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Chapitre 1

Introduction

1.1 Résumé

Aujourd’hui il y a une forte demande de dispositifs intelligentes capables d’ache-
ver des tâches cognitives compliqués, comme, par exemple, la classification des
images ou des signes visuelles. Depuis les premiers jours de l’informatique, les ré-
seaux de neurones ont été établies comme le modelé mathématique de calcul le
plus approprié à réaliser l’intelligence artificielle[MP43][Ros58][RJP19], une po-
sition consolidée par le succès récent des réseaux de neurones profondes («deep
neural networks»)[RJP19]. D’habitude, les réseaux de neurones sont implémentés
par des simulations numériques qui sont élaborés par un ordinateur [RJP19]. Cette
solution a l’avantage de compter sur la très bien connue technologie CMOS («com-
plementary metal-oxide semiconductor») ; toutefois, la consommation d’énergie est
bien loin de s’approcher à l’efficience du cerveau humain[CD14]. Ce fait a insti-
gué les développements de solutions alternatives, comme des ordinateurs qui ne
suivent pas l’architecture de Von Neumann [Tha+18]et, plus récemment, des sys-
tèmes neuromorphique qui utilisent des matériaux quantiques [Del+18]. Ces ma-
tériaux pourraient atteindre un niveau de miniaturisation plus haut de celui de la
technologie CMOS, ce qui leur rendrait plus efficientes du point de vue énergique.
Néanmoins, la caractérisation de ces matériaux pose des difficultés importantes
dues à la complexité des phénomènes physique qui sont à la base de leur proprié-
tés neuromorphiques.

Les isolants de Mott sont une des familles des matériaux quantiques qui pré-
sentent des caractéristiques neuromorphiques[Sto+17 ; Add+18]. Elles sont ren-
dues possibles par la transition isolant-métal (IMT) [IFT98 ; Geo+96] qui se pro-
duit sous certaines conditions, notamment l’application d’un champ électrique[Die+18].
L’application du champ électrique cause la formation de filaments métalliques dans
le matériel, qui connectent les électrodes, en provocant la chute de la résistance
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10 CHAPITRE 1. INTRODUCTION

et en même temps l’élévation de la courent électrique. Cet incrément rapide de la
courent est fondamentale pour reproduire le mécanisme de production du potentiel
d’action (ou «spike» en anglais) qui permet aux neurones biologiques de communi-
quer. Une caractéristique notable, qui est également importante pour la production
du potentiel d’action, est la volatilité du collapse de la résistance ; autrement dit,
quand le champ électrique est éteint, la résistance s’élève au niveau isolant origi-
nal[Jan+15]. Cette caractéristique permet de réaliser la chute du potentiel de la
membrane du neurone qui suive la dépolarisation, après laquelle le neurone atteint
l’état de repos et devient prêt à produire un niveau potentiel d’action. Sans cette
descente du potentiel le neurone resterait dans son état excité et serait insensible
à la stimulation suivante. Le neurone réalisé par les matériaux de Mott (aussi dit
neurone de Mott) ne nécessite pas d’autre éléments électroniques, et notamment
de condensateurs, et c’est pour ça qu’il pourrait être possible de les miniaturiser
plus que les dispositifs CMOS.

Néanmoins, la IMT sous un champ électrique est un phénomène physique très
compliqué, qui est causé par l’interaction entre beaucoup des électrons sous un
fort champ électrique[IFT98 ; Geo+96], et il pose des difficultés à la caractérisa-
tion de ces matériaux, et donc leur application. Dans cette thèse nous attaquons
ces difficultés en utilisant un modèle phénoménologique qui s’appelle Mott Resistor
Network (réseau des résistors de Mott)[Sto+14 ; Sto+13]. Ce modèle nous permet
d’investiguer le collapse de la résistance avec une résolution temporelle majeure
de cela des instrumentes expérimentales et en même temps d’éviter la complexité
de calcul des descriptions mathématiques microscopiques. En utilisant ce modèle
nous arrivons à comprendre la chute de la résistance sous un champ électrique
comme un phénomène intrinsèquement stochastique qui est affecté par des contri-
butions et électrique et thermique. En plus, nous lions la nature stochastique du
collapse de la résistance avec la rumeur («noise») du mécanisme de production des
potentiels d’actions des certaines modèles mathématiques des neurones [Ger+14],
en montrant que le deux partagent la même distribution de probabilité et peuvent
être compris comme des évènements de Poisson[Roc+22]. Ce résultat est important
puisqu’il démontre que la résistance de matériaux de Mott sous un champ élec-
trique externe collapse avec la même probabilité avec laquelle le neurone biologique
produit les potentiels d’actions, et donc ces matériaux pourraient être employés
pour implémenter des réseaux des neurones plausibles du point de vue biologique.

