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Université Paris XIII - Sorbonne Paris Nord
École Doctorale Sciences, Technologies, Santé Galilée
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CHARNOIS Thierry, Université Sorbonne Paris Nord, Directeur de thèse
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ABSTRACT

The task of Dependency parsing aims to extract the grammatical structure of the sentence,

represented with a directed graph called parse. A parse connects words in the sentence with

arcs. Dependency Parsing can be solved with graph-based models, which evaluate the score

of all parses of the sentence and use methods from graph theory (Maximum Spanning Tree

for instance) to build the parses. Scores functions of graph-based models can be viewed as

polynomial functions, with terms in the polynomial functions represent the score of sub-

structures (combination of arcs) of the parse. Inference with graph-based models aims to

find the parse which maximizes the function score. To have efficient inference algorithms,

the score functions of the model are restricted to be constrained polynomial functions, which

can only incorporate the score of particular sub-structures. For example, for models with

first-order score functions called arc-factored models, the score function is calculated as the

sum over the score of arcs. Inference for arc-factored models is efficient with Eisner or Chu-

Liu-Edmonds algorithm. Higher-order polynomial functions can be used as score function for

higher-order models. However, only particular combinations of arcs (sibling, grandchild) are

allowed to ensure the existence of efficient inference algorithms. This gives us a constrained

higher-order polynomial function in which some of the higher-order terms are acceptable. In

practice, higher-order models have generally better performances than arc-factored models.

Graph-based models can be viewed as energy-based models (EBMs). An EBM takes the

input data (the sentence and the parse for dependency parsing) as variables and gives a

scalar called energy as output. The energy is a measure of the adequacy of the input data

(the adequacy of parse to the sentence for dependency parsing). Customarily, inference with

EBMs aims to minimize the energy while inference of graph-based models aims to maximize

the score. The minor difference can be eliminated by taking the the negative value of the

score. In this thesis, we view graph-based models as EBMs and we use learning method of

EBMs to train graph-based models.

The performance of graph-based dependency parsing can be greatly improved with the

use of deep neural networks, which can extract abundant information from the sentence.

Arc-factored and higher-order models have been reconstructed with deep neural networks,

with batchified and gradient-based inference algorithms to benefit from the acceleration of

modern GPUs.

In this thesis, we focus on non-linear graph-based models with neural networks. The goal

is to generalize constrained polynomial functions into more generalized forms, and to explore

whether this can benefit the performance of dependency parsing, as well as the existence of

efficient inference algorithms.

We firstly study a mixture-of-experts (MoE) model, with arc-factored or second order

x



model as experts. MoE has the potential to approximate any non-linear models with suffi-

cient experts. We find that an averaging MoE with uniform weights of experts can improve

the performance by reducing the variance of the system. We propose a stabilized train-

ing method for MoE based on Estimation-Maximization (EM) algorithm, which avoids the

degeneration problem in learning MoE. We achieve new state-of-the-art with average MoE.

A generalized polynomial models is then presented, in which the score of all possible

sub-structures can be incorporated into the score function. We propose efficient inference

algorithms based on coordinate ascent and differentiable programming. Instead of using

hinge loss for learning, we propose a new learning method based on linear approximation of

higher-order models. We achieve new state-of-the-art with this method.

We then study the general non-linear models for dependency parsing, in which we as-

sume the score function is general non-linear functions without additional constraints. For

instance, non-polynomial functions can be considered as score functions, in which we have

no explicit score of sub-structures, but only the score of the parse. We adapt Frank-Wolfe

algorithm for training non-linear models with hinge loss. Methods of backtracking line-

search, restart and early stopping are used to accelerate the convergence. We also propose a

probabilistic inference network for learning probabilistic models with non-linear score func-

tions. The original Inference network (generator) uses a GAN-like structure to maximize

the non-linear score function (discriminator). In this work, we propose to use inference

network to approximate the distribution of the discriminator by minimizing KL-divergence

or Jensen-Shannon (JS) divergence. The calculation of loss functions are intractable for

both the discriminator and the generator with non-linear models. We solve the problem by

estimating directly the gradient of the loss function with sampling and MCMC methods.
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FRANÇAIS

Dans cette thèse, nous nous concentrons sur les modèles non linéaires basés sur les graphes

pour l’analyse syntaxique des dépendances avec des réseaux neuronaux. L’objectif est

de généraliser les fonctions polynomiales contraintes en des formes plus généralisées, et

d’explorer si cela peut bénéficier aux performances de l’analyse syntaxique des dépendances,

ainsi qu’à l’existence d’algorithmes d’inférence efficaces.

Nous étudions tout d’abord un modèle de mélange d’experts (MoE), avec des modèles

d’arc ou de second ordre comme experts. MoE a le potentiel d’approximer tout modèle

non linéaire avec suffisamment d’experts. Nous constatons qu’un MoE moyenné avec des

poids uniformes des experts peut améliorer les performances en réduisant la variance du

système. Nous proposons une méthode d’apprentissage stabilisée pour le MoE basée sur

l’algorithme d’espérance-maximisation (EM), qui évite le problème de dégénérescence dans

l’apprentissage du MoE. Nous atteignons un nouvel état de l’art avec le MoE moyenné.

Nous présentons ensuite un modèle polynomial généralisé, dans lequel le score de toutes

les sous-structures possibles peut être incorporé dans la fonction de score. Nous proposons

des algorithmes d’inférence efficaces basés sur l’ascension par coordonnées et la program-

mation différentiable. Au lieu d’utiliser le ’hinge’ pour l’apprentissage, nous proposons une

nouvelle méthode d’apprentissage basée sur l’approximation linéaire des modèles d’ordre

supérieur. Nous atteignons l’état de l’art avec cette méthode.

Nous étudions ensuite les modèles non linéaires généraux pour l’analyse syntaxique des

dépendances, dans lesquels nous supposons que la fonction de score est une fonction non

linéaire générale sans contraintes supplémentaires. Par exemple, les fonctions non polyno-

miales peuvent être considérées comme des fonctions de score, dans lesquelles nous n’avons

pas de score explicite des sous-structures, mais seulement le score de l’analyse syntaxique.

Nous adaptons l’algorithme de Frank-Wolfe pour l’entrâınement de modèles non linéaires

avec ’hinge’. Nous utilisons des méthodes de recherche linéaire avec retour en arrière,

redémarrage et arrêt précoce pour accélérer la convergence. Nous proposons également un

réseau d’inférence probabiliste pour l’apprentissage de modèles probabilistes avec des fonc-

tions de score non linéaires. Le réseau d’inférence original (générateur) utilise une structure

de type GAN pour maximiser la fonction de score non linéaire (discriminateur). Dans ce

travail, nous proposons d’utiliser le réseau d’inférence pour approximer la distribution du dis-

criminateur en minimisant la divergence KL ou la divergence Jensen-Shannon (JS). Le calcul

des fonctions de perte est intractable à la fois pour le discriminateur et le générateur avec

des modèles non linéaires. Nous résolvons le problème en estimant directement le gradient

de la fonction de perte avec des méthodes d’échantillonnage et MCMC.

xii



CHAPTER 1

INTRODUCTION

1.1 Dependency Parsing

In this thesis, we concentrate on the task of dependency parsing. The task focuses on

My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

root

Figure 1.1: An example of Dependency Parsing

extracting the grammatical structure of a sentence by using (head, modifier) relations, as

well as relation types. For example, the pair of words (likes, dog) in Figure 1.1 is a (head,

modifier) relation, with the word likes being the head and the word dog being the modifier.

The type of the relation is nsubj, which represents nominal subject in grammar. We mention

that each word in the sentence (except the root word) has one and only one head word. The

extracted relations with the root word constructs a tree like structure. Customarily, it is

called arborescence, parse tree or simply parse. (head, modifier) relations in the parse are

called arcs.

In this thesis, we focus on the task of extracting the relations. Once the root word and all

the (head, word) relations are determined for the sentence, the decision of the relation type

can be solved as a classification problem. The classification problem consists in deciding the

right type of the relation among the syntactic relations and we follow previous works [Dozat

and Manning, 2017, Zhang et al., 2020a, Wang and Tu, 2020] to solve this problem. In the

following discussions, we refer dependency parsing as the task of extracting the relations

without additional precision.

There exist two main approaches for dependency parsing: graph-based models and

transition-based models. We focus on graph-based dependency parsing [Eisner, 1997] in

this thesis because graph-based models directly calculate the score of parses for the sentence

and give a global evaluation of the parse while transition-based dependency parsing [Zhang

and Nivre, 2011] introduced briefly in Chapter 3, constructs the parse in a left to right

manner with transition operations, which gives a local evaluation of the parse. Inference

of graph-based model aims to find the parse which maximizes the score. Depending on the

form of the score function, graph-based models can be classified as arc-factored models and
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higher-order models. Arc-factored models calculate the score by making a sum over score of

arcs. It is in fact a linear function (first-order model) to the variable representing the arcs.

Efficient inference algorithms [Eisner, 1996, 1997, McDonald et al., 2005] exists for inference

of arc-factored models. Higher-order models use higher-order polynomial score functions

to the arc variables, in which the score of combination of arcs (sub-structure of the parse)

are considered as higher-order terms of the polynomial function. To ensure the existence

of efficient inference algorithms, only particular combination of arcs can be used [Koo and

Collins, 2010], which constrain the score function to have particular higher-order terms. In

general, higher-order models have better performance than arc-factored models [Koo and

Collins, 2010, Zhang et al., 2020a, Wang and Tu, 2020].

Deep neural networks have greatly improved the performance of dependency parsing.

[Kiperwasser and Goldberg, 2016] uses biLSTM [Hochreiter and Schmidhuber, 1997] to ex-

tract features used for score calculation from the sentence. The model achieved fairly good

performance with arc-factored model. [Dozat and Manning, 2017] reformulate the calcula-

tion for score of arcs with a biaffine function. Experiments showed that biaffine has better

performances than multi-layer perceptrons used in [Kiperwasser and Goldberg, 2016]. [Zhang

et al., 2020a] studied a second order model with second order relation adjacent siblings. The

adjacent siblings is a combination of two arcs which have the same head, and the modifiers

are required to be adjacent words on the same side of the head word. They calculated

the second-order score with a triaffine function and used batchified gradient-based infer-

ence algorithms to benefit from the acceleration of modern GPUs. Their results showed

that higher-order models can still benefit the performance of dependency parsing with deep

learning. [Wang and Tu, 2020] studied a second-order model with sibling and grandchild

scores. The grandchild model is the combination of arcs with the modifier of one arc being

the head of another arc (see Figure 3.8). Exact inference algorithms do not exist in this case

so they used mean field variational inference (MFVI) to estimate the distribution of arcs.

Their experiments showed that higher-order deep model can benefit the performance even

with approximate inference.

In this thesis, we follow works in deep higher-order graph-based models. To ensure the

existence of efficient inference algorithms, we propose a Mixture-of-Experts (MoE) [Jacobs

et al., 1991, Brown and Hinton, 2001] method to approximate non-linear models with arc-

factored or second order models. Then we studied a generalized polynomial model for graph-

based dependency parsing. The score function is still polynomial, but without restriction

of using particular higher-order terms. Finally, we studied FW algorithm and probabilistic

inference network for graph-based model with general non-linear score functions.
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1.2 Graph-based Dependency Parsing as Energy-based Models

Graph-based models calculates the score of parses for the sentence, which can be viewed

as an energy-based model (EBMs) [LeCun et al., 2006]. EBMs can calculate the energy

for pairs of inputs. The energy is used as a measure of adequacy of the input data. For

dependency parsing with sentence and its parse as inputs, it is explained as the adequacy of

using the parse as the grammatical structure of the sentence. Customarily, inference with

EBMs aims to minimize the energy with part of inputs that can vary (for dependency parsing,

the sentence is fixed, the parse can vary). The same thing can be done with graph-based

model by taking the negative value of score.

By viewing graph-based models as EBMs, methods for learning in EBMs like structured

hinge loss [Tsochantaridis et al., 2004, 2005, Taskar et al., 2003, 2005] can be used to train

the model, which is well used in parser of [Kiperwasser and Goldberg, 2016]. Besides, it is

possible to train EBMs as a probabilistic model by using the Boltzmann distribution [Landau

and Lifshitz, 1968], i.e. assuming the probability of inputs is proportional to its exponential

value of negative energy. For graph-based dependency parsing, it is equivalent to say the

probability of parse is proportional to its exponential value of score. Probabilistic Models

for dependency parsing under the framework of EBMs have been studied in [Eisner, 1997,

Dozat and Manning, 2017, Zhang et al., 2020a, Wang and Tu, 2020] for arc-factoed and

second-order models.

In this thesis, we follow previous works to work with the framework of EBMs. The energy

functions (or score function) are limited as constrained polynomial functions. We propose to

use a concrete framework of EBMs: Structure Prediction Energy Network (SPEN) [Belanger

and McCallum, 2016] to construct generalized polynomial functions, or even general non-

linear functions. SPEN calculates the energy function with two parts: the local energy and

the global energy. The local energy is designed to be a linear function to part of the inputs

that varies while the global energy can be general non-linear functions. In this thesis, we

consider the case when the global part is a generalized polynomial function, and we also

discuss the case when we have general non-linear functions for the global energy.

We mention particularly that the mixture-of-experts (MoE) method presented in Chapter

4 is not strictly under the framework of EBMs, but each expert is still an independent EBM.

1.3 Organization and Contributions

The thesis is organized as follows:

Chapter 2 and 3 are background of the thesis
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• In Chapter 2, we introduce EBMs for structure prediction. We make comparison

between EBMs and Feed-Forward Models (in Section 2.2) to clarify the advantages

and difficulties of using EBMs. We discuss learning for EBMs with max-margin loss

and negative log-likelihood. A concrete framework SPEN is presented in the end, which

is used as the base for constructing our own models.

• In Chapter 3, we introduce the basis of dependency parsing. We present the history

of graph-based dependency parsing, which started with the simple arc-factored models

to the more advanced higher-order models. We give formally the definitions of two

types of parse trees: projective trees and non-projective trees. The arc-factored model

and the second order models are introduced, with a detailed introduction of inference

algorithms for different models. The use of deep learning methods for dependency

parsing is introduced in the end, with a detailed introduction of the architecture of deep

graph-based models and batchified gradient-based inference algorithms. We introduce

in the end an end-to-end method for second-order model, which inspires our work in

Chapter 5.

Chapters 4, 5, 6 are contributions of the thesis.

• In Chapter 4, we introduce our MoE method for constructing non-linear models [Zhang

et al., 2021]. We propose efficient inference for MoE based on Minimum Bayes-Risk

(MBR) [Smith and Smith, 2007a]. We show that the average MoE with uniform weights

of experts can reduce the variance of the system, which benefits the performance of

dependency parsing and gives new SOTA. We stabilize the training of MoE with EM

based methods which avoids the degeneration problem in training of MoE.

• In Chapter 5, we generalize the constrained higher-order polynomial models to gener-

alized polynomial models. We show that the generalized model is capable to represent

the score of all possible structures, of any order for the parse tree. We propose effi-

cient inference algorithm based on coordinate ascent [Bertsekas, 1999] and combine it

with genetic algorithms [Fukunaga, 1998] to achieve better solutions. A new learning

method based on linear approximation of the score function is proposed, which has in

general better performance and faster convergence than hinge loss. We achieve new

SOTA with our method.

• In Chapter 6, we study the graph-based dependency parsing with general non-linear

functions. We adapt FW algortihm for learning and inference. We use backtracking

line-search, restart and early stopping strategies to accelerate the convergence of FW

to a local optimum. FW algorithm is most adapted for hinge loss. For probabilistic
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model, we propose to use the probabilistic inference network to approximate directly

the distribution of the non-linear model. We propose calculable new loss functions to

estimate directly the gradient of intractable loss functions. The new loss functions are

calculated with sampling and we propose to use MCMC methods reduce the error of

sampling.

In Chapter 7, we summarize the thesis and give future research directions.

Our contributions can be summarized as:

• We constructed a non-linear model with the mixture-of-experts (MoE), which has the

potential to approximate any non-linear model with sufficient experts. We studied the

simple averaging with uniform weights for experts and found that average MoE can

reduce the variance of the system, which helps to increase the performance of parsing.

We stabilize the training of MoE with deep graph-based experts.

• We generalized the constrained higher-order models to general polynomial models and

proposed an efficient inference algorithm based on coordinate ascent. As the poly-

nomial function is non-convex, we combined the method with genetic algorithm to

produce better solution. Instead of using hinge loss for training, we proposed a new

learning method with linear approximation of the score function, which has in general

faster convergence and better performances

• We study the learning and inference with general non-linear score functions. We

adapted the FW algorithm for dependency parsing and proposed to use backtracking

line-search, restart and early stopping to accelerate the convergence. FW algorithm is

used for learning with hinge loss. For learning with the probabilistic model, we pro-

posed the probabilistic inference network. Calculable loss functions with sampling and

MCMC methods are proposed based on KL-divergence or JS-divergence for learning

with probabilistic inference network.
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CHAPTER 2

ENERGY-BASED MODELS

2.1 Introduction

In this chapter, we introduce the Energy Based Models (EBMs) [LeCun et al., 2006, Ranzato

et al., 2007, Belanger and McCallum, 2016], a framework for deep learning models. EBMs

is more flexible for constructing complex models for structure predictions, which may be

able to exploit more abundant information of complex structures (discussed in details in

Section 2.2). We focus on graph-based dependency parsing in this work, which uses basically

EBMs to construct different models. Before we introduce dependency parsing (in chapter

3), an introduction of background over EBMs is necessary and beneficial for the following

discussion.

An EBM maps points in data space to a scalar which we call energy. A well trained EBM

is assumed to have low energy for correct points but high energy for wrong points. EBM

have been used for structure prediction [Gygli et al., 2017, Rooshenas et al., 2019, Tu and

Gimpel, 2018], text generation [Deng et al., 2020], image generation [Zhao et al., 2017, Du

and Mordatch, 2019, Nijkamp et al., 2020] by using different data space. For graph based

dependency parsing, we use EBMs on structure prediction. The following introduction of

EBMs assumes a data space for structure prediction.

In section 2.2, we introduce EBMs over structure prediction and its connections and

differences to normal feed-forward models. In section 2.3, learning of EBMs is introduced,

with a detailed discussion of different loss functions for probabilistic learning and max-margin

learning. In section 2.4, we introduce a concrete EBM framework: Structure Prediction

Energy Network (SPEN) [Belanger and McCallum, 2016] and different methods adapted for

learning over the framework. For dependency parsing problem, we basically construct our

model over SPEN.

The chapter is a modern introduction to EBMs, with [LeCun et al., 2006] as the main

reference of the chapter. We recommend reading of the original paper for more details.

2.2 EBMs for Structure Prediction

For structure prediction, the data space is X × Y . X is the set of all possible inputs while

Y is the set of all possible outputs. For particular x ∈ X , Yx denote the set of all possible

outputs for x. When x is clear from the context, we abuse notation and simplify Yx with Y .
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For an EBM, the energy function maps the data space to a scalar, i.e.

E(x, y; Θ) : X × Y → R (2.1)

where Θ is the parameter of the model.

With an EBM, inference is to find the output which minimizes the energy:

ŷ = argmin
y∈Y

E(x, y; Θ) (2.2)

Inference can be hard for EBM because the energy function can be complex (non-linear, non-

convex) to the variable y. Even for linear functions to y, as Y may be a discrete structure

space, exact prediction is not trivial because |Y| may be large and the structure space has

complex constraints.

For a subset X × Y ⊆ X × Y which represents the training data, a well trained EBM

is assumed to have low energy ∀(x, y) ∈ X × Y . And ∀(x, y) ∈ X × Y , it should give high

energy for all the other wrong pairs (x, y′), with y′ ∈ Yx, y′ 6= y. It is not trivial to construct

directly a loss function to achieve the goal and learning of EBMs are discussed in details in

section 2.3.

Before we continue the discussions on EBMs, we introduce Feed-forward neural network,

which is used a lot in machine learning. We call the model constructed with it as the feed-

forward models (FFMs). We make comparisons between EBMs and FFMs to clarify their

connections and differences. This should show the advantages and difficulties of using EBMs.

Feed-Forward Neural Network and Feed-Forward Model Feed-forward neural

network [Svozil et al., 1997] is the simplest type of artificial neural networks. With the

input vector x, information moves in one direction (forward), with the output vector of the

neural network ŷ represents usually the prediction. The vector of hidden layers (h(t)) can

be calculated with Multi-layer perceptrons (MLPs), which has the following form:

h(t+1) = fa(W (t)h(t) + b(t))

with W (t) ∈ Rdout×din , b(t) ∈ Rdout the learnable parameters, h(t) ∈ Rdin the input vector

and h(t+1) ∈ Rdout the output vector. fa is the activation function applied over each element

of the vector, which can be for example the sigmoid function : f(hi) = 1
1+e−hi

. The universal

approximation theorem for neural networks [Hornik et al., 1989] argues that every continuous

function which maps an input interval of real numbers (x) to an output interval of real

numbers (ŷ) can be approximated arbitrarily closely with MLPs of one hidden layer with

enough nodes of hidden layers. Thus, we can well use the feed-forward neural network for
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Figure 2.1: Feed-Forward Neural Network Computation

the structure prediction because the set of input X and the set of output Y can be limited

to some intervals.

Unlike EBMs which map X × Y to a scalar R, a FFM constructed with feed-forward

neural networks maps directly the input X to the output Y :

f(x; Θ) : X → Y

where Θ is the parameter of the model.

In this case, inference is direct, with

ŷ = f(x; Θ)

In machine learning, the problem of: finding the parameters of the model Θ which

minimize the error, is expressed as minimizing the loss function, with the loss function and

the problem as:

L(Θ) =
∑

x,y∈X×Y
D(f(x; Θ), y)

Θ = argmin
Θ′

L(Θ′)

where X × Y is the training data, D measures the difference between predicted output and

true output, which could be for instance L1, L2 norm, cross entropy.

In deep learning, gradient based optimization methods like Stochastic Gradient Descent

(SGD) [Robbins and Monro, 1951, Kiefer and Wolfowitz, 1952] or Adam [Kingma and Ba,

2015] can be used to minimize the loss function to the parameters Θ, which are expected to

8



give:

Θ = argmin
Θ′

∑
x,y∈X×Y

D(ŷ, y)

= argmin
Θ′

∑
x,y∈X×Y

D(f(x; Θ′), y)

for FFMs.

Thus for FFMs, the construction of loss function is also direct. For most problems,

several measures can be used and the choice of proper measure is usually experimentally

based, with the one which gives the best performance.

Connections between EBMs and FFMs If we note E(x, y; Θ) = D(f(x; Θ), y), a

FFM can be viewed directly as an EBM. Conversely, if we can have analytical solutions to

y(x; Θ) = argminy′∈Y E(x, y′; Θ), an EBM can be viewed as a FFM by setting f(x; Θ) =

y(x; Θ). However, this is not easy because inference of EBM is hard. For complex energy

functions to the variable y, we usually have at most an approximate estimation. Even when

analytical solution is possible, the argmin operation is not differentiable, which may pose

problem for training in back-propagation. In this case, EBMs can be viewed as a general

form of FFMs.

Difficulties and Advantages of Using EBMs In comparison with FFMs, the diffi-

culties of using EBMs lie in both learning and inference. Unlike FFMs where the inference

is direct, inference for EBMs can be intractable for that the set Yx can be large and the

energy function can be complex to the variable y. Due to the simplicity of inference, the

construction of loss function for FFMs is also direct while the choice of proper measure can

be solved by using the one which gives the best performance. For EBMs, learning could be

hard because we need to have low energy for correct pairs, while high energy for all the other

wrong pairs. Particular loss functions can be used to achieve the goal, which is discussed in

detail in section 2.3.

The advantage of EBMs is due to their generality in form. For FFMs, although there usu-

ally exists several choices of measure, the form of energy function, if we express E(x, y; Θ) =

D(f(x; Θ), y), is highly restricted. Note that except the outer measure function, the variables

x and y are fully separated. The restriction of the form may limit the model from exploring

complex structures of output y. For EBMs, instead of using a measure D, the energy func-

tion E(x, y; Θ) which measures the energy to combine x to y, becomes a learnable measure

function. Note that we do not restrict x and y to be separated. Thus, the information in y

can be fully exploited with complex models for the energy function.

9



2.3 Learning with EBM

We restrict our discussion to deep learning models, i.e. models trained with loss functions

and updated with gradient based optimization methods (SGD [Robbins and Monro, 1951,

Kiefer and Wolfowitz, 1952], Adam [Kingma and Ba, 2015], etc). Thus, the crucial problem

is how to use a proper loss function to train the EBM.

Two typical types of loss functions can be used for training EBMs (see others in [LeCun

et al., 2006]): max-margin loss and negative log-likelihood.

2.3.1 Max-Margin Loss

To have lowest energy for correct outputs, we would like to have positive gap (E(x, y; Θ)−
E(x, y′Θ), y′ 6= y) between correct and wrong outputs. The gap is called margin between y

and y′. Max-margin loss trains EBMs to maximize the margin. To achieve the goal, three

types of loss functions can be used for max-margin loss: Energy Loss, Perception Loss and

Hinge Loss.

Energy Loss Energy loss trains EBMs by minimizing directing the energy of correct

outputs:

LE(Θ) =
∑

x,y∈X×Y
E(x, y; Θ) (2.3)

The advantage is that the loss function can be easily calculated. The limitation is that

decreasing the energy of correct output may not maximize the margin because the energy

of wrong outputs may also decrease. Energy loss works for maximizing the margin when

decreasing energy of correct outputs will automatically increase energy of wrong outputs.

For example, if viewing a FFM as an EBM: E(x, y; Θ) = D(f(x; Θ), y), the loss function of

FFM is exactly the energy loss, which satisfies the condition that decreasing the energy of

correct outputs increases automatically the energy of wrong outputs.

Perception Loss Unlike energy loss which only modifies the energy of correct outputs,

perceptron loss train EBMs by decreasing the energy of correct outputs while increasing

the energy of the most violating prediction. The most violating prediction is defined as the

output which minimizes the energy, but not equal to the correct output. For a pair of data

(x, y), the most violating prediction can be calculated as:

ŷ(x) = argmin
y′∈Y
y′ 6=y

E(x, y′; Θ)
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The perceptron is:

LP(Θ) =
∑

x,y∈X×Y
E(x, y; Θ)− E(x, ŷ(x); Θ)

=
∑

(x,y)∈X×Y
E(x, y; Θ)− min

y′∈Y
y′ 6=y

E(x, y′; Θ)
(2.4)

The idea of perceptron loss is that instead of maximizing margin between correct output and

all the other wrong outputs, it is sufficient to maximize the margin between correct output

and the most violating output. Thus even for large Y , only two points are concerned for the

calculation of loss function.

