
HAL Id: tel-03938232
https://theses.hal.science/tel-03938232

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for solving derivative-free optimization over
mixed-integer domains

Juan José Torres Figueroa

To cite this version:
Juan José Torres Figueroa. Algorithms for solving derivative-free optimization over mixed-integer
domains. Data Structures and Algorithms [cs.DS]. Université Paris-Nord - Paris XIII, 2022. English.
�NNT : 2022PA131019�. �tel-03938232�

https://theses.hal.science/tel-03938232
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS XIII - SORBONNE PARIS NORD
École Doctorale Sciences, Technologies, Santé Galilée

ALGORITHMES POUR L’OPTIMISATION
SANS DÉRIVÉES AVEC VARIABLES MIXTES

ALGORITHMS FOR SOLVING DERIVATIVE-FREE

OPTIMIZATION OVER MIXED-INTEGER DOMAINS

THÈSE DE DOCTORAT
présentée par

Juan José TORRES FIGUEROA
Laboratoire d’Informatique de Paris Nord, CNRS UMR 7030

pour l’obtention du grade de
DOCTEUR EN INFORMATIQUE

soutenue le 11/07/2022 devant le jury d’examen composé de :

BASSINO Frédérique, Université Sorbonne Paris Nord Examinatrice
GRATTON Serge, Toulouse INP . Rapporteur
RINALDI Francesco, Università di Padova . Rapporteur
SINOQUET Delphine, IFP Energies nouvelles . Examinatrice
WILD Stefan, Argonne National Laboratory . Examinateur
NANNICINI Giacomo, IBM Quantum . Co-encadrent de thèse
WOLFLER CALVO Roberto, Université Sorbonne Paris Nord . Directeur de thèse
TRAVERSI Emiliano, Université Sorbonne Paris Nord Co-encadrant de thèse

iii

Résumé

L’optimisation sans dérivées est un outil populaire pour résoudre des problèmes
complexes dans lesquels la description analytique de la fonction objectif n’est pas
disponible et le calcul des dérivées n’est pas pratique, sinon impossible. Beaucoup
de ces problèmes considèrent des variables discrètes non relaxables qui ajoutent une
complexité supplémentaire à l’optimisation et à l’analyse de convergence. Cette
thèse concerne le développement de deux algorithmes sans dérivées avec variables
mixtes qui adressent certains de ces complications.

Le premier algorithme est une adaptation de la méthode à région de confiance
qui utilise une approximation quadratique adaptée de la fonction inconnue. Ces
modèles sont construites sous l’hypothèse d’une structure quadratique locale. De
plus, ces modèles se sont prouvés complètement linéaires dans voisinages réels et
entiers restreints. Cet algorithme se prouve globalement convergent vers plusieurs
définitions d’optimalité locale, même dans l’optimisation de fonctions qui n’affichent
pas la structure quadratique locale.

Le deuxième algorithme est un hybride de la programmation DC et de la méth-
ode de région confiance qui tire parti des structures potentielles sur la fonction objec-
tif. Il est basé sur l’hypothèse que l’optimisation partielle par rapport aux variables
discrètes peut être effectuée en utilisant un nombre polynomial d’évaluations de la
fonction objectives. Cet algorithme est globalement convergent vers un point sta-
tionnaire par rapport aux variables continues et à l’optimum global dans le domaine
entier.

De plus, cette thèse présente une définition générale d’un modèle entièrement
linéaire et explore les mécanismes pour évaluer et maintenir des modèles avec des
erreurs bornées. La contribution finale de ce travail est l’introduction de nouvelles
mesures de stationnarité entière qui empêchent la terminaison algorithmique pré-
coce et facilitent l’analyse de convergence.

Mots clés: Optimisation sans dérivées, Programmation non linéaire mixte en
nombres entiers, Optimisation combinatoire.

v

Abstract

Derivative free-optimization is a popular tool for addressing complex problems in
which the analytical description of the objective function is not available and the
computation of derivative information is impractical, if not impossible. Many of
these problems consider non-relaxable discrete variables that add further complex-
ity to the optimization and the convergence analysis. This thesis concerns the devel-
opment of two mixed-integer derivative-free algorithms that address some of these
complications.

The first algorithm is an adaptation of the trust-region method that uses a tai-
lored quadratic-surrogate approximation of the unknown function. Such model ap-
proximations are constructed under the assumption of a local mixed-integer quadratic
structure. Moreover, these surrogates are proved to be fully-linear in restricted mixed-
integer neighborhoods. This algorithm is proved to be globally convergent to sev-
eral definitions of local optimality, even in the optimization of functions that do not
display the local quadratic structure.

The second algorithm is a hybrid of the difference of convex algorithm (DCA)
and the trust-region method that takes advantage of potential structures on the ob-
jective function. It is based on the assumption that the partial optimization with
respect to the discrete variables can be performed using a polynomial number of ob-
jective evaluations. This algorithm is globally convergent to a point that is stationary
with respect to the continuous variables and the global optimum in the discrete do-
main.

In addition, this thesis presents a general definition of a mixed-integer fully-linear
model and explores the mechanisms to evaluate and maintain error bounded ap-
proximations. The final contribution of this work is the introduction of new mixed-
integer stationarity measures that prevent the early algorithmic termination and fa-
cilitate the convergence analysis.

Keywords: Derivative free-optimization, Mixed-integer non-linear programming,
Combinatorial optimization.

vii

Acknowledgements

ix

Contents

Résumé iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Motivations . 3

1.2 Problem Definition and Nomenclature 5

1.3 Dissertation Outline . 7

2 Literature Review 9

2.1 Continuous Derivative-Free Optimization 9

2.1.1 Direct Search Methods . 9

2.1.2 Model-Based Methods . 12

Types of surrogate approximation 13

Trust-region methods . 15

2.2 Mixed-Integer Derivative-Free Optimization 19

2.3 Local Optimality for Mixed-Integer Functions 21

3 Locally Quadratic Mixed-Integer Functions and Approximations 25

3.1 LQMI Function Definition . 26

3.2 Mixed-Integer Fully-Linear Models . 28

3.2.1 Model Computation and Fully-Linearity in the LQMI Setting . 30

3.2.2 Practical Model Considerations 34

3.2.3 Mixed-Integer Fully-Linearity in the non-LQMI Setting 35

3.2.4 Conditions for Mixed-Integer Derivative-Free Methods 38

3.3 Conclusions and Future Work . 40

x

4 LQMI-Based Trust-Region Algorithm 43

4.1 Overview of the Proposed Algorithm 44

4.1.1 CriticalityTest (Algorithm 4.2) . 47

4.1.2 CandidateComputation (Algorithm 4.3) 49

4.1.3 ModelUpdate(Algorithm 4.4) . 49

4.1.4 RescueProcedure (Algorithm 4.5) 50

4.1.5 MixedIntegerModelComputation (Algorithm 4.6) 51

4.1.6 Geometry Improvement - LinearInterpolationSet 51

4.2 Convergence of Algorithm 4.1 to a First-Order Critical Point 53

4.2.1 Stationarity Conditions on Continuous Variables 53

4.2.2 Conditions for Mixed-Integer Stationarity 58

4.3 Conclusions and Future Work . 74

5 Hybrid DCA-DFO Optimization 77

5.1 Discretely Convex Functions . 78

5.2 Solution by the Difference of Convex Algorithm (DCA) 83

5.3 Hybrid DCA-DFO Algorithm . 84

5.3.1 Algorithm Description . 85

5.3.2 Auxiliary Procedures . 89

5.4 Convergence of Algorithm 5.4 . 92

5.5 Conclusions and Future Work . 102

6 Methodology Benchmarking 103

6.1 Computational Results for Algorithm 4.1 104

6.1.1 Experimental Setting . 104

6.1.2 Test Instances . 107

6.1.3 Discussion . 108

6.2 Computational Results for Algorithm 5.4 115

6.2.1 Experimental Setting . 115

6.2.2 Test Instances . 116

6.2.3 Discussion . 117

6.3 Comparison between Algorithms 4.1 and 5.4 119

xi

7 Conclusions 123

xiii

List of Figures

2.1 Examples of local optimality . 23

5.1 Subgradients and ϵ-subgradients . 79

5.2 Exchange property in M convex functions 80

6.1 Performance and Data profiles on LQMI instances (Algorithm 4.1),

σ = 0.01 . 109

6.2 Performance and Data profiles on LQMI instances (Algorithm 4.1),

σ = 0.001 . 110

6.3 Performance and Data profiles on Cutest instances, σ = 0.01 111

6.4 Performance and Data profiles on Cutest instances, σ = 0.001 111

6.5 Performance and Data profiles on Generic instances, σ = 0.01 112

6.6 Performance and Data profiles on Generic instances, σ = 0.001 112

6.7 Performance and Data profiles on Generic instances on heuristic ver-

sions of Algorithm 4.1, σ = 0.01 . 113

6.8 Performance and Data profiles on Generic instances instances on heuris-

tic versions of Algorithm 4.1, σ = 0.001 113

6.9 Performance profiles for convergent variants vs heuristics variants of

Algorithm 4.1, σ = 10−5 . 114

6.10 Performance and Data profiles on M♮ Quadratic instances, σ = 0.5 . 118

6.11 Performance and Data profiles on M♮ Quadratic instances, σ = 0.001 118

6.12 Performance and Data profiles on Generic instances (Algorithm 5.4),

σ = 0.01 . 119

6.13 Performance and Data profiles on Generic instances (Algorithm 5.4),

σ = 0.001 . 120

6.14 Performance and Data profiles on Generic instances, σ = 0.01 121

xiv

6.15 Performance and Data profiles on Generic instances, σ = 0.001 121

xv

List of Tables

2.1 Examples of optimality criterion . 24

6.1 Fixed parameters for Algorithm 4.1 . 105

6.2 Variable parameters for Algorithm 4.1 105

6.3 Set of Generic MINLP test functions . 108

6.4 Number of instances (out of 290 instances) such that the convergent

variants presents objective improvement larger than 1 − σ times the

improvement yield by the heuristic versions of Algorithm 4.1 115

6.5 Fixed parameters for Algorithm 5.4 . 116

6.6 Variable parameters for Algorithm 5.4 116

xvii

List of Abbreviations

CLM Combined Local Minimum

DC Difference of Convex

DCA Difference of Convex Algorithm

DFO Derivative Free Optimization

DSM Direct Seatch Methods

DDSM Directional Direct Search Methods

GPS Generalized Pattern Search

LQMI Locally-Quadratic Mixed-Integer

MADS Mesh Adaptive Direct Search

RBF Radial Basis Functions

SLM Separate Local Minimum

StLM Stronger Local Minimum

xix

List of Symbols

f (x) Objective function

f̂y(x) Continuous manifold f̂y(x) = f (x, y)

m(x), mk(x), micb
k (x) Surrogate model

lc, lc
k Linear continuous terms (Equation 3.4)

lz, lz
k Linear integer terms (Equation 3.4)

nc Number of continuous variables

nz Number of integer variables

pk Projected path (Definition 4.6)

red Reduction operator (Definition 1.7)

supp+, supp− Positive and negative support (Definition 1.2)

tC
k Generalized Cauchy step (Definition 4.7)

x Vector of continuous variables

xC
k Generalized Cauchy point (Definition 4.7)

xlb Continuous lower bound

xub Continuous upper bound

y Vector of integer variables

ylb Integer lower bound

yub Integer upper bound

AM Continuous - Integer bilinear coefficients (Equation 3.4)

Az Integer quadratic matrix (Equation 3.4)

Iy Integer mapping (Definition 5.3)

M, Mk Matrix of integer generating vectors (Definition 3.4)

PΩc(x) Projection of the vector x onto the set Ωc

Q(y, M), Qk Set of integer generating vectors (Definition 3.5)

Yk Set of previously sampled points (Algorithm 4.1 and Algorithm 5.4)

xx

∆c, ∆c
k, ∆icbc

k Continuous trust-region radius

∆z, ∆z
k, ∆icbz

k Integer trust-region radius

ϵa Acceptance tolerance (Algorithm 4.1)

ϵc Criticality tolerance (Algorithm 4.1 and Algorithm 5.4)

κcri (Corollary 4.2)

κe f , κ̄e f , κ̃e f Error constant on function approximation

κeg, κ̄eg, κ̃eg Error constant on gradient approximation

κeh Error constant on hessian approximation

κ f Global Lipschitz constant on f̂y(x), ∀y ∈ Ωz

κ f rd (Corollary 4.1)

κg Global Lipschitz constant on ∇x f̂y(x), ∀y ∈ Ωz

λ, λk Regularization parameter

υ̂(x) Surrogate approximation of ψ (Lemma 3.1)

τ(y), τ̄(y), τ̃(y) Integer quadratic function

ϕ(x) Local bilinear representation functions (Assumption 3.2)

ψ(x) Linear transformation of ϕ (Definition 3.4)

χk, χ̄k First-order stationarity measure (Definition 4.3)

Γ(x) Partial integer minimization (Definition 5.4)

Θk Mixed-integer stationary parameter (Definition 4.1)

Θ̄k Adjusted mixed-integer staritonary parameter (Definition 4.1)

Φk Combined stationary parameter (Definition 4.2)

Ψk(x) Convex regularization (Definition 5.7)

Ωc Continuous domain

Ωd Discrete neighborhood

ΩG
d (y, M) Reduced discrete neighborhood (Chapter 3.2.3)

ΩQ
d (y) Discrete quadratic interpolation set (Chapter 4)

ΩLQMI
d (y) LQMI discrete neighborhood (Equation 3.3)

Ωm Mixed-integer domain

Ωz Integer domain

∥·∥1 Manhattan norm

∥·∥2 Euclidean norm

xxi

∥·∥∞ Maximum norm

1

Chapter 1

Introduction

In many real-world optimization problems the objective function and constraints are

given by the complex computer simulations or the output of a black-box. In a black-

box problem the analytical description of the objective function is not available; we

only have access to a zeroth-order information of the function, and it is generally

assumed that the oracle that provides the value of the function is computationally

expensive to evaluate. Black-box problems arise in several settings, such as medical

problems [1], [2], engineering design [3]–[5] and financial applications [6], among

others.

Different methodologies have been developed to address the complexity of black-

box problems, aiming to find near-optimal solutions while performing a reduced

number of objective function evaluations to keep the optimization time acceptable.

Such methodologies often include the use (and combination) of heuristics, direct-

search algorithms, model based (or surrogate) approximation and randomized search

[7]. Derivative-free optimization is a natural technique to solve black-box optimiza-

tion problems, as it is intrinsically designed to avoid the computation of derivatives.

Note that while a numerical approximation of the derivatives could in principle

be computed (assuming they exist) even for a black-box problem, this is often too

resource-intensive, e.g., 2n function evaluations to approximate the gradient of an

n-variable function by finite central differences.

Black-box problems often include non-relaxable discrete variables. The presence

of discrete (binary, integer or categorical) variables adds further challenges to the

ones faced in the optimization of continuous functions [8]. There exist two crucial

issues faced when studying mixed-integer derivative-free problems:

2 Chapter 1. Introduction

1. The definition of a proper mixed-integer minimizer.

2. The definition of adequate convergence criteria.

Newby and Ali [9] identify three possible local mixed-integer optimimum defini-

tions: separate local minimum, stronger separate local minimum and combined local min-

imum. These three concepts deal with the degree of exploration of different integer

manifolds around a tentative solution. In surrogate-based methods algorithm ter-

mination is commonly addressed via objective improvement or distance criteria, in

those cases the convergence to a local minimizer cannot be guaranteed.

In this thesis we develop two convergent algorithms that tackle these two issues:

1. We propose a trust-region method that uses a tailored mixed-integer quadratic

approximation (see Chapter 4), enabling the efficient reuse of previously sam-

pled points. We establish global convergence of the algorithm to separate lo-

cal minimum and stronger separate local minimum. The approximation is based

on the assumption of dealing with what we call a “Locally-Quadratic Mixed-

Integer” (LQMI) function, i.e., a structured objective function exhibiting prop-

erties that allow us to extend the notion of continuous fully-linear models to a

mixed-integer context. This facilitates the convergence analysis, even when

such an assumption does not hold. In addition, LQMI approximations can be

obtained in a modular manner, providing flexibility in computing and main-

taining the surrogate model within the trust region by using efficient methods

taken from the continuous derivative-free optimization literature.

2. We propose a hybrid difference of convex and derivative-free algorithm (see

Chapter 5) that takes advantage of potential combinatorial structures of the ob-

jective function. We establish global convergence of the algorithm to a strong

version of separate local minimum. The approximation is based on the assump-

tion that the partial optimization with respect to the discrete variables can be

performed within polynomial number of function evaluations. It allows one

to reformulate the problem as the difference of two functions and solve it with

a modified version of the difference of convex algorithm that uses inexact sub-

gradient information. This algorithm is related to first-order surrogate meth-

ods and consists of two phases: continuous local search and integer global

1.1. Motivations 3

search. Moreover, the algorithm converges to a (weaker) local minimizer in

functions that do not present such combinatorial structure.

Those two algorithms are the main contribution of this work. The following are

additional results of this research:

• We provide a general definition of mixed-integer fully-linear models and we

elaborate on the mechanisms to guarantee and maintain bounded error ap-

proximations (see Section 3.2.1).

• We revisit the concepts of mixed-integer optimality and describe a suitable ϵ-

strong separate minimum that can be attained with model-based methods. In ad-

dition, we describe a mixed-integer stationarity parameter that helps to avoid

premature convergence to stationary points and facilitates the convergence

analysis (see Section 4.2).

In the next section we detail the main motivations behind this work.

1.1 Motivations

In this work we aim to develop convergent algorithms for derivative-free mixed-

integer optimization while addressing the following two questions:

1. How can we extend the convergence properties of the model-based methods to the

mixed-integer domain?

2. How can we take advantage of the structure of the mixed-integer black-box function?

The convergence of model-based derivative-free algorithms to stationary points de-

pends on fully-linear models and criticality measures. It is not trivial to generalize

these two concepts to the mixed-integer domain because of the discontinuity in-

troduced by the discrete variables, this means that often the model-based methods

proposed in the literature for the mixed case are heuristics [9]. This additional com-

plexity of dealing with mixed-integer variables has been partially addressed by: (1)

using quadratic surrogate approximations that are fully-linear in one fixed discrete

point (Tran et al. [10]); or (2) relying on continuous search solvers to identify station-

ary points and explore surrounding continuous neighborhoods with different values

4 Chapter 1. Introduction

on the integer variables when the algorithm stops (Newby and Ali [9]). We remark

that both strategies have strengths and weaknesses. With reduced fully-linearity one

can guarantee convergence to a point that is stationary with respect to the continu-

ous variables; however, the algorithm might get prematurely stuck at an undesirable

solution. On the other hand, by using a local continuous solver one may be able to

escape stationary points and improve the quality of the solution; nonetheless, the

local search requires a large number of samples to certify stationarity/optimality

thus reducing the rate of objective improvement, as observed by Newby and Ali. In

this work we are interested in a methodology that exploits the strengths of both ap-

proaches: we develop algorithms that use a generalized definition of fully-linearity

to guarantee convergence and that at the same time provides inside of surround-

ing continuous neighborhoods to prevent early stopping at bad quality stationary

points.

Derivative-free optimization methods have been often used to solve black-box

problems where the objective function presents known structures, including non-

linear least squares [11]–[13], sparse objective derivatives [14]–[16], composite (non)

convex functions [17], bilevel and general min-max problems [18]. To the extend

of our knowledge, only two studies have addressed the case where a structure on

mixed-integer black-box is present: Tran et Al. [10] suppose that the function presents

cyclic-symmetry properties, and Larson et al. [19] assume the function is globally

convex. In this research we introduce two study assumptions of structure in mixed-

integer functions: (1) locally bilinear interaction between discrete and continuous

variables, and (2) combinatorial discrete properties when the vector of continuous

variables is fixed. The first assumption allows us to easily derive error bounded ap-

proximations on both the function and its continuous gradient. The second assump-

tion allows us to reformulate the problem and work with the two set of variables

independently: using global zeroth order global methods to optimize with respect

to the discrete variables and deal with the continuous variables via inexact subgra-

dient methods. Note that both assumptions enable us to take advantage of the sep-

arable structure of the function to approximate different elements of the objective

using continuous surrogate models. We show that the algorithms constructed un-

der these structure assumptions can be extended to general mixed-integer functions

1.2. Problem Definition and Nomenclature 5

preserving convergence properties.

1.2 Problem Definition and Nomenclature

We are interested in solving the following mixed-integer optimization problem:

min
x,y

f (x, y) (1.1)

x ∈ Ωc, y ∈ Ωz. (1.2)

where f : [Rnc × Znz] −→ R, Ωc = {x ∈ Rnc | xlb ≤ x ≤ xub} and Ωz = {y ∈ Znz |

ylb ≤ y ≤ yub}. We denote the mixed-integer box constraints as Ωm = {(x, y) | x ∈

Ωc, y ∈ Ωz}. When nz = 0 the problem becomes purely continuous and we use the

simplified notation f (x), instead of f (x, y). The following additional assumptions

are imposed on the objective function:

Definition 1.1. Let the function f̂y : Rnc → R be the continuous manifold associated with

y, defined as f̂y(w) := f (w, y).

Assumption 1.1. The function f (x, y) is bounded from below, i.e., there exists a constant

κlb ∈ R such that f (x, y) > κlb, ∀(x, y) ∈ Ωm.

Assumption 1.2. The continuous manifold f̂y(w) is uniformly Lipschitz continuous with

corresponding Lipschitz constant bounded by κ f , ∀y ∈ Ωz.

Assumption 1.3. The continuous manifold f̂y(w) is uniformly continuous differentiable

with Lipschitz continuous gradient and corresponding Lipschitz constant bounded by κg,

∀y ∈ Ωz.

Definition 1.2. The positive support (supp+) and the negative support (supp−) of the

vector x ∈ Rn are defined as:

supp+(x) = {i ∈ {1, . . . n}, | xi > 0}

supp−(x) = {i ∈ {1, . . . n}, | xi < 0}

6 Chapter 1. Introduction

We denote by ∥·∥1, ∥·∥ and ∥·∥∞ the Manhattan, Euclidean and maximum norm,

respectively. To devise a trust region method, we define the neighborhoods used in

the rest of the document.

Definition 1.3. The continuous neighborhood centered at x̂ of radius ∆c is:

B̂c(x̂, ∆c) := {x ∈ Rnc | ∥x − x̂∥ ≤ ∆c}.

Definition 1.4. The integer neighborhood centered at ŷ of radius ∆z is:

B̂z(ŷ, ∆z) := {y ∈ Znz | ∥y − ŷ∥∞ ≤ ∆z}.

Definition 1.5. The combined mixed-integer neighborhood centered at (x̂, ŷ) with radii

∆c, ∆z is:

B̂v(x̂, ŷ, ∆c, ∆z) :=
{
(x, y) | x ∈ B̂c(x̂, ∆c), y ∈ B̂z(ŷ, ∆z)

}
.

Note that we use different norms for the different neighborhoods; in particular,

for integer variables it is more natural to use the ℓ1-norm or ℓ∞-norm distance. In

this work we use the ℓ∞-norm; we did not investigate how much effort is required

to extend our results to the ℓ1-norm.

Definition 1.6. Let the mixed-integer neighborhood N1(x, y) be defined as :

N1(x̂, ŷ) := {(x, y) ∈ Ωm| x = x̂, ∥y − ŷ∥∞ ≤ 1} .

In the following sections we will be referring to a neighborhood ND(x, y) ⊆

N1(x, y) for which the definitions of local optimality are constructed. It is named

user-defined neighborhood as its size is defined by the final decision-maker. We intro-

duce the concept of reduced gradient that allows us to evaluate first-order stationary

conditions:

Definition 1.7. The reduction (red : [Rnc × Rnc] → Rnc) of a vector g at the point x is

defined as follows:

red(g, x)i =


max(gi, 0) if xi = xub,i

min(gi, 0) if xi = xlb,i

gi otherwise.

1.3. Dissertation Outline 7

Finally, we denote by the ei the vector in which its ith component is equal to 1 and

the rest are valued 0. Let ∇x and ∇2
xx be the gradient and the Hessian matrix with

respect to the continuous variables, with [∇x f (x, y)]i =
∂ f (x,y)

∂xi
and [∇2

x,x f (x, y)]i,j =
∂2 f (x,y)
∂xi∂xj

for every i, j ∈ {1, . . . , nc}. The convex hull of a set S is denoted by Co(S).

1.3 Dissertation Outline

This document is organized as follows: In Chapter 2 we present the background of

methodologies for the optimization of black-box functions, we define the versions of

local optimality for mixed-integer functions and discuss the complications of prov-

ing optimality (Section 2.3). In Chapter 3 we define the class of LQMI functions

and of mixed-integer fully-linear models. Section 3.2 introduces a quadratic mixed-

integer interpolation scheme that yields a model with bounded error when approx-

imating an unknown LQMI function, and shows that this model is accurate in a

restricted neighborhood when the LQMI conditions do not hold. Chapter 4 presents

a trust-region based algorithm, while Section 4.2 shows that it converges to a sepa-

rate local minimum and stronger local minimum of a mixed-integer problem. Chapter 5

introduces the hybrid difference of convex and derivative free algorithm. Section

5.1 describes a class of functions that displays combinatorial structures, while Sec-

tion 5.4 shows the convergence of the hybrid algorithm to a separate local minimum

of a mixed-integer function. Chapter 6 presents the computational evaluation of the

two proposed algorithms, and compares them with a state-of the art derivative-free

solver. Finally, in Chapter 7 we draw our conclusions and detail future resarch per-

spectives.

9

Chapter 2

Literature Review

Different methodologies have been developed to solve optimization problems when

only the zeroth order information is available. In this chapter, we summarize some

of the most used derivative-free optimization techniques and highlight what ele-

ments we use in the development of our algorithmic framework. We separate this

review of the literature in three sections: (1) methodologies for continuous local

derivative-free optimization, (2) methodologies for mixed-integer derivative free op-

timization and (3) local optimality for mixed integer functions.

2.1 Continuous Derivative-Free Optimization

In this section, we address the methodologies for solving problem 1.1 when nz = 0

and objective function f is assumed to be differentiable. These methodologies are

typically classified in three different classes, depending on the (not) approximation

of the function and its first and second-order information [7]: (1) Direct search meth-

ods, (2) model-based methods and (3) others. The latter group contains the methods

that cannot be categorized in any of the first two and includes techniques such as the

line-search based methods [20], [21], implicit filtering [22], [23] and adaptive regu-

larized methods [24].

2.1.1 Direct Search Methods

The first class is called Direct Search Methods (DSM) which are described as the it-

erative evaluation of trial candidates given by a particular strategy [25]. DSM are

10 Chapter 2. Literature Review

characterized for not approximating the function’s gradient nor computing a surro-

gate model. This simplicity and their reliability make the DSM some of the most

popular alternatives for solving black-box problems.

One of the most renown DSM variants consists in the Nelder-Mead [26] and sim-

plex methods [27]–[29]; which are distinct from Dantzig’s simplex linear program-

ming method. Initially described in 1962 [30], these methodologies consist in the

movement and manipulation of a simplex, which is defined as the convex hull of

nc + 1 linearly independent vectors in Rnc . Iteratively, the objective function is eval-

uated at all the vertices of the simplex to determine the vertex that yields the largest

function value. This point is replaced with a new vertex that is computed by trans-

forming the worst corner through reflection, extension, inner contraction and shrink

operations. One of the weakness of the original Nelder-Mead method is the lack of

theoretical guarantees of convergence into stationary solutions, even converging to

points for which limk→∞∥∇x f (xk)∥ ̸= 0 [31]. This problem has been continuously

addressed and there exists simplex variants with proven convergence to stationary

points [32], [33].

A second group of DSM consists in the Directional Direct Search Methods (DDSM).

These methods consist on the computation of a new candidate solution xk+1 by per-

forming local exploration around the current iterate xk on the set {xk + ∆kdi | ∀i ∈

Dk}, where ∆k is a positive step size and d ∈ Rnc is a direction in the finite set of

polling directions Dk. This procedure is usually referred as poll step. DDSM might

also incorporate a preliminary exploration on a finite set of trial directions Hk that

can be randomly generated or selected via heuristics. This second procedure is called

the search step, and it is used to prevent early convergence to a bad quality local min-

imum. The basic DDSM is sketched in Algorithms 2.1 and 2.2.

We remark that when the OPOR parameter is set to 0, the poll step is denomi-

nated complete poll and its output is equivalent to mindi∈Dk f (xk +∆kdi). On the other

hand, if OPOR = 1 this step is named opportunistic poll [34]. DDSM are classified ac-

cording to the way in which the poll directions are selected. If the set of directions

is fixed at Dk = {±ei | i ∈ {1, . . . , nc}} the method is named coordinate search. Fur-

thermore, when the set of directions Dk is fixed to a positive spanning set D ⊂ Rnc

the method is considered as one of the Generalized Pattern Search (GPS) methods [25],

2.1. Continuous Derivative-Free Optimization 11

Algorithm 2.1 TestDescend

Input: Point xk, step length ∆k, set of directions G and opportunistic search param-
eter OPOR = {0, 1}

Output: New candidate solution x̄
1: Set x̄ = xk
2: for di ∈ G do
3: if f (x̄)− f (xk + ∆kdi) is acceptable then
4: Set x̄ = xk + ∆kdi
5: if OPOR = 1 then
6: break
7: end if
8: end if
9: end for

Algorithm 2.2 Generic DDSM Algorithm

Input: Initial candidate x0 and step length ∆0, geometric parameters 0 < γ < 1 ≤
γinc and opportunistic search parameter OPOR = {0, 1}

1: for k = 0, 1, 2, . . . do
2: Select a finite search of directions Hk (Search step)
3: Set x̄ = TestDescend(xk, ∆k,Hk, OPOR)
4: if xk = x̄ then
5: Select the set of poll directions Dk ⊂ Rnc (Poll step)
6: Set x̄ = TestDescend(xk, ∆k, {xk + ∆kdi | ∀i ∈ Dk}, OPOR)
7: end if
8: if xk = x̄ then
9: Set ∆k+1 = γ∆k

10: else
11: Set ∆k+1 = γinc∆k
12: end if
13: Set xk+1 = x̄
14: end for

12 Chapter 2. Literature Review

[35]–[37]. Finally, we have the Mesh Adaptive Direct Search (MADS) methods [38]–

[40] that consider a variable set of directions during the poll step and present strong

theoretical results for convergence to second-order stationary points in continuous

functions with locally Lipschitz gradients [41].

2.1.2 Model-Based Methods

The second group of optimization methodologies consists of the model-based meth-

ods, for which the computation of a new candidate solution rely on the prediction of

a smooth, easy to evaluate, and accurate surrogate model approximating the objec-

tive function. Model-methods are widely used for the solution of constrained and

unconstrained problems, performing more efficiently than the DSM [42]. Model-

based methods are present in a number of solver implementations:

• Derivative Free Optimization (DFO). Conn, Scheinberg and Toint [43].

• WEDGE. Marazzi and Nocedal [44].

• CONDOR Berghen and Bersini [45].

• Powell’s UOBYQA [46], NEWUOA [47]–[49] and BOBYQA [50].

among others. We introduce the fundamentals for convergent model-based algo-

rithms. The first element that is required is a measure of the accuracy of model m for

the prediction of the objective f , its gradient and potentially its Hessian inside a local

neighborhood B̂c(x, ∆). This measure is normally addressed through the concepts of

fully-linear and fully-quadratic models:

Definition 2.1. A model m ∈ C1 is called fully-linear with respect to f (x), f : Rnc → R

in B̂c(x, ∆) if there exists a pair of constants κeg, κe f > 0, independent of ∆, for which

∥∇x f (x + s)−∇xm(x + s)∥ ≤ κeg∆

| f (x + s)− m(x + s)| ≤ κe f ∆2

for all s ∈ B̂c(0, ∆).

2.1. Continuous Derivative-Free Optimization 13

Definition 2.2. A model m ∈ C2 is called fully-quadratic with respect to f (x), f :

Rnc → R in B̂c(x, ∆) if there exists a set of constants κeh, κeg, κe f > 0, independent of ∆,

for which

∥∇2
xx f (x + s)−∇2

xxm(x + s)∥ ≤ κeh∆

∥∇x f (x + s)−∇xm(x + s)∥ ≤ κeg∆2

| f (x + s)− m(x + s)| ≤ κe f ∆3

for all s ∈ B̂c(0, ∆).

Types of surrogate approximation

Different types of surrogates can be used to achieve the accuracy described by the

fully-linear and/or the fully quadratic models. The quality of the approximation

of a sufficiently smooth function depends on the spatial distribution of the sam-

pled elements inside B̂c(xk, ∆k); in other words, how well-poissed is the sampling set

Xk ⊂ B̂c(xk, ∆k) on which the surrogate is computed [51]. The simplest and least

expensive to evaluate and maintain correspond to the simplex gradients and linear

interpolation models of the shape m(xk + s) = m(xk) + l⊤s where s, l ∈ Rnc . We

use this type of approximation in different parts of the two solution approximations

developed in this work (see Algorithm 4.6).

A second group of surrogates corresponds to more general polynomial interpo-

lation models. Let Pd,nc be the space of polynomials of nc and degree d, and ϕ̄(x) the

set of monomials ϕ̄ : Rnc → Rdim(Pd,nc). For example, in the linear case d = 1 we have

that dim(Pd,nc) = nc + 1 and the set ϕ̄(x) = {1, x1, x2, . . . , xnc}. Any model m ∈ Pd,nc

can be expressed in terms of ϕ(x) and the vector a ∈ Rdim(Pd,nc) of coefficients:

m(x) =
dim(Pd,nc)

∑
i=1

aiϕ̄i(x). (2.1)

Given the set of interpolation points X = {x1, x2, . . . , xp} ⊂ B̂c(x0, ∆) the coefficients

α are the solution of the linear system of equations:

f (xj) =
dim(Pd,nc)

∑
i=1

aiϕ̄i(xj) ∀j ∈ {1, . . . , p}.

14 Chapter 2. Literature Review

The accuracy of a polynomial interpolation model (with d ≥ 2) on the local neigh-

borhood B is often assessed with the concepts of Lagrange polynomials and Λ-

poisedness [51] . We highlight they are independent of the function f that is being

approximated.

Definition 2.3. Given the interpolation set X = {x1, x2, . . . , xp} the basis L : Rnc → Rp

of Lagrange polynomials satisfies

Lj(xi) =

1 if i = j

0 otherwise.