Un autre résultat de notre travail c’est clarifier comment les caractéristiques
physiques d’un certain matériel, comme, par exemple, la résistivité ou la conduc-
tivité thermique, peuvent affecter le période d’incubation et l’augmentation des
dimensions du domaine métallique à l’intérieur du matériel isolant qui provoque
le collapse de la résistance[Roc+22 ; Val+21 ; Del+21]. En particulier, nous mon-
trons que, en augmentant la conductivité thermique et donc la dissipation vers le
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substrat, nous achevons une transition plus inhomogène, caractérisée par des gra-
dients de température plus forts, des domaines métalliques qui sont plus chaudes
et mince (similaires à des filaments), et aussi une dépendance plus forte des temps
d’incubation des domaines métalliques à l’intensité du champ électrique externe.
Après, nous montrons que des résultats similaires peuvent être obtenues en utili-
sant la résistivité isolant comme paramètre de contrôle, au lieu de la conductivité
thermique. Ça nous permet d’expliquer les différences observées entre le Vanadium
Dioxide (VO2) et le Divanadium Trioxide (V2O3) dans les expérimentes. En fait,
le V2O3 présent un rapport entre le résistivité isolant et métallique majeur que
celui du VO2 et aussi une transition plus inhomogène, avec une dépendance plus
forte des temps d’incubation à l’intensité du champ électrique. Nous étudions aussi
l’augmentation des dimensions du domaine métallique après le collapse de la ré-
sistance, et nous trouvons qu’elle est de nature exponentielle, et qualitativement
comparable aux observations expérimentales effectués à partir de la réflectivité
optique du VO2[Del+21].

Le VO2 est un cas d’étude particulièrement intéressant car il présent une col-
lapse de la résistance à températures comparables à la température ambiante, donc
il est bien adapté pour les applications pratiques. La généralité du Réseau des Ré-
sistors de Mott est telle que le modèle peut être appliqué non seulement à les
vanadates comme VO2 et V2O3 mais aussi à autres matériaux comme les nicke-
lates. Par conséquence nous développons ultérieurement le MRN afin de modéliser
deux matériaux qui font partie de la famille de nickelates : Samarium nickelate
(SmNiO3) et neodymiumu nickelate (NdNiO3)[Val+21]. Nous trouvons que pour
ces matériaux aussi il est possible provoquer une transition inhomogène si on aug-
mente le rapport entre la résistivité isolant et métallique, comme c’était le cas
pour les vanadates. Ce résultat nous permet d’expliquer pourquoi on observe une
dépendance des temps d’incubation à l’intensité du champ électrique plus forte
pour NdNiO3 que pour SmNiO3, similairement aux cas du V2O3 contre le VO2.
En outre, nous montrons comment on peut exploiter la dépendance de la résisti-
vité isolant à la température pour provoquer une transition plus inhomogène en
abaissant la température du substrat. Ces observations sont confirmées par ex-
périmentes conduites sur des exemplaires de NdNiO3 et SmNiO3, qui démontrent
qu’une température du substrat plus bas cause une transition plus abrupt à champs
électrique faibles.