When the most violating prediction can be efficiently found, perceptron loss can well

be used for training EBMs. This usually requires the energy function to have simple forms

because firstly for complex energy functions, calculating the most violating prediction can

be hard or intractable, which may limit the model from maximizing margins between correct

and wrong outputs. Secondly, as we require y′ 6= y. When inference of EBM gives correct

output, finding the most violating prediction becomes finding the output with the second

lowest energy, which may be even harder or more complex than inference.

Hinge Loss Hinge loss [Tsochantaridis et al., 2004, 2005, Taskar et al., 2003, 2005]

defines the most violating prediction in a different way:

ŷ(x) = argmax
y′∈Y

∆(y, y′)− E(x, y′; Θ)

Where ∆(y, y′) is a measure of distance between correct and wrong outputs with ∆(y, y′) ≥
0,∀y′ ∈ Y and ∆(y, y′) = 0 if and only if y = y′. Unlike perceptron loss which requires

y′ 6= y, the calculation of the most violating prediction in hinge loss omit this requirement

by adding a penalized margin ∆. In practice, ∆ is usually designed to have simple forms

(for instance, a linear function to the variable y′) in order to simplify the calculation. Thus

the second lowest problem can be avoided.

The form of hinge loss is:

LH(Θ) =
∑

(x,y)∈X×Y
[E(x, y; Θ) + max

y′∈Y
(∆(y, y′)− E(x, y′; Θ))]+ (2.5)

Where [. . . ]+ represents max(0, . . . ) and is not necessary if inference is exact for the inner

max1.

1. see Appendix A.1
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For hinge loss, training terminates when E(x, y; Θ) + ∆(y, y′)−E(x, y′; Θ) ≤ 0,∀y′ ∈ Y ,

i.e.

E(x, y′; θ)− E(x, y; Θ) ≥ ∆(y, y′),∀y′ ∈ Y

Thus, training terminates if and only if the margin between correct and wrong outputs is at

least ∆(y, y′). Unlike perceptron loss which continues to increase the margin to +∞, hinge

loss terminates once the penalized margin is reached.

2.3.2 Negative Log-likelihood

EBMs can be transformed to probabilistic models by assuming p(y|x; Θ) ∝ −E(x, y; Θ).

Thus, instead of creating margin between correct and wrong outputs, it is sufficient to

maximize the probability of correct output by using negative log-likelihood:

LNLL(Θ) =
∑

(x,y)∈X×Y
− log p(y|x; Θ)

=
∑

(x,y)∈X×Y
− log

exp(−E(x, y; Θ))∑
y′∈Y exp(−E(x, y′; Θ))

=
∑

(x,y)∈X×Y
E(x, y; Θ) + log

∑
y′∈Y

exp(−E(x, y′; Θ))

=
∑

(x,y)∈X×Y
E(x, y; Θ) + logZ(x; Θ)

(2.6)

where Z(x; Θ) =
∑
y′∈Y exp(−E(x, y′; Θ)) is called the partition function.

The calculation of LNLL(Θ) requires the calculation of the partition function, which may

be intractable for large set Y or for complex energy functions. For dependency parsing, where

|Y| is exponential to the length of the sentence, it is impossible to calculate the energy for

all possible arborescences. Thus, constraints are added over the form of the score function

and the structure to ensure the existence of efficient algorithms [Eisner, 1996, 1997, Koo and

Collins, 2010, Koo et al., 2010].

When the partition function cannot be calculated directly, methods based on sampling

can be used instead to estimate the gradient. We calculate the gradient of LNLL(Θ):

dLNLL(Θ)

dΘ
=

∑
(x,y)∈X×Y

∂E(x, y; Θ)

∂Θ
+
∂ logZ(x; Θ)

∂Θ

12



The second term can be expanded as:

∂ logZ(x; Θ)

∂Θ
=

1

Z(x; Θ)

∂Z(x; Θ)

∂Θ

=
1

Z(x; Θ)

∑
y′∈Y exp(−E(x, y′; Θ))

∂Θ

= −
∑
y′∈Y

exp(−E(x, y′; Θ))

Z(x; Θ)

∂E(x, y′; Θ)

∂Θ

= −Ey′∼p(y|x;Θ)
∂E(x, y′; Θ)

∂Θ

where Ey′∼p(y|x;Θ)
∂E(x,y′;Θ)

∂Θ represents the expectation of
∂E(x,y′;Θ)

∂Θ , with p(y|x; Θ) the

distribution of the random variable y′.

Thus the gradient of negative log-likelihood can be written as:

dLNLL(Θ)

dΘ
=

∑
(x,y)∈X×Y

∂E(x, y; Θ)

∂Θ
− Ey′∼p(y|x;Θ)

∂E(x, y′; Θ)

∂Θ

=
∑

(x,y)∈X×Y

∂

∂Θ
[E(x, y; Θ)− Ey′∼p(y|x;Θ)E(x, y′; Θ)]

(2.7)

By using the gradient to minimize the loss function, we decrease the energy of correct while

increase the expectation of energy. When calculation of the partition function is impossible,

equation (2.7) implies that the gradient can be estimated by sampling K samples from the

distribution p(y|x; Θ) according to the law of large numbers [Grinstead and Snell, 1997].

dLNLL(Θ)

dΘ
=

∑
(x,y)∈X×Y

∂

∂Θ
[E(x, y; Θ)− 1

K

K∑
k=1

E(x, y(k); Θ)]

with {y(1),...,y(K)} ∼ p(y|x; Θ).

When sampling from exact distribution is hard, approximate methods can be applied.

Here we adopt two methods for sampling.

Importance Sampling [Kloek and Van Dijk, 1978] We use a simple-to-sample distri-
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bution Q(y). The deduction of importance sampling is shown below:

Ey′∼p(y|x;Θ)E(x, y′; Θ) = Ey′∼Q(y)
p(y′|x; Θ)

Q(y′)
E(x, y′; Θ)

= Ey′∼Q(y)
exp(−E(x, y′; θ))

Q(y′)
1∑

y′′∈Y exp(−E(x, y′′; Θ))
E(x, y′; Θ)

= Ey′∼Q(y)

exp(−E(x,y′;θ))
Q(y′)

Ey′′∼Q(y)
exp(−E(x,y′′;θ))

Q(y′′)

E(x, y′; Θ)

= Ey′∼Q(y)ω(y′)E(x, y′; Θ)

With the last equation, we apply sampling from the distribution Q(y) and correct the ex-

pectation of energy with weight ω(y′). Importance sampling can make learning more stable.

This is because even the distribution Q(y) differs a lot to the true distribution p(y|x; Θ). the

weight ω(y′) can give higher weights for samples with lower energy while smaller weights for

samples with high energy. This can compensate to some extend the error of sampling.

Contrastive Divergence [Hinton, 2002] We use a distribution Q(y) where sampling is

easy. Unlike importance sampling, we use MCMC [Grimmett and Stirzaker, 2020, Andrieu

et al., 2003] methods to approximate sampling from p(y|x; Θ). [Hinton, 2002] shows that

the method can give samples with low variance for problems which fit Gibbs Sampling even

with few number of steps.

2.3.3 Connections Between Max-Margin Loss and Negative Log-Likelihood

Negative Log-Likelihood As Max-Margin Loss Negative Log-Likelihood creates im-

plicitly an infinite margin between correct prediction and wrong predictions. This can be

seen from the terminal condition of training. For Negative Log-Likelihood, training termi-

nates when LNLL(Θ)→ 0, which is equivalent to
exp(−E(x,y;Θ))

Z(x;Θ)
→ 1. The equation can be
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developed as:

exp(−E(x, y; Θ))

Z(x; Θ)
→ 1 ⇐⇒ exp(−E(x, y; Θ))∑

y′∈Y exp(−E(x, y′; Θ))
→ 1

⇐⇒ 1

1 +
∑
y′∈Y
y′ 6=y

exp(E(x, y; Θ)− exp(E(x, y′; Θ)))
→ 1

⇐⇒
∑
y′∈Y
y′ 6=y

exp(E(x, y; Θ)− exp(E(x, y′; Θ)))→ 0

⇐⇒ E(x, y′; Θ)− E(x, y; Θ)→ +∞,∀y′ ∈ Y , y′ 6= y

(2.8)

The last equation indicates that the margin between the correct output and any wrong

output should approach infinity. Thus, with negative log-likelihood, we require implicitly an

infinite margin between correct and wrong outputs.

When comparing equation (2.7) with the perceptron loss (equation (2.4)), we can find

that the forms of equation are quite similar. The difference is that for perceptron loss,

the most violating prediction is calculated with the operation max while for negative log-

likelihood, the most violating prediction is calculated with softmax, with the probability of

prediction proportional to the exponential value of negative energy. Note that when applying

one sample estimation for equation (2.7), the most violating prediction in perceptron loss

can be viewed as a good sample for that it has the second lowest energy in the worst case,

thus there is a high probability (the second highest in the worst case) that the most violating

prediction in perceptron loss will be chosen.

Inspired by equation (2.7), samplerank [Wick et al., 2011, Gao and Gormley, 2020] can be

used for training EBMs. The method can be described briefly as using MCMC methods to

sample wrong predictions while the loss is calculated as the sum of hinge loss with sampled

wrong predictions. The method is shown to achieve better performances than contrastive

divergence [Wick et al., 2011]

Max-Margin Loss as Negative Log-Likelihood Perceptron loss can be viewed as

a rigid version of negative log-likelihood because it uses max instead of softmax for the

calculation of the most violating prediction. Besides, it also requires an infinite margin. For

perceptron loss, we have LP → −∞ at the end of training. It is equivalent to E(x, y′; Θ)−
E(x, y; Θ)→ +∞,∀y′ ∈ Y , y′ 6= y which is same to equation (2.8). Thus for perceptron loss,

it trains the model to make the probability of correct outputs to 1.

For hinge loss, we also use rigid calculation of the most violating prediction. However,

we require only a limit margin between correct and wrong outputs. Training with hinge loss
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terminates when E(x, y′; θ)− E(x, y; Θ) ≥ ∆(y, y′),∀y′ ∈ Y , which is equivalent as:

p(y|x; Θ)

p(y′|x; Θ)
≥ exp(∆(y, y′)),∀y′ ∈ Y

Thus, hinge loss augments the probability of correct output y until it is at least exp(∆(y, y′))

times larger than all possible y′ ∈ Y .

2.4 A Concrete Framework: Structure Prediction Energy

Networks (SPEN)

SPEN [Belanger and McCallum, 2016] is a flexible framework for structure prediction based

on EBMs. The crucial idea of SPEN is that the energy of network is separated into two

parts: local energy and global energy:

E(x, y; Θ) = El(x, y; Θl) + Eg(x, y; Θg) (2.9)

The local energy El(x, y; Θl) is chosen to be a linear function to the variable y, which aims

to capture the direct relations of the input data (x, y). The global energy Eg(x, y; Θg) can be

complex non-linear functions to the variable y, which aims to capture complex structures in

y. A typical structure of SPEN is shown below: where F (x) is the feature vectors extracted

Figure 2.2: SPEN Architecture for Multi-Label Classification

from input x. The local energy is a sum of scores for labels while the global energy can be

calculated with a complex (non-linear) black box.
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2.4.1 Learning of SPEN with Hinge Loss

In order to calculate the hinge loss, the most violating prediction needed to be calculated

in advance. In [Belanger and McCallum, 2016], they do not assume a special form of the

global energy. When the set size |Y| is not large, energy of all y ∈ Y can be calculated to

selected the most violating prediction. If it is not the case, gradient based methods can be

used. We adopt to present three methods for solving the problem, with the first one which

can guarantees the convergence to the global optimum, while the other two can guarantee

the convergence to a local optimum.

Input Convex Neural Network [Amos et al., 2017] In order to guarantee the conver-

gence to the global optimum with gradient based methods, the energy function needs to be

convex to the variable y, which can be realized with Input Convex Neural Networks. The

construction is based on two properties of convex functions [Boyd et al., 2004]:

1. If f , g two convex functions, then af + bg is also convex ∀a, b ∈ R, a, b ≥ 0.

2. If g is convex and f is convex and non-decreasing, then f(g) is also convex.

For MLPs used in deep learning with form:

MLP(x) = fa(Wx+ b)

with x ∈ Rdin the input vector, W ∈ Rdout×din , b ∈ Rdout the parameters of MLP and fa the

non-linear activation function applying over every element of the vector.

To satisfy the first condition, the parameters W are set to be non-negative by taking its

absolute value |W |. To satisfy the second condition, the activation function is restricted to

be convex non-decreasing. Thus activation functions like ReLU, ELU [Sharma et al., 2017]

can be used.

Thus, starting with a linear function (multi-layer perceptron (MLP)), which is convex,

we can construct non-linear convex functions by using non-negative parameters in MLPs and

convex non-decreasing activation functions (ReLU, ELU, etc). For discrete or non-convex

set Y , it is sufficient to expand Y to a convex compact set with convex combination. Thus

convex optimization methods could be used and we can guarantee the convergence to the

global optimum. [Amos et al., 2017] show that the method can obtain state-of-the-art results

on tasks of multi-label classification, image completion and continuous action reinforcement

learning, but [Belanger et al., 2017] reported that forcing the global energy to be convex

made performances worse on tasks of image denoising and semantic role labeling. They

explain the reason as: only MLPs with non-negative parameters and convex non-decreasing

activation functions can be used, which may limit the capacity of the neural network.

End to End Learning [Belanger et al., 2017] For simple gradient descent with fixed
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step T, the most violaating predictions can be approximated with:

ŷ ≈ yT = y0 −
T−1∑
t=0

ηt
∂E(x, yt; Θ) + ∆(y, yt)

∂yt

where ηt is the step-size, ŷ the most violating prediction. Here we use yT to approximate

the most violating prediction.

Back-propagation will introduce the second order terms of gradient by using yT for the

calculation of the hinge loss. This can be solved by unrolling the optimization with finite

difference matrix-vector products [Domke, 2012].

Inference Network Instead of using optimization methods to do inference directly,

inference network Tu and Gimpel [2018] propose to use a neural network for optimization.

The additional neural network (Generator) has output y = G(x; Φ), with Φ the parameters

of the neural network. The new network is trained to find the most violating prediction, i.e.

LG(Φ) =
∑

(x,y)∈X×Y
E(x,G(x; Φ); Θ)−∆(y,G(x; Φ))

And the output of network G is used in hinge loss:

LH(Θ) =
∑

(x,y)∈X×Y
max(0, E(x, y; Θ) + ∆(y,G(x; Φ))− E(x,G(x; Φ); Θ))

This leads to in fact a saddle point optimizing problem:

min
Θ

max
Φ

∑
(x,y)∈X×Y

max(0, E(x, y; Θ) + ∆(y,G(x; Φ))− E(x,G(x; Φ); Θ)) (2.10)

We could find that the method is similar to GAN [Goodfellow et al., 2014] and techniques

like regularization and pre-training are required to ensure stability of learning.

2.5 Conclusion

In this chapter, we introduce the background of EBMs for structure prediction.

We present the FFMs and EBMs for comparison. We present firstly that learning and

inference with FFMs are direct and simple, but may require additional efforts for EBMs.

We show that EBMs can be viewed as a generality of FFMs. The generality in form brings

difficulty for learning and inference, but also possibility for exploiting information of complex

structures.

18



We present two types of loss functions for learning EBMs: max-margin loss and negative

log-likelihood. We discuss in general the calculation of the loss functions. For max-margin

loss, a maximization sub-problem needed to be solved (except energy loss), which can be

viewed as an sub-inference problem for calculating the loss function. For negative log-

likelihood, the partition function needed to be calculated. We also show that instead of

calculating directly the negative log-likelihood, we can estimate directly the gradient of the

loss function with sampling methods. Comparisons are made between these two types of loss

functions, in which we find that negative log-likelihood can be viewed as a soft version (most

violating prediction calculated with softmax) of perceptron loss (most violating prediction

calculated with max). While both perceptron loss and negative log-likelihood require an

infinite margin or the probability of correct output equals to one, hinge loss has a less strict

requirement, which is controlled by the penalized measure ∆(y, y′).

In the next chapter, we discuss the problem dealt in the thesis: Dependency Parsing. We

focus on graph-based dependency parsing, which can be viewed as EBMs.
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CHAPTER 3

DEPENDENCY PARSING

3.1 Introduction

In this chapter, we introduce the task of Dependency Parsing. For a sentence, dependency

parsing aims to find the tree and the label for each arc of the tree, which can represent the

grammatical structure of the sentence.

Figure 3.1: Example of Dependency Parsing

The task of Dependency Parsing can be solved with Graph-Based Models [Eisner, 1997,

Kiperwasser and Goldberg, 2016, Dozat and Manning, 2017, Zhang et al., 2020a, Wang and

Tu, 2020] or Transition-Based Models [Covington, 2001, Nivre, 2003, Zhang and Nivre, 2011,

Choi and McCallum, 2013, Dyer et al., 2015, Zhou et al., 2015]. As is mentioned in the end of

chapter 2, Graph-based dependency parsing can be viewed as EBMs. Customarily, instead

of minimizing the energy for the pair (x, y), with x the sentence, y the corresponding tree,

graph-based dependency parsing seeks to maximize the score for the pair (x, y), which we

note as S(x, y; Θ). Graph-based models viewed the searching space y ∈ Y as a set of directed

graphs and possible methods drawn from graph theory [West et al., 2001] can be used for

maximization.

Unlike graph-based dependency parsing which scores the entire tree, transition-based

dependency parsing builds the tree from a left-to-right manner by using transition operations

[Nivre, 2003]. The operation is chosen in a greedy manner to maximize the score of each

step (score of using particular operation), which is efficient, but cannot guarantee the global

optimum. Thus, transition-based dependency parsing may work worse than graph-based

dependency parsing for arcs which combine two words far from each other [McDonald and

Nivre, 2011].

In this thesis, we focus on graph-based dependency parsing. The simplest graph-based

model for dependency parsing is arc-factored model (discussed in details in section 3.4.1).
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The model calculates the score of tree by making a sum over the score of arcs, which gives

a linear function to the variable y.

S(x, y; Θ) =
∑
a∈y

sa

where a ∈ y represents arcs in arborescence y, with sa the score of the arc.

For arc-factored model, efficient polynomial inference algorithms [Eisner, 1996, 1997,

McDonald et al., 2005] can be used for finding the tree which maximize the score. higher-

order models [McDonald and Pereira, 2006, Koo and Collins, 2010, Koo et al., 2010] can be

used to increase the performance of parsing. Besides the score of arcs, higher-order models

consider the sum over scores of higher-order structures like sibling, grandchild etc (discussed

in detail in section 3.4.2). Meanwhile, more complex inference algorithms needed to be used

for finding the tree which maximizes the score. With the rise of deep learning methods in

machine, the performance of dependency parsing has greatly improved with the use of deep

neural networks. In [Kiperwasser and Goldberg, 2016], a bi-directional LSTM [Hochreiter

and Schmidhuber, 1997] is used to extract feature vectors from the sentence. Even with

an arc-factored model, the method shows fairly good performance. [Dozat and Manning,

2017] introduces a biaffine function to calculate the score of arcs. The results prove that

biaffine has better performance in practice than simple MLPs used in [Kiperwasser and

Goldberg, 2016]. In recent years, second order models Zhang et al. [2020a], Wang and Tu

[2020] have been constructed with deep neural networks. The results show that the deep

neural network models can still benefit from higher-order structures. Besides, the use of

pretrained embeddings, especially BERT [Devlin et al., 2019, Wang and Tu, 2020] can also

benefit the performance of parsing.

In section 3.2, we introduce in details the task of dependency parsing, with a formal

definition of projective tree and non-projective tree. In section 3.4, arc-factored models and

particular higher-order models are introduced, with a detailed introduction of the inference

algorithms. We focus particularly on the inference because once the inference is solved,

learning of the model (calculation of the loss function) is naturally solved for these models. In

section 3.5, we introduce dependency parsing with deep learning, with a detailed introduction

of feature extractors, score function calculation and techniques used to take advantage of

modern GPUs.
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3.2 Task Description

Dependency Parsing is the task of extracting the dependency parse tree which can represent

the grammatical structure of a sentence. The parse tree (also called arborescence) is an

acyclic directed graph with words in the sentence as nodes. It defines the relation between

the ’head’ words and ’modifier’ words (a directed arc from head to modifier), with a label

over each arc. Following [Dozat and Manning, 2017], once the parse tree is determined, the

decision of label can be solved as a classification problem. Thus, the main discussion focuses

on the parse tree.

3.2.1 Projective and Non-projective Trees

In a parse tree, words in the sentences are viewed as nodes in a graph. each node has one

and only one ’head’ word except the root. In practice, an auxiliary ’root’ is added to the

beginning of the sentence to represent head of the root word. Thus, we can have a more

consistent form with all nodes has one and only one head.

The parse tree can be projective or non-projective. Visually, there is no crossing arcs for

projective tree while for non-projective tree, it is possible to have crossing arcs (see Figure

3.3).

Figure 3.2: Projective Tree Figure 3.3: Non-projective Tree

A formal definition of projective parser tree is:

Definition 1. An acyclic directed graph y is called projective if it satisfies the following two

properties:

1.The in-degree of every node (except the root) equals and only equals to 1.

2.∀(i, j) ∈ y, with j > i + 1, ∀m with i < m < j, there exists a path from i to m, which

only passes nodes between i, j (i, j included).

The second property guarantees that there exists a path from the head to any word

between the head and modifier.

For non-projective tree, we only require the first property to be satisfied for the acyclic

directed graph.
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3.3 Notations

To facilitate the following discussions, we clarify the notations which will be used.

We note a sentence as x, with x1, ..., xn words in the sentence, with n the number of

words in the sentence. Particularly, we note x0 the auxiliary ’root’. When the notation x is

clear from the context, we only use the index to denote the word, i.e. i to represent word xi.

For the parse tree, we use (h,m) to represent a directed arc from ’head’ word xh to ’mod-

ifier’ word xm, with h,m ∈ {0, 1, ..., n}. For simplicity, we use [n] to represent {0, 1, ..., n}.
As parse tree is a directed tree, we can use a matrix to represent it. We use y to denote

the matrix representation of a particular parse tree, with

yh,m =

1 if (h,m) an arc in parse tree

0 otherwise
(3.1)

For simplicity, we abuse to note (h,m) ∈ y if (h,m) is an arc in parse tree.

As each word in the sentence has one parent, it is mandatory that
∑
h∈{0,...,n} yh,m =

1,∀m ∈ {1, ..., n}. This property could be seen as a basic constraint of parse trees.

We note the set of all possible parse trees for the sentence x as Yx, with y ∈ Yx a

particular parse tree. When x is clear in the context, we simplify it with Y .

Similarly, we use L to represent the set of arc labels. The vector of arc labels in tree y is

noted as l(y) ∈ Ln. We note l(y)hd the label for arc (h, d) in y, or lhd when y is clear from

the context.

3.4 Graph-Based Models: From Linear to Higher-order Models

A graph-based model for dependency is basically an EBM by noting E(x, y; Θ) = −S(x, y; Θ).

The difference is that instead of minimizing the energy for correct output, customarily, we

maximize the score of the sentence parse tree pair (x, y).

Different models can be constructed with different form of scoring functions, which can

be divided as arc-factored model (linear model) and higher-order models. We present the

details of score functions and the corresponding inference algorithms.

3.4.1 Arc-Factored Models

For arc-factored models, the score function is the sum of score of all arcs in the parse tree,

i.e.

S(x, y) =
∑

(h,d)∈y
sh,d =

∑
(h,d)∈[n]

sh,dyh,d (3.2)
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where sh,d = s(x, (h, d)) is the score for arc (h, d). If viewing sh,d as a constant, the scoring

function becomes a linear function to the variable y. Thus, arc-factored models are in fact

linear models to the parse tree.

Inference in Arc-Factored Models

For arc-factored models, efficient inference can be realized with algorithms of polynomial

complexity. For projective and non-projective cases, different algorithms can be used to

ensure particular tree structures.

Inference in Projective Trees Projective trees can be efficiently decoded with Eisner

algorithm (O(n3) time complexity) [Eisner, 1996],[Eisner, 1997], which is a bottom-up dy-

namic programming algorithm similar to CKY [Sakai, 1961, Grune and Jacobs, 2007]. It can

be used to maximize score in an arc-factored model for projective trees. As Eisner algorithm

is heavily used in dependency parsing, we present its basic conceptions and operations. Right

and left operations are symmetric for Eisner, thus we only present the right operations.

We firstly present the conceptions of span, which is divided as complete and incomplete

spans.

Definition 2. We call [i, j] ⊆ y a span, which is a sub-graph of nodes between i, j (i, j

included), i.e. [i, j] = {(h, d) ∈ y|i ≤ h, d ≤ j}.

Definition 3. A span [i, j] is called right complete if the sub-graph includes all the children

of nodes between i, j (j included), with node i (the left side node) as the root of the sub-graph.

Definition 4. A span [i, j] is called right incomplete if arc (i, j) ∈ [i, j], and node j (the

right side word) may have children nodes outside nodes between i, j (i, j included).

Customarily, we use triangles to represent complete spans and trapezoids to represent

incomplete spans (see Figure 3.4, Figure 3.5).

i j

Figure 3.4: Right Complete Span

i j

Figure 3.5: Right Incomplete Span

The (right) operations of Eisner algorithms are:

1. Construction of incomplete span with complete spans (see Figure 3.6 (a))

2. Construction of complete span with a complete span and an incomplete span (see

Figure 3.6 (b))
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i r

+

r + 1 j

=

i j

(a)

i r

+

r j

=

i j

(b)

Figure 3.6: (a): Construction of Right Incomplete Span; (b): Construction of Right Complete
Span

With these operations, Eisner algorithm can guarantee the projective property by con-

structing a right complete span including all words of the sentence (see fig 3.7) in a bottom-up

way. The initial state is the complete span [i, i],∀i ∈ [n], i.e. we assume every node is a

complete span.

i i 0 n

Figure 3.7: Initial State and Final State

Eisner algorithm can be used to maximize the score of arc-factored model for projective

tree. We use C, I ∈ Rn×n to represent separately the score of complete span and incomplete

span. For simplicity, we only present the construction of span from direction i to j, with

i ≤ j. The other direction can be constructed in exactly the same way.

Algorithm 1: Eisner Algorithm

1 Initialization: Ci,i = 0,∀0 ≤ i ≤ n;

2 for m← 1 to n do
3 for i← 0 to n−m do
4 j = i+m;
5 Ii,j = maxi≤r<j Ci,r + Cj,r+1 + si,j ;

6 Ci,j = maxi≤r<j Ii,r + Cr,j ;

7 end

8 end
9 Return C0,n;

The complexity of time is O(n3) for eisner because we have two loops in line 2 and 3

of Alg 1 plus the maximization operation in line 5 and 6 for each iteration. By using the
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semiring of dynamic programming algorithms [Smith, 2011, Chapter 2], we can do inference

or calculate the partition function by simply changing max to argmax or logsumexp.

