MegaJoules while another
application running with the same parameters but using MQTT QoS 0 will
consume around 8,40 MegaJoules. Furthermore, if the messages are grouped
into a single message, and sent once per second, we can achieve consumption
of around 4,20 MegaJoules for both HTTP pub/sub and MQTT QoS 0 with
a payload of 24 Bytes. As an example, for a regular notebook battery with
around 360 KiloJoules, an IoT application using HTTP or MQTT and grouping
messages could lead to a lifetime of around 31 hours, on the other hand, without
grouping and using HTTP synchronous we have around 9 hours of battery (71%
less).

5.3 Conclusion
Energy consumption is a first-class concern in the development of future IoT
applications. As the number of devices and the number of applications related
to IoT will keep growing in the near future, there is a new requirement for the
developers and the users to regulate and improve the energy consumption of
IoT applications not only on the connected object side but also on the consumer
application side.

5.3. CONCLUSION 93

The energy consumption of IoT consumer applications was measured on
user devices connected with WiFi (802.11n). The impact on energy consump-
tion was shown for different interaction choices and is summarized as follows.
(i) The results show that for the same amount of received observations, the
publish/subscribe interaction pattern has lower energy consumption (around
92% lower) than the synchronous interaction pattern; (ii) For the publish/-
subscribe interaction pattern, MQTT consumes less than the HTTP protocol
(around 20% less). (iii) The payload has a low impact on energy consumption
having a 9% overhead from 24 to 3120 bytes payloads. From these results,
guidelines for IoT consumer application designers were elucidated, for exam-
ple, developers should favor the publish/subscribe pattern and group several
observations in one message when possible.

The results shown are also important when it comes to IoT middleware,
as the guidelines can serve as a base for the design of IoT middleware for IoT
consumer applications. Implementing those strategies at the middleware level
may have a strong impact on reducing IoT application energy consumption
while keeping a low development effort.

94 CHAPTER 5. IMPACT OF INT. PATTERNS AND IOT PROT.

Chapter 6

Energy-efficiency/Awareness in
IoTVar

6.1 Guidelines for energy-efficiency and energy-awareness in IoT middleware 96
6.1.1 Switch of communication protocols . 96
6.1.2 Message grouping . 97
6.1.3 Refresh Time Adaptation . 97
6.1.4 Interaction pattern switch . 97
6.1.5 Energy Budget management . 98

6.2 IoTvar Energy-efficient/Aware architecture . 98
6.3 Energy-efficient/Aware mechanisms in IoTvar . 98

6.3.1 Configuring IoTvar energy efficient mechanism . 100
6.3.2 Network and variable status . 100
6.3.3 Energy budget . 100
6.3.4 Energy model . 101
6.3.5 Energy aware Algorithm for energy efficiency . 102

6.4 Evaluation . 103
6.4.1 Setup . 104
6.4.2 Results with the Wattmeter . 105
6.4.3 IoTvar Energy Model calibration . 107
6.4.4 Results with JoularJX . 108

6.5 Discussion . 110
6.6 Conclusion . 110

This chapter presents how IoTvar has been extended to handle energy ef-
ficiency and energy awareness. This proposal is an answer to RQ4 introduced
in Section 1: What are the strategies to be proposed by an IoT middleware to
reduce the energy consumption of IoT consumer applications? The objective
is to validate the usage of the strategies at the middleware level and evaluate
the positive impact in terms of energy consumption.

The chapter is structured as follows. Section 6.1 shows guidelines that
can be followed when introducing energy-efficient mechanisms in a middle-
ware. Section 6.2 presents the architecture of the IoTvar middleware with the

95

96 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

necessary modifications to support energy-efficient mechanisms. Section 6.3
describes all the energy-efficient mechanisms implemented in the middleware
along with how it can be extended with an energy budget paradigm to pro-
vide energy-awareness mechanisms for the end user. Section 6.4 presents the
results and evaluation of the IoTvar middleware compared with its usage with-
out energy-efficient/aware mechanisms. Section 6.5 presents a discussion over
the results and limitations of the evaluation. Section 6.6 provides concluding
remarks.

6.1 Guidelines for energy-efficiency and energy-
awareness in IoT middleware

IoT middleware is a proper software level for improving energy efficiency as
it is the place where energy-efficient interaction practices may be shared by
many applications. Improving the energy efficiency of IoT middleware may
be achieved through the introduction of energy-efficient strategies. Although
many strategies have been proposed by IoT middleware as shown in Section 3.1,
none of them were dedicated to IoT middleware for IoT consumer applications.
In order to overcome this limitation, we propose below a set of guidelines to
aid designers of IoT middleware in providing energy efficiency to IoT consumer
applications: (1) Switch of communication protocols, (2) Message grouping,
(3) Refresh-time adaptation, (4) Interaction pattern switch, (5) Energy budget
management.

6.1.1 Switch of communication protocols

IoT middleware for consumer applications may abstract several protocols, and
thus choose the protocol in function of the IoT platform-supported protocols.
One feature that can be implemented at the middleware level is the switch of
communication protocols for the IoT application. For example, an IoT appli-
cation that wants to communicate with an IoT platform, using the Pub/Sub
pattern which is supported by both MQTT and HTTP, could lead to the mid-
dleware automatically choosing the MQTT because it is known that is a more
efficient protocol when it comes to energy consumption.

6.1. GUIDELINES FOR ENERGY-EFFICIENCY AND ENERGY-AWARENESS IN IOT MIDDLEWARE97

6.1.2 Message grouping
As shown in Section 5.2.4, the middleware can use message grouping to lower
the amount of communication and thus lower the amount of energy consump-
tion. This is possible due to the decrease in the number of messages to be sent
in a space of time while increasing the payload sent in each request.

6.1.3 Refresh Time Adaptation
The update of data needs to be done regularly by the middleware, it can be
done in the publish/subscribe interaction pattern if there is such a mechanism
in the IoT platform to limit the minimum time between two notifications. It
can also be done in the request/reply mode, where there is a request sent
periodically by the middleware. In either case, this refresh time of the data
needs to be set, and the lower it is, the more energy the middleware will use
because the cost of communication increases as more requests are done in a
smaller space of time. To overcome this issue, carefully managing the refresh
time of data brings further energy efficiency. This management can be done
by the middleware to take into account a maximum energy budget set by the
user and then augment the refresh time if necessary with the objective to lower
the energy consumption.

6.1.4 Interaction pattern switch
IoT middleware can provide different types of interactions with IoT platforms
or other components of an IoT system. One example of interaction is the pub/-
sub where the IoT middleware waits for notifications with data to be sent to it.
Another is the request/reply interaction in which the middleware acts by start-
ing the communication to retrieve data. When it comes to energy efficiency, the
usage of pub/sub can be more efficient than request/reply by itself, but when
also applying a grouping strategy, the energy consumption of the request/reply
could be less than pub/sub. With this information, the IoT middleware can
provide the interaction switching strategy that makes use of energy consump-
tion data from the middleware to change the type of interaction, if possible, to
use the one at the time that uses the least. As an example, the IoT middle-
ware could use an energy model to determine if the energy consumed by using
the request/reply with grouping could be switched with a pub/sub interaction
pattern for lower energy consumption. Furthermore, depending on the support
for the pub/sub by, for example, an IoT platform, there could be a possibility

98 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

of grouping with pub/sub, which would be more efficient than using grouping
with request/reply.

6.1.5 Energy Budget management
The management of the above strategies could be driven by the middleware
to respect an energy budget that could be defined by the end user. For this
purpose, the middleware should provide energy awareness through the estima-
tion of how much energy is consumed by the interactions. According to the
estimation, energy-efficient interaction strategies will be chosen to reduce, if
necessary, energy consumption at the middleware level.

6.2 IoTvar Energy-efficient/Aware architecture
The architecture of IoTvar, presented in Chapter 4, enables the integration of an
energy-efficient/aware component to be added without heavy modifications of
the middleware. Figure 6.1 shows the proposed modified architecture of IoTvar
with the new components added to support energy-efficiency/awareness. The
new components are highlighted in dark green color.

To provide energy efficiency, energy awareness, and energy budget man-
agement, a new layer for the IoTvar middleware has been added: the energy
layer. The Generic Energy efficient/aware component created at this layer will
be detailed in Section 6.3. In addition, each specific unmarshaller has to be
specialized to unmarshal a group of variables. The synchronous handler has
also to be updated to request several variables at the same time.

An implementation of this architecture has been implemented for the FI-
WARE IoT platform: it handles the message grouping, refresh time adaptation
and energy budget management strategies for the request/reply interaction pat-
tern.

6.3 Energy-efficient/Aware mechanisms in IoTvar
The mechanisms to reduce the energy consumption in applications that use
IoTvar have been designed taking into account the guidelines presented in Sec-
tion 6.1. The initial schema, which represents the generic component in the
new layer of the architecture, is presented in Figure 6.2. First, IoTvar receives
input from a configuration file, described in Table 6.1, that contains directives

6.3. ENERGY-EFFICIENT/AWARE MECHANISMS IN IOTVAR 99

Figure 6.1. IoTvar architecture with energy-efficiency/awareness

about how to behave in certain cases such as when the application has a cer-
tain energy budget or to limit certain energy-efficient mechanisms to be able
to provide more QoS. This configuration file is used by the Energy Awareness
module that takes decisions based on (i) the number of declared variables, (ii)
the network status, (iii) the energy budget, and (iiii) the energy model. This
information is used by an algorithm that provides output directives for the
energy-efficient module to group messages and control the rate of communica-
tion.