A set of samples X ⊂ B is said Λ-poised for some Λ > 0 if and only if its elements

are linearly independent and the basis L of related Lagrange polynomials satisfies

the following condition:

Λ ≥ ΛL = max
i=1,...,p

max
x∈B

|Li(x)|.

The most relevant feature of the Lagrange polynomials is their relationship with the

error bounds for the model approximation computed using the set X ⊂ B. It is

shown that for any x that lays in the convex hull of X

∥Dr f (x)−Drm(x)∥ ≤ 1
(d + 1)!

νd

p

∑
i=1

∥xj − x∥d+1∥DrLi(x)∥,

where Dr represents the r-th derivative and νd denotes an upper bound on Dd+1 f (x)

[52]. The latter implies that the (d + 1)st derivative should be bounded requirement

that is similar to one for the Taylor polynomial approximation. In the case r = 0 the

bound on the prediction of f becomes

| f (x)− m(x)| ≤ 1
(d + 1)!

dim(Pd,nc)νdΛL∆d+1,

where ∆ is the radius of the smallest ball that contains X.

Among the polynomial class of models, quadratic models (d = 2) have been

2.1. Continuous Derivative-Free Optimization 15

widely used for more than 50 years in the development of derivative-free method-

ologies [53], [54]. Quadratic models can be computed in different ways, includ-

ing regression [55], [56] and interpolation. The computation of a fully determined

quadratic interpolant requires 1
2 (nc + 1)(nc + 2) samples, a quantity that adds com-

plexity for the optimization. Several alternatives have been devised to construct less

expensive approximations via undetermined interpolation, while preserving a suf-

ficient level of accuracy [57], [58] equivalent to the fully-linear type of models. We

discuss more in detail the Least Frobenius Norm Update strategy [59] in Section 3.2.2.

A final type of model approximation corresponds to the Radial Basis Functions

(RBF) [60]. Given the interpolation set X = {x1, x2, . . . , xp} a radial basis function

model is defined as

m(x) =
p

∑
i=1

bi φ(∥x − xi∥) + ϱ(x) (2.2)

where φ : R+ → R is a conditionally positive-definite univariate function and

ϱ : Rnc → R is a low order polynomial. Commonly used RBF functions are linear

φ(r) = r, cubic φ(r) = r3, multicuadratic φ(r) =
√

r2 + γ2, inverse multiquaratic

φ(r) = 1√
r2+γ2

and Gaussian φ(r) = exp(−γr2). The structure of the RBF’s makes

them flexible with respect to the geometric requirements of the sampling set X [61]

and have been proposed to tackle global optimization problems [62], [63]. Further-

more, under certain conditions the RBF’s can be certified fully-linear and used in

algorithms based in the trust-region method that converge to stationary solutions

[2], [64], [65].

Trust-region methods

Having discussed the different mechanisms that allow the computation of accurate

surrogate representations of f , now we outline the basic derivative free trust-region

approach for the unconstrained optimization case (Algorithm 2.3). This framework

is easily adapted to bound constrains and other convex domains with use of a proper

stationary measure. The trust-region method involves a sequence of iterations that

consider the following 5 steps (apart from the initialization):

• The first one corresponds to the model computation (Lines 3-10) in which the

16 Chapter 2. Literature Review

surrogate is constructed considering the current the set of samples Xk. In ad-

dition, it evaluates possible convergence to first-order stationary points (Lines

4 - 9). In some variants the check of stationary is called the criticality step and

aims to establish an algebraic relationship between ∥∇xmk(xk)∥ and ∆k, which

plays an important role in assuring algorithmic convergence [66].

• The second step consists in the candidate computation in which a trial point is

generated by minimizing the surrogate on B̂c(xk, ∆k). Similar to the traditional

deterministic trust-region methods, the evaluation of the quality of the new

candidate and the fit of the model is done according to the ρ test (Line 12), that

measures the ratio in between the real and expected improvement.

• The third step considers the update and maintenance of the sampling set (Lines

13-17). Note that we refer to a geometry improvement procedure that should

be able to complete the interpolation set and identify badly poised sample

points.

• The fourth procedure is the trust-region update (Lines 18-24); we highlight that

in this case the TR radius is only reduced when the model is accurate, in other

words, if it is fully-linear or given the case, fully-quadratic.

• The final step is the current candidate update (Lines 25 - 29), note that a new

candidate is only accepted when it yields sufficient objective reduction and

the model presents an acceptable fit (ρk ≥ η0 > 0).

Observe that a candidate solution can be computed by partially optimizing in-

side the trust-region. For Algorithm 2.3 be convergent it is required that the opti-

mization subproblem (Line 11) satisfies at least a fraction of the Cauchy decrease or

the Approximate Cauchy decrease. The Cauchy step and Approximate Cauchy point are

defined as follows:

Definition 2.4. Let tC
k be defined as

tC
k = argmin

t>0|xk−t∇xmk(xk)∈B̂c(0,∆k)

mk(xk − t∇xmk(xk)).

2.1. Continuous Derivative-Free Optimization 17

Algorithm 2.3 Generic Trust-Region Algorithm

Input: Point x0 ∈ Rnc , initial Trust-Region radius ∆0, maximum Trust-Region radius
∆max, model acceptance parameters 0 < η0 ≤ η1, geometry parameters 0 < γ <
1 < γinc and stationarity parameter ϵc

Output: Sequence {xk} with limiting values that are first-order stationary with re-
spect to f

1: Select a set of samples X0 ⊂ B̂c(x0, ∆0)
2: for k = 0, 1, 2, . . . do
3: Construct a model mk that approximates f using the elements in Xk
4: while ∥∇xmk(xk)∥ < ϵc do
5: if Model mk is accurate on B̂c(xk, ∆k) then
6: Set ∆k = γ∆k
7: else
8: Update Xk to compute a model mk accurate on B̂c(xk, ∆k)
9: end if

10: end while
11: Compute sk by (partially) solving the problem mins∈B̂c(xk ,0) mk(xk + s)

12: Evaluate f (xk + sk) and compute ρk =
f (xk)− f (xk+s)

mk(xk)−mk(xk+s)

13: if ρk < η1 and mk is not accurate in B̂c(xk, ∆k) then
14: Compute Xk+1 using a geometry improvement procedure on Xk
15: else
16: Set Xk+1 = Xk ∪ {xk + sk}. If Xk was fully-determined drop one of its previ-

ous elements
17: end if
18: if ρk ≥ η1 then
19: Set ∆k+1 = min{∆kγinc, ∆max}
20: else if mk is accurate on B̂c(xk, ∆k) then
21: Set ∆k+1 = ∆kγ
22: else
23: Set ∆k+1 = ∆k
24: end if
25: if ρk ≥ η0 then
26: Set xk+1 = xk + sk
27: else
28: Set xk+1 = xk
29: end if
30: end for

18 Chapter 2. Literature Review

The corresponding Cauchy step is equivalent to

sC
k = −tC

k ∇xmk(xk).

Definition 2.5. Let κbck ∈ (0, 1) and κubs ∈ (0, 1
2) be two given constants. For every

j ∈ Z+ let the vector xk(j) be defined as

xk(j) = xk − κ
j
bck

∆k

∥∇xmk(xk)∥
∇xmk(xk)

with

jC = min{j ∈ Z+ | mk(xk(j)) ≤ mk(xk) + (∇xmk(xk))
⊤(xk(j)− xk)}.

The approximate Cauchy point xAC
k is defined as xAC

k = xk(jC).

Both the Cauchy step and the Approximate Cauchy point correspond to the

(quasi) minimum of the model along the steepest descend direction inside the trust-

region. Their decrease condition is bounded by:

Theorem 2.1. (Conn et al., [56], Theorem 10.1) Consider a model of the shape mk(x +

s) = mk(xk)+ g⊤s+ 1
2 s⊤Hks and the Cauchy step from Definition 2.4, the Cauchy decrease

is bounded by

mk(xk)− m(xk + sC
k) ≥

1
2
∥∇xmk(xk)∥min

{
∆c

k,
∥∇xmk(xk)∥
∥∇2

xxmk(xk)∥

}
.

Theorem 2.2. (Conn et al., [67], Theorem 6.3.19) Consider a surrogate mk. The Approx-

imate Cauchy decrease is bounded by

mk(xk)− mk(xAC
k) ≥ κdep∥∇xmk(xk)∥min

{
∆c

k,
∥∇xmk(xk)∥

β̃k

}
.

with a constant κdep ∈ (0, 1) independent of k and β̃k = 1 + maxx∈B̂c(xk ,∆k)
∥∇xxmk(x)∥.

We remark that the Cauchy decrease bound from Theorem 2.1 can be only ap-

plied in linear and quadratic models; nonetheless, the approximate Cauchy decrease

2.2. Mixed-Integer Derivative-Free Optimization 19

is a proper substitute for other types of non-linear models. Consequently, any con-

vergent algorithm should guarantee that

mk(xk)− mk(xk + sk) ≥
κ f cd

2
∥∇xmk(xk)∥min

{
∆c

k,
∥∇xmk(xk)∥
∥∇xxmk(xk)∥

}
(2.3)

or

mk(xk)− mk(xk + sk) ≥ κ f acd∥∇xmk(xk)∥min
{

∆c
k,
∥∇xmk(xk)∥

β̃k

}
(2.4)

for some constants κ f cd, κ f acd ∈ (0, 1). This result and the aforementioned criticallity

step -or any procedure that prevent the trust-region radius collapse when the gradi-

ent tends to zero- guarantee that both limk→∞ ∆k = 0 and limk→∞∥∇x f (xk)∥ = 0.

2.2 Mixed-Integer Derivative-Free Optimization

In this section, we review the methodologies for solving problem 1.1 when nz >

0 and the set of discrete variables are unrelaxable. Most of these methodologies

are adaptations of continuous derivative-free methods that tackle the integer con-

straints. Similar to the case for continuous derivative-free optimization, the solution

schemes can be classified in three categories: (1) direct search methods, (2) model-

based methodologies and (3) others.

In the first group we found the modification of the GPS [68] and MADS [69] algo-

rithms to include a set of discrete search directions. One difference of both methods

with the standard DDSM is the use of a third algorithmic step called the extended

poll procedure. The extended poll performs additional search (polling) in the set of

discrete neighborhoods whose objective value lie sufficiently close to the current

objective. Porcelli and Toint [70] proposed a similar scheme on their brute-force op-

timizer (BFO); it includes a local mixed-integer search heuristic called the recursive

step that fixes a subset of discrete coordinates and performs polling with the remain-

ing integer variables. Abramson et al. [71] proposed a modified GPS algorithm that

tackles general nonlinear constraints using a filter approach. The software pack-

age NOMAD [72] incorporates the algorithms developed by Audet et al. [68] and

Abramson et al. [69].

20 Chapter 2. Literature Review

The second group consists on methodologies that construct surrogate approx-

imations of the objective and (simulated) constraints using polynomial or RBF in-

terpolation over the mixed integer lattice. The method by Rashid [73] interpolates

the objective and complicated constraints with multiquadratic RBF models. It also

performs two surrogate optimization procedures that provide local and global infor-

mation of the objective and help to maintain the quality of the interpolation model.

The methods by Müller et al. [74], [75] and Müller [76] similarly use a global RBF

models that interpolate the objective and constraints, and contain diverse strategies

for the computation of new trial points and the preservation of the feasibility of the

current candidate solution. Similar approaches are found in the work of Holmström

et al. [77] and Costa and Nannincini [78].

On the other hand, the method by Newby and Ali [9] generalize Powell’s Bound

Optimization by Quadratic Approximation (BOBYQA) algorithm [50] for the opti-

mization of box-constrained mixed-integer problem. Their algorithm proposal con-

siders quadratic interpolation of the objective function and triggers termination on

trust-region size. It also incorporates two variants that help to identify convergence

to points under stronger definitions of mixed-integer optimality. A special case of

the use of quadratic interpolation models is the method by Tran et al. [10] that aims

to solve mixed-binary black-box problems that display a cyclic symmetry property.

They use a tailored surrogate that is proven to be fully-linear if the vector of discrete

variables is fixed, and their algorithm is proved to be convergent to a first-order

stationary solution with respect to the continuous variables.

The third group consider methods that cannot be classified as DSM or model-

based. Larson et al. [19] introduced a method tailored for integer convex func-

tions based on the construction of piece-wise linear underestimators of the objec-

tive function. It can be adapted for mixed-integer optimization by solving contin-

uous derivative-free subproblems at fixed discrete values. Liuzzi et al. [79] solve

mixed-integer bound-constrained problems with an algorithm that relies on local

information, their method uses a line-search algorithm to identify improvement re-

lated to the continuous variables and implements a local search method to identify

improvement on a local discrete neighborhood. Their method was extended [80] to

also address general nonlinear constraints using the SQP approach from Liuzzi et al

2.3. Local Optimality for Mixed-Integer Functions 21

[81].

2.3 Local Optimality for Mixed-Integer Functions

One of the challenges met in the solution of mixed-integer derivative-free problems

is the definition of a proper local minimizer. In purely continuous settings the defi-

nition is the following:

Definition 2.6. If nz = 0, a point x∗ is a Continuous Local Minimum if there exists

∆c > 0 such that f (x∗) ≤ f (x) ∀x ∈ B̂c(x∗, ∆c) ∩ Ωc.

In contrast, for the mixed-integer case, the definition of a local minimum is less

straightforward. The simplest definition is that of a separate local minimum (also

known as a mesh isolated solution [7]):

Definition 2.7. A point (x∗, y∗) is said to be a Separate Local Minimum (SLM) for f

with respect to ND(x∗, y∗) if there exists ∆c > 0 such that:

f (x∗, y∗) ≤ f (x, y) ∀(x, y) ∈ (B̂c(x∗, ∆c)× {y∗}) ∩ Ωm

f (x∗, y∗) ≤ f (x, y) ∀(x, y) ∈ ND(x∗, y∗) .

The definition of SLM combines the definition of a continuous local minimum

with an integer local minimum defined over a finite integer neighborhood ND(x∗, y∗).

A second definition of local optimality is that of a stronger local minimum:

Definition 2.8. A point (x∗, y∗) is said to be a Stronger Local Minimum (StLM) for f

with respect to ND(x∗, y∗) if there exists ∆c > 0 such that:

f (x∗, y∗) ≤ f (x, y) ∀(x, y) ∈ (
⋃

(x̃,ỹ)∈ND(x∗,y∗)

B̂c(x̃, ∆c)× {ỹ} ∩ Ωm).

A stronger definition is that of combined local minimum. It seeks to consider more

information than a SLM and to be more computationally efficient to evaluate than a

StLM.

22 Chapter 2. Literature Review

Definition 2.9. A point (x∗, y∗) is said to be a Combined Local Minimum (CLM) for f

with respect to ND(x∗, y∗) if there exists ∆c > 0 such that:

f (x∗, y∗) ≤ f (x, y) ∀(x, y) ∈ (B̂c(x∗, ∆c) ∩ Ωc)× {y∗}

f (x∗, y∗) ≤ f (x, y) ∀(x, y) ∈ Ncomb(x∗, y∗) ∪ND(x∗, y∗),

where Ncomb is defined as the smallest local continuous minimum for which ND has a point:

A(x̃, ỹ) :=
{
(x̄, ỹ) | f (x̄, ỹ) ≤ f (x, ỹ) ∀x ∈ {x̂ ∈ B̂c(x̄, ∆c) | (x̂, ỹ) ∈ Ωm}

}
Ncomb(x∗, y∗) :=

{
argmin

(x,y)∈A(x̃,ỹ)
{ f (x, y)} | (x̃, ỹ) ∈ ND(x∗, y∗) \ (x∗, y∗)

}
.

We illustrate how a point can be classified as a minimizer under one definition

of local optimality but fails to be certified as such under a stronger optimality defini-

tion. Figure 2.1 represents the function f (x, y) with x ∈ R and y ∈ {−1, 0, 1}. Figure

2.1a shows that the point marked with a circle (x∗ = 2.11, y∗ = 0) is a SLM. This

point is a local continuous minimizer when y = 0 and it presents the best objective

among the points in the set ND(x∗, y∗), which is represented by the stars. However,

it is evident that this point is not a StLM nor a CLM as there exists a range of points

x ∈ (−4, 1), y = −1 with smaller objective value. Figure 2.1b shows that the point

marked with a triangle (x⋆ = −0.889, y⋆ = −1) is a CLM. It is the local continu-

ous minimizer when y = −1 and presents the best objective among the set of local

minimizers Ncomb(x⋆, y⋆).

Table 2.1 shows different optimality definitions considered by previous studies

in mixed-integer derivative-free optimization. It is important to note that not all the

studies implement an optimality criterion, and algorithmic convergence may more

simply depend on distance and/or number of sampled points.

2.3. Local Optimality for Mixed-Integer Functions 23

(A) Example of a separate local minimum

(B) Example of a combined local minimum

FIGURE 2.1: Examples of local optimality

24 Chapter 2. Literature Review

Method Optimality criterion I. Neighborhood

Wah et al. [82] Sepatate local minimum ND

Lucidi et al. [83] Stronger local mimimum ND

Liuzzi et al. [79] Separate local minimum ∥y − ŷ∥1

Abrahmson et al. [69] Stronger separate minimum ND

Holmström et al. [77] Number of samples -

Larson et al. [19] Global optima -

Muller [76] Distance -

Costa and Naninncini [78] Number of samples -

Newby and Ali [9] Combined local minimum ND

Tran et al. [10] Separate local minimum {0, 1}nz

TABLE 2.1: Examples of optimality criterion

In the literature, convergence to a mixed-integer local solution is typically at-

tained by extensive search on multiple manifolds; it may even require using a con-

tinuous derivative-free optimizer to guarantee a CLM or even a SLM, e.g., [9]. We

highlight that the DDSM are well suited for achieving convergence to SLM and StLM

as they use data on surrounding manifolds to perform the extended poll step. Note

that model-based methods normally do not include a convergence check, preferring

alternate stopping criteria. In this work we introduce two model-based methods that

converge to SLM and StLM under given conditions. We remark that we do not aim

for convergence to CLM as the number of samples to evaluate this type of minimizer

is intensive in terms on function evaluations.

25

Chapter 3

Locally Quadratic Mixed-Integer

Functions and Approximations

Generally speaking, trust region methods are based on the assumption that it is pos-

sible to construct a model m to approximate a function f within a given (trust) region

[67]. In particular, under some assumptions it is possible to construct a surrogate

model for the function f inside the region B̂c(x, ∆) with the property that the ap-

proximation error for f and its derivatives is bounded. Using a Taylor-like model,

the error bounds are directly proportional to ∆. This property enables the develop-

ment of algorithms to find stationary points and proper local minimizers. Usually,

the model is obtained via interpolation/regression of a set of sampled points [51].

From a practical point of view, it is important that the number of points sampled to

obtain the model is bounded. The notions of fully-linear models are used to prove

convergence to first-order stationary points of trust region methods.

In the general mixed-integer setting, it is difficult to construct fully-linear (and

fully-quadratic) approximations, because functions defined over a mixed-integer set

are discontinuous with respect to the discrete variables. There are two problems to

overcome: the lack of error bounds on the interpolation over integer variables (due

to discontinuity), and the difficulty of modeling the interaction between continuous

and integer variables.

26 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

3.1 LQMI Function Definition

To extend a trust-region algorithm to the mixed-integer setting and overcome these

problems, we introduce a structured class of mixed-integer functions for which we

can construct bounded-error approximations. We state the characteristics of these

functions as assumptions.

Assumption 3.1. For every (x∗, y∗) ∈ Ωm there exists a unique function τ(y), and not

necessarily unique Ãz ∈ Rnz×nz and l̃z ∈ Rnz , such that for every (x, y) ∈ N1(x∗, y∗)

f (x, y) = τ(y − y∗) := (y − y∗)⊤ Ãz(y − y∗) + (l̃z)
⊤(y − y∗) + f (x∗, y∗).

Although τ(y) is uniquely defined, multiple distinct l̃z, Ãz could define the same

τ. Assumption 3.1 states that, if we fix the vector of continuous variables to x∗,

f (x, y) reduces to a quadratic approximation τ centered at (x∗, y∗). Note that the

linear term l̃z and the quadratic matrix Ãz can depend on (x∗, y∗). Exploiting this

structure, we can determine the number of samples needed to compute Ãz and l̃z:

Observation 3.1. Ãz and l̃z can be obtained by sampling O(n2
z) quadratically independent

points in N1(x∗, y∗) [51]. The exact number of points depends on whether the point y∗ is

located on the boundary of the box Ωz, or not.

Assumption 3.2. There exists a radius ∆c > 0 such that, for every (x∗, y∗) ∈ Ωm, there

exists a set of functions

ϕj : Rnc → R, ϕj(0) = 0 ∀j ∈ {0, . . . , nz} (3.1)

satisfying

f (x, y) = τ(y− y∗)+ϕ0(x− x∗)+
nz

∑
j=1

ϕj(x− x∗)(yj − y∗j) ∀(x, y) ∈ B̂v(x∗, y∗, ∆c, 1) .

(3.2)

To have a more compact notation, we introduce ϕ(x), ϕ : Rnc −→ Rnz as the

vector of functions ϕj(x) (with index j ̸= 0), this allows one to rewrite f (x, y) =

τ(y − y∗) + ϕ0(x − x∗) + (y − y∗)⊤ϕ(x − x∗). Assumption 3.2 completes Assump-

tion 3.1, stating that the interaction between continuous and discrete variables is

3.1. LQMI Function Definition 27

bilinear in the vector ϕ(x) and the discrete variables y. The Assumptions given so

far allows us to define a class of black box functions:

Definition 3.1. A function f satisfying assumptions 1.1, 1.2, 3.1 and 3.2 is called a Locally-

Quadratic Mixed-Integer (LQMI) function.

Assumption 3.2 implies that the derivative of an LQMI function with respect to

a continuous variable can be computed as follows:

Observation 3.2. The partial gradient f with respect to the continuous variables is given

by:

∇x f (x, y) = ∇xϕ0(x) +
nz

∑
j=1

∇xϕj(x)(yj − y∗j)

= ∇xϕ0(x) + (Jϕ(x))⊤(y − y∗)

Observation 3.3. The partial gradient of f with respect to the continuous variables is given

by:

∇x f (x, y) = ∇xϕ0(x) +
nz

∑
j=1

∇xϕj(x)(yj − y∗j)

= ∇xϕ0(x) + (Jϕ(x))⊤(y − y∗)

Now, observing the affinity of differentials and the quadratic integer represen-

tation of LQMI functions, we introduce the definition of mixed-integer fully-linear

models. Similar to fully linear/quadratic models, such approximations provide an

error bound based on a continuous trust-region radius. In the definition of mixed-

integer fully-linearity, we use an integer set Ωd ⊆ Ωz that belongs to some class

of discrete sets. In the next section we prove that is always possible to construct

an accurate model for an LQMI function with respect to the class of discrete sets

{ΩLQMI
d (y) | ∀y ∈ Ωz}, where

ΩLQMI
d (y) = B̂z(y, 1) ∩ Ωz. (3.3)

To assess convergence to stationary points we require a structure that guarantees

that a local surrogate m with uniformly good accuracy can be constructed. In other

28 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

words, we seek a method that computes surrogate approximations centered in any

point of the domain with the same pair of error constants. In the LQMI setting we

say that model m belongs to a mixed-integer fully-linear class of models:

Definition 3.2. Let f be a function which satisfies Assumptions 1.1 and 1.3. A set of

functions M = {m : [Rnc × Znz] → R} is called a mixed-integer fully-linear class of

models with respect to function f and the class of discrete sets Ω̄ for a given ∆max if:

1. There exist two constants κeg, κe f > 0, such that, for every (x̄, ȳ) ∈ Ωm, Ωd ∈ Ω̄ and

∆ ∈ [0, ∆max], there exists a model m ∈ M satisfying:

| f (x, y)− m(x, y)| ≤ κe f ∆2 ∀(x, y) ∈ B̂c(x̄, ∆)× (Ωd ∪ {ȳ})

∥∇x f (x, y)−∇xm(x, y)∥ ≤ κeg∆ ∀(x, y) ∈ B̂c(x̄, ∆)× (Ωd ∪ {ȳ}).

2. For this class M there exists an algorithm, which we call a “model improvement”

algorithm, that in a finite, uniformly bounded (with respect to x̄, ȳ and ∆) number of

steps can:

• establish if a model m ∈ M is fully-linear in (x, y) ∈ B̂c(x̄, ∆)(Ωd ∪ {ȳ}), or

• compute a new model m̃ ∈ M which is fully-linear in (x, y) ∈ B̂c(x̄, ∆) ×

(Ωd ∪ {ȳ}).

for every Ωd ∈ Ω̄.

The class of discrete sets Ω̄ determines the neighborhood with respect to which

the point computed by our algorithm is stationary.

3.2 Mixed-Integer Fully-Linear Models

When working with LQMI functions, it is natural to approximate f (x, y) with a class

M of models with the following structure:

m(x∗ + sc, y∗ + sz) := f (x∗, y∗) + l⊤c sc + l⊤z sz + s⊤z Azsz + s⊤c AMsz. (3.4)

which mimics a truncated first-order Taylor expansion of the function f (x, y) with

respect to the continuous variables x. In the above expression, m(x∗ + sc, y∗ + sz)

3.2. Mixed-Integer Fully-Linear Models 29

consists of a constant term, representing the value of f (x, y) at the point where the

approximation is centered, a linear term in the continuous variables l⊤c sc, a quadratic

term in the discrete variables l⊤z sz + s⊤z Azsz and a bilinear term s⊤c AMsz. Recall that

the quadratic terms lz and Az can be computed by sampling a polynomial number

of points (see Observation 3.1), which can be identified using algorithms designed

to ensure the well poisedness of a set of interpolation points [51]. What remains to

identify are lc and AM. In this section we show how to obtain such parameters to

have a model m that is mixed-integer fully linear with respect to an LQMI function

and the class of sets Ω̄ = {ΩLQMI
d (y) | ∀y ∈ Ωz}. Moreover, we prove that such

model approximation is also mixed-integer fully linear with respect to a non-LQMI

function in a class of discrete sets ΩG
d (y, Mk) with the property that |ΩG

d (y, ·)| = nz +

1 (see Section 3.2.3). Having a model that is mixed-integer fully linear is crucial to

prove the convergence of the trust-region algorithm to a stationary point presented

in Chapter 4.

The procedure proposed to construct the model m takes advantage of the fact

that the set of points required to determine lz and Az is not unique: the samples

can be chosen among any suitable set of integer directions within the neighborhood

N1(x∗, y∗). We take advantage of this degree of freedom by choosing, at each itera-

tion, the manifold that allows us to reuse the maximum amount of previous sampled

points, and satisfies the bound constraints for the integer variables. We therefore

rely on suitably defined integer generating vectors, i.e., coordinate shifts that facilitate

model computation by allowing the efficient reuse of samples generated in previous

iterations, which are defined as follows:

Definition 3.3. The matrix M =
[
M1, ..., Mnz

]
∈ Znz×nz is a matrix of integer generat-

ing vectors if it has the following properties: Mj ∈ {−1, 0, 1}nz and M is a basis of vectors

that spans Rnz . Let M (y) be the collection of all matrices of integer generating vectors at

point y ∈ Ωz. The number of elements of M (y) depend on whether the point y lays on the

boundary of Ωz or not.

Definition 3.3 is written in such a way that, for any set of integer generating

vectors M ∈ M (y∗) and point (x, y) ∈ N1(x∗, y∗), there exists a vector d ∈ Rnz that

allows rewriting (x, y) in terms of the vectors in M: (x, y) = (x∗, Md + y∗).

30 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

Definition 3.4. For a given M ∈ M (y∗), we define the function ψM : Rnc −→ Rnz as:

ψM(x) := M⊤ϕ(x).

Therefore, the function f can be rewritten as: f (x, y) = τ(y − y∗) + ϕ0(x − x∗) +

(y − y∗)⊤(M⊤)−1ψM(x − x∗). To make the notation less cumbersome, we remove

the superscript “M” and we simply use ψ when it is clear from the context.

Definition 3.5. The set of integer generating points Q(y, M) ⊂ Ωz, associated with a

matrix M and integer point y ∈ Znz , is defined as

Q(y, M) =
{

q1, . . . , qnz | qj = y + Mj
}

.

The set of generating points Q(y, M) defines a set of neighboring points based on

M and “centered” at y. This allows us to simplify the expression for the properties

of f as follows.

Observation 3.4. For any M ∈ M (y∗) and point (x∗, y∗) we have:

f (x∗, qj) = τ(Mj) ∀qj ∈ Q(y∗, M)

f (x + sc, qj) = τ(Mj) + ϕ0(sc) + ψj(sc) ∀qj ∈ Q(y∗, M), sc ∈ B̂c(0, ∆c)

Next, we show how a mixed-integer fully-linear approximation can be constructed

in the LQMI setting. The procedure involves the computation of the continuous term

lc and the interaction term AM independently, using known methodologies devised

for continuous derivative-free optimization.

3.2.1 Model Computation and Fully-Linearity in the LQMI Setting

Given the separable structure of an LQMI function and the linear transformations

described in Definition 3.4 we propose the following surrogate model to be used in

a trust-region algorithm:

m(x, y) = τ(y − y∗) + m̂0(x − x∗) + (y − y∗)⊤(M⊤)−1v̂(x − x∗), (3.5)

3.2. Mixed-Integer Fully-Linear Models 31

where τ(y − y∗) is described as in Assumption 3.1 and m̂0 and υ̂ are linear approxi-

mations of the functions ϕ0 and ψM, respectively. We now prove that if both approx-

imations are fully-linear in continuous neighborhoods, the mixed-integer approxi-

mation m is fully-linear as well.

Proposition 3.1. [51] A fully-linear approximation m̂0(x − x∗) := (x − x∗)⊤g0 of ϕ0(x)

on B̂c(x∗, ∆c) with g0 ∈ Rnc and error bound coefficients κe f ,0, κeg,0 can be computed by

sampling nc + 1 points (x, y) ∈ B̂c(x∗, ∆c)× {y∗}.

Proposition 3.2. [51] Let qj ∈ Q(y∗, M) be as in Definition 3.5. A fully-linear approx-

imation m̂M
j (x) of f (x, qj) with error bound coefficients κe f j and κegj can be computed by

sampling n1 + 1 points (x, y) ∈ B̂c(x∗, ∆c)× {qj}.

Note that Proposition 3.2 allows us to isolate the entry ψj(x); by Proposition 3.1,

m̂M
j (x) is equivalent to a linear approximation of the function ϕ0(x) + ψj(x).

Lemma 3.1. The function υ̂j(x) := m̂M
j (x) − m̂0(x), which can be expressed as υ̂j(x −

x∗) = (x − x∗)⊤gj (j ∈ 1, . . . , nz) with gj ∈ Rnc , is a fully-linear approximation of ψM
j (x)

on xc ∈ B̂c(x∗, ∆) with constants κ̂e f ,j := κe f ,j + κe f ,0 and κ̂eg,j := κeg,j + κeg,0.

Proof. We first show that the error on the function is bounded:

|ψj(x)− υ̂j(x)|

= |ψj(x) + ϕ0(x)− m̂M
j (x)− ϕ0(x) + m̂0(x)|

≤ |ψj(x) + ϕ0(x)− m̂M
j (x)|+ |m̂0(x)− ϕ0(x)|

≤ κe f ,j∆2 + κe f ,0∆2 = κ̂e f ,j∆2 .

Also the error on the function gradient is bounded:

∥∇xψj(x)−∇xυ̂j(x)∥

= ∥∇xψj(x) +∇xϕ0(x)−∇xm̂M
j (x)−∇xϕ0(x) +∇xm̂0(x)∥

≤ ∥∇xψj(x) +∇xϕ0(x)−∇xm̂M
j (x)∥+ ∥∇xm̂0(x)−∇xϕ0(x)∥

≤ κeg,j∆ + κeg,0∆ = κ̂eg,j∆.

32 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

Definition 3.6. Let Ag be the matrix formed by the vectors gj, ∀j ∈ {1, . . . , nz} defined in

Lemma 3.1:

Ag =


| | |

g1 g2 . . . gnz

| | |

 .

We emphasize that the model introduced throughout equation 3.5 is equivalent

to the one introduced in equation 3.4, where lc = g0 and AM = (M⊤)−1Ag.

Theorem 3.1. Let m̂0(sc) and υ̂(sc) be obtained as in Proposition 3.1 and Lemma 3.1.

For any M ∈ M , the model m(x∗ + sc, y∗ + sz) defined in Equation (3.4) with lc = g0

and AM = (M⊤)−1Ag is mixed-integer fully linear with respect to f (x, y) in the trust-

region B̂v(x, y, ∆c, 1), with error bound constants κ̄e f = κe f ,0 + (nz)1/2 · ∥M−1∥ · ∥κ̂e f ∥

and κ̄eg = κeg,0 + (nz)1/2 · ∥M−1∥ · ∥κ̂eg∥.

In the remainder of this section, we provide the intermediate results necessary to

prove Theorem 3.1.

Observation 3.5. Note that the gradient of a model m centered at (x̄, ȳ) in the point

(x, y) = (x̄ + sc, ȳ + sz) can be expressed as follows:

∇xm(x, y) = ∇xm̂0(sc) + (Jυ̂(sc))
⊤M−1sz.

Lemma 3.2. |s⊤z (M⊤)−1(ψ(sc)− υ̂(sc))| ≤ (nz)1/2∥M−1∥ · ∥κ̂e f ∥ · (∆c)2, where κ̂e f ∈

Rnc is the vector with entries κ̂e f ,j defined in Lemma 3.1.

Proof. By the Cauchy–Schwarz inequality

|s⊤z (M⊤)−1(ψ(sc)− υ̂(sc))| ≤ ∥s⊤z (M⊤)−1∥ · ∥(ψ(sc)− υ̂(sc))∥.

An upper bound to the first term is computed as follows:

∥s⊤z (M⊤)−1∥ ≤ ∥sz∥·∥(M⊤)−1∥ ≤ (nz)
1/2∥M−1∥.

3.2. Mixed-Integer Fully-Linear Models 33

For the second term, a upper bound is computed by mixed-integer linearity of the

vector function ψ(sc):

∥(ψ(sc)− υ̂(sc))∥ =

(
nz

∑
j=1

(ψj(sc)− υ̂j(sc))
2

)1/2

≤
(

nz

∑
j=1

κ̂2
e f ,j

)1/2

· (∆c)2 = ∥κ̂e f ∥ · (∆c)2.

