
THÈSE DE DOCTORAT

Représentations Effectives
en Géométrie Algébrique Réelle

et Optimisation Polynomiale

Lorenzo BALDI
Inria d’Université Côte d’Azur

Présentée en vue de l’obtention du grade de
docteur en Mathématiques d’Université Côte
d’Azur

Dirigée par: Bernard MOURRAIN

Soutenue le : 26 Octobre 2022

Devant le jury, composé de :
Jean-Bernard LASSERRE, Directeur de
Recherche émérite, Laboratoire d’analyse et
d’architecture des systèmes – CNRS, Toulouse
Monique LAURENT, Professeure, Centrum
Wiskunde & Informatica, Amsterdam, and
Tilburg University, Tilburg
Adam PARUSIŃSKI, Professeur, Université
Côte d’Azur, Nice
Mihai PUTINAR, Professeur, University of
California, Santa Barbara
Marie-Françoise ROY, Professeure émérite,
Université de Rennes 1, Rennes
Markus SCHWEIGHOFER, Professeur, Uni-
versität Konstanz, Constance





Représentations Effectives en Géométrie Algébrique Réelle et
Optimisation Polynomiale

♦

Effective Representations in Real Algebraic Geometry and
Polynomial Optimization

Lorenzo BALDI

Jury

Rapporteurs:

• Monique LAURENT, Professeure, Centrum Wiskunde & Informatica, Amsterdam, and
Tilburg University, Tilburg

• Markus SCHWEIGHOFER, Professeur, Universität Konstanz, Constance

Examinateurs:

• Jean-Bernard LASSERRE, Directeur de Recherche émérite, Laboratoire d’analyse et
d’architecture des systèmes – CNRS, Toulouse

• Adam PARUSIŃSKI, Professeur, Université Côte d’Azur, Nice

• Mihai PUTINAR, Professeur, University of California, Santa Barbara

• Marie-Françoise ROY, Professeure émérite, Université de Rennes 1, Rennes





5

Abstract
In polynomial optimization, two different and dual approaches are considered: the approxi-
mation of positive polynomials using sums of squares (SoS), that translates into Lasserre’s
SoS hierarchy, and the approximation of measures using truncated positive linear functionals
(or truncated pseudo-moment sequences), that translates into Lasserre’s moment hierarchy.
In this thesis, we investigate exact and approximate representation properties in both cases.

The representation of positive polynomials in terms of sums of squares is a central question
in real algebraic geometry, that is answered by the Positivstellensätze. In particular, we
investigate effective version of Putinar’s Positivstellensatz, and provide new bounds on the
degree of representation of a strictly positive polynomial on a basic compact semialgebraic
set S, under the Archimedean condition. These bounds involve a parameter ε, measuring
how close is the strictly positive polynomial to have a zero on the semialgebraic set: these
are the first bounds with a polynomial dependency on ε−1. The bounds also show a new
explicit dependency on the Łojasiewicz exponent Ł and constant c, arising from a Łojasiewicz
inequality between the distance and semialgebraic distance functions from S. We analyze in
detail regular cases, where we can show that the Łojasiewicz exponent is equal to one and we
have explicit bounds for the Łojasiewicz constant.

We interpret our effective Putinar’s Positivstellensatz as a result of quantitative approx-
imation of positive polynomials, and deduce the first general polynomial convergence for
Lasserre’s hierarchies. On the dual side, we deduce convergence rates of truncated positive
linear functionals (or truncated pseudo-moment sequences) to measures.

We then move to exact representations on the dual side. We investigate properties of the
dual cones of truncated quadratic modules, and we introduce the concept of exactness for
Lasserre’s moment hierarchy, that is closely related to the flat truncation property. We show
that the dual of the moment hierarchy coincides with an extended SoS hierarchy, and we
detail the analysis for zero dimensional semialgebraic sets. Finally, we apply the obtained
results to the study of flat truncation. We give the first necessary and sufficient condition
for flat truncation, under the finite convergence assumption, giving bounds for the order
of relaxation needed. As corollaries, we conclude that flat truncation holds under generic
assumptions, and we give a unified presentation of different results in the zero dimensional
case. Finally, we briefly discuss examples of the alternate current - optimal power flow
problem.

As an application, we present a new algorithm for computing the real radical of an ideal I .
We exploit properties of truncated positive linear functionals and techniques from numerical
algebraic geometry. We give an effective, general stopping criterion on the degree, to detect
when the kernel of the moment matrix of a generic linear functional can be used to compute
equations for the irreducible components of the real variety defined by I . Finally, we compute
the real radical as the intersection of real prime ideals lying over I, and illustrate this approach
in several examples.
Key words: Moments, Positive Polynomials, Duality, Real Algebraic Geometry, Optimization
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Resume
Dans le domaine de l’optimisation polynomiale, deux approches différentes et duales sont
considérées : l’approximation de polynômes positifs à l’aide de sommes de carrés (SoS), qui se
traduit par la hiérarchie SoS de Lasserre, et l’approximation de mesures à l’aide de fonctions
linéaires positives tronquées (ou de séquences de pseudo-moments tronquées), qui se traduit
par la hiérarchie des moments de Lasserre. Dans cette thèse, nous étudions les propriétés de
représentation exactes et approchées dans les deux cas.

La représentation des polynômes positifs en termes de sommes de carrés est une question
centrale en géométrie algébrique réelle, à laquelle répondent les Positivstellensätze. En
particulier, nous étudions une version effective du Positivstellensatz de Putinar, et fournissons
de nouvelles bornes sur le degré de représentation d’un polynôme strictement positif sur
un ensemble semialgébrique de base S compact, sous la condition Archimedienne. Ces
bornes font intervenir un paramètre ε, qui mesure a quelle distance se trouve le polynôme
strictement positif d’avoir un zéro sur l’ensemble semialgébrique: ce sont les premières
bornes avec une dépendance polynomiale de ε−1. Dans les bornes, on trouve également une
nouvelle dépendance explicite de l’exposant de Łojasiewicz Ł et de la constante c, provenant
d’une inégalité Łojasiewicz entre les fonctions de distance et de distance semialgébrique
de S. Nous analysons en détail les cas réguliers, dans lesquels nous pouvons montrer que
l’exposant Łojasiewicz est égal à un et nous avons des limites explicites pour la constante
Łojasiewicz.

Nous interprétons notre Positivstellensatz effectif de Putinar comme un résultat d’approxi-
mation quantitatif des polynômes positifs, et déduisons la première convergence polynomiale
générale pour les hiérarchies de Lasserre. Du point de vue dual, nous déduisons les taux de
convergence des fonctions linéaires positives tronquées (ou de séquences de pseudo-moments
tronquées) vers les mesures.

Nous passons ensuite aux représentations exactes dans le dual. Nous étudions les pro-
priétés des cônes duaux des modules quadratiques tronqués, et nous introduisons le concept
d’exactitude pour la hiérarchie des moments de Lasserre, qui est étroitement lié à la propriété
de troncation plate. Nous montrons que le dual de la hiérarchie des moments coïncide avec
une hiérarchie SoS étendue, et nous détaillons l’analyse pour les ensembles semialgébriques
de dimension zéro. Enfin, nous appliquons les résultats obtenus à l’étude de la troncation
plate. Nous donnons la première condition nécessaire et suffisante pour la troncature plate,
sous l’hypothèse de convergence finie, en donnant des limites pour l’ordre de relaxation
nécessaire. Comme corollaires, nous concluons que la troncation plate est verifiée sous des
hypothèses génériques, et nous donnons une présentation unifiée des différents résultats
dans le cas de la dimension zéro.

Comme application, nous présentons un nouvel algorithme pour calculer le radical réel
d’un idéal I . Nous exploitons les propriétés des fonctions linéaires positives tronquées et les
techniques de la géométrie algébrique numérique. Nous donnons un critère d’arrêt efficace et
général sur le degré, pour détecter quand le noyau de la matrice des moments d’une fonction
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linéaire générique peut être utilisé pour calculer les équations des composantes irréductibles
de la variété réelle définie par I . Enfin, nous calculons le radical réel comme l’intersection
d’idéaux premiers réels contenant sur I, et illustrons cette approche par plusieurs exemples.
Mots-clés: Moments, Polynômes Positifs, Dualité, Géométrie Algébrique Réelle, Optimisation



In memory of Carlo Casolo and David Ciampi
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Introduction
A ubiquitous pattern in mathematics has always been the search for various representations
of a given object. Indeed, different representations can shade light to distinct properties, or
be useful for different generalizations, or even provide a better encoding of the object for
different computations.

In this thesis, we study exact and approximate representations of real polynomials (in
particular positive polynomials), and the associated dual objects.

Without any doubt, it is impossible to mention all the possible representations of polynomi-
als that are of interest, and their infinite applications in algebra and geometry. To name only a
few of them: the factorization, i.e. the representation as a product of irreducible polynomials;
the Waring decomposition, i.e. the representation as sum of powers of linear forms; or Artin’s
solution to Hilbert’s seventeenth problem, i.e. the representation of globally nonnegative
polynomials as ratios of sums of squares. On a different perspective, polynomials can also be
used to represent other objects. For instance, the Stone-Weierstrass theorem says that we can
approximately represent continuous functions on compact sets using polynomials, with any
prescribed accuracy.

Considering dual objects, one can naturally look at representations of linear functionals
acting on polynomials. One of the most natural classes of such linear functionals are those
induced by measures, that is linear functionals that coincide with the integration with respect
to a measure. Problems regarding existence, uniqueness and properties of the representing
measures define what is called the moment problem. This subject has also a long history
and infinite applications in pure and applied mathematics. To name another possible
representation of linear functionals acting on polynomials, recall Macaulay’s theory of
inverse systems, representing linear functionals vanishing on a (zero dimensional) ideal.

At the beginning of the new millennium, a new research topic born, as an application
of representation properties of positive polynomials and linear functionals: Polynomial
Optimization. Its rich structure and vast application possibilities posed naturally many
interesting questions, that captured the interest of a large and various research community
in the past two decades.

This thesis follows this point of view: guided by questions arising from polynomial
optimization, we investigate exact and approximate representations of positive polynomials
and linear functionals.

Context of the thesis

The problem of representing positive1 polynomials has long history. A natural class of
globally positive polynomials are those that can be written as sums of squares of other

1We follow the French tradition, and call a function f positive on a domain D if f ≥ 0 on D and strictly positive
on D if f > 0 on D.



18 Introduction

polynomials. This representation can be seen as a certificate of positivity, and a question
arises naturally: can we find such a representation for all the globally positive polynomials?
This problem was studied by D. Hilbert [Hil88], that gave a negative answer (except for
small number of variables or low degree polynomials). Then, Hilbert asked in his famous
seventeenth problem if a generalized representation was always possible, namely if it is
possible to represent all globally positive polynomials using ratios of sums of squares of
polynomials. A positive answer to this question was given by E. Artin [Art27], using the
celebrated theory of real closed fields. Several years later, this rational representation was
generalized to arbitrary semialgebraic sets (i.e. sets defined by a boolean combination of sign
conditions involving a finite number of polynomials) by J. L. Krivine [Kri64] and rediscovered
by G. Stengle [Ste74].

All the representation theorems above involve a denominator in the representation. It was
then a great achievement when K. Schmüdgen [Sch91] proved the first general denominator
free representation for strictly positive polynomials on compact basic semialgebraic sets
S = S(g) (that is, sets defined by finitely many non-strict polynomial inequalities g = g1, . . . gr ).
In particular, Schmüdgen proved a representation of the strictly positive polynomial as
an element of the preordering O = O(g) generated by the defining polynomial inequalities,
i.e. a representation as weighted sum of products of the defining polynomial inequalities,
with sum of squares coefficients. This result is known as Schmüdgen’s Positivstellensatz. The
representation was obtained solving the dual moment problem, that is showing that any
linear functional on the polynomial ring that is positive on the preordering O is induced by a
measure supported on the compact semialgebraic set, and the proof combined the result of
Krivine and Stengle with functional analysis techniques. One drawback on this representa-
tion is that the number of addenda is exponential in the number of defining inequalities. This
problem was solved by M. Putinar [Put93]: replacing compactness with the slightly stronger
Archimedean condition, he showed the existence of a representation for strictly positive
polynomials as elements of the quadratic module Q = Q(g) generated by the polynomial
inequalities, i.e. a representation as weighted sum of the defining inequalities, with sum of
squares coefficients. Therefore, the number of addenda needed in this representation is linear
in the number of defining inequalities. This result is known as Putinar’s Positivstellensatz.

We have seen above how representations of positive polynomials using sum of squares has
a long story, and this is of interest because the sum of square polynomials provide explicit
certificates of positivity. Then, given a positive polynomial one would like to have algorithms
to produce such a certificate of positivity, and the first step is naturally the investigation of
sum of squares polynomials from this point of view. On this direction, of primary importance
have been the works of N. Z. Shor [Sho87] and M. D. Choi, T. Y. Lam, and B. Reznick [CLR95],
identifying the link between sum of squares, Gram matrices and convexity.

The ground was finally ready to reveal the connection between sum of squares representa-
tions and semidefinite programming. This connection was developed independently by J.
B. Lasserre [Las00; Las01] and P. Parrilo [Par00; Par03], and provided two dual hierarchies
of convex cones, the moment hierarchy and the sum of squares hierarchy, that are defined by
semidefinite constraints and can be used to compute lower bounds for the global minimum
of an objective polynomial function f on a basic closed semialgebraic set S. These hierarchies,
indexed by a natural number d, produce two sequences of lower bounds that converge,
under the Archimedean assumption, to the minimum f ∗ of the objective function. For the
sum of squares hierarchy, we consider at order d the polynomials in the quadratic module
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generated in degree ≤ 2d (i.e. we bound the degree of the sum of square coefficients), while
for the moment hierarchy we consider the dual cone, namely the linear functionals that are
positive, when applied to polynomials in the quadratic module that are generated in degree
≤ 2d. Convergence of these hierarchies can be deduced from Putinar’s Positivstellensatz,
or from Schmüdgen Positivstellensatz when we consider also the products of the defining
inequalities.

One natural question is then to investigate convergence rates of these hierarchies. The
problem is easily seen to be equivalent to the following questions: given a strictly positive
polynomial f on a compact basic semialgebraic set S, what is the degree needed for the
sum of squares coefficients of a representation of f as an element of the preordering O? Or
equivalently, under the Archimedean condition: what is the degree needed for the sum of
squares coefficients of a representation of f as an element of the quadratic Q? The answer to
these questions does not depend only on the degree or the norm of f , but also on the mini-
mum f ∗ > 0 of f on S. We refer to this problem as the Effective Schmüdgen’s and Putinar’s
Positivstellensatz. The first general version of the Effective Schmüdgen’s Positivstellensatz
was proven by M. Schweighofer [Sch04], and the Effective Putinar’s Positivstellensatz was
successively investigated by J. Nie ans M. Schweighofer [NS07]. Proving this kind of results
is difficult: for instance, only recently H. Lombardi, D. Perrucci, and M.-F. Roy [LPR20]
proved a general effective version of Krivine and Stengle’s theorem. The bounds for the
Effective Schmüdgen’s Positivstellensatz and the Effective Putinar’s Positivstellensatz have
an important difference: the Effective Schmüdgen’s Positivstellensatz in [Sch04] has a poly-
nomial dependence on f ∗−1, while in the Effective Putinar’s Positivstellensatz in [NS07]
the dependence is exponential on f ∗−1. This exponential dependency leads to a logarithmic
convergence rate for the sum of squares and moment lower approximations based on Puti-
nar’s Positivstellensatz to f ∗. Naturally it was asked whether it is possible or not to obtain a
polynomial dependency on f ∗ for the Putinar’s Positivstellensatz as well.

But despite the theoretical slow convergence rate, both in simple toy examples and in real
world problems finite convergence of the hierarchies was observed, i.e. that a finite order d
of the hierarchy we have equality between the lower approximation and the minimum f ∗.
For the sum of squares hierarchy, this property is implied by representations of positive
polynomials with zeros on S as elements of the quadratic module Q (or of the preordering
O). The existence of this kind of representations was investigated by C. Scheiderer [Sch03;
Sch05a] for polynomials with isolated zeros, and a particularly useful case was studied by
M. Marshall [Mar06], where he shows the existence of the representation in Q under the
so-called Boundary Hessian Conditions at the isolated zeros of f . J. Nie [Nie14] have finally
shown that these conditions are generic (in the Archimedean case), implying generic finite
convergence for the sum of squares and the moment hierarchies.

However, in practice one cannot detect finite convergence using the sum of squares
representation, but the moment hierarchy has the necessary properties. Indeed, using
a rank condition on the moment matrix of an optimal, feasible positive linear functional
(or, equivalently, of an optimal feasible pseudo-moment sequence) one can certify the finite
convergence of the moment hierarchy. This criterion is based on the solution of the truncated
moment problem by R. Curto and L. Fialkow [CF96; CF00], the so-called flat extension
criterion. This criterion is effective in practice, and under some assumptions has been proven
to be equivalent to the finite convergence of the sum of squares hierarchy by J. Nie [Nie13b],
but a complete theoretical understanding of the criterion in polynomial optimization is



20 Introduction

missing. For instance, there are no necessary and sufficient conditions to determine if we
can certify finite convergence using flat truncation, and it is not clear also if the generic
conditions that imply finite convergence, imply flat truncation as well.

Finally, let us mention an application of these techniques to the solution of systems of real
polynomial equations f. The real varieties X defined by these systems are particular and
interesting cases of semialgebraic sets, and solving the polynomial system (over the reals)
means to find the simplest equations defining the (real) vanishing ideal of X. In the case
when X is zero dimensional, solving the system means equivalently finding all the points
of X. One can use moment relaxations (with no objective function) to find these equations,
and in the zero dimensional case the flat extension criterion certificates that the correct
equations have been computed. These results were discovered by J.B. Lasserre, M. Laurent
and P. Rostalski [LLR08] and the computation improved by J.B. Lasserre, M. Laurent, B.
Mourrain, P. Rostalski and P. Trébuchet [Las+13]. Their algorithms apply only in the zero
dimensional case, while the positive dimensional case remains open.

In this section, we have given a brief historical account of results related to this thesis,
namely for representations of positive polynomials, the moment problem and polynomial
optimization. However, we have only touched the surface of these subjects, omitted many
theoretical contributions and almost ignored their important real life applications. We
provide more precise and detailed references in the introduction to every chapter, and refer
to the books [BCR98; PD01; BPR06; Mar08; Lau09; Las10; BPT12; Las15; Sch17; HKL20;
Pow21] for more complete discussions of these topics.

Contributions

In the thesis, we answer some open questions that have been raised in the previous section.
Hereafter we summarize the main results of the thesis, and refer to the introduction to every
chapter for more details and for the related literature.

In Chapter 2, we investigate the problem of representation of strictly positive polynomial
on compact basic semialgebraic set S, under the Archimedean condition, as elements of the
quadratic module defining S. The result ensuring the existence on such a representation is
the celebrated Putinar’s Positivstellensatz.

In particular, we produce an effective version of Putinar’ Positivstellensatz, i.e. we deter-
mine degree bounds for the sum of squares coefficients in such a representation. The main
result of the chapter is the following.

Theorem 2.2.14. Assume n ≥ 2 and let g1, . . . , gr ∈R[x] = R[x1, . . . ,xn] satisfying the normaliza-
tion assumption (2.1). Let f ∈ R[x] such that f ∗ = minx∈S f (x) > 0. Let c, Ł be the Łojasiewicz
coefficient and exponent given by Definition 2.2.8. Then f ∈ Qℓ(g) if

ℓ ≥O(n325nŁrnc2nd(g)nd(f )3.5nŁε(f )−2.5nŁ)

= γ(n,g)d(f )3.5nŁε(f )−2.5nŁ,

where γ(n,g) ≥ 1 depends only on n and g.

Let us briefly explain the result, to clarify our contribution compared to the existing
literature. In the theorem, the most important parameter is ε(f ) = f ∗/∥f ∥, where f ∗ denotes
the minimum of f on S = S(g) and ∥f ∥ is the max norm of f on [−1,1]n. ε(f ) is therefore
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a measure of how close is f to have a zero on S. The key point of the theorem is the
polynomial dependency of the degree ℓ on ε(f )−1. Indeed, the only general result previously
available in the literature [NS07] had an exponential dependency on ε(f ) 2, and it was an
open question since the result in [NS07] if a polynomial dependency like the one exhibited
by Theorem 2.2.14 was possible or not.

Another improvement in our result compared to the result of Nie and Schweighofer is the
explicitness of the bounds. Indeed, all the parameters of the bound in Theorem 2.2.14 are
clearly described. On the contrary, the exponent of ε(f )−1 in [NS07] is not explicit.

In particular, the exponent of ε(f )−1 in our result is the Łojasiewicz exponent Ł, arising
from a Łojasiewicz inequality involved in the proof of the result, see Definition 2.2.8. This
inequality is also present in the proof of Nie and Schweighofer, but its role has been clar-
ified and this inequality analyzed in more details. Indeed, we were able to prove that the
Łojasiewicz exponent is equal to one under regularity condition, usually assumed in polyno-
mial optimization problems. This result is presented in Theorem 2.3.9 and Theorem 2.3.13,
where we furthermore give estimates for the Łojasiewicz constant in terms of geometric
properties of the defining inequalities. To the best of our knowledge, this is the first analysis
in the literature of the Łojasiewicz exponent in regular cases and the first estimate for the
Łojasiewicz constant.

The motivation and the importance of the effective Putinar’s Positivstellensatz is com-
ing from polynomial optimization. Indeed, one can determine convergence rates for the
Lasserre’s sum of squares and moment hierarchies using this result. While an exponential
dependence on ε(f )−1 leads to a logarithmic convergence of the lower bound to the minimum,
the polynomial dependency on ε(f )−1 in Theorem 2.2.14 gives a polynomial convergence of
the lower bounds. This general result was not yet proven in the literature, and it is presented
in Theorem 2.4.3.

Theorem 2.2.14 gives also a quantitative inner approximation of positive polynomials
using polynomials in the quadratic module, with degree bounds. This result is described in
Theorem 2.4.1.

On the dual side, the dual cones of truncated quadratic modules are outer approxima-
tions of the cones of measures, and a section of this dual cone defines the feasible positive
linear functionals for the moment hierarchy. In Theorem 2.5.9, we deduce the first general
convergence rates of these outer approximations to moments of probability measures.

In Chapter 3 we study exact representations of truncated positive linear functionals
that are feasible for moment relaxations. In particular, we focus on minimizing linear
functionals, i.e. those functionals that applied to the objective function f give the moment
lower approximation of the minimum f ∗Mom,d .

We introduce the concept of exactness of the moment hierarchy, in order to study the
outer approximation of the measures supported at the minimizers of f on S. We highlight
connections with the flat truncation property, used to certify finite convergence of the
moment hierarchy.

The main result of the chapter is the following theorem.

2The ε(f ) used by Nie and Schweighofer differs for the one of Theorem 2.2.14 for the choice of the norm, that
is a weighted norm on the coefficients, while our is the max norm on [−1,1]n. However, these norms are
equivalent, and this makes the comparison, up to a constant, possible. See the introduction to Chapter 2 for
more details.
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Theorem 3.5.4. Assume that we have moment finite convergence. Then dim R[x]
supp(Q+(f −f ∗)) = 0 if

and only if there exists d such that a generic Λ∗ ∈ Lmin
2d (g) has flat truncation.

In particular, if ρ = ρ(Smin), D = max(dg,⌈
deg(f )

2 ⌉) and δ ∈N is such that f − f ∗ ∈ Q2δ(g), flat
truncation happens for Λ∗ ∈ Lmin

2d (g) generic at degree ρ − 1 when d is such that:

(i) ( R

√
suppQ(g))2δ+2ρ+2D−deg(f )−2 ⊂ Q2d(g);

(ii) I (Smin)2ρ+2D−2 ⊂ Q2d(g) + (f − f ∗)2d ;

(iii) δ+ 2ρ+ 2D −deg(f )− 2 ≤ d.

Although extensively used in polynomial optimization, the flat truncation (or flat exten-
sion) property is not completely understood theoretically in this context. In the theorem, we
provide the first necessary and sufficient condition for the flat truncation property, and give
the first degree bounds for the order of the relaxation needed to achieve flat truncation.

The proof of the theorem requires a detailed analysis of the dual cones of (truncated)
quadratic modules, and in particular we show that the moment hierarchy coincides with an
extended sum of squares hierarchy in Theorem 3.4.3 and Theorem 3.4.11. This result is also
motivated from the duality theory in conic programming.

The analysis required for the proof of the theorem gives a detailed understanding of the
duality between Lasserre’s moment and sum of squares hierarchies, and it allows to create
several new examples and counterexamples for finite convergence and exactness properties
of the sum of squares and moment hierarchies. For instance, we describe an optimization
problem on a finite semialgebraic set with finite converge of the hierarchies, but whose
convergence cannot be certified using flat truncation (see Example 3.3.12).

A key ingredient for the proof of Theorem 3.5.4 is the analysis of the zero dimensional
case. Theorem 3.4.19 and Theorem 3.4.20 give a complete description of the correspondence
between zero dimensionality and flat truncation, generalizing existing results for finite real
varieties and preorderings defining zero dimensional semialgebraic sets.

As consequences of Theorem 3.5.4, we show that flat truncation holds under generic
regularity properties (Theorem 3.5.7), and apply the result to finite semialgebraic sets and
polar ideals (Theorem 3.5.15).

In Chapter 4 we use generic positive linear functionals to compute solutions of real
polynomial systems, i.e. equations for the real radical of the polynomials. While the zero
dimensional case is established, with the flat truncation criterion that can be used to certify
that the kernel of the moment matrix generates the real radical, the positive case is much
more challenging. We give a new, short proof in Theorem 4.2.1 a new, short proof that
the equations for the real radical can be computed from the kernel also in the positive
dimensional case. We then search for stopping criterions to determine if these equations
have been computed using a moment matrix of a given order.

The final algorithm, which is the main result of the chapter, is Algorithm 4.5.1. We describe
the steps of the algorithm and highlight the main contributions of the chapter the mean-
time. After computing a generic truncated positive linear functional Λ∗, using semidefinite
programming and an interior point solver (step (ii)), we compute a basis of Annd(Λ∗). The
computation (step (iii)) is done through Algorithm 4.3.1, which improves previous algorithms
exploiting properties of positive linear functionals. We then compute a numerical irreducible
decomposition of the complex associated variety, and then check if these varieties are totally
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Algorithm 4.4.1: Real radical
Input: Polynomials f = (f1, . . . , fs) ⊂R[x].
d := max(deg(fi), i = 1, . . . , s)− 1; success := false;
Repeat until success

(i) d := d + 1

(ii) Compute a generic element Λ∗ of L2d+2(±f)

(iii) Compute a graded basis k of Annd(Λ∗) (Algorithm 4.3.1)

(iv) Compute the numerical irreducible components Xi of V
C

(k) (described by witness sets)

(v) For each component Xi , check that Xi is real (Algorithm 4.4.1). If not repeat from step
(i).

(vi) Set success := true

(vii) For each component Xi compute defining equations hi = {hi,1, . . . ,hi,n+1} of Xi

Output: The polynomials hi generating the minimal real prime ideals pi lying over (f).

real. This check (step (v)) is done with a new algorithm (Algorithm 4.4.1), that reduces the
problem to the hypersurface case (using a generic real projection), and then checks if the sign
changing criterion is satisfied solving a polynomial optimization problem. The correctness
of this step follows from Theorem 4.4.10. If every component is totally real, we compute the
(real) equations of these components, that are the minimal real primes lying over the initial
ideal (step (vii)). If the product of these ideals equals the intersection, this certifies that the
basis of the annihilator generates the real radical. Correctness of the algorithm follows from
Theorem 4.2.1.

Publications

The contributions of the thesis are based on the following works.

• [BM22b] On the Effective Putinar’s Positivstellensatz and Moment Approximation,
with Bernard Mourrain, accepted for publication in Mathematical Programming

• [BMP22] On Łojasiewicz Inequalities and the Effective Putinar’s Positivstellensatz,
with Bernard Mourrain and Adam Parusiński, in preparation

• [BM22a] Exact Moment Representation in Polynomial Optimization, with Bernard
Mourrain, submitted for publication

• [BM21] Computing Real Radicals by Moment Optimization, with Bernard Mourrain,
in: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic
Computation (ISSAC ’21). Association for Computing Machinery, New York, NY, USA,
43-50. https://doi.org/10.1145/3452143.3465541
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Structure of the thesis

This thesis is organized in the following chapters and sections.

• Chapter 1 is dedicated to the description of the necessary background material, and
to introduce the notation we will use through the article. Most of the content of
the chapter is standard: when this is not the case, we provided precise references or
presented directly the proofs.

– Section 1.1 is devoted the geometric and algebraic background. In particular, we
introduce the basic notions of commutative algebra, complex algebraic geometry
and real algebraic and semialgebraic geometry. Finally, we give an overview of
representation theorems for positive polynomials.

– Section 1.2 is dedicated to duality theories of algebraic and geometric objects
previously introduced. We describe the algebraic and topological dual cones of
polynomials, and recall the basic results of convex duality.

– Section 1.3 gives an overview of the convex cone that we will use in the thesis,
summarizing their properties. We introduce cones of polynomials positive on
semialgebraic sets and their duals, recalling their basic properties. We also briefly
introduce the cone of positive semidefinite matrices.

– Section 1.4 is devoted to the moment problem, with a particular focus on the
truncated moment problem.

– Section 1.5 presents a general framework for duality in conic programming, and
we describe how semidefinite programming can be expressed using it.

– Section 1.6 introduces the polynomial optimization problem. We introduce
Lasserre’s sum of squares and moment hierarchies, and then describe polynomial
optimization problems and the Lasserre’s hierarchies using the general framework
for duality in conic programming.

• Chapter 2 is devoted to the proof of an Effective version of Putinar’s Positivstellensatz,
and to its applications in polynomial optimization. This chapter is based on [BM22b]
and [BMP22].

– Section 2.2 develops the proof of the Effective Putinar’s Positivstellensatz. We
present the principles of the proof in a general context, and then specialize to
obtain the final bound.

– Section 2.3 describes Łojasiewicz inequalities in regular cases, giving different
estimates for the Łojasiewicz constant and showing that the Łojasiewicz exponent
is one.

– Section 2.4 gives an application of the previous results to prove the first general
polynomial convergence of the Lasserre’s hierarchies, with explicit constants and
exponents. These bounds are improved for regular cases.

– Section 2.5 describes quantitatively the dual of the previous results, namely the
convergence of normalized pseudo-moment sequences to moments of probability
measures.
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– Section 2.6 concludes the chapter, highlighting open questions and research
perspectives.

• Chapter 3 is dedicated to the study of different finite convergence properties in polyno-
mial optimization, and in particular for the moment hierarchy. This chapter is based
on [BM22a].

– Section 3.2 recalls the basic properties of Lasserre’s hierarchies that we will need
in the following.

– Section 3.3 introduces the main topics of the chapter, namely exactness for the
sum of square and moment hierarchies, and flat truncation. Several examples are
presented, that show how the properties of finite convergence, exactness and flat
truncation are (and are not) related.

– Section 3.4 is dedicated to the study of geometric and algebraic properties of dual
cones of truncated quadratic modules, and their projections. It is shown that the
moment hierarchy coincides with an extended sum of squares hierarchy. The zero
dimensional case is analyzed, and the connection between regularity of the points
and the flat truncation highlighted.

– Section 3.5 applies the result of the previous section to polynomial optimization,
and in particular to exactness of the moment hierarchy and flat truncation. It is
shown the first sufficient and necessary condition for flat truncation property to
hold, and show that this condition is generic. These results are applied to the cases
of finite semialgebraic sets and polar ideals.

– Section 3.7 concludes the chapter, describing possible extensions and applications
of the work.

• Chapter 4 is devoted to the problem of solving real polynomial system in the positive
dimensional case, i.e. computing real radicals. This chapter is based on [BM21].

– Section 4.2 introduces the main theoretical result connecting positive semidefinite
Hankel operators and real radical computation, and summarize the necessary
background in numerical algebraic geometry.

– Section 4.3 presents a new efficient algorithm to compute the basis of the anni-
hilator of a positive linear functional, i.e. the kernel of the associated moment
matrix.

– Section 4.4 is devoted to the reduction to the hypersurface case, and we present
an algorithm based on optimization to verify if a complex irreducible component
of the variety of the annihilator is totally real.

– Section 4.5 describes the final algorithm for the computation of equations for the
irreducible components and the real radical.

– Section 4.6 concludes the chapter, with the presentation of examples and future
perspectives.
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Chapter 1
♦

Preliminaries
In the thesis we investigate convergence and exact representation properties in Polynomial
Optimization. The study of Polynomial Optimization is naturally at the intersection of
different areas of mathematics: Optimization, Convex Geometry, Commutative Algebra and
Algebraic Geometry, Semialgebraic Geometry and Functional Analysis.

In this chapter we recall the basic notions of these subjects, indicating all the references
we used to develop the presentation, and we introduce the notations that we will use in the
thesis. More precisely:

• Section 1.1 is devoted the geometric and algebraic background. In Section 1.1.1 we
recall basic definition from convex geometry. In Section 1.1.2 and Section 1.1.3 we in-
troduce basic notions of commutative algebra, focusing on the polynomial ring with its
grading and bases. In Section 1.1.4 we present the basics of complex algebraic geometry,
while Section 1.1.5 deals with the real case. Finally, Section 1.1.6 offers an overview on
semialgebraic geometry and on representation theorems for real polynomials that will
be central in the thesis.

• Section 1.2 is dedicated to duality theories of algebraic and geometric objects previously
introduced. In Section 1.2.1 we consider algebraic dual spaces, in particular for the
polynomial ring and its quotient rings. The presentation is completed by Section 1.1.3,
where we describe the previous constructions choosing a basis. In Section 1.2.3 we
describe the topological dual, and we recall the main results of convex duality in
Section 1.2.4.

• Section 1.3 gives an overview of the convex cone that we will use in the thesis, summa-
rizing their properties. We start describing positive polynomials (Section 1.3.1) and
their dual counterpart, Borel measures (Section 1.3.2). We introduce positive semidef-
inite matrices (Section 1.3.3), and highlight their relationships with sums of squares
polynomials (Section 1.3.4) and quadratic modules (Section 1.3.5). Section 1.3.6 is
devoted to dual cones of quadratic modules. Finally, in Section 1.3.7 and Section 1.3.8
we present the truncated versions of the objects previously introduced.

• Section 1.4 is devoted to the moment problem, with a particular focus on the truncated
moment problem (Section 1.4.1).

• Section 1.5 presents a general framework for duality in conic programming, and we
describe how semidefinite programming can be expressed using it (Section 1.5.1).
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• Section 1.6 introduces the polynomial optimization problem. We introduce Lasserre’s
sum of squares hierarchy in Section 1.6.1, and Lasserre’s moment hierarchy in Sec-
tion 1.6.2. We then describe polynomial optimization (Section 1.6.3) and the Lasserre’s
hierarchies (Section 1.6.4) using the general framework for duality in conic program-
ming.

1.1 Geometry and algebra

1.1.1 Convex geometry

Let Z be a vector space over R. The main examples that we will consider in the paper are
the R-algebra of polynomials, polynomials of bounded degree and their duals. Hereafter
we briefly summarize basic definitions and results of convex geometry and refer to [Bar02;
Roc97; Rud91] for proofs and more details. See also Section 1.2.3 and Section 1.2.4 for
convexity properties arising from considering dual spaces.

Definition 1.1.1. We say that C ⊂ Z is convex if for all s ∈ [0,1] and v,w ∈ C, we have
sv + (1 − s)w ∈ C. Given v1, . . . , vr ∈ V , a linear combination s1v1 + · · · + srvr is a convex
combination of v1, . . . , vr if si ≥ 0 and

∑
i si = 1.

Given a subset B ⊂ Z, we define the convex hull of B as the set of convex combinations of
elements of B:

conv(B)B
{
s1v1 + · · ·+ srvr ∈ Z | r ∈N, vi ∈ B, si ≥ 0,

r∑
i=1

si = 1
}
.

Notice that conv(B) is the smallest convex subset of Z containing B. In the definition of
convex hull, there is no upper bound on the number r of addenda in the convex combination.
In the finite dimensional case, a general upper bound is given by the Caratheodory’s theorem.

Theorem 1.1.2 (Caratheodory’s Theorem). If Z is an n-dimensional vector space, then:

conv(B) =
{
s1v1 + · · ·+ sn+1vn+1 ∈ Z | vi ∈ B, si ≥ 0,

n+1∑
i=1

si = 1
}
.

A subset F ⊂ C of a closed convex set C is called face if, for s ∈ [0,1] and v,w ∈ C, sv + (1−
s)w ∈ F implies v,w ∈ F. We say that u ∈ C is an extremal point if, for all s ∈ (0,1) and v,w ∈ C,
sv + (1− s)w = u implies u = v = w, or equivalently if {u } is a face of C. A face F of C is called
exposed if there exists an affine hyperplane H such that F = C ∩H .

Among all convex sets, in particular we are interested in convex cones.

Definition 1.1.3. We call C ⊂ Z a cone if, for all s ∈ R≥0 and v ∈ C, we have sv ∈ C. We call
C ⊂ Z a convex cone if for all s, t ∈R≥0 and v,w ∈ C, we have sv + tw ∈ C.

Notice that C is a convex cone if and only if it is convex and it is a cone. Given v1, . . . , vr ∈ V ,
a linear combination s1v1 + · · ·+ srvr is a conic combination of v1, . . . , vr if s1 ≥ 0. Given a subset
B ⊂ Z, we define the conic hull of B as the set of conic combinations of elements of B:

cone(B)B
{
s1v1 + · · ·+ srvr ∈ Z | r ∈N, vi ∈ B, s1 ≥ 0

}
.
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Notice that cone(B) is the smallest convex cone in Z containing B. A cone C is called pointed
if 0 ∈ C. Through the thesis, all the cones that we will consider will be pointed. We say that a
point v ∈ C spans an extremal ray of the convex cone C if the ray R≥0v spanned by v is a face
of C.

The smallest linear space containing a convex cone C is C −C = {v −w ∈ Z | v,w ∈ c }. The
biggest linear space contained in C is C ∩−C, and it is sometimes called the lineality space
of C. The lineality space will play an important role especially when C = Q is a quadratic
module in the real polynomial ring, see Section 1.1.6. In this case Q∩−Q is called the support
of Q.

1.1.2 Commutative algebra and polynomials

We recall the basic definition of commutative algebra to fix the notations, and refer to [AM94;
Eis04] for more details. All the rings that we will consider will be commutative and with
identity.

Let R be a commutative ring with identity. A subset I ⊂ R is an ideal if I + I ⊂ I (that is, I
closed under addition) and R · I ⊂ I (that is, I is closed under multiplication by R). For an
ideal I , we can consider the quotient ring R

I .
We say that an ideal p is prime if p , R and for f ,g ∈ R, f g ∈ p implies f ∈ p or g ∈ p.

Equivalently, p is prime if R
p

is a nonzero integral domain (a ring is called integral domain if
the product of two nonzero elements is always nonzero).

We say that an ideal I is radical if R
I is a reduced ring: if x ∈ R

I and xn = 0 for some n ∈N ,
then x = 0.

The radical
√
I of an ideal I is the smallest radical ideal containing I . It is equal to the

intersection of all (minimal) prime ideals p containing I , or explicitlely:

√
I = {x ∈ R | ∃n ∈N such that xn ∈ I }.

If D is an integral domain, we write Quot(D) for the quotient or fraction field.
Let K be a field, V a finite dimensional vector space of dimension n over K and let S•(V )

the symmetric algebra (the quotient of the tensor algebra T •(V ) =
⊕

d∈NV
⊗d modulo the

commutation relations v⊗w−w⊗v). A basis x = {x1, . . . ,xn } of V gives naturally isomorphisms
V �K

n and S•(V ) �K[x1, . . . ,xn]CK[x], the usual multivariate polynomial algebra. S•(V ) is
a graded algebra: S•(V ) =

⊕
d∈NS

d(V ), where Sd(V ) is the d-th symmetric power of V . Con-
cretely, K[x] =

⊕
d∈NHn,d =

⋃
d∈NK[x]d , where Hn,d � Sd(V ) are n-variate d-homogeneous

polynomials (or forms), and K[x]d B
⊕

i∈{0,...,d}Hn,i are the polynomials of total degree ≤ d.
For f ∈K[x], we denote degf the smallest integer d such that f ∈K[x]d , and we call it degree
of f . See also Section 1.1.3.

For sake of simplicity we will write K[x] rather than S•(V ), implicitly assuming the use of
the monomial basis (see Section 1.1.3) and using the grading described above. But all our
constructions would work for any other choice of basis.

1.1.3 Monomials, grading and bases

In this section we focus on the K-algebra K[x], and describe it choosing the basis of monomi-
als and the grading of the total degree.
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A basis x = (x1, . . . ,xn) of the K-vector space V gives an isomorphism S•(V ) � K[x]. If
α = (α1, . . . ,αn) ∈Nn is a multi-index, we denote xα B

∏n
i=1 x

αi
i and call xα a monomial. The

sequence of all monomials is a basis of K[x] over K: any f ∈K[x] can be written in a unique
way as f =

∑
α∈Nn fαxα, where fα ∈K are equal to zero for all but finitely many indexes. The

degree of f is then equal to degf = max{|α| : fα , 0}.
Since the polynomial ring is Noetherian, any ideal I ⊂K[x] is finitely generated: for any

ideal I , there exist f1, . . . , fr ∈K[x] such that I is equal to the ideal generated by f1, . . . fr :

I = (f1, . . . , fr )B {
r∑
i=1

hifi | hi ∈K[x] },

and we call f1, . . . fr a basis of I .
We are in particular interested in the relationship between bases and the grading of K[x].

Definition 1.1.4. We say that the tuple of polynomials h = h1, . . . ,hs is a graded basis of
an ideal I if for all p ∈ I , there exists qi ∈ K[x] with deg(qi) ≤ deg(p) − deg(hi) such that
p =

∑s
i=1hi qi .

Equivalently, if we define, for t ∈N:

⟨h⟩t B {p =
s∑
i=1

hi qi | deg(qi) ≤ t −deg(hi)}

and
It B {f ∈ I | degf ≤ t} = I ∩K[x]t ,

then h is graded basis if ⟨h⟩t = It for all t. We call ⟨h⟩≤t the truncated ideal in degree t
generated by h. If h is not a graded basis, the inclusion ⟨h⟩t ⊂ It is strict.

We briefly show how graded bases relate to other kind of bases: in particular to Groebner
bases (see e.g. [CLO15]) and to border bases (see e.g. [MT05]).

Definition 1.1.5. An monomial order on the set of monomials is a total order ≺ that is
compatible with multiplication: if xα ≺ xβ then xαxγ ≺ xβxγ for all α,β,γ ∈Nn. The leading
term of a polynomial f =

∑
α fαxα is the biggest monomial xα with respect to ≺ such that

fα , 0. A Groebner basis of an ideal I is a finite tuple of polynomials h in I such that the ideal
generated from the leading terms of I is equal to the ideal generated from the leading terms
of h.

We say that a monomial ordering refines the total degree if, for α,β ∈Nn, |α| <
∣∣∣β∣∣∣ implies

xα ≺ xβ . A graded basis of an ideal I = (h) can be computed as a Groebner basis using a
monomial ordering ≺, which refines the degree ordering.

1.1.4 Varieties

In this thesis, we are mainly interested in the affine varieties defined over the complex and
real numbers. Hereafter we introduce the concepts we need for complex affine varieties, and
refer to [Sha13a; Sha13b] for more details (there, our varieties are called closed subsets). We
will describe in Section 1.1.5 the real case.
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We introduce affine complex varieties in the naive way, as subsets of C
n. We say that

X ⊂ C
n is a complex affine variety, or simply a variety, when X is the common zero locus of a

family of polynomials fj : j ∈ J with complex coefficients. In this case we write X = V
C

(fj : j ∈
J) = {x ∈ Cn | fj(x) = 0 ∀j ∈ J }. It is easy to see that, if I = (fj : j ∈ J) is the ideal generated by
fj : j ∈ J , we have V

C
(fj : j ∈ J) = V

C
(I). Affine varieties are the closed sets of a topology, called

the Zariski topology. This topology is defined in an equivalent way when we replace C by any
other field K. Conversely, given a subset B ⊂ C

n, one can consider the vanishing ideal of B:
I
C

(B) = {f ∈ C[x] | f (x) = 0 ∀x ∈ B }. If we denote cl (B) the Zariski closure of B (that is, the
smallest set containing B that is the common zero locus of polynomial equations), then it is
easy to show I

C
(B) = I

C
(cl (B)). Notice that I

C
(B) is by definition a radical ideal (but it can

be not prime).
The above correspondence is made precise by the Hilbert’s Nullstellensatz.

Theorem 1.1.6 (Hilbert’s Nullstellensatz [Eis04; AM94]). If I ⊂C[x] is an ideal, then I
C

(V
C

(I)) =√
I . Moreover, the correspondence X 7→ I

C
(X) and I 7→ V

C
(I) induces an inclusion reversing bijec-

tion between radical ideals in C[x] and affine complex varieties in C
n.

Any varietyX is naturally equipped with its coordinate ring C[X], i.e. the ring of polynomial
functions on X. If I = I

C
(X), there is an isomorphism C[X] � C[x]

I .
Using the language of schemes, complex affine varieties can be described as the spectrum

of a reduced finitely generated C-algebra A, and A = C[X] is the coordinate ring. The
spectrum of A, whose points are the prime ideals in A, is equipped with the Zariski topology.
The closed points are the maximal ideals m of A, that are in correspondence with the
homomorphisms φ : A→ C (called C-rational points) via m = kerφ. Concretely, fixing a
representation A � C[x]

I
C

(X) the C-rational points are the set of evaluations ex at points x ∈ X (see
also Section 1.2.1) and there is a one to one correspondence between C-rational points (or
evaluations), maximal ideals of A and points x ∈ X.

Since in the following no other advantage arise using the language of schemes, we will
keep using the classical, naive definition of varieties.

We now introduce the topological property of irreducibility. We say that a topological space
X is irreducible if it cannot be written as the union of two proper subsets: X = X1 ∪X2, with
X1,X2 closed implies X = X1 or X = X2. Equivalently, X is irreducible if all the nonempty
subsets of X are dense. An irreducible component of X is a maximal closed subspace of X that
is irreducible in X (with the subspace topology).

A variety X (equipped with the Zariski topology) is irreducible if and only if I (X) = p is
a prime ideal. Any variety X can be written as the union of irreducible components X =
X1∪· · ·∪Xr , essentially in a unique way, that correspond to the decomposition I (X) =

⋂r
i=1 pi

of the radical ideal I (X) as intersection of minimal prime ideals lying over I (X).
For an irreducible variety X, the vanishing ideal I (X) = p is prime and the coordinate

ring C[X] � C[x]
p

is a domain. The field of fractions of C[X] is called the function field of field
of rational functions on X and it is denoted C(X). An element φ ∈ C(X) defines a rational
function x 7→ φ(x) defined on the (open, dense) domain U of φ where φ is regular. Explicitly,
U =

⋃
iX \ V (gi), where fi/gi = φ is any representative of φ.

A rational map is a map φ = (φ1, . . . ,φm) defined by an m-tuple of rational functions
φi ∈ C(X). Notice that φ is not defined everywhere, but only on a dense open subset of X.
We write φ : X d C

m and, if the image of φ is included in the variety Y ⊂ A
m
C

, we write
φ : Xd Y . We say that a rational map φ : Xd Y is birational if φ(X) is dense in Y , and there
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exists a rational map ψ : Y d X such that ψ(Y ) is dense in X and the maps φ◦ψ and ψ◦φ are
identities (on the respective domains of definition). Equivalently, φ : Xd Y is birational if
and only if φ∗ : C(Y )→C(X), u 7→ u ◦φ is an isomorphism. We say that two varieties X and
Y are birational if there exists a birational map φ : Y d X, or equivalently if the two function
fields C(X) and C(Y ) are isomorphic.

We now describe the main birational invariant of algebraic varieties, the dimension, and
then introduce singular points.

Proposition 1.1.7. Let X be an irreducible complex algebraic variety. Then the following are
equal:

• The trascendence degree d of the quotient field C(X) = Quot(C[X]) over C;

• The Krull dimension of C[X] � C[x]/I
C

(X), i.e. the maximal length of chain of prime ideals
ideals in C[X]:

0 = p0 ⊊ p1 ⊊ · · · ⊊ pd

• The maximal length d of a chain of irreducible subvarieties of X:

X0 ⊊ X1 ⊊ · · · ⊊ Xd = X

Proof. See [Sha13a; AM94] or [Mar08, app. 2].

Definition 1.1.8. Let X be an irreducible complex algebraic variety. Then we call the
dimension of X the natural number d in Proposition 1.1.7, and we denote it d = dimX. If X is
a complex algebraic variety (not necessarily irreducible), where X =

⋃
iXi is a decomposition

in irreducible components, then we define the dimension of X as the maximal dimension of
its irreducible components: dimX = maxi dimXi .

Definition 1.1.9. Let X be a complex algebraic variety. Let f1, . . . fm be generators of the
vanishing ideal of X, i.e. (f1, . . . fm) = I

C
(X) ⊂C[x]. Then we say that ξ ∈ X ⊂C

n is a smooth or
nonsingular point if rankJac(f1, . . . , fm)(ξ) = n−dimX. Otherwise, we say that ξ is a singular
point.

See [Sha13a] for a more intrinsic definition of smooth and singular points.

1.1.5 Real algebra and geometry

In this section we introduce the notations of real algebra and real algebraic geometry that we
will need through the thesis, and refer to [BCR98; Mar08; Man20] for more details.

As in the complex case, we introduce real affine varieties in the naive way, and refer to
[Man20, sec. 2.4] for a detailed discussion of different definitions that can be found in the
literature. As in the complex case, our real varieties will be reduced but not necessarily
irreducible.

Let Rn denote the affine n-dimensional space over R. We say that X ⊂ R
n is a real affine

variety when X is the common zero locus of a family of polynomials fj : j ∈ J with real
coefficients. In this case we write X = V

R
(fj : j ∈ J) = {x ∈ Rn | fj(x) = 0 ∀j ∈ J }. As is the

complex case, if I is the (real) ideal generated by fj : j ∈ J , we have V
R

(fj : j ∈ J) = V
R

(I).
The real affine varieties are the closed sets of a topology, called the Zariski topology. Using
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this topology, one can define irreducible real varieties as in the complex case, and we have
an essentially unique decomposition of every real variety X as union of its irreducible
components: X =

⋃
iXi .

But of course R
n = R

n can also be equipped with the Euclidean topology, and the same is
true for real varieties X ⊂R

n with the subspace topology. Therefore, for B ⊂R
n, we denote:

• B ⊂R
n for the closure of B in the Euclidean topology;

• cl (B) ⊂ C
n for the closure of B in the complex Zariski topology, or in other words for

the smallest set of complex points that contains B and can be described as the common
zero locus of complex polynomials.

For a real variety X ⊂R
n, we can consider the complexification X

C
= cl(X) of X. X

C
is the

smallest complex variety containing X. On the other hand, given a complex variety X ⊂C
n,

we denote X
R

= X ∩Rn the set of real points.
As in the complex case, we define the dimension dimX of a real variety X as The maximal

length d of a chain of (real) irreducible subvarieties of X:

X0 ⊊ X1 ⊊ · · · ⊊ Xd = X.

For a more detailed discussion about the real dimension, especially in connection with the
Euclidean topology, see [BCR98].

The relation between complexification, irreducible components and dimension have been
studied by Whitney: in particular, the dimension of a real variety X (with the real Zariski
topology) is equal to the dimension of the complexification X

C
(with the complex Zariski

topology), and there is a correspondence between their irreducible decompositions.

Theorem 1.1.10 (Whitney, [Whi57]). Let X be a real algebraic variety. Then the dimension of
X (as a real variety) is equal to the dimension of X

C
(as a complex variety): dimX = dimX

C
.

Moreover, if X =
⋃
iXi is the decomposition in irreducible components of X, then X

C
=

⋃
i(Xi)C is

the decomposition in irreducible components of X
C

.

Given a subset B ⊂ R
n, one can consider the real vanishing ideal of B: I

R
(B) = {f ∈ R[x] |

f (x) = 0 ∀x ∈ B }. We introduce now the class of ideals in R[x], that play the same role of
radical ideals in the complex case.

Definition 1.1.11. We say that an ideal I ⊂R[x1, . . . ,xn] is real if, for any fi , . . . , fp ∈R[x1, . . . ,xn],
f 2

1 + · · ·+ f 2
p ∈ I ⇒ fi ∈ I for all i.

We see in the definition of real ideals the important role of Sums of Squares polynomials,
that we denote:

Σ2 = ΣR[x]2 B
{
f ∈R[X] | ∃r ∈N, gi ∈R[X] : f = g2

1 + · · ·+ g2
r

}
.

Now we can introduce real radical ideals.

Definition 1.1.12 (Real Radical). Let I ⊂R[X] be an ideal. The real radical of I is the ideal:

R

√
I B {f ∈R[X] | ∃m ∈N, s ∈ Σ2 with f 2m + s ∈ I }.

We give an equivalent description of the real radical that will be useful in the thesis.
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Lemma 1.1.13. Let I ⊂R[x] be an ideal. Then:

R

√
I =

√
(I +Σ2)∩−(I +Σ2).

Proof. (I +Σ2)∩−(I +Σ2) is an ideal (see Lemma 1.1.24), and the equality {f ∈ R[X] | ∃m ∈
N, s ∈ Σ2 with f 2m + s ∈ I } =

√
(I +Σ2)∩−(I +Σ2) is easy to prove:

f 2m + s ∈ I ⇐⇒ −f 2m ∈ Σ2 + I

⇐⇒ f 2m ∈ (I +Σ2)∩−(I +Σ2)

⇐⇒ f ∈
√

(I +Σ2)∩−(I +Σ2).

The real radical of ideal I ⊂ R[x] is the smallest real ideal containing I . It is also the
intersection of the minimial prime ideals p lying over I that are real: R

√
I =

⋂
p⊃I, p real prime

p.

The analogy of real ideals with radical ideals in the complex case is made precise by the
Real Nullstellensatz.

Theorem 1.1.14 (Real Nullstellensatz, [BCR98, th. 4.1.4, cor. 4.1.8]). If I ⊂R[x] is an ideal,
then I

R
(V

R
(I)) = R

√
I . Moreover, the correspondence X 7→ I

R
(X) and I 7→ V

R
(I) induces an

inclusion reversing bijection between real ideals in R[x] and affine real varieties in R
n.

1.1.6 Semialgebraic geometry and positivity

Up to now we did not exploit one of the main properties of real numbers: the ordering ≥.
Thanks to the ordering, we can consider a larger class of subsets of Rn than the one defined
by polynomial equations: those that are defined by finitely many polynomial inequalites.
These subsets are called semialgebraic sets. We refer to [BCR98; PD01; Mar08; Pow21] for
more details about semialgebraic geometry and positivity. We are in particular interested in
the case where those inequalities are not strict.