100 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

Figure 6.2. Inside the IoTvar energy efficient/aware component

6.3.1 Configuring IoTvar energy efficient mechanism
IoTvar provides a default behavior for variables declared using the energy-
efficient handler, but it can also read from a configuration file provided by the
user that enables refinement of the behavior. In case the user wants to limit
the processing that IoTvar does to gather information for its energy-aware
module or how much IoTvar controls the interactions with IoT platforms, the
configuration file provides the possible properties that can be passed to the
code. The configuration file properties available are shown and explained in
Table 6.1.

6.3.2 Network and variable status
When IoTvar variables are declared, it updates the status of the application.
This status contains information regarding network conditions and declared
variables. The network condition information is data related to package loss,
latency, availability of the IoT platform, and type of network being used (e.g.
WiFi, Ethernet, 3G,4G,5G). The declared variable information contains data
regarding the number of variables, type of handlers used, refresh time, and, if
enabled, the energy budget available.

6.3.3 Energy budget
The energy budget is an important aspect of the energy-efficiency mechanism
as it will be actively used to lower the energy-consumption if necessary. It
is compared to the estimated energy consumption computed with the model
every time the status of IoTvar is refreshed which could consequently change

6.3. ENERGY-EFFICIENT/AWARE MECHANISMS IN IOTVAR 101

Table 6.1. IoTvar configuration file properties

Property Behaviour Default
Value

Status Refresh Period
(in seconds)

period for recalculating the status of the middle-
ware (network and variable conditions)

10

Maximum Freshness
Increase (in seconds)

This configuration imposes a limit to how much
IoTvar will increase the refresh time. When IoTvar
increases the refresh time the QoS will be lowered,
thus this configuration will limit this degradation
of QoS up to a maximum (by refresh period).

10

Use Energy Model This property indicates if IoTvar should use the
energy model to calculate the energy being con-
sumed taking into account the variables that are
declared in the code. If it is “false”, IoTvar does
not report the estimation of the energy being used.

false

Use Energy Budget If the energy model is “true” and this also “true”,
IoTvar will start to take into consideration the
budget provided in the property Energy Budget.

false

Energy Budget (in
Joules for 5 minutes)

This value is used by IoTvar to lower the amount of
energy calculated until reaching the desired bud-
get. This value is given in Joules and is the budget
for 5 minutes.

400

the refresh time of the grouped variables. If the energy consumption exceeds
the budget, IoTvar increases the number of variables being grouped and also
increases the refresh time of each variable while decreasing the QoS.

6.3.4 Energy model
The proposed model takes into account the main resources used to update
data inside the code. The values for the variables and constants in the model
were calculated through tests to find the good values that would give a close
estimation of the real energy consumption values returned by a wattmeter.
The model takes into consideration the following variables and constants to
calculate the energy being consumed:

• nbG: The number of groups of variables that are internally created by
IoTvar; There is one group by refresh time;

102 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

• nbVGi
: The number of variables inside a given group;

• RGi
: The refresh time of a group in seconds;

• CV : A Constant energy value for each variable that is inside a group.
It represents the cost of the small processing each variable adds inside a
group.

• Cnet: A Constant given for the calculation of the network. It is the
estimated energy that is consumed when making a request for a group.

• MnetS: A modifier for the network calculation that depends on the la-
tency, package loss, and reachability of the IoT platform;

• MnetI : A modifier that depends on the network interface being used
(WiFi or Ethernet);

• Ccpu: A constant given for the CPU processing of one group of variables
in IoTvar.

The total energy consumed in Joules is calculated based on the energy used
by IoTvar during 5 minutes and is compared to the energy budget to enable
the middleware to increase the refresh time of the groups and thus lower the
energy consumption. The following equation represents the energy model to
calculate the energy consumption of IoTvar in a period of 5 minutes:

nbG
ÿ

i“0

pCV ˚ nbVGi
q ` pCnet ˚MnetS ˚MnetIq ` Ccpu

RGi

Furthermore, the model may also be used for context awareness purposes.
The application designer may: (1) Show to the end user the estimation of how
much energy the application is using at runtime or (2) Evaluate at design time
the energy consumed by the application.

6.3.5 Energy aware Algorithm for energy efficiency
Algorithm 4 is a representation of the function used by IoTvar to calculate the
increase of refresh time of the groupings of variables. This algorithm receives
the current refresh time of the groupings inside IoTvar, the energy configura-
tion, and checks if the minimum time, which is retrieved from the configura-
tions, has passed. If the checking is false, then the algorithm simply returns
the original refresh time, otherwise, it continues to calculate. The refresh time

6.4. EVALUATION 103

increase is dependent if there is reachability to the IoT platform, ping to the
platform (latency and package loss), and the network interface in use. After
gathering this information, the algorithm will add these values and return a
new refresh time for the grouping. Furthermore, if the configuration of IoTvar
enables the usage of the energy model and budget, the algorithm will calculate
the increase of refresh time, if needed.

Algorithm 4: Energy aware algorithm
getNewGroupRefreshTime(currentGroupRefreshT ime, config)
begin

if refreshT imePassedpconfig.statusRefreshq then
platformRefreshTime = isPlatformConnected()
pingRefreshTime = pingToPlatform()
networkRefreshTime = networkInterfaceInUse()
newGroupRefreshTime = currentGroupRefreshTime +
platformRefreshTime + pingRefreshTime +
networkRefreshTime
if config.usingEnergyModel and config.usingEnergyBudget
then

estimatedEnergyUsed =
getIoTVarEstimationUsingEnergyModel()
budgetRefreshTime =
getRefreshTimeEstimateEnergy(estimatedEnergyUsed,
config.energyBudget)
newGroupRefreshTime += budgetRefreshTime

end
return newGroupRefreshTime

end
return currentGroupRefreshTime;

end

6.4 Evaluation
This section reports a quantitative evaluation of the IoTvar middleware using
the energy-efficient/aware mechanisms for the FIWARE platform. This eval-
uation involves a performance assessment that considers the same application
written with/without IoTvar (i.e., directly accessing the IoT platform) and
with IoTvar but using the energy-efficient mechanisms, aiming at measuring

104 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

the impacts of the new mechanisms in the middleware in terms of CPU and
energy usage. The application goal is the same as presented in Chapter 4, to
receive and display, in the console, the data that is returned from a tempera-
ture sensor. The tests done with this application vary the number of sensors
from 25 to 200 in a 25 sensors step (25, 50, . . . , 200), with a refresh time of 1
second for each sensor, and having a small local history of the 10 latest values
for each sensor. The payload of the data of one sensor is around 117 bytes
while for 200 variables is around 10282 bytes.

The performance measurements of this evaluation are similar to the tests
shown in Chapter 4 for IoTvar. We collect the performance measurements
(CPU and energy consumption) by wrapping the method called the energy-
efficient synchronous handler. This is implemented using AspectJ, which pro-
vides an encapsulation around the main methods of the IoTvar structure and
is woven into the IoTvar code.

Mann Whitney’s U -test is used for checking if there is a statistically signifi-
cant difference between the analyzed samples (IoTvar with and without energy-
efficient strategies). Following these results, an effect-size statistical analysis is
run over the test data using the A´index by Delaney and Vargha that are inter-
preted with Hess and Kromrey magnitude levels (Negligible, Small, Medium,
and Large).

6.4.1 Setup
Fig. 6.3 illustrates the setup of the tests. The computer that executes the
client application consuming IoT data and the server computer which simulates
IoT sensors that send IoT data through the IoT platform are the same used
in Section 4.3.1. Furthermore, the client computer is plugged into the same
YoctoPuce YoctoWatt wattmeter to collect energy-related measures and the
client application communicates with the server through a similar local isolated
WiFI network.

Figure 6.3. IoTvar energy-efficient experimental setup

6.4. EVALUATION 105

When the tests are running, the IoT application creates the number of
variables for the specific test and starts calling the FIWARE platform for in-
formation on the variables. In the former version of IoTvar, for each variable
one HTTP call was made. In the new version, using the strategies for energy
efficiency the IoTvar middleware is capable of grouping the variables if they
have the same refresh time. Thus, the middleware makes one single call by
group.

Platform consideration We have to mention that this is possible due to the
FIWARE platform having the capability of grouping requests in its API. How-
ever, this capability has limits. One example is using the FIWARE platform,
which does not support proper filtering for the variables when grouping (i.e.
it imposes the same filter for each variable of the group). This implies that
FIWARE variables that need filtering cannot be used along with the energy-
efficient handler of IoTvar.

6.4.2 Results with the Wattmeter
The data from the tests were gathered and Figures 6.4 and 6.5 show the per-
formance of energy-consumption and CPU usage by IoTvar. The usage of the
strategies for energy efficiency has lowered the energy usage of IoTvar, reaching
close to 1000 Joules instead of the 1150 Joules using the non-efficient version
for 25 variables. Similarly, the CPU usage that reaches 35 seconds when look-
ing at 25 declared variables was lowered to less than one second. This can also
be seen in Table 6.2 which shows that for the percentage change of the CPU
there is a huge increase of more than 99% for 200 variables, and for the energy
consumption, it is around 45% more usage at 200 variables.

Table 6.2. Increase of Joules using IoTvar without energy-efficient strategies

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU 97.36% 98.68% 99.04% 99.23% 99.36% 99.46% 99.5% 99.57%
Energy 11.44% 21.62% 24.82% 29.73% 37.17% 40.53% 42.29% 45.87%

Concerning the statistical analysis of the data, Table 6.3 shows the results of
the U -test for CPU and energy. For both the CPU and energy the values reject
the null hypothesis, thus concluding that not using the energy-efficient/aware
strategies for IoT middleware inside IoTvar brings an impact on these resources.