Lemma 3.3. ∥(Jψ(sc)− Jυ̂(sc))⊤M−1sz∥ ≤ (nz)1/2∥M−1∥ · ∥κ̂eg∥ ·∆c, where κ̂eg ∈ Rnc

is the vector with entries κ̂eg,j defined in Lemma 3.1.

Proof. By the Cauchy–Schwarz inequality

∥(Jψ(sc)− Jυ̂(sc))
⊤M−1sz∥ ≤ ∥Jψ(sc)− Jυ̂(sc)∥ · ∥M−1sz∥.

The bound for the norm of the difference of Jacobians is computed as follows:

∥Jψ(sc)− Jυ̂(sc)∥ =

(
nz

∑
i=1

∥∇xψi(sc)− υ̂i(sc)∥2

)1/2

.

Recalling the fully-linear assumption on every model υ̂i(sc) ∀i ∈ {1, . . . , nz}

∥Jψ(sc)− Jυ̂(sc)∥ ≤
(

nz

∑
i=1

κ̂2
eg,i(∆

c)2

)1/2

= ∥κ̂eg∥ · ∆c .

With all the provided proposition, we are able to give the proof of Theorem 3.1:

Proof. First, we prove that for all (sc, sz) in B̂v(0, 0, ∆c, 1) the error in the function is

bounded by κ̄e f ∆2. The absolute error of the approximation is given by:

| f (x + sc, y + sz)− (τ(sz) + m̂0(sc) + s⊤z (M⊤)−1υ̂(sc))|

= |τ(sz) + ϕ0(sc) + s⊤z (M−1)⊤ψ(sc)− (τ(sz) + m̂0(sc) + s⊤z (M⊤)−1υ̂(sc))|

= |ϕ0(sc)− m̂0(sc) + s⊤z (M⊤)−1(ψ(sc)− υ̂(sc))|

≤ |ϕ0(sc)− m̂0(sc)|+ |s⊤z (M⊤)−1(ψ(sc)− υ̂(sc))|.

34 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

Recalling Lemma 3.2 stating that |s⊤z (M⊤)−1(ψ(sc)− υ̂(sc))| ≤ (nz)1/2∥M−1∥ · ∥κ̂e f ∥ ·

(∆c)2 and the definition of constant κ̄e f , we have that

| f (x + sc, y + sz)− m(x + sc, y + sz)|

≤ κe f ,0(∆c)2 + (nz)
1/2 · ∥M−1∥ · ∥κ̂e f ∥ · (∆c)2 ≤ κ̄e f (∆c)2.

Now, we prove that the error in the continuous gradient is bounded by κ̄eg∆c. The

gradient deviation is given by:

∥∇x f (sc)− (∇xm̂0,k(sc) + (Jυ̂(sc))
⊤M−1sz)∥

= ∥∇xϕ0(sc) + (Jψ(sc))
⊤M−1sz − (∇xm̂0(sc) + (Jυ̂(sc))

⊤M−1sz)∥

≤ ∥∇xϕ0(sc)−∇xm̂0(sc)∥+ ∥(Jψ(sc)− Jυ̂(sc))
⊤M−1sz∥.

Recalling Lemma 3.3 that states that ∥(Jψ(sc)− Jυ̂(sc))⊤M−1sz∥ ≤ (nz)1/2∥M−1∥ ·

∥κ̂eg∥ · ∆c and the definition of κ̄eg, we have that:

∥∇x f (x + sc, y + sz)−∇xm(x + sc, y + sz)∥

≤ κeg,0∆c + (nz)
1/2 · ∥M−1∥ · ∥κ̂eg∥ · ∆c ≤ κ̄eg∆c.

3.2.2 Practical Model Considerations

The existence of fully-linear model approximations of LQMI functions is necessary

to prove convergence of a trust-region algorithm to stationary points; however, it

might be desirable to build model approximations involving fewer objective value

evaluations. In the continuous derivative-free methodology this is done by consider-

ing underdetermined quadratic interpolation and using an adaptative (but bounded)

number of samples each time the model construction procedure is invoked [56]. For

the LQMI setting we propose two ways to decrease the number of samples required

to build and update a surrogate approximation.

The first one is to perform underdetermined approximation of each element con-

stituting the model. The terms involving the continuous directions lc and AM can be

approximated using a fraction of the points nc + 1 required for the interpolation. The

3.2. Mixed-Integer Fully-Linear Models 35

elements related to the integer contribution in the objective function lz and Az can

be estimated by solving the Least Frobenius Norm Update (see below) interpolation

problem for the set of samples Z ⊂ Ωz:

min
lz,Az

∥Az − A0
z∥2 (3.6a)

s.t. f (x∗, y∗) + l⊤z (y − y∗) + (y − y∗)⊤Az(y − y∗) = f (x∗, y) ∀y ∈ Z (3.6b)

where A0
z ∈ Rnz × Rnz is a previous approximation of the matrix Az and |Z| ∈

[(nz + 1), 1
2 (nz + 1)(nz + 2)]. The second way to reduce the number of samples is to

update a model that had a sufficiently good fit in a previous iteration k, using the

information of the iterate (xk + sk
c , yk + sk

z). We assume the quadratic terms Ak
M of

the model remain constant, but the linear terms are affected by the translation:

lk+1
c = lk

c + Ak
Msk

z (3.7a)

lk+1
z = lk

z + (Ak
M)⊤sk

c + 2Ak
zsk

z. (3.7b)

These two concepts allow us to devise several algorithm variants, based on the num-

ber of samples devoted to model construction and to an inexpensive update of the

surrogate; these inexpensive model updates are only considered in the case of suc-

cessful iteration. We highlight that the Least Frobenius Norm update 3.6a-3.6b is de-

fined in a larger integer neighborhood, not necessarily ΩLQMI
d (y∗), to enable a better

initial exploration of the integer domain.

3.2.3 Mixed-Integer Fully-Linearity in the non-LQMI Setting

Finally, we show that the methodology described in Section 3.2.1 is able to generate

a fully linear approximation with respect to the discrete set ΩG
d (y

∗, M) = {y∗} ∪

Q(y∗, M) for a function that satisfies Assumptions 1.1 and 1.2, whether it behaves as

an LQMI function or not.

Proposition 3.3. Let qj ∈ Q(y∗, M) be as in Definition 3.5. A fully linear approximation

m̂M
j (x) of f (x, qj)− f (x∗, qj) with coefficients κe f j and κegj can be computed by sampling

nc + 1 points (x, y) ∈ B̂c(x∗, ∆c)× {qj}.

36 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

Let m̂0(sc) and m̂M
j (x) be obtained as in Propositions 3.1 and 3.3, respectively.

Let

υ̂j(x) := m̂M
j (x)− m̂0(x) := (x − x∗)⊤gj (j ∈ 1, . . . , nz) (3.8)

and let

τ̄(y − y∗) = f (x∗, y∗) + l̄⊤z (y − y∗) + (y − y∗)⊤ Āz(y − y∗) (3.9)

be a quadratic interpolation of function f (x, y) in the neighborhood {x∗}× B̂z(y∗, 1),

which is obtained by solving problem 3.6a-3.6b over a set of samples Z that includes

the set of points ΩG
d (y

∗, M). A direct result of equations 3.9 and 3.6b is that f (x∗, y) =

τ̄(y − y∗) ∀y ∈ ΩG
d (y

∗, M).

Theorem 3.2. Let f be a function that satisfies Assumptions 1.1 and 1.2. Let m(x∗ +

sc, y∗ + sc) be a surrogate approximation m̂0(sc), with the shape 3.5, where υ̂(sc) are ob-

tained as in Proposition 3.1 and equation 3.8. Let τ̄(sz) be obtained as in equation 3.9. For

any M ∈ M , the model m(x∗ + sc, y∗ + sz) defined in equation (3.4) with

(lz, Az) = (l̄z, Āz)

lc = g0

AM = (M⊤)−1Ag

is mixed-integer fully linear with respect to f (x, y) in the trust-region B̂c(x∗, ∆c)×ΩG
d (y

∗, M)

with constants:

• κ̄e f = max(κe f0 , maxj∈{1,...,nz}(κ̂e f ,j))

• κ̄eg = max(κeg0 , maxj∈{1,...,nz}(κ̂eg,j))

Proof. We remark that this proof is equivalent to the one for Theorem 3.1, the main

difference between the two is that in this case we restrict the error analysis on the set

ΩG
d (y

∗, M), instead of ΩLQMI
d (y∗). It is evident that if the model and gradient error

are bounded on every discrete manifold y ∈ ΩG
d (y

∗, M), the error constants κ̄e f , κ̄eg

for m(x, y) are equal to max(κe f0 , maxj∈{1,...,nz}(κ̂e f ,j)) and max(κeg0 , maxj∈{1,...,nz}(κ̂eg,j)),

respectively.

First, we prove that for all (sc, sz) in B̂c(0, ∆c)× {Mj | j ∈ {1, . . . , nz}} the error in

the function is bounded by κ̄e f ∆2. We recall Proposition 3.3 for the construction of

3.2. Mixed-Integer Fully-Linear Models 37

model approximation m̂M
j (sz)

|m̂M
j (sc)− (f (x + sc, y∗ + Mj)− f (x∗, y∗ + Mj))| ≤ κ̂e f ,j(∆c)2.

Then, we add and subtract the term m̂0(sc) to rewrite the inequality in terms of υ̂j(sc)

(from Proposition 3.8):

|υ̂j(sc) + m̂0(sc) + f (x∗, y∗ + Mj)− f (x∗ + sc, y∗ + Mj)| ≤ κ̂e f ,j(∆c)2.

From Proposition 3.9, f (x∗, y∗ + Mj) = τ̂(Mj) and M−1Mjυ(sc) = υj(sc):

|(Mj)⊤(M⊤)−1υ̂(sc) + m̂0(sc) + τ̂(Mj)− f (x∗ + sc, y∗ + Mj))| ≤ κ̂e f ,j(∆c)2.

The latter is equivalent to the definition of model m in the point (x∗ + sc, y∗ + Mj):

|m(x∗ + sc, y∗ + Mj)− f (x∗ + sc, y∗ + Mj)| ≤ κ̂e f ,j(∆c)2 ≤ κ̄e f (∆c)2.

Now we prove that for all (sc, sz) in B̂c(0, ∆c)× {Mj | ∀j ∈ {1, . . . , nz}} the error in

the approximation of the continuous gradient is bounded by κ̄eg∆c:

∥∇xm̂M
j (sc)−∇x f (x + sc, y∗ + Mj)∥ ≤ κ̂e f ,j∆c.

Now, adding and subtracting the term ∇xm̂0(sc) allows to rewrite the inequality in

terms of υ̂j(sc) (from Proposition 3.8):

∥∇xυ̂j(sc) +∇xm̂o(sc)−∇x f (x + sc, y∗ + Mj)∥ ≤ κ̂e f ,j∆c.

From Definition 3.4 we expand the expression in terms of the Jacobian matrix of

vector υ̂(sc), ∥(Jυ̂(sc))⊤M−1Mj +∇xm̂o(sc)−∇x f (x + sc, y∗ + Mj)∥ ≤ κ̂e f ,j∆c.

The latter is equivalent to the continuous gradient at the point (x∗ + sc, y∗ + Mj):

∥∇xm(x∗ + sc, y∗ + Mj)− f (x∗ + sc, y∗ + Mj)∥ ≤ κ̂eg,j∆c ≤ κ̄eg∆c,

which concludes the proof.

38 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

3.2.4 Conditions for Mixed-Integer Derivative-Free Methods

Theorems 3.1 and 3.2 show that a mixed-integer approximation can always be com-

puted for any point (x, y) ∈ Ωm, a continuous trust-region radius ∆̄ and a matrix

M ∈ M (y). Let ∆max be a given parameter. In order to define a proper class M

of models that approximate the function f , it is required to prove that if a model

m is fully linear in a neighborhood B̂c(x, ∆̄)× Ωd with constants κe f , κeg, then, it is

also fully linear on B̂c(x, ∆) × Ωd for any ∆ ∈ [∆̄, ∆max] with the same constants.

This property will be used to prove the convergence of the Algorithm presented in

Chapter 4.

Lemma 3.4. Suppose Assumption 1.3 holds. Assume that the model m(x + sc, y + sz) is

mixed-integer fully-linear with respect to f (x, y), the trust-region radius ∆̄ and the discrete

set Ωd ⊂ Ωz with constants κeg, κe f . Assume also, without loss of generality, that κg ≤ κeg.

Then, the model m(x + sc, y + sz) is also mixed-integer fully-linear in B̂c(x, ∆) × Ωd for

∆ ∈ [∆̄, ∆max] with the same constants κeg, κe f and κeg/2 ≤ κe f . This condition is called

model accuracy in concentric spheres [66], [67].

Proof. First, we prove that the error constant for the gradient satisfies the desired

properties. Let sc ∈ Rnc be a vector such ∆̄ ≤ ∥sc∥ ≤ ∆, the scalar θ = ∆̄/∥sc∥ ≤ 1,

and w ∈ Ωd. Recalling the mixed-integer fully-linearity of m and that (x + θsc, w) ∈

B̂c(x, ∆)× Ωd we have

∥∇x f (x + θsc, w)−∇xm(x + θsc, w)∥ ≤ κeg∆̄. (3.10)

A bound for ∥∇x f (x + sc, w)−∇xm(x + sc, w)∥ is computed as follows:

∥∇x f (x + sc, w)−∇xm(x + sc, w)∥

= ∥∇x f (x + sc, w)−∇x f (x + θsc, w) +∇x f (x + θsc, w)

−∇xm(x + sc, w)−∇xm(x + θsc, w) +∇xm(x + θsc, w)∥.

3.2. Mixed-Integer Fully-Linear Models 39

Applying the triangle inequality

∥∇x f (x + sc, w)−∇xm(x + sc, w)∥

≤ ∥∇x f (x + sc, w)−∇x f (x + θsc, w)−∇xm(x + sc, w) +∇xm(x + θsc, w)∥

+∥∇x f (x + θsc, w)−∇xm(x + θsc, w)∥

≤ ∥∇x f (x + sc, w)−∇x f (x + θsc, w)−∇xm(x + sc, w)

+∇xm(x + θsc, w)∥+ κeg∆̄.

(3.11)

A bound on the first term of (3.11) is computed using the Lipschitz continuity of ∇ fx

and that ∇xxm(sc, w) = 0, ∀sc ∈ Rnc , w ∈ Ωd

∥∇x f (x + sc, w)−∇x f (x + θsc, w)∥+ ∥∇xm(x + sc, w)−∇xm(x + θsc, w)∥

≤ κg∥sc(1 − θ)∥ ≤ κeg(∥sc∥ − ∆̄).
(3.12)

By combining (3.11) and (3.12) we obtain

∥∇x f (x + sc, w)−∇xm(x + sc, w)∥ ≤ κeg∥sc∥ ≤ κeg∆. (3.13)

Now we establish the constants for the error in the model. Let r : R → Rnc , r(t) =

x + tsc and ζ(t) = f (r(t), w)− m(r(t), w). We have that |ζ(r(θ))| = | f (x + θsc, w)−

m(x + θsc, w)| ≤ κe f ∆̄ and |g(r(1))| = | f (x + sc, w) − m(x + sc, w)|. Recalling the

fundamental theorem of line integrals:

|ζ(r(1))− ζ(r(θ))| =
∣∣∣∣∫ 1

θ
∇xζ(r(t)) · dr(t)

dt
dt
∣∣∣∣ ≤ ∫ 1

θ
∥∇xζ(r(t))∥ ·

∥∥∥∥dr(t)
dt

∥∥∥∥ dt.

As dr(t)
dt = sc and using (3.13)

∥∇xζ(r(t))∥ ≤ tκeg∥sc∥ ∀t ≥ θ

|ζ(r(1))− ζ(r(θ))| ≤
∫ 1

θ
t · κeg∥sc∥2dt ≤ (1 − θ2)

2
κeg∥sc∥2 ≤ κe f (∥sc∥2 − ∆̄2).

The bound is finally obtained by using the triangle inequality

| f (x + sc, w)− m(x + sc, w)| ≤ |ζ(r(1))− ζ(r(θ))|+ |ζ(r(θ))| ≤ κe f ∥sc∥2 ≤ κe f ∆2.

(3.14)

40 Chapter 3. Locally Quadratic Mixed-Integer Functions and Approximations

The proof is complete.

Lemma 3.4 implies that there exists a suitable pair of constants κe f , κeg for every

(x, y) ∈ Ωm, for which the error in every fully-linear model constructed in the do-

main B̂c(x, ∆) × Ωd (with ∆ ∈ (0, ∆max]) is bounded by κe f ∆2, κeg∆. Theorems 3.1

and 3.2 show that the error in the approximation of a mixed-integer function in a

suitably-defined neighborhood depends on the error constants of the linear approx-

imation of the function with respect to the continuous variables; in the LQMI case,

it also depends on the ∥M−1∥. Conn et al. [51] show that the error constants in the

linear interpolation case are a function of the Lipschitz constant and the geometry of

the points inside a trust-region. Thus, if ∥M−1∥ and κg are bounded we guarantee

that we are able to construct a mixed-integer fully-linear approximation of function

f at any point in the domain, with error bounded by a global set of constants κe f , κeg:

Proposition 3.4. For any given function f that satisfies Assumption 1.3 and the class of

discrete sets Ω̄ = {ΩG
d (y, M) | y ∈ Ωz, M ∈ M (y)}, we guarantee that there exists a

fully-linear class of models M (Definition 3.2) with suitable positive global constants κe f , κeg

such that, for any given ∆ ∈ (0, ∆max], (x, y) ∈ Ωm and Ωd ∈ Ω̄, the error in the function

and gradient approximation is bounded. Moreover, we can obtain a fully-linear model from

this class in a finite, uniformly bounded number of operations and function evaluations.

Proposition 3.5. For any given LQMI function f , (i.e, f satisfies Assumptions 1.1, 1.3,

3.1 and 3.2) and the class of discrete sets Ω̄ = {ΩLQMI
d (y) | ∀y ∈ Ωz}, we guarantee that

there exists a fully-linear class of models M (Definition 3.2) with suitable positive global

constants κe f , κeg such that, for any given ∆ ∈ (0, ∆max], (x, y) ∈ Ωm, and Ωd ∈ Ω̄, the

error in the function and gradient approximation is bounded. Moreover, we can obtain a

fully-linear model from this class in a finite, uniformly bounded number of operations and

function evaluations.

3.3 Conclusions and Future Work

In this chapter we have introduced the concept of Locally Quadratic Mixed-Integer

function (LQMI), which allows us to overcome the lack of knowledge on the contri-

bution of the discrete variables on the objective function and the interaction between

3.3. Conclusions and Future Work 41

integer and continuous variables. Moreover, we extended the concept of fully-linear

surrogate models into the mixed-integer domain and introduced a general frame-

work for the computation of accurate models for the LQMI function. In addition,

we introduced methods for the fast computation and update of LQMI surrogates.

Finally, we proved that the framework for computing LQMI models can be used

for the approximation of a general mixed-integer function, the output is a quadratic

model that is accurate in a reduced mixed-integer domain. These results are used in

Chapter 4 to devise a trust-region algorithm for the solution of Problem 1.1.

We highlight that the model construction framework introduced in this chapter

resembles the manifold sampling method [84]–[86] that computes gradient approxi-

mation by sampling in different parts of the domain.

In the future, we hope to extend the notions of mixed-integer fully-linear models

into other types of surrogate approximation. We are particularly interested in using

the RBFs, a class of functions that globally approximates the objective function and

are less restrictive than the polynomial models for the management of the geometry

of the interpolating set. We believe that the method introduced in this chapter can

extend the results of the work of Wild and Shoemaker [64].

43

Chapter 4

LQMI-Based Trust-Region

Algorithm

Theorems 3.1 and 3.2 show that the model m(x∗ + sc, y∗ + sz) obtained after impos-

ing lc = g0, AM = (M⊤)−1Ag and fully determining the integer coefficients lz, Az,

is mixed-integer fully linear. In this chapter, we present a trust-region algorithm

based on this principle. The output of this algorithm is a point (x̂, ŷ) that is station-

ary with respect to a discrete set ΩLQMI
d (ŷ) if f is an LQMI function, and stationary

with respect to a discrete set ΩQ
d (ŷ) for which ΩG

d (ŷ, M) ⊆ ΩQ
d (ŷ) ⊂ ΩLQMI

d (ŷ) with

|ΩQ
d (ŷ)| ≤

(nz+1)(nz+2)
2 , otherwise.

We introduce Θk and Θ̄k, mixed-integer stationarity parameters that allow us to pre-

vent early convergence into a first-order stationary point that only considers the

continuous variables:

Definition 4.1. Let ϵa and ϵc be positive user defined parameters in Algorithm 4.1. For

given xk, yk ∈ Ωm let the partial mixed integer stationarity parameter Θk and the adjusted

mixed-integer stationarity parameter Θ̄k be:

Θk = max
y∈Q(yk ,Mk)

min
x∈B̂c(xk ,∆c

k)∩Ωc

mk(xk, yk)− mk(x, y)

and

Θ̄k =

Θk if Θk ≥ max{ϵa, ϵc}

0 otherwise.

44 Chapter 4. LQMI-Based Trust-Region Algorithm

Definition 4.2. Let the combined stationary parameter Φk be defined as

Φk = max{∥red(lc
k, xk)∥, Θ̄k}.

4.1 Overview of the Proposed Algorithm

The LQMI-based trust-region algorithm is presented in Algorithm 4.1. For a given

iteration k, the center of the trust-region is denoted by (xk, yk). Yk indicates the set

of points sampled up to iteration k and Xk
w = {x ∈ Rnc | (x, w) ∈ Yk} is the set of

points with same integer component w ∈ Znz . The basic idea is to compute at each

iteration a model mk by sampling on the continuous manifolds of the integer points

qj
k ∈ Q(yk, Mk) and on the continuous manifold of yk. The set of integer generating

vectors Mk can potentially change at each iteration and it is selected according to

rules that allows one to reuse sampled points from previous iterations. We identify

by X̄k
o ⊆ Xk

yk
, X̄k

j ⊆ Xk
qj

k

and Z̄k the points used to compute the model approximations

at iteration k.

The inputs of the algorithm are: the black-box function f (x, y), the variable lower

bounds (xlb, ylb) and upper bounds (xub, yub), the initial center of the trust-region

(x0, y0) ∈ Ωm, the starting and maximum size of the trust-region ∆icbc
0 , ∆icbz

0 , ∆c
max

and ∆z
max, the parameters used to update the region γ0 and γ1, the parameters used

to evaluate the quality of an iteration η0 and η1, the scaling parameters of the critical

step µ and β, and the reduction factor of the trust-region ω used in the criticality

step. Tolerance values ϵc and ϵa are used to activate the Criticality Step and to accept

new iterates in a rescue procedure, respectively. Finally, we consider the parameters

used for model construction and maintenance: UP determines if a inexpensive up-

date of the model is done after a successful iteration, IC determines if the quadratic

interpolation τ(y) is fully-determined or not, SH identifies if a search heuristic is

activated before or after the solution of the surrogate approximation, and c f r rep-

resents the fraction of samples required to compute the approximation of terms lc,k

and AM,k.

4.1. Overview of the Proposed Algorithm 45

Algorithm 4.1 DFO MINLP algorithm

Input: Function f (x, y), variable bounds xlb, xub and ylb, yub, initial point (xo, yo) ∈
Ωm. Initial trust-region radius ∆icbc

0 , ∆icbz
0 , ∆c

max and ∆z
max; γ0, γ1 such that 0 <

γ0 < 1 < γ1, η0, η1 such that 0 < η0 < η1 < 1 ; 0 < β < µ; ϵa, ϵc > 0; and
ω ∈ (0, 1)
UP ∈ {0, 1}, c f r ∈ (0, 1], IC ∈ {0, 1} and SH ∈ {0, 1}

Output: Local minimum (x̂, ŷ) of f (x, y)
1: Set k := 0, set ϵ̄ = max{ϵc, ϵa}
2: Set M0 = IntegerTransformation(y0, ylb, yub, ∅, ∆icbz

0)
3: Set Q0 = Q(y0, M0)
4: Set Y0 = (x0, y0) ∪

⋃
qj∈Q0(x0, qj)

5: Set (micb
o , X̄k

o , X̄k
j , Z̄k) =

MixedIntegerModelComputation(x0, xlb, xub, y0, ylb, yub, ∆icbc
0 , ∆icbz

0 , Q0, Y0, c f , IC)
6: repeat
7: if Φicb

k < ϵc and (micb
k is not fully-linear or ∆icb

k > µ∥red(licb
c,k , xk)∥) then

8: Set (m̃k, ∆̃k, Yk, Mk) =
CriticalityTest(xk, yk, xlb, xub, ylb, yub, ∆icbc

k , ∆icbz
k , Yk, Mk, ω, µ, ϵc, c f r, IC)

9: Set mk = m̃k
10: Set ∆c

k = min{max{∆̃k, β∥red(l̃c,k, xk)∥}, ∆icbc
k }

11: Set ∆z
k = max

{
∆c

k
∆icbc

k
∆icbz

k , 1
}

12: else
13: Set mk = micb

k , ∆c
k = ∆icbc

k , ∆z
k = ∆icbz

k
14: end if
15: Set (x′, y′, ρk) = CandidateComputation(xk, yk, Yk, ϵa, SH)
16: if ρk ≥ η0 then
17: if ρk ≥ η1 then
18: Set ∆icbc

k+1 = min{γ1∆c
k, ∆c

max}, ∆icbz
k+1 = min{γ1∆z

k, ∆z
max}

19: end if
20: Set (micb

k+1, X̄k+1
o , X̄k+1

j , Z̄k+1, Mk+1) =

ModelUpdate(mk, x′, xlb, xub, y′, ylb, yub, ∆icbc
k+1, ∆icbz

k+1, Yk, UP, c f r, IC)
21: else
22: Set x′ = xk, y′ = yk
23: if Model mk is not mixed-integer fully linear then
24: Set (micb

k+1, X̄k
o , X̄k

j , Z̄k) = GeometryImprovement(X̄k
o , X̄k

j , Z̄k)

25: else
26: (x̄, ȳ) = RescueProcedure(mk, QkYk, ϵa)
27: if f (x̄, ȳ) < f (xk, yk) then
28: Set (x′, y′) = (x̄, ȳ)
29: Set (micb

k+1, X̄k+1
o , X̄k+1

j , Z̄k+1, Mk+1) =

ModelUpdate(mk, x′, xlb, xub, y′, ylb, yub, ∆c
k, ∆z

k, Yk, UP, c f r, IC)
30: else
31: Set micb

k+1 , ∆icbc
k+1 = γ0∆c

k, ∆icbz
k+1 = max{γ0∆z

k, 1}
32: Set Mk+1 = IntegerTransformation(yk, ylb, yub, ∆icbz

k+1)
33: end if
34: end if
35: end if
36: Set (xk+1, yk+1) = (x′, y′)
37: Set k = k + 1
38: until Convergence is proven

46 Chapter 4. LQMI-Based Trust-Region Algorithm

The initialization (Lines 1 − 5) corresponds to setting the first set of integer gen-

erating vectors to the identity matrix, computing the associated set of integer gener-

ating points (see Definitions 3.5 and Definition 3.3) and the initial set of samples Y0

is initialized by adding the initial center of the trust-region and the points obtained

after moving the center of the trust-region along the directions given by M0. Finally,

a first incumbent model micb
0 is computed (Line 5). See Equation 3.4 for a definition

of the model m. The main part of the algorithm consists of a loop (Lines 6 − 38) that

is repeated until a stopping criterion is reached. The loop starts by checking if the

combined stationarity parameter Φicb
k of the incumbent model micb

k is smaller than

a given threshold ϵc (Line 7), implying algorithmic convergence into a first-order

stationary point. In this case, the Criticality Step (Lines 8 − 11) is invoked. The Crit-

icalityTest evaluates at the same time if the incumbent model is fully-linear (under

the assumption that the function is LQMI) and if there exists certain relationship be-

tween the reduced gradient red(licb
c,k , xk) and the continuous trust-region radius. If

micb
k does not accomplish both conditions, the CriticalityTest (Algorithm 4.2) is used

to generate a new model for which Φk ≥ Θ̄k ≥ ϵc, or, a model where both conditions

hold (Line 8). However, if the model micb
k is fully-linear and the desired relationship

is satisfied,the model micb
k is accepted (Line 13) and subsequently used to compute a

new candidate solution.

After the Criticality Step, a new candidate solution (x′, y′) is computed together

with the update parameter ρk (Line 15). If ρk ∈ [ηo, η1) iteration k is said to be a

successful iteration, when the new solution yields a sufficiently large improvement

with respect to the previous solution. Furthermore, if ρk > η1 iteration is said to

be very-successful. If we have a successful or very-successful iteration (i.e., ρk ≥ η0),

we use (x′, y′) as new center of the trust-region, and we generate the model to be

used in the next iteration. This procedure takes into account the parameter UP to

use quick linear update of the current model or to generate a new one centered on

(x′, y′). Moreover, if we have a very-successful iteration (i.e., ρk ≥ η1), we increase the

size of the trust-region (Line 18).

In case ρk ≤ η0 we check if the model used is fully-linear (Line 23). Under the

assumption that the function is LQMI, the mixed-integer fully-linearity is achieved

when all the continuous-related elements of the model (lc, AM) are computed using

4.1. Overview of the Proposed Algorithm 47

fully-linear approximations on the continuous manifolds at yk and Q(yk, Mk), and

the quadratic elements of the model lz, Az determine all the degrees of freedom for

Problem 3.6a-3.6b. In case model mk is mixed-integer fully-linear the rescue proce-

dure is invoked (Line 26). The goal of the rescue procedure is to search for candidate

points to be used as center of the trust-region, exploiting the fully-linearity of mk

with respect to the integer neighborhood ΩG
d (yk, Mk) as described in Theorem 3.2.

The rescue procedure is required for the algorithmic convergence in functions that

are not LQMI and in general it can be complemented with any heuristic without

affecting said convergence. If the rescue procedure succeeds in improving the ob-

jective function (Line 27), the iteration is said acceptable and the model is updated

accordingly (Line 29). If this is not the case, the iteration k is called unsuccessful and

the size of the trust-region is reduced (Line 31). If the fully-linearity condition is not

satisfied, we have a model-improving iteration, where a geometry procedure is called

to add (if necessary) a new sample to each of the sets of interpolation points X̄k
0, X̄k

j

and Z̄k to improve the quality of the model (Line 24).

In the subsequent subsections we describe all the procedures used in Algorithm 4.1.

Remark 1. Section 3.2 details that a fully-linear surrogate is obtained by considering a

matrix M with columns in B̂z(0, 1) (see Definition 3.3). However, Algorithm 4.1 considers

a set of matrices dependent on ∆z
k, with the elements of Mk in B̂z(0, ∆z

k). This does not

affect algorithmic convergence with respect to the sets ΩQ
d (yk) and ΩLQMI

d (yk), since in

Section 4.2 we prove that Algorithm 4.1 generates an infinite number of iterations such that

∆z
k = 1, as long as the matrix Mk is not singular (or ∥M−1

k ∥ > 0).

4.1.1 CriticalityTest (Algorithm 4.2)

This procedure is used to evaluate the convergence into a first-order stationary point.

The CriticalityTest aims to generate an approximation m̃k of f (xk, yk) for which at

least one of the followings conditions holds:

• Θ̃k ≥ ϵ̄ ≥ ϵc

• µ∥red(l̃, xk)∥ ≥ ∆̃k and m̃k is fully-linear with respect to ∆̃k.

To guarantee these conditions, at first we use the ManifoldSearch (Line 1) proce-

dure that attempts to retrieve a model m̃k and an matrix Mk such that max{ϵc, ϵa} ≤

48 Chapter 4. LQMI-Based Trust-Region Algorithm

Θ̃k ≤ Φk. The ManifoldSearch iteratively selects one point y on a randomly defined

finite set ΩMS
k ⊂ B̂z(yk, ∆z

k) and constructs a continuous fully-linear approximation

of f̂y(x) with respect to ∆̃k. If the model improvement (with respect to f (xk, yk)) ex-

ceeds max{ϵc, ϵa}, the vector y − yk is included in the matrix Mk, the mixed-integer

model is updated and the ManifoldSearch procedure is stopped. Otherwise the

procedure is repeated until the last element of ΩMS
k . We remark that the Manifold-

Search does no affect convergence to a fist-order stationary point nor necessary for

proving algorithmic convergence; however, it is useful in preventing the early con-

vergence of Algorithm 4.1 to a suboptimal solution.

If the ManifoldSearch fails in achieving the desired Θ̃k, we invoke an iterative pro-

cedure (Lines 8 - 13), whose outcome is a fully-linear model with µ∥red(l̃, xk)∥ ≥ ∆̃k.

If ∥red(∇x f (xk, yk), xk)∥ > 0 this loop must be finished in a finite number of itera-

tions [66]. We highlight that the outcome of this algorithm is a model mk such that

Φk ≥ ϵc or Φk ≥ ∥red(lc
k, xk)∥µ−1 ≥ ∆c

kµ−1 and fully-linear.

Algorithm 4.2 CriticalityTest

Input: Point (xk, yk), variable bounds (xlb, xub) and (ylb, yub), sampling set Yk, trans-
formation matrix Mk, continuous radius ∆icbc

k , integer radius ∆icbz
k ,the reduction

factor of the trust-region ω, geometric parameter µ, criticality tolerance ϵ̄ and
modelling parameters c f r, IC.

Output: m̃k, ∆̃k, Yk, Mk
1: Set m̃k, Θ̃k, Mk = ManifoldSearch(xk, yk, xlb, xub, ylb, yub, ∆icbc

k , ∆icbz
k , Yk, Mk, ϵ̄)

2: if Θ̃k ≥ ϵ̄ then
3: Set ∆̃k = ∆icb

k
4: return m̃k, ∆̃k, Yk, Mk
5: else
6: Set i = 1
7: repeat
8: Set ∆̃k = ωi−1∆icb

k
9: Set ∆̃z

k = max{1, ωi−1∆icbz
k }

10: Set M̃k = IntegerTransformation(yk, ylb, yub, ∆z), Q̃k = Q(yk, M̃k)
11: Set (m̃k, X̄k

o , X̄k
j , Z̄k) =

MixedIntegerModelComputation(xk, xlb, xub, yk, ylb, yub, ∆̃k, ∆̃z
k, Q̃k, Yk, 1, 1)

12: i = i +1
13: until ∆̃k ≤ µ∥red(l̃c,k, xk)∥
14: end if

4.1. Overview of the Proposed Algorithm 49

4.1.2 CandidateComputation (Algorithm 4.3)

In this procedure the information from model mk and the set Yk is used to gener-

ate a point (x′, y′) that potentially yields an objective reduction, and to provide an

estimate of the fitness of the surrogate approximation by computing the update pa-

rameter ρk. The parameter SH defines if the surrogate optimization is done before or

after evaluating the best solution in previous samples. Note that if a better solution

is found among the points used for model construction (Lines 3 and 9), the update

parameter ρk is set to η0 to not modify the trust-region radii ∆c and ∆z.