Definition 1.1.15. Let g = g1, . . . , gr be a finite tuple of real polynomials, gi ∈R[x]. The basic
closed semialgebraic set defined by g is:

S(g) = S(g1, . . . , gr ) =
{
x ∈Rn | g1(x) ≥ 0, . . . gr(x) ≥ 0

}
The dimension of a (basic, closed) semialgebraic set S is the dimension of the real Zariski

closure of S in R
n. See [BCR98] for a more details on the dimension of semialgebraic sets.

We follow the French tradition and we say that a polynomial f is:

• positive or non-negative on a domain D if f (x) ≥ 0 for all x ∈D;

• strictly positive on a domain D if f (x) > 0 for all x ∈D.

We write also f ≥ 0 on D and f > 0 on D respectively. We denote

Pos(D)B {f ∈R[x] | f (x) ≥ 0 for all x ∈D }
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the positive polynomials on a domain D. It is easy to show that Pos(D) is a convex cone in
R[x].

A special type on globally positive polynomials are the Sums of Squares polynomials (SoS):

Σ2 = ΣR[x]2 =
{
f ∈R[X] | ∃r ∈N, gi ∈R[X] : f = g2

1 + · · ·+ g2
r

}
.

Σ2 is a convex cone in R[x], and by definition Σ2 ⊂ Pos(Rn). Furthermore, notice that the
smallest linear space containing Σ2, namely Σ2 −Σ2, is equal to R[x]. Indeed, any f ∈R[x]
can be written as

f =
1
4

(
(f + 1)2 − (f − 1)2

)
∈ Σ2 −Σ2.

Moreover, the cone Σ2 is pointed: Σ2 ∩ −Σ2 = {0 }, since a polynomial f ∈ Σ2 ∩ −Σ2 is
identically zero on R

n, and thus f = 0. Finally, Σ2 is a closed convex cone (as a subset of R[x]
with the finest locally convex topology): indeed if f ∈ Σ2 ∩R[x]2d , then f is a sum of squares
of polynomials of degree ≤ d (since the terms of highest degree cannot cancel). Then one can
proceed as in [Lau09, sec. 3.8].

Let S = S(g) be a basic closed semialgebraic set. We can use SoS polynomials to find other
subcones of Pos(S): quadratic modules and preorderings.

Definition 1.1.16. Q ⊂R[X] is called quadratic module if 1 ∈Q, Σ2 ·Q ⊂Q and Q+Q ⊂Q. We
say that a quadratic module Q is finitely generated if ∃g1 . . . gr ∈R[x] such that:

Q =Q(g) =Q(g1, . . . , gr )B Σ2 +Σ2 · g1 + · · ·+Σ2 · gr

(it is the smallest quadratic module containing g1, . . . , gr ).

Definition 1.1.17. O ⊂R[X] is called preordering if 1 ∈O, Σ2 ·O ⊂O, O+O ⊂O andO ·O ⊂O.
We say that a preordering O is finitely generated if ∃g1 . . . gr ∈R[x] such that:

O = O(g) = O(g1, . . . , gr )B Σ2 +Σ2 · g1 + · · ·+Σ2 · gr +Σ2 · g1g2 + · · ·+Σ2 · g1 · · ·gr

(it is the smallest preordering containing g1, . . . , gr ).

In particular, any preordering is a quadratic module, and notice that, by definition, Q(g) ⊂
O(g) ⊂ Pos(S(g)).

Hereafter we introduce convenient notations to relate quadratic modules, preorderings
and ideals. Given a finite tuple of polynomials g = g1, . . . , gr , we define Πg B

∏
j∈J gj : J ⊂

{1, . . . , r} = g1, . . . , gr , g1g2, . . . , g1 · · ·gr , the tuple of all the products of the gi ’s, and ±g B
g1,−g1, . . . , gr ,−gr (we are interested in this definition because any equation g = 0 can of
course be realized as g ≥ 0 and −g ≥ 0). Then, for tuples of polynomials g and h:

• O(g) = Q(Πg) (the preordering generated by g is the quadratic module generated by
the tuple Πg);

• Q(±h) = Σ2 + (Σ2 −Σ2)h1 + · · ·+ (Σ2 −Σ2)h1 = Σ2 + (h) (the quadratic module generated
by equations is the ideal of the equations plus SoS polynomials);

• Q(g,±h) =Q(g) + (h).

It is a natural question to describe explicitly the cone Pos(S) of positive polynomials on
a basic closed semialgebraic set S. A complete description of Pos(S) can be obtained using
preorderings, and it is given by the Krivine-Stengle Positivstellensatz:
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Theorem 1.1.18 ([Kri64],[Ste74]). Let g be a tuple of polynomials and S = S(g). Then:

Pos(S) = {p ∈R[X] | ∃s ∈N, q1,q2 ∈ O(g) such that q1p = p2s + q2}

This result is an extension of Artin’s theorem [Art27], stating that globally positive polyno-
mials are ratio of two SoS polynomials. But it induces a denominator in the representation of
a positive polynomial.

For a general tuple g and n > 1, positive polynomials on S = S(g) do not all belong to the
quadratic module Q(g) or even to the preordering O(g), and it is natural to ask whether the
convex cone Q(g) (resp. O(g)) is a good inner-approximation of Pos(S). We are interested
mainly in the case when S is compact, and in particular when Q(g) is Archimedean.

Lemma 1.1.19. Let Q ⊂R[x] be a quadratic module, and denote ∥x∥22 B x2
1 + · · ·+x2

n ∈R[x]. Then
the following are equivalent:

(i) for all f ∈R[x], there exists n ∈N>0 such that f +n ∈Q;

(ii) there exists n ∈N>0 such that n2 − ∥x∥22 ∈Q;

(iii) there exists n ∈N>0 such that n± xi ∈Q.

Proof. See [Mar08, cor. 5.2.4].

Definition 1.1.20. We say that a quadratic module Q is Archimedean if any of the equivalent
conditions in Lemma 1.1.19 is satisfied.

Notice in particular that, if Q(g) is Archimedean, then S(Q(g)) is compact. The converse in
not true for quadratic modules, see [PD01, ex. 6.3.1]. But for preorderings, it is true, as a
consequence of the celebrated Schmüdgen’s Positivstellensatz, describing strictly positive
polynomials on a compact semialgebraic set.

Theorem 1.1.21 (Schmüdgen’s Positivstellensatz, [Sch91]). Let g be a tuple of polynomials and
assume that S = S(g) is compact. Then f > 0 on S implies f ∈ O(g). In particular, if S is compact
then O(g) is Archimedean.

The representation of strictly positive polynomials in the preordering generated by the
inequalities is denominator free, but it requires an exponential number of addenda in the
number of generators, and this is not a desirable property for applications. A solution to
this issue would be a representation of strictly positive polynomials in the quadratic module
generated by the inequalities: this representation is provided, in the Archimedeann case, by
Putinar’s Positivstellensatz.

Theorem 1.1.22 (Putinar’s Positivstellensatz, [Put93]). Let g be a tuple of polynomials and
assume that Q(g) is Archimedean. Then f > 0 on S(g) implies f ∈ Q(g).

Theorem 1.1.22 is the basic result behind the convergenec of the Lasserre’s hierarchies, see
Section 1.6.

We now turn back our attention to vanishing polynomials, and in particular to polynomials
vanishing on basic closed semialgebraic sets. Concretely, we want to generalize the Real
Nullstellensatz Theorem 1.1.14. For this, we need to introduce the notion of support.
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Definition 1.1.23. Let Q be a quadratic module. We define the support of Q as suppQ B
Q∩−Q.

The support suppQ can also be defined as the lineality space of the convex cone Q ⊂R[x],
see Section 1.1.1. Notice that, if Q =Q(g) and f ∈ suppQ =Q∩−Q, then f = 0 on S(g). We
recall some properties of the support.

Lemma 1.1.24. Let Q ⊂R[X] be a quadratic module and I = suppQ. Then:

(i) I is an ideal;

(ii)
√
I = R

√
I , i.e. the radical of I is equal to the real radical of I ;

(iii) dim R[X]
I = dim R[X]

R
√
I

, where dim denotes the Krull dimension.

Proof. We briefly prove these known results for the sake of completeness and refer to [Mar08]
for more details.

For the first point, closure by addition is trivial. Closure by multiplication follows observ-
ing that for all f ∈ R[X] we have f = ( f +1

2 )2 − ( f −1
2 )2 ∈ Σ2 −Σ2. Therefore for f ∈ R[x] and

h ∈ suppQ =Q∩−Q, we have:

f h =
(
(
f + 1

2
)2 − (

f − 1
2

)2
)
h = (

f + 1
2

)2h− (
f − 1

2
)2h ∈ Σ2 · (Q∩−Q)−Σ2 · (Q∩−Q) = suppQ.

For the second point, since R

√
I is a radical ideal we have

√
I ⊂ R

√
I . Recall that

√
I is the

intersection of all the minimal prime ideals p lying over I . From [Mar08, prop. 2.1.7] we
deduce that for such a minimal prime p, (Q+ p)∩−(Q+ p) = p and thus (Σ2 + p)∩−(Σ2 + p) = p,
i.e. p is real radical, see Definition 1.1.12. As the intersection of real radical ideals is real
radical, we see that

√
I is a real radical ideal and thus

√
I = R

√
I .

The last point follows from the second point and the property of the Krull dimension:
dim R[X]

I = dim R[X]√
I

.

We will then use R

√
suppQ to denote both the radical and the real radical of suppQ. The

real radical, Definition 1.1.12, can be seen as the radical support of the quadratic module
I +Σ2. Moreover, one can show that f ∈

√
suppQ = R

√
suppQ if and only if there exists m ∈N

and s ∈ Σ2 such that f 2m + s ∈ suppQ (see discussion after Definition 1.1.12).
We finally use the support to describe the polynomials vanishing on a semialgebraic or

algebraic set.

Theorem 1.1.25 (Real Nullstellensatz, [Mar08, note 2.2.2 (vi)]). Let S = S(g) be a basic closed
semialgebraic set. Then for f ∈ R[X], f = 0 on S if and only if f ∈ R

√
suppO(g). In other words,

I (S) = R

√
suppO(g).

In particular, for an ideal I ⊂R[X] we have I (V
R

(I)) = R

√
I .

The preordering O(g) can be replaced by the quadratic module Q(g) when the Krull
dimension of the quotient R[X]

suppQ(g) is ≤ 1, as shown in the book of Marshall.

Theorem 1.1.26 ([Mar08, cor. 7.4.2 (3)]). If dim R[X]
suppQ(g) ≤ 1, then I (S) = R

√
suppQ(g).

We will often use Theorem 1.1.26 in the case dim R[X]
suppQ(g) = 0.
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Truncated quadratic modules

We now introduce truncated quadratic modules, convex cones that will play a central role in
the thesis.

Definition 1.1.27. For d ∈N and g a tuple of polynomials, we define the truncated quadratic
module generated by g as:

Qd(g)B
{
s0 +

r∑
j=1

sjgj ∈R[X]d | si ∈ Σ2 ∀i ∈ {0, . . .1},degs0 ≤ d,degsjgj ≤ d ∀j ∈ {1, . . . r}
}
.

Analogously, we define Od(g)BQd(Πg) the truncated preordering generated by g.

Notice that Qd(g) ⊂ Q(g) ∩ R[X]d , but the inclusion is strict in general: a polynomial
f ∈ Q(g) with degf ≤ d may need a representation of degree > d.

Example 1.1.28. Let f = x − x2. Notice that:

x − x2 = (1− x)2x+ x2(1− x).

This shows that f ∈ Q(x,1−x), and in particular f ∈ Q3(x,1−x). But degf = 2 < 3, and clearly
f <Q2(x,1− x).

This pathology does not happen for Σ2 = Q(1): in this case Σ2 ∩R[x]d = Qd(1), since the
highest degree terms cannot cancel. A generalization of this property is called stability.

Definition 1.1.29. A finitely generated quadratic module Q(g) is called stable If for every
d ∈N there exists k = k(d) such that Q(g)∩R[x]d =Qk(g)∩R[x]d .

We will be in particular interested in Archimedean quadratic modules Q(g). Unfortunately,
Archimedean quadratic modules are not stable if dimS(g) ≥ 2 (see [Mar08, p. 149] and
[Sch05b, th. 5.4]).

We know from Putinar’s Positivstellensatz (Theorem 1.1.22) that a strictly positive polyno-
mial f > 0 on S(g) belongs to Q(g) in the Archimedean case. The degree needed to represent
f as an element of Q(g) is then a function of several parameters:

• the inequalites g;

• the degree of f ;

• the norm of f ;

• the minimum f ∗ of f on S(g).

The existence of such a degree bound was proven in [PD01, th. 8.3.4], and Chapter 2 will
be dedicated to the study of effective versions of this bound. Notice that it is not possible to
have a general bound that depends only on g and degf , see for instance [Ste96].

1.2 Dualities

In this section, we describe linear functionals acting on polynomials from an algebraic and
topological point of view. We first adopt a coordinate-free approach, to emphasize the
intrinsic nature of the objects introduced (Section 1.2.1, Section 1.2.3, Section 1.2.4), and
then introduce a basis on K[x] (namely the monomial basis), and finally the dual basis on
K[x]∗.
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1.2.1 Algebraic dual

We come back to the general setting and work over an arbitrary field K. Consider K[x]∗ =
hom

K
(K[x],K) = {Λ : K[x] → K | Λ is K-linear } the algebraic dual space. We denote the

application of Λ ∈K[x]∗ to f ∈K[x] by ⟨Λ|f ⟩ = Λ(f ) to emphasize the duality pairing between
K[x] and K[x]∗.

K[x]∗ is a K-vector space with the usual pointwise addition: ⟨Λ1 +Λ2|f ⟩ = ⟨Λ1|f ⟩+ ⟨Λ2|f ⟩
(∀Λ1,Λ2 ∈K[x]∗ and ∀f ∈K[x]) and multiplication: ⟨kΛ|f ⟩ = k ⟨Λ|f ⟩ (∀Λ ∈K[x]∗, ∀f ∈K[x]
and ∀k ∈K).

For f ∈K[x], we can consider the multiplication operator mf : K[x]→K[x], g 7→ f g. The
dual (or transpose) operator defines a structure ⋆ of K[x]-module on K[x]∗: for f ∈K[x] and
Λ ∈K[x]∗, f ⋆ΛB Λ ◦mf , i.e. ⟨f ⋆Λ|g⟩ = ⟨Λ|f g⟩. We denote Ann(Λ) the annihilator of Λ
with respect to ⋆, i.e. Ann(Λ)B {f ∈K[x] | f ⋆Λ = 0 }. Ann(Λ) is an ideal in K[x].

An important related construction is the so-called Hankel operator

HΛ : K[x]→K[x]∗

f 7→ f ⋆Λ

This is a linear map, and kerHΛ = Ann(Λ). The bilinear form naturally associated with HΛ

(or with Λ) is:

⟨·, ·⟩Λ : K[x]×K[x]→K

(f ,g) 7→ ⟨f ,g⟩Λ B ⟨HΛ(f )|g⟩ = ⟨HΛ(g)|f ⟩ = ⟨Λ|f g⟩

Among all linear functionals, of special importance are those induced by a measure or
coming from a measure, that we describe hereafter. We assume K = R or K = C and let
µ ∈M(D) be a finite Borel measure with support included in D ⊂ V (see Section 1.3 for the
definition, basic properties and references). Consider the map:

Λµ : K[x]→K

f 7→
〈
Λµ

∣∣∣f 〉 =
∫
f dµ

This is a well-defined linear map on K[x] (from the linearity of the integral), and thus
Λµ ∈K[x]∗. In particular, we are interested in the case where µ = δx is the Dirac measure:∫
f dδx = f (x). We denote ex = Λδx the induced linear functional on the polynomial ring:

ex : K[x]→K

f 7→ ⟨ex|f ⟩ =
∫
f dδx = f (x)

We call ex the evaluation at x. Notice that evaluations are K-algebras homomorphisms, and
not only linear maps. Naturally, if x ∈ V

K
(I) = X for an ideal I , then the evaluation at x can

also be seen as an homomorphism ex : K[X] �K[x]/I
K

(X)→K, see also Section 1.1.4. The
maximal ideal associated to x is the kernel of the evaluation at x. We can also construct
directly the evaluation linear functional ⟨ex|f ⟩ = f (x), and this does not require the base field
K to be equal to R or C.

We refer to Section 1.3.2 and Section 1.4 for a more detailed discussion of Borel measures
and linear functionals induced by measures.
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Orthogonal

Let Z be a K-vector space (we are mainly interested in the case Z = K[x] and Z = K[x]d).
Given a vector subspace V ⊂ Z, one can consider the orthogonal of V , namely the linear
functionals on Z that vanish on V :

V ⊥ B {Λ ∈ Z∗ | ⟨Λ|v⟩ = 0 ∀v ∈ V }.

This is a vector subspace of Z∗. Moreover, there is a natural isomorphism V ⊥ � (Z/V )∗ =
hom

K
(Z/V ,K).

We are in particular interested in two cases:

• Z = K[x] and V = I is an ideal;

• Z = K[x]d and V = Id or V = ⟨h⟩d .

Orthogonal spaces of ideals have many interesting properties, especially for zero dimensional
ideals: see for instance [EM07].

1.2.2 Moments and pseudo-moments

Before describing in coordinates linear functionals in the dual of K[x], we fix K = R, and
consider a Borel measure µ on R

n (see Section 1.3.2). Then, for f ∈R[x]:∫
f dµ =

∫ ( ∑
α∈Nn

fαxα
)
dµ =

∑
α∈Nn

fα

∫
xα dµ.

Therefore, the integration of polynomials with respect to µ is uniquely determined by the
values µα B

∫
xα dµ, called moments of µ. The sequence (µα)α∈Nn is called moment sequence.

We go back to the case of an arbitrary field K, and generalize the discussion above from
measures to linear functionals on the polynomial ring K[x]. For Λ ∈K[x]∗ and f ∈K[x]:

⟨Λ|f ⟩ =
〈
Λ

∣∣∣∣∣∣∣ ∑α∈Nn

fαxα
〉

=
∑
α∈Nn

fα
〈
Λ|xα

〉
.

This shows that a linear functional on K[x] is uniquely determined from the values Λα B
⟨Λ|xα⟩, called pseudo-moments. The sequence (Λα)α∈Nn , is therefore called pseudo-moment
sequence, in analogy with the case of measures. In more abstract terms, the identification
Λ � (Λα)α∈Nn above is given by K[x]∗ � (

⊕
α∈NnK)∗ �K

N
n
.

We represent the pseudo-moment sequence (Λα)α∈Nn using a generating series, as follows.
Let Λ(y) ∈ K[[y]] B K[[y1, . . . , yn]]. Then Λ(y) can be written in a unique way as Λ(y) =∑
α∈NnΛα

yα
α! . In topological terms, (yα

α! )α∈Nn is a Schauder basis of the topological vector
space K[[y]]. The topology on K[[y]] is the (y1, . . . , yn)-adic topology, that can be described
also as the product topology on K[[y]] �K

N
n

(where K is given the discrete topology). We
introduce a duality pairing between K[x] and K[[y]], and interpret ( yα

α! )α∈Nn as the dual basis
of (xα)α∈Nn :

〈
yα

∣∣∣xβ〉 = α!δα,β . In this way, ⟨Λ(y)|f ⟩ =
∑
α∈NnΛαfα, and we have a vector space

isomorphism K[x]∗ �K[[y]] given by:

K[x]∗→K[[y]]

Λ 7→Λ(y) =
∑
α∈Nn

〈
Λ|xα

〉 yα

α!
=

∑
α∈Nn

Λα
yα

α!
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In particular, ⟨Λ|f ⟩ = ⟨Λ(y)|f ⟩ for all f and Λα = ⟨Λ|xα⟩. In the thesis, we will identify K[x]∗

and K[[y]] using the isomorphism above. This formalism has many advantages: we refer to
[Mou18] for a comprehensive account of its properties.

We describe now the constructions introduced in Section 1.2.1 using the bases (xα)α∈Nn

and (yα
α! )α∈Nn . If Λ = (Λα)α∈Nn and g =

∑
β∈Nn gβxβ , we express g ⋆ Λ in the basis (yα

α! )α∈Nn ,
computing its pseudo-moments:

(g ⋆Λ)α =
〈
g ⋆Λ|xα

〉
=

〈
Λ|xαg

〉
=

〈
Λ

∣∣∣∣∣∣∣∣
∑
β∈Nn

gβxα+β
〉

=
∑
β∈Nn

gβΛα+β

Therefore:

(g ⋆Λ)(y) =
∑
α∈Nn

( ∑
β∈Nn

gβΛα+β

)yα

α!

and (g ⋆Λ)(y) is the cross-correlation sequence of g and Λ.
We use now the expression of g ⋆Λ as a cross-correlation sequence to describe the Hankel

operator HΛ : K[x]→K[x]∗, Λ 7→ g ⋆Λ using the bases (xα)α∈Nn and (yα
α! )α∈Nn . The (xα , yα

α! )-
entry of HΛ, or equivalently the (α,β)-entry, denoted (HΛ)α,β , is equal to the pseudo-moment
of order β of HΛxα. Therefore:

(HΛ)α,β = (xα ⋆Λ)β =
〈
xα ⋆Λ

∣∣∣xβ〉 = Λα+β .

Then the Hankel operator HΛ is represented by the so-called moment matrix (Λα+β)α,β∈Nn ,
created from the pseudo-moment sequence (Λα)α∈Nn .

Remark. Notice that, although the matrix (Λα+β)α,β∈Nn is called moment matrix in the litera-
ture, to construct it we only need pseudo-moment sequences of linear functionals acting on
polynomials, and not moment sequences of measures.

We now investigate the representation of evaluations ex using this formalism. We have:
(ex)α = ⟨ex|xα⟩ = xα. Therefore:

ex(y) =
∑
α∈Nn

xα
yα

α!
= exp(x · y),

where we used the Taylor expansion of the exponential to express the series in compact form.

Topology

As already mentioned, the formal power series ring comes naturally with the (y1, . . . , yn)-
adic topology. But when K = R, we can also equip R[[y]] with the weak*-topology, see
Section 1.2.3: indeed we can equip R[x] with the direct limit topology, that is the finest
locally convex topology, and R[x]′ = R[x]∗ �R[[y]] can be equipped with the weak*-topology.

A sequence Λn(y) converge to Λ(y) in the (y1, . . . , yn)-adic topology if and only if for all
α, Λn,α = Λα when n = n(α) is big enough. On the other hand, the convergence in the
weak*-topology is the pointwise convergence: Λn(y) converge to Λ(y) in the weak*-topology
if and only if limn→∞ ⟨Λn(y)|f ⟩ = ⟨Λ(y)|f ⟩ for all f ∈R[x]. It is then easy to see that we have
weak* convergence if and only limn→∞Λn,α = Λα (in the Euclidean topology) for all α ∈Nn.
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As a concrete simple example, consider the sequence Λn(y) =
(
1 + y

n

)n
in the univariate

formal power series ring R[[y]]. Then Λn(y) converges to e1(y) = exp(y) in the weak*-topology,
but not in the (y1, . . . , yn)-adic topology.

In the thesis, we will equip R[[y]] with the weak*-topology. Notice that this topology
induces the standard Euclidean topology on every finite dimensional vector subspace V ⊂
R[[y]].

Restriction and truncation

Let Λ ∈K[x]∗ or Λ ∈ (K[x]d)∗ be a linear functional, and let k ∈N (k ≤ d). We denote Λ[k] the
restriction Λ∣∣∣K[x]k

of Λ to K[x]k :

〈
Λ[k]

∣∣∣f 〉 =
〈
Λ∣∣∣K[x]k

∣∣∣∣∣f 〉 = ⟨Λ|f ⟩ for f ∈K[x]k (1.1)

We are also interested in the restriction of Hankel operators. For Λ ∈K[x]∗ or Λ ∈ (K[x]d)∗

(d ≥ 2k), we define:

Hk
Λ

: K[x]k→K[x]∗k
f 7→ (f ⋆Λ)[k]

We now describe the operation of restriction of a linear functional in coordinates, in
particular restricting to K[x]k for some k ∈N.

Let Λ ∈ K[x]∗ or Λ ∈ (K[x]d)∗ be a linear functional, and let k ∈N (k ≤ d). Then Λ[k] is
uniquely determined by its application to polynomials of degree ≤ k, and thus it is uniquely
determined by its sequence of pseudo-moments of degree ≤ k: Λ[k] = (Λα)|α|≤k . Analogously,
the truncated moment matrix has the following expression (2k ≤ d):

[Hk
Λ

] = (Λα+β)|α|≤k,|β|≤k .

1.2.3 Topological dual

In this section we consider K = R the field of real numbers. We briefly recall properties of
topological vector spaces and their duals, and refer to [Bar02; Rud91] for more details.

A topological vector space (Z,τ) is an R-vector space Z where addition and multiplication
by scalars are continuous with respect to the topology τ of Z, and such that points of
Z are cloded for τ . This implies that the space is Hausdorff, see [Rud91, th. 1.12]. We
will omit to specify the topology τ when it is clear from the context. For a topological
vector space Z over R, denote Z ′ the vector space of continuous linear functionals on Z,
i.e. Z ′ B {Λ : Z → R | Λ is linear and continuous }. We are in particular interested in the
case Z = R[x]. We need first to introduce a topology on it. Notice that R[x] is a countably
dimensional vector space over R, since the monomials {xα }α∈Nn form a basis.

Let Z be a countable dimensional vector space over R. We can equip Z with the direct
limit topology, defined as follows. Equip every finite dimensional subspace W ⊂ Z with the
Euclidean topology. ThenU ⊂ Z is open in Z if and only ifU∩W is open inW . This topology
is locally convex (when Z is countable dimensional): the open sets that are convex form a
basis for the topology. Addition and multiplication by scalars are continuous with respect to
the direct limit topology, therefore Z has the structure of topological vector space.
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Any locally convex topology can be described as the coarsest topology such that a family of
seminorms on Z is continuous (a map p : V →R≥0 is called a seminorm if ⟨p|xv⟩ = |x| ⟨p|v⟩ and
⟨p|v +w⟩ ≤ ⟨p|v⟩+ ⟨p|w⟩ for all x ∈ R and v,w ∈ Z). The direct limit topology on a cuntable
dimensional vector space is the finest locally convex topology, or in other words it is the
coarsest topology such that all seminorms on V are continuous. Every linear functional is
continuous on Z with respect to this topology: therefore the topological and algebraic dual
coincide (as vector spaces): Z ′ = Z∗.

Since the R[x] is countably dimensional, we can equip it with the direct limit topology,
that coincides with the finest locally convex topology.

Now, we want to give a topology on the dual space Z ′: the weak*-topology. The weak*-
topology is defined as the coarsest topology on Z ′ such that every v ∈ Z is continuous (v
is seen as a linear functinal v : Λ 7→ ⟨Λ|v⟩ = Λ(v) on Z). The weak*-topology gives Z ′ the
structure of locally convex topological vector space, and (Z ′)′ � Z: any v ∈ Z defines a linear
functional v : Z ′→R, that is continuous by definition of weak*-topology, and moreover every
linear continuous linear functional on Z ′ has this form, see [Rud91, sec. 3.14].

We consider in particular the case Z = R[x]. Notice that R[x] �
⊕

N
nR (as a vector space,

for instance choosing the standard monomial basis), and R[x]∗ � (
⊕

N
nR)∗ �

∏
N
nR = R

N
n
.

We equip R[x]∗ with the weak*-topology, and therefore (R[x]′)′ = (R[x]∗)′ �R[x].

1.2.4 Convex duality

In Section 1.2.3 we fixed the notations and definition needed to consider duals of topological
vector spaces. Hereafter we state the main results of convex duality that we will need through
the article.

The first result is the Separation Theorem for convex sets. It is the key result to describe
convex sets using linear functionals or, equivalently, affine halfspaces.

Theorem 1.2.1 (Separation Theorem, [Rud91, th. 3.4]). Let A and B be disjoint, nonempty
convex sets in a topological vector space Z.

(i) If A is open there exists Λ ∈ Z ′ and c ∈R such that ⟨Λ|a⟩ < c for all a ∈ A and ⟨Λ|b⟩ > c for
all b ∈ B;

(ii) If Z is locally convex, A is compact and B is closed, then there exist r1, r2 ∈R, with r1 < r2,
and Λ ∈ Z ′ such that ⟨Λ|a⟩ < r1 for all a ∈ A and ⟨Λ|b⟩ > r2 for all b ∈ B.

Definition 1.2.2 (Dual Cone). Let C ⊂ Z be a convex cone in a topological vector space Z.
The dual cone C∨ is defined as

C∨ B {Λ ∈ Z ′ | ⟨Λ|c⟩ ≥ 0 for all c ∈ C }

We are interested in the case when Z is locally convex and we equip Z ′ with the weak*-
topology (that is a locally convex topology). In this case we have (Z ′)′ � Z (see Section 1.2.3),
and we can therefore consider the double dual in Z:

(C∨)∨ = {v ∈ Z | ⟨Λ|v⟩ ≥ 0 for all Λ ∈ C∨ }

Corollary 1.2.3 (Conic Duality). Let C be a convex cone in a locally convex topological vector
space Z. Then C = (C∨)∨.
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Proof. For c ∈ C and Λ ∈ C∨ we have ⟨Λ|c⟩ ≥ 0 from the definition of C∨, and this shows that
C ⊂ (C∨)∨. Since (C∨)∨ is closed, we have also C ⊂ (C∨)∨.

Now, assume that C ⊊ (C∨)∨ and pick c ∈ (C∨)∨ \C. We apply Theorem 1.2.1 to {c }, that
is compact, and C: there exists a linear functional Λ and r1 < r2 ∈ R such that ⟨Λ|c⟩ < r1
and ⟨Λ|v⟩ > r2 for all v ∈ C. In particular, since C is a convex cone, ⟨Λ|rv⟩ ≥ r2 for all v ∈ C
and r ∈ R≥0: therefore ⟨Λ|v⟩ ≥ r2

r for all r ∈ R≥0. This implies ⟨Λ|v⟩ ≥ 0 for all v ∈ C, i.e.
Λ ∈ C∨, and that r2 ≤ 0. But this is a contradiction: indeed we have ⟨Λ|c⟩ ≥ 0 as c ∈ (C∨)∨ and
⟨Λ|c⟩ < r1 < r2 ≤ 0. Therefore, C = (C∨)∨.

Another important result is the Kreil-Milman’s Theorem, describing the convex hull of a
compact set using extreme points.

Theorem 1.2.4 (Kreil-Milman’s Theorem, [Bar02, th. 4.1]). Let Z be a locally convex topological
vector space and let K ⊂ Z be a compact convex set. Then K is equal to the closure of the convex
hull of its extreme points.

Finally, we recall the Minkowski theorem, describing the convex hull using extreme points
in the finite dimensional case.

Theorem 1.2.5 (Minkowski’s Theorem, [Bar02, th. 3.3]). Let Z a finite dimensional real vector
space equipped with the Euclidean topology, and let K ⊂ Z be a compact set. Then K is equal to the
convex hull of its extreme points.

1.3 A Bestiary of convex cones and their duals

Hereafter we describe cones that will be frequently used in the thesis. We define new cones,
recall the definition of others already introduced and briefly summarize all the properties
that will be used in the thesis.

1.3.1 Positive polynomials

The convex cone of polynomials positive on a domain D has been introduced in Section 1.1.6:

Pos(D) = {f ∈R[x] | f (x) ≥ 0 for all x ∈D }.

Clearly, Pos(D) = Pos(D) is a closed convex cone (as a subset of R[x] with the locally convex
topology): indeed Pos(D) ∩R[x]d is closed for all d ∈ N, since the limit of a converging
sequence of positive polynomials on D of bounded degree is positive on D. When D = S(g)
is a semialgebraic set, a complete description of Pos(S(g)) as ratio of polynomials in the
preordering O(g) is given by the Krivine-Stengle Positivstellensatz, Theorem 1.1.18.

1.3.2 Borel measures

We give a simple introduction to Borel measures on R
n, following [Lau09; Mar08]. Let

B(Rn) denote the Borel σ -algebra generated by the open subsets of R
n (or, equivalently,

generated by the compact subsets of Rn). A Borel measure is a positive measure µ on B(Rn),
i.e. µ : B(Rn)→R≥0 ∪ {+∞} such that µ(∅) = 0, and µ(

⋃
i∈NAi) =

∑
i∈Nµ(Ai) for any pairwise

disjoint Ai ∈ B(Rn). We say that a Borel measure is regular if, for all A ∈ B(X), µ(A) can be
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approximated from below by µ(K), where K ⊂ A is compact, and if it can be approximated
from above by µ(U ), where U ⊃ A is open. If µ(A) < +∞ for all µ ∈M(K) and A ∈ B(Rn), we
say µ is finite.

The support of µ ∈ M(Rn), denoted supp(µ), is the smallest closed set S ⊂ R
n such that

µ(Rn \ S) = 0. We denoteM(D) the (regular, finite) Borel measures µ such that supp(µ) ⊂
D ⊂R

n, and byM(1)(D) the probability measures, i.e. the µ ∈M(D) such that µ(D) = µ(Rn) =∫
1dµ = 1.
We are interested in particular in the case D = K is compact. Notice that in this case any

µ ∈M(D) is finite.
Using Riesz’s Representation theorem (see for instance [Sch17, th. A.4] or [Mar08, th. 3.2.1]

and references therein) one can identify M(K) as the dual cone of positive continuous
functions on K .

As we are interested in polynomials (and not on continuous functions), we need to consider
(finite) Borel measures acting only on polynomials. Formally, consider

i : M(D)→R[x]∗, µ 7→Λµ,

where
〈
Λµ

∣∣∣f 〉 =
∫
f dµ as in Section 1.2.1. If D = K is compact, then i is injective as a

consequence of Stone-Weierstrass Approximation theorem (this is the determinacy of the
moment problem, see also Section 1.4). Using the indentification above, with an abuse of
notation we writeM(K) ⊂R[x]∗.

Then there is a natural question: can we describe M(K) ⊂ R[x]∗ as the dual cone of
positive polynomials? That is, can we replace positive continuous functions with positive
polynomials? The positive answer is given by Haviland’s theorem (see [Mar08, th. 3.1.2] or
[Sch17, th. 1.12] and references therein).

Theorem 1.3.1 (Haviland’s Theorem). Given Λ ∈R[x] and D ⊂R
n, the following are equivalent:

(i) ⟨Λ|f ⟩ ≥ 0 for all f ∈ Pos(D);

(ii) Λ = Λµ for some µ ∈M(D).

In particular, if D = K is compact, thenM(K) = Pos(K)∨ ⊂R[x]∗.

Furthermore, notice thatM(K) = cone(M(1)(K)). One is naturally interested in extremal
point ofM(1)(K), or equivalently in extremal rays ofM(K). These extremal rays are pre-
cisely the Dirac measures δx or evaluations ex at points of K , see for instance [Bar02,
prop. (8.4)]. Therefore, from the Krein-Milman theorem (Theorem 1.2.4) we obtainM(K) =
cone({ex : x ∈ K}).

1.3.3 Positive semidefinite matrices

We introduce positive semidefinite matrices, a convex cone in the space of real symmetric
matrices. We refer to [Bar02, ch. II, sec. 12] and [BPT12, A.3.5] for proofs and more details.

Proposition 1.3.2. Let M be an n×n symmetric matrix. The following are equivalent:

• xtMx ≥ 0 for all x ∈Rn;

• All the eigenvalues of M are ≥ 0;
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• M =U tU for some n×n matrix U (Gram decomposition);

• All the determinants of the principal minors of M are ≥ 0;

• M is a convex combination of matrices of the form xxt, with x ∈Rn.

If a symmetric matrixM satisfies any of the above equivalent conditions,M is called positive
semidefinite and we write M ≽ 0. If xtMx > 0 for all 0 , x ∈ Rn (or if all the eigenvalues of
M are > 0, or if M = U tU for some n×n, rankn matrix U ) then the symmetric matrix M is
called positive definite, and we write M ≻ 0.

If we equip the space Sn of symmetric matrices with the trace inner product ⟨M,N ⟩ =
tr(MN ) to identify (Sn)∗ with Sn, then the convex cone of positive semidefinite matrices Sn+
is self dual. Positive definite matrices are the interior points of Sn+ .

The cone of positive definite matrices is important, since the affine slices of this cone are the
feasible regions of semidefinite programming. These affine slices of Sn+ are called spectrahedra,
and are convex sets. Their projections are called spectrahedral shadows. An important,
nontrivial result is that there exist convex cones that are not spectrahedral shadows, see
[Sch18].

1.3.4 Sums of squares

We review properties of convex cone of Sums of Squares polynomials, that lives in the
polynomial ring R[x] equipped with the locally convex topology.

Recall the definition of Sums of Squares polynomials:

Σ2 = ΣR[x]2 =
{
f ∈R[X] | ∃r ∈N, gi ∈R[X] : f = g2

1 + · · ·+ g2
r

}
.

This is a closed, pointed, full dimensional cone, and it is stable (as a quadratic module
Q(1) = Σ2, see Definition 1.1.27). We briefly present now the deep connection between SoS
polynomials and positive semidefinite matrices, see for instance [Lau09, sec. 3.3] or [Mar08,
lem. 4.1.3] and references therein.

Let f =
∑r
i=1h

2
i ∈ Σ

2, degf ≤ 2d, and let bd = bd,1,bd,2, . . . be a basis of R[x]d (for instance,
bd can be chosen to be the monomial basis, see Section 1.1.3). Since the highest degree
coefficients of h2

1, . . . ,h
2
r cannot cancel we have degh2

i ≤ 2d for all i. Write hi = btd vec(hi) =∑
j hi,jbj . Then, if b2d = b2d,1,b2d,2, . . . is a basis of R[x]2d , we have:

h2
i = btd vec(hi)vec(hi)

tbd =
∑
ℓ

( ∑
j,k :

bd,jbd,k=b2d,ℓ

hi,jhi,k
)
b2d,ℓ = btdHibd (1.2)

f =
∑
i

btdHibd =
∑
ℓ

(∑
i

∑
j,k :

bd,jbd,k=b2d,ℓ

hi,jhi,k
)
b2d,ℓ = btdAbd (1.3)

where A =
∑
iHi and Hi has (j,k)-entry equal to hi,jhi,k . For every i, h2

i ≥ 0 on R
n, then Hi is

positive semidefinite and finally A is positive semidefinite. On the other hand if A =U tU is
positive semidefinite, then, denoting ui the rows of U :

f B btdAbd = (Ubd)t(Ubd) = ((ui ·bd)i)
t(ui ·bd)i =

∑
i

(ui ·bd)2 =
∑
i

h2
i ,
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and f is a SoS polynomial.
As a consequence, equating the coefficients with the semidefinite representation we see

that f =
∑
ℓ fℓb2d,ℓ is a SoS polynomial if and only if the following semidefinite program is

feasible: ∑
j,k :

bd,jbd,k=b2d,ℓ

Aj,k = fℓ ∀ℓ : b2d,ℓ ∈ b2d , A = (Aj,k) ∈ S
|bd |
+ .

The solution set of the semidefinite program above is called Gram spectrahedron of f .
We now more explicitly express the semidefinite program above using symmetric matrices

and the trace inner product on S |bd |. f can be seen as a 1× 1 matrix with entries in R[x]2d .
Therefore, from (1.3):

f = tr(f ) = tr
(
btdAbd

)
= tr

(
Abdbtd

)
= tr(ACd) = ⟨A,Cd⟩,

using the cyclic property of the trace and setting Cd B bdbtd = (bd,jbd,k) ∈ S |bd |. Cd is a
symmetric matrix with polynomial antries, or equivalently can be seen as a polynomial with
matrix coefficients. We write then Cd =

∑
ℓ : b2d,ℓ∈b2d

b2d,ℓCd,ℓ, where Cd,ℓ is the matrix with
(j,k)-entry equal to the coefficient of b2d,ℓ in the (j,k)-entry of Cd . Therefore we obtain that
f ∈ Σ2 if and only if the following semidefinite program is feasible:

⟨A,Cd,ℓ⟩ = fℓ ∀ℓ : b2d,ℓ ∈ b2d , A = (Aj,k) ∈ S
|bd |
+ .

Example 1.3.3. Let f = (x − 1)2 + y2 = 1 − 2x + x2 + y2 ∈ Σ2 ⊂ R[x,y]2, and we choose the
monomial basis. Notice that:

(x − 1)2 = 1− 2x+ x2 =
(
1 x y

)
1 −1 0
−1 1 0
0 0 0



1
x
y


y2 =

(
1 x y

)
0 0 0
0 0 0
0 0 1



1
x
y


Therefore:

f =
(
1 x y

)


1 −1 0
−1 1 0
0 0 0

+


0 0 0
0 0 0
0 0 1




1
x
y

 =
(
1 x y

)
1 −1 0
−1 1 0
0 0 1



1
x
y


Now notice that:

f = tr(f ) = tr

(1 x y
)

1 −1 0
−1 1 0
0 0 1



1
x
y


 = tr




1 −1 0
−1 1 0
0 0 1



1
x
y

(1 x y
)

= tr




1 −1 0
−1 1 0
0 0 1



1 x y
x x2 xy
y xy y2






48 Chapter 1 Preliminaries

Write: 
1 x y
x x2 xy
y xy y2

 = 1


1 0 0
0 0 0
0 0 0

+ x


0 1 0
1 0 0
0 0 0

+ y


0 0 1
0 0 0
1 0 0


= x2


0 0 0
0 1 0
0 0 0

+ xy


0 0 0
0 0 1
0 1 0

+ y2


0 0 0
0 0 0
0 0 1


And finally: 

f(0,0) = 1 = tr




1 −1 0

−1 1 0

0 0 1



1 0 0

0 0 0

0 0 0




f(1,0) = −2 = tr




1 −1 0

−1 1 0

0 0 1



0 1 0

1 0 0

0 0 0




f(0,1) = 0 = tr




1 −1 0

−1 1 0

0 0 1



0 0 1

0 0 0

1 0 0




f(2,0) = 1 = tr




1 −1 0

−1 1 0

0 0 1



0 0 0

0 1 0

0 0 0




f(1,1) = 0 = tr




1 −1 0

−1 1 0

0 0 1



0 0 0

0 0 1

0 1 0




f(0,2) = 1 = tr




1 −1 0

−1 1 0

0 0 1



0 0 0

0 0 0

0 0 1




1.3.5 Quadratic modules

We now generalize from SoS to quadratic modules (in particular, finitely generated ones).
Given a tuple g of r polynomials, recall the definition:

Q(g) =Q(g1, . . . , gr ) = Σ2 +Σ2 · g1 + · · ·+Σ2 · gr .

With this notation, Σ2 = Q(1). Notice that Q(g)−Q(g) = R[x], since Σ2 ⊂ Q(g). Moreover, if
S(g) ⊂R

n is full dimensional (i.e. S(g) contains an open ball in the euclidean topology) then
suppQ(g) =Q(g)∩−Q(g) = (0). The converse is not true, see for instance Example 3.3.12.

In general, quadratic modules are not closed, and Q(g) ⊂ Pos(S(g)). Studying closures of
arbitrary finitely generated quadratic modules is hard: the main results in this investigation
are the following.

• If Q(g) is Archimedean, then Q(g) = Pos(S(g)). Indeed, if f ∈ Pos(S(g)) then from
Putinar’s Positivstellensatz (Theorem 1.1.22) f +ε ∈ Q(g) for all ε > 0, and thus f ∈ Q(g).
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• If Q(g) is stable, then Q(g) =Q(g) + R

√
suppQ(g), see [Sch05b, th. 3.17].

We present two explicit examples where the quadratic module Q(g) is not closed.

Example 1.3.4. Let Q = Q(−x2) ⊂ R[x]. Since Q is Archimedean then Q = Pos({0}). In
particular, for all ε > 0:

x+
ε
2

=
ε
2

((
1− x

ε

)2
− x

2

ε2

)
∈ Q2(−x2) ⊂Q

Since clearly x <Q, we have x ∈ Pos({0}) \Q =Q \Q and Q is not closed. Furthermore, this
example also shows that Q2(−x2) is not closed. This happens because suppQ = (x2) is not
radical: see Theorem 3.4.3.

Example 1.3.5. Let Q =Q(x3 −y2,1−x2 −y2). In this case x <Q, since x <Q(x3,1−x2) ⊂R[x],
but x ∈ Pos(S(x3 − y2,1− x2 − y2)) =Q. Therefore, Q is not closed. See also Example 3.5.16.

1.3.6 Positive linear functionals

We are interested in cones that are dual to quadratic modules. Given a quadratic module Q,
we define the convex cone of Posisite Linear Functionals on Q as:

L(Q)BQ∨ = {Λ ∈R[x]∨ | ⟨Λ|q⟩ ≥ 0 ∀q ∈Q }.

When Q =Q(g) is finitely generated, we write L(g)B L(Q). More generally, if G ⊂R[x] and
Q(G) denotes the smallest quadratic module containing G, we denote L(G)B L(Q(G)). In
particular, if I ⊂R[x] is an ideal, then

L(I) = (I +Σ2)∨ = {Λ ∈ I⊥ | ⟨Λ|s⟩ ≥ 0 ∀s ∈ Σ2 }.

Since Pos(S(g)) ⊃ Q(g), dualizing we obtainM(S(g)) ⊂ L(g) = L(Q(g)). Whether this inclusion
is an equality or not is part of the study of the Moment Problem, see Section 1.4. The positive
solution to this question was obtained for preorderings definying a compact semialgebraic
set by Schmüdgen and for Archimedean quadratic modules by Putinar.

Theorem 1.3.6 ([Sch91]). Let g be a tuple of polynomials and assume that S = S(g) is compact.
Then, if Λ ∈ R[x]∗ is such that ⟨Λ|p⟩ ≥ 0 for all p ∈ O(g), there exists µ ∈ M(S(g)) such that
Λ = Λµ, andM(S(g)) = O(g)∨ = L(Πg).

Theorem 1.3.7 ([Put93]). Let g be a tuple of polynomials and assume that Q(g) is Archimedean.
Then, if Λ ∈ R[x]∗ is such that ⟨Λ|q⟩ ≥ 0 for all q ∈ O(g), there exists µ ∈ M(S(g)) such that
Λ = Λµ, andM(S(g)) =Q(g)∨ = L(g).

Originally, Theorem 1.1.21 and Theorem 1.1.22 were proven as corollaries of Theorem 1.3.6
and Theorem 1.3.7. These results are important, since finite generated preorderings and
quadratic modules are much simpler than the cone of positive polynomials.
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We now describe elements of L(g) using an infinite dimensional analogue of positive
semidefinite matrices. Notice that:

Λ ∈ L(g) ⇐⇒ ⟨Λ|q⟩ ≥ 0 ∀q ∈ Q(g)

⇐⇒ ⟨Λ|s⟩ ≥ 0,⟨Λ|sg1⟩ ≥ 0, . . . ,⟨Λ|sgr⟩ ≥ 0 ∀s ∈ Σ2

⇐⇒
〈
Λ
∣∣∣h2

〉
≥ 0,

〈
Λ
∣∣∣h2g1

〉
≥ 0, . . . ,

〈
Λ
∣∣∣h2gr

〉
≥ 0 ∀h ∈R[x]

⇐⇒
〈
Λ
∣∣∣h2

〉
≥ 0,

〈
g1 ⋆Λ

∣∣∣h2
〉
≥ 0, . . . ,

〈
gr ⋆Λ

∣∣∣h2
〉
≥ 0 ∀h ∈R[x]

⇐⇒ ⟨h ⋆Λ|h⟩ ≥ 0,⟨h ⋆ (g1 ⋆Λ)|h⟩ ≥ 0, . . . ,⟨h ⋆ (gr ⋆Λ)|h⟩ ≥ 0 ∀h ∈R[x].

Recall the definition of Hankel operator, see Section 1.2.1: HΛ(h) = h ⋆Λ, and the associated
quadratic form on R[x] given by ⟨h,h⟩Λ = ⟨HΛ(h)|h⟩ = ⟨h ⋆Λ|h⟩ =

〈
Λ
∣∣∣h2

〉
for h ∈ R[x]. As is

the finite dimensional case, we say that HΛ is positive semidefinte if ⟨HΛ(h)|h⟩ = ⟨h ⋆Λ|h⟩ ≥ 0
for all h ∈R[x], and we write HΛ ≽ 0. Therefore:

L(g) = {Λ ∈R[x]∗ |HΛ ≽ 0,Hg1⋆Λ ≽ 0, . . . ,Hgr⋆Λ ≽ 0 }.

Finally, notice that if HΛ ≽ 0 (and in particular, if Λ ∈ L(g)), then ⟨Λ|1⟩ = 0 implies Λ = 0.
Indeed, if ⟨Λ|1⟩ = 0 and h ∈R[x], then choosing a basis of R[x] containing 1 and h, the minor
of HΛ indexed by 1 and h has form:(

⟨Λ|1⟩ ⟨Λ|h⟩
⟨Λ|h⟩

〈
Λ
∣∣∣h2

〉) =
(

0 ⟨Λ|h⟩
⟨Λ|h⟩

〈
Λ
∣∣∣h2

〉) ≽ 0

and it has to be positive semidefinite. Taking the determinant we obtain −⟨Λ|h⟩2 ≥ 0, that
implies ⟨Λ|h⟩ = 0. Since this holds for any h ∈R[x], we have Λ = 0.

1.3.7 Truncated quadratic modules

We now turn our attention to the main objects of discussion of the thesis: truncated quadratic
modules and their duals. Recall the definition of truncated quadratic module at degree
d ∈N:

Qd(g) =
{
s0 +

r∑
j=1

sjgj ∈R[X]d | si ∈ Σ2 ∀i ∈ {0, . . .1},degs0 ≤ d,degsjgj ≤ d ∀j ∈ {1, . . . r}
}

(1.4)

These are convex cones in the space of polynomials of degree ≤ d.
Unlike the case of SoS, determining whether f ∈ Q(g) or f <Q(g) cannot be done solving

only one semidefinite program, since the degree of the representation of f ∈ Q(g) does not
depend only on g and degf (unless Q(g) is stable). But determining whether f ∈ Qd(g) or
f <Qd(g) is possible using semidefinite programming, as in the case of SoS polynomials. To
show this we need to fix some notations: let

• f =
∑
m fmb2d,m ∈R[x]2d (f is not necessarily of degree 2d);

• g0 = 1 and gi =
∑
j gjbdi ,j ∈R[x]di , where di = deggi , for i = 0, . . . r;

• Ni = ⌊d−di2 ⌋ and bNi a basis of R[x]Ni ;
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• X(i) = (X(i)
j,k) an

∣∣∣bNi ∣∣∣× ∣∣∣bNi ∣∣∣ symmetric matrix.

Then, proceeding as in the SoS case, one can check that f ∈ Q2d(g) if and only if the semidefi-
nite program: 

r∑
i=0

∑
j,k,ℓ :

bNi ,jbNi ,kbdi ,ℓ=b2d,m

X
(i)
j,kgℓ = fm ∀b2d,m ∈ b2d

X(0) ≽ 0,X(1) ≽ 0, . . . ,X(r) ≽ 0

is feasible. See for instance [Las15, ch. 6] and [Mar08, ch. 10] for more details, especially in
connection with Lasserre’s SoS hierarchy (described in Section 1.6).

Proceeding as in the case of SoS, we can restate the problem above using the trace inner
product. We see that f ∈ Q2d(g) if and only if the semidefinite program:

r∑
i=0

⟨X(i),C
(i)
Ni ,m
⟩ = fm ∀b2d,m ∈ b2d

X(0) ≽ 0,X(1) ≽ 0, . . . ,X(r) ≽ 0

is feasible, where C(i)
Ni ,m

is the matrix with (j,k)-entry equal to the coefficient of b2d,ℓ in the
(j,k)-entry of giCNi (where CNi is definied as in the SoS case, and giCNi =

∑
ℓ : b2d,ℓ∈b2d

CNi ,ℓ).

1.3.8 Truncated positive linear functionals

We now introduce the dual cones to truncated quadratic modules.

Definition 1.3.8. The cone of truncated positive linear functionals is the convex cone Ld(d)
that is dual to Qd(g), namely:

Ld(g)BQd(g)∨ = {Λ ∈ (R[x]d)∗ | ⟨Λ|q⟩ ≥ 0 for all q ∈ Qd(g) }

where Qd(g) is the truncated quadratic module defined in (1.4). From Conic Duality
(Corollary 1.2.3) we deduce that Ld(g) = Ld(g) is a closed convex cone, and furthermore
Ld(g)∨ =Qd(g).

We can give a semidefinite description of Ld(g), as we did for L(g) in the infinite dimen-
sional case. The only difference is that we need to bound the degrees of the polynomials,
and thus bound the size of the Hankel matrices. We use the same notations introduced for
truncated quadratic modules:

• di = deggi , for i = 1, . . . r;

• Ni = ⌊d−di2 ⌋.

Then:
Ld(g) = {Λ ∈ (R[x]d)∗ |H ⌊

d
2 ⌋

Λ
≽ 0,HN1

g1⋆Λ
≽ 0, . . . ,HNr

gr⋆Λ
≽ 0 },

and Ld(g) is a spectrahedron.
Unlike the infinite dimensional case, it is not true that for Λ ∈ Ld(g), ⟨Λ|1⟩ = 0⇒ Λ = 0.

For instance, consider Λ ∈ L2d(1) = (ΣR[x]2 ∩ R[x]2d)∨, the dual cone of univariate SoS



52 Chapter 1 Preliminaries

polynomials of degree ≤ 2d. Then define Λ ∈ R[x]∗2d as ⟨Λ|f ⟩ =
〈
Λ
∣∣∣∑2d

i=0 fix
i
〉

= f2d . Clearly
Λ ∈ L2d(1) and ⟨Λ|1⟩ = 0, but Λ , 0. Since we are particularly interested in linear functionals
such that ⟨Λ|1⟩ = 1 (see Section 1.6), we define:

L(1)
d (g)B

{
Λ ∈ Ld(g) | ⟨Λ|1⟩ = 1

}
.

The pathological behavior above shows in particular that L(1)
d (g), that is an affine section of

Ld(g), is not always a generating section, i.e. cone(L(1)
d (g)) ⊊ L2d(g). But the problem arise

only for high degree pseudo-moments, as the following lemma shows.

Lemma 1.3.9. Let Λ ∈R[x]∗d be such that H
⌊ d2 ⌋
Λ
≽ 0 and ⟨Λ|1⟩ = 0. Then for all h ∈R[x] such that

degh ≤ ⌊d2 ⌋, we have ⟨Λ|h⟩ = 0 and thus Λ[⌊ d2 ⌋] = 0. Furthermore, if we denote

Ld(g)[k] = {Λ[k] |Λ ∈ Ld(g) }

where Λ[k] is the restriction of Λ to R[x]k (see (1.1)), then Ld(g)[k] = cone(L(1)
d (g)[k]) for all d, g

and k ≤ ⌊d2 ⌋.