Une autre questionne que nous considérons est la possibilité de provoquer des
oscillations dans les neurones de Mott. Des oscillations sont observées dans les
neurones singles, dans les populations de neurones et aussi au niveau macrosco-
pique dans l’encéphalogramme[Ger+14 ; Pey+12 ; War03 ; Don+98]. Par consé-
quence c’est important que les neurones de Mott puissent être identifiés comme
des oscillateurs neuronales. Pour cette raison nous étudions un système composé
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par un exemplaire de Trivanadium Pentoxide (V3O5) en parallèle avec un conden-
sateur. A’ cette fin nous développons le MRN pour introduire la capacitance du
circuit et aussi la transition de second ordre qui caractérise le V3O5, en contraste
avec le VO2 et le V2O3 qui sont caractérisés par une transition de premier ordre.
En étudiant la courbe IV et les mappes de la résistivité produites par le modèle
sous une rampe de tension nous observons un régime oscillant, qui émerge après la
chute de la résistance et disparait quand le stimulus devient trop haut, et qui dérive
de l’interaction entre le V3O5 et le condensateur. Après peu le début du collapse
de la résistance, le condensateur commence à décharger, le voltage s’abaisse et une
courent électrique passe du condensateur au matériel, en réchauffant le domaine
métallique. À fur et à mesure que le condensateur se déplète, la courent commence
à s’abaisser et devient trop basse pour soutenir les filaments métalliques, qui lente-
ment se relaxent dans l’état isolant. Pendant que la résistance du matériel s’élève,
la courent électrique appliquée re-entre dans le condensateur vidé, en le chargeant
et élevant le voltage. Le voltage, en s’élevant, réchauffe le matériel, qui mainte-
nant se trouve dans l’état isolant, et cause une nouvelle chute de la résistance. Le
régime oscillatoire termine quand le voltage appliqué est si haut que le condensa-
teur charge trop vite pour que le filament ait le temp de redevenir isolant, ainsi
l’état métallique se stabilise. Nous comparons nos resultats avec les images pro-
duites par la réflectivité optique d’un exemplaire expérimental de V3O5[Add+22],
et aussi les mesures de curent électrique dans le régime oscillant, en trouvant que
les expérimentes supportent notre analyse.

Finalement, nous considérons un système de deux exemplaires de VO2 couplés
par un condensateur, chacun caractérisé par sa propre capacitance et son régime
stochastique. Ce système nous permet d’investiguer d’une façon plus approfondie le
régime stochastique et oscillatoire qui avait été déjà observé. En plus, exemplaires
de VO2 couplés pourraient être appliqués dans le domaine du calcul oscillatoire et
pourraient être utilisés pour résoudre une variété des problèmes de nature combina-
toire, en consumant mois d’énergie que les solutions CMOS traditionnelles[CP20 ;
Mal+20 ; Dut+21 ; Ahm+21]. Par conséquence, leur caractérisation est une étape
importante vers la réalisation du calcul efficient du point de vue énergétique. Pour
achever cet objective, nous développons un modèle numérique qui utilise la distri-
bution de probabilité de percolation des filaments que nous avons dérivée avant
pour prédire les temps de génération («timings») des potentiels d’action de deux
oscillateurs VO2. En première lieu, nous étudions le cas dans lequel la capacité
de couplage est nulle et les deux exemplaires oscillent indépendants. Après, nous
connectons les oscillateurs en utilisant le condensateur de couplage, qui a l’effet de
synchroniser les oscillateurs, lesquelles maintenant génèrent un potentiel d’action
l’un après l’autre, à tour de rôle. Toutefois, en incrémentant la capacitance de cou-
plage, disruptions dans la séquence des «spikes» émergent ; autrement dit, deux ou
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plus «spikes» consécutives sont générés par le même oscillateur. Ces disruptions
peuvent être observés dans les mesures de curent qui sort des oscillateurs et aussi
dans leur distribution des intervalles entre spikes («Inter-Spike Intervals», ISI), qui
est similaire à la distribution de Poisson sans le condensateur mais devient mul-
timodale à fur et à mesure que la capacitance de couplage est augmentée. Nous
expliquons les disruptions comme un effet de la décharge de voltage des oscilla-
teurs qui se produit quand un des oscillateurs génèrent un potentiel d’action. La
décharge est proportionnelle à la capacité de couplage, ainsi une haute capacitance
produit une décharge complète dans les deux oscillateurs, dont le voltage devient
nul. Par conséquence, l’exemplaire qui a une probabilité intrinsèque de générer le
potentiel d’action plus haute reste toujours le favori dans le cas d’une décharge
complet. Nous comparons nos resultats avec des expérimentés dans lesquelles un
système de deux VO2 couplés a été étudié[Qiu+], en trouvant un accord qualitatif.

1.2 Summary

In today’s world there is an increasing demand for smart devices capable of
executing complex cognitive tasks, such as pattern recognition and classification.
From the early days of digital computing, neural networks have established them-
selves as the computational paradigm best suited for realizing machine intelligence
[MP43][Ros58][RJP19], a position consolidated by the recent success of deep neural
networks[KSH12]. Traditionally, neural networks are implemented in the form of
a software simulation running on a digital computer [RJP19]. While this approach
has the advantage of relying on the well-known Complementary Metal Oxide Semi-
conductor (CMOS) technology, power consumption is far away from approaching
the efficiency of the human brain [CD14], which has prompted the investigation
of alternative solutions, such as computers that deviate from the Von Neumann
architecture [Tha+18] and, more recently, neuromorphic systems based on quan-
tum materials[Del+18]. These materials could be miniaturized beyond the limits
of CMOS technology, resulting in improved power efficiency ; however, their cha-
racterization pose important challenges due to the complexity of the underlying
physical phenomena that grant them their unique neuromorphic features.