Algorithm 4.3 CandidateComputation

Input: Point (xk, yk), set of samples Yk, acceptance tolerance ϵa and search heuristic
parameter SH

Output: New candidate solutions (x′, y′) and update parameter ρk
1: Set (x̄, ȳ) = argmin(x,y)∈Yk{ f (x, y)}
2: if SH = 1 then
3: if f (xk, yk)− f (x̄, ȳ) ≥ ϵa then
4: ρk = η0
5: Go to line 14
6: end if
7: end if
8: Set (x, y) = argmin(x,y)∈B̂z(xk ,yk ,∆c

k ,∆z
k)∩Ωm

mk(x, y) and sc = x − xk, sz = y − yk

9: if ∥sz∥1 ≥ 1 and mk(xk, yk)− mk(xk + sc, yk + sz) ≥ ϵa then
10: Set (x′, y′) = (xk, yk), ρk = 0
11: else
12: ρk =

f (xk ,yk)− f (xk+sc,yk+sz)
mk(xk ,yk)−mk(xk+sc,yk+sz)

13: end if
14: Set (x̃, ỹ) =

argmin(x,y)∈Yk { f (x, y) | f (xk, yk)− f (x, y) ≥ (min{∥y − yk∥1, 1})ϵa}
15: if ρk ≥ η0 then
16: if f (x̃, ỹ) < f (xk + sc, yk + sz) then
17: Set (x′, y′) = (x̃, ỹ), ρk = η0
18: else
19: Set (x′, y′) = (xk + sc, yk + sz)
20: end if
21: end if

4.1.3 ModelUpdate(Algorithm 4.4)

This procedure is activated when a successful iteration occurs ρk ≥ η0. In it, a new

basis of generating vectors Mk+1 is computed. Such discrete directions are chosen

from the set B̂z(yk, ∆̂z) ∩ Ωz using a modified pivoting algorithm that aims for the

reduction of ∥M−1
k+1∥, a term related to the error constants of an LQMI function (see

50 Chapter 4. LQMI-Based Trust-Region Algorithm

Theorem 3.1). Finally, a new incumbent model micb
k+1 is computed for the next iter-

ation by updating the current one, or by computing a new surrogate using Algo-

rithm 4.6 centered in the point (xk+1, yk+1). Model computation is explained in the

next subsection.

Algorithm 4.4 ModelUpdate

Input: Model mk, new trust-region center (xk+1, yk+1), variable bounds (xlb, xub)
and (ylb, yub), trust-region radii ∆c, ∆z set of samples Yk, update decision UP,
and, modelling parameters c f r, IC

1: Set Mk+1 = IntegerTransformation(yk, ylb, yub, ∆z)
2: if UP then
3: Use equation 3.7 to update linear terms in mk to generate micb

k+1
4: else
5: (micb

k+1, X̄k
o , X̄k

o , Z̄k) =

MixedIntegerModelComputation(xk+1, yk+1, ∆c, ∆z, Qk+1, Yk, c f r, IC)
6: end if

4.1.4 RescueProcedure (Algorithm 4.5)

In this procedure we use the properties of mixed-integer fully-linear models in a

final attempt to obtain a decrease in the objective. This procedure takes as input the

model mk, the set of discrete directions Qk, the set of previously sampled points Yk

and an acceptance tolerance ϵa.

The new candidate is estimated by optimizing the surrogate model, restricting

the integer search in the directions Mk, as well as in the current manifold (sz = 0):

min
(x,y)

mk(x, y) (4.1)

x ∈ B̂c(xk, ∆c
k) ∩ Ωc (4.2)

 V

y = yk

 ∨


¬V

y ∈ Q(yk, Mk)

mk(xk, yk)− mk(x, y) ≥ ϵa

 (4.3)

V ∈ {True, False} (4.4)

Problem 4.1-4.4 can by solved by enumeration or by formulating it as a disjunctive

optimization problem.

4.1. Overview of the Proposed Algorithm 51

Algorithm 4.5 RescueProcedure

Input: Model mk, set of discrete directions Qk, set of previously sampled points Yk,
acceptance tolerance ϵa

Output: Point (x′, y′)
1: Set (x̃, ỹ) = argmin(x,y)∈Yk{ f (x, y) | f (xk, yk)− f (x, y) ≥ ϵa}
2: Solve problem 4.1 to compute (x̄, ȳ)
3: if f (x̃, ỹ) < f (x̄, ȳ) then
4: Set (x′, y′) = (x̃, ỹ)
5: else
6: Set (x′, y′) = (x̄, ȳ)
7: end if

4.1.5 MixedIntegerModelComputation (Algorithm 4.6)

A new surrogate is created using the previous samples Yk and considering the pa-

rameters c f , IC. If c f = 1 and IC = 1 the model immediately becomes mixed-integer

fully linear. LinearInterpolationSet is a procedure that selects nc + 1 samples to

compute a linear interpolation, using a geometry improvement that improves the

poisedness of the interpolation set. We remark that if c f r < 1, the approximation

is underdetermined and some samples are kept for future use in the GeometryIm-

provement procedure, unless all the points selected by the algorithm have already

been explored in previous iterations. QuadraticInterpolationSet is a procedure de-

signed to select the best sampling set to interpolate a second order approximation

of the function f (xk, y) in the set B̂z(yk, ∆z
k) ∩ Ωz based on an existing set of samples

QN (Line 8). Now we briefly explain methodologies to compute linear and quadrat-

icaly independent sets of interpolating samples. We point out that such techniques

have been developed for real variables, however, they can be easily extended to the

integer case.

4.1.6 Geometry Improvement - LinearInterpolationSet

This procedure can be performed in two ways: using Pivoting algorithms, or using

the Λ-parameter [87]. To exemplify their use we now detail the pivoting algorithms.

In the continuous case (nz = 0) the quality of a surrogate model, computed from

interpolation or regression, depends directly on the position of the samples inside

the trust-region. In the linear interpolation case, the two error constants κe f , κeg can

52 Chapter 4. LQMI-Based Trust-Region Algorithm

Algorithm 4.6 MixedIntegerModelComputation

Input: Point (xk, yk), variable bounds (xlb, xub) and (ylb, yub), Trust-Region Radii ∆c

and ∆z, set of generating points Qk and set of sampled points Yk

Modeling parameters c f and IC
Output: Mixed-integer model m and the points used to compute it X̄k

o , X̄k
j and Z̄k

1: X̄k
o = LinearInterpolationSet(Xyk , xk, xlb, xub, ∆c, c f)

2: Yk = Yk ∪ {(x, yk) | x ∈ X̄k
o}

3: Compute lc from X̄o
4: for all qj ∈ Qk do
5: X̄k

j = LinearInterpolationSet(Xqj , xk, xlb, xub, ∆c, c f)

6: Yk = Yk ∪ {(x, qj) | x ∈ X̄k
j }

7: end for
8: Compute AM from X̄k

j and lc

9: QN = {y ∈ Ωz | (xk, y) ∈ Yk, y ∈ B̂z(yk, ∆z)}
10: Z̄k = QuadraticInterpolationSet(QN, yk, ylb, yub, ∆z, IC)
11: Compute the integer interpolation terms lz, Az from Ẑk by solving the quadratic

interpolation problem 3.6a

be defined as follows [51]:

κeg = v(1 + n1/2
1 ∥X̃−1∥/2)

κe f = κeg + v/2,

where v is the Lipschitz constant of f (x) and X̃, x̃i,j ∈ [0, 1] is the matrix of scaled

displacements from the trust-region center x∗:

X̃ =
1

∆c


x1,1 − x∗1 , . . . , xn1,1 − x∗1

...,
. . . ,

...

x1,n1 − x∗n1
, . . . , xn1,n1 − x∗n1

 .

Pivoting algorithms based on the LU and QR factorization consist in the use of Gaus-

sian elimination to compute the simplex geometry that yields the smallest possible

bound of ∥X̃−1∥ (which is related to the concept of a positive uniform basis [88]),

thus reducing the error constants in the process. A LinearInterpolationSet proce-

dure based on the pivoting algorithm takes as input the set of points which have

been previously sampled inside the trust-region and it is able to complete the sam-

pling set if needed. It requires a pivoting tolerance ξ ∈ (0, 1/4] that sets an upper

bound for ∥X̃−1∥: ∥X̃−1∥ ≤ n1/2
1 ϵgrowth/ξ, where ϵgrowth > 0 is an estimated growth

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 53

factor that occurs during factorization.

4.2 Convergence of Algorithm 4.1 to a First-Order Critical

Point

In this section, we prove that Algorithm 4.1 is globally convergent to a first-order

critical point. The proof consists of the following steps. First, we introduce the con-

cepts of generalized Cauchy step, generalized Cauchy point and criticality measure, which

are crucial for the convergence of trust-region methods. Then, we show that un-

less a point is stationary, model update procedures compute a model for which the

gradient red(lc,k, xk) and the trust-region radius ∆c
k diverge from zero, and that ob-

jective improvement is always possible. Finally, we prove by contradiction that the

sequence {xk, yk} is convergent, and its limiting value (x̃, ỹ) is first-order stationary

with respect to the continuous variables, as well as an ϵa minimizer with respect

to the integer set ΩQ
d (ỹ). This is the same approach typically used in convergence

proofs for trust-region methods in the continuous case [67] [66], but here we show

that similar arguments also hold in the mixed-integer case, using the approxima-

tion models discussed in previous sections. We remark that from Definition 3.2, and

Propositions 3.4 and 3.5 we consider the same error constants κe f , κeg in every fully-

linear approximation.

4.2.1 Stationarity Conditions on Continuous Variables

In this subsection, we introduce several building blocks for the main convergence

proof. Let us define the function χk as a measure of stationarity of f (x, y) with re-

spect to the continuous variables.

Definition 4.3. For s ∈ Rnc and r ∈ R, the function χk is defined as:

χk(xk, s, r) = | min
d∈Rnc

d⊤s|

s.t. xk + d ∈ Ωc

∥d∥ ≤ r .

54 Chapter 4. LQMI-Based Trust-Region Algorithm

A point (xk, yk) ∈ Ωm is said to be stationary with respect to f (x, y) and Ωc if

χk(xk,∇x f (xk, yk), 1) = 0. χk is a direct substitute of ∥∇x f (x, y)∥ for the constrained

optimization case.

Equipped with this definition, we can now discuss the type of local optimality

that we aim for.

Definition 4.4. The point (x∗, y∗) at iteration k is mixed-integer first-order critical with

respect to the mixed-integer set ND and the optimality tolerance ϵopt if:

f (x∗, y∗) ≤ f (x, y) + ϵopt ∀(x, y) ∈ ND(x∗, y∗)

χk(x∗,∇x f (x∗, y∗), 1) = 0.

We now define the projection of a vector PΩc(x), and the projected path with

respect to the continuous box Ωc and the continuous center xk at iteration k. Then,

we extend the concept of generalized Cauchy step and Cauchy point to the mixed-

integer case.

Definition 4.5. The projection PΩc : Rnc → Rnc is defined as:

[PΩc(x)]i =


xub,i if xi ≥ xub,i

xlb,i if xi ≤ xlb,i

xi else.

Definition 4.6. Let xk ∈ Ωc. The projected path with respect to vector s ∈ Rnc is defined

as pk(xk, s, t) = PΩc(xk − t · s).

Definition 4.7. Let (xk, yk) ∈ Ωm. The Generalized Mixed-Integer Cauchy step tC
k of mk

with respect to Ωc and ∆c
k is defined as follows:

tC
k = argmin

t≥0
mk(pk(xk, lc

k, t), yk)

s.t. pk(xk, lc
k, t) ∈ B̂c(xk, ∆c

k),

which for the setting of Algorithm 4.1 is equivalent to:

tC
k = argmin

t≥0, pk(lc
k ,t)∈B̂c(xk ,∆c

k)

(lc
k)

⊤(pk(lc
k, t)− xk).

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 55

The Generalized Cauchy Point is given by xC
k = pk(xk, lc

k, tC
k).

We highlight that for the unbounded optimization case the Cauchy step can be

viewed as a line-search optimization in the direction −lc
k on the sphere B̂c(xk, ∆c

k),

and it determines stationarity with respect to the continuous variables. However,

the presence of box constraints requires the use of an additional criterion mimick-

ing the first-order Karush–Kuhn–Tucker [89] conditions of the constrained problem.

Such criterion is incorporated in the function χk(xk, s, r). Let χ̄k := χk(xk, lc
k, 1). The

criticality measure χ̄k and the function χk have some properties that allow us to estab-

lish convergence to a first-order stationary point over the set Ωc:

Lemma 4.1. (Conn et al. [90], Lemma 2.2) Suppose that xk ∈ Ωc and Ωc is nonempty,

closed and convex; then:

1. The function χk(xk, s, r) is continuous and non-decreasing as a function of r for all

r > 0.

2. The function χk(xk ,s,r)
r is non-increasing as a function of r for all r > 0.

Theorem 4.1. (Conn et al. [67], Theorem 12.1.4) Suppose that xk ∈ Ωc, s ∈ Rnc and

t > 0. Then, a solution d̃ of the problem

min
d∈Rnc

{d⊤s | xk + d ∈ Ωc, ∥d∥ ≤ ∥pk(xk, s, t)− xk∥}

is given by d̃ = pk(xk, s, t)− xk.

Theorem 4.2. (Conn et al. [67], Theorem 12.1.6) Suppose that Assumption 1.2 holds,

then the quantity χk(xk,∇x f (xk, yk), 1) is a proper first-order criticality measure for the

optimization problem 1.1. In other words, χk(xk,∇x f (xk, yk, 1)) is nonnegative, continuous

with respect to x (at fixed values of y) and vanishes if and only if xk is first-order critical.

Considering that Algorithm 4.1 is aimed at tackling simple bounds constraints,

it is natural to consider a stationarity measure which does not involve the solution

of any additional optimization problem as in χ̄k. We consider the norm of red(lc
k, xk)

as a valid stationarity measure. Now we show the equivalence between the Cauchy

step, criticality measure χ̄k and ∥red(lc
k, xk)∥:

56 Chapter 4. LQMI-Based Trust-Region Algorithm

Lemma 4.2. Let xk ∈ Ωc. Then, for any vector s ∈ Rnc , we have:

χk(xk, red(s, xk), 1) ≥ χk(xk, s, 1) and ∥red(s, xk)∥ ≥ χk(xk, s, 1).

Proof. First we suppose that xlb,i < xk,i < xub,i ∀i ∈ {1, . . . , nc}. In this case red(s, xk) =

s, thus χk(xk, red(s, xk), 1) = χk(xk, s, 1). Now suppose that xk lies on the boundary

of Ωc. Let d ∈ Rnc be the vector that minimizes the problem χk(xk, s, 1). Consider the

coordinates i for which xk,i = xlb,i; then di ≥ 0 and sidi ≥ min{0, si}di = red(s, xk)idi.

Similarly, for the coordinates i such that xk,i = xub,i, then di ≤ 0 and

sidi ≥ max{0, si}di = red(s, xk)idi.

Altogether, this implies that 0 ≥ s⊤d ≥ (red(s, xk)
⊤d). Thus, χk(xk, red(s, xk), 1) ≥

|(red(s, xk))
⊤d| ≥ |s⊤d| = χk(xk, s, 1).

For the second statement, suppose that d̄ ∈ Rnc is the vector that minimizes the

problem χk(xk, red(s, xk), 1); then:

χk(xk, red(s, xk), 1) = |(red(s, xk)
⊤d̄)| ≤ ∥d̄∥ · ∥red(s, xk)∥ ≤ ∥red(s, xk)∥.

Lemma 4.3. Suppose xk ∈ Ωc and t > 0. Then pk(xk, lc
k, t) = pk(xk, red(lc

k, xk), t).

Proof. Suppose first that xlb,i < xk,i < xub,i ∀i ∈ {1, . . . , nc}; then lc
k = red(lc

k, xk) and

the condition holds. Then, suppose xk,i = xub,i for some i; in this case

[pk(xk, lc
k, t)]i = max{xlbi , xub,i − t max{0, lc

k,i}}

and

[pk(xk, red(lc
k, xk), t)]i = max{xlbi , xub,i − t max{0, max{0, lc

k,i}}}

= max{xlbi , xub,i − t max{0, lc
k,i}}.

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 57

Thus, [pk(xk, lc
k, t)]i = [pk(xk, red((lc

k, xk), t)]]i. We can similarly prove the case xk,i =

xub,i:

[pk(xk, lc
k, t)]i = min{xubi , xlb,i − t min{0, lc

k,i}}

and

[pk(xk, red((lc
k, xk), t)]i = min{xubi , xlb,i − t min{0, min{0, lc

k,i}}}

= min{xubi , xlb,i − t min{0, lc
k,i}},

which concludes the proof.

Theorem 4.3. Suppose xk ∈ Ωc. If ∥red(lc
k, xk)∥ > 0, then ∥xC

k − xk∥ > 0.

Proof. This statement is proven by contradiction. Suppose that ∥red(lc
k, xk)∥ > 0

and xC
k = xk. Note that xk,i > xlb,i ∀i ∈ supp+(red(lc

k, xk)), xk,i < xub,i ∀i ∈

supp−(red(lc
k, xk)) and |supp+(red(lc

k, xk)) ∪ supp−(red(lc
k, xk))| > 0. Now we de-

termine the maximum scalar t̄ > 0 for which xk − t̄ · red(lc
k, xk) ∈ Ωc. Let

t̄+ = min
i∈supp+(red(lc

k ,xk))

{
(xk,i − xlbi)

[red(lc
k, xk)]i

}
> 0

and

t̄− = min
i∈supp−(red(lc

k ,xk))

{
(xxk ,i − xubi)

[red(lc
k, xk)]i

}
> 0.

Above, if |supp+(red(lc
k, xk))| = 0 or |supp−(red(lc

k, xk))| = 0 then we assume

t̄+ = ∞ or t̄− = ∞, respectively. Let t̄ = min{t̄+, t̄−}. From Lemma 4.3, xk − t̄ ·

red(lc
k, xk) = pk(xk, lc

k, t̄), so that pk(xk, lc
k, t̄) is a feasible solution of the problem used

in the definition of the Cauchy step (Definition 4.7). Thus, mk(xk − t̄ · red(lc
k, xk)) ≥

mk(xC
k). However,

mk(xk − t̄ · red(lc
k, xk)) = −t̄∥red(lc

k, xk)∥2 > 0 ≥ mk(xC
k) = 0,

which contradicts the hypothesis that xC
k = xk.

The following two corollaries summarize the relationship between the three sta-

tionarity criteria.

58 Chapter 4. LQMI-Based Trust-Region Algorithm

Corollary 4.1. Suppose xk ∈ Ωc. If ∥red(lc
k, xk)∥ > 0, there exists a constant κ f rd ∈ (0, 1)

such that ∥xC
k − xk∥ ≥ ∆c

kκ f rd (the subindex f rd stands for fraction of delta).

Proof. Since ∥red(lc
k, xk)∥ > 0, then ∆c

k > ∥xC
k − xk∥ > 0 by Theorem 4.3. Then,

0 < κ f rd ≤
∥xC

k − xk∥
∆c

k
< 1.

Corollary 4.2. Suppose xk ∈ Ωc. If ∥red(lc
k, xk)∥ > 0, there exists a constant κcri ∈ (0, 1)

such that χ̄k ≥ κcri∥red(lc
k, xk)∥ (the subindex cri stands for criticality).

Proof. Since ∥red(lc
k, xk)∥ > 0, then ∆c

k > ∥xC
k − xk∥ > 0 by Theorem 4.3. Since Ωc

is convex and xk, xC
k ∈ Ωc, any point on the line xk + (xC

k − xk)h ∈ Ωc, ∀h ∈ [0, 1].

Then the point xk + (xC
k − xk)/ max{1.2, ∥xC

k − xk∥} ∈ B̂c(xk, 1) ∩ Ωc, thus

χ̄k ≥
|(xC

k − xk)
⊤lc

k|
max{1.2, ∥xC

k − xk∥}
> 0.

Finally, from Lemma 4.2 we have ∥red(lc
k, xk)∥ ≥ χ̄k, thus

0 < κcri ≤
χ̄k

∥red(lc
k, xk)∥

< 1.

4.2.2 Conditions for Mixed-Integer Stationarity

In this section we complete the proof of convergence of Algorithm 4.1 to a first-order

mixed-integer stationary point. Note that we use the global error constants κe f , κeg

described in Section 3.2.4. We first show that if the current iterate is not a first-order

critical point, Algorithm 4.2 converges in a finite number of iterations:

Lemma 4.4. Let d1, d2 ∈ Rnc and xk ∈ Ωc. The following holds:

∥red(d1, xk)− red(d2, xk)∥ ≤ ∥d1 − d2∥.

Proof. This statement is proven by looking at the element-wise squared difference of

entries between red(d1, xk) and red(d2, xk). If xk is not at the boundary of Ωc, then

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 59

red(d1, xk) = d1 and red(d2, xk) = d2, thus the condition holds. Now suppose that

xk,i = xub,i then

([red(d1, xk)]i − [red(d2, xk)]i)
2 = (max{d1,i, 0} − max{d2,i, 0})2

for which we have 3 possible cases: (1) d1,i, d2,i ≥ 0, (2) d1,i, d2,i ≤ 0 and (3) d1,i > 0 >

d2,i. In the first case it is clear that ([red(d1, xk)]i − [red(d2, xk)]i)
2 = (d1,i − d2,i)

2. In

the second case we have that ([red(d1, xk)]i − [red(d2, xk)]i)
2 = 0 ≤ (d1,i − d2,i)

2. In

case (3) we have that ([red(d1, xk)]i − [red(d2, xk)]i)
2 = (d1,i − 0)2 ≤ (d1,i − d2,i)

2.

The same analysis can be done for the case xk,i = xlb,i with the same result, thus

([red(d1, xk)]i − [red(d2, xk)]i)
2 ≤ (d1,i − d2,i)

2 ∀i ∈ {1, . . . nc}, which completes the

proof.

Lemma 4.5. If ∥red(∇x f (xk, yk), xk)∥ > 0 then the CriticalityTest (Algorithm 4.2) ter-

minates in a finite number of iterations.

Proof. Suppose that ∥red(∇x f (xk, yk), xk)∥ > 0 and the CriticalityTest iterates in-

definitely. Then, the following relationship between the gradient of the model and

the trust-region radius holds:

∆̃k = ωi−1∆icb
k > µ∥red(l̃c

k, xk)∥ ∀i > 0,

and limi→∞∥red(l̃c
k, xk)∥ = 0. We show that this would imply ∥red(∇x f (xk, yk), xk)∥ =

0. To see this, notice that:

∥red(∇x f (xk, yk), xk)∥ ≤ ∥red(∇x f (xk, yk), xk)− red(l̃c
k, xk))∥+ ∥red(l̃c

k, xk))∥.

(4.6)

Taking into account that for every iteration i > 0 the resulting model m̃k is fully-

linear with respect to ∆̃k, and using Lemma 4.4, we have ∥red(∇x f (xk, yk), xk) −

red(l̃c
k, xk))∥ ≤ κegωi−1∆icb

k . Thus, (4.6) implies:

∥red(∇x f (xk, yk), xk)∥ ≤ (κeg + µ−1)ωi−1∆icb
k

60 Chapter 4. LQMI-Based Trust-Region Algorithm

so that limi→∞∥red(∇x f (xk, yk), xk)∥ = 0, which contradicts the initial assumption.

Thus, the CriticalityTest must converge in a finite number of iterations.

This result implies that unless red(∇x f (xk, yk), xk) = 0, ∥red(lc
k, xk)∥ > 0 and

we can improve the objective function by searching in the continuous manifold.

With this result we present the minimum expected improvement for the Generalized

Cauchy step:

Theorem 4.4. Let mk be the surrogate model and xC the Generalized Cauchy Point. Then

mk(xk, yk)− mk(xC
k , yk) ≥ κ f rdχ̄k min{∆c

k, 1}.

Proof. Recall that mk(xk + sc, yk) = mk(x, k) + s⊤c lc
k due to the lack of continuous

quadratic terms in 3.4. From Theorem 4.1 we have that

mk(xC
k , yk)− mk(xk, yk) = |(xC

k − xk)
⊤lc

k| = χk(xk, lc
k, ∥xC

k − xk∥).

First we consider the case ∥xC
k − xk∥ ≥ 1. From Lemma 4.1, χk(xk, lc

k, ∥xC
k − xk∥) ≥

χ̄k, thus mk(xC
k , yk) − mk(xk, yk) ≥ χ̄k ≥ κ f rdχ̄k. Next, we consider the case ∥xC

k −

xk∥ < 1. From Lemma 4.1 we have χk(xk, lc
k, ∥xC

k − xk∥) ≥ ∥xC
k − xk∥χ̄k. Recalling

Corollary 4.1, we then obtain:

mk(xC
k , yk)− mk(xk, yk) = χk(xk, lc

k, ∥xC
k − xk∥) ≥ χ̄k∥xC

k − xk∥ ≥ κ f rdχ̄k∆c
k.

It is not required to compute the Cauchy step in every iteration to evaluate contin-

uous stationarity. It is enough to relate the improvement of Generalized Cauchy step

and the solution of optimization subproblems in the CandidateComputation and

RescueProcedure:

Lemma 4.6. At every iteration k > 0, the predicted improvement is bounded by a fraction

of the mixed-integer Cauchy step: mk(xk, yk)− mk(xk + sc, yk + sz) ≥ κ f rdχ̄k min{∆c
k, 1}.

Proof. From line 8 of Algorithm 4.3 the following inequalities hold: mk(xk + sc, yk +

sz) ≤ mk(xC
k , yk) and mk(xk, yk) − mk(xk + sc, yk + sz) ≥ mk(xk, yk) − mk(xC

k , yk).

From Theorem 4.4 we get mk(xk, yk)− mk(xk + sc, yk + sz) ≥ κ f rdχ̄k min{∆c
k, 1}. This

concludes the proof.

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 61

Lemma 4.7. At every iteration k > 0 the predicted improvement is bounded by the partial

mixed-integer stationary parameter Θk: mk(xk, yk)− mk(xk + sc, yk + sz) ≥ Θk.

Proof. In case Θk > 0 the vectors (x, y) that yield its value corresponds to a feasi-

ble solution of optimization problem computed in Algorithm 4.3- Line 8. On the

other hand, when Θk ≤ 0 it corresponds to an inactive lower-bound for mk(xk, yk)−

mk(xk + sc, yk + sz) as the predicted improvement is always nonnegative.

Now, we relate the properties of the model approximation in Algorithm 4.6 with

the convergence of Algorithm 4.1.

Lemma 4.8. If the model mk is mixed-integer fully linear and the continuous trust-region

radius satisfies

∆c
k ≤ min

{
1,

κ f rdΦk(1 − η1)

κe f

}
,

then iteration k is very-successful, successful or acceptable.

Proof. First consider the Cauchy step. As ∆c
k ≤ 1, the expected improvement is

bounded by:

mk(xk, yk)− mk(xk + sc, yk + sz) ≥ κ f rdχ̄k min{∆c
k, 1} = κ f rdχ̄k∆c

k.

Now, we consider the minimization of mk in the region (B̂v(xk, yk, ∆c
k, 1)∩Ωm if func-

tion is LQMI (Line 5, Algorithm 4.3), or, B̂c(x, ∆c
k) × ΩG

d (yk, Mk)) ∩ Ωm otherwise

(RescueProcedure, Algorithm 4.1). A bound on the update parameter ρ resulting

from this optimization can be computed as follows:

|ρ − 1| ≤
∣∣∣∣mk(xk + sc, yk + sz)− f (xk + sc, yk + sz)

mk(xk, yk)− mk(xk + sc, yk + sz)

∣∣∣∣ .

Recalling the fully-linearity condition and the bound on ∆c
k, we get:

|ρ − 1| ≤
κe f (∆c

k)
2

κ f rdχ̄k∆c
k
≤

∥red(lc
k, xk)∥(1 − η1)

χ̄k
≤ Φk(1 − η1)

χ̄k
.

From Lemma 4.2 we have that χ̄k ≤ ∥red(lc
k, xk)∥ ≤ Φk thus |ρ − 1| ≤ (1 − η1). We

remark that it is possible that such improvement is not accepted in Algorithm 4.3 if

62 Chapter 4. LQMI-Based Trust-Region Algorithm

the model reduction is lower than ϵa. Nonetheless, as model mk is fully-linear the

RescueProcedure is invoked and a solution on B̂c(xk, ∆c
k)× {yk} is identified.

Now, suppose that Φk = Θ̄k. It implies that Θ̄k > 0, thus Θ̄k = Θk ≥ ϵa. The

expected improvement given by the partial mixed-integer parameters is bounded

by:

mk(xk, yk)− mk(xk + sc, yk + sz) ≥ Θ̄k ≥ ϵa.

Then, a bound in the update parameter is given by |ρ − 1| ≤ κe f (∆c
k)

2

Θ̄k
during the

optimization procedure related to the RescueProcedure. As ∆c
k ≤ 1 we have that

(∆c
k)

2 ≤ ∆c
k and:

|ρ − 1| ≤
κe f ∆c

k

Θ̄k
≤

κe f ∆c
k

κ f rdΘ̄k
≤ Φk(1 − η1)

Θ̄k
≤ (1 − η1).

In consequence, ρ ≥ η0 and f (xk + sc, yk + sz) < f (xk, yk), thus iteration k is either

very-successful, successful or acceptable.

Next, we prove that Algorithm 4.1 converges with respect to the continuous vari-

ables. Let Simp be the set of very-successful, successful and acceptable iterations.

Lemma 4.9. The number of successful and acceptable iterations for which the new iterate

is selected from previous samples (Lines 4 and 14 in Algorithm 4.3 or Line 1 in Algorithm

4.5) is finite.

Proof. Let NIS be the number of successful or acceptable iterations where the candi-

date is retrieved by samples. Let us consider the objective function improvement

obtained by the iterates of Algorithm 4.1:

lim
k→∞

f (xo, yo)− f (xk, yk) = ∑
j∈Simp

f (xj, yj)− f (xj+1, yj+1) ≥ NISϵa.

By Assumption 1.1, limk→∞ f (xo, yo)− f (xk, yk) is bounded, therefore NIS must be

finite.

Lemma 4.10. There exists a constant ηres > 0 such that

f (xk, yk)− f (xk+1, yk+1) ≥ ηres(mk(xk, yk)− mk(xk+1, yk+1))

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 63

for every acceptable iteration that is selected from the solution of the Problem 4.1-4.4.

Proof. A new candidate is only accepted during RescueProcedure if it yields an im-

provement of the objective function f (x, y). As mk(xk, yk)− mk(xk+1, yk+1) ≥ 0 for

Problem 4.1-4.4 and f (xk, yk)− f (xk+1, yk+1) > 0, we have that

f (xk, yk)− f (xk+1, yk+1)

mk(xk, yk)− mk(xk+1, yk+1)
≥ ηres > 0.

Lemma 4.11. limk→∞ ∆c
k = 0.

Proof. For every very-successful, successful or acceptable iteration, the predicted im-

provement is given by:

f (xk, yk)− f (xk+1, yk+1) ≥ ηbnd(min{mk(xk, yk)− mk(xk+1, yk+1), ϵa}), (4.7)

where ηbnd = min{ηres, η0}. Note that the term ϵa corresponds to the iterations in

Simp where the point (xk+1, yk+1) is selected from samples. From Lemmas 4.6 and

4.7, we have:

mk(xk, yk)− mk(xk+1, yk+1) ≥ κ f rdχ̄k min{∆c
k, 1} ≥

κ f rdκcri∥red(lc
k, xk)∥min{∆c

k, 1}

and

mk(xk, yk)− mk(xk+1, yk+1) ≥ Θk ≥ κ f rdκcriΘk.

As a consequence, the bound 4.7 can be expressed as

f (xk, yk)− f (xk+1, yk+1)

≥ ηbnd min{κ f rdκcri max{∥red(lc
k, xk)∥min{∆c

k, 1}, Θk}, ϵa}.
(4.8)

Now, we study the behavior of bound 4.8 with respect to the parameter Φk. We

remark that Algorithm 4.2 guarantees that Φk ≥ min{ϵc, µ−1∆c
k}. First, consider the

set of iterations {ℓj} such that Φℓj = Θ̄ℓj , then Θℓj = Θ̄ℓj and Φℓj ≥ ∥red(lc
ℓj

, xℓj)∥ ≥

64 Chapter 4. LQMI-Based Trust-Region Algorithm

∥red(lc
ℓj

, xℓj)∥min{∆c
ℓj

, 1}. As a consequence, for every ℓj the bound 4.8 is equivalent

to:

f (xℓj , yℓj)− f (xℓj+1, yℓj+1) ≥ ηbnd min{κ f rdκcriΦℓj , ϵa} ≥

ηbnd min{κ f rdκcri min{µ−1∆c
ℓj

, ϵc}, ϵa}.

Now, consider the iterations {tj} where Φtj = ∥red(lc
tj

, xtj)∥ ≥ min{µ−1∆c
tj

, ϵc}. In

these cases, the bound 4.8 is equivalent to:

f (xtj , ytj)− f (xtj+1, ytj+1) ≥

ηbnd min{{κ f rdκcri max{min{µ−1∆c
tj

, ϵc}min{∆c
tj

, 1}, Θtj}, ϵa} ≥

ηbnd min{{κ f rdκcri min{µ−1∆c
tj

, ϵc}min{∆c
tj

, 1}, ϵa}.

We highlight that Simp corresponds to the union of both sequences {ℓj} and {tj}.

From Assumption 1.1 the series ∑k∈Simp
f (xk, yk)− f (xk+1, yk+1) is convergent, thus

the limiting values of f (xk, yk)− f (xk+1, yk+1) are bounded by 0. The latter condition

is only attained if limk→∞ ∆c
k = 0, completing the proof.

