Thèse De

José Torres Figueroa

Wolfler Calvo

SANS DÉRIVÉES AVEC VARIABLES MIXTES ALGORITHMS FOR SOLVING DERIVATIVE-FREE OPTIMIZATION OVER MIXED-INTEGER DOMAINS

Keywords: Optimisation sans dérivées, Programmation non linéaire mixte en nombres entiers, Optimisation combinatoire. v Derivative free-optimization, Mixed-integer non-linear programming, Combinatorial optimization. ix

L'optimisation sans dérivées est un outil populaire pour résoudre des problèmes complexes dans lesquels la description analytique de la fonction objectif n'est pas disponible et le calcul des dérivées n'est pas pratique, sinon impossible. Beaucoup de ces problèmes considèrent des variables discrètes non relaxables qui ajoutent une complexité supplémentaire à l'optimisation et à l'analyse de convergence. Cette thèse concerne le développement de deux algorithmes sans dérivées avec variables mixtes qui adressent certains de ces complications.

Le premier algorithme est une adaptation de la méthode à région de confiance qui utilise une approximation quadratique adaptée de la fonction inconnue. Ces modèles sont construites sous l'hypothèse d'une structure quadratique locale. De plus, ces modèles se sont prouvés complètement linéaires dans voisinages réels et entiers restreints. Cet algorithme se prouve globalement convergent vers plusieurs définitions d'optimalité locale, même dans l'optimisation de fonctions qui n'affichent pas la structure quadratique locale.

Le deuxième algorithme est un hybride de la programmation DC et de la méthode de région confiance qui tire parti des structures potentielles sur la fonction objectif. Il est basé sur l'hypothèse que l'optimisation partielle par rapport aux variables discrètes peut être effectuée en utilisant un nombre polynomial d'évaluations de la fonction objectives. Cet algorithme est globalement convergent vers un point stationnaire par rapport aux variables continues et à l'optimum global dans le domaine entier.

De plus, cette thèse présente une définition générale d'un modèle entièrement linéaire et explore les mécanismes pour évaluer et maintenir des modèles avec des erreurs bornées. La contribution finale de ce travail est l'introduction de nouvelles mesures de stationnarité entière qui empêchent la terminaison algorithmique précoce et facilitent l'analyse de convergence.

List of Figures

Introduction

In many real-world optimization problems the objective function and constraints are given by the complex computer simulations or the output of a black-box. In a blackbox problem the analytical description of the objective function is not available; we only have access to a zeroth-order information of the function, and it is generally assumed that the oracle that provides the value of the function is computationally expensive to evaluate. Black-box problems arise in several settings, such as medical problems [START_REF] Marsden | A computational framework for derivative-free optimization of cardiovascular geometries[END_REF], [START_REF] Oeuvray | Trust-region methods based on radial basis functions with application to biomedical imaging[END_REF], engineering design [START_REF] Audet | Spent potliner treatment process optimization using a mads algorithm[END_REF]- [START_REF] Han | Optimal design of hybrid fuel cell vehicles[END_REF] and financial applications [START_REF] Yamamoto | Optimal multiple pairs trading strategyusing derivative free optimizationunder actual investment management conditions[END_REF], among others.

Different methodologies have been developed to address the complexity of blackbox problems, aiming to find near-optimal solutions while performing a reduced number of objective function evaluations to keep the optimization time acceptable.

Such methodologies often include the use (and combination) of heuristics, directsearch algorithms, model based (or surrogate) approximation and randomized search [START_REF] Larson | Derivative-free optimization methods[END_REF]. Derivative-free optimization is a natural technique to solve black-box optimization problems, as it is intrinsically designed to avoid the computation of derivatives.

Note that while a numerical approximation of the derivatives could in principle be computed (assuming they exist) even for a black-box problem, this is often too resource-intensive, e.g., 2n function evaluations to approximate the gradient of an n-variable function by finite central differences.

Black-box problems often include non-relaxable discrete variables. The presence of discrete (binary, integer or categorical) variables adds further challenges to the ones faced in the optimization of continuous functions [START_REF] Belotti | Mixed-integer nonlinear optimization[END_REF]. There exist two crucial issues faced when studying mixed-integer derivative-free problems:

1. The definition of a proper mixed-integer minimizer.

2. The definition of adequate convergence criteria.

Newby and Ali [START_REF] Newby | A trust-region-based derivative free algorithm for mixed integer programming[END_REF] identify three possible local mixed-integer optimimum definitions: separate local minimum, stronger separate local minimum and combined local minimum. These three concepts deal with the degree of exploration of different integer manifolds around a tentative solution. In surrogate-based methods algorithm termination is commonly addressed via objective improvement or distance criteria, in those cases the convergence to a local minimizer cannot be guaranteed.

In this thesis we develop two convergent algorithms that tackle these two issues:

1. We propose a trust-region method that uses a tailored mixed-integer quadratic approximation (see Chapter 4), enabling the efficient reuse of previously sampled points. We establish global convergence of the algorithm to separate local minimum and stronger separate local minimum. The approximation is based on the assumption of dealing with what we call a "Locally-Quadratic Mixed-Integer" (LQMI) function, i.e., a structured objective function exhibiting properties that allow us to extend the notion of continuous fully-linear models to a mixed-integer context. This facilitates the convergence analysis, even when such an assumption does not hold. In addition, LQMI approximations can be obtained in a modular manner, providing flexibility in computing and maintaining the surrogate model within the trust region by using efficient methods taken from the continuous derivative-free optimization literature.

2. We propose a hybrid difference of convex and derivative-free algorithm (see Chapter 5) that takes advantage of potential combinatorial structures of the objective function. We establish global convergence of the algorithm to a strong version of separate local minimum. The approximation is based on the assumption that the partial optimization with respect to the discrete variables can be performed within polynomial number of function evaluations. It allows one to reformulate the problem as the difference of two functions and solve it with a modified version of the difference of convex algorithm that uses inexact subgradient information. This algorithm is related to first-order surrogate methods and consists of two phases: continuous local search and integer global search. Moreover, the algorithm converges to a (weaker) local minimizer in functions that do not present such combinatorial structure.

Those two algorithms are the main contribution of this work. The following are additional results of this research:

• We provide a general definition of mixed-integer fully-linear models and we elaborate on the mechanisms to guarantee and maintain bounded error approximations (see Section 3.2.1).

• We revisit the concepts of mixed-integer optimality and describe a suitable ϵstrong separate minimum that can be attained with model-based methods. In addition, we describe a mixed-integer stationarity parameter that helps to avoid premature convergence to stationary points and facilitates the convergence analysis (see Section 4.2).

In the next section we detail the main motivations behind this work.

Motivations

In this work we aim to develop convergent algorithms for derivative-free mixedinteger optimization while addressing the following two questions:

1. How can we extend the convergence properties of the model-based methods to the mixed-integer domain?

2. How can we take advantage of the structure of the mixed-integer black-box function?

The convergence of model-based derivative-free algorithms to stationary points depends on fully-linear models and criticality measures. It is not trivial to generalize these two concepts to the mixed-integer domain because of the discontinuity introduced by the discrete variables, this means that often the model-based methods proposed in the literature for the mixed case are heuristics [START_REF] Newby | A trust-region-based derivative free algorithm for mixed integer programming[END_REF]. This additional complexity of dealing with mixed-integer variables has been partially addressed by: (1) using quadratic surrogate approximations that are fully-linear in one fixed discrete point (Tran et al. [START_REF] Tran | Derivative-free mixed binary necklace optimization for cyclic-symmetry optimal design problems[END_REF]); or [START_REF] Oeuvray | Trust-region methods based on radial basis functions with application to biomedical imaging[END_REF] relying on continuous search solvers to identify stationary points and explore surrounding continuous neighborhoods with different values on the integer variables when the algorithm stops (Newby and Ali [START_REF] Newby | A trust-region-based derivative free algorithm for mixed integer programming[END_REF]). We remark that both strategies have strengths and weaknesses. With reduced fully-linearity one can guarantee convergence to a point that is stationary with respect to the continuous variables; however, the algorithm might get prematurely stuck at an undesirable solution. On the other hand, by using a local continuous solver one may be able to escape stationary points and improve the quality of the solution; nonetheless, the local search requires a large number of samples to certify stationarity/optimality thus reducing the rate of objective improvement, as observed by Newby and Ali. In this work we are interested in a methodology that exploits the strengths of both approaches: we develop algorithms that use a generalized definition of fully-linearity to guarantee convergence and that at the same time provides inside of surrounding continuous neighborhoods to prevent early stopping at bad quality stationary points.

Derivative-free optimization methods have been often used to solve black-box problems where the objective function presents known structures, including nonlinear least squares [START_REF] Zhang | A derivative-free algorithm for least-squares minimization[END_REF]- [START_REF] Cartis | A derivative-free gauss-newton method[END_REF], sparse objective derivatives [START_REF] Colson | Optimizing partially separable functions without derivatives[END_REF]- [START_REF] Bandeira | Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization[END_REF], composite (non) convex functions [START_REF] Garmanjani | Trust-region methods without using derivatives: Worst case complexity and the nonsmooth case[END_REF], bilevel and general min-max problems [START_REF] Conn | Bilevel derivative-free optimization and its application to robust optimization[END_REF]. To the extend of our knowledge, only two studies have addressed the case where a structure on mixed-integer black-box is present: Tran et Al. [START_REF] Tran | Derivative-free mixed binary necklace optimization for cyclic-symmetry optimal design problems[END_REF] suppose that the function presents cyclic-symmetry properties, and Larson et al. [START_REF] Larson | A method for convex black-box integer global optimization[END_REF] assume the function is globally convex. In this research we introduce two study assumptions of structure in mixedinteger functions: [START_REF] Marsden | A computational framework for derivative-free optimization of cardiovascular geometries[END_REF] locally bilinear interaction between discrete and continuous variables, and (2) combinatorial discrete properties when the vector of continuous variables is fixed. The first assumption allows us to easily derive error bounded approximations on both the function and its continuous gradient. The second assumption allows us to reformulate the problem and work with the two set of variables independently: using global zeroth order global methods to optimize with respect to the discrete variables and deal with the continuous variables via inexact subgradient methods. Note that both assumptions enable us to take advantage of the separable structure of the function to approximate different elements of the objective using continuous surrogate models. We show that the algorithms constructed under these structure assumptions can be extended to general mixed-integer functions 1.2. Problem Definition and Nomenclature preserving convergence properties.

Problem Definition and Nomenclature

We are interested in solving the following mixed-integer optimization problem: min

x,y f (x, y) (1.1)

x ∈ Ω c , y ∈ Ω z .

(1.2)

where f : [R n c × Z n z] -→ R, Ω c = {x ∈ R n c | x lb ≤ x ≤ x ub } and Ω z = {y ∈ Z n z |
y lb ≤ y ≤ y ub }. We denote the mixed-integer box constraints as

Ω m = {(x, y) | x ∈ Ω c , y ∈ Ω z }.
When n z = 0 the problem becomes purely continuous and we use the simplified notation f (x), instead of f (x, y). The following additional assumptions are imposed on the objective function:

Definition 1.1. Let the function fy : R n c → R be the continuous manifold associated with y, defined as fy (w) := f (w, y).

Assumption 1.1. The function f (x, y) is bounded from below, i.e., there exists a constant κ lb ∈ R such that f (x, y) > κ lb , ∀(x, y) ∈ Ω m .

Assumption 1.2. The continuous manifold fy (w) is uniformly Lipschitz continuous with corresponding Lipschitz constant bounded by κ f , ∀y ∈ Ω z .

Assumption 1.3. The continuous manifold fy (w) is uniformly continuous differentiable with Lipschitz continuous gradient and corresponding Lipschitz constant bounded by κ g , ∀y ∈ Ω z .

Definition 1.2. The positive support (supp +) and the negative support (supp -) of the vector x ∈ R n are defined as:

supp + (x) = {i ∈ {1, . . . n}, | x i > 0} supp -(x) = {i ∈ {1, . . . n}, | x i < 0}
We denote by ∥•∥ 1 , ∥•∥ and ∥•∥ ∞ the Manhattan, Euclidean and maximum norm, respectively. To devise a trust region method, we define the neighborhoods used in the rest of the document.

Definition 1.3. The continuous neighborhood centered at x of radius ∆ c is:

Bc (x, ∆ c) := {x ∈ R n c | ∥x -x∥ ≤ ∆ c }.
Definition 1.4. The integer neighborhood centered at ŷ of radius ∆ z is:

Bz (ŷ, ∆ z) := {y ∈ Z n z | ∥y -ŷ∥ ∞ ≤ ∆ z }.
Definition 1.5. The combined mixed-integer neighborhood centered at (x, ŷ) with radii ∆ c , ∆ z is:

Bv (x, ŷ, ∆ c , ∆ z) := (x, y) | x ∈ Bc (x, ∆ c), y ∈ Bz (ŷ, ∆ z) .
Note that we use different norms for the different neighborhoods; in particular, for integer variables it is more natural to use the ℓ 1 -norm or ℓ ∞ -norm distance. In this work we use the ℓ ∞ -norm; we did not investigate how much effort is required to extend our results to the ℓ 1 -norm.

Definition 1.6. Let the mixed-integer neighborhood N 1 (x, y) be defined as :

N 1 (x, ŷ) := {(x, y) ∈ Ω m | x = x, ∥y -ŷ∥ ∞ ≤ 1} .
In the following sections we will be referring to a neighborhood N D (x, y) ⊆ N 1 (x, y) for which the definitions of local optimality are constructed. It is named user-defined neighborhood as its size is defined by the final decision-maker. We introduce the concept of reduced gradient that allows us to evaluate first-order stationary conditions:

Definition 1.7. The reduction (red : [R n c × R n c] → R n c) of a vector g at the point x is defined as follows:

red(g, x) i =            max(g i , 0) if x i = x ub,i min(g i , 0) if x i = x lb,i g i otherwise.
Finally, we denote by the e i the vector in which its ith component is equal to 1 and the rest are valued 0. Let ∇ x and ∇ 2 xx be the gradient and the Hessian matrix with respect to the continuous variables, with

[∇ x f (x, y)] i = ∂ f (x,y) ∂x i and [∇ 2 x,x f (x, y)] i,j = ∂ 2 f (x,y)
∂x i ∂x j for every i, j ∈ {1, . . . , n c }. The convex hull of a set S is denoted by Co(S).

Dissertation Outline

This document is organized as follows: In Chapter 2 we present the background of methodologies for the optimization of black-box functions, we define the versions of local optimality for mixed-integer functions and discuss the complications of proving optimality (Section 2. Chapter 2

Literature Review

Different methodologies have been developed to solve optimization problems when only the zeroth order information is available. In this chapter, we summarize some of the most used derivative-free optimization techniques and highlight what elements we use in the development of our algorithmic framework. We separate this review of the literature in three sections: (1) methodologies for continuous local derivative-free optimization, (2) methodologies for mixed-integer derivative free optimization and (3) local optimality for mixed integer functions.

Continuous Derivative-Free Optimization

In this section, we address the methodologies for solving problem 1.1 when n z = 0 and objective function f is assumed to be differentiable. These methodologies are typically classified in three different classes, depending on the (not) approximation of the function and its first and second-order information [START_REF] Larson | Derivative-free optimization methods[END_REF]: (1) Direct search methods, (2) model-based methods and (3) others. The latter group contains the methods that cannot be categorized in any of the first two and includes techniques such as the line-search based methods [START_REF] Lucidi | On the global convergence of derivative-free methods for unconstrained optimization[END_REF], [START_REF] Grippo | A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations[END_REF], implicit filtering [START_REF] Kelley | Implicit filtering[END_REF], [START_REF] Choi | Superlinear convergence and implicit filtering[END_REF] and adaptive regularized methods [START_REF] Cartis | On the oracle complexity of firstorder and derivative-free algorithms for smooth nonconvex minimization[END_REF].

Direct Search Methods

The first class is called Direct Search Methods (DSM) which are described as the iterative evaluation of trial candidates given by a particular strategy [START_REF] Hooke | direct search"solution of numerical and statistical problems[END_REF]. DSM are characterized for not approximating the function's gradient nor computing a surrogate model. This simplicity and their reliability make the DSM some of the most popular alternatives for solving black-box problems.

One of the most renown DSM variants consists in the Nelder-Mead [START_REF] Nelder | A simplex method for function minimization[END_REF] and simplex methods [START_REF] Woods | An interactive approach for solving multi-objective optimization problems[END_REF]- [START_REF] Singer | Efficient implementation of the nelder-mead search algorithm[END_REF]; which are distinct from Dantzig's simplex linear programming method. Initially described in 1962 [START_REF] Spendley | Sequential application of simplex designs in optimisation and evolutionary operation[END_REF], these methodologies consist in the movement and manipulation of a simplex, which is defined as the convex hull of n c + 1 linearly independent vectors in R n c . Iteratively, the objective function is evaluated at all the vertices of the simplex to determine the vertex that yields the largest function value. This point is replaced with a new vertex that is computed by transforming the worst corner through reflection, extension, inner contraction and shrink operations. One of the weakness of the original Nelder-Mead method is the lack of theoretical guarantees of convergence into stationary solutions, even converging to points for which lim k→∞ ∥∇ x f (x k)∥ ̸ = 0 [START_REF] Mckinnon | Convergence of the nelder-mead simplex method to a nonstationary point[END_REF]. This problem has been continuously addressed and there exists simplex variants with proven convergence to stationary points [START_REF] Tseng | Fortified-descent simplicial search method: A general approach[END_REF], [START_REF] Puhan | Grid restrained nelder-mead algorithm[END_REF].

A second group of DSM consists in the Directional Direct Search Methods (DDSM). We remark that when the OPOR parameter is set to 0, the poll step is denominated complete poll and its output is equivalent to min Select a finite search of directions H k (Search step)

d i ∈D k f (x k + ∆ k d i).
for d i ∈ G do 3: if f (x) -f (x k + ∆ k d i) is acceptable then 4: Set x = x k + ∆ k d i 5: if OPOR = 1 then 6:
3: Set x = TestDescend(x k , ∆ k , H k , OPOR) 4: if x k = x then 5:
Select the set of poll directions

D k ⊂ R n c (Poll step) 6: Set x = TestDescend(x k , ∆ k , {x k + ∆ k d i | ∀i ∈ D k }, OPOR) 7:
end if

8: if x k = x then 9:
Set ∆ k+1 = γ∆ k 10:

else 11: Set ∆ k+1 = γ inc ∆ k 12:
end if

13:

Set x k+1 = x 14: end for [START_REF] Torczon | On the convergence of pattern search algorithms[END_REF]- [START_REF] Lewis | Pattern search algorithms for bound constrained minimization[END_REF]. Finally, we have the Mesh Adaptive Direct Search (MADS) methods [START_REF] Audet | Mesh adaptive direct search algorithms for constrained optimization[END_REF]- [START_REF] Abramson | Orthomads: A deterministic mads instance with orthogonal directions[END_REF] that consider a variable set of directions during the poll step and present strong theoretical results for convergence to second-order stationary points in continuous functions with locally Lipschitz gradients [START_REF] Abramson | Convergence of mesh adaptive direct search to second-order stationary points[END_REF].

Model-Based Methods

The second group of optimization methodologies consists of the model-based methods, for which the computation of a new candidate solution rely on the prediction of a smooth, easy to evaluate, and accurate surrogate model approximating the objective function. Model-methods are widely used for the solution of constrained and unconstrained problems, performing more efficiently than the DSM [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF]. Modelbased methods are present in a number of solver implementations:

• Derivative Free Optimization (DFO). Conn, Scheinberg and Toint [START_REF] Conn | Manual for fortran software package dfo v1[END_REF].

• WEDGE. Marazzi and Nocedal [START_REF] Marazzi | Wedge trust region methods for derivative free optimization[END_REF].

• CONDOR Berghen and Bersini [START_REF] Berghen | Condor, a new parallel, constrained extension of powell's uobyqa algorithm: Experimental results and comparison with the dfo algorithm[END_REF].

• Powell's UOBYQA [START_REF] Powell | Uobyqa: Unconstrained optimization by quadratic approximation[END_REF], NEWUOA [START_REF]The newuoa software for unconstrained optimization without derivatives[END_REF]- [START_REF] Powell | Developments of newuoa for minimization without derivatives[END_REF] and BOBYQA [START_REF]The bobyqa algorithm for bound constrained optimization without derivatives[END_REF]. among others. We introduce the fundamentals for convergent model-based algorithms. The first element that is required is a measure of the accuracy of model m for the prediction of the objective f , its gradient and potentially its Hessian inside a local neighborhood Bc (x, ∆). This measure is normally addressed through the concepts of fully-linear and fully-quadratic models:

Definition 2.1. A model m ∈ C 1 is called fully-linear with respect to f (x), f : R n c → R in Bc (x, ∆) if there exists a pair of constants κ eg , κ e f > 0, independent of ∆, for which ∥∇ x f (x + s) -∇ x m(x + s)∥ ≤ κ eg ∆ | f (x + s) -m(x + s)| ≤ κ e f ∆ 2
for all s ∈ Bc (0, ∆).

Definition 2.2.

A model m ∈ C 2 is called fully-quadratic with respect to f (x), f :

R n c → R in Bc (x, ∆) if there exists a set of constants κ eh , κ eg , κ e f > 0, independent of ∆, for which ∥∇ 2 xx f (x + s) -∇ 2 xx m(x + s)∥ ≤ κ eh ∆ ∥∇ x f (x + s) -∇ x m(x + s)∥ ≤ κ eg ∆ 2 | f (x + s) -m(x + s)| ≤ κ e f ∆ 3
for all s ∈ Bc (0, ∆).

Types of surrogate approximation

Different types of surrogates can be used to achieve the accuracy described by the fully-linear and/or the fully quadratic models. The quality of the approximation of a sufficiently smooth function depends on the spatial distribution of the sampled elements inside Bc (x k , ∆ k); in other words, how well-poissed is the sampling set

X k ⊂ Bc (x k , ∆ k)
on which the surrogate is computed [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF]. The simplest and least expensive to evaluate and maintain correspond to the simplex gradients and linear interpolation models of the shape m(x k + s) = m(x k) + l ⊤ s where s, l ∈ R n c . We use this type of approximation in different parts of the two solution approximations developed in this work (see Algorithm 4.6).

A second group of surrogates corresponds to more general polynomial interpolation models. Let P d,n c be the space of polynomials of n c and degree d, and φ(x) the set of monomials φ : R n c → R dim(P d,nc) . For example, in the linear case d = 1 we have

that dim(P d,n c) = n c + 1 and the set φ(x) = {1, x 1 , x 2 , . . . , x n c }. Any model m ∈ P d,n c
can be expressed in terms of ϕ(x) and the vector a ∈ R dim(P d,nc) of coefficients:

m(x) = dim(P d,nc) ∑ i=1 a i φi (x). (2.1)
Given the set of interpolation points X = {x 1 , x 2 , . . . , x p } ⊂ Bc (x 0 , ∆) the coefficients α are the solution of the linear system of equations:

f (x j) = dim(P d,nc) ∑ i=1 a i φi (x j) ∀j ∈ {1, . . . , p}.
The accuracy of a polynomial interpolation model (with d ≥ 2) on the local neighborhood B is often assessed with the concepts of Lagrange polynomials and Λpoisedness [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF] . We highlight they are independent of the function f that is being approximated.

Definition 2.3. Given the interpolation set X = {x 1 , x 2 , . . . , x p } the basis L : R n c → R p of Lagrange polynomials satisfies

L j (x i) =      1 if i = j 0 otherwise.
A set of samples X ⊂ B is said Λ-poised for some Λ > 0 if and only if its elements are linearly independent and the basis L of related Lagrange polynomials satisfies the following condition:

Λ ≥ Λ L = max i=1,...,p max x∈B |L i (x)|.
The most relevant feature of the Lagrange polynomials is their relationship with the error bounds for the model approximation computed using the set X ⊂ B. It is shown that for any x that lays in the convex hull of

X ∥D r f (x) -D r m(x)∥ ≤ 1 (d + 1)! ν d p ∑ i=1 ∥x j -x∥ d+1 ∥D r L i (x)∥,
where D r represents the r-th derivative and ν d denotes an upper bound on D d+1 f (x) [START_REF] Ciarlet | General lagrange and hermite interpolation in rn with applications to finite element methods[END_REF]. The latter implies that the (d + 1)st derivative should be bounded requirement that is similar to one for the Taylor polynomial approximation. In the case r = 0 the bound on the prediction of f becomes

| f (x) -m(x)| ≤ 1 (d + 1)! dim(P d,n c)ν d Λ L ∆ d+1 ,
where ∆ is the radius of the smallest ball that contains X.

Among the polynomial class of models, quadratic models (d = 2) have been widely used for more than 50 years in the development of derivative-free methodologies [START_REF] Winfield | Function minimization by interpolation in a data table[END_REF], [START_REF] Conn | An algorithm using quadratic interpolation for unconstrained derivative free optimization[END_REF]. Quadratic models can be computed in different ways, including regression [START_REF] Verdério | On the construction of quadratic models for derivative-free trust-region algorithms[END_REF], [START_REF] Conn | Introduction to derivative-free optimization introduction[END_REF] and interpolation. The computation of a fully determined quadratic interpolant requires 1 2 (n c + 1)(n c + 2) samples, a quantity that adds complexity for the optimization. Several alternatives have been devised to construct less expensive approximations via undetermined interpolation, while preserving a sufficient level of accuracy [START_REF] Powell | Beyond symmetric broyden for updating quadratic models in minimization without derivatives[END_REF], [START_REF] Powell | On the use of quadratic models in unconstrained minimization without derivatives[END_REF] equivalent to the fully-linear type of models. We discuss more in detail the Least Frobenius Norm Update strategy [START_REF] Powell | Least frobenius norm updating of quadratic models that satisfy interpolation conditions[END_REF] in Section 3.2.2.

A final type of model approximation corresponds to the Radial Basis Functions (RBF) [START_REF]Recent research at cambridge on radial basis functions[END_REF]. Given the interpolation set X = {x 1 , x 2 , . . . , x p } a radial basis function model is defined as

m(x) = p ∑ i=1 b i φ(∥x -x i ∥) + ϱ(x) (2.2)
where φ : R + → R is a conditionally positive-definite univariate function and ϱ : R n c → R is a low order polynomial. Commonly used RBF functions are linear

φ(r) = r, cubic φ(r) = r 3 , multicuadratic φ(r) = r 2 + γ 2 , inverse multiquaratic φ(r) = 1 √ r 2 +γ 2 and
Gaussian φ(r) = exp(-γr 2). The structure of the RBF's makes them flexible with respect to the geometric requirements of the sampling set X [START_REF] Gutmann | A radial basis function method for global optimization[END_REF] and have been proposed to tackle global optimization problems [START_REF] Billups | Derivative-free optimization of expensive functions with computational error using weighted regression[END_REF], [START_REF] Regis | A stochastic radial basis function method for the global optimization of expensive functions[END_REF]. Furthermore, under certain conditions the RBF's can be certified fully-linear and used in algorithms based in the trust-region method that converge to stationary solutions [START_REF] Oeuvray | Trust-region methods based on radial basis functions with application to biomedical imaging[END_REF], [START_REF] Wild | Global convergence of radial basis function trust-region algorithms for derivative-free optimization[END_REF], [START_REF] Oeuvray | Boosters: A derivative-free algorithm based on radial basis functions[END_REF].

Trust-region methods

Having discussed the different mechanisms that allow the computation of accurate surrogate representations of f , now we outline the basic derivative free trust-region approach for the unconstrained optimization case (Algorithm 2.3). This framework is easily adapted to bound constrains and other convex domains with use of a proper stationary measure. The trust-region method involves a sequence of iterations that consider the following 5 steps (apart from the initialization):

• The first one corresponds to the model computation (Lines 3-10) in which the surrogate is constructed considering the current the set of samples X k . In addition, it evaluates possible convergence to first-order stationary points (Lines 4 -9). In some variants the check of stationary is called the criticality step and aims to establish an algebraic relationship between ∥∇ x m k (x k)∥ and ∆ k , which plays an important role in assuring algorithmic convergence [START_REF] Conn | Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points[END_REF].

• The second step consists in the candidate computation in which a trial point is generated by minimizing the surrogate on Bc (x k , ∆ k). Similar to the traditional deterministic trust-region methods, the evaluation of the quality of the new candidate and the fit of the model is done according to the ρ test (Line 12), that measures the ratio in between the real and expected improvement.

• The third step considers the update and maintenance of the sampling set (Lines [START_REF] Cartis | A derivative-free gauss-newton method[END_REF][START_REF] Colson | Optimizing partially separable functions without derivatives[END_REF][START_REF] Price | Exploiting problem structure in pattern search methods for unconstrained optimization[END_REF][START_REF] Bandeira | Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization[END_REF][START_REF] Garmanjani | Trust-region methods without using derivatives: Worst case complexity and the nonsmooth case[END_REF]. Note that we refer to a geometry improvement procedure that should be able to complete the interpolation set and identify badly poised sample points.