Mott insulators are one such class of materials presenting neuromorphic charac-
teristics [Sto+17 ; Add+18]. These are enabled by the Insulator to Metal Transition
(IMT) [IFT98 ; Geo+96], which occurs in Mott materials under certain conditions,
for example when an electric field [Die+18] is applied. The application of the elec-
tric field induces the formation of metallic filaments within the insulating bulk
of the material, which percolate and short-circuit the electrodes, resulting in the
collapse of the resistance by several orders of magnitude and an equal surge of the
current through the sample. This surge in current is key to implementing the spi-
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king mechanism through which biological neurons communicate with one another.
One notable characteristic of the resistive collapse, which is just as important for
the correct implementation of the spiking functionality, is its volatile nature, that
is to say, when the applied voltage is turned off, the material cools down and the
resistance resumes its original insulating value [Jan+15]. This allows to implement
the decay that follows the rapid depolarization of the neuronal membrane poten-
tial, after which the neuron recovers its resting state and is ready to fire again.
Without this decay, the neuron would remain in its excited state and would not be
susceptible to further stimulation. The spiking functionality of Mott neurons does
not rely on external circuit elements, most notably capacitors, for which reason it
should be possible to miniaturize these devices beyond the limits of conventional
CMOS chips.

However, the complex nature of the field driven IMT, which is a physical phe-
nomenon that stems from the interaction of many correlated electrons under a
strong electric field [IFT98 ; Geo+96], poses several challenges to the characteriza-
tion of these materials, and therefore their application. In this work we tackle these
challenges primarily by using a phenomenological model known as the Mott Re-
sistor Network (MRN) [Sto+14 ; Sto+13]. This model allows us to investigate the
resistive collapse with a temporal resolution greater than that of the experiments,
while also avoiding the mathematical complexity of more microscopic descriptions.
In doing so, we are able to understand resistive switching as an intrinsically sto-
chastic phenomenon that is affected by both electronic and thermal contributions,
thus shedding a light on the much debated topic of the nature of the field driven
transition in Mott materials. Additionally, we link the stochasticity of the resis-
tive collapse to the noisy firing of neuronal models with an exponential escape
rate [Ger+14], by showing that they share the same probability distribution, and
that both can be understood as Poisson processes [Roc+22]. This is an important
result in that it shows that Mott materials under an applied voltage spike with
the same stochastic behavior of biological neurons, and are therefore suitable for
implementing biologically plausible neural networks.

Another contribution of our work is clarifying how the different characteristics
of a given sample, such as its resistivity and thermal conductivity, can affect the
incubation period leading up to the collapse of the resistance as well as the growth
of the metallic domain after the collapse [Roc+22 ; Val+21 ; Del+21]. In particular
we show that, by increasing the thermal conductivity and thus the dissipation to
the substrate, we can achieve more inhomogenous transitions, characterized by
stronger temperature gradients, thinner and hotter metallic domains, as well as a
sharper dependence of the incubation time of the resistive collapse on the applied
voltage. Then we go on to show that similar results can be achieved by using the
insulating resistivity as a control parameter, instead of the thermal conductivity.
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This allows us to make sense of the differences observed experimentally between
Vanadium Dioxide (VO2) and Divanadium Trioxide (V2O3), the latter of which
presents a higher ratio of the insulating to metallic resistivity and a comparatively
inhomogenous transition, with a steeper dependence of the incubation times on
the applied voltage. We also study the expansion of the metallic domain after the
collapse of the resistance, finding that it is exponential in time, and qualitatively
in agreement with optical reflectivity experiments conducted on VO2 [Del+21].