106 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

Figure 6.4. IoTvar energy consumption using EE strategies

The p´value shown can better be seen in Table 6.4 using the A´index test
which interprets the values. From it, there is a clear view that the impact
of not using energy-efficient strategies causes a large impact on the resource
consumption of the IoT application using an IoT middleware such as IoTvar.

Table 6.3. p-values from the U -test for IoTvar and the FIWARE platform

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU 2.94e-11 2.94e-11 2.94e-11 2.94e-11 2.94e-11 6.35e-11 1.37e-10 6.5e-09
Energy 2.44e-11 2.17e-11 1.96e-11 1.72e-11 2.02e-11 7.4e-12 7.07e-11 5.72e-09

Table 6.4. Magnitude from the U -test for IoTvar

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

CPU large large large large large large large large
Energy large large large large large large large large

6.4. EVALUATION 107

Figure 6.5. IoTvar CPU usage using EE strategies

6.4.3 IoTvar Energy Model calibration
IoTvar provides an internal energy model as shown in Section 6.3. Figure 6.6
shows the results of the tests with the Wattmeter along with an estimation of
the energy consumption done by the model. The estimation follows a straight
line that increases the more variables are declared in the code. It was calibrated
through several tests until it was able to estimate the energy consumption
without straying far from the values given by the tests done with a wattmeter.
Table 6.5 shows the values used to be able to calculate the energy consumption.
Furthermore, Table 6.6 shows the difference between the estimation given by
the energy model and the energy consumption given by the wattmeter.

Variable Value
CV 0.02
Cnet 90.0
MnetS 1.0
MnetI 10.0
Ccpu 87.0

Table 6.5. Values of constants and modifiers of the energy model.

108 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

Figure 6.6. IoTvar energy consumption using energy model

Table 6.6. Estimation using the energy model and the wattmeter

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

Energy Wattmeter 988.2 (˘8.86) 987.48 (˘3.3) 987.12 (˘3.19) 988.56 (˘2.43) 988.2 (˘2.95) 989.28 (˘2.2) 990.0 (˘2.32) 991.44 (˘4.39)
Energy model 987.5 988 988.5 989 989.5 990 990.5 991

6.4.4 Results with JoularJX
IoTvar so far has been tested using a digital wattmeter. While this method
of testing can give good measures and the wattmeter can reliably give energy
consumption data, other tools can be used. One of these tools is JoularJX, a
java agent which can be attached to java applications and measure energy con-
sumption (of the CPU and DRAM only) at the method level. Using this tool
we can gather energy usage from only the methods that IoTvar uses and then
get the total energy of the IoT application using IoTvar. With this experimen-
tation, we wanted to analyze if the communication call stack was consuming
CPU and DRAM significantly.

Figure 6.7 shows the data from both the wattmeter and JourlarJX. When
comparing both, there is a clear gap in the energy consumption reported. While
the energy consumption measured with the wattmeter, which is from the whole

6.4. EVALUATION 109

computer minus the idle consumption is around 1000 Joules, the consumption
of IoTvar reported by JoularJX is around half of it. Table 6.7 also reports
the percentage change between using the wattmeter and JoularJX. It is impor-
tant to highlight that the energy data gathered from JourlarJX is given by the
RAPL interface from the CPU and DRAM, and thus the energy consumption
generated by IoTvar when using other resources such as network card and the
disk is not taken into account. Moreover, the values gathered from JoularJX
were not precise and had a high standard deviation which can cause prob-
lems when trying to reach conclusions about the energy consumption in IoT
middleware.

Figure 6.7. IoTvar energy consumption using JoularJX

Table 6.7. Difference between using the wattmeter and JoularJX

Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

Energy 45.11% 49.23% 49.65% 47.6% 52.43% 51.17% 45.46% 50.03%

In the first place, we thought that this gap was comparable to the results
of [Econ06] that states that about 30-40% of the power is spent on the disk,
the network, the I/O and peripherals, the power supplies, the regulators, and

110 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

the rest of the glue circuitry in the server that we can see with the Wattmeter
but not with JoularJX. However, when studying the energy consumption by
method result, we found that the getStackTrace() method called by JoularJX
every 10ms to analyze the consumption by method was consuming around 80%
of the energy by itself. Some more investigation would have been necessary for
giving conclusions from this experimentation.

6.5 Discussion
The results of the tests have shown that the usage of energy-efficient strategies
is lowering significantly the amount of energy consumed by IoTvar, especially
when the number of variables enables a good level of grouping. Also, the energy
awareness implemented enables IoTvar to have further knowledge of the energy
context of the application (network status, variables energy consumption, etc).
This energy context information is then used to provide enough information
to build an energy model which is used to estimate the energy consumption of
the middleware.

Nonetheless, there are still some limitations to the results: (i) the tests were
run using only the WiFi interface, leaving a gap to other types of communi-
cation such as 3G and 4G which are popular in IoT consumer applications;
(ii) the models and tests done are specific to the computer explained in Sec-
tion 6.4.1, thus reproducing the results could be a hard task; and (iii) the tests
were made to be comparable with the tests of the IoTvar middleware with-
out the energy-efficient/aware strategies to provide comparable results, which
limits the statistical analysis to a smaller number of variables than the IoTvar
grouping strategy can support.

IoTvar supports multiple platforms, each with its own set of functionalities
and specific APIs. The grouping mechanism provided by IoTvar was possible
due to the implementation of this capability in the FIWARE platform. This
availability is not yet available in other platforms, integrating this requirement
in other platforms could be the first step toward energy efficiency in IoT con-
sumer applications.

6.6 Conclusion
The energy consumption of IoT middleware is an important feature when IoT
applications consider using them. By using energy-efficient and aware strate-
gies in IoT middleware, applications with multiple variables can improve their

6.6. CONCLUSION 111

energy efficiency. Moreover, the implementation of awareness over the con-
sumption of the interactions through an energy model resulted in the provision
of an energy budget feature by IoTvar for IoT applications to lower their en-
ergy consumption. The energy model may also be used in the future to bring
energy awareness to end-users as well as to the designers of applications.

This chapter has presented the energy-efficient/aware strategies, the archi-
tecture of the IoTvar middleware, and how they were implemented to lower
energy consumption. The strategies were evaluated in an application using the
middleware and the results have shown that it does lower energy consumption.
Concerning the statistical analysis, there is a clear difference between using
and not using these strategies with the values reaching a maximum percent-
age change of around 60% less energy consumption when using energy-efficient
strategies. Finally, other energy consumption strategies could also have been
included: interaction pattern switch, modifying the freshness for grouping more
variables, and switch of communication protocols. They would need to be eval-
uated to confirm their efficiency, but could further increase the energy efficiency
in IoT middleware.

112 CHAPTER 6. ENERGY-EFFICIENCY/AWARENESS IN IOTVAR

Conclusions and future works

113

Chapter 7

Conclusions and future work

This chapter presents the conclusions of this work. The contributions with a
summary of this thesis and the final remarks for the propositions of energy-
efficiency/awareness in IoT middleware are presented in Section 7.1. Finally,
future directions regarding energy-efficiency/aware IoT middleware are dis-
cussed in Section 7.2.

7.1 Conclusions
The world has been and is still experiencing a greater need for energy produc-
tion caused by the evolution of technology and the expansion of many tech-
nological areas such as the digital. Energy usage in IoT in particular presents
a significant challenge as the number of devices is increasing over the years.
As a consequence, many IoT applications are being developed and they must
interact with the heterogeneous components of an IoT system. Those IoT ap-
plications need to be energy-efficient/aware to benefit the reduction of energy
consumption and also to be able to run on energy-constrained devices.

The complexity of IoT applications in running energy-efficient/aware strate-
gies is also a concern as they need to deal with heterogeneity and a huge amount
of data. Aiming to promote reducing the complexity of introducing energy effi-
ciency/awareness into IoT applications, this thesis proposes an IoT middleware
to help deal with communication abstractions, heterogeneity, and the overall
integration among components of an IoT system.

The first contribution of this thesis is an IoT middleware for IoT consumer
applications. IoTvar is proposed as this IoT middleware provides application
developers with a way of interacting with IoT platforms at low development
cost. For this purpose, IoTvar encompasses proxies representing IoT platform

115

116 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

virtual entities. These proxies handle the complexity of interacting with the
IoT platform in both synchronous and publish-subscribe ways. Additionally,
IoTvar offers a way to bypass the need of understanding the IoT platform-
specific API and data model. For this contribution, we have described not
only the integration of IoTvar with the FIWARE, OM2M, and muDEBS IoT
platforms but also showed how the architecture of the middleware is composed
and how it can be expanded for other platforms.

The evaluation of IoTvar was performed with all three supported platforms
addressing the balance between the relative cost of IoTvar for both synchronous
and publish-subscribe handling of information as well as the benefits for de-
velopers. Concerning the cost, the results of the statistical analysis revealed
that there is an impact, in most cases, on CPU, memory, and energy con-
sumption. Furthermore, the results show a global difference of around 5% of
increase when using IoTvar. However, these values, although higher, could be
acceptable depending on the application that uses the middleware.