• The fourth procedure is the trust-region update (Lines 18-24); we highlight that in this case the TR radius is only reduced when the model is accurate, in other words, if it is fully-linear or given the case, fully-quadratic.

• The final step is the current candidate update (Lines 25 -29), note that a new candidate is only accepted when it yields sufficient objective reduction and the model presents an acceptable fit (ρ k ≥ η 0 > 0).

Observe that a candidate solution can be computed by partially optimizing inside the trust-region. For Algorithm 2.3 be convergent it is required that the optimization subproblem (Line 11) satisfies at least a fraction of the Cauchy decrease or the Approximate Cauchy decrease. The Cauchy step and Approximate Cauchy point are defined as follows: Definition 2.4. Let t C k be defined as

t C k = argmin t>0|x k -t∇ x m k (x k)∈ Bc (0,∆ k) m k (x k -t∇ x m k (x k)).

Algorithm 2.3 Generic Trust-Region Algorithm

Input: Point x 0 ∈ R n c , initial Trust-Region radius ∆ 0 , maximum Trust-Region radius ∆ max , model acceptance parameters 0 < η 0 ≤ η 1 , geometry parameters 0 < γ < 1 < γ inc and stationarity parameter ϵ c Output: Sequence {x k } with limiting values that are first-order stationary with respect to f 1: Select a set of samples X 0 ⊂ Bc (x 0 , ∆ 0) 2: for k = 0, 1, 2, . . . do

3:

Construct a model m k that approximates f using the elements in X k 4:

while ∥∇ x m k (x k)∥ < ϵ c do 5: if Model m k is accurate on Bc (x k , ∆ k) then 6: Set ∆ k = γ∆ k 7: else 8: Update X k to compute a model m k accurate on Bc (x k , ∆ k) 9:
end if

(x k ,0) m k (x k + s) 12: Evaluate f (x k + s k) and compute ρ k = f (x k)-f (x k +s) m k (x k)-m k (x k +s) 13: if ρ k < η 1 and m k is not accurate in Bc (x k , ∆ k) then 14:
Compute X k+1 using a geometry improvement procedure on X k 15:

else 16: Set X k+1 = X k ∪ {x k + s k }.
if ρ k ≥ η 1 then 19: Set ∆ k+1 = min{∆ k γ inc , ∆ max } 20: else if m k is accurate on Bc (x k , ∆ k) then 21: Set ∆ k+1 = ∆ k γ 22: else 23: Set ∆ k+1 = ∆ k 24: end if 25: if ρ k ≥ η 0 then 26: Set x k+1 = x k + s k 27:

end if 30: end for

The corresponding Cauchy step is equivalent to

s C k = -t C k ∇ x m k (x k).
Definition 2.5. Let κ bck ∈ (0, 1) and κ ubs ∈ (0, 1 2) be two given constants. For every j ∈ Z + let the vector x k (j) be defined as

x k (j) = x k -κ j bck ∆ k ∥∇ x m k (x k)∥ ∇ x m k (x k) with j C = min{j ∈ Z + | m k (x k (j)) ≤ m k (x k) + (∇ x m k (x k)) ⊤ (x k (j) -x k)}.
The approximate Cauchy point x AC k is defined as

x AC k = x k (j C).
m k (x k) -m(x k + s C k) ≥ 1 2 ∥∇ x m k (x k)∥ min ∆ c k , ∥∇ x m k (x k)∥ ∥∇ 2 xx m k (x k)∥
m k (x k) -m k (x AC k) ≥ κ dep ∥∇ x m k (x k)∥ min ∆ c k , ∥∇ x m k (x k)∥ βk .
with a constant κ dep ∈ (0, 1) independent of k and βk = 1

+ max x∈ Bc (x k ,∆ k) ∥∇ xx m k (x)∥.
We remark that the Cauchy decrease bound from Theorem 2.1 can be only applied in linear and quadratic models; nonetheless, the approximate Cauchy decrease is a proper substitute for other types of non-linear models. Consequently, any convergent algorithm should guarantee that

m k (x k) -m k (x k + s k) ≥ κ f cd 2 ∥∇ x m k (x k)∥ min ∆ c k , ∥∇ x m k (x k)∥ ∥∇ xx m k (x k)∥ (2.3) or m k (x k) -m k (x k + s k) ≥ κ f acd ∥∇ x m k (x k)∥ min ∆ c k , ∥∇ x m k (x k)∥ βk (2.4)
for some constants κ f cd , κ f acd ∈ (0, 1). This result and the aforementioned criticallity step -or any procedure that prevent the trust-region radius collapse when the gradient tends to zero-guarantee that both lim k→∞ ∆ k = 0 and lim k→∞ ∥∇ x f (x k)∥ = 0.

Mixed-Integer Derivative-Free Optimization

In this section, we review the methodologies for solving problem 1.1 when n z > 0 and the set of discrete variables are unrelaxable. Most of these methodologies are adaptations of continuous derivative-free methods that tackle the integer constraints. Similar to the case for continuous derivative-free optimization, the solution schemes can be classified in three categories: (1) direct search methods, (2) modelbased methodologies and (3) others.

In the first group we found the modification of the GPS [START_REF] Audet | Pattern search algorithms for mixed variable programming[END_REF] and MADS [START_REF] Abramson | Mesh adaptive direct search algorithms for mixed variable optimization[END_REF] algorithms to include a set of discrete search directions. One difference of both methods with the standard DDSM is the use of a third algorithmic step called the extended poll procedure. The extended poll performs additional search (polling) in the set of discrete neighborhoods whose objective value lie sufficiently close to the current objective. Porcelli and Toint [START_REF] Porcelli | Bfo, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables[END_REF] proposed a similar scheme on their brute-force optimizer (BFO); it includes a local mixed-integer search heuristic called the recursive step that fixes a subset of discrete coordinates and performs polling with the remaining integer variables. Abramson et al. [START_REF] Abramson | Filter pattern search algorithms for mixed variable constrained optimization problems[END_REF] proposed a modified GPS algorithm that tackles general nonlinear constraints using a filter approach. The software package NOMAD [START_REF] Audet | NOMAD version 4: Nonlinear optimization with the MADS algorithm[END_REF] incorporates the algorithms developed by Audet et al. [START_REF] Audet | Pattern search algorithms for mixed variable programming[END_REF] and Abramson et al. [START_REF] Abramson | Mesh adaptive direct search algorithms for mixed variable optimization[END_REF].

The second group consists on methodologies that construct surrogate approximations of the objective and (simulated) constraints using polynomial or RBF interpolation over the mixed integer lattice. The method by Rashid [START_REF] Rashid | An adaptive multiquadric radial basis function method for expensive black-box mixed-integer nonlinear constrained optimization[END_REF] interpolates the objective and complicated constraints with multiquadratic RBF models. It also performs two surrogate optimization procedures that provide local and global information of the objective and help to maintain the quality of the interpolation model.

The methods by Müller et al. [START_REF] Müller | So-i: A surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications[END_REF], [START_REF]So-mi: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems[END_REF] and Müller [START_REF] Müller | Miso: Mixed-integer surrogate optimization framework[END_REF] similarly use a global RBF models that interpolate the objective and constraints, and contain diverse strategies for the computation of new trial points and the preservation of the feasibility of the current candidate solution. Similar approaches are found in the work of Holmström et al. [START_REF] Holmström | An adaptive radial basis algorithm (arbf) for expensive black-box mixed-integer constrained global optimization[END_REF] and Costa and Nannincini [START_REF] Costa | Rbfopt: An open-source library for black-box optimization with costly function evaluations[END_REF].

On the other hand, the method by Newby and Ali [START_REF] Newby | A trust-region-based derivative free algorithm for mixed integer programming[END_REF] generalize Powell's Bound

Optimization by Quadratic Approximation (BOBYQA) algorithm [START_REF]The bobyqa algorithm for bound constrained optimization without derivatives[END_REF] for the optimization of box-constrained mixed-integer problem. Their algorithm proposal considers quadratic interpolation of the objective function and triggers termination on trust-region size. It also incorporates two variants that help to identify convergence to points under stronger definitions of mixed-integer optimality. A special case of the use of quadratic interpolation models is the method by Tran et al. [START_REF] Tran | Derivative-free mixed binary necklace optimization for cyclic-symmetry optimal design problems[END_REF] that aims to solve mixed-binary black-box problems that display a cyclic symmetry property.

They use a tailored surrogate that is proven to be fully-linear if the vector of discrete variables is fixed, and their algorithm is proved to be convergent to a first-order stationary solution with respect to the continuous variables.

The third group consider methods that cannot be classified as DSM or modelbased. Larson et al. [START_REF] Larson | A method for convex black-box integer global optimization[END_REF] introduced a method tailored for integer convex functions based on the construction of piece-wise linear underestimators of the objective function. It can be adapted for mixed-integer optimization by solving continuous derivative-free subproblems at fixed discrete values. Liuzzi et al. [START_REF] Liuzzi | Derivative-free methods for bound constrained mixed-integer optimization[END_REF] solve mixed-integer bound-constrained problems with an algorithm that relies on local information, their method uses a line-search algorithm to identify improvement related to the continuous variables and implements a local search method to identify improvement on a local discrete neighborhood. Their method was extended [START_REF]Derivative-free methods for mixed-integer constrained optimization problems[END_REF] to also address general nonlinear constraints using the SQP approach from Liuzzi et al [START_REF] Liuzzi | Sequential penalty derivative-free methods for nonlinear constrained optimization[END_REF].

Local Optimality for Mixed-Integer Functions

One of the challenges met in the solution of mixed-integer derivative-free problems is the definition of a proper local minimizer. In purely continuous settings the definition is the following:

Definition 2.6. If n z = 0, a point x * is a Continuous Local Minimum if there exists ∆ c > 0 such that f (x *) ≤ f (x) ∀x ∈ Bc (x * , ∆ c) ∩ Ω c .
In

(x * , y *) ≤ f (x, y) ∀(x, y) ∈ ((x, ỹ)∈N D (x * ,y *) Bc (x, ∆ c) × { ỹ} ∩ Ω m).
A stronger definition is that of combined local minimum. It seeks to consider more information than a SLM and to be more computationally efficient to evaluate than a StLM.

Definition 2.9. A point (x * , y *) is said to be a Combined Local Minimum (CLM) for f with respect to N D (x * , y *) if there exists ∆ c > 0 such that:

f (x * , y *) ≤ f (x, y) ∀(x, y) ∈ (Bc (x * , ∆ c) ∩ Ω c) × {y * } f (x * , y *) ≤ f (x, y) ∀(x, y) ∈ N comb (x * , y *) ∪ N D (x * , y *),
where N comb is defined as the smallest local continuous minimum for which N D has a point:

A(x, ỹ) := (x, ỹ) | f (x, ỹ) ≤ f (x, ỹ) ∀x ∈ { x ∈ Bc (x, ∆ c) | (x, ỹ) ∈ Ω m } N comb (x * , y *) := argmin (x,y)∈A(x, ỹ) { f (x, y)} | (x, ỹ) ∈ N D (x * , y *) \ (x * , y *) .
We illustrate how a point can be classified as a minimizer under one definition of local optimality but fails to be certified as such under a stronger optimality definition. Figure 2.1 represents the function f (x, y) with x ∈ R and y ∈ {-1, 0, 1}. Figure 2.1a shows that the point marked with a circle (x * = 2.11, y * = 0) is a SLM. This point is a local continuous minimizer when y = 0 and it presents the best objective among the points in the set N D (x * , y *), which is represented by the stars. However, it is evident that this point is not a StLM nor a CLM as there exists a range of points

x ∈ (-4, 1), y = -1 with smaller objective value. Figure 2.1b shows that the point marked with a triangle (x ⋆ = -0.889, y ⋆ = -1) is a CLM. It is the local continuous minimizer when y = -1 and presents the best objective among the set of local minimizers N comb (x ⋆ , y ⋆). In the literature, convergence to a mixed-integer local solution is typically attained by extensive search on multiple manifolds; it may even require using a continuous derivative-free optimizer to guarantee a CLM or even a SLM, e.g., [START_REF] Newby | A trust-region-based derivative free algorithm for mixed integer programming[END_REF]. We highlight that the DDSM are well suited for achieving convergence to SLM and StLM as they use data on surrounding manifolds to perform the extended poll step. Note that model-based methods normally do not include a convergence check, preferring alternate stopping criteria. In this work we introduce two model-based methods that converge to SLM and StLM under given conditions. We remark that we do not aim for convergence to CLM as the number of samples to evaluate this type of minimizer is intensive in terms on function evaluations.

Chapter 3

Locally Quadratic Mixed-Integer

Functions and Approximations

Generally speaking, trust region methods are based on the assumption that it is possible to construct a model m to approximate a function f within a given (trust) region [START_REF] Conn | Trust region methods[END_REF]. In particular, under some assumptions it is possible to construct a surrogate model for the function f inside the region Bc (x, ∆) with the property that the approximation error for f and its derivatives is bounded. Using a Taylor-like model, the error bounds are directly proportional to ∆. This property enables the development of algorithms to find stationary points and proper local minimizers. Usually, the model is obtained via interpolation/regression of a set of sampled points [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF].

From a practical point of view, it is important that the number of points sampled to obtain the model is bounded. The notions of fully-linear models are used to prove convergence to first-order stationary points of trust region methods.

In the general mixed-integer setting, it is difficult to construct fully-linear (and fully-quadratic) approximations, because functions defined over a mixed-integer set are discontinuous with respect to the discrete variables. There are two problems to overcome: the lack of error bounds on the interpolation over integer variables (due to discontinuity), and the difficulty of modeling the interaction between continuous and integer variables.

LQMI Function Definition

To extend a trust-region algorithm to the mixed-integer setting and overcome these problems, we introduce a structured class of mixed-integer functions for which we can construct bounded-error approximations. We state the characteristics of these functions as assumptions.

Assumption 3.1. For every (x * , y *) ∈ Ω m there exists a unique function τ(y), and not necessarily unique Ãz ∈ R n z ×n z and lz ∈ R n z , such that for every (x, y) ∈ N 1 (x * , y *)

f (x, y) = τ(y -y *) := (y -y *) ⊤ Ãz (y -y *) + (lz) ⊤ (y -y *) + f (x * , y *).
Although τ(y) is uniquely defined, multiple distinct lz , Ãz could define the same τ. Assumption 3.1 states that, if we fix the vector of continuous variables to x * , f (x, y) reduces to a quadratic approximation τ centered at (x * , y *). Note that the linear term lz and the quadratic matrix Ãz can depend on (x * , y *). Exploiting this structure, we can determine the number of samples needed to compute Ãz and lz : Observation 3.1. Ãz and lz can be obtained by sampling O(n 2 z) quadratically independent points in N 1 (x * , y *) [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF]. The exact number of points depends on whether the point y * is located on the boundary of the box Ω z , or not.

Assumption 3.2.

There exists a radius ∆ c > 0 such that, for every (x * , y *) ∈ Ω m , there exists a set of functions

ϕ j : R n c → R, ϕ j (0) = 0 ∀j ∈ {0, . . . , n z } (3.1) satisfying f (x, y) = τ(y -y *) + ϕ 0 (x -x *) + n z ∑ j=1 ϕ j (x -x *)(y j -y * j) ∀(x, y) ∈ Bv (x * , y * , ∆ c , 1) . (3.2)
To have a more compact notation, we introduce ϕ(x), ϕ : R n c -→ R n z as the vector of functions ϕ j (x) (with index j ̸ = 0), this allows one to rewrite f (x, y) = τ(yy *) + ϕ 0 (xx *) + (yy *) ⊤ ϕ(xx *).

∇ x f (x, y) = ∇ x ϕ 0 (x) + n z ∑ j=1 ∇ x ϕ j (x)(y j -y * j) = ∇ x ϕ 0 (x) + (Jϕ(x)) ⊤ (y -y *) Observation 3.3.
The partial gradient of f with respect to the continuous variables is given by: 1. There exist two constants κ eg , κ e f > 0, such that, for every

∇ x f (x, y) = ∇ x ϕ 0 (x) + n z ∑ j=1 ∇ x ϕ j (x)(y j -y * j) = ∇ x ϕ 0 (x) + (Jϕ(x)) ⊤ (y -y *) Now,
(x, ȳ) ∈ Ω m , Ω d ∈ Ω and ∆ ∈ [0, ∆ max]
, there exists a model m ∈ M satisfying:

| f (x, y) -m(x, y)| ≤ κ e f ∆ 2 ∀(x, y) ∈ Bc (x, ∆) × (Ω d ∪ { ȳ}) ∥∇ x f (x, y) -∇ x m(x, y)∥ ≤ κ eg ∆ ∀(x, y) ∈ Bc (x, ∆) × (Ω d ∪ { ȳ}).
2. For this class M there exists an algorithm, which we call a "model improvement" algorithm, that in a finite, uniformly bounded (with respect to x, ȳ and ∆) number of steps can:

• establish if a model m ∈ M is fully-linear in (x, y) ∈ Bc (x, ∆)(Ω d ∪ { ȳ}), or • compute a new model m ∈ M which is fully-linear in (x, y) ∈ Bc (x, ∆) × (Ω d ∪ { ȳ}).
for every

Ω d ∈ Ω.
The class of discrete sets Ω determines the neighborhood with respect to which the point computed by our algorithm is stationary.

Mixed-Integer Fully-Linear Models

When working with LQMI functions, it is natural to approximate f (x, y) with a class M of models with the following structure:

m(x * + s c , y * + s z) := f (x * , y *) + l ⊤ c s c + l ⊤ z s z + s ⊤ z A z s z + s ⊤ c A M s z . (3.4)
which mimics a truncated first-order Taylor expansion of the function f (x, y) with respect to the continuous variables x. In the above expression, m(x * + s c , y * + s z) consists of a constant term, representing the value of f (x, y) at the point where the approximation is centered, a linear term in the continuous variables l ⊤ c s c , a quadratic term in the discrete variables l ⊤ z s z + s ⊤ z A z s z and a bilinear term s ⊤ c A M s z . Recall that the quadratic terms l z and A z can be computed by sampling a polynomial number of points (see Observation 3.1), which can be identified using algorithms designed to ensure the well poisedness of a set of interpolation points [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF]. The procedure proposed to construct the model m takes advantage of the fact that the set of points required to determine l z and A z is not unique: the samples can be chosen among any suitable set of integer directions within the neighborhood N 1 (x * , y *). We take advantage of this degree of freedom by choosing, at each iteration, the manifold that allows us to reuse the maximum amount of previous sampled points, and satisfies the bound constraints for the integer variables. We therefore rely on suitably defined integer generating vectors, i.e., coordinate shifts that facilitate model computation by allowing the efficient reuse of samples generated in previous iterations, which are defined as follows:

Definition 3.3. The matrix M = M 1 , ..., M n z ∈ Z n z
×n z is a matrix of integer generating vectors if it has the following properties: M j ∈ {-1, 0, 1} n z and M is a basis of vectors that spans R n z . Let M (y) be the collection of all matrices of integer generating vectors at point y ∈ Ω z . The number of elements of M (y) depend on whether the point y lays on the boundary of Ω z or not. Definition 3.3 is written in such a way that, for any set of integer generating vectors M ∈ M (y *) and point (x, y) ∈ N 1 (x * , y *), there exists a vector d ∈ R n z that allows rewriting (x, y) in terms of the vectors in M: (x, y) = (x * , Md + y *).

Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations Definition 3.4. For a given M ∈ M (y *), we define the function ψ M : R n c -→ R n z as:

ψ M (x) := M ⊤ ϕ(x).
Therefore, the function f can be rewritten as:

f (x, y) = τ(y -y *) + ϕ 0 (x -x *) + (y -y *) ⊤ (M ⊤) -1 ψ M (x -x *).
To make the notation less cumbersome, we remove the superscript "M" and we simply use ψ when it is clear from the context. Definition 3.5. The set of integer generating points Q(y, M) ⊂ Ω z , associated with a matrix M and integer point y ∈ Z n z , is defined as

Q(y, M) = q 1 , . . . , q n z | q j = y + M j .
The set of generating points Q(y, M) defines a set of neighboring points based on M and "centered" at y. This allows us to simplify the expression for the properties of f as follows.

Observation 3.4. For any M ∈ M (y *) and point (x * , y *) we have:

f (x * , q j) = τ(M j) ∀q j ∈ Q(y * , M) f (x + s c , q j) = τ(M j) + ϕ 0 (s c) + ψ j (s c) ∀q j ∈ Q(y * , M), s c ∈ Bc (0, ∆ c)
Next, we show how a mixed-integer fully-linear approximation can be constructed in the LQMI setting. The procedure involves the computation of the continuous term l c and the interaction term A M independently, using known methodologies devised for continuous derivative-free optimization.

Model Computation and Fully-Linearity in the LQMI Setting

Given the separable structure of an LQMI function and the linear transformations described in Definition 3.4 we propose the following surrogate model to be used in a trust-region algorithm:

m(x, y) = τ(y -y *) + m0 (x -x *) + (y -y *) ⊤ (M ⊤) -1 v(x -x *), (3.5)
where τ(yy *) is described as in Assumption 3.1 and m0 and υ are linear approximations of the functions ϕ 0 and ψ M , respectively. We now prove that if both approximations are fully-linear in continuous neighborhoods, the mixed-integer approximation m is fully-linear as well.

Proposition 3.1. [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF] A fully-linear approximation m0 (x

-x *) := (x -x *) ⊤ g 0 of ϕ 0 (x)
on Bc (x * , ∆ c) with g 0 ∈ R n c and error bound coefficients κ e f ,0 , κ eg,0 can be computed by

sampling n c + 1 points (x, y) ∈ Bc (x * , ∆ c) × {y * }.
Proposition 3.2. [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF] Let q j ∈ Q(y * , M) be as in Definition 3.5. A fully-linear approximation mM j (x) of f (x, q j) with error bound coefficients κ e f j and κ eg j can be computed by sampling n 1 + 1 points (x, y) ∈ Bc (x * , ∆ c) × {q j }.

Note that Proposition 3.2 allows us to isolate the entry ψ j (x); by Proposition 3.1, mM j (x) is equivalent to a linear approximation of the function ϕ 0 (x) + ψ j (x).

Lemma 3.1. The function υj (x) := mM j (x) -m0 (x), which can be expressed as υj (x -

x *) = (x -x *) ⊤ g j (j ∈ 1, . . . , n z) with g j ∈ R n c
, is a fully-linear approximation of ψ M j (x) on x c ∈ Bc (x * , ∆) with constants κe f ,j := κ e f ,j + κ e f ,0 and κeg,j := κ eg,j + κ eg,0 .

Proof. We first show that the error on the function is bounded:

|ψ j (x) -υj (x)| = |ψ j (x) + ϕ 0 (x) -mM j (x) -ϕ 0 (x) + m0 (x)| ≤ |ψ j (x) + ϕ 0 (x) -mM j (x)| + | m0 (x) -ϕ 0 (x)| ≤ κ e f ,j ∆ 2 + κ e f ,0 ∆ 2 = κe f ,j ∆ 2 .
Also the error on the function gradient is bounded:

∥∇ x ψ j (x) -∇ x υj (x)∥ = ∥∇ x ψ j (x) + ∇ x ϕ 0 (x) -∇ x mM j (x) -∇ x ϕ 0 (x) + ∇ x m0 (x)∥ ≤ ∥∇ x ψ j (x) + ∇ x ϕ 0 (x) -∇ x mM j (x)∥ + ∥∇ x m0 (x) -∇ x ϕ 0 (x)∥ ≤ κ eg,j ∆ + κ eg,0 ∆ = κeg,j ∆.
Definition 3.6. Let A g be the matrix formed by the vectors g j , ∀j ∈ {1, . . . , n z } defined in Lemma 3.1:

A g =       | | | g 1 g 2 . . . g n z | | |       .
We emphasize that the model introduced throughout equation 3. For any M ∈ M , the model m(x * + s c , y * + s z) defined in Equation (3.4) with l c = g 0 and A M = (M ⊤) -1 A g is mixed-integer fully linear with respect to f (x, y) in the trustregion Bv (x, y, ∆ c , 1), with error bound constants

κe f = κ e f ,0 + (n z) 1/2 • ∥M -1 ∥ • ∥ κe f ∥ and κeg = κ eg,0 + (n z) 1/2 • ∥M -1 ∥ • ∥ κeg ∥.
In the remainder of this section, we provide the intermediate results necessary to prove Theorem 3.1.

Observation 3.5. Note that the gradient of a model m centered at (x, ȳ) in the point (x, y) = (x + s c , ȳ + s z) can be expressed as follows:

∇ x m(x, y) = ∇ x m0 (s c) + (J υ(s c)) ⊤ M -1 s z . Lemma 3.2. |s ⊤ z (M ⊤) -1 (ψ(s c) -υ(s c))| ≤ (n z) 1/2 ∥M -1 ∥ • ∥ κe f ∥ • (∆ c) 2
, where κe f ∈ R n c is the vector with entries κe f ,j defined in Lemma 3.1.

Proof. By the Cauchy-Schwarz inequality

|s ⊤ z (M ⊤) -1 (ψ(s c) -υ(s c))| ≤ ∥s ⊤ z (M ⊤) -1 ∥ • ∥(ψ(s c) -υ(s c))∥.
An upper bound to the first term is computed as follows:

∥s ⊤ z (M ⊤) -1 ∥ ≤ ∥s z ∥•∥(M ⊤) -1 ∥ ≤ (n z) 1/2 ∥M -1 ∥.
For the second term, a upper bound is computed by mixed-integer linearity of the vector function ψ(s c):

∥(ψ(s c) -υ(s c))∥ = n z ∑ j=1 (ψ j (s c) -υj (s c)) 2 1/2 ≤ n z ∑ j=1 κ2 e f ,j 1/2 • (∆ c) 2 = ∥ κe f ∥ • (∆ c) 2 . Lemma 3.3. ∥(Jψ(s c) -J υ(s c)) ⊤ M -1 s z ∥ ≤ (n z) 1/2 ∥M -1 ∥ • ∥ κeg ∥ • ∆ c , where κeg ∈ R n c
is the vector with entries κeg,j defined in Lemma 3.1.

Proof. By the Cauchy-Schwarz inequality

∥(Jψ(s c) -J υ(s c)) ⊤ M -1 s z ∥ ≤ ∥Jψ(s c) -J υ(s c)∥ • ∥M -1 s z ∥.
The bound for the norm of the difference of Jacobians is computed as follows:

∥Jψ(s c) -J υ(s c)∥ = n z ∑ i=1 ∥∇ x ψ i (s c) -υi (s c)∥ 2 1/2 .
Recalling the fully-linear assumption on every model υi (s c) ∀i ∈ {1, . . . ,

n z } ∥Jψ(s c) -J υ(s c)∥ ≤ n z ∑ i=1 κ2 eg,i (∆ c) 2 1/2 = ∥ κeg ∥ • ∆ c .
With all the provided proposition, we are able to give the proof of Theorem 3.1:

Proof. First, we prove that for all (s c , s z) in Bv (0, 0, ∆ c , 1) the error in the function is bounded by κe f ∆ 2 . The absolute error of the approximation is given by: 2 and the definition of constant κe f , we have that

| f (x + s c , y + s z) -(τ(s z) + m0 (s c) + s ⊤ z (M ⊤) -1 υ(s c))| = |τ(s z) + ϕ 0 (s c) + s ⊤ z (M -1) ⊤ ψ(s c) -(τ(s z) + m0 (s c) + s ⊤ z (M ⊤) -1 υ(s c))| = |ϕ 0 (s c) -m0 (s c) + s ⊤ z (M ⊤) -1 (ψ(s c) -υ(s c))| ≤ |ϕ 0 (s c) -m0 (s c)| + |s ⊤ z (M ⊤) -1 (ψ(s c) -υ(s c))|. Recalling Lemma 3.2 stating that |s ⊤ z (M ⊤) -1 (ψ(s c) -υ(s c))| ≤ (n z) 1/2 ∥M -1 ∥ • ∥ κe f ∥ • (∆ c)
| f (x + s c , y + s z) -m(x + s c , y + s z)| ≤ κ e f ,0 (∆ c) 2 + (n z) 1/2 • ∥M -1 ∥ • ∥ κe f ∥ • (∆ c) 2 ≤ κe f (∆ c) 2 .
Now, we prove that the error in the continuous gradient is bounded by κeg ∆ c . The gradient deviation is given by:

∥∇ x f (s c) -(∇ x m0,k (s c) + (J υ(s c)) ⊤ M -1 s z)∥ = ∥∇ x ϕ 0 (s c) + (Jψ(s c)) ⊤ M -1 s z -(∇ x m0 (s c) + (J υ(s c)) ⊤ M -1 s z)∥ ≤ ∥∇ x ϕ 0 (s c) -∇ x m0 (s c)∥ + ∥(Jψ(s c) -J υ(s c)) ⊤ M -1 s z ∥. Recalling Lemma 3.3 that states that ∥(Jψ(s c) -J υ(s c)) ⊤ M -1 s z ∥ ≤ (n z) 1/2 ∥M -1 ∥ • ∥ κeg ∥ • ∆ c
and the definition of κeg , we have that:

∥∇ x f (x + s c , y + s z) -∇ x m(x + s c , y + s z)∥ ≤ κ eg,0 ∆ c + (n z) 1/2 • ∥M -1 ∥ • ∥ κeg ∥ • ∆ c ≤ κeg ∆ c .