We mention that learning with arc-factored model can also be solved with Eisner algo-

rithm for projective tree. For learning with max-margin loss, Eisner algorithm with argmax

can be used to find the most violating tree. For learning with negative log-likelihood, Eisner

algorithm with logsumexp can be used to calculate efficiently the log value of the partition

function: logZ(x) = log
∑
y∈Y exp(S(x, y)).

Inference of Non-projective Tree For non-projective tree, inference can be realized

with Chu-Liu-Edmonds algorithm (time complexity O(n2)) [McDonald et al., 2005] for arc-

factored model. As it is not a dynamic programming algorithm, semiring cannot be applied

to calculate the partition function. In [Smith and Smith, 2007b], Matrix Tree Theorem has

been shown to be applicable for calculating the partition function of non-projective tree,

with also time complexity O(n2).

We mention that [Nivre and Nilsson, 2005] proposed a method to transform non-projective

sentences to projective sentences. The idea is to replace non-projective arcs with projective

arcs while preserving as many original arcs as possible. In order to recover the original

arcs, additional information is added to the arc label, which will increase the class number

of labels. Thus, a non-projective problem can now be solved as a projective problem with

transformation while recovery can be done with additional information in label. Remark

that firstly the recovery precision is not 100%. This is because in order to avoid the explo-

sion of class numbers over label, the additional information is not complete. Secondly, as

the number of label class increases, learning of label becomes more difficult.

3.4.2 Higher-order Models

Higher-order models can be constructed in different ways. Here we present two types of

higher-order models which have efficient and accurate inference algorithms: Higher-order

Structure Models for projective trees and Head Automata for non-projective trees. Remark

that the method cannot be generalized to non-projective case, in which we can have at most

an approximation McDonald and Pereira [2006].

Higher-order Structure Models

The first way to construct higher-order models is to consider higher-order structures. Be-

sides linear dependency structure, more complex structures like sibling, grandparent can be

considered (see Figure 3.8). Score function with higher-order structures is in fact a polyno-

mial function with higher-order terms of variable y. By considering higher-order structures
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Figure 3.8: First and higher-order structures[Koo and Collins, 2010]

like sibling, grandparent, grand-sibling or tri-sibling, we introduce particular second-order

and third-order terms of variable y into the score function. For example, if we consider

dependency and sibling, the scoring function can be written as

S(x, y) =
∑

(h,m)∈y
sh,m +

∑
(h,m1),(h,m2)∈y

m1 6=m2

sh,m1,m2

=
∑

h,m∈[n]

sh,myh,m +
∑

h,m1,m2∈[n]

sh,m1,m2
yh,m1

yh,m2

(3.3)

while when considering grandchild, the scoring function becomes:

S(x, y) =
∑

(h,m)∈y
sh,m +

∑
(g,h),(h,m)∈y

sg,h,m

=
∑

h,m∈[n]

sh,myh,m +
∑

g,h,m∈[n]

sg,h,myg,hyh,m
(3.4)

Both equations are second-order functions to the variable y. Similar construction can be

done for other higher-order relations like grandchild, grand-sibling or tri-sibling.

In [Koo and Collins, 2010], efficient dynamic programming algorithms based on Eisner

have been proposed for particular structures: sibling (2nd model, time complexity O(n3)),

grandchild (2nd model, time complexity O(n4)), grand-sibling (3rd model, time complexity

O(n4)), grand-sibling and tri-sibling (3rd model, time complexity O(n4)). Here we present

in detail the inference of sibling and grandchild. The inference for grand-sibling and tri-

sibling are based on the inference of sibling and grandchild with small modifications. We

note that the method is adaptable for projective tree. For non-projective tree with second

order structures, we cah have approximate inference [McDonald and Pereira, 2006].

Inference with Siblings As is shown in equation (3.3), the structure sibling concerns
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the tuple (h,m1,m2), with arc (h,m1), (h,m2) ∈ y, i.e. we consider two arcs which have the

same head. Moreover, to ensure the existence of dynamic programming algorithms, siblings

here are restricted as adjacent siblings, which requires arcs (h,m1), (h,m2) to be consecutive

arcs in the same side of word xh. To incorporate siblings, we add the sibling span represented

with rectangle: A sibling span [i, j] represents adjacent modifiers of some head in position i

i j

Figure 3.9: Sibling Span

and j. explain a little more the sibling span, explain the intuition of using it The

diagram of operations with variant Eisner algorithm can be expressed as:

i r

+

r jor

i i

+

i+ 1 j

=

i j

(a)

i r

+

r + 1 j

=

i j

(b)

i r

+

r j

=

i j

(c)

Figure 3.10: Diagrams of Variant Eisner Algorithm with Sibling. (a)Construction of right
incomplete span; (b)Construction of sibling span; (c)Construction of right complete span

For the variant of Eisner algorithm which incorporate sibling span, we add S ∈ Rn×n to

represent the score of sibling and the algorithm can be written in similar way as Eisner (see

Alg 2)

Inference with Grandchild Similar as sibing, a tuple (g, h,m) is considered for grand-

child, with arcs (g, h), (h,m) ∈ y. To incorporate grandchild, instead of adding new spans

like what we do in sibling, grandchild requires direct modification of complete and incom-

plete spans. In Figure 3.11 and Figure 3.12, we present right complete and incomplete spans
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Algorithm 2: Variant Eisner Algorithm with Sibling

1 Initialization: Ci,i = 0,∀0 ≤ i ≤ n;

2 for m← 1 to n do
3 for i← 0 to n−m do
4 j = i+m;
5 Ii,j = max(maxi≤r<j Ii,r + Sr,j + si,r,j + si,j , Ci,i + Cj,i+1 + si,j);

6 Si,j = maxi≤r<j Ci,r + Cj,r+1;

7 Ci,j = maxi≤r<j Ii,r + Cr,j ;

8 end

9 end
10 Return C0,n;

with grandchild. Note that grandchild can be in either outer left or outer right position of

the span.

g i j gi j

Figure 3.11: Right Complete Span with
Grandchild

g i j gi j

Figure 3.12: Right Incomplete Span with
Grandchild

Diagrams for operations of Variant Eisner Algorithm with Grandchild is quite similar to

the operations of Eisner, except that for grandchild, we need to consider an additional index

g:

g i r

+

i r + 1 j

=

g i j

(a)

g i r

+

g i r

=

g i r

(b)

Figure 3.13: Diagrams of Variant Eisner Algorithm with Grandchild. (a)Construction of
right incomplete span; (b)Construction of right complete span

Based on the new complete and incomplete spans, scores for complete and incomplete

spans are represented as C, I ∈ Rn×n×n, where C
g
i,j , I

g
i,j represents score of complete and

incomplete spans [i, j] with g as the index in grandchild tuple (g, h,m). Thus, the variant

Eisner algorithm with grandchild can be written in similar way as Eisner, except that we
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need to add a loop for ranging with the index g. Thus, time complexity goes up to O(n4)

for grandchild (see Alg 3).

Algorithm 3: Variant Eisner Algorithm with Grandchild

1 Initialization: Ci,i = 0,∀0 ≤ i ≤ n;

2 for m← 1 to n do
3 for i← 0 to n−m do
4 j = i+m;
5 for g ≤ i or g ≥ j do

6 I
g
i,j = maxi≤r<j C

g
i,r + Cij,r+1 + sg,i,j + si,j ;

7 C
g
i,j = maxi≤r<j I

g
i,r + Cir,j ;

8 end

9 end

10 end
11 Return C0,n;

More complex higher-order structures can be viewed as a combination of sibling and

grandchild and more complex variants of Eisner algorithm can be developed based on the

previous modifications.

The advantage of higher-order structure model is that by considering particular higher-

order structures, efficient dynamic programming algorithms can be used for efficient and

exact inference. However, the advantage is in other way its limitation. Only particular

higher-order structures could be considered. Even for sibling, precisely only adjacent siblings

(siblings which are neighbours to each other) can be used to guarantee the existence of

efficient dynamic programming algorithm. Although the first order structure dependency

can be combined with higher-order structures without difficulty. combing freely higher-

order structures is impossible or not easy to realize. For example, We can use either sibling

or grandchild with different dynamic programming algorithms with first order dependency.

However, it is not easy to use in the same time sibling and grandchild as separate structures

in the same model1. Thus, higher-order model of this type is efficient, but quite limited in

the usage of higher-order structures.

Head Automata

[Koo et al., 2010] introduces higher-order relations by using head automata. For sibling

1. grand-sibling in[Koo and Collins, 2010] connects sibling and grandchild, which forms a new structure
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model, they assume that the energy function can be written as:

S(x, y) =
n∑
i=1

si(x, y|i) (3.5)

where y|i = {yij , j = 1, ..., n, j 6= i}, i.e. all possible modifiers to head word xi. The score of

the parser is calculated as the sum over score of words with its all possible modifiers.

xi r0 rq. . .
l1lp

. . .

Figure 3.14: Head Automata

In order to ensure the sibling decomposition assumption, the score function is designed

to have specific form:

si(x, y|i) =

p+1∑
k=1

gL(i, lk−1, lk) +

q+1∑
k=1

gR(i, rk−1, rk+1)

where l1, ..., lp, r1, ..., rq are left and right modifiers to the word xi under y|i. l0 = r0 =

START is the initial state and lp+1 = rq+1 = END is the end state. si represents the total

score of left/right modifiers of xi with adjacent sibling scores.

With this form of score function, a variant of Viterbi algorithm [Jurafsky, 2000] can

be used to calculate the the best set of modifiers with sibling scores for each xi in time

complexity O(n2). The problem is that the solution only satisfies the single head property.

We can not guarantee it to be acyclic or projective. To solve this problem, dual decomposition

[Lemaréchal, 2001] can be used to ensure particular tree structure by considering the Integer

Linear Programming (ILP) problem:

argmax
z∈Z,y∈Y

f(x, z, y) = S(x, z) + h(x, y)

s.t. z = y

where Y ⊆ Z, with Z the set for solutions satisfying the single head property. h(y) =∑
(h,d)∈y γh,d(x)yh,d is the score of an arc-factored model, with which we can well guarantee

tree structure.

31



3.5 Graph-Based Dependency Parsing with Deep Neural

Networks

The use of deep neural networks has greatly improved the performance of dependency pars-

ing. In this section, we present the construction of neural networks for the feature extraction

(section 3.5.1) and the calculation of the score function (section 3.5.2). Algorithms for infer-

ence, although directly usable, can be modified to benefit from modern GPUs. We present

in the end an end-to-end learning method, which gives approximate inference, but can still

benefit from higher-order structures with neural networks.

3.5.1 Feature Extraction with Bi-directional LSTM

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN). LSTM is

mostly used in NLP and has shown strong capacity to capture not only a single data point

(a word), but the whole sequence of data (a sentence).

For a sequence of data x1, ..., xn, LSTM calculates the hidden state for each step with

the following equations:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̃t = σc(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

where xt ∈ Rd is the input vector; ft, it, ot ∈ (0, 1)h are called separately the forget,

input, output gate’s activation vector; c̃t ∈ (−1,−1)h is the cell input activation vector;

ct ∈ Rh is the cell state vector; W ∈ Rh×d, U ∈ Rh×h, b ∈ Rh are learnable parameters; and

ht is the hidden state (output vector of LSTM unit). σg is the sigmoid function and σc, σh
are hyperbolic tangent functions.

The diagram of LSTM is shwon in Figure 3.15. For each step, a LSTM unit uses hidden

vector and cell state vector in the previous step, combined with the input vector to generate

hidden vector and cell state for the next step. Thus it is naturally adapted for treating data

in form of sequence.

When using LSTM to generate the hidden vector
−→
ht to the order of a sentence,

−→
ht is

dependent to words x1, ..., xt while it is not dependent to words xt+1, ..., xn. However, if we
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σg σg σc σg

× +

× ×

σh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

htHidden

Figure 3.15: LSTM Unit

use LSTM to generate hidden vector
←−
ht in inverse order,

←−
ht is dependent to words xn, ..., xt

while it is not dependent to words xt−1, ..., x1. To make the output of each state dependent

on the whole sentence, a concatenation of the forward hidden vector and the backward

vector can be used to generate the ouptut vt = [
−→
ht ,
←−
ht ]. This gives us a bidirectional LSTM

explained in Figure 3.16.

· · · vt−1

←−−
ht−1

−−→
ht−1

· · ·xt−1

vt

←−
ht

−→
ht

xt

vt+1 · · ·

←−−
ht+1

−−→
ht+1

xt+1 · · ·

Outputs

Backward Layer

Forward Layer

Inputs

Figure 3.16: Bidirectional LSTM

Bidirectional LSTM layers can be stacked to extract better feature vectors. For example,

previous works use 3 layers of Bidirectional LSTMs to extract feature vectors. [Dozat and

Manning, 2017, Zhang et al., 2020a, Wang and Tu, 2020]
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We mention that concatenation of pretrained embeddings like BERT [Devlin et al., 2019]

and fastText [Mikolov et al., 2018] to word-embeddings can improve a lot the performance.

3.5.2 Calculation of Scores with Affine Functions

To calculate the score for an arc (h, d), a sibling part (h, d, s) or a grandchild part (g, h, d),

we can use firstly MLPs to generate different features vectors for head, modifier, sibling

or grandchild. For example, when considering arc (h, d), head and modifier vectors can be

generated separately with different MLPs, i.e.

vht = MLPh(vt)

vdt = MLPd(vt)

Similar operations can be applied to generate vst and v
g
t .

The score of arc (i, j) is calculated with a biaffine function by using:

sij = (vhi )TWbiaffine

[
vdj
1

]
(3.6)

where Wbiaffine ∈ Rd×(d+1) the trainable parameters of biaffine, with d the dimension of

feature vector. The additional 1 is used to add a bias term for vhi .

For score of higher-order structures like sibling, we consider a tuple (i, j, k) and traiffine

can be used:

sijk =

[
vsk
1

]T
(vhi )TW traiffine

[
vdj
1

]
(3.7)

where W triaffine ∈ Rd×(d+1)×(d+1) the trainable parameters of triaffine.

Remark that the calculation can be efficiently done with modern GPUs, and can be well

batchified.

Similar method can be applied for other higher-order structures. One problem is that

the number of parameters for affine functions increase exponentially to the degree of order

(O(dk+1), with k the order degree). In practice, Calculating scores of higher-order structures

with affine functions cannot be applied easily for structures with order higher than 3 due to

the memory overflow problem on current GPUs with moderate memory size (16GB-32GB).
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3.5.3 Batchified Dynamic Programming Algorithms

As is show in Alg 2, Variant Eisner Algorithm with sibling has time complexity O(n3). Zhang

et al. [2020a] shows that one loop can be well batchified. Thus the capacity of modern GPUs

in parallel computing, we can increase a lot the speed. The batchified algorithm with sibling

is shown in Alg 4, in which the inner loop in line 3 (see Alg 1) is batchified.

Algorithm 4: Batchified Eisner Algorithm with Sibling

1 Initialization: Ci,i = 0,∀0 ≤ i ≤ n;

2 for m← 1 to n do
3 Batchify 0 ≤ i; j +m ≤ n;
4 Ii,j = max(maxi≤r<j Ii,r + Sr,j + sirj + sij , Ci,i + Cj,i+1 + sij);

5 Si,j = maxi≤r<j Ci,r + Cj,r+1;

6 Ci,j = maxi≤r<j Ii,r + Cr,j ;

7 end
8 Return C0,n;

The same technique can be used for decoding and calculating the log partition function,

with max replaced with argmax or logsumexp.

3.5.4 Gradient Based MBR Decoding

[Smith and Smith, 2007b] propose to use Minimum Bayes-risk (MBR) decoding for depen-

dency parsing. The idea is that instead of using algorithms like Eisner to maximize directly

the score function, we can firstly calculate the marginal probability of arc:

p((h, d)|x) =
∑
y∈Y

(h,d)∈y

p(y|x)

Then we change inference to maximize the probability of choosing correct arcs, which gives

a less risky solution without low probability arcs:

ŷ = argmax
y∈Y

∏
(h,d)∈y

p((h, d)|x)

The equation is equivalent as:

ŷ = argmax
y∈Y

∑
(h,d)∈y

log p((h, d)|x)
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Thus, we can view log p((h, d)|x) as the score of arc and treat it as an arc-factored model,

with Eisner or Chu-Liu-Edmonds for inference.

One problem of MBR is how to calculate efficiently the marginal probability of arc. Even

for models which can be solved with Eisner or its variants (inside algorithm), an outside

algorithm needed to be used for the calculation of the marginal probability. [Eisner, 2016]

proves that the outside can be replaced with back-propagation. Inspired by the proof, [Zhang

et al., 2020a] shows that:

p((h, d)|x) =
∂ logZ(x)

∂yh,d

Thus, the marginal probability can be efficiently calculate with back-propagation. MBR

decoding has shown to achieve a tiny but consistent augmentation in performance in Zhang

et al. [2020a].

For arc-factored model (either arc-factored, or with MBR), inference with Eisner can

also be replaced with back-propagation. We use the MBR as an example. For naturally

arc-factored model, we just need to replace log p((h, d)|x) with the true score value of arc:

Firstly, run Eisner over log p((h, d)|x) to get the maximum log probability, noted as

log p(y|x).

Then calculate

yh,d =
∂ log p(y|x)

∂ log p((h, d)|x)

Then yh,d is directly the matrix representation of the projective tree. This is because the

gradient of max is one for selected score and 0 for non-selected score in back-propagation2.

Thus, calculating the partial gradient of the max score with the score of arc gives directly

the matrix representation of the tree.

3.5.5 End-to-End Learning with MFVI

The previous methods consider the case where exact dynamic programming algorithms exist.

However, this limits the model from using higher-order structures. For example, there exists

variants of Eisner algorithm for either siblings or grandchildren combining with first order

dependency, but not when using the two together.

[Wang and Tu, 2020] consider exactly the model with dependency, sibling and grandchild.

Although efficient algorithms do not exist, approximate method like Mean Field Variational

Inference (MFVI) [Fox and Roberts, 2012] can be used to estimate the marginal probability

of arc. The idea is to use a simple ph,d to approximate the true marginal distribution of the

2. It is not mathematically strict, but back-propagation in pytorch is set in this way
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arc. The simple distribution satisfies
∑n
h=0 ph,d = 1,∀h to meet the single head property.

The mean field hypothesis requires that the distributions for every column d are independent.

We note the marginal distribution of arc at step t as p(t)((h, d)) or simply pth,d when x is

clear in the context. The update rule of MFVI with sibling and grandchild is:

p
(t)
h,d ∝ sh,d +

∑
k

p
(t−1)
h,k ssib

h,d,k + p
(t−1)
d,k s

gp
h,d,k + p

(t−1)
k,h s

gp
k,h,d

Intuitively, the right part can be viewed as a sum of score of all structures which have arc

(h, d).

As for every column d, we require there exits only one arc. Thus, we can normalize the

probability by using softmax:

p
(t)
h,d =

exp(sh,d +
∑
k p

(t−1)
h,k ssib

h,d,k + p
(t−1)
d,k s

gp
h,d,k + p

(t−1)
k,h s

gp
k,h,d)∑

h′ exp(sh′,d +
∑
k p

(t−1)
h′,k ssib

h′,d,k + p
(t−1)
d,k s

gp
h′,d,k + p

(t−1)
k,h′ s

gp
k,h′,d)

(3.8)

With the framework of SPEN, p0 can be initialized with the local (linear) part of the model

and Wang and Tu [2020] shows that 3 iterations of MFVI is sufficient to benefit the model

from higher-order structures.

We note that the implementation of MFVI in Wang and Tu [2020] does not guarantee

the convergence to a local optimum because they apply MFVI for all columns in the same

time, while exact MFVI should be applied in a column by column way. Still training is stable

for that a small number of iterations 3 is used, which does not makes big change over the

original distribution.

3.6 Conclusion

In this chapter, we present the basis of dependency parsing with graph-based models.

Dependency parsing aims to find the parsing tree, which can represent the grammatical

structure of the sentence. The parse tree can be classified as projective tree and non-

projective tree. Visually, no crossing arcs exist in projective tree while non-projective tree

can have arcs. We give also a formal definition of these two types of parse tree.

Arc-factored model and specific higher-order models, which have exact and efficient al-

gorithms, are presented. We present in details the inference algorithms for these models.

For projective tree, once the inference problem is solved, the learning problem (calculate the

loss function) is naturally solved under the framework of EBMs. For non-projective tree,

inference can be solved with chu-liu-edmond [McDonald et al., 2005]. Learning with hinge
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loss is naturally solved. However, learning with the negative log-likelihood cannot be solved

with the same algorithm. Instead, matrix tree theorem [Smith and Smith, 2007b] can be

used for estimating the partition function with the same time complexity.

Deep learning, especially the use of neural network has greatly improve the performance

of dependency parsing. We introduce the feature extractor, calculation of the score function

with neural networks in parsing. The inference algorithms are not changed, but can be

modified to benefit from the modern GPUs. We present the batchified version of Eisner al-

gorithm and MBR decoding with back-propagation. An end-to-end model with approximate

inference is presented in the end. Although with a non-exact estimation of the probability

of arc, the deep learning model still works and can benefit from higher-order structures.
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CHAPTER 4

MIXTURE-OF-EXPERTS FOR DEPENDENCY PARSING

4.1 Introduction

In this chapter, we present the mixture-of-experts (MoE) for dependency parsing. MoE has

the potential to approximate any non-linear model with sufficient simple experts. Thus,

we can use basic arc-factored and second-order models presented in Chapter 3 as expert to

construct complex MoE models.

Combinations of elementary parsers are known to improve accuracy. Sometimes called

joint systems, they often use different representations, i.e. lexicalized constituents and de-

pendencies [Rush et al., 2010, Green and Žabokrtský, 2012, Le Roux et al., 2019, Zhou

et al., 2020]. These approaches have been devised to join the strengths and overcome the

weaknesses of elementary systems.

In this chapter, however, we follow another line of research consisting of mixtures and

products of similar experts [Jacobs et al., 1991, Brown and Hinton, 2001], instantiated for

parsing in [Petrov et al., 2006, Petrov, 2010] and especially appealing when individual ex-

perts have high variance, typically when training involves neural networks. Indeed [Petrov,

2010] used products of experts trained via Expectation-Maximization (a non-convex function

minimization) converging to local minima.

We propose to study the combination of parsers, from a probabilistic point of view,

as a mixture model, i.e. a learnable convex interpolation of probabilities. This has pre-

viously been studied in [Petrov et al., 2006] for PCFGs with the goal of overcoming the

locality assumptions, and we want to see if neural graph-based dependency parsers, with

non-markovian feature extractors, can also benefit from this framework. It has several ad-

vantages: it is conceptually simple and easy to implement, it is not restricted to projective

dependency parsing (although we only experiment this case), and while the time and space

complexity increases with the number of systems, this is hardly a problem in practice thanks

to GPU parallelization.

Simple averaging models, or ensembles, can also be framed as mixture models where

mixture coefficients are equal. We are able to quantify the variance reduction, both theoret-

ically and empirically and show that this simple model of graph-based parser combinations

perform better on average, and achieve a higher accuracy than single systems.

While the full mixture model is appealing, since it could in principle both decrease

variance and find the optimal interpolation weights to better combine parser predictions,

the non-convexity of the learning objective is a major issue that, when added to the non-

convexity of potential functions, can prevent parameterization to converge to a good solution.

39



By trying to specialize parsers to specific input, the variance is not decreased. More impor-

tantly, experiments indicate that useful data, that is data with an effect on parameterization,

becomes too scarce to train the clustering device.

Another drawback of finite mixture models is that inference, i.e. finding the optimal

tree, becomes intractable. We tackle this issue by using an alternative objective similar to

Minimal Bayes-Risk [Goel and Byrne, 2000] and PCFG-LA combination [Petrov, 2010] for

which decoding is exact.

The contributions can be summarized as follows:

• We frame dependency parser combinations as finite mixture models (Section 4.2)

and discuss two properties: averaging and clustering. We derive an efficient decoder

(LMBR) merging predictions at the arc level (Section 4.3).

• When isolating the averaging effect, we show that resulting systems exhibit an empirical

variance reduction which corroborates theoretical predictions, and are more accurate

(Section 4.4).

• We study the causes of instability in mixture learning, outline why simple regularization

is unhelpful and give an EM-inspired learning method preventing detrimental over-

specialization (Section 4.5). Still, improvement over mere averaging is difficult to

achieve.

• These methods obtain state-of-the-art results on two standard datasets, the PTB and

the CoNLL09 Chinese dataset (Section 5.7), with low variance making it robust to

initial conditions.

4.2 Mixture of Experts

4.2.1 Parsers as Experts

Experts can be any probabilistic graph-based dependency parser, provided that we can

efficiently compute the energy of a parse tree, the global energy of a sentence (the sum of all

parse tree energies, called the partition function) and the marginal probability of an arc in

a sentence.

In the remaining we focus on projective first- and second-order parsers, where these

quantities are computed via tabular methods or backpropagation1.

1. Matrix-tree theorem could be used to adapt this work to non-projective first-order models [Smith and
Smith, 2007a]
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Tree structure For a graph-based dependency parser, the tree probability is defined as:

p(y|x) =
exp(s(x, y))

Z(x) ≡
∑
y
′∈Y(x)

exp(s(x, y
′
))

with s(x, y) the tree energy giving the correctness of y for x, and Z(x) the partition function.

In first-order models [Eisner, 1996], tree scores are sums of arc scores:

s(x, y) =
∑

(h,d)∈y
s(h, d)

Eisner [1997] generalizes scores to the second-order by considering pairs of adjacent sib-

lings:

s(x, y) =
∑

(h,d)∈y
s(h, d) +

∑
(h,d1)

(h,d2)∈y

s(h, d1, d2)

with h < d1 < d2 or d2 < d1 < h. For projective first- or second-order models, Z(x) and

p(y|x) are efficiently calculated [Zhang et al., 2020b]. Moreover marginal arc probability

p
(
(h, d)|x

)
can be efficiently calculated from the partition function by applying backpropa-

gation from logZ(x) to s(h, d), see[Eisner, 2016, Zmigrod et al., 2020, Zhang et al., 2020a]:

p((h, d)|x) =
∑

y∈Y(x)
(h,d)∈y

p(y|x) =
∂ logZ(x)

∂s(h, d)

Tree Labelling The labelling model is also a Boltzmann distribution:

p(l|(h, d), x) =
exp(s(l, h, d))∑

l
′∈L exp(s(l

′
, h, d))

where s(l, h, d) is the score for label l on (h, d).