Proof. We proceed as in the infinite dimensional case. Let Λ and h be as in the hypothesis.

Since H
⌊ d2 ⌋
Λ
≽ 0, then choosing a basis of R[x] containing 1 and h, the minor of H

⌊ d2 ⌋
Λ

indexed
by 1 and h has form: (

⟨Λ|1⟩ ⟨Λ|h⟩
⟨Λ|h⟩

〈
Λ
∣∣∣h2

〉) =
(

0 ⟨Λ|h⟩
⟨Λ|h⟩

〈
Λ
∣∣∣h2

〉) ≽ 0

and it has to be positive semidefinite (notice that it is possible to consider this minor because
degh ≤ ⌊d2 ⌋). Taking the determinant we obtain −⟨Λ|h⟩2 ≥ 0, that implies ⟨Λ|h⟩ = 0. Since

this holds for any h ∈R[x], we have Λ[⌊ d2 ⌋] = 0.

For the second part, consider Λ ∈ Ld(g). Then H
⌊ d2 ⌋
Λ
≽ 0, and for k ≤ ⌊d2 ⌋, ⟨Λ|1⟩ = 0 implies

Λ[k] = 0. Then, if 0 , Λ[k] ∈ Ld(g)[k], we have ⟨Λ|1⟩ =
〈
Λ[k]

∣∣∣1〉 > 0 and Λ[k] =
〈
Λ[k]

∣∣∣1〉 Λ[k]

⟨Λ[k]|1⟩ .

Since Λ[k]

⟨Λ[k]|1⟩ ∈ L
(1)
d (g)[k] and

〈
Λ[k]

∣∣∣1〉 > 0, we have shown Ld(g)[k] = cone(L(1)
d (g)[k]).

Finally, let us recall other properties of truncated positive linear functionals (see for
instance [CF96] or [LLR08]) that will be frequently using. We also prove these statements
using our formalism.

Lemma 1.3.10. Let Λ ∈R[x]∗2d be such that H2
Λ
≽ 0. Then:

(i) for h ∈R[x] of degree ≤ d,
〈
Λ
∣∣∣h2

〉
= 0 implies h ∈ Annd(Λ).

(ii) if f ∈ Annd(Λ) and deggf ≤ d − 1, then gf ∈ Annd(Λ).

Proof. For the first point, let h ∈R[x] of degree ≤ 2, be such that
〈
Λ
∣∣∣h2

〉
= 0. We want to prove

that h ∈ Annd(Λ), or more explicitly that
〈
(f ⋆Λ)[d]

∣∣∣p〉 = ⟨Λ|f p⟩ = 0 for all p ∈R[x]d . Recall

also that H2
Λ
≽ 0 if and only if

〈
Λ
∣∣∣p2

〉
≥ 0 for all p ∈R[x]d .
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Now, for all t ∈R we have:

0 ≤
〈
Λ
∣∣∣(h+ tp)2

〉
= 2t ⟨Λ|hp⟩+ t2

〈
Λ
∣∣∣p2

〉
.

Then the univariate polynomial t 7→ 2t ⟨Λ|hp⟩+ t2
〈
Λ
∣∣∣p2

〉
has a double root at t = 0, and this

implies ⟨Λ|hp⟩ = 0 for all p ∈R[x]d . Therefore h ∈ Annd(Λ).
For the second point, by induction on the degree of g it is enough to prove that, if f ∈

Annd(Λ) and degxif ≤ d − 1, then xif ∈ Annd(Λ). From the first point, to prove this it is
enough to show that

〈
Λ
∣∣∣(xif )2

〉
= 0. But this is clear, since degx2

i f ≤ t and:〈
Λ
∣∣∣(xif )2

〉
=

〈
(f ⋆Λ)[t]

∣∣∣x2
i f

〉
=

〈
Hd

Λ(f )
∣∣∣x2
i f

〉
=

〈
0
∣∣∣x2
i f

〉
= 0,

which concludes the proof.

Point (ii) in the previous lemma says that the truncated annihilator Annd(Λ) enjoys an
ideal-like property. This is coherent with the infinite dimansional case, since the annihilator
Ann(Λ) is an ideal.

1.4 The moment problem

We briefly recall the Moment Problem, and refer to [Sch17] for additional references and more
details.

Classically, the Moment Problem on the real line can be stated as follows. Given a sequence
of real numbers Λ = (Λn)n∈N, there exists a (positive) Borel measure µ ∈ M(R) such that
Λn =

∫
xndµ for all n ∈N? The multivariate extension is straightforward: given a sequence

of real numbers (Λα)α∈Nn , there exists a Borel measure µ ∈M(Rn) such that Λn =
∫

xα dµ =∫
xα1

1 . . .xαnn dµ for all α = (α1, . . . ,αn) ∈Nn? As we have seen in Section 1.2.2, the numbers∫
xα dµ are called moments of µ, and thus we could restate the Moment Problem as follows: is

the sequence (Λα)α∈Nn a sequence of moments?
A natural additional condition that we can require is a prescribed support for the rep-

resenting measure. This is the so called Strong Moment Problem: given a sequence of real
numbers (Λα)α∈Nn and D ⊂R

n, there exists a Borel measure µ ∈M(D) such that Λn =
∫

xα dµ
for all α = (α1, . . . ,αn) ∈Nn?

We have described in Section 1.2.2 the isomorphism between pseudo-moments sequences
and linear funcitonals acting on the polynomial ring, and recall that we denote Λµ the
linear functionals induced by measures µ. Therefore, it is convenient to restate the (Strong)
Moment Problem as follows: given Λ ∈R[x]∗, there exists µ (with prescribed support) such
that Λ = Λµ? Or in more concise words, is Λ a moment linear funcitonal?

It is then interesting to study sufficient and necessary conditions for Λ to be equal to Λµ,
for some µ ∈ M(D). A key result in this direction is Haviland’s Theorem, Theorem 1.3.1:
it states that, if D is compact, Λ is a moment linear functional with representing measure
supported on D if and only if ⟨Λ|f ⟩ ≥ 0 for all f ∈ Pos(D).

The drawback of this theorem is that checking this condition is a computationally hard
task, since the convex cone Pos(D) has no simple representation. Therefore, we would like to
replace Pos(D) in Haviland’s Theorem with a simpler subcone, in such a way checking the
condition is simpler.
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A motivation to study Sum of Squares representations, and more precisely quadratic
modules and preorderings, is that these subcones of Pos(S(g)) have the property thar we are
looking for. Indeed:

• Schmüdgen’s Theorem (Theorem 1.3.6) says that Λ is a moment linear functional, with
representing measure supportend on S(g), if and only if ⟨Λ|p⟩ ≥ 0 for all p ∈ O(g), when
S(g) is compact;

• Putinar’s Theorem (Theorem 1.3.7) says that Λ is a moment linear functional, with
representing measure supportend on S(g), if and only if ⟨Λ|q⟩ ≥ 0 for all q ∈ Q(g), when
Q(g) is Archimedean.

Another natural question is the question of uniqueness, i.e.: given a moment linear func-
tional Λ, is the measure µ inducing Λ = Λµ unique? If the answer is yes, we say that the
Moment Problem is determinate. As a consequence of the Stone-Weierstrass approximation
theorem, the moment problem is determinate when the measure has compact support. We
refer to [Sch17, ch. 14] for a more detailed discussion of determinacy.

1.4.1 The truncated moment problem

Up to now we focused our attention to the infinite dimensional case, since our sequences
(Λα)α∈Nn have infinitely many pseudo-moments, or equivalently because the linear func-
tionals are defined on the full polynomial ring R[x]. However, from the practical point of
view it is necessary to restrict our attention to the finite dimensional case, i.e. when we have
only finitely many coefficients available, or equivalently, when the linear functional Λ is
defined only on a finite dimensional vector subspace of R[x]. In particular, we will restict our
attention to the subspace of polynomial of bounded degree, or in other words to truncates
sequences indexed by multi-indices of bounded sum.

Then, the Truncated Moment Problem can be stated as follows: given a truncated sequence
Λ = (Λα)|α|≤d , there exists a (positive) Borel measure µ ∈M(R) such that Λα =

∫
xα dµ for all

α ∈Nn such that |α| ≤ d? Or equivalantly, given Λ ∈R[x]∗d , there exists µ such that Λ = Λ
[d]
µ ?

As in the infinite dimensional case, we speak of Strong Truncated Moment Problem when we
investigate representation of linear functionals on R[x]d as moment linear functionals with a
prescribed support.

In the truncated setting, Dirac measures δx (or equivalently evaluations ex) play a special
role, as shown by the Richter-Tchakaloff theorem.

Theorem 1.4.1 (Richter-Tchakaloff). Let Λ = Λ
[d]
µ ∈R[x]∗d , µ ∈M(D), be a truncated moment

linear functional. Then Λ is represented by an atomic measure with atoms in D: there exists
ξ1, . . .ξm ∈ D and a1, . . . , am ∈ R>0 such that Λ = a1eξ1

+ · · · + ameξm . Moreover, M(D)[d] =
cone(eξ : ξ ∈D)[d].

We refer to [Sch17, th. 1.24] for the proof, and to [DS22] for an historical discussion.
Theorem 1.4.1 show the existence of the so-called quadrature rules or quadrature formulas,
that are used to compute integrals of polynomials of bounded degree.

Unfortunately, Richter-Tchakaloff theorem does not give a test to determine whether a
truncated linear funcitonal is a moment linear functional or not. The most important test in
this direction is the celebrated Curto-Fialkow Flat Extension Theorem.
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Theorem 1.4.2 (Flat Extension Theorem, [CF96]). Let Λ ∈R[x]∗2d be a truncated linear func-
tional. Then Λ is induced by an atomic measure with rankH2d

Λ
atoms if and only if Hd

Λ
≽ 0 and

there exists Λ̃ ∈R[x]∗2d+2 such that:

• Λ̃[2d] = Λ;

• rankHd
Λ

= rankHd+1
Λ̃

.

We refer to [Lau09] and reference therein for a survey on flat extension properties (and
especially their use in Polynomial Optimization), and to [LM09; Mou18] for more general
versions of this theorem.

1.5 Conic programming

We now briefly recall the duality theory for linear programming over cones, a general
framework for polynomial optimization problems, following [Bar02]. In the follwing we will
show how semidefinite programming, Polynomial Optimization problems and Lasserre’s
hierarchies can be described using this framework.

A duality or duality pairing of vector spaces is a non degenerate bilinear map ⟨·, ·⟩ : E×F→R,
where E and F are real vector spaces. For instance, take:

• E any vector space and F = E∗ be the linear functionals on E, with duality pairing
⟨e, f ⟩ = f (e) given by the natural application of f ∈ F to e ∈ E (one can replace E∗ with
E′ when E is a topological vector space);

• E = F = R
n with the Eucliden inner product: ⟨x,y⟩ =

∑
i xiyi ;

• E = F = Sn the space of symmetric matrices with the trace inner product: ⟨X,Y ⟩ =
tr(XY ).

Let ⟨·, ·⟩1 : E1 ×F1→R and ⟨·, ·⟩2 : E2 ×F2→R be dualities of vector spaces, and let K1 ⊂ E1,
K2 ⊂ E2 be convex cones. Denote K∗i = {f ∈ Fi | ⟨k,f ⟩i ≥ 0 ∀k ∈ Ki } the dual convex cone
with respect to ⟨·, ·⟩i (as a subset of Fi). Let A : E1→ E2 be linear and denote A∗ : F2→ E2 the
adjoint of A, that is the linear map such that ⟨Ae,f ⟩2 = ⟨e,A∗f ⟩1 for all e ∈ E1 and f ∈ F2.

We fix c ∈ F1 and b ∈ E2. With the notation above, we define a pair of linear programming
problems.

Primal Problem: Find: γ = inf
x∈E1

⟨x,c⟩1

subject to: Ax − b ∈ K2

x ∈ K1

Dual Problem: Find: β = sup
ℓ∈F2

⟨b, l⟩2

subject to: c −A∗ℓ ∈ K∗1
ℓ ∈ K∗2
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If x ∈ E1 satisfies Ax − b ∈ K2 and x ∈ K1, then x is called primal feasible (or simply feasible,
when clear from the context). Similarly, if ℓ ∈ F2 satisfies c −A∗ℓ ∈ K∗1 and ℓ ∈ K∗2, then ℓ is
called dual fesible (or simply feasible, when clear from the context).

We recall the main general results relating γ and β.

Theorem 1.5.1 ([Bar02, th. 6.2]). With the notations above:

(i) (Weak Duality) For any primal feasible x ∈ E1 and dual feasible ℓ ∈ F2, we have ⟨x,c⟩1 ≤
⟨b,ℓ⟩2 and γ ≥ β. Furthermore, if ⟨x,c⟩1 = ⟨b,ℓ⟩2 then x is primal optimal (i.e. ⟨x,c⟩1 = γ)
and ℓ is dual optimal (i.e. ⟨b,ℓ⟩2 = β) and γ = β (strong duality).

(ii) (Optimality Criterion) If x is primal feasible and ℓ is dual feasible such that ⟨x,c −A∗ℓ⟩1 = 0
and ⟨Ax − b,ℓ⟩2 = 0, then x is primal optimal, ℓ is dual optimal and γ = β (strong duality).

(iii) (Complementary Slackness) If x is primal optimal, ℓ is dual optimal and γ = β, then
⟨x,c −A∗ℓ⟩1 = 0 and ⟨Ax − b,ℓ⟩2 = 0.

We now desribe semidefinite programming using this framework.

1.5.1 Semidefinite programming

Let E1 = F1 = R
m (m will the codimension of the affine section of Sn+ we are going to consider),

let ⟨x,y⟩1 =
∑
i xiyi the Euclidean inner product. Let K1 = R

m and K∗1 = {0}. Let E2 = F2 = Sn
the space of symmetric matrices with the trace inner product: ⟨A,B⟩2 = tr(AB), and finally
K2 = K∗2 = Sn+ .

A linear transformation A : Rm→ Sn can be written as Ax = x1A1 + · · ·+ xmAm, for some
Ai ∈ Sn, and the adjoint has form A∗X = (tr(XA1), . . . , tr(XAm)). Then a Semidefinite Program
has the following description (in canonical forms), given λ ∈Rm and C,A1, . . .Am ∈ Sn:

Primal: Find: β = inf
ℓ∈Rm

∑
i

λiℓi

subject to:
∑
i

ℓiAi −C ∈ Sn+

ℓ ∈Rm

Dual: Find: γ = sup
X∈Sn

tr(CX)

subject to: λi − tr(AiX) = 0 ∀i
X ∈ Sn+

It is clear that primal and dual feasible points are spectrahedra.

1.6 Polynomial optimization

Let f ,g1, . . . , gs ∈ R[x] be polynomials in the indeterminates x1, . . . ,xn with real coefficients.
The goal of Polynomial Optimization is to find:

f ∗ B inf
{
f (x) ∈R | x ∈Rn, gi(x) ≥ 0 for i = 1, . . . , s

}
, (1.5)

that is the infimum f ∗ of the objective function f on the basic closed semialgebraic set S = S(g) =
{x ∈Rn | gi(x) ≥ 0 for i = 1, . . . , s }. It is a general problem, which appears in many contexts
(e.g. real solution of polynomial equations, . . . ) and with many applications. To cite a few of
them: in graph theory [LV21], network optimization design [MH15], control [HK14], . . . See
[Las10] for a more comprehensive list.
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To solve this NP-hard problem, Lasserre [Las01] proposed to use two hierarchies of finite
dimensional convex cones depending on an order d ∈N and he proved, for Archimedean
quadratic modules, the convergence when d→∞ of the optima associated to these hierarchies
to the minimum f ∗ of f on S. We will describe these hierarchies in the following sections.

This approach has many interesting properties (see e.g. [Las15], [Lau09], [Mar08]). It was
proposed with the aim to recover the infimum f ∗ and, if this infimum is reached, the set of
minimizers {ξ ∈ S | f (ξ) = f ∗}. The extraction of minimizers is strongly connected to the so
called flat truncation property, see Section 1.4.

1.6.1 Inner approximations of positive polynomials

We want to find lower approximations of f ∗. This is naturally possible, thanks to the following
observation:

f ∗ = inf
{
f (x) ∈R | x ∈ S(g)

}
= sup

{
λ ∈R | f −λ ∈ Pos(S(g))

}
.

Therefore, replacing the cone of positive polynomials Pos(S(g)) with any subcone we will
define a lower approximation of f ∗.

Lasserre’s sum of squares hierarchy

We choose as subcone of Pos(S(g)) the truncated quadratic module. Indeed, for any d ∈N,
Q2d(g) ⊂ Pos(S(g)).

We define the Lasserre’s SoS relaxation of order d of problem (1.5) as Q2d(g) and the supre-
mum:

f ∗SoS,d B sup
{
λ ∈R | f −λ ∈ Q2d(g)

}
≤ f ∗. (1.6)

When necessary we will replace g by Πg (that is Q(g) by O(g)).
Notice that this construction works for any d ∈N. Thus, we have defined a hierarchy of

inner approximations of Pos(S(g)):

Q2d(g) ⊂ Q2d+2(g) ⊂ · · · ⊂ Pos(S(g))

and therefore we have a sequence of lower approximations of f ∗:

f ∗SoS,d ≤ f
∗

SoS,d+1 ≤ · · · ≤ f
∗.

The convergence of the lower approximations to f ∗ depends on the possibility to approx-
imate positive polynomials using the hierarchy of subcones of Pos(S(g)). Concretely, for
the case of the Lasserre’s SoS relaxation, if the quadratic module Q(g) is Archimedean then
limd→∞ f

∗
SoS,d = f ∗. Indeed, for any ε > 0, f − f ∗ + ε > 0 on S(g). Therefore, from Putinar’s

Positivstellensatz (Theorem 1.1.22) there exists d = d(ε) such that f − f ∗ + ε ∈ Q2d(g). This
shows that f ∗ − ε ≤ f ∗SoS,d , and we have convergence of the lower approximations as d→∞.
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1.6.2 Outer approximations of measures

We now turn our attention to a different description of f ∗:

f ∗ = inf
{
f (x) ∈R | x ∈ S(g)

}
= inf

{ ∫
f dµ ∈R | µ ∈M(S(g)),

∫
dµ = 1

}
Therefore, replacing the cone of measures with any cone containingM(S(g)) will define a
lower approximation of f ∗. To define this cone, recall thatM(S(g)) = Pos(S(g))∨. Therefore,
taking the dual of any inner approximation of Pos(S(g)) will define a lower approximation of
f ∗.

Lasserre’s moment hierarchy

We choose to take the dual of the cones used in Lasserre’s SoS hierarchy. Concretely, we
choose:

L2d(g) =Q2d(g)∨ = {Λ ∈R[x]∗ | ⟨Λ|q⟩ ≥ 0 for all q ∈ Q2d(g) } ⊃M(S(g))[2d],

and in particular we consider an affine hyperplane section of L2d(g):

L(1)
2d (g) =

{
Λ ∈ L2d(g) | ⟨Λ|1⟩ = 1

}
.

We define the moment relaxation of order d of problem (1.5) as L2d(g) and the infimum:

f ∗Mom,d B inf
{
⟨Λ|f ⟩ ∈R |Λ ∈ L(1)

2d (g)
}
. (1.7)

Notice that this construction works for any d ∈N. Thus, we have defined a hierarchy of
outer approximations ofM(S(g))[d]:

L2d(g) ⊃ L2d+2(g)[2d] ⊃ . . .M(S(g))[2d].

Notice also that we have to take the restriction to be able to compare linear functionals
acting on different spaces, or equivalently to compare pseudo-moment sequences of different
lengths. Since ⟨Λ|f ⟩ =

〈
Λ[2d]

∣∣∣f 〉 for any d such that 2d ≥ degf , we have therefore a sequence
of lower approximations of f ∗:

f ∗Mom,d ≤ f
∗

Mom,d+1 ≤ · · · ≤ f
∗.

We verify that f ∗SoS,d ≤ f
∗

Mom,d for every d. Indeed, if f − λ ∈ Q2d(g) then 0 ≤ ⟨Λ|f −λ⟩ =

⟨Λ|f ⟩ −λ for all Λ ∈ L(1)
2d (g), and thus λ ≤ ⟨Λ|f ⟩ for all Λ. This implies f ∗SoS,d ≤ f

∗
Mom,d .

From the previous result, we can deduce convergence of f ∗Mom,d to f ∗ from the convergence
of f ∗SoS,d to f ∗. In particular, if Q(g) is Archimedean then limd→∞ f

∗
Mom,d = f ∗.
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1.6.3 Polynomial optimization as conic programming

Recall the Polynomial Optimization problem, given f ,g1, . . . , gr , find:

f ∗ = inf
{
f (x) ∈R | x ∈ S(g)

}
= sup

{
λ ∈R | f −λ ∈ Pos(S(g))

}
= inf

{ ∫
f dµ ∈R | µ ∈M(S(g)),

∫
dµ = 1

}
Let E1 = R[x]∗, F1 = Rg and ⟨·, ·⟩1 = ⟨·|·⟩ be the application of the linear functional to its
argument K1 =M(S(g)), K∗1 = Pos(S(g)), E2 = R, F2 = R and ⟨·, ·⟩2 be the Euclidean inner
product, and finally K2 = {0} and K∗2 = R. Let A : R[x]∗→ R, Λ 7→ ⟨Λ|1⟩, and then A∗ : R→
R[x], λ 7→ λ (as a constant polynomial) is the adjoint. Let c = f ∈R[g] and b = 1 ∈R[x]. Then
we can rewrite the polynomial optimization problem as:

Primal: Find: f ∗ = inf
Λ∈R[x]∗

⟨Λ|f ⟩

subject to: ⟨Λ|1⟩ − 1 = 0

Λ = Λµ ∈M(S(g))

Dual: Find: f ∗ = sup
λ∈R

λ

subject to: f −λ ∈ Pos(S(g))

λ ∈R

Notice that it is possible to switch the role of the primal and the dual, proceeding similarly
and using the fact that supA = − inf−A for all A ⊂R:

Primal: Find: − f ∗ = inf
λ∈R
−λ

subject to: f −λ ∈ Pos(S(g))

λ ∈R

Dual: Find: − f ∗ = sup
Λ∈R[x]∗

−⟨Λ|f ⟩

subject to: 1− ⟨Λ|1⟩ = 0

Λ = Λµ ∈M(S(g))

Above, we have chosen to present the problem using only polynomials and seeing measures
as linear functionals acting on polynomials. But we could have replaced positive polynomials
with positive continuous functions, and then we would have seen the Borel measures as a
cone in the space of Borel signed measures. See [Las15, ch. 5] for more details.

1.6.4 Lasserre’s relaxations as conic programming

We now adapt Section 1.6.3 to Lasserre’s hierarchies in polynomial optimization. If we
proceed in the same way, we have:

Primal: Find: γ = f ∗Mom,d = inf
Λ∈R[x]∗2d

⟨Λ|f ⟩

subject to: ⟨Λ|1⟩ − 1 = 0

Λ ∈ L2d(g)

Dual: Find: β = sup
λ∈R

λ (1.8)

subject to: f −λ ∈ Q2d(g)

λ ∈R

Above, we have K1 = L2d(g) and thus K∨1 =Q2d(g). This is not the Lasserre’s SoS relaxation,
since we are usingQ2d(g) and notQ2d(g) (see Example 1.3.4 for an example where a truncated
quadratic module is not closed): this shows that the natural object that one has to consider
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when studying the moment hierarchy is Q2d(g), and not Q2d(g). The difference between
Q2d(g) and Q2d(g) will be important in Chapter 3.

The way one usually obtains the SoS relaxation dualizing the moment relaxation is slightly
different, using cones of positive semidefinite matrices. We will describe this procedure
in the remaining of the section, but first notice that, reversing the role of primal and dual
problem as in Section 1.6.3, we obtain the correct hierarchies:

Primal: Find: − f ∗SoS,d = inf
λ∈R
−λ

subject to: f −λ ∈ Q2d(g)

λ ∈R

Dual: Find: − f ∗Mom,d = − sup
Λ∈R[x]∗2d

⟨Λ|f ⟩

subject to: 1− ⟨Λ|1⟩ = 0

Λ ∈ L2d(g)

In this sense, it is more natural to start from the SoS hierarchy and then deduce the moment
hierarchy, than doing the opposite.

We now describe Lasserre’s relaxations using semidefinite programming. We will need to
consider the Hankel map Ag , that associate to a linear functional the localizing matrix HN

g⋆Λ:

Ag : R[x]∗2d →S
m ⊂ hom

R
(R[x]N ,R[x]∗N )

Λ 7→ Ag(Λ)BHN
g⋆Λ

where m = dimR[x]N . We also need to consider its adjoint A∗g with respect to the trace inner
product. We describe this adjoint in the following.

Let X = vec(h)vec(h)t ∈ Sm, h = btmvec(h) as in (1.2), be a rank one symmetric matrix. Then:

tr
(
Ag(Λ)X

)
= tr

(
Hm
g⋆ΛX

)
= tr

(
Hm
g⋆Λvec(h)vec(h)t

)
= tr

(
vec(h)tHm

g⋆Λvec(h)
)

= vec(h)tHm
g⋆Λvec(h)

=
〈
Hm
g⋆Λ(h)

∣∣∣∣h〉 =
〈
Λ
∣∣∣gh2

〉
=

〈
Λ
∣∣∣g btmvec(h)vec(h)tbm

〉
=

〈
Λ
∣∣∣g btmXbm

〉
.

Since any symmetric matrix of rank r can be written as
∑r
i=1 aiX

(i), ai ∈R andXi = vec(hi)vec(hi)t,
this shows by linearity that the adjoint is:

A∗g : Sm→R[x]2d

X 7→ A∗g(X) = g btmXbm

Now we can use this adjoint map to describe the SoS and moment hierarchies. Recall that
the feasible set of the moment relaxation of order d is:

L(1)
2d (g) = {Λ ∈ (R[x]d)∗ | ⟨Λ|1⟩ = 1, Hd

Λ ≽ 0,HN1
g1⋆Λ

≽ 0, . . . ,HNr
gr⋆Λ
≽ 0 }.

Then we want to impose the constraint ⟨Λ|1⟩ = 1, and the positive semidefinite constraints.
This means to consider the map

A(Λ)B (⟨·|1⟩ ×A1 ×Ag1
× · · · ×Agr )(Λ) =

(
⟨Λ|1⟩ ,Hd

Λ,H
N1
g1⋆Λ

, . . . ,HNr
gr⋆Λ

)
,



1.6 Polynomial optimization 61

the cone K2 = {0}×SdimR[x]d
+ ×S

dimR[x]N1
+ ×· · ·×S

dimR[x]N1
+ , and the natural inner product ⟨·, ·⟩1

defined as sum of the natural inner product in every component. Finally, setting K1 = R[x]∗2d ,
c = f and b = (1,0,0, . . . ,0) we obtain:

Primal Problem: Find: f ∗Mom,d = inf⟨Λ|f ⟩ =
∑
α

Λαfα (1.9)

subject to: ⟨Λ|1⟩ − 1 = 0

Hd
Λ ≽ 0,HN1

g1⋆Λ
≽ 0, . . . ,HNr

gr⋆Λ
≽ 0

Λ ∈R[x]∗2d

which is the usual moment relaxation 1.7. To compute the dual, we have to consider the
adjoint:

A∗(λ,X(0),X(1), . . . ,X(r)) = λ+
r∑
i=0

gib
t
Ni
X(i)bNi ,

and we obtain:

Dual of (1.9): Find: f ∗SoS,d = supλ (1.10)

subject to: f −λ−
r∑
i=0

gib
t
Ni
X(i)bNi = 0

λ ∈R,X(0) ≽ 0,X(1) ≽ 0, . . . ,X(r) ≽ 0

This coincides with the standard formulation of the SoS relaxation, 1.6. We can also rewrite
the SoS relaxation more explicitly as a semidefinite program, preceding as in Section 1.3.7:

Dual of (1.9): Find: f ∗SoS,d − f0 = sup
X(i)≽0

r∑
i=0

tr
(
X(i)C

(i)
Ni ,0

)
(1.11)

subject to:
r∑
i=0

tr
(
X(i)C

(i)
Ni ,α

)
− fα = 0, 0 , |α| ≤ 2d

X(0) ≽ 0,X(1) ≽ 0, . . . ,X(r) ≽ 0

One could reduce the semidefinite programs above to the canonical form introducing
the block diagonal matrices diag(Hd

Λ
,HN1

g1⋆Λ
, . . . ,HNr

gr⋆Λ
), diag(X(0),X(1), . . . ,X(r)) and finally

diag(C(0)
d,α ,C

(1)
N1,α

, . . . ,C
(r)
Nr ,α

).

Remark. The difference between Q2d(g) (obtained in 1.8) and Q2d(g) (obtained in 1.10 or 1.11)
could be explained as follows. While in 1.8 we dualize directly L2d(g), in 1.10 we dualize the
positive semidefinite constraints HNi

g1⋆Λ
≽ 0, we obtain r + 1 positive semidefinite matrices

X(0), . . .X(r), and then we consider Q2d(g) as the image of the map φ : (X(0),X(1), . . . ,X(r)) 7→∑r
i=0 gib

t
Ni
X(i)bNi . The Minkowski sum of closed convex cones may be not closed, and then

the image of φ may be not closed as well: this is the reason we have in one case Q2d(g) and in
the other Q2d(g).
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Chapter 2
♦

The Effective Putinar’s
Positivstellensatz

This chapter is based on [BM22b] and [BMP22].

2.1 Context and results

A fundamental question in Real Algebraic Geometry is how to represent effectively the set
of polynomials which are positive 1 on a given domain. In this chapter, we are going to
investigate exact effective representations of strictly positive polynomials on basic closed
semialgebraic sets S = S(g) = S(g1, . . . , gr) = {x ∈ Rn | gi(x) ≥ 0 for i = 1, . . . , r }, defined by in-
equalities gi ≥ 0 with gi ∈R[x]. These exact representations give immediately an approximate
representation of nonnegative polynomials on S.

The set Pos(S) of positive polynomials on S contains the quadratic module Q = Q(g) gen-
erated by the tuple of polynomials g = (g1, . . . , gr), and also the preordering O = O(g1, . . . , gr)
(see Section 1.1.6). Since for a general tuple g and n > 1, positive polynomials on S(g) do not
all belong to the quadratic module Q(g) or even to the preordering O(g), it is natural to ask
whether the convex cone Q(g) (resp. O(g)) is a good inner approximation of Pos(S). A partial
answer is given by two important results due to Schmüdgen and Putinar, see Section 1.1.6.
These results show the existence of denominator free representations of strictly positive
polynomials as elements of the preordering (resp. the quadratic module), in the compact
(resp. Archimedean) case.

Since a positive polynomial f ∈ Pos(S) can be approximated by f + ε, which is strictly
positive on S for ε > 0, these results show that any f = limε→0 f + ε positive on S is the limit
of polynomials in Q(g) (resp. O(g)). Unfortunately, the degree of the representation of f + ε
in Q(g) goes to infinity as ε→ 0, see for instance [Ste96].

In this chapter, we provide quantitative versions of Putinar’s Positivstellensatz (Theo-
rem 1.1.22). We give new bounds on the degree of the SoS representation in Q(g), which
control the quality of approximation of positive polynomials by polynomials in Q(g). In
other words, we consider the truncated quadratic module in degree ℓ, denoted Qℓ(g) (that is,
the convex cone whose elements are polynomials in Q(g) generated in degree ≤ ℓ, see Sec-
tion 1.3.7), and given f > 0 on S(g), we estimate ℓ ∈N such that f ∈ Qℓ(g). For this problem,

1We follow the French tradition, and call a function f positive or nonnegative on a domain D if f ≥ 0 on D and
strictly positive on D if f > 0 on D.
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also known as Effective Putinar’s Positivstellensatz, our main result is Theorem 2.2.14, which
provides the first polynomial bounds in the intrinsic parameters associated to g and f . The
most important one is ε(f )B f ∗/∥f ∥, where f ∗ is the minimum of f on S and ∥f ∥ denote the
max norm of f on [−1,1]n: ε(f ) measures how close is f to have a zero on S.

Theorem 2.2.14. Assume n ≥ 2 and let g1, . . . , gr ∈R[x] = R[x1, . . . ,xn] satisfying the normaliza-
tion assumption (2.1). Let f ∈ R[x] such that f ∗ = minx∈S f (x) > 0. Let c, Ł be the Łojasiewicz
coefficient and exponent given by Definition 2.2.8. Then f ∈ Qℓ(g) if

ℓ ≥O(n325nŁrnc2nd(g)nd(f )3.5nŁε(f )−2.5nŁ)

= γ(n,g)d(f )3.5nŁε(f )−2.5nŁ,

where γ(n,g) ≥ 1 depends only on n and g.

All the parameters of the bound are explicit, introduced precisely in Section 2.1.3 and
Definition 2.2.8. This result is the first general effective Putinar’s Positivstellensatz with a
polynomial dependence on ε(f ): see Section 2.1.1 for a comparison with the previous results.

We also remark that exponents in Theorem 2.2.14 have been simplified for the sake of
readability and are not optimal: see Equation (2.26) for sharper bounds, especially for the
case n≫ 0. Moreover, that the assumption n ≥ 2, only used to do this simplification, is not a
serious limitation since the univariate case is already well studied, see for instance [PR00].

In particular, the exponent of ε(f )−1 in our result depends on the Łojasiewicz exponent Ł
between the semialgebraic and algebraic distance from S, see Definition 2.2.8. The study
of Łojasiewicz inequalities, already present in [NS07], is a key ingredient for the proof of
Theorem 2.2.14. We are able to prove that the Łojasiewicz exponent is equal to one under
regularity condition, usually assumed in polynomial optimization problems, improving
thus Theorem 2.2.14. This result is presented in Theorem 2.3.9 and Theorem 2.3.13. In the
first theorem, we also estimate the Łojasiewicz constant using two parameters: the smallest
singular value of the Jacobian of the active constraints at every point of the boundary of S,
and a measure of how close is S(g) to have an extra connected component. In the second
theorem, the previous estimate for the Łojasiewicz constant is interpreted as a distance of
g from singular systems of inequalities. To the best of our knowledge, these are the first
analysis in the literature of the Łojasiewicz exponent in regular cases and the first estimates
for the Łojasiewicz constant.

The main motivation to study the effective Putinar’s Positivstellensatz are convergence
rates of Lasserre’s hierarchies in polynomial optimization (see Section 1.6). Indeed, it is
well known that one can determine convergence rates of Lasserre’s sum of squares and
moment hierarchies using this result. While an exponential dependence on ε(f )−1 in the
effective Putinar’s Positivstellensatz leads to a logarithmic convergence of the lower bound to
the minimum, the polynomial dependency on ε(f )−1 in Theorem 2.2.14 gives a polynomial
convergence of the lower bounds. This general result was not yet proven in the literature,
and it is presented in Theorem 2.4.3. For the proof of this result, we observe also that
Theorem 2.2.14 gives a quantitative inner approximation of positive polynomials using
polynomials in the quadratic module, with degree bounds. This result is described in
Theorem 2.4.1.

On the dual side, the dual cones of truncated quadratic modules are outer approximations
of the cones of measures, and a section of this dual cone defines the feasible positive linear
functionals of moment relaxations. We use Theorem 2.2.14, quantifying how good is the
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inner approximation of positive polynomials by truncated quadratic modules, to answer the
dual question we are interested in: how good is the outer approximation of (probability)
measures by truncated positive linear functionals (of total mass one)? We investigate this
dual problem, and in particular in Theorem 2.5.9 we bound the Hausdorff distance dH(·, ·)
between the outer approximation and the measures supported on S, providing the first
general convergence rate for these outer approximations. As an intermediate step, we also
bound the convergence rate to measures not necessarily of mass one (Theorem 2.5.7).

2.1.1 Related works

Complexity analysis in Real Algebraic Geometry is an active area of research, where obtaining
good upper bounds is challenging. See for instance [LPR20] for elementary recursive degree
bounds in Kivrine-Stengle Positivstellensatz, and [SEDYZ18] for computation complexity of
real radicals. Among all the Stellensätzen, we consider Putinar’s Positivstellensatz, which
allows a denominator free representation of strictly positive polynomials and has well-know
applications in Polynomial Optimization.

The representation of strictly positive polynomials has a long history. For instance Pölya
[Pó28] gave a representation of homogeneous polynomials f strictly positive on the simplex
∆ as ratio of a polynomial with positive coefficients and ∥x∥k2, for some k. It is interesting to
notice that, although no explicit degree bounds were presented, the degree of the representa-
tion depends on the sup norm of f on ∆ and on its minimum f ∗ > 0, i.e. on ε(f ) (in analogy
with our main result, Theorem 2.2.14). This dependence on ε(f ) was made explicit in [PR01].
Another representation for homogeneous polynomials has been proved by Reznick [Rez95],
where it is shown that an homogeneous polynomial f strictly positive on R

n \ {0} (a positive
definite form) can be written as ratio of even powers of linear forms and ∥x∥k2, for some k.
Degree bounds for the representation are provided, and again there is a dependence on ε(f )
(defined restricting f to the n− 1 hypersphere) with exponent equal to −1.

Effective, general versions of Schmüdgen and Putinar’s Positivstellensatz, that give degree
bounds for the representation in truncaded preorderings and quadratic modules, have been
proven by Schweighofer and Nie. In the following, we denote ∥f ∥x the max norm of the
coefficients of the polynomial f w.r.t. the weighted monomial basis { |α|!

α1!...αn! x
α : |α| ≤ d}.

Theorem 2.1.1 ([Sch04]). For all g = g1, . . . gr ⊂ R[x] = R[x1, . . . ,xn] defining ∅ , S(g) = S ⊂
(−1,1)n there exists 0 < c ∈R (depending on g and n) such that, if f ∈R[x]d is strictly positive on
S with minimum f ∗ = minx∈S f (x) > 0, we have f ∈ Oℓ(g) if

ℓ ≥ cd2
(
1 +

(
d2nd

∥f ∥x
f ∗

)c)
.

Theorem 2.1.2 ([NS07]). For all g = g1, . . . gr ⊂ R[x] = R[x1, . . . ,xn] defining an Archimedean
quadratic module Q = Q(g) and ∅ , S(g) = S ⊂ (−1,1)n, there exists 0 < c ∈ R (depending on g
and n) such that, if f ∈ R[x]d is strictly positive on S with minimum f ∗ = minx∈S f (x) > 0, we
have f ∈ Qℓ(g) if

ℓ ≥ cexp
((
d2nd

∥f ∥x
f ∗

)c)
.

In Theorem 2.2.14 we improve Theorem 2.1.2, showing a polynomial (and not exponential)
dependence of the degree of the representation on ε(f )−1 = ∥f ∥/f ∗. The norm ∥·∥x used
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in [Sch04] and [NS07] is the max norm of the coefficients of the polynomial f w.r.t. the
weighted monomial basis { |α|!

α1!...αn! x
α : |α| ≤ d}, while the one we will use is the max norm

on [−1,1]n, see Section 2.1.3. In the definition of ε(f ) we use the max norm ∥·∥ on [−1,1]n

instead of ∥·∥X used in [NS07], because it does not depend on the choice of a basis and on the
representation of the polynomials. However, for polynomials of bounded degree, the two
norms are equivalent. Using [NS07, lem. 7] to express our bound with ∥·∥x would result in an
extra factor 22.5nŁn2.5d(f )nŁd(f )2.5nŁ, while keeping the exponent of ε(f ).

Apart from the already mentioned corollary on the convergence rates for Lasserre’s hier-
archies, this result is also used in [MSED21] to give bounds on the degree of rational SoS
positivity certificates, which are exponential in the bit-size of the input polynomials f ,g.

As already mentioned, compared to [NS07], Theorem 2.2.14 gives degree bounds, which
are polynomial and not exponential in ε(f ). This implies a polynomial rate convergence
of Lasserre hierarchies, see Theorem 2.4.2, and not logarithmic as in [NS07]. For special
semialgebraic sets, the bounds on the convergence rate can be improved: see for instance
[FF20] for convergence in the unit sphere, [LS21] for the unit box, and [Slo21] for convergence
on the unit ball. The convergence rate of the upper bounds of Lasserre SoS density hierarchy
over the sphere has been studied in [DKL19].

The proof of Theorem 2.2.14 is based on the construction of a perturbation polynomial q ∈
Q(g) and the reduction to a simpler semialgebraic set. This construction of the perturbation
polynomial q using univariate SoS, has already been used in [Sch04], [Sch05c], [NS07],
[Ave13], [KS15]. In [MM22] Mai and Magron investigate with a similar technique the
representation of strictly positive polynomials on arbitrary semialgebraic sets as ratio of
polynomials in the quadratic module and (1 + ∥x∥22)k for some k, giving degree bounds for
the representation. These bounds are polynomial on f ∗ (and thus on ε(f )), but the exponent
and the constant are not explicit in the general case. Moreover, they remark that they were
not able to derive a polynomial Effective Putinar’s Positvstellensatz using their perturbation
polynomials, defined recursively.

Our main improvements in the proof are the generalisation from a special univariate SoS
or recursively defined perturbation polynomials, to a SoS approximation of a positive plateau
function, see Section 2.2.4, and the use of an Effective Schmüdgen’s Positivstellensatz on
the unit box from [LS21]. Moreover, in Section 2.3 we analyze regular cases that result in
very simple exponents, see Corollary 2.3.14. Corollary 2.3.14 can be applied in particular in
the case of a single ball constraint, that was analyzed in [MM22] for the Putinar-Vasilescu’s
Positivstellensatz, that introduces a denominator: the exponent in this case is equal to −65,
while Corollary 2.3.14 gives −2.5n. We conjecture that it is also possible to remove the
dependence on n in the exponent of the effective Putinar’s Positivstellensatz.

This approach with a perturbation polynomial q has also been used in [KS15] to prove
a Weierstrass Approximation theorem on compact sets for positive polynomials, where
the approximation is done with polynomials in the quadratic module Q(g). We obtain an
equivalent result with our polynomial echelon functions in Theorem 2.4.1 with bounds on
the degree of q.

Convergence of pseudo-moments sequences to measures in Lasserre’s hierarchies has been
studied in [Sch05c] for Polynomial Optimization Problems and more generally in [Tac21]
for Generalized Moment Problems (GMP). The convergence rates of moment hierarchies in
GMP over the simplex and the sphere have been studied in [KK21]. To our best knowledge
there is no analysis of the convergence rate for general compact basic semialgebraic sets in
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the literature. In Theorem 2.5.9 we prove such a rate of convergence for the pseudo-moment
sequences used in polynomial optimization, deducing this speed from Theorem 2.2.14.

2.1.2 Structure of the chapter

The chapter is organized as follows.

• Section 2.1 describes the contributions and provide context for the chapter. In Sec-
tion 2.1.1 the relevant literature is presented, and our results are compared to already
existing contributions. Section 2.1.2 describes the organization of the chapter, and
finally Section 2.1.3 presents the most important notations of the chapter.

• Section 2.2 is devoted to the proof of Theorem 2.2.14. We explain the general idea of
the proof (Section 2.2.1) and show how to reduce the proof from general semialgebraic
sets to simpler domains. The general principles for this reduction are clarified in
Section 2.2.2, while in Section 2.2.3 the Łojasiewicz inequalities needed for this quan-
titative investigation are introduced. The reduction to simpler domains is completed
in Section 2.2.4, where we construct a SoS polynomial using polynomial Urysohn
functions. We conclude the proof of Theorem 2.2.14 in Section 2.2.5.

• Section 2.3 investigate a Łojasiewicz inequality under a regularity assumption, namely
constraint qualification condition. In Section 2.3.1 we study local properties of the dis-
tance and semialgebraic distance functions from S, using first order Taylor expansions.
In Section 2.3.2 show that the Łojasiewicz exponent is equal to one under regularity
conditions, and give different estimates for the Łojasiewicz constant.

• Section 2.4 analyzes the convergence for the optima of the Lasserre’s hierarchies. We
prove the first general polynomial convergence of these optima, as a corollary of the
effective Putinar’s Positivstellensatz, interpreting this result as a quantitave version of
Weierstrass approximation theorem.

• Section 2.5 describes the dual problem of approximation of positive polynomials,
namely the approximation of measures using positive linear functionals. We first
bound the Hausdorff distance of normalized positive linear functionals to measures,
and then bound the distance to probability measures in Section 2.5.1.

• Section 2.6 concludes the chapter, describing possible directions of research: the im-
provement of the bound that we obtained (Section 2.6.1), a generalization of Putinar’s
Positivstellensatz and Lasserre’s hierarchies (Section 2.6.2), applications to the gen-
eralized moment problem (Section 2.6.3) and finally the deduction of certificates of
emptiness for basic closed semialgebraic sets (Section 2.6.4).

2.1.3 Notations and assumptions

We denote ∥x∥22 = x2
1 + · · ·+ x2

n ∈ R[x1, . . . ,xn] = R[x]. We recall that a quadratic module Q(g)
is called Archimedean if r2 − ∥x∥22 ∈ Q(g) for some r ∈R>0, see Definition 1.1.20. However, to
simplify the proofs we assume that r = 1:

Normalization assumption : 1− ∥x∥22 ∈ Q(g). (2.1)
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We can always be in this setting by a change of variables if we start with an Archimedean
quadratic module: if r2 − ∥x∥22 ∈ Q(g) then 1 − ∥x∥22 ∈ Q(g(rx)) (i.e. the quadratic module
generated by gi(rx1, . . . , rxn)). Notice also that the normalization assumption implies that
S ⊂ S(1− ∥x∥22).

We list hereafter the most important notations that we will need through the chapter:

• f ∈R[x] is a polynomial in n variables of degree d = d(f ) = degf ;

• S = S(g) = S(g1, . . . , gr ) is the basic closed semialgebraic set defined by g = g1, . . . , gr ;

• D ⊃ S a simple compact domain containing the unit ball (and thus S, from (2.1));

• d(g) = maxi deggi is the maximum degree of the inequalities defining S;

• f ∗ = minx∈S f (x) is the minimum of f on S, and unless otherwise stated f ∗ > 0;

• ∥·∥ denotes the max norm of a polynomial on D, i.e. ∥h∥ = maxx∈D |h(x)|;

• ε(f ) = f ∗

∥f ∥ is a measure of how close is f to have a zero on S.

2.2 Proof of the effective Putinar’s Positivstellensatz

In this section, we develop the proof of Theorem 2.2.14.

2.2.1 Idea of the proof

Putinar’s Positivstellensatz gives a representation of a strictly positive polynomial on S(g)
as an element of the Archimedean quadratic module Q(g), and this shows that Q(g) is a
good inner approximation of Pos(S(g)), the convex cone of the nonnegative (or positive)
polynomials on S(g): Q(g) = Pos(S(g)). But why this is the case? We give an answer based on
a (multivariate) approximation theory, that will be the idea behind the proof of the Effective
Putinar’s Positivstellensatz.

Working with arbitrary semialgebraic sets S(g) is difficult: therefore, we try to reduce
the Proof of Putinar’s Positivstellensatz to simpler cases, where we have good properties of
approximation of positive functions. The best we can hope are (convex) compact domains
defined by affine inequalities, where we have good approximation properties of positive
polynomials. In particular, there are good approximation properties:

• for hypercubes, where we can use properties of the Bernstein basis [KL10] or polynomial
kernels [LS21] to deduce effective version of Schmüdgen’s Positivstellensatz;

• for simplexes, where we have effective versions of Polya’s theorem [PR01].

We show in the following that we can reduce to these cases, for Archimedean quadratic
modules.

Lemma 2.2.1. Let L(a) = a0 + a1x1 + · · ·+ anxn ∈R[x] be an affine polynomial such that L(a) ≥ 0
on S(1− ∥x∥22). Then L(a) ∈ Q(1− ∥x∥22).

Moreover, if L(a1), . . . ,L(ar) are affine polynomials such that S(L(a1), . . . ,L(ar)) ⊃ S(1− ∥x∥22),
then the preordering generated by L(a1), . . . ,L(ar) is contained in Q(1 − ∥x∥22), and precisely we
have:

Od(L(a1), . . . ,L(ar )) ⊂ Qd+r(1− ∥x∥22)
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Proof. Let L(a) be as in the hypothesis. Since 1 − ∥x∥22 is invariant under the action of the
orthogonal group, we can assume that L(a) = r + xi , r ≥ 1. Then notice that:

L(a) = (r − 1) + (1 + xi) = (r − 1) +
1
2

((1− x2
i + (1 + xi)

2)) (2.2)

= (r − 1) +
1
2

((1− ∥x∥22 +
∑
j,i

x2
j + (1 + xi)

2)) ∈ Q2(1− ∥x∥22).

Assume now S(L(a1), . . . ,L(ar )) ⊃ S(1− ∥x∥22). The previous point implies that

Qd(L(a1), . . . ,L(ar )) ⊂ Qd+1(1− ∥x∥2).

We need to show that products of the L(ai) are in Qd+1(1 − ∥x∥2) as well. But notice that
Q(1− ∥x∥2) is a preordering (i.e. it is closed under multiplication) since it is generated by a
single polynomial: therefore O(L(a1), . . . ,L(ar )) ⊂ Q(1− ∥x∥22) follows. More precisely, taking
products of equations of the form (2.2) we have:

Od(L(a1), . . . ,L(ar )) ⊂ Qd+r(1− ∥x∥22)

concluding the proof of the lemma.

Lemma 2.2.1 shows that, if we have a polyhedron defined by affine inequalities and an
approximation property of positive polynomials for the preordering defined by these affine
inequalities, then the same approximation property holds for the quadratic module generated
by any ball contained in the polyhedron. In particular this is true in the case:

• of the unit box [−1,1]n, where we have: Od(1± xi : i ∈ {1, . . . ,n}) ⊂ Qd+n(1− ∥x∥22);

• for the (scaled, translated) simplex

∆n = {x ∈Rn | 1 + x1 ≥ 0, . . . ,1 + xn ≥ 0,n
√
n− x1 − · · · − xn ≥ 0 },

where we have Od(1 + x1, . . .1 + xn,n
√
n− x1 − · · · − xn) ⊂ Qd+n+1(1− ∥x∥22)

It is also important to remark that we are not using Schmüdgen’s or Putinar’s Positivstellen-
satz for Q(1− ∥x∥22) or Q(g) to prove Lemma 2.2.1.

The discussion above shows that, if we can reduce the problem to one of these simpler
domains D, Putinar’s Positivstellensatz follows from the approximation theorem for positive
polynomials on D. Concretely, to reduce to this simpler domain we proceed as follows,
refining the approach in [Sch05c; NS07; Ave13]:

(i) we perturb f into a polynomial p = f − q such that p is strictly positive on D and
q = f − p is in the quadratic module Q(g);

(ii) we have a representation of p in Q(1− ∥x∥22) ⊂ Q(g), using the approximation theorem
on D and Lemma 2.2.1;

(iii) finally we deduce the representation f = p+ q ∈ Q(g).
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While the third point is trivial and the second point can be deduced from existing results
and Lemma 2.2.1, the first point is the key one: the next sections will be devoted to the
construction of p with degree bounds for its representation as an element of Q(g). It will
be clear that also the construction of q depends on approximation properties of positive
polynomials.

Notice that if f > 0 on D, then we can skip the first point and conclude immediately the
proof. Therefore, in the following we always assume that there exists x ∈ D \ S such that
f (x) ≤ 0.

2.2.2 Reduction to simpler domains: general principles

We start describing general principles to construct the polynomial q, that is used to reduce
the proof from S(g) to D, as mentioned in the previous section.

Let f > 0 on S = S(g), S compact, and denote f ∗ > 0 the minimum of f on S. Let D ⊃ S be
another compact domain that we will specify in Section 2.2.5. Our goal is to find q ∈ Q(g)
such that p = f − q > 0 on D. More precisely, we need the following bounds:

B.1 the minimum of p on D has to be of the same order of f ∗, say p = f − q ≥ f ∗

2 on D;

B.2 bounds on the degree m such that q ∈ Qm(g) (or, equivalently, on degp);

B.3 bounds on ∥p∥.

Furthermore, notice that we have q ≥ 0 on S since q ∈ Q(g).
We abstract temporarily the setting: we ignore degree and norm bounds, and we remove

the restriction to polynomials as well: we look for a continuous function u on D such that
f −u ≥ f ∗

2 on D and u ≥ 0 on S. To find such a u, it is natural to partition D using the sublevel
sets of f , for instance considering:

AB {x ∈D | f (x) ≤
3f ∗

4
}.

Recall that we are assuming that there exists x ∈ D \ S such that f (x) ≤ 0, so that A , ∅.
Furthermore, notice that A∩ S = ∅ since f ≥ f ∗ on S and f ≤ 3f ∗

4 on A. Then we observe the
following:

• On S, u has to be small, say 0 ≤ u(x) ≤ f ∗

2 for all x ∈ S, so that f −u ≥ f ∗

2 on S.

• On A, u has to be negative, say u(x) ≤ −∥f ∥ − f
∗

2 , so that f −u ≥ f ∗

2 on A.

The existence of such a continuous function u is guaranteed from Urysohn’s Lemma.

Theorem 2.2.2 (Urysohn’s Lemma, [Mun00, th. 33.1]). Let X be a normal topological space
(i.e. a topological space where any two disjoint closed sets can be separated by two disjoint open
sets). Let C1, C2 be disjoint closet sets and [a,b] ⊂ R. Then there exists a continuous function
u : X→ [a,b] such that u = a on C1 and u = b on C2.

Therefore, from Theorem 2.2.2 there exists an Urysohn function u : D → [−∥f ∥ − f ∗

2 ,
f ∗

2 ]

such that u(x) = f ∗

2 for all x ∈ S and u(x) = −∥f ∥ − f ∗

2 for all x ∈ A. Moreover, it is clear that
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f − u ≥ f ∗

2 on D and u ≥ 0 on S, as we wanted. Since we are in a metric space, a possible
explicit expression for u is:

u(x) = −
(
∥f ∥+ f ∗

) d(x,S)
d(x,S) + d(x,A)

+
f ∗

2

where d(x,Y ) denotes the Euclidean distance of x from Y . See also Section 2.2.3 for more on
the Euclidean distance function.

To solve our initial problem, we want to replace the continuous function u with a poly-
nomial q ∈ Q(g) that shares (approximately) the same properties of u, i.e. we want to find a
polynomial approximation q ∈ Q(g) of u. We refer then to q as a polynomial Urysohn function.

Write q = s
∑
i si

gi
∥gi∥
∈ Q(g) for some s ∈ R>0 and si ∈ Σ2 (the normalization from gi to

gi
∥gi∥

and the parameter s ∈ R>0 will be convenient later). As in the case of u, we want the
polynomial Urysohn function q to be sufficiently negative on A, and positive with the same
order of f ∗ on S. Furthermore, recall that A ∩ S = ∅, and thus for all x ∈ A there exists
i ∈ {1, . . . r} such that gi(x) < 0. Since A is compact, there exists δ ∈R>0 such that:

min{g1(x), . . . gr(x) } ≤ −δ for all x ∈ A. (2.3)

The parameter δ depends on A and g, i.e. on how f and g vary. It will be the main parameter
for the construction of the SoS coefficients si of q, and thus it will be the key ingredient to
obtain the bounds B.1, B.2 and B.3. Indeed:

(i) if gi (x)
∥gi∥
≤ −δ implies that si(x) is approximately one, then s

∑
i si(x) gi (x)

∥gi∥
will be negative

enough for x ∈ A, when s ∈R>0 is big enough;

(ii) if gi (x)
∥gi∥
≥ 0 implies that si(x) is small enough, then s

∑
i si(x) gi (x)

∥gi∥
will be small enough

for x ∈ S.