VO2 is a particularly interesting case study in that it presents resistive swit-
ching close to room temperature, and therefore is well suited for practical ap-
plications. The generality of the MRN makes it a good model not only of the
vanadates like VO2 and V2O3, but also for other materials such as the nickelates.
Therefore, we go on to expand the MRN in order to model two members of the
nickelates family : Samarium Nickelate (SmNiO3) and Neodymium Nickelate (Nd-
NiO3) [Val+21]. In these materials too we find that it is possible to induce a more
inhomogenous transition by increasing the resistivity ratio, as previously obser-
ved for the vanadium oxides. This allows us to explain why we observe a stronger
dependence of the incubation time on the applied voltage in NdNiO3 than Sm-
NiO3, in analogy with the V2O3 versus VO2 comparison. Moreover, we show how a
strong dependence of the insulating resistivity on the temperature can be exploited
to induce a more inhomogenous transition by lowering the substrate temperature.
This observation finds confirmation in experiments conducted on both NdNiO3
and SmNiO3, in which it is found that lower substrate temperatures result in a
more abrupt switching mechanism at low applied voltages in both materials.

Another question that we tackle is whether it is possible to induce oscillation in
Mott neurons. Oscillatory behaviours are observed in single neurons, in population
dynamics and also at the macroscopic level in Electro Enecephalo Graph (EEG)
recordings [Ger+14 ; Pey+12 ; War03 ; Don+98]. It is therefore of the utmost inter-
est that Mott neurons should act as neural oscillators. For this reason we decided
to study a system made of a Trivanadium Pentoxide (V3O5) sample in parallel to a
capacitor. To do so we expanded the MRN model to account for the capacitance of
the circuit, as well as the second order transition presented by V3O5, in contrast to
VO2 and V2O3 which have a first order transition. By studying the IV curve and
the resistivity maps of the model under a ramp voltage we were able to observe an
oscillatory regime, which emerges after the resistive collapse and eventually dies
out when the stimulus becomes too high, and were able to understand it as an
effect of the interaction between V3O5 material and the capacitor. At the onset of
the resistive collapse, the capacitor begins to discharge, the voltage goes down and
an electric current flows from the capacitor into the sample, further heating up its
metallic domain. Eventually, as the capacitor approaches depletion, this current
starts decreasing and becomes insufficient to sustain the hot metallic filament,
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which gradually relaxes back to the insulating state. While the resistance of the
sample goes up, the applied current flows to the depleted capacitor, charging it
back and raising the voltage. The increasing voltage heats up the sample, which
by now is fully insulating, and triggers a new resistive collapse. The oscillatory
regime ends when the applied voltage is so high that the capacitor charges too fast
for the metallic domain to relax, thus stabilizing the metallic state. We compare
our results with optical reflectivity images from V3O5 experiments [Add+22], as
well as current measurements conducted in the oscillatory regime, finding that the
experiments support and are in agreement with our analysis.

Finally, we consider a system of two VO2 samples coupled with a capacitor,
each characterized by its own self capacitance and stochastic behaviour. This se-
tup allows us to further investigate the stochasticity of Mott materials under an
applied voltage and the previously observed oscillatory regime. Moreover, coupled
VO2 oscillators may find application in the field of oscillatory computing [CP20 ;
Mal+20 ; Dut+21 ; Ahm+21], and could be used to solve a variety of combinatorial
tasks, while potentially consuming less power than traditional CMOS solutions.
Therefore, their characterization is an important step towards the realization of
energy-efficient computing. To this purpose, we developed a numerical model in
which we use the probability distribution of filament percolation previously derived
to predict the timings of the spikes generated by the two VO2 oscillators. Firstly
we study the case in which the coupling capacitor is removed and the two devices
oscillate independently. We then connect the oscillators using the capacitor, which
has the effect of synchronizing the two devices, which now take turns in firing one
after the other. However, as the coupling capacitance is increased, disruptions in
the spike sequence appear, in the form of two or more consecutive spikes produced
by the same device. These disruptions may be appreciated not only from the rea-
dings of the output current of the two devices, but also from the distribution of the
Inter Spike Intervals (ISI) of the two devices, which is bell shaped in the absence of
the capacitor, but becomes increasingly multimodal as the coupling capacitance is
introduced and then increased. We understand the emergence of these disruptions
as an effect of the discharge induced by the spiking device in the other device.
The amount of the discharge is proportional to the coupling capacitance, thus a
sufficiently big capacitance results in the almost complete discharge of the device
that does not spike ; therefore, after the spike both devices begin to charge from a
voltage value close to zero, and the one with the lower firing threshold will tend to
win the race and fire again. We compare our findings with experiments in which
a system of two coupled VO2 samples was studied [Qiu+], finding an excellent
qualitative agreement.
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1.3 Spiking Neurons