Practical Model Considerations

The existence of fully-linear model approximations of LQMI functions is necessary to prove convergence of a trust-region algorithm to stationary points; however, it might be desirable to build model approximations involving fewer objective value evaluations. In the continuous derivative-free methodology this is done by considering underdetermined quadratic interpolation and using an adaptative (but bounded) number of samples each time the model construction procedure is invoked [START_REF] Conn | Introduction to derivative-free optimization introduction[END_REF]. For the LQMI setting we propose two ways to decrease the number of samples required to build and update a surrogate approximation.

The first one is to perform underdetermined approximation of each element constituting the model. The terms involving the continuous directions l c and A M can be approximated using a fraction of the points n c + 1 required for the interpolation. The elements related to the integer contribution in the objective function l z and A z can be estimated by solving the Least Frobenius Norm Update (see below) interpolation problem for the set of samples Z ⊂ Ω z :

min l z ,A z ∥A z -A 0 z ∥ 2 (3.6a) s.t. f (x * , y *) + l ⊤ z (y -y *) + (y -y *) ⊤ A z (y -y *) = f (x * , y) ∀y ∈ Z (3.6b)
where

A 0 z ∈ R n z × R n z is a previous approximation of the matrix A z and |Z| ∈ [(n z + 1), 1 2 (n z + 1)(n z + 2)].
The second way to reduce the number of samples is to update a model that had a sufficiently good fit in a previous iteration k, using the information of the iterate (x k + s k c , y k + s k z). We assume the quadratic terms A k M of the model remain constant, but the linear terms are affected by the translation:

l k+1 c = l k c + A k M s k z (3.7a) l k+1 z = l k z + (A k M) ⊤ s k c + 2A k z s k z . (3.7b)
These two concepts allow us to devise several algorithm variants, based on the number of samples devoted to model construction and to an inexpensive update of the surrogate; these inexpensive model updates are only considered in the case of successful iteration. We highlight that the Least Frobenius Norm update 3.6a-3.6b is defined in a larger integer neighborhood, not necessarily Ω LQMI d (y *), to enable a better initial exploration of the integer domain.

Mixed-Integer Fully-Linearity in the non-LQMI Setting

Finally, we show that the methodology described in Section 3.2.1 is able to generate a fully linear approximation with respect to the discrete set Ω G d (y * , M) = {y * } ∪ Q(y * , M) for a function that satisfies Assumptions 1.1 and 1.2, whether it behaves as an LQMI function or not. Proposition 3.3. Let q j ∈ Q(y * , M) be as in Definition 3.5. A fully linear approximation mM j (x) of f (x, q j)f (x * , q j) with coefficients κ e f j and κ eg j can be computed by sampling n c + 1 points (x, y) ∈ Bc (x * , ∆ c) × {q j }. Let m0 (s c) and mM j (x) be obtained as in Propositions 3.1 and 3.3, respectively. Let

υj (x) := mM j (x) -m0 (x) := (x -x *) ⊤ g j (j ∈ 1, . . . , n z) (3.8)
and let

τ(y -y *) = f (x * , y *) + l⊤ z (y -y *) + (y -y *) ⊤ Āz (y -y *) (3.9)
be a quadratic interpolation of function f (x, y) in the neighborhood {x * } × Bz (y * , 1), which is obtained by solving problem 3.6a-3.6b over a set of samples Z that includes the set of points Ω G d (y * , M). A direct result of equations 3.9 and 3.6b is that f (x

* , y) = τ(y -y *) ∀y ∈ Ω G d (y * , M).
Theorem 3.2. Let f be a function that satisfies Assumptions 1.1 and 1.2. Let m(x * + s c , y * + s c) be a surrogate approximation m0 (s c), with the shape 3.5, where υ(s c) are obtained as in Proposition 3.1 and equation 3.8. Let τ(s z) be obtained as in equation 3.9. For

any M ∈ M , the model m(x * + s c , y * + s z) defined in equation (3.4) with (l z , A z) = (lz , Āz) l c = g 0 A M = (M ⊤) -1 A g
is mixed-integer fully linear with respect to f (x, y) in the trust-region Bc (x * , ∆ c) × Ω G d (y * , M) with constants:

• κe f = max(κ e f 0 , max j∈{1,...,n z } (κe f ,j)) • κeg = max(κ eg 0 , max j∈{1,...,n z } (κeg,j))
Proof. We remark that this proof is equivalent to the one for Theorem 3.1, the main difference between the two is that in this case we restrict the error analysis on the set

Ω G d (y * , M), instead of Ω LQMI d (y *).
It is evident that if the model and gradient error are bounded on every discrete manifold y ∈ Ω G d (y * , M), the error constants κe f , κeg for m(x, y) are equal to max(κ e f 0 , max j∈{1,...,n z } (κe f ,j)) and max(κ eg 0 , max j∈{1,...,n z } (κeg,j)), respectively.

First, we prove that for all (s c , s z) in Bc (0, ∆ c) × {M j | j ∈ {1, . . . , n z }} the error in the function is bounded by κe f ∆ 2 . We recall Proposition 3.3 for the construction of model approximation mM j (s z)

| mM j (s c) -(f (x + s c , y * + M j) -f (x * , y * + M j))| ≤ κe f ,j (∆ c) 2 .
Then, we add and subtract the term m0 (s c) to rewrite the inequality in terms of υj (s c)

(from Proposition 3.8):

| υj (s c) + m0 (s c) + f (x * , y * + M j) -f (x * + s c , y * + M j)| ≤ κe f ,j (∆ c) 2 .
From Proposition 3.9, f (x

* , y * + M j) = τ(M j) and M -1 M j υ(s c) = υ j (s c): |(M j) ⊤ (M ⊤) -1 υ(s c) + m0 (s c) + τ(M j) -f (x * + s c , y * + M j))| ≤ κe f ,j (∆ c) 2 .
The latter is equivalent to the definition of model m in the point (x * + s c , y * + M j):

|m(x * + s c , y * + M j) -f (x * + s c , y * + M j)| ≤ κe f ,j (∆ c) 2 ≤ κe f (∆ c) 2 .
Now we prove that for all (s c , s z) in Bc (0, ∆ c) × {M j | ∀j ∈ {1, . . . , n z }} the error in the approximation of the continuous gradient is bounded by κeg ∆ c :

∥∇ x mM j (s c) -∇ x f (x + s c , y * + M j)∥ ≤ κe f ,j ∆ c .
Now, adding and subtracting the term ∇ x m0 (s c) allows to rewrite the inequality in terms of υj (s c) (from Proposition 3.8):

∥∇ x υj (s c) + ∇ x mo (s c) -∇ x f (x + s c , y * + M j)∥ ≤ κe f ,j ∆ c .
From Definition 3.4 we expand the expression in terms of the Jacobian matrix of

vector υ(s c), ∥(J υ(s c)) ⊤ M -1 M j + ∇ x mo (s c) -∇ x f (x + s c , y * + M j)∥ ≤ κe f ,j ∆ c .
The latter is equivalent to the continuous gradient at the point (x * + s c , y * + M j):

∥∇ x m(x * + s c , y * + M j) -f (x * + s c , y * + M j)∥ ≤ κeg,j ∆ c ≤ κeg ∆ c ,
which concludes the proof. Then, the model m(x

Conditions for Mixed-Integer Derivative-Free Methods

+ s c , y + s z) is also mixed-integer fully-linear in Bc (x, ∆) × Ω d for ∆ ∈ [∆, ∆ max]
with the same constants κ eg , κ e f and κ eg /2 ≤ κ e f . This condition is called model accuracy in concentric spheres [START_REF] Conn | Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points[END_REF], [START_REF] Conn | Trust region methods[END_REF].

Proof. First, we prove that the error constant for the gradient satisfies the desired properties. Let s c ∈ R n c be a vector such ∆ ≤ ∥s c ∥ ≤ ∆, the scalar θ = ∆/∥s c ∥ ≤ 1, and w ∈ Ω d . Recalling the mixed-integer fully-linearity of m and that (x

+ θs c , w) ∈ Bc (x, ∆) × Ω d we have ∥∇ x f (x + θs c , w) -∇ x m(x + θs c , w)∥ ≤ κ eg ∆. (3.10) A bound for ∥∇ x f (x + s c , w) -∇ x m(x + s c , w)∥ is computed as follows: ∥∇ x f (x + s c , w) -∇ x m(x + s c , w)∥ = ∥∇ x f (x + s c , w) -∇ x f (x + θs c , w) + ∇ x f (x + θs c , w) -∇ x m(x + s c , w) -∇ x m(x + θs c , w) + ∇ x m(x + θs c , w)∥.
Applying the triangle inequality

∥∇ x f (x + s c , w) -∇ x m(x + s c , w)∥ ≤ ∥∇ x f (x + s c , w) -∇ x f (x + θs c , w) -∇ x m(x + s c , w) + ∇ x m(x + θs c , w)∥ +∥∇ x f (x + θs c , w) -∇ x m(x + θs c , w)∥ ≤ ∥∇ x f (x + s c , w) -∇ x f (x + θs c , w) -∇ x m(x + s c , w) +∇ x m(x + θs c , w)∥ + κ eg ∆.
(3.11)

A bound on the first term of (3.11) is computed using the Lipschitz continuity of ∇ f x

and that ∇ xx m(s c , w) = 0, ∀s c ∈ R n c , w ∈ Ω d ∥∇ x f (x + s c , w) -∇ x f (x + θs c , w)∥ + ∥∇ x m(x + s c , w) -∇ x m(x + θs c , w)∥ ≤ κ g ∥s c (1 -θ)∥ ≤ κ eg (∥s c ∥ -∆).
(3.12)

By combining (3.11) and (3.12) we obtain

∥∇ x f (x + s c , w) -∇ x m(x + s c , w)∥ ≤ κ eg ∥s c ∥ ≤ κ eg ∆. (3.13)
Now we establish the constants for the error in the model. Let r : R → R n c , r(t) =

x + ts c and ζ(t) = f (r(t), w)m(r(t), w). We have that |ζ(r(θ)

)| = | f (x + θs c , w) - m(x + θs c , w)| ≤ κ e f ∆ and |g(r(1))| = | f (x + s c , w) -m(x + s c , w)|.
Recalling the fundamental theorem of line integrals:

|ζ(r(1)) -ζ(r(θ))| = 1 θ ∇ x ζ(r(t)) • dr(t) dt dt ≤ 1 θ ∥∇ x ζ(r(t))∥ • dr(t) dt dt.
As dr(t) dt = s c and using (3.13)

∥∇ x ζ(r(t))∥ ≤ tκ eg ∥s c ∥ ∀t ≥ θ |ζ(r(1)) -ζ(r(θ))| ≤ 1 θ t • κ eg ∥s c ∥ 2 dt ≤ (1 -θ 2) 2 κ eg ∥s c ∥ 2 ≤ κ e f (∥s c ∥ 2 -∆2).
The bound is finally obtained by using the triangle inequality

| f (x + s c , w) -m(x + s c , w)| ≤ |ζ(r(1)) -ζ(r(θ))| + |ζ(r(θ))| ≤ κ e f ∥s c ∥ 2 ≤ κ e f ∆ 2 . (3.14)
The proof is complete.

Lemma 3.4 implies that there exists a suitable pair of constants κ e f , κ eg for every (x, y) ∈ Ω m , for which the error in every fully-linear model constructed in the domain Bc (x, ∆) × Ω d (with ∆ ∈ (0, ∆ max]) is bounded by κ e f ∆ 2 , κ eg ∆. Theorems 3.1 and 3.2 show that the error in the approximation of a mixed-integer function in a suitably-defined neighborhood depends on the error constants of the linear approximation of the function with respect to the continuous variables; in the LQMI case, it also depends on the ∥M -1 ∥. Conn et al. [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF] show that the error constants in the linear interpolation case are a function of the Lipschitz constant and the geometry of the points inside a trust-region. Thus, if ∥M -1 ∥ and κ g are bounded we guarantee that we are able to construct a mixed-integer fully-linear approximation of function

f

Conclusions and Future Work

In this chapter we have introduced the concept of Locally Quadratic Mixed-Integer function (LQMI), which allows us to overcome the lack of knowledge on the contribution of the discrete variables on the objective function and the interaction between integer and continuous variables. Moreover, we extended the concept of fully-linear surrogate models into the mixed-integer domain and introduced a general framework for the computation of accurate models for the LQMI function. In addition, we introduced methods for the fast computation and update of LQMI surrogates.

Finally, we proved that the framework for computing LQMI models can be used for the approximation of a general mixed-integer function, the output is a quadratic model that is accurate in a reduced mixed-integer domain. These results are used in Chapter 4 to devise a trust-region algorithm for the solution of Problem 1.1.

We highlight that the model construction framework introduced in this chapter resembles the manifold sampling method [START_REF] Larson | Manifold sampling for \ell_1 nonconvex optimization[END_REF]- [START_REF] Menickelly | Derivative-free robust optimization by outer approximations[END_REF] that computes gradient approximation by sampling in different parts of the domain.

In the future, we hope to extend the notions of mixed-integer fully-linear models into other types of surrogate approximation. We are particularly interested in using the RBFs, a class of functions that globally approximates the objective function and are less restrictive than the polynomial models for the management of the geometry of the interpolating set. We believe that the method introduced in this chapter can extend the results of the work of Wild and Shoemaker [START_REF] Wild | Global convergence of radial basis function trust-region algorithms for derivative-free optimization[END_REF].

Chapter 4

LQMI-Based Trust-Region

Algorithm

Theorems 3.1 and 3.2 show that the model m(x * + s c , y * + s z) obtained after imposing l c = g 0 , A M = (M ⊤) -1 A g and fully determining the integer coefficients l z , A z , is mixed-integer fully linear. In this chapter, we present a trust-region algorithm based on this principle. The output of this algorithm is a point (x, ŷ) that is stationary with respect to a discrete set Ω LQMI d (ŷ) if f is an LQMI function, and stationary with respect to a discrete set

Ω Q d (ŷ) for which Ω G d (ŷ, M) ⊆ Ω Q d (ŷ) ⊂ Ω LQMI d (ŷ) with |Ω Q d (ŷ)| ≤ (n z +1)(n z +2)
Θ k = max y∈Q(y k ,M k) min x∈ Bc (x k ,∆ c k)∩Ω c m k (x k , y k) -m k (x, y)
and

Θk =      Θ k if Θ k ≥ max{ϵ a , ϵ c } 0 otherwise.
Definition 4.2. Let the combined stationary parameter Φ k be defined as

Φ k = max{∥red(l c k , x k)∥, Θk }.

Overview of the Proposed Algorithm

The LQMI-based trust-region algorithm is presented in Algorithm 4.1. For a given iteration k, the center of the trust-region is denoted by (x k , y k). Y k indicates the set of points sampled up to iteration k and

X k w = {x ∈ R n c | (x, w) ∈ Y k } is the set of points with same integer component w ∈ Z n z .
The basic idea is to compute at each iteration a model m k by sampling on the continuous manifolds of the integer points

q j k ∈ Q(y k , M k
) and on the continuous manifold of y k . The set of integer generating vectors M k can potentially change at each iteration and it is selected according to rules that allows one to reuse sampled points from previous iterations. We identify by Xk

o ⊆ X k y k , Xk j ⊆ X k q j k
and Zk the points used to compute the model approximations at iteration k.

The inputs of the algorithm are: the black-box function f (x, y), the variable lower bounds (x lb , y lb) and upper bounds (x ub , y ub), the initial center of the trust-region (x 0 , y 0) ∈ Ω m , the starting and maximum size of the trust-region ∆ icbc 0 , ∆ icbz 0 , ∆ c max and ∆ z max , the parameters used to update the region γ 0 and γ 1 , the parameters used to evaluate the quality of an iteration η 0 and η 1 , the scaling parameters of the critical step µ and β, and the reduction factor of the trust-region ω used in the criticality

; γ 0 , γ 1 such that 0 < γ 0 < 1 < γ 1 , η 0 , η 1 such that 0 < η 0 < η 1 < 1 ; 0 < β < µ; ϵ a , ϵ c > 0; and ω ∈ (0, 1) UP ∈ {0, 1}, c f r ∈ (0, 1], IC ∈ {0, 1} and SH ∈ {0, 1} Output: Local minimum (x, ŷ) of f (x, y) 1: Set k := 0, set ε = max{ϵ c , ϵ a } 2: Set M 0 = IntegerTransformation(y 0 , y lb , y ub , ∅, ∆ icbz 0) 3: Set Q 0 = Q(y 0 , M 0) 4: Set Y 0 = (x 0 , y 0) ∪ q j ∈Q 0 (x 0 , q j) 5: Set (m icb o , Xk o , Xk j , Zk) = MixedIntegerModelComputation(x 0 , x lb , x ub , y 0 , y lb , y ub , ∆ icbc 0 , ∆ icbz 0 , Q 0 , Y 0 , c f , IC) 6: repeat 7: if Φ icb k < ϵ c and (m icb k is not fully-linear or ∆ icb k > µ∥red(l icb c,k , x k)∥) then 8: Set (mk , ∆k , Y k , M k) = CriticalityTest(x k , y k , x lb , x ub , y lb , y ub , ∆ icbc k , ∆ icbz k , Y k , M k , ω, µ, ϵ c , c f r , IC) 9:
Set m k = mk 10:

Set ∆ c k = min{max{ ∆k , β∥red(lc,k , x k)∥}, ∆ icbc k } 11: Set ∆ z k = max ∆ c k ∆ icbc k ∆ icbz k , 1 12: else 13:
Set

m k = m icb k , ∆ c k = ∆ icbc k , ∆ z k = ∆ icbz k 14: end if 15: Set (x ′ , y ′ , ρ k) = CandidateComputation(x k , y k , Y k , ϵ a , SH) 16: if ρ k ≥ η 0 then 17: if ρ k ≥ η 1 then 18: Set ∆ icbc k+1 = min{γ 1 ∆ c k , ∆ c max }, ∆ icbz k+1 = min{γ 1 ∆ z k , ∆ z max } 19: end if 20: Set (m icb k+1 , Xk+1 o , Xk+1 j , Zk+1 , M k+1) = ModelUpdate(m k , x ′ , x lb , x ub , y ′ , y lb , y ub , ∆ icbc k+1 , ∆ icbz k+1 , Y k , UP, c f r , IC) 21: else 22: Set x ′ = x k , y ′ = y k 23:
if Model m k is not mixed-integer fully linear then Set (x k+1 , y k+1) = (x ′ , y ′) 37:

(x, ȳ) = RescueProcedure(m k , Q k Y k , ϵ a) 27: if f (x, ȳ) < f (x k , y k) then 28: Set (x ′ , y ′) = (x, ȳ) 29: Set (m icb k+1 , Xk+1 o , Xk+1 j , Zk+1 , M k+1) = ModelUpdate(m k , x ′ , x lb , x ub , y ′ , y lb , y ub , ∆ c k , ∆ z k , Y k , UP, c f r , IC) 30: else 31: Set m icb k+1 , ∆ icbc k+1 = γ 0 ∆ c k , ∆ icbz k+1 = max{γ 0 ∆ z k , 1}
Set k = k + 1 38: until Convergence is proven
The initialization (Lines 1 -5) corresponds to setting the first set of integer generating vectors to the identity matrix, computing the associated set of integer generating points (see Definitions 3.5 and Definition 3.3) and the initial set of samples Y 0 is initialized by adding the initial center of the trust-region and the points obtained after moving the center of the trust-region along the directions given by M 0 . Finally, a first incumbent model m icb 0 is computed (Line 5

(Line 15). If ρ k ∈ [η o , η 1) iteration k is said to be a
successful iteration, when the new solution yields a sufficiently large improvement with respect to the previous solution. Furthermore, if ρ k > η 1 iteration is said to be very-successful. If we have a successful or very-successful iteration (i.e., ρ k ≥ η 0), we use (x ′ , y ′) as new center of the trust-region, and we generate the model to be used in the next iteration. This procedure takes into account the parameter UP to use quick linear update of the current model or to generate a new one centered on (x ′ , y ′). Moreover, if we have a very-successful iteration (i.e., ρ k ≥ η 1), we increase the size of the trust-region (Line 18).

In case ρ k ≤ η 0 we check if the model used is fully-linear (Line 23). Under the assumption that the function is LQMI, the mixed-integer fully-linearity is achieved when all the continuous-related elements of the model (l c , A M) are computed using fully-linear approximations on the continuous manifolds at y k and Q(y k , M k), and the quadratic elements of the model l z , A z determine all the degrees of freedom for Problem 3.6a-3.6b. In case model m k is mixed-integer fully-linear the rescue procedure is invoked (Line 26). The goal of the rescue procedure is to search for candidate points to be used as center of the trust-region, exploiting the fully-linearity of m k with respect to the integer neighborhood Ω G d (y k , M k) as described in Theorem 3.2. The rescue procedure is required for the algorithmic convergence in functions that are not LQMI and in general it can be complemented with any heuristic without affecting said convergence. If the rescue procedure succeeds in improving the objective function (Line 27), the iteration is said acceptable and the model is updated accordingly (Line 29). If this is not the case, the iteration k is called unsuccessful and the size of the trust-region is reduced (Line 31). If the fully-linearity condition is not satisfied, we have a model-improving iteration, where a geometry procedure is called to add (if necessary) a new sample to each of the sets of interpolation points Xk 0 , Xk j and Zk to improve the quality of the model (Line 24).

In the subsequent subsections we describe all the procedures used in Algorithm 4.

CriticalityTest (Algorithm 4.2)

This procedure is used to evaluate the convergence into a first-order stationary point.

The CriticalityTest aims to generate an approximation mk of f (x k , y k) for which at least one of the followings conditions holds:

• Θk ≥ ε ≥ ϵ c
• µ∥red(l, x k)∥ ≥ ∆k and mk is fully-linear with respect to ∆k .

To guarantee these conditions, at first we use the ManifoldSearch (Line 1) procedure that attempts to retrieve a model mk and an matrix M k such that max{ϵ c , ϵ a } ≤

Θk ≤ Φ k . The ManifoldSearch iteratively selects one point y on a randomly defined finite set Ω MS k ⊂ Bz (y k , ∆ z k) and constructs a continuous fully-linear approximation of fy (x) with respect to ∆k . If the model improvement (with respect to f (x k , y k)) exceeds max{ϵ c , ϵ a }, the vector yy k is included in the matrix M k , the mixed-integer model is updated and the ManifoldSearch procedure is stopped. Otherwise the procedure is repeated until the last element of Ω MS k . We remark that the Manifold-Search does no affect convergence to a fist-order stationary point nor necessary for proving algorithmic convergence; however, it is useful in preventing the early convergence of Algorithm 4.1 to a suboptimal solution.

If the ManifoldSearch fails in achieving the desired Θk , we invoke an iterative procedure (Lines 8 -13), whose outcome is a fully-linear model with µ∥red(l, x k)∥ ≥ ∆k .

If ∥red(∇ x f (x k , y k), x k)∥ > 0 this loop must be finished in a finite number of iterations [START_REF] Conn | Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points[END_REF]. We highlight that the outcome of this algorithm is a model m k such that

Φ k ≥ ϵ c or Φ k ≥ ∥red(l c k , x k)∥µ -1 ≥ ∆ c k µ -1
and fully-linear.

Algorithm 4.2 CriticalityTest

Input: Point (x k , y k), variable bounds (x lb , x ub) and (y lb , y ub), sampling set Y k , transformation matrix M k , continuous radius ∆ icbc k , integer radius ∆ icbz k ,the reduction factor of the trust-region ω, geometric parameter µ, criticality tolerance ε and modelling parameters c f r , IC.

Output: mk , ∆k , Y k , M k 1: Set mk , Θk , M k = ManifoldSearch(x k , y k , x lb , x ub , y lb , y ub , ∆ icbc k , ∆ icbz k , Y k , M k , ε) 2: if Θk ≥ ε then 3: Set ∆k = ∆ icb k 4: return mk , ∆k , Y k , M k 5: else 6: Set i = 1 7: repeat 8: Set ∆k = ω i-1 ∆ icb k 9: Set ∆z k = max{1, ω i-1 ∆ icbz k } 10: Set Mk = IntegerTransformation(y k , y lb , y ub , ∆ z), Qk = Q(y k , Mk) 11: Set (mk , Xk o , Xk j , Zk) = MixedIntegerModelComputation(x k , x lb , x ub , y k , y lb , y ub , ∆k , ∆z k , Qk , Y k , 1 , 1) 12:
i = i +1 until ∆k ≤ µ∥red(lc,k , x k)∥ 14: end if

CandidateComputation (Algorithm 4.3)

In this procedure the information from model m k and the set Y k is used to generate a point (x ′ , y ′) that potentially yields an objective reduction, and to provide an estimate of the fitness of the surrogate approximation by computing the update parameter ρ k . The parameter SH defines if the surrogate optimization is done before or after evaluating the best solution in previous samples. Note that if a better solution is found among the points used for model construction (Lines 3 and 9), the update parameter ρ k is set to η 0 to not modify the trust-region radii ∆ c and ∆ z .

Algorithm 4.3 CandidateComputation

Input: Point (x k , y k), set of samples Y k , acceptance tolerance ϵ a and search heuristic parameter SH Output: New candidate solutions (x ′ , y ′) and update parameter

ρ k 1: Set (x, ȳ) = argmin (x,y)∈Y k { f (x, y)} 2: if SH = 1 then 3: if f (x k , y k) -f (x, ȳ) ≥ ϵ a then 4: ρ k = η 0 5:
Go to line 14 6:

end if 7: end if 8: Set (x, y) = argmin (x,y)∈ Bz (x k ,y k ,∆ c k ,∆ z k)∩Ω m m k (x, y) and s c = x -x k , s z = y -y k 9: if ∥s z ∥ 1 ≥ 1 and m k (x k , y k) -m k (x k + s c , y k + s z) ≥ ϵ a then 10: Set (x ′ , y ′) = (x k , y k), ρ k = 0 11: else 12: ρ k = f (x k ,y k)-f (x k +s c ,y k +s z) m k (x k ,y k)-m k (x k +s c ,y k +s z) 13: end if 14: Set (x, ỹ) = argmin (x,y)∈Y k { f (x, y) | f (x k , y k) -f (x, y) ≥ (min{∥y -y k ∥ 1 , 1})ϵ a } 15: if ρ k ≥ η 0 then 16: if f (x, ỹ) < f (x k + s c , y k + s z) then 17: Set (x ′ , y ′) = (x, ỹ), ρ k = η 0 18: else 19: Set (x ′ , y ′) = (x k + s c , y k + s z) 20:
end if 21: end if

ModelUpdate(Algorithm 4.4)

This procedure is activated when a successful iteration occurs ρ k ≥ η 0 . In it, a new basis of generating vectors M k+1 is computed. Such discrete directions are chosen from the set Bz (y k , ∆z) ∩ Ω z using a modified pivoting algorithm that aims for the reduction of ∥M -

(m icb k+1 , Xk o , Xk o , Zk) = MixedIntegerModelComputation(x k+1 , y k+1 , ∆ c , ∆ z , Q k+1 , Y k , c f r , IC) 6: end if

RescueProcedure (Algorithm 4.5)

In this procedure we use the properties of mixed-integer fully-linear models in a final attempt to obtain a decrease in the objective. This procedure takes as input the model m k , the set of discrete directions Q k , the set of previously sampled points Y k and an acceptance tolerance ϵ a .

The new candidate is estimated by optimizing the surrogate model, restricting the integer search in the directions M k , as well as in the current manifold (s z = 0): min

(x,y) m k (x, y) (4.1) x ∈ Bc (x k , ∆ c k) ∩ Ω c (4.2)    V y = y k    ∨       ¬V y ∈ Q(y k , M k) m k (x k , y k) -m k (x, y) ≥ ϵ a       (4.3) V ∈ {True, False} (4.4
(x ′ , y ′) 1: Set (x, ỹ) = argmin (x,y)∈Y k { f (x, y) | f (x k , y k) -f (x, y) ≥ ϵ a } 2: Solve problem 4.1 to compute (x, ȳ) 3: if f (x, ỹ) < f (x, ȳ) then 4: Set (x ′ , y ′) = (x, ỹ) 5: else 6: Set (x ′ , y ′) = (x, ȳ) 7: end if

MixedIntegerModelComputation (Algorithm 4.6)

A new surrogate is created using the previous samples Y k and considering the parameters c f , IC. If c f = 1 and IC = 1 the model immediately becomes mixed-integer fully linear. LinearInterpolationSet is a procedure that selects n c + 1 samples to compute a linear interpolation, using a geometry improvement that improves the poisedness of the interpolation set. We remark that if c f r < 1, the approximation is underdetermined and some samples are kept for future use in the GeometryImprovement procedure, unless all the points selected by the algorithm have already been explored in previous iterations. QuadraticInterpolationSet is a procedure designed to select the best sampling set to interpolate a second order approximation of the function f (x k , y) in the set Bz (y k , ∆ z k) ∩ Ω z based on an existing set of samples QN (Line 8). Now we briefly explain methodologies to compute linear and quadraticaly independent sets of interpolating samples. We point out that such techniques have been developed for real variables, however, they can be easily extended to the integer case.