In Section 2.2.3, we analyze and bound the parameter δ in terms of f and g using appropriate
Łojasiewicz inequalities. In Section 2.2.4 we effectively construct the polynomial Urysohn
function q ∈ Q(g) following the ideas above, bounding its norm and the degree of its repre-
sentation as an element of the quadratic module Q(g). Finally, in Section 2.2.5 we conclude
the proof of the Effective Putinar’s Positivstellensatz.

2.2.3 Reduction to simpler domains: Łojasiewicz inequalities

We have seen in Section 2.2.2 that, for the effective construction of the polynomial Urysohn
function q, we need to compare on D the behavior of the function f with the behavior of
the functions g1, . . . , gr . In particular, we will relate δ (introduced in (2.3)) with ε(f ) = f ∗

∥f ∥ in
Proposition 2.2.9. To do that, we will need to consider some continuous semialgebraic functions.

Definition 2.2.3. We say that H : Rn→R is a continuous semialgebraic function if it is contin-
uous with respect to the Euclidean topology and its graph is a semialgebraic set in R

n+1.
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We introduce the two continuous semialgebraic functions that will be central to compare f
and g on D. For x ∈D, let

F(x)B −min
(
f (x)− f ∗

∥f ∥
,0

)
(2.4)

G(x)B −min
(
g1(x)
∥g1∥

, . . . ,
gs(x)
∥gs∥

,0
)
. (2.5)

The function G can be described as a semialgebraic distance to S, since x ∈ S if and only if
G(x) = 0. Using the language of error bounds in optimization, the function G can be also
considered as a residual function, see [Pan97]. Moreover, if δ is as in (2.3):

∀x ∈ A, G(x) ≥ δ (2.6)

and δ can be described precisely as a lower bound for the minimum of G on A.
To show how δ depends on ε(f ), we use Łojasiewicz inequalities, introduced by Łojasiewicz

in [Łoj59], following and expanding the approach in [NS07, lem. 13].

Theorem 2.2.4 ([Łoj59], [BCR98, cor. 2.6.7]). Let D be a closed and bounded semialgebraic set
and let F,G be two continuous semialgebraic functions from D to R such that F−1(0) ⊃ G−1(0).
Then there exists c,Ł ∈R>0 such that ∀x ∈D:

|F(x)|Ł ≤ c|G(x)|.

We use now Theorem 2.2.4 to compare F and the semialgebraic distance G (notice that it is
possible to apply the theorem in this case, since F−1(0) = {x ∈D | f (x) ≥ f ∗ } ⊃ G−1(0) = S).

Definition 2.2.5. We denote c1,Ł1 the smallest constant and exponent for Łojasiewicz in-
equalities (Theorem 2.2.4) between the functions F (2.4) and G (2.5): for all x ∈D,

F(x)Ł1 ≤ c1G(x). (2.7)

These constant and exponent are well-defined by Theorem 2.2.4, since the functions F and
G are continuous semialgebraic and S = G−1(0) ⊂ F−1(0).

To analyze these exponent and constant, we first relate F to the Euclidean distance function

E : D ∋ x 7→ E(x) = d(x,S).

This is a continuous semialgebraic function, see for instance [BCR98, prop. 2.2.8]. Recall also
that the Łojasiewicz Inequality for the distance function to the zero set of a polynomial or a
real analytic function is the original one, introduced in the polynomial case by Hörmander
[Hör58] and in the analytic case by Łojasiewicz [Łoj59].

In order to relate F and E, we need a Markov inequality.

Theorem 2.2.6 ([KR99, th. 3]). Let p ∈R[x]d be a polynomial of degree ≤ d. Then:∥∥∥∥∇p∥2∥∥∥ = max
x∈D
∥∇p(x)∥2 ≤

2d(2d − 1)
w(D)

∥p∥

where w(D), the width of D, is the minimal distance between two distinct parallel touching
hyperplanes.
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Proposition 2.2.7. Let F and G be as above. Then, if the normalization assumption (2.1) is
satisfied, we have the following Łojasiewicz inequality between F and D: ∀x ∈D,

F(x) ≤ 4d2 − 2d
w(D)

E(x) ≤ 2d2E(x) (2.8)

where w(D) is the width of D and d = deg(f ).

Proof. For y ∈D and z ∈ S such that E(y) = d(y,S) = ∥y − z∥, we have

F(y) = F(y)−F(z) ≤ LF∥y − z∥ = LFE(y) ≤ Lf E(y), (2.9)

where LF is the Lipschitz constant of F on D, Lf is the Lipschitz constant of f
∥f ∥ on D, and

the last inequality follows from LF ≤ Lf . From the mean value theorem we deduce that for
all x,y ∈ D we have

∣∣∣f (x)− f (y)
∣∣∣ ≤ ∥∥∥∥∇f ∥2∥∥∥∥∥∥x − y∥∥∥2

. Then from the definition of Lipschitz
constant and Theorem 2.2.6:

Lf ≤

∥∥∥∥∇f ∥2∥∥∥
∥f ∥

≤ 2d(2d − 1)
w(D)

≤ 2d2, (2.10)

where the last inequality holds true since S(1− ∥x∥22) ⊂D implies w(D) ≥ 2. From (2.9) and
(2.10) we finally deduce (2.8).

To complete the analysis we now need to relate the Euclidean distance E and the semi-
algebraic distance G using another Łojasiewicz inequality. This is possible, since G−1(0) =
E−1(0) = S.

Definition 2.2.8. We denote c,Ł the smallest constant and exponent for Łojasiewicz inequali-
ties (Theorem 2.2.4) between the functions E (2.4) and G (2.5): for all x ∈D,

E(x)Ł ≤ cG(x). (2.11)

We can now finally describe δ in terms of f and G.

Proposition 2.2.9. With F and G defined in (2.4) and (2.5), c,Ł defined in Definition 2.2.8 and
d = deg(f ), we have:

F(x)Ł ≤ 2Łd2ŁcG(x)

for all x ∈D. Moreover, we can choose δ = 1
c

(
ε(f )
8d2

)Ł
in Equation (2.3) and Equation (2.6).

Proof. The inequality F(x)Ł ≤ 2Łd2ŁcG(x) follows combining (2.11) and (2.8).
For the second part, let x ∈ A. Then F(x) = f ∗−f (x)

∥f ∥ ≥
f ∗

4∥f ∥ . Therefore, from the inequality
above: (

f ∗

4∥f ∥

)Ł

≤ F(x)Ł ≤ (2d2)ŁcG(x).

This implies that we can choose δ = 1
c

(
ε(f )
8d2

)Ł
in Equation (2.3) and Equation (2.6).

Proposition 2.2.9 gives a bound for c1,Ł1 in (2.7) using c,Ł, d and ε(f ). It would be possible
to work directly with c1,Ł1, but we prefer to use c and Ł, since c and Ł are independent of f :
indeed, all the dependence on f in the Łojasiewicz inequality in Proposition 2.2.9 is encoded
in F and d.
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2.2.4 Reduction to simpler domains: polynomial Urysohn functions

In this section, we construct the polynomial Urysohn function q ∈ Q(g) used to perturb f to
p = f − q > 0 on D, so that the bounds B.1, B.2 and B.3 in Section 2.2.2 are satisfied.

In particular, we describe the SoS coefficients of q using the square of a univariate poly-
nomial Urysohn function hk,m. We will call this univariate polynomial Urysohn function
hk,m a plateau polynomial, to recall its shape (see Figure 2.1) and to distinguish it from
the polynomial Urysohn function q. The final expression of q in terms of hk,m will be the
following:

q(x)B s
r∑
i=1

hk,m

(
gi(x)
∥gi∥

)2
gi(x)
∥gi∥

(2.12)

where s, m and k are positive real parameters, to be specified later in Proposition 2.2.11 and
Proposition 2.2.12, and hk,m is defined in Proposition 2.2.11. Notice that, since we are taking
the square of hk,m and s ≥ 0, naturally q ∈ Q(g). The final estimates that we obtain for ∥q∥ and
degq (or, equivalently, for ∥p∥ and degp) are presented in Proposition 2.2.13.

Let us now construct the plateau polynomial hk,m. This plateau polynomial depends on a
parameter k ∈R>0 controlling the minimum of the function, and it will be of degree m. Both
of these parameters will depend on δ ∈R>0 (defined in (2.6) or (2.3)), and thus in particular
on ε(f ) (see Proposition 2.2.9).

The plateau polynomial hk,m will be an approximation of a univariate function H(t), that
we define as a smooth Urysohn function for [−1,−δ] and [0,1] as a piecewise cubic spline:

H(t) =



1 t ∈ [−1,−δ]

−9(k−1)
2d3k t

3 − 27(k−1)
2d2k t2 − 27(k−1)

2dk t − 7k−9
2k t ∈ [−δ,−δ+ δ

3 ]
9(k−1)
d3k t3 + 27(k−1)

2d2k t2 + 9(k−1)
2dk t + k+1

2k t ∈ [−δ+ δ
3 ,−δ+ 2δ

3 ]

−9(k−1)
2d3k t

3 + 1
k t ∈ [−δ+ 2δ

3 ,0]
1
k t ∈ [0,1]

(2.13)

Notice that δ controls the width of the step of H(t), see Figure 2.1. The piecewise polynomial
function H(t) is a C2 cubic spline on [−1,1]. Indeed, an explicit computation shows that
the functions H,H (1),H (2) are absolutely continuous, and moreover the piecewise constant
function H (3) is of total variation V = 216(k−1)

δ3k . Finally notice that H is non-increasing on
[−1,1].

We are now ready to construct the plateau polynomial hk,m, in such a way that h2
k,m is a

uniform approximation of H with error ≤ 1
k , and giving estimates for m using k and δ. In

particular, in Proposition 2.2.11 we define hk,m as an approximation of H by a polynomial
∈R[t], using Chebyshev approximation (see Figure 2.1):

Theorem 2.2.10 (Chebyshev approximation on [−1,1] [Tre13]). For an integer u, let h :
[−1,1]→ R be a function such that its derivatives through h(u−1) are absolutely continuous on
[−1,1] and its u-th derivative h(u) is of bounded variation V . Then its Chebyshev approximation
pm of degree m satisfies:

∥h− pm∥ ≤
4V

πu(m−u)u

Proposition 2.2.11. There exists a univariate polynomial hk,m ∈ R[t], that we call plateau
polynomial, such that:
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Figure 2.1: Plateau polynomial

• deghk,m =m with m =
⌈

6
δ

3
√

4(k−1)
π + 3

⌉
;

• for t ∈ [−1,−δ] we have 1− 1
k ≤ hk,m(t)2 ≤ 1 + 1

k ;

• for t ∈ [0,1] we have hk,m(t)2 ≤ 2
k ;

• for t ∈ [−1,1] we have 0 ≤ hk,m(t)2 ≤ 1 + 1
k .

Proof. We construct a degree m Chebyshev approximation hk,m ∈R[t] of H such that∥∥∥H − hk,m∥∥∥ ≤ 1
3k

(2.14)

As H , H (1) and H (2) are absolutely continuous and H (3) has total variation V = 216(k−1)
δ3k , by

Theorem 2.2.10, it suffices to take m such that 4V
3π(m−3)3 ≤ 1

3k , i.e.

m ≥ 3

√
4V k
π

+ 3 =
6
δ

3

√
4(k − 1)
π

+ 3,

which proves the first point.
The other points follow from (2.14) and the definition of H in (2.13). For instance, if

t ∈ [−1,−δ] then 0 ≤ 1− 1
3k ≤ hk,m(t) ≤ 1 + 1

3k (for the first inequality, k will be selected later to
be ≥ 2 later). Therefore:

hk,m(t)2 ≥
(
1− 1

3k

)2
= 1− 2

3k
+

1
9k2 ≥ 1− 2

3k
≥ 1− 1

k

The other points can be proven similarly.

Proposition 2.2.11 is the first step to get the bounds B.2 and B.3 in Section 2.2.2.
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Remark. Our construction of the perturbed polynomial p = f − q is similar to the one in
[Sch05c], [NS07], or [Ave13] where the polynomial hm,k is also a univariate (sum of) squares.
Their choice for hk,m is simpler, but it results in worst bounds for the degree and the norm
of q, than the one we obtain using the plateau polynomial hk,m. These univariate SoS
coefficients have also been used in [KS15], to prove that one can uniformly approximate
positive polynomials on compact sets, using the proper subcone of the quadratic module
Q(g) where the SoS coefficient of gi is of the form

∑
j(hj(gi))

2, for hj univariate. They derive a
Putinar’s Positivstellensatz and apply it to Polynomial Optimization problems. We describe
the equivalent of this uniform approximation result in Theorem 2.4.1.

We now turn our attention to the estimate of k and s. Recall that these parameters have to
be chosen in such a way, for all x ∈D

p(x) = f (x)− q(x) = f (x)− s
r∑
i=1

hk,m

(
gi(x)
∥gi∥

)2
gi(x)
∥gi∥

≥
f ∗

2
(2.15)

see B.1 in Section 2.2.2.

Proposition 2.2.12. Assume that the normalization assumption (2.1) is satisfied. If the inequalities

s >
6∥f ∥
δ

; (2.16)

k >
4(r − 1)
δ

+ 1; (2.17)

k >
8rs
f ∗

; (2.18)

are satisfied, then (2.15) is satisfied for all x ∈D.

Proof. Let x ∈ A so that G(x) ≥ δ, i.e. min{ g1(x)
∥g1∥

, . . . , gr (x)
∥gr∥
} ≤ −δ (see (2.3) and (2.6)), and

without loss of generality assume g1(x)
∥g1∥
≤ −δ. Notice that from Proposition 2.2.11 we have

hk,m( g1(x)
∥g1∥

)2 ≥ 1− 1
k and, if g1(x)

∥g1∥
≥ 0, hk,m( g1(x)

∥g1∥
)2 ≤ 2

k . Then:

p(x) = f (x)− s
r∑
i=1

hk,m

(
gi(x)
∥gi∥

)2
gi(x)
∥gi∥

≥ f (x) + sδ(1− 1
k

)− s
r∑
i=1

hk,m

(
gi(x)
∥gi∥

)2
gi(x)
∥gi∥

≥ f (x) + sδ(1− 1
k

)− s2(r − 1)
k

= f (x) + s
δ
2

(1− 1
k

) + s(
δ
2

(1− 1
k

)− 2(r − 1)
k

).

Assuming k ≥ 2, from Equation (2.16) and Equation (2.17), we have respectively

f (x) + s
δ
2

(1− 1
k

) > −∥f ∥+
3
2
∥f ∥ =

∥f ∥
2
≥
f ∗

2

and
δ
2

(1− 1
k

)− 2(r − 1)
k

> 0
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, so that p(x) > f ∗

2 for x ∈ A.

By Equation (2.18), 3f ∗

4 −
2sr
k > f ∗

2 . By the normalization assumptions (2.1) and as h2
k,m is

upper bounded by 2
k on [0,1] (see Proposition 2.2.11), we therefore deduce that for x ∈D \A:

p(x) = f (x)− s
r∑
i=1

hk,m

(
gi(x)
∥gi∥

)2
gi(x)
∥gi∥

≥
3f ∗

4
− sr 2

k
=

3f ∗

4
− 2sr
k
>
f ∗

2

This shows that p(x) > f ∗

2 for x ∈D = A∪ (D \A).

Proposition 2.2.11 and Proposition 2.2.12 determine constraints that the parameters k,
s and m have to satisfy to obtain the bound B.1 (or more explicitly (2.15)). With these
constraints, we can finally obtain the bounds B.2 and B.3 as well.

Proposition 2.2.13. Let p and q be as in (2.15), with (2.16), (2.17), (2.18) and the normalization
assumptions (2.1) satisfied. Let d(g) = maxi deggi . Then

q ∈ Q2md(g)+d(g)(g) (2.19)

m =O(c
4
3 r

1
3 24Łd

8Ł
3 ε(f )−

4Ł+1
3 ). (2.20)

∥p∥ =O(∥f ∥23Łrcd(f )2Łε(f )−Ł), (2.21)

degp =O(24Łr
1
3 c

4
3d(g)d(f )

8Ł
3 ε(f )−

4Ł+1
3 ). (2.22)

Proof. Equation (2.19) follows immediately from the definition of q, see eq. (2.12).
Now, let d = d(f ) = degf . We proceed bounding m in terms of ε(f ).

We can choose m =
⌈

6
δ

3
√

4(k−1)
π + 3

⌉
from Proposition 2.2.11, thus it is enough to bound

k and δ. From Proposition 2.2.9 we can choose δ = 1
c
( ε(f )

8d2 )Ł = c−1ε(f )Ł2−3Łd−2Ł. From
Equation (2.16) we deduce that:

s =O(
∥f ∥
δ

) =O(∥f ∥c23Łd2Łε(f )−Ł). (2.23)

From Equation (2.17) we deduce that k = O( rδ ), while from Equation (2.18) (together with
Equation (2.16)) we deduce that k =O( r

ε(f )δ ): the latter has a higher order in terms of ε(f ),
and thus finally:

k =O(c23Łrd2Łε(f )−(Ł+1)). (2.24)

Now we plug Equation (2.24) in m =
⌈

6
δ

3
√

4(k−1)
π + 3

⌉
and obtain:

m =O(
k

1
3

δ
) =O((c

1
3 r

1
3 2Łd

2Ł
3 ε(f )−

Ł+1
3 )(c23Łd2Łε(f )−Ł)) =O(c

4
3 r

1
3 24Łd

8Ł
3 ε(f )−

4Ł+1
3 ). (2.25)

From the properties of hk,m (Proposition 2.2.11) and Equation (2.23) we obtain:

∥p∥ ≤ ∥f ∥+ s
r∑
i=1

∥∥∥∥∥∥hk,m
(
gi(x)
∥gi∥

)2
gi(x)
∥gi∥

∥∥∥∥∥∥ ≤ ∥f ∥+ sr(1 +
1
k

)

≤ ∥f ∥+ 2sr =O(∥f ∥+ ∥f ∥cr23Łd2Łε(f )−Ł)

=O(∥f ∥cr23Łd2Łε(f )−Ł).
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Similarly, using Equation (2.25) we have:

deg(p) = deg(f − q) ≤max
i
{deg(hk,m(gi/∥gi∥)2gi/∥gi∥), i = 1, . . . , r}

=O(2md(g) + d(g)) =O(24Łr
1
3 c

4
3d(g)d

8Ł
3 ε(f )−

4Ł+1
3 ),

where d(g) = maxi deggi .

In this section, we have effectively constructed a polynomial Urysohn function q ∈ Q(g),
with bounds B.1, B.2 and B.3 as in Section 2.2.2, in order to reduce the problem from
the semialgebraic set S to the domain D. The key ingredient has been the construction
of SoS coefficients hk,m(gi/∥gi∥)2 ∈ Σ2 from uniform polynomial approximation. These SoS

coefficients may be seen as a polynomial approximation of the Urysohn function H( gi (x)
∥gi∥

),
where H(t) is the function introduced in (2.13).

It is important to remark that the cone Σ2 with the grading given by the total degree, that
is used to approximate continuous positive functions on D, can be replaced with any other
hierarchy of cones of functions with similar approximation properties. In this way we obtain
another approximation of H( gi (x)

∥gi∥
). This approximation can be used to construct similarly a

function q with bounds B.1, B.2 and B.3. Indeed, the proofs above do not require to work
with polynomials or sums of squares, but only Łojasiewicz inequalities and approximation
properties of positive functions are needed. See also Section 2.6.2.

2.2.5 End of the proof

We can now conclude the proof of the main theorem, following the idea in Section 2.2.1.

Theorem 2.2.14. Assume n ≥ 2 and let g1, . . . , gr ∈R[x] = R[x1, . . . ,xn] satisfying the normaliza-
tion assumption (2.1). Let f ∈ R[x] such that f ∗ = minx∈S f (x) > 0. Let c, Ł be the Łojasiewicz
coefficient and exponent given by Definition 2.2.8. Then f ∈ Qℓ(g) if

ℓ ≥O(n325nŁrnc2nd(g)nd(f )3.5nŁε(f )−2.5nŁ)

= γ(n,g)d(f )3.5nŁε(f )−2.5nŁ,

where γ(n,g) ≥ 1 depends only on n and g.

In the proof, we choose D = [−1,1]n and we use an effective version of Schmüdgen’s
Positivstellensatz for the box [−1,1]n.

Theorem 2.2.15 ([LS21]). Let f ∈R[x], degf = d and f > 0 on [−1,1]n. Let fmin = minx∈[−1,1]n f (x)
and fmax = maxx∈[−1,1]n f (x). Then there exists a constant C(n,d) (depending only on n and d)
such that f ∈ Onr(1± xi : i ∈ {1, . . . ,n}), where:

r ≥max

πd√2n,

√
C(n,d)(fmax − fmin)

fmin

 .
Moreover the constant C(n,d) is a polynomial in d for fixed n:

C(n,d) ≤ 2π2d2(d + 1)nn3 =O(dn+2n3)
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Our assumption is that Q(1 − ∥x∥22) ⊂ Q(g), while Theorem 2.2.15 involves O(1 ± xi : i ∈
{1, . . . ,n}). But we have already shown in Lemma 2.2.1 that we can move from the latter to
the former with a constant degree shift.

We are now ready to prove the main theorem.

Proof of Theorem 2.2.14. We choose D = [−1,1]n. Let p = f −q = f −s
∑r
i=1hk,m(gi/∥gi∥)2gi/∥gi∥

be as in Equation (2.15), with s,k,m satisfying Equation (2.16), Equation (2.17), Equation (2.18)
and hk,m as in Proposition 2.2.11. In particular:

• p ≥ f ∗

2 on [−1,1]n from Proposition 2.2.12;

• ∥p∥ =O(23Łr cd(f )2Ł∥f ∥ε(f )−Ł) from Equation (2.21);

• degp =O(24Łr
1
3 c

4
3d(g)d(f )

8Ł
3 ε(f )−

4Ł+1
3 ) from Equation (2.22).

We apply Theorem 2.2.15 to p: p ∈ Onℓ0
(1±xi : i ∈ {1, . . . ,n}), if ℓ0 ≥

√
C(n,degp)(pmax−pmin)

pmin
. Recall

also from Theorem 2.2.15 that C(n,m) =O(n3mn+2). We now deduce the asymptotic order of
ℓ0:√

C(n,degp)(pmax − pmin)
pmin

=O
(√
n3(degp)n+2(

2∥p∥
f ∗

+ 1)
)

=O
(√
n3(24Łr

1
3 c

4
3d(g)d(f )

8Ł
3 ε(f )−

4Ł+1
3 )n+2 ∥f ∥2

3Łrcd(f )2Łε(f )−Ł

f ∗
)

=O
(
(n32(4n+11)Łr

n+5
3 c

4n+11
3 d(g)n+2d(f )

2(4n+11)Ł
3 ε(f )−

(4Ł+1)n+11Ł+5
3 )

1
2
)

=O
(
n

3
2 2

(4n+11)Ł
2 r

n+5
6 c

4n+11
6 d(g)

n+2
2 d(f )

(4n+11)Ł
3 ε(f )−

(4Ł+1)n+11Ł+5
6

)
,

so we can choose ℓ0 =O(n
3
2 2

(4n+11)Ł
2 r

n+5
6 c

4n+11
6 d(g)

n+2
2 d(f )

(4n+11)Ł
3 ε(f )−

(4Ł+1)n+11Ł+5
6 ) and p ∈ Onℓ0

(1±
xi : i ∈ {1, . . . ,n}). Now, from Lemma 2.2.1 we have Onℓ0

(1± xi : i ∈ {1, . . . ,n}) ⊂ Qnℓ0+n(1− ∥x∥22).
Moreover from the normalization assumption we have that 1 − ∥x∥22 ∈ Q(g). In particular
if 1 − ∥x∥22 ∈ Qℓ1

(g) and thus Qnℓ0+n(1 − ∥x∥22) ⊂ Qnℓ0+n+ℓ1
(g), i.e. choosing ℓ = nO(ℓ0) =

O(n
5
2 2

(4n+11)Ł
2 r

n+5
6 c

4n+11
6 d(g)

n+2
2 d(f )

(4n+11)Ł
3 ε(f )−

(4Ł+1)n+11Ł+5
6 ) we have p ∈ Qℓ(g). Finally notice that

f = (f − p) + p and

• p ∈ Qℓ(g) from the discussion above;

• q = f − p ∈ Qℓ(g) from Proposition 2.2.13, since from the estimate of m in Proposi-
tion 2.2.13 we need a degree ≤ ℓ for the representation of q in Q(g).

Then f = p+ q ∈ Qℓ(g) with

ℓ =O(n
5
2 2

(4n+11)Ł
2 r

n+5
6 c

4n+11
6 d(g)

n+2
2 d(f )

(4n+11)Ł
3 ε(f )−

(4Ł+1)n+11Ł+5
6 ). (2.26)

We simplify the exponents for readability. Recall that Ł ≥ 1 and c ≥ 1, and assume n ≥ 2.
Under these assumptions the inequalities (4n + 11)Ł ≤ 10nŁ, n + 5 ≤ 6n, 4n + 11 ≤ 10n,
n+ 2 ≤ 2n and (4Ł + 1)n+ 11Ł + 5 ≤ 14nŁ hold. Therefore we deduce that f ∈ Qℓ(g) if

ℓ ≥O(n325nŁrnc2nd(g)nd(f )3.5nŁε(f )−2.5nŁ)

= γ(n,g)d(f )3.5nŁε(f )−2.5nŁ,
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where γ(n,g) =O(n325nŁrnc2nd(g)n) ≥ 1.

Remark. From Equation (2.26), we have a sharper bound than the one presented in Theo-
rem 2.2.14. The exponents in Theorem 2.2.14 have been simplified for the sake of readability
and are not optimal.

2.3 Łojasiewicz inequalities for regular semialgebraic sets

We have seen in the previous section that the Łojasiewicz exponent Ł and constant c play a
key role in the bound of the Effective Putinar’s Positivstellensatz. In this section we study
these parameters under generic regularity conditions that are common in optimization. In
particular, we show that under regularity conditions, the Łojasiewicz exponent Ł is equal to
one, and we have explicit estimates for c.

We proceed proving explicitly the Łojasiewicz inequalities for the Euclidean distance E
and the semialgebraic distance G. The proof goes as follows:

(i) we work first locally at z ∈ ∂S considering only the gi such that gi(z) = 0;

(ii) we consider the cone of y ∈D such that E(y) = d(y,S) =
∥∥∥y − z∥∥∥

2
;

(iii) we estimate
∥∥∥y − z∥∥∥

2
using the linear part of the active inequalities that are negative at

y, see Proposition 2.3.6;

(iv) we extend from the linear part of the inequalities to the inequalities;

(v) we move from results local at z ∈ ∂S to global results, showing that Ł = 1 and giving
estimates for c (see Theorem 2.3.9 and Theorem 2.3.13).

2.3.1 Minimizers of the distance function

In this section, we work on points (i), (ii) and (iii). We first present an example showing that
we can expect Ł = 1 under regularity conditions.

Example 2.3.1. Consider the univariate polynomial g(x) = ε2−x2

1−ε2 and let S = S(g) = [−ε,ε] ⊂
[−1,1]. Now let x ∈ [−1,1] and E,G be as in Definition 2.2.8. It is easy to show that:

E(x) ≤ 1− ε2

2ε
G(x).

Indeed, if for example ε ≤ x ≤ 1, we have E(x) = x − ε, G(x) = x2−ε2

1−ε2 = (x+ε)(x−ε)
1−ε2 and D(x) =

1−ε2

x+ε G(x) ≤ 1−ε2

2ε G(x). This shows that we can choose Ł = 1 for all ε > 0.
On the other hand if ε = 0, i.e. g(x) = −x2 and S = {0}, we have a singular equation. A

simple computation shows that it is not possible to choose Ł = 1 in this case. The minimum Ł
satisfying the inequality is Ł = 2.

We introduce a regularity condition needed to prove Ł = 1, generalizing Example 2.3.1.
This is a standard condition in optimization (see [Ber99, sec. 3.3.1]), which implies the
so-called Karush–Kuhn–Tucker (KKT) conditions [Ber99, prop. 3.3.1].
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Definition 2.3.2. Let x ∈ S(g). The active constraints at x are the constraints gi1 , . . . , gim such
that gij (x) = 0. We say that the Constraint Qualification Condition (CQC) holds at x if for all
active constraints gi1 , . . . , gil at x, the gradients ∇gi1(x), . . . ,∇gim(x) are linearly independent.

We start working locally. For z ∈ S we denote

I = I(z) = { i ∈ {1, . . . , r} | gi(z) = 0 }

the indices corresponding to the active constraints at z. For y ∈ D and z ∈ S such that
E(y) =

∥∥∥y − z∥∥∥ we denote:

• g = g(y) = (g1(y), . . . , gr(y));

• gI = gI (y) = (gi(y) : i ∈ I);

• J = J(z) = Jac(gI )(z) =
(
∂gi
∂xj

)
i∈I, j∈{1,...,n}

the transposed Jacobian matrix at z, that is the

matrix whose columns are the entries of the gradients ∇gi(z) of the active constraints at
z;

• NI = NI (z) = Gram(∇gi(z) : i ∈ I) = J tJ the Gram matrix at z;

• to simplify the notations, hereafter we assume that ∥g∥ = 1.

Definition 2.3.3. We denote σJ (z) = σmin(J(z)) be the smallest singular value σmin(J(z)) of
J(z).

As NI = J tJ , notice that
∥∥∥N−1

I

∥∥∥ = σmin(NI )−1 = σmin(J)−2 = σJ (z)−2.
We show now how we can use J = J(z) to describe the cone of points y such that E(y) =

d(y,S) =
∥∥∥y − z∥∥∥

2
.

Lemma 2.3.4. Let y ∈Rn \ S(g), and let z be a point in S = S(g) minimizing the distance of y to
S, that is E(y) = d(y,S) =

∥∥∥y − z∥∥∥
2
. If {gi : i ∈ I } are the active constraints at z and the CQC hold,

then there exist λi ∈R≥0 such that:

y − z =
∑
i∈I
λi∇(−gi)(z) = −Jλ.

Proof. Fix y ∈Rn. Notice that y − x = −∇∥y−x∥
2
2

2 , where the gradient is taken w.r.t. x. Moreover
z ∈ S such that d(y,S) =

∥∥∥y − z∥∥∥
2

is a minimizer of the following Polynomial Optimization
Problem:

min
x

∥∥∥y − x∥∥∥2
2

2
: gi(x) ≥ 0 ∀i ∈ {1, . . . , r}.

Since the CQC holds at z, we deduce from [Ber99, prop. 3.3.1] that the KKT conditions hold.
In particular:

∇
∥∥∥y − z∥∥∥2

2
2

=
∑
i∈I
λi∇gi(z)

For some λi ∈R≥0. Therefore y − z = −∇d(y,z)2

2 =
∑
i∈I λi∇(−gi)(z).
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Let λ = λ(y) := (λi(y); i ∈ I) be the column vector in Lemma 2.3.4, so that (y − z) = −Jλ.
Note that λ(y) depends linearly on y − z and is given by the formula

λ(y) = −N−1
I J

t(y − z).

Then, using Taylor’s expansion at z and Lemma 2.3.4, we obtain:

gI = gI (y) = J t(y − z) + h = −NIλ+ h (2.27)

and the Mean-value form for the remainder in Taylor’s theorem gives:

∥h∥2 ≤ c2

∥∥∥y − z∥∥∥2
2
, (2.28)

where c2 = c2(g) = maxx∈D{∥Hess(gi)∥2, i = 1, . . . , r} denotes an upper bound for the second
derivative of gI on D.

We keep working locally at z ∈ S, and in particular considering only the active constraints
at z, whose indexes are denoted I(z) ⊂ {1, . . . , r }. Notice that, if y ∈ D \ S is close enough to
z ∈ ∂S, then gi(y) ≤ 0 implies gi(z) = 0: so only the active constraints at z and negative at y
determine the value of G(y) in a neighborhood of z. We introduce a notation to identify those
indices:

I− = I−(y,z) = { j ∈ I = I(z) | gj(y) ≤ 0 }. (2.29)

Moreover we introduce the function G̃−(y) =
(∑

j∈I− gj(y)2
) 1

2 as intermediate step between

G and E. Indeed, it is easy to upper bound G̃−(y) in terms of G(y):

G̃−(y) =
(∑
j∈I−

gj(y)2
) 1

2 ≤
√
|I−|max

j∈I−

∣∣∣gj(y)
∣∣∣ ≤ √nG(y). (2.30)

For the last inequality, we are using the fact that CQC at z implies |I−| ≤ |I | ≤ n, and recall
that we are assuming that ∥gi∥ = 1 for all i. So we only need to find an upper bound for E(y)
in terms of G̃−(y). In order to do that, let gI (y) = g−(y) + g+(y), where:

• g−(y) = (min{0, gi(y) : i ∈ I}) and

• g+(y) = (max{0, gi(y) : i ∈ I}),

and notice that
∥∥∥g−(y)

∥∥∥
2

= G̃−(y).
We proceed similarly to analyze the linear part of gI . In the sequel we denote

γ = γ(y) = J t(y − z) = −NIλ(y) = NIλ (2.31)

the linear part of gI .
The idea is to show first the inequality for the linear part γ(y), and then extend it to gI . In

particular we want to relate the norm
∥∥∥y − z∥∥∥

2
= ⟨y − z,y − z⟩, computed with respect to the

euclidean scalar product, with the norm of γ(y) w. r. t. another inner product. Exploiting
(2.31), one see that

⟨y − z,y − z⟩ = ⟨λ,λ⟩NI
= ⟨γ ,γ⟩N−1

I
(2.32)

where ⟨·, ·⟩NI
denotes the inner product induced by NI : ⟨λ,λ⟩NI

= λtNIλ. Notice that both NI

and N−1
I define an inner product since they are positive definite.
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As in the case of gI , let

Ĩ− = Ĩ−(y,z) = { i ∈ I(z) | γi(y) ≤ 0 } (2.33)

and γ(y) = γ−(y) +γ+(y), where:

• γ−(y) = (min{0, γi(y)} : i ∈ I) and

• γ+(y) = (max{0, γi(y)} : i ∈ I).

Lemma 2.3.5. With the notation above, we have:

• ⟨γ−,γ⟩N−1
I
≥ 0;

• ⟨γ+,γ⟩N−1
I
≤ 0

• ⟨γ+,γ−⟩N−1
I
≤ 0

Proof. For the first inequality notice that ⟨γ−,γ⟩N−1
I

= −γ t−λ = −
∑
i∈Ĩ− γiλi ≥ 0 because all λi

are non-negative. A similar argument shows the second inequality. Finally ⟨γ+,γ−⟩N−1
I

=
⟨γ+,γ⟩N−1

I
− ⟨γ+,γ+⟩N−1

I
≤ 0 as claimed.

The following observation, crucial for the sequel, shows that we can bound
∥∥∥y − z∥∥∥

2
only in

terms of the negative γi .

Proposition 2.3.6. With the notation above, we have:∥∥∥y − z∥∥∥
2
≤ 1
σJ (z)

(∑
i∈Ĩ−

γ2
i (y)

) 1
2 =

1
σJ (z)

∥∥∥γ−∥∥∥2
(2.34)

where σJ (z) is the smallest singular value of J (see Definition 2.3.3).

Proof. Note that Lemma 2.3.5 implies the proposition since it shows that

⟨γ ,γ⟩N−1
I

= ⟨γ+,γ⟩N−1
I

+ ⟨γ−,γ+⟩N−1
I

+ ⟨γ−,γ−⟩N−1
I
≤ ⟨γ−,γ−⟩N−1

I

and this allows us to complete (2.32) to get (2.34):∥∥∥y − z∥∥∥ = ⟨y − z,y − z⟩ ≤ ⟨γ ,γ⟩N−1
I
≤ ⟨γ−,γ−⟩N−1

I
≤ 1
σJ (z)

(∑
i∈Ĩ−

γ2
i (y)

) 1
2 =

1
σJ (z)

∥∥∥γ−∥∥∥

2.3.2 Łojasiewicz distance inequality

We can now describe Łojasiewicz exponent and constant between E and G when constraint
qualification condition (Definition 2.3.2) holds. Recall that we are assuming that ∥gi∥ = 1 for
all i for sake of simplicity.

Let σJ = infz∈∂S σJ (z) = infz∈∂S σmin(J(z)). Notice that σJ > 0 as ∂S is compact and σmin(J(z))
is lower semicontinuous. Let I = I(z) and let I− = I−(y) = {i ∈ I : gi(y) ≤ 0}. Note that we do
not have necessarily that I− = Ĩ− (see Equation (2.29) and Equation (2.33)): the sign of gi(y)
might be different from the sign of γi(z).

We want to move from γ to gI . To do this, we determine how close are g− and γ−.
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Lemma 2.3.7. With the notation above, we have:∣∣∣∥g−∥ − ∥∥∥γ−∥∥∥∣∣∣ ≤ c2

∥∥∥y − z∥∥∥2
.

Proof. Note that if gi(y) and γi(y) are of different signs then their absolute values are bounded
by

∣∣∣gi(y)−γi(y)
∣∣∣. Therefore, by standard triangle inequality,∣∣∣∥g−∥ − ∥∥∥γ−∥∥∥∣∣∣ =
∣∣∣(∑
i∈I−

g2
i (y)

)1/2
−
(∑
i∈Ĩ−

γ2
i (y)

)1/2∣∣∣ ≤ (∑
i∈I

(gi(y)−γi(y))2
)1/2

= ∥h∥ ≤ c2

∥∥∥y − z∥∥∥2
,

where the latter inequality follows from (2.28).

We first show the Łojasiewicz inequality with Ł = 1 locally at z.

Proposition 2.3.8. If E(y) =
∥∥∥y − z∥∥∥ ≤ σJ

2c2
then

E(y) ≤ 2
√
n

σJ
G(y).

Proof. Fix y < S such that E(y) ≤ σJ
2c2

and z ∈ ∂S such that
∥∥∥y − z∥∥∥ = E(y). If E(y) ≤ σJ

2c2
or,

equivalently c2
σJ
E2(y) ≤ 1

2E(y), then by Proposition 2.3.6 and Lemma 2.3.7 we have

E(y) =
∥∥∥y − z∥∥∥ ≤ 1

σJ

∥∥∥γ−∥∥∥ ≤ 1
σJ
∥g−∥+

1
σJ

c2

∥∥∥y − z∥∥∥2

≤ 1
σJ
∥g−∥+

1
2
E(y).

This implies the claimed inequality as ∥g−∥ = G̃−(y) ≤
√
nG(y) (since |I−(z,y)| ≤ |I(z)| ≤ n under

CQC at z).

We are finally able to prove that Ł = 1. We denote U = {y ∈ D | E(y) < σJ
2c2
} the open

neighborhood of S of points at distance < σJ
2c2

.

Theorem 2.3.9. Suppose that the CQC holds at every point of S(g). Then, for all y ∈D,

E(y) ≤ cEG(y),

with cE = sup{ E(y)
G(y) | y ∈D \ S} ≤max(2

√
n

σJ
, diam(D)

G∗ ), where

G∗ = min
y∈D\U

G(z) > 0 (2.35)

and diam(D) = maxx,y∈D
∥∥∥x − y∥∥∥.

Proof. If E(y) ≤ σJ
2c2

then by Proposition 2.3.8 we have

E(y) ≤ 2
√
n

σJ
G(y).

Otherwise:

E(y) = ∥y − z∥ ≤ diam(D) ≤ diam(D)
G(y)
G∗

,

since y,z ∈D (notice that, as G(x) > 0 on the compact set D \U , we have G∗ > 0).
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We want now to give another description of the constant cE in Theorem 2.3.9 as distance
from singular systems, following the approach of [Cuc+09]. In other words, we show how cE
can be interpreted as the condition number of g. See also [BC13] for more about condition
numbers.

For d = (d1, . . . ,dr), let R[x]d B R[x]d1
× · · · ×R[x]dr denote the systems of polynomials of

bounded degree, which we equip with the Euclidean norm ∥·∥ with respect to the monomial
basis in any component (another choice could be the apolar or Bombieri-Weil norm ∥·∥di in
degree ≤ di in every component, see [Cuc+09]).

We say that a system g is singular if there exists a point in x ∈ Rn such that x ∈ S(g) and
the active constraints have rank deficient Jacobian at x. In other words, this is the set of
systems g such that CQC does not hold at some point of the semi-algebraic set S defined by
g. Formally:

SingB
{
g ∈R[x]d | ∃x ∈Rn :

∨
Z⊂{1,...,r}

(
gj(x) = 0 ∀j ∈ Z

∧ gj(x) > 0 ∀j < Z

∧ rankJac(gj(x) : j ∈ Z) <min(n, |Z |)
) } (2.36)

We want to relate the constant cE in Theorem 2.3.9 with d(g,Sing), the distance from g to
the singular systems induced from the Euclidean norm. Notice that Sing is a semi-algebraic
set (by Tarski–Seidenberg principle [BCR98, th. 2.2.1] or quantifier elimination[BCR98,
prop. 5.2.2]), and therefore d(·,Sing) is a well-defined continuous semi-algebraic function
[BCR98, prop. 2.2.8].

Lemma 2.3.10. Under the normalization assumption (2.1) and with the previous notations, we
have d(g,Sing) ≤

√
2σJ .

Proof. Let z ∈ ∂S be such that σJ = σmin(J(z)). Since the CQC hold at z, rank J(z) is maximal.
On the following, we assume that all the inequalities are active at z, the general case being a
trivial generalization. By the Eckart-Young theorem, the distance of J(z) from rank deficient
matrices is equal to σmin(J(z)): there exists P (of rank one) such that J(z)− P has not maximal
rank and ∥P ∥F = ∥P ∥2 = σmin(J(z)). Now consider a system l of affine equations vanishing at z
and such that Jac(l)(z) = P . Therefore, g− l ∈ Sing since Jac(g− l)(z) = J(z)− P is rank deficient
and (g− l)(z) = 0. Now, notice that:

d(g,Sing) ≤ ∥g− (g− l)∥2 = ∥l∥2
Write l = l1, . . . lr and li(x) = li0 +

∑n
j=1 lijxj . By hypothesis li(z) = 0 and ∥z∥22 ≤ 1 (from the

normalization assumption). Therefore:

l2i0 = (
n∑
i=1

lixi)
2 ≤ ∥(li1, . . . , lin)∥22 ∥z∥

2
2 ≤

n∑
j=1

l2ij

Notice also that σ2
J = ∥P ∥2F =

∑r
i=1

∑n
j=1 l

2
ij , and thus:

d(g,Sing)2 ≤ ∥l∥22 =
r∑
i=1

n∑
j=1

l2ij +
r∑
i=1

l2i0 ≤ 2
r∑
i=1

n∑
j=1

l2ij = 2σ2
J

which concludes the proof.
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In order to measure the distance to Sing, we introduce a global equivalent to G∗ in theo-
rem 2.3.9. We define then:

G̃∗ B min
y∈Rn\U

G(z) > 0 (2.37)

.

Lemma 2.3.11. Let U be as in Theorem 2.3.9 and assume that G̃∗ = G(y) is not attained on ∂U .
Then 1

G̃∗
≤
√
r d(g,Sing)−1.

Proof. Recall that we are assuming ∥gi∥ = 1 for all i and without loss of generality assume
that g1(y) = −G̃∗. Since y < ∂U we have ∇g1(y) = 0. Then the system (g1 +G̃∗, . . . , gr +G̃∗) ∈ Sing
is a singular system, and

∥∥∥g− (g1 + G̃∗, . . . , gr + G̃∗)
∥∥∥

2
=
√
r G̃∗. Therefore d(g,Sing) ≤

√
r G̃∗, and

finally 1
G̃∗
≤

√
r

d(g,Sing) .

Lemma 2.3.12. Assume that G̃∗ = G(y) is attained at y ∈ ∂{y ∈D | E(y) ≤ σJ
2c2
}. Then 1

G̃∗
≤ 4
√
nc2

σ2
J

.

Proof. Since E(y) = σJ
2c2

, we can apply Proposition 2.3.8:

σJ
2c2

= E(y) ≤ 2σ−1
J ∥g−∥ ≤ 2

√
nσ−1

J G(y) = 2
√
nσ−1

J G̃∗.

Therefore 1
G̃∗
≤ 4
√
nc2σ

−2
J .

We deduce from these two lemmas the following bound on Łojasiewicz constant in terms
of the distance from g to the singular locus:

Theorem 2.3.13. Suppose that the CQC holds at every point of S(g) and that the normalization
assumption (2.1) is satisfied. Then, for all y ∈D,

E(y) ≤max
( c

d(g,Sing)
,
8diam(D)

√
nc2

d(g,Sing)2

)
G(y),

where c2 = c2(g) = maxx∈D{∥Hess(gi(x))∥2, i = 1, . . . , r} and c1 = max(2
√

2n,diam(D)
√
r).

Proof. We estimate the constant cE = sup{ E(y)
G(y) | y ∈D\S} ≤max(2

√
n

σJ
, diam(D)

G∗ ) in Theorem 2.3.9

using the previous lemmas. In particular, from Lemma 2.3.10 we have 1
σJ
≤

√
2

d(g,Sing) , and
using Lemma 2.3.11 and Lemma 2.3.12 we obtain:

2
√
n

σJ
≤ 2

√
2n

d(g,Sing)

diam(D)
G∗

≤ diam(D)

G̃∗
≤ diam(D)max(

4
√
nc2

σ2
J

,

√
r

d(g,Sing)
)

≤ diam(D)max(
8
√
nc2

d(g,Sing)2 ,

√
r

d(g,Sing)
)

Choosing c1 = max(2
√

2n,diam(D)
√
r) we then see that cE ≤max

(
c

d(g,Sing) ,
8diam(D)

√
nc2

d(g,Sing)2

)
, con-

cluding the proof.
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Remark. Under a regularity condition, we have analyzed in Theorem 2.3.9 and Theorem 2.3.13
the Łojasiewicz constant, giving estimates for it, and moreover shown that the Łojasiewicz
exponent is equal to one. On the contrary when the problem is not regular the bounds on the
exponent Ł can be large. We have:

Ł ≤ d(g)(6d(g)− 3)n+r

see [KS15, sec. 3.1] and [KSS16] and the errata [KSS19].

We now present the corollary of Theorem 2.2.14 in regular cases, when we have show that
the Łojasiewicz exponent is equal to one, and we have estimates for the Łojasiewicz constant.

Corollary 2.3.14. Assume n ≥ 2 and let g1, . . . , gr ∈R[x] = R[x1, . . . ,xn] satisfying the normaliza-
tion assumption (2.1) and such that the CQC (Definition 2.3.2) hold at every point of S(g). Let
f ∈R[x] such that f ∗ = minx∈S f (x) > 0. Then f ∈ Qℓ(g) if

ℓ =O(n325nrnc2n
E d(g)nd(f )3.5nε(f )−2.5n),

where cE is given by Theorem 2.3.9 or Theorem 2.3.13.

Proof. Apply Theorem 2.2.14, Theorem 2.3.9 and Theorem 2.3.13.

2.4 Convergence of Lasserre’s relaxations optimum

In this section, we apply the Effective Putinar’s Positivstellensatz (Theorem 2.2.14) to compute
convergence rates of Lasserre’s hierarchies. In particular our goal is to prove Theorem 2.4.2,
where we show for the first time a polynomial convergence for Lasserre’s hierarchies: this is
possible since the Effective Putinar’s Positivstellensatz has a polynomial and not exponential
dependence on ε(f )−1.

We briefly recall the basics of Polynomial Optimization, referring to Section 1.6 for more
details. Let f ,g1, . . . , gr ∈R[x]. The goal of Polynomial Optimization is to find:

f ∗ = inf
{
f (x) ∈R | x ∈Rn, gi(x) ≥ 0 for i = 1, . . . , r

}
= inf
x∈S(g)

f (x),

that is the infimum f ∗ of the objective function f on the basic closed semialgebraic set S = S(g).
The SoS relaxation of order ℓ of the problem above is Q2ℓ(g) and the supremum:

f ∗SoS,ℓ = sup
{
λ ∈R | f −λ ∈ Q2ℓ(g)

}
.

The moment relaxation of order ℓ of the problem above is L2ℓ(g) =Q2ℓ(g)∨ and the infimum:

f ∗Mom,ℓ = inf
{
⟨Λ|f ⟩ ∈R |Λ ∈ L(1)

2ℓ (g)
}
.

Recall that f ∗SoS,ℓ ≤ f
∗

Mom,ℓ ≤ f
∗ for all ℓ. Thus, the convergence results of this section, stated

for the SoS hierarchy (f ∗SoS,ℓ)ℓ∈N, are also valid for the moment hierarchy (f ∗Mom,ℓ)ℓ∈N.
A first step for the proof of Theorem 2.4.3 is to recognize Theorem 2.2.14 as a quantitative

result of approximation of positive polynomials on S(g) with polynomials in the truncated
quadratic module.
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Theorem 2.4.1. Assume n ≥ 2 and let g satisfy the normalization condition (2.1). Let Ł be the
Łojasiewicz exponent defined in Definition 2.2.8 and let f ≥ 0 on S(g). Then for 0 < ε ≤ ∥f ∥, we
have f − f ∗ + ε = q ∈ Qℓ(g) for

ℓ ≥ γ ′(n,g)d(f )3.5nŁ ∥f ∥2.5nŁε−2.5nŁ (2.38)

where γ ′(n,g) = 32.5nŁγ(n,g) ≥ 1 depends only on n and g and γ(n,g) is given by Theorem 2.2.14.

Proof. Notice that f − f ∗ + ε > 0 on S(g) and

ε(f − f ∗ + ε) =
ε

∥f − f ∗ + ε∥
≥ ε

∥f ∥+ |f ∗|+ ε
≥ ε

3∥f ∥

for ε ≤ ∥f ∥. Moreover degf − f ∗ + ε = degf = d(f ). By Theorem 2.2.14, we have f − f ∗ + ε =
q ∈Qℓ(g) if

ℓ ≥O(n325nŁrnc2nd(g)nd(f )3.5nŁ(
ε

3∥f ∥
)−2.5nŁ)

= γ ′(n,g)d(f )3.5nŁ ∥f ∥2.5nŁε−2.5nŁ

where γ ′(n,g) = 32.5nŁγ(n,g) =O(n325nŁ32.5nŁrnc2nd(g)n) ≥ 1 depends only on n and g, and
not on f , and γ(n,g) is given by Theorem 2.2.14.

Remark. From Equation (2.26), we have γ(n,g) =O(n
3
2 2

4Łn+11Ł
2 r

n+5
6 c

4n+11
6 d(g)

n+2
2 ), where c,Ł are

defined in Definition 2.2.8. The exponents of γ ′(n,g) = 32.5nŁγ(n,g) in the proof have been
simplified for the sake of readability and are not optimal.

Remark. Theorem 2.4.1 is a quantitative version of Weierstrass approximation theorem for
positive polynomials on S, showing that a polynomial f ∈ Pos(S(g)) can be approximated uni-
formly on S (within distance ε) by an element f ∗+q ∈Qℓ(g) for ℓ ≥ γ ′(n,g)d(f )3.5nŁ ∥f ∥2.5nŁε−2.5nŁ.

We are now ready to prove the rate of convergence for Lasserre’s hierarchies.

Theorem 2.4.2. With the same hypothesis of Theorem 2.4.1, let f ∗SoS,ℓ be the Lasserre SoS relaxation.
Then f ∗ − f ∗SoS,ℓ ≤ ε for

ℓ ≥ γ ′(n,g)d(f )3.5nŁ ∥f ∥2.5nŁε−2.5nŁ. (2.39)

Proof. Notice that

f ∗SoS,ℓ = sup{λ ∈R | f −λ ∈ Q2ℓ(g) } = inf{ε ∈R≥0 | f − f ∗ + ε ∈ Q2ℓ(g) }.

By Theorem 2.4.1, for ℓ ≥ γ ′(n,g)d(f )3.5nŁ ∥f ∥2.5nŁε−2.5nŁ, f − f ∗ + ε ∈ Qℓ(g). This implies that
f ∗ − f ∗SoS,ℓ ≤ ε and concludes the proof.

Theorem 2.4.3. With the same hypothesis of Theorem 2.4.2 and γ ′′(n,g) = γ ′(n,g)
1

2.5nŁ , we have

0 ≤ f ∗ − f ∗SoS,ℓ ≤ γ
′′(n,g)∥f ∥d(f )

7
5 ℓ−

1
2.5nŁ .

Proof. We apply Theorem 2.4.2 with ε ≤ ∥f ∥ such that ℓ = ⌈γ ′(n,g)d(f )3.5nŁ∥f ∥2.5nŁε−2.5nŁ⌉
and γ ′′(n,g) = γ ′(n,g)

1
2.5nŁ .
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In conclusion Theorem 2.2.14 allows proving Theorem 2.4.3, which shows a convergence
of the Lasserre’s lower approximations to f ∗, polynomial in ℓ. This is an improvement
in comparison with [NS07, th. 8], where the convergence is logarithmic in order ℓ of the
hierarchy.

In regular polynomial optimization problems we can simplify the bound, since Ł = 1 in
this case (see Section 2.3.2).

Corollary 2.4.4. With the same hypothesis of Theorem 2.4.2 and γ ′′(n,g) = γ ′(n,g)
1

2.5n , we have

0 ≤ f ∗ − f ∗SoS,ℓ ≤ γ
′′(n,g)∥f ∥d(f )

7
5 ℓ−

1
2.5n

if the CQC (Definition 2.3.2) hold at every point of S(g).

Proof. Apply Theorem 2.4.3 and Theorem 2.3.9 or Theorem 2.3.13.

2.5 Convergence of pseudo-moment sequences to measures

In Section 2.4 we studied convergence of the optima f ∗SoS,d and f ∗Mom,d . Moreover, we have
seen in Theorem 2.4.1 that the Effective Putinar’s Positivstellensatz can be used to study
the convergence of the feasible set Q2d(g) of the SoS relaxations to Pos(S(g)). On the dual
side, one natural question is then still open: how good is the approximation of the measures
M(S(g)) using the feasible set of the moment relaxation, namely the truncated positive linear

functionals Lℓ(g) =Qℓ(g)∨? In particular, we focus on the sections L(1)
d (g) andM(1)(S(g)).

To be able to compare relaxations of different order, in the following we often restrict the
linear functionals to polynomials of degree ≤ t, that is we consider the cones:

Lℓ(g)[t] = {Λ[t] ∈R[x]∗t |Λ ∈ Lℓ(g) }

where for t ≤ ℓ we denote Λ[t] the restriction of Λ ∈ R[x]∗ℓ to R[x]∗t. See Section 1.3.8 and
Section 1.6.2 for more details.