Finally, we prove that limk→∞ χk(xk,∇x f (xk, yk), 1) = 0, and there exists some it-

eration number after which yk is fixed to a value y∗. The first part consists in proving

that there exists one accumulation point (x∗, y∗) such that Φk = 0.

Lemma 4.12. lim infk→∞ Φk = 0.

Proof. Assume, for establishing a contradiction that there exists a κ1 > 0 such that

Φk > 0, ∀k ≥ 0. For Φk to be bounded by κ1 it is necessary that either ∥red(lc, xk)∥ >

κ1 or Θ̄k > κ1, ∀k > 0. We use the Criticality Step to derive a relationship between

κ1, Φk and ∆c
k. There exists two possible scenarios:

• ∆c
k ≥ min{∆icbc

k , β∥red(lc, xk)∥} if the CriticalityTest is called.

• ∆c
k = ∆icbc

k otherwise.

By Lemma 4.8 and the assumption that Φk > κ1, whenever ∆c
k falls bellow κ̄2 =

min
{

1, κ f rd κ1(1−η1)

κe f

}
, the iteration kth cannot be unsuccessful. Thus ∆icbc

k+1 ≥ ∆k and

∆icbc
k ≥ min{γ0κ̄2, ∆icbc

0 } ∀k > 0.

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 65

We first consider the case where Θ̄k > κ1, ∀k > 0. As Θ̄k is either 0 or greater than

max{ϵc, ϵa} (Definition 4.1), we have that Θ̄k ≥ max{ϵa, ϵc, κ1} ≥ ϵc ∀k > 0, thus

Φk ≥ ϵc ∀k > 0. As a consequence, the CriticalityTest is never invoked and

∆c
k ≥ min{∆icbc

0 , γ0κ̄2}.

On the other hand, if ∥red(lc, xk)∥ > κ1 we have that for every iteration k, whether

the CriticalityTest is invoked or not, the following condition holds:

∆c
k ≥ min{∆icbc

k , β∥red(lc, xk)∥ ≥ min{∆icbc
k , βκ1}.

As a result, ∆c
k must be bounded: ∆c

k ≥ min{∆icbc
0 , βκ1, γ0κ̄2}, ∀k > 0, which contra-

dicts Lemma 4.11.

Lemma 4.13. For a subsequence {ki} such that

lim
i→∞

Φki = 0,

it also holds that

lim
i→∞

∥red(∇x f (xki , yki), xki)∥ = 0

and lim
i→∞

χki(xki ,∇x f (xki , yki), 1) = 0.

Proof. First, note that for a large ki we have that Φki < ϵc as the limit value of

the subsquence is 0; thus, the model mki is mixed-integer fully-linear and ∆c
ki

≤

µ∥red(lc
ki

, xki)∥ = µΦk (Algorithm 4.1, Criticality Step). From Lemma 4.4 we have

that

∥red(∇x f (xki , yki), xki)− red(lc
ki

, xki))∥ ≤ ∥∇x f (xki , yki)− lc
ki
)∥

≤ κeg∆c
ki
≤ κegµ∥red(lc

ki
, xki)∥.

66 Chapter 4. LQMI-Based Trust-Region Algorithm

This bound can be used to compute an upper bound on the norm of the reduced

gradient of f at the point xki , yki :

∥red(∇x f (xki , yki), xki)∥

≤ ∥red(∇x f (xki , yki), xki)− red(lc
ki

, xki))∥+ ∥red(lc
ki

, xki)∥

≤ (κegµ + 1)∥red(lc
ki

, xki)∥.

(4.9)

As a consequence limi→∞∥red(∇x f (xki , yki), xki)∥ = 0.

Finally, from Lemma 4.2 ∥red(∇x f (xki , yki), xki)∥ ≥ χk(xki ,∇x f (xki , yki), 1), thus,

lim
i→∞

χki(xki∇x f (xki , yki), 1) = 0.

Theorem 4.5. The number of iterations for which ∥yk+1 − yk∥1 ≥ 1 is bounded, i.e., there

exists an iteration number kmis > 0 such that yk = ykmis for all k ≥ kmis.

Proof. According to the CandidateComputation and RescueProcedure, a change in

the integer coordinates can only be accepted when the solution of the surrogate algo-

rithm yields mk(xk, yk)− mk(xk+1, yk+1) ≥ ϵa, or, the search on previously sampled

points yields f (xk, yk) − f (xk+1, yk+1) ≥ ϵa. Thus, the objective reduction in each

iteration in the subsequence such that the discrete coordinates change, Sych ⊂ Simp,

is bounded from below by f (xk, yk)− f (xk+1, yk+1) ≥ ηbndϵa > 0. If |Sych| = ∞, then

limk→∞ f (xk, yk) = −∞, but this would contradict Assumption 1.1.

Now we prove that there exist at least one accumulation point (x∗, y∗) which is

stationary with respect to the continuous variables, or ∥red(∇x f (x∗, y∗), x∗)∥ = 0.

Lemma 4.14. lim infk→∞∥red(∇x f (xk, yk), xk)∥ = 0.

Proof. Assume, for establishing a contradiction that there exists a bound κ1 > 0 on

the reduced gradient of f such that ϵc > κ1, ∥red(∇x f (xk, yk), xk)∥ > κ1 ∀k ≥ 0.

Now we establish a relationship between κ1 and ∥red(lc
k, xk)∥. From Lemma 4.12

and its proof we know that there exists at least an iteration ki for which Φki <
κ1

2+κegµ .

Considering that κ1 is strictly smaller than ϵc and ϵa we have that:

• Θ̃ki = 0 thus Φki = ∥red(lc
ki

, xki)∥,

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 67

• the model mki is fully-linear, and

• the chain of inequalities (4.9) holds.

As a consequence for the iteration ki we have that:

κ1 ≤ ∥red(∇x f (xki , yki), xki)∥ ≤ (1 + µκeg)∥red(lc
ki

, xki)∥ <
1 + µκeg

2 + µκeg
κ1,

which contradicts the initial assumption.

Theorem 4.6. Under Assumptions 1.1 and 1.3 the sequence of iterates generated by Algo-

rithm 4.1 satisfies:

lim
k→∞

χk(xk,∇x f (xk, yk), 1) = 0

Proof. Let kmis be defined as in Theorem 4.5. Assume, for establishing a contra-

diction there exist a sequence of iterations {ℓj} ⊂ Simp, such that ℓ1 > kmis and

0 < ϵo < χℓj(xℓj ,∇x f (xℓj , yℓj), 1) ≤ ∥red(∇x f (xℓj , yℓj), xℓj)∥. The relationship be-

tween the criticality measure χℓj(xℓj ,∇x f (xℓj , yℓj), 1) and the norm of the reduced

gradient of ∇x f (xℓj , yℓj) is given by Lemma 4.2.

Now we establish a relationship between ϵo and Φℓj . From Lemma 4.13 we obtain

that Φℓj ≥ ϵ for some ϵ > 0 and a sufficiently large j. Without loss of generality, we

select an ϵ such that ϵ < min
{

ϵo
(2+µκeg)

, ϵc

}
. In this way we have that

Φℓj ≥ min
{

ϵc,
ϵo

(2 + κegµ)

}
> ϵ. (4.10)

We define tj ∈ Simp, tj > ℓj as the first iteration after ℓj for which Φtj < ϵ. Such

an iteration exists as consequence of Lemma 4.12. Let us define some sequences of

iterations (indexed by j) Kj = {k ∈ Simp | ℓj ≤ k < tj} ∪ {tj}. Note that for every

sequence Kj we have the following properties:

• For every k ∈ [ℓj, tj) we that Φk ≥ ϵ, and

• the last element is tj.

We remark that in iteration tj the model mtj is fully-linear, µ∥red(lc
tj

, xtj)∥ ≥ ∆c
tj

and

Θ̄k = 0, as Φtj < ϵc. For every k ∈ Kj, ℓj ≤ k < tj there exists a bound on ∆c
k given

68 Chapter 4. LQMI-Based Trust-Region Algorithm

by equation (4.7):

f (xk, yk)− f (xk+1, yk+1) ≥ ηbnd(mk(xk, yk)− mk(xk+1, yk+1))

f (xk, yk)− f (xk+1, yk+1) ≥ ηbnd max{κ f rdκcri∥red(lc
ℓj

, xℓj)∥min{∆c
k, 1}, Θk}.

As κ f rdκcri min{∆c
k, 1} ∈ (0, 1] then

f (xk, yk)− f (xk+1, yk+1) ≥ ηbndκ f rdκcri max{∥red(lc
ℓj

, xℓj)∥, Θk}min{∆c
k, 1}.

The latter is equivalent to f (xk, yk)− f (xk+1, yk+1) ≥ ηbndΦk min{∆c
k, 1}. For a large

ℓj → ∞ we have that ∀k ∈ [ℓj, tj) the trust-region radius is small ∆c
k < 1 and ∆c

k ≤
f (xk ,yk)− f (xk+1,yk+1)

ηbndκ f rdκcriϵ
. Thus, we can derive the following bound for ∥xtj − xℓj∥:

∥xtj − xℓj∥ ≤
tj−1

∑
k∈Kj

∥xk − xk+1∥ ≤
tj−1

∑
k∈Kj

∆c
k

≤
tj−1

∑
k∈Kj

f (xk, yk)− f (xk+1, yk+1)

ηbndκ f rdκcriϵ
=

f (xℓj , yℓj)− f (xtj , ytj)

ηbndκ f rdκcriϵ
.

As limℓj→∞ f (xℓj , yℓj)− f (xtj , ytj) = 0 (from Assumption 1.1), limℓj→∞∥xℓj − xtj∥ = 0.

Now we derive an upper-bound for the stationarity measure of f at every iteration

in the sequence {ℓj}:

χℓj(xℓj ,∇x f (xℓj , yℓj), 1) ≤ |χℓj(xℓj ,∇x f (xℓj , yℓj), 1)− χtj(xtj ,∇x f (xtj , ytj), 1)|

+χtj(xtj ,∇x f (xtj , ytj), 1).

From Lemma 4.2 ∥red(∇x f (xtj , ytj), xtj)∥ ≥ χtj(xtj ,∇x f (xtj , ytj), 1). Considering

Lemma 4.4 and the fully-linearity of tj, the bound can be rewritten as:

χℓj(xℓj ,∇x f (xℓj , yℓj), 1) ≤ |χℓj(xℓj ,∇x f (xℓj , yℓj), 1)− χtj(xtj ,∇x f (xtj , ytj), 1)|

+∥red(∇x f (xtj , ytj), xtj)− red(lc
tj

, xtj)∥+ ∥red(lc
tj

, xtj)∥.
(4.11)

Theorem 4.2 guarantees that

lim
j→∞

|χℓj(xℓj ,∇x f (xℓj , yℓj), 1)− χtj(xtj ,∇x f (xtj , ytj), 1)| = 0 (4.12)

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 69

whenever ytj = yℓj and limj→∞∥xtj − xℓj∥ = 0; thus the first term of the right-hand

side of Equation 4.11 goes to 0. Now we derive an upper bound for the remaining

terms of Equation 4.11. Since the model tj is fully-linear we have ∥red(∇x f (xtj , ytj), xtj)−

red(lc
tj

, xtj)∥ ≤ κeg∆c
tj

. In addition Φtj < ϵc, therefore ∆c
tj
≤ µ∥red(lc

tj
, xtj)∥. As a con-

sequence χℓj(xℓj ,∇x f (xℓj , yℓj), 1) is bounded by:

χℓj(xℓj ,∇x f (xℓj , yℓj), 1) ≤ κeg∆c
tj
+ ∥red(lc

tj
, xtj)∥ ≤ (1 + µκeg)ϵ.

Taking into account that ϵ < ϵo
(1+µκeg)

(Equation 4.10) the upper bound is transformed

into

χℓj(xℓj ,∇x f (xℓj , yℓj), 1) < ϵo.

But this contradicts the assumption on a limiting bound for χℓj(xℓj ,∇x f (xℓj , yℓj), 1).

Therefore, for any given ϵo > 0 there exists an N ∈ N, N ≥ kmis such that:

χk(xk,∇x f (xk, yk), 1) < ϵo ∀k > N,

which implies that limk→∞ χk(xk,∇x f (xk, yk), 1) = 0.

Now, having proved that Algorithm 4.1 is convergent to a stationary solution

with respect to the continuous variables and the box Ωc, we will show that it also

attains a solution which is an ϵ local minimizer with respect to the integer variables

and the set Ωz. The first step is to show that there exist an infinite number of itera-

tions where ∆z = 1, which facilitates the analysis over the sets ΩG
d (yk, Mk), ΩLQMI

d (yk)

and ΩQ
d (yk):

Lemma 4.15. There exists an infinite number of iterations for which ∆z
k = 1.

Proof. This statement is proved by contradiction. Suppose there exists a k̂ that is the

last iteration such that ∆z
k = 1. From Lemma 4.6 we have that

∀ϵ > 0(∃N ∈ N | ∆c
k < ϵ ∀k ≥ N).

Let N(ϵ) be defined as min{N ∈ N | ∆c
k < ϵ ∀k ≥ N}. Function N(ϵ) has the

following properties:

N(ϵ1) ≥ N(ϵ2) if ϵ1 < ϵ2, (4.13)

70 Chapter 4. LQMI-Based Trust-Region Algorithm

∀ϵ1, ϵ2 ∈ R+, ϵ1 < ϵ2, N(ϵ1) > N(ϵ2) (∃k ∈ [N(ϵ2), N(ϵ1)) | ∆c
k ∈ (ϵ1, ϵ2]).

(4.14)

We define the sequences {ϵi} and {Ni} as follows:

• ϵ0 = ∆c
max + 1e−20 and N0 = 0;

• ϵi+1 = argminϵ∈R+,ϵ<ϵi
{N(ϵ) | N(ϵ) > Ni} and Ni+1 = N(ϵi+1).

For the sequence ϵi we define the constant β̄ = supi≥0
ϵi+1

ϵi
. As ϵi > ϵi+1 ∀i ≥ 0,

then β̄ < 1. Consider an index ı̂ > 0 such that Nı̂ > k̂ and ϵı̂ < ∆c
max/γ1. From

Equation 4.14 we know that there exists an iteration k̃ ∈ [Nı̂, Nı̂+1) such that ∆c
k̃
≥

ϵı̂+1. From the definition of the sequences {ϵi} and Ni we can derive the following

inequality:

∆c
k < β̄i−ı̂∆c

k̃ ∀k ≥ Ni, i > ı̂ + 1. (4.15)

Now, we aim to compute a lower bound for ∆c
k ∀k ≥ Nı̂+1 and establish a relation-

ship with ∆z
k. Algorithm 4.1 states that the continuous trust-region radius can be

modified in three particular circumstances:

1. Reduced as a consequence of the invocation of the CriticalityTest (Line 8). We

define this reduction as ctdec
k =

∆c
k

∆icbc
k

. If the CriticalityTest is not invoked ctdec
k =

1.

2. Reduced as consequence of the unsuccessful iteration k, where model mk is

fully-linear (Line 31). The reduction is equivalent to ∆c
k+1 = ∆c

kγ0ctdec
k+1.

3. Extended as a consequence of the very-successful iteration k (Line 18). As ∆c
k ≤

∆c
max/γ1 then ∆c

k+1 = γ1∆c
kctdec

k+1.

From points (1), (2) and (3) we rewrite ∆c
k as:

∆c
k =

 k

∏
j=k̃

ctdec
j

∆c
k̃γ

redu(k,k̃)
0 γ

ext(k,k̃)
1 ∀k > k̃ > k̂, (4.16)

where ext(k, k̃) is the number of iterations where ∆c
k is extended, and redu(k, k̃) the

number of iterations between k̃, k where ∆c
k is reduced. From Algorithm 4.1 we can

compute an upper bound for ∆z
k in terms of redu(k, k̃) and ext(k, k̃):

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 71

• If iteration k is very-successful then

∆z
k+1 = min{∆z

max, max{γ1∆z
kctdec

k+1, 1}} ≤ max{γ1∆z
kctdec

k+1, 1}. (4.17)

As ∆z
k > 1 ∀k > k̂ then ctdec

k+1∆z
kγ1 > 1 and therefore we have that ∆z

k+1 ≤

ctdec
k+1∆z

kγ1 as a result from 4.17.

• If iteration k is unsuccessful and model mk is fully linear, then

∆z
k+1 = max{1, ctdec

k+1 max{γ0∆z
k, 1}},

Similarly to the previous case, the fact that ∆z
k > 1 ∀k > k̂ implies that ∆z

k+1 =

γ0∆z
kctdec

k+1 .

Considering the above points we have that

∆z
k ≤

 k

∏
j=k̃

ctdec
j

∆z
k̃γ

redu(k,k̃)
0 γ

ext(k,k̃)
1 ∀k > k̃ > k̂. (4.18)

Combining Equations (4.15), (4.16) and (4.18) we obtain the following relationship:

∆z
k

∆z
k̃

≤

 k

∏
j=k̃

ctdec
j

 γ
redu(k,k̃)
0 γ

ext(k,k̃)
1

=
∆c

k
∆c

k̃

< β̄i−ı̂−1 ∀k ≥ Ni, i > ı̂ + 1.

The latter would imply that limk→∞ ∆z
k = 0, which contradicts the initial assumption

and concludes the proof.

Theorem 4.7. Under Assumptions 1.1, 1.2 and 1.3, the sequence of iterates generated by

Algorithm 4.1 satisfies:

lim
k→∞

χk(xk,∇x f (xk, yk), 1) = 0

and f (xk, yk) ≤ f (x, y) + ϵa ∀(x, y) ∈ {xk} × ΩQ
d (yk),

where ΩQ
d (yk) = Z̄k is defined on Line 10, Algorithm 4.6.

72 Chapter 4. LQMI-Based Trust-Region Algorithm

Proof. This statement is proven by contradiction. Suppose there exists ỹ ∈ ΩQ
d (yk)

for which f (xk, yk)− f (xk, ỹ) ≥ ϵa, k > kmis, k ∈ {j ∈ N | ∆z
j = 1} and model mk is

fully-linear. We highlight that as k → ∞, then:

• ∆c
k → 0.

• | f (x, y) − f (xk, y)| ≈ 0 ∀x ∈ B̂c(xk, ∆c
k), y ∈ B̂z(yk, 1) ∩ Ωz from Assump-

tion 1.2.

We now show that the above remarks imply that ỹ or a solution in a different integer

manifold among those in ΩQ
d (yk) must be identified in the CandidateComputation

or RescueProcedure. Note that mk(xk, ỹ) = f (xk, ỹ). Let x̃ = argminx∈B̂c(xk ,∆c
k)∩Ωc

mk(x, ỹ).

Then mk(xk, yk) − mk(x̃, ỹ) ≥ mk(xk, yk) − mk(x̃, yk) ≥ ϵa as f (x̃, ỹ) ≈ m(x̃, ỹ) ≤

m(x̃, yk) ≈ f (x̃, yk). Therefore any solution (x̄, ȳ) of the surrogate optimization prob-

lem in Line 5 of Algorithm 4.3 must improve by at least ϵa. However, note that:

|m(xk, yk)− m(x, yk)| = |(x − xk)
⊤lc

k| ≤ ∥lc
k∥ · ∆c

k = 0, ∀x ∈ B̂c(xk, ∆k), (4.19)

thus the improvement cannot be due to a change in the continuous variables. Then,

the integer component of the iterate must change. If f (xk ,yk)− f (x̂,ŷ)
mk(xk ,yk)−mk(x̂,ŷ) ≥ η0, the new

solution is accepted and the discrete components of the iterate change. If this con-

dition is not met, the RescueProcedure is invoked. Because the surrogate model is

accurate over ΩG
d (yk, Mk), then either: (i) the point (xk, ỹ) is selected as output of

Algorithm 4.5, as it yields an improvement of at least ϵa on the objective, or (ii) a

different point in the neighborhood is selected, with a larger improvement. In ei-

ther case, the output (x′, y′) of the RescueProcedure cannot have the same integer

components as yk, because, due to Assumption 1.2, we have:

f (xk, yk)− f (x′, y′) ≥ f (xk, yk)− f (xk, ỹ) ≥ ϵa ≥

| f (xk, yk)− f (x, yk)| ≈ 0 ∀x ∈ B̂c(xk, ∆c
k) ∩ Ωc.

The above discussion shows that the integer components of the iterate necessarily

change. By Theorem 4.5, this can only happen a finite a number of times. Thus, there

cannot be an infinite sequence of iterates converging to (xk, yk), a contradiction.

4.2. Convergence of Algorithm 4.1 to a First-Order Critical Point 73

Theorem 4.8. Under Assumptions 1.1, 1.3, 3.1 and 3.2, the sequence of iterates generated

by Algorithm 4.1 satisfies:

lim
k→∞

χk(xk,∇x f (xk, yk), 1) = 0

and f (xk, yk) ≤ f (x, y) + ϵa ∀(x, y) ∈ {xk} × ΩLQMI
d (yk).

Proof. The proof follows the same structure as for Theorem 4.7; the only difference

is that, due to Assumptions 3.1 and 3.2, the model mk is accurate for all points

(x, y) ∈ B̂v(xk, yk, ∆c
k, 1), i.e., mk(x, y) ≈ fk(x, y). Thus, if a better integer candidate ỹ

in the neighborhood B̂z(yk, 1) exists, CandidateComputation identifies a point that

improves the objective function by at least ϵa. Since ∆c
k is sufficiently small, the itera-

tion is then successful or very-successful, and similarly to Theorem 4.7, this contradicts

Theorem 4.5.

Now, having proved that Algorithm 4.1 is capable of converging to a ϵa mixed-

integer separate local minimum (SLM), we will show that it convergences to a strong

separate minimum (StLM). The radius of the region over which the point is a StLM

is dependent on the ϵa parameter and the global Lipschitz κ f constant of the function

f .

Theorem 4.9. If Assumptions 1.1, 1.2 and 1.3 hold, then

lim
k→∞

χk(xk,∇x f (xk, yk), 1) = 0

and f (xk, yk) ≤ f (x, y) + 2ϵa ∀(x, y) ∈ (B̂c(xk, ∆̄)× Ωd) ∩ Ωm

where ∆̄ = ϵa
κ f

, for some discrete neighborhood Ωd. The discrete neighborhood Ωd is equal to

ΩLQMI
d (yk) for an LQMI function, and it is the output of the QuadraticInterpolationSet

procedure on Line 10 Algorithm 4.6 (ΩQ
d (yk)) for functions that are not LQMI.

74 Chapter 4. LQMI-Based Trust-Region Algorithm

Proof. For every point (x, y) ∈ (B̂c(xk, ∆̄)×Ωd)∩Ωm the following inequality holds,

as a direct consequence of Theorems 4.7 and 4.8:

f (xk, yk)− f (x, y) = f (xk, yk)− f (x, y)− f (xk, y) + f (xk, y) ≤

ϵa + f (xk, y)− f (x, y).

Considering that | f (xk, y)− f (x, y)| ≤ κ f ∥xk − x∥ and ∥xk − x∥ ≤ ϵa
κ f

; then,

f (xk, yk)− f (x, y) ≤ ϵa + κ f
ϵa

κ f
≤ 2ϵa,

which concludes the proof.

Remark 2. We have proved algorithmic convergence to a strong separate local minimum on

the sets ΩQ
d (yk) and ΩLQMI

d (yk). We have proved that the number of iterations for which

∆z
k = 1 is infinite; nonetheless, in particular cases there might exist an infinite number of

iterations for which ∆z
k > 2. In consequence, for particular instances it is possible to achieve

convergence to a StLM with respect to the larger discrete set Ωd ⊂ B̂z(yk, ∆) with ∆ ≥ 2.

4.3 Conclusions and Future Work

In this chapter we introduced an LQMI-based algorithm for the solution of a box-

constrained mixed-integer derivative-free problem. Algorithm 4.1 is an adaptation

of the trust-region algorithm that uses the surrogate model framework introduced

in Chapter 3. We presented new features that allow to overcome the problems that

arise from dealing with a mixed-integer function:

• We introduced the mixed-integer stationarity parameter, Θk, that measures

possible objective improvement in surrounding manifolds.

• We presented the combined stationarity parameter, Φk, that serves as an indi-

cator of mixed-integer stationarity and triggers the convergence test.

• We adapted the Criticality Step to be used in the mixed-integer setting. It incor-

porates the ManifoldSearch procedure that allows to avoid early convergence

to first-order stationary points.

4.3. Conclusions and Future Work 75

• We introduced the RescueProcedure (Algorithm 4.5) that allows to use the

fully-linearity of LQMI surrogates in the general mixed-integer setting.

Furthermore, we proved that Algorithm 4.1 is globally convergent to a separate

local minimum (SLM) and a strong local minimum (StLM). In the future, we ex-

pect this methodology can be used as a base for further developments on mixed-

integer derivative-free applications. We highlight this framework has the potential

to be used to tackle problems with more complicated constraints, both algebraic and

simulated-based (black-box). Adapting this framework to incorporate penalty [77],

[80], the augmented Lagrangian function [91], [92] or progressive-barrier [39] is natural

to deal with general non-convex constraints.

77

Chapter 5

Hybrid DCA-DFO Optimization

In this chapter, we present a methodology for solving the mixed-integer optimiza-

tion problem 1.1 under Assumptions 1.1, 1.2 and the following combinatorial prop-

erty with respect to the integer variables:

Assumption 5.1. Function f (x, y) is M♮ discrete convex with respect to the discrete vari-

ables y at fixed values of the vector of continuous variables x.

In the next section, we introduce the generalities of M and M♮ discrete convex

functions. Let us now recall some notions that will be used in the solution approach.

Definition 5.1. For a convex function g the vector w ∈ Rnc is said to be a subgradient of f

at the point xo if:

g(x) ≥ g(xo) + w⊤(x − xo), ∀x ∈ domg.

The set of all the subgradients of g at xo is called the subdifferential and it represented by

∂g(xo).

Definition 5.2. For ϵ > 0, a vector w ∈ Rnc is said to be a ϵ-subgradient for the convex

function g at the point xo if:

g(x) ≥ g(xo)− ϵ + w⊤(x − xo) ∀x ∈ domg.

The set of all ϵ-subgradients of g at xo is ϵ-subdiferential and is denoted by ∂ϵg(xo).

We illustrate the difference between subgradients and ϵ-subgradients in Figure

5.1, that represents the function f (x) = x2 and its first-order information. Figure 5.1a

shows the derivative at the point xo = 0. Note that no point on the graph lies above

78 Chapter 5. Hybrid DCA-DFO Optimization

the gradient line. We remark that as f (x) = x2 is convex and differentiable, its sub-

differential only contains one element, ∂ f (xo) = {∇x f (xo)}. Figures 5.1b and 5.1c

show the linear interpolation of f between the points (xo, x1) and (xo, x2), respec-

tively. Note that the line between the points xo, f (xo) and x1, f (x1) lies above f (x)

in the segment (xo, x1); the same happens with the linear interpolation between xo

and x2. It indicates that the coefficients f (x1)− f (xo)
x1−xo

/∈ ∂ f (xo) and f (x2)− f (xo)
x2−xo

/∈ ∂ f (xo);

however, it is evident that the slope of the linear interpolation is an inexact subgra-

dient of f (xo) with error bounded by ϵ = maxx∈R
f (x1)− f (xo)

x1−xo
(x − xo) − f (x). We

highlight that the subgradient error of the linear interpolation of a convex function

depends on how distant its samples are located. For example, the subgradient error

in Figure 5.1b, ϵ1, is equal to 0.25; on the other hand, the subgradient error in Figure

5.1c, ϵ2, is equal to 1. Therefore, f (x1)− f (xo)
x1−xo

∈ ∂ϵ2 f (xo) but f (x2)− f (xo)
x2−xo

/∈ ∂ϵ1 f (xo).

Finally, we introduce the following notations:

Definition 5.3. Let Iy : Z → Znz be defined as the map of one integer index to one element

of the discrete set Ωz.

Definition 5.4. Let Γ : Rnc → R be defined as

Γ(x) = min
y∈Ωz

f (x, y).

5.1 Discretely Convex Functions

In this section we describe the M and M♮ discrete convex functions. Both are part of

the discrete convex analysis [93], a theoretical framework that combines the concepts

of convex analysis and combinatorial mathematics. Discrete convex analysis has

been extensively used in the operations research as a tool for solving storage and

inventory problems [94], [95]; moreover, it plays an important role in the design and

analysis of auction algorithms [96]. The M and M♮ functions are defined as follows:

Definition 5.5. A function f : Znz → R with dom f ̸= ∅ is said to be M discrete convex

function if it accomplishes the following exchange axiom: for every pair z1, z2 ∈ dom f and

u ∈ supp+(z2 − z1) there exists a v ∈ supp−(z2 − z1) such that

f (z1) + f (z2) ≥ f (z2 − eu + ev) + f (z1 + eu − ev).

5.1. Discretely Convex Functions 79

(A) Exact gradient at x = 0

(B) Linear interpolation between the points xo = 0 and x1 = 1

(C) Linear interpolation between the points xo = 0 and x2 = 2

FIGURE 5.1: Subgradients and ϵ-subgradients

80 Chapter 5. Hybrid DCA-DFO Optimization

FIGURE 5.2: Exchange property in M convex functions

Figure 5.2 shows the exchange axiom in Definition 5.5. Note that the points z1 −

ev + eu and z2 − eu + ev are the closest grid points to the line segment between z1 and

z2. M convexity mimics the relationship

f (x1) + f (x2) ≥ f (x1 − h(x1 − x2)) + f (x2 + h(x1 − x2)) ∀h ∈ [0, 1]

that holds for every convex function f : Rnc → R.

Definition 5.6. A function f : Znz → R with dom f ̸= ∅ is said to be M♮ discrete convex

function if the function f̃ : Znz+1 → R defined by:

f̃ (yo, y) =

 f (y) if yo = −∑nz
j=1 yj

+∞ otherwise

is M discrete convex.

Note that M♮-convex functions are defined in terms of M-convex functions. It is

easy to prove that an M-convex function is a special case of the M♮ set of functions,

for which its domain is restricted to the hyperplane {y ∈ Znz | ∑nz
i=1 yi = a}, a ∈ Z.

One of the most interesting features displayed by the the two classes of discrete

functions is the equivalence of local and global optimality, similar to the case of the

continuous convex functions:

5.1. Discretely Convex Functions 81

Theorem 5.1. (Murota, [93] , Theorem 6.26) Global and local optimality in descretly

convex functions:

1. For an M convex function and z ∈ dom f , we have

f (z) ≤ f (y) (∀y ∈ Znz) ⇐⇒ f (z) ≤ f (z + eu − ev) (∀u, v ∈ {1, . . . , nz}).

2. For an M♮-convex function and z ∈ dom f , we have

f (z) ≤ f (y) (∀y ∈ Znz) ⇐⇒

 f (z) ≤ f (z + eu − ev) (∀u, v ∈ {1, . . . , nz})

f (z) ≤ f (z ± eu) (∀u ∈ {1, . . . , nz}).

We emphasize that the optimality criterion given by Theorem 5.1 only relies on

samples, this condition is convenient in the integer black-box setting. These func-

tions also present discrete versions of subgradients and subdifferentials, as well as

descent directions. All of these features allow the development of tailored algo-

rithms that converge to global minimizers. Such algorithms only consider zero-th

order information. We now show two examples of said methodologies: the steep-

est descent algorithm (Algorithm 5.1) and the domain reduction algorithm (Algo-

rithm 5.2).

Algorithm 5.1 Steepest Descent Algorithm

Input: Point y ∈ dom f
Output: Global minimizer y

1: loop
2: Set (ū, v̄) = argminu,v∈{1,...,nz}|u ̸=v{ f (y + eu − ev)}
3: if f (yk) ≤ f (y + eu − ev) then
4: break
5: else
6: Set y = y + eu − ev
7: end if
8: end loop

We remark that both algorithms are designed to solve only M-convex functions;

however, they are easily adapted to solve M♮-convex instances by transforming the

82 Chapter 5. Hybrid DCA-DFO Optimization

Algorithm 5.2 Domain Reduction Algorithm

Input: Variable bounds ylb and yub
Output: Global minimizer y

1: Set D = dom f
2: loop
3: For all i ∈ {1, . . . , nz} set lbi = miny∈D e⊤i y and ubi = maxy∈D e⊤i y

4: Set l̄b =
⌊(

1 − 1
nz

)
lb + 1

nz
ub
⌋

and ūb =
⌈

1
nz

lb +
(

1 − 1
nz

)
ub
⌉

5: Set D̄ = {z ∈ Znz | l̄b ≤ z ≤ ūb}
6: Select a y ∈ D̄
7: Set (ū, v̄) = argminu,v∈{1,...,nz}|u ̸=v{ f (y + eu − ev)}
8: if f (y) ≤ f (y + eu − ev) then
9: break

10: else
11: Set D = D ∩ {z ∈ Znz | zu ≤ xu − 1, zv ≥ yv + 1}
12: end if
13: end loop

objective function into

f̃ (yo, y) =

 f (y) if yo = −∑nz
j=1 yj

+∞ otherwise.

Note that the term yo accounts for the univariate translations y ± ei ∀i ∈ {1, . . . , nz}.

Let K f = max{∥y1 − y2∥1 | y1, y2 ∈ dom f } and K∞ = max{∥y1 − y2∥ | y1, y2 ∈

dom f }. Algorithm 5.2 finds the global optima of an M-convex function f in O(n4
z(log2 K∞)2)

evaluations of f [93]. On the other hand, if a vector in the domain is given Algo-

rithm 5.1 finds the global optima of an M-convex function f in O(n2
zK f) function

evaluations when a special tie-breaking rule is applied on f [97].

There exist additional efficient methodologies for the optimization of M-convex

and M♮ functions based on the combination of the (scaled) steepest descend and do-

main reduction algorithm, for example Shioura’s fast-scaling algorithm [98] that finds

the global optima in O(n3
z log2(K∞/nz)) function evaluations. In the next section, we

will detail a methodology that takes advantage of the polynomial time algorithms

for the solution of M-convex functions to optimize the mixed-integer function f (x, y)

over the set Ωm.

5.2. Solution by the Difference of Convex Algorithm (DCA) 83

5.2 Solution by the Difference of Convex Algorithm (DCA)

We aim to solve the problem 1.1 under Assumption 5.1 by performing the following

reformulation:

min
x∈Ωc,y∈Ωz

f (x, y) = min
x∈Ωc

Γ(x).

Observation 5.1. Function Γ(x) is equivalent to ψ(x) = − supy∈Ωz
− f (x, y).