The second contribution is the analysis of the energy consumption of the
HTTP and MQTT protocols for IoT consumer applications. We have mea-
sured the energy consumption on user devices connected with WiFi (802.11n).
The results show that, for the same amount of received observations, the pub-
lish/subscribe interaction pattern has lower energy consumption (around 92%
lower) than the synchronous interaction pattern. Concerning the publish/-
subscribe interaction pattern, MQTT consumes less than the HTTP protocol
(around 20% less). Furthermore, the payload has a low impact on energy con-
sumption having a 9% overhead from 24 to 3120 bytes payloads. The results
give guidelines that could be used not only for IoT applications, which need to
be more energy-efficient but also for energy-efficiency in IoT middleware.

The third contribution of this thesis is energy efficiency and energy aware-
ness inside an IoT middleware dedicated to consumer applications. The work
done has presented applicable strategies, and the architecture of IoTvar with
support for energy efficiency/awareness, thereby introducing new components
that enabled the strategies to lower the energy consumption to be developed
and then used by an IoT application. These strategies came from message
grouping, refresh-time adaptation, and energy budget management strategies
implemented in the middleware.

The energy-efficient IoTvar middleware was statistically evaluated by com-
paring the usage of an IoT application with and without the strategies. The
results show that: (i) the use of message grouping, message rate control, and
energy models can decrease energy consumption by close to 60% and, (ii) the
energy model can be calibrated for each device to show an estimation similar

7.2. FUTURE WORK 117

to the true energy consumption given by a wattmeter. The energy model may
provide energy awareness to end users and application designers. Furthermore,
we also have proposed the usage of an energy budget mechanism to further en-
hance the energy efficiency in IoTvar by providing another way of controlling
the grouping and refresh rate of the variables.

7.2 Future Work
The importance of energy efficiency/awareness in IoT middleware raises some
points for future work. Below we highlight some perspectives of this work and
discuss them.

• The cost of communication in middleware is still a subject to be studied.
When evaluating the energy consumption of software, different interfaces
need to be measured to have a more specific consumption regarding the
data exchanged between the middleware and other IoT system compo-
nents. Moreover, even when measuring, for example, a network interface,
the brand of the hardware used impacts and the cost of the communi-
cation can vary. Thus, future research is needed to measure the cost of
communication over different interfaces used in the device and separate
the energy consumption of each of them.

• The energy-efficient/aware strategies developed for IoT middleware was
conceived to be used in a domain where there is a high volume of com-
munication with distributed IoT objects. These strategies could also be
applied to any domain where energy consumption is an issue and there
is a need to lower the energy used when communicating with different
software in a network. Future research on the topic is to employ those
strategies in other domains where the energy strategies along with mid-
dleware can be applied such as big data and artificial intelligence.

• The evaluation was done for IoTvar with the energy-efficient/aware
strategies considering an IoT consumer application working in a single
client. The future of this solution is to support distributed applica-
tions and enable IoT middleware-level cooperation to provide energy
awareness for a multi-component system. This could be done by
implementing communication over the network between the different IoT
applications through the IoT middleware running inside the application
or an external middleware that will coordinate the communication

118 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

and exchange of energy information. This information is related to
network conditions, CPU usage, energy budget, energy models, and
other resources that would be relevant to the energy efficiency/awareness
of the IoT middleware. Furthermore, it is imperative to evaluate and
show the impacts of such energy-efficient/aware features.

• The awareness provided by the IoTvar middleware is automatically done
with no input from the user and only programmable, at first, by the
developer of the IoT application. Shah et. al. explains that “the mainte-
nance of the balance between the comfort index and power consumption is
also a significant issue” [Shah19], and as awareness influences the energy-
efficiency, which then has an impact on the quality of the applications
(e.g. freshness), then it can not be transparent, or at least keep the users
in the loop and knowing what is happening in the application. The en-
ergy awareness of the user may, in turn, have a positive impact on energy
consumption in the future.

Bibliography

[Aaza20] Mohammad Aazam, Saif Ul Islam, Salman Tariq Lone, and Assad
Abbas. Cloud of Things (CoT): Cloud-Fog-IoT Task Offloading for
Sustainable Internet of Things. IEEE Transactions on Sustainable
Computing, pages 1–1, 2020.

[Aaza21] Mohammad Aazam, Sherali Zeadally, and Eduardo Feo Flushing.
Task Offloading In Edge Computing for Machine Learning-based
Smart Healthcare. Computer Networks, 191:108019, 2021.

[Akke16] S. Akkermans, R. Bachiller, N. Matthys, W. Joosen, D. Hughes, and
M. Vučinić. Towards Efficient Publish-subscribe Middleware in the
IoT with IPv6 multicast. In 2016 IEEE International Conference
on Communications (ICC), pages 1–6, 2016.

[AM18] Basem M. Al-Madani and Essa Q. Shahra. An Energy Aware Plate-
form for IoT Indoor Tracking Based on RTPS. Procedia Computer
Science, 130:188–195, 2018. The 9th International Conference on
Ambient Systems, Networks and Technologies (ANT 2018) / The 8th
International Conference on Sustainable Energy Information Tech-
nology (SEIT-2018) / Affiliated Workshops.

[Amar16] Leonardo Amaral, Everton de Matos, Ramão Tiburski, F. Hessel,
Willian T. Lunardi, and Sabrina Marczak. Middleware Technology
for IoT Systems: Challenges and Perspectives Toward 5G, pages
333–367. 04 2016.

[Andr15] Anders S. G. Andrae and Tomas Edler. On Global Electricity Us-
age of Communication Technology: Trends to 2030. Challenges,
6(1):117–157, 2015.

[AR19] Anas Al-Roubaiey, Tarek Sheltami, Ashraf Mahmoud, and Ansar
Yasar. EATDDS: Energy-aware middleware for wireless sensor and

119

120 Bibliography

actuator networks. Future Generation Computer Systems, 96:196–
206, 2019.

[Asgh18] Parvaneh Asghari, Amir Rahmani, and Hamid Haj Seyyed Javadi.
Internet of Things applications: A Systematic Review. Computer
Networks, 148:241–261, 12 2018.

[Atti19] Tarek M. Attia. Challenges and Opportunities in the Future Applica-
tions of IoT Technology. In 2nd Europe - Middle East - North African
Regional Conference of the International Telecommunications Soci-
ety (ITS), Calgary, 2019. International Telecommunications Society
(ITS).

[Atzo10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A survey. Computer Networks, 54(15):2787 – 2805, 2010.

[Band13] Soma Bandyopadhyay and Abhijan Bhattacharyya. Lightweight In-
ternet Protocols for Web Enablement of Sensors Using Constrained
Gateway Devices. In 2013 International Conference on Computing,
Networking and Communications (ICNC), pages 334–340, 2013.

[Bano17] Y. Banouar, T. Monteil, and C. Chassot. Analytical Model for
adaptive QoS Management at the Middleware level in IoT. In
2017 IEEE Symposium on Computers and Communications (ISCC),
pages 1201–1208, 2017.

[Beng12] Pierre-Jean Benghozi, Sylvain Bureau, and Françoise Massit-Folléa.
Internet of Things: What Challenges for Europe. Les Editions de la
MSH, 2012.

[Benh22] Sana Benhamaid, Abdelmadjid Bouabdallah, and Hicham Lakhlef.
Recent Advances in Energy Management for Green-IoT: An up-to-
date and comprehensive survey. Journal of Network and Computer
Applications, 198:103257, 2022.

[Bens08] Djamal Benslimane, Schahram Dustdar, and Amit Sheth. Services
Mashups: The New Generation of Web Applications. Internet Com-
puting, IEEE, 12:13–15, 10 2008.

[Bere07] Gian Paolo Beretta. World Energy Consumption and Resources:
An Outlook for the Rest of the Century. Int. J. Environmental
Technology and Management, 7, 01 2007.

Bibliography 121

[Bian12] A. P. Bianzino, C. Chaudet, D. Rossi, and J. Rougier. A Survey of
Green Networking Research. IEEE Communications Surveys Tuto-
rials, 14(1):3–20, 2012.

[Blai16] Gordon S. Blair, Douglas C. Schmidt, and Chantal Taconet. Middle-
ware for Internet Distribution in the Context of Cloud Computing
and the Internet of Things - Editorial Introduction. Ann. des Télé-
communications, 71(3-4):87–92, 2016.

[Borg19] Pedro Victor Borges, Chantal Taconet, Sophie Chabridon, Denis
Conan, Thais Batista, Everton Cavalcante, and Cesar Batista. Mas-
tering Interactions with Internet of Things Platforms through the
IoTVar Middleware. Proceedings, 31(1), 2019.

[Bouj14] Raja Boujbel, Sam Rottenberg, Sébastien Leriche, Chantal Taconet,
Jean-Paul Arcangeli, and Claire Lecocq. MuScADeL: A Deployment
DSL Based on a Multiscale Characterization Framework. In 2014
IEEE 38th International Computer Software and Applications Con-
ference Workshops, pages 708–715, 2014.

[Boul19] Georgios Bouloukakis, Nikolaos Georgantas, Patient Ntumba, and
Valérie Issarny. Automated Synthesis of Mediators for Middleware-
layer Protocol Interoperability in the IoT. Future Gener. Comput.
Syst., 101:1271–1294, 2019.

[Bour13] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel
Seinturier. PowerAPI: A Software Library to Monitor the Energy
Consumed at the Process-Level. ERCIM News, 92:43–44, January
2013.

[Camp99] Andrew T Campbell, Geoff Coulson, and Michael E Kounavis. Man-
aging Complexity: Middleware explained. IT professional, 1(5):22–
28, 1999.