Following[Dozat and Manning, 2017, Zhang et al., 2020a], label predictions are indepen-

dent:

p(l(y)|y, x) =
∏

(h,d)∈y
p(lhd|(h, d), x) (4.1)

Parse Probability Given the structure y and its labelling l(y), the parse probability is:

p
(
l(y), y|x

)
= p(y|x)× p

(
l(y)|y, x

)
(4.2)
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Learning Potential functions s can be implemented by feed-forward neural networks or

biaffine functions [Dozat and Manning, 2017], and parameterized by maximizing a log-

likelihood.

4.2.2 Mixture and Averaging

For arborescence probabilities a finite mixture model (MoE) is a weighted sum of the prob-

abilities given by all experts:

p(y|x) =
K∑
k=1

ωk(x)pk(y|x) (4.3)

where mixture weights verify ∀x, ωk(x) ≥ 0 and
∑K
k=1 ωk(x) = 1 and can be adjusted by a

gating network [Jacobs et al., 1991]. We can interpret ω as a device whose role is to cluster

input in K categories and assign each category to an expert.

By forcing ωk(x) = 1
K ,∀x, we have a simpler averaging model, sometimes called ensemble:

p(y|x) =
1

K

K∑
k=1

pk(y|x)

Note that MoEs combine elementary probabilities, not tree scores: each expert energy is

first normalized before the combination.

A similar mixture is applied to labelling, i.e.:

p(l(y)|y, x) =
K∑
k=1

λk(x)pk(l(y)|y, x)

4.3 Decoding with a Mixture Model

Learning MoEs will be covered in Section 4.5 and we first turn to the problem of finding an

appropriate tree, for instance the most probable parse tree:

y∗ = argmax
y∈Y(x)

p(y|x) = argmax
y∈Y(x)

K∑
k=1

ωk(x)pk(y|x)

This maximization is difficult, even in the absence of labels, since this isn’t a log-linear

function of the arc scores anymore: y∗ cannot be searched in the log-space among unnor-

malized arc scores.
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4.3.1 MBR Decoding

In this case, a more attractive alternative is Minimum Bayesian Risk (MBR) decoding [Smith

and Smith, 2007a], because it decomposes error in a way similar to the metrics used in

dependency parsing (UAS/LAS) and is tractable. MBR requires to compute marginal arc

probabilities which are the weighted sums of elementary marginals:

p
(
(h, d)|x

)
=

K∑
k=1

ωk(x)pk
(
(h, d)|x

)
The intuition behind MBR is that instead of maximizing the probability of the parse

tree, we try to minimize the risk of choosing wrong arcs, i.e. to maximize the arc marginals

in the parse tree:

y∗ = argmax
y∈Y(x)

∏
(h,d)∈y

p
(
(h, d)|x

)
= MBR(x)

Once computed marginal log-probabilities, Eisner algorithm [Eisner, 1996], [Eisner, 1997]

or Chu-Liu-Edmonds [McDonald et al., 2005] can be applied to solve MBR.

4.3.2 MBR Decoding with Labels

In many dependency parsing models, decoding of arcs and labels is pipelined, see for in-

stance[Dozat and Manning, 2017, Zhang et al., 2020a, Fossum and Knight, 2009]: first arcs

are decoded and then, with the decoded arcs, maximization is performed over labels:

y∗ = argmax
y∈Y(x)

p(y|x) then l∗ = argmax
l=l(y∗)

p(l|y∗, x)

However, solutions found this way are not the maximizers for p(l, y|x), as defined in

Eq. 4.2. The problem is that the effect of labelling is not considered in arc decoding: a high

probability arc can get picked up even with a low label score.

First we remark that each label in l∗ is the most probable label l for a pair (h, d), denoted

by Lhd. Decoding becomes:

y∗ = argmax
y

p(y|x)
∏

(h,d)∈y
p(Lhd|(h, d), x)

This way l∗ is deterministic wrt to y∗ and (y∗, l∗) are maximizers for Eq. 4.2. We note

labelling L(y) where l(y)hd = Lhd, ∀(h, d) ∈ y. This can be combined with MBR without
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changing decoding algorithms, and we call this variant LMBR:

y∗ = argmax
(y,l=L(y))

∏
(h,d)∈y

p
(
(h, d)|x

)
p
(
Lhd|(h, d), x

)
i.e. we can apply MBR with arc probabilities reparameterized with label probabilities.

Experiments show that LMBR exhibits a small but consistent accuracy increase over MBR.

4.4 Averaging and Variance Reduction

In this section we assume all experts to be equally weighted. We define the variance of the

system on T as the average variance of marginal arc probability:

σ2 =

∑
(x,y)∈T

∑
(h,d)∈y σ

2
(
p
(
(h, d)|x

))∑
(x,y)∈T |y|

with σ2(p((h, d)|x)) the variance of the marginal probability.

We show how the variance of the MoE is smaller than the variance of experts. We focus on

structure prediction p(y|x), but definitions are applicable to the labelling model as well. This

is an already known result for mixture models in general, but the proof is here instantiated

for a mixture of graph-based parsers. Moreover, we will recover this result experimentally

in Section 5.7.

Assuming we have a mixture of K elementary systems, we will estimate the marginal

probability variance with:

σ2
(
p
(
(h, d)|x

))
=

1

K

K∑
k=1

(π(k)− π̄)2

with π(k) the probability pk
(
(h, d)|x

)
given by the kth elementary system and average π̄ =

1
K

∑K
k=1 π(k)

Increasing the number of experts in the MoE will decrease variance of the system. To

see this, we assume that the marginal probability for a well trained expert, over a fixed

sentence and a fixed arc, is a measurable function f(h,d),x : R→ R of a random seed Sk ∈ R,

which represents the fact that pk is the result of a learning process with many sources of
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randomization2 (initialization, stochastic batches, dropout. . . ):

pk((h, d)|x) = f(h,d),x(Sk)

with Sk ∈ R a random seed assigned to kth expert at the beginning of training, assumed to

be independent for different experts.

Since in practice a pseudo-random generator is used, the value of marginal probability

for particular sentence and arc is deterministic when the random seed is fixed. Thus, it is

sufficient to use a deterministic function to represent pk((h, d), x), with random seed Sk as

input. Moreover, we just need the function to be measurable.

We can now view f(h,d),x(S) as a random variable and we note its variance as σ2
(h,d),x

.

It is in fact the variance of the marginal arc probability given by this expert, for (h, d) given

x. For an averaging MoE, the marginal probability becomes:

p((h, d)|x) =
1

K

K∑
k=1

f(h,d),x(Sk)

with K number of experts in the mixture model.

If random variables {Sk}k∈K are independent, {f(h,d),x((Sk)}k∈K also are independent

[Baldi, 2017]. Thus, the variance of the mixture model for particular sentence and arc should

be 1
K times the variance of experts:

Σ2
(h,d),x =

σ2
(h,d),x

K
(4.4)

with Σ the variance of the mixture model. In other words, the log-variance of a mixture

model decreases linearly with logK, with slope −1, i.e.:

log Σ2
(h,d),x = log σ2

(h,d),x − logK

Experiments in Section 5.7 Figure 4.1 show that the estimated log-variance of the aver-

aging system decreases when the number of experts increases and that this relation is close

to linear with a slope approaching −1, comforting our independence assumption.

2. f should also be indexed by the training set, but we omit this for the sake of readability.
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4.5 Training with Clustering

When mixture weights are adjustable, MoE models are able to give more credit to experts

believed to perform better on specific input. This can be exploited during parameterization.

The role of ω is thus to learn how to cluster input into K categories, each category being

assigned to an expert.3

For input sentence x and corresponding tree y, assuming parameterization is performed

by maximizing the log-likelihood of the training set via SGD, the objective of mixture model

learning with gating network ω can be written as:

L(φ, θ) = log
K∑
k=1

ωk(x;φ)pk(y|x; θk) (4.5)

where φ are the parameters of the gating network, and θk are the parameters of the kth

expert.

Partial derivatives to the gating network are:

∂L(φ, θ)

∂φ
=

K∑
k=1

ωk(φ)pk(θk)∑K
k
′
=1

ω
k
′ (φ)p

k
′ (θ

k
′ )

∂ logωk(φ)

∂φ
(4.6)

while for expert parameters we have:

∂L(φ, θ)

∂θk
=

ωk(φ)pk(θk)∑K
k
′
=1

ω
k
′ (φ)p

k
′ (θ

k
′ )

∂ log pk(θk)

∂θk
. (4.7)

We found that optimizing directly with equations (4.6) and (4.7) causes degeneration, i.e.

one ωk approaches 1 while the other ωk′ decrease to almost 0. Indeed, gradient ascent with

(4.6) will increase ωk for an expert k that gives high weight to training samples while gradient

ascent with (4.7) will generate increased gradient, and in turn increased probabilities, for

experts with high value of ωk. The two processes re-enforce each other and result quickly in

an extreme partition between experts.

One may think that the degeneration problem can be alleviated with a smoothing prior

or regularization. In practice, we tried entropy as regularization to force towards a uniform

distribution on ωk. We found that a heavy entropy penalization is required to avoid the

degeneration problem, which makes ωk too uniform to be an accurate clustering device.

3. We note that averaging MoE models do not require a specific training: experts can be trained separately
and the ensemble is gathered at decoding time only.
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Avoid Extreme Partition Thus, to alleviate the degeneration problem without forcing

a strong smoothing constraint, we propose to modify Eq. (4.6) into:

∂L
′
(φ, θ)

∂φ
=

K∑
k=1

pk(θk)∑K
k
′
=1

p
k
′ (θ

k
′ )

∂ logωk(φ)

∂φ
(4.8)

i.e. we force the weight update to be proportional to the relative probability. The advantage

of Eq. (4.8) is that gradient are weighted by a more objective quantity
pk(θk)∑K

k
′
=1

p
k
′ (θ

k
′ )

. For

an example where pk(x) is close to uniform, we can benefit from the averaging effect, while

for an example which shows strong preference for a particular expert, we can also learn the

partition coefficients proportional to their correctness.

Stabilize Training Neuron dropout [Srivastava et al., 2014b] is a common technique

to avoid overfitting which unfortunately proved difficult in this setting. The problem is

that sk(x, y) gives very different results with or without dropout which reflects on pk(y|x)

causing drastic changes from one evaluation to the other. To mitigate this problem, we

use probabilities without dropout (noted as p̃k(θ)) to calculate the weighted coefficients of

gradient.

The final optimization process can be separated into two alternate parts, (i) optimization

of the gating parameters:

∂L
′
(φ, θ)

∂φ
=

K∑
k=1

p̃k(θk)∑K
k
′
=1

p̃
k
′ (θ

k
′ )

∂ logωk(φ)

∂φ

and (ii) optimization of experts:

∂L(φ, θ)

∂θk
=

K∑
k=1

ω(φ)p̃k(θk)∑K
k
′
=1
ω
k
′ p̃
k
′ (θ

k
′ )

∂ log pk(θk)

∂θk

In practice, this permitted reaching a lower loss value after training.

4.6 Experiments

Data We run experiments over two datasets for projective dependency parsing: The English

Penn Treebank (PTB) data with Stanford Dependencies [Marcus et al., 1993] and CoNLL09

Chinese data [Hajič et al., 2009]. We use standard train/dev/test splits and evaluate with

UAS/LAS metrics. Customarily, punctuation is ignored on PTB evaluation.

Experts We run tests with first-order (FOP) and second-order parsers (SOP) as mixture
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model experts, with re-implemented versions of the CRF and CRF2o parsers of [Zhang

et al., 2020a].4 For decoding, we use the LMBR decoding presented in Section 4.3.2, which

guarantees a small but consistent improvement over pipeline MBR decoding.

For each input word, these systems use 3 embeddings: the first is a fixed pretrained

vector5, the second is trainable and looked-up in a table, and the third is computed by a

BiLSTM at the character level (CharLSTM). The first two embeddings are summed and

concatenated with the char sequence embedding. For FOP and SOP, contextual lexical

features are the results of 3-layer BiLSTMs applied to word embedding sequences. The

scoring of arcs is then similar to[Dozat and Manning, 2017]: lexical features are transformed

for head or modifier roles by two feed-forward networks and combined to score arcs via a

biaffine transformation.

On PTB, in order to compare with recent parsing results, we set up BFOP and BSOP (B

for Bert), variants of the FOP and SOP settings: we follow [Fonseca and Martins, 2020] and

concatenate an additional BERT embedding[Devlin et al., 2019] (the average of the 4 last

layers of the bert-base-uncased model) to the embedding vector fed to the BiLSTM layers.

Gating (mixture weights ω) is implemented by a K-class softmax over a feed-forward

network whose input are the concatenation of initial and final contextual lexical feature

vectors returned by the 3-layer BiLSTM. Hyper-parameters are set similarly to Zhang et al.

[2020a], with the exception of the learning rate decreased to 10−4 and patience (that is the

maximum number of epochs without LAS increase on the development set) set to 20

We train 12 independent models for each expert type, with random seed set to system

time.

K FOP SOP

UAS LAS UAS LAS

1 95.83 96.04
95.72 ±0.08 94.06 94.24

93.91±0.08 95.87 95.94
95.77±0.06 94.07 94.16

93.97±0.05

2 95.88 96.04
95.76 ±0.06 94.15 94.32

94.05±0.07 95.92 96.05
95.85±0.05 94.15 94.27

94.08±0.04

3 95.93 96.03
95.84±0.05 94.22 94.32

94.11±0.05 95.94 96.04
95.85±0.06 94.18 94.27

94.08±0.06

4 95.95 96.04
95.90 ±0.04 94.24 94.35

94.16 ±0.05 95.98 96.07
95.91 ±0.05 94.22 94.31

94.15 ±0.04

5 95.93 96.00
95.84±0.04 94.24 94.33

94.14±0.05 95.98 96.04
95.92±0.04 94.24 94.29

94.18±0.03

6 95.95 95.98
95.91±0.02 94.24 94.30

94.21±0.03 95.98 96.01
95.94±0.02 94.24 94.28

94.18±0.03

R.E.R. 2.88% 3.03% 2.66% 2.87%

Table 4.1: PTB dev results, with First-Order (FOP) and Second-Order (SOP) parsers as
experts.

4. https://github.com/kidlestar/MOE.git.

5. For English we used Glove embeddings [Pennington et al., 2014], while for Chinese we extracted
pretrained embeddings from the publicly available model of [Zhang et al., 2020b].
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K BFOP BSOP

UAS LAS UAS LAS

1 96.31 96.46
96.23±0.06 94.60 94.77

94.53±0.06 96.35 96.42
96.23±0.04 94.63 94.68

94.55±0.04

2 96.37 96.48
96.26±0.05 94.69 94.79

94.61±0.05 96.38 96.51
96.26±0.06 94.71 94.79

95.60±0.05

3 96.40 96.49
96.33±0.04 94.74 94.82

94.68±0.04 96.39 96.50
96.29±0.06 94.71 94.79

94.61±0.04

4 96.43 96.53
96.38 ±0.04 94.77 94.89

94.72 ±0.04 96.38 96.47
96.28±0.05 94.72 94.79

94.62±0.05

5 96.45 96.51
96.38±0.04 94.79 94.85

94.74±0.04 96.41 96.52
96.29 ±0.06 94.73 94.82

94.65 ±0.05

6 96.44 96.51
96.40±0.03 94.79 94.85

94.74±0.03 96.39 96.46
96.32±0.04 94.73 94.82

94.67±0.04

R.E.R. 3.52% 3.52% 1.64% 1.86%

Table 4.2: PTB dev results, with Bert-First-Order (BFOP) and Bert-Second-Order (BSOP)
parsers as experts.

4.6.1 Averaging Effect Analysis

The experimental procedure is shown in Experimental Setup 5, with M1, . . . ,M12 denot-

ing the trained experts, K number of experts in the mixture model and r the number of

repetitions.

Experimental Setup 5: Averaging Effect

1 Models: M1, . . . ,M12;
2 Initialization: K, r;
3 repeat r times
4 1. Shuffle the order of M1, . . . ,M12;
5 2. Combine sequentially every K models together, creating 12/K mixture

averaging models;
6 3. Compute UAS, LAS of models;
7 4. Calculate system variance for models;

8 end

We set K from 1 to 6 with r always set to 5. We show results for PTB and CoNLL09

Chinese on dev data for each type of mixture of experts, and different number of experts in

Table 4.1 and Table 4.3. For UAS and LAS, each entry is given as:

Averagemax
min ± std

where average is the average score for all trials in this setting and max (resp. min) is the

highest (resp. lowest) score obtained by an experiment in this setting. We also give standard

deviation std as a way to see the effects of variance reduction.

Finally the last row gives the average relative error reduction (R.E.R) from single expert

mode (K = 1) to ensemble mode with K = 6.
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K FOP SOP

UAS LAS UAS LAS

1 89.20 89.42
89.04±0.12 86.28 86.49

86.10±0.12 89.40 89.48
89.31±0.06 86.45 86.52

86.28±0.07

2 89.44 89.60
89.32±0.08 86.59 86.74

86.45±0.08 89.65 89.78
89.51±0.07 86.76 86.89

86.57±0.07

3 89.55 89.66
89.39±0.07 86.71 86.82

86.54±0.07 89.74 89.86
89.62±0.07 86.86 86.98

86.72±0.08

4 89.62 89.68
89.52±0.04 86.80 86.87

86.70±0.05 89.83 89.94
89.70±0.08 86.96 87.08

86.86±0.07

5 89.66 89.71
89.57±0.04 86.83 86.89

86.75±0.04 89.87 89.98
89.75 ±0.07 87.00 87.11

86.87 ±0.07

6 89.66 89.77
89.61±0.05 86.85 86.93

86.81±0.04 89.87 89.93
89.79±0.05 87.00 87.08

86.92±0.04

R.E.R. 4.26% 4.15% 4.43% 4.06%

Table 4.3: CoNLL09 dev results, with First-Order (FOP) and Second-Order (SOP) parsers
as experts.

4.6.2 Clustering Effect Analysis

We conduct clustering effect analysis over the mixture model with 6 experts. Preliminary

experiments showed that, like in most non-convex problems, good initialization is very im-

portant. For that reason we use already trained experts as starting points6 although the

mixture could benefit from more diversely trained experts. We leave this for future work.

The procedure is described in Experimental Setup 6 and this whole procedure is repeated 5

times to compute average performance.

Experimental Setup 6: Clustering Effect

1 Models: M1, . . .M12;
2 Initialization: K = 6;
3 repeat r times
4 1. Select randomly K models, creating mixture models;
5 2. Do fine tuning of mixture models with gating network;
6 3. Calculating UAS, LAS of mixture model after fine tuning;

7 end

Scores on development set before and after fine tuning are shown in Table 4.4. Note

that because shuffling might give different candidate sets than in the averaging experiments

UAS and LAS results are not exactly the same as K = 6 results in Table 4.1, Table 4.2 and

Table 4.3.

6. We tried deterministic annealing with both randomly initialized experts and already trained experts.
While it helped in the former case, the latter was more accurate, but still less accurate than systems trained
without.
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Method PTB CoNLL09 Chinese

UAS LAS UAS LAS

FOP 95.94 95.96
95.91±0.02 94.23 94.26

94.21±0.02 89.67 89.71
89.62±0.03 86.86 86.91

86.81±0.04

CFOP 95.98 96.00
95.94±0.02 94.29 94.31

94.27±0.02 89.68 89.72
89.62±0.04 86.86 86.90

86.80±0.04

SOP 95.98 96.00
95.95±0.02 94.23 94.28

94.20±0.03 89.85 89.92
89.81±0.04 86.98 87.06

86.93±0.06

CSOP 95.99 96.01
95.97±0.01 94.25 94.28

94.22±0.02 89.89 89.95
89.82±0.04 87.03 87.12

86.95±0.06

BFOP 96.43 96.46
96.42±0.02 94.79 94.82

94.76±0.02 - -

CBFOP 96.42 96.46
96.39±0.03 94.78 94.81

94.72±0.03 - -

BSOP 96.41 96.46
96.37±0.04 94.75 94.82

94.67±0.05 - -

CBSOP 96.42 96.46
96.38±0.04 94.76 94.82

94.70±0.05 - -

Table 4.4: Clustering Effect with K = 6 on dev, where CFOP, CSOP, CBSOP represent
models after training

4.6.3 Discussion

Averaging Tables 4.1 to 4.3 show that UAS and LAS generally increase on average with

the number of models in the mixture model, and that ensemble performs often on average

better than the best single systems in each category (notable exceptions: UAS for FOP and

models with BERT on PTB).

Averaging generally decreases the standard deviation, which is evident for (B)FOP. For

(B)SOP the decrease trend is less clear. However, we still found that the smallest standard

deviation is usually given by high number of experts (K = 5, 6).

We remark that on PTB similar performance on dev was achieved by FOP and SOP,

with a slightly better UAS for SOP, which is expected by the capacity of the model to

better represent structures. This corroborates findings of [Falenska and Kuhn, 2019]. But

this contradicts results for CoNLL09 where SOP always gives best results, in line with

observations of [Fonseca and Martins, 2020]. For BERT experiments on PTB, BSOP achieves

better performance than BFOP with one or two experts. However, when the number of

experts increases, BFOP outperforms BSOP.

We complement our discussion with Figure 4.17 which depicts variance reduction by

the number of experts in log-scale: almost linear of for all models, as predicted by our

independence assumption.

We note that UAS and LAS improves little or not at all from K = 5 to K = 6. This

is in accordance with the variance analysis for that the decrease of variance will become

smaller when number of experts becomes higher. Indeed, applying Eq. ( 4.4), the decrease

of variance from K = 1 to K = 2 is 1
2σ

2
(h,d),x

, while from K = 5 to K = 6 it is only
1
30σ

2
(h,d),x

, 15 times lower. This correponds to the observation the improvements of UAS

7. For CoNLL09, we found similar results. The figure is not shown for space limitation.
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and LAS tend to decrease with the number of experts until it reaches a plateau.
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Figure 4.1: Variance by experts on PTB Dev Data.

Clustering We found that a modest improvement on UAS and LAS (0.01%-0.06% abso-

lute) can be achieved by clustering (except for FOP on CoNLL09 Chinese). The average

performance benefits generally from clustering while a tiny decrease (0.01%) is observed for

BFOP on PTB.

Since FOP, SOP, BFOP and BSOP are all strong learners for PTB and CoNLL09 Chi-

nese, i.e. UAS and LAS approaches 99% for both PTB and CoNLL09 on training data

for all models, we can assume that an expert belonging to one of these models can learn

efficiently most of the training data, as opposed to just a portion of it. Thus, only a a few of

training instances can significantly be better covered by clustering. Moreover, as averaging

has already achieved a considerable improvement (around 0.2%-0.6% absolute), a biased ωk
obtained from clustering may harm the gain from averaging.

4.6.4 Results on Test

Tables 4.5 and 4.6 show test results on PTB and CoNLL09, comparisons with recent models.

We show test results of SOP and CSOP with 6 experts for PTB and CoNLL09. Additionally

for PTB, we show BFOP, CBFOP, BSOP and CBSOP with 6 experts to make comparison

with recent parsers, often more sophisticated than our approach, with BERT. We give the

results with the same typographical system as [Zhang et al., 2020a] Please note that, while

average results keep the same semantics, max and min give test results of the LAS highest-
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and lowest- (resp.) scoring systems on the development set. We note that results of [Zhang

et al., 2020a] would correspond our model with K = 1.

Method PTB CoNLL09 Chinese

UAS LAS UAS LAS

[Dozat and Manning, 2017] 95.74 94.08 88.90 85.38

[Li et al., 2019] 95.93 94.19 88.77 85.58

[Ji et al., 2019] 95.97 94.31 - -

[Zhang et al., 2020a] 96.14 94.49 89.63 86.52

FOP,K = 6 96.20 96.19
96.20±0.02 94.64 94.63

94.64±0.02 89.91 89.84
89.99±0.06 87.00 86.94

87.09±0.07

CFOP,K = 6 96.20 96.18
96.18±0.02 94.65 94.62

94.63±0.02 89.94 89.92
89.93±0.04 87.03 87.02

87.00±0.04

SOP,K = 6 96.29 96.30
96.29±0.02 94.71 94.72

94.73±0.02 90.06 90.14
89.97±0.07 87.12 87.19

87.00±0.07

CSOP,K = 6 96.27 96.27
96.32±0.03 94.69 94.70

94.72±0.03 90.07 90.00
89.99±0.08 87.12 87.24

87.02±0.09

Table 4.5: Comparison on test sets without BERT.

Method PTB

UAS LAS

[Li et al., 2020] 96.44 94.63

[Mohammadshahi and Henderson, 2021] 96.66 95.01

BFOP,K = 6 96.58 96.60
96.57±0.02 95.06 95.07

95.02±0.02

CBFOP,K = 6 96.58 96.59
96.54±0.02 95.06 95.07

95.02±0.02

BSOP,K = 6 96.64 96.66
96.58 ±0.02 95.09 95.11

95.12±0.03

CBSOP,K = 6 96.62 96.66
96.64 ±0.03 95.07 95.12

95.07 ±0.03

Table 4.6: Comparison of BERT models on PTB test set.

For averaging models, we apply significance t-tests [Dror et al., 2018] with level α = 0.05

to FOP, BFOP, SOP, BSOP with K = 6 against K = 1. For PTB and CoNLL09, p-value is

always smaller than 0.005. We note that for parsers without BERT, averaging can achieve a

considerable improvement with SOP and gives new SOTA. We also point out that, if FOP and

SOP could find equivalently good models on dev, SOP models seem to better generalize. For

parsers with BERT, with a simple averaging of BSOP, we achieve comparable performances

(or even better in case of LAS) when comparing to more involved methods such as [Li et al.,

2020, Mohammadshahi and Henderson, 2021]. It remains to be seen whether they can also

benefit from MoEs.

Regarding clustering, even if we obtained an average improvement on dev, test data

hardly benefits from it. Still, we note a small improvement of UAS on SOP CoNLL09.

Finally we stress that best performing settings on PTB test, namely BSOP and CBSOP, were

not better performing than BFOP and CBFOP on development data on average (although

max systems were similar): second-order models seem to slightly better handle unseen data.
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4.6.5 Parallel Training and Decoding

Training averaging ensembles can be paralleled with sufficient GPUs, since each expert is

trained independently. For fine tuning with clustering, most of the training could in principle

be paralleled as well, although for the sake of simplicity we didn’t implement such a training

procedure: the training time of clustering model increases linearly with number of experts.

As we only need a few epochs for fine tuning, the overall training time is comparable to

training a single expert.

For decoding, calculations are performed in parallel as well. First marginal probabilities

for arcs and labels are computed for every expert in parallel. Then they are combined either

as a simple average or as a weighted sum. Finally, we apply the decoding algorithm (LMBR)

once over the combined probability. The overhead is thus quite limited, for instance with

K = 6 the overall decoding time is only around 10% higher than with a single expert.