Recall in particular that, if µ ∈ M(S)[t] = {Λ[t]
µ | µ ∈ M(S) } and q ∈ Qℓ(g) ∩ R[x]t then〈

µ
∣∣∣q〉 =

∫
qdµ ≥ 0, since q ≥ 0 on S. In other words: M(S)[t] ⊂ Lℓ(g)[t] for all ℓ, i.e. our

dual cone is an outer approximation of the cone of measures supported on S. To compare
quantitatively these cones we consider their affine sectionsM(1)(S)[t] and L(1)

ℓ (g)[t]. Recall

that L(1)
ℓ (g)[t] is a generating section of Lℓ(g)[t] when t ≤ ℓ

2 , see Lemma 1.3.9.
The main result of this section is Theorem 2.5.9, which shows the convergence of the outer

approximation as ℓ goes to infinity, and deduce this convergence rate from Theorem 2.2.14.
To measure this convergence we use the Hausdorff distance of sets dH(·, ·).

Before the proof of the main theorem, recall that in the finite dimensional vector space
R[x]t, all the norms are equivalent: we specify in Lemma 2.5.1 a constant that we will need
in the proof of Theorem 2.5.7, for the following norms. For f =

∑
|α|≤t aαxα ∈R[x]t, as usual

∥f ∥ = max
x∈[−1,1]n

|f (x)|, and ∥f ∥2 =
√∑
|α|≤t

a2
α.

Lemma 2.5.1. For f ∈R[x]t, we have ∥f ∥ ≤
√(n+t

t

)
∥f ∥2.
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Proof. Let x ∈ [−1,1]n such that |f (x)| = ∥f ∥, where f =
∑
|α|≤t aαxα. Denote bt = (xα)|α|≤t the

monomial basis and vec(f ) = (aα)|α|≤t. Then:

∥f ∥ = |f (x)| = |bt(x) · vec(f )| ≤ ∥vec(f )∥2∥bt(x)∥2 = ∥f ∥2∥bt(x)∥2

using the Cauchy-Schwarz inequality. Finally, notice that |xα | ≤ 1 for all α since x ∈ [−1,1]n,

and thus ∥bt(x)∥2 ≤
√

dimR[x]t =
√(n+t

t

)
, which implies ∥f ∥ ≤

√(n+t
t

)
∥f ∥2.

We recall a version of Haviland’s or Richter-Tchakaloff’s theorem, that characterize linear
functionals represented by measures supported on a compact set. See also [Sch17, th.17.3]
and [Lau09, th. 5.13].

Theorem 2.5.2 ([Tch57]). Let S ⊂R
n be compact and let Pos(S)t = {f ∈R[x] | degf ≤ t, f (x) ≥

0 ∀x ∈ S}. Then for a linear functional Λ ∈ R[x]∗t, Λ ∈ M(S)[t] if and only if ⟨Λ|f ⟩ ≥ 0 for all
f ∈ Pos(S)t. In other words,M(S)[t] = (Pos(S)t)∨.

We slightly modify Theorem 2.5.2 in order to consider only polynomials of unit norm.

Corollary 2.5.3. Let P = {f ∈ Pos(S)t | ∥f ∥2 = 1} and let Λ ∈R[x]∗t. Then Λ ∈M(S)[t] ⊂R[x]∗t if
and only if ⟨Λ|f ⟩ ≥ 0 for all f ∈ P .

Proof. Notice that ⟨Λ|f ⟩ ≥ 0 ⇐⇒
〈
Λ

∣∣∣∣ f
∥f ∥2

〉
≥ 0. Then apply Theorem 2.5.2.

We interpret Corollary 2.5.3 in terms of convex geometry. The convex set

M(S)[t] = {Λ ∈R[x]∗t | ∀f ∈ P ,⟨Λ|f ⟩ ≥ 0 }

is the convex cone dual to P . Any f ∈ P is defining a hyperplane ⟨Λ|f ⟩ = 0 in R[x]∗t, and
an associated halfspace Hf = {Λ ∈R[x]∗t | ⟨Λ|f ⟩ ≥ 0} such thatM(S)[t] ⊂Hf . Corollary 2.5.3
means thatM(S)[t] =

⋂
f ∈P Hf .

We consider a relaxation of the positivity condition to prove our convergence.

Definition 2.5.4. For ε ≥ 0 and P as in Corollary 2.5.3, we define C(ε) = {Λ ∈ R[x]∗t | ∀f ∈
P ,⟨Λ|f ⟩ ≥ −ε}.

Notice that by definition and Corollary 2.5.3 we have C(0) =M(S)[t]. We show now that
C(ε) contains the truncated positive linear functionals of total mass one for a large enough
order of the hierarchy.

Lemma 2.5.5. Let ℓ ≥ γ ′(n,g) t3.5nŁ (n+t
t

) 5nŁ
4 ε−2.5nŁ and t ≤ ℓ/2, where g satisfy the normalization

assumption (2.1) and γ ′(n,g) is given by Equation (2.38). Then L(1)
ℓ (g)[t] ⊂ C(ε).

Proof. By Lemma 2.5.1, for all f ∈ P we have ∥f ∥ ≤
(n+t
t

) 1
2 . From Theorem 2.4.1, we deduce

that for ℓ ≥ γ ′(n,g) t3.5nŁ (n+t
t

) 5nŁ
4 ε−2.5nŁ, we have f −f ∗+ε = q ∈ Qℓ(g). Thus for Λ ∈ L(1)

ℓ (g)[t] we

obtain ⟨Λ|f + ε⟩ = ⟨Λ|q+ f ∗⟩ ≥ 0. Therefore, ⟨Λ|f ⟩ ≥ −ε: this shows that L(1)
ℓ (g)[t] ⊂ C(ε).

The convex set C(ε) can be seen as a tubular neighborhood ofM(S)[t]. We are going to
bound its Hausdorff distance to the measures (recall that the Hausdorff distance dH(·, ·) is
defined as dH(A,B) B max

{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
). We state and prove the result in the

general setting of convex geometry, and finally use it to prove Theorem 2.5.7.
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Lemma 2.5.6. Let C =
⋂
H∈HH be a closed convex set described as intersection of half spaces

H = {x ∈RN | cH · x + bH ≥ 0}, where

• ∥cH∥2 = 1 for all H ∈ H;

• H is the set of all the half-spaces containing C (of unit normal).

If H(ε) = {x ∈RN | cH · x + bH ≥ −ε} and C(ε) =
⋂
H∈HH(ε), then dH(C,C(ε)) ≤ ε.

Proof. By definition C ⊂ C(ε). Assume that this inclusion is proper, otherwise there is nothing
to prove, and let ξ ∈ C(ε) \C. Consider the closest point η in C of ξ on C, and the half space
H = {x ∈RN | η−ξ

∥η−ξ∥2
· x + b ≥ 0} ∈ H defined by the affine supporting hyperplane orthogonal

to η − ξ passing through η (and thus η−ξ
∥η−ξ∥2

· η = −b). Notice that H ∈ H since H is defined by

a normalized supporting hyperplane of C.
Finally notice that

∥∥∥η − ξ∥∥∥
2

= (η−ξ)·(η−ξ)
∥η−ξ∥2

= − η−ξ
∥η−ξ∥2

· ξ + η−ξ
∥η−ξ∥2

· η = −( η−ξ
∥η−ξ∥2

· ξ + b). Since

ξ ∈ C(ε) and H ∈ H, we have ( η−ξ
∥η−ξ∥2

·ξ +b) ≥ −ε, and thus 0 <
∥∥∥η − ξ∥∥∥

2
≤ ε. Then the distance

between any ξ ∈ C(ε) \C and its closest point η ∈ C is ≤ ε, which implies dH(C,C(ε)) ≤ ε.

We are now ready to prove the first important result of the section.

Theorem 2.5.7. Let Q(g) be a quadratic module where g satisfy the normalization assumption
(2.1) and let

ℓ ≥ γ ′(n,g) t3.5nŁ
(
n+ t
t

) 5nŁ
4

ε−2.5nŁ

with γ ′(n,g) given by Equation (2.38). Then dH(M(S)[t],L(1)
ℓ (g)[t]) ≤ ε.

Proof. By Corollary 2.5.3 we have:

M(S)[t] = {Λ ∈R[x]∗t | ∀f ∈ P ,⟨Λ|f ⟩ ≥ 0} = ∩f ∈PHf ,

where Hf = {Λ ∈ R[x]∗t | ⟨Λ|f ⟩ ≥ 0} with ∥f ∥2 = 1 and f ∈ Pos(S)t. We check that the
hyperplanes Hf with f ∈ P definingM(S)[t] satisfy the hypothesis of Lemma 2.5.6:

• The half-space Hf has a unit normal since ∥f ∥2 = 1;

• Any supporting hyperplane ofM(S)[t] defines a halfspace Hf = {Λ ∈R[x]∗t | ⟨Λ|f ⟩ ≥ 0}
with f ∈ P . Indeed if f defines a supporting hyperplane of M(S)[t], then

〈
µ
∣∣∣f 〉 =∫

f dµ ≥ 0 for all µ ∈ M(S)[t]. In particular for all x ∈ S we have f (x) =
∫
f dδx ≥ 0

(where δx denotes the Dirac measure concentrated at x). This proves that f ∈ Pos(S)t
and, normalizing it, we can assume f ∈ P .

Then from Lemma 2.5.6 we have dH(M(S)[t],C(ε)) ≤ ε.

Finally by Lemma 2.5.5 we deduce that L(1)
ℓ (g)[t] ⊂ C(ε) and conclude that

dH(M(S)[t],L(1)
ℓ (g)[t]) ≤ dH(M(S)[t],C(ε)) ≤ ε.

Notice that in Theorem 2.5.7 we are bounding the distance between normalized linear
functionals and measures that may be not normalized (i.e. not a probability measure). In the
next section we solve this problem.
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2.5.1 Convergence to probability measures

We recall and adapt to our context [JH16, lem. 3] to obtain a bound on the norm of pseudo-
moment sequences. In particular we do not assume that the ball constraint is an explicit
inequality, but only that the quadratic module is Archimedean.

Lemma 2.5.8. Assume that r2 − ∥x∥22 = q ∈ Qℓ0
(g). Then for all t ∈ N and ℓ ≥ 2t − 2 + ℓ0, if

Λ ∈ L(1)
ℓ (g) we have

∥∥∥Λ[2t]
∥∥∥

2
≤

√(n+t
t

)∑t
k=0 r

2k .

Proof. For Λ ∈ L(1)
ℓ (g), let Hk

Λ
be the Moment matrix of Λ in degree ≤ 2k, which is positive

semidefinite. Let
∥∥∥Hk

Λ

∥∥∥
F

be its Frobenius norm, i.e.
∥∥∥Hk

Λ

∥∥∥
F

=
√∑

|α|,|β|≤kΛ
2
α+β (equal also to

the square root of the sum of the singular values), and
∥∥∥Hk

Λ

∥∥∥
2

its ℓ2 operator norm, i.e. the

maximal eigenvalue of Hk
Λ

(equal to its largest singular value). Notice that by definition we

have
∥∥∥Λ[2k]

∥∥∥
2
≤

∥∥∥Hk
Λ

∥∥∥
F

and
∥∥∥Hk

Λ

∥∥∥
2
≤

√
trHk

Λ
, Moreover recall

∥∥∥Hk
Λ

∥∥∥
F
≤

√
rank(Hk

Λ
)
∥∥∥Hk

Λ

∥∥∥
2
. To

obtain a bound on
∥∥∥Λ[2k]

∥∥∥
2
, we are going to use trHk

Λ
=

∑
|α|≤kΛ2α =

〈
Λ[2k]

∣∣∣∑|α|≤k x2α
〉
. As for

k ≤ t,
(r2 − ∥x∥22)(

∑
|α|≤k−1

x2α) ∈ Q2t−2+ℓ0
(g) ⊂ Qℓ(g)

we have

0 ≤
〈
Λ

∣∣∣∣∣∣∣∣(r2 − ∥x∥22)(
∑
|α|≤k−1

x2α)
〉

= r2
〈
Λ

∣∣∣∣∣∣∣∣
∑
|α|≤k−1

x2α
〉
−
〈
Λ

∣∣∣∣∣∣∣∣∥x∥22(
∑
|α|≤k−1

x2α)
〉

= r2 trHk−1
Λ
−
(〈
Λ

∣∣∣∣∣∣∣∣
∑
|α|≤k

x2α
〉
− ⟨Λ|1⟩

)
= r2 trHk−1

Λ
+ 1− trHk

Λ
,

that is, trHk
Λ
≤ r2 trHk−1

Λ
+ 1. Since trH0

Λ
= Λ0 = 1, we deduce by induction on k that

trH t
Λ
≤

∑t
k=0 r

2k and thus

∥∥∥Λ[2t]
∥∥∥

2
≤

∥∥∥H t
Λ

∥∥∥
F
≤

√
rank(H t

Λ
)
∥∥∥H t

Λ

∥∥∥
2
≤

√(
n+ t
t

)
trH t

Λ ≤

√(
n+ t
t

) t∑
k=0

r2k .

Finally we are ready to prove Theorem 2.5.9, where we obtain the bound for the distance
between normalized linear functionals and probability measures.

Theorem 2.5.9. Assume n ≥ 2 and that the normalization assumptions (2.1) are satisfied, and
in particular that 1 − ∥x∥22 = q ∈ Qℓ0

(g). Let 0 < ε ≤ 1
2 , t ∈ N+ and ℓ ∈ N such that ℓ ≥

γ(n,g)62.5nŁ t6nŁ (n+t
t

)2.5nŁ
ε−2.5nŁ and ℓ ≥ 2t + ℓ0, with γ(n,g) given by Theorem 2.2.14. Then

dH(M(1)(S)[2t],L(1)
ℓ (g)[2t]) ≤ ε.
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Proof. Let ε′ = 1
2εt
−1(n+t

t

)− 1
2 ≤ 1

4 , Λ ∈ L(1)
ℓ (g)[2t] and µ ∈M(S)[2t] be the closest point to Λ. We

first bound the norm of µ. As

ℓ ≥ γ(n,g)62.5nŁ t6nŁ
(
n+ t
t

) 5nŁ
2

ε−2.5nŁ = γ ′(n,g) t3.5nŁ
(
n+ t
t

) 5nŁ
4

(ε′)−2.5nŁ,

by Theorem 2.5.7 we have d(Λ,µ) ≤ ε′.
Let µ0 =

∫
1dµ. We want to bound the distance between Λ and µ

µ0
∈M(1)(S)[2t]. Notice that

d(Λ,
µ

µ0
) ≤ d(Λ,µ) + d(µ,

µ

µ0
) ≤ ε′ +

∣∣∣∣∣1−µ0

µ0

∣∣∣∣∣∥∥∥µ∥∥∥2
. (2.40)

Since Λ0 = 1, d(Λ,µ) ≤ ε′ implies 1− ε′ ≤ µ0 ≤ 1 + ε′, and therefore
∣∣∣∣1−µ0
µ0

∣∣∣∣ ≤ ε′
1−ε′ . Moreover,

using Lemma 2.5.8 we have

∥∥∥µ∥∥∥
2

=
∥∥∥µ−Λ+Λ

∥∥∥ ≤ d(µ,Λ) + ∥Λ∥2 ≤ ε′ + (t + 1)

√(
n+ t
t

)
.

Then from Equation (2.40) we conclude that

d(Λ,
µ

µ0
) ≤ ε′ + ε′

1− ε′
(ε′ + (t + 1)

√(
n+ t
t

)
) =

ε′

1− ε′
+

ε′

1− ε′
(t + 1)

√(
n+ t
t

)
≤ 2ε′t

√(
n+ t
t

)
= ε,

since ε′ ≤ 1
4 , n ≥ 1 and t ≥ 1.

As usual, we provide the better bound available in regular cases.

Corollary 2.5.10. With the hypothesis of Theorem 2.5.9 and the CQC (Definition 2.3.2) satisfied
at every point of S(g), then

dH(M(1)(S)[2t],L(1)
ℓ (g)[2t]) ≤ ε

if ℓ ≥ γ(n,g)62.5n t6n
(n+t
t

)2.5nŁ
ε−2.5n.

Proof. Apply Theorem 2.5.9 and Theorem 2.3.9 or Theorem 2.3.13.

In Theorem 2.5.9 we prove a bound for the convergence of Lasserre truncated pseudo-
moments to moments of measures. The convergence, without bounds, can be deduced from
[Sch05c, th. 3.4] by taking as objective function a constant. On the other hand, we can
deduce [Sch05c, th. 3.4] from Theorem 2.5.9, by considering the sections of L(1)

ℓ (g)[t] given
by ⟨Λ|f ⟩ = f ∗Mom,k .

2.6 Perspectives

We have shown the first polynomial bound on the Effective Putinar’s Positivstellensatz, and
then applied it to deduce convergence rates for optima of Lasserre’s hierarchies. Moreover,
we have described bounds for the approximation of positive polynomials with elements
of quadratic modules, and on the dual side we described bounds for the approximation of
measures using truncated positive linear functionals.

From the results obtained and their proofs, several open questions naturally arise.
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2.6.1 Bound improvements

In the proof of the Effective Putinar’s Positivstellensatz, we have chosen D = [−1,1]n (see
Section 2.2.5), and then applied Theorem 2.2.15. The main issue in our bound is the presence
of n in the exponent of ε(f )−1: this implies bad bounds when the number of variables is big.
The n in the exponent is present due to the constant C(n,d) =O(dn+2n3) in Theorem 2.2.15,
that has an n as exponent. We plan to remove this dependence on n in the follow-up work
[BMP22], where we replace:

• D = [−1,1]n with the n-dimensional simplex D = ∆n;

• Theorem 2.2.15 with an effective version of Polya’s theorem [PR01].

The convergence rate for Polya’s theorem is worse than the one in Theorem 2.2.15, but the
constant is better as there is no n in the exponent. However, some care is needed since the
norm used in [PR01] is the maximum absolute value of the coefficients with respect to the
Bernstein basis, rather the max norm onD that we used in this chapter to deduce the Effective
Putinar’s Positivstellensatz.

2.6.2 Generalized Lasserre’s hierarchies

Through the chapter, we used SoS polynomials for the proof of the Effective Putinar’s
Positivstellensatz, but we may have worked with more general cones. Indeed, the important
features that we used are two:

(i) the approximation of positive continuous functions on D, to construct q such that
p = f − q ≥ f ∗

2 on D (that is, the construction of hk,m(gi/∥gi∥)2);

(ii) the representation of strictly positive functions on D (in particular, of p) as an element
of a certain cone (that is, p ∈ O(1± xi : i ∈ {1, . . . ,n})).

This observation leads immediately to more general statements, replacing the SoS cone with
different ones.

For instance, consider Cd the (linear) cone Cd =
∑
|αi |≤dR≥0 ·Bd,α(x), where Bd,α(x) are the

elements of the degree d Bernstein basis. In other words, Cd is the standard positive orthant
with respect to the Bernstein basis. From the well-known approximation properties of the
Bernstein basis, the two points above are satisfied. Thus, one can consider the cone:

Cd(g) = Cd +Cd−degg1
g1 + · · ·+Cd−deggrgr

and the proofs in this chapter show that:⋃
d∈N

Cd(g) = Pos(S(g)),

i.e. we have a representation of strictly positive polynomials, as in the case of Putinar’s
Positivstellensatz. We can therefore design generalized Lasserre’s hierarchies using these
cones and their duals. Moreover, using convergence rates for Bernstein approximation, we
can also get degree bound for the representation and convergence rates for the hierarchies, as
in SoS case.
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Notice that this construction gives a hierarchy of linear inner approximations Cd(g) of
Pos(S(g)). Although we expect this approximation to have less exact representation properties
than the SoS one (see Chapter 3), the use of linear cones might allow going to higher relaxation
order, getting better lower approximations of f ∗. This construction with the Bernstein
basis is related with Handelman’s theorem ([Han88]), that have been already considered in
Polynomial Optimization, see e.g. [Las15, th. 2.23] and the following discussion.

Another natural extension is to replace polynomials with more general functions on a given
domain: for instance, one could consider cones of piecewise polynomial functions (splines),
that have good approximation properties, and build generalized Lasserre’s hierarchies from
them.

2.6.3 Generalized moment problems

In the context of Generalized Moment Problems (GMP), general convergence to moments of
measures has been studied in [Tac21]. The uniform bounded mass assumption in [Tac21]
is trivially satisfied in the context of Polynomial Optimization, since Λ0 = ⟨Λ|1⟩ = 1: the
convergence result of [Tac21] is thus more general than [Sch05c, th. 3.4] and the one implied
by Theorem 2.5.9. But we conjecture, and leave it for future exploration, that it is possible
to extend the proof technique of Theorem 2.5.9 to the GMP and give bounds on the rate of
convergence also in this extended context.

2.6.4 Certificates of emptiness

In all our discussion, we assumed that the semialgebraic set S(g) is nonempty. However, it
would be interesting to adapt our argument to the empty case, to give degree bounds for the
certificates of emptiness of S(g): −1 = s0 + s1g1 + . . . srgr ∈ Q(g) (in the Archimedean case). Of
special interest would be the case of rational inequalities gi ∈ Q[x]. In this case, we could
relate the bounds with the magnitude of the coefficients of the polynomials, and obtain a
bound involving the bitsize.

Giving degree bound for such a problem is hard. For instance, in [LPR20] the authors com-
pute elementary recursive degree bounds for Kivrine-Stengle Positivstellensatz, in particular
certifying emptiness of (general) semialgebraic sets. They obtain as bound a tower of five
exponentials. To be able to compare our estimates with [LPR20], we need to consider the
worst case bounds for the Łojasiewicz exponent (see [KS15, sec. 3.1], [KSS16] and the errata
[KSS19]) and for the Łojasiewicz constant.
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Chapter 3
♦

Exactness and Flat Truncation in
Polynomial Optimization

This chapter is based on [BM22a].

3.1 Context and results

In polynomial optimization, Lasserre’s hierarchies are used to compute lower approximations
of the minimum f ∗ of the objective function f on the basic closed semialgebraic set S(g)
defined by the tuple of polynomials g = g1, . . . gr , see Section 1.6. In practice finite convergence
of these lower approximations often happens, i.e. the lower approximation given by the
relaxation at some order d coincide with f ∗. Even if this practical behavior is observed and the
sum of squares hierarchy can naturally provide certificates of positivity (with a representation
in the quadratic module), we cannot verify finite convergence of the hierarchies using this
representation. Moreover, it is not possible to extract the minimizers only from the sum of
squares hierarchy.

But positive answers to these problems are provided from the moment hierarchy. Indeed,
it is well-know that using the flat extension criterion introduced by Curto and Fialkow (see
Section 1.4.1) we can certify the finite convergence of Lasserre’s moment hierarchy, and
extract the minimizers (see e.g. [Lau09; Las15]). If this criterion is satisfied, the truncated
pseudo-moment sequence realizing the minimum coincides with the sequence of moments
of a measure supported at the minimizers: in other words, we have a representation of the
positive linear functional defined by the pseudo-moment sequence as a measure acting on
polynomials.

The flat truncation criterion in thus widely used in polynomial optimization, but not
completely understood theoretically. This chapter is devoted to the study of this criterion,
together with the related concept of exactness. We also study how these properties of the
moment hierarchy are (and are not) related with exactness and finite convergence properties
of the sum of squares hierarchy, namely with certificates of positivity on the sum of squares
side.

We first introduce the concept of exactness for the moment hierarchy, in order to study the
outer approximation of the measures supported at the minimizers of f on S at any order of
the relaxation. Then, we highlight its connections with the flat truncation property, used
to certify finite convergence of the moment hierarchy. The main result of the chapter is the
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following theorem, giving the first necessary and sufficient criterion for flat truncation for
the moment hierarchy of lower approximations of the problem: minf (x) : x ∈ S(g).

Theorem 3.5.4. Assume that we have moment finite convergence. Then dim R[x]
supp(Q+(f −f ∗)) = 0 if

and only if there exists d such that a generic Λ∗ ∈ Lmin
2d (g) has flat truncation.

In particular, if ρ = ρ(Smin), D = max(dg,⌈
deg(f )

2 ⌉) and δ ∈N is such that f − f ∗ ∈ Q2δ(g), flat
truncation happens for Λ∗ ∈ Lmin

2d (g) generic at degree ρ − 1 when d is such that:

(i) ( R

√
suppQ(g))2δ+2ρ+2D−deg(f )−2 ⊂ Q2d(g);

(ii) I (Smin)2ρ+2D−2 ⊂ Q2d(g) + (f − f ∗)2d ;

(iii) δ+ 2ρ+ 2D −deg(f )− 2 ≤ d.

In the theorem, Lmin
2d (g) denotes the feasible pseudo-moment sequences of the order d mo-

ment relaxation that realize the minimum, dg B ⌈1
2 maxi=1,...,sdeg(gi)⌉ (see Definition 3.4.17)

and ρ is the Castelnuovo-Mumford regularity of the set of minimizers, see Section 3.4.3.
As already mentioned, even if extensively used the flat truncation (or flat extension)

property was not completely understood theoretically in polynomial optimization (see
Section 3.1.1). In the theorem, we provide the first necessary and sufficient condition for
the flat truncation property, and give the first degree bounds for the order of the relaxation
needed to achieve flat truncation.

The proof of the theorem requires a detailed analysis of the dual cones of (truncated)
quadratic modules, and we show that the moment hierarchy coincides with an extended sum
of squares hierarchy in Theorem 3.4.3 and Theorem 3.4.11. In particular, in Theorem 3.4.3
we characterize an extended quadratic module (that is the most natural to study the moment
hierarchy) as the Minkowski sum of the original quadratic module and the real radical of
its support. In Theorem 3.4.11 we conclude this analysis, showing that the annihilator of a
truncated positive linear functional (or, in other words, the kernel of the associated moment
matrix) generates the real radical of the support in degree high enough. These results are
also motivated from the duality theory in conic programming, see Section 1.6.4.

The analysis required for the proof of the theorem gives a detailed understanding of the
duality between Lasserre’s moment and sum of squares hierarchies. It allows also to create
several new examples and counterexamples for finite convergence and exactness properties
of the sum of squares and moment hierarchies. For instance, we describe an optimization
problem on a finite semialgebraic set with finite converge of the hierarchies, but whose
convergence cannot be certified using flat truncation (see Example 3.3.12). See Examples
3.3.8, 3.3.9, 3.3.10, 3.3.11, for more.

A key ingredient for the proof of Theorem 3.5.4 is the analysis of the zero dimensional
case (more precisely, the case when the support of the quadratic module is zero dimensional).
Theorem 3.4.19 and Theorem 3.4.20 give a complete description of the correspondence
between zero dimensionality and flat truncation, and provide degree bounds for the flat
truncation property to hold. This generalize existing results for finite real varieties and
preoderings defining zero dimensional semialgebraic sets, see Section 3.1.1.

As consequences of Theorem 3.5.4, we show that flat truncation holds under generic
regularity properties (Theorem 3.5.7), and apply the result to finite semialgebraic sets
(Theorem 3.5.11) and polar ideals (Theorem 3.5.15).
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We present examples of the application of these results, and in particular study some
instances of the Optimal Power Flow (OPF) Problem in Section 3.6.

3.1.1 Related works

Several works have been developed over the last decades to address SoS representation
problems. [Par02] showed that if the complex variety V

C
(I) defined by an ideal I generated

by real polynomials is finite and I is radical, then f − f ∗ has a representation as a sum of
squares modulo I . [Lau07] showed the finite convergence property if the complex variety
V
C

(I) is finite, and a moment sequence representation property, if moreover the ideal I is
radical. [Nie13c] showed that if the semialgebraic set S is finite, then the finite convergence
property holds for a preordering defining S. [Sch05a] proved that f − f ∗ is in the quadratic
module Q defining S modulo (f − f ∗)2 if and only if f − f ∗ ∈ Q and then the SoS hierarchy
is exact. [Mar06] and [Mar09] proved that, under regularity conditions at the minimizers,
known as Boundary Hessian Conditions (BHC), f − f ∗ is in the quadratic module and the SoS
exactness property holds. [NDS06], [DNP07] showed that, by adding gradient constraints
when S = R

n or KKT constraints when S is a general basic semialgebraic set, the SoS exactness
property holds when the corresponding Jacobian ideal is radical. [Nie13a] showed that, by
adding the Jacobian constraints, the finite convergence property holds under some regularity
assumption. [Nie13b] showed that finite convergence and the flat truncation property are
equivalent under generic assumptions, if the SoS hierarchy is exact and strong duality holds.
In [Nie14], it is shown that BHC imply finite convergence and that BHC are generic. [KS19]
showed the SoS exactness property if the quadratic module defining S is Archimedian and
some strict concavity properties of f at the finite minimizers are satisfied.

On the side of sum of squares, our contributions are limited but interesting: Theorem 3.4.3
clarifies the relationship between radicality assumptions and the closedness of truncated
quadratic modules: if the support of the quadratic module is not radical, we expect the
existence of f such that f − f ∗ ∈ Q(g)2d \ Q(g)2d for some d. Then, if we minimize f on
S(g), we have f ∗SoS,d = f ∗, but there is no certificate of positivity for f − f ∗. See for instance
Example 1.3.4.

On the other hand, the moment relaxations have been much less studied. We recall [LLR08]
and [Las+13], which prove that if S is finite and defined by equalities (or by a preordering),
the value f ∗, the minimizers and the vanishing ideal of S can be recovered from moment
matrices associated with a moment relaxation of finite order. We unify the description of the
zero dimensional case for equations and preorderings in Theorem 3.4.19, Theorem 3.4.20
and Theorem 3.5.11. Our results are also more general than those of [LLR08; Las+13], see for
instance Example 3.4.21.

In [Nie13b] it is shown that finite convergence and the flat truncation property are equiv-
alent if the SoS hierarchy is exact and strong duality holds, and under further generic
assumptions. These are strong hypothesis, and the result exploits properties of the SoS hier-
archy rather than the moment one. For instance, they are not satisfied in the basic example
Example 1.3.4. Moreover, it is not clear if these hypotheses are satisfied under the genericity
assumptions needed for finite convergence result in [Nie14].

In this chapter we focus more on the moment hierarchy, and we provide solutions for the
questions above. Theorem 3.5.4 gives the first necessary and sufficient conditions for flat
truncation, and the key idea is to use closures of truncated quadratic modules (this allows to
ignore radicality issues). This result gives also degree bounds on the order of the moment
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relaxation needed for the flat truncation property to hold, answering an open question in
[Nie13b]. Moreover, we use this result to show that, under the generic assumptions needed to
certify finite convergence in [Nie14], the moment relaxation has the flat truncation property
at some order, see Theorem 3.5.7.

3.1.2 Structure of the chapter

This chapter is structured as follows.

• Section 3.1 describes the context and the results of the chapter. In Section 3.1.1 we
present the related literature and compare it with our results, while Section 3.1.2
describes the structure of the chapter.

• Section 3.2 presents basic properties of Lasserre’s hierarchies related to finite conver-
gence, and introduced the basic definitions of the chapter.

• Section 3.3 is devoted to the formal definition of finite convergence and exactness for
the sum of square and moment hierarchies, and to the presentation of basic examples
in connection with flat truncation. In Section 3.3.1 we show how these notions are (and
are not) related, presenting several new examples.

• Section 3.4 develops the theoretical tools needed for the remaining of the chapter.
The properties of positive truncated pseudo-moment sequences are described in Sec-
tion 3.4.1, while Section 3.4.2 describe the annihilators of those sequences (i.e., the
kernel of the moment matrix). We then analyze when flat truncation holds and relate it
with the regularity of S in Section 3.4.3.

• Section 3.5 applies the previous results to polynomial optimization. In Section 3.5.1 we
prove the main result of the chapter, the equivalence between flat truncation and zero
dimensionality of the support of Q+ (f − f ∗). In Section 3.5.2 we apply the previous
result to show that flat truncation and exactness are generic properties. Finally, we
prove that exactness and flat truncation hold for finite semialgebraic sets (Section 3.5.3),
and in particular with the addition of the polar constraints (Section 3.5.4).

• Section 3.6 is devoted to the presentation of some examples of the optimal power flow
problem.

• Section 3.7 concludes the chapter, highlighting possible research directions.

3.2 Basic properties of Lasserre’s hierarchies

We recall Lasserre’s SoS and moment relaxations [Las01], introduced in section 1.6:

f ∗SoS,d = sup
{
λ ∈R | f −λ ∈ Q2d(g)

}
f ∗Mom,d = inf

{
⟨Λ|f ⟩ ∈R |Λ ∈ L(1)

2d (g)
}

where f ,g1, . . . gr ∈R[x] = R[x1, . . . ,xn].
Recall also that f ∗SoS,d ≤ f

∗
Mom,d ≤ f

∗ = infx∈S(g) f (x). When necessary we will replace the
tuple of constrains g by the tuple of their products Πg (that is Q(g) by O(g)): this does
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not change the initial polynomial optimization problem, since S(g) = {x ∈ R
n | g1(x) ≥

0, . . . , gr(x) ≥ 0 } = S(Πg).
Hereafter we assume that the infimum f ∗ of the objective function f is always attained on

S, that is: Smin B {x ∈ S | f (x) = f ∗ } , ∅. In particular this condition is satisfied when Q(g) is
Archimedean (Definition 1.1.20), since in this case S is compact. Moreover, if g1 = r2 − ∥x∥22
the infimum f ∗Mom,d is reached. Indeed, f ∗SoS,d > −∞ since f −λ ∈ Q(g) when λ is small enough,
as a consequence of Putinar’s Positivstellensatz and f ∗Mom,d ≥ f

∗
SoS,d > −∞. Finally, consider

the continuous function

φf : R[x]∗2d →R

Λ 7→ ⟨Λ|f ⟩

Therefore f ∗Mom,d = infφf (L(1)
2d (g)), and since g1 = r2 − ∥x∥22 implies that L(1)

2d (g) is bounded

[JH16, lem. 3] and thus compact, φf (L(1)
2d (g)) is compact and f ∗Mom,d is attained. When the

quadratic module is Archimedean but the ball constraint is not explicit, we can still claim
that f ∗SoS,d is attained for d big enough, replacing [JH16, lem. 3] with Lemma 2.5.8.

There are examples where the natural properties just described can fail, when the assump-
tions above are not satisfied.

Example 3.2.1. [[Mar09, ex. 5.2]] Let f = 1− 3x2y2 + x4y2 + x2y4 be the Motzkin polynomial,
that we minimize globally on R

n. In this case f ∗ = 0, and the four minimizers are (±1,±1).
Since f ∈ Pos(Rn) \Σ2, then f −λ < Q2d(1) = Σ2

2d = Σ2 ∩R[x]2d for all λ ∈ R and f ∗SoS,d = −∞
for all d. Furthermore, since Q2d(1) is closed we can deduce that f ∗Mom,d = −∞ from classical
convexity arguments, as follows. Since Σ2

2d is closed, ((Σ2
2d)∨)∨ = Σ2

2d from Conic Duality,
Corollary 1.2.3. Therefore, since f − λ < Σ2

2d for all λ ∈ R, then the Separation theorem
Theorem 1.2.1 implies the existence of Λ = Λλ ∈ L2d(1) = (Σ2

2d)∨ such that ⟨Λ|f −λ⟩ < 0.
There are two cases:

• ⟨Λ|1⟩ > 0. In this case, Λ
⟨Λ|1⟩ ∈ L

(1)
2d (1) and

〈
Λ
⟨Λ|1⟩

∣∣∣∣f 〉 < λ.

• ⟨Λ|1⟩ = 0. In this case, since −1 < Σ2
2d , there exists η ∈ L2d(1) such that

〈
η
∣∣∣1〉 < 0, and

thus
〈
η
∣∣∣1〉 = −

〈
η
∣∣∣−1

〉
> 0. Scaling, we can assume

〈
η
∣∣∣1〉 = 1. Therefore, for all r ∈R≥0,

rΛ+ η ∈ L(1)
2d (1) and

〈
rΛ+ η

∣∣∣f −λ〉 = r ⟨Λ|f −λ⟩+
〈
η
∣∣∣f −λ〉 < 0, for r big enough.

In both cases, we have constructed Λ = Λλ ∈ L
(1)
2d (1) such that ⟨Λ|f ⟩ < λ. Therefore, f ∗Mom,d < λ

for all λ ∈R, and then f ∗Mom,d = −∞. In particular, f ∗SoS,d and f ∗Mom,d are not attained.

In Example 3.2.2, we show that L(1)
2d (g) can be unbounded even in the case when f ∗SoS,d and

f ∗Mom,d are finite and attained and the quadratic module Q(g) is Archimedean.

Example 3.2.2. [[Nie13b, ex. 1.1]] Let f = x3 that we minimize on [0,1] = S(x,1− x). Since
x3 = x2x ∈ Q3(x,1− x), then f ∗SoS,d = f ∗Mom,d = f ∗ = 0 for all d ≥ 2. However, one can show that
linear functionals ΛM ∈R[x]∗2d with pseudo-moments:

Λ0 = 1,Λ1 = 0, . . . ,Λ2d−1 = 0,Λ2d =M

belongs to L(1)
2d (x,1 − x) for all M ≥ 0. This shows that L(1)

2d (x,1 − x) is not bounded and, in
particular, not compact.
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The problem in Example 3.2.2 is that the ball constraint in not explicit in the description
of S(g), and thus we cannot apply [JH16, lem. 3]. However, if we only know that Q(g) is

Archimedean, we can still apply Lemma 2.5.8: then, when d is big enough L(1)
2d (g)[degf ] is

bounded, compact and thus

f ∗Mom,d = inf
{ 〈
Λ[degf ]

∣∣∣f 〉 ∈R |Λ ∈ L(1)
2d (g)

}
= inf

{
⟨Λ|f ⟩ ∈R |Λ ∈ L(1)

2d (g)[degf ]
}

is attained.
In the following we are interested, in particular, in linear functionals that realize the

infimum f ∗Mom,d (that we have seen to be attained, at least in the Archimedean case when, d
is big enough).

Definition 3.2.3. Consider the problem of minimizing f ∈R[x] on S(g). We define the set of
functional minimizers at relaxation order d as the Λ minimizing (1.7), i.e.:

Lmin
2d (g)B

{
Λ ∈ L(1)

2d (g) | ⟨Λ|f ⟩ = f ∗Mom,d

}
.

We give now a geometrical interpretation for the construction of Lmin
2d (g). We start from

the spectrahedral cone:

L2d(g) =Q2d(g)∨ = {Λ ∈R[x]∗2d |H
⌊ d2 ⌋
Λ
≽ 0,HN1

g1⋆Λ
≽ 0, . . . ,HNr

gr⋆Λ
≽ 0 },

where Ni = ⌊d−deggi
2 ⌋. Then we consider the section L(1)

2d (g) of L2d(g) given by ⟨Λ|1⟩ = 1. This
section is a convex, spectrahedral set, and finally the equation ⟨Λ|f ⟩ = f ∗Mom,d defines Lmin

2d (g)

as an exposed face of L(1)
2d (g).

Now, from the discussion above we have seen that L(1)
2d (g) may not be bounded. But we

have also seen that the problem can be solved, at lest in the Archimedean case, letting d grow
and projecting to L(1)

2d (g)[k], k ≤ 2d. The same considerations work for Lmin
2d (g) ⊂ L(1)

2d (g) (for
instance, the unbounded family {ΛM}M∈R≥0

defined in Example 3.2.2 is a subset of Lmin
2d (g),

that is therefore unbounded). We will then focus our attention on the projections Lmin
2d (g)[k].

It is important to study the convex sets Lmin
2d (g) and their projections Lmin

2d (g) in order
to understand the moment relaxations, since interior point solvers (Mosek, SDPA, SEDUMI,
. . . ), used to solve the semidefinite program associated to Lasserre’s relaxations, output a
truncated pseudo-moment sequence representing a linear functional lying in the relative
interior of Lmin

2d (g).

3.3 Finite convergence and exactness

We now introduce two convergence properties that are the central topic of this chapter: finite
convergence and exactness for the SoS and moment hierarchies.

Definition 3.3.1 (Finite Convergence). We say that the SoS hierarchy (Q2d(g))d∈N (respec-
tively, the moment hierarchy (L2d(g))d∈N) has the Finite Convergence property for f if ∃k ∈N
such that for every d ≥ k, f ∗SoS,d = f ∗ (respectively, f ∗Mom,d = f ∗).
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Notice that if the SoS hierarchy has finite convergence then the moment hierarchy has
finite convergence too, since f ∗SoS,d ≤ f

∗
Mom,d ≤ f

∗. Moreover, by definition if f ∗Mom,d = f ∗ then

Lmin
2d (g) = {Λ ∈ L(1)

2d (g) | ⟨Λ|f ⟩ = f ∗ }.
In the definition of SoS relaxations, we have a sup and not a max. However, in practice

one wants a certificate of positivity for f − f ∗ on S, given by the representation f − f ∗ =
s0 + s1g1 + . . . srgr ∈ Q2d(g) for some d.

Example 3.3.2. We give an example of such a certificate of positivity. Consider the square
[−1,1]2 = S(g) defined by the two inequalities g1 = (1 + x)(1− y) and g2 = (1− x)(1 + y). We
want to find a certificate of positivity for f = x2 − x3y (notice that f ∗ = 0 is attained at (1,1),
(−1,−1) and on the segment conv((0,−1), (0,1))).

As explained in Section 1.3.7, we can search for a representation of f ∈ Q2d(g) giving a
positivity certificate using semidefinite programming. We use MomentTools.jl to search for
this representation, choosing d = 2:

X = @polyvar x y

s, P, Q, v, M = sos_decompose(x^2-x^3*y,[0], [(1+x)*(1-y), (1-x)*(1+y)],X,2)

println(s)

-3.3564262480467733e-12x^4 - 7.708181115617663e-8x^3y + 8.084570390920476e-8x^2y^2 +

5.432637095736936e-8xy^3 + 1.1022738277688404e-11y^4 + 8.786447169839562e-8x^2 -

9.980950466115246e-8xy - 2.595994574861038e-8y^2 - 2.0188295923873056e-8

println(Q)

0.49999996146062914x^2 + 4.042666886247556e-8xy + 2.716147755799068e-8y^2 -

5.3929536263862865e-9x + 1.4184810360464893e-8y + 1.009489264624833e-8

0.49999996146062914x^2 + 4.042666886247556e-8xy + 2.716147755799068e-8y^2 +

5.3929536263862865e-9x - 1.4184810360464893e-8y + 1.009489264624833e-8

println(s + Q[1]*(1+x)*(1-y)+Q[2]*(1-x)*(1+y))

-3.3564262480467733e-12x^4 - 1.0000000000030695x^3y - 7.63381574635725e-12x^2y^2 +

3.4158413880020907e-12xy^3 + 1.1022738277688404e-11y^4 + 0.9999999999998228x^2 +

9.575745004352883e-12xy - 6.611353558804644e-12y^2 + 1.489368623605011e-12

this gives the (approximate) certificate of positivity for x2 − x3y on [−1,1]2:

x2 − x3y = 0 +
1
2
x2(1 + x)(1− y) +

1
2
x2(1− x)(1 + y).

When the representation f − f ∗ = s0 + s1g1 + . . . srgr ∈ Q2d(g) is possible, we call the SoS
hierarchy exact.

Definition 3.3.3 (SoS Exactness). We say that the SoS hierarchy (Q2d(g))d∈N is exact for f if
it has the finite convergence property and for all d big enough, we have f − f ∗ ∈ Q2d(g) (in
other words sup = max in the definition of f ∗SoS,d).

Obviously, if f − f ∗ ∈ Q2d(g) then f − f ∗ ∈ Q2k(g) for all k ≥ d: this means that if f −
f ∗ ∈ Q2d(g) then the SoS hierarchy is exact. This property is not shared in general for
corresponding definition for the moment hierarchy, i.e. moment exactness, see Definition 3.3.4
and Example 3.3.5.

On one hand, the SoS hierarchy is based on an inner approximation of polynomials
with truncated quadratic modules. On the other hand, the moment hierarchy is based on
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the approximation of measures with truncated positive linear functionals. Therefore, the
property that we want is to be able to represent linear functionals in Lmin

2d (g) as measures
supported on S. However, we are not interested in all the moments, but rather in the
truncation of the moment sequence in some degree. We make this truncation for two reasons:

• first, ⟨Λ|f ⟩ =
〈
Λ[degf ]

∣∣∣f 〉, so we do not care about moments of degree > degf ;

• second, the higher order moments may not share the good properties of the low degree
ones, see for instance Example 3.2.2.

Therefore, we ask the property that every truncated functional minimizer is coming from a
measure:

Definition 3.3.4 (Moment Exactness). We say that the moment hierarchy (L2d(g))d∈N is exact
for f on the basic closed semialgebraic set S if:

• it has the finite convergence property, and

• for every k ∈N, there exists d = d(k) ∈N such that every truncated functional mini-
mizer is coming from a probability measure supported on S, i.e. Lmin

2d (g)[k] ⊂M(1)(S)[k].

If not specified, S will be the semialgebraic set S = S(g) defined by g.

Moments exactness may be considered as a particular instance of the so-called Moment
Problem (i.e. asking if Λ ∈R[x]∗ is coming from a measure) or of the Strong Moment Problem
(i.e. asking that the measure has a specified support). More precisely, moment exactness can
be considered as a Truncated Strong Moment Property (since we are considering functionals
restricted to polynomials up to a bounded degree). See Section 1.4 for a more detailed
discussion.

Notice that in the definition of exactness we require the property Lmin
2d(k)(g)[k] ⊂M(1)(S)[k]

to hold for every k, and in general the fact that the property is verified for particular k does
not imply that it is verified for every k, as Example 3.3.5 shows.

Example 3.3.5. Consider the problem of minimizing f = 1 on S = R
2. First, recall that

Q(1) = Σ2 = ΣR[x]2 is stable in a strong sense: Q(1)∩R[x]2d =Q2d(1) = Σ2
n,2d for all d ∈N.

Now, notice that for all d ≥ k we have Lk(1) ⊃ Ld(1)[k] ⊃ Ld+1(1)[k] ⊃ L(1)[k], by definition.
We prove the converse inclusion for k = 2. Recall the solution of Hilbert’s 17th problem:
Σ2
n,2d = Pos(Rn)2d if and only if:

• n = 1 and d arbitrary;

• n = 2 and d ≤ 2;

• n arbitrary and d = 1.

Then we observe that Q2(1) = Σ2
2,2 = Pos(R2)2 and thus from Theorem 2.5.2 L2(1) = (Σ2

2,2)∨ =
Pos(R2)∨≤2 =M(R2)[2]. Finally, Lmin

2 (1) = L2(1) since f = 1 and thus the inclusion Lmin
2 (1)[k] ⊂

M(1)(S)[k] is satisfied for k = 2
On the other hand, Σ2

2,6 ⊊ Pos(R2)6 (for instance, the Motzkin polynomial M is such that
M ∈ Pos(R2)6 \Σ2

2,6), and therefore

M(Rn)[6]
⊊ (Σ2

2,6)∨ ⊂ Ld(1)[6]

for all d ≥ 6. Therefore, the moment hierarchy is not exact.
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We show now an example where we have finite convergence and exactness of the SoS and
the moment hierarchies.

Example 3.3.6. Consider the problem of minimizing f = x2 on the semialgebraic set S =
S(g) = S(1− x2 − y2,x+ y − 1) ⊂R

2 defined by g1 = 1− x2 − y2 and g2 = x+ y − 1. Clearly, the
minimum is f ∗ = 0 and the only minimizer is (0,1). Notice that f − f ∗ = x2 ∈ Q2(1−x2−y2,x+
y −1) and therefore f ∗SoS,1 = f ∗Mom,1 = f ∗ = 0, we have finite convergence and the SoS hierarchy
is exact.

We now investigate moment exactness. If a truncated moment sequence Λ is coming from
a probability measure µ ∈ M(1)(S) such that

∫
f dµ = f ∗, then the support of µ should be

contained in the set of minimizers Smin = { (0,1) } of f . Thus, µ = e(0,1) is the evaluation at
(0,1) (or in other words, the Dirac measure concentrated at (0,1)). Its moments are easily
computed: µ00 = 1, µ10 = 0, µ01 = 1, µ20 = 0, . . . .

Analyzing the constraints on the degree one and two moments of an optimal moment
sequence Λ ∈ Lmin

2 (g), where

Lmin
2 (g) = {Λ ∈R[x]∗2 |H

1
Λ ≽ 0, H0

g1⋆Λ
≽ 0, H0

g2⋆Λ
≽ 0,⟨Λ|1⟩ = 1,⟨Λ|f ⟩ = f ∗ = 0}

= {Λ ∈R[x]∗2 |


Λ00 Λ10 Λ01
Λ10 Λ20 Λ11
Λ01 Λ11 Λ02

 ≽ 0, Λ00 −Λ20 −Λ02 ≥ 0, Λ10 +Λ01 −Λ00 ≥ 0,Λ00 = 1,Λ20 = 0},

we deduce that Λ00 = 1, Λ10 = 0, Λ01 = 1, Λ20 = 0, Λ11 = 0 and Λ02 = 1: this shows that the
only element of Lmin

2 (g) is Λ = e[2]
(0,1). In particular notice that

〈
Λ
∣∣∣x2

〉
=

〈
Λ
∣∣∣(y − 1)2

〉
= 0.

For any order d ≥ 1 and any element Λ ∈ Lmin
2d (g), its truncation Λ[2] is in Lmin

2 (g) since〈
Λ[2]

∣∣∣x2
〉

=
〈
Λ
∣∣∣x2

〉
= 0 and

〈
Λ[2]

∣∣∣(y − 1)2
〉

=
〈
Λ
∣∣∣(y − 1)2

〉
= 0 imply that ∀p ∈ R[x]d ,⟨Λ|xp⟩ =〈

Λ
∣∣∣(y − 1)p

〉
= 0, see Lemma 1.3.10. We deduce from Proposition 3.4.15 that the moments of

Λ[d] = e[d]
(0,1) are coming from the Dirac measure e(0,1). Therefore, the moment hierarchy is

exact.
Another equivalent way to certify moment exactness is to check flat truncation (see Defini-

tion 3.4.17 and Section 1.4.1). For Λ ∈ Lmin
2d (g) with d ≥ 2, we have computed the moments of

degree ≤ 2. Since the moment matrices in degree ≤ 2:

H0
Λ =

(
1
)
, H1

Λ =


1 0 1
0 0 0
1 0 1


have the same rank, the flat extension property is satisfied. This certifies that Λ[2] = e[2]

(0,1) is
coming from a measure supported at the minimizer of f on S and the moment hierarchy is
exact, see Theorem 3.5.1.

In practice, to check the finite convergence, one tests the flat extension or the flat truncation
property of moment matrices (see [CF98], [LM09], [Nie13b]). But flat truncation certifies
moment exactness, and not only finite convergence. We will investigate flat truncation for
polynomial optimization problems in Section 3.5.

Notice that in the previous example the rank condition is satisfied by the full sequence
of moments of Λ ∈ Lmin

2 (g) (i.e. we have flat extension). In general this is not true, as the
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high degree moments may be increasing the rank of the moment matrix, see for in instance
Example 3.2.2. Therefore, it is necessary to discard the high degree moments, i.e. to consider
Lmin

2d (g)[t], for some t ≤ 2d, instead of simply Lmin
2d (g). This implies that we look for rank

conditions on the moment matrix of the truncated moment sequence (i.e. we have flat
truncation).

We recall results of strong duality, that is cases when we know that f ∗SoS,d = f ∗Mom,d , that we
will be using in the chapter. See also Proposition 3.4.8.

Theorem 3.3.7 (Strong duality). LetQ =Q(g) be a quadratic module and f the objective function.
Then:

(i) if suppQ = 0 then ∀d: f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Qd(g)) and f ∗SoS,d = f ∗Mom,d[Mar08,
prop. 10.5.1];

(ii) if g1 = r2 − ∥x∥22 then f ∗SoS,d = f ∗Mom,d for all d [JH16].

Remark. [JH16] applies when the ball constraint r2−∥x∥22 appears explicitly in the description
of S. But if we consider a problem with moment finite convergence and such that Q(g) is
Archimedean, then we can use [JH16] to prove that we have also SoS finite convergence.
Indeed, if Q(g) is Archimedean there exists r, t such that r2 − ∥x∥22 ∈ Q2t(g). This means that
Q2d(g, r2 − ∥x∥22) ⊂ Q2d+2t(g). If we define:

• f ∗SoS,d = sup
{
λ ∈R | f −λ ∈ Q2d(g)

}
• f ∗

′

SoS,d = sup
{
λ ∈R | f −λ ∈ Q2d(g, r2 − ∥x∥22)

}
and f ∗Mom,d , f ∗

′

Mom,d the corresponding moment relaxations, then:

f ∗Mom,d ≤ f
∗′

Mom,d = f ∗
′

SoS,d ≤ f
∗

SoS,d+t ≤ f
∗.

Then finite convergence of the moment hierarchy implies finite convergence of the SoS one.

3.3.1 Examples and counterexamples

In this section, we give examples showing how the notions of finite convergence and exactness
of the SoS and moment hierarchies are (and are not) related.

No finite convergence. The first example shows that SoS and moment hierarchies for
polynomial optimization on algebraic curves do not have necessarily the finite convergence
property.

Example 3.3.8 ([Sch00]). Let C ⊂ R
n be a smooth connected curve of genus ≥ 1, with only

real points at infinity. Let h = {h1, . . . ,hs} ⊂R[x] be a graded basis of I = I (C) = (h). Then there
exists f ∈R[x] such that the SoS hierarchy Q2d(±h) and the moment hierarchy L2d(±h) have
no finite convergence and are not exact.

Indeed, by [Sch00, Theorem 3.2], there exists f ∈R[x] such that f ≥ 0 on C = S(±h), which
is not a sum of squares in R[C] �R[x]/I . Consequently, f < ΣR[x]2 + I =Q(±h). As f ≥ 0 on C,
its infimum f ∗ is non-negative, and we also have f − f ∗ <Q(±h).
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Using Proposition 3.4.8 we deduce that Q2d(±h) is closed, that there is no duality gap
and that the supremum f ∗SoS,d is reached. Thus, if the SoS hierarchy has finite convergence
then f − f ∗ ∈ Q2d(±h) for some d ∈N. This is a contradiction, showing that the SoS and the
moment hierarchies have no finite convergence and cannot be SoS exact for f .

In dimension 2, there are also cases where the SoS and moment hierarchies cannot have
finite convergence or be exact.

Example 3.3.9 ([Mar08]). Let g1 = x3
1−x

2
2, g2 = 1−x1. Then S = S(g) is a compact semialgebraic

set of dimension 2 and O(g) = Q(g1, g2, g1g2) is Archimedean. We have f = x1 ≥ 0 on S but
x1 < O(g) (see [Mar08, Example 9.4.6(3)]). The infimum of f on S is f ∗ = 0. Assume that
we have moment finite convergence. By Theorem 3.3.7 and remark below, Q2d(g1, g2, g1g2)
is closed, the supremum f ∗SoS,d is reached and strong duality holds: f ∗SoS,d = f ∗Mom,d = f ∗ = 0
for all d ∈N big enough. Then f − f ∗ = f ∈ O(g): but this is a contradiction. Therefore, the
hierarchies Q2d(Πg) and L2d(Πg) cannot have finite convergence and thus cannot be exact
for f = x1.