[Cane22] Rodrigo Canek, Pedro Borges, and Chantal Taconet. Analysis of
the Impact of Interaction Patterns and IoT Protocols on Energy
Consumption of IoT Consumer Applications. In DAIS 2022: 17th
International Conference on Distributed Applications and Interoper-
able Systems, Lecture Notes in Computer Science, pages 1–17, Lucca,
Italy, June 2022. Springer.

122 Bibliography

[Cecc19] Cyril Cecchinel, François Fouquet, Sébastien Mosser, and Philippe
Collet. Leveraging Live Machine Learning and Deep Sleep to Sup-
port a Self-adaptive Efficient Configuration of Battery Powered Sen-
sors. Future Generation Computer Systems, 92:225–240, 2019.

[Chao11] H. Chao, Y. Chen, and J. Wu. Power Aaving for Machine to Machine
Communications in Cellular Networks. In 2011 IEEE GLOBECOM
Workshops (GC Wkshps), pages 389–393, 2011.

[Chaq12] M. A. Chaqfeh and N. Mohamed. Challenges in Middleware Solu-
tions for the Internet of Things. In 2012 International Conference on
Collaboration Technologies and Systems (CTS), pages 21–26, 2012.

[Cout05] Joëlle Coutaz, James L Crowley, Simon Dobson, and David Garlan.
Context is key. Communications of the ACM, 48(3):49–53, 2005.

[dbHF19] Shift Project directed by Hugues Ferreboeuf. Lean ICT – Towards
digital sobriety. https://theshiftproject.org/wp-content/
uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.
pdf, 2019.

[Deli13] Flávia C. Delicato, Paulo F. Pires, and Thais Batista. The Program-
ming and Execution Module (PEM), pages 45–55. Springer London,
London, 2013.

[Deni20] N. Denis, P. Chaffardon, D. Conan, M. Laurent, S. Chabridon,
and J. Leneutre. Privacy-preserving Content-based Publish/Sub-
scribe with Encrypted Matching and Data Splitting. In Proc. of
the 17th International Joint Conference on e-Business and Telecom-
munications, pages 405–414, Paris, France, July 2020. INSTICC,
SciTePress.

[Diaz08] Dustin Diaz and Ross Harmes. The Proxy Pattern, pages 197–214.
Apress, Berkeley, CA, 2008.

[Dizd19] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and Xavi
Masip-Bruin. A Survey of Communication Protocols for Internet of
Things and Related Challenges of Fog and Cloud Computing Inte-
gration. volume 51, New York, NY, USA, January 2019. Association
for Computing Machinery.

Bibliography 123

[dO20] Egberto Armando de Oliveira, Flávia Delicato, and Marta Mattoso.
An Energy-aware Data Cleaning Workflow for Real-time Stream
Processing in the Internet of Things. In Anais do IV Workshop de
Computação Urbana, pages 71–83, Porto Alegre, RS, Brasil, 2020.
SBC.

[Dybå07] Tore Dybå, Torgeir Dingsøyr, and Geir K. Hanssen. Applying sys-
tematic reviews to diverse study types: An experience report. In
First International Symposium on Empirical Software Engineering
and Measurement, pages 225–234, 2007.

[EAI16] Energy Efficiency of the Internet of Things - Technology and En-
ergy Assessment Report. https://www.iea-4e.org/wp-content/
uploads/publications/2016/04/Energy_Efficiency_of_the_
Internet_of_Things_-_Technical_Report_FINAL.pdf, April
2016.

[Econ06] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and
Partha Ranganathan. Full-system Power Analysis and Modeling
for Server Environments. International Symposium on Computer
Architecture (IEEE), 01 2006.

[Elha21] Abdessalam Elhabbash and Yehia Elkhatib. Energy-Aware Place-
ment of Device-to-Device Mediation Services in IoT Systems. In
Service-Oriented Computing: 19th International Conference, IC-
SOC 2021, Virtual Event, November 22–25, 2021, Proceedings, page
335–350, Berlin, Heidelberg, 2021. Springer-Verlag.

[Este15] C. Estevez and J. Wu. Recent Advances in Green Internet of Things.
In 2015 7th IEEE Latin-American Conference on Communications
(LATINCOM), pages 1–5, 2015.

[FIWA] FIWARE-NGSI v2 Specification. http://telefonicaid.github.
io/fiware-orion/api/v2/stable/.

[Geor07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statis-
tically Rigorous Java Performance Evaluation. SIGPLAN Not.,
42(10):57–76, oct 2007.

[Hass09] Mohamed G. Hassan, R. Hirst, C. Siemieniuch, and A.F. Zobaa.
The Impact of Energy Awareness on Energy Efficiency. International
Journal of Sustainable Engineering, 2(4):284–297, 2009.

124 Bibliography

[Heja18] Hamdan Hejazi, Husam Rajab, Tibor Cinkler, and László Lengyel.
Survey of Platforms for Massive IoT. In 2018 IEEE International
Conference on Future IoT Technologies (Future IoT), pages 1–8.
IEEE, 2018.

[Hess04] Melinda Hess and Jeffrey Kromrey. Robust Confidence Intervals for
Effect Sizes: A Comparative Study of Cohen’s d and Cliff’s Delta Un-
der Non-normality and Heterogeneous Variances. Paper Presented
at the Annual Meeting of the American Educational Research Asso-
ciation, 01 2004.

[Hofe18] Johannes Hofer and Sachin Pawaskar. Impact of the Application
Layer Protocol on Energy Consumption, 4G Utilization and Perfor-
mance. In 2018 3rd Cloudification of the Internet of Things (CIoT),
pages 1–7, 2018.

[Huan14] Zhenqiu Huang, Kwei-Jay Lin, and Lina Han. An energy sentient
methodology for sensor mapping and selection in IoT systems. In
2014 IEEE 23rd International Symposium on Industrial Electronics
(ISIE), pages 1436–1441, 2014.

[Infs08] D Infso. Networked Enterprise & RFID INFSO G. 2 Micro &
Nanosystems, in co-operation with the Working Group RFID of the
ETP EPOSS, Internet of Things in 2020, Roadmap for the Future
[R]. Information Society and Media, Tech. Rep, 10, 2008.

[Jala12] S. Jalali and C. Wohlin. Systematic literature studies: Database
searches vs. backward snowballing. In Proceedings of the 2012 ACM-
IEEE International Symposium on Empirical Software Engineering
and Measurement, pages 29–38, 2012.

[Jeon17] Soobin Jeon and Inbum Jung. MinT: Middleware for Cooperative
Interaction of Things. Sensors, 17(6), 2017.

[Josh17] Jetendra Joshi, Vishal Rajapriya, S.R. Rahul, Pranith Kumar, Sid-
dhanth Polepally, Rohit Samineni, and D.G. Kamal Tej. Perfor-
mance Enhancement and IoT Based Monitoring for Smart Home. In
2017 International Conference on Information Networking (ICOIN),
pages 468–473, 2017.

[Kalb18] Tomasz Kalbarczyk and Christine Julien. Omni: An Application
Framework for Seamless Device-to-Device Interaction in the Wild. In

Bibliography 125

Proceedings of the 19th International Middleware Conference, Mid-
dleware ’18, page 161–173, New York, NY, USA, 2018. Association
for Computing Machinery.

[Kicz01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An Overview of AspectJ. In Pro-
ceedings of the 15th European Conference on Object-Oriented Pro-
gramming, ECOOP ’01, pages 327–353, Berlin, Heidelberg, 2001.
Springer-Verlag.

[Kitc11] Barbara A. Kitchenham, David Budgen, and O. [Pearl Brereton]. Us-
ing mapping studies as the basis for further research – A participant-
observer case study. Information and Software Technology, 53(6):638
– 651, 2011. Special Section: Best papers from the APSEC.

[Kitc16] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton.
Evidence-Based Software Engineering and systematic reviews. Chap-
man and Hall/CRC Press, USA, 2016.

[Lann13] Bart Lannoo, Sofie Lambert, WV Heddeghem, Mario Pickavet,
Fernando Kuipers, George Koutitas, Harris Niavis, Anna Satsiou,
Michael Till Beck, Andreas Fischer, et al. Overview of ICT Energy
Consumption (deliverable 8.1). EU Project FP7-2888021, European
Network of Excellence in Internet Science, 2013.

[Lee15] In Lee and Kyoochun Lee. The Internet of Things (IoT): Applica-
tions, investments, and challenges for enterprises. Business Horizons,
58(4):431 – 440, 2015.

[Li14] Wei Li, Flávia C. Delicato, Paulo F. Pires, Young Choon Lee, Al-
bert Y. Zomaya, Claudio Miceli, and Luci Pirmez. Efficient Allo-
cation of Resources in Multiple Heterogeneous Wireless Sensor Net-
works. Journal of Parallel and Distributed Computing, 74(1):1775–
1788, 2014.

[Li15] Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things:
A Survey. Information Systems Frontiers, 17(2):243–259, April 2015.

[Mahm04] Qusay H Mahmoud. Middleware for communications, volume 73.
Wiley Online Library, 2004.

126 Bibliography

[Mann47] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other. The
Annals of Mathematical Statistics, 18(1):50 – 60, 1947.

[Mari14] Pierrick Marie, Léon Lim, Atif Manzoor, Sophie Chabridon, Denis
Conan, and Thierry Desprats. QoC-Aware Context Data Distribu-
tion in the Internet of Things. M4IOT ’14, pages 13–18, New York,
NY, USA, 2014. Association for Computing Machinery.

[Marq17] Gonçalo Marques, Nuno Garcia, and Nuno Pombo. A Survey on IoT:
Architectures, Elements, Applications, QoS, Platforms and Security
Concepts, pages 115–130. Springer International Publishing, Cham,
2017.