If Assumption 5.1 holds, the Observation 5.1 implies that evaluating Γ at a given

point x is equivalent to maximizing an M♮-concave function. In addition, the func-

tion Γ(x) is equivalent to the pointwise operation Γ(x) = −maxi∈{1,...,|Ωz|} − f̂ Iy(i)(x)

(see Definition 5.3).

We highlight that function Γ(x) can be represented as the difference of two func-

tions

Γ(x) =
λk

2
∥x∥2 −

[
λk

2
∥x∥2 − Γ(x)

]
,

where the term λk
2 ∥x∥2 − Γ(x) can be rewritten as

λk

2
∥x∥2 − Γ(x) =

λk

2
∥x∥2 −

(
− max

i∈{1,...,|Ωz|}
− f̂ Iy(i)(x)

)
= max

i∈{1,...,|Ωz|}

(
λk

2
∥x∥2 − f̂ Iy(i)(x)

)
.

Moreover, if λk > κg then λk
2 ∥x∥2 − Γ(x) is a convex function, as we now prove.

Definition 5.7. Let Ψk(x) = maxi∈{1,...,|Ωz|}
λk
2 ∥x∥2 − f̂ Iy(i)(x).

Lemma 5.1. (Zhou, [99], Lemma 4.) Let f̂y(x) be differentiable with κg-Lipschitz gradi-

ent for every y ∈ Ωz. Then κg
2 ∥x∥2 − f̂y(x) is convex. It also means that λk

2 ∥x∥2 − f̂y(x) is

convex if λk > κg.

Theorem 5.2. If Assumption 1.3 holds and λk > κg, then Ψk(x) is a convex function.

Proof. Having that Assumption 1.3 holds, every function λk
2 ∥x∥2 − f̂y(x) is convex.

We recall that the pointwise maximum of convex functions is also convex [100].

Remark 3. Ψk(x) is a convex subdifferentiable function, with a subdifferential denoted by:

∂Ψk(x) = Co
{

λkx −∇x f̂y(x) | λk

2
∥x∥2 − f̂y(x) = Ψk(x), y ∈ Ωz

}
.

84 Chapter 5. Hybrid DCA-DFO Optimization

To summarize, Problem 1.1 can be rewritten as minx∈Ωc
λk
2 ∥x∥ − Ψk(x). Theo-

rem 5.2 and Remark 3 allow to view the function Γ(x) as the difference of two con-

vex functions, λk
2 ∥x∥ and Ψk(x). We can therefore solve it using the Difference of

Convex Algorithm (DCA) [101] (see Algorithm 5.3).

Algorithm 5.3 DCA method for problem 1.1

Input: Point x0 ∈ Ωc, regularization term λ̄ > κg
1: Set k = 0
2: repeat
3: Set λk = λ̄
4: Compute a subgradient wk ∈ ∂Ψk(xk)

5: Set xk+1 = argminx∈Ωc
{λk∥x∥

2 − w⊤
k (x − xk)}

6: until Convergence of xk

There exist two main issues that arise from the use of Algorithm 5.3. First, we

lack the first-order information to compute the subdifferential ∂Ψk. Second, we lack

a proper estimation of the κg constant. The estimation of an accurate value for λk is

therefore crucial: if the value of λk is too large it can affect the rate of convergence,

making the algorithm slow. In contrast, if λk is small, there is a risk that Ψk(x) is not

convex. To overcome these issues we introduce elements from the surrogate-based

derivative-free optimization to develop an algorithm with similar convergence prop-

erties to the DCA.

5.3 Hybrid DCA-DFO Algorithm

The standard DCA requires at each iteration the computation of wk ∈ ∂Ψk(xk). How-

ever, this computation does not need to be exact. It is possible to overcome the lack

of first-order information by considering accurate approximations of the subgradi-

ents (often called ϵ-subgradients) which can be estimated using fully-linear or fully-

quadratic surrogates of Ψk. DC algorithms have been proved to be convergent also

in the case where ϵ-subgradients are used [102], [103]. The only condition required

is that limk→∞ ϵk = 0.

Note that the computation of the ϵ-subgradients requires sampling inside the

domain B̂c(xk, ∆c
k)), that is a function of a given trust-region radius ∆c

k. It adds at

least one degree of freedom to Algorithm 5.3.

5.3. Hybrid DCA-DFO Algorithm 85

In this section, we introduce the hybrid DCA-DFO that incorporates three mod-

ifications from the DCA 5.3:

• We replace the subdifferential ∂Ψk(x) with the ϵk subdifferential ∂ϵk Ψk(x) com-

puted from the fully-linear approximation mk(x) of f̂yk(x) on B̂c(xk, ∆c
k).

• We do not consider a fixed λk but one that is function of the model mk(x) and

∆c
k. In this way we eliminate the additional degrees of freedom that come from

the sampling and the model construction process.

• We relax the optimality conditions of Ψk(x). We show that is possible to retain

convergence considering a suboptimal yk such yk /∈ argmaxy∈Ωz
− f (xk, y).

5.3.1 Algorithm Description

In this subsection we show how the terms λk can be related to ∆c
k under the principles

of first-order derivative-free trust-region methods. The following theorem explores

the properties of the DCA outer-linearization subproblem (Line 5, Algorithm 5.3):

Theorem 5.3. Let mk be a given surrogate approximation of f̂yk(x) on B̂c(xk, ∆c
k). Let

x′ = argminx∈Ωc

{
λk∥x∥2

2 − (λkxk −∇xmk(xk))
⊤(x − xk)

}
. For every iteration k > 0

the following items hold:

1. ∥x′ − xk∥ ≤ ∥red(∇xmk(xk),xk)∥
λk

.

2. x′ = pk(xk,∇xmk(xk), 1/λk), and

3. if ∥red(∇xmk(xk), xk)∥ > 0, then ∥x′ − xk∥ > 0 and |(x′ − xk)
⊤∇xmk(xk)| > 0.

Proof. The first-order stationarity conditions related to this optimization problem

indicate that

u+ − u− + λkx′ − λkxk +∇kmk(xk) = 0,

where u+, u− ∈ Rnc are the dual variables related to the box constraints x ≤ xub

and xlb ≤ x, respectively. In addition, we have that u+, u− ≥ 0, (u+)⊤u− = 0,

(u+)⊤(x′ − xub) = 0, (u−)⊤(xlb − x′) = 0 and

x′i − xk,i =
1
λk

(
u−

i − u+
i − ∂mk(xk)

∂xi

)
.

86 Chapter 5. Hybrid DCA-DFO Optimization

We have three possible scenarios, depending whether the variable xk,i lays on a cor-

ner of Ωc:

1. For the set of variables such xk,i = xub,i we have that x′i − xk,i ≤ 0, then:

• If ∂mk(xk)
∂xi

< 0 we that u−
i = 0 and u+

i > 0, as a consequence x′i = xub,i and

x′i − xk,i = 0.

• If ∂mk(xk)
∂xi

> 0 we have that if x′i = xlb,i then u−
i ≥ 0; otherwise, u−

i = 0. As

a consequence

x′i = max
{

xlbi , xk − λk
∂mk(xk)

∂xi

}
(5.1)

and

|x′i − xk,i| = min
{

xub,i − xlb,i,
1
λk

∂mk(xk)

∂xi

}
≤ 1

λk

∂mk(xk)

∂xi
.

• If ∂mk(xk)
∂xi

= 0 then x′i = xub,i.

We highlight in this case that if ∂mk(xk)
∂xi

< 0, then red(∇xmk(xk), xk)i = 0, other-

wise red(∇xmk(xk), xk)i =
∂mk(xk)

∂xi
. Therefore |x′i − xk,i| ≤ 1

λk
red(∇xmk(xk), xk)i.It

is also evident that if ∂mk(xk)
∂xi

> 0, then ∂mk(xk)
∂xi

(x′i − xk,i) < 0; otherwise ∂mk(xk)
∂xi

(x′i −

xk,i) = 0.

2. For the set of variables such xk,i = xlb,i we can similarly prove that |x′i − xk,i| ≤
1

λk
|red(∇xmk(xk), xk)i| with

x′i = min
{

xubi , xk − λk min
{

0,
∂mk(xk)

∂xi

}}
(5.2)

and

|x′i − xk,i| = min
{

xub,i − xlb,i,−
1
λk

min
{

0,
∂mk(xk)

∂xi

}}
.

We can derive as well that if ∂mk(xk)
∂xi

> 0, then ∂mk(xk)
∂xi

(x′i − xk,i) < 0; otherwise
∂mk(xk)

∂xi
(x′i − xk,i) = 0.

3. For the set of variables such xlb,i < xk,i < xub,i we have that

5.3. Hybrid DCA-DFO Algorithm 87

• If ∂mk(xk)
∂xi

> 0, then

x′i = max
{

xlb,i, xk,i −
1
λk

∂mk(xk)

∂xi

}
(5.3)

and

|x′i − xk,i| = min
{

xk,i − xlb,i,
1
λk

∂mk(xk)

∂xi

}
≤ 1

λk

∂mk(xk)

∂xi
.

• If ∂mk(xk)
∂xi

≤ 0, then

x′i = min
{

xub,i, xk −
1
λk

∂mk(xk)

∂xi

}
(5.4)

and

|x′i − xk,i| = min
{

xub,i − xk,i,−
1
λk

∂mk(xk)

∂xi

}
≤ − 1

λk

∂mk(xk)

∂xi
.

• If ∂mk(xk)
∂xi

= 0, then x′i = 0.

We remark in this case that red(∇xmk(xk), xk)i = ∂mk(xk)
∂xi

, thus |x′i − xk,i| ≤
1

λk
|red(∇xmk(xk), xk)i|. Furthermore, if

∣∣∣ ∂mk(xk)
∂xi

∣∣∣ > 0 then ∂mk(xk)
∂xi

(x′i − xk,i) < 0;

otherwise ∂mk(xk)
∂xi

(x′i − xk,i) = 0.

As a result we have that ∥xk − x′∥ ≤ ∥red(∇xmk(xk), xk)∥/λk.

Finally, the chain of Equations 5.1, 5.2, 5.3 and 5.4 indicates that x′ = [PΩc(xk −
1

λk
∇xmk(xk)] = pk(xk,∇xm(xk), 1/λk). It also shows that for every coordinate i ∈

{1, . . . , nc} such that 0 < |red(∇xmk(xk), xk)i| the value of |x′i − xk,i| > 0. Hence,

if ∥red(∇xmk(xk), xk)∥ is bounded away from 0 the same happens to ∥x′ − xk∥ and

|∇xmk(xk)
⊤(x′ − xk)|, concluding the proof.

Theorem 5.3 shows that the meaningful search domain for iteration k is deter-

mined by the ratio between ∥red(∇xmk(xk), xk)∥ and λk. It is therefore natural to

define λk =
∥red(∇xmk(xk),xk)∥

∆c
k

. Under this principle we construct our algorithm.

The hybrid DCA-DFO algorithm is presented in Algorithm 5.4. For a given it-

eration k the current solution is denoted by (xk, yk). Yk indicates the set of points

88 Chapter 5. Hybrid DCA-DFO Optimization

sampled up to the iteration k. The basic idea is to compute at every iteration a con-

tinuous surrogate mk(x) that approximates the manifold f̂yk(x) and use its gradient

(evaluated at the point xk) as a substitute of the subdiferential ∂Ψk(xk).

The inputs of this algorithm are: the black-box function f (x, y), the variable

lower bounds (xlb, ylb) and upper bounds (xub, yub), the initial candidate solution

(x0, y0) ∈ Ωm, the starting and maximum size of the trust-region ∆icb
0 and ∆max,

the parameters used to update the trust-region γ0 and γ1, the parameters used to

evaluate the quality of an iteration η0 and η1, the scaling parameters of criticality

test µ and β, the reduction factor of the trust-region ω and the pivoting tolerance

ξ ∈ (0, 1/4]. Finally, we consider the parameter PO that determines if the func-

tion Ψk(x) is computed to optimality, or we use a suboptimal solution such that

y′ /∈ argmaxy∈Ωz

λk
2 ∥xk∥ − f (xk, y).

The initialization (Lines 1-2) correspond to the computation of the first surrogate

approximation micb
k . Note that this model is constructed on the integer coordinate

y0; nonetheless, a preliminary integer local search can be performed to accelerate

the rate of objective improvement without affecting algorithmic convergence. The

main part of the algorithm consists of a loop (Lines 3-42) that is repeated until a

stopping criterion is reached. The loop starts verifying if the norm of the reduced

gradient ∥red(∇xmicb
k (xk), xk)∥ of the incumbent model is smaller than threshold

ϵc (Line 4), implying convergence to a first-order stationary point. In this case,

the Criticallity Step (Lines 6-12) is invoked and the variable CRIT is set to 1. The

CriticalityTest evaluates at the same time if the incumbent model is fully-linear on

B̂c(xk, ∆icb
k)∩Ωc and if there exists certain relationship between the reduced gradient

red(∇xmicb
k (xk), xk) and the continuous trust-region radius. If micb

k does not accom-

plish both conditions, the CriticalityTest (Algorithm 4.2) is used to generate a new

model for which ∥red(∇xmk(xk), xk)∥ ≥ ∆c
kµ−1. However, if the model micb

k is fully-

linear and the desired relationship is satisfied, the model micb
k is accepted (Line 10)

and subsequently used to compute a new candidate solution.

After the Criticality Step a new candidate solution (x′, y′) is computed together

with the update parameter ρk. This part of the algorithm is called Candidate Compu-

tation (Lines 16-24), that consists in the following operations: first, the regularization

term λk and the subgradient wk are computed from the reduced gradient and the

5.3. Hybrid DCA-DFO Algorithm 89

trust-region radius ∆c
k. Next, we compute x′ by optimizing the outer linearization of

Γ(x) (Line 18). The candidate y′ is obtained via local search heuristics when PO = 0

and CRIT = 0, or by using one of the global optimization procedures tailored for

the optimization of M and M♮-convex functions (CRIT = 1).

If ρk ∈ (η0, η1) iteration k is said to be successful, when the new solution yields a

sufficiently large improvement with respect to the previous solution. Furthermore,

if ρk > η1 the iteration k is said to be very-successful. If we have a successful or very-

successful iteration (i.e., ρk > η0), we accept (x′, y′) as the current solution and we

generate the model to be used in the next iteration (Line 32). If we have a very-

successful iteration (i.e., ρk ≥ η1), we increase the size of the trust-region (Line 23).

In case ρk ≤ η0 we check if the model used is fully-linear (Line 27). If the model

mk is fully-linear the iteration k is called unsuccessful and the trust-region radius ∆c
k is

reduced. Note that the model is not modified, thus micb
k+1(x) = mk(x). On the other

hand, if the fully-linearity condition is not satisfied, we have a model-improving iter-

ation, where the LinearInterpolationModel procedure is used to construct a fully-

linear surrogate on B̂c(xk, ∆c
k) ∩ Ωc.

In the following subsection we detail the CriticalityTest and LinearInterpola-

tionModel procedures used in Algorithm 5.4.

5.3.2 Auxiliary Procedures

The most important task in the development of Algorithm 5.4 is the construction

of continuous-fully linear surrogates to compute approximate subgradients. This is

done via linear-interpolation. The process to select the proper samples to retrieve

a linear model is detailed in Algorithm 5.5 - LinearInterpolationModel. This al-

gorithm is based on the LU decomposition and aims to generate a set of linearly

independent samples inside the trust-region (B̂c(xk, ∆c
k) ∩ Ωc)× {yk}. It takes into

account the set of previous samples (Lines 2 and 3) and selects the fittest nc points.

In case the existing set is not well-poised or the number of samples is insufficient this

algorithm is able to select a new set of points by maximizing the absolute value of

the pivotal polynomials ui(x) inside the domain. Note that the pivotal polynomials

are linear, therefore, the optimal solution of the subproblem in Line 7 is computed

without large computational effort using a non-linear solver.

90 Chapter 5. Hybrid DCA-DFO Optimization

Algorithm 5.4 Hybrid sequential DFO-DCA Algorithm

Input: Black-box function f (x, y), variable bounds (xlb, ylb) and (xub, yub), initial
point (x0, y0) ∈ Ωm. Initial and maximum trust-region radii ∆icb

0 and ∆max, γ0, γ1
such that 0 < γ0 < 1 < γ1; η0, η1 such that 0 < η0 < η1 < 1; µ, β such that
µ > β > 0; ω ∈ (0, 1) ; ξ ∈ (0, 0.25];ϵc > 0 and PO = {0, 1}.

1: Set k = 0
2: Set (micb

0 , Y0) = LinearInterpolationModel(x0, xlb, xub, y0, ∅, ∆icb
0), ξ)

3: repeat
4: if ∥red(∇xmicb

k (xk), xk)∥ < ϵc then
5: Set CRIT = 1
6: if micb

k is not fully-linear or ∥red(∇xmk(xk), xk)∥ < µ−1∆icb
k then

7: (mk, Yk∆̃k) = CriticalityTest(xk, xlb, xub, yk, ω, µ, Yk, ξ)
8: Set ∆k = min{max{∆̃k, β∥red(∇xmk(xk), xk)∥}, ∆icb

k }
9: else

10: GoTo line 18
11: end if
12: else
13: CRIT = 0
14: Set mk = micb

k , ∆c
k = ∆icb

k
15: end if
16: Set λk = ∥red(∇xmk(xk), xk)∥/∆c

k
17: Set wk = λkxk −∇xmk(xk)

18: Set x′ = argminx∈Ωc
{λk

2 ∥x∥2 − (x − xk)
⊤wk}

19: if PO = 1 or CRIT = 1 then
20: Set y′ = argminy∈Ωz

f (x′, y)
21: else
22: Compute y′ by partially optimizing f (x′, y) in Ωz
23: end if
24: Set ρk =

f (xk ,yk)− f (x′,y′)
(x′−xk)⊤∇xmk(xk)

25: if ρk > η0 then
26: Set xk+1 = x′, yk+1 = y′

27: if ρ > η1 then
28: Set ∆icb

k+1 = min{γinc∆k, ∆max}
29: else
30: Set ∆icb

k+1 = ∆c
k

31: end if
32: Set (micb

k+1, Yk+1) = LinearInterpolationModel(xk+1, xlb, xub, yk+1, Yk∆icb
k+1), ξ)

33: else
34: if mk is fully-linear with respect (B̂c(xk, ∆k) ∩ Ωc)× {yk} then
35: Set ∆icb

k+1 = γ∆k, micb
k+1 = mk and Yk+1 = Yk

36: else
37: Set (micb

k+1, Yk+1) = LinearInterpolationModel(xk, xlb, xub, yk, Yk, ∆c
k, ξ)

38: end if
39: Set xk+1 = xk, yk+1 = yk
40: end if
41: Set k = k + 1
42: until Convergence is proven

5.3. Hybrid DCA-DFO Algorithm 91

These second auxiliary procedure of Algorithm 5.4 is the CriticalityTest (Algo-

Algorithm 5.5 LinearInterpolationModel

Input: Current continuous solution xk, variable bounds xlb, xub, current integer so-
lution yk, set of samples Yk, trust-region radius ∆c

k and pivoting tolerance ξ
Output: Fully-linear model mk(x) and updated set of samples Yk

1: Set ui(x) = xi ∀i ∈ {1, . . . , nc}
2: Set Xk = {x ∈ B̂c(xk, ∆c

k) ∩ Ωc | (x, yk) ∈ Yk}, X̃k = {}
3: Set X̂k = {(x − xk)/∆c

k ∀x ∈ Xk}
4: for i ∈ {1, . . . , nc} do
5: Set x̄ = argmaxx∈X̂k

|ui(x)|
6: if |ui(x̃)| < ξ or X̂k = ∅ then
7: Set x̄ = argmaxx∈B̂c(0,1)|xk+x∆c

k∈Ωc
|ui(x)|

8: Set Yk = Yk ∪ {xk + x̄∆c
k}

9: else
10: Set X̂k = X̂k \ {x̄}
11: end if
12: Set X̃k = X̃k ∪ {x̄}
13: for j ∈ {i + 1, . . . , nc} do
14: Set uj(x) = uj(x)− uj(x̄)

ui(x̄)uj(x)
15: end for
16: Solve the system of equations f (xk + x̄∆c

k, yk)− f (xk, yk) = g⊤ x̄∆c
k ∀x̄ ∈ X̃k to

compute g ∈ Rnc

17: Set mk(x) = f (xk, yk) + g⊤(x − xk)
18: end for

rithm 5.6). It is used to evaluate the convergence into a first-order stationary point.

The goal of Algorithm 5.6 is to generate a surrogate approximation m̃k of f (xk, yk)

such that the following conditions are satisfied: the model mk is fully-linear and

∥red(∇xmk(xk), xk)∥ ≥ ∆c
kµ−1. We highlight that if ∥red(∇x f (xk, yk), xk)∥ > 0 this

procedure converges in a finite number of iterations [66].

Algorithm 5.6 CriticalityTest

Input: Current continuous solution xk, variable bounds xlb, xub, current integer so-
lution yk, parameters ω, µ,set of samples Yk and pivoting tolerance ξ

Output: Model mk, updated set of samples Yk and trust-region radius ∆̃k
1: Set i = 1
2: repeat
3: Set ∆̃k = ωi−1∆icb

k
4: Set (m̃k, Yk) = LinearInterpolationModel(xk, xlb, xub, yk, Yk, ∆̃k, ξ)
5: Set i = i + 1
6: until ∆̃k < µ∥red(∇xm̃k(xk), xk)∥

92 Chapter 5. Hybrid DCA-DFO Optimization

5.4 Convergence of Algorithm 5.4

In this section we prove that Algorithm 5.4 is globally convergent to a first-order

stationary point, in a similar way to the scheme presented by Conn et al [66]. We use

several elements introduced in Section 4.2, such as the function χk(xk, g, t) and the

criticality measure χ̄k = χk(xk,∇xmk(xk), 1). The proof consists in the following steps.

First, we detail the relationship between the reduced gradient red(∇xmk(xk), xk)

and the solution of the outer linearization problem described in Line 18-Algorithm

5.4. Then, we present the notion of minimum decrease condition which is theoretically

equivalent to the improvement related to generalized Cauchy point on the trust-region

method. Next, we show that unless a point is stationary, model update procedures

compute a model for which the gradient red(∇xmk(xk), xk) and the trust-region ra-

dius ∆c
k diverge from zero, and that objective improvement is always possible. Fi-

nally, we prove by contradiction that the sequence {xk, yk} is convergent, and its

limiting value (x̃, ỹ) is first-order stationary with respect to the continuous variables

and a global optima with respect to the integer set Ωz. For the remainder of this sec-

tion we denote x′ = argminx∈Ωc

{
λk∥x∥2

2 − (λkxk −∇xmk(xk))
⊤(x − xk)

}
and Simp

as the collection of all the successful and very-successful iterations.

Now, we introduce the building blocks of this proof. First, we remark that there

exists a pair of global constants κe f , κeg that bound the error of the interpolation for

every iteration for which mk is fully-linear:

Proposition 5.1. For any given function f that satisfies Assumption 1.3 and the class of

discrete sets Ω̄ = { {y} | ∀y ∈ Ωz}, we guarantee there exists a fully-linear class of

models M (Definition 3.2) with suitable positive global constants κe f , κeg such that, for any

given ∆ ∈ (0, ∆max], (x, y) ∈ Ωm and Ωd ∈ Ω̄, the error in the function and gradient

approximation is bounded. Moreover, we can obtain a fully-linear model from this class in a

finite, uniformly bounded operations and function evaluations.

Algorithm 5.4 considers ∥red(∇xmk(xk), xk)∥ as a measure of algorithmic star-

ionarity with respect to the set Ωc. The following two corollaries summarize the

relationship of x′, xk and ∆c
k with the reduced gradient:

Corollary 5.1. Let xk ∈ Ωc. If ∥red(∇xmk(xk), xk)∥ > 0 there exists a global constant

κ f rd ∈ (0, 1) such that ∥x′ − xk∥ ≥ κ f rd∆c
k.

5.4. Convergence of Algorithm 5.4 93

Proof. Since ∥red(∇xmk(xk), xk)∥ > 0, then ∆c
k = ∥red(∇xmk(xk),xk)∥

λk
≥ ∥x′ − xk∥ > 0

by Theorem 5.3, then the ratio between ∥red(∇xmk(xk), xk)∥ and ∆c
k must be bounded

from bellow

0 < κ f rd ≤ ∥x′ − xk∥
∆c

k
≤ 1.

Corollary 5.2. Let xk ∈ Ωc. If ∥red(∇xmk(xk), xk)∥ > 0 there exists a global constant

κcri ∈ (0, 1) such that χ̄k ≥ κcri∥red(∇xmk(xk), xk)∥.

Proof. Since ∥red(∇xmk(xk), xk)∥ > 0, then ∥x′− xk∥ > 0 by Theorem 5.3. As xk, x′ ∈

Ωc, any point on the line xk + (x′ − xk)h ∈ Ωc, ∀h ∈ [0, 1]. As a consequence, the

point xk + (x′ − xk)/ max{2, ∥x′ − xk∥} ∈ B̂c(xk, 1) ∩ Ωc, thus

χ̄k ≥
|(x′ − xk)

⊤∇xmk(xk)|
max{2, ∥x′ − xk∥}

> 0.

Finally, from Lemma 4.2 we have ∥red(∇xmk(xk), xk)∥ ≥ χ̄k, therefore

0 < κcri ≤
χ̄k

∥red(∇xmk(xk), xk)∥
< 1.

Next, we show that if the current iterate is not a first-order critical point, Algo-

rithm 5.6 converges in a finite number of iterations:

Lemma 5.2. If ∥red(∇x f (xk, yk), xk)∥ > 0 then the CriticalityTest (Algorithm 5.6) ter-

minates in a finite number of iterations.

Proof. This proof is equal to the proof of Lemma 4.5.

Lemma 5.2 implies that unless red(∇x f (xk, yk), xk) = 0, ∥red(∇xmk(xk)xk)| > 0

and it is possible to attain objective improvement by exploring the current manifold

yk. With this result, we present the minimum decrease condition for Algorithm 5.4.

Lemma 5.3. At every iteration k ≥ 0 there exists a minimum decrease condition given by

(xk − x′)⊤∇xmk(xk) ≥ κ f rdχ̄k min{∆c
k, 1}.

94 Chapter 5. Hybrid DCA-DFO Optimization

Proof. From Theorems 4.1 and 5.3 we have that x′ = pk(xk,∇xmk(xk), λk) and

χk(xk,∇xmk(xk), ∥x′ − xk∥) = |(x′ − xk)
⊤∇xmk(xk)|.

First we consider the case ∥x′ − xk∥ ≥ 1. From Lemma 4.1, χk(xk,∇xmk(xk), ∥x′ −

xk∥) ≥ χ̄k, thus (xk − x′)⊤∇xmk(xk) ≥ χ̄k ≥ κ f rdχ̄k. Next, we consider the case

∥x′ − xk∥ < 1. From Lemma 4.1 we have χk(xk,∇xmk(xk), ∥x′ − xk∥) ≥ ∥x′ − xk∥χ̄k.

Recalling Corollary 5.1, we then obtain:

(xk − x′)⊤∇xmk(xk) = χk(xk,∇xmk(xk), ∥x′ − xk∥) ≥ χ̄k∥x′ − xk∥ ≥ κ f rdχ̄k∆c
k.

It completes the proof.

Now, we relate the minimum decrease condition given by Lemma 5.3 with the

convergence of Algorithm 5.4:

Lemma 5.4. If the model mk is fully-linear and the trust-region radius satisfies

∆c
k ≤ min

{
1,

κ f rd∥red(∇xmk(xk), xk)∥(1 − η1)

κe f

}

then iteration k is very-successful.

Proof. First, consider the minimum decrease condition described in Lemma 5.3. As

∆c
k ≤ 1 we have that (xk − x′)⊤∇xmk(xk) = mk(xk)− mk(x′) ≥ κ f rdχ̄k∆c

k. For every

iteration k > 0 we can describe the update parameter as the addition of two separate

terms ρ1
k and ρ2

k . Let ρ1
k =

f (xk ,yk)− f (x′,yk)
mk(xk)−mk(x′) , ρ2

k =
f (x′,yk)− f (x′,y′)
mk(xk)−mk(x′) and

ρk =
f (xk, yk)− f (x′, y′)

mk(xk)− mk(x′)
=

f (xk, yk)− f (x′, yk) + (f (x′, yk)− f (x′, y′))
mk(xk)− mk(x′)

= ρ1
k + ρ2

k .

The term ρ1
k is a measure of objective improvement related to the local continuous

search on the current integer manifold yk. On the other hand, the term ρ2
k is a mea-

sure of possible objective decrease by the (partial) optimization in integer domain.

5.4. Convergence of Algorithm 5.4 95

It is evident that ρ2
k ≥ 0 as f (x′, y′) ≤ f (x′, yk). Now, taking into account the fully-

linearity of the model mk we establish the bounds of ρ1
k :

ρ1
k − 1 =

f (xk, yk)− mk(xk) + (mk(x′)− f (x′, yk))

mk(xk)− mk(x′)

with f (xk, yk) − mk(xk) = 0 from model interpolation and ∥mk(x′) − f (x′, yk)∥ ≤

κe f (∆c
k)

2 from the fully-linear error bounds, then

|ρ1
k − 1| ≤

κe f (∆c
k)

2

κ f rdχ̄k∆c
k
≤ ∥red(∇xmk(xk), xk)∥(1 − η1)

χ̄k
.

From Lemma 4.2 we have that χ̄k ≤ ∥red(∇xmk(xk), xk)∥ thus |ρ1
k − 1| ≤ (1 − η1).

Therefore, ρ1
k ≥ η1 and ρk ≥ η1, and iteration k is very-successful.

Lemma 5.5. limk→∞ ∆c
k = 0.

Proof. For any successful or very-successful iteration we have that

f (xk, yk)− f (xk+1, yk+1) ≥ η0(xk − x′)⊤∇xmk(xk) ≥ η0κ f rdχ̄k min{∆c
k, 1}.

Recalling the conditions given by the CriticalityTest procedure this bound becomes

f (xk, yk)− f (xk+1, yk+1) ≥ η0(xk − x′)⊤∇xmk(xk) ≥

η0κ f rdκcri∥red(∇xmk(xk), xk)∥min{∆c
k, 1}.

From Assumption 1.1 the term

lim
k→∞

f (x0, y0)− f (xk, yk) = ∑
k∈ Simp

f (xk, yk)− f (xk+1, yk+1)

is bounded, condition that is only met if limk→∞ ∆c
k = 0.

Lemma 5.6. lim infk→∞ χ̄k = 0.

Proof. Assume, for establishing a contradiction that there exists a κ1 > 0 such that

∥red(∇xmk(xk), xk)∥ ≥ χ̄k > κ1, ∀k ≥ 0. We use the Criticality Step to derive a

relationship between κ1, ∥red(∇xmk(xk), xk)∥ and ∆c
k. There exists two possible sce-

narios:

96 Chapter 5. Hybrid DCA-DFO Optimization

• ∆c
k ≥ min{∆icb

k , β∥red(∇xmk(xk), xk)∥} if the CriticalityTest is called.

• ∆c
k = ∆icb

k otherwise.

By Lemma 5.4 and the assumption that ∥red(∇xmk(xk), xk)∥ > κ1, whenever ∆c
k

falls bellow κ̄2 = min
{

1, κ f rd κ1(1−η1)

κe f

}
, the iteration kth cannot be unsuccessful. Thus

∆icb
k+1 ≥ ∆k and ∆icb

k ≥ min{γ0κ̄2, ∆icb
0 } ∀k > 0.

As ∥red(∇xmk(xk), xk)∥ > κ1 we have that for every iteration k, whether the Criti-

calityTest is invoked or not, the following condition holds:

∆c
k ≥ min{∆icb

k , β∥red(∇xmk(xk), xk)∥ ≥ min{∆icb
k , βκ1}.

As a result, ∆c
k must be bounded by the factor ∆c

k ≥ min{∆icbc
0 , βκ1, γ0κ̄2}, ∀k > 0,

which contradicts Lemma 5.5.

Lemma 5.7. For a subsequence {ki} such that

lim
i→∞

∥red(∇xmki(xki), xki)∥ = 0

it also holds that

lim
i→∞

∥red(∇x f (xki , yki), xki)∥ = 0

and lim
i→∞

χki(xki ,∇x f (xki , yki), 1) = 0.

Proof. First, note that for a large ki we have that ∥red(∇xmki(xki), xki)∥ < ϵc as the

limit value of the subsquence is 0; thus, the model mki is mixed-integer fully-linear

and ∆c
ki
≤ µ∥red(∇xmki(xki), xki)∥ (Algorithm 5.4, Criticality Step). From Lemma 4.4

we have that

∥red(∇x f (xki , yki), xki)− red(∇xmki(xki), xki)∥ ≤ ∥∇x f (xki , yki)−∇xmki(xki)∥

≤ κeg∆c
ki
≤ κegµ∥red(∇xmki(xki), xki)∥.

5.4. Convergence of Algorithm 5.4 97

This bound can be used to compute an upper bound on the norm of the reduced

gradient of f at the point xki , yki :

∥red(∇x f (xki , yki), xki)∥

≤ ∥red(∇x f (xki , yki), xki)− red(∇xmki(xki), xki)∥+ ∥red(∇xmki(xki), xki)∥

≤ (κegµ + 1)∥red(∇xmki(xki), xki)∥.

(5.5)

As a consequence limi→∞∥red(∇x f (xki , yki), xki)∥ = 0.

Finally, from Lemma 4.2 ∥red(∇x f (xki , yki), xki)∥ ≥ χk(xki ,∇x f (xki , yki), 1), thus,

lim
i→∞

χki(xki∇x f (xki , yki), 1) = 0.

We now prove that there exists at least one accumulation point (x∗, y∗) which is

stationary with respect to the continuous variables, or ∥red(∇x f (x∗, y∗), x∗)∥ = 0.

Lemma 5.8. lim infk→∞∥red(∇x f (xk, yk), xk)∥ = 0.