Geometry Improvement -LinearInterpolationSet

This procedure can be performed in two ways: using Pivoting algorithms, or using the Λ-parameter [START_REF] Moré | Computing a trust region step[END_REF]. To exemplify their use we now detail the pivoting algorithms.

In the continuous case (n z = 0) the quality of a surrogate model, computed from interpolation or regression, depends directly on the position of the samples inside the trust-region. In the linear interpolation case, the two error constants κ e f , κ eg can

o = LinearInterpolationSet(X y k , x k , x lb , x ub , ∆ c , c f) 2: Y k = Y k ∪ {(x, y k) | x ∈ Xk o } 3: Compute l c from Xo 4: for all q j ∈ Q k do 5: Xk j = LinearInterpolationSet(X q j , x k , x lb , x ub , ∆ c , c f) 6: Y k = Y k ∪ {(x, q j) | x ∈ Xk j } 7: end for 8: Compute A M from Xk j and l c 9: QN = {y ∈ Ω z | (x k , y) ∈ Y k , y ∈ Bz (y k , ∆ z)} 10: Zk = QuadraticInterpolationSet(QN, y k , y lb , y ub , ∆ z , IC) 11:
Compute the integer interpolation terms l z , A z from Ẑk by solving the quadratic interpolation problem 3.6a be defined as follows [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF]:

κ eg = v(1 + n 1/2 1 ∥ X-1 ∥/2
)

κ e f = κ eg + v/2,
where v is the Lipschitz constant of f (x) and X, xi,j ∈ [0, 1] is the matrix of scaled displacements from the trust-region center x * :

X = 1 ∆ c       x 1,1 -x * 1 , . . . , x n 1 ,1 -x * 1 .
. ., . . . , . . .

x 1,n 1 -x * n 1 , . . . , x n 1 ,n 1 -x * n 1       .
Pivoting algorithms based on the LU and QR factorization consist in the use of Gaussian elimination to compute the simplex geometry that yields the smallest possible bound of ∥ X-1 ∥ (which is related to the concept of a positive uniform basis [START_REF] Alberto | Pattern search methods for user-provided points: Application to molecular geometry problems[END_REF]), thus reducing the error constants in the process. A LinearInterpolationSet procedure based on the pivoting algorithm takes as input the set of points which have been previously sampled inside the trust-region and it is able to complete the sampling set if needed. It requires a pivoting tolerance ξ ∈ (0, 1/4] that sets an upper bound for ∥ X-1 ∥: ∥ X-1 ∥ ≤ n 1/2 1 ϵ growth /ξ, where ϵ growth > 0 is an estimated growth factor that occurs during factorization.

Convergence of Algorithm 4.1 to a First-Order Critical

Point

In this section, we prove that Algorithm 4.1 is globally convergent to a first-order critical point. The proof consists of the following steps. First, we introduce the concepts of generalized Cauchy step, generalized Cauchy point and criticality measure, which are crucial for the convergence of trust-region methods. Then, we show that unless a point is stationary, model update procedures compute a model for which the gradient red(l c,k , x k) and the trust-region radius ∆ c k diverge from zero, and that objective improvement is always possible. Finally, we prove by contradiction that the sequence {x k , y k } is convergent, and its limiting value (x, ỹ) is first-order stationary with respect to the continuous variables, as well as an ϵ a minimizer with respect to the integer set Ω Q d (ỹ). This is the same approach typically used in convergence proofs for trust-region methods in the continuous case [START_REF] Conn | Trust region methods[END_REF] [START_REF] Conn | Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points[END_REF], but here we show that similar arguments also hold in the mixed-integer case, using the approximation models discussed in previous sections. We remark that from Definition 3.2, and Propositions 3.4 and 3.5 we consider the same error constants κ e f , κ eg in every fullylinear approximation.

Stationarity Conditions on Continuous Variables

In this subsection, we introduce several building blocks for the main convergence proof. Let us define the function χ k as a measure of stationarity of f (x, y) with respect to the continuous variables. Definition 4.3. For s ∈ R n c and r ∈ R, the function χ k is defined as:

χ k (x k , s, r) = | min d∈R nc d ⊤ s| s.t. x k + d ∈ Ω c ∥d∥ ≤ r .
A point (x k , y k) ∈ Ω m is said to be stationary with respect to f (x, y) and Ω c if

χ k (x k , ∇ x f (x k , y k), 1) = 0. χ k is a direct substitute of ∥∇ x f (x, y)∥ for the constrained optimization case.
Equipped with this definition, we can now discuss the type of local optimality that we aim for.

f (x * , y *) ≤ f (x, y) + ϵ opt ∀(x, y) ∈ N D (x * , y *) χ k (x * , ∇ x f (x * , y *), 1) = 0.
We now define the projection of a vector P Ω c (x), and the projected path with respect to the continuous box Ω c and the continuous center x k at iteration k. Then, we extend the concept of generalized Cauchy step and Cauchy point to the mixedinteger case.

Definition 4.5. The projection P Ω c : R n c → R n c is defined as:

[P Ω c (x)] i =            x ub,i if x i ≥ x ub,i x lb,i if x i ≤ x lb,i
x i else.

Definition 4.6. Let x k ∈ Ω c . The projected path with respect to vector s ∈ R n c is defined

as p k (x k , s, t) = P Ω c (x k -t • s). Definition 4.7. Let (x k , y k) ∈ Ω m .
The Generalized Mixed-Integer Cauchy step t C k of m k with respect to Ω c and ∆ c k is defined as follows:

t C k = argmin t≥0 m k (p k (x k , l c k , t), y k) s.t. p k (x k , l c k , t) ∈ Bc (x k , ∆ c k),
which for the setting of Algorithm 4.1 is equivalent to:

t C k = argmin t≥0, p k (l c k ,t)∈ Bc (x k ,∆ c k) (l c k) ⊤ (p k (l c k , t) -x k).
The Generalized Cauchy Point is given by x

C k = p k (x k , l c k , t C k).
We highlight that for the unbounded optimization case the Cauchy step can be viewed as a line-search optimization in the direction -l c k on the sphere Bc (x k , ∆ c k), and it determines stationarity with respect to the continuous variables. However, the presence of box constraints requires the use of an additional criterion mimicking the first-order Karush-Kuhn-Tucker [START_REF] Karush | Minima of functions of several variables with inequalities as side conditions[END_REF] conditions of the constrained problem.

Such criterion is incorporated in the function χ k (x k , s, r). Let χk := χ k (x k , l c k , 1). The criticality measure χk and the function χ k have some properties that allow us to establish convergence to a first-order stationary point over the set Ω c : 1. The function χ k (x k , s, r) is continuous and non-decreasing as a function of r for all r > 0.

The function

χ k (x k ,s,r) r
is non-increasing as a function of r for all r > 0. Considering that Algorithm 4.1 is aimed at tackling simple bounds constraints, it is natural to consider a stationarity measure which does not involve the solution of any additional optimization problem as in χk . We consider the norm of red(l c k , x k) as a valid stationarity measure. Now we show the equivalence between the Cauchy step, criticality measure χk and ∥red(l c k , x k)∥:

min d∈R nc {d ⊤ s | x k + d ∈ Ω c , ∥d∥ ≤ ∥p k (x k , s, t) -x k ∥} is given by d = p k (x k , s, t) -x k .
Lemma 4.2. Let x k ∈ Ω c . Then, for any vector s ∈ R n c , we have:

χ k (x k , red(s, x k), 1) ≥ χ k (x k , s, 1) and ∥red(s, x k)∥ ≥ χ k (x k , s, 1).
Proof. First we suppose that x lb,i < x k,i < x ub,i ∀i ∈ {1, . . . , n c }. In this case red(s, x k) = s, thus χ k (x k , red(s, x k), 1) = χ k (x k , s, 1). Now suppose that x k lies on the boundary of Ω c . Let d ∈ R n c be the vector that minimizes the problem χ k (x k , s, 1). Consider the coordinates i for which x k,i = x lb,i ; then d i ≥ 0 and

s i d i ≥ min{0, s i }d i = red(s, x k) i d i .
Similarly, for the coordinates i such that x k,i = x ub,i , then d i ≤ 0 and

s i d i ≥ max{0, s i }d i = red(s, x k) i d i .
Altogether, this implies that 0

≥ s ⊤ d ≥ (red(s, x k) ⊤ d). Thus, χ k (x k , red(s, x k), 1) ≥ |(red(s, x k)) ⊤ d| ≥ |s ⊤ d| = χ k (x k , s , 1).
For the second statement, suppose that d ∈ R n c is the vector that minimizes the problem χ k (x k , red(s, x k), 1); then:

χ k (x k , red(s, x k), 1) = |(red(s, x k) ⊤ d)| ≤ ∥ d∥ • ∥red(s, x k)∥ ≤ ∥red(s, x k)∥. Lemma 4.3. Suppose x k ∈ Ω c and t > 0. Then p k (x k , l c k , t) = p k (x k , red(l c k , x k), t).
Proof. Suppose first that x lb,i < x k,i < x ub,i ∀i ∈ {1, . . . , n c }; then l c k = red(l c k , x k) and the condition holds. Then, suppose x k,i = x ub,i for some i; in this case

[p k (x k , l c k , t)] i = max{x lb i , x ub,i -t max{0, l c k,i }} and [p k (x k , red(l c k , x k), t)] i = max{x lb i , x ub,i -t max{0, max{0, l c k,i }}} = max{x lb i , x ub,i -t max{0, l c k,i }}. Thus, [p k (x k , l c k , t)] i = [p k (x k , red((l c k , x k), t)]] i .
We can similarly prove the case x k,i = x ub,i :

[p k (x k , l c k , t)] i = min{x ub i , x lb,i -t min{0, l c k,i }} and [p k (x k , red((l c k , x k), t)] i = min{x ub i , x lb,i -t min{0, min{0, l c k,i }}} = min{x ub i , x lb,i -t min{0, l c k,i }},
which concludes the proof.

Theorem 4.3. Suppose x k ∈ Ω c . If ∥red(l c k , x k)∥ > 0, then ∥x C k -x k ∥ > 0.
Proof. This statement is proven by contradiction. Suppose that ∥red(l c k , x k)∥ > 0 and

x C k = x k . Note that x k,i > x lb,i ∀i ∈ supp + (red(l c k , x k)), x k,i < x ub,i ∀i ∈ supp -(red(l c k , x k)) and |supp + (red(l c k , x k)) ∪ supp -(red(l c k , x k))| > 0. Now we de- termine the maximum scalar t > 0 for which x k -t • red(l c k , x k) ∈ Ω c . Let t+ = min i∈supp + (red(l c k ,x k)) (x k,i -x lb i) [red(l c k , x k)] i > 0 and t-= min i∈supp -(red(l c k ,x k)) (x x k ,i -x ub i) [red(l c k , x k)] i > 0. Above, if |supp + (red(l c k , x k))| = 0 or |supp -(red(l c k , x k))| = 0 then we assume t+ = ∞ or t-= ∞, respectively. Let t = min{ t+ , t-}. From Lemma 4.3, x k -t • red(l c k , x k) = p k (x k , l c k , t), so that p k (x k , l c k , t
) is a feasible solution of the problem used in the definition of the Cauchy step (Definition 4.7). Thus,

m k (x k -t • red(l c k , x k)) ≥ m k (x C k). However, m k (x k -t • red(l c k , x k)) = -t∥red(l c k , x k)∥ 2 > 0 ≥ m k (x C k) = 0, which contradicts the hypothesis that x C k = x k .
The following two corollaries summarize the relationship between the three stationarity criteria.

Corollary 4.1. Suppose x k ∈ Ω c . If ∥red(l c k , x k)∥ > 0, there exists a constant κ f rd ∈ (0, 1) such that ∥x C kx k ∥ ≥ ∆ c k κ f rd (the subindex f rd stands for fraction of delta).

Proof. Since ∥red(l

c k , x k)∥ > 0, then ∆ c k > ∥x C k -x k ∥ > 0 by Theorem 4.3. Then, 0 < κ f rd ≤ ∥x C k -x k ∥ ∆ c k < 1. Corollary 4.2. Suppose x k ∈ Ω c . If ∥red(l c k , x k)∥ > 0, there exists a constant κ cri ∈ (0, 1) such that χk ≥ κ cri ∥red(l c k , x k)∥ (the subindex cri stands for criticality). Proof. Since ∥red(l c k , x k)∥ > 0, then ∆ c k > ∥x C k -x k ∥ > 0 by Theorem 4.3. Since Ω c is convex and x k , x C k ∈ Ω c , any point on the line x k + (x C k -x k)h ∈ Ω c , ∀h ∈ [0, 1]. Then the point x k + (x C k -x k)/ max{1.2, ∥x C k -x k ∥} ∈ Bc (x k , 1) ∩ Ω c , thus χk ≥ |(x C k -x k) ⊤ l c k | max{1.2, ∥x C k -x k ∥} > 0.
Finally, from Lemma 4.2 we have ∥red(l c k , x k)∥ ≥ χk , thus

0 < κ cri ≤ χk ∥red(l c k , x k)∥ < 1.

Conditions for Mixed-Integer Stationarity

In this section we complete the proof of convergence of Algorithm

([red(d 1 , x k)] i -[red(d 2 , x k)] i) 2 = (max{d 1,i , 0} -max{d 2,i , 0}) 2
for which we have 3 possible cases: (1)

d 1,i , d 2,i ≥ 0, (2) d 1,i , d 2,i ≤ 0 and (3) d 1,i > 0 > d 2,i . In the first case it is clear that ([red(d 1 , x k)] i -[red(d 2 , x k)] i) 2 = (d 1,i -d 2,i) 2 .
In the second case we have that

([red(d 1 , x k)] i -[red(d 2 , x k)] i) 2 = 0 ≤ (d 1,i -d 2,i) 2 . In case (3) we have that ([red(d 1 , x k)] i -[red(d 2 , x k)] i) 2 = (d 1,i -0) 2 ≤ (d 1,i -d 2,i) 2 .
The same analysis can be done for the case x k,i = x lb,i with the same result, thus Proof. Suppose that ∥red(∇ x f (x k , y k), x k)∥ > 0 and the CriticalityTest iterates indefinitely. Then, the following relationship between the gradient of the model and the trust-region radius holds:

([red(d 1 , x k)] i -[red(d 2 , x k)] i) 2 ≤ (d 1,i -d 2,i) 2 ∀i
∆k = ω i-1 ∆ icb k > µ∥red(lc k , x k)∥ ∀i > 0,
and lim i→∞ ∥red(lc k , x k)∥ = 0. We show that this would imply ∥red(∇ x f (x k , y k), x k)∥ = 0. To see this, notice that:

∥red(∇ x f (x k , y k), x k)∥ ≤ ∥red(∇ x f (x k , y k), x k) -red(lc k , x k))∥ + ∥red(lc k , x k))∥. (4.6)
Taking into account that for every iteration i > 0 the resulting model mk is fullylinear with respect to ∆k , and using Lemma 4.4, we have ∥red(

∇ x f (x k , y k), x k) - red(lc k , x k))∥ ≤ κ eg ω i-1 ∆ icb k .
Thus, (4.6) implies:

∥red(∇ x f (x k , y k), x k)∥ ≤ (κ eg + µ -1)ω i-1 ∆ icb k
so that lim i→∞ ∥red(∇ x f (x k , y k), x k)∥ = 0, which contradicts the initial assumption.

Thus, the CriticalityTest must converge in a finite number of iterations.

This result implies that unless red(∇ x f (x k , y k), x k) = 0, ∥red(l c k , x k)∥ > 0 and we can improve the objective function by searching in the continuous manifold.

With this result we present the minimum expected improvement for the Generalized Cauchy step: Theorem 4.4. Let m k be the surrogate model and x C the Generalized Cauchy Point. Then

m k (x k , y k) -m k (x C k , y k) ≥ κ f rd χk min{∆ c k , 1}. Proof. Recall that m k (x k + s c , y k) = m k (x, k) + s ⊤ c l c
k due to the lack of continuous quadratic terms in 3.4. From Theorem 4.1 we have that

m k (x C k , y k) -m k (x k , y k) = |(x C k -x k) ⊤ l c k | = χ k (x k , l c k , ∥x C k -x k ∥).
First we consider the case ∥x

C k -x k ∥ ≥ 1. From Lemma 4.1, χ k (x k , l c k , ∥x C k -x k ∥) ≥ χk , thus m k (x C k , y k) -m k (x k , y k) ≥ χk ≥ κ f rd χk . Next, we consider the case ∥x C k - x k ∥ < 1. From Lemma 4.1 we have χ k (x k , l c k , ∥x C k -x k ∥) ≥ ∥x C k -x k ∥ χk .
Recalling Corollary 4.1, we then obtain:

m k (x C k , y k) -m k (x k , y k) = χ k (x k , l c k , ∥x C k -x k ∥) ≥ χk ∥x C k -x k ∥ ≥ κ f rd χk ∆ c k .
It is not required to compute the Cauchy step in every iteration to evaluate contin-

k (x k , y k) -m k (x k + s c , y k + s z) ≥ κ f rd χk min{∆ c k , 1}.
Proof. From line 8 of Algorithm 4.3 the following inequalities hold:

m k (x k + s c , y k + s z) ≤ m k (x C k , y k) and m k (x k , y k) -m k (x k + s c , y k + s z) ≥ m k (x k , y k) -m k (x C k , y k). From Theorem 4.4 we get m k (x k , y k) -m k (x k + s c , y k + s z) ≥ κ f rd χk min{∆ c k , 1}
. This concludes the proof.

k : m k (x k , y k) -m k (x k + s c , y k + s z) ≥ Θ k .
Proof. In case Θ k > 0 the vectors (x, y) that yield its value corresponds to a feasible solution of optimization problem computed in Algorithm 4.3-Line 8. On the other hand, when Θ k ≤ 0 it corresponds to an inactive lower-bound for m k (x k , y k) -

∆ c k ≤ min 1, κ f rd Φ k (1 -η 1) κ e f ,
then iteration k is very-successful, successful or acceptable.

Proof. First consider the Cauchy step. As ∆ c k ≤ 1, the expected improvement is bounded by:

m k (x k , y k) -m k (x k + s c , y k + s z) ≥ κ f rd χk min{∆ c k , 1} = κ f rd χk ∆ c k .
Now, we consider the minimization of m k in the region

(Bv (x k , y k , ∆ c k , 1) ∩ Ω m if func- tion is LQMI (Line 5, Algorithm 4.3), or, Bc (x, ∆ c k) × Ω G d (y k , M k))
∩ Ω m otherwise (RescueProcedure, Algorithm 4.1). A bound on the update parameter ρ resulting from this optimization can be computed as follows:

|ρ -1| ≤ m k (x k + s c , y k + s z) -f (x k + s c , y k + s z) m k (x k , y k) -m k (x k + s c , y k + s z) .
Recalling the fully-linearity condition and the bound on ∆ c k , we get:

|ρ -1| ≤ κ e f (∆ c k) 2 κ f rd χk ∆ c k ≤ ∥red(l c k , x k)∥(1 -η 1) χk ≤ Φ k (1 -η 1) χk .
From Lemma 4.2 we have that χk ≤ ∥red(l c k , x k)∥ ≤ Φ k thus |ρ -1| ≤ (1η 1). We remark that it is possible that such improvement is not accepted in Algorithm 4.3 if the model reduction is lower than ϵ a . Nonetheless, as model m k is fully-linear the RescueProcedure is invoked and a solution on Bc (x k , ∆ c k) × {y k } is identified. Now, suppose that Φ k = Θk . It implies that Θk > 0, thus Θk = Θ k ≥ ϵ a . The expected improvement given by the partial mixed-integer parameters is bounded by:

m k (x k , y k) -m k (x k + s c , y k + s z) ≥ Θk ≥ ϵ a .
Then, a bound in the update parameter is given by |ρ -1| ≤

κ e f (∆ c k) 2 Θk
during the optimization procedure related to the RescueProcedure.

As ∆ c k ≤ 1 we have that (∆ c k) 2 ≤ ∆ c k and: |ρ -1| ≤ κ e f ∆ c k Θk ≤ κ e f ∆ c k κ f rd Θk ≤ Φ k (1 -η 1) Θk ≤ (1 -η 1).
In consequence, ρ ≥ η 0 and f (x k + s c , y k + s z) < f (x k , y k), thus iteration k is either very-successful, successful or acceptable.

Next, we prove that Algorithm 4.1 converges with respect to the continuous variables. Let S imp be the set of very-successful, successful and acceptable iterations.

lim k→∞ f (x o , y o) -f (x k , y k) = ∑ j∈S imp f (x j , y j) -f (x j+1 , y j+1) ≥ N IS ϵ a .
By Assumption 1.1, lim k→∞ f (x o , y o)f (x k , y k) is bounded, therefore N IS must be finite.

Lemma 4.10.

There exists a constant η res > 0 such that

f (x k , y k) -f (x k+1 , y k+1) ≥ η res (m k (x k , y k) -m k (x k+1 , y k+1))
for every acceptable iteration that is selected from the solution of the Problem 4.1-4.4.

Proof. A new candidate is only accepted during RescueProcedure if it yields an improvement of the objective function f (x, y). As m k (x k , y k)m k (x k+1 , y k+1) ≥ 0 for Problem 4.1-4.4 and f (x k , y k)f (x k+1 , y k+1) > 0, we have that

f (x k , y k) -f (x k+1 , y k+1) m k (x k , y k) -m k (x k+1 , y k+1) ≥ η res > 0. Lemma 4.11. lim k→∞ ∆ c k = 0.
Proof. For every very-successful, successful or acceptable iteration, the predicted improvement is given by:

f (x k , y k) -f (x k+1 , y k+1) ≥ η bnd (min{m k (x k , y k) -m k (x k+1 , y k+1), ϵ a }), (4.7)
where η bnd = min{η res , η 0 }. Note that the term ϵ a corresponds to the iterations in S imp where the point (x k+1 , y k+1) is selected from samples. From Lemmas 4.6 and 4.7, we have:

m k (x k , y k) -m k (x k+1 , y k+1) ≥ κ f rd χk min{∆ c k , 1} ≥ κ f rd κ cri ∥red(l c k , x k)∥ min{∆ c k , 1} and
m k (x k , y k) -m k (x k+1 , y k+1) ≥ Θ k ≥ κ f rd κ cri Θ k .
As a consequence, the bound 4.7 can be expressed as

f (x k , y k) -f (x k+1 , y k+1) ≥ η bnd min{κ f rd κ cri max{∥red(l c k , x k)∥ min{∆ c k , 1}, Θ k }, ϵ a }. (4.8)
Now, we study the behavior of bound 4.8 with respect to the parameter Φ k . We remark that Algorithm 4.2 guarantees that Φ k ≥ min{ϵ c , µ -1 ∆ c k }. First, consider the set of iterations {ℓ j } such that Φ ℓ j = Θℓ j , then Θ ℓ j = Θℓ j and Φ ℓ j ≥ ∥red(l c ℓ j , x ℓ j)∥ ≥ ∥red(l c ℓ j , x ℓ j)∥ min{∆ c ℓ j , 1}. As a consequence, for every ℓ j the bound 4.8 is equivalent to:

f (x ℓ j , y ℓ j) -f (x ℓ j +1 , y ℓ j +1) ≥ η bnd min{κ f rd κ cri Φ ℓ j , ϵ a } ≥ η bnd min{κ f rd κ cri min{µ -1 ∆ c ℓ j , ϵ c }, ϵ a }.
Now, consider the iterations {t j } where Φ t j = ∥red(l c t j , x t j)∥ ≥ min{µ -1 ∆ c t j , ϵ c }. In these cases, the bound 4.8 is equivalent to:

f (x t j , y t j) -f (x t j +1 , y t j +1) ≥ η bnd min{{κ f rd κ cri max{min{µ -1 ∆ c t j , ϵ c } min{∆ c t j , 1}, Θ t j }, ϵ a } ≥ η bnd min{{κ f rd κ cri min{µ -1 ∆ c t j , ϵ c } min{∆ c t j , 1}, ϵ a }.
We highlight that S imp corresponds to the union of both sequences {ℓ j } and {t j }.

From Assumption 1.1 the series

∑ k∈S imp f (x k , y k) -f (x k+1 , y k+1) is convergent, thus the limiting values of f (x k , y k) -f (x k+1 , y k+1
) are bounded by 0. The latter condition is only attained if lim k→∞ ∆ c k = 0, completing the proof.

Finally, we prove that lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0, and there exists some iteration number after which y k is fixed to a value y * . The first part consists in proving that there exists one accumulation point (x * , y *) such that Φ k = 0. Lemma 4.12. lim inf k→∞ Φ k = 0.

Proof. Assume, for establishing a contradiction that there exists a κ 1 > 0 such that Φ k > 0, ∀k ≥ 0. For Φ k to be bounded by κ 1 it is necessary that either ∥red(l c , x k)∥ > κ 1 or Θk > κ 1 , ∀k > 0. We use the Criticality Step to derive a relationship between κ 1 , Φ k and ∆ c k . There exists two possible scenarios:

• ∆ c k ≥ min{∆ icbc k , β∥red(l c , x k)∥} if the CriticalityTest is called. • ∆ c k = ∆ icbc k otherwise.
By Lemma 4.8 and the assumption that Φ k > κ 1 , whenever ∆ c k falls bellow κ2 = min 1,

κ f rd κ 1 (1-η 1) κ e f
, the iteration kth cannot be unsuccessful.

Thus ∆ icbc k+1 ≥ ∆ k and ∆ icbc k ≥ min{γ 0 κ2 , ∆ icbc 0 } ∀k > 0.
We first consider the case where Θk > κ 1 , ∀k > 0. As Θk is either 0 or greater than max{ϵ c , ϵ a } (Definition 4.1), we have that Θk ≥ max{ϵ a , ϵ c , κ 1 } ≥ ϵ c ∀k > 0, thus

Φ k ≥ ϵ c ∀k > 0.
As a consequence, the CriticalityTest is never invoked and

∆ c k ≥ min{∆ icbc 0 , γ 0 κ2 }.
On the other hand, if ∥red(l c , x k)∥ > κ 1 we have that for every iteration k, whether the CriticalityTest is invoked or not, the following condition holds:

∆ c k ≥ min{∆ icbc k , β∥red(l c , x k)∥ ≥ min{∆ icbc k , βκ 1 }.
As a result, ∆ c k must be bounded: ∆ c k ≥ min{∆ icbc 0 , βκ 1 , γ 0 κ2 }, ∀k > 0, which contradicts Lemma 4.11. Lemma 4.13. For a subsequence {k i } such that

lim i→∞ Φ k i = 0, it also holds that lim i→∞ ∥red(∇ x f (x k i , y k i), x k i)∥ = 0 and lim i→∞ χ k i (x k i , ∇ x f (x k i , y k i), 1) = 0.
Proof. First, note that for a large k i we have that Φ k i < ϵ c as the limit value of the subsquence is 0; thus, the model m k i is mixed-integer fully-linear and

∆ c k i ≤ µ∥red(l c k i , x k i)∥ = µΦ k (Algorithm 4.1, Criticality Step). From Lemma 4.4 we have that ∥red(∇ x f (x k i , y k i), x k i) -red(l c k i , x k i))∥ ≤ ∥∇ x f (x k i , y k i) -l c k i)∥ ≤ κ eg ∆ c k i ≤ κ eg µ∥red(l c k i , x k i)∥.
This bound can be used to compute an upper bound on the norm of the reduced gradient of f at the point x k i , y k i :

∥red(∇ x f (x k i , y k i), x k i)∥ ≤ ∥red(∇ x f (x k i , y k i), x k i) -red(l c k i , x k i))∥ + ∥red(l c k i , x k i)∥ ≤ (κ eg µ + 1)∥red(l c k i , x k i)∥. (4.9)
As a consequence lim i→∞ ∥red(∇ x f (x k i , y k i),

x k i)∥ = 0. Finally, from Lemma 4.2 ∥red(∇ x f (x k i , y k i), x k i)∥ ≥ χ k (x k i , ∇ x f (x k i , y k i), 1), thus, lim i→∞ χ k i (x k i ∇ x f (x k i , y k i), 1) = 0.
Theorem 4.5. The number of iterations for which ∥y k+1y k ∥ 1 ≥ 1 is bounded, i.e., there exists an iteration number k mis > 0 such that y k = y k mis for all k ≥ k mis .