[Mine16] Julien Mineraud, Oleksiy Mazhelis, Xiang Su, and Sasu Tarkoma. A
Gap Analysis of Internet-of-Things Platforms. Computer Commu-
nications, 89-90:5–16, September 2016.

[Mogh15] Fahimeh Alizadeh Moghaddam, Patricia Lago, and Paola Grosso.
Energy-Efficient Networking Solutions in Cloud-Based Environ-
ments: A Systematic Literature Review. ACM Comput. Surv., 47(4),
May 2015.

[Mukh20] Amartya Mukherjee, Nilanjan Dey, and Debashis De. EdgeDrone:
QoS aware MQTT middleware for mobile edge computing in op-
portunistic Internet of Drone Things. Computer Communications,
152:93 – 108, 2020.

[Muno19] Daniel-Jesus Munoz, José A. Montenegro, Mónica Pinto, and Lidia
Fuentes. Energy-aware environments for the development of green
applications for cyber–physical systems. Future Generation Com-
puter Systems, 91:536 – 554, 2019.

[Nakh15] Bhumi Nakhuva and Tushar Champaneria. Study of Various Internet
of Things Platforms. International Journal of Computer Science &
Engineering Survey, 6(6):61–74, 2015.

[NGSI] FIWARE-NGSI v2 Specification. https://fiware.github.io/
specifications/ngsiv2/stable/.

[Ngu17] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng. IoT
Middleware: A Survey on Issues and Enabling Technologies. IEEE
Internet of Things Journal, 4(1):1–20, 2017.

Bibliography 127

[Niel99] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding,
Jim Gettys, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1. RFC 2616, June 1999.

[Niko20] Neven Nikolov. Research of MQTT, CoAP, HTTP and XMPP IoT
Communication protocols for Embedded Systems. In 2020 XXIX In-
ternational Scientific Conference Electronics (ET), pages 1–4, 2020.

[NODE21] Node-Red. https://nodered.org/, 2021. Accessed on 21-05-2021.

[Nour12] Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel
Seinturier. A Preliminary Study of the Impact of Software Engineer-
ing on GreenIT. In 2012 First International Workshop on Green and
Sustainable Software (GREENS), pages 21–27, 2012.

[Nour13] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A Re-
view of Energy Measurement Approaches. SIGOPS Oper. Syst. Rev.,
47(3):42–49, nov 2013.

[Nour22] Adel Noureddine. PowerJoular and JoularJX: Multi-Platform Soft-
ware Power Monitoring Tools. In 18th International Conference on
Intelligent Environments (IE2022), Biarritz, France, Jun 2022.

[OASI15] OASIS. MQTT Version 3.1.1 Plus Errata 01. https://docs.
oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf, 12 2015.
Accessed on 21-05-2021.

[Okra15] Tom Okrasinski, Tim Fleming, Amanda Moore, Gabrielle Gines,
Steve Kelly, Steven Moore, and Mark Shackleton. Smarter 2030.
Technical report, Global eSustainability Initiative (GeSI), Brussels,
Belgium, 2015.

[OM2M] the oneM2M REST APIs. https://www.
onem2m.org/getting-started/onem2m-overview/
application-program-interfaces-api.

[oneM] oneM2M. Who we are. https://www.onem2m.org/
harmonization-m2m.

[Onor18] Uviase Onoriode and Gerald Kotonya. IoT Architectural Framework:
Connection and Integration Framework for IoT Systems. Electronic
Proceedings in Theoretical Computer Science, 264:1–17, 02 2018.

128 Bibliography

[Padh17] Satyajit Padhy, Hsin-Yu Chang, Ting-Fang Hou, Jerry Chou,
Chung-Ta King, and Cheng-Hsin Hsu. A Middleware Solution for
Optimal Sensor Management of IoT Applications on LTE Devices.
In Jong-Hyouk Lee and Sangheon Pack, editors, Quality, Reliabil-
ity, Security and Robustness in Heterogeneous Networks, volume
199 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pages 283–292.
Springer International Publishing, Switzerland, 2017.

[Pang16] C. Pang, A. Hindle, B. Adams, and A. E. Hassan. What Do Pro-
grammers Know about Software Energy Consumption? IEEE Soft-
ware, 33(03):83–89, may 2016.

[Pasr18] S. Pasricha. Overcoming Energy and Reliability Challenges for IoT
and Mobile Devices with Data Analytics. In 2018 31st International
Conference on VLSI Design and 2018 17th International Conference
on Embedded Systems (VLSID), pages 238–243, 2018.

[Pate15] Pankesh Patel and Damien Cassou. Enabling High-level Application
Development for the Internet of Things. Journal of Systems and
Software, 103:62–84, 2015.

[PC03] G. Pardo-Castellote. OMG Data-Distribution Service: Architectural
Overview. In 23rd International Conference on Distributed Comput-
ing Systems Workshops, 2003. Proceedings., pages 200–206, 2003.

[Pete08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson.
Systematic Mapping Studies in Software Engineering. In Proceed-
ings of the 12th International Conference on Evaluation and As-
sessment in Software Engineering, EASE’08, page 68–77, Swindon,
GBR, 2008. BCS Learning and Development Ltd.

[PZ13] Ivana Podnar Zarko, Aleksandar Antonic, and Krešimir Pripužic.
Publish/Subscribe Middleware for Energy-Efficient Mobile Crowd-
sensing. In Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication, UbiComp ’13 Ad-
junct, page 1099–1110, New York, NY, USA, 2013. Association for
Computing Machinery.

[Rama16] Gowri Ramachandran, José Proença, Wilfried Daniels, Mario Pick-
avet, Dimitri St, Dimitri Staessens, Christophe Huygens, Wouter

Bibliography 129

Joosen, and Danny Hughes. Hitch Hiker 2.0: a binding model with
flexible data aggregation for the Internet-of-Things. Journal of In-
ternet Services and Applications, 7, 04 2016.

[Ray16] Partha Pratim Ray. A Survey of IoT Cloud Platforms. Future Com-
puting and Informatics Journal, 1(1):35 – 46, 2016.

[Razz16] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. Mid-
dleware for Internet of Things: A Survey. IEEE Internet of Things
Journal, 3(1):70–95, 2016.

[Reev13] April Reeve. Chapter 12 - Data Integration Patterns. In April
Reeve, editor, Managing Data in Motion, MK Series on Business
Intelligence, pages 79–85. Morgan Kaufmann, Boston, 2013.

[Rote12] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer
Weissmann, and Doron Rajwan. Power-Management Architecture
of the Intel Microarchitecture Code-Named Sandy Bridge. IEEE
Micro, 32(2):20–27, 2012.

[Sark16] Chayan Sarkar, Vijay S. Rao, R. Venkatesha Prasad,
Sankar Narayan Das, Sudip Misra, and Athanasios Vasilakos.
VSF: An Energy-Efficient Sensing Framework Using Virtual
Sensors. IEEE Sensors Journal, 16(12):5046–5059, 2016.

[Shah19] Abdul Shah, Haidawati Nasir, Muhammad Fayaz, Adidah Lajis, and
Asadullah Shah. A Review on Energy Consumption Optimization
Techniques in IoT Based Smart Building Environments. Informa-
tion, 10(3):108, Mar 2019.

[Shai17a] F. K. Shaikh, S. Zeadally, and E. Exposito. Enabling Technologies
for Green Internet of Things. IEEE Systems Journal, 11(2):983–994,
2017.

[Shai17b] Faisal Karim Shaikh, Sherali Zeadally, and Ernesto Exposito. En-
abling Technologies for Green Internet of Things. IEEE Systems
Journal, 11(2):983–994, 2017.

[Shap65] Samuel Sanford Shapiro and Martin Wilk. An Analysis of Variance
Test for Normality. Biometrika, 52(3-4):591–611, 1965.

130 Bibliography

[Shap86] Marc Shapiro. Structure and Encapsulation in Distributed Systems:
The Proxy Principle. In Int. Conf. on Distr. Comp. Sys. (ICDCS),
Int. Conf. on Distr. Comp. Sys. (ICDCS), pages 198–204, Cambridge,
MA, USA, United States, 1986. IEEE.

[Shek19] Shashank Shekhar, Ajay Chhokra, Hongyang Sun, Aniruddha
Gokhale, Abhishek Dubey, and Xenofon Koutsoukos. URMILA: A
Performance and Mobility-Aware Fog/Edge Resource Management
Middleware. In 2019 IEEE 22nd International Symposium on Real-
Time Distributed Computing (ISORC), pages 118–125, 2019.

[Shen15] Z. Sheng, C. Mahapatra, C. Zhu, and V. C. M. Leung. Recent
Advances in Industrial Wireless Sensor Networks Toward Efficient
Management in IoT. IEEE Access, 3:622–637, 2015.

[Sing17] K. J. Singh and D. S. Kapoor. Create Your Own Internet of Things:
A survey of IoT platforms. IEEE Consumer Electronics Magazine,
6(2):57–68, 2017.

[Song17] Zheng Song, Minh Le, Young-Woo Kwon, and Eli Tilevich. Extem-
poraneous Micro-Mobile Service Execution Without Code Sharing.
In 2017 IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), pages 181–186, 2017.

[Soun08] Karthik Soundararajan and Robert Brennan. Design Patterns for
Real-time Distributed Control System Benchmarking. Robotics and
Computer-integrated Manufacturing - ROBOT COMPUT-INTEGR
MANUF, 24:606–615, 10 2008.