The next example shows that non-finite convergence and non-exactnesss is always possible
in dimension ≥ 3.

Example 3.3.10. Let n ≥ 3. Let Q be an Archimedean quadratic module generated by
g1, . . . , gs ∈ R[x] such that S(g) ⊂ R

n is of dimension m ≥ 3 and let h be a graded basis of
R

√
suppQ (in particular h = 0 if suppQ = 0 or ifm = n, that is if S(g) is of maximal dimension),

then there exists f ∈R[x] such that the SoS hierarchy (Q2d(g,±h))d∈N and moment hierarchy
(L2d(g,±h))d∈N do not have the finite convergence property (and thus are not exact).

Indeed by Proposition 3.4.8 f ∗SoS,d = f ∗Mom,d for d big enough and the supremum f ∗SoS,d
is reached. By [Sch00, Prop. 6.1] for m ≥ 3, Pos(S(g)) = Pos(S(Q + (h))) ⊋ Q + (h). So let
f ∈ Pos(S(Q)) \Q+ (h) and let f ∗ be its minimum on S(Q). Suppose that f − f ∗ ∈Q+ (h), then
f ∈Q+ (h) + f ∗ =Q+ (h), a contradiction. Then the SoS and the moment hierarchies do not
have the finite convergence property (and they are not exact).

SoS exactness, no moment exactness.

Example 3.3.11. We want to find the global minimum of f = x2
1 ∈ R[x1, . . . ,xn] = R[x] for

n ≥ 3. Let d ≥ 2, x′ = (x2, . . . ,xn) and Λ ∈ L2d(1)x′ = (Σ(R[x′]d)2)∨ such that Λ <M(Rn−1)[d].
Such a linear functional exists because when n > 2 there are non-negative polynomials in
R[x′] which are not sum of squares, such as the Motzkin polynomial (see [Rez96]). As
Σ(R[x′]d)2 = ΣR[x′]2 ∩R[x′]2d is closed, such a polynomial can be separated from Σ(R[x′]d)2

by a linear functional Λ ∈ L2d(1)x′ = (Σ(R[x′]d)2)∨, which cannot be the truncation of a
measure. Define Λ : h 7→ ⟨Λ|h⟩B

〈
Λ
∣∣∣h(0,x2, . . . ,xn)

〉
. We have Λ ∈ L2d(1) = (ΣR[x]2∩R[x]2d)∨

since Λ ∈ L2d(1)x′ . Obviously ⟨Λ|f ⟩ = 0 = f ∗ (the minimum of x2
1), f − f ∗ = x2

1 ∈ Σ2 and the
SoS relaxation is exact. Since Λ is coming from a measure if and only if Λ is coming from a
measure, the moment hierarchy cannot be exact.

The previous example generalizes easily to quadratic modulesQ =Q(g) with supp(Q) , {0},
which do not have the (truncated) moment property, i.e. there exists Λ ∈ L2d(g) such that
Λ <M(S(Q))[2d]. Taking f = h2 with h ∈ supp(Q), h , 0, we have ⟨Λ|f ⟩ = 0 = f ∗ and the
moment hierarchy cannot be exact since Λ <M(S(Q))[2d], while the SoS hierarchy is exact
(f − f ∗ = h2 ∈Q).
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Example 3.3.11 is an example where the number of minimizers of f on S is infinite. We
show that non exactness can happen also when the minimizers are finite (and even when S is
finite!).

Example 3.3.12 ([Sch05a, ex. 3.2], [Sch05b, rem. 3.15], Example 3.4.4). We want to minimize
the constant function f = 1 on the origin S = S(Q) = {0}, where Q = Q(1 − x2 − y2,−xy,x −
y,y − x2) ⊂ R[x,y]. In this case suppQ = R

√
suppQ = (0). Notice that the SoS hierarchy is

exact and the moment hierarchy has finite convergence, since f is a square. Now suppose

that the moment hierarchy is exact, i.e. Lmin
2d (g)[2k] = L(1)

2d (g)[2k] ⊂ M(1)(S)[2k] = {e[2k]
0 } for

some d,k. Then for Λ∗ ∈ L2d(g) generic (see Definition 3.4.9), we have (Λ∗)[2k] = λe[2k]
0

and (Annk(Λ∗)) = (Annk(e0)) = (x,y). But from Theorem 3.4.11 we know that for d,k big
enough (Annk(Λ∗)) = R

√
suppQ = (0), a contradiction. Then the moment hierarchy is not

exact. Moreover, the flat truncation property is not satisfied in this case: see Theorem 3.5.4.
We investigate concretely this example for d = 1. We show in Figure 3.11 the plot of L2(g)[1],

that is, the pseudo-moments of degree one of the linear functionals L2(g) =Q2(g)∨. Notice
that this is an outer approximation of e(0,0) ∈ L2(g)[1] or, identifying moments of degree one
with points of Rn, a convex outer approximation of S = {(0,0)}.

One can also verify explicitly that L2(g) has nonempty interior. Indeed, L2(g) is explicitly
defined by the following matrix inequalities:

H2
Λ =


Λ00 Λ10 Λ01
Λ10 Λ20 Λ11
Λ01 Λ11 Λ02

 ≽ 0,

H0
(1−x2−y2)⋆Λ =

(
1−Λ20 −Λ02

)
≽ 0,

H0
−xy⋆Λ =

(
−Λ11

)
≽ 0,

H0
(x−y)⋆Λ =

(
Λ10 −Λ01

)
≽ 0,

H0
(y−x2)⋆Λ =

(
Λ01 −Λ20

)
≽ 0

Since Λ = Λ(ε) defined by Λ10 = 2ε, Λ01 = ε, Λ20 = ε
2 , Λ11 = −ε2 and Λ02 = 1

2 strictly satisfies
those inequalities for ε > 0 small enough, Λ(ε) lies in the interior of L2(g) for ε > 0 small
enough.

Notice that L2(g)[1] ⊃ L3(g)[1] ⊃ L4(g)[1] ⊃ · · · ⊃ {e[1]
(0,0)}, and we have convergence in this

case since Q(g) is Archimedean, see Section 2.5. This nested outer approximations, shown in
Figure 3.12, never coincide with {e[1]

(0,0)}, as we have proven before.

SoS finite convergence, moment exactness.

Example 3.3.13. Let f = (x4y2 +x2y4 + z6−2x2y2z2) +x8 +y8 + z8 ∈R[x,y,z]. We want to opti-
mize f over the gradient variety V

R

(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
which is zero dimensional (see [NDS06]). By

Theorem 3.5.11 the flat truncation is satisfied and the moment hierarchy is exact, and
by Theorem 3.3.7 and remark below the SoS has the finite convergence property (no-
tice that Q(±∂f∂x ,±

∂f
∂y ,±

∂f
∂z ) = O(±∂f∂x ,±

∂f
∂y ,±

∂f
∂z ) =

(
∂f
∂x ,±

∂f
∂y ,±

∂f
∂z

)
+ Σ2 is Archimedean since

1The variables x,y in the plots, done using SDPA, have been scaled by 100 to reduce floating points errors
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Figure 3.1: A generic point Λ∗ ∈ L(1)
2 (g)[1] and outer approximations of L(1)(g)[1] = {e[1]

0,0}.

Table 3.1: Summary of convergence results.
Expl. SoS f. c. SoS ex. Mom. f. c. Mom ex. Flat t. m
3.3.8 NO NO NO NO NO 1
3.3.9 NO NO NO NO NO 2

3.3.10 NO NO NO NO NO ≥ 3
3.3.11 YES YES YES NO NO ≥ 3
3.3.12 YES YES YES NO NO 0
3.3.13 YES NO YES YES YES 0
3.3.14 YES NO YES YES YES 0

V
R

(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
is compact, from Schmüdgen’s Positivstellensatz). But the SoS hierarchy is not

exact, as shown in [NDS06].

Example 3.3.14. Let f = x1. We want to find its value at the origin, defined by ∥x∥22 = 0. As
proved in [Nie13c] there is finite convergence but not exactness for the SoS hierarchy. On
the other hand by Theorem 3.5.11 the flat truncation property is satisfied and the moment
hierarchy is exact. This example is essentially Example 1.3.4.

We summarize the previous examples in Table 3.1 in terms of the properties of finite
convergence (SoS f.c. and moment f.c.) exactness (SoS ex. and moment ex.), flat truncation,
and the dimension m of the semialgebraic set S.

3.4 Geometry of pseudo-moment representations

Motivated from the study of the Lasserre’s moment hirarchy, and in particular from the
properties of finite convergence, exactness and flat truncation, we analyze in this section
the properties of finite dimensional truncated cones of positive linear functionals Ld(g) (or,
equivalently, properties of the representing pseudo-moment sequences). We provide a new
and explicitly description of the dual of the hierarchy of Ld(g), in terms of a quadratic module
(Theorem 3.4.3), and consequently prove properties of the cones Ld(g) (Lemma 3.4.5) and
of their generic elements (Theorem 3.4.11). Genericity is an important property, as linear
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functionals in the relative interior of our convex sets are generic. Finally, we apply these
results to the zero dimensional case (Theorem 3.4.20) and we investigate the connections
with the flat truncation property (Section 3.4.3).

3.4.1 Truncated pseudo-moment representations

For a finitely generated quadratic module Q =Q(g) ⊂R[x], we have Lk(g) =Qk(g)∨ =Qk(g)
∨

andLk(g)∨ =Qk(g), where ∨ denotes the dual cone and the closure is taken w.r.t. the euclidean
topology on R[x]k, see Section 1.2.4. See also Section 1.6.4 for more motivations to study
closures of truncated quadratic modules in polynomial optimization. Thus, the following
definition is natural for the study of moment relaxations.

Definition 3.4.1. Let Q = Q(g) be a finitely generated quadratic module. We define Q̃ =⋃
dQd(g).

Notice that Q̃ depends a priori on the generators g of Q: we will prove that Q̃ is a finitely
generated quadratic module and that it does not depend on the particular choice of generators.
Moreover notice that Q ⊂ Q̃ =

⋃
dQd(g) ⊂

⋃
dQk(g) =Q, but these inclusions can be strict.

Lemma 3.4.2. Let Q =Q(g) and J = R

√
suppQ. Then for every d ∈N there exists k ≥ d such that

Jd ⊂ Qk(g).

Proof. We denote Qd(g)CQ[d]. Let m be big enough such that ∀f ∈ J = R

√
suppQ =

√
suppQ

(see Lemma 1.1.24) we have: f 2m ∈ suppQ (if
√
J = (h1, . . . ,ht) and haii ∈ I , we can take m such

that 2m ≥ a1 + · · ·+ at). Let f ∈ Jd with degf ≤ d. Then f 2m ∈ suppQ[k′] ⊂Q[k′] for k′ ∈N big
enough. Using the identity [Sch05b, remark 2.2]:

m− a = (1− a
2

)2 + (1− a
2

8
)2 + (1− a4

128
)2 + · · ·+ (1− a

2m−1

22m−1 )2 − a2m

22m+1−2
,

substituting a by −mfε and multiplying by ε
m , we have that ∀ε > 0, f + ε ∈ Q[k] for k =

max{k′ ,2md} (the degree of the representation of f + ε does not depend on ε). This implies
that f ∈ Q[k].

We can now describe Q̃.

Theorem 3.4.3. LetQ =Q(g) be a finitely generated quadratic module and let J = R

√
suppQ. Then

Q̃ =Q+ J and suppQ̃ = J . In particular, Q̃ is a finitely generated quadratic module and does not
depend on the particular choice of generators of Q.

Proof. We denote Qd(g)C Q[d]. By [Mar08, lemma 4.1.4] Q[d] + Jd is closed in R[x]d , thus
Q[d] ⊂Q[d] + Jd . Taking unions we prove that Q̃ ⊂Q+ J .

Conversely by Lemma 3.4.2 for d ∈N and k ≥ d ∈N big enough, Jd ⊂Q[k]. Then, we have
Q[d] + Jd ⊂Q[k] +Q[k] ⊂Q[k] +Q[k] ⊂Q[k]. Taking unions on both sides gives Q+ J ⊂ Q̃.

Finally suppQ̃ = supp(Q+ J) = J by [Sch05b, lemma 3.16].

Remark. We proved that Q̃ =Q+ R

√
suppQ. We also have suppQ̃ = R

√
suppQ so that if suppQ

is not real radical then Q ⊊ Q̃. Example 3.3.14 is such a case where suppQ , R

√
suppQ. We

notice that, by Theorem 3.4.3 and [Sch05b, th. 3.17], if Q is stable (see Definition 1.1.27)
then Q̃ =Q. But the inclusion Q̃ =Q+

√
suppQ ⊂Q can be strict, as shown by the following

example.
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Example 3.4.4 ([Sch05a, ex. 3.2], [Sch05b, rem. 3.15], Example 3.3.12). Let Q =Q(1− x2 −
y2,−xy,x−y,y−x2) ⊂R[x,y]. Notice that S = S(Q) = {0} and thatQ is Archimedean. Therefore,
by Theorem 1.1.22, Q = Pos({0}) (see also Section 1.3.5). We verify that suppQ = (0) and that
I (S) = suppQ = (x,y). Since suppQ , suppQ, finally we have Q =Q+

√
suppQ = Q̃ ⊊Q.

Theorem 3.4.3 suggests the idea that, when we consider the moment hierarchy, we are
extending the quadratic module Q(g) to Q(g,±h), where h are generators of R

√
suppQ(g). We

specify this idea in Lemma 3.4.5, Proposition 3.4.8 and Theorem 3.4.11, investigating the
relations between the truncated parts of Ld(g).

Lemma 3.4.5. Let J = R

√
suppQ(g). If (h) ⊂ J , degh ≤ t, then ∃d ≥ t such that ⟨h⟩t ⊂ Qd(g). In

this case:
Ld(g)[t] ⊂ Lt(g,±h) ⊂ Lt(g),

and in particular Ld(g)[t] ⊂ Lt(±h). Moreover, Ld+2k(g)[t+k] ⊂ Lt+k(±h) for all k ∈N.

Proof. By Lemma 3.4.2, ⟨h⟩t ⊂ (h)t ⊂ Qd(g) for some d ≥ t. Let h ∈ h and f ∈R[x]t−degh. Then

±f h ∈ Qd(g), and for Λ ∈ Ld(g), we have
〈
Λ[t]

∣∣∣f h〉 = ⟨Λ|f h⟩ = 0, i.e. Ld(g)[t] ⊂ Lt(g,±h). The
other inclusion Lt(g,±h) ⊂ Lt(g) follows by definition.

For the second part, notice that ⟨h⟩t+k ⊂ Qd+2k(g). Indeed, if p ∈ ⟨h⟩t+k then p =
∑
i xα(i)pi ,

where pi ∈ ⟨h⟩t ⊂ Qd(g) and |α(i)| ≤ k. Writing xα(i) = (xα(i)+1
2 )2 − (xα(i)−1

2 )2, we deduce that

p =
∑
i(

xα(i)+1
2 )2pi + ( xα(i)−1

2 )2(−pi) ∈ Qd+2k(g), i.e. ⟨h⟩t+k ⊂ Qd+2k(g). Then we can conclude the
proof as in the first part.

Lemma 3.4.5 says that the moment hierarchy (L2d(g))d∈N is equivalent to the moment
hierarchy (L2d(g,±h))d∈N, where (h) = R

√
suppQ(g). Lemma 3.4.5 is an algebraic result, in the

sense that suppQ(g) may be unrelated to the geometry S(g) that g defines. If some additional
conditions hold (namely if we have only equalities, or a preordering, or a small dimension),
it can however provide geometric characterizations.

Corollary 3.4.6. Suppose that S(g) ⊂ V
R

(h). Then for every t0 ≥ degh there exists t1 ≥ t0 such
that:

Lt1(Πg)[t0] ⊂ Lt0(±h).

In particular this holds when (h) = I (S(g)).
Moreover, Lt1+2k(g)[t0+k] ⊂ Lt0+k(±h) for all k ∈N.

Proof. S(g) ⊂ V
R

(h) if and only if R

√
(h) ⊂ I (S(g)) = R

√
suppQ(Πg) by the Real Nullstellensatz,

Theorem 1.1.25. Then we can apply Lemma 3.4.5.

Corollary 3.4.7. Let Q = Q(g). Suppose that S(g) ⊂ V
R

(h) and dim R[x]
suppQ ≤ 1. Then for every

t0 ≥ degh there exists t1 ≥ t0 such that (h)t0 ⊂ Qt1(g). In this case:

Lt1(g)[t0] ⊂ Lt0(±h),

ans in particular this holds when (h) = I (S(g)).
Moreover, Lt1+2k(g)[t0+k] ⊂ Lt0+k(±h) for all k ∈N.

Proof. We prove it as Corollary 3.4.6, using Theorem 1.1.26 instead of the Real Nullstellensatz.
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We mention now a strong duality result, that is useful to produce examples and counterex-
amples for exactness and finite convergence. This result, very similar to a result in [Mar03],
generalizes the condition suppQ = 0 in Theorem 3.3.7.

Proposition 3.4.8. Let Q =Q(g) be a finitely generated quadratic module, and let h be a graded
basis of R

√
suppQ. Then for any d we have Qd(g,±h) = Qd(g,±h) is closed. Moreover, if we

consider the extended hierarchies Q2d(g,±h) and L2d(g,±h), then for any f ∈ R[x] such that
f ∗ > −∞ we have that f ∗SoS,d is attained (i.e. f − f ∗SoS,d ∈ Q2d(g,±h)) and there is no duality gap:
f ∗SoS,d = f ∗Mom,d .

Proof. By [Mar08, lem. 4.1.4],Q2d(g,±h) =Q2d(g)+I2d is closed. Therefore we haveL2d(g,±h)∨ =
(Q2d(g,±h))∨∨ =Q2d(g,±h) =Q2d(g,±h), from which we deduce that there is not duality gap,
by classical convexity arguments, as follows.

Let m > f ∗SoS,d , so that f − m < Q2d(g,±h) = Q2d(g,±h). From the separation theorem
(Theorem 1.2.1) there exists Λ ∈ Q2d(g,±h)∨ = L2d(g,±h) such that ⟨Λ|f −m⟩ < 0. Proceeding

as in Example 3.2.1, we can assume that ⟨Λ|1⟩ = 1, and thus Λ ∈ L(1)
2d (g,±h). This shows that

⟨Λ|f ⟩ ≤m and f ∗Mom,d ≤ f
∗

SoS,d . Since the other inequality is always satisfied, we have proven
f ∗Mom,d = f ∗SoS,d , i.e. strong duality.

We conjecture that, more generally, there is no duality gap whenQ is reduced (i.e. suppQ =
R

√
suppQ) without adding the generators of the radical of the support.

3.4.2 Annihilators of truncated moment sequences

Recall that the annihilator Annt(Λ) is the kernel of the moment matrix of Λ (or of the Hankel
operator), see Section 1.2.1 and Section 1.2.2. With the characterization of Q̃, Theorem 3.4.3,
we can now describe these kernels of moment matrices associated to truncated positive linear
functionals.

We recall the definition of genericity in the truncated setting and equivalent characteriza-
tions.

Definition 3.4.9. Let C ⊂ L2d(g) be a convex set. We say that Λ∗ ∈ C is generic in C if
rankHd

Λ∗ = max{rankHd
η | η ∈ C}.

In particular, we will consider generic Λ∗ in the following convex sets:

• C = L2d(g), the cone positive linear functionals, or the feasible pseudo-moment se-
quences of Lasserre’s moment relaxation of order d;

• C = L(1)
2d (g), the convex set defined as the section of L2d(g) given by ⟨Λ|1⟩ = 1;

• C = Lmin
2d (g), the exposed face of L(1)

2d (g) defined by ⟨Λ|f ⟩ = f ∗Mom,d .

• C = L2d(g)[2k],L(1)
2d (g)[2k],Lmin

2d (g)[2k], the restriction of the positive linear functionals to
R[x]∗2k (or the truncation of the pseudo-moment sequences to degree ≤ 2k). .

This genericity can be characterized as follows, see [Las+13, prop. 4.7].

Proposition 3.4.10. Let Λ ∈ C ⊂ L2d(g). The following are equivalent:
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(i) Λ is generic in C;

(ii) Annd(Λ) ⊂ Annd(η) ∀η ∈ C;

(iii) ∀k ≤ d, we have: rankHk
Λ

= max{rankHk
η | η ∈ C }.

Proof. We start proving that (i)⇒ (ii). Let Λ ∈ C ⊂ L2d(g) be generic, and let η ∈ C. Since C
is convex, then 1

2 (Λ+ η) ∈ C and Annd(1
2 (Λ+ η)) = Annd(Λ)∩Annd(η). Indeed, the inclusion

Annd(
1
2

(Λ+ η)) = kerHd
1
2 (Λ+η)

= kerHd
Λ+η ⊃ kerHd

Λ ∩kerHd
η = Annd(Λ)∩Annd(η)

is obvious. Conversely, if f ∈ Annd(1
2 (Λ+ η)) then f ⋆ (1

2 (Λ+ η)) = 1
2 (f ⋆ Λ+ f ⋆ η) = 0. In

particular,

0 =
〈
f ⋆ (

1
2

(Λ+ η))
∣∣∣∣∣f 〉 =

1
2

(
⟨f ⋆Λ|f ⟩+

〈
f ⋆ η

∣∣∣f 〉) =
1
2

(〈
Λ
∣∣∣f 2

〉
+
〈
η
∣∣∣f 2

〉)
Therefore

〈
Λ
∣∣∣f 2

〉
=

〈
η
∣∣∣f 2

〉
= 0, and from Lemma 1.3.10 we have f ∈ Annd(Λ) ∩Annd(η),

proving the reverse inclusion. Therefore, Annd(1
2 (Λ+ η)) = Annd(Λ)∩Annd(η) ⊂ Annd(Λ).

Now, since Λ is generic, rankHd
Λ
≥ rankHd

1
2 (Λ+η)

. Then dimAnnd(1
2 (Λ+ η)) ≤ dimAnnd(Λ),

and we have Annd(Λ)∩Annd(η) = Annd(1
2 (Λ+ η)) = Annd(Λ). This shows that Annd(Λ) ⊂

Annd(η), concluding the proof.
We prove now (ii)⇒ (iii). We first show that, if k ≤ d, Annk(Λ) = Annd(Λ)∩R[x]k . Indeed,

if f ∈ Annd(Λ) ∩R[x]k then (f ⋆ Λ)[d] = 0, and thus (f ⋆ Λ)[k] = 0, i.e. f ∈ Annk(Λ). On
the contrary, if f ∈ Annk(Λ) then

〈
Λ[2k]

∣∣∣f 2
〉

=
〈
Λ[2d]

∣∣∣f 2
〉

= 0, and thus f ∈ Annd(Λ) from
Lemma 1.3.10. Therefore:

kerHk
Λ

= Annk(Λ) = Annd(Λ)∩R[x]k ⊂ Annd(η)∩R[x]k = Annk(η) = kerHk
η

since Λ satisfies (ii). Finally, the inclusion kerHk
Λ
⊂ kerHk

η implies rankHk
Λ
≥ rankHk

η for all
k ≤ d and all η ∈ C.

The last implication (iii)⇒ (i) is obvious.

Remark. By Proposition 3.4.10 notice that ∀k ≤ d, if Λ∗ ∈ C ⊂ L2d(g) is generic in C then
(Λ∗)[2k] is generic in C[2k]. In particular, Annk(Λ∗) ⊂ Annk(η) ∀η ∈ C.

We can show that linear functionals in the relative interior of C ⊂ L2d(g) are generic, using
the ideas of the proof above. Indeed, let Λ = 1

2 (Λ1 +Λ2) be a convex combination of elements
of C. The inclusion

Annd(Λ) = kerHd
Λ = kerHd

Λ1+Λ2
⊃ kerHd

Λ1
∩kerHd

Λ2
= Annd(Λ1)∩Annd(Λ2)

is obvious. Conversely, if f ∈ Annd(Λ) then f ⋆Λ = 1
2 (f ⋆Λ1 + f ⋆Λ2) = 0. In particular,

0 = ⟨f ⋆Λ|f ⟩ =
1
2

(⟨f ⋆Λ|f ⟩+ ⟨f ⋆Λ|f ⟩) =
1
2

(
〈
Λ1

∣∣∣f 2
〉

+
〈
Λ2

∣∣∣f 2
〉
)

Therefore
〈
Λ1

∣∣∣f 2
〉

=
〈
Λ2

∣∣∣f 2
〉

= 0, and from Lemma 1.3.10 we have f ∈ Annd(Λ1)∩Annd(Λ2),
proving the reverse inclusion. Notice that there are examples where extremal points are
generic, see Example 3.5.2.
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If we use an SDP solver based on interior point method to solve a Lasserre’s moment
relaxation, we will (approximately) get a pseudo-moment sequence in the relative interior of
the exposed face Lmin

2d = L(1)
2d (g)∩ {⟨Λ|f ⟩ = f ∗Mom,d}, which is then generic in this face. We will

use generic linear functionals to recover the minimizers when we have exactness or the flat
truncation property.

We are now ready to describe the annihilator of generic elements.

Theorem 3.4.11. Let Q = Q(g) and J = R

√
suppQ. Then for all d, t ∈ N big enough and for

Λ∗ ∈ Ld(g) generic, we have J = (Annt(Λ∗)). Moreover ifQ =O is a preordering, then (Annt(Λ∗)) =
I(S(g)).

Proof. Let t ∈N such that J is generated in degree ≤ t, by the graded basis h = h1, . . . ,hs. From
Lemma 3.4.2 we deduce that there exists d ∈N such that J2t ⊂ Qd(g). Let Λ∗ ∈ Ld(g) generic.

We first prove that J ⊂ (Annt(Λ∗)). By Proposition 3.4.10 we have Annt(Λ∗) =
⋂

Λ∈Ld (g) Annt(Λ).
Then it is enough to prove that Jt ⊂ Annt(Λ) for all Λ ∈ Ld(g).

By Lemma 3.4.5 Ld(g)[2t] ⊂ L2t(±h) ⊂ ⟨h⟩⊥2t. Then ∀f ∈ Jt = ⟨h⟩t , ∀p ∈ R[x]t , ∀Λ ∈ Ld(g),
we have f p ∈ ⟨h⟩2t and

〈
Λ[2t]

∣∣∣f p〉 = 0. This shows that H t
Λ

(f )(p) =
〈
(f ⋆Λ)[t]

∣∣∣p〉 = ⟨Λ|f p⟩ = 0,
i.e. f ∈ Annt(Λ) = kerH t

Λ
.

Conversely, we show that (Annt(Λ∗)) ⊂ J for Λ∗ generic in Ld(g). Since J = suppQ̃ =
supp

⋃
jQj(g) (by Theorem 3.4.3) it is enough to prove that Annt(Λ∗) ⊂ Qd(g)∩ −Qd(g) =

suppQd(g) = suppLd(g)∨.
Let f ∈ Annt(Λ∗) =

⋂
Λ∈Lk(g) Annt(Λ) (we use again Proposition 3.4.10) and let Λ ∈ Ld(g).

Then ⟨Λ|f ⟩ =
〈
(f ⋆Λ)[t]

∣∣∣1〉 = H t
Λ

(f )(1) = 0. In particular f ∈ Ld(g)∨. We prove that −f ∈
Ld(g)∨ in the same way. Then f ∈ Ld(g)∨ ∩ −Ld(g)∨ = Qd(g) ∩ −Qd(g) = suppQd(g), and
finally we deduce from Definition 3.4.9 and Theorem 3.4.3 that Annt(Λ∗) ⊂ suppQ̃ = J .

The second part follows from the first one and the Real Nullstelensatz, Theorem 1.1.25.

Theorem 3.4.11 shows the possibilities and the limits of moment hierarchies. For instance,
we cannot expect exactness of the moment hierarchy L2d(g) for any objective function f (or
in other words L2d(g)[k] ⊂M(S)[k]) if R

√
suppQ , I (S): see Example 3.3.12.

In Proposition 3.4.12 we investigate the infinite dimensional case. We say that Λ∗ ∈ L(Q) =
Q∨ is generic if Ann(Λ∗) ⊂ Ann(Λ) for all Λ ∈ L(Q), using Proposition 3.4.10 to have the
analogy with the finite dimensional case.

Proposition 3.4.12. Let Q be a quadratic module, S = S(Q) and Λ∗ ∈ L(Q) = Q∨ be generic.
Then R

√
suppQ ⊂ Ann(Λ∗) ⊂ I (S). Moreover:

(i) if Q is Archimedean then Ann(Λ∗) = I (S);

(ii) if Q =O is a preordering, Ann(Λ∗) = I (S);

(iii) if I is an ideal of R[x] and Λ∗ ∈ L(I) = (I +Σ2)∨ is generic, then Ann(Λ∗) = R

√
I .

Proof. For x ∈ S, notice that ex ∈ L(Q). Then, since Λ∗ is generic:

Ann(Λ∗) ⊂
⋂
x∈S

Ann(ex) =
⋂
x∈S
I (x) = I (S).
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Now observe that suppQ ⊂ Ann(Λ∗) by definition. Since Ann(Λ∗) is a real radical ideal (see
[Las+13, prop. 3.13]), then R

√
suppQ ⊂ Ann(Λ∗).

If Q is Archimedean, then by Putinar’s Positivstellensatz (Theorem 1.3.7) L(Q) = Q∨ =
M(S). In particular Λ∗ is a measure µ ∈M(S) supported on S: ∀f ∈R[x], ⟨Λ∗|f ⟩ =

∫
f dµ. Let

h ∈ I (S) and f ∈R[x]. Then:

⟨Λ∗|f h⟩ =
∫
f hdµ =

∫
0dµ = 0,

i.e. h ∈ Ann(Λ∗), which proves the reverse inclusion.
IfQ =O is a preordering then R

√
suppO = I (S) by the Real Nullstellensatz, Theorem 1.1.25.

Then Ann(Λ∗) = I (S).
As L(I) = L(I +Σ2), the last point follows from the previous one applied to O = I +Σ2.

If we compare Theorem 3.4.11 and Proposition 3.4.12, we see that the description in
the infinite dimensional setting is more complicated, as we don’t always have the equality
Ann(Λ∗) = R

√
suppQ, see the case of an Archimedean quadratic module. This happens

because limit properties that appear in the infinite dimensional case do not show up in the
truncated setting.

3.4.3 Regularity, moment sequences and flat truncation

In this section, we analyze the properties of moment sequences in Ld(g) when S = S(g) is
finite. We will use the results in this section to study the case of finitely many minimizers in
Polynomial Optimization problems, and in particular flat truncation.

We start briefly recalling the definition of Castelnuovo-Mumford regularity, and its relations
with the interpolation degree in the zero dimensional case. We refer to [Eis05] for more details.

Let Ξ = {ξ1, . . . ,ξr} ⊂ C
n be a finite set of (complex) points and let I (Ξ) = {p ∈C[X] | p(ξi) =

0 ∀i ∈ 1, . . . , r } be the complex vanishing ideal of the points Ξ. The Castelnuovo-Mumford
regularity of an ideal I (resp. Ξ) is maxi(degSi − i) where Si is the ith module of syzygies in a
minimal resolution of I (resp. I (Ξ)). Let denote it by ρ(I) (resp. ρ(Ξ)).

It is well known that Ξ admits a family of interpolator polynomials (ui) ⊂ C[X] such
that ui(ξj) = δi,j . The minimal degree ι(Ξ) of a family of interpolator polynomials is called
the interpolation degree of Ξ. Since a family of interpolator polynomials (pi) is a basis of
C[X]/I (Ξ), the ideal I (Ξ) is generated in degree ≤ ι(Ξ) + 1 and ρ(Ξ) ≤ ι(Ξ) + 1. A classical
result [Eis05, th. 4.1] relates the interpolation degree of Ξ with its regularity, and the minimal
degree of a basis of C[X]/I (Ξ). This result can be stated as follows, for real points Ξ ⊂R

n:

Proposition 3.4.13. Let Ξ = {ξ1, . . . ,ξr} ⊂R
r with regularity ρ(Ξ). Then the minimal degree ι(Ξ)

of a basis of R[X]/I (Ξ) is ρ(Ξ)−1 and there exist interpolator polynomials u1, . . . ,ur ∈R[X]ρ(Ξ)−1.

Another property that we will use is the following:

Proposition 3.4.14 ([BS87]). Any ideal I ⊂R[X] has a graded basis in degree less than or equal to
its regularity ρ(I).

In particular, for a set of points Ξ = {ξ1, . . . ,ξr}, the ideal I (Ξ) has a graded basis of degree
equal to the regularity ρ(Ξ), that can be computed as a Groebner basis with respect to a
monomial ordering refining the degree, see Section 1.1.3. The minimal degree of a monomial
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basis B of R[X]/I (Ξ) is ι(Ξ) = ρ(Ξ)− 1. Such a finite basis B can be chosen so that it is stable
by monomial division.

We now turn back our attention to truncated positive linear functional, in particular in the
zero dimensional case. The next result shows that truncated positive linear functionals (or
pseudo-moment sequences) orthogonal to the vanishing ideal of the points, truncated above
twice the regularity are coming from measures.

Proposition 3.4.15. Let Ξ = {ξ1, . . . ,ξr} ⊂R
n, I = I (Ξ) its real vanishing ideal and let ρ = ρ(Ξ)

the regularity of Ξ. For t ≥ ρ−1, Λ ∈ I⊥t if and only if Λ ∈ ⟨e[t]
ξ1
, . . . ,e[t]

ξr
⟩. Moreover if t ≥ ρ−1 and

Λ ∈ L2t(I2t), then Λ ∈ cone(e[2t]
ξ1
, . . . ,e[2t]

ξr
) and rankH t

Λ
= r.

Proof. Let u1, . . . ,ur ∈ R[x]t be interpolation polynomials of degree ≤ ρ − 1 ≤ t (Proposi-
tion 3.4.13). Consider the sequence of vector space maps:

0→ It→R[x]t
ψ
−→ ⟨u1, . . . ,ur⟩ → 0

p 7→
r∑
i=1

p(ξi)ui ,

which is exact since kerψ = {p ∈R[x]t | p(ξi) = 0} = It. Therefore we have R[x]t = ⟨u1, . . . ,ur⟩ ⊕
It.

Let Λ ∈ I⊥t . Then Λ̃ = Λ−
∑r
i=1 ⟨Λ|ui⟩e

[t]
ξi
∈ I⊥t is such that

〈
Λ̃
∣∣∣ui〉 = 0 for i = 1, . . . , r. Thus,

Λ̃ ∈ ⟨u1, . . . ,ur⟩⊥ ∩ I⊥t = (⟨u1, . . . ,ur⟩ ⊕ It)⊥ = R[x]⊥t , i.e. Λ̃ = 0 showing that I⊥t ⊂ ⟨e
[t]
ξ1
, . . . ,e[t]

ξr
⟩.

The reverse inclusion is direct since It is the space of polynomials of degree ≤ t vanishing at
ξi for i = 1, . . . , r.

Assume that t ≥ ρ − 1 and Λ ∈ L2t(I2t). Then Λ ∈ I⊥2t and
〈
Λ
∣∣∣p2

〉
≥ 0 for any p ∈ R[x]t. By

the previous analysis,

Λ =
r∑
i=1

ωie
[2t]
ξi

As 0 ≤
〈
Λ
∣∣∣u2
i

〉
=ωi for i = 1, . . . , r, we deduce that Λ ∈ cone(e[t]

ξ1
, . . . ,e[t]

ξr
).

We verify that the image of H t
Λ

: p ∈ R[x]t 7→
∑r
i=1ωip(ζi)e[t]

ξi
is ⟨e[t]

ξ1
, . . . ,e[t]

ξr
⟩, computing

H t
Λ

(ui) for i = 1, . . . , r. Thus, rankH t
Λ

= dim⟨e[t]
ξ1
, . . . ,e[t]

ξr
⟩ = r since (e[t]

ξi
)i=1,...,r is the dual basis

of (ui)i=1,...,r :
〈
e[t]
ξi

∣∣∣∣uj〉 = uj(ξi) = δij .

We deduce another corollary, giving degree bounds for the case of a graded basis of a real
radical ideal.

Proposition 3.4.16. Let I = R

√
I be a real radical ideal and h = h1, . . . ,hm be a graded basis of I .

Then for all d ≥ degh = maxi(deghi) and Λ∗ ∈ L2d(±h) generic, we have Annd(Λ∗) = Id .

Proof. Let d ≥maxi(deghi) and Λ∗ ∈ L2d(±h) generic. Then for all i we have (hi⋆Λ∗)[d−deghi ] =
0. Now let p ∈ Id . Since h is a graded basis we have p =

∑m
i=1pihi , where degpi ≤ d −deghi .

Notice that (p⋆Λ∗)[d] =
∑m
i=1(pi⋆(hi⋆Λ∗))[d]. As (hi⋆Λ∗)[d−deghi ] = 0 we conclude (p⋆Λ∗)[d] = 0

and thus p ∈ Annd(Λ∗). Therefore Id ⊂ Annd(Λ∗).
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Conversely, let p ∈ Annd(Λ∗). For all ξ ∈ V (I) we have e[2d]
ξ ∈ L2d(±h). Since Λ∗ is generic,

we have p ∈ Annd(eξ). In particular
〈
eξ

∣∣∣p〉 = p(ξ) = 0, and therefore p vanishes on all the
points of V (I). Since I is real radical, p ∈ I ∩R[x]d = Id and thus Annd(Λ∗) ⊂ Id , which
concludes the proof.

We describe now a property, known as flat truncation, which allows to test effectively if
truncated moment sequences are coming from sums of evaluations.

Definition 3.4.17 (Flat truncation). Let dg B ⌈1
2 maxi=1,...,sdeg(gi)⌉. The flat truncation prop-

erty holds for Λ ∈ Ld(g) at degree t if t ≤ d
2 − dg and

rankH t
Λ = rankH

t+dg

Λ
. (3.1)

This definition coincides with the definition of flat truncation used in [CF96], [Lau09] or
[Nie13b]. We investigate more in detail rank conditions for the moment matrix of Λ ∈ Ld(g).

Lemma 3.4.18. If Λ ∈ Ld(g) is such that rankH t
Λ

= rankH t+s
Λ

= r with t + 1 ≤ t + s ≤ d
2 , then

Λ[t+s+ d
2 ] =ω1e

[t+s+ d
2 ]

ξ1
+ · · ·+ωre

[t+s+ d
2 ]

ξr

for some points ξi ∈ Rn and weights ωi > 0, i = 1, . . . , r. Denoting Ξ = {ξ1, . . . ,ξr}, we also have
Annt+1(Λ) = I (Ξ)t+1 and V (Annt+1(Λ)) = Ξ (or, in other words, (Annt+1(Λ)) = I (Ξ)).

Moreover, if t ≤ d
2 + s −deg(g), where deg(g) = maxi=1,...,sdeg(gi), the inclusion Ξ ⊂ S(g) holds

true.

Proof. From [Lau09, th. 5.29], there exists unique Ξ = {ξ1, . . . ,ξr} ⊂ R
n and ω1, . . . ,ωr > 0

such that Λ[2(t+s)] =ω1e[2(t+s)]
ξ1

+ · · ·+ωre
[2(t+s)]
ξr

, (Annt+s(Λ)) = I (Ξ) and V (Annt+s(Λ)) = Ξ. In
particular (Annt+s(Λ)) is a zero dimensional ideal and Annt+s(Λ) ⊂ I(Ξ)t+s. Conversely, for
any h ∈ I(Ξ)t+s, we have〈

Λ
∣∣∣h2

〉
=

〈
Λ[2(t+s)]

∣∣∣h2
〉

=
r∑
i=1

ωi

〈
e[2(t+s)]
ξi

∣∣∣∣h2
〉

=
r∑
i=1

ωih
2(ξi) = 0.

Thus h ∈ Annt+s(Λ) (see see [Las+13, lem. 3.12]) and I(Ξ)t+s = Annt+s(Λ).
As rankH t

Λ
= rankH t+1

Λ
= r, we deduce from above, that (Annt+1(Λ)) = I(Ξ) is generated in

degree ≤ t + 1 and that ρ(Ξ) ≤ t + 1. Therefore Ξ has interpolator polynomials u1, . . . ,ur of
degree ≤ t.

Let us show that the description of Λ on polynomials of degree ≤ 2(t + s), can be extended
to higher degree. For any h ∈ Annt+s(Λ) = I(Ξ)s+t, i.e. such that

〈
Λ
∣∣∣h2

〉
= 0, and any p ∈R[x] d

2

we have ⟨Λ|hp⟩ = 0. This shows that Λ ∈ (I (Ξ)t+s+ d
2
)⊥. We deduce from Proposition 3.4.15

that Λ[t+s+ d
2 ] ∈ cone(eξ1

, . . . ,eξr )
[t+s+ d

2 ]. This implies that Λ[t+s+ d
2 ] = ω1e

[t+s+ d
2 ]

ξ1
+ · · ·+ωre

[t+s+ d
2 ]

ξr
,

evaluating ⟨Λ|ui⟩ =
〈
Λ[t+s+ d

2 ]
∣∣∣∣ui〉 =ωi at the interpolator polynomials u1, . . .ur of Ξ of degree

≤ t.
We show now that Ξ = {ξ1, . . . ,ξr} ⊂ S if t ≤ d

2 + s−deg(g). For i = 1, . . . , r and j = 1, . . . ,m the
polynomial u2

i gj has degree ≤ 2t + deg(g) ≤ t + s+ d
2 . Then we obtain:

0 ≤
〈
Λ
∣∣∣u2
i gj

〉
=

〈
Λ[t+s+ d

2 ]
∣∣∣∣u2
i gj

〉
=

〈
ω1e

[t+s+ d
2 ]

ξ1
+ · · ·+ωre

[t+s+ d
2 ]

ξr

∣∣∣∣∣u2
i gj

〉
= gj(ξi),

showing that gj(ξi) ≥ 0 for all i and j, i.e. Ξ ⊂ S(g).



118 Chapter 3 Exactness and Flat Truncation in Polynomial Optimization

Remark. Lemma 3.4.18 can be used to test flat truncation in a simpler way when d is
big, as we explain in the following. Assume for simplicity that 2dg = deg(g). Then, if
rankH t

Λ
= rankH t+s

Λ
with t ≤ d

2 + s −deg(g), then 2(t + dg) = 2t + deg(g) ≤ t + s+ d
2 . Therefore,

from Lemma 3.4.18 we deduce that Λ restricted to polynomials of degree ≤ 2(t + dg) is equal
to a sum of evaluations at points of S with positive weights, and the flat truncation is satisfied:

rankH t
Λ

= rankH
t+dg

Λ
. In particular, when s = 1 and d ≥ t − 2 + 2deg(g), rankH t

Λ
= rankH t+1

Λ

implies rankH t
Λ

= rankH
t+dg

Λ
.

We now show that we can use flat truncation to describe semialgebraic sets with a finite
number of points.

Theorem 3.4.19. If a positive linear functional Λ∗ ∈ Ld(g) is such that (Λ∗)[2(t+dg)] is generic
in Ld(g)[2(t+dg)] (that is Annt+dg

(Λ∗) ⊂ Annt+dg
(Λ) for all Λ ∈ Ld(g)) and Λ∗ satisfies the flat

truncation property at degree t ≤ d
2 − dg, then:

(i) S = S(g) = {ξ1, . . . ,ξr} is non-empty and finite;

(ii) Ld(g)[t+dg+ d
2 ] = cone(eξ1

, . . . ,eξr )
[t+dg+ d

2 ];

(iii) t + 1 ≥ ρ(ξ1, . . . ,ξr) and Annt+1(Λ∗) = I (ξ1, . . . ,ξr)t+1 = I (S)t+1 is the vanishing ideal of S
truncated in degree t + 1.

(iv) I (S)2(t+dg) ⊂ Qd(g) and (Annt+1(Λ∗)) = R

√
suppQ(g) = I (S).

Proof. Let Λ∗ ∈ Ld(g) be such that (Λ∗)[2(t+dg)] is generic in Ld(g)[2(t+dg)], and assume that

rankH t
Λ∗ = rankH

t+dg

Λ∗ with t ≤ d
2 − dg. By Lemma 3.4.18 applied with s = dg,

(Λ∗)[t+dg+ d
2 ] =ω1e

[t+dg+ d
2 ]

ξ1
+ · · ·+ωre

[t+dg+ d
2 ]

ξr

with ωi > 0, Ξ = {ξ1, . . . ,ξr} ⊂ S, Annt+1(Λ∗) = I(Ξ)t+1 and (Annt+1(Λ∗)) = I(Ξ).
Let h = h1, . . . ,hm ⊂ Annt+1(Λ∗) be a graded basis of I(Ξ) of degree ≤ t + 1. As (Λ∗)[2(t+dg)] is

generic, for any Λ ∈ Ld(g) we have Annt+dg
(Λ∗) ⊂ Annt+dg

(Λ) and
〈
Λ
∣∣∣h2
i

〉
= 0. Then for any p ∈

R[x]dg+ d
2

we have ⟨Λ|hip⟩ = 0, proving that Λ ∈ (h)⊥
t+dg+ d

2
= (I (Ξ)t+dg+ d

2
)⊥, i.e. Ld(g)[t+dg+ d

2 ] ⊂

(I (Ξ)t+dg+ d
2
)⊥. We deduce from Proposition 3.4.15 that Λ[t+dg+ d

2 ] ∈ cone(eξ1
, . . . ,eξr )

[t+dg+ d
2 ].

This shows that Ld(g)[t+dg+ d
2 ] ⊂ cone(eξ1

, . . . ,eξr )
[t+dg+ d

2 ]. On the other hand the inclusion

Ld(g)[t+dg+ d
2 ] ⊃ cone(eξ1

, . . . ,eξr )
[t+dg+ d

2 ] holds true since Ξ ⊂ S. Therefore

Ld(g)[t+dg+ d
2 ] = cone(eξ1

, . . . ,eξr )
[t+dg+ d

2 ].

Let us show that Ξ = S. For ζ ∈ S we have e
[t+dg+ d

2 ]
ζ ∈ Ld(g)[t+dg+ d

2 ] ⊂ (h)⊥
t+dg+ d

2
, and thus for

i = 1, . . . ,m,
〈
eζ

∣∣∣hi〉 = hi(ζ) = 0. This shows that ζ is a root of h and thus ζ ∈ Ξ. We conclude
that Ξ = {ξ1, . . . ,ξr} = S.

The inclusion I (S)2(t+dg) ⊂ Qd(g) follows from Ld(g)[t+dg+ d
2 ] ⊂ (h)⊥

t+dg+ d
2
. Indeed 2(t + dg) ≤

t + dg + d
2 and thus Ld(g)[2(t+dg)] ⊂ (h)⊥2(t+dg). Now notice that (Ld(g)[2(t+dg)])∨ ⊂ Qd(g), using
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convex duality. Therefore dualizing Ld(g)[2(t+dg)] ⊂ (h)⊥2t we obtain the desired inclusion.
Moreover I (S)2(t+dg) ⊂ Qd(g)∩−Qd(g) ⊂ suppQ̃ = R

√
suppQ, by Theorem 3.4.3, and finally:

(Annt+1(Λ∗)) = I (S) = (I (S)2(t+dg)) ⊂ R

√
suppQ(g) ⊂ R

√
suppO(g) = I (S),

where the last equality is the Real Nullstellenstatz, Theorem 1.1.25. This shows that
(Annt+1(Λ∗)) = R

√
suppQ(g) = I (S).

This theorem tells us that if the flat truncation property holds at degree t ≤ d
2 −dg, then any

element of Ld(g) truncated in degree t + d
2 + dg coincides with a positive measure supported

on S = {ξ1, . . . ,ξr}. Moreover, when S is finite point (iv) of Theorem 3.4.19 implies that flat
truncaiton can be seen as a test to verify if I (S) = R

√
suppQ(g) or not (recall that, from the

Real Nullstelensatz, in general we need the preordering to describe the vanishing ideal of a
semialgebraic set: I (S) ∈ R

√
suppO(g)).

In the following theorem we investigate the converse: we show that when supp(Q) is a
zero-dimensional ideal (and thus S is finite), the rank condition is satisfied for any moment
matrix.

Theorem 3.4.20. Suppose that dim R[x]
suppQ(g) = 0. Then S = S(g) is finite and there exists d ≥

2(ρ −1 + dg) such that I (S)2(ρ−1+dg) ⊂ suppQd(g), where ρ = ρ(S) is the regularity of S, and for
any Λ ∈ Ld(g) the flat truncation property holds at degree ρ − 1.

Proof. Let I = suppQ(g) and J = R

√
suppQ(g). From Lemma 1.1.24 we deduce dim R[x]

J =

dim R[x]
I = 0 and by Theorem 1.1.26 we have I (S(g)) = R

√
suppQ(g) = J . Then V

R
(J) =

V
R

(I (S(g))) = S(g) = {ξ1, . . . ,ξr} is finite.
We choose a graded basis h of J with degh ≤ ρ = ρ(ξ1, . . . ,ξr) (by Proposition 3.4.14). By

Corollary 3.4.7, there exists d ∈N such that I (S)2(ρ−1+dg) ⊂ suppQd(g). From Corollary 3.4.7
and Proposition 3.4.15 we deduce that positive linear functionals in Ld(g) restricted to degree
≤ 2(ρ − 1 + dg) are conic combinations of evaluations at ξ1, . . . ,ξr :

Ld(g)[2(ρ−1+dg)] ⊂ L2(ρ−1+dg)(±h) = L2(ρ−1+dg)(J2(ρ−1+dg)) = cone(eξ1
, . . . ,eξr )

[2(ρ−1+dg)],

and for all Λ ∈ Ld(g), we have rankH
ρ−1
Λ

= rankH
ρ−1+dg

Λ
.

Theorem 3.4.20 says that if dim R[x]
suppQ(g) = 0 then the minimal order for which we have flat

truncation is not bigger than d ≥ 2(ρ−1+dg) such that I (S)2(ρ−1+dg) ⊂ suppQd(g). This degree

is related to the minimal d for which I (S) = R

√
suppQ(g) is generated by suppQd(g), that is,

the minimal degree d such that I(S)ρ−1+dg
⊂ Ann d

2
(Λ∗) for a generic Λ∗ ∈ Ld(g). Moreover, as

in the remark after Lemma 3.4.18, we can replace ρ − 1 + dg with ρ if d is big enough.

Theorem 3.4.20 and Theorem 3.4.19 show that if dim R[x]
suppQ(g) = 0 then S is a finite set of

points and for a high enough degree d, all moment sequences in Ld(g), truncated in degree
twice the regularity are coming from a weighted sum of Dirac measures at these points.
In particular, it is possible to recover all the points in S from a generic truncated moment
sequence, see [HL05], [ABM15] and [Mou18].

Remark. There exist examples with S(g) finite and dim R[x]
suppQ(g) > 1, see Example 3.4.4.

However, the hypotheses
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(i) dim R[x]
suppQ(g) = 0; and

(ii) S(g) is finite and dim R[x]
suppQ(g) ≤ 1;

are equivalent: (i)⇒ (ii) is shown in the proof of Theorem 3.4.20, while (ii)⇒ (i) follows
from I (S(g)) = R

√
suppQ(g) (see Theorem 1.1.26).

Results related to Theorem 3.4.20 and Theorem 3.4.19 were obtained in [LLR08] and
[Las+13], where they focus on the case of equations h defining a finite real variety. They
prove that, for d big enough and for every positive linear functional Λ ∈ L2d(±h), the flat
truncation property holds for Hd

Λ
, and that Λ[2d] is a conic linear combination of evaluations

at the points of V
R

(h). This can be deduced from Theorem 3.4.20, since in the case where
V
R

(h) = {ξ1, . . . ,ξr} is non-empty and finite, dim R[x]
suppQ(±h) = 0.

In [LLR08, rem. 4.9] it is also mentioned that the same can be proved for a preordering
defining a finite semialgebraic set. This result can also be deduced from Theorem 3.4.20,
since when S = S(g) = {ξ1, . . . ,ξr} is non-empty and finite, we have by the Real Nullstellensatz:
dim R[x]

suppO(g) = dim R[x]
R

√
suppO(g)

= dim R[x]
I (S(g)) = 0.

But Theorem 3.4.20 is more general, as shown by the following example of a quadratic
module, whose support is zero dimensional, but that is not a preordering.

Example 3.4.21 ([Mar08, ex. 7.4.5 (1)]). Let Q =Q(x,y,1− x,1− y,−x4,−y4) ⊂R[x,y]. In this
case suppQ, which contains x4 and y4, is zero dimensional and Q is not a preordering since
xy <Q (see [Mar08, ex. 7.4.5 (1)]). Therefore, Theorem 3.4.20 applies in this case, but the
results cannot be deduced from [LLR08] or [Las+13].

As we will see, in Polynomial Optimization problems, flat truncation implies moment
exactness and thus finite convergence. Moreover, it allows extracting the minimizers from an
optimal sequence.

3.5 Flat truncation in polynomial optimization problems

In this section, we analyze when flat truncation occurs in the Polynomial Optimization
Problem, which consists of minimizing f ∈R[x] on the basic semialgebraic set S = S(g) where
g = g1, . . . , gs is a tuple of polynomials. Recall that we denote f ∗ the minimum of f on S. We
will consider the semialgebraic set Smin = S(g,±(f − f ∗)) = S(g)∩ {x ∈ Rn | f (x) = f ∗} and
assume that it is nonempty.

3.5.1 Flat truncation degree

Hereafter, we analyze the degree at which flat truncation holds and yields the minimizers.

Theorem 3.5.1. Consider the problem of minimizing f on S(g). If the flat truncation property
holds for a generic Λ∗ ∈ Lmin

2d (g) at a degree t such that deg(f )− dg − d ≤ t ≤ d − dg, then:

(i) f ∗ = f ∗Mom,d (i.e. we have moment finite convergence);

(ii) the set of minimizers Smin = {ξ1, . . . ,ξr} is non-empty and finite;
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(iii) kerH t+1
Λ∗ = Annt+1(Λ∗) = I (Smin)t+1 (i.e. the kernel of the truncated moment matrix equals

the truncated ideal of the minimizers) and V (Annt+1(Λ∗)) = Smin;

(iv) Lmin
d (g)[t+dg+d] = cone(eξ1

, . . . ,eξr )
[t+dg+d] (i.e. all the minimizing truncated feasible moment

sequences are conic sums of evaluations at the minimizers);

(v) the moment hierarchy is exact.