4.7 Related Work

Ensembling parsers showed good results in shared tasks Che et al. [2018]8 and were framed

as a combination of experts in Petrov [2010]. In this chapter we show how this is related to

mixtures and distinguish averaging and clustering effects.

The use of mixture model for syntactic parsing was introduced in Petrov et al. [2006]

for PCFG models, where it provided an access to non-local features unreachable to mere

PCFGs. However, now that powerful non-Markovian feature extractors (i.e. BiLSTMs or

Transformers) are widely used, the expected gain is more difficult to characterize, but we

hypothesize that it is related to the softmax bottleneck Yang et al. [2018] implied by using

different exponential models in all predictions, even when richly parameterized.

We modelled parser combinations with finite mixture models, but more sophisticated

parsing models Kim et al. [2019] use infinite mixture models. In this case it might be more

difficult to discriminate between averaging and clustering. Our mixture is essentially a latent

variable model where the latent variables range over experts. Although inspired from EM

with neural networks, similarly to Nishida and Nakayama [2020], other methods based on

ELBo and sampling could also be utilized Corro and Titov [2019], Zhu et al. [2020].

8. Ensembling is widely used in Machine Translation shared tasks, such as WMT.
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4.8 Conclusion

We framed dependency parser combination as a finite mixture model, showed that this model

presents two distinct properties –an averaging effect and a clustering effect– and devised an

efficient decoding method. Moreover, we studied the impact of the averaging effect, namely

variance reduction during training, and consequently better accuracy. We investigated the

reasons of instability when learning mixture models, and proposed an EM-inspired method

to avoid over-specialization. When used as fine-tuning, this method may improve accuracy

over averaging. As a by-product, this method gives state-of-the-art results when combined

with first-order and second-order projective parsers on two standard datasets.

This work can be further expanded in future research: the increase of parameters can

be seen as overparameterization, and many parameters must be redundant. A potentially

fruitful avenue of research could be the investigation of the subnetwork hypothesis, i.e.

whether distillation could give a smaller network with similar performance. Moreover, the

use of different types of experts for MoE can be explored, which may benefit the clustering

effect.
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CHAPTER 5

POLYNOMIAL MODEL FOR DEPENDENCY PARSING

5.1 Introduction

Score functions of graph-based models are limited as constrained polynomial functions to

ensure the existence of efficient inference algorithms (see Chapter 3 for details). As far as

we know, deep higher-order models use only some of the second-order structures (siblings

and grandchild). In this chapter, we propose a generalized polynomial model, which can

incorporate all possible structures of any order.

The goal of modern graph-based dependency parsing is to find the most adequate parse

structure for the given input sentence by computing a score for all possible candidate parses,

and returning the highest-scoring one. Since the number of candidates is exponential in the

sentence length, the scoring is performed implicitly: after computing scores for possible parts,

the best structure, whose score is the sum of its various parts, is returned by a combinatorial

algorithm based on either dynamic programming such as the Eisner algorithm [Eisner, 1997]

in the projective case, or duality gap such as the Chu-Liu-Edmonds algorithm [McDonald

et al., 2005] in the non-projective case.

Graph-based models where parts are restricted to single arcs are called first-order models,

while models where parts contains k-tuples of arcs are called kth-order models. For instance

models with score for sibling and grand-parent relations are 2nd-order models because parts

consist of 2 connected arcs. The connectivity is important since it helps building efficient

dynamic programming algorithms in the case of projective arborescences [Koo and Collins,

2010] or efficient approximations in the non-projective case based on lagrangian heuristics

[Koo et al., 2010, Martins et al., 2013] or belief propagation [Smith and Eisner, 2008]. The

score function of first-order models, being a sum of parts which are simple arcs, is linear in

arc variables, while for second-order, being a sum of parts which are pair of arcs, the score

function is quadratic in arc variables. More generally kth-order models have a polynomial

score function in arc variables, with highest degree equal to k.

In this chapter we explore the consequences of treating score functions for higher-order

dependency parsing as polynomial functions. This framework can recover most previously

defined score functions and gives a unified framework for graph-based parsing. Moreover,

it can express novel functions since in this setting parts are made of possibly disconnected

tuples of arcs. We call the results generalized higher-order models, as opposed to previously

connected higher-order models.

On the other hand, polynomial functions are difficult to manipulate. They are non-

convex and so, in addition to already known problems in higher-order parsing such as the
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computation of the partition function for probabilitic models, MAP decoding is itself a chal-

lenge. We develop an approximate parsing strategy based on coordinate ascent [Bertsekas,

1999], where we iteratively improve a candidate by flipping arcs. We exploit the polynomial

nature of the score function to derive an accurate and efficient procedure to select arcs to be

flipped. Since coordinate ascent converges to a local minimum, we show how this method

can be embedded within a meta-heuristics based on genetic analogy [Schmitt, 2001] to find

better optima.

We can learn these models via two methods, max-margin or probabilitic estimation.

Max-margin is straightforward because it only requires MAP decoding but is quite fragile

since it is sensitive to approximation errors which are inevitable in our setting. We design a

probabilistic loss for our model where we approximate parse scores via a first-order Taylor

expansion around the MAP solution. We find that this novel method is efficient and we

show empirically that it can outperform previous higher-order models.

In summary our contributions are the following:

• a general framework for dependency parsing which encompasses previous higher-order

score functions, and includes new ones;

• a new method for higher-order dependency parsing based on non-linear optimization

techniques (coordinate ascent and genetic algorithm) coupling gradient-based methods,

and combinatorial routines;

• an empirical validation of this method which obtains state-of-the-art results on stan-

dard datasets and is computationally efficient.

5.2 Related Work

Before the use of powerful neural feature extractors (e.g. BiLSTM or Transformers) depen-

dency parsing with high-order relations was a clear improvement over first-order models.

[Koo and Collins, 2010] considered efficient third order models for projective dependency

parsing. In order to have efficient dynamic programming algorithms for decoding, only a

few limited predefined structures can be included to the model (e.g. dependency, sibling,

grandchild, grand-sibling, tri-sibling).1

Higher-order non-projective parsing is NP-hard but fast heuristics with good performance

have been proposed based on dual decomposition for instance. However, efficient subsystems

1. The term sibling often means adjacent sibling, where only adjacent modifiers on the same side of the
head are included.
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must be devised to efficiently process complex parts, either based on dynamic programming

algorithms such as Viterbi [Koo et al., 2010] or on integer linear programming [Martins et al.,

2013]. In practice this restricts parts to connected subgraphs.2

Since the wide adoption of deep feature extractors, the situation is less clear. [Zhang

et al., 2020a] consider a second-order model with dependency and adjacent sibling, which

can guarantee efficient decoding for projective arborescence with a batchified variant of

Eisner algorithm [Eisner, 1996, 1997]. The results show that adjacent sibling is beneficial

for the performance of parser comparing with arc-factored model. [Fonseca and Martins,

2020] claim that in the non-projective case, second-order features help especially in long

sentences. On the other hand, [Falenska and Kuhn, 2019] showed that in general the impact

of consecutive sibling features was not substantial, and [Zhang et al., 2021] showed that the

main benefit of these features could be understood as variance reduction, and vanishes when

ensembles are used.

Closely related to our work, [Wang and Tu, 2020] consider a second-order model with

score for dependencies, siblings and grandchildren where they do not constrain siblings to

be adjacent. Although exact estimation is intractable in their setting, an approximate es-

timation of probability of arborescences can be calculated efficiently by a message-passing

algorithm. Their experiments seem to confirm that second-order relations are beneficial

to the parsing accuracy, even when trained by an approximate estimation of probability,

namely Mean-Field Variational Inference. Instead we approximate the partition function

using a first-order Taylor approximation around the solution of the MAP solution. Partition

approximations are usually performed via Bethe’s free energy, see for instance [Martins et al.,

2010, Wiseman and Kim, 2019].

[Dozat and Manning, 2017] showed that head selection was a good trade-off during the

learning phase, for first-order models. Our method applies this principle to the higher-

order case, leading to a coordinate ascent method, well known in the optimization literature

[Bertsekas, 1999]. In Machine Learning and NLP, ascent methods are usually performed in

primal-dual algorithms, e.g. [Shalev-Shwartz and Zhang, 2013] for SVMs.

We use genetic programming to escape local optima when searching for the best parse.

Although this kind of metaheuristics has been used for other tasks in NLP such as WSD

[Decadt et al., 2004] or summarization [Litvak et al., 2010], it is the first time it is applied

to dependency parsing to the best of our knowledge. Since genetic algorithms can be seen as

implementing a Markov-Chain [Schmitt, 2001] over candidate solutions, our method resem-

bles MCMC methods, related to Gibbs sampling for Metropolis-Hastings methods, which

2. We note that [Martins et al., 2013] used a 2-arc part called adjacent modifiers which is not a connected
subgraph. But this was not generalized to 2-arc arbitrary subgraphs.
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have already been investigated in parsing [Zhang et al., 2014, Gao and Gormley, 2020]. Our

method to choose the best arc to improve the current parse is inspired by a recent method

for sampling in discrete distributions [Grathwohl et al., 2021] where we replace sampling by

MAP inference.

We rely on properties of polynomials to derive efficient routines for approximate head

selection. Polynomial factors where discussed for higher-order parsing in [Qian and Liu,

2013].

5.3 Notations

We note Cx as the set of all possible arcs for sentence x (the arcs of the complete graph over

vertices in x) or C when unambiguous.

We say that a non-empty set of arcs A = {(h1, d1), . . . (hk, dk)} is proper if ∀i, hi 6= di
and ∀i < j, di 6= dj . The first condition asserts that an arc cannot be a self-loop while the

second enforces that each word has only one head in a proper set. The two constraints are

natural and required for dependency parsing. We note the set of proper subsets of cardinal

k which can be constructed from a set of arcs A as Fk(A), the set of kth-order polynomial

factors.

5.4 Polynomial Score Functions for Dependency Parsing

In this work, we consider a generalization of previously proposed score functions for graph-

based dependency parsing. Unlike higher-order models which consider only limited higher-

order relations, e.g. Koo and Collins [2010], the proposed function can express all possible

higher-order relations and can be viewed as a natural generalization of Wang and Tu [2020],

Zhang et al. [2020a].

5.4.1 Score Function

We define Kth-order score functions as:

S(x, y) =
K∑
k=1

∑
F∈(Fk(C)∩R)

sF

k∏
(h,d)∈F

yhd

=
∑
k=1

∑
F∈(Fk(y)∩R)

sF

(5.1)
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where sF represents the score for the higher-order factor constructed from arcs in F , and R
is set of authorized structures (the restriction). Remark that Eq. (5.1) does not enforce a

specific structure for y ∈ Y and could be applied in G,A,P .

With this general definition we can recover most previous models for graph-based de-

pendency parsing. For instance, in [Wang and Tu, 2020], a second order model (K = 2) is

studied where only sibling and grandchild relations are considered, which can be expressed

with the following R: for F = {(h1, d1), (h2, d2)}, we enforce h1 = h2 or d1 = h2. In Zhang

et al. [2020a], another second-order model, the restriction is stricter in order to limit accep-

tation to adjacent siblings: h1 = h2 and (h1, d1), (h2, d2) are adjacent (no arcs from h1, h2

to word between d1, d2).

To demonstrate the generality of this approach, we also consider a generalized third-

order model. The first-order and the second-order parts are as [Wang and Tu, 2020], and for

third-order factors F = {(h1, d1), (h2, d2), (h3, d3)}, we add restrictions d1 < d2 < d1 +3 and

d2 < d3 < d2 + 3. Arcs in F are not always connected. Instead, we only force the modifiers

of arcs to be close, with a maximum distance set to 2. This addition of cubic factors could

be a computational bottleneck since it would naively require computing O(n6) scores. We

avoid this with tensor factorization following [Peng et al., 2017].3

5.4.2 Score of One-Arc Modifications

Parsing can be framed as finding the highest S(x, y), or S(y) when x is unambiguous:

y∗ = argmax
y∈Y

S(y) (5.2)

The solution is tractable for K = 1 (first-order model), i.e. arc-factored model, for all usual

parse structures, such as G,A,P . However, it is intractable without additional constraints

for higher-order models, such as projectivity for parses and adjacent siblings in scores.

We consider here a simpler problem: how much can the score change if we change one

arc of the current parse? The idea is that better parses may be obtained by choosing arcs

to be flipped. Thus, even starting with a bad parse, we may approach the best parse by

modifying one arc at a time.

To solve this simpler problem, the naive method, i.e. calculate the score of every parse

which differs from the current parse by one arc, is obviously inefficient and unpractical since

it requires O(n2) evaluations (for each modifier and each head). Instead, we show that the

score change of a one-arc modification can be efficiently calculated for Eq. (5.1). Let us

3. See Appendix C.3 for details.
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consider the current parse y and an arbitrary arc a = (h, d) ∈ C (possibly not in y). The

partial derivative of the score to variable ya is:4

∂S(y)

∂ya
=

K∑
k=1

∑
F∈(Fk(C)∩R)

sF
∂
∏
a′∈F ya′
∂ya

=
K∑
k=1

∑
F∈(Fk(C)∩R),

a∈F

sF1[F\a ∈ Fk−1(y)]

(5.3)

We can interpret this formula for the partial derivative as the sum of all factors F

including a which verify (F\a) ∈ Fk−1(y). When a ∈ y,
∂S(y)
∂ya

can be seen as the restriction

of S(y) to factors F ⊆ Fk(y), where a ∈ F . And we can write:5

S(y) =
∂S(y)

∂ya
+ S(y\a) (5.4)

where the last term is the score of all factors in y which do not contain a.

When a 6∈ y, we note a = (h′, d) while we assume (h, d) ∈ y.We define y[h→ h′, d] as the

parse which modifies y by swapping the head index for column d from h to h′ while the other

columns remain unchanged, and y[→ h′, d] when the current head h is unimportant. We can

rewrite the score function of y[h→ h′, d] with the previously defined partial derivative, and

take advantage of the score factorisation to express S(y[h → h′, d]) with quantities directly

available on y:6

S(y[h→ h′, d]) =
∂S(y)

∂yh′d
+ S(y\(h, d)) (5.5)

Remark that the right part of the equation concerns only the original arborescence y.

We write D(y → h′, d) for the change of score induced by swapping the head in column

d to h′, and D(y, h → h′, d) when we want to emphasize that the current head for d is h.

From the previous equations, we can derive:

4. See Appendix C.2.1 for the detailed derivation.

5. See Appendix C.2.2 for the detailed derivation.

6. See Appendix C.2.3 for the detailed derivation.
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D(y, h→ h′, d) = S(y[(h→ h′, d)])− S(y)

=
∂S(y)

∂yh′d
− ∂S(y)

∂yhd

(5.6)

Thus, to have a complete evaluation of change of scores, we only need one forward and

backward evaluation on the score of the current solution y and then compute differences

for each position d. In the following section, we build an inference algorithm based on this

observation

5.5 Inference as Candidate Improvement

5.5.1 Coordinate Ascent

The main idea of our method is, from an initial parse y0, to change the current candidate

by picking a word and swapping its head to improve the score function. This is repeated

until not further improvement is possible. This method is an instance of coordinate ascent

Bertsekas [1999] (Chap. 2.7), to maximize Eq. (5.1). When parses are arborescences, such

as when working in A and P , this method must at each step, not only pick an improving arc,

but also assert that the resulting parse has the required tree structure. This adds complexity

that we propose to avoid by working in G and inserting a final step of projection to recover

a solution in the desired space (described in Section 5.6.2).

Remark that when arborescence constraints are dropped, finding the best parse reduces

to head selection, i.e. choose hd,∀d with yhd,d = 1, which maximizes S(y). To emphasize

that this method works column by column we write:

S(x, y) = S(y:,1, . . . , y:,|x|)

where y:,d denotes the one-hot vector where y:,d[h] = 1 if (h, d) ∈ y.

This is straightforward and tractable for first-order models, since it amounts to maximiz-

ing independent score functions.

However, this becomes intractable in higher-order models since parts overlap. Still, a

local optimum can be obtained by coordinate ascent.

Given a current solution yk, basic coordinate ascent finds a better next iterate yk+1

by cycling through columns and improving the current solution locally by successive head

selections:
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h∗d = argmax
h

S(yk+1
:,1 , . . . , yk+1

:,d−1, ξh, y
k
:,d+1 . . . , y

k
:,|x|) (5.7)

where ξh is the one-hot vector with 1 at position h. We set yk+1
:,i = ξh∗d

and the process is

repeated for every word until there is no change (yk+1 = yk).

5.5.2 A Gradient-based Method For Coordinate Ascent

A naive method to solve Eq. (5.7) requires n evaluations of S, one per possible head, which

is inefficient. However, from Section 5.4.2 and Eq. (5.6), we can rewrite Eq. (5.7) since it

amounts to finding a better head at position d from current solution y:

h∗d = argmax
h

D(y → h, d) (5.8)

Thus, one forward and one backward (followed by |x| substractions) is sufficient to decide

the modification of arc at each position d.

Still, the gradient-based maximization presented above requires n forward and backward

passes to determine the new heads for all words of the sentence. In order to achieve faster

convergence, we want to avoid cycling through each word and consider the following problem:

at each step, find the pair (h, d) which provides the greatest positive change in the score

function:

(h∗, d∗) = argmax
h,d

S(yk:,1, . . . , y
k
:,d−1, ξh, y

k
:,d+1 . . . , y

k
:,|x|) (5.9)

We set yk+1 = yk[→ h∗, d∗] while other columns are unchanged. This is repeated until

yk+1 = yk.

Again, a naive maximization requires O(n2) estimations of score for each step and brings

in fact no speed gain. However, as we have already seen, Eq. (5.9) is simply equivalent to:

(h∗, d∗) = argmax
h,d

D(y,→ h, d) (5.10)

which again requires one forward and backward on the current candidate’s score before

substractions.

In summary our algorithm, from an initial parse y0, iteratively improves a current so-

lution: at step k we solve Eq. (5.10) by computing the gradient of S(yk) over arc vari-

ables and then pick the arc (h, d) whose partial derivative increases the greatest to set

yk+1 = yk[→ h, d].
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5.5.3 First-Order Linearization

Coordinate ascent changes one arc at a time which can still be slow. In practice, we found

that a simpler greedy method performed at the beginning of the search, when high precision

is not required, can improve parsing time dramatically. Given a current solution yk, we

linearize the score function via the first-order Taylor approximation and apply coordinate

ascent to what is now an arc-factored model where columns can be processed independently.

For each sentence position d:7

h∗d = argmax
h

∂S(yk)

∂ykhd
.

We set then yk+1
:,d = ξh∗d

∀d > 0. We may be able to change |x| arcs at each step k, and the

process is repeated until S(yk+1) ≤ S(yk), which indicates that the approximation becomes

detrimental, after which we switch to coordinate ascent to provide more accurate iterations.

5.5.4 Genetic Algorithm

Due to the non-convexity of function S, the previous method gives a local optimum, which

may limit the usefulness of higher-order parts. Thus, to ensure a better approximation, we

add genetic search [Mitchell, 1998].

Genetic Algorithm is an evolutionary algorithm inspired by the process of natural selec-

tion. The algorithm requires: a solution domain, here G, and a fitness function, i.e. function

S(y). Each step in our genetic algorithm consists of four consecutive processes: selection,

crossover, mutation and self-evolution, which are repeated until stabilization.

Selection For a group of parses y1, . . . , yw, estimate scores S(y1), . . . , S(yw). Select the

top-k candidates (k < w) ys1, . . . , y
s
k.

Crossover Average candidates yc = 1
k

∑k
i=1 y

s
k. Set ych,d as the probability of hav-

ing (h, d) in an optimal parse and sample w − k new parses according to yc. Note them

yc1, . . . , y
c
w−k.

Mutation For every parse in yc1, . . . , y
c
w−k, change heads randomly with probability p.

Note mutated parses as ym1 , . . . , y
m
w−k

Self-Evolution On parses ym1 , . . . , y
m
w−k, apply coordinate ascent. Note the output as

ye1, . . . , y
e
w−k. Combine new parses with the previous top-k parses as the group for next

iteration.

Selection and self-evolution pick arcs giving high scores while crossover and mutation can

provide the possibility to jump out of local optima. We iterate this process until the best

7. See Appendix C.2.4 for the detailed derivation.
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parse is unchanged for t consecutive iterations.

5.6 Learning and Decoding with Polynomial Scores

5.6.1 Learning

We follow recent works [Zhang et al., 2020a, Wang and Tu, 2020] and learn parse structures

and arc labels in a multitask fashion with a shared feature extractor. Loss is the sum of

label and arc losses:

L = Llabel + Larc (5.11)

We write (x∗, y∗, l∗) as the training input sentence and its corresponding parse and la-

beling.

Label Loss Following [Dozat and Manning, 2017], we use the negative log-likelihood:

Llabel(x
∗, y∗, l∗) = −

∑
(h,d)∈y∗

log p(l∗hd|x
∗).

Hinge Loss Following [Kiperwasser and Goldberg, 2016], we can use hinge loss as arc loss:

Larc = ReLU(max
y∈Y

S(x∗, y)− S(x∗, y∗) + ∆(y, y∗))

where ∆(y, y∗) is the Hamming distance.

The inner maximization requires to solve an inference sub-problem, i.e. to find the

cost-augmented highest-scoring parse:

max
y∈Y

S(x∗, y) + ∆(y, y∗) (5.12)

As Hamming distance is not differentiable, we propose to reformulate it as:

∆(y, y∗) =
∑
h,d

(1− yhd)y∗hd + (1− y∗hd)yhd

linear to the variable y. Thus, Eq. (5.12) can be solved with the method proposed in

Section 5.5.

Approximate Marginal Estimation In practice hinge loss may have two issues: each

update is limited to two parses only, which makes learning slow, and the linear margin may
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lead to insufficient learning. We thus propose an approximate probabilistic learning objective

inspired by methods such as Mean-Field Variational Inference [Wang and Tu, 2020]. We

would like to train our model as an arc-factored log-linear model:

Larc = −
∑

(h,d)∈y∗
log p

(
(h, d)|x∗

)
where p

(
(h, d)|x∗

)
is the marginal probability of arc (h, d) over all parses for x∗.

Marginal probabilities are approximated based on the intuition that the distribution of

parses is usually peaked on few close solutions, hence that estimating the contribution of

arcs at the neighborhood of the highest-scoring parse gives an acceptable approximation.

We use the same reasoning as in Section 5.5.3 to derive a linear approximation of the current

model. Given parse ŷ obtained by coordinate ascent, we set:8

p
(
(h, d)|x∗

)
=

p(ŷ[→ h, d])∑
h′ p(ŷ[→ h′, d])

≈ exp(shd)∑
h′ exp(sh′d)

(5.13)

where:

shd =
∂S(ŷ)

∂yhd
(5.14)

5.6.2 Approximate MBR Structured Decoding

Inference with coordinate ascent and genetic algorithm cannot guarantee the tree structure

of parses, as they work in solution space G. But we can estimate the marginal probability

of arcs from a solution y returned by coordinate ascent by reusing Eq. (5.13). Then, the

Eisner algorithm [Eisner, 1996, 1997] or the Chu-Liu-Edmonds algorithm [McDonald et al.,

2005] can be applied to have projective or non-projective arborescences. We remark that

this is similar to Minimum Bayesian Risk (MBR) decoding [Smith and Smith, 2007a], the

difference being that here marginalization is estimated with nearest arborescences while for

MBR marginalization is exact over the parse forest.

8. See detailed derivation in Appendix C.2.5.
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bg ca cs de en es fr it nl no ro ru Avg.

CRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33

Local2O 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

CA+LM 90.79 93.14 91.92 84.45 89.89 92.60 90.14 93.57 89.89 93.85 86.42 93.81 90.87

3O+CA+LM 90.80 93.09 91.91 84.42 89.75 92.50 90.02 93.53 90.13 93.78 86.38 93.86 90.85

GA+CA+LM 90.70 93.17 91.90 84.19 89.77 92.50 89.88 93.68 90.13 93.81 86.33 93.88 90.83

+BERT

Local2O 91.13 93.34 92.07 81.67 90.43 92.45 89.26 93.50 90.99 91.66 86.09 92.66 90.44

CA+LM 91.93 94.09 92.46 85.59 90.97 93.42 90.88 94.18 91.49 94.57 87.22 94.40 91.77

3O+CA+LM 91.87 94.05 92.50 85.22 91.04 93.47 90.79 94.26 91.38 94.62 87.18 94.41 91.73

GA+CA+LM 91.86 94.08 92.49 85.38 90.99 93.44 91.05 94.13 91.53 94.56 87.25 94.42 91.77

Table 5.1: LAS on UD 2.2 test data. CRF2O: [Zhang et al., 2020a]; Local2O: [Wang and
Tu, 2020].

5.7 Experiments

We present experimental results9 where we evaluate and compare our parsing method where

we use the score function [Wang and Tu, 2020] and our extension with third-order factors

(3O) with coordinate ascent (CA) and genetic algorithm (GA).

5.7.1 Data

Two datasets are used for projective dependency parsing: the English Penn Treebank (PTB)

with Stanford Dependencies [Marcus et al., 1993] and CoNLL09 Chinese data [Hajič et al.,

2009]. We use standard train/dev/test splits and evaluate with UAS/LAS metrics. Punctu-

ation is ignored on PTB for dev and test. For non-projective dependency parsing, Universal

Dependencies (UD) v2.2 is used. Following [Wang and Tu, 2020], punctuation is ignored for

all languages.

For experiments with BERT [Devlin et al., 2019], we use BERT-Large-Uncased for PTB,

BERT-Base-Chinese for CoNLL09 Chinese and Base-Multilingual-Cased for UD.

5.7.2 Hyper-Parameters

To ensure fair comparison, and for budget reasons, we use the same setup (hyper-parameters

and pre-trained embeddings) as [Zhang et al., 2020a].10

For experiments without BERT [Devlin et al., 2019], pos-tags are used for all datasets11.

9. Our prototype will be publicly available upon publication.

10. See Appendix C.1.

11. In [Zhang et al., 2020a], pos-tagging used on UD but not on PTB nor CoNLL09 Chinese. In [Wang
and Tu, 2020], pos-tagging is used for all datasets.
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Method PTB CoNLL09

UAS LAS UAS LAS

CA+hinge 95.69 93.89 91.25 89.52

GA+CA+hinge 95.71 93.87 91.52 89.80

CA+LM 95.67 93.88 91.31 89.66

3O+CA+LM 95.64 93.87 91.26 89.61

GA+CA+LM 95.81 93.99 91.30 89.66

+BERT

CA+LM 96.53 94.85 93.18 91.57

3O+CA+LM 96.47 94.79 93.15 91.53

GA+CA+LM 96.50 94.82 93.16 91.55

Table 5.2: Comparison on dev. CA: Coordinate Ascent; 3O: Third order model; GA: Genetic
Algorithm; LM: Linearized Marginalization; hinge: hinge loss

For experiments with BERT, the last 4 layers are combined by scalarmix and linear projection

and then concatenated to the original feature vectors.