Proof. According to the CandidateComputation and RescueProcedure, a change in the integer coordinates can only be accepted when the solution of the surrogate algorithm yields m k (x k , y k)m k (x k+1 , y k+1) ≥ ϵ a , or, the search on previously sampled points yields f (x k , y k)f (x k+1 , y k+1) ≥ ϵ a . Thus, the objective reduction in each iteration in the subsequence such that the discrete coordinates change, S ych ⊂ S imp , is bounded from below by

f (x k , y k) -f (x k+1 , y k+1) ≥ η bnd ϵ a > 0. If |S ych | = ∞, then lim k→∞ f (x k , y k) = -∞, but this would contradict Assumption 1.1.
Now we prove that there exist at least one accumulation point (x * , y *) which is stationary with respect to the continuous variables, or ∥red(

∇ x f (x * , y *), x *)∥ = 0. Lemma 4.14. lim inf k→∞ ∥red(∇ x f (x k , y k), x k)∥ = 0.
Proof. Assume, for establishing a contradiction that there exists a bound κ 1 > 0 on the reduced gradient of f such that

ϵ c > κ 1 , ∥red(∇ x f (x k , y k), x k)∥ > κ 1 ∀k ≥ 0.
Now we establish a relationship between κ 1 and ∥red(l c k , x k)∥. From Lemma 4.12 and its proof we know that there exists at least an iteration k i for which Φ k i < κ 1 2+κ eg µ . Considering that κ 1 is strictly smaller than ϵ c and ϵ a we have that:

• Θk i = 0 thus Φ k i = ∥red(l c k i , x k i)∥,
• the model m k i is fully-linear, and

• the chain of inequalities (4.9) holds.

As a consequence for the iteration k i we have that:

κ 1 ≤ ∥red(∇ x f (x k i , y k i), x k i)∥ ≤ (1 + µκ eg)∥red(l c k i , x k i)∥ < 1 + µκ eg 2 + µκ eg κ 1 ,
which contradicts the initial assumption.

lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0
Proof. Let k mis be defined as in Theorem 4.5. Assume, for establishing a contradiction there exist a sequence of iterations {ℓ j } ⊂ S imp , such that ℓ 1 > k mis and

0 < ϵ o < χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) ≤ ∥red(∇ x f (x ℓ j , y ℓ j), x ℓ j)∥.
The relationship between the criticality measure χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) and the norm of the reduced gradient of ∇ x f (x ℓ j , y ℓ j) is given by Lemma 4.2.

Now we establish a relationship between ϵ o and Φ ℓ j . From Lemma 4.13 we obtain that Φ ℓ j ≥ ϵ for some ϵ > 0 and a sufficiently large j. Without loss of generality, we select an ϵ such that ϵ < min ϵ o (2+µκ eg) , ϵ c . In this way we have that

Φ ℓ j ≥ min ϵ c , ϵ o (2 + κ eg µ) > ϵ. (4.10)
We define t j ∈ S imp , t j > ℓ j as the first iteration after ℓ j for which Φ t j < ϵ. Such an iteration exists as consequence of Lemma 4.12. Let us define some sequences of iterations (indexed by j) K j = {k ∈ S imp | ℓ j ≤ k < t j } ∪ {t j }. Note that for every sequence K j we have the following properties:

• For every k ∈ [ℓ j , t j) we that Φ k ≥ ϵ, and

• the last element is t j .

We remark that in iteration t j the model m t j is fully-linear, µ∥red(l c t j , x t j)∥ ≥ ∆ c t j and Θk = 0, as Φ t j < ϵ c . For every k ∈ K j , ℓ j ≤ k < t j there exists a bound on ∆ c k given by equation (4.7):

f (x k , y k) -f (x k+1 , y k+1) ≥ η bnd (m k (x k , y k) -m k (x k+1 , y k+1)) f (x k , y k) -f (x k+1 , y k+1) ≥ η bnd max{κ f rd κ cri ∥red(l c ℓ j , x ℓ j)∥ min{∆ c k , 1}, Θ k }. As κ f rd κ cri min{∆ c k , 1} ∈ (0, 1] then f (x k , y k) -f (x k+1 , y k+1) ≥ η bnd κ f rd κ cri max{∥red(l c ℓ j , x ℓ j)∥, Θ k } min{∆ c k , 1}.
The latter is equivalent to

f (x k , y k) -f (x k+1 , y k+1) ≥ η bnd Φ k min{∆ c k , 1}. For a large ℓ j → ∞ we have that ∀k ∈ [ℓ j , t j) the trust-region radius is small ∆ c k < 1 and ∆ c k ≤ f (x k ,y k)-f (x k+1 ,y k+1) η bnd κ f rd κ cri ϵ
. Thus, we can derive the following bound for ∥x t jx ℓ j ∥:

∥x t j -x ℓ j ∥ ≤ t j -1 ∑ k∈K j ∥x k -x k+1 ∥ ≤ t j -1 ∑ k∈K j ∆ c k ≤ t j -1 ∑ k∈K j f (x k , y k) -f (x k+1 , y k+1) η bnd κ f rd κ cri ϵ = f (x ℓ j , y ℓ j) -f (x t j , y t j) η bnd κ f rd κ cri ϵ .
As lim ℓ j →∞ f (x ℓ j , y ℓ j)f (x t j , y t j) = 0 (from Assumption 1.1), lim ℓ j →∞ ∥x ℓ jx t j ∥ = 0. Now we derive an upper-bound for the stationarity measure of f at every iteration in the sequence {ℓ j }:

χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) ≤ |χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) -χ t j (x t j , ∇ x f (x t j , y t j), 1)| +χ t j (x t j , ∇ x f (x t j , y t j), 1).
From Lemma 4.2 ∥red(∇ x f (x t j , y t j), x t j)∥ ≥ χ t j (x t j , ∇ x f (x t j , y t j), 1). Considering Lemma 4.4 and the fully-linearity of t j , the bound can be rewritten as:

χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) ≤ |χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) -χ t j (x t j , ∇ x f (x t j , y t j), 1)|
+∥red(∇ x f (x t j , y t j), x t j)red(l c t j , x t j)∥ + ∥red(l c t j , x t j)∥. |χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1)χ t j (x t j , ∇ x f (x t j , y t j), 1)| = 0 (4.12) whenever y t j = y ℓ j and lim j→∞ ∥x t jx ℓ j ∥ = 0; thus the first term of the right-hand side of Equation 4.11 goes to 0. Now we derive an upper bound for the remaining terms of Equation 4.11. Since the model t j is fully-linear we have ∥red(∇ x f (x t j , y t j), x t j)red(l c t j , x t j)∥ ≤ κ eg ∆ c t j . In addition Φ t j < ϵ c , therefore ∆ c t j ≤ µ∥red(l c t j , x t j)∥. As a consequence χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) is bounded by:

χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) ≤ κ eg ∆ c t j + ∥red(l c t j , x t j)∥ ≤ (1 + µκ eg)ϵ.
Taking into account that ϵ < ϵ o (1+µκ eg) (Equation 4.10) the upper bound is transformed into

χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) < ϵ o .
But this contradicts the assumption on a limiting bound for χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1). Therefore, for any given ϵ o > 0 there exists an N ∈ N, N ≥ k mis such that:

χ k (x k , ∇ x f (x k , y k), 1) < ϵ o ∀k > N,
which implies that lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0. Now, having proved that Algorithm 4.1 is convergent to a stationary solution with respect to the continuous variables and the box Ω c , we will show that it also attains a solution which is an ϵ local minimizer with respect to the integer variables and the set Ω z . The first step is to show that there exist an infinite number of iterations where ∆ z = 1, which facilitates the analysis over the sets

Ω G d (y k , M k), Ω LQMI d (y k)
and

Ω Q d (y k): Lemma 4.15.
There exists an infinite number of iterations for which

∆ z k = 1.
Proof. This statement is proved by contradiction. Suppose there exists a k that is the last iteration such that ∆ z k = 1. From Lemma 4.6 we have that

∀ϵ > 0(∃N ∈ N | ∆ c k < ϵ ∀k ≥ N).
Let N(ϵ) be defined as min{N ∈ N | ∆ c k < ϵ ∀k ≥ N}. Function N(ϵ) has the following properties:

N(ϵ 1) ≥ N(ϵ 2) if ϵ 1 < ϵ 2 , (4.13) ∀ϵ 1 , ϵ 2 ∈ R + , ϵ 1 < ϵ 2 , N(ϵ 1) > N(ϵ 2) (∃k ∈ [N(ϵ 2), N(ϵ 1)) | ∆ c k ∈ (ϵ 1 , ϵ 2]). (4.14)
We define the sequences {ϵ i } and {N i } as follows:

• ϵ 0 = ∆ c max + 1e -20 and N 0 = 0;

• ϵ i+1 = argmin ϵ∈R + ,ϵ<ϵ i {N(ϵ) | N(ϵ) > N i } and N i+1 = N(ϵ i+1).
For the sequence ϵ i we define the constant β = sup i≥0

ϵ i+1 ϵ i . As ϵ i > ϵ i+1 ∀i ≥ 0, then β < 1. Consider an index î > 0 such that N î > k and ϵ î < ∆ c max /γ 1 .
From Equation 4.14 we know that there exists an iteration k ∈

[N î, N î+1) such that ∆ c k ≥ ϵ î+1 .
From the definition of the sequences {ϵ i } and N i we can derive the following inequality:

∆ c k < βi-î ∆ c k ∀k ≥ N i , i > î + 1. (4.15)
Now, we aim to compute a lower bound for ∆ c k ∀k ≥ N î+1 and establish a relationship with ∆ z k . Algorithm 4.1 states that the continuous trust-region radius can be modified in three particular circumstances:

1. Reduced as a consequence of the invocation of the CriticalityTest (Line 8). We define this reduction as

ct dec k = ∆ c k ∆ icbc k . If the CriticalityTest is not invoked ct dec k = 1.
2. Reduced as consequence of the unsuccessful iteration k, where model m k is fully-linear (Line 31). The reduction is equivalent to ∆ c k+1 = ∆ c k γ 0 ct dec k+1 .

3. Extended as a consequence of the very-successful iteration k (Line 18). As

∆ c k ≤ ∆ c max /γ 1 then ∆ c k+1 = γ 1 ∆ c k ct dec k+1 .
From points (1), (2) and (3) we rewrite ∆ c k as:

∆ c k =   k ∏ j= k ct dec j   ∆ c kγ redu(k, k) 0 γ ext(k, k) 1 ∀k > k > k, (4.16)
where ext(k, k) is the number of iterations where ∆ c k is extended, and redu(k, k) the number of iterations between k, k where ∆ c k is reduced. From Algorithm 4.1 we can compute an upper bound for ∆ z k in terms of redu(k, k) and ext(k, k):

• If iteration k is very-successful then

∆ z k+1 = min{∆ z max , max{γ 1 ∆ z k ct dec k+1 , 1}} ≤ max{γ 1 ∆ z k ct dec k+1 , 1}. (4.17)
As ∆ z k > 1 ∀k > k then ct dec k+1 ∆ z k γ 1 > 1 and therefore we have that ∆ z k+1 ≤ ct dec k+1 ∆ z k γ 1 as a result from 4.17.

• If iteration k is unsuccessful and model m k is fully linear, then

∆ z k+1 = max{1, ct dec k+1 max{γ 0 ∆ z k , 1}},
Similarly to the previous case, the fact that

∆ z k > 1 ∀k > k implies that ∆ z k+1 = γ 0 ∆ z k ct dec k+1 .
Considering the above points we have that

∆ z k ≤   k ∏ j= k ct dec j   ∆ z kγ redu(k, k) 0 γ ext(k, k) 1 ∀k > k > k. (4.18)
Combining Equations (4.15), (4.16) and (4.18) we obtain the following relationship:

∆ z k ∆ z k ≤   k ∏ j= k ct dec j   γ redu(k, k) 0 γ ext(k, k) 1 = ∆ c k ∆ c k < βi-î-1 ∀k ≥ N i , i > î + 1.
The latter would imply that lim k→∞ ∆ z k = 0, which contradicts the initial assumption and concludes the proof.

lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0 and f (x k , y k) ≤ f (x, y) + ϵ a ∀(x, y) ∈ {x k } × Ω Q d (y k),
where Ω Q d (y k) = Zk is defined on Line 10, Algorithm 4.6.

Proof. This statement is proven by contradiction. Suppose there exists ỹ

∈ Ω Q d (y k) for which f (x k , y k) -f (x k , ỹ) ≥ ϵ a , k > k mis , k ∈ {j ∈ N | ∆ z j = 1}
and model m k is fully-linear. We highlight that as k → ∞, then:

• ∆ c k → 0. • | f (x, y) -f (x k , y)| ≈ 0 ∀x ∈ Bc (x k , ∆ c k), y ∈ Bz (y k , 1) ∩ Ω z from Assump- tion 1.2.
We now show that the above remarks imply that ỹ or a solution in a different integer manifold among those in

Ω Q d (y k) must be identified in the CandidateComputation or RescueProcedure. Note that m k (x k , ỹ) = f (x k , ỹ). Let x = argmin x∈ Bc (x k ,∆ c k)∩Ω c m k (x, ỹ). Then m k (x k , y k) -m k (x, ỹ) ≥ m k (x k , y k) -m k (x, y k) ≥ ϵ a as f (x, ỹ) ≈ m(x, ỹ) ≤ m(x, y k) ≈ f (x, y k).
Therefore any solution (x, ȳ) of the surrogate optimization problem in Line 5 of Algorithm 4.3 must improve by at least ϵ a . However, note that:

|m(x k , y k) -m(x, y k)| = |(x -x k) ⊤ l c k | ≤ ∥l c k ∥ • ∆ c k = 0, ∀x ∈ Bc (x k , ∆ k), (4.19)
thus the improvement cannot be due to a change in the continuous variables. Then, the integer component of the iterate must change. If

f (x k ,y k)-f (x, ŷ)
m k (x k ,y k)-m k (x, ŷ) ≥ η 0 , the new solution is accepted and the discrete components of the iterate change. If this condition is not met, the RescueProcedure is invoked. Because the surrogate model is accurate over Ω G d (y k , M k), then either: (i) the point (x k , ỹ) is selected as output of Algorithm 4.5, as it yields an improvement of at least ϵ a on the objective, or (ii) a different point in the neighborhood is selected, with a larger improvement. In either case, the output (x ′ , y ′) of the RescueProcedure cannot have the same integer components as y k , because, due to Assumption 1.2, we have:

f (x k , y k) -f (x ′ , y ′) ≥ f (x k , y k) -f (x k , ỹ) ≥ ϵ a ≥ | f (x k , y k) -f (x, y k)| ≈ 0 ∀x ∈ Bc (x k , ∆ c k) ∩ Ω c .
The above discussion shows that the integer components of the iterate necessarily change. By Theorem 4.5, this can only happen a finite a number of times. Thus, there cannot be an infinite sequence of iterates converging to (x k , y k), a contradiction.

lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0 and f (x k , y k) ≤ f (x, y) + ϵ a ∀(x, y) ∈ {x k } × Ω LQMI d (y k).
Proof. The proof follows the same structure as for Theorem 4.7; the only difference is that, due to Assumptions 3.1 and 3.2, the model m k is accurate for all points (x, y) ∈ Bv (x k , y k , ∆ c k , 1), i.e., m k (x, y) ≈ f k (x, y). Thus, if a better integer candidate ỹ in the neighborhood Bz (y k , 1) exists, CandidateComputation identifies a point that improves the objective function by at least ϵ a . Since ∆ c k is sufficiently small, the iteration is then successful or very-successful, and similarly to Theorem 4.7, this contradicts Theorem 4.5. Now, having proved that Algorithm 4.1 is capable of converging to a ϵ a mixedinteger separate local minimum (SLM), we will show that it convergences to a strong separate minimum (StLM). The radius of the region over which the point is a StLM is dependent on the ϵ a parameter and the global Lipschitz κ f constant of the function f . Theorem 4.9. If Assumptions 1.1, 1.2 and 1.3 hold, then

lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0 and f (x k , y k) ≤ f (x, y) + 2ϵ a ∀(x, y) ∈ (Bc (x k , ∆) × Ω d) ∩ Ω m where ∆ = ϵ a κ f ,
f (x k , y k) -f (x, y) = f (x k , y k) -f (x, y) -f (x k , y) + f (x k , y) ≤ ϵ a + f (x k , y) -f (x, y). Considering that | f (x k , y) -f (x, y)| ≤ κ f ∥x k -x∥ and ∥x k -x∥ ≤ ϵ a κ f ; then, f (x k , y k) -f (x, y) ≤ ϵ a + κ f ϵ a κ f ≤ 2ϵ a ,
which concludes the proof.

Remark 2. We have proved algorithmic convergence to a strong separate local minimum on the sets Ω Q d (y k) and Ω LQMI d (y k). We have proved that the number of iterations for which ∆ z k = 1 is infinite; nonetheless, in particular cases there might exist an infinite number of iterations for which ∆ z k > 2. In consequence, for particular instances it is possible to achieve convergence to a StLM with respect to the larger discrete set

Ω d ⊂ Bz (y k , ∆) with ∆ ≥ 2.

Conclusions and Future Work

In this chapter we introduced an LQMI-based algorithm for the solution of a boxconstrained mixed-integer derivative-free problem. Algorithm 4.1 is an adaptation of the trust-region algorithm that uses the surrogate model framework introduced in Chapter 3. We presented new features that allow to overcome the problems that arise from dealing with a mixed-integer function:

• We introduced the mixed-integer stationarity parameter, Θ k , that measures possible objective improvement in surrounding manifolds.

• We presented the combined stationarity parameter, Φ k , that serves as an indicator of mixed-integer stationarity and triggers the convergence test.

• We adapted the Criticality Step to be used in the mixed-integer setting. It incorporates the ManifoldSearch procedure that allows to avoid early convergence to first-order stationary points.

• We introduced the RescueProcedure (Algorithm 4.5) that allows to use the fully-linearity of LQMI surrogates in the general mixed-integer setting. Furthermore, we proved that Algorithm 4.1 is globally convergent to a separate local minimum (SLM) and a strong local minimum (StLM). In the future, we expect this methodology can be used as a base for further developments on mixedinteger derivative-free applications. We highlight this framework has the potential to be used to tackle problems with more complicated constraints, both algebraic and simulated-based (black-box). Adapting this framework to incorporate penalty [START_REF] Holmström | An adaptive radial basis algorithm (arbf) for expensive black-box mixed-integer constrained global optimization[END_REF], [START_REF]Derivative-free methods for mixed-integer constrained optimization problems[END_REF], the augmented Lagrangian function [START_REF] Lewis | A direct search approach to nonlinear programming problems using an augmented lagrangian method with explicit treatment of linear constraints[END_REF], [START_REF] Picheny | Bayesian optimization under mixed constraints with a slack-variable augmented lagrangian[END_REF] or progressive-barrier [START_REF]A progressive barrier for derivative-free nonlinear programming[END_REF] is natural to deal with general non-convex constraints.

Chapter 5

Hybrid DCA-DFO Optimization

In this chapter, we present a methodology for solving the mixed-integer optimization problem 1.1 under Assumptions 1.1, 1.2 and the following combinatorial property with respect to the integer variables: Assumption 5.1. Function f (x, y) is M ♮ discrete convex with respect to the discrete variables y at fixed values of the vector of continuous variables x.

In the next section, we introduce the generalities of M and M ♮ discrete convex functions. Let us now recall some notions that will be used in the solution approach. Definition 5.1. For a convex function g the vector w ∈ R n c is said to be a subgradient of f at the point x o if:

g(x) ≥ g(x o) + w ⊤ (x -x o), ∀x ∈ dom g .
The set of all the subgradients of g at x o is called the subdifferential and it represented by ∂g(x o). Definition 5.2. For ϵ > 0, a vector w ∈ R n c is said to be a ϵ-subgradient for the convex function g at the point x o if:

g(x) ≥ g(x o) -ϵ + w ⊤ (x -x o) ∀x ∈ dom g .
The set of all ϵ-subgradients of g at x o is ϵ-subdiferential and is denoted by ∂ ϵ g(x o).

We illustrate the difference between subgradients and ϵ-subgradients in Figure 5.1, that represents the function f (x) = x 2 and its first-order information. Figure 5.1a

shows the derivative at the point x o = 0. Note that no point on the graph lies above the gradient line. We remark that as f (x) = x 2 is convex and differentiable, its subdifferential only contains one element, ∂ f (x o) = {∇ x f (x o)}. Figures 5.1b and 5.1c show the linear interpolation of f between the points (x o , x 1) and (x o , x 2), respectively. Note that the line between the points x o , f (x o) and x 1 , f (x 1) lies above f (x) in the segment (x o , x 1); the same happens with the linear interpolation between x o and x 2 . It indicates that the coefficients

f (x 1)-f (x o) x 1 -x o / ∈ ∂ f (x o) and f (x 2)-f (x o) x 2 -x o / ∈ ∂ f (x o);
however, it is evident that the slope of the linear interpolation is an inexact subgra-

dient of f (x o) with error bounded by ϵ = max x∈R f (x 1)-f (x o) x 1 -x o (x -x o) -f (x).
We highlight that the subgradient error of the linear interpolation of a convex function depends on how distant its samples are located. For example, the subgradient error in Figure 5.1b, ϵ 1 , is equal to 0.25; on the other hand, the subgradient error in Figure 5.1c, ϵ 2 , is equal to 1. Therefore,

f (x 1)-f (x o) x 1 -x o ∈ ∂ ϵ 2 f (x o) but f (x 2)-f (x o) x 2 -x o / ∈ ∂ ϵ 1 f (x o).
Finally, we introduce the following notations:

Definition 5.3. Let I y : Z → Z n z be defined as the map of one integer index to one element of the discrete set Ω z .

Definition 5.4. Let Γ : R n c → R be defined as

Γ(x) = min y∈Ω z f (x, y).

Discretely Convex Functions

In this section we describe the M and M ♮ discrete convex functions. Both are part of the discrete convex analysis [START_REF] Murota | Discrete convex analysis[END_REF], a theoretical framework that combines the concepts of convex analysis and combinatorial mathematics. Discrete convex analysis has been extensively used in the operations research as a tool for solving storage and inventory problems [START_REF] Begen | Appointment scheduling with discrete random durations[END_REF], [START_REF] Zipkin | On the structure of lost-sales inventory models[END_REF]; moreover, it plays an important role in the design and analysis of auction algorithms [START_REF] Murota | Computing a walrasian equilibrium in iterative auctions with multiple differentiated items[END_REF]. The M and M ♮ functions are defined as follows:

Definition 5.5. A function f : Z n z → R with dom f ̸ = ∅ is said to be M discrete convex
function if it accomplishes the following exchange axiom: for every pair z 1 , z 2 ∈ dom f and

u ∈ supp + (z 2 -z 1) there exists a v ∈ supp -(z 2 -z 1) such that f (z 1) + f (z 2) ≥ f (z 2 -e u + e v) + f (z 1 + e u -e v).
f (x 1) + f (x 2) ≥ f (x 1 -h(x 1 -x 2)) + f (x 2 + h(x 1 -x 2)) ∀h ∈ [0, 1]
that holds for every convex function f : R n c → R.

Definition 5.6. A function f :

Z n z → R with dom f ̸ = ∅ is said to be M ♮ discrete convex function if the function f : Z n z +1 → R defined by: f (y o , y) =      f (y) if y o = -∑ n z j=1 y j +∞ otherwise is M discrete convex.
Note that M ♮ -convex functions are defined in terms of M-convex functions. It is easy to prove that an M-convex function is a special case of the M ♮ set of functions, for which its domain is restricted to the hyperplane {y ∈ Z n z | ∑ 1. For an M convex function and z ∈ dom f , we have

f (z) ≤ f (y) (∀y ∈ Z n z) ⇐⇒ f (z) ≤ f (z + e u -e v) (∀u, v ∈ {1, . . . , n z }).
2. For an M ♮ -convex function and z ∈ dom f , we have

f (z) ≤ f (y) (∀y ∈ Z n z) ⇐⇒      f (z) ≤ f (z + e u -e v) (∀u, v ∈ {1, . . . , n z }) f (z) ≤ f (z ± e u) (∀u ∈ {1, . . . , n z }).
We emphasize that the optimality criterion given by Theorem 5.1 only relies on samples, this condition is convenient in the integer black-box setting. These functions also present discrete versions of subgradients and subdifferentials, as well as descent directions. All of these features allow the development of tailored algorithms that converge to global minimizers. Such algorithms only consider zero-th order information. We now show two examples of said methodologies: the steepest descent algorithm (Algorithm 5.1) and the domain reduction algorithm (Algorithm 5.2). For all i ∈ {1, . . . , n z } set lb i = min y∈D e ⊤ i y and ub i = max y∈D e ⊤ i y

Algorithm 5.1 Steepest Descent Algorithm

Input: Point y ∈ dom f Output: Global minimizer y 1: loop 2: Set (ū, v) = argmin u,v∈{1,...,n z }|u̸ =v { f (y + e u -e v)} 3: if f (y k) ≤ f (y + e u -e v) then

4:

Set lb = 1 -1 n z lb + 1 n z ub and ūb = 1

n z lb + 1 -1 n z ub 5: Set D = {z ∈ Z n z | lb ≤ z ≤ ūb} 6: Select a y ∈ D 7: Set (ū, v) = argmin u,v∈{1,...,n z }|u̸ =v { f (y + e u -e v)} 8: if f (y) ≤ f (y + e u -e v) then
Set D = D ∩ {z ∈ Z n z | z u ≤ x u -1, z v ≥ y v + 1} 12:
end if 13: end loop

objective function into f (y o , y) =      f (y) if y o = -∑ n z j=1 y j +∞ otherwise.
Note that the term y o accounts for the univariate translations y ± e i ∀i ∈ {1, . . . , n z }.

Let K f = max{∥y 1 -y 2 ∥ 1 | y 1 , y 2 ∈ dom f } and K ∞ = max{∥y 1 -y 2 ∥ | y 1 , y 2 ∈ dom f }. Algorithm 5.2 finds the global optima of an M-convex function f in O(n 4 z (log 2 K ∞) 2)
evaluations of f [START_REF] Murota | Discrete convex analysis[END_REF]. On the other hand, if a vector in the domain is given Algorithm 5.1 finds the global optima of an M-convex function f in O(n 2 z K f) function evaluations when a special tie-breaking rule is applied on f [START_REF] Murota | On steepest descent algorithms for discrete convex functions[END_REF].

There exist additional efficient methodologies for the optimization of M-convex and M ♮ functions based on the combination of the (scaled) steepest descend and domain reduction algorithm, for example Shioura's fast-scaling algorithm [START_REF] Shioura | Fast scaling algorithms for m-convex function minimization with application to the resource allocation problem[END_REF] that finds the global optima in O(n 3 z log 2 (K ∞ /n z)) function evaluations. In the next section, we will detail a methodology that takes advantage of the polynomial time algorithms for the solution of M-convex functions to optimize the mixed-integer function f (x, y) over the set Ω m .

Solution by the Difference of Convex Algorithm (DCA)

We aim to solve the problem 1.1 under Assumption 5.1 by performing the following reformulation:

min x∈Ω c ,y∈Ω z f (x, y) = min x∈Ω c Γ(x). Observation 5.1. Function Γ(x) is equivalent to ψ(x) = -sup y∈Ω z -f (x, y).
If Assumption 5.1 holds, the Observation 5.1 implies that evaluating Γ at a given point x is equivalent to maximizing an M ♮ -concave function. In addition, the function Γ(x) is equivalent to the pointwise operation Γ(x) =max i∈{1,...,|Ω z |} -fI y (i) (x)

(see Definition 5.3).

We highlight that function Γ(x) can be represented as the difference of two functions

Γ(x) = λ k 2 ∥x∥ 2 - λ k 2 ∥x∥ 2 -Γ(x) ,
where the term λ k 2 ∥x∥ 2 -Γ(x) can be rewritten as

λ k 2 ∥x∥ 2 -Γ(x) = λ k 2 ∥x∥ 2 --max i∈{1,...,|Ω z |} -fI y (i) (x) = max i∈{1,...,|Ω z |} λ k 2 ∥x∥ 2 -fI y (i) (x) . Moreover, if λ k > κ g then λ k 2 ∥x∥ 2 -Γ(x)
is a convex function, as we now prove.

Definition 5.7. Let Ψ k (x) = max i∈{1,...,|Ω z |} λ k 2 ∥x∥ 2 -fI y (i) (x).
Lemma 5.1. (Zhou, [99], Lemma 4.) Let fy (x) be differentiable with κ g -Lipschitz gradient for every y ∈ Ω z . Then

κ g 2 ∥x∥ 2 -fy (x) is convex. It also means that λ k 2 ∥x∥ 2 -fy (x) is convex if λ k > κ g . Theorem 5.2. If Assumption 1.3 holds and λ k > κ g , then Ψ k (x) is a convex function.
Proof. Having that Assumption 1.3 holds, every function λ k 2 ∥x∥ 2 -fy (x) is convex. We recall that the pointwise maximum of convex functions is also convex [START_REF] Boyd | Convex optimization[END_REF].