Biological neurons exchange information in the form of so called spikes [Maa97].
A spike is a sudden increase in the potential of the membrane of the neuronal cell,
and is also known as action potential. The process of spike generation is very
complex, and the resulting dynamics are very rich and varied [Ger+14] ; in the
following we will only give the necessary information to understand the rest of
this work. When a neuron receives a spike, its membrane depolarizes, that is, the
membrane potential rises from its rest negative value. Such increase is gradual and
proportional to the frequency of the input spikes ; however, once the potential has
reached a certain threshold, it rapidly increases in a non-linear fashion, reaching
positive values. This state is transient and thus the membrane immediately repo-
larizes and the potential decreases after it’s reached its peak. If one looks at the
graph of the potential (Figure 1.1) this transient state appears as a spike (hence
its name) of the length of just a few milliseconds. At the end of the spike there is a
period of hyper-polarization, called refractory period, during which the potential
falls below its rest value an it is very hard or even impossible to elicit a new spike,
no matter how strong the stimulus.

From a purely computational point of view, the shape of the spike and the
trace of the potential are not important, since information is entirely encoded in
the timing and the frequency of the emitted spikes, and the neuron is entirely
characterized by the spikes history (also called spike train). In biological neurons
spiking is a stochastic process, i.e. the timings of the spikes are not consistent across
trials even under the same experimental conditions, a fact that can be modeled
using a probabilistic threshold for firing[Jol+06 ; PG00 ; MS95]. This property can
affect negatively the transmission of information, but there also cases in which
stochasticity can be beneficial[MW11], for which reason it is important that it
should be taken into account when implementing neuronal models.

1.4 Neuromorphic engineering

The field of neuromorphic engineering dates back to early days of modern com-
puting, and specifically to the work of McCulloch and Pitts on Artificial Neural
Network (ANN) [MP43]. Other important developments that followed were the
invention of the perceptron [Ros58] (the first system capable of pattern recog-
nition) by Rosenblatt in the fifties and of the cognitron (the first convolutional
neural network) by Fukushima in the seventies [Fuk75]. After a period of declined
interest, due to the recognition of certain inherent limitations of perceptron-like
networks by Minsky [MP17], renewed interest arose in the 80s and 90s thanks
to theoretical work of Maass [Maa94 ; Maa97], in which the computational com-
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Figure 1.1 – Typical evolution of the potential of the membrane of a neuronal
cell. If the stimulus is strong enough to push the potential above the threshold, the
membrane rapidly depolarizes. The excited state does not last long, as the mem-
brane repolarizes again, reaching its rest value after a period of hyper-polarization,
known as refractory period, during which the neuron cannot be excited. Adapted
from [CDt20].
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plexity of spiking neurons was first established, and the engineering work of Mead,
in which analog implementations of neural systems were demonstrated [Mea90 ;
MM88 ; MI89]. Additionally, it was realized that the miniaturization process that
had enabled the performance gains of traditional microprocessors up until that
point would eventually reach its intrinsic physical limits, putting an end to Moo-
re’s law [Moo95]. Therefore, the issue of designing parallel computing systems that
would break away from the architectural paradigm established by von Neumann
[Von93] became ever more pressing.

The von Neumann architecture, which still is at the basis of most modern com-
puters, is founded on the principle of the separation of memory and computation.
In other words, data are first retrieved from storage and then sent for processing to
the designated units. While nowadays the physical distance that separates storage
and computing elements can sometimes be measured in tens of nanometers (like in
the case of cache memory directly embedded in the CPU), data transfer remains
a very energetically expensive operation [Mol+10]. Therefore, in order to increase
energy efficiency, it is desirable that data should be stored in and manipulated by
the same functional unit.

The human brain can be seen as a blueprint for a computing system where
storage and computation are intertwined. The neuron is the basic unit of such
system, whose main function is the integration of the incoming data, in the form
of action potentials, while synapses with variable efficacy allow networks of neurons
to store information [Hop82 ; Hop88].