Initial candidates are sampled from the the first-order part of Eq. (5.1). For genetic

algorithm, due to hardware memory limitations, the number of candidates is set to 6. Each

time, we take the top-3 candidates in selection, and the genetic loop is terminated when the

best parse remains unchanged for 3 consecutive iterations. The mutation rate is set to 0.2

on all datasets.12

All experiments are run 3 times with random seed set to current time and averaged.

We rerun also the results of [Wang and Tu, 2020] on PTB and CoNLL09 with the authors’

implementation.13 to have a faire comparison.

5.7.3 Results on PTB and CoNLL09 Chinese

Table 5.2 shows results of our different system with and without BERT. For PTB without

BERT we see that training via coordinate ascent with hinge loss of marginal estimation give

similar results, while genetic algorithm gives a sensible improvement when combined with the

probabilistic framework. We can see that our third-order factors do not improve scores. With

BERT probabilistic models, neither third-order nor genetic algorithm on top of coordinate

12. We tried mutation rates 0.1, 0.2, 0.3 and the best performance is obtained on PTB dev with mutation
rate 0.2.

13. https://github.com/wangxinyu0922/Second_Order_Parsing, Note that this implementation also
uses the hyper-parameters of [Zhang et al., 2020a]
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Method PTB CoNLL09

UAS LAS UAS LAS

CRF2O∗ 96.14 94.49 89.63 86.52

Local2O 95.98 94.34 - -

Local2O† 95.90 94.25 91.60 89.93

CA+hinge 95.88 94.21 91.27 89.58

GA+CA+hinge 95.93 94.26 91.63 89.89

CA+LM 95.96 94.33 91.62 89.96

3O+CA+LM 95.85 94.27 91.59 89.96

GA+CA+LM 95.95 94.34 91.65 90.02

+BERT

Local2O 96.91 95.34 - -

Local2O† 96.68 95.16 93.46 91.87

CA+LM 96.68 95.20 93.48 91.91

3O+CA+LM 96.65 95.13 93.47 91.87

GA+CA+LM 96.67 95.20 93.42 91.83

Table 5.3: Comparison on test. *: POS not used. †: Rerun with official implementation.

ascent gives any improvement. For CoNLL09 Chinese without BERT, performance on dev

are similar between settings while genetic algorithm gives an evident boost for hinge loss.

With BERT as for PTB the simple model performs best.

Table 5.3 gives test results and comparisons with two recent similiar systems. For PTB

without BERT, the exact projective parser of [Zhang et al., 2020a] has the best performance,

which is in accordance with the reported results in [Wang and Tu, 2020].14 In comparison

with [Wang and Tu, 2020] (Local2O), although their system has more parameters for PTB

experiments15, our coordinate ascent method with genetic algorithm plus marginalization

has achieved the same performance on LAS. However, the same optimization method with

hinge loss does not show good performances. For CoNLL09 Chinese without BERT, the

genetic algorithm seems to help with generalization compared to simple coordinate ascent

(similar score on dev but improvement on test).

With BERT, on both corpora, simple coordinate ascent gives best performance for our

14. Our best single run gives 94.44 LAS on PTB which is on a par with their results.

15. [Wang and Tu, 2020] uses a bilstm with hidden 600 while we follow [Zhang et al., 2020a] to use a bilstm
with hidden size 400

69



method.

5.7.4 Results on UD

Table 5.1 shows LAS on UD test data. The best average performances are achieved with

coordinate ascent and genetic algorithm plus linearized marginalization. For all languages,

our method with or without genetic algorithm outperforms [Wang and Tu, 2020] (Local2O)

except nl without BERT.

Method Train Test

Local2O 1133 706

CA 506 399

3O+CA 255 249

GA+CA 248 195

Table 5.4: Speed Comparison on PTB Train and Test without BERT (sentences per second)

5.7.5 Speed Comparison

We compare the speed of train and test with Nvidia Tesla V100 SXM2 16 Go on PTB. The

result is shown in Table 5.4. For coordinate ascent, training is 2.2 times slower than MFVI

while test is 1.8 times slower than MFVI16.

5.8 Conclusion

We presented a novel method for higher-order parsing based on coordinate ascent. Our

method relies on the general form of arc-polynomial score functions. Promising arcs are

picked by evaluated by gradient computations. This method is agnostic to specific score

functions and we showed how we can recover previously defined functions and design new

ones. Experimentally we showed that, although this method returns local optima, it can

obtain State-of-the-art results.

Further research could investigate whether the difference between the search space during

learning and decoding is a cause of performance decrease. In particular the coordinate ascent

could be replaced by a structured optimization method such as the Frank-Wolfe algorithm

16. The speed is measured with Eisner applied over all sentences. It is about 2 times quicker with the
faster decoding strategy of [Zhang et al., 2020a] which consists in applying Eisner only if the coordinate
ascent solution does not return a projective arborescence.
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(see [Pedregosa et al., 2020] for a recent variant) to obtain a local optimum in a more

restricted search space. Moreover, a complete second-order model which incorporates all

connected and non-connected structures can be trained with the developed method, with

which we can study the usefulness of different second-order strcutures over the performances.
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CHAPTER 6

GENERAL NON-LINEAR MODEL FOR DEPENDENCY

PARSING

6.1 Introduction

In Chapter 4, a mixture-of-experts (MOE) is used to approximate a non-linear function with

a mixture of linear experts. The method shows that by applying a simple averaging, the

performance of parsing augments by decreasing the variance of the system. In Chapter 5,

we construct a higher-order polynomial score function for dependency parsing. The score

function is basically a sum of score of all possible structures (from first to higher-order),

and approximate solutions can be efficiently calculated thanks to the specific form of the

function.

Both methods use specific hypothesis to make the problem solvable. In the first method,

MOE guarantees simple calculation of the loss function, where the negative log-likelihood

can be calculated by taking the log value over the weighted sum of experts’ probabilities.

The second method uses polynomial score function, which calculates explicitly the score of

all possible structures. Thus, approximate methods like MFVI or coordinate ascent can be

used. The hypothesis makes the problem solvable, but also add restrictions over the use of

modern NLP techniques. As far as we know, all graph-based Dependency Parsing models

calculate explicitly the score of structures over the trees, which use either MLPs or affines

functions (biaffine, triaffine, etc)[Kiperwasser and Goldberg, 2016, Dozat and Manning, 2017,

Zhang et al., 2020a, Wang and Tu, 2020].

In this chapter, we consider the case where we add no additional restrictions over the

score function. Precisely, we only assume that the score function S(x, y; Θ) is a non-linear

differentiable function to the variable y.

We mention that graph-based dependency parsing can be viewed as EBMs (see Chapter

2, 3 for details). Using general non-linear energy function constructed with neural networks

is not new in EBMs. As is mentioned in Section 2.2 Chapter 2, [Belanger and McCallum,

2016] have proposed a concrete framework of EBM call SPEN. SPEN calculates the energy

function as a sum of the local energy and the global energy. The local energy is limited to

be linear function while the global energy can be general non-linear functions.

Minimization of the energy function is unavoidable for learning and inference of EBMs

with hinge loss. [Belanger et al., 2017] propose to use an end-to-end method on SPEN by

unrolling gradient-based optimization [Domke, 2012]. The method shows good performance

on image denoising and Semantic Role Labeling (SRL). They also tested the Input Convex
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Neural Network (ICNN) [Amos et al., 2017] to make the energy function convex. Although

convex energy functions guarantee the convergence to the global minimum, parameter and

architecture constraints of ICNN limit the capacity of the neural network and gives worse

results. To avoid applying several loops in gradient-based methods, [Tu and Gimpel, 2018,

Tu et al., 2020b] propose to train an inference network with the goal to minimize the energy

function. The output of the inference is the approximate prediction which aims to minimize

the energy. The method is shown to have good performances on multi-label classification.

Besides end-to-end learning and inference network which use basically neural networks

for optimization, optimization methods like FW algorithm (FW) [Frank and Wolfe, 1956]

can be used to directly optimize the energy. FW is suitable for sparse optimization problems

[Berrada et al., 2018, Ma and Li, 2020, Tsai and El Ghaoui, 2020], where we find that the

matrix representation of parse tree is exactly highly sparse (for every column of the matrix,

there is one position equals 1, while others equal 0). In section 6.3.1, we present our work

to adapt FW for dependency parsing.

Instead of training EBMs with hinge loss, EBMs can be transformed as a probabilistic

model with the hypothesis: p(. . . ) ∝ exp(−E(. . . )), where . . . represent the variables of

the energy function. With discussion in Section 2.3 Chapter 2, calculating directly the loss

function with negative log-likelihood could be intractable, but we can estimate the gradient

of the loss function by sampling from the distribution p(. . . ). Sampling with non-linear

energy functions is generally intractable. To solve the problem, [Hinton, 2002] propose

contrastive divergence, which use MCMC methods to approximate sampling from the model

distribution p(. . . ). [Du et al.] shows that by estimating the ignored KL-divergence in

contrastive divergence, the variance of sampling can be highly reduced. Besides MCMC, [Du

and Mordatch, 2019] propose to use langevin dynamics [Welling and Teh, 2011] for sampling.

We mention that langevin dynamics is more adapted for continue data (like images), but

does not suit well discrete data (like structure predictions).

The chapter is organized as follows: In section 6.2, we present the learning and inference

with the general non-linear model. We present explicitly the problems needed to be solved

for applying learning and inference. In section 6.3.1, we present the FW algorithm [Frank

and Wolfe, 1956] and its adaptations for dependency parsing with general non-linear model.

We mention that learning with FW is mostly adapted for learning hinge loss. However,

[Krishnan et al., 2015] present the use of FW for marginal inference, which may inspire

future work of FW for probabilistic model of dependency parsing. In section 6.4, we present

the probabilistic inference network, with which we can train a probabilistic model with

assumption p(y|x; Θ) ∝ exp(S(x, y; Θ)). We present finally the conclusions in section 6.5.
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6.2 Learning and Inference with General Non-linear Model

We assume that the score function for the sentence tree pair (x, y) is S(x, y; Θ), with Θ

vector of parameters of the model and S(x, y) a differentiable function to the variable y.

Similar as Equation (2.2), inference aims to find the parse which maximizes the score:

y = argmax
y′∈Yx

S(x, y′; Θ)

Following discussions in Section 2.3 Chapter 2, we can use hinge loss or negative log-

likelihood to train the model. For simplicity, we consider only one (sentence, parse) pair

(x, y) while a complete calculation of loss is an averaging of (x, y) ∈ (X, Y ), with (X, Y ) a

subset (batch) of training data.

Hinge loss Hinge loss can be written as:

L(Θ) = [ max
y′∈Yx

(S(x, y′; Θ)− S(x, y; Θ) + ∆(y, y′))]+

with (x, y) the reference sentence and its corresponding parse. The crucial problem is to

solve the maximization:

max
y′∈Yx

S(x, y′; Θ) + ∆(y, y′)

with

∆(y, y′) =
∑

h,d∈[n]

(1− yh,d)y′h,d + (1− y′h,d)yh,d

the linear form of hamming distance between reference parse y and predicted parse y′.

Thus the difficulty for solving the maximization of hinge loss is the same as the inference

(maximizing the score to the parse tree y). This is because if S(x, y′; Θ) is a linear function to

the variable y′, then S(x, y′; Θ) + ∆(y, y′) is still linear. If S(x, y′; Θ) is convex or generally

non-linear to the variable y′, S(x, y′; Θ) + ∆(y, y′) is still convex or generally non-linear.

Thus methods work for the inference also work for the maximization of hinge loss. In the

following discussions, we refer to inference when talking about optimization with hinge loss.
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Negative Log-Likelihood Following equation (2.6), negative log-likelihood is:

L(Θ) = − log p(y|x; Θ)

= − log
exp(S(x, y; Θ))∑

y′∈Yx exp(S(x, y′; Θ))

= −S(x, y; Θ) + log
∑
y′∈Yx

exp(S(x, y′; Θ))

= −S(x, y; Θ) + logZ(x,Θ)

where logZ(x; Θ) = log
∑
y′∈Yx exp(S(x, y′; Θ)). The crucial problem is to calculate the log

partition function, which is intractable for general non-linear score functions.

In conclusion, learning and inference with general non-linear model require to solve either

a maximization problem, or calculate (estimate) the partition function.

6.3 Frank-Wolf Algorithm

In this section, we present the FW algorithms and its variants for dependency parsing. The

goal is to use FW for solving the inference problem directly. We present the basis of FW

algorithm, the adaptation of FW for dependency parsing and proper improvements to ensure

better convergence.

6.3.1 Background of Frank-Wolfe Algorithm

Frank-Wolfe algorithm (FW) can be used to solve the following convex optimization problem:

min
x∈M

f(x) (6.1)

where M is a compact convex set in a vector space, f :M→ R is a convex, differentiable

real-valued function [Boyd et al., 2004].

Figure 6.1: Basic Frank-Wolfe Algorithm [Lacoste-Julien and Jaggi, 2015]

75



To solve the problem, FW applies a linear approximation of the function and moves

towards a minimizer of the linear function in the same domainM. The basic FW algorithm

is described in Alg 7 In each iteration of FW, we take the first order Taylor expansion of the

Algorithm 7: Basic Frank-Wolfe Algorithm

1 Initialization: x(0) ∈M, ε > 0;
2 for t← 0 to T do

3 Let st := argmins∈M〈s,∇f(x)〉 and dF
t := st − x(t); // linear sub-problem

/* terminal condition */

4 if gF
t := 〈dF

t ,−∇f(x(t))〉 ≤ ε then terminal

5 Return x(t), f(x(t));
6 end

7 Let dt := dF
t , γmax = 1;

8 Line Search: γt = argminγ∈[0,γmax] f(x(t) + γdt); // step-size determination

9 Update x(t+1) := x(t) + γtdt; // update of current solution

10 end

11 Return x(T+1), f(x(T+1));

function f(x) and seek to minimize the the linear function in domain M. The solution is

denoted as st, with which we can calculate a descending direction dF
t = st − xt called FW

direction (line 3 in Alg 7). dt can be used to decrease the function with proper step-size and

it is easy to be calculated even with complex domain because only a linear function needs to

be minimized. The FW direction can be used to not only minimize the function value, but

also estimate the upper bound of gap between the current function value and the optimum,

with gF
t = 〈dF

t ,−∇f(x(t))〉. It is an upper bound of f(x(t))− f(x∗), with x∗ is the optimal

solution because

gF
t := 〈dF

t ,−∇f(x(t))〉 ≥ 〈x∗ − x(t),−∇f(x(t))〉 ≥ f(x(t))− f(x∗)

The first inequality comes from the definition of dF
t (line 3 in Alg 7) and the second inequality

comes from the property of the convex function [Boyd et al., 2004]. Thus, by limiting the

upper bound of the gap, we can well limit the gap between f(x(t)) and f(x∗).

For basic FW algorithm, the descending direction is set as dF
t (see line 7 of Alg 7. Variants

of FW use different descending direction, but dF
t is still used to estimate the upper bound of

gap). The step-size is determined with line search in line 8 and the update of new solution

is in line 9.

For basic FW algorithm, update in line 9 shows that x(t+1) is a convex combination of
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x(t) and st:

x(t+1) = x(t) + γtdt = (1− γt)x(t) + γtst

Recursively, any x(t) can be written as a convex combination of at most T + 2 points S :=

{x(0), s0, s1, ..., sT } ⊆ M:

x(t) = α0x
(0) +

t∑
i=1

αisi−1

with αi ≥ 0,∀i ∈ [t] and
∑t
i=0 αi = 1.

We call points in the set S atoms of x(t) and we call atoms with αi > 0 the active atoms.

In the following discussions on variants of FW algorithm, the set of active atoms is used to

calculate better descending directions.

FW algorithm can guarantee the convergence to global optimum for convex problems.

For non-convex problems, we can still obtain a local optimum with FW [Frank and Wolfe,

1956, Boyd et al., 2004].

Variants of Frank-Wolfe Algorithm

As is shown in Figure 6.1, frank-wolfe zig-zags if the optimal point lies in the boundary

[Lacoste-Julien and Jaggi, 2015]. This is because the current solution of basic FW algorithm

jumps between two points when approaching the optimum, which makes the convergence

slow. Two Variants of Frank-Wolfe algorithm can be used to solve the zig-zag problem.

Away-step Frank-Wolfe Algorithm [Wolfe, 1970] x(t) in each iteration of FW can

be viewed as a convex combination of active atoms. One method to deal with the zig-zag

problem is to make the solution move away from bad active atom. This is realized by defining

an away direction: Suppose that for iteration t, the set of active atoms for x(t) is S. The

away direction is defined as:

dA
t = xt − vt, with vt = argmax

v∈S
〈v,∇f(x)〉

vt is the active atom which gives the highest value over the first order Taylor expansion of

f(x), and thus can be viewed as a bad atom. When moving away from the bad atom gives

more diminution over the linear approximation than the FW direction, i.e. 〈dA
t ,−∇f(x)〉 >

〈dF
t ,−∇f(x)〉, the away direction dA

t is used instead of the FW direction dF
t . The detailed

away-step frank-wolfe algorithm is shown in Alg 8.

From line 7 to line 12, the descending direction is determined by comparing the potential

diminution brought from the the FW direction and the away-step direction. In order to

calculate the away-step direction dA
t , we need to know the set of active atoms (S) of current
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Algorithm 8: away-step Frank-Wolfe Algorithm

1 Initialization: x(0) ∈M, S = {x(0)}, α = {αv = 1|v ∈ S}, ε > 0;
2 for t← 0 to T do

3 Let st := argmins∈M〈s,∇f(x)〉 and dF
t := st − x(t); // linear sub-proble,

/* terminal condition */

4 if gF
t := 〈dF

t ,−∇f(x(t))〉 ≤ ε then

5 Returnx(t), f(x(t));
6 end

/* descending direction decision */

7 Let vt = argmaxv∈S〈v,∇f(x)〉 and dA
t = x(t) − vt;

8 if 〈dA
t ,−∇f(x)〉 > 〈dF

t ,−∇f(x)〉 then

9 dt := dA
t , and γmax := αvt/(1− αvt);

10 else

11 dt := dF
t , and γmax := 1;

12 end

13 Line Search: γt = argminγ∈[0,γmax] f(x(t) + γdt); // step-size determination

/* update of active atoms and weights */

14 if dt is d
A
t then

15 Update αvt := (1 + γt)αvt − γt and αv := (1 + γt)αv,∀v ∈ S(t)\{vt};
16 else
17 if st ∈ S then
18 Update αst := (1− γt)αst + γt and αv := (1− γt)αv,∀v ∈ S\{st};
19 else
20 Update S := S ∪ {st};
21 Update α := α ∪ {αst := γt} and αv := (1− γt)αv, ∀v ∈ S\{st};
22 end

23 end
24 Pop v ∈ S, αv ∈ α with αv = 0;

25 Update x(t+1) := x(t) + γtdt; // update of current solution

26 end

27 Return x(T+1), f(x(T+1));
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state x(t) and their corresponding weights (α). The update of the active atoms and the

corresponding weights are shown in line 14 to line 24.

Visually (Figure 6.2), away-step FW helps the convergence by moving away from bad

atoms.

Figure 6.2: away-step Frank-Wolfe Algorithm [Lacoste-Julien and Jaggi, 2015]

Pairwise Frank-Wolfe Algorithm Instead of making a comparison of away-step di-

rection and the FW direction, pairwise FW algorithms moves away from the bad atom while

moving to the minimizer of the linear approximation st. A pairwise direction is calculated

as: dPt := st− vt with vt := argmaxv∈S〈v,∇f(x)〉 the bad atom. In fact, it is a combination

of the FW direction and the away-step direction: dP
t = dF

t + dA
t . The detailed pairwise FW

algorithm is shown in Alg 9

The update direction direction is calculated in line 7 with the pairwise direction dP
t . As

the bad atom need to be determined in each iteration, we also need to update the set of

active atoms and their corresponding weights, which is shown in line 9 to line 15.

Visually (Figure 6.3), pairwise FW algorithm also accelerate the convergence by moving

to st the minimizer st and moving away from bad atom vt. In practice, pairwise FW is

simpler to implement than away-step FW and it has in general better performances than

away-step FW [Lacoste-Julien and Jaggi, 2015, Pedregosa et al., 2020]. In the following

discussions, we focus on either basic FW or pairwise FW algorithms. It is also worthwhile to

Figure 6.3: away-step Frank-Wolfe Algorithm [Lacoste-Julien and Jaggi, 2015]

note that for away-step and pairwise FW, the maximum step-size is limited by the weight of
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Algorithm 9: Pairwise Frank-Wolfe Algorithm

1 Initialization: x(0) ∈M, S = {x(0)}, α = {αv = 1|v ∈ S}, ε > 0;
2 for t← 0 to T do

3 Let st := argmins∈M〈s,∇f(x)〉 and dF
t := st − x(t); // linear sub-problem

/* terminal condition */

4 if gF
t := 〈dF

t ,−∇f(x(t))〉 ≤ ε then

5 Returnx(t), f(x(t));
6 end

/* pairwise direction */

7 Let vt = argmaxv∈S〈v,∇f(x)〉, dt := dP
t = st − vt and γmax := αvt ;

8 Line Search: γt = argminγ∈[0,γmax] f(x(t) + γdt) ; // step-size determination

/* update of active atoms and weights */

9 if st ∈ S then
10 Update αst := αst + γt and αvt := αvt − γt;
11 else
12 Update S := S ∪ {st};
13 Update α := α ∪ {αst := γt} and αvt := αvt − γt};
14 end
15 Pop v ∈ S, αv ∈ α with αv = 0;

16 Update x(t+1) := x(t) + γtdt; // update of current solution

17 end

18 Return x(T+1), f(x(T+1));
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the bad active atom. This is because the greatest extend to move away from the bad atom

is to make its weight to zero. Larger step-size may make the solution out of the domainM.

In the next section, we discuss the adaptation of FW algorithms for dependency parsing.

We show the adaptation with mainly the basic FW algorithm and the adaptation can be

applied in the same way over the variants of FW.

6.3.2 Adaptation of Frank-Wolfe Algorithm for Dependency Parsing

Following previous notations, we simplify S(x, y; Θ) to S(y) because both the inference and

maximization problem in hinge loss concern only the variable y.

Adaptation of the Optimization Problem As the linear function ∆(y, y′) does not

change the difficulty of optimization, it is sufficient to consider the following problem:

min
y∈Y
−S(y)

where Y is the set of all possible parses.

Y is a finite discrete set while in equation (6.1), we require the domainM to be a compact

convex set. Thus, the first adaptation is to expand the discrete set Y to a compact convex

set. This can be realized by expanding Y to its convex hull with convex combination [Boyd

et al., 2004]:

M := conv(Y) = {
∑
y′∈Y

ωy′y
′|ωy ≥ 0,∀y ∈ Y ;

∑
y∈Y

ωy = 1}

Remark that by using conv(Y), the solution of FW may probably be a dense matrix which

does not belong to the original discrete set Y . We present later the projection of the dense

matrix to its nearest discrete point in Y .

Adaptation of Frank-Wolfe Direction For each iteration of FW algorithm, a linear

sub-problem needs to be solved (see Alg 7 line 3):

st := argmin
s∈M

〈s,∇f(x)〉

For dependency parsing, this can be adapted as:

st := argmax
s∈conv(Y)

〈s,∇S(y(t))〉

Observe that maximizing a linear function over a simplex always gives solution of a vertex

[Boyd et al., 2004]. Thus, solving the linear maximization problem in conv(Y) is equivalent
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to solving the problem directly in Y :

st := argmax
s∈Y

〈s,∇S(y(t))〉

The problem changes to finding the tree which maximizes a linear score function 〈s,∇S(y(t))〉.
Thus, decoding algorithms like Eisner or Chu-Liu-Edmonds can be used for solving the prob-

lem. For clarity, we note it as:

st := DA(∇S(y(t)))

where DA represents Decoding Algorithms of Eisner or Chu-Liu-Edmonds, with ∇S(y(t))

the score of arcs.

6.3.3 Step-size determination with Modified Backtracking Line-Search

FW algorithm and its variants require line search to determine the step-size:

γt = argmin
γ∈[0,γmax]

f(x(t) + γdt)

Linear search is inefficient because this requires to evaluate several times the function values

with different step-sizes to make the decision.

To make line search more efficient, [Pedregosa et al., 2020] propose the backtracking line-

search to determine efficiently a proper step-size. The method is based on the assumption:

the function to minimize f(x) is L-smooth, i.e. it is differentiable and its gradient is L-

Lipschitz continuous

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈M

where L > 0 is the Lipschitz estimate parameter.

To determine a proper step-size γ for the function f(x(t)+γdt), they consider its quadratic

Taylor approximation to the variable γ, and with the previous assumption, the quadratic

function can be written as:

Qt(γ, L) = f(x(t))− γgt +
γ2L

2
||dt||2

where gt = 〈dt,−∇f(x)〉.
Thus, an optimum step-size can be calculated by minimizing the quadratic approxima-
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tion:

γt = argmin
γ

Qt(γ, L)

As the step-size is limited by γmax, we have

γt = min(
gt

L||dt||2
, γmax) (6.2)

Backtracking line-search requires that a sufficient decrease condition should be satisfied:

f(x(t) + γtdt) ≤ Qt(γt, L) (6.3)

which can guarantee f(x(t) + γtdt) ≤ f(x(t)) [Pedregosa et al., 2020], i.e. the step-size

satisfying the condition gives the same function value in the worst case.

Figure 6.4: Sufficient Decrease Condition [Pedregosa et al., 2020]

Remark that the algorithm can always satisfy the condition by increasing the Lipschitz

estimated parameter L[Pedregosa et al., 2020]. Note that the step-size is inversely pro-

portional to L (see Equation 6.3). To have larger step-size, the smallest L satisfying the

condition is used, which can be approximated by iteratively increasing L.

The backtracking line-search is present in details in Alg 10, with basic FW with back-

tracking presented in details in Alg 11. Although there is a loop in backtracking to determine

the Lipschitz estimated parameter L, [Pedregosa et al., 2020] shows that a fairly small num-

ber of iterations is sufficient to satisfy the sufficient decrease condition.