Proof. Assume, for establishing a contradiction there exists a bound κ1 > 0 on the

reduced gradient such that ϵc > κ1, ∥red(∇x f (xk, yk), xk)∥ > κ1 ∀k ≥ 0. Now

we establish a relationship between κ1 and ∥red(∇xmk(xk), xk)∥. From Lemma 5.6,

there exists an iteration ki such that χ̄k ≤ ∥red(∇x(mki(xki), xki)∥ ≤ κ1
2+κegµ . Consid-

ering that κ1 is strictly smaller than ϵc, the model mki is fully-linear and the chain of

inequalities (5.5) holds. In consequence for iteration ki we have that:

κ1 ≤ ∥red(∇x f (xki , yki), xki)∥ ≤ (1 + µκeg)∥red(∇xmki(xki), xki)∥ <
1 + µκeg

2 + µκeg
κ1,

which contradicts the initial assumption.

In the remainder of this chapter we show that limiting values of xk, yk are station-

ary, or limk→∞ χk(xk,∇x f (xk, yk), 1) = 0. To complete the proof we use the potential

convexity of the reformulation Ψk(x). We remark that Algorithm 5.4 may generate

a sequence of iterates yk /∈ argminy∈Ωz
f (xk, y). In those cases we can still proof

convexity and generate valid inexact subgradients, as we now show:

98 Chapter 5. Hybrid DCA-DFO Optimization

Lemma 5.9. Let mk : Rnc → R be a fully-linear approximation of f̂yk(x) on B̂c(xk, ∆c
k) ∩

Ωc, where yk ∈ argmaxy∈Ωz
{− f (xk, y)}. The vector λkxk −∇xmk(xk) ∈ ∂ϵk Ψk(xk) with

ϵk = κeg(∆c
k)

2 and λk ≥ κg.

Proof. For all x ∈ Ωc we have that:

Ψk(x) ≥ Ψk(xk) + (x − xk)
⊤(λkxk −∇x f̂yk(xk))

which is equivalent to

Ψk(x)− Ψk(xk) + (x − xk)
⊤(∇x f̂yk(xk)−∇xmk(xk)) ≥ (x − xk)

⊤(λkxk −∇xmk(xk)).

As ∥∇xmk(xk)− f̂yk(xk)∥ ≤ κeg∆k and ∥x − xk∥ ≤ ∆c
k then

(x − xk)
⊤(∇x f̂yk(xk)−∇xmk(xk)) ≤ ∥x − xk∥κeg∆k ≤ ϵk

and

Ψk(x)− Ψk(xk) + ϵk ≥ (x − xk)
⊤(λxk −∇xmk(xk)).

Lemma 5.10. Let Ψ̃k(x) = λk
2 ∥x∥2 − f̂yk(x) with yk /∈ argmaxy∈Ωz

{− f (xk, y)}. Let

mk : Rnc → R be a fully-linear approximation of f̂yk(x) on B̂c(xk, ∆c
k) ∩ Ωc. The vector

λkxk −∇xmk(xk) ∈ ∂ϵk Ψ̃k(xk) with ϵk = κeg(∆c
k)

2 and λk ≥ κg.

Proof. As the parameter λk is larger than κg, the function Ψ̃k(x) is convex and differ-

entiable, then for all x ∈ Ωc we have that:

Ψ̃k(x) ≥ Ψ̃k(xk) + (x − xk)
⊤(λkxk −∇x f̂yk(xk))

which is equivalent to

Ψ̃k(x)− Ψ̃k(xk) + (x − xk)
⊤(∇x f̂yk(xk)−∇xmk(xk)) ≥ (x − xk)

⊤(λkxk −∇xmk(xk)).

As ∥∇xmk(xk)− f̂yk(xk)∥ ≤ κeg∆k and ∥x − xk∥ ≤ ∆c
k then

(x − xk)
⊤(∇x f̂yk(xk)−∇xmk(xk)) ≤ ∥x − xk∥κeg∆k ≤ ϵk

5.4. Convergence of Algorithm 5.4 99

and

Ψ̃k(x)− Ψ̃k(xk) + ϵk ≥ (x − xk)
⊤(λxk −∇xmk(xk)).

Theorem 5.4. Under Assumptions 1.1 and 1.3 the sequence of iterates generated by Algo-

rithm 5.4 satisfies:

lim
k→∞

∥red(∇xmk(xk), xk)∥ = 0

and

lim
k→∞

χk(xk,∇x f (xk, yk), 1) = 0

Proof. Assume, for establishing a contradiction there exist an infinite sequence of

iterations {ℓj} such 0 < ϵo < χℓj(xℓj ,∇x f (xℓj , yℓj), 1) ≤ ∥red(∇x f (xℓj , yℓj), xℓj)∥.

From Lemma 5.7 we obtain that ∥red(∇xmℓj(xℓj), xℓj)∥ ≥ ϵ for some ϵ > 0.

We now focus on the limiting value ℓj → ∞. Lemma 5.5 indicates that a subse-

quence of elements for which ∆ℓj ≤ min
{

1, ϵ
2κg

, γκ f rdϵ(1−η1)

κe f

}
exists. Note that as

∆ℓj ≤ ϵ/(2κg) the regularization parameter λk > 2κg. It indicates that:

• If yℓj ∈ argminy∈Ωz
{ f (xℓj , y)} the function Ψℓj is convex (Lemma 5.1) and the

vector λℓj xℓj −∇xmℓj(xℓj) computed from a fully-linear approximation mℓj(x)

on B̂c(xℓj , ∆c
k) ∩ Ωc is a proper subgradient of Ψℓj , with error constant equal to

κeg(∆c
ℓj
)2 (Lemma 5.9).

• If the current yℓj /∈ argminy∈Ωz
{ f (xℓj , y)} the function Ψ̃k(x) =

λℓj
2 ∥x∥ − f̂ℓj(x)

is convex (Lemma 5.1) and the vector λℓj xℓj − ∇xmℓj(xℓj) computed from a

fully-linear approximation mℓj(x) on B̂c(xℓj , ∆c
k) ∩ Ωc is a proper subgradient

of Ψ̃ℓj , with error bounded by κeg(∆c
ℓj
)2 (Lemma 5.10).

We identify two possible scenarios depending on whether the model mℓj(x) is fully-

linear or not. For the first case in which the model mℓj(x) is fully-linear on B̂c(xℓj , ∆c
ℓj
)

we have that the iteration ℓj is very-successful (Lemma 5.4) and the following inequal-

ity holds (Lemma 5.9):

λℓj

2
∥xℓj+1∥2 − f (xℓj+1, yℓj+1) ≥

λℓj

2
∥xℓj∥

2 − f (xℓj , yℓj) + (λℓj xℓj −∇xmℓj(xℓj))
⊤(xℓj+1 − xℓj)− κeg(∆c

ℓj
)2

100 Chapter 5. Hybrid DCA-DFO Optimization

that is equal to

λℓj

2
∥xℓj+1 − xℓj∥

2+(f (xℓj , yℓj)− f (xℓj+1, yℓj+1)) + κeg(∆c
ℓj
)2

≥ (∇xmℓj(xℓj))
⊤(xℓj − xℓj+1).

(5.6)

We then define a proper upper bound for the left hand side of inequality 5.6. We have

that ∥xℓj+1 − xℓj∥ ≤ ∆c
ℓj

and f (xℓj , yℓj) − f (xℓj+1, yℓj+1) > η1(∇xmℓj(xℓj))
⊤(xℓj −

xℓj+1), then

λℓj

2
(∆c

ℓj
)2 + η1(∇xmℓj(xℓj))

⊤(xℓj − xℓj+1) + κeg(∆c
ℓj
)2 ≥ (∇xmℓj(xℓj))

⊤(xℓj − xℓj+1),

and reorganizing the previous inequality we obtain

λℓj

2
(∆c

ℓj
)2 + κeg(∆c

ℓj
)2 ≥ (1 − η1)(∇xmℓj(xℓj))

⊤(xk − xℓj+1). (5.7)

Taking into account that the minimum decrease condition given by 5.3 and the rela-

tionship that exist between χ̄k and ∥red(∇xmk(xk), xk)∥ (Corollary 5.2), we compute

a proper lower bound for the right hand side of inequality 5.7:

λℓj

2
(∆c

ℓj
)2 + κeg(∆c

ℓj
)2 ≥ (1 − η1)κ f rdχ̄ℓj ∆

c
ℓj
≥ (1 − η1)κ f rdκcriϵ∆c

ℓj

thus

∆c
ℓj
≥

(1 − η1)κ f rdκcriϵ
λℓj
2 + κeg

≥
(1 − η1)κ f rdκcriϵ

2κg
.

For the second case consider that the model mℓj(x) is not fully-linear on B̂c(xℓj , ∆c
ℓj
).

This case is only occurs in Algorithm 5.4 when the previous iteration was unsuccess-

ful and ∥red(∇xmℓj(xℓj), xℓj)∥ > ϵc. These two conditions indicate that the Criti-

calityStep was not summoned and the model was not updated from the previous

iteration, thus ∆c
ℓj

= γ∆c
ℓj−1, mℓj(x) = mℓj−1(x), ∥red(∇xmℓj−1(xℓj−1), xℓj−1)∥ =

∥red(∇xmℓj(xℓj), xℓj)∥ ≥ ϵ, and that the model mℓj−1(x) is fully-linear on B̂c(xℓj−1, ∆c
ℓj−1).

Nonetheless, this condition induces a contradiction. Since ∆c
ℓj
≤ γκ f rdϵ(1−η1)

κe f
we have

that ∆c
ℓj−1 ≤ κ f rdϵ(1−η1)

κe f
; therefore, iteration ℓj − 1 must be very-successful (Lemma 5.4).

5.4. Convergence of Algorithm 5.4 101

As a consequence we have that all the limiting values of the sequence {ℓj} are fully-

linear and very-successful, then

lim inf
ℓj→∞

∆c
ℓj
=

(1 − η1)κ f rdκcriϵ

2κg
. (5.8)

This result contradicts Lemma 5.5. Therefore, for any given ϵ0 > 0 there exists an

N ∈ N such that:

χk(xk,∇x f (xk, yk), 1) < ϵo ∀k > N.

It implies that limk→∞ χk(xk,∇x f (xk, yk), 1) = 0. Moreover, Equation 5.8 indicates

that limk→∞∥red(∇xmk(xk), xk)∥ = 0 as limk→∞ ∆c
k = 0. It concludes the proof.

Theorem 5.5. Under Assumptions 1.1 and 1.3 the sequence of iterates generated by Algo-

rithm 5.4 satisfies:

lim inf k → ∞λk =
1
µ

Proof. From Theorem 5.4 we know that there exists a N ∈ N+ such that for every

iteration k > N the bound ∥red(∇xmk(xk), xk)∥ < ϵc holds. As a result, for the set

of iterations such k > N the relationship ∥red(∇xmk(xk), xk)∥ ≥ ∆c
k/µ also holds.

We remark that in Algorithm 5.4 the parameter λk = ∥red(∇xmk(xk),xk)∥
∆c

k
; therefore, as

k → ∞ the value of λk is bounded by the term 1/µ.

Finally, having proved that Algorithm 5.4 is convergent to a first-order stationary

point with respect to the vector x and the box Ωc, we prove that the limiting values

{yk} are global optima with respect to the discrete set Ωz:

Theorem 5.6. Under Assumptions 1.1, 1.2, 1.3 and 5.1 the sequence of iterates generated

by Algorithm 5.4 satisfies:

lim
k→∞

χk(xk,∇x f (xk, yk), 1) = 0

and f (xk, yk) ≤ f (x, y) ∀(x, y) ∈ {xk} × Ωz.

Proof. From Theorem 5.4 we know that there exists a N ∈ N+ such that for every

iteration k > N the bound ∥red(∇xmk(xk), xk)∥ < ϵc holds. As a result we have

that the parameter CRIT is set to 1 and the integer subproblem is solved to global

102 Chapter 5. Hybrid DCA-DFO Optimization

optimality (Line 19 - Algorithm 5.4). It implies that yk ∈ argminy∈Ωz
f (xk, y) ∀k >

N. As a consequence we have that the limiting values of the sequence xk, yk are a

SLM of the function f with respect to the discrete set Ωz.

Remark 4. We have proved algorithmic convergence to a separate local minimum on the

set Ωz when the function exhibits M or M♮ properties. Moreover, the same results can be

extended to mixed-integer functions that present combinatorial properties that allow a poly-

nomial time solution of the partial minimization with respect to the set of discrete variables.

Remark 5. We highlight that Algorithm 5.4 can be used for the optimization of general

mixed-integer functions that does not present combinatorial properties. In these cases, if

the Assumptions 1.1, 1.2 and 1.3 hold we guarantee first-order stationarity with respect to

the continuous variables, and weak local optimality with respect to the integer variables. The

strength of the output of Algorithm 5.4 would depend on the method used for the optimization

on the discrete domain.

5.5 Conclusions and Future Work

In this chapter we introduced a hybrid difference of convex and trust-region algo-

rithm for the solution of Problem 1.1 under the assumption of a combinatorial struc-

ture on the objective function. The solution scheme consists in the reformulation

of the objective via partial discrete optimization and convex regularization with the

weighted norm function. This method solves the problems that arise from the lack

of first-order information by using error-bounded (sub)gradients. We proved that

Algorithm 5.4 is globally convergent to strong local minimum (StLM) and can be

used to address general mixed-integer derivative free problems.

In the future we expect this methodology can be used to address different types

of combinatorial structures such as the globally convex functions or the L and L♮

discretly convex functions described by Murota [93], [104]. We also hope that our

results motivate the research on additional structures on a mixed-integer function,

like non-linear least squares, composite (non) convex functions and in particular

general min-max problems.

103

Chapter 6

Methodology Benchmarking

In this chapter, we evaluate the computational performance of Algorithm 4.1 and

Algorithm 5.4 for the optimization of structured instances -LQMI functions and M♮

discrete convex functions- and the solution of general mixed-integer black-box prob-

lems. To assess the rate of convergence and the quality of the solution obtained, we

compare our results with the ones obtained with PyNomad-Beta. PyNomad-Beta is

the Python interface of the solver NOMAD [38], the implementation of the MADS

algorithm for the solution of black-box problems with continuous, integer and cate-

gorical variables.

To compare the different solution approaches we use performance and data pro-

files [42]. Let S be the set of solvers (or algorithms) that we want to evaluate and

P the set of instances we want to use as a benchmark. A solver s ∈ S is said to

be convergent for instance p ∈ P if it obtains the best objective improvement with

respect to a starting evaluation point. More formally, let (x0, y0) be the starting eval-

uation point, (xs, ys) be the best solution found by solver s and fB = mins∈S f (xs, ys)

the best objective value for problem p obtained by all the solvers in S . We have

that the solver s is convergent up to a tolerance σ ∈ (0, 1) if f (xo, yo)− f (xs, ys) ≥

(1 − σ)(f (xo, yo)− fB).

The performance ratio rσ
s,p of a solver s with respect to the instance p is rσ

s,p =

tσ
s,p

minŝ∈S{tσ
ŝ,p}

, where ts,p is the total number of objective evaluations necessary to solver

s to be convergent up to a tolerance σ for problem p. If a solver is not convergent,

the performance ratio is considered as rσ
s,p = ∞. The performance profile perσ

s (a) of a

104 Chapter 6. Methodology Benchmarking

solver s is a function of a required value a:

perσ
s (a) =

1
|P|

∣∣∣{p ∈ P | rσ
s,p ≤ a}

∣∣∣
For a given solver s, perσ

s (a) gives the fraction of convergent instances (up to a toler-

ance σ) with a performance ration lower than a. Performance profiles do not show

how well a solver behaves in the case when the number of allowed function evalu-

ations is limited. Therefore, we additionally use the data profile method. The data

profile dats(a) of a solver s is a function of a required value a and is defined as:

datσ
s (a) =

1
|P|

∣∣∣{p ∈ P | tσ
s,p/(np + 1) ≤ a}

∣∣∣
where np = nc,p + nz,p is the total number of variables of problem p. For a given

solver s, datσ
s (a) represents the fraction of convergent instances with a number of

normalized objective evaluation tσ
p,s/(np + 1) lower than a.

6.1 Computational Results for Algorithm 4.1

In this section, we present the study of the computational performance of Algorithm

4.1. We evaluate two algorithmic versions that are described in Table 6.2: s1 or accu-

rate, and s2 or aggressive.

6.1.1 Experimental Setting

We implemented Algorithm 4.1 in Python, using Pyomo [105], [106] to prototype

the models used in Algorithms 4.3 and 4.5. The computational implementation also

includes a co-domain re-scaling subroutine to prevent numerical issues related to

large differences in the objective function. We follow a procedure similar to the ones

used in [78], [107]: if the difference between the set of active samples is greater than

106 then the value f (xi, yi) is replaced by log(f (xi, yi)) if its smallest value fmin > 1,

or, log(f (xi, yi) + 1 + | fmin|) otherwise. All the tests instances were evaluated in a

single machine Lyon/hercule at GRID5000 cluster, with a Intel Xeon E5-2620 CPU

and 32 GB of RAM. Finally, we consider algorithm termination when ∆c
k < 10−5,

∆z
k = 1 and ∥red(lc

k, xk)∥ < ϵc, with kmax = 700.

6.1. Computational Results for Algorithm 4.1 105

TABLE 6.1: Fixed parameters for Algorithm 4.1

ηo η1 γ0 γ1 ϵc, ϵa ω β µ

0.15 0.75 0.75 1.3 1e−6 0.6 103 1500

∆c
max = ⌈mini∈{1,...,nc}{xub,i − xlb,i}/2⌉

∆c
o = max{∆c

max/2, 0.1}
∆z

max = ⌈mini∈{1,...,nz}{yub,i − ylb,i}/2⌉
∆z

o = max{∆z
max, 1}

TABLE 6.2: Variable parameters for Algorithm 4.1

c fr IC UP SH

s1-accurate 1 T F F
s2-aggresive 0.5 F T T

In Table 6.1 we present the values used for the fixed parameters. In Table 6.2 we

resume the values of the variable parameters (c fr , IC, UP and SH) associated to the

two variants of Algorithm 4.1. The variant s1-accurate uses at each iteration a fully-

linear approximation (c f r = 1 and IC=TRUE) and does not use the search heuristic

(SH=FALSE), this allows to obtain a precise (but expensive to compute) model. On

the other hand, the variant s2-aggressive aims at obtaining a model with a limited

number of new sampled point, this is achieved by aggressively reusing previously

generated point (UP=TRUE) and by activating the search heuristic (SH=TRUE). Our

algorithm implementation uses the following ManifoldSearch procedure (Algorithm

6.1) in combination with the CriticalityTest (Algorithm 4.2) to avoid early conver-

gence to stationary points.

Algorithm 6.1 attempts to compute a discrete set of directions Mk on way that

Φk = Θ̄k > max{ϵc, ϵa}. It is done by visiting a finite number of discrete neighbor-

hoods (Line 3) to compute pure continuous fully-linear models that bound Ω̄k. If

the candidate Ω̃k does not satisfy the condition Ω̃k > max{ϵc, ϵa} we keep the same

model micb
k and transformation matrix Mk.

Finally, we perform an additional experiment of Algorithm 4.1 without the criticality-

test to evaluate the effect of the stationarity measures on its computational perfor-

mance. We evaluate the 290 instances of the Generic set with the s1-accurate-h and s2-

aggressive-h variants, that are the heuristic versions of the variants of the s1-accurate

s2-aggressive variants, respectively.

106 Chapter 6. Methodology Benchmarking

Algorithm 6.1 ManifoldSearch

Input: Point (xk, yk), variable bounds xlb, xub and ylb, yub, incumbent trust-region
radii ∆icbc

k and ∆icbz
k , set of samples Yk, transformation matrix Mk and criticality

tolerance ϵ̄
Output: Model m̃k, stationarity parameter Θ̃k and transformation matrix Mk

1: Set Θ̃k = 0
2: Set NSk = (B̂z(yk, ∆icbz

k) ∩ Ωz) \ (Q(yk, Mk) ∪ {yk})
3: for i = 1, . . . , min{|NSk|, nz} do
4: Select a vector yi from NSk
5: Compute a fully-linear surrogate mi(x) of f (x, yi) sampling nc + 1 points

(x, y) ∈ (B̂c(xk, ∆icbc
k) ∩ Ωc)× {yi}

6: if f (xk, yk)− minx∈B̂c(xk ,∆icbc
k)∩Ωc

mi(x) > Θ̃k then

7: Set Θ̃k = f (xk, yk)− minx∈B̂c(xk ,∆icbc
k)∩Ωc

mi(x)

8: Set ȳ = yi

9: end if
10: Set NSk = NSk \ {yi}
11: end for
12: if Θ̃k > ϵ̄ then
13: Compute the matrix Mk including the vector ȳ
14: Set Q̃k = Q(yk, M̃k)
15: Set (m̃k, X̄k

o , X̄k
j , Z̄k) =

MixedIntegerModelComputation(xk, xlb, xub, yk, ylb, yub, ∆icbc
k , ∆icbz

k , Q̃k, Yk, 1, 1)
16: else
17: Set m̃k = micb

k and keep the same Mk
18: end if

6.1. Computational Results for Algorithm 4.1 107

6.1.2 Test Instances

In the experimental section we use three sets of instances: LQMI, Cutest and Generic

functions.

• LQMI instances.

This set corresponds to a collection of 315 instances which are known to behave

locally or globally as an LQMI function. LQMI instances can be split into three

sub-classes: (1) globally quadratic functions, (2) quadratic + RBF functions,

and, (3) quadratic + element-wise exponential functions:

(1) f (z) = fo + c⊤(z − zo) +
1
2
(z − zo)

⊤A(z − zo)

(2) f (z) = fo + c⊤(z − zo) +
1
2
(z − zo)

⊤A(z − zo) +
n

∑
i=1

(
fr,i

1 + ∥x − xr,i∥2

)
(3) f (z) = fo + c⊤(z − zo) +

1
2
(z − zo)

⊤A(z − zo) +
nc

∑
i=1

evi(xi−xo,i)

where z⊤ = [x⊤, y⊤]. All the numeric coefficients are randomly generated

as follows: fo, fr,i are uniformly distributed in [−1000, 1000], c is randomly

distributed with mean 0 and standard deviation 1, A is normally distributed

with mean 0 and standard deviation 1. Moreover, we have xlb = ylb = −50

xub = yub = −50 and the reference parameter zo is uniformly distributed in

[−50, 50], and vi is uniformly distributed in between (−10−2, 10−2). The di-

mension of the instances nc + nz goes from 5 to 14 variables, with 5 different

integer ratios nz
nc+nz

= [0.2, 0.4, 0.6, 0.8].

• Cutest instances.

This set consists of twice differentiable functions from the CUTEr/st testing

environment [108], including the: explin, explin2, mccormck and hadamals in-

stances. This set consists in 174 instances generated from 5 continuous func-

tions from the Cuter/st environment. The dimension of these instances (nz +

nc) ranges from 8 to 12 variables, with 5 different integer ratios (0.2, 0.4, 0.6, 0, 8)

and 10 random starting points. We randomly select which of the variables are

considered as integer.

108 Chapter 6. Methodology Benchmarking

TABLE 6.3: Set of Generic MINLP test functions

Instance nc nz Lower bound Upper bound
Davidon2 2 2 [−15, 5] [35, 15]
Elattar 3 3 [−8,−8, 3] [12, 12, 17]
Evd61 3 3 [−8,−8, 3] [12, 12, 17]
Exp 3 2 −[9.5, 10, 10] [10.5, 10, 10]
Filter 5 4 −[10, 9, 10, 10.15, 10] [10, 11, 10, 9.85, 10]
Gamma 2 2 −[9, 9] [11, 11]
Hs78 3 2 [−12,−8.5, 8] [8, 11.5, 12]
Kowalik 2 2 −[9.75, 9.61] [10.25, 10.39]
Maxquad 5 5 −10 × J5,1 10 × J5,1
Oet5 2 2 −[9, 9] [11, 11]
Oet6 2 2 −[9, 9] [11, 11]

Osbornne2 6 5
−[8.7, 9.35, 9.35, 9.3,

9.4, 7]
[11.3, 10.65, 10.65, 10.7,

10.6, 13]
Pbc1 2 3 −[10, 11] [10, 9]
Prob10 3 2 −100 × J3,1 100 × J3,1
Prob102 3 2 −100 × J3,1 100 × J3,1
∗ Prob107 5 5 3 × J10,1 9 × J10,1
∗ Prob109 6 6 −1 × J12,1 3 × J12,1
∗ Prob113 5 5 3 × J10,1 99 × J10,1
∗ Prob115 6 6 10 × J12,1 30 × J12,1
∗ Prob116 4 4 −10 × J8,1 10 × J8,1
∗ Prob206 8 7 −15 × J15,1 30 × J15,1
∗ Prob208 5 10 −15 × J15,1 30 × J15,1
Rosen-susuki 2 2 −[10, 10] [10, 10]
Shelldual 8 7 −9.9999 × J8,1 10.0001 × J8,1
Shor 3 2 −10 × J3,1 10 × J3,1

Steiner2 6 6
[−9.3333,−8.1111,−7.6666

−7,−6.3333,−4.9444]
[10.6666, 11.8888, 12.3333,

13, 13.6666, 15.0555]
Transformer 3 3 −[9.2, 8.5, 8.8] [10.8, 11.5, 11.2]
Wong1 4 3 −[9, 8, 10, 6] [11, 12, 10, 14]
Wong2 5 5 −[8, 7, 5, 5, 9] [12, 13, 15, 15, 11]

• Generic instances.

This set consists of non-smooth and discontinuous problems proposed in [74],

[109], accounting 29 test functions, each one of them tested with 10 random

starting points. Table 6.3 reports the characteristics of all the Generic instances.

For the instances which are not marked with ∗ the bounds on the discrete vari-

ables are [0, 100], thus, only the continuous bounds are reported.

6.1.3 Discussion

Figures 6.1 and 6.2 display the profiles related to the LQMI instances with the con-

vergence tolerances σ ∈ {0.01, 0.001}. The figures show that Algorithm 4.1 is better

6.1. Computational Results for Algorithm 4.1 109

suited than NOMAD for the solution of LQMI instances. Indeed, both s1-accurate

and s2-aggressive are faster in the reduction of the objective function, both are able

to provide better solutions and solve a larger number of instances. A possible ex-

planation of the better results of both variants is the fact that the model provides an

exact estimation of the integer part of the original function. The variant s1-accurate

presents performance better than s2-aggressive, this is probably due to the fact that

at each iteration this variant computes a fully-linear approximation of the model

and does not “waste samples” in running heuristics. Therefore, the use of accurate

model information accelerate the objective improvement when the function studied

presents the LQMI structure. It is worth noting that none of these variants are able to

solve 100% of the instances tested, this is related to the fact that Algorithm 4.1 might

stop at a stationary point that does not correspond to a global optimum.

FIGURE 6.1: Performance and Data profiles on LQMI instances (Al-
gorithm 4.1), σ = 0.01

Figures 6.3 and 6.4 show the profiles of the evaluation of the Cutest set instances

with the convergence tolerances σ ∈ {0.01, 0.001}. From both performance and

data profiles we observe that variant s2-aggressive is competitive with NOMAD in

terms of instances solved and convergence rate. Moreover, in the σ = 0.01 case, s2-

aggressive is able to solve a slightly larger fraction of test instances. In contrast to the

LQMI set, variant s2-aggressive presents better performance than s1-accurate in terms

of convergence rate and number of problems solved, indicating that quick model

110 Chapter 6. Methodology Benchmarking

FIGURE 6.2: Performance and Data profiles on LQMI instances (Al-
gorithm 4.1), σ = 0.001

update and the search heuristic might help to avoid early convergence to mixed-

integer stationary points that could be potentially significantly far from the global

optimum.

Figures 6.5 and 6.6 show the profiles of the evaluation of the Generic set of

instances with the convergence tolerances σ ∈ {0.01, 0.001}. Both figures show

that NOMAD is faster in attaining algorithmic convergence, while Algorithm 4.1

presents slower convergence in both variants. One possible explanation for the over-

all better performance of NOMAD is the fact that NOMAD is tuned with a series of

heuristics that are focused on finding a good local optimum. On the other hand,

Algorithm 4.1 is mainly tuned for a proved convergence to a stationary point. We

also remark that Algorithm 4.1 uses a surrogate that is only globally accurate under

the assumption of having an LQMI function.

Finally, Figures 6.7 and 6.8 show the profiles of the evaluation of the Generic

set of instances using the heuristic variants of Algorithm 4.1 with tolerances σ ∈

{0.01, 0.001}. Both figures show that NOMAD is also faster than the heuristic ver-

sions of Algorithm 4.1 in attaining convergence; nonetheless, we observe that the

variants s1-accurate-h and s2-aggressive-h solve a larger amount of instances with re-

spect to the implementation that considers function stationarity. This improvement

in the computational performance is noticed in the σ = 0.001 case (Figure 6.8), where

6.1. Computational Results for Algorithm 4.1 111

FIGURE 6.3: Performance and Data profiles on Cutest instances, σ =
0.01

FIGURE 6.4: Performance and Data profiles on Cutest instances, σ =
0.001

112 Chapter 6. Methodology Benchmarking

FIGURE 6.5: Performance and Data profiles on Generic instances,
σ = 0.01

FIGURE 6.6: Performance and Data profiles on Generic instances,
σ = 0.001

6.1. Computational Results for Algorithm 4.1 113

FIGURE 6.7: Performance and Data profiles on Generic instances on
heuristic versions of Algorithm 4.1, σ = 0.01

the variant s2-aggressive-h solves a slightly larger fraction of problems than NOMAD

does (79.5% vs 77.7%).

FIGURE 6.8: Performance and Data profiles on Generic instances in-
stances on heuristic versions of Algorithm 4.1, σ = 0.001

The computational experiments presented in this section show that Algorithm

4.1 is well suited for solving LQMI functions and is competitive in the solution of

functions that do not exhibit these type of properties. However, in the the general

mixed-integer case it presents slower rate of objective decrease in comparison to a

114 Chapter 6. Methodology Benchmarking

general purpose DFO solver like NOMAD. This is the result of two features of Al-

gorithm 4.1. First, it devotes a large number of objective evaluations to construct

and certify a fully-linear approximation, specially with respect to the elements of the

integer interpolation lz and Az, using O(n2
z) samples. Second, despite incorporating

tools that minimize the effect of stationarity such as the MandifoldSearch procedure

(Algorithm 6.1), Algorithm 4.1 is still sensitive to stationary points. We observe this

behaviour in Figure 6.9 and Table 6.4 that show the direct comparison of the variants

s1-accurate and s2-aggressive with their heuristic counterparts. Figure 6.9 shows that

the heuristic variants provide better performance in terms of objective reduction,

solving to a strong degree of tolerance (σ = 10−5) more than 20% of instances than

the convergent variants. Table 6.4 displays the number of instances where the ratio

between the best objective improvement yield by the proven convergent variants

of Algorithm 4.1 and the best improvement attained by their respective heuristics

is larger than 1 − σ. At large values of σ we appreciate that for at least 30 of 290

instances s1 and s2 fail to attain 90% of the improvement reached by the heuristic

variants, implying early convergence to suboptimal points. In addition, as the value

of σ decreases a smaller number of instances satisfy the improvement condition with

respect to the heuristics. It indicates that Algorithm 4.1 decreases its objective im-

provement rate as it gets close to a StLM.

FIGURE 6.9: Performance profiles for convergent variants vs heuris-
tics variants of Algorithm 4.1, σ = 10−5

6.2. Computational Results for Algorithm 5.4 115

σ s1-accurate s2-aggressive
10−1 269 247
10−2 238 228
10−3 221 210
10−4 210 181
10−5 183 163
10−10 152 112

TABLE 6.4: Number of instances (out of 290 instances) such that the
convergent variants presents objective improvement larger than 1− σ
times the improvement yield by the heuristic versions of Algorithm

4.1
.

6.2 Computational Results for Algorithm 5.4

In this section, we study the computational performance of Algorithm 5.4. We eval-

uate three algorithmic versions that are described in Table 6.6: s3 or opportunistic, s4

or extensive, and, s5 or global.

6.2.1 Experimental Setting

We implemented Algorithm 5.4 in Python, using Pyomo [105], [106] to prototype

the monomial pivotal optimization used in Algorithm 5.5. The algorithmic imple-

mentation uses two methodologies to address the (partial) integer optimization sub-

problems (Lines 18 and 22-Algorithm 5.4). For the global optimization of M and

M♮ − convex functions we use Shioura’s fast-scaling algorithm [98]. For the partial

integer optimization we incorporate PyNomad. All the tests instances were evalu-

ated in a single machine Lyon/hercule at GRID5000 cluster, with a Intel Xeon E5-

2620 CPU and 32 GB of RAM. Finally, we consider algorithm termination when

∆c
k < 10−5, with kmax = 150.

In Table 6.5 we present the values used for the fixed parameters. In Table 6.6

we resume the values of the variable parameters (ISG, PO) associated to the three

variants of Algorithm 5.4. The parameter ISG (Integer Simplex Gradients) controls the

maximum number of function evaluations allowed in the partial integer optimiza-

tion (Line 18 - Algorithm 5.4). The variant s3-opportunistic restricts the integer search

to at most 4(nz + 1) points, unless the parameter ∥red(∇xmk(xk), xk)∥ is below the

criticality tolerance ϵc. The variant s4-extensive allows larger exploration on the set

116 Chapter 6. Methodology Benchmarking

Ωz and allows to NOMAD to use at most 20(nz + 1) samples. On the other hand,

the variant s5-global solves the integer subproblem to optimality at every iteration.

TABLE 6.5: Fixed parameters for Algorithm 5.4

ηo η1 γ0 γ1 ϵc ω β µ

0.15 0.75 0.75 1.3 1e−6 0.6 500 1000

∆c
max = ⌈mini∈{1,...,nc}{xub,i − xlb,i}/2⌉

∆c
o = max{∆c

max/2, 0.1}

TABLE 6.6: Variable parameters for Algorithm 5.4

ISG PO

s3 - opportunistic 4 1
s4 - extensive 20 1
s5 - global ∞ 0

6.2.2 Test Instances

• M♮ Quadratic instances.

This set corresponds to a collection of 411 instances which are known to behave

globally as an M♮ function. M♮ instances can be split into two sub-classes:

(1) globally quadratic functions and (2) quadratic + element-wise exponential

functions:

(1) f (z) = fo + c⊤(z − zo) +
1
2
(z − zo)

⊤A(z − zo)

(2) f (z) = fo + c⊤(z − zo) +
1
2
(z − zo)

⊤A(z − zo) +
nc+nz

∑
i=1

evi(zi−zo,i)

where z⊤ = [y⊤, x⊤]. All the numeric coefficients are randomly generated

as follows: fo are uniformly distributed in [−1000, 1000], c is randomly dis-

tributed with mean 0 and standard deviation 1. The matrix A has the following

properties:

– If i, j > nz or i = j ≤ nz the entry ai,j is normally distributed with mean 0

and standard deviation 1.