The similarities between computers and the brain had been noticed as early
as Alan Turing’s essay on machine intelligence [Tur48]. However, as the field of
computer engineering matured and grew apart from the early influence of neuros-
cience, the differences became more pronounced. On the other hand, neuromorphic
engineering draws inspiration from neuroscience to design devices capable of exe-
cuting complex intelligent tasks at a fraction of the energy cost of traditional
Von Neumann architectures. Throughout the years neuromorphic engineering has
branched into different currents with different approaches to the same issue. One
such current emerged in the 90’s from the work of Carver Mead in the form of
analogue circuits designed to execute specific tasks, like for example visual edge
detection [All+88]. Another more recent effort is dedicated to the development of
digital circuits that reproduce the activity of biological neurons [Ind03 ; WD08],
instead of being tailored for a certain specific task. These circuits are relatively
simple (usually of the order of tens of transistors for a single neuron device), but
can be combined to create neural networks. This development occurred around the
same time machine learning, a field which studies how software models of ANN
can be employed to execute cognitive tasks [Hop88 ; Kro08 ; Sei04], emerged. The
advantage of the machine learning approach is that software models are flexible
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and easier to implement, which has resulted in a vast literature of architectures
and learning algorithms ; on the other hand, software simulations running on tra-
ditional computers or graphics accelerators can incur in higher energy costs than
neuromorphic circuits. Recognizing the advantages of software simulations, as well
as the need for more efficient hardware, semiconductor companies such as IBM and
Intel [Mer+14 ; Dav+18] have begun the development of neuromorphic processors
[Peh+22] which integrates neuromorphic principles, like for example event-driven
processing, with more conventional design choices, such as the use of digital elec-
tronics instead of analogue components, as well as traditional CPU cores in some
cases [Fur+14].

One recent development of neuromorphic computing which is of particular re-
levance to this work is the conceptualization of memristors [Chu71], and their
succeeding discovery [Str+08]. To the purpose of this summary, memristors may
be described as devices which have a bi-stable resistance whose value depends on
its history. This property enables memristors to exhibit a spiking behaviour, ma-
king them ideal candidates for implementing neural circuits [Yao+20]. Nowadays
there are different devices that may be classified as memristors ; among others,
quantum materials that present resistive switching under an applied voltage, like
for instance Mott insulators, about which more information is given in the next
section.

1.5 Resistive switching in Mott materials

Resistive switching may be defined as the abrupt change of the resistance of a
device that occurs under certain conditions, like for instance an applied voltage.
This phenomenon is of interest to us in that the surge of current flowing through
the device after the collapse of the resistance is akin to the depolarization of the
membrane of a neuron when it fires [Wan+20 ; PMW13 ; KSW17]. However, resis-
tive switching alone is not sufficient to implement spiking : it is also essential that
the device should resume its high resistance state if the condition that triggered
the collapse is lifted, in analogy with the repolarization of the membrane after the
emission of a spike.

In Mott materials the physical mechanism behind the resistive switching phe-
nomenon is the Insulator to Metal Transition (IMT) [Geo+96 ; IFT98 ; Lee+18].
According to conventional band theory, Mott insulators should in fact be metals,
since they possess an odd number of electrons and their Fermi level should lie in
the middle of the valence band ; however, this view fails to account for the strong
on-site Coulomb interaction. Modern approaches such as Dynamical Mean Field
Theory (DMFT) have been successful in providing a correct description of these
materials by including the Coulomb repulsion. To see this one might consider the
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Figure 1.2 – Panel a) : Schematic depiction of the Mott transition as the Coulomb
interaction U is increased. Adapted from [IFT98]. Panel b) : Plot of π/2WDOS
against the frequency ω obtained from the DMFT solution of the half-filled Hub-
bard model at β = 60. Panel c) : Phase diagram of a conventional half-filled Mott
compound. Adapted from [Jan+15]
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Hubbard model at half-filling, which is one of the most simple models to cap-
ture the physics of Mott materials. When the Coulomb interaction U is small,
the DMFT solution of the model at zero temperature predicts that the Density of
States (DOS) should be finite at ω = 0. As the Coulomb interaction is increased,
we observe first the emergence of a quasi-particle peak, and then its narrowing
and eventual disappearance ; therefore, when the Coulomb repulsion is strong, an
insulating gap EG ≈ U −W (where W is the bandwidth) opens at low frequency
splitting the band into two. An example of DOS calculations in the framework
of DMFT (using Iterated Perturbation Theory) is presented in panel b) of Figure
1.2, while the general picture of the Mott-Hubbard transition in shown in panel a).
From this description we surmise that there exists a competition between the Cou-
lomb repulsion U and the bandwidth W , and that it should be possible to observe
a Mott transition by changing the bandwidth, for example by applying pressure to
enhance the orbitals overlaps and increase W, and indeed this has been confirmed
in experiments [SWB03 ; Hsi+14 ; Jan+15]. If we draw a schematic phase diagram
of a conventional half-filled Mott compound (panel c) of Figure 1.2), we can see
the bandwidth controlled Mott transition (Mott-BC, red arrow) that occurs from
the metallic state to the paramagnetic Mott insulator state when the ratio U/W
is increased. Moreover, we also see a temperature controlled transition (Mott-TC,
red arrow) from the metallic to the Mott insulator state made possible by the
fact that the Mott IMT line is tilted. Finally, in those half-filled compounds that
present long-range order (for example magnetic or orbital) at low temperatures,
we also see a temperature controlled IMT that, unlike the two previously described
Mott transitions, involves a crystallographic symmetry breaking (CSB-TC, green
arrow).