The Lipschitz estimate parameter L increases until the sufficient decreasing condition

is satisfied. This may lead to a small step-size which makes the algorithm too slow and

even stop (γ ≈ 0) later. In fact, there is no need to satisfy the sufficient decrease condition

to guarantee the diminution of the function value. In fact, we only need to guarantee

f(x(t) + γtd)t) ≤ f(x(t)). Inspired from the original line search which takes the step-size

that minimizes the function value, all we need to do is that during the loop of backtracking,

we choose the Lipschitz estimate parameter L which gives the smallest function value. In

this case, we can well guarantee that f(x(t) + γtd)t) ≤ f(x(t)). Moreover it is possible to

have a smaller Lipschitz estimate parameter L and a larger step-size γ, which can help to

accelerate the convergence. The modified backtracking algorithm is presented in Alg 12.
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Algorithm 10: Backtracking with Line-Search

1 Input: f, dt, x
(t), gt, L, γmax;

2 Initialization: τ > 1, η ≤ 1;
3 Let L := ηL;
4 Let γ := min( gt

L||dt||2
, γmax); // update step-size

/* sufficient decreasing condition */

5 while f(x(t) + γdt) > Qt(γ, L) do
6 Let L := τL; // increase L
7 Let γ := min( gt

L||dt||2
, γmax); // update step-size

8 end
9 Return γ, L;

Algorithm 11: Basic Frank-Wolfe Algorithm with Backtracking Line-Search

1 Initialization: x(0) ∈M, ε > 0, L := L0 > 0;
2 for t← 0 to T do

3 Let st := argmins∈M〈s,∇f(x)〉 and dF
t := st − x(t); // linear sub-problem

/* terminal condition */

4 if gF
t := 〈dF

t ,−∇f(x(t))〉 ≤ ε then

5 Return x(t), f(x(t));
6 end

7 Let dt := dF
t , gt := gF

t , γmax = 1;
/* step-size determination with backtracking line-search */

8 Backtracking Line-Search: γt, L = Backtracking(f, dt, x
(t), gt, L, γmax);

9 Update x(t+1) := x(t) + γtdt; // update of current solution

10 end

11 Return x(T+1), f(x(T+1));
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Algorithm 12: Modified Backtracking with Line-Search

1 Input: f, dt, x
(t), gt, L, γmax;

2 Initialization: τ > 1, η ≤ 1, L∗ := +∞, γ∗ := 0, v∗ = f(x(t));
3 Let L := ηL;
4 Let γ := min( gt

L||dt||2
, γmax); // update step-size

/* sufficient decreasing condition */

5 while f(x(t) + γdt) > Qt(γ, L) do
/* selection of step-size with smallest function value */

6 if f(x(t) + γdt) < v∗ then

7 Let L∗ := L, γ∗ := γ, v∗ = f(x(t) + γdt);
8 end
9 Let L := τL;

10 Let γ := min( gt
L||dt||2

, γmax); // update step-size

11 end
/* selection of step-size with smallest function value */

12 if f(x(t) + γdt) < v∗ then

13 Let L∗ := L, γ∗ := γ, v∗ = f(x(t) + γdt);
14 end
15 Return γ∗, L∗;

Restart Restart has already been used in optimization algorithm to accelerate the con-

vergence [Fukunaga, 1998, Jansen, 2002] of algorithms. Particularly for non-convex functions,

restart may help the current solution to jump out of the local minimum. This is particu-

larly useful for dependency parsing with general non-linear score functions because the score

function is probably non-convex. One restart strategy is that when the update leads to

an increase of the objective function value or no change, we restart the algorithm with the

current state x(t) as the initial state. This type of restart is called adaptive restart [Kim and

Fessler, 2018]. Restart can also be done every k > 1 iterations and is called fixed restart

[Kim and Fessler, 2018]. We propose to use adaptive restart for FW algorithm with modified

backtracking. As the modified backtracking can guarantee the diminution of the function

value, we set the restart condition as: the step-size γt becomes too small, i.e. γt ≤ δ, with

δ > 0, the acceptable minimum step-size.1.

For restart with basic FW algorithm, the initial point needs to be reset as the current

state x(t). However, this is not enough because backtracking may still give a small step-

size. Equation (6.2) shows that the step-size is inversely proportional to L. If the small

1. The restart condition can also be f(x(t))−f(x(t+1)) becomes too small, which is equivalent to restarting
when the step-size becomes too small
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step-size is caused by a large value of L, restart may not be useful. To avoid this problem,

we reset L := L0 with L0 the initial Lipschitz estimate parameter, which is usually a small

value. In this case, restart may accelerate the convergence of the basic FW algorithm with

backtracking by restarting with a large step-size.

For variants of FW algorithms, besides the reinitialization with x(t) and the reset L := L0,

we also need to reinitialize the set of active atoms to S := {x(t)} and their weights to

α := {αv = 1‖v ∈ S}. This is because the step-size for variants of FW is also controlled by

the weight of bad atom. When the weight of bad atom becomes small, the upper bound of

the step-size γmax will also become small for variants of FW, which may limit the usefulness

of restart if not reinitialized. Precisely, for away-step FW with away step directed used for

update, we have (see Alg 8 line 9):

γmax =
αvt

1− αvt

For pairwise FW, we have (see Alg 9 line 7):

γmax = αvt

where vt the bad atom and αvt its corresponding weight. When αvt → 0, γmax→0 for

both variants of FW. Thus besides the reinitialization of the initial state and the Lipschitz

estimated parameter, we also need to reinitialize the active atoms set S and their weights α

for variants of FW to guarantee possible larger step-size brought by restart.

Early Stopping In machine learning, early stopping is a strategy to stop in advance the

training when it brings no improvement (or worse performances) over the development data.

Similarly, the restart strategy used in FW introduces naturally a early stopping strategy.

This is because when restart brings no change (the step-size γt is still too small), there is no

need to do more restart and we can terminate directly the algorithm.

We present the restart and early stopping for the basic frank-wolfe algorithm with back-

tracking line-search in Alg 13. The method can also be applied over the variants of FW

algorithm by adding reinitialization over the active atom set S and its corresponding weights

α.

6.3.4 Projection of Dense Solution

As is mentioned in the beginning of the section, FW for dependency parsing gives solutions

in the space conv(Y), which is in fact a dense matrix. We propose to project y to its ’nearest’
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Algorithm 13: Basic Frank-Wolfe Algorithm with Backtracking Line-Search,
Restart and Early Stopping

1 Initialization: x(0) ∈M, ε, δ > 0, L := L0 > 0, RESTART = False;
2 for t← 0 to T do

3 Let st := argmins∈M〈s,∇f(x)〉 and dF
t := st − x(t); // linear sub-problem

/* terminal condition */

4 if gF
t := 〈dF

t ,−∇f(x(t))〉 ≤ ε then

5 Return x(t), f(x(t));
6 end

7 Let dt := dF
t , gt := gF

t , γmax = 1;
/* step-size determination with backtracking line-search */

8 Backtracking Line-Search: γt, L = Backtracking(f, dt, x
(t), gt, L, γmax);

/* restart condition */

9 if γt ≤ δ then
/* early stopping */

10 if RESTART then

11 Return x(t), f(x(t));
12 else
13 Let L := L0, RESTART = True;
14 end

15 else
16 Let RESTART = False;
17 end

18 Update x(t+1) := x(t) + γtdt; // update current solution

19 end

20 Return x(T+1), f(x(T+1));
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y∗ ∈ Y by minimizing their L1 distance:

y∗ = argmin
y′∈Y

||y′ − y||1

This is equivalent to2:

y∗ = argmax
y′∈Y

〈y′, y〉

Thus, the projection can be well solved with Eisner or Chu-Liu-Edmonds depending on

different tree structure. By using the previous notation DA representing decoding algorithms,

it can be written as:

y∗ = DA(y)

with the dense matrix y viewed as the score of the arc.

We give the final version of basic FW algorithm for dependency parsing in Alg 14, with

backtracking line-search, restart, early stopping and projection. The modified backtracking

for dependency parsing is shown in Alg 15. Adaptations for variants of frank-wolfe algorithm

are similar and we show a detailed adaptation for pairwise FW in Appendix D.3.

6.3.5 Conservation of the Tree Structure

In the previous Sections, we have proved that the sub-problem in each iteration of FW can be

solved with decoding algorithms like Eisner or Chu-Liu-Edmonds. One theoretical concern

is whether is it necessary to use Eisner or Chu-Liu-Edmonds to obtain st which conserves

the tree structure (projective or non-projective). Or whether taking the convex hull of

Y will break the projective or non-projective property. If the tree structure is conserved

for conv(Y), then the use of decoding algorithms may be useful. If not, then it becomes

unnecessary to conserve the tree structure for the linear sub-problem and we can use simpler

and more efficient methods.

The following proof shows that for projective tree, it may still be useful to use Eisner

for solving the sub-problem. For non-projective tree, we can well replace Chu-Liu-Edmonds

with simple argmax.

We start from the definition of projective tree given in Definition 1 Chapter 2: a projective

tree is an acyclic directed graph which satisfies the following two properties:

1.The in-degree of every node (except the root) equals and only equals to 1.

2.∀(i, j) ∈ y, with j > i+ 1, ∀m with i < m < j, there exists a path from i to m, which

only passes nodes i, j and nodes between i, j.

2. see Appendix D.1
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Algorithm 14: Basic Frank-Wolfe Algorithm for Dependency Parsing, with Back-
tracking Line-Search, Restart, Early Stopping and Projection

1 Initialization: y(0) ∈ Y , ε, δ > 0, L := L0 > 0, RESTART = False;
2 for t← 0 to T do

3 Let st := DP (∇S(y(t))) and dF
t := st − y(t); // linear sub-problem

/* terminal condition */

4 if gF
t := 〈dF

t ,∇S(y(t))〉 ≤ ε then

5 Projection: y∗ := DA(y(t));
6 Return y∗, S(y∗);
7 end

8 Let dt := dF
t , gt := gF

t , γmax = 1;
/* step-size determination with backtracking line-search */

9 Backtracking Line-Search: γt, L = Backtracking(S, dt, y
(t), gt, L, γmax);

/* restart condition */

10 if γt ≤ δ then
/* early stopping */

11 if RESTART then

12 Projection: y∗ := DP(y(t));
13 Return y∗, S(y∗);
14 else
15 Let L := L0, RESTART = True;
16 end

17 else
18 Let RESTART = False;
19 end

20 Update y(t+1) := y(t) + γtdt; // update current solution

21 end

22 Projection: y∗ := DA(y(T+1));
23 Return y∗, S(y∗);
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Algorithm 15: Modified Backtracking for Dependency Parsing with Line-Search

1 Input: S, dt, y
(t), gt, L, γmax;

2 Initialization: τ > 1, η ≤ 1, L∗ := +∞, γ∗ := 0, v∗ = −S(y(t));
3 Let L := ηL;
4 Let γ := min( gt

L||dt||2
, γmax);

5 while −S(y(t) + γdt) > Qt(γ, L) do

6 if −S(y(t) + γdt) < v∗ then

7 Let L∗ := L, γ∗ := γ, v∗ = −S(y(t) + γdt);
8 end
9 Let L := τL;

10 Let γ := min( gt
L||dt||2

, γmax);

11 end

12 if −S(y(t) + γdt) < v∗ then

13 Let L∗ := L, γ∗ := γ, v∗ = −S(y(t) + γdt);
14 end
15 Return γ∗, L∗;

For non-projective tree, only the first property is required.

The first property can be expressed as:

n∑
i=1

yi,j = 1 ∀j ∈ {1, ..., n},∀y ∈ Y

And it is simple to verify that the first property is satisfied ∀y ∈ conv(Y):

n∑
i=1

yi,j =
n∑
i=1

∑
y′∈Y

ωy′y
′
i,j , ∀y ∈ conv(Y)

=
∑
y′∈Y

ωy′

n∑
i=1

y′i,j

= 1

To rewrite formally the second property, we use Pji (m) to represent the set of all paths

from node i to node m between i, j, which only pass nodes i, j and nodes between i, j. We

note r ∈ Pji (m) one arc in the set and (s, t) ∈ r one directed arc in the path from i to m.

Then the second property can be represented as: if ∃y ∈ Y s.t. yi,j 6= 0, with j > i + 1.
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Then ∀m with i < m < j, we have: ∑
r∈Pji (m)

∏
(s,t)∈r

ys,t 6= 0 (6.4)

To prove that the second property is also satisfied ∀y ∈ conv(Y), suppose ∃y ∈ conv(Y)

s.t. yi,j 6= 0 with j > i + 1. Then as y ∈ conv(Y) can be written as a convex combination

of points in the set Y we have:

yi,j =
∑
y′∈Y

ωy′y
′
i,j 6= 0, with

∑
y′∈Y

ωy′ = 1, ωy′ ≥ 0

This indicates that ∃y∗ ∈ Y s.t. ωy∗ > 0 and y∗i,j 6= 0. By reusing Equation 6.4, we have:

∑
r∈Pji (m)

∏
(s,t)∈r

y∗s,t 6= 0 (6.5)

∀m with i < m < j.

Thus, for y ∈ conv(Y) with yi,j 6= 0, we have:∑
r∈Pji (m)

∏
(s,t)∈r

ys,t =
∑

r∈Pji (m)

∏
(i,j)∈r

∑
y′∈Y

ωy′y
′
s,t

≥
∑

r∈Pji (m)

∏
(s,t)∈r

ωy∗y
∗
s,t

= ωy∗
∑

r∈Pji (m)

∏
(s,t)∈r

y∗s,t

6= 0

The first line uses condition that y ∈ conv(Y . In the second line, we replace the summation

over all possible arborescence with one single arborescence y∗. As ωy′y
′
s,t ≥ 0, the inequality

is valid. We reformulate the equation in the third line and find that it is a product of ωy∗ ≥ 0

the Equation 6.5, which does not equals 0. Thus, we prove that the second property is still

conserved ∀y ∈ conv(Y).

We mention that the property acyclic is not conserved for all y ∈ conv(Y). This can be

seen from the convex combination of two trees, with one has arc (i, j) and the other has arc

(j, i).

The previous proof shows that for projective trees, all properties are satisfied ∀y ∈
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conv(Y) except for the acyclic property. This indicates that by using Eisner algorithm for

the linear sub-problem in each iteration of FW, we still search in a highly structured space.

However, for non-projective trees, as the second property is no longer needed, only the first

property is conserved. As the acyclic property is not conserved by taking the convex hull

of non-projective trees, there is no need to use Chu-Liu-Edmonds to guarantee the acyclic

property for st. Thus when using FW for non-projective trees, we can well replace Chu-

Liu-Edmonds by simply taking argmax over each column of the matrix, which is much more

efficient. Note that for the projection of dense tree to its nearest discrete tree, Chu-Liu-

Edmonds is still useful to guarantee the acyclic property.

In conclusion, we have:

DA =

Eisner if projective

argmax if non-projective

for solving the linear sub-problem in each iteration of FW, which can increase a lot the speed

for the non-projective tree.

When it comes to projection, we still need to use:

DA =

Eisner if projective

Chu-Liu-Edmonds if non-projective

6.4 Probabilistic Inference Network

Inference network has been used for structure prediction [Tu and Gimpel, 2018, Tu et al.,

2020a,b] and machine translation [Tu et al., 2020c]. In Section 2.4, we discussed learning

SPEN with the inference network [Tu and Gimpel, 2018, Tu et al., 2020b] through hinge loss.

The method proposes to use another network G with parameter Φ (which is called inference

network) to solve the sub-problem of hinge loss, and the output of the inference network G

is used as the most violating prediction. This creates in fact a saddle point optimization

problem and can be expressed as:

min
Θ

max
Φ

[E(x, y; Θ) + ∆(y,G(x; Φ))− E(x,G(x; Φ); Θ)]+

where Θ is the vector of parameters of SPEN, Φ is the vector of parameters of the inference

network. G(x; Φ) is the output of inference network which is used to find the most violating

prediction for hinge loss. Instead of using FW to directly infer the most violating prediction,

inference network predicts it with a fowrard pass on G, which could be more efficient.
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Using inference network with hinge loss has been well discussed in previous works [Tu

and Gimpel, 2018, Tu et al., 2020b,a]. However, the use of inference network for probabilistic

model is not clear. In this section, we present how to use inference network to train a non-

linear probabilistic model. The main idea is that instead of using inference network to do

inference (solving the minimization/maximization problem), we propose to use the inference

network to learn the distribution p(y|x; Θ).

6.4.1 Learning Framework

We present the loss function used for learning the non-linear model for dependency parsing

and the inference network. As the framework inference network is similar to GAN [Goodfel-

low et al., 2014], we use LG (G for generator) for the loss function of the inference network

and LD (D for discriminator) for the loss function of the non-linear model for dependency

parsing.

Discriminator Loss Function As discussed in Section 6.2, the main difficulty for cal-

culating the negative log-likelihood lies in the calculation of the log partition function:

logZ(Θ) = log
∑
y′∈Yx

exp(S(y′; Θ))

which is intractable for general non-linear score functions. With discussions in Section 2.3,

instead of estimating the partition function, we can estimate directly the gradient with

equation (2.7), which can be modified for dependency parsing by replacing the energy with

score:
dLNLL(Θ)

∂Θ
=

∂

∂Θ
[Ey′∼p(y|x;Θ)S(y′; Θ)− S(y; Θ)]

Thus instead of using negative log-likelihood which may be intractable for non-linear score,

we can use the following loss function which gives same gradient over the vector of parameters

Θ as negative log-likelihood:

LD(Θ) = Ey′∼p(y|x;Θ)S(y′; Θ)− S(y; Θ)

It is still intractable to calculate the exact expectation of S(y; Θ):

Ey′∼p(y|x;Θ)S(y′; Θ) =
∑
y∈Y

p(y|x; Θ)S(y; Θ)

Because firstly it is intractable to calculate p(y|x; Θ), and it is also intractable to calculated

a weighted sum of non-linear score for all possible trees. However, the law of large num-
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bers [Grimmett and Stirzaker, 2020] allows us to estimate the loss function with K trees

{y(1), ..., y(K)} sampled to the distribution p(y|x; Θ), and the loss function can be estimated

as:

LD(Θ) ≈ 1

K

K∑
i=1

S(y(i); Θ)− S(y; Θ),with {y(1), ..., y(K)} ∼ p(y|x; Θ) (6.6)

Still as S(y; Θ) is a non-linear function to the variable y, it is difficult to sample directly to the

distribution p(y|x; Θ). Inspired by Variational AutoEncoder (VAE) [Kingma and Welling,

2014], we can use another simple-to-sample distribution q(y) to do the sampling while we

try to approximate q(y) to p(y|x; Θ). In this case, we may sill have a good estimation of the

discriminator loss function with:

LD(Θ) ≈ 1

K

K∑
i=1

S(y(i); Θ)− S(y; Θ),with {y(1), ..., y(K)} ∼ q(y)

Generator Loss Function Following the previous discussion, we propose to use:

q(y) := q(y|x; Φ)

where q(y|x; Φ) ∝ S(x, y; Φ), with S(x, y; Φ) the score function of the inference network. To

make q(y|x; Φ) a simple-to-sample distribution, we use arc-factored (linear) model for the

inference network.

To approximate the distribution q(y|x; Φ) to the distribution p(y|x; Θ), we can use KL

divergence (asymmetric) [Kullback and Leibler, 1951] or Jensen Shannon (JS) divergence

(symmetric) [Manning and Schutze, 1999] as the loss function. When x is unambiguous

from the context, we use p(y; Θ) and q(y; Φ) to represent separately p(y|x; Θ) and q(y|x; Φ).

The calculation of the loss function is shown below:

KL Divergence q||p: As KL divergence is asymmetric, we use
−−→
LKL
G (Φ) to represent the

loss function calculated with KL divergence with q(y; Φ) as the reference probability.

The loss function with the KL divergence can be calculated as:

−−→
LKL
G (Φ) = DKL(q(y; Φ)||p(y; Θ))

=
∑
y∈Y

q(y; Φ) log
q(y; Φ)

p(y; Θ)

This is intractable because we cannot calculate the probability p(y; Θ). Also the sum over all

possible trees is intractable for general non-linear model. Inspired with equation (2.7) which

estimates directly the gradient of the loss function, the gradient to the Φ can be calculated
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as3:

d
−−→
LKL
G (Φ)

dΦ
= Ey∼q(y;Φ)(1 + log q(y; Φ)− log p(y; Θ))

∂ log q(y; Φ)

∂Φ

The only unknown term in the equation is log p(y; Θ), which can also be estimated by using

the easy to sample distribution q(y; Φ)4:

log p(y; Θ) = S(y; Θ)− logEy′∼q(y;Φ)
exp(S(y′; Θ))

q(y; Φ)

Thus, the gradient can be calculated as:

d
−−→
LKL
G (Φ)

dΦ
= Ey∼q(y;Φ)(1 + log q(y; Φ)

Estimation of the negative log-likelihood︷ ︸︸ ︷
−S(y; Θ) + logEy′∼q(y;Φ)

exp(S(y′; Θ))

q(y; Φ)
)
∂ log q(y; Φ)

∂Φ

This indicates that we can use the following loss function as the loss function for the inference

network:

−−→
LKL
G (~Φ) = Ey∼q(y;Φ)(1 + log q(y; Φ)

Estimation of the negative log-likelihood︷ ︸︸ ︷
−S(y; Θ) + logEy′∼q(y;Φ)

exp(S(y′; Θ))

q(y; Φ)
) log p(y; ~Φ)

(6.7)

As the gradient is only calculated over the last term, we use ~Φ to represent parameters which

require the calculation of the gradient, while Φ is viewed as a constant.

With K trees {y(1),...,y(K)} sampled from the distribution q(y; Φ), the loss of the inference

can be estimated as:

−−→
LKL
G (~Φ) ≈ 1

K

K∑
i=1

[1 + log q(y(i); Φ)− S(y(i); Θ) + log
1

K

K∑
j=1

exp(S(y(j); Θ))

q(y(j); Φ)
] log q(y(i); ~Φ)

KL Divergence p||q: We use
←−−
LKL
G (Θ) to represent another form of KL divergence which

uses p(y; Θ) as the reference probability:

←−−
LKL
G (Φ) = DKL(p(y; Θ)||q(y; Φ))

=
∑
y∈Y

p(y; Θ) log
p(y; Θ)

q(y; Φ)

3. see Appendix D.2

4. see Appendix D.4
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With similar deduction, we have5:

d
←−−
LKL
G (Φ)

dΦ
= Ey∼q(y;Φ) −

p(y; Θ)

q(y; Φ)

∂ log q(y; Φ)

∂Φ

With the previous deduction, p(y; Θ) can be calculated as:

p(y; Θ) =
exp(S(y; Θ))

Ey′∼q(y;Φ)
exp(S(y′;Θ))
p(y′;Φ)

and another form of the loss function is:

←−−
LKL
G (~Φ) = Ey∼q(y;Φ)

−1

q(y; Φ)

Estimation of the likelihood︷ ︸︸ ︷
exp(S(y; Θ))

Ey′∼q(y;Φ)
exp(S(y′;Θ))
p(y′;Φ)

log p(y; ~Φ)

Similarily, we can estimate the loss function with K samples:

←−−
LKL
G (~Φ) ≈ 1

K

K∑
i=1

− exp(S(y(i); Θ))

p(y(i); Φ) 1
K

∑K
j=1

exp(S(y(j);Θ))

p(y(j);Φ)

log p(y(i); ~Φ)

=
K∑
i=1

− exp(S(y(i); Θ))

p(y(i); Φ)
∑K
j=1

exp(S(y(j);Θ))

p(y(j);Φ)

log p(y(i); ~Φ)

(6.8)

JS Divergence The JS divergence can be calculated with:

LJS
G (Φ) =

1

2
DKL(q(y; Φ)||p(y; Θ)) +

1

2
DKL(p(y; Θ)||q(y; Φ))

Thus, it can be estimated by simply using the equation (6.7) and the equation (6.8):

LJS
G (~Φ) ≈ 1

2
[
−−→
LKL
G (~Φ) +

←−−
LKL
G (~Φ)] (6.9)

6.4.2 Finer Sampling with Metropolis-Hastings

To estimate the discriminator loss function with equation (6.6), the ideal situation is to

sample directly with the distribution of discriminator p(y; Θ). As this is impossible for

non-linear score function for the discriminator, we propose to sample with the simple-to-

5. see Appendix D.2
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sample distribution q(y; Φ), which is the distribution of an arc-factored model. Moreover,

we approximate q(y; Φ) to p(y; Θ) with KL divergence or JS divergence. However, q(y; Φ)

cannot approximate exactly the distribution p(y; Θ) except that q(y; Φ) is the distribution

of a linear model6. Thus when q(y; Φ) is non-linear, a non-zero error may exits between q

and p, which can lead to inaccurate sampling.

To solve the problem, we propose to use Metropolis-Hastings algorithm (MH) [Hastings,

1970] to approximate sampling from p(y; Θ), with q(y; Φ) as the proposal distribution. MH

algorithm is a MCMC method for generating a sequence of samples from a hard-to-sample

distribution. The proof of validity of the algorithm is out of the scope of the thesis and can

be referred in [Brooks et al., 2011]. The algorithm is described in Alg 16. With S(y; Φ) as the

Algorithm 16: Metropolis Hastings

1 Initialization: y(0) ∼ q(y; Φ), t = 0;
2 while t < K do
3 Sample y′ ∼ q(y; Φ); // generate a new sample

4 Acceptance probability: A(y′, y(t)) := min(1,
p(y′;Φ)

p(y(t);Φ)

exp(S(y(t);Θ))
exp(S(y′);Θ)

);

5 Sample u ∈ [0, 1] with uniform distribution;

6 if u ≤ A(y′, y(t)) then

7 Set y(t+1) := y′; // accept the new sample

8 else

9 Set y(t+1) := y(t); // reject the new sample

10 end
11 Set t := t+ 1

12 end

score function of the inference network. To make the distribution of the inference network

simple-to-sample, S(y; Φ) is designed to be linear to y. The generated sequence of samples

with MH {y(1), ..., y(K)} is then used as better approximate samples to the distribution

p(y; Θ).

Thus, with the loss function LG(Φ) (estimated with either KL divergence or JS diver-

gence), we can approximate q(y; Φ) to p(y; Θ). Although q(y; Φ) cannot approximate exactly

in theory p(y; Θ), we can use MH algorithm to do the correction and thus give better samples.

6. see Appendix D.5
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6.4.3 Inference

For inference with inference network, we can follow [Tu and Gimpel, 2018, Tu et al., 2020b]

to use the inference network directly for the inference. As the inference network is designed

as a linear model, Eisner or Chu-Liu-Edmods can be used for efficient inference.

According to the previous discussions, the inference network cannot approximate exactly

the distribution of a non-linear model. Thus, we can use the solution of inference network

as an initialization, and then use FW algorithm to do fine search with the non-linear model.

6.4.4 Unsolved Problem

One unsolved problem of inference network for dependency parsing is the dropout [Srivastava

et al., 2014a] used in non-linear model.