Proof. Let Λ∗ ∈ Lmin
2d (g) be generic such that rankH t

Λ∗ = rankH
t+dg

Λ∗ with deg(f ) ≤ t+dg +d and

t + dg ≤ d. Then by Lemma 3.4.18, (Λ∗)[t+dg+d] =
∑r
i=1ωie

[t+dg+d]
ξi

with ξi ∈ S = S(g), ωi > 0,
Annt+1(Λ∗) = I (ξ1, . . .ξr)t+1 = I (Ξ)t+1 and V (Annt+1(Λ∗)) = Ξ. Notice that f (ξi) ≥ f ∗ since
ξi ∈ S.

We show now that Smin = Ξ. As ⟨Λ∗|1⟩ = 1 we have
∑r
i=1ωi = 1. Moreover f ∗Mom,d = ⟨Λ∗|f ⟩ ≤

f ∗ and since deg(f ) ≤ t + dg + d we obtain:

f ∗ ≥ ⟨Λ∗|f ⟩ =
〈
(Λ∗)[t+dg+d]

∣∣∣f 〉 =
r∑
i=1

ωi

〈
e

[t+dg+d]
ξi

∣∣∣∣f 〉 =
r∑
i=1

ωif (ξi) ≥ f ∗.

This implies that f (ξi) = f ∗ for i = 1, . . . , r. Therefore f ∗ = f ∗Mom,d and Smin ⊃ Ξ.

From Proposition 3.4.10 we have that Λ∗ ∈ Lmin
2d (g) generic implies that (Λ∗)[2(t+dg)] is

generic in Lmin
2d (g)[2(t+dg)]. Moreover (Λ∗)[2(t+dg)] =

∑r
i=1ωie

[2(t+dg)]
ξi

∈ L(1)
2d (g,±(f − f ∗))[2(t+dg)]

since Ξ ⊂ Smin = S(g,±(f − f ∗)). Then, as L(1)
2d (g,±(f − f ∗)) ⊂ Lmin

2d (g) and (Λ∗)[2(t+dg)] is generic
in Lmin

2d (g)[2(t+dg)], we have

∀Λ ∈ L2d(g,±(f − f ∗)) Annt+dg
(Λ∗) ⊂ Annt+dg

(Λ),

i.e. (Λ∗)[2(t+dg)] is generic in L2d(g,±(f − f ∗))[2(t+dg)]. We can then conclude from Theo-
rem 3.4.19 that Smin = Ξ and Lmin

d (g)[t+dg+d] = cone(eξ1
, . . . ,eξr )

[t+dg+d] .
Finally we show moment exactness. For every d′ ≥ d and Λ ∈ Lmin

2d′ (g), we have Λ[2d] ∈
Lmin

2d (g) since ⟨Λ|f ⟩ = f ∗. Therefore Λ has flat truncation in degree t and by Lemma 3.4.18,
Λ[t+dg+d′] is coming from a convex sum of Dirac measures at points in S (that are the min-
imizers ξ1, . . . ,ξr). This shows that the moment relaxation is exact, since increasing d′ we
increase also the truncation degree where Λ coincides with a weighted sum of evaluations at
the minimizers.

Theorem 3.5.1 slightly relaxes previous degree conditions. In [Lau09, th. 6.18], the degree
condition is deg(f ) ≤ 2t + 2dg ≤ t + dg + d. It also shows that the kernel of the moment matrix
of a generic truncated moment sequence, Annt+1(Λ∗), is the truncated vanishing ideal of
the minimizers and that the relaxation is exact. This means that any element in Lmin

2d (g)
truncated in any degree t is coming from a measure, provided d ≥ t is big enough.

A key ingredient in this analysis is Lemma 3.4.18. From Lemma 3.4.18 and the remark after

it, the results of Theorem 3.5.1 hold true, if we replace the condition rankH t
Λ∗ = rankH

t+dg

Λ∗

with rankH t
Λ∗ = rankH t+1

Λ∗ and d big enough.
We show in Example 3.5.2 that the condition rankH t

Λ∗ = rankH t+1
Λ∗ is in general not

sufficient to conclude that the points extracted from the moment matrix are inside the
semialgebraic set. To the best of our knowledge, this is the first example where such a
pathological behaviour is explicit.
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Example 3.5.2. We consider the problem of minimizing f = (1 + x)(x − 1)2 on S(1− x2,−x3) =
[−1,0]. Notice that the SoS hierarchy is exact, since f ∗ = 0 and:

(1 + x)(x − 1)2 =
1
2

(
(1 + x)2 + 1− x2

)
(x − 1)2 ∈ Q4(1− x2,−x3).

This implies that f ∗SoS,2 = f ∗Mom,2 = f ∗. The only minimizer of f on S is −1, and I (−1) = (x + 1):
therefore we would expect to get flat truncation at degree zero for a generic element, and
in particular rankH0

Λ∗ = rankH1
Λ∗ = 1. But this is not the case if we consider the moment

relaxation of order 2. Indeed, an explicit calculation shows that Λ = 1
2 (e[4]
−1+e[4]

1 ) ∈ Lmin
4 (g), and

rankH1
Λ

= rankH2
Λ

= 2. Therefore, a generic Λ∗ ∈ Lmin
4 (g) cannot satisfy the rank condition

for t = 0. More precisely, it is possible to show that Lmin
4 (g) = conv

(
e[4]
−1 ,

1
2 (e[4]
−1 + e[4]

1 )
)

(it is

important to exploit the equation 1−Λ1−Λ0 +Λ3 = 0 in the definition of Lmin
4 (g), arising from

⟨Λ|f ⟩ = f ∗Mom,d = 0). Therefore a generic Λ∗ ∈ Lmin
4 (g) will also satisfy rankH1

Λ
= rankH2

Λ
= 2.

Notice that this is an example where an extremal point is generic (see Definition 3.4.9):
1
2 (e[4]
−1 + e[4]

1 ) is extremal in Lmin
4 (g), but it is also generic since rankH2

1
2 (e[4]
−1+e[4]

1 )
= 2.

We confirm numerically the computation above, using the package MomentTools.jl to
compute f ∗ and a generic Λ∗ ∈ Lmin

4 (g): the moments that we obtain are

Λ∗0 = 0.999999998978497, Λ∗1 = −0.353032474967529 Λ∗2 = 0.999847411529907
Λ∗3 = −0.353185157145022 Λ∗4 = 0.999694736472143.

We compute the singular values ofH0
Λ∗ ,H

1
Λ∗ andH2

Λ∗ to have a numerically stable indication
of the ranks:

Sing. Val. of H0
Λ∗ : 0.9999999989784975

Sing. Val. of H1
Λ∗ : 1.352956188465637,0.6468912220427679

Sing. Val. of H2
Λ∗ : 2.2063794508570065,0.7931627759613444,7.983780245045715 · 10−8

This confirms the theoretical description and shows that the rank condition is numerically
satisfied for t = 1. The points extracted from the matrix are ξ1 ≈ 0.9997640487211856
and ξ2 ≈ −1.0000000483192044: notice that ξ1 < S. This happens because the condition

rankH t
Λ∗ = rankH

t+dg

Λ∗ is not satisfied (it is not possible to compute H
t+dg

Λ∗ = H3
Λ∗ since Λ∗ ∈

L2d(g) = L4(g) and 3 = t + dg > d = 2).
On the other hand, if we increase the order of the relaxation and compute Λ∗ ∈ Lmin

6 (g)
generic, we can verify flat truncation for t = 0 and the only point extracted is −1. Moreover
notice, from Lemma 3.4.18 applied with s = 1 and the remark below, that it is enough to

check rankH0
Λ∗ = rankH1

Λ∗ to verify that rankH t
Λ∗ = rankH

t+dg

Λ∗ , since the condition 0 = t ≤
d + s −deg(g) = 1 is satisfied.

We have seen that flat truncation implies moment exactness and a finite set of minimizers.
We show now that, under the assumption of moment finite convergence, flat truncation is
equivalent to a zero dimensional support for the quadratic module Q+ (f − f ∗) defining the
minimizers.

We first need a technical lemma, that will be important to investigate the relationship
between Lmin

2d (g) and L(1)
2d (g,±(f − f ∗)). Indeed, notice that L(1)

2d (g,±(f − f ∗)) ⊂ Lmin
2d (g), by
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definition, but the converse inclusion is not true in general, since for Λ ∈ Lmin
2d (g) we only

have ⟨Λ|f ⟩ = f ∗, and not f − f ∗ ∈ Annd− deg(f )
2

(Λ) (or, in other words, there may exist h such

that ⟨Λ|h(f − f ∗)⟩ , 0).

Lemma 3.5.3. Let f ∈ Q2k(g), Λ ∈ L2d(g) and t ∈N with 0 ≤ t ≤ d − k. Then ⟨Λ|f ⟩ = 0 implies
for all q ∈R[x]t, ⟨Λ|qf ⟩ = 0. In other words, f ∈ Annt(Λ).

Proof. We set g0 = 1 for notation convenience. Let f =
∑
i sigi =

∑
i,j p

2
i,jgi ∈ Q2k(g), that is

degp2
i,jgi ≤ 2k. We want to prove that for all q ∈R[x] such that deg(q) ≤ t we have ⟨Λ|qf ⟩ = 0.

In particular, it is enough to prove that:〈
Λ

∣∣∣∣qp2
i,jgi

〉
= 0 for all i, j and q ∈R[x]. (3.2)

Now, notice that ⟨Λ|f ⟩ = 0 implies
〈
Λ

∣∣∣∣p2
i,jgi

〉
= 0 for all i, j, and consider for all T ∈R and

h ∈R[x]t+degpi,j :

0 ≤
〈
Λ
∣∣∣(pi,j − T h)2gi

〉
= T 2

〈
Λ
∣∣∣h2gi

〉
+ 2T

〈
Λ
∣∣∣hpi,jgi〉

(we can apply Λ to (pi,j − T h)2gi since deg((pi,j − T h)2gi) ≤ 2t + 2k ≤ 2d). The polynomial

T 7→ T 2
〈
Λ
∣∣∣h2gi

〉
+ 2T

〈
Λ
∣∣∣hpi,jgi〉 has therefore a double root at T = 0, and this implies〈

Λ
∣∣∣hpi,jgi〉 = 0 for all h ∈R[x]t+degpi,j . If we subsitute h = qpi,j , we deduce eq. (3.2), and thus

f ∈ Annt(Λ).

For a concrete example where the difference between ⟨Λ|f ⟩ = f ∗ and f − f ∗ ∈ Annd− deg(f )
2

(Λ)

is explicit, consider Example 3.2.2. In this case, for every Λ(M) defined there, we have
⟨Λ(M)|f − f ∗⟩ =

〈
Λ(M)

∣∣∣x3
〉

= 0, but
〈
Λ(M)

∣∣∣x2d−3(f − f ∗)
〉

=
〈
Λ(M)

∣∣∣x2d
〉

= M. Therefore, for

M > 0, Λ(M) ∈ L2d
min(g) \L(1)

2d (g,±(f − f ∗)).
We can now prove the equivalence between the flat truncation and the zero dimensional

support for the quadratic module Q+ (f − f ∗) defining the minimizers.

Theorem 3.5.4. Assume that we have moment finite convergence. Then dim R[x]
supp(Q+(f −f ∗)) = 0 if

and only if there exists d such that a generic Λ∗ ∈ Lmin
2d (g) has flat truncation.

In particular, if ρ = ρ(Smin), D = max(dg,⌈
deg(f )

2 ⌉) and δ ∈N is such that f − f ∗ ∈ Q2δ(g), flat
truncation happens for Λ∗ ∈ Lmin

2d (g) generic at degree ρ − 1 when d is such that:

(i) ( R

√
suppQ(g))2δ+2ρ+2D−deg(f )−2 ⊂ Q2d(g);

(ii) I (Smin)2ρ+2D−2 ⊂ Q2d(g) + (f − f ∗)2d ;

(iii) δ+ 2ρ+ 2D −deg(f )− 2 ≤ d.

Proof. Let us assume without loss of generality that f ∗ = 0.
We first show that flat truncation implies dim R[x]

supp(Q+(f )) = 0. As in the proof of Theo-

rem 3.5.1, if Λ∗ ∈ Lmin
2d (g) is generic satisfying flat truncation at degree t then (Λ∗)[2(t+dg)]

is a generic element of L2d(g,±f )[2(t+dg)]. Since the flat truncation property is satisfied, we
conclude from Theorem 3.4.19 that R

√
supp(Q+ (f )) = (Annt+1(Λ∗)) = I (Smin) and finally,

applying Lemma 1.1.24, dim R[x]
supp(Q+(f )) = dim R[x]

I (Smin) = 0.
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Conversely, if dim R[x]
supp(Q+(f )) = 0, we deduce from Theorem 3.4.20 that the flat truncation

property is satisfied for any Λ ∈ L2d(g,±f ) at degree ρ − 1 = ρ(S(g,±(f − f ∗))− 1 = ρ(Smin)− 1
for d such that I (Smin)2(ρ−1+D) ⊂ Q2d(g) + (f )2d . Let a = 2ρ − 2 + 2D and Λ∗ ∈ Lmin

2d (g) generic.
We want to show that (Λ∗)[a] ∈ L2d(g,±f )[a], so that we can conclude using Theorem 3.4.20.
Since Λ∗ ∈ Lmin

2d (g) ⊂ L2d(g), it is sufficient to prove that:

⟨Λ∗|qf ⟩ = 0 for all q of degree ≤ a−deg(f ). (3.3)

We prove now (3.3), starting from ⟨Λ∗|f ⟩ = f ∗ = 0. Moment finite convergence implies that
⟨Λ|f ⟩ ≥ 0 for all Λ ∈ L2d(g), and therefore f ∈ L2d(g)∨ = Q2d(g). Let δ ≤ d be minimal such
that f ∈ Q2δ(g) and let h = h1, . . .hm be a graded basis of R

√
suppQ. From [Mar08, lemma 4.1.4]

we deduce that Q2δ(g) + (h)2δ is closed (as a subset of R[x]2δ with the Euclidean topology),
and therefore Q2δ(g) ⊂ Q2δ(g) + (h)2δ. Thus:

f = g + h =
s∑
i=0

sigi +
m∑
i=1

pihi ∈ Q2δ(g) + (h)2δ,

where we set g0 = 1 for notation convenience, g =
∑s
i=0 sigi ∈ Q2δ(g) and h =

∑m
i=1pihi ∈ (h)2δ.

It is then enough to prove that ⟨Λ∗|qg⟩ = ⟨Λ∗|qh⟩ = 0 where deg(qg) ≤ b,deg(qh) ≤ b for
b = 2δ+ a−deg(f ) = 2δ+ 2ρ+ 2D −deg(f )− 2.

We start by proving ⟨Λ∗|qh⟩ = 0. We deduce from lemma 3.4.5 that for d big enough we
have (h)b ⊂ Q2d(g) and L2d(g)[b] ⊂ Lb(±h). Therefore

⟨Λ∗|qh⟩ =
〈
(Λ∗)[b]

∣∣∣qh〉 = 0.

Now we prove that ⟨Λ∗|qg⟩ = 0. Since δ + (a−deg(f )) ≤ d, we can apply Lemma 3.5.3 with
g ∈ Q2δ(g) and t = a−deg(f ) ≥ deg(q), and conclude that ⟨Λ∗|qg⟩ = 0, as desired.

Therefore ⟨Λ∗|qf ⟩ = ⟨Λ∗|qg⟩+⟨Λ∗|qh⟩ = 0 for all q of degree ≤ a−deg(f ) and (3.3) is satisfied.
This implies that (Λ∗)[a] ∈ L2d(g,±f )[a]. Therefore we can apply Theorem 3.4.20 to conclude
that the flat truncation property is satisfied for Λ∗.

Let us briefly comment the degree conditions in Theorem 3.5.4.

(i) If S has nonempty interior, it is not necessary to check the first condition, since in
this case suppQ = 0. More generally if the quadratic module is reduced, that is if
R

√
suppQ = suppQ, the first condition is automatically satisfied;

(ii) The second condition is the key one: it tells us that flat truncation happens when the
ideal of the minimizers, truncated in the appropriate degree, can be described using
the truncated quadratic module and the truncated ideal generated by f − f ∗;

(iii) The third condition is technical, derived from Lemma 3.5.3. It allows to move from
Lmin

2d (g) to L(1)
2d (g,±(f − f ∗)), where we can apply the results of the previous section.

We illustrate Theorem 3.5.4 in the following example, showing how it can help to predict
the flat truncation degree.
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Example 3.5.5. We continue Example 3.3.6. Notice that f − f ∗ = x2 ∈Q2 := Q2(g) = Q2(1−
x2 − y2,x + y − 1) (i.e. the SoS hierarchy is exact) and then the moment hierarchy has finite
convergence. Using Theorem 3.5.4, we analyze if flat truncation holds at some degree. We
have I (Smin) = (x,y−1) ⊂ R

√
supp(Q+ (f − f ∗)) = R

√
supp(Q+ (x2)) where Q :=Q(1−x2−y2,x+

y − 1). Indeed:

x =
x2 + (y − 1)2

2
+

1− x2 − y2

2
+ x+ y − 1 ∈Q2 ⊂Q2 + (x2)2

−x+ ε =
ε
2

(
1− x

2

ε2 + (1− x
ε

)2
)
∈Q2 + (x2)2 ∀ε > 0⇒−x ∈Q2 + (x2)2

1− y =
1
2

(
x2 + (1− y)2 + 1− x2 − y2

)
∈Q2 ⊂Q2 + (x2)2

y − 1 = x+ y − 1− x ∈Q2 +Q2 + (x2)2 =Q2 + (x2)2

that implies (x,y − 1)1 ⊂ supp(Q2 + (x2)2) ⊂ R

√
supp(Q+ (f − f ∗)) and thus dim R[x]

supp(Q+(x2)) = 0.
Theorem 3.5.4 implies that flat truncation holds for a high enough order d of the moment
relaxation.

We investigate the degree conditions in Theorem 3.5.4 to prove that flat truncation happens
for the moment relaxation at order d = 1. We have I(Smin) = (x,y−1), ρ = 1, dg = 1, deg(f ) = 2,
D = 1 and δ = 1.

(i) As S has nonempty interior, suppQ = 0 and the first point (i) is satisfied.

(ii) Notice that 2(ρ − 1 +D) = 2, and therefore we have to show that (x,y − 1)2 ⊂Q2 + (x2)2.
Since we have shown above that (x,y − 1)1 ⊂ Q2 + (x2)2, it is enough to prove that
±x2,±x(y−1),±(y−1)2 ∈Q2 + (x2)2. Now, ±x2, (y−1)2 ∈Q2 + (x2)2 by definition. Finally:

−(y − 1)2 = 1− y2 − x2 + x2 + 2(x+ y − 1)− 2x ∈Q2 +Q2 + (x2)2 =Q2 + (x2)2

±x(y − 1) =
1
2

(
(±x+ (y − 1))2 − x2 − (y − 1)2

)
∈Q2 + (x2)2,

concluding the proof of the second point (ii).

(iii) We have 1 = δ+ 2ρ+ 2D −deg(f )− 2 ≤ d = 1, and thus the third point (iii) is satisfied.

Therefore flat truncation happens at degree ρ − 1 = 0 for the moment relaxation at order
d = 1.

Related properties have been previously investigated. It is shown in [Nie13b, th. 2.2] that,
under genericity assumptions, if for an order d big enough we have f ∗SoS,d = f ∗Mom,d (strong
duality) and sup = max in the definition of f ∗SoS,d , then there is finite convergence (that is
f ∗Mom,d = f ∗) if and only if flat truncation is satisfied for every Λ ∈ Lmin

2d (g) (or, equivalently, if
it is satisfied for Λ∗ ∈ Lmin

2d (g) generic). Theorem 3.5.4 applies for different cases, for instance
when there is finite convergence but the SoS hierarchy is not exact (see example 3.3.14).
This is possible since our analysis investigates the closure of the quadratic modules we are
considering. Furthermore, under genericity assumption, as a corollary of Theorem 3.5.4 we
will show (in Theorem 3.5.7 and Corollary 3.5.9) that we have finite convergence, the SoS
moment hierarchies are exact and the flat truncation property is satisfied.
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Another improvement made is the estimation of the order d of the relaxation that is
sufficient to have flat truncation, answering a question in [Nie13b]. To the best of out
knowledge, this is is the first result in this direction. These conditions depends on properties
of the minimizers and the quadratic module Q2d(g) that might be difficult to check a priori.
However they may be analyzed in some specific cases, such as optimization problems with a
single minimizer, to deduce more precise bounds.

3.5.2 Boundary hessian conditions

In this section, we show that if regularity conditions, known as Boundary Hessian Conditions
(BHC), are satisfied, then the flat truncation property holds. These are conditions on the
minimizers of a polynomial f on a basic semialgebraic set S introduced by Marshall in
[Mar06] and [Mar09], which are particular cases of the so called local-global principle. Under
these conditions, global properties of polynomials (e.g. f ∈ Q) can be deduced from local
properties (e.g. checking the BHC at the minimizers of f on S(Q)). We refer to [Sch05a],
[Sch06] and [Mar08, ch. 9] for more details. We introduce BHC conditions following [Nie14].

Definition 3.5.6 (Boundary Hessian Conditions). Consider a POP with inequality constraints
g = g1, . . . , gr , equality constraints h = h1, . . . ,hs and objective function f . Let V = V (h) ⊂ R

n

and suppose that Q =Q(g,±h) is Archimedean. We say that the Boundary Hessian Conditions
hold at a minimizer point ξ ∈ S(g,±h) of f if ξ is a smooth point of V and:

(i) we can choose gi1 = t1, . . . , gik = tk that are part of a regular system of parameters t1, . . . , tm,
m ≥ k, for V at ξ and for some neighbourhood U of ξ we have S(gi1 , . . . , gik ,±h)∩U =
S(g,±h)∩U ;

(ii) On V , locally at ξ we have that ∇f = a1∇t1 + · · ·+ am∇tm, where ai are strictly positive
real numbers;

(iii) On V , locally at ξ we have that hess(f )(0, . . . ,0, tk+1, . . . tm) is positive definite in tk+1, . . . tm.

These conditions are related to standard conditions in optimization at a point ξ ∈ S (see
e.g. [Ber99]). Hereafter, the active constraints at ξ ∈ S are the constraints gi1 , . . . , gim such
that gij (ξ) = 0 (see also Definition 2.3.2). To simplify the description of these conditions,
we consider a constraint ±g(x) ≥ 0 as a single (equality) constraint. Therefore an equality
constraint defining the set S is an active constraint at a point ξ ∈ S.

• Constraint Qualification Condition (CQC): for the active constraints gi1 , . . . , gim at ξ, the
gradients ∇gi1(ξ), . . . ,∇gim(ξ) are linearly independent.

• Strict Complementary Condition (SCC): for the active constraints gi1 , . . . , gim at ξ, there
exist a1, . . . , am ∈ R with aj > 0 if gij is not an equality constraint such that ∇f (ξ) =
a1∇gi1(ξ) + · · ·+ am∇gim(ξ).

• Second Order Sufficiency Condition (SOSC): for L(x) = f (x)−
∑m
j=1 ajgij with ai > 0 if gij (x)

is not an equality constraint, we have ∀v ∈ ⟨∇gi1(ξ), . . . ,∇gim(ξ)⟩⊥, v , 0, vt∇2L(ξ)v > 0.

If these conditions are satisfied at every minimizer ξ, then the BHC conditions are satisfied
with the active sign constraints at ξ as regular parameters t1 = gi1 , . . . , tk = gik , see [Nie14].
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Notice that when BHC hold, the minimizers are non-singular, isolated points and thus
finite. It is proved in [Mar06] that if BHC holds at every minimizer of f on S(g) then
f − f ∗ ∈ Q(g), which implies that the SoS hierarchy is exact. [Nie14] proved that the BHC at
every minimizer of f , which hold generically, implies the SoS finite convergence property.

In this section, we prove that, if the BHC hold, then the flat truncation property holds and
the moment hierarchy is exact.

Theorem 3.5.7. Let f ∈R[x], Q =Q(g) be an Archimedean finitely generated quadratic module
and assume that the BHC hold at every minimizer of f on S = S(g). Then:

• the SoS hierarchy is exact;

• the flat truncation holds for Λ∗ ∈ Lmin
2d (g) generic, at relaxation order d satisfying conditions

(i)-(iii) in Theorem 3.5.4;

• the moment hierarchy is exact.

Proof. If BHC hold at every minimizer of f on S(g) then Smin is finite andf − f ∗ ∈ Q(g) (see
[Mar06]), which implies that the SoS hierarchy is exact and thus the moment hierarchy has
finite convergence. Moreover if the BHC conditions hold at every minimizer of f on S, then
dim R[x]

supp(Q+(f −f ∗)) = 0 (see the proof of [Mar06, th. 2.3], where it is shown that the field of
fractions of R[x] modulo any minimal prime ideal lying over supp(Q+ (f − f ∗)) is isomorphic
to R, that implies dim R[x]

supp(Q+(f −f ∗)) = 0). Then we conclude applying Theorem 3.5.1 and
Theorem 3.5.4.

Example 3.5.8. Consider f = x and g1 = 1 − x2 − y2, g2 = x + y − 1 (this is a variation of
Example 3.3.6 and Example 3.5.5). Let us show that CQC, SCC and SOSC are satisfied at
(0,1), the only minimizer of the problem.

• CQC: ∇g1(0,1) = (0,−2) and ∇g2(0,1) = (1,1) are linearly independent.

• SCC: ∇f (0,1) = (1,0) and ∇f (0,1) = 1
2∇g1(0,1) + 1∇g2(0,1).

• SOSC: as ⟨∇g1(0,1),∇g2(0,1)⟩ = R
2 we have ⟨∇g1(0,1),∇g2(0,1)⟩⊥ = {(0,0)} and the

condition is trivially satisfied.

Therefore BHC hold. We show also explicitly how these conditions imply the BHC. We have:

(i) g1 and g2 are part of a regular system of parameters at (0,1) as ∇g1(0,1) and ∇g2(0,1)
are linearly independent, see [Sha13a];

(ii) we have already shown that ∇f (0,1) = 1
2∇g1(0,1) + 1∇g2(0,1) and thus the second point

is also satisfied;

(iii) as g1 and g2 are a complete system of regular parameters at (0,1), the third condition is
trivially satisfied.

From Theorem 3.5.7 we deduce that flat truncation is satisfied for any Λ ∈ Lmin
2d (g) for d big

enough. In analogy with Example 3.5.5, I (Smin)2 ⊂ suppQ2(g) + (f − f ∗)2 and flat truncation
holds at degree 0.
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We show now that flat truncation and moment exactness hold generically. For polynomials
f ∈ R[x]d and g1 ∈ R[x]d1

, . . . , gs ∈ R[x]ds , we say that a property holds generically (or that
the property holds for generic f ,g1, . . . , gs) if there exists finitely many nonzero polynomials
φ1, . . . ,φl in the coefficients of polynomials in R[x]d and R[x]d1

, . . . ,R[x]ds such that, when
φ1(f ,g) , 0, . . . ,φl(f ,g) , 0, the property holds.

Corollary 3.5.9. For f ∈R[x]d and g1 ∈R[x]d1
, . . . , gs ∈R[x]ds generic satisfying the Archimedean

condition:

• the SoS hierarchy is exact;

• the flat truncation holds for Λ∗ ∈ Lmin
2d (g) generic, at relaxation order d satisfying conditions

(i)-(iii) in Theorem 3.5.4;

• the moment hierarchy is exact.

Proof. By [Nie14, th. 1.2] BHC hold generically. We apply Theorem 3.5.7 to conclude.

Here is an example where BHC holds.

Example 3.5.10 (Robinson form). We find the minimizers of Robinson form f = x6 + y6 +
z6 + 3x2y2z2 − x4(y2 + z2)− y4(x2 + z2)− z4(x2 + y2) on the unit sphere h = x2 + y2 + z2 − 1. The
Robinson polynomial has minimum f ∗ = 0 on the unit sphere, and the minimizers on V

R
(h)

are: √
3

3
(±1,±1,±1),

√
2

2
(0,±1,±1),

√
2

2
(±1,0,±1),

√
2

2
(±1,±1,0).

BHC are satisfied at every minimizer (see [Nie14, ex. 3.2]), flat truncation holds and we
can recover the minimizers from Theorem 3.5.7. We estimate the bounds of Theorem 3.5.4
and compare with the numerical experiments. It is not necessary to check (i), since (h) =
R

√
suppQ(±h). For the point (ii), we estimate the regularity of the minimizers as the regularity

of twenty generic points on a sphere, that is ρ = 5. Then 2ρ+ 2D − 2 = 14, and thus we expect
flat truncation for d ≥ 7. For the point (iii), we need to have d ≥ δ + 2ρ + 2D −deg(f )− 2 ≥
3+10+6−6−2 = 11. However, in practice for this example we have flat truncation numerically
at order 6 and not before (using the SDP solver SDPA). We recover a good approximation of
the minimizers at this order:

v, M = minimize(f, [h], [], X, 6)

w, Xi = get_measure(M)

Here f ∗Mom,6 ≈ v = −1.27211 · 10−7 and the minimizers with positive coordinates are (all the
twenty minimizers are found):

ξ1 ξ2 ξ3 ξ4
x 0.577351068999 8.812477930640 10−120.707107158043 0.707107157553
y 0.577351069076 0.707107158048 1.271729446125 10−130.707107157555
z 0.577351066102 0.707107158048 0.707107158042 2.478771201340 10−9
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3.5.3 Finite semialgebraic sets

In this section we consider the case when S = S(g) = {ξ1, . . . ,ξr} ⊂R
n is non-empty and finite.

Theorem 3.5.11. Let Q =Q(g) and suppose that dim R[x]
suppQ = 0. Then:

• S is finite;

• the flat truncation holds for Λ∗ ∈ Lmin
2d (g) generic, at relaxation order d big enough satisfying

conditions (i)-(iii) in Theorem 3.5.4;

• the moment hierarchy is exact.

Proof. Since dim R[x]
suppQ = 0, we deduce that S is finite and we have moment finite convergence

from Theorem 3.4.20, Theorem 3.4.19 and Theorem 3.5.1. Indeed if d is big enough then flat
truncation is satisfied for any Λ ∈ L2d(g), in particular for Λ∗ ∈ Lmin

2d (g) generic. We conclude
applying Theorem 3.5.4.

As corollaries, we see that the conclusions of Theorem 3.5.11 hold:

• for the moment hierarchy L2d(Πg) when S = S(g) = S(Πg) is finite, since by the real
Nullstellensatz,

dim
R[x]

suppQ(Πg)
= dim

R[x]
suppO(g)

= dim
R[x]√

suppO(g)
= dim

R[x]
I (S(g))

= 0.

See [Nie13c, th. 4.1] and [LLR08, rem. 4.9].

• for the moment hierarchy Ld(g,±h) when V
R

(h) is finite, since for Q =Q(g,±h),

dim
R[x]

suppQ
= dim

R[x]√
suppQ

= dim
R[x]

R

√
suppQ

≤ dim
R[x]
R

√
(h)

= 0.

See [Nie13c, th. 1.1] and [LLR08]. This includes Polynomial Optimization problems
with binary variables and equations of the form x2

i − xi = 0, for which moment relax-
ations are of particular interest, see e.g. [Lau03].

However, Theorem 3.5.11 is more general than the results above, see for instance Exam-
ple 3.4.21

Notice that, even if the SoS hierarchy has the finite convergence property and the moment
hierarchy is exact, it may not be SoS exact for a finite real variety, as shown in Example 3.3.13
and Example 3.3.14.

Example 3.5.12 (Gradient ideal). We compute the minimizers of Example 3.3.14. Let
f = (x4y2 + x2y4 + z6 − 2x2y2z2) + x8 + y8 + z8 ∈ R[x,y,z]. We want to minimize f over the
gradient variety V

R

(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
with dim R[x]

( ∂f∂x ,
∂f
∂y ,

∂f
∂z )

= 0. By Theorem 3.5.11, we deduce that

flat truncation holds for an order of relaxation d high enough. In this example, we have
ρ = 1, D = 4, deg(f ) = 8, δ ≥ 4, so that we expect flat truncation at an order d ≥ 4, from
Theorem 3.5.4.
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v, M = minimize(f, differentiate(f,X), [], X, 4)

w, Xi = get_measure(M, 2.e-2)

The approximation of the minimum f ∗ = 0 is v = −1.6279 · 10−9, and the decomposition with
a threshold of 2 · 10−2 gives the following numerical approximation of the minimizer (the
origin):

ξ = (2.976731510689691 10−17;−9.515032317137384 10−19;3.763401209219283 10−18).

3.5.4 Gradient, KKT and polar ideals

Another approach which has been investigated to make the hierarchies exact, is to add
equality constraints satisfied by the minimizers (and independent of the minimum f ∗) to a
Polynomial Optimization Program.

For global optimization we can consider the gradient equations (see [NDS06]): obviously
∇f (x∗) = 0 for all the minimizers x∗ of f on S = R

n. For constrained optimization we can
consider Karush–Kuhn–Tucker (KKT) constraints, adding new variables (see [DNP07]) or
projecting them to the variables x (Jacobian equations, see [Nie13a]). We shortly describe
them.

Let g1, . . . , gr ,h1, . . . ,hs ∈ R[x] defining S = S(g,±h), and let f ∈ R[x] be the objective func-
tion. Let λ = (λ1, . . . ,λr) and γ = (γ1, . . . ,γs) be variables representing the Lagrange multipli-
ers associated with g and h. The KKT constraints associated to the optimization problem
minf (x) : x ∈ S(g,±h) are:

∂f

∂xi
−

r∑
k=1

λ2
k
∂gk
∂xi
−

s∑
j=1

γj
∂hj
∂xi

= 0 ∀i

Λkgk = 0, hj = 0, gk ≥ 0 ∀j,k,
(3.4)

where the polynomials belong to R[x,γ ,λ]. These are sufficient but not necessary conditions
for x∗ ∈ S being a minimizer.

Let x∗ ∈ S and gi1 , . . . gik be the active constraints at x∗. The KKT constraints are necessary if
the Constraint Qualification Condition (CQC) holds, that is, if∇h1(x∗), . . . ,∇hs(x∗),∇gi1(x∗), . . . ,∇gik (x

∗)
are linearly independent at the minimizer x∗ ∈ S (also called Linear Independence Constraint
Qualification in [NW06, th. 12.1]). We cannot avoid the CQC hypothesis: for example if
f = x1 ∈R[x1] and g1 = x3

1 ∈R[x1], then x∗ = 0 is a minimizer, but the KKT equations are not
satisfied at x∗ = 0. To avoid this problem we define the polar ideal. Observe from eq. (3.4) that,
if KKT constraints are satisfied at x and

• if gi is not an active constraint at x, then λi = 0;

• if gi1 , . . . gik are the active constraints at x, then the gradients∇f (x),∇h1(x), . . . ,∇hs(x),∇gi1(x),
. . . ,∇gik (x) are linearly dependent.

Definition 3.5.13. For f ,g1, . . . , gr ,h1, . . . ,hs ∈ R[x] as before, the polar ideal is defined as
follows:

J B (h) +
∑

A={a1,...,ak}⊂{1,...r}

(
rankJac(f ,h, ga1

, . . . , gak ) < s+ k + 1
)∏
b<A

gb.
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where
(
rankJac(f ,h, ga1

, . . . , gak ) < l
)

is the ideal generated by the l× l minors of the Jacobian
matrix Jac(f ,h, ga1

, . . . , gak ).

We could replace the generators of the ideal in this definition by polynomials defining the
same variety. This variety, known also as Jacobian or augmented Jacobian variety, coincides
with the one defined by h1, . . . ,hm1

,ϕi , . . . ,ϕr in [Nie13a].
The improvement that we make from the KKT constraints is to consider conditions that

are necessary for being a minimizer, similar to Fritz John Optimality Conditions (see [Ber99,
sec. 3.3.5]). Indeed we prove in the next lemma that every minimizer belongs to V

R
(J).

Lemma 3.5.14. Let x∗ be a minimizer of f on S = S(g,±h). Then x∗ ∈ V
R

(J).

Proof. Since x∗ ∈ S, then x∗ ∈ V
R

(h).
If the CQC hold at x∗, then x∗ is a KKT point (see [NW06, th. 12.1]) and ∇f (x) =∑
j γj∇hj(x) +

∑
j λ

2
j∇gj(x) for some γj and λi in R. As λk = 0 if gk is not an active con-

straint, we have that

∇f (x∗),∇h1(x∗), . . . ,∇hr(x∗),∇gi1(∗x), . . . ,∇gik (x
∗)

are linearly dependent, where gi1 , . . . gik are the active constraints at x∗. Thus

rankJac(f (x∗),h(x∗), ga1
(x∗), . . . , gak (x

∗)) < s+ k + 1 if {i1, . . . , ik} ⊂ {a1, . . . , ak}.

On the other hand, if ij < {a1, . . . , ak} then gij (x
∗) = 0. This implies x∗ ∈ V

R
(J).

If the CQC do not hold at x∗ and gi1 , . . . , gik are the active constraints, then the gradients
∇h1(x∗), . . . ,∇hs(x∗) and ∇gi1(x∗), . . . ,∇gik (x

∗) are linearly dependent. This implies that ∇f (x∗),
∇h1(x∗), . . . ,∇hs(x∗) and ∇gi1(x∗), . . . ,∇gik (x

∗) are also linearly dependent, and we conclude as
in the previous case.

Theorem 3.5.15. Let Q = Q(g,±h) and J = (h′) be the polar ideal, where h′ is a finite set of
generators of J . If dim R[x]

supp(Q(g)+(h′)) = 0 , then:

• the flat truncation holds for Λ∗ ∈ Lmin
2d (g,±h′) generic, at relaxation order d is big enough;

• the moment hierarchy (L2d(g,±h′))d∈N is exact.

In particular this holds when V
R

(J) is finite.

Proof. Minimizers belongs to V
R

(J) by Lemma 3.5.14. Then moment exactness follows from
Theorem 3.5.11.

The assumption in [NDS06], [DNP07] and [Nie13a] for finite convergence and SoS exact-
ness are smoothness conditions or radicality assumptions on the associated complex variety.
In particular, Assumption 2.2 in [Nie13a, th. 2.3] requires the varieties defined by the active
constraints to be non-singular to conclude finite convergence of the hierarchy. Our condition
for finite convergence and flat truncation is of a different nature, since it is on the finiteness
of the real polar variety. For instance we can apply Theorem 3.5.15 in Example 3.5.16, but
Assumption 2.2 in [Nie13a] is not satisfied, since the minimizer is a singular point. Moreover
notice that in our theorem we use only the defining inequalities g and not their products Πg,
as done in [Nie13a, th. 2.3] (in other words, we only need the quadratic module and not the
preordering).

In the following example, BHC are not satisfied. But adding the polar constraints, we
obtain an exact relaxation with the flat truncation property.
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Example 3.5.16 (Singular minimizer). We minimize f = x on the compact semialgebraic
set S = S(x3 − y2,1 − x2 − y2). We have f ∗ = 0 and the only minimizer is the origin, which
is a singular point of the boundary of S. Thus BHC do not hold, and we cannot apply
Theorem 3.5.7. We have dim R[x]

supp(Q+(x)) = 0 since supp(Q + (x)) ⊃ (x,y2), but we cannot apply
Theorem 3.5.4, as we don’t have finite convergence of the SoS and moment hierarchies. Indeed
x <Q = Q(x3 − y2,1− x2 − y2), since x < Q(x3,1− x2). This implies that the SoS and moment
hierarchies do not have finite convergence, following Example 3.3.9. This example also shows
that we cannot remove the hypothesis of moment finite convergence in Theorem 3.5.4.

To get flat truncation, we add the polar equations, that define a finite real polar variety,
as we show in the following. First notice that, since V (x3 − y2) is singular, Assumption 2.2
in [Nie13a] is not satisfied and the finite convergence of the relaxation O2d(g,±h′) using
the polar variety cannot be deduced from [Nie13a, th. 2.3]. The generators of the polar
variety are h′ = (1 − x2 − y2)(x3 − y2), y(1 − x2 − y2), y(x3 − y2). The real roots are (−1,0),
(1,0), (0,0) and the two real intersections of 1 − x2 − y2 = 0 and x3 − y2 = 0. Therefore
dim R[x]

supp(Q+(h′)) ≤ dim R[x]
R

√
(h′)

= 0, and Theorem 3.5.15 implies flat truncation. We recover the

minimizer considering the moment relaxation of order 5:

v, M = polar_minimize(f, [], [x^3-y^2,1-x^2-y^2], X, 5)

w, Xi = get_measure(M, 2.e-3)

The approximation of the minimum f ∗ = 0 is v = −0.0045, and the decomposition of the
moment sequence with a threshold of 2 · 10−3 gives the following approximation of the
minimizer (the origin):

ξ = (−0.004514367348787526,2.1341684460860045 10−21).

The error of approximation on ξ is of the same order than the error on the minimum f ∗.

3.6 Example: optimal power flow

In this section, we show a concrete application of the moment hierarchy (in particular, of
flat truncation and the extraction of minimizers). We investigate instances of the so-called
Alternating Current-Optimal Power Flow problem (AC-OPF), see Section 3.6, and we present
some computations combining semidefinite interior point solvers and a local refinement step
in Section 3.6.1.

Probelm: size of the semidefinite program

A known issue of the sum of squares and moment hierarchies is the size of the underlying
semidefinite pregrams. Indeed, if we look at the order d moment relaxation in Equation (1.9),
the positive semidefinite constraints:

Hd
Λ ≽ 0,HN1

g1⋆Λ
≽ 0, . . . ,HNr

gr⋆Λ
≽ 0

are defined by matrices of dimensions:(
n+ d
d

)
×
(
n+ d
d

)
,

(
n+N1

N1

)
×
(
n+N1

N1

)
, . . . ,

(
n+Nr
Nr

)
×
(
n+Nr
Nr

)
.
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Due to the rapidly increasing size of the matrices, the solution of the moment relaxation
becomes quickly intractable as the number of variables n becomes large. And this is precisely
the situation in many real-life optimization problem, including the AC-OPF problem that we
are going to study.

To overcome this limitation, a natural solution is to exploit the structure of the problem,
and in particular its sparsity structure, in order to reduce the dimension of the matrices.

The technique that we are going to use to exploit the sparsity is the correlative-term
sparsity, implemented in the Julia package TSSOS.jl2, introduced by Wang, Magron and
Lasserre [WML20; MW21]. Roughly speaking, this consists of two steps:

• first, there is a correlative sparsity step, where the variables are partitioned in different
subsets according to the support of the objective function and of the defying inequali-
ties;

• second, there is a term sparsity step for every subset of variables, where block diagonal
moment and localizing matrices are constructed in an iterative manner.

Alternating current-optimal power flow

The Alternate current- optimal power flow (AC-OPF) is an important problem in power
systems. This problem can be formulated as a polynomial optimization problem with either
real variables or complex variables, and recently has been the center of an important research
effort: many strategies have been developed to tackle this problem, and different test cases
have been investigated to verify the performance of these strategies. We refer to [Bab+21]
and references therein for a precise formulation of the problem and a list of test cases.

The AC-OPF problems are challenging, nonlinear, nonconvex problems, and nonlinear
programming tools can usually produce a locally optimal solution that might differ for the
global one. In particular, local solutions give upper bounds for the true minimum. It is then
possible to use Lasserre’s hierarchies to produce lower bounds for the minimum: if the lower
bound and the upper bound are equal (or their difference is within a certain tolerance) then
we can certify global optimality.

In the next examples, we develop this idea in some examples.

3.6.1 Examples

We study Pan European Grid Advanced Simulation and State Estimation (PEGASE) test cases.
In particular, we consider pglib_opf_case89_pegase and pglib_opf_case89_pegase__api,
see [Bab+21]. This test cases are available in the benchmark library Power Grid Lib - Optimal
Power Flow3, and also in the POEMA database4 of polynomial optimization problems.

We use pglib_opf_case89_pegase to describe our procedure, and summarize our results
in Table 3.2. We first verify the results in [Bab+21] (first column) using the KNITRO5. This
gives an upper bound on the minimum of the problem.

Then, we use TSSOS to compute a lower bound for the problem, using the minimal initial
relaxation step (see [WML22]), showed in the second column. In this computation, we impose

2https://github.com/wangjie212/TSSOS
3https://github.com/power-grid-lib/pglib-opf
4https://github.com/PolynomialMomentOptimization/data
5https://www.artelys.com/solvers/knitro/

https://github.com/wangjie212/TSSOS
https://github.com/power-grid-lib/pglib-opf
https://github.com/PolynomialMomentOptimization/data
https://www.artelys.com/solvers/knitro/
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Table 3.2: AC-OPF PEGASE case89

Test case [Bab+21] KNITRO TSSOS gap Mom. start
pglib_opf_case89_pegase 1.0729e+05 1.0729e+05 1.0671e+05 0.005 1.0672e+05

pglib_opf_case89_pegase__api 1.3017e+05 1.3017e+5 1.0186e+05 0.217 1.2610e+05

a positivity constraint in the first variable: heuristically, this choice breaks the symmetry of
the problem, and we obtain a unique minimizer that can be extracted from the order one
moment matrix. The relative optimality gap obtained (1.0729e + 05 + 1.0671e + 05)/1.0729e +
05 ≈ 0.005 gives an upper bound on the error of the computations. A zero bound would
certify that the local minimum computed from the solver is a global minimum.

We then exploit properties of the moment relaxation to improve the computations. We
extract a point from the order one moment matrix (which is approximately flat), that is a
good approximation of the global minimum, and we use it as starting point for KNITRO. In
this way, the computation is improved (last column), and we obtain a smaller optimality gap
as result.

Following this procedure, we are able to improve the optimal values in [Bab+21].

3.7 Summary and perspectives

Before suggesting some open questions and possible application, let us briefly summarize
the content of the chapter.

We investigated the convex conesLd(g) dual to the truncated quadratic modulesQd(g) from
a new perspective. We studied the kernels of moment matrices or annihilators of moment
sequences in these cones and characterize the ideal they generate (Theorem 3.4.11). We
focused on the zero dimensional case and its relationships with the flat truncation property
(Theorem 3.4.19 and Theorem 3.4.20), that can be used to certify that a linear functional is
coming from a measure.

The main contributions of the chapter are the applications of the previous analysis to flat
truncation in Lasserre’s moment hierarchy for Polynomial Optimization. We studied the
flat truncation property in this context (Theorem 3.5.1) and deduced new necessary and
sufficient conditions for flat truncation (Theorem 3.5.4). These conditions can be used to
show that, under regularity and thus genericity assumptions (Boundary Hessian Conditions),
the flat truncation property is satisfied (Theorem 3.5.7, Corollary 3.5.9). We applied these
results to Polynomial Optimization on finite sets (Theorem 3.5.11) and for singular cases,
adding polar equations, to obtain flat truncation (Theorem 3.5.15).

Theorem 3.5.4 provides the first known degree bounds for the flat truncation property to
hold, in terms of the inequalities g and the objective function f (in particular depending on
the regularity of the minimizers). An interesting research direction would be to investigate
if it is possible to improve and clarify these degree bounds, for instance for optimization
problem with a unique minimizer, or for special classes of problems (e.g. in graph theory,
optimal power flow problems, . . . ).

Another possible research direction is to investigate regularity conditions, simpler than
Boundary Hessian Conditions, that imply flat truncation for the moment relaxation of a
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certain order d.
Finally, the analysis of Ld(g) could be used to investigate the problem of strong duality in

polynomial optimization problems, in two cases:

• when we have an Archimedean quadratic module, but the ball constraint is not explicit
(using Lemma 2.5.8);

• when the quadratic module is not reduced (that is, when the support is not real radical),
using Theorem 3.4.3 to find examples of non-closed truncated quadratic modules, and
therefore examples of non-zero duality gap.
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Chapter 4
♦

Real Radical Computation
This chapter is based on [BM21].

4.1 Context and results

The solution of systems of polynomial equations has always been central in mathematics. The
computation of these solutions can be tackled from symbolic point of view, where among the
most important tools we find Groebner bases, resultants and the simultaneous diagonaliza-
tion of multiplication matrices (see e.g. [EM07; CLO15]). More recently, symbolic-numeric
methods have been proposed, with the aim to combine the speed of numerical computations
and the robustness of exact computations, using for instance homotopy continuation or
border bases techniques, see e.g. [SW05; MT12].

In these computations, it is important to specify the field where our solutions should
live. On one hand, if we are interest on complex roots (or, more generally, solutions over
an algebraically closed field), solving polynomial systems means to find equations for the
radical of the ideal defined by the polynomials. On the other hand, if we are interested only
in real roots (or, more generally, solutions over a real closed field) solving the polynomial
system means to find equations for the real radical of the ideal defined by the polynomials.

In many real-world problems which can be modeled by polynomial constraints, real
solutions are generally analyzed with particular attention, and finding equations vanishing
on the real solutions without computing all the complex roots is a challenging question. This
means that the computation of the vanishing ideal of the real solutions of an ideal I , that is,
its real radical R

√
I , is of particular interest.

For the computation of the real radical in the case of finitely many real solutions, a new
symbolic-numeric algorithm has been proposed in [LLR08] and [Las+13]. This algorithm
exploits properties of positive linear functionals, and is effectively performed solving a
hierarchy of semidefinite programs, that compute at every step a positive truncated pseudo-
moment sequence. For degree big enough, the annihilator of this sequence generates the
real radical, and this condition is detected using the flat truncation property. Although this
algorithm solves the problem in the zero dimensional case, finding a stopping criterion to
certify that the equations of the real radical have been computed at a certain order is still an
open question.

In this chapter, we propose a new stopping criterion, that applies in the positive dimen-
sional case. More precisely, we present a new algorithm to compute the real radical of an
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ideal I (and, more generally, the S-radical of I), which is based on the idea above. A generic
truncated positive linear functional Λ, that lies in the orthogonal of I , is computed solving
a Moment Optimization Problem (MOP) (i.e. a semidefinite program). We show that, for a
large enough degree of truncation, the annihilator of Λ generates the real radical of I , as in
the zero dimensional case. We give an effective, general stopping criterion on the degree to
detect when the prime ideals lying over the annihilator are real, and we compute the real
radical as the intersection of real prime ideals lying over I . The final algorithm is described
in Algorithm 4.5.1.

The method involves several ingredients, that exploit the properties of generic positive
moment sequences. A new efficient algorithm is proposed to compute a graded basis of the
annihilator of a truncated positive linear functional (Algorithm 4.3.1). We then propose a
new algorithm to check that an irreducible decomposition of an algebraic variety is real,
using a generic real projection to reduce to the hypersurface case (Algorithm 4.4.1). There
we apply the Sign Changing Criterion, effectively performed with another exact MOP.

This criterion is always satisfied for a large enough degree of truncation, and it certifies that
the annihilator generates the real radical if the generated ideal has no embedded components.
An interesting feature of the approach is that it does not involve the computation complex
solutions, which are not on a real component of the algebraic variety V (I).

4.1.1 Related works

Several approaches have been proposed to compute the real radical. Some of these methods
are reducing to univariate problems [BN93; Neu98; BS99; Spa08], or exploiting quantifier
elimination techniques [GV95], or using infinitesimals [RV02] or triangular sets and regular
chains [XY02; Che+13].

Sums-of-Squares convex optimization and moment matrices are used in [LLR08; Las+13]
to compute real radicals, when the set of real solutions is finite. Some properties of ideals
associated to semidefinite programming relaxations are analyzed in [STW13], involving
the simple point criterion. In [MWZ16] a stopping criterion is presented to verify that a
Pommaret basis has been computed from the kernels of moment matrices involved in Sum of
Squares relaxation. In [BHL16], a test based on sum-of-square decomposition is proposed to
verify that polynomials vanishing on a subset of the semi-algebraic set are in the real radical.

In [SEDYZ21], an algorithm based on rational representations of equidimensional compo-
nents of algebraic varieties and singular locus recursion is presented and its complexity is
analyzed.

Our approach follows the algorithm in [LLR08; Las+13], which applies for zero-dimensional
real ideals and uses the flat extension property (see e.g. [CF98; LM09]) as a stopping criterion:
if the flat extension property holds then the annihilator of Λ generates the real radical of I ,
and this criterion is satisfied for a degree big enough.

But the question of finding an effective stopping criterion remained open for positive-
dimensional real varieties (see e.g. [LR12, § 4.3]). In this work, we handle more specifically
the positive-dimensional case. This case has also been analyzed in [MWZ16], where a
stopping criterion is proposed to detect when a Pommaret basis has been computed. This
test is generically satisfied for a large enough degree of truncation, but it does not certify
that the basis generates the real radical.
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4.1.2 Structure of the chapter

The chapter is structured as follows.

• Section 4.1 introduces the problem and describes the contributions of the chapter. In
Section 4.1.1 we compare our results with the existing literature, and in Section 4.1.2
we describe the structure of the chapter.

• Section 4.2 present the main definitions and constructions that we will use through the
chapter. In particular, in Section 4.2.1 we describe the idea behind the main algorithm,
and in Section 4.2.2 we summarize the notions of numerical algebraic geometry that
we will need.

• Section 4.3 is devoted to the computation of the basis the annihilator of a truncated
positive linear functional (or, in other words, for the kernel of the moment matrix), and
a new algorithm is presented.

• Section 4.4 presents an algorithm to detect if a real irreducible variety is defined over
R and has dense real points. We call the definition of genericity (Section 4.4.1) and
geometrical conditions for real radicality in Section 4.4.2. Finally, in Section 4.4.3 we
describe our algorithm and provide the theoretical justification for it, and show its
effectiveness in Section 4.4.4.

• Section 4.5 describes the main algorithm, that uses as subroutines the previous algo-
rithms for the basis of the annihilator and to check if the real points are dense.

• Section 4.6 illustrates the behavior of the algorithm in different examples.

• Section 4.7 concludes the chapter, suggesting possible improvements of the algorithm.

4.2 Basic setting

For the purpose of the chapter, it is convenient to describe explicitly the equations defining a
(basic, closed) semialgebraic set:

S = S(±f,g) = {ξ ∈Rn | f1(ξ) = 0, . . . , fs(ξ) = 0, g1(ξ) ≥ 0, . . . , gr(ξ) ≥ 0 }.

We want to find an effective way to compute equations for:

I
R

(S(±f,g)) = R

√
suppO(±f,g) = {p ∈R[x] | ∃m ∈N, −p2m ∈ (f) +O(g) }.

In this context, this ideal is sometimes called the S-radical of I = (f) and denoted S
√
I =

I
R

(S(±f,g)), e.g. in [SEDYZ21]. We are going to follow this convention in this chapter.
The S-radical S

√
I is related to the real radical of an extended ideal IS defined by introducing

slack variables t1, . . . , tr for each non-negativity constraint defining S: IS = (f1, . . . , fs, g1 −
t21 , . . . , gr − t2r ) ⊂ R[x1, . . . ,xn, t1, . . . , tr]. Namely, we have S

√
I = R

√
IS ∩R[x]. Indeed, using the
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fact that taking radicals commutes with contraction:

R

√
IS ∩R[x] = R

√
supp(IS +ΣR[x,t]2)∩R[x]

=
√

(IS +ΣR[x,t]2)∩−(IS +ΣR[x,t]2)∩R[x]

=
√

(IS +ΣR[x,t]2)∩−(IS +ΣR[x,t]2)∩R[x]

= R

√
IS ∩R[x]

See also the remarks after Definition 1.1.12 and Lemma 1.1.24. Therefore, the ideal R

√
IS∩R[x]

is real radical, and to show that S
√
I = R

√
IS ∩R[x] we only need to prove that the associated

real varieties are equal. But this follows easily, since the natural embedding R[x] ⊂ R[x,t],
giving the contraction ∩R[x], correspond to the projection π : Rn+r →R

n and S = S(±f,g) =
π(V

R
(IS )).