Remark 3. Ψ k (x) is a convex subdifferentiable function, with a subdifferential denoted by:

∂Ψ k (x) = Co λ k x -∇ x fy (x) | λ k 2 ∥x∥ 2 -fy (x) = Ψ k (x), y ∈ Ω z .
To summarize, Problem 1.1 can be rewritten as min x∈Ω c λ k 2 ∥x∥ -Ψ k (x). Theorem 5.2 and Remark 3 allow to view the function Γ(x) as the difference of two convex functions, λ k 2 ∥x∥ and Ψ k (x). We can therefore solve it using the Difference of Convex Algorithm (DCA) [START_REF] Tao | The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems[END_REF] (see Algorithm 5.3). Algorithm 5.3 DCA method for problem 1.1

Input: Point x 0 ∈ Ω c , regularization term λ > κ g 1: Set k = 0 2: repeat 3: Set λ k = λ 4: Compute a subgradient w k ∈ ∂Ψ k (x k) 5:
Set

x k+1 = argmin x∈Ω c { λ k ∥x∥ 2 -w ⊤ k (x -x k)} 6: until Convergence of x k
There exist two main issues that arise from the use of Algorithm 5.3. First, we lack the first-order information to compute the subdifferential ∂Ψ k . Second, we lack a proper estimation of the κ g constant. The estimation of an accurate value for λ k is therefore crucial: if the value of λ k is too large it can affect the rate of convergence, making the algorithm slow. In contrast, if λ k is small, there is a risk that Ψ k (x) is not convex. To overcome these issues we introduce elements from the surrogate-based derivative-free optimization to develop an algorithm with similar convergence properties to the DCA.

Hybrid DCA-DFO Algorithm

The standard DCA requires at each iteration the computation of w k ∈ ∂Ψ k (x k). However, this computation does not need to be exact. It is possible to overcome the lack of first-order information by considering accurate approximations of the subgradients (often called ϵ-subgradients) which can be estimated using fully-linear or fullyquadratic surrogates of Ψ k . DC algorithms have been proved to be convergent also in the case where ϵ-subgradients are used [START_REF] Vo | Learning with sparsity and uncertainty by difference of convex functions optimization[END_REF], [START_REF] Le Thi | DC programming and DCA: thirty years of developments[END_REF]. The only condition required is that lim k→∞ ϵ k = 0.

Note that the computation of the ϵ-subgradients requires sampling inside the domain Bc (x k , ∆ c k)), that is a function of a given trust-region radius ∆ c k . It adds at least one degree of freedom to Algorithm 5.3.

In this section, we introduce the hybrid DCA-DFO that incorporates three modifications from the DCA 5.3:

• We replace the subdifferential ∂Ψ k (x) with the ϵ k subdifferential ∂ ϵ k Ψ k (x) computed from the fully-linear approximation m k (x) of fy k (x) on Bc (x k , ∆ c k).

• We do not consider a fixed λ k but one that is function of the model m k (x) and

∆ c k .
In this way we eliminate the additional degrees of freedom that come from the sampling and the model construction process.

• We relax the optimality conditions of Ψ k (x). We show that is possible to retain convergence considering a suboptimal y k such y k / ∈ argmax y∈Ω zf (x k , y).

Algorithm Description

In this subsection we show how the terms λ k can be related to ∆ c k under the principles of first-order derivative-free trust-region methods. The following theorem explores the properties of the DCA outer-linearization subproblem (Line 5, Algorithm 5.3): Theorem 5.3. Let m k be a given surrogate approximation of

fy k (x) on Bc (x k , ∆ c k). Let x ′ = argmin x∈Ω c λ k ∥x∥ 2 2 -(λ k x k -∇ x m k (x k)) ⊤ (x -x k)
. For every iteration k > 0 the following items hold:

1. ∥x ′ -x k ∥ ≤ ∥red(∇ x m k (x k),x k)∥ λ k . 2. x ′ = p k (x k , ∇ x m k (x k), 1/λ k), and 3. if ∥red(∇ x m k (x k), x k)∥ > 0, then ∥x ′ -x k ∥ > 0 and |(x ′ -x k) ⊤ ∇ x m k (x k)| > 0.
Proof. The first-order stationarity conditions related to this optimization problem indicate that

u + -u -+ λ k x ′ -λ k x k + ∇ k m k (x k) = 0,
where u + , u -∈ R n c are the dual variables related to the box constraints x ≤ x ub and x lb ≤ x, respectively. In addition, we have that u + , u -≥ 0, (u +) ⊤ u -= 0,

(u +) ⊤ (x ′ -x ub) = 0, (u -) ⊤ (x lb -x ′) = 0 and x ′ i -x k,i = 1 λ k u - i -u + i - ∂m k (x k) ∂x i .
We have three possible scenarios, depending whether the variable x k,i lays on a corner of Ω c :

1. For the set of variables such x k,i = x ub,i we have that x ′ ix k,i ≤ 0, then:

• If ∂m k (x k) ∂x i < 0 we that u - i = 0 and u + i > 0, as a consequence x ′ i = x ub,i and x ′ i -x k,i = 0. • If ∂m k (x k) ∂x i > 0 we have that if x ′ i = x lb,i then u - i ≥ 0; otherwise, u - i = 0. As a consequence x ′ i = max x lb i , x k -λ k ∂m k (x k) ∂x i (5.1)
and

|x ′ i -x k,i | = min x ub,i -x lb,i , 1 λ k ∂m k (x k) ∂x i ≤ 1 λ k ∂m k (x k) ∂x i . • If ∂m k (x k) ∂x i = 0 then x ′ i = x ub,i .
We highlight in this case that if

∂m k (x k) ∂x i < 0, then red(∇ x m k (x k), x k) i = 0, other- wise red(∇ x m k (x k), x k) i = ∂m k (x k) ∂x i . Therefore |x ′ i -x k,i | ≤ 1 λ k red(∇ x m k (x k), x k) i .It is also evident that if ∂m k (x k) ∂x i > 0, then ∂m k (x k) ∂x i (x ′ i -x k,i) < 0; otherwise ∂m k (x k) ∂x i (x ′ i - x k,i) = 0.
2. For the set of variables such x k,i = x lb,i we can similarly prove that |x ′

i -x k,i | ≤ 1 λ k |red(∇ x m k (x k), x k) i | with x ′ i = min x ub i , x k -λ k min 0, ∂m k (x k) ∂x i (5.2)
and

|x ′ i -x k,i | = min x ub,i -x lb,i , - 1
λ k min 0, ∂m k (x k) ∂x i .
We can derive as well that if

∂m k (x k) ∂x i > 0, then ∂m k (x k) ∂x i (x ′ i -x k,i) < 0; otherwise ∂m k (x k) ∂x i (x ′ i -x k,i) = 0.
3. For the set of variables such x lb,i < x k,i < x ub,i we have that

• If ∂m k (x k) ∂x i > 0, then x ′ i = max x lb,i , x k,i - 1 λ k ∂m k (x k) ∂x i (5.3) and |x ′ i -x k,i | = min x k,i -x lb,i , 1 λ k ∂m k (x k) ∂x i ≤ 1 λ k ∂m k (x k) ∂x i . • If ∂m k (x k) ∂x i ≤ 0, then x ′ i = min x ub,i , x k - 1 λ k ∂m k (x k) ∂x i (5.4)
and

|x ′ i -x k,i | = min x ub,i -x k,i , - 1 λ k ∂m k (x k) ∂x i ≤ - 1 λ k ∂m k (x k) ∂x i . • If ∂m k (x k) ∂x i = 0, then x ′ i = 0.
We remark in this case that red(∇ x m k (x k),

x k) i = ∂m k (x k) ∂x i , thus |x ′ i -x k,i | ≤ 1 λ k |red(∇ x m k (x k), x k) i |. Furthermore, if ∂m k (x k) ∂x i > 0 then ∂m k (x k) ∂x i (x ′ i -x k,i) < 0; otherwise ∂m k (x k) ∂x i (x ′ i -x k,i) = 0.
As a result we have that ∥x k -

x ′ ∥ ≤ ∥red(∇ x m k (x k), x k)∥/λ k .
Finally, the chain of Equations 5.1, 5.2, 5.3 and 5.4 indicates that

x ′ = [P Ω c (x k - 1 λ k ∇ x m k (x k)] = p k (x k , ∇ x m(x k), 1/λ k). It also shows that for every coordinate i ∈ {1, . . . , n c } such that 0 < |red(∇ x m k (x k), x k) i | the value of |x ′ i -x k,i | > 0. Hence, if ∥red(∇ x m k (x k), x k)∥ is bounded away from 0 the same happens to ∥x ′ -x k ∥ and |∇ x m k (x k) ⊤ (x ′ -x k)|, concluding the proof.
Theorem 5.3 shows that the meaningful search domain for iteration k is determined by the ratio between ∥red(∇ x m k (x k), x k)∥ and λ k . It is therefore natural to

define λ k = ∥red(∇ x m k (x k),x k)∥ ∆ c k
. Under this principle we construct our algorithm.

The hybrid DCA-DFO algorithm is presented in Algorithm 5.4. For a given iteration k the current solution is denoted by (x k , y k). Y k indicates the set of points sampled up to the iteration k. The basic idea is to compute at every iteration a continuous surrogate m k (x) that approximates the manifold fy k (x) and use its gradient (evaluated at the point x k) as a substitute of the subdiferential ∂Ψ k (x k).

The inputs of this algorithm are: the black-box function f (x, y), the variable lower bounds (x lb , y lb) and upper bounds (x ub , y ub), the initial candidate solution (x 0 , y 0) ∈ Ω m , the starting and maximum size of the trust-region ∆ icb 0 and ∆ max , the parameters used to update the trust-region γ 0 and γ 1 , the parameters used to evaluate the quality of an iteration η 0 and η 1 , the scaling parameters of criticality test µ and β, the reduction factor of the trust-region ω and the pivoting tolerance ξ ∈ (0,

(x k), x k)∥ ≥ ∆ c k µ -1 .
However, if the model m icb k is fullylinear and the desired relationship is satisfied, the model m icb k is accepted (Line 10) and subsequently used to compute a new candidate solution.

After the Criticality Step a new candidate solution (x ′ , y ′) is computed together with the update parameter ρ k . This part of the algorithm is called Candidate Computation (Lines [START_REF] Bandeira | Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization[END_REF][START_REF] Garmanjani | Trust-region methods without using derivatives: Worst case complexity and the nonsmooth case[END_REF][START_REF] Conn | Bilevel derivative-free optimization and its application to robust optimization[END_REF][START_REF] Larson | A method for convex black-box integer global optimization[END_REF][START_REF] Lucidi | On the global convergence of derivative-free methods for unconstrained optimization[END_REF][START_REF] Grippo | A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations[END_REF][START_REF] Kelley | Implicit filtering[END_REF][START_REF] Choi | Superlinear convergence and implicit filtering[END_REF][START_REF] Cartis | On the oracle complexity of firstorder and derivative-free algorithms for smooth nonconvex minimization[END_REF], that consists in the following operations: first, the regularization term λ k and the subgradient w k are computed from the reduced gradient and the trust-region radius ∆ c k . Next, we compute x ′ by optimizing the outer linearization of Γ(x) (Line 18). The candidate y ′ is obtained via local search heuristics when PO = 0 and CRIT = 0, or by using one of the global optimization procedures tailored for the optimization of M and M ♮ -convex functions (CRIT = 1).

If ρ k ∈ (η 0 , η 1) iteration k is said to be successful, when the new solution yields a sufficiently large improvement with respect to the previous solution. Furthermore, if ρ k > η 1 the iteration k is said to be very-successful. If we have a successful or verysuccessful iteration (i.e., ρ k > η 0), we accept (x ′ , y ′) as the current solution and we generate the model to be used in the next iteration (Line 32). If we have a verysuccessful iteration (i.e., ρ k ≥ η 1), we increase the size of the trust-region (Line 23).

In case ρ k ≤ η 0 we check if the model used is fully-linear (Line 27). If the model m k is fully-linear the iteration k is called unsuccessful and the trust-region radius ∆ c k is reduced. Note that the model is not modified, thus m icb k+1 (x) = m k (x). On the other hand, if the fully-linearity condition is not satisfied, we have a model-improving iteration, where the LinearInterpolationModel procedure is used to construct a fullylinear surrogate on Bc (x k , ∆ c k) ∩ Ω c . In the following subsection we detail the CriticalityTest and LinearInterpola-tionModel procedures used in Algorithm 5.4.

Auxiliary Procedures

The most important task in the development of Algorithm 5.4 is the construction of continuous-fully linear surrogates to compute approximate subgradients. This is done via linear-interpolation. The process to select the proper samples to retrieve a linear model is detailed in Algorithm 5.5 -LinearInterpolationModel. This algorithm is based on the LU decomposition and aims to generate a set of linearly independent samples inside the trust-region (Bc (x k , ∆ c k) ∩ Ω c) × {y k }. It takes into account the set of previous samples (Lines 2 and 3) and selects the fittest n c points.

In case the existing set is not well-poised or the number of samples is insufficient this algorithm is able to select a new set of points by maximizing the absolute value of the pivotal polynomials u i (x) inside the domain. Note that the pivotal polynomials are linear, therefore, the optimal solution of the subproblem in Line 7 is computed without large computational effort using a non-linear solver. Set Xk = Xk ∪ { x} 13:

u i (x) = x i ∀i ∈ {1, . . . , n c } 2: Set X k = {x ∈ Bc (x k , ∆ c k) ∩ Ω c | (x, y k) ∈ Y k }, Xk = {} 3: Set Xk = {(x -x k)/∆ c k ∀x ∈ X k } 4: for i ∈ {1, . . . , n c } do 5: Set x = argmax x∈ Xk |u i (x)| 6: if |u i (x)| < ξ or Xk = ∅ then 7: Set x = argmax x∈ Bc (0,1)|x k +x∆ c k ∈Ω c |u i (x)| 8: Set Y k = Y k ∪ {x k + x∆ c k } 9:
for j ∈ {i + 1, . . . , n c } do 14:

Set u j (x) = u j (x) -

u j (x) u i (x) u j (x) 15:
end for 16:

Solve the system of equations f (

x k + x∆ c k , y k) -f (x k , y k) = g ⊤ x∆ c k ∀ x ∈ Xk to compute g ∈ R n c 17: Set m k (x) = f (x k , y k) + g ⊤ (x -x k
∥red(∇ x m k (x k), x k)∥ ≥ ∆ c k µ -1 .
We highlight that if ∥red(∇ x f (x k , y k), x k)∥ > 0 this procedure converges in a finite number of iterations [START_REF] Conn | Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points[END_REF]. Set (mk , Y k) = LinearInterpolationModel(x k , x lb , x ub , y k , Y k , ∆k , ξ)

5: Set i = i + 1 6: until ∆k < µ∥red(∇ x mk (x k), x k)∥

Convergence of Algorithm 5.4

In this section we prove that Algorithm 5.4 is globally convergent to a first-order stationary point, in a similar way to the scheme presented by Conn et al [START_REF] Conn | Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points[END_REF]. We use several elements introduced in Section 4.2, such as the function χ k (x k , g, t) and the criticality measure χk = χ k (x k , ∇ x m k (x k), 1). The proof consists in the following steps.

First, we detail the relationship between the reduced gradient red(∇ x m k (x k), x k) and the solution of the outer linearization problem described in Line 18-Algorithm 5.4. Then, we present the notion of minimum decrease condition which is theoretically equivalent to the improvement related to generalized Cauchy point on the trust-region method. Next, we show that unless a point is stationary, model update procedures compute a model for which the gradient red(∇ x m k (x k), x k) and the trust-region radius ∆ c k diverge from zero, and that objective improvement is always possible. Finally, we prove by contradiction that the sequence {x k , y k } is convergent, and its limiting value (x, ỹ) is first-order stationary with respect to the continuous variables and a global optima with respect to the integer set Ω z . For the remainder of this section we denote x ′ = argmin x∈Ω c λ k ∥x∥ 2 2

-(λ k x k -∇ x m k (x k)) ⊤ (x -x k) and S imp
as the collection of all the successful and very-successful iterations. Now, we introduce the building blocks of this proof. First, we remark that there exists a pair of global constants κ e f , κ eg that bound the error of the interpolation for every iteration for which m k is fully-linear:

κ f rd ∈ (0, 1) such that ∥x ′ -x k ∥ ≥ κ f rd ∆ c k . Proof. Since ∥red(∇ x m k (x k), x k)∥ > 0, then ∆ c k = ∥red(∇ x m k (x k),x k)∥ λ k ≥ ∥x ′ -x k ∥ > 0
by Theorem 5.3, then the ratio between ∥red(∇ x m k (x k), x k)∥ and ∆ c k must be bounded from bellow

0 < κ f rd ≤ ∥x ′ -x k ∥ ∆ c k ≤ 1. Corollary 5.2. Let x k ∈ Ω c . If ∥red(∇ x m k (x k), x k)∥ > 0 there exists a global constant κ cri ∈ (0, 1) such that χk ≥ κ cri ∥red(∇ x m k (x k), x k)∥. Proof. Since ∥red(∇ x m k (x k), x k)∥ > 0, then ∥x ′ -x k ∥ > 0 by Theorem 5.3. As x k , x ′ ∈ Ω c , any point on the line x k + (x ′ -x k)h ∈ Ω c , ∀h ∈ [0, 1]. As a consequence, the point x k + (x ′ -x k)/ max{2, ∥x ′ -x k ∥} ∈ Bc (x k , 1) ∩ Ω c , thus χk ≥ |(x ′ -x k) ⊤ ∇ x m k (x k)| max{2, ∥x ′ -x k ∥} > 0.
Finally, from Lemma 4.2 we have ∥red(

∇ x m k (x k), x k)∥ ≥ χk , therefore 0 < κ cri ≤ χk ∥red(∇ x m k (x k), x k)∥ < 1.
Next, we show that if the current iterate is not a first-order critical point, Algorithm 5.6 converges in a finite number of iterations: Lemma 5.2. If ∥red(∇ x f (x k , y k), x k)∥ > 0 then the CriticalityTest (Algorithm 5.6) terminates in a finite number of iterations.

Proof. This proof is equal to the proof of Lemma 4.5.

Lemma 5.2 implies that unless red(∇

x f (x k , y k), x k) = 0, ∥red(∇ x m k (x k)x k)| > 0
and it is possible to attain objective improvement by exploring the current manifold y k . With this result, we present the minimum decrease condition for Algorithm 5.4.

Lemma 5.3. At every iteration k ≥ 0 there exists a minimum decrease condition given by

(x k -x ′) ⊤ ∇ x m k (x k) ≥ κ f rd χk min{∆ c k , 1}.
Proof. From Theorems 4.1 and 5.3 we have that

x ′ = p k (x k , ∇ x m k (x k), λ k) and χ k (x k , ∇ x m k (x k), ∥x ′ -x k ∥) = |(x ′ -x k) ⊤ ∇ x m k (x k)|.
First we consider the case ∥x ′ -

x k ∥ ≥ 1. From Lemma 4.1, χ k (x k , ∇ x m k (x k), ∥x ′ - x k ∥) ≥ χk , thus (x k -x ′) ⊤ ∇ x m k (x k) ≥ χk ≥ κ f rd χk . Next, we consider the case ∥x ′ -x k ∥ < 1. From Lemma 4.1 we have χ k (x k , ∇ x m k (x k), ∥x ′ -x k ∥) ≥ ∥x ′ -x k ∥ χk .
Recalling Corollary 5.1, we then obtain:

(x k -x ′) ⊤ ∇ x m k (x k) = χ k (x k , ∇ x m k (x k), ∥x ′ -x k ∥) ≥ χk ∥x ′ -x k ∥ ≥ κ f rd χk ∆ c k .
It completes the proof. Now, we relate the minimum decrease condition given by Lemma 5.

κ f rd ∥red(∇ x m k (x k), x k)∥(1 -η 1) κ e f
then iteration k is very-successful.

Proof. First, consider the minimum decrease condition described in Lemma 5.3. As

∆ c k ≤ 1 we have that (x k -x ′) ⊤ ∇ x m k (x k) = m k (x k) -m k (x ′) ≥ κ f rd χk ∆ c k .
For every iteration k > 0 we can describe the update parameter as the addition of two separate

terms ρ 1 k and ρ 2 k . Let ρ 1 k = f (x k ,y k)-f (x ′ ,y k) m k (x k)-m k (x ′) , ρ 2 k = f (x ′ ,y k)-f (x ′ ,y ′) m k (x k)-m k (x ′)
and

ρ k = f (x k , y k) -f (x ′ , y ′) m k (x k) -m k (x ′) = f (x k , y k) -f (x ′ , y k) + (f (x ′ , y k) -f (x ′ , y ′)) m k (x k) -m k (x ′) = ρ 1 k + ρ 2 k .
The term ρ 1 k is a measure of objective improvement related to the local continuous search on the current integer manifold y k . On the other hand, the term ρ 2 k is a measure of possible objective decrease by the (partial) optimization in integer domain.

It is evident that ρ 2 k ≥ 0 as f (x ′ , y ′) ≤ f (x ′ , y k). Now, taking into account the fullylinearity of the model m k we establish the bounds of ρ 1 k :

ρ 1 k -1 = f (x k , y k) -m k (x k) + (m k (x ′) -f (x ′ , y k)) m k (x k) -m k (x ′) with f (x k , y k) -m k (x k) = 0 from model interpolation and ∥m k (x ′) -f (x ′ , y k)∥ ≤ κ e f (∆ c k)
2 from the fully-linear error bounds, then

|ρ 1 k -1| ≤ κ e f (∆ c k) 2 κ f rd χk ∆ c k ≤ ∥red(∇ x m k (x k), x k)∥(1 -η 1) χk .
From Lemma 4.2 we have that χk ≤ ∥red(∇ Proof. For any successful or very-successful iteration we have that

x m k (x k), x k)∥ thus |ρ 1 k -1| ≤ (1 -η 1). Therefore, ρ 1 k ≥ η 1 and ρ k ≥ η 1 ,
f (x k , y k) -f (x k+1 , y k+1) ≥ η 0 (x k -x ′) ⊤ ∇ x m k (x k) ≥ η 0 κ f rd χk min{∆ c k , 1}.
Recalling the conditions given by the CriticalityTest procedure this bound becomes

f (x k , y k) -f (x k+1 , y k+1) ≥ η 0 (x k -x ′) ⊤ ∇ x m k (x k) ≥ η 0 κ f rd κ cri ∥red(∇ x m k (x k), x k)∥ min{∆ c k , 1}.
From Assumption 1.1 the term

lim k→∞ f (x 0 , y 0) -f (x k , y k) = ∑ k∈ S imp f (x k , y k) -f (x k+1 , y k+1) is bounded, condition that is only met if lim k→∞ ∆ c k = 0.
Lemma 5.6. lim inf k→∞ χk = 0.

Proof. Assume, for establishing a contradiction that there exists a κ 1 > 0 such that ∥red(∇ x m k (x k), x k)∥ ≥ χk > κ 1 , ∀k ≥ 0. We use the Criticality Step to derive a relationship between κ 1 , ∥red(∇ x m k (x k), x k)∥ and ∆ c k . There exists two possible scenarios:

• ∆ c k ≥ min{∆ icb k , β∥red(∇ x m k (x k), x k)∥} if the CriticalityTest is called. • ∆ c k = ∆ icb k otherwise.
By Lemma 5.4 and the assumption that ∥red(∇ x m k (x k), x k)∥ > κ 1 , whenever ∆ c k falls bellow κ2 = min 1,

κ f rd κ 1 (1-η 1) κ e f
, the iteration kth cannot be unsuccessful. Thus

∆ icb k+1 ≥ ∆ k and ∆ icb k ≥ min{γ 0 κ2 , ∆ icb 0 } ∀k > 0. As ∥red(∇ x m k (x k), x k)∥ > κ 1
we have that for every iteration k, whether the Criti-calityTest is invoked or not, the following condition holds:

∆ c k ≥ min{∆ icb k , β∥red(∇ x m k (x k), x k)∥ ≥ min{∆ icb k , βκ 1 }.
As a result, ∆ c k must be bounded by the factor ∆ c k ≥ min{∆ icbc 0 , βκ 1 , γ 0 κ2 }, ∀k > 0, which contradicts Lemma 5.5. Lemma 5.7. For a subsequence {k i } such that

lim i→∞ ∥red(∇ x m k i (x k i), x k i)∥ = 0 it also holds that lim i→∞ ∥red(∇ x f (x k i , y k i), x k i)∥ = 0 and lim i→∞ χ k i (x k i , ∇ x f (x k i , y k i), 1) = 0.
Proof. First, note that for a large k i we have that ∥red(∇ x m k i (x k i), x k i)∥ < ϵ c as the limit value of the subsquence is 0; thus, the model m k i is mixed-integer fully-linear and

∆ c k i ≤ µ∥red(∇ x m k i (x k i), x k i)∥ (Algorithm 5.4, Criticality Step). From Lemma 4.4 we have that ∥red(∇ x f (x k i , y k i), x k i) -red(∇ x m k i (x k i), x k i)∥ ≤ ∥∇ x f (x k i , y k i) -∇ x m k i (x k i)∥ ≤ κ eg ∆ c k i ≤ κ eg µ∥red(∇ x m k i (x k i), x k i)∥.
This bound can be used to compute an upper bound on the norm of the reduced gradient of f at the point x k i , y k i :

∥red(∇ x f (x k i , y k i), x k i)∥ ≤ ∥red(∇ x f (x k i , y k i), x k i) -red(∇ x m k i (x k i), x k i)∥ + ∥red(∇ x m k i (x k i), x k i)∥ ≤ (κ eg µ + 1)∥red(∇ x m k i (x k i), x k i)∥.
(5.5)

As a consequence lim i→∞ ∥red(∇ x f (x k i , y k i),

x k i)∥ = 0.
Finally, from Lemma 4.2 ∥red(∇ x f (x k i , y k i),

x k i)∥ ≥ χ k (x k i , ∇ x f (x k i , y k i), 1), thus, lim i→∞ χ k i (x k i ∇ x f (x k i , y k i), 1) = 0.
We now prove that there exists at least one accumulation point (x * , y *) which is stationary with respect to the continuous variables, or ∥red(∇

x f (x * , y *), x *)∥ = 0. Lemma 5.8. lim inf k→∞ ∥red(∇ x f (x k , y k), x k)∥ = 0.
Proof. Assume, for establishing a contradiction there exists a bound κ 1 > 0 on the reduced gradient such that ϵ c > κ 1 , ∥red(∇ x f (x k , y k), x k)∥ > κ 1 ∀k ≥ 0. Now we establish a relationship between κ 1 and ∥red(∇ x m k (x k), x k)∥. From Lemma 5.6, there exists an iteration k i such that χk ≤ ∥red(∇ x (m k i (x k i), x k i)∥ ≤ κ 1 2+κ eg µ . Considering that κ 1 is strictly smaller than ϵ c , the model m k i is fully-linear and the chain of inequalities (5.5) holds. In consequence for iteration k i we have that:

κ 1 ≤ ∥red(∇ x f (x k i , y k i), x k i)∥ ≤ (1 + µκ eg)∥red(∇ x m k i (x k i), x k i)∥ < 1 + µκ eg 2 + µκ eg κ 1 ,
which contradicts the initial assumption.

In the remainder of this chapter we show that limiting values of x k , y k are stationary, or lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0. To complete the proof we use the potential convexity of the reformulation Ψ k (x). We remark that Algorithm 5.4 may generate a sequence of iterates y k / ∈ argmin y∈Ω z f (x k , y). In those cases we can still proof convexity and generate valid inexact subgradients, as we now show: Lemma 5.9. Let m k : R n c → R be a fully-linear approximation of fy

k (x) on Bc (x k , ∆ c k) ∩ Ω c , where y k ∈ argmax y∈Ω z {-f (x k , y)}. The vector λ k x k -∇ x m k (x k) ∈ ∂ ϵ k Ψ k (x k) with ϵ k = κ eg (∆ c k) 2 and λ k ≥ κ g .
Proof. For all x ∈ Ω c we have that:

Ψ k (x) ≥ Ψ k (x k) + (x -x k) ⊤ (λ k x k -∇ x fy k (x k))
which is equivalent to

Ψ k (x) -Ψ k (x k) + (x -x k) ⊤ (∇ x fy k (x k) -∇ x m k (x k)) ≥ (x -x k) ⊤ (λ k x k -∇ x m k (x k)). As ∥∇ x m k (x k) -fy k (x k)∥ ≤ κ eg ∆ k and ∥x -x k ∥ ≤ ∆ c k then (x -x k) ⊤ (∇ x fy k (x k) -∇ x m k (x k)) ≤ ∥x -x k ∥κ eg ∆ k ≤ ϵ k and Ψ k (x) -Ψ k (x k) + ϵ k ≥ (x -x k) ⊤ (λx k -∇ x m k (x k)). Lemma 5.10. Let Ψk (x) = λ k 2 ∥x∥ 2 -fy k (x) with y k / ∈ argmax y∈Ω z {-f (x k , y)}. Let m k : R n c → R be a fully-linear approximation of fy k (x) on Bc (x k , ∆ c k) ∩ Ω c . The vector λ k x k -∇ x m k (x k) ∈ ∂ ϵ k Ψk (x k) with ϵ k = κ eg (∆ c k) 2 and λ k ≥ κ g .
Proof. As the parameter λ k is larger than κ g , the function Ψk (x) is convex and differentiable, then for all x ∈ Ω c we have that:

Ψk (x) ≥ Ψk (x k) + (x -x k) ⊤ (λ k x k -∇ x fy k (x k)) which is equivalent to Ψk (x) -Ψk (x k) + (x -x k) ⊤ (∇ x fy k (x k) -∇ x m k (x k)) ≥ (x -x k) ⊤ (λ k x k -∇ x m k (x k)). As ∥∇ x m k (x k) -fy k (x k)∥ ≤ κ eg ∆ k and ∥x -x k ∥ ≤ ∆ c k then (x -x k) ⊤ (∇ x fy k (x k) -∇ x m k (x k)) ≤ ∥x -x k ∥κ eg ∆ k ≤ ϵ k and Ψk (x) -Ψk (x k) + ϵ k ≥ (x -x k) ⊤ (λx k -∇ x m k (x k)).
lim k→∞ ∥red(∇ x m k (x k), x k)∥ = 0 and lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0
Proof. Assume, for establishing a contradiction there exist an infinite sequence of iterations {ℓ j } such 0 < ϵ o < χ ℓ j (x ℓ j , ∇ x f (x ℓ j , y ℓ j), 1) ≤ ∥red(∇ x f (x ℓ j , y ℓ j), x ℓ j)∥.