To avoid overfitting, the dropout method is used in the discriminator. The distribution

of the discriminator is represented as p(y; Θ). But in reality, dropout creates a different Θt

in iteration t of training, where Θt is a sub-set of parameters over Θ. Thus when training

the inference network, q(y; Φ) tries to approximate in fact p(y; Θt). Although p(y; Θt) is

assumed to be similar as p(y; Θ), we found n practice that dropout varies the distribution

a lot , which makes learning of the inference network quite unstable. The same problem

happens when using inference network with hinge loss.

As far as we know, the problem of dropout is not mentioned in published articles of

inference network.

6.5 Conclusions

In this section, we presented two methods (FW algorithm and probabilistic inference net-

work) for learning and inference with general non-linear model for dependency parsing.

FW algorithm can be used for inference. For learning of the model, it is mostly adapted

with hinge loss. To adapt FW for deep dependency parsing, we expanded the discrete set

of trees Y to a compact convex set by using its convex hull conv(Y). We showed that the

sub-linear problem in each iteration of FW algorithm can be solved efficiently with Eisner

or Chu-Liu-Edmonds. To avoid inefficient line search, we used backtracking line-search to

determine a proper step-size with few iterations of evaluation. Moreover we proposed a

modified version of backtracking by replacing the solution which satisfies the strict decrease

condition with the solution which gives the highest score. Restart and early stopping strate-

gies were added to accelerate the convergence and projection was used in the end to project

the dense solution of FW in conv(Y) back to its nearest point in Y , with the nearest point
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found by minimizing their L1 distance. We proved that this can also be realized efficiently

with Eisner or Chu-Liu-Edmonds. Finally, we showed theoretically that the convex hull

conv(Y) breaks the acyclic property of Y but conserves the other two properties (single head

property, projective property) for projective trees. Thus the convex hull of projective trees

is still highly structured and the use of Eisner for the linear sub-problem for the sub-linear

problem is still necessary. For non-projective tree, only the single head property is conserved.

Thus it is safe to replace Chu-Liu-Edmonds with argmax, which is much more efficient.

For probabilistic inference network, we modified the inference network method, which is

originally used with hinge loss, to a probabilistic version. The original inference network

can track one point (maximum or minimum of the discriminator) while the probabilistic

inference network is designed to approximate the distribution of the discriminator. As the

calculation of the loss function is difficult for both the discriminator (non-linear SPEN) and

the generator (inference network), we proposed to calculate directly the gradient of the loss

and use sampling methods to estimate the gradient. Different versions of loss function for the

inference network were given with KL divergence or JS divergence. Although it is impossible

to approximate exactly the distribution of a non-linear discriminator, MH algorithm can be

used to give better samples.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we focused on graph-based dependency parsing and studied the non-linear

graph-based models under the framework of EBMs.

In Chapters 2 and 3, we introduced the background of the thesis.

• In Chapter 2, we introduced the basis of EBMs. Graph-based models can be viewed

as EBMs and learning methods of EMBs can be applied on graph-based models for

training. We made comparisons between FFMs and EBMs to present the advantages

and difficulties of using EBMs for structure prediction. EBMs can be used to construct

complex models to exploit the information of complicated structures, but may make

learning and inference intractable. We presented max-margin learning and probabilis-

tic learning for EBMs and clarify their differences and connections. We presented a

concrete framework SPEN in the end of chapter 2. SPEN separate the energy of the

model as local energy and global energy. The local energy is designed to explore simple

relations of the structure with linear functions while the global energy is non-linear,

which aims to explore complex relations in the structure. SPEN is used to construct

our own non-linear models for dependency parsing, with the linear part designed to be

an arc-factored model and the global part as higher-order models or general non-linear

models.

• In Chapter 3, we introduced the task of dependency parsing. We introduced projec-

tive and non-projective parses, which have different constraints over the structure and

require different decoding algorithms. For previous works on dependency parsing, we

presented in details the arc-factored and second-order models and their correspond-

ing inference algorithms. For more recent advances of dependency parsing with deep

learning, we present the architecture of neural network used in deep graph-based mod-

els. LSTM is used for feature extraction while affine functions are used for calculate

the score. Batchified inference algorithms with back-propagation was presented, which

can benefit from the acceleration of modern GPUs. In the end of the chapter, we pre-

sented end-to-end learning with MFVI. The method gives approximated estimation of

the probability of arcs, but can still benefit from the use higher-order structures. The

Chapter is a foundations of our discussions on non-linear models.

In Chapters 3, 4 and 5, we present our contributions on non-linear graph-based models:
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• We proposed a non-linear probabilistic model with Mixture-of-Experts (MoE) in Chap-

ter 4 and we proposed efficient inference algorithms based on MBR decoding. We

studied the averaging effect and the clustering of MoE for dependency parsing. The

averaging effect shows that by using a simple averaging MoE, performance of parsers

increases by reducing the variance of the system. For the clustering effect, we proposed

to calculate a weighted sum over the experts. We proposed a stabilized method for

learning weights of experts, which solves the degeneration problem in learning of MoE.

In practice, we found the clustering effect achieved little but consistent augmentation

of the performance over the dev data.

• In Chapter 5, we generalized the existing constrained higher-order models to a gen-

eral polynomial model, which can incorporate the score of all possible structures of

any order. We proposed a efficient gradient-based method for inference with coor-

dinate ascent. As the general polynomial is non-convex, we propose to combine ge-

netic algorithm with inference for better solutions. Moreover, we propose a linearized

marginalization method for learning and inference based on the gradient. The basic

idea is to approximate the polynomial model with a linear approximation around the

inference solution, and then treat the linear approximation as an arc-factored model.

We verify experimentally that the method shows generally better performance than

learning with hinge loss, and can be used to guarantee the tree structure (projective

or non-projective) with Eisner or Chu-Liu-Edmonds at inference.

• Finally we studied the general non-linear model which we do not attribute particu-

lar restrictions over the form of the score function. We proposed to introduce convex

optimization method for inference and adapted FW algorithm for dependency pars-

ing. We proved that the linear sub-problem in each iteration of FW can be solved

efficiently with inference algorithms for arc-factored models. To accelerate the speed

of calculation, backtracking, restart and early stopping strategies are used for faster

convergence. FW is most adapted for max-margin learning. For probabilistic learn-

ing, we propose a probabilistic inference network to approximate the distribution of

the general non-linear models. The calculation of the loss function is intractable for

non-linear models while we proposed to estimate directly the gradient with sampling

and MCMC. New loss function based on KL-divergence and JS-divergence are derived

and explained in detail for training probabilistic inference network.
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7.2 Future Work

Clustering with Different Experts In Chapter 4 we have studied the MoE for depen-

dency parsing. The averaging effect is shown to be beneficial for the performance but the

clustering effect does not have evident influences and gives similar weights for all experts.

One possibility is that we use same type of experts for MoE, which makes the MoE hard to

cluster sentences to different experts. As the stabilized training of MoE is well solved, we

can well construct a MoE with different experts. For example, an MoE with 3 experts can be

constructed, with the first expert assigned to be the arc-factored model, the second expert

assigned to a second order model with adjacent siblings and the third expert assigned to be a

second order model with grandparent. It is also possible to combine the exploration with our

work in chapter 5. With the general polynomial model for parsing dependency, we can have

much more types of experts than experts constructed with constrained higher-order models,

which may help to build more complex MoEs. The intuition of using different types of ex-

perts in MoE is that for simple sentences, simple parsers like arc-factored model may work

better while for complex sentences, parsers with higher-order structures may work better.

In this case, we may be able to well separate the clusters and may have better performances

than MoE with same experts.

Explore the Usefulness of Polynomial Factors In Chapter 5, we have have studied the

general polynomial model, which incorporate all possible structures of any order. Although

the order of the model is limited by the memory of current modern GPUs, we can study at

least the general second order model, which has not only the connected structures (sibling,

grandchild), but also all possible non-connected structures. With our developed learning and

inference method for general polynomial models, we can study the effect of using different

structures over the performances of second order models. The more concrete question can

be asked as: are all second order structures equally useful, or maybe some of the second

order structures are more useful than the others. If the question is well answered, it may be

possible to build better but also memory saving second order models by considering some of

the most useful second order structures.

New Architecture of Neural Work for Efficient Score Calculation In Chapter 6,

we adapt FW algorithm for dependency parsing. FW gives local optimum for non-linear

functions, and can be used for learning and inference with any non-linear score functions.

As far as we know, all SOTA results on graph-based dependency parsing use affine func-

tions to calculate the score of the arborescence, which limits the score function to be poly-

nomial functions. With our work on adaptation of FW for dependency parsing, it is possible
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to consider general non-linear (non-polynomial) score function which uses powerful archi-

tectures of neural network other than affine functions. We should pay attention that the

calculation of the score function should be efficient because FW requires several evaluations

of the score function to converge. In this case, Transformer [Vaswani et al., 2017] may be a

promising direction, which is powerful and may also be efficient (parallel calculation).
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Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia
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APPENDIX A

ENERGY-BASED MODELS

A.1 Hinge Loss Without the Outer Max

This can be seen from the derivation:

E(x, y; Θ) + max
y′∈Y

(∆(y, y′)− E(x, y′; Θ)) ≥ E(x, y; Θ) + ∆(y, y)− E(x, y; Θ)

= 0

Thus, we have always E(x, y; Θ) + maxy′∈Y(∆(y, y′) − E(x, y′; Θ)) ≥ 0 if exact inference

is available. When exact inference is hard to obtain or we can have at most approximate

inference, the outer max can be used to avoid negative loss values.

118



APPENDIX B

MIXTURE OF EXPERTS

B.1 Marginal Probability of Arc for Mixture Model

With Eq. (4.3). The marginal probability of mixture model can be written as:

p((h, d)|x) =
∑

y∈Y(x)
(h,d)∈y

K∑
k=1

ωkpk(y|x)

By changing the order of sum, we can have:

p((h, d)|x) =
K∑
k=1

ωk
∑

y∈Y(x)
(h,d)∈y

pk(y|x)

The inner part is exactly pk((h, d)|x). Thus, we have:

p((h, d)|x) =
K∑
k=1

ωkpk((h, d)|x)

B.2 Quick Gradient Analysis of Gating Network

We start from Eq. (4.6).

For mixture model with well trained experts, most of the data are equivalent for all

experts, which means pk(y|x) have similar value for all experts. To see quickly why gradient

approaches 0 in this case, we assume further that pk(y|x) has the same value for equivalent

data. Thus, Eq. (4.6) becomes:

∂L(φ, θ)

∂φ
=

K∑
k=1

ωk(φ)
∂ logωk(φ)

∂φ
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With a little more deduction, we have:

∂L(φ, θ)

∂φ
=

K∑
k=1

ωk(φ)
1

ωk(φ)

∂ωk(φ)

∂φ

=
K∑
k=1

∂ωk(φ)

∂φ

=
∂
∑K
k=1 ωk(φ)

∂φ

=
∂1

∂φ

= 0

As the function is continuous w.r.t. pk, for data which provides similar value of probability

on all experts, the gradient will approaches zero. Thus, for training with Eq. (4.6), only a

small part of data, which shows strong preference of particular experts, is used to train the

gating network.

For training with Eq. (4.8), all the data is useful for training the gating network. In fact,

the gradient of Eq. (4.8) becomes zero when:

ωk(φ) =
pk(θk)∑K

k
′
=1

p
k
′ (θ

k
′ )

Thus for data which are equivalent for all experts, a uniform weight will be learnt while

for data with strong preference of particular experts, a biased weight proportional to the

probability correctness on each expert can also be learnt.

B.3 Gating Network Structure, Hyper-parameters of Training

The gating network structure is similar to the structure of parse model.

Embedding Word embedding for word xi is an concatenation of two parts: normal word

embedding and CharLSTM embedding:

ei = emb(xi)
⊕

CharLSTM(xi)

when there is pre-trained embedding, the first item is the sum of word embedding calculated
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by neural network, and the exterior pretrained embedding:

emb(xi) = WordEMB(xi) + PreEMB(xi)

We suppose that PreEMB has the same size as WordEMB

BiLSTM The embedding vectors are then passed to 3 layers of BiLSTM, with the output

at position i is noted as hi.

Coefficient Extractor The coefficient extractor part is constructed of one layer of LSTM

[Hochreiter and Schmidhuber, 1997] and one layer of MLP. The last hidden state of LSTM

is passed to MLP, which compress the vector size to the number of experts in the mixture

model. Two groups of coefficient extractor are used to calculate separately the weight of

combination for arc and label. We note the output of MLP as C ∈ RK , with:

Carc = MLParc(LSTMarc(h0, ..., hn))

Clabel = MLPlabel(LSTMlabel(h0, ..., hn))

The output of MLP is passed to Softmax to calculate the weight for each expert:

[ω1, ..., ωK ] = Softmax(Carc)

[ωl1, ..., ω
l
K ] = Softmax(Clabel)

Model hyper-parameters of fine tuning is shown in Table B.1. We use also Adam [Reddi

et al., 2018] for training, with learning rate set to 2e−4 (10 times smaller than learning rate

used for training experts). The patience is set to 20 instead of the original value 100. For

fine tuning, we found that best score is usually achieved in less than 20 epochs and does not

increase later.

Param Value Param Value
WordEMB size 100 Embedding dropout 0.33
CharLSTM size 50 CharLSTM dropout 0.00

BiLSTM size 400 BiLSTM dropout 0.33
LSTMarc size 400 LSTMarc dropout 0.00

LSTMlabel size 400 LSTMlabel dropout 0.00
MLParc size K MLParc dropout 0.00

MLPlabel size K MLPlabel dropout 0.00

Learning Rate 2e−4 β1, β2 0.90

Annealing 0.75
t

5000 Patience 20

Table B.1: Hyper-parameters of Fine Tuning
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B.4 Implementation Differences

We implement Zhang et al. [2020a] CRF model and CRF2o model with two tiny technical

differences.

The first one is that the CharLSTM [Lample et al., 2016] part in Zhang et al. [2020a]

treats the beginning of the sentence <bos> (the special token to represent the beginning of

the sentence) as five separate characters: <,b,o,s,>.

Our implementation treats the beginning of sentence as one special character for CharL-

STM.

Another difference is that Zhang et al. [2020a] treats the lengths of every sentence as

n+ 2 by considering two special tokens <bos> and <eos> (although in practice, only <bos>

was added to every sentence). In our implementation, we keep the length of sentence as

the number of words n. This is because the log probability of arc and label only considers

the words in the sentence without special tokens. Thus our batch size should be a little bit

higher than Zhang et al. [2020a].

One final difference is that for MBR decoding, Zhang et al. [2020a] maximizes the sum of

marginal arc probability. While in our implementation of MBR, we maximize the product

of marginal arc probability.

B.5 Variance Reduction on CoNLL09

We note that the label variance for FOP and SOP are quite similar that they overlap together

for CoNLL09 Chinese.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

logK

lo
g

Σ
2

WKParc
WKPlabel
FOParc

FOPlabel
SOParc

SOPlabel

Figure B.1: Variance of System to CoNLL09 Chinese
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APPENDIX C

POLYNOMIAL MODEL FOR DEPENDENCY PARSING

C.1 Hyper Parameters

Param Value Param Value
WordEMB 100 WordEMB dropout 0.33
CharLSTM 50 CharLSTM dropout 0.00

PosEMB 100 PosEMB dropout 0.33
BERT Linear 100 BERT Linear dropout 0

BiLSTM 400 BiLSTM dropout 0.33
MLParc 500 LSTMarc dropout 0.33

MLPlabel 100 LSTMlabel dropout 0.33
MLPsib,gp,3O 100 MLParc dropout 0.33

Learning Rate 2e−4 β1, β2 0.90

Annealing 0.75
t

5000 Patience 100

Table C.1: Hyper-parameters

Remark that when running experiments with UD, the WordEMB is reset to 300 because

we use 300 dimension fasttext embedding [Mikolov et al., 2018] following [Zhang et al., 2020a,

Wang and Tu, 2020].

C.2 Complete Derivations

C.2.1 Partial Derivatives

We start with the definition:

∂S(y)

∂ya
=

K∑
k=1

∑
F∈(Fk(C)∩R)

sF
∂
∏
a′∈F ya′
∂ya

case a 6∈ F: we can see that if a 6∈ F , then
∂
∏
a′∈F ya′
∂ya

= 0 since the expression in the

numerator does not contain variable ya.

case a ∈ F: Now suppose that a ∈ F . Remark that F is a factor from Fk(C), and thus is

a proper subset of arcs and consequently all arcs in F are different. By applying the rule for
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product derivatives we can rewrite the partial as:

∂
∏
a′∈F ya′
∂ya

=
∏

a′∈F\a
ya′

Suppose that F is a factor of k arcs from Fk(C) that contains a, and that the previous

equation equals 1, we have: ∏
a′∈F\a

ya′ = 1 ⇐⇒ ya′ = 1,∀a′ ∈ F\a

⇐⇒ a′ ∈ y,∀a′ ∈ F\a
⇐⇒ F\a ∈ Fk−1(y)

Conclusion: By plugging this into the definition we have:

∂S(y)

∂ya
=

K∑
k=1

∑
F∈(Fk(C)∩R),

a∈F

sF1[F\a ∈ Fk−1(y)]

C.2.2 Substitution Scores 1

We start from equation (5.1):

S(y) =
K∑
k=1

∑
F∈(Fk(C)∩R)

sF

k∏
(h′,d′)∈F

yh′,d′

Similarly, given arc (h, d) ∈ y we have:

S(y\(h, d)) =
K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)6∈F

sF

k∏
(h′,d′)∈F

yh′,d′
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The score difference is:

S(y)− S(y\(h, d))

=
K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF

k∏
(h′,d′)∈F

yh′,d′

=
K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF1[F ∈ Fk(y)]

=
K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF1[F\(h, d) ∈ Fk−1(y)]

where the last line is correct since we assume we already have (h, d) ∈ y.

By using equation (5.3), we have directly:

S(y)− S(y\(h, d)) =
∂S(y)

∂yh,d

which is

S(y) =
∂S(y)

∂yh,d
+ S(y\(h, d))

C.2.3 Substitution Scores 2

First, note that the set of arc y\(h, d) is the same as y[h → h′, d]\(h′d). This is because

y[h→ h′, d] is constructed by substituting arc (h, d) ∈ y with arc (h′, d). The other arcs are

unchanged. Thus we have:

S(y[h→ h′, d]\(h′, d)) = S(y\(h, d))

Secondly, consider the condition:

(h′, d) ∈ F, F\(h′, d) ∈ Fk−1(y[h→ h′, d])

Remark that F = {(h1, d1), (h2, d2), ..., (hk, dk)} being a proper subset of arcs is required to

satisfy: ∀i 6= j, di 6= dj . Thus F\(h′, d) has no arc for column d. In this case, we can write
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the previous condition as:

(h′, d) ∈ F, F\(h′, d) ∈ Fk−1(y)

since y and y[h→ h′, d] only differ in column d.

By using equation (5.3), we have:

∂S(y[h→ h′, d])

∂yh′,d

=
K∑
k=1

∑
F∈(Fk(C)∩R),

(h′,d)∈F

sF1[F\(h′, d) ∈ Fk−1(y[h→ h′, d])

=
K∑
k=1

∑
F∈(Fk(C)∩R),

(h′,d)∈F

sF1[F\(h′, d) ∈ Fk−1(y)

=
∂S(y)

∂yh′,d

To conclude, we have:

S(y[h→ h′, d])

=
∂S(y[h→ h′, d])

∂yh′,d
+ S(y[h→ h′, d]\(h′, d))

=
∂S(y)

∂yh′,d
+ S(y\(h′, d))

The first equation is a direct usage of equation (5.4) and the second equation comes from

the previous proof.

C.2.4 First-order Linearization

We want to compute for all word positions d the highest scoring head:
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argmax
h′

S(y[h→ h′, d])

≈ argmax
h′

S(y) + (y[h→ h′, d]− y)>∇S(y)

= argmax
h′

S(y) +
∂S(y)

yh′d
− ∂S(y)

yhd

= argmax
h′

∂S(y)

yh′d

We go from first to second line by first-order Taylor approximation. Transition from

second to third line is based on the fact that y[h → h′, d] differs from y by only two arcs,

the addition of (h′, d) and the removal of (h, d) so the inner product can be expressed as a

difference of two partial derivatives. We go from third to fourth line by noticing that only

one term depends on h′ hence we can simplify the argmax.

C.2.5 Approximate Marginal Estimation

ŷ is the highest-scoring parse and contains arc (g, d). We write shd =
∂S(ŷ)
∂yhd

for all arc

(h, d). We recall from previous section that first-order Taylor approximation gives: S(y[g →
h, d]) ≈ S(ŷ) + shd − sgd.

p
(
(h, d)|x∗

)
=

p(ŷ[g → h, d])∑
h′ p(ŷ[g → h′, d])

=
Z−1 exp(S(ŷ[g → h, d]))∑
h′ Z
−1 exp(S(ŷ[g → h′, d]))

=
exp(S(ŷ[g → h, d]))∑
h′ exp(S(ŷ[g → h′, d]))

≈
exp(S(ŷ) + shd − sgd)∑
h′ exp(S(ŷ) + sh′d − sgd)

=
exp(S(ŷ)− sgd) exp(shd)

exp(S(ŷ)− sgd)
∑
h′ exp(sh′d)

=
exp(shd)∑
h′ exp(sh′d)
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C.3 Tensor Factorization for Third-Order Models

For a third order model, a tensor W ∈ Rn6 should be used to calculate the score of F =

{(h1, d1), (h2, d2), (h3, d3)}:
sF = vTh3v

T
h2
vTh1Wvd1vd2vd3

with vhi , vdi the feature vector of head and modifier words.

To reduce the memory cost, we simulate the previous calculation with three tensors of

biaffine and one tensor of triaffine. The score can be calculated as:

l1 = vh1 ◦W
(1)
biaffinevd1

l2 = vh2 ◦W
(2)
biaffinevd2

l3 = vh3 ◦W
(3)
biaffinevd3

sF = lT3 l
T
2 Wtriaffinel1

with W i
biaffine ∈ Rn2 the tensor of biaffine and Wtriaffine ∈ Rn3 the tensor of triaffine, ◦

represents the Hadamard product (element-wise product of vector).
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APPENDIX D

NON-LINEAR MODEL FOR DEPENDENCY PARSING

D.1 Projection

The equivalence can be seen from:

argmin
y′∈Y

||y′ − y||1 ⇐⇒ argmin
y′∈Y

〈y′, 1− y〉+ 〈1− y′, y〉

⇐⇒ argmin
y′∈Y

−2〈y′, y〉

⇐⇒ argmax
y′∈Y

〈y′, y〉

QED.

D.2 Gradient of KL

d
−−→
LKL
G (Φ)

dΦ
=

∂

∂Φ

∑
y∈Y

q(y; Φ) log
q(y; Φ)

p(y; Θ)

=
∑
y∈Y

(1 + log
q(y; Φ)

p(y; Θ)
)
∂q(y; Φ)

∂Φ

=
∑
y∈Y

q(y; Φ)

q(y; Φ)
(1 + log

q(y; Φ)

p(y; Θ)
)
∂q(y; Φ)

∂Φ

= Ey∼q(y;Φ)(1 + log q(y; Φ)− log p(y; Θ))
∂ log q(y; Φ)

∂Φ

In third line, we add the naive term
q(y;Θ)
q(y;Θ)

to represent the calculation of the gradient as an

expectation to the easy to calculate and sample distribution q(y; Φ).

Similarly we have:

d
←−−
LKL
G (Φ)

dΦ
=

∂

∂Φ

∑
y∈Y

p(y; Θ) log
p(y; Θ)

q(y; Φ)

=
∑
y∈Y
−p(y; Θ)

∂ log q(y; Φ)

∂Φ

= Ey∼q(y;Φ) −
p(y; Θ)

q(y; Φ)

∂ log q(y; Φ)

∂Φ
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D.3 Pairwise FW for Dependency Parsing

Algorithm 17: Pairwise Frank-Wolfe Algorithm for Dependency Parsing, with
Backtracking Line-Search, Restart, Early Stopping and Projection

1 Initialization: y(0) ∈ Y , S = {y(0)}, α = {αv = 1|v ∈ S}, ε, δ > 0, L := L0 > 0,
RESTART = False;

2 for t← 0 to T do

3 Let st := DA(∇S(y(t))) and dF
t := st − y(t);

4 if gF
t := 〈dF

t ,∇S(y(t))〉 ≤ ε then

5 Projection: y∗ := DA(y(t));
6 Return y∗, S(y∗);
7 end

8 Let dt := dF
t , gt := gF

t , γmax = 1;

9 Backtracking Line-Search: γt, L = Backtracking(S, dt, y
(t), gt, L, γmax);

10 if γt ≤ δ then
11 if RESTART then

12 Projection: y∗ := DP(y(t));
13 Return y∗, S(y∗);
14 else
15 Let L := L0, RESTART = True;
16 end

17 else
18 Let RESTART = False;
19 end
20 if st ∈ S then
21 Update αst := αst + γt and αvt := αvt − γt;
22 else
23 Update S := S ∪ {st};
24 Update α := α ∪ {αst := γt} and αvt := αvt − γt};
25 end
26 Pop v ∈ S, αv ∈ α with αv = 0;

27 Update y(t+1) := y(t) + γtdt;

28 end

29 Projection: y∗ := DA(y(T+1));
30 Return y∗, S(y∗);
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D.4 Estimation of Log Probability

log p(y; Θ) = log
p(y; Θ)

1

= log
p(y; Θ)∑

y′∈Y p(y
′; Θ)

= log
p(y; Θ)∑

y′∈Y
p(y′;Φ)
p(y′;Φ)

p(y′; Θ)

= log
p(y; Θ)

Ey′∼q(y;Φ)
p(y′;Θ)
p(y′;Φ)

= log
exp(S(y; Θ))

Ey′∼q(y;Φ)
exp(S(y′;Θ))
p(y′;Φ)

= S(y; Θ)− logEy′∼q(y;Φ)
exp(S(y′; Θ))

q(y; Φ)

D.5 Non-Exact Approximation

Suppose q(y; Φ) equals p(y; Θ),∀y ∈ Y , this indicates that:

S(y; Φ) = S(y; Θ) + C, ∀y ∈ Y

where C is a constant.

Since S(y; Φ) is a linear function, we can rewrite the previous equation as

〈W (Φ), y〉 = S(y; Θ) + C, ∀y ∈ Y

where W (Φ) ∈ Rn2 . This indicates that the rank of the matrix {y(1), ..., y|Y|} by stacking y ∈
Y together is at most n2 while we have |Y| equations. Note that |Y| increases exponentially

with n. Thus for sufficiently long sentences, we cannot guarantee there exists a solution

[Strang et al., 1993].
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