[Sutr17] Pierre Sutra, Etienne Rivière, Cristian Cotes, Marc Sánchez Arti-
gas, Pedro Garcia Lopez, Emmanuel Bernard, William Burns, and
Galder Zamarreño. CRESON: Callable and Replicated Shared Ob-
jects over NoSQL. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pages 115–128, 2017.

[Told19] Jevgenijus Toldinas, Borisas Lozinskis, Edgaras Baranauskas, and
Algirdas Dobrovolskis. MQTT Quality of Service versus Energy
Consumption. In 2019 23rd International Conference Electronics,
pages 1–4, 2019.

Bibliography 131

[Trei10] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A
lightweight Performance-oriented Tool Suite for x86 Multicore En-
vironments. In 2010 39th international conference on parallel pro-
cessing workshops, pages 207–216. IEEE, 2010.

[Varg00] András Vargha and Harold D. Delaney. A Critique and Improvement
of the CL Common Language Effect Size Statistics of McGraw and
Wong. Journal of Educational and Behavioral Statistics, 25(2):101–
132, 2000.

[VH14] Ward Van Heddeghem, Sofie Lambert, Bart Lannoo, Didier Colle,
Mario Pickavet, and Piet Demeester. Trends in Worldwide ICT Elec-
tricity Consumption from 2007 to 2012. Computer Communications,
50:64–76, 2014.

[Vill10] Norha M Villegas and Hausi A Müller. Managing Dynamic Context
to Optimize Smart Interactions and Services. The smart internet,
pages 289–318, 2010.

[Wang16] K. Wang, Y. Wang, Y. Sun, S. Guo, and J. Wu. Green Industrial
Internet of Things Architecture: An Energy-Efficient Perspective.
IEEE Communications Magazine, 54(12):48–54, 2016.

[Wei14] Z. Wei and D. Q. Ren. Review of Energy Aware Big Data Computing
Measurements, Benchmark Methods and Performance Analysis. In
2014 23rd International Conference on Computer Communication
and Networks (ICCCN), pages 1–4, 2014.

[WIRE21] Wirecloud. https://wirecloud.readthedocs.io/en/stable/,
2021. Accessed on 21-05-2021.

[Wu16] J. Wu, S. Guo, J. Li, and D. Zeng. Big Data Meet Green Chal-
lenges: Big Data Toward Green Applications. IEEE Systems Jour-
nal, 10(3):888–900, 2016.

[Wu18] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang. Information and
Communications Technologies for Sustainable Development Goals:
State-of-the-Art, Needs and Perspectives. IEEE Communications
Surveys Tutorials, 20(3):2389–2406, 2018.

[Yoct] YoctoPuce. Who are we? https://www.yoctopuce.com/EN/
aboutus.php. Accessed on 17-10-2021.

132 Bibliography

Part III

Appendix

133

Summary of selected primary
studies in the SLR

Study S1 considers different task offloading strategies. Tasks are the processes
that transfer data from connected IoT objects to a deployed fog, cloud, or
their collaboration (FC). A gateway might also be used to communicate be-
tween fog, cloud, and the FC. The proposed strategies use either a random
(asynchronous multithreaded) or a first-come/first-served (synchronous single-
threaded) task distribution. The fog nodes can communicate with each other
to better distribute the tasks. When using the gateway, the decision is to send
large datasets to the cloud and small datasets to the fog. The study also con-
cludes that using a gateway with the FC strategy provides better results in
terms of energy consumption.

Study S2 proposes a microservice-based middleware that distributes exe-
cutable code across nearby mobile devices. The mobile device that deploys the
code is selected based on the available device’s resources. The study compares
the service initiation time (the first use of the service), executing JavaScript
or native services that provide image processing, Internet sharing, and GPS
sharing for mobile devices across the network. Results from an empirical eval-
uation show that executing services on nearby devices can improve the energy
consumption of the mobile device that calls for the execution of these services.

Study S3 proposes Omni, a device-to-device middleware with the periodic
adaptive discovery of neighbor devices using lightweight discovery mechanisms
in wireless local area networks. Discovered devices are connected when data
needs to be transferred, and the communication technology can change to the
methods chosen by the application developer according to the volume of these
data. The authors report an evaluation regarding energy consumption and
latency on the discovery technology in different scenarios. They conclude that
changing the protocol for different amounts of data and finding the best dis-
covery technology can improve energy efficiency.

Study S4 proposes EatDDS, an energy-aware data distribution service

135

136 SUMMARY OF SELECTED PRIMARY STUDIES IN THE SLR

(DDS) dedicated to wireless sensor networks (WSN). EatDDS aims to eq-
uitably share the consumption among the nodes to improve the TinyDDS
energy-efficient protocol. A TinyOS simulator for WSN is modified to be-
come energy-aware in the study. Simulation results show that using EatDDS
can improve network lifetime compared to TinyDDS. The network lifetime can
be seen as energy efficiency in battery-constrained environments since the goal
is to reduce the energy utilization to keep the IoT system working as long as
possible.

Study S5 proposes an adaptation of a publish-subscribe middleware by
adding a layer between the broker and the client applications (in an IPv6
network) to send notifications via IPv6 multicast rather than using several
point-to-point messages. The proposed framework maps application-layer sub-
scriber groups to network layer multicast groups. The proposal reduces (i) the
network overhead when there are many consumers for the same group on the
same network (edge side) and (ii) the energy consumption on the edge broker
node.

Study S6 proposes URMILA (Ubiquitous Resource Management for Inter-
ference and Latency-Aware services). This middleware makes effective trade-
offs between using fog and edge resources while ensuring that the latency re-
quirements of the IoT applications are met. URMILA works by transferring
tasks from applications to fogs when the client needs to reduce the processing
on the end-user device and thus reduce the energy consumption. It determines
if the request will be processed locally or remotely on the selected fog server.
The study shows that using URMILA contributes to meeting application re-
quirements while introducing energy efficiency.

Study S7 proposes MinT (Middleware for Cooperative Interaction of
Things), a middleware in which IoT devices directly connect to peripheral
devices and construct a local or global network where they share data in an
energy-efficient way. MinT provides an abstract layer, a system layer, an
interaction layer, and a high-level API for applications. The study reports
an evaluation comparing the proposed solution with an existing message
processing middleware and shows that MinT can reduce IoT devices’ latency
and power consumption.

Study S8 proposes determining an optimal configuration of sensors for ex-
tending their battery life. The solution is to optimize sensor usage, network
usage, and measurement quality in terms of (i) configuring the sensors’ sam-
pling frequency with Machine Learning and (ii) optimizing network usage ac-
cording to the frequency of requests from the deployed software applications.
The study shows measurements according to the sensors’ battery life and how

137

their solution improves the lifetime of a WSN.
Study S9 proposes a middleware to minimize the total energy consumption

of an IoT application while ensuring that the requested accuracy is met. The
middleware intends to find the sensors that consume the minor energy while
satisfying the sensing requirements and maximizing the overall accuracy under
an energy budget. Simulations demonstrate how the algorithm works and
indicate that the proposed algorithms outperform some existing solutions.

Study S10 proposes a data stream processing workflow to be deployed at
the network’s edge to (i) provide an energy-aware data collection component to
reduce the network traffic, (ii) implement a density-based clustering component
to efficiently perform the data cleaning task by quickly identifying and removing
outliers from the data stream, and (iii) deliver a curated secondary data stream
output that can be consumed by business applications, services or additional
workflow tasks with real-time processing requirements. The study addresses
the reduction of device power consumption, the enforcement of data accuracy
and completeness, and real-time responses.

Study S11 proposes a data analytics middleware for energy-efficient exe-
cution of various applications on commodity mobile devices. The proposed
solution is to apply different Machine Learning algorithms to show different
use cases and how the chosen algorithm impacts the energy efficiency of the
IoT system. The middleware’s energy efficiency was experimented in different
scenarios considering battery lifetime, accuracy, response time, and adaptation
to user behavior.

Study S12 proposes the Virtual Sensing Framework (VSF) to reduce the
interactions among the nodes of a WSN and hence the network’s energy con-
sumption. The solution works by keeping some nodes in the network in a low-
power sleep state and running a heuristic algorithm to select the best nodes
to improve the lifetime of the WSN. The study uses three metrics to evaluate
the performance, namely (i) the number of transmitted data packets, (ii) the
accuracy of prediction, and (iii) the energy expenditure by the nodes.

Study S13 proposes the usage of edge computing to provide smart and
opportunistic healthcare (oHealth). The solution uses Machine learning-based
task offloading in edge computing with real data traces for several healthcare
and safety-related scenarios. An evaluation shows how energy-efficient this
solution is compared to not using task offloading.

Study S14 proposes a message transfer mechanism using drone nodes that
participate as edge computing components. This transfer mechanism is intro-
duced as enhanced MQTT and MQTT-SN. An evaluation of the solution with
a real testbed showed that the enhancement of MQTT and MQTT-SN use less

138 SUMMARY OF SELECTED PRIMARY STUDIES IN THE SLR

energy among other resources. However, for the MQTT/MQTT-SN broker,
there is an increase in memory consumption as a drawback, which could lead
to problems when there are many nodes in the network.

Study S15 proposes a middleware platform that manages heterogeneous
WSNs and efficiently shares their resources to increase the network’s lifetime.
The solution is a new resource allocation algorithm called SACHSEN (reSource
AlloCation in Heterogeneous SEnsor Networks) that control running applica-
tion, distribute, and coordinate nodes in the execution of submitted sensing
tasks in an energy-efficient and QoS-enabled way. They show in their evalua-
tion that when compared to other algorithms, SACHSEN produces promising
results in terms of both application performance and energy efficiency depend-
ing on the scenario of the WSN.