From Lemma 5.7 we obtain that ∥red(∇ x m ℓ j (x ℓ j), x ℓ j)∥ ≥ ϵ for some ϵ > 0.

We now focus on the limiting value ℓ j → ∞. Lemma 5.5 indicates that a subsequence of elements for which ∆ ℓ j ≤ min 1, ϵ 2κ g ,

γκ f rd ϵ(1-η 1) κ e f
exists. Note that as ∆ ℓ j ≤ ϵ/(2κ g) the regularization parameter λ k > 2κ g . It indicates that:

• If y ℓ j ∈ argmin y∈Ω z { f (x ℓ j , y)} the function Ψ ℓ j is convex (Lemma 5.1) and the vector λ ℓ j x ℓ j -∇ x m ℓ j (x ℓ j) computed from a fully-linear approximation m ℓ j (x)

on Bc (x ℓ j , ∆ c k) ∩ Ω c is a proper subgradient of Ψ ℓ j , with error constant equal to κ eg (∆ c ℓ j) 2 (Lemma 5.9).

• If the current y ℓ j / ∈ argmin y∈Ω z { f (x ℓ j , y)} the function Ψk (x) = λ ℓ j 2 ∥x∥ -fℓ j (x) is convex (Lemma 5.1) and the vector λ ℓ j x ℓ j -∇ x m ℓ j (x ℓ j) computed from a fully-linear approximation m ℓ j (x) on Bc (x ℓ j , ∆ c k) ∩ Ω c is a proper subgradient of Ψℓ j , with error bounded by κ eg (∆ c ℓ j) 2 (Lemma 5.10).

We identify two possible scenarios depending on whether the model m ℓ j (x) is fullylinear or not. For the first case in which the model m ℓ j (x) is fully-linear on Bc (x ℓ j , ∆ c ℓ j) we have that the iteration ℓ j is very-successful (Lemma 5.4) and the following inequality holds (Lemma 5.9):

λ ℓ j 2 ∥x ℓ j +1 ∥ 2 -f (x ℓ j +1 , y ℓ j +1) ≥ λ ℓ j 2 ∥x ℓ j ∥ 2 -f (x ℓ j , y ℓ j) + (λ ℓ j x ℓ j -∇ x m ℓ j (x ℓ j)) ⊤ (x ℓ j +1 -x ℓ j) -κ eg (∆ c ℓ j) 2 that is equal to λ ℓ j 2 ∥x ℓ j +1 -x ℓ j ∥ 2 +(f (x ℓ j , y ℓ j) -f (x ℓ j +1 , y ℓ j +1)) + κ eg (∆ c ℓ j) 2 ≥ (∇ x m ℓ j (x ℓ j)) ⊤ (x ℓ j -x ℓ j +1).
(5.6)

We then define a proper upper bound for the left hand side of inequality 5.6. We have

that ∥x ℓ j +1 -x ℓ j ∥ ≤ ∆ c ℓ j and f (x ℓ j , y ℓ j) -f (x ℓ j +1 , y ℓ j +1) > η 1 (∇ x m ℓ j (x ℓ j)) ⊤ (x ℓ j - x ℓ j +1), then λ ℓ j 2 (∆ c ℓ j) 2 + η 1 (∇ x m ℓ j (x ℓ j)) ⊤ (x ℓ j -x ℓ j +1) + κ eg (∆ c ℓ j) 2 ≥ (∇ x m ℓ j (x ℓ j)) ⊤ (x ℓ j -x ℓ j +1),
and reorganizing the previous inequality we obtain

λ ℓ j 2 (∆ c ℓ j) 2 + κ eg (∆ c ℓ j) 2 ≥ (1 -η 1)(∇ x m ℓ j (x ℓ j)) ⊤ (x k -x ℓ j +1). (5.7)
Taking into account that the minimum decrease condition given by 5.3 and the relationship that exist between χk and ∥red(∇ x m k (x k), x k)∥ (Corollary 5.2), we compute a proper lower bound for the right hand side of inequality 5.7:

λ ℓ j 2 (∆ c ℓ j) 2 + κ eg (∆ c ℓ j) 2 ≥ (1 -η 1)κ f rd χℓ j ∆ c ℓ j ≥ (1 -η 1)κ f rd κ cri ϵ∆ c ℓ j thus ∆ c ℓ j ≥ (1 -η 1)κ f rd κ cri ϵ λ ℓ j 2 + κ eg ≥ (1 -η 1)κ f rd κ cri ϵ 2κ g .
For the second case consider that the model m ℓ j (x) is not fully-linear on Bc (x ℓ j , ∆ c ℓ j). This case is only occurs in Algorithm 5.4 when the previous iteration was unsuccessful and ∥red(∇ x m ℓ j (x ℓ j), x ℓ j)∥ > ϵ c . These two conditions indicate that the Criti-calityStep was not summoned and the model was not updated from the previous iteration, thus ∆ c ℓ j = γ∆ c ℓ j -1 , m ℓ j (x) = m ℓ j -1 (x), ∥red(∇ x m ℓ j -1 (x ℓ j -1), x ℓ j -1)∥ = ∥red(∇ x m ℓ j (x ℓ j), x ℓ j)∥ ≥ ϵ, and that the model m ℓ j -1 (x) is fully-linear on Bc (x ℓ j -1 , ∆ c ℓ j -1). Nonetheless, this condition induces a contradiction. Since ∆ c ℓ j ≤

γκ f rd ϵ(1-η 1) κ e f we have that ∆ c ℓ j -1 ≤ κ f rd ϵ(1-η 1) κ e f
; therefore, iteration ℓ j -1 must be very-successful (Lemma 5.4).

As a consequence we have that all the limiting values of the sequence {ℓ j } are fullylinear and very-successful, then lim inf

ℓ j →∞ ∆ c ℓ j = (1 -η 1)κ f rd κ cri ϵ 2κ g . (5.8)
This result contradicts Lemma 5.5. Therefore, for any given ϵ 0 > 0 there exists an N ∈ N such that:

χ k (x k , ∇ x f (x k , y k), 1) < ϵ o ∀k > N. It implies that lim k→∞ χ k (x k , ∇ x f (x k , y k), 1
lim k→∞ χ k (x k , ∇ x f (x k , y k), 1) = 0 and f (x k , y k) ≤ f (x, y) ∀(x, y) ∈ {x k } × Ω z .
Proof. From Theorem 5.4 we know that there exists a N ∈ N + such that for every iteration k > N the bound ∥red(∇ x m k (x k), x k)∥ < ϵ c holds. As a result we have that the parameter CRIT is set to 1 and the integer subproblem is solved to global optimality (Line 19 -Algorithm 5.4). It implies that y k ∈ argmin y∈Ω z f (x k , y) ∀k > N. As a consequence we have that the limiting values of the sequence x k , y k are a SLM of the function f with respect to the discrete set Ω z . Remark 4. We have proved algorithmic convergence to a separate local minimum on the set Ω z when the function exhibits M or M ♮ properties. Moreover, the same results can be extended to mixed-integer functions that present combinatorial properties that allow a polynomial time solution of the partial minimization with respect to the set of discrete variables.

Remark 5. We highlight that Algorithm 5.4 can be used for the optimization of general mixed-integer functions that does not present combinatorial properties. In these cases, if the Assumptions 1.1, 1.2 and 1.3 hold we guarantee first-order stationarity with respect to the continuous variables, and weak local optimality with respect to the integer variables. The strength of the output of Algorithm 5.4 would depend on the method used for the optimization on the discrete domain.

Conclusions and Future Work

In this chapter we introduced a hybrid difference of convex and trust-region algorithm for the solution of Problem 1.1 under the assumption of a combinatorial structure on the objective function. The solution scheme consists in the reformulation of the objective via partial discrete optimization and convex regularization with the weighted norm function. This method solves the problems that arise from the lack of first-order information by using error-bounded (sub)gradients. We proved that Algorithm 5.4 is globally convergent to strong local minimum (StLM) and can be used to address general mixed-integer derivative free problems.

In the future we expect this methodology can be used to address different types of combinatorial structures such as the globally convex functions or the L and L ♮ discretly convex functions described by Murota [START_REF] Murota | Discrete convex analysis[END_REF], [START_REF] Fujishige | Submodular functions and optimization[END_REF]. We also hope that our results motivate the research on additional structures on a mixed-integer function, like non-linear least squares, composite (non) convex functions and in particular general min-max problems.

Chapter 6

Methodology Benchmarking

In this chapter, we evaluate the computational performance of Algorithm 4.1 and Algorithm 5.4 for the optimization of structured instances -LQMI functions and M ♮ discrete convex functions-and the solution of general mixed-integer black-box problems. To assess the rate of convergence and the quality of the solution obtained, we compare our results with the ones obtained with PyNomad-Beta. PyNomad-Beta is the Python interface of the solver NOMAD [START_REF] Audet | Mesh adaptive direct search algorithms for constrained optimization[END_REF], the implementation of the MADS algorithm for the solution of black-box problems with continuous, integer and categorical variables.

To compare the different solution approaches we use performance and data profiles [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF]. Let S be the set of solvers (or algorithms) that we want to evaluate and P the set of instances we want to use as a benchmark. A solver s ∈ S is said to be convergent for instance p ∈ P if it obtains the best objective improvement with respect to a starting evaluation point. More formally, let (x 0 , y 0) be the starting evaluation point, (x s , y s) be the best solution found by solver s and f B = min s∈S f (x s , y s) the best objective value for problem p obtained by all the solvers in S. We have that the solver s is convergent up to a tolerance σ ∈ (0,

1) if f (x o , y o) -f (x s , y s) ≥ (1 -σ)(f (x o , y o) -f B).
The performance ratio r σ s,p of a solver s with respect to the instance p is r σ s,p = t σ s,p min ŝ∈S {t σ ŝ,p } , where t s,p is the total number of objective evaluations necessary to solver s to be convergent up to a tolerance σ for problem p. If a solver is not convergent, the performance ratio is considered as r σ s,p = ∞. The performance profile per σ s (a) of a solver s is a function of a required value a:

per σ s (a) = 1 |P | {p ∈ P | r σ s,p ≤ a}
For a given solver s, per σ s (a) gives the fraction of convergent instances (up to a tolerance σ) with a performance ration lower than a. Performance profiles do not show how well a solver behaves in the case when the number of allowed function evaluations is limited. Therefore, we additionally use the data profile method. The data profile dat s (a) of a solver s is a function of a required value a and is defined as:

dat σ s (a) = 1 |P | {p ∈ P | t σ s,p /(n p + 1) ≤ a}
where n p = n c,p + n z,p is the total number of variables of problem p. For a given solver s, dat σ s (a) represents the fraction of convergent instances with a number of normalized objective evaluation t σ p,s /(n p + 1) lower than a.

Computational Results for Algorithm 4.1

In this section, we present the study of the computational performance of Algorithm 4.1. We evaluate two algorithmic versions that are described in Table 6.2: s 1 or accurate, and s 2 or aggressive.

Experimental Setting

We implemented Algorithm 4.1 in Python, using Pyomo [START_REF] Hart | Pyomo: Modeling and solving mathematical programs in python[END_REF], [START_REF] Bynum | Pyomo-Optimization Modeling in Python[END_REF] to prototype the models used in Algorithms 4.3 and 4.5. The computational implementation also includes a co-domain re-scaling subroutine to prevent numerical issues related to large differences in the objective function. We follow a procedure similar to the ones used in [START_REF] Costa | Rbfopt: An open-source library for black-box optimization with costly function evaluations[END_REF], [START_REF] Huyer | Snobfit-stable noisy optimization by branch and fit[END_REF]: if the difference between the set of active samples is greater than

1: Set Θk = 0 2: Set NS k = (Bz (y k , ∆ icbz k) ∩ Ω z) \ (Q(y k , M k) ∪ {y k }) 3: for i = 1, . . . , min{|NS k |, n z } do 4:
Select a vector y i from NS k 5:

Compute a fully-linear surrogate m i (x) of f (x, y i) sampling n c + 1 points (x, y) ∈ (Bc (x k , ∆ icb c k) ∩ Ω c) × {y i } Set NS k = NS k \ {y i } 11: end for 12: if Θk > ε then 13: Compute the matrix M k including the vector ȳ 14:

Set Qk = Q(y k , Mk) Set mk = m icb k and keep the same M k 18: end if

Test Instances

In the experimental section we use three sets of instances: LQMI, Cutest and Generic functions.

• LQMI instances. This set corresponds to a collection of 315 instances which are known to behave locally or globally as an LQMI function. LQMI instances can be split into three sub-classes: (1) globally quadratic functions, (2) quadratic + RBF functions, and, (3) quadratic + element-wise exponential functions:

(1) presents slower convergence in both variants. One possible explanation for the overall better performance of NOMAD is the fact that NOMAD is tuned with a series of heuristics that are focused on finding a good local optimum. On the other hand, Algorithm 4.1 is mainly tuned for a proved convergence to a stationary point. We also remark that Algorithm 4.1 uses a surrogate that is only globally accurate under the assumption of having an LQMI function.

f (z) = f o + c ⊤ (z -z o) + 1 2 (z -z o) ⊤ A(z -z o) (2) f (z) = f o + c ⊤ (z -z o) + 1 2 (z -z o) ⊤ A(z -z o) + n ∑ i=1 f r,i 1 + ∥x -x r,i ∥ 2 (3) f (z) = f o + c ⊤ (z -z o) + 1 2 (z -z o) ⊤ A(z -z o) +
Finally, Figures 6.7 and 6.8 show the profiles of the evaluation of the Generic set of instances using the heuristic variants of Algorithm 4.1 with tolerances σ ∈ {0.01, 0.001}. Both figures show that NOMAD is also faster than the heuristic versions of Algorithm 4.1 in attaining convergence; nonetheless, we observe that the variants s1-accurate-h and s2-aggressive-h solve a larger amount of instances with respect to the implementation that considers function stationarity. This improvement in the computational performance is noticed in the σ = 0.001 case (Figure 6.8), where The computational experiments presented in this section show that Algorithm 4.1 is well suited for solving LQMI functions and is competitive in the solution of functions that do not exhibit these type of properties. However, in the the general mixed-integer case it presents slower rate of objective decrease in comparison to a general purpose DFO solver like NOMAD. This is the result of two features of Algorithm 4.1. First, it devotes a large number of objective evaluations to construct and certify a fully-linear approximation, specially with respect to the elements of the integer interpolation l z and A z , using O(n 2 z) samples. Second, despite incorporating tools that minimize the effect of stationarity such as the MandifoldSearch procedure (Algorithm 6.1), Algorithm 4.1 is still sensitive to stationary points. We observe this behaviour in Figure 6.9 and Table 6.4 that show the direct comparison of the variants s1-accurate and s2-aggressive with their heuristic counterparts. Figure 6.9 shows that the heuristic variants provide better performance in terms of objective reduction, solving to a strong degree of tolerance (σ = 10 -5) more than 20% of instances than the convergent variants. Table 6.

Computational Results for Algorithm 5.4

In this section, we study the computational performance of Algorithm 5.4. We evaluate three algorithmic versions that are described in Table 6.6: s3 or opportunistic, s4

or extensive, and, s5 or global.

Experimental Setting

We implemented Algorithm 5.4 in Python, using Pyomo [START_REF] Hart | Pyomo: Modeling and solving mathematical programs in python[END_REF], [START_REF] Bynum | Pyomo-Optimization Modeling in Python[END_REF] to prototype the monomial pivotal optimization used in Algorithm 5.5. The algorithmic implementation uses two methodologies to address the (partial) integer optimization subproblems (Lines 18 and 22-Algorithm 5.4). For the global optimization of M and M ♮convex functions we use Shioura's fast-scaling algorithm [START_REF] Shioura | Fast scaling algorithms for m-convex function minimization with application to the resource allocation problem[END_REF]. For the partial integer optimization we incorporate PyNomad. All the tests instances were evaluated in a single machine Lyon/hercule at GRID5000 cluster, with a Intel Xeon E5-2620 CPU and 32 GB of RAM. Finally, we consider algorithm termination when ∆ c k < 10 -5 , with k max = 150. In Table 6.5 we present the values used for the fixed parameters. In Table 6.6

we resume the values of the variable parameters (ISG, PO) associated to the three variants of Algorithm 5.4. The parameter ISG (Integer Simplex Gradients) controls the maximum number of function evaluations allowed in the partial integer optimization (Line 18 -Algorithm 5.4). The variant s3-opportunistic restricts the integer search to at most 4(n z + 1) points, unless the parameter ∥red(∇ x m k (x k), x k)∥ is below the criticality tolerance ϵ c . The variant s4-extensive allows larger exploration on the set Ω z and allows to NOMAD to use at most 20(n z + 1) samples. On the other hand, the variant s5-global solves the integer subproblem to optimality at every iteration.

Test Instances

• M ♮ Quadratic instances.

This set corresponds to a collection of 411 instances which are known to behave globally as an M ♮ function. M ♮ instances can be split into two sub-classes:

(1) globally quadratic functions and (2) quadratic + element-wise exponential functions:

(1) -If i, j > n z or i = j ≤ n z the entry a i,j is normally distributed with mean 0 and standard deviation 1.

f (z) = f o + c ⊤ (z -z o) + 1 2 (z -z o) ⊤ A(z -z o) (2) f (z) = f o + c ⊤ (z -z o) + 1 2 (z -z o) ⊤ A(z -z o) +
-If i, j ≤ n z and i ̸ = j, then a i,j = b where b is uniformly distributed between 0 and 2 min i∈{1,...,n z } a i,i . This condition guarantees that the function f is M ♮ -convex after fixing the vector of continuous variables [START_REF] Murota | Discrete convex analysis[END_REF].

Moreover, we have x lb = y lb = -50, x ub = y ub = -50 and the reference parameter z o is uniformly distributed in [-50, 50], and v i is uniformly distributed in between (-10 -2 , 10 -2). The dimension of the instances n c + n z goes from 10 to 25 variables with n c ∈ {5, . . . , 10} and n z ∈ {5, . . . , 15}.

• Generic instances

The same set of 29 general mixed-integer instances described in Section 6.1.2. is the fact that Algorithm 5.4 relies only on first-order information, ignoring the interaction between integer and continuous variables, for that reason it converges to worst stationary points. Similar to the M ♮ Quadratic set of instances, the variant s3-opportunistic is faster than s4-extensive, this is probably due to the fact that at each iteration this variant is more efficient in solving the integer subproblem. It is highly possible that for two or more consecutive iterations the output of the integer optimization subproblem remains the same, specially when the trust-region radius becomes small. Therefore, if the parameter IGS is smaller, not many samples would be devoted to improve the objective when no point on Ω z yields better objective value than the current integer candidate.

Discussion

Comparison between Algorithms 4.1 and 5.4

In this section we compare the performance of Algorithm 4.1 and 5.4 with respect to the Generic set of instances. Figures 6.14 and 6.15 show the performance and data profiles at σ ∈ {0.01, 0.001}. Both figures show that the variant that yields the largest number of instances solved is s2-aggressive, while the one that presents the best overall performance is the variant s3-opportunistic. Note that s2 is the variant of Algorithm 4.1 that uses the least amount of samples to construct a surrogate approximation and the variant s3 is the variant of Algorithm 5.4 that uses least objective

2. 1 κ

 1 Examples of local optimality . 5.1 Subgradients and ϵ-subgradients . 5.2 Exchange property in M convex functions 6.1 Performance and Data profiles on LQMI instances (Algorithm 4.1), σ = 0.01 . 6.2 Performance and Data profiles on LQMI instances (Algorithm 4.1), σ = 0.001 . 6.3 Performance and Data profiles on Cutest instances, σ = 0.01 6.4 Performance and Data profiles on Cutest instances, σ = 0.001 6.5 Performance and Data profiles on Generic instances, σ = 0.01 6.6 Performance and Data profiles on Generic instances, σ = 0.001 6.7 Performance and Data profiles on Generic instances on heuristic versions of Algorithm 4.1, σ = 0.01 . 6.8 Performance and Data profiles on Generic instances instances on heuristic versions of Algorithm 4.1, σ = 0.001 6.9 Performance profiles for convergent variants vs heuristics variants of Algorithm 4.1, σ = 10 -5 . 6.10 Performance and Data profiles on M ♮ Quadratic instances, σ = 0.5 . 6.11 Performance and Data profiles on M ♮ Quadratic instances, σ = 0.001 6.12 Performance and Data profiles on Generic instances (Algorithm 5.4), σ = 0.01 . 6.13 Performance and Data profiles on Generic instances (Algorithm 5.4), σ = 0.001 . 6.14 Performance and Data profiles on Generic instances, σ = 0.01 xiv 6.15 Performance and Data profiles on Generic instances, σ = 0.001 121 xv List of Tables 2.1 Examples of optimality criterion . 6.1 Fixed parameters for Algorithm 4.1 . 6.2 Variable parameters for Algorithm 4.1 6.3 Set of Generic MINLP test functions . 6.4 Number of instances (out of 290 instances) such that the convergent variants presents objective improvement larger than 1σ times the improvement yield by the heuristic versions of Algorithm 4.1 6.5 Fixed parameters for Algorithm 5.4 . 6.6 Variable parameters for Algorithm 5.4 Continuous manifold fy (x) = f (x, y) m(x), m k (x), m icb k (x) Surrogate model l c , l c k Linear continuous terms (Equation 3.4) l z , l z k Linear integer terms (Equation 3.4) Matrix of integer generating vectors (Definition 3.4) P Ω c (x) Projection of the vector x onto the set Ω c Q(y, M), Q k Set of integer generating vectors (Definition 3.5) Y k Set of previously sampled points (Algorithm 4.1 and Algorithm 5.4) xx ∆ c , ∆ c k , ∆ icbc k Continuous trust-region radius ∆ z , ∆ z k , e f , κe f , κe f Error constant on function approximation κ eg , κeg , κeg Error constant on gradient approximation κ eh Error constant on hessian approximation κ f Global Lipschitz constant on fy (x), ∀y ∈ Ω z κ f rd (Corollary 4.1) κ g Global Lipschitz constant on ∇ x fy (x), ∀y ∈ Ω z λ, λ k Regularization parameter υ(x) Surrogate approximation of ψ (Lemma 3.1) τ(y), τ(y), τ(y) Integer quadratic function ϕ(x) Local bilinear representation functions (Assumption 3.2) ψ(x) Linear transformation of ϕ (Definition 3.4) χ k , χk First-order stationarity measure (Definition 4.3) Γ(x) Partial integer minimization (Definition 5.4) Θ k Mixed-integer stationary parameter (Definition 4.1) Θk Adjusted mixed-integer staritonary parameter (Definition 4.1) Φ k Combined stationary parameter (Definition 4.2) Ψ k (x) Convex regularization (Definition 5.7)

 3). In Chapter 3 we define the class of LQMI functions and of mixed-integer fully-linear models. Section 3.2 introduces a quadratic mixedinteger interpolation scheme that yields a model with bounded error when approximating an unknown LQMI function, and shows that this model is accurate in a restricted neighborhood when the LQMI conditions do not hold. Chapter 4 presents a trust-region based algorithm, while Section 4.2 shows that it converges to a separate local minimum and stronger local minimum of a mixed-integer problem. Chapter 5 introduces the hybrid difference of convex and derivative free algorithm. Section 5.1 describes a class of functions that displays combinatorial structures, while Section 5.4 shows the convergence of the hybrid algorithm to a separate local minimum of a mixed-integer function. Chapter 6 presents the computational evaluation of the two proposed algorithms, and compares them with a state-of the art derivative-free solver. Finally, in Chapter 7 we draw our conclusions and detail future resarch perspectives.

2

 2 Generic DDSM AlgorithmInput: Initial candidate x 0 and step length ∆ 0 , geometric parameters 0 < γ < 1 ≤ γ inc and opportunistic search parameter OPOR = {0, 1} 1: for k = 0, 1, 2, . . . do 2:

Theorem 2 . 1 . 1)

 211 Both the Cauchy step and the Approximate Cauchy point correspond to the (quasi) minimum of the model along the steepest descend direction inside the trustregion. Their decrease condition is bounded by: (Conn et al., [56], Theorem 10.Consider a model of the shape m k (x + s) = m k (x k) + g ⊤ s + 1 2 s ⊤ H k s and the Cauchy step from Definition 2.4, the Cauchy decrease is bounded by

 What remains to identify are l c and A M . In this section we show how to obtain such parameters to have a model m that is mixed-integer fully linear with respect to an LQMI function and the class of sets Ω = {Ω LQMI d (y) | ∀y ∈ Ω z }. Moreover, we prove that such model approximation is also mixed-integer fully linear with respect to a non-LQMI function in a class of discrete sets Ω G d (y, M k) with the property that |Ω G d (y, •)| = n z + 1 (see Section 3.2.3). Having a model that is mixed-integer fully linear is crucial to prove the convergence of the trust-region algorithm to a stationary point presented in Chapter 4.

Theorem 3 . 1 .

 31 5 is equivalent to the one introduced in equation 3.4, where l c = g 0 and A M = (M ⊤) -1 A g . Let m0 (s c) and υ(s c) be obtained as in Proposition 3.1 and Lemma 3.1.

Proposition 3 . 4 .

 34 at any point in the domain, with error bounded by a global set of constants κ e f , κ eg : For any given function f that satisfies Assumption 1.3 and the class of discrete sets Ω = {Ω G d (y, M) | y ∈ Ω z , M ∈ M (y)}, we guarantee that there exists a fully-linear class of models M (Definition 3.2) with suitable positive global constants κ e f , κ eg such that, for any given ∆ ∈ (0, ∆ max], (x, y) ∈ Ω m and Ω d ∈ Ω, the error in the function and gradient approximation is bounded. Moreover, we can obtain a fully-linear model from this class in a finite, uniformly bounded number of operations and function evaluations. Proposition 3.5. For any given LQMI function f , (i.e, f satisfies Assumptions 1.1, 1.3, 3.1 and 3.2) and the class of discrete sets Ω = {Ω LQMI d (y) | ∀y ∈ Ω z }, we guarantee that there exists a fully-linear class of models M (Definition 3.2) with suitable positive global constants κ e f , κ eg such that, for any given ∆ ∈ (0, ∆ max], (x, y) ∈ Ω m , and Ω d ∈ Ω, the error in the function and gradient approximation is bounded. Moreover, we can obtain a fully-linear model from this class in a finite, uniformly bounded number of operations and function evaluations.

2 ,Definition 4 . 1 .

 241 otherwise.We introduce Θ k and Θk , mixed-integer stationarity parameters that allow us to prevent early convergence into a first-order stationary point that only considers the continuous variables: Let ϵ a and ϵ c be positive user defined parameters in Algorithm 4.1. For given x k , y k ∈ Ω m let the partial mixed integer stationarity parameter Θ k and the adjusted mixed-integer stationarity parameter Θk be:

Algorithm 4. 6

 6 MixedIntegerModelComputation Input: Point (x k , y k), variable bounds (x lb , x ub) and (y lb , y ub), Trust-Region Radii ∆ c and ∆ z , set of generating points Q k and set of sampled points Y k Modeling parameters c f and IC Output: Mixed-integer model m and the points used to compute it Xk o , Xk j and Zk 1: Xk

Definition 4 . 4 .

 44 The point (x * , y *) at iteration k is mixed-integer first-order critical with respect to the mixed-integer set N D and the optimality tolerance ϵ opt if:

Lemma 4 . 1 .