6.2. Computational Results for Algorithm 5.4 117

– If i, j ≤ nz and i ̸= j, then ai,j = b where b is uniformly distributed be-

tween 0 and 2 mini∈{1,...,nz} ai,i. This condition guarantees that the function

f is M♮-convex after fixing the vector of continuous variables [93].

Moreover, we have xlb = ylb = −50, xub = yub = −50 and the reference pa-

rameter zo is uniformly distributed in [−50, 50], and vi is uniformly distributed

in between (−10−2, 10−2). The dimension of the instances nc + nz goes from

10 to 25 variables with nc ∈ {5, . . . , 10} and nz ∈ {5, . . . , 15}.

• Generic instances

The same set of 29 general mixed-integer instances described in Section 6.1.2.

6.2.3 Discussion

Figures 6.10 and 6.11 show the profiles of the evaluation of the M♮-Quadratic set

with the convergence tolerance σ ∈ {0.5, 0.001}. Both figures show that the s3-

opportunistic variant presents the best performance in terms of objective improve-

ment and rate of objective decrease. The variants s4-extensive and s5-global solve

approximately the same number of instances as s3; however, they use significantly

more samples to achieve the desired objective improvement. This is explained by

the constraint on the number of samples used on the partial discrete optimization.

For example, the variant s5-global uses around O(n2
z) function evaluations to certify

global optimality; this process is computationally expensive and does not yield any

objective improvement. Moreover, Figure 6.10 indicates that NOMAD presents the

worst performance for this set of instances as it solves less than 5% of problems to

the desired degree of optimality. The global integer optimization included in Algo-

rithm 5.4 allows it converge to a strong SLM that NOMAD cannot identify using

local information.

Figures 6.12 and 6.13 show the profiles of the evaluation of the Generic set with

the convergence tolerance σ ∈ {0.01, 0.0001}. In this experiment we did not include

the s5-global variant as it displays slower convergence than s3 and s4. Both figures

show that NOMAD solves a larger number of instances than the two variants of Al-

gorithm 5.4. A possible explanation for the overall better performance of NOMAD

118 Chapter 6. Methodology Benchmarking

FIGURE 6.10: Performance and Data profiles on M♮ Quadratic in-
stances, σ = 0.5

FIGURE 6.11: Performance and Data profiles on M♮ Quadratic in-
stances, σ = 0.001

6.3. Comparison between Algorithms 4.1 and 5.4 119

FIGURE 6.12: Performance and Data profiles on Generic instances
(Algorithm 5.4), σ = 0.01

is the fact that Algorithm 5.4 relies only on first-order information, ignoring the in-

teraction between integer and continuous variables, for that reason it converges to

worst stationary points. Similar to the M♮ Quadratic set of instances, the variant

s3-opportunistic is faster than s4-extensive, this is probably due to the fact that at each

iteration this variant is more efficient in solving the integer subproblem. It is highly

possible that for two or more consecutive iterations the output of the integer opti-

mization subproblem remains the same, specially when the trust-region radius be-

comes small. Therefore, if the parameter IGS is smaller, not many samples would be

devoted to improve the objective when no point on Ωz yields better objective value

than the current integer candidate.

6.3 Comparison between Algorithms 4.1 and 5.4

In this section we compare the performance of Algorithm 4.1 and 5.4 with respect

to the Generic set of instances. Figures 6.14 and 6.15 show the performance and

data profiles at σ ∈ {0.01, 0.001}. Both figures show that the variant that yields the

largest number of instances solved is s2-aggressive, while the one that presents the

best overall performance is the variant s3-opportunistic. Note that s2 is the variant of

Algorithm 4.1 that uses the least amount of samples to construct a surrogate approx-

imation and the variant s3 is the variant of Algorithm 5.4 that uses least objective

120 Chapter 6. Methodology Benchmarking

FIGURE 6.13: Performance and Data profiles on Generic instances
(Algorithm 5.4), σ = 0.001

evaluations to optimize over the integer domain. These results indicate that for gen-

eral mixed-integer instances a better performance is attained with least expensive

surrogates and an intermediate degree of global integer exploration. On the other

hand, the use of fully-linear but computationally expensive surrogates decreases the

rate of objective improvement and increments the probability of early convergence

to stationary points. The same result is observed while using the variant s4-extensive.

Figures 6.14 and 6.15 suggest that in the future the principles behind the LQMI

surrogate approximation (Chapter 3) and DC reformulation (Chapter 5) can be mixed

to devise a general purpose derivative-free solver with better performance than Al-

gorithms 4.1 and 5.4:

• It should consider fully-linear mixed-integer approximations to prove conver-

gence to SLM and StLM. Nonetheless, it should reduce the number objective

evaluations devoted to compute and evaluate fully-linearity. This can be done

by only considering the set of points ΩG
d (yk, Mk) instead of ΩQ

d (yk), decreasing

the time used to evaluate the O(n2
z) samples required to compute the model

τ(y − yk).

• It should include the RescueProcedure (Algorithm 4.5) to preserve the conver-

gence to StLM of Algorithm 4.1.

6.3. Comparison between Algorithms 4.1 and 5.4 121

FIGURE 6.14: Performance and Data profiles on Generic instances,
σ = 0.01

FIGURE 6.15: Performance and Data profiles on Generic instances,
σ = 0.001

122 Chapter 6. Methodology Benchmarking

• It should incorporate a local/global search on the domain {xk}×Ωz that accel-

erates the objective improvement and facilitates the prove of convergence to a

SLM. However, the number of samples during this partial integer optimization

should be bounded to prevent slow convergence.

• Finally, it should consider underdetermined surrogate approximations like s2-

aggressive. It accelerates the rate of convergence and reduces the probability of

early convergence to weak stationary points.

123

Chapter 7

Conclusions

In this project we have addressed the optimization of box-constrained mixed-integer

problems when the objective function is computationally expensive to evaluate. This

thesis focuses on the development of two algorithms that address the following open

questions in the mixed-integer derivative-free setting: How to extend the convergence

of the model-based methods into the mixed integer domain?, and, How to take advantage of

the structure of a mixed-integer function?. The first algorithm is presented in Chapter

4 and is devised to solve problems that display local bilinear interaction between

discrete and continuous variables. The second algorithm is introduced in Chapter

5 and is designed to solve functions that exhibit combinatorial discrete properties

when the vector of continuous variables is fixed.

In Chapter 3 we introduced the concept of locally-quadratic mixed-integer (LQMI)

functions. This class of functions exhibit a separable structure that allows us to over-

come the lack of error bounds for the surrogate approximation of a mixed-integer

function. With these results, we introduced the definition of mixed-integer fully-

linear surrogate models and devised a general method for the computation of ac-

curate models for the LQMI functions. Moreover, we researched on the methods

for the fast computation and update of LQMI models. Finally, we proved that the

framework for computing the models that accurately represent an LQMI function

can be used for the approximation of a general mixed-integer function on a reduced

domain.

Chapter 4 introduces a new model-based algorithm that uses the LQMI frame-

work presented in Chapter 3. This mixed-integer algorithm adapts the trust-region

method and presents some features that overcome the difficulties that arise from

124 Chapter 7. Conclusions

dealing with mixed-integer variables, including new mixed-integer stationarity pa-

rameters and the mixed-integer version of the criticality step. Moreover, this algo-

rithm is proved to be globally convergent to a separate local minimum (SLM) and a

strong local minimum (StLM).

In Chapter 5 we explored the methods to optimize a function that exhibits combi-

natorial properties such as the M and M♮ discrete convexity. We developed a hybrid

algorithm that combines the principles of the difference of convex algorithm (DCA)

and the trust-region method. This algorithm is based on the reformulation of the

objective function via partial discrete optimization and convex regularization. Fur-

thermore, we proved that this algorithm is globally convergent to a SLM and can be

used to solve general mixed-integer problems.

Finally, in Chapter 6 we studied the computational performance of the two al-

gorithms for the solution of structured functions. The numerical experiments in

Section 6.1 show that the algorithm introduced in Chapter 4 is well suited for the

solution of LQMI instances. The tests performed in Section 6.2 show that the hybrid

algorithm presented in Chapter 5 is efficient in the solution of M♮-convex instances.

Moreover, both algorithms are competitive in the solution of general mixed-integer

functions. We remark that both algorithms are two of the few model-based method-

ologies present in the literature that are able to converge to a SLM and a StLM.

We hope the results presented in this project motivate further research on mixed-

integer derivative-free methods. Two main topics can be further explored. The first

topic is the development of general mixed-integer fully-linear surrogates. In Chap-

ter 3 we introduce a framework that uses quadratic polynomials to approximate a

mixed-integer function; however, it is desirable to extend these results to other types

of surrogate models like the radial basis functions (RBF). We believe this adaption

can exploit the advantages of surrogate global models while preserving the conver-

gence to local minimizers.

The second topic is the type of constraints that our algorithms can handle. Both

algorithms were developed to tackle bound constraints; however, many real world

problems include complicated non-linear constraints. We consider that our method-

ology can be adapted to deal with this type of constraints using the penalty, aug-

mented Lagrangian or progressive barrier methods.

125

Bibliography

[1] A. L. Marsden, J. A. Feinstein, and C. A. Taylor, “A computational frame-

work for derivative-free optimization of cardiovascular geometries,” Com-

puter methods in applied mechanics and engineering, vol. 197, no. 21-24, pp. 1890–

1905, 2008.

[2] R. Oeuvray, “Trust-region methods based on radial basis functions with ap-

plication to biomedical imaging,” EPFL, Tech. Rep., 2005.

[3] C. Audet, V. Béchard, and J. Chaouki, “Spent potliner treatment process opti-

mization using a mads algorithm,” Optimization and Engineering, vol. 9, no. 2,

pp. 143–160, 2008.

[4] M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P. Wilson, “Using direct

to solve an aircraft routing problem,” Computational Optimization and Applica-

tions, vol. 21, no. 3, pp. 311–323, 2002.

[5] J. Han, M. Kokkolaras, and P. Y. Papalambros, “Optimal design of hybrid fuel

cell vehicles,” Journal of fuel cell science and technology, vol. 5, no. 4, 2008.

[6] R. Yamamoto and N. Hibiki, “Optimal multiple pairs trading strategyus-

ing derivative free optimizationunder actual investment management condi-

tions,” Journal of the Operations Research Society of Japan, vol. 60, no. 3, pp. 244–

261, 2017.

[7] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization meth-

ods,” Acta Numerica, vol. 28, pp. 287–404, 2019.

[8] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,

“Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1–131,

2013.

126 Bibliography

[9] E. Newby and M. M. Ali, “A trust-region-based derivative free algorithm for

mixed integer programming,” Computational Optimization and Applications,

vol. 60, no. 1, pp. 199–229, 2015.

[10] T. T. Tran, D. Sinoquet, S. Da Veiga, and M. Mongeau, “Derivative-free mixed

binary necklace optimization for cyclic-symmetry optimal design problems,”

Optimization and Engineering, pp. 1–42, 2021.

[11] H. Zhang, A. R. Conn, and K. Scheinberg, “A derivative-free algorithm for

least-squares minimization,” SIAM Journal on Optimization, vol. 20, no. 6, pp. 3555–

3576, 2010.

[12] H. Zhang and A. R. Conn, “On the local convergence of a derivative-free

algorithm for least-squares minimization,” Computational optimization and ap-

plications, vol. 51, no. 2, pp. 481–507, 2012.

[13] C. Cartis and L. Roberts, “A derivative-free gauss–newton method,” Mathe-

matical Programming Computation, vol. 11, no. 4, pp. 631–674, 2019.

[14] B. Colson and P. L. Toint, “Optimizing partially separable functions without

derivatives,” Optimization methods and software, vol. 20, no. 4-5, pp. 493–508,

2005.

[15] C. J. Price and P. L. Toint, “Exploiting problem structure in pattern search

methods for unconstrained optimization,” Optimisation Methods and Software,

vol. 21, no. 3, pp. 479–491, 2006.

[16] A. S. Bandeira, K. Scheinberg, and L. N. Vicente, “Computation of sparse

low degree interpolating polynomials and their application to derivative-free

optimization,” Mathematical programming, vol. 134, no. 1, pp. 223–257, 2012.

[17] R. Garmanjani, D. Júdice, and L. N. Vicente, “Trust-region methods without

using derivatives: Worst case complexity and the nonsmooth case,” SIAM

Journal on Optimization, vol. 26, no. 4, pp. 1987–2011, 2016.

[18] A. R. Conn and L. N. Vicente, “Bilevel derivative-free optimization and its ap-

plication to robust optimization,” Optimization Methods and Software, vol. 27,

no. 3, pp. 561–577, 2012.

Bibliography 127

[19] J. Larson, S. Leyffer, P. Palkar, and S. M. Wild, A method for convex black-box

integer global optimization, 2019. arXiv: 1903.11366 [math.OC].

[20] S. Lucidi and M. Sciandrone, “On the global convergence of derivative-free

methods for unconstrained optimization,” SIAM Journal on Optimization, vol. 13,

no. 1, pp. 97–116, 2002. DOI: 10.1137/S1052623497330392. eprint: https:

//doi.org/10.1137/S1052623497330392. [Online]. Available: https://doi.

org/10.1137/S1052623497330392.

[21] L. Grippo and F. Rinaldi, “A class of derivative-free nonmonotone optimiza-

tion algorithms employing coordinate rotations and gradient approximations,”

Computational Optimization and Applications, vol. 60, no. 1, pp. 1–33, 2015.

[22] C. T. Kelley, Implicit filtering. SIAM, 2011.

[23] T. D. Choi and C. T. Kelley, “Superlinear convergence and implicit filtering,”

SIAM Journal on Optimization, vol. 10, no. 4, pp. 1149–1162, 2000.

[24] C. Cartis, N. I. M. Gould, and P. L. Toint, “On the oracle complexity of first-

order and derivative-free algorithms for smooth nonconvex minimization,”

SIAM Journal on Optimization, vol. 22, no. 1, pp. 66–86, 2012. DOI: 10.1137/

100812276. eprint: https://doi.org/10.1137/100812276. [Online]. Avail-

able: https://doi.org/10.1137/100812276.

[25] R. Hooke and T. A. Jeeves, ““direct search”solution of numerical and statisti-

cal problems,” Journal of the ACM (JACM), vol. 8, no. 2, pp. 212–229, 1961.

[26] J. A. Nelder and R. Mead, “A simplex method for function minimization,”

The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[27] D. J. Woods, “An interactive approach for solving multi-objective optimiza-

tion problems,” Tech. Rep., 1985.

[28] C. T. Kelley, “Detection and remediation of stagnation in the nelder–mead

algorithm using a sufficient decrease condition,” SIAM journal on optimization,

vol. 10, no. 1, pp. 43–55, 1999.

[29] S. Singer and S. Singer, “Efficient implementation of the nelder–mead search

algorithm,” Applied Numerical Analysis & Computational Mathematics, vol. 1,

no. 2, pp. 524–534, 2004.

https://arxiv.org/abs/1903.11366
https://doi.org/10.1137/S1052623497330392
https://doi.org/10.1137/S1052623497330392
https://doi.org/10.1137/S1052623497330392
https://doi.org/10.1137/S1052623497330392
https://doi.org/10.1137/S1052623497330392
https://doi.org/10.1137/100812276
https://doi.org/10.1137/100812276
https://doi.org/10.1137/100812276
https://doi.org/10.1137/100812276

128 Bibliography

[30] W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential application of

simplex designs in optimisation and evolutionary operation,” Technometrics,

vol. 4, no. 4, pp. 441–461, 1962.

[31] K. I. McKinnon, “Convergence of the nelder–mead simplex method to a non-

stationary point,” SIAM Journal on optimization, vol. 9, no. 1, pp. 148–158, 1998.

[32] P. Tseng, “Fortified-descent simplicial search method: A general approach,”

SIAM Journal on Optimization, vol. 10, no. 1, pp. 269–288, 1999.

[33] Á. Bűrmen, J. Puhan, and T. Tuma, “Grid restrained nelder-mead algorithm,”

Computational optimization and applications, vol. 34, no. 3, pp. 359–375, 2006.

[34] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: A review of

algorithms and comparison of software implementations,” Journal of Global

Optimization, vol. 56, no. 3, pp. 1247–1293, 2013.

[35] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal

on optimization, vol. 7, no. 1, pp. 1–25, 1997.

[36] G. A. Gray and T. G. Kolda, “Appspack 4.0: Asynchronous parallel pattern

search for derivative-free optimization.,” Citeseer, Tech. Rep., 2004.

[37] R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained

minimization,” SIAM Journal on optimization, vol. 9, no. 4, pp. 1082–1099, 1999.

[38] C. Audet and J. E. Dennis Jr, “Mesh adaptive direct search algorithms for con-

strained optimization,” SIAM Journal on optimization, vol. 17, no. 1, pp. 188–

217, 2006.

[39] ——, “A progressive barrier for derivative-free nonlinear programming,” SIAM

Journal on optimization, vol. 20, no. 1, pp. 445–472, 2009.

[40] M. A. Abramson, C. Audet, J. E. Dennis Jr, and S. L. Digabel, “Orthomads:

A deterministic mads instance with orthogonal directions,” SIAM Journal on

Optimization, vol. 20, no. 2, pp. 948–966, 2009.

[41] M. A. Abramson and C. Audet, “Convergence of mesh adaptive direct search

to second-order stationary points,” SIAM Journal on Optimization, vol. 17,

no. 2, pp. 606–619, 2006.

Bibliography 129

[42] J. J. Moré and S. M. Wild, “Benchmarking derivative-free optimization algo-

rithms,” SIAM Journal on Optimization, vol. 20, no. 1, pp. 172–191, 2009.

[43] A. Conn, K Scheinberg, and P. Toint, “Manual for fortran software package

dfo v1. 2,” 2000.

[44] M. Marazzi and J. Nocedal, “Wedge trust region methods for derivative free

optimization,” Mathematical programming, vol. 91, no. 2, pp. 289–305, 2002.

[45] F. V. Berghen and H. Bersini, “Condor, a new parallel, constrained extension

of powell’s uobyqa algorithm: Experimental results and comparison with the

dfo algorithm,” Journal of computational and applied mathematics, vol. 181, no. 1,

pp. 157–175, 2005.

[46] M. J. Powell, “Uobyqa: Unconstrained optimization by quadratic approxima-

tion,” Mathematical Programming, vol. 92, no. 3, pp. 555–582, 2002.

[47] ——, “The newuoa software for unconstrained optimization without deriva-

tives,” in Large-scale nonlinear optimization, Springer, 2006, pp. 255–297.

[48] M. Powell, “New developements of newuoa for minimization without deriva-

tives,” Tech. Rep, 2007.

[49] M. J. Powell, “Developments of newuoa for minimization without deriva-

tives,” IMA journal of numerical analysis, vol. 28, no. 4, pp. 649–664, 2008.

[50] ——, “The bobyqa algorithm for bound constrained optimization without

derivatives,” Cambridge NA Report NA2009/06, University of Cambridge, Cam-

bridge, pp. 26–46, 2009.

[51] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Geometry of interpolation sets

in derivative free optimization,” Mathematical programming, vol. 111, no. 1-2,

pp. 141–172, 2008.

[52] P. G. Ciarlet and P.-A. Raviart, “General lagrange and hermite interpolation in

rn with applications to finite element methods,” Archive for Rational Mechanics

and Analysis, vol. 46, no. 3, pp. 177–199, 1972.

[53] D Winfield, “Function minimization by interpolation in a data table,” IMA

Journal of Applied Mathematics, vol. 12, no. 3, pp. 339–347, 1973.

130 Bibliography

[54] A. R. Conn and P. L. Toint, “An algorithm using quadratic interpolation for

unconstrained derivative free optimization,” in Nonlinear optimization and ap-

plications, Springer, 1996, pp. 27–47.

[55] A. Verdério, E. Karas, L. Pedroso, and K. Scheinberg, “On the construction

of quadratic models for derivative-free trust-region algorithms,” EURO Jour-

nal on Computational Optimization, vol. 5, no. 4, pp. 501–527, 2017, ISSN: 2192-

4406. DOI: https : / / doi . org / 10 . 1007 / s13675 - 017 - 0081 - 7. [Online].

Available: https : / / www . sciencedirect . com / science / article / pii /

S2192440621000915.

[56] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Introduction to derivative-free

optimization introduction,” Introduction to derivative-free optimization, vol. 8,

2009.

[57] M. Powell, “Beyond symmetric broyden for updating quadratic models in

minimization without derivatives,” Mathematical Programming, vol. 138, no. 1,

pp. 475–500, 2013.

[58] M. J. D. Powell, “On the use of quadratic models in unconstrained minimiza-

tion without derivatives,” Optimization Methods and Software, vol. 19, no. 3-

4, pp. 399–411, 2004. DOI: 10.1080/10556780410001661450. eprint: https:

//doi.org/10.1080/10556780410001661450. [Online]. Available: https:

//doi.org/10.1080/10556780410001661450.

[59] M. J. Powell, “Least frobenius norm updating of quadratic models that satisfy

interpolation conditions,” Mathematical Programming, vol. 100, no. 1, pp. 183–

215, 2004.

[60] ——, “Recent research at cambridge on radial basis functions,” New develop-

ments in approximation theory, pp. 215–232, 1999.

[61] H.-M. Gutmann, “A radial basis function method for global optimization,”

Journal of global optimization, vol. 19, no. 3, pp. 201–227, 2001.

[62] S. C. Billups, J. Larson, and P. Graf, “Derivative-free optimization of expen-

sive functions with computational error using weighted regression,” SIAM

Journal on Optimization, vol. 23, no. 1, pp. 27–53, 2013.

https://doi.org/https://doi.org/10.1007/s13675-017-0081-7
https://www.sciencedirect.com/science/article/pii/S2192440621000915
https://www.sciencedirect.com/science/article/pii/S2192440621000915
https://doi.org/10.1080/10556780410001661450
https://doi.org/10.1080/10556780410001661450
https://doi.org/10.1080/10556780410001661450
https://doi.org/10.1080/10556780410001661450
https://doi.org/10.1080/10556780410001661450

Bibliography 131

[63] R. G. Regis and C. A. Shoemaker, “A stochastic radial basis function method

for the global optimization of expensive functions,” INFORMS Journal on

Computing, vol. 19, no. 4, pp. 497–509, 2007.

[64] S. M. Wild and C. Shoemaker, “Global convergence of radial basis function

trust-region algorithms for derivative-free optimization,” siam REVIEW, vol. 55,

no. 2, pp. 349–371, 2013.

[65] R. Oeuvray and M. Bierlaire, “Boosters: A derivative-free algorithm based

on radial basis functions,” International Journal of Modelling and Simulation,

vol. 29, no. 1, pp. 26–36, 2009.

[66] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Global convergence of gen-

eral derivative-free trust-region algorithms to first-and second-order critical

points,” SIAM Journal on Optimization, vol. 20, no. 1, pp. 387–415, 2009.

[67] A. R. Conn, N. I. Gould, and P. L. Toint, Trust region methods. Siam, 2000, vol. 1.

[68] C. Audet and J. E. Dennis Jr, “Pattern search algorithms for mixed variable

programming,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 573–594,

2001.

[69] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston, “Mesh adap-

tive direct search algorithms for mixed variable optimization,” Optimization

Letters, vol. 3, no. 1, p. 35, 2009.

[70] M. Porcelli and P. L. Toint, “Bfo, a trainable derivative-free brute force op-

timizer for nonlinear bound-constrained optimization and equilibrium com-

putations with continuous and discrete variables,” ACM Transactions on Math-

ematical Software (TOMS), vol. 44, no. 1, pp. 1–25, 2017.

[71] M. A. Abramson, C. Audet, and J. Dennis Jr, “Filter pattern search algorithms

for mixed variable constrained optimization problems,” Tech. Rep., 2004.

[72] C. Audet, S. Le Digabel, V. Rochon Montplaisir, and C. Tribes, “NOMAD

version 4: Nonlinear optimization with the MADS algorithm,” Les cahiers

du GERAD, Tech. Rep. G-2021-23, 2021. [Online]. Available: http://www.

optimization-online.org/DB_HTML/2021/04/8351.html.

http://www.optimization-online.org/DB_HTML/2021/04/8351.html
http://www.optimization-online.org/DB_HTML/2021/04/8351.html

132 Bibliography

[73] K. Rashid, S. Ambani, and E. Cetinkaya, “An adaptive multiquadric radial

basis function method for expensive black-box mixed-integer nonlinear con-

strained optimization,” Engineering Optimization, vol. 45, no. 2, pp. 185–206,

2013.

[74] J. Müller, C. A. Shoemaker, and R. Piché, “So-i: A surrogate model algorithm

for expensive nonlinear integer programming problems including global op-

timization applications,” Journal of Global Optimization, vol. 59, no. 4, pp. 865–

889, 2014.

[75] ——, “So-mi: A surrogate model algorithm for computationally expensive

nonlinear mixed-integer black-box global optimization problems,” Computers

& Operations Research, vol. 40, no. 5, pp. 1383–1400, 2013.

[76] J. Müller, “Miso: Mixed-integer surrogate optimization framework,” Opti-

mization and Engineering, vol. 17, no. 1, pp. 177–203, 2016.

[77] K. Holmström, N.-H. Quttineh, and M. M. Edvall, “An adaptive radial basis

algorithm (arbf) for expensive black-box mixed-integer constrained global

optimization,” Optimization and Engineering, vol. 9, no. 4, pp. 311–339, 2008.

[78] A. Costa and G. Nannicini, “Rbfopt: An open-source library for black-box op-

timization with costly function evaluations,” Mathematical Programming Com-

putation, vol. 10, no. 4, pp. 597–629, 2018.

[79] G. Liuzzi, S. Lucidi, and F. Rinaldi, “Derivative-free methods for bound con-

strained mixed-integer optimization,” Computational Optimization and Appli-

cations, vol. 53, no. 2, pp. 505–526, 2012.

[80] ——, “Derivative-free methods for mixed-integer constrained optimization

problems,” Journal of Optimization Theory and Applications, vol. 164, no. 3, pp. 933–

965, 2015.

[81] G. Liuzzi, S. Lucidi, and M. Sciandrone, “Sequential penalty derivative-free

methods for nonlinear constrained optimization,” SIAM Journal on Optimiza-

tion, vol. 20, no. 5, pp. 2614–2635, 2010.

Bibliography 133

[82] B. W. Wah, Y. Chen, and T. Wang, “Simulated annealing with asymptotic con-

vergence for nonlinear constrained optimization,” Journal of Global Optimiza-

tion, vol. 39, no. 1, pp. 1–37, 2007.

[83] S. Lucidi, V. Piccialli, and M. Sciandrone, “An algorithm model for mixed

variable programming,” SIAM Journal on Optimization, vol. 15, no. 4, pp. 1057–

1084, 2005.

[84] J. Larson, M. Menickelly, and S. M. Wild, “Manifold sampling for \ell_1 non-

convex optimization,” SIAM Journal on Optimization, vol. 26, no. 4, pp. 2540–

2563, 2016.

[85] J. Larson, M. Menickelly, and B. Zhou, “Manifold sampling for optimizing

nonsmooth nonconvex compositions,” SIAM Journal on Optimization, vol. 31,

no. 4, pp. 2638–2664, 2021.

[86] M. Menickelly and S. M. Wild, “Derivative-free robust optimization by outer

approximations,” Mathematical Programming, vol. 179, no. 1, pp. 157–193, 2020.

[87] J. J. Moré and D. C. Sorensen, “Computing a trust region step,” SIAM Journal

on Scientific and Statistical Computing, vol. 4, no. 3, pp. 553–572, 1983.

[88] P. Alberto, F. Nogueira, H. Rocha, and L. N. Vicente, “Pattern search meth-

ods for user-provided points: Application to molecular geometry problems,”

SIAM Journal on Optimization, vol. 14, no. 4, pp. 1216–1236, 2004.

[89] W. Karush, “Minima of functions of several variables with inequalities as side

conditions,” in Traces and Emergence of Nonlinear Programming, Springer, 2014,

pp. 217–245.

[90] A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint, “Global convergence of a

class of trust region algorithms for optimization using inexact projections on

convex constraints,” SIAM Journal on Optimization, vol. 3, no. 1, pp. 164–221,

1993.

[91] R. M. Lewis and V. Torczon, “A direct search approach to nonlinear program-

ming problems using an augmented lagrangian method with explicit treat-

ment of linear constraints,” Technical Report of the College of William and Mary,

pp. 1–25, 2010.

134 Bibliography

[92] V. Picheny, R. B. Gramacy, S. Wild, and S. L. Digabel, “Bayesian optimiza-

tion under mixed constraints with a slack-variable augmented lagrangian,”

in Proceedings of the 30th International Conference on Neural Information Process-

ing Systems, 2016, pp. 1443–1451.

[93] K. Murota, “Discrete convex analysis,” Mathematical Programming, vol. 83,

no. 1, pp. 313–371, 1998.

[94] M. A. Begen and M. Queyranne, “Appointment scheduling with discrete ran-

dom durations,” Mathematics of Operations Research, vol. 36, no. 2, pp. 240–257,

2011. DOI: 10.1287/moor.1110.0489. eprint: https://doi.org/10.1287/

moor.1110.0489. [Online]. Available: https://doi.org/10.1287/moor.

1110.0489.

[95] P. Zipkin, “On the structure of lost-sales inventory models,” Operations re-

search, vol. 56, no. 4, pp. 937–944, 2008.

[96] K. Murota, A. Shioura, and Z. Yang, “Computing a walrasian equilibrium in

iterative auctions with multiple differentiated items,” in International Sympo-

sium on Algorithms and Computation, Springer, 2013, pp. 468–478.

[97] K. Murota, “On steepest descent algorithms for discrete convex functions,”

SIAM Journal on Optimization, vol. 14, no. 3, pp. 699–707, 2004.

[98] A. Shioura, “Fast scaling algorithms for m-convex function minimization with

application to the resource allocation problem,” Discrete Applied Mathemat-

ics, vol. 134, no. 1, pp. 303–316, 2004, ISSN: 0166-218X. DOI: https://doi.

org/10.1016/S0166-218X(03)00255-5. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0166218X03002555.

[99] X. Zhou, “On the fenchel duality between strong convexity and lipschitz con-

tinuous gradient,” arXiv preprint arXiv:1803.06573, 2018.

[100] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge

university press, 2004.

[101] P. D. Tao et al., “The DC (Difference of Convex Functions) Programming

and DCA Revisited with DC Models of Real World Nonconvex Optimization

Problems.,” Annals of Operations Research, vol. 133, no. 1-4, pp. 23–46, 2005.

https://doi.org/10.1287/moor.1110.0489
https://doi.org/10.1287/moor.1110.0489
https://doi.org/10.1287/moor.1110.0489
https://doi.org/10.1287/moor.1110.0489
https://doi.org/10.1287/moor.1110.0489
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00255-5
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00255-5
https://www.sciencedirect.com/science/article/pii/S0166218X03002555
https://www.sciencedirect.com/science/article/pii/S0166218X03002555

Bibliography 135

[102] X. T. Vo, “Learning with sparsity and uncertainty by difference of convex

functions optimization,” Ph.D. dissertation, Université de Lorraine, 2015.

[103] H. A. Le Thi and T. P. Dinh, “DC programming and DCA: thirty years of

developments,” Mathematical Programming, vol. 169, no. 1, pp. 5–68, 2018.

[104] S. Fujishige, Submodular functions and optimization. Elsevier, 2005.

[105] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: Modeling and solving

mathematical programs in python,” Mathematical Programming Computation,

vol. 3, no. 3, pp. 219–260, 2011.

[106] M. L. Bynum, G. A. Hackebeil, W. E. Hart, et al., Pyomo—Optimization Model-

ing in Python. Springer Nature, 2021, vol. 67.

[107] W. Huyer and A. Neumaier, “Snobfit–stable noisy optimization by branch

and fit,” ACM Transactions on Mathematical Software (TOMS), vol. 35, no. 2,

pp. 1–25, 2008.

[108] N. I. Gould, D. Orban, and P. L. Toint, “Cutest: A constrained and uncon-

strained testing environment with safe threads for mathematical optimiza-

tion,” Computational optimization and applications, vol. 60, no. 3, pp. 545–557,

2015.

[109] L. Lukšan and J. Vlcek, “Test problems for nonsmooth unconstrained and

linearly constrained optimization,” Technická zpráva, vol. 798, 2000.

	Résumé
	Abstract
	Acknowledgements
	Introduction
	Motivations
	Problem Definition and Nomenclature
	Dissertation Outline

	Literature Review
	Continuous Derivative-Free Optimization
	Direct Search Methods
	Model-Based Methods
	Types of surrogate approximation
	Trust-region methods

	Mixed-Integer Derivative-Free Optimization
	Local Optimality for Mixed-Integer Functions

	Locally Quadratic Mixed-Integer Functions and Approximations
	LQMI Function Definition
	Mixed-Integer Fully-Linear Models
	Model Computation and Fully-Linearity in the LQMI Setting
	Practical Model Considerations
	Mixed-Integer Fully-Linearity in the non-LQMI Setting
	Conditions for Mixed-Integer Derivative-Free Methods

	Conclusions and Future Work

	LQMI-Based Trust-Region Algorithm
	Overview of the Proposed Algorithm
	CriticalityTest (Algorithm 4.2)
	CandidateComputation (Algorithm 4.3)
	ModelUpdate(Algorithm 4.4)
	RescueProcedure (Algorithm 4.5)
	MixedIntegerModelComputation (Algorithm 4.6)
	Geometry Improvement - LinearInterpolationSet

	Convergence of Algorithm 4.1 to a First-Order Critical Point
	Stationarity Conditions on Continuous Variables
	Conditions for Mixed-Integer Stationarity

	Conclusions and Future Work

	Hybrid DCA-DFO Optimization
	Discretely Convex Functions
	Solution by the Difference of Convex Algorithm (DCA)
	Hybrid DCA-DFO Algorithm
	Algorithm Description
	Auxiliary Procedures

	Convergence of Algorithm 5.4
	Conclusions and Future Work

	Methodology Benchmarking
	Computational Results for Algorithm 4.1
	Experimental Setting
	Test Instances
	Discussion

	Computational Results for Algorithm 5.4
	Experimental Setting
	Test Instances
	Discussion

	Comparison between Algorithms 4.1 and 5.4

	Conclusions