Study S16 proposes a mobile crowdsensing application for community sens-
ing where sensors and mobile devices work together to provide data of interest
to observe and measure events across a large geographic area. The solution
uses the MoPS middleware, which provides energy efficiency as it suppresses
the transmission of sensor readings from Mobile Internet-connected Objects
(MIOs) and filters out the data that are not needed by the application. The
evaluation used real user traces and showed that the solution could potentially
save energy as the number of data transferred from the cloud to the mobile
applications and vice-versa is significantly lowered.

Study S17 proposes an energy-aware platform for indoor tracking using the
RSS (Receive Signal Strength) algorithm, which is used to measure values such
as position, distance, and others to provide a multi-hop protocol used between
publishers and subscribers. The solution uses the sensor Data Distribution
Service (sDDS) middleware to interconnect all system components. The eval-
uation showed that RSS has good accuracy when calculating values such as
distance and position among sensors, which could be acceptable depending on
the application, and has low energy consumption.

Study S18 proposes the autonomic management of QoS in an IoT mid-
dleware to optimize the energy consumption of IoT entities (gateway) while
maintaining the QoS constraints of critical IoT applications. The solution uses
the MAPE-K autonomic loop as an analytical model for the OM2Mmiddleware
platform entities to estimate their performance metrics (response time, queue
size, etc.) depending on requests arrival rate and monitor components to detec
QoS degradation. The evaluation showed that autonomic management could
react to constraints of applications. Moreover, for cases requiring lower energy
consumption, the solution is able to react and use energy-efficient mechanisms
such as CPU core deactivation to lower the energy usage.

139

Study S19 proposes using the WuKong middleware with a new sensor se-
lection methodology to minimize the total communication energy consumption
and balance the energy costs on devices over a network to increase the system
lifetime. The solution will use a service collocation and sensor selection algo-
rithm to minimize the energy consumption and balance the energy usage over
a network, increasing its lifetime. The evaluation relied on simulation with
a collocation algorithm, a sensor selection algorithm, or both simultaneously.
The results have shown that, depending on the number of sensors, the energy
saving can be high or low, but it reduces energy consumption to a certain
degree and can increase the system’s lifetime, even if for a small margin.

Study S20 proposes to design and deploy data analytics and Machine
Learning to improve the energy efficiency of IoT systems through middleware.
The solution uses energy-efficient/aware mechanisms such as mobile-to-cloud
offloading, user-interaction aware optimizations, and spatiotemporal context-
aware optimization. The mobile-cloud offloading is used to support high-end
mobile data processing applications and enable them to offload mobile compu-
tations to the cloud. The user-interaction aware optimization is provided by
the AURA middleware, which takes advantage of user idle time between in-
teraction events of the foreground application to optimize CPU and backlight
energy consumption. The spatiotemporal context-aware optimization is used
to transparently capture contextual data attributes (day, hour, etc.), spatial en-
vironment data (e.g., ambient light, Wi-Fi RSSI, 3G/4G signal strength), and
device state (e.g., battery status, CPU utilization) in order to remove unneces-
sary data. The solution was evaluated by comparing many Machine Learning
algorithms, showing the gains in energy saving of the used mechanisms.

Study S21 proposes a component binding model called Hich Hiker that
allows for data aggregation over communications in a network. The solution
allows application developers to specify high-priority remote bindings that gen-
erate radio transmissions or low-priority remote bindings that communicate
exclusively using the data aggregation overlay, resulting in no additional trans-
missions. The evaluation compared the solution model with other models with
similar behavior and showed that using Hitch Hiker to route low-priority traffic
reduces energy consumption.

Study S22 proposes an algorithm to use the network structure to com-
pute the placement of mediation services to minimize the energy consumed
by the interactions between IoT devices by formulating this placement as an
integer linear programming (ILP). The solution allows the energy consumption
among many sensors of a network to be calculated and then to place mediation
services based on environmental changes. The evaluation of this algorithm is

140 SUMMARY OF SELECTED PRIMARY STUDIES IN THE SLR

compared to other three algorithms and has shown that it minimizes the energy
consumption.

Titre : Support des middleware pour la prise en compte de la consommation énergétique l’Internet des objets

Mots clés : Internet des objets, Informatique verte, Middleware, Systèmes distribués

Résumé : L’Internet des objets (IoT) se caractérise
par une myriade de dispositifs et de composants
logiciels géographiquement dispersés ainsi que par
une grande hétérogénéité en termes de matériel, de
format de données et de protocoles. Au cours des
dernières années, les plateformes IoT ont été pro-
posées pour fournir une variété de services aux appli-
cations, tels que la découverte de dispositifs, la ges-
tion du contexte et l’analyse des données. Cepen-
dant, le manque de standardisation fait que chaque
plateforme IoT propose ses propres abstractions, API
et patrons d’interactions. Par conséquent, la program-
mation des interactions entre une application IoT
consommatrice de données et une plateforme IoT est
complexe, sujette à des erreurs et demande un niveau
de connaissance de la plateforme IoT approfondi de
la part des développeurs. Les intergiciels IoT peuvent
atténuer cette hétérogénéité, ils doivent fournir des
services pertinents et ainsi faciliter le développement
des applications.
L’efficacité énergétique de la technologie numérique
devenant une priorité, l’augmentation du nombre de
systèmes IoT pose des problèmes énergétiques.
Dans ce contexte, il est essentiel de concevoir soi-
gneusement les interactions entre les applications
IoT grand public et les plateformes IoT en tenant
compte de l’efficacité énergétique. Les intergiciels
IoT ne doivent pas uniquement considérer l’efficacité
énergétique comme une exigence non fonctionnelle

laissée à l’application, Au contraire, parce qu’ils sont
utilisés par de nombreuses applications, l’efficacité
énergétique doit être au cœur de leur conception.
Cette thèse présente trois contributions concernant
l’efficacité énergétique et la sensibilisation à l’énergie
dans les intergiciels IoT pour les applications IoT
consommatrices de données. La première contri-
bution est la proposition d’un intergiciel IoT ap-
pelé IoTvar qui abstrait les capteurs virtuels IoT
dans des variables IoT qui sont automatiquement
mises à jour par l’intergiciel. La deuxième contribu-
tion est l’évaluation de la consommation d’énergie
des interactions entre les applications IoT grand pu-
blic et les plateformes IoT via les protocoles HTTP
et MQTT. Cette évaluation a conduit à la propo-
sition de lignes directrices pour améliorer l’effica-
cité énergétique des interactions. La troisième contri-
bution est la proposition de stratégies d’efficacité
énergétique pour des middleware IoT. Ces stratégies
ont été intégrées dans l’intergiciel IoTvar pour assu-
rer l’efficacité énergétique, mais aussi la sensibilisa-
tion à l’énergie par le biais d’un modèle énergétique
et la gestion d’un budget énergétique fonction des exi-
gences des utilisateurs. Les implémentations de l’ar-
chitecture middleware IoT, avec et sans stratégie d’ef-
ficacité énergétique, ont été évaluées, et les résultats
montrent que nous avons une diminution allant jus-
qu’à 60

Title : Middleware support for energy awareness in the Internet of Things (IoT)

Keywords : Internet of Things, Green Computing, Middleware, Distributed Systems

Abstract : The Internet of Things (IoT) is charac-
terized by a myriad of geographically dispersed de-
vices and software components as well as high hete-
rogeneity in terms of hardware, data, and protocols.
Over the last few years, IoT platforms have been used
to provide a variety of services to applications such
as device discovery, context management, and data
analysis. However, the lack of standardization makes
each IoT platform come with its abstractions, APIs,
and interactions. As a consequence, programming the
interactions between a consuming IoT application and
an IoT platform is often time-consuming, error-prone,
and depends on the developers’ level of knowledge
about the IoT platform. IoT middleware are proposed
to alleviate such heterogeneity, provide relevant ser-
vices, and ease application development.
As the energy efficiency of digital technology be-
comes a priority, the increase in IoT systems brings
energy concerns. In this context, carefully designing
interactions between IoT consumer applications and
IoT systems with an energy-efficiency concern be-
comes essential. IoT middleware should not solely
consider energy efficiency as a non-functional requi-
rement. Instead, it needs to be at the solution’s core
as the middleware is expected to be shared by many
applications and offer facilities to ease application de-

velopment.
This work presents three contributions regarding
energy-efficiency/awareness in IoT middleware for
IoT consumer applications. The first contribution is the
proposal of an IoT middleware for IoT consumer ap-
plications called IoTvar that abstracts IoT virtual sen-
sors in IoT variables that are automatically updated
by the middleware. The second contribution is the
evaluation of the energy consumption of the interac-
tions between IoT consumer applications and IoT plat-
forms through the HTTP and MQTT protocols. This
evaluation has led to the proposal of guidelines to im-
prove energy efficiency when developing applications.
The third contribution is the proposal of strategies for
energy efficiency to be integrated into IoT middleware.
Those strategies have been integrated into the IoT-
var middleware to provide energy efficiency, but also
energy awareness through an energy model and the
management of an energy budget driven by user re-
quirements. The implementations of the IoT middle-
ware architecture, with and without energy-efficiency
strategies, have been evaluated, and the results show
that we have a difference of up to 60% the energy
used by IoT applications by applying strategies to re-
duce energy consumption at the middleware level.

Institut Polytechnique de Paris
91120 Palaiseau, France