 41 (Conn et al. [90], Lemma 2.2) Suppose that x k ∈ Ω c and Ω c is nonempty, closed and convex; then:

Theorem 4 . 1 . 1 . 4)

 4114 (Conn et al. [67], Theorem 12.Suppose that x k ∈ Ω c , s ∈ R n c and t > 0. Then, a solution d of the problem

Theorem 4 . 2 . 1 . 6)

 4216 (Conn et al.[START_REF] Conn | Trust region methods[END_REF], Theorem 12.Suppose that Assumption 1.2 holds, then the quantity χ k (x k , ∇ x f (x k , y k), 1) is a proper first-order criticality measure for the optimization problem 1.1. In other words, χ k (x k , ∇ x f (x k , y k , 1)) is nonnegative, continuous with respect to x (at fixed values of y) and vanishes if and only if x k is first-order critical.

Lemma 4 . 6 .

 46 uous stationarity. It is enough to relate the improvement of Generalized Cauchy step and the solution of optimization subproblems in the CandidateComputation and RescueProcedure: At every iteration k > 0, the predicted improvement is bounded by a fraction of the mixed-integer Cauchy step: m

Lemma 4 . 7 .

 47 At every iteration k > 0 the predicted improvement is bounded by the partial mixed-integer stationary parameter Θ

1 . 4 . 8 .

 148 m k (x k + s c , y k + s z) as the predicted improvement is always nonnegative. Now, we relate the properties of the model approximation in Algorithm 4.6 with the convergence of Algorithm 4.Lemma If the model m k is mixed-integer fully linear and the continuous trust-region radius satisfies

Lemma 4 . 9 .

 49 The number of successful and acceptable iterations for which the new iterate is selected from previous samples (Lines 4 and 14 in Algorithm 4.3 or Line 1 in Algorithm 4.5) is finite. Proof. Let N IS be the number of successful or acceptable iterations where the candidate is retrieved by samples. Let us consider the objective function improvement obtained by the iterates of Algorithm 4.1:

Theorem 4 . 6 .

 46 Under Assumptions 1.1 and 1.3 the sequence of iterates generated by Algorithm 4.1 satisfies:

Theorem 4 . 7 .

 47 Under Assumptions 1.1, 1.2 and 1.3, the sequence of iterates generated by Algorithm 4.1 satisfies:

Theorem 4 . 8 .

 48 Under Assumptions 1.1, 1.3, 3.1 and 3.2, the sequence of iterates generated by Algorithm 4.1 satisfies:

2 FIGURE 5 . 1 :

 251 FIGURE 5.1: Subgradients and ϵ-subgradients

FIGURE 5 . 2 :

 52 FIGURE 5.2: Exchange property in M convex functions

 = a}, a ∈ Z. One of the most interesting features displayed by the the two classes of discrete functions is the equivalence of local and global optimality, similar to the case of the continuous convex functions: Theorem 5.1. (Murota, [93] , Theorem 6.26) Global and local optimality in descretly convex functions:

5 . 2

 52 We remark that both algorithms are designed to solve only M-convex functions; however, they are easily adapted to solve M ♮ -convex instances by transforming theAlgorithm Domain Reduction AlgorithmInput: Variable bounds y lb and y ub Output: Global minimizer y 1: Set D = dom f 2: loop 3:

 These second auxiliary procedure of Algorithm 5.4 is the CriticalityTest (Algo-Current continuous solution x k , variable bounds x lb , x ub , current integer solution y k , set of samples Y k , trust-region radius ∆ c k and pivoting tolerance ξ Output: Fully-linear model m k (x) and updated set of samples Y k 1: Set

) 18 :

 18 end for rithm 5.6). It is used to evaluate the convergence into a first-order stationary point.The goal of Algorithm 5.6 is to generate a surrogate approximation mk of f (x k , y k) such that the following conditions are satisfied: the model m k is fully-linear and

: repeat 3 :

 3 Current continuous solution x k , variable bounds x lb , x ub , current integer solution y k , parameters ω, µ,set of samples Y k and pivoting tolerance ξ Output: Model m k , updated set of samples Y k and trust-region radius ∆k 1: Set i = 1 2Set ∆k = ω i-1 ∆ icb k 4:

Proposition 5 . 1 .Corollary 5 . 1 .

 5151 For any given function f that satisfies Assumption 1.3 and the class of discrete sets Ω = { {y} | ∀y ∈ Ω z }, we guarantee there exists a fully-linear class of models M (Definition 3.2) with suitable positive global constants κ e f , κ eg such that, for any given ∆ ∈ (0, ∆ max], (x, y) ∈ Ω m and Ω d ∈ Ω, the error in the function and gradient approximation is bounded. Moreover, we can obtain a fully-linear model from this class in a finite, uniformly bounded operations and function evaluations.Algorithm 5.4 considers ∥red(∇ x m k (x k), x k)∥ as a measure of algorithmic starionarity with respect to the set Ω c . The following two corollaries summarize the relationship of x ′ , x k and ∆ c k with the reduced gradient: Let x k ∈ Ω c . If ∥red(∇ x m k (x k), x k)∥ > 0 there exists a global constant

3 with the convergence of Algorithm 5. 4 : 5 . 4 .

 454 Lemma If the model m k is fully-linear and the trust-region radius satisfies∆ c k ≤ min 1,

 and iteration k is very-successful. Lemma 5.5. lim k→∞ ∆ c k = 0.

Theorem 5 . 4 .

 54 Under Assumptions 1.1 and 1.3 the sequence of iterates generated by Algorithm 5.4 satisfies:

Theorem 5 . 5 . 1 µTheorem 5 . 6 .

 55156) = 0. Moreover, Equation 5.8 indicates that lim k→∞ ∥red(∇ x m k (x k), x k)∥ = 0 as lim k→∞ ∆ c k = 0. It concludes the proof. Under Assumptions 1.1 and 1.3 the sequence of iterates generated by Algorithm 5.4 satisfies: lim inf k → ∞λ k = Proof. From Theorem 5.4 we know that there exists a N ∈ N + such that for every iteration k > N the bound ∥red(∇ x m k (x k), x k)∥ < ϵ c holds. As a result, for the set of iterations such k > N the relationship ∥red(∇ x m k (x k), x k)∥ ≥ ∆ c k /µ also holds. We remark that in Algorithm 5.4 the parameter λ k = ∥red(∇ x m k (x k),x k)∥ ∆ c k ; therefore, as k → ∞ the value of λ k is bounded by the term 1/µ. Finally, having proved that Algorithm 5.4 is convergent to a first-order stationary point with respect to the vector x and the box Ω c , we prove that the limiting values {y k } are global optima with respect to the discrete set Ω z : Under Assumptions 1.1, 1.2, 1.3 and 5.1 the sequence of iterates generated by Algorithm 5.4 satisfies:

6 : 7 :

 67 if f (x k , y k)min x∈ Bc (x k ,∆ icbc k)∩Ω c m i (x) > Θk then Set Θk = f (x k , y k)min x∈ Bc (x k ,∆ icbc k

•

 (x i -x o,i)where z ⊤ = [x ⊤ , y ⊤]. All the numeric coefficients are randomly generated as follows: f o , f r,i are uniformly distributed in [-1000, 1000], c is randomly distributed with mean 0 and standard deviation 1, A is normally distributed with mean 0 and standard deviation 1. Moreover, we have x lb = y lb = -50x ub = y ub = -50 and the reference parameter z o is uniformly distributed in[-50, 50], and v i is uniformly distributed in between (-10 -2 , 10 -2). The dimension of the instances n c + n z goes from 5 to 14 variables, with 5 differentinteger ratios n z n c +n z = [0.2, 0.4, 0.6, 0.8]. Cutest instances.This set consists of twice differentiable functions from the CUTEr/st testing environment[START_REF] Gould | Cutest: A constrained and unconstrained testing environment with safe threads for mathematical optimization[END_REF], including the: explin, explin2, mccormck and hadamals instances. This set consists in 174 instances generated from 5 continuous functions from the Cuter/st environment. The dimension of these instances (n z + n c) ranges from 8 to 12 variables, with 5 different integer ratios (0.2, 0.4, 0.6, 0, 8) and 10 random starting points. We randomly select which of the variables are considered as integer.suited than NOMAD for the solution of LQMI instances. Indeed, both s1-accurate and s2-aggressive are faster in the reduction of the objective function, both are able to provide better solutions and solve a larger number of instances. A possible explanation of the better results of both variants is the fact that the model provides an exact estimation of the integer part of the original function. The variant s1-accurate presents performance better than s2-aggressive, this is probably due to the fact that at each iteration this variant computes a fully-linear approximation of the model and does not "waste samples" in running heuristics. Therefore, the use of accurate model information accelerate the objective improvement when the function studied presents the LQMI structure. It is worth noting that none of these variants are able to solve 100% of the instances tested, this is related to the fact that Algorithm 4.1 might stop at a stationary point that does not correspond to a global optimum.

FIGURE 6 . 1 :

 61 FIGURE 6.1: Performance and Data profiles on LQMI instances (Algorithm 4.1), σ = 0.01

FIGURE 6 . 2 :

 62 FIGURE 6.2: Performance and Data profiles on LQMI instances (Algorithm 4.1), σ = 0.001

Figures 6 .

 6 Figures 6.5 and 6.6 show the profiles of the evaluation of the Generic set of instances with the convergence tolerances σ ∈ {0.01, 0.001}. Both figures show that NOMAD is faster in attaining algorithmic convergence, while Algorithm 4.1

FIGURE 6 . 3 : 01 FIGURE 6 . 4 : 001 FIGURE 6 . 5 :FIGURE 6 . 6 :FIGURE 6 . 7 :

 630164001656667 FIGURE 6.3: Performance and Data profiles on Cutest instances, σ = 0.01

FIGURE 6 . 8 :

 68 FIGURE 6.8: Performance and Data profiles on Generic instances instances on heuristic versions of Algorithm 4.1, σ = 0.001

 4 displays the number of instances where the ratio between the best objective improvement yield by the proven convergent variants of Algorithm 4.1 and the best improvement attained by their respective heuristics is larger than 1σ. At large values of σ we appreciate that for at least 30 of 290 instances s1 and s2 fail to attain 90% of the improvement reached by the heuristic variants, implying early convergence to suboptimal points. In addition, as the value of σ decreases a smaller number of instances satisfy the improvement condition with respect to the heuristics. It indicates that Algorithm 4.1 decreases its objective improvement rate as it gets close to a StLM.

FIGURE 6 . 9 :

 69 FIGURE 6.9: Performance profiles for convergent variants vs heuristics variants of Algorithm 4.1, σ = 10 -5

n c +n z ∑ i=1 e

 i=1 v i (z i -z o,i) where z ⊤ = [y ⊤ , x ⊤].All the numeric coefficients are randomly generated as follows: f o are uniformly distributed in [-1000, 1000], c is randomly distributed with mean 0 and standard deviation 1. The matrix A has the following properties:

Figures 6 .

 6 Figures 6.10 and 6.11 show the profiles of the evaluation of the M ♮ -Quadratic set with the convergence tolerance σ ∈ {0.5, 0.001}. Both figures show that the s3opportunistic variant presents the best performance in terms of objective improvement and rate of objective decrease. The variants s4-extensive and s5-global solve approximately the same number of instances as s3; however, they use significantly more samples to achieve the desired objective improvement. This is explained by the constraint on the number of samples used on the partial discrete optimization. For example, the variant s5-global uses around O(n 2 z) function evaluations to certify global optimality; this process is computationally expensive and does not yield any objective improvement. Moreover, Figure 6.10 indicates that NOMAD presents the worst performance for this set of instances as it solves less than 5% of problems to the desired degree of optimality. The global integer optimization included in Algorithm 5.4 allows it converge to a strong SLM that NOMAD cannot identify using local information.

Figures 6 .

 6 Figures 6.12 and 6.13 show the profiles of the evaluation of the Generic set with the convergence tolerance σ ∈ {0.01, 0.0001}. In this experiment we did not include the s5-global variant as it displays slower convergence than s3 and s4. Both figures show that NOMAD solves a larger number of instances than the two variants of Algorithm 5.4. A possible explanation for the overall better performance of NOMAD

FIGURE 6 . 10 : 5 FIGURE 6 . 11 :

 6105611 FIGURE 6.10: Performance and Data profiles on M ♮ Quadratic instances, σ = 0.5

FIGURE 6 . 13 :

 613 FIGURE 6.13: Performance and Data profiles on Generic instances (Algorithm 5.4), σ = 0.001

Figures 6 .

 6 Figures 6.14 and 6.15 suggest that in the future the principles behind the LQMI surrogate approximation (Chapter 3) and DC reformulation (Chapter 5) can be mixed to devise a general purpose derivative-free solver with better performance than Algorithms 4.1 and 5.4:

FIGURE 6 . 14 :

 614 FIGURE 6.14: Performance and Data profiles on Generic instances, σ = 0.01

end if 18:

	If X k was fully-determined drop one of its previ-
	ous elements
	17:

. Theorem 2.2. (Conn et al., [67], Theorem 6.3.19) Consider

	a surrogate m k . The Approx-
	imate Cauchy decrease is bounded by

Table 2

 2

	.1 shows different optimality definitions considered by previous studies
	in mixed-integer derivative-free optimization. It is important to note that not all the
	studies implement an optimality criterion, and algorithmic convergence may more
	simply depend on distance and/or number of sampled points.

TABLE 2 .

 2

	1: Examples of optimality criterion

Locally- Quadratic Mixed-Integer (LQMI) function.

	bilinear in the vector ϕ(x) and the discrete variables y. The Assumptions given so
	far allows us to define a class of black box functions:
	Definition 3.1. A function f satisfying assumptions 1.1, 1.2, 3.1 and 3.2 is called a Assumption 3.2 implies that the derivative of an LQMI function with respect to
	a continuous variable can be computed as follows:
	Observation 3.2. The partial gradient f with respect to the continuous variables is given
	by:
	Assumption 3.2 completes Assump-
	tion 3.1, stating that the interaction between continuous and discrete variables is

mixed-integer fully-linear class of models

 = {m : [R n c × Z n z]→ R} is called a with respect to function f and the class of discrete sets Ω for a given ∆ max if:

	words, we seek a method that computes surrogate approximations centered in any
	point of the domain with the same pair of error constants. In the LQMI setting we
	say that model m belongs to a mixed-integer fully-linear class of models:
	Definition 3.2. Let f be a function which satisfies Assumptions 1.1 and 1.3. A set of
	functions M	
		observing the affinity of differentials and the quadratic integer represen-
	tation of LQMI functions, we introduce the definition of mixed-integer fully-linear
	models. Similar to fully linear/quadratic models, such approximations provide an
	error bound based on a continuous trust-region radius. In the definition of mixed-
	integer fully-linearity, we use an integer set Ω d ⊆ Ω z that belongs to some class
	of discrete sets. In the next section we prove that is always possible to construct
	an accurate model for an LQMI function with respect to the class of discrete sets
	{Ω LQMI d	(y) | ∀y ∈ Ω z }, where	
		Ω LQMI d	(y) = Bz (y, 1) ∩ Ω z .	(3.3)
	To assess convergence to stationary points we require a structure that guarantees
	that a local surrogate m with uniformly good accuracy can be constructed. In other

 Theorems 3.1 and 3.2 show that a mixed-integer approximation can always be computed for any point (x, y) ∈ Ω m , a continuous trust-region radius ∆ and a matrix M ∈ M (y). Let ∆ max be a given parameter. In order to define a proper class M of models that approximate the function f , it is required to prove that if a model m is fully linear in a neighborhood Bc (x, ∆) × Ω d with constants κ e f , κ eg , then, it is also fully linear on Bc (x, ∆) × Ω d for any ∆ ∈ [∆, ∆ max] with the same constants.

	This property will be used to prove the convergence of the Algorithm presented in
	Chapter 4.

Lemma 3.4. Suppose Assumption 1.3 holds. Assume that the model m(x + s c , y + s z) is mixed-integer fully-linear with respect to f (x, y), the trust-region radius ∆ and the discrete set Ω d ⊂ Ω z with constants κ eg , κ e f . Assume also, without loss of generality, that κ g ≤ κ eg .

 Function f (x, y), variable bounds x lb , x ub and y lb , y ub , initial point (x o , y o) ∈ Ω m . Initial trust-region radius ∆ icbc 0 , ∆ icbz 0 , ∆ c max and ∆ z max

step. Tolerance values ϵ c and ϵ a are used to activate the Criticality Step and to accept new iterates in a rescue procedure, respectively. Finally, we consider the parameters used for model construction and maintenance: UP determines if a inexpensive update of the model is done after a successful iteration, IC determines if the quadratic interpolation τ(y) is fully-determined or not, SH identifies if a search heuristic is activated before or after the solution of the surrogate approximation, and c f r represents the fraction of samples required to compute the approximation of terms l c,k and A M,k .

Algorithm 4.1 DFO MINLP algorithm

Input:

). See Equation 3.4 for a definition of the model m. The main part of the algorithm consists of a loop (Lines 6 -38) that is repeated until a stopping criterion is reached. The loop starts by checking if the combined stationarity parameter Φ icb k of the incumbent model m icb k is smaller than a given threshold ϵ c (Line 7), implying algorithmic convergence into a first-order stationary point. In this case, the Criticality Step (Lines 8 -11) is invoked. The Crit-icalityTest evaluates at the same time if the incumbent model is fully-linear (under the assumption that the function is LQMI) and if there exists certain relationship between the reduced gradient red(l icb c,k , x k) and the continuous trust-region radius. If m icb k does not accomplish both conditions, the CriticalityTest (Algorithm 4.2) is used to generate a new model for which Φ k ≥ Θk ≥ ϵ c , or, a model where both conditions hold (Line 8). However, if the model m icb k is fully-linear and the desired relationship is satisfied,the model m icb k is accepted (Line 13) and subsequently used to compute a new candidate solution. After the Criticality Step, a new candidate solution (x ′ , y ′) is computed together with the update parameter ρ k

 This does not affect algorithmic convergence with respect to the sets Ω Q d (y k) and Ω LQMI

1. Remark 1. Section 3.2 details that a fully-linear surrogate is obtained by considering a matrix M with columns in Bz (0, 1) (see Definition 3.3). However, Algorithm 4.1 considers a set of matrices dependent on ∆ z k , with the elements of M k in Bz (0, ∆ z k). d (y k), since in Section 4.2 we prove that Algorithm 4.1 generates an infinite number of iterations such that ∆ z k = 1, as long as the matrix M k is not singular (or ∥M -1 k ∥ > 0).

 1 k+1 ∥, a term related to the error constants of an LQMI function (see Theorem 3.1). Finally, a new incumbent model m icb k+1 is computed for the next iteration by updating the current one, or by computing a new surrogate using Algorithm 4.6 centered in the point (x k+1 , y k+1). Model computation is explained in the next subsection. Model m k , new trust-region center (x k+1 , y k+1), variable bounds (x lb , x ub) and (y lb , y ub), trust-region radii ∆ c , ∆ z set of samples Y k , update decision UP, and, modelling parameters c f r , IC 1: Set M k+1 = IntegerTransformation(y k , y lb , y ub , ∆ z) 2: if UP then

	Algorithm 4.4 ModelUpdate
	Input: 3: Use equation 3.7 to update linear terms in m k to generate m icb k+1
	4: else
	5:

 Model m k , set of discrete directions Q k , set of previously sampled points Y k , acceptance tolerance ϵ a Output: Point

) Problem 4.1-4.4 can by solved by enumeration or by formulating it as a disjunctive optimization problem.

Algorithm 4.5 RescueProcedure Input:

 4.1 to a first-order mixed-integer stationary point. Note that we use the global error constants κ e f , κ eg Let d 1 , d 2 ∈ R n c and x k ∈ Ω c . The following holds: 1 , x k) = d 1 and red(d 2 , x k) = d 2 , thus the condition holds. Now suppose that x k,i = x ub,i then

	described in Section 3.2.4. We first show that if the current iterate is not a first-order
	critical point, Algorithm 4.2 converges in a finite number of iterations:
	Lemma 4.4.

∥red(d 1 , x k)red(d 2 , x k)∥ ≤ ∥d 1d 2 ∥.

Proof. This statement is proven by looking at the element-wise squared difference of entries between red(d 1 , x k) and red(d 2 , x k). If x k is not at the boundary of Ω c , then red(d

 for some discrete neighborhood Ω d . The discrete neighborhood Ω d is equal to Ω LQMI d (y k) for an LQMI function, and it is the output of the QuadraticInterpolationSet procedure on Line 10 Algorithm 4.6 (Ω Q d (y k)) for functions that are not LQMI. Proof. For every point (x, y) ∈ (Bc (x k , ∆) × Ω d) ∩ Ω m the following inequality holds, as a direct consequence of Theorems 4.7 and 4.8:

 1/4]. Finally, we consider the parameter PO that determines if the function Ψ k (x) is computed to optimality, or we use a suboptimal solution such thaty ′ / ∈ argmax y∈Ω z λ k 2 ∥x k ∥f (x k , y).The initialization (Lines 1-2) correspond to the computation of the first surrogate approximation m icb k . Note that this model is constructed on the integer coordinate y 0 ; nonetheless, a preliminary integer local search can be performed to accelerate the rate of objective improvement without affecting algorithmic convergence. The main part of the algorithm consists of a loop (Lines 3-42) that is repeated until a stopping criterion is reached. The loop starts verifying if the norm of the reduced gradient ∥red(∇ x m icb k (x k), x k)∥ of the incumbent model is smaller than threshold ϵ c (Line 4), implying convergence to a first-order stationary point. In this case, the Criticallity Step (Lines 6-12) is invoked and the variable CRIT is set to 1. The CriticalityTest evaluates at the same time if the incumbent model is fully-linear on Bc (x k , ∆ icb k) ∩ Ω c and if there exists certain relationship between the reduced gradient red(∇ x m icb k (x k), x k) and the continuous trust-region radius. If m icb k does not accomplish both conditions, the CriticalityTest (Algorithm 4.2) is used to generate a new model for which ∥red(∇ x m k

 10 6 then the value f (x i , y i) is replaced by log(f (x i , y i)) if its smallest value f min > 1, or, log(f (x i , y i) + 1 + | f min |) otherwise.All the tests instances were evaluated in a

single machine Lyon/hercule at GRID5000 cluster, with a Intel Xeon E5-2620 CPU and 32 GB of RAM. Finally, we consider algorithm termination when ∆ c k < 10 -5 , ∆ z k = 1 and ∥red(l c k , x k)∥ < ϵ c , with k max = 700.

TABLE 6 .

 6

			1: Fixed parameters for Algorithm 4.1
	η o	η 1	γ 0	γ 1 ϵ c , ϵ a ω	β	µ
	0.15 0.75 0.75 1.3 1e -6 0.6 10 3 1500
	∆ c max = ⌈min i∈{1,...,n c } {x ub,i -x lb,i }/2⌉ ∆ c o = max{∆ c max /2, 0.1} ∆ z max = ⌈min i∈{1,...,n z } {y ub,i -y lb,i }/2⌉ ∆ z o = max{∆ z max , 1}	

TABLE 6 .

 6

	2: Variable parameters for Algorithm 4.1
	c f r IC UP SH
	s1-accurate 1	T	F	F
	s2-aggresive 0.5 F	T	T
	In			

Table 6

 6 .1 we present the values used for the fixed parameters. In Table6.2 we resume the values of the variable parameters (c f Θk > max{ϵ c , ϵ a }. It is done by visiting a finite number of discrete neighborhoods (Line 3) to compute pure continuous fully-linear models that bound Ωk . If the candidate Ωk does not satisfy the condition Ωk > max{ϵ c , ϵ a } we keep the same model m icb k and transformation matrix M k . Finally, we perform an additional experiment of Algorithm 4.1 without the criticalitytest to evaluate the effect of the stationarity measures on its computational performance. We evaluate the 290 instances of the Generic set with the s1-accurate-h and s2aggressive-h variants, that are the heuristic versions of the variants of the s1-accurate s2-aggressive variants, respectively. Point (x k , y k), variable bounds x lb , x ub and y lb , y ub , incumbent trust-region radii ∆ icbc k and ∆ icbz k , set of samples Y k , transformation matrix M k and criticality tolerance ε Output: Model mk , stationarity parameter Θk and transformation matrix M k

	Algorithm 6.1 ManifoldSearch
	Input:

r , IC, UP and SH) associated to the two variants of Algorithm 4.1. The variant s1-accurate uses at each iteration a fullylinear approximation (c f r = 1 and IC=TRUE) and does not use the search heuristic (SH=FALSE), this allows to obtain a precise (but expensive to compute) model. On the other hand, the variant s2-aggressive aims at obtaining a model with a limited number of new sampled point, this is achieved by aggressively reusing previously generated point (UP=TRUE) and by activating the search heuristic (SH=TRUE). Our algorithm implementation uses the following ManifoldSearch procedure (Algorithm 6.1) in combination with the CriticalityTest (Algorithm 4.2) to avoid early convergence to stationary points. Algorithm 6.1 attempts to compute a discrete set of directions M k on way that Φ k =

 MixedIntegerModelComputation(x k , x lb , x ub , y k , y lb , y ub , ∆ icbc k , ∆ icbz k , Qk , Y k , 1, 1)

	15:
	16: else
	17:

Set (mk , Xk

o , Xk j , Zk) =

TABLE 6 .

 6 4: Number of instances (out of 290 instances) such that the convergent variants presents objective improvement larger than 1σ times the improvement yield by the heuristic versions of Algorithm 4.1.

TABLE 6 .

 6 5: Fixed parameters for Algorithm 5.4 ⌈min i∈{1,...,n c } {x ub,ix lb,i }/2⌉ ∆ c o = max{∆ c max /2, 0.1} TABLE 6.6: Variable parameters for Algorithm 5.4

	η o	η 1	γ 0	γ 1 ϵ c	ω	β	µ
	0.15 0.75 0.75 1.3 1e -6 0.6 500 1000
	∆ c max = ISG PO	
			s3 -opportunistic 4	1	
			s4 -extensive	20	1	
			s5 -global		∞	0	

Acknowledgements

Acknowledgements vii

List of Abbreviations

CLM Algorithm 5.4 Hybrid sequential DFO-DCA Algorithm

Input: Black-box function f (x, y), variable bounds (x lb , y lb) and (x ub , y ub), initial point (x 0 , y 0) ∈ Ω m . Initial and maximum trust-region radii ∆ icb 0 and ∆ max , γ 0 , γ 1 such that 0 < γ 0 < 1 < γ 1 ; η 0 , η 1 such that 0 < η 0 < η 1 < 1; µ, β such that µ > β > 0; ω ∈ (0, 1) ; ξ ∈ (0, 0.25];ϵ c > 0 and PO = {0, 1}. 1: Set k = 0 2: Set (m icb 0 , Y 0) = LinearInterpolationModel(x 0 , x lb , x ub , y 0 , ∅, ∆ icb 0), ξ) 3: repeat 4: if ∥red(∇ x m icb k (x k), x k)∥ < ϵ c then 5:

Set CRIT = 1 6:

if m icb k is not fully-linear or ∥red(∇ x m k (x k), x k)∥ < µ -1 ∆ icb k then 7:

else 10:

GoTo line 18

end if

16:

Set

Set y ′ = argmin y∈Ω z f (x ′ , y) Compute y ′ by partially optimizing f (x ′ , y) in Ω z

23:

end if

24:

Set • Generic instances.

This set consists of non-smooth and discontinuous problems proposed in [START_REF] Müller | So-i: A surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications[END_REF],

[109], accounting 29 test functions, each one of them tested with 10 random starting points. Table 6.3 reports the characteristics of all the Generic instances.

For the instances which are not marked with * the bounds on the discrete variables are [0, 100], thus, only the continuous bounds are reported. In Chapter 5 we explored the methods to optimize a function that exhibits combinatorial properties such as the M and M ♮ discrete convexity. We developed a hybrid algorithm that combines the principles of the difference of convex algorithm (DCA)

Discussion

and the trust-region method. This algorithm is based on the reformulation of the objective function via partial discrete optimization and convex regularization. Furthermore, we proved that this algorithm is globally convergent to a SLM and can be used to solve general mixed-integer problems.

Finally, in Chapter 6 we studied the computational performance of the two algorithms for the solution of structured functions. The numerical experiments in Section 6.1 show that the algorithm introduced in Chapter 4 is well suited for the solution of LQMI instances. The tests performed in Section 6.2 show that the hybrid algorithm presented in Chapter 5 is efficient in the solution of M ♮ -convex instances.

Moreover, both algorithms are competitive in the solution of general mixed-integer functions. We remark that both algorithms are two of the few model-based methodologies present in the literature that are able to converge to a SLM and a StLM.

We hope the results presented in this project motivate further research on mixedinteger derivative-free methods. Two main topics can be further explored. The first topic is the development of general mixed-integer fully-linear surrogates. In Chapter 3 we introduce a framework that uses quadratic polynomials to approximate a mixed-integer function; however, it is desirable to extend these results to other types of surrogate models like the radial basis functions (RBF). We believe this adaption can exploit the advantages of surrogate global models while preserving the convergence to local minimizers.

The second topic is the type of constraints that our algorithms can handle. Both algorithms were developed to tackle bound constraints; however, many real world problems include complicated non-linear constraints. We consider that our methodology can be adapted to deal with this type of constraints using the penalty, augmented Lagrangian or progressive barrier methods.