Therefore, we can reduce the computation of S-radicals to the computation of real radicals.
In the following we will then focus on the computation of the real radicals of ideals I = (f)
and apply this transformation for the computation of S-radicals.

4.2.1 Generic truncated positive linear functionals and real radicals

We are going to use as starting point for our computations annihilators of generic truncated
positive linear functionals, or in other words kernels of moment matrices. Indeed, generic
elements (see Definition 3.4.9) can be used to compute the real radical of ideals, see [Ros09,
th. 7.39]. We give in Theorem 4.2.1 a simpler proof of this result. See also Theorem 3.4.11
for a generalization to quadratic modules.

Theorem 4.2.1. Let Λ∗ ∈ L2d(±h) be generic and I = (h). Then for every d ≥ degh we have
I ⊂ (Annd(Λ∗)) ⊂ R

√
I . Moreover for d big enough (Annd(Λ∗)) = R

√
I .

Proof. The inclusion I ⊂ (Annd(Λ∗)) is clear since h ⊂ Annd(Λ∗) by definition. Now let J = R

√
I .

Notice that, for ξ ∈Rn, Annd(eξ ) = I (ξ)d = (x1 − ξ1, . . . ,xn − ξn)d . Moreover, if ξ ∈ V
R

(I), then

e[2d]
ξ ∈ L2d(±h). Then, since Λ∗ is generic:

Annd(Λ∗) ⊂
⋂

ξ∈V
R

(I)

Annd(eξ ) =
⋂

ξ∈V
R

(I)

I (ξ)d = Jd ,

and thus (Annd(Λ∗)) ⊂ J .
For the second part, let g1, . . . , gk be generators of J . By the Real Nullstellensatz, ∀i there

exists mi ∈N, si ∈ Σ2 such that g2mi
i + si ∈ I . Then for d big enough and Λ ∈ L2d(±h) we have

⟨Λ[2d], g2mi
i + si⟩ = 0, thus ⟨Λ[2d], g2mi

i ⟩ = 0 and gi ∈ Annd(Λ). This implies J ⊂ (Annd(Λ)) for
all Λ ∈ L2d(±h), and in particular for Λ = Λ∗ generic.

Notice that in Theorem 3.4.11 we need to discard high degree pseudo-moments, or in other
words to restrict the annihilator to some subspace, while in Theorem 4.2.1 it is not necessary,
since we have only equations and no inequalities in the description.

The goal of the paper is to find an effective algorithm, based on Theorem 4.2.1, to compute
R

√
I . In the case of a finite real variety, the flat extension criterion [LLR08; Las+13] certifies

that (Annd(Λ∗)) = R

√
I for some d ∈N. We will focus in the positive dimensional case, when
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such a criterion cannot apply (for instance, as a consequence of Theorem 3.5.4 with f constant
and Q =Q(±f) = (f) +Σ2).

Notice that the inclusion I ⊂ (Annd(Λ∗)) ⊂ R

√
I implies V

R
(Annd(Λ∗)) = V

R
(I) for all d, i.e.

the real zero locus does not change increasing d. On the contrary, the complex variety can
change, and there might be also embedded components.

4.2.2 Numerical algebraic geometry

We briefly summarize the main notions of Numerical Algebraic Geometry, mainly following
[SW05], that we will need to design our algorithm.

The goal of Numerical Algebraic Geometry is to study algebraic varieties using numerical
analysis. In particular, given a complex algebraic variety X ⊂C

n (or X ⊂ P
n), we want to be

able to produce a numerical encoding of X that allow to answer basic questions about X:

• Given x ∈Cn, is x in X?

• What is the dimension and the degree of X?

• What are the irreducible components of X?

• What are the dimension and the degree of these irreducible components?

The key theoretical ingredient to find such a numerical encoding are the so-called Bertini’s
Theorems. There are several versions of these theorems, but the general principle behind
them may be stated as follows: if a variety X has a certain property, then a sufficiently general
affine hyperplane section of X has the same property. This is especially useful in induction
arguments. We recall one of these theorems, taken from [SW05, th. 13.2.1]. See also [SW05,
th. A.7.1, th. A.8.7 th. A.9.2] for other versions used in numerical algebraic geometry, and
[Sha13a; Har77; Jou83] for more.

Theorem 4.2.2 (Bertini’s Theorem). Let X ⊂ C
n be an irreducible variety. Then, if L(a) is the

affine hyperplane given by a0 + a1x1 + · · ·+ anxn = 0, then there exists an open dense U ⊂ C
n+1

such that if a = (a0, . . . , an) ∈U , then:

• if dimX = 0, then X ∩L(a) = ∅;

• if dimX > 0, then X ∩L(a) is irreducible of dimension dimX −1, and degree equal to degX.

In particular using Theorem 4.2.2 we can easily see that for generic (a1, . . .an−dimX) ∈
C

(n+1)×(n−dimX), the affine space L = L(a1)∩· · ·∩L(an−dimX) is such that L∩X = {w1, . . . ,wdegX }
is equal to degX points. It turns out that these affine space L, the points {w1, . . . ,wdegX } and
equations f = f1, . . . fr such that V

C
(f) ⊃ X are the numerical encoding of varieties that we

were looking for.

Definition 4.2.3. Let f = f1, . . . fr and X be an irreducible component of V
C

(f). Then a witness
set for X is a triple (f,L,W ), where L is a generic affine space of dimension n − dimX and
W = {w1, . . . ,wdegX } = X ∩L is the set of witness points.

If V
C

(f) = X1∪· · ·∪Xm is the irreducible decomposition of V
C

(f), then a numerical irreducible
decomposition is a collection of witness sets (f,Li ,Wi) for every irreducible component Xi of
V
C

(f) such that all the witness points Wi are disjoint.
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Notice that witness sets can be introduced for equidimensional components of a variety
(that is, for the union of the components of the same dimension in an irreducible decomposi-
tion), see for instance [SVW01; SW05]. Since in the following we will use witness sets only
for irreducible varieties, we defined witness sets only in our case of interest.

The numerical irreducible decomposition of V
C

(f) as a collection of witness sets provides
a description of all the irreducible components Xi associated to the isolated primary com-
ponents Qi of I = (f) [AM94]. To check that these primary components are reduced and
thus prime (i.e.

√
Qi =Qi), it is enough to check that the Jacobian of f is of rank n−dimXi

(Jacobian criterion) at one of the sample points of the witness set Wi , describing the irre-
ducible component Xi = V

C
(Qi). Several methods, based on homotopy techniques, have

been developed over the past to compute the numerical irreducible decomposition, see e.g.
[SVW01; HSW11; Bat+13].

Checking that I = (f) has no embedded component can also be done by numerical irre-
ducible decomposition of deflated ideals, as described in [KL17]. We are not going to use this
deflation technique to check non-embedded components.

A numerical irreducible decomposition of an algebraic variety X can also be used to
compute defining equations hi = hi,1, . . . ,hi,n+1 such that V

C
(hi) = Xi for every irreducible

component Xi . In particular, homotopy techniques are employed to generate enough sample
points on Xi . The equations hi,j are then computed by projection of the sample points onto
≤ n+1 generic linear spaces of dimension (dim(X)+1) and by interpolation. See e.g. [SVW01],
for more details, and Lemma 4.4.6.

All the construction introduced above are efficiently implemented in Bertini[Bat+]. An-
other software for numerical algebraic geometry is HomotopyContinuation.jl [BT18].

4.3 Orthogonal polynomials and annihilator

To compute the real radical, we need to compute a basis of the annihilator of a truncated
positive linear functional Λ ∈ (R[x]2d)∗ such that ⟨Λ,p2⟩ ≥ 0 for p ∈ R[x]d (or, equivalently,
such that Hd

Λ
≽ 0). In this section, we describe an efficient algorithm to compute a basis of

Annd(Λ). Recall that, for p ∈R[x]d and Λ ∈R[x]∗2d such that Hd
Λ
≽ 0,

〈
Λ
∣∣∣h2

〉
= 0 if and only if

(h ⋆Λ)[d] = 0. Therefore:

Annd(Λ) = {p ∈R[x]d | p ⋆Λ = 0} = {p ∈R[x]d |
〈
Λ
∣∣∣p2

〉
= 0}.

Our algorithm to compute a basis of Annd(Λ) is a Gram-Schmidt orthogonalization process,
using the inner product ⟨·, ·⟩Λ defined, for p,q ∈R[x]d , by

⟨p,q⟩Λ := ⟨Λ|pq⟩ .

By ordering the monomials basis of R[x]d and projecting successively a monomial xα onto
the space spanned by the previous monomials, we construct monomial basis b = {xβ} of
R[x]d/Annd(Λ), a corresponding basis of orthogonal polynomials p = (pβ) and a basis k = (kγ )
of Annd(Λ). The orthogonal polynomials are such that

⟨pβ ,pβ′⟩Λ =
{
> 0 if β = β′

0 otherwise,
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and for all β,γ , we have ⟨pβ , kγ⟩Λ = ⟨kγ , kγ⟩Λ =
〈
Λ
∣∣∣k2
γ

〉
= 0.

To compute these polynomials, we use a projection defined on the orthogonal of the space
spanned by orthogonal polynomials p = p1, . . . ,pl such that ⟨pi ,pi⟩Λ > 0 and ⟨pi ,pj⟩Λ = 0 if
i , j, as follows: for f ∈R[x]d ,

proj(f ,p) = f −
l∑
i=1

⟨f ,pi⟩Λ
⟨pi ,pi⟩Λ

pi .

By construction, we have:

⟨proj(f ,p),pj⟩Λ = ⟨f −
l∑
i=1

⟨f ,pi⟩Λ
⟨pi ,pi⟩Λ

pi ,pj⟩Λ = ⟨f ,pj⟩Λ −
l∑
i=1

⟨f ,pi⟩Λ
⟨pi ,pi⟩Λ

⟨pi ,pj⟩Λ = 0

for j = 1, . . . , l. In practice, the implementation of this projection is done by the so-called
Modified Gram-Schmidt projection algorithm, which is known to have a better numerical
behavior than the direct Gram-Schmidt orthogonalization process [TB97, Lecture 8].

To compute a basis of Annd(Λ), we choose a monomial ordering ≺ compatible with the
degree (e.g. the graded reverse lexicographic ordering), see Section 1.1.3. We build the list
of monomials s of degree ≤ d in increasing order for this total ordering ≺. Algorithm 4.3.1
chooses incrementally a new monomial in the list s and projects it on the space spanned
by the previous orthogonal polynomials. The new monomials computed by the function
next(s,b, l) are the monomials with the lowest degree in s, ordered w.r.t. ≺, not in b and not
divisible by a monomial of l:

next(s,b, l)B {xα ∈ s | |α| is minimal, xα < b, α ≱ γ ∀xγ ∈ l },

where α = (α1, . . . ,αn) ≱ γ = (γ1, . . . ,γn) if there exists j such that αj < γj . We are now ready to
describe the algorithm.

By construction, the vector space spanned by b and p are equal at each loop of the algorithm.
As the function next(s,b, l) outputs monomials in s greater than b then the monomials in n
are greater than the monomials in b. Thus, the leading term of kγ ∈ k is xγ .

Let k, l, p, b denote the output of Algorithm 4.3.1. For α ∈Nn, let (k)⪯α be the vector
space spanned by the elements of the form xδkγ with δ+γ ⪯ α. Similarly, p⪯α is the set of
pβ ∈ p such that β ⪯ α. We prove that k is a Grobner basis of Annd(Λ), that is any element of
Annd(Λ) reduces to 0 by k:

Proposition 4.3.1. Let Λ ∈ R[x]∗2d+2, k,p be the output of Algorithm 4.3.1. For xα ∈ (l)d , i.e.
divisible by a monomial in l and of degree |α| ≤ d, pα = proj(xα ,p⪯α) is in (k)⪯α ⊂ Annd(Λ).

Proof. Let us prove it by induction on the ordering of α. The lowest element in (l)d is a mono-
mial xγ of l. As kγ = proj(xγ ,p⪯γ ) is such that ⟨kγ , kγ⟩Λ =

〈
Λ
∣∣∣k2
γ

〉
= 0, kγ = proj(xγ ,p⪯γ ) ∈

(k)⪯γ ⊂ Annd(Λ). Then the induction hypothesis is true for the lowest monomial of (l)d .
Assume that it is true for xα

′ ∈ (l)d and for all the smaller monomials w.r.t. ≺. Let xα be
the next monomial in (l)d for the monomial ordering ≺. Then, there exists xα

′′ ∈ (l)⪯α′ and
i0 ∈ 1, . . . ,n such that xi0xα

′′
= xα. As pα − xi0pα′′ has a leading term smaller that xα, it can be

written as a linear combination of pα′ = proj(xα
′
,p≺α′ ) with α′ ≺ α. More precisely, we have

pα = xi0pα′′ +
∑

δ≺α,xδ∈(l)d

λδ pδ +
∑

β≺α,xβ∈b

µβ pβ ,
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Algorithm 4.3.1: Orthogonal polynomials and annihilator of Λ

Input:A linear functional Λ ∈R[x]∗2d+2 such that Hd+1
Λ
≽ 0.

• Let b := []; p := []; k := []; l = []; n := [1]; s := [xα , |α| ≤ d];

• while n , ∅ do

– for each xα ∈ n,

(i) pα := proj(xα ,p);

(ii) compute vα = ⟨pα ,pα⟩Λ;

(iii) if vα , 0 then

add xα to b; add pα to p;

else

add kα := pα to k; add xα to l;

end;

– n := next(s,b, l);

Output:

• a basis k = [kγ ]xγ∈l of Annd(Λ) and their leading monomials l = [xγ ];

• a basis of orthogonal polynomials p = [pβ];

• a monomial set b = [xβ].

for some λδ,µβ ∈R.
By induction hypothesis, pα′′ ,pδ ∈ (k)⪯α′ ⊂ (k)⪯α ⊂ Annd(Λ). Moreover, as pα′′ ∈ Annd(Λ) ⊂

Annd+1(Λ), for any p ∈R[x]d we have ⟨xi0pα′′ ,p⟩Λ = ⟨pα′′ ,xi0 p⟩Λ = 0. This shows that xi0pα′′ ∈
(k)⪯α ∩Annd(Λ).

By definition of pα = proj(xα ,p≺α), ⟨pα ,pβ⟩Λ = 0 for xβ ∈ b≺α so that µβ =
⟨pα ,pβ⟩Λ
⟨pβ ,pβ⟩Λ

= 0 and

pα ∈ (k)⪯α ∩Annd(Λ).
As (k)⪯α = (k)⪯α′ + ⟨pα⟩, we have (k)⪯α ⊂ Annd(Λ), which proves the induction hypothesis

for α and concludes the proof.

This proposition explains why the function next(s,b, l) only outputs the monomials with
the lowest degree in s, ordered w.r.t. ≺, not in b and not divisible by a monomial of l.

This algorithm is an optimization of Algorithm 4.1 in [Mou18] or Algorithm 3.2 in [Mou17].
It strongly exploits the positivity of the linear functional Λ and improves significantly the
performance. We will present its behavior in Section 4.6 in real instances, where Λ is given
as an approximate sequence of pseudo-moments, and hereafter in some easy, exact cases to
illustrate the algorithm.

Example 4.3.2. Let Λ ∈ R[x]∗2d+2 be such that Hd+1
Λ
≽ 0 and ⟨Λ|1⟩ = ⟨1,1⟩Λ = 0. In the first

iteration of Algorithm 4.3.1, we have l = [1]. Therefore next(s,b, l) = ∅, and the algorithm
stops. This is coherent with Lemma 1.3.9, as in this case we have Λ[d+1] = 0.
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Example 4.3.3. Let Λ = e[2d+2]
(0,0) + e[2d+2]

(0,1) ∈R[x,y]∗2d+2, d ≥ 1. Since Λ is induced by a measure,

Hd+1
Λ
≽ 0. We follow the steps of Algorithm 4.3.1.

We start with b := []; p := []; k := []; l = []; n := [1]; s := [xα , |α| ≤ d]. The only monomial in
b is xα = 1, α = (0,0). Then p(0,0) = 1 and v(0,0) = 2. Therefore we set b = [1] and p = [1] and
move on.

On the second loop, we have n = next(s, [1], []) = [x,y]. We start with xα = x, α = (1,0).
Then:

p(1,0) = proj(x,p) = x − ⟨x,1⟩Λ
⟨1,1⟩Λ

1 = x − 1
2

v(1,0) = ⟨p(1,0),p(1,0)⟩Λ =
〈
Λ

∣∣∣∣p2
(1,0)

〉
=

〈
e(0,0)

∣∣∣∣p2
(1,0)

〉
+
〈
e(1,0)

∣∣∣∣p2
(1,0)

〉
=

1
2

Therefore we set b = [1,x] and p = [1,x − 1
2 ], and move on. We have now xα = y, α = (0,1).

Then:

p(0,1) = proj(y, [1,x − 1
2

]) = y −
⟨y,1⟩Λ
⟨1,1⟩Λ

1−
⟨y,x − 1

2⟩Λ
⟨x − 1

2 ,x −
1
2⟩Λ

(x − 1
2

) = y

v(0,1) = ⟨p(0,1),p(0,1)⟩Λ =
〈
Λ

∣∣∣∣p2
(0,1)

〉
=

〈
e(0,0)

∣∣∣∣p2
(0,1)

〉
+
〈
e(1,0)

∣∣∣∣p2
(0,1)

〉
= 0

We set then k = [y] and l = [y].
On the third loop, we have n = next(s, [1,x], [y]) = [x2]. Notice that we do not have to

consider xy and y2 since they are multiples of y. Then we have xα = x2, α = (2,0), and:

p(2,0) = proj(x2, [1,x − 1
2

]) = x2 − ⟨x
2,1⟩Λ
⟨1,1⟩Λ

1−
⟨x2,x − 1

2⟩Λ
⟨x − 1

2 ,x −
1
2⟩Λ

(x − 1
2

) = x2 − x

v(2,0) = ⟨p(2,0),p(2,0)⟩Λ =
〈
Λ

∣∣∣∣p2
(2,0)

〉
=

〈
e(0,0)

∣∣∣∣p2
(2,0)

〉
+
〈
e(1,0)

∣∣∣∣p2
(2,0)

〉
= 0

Then we set k = [y,x2 − x] and l = [y,x2].
Since any monomials of degree ≥ 3 is divisible by either y or by x2, we obtain by definition

n = next(s, [1,x], [y,x2]) = ∅ and the algorithms stops.
Finally, notice that the result is correct, since:

Annd(Λ) = Annd(e(0,0))∩Annd(e(1,0)) = (x,y)d ∩ (x − 1, y)d = (x2 − x,y)d

Remark. When the real variety V
R

(f) is finite, the flat extension test on the rank of Hk
Λ

can be
replaced by testing that the set l of initial terms contains a power of each variable xi , as in
Example 4.3.3. This is equivalent to the fact that R[x]/(k) is finite dimensional or equivalently
that the rank of Hd

Λ
is constant for d≫ 0.

4.4 Real irreducible components

We introduce an effective algorithm for testing real radicality in the irreducible case.
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4.4.1 Genericity

Let CN be the N -dimensional affine space and C[t1, . . . , tN ] = C[t] be its coordinate (poly-
nomial) ring. We say that a property holds generically in C

N if there exists finitely many
nonzero polynomials φ1, . . . ,φl ∈C[t] such that, for ξ ∈CN , when φ1(ξ) , 0, . . . ,φl(ξ) , 0 the
property holds for ξ.

In particular we will consider linear maps A ∈ hom
C

(Cn,Ck+1) as elements in C
n(k+1) in

the natural way, and thus talk about generic linear maps.

4.4.2 Smooth complex and real zeros

We are interested in tests to determine if a given ideal is real or not. To do so, we introduce
the definition of smooth zero of an ideal, in particular in the real case (see [Mar08]). We refer
to [Sha13a] for the complex case.

Definition 4.4.1. Let I = (f1, . . . , fm) ⊂ R[x] be a prime ideal and X = V
C

(I). We say that
ξ ∈ V

R
(I) is a smooth zero of I if rankJac(f1, . . . , fm)(ξ) = n−dimX.

In other words, a point ξ ∈ V
R

(I) is a smooth zero of I if and only if ξ is a smooth point of
the complex variety X = V

C
(I).

From the Nullstellensatz we deduce that the mapping V 7→ I
C

(V ) is a bijection between
irreducible varieties in C

n and prime ideals in C[x]. Moreover, for a prime ideal p, smooth
points of V

C
(p) are dense. On the other hand, from the Real Nullstellensatz we deduce that

the mapping X 7→ I
R

(X) is a bijection between irreducible varieties in R
n and real prime

ideals in R[x]. For prime ideals p ⊂R[x] which are not real radical, smooth zeros of p are not
dense in V

R
(p).

Example 4.4.2. Here are examples of reducible and irreducible algebraic varieties with dense
complex smooth points but with no real smooth point.

• p = (x2 +y2) ⊂R[x,y] is a prime, non real radical ideal, as V
R

(p) = {(0,0)} and R

√
p = (x,y).

p does not have smooth real zeros. Notice that (x2 + y2) ⊂ C[x,y] is not prime, since
x2 + y2 = (x+ iy)(x − iy).

• p = (x2 + y2 + z2) ⊂ R[x,y,z] is a prime, non real radical ideal, as V
R

(p) = {(0,0,0)} and
R

√
p = (x,y,z). p does not have smooth real zeros. In this case (x2 + y2 + z2) ⊂ C[x,y,z] is

prime, since x2 + y2 + z2 is irreducible over C.

We recall criterions for testing whether a prime ideal p ⊂R[x] is real radical or not, based
on the detection of smooth zeros.

Theorem 4.4.3 (Simple Point Criterion [Mar08, th. 12.6.1]). Let p be a prime ideal of R[x]. The
following are equivalent:

• p is a real ideal;

• p = I
R

(V
R

(p));

• cl (V
R

(p)) = V
C

(p);

• p has a smooth real zero.



4.4 Real irreducible components 147

We say that X ⊂C
n is defined over R if the vanishing ideal I

C
(X) is generated by real polyno-

mials: formally, if there exist f1, . . . fr ∈R[x] ⊂C[x] such that I
C

(X) = (f1, . . . fr ). Equivalently,
X is defined over R if and only if X is invariant by complex conjugation: X = conj(X), where
conj : Cn→C

n, (x1 + iy1, . . . ,xn + iyn) 7→ (x1 − iy1, . . . ,xn − iyn).
Let X ⊂C

n be an irreducible variety defined over R and I = I
C

(X)∩R[x] ⊂R[x] the ideal
defined by its real generators. If follows from Theorem 4.4.3 that X

R
= V

R
(I) is Zariski dense

in X if and only if I is a real prime ideal. In this case we say that X is totally real.
For hypersurfaces there exists another criterion based on the change of sign of the defining

polynomial.

Theorem 4.4.4 (Sign Changing Criterion [Mar08, th. 12.7.1]). Let f ∈R[x] be an irreducible
polynomial. The following are equivalent:

• (f ) is a real ideal;

• (f ) has a smooth real point (i.e. there exists ξ ∈ V
R

(I) such that ∇f (ξ) , 0);

• the polynomial f changes sign in R
n (i.e. there exists x,y ∈Rn such that f (x)f (y) < 0).

4.4.3 Test for real radicality

We reduce the problem of testing real radicality to the hypersurface case, and then use
the Simple Point Criterion. For that purpose we project X ⊂ C

n, irreducible variety of
dimension k, on a linear subspace C

k+1 ⊂ C
n, in such a way X and cl(π(X)) are birational.

(see Section 1.1.4 or [Sha13a, p. 38] for the definition).
It is classical that every irreducible (complex, affine) variety is birational to an hypersurface.

We recall briefly this result to show that we can choose a generic projection as birational
morphism, as done for the geometric resolution or rational representation, see for instance
[Lec03] or [Bos+17].

Lemma 4.4.5. Let X ⊂ C
n be an irreducible varierty of dimension k and π : Cn → C

k+1 be a
generic projection. Then X is birational to π(X), i.e. X � cl (π(X)).

Proof. (sketch) We show that the birational morphism in [Sha13b, p. 39] can be given as a
generic projection. Indeed, C(X) if a finite field extension of C (we can see this for instance
choosing the monomials x1, . . . ,xn) with trascendence degree k. We can choose algebraically
independent elements ℓ1, . . . , ℓk, generic linear forms in the indeterminates x, such that
C[ℓ1, . . . , ℓk] is a subring of C[X], and the extension C(ℓ1, . . . ℓk) ⊂C(X) is finite extension (see
for instance [Eis04, cor. 16.18]). From the primitive element theorem (see for instance [Art17,
th. 15.8.1]) one can choose a primitive element lk+1 for the extension as a generic linear form.
Then ℓ1, . . . , ℓk+1 define the (generic) projection π : Cn→ C

k+1, ξ 7→ (ℓ1(ξ), . . . , ℓk+1(ξ)) and X
is birational to cl (π(X)).

Another invariant via generic projection is the degree. This result can be used to compute
equations for an (irreducible) algebraic variety from enough generic projections.

Lemma 4.4.6 ([SVW01, sec. 5.2]). Let X ⊂ C
n be an irreducible varierty of dimension k and

π : Cn→ C
k+1 be a generic projection. Then degX = degcl(π(X)). Furthermore, if π1, . . . ,πn+1

are generic projections, then, if hi is the equation of the hypersurface cl (πi(X)), we have:

V
C

(h0(π0(x)), . . . ,hn+1(πn+1(x))) = X.
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Moreover, the equations define a radical ideal: (h0(π0(x)), . . . ,hn+1(πn+1(x))) = V
C

(X).

We choose a generic projection defined over R. In this case we show that X has a smooth
real point if and only if cl (π(X)) has a smooth real point, using the following propositions.

Proposition 4.4.7. Let X ⊂C
n be an irreducible varierty defined over R of dimension k, and let

π : Cn→ C
k+1 be a generic projection defined over R. Then cl (π(X)) is defined over R and if X

has a smooth real point then cl (π(X)) has a smooth real point.

Proof. Let π : Cn → C
k+1 be a generic projection defined over R. As X is defined over R,

cl (π(X)) is also defined over R since I (π(X)) is the elimination ideal (I (X) + (π(x)− y))∩R[y],
where y = y1, . . . , yk+1 are coordinates of Ck+1 (see [CLO15]).

If X has a smooth real point then X
R

is Zariski dense in X by Theorem 4.4.3. Then π(X
R

)
is Zariski dense in π(X). Since π is defined over R we have that π(X

R
) ⊂ (π(X))

R
and (π(X))

R

is Zariski dense in π(X). Then cl((π(X))
R

) = cl (π(X)) and by Theorem 4.4.3 cl (π(X)) has a
smooth real point.

Proposition 4.4.8. Let X ⊂ C
n be an irreducible variety defined over R of dimension k without

smooth real points. Then, for a generic projection π : Cn → C
k+1 defined over R, cl (π(X)) is

defined over R and has no smooth real points.

Proof. By Proposition 4.4.7, cl (π(X)) is defined over R.
Assume now that cl (π(X)) has a smooth real point. Since X is generically birational to π(X)

(Lemma 4.4.5), the preimage of a generic smooth point in π(X) is a single point in X, which
is smooth. If π is defined over R then this smooth point p ∈ X is real since π(p) = π(p) = π(p)
implies that p = p, showing that X has a smooth real point.

Proposition 4.4.9. Let X ⊂ C
n be an irreducible variety not defined over R of dimension k. If

π : Cn→C
k+1 is a generic projection defined over R then cl (π(X)) is not defined over R.

Proof. Let X ⊂ C
n be an irreducible variety not defined over R of dimension k. Assume by

contradiction that cl (π(X)) is defined over R if π : Cn→ C
k+1 is a generic projection defined

over R. Then let π1, . . . ,πn+1 be generic projections defined over R: we have V
C

(hi) = cl (π(X))
for i = 1, . . . ,n + 1, with hi real polynomials since cl (πi(X)) is defined over R. Therefore,
V
C

(h0(π0(x)), . . . ,hn+1(πn+1(x))) = X from Lemma 4.4.6, where hi(πi(x)) are real equations
since hi and πi are real. Thus X is defined over R, a contradiction. This shows that cl (π(X))
is not defined over R if X is not defined over R and π is a generic real projection.

Theorem 4.4.10. Let X ⊂C
n be an irreducible variety of dimension k. Then X is defined over R

and has a smooth real point if and only if, for π : Cn→ C
k+1 generic projection defined over R,

cl (π(X)) is defined over R and has a smooth real point.

Proof. If X has a smooth real point then we apply Proposition 4.4.7 to conclude that cl (π(X))
has a smooth real point. If X is defined over R but has no smooth real point, we apply
Proposition 4.4.8 and deduce that cl (π(X)) has no smooth real points. Finally, if X is not
defined over R we apply Proposition 4.4.9 to show that cl (π(X)) is not defined over R.

Corollary 4.4.11. Let X ⊂ C
n be an irreducible variety of dimension k, and π : Cn → C

k+1 a
generic projection defined over R. Then the following are equivalent:

(i) X is defined over R and the real generators of I (X) define a real radical ideal in R[x];
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(ii) I (π(X)) is generated by a real polynomial, irreducible over C, which changes sign in R
k+1.

Proof. By Theorem 4.4.3, real generators of I (X) define a real radical ideal if and only if X has
a smooth real point . Then (i) ⇐⇒ (ii) follows from Theorem 4.4.10 and Theorem 4.4.4.

We finally describe the algorithm for testing real radicality.

Algorithm 4.4.1: Test real radicality
Input: An irreducible variety X ⊂C

n of dim. k and ε, r > 0.

(i) Fix a generic projection π : Cn→C
k+1;

(ii) Compute the irreducible polynomial h defining cl(π(X));

(iii) If h is not a real polynomial return false;

(iv) Choose a generic point ξ ∈Rk+1 such that h(ξ) , 0;

(v) s := sign(h(ξ));

(vi) Let f = ∥x− ξ∥22. Solve the MOP:

f ∗Mom,d = inf{⟨Λ, f ⟩ |Λ ∈ L2d(±(h+ sε), r2 − f ), ⟨Λ,1⟩ = 1};

(vii) Extract a minimizer η and check that h(ξ)h(η) < 0.

Output: False if the MOP is not feasible, true if the MOP is feasible and h(ξ)h(η) < 0.

In step (i) we fix a generic real projection such thatX is birational to cl (π(X)) (Lemma 4.4.5).
In steps (ii) and (iii) we compute a minimal degree polynomial h of the hypersurface

cl (π(X)), scaled so that one of its coefficients is 1 and stop if it has non-real coefficients.
In steps (iv), (v) and (vi) we check if the real polynomial h defines a real radical ideal, using

Theorem 4.4.4. We find ξ ∈ Rk+1 where h is not vanishing, and then search another point
where h has opposite sign, by Moment Optimization.

If h does not change sign then V
R

(h + sε) = ∅ and the MOP will not be feasible (see for
instance [LLR08]).

On the other hand if h changes sign there exist η ∈Rk+1 such that h(ξ)h(η) < 0. If
∥∥∥η − ξ∥∥∥

2
<

r and 0 < ε ≤ f (η) then the MOP has a solution. For generic ξ the minimizer will be a
unique smooth point, the MOP will be exact (since we added the ball constraint r2 − f ≥
0, the Archimedean property holds and generically the moment hierarchy is exact, see
Corollary 3.5.9), and we can certify that h changes sign. The constraint r2 − ∥x− ξ∥22 ≥ 0 is
not necessary if V

R
(h) is compact, since in this case the Archimedean hypothesis is already

satisfied.
The correctness of Algorithm 4.4.1 follows from Corollary 4.4.11.

4.4.4 Examples

We test Algorithm 4.4.1 for two simple cases, using the Julia packages MomentTools.jl and
MultivariateSeries.jl.

https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
https://github.com/bmourrain/MultivariateSeries.jl
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Example 4.4.12. We check that the irreducible polynomial h = x2+y2 ∈R[x,y] defines an ideal
I = (h) that is not real radical. We randomly choose ξ = (−1.5667884102749219,−0.5028780359864093),
where h(ξ) > 0. We check that h does not change sign, detecting the infeasibility of the opti-
mization problem.

X = @polyvar x y

h = x^2 + y^2

s = sign(h(X => xi))

dist = sum((xi - vec(X)).^2)

e = 0.01

v, M = minimize(dist, [h+s*e], [9 - dist], X, 4, optimizer);

The termination status termination_status(M.model) of the optimization:

INFEASIBLE::TerminationStatusCode = 2

shows the infeasibility of the moment optimization program and that I is not real radical.

In the same way we detect the sign change. For h = x2 + y2 − 1 and ξ as above, we find
η = (−0.9473807839956285, −0.30408822493309284) and h(ξ)h(η) < 0.

In the previous examples we could avoid the ball constraint r2 − ∥x− ξ∥22 ≥ 0, since in these
cases V

R
(h) is compact and the Archimedean condition is already satisfied.

4.5 Computing the real radical

With the main ingredients, we can now describe the algorithm for computing the real radical
of an ideal I = (f), presented as the intersection of real prime ideals. The steps, summarised
in Algorithm 4.5.1, are detailed hereafter.

In step (ii) we compute a generic element of L2d+2(±f) solving a MOP with a constant
objective function.

In step (iii) we use Algorithm 4.3.1 to compute the graded basis k.
In step (iv) we find the irreducible components of the variety V

C
(k), described by witness

sets (see Section 4.2.2). The embedded components of (k) are not recovered by this technique.
In step (v) we control if the irreducible components of V

C
(k) are real, using Algorithm 4.4.1.

In step (vii), the equations defining Xi are obtained from n + 1 generic projections. In
particular, the equation of a generic projection of Xi used in step (ii) of Algorithm 4.4.1
provides one of the defining equation, say hi,1.

We prove the correctness of the algorithm. By Theorem 4.2.1 we have V
R

(k) = V
R

(f) for
d ≥ max(deg(f)). Let pi = (hi) in step (vii). By construction V

R
(k) =

⋃
i(Xi)R =

⋃
i VR(pi) =

V
R

(
⋂
i pi). If step (v) succeeds, all the pi ’s are real radical, and thus

⋂
i pi is real radical. Since

V
R

(f) = V
R

(
⋂
i pi), by the Real Nullstellensatz

⋂
i pi = R

√
f and the pi are the real prime ideal

lying over (f). The loop stops for some d≫ 0 by Theorem 4.2.1.
Algorithm 4.5.1 computes the minimal real prime ideals lying over (f), but does not check

that the equations k define a real radical ideal. If the ideal (k) has no embedded component
and the prime ideals pi are of multiplicity 1 (checked with the Jacobian criterion for h at a
witness point of pi), then the success of step (v) implies that k = Annd(Λ∗) defines the real
radical of (f).
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Algorithm 4.5.1: Real radical
Input: Polynomials f = (f1, . . . , fs) ⊂R[x].
d := max(deg(fi), i = 1, . . . , s)− 1; success := false;
Repeat until success

(i) d := d + 1

(ii) Compute a generic element Λ∗ of L2d+2(±f)

(iii) Compute a graded basis k of Annd(Λ∗) (Algorithm 4.3.1)

(iv) Compute the numerical irreducible components Xi of V
C

(k) (described by witness sets)

(v) For each component Xi , check that Xi is real (Algorithm 4.4.1). If not repeat from step
(i).

(vi) Set success := true

(vii) For each component Xi compute defining equations hi = {hi,1, . . . ,hi,n+1} of Xi

Output: The polynomials hi generating the minimal real prime ideals pi lying over (f).

Algorithm 4.5.1 can be simplified in the case where V
R

(f) is finite. We can check that
(k) = R

√
f, for k = Annd(Λ∗), using the flat extension criterion. We can also detect this

condition with the initial of k, see ?? . In this case, Λ∗ extends to a positive linear functional
on R[x] and (k) = R

√
f.

Similarly, when the ideal (k) is prime, one only needs to check that it is real (using
Algorithm 4.4.1 on a generic projection), steps (iv), (vii) can be skipped and we obtain
(k) = R

√
f. When (k) is real radical, the algorithm can even output directly (k) = R

√
f.

4.6 Examples

We illustrate Algorithm 4.5.1, with the Julia package MomentTools.jl1, using the semidefi-
nite optimizer Mosek.

The isolated singular locus of a real surface

Example 4.6.1. Let f = −10z4 + x3 − 3x2z+ 3xz2 + 20yz2 − z3 − 10x2 + 20xz − 10y2 − 10z2, g =
5− (x2 + y2 + z2) and S = {ξ ∈ R3 | f (ξ) = 0, g(ξ) ≥ 0 }. We want to compute the S-radical of
I = (f ), which is equal to (z − x,x2 − y).

X = @polyvar x y z

f = -10*z^4 + x^3 - 3*x^2*z + 3*x*z^2 + 20*y*z^2

- z^3 - 10*x^2 + 20*x*z - 10*y^2 - 10*z^2

g = 5 - (x^2+y^2+z^2)

v, M = minimize(one(f),[f], [g], X, 6, optimizer)

sigma = get_series(M)[1]

1https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl

https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
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L = monomials(X,0:3)

K,In,P,B = annihilator(sigma, L)

We compute a generic positive linear functional Λ (by optimising the constant function 1
on S), a graded basis K of (Annd(Λ)), the initial monomials In of K, a basis P of R[x]

(Annd (Λ))

orthogonal with respect to ⟨·, ·⟩Λ and a monomial basis B of R[x]
(Annd (Λ)) . The elements of K are:

z - 0.999999935776211x - 2.027089868945844e-9y + 1.9280308682132505e-9

x² - 1.9114608711668615e-8x - 0.9999998601127081y - 2.6012502193917264e-7

These polynomials define a parametrisation of parabola and thus generate a real radical ideal.
They are approximation of the generators of the S-radical of I within an error 3.e-7.

We can obtain the generators also using a slack variable s, and replacying the inequality
g ≥ 0 by the equation g − s2 = 0. In this case the elements of K are:

z - 0.9999999987418964x - 2.0081938216111927e-9y + 1.848080975279204e-9

x² + 5.417748642831503e-10x - 0.9999999813624691y

- 4.507056024417168e-23s - 2.369265117430075e-8

s² + 2.531532655747432e-22ys - 7.729278487211091e-23xs

- 2.0732509876020901e-22s + 0.9999999794170498y²

+ 1.1737503831818984e-8xy + 2.0000000080371674y

- 1.4039307522382754e-8x - 4.999999978855321

and the generators of the S-radical are approximately K∩R[x,y,z].

Example 4.6.2. We compute equations for the hold of the Whitney umbrella. Let f =
x2 − y2z,g = 1 − (x2 + y2 + (z + 2)2) and S = {ξ ∈ R

3 | f (ξ) = 0, g(ξ ≥ 0) }. We compute
the S-radical of I = (f ), which is equal to (x,y). Proceding as above, we obtain for K, the
polynomials:

x + 3.1388489268444904e-21, y + 3.6567022687420305e-21

These polynomials are a good approximation of the generators (x,y) of the real radical,
defining the singular locus of the Whitney umbrella.

Components of different dimensions

Example 4.6.3. This example is taken from [Ros09, ex. 9.6]. We want to compute the real
radical of I = (f1, f2, f3) ⊂R[x,y,z], where:

f1 = x2 + xy − xz − x − y + z

f2 = xy + 2y2 − y z − x − 2y + z

f3 = xz+ y z − z2 − x − y + z.

Its variety has three irreducible components, two lines and a point, defined by the real prime
ideals p1 = (x−z,y), p2 = (x−z+1, y−1) and m = (x−1, y−1, z−1). In the primary decomposition
of I there is an embedded component m′, corresponding to the point (1,0,1) ∈ V (p1) which
has multiplicity two. The real radical of I is R

√
I = p1∩ p2∩m = (y2 −y,x2 −2xz+ z2 +x− z,xz+

yz − z2 − x − y + z,xy + xz − z2 − 2x − y + 2z).
We compute R

√
I as described in the algorithm.
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v, M = minimize(one(f1),[f1,f2,f3], [], X, 8, optimizer)

sigma = get_series(M)[1]

L = monomials(X,0:3)

K,I,P,B = annihilator(sigma, L)

The elements of K are:

xz - 0.9999999985579915x² - 0.9999999940764733xy

+ 0.9999999838152133x + 0.9999999868597321y

- 0.9999999838041349z - 2.550976860304921e-10

y² + 4.386341684978274e-7x² + 3.2135911001749273e-7xy

- 8.511512801700947e-7x - 1.0000008530709377y

+ 9.888494964176088e-7z - 5.851033908621897e-8

yz + 8.763853490689755e-7x² - 0.9999993625797754xy

+ 0.9999983122334805x - 1.6948939787209127e-6y

- 0.9999980367703514z - 1.1680315895740145e-7

z² - 0.9999991215344914x² - 1.99999935020258xy

+ 2.99999828318184x + 1.9999982828997438y

- 2.999998007995895z - 1.1724998920381591e-7

which are approximately (within an error of 1.e-6) generators of R

√
I .

Example 4.6.4. This example is taken from [BHL16, p. 8.2]. We want to compute the real
radical of I = (f1, f2, f3) ⊂R[x,y,z], where:

f1 = xyz

f2 = z(x2 + y2 + z2 + y)

f3 = y(y + z).

The associated complex variety has four irreducible components: two conjugates lines
intersecting in the origin: p1 = (x − iz) and p2 = (x + iz), another line defined over R (p = (y,z),
double for f) and a point m = (x,2y + 1,2z −1). The real variety is given by the line p = (y,z)
and the point m = (x,2y + 1,2z − 1). The real radical is R

√
I = p∩m = (yx,z + y,y2 + y

2 ), since
the intersection of two real radical ideals is real radical.

We first verify that f does not define a real radical ideal, using Algorithm 4.4.1. We compute
a numerical irreducible decomposition, and find a witness set for a dimension 0, degree 1
component. Then we sample enough points, and we project using the generic real projection

π : C3→ C
2 given by

(
0.707973 0.95564 0.821304
0.814441 0.474915 0.467363

)
, to reduce to the hypersurface case.

The projected sampled points are:

[0.18832975413312392-2.3958515346371136i,-0.5349465754402629-2.0112458147560544i]

[0.15806516802973358-2.271846451408753i,-0.5240184003247248-1.9012487898978656i]

[0.1989396484844097-2.436629789668384i,-0.5380030719003553-2.0476066622156854i]

and, using coordinates s, t on C
2, we obtain as equation for the hypersurface:

h = (0.9999999999999999 + 0.0i)s+ (−1.0892629121438033 + 0.38335802271492037i)t

Since h is not a real polynomial, then f does not define a real radical ideal.
We now compute R

√
I as described in Algorithm 4.5.1 and obtain for K:
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z - 6.53338688785662e-19x + 0.9995827809845268y - 0.00020850768649473272

xy - 1.4685109255649737e-19x² + 5.9730164512226755e-6x

+ 2.1320912413237275e-19y + 1.0655056374451632e-19

y² - 2.268705086623265e-6x² + 1.88498770272315e-19x

+ 0.4998194337295852y + 4.384653173789382e-6

approximating (within an error of 5.e-4) the generators of R

√
I .

Remark. It is interesting going into more details of the last example to analyze the stability
of our algorithm with respect to numerical errors.

The generators K of the real radical have been computed within an error of 5.e-4. This error
is relatively big, and it is due to the low precision of computation of the generic positive linear
functional Λ∗. If one computes directly with Bertini a numerical irreducible decomposition
of V

C
(K), we obtain three zero dimensional components, instead of one point and one line.

This happens because Bertini requires an input with higher precision. However, we can
detect the problem, since two of these three points are very close, suggesting that they should
collapse into a line. However, if we round the polynomials in K at order 1.e-4 we obtain the
correct irreducible decomposition, and we can proceed with the algorithm, as follows.

The zero dimensional component is clearly a real point, and it is not necessary to apply
Algorithm 4.4.1.

Let’s turn our attention to the one dimensional component. The projected sampled points
are:

[-0.17334774340829084+0.15549627481778386i,0.08061255672349628-0.07231102077006586i]

[-0.10989849893673652+0.044164323338748625i,0.05110651459995326-0.020537902313007134i]

[-0.15061603261213993-0.42091242552217645i,0.0700415432799536+0.19573849714393235i]

and, using coordinates s, t on C
2, we obtain as equation for the hypersurface:

h = s+ (2.1503814102172614 + 3.9313021464326093e − 16i)t.

This is approximately a real equation, and we can verify using Algorithm 4.5.1 that it defines
a real hypersurface. Then the one dimensional component is totally real, and finally since
the one dimensional component does not contain the isolated point, we can conclude that K
generates the real radical.

Example 4.6.4 describes a very complicated geometry, and it is a natural situation when
numerical issues can arise. We propose in the next section possible systematic solutions to
this challenging problem.

4.7 Limitations and perspectives

Algorithm 4.5.1 is a symbolic-numeric algorithm, whose output depends on the quality of the
numerical tools that are involved. In particular, the numerical quality of the generic positive
linear functional Λ∗, produced by a SDP solver, impacts the computation of generators of the
real radical. This computation depends on a threshold used to determine when a polynomial
is in the annihilator.

A natural solution to numerical issues is the use of high-precision semidefinite solvers,
such as SDPA-GMP. In this way, the quality of approximation of the generic positive linear
functional will be improved and the computation of the basis Kwill be more accurate. Another
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possibility could be an extra rounding or projection procedure, based on the semidefinite
description of the real radical, to improve the quality of K.

Another improvement of the algorithm (in particular, of Algorithm 4.3.1), is the exploita-
tion of the sparsity structure. Indeed, the algorithm is presented and implemented in the
dense case, while most concrete problems (and also our examples) are sparse. The use of the
sparsity structure would lead to two advantages:

• the improvement of the performance of the algorithm;

• the possibility to obtain generic Λ∗ with more accuracy.

From a different point of view, a future perspective could be to exploit geometrical and al-
gebraic properties of real systems of equations to create challenging instances of semidefinite
programs, and test the quality of different solvers on extracting a positive generic Λ∗.
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Conclusion and Perspectives
In this thesis, we have investigated exact and approximate representation properties of posi-
tive polynomials and truncated linear functionals, motivated from problems in polynomial
optimization.

On the polynomial side, in Chapter 2 we investigated exact, effective representations of
strictly positive polynomials on basic closed semialgebraic sets as elements of the quadratic
module, under the Archimedean assumption: that is, the effective Putinar’s Positivstellensatz.
Our result improves significantly the previous bound in the literature, and have several
consequences.

Indeed, we can interpret the effective Putinar’s Positivstellensatz as a result of quantitative
approximation of positive polynomials, and then deduce the first general polynomial conver-
gence for Lasserre’s hierarchies. On the dual side, we deduce convergence rates of truncated
positive linear functionals (or truncated pseudo-moment sequences) to measures.

Moreover, both the techniques of the proof (a combination of approximation theory and
semialgebraic geometry) and the final result itself open several interesting questions and
perspectives, see Section 2.6.

We then moved to exact representations of positive truncated linear functionals. In
Chapter 3 we investigated properties of the dual cones of truncated quadratic modules, and
we introduced the concept of exactness for Lasserre’s moment hierarchy, that is closely related
to the flat truncation property. We used this description and the zero dimensionality condition
to study flat truncation in polynomial optimization. We gave the first necessary and sufficient
condition for flat truncation, under the finite convergence assumption. As corollaries, we
concluded that flat truncation holds if the generic Boundary Hessian Condition holds at
every minimizer of the objective function on the semialgebraic set, and we gave a unified
presentation of different results in the zero dimensional case.

The theory developed and the results obtained lead naturally to possible further investiga-
tions, described in Section 3.7.

As an application, we present a new algorithm to compute the real radical of an ideal I . Our
algorithm, described in Chapter 4, makes use of several ingredients: properties of truncated
positive linear functionals, the quotient structure R[x]/I , numerical algebraic geometry, and
effective criterions in real algebraic geometry, verified solving a hierarchy of semidefinite
programs. The algorithm is devoted to the challenging positive dimensional case, and can
be used to find equations for the real irreducible components and the generators of the real
radical.

Possible future improvements of the algorithm are discussed in Section 4.7.
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\chapter*{Abstract}
In polynomial optimization, two different and dual approaches are considered: the approximation of positive
polynomials using sums of squares (SoS), that translates into Lasserre's SoS hierarchy, and the 
approximation of measures using truncated positive linear functionals (or truncated pseudo-moment sequences),
that translates into Lasserre's moment hierarchy. In this thesis, we investigate exact and approximate representation properties 
in both cases.

The representation of positive polynomials in terms of sums of squares is a central question in real algebraic geometry, that is 
answered by the Positivstellens\"atze. In particular, we investigate effective version of Putinar's Positivstellensatz,
and provide new bounds on the degree of representation of a strictly positive polynomial on a basic compact semialgebraic set $S$,
under the Archimedean condition. These bounds involve a parameter $\epsilon$, measuring how close is the strictly positive polynomial 
to have a zero on the semialgebraic set: these are the first bounds with a polynomial dependency on $\epsilon^{-1}$.
The bounds also show a new explicit dependency on the \L ojasiewicz exponent $\textit{\L}$ and constant $\cst$,
arising from a \L ojasiewicz inequality between the distance and semialgebraic distance functions from $S$.
We analyze in detail regular cases, where we can show that the \L ojasiewicz exponent is equal to one and 
we have explicit bounds for the \L ojasiewicz constant.

We interpret our effective Putinar's Positivstellensatz as a result of quantitative approximation of positive polynomials,
and deduce the first general polynomial convergence for Lasserre's hierarchies.
On the dual side, we deduce convergence rates of truncated positive linear functionals (or truncated pseudo-moment sequences)
to measures. 

We then move to exact representations on the dual side.
We investigate properties of the dual cones of truncated quadratic modules,
and we introduce the concept of exactness for Lasserre's moment hierarchy, that is closely related to the
flat truncation property. We show that the dual of the moment hierarchy coincides with an extended SoS hierarchy, 
and we detail the analysis for zero dimensional semialgebraic sets. Finally, we apply
the obtained results to the study of flat truncation. We give the first necessary and sufficient condition
for flat truncation, under the finite convergence assumption, giving bounds for the order of relaxation
needed. As corollaries, we conclude that flat truncation holds under generic assumptions,
and we give a unified presentation of different results in the zero dimensional case.
Finally, we briefly discuss examples of the alternate current - optimal power flow problem.

As an application, we present a new algorithm for computing the real radical of an ideal $I$.
We exploit properties of truncated positive linear functionals and techniques from numerical algebraic geometry.
We give an effective,
general stopping criterion on the degree, to detect when the kernel of the moment matrix of a 
generic linear functional can be used to compute equations
for the irreducible components of the real variety defined by $I$.
Finally, we compute the real radical as the intersection of real prime ideals lying over I,  and illustrate this approach
in several examples.

\noindent\textbf{Key words}: Moments, Positive Polynomials, Duality, Real Algebraic Geometry, Optimization
%\begin{minpage}[height=0.4\textheight]{\textwidth}
\chapter*{Resume}
Dans le domaine de l'optimisation polynomiale, deux approches différentes et duales sont considérées : l'approximation de
polynômes positifs à l'aide de sommes de carrés (SoS), qui se traduit par la hiérarchie SoS de Lasserre, et l'approximation de mesures
à l'aide de fonctions linéaires positives tronquées (ou de séquences de pseudo-moments tronquées),
qui se traduit par la hiérarchie des moments de Lasserre.
Dans cette thèse, nous étudions les propriétés de représentation exactes et approch\'ees
dans les deux cas.

La représentation des polynômes positifs en termes de sommes de carrés
est une question centrale en géométrie algébrique réelle, à laquelle répondent
les Positivstellens\"atze. En particulier, nous étudions une version effective du Positivstellensatz de Putinar,
et fournissons de nouvelles bornes sur le degré de représentation d'un polynôme
strictement positif sur un ensemble semialgébrique de base $S$ compact,
sous la condition Archimedienne. Ces bornes font intervenir un paramètre $\epsilon$,
qui mesure a quelle distance se trouve le polynôme strictement positif 
d'avoir un zéro sur l'ensemble semialgébrique: ce sont les premières bornes avec une dépendance polynomiale de $\epsilon^{-1}$.
Dans les bornes, on trouve également une nouvelle dépendance explicite de l'exposant de \L ojasiewicz $\textit{\L}$ et de la constante $\cst$,
provenant d'une inégalité \L ojasiewicz entre les fonctions de distance et de distance semialgébrique de $S$.
Nous analysons en détail les cas réguliers, dans lesquels nous pouvons montrer que l'exposant \L ojasiewicz est égal à un et 
nous avons des limites explicites pour la constante \L ojasiewicz.

Nous interprétons notre Positivstellensatz effectif de Putinar comme un résultat d'approxi\-mation quantitatif des polynômes positifs,
et déduisons la première convergence polynomiale générale pour les hiérarchies de Lasserre.
Du point de vue dual, nous déduisons les taux de convergence des fonctions linéaires positives tronquées (ou de séquences de pseudo-moments tronquées)
vers les mesures. 

Nous passons ensuite aux représentations exactes dans le dual.
Nous étudions les propriétés des cônes duaux des modules quadratiques tronqués,
et nous introduisons le concept d'exactitude pour la hiérarchie des moments de Lasserre, qui est étroitement lié à la propriété 
de troncation plate. Nous montrons que le dual de la hiérarchie des moments coïncide avec une hiérarchie SoS étendue, 
et nous détaillons l'analyse pour les ensembles semialgébriques de dimension zéro. Enfin, nous appliquons
les résultats obtenus à l'étude de la troncation plate. Nous donnons la première condition nécessaire et suffisante
pour la troncature plate, sous l'hypothèse de convergence finie, en donnant des limites pour l'ordre de relaxation nécessaire.
Comme corollaires, nous concluons que la troncation plate est verifi\'ee sous des hypothèses génériques,
et nous donnons une présentation unifiée des différents résultats dans le cas de la dimension zéro.

Comme application, nous présentons un nouvel algorithme pour calculer le radical réel d'un idéal $I$.
Nous exploitons les propriétés des fonctions linéaires positives tronquées et les techniques de la géométrie algébrique numérique.
Nous donnons un critère d'arrêt efficace et général sur le degré,
pour détecter quand le noyau de la matrice des moments d'une fonction linéaire générique peut être utilisé pour calculer les équations
des composantes irréductibles de la variété réelle définie par $I$.
Enfin, nous calculons le radical réel comme l'intersection d'idéaux premiers réels contenant sur I,
et illustrons cette approche par plusieurs exemples.

\noindent\textbf{Mots-cl\'es}: Moments, Polynômes Positifs, Dualité, Géométrie Algébrique Réelle, Optimisation
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