In this work we will deal with materials, such as VO2 and V2O3, that present
a transition from a low temperature insulator state to a high temperature me-
tallic one under an applied electric field. Different mechanisms have been pro-
posed to explain this transition, such as Joule self-heating [Li+17 ; Kim+10 ;
Zim+13](similarly to the CSB-TC transition described above) and charge pro-
motion by the electric field[Sto+14 ; Gui+13 ; Roz97], which would dope and des-
tabilize the Mott state. Since a microscopic description of the IMT is outside the
scope of this work, in this section we will only give a phenomenological descrip-
tion of the resistive switching phenomenon as observed in experiments ; in later
chapters we will study this phenomenon in more details, finding that both Joule
heating and an electronic contribution, in the form of current concentration within
thin metallic domains, play an important role.

For now, we focus on the case of a VO2 sample under an applied electric field.
This case is of particular interest for practical applications for two reasons. Firstly,
inducing the transition via an electric field is suitable for integrating the device
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with other electronic components. Secondly, the transition temperature of VO2 is
above room temperature, making it possible to cool the sample simply by thermal
dissipation to a substrate [Del+21].

A schematic depiction of the setup for this kind of experiments is shown in pa-
nel a) of Figure 1.3 . The Mott material sits between two electrodes, which apply
a constant electric field. A substrate is used to dissipate the heat produced by the
sample when the electric field is turned on. By recording the current through the
sample with an oscilloscope, it is possible to observe the switching from insulator
to metal, which is marked by the sudden collapse of the resistance, after an initial
phase in which it decreases gradually (panel b)). The transition may be further
characterized by heating up the sample while a minimal voltage is applied only
for the sake of probing the resistance. In this case it is possible to measure the
resistance against the sample temperature, and operationally define its transition
temperature as the temperature at which the resistance collapses which, for VO2,
is T = 340K [Del+21]. Moreover, starting from the metallic state, we can decrease
the temperature to study the relaxation to the insulating one [Tes+18]. For mate-
rials like VO2, which present a first order IMT, a hysteretic behavior is observed,
that is, the temperature at which the resistance resumes its high insulating value
is lower than the transition temperature. The hysteretic behavior of materials like
VO2 and V2O3 is fundamental to the stochastic firing behavior that has been ob-
served experimentally and that is discussed in this work [Roc+22]. In addition to
VO2 and V2O3 there are other materials, like for instance V3O5 [Add+22], which
present a second order transition, which is characterized by a less abrupt change
in the resistance and the absence of hysteresis.
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Figure 1.3 – Panel a) : Schematic representation of the setup of a resistive swit-
ching experiment. A function generator applies a fixed electric field across a Mott
insulator that sits between two electrodes. A substrate at fixed temperature is used
to dissipate the heat. Panel b) : Evolution of the resistance of a simulated Mott
material under an applied voltage using the MRN model. Panel c) : Hysteretic be-
havior of the resistance of an experimental VO2 sample and a MRN simulation as
a function of temperature. The insulating value of the resistance in this simulation
has been fixed and is temperature independent for simplicity’s sake. When consi-
dering the case of nickelates later on we will show that it is possible to introduce
a temperature dependent insulating resistivity in the model.



Chapitre 2

The Mott resistor network model

The resistive collapse that occurs in Mott materials like VO2 and V2O3 un-
der an applied voltage is triggered by the growth of metallic filaments within the
insulating bulk of the sample, which eventually shortcircuit the electrodes thus in-
ducing an electric breakdown [Del+21 ; Add+22 ; Roc+22 ; Gué+13]. This process
can be observed through imaging experiments such as the one that is schematically
depicted in panel a) of Figure 2.1[Del+21]. In this experiment a constant electric
field is applied to a VO2 sample in order to induce the collapse of the resistance.
Additionally, a laser beam is pointed toward the sample and a photodetector is
used to measure the reflectivity of the material. By moving the laser beam in pa-
rallel to the electrode it is possible to measure how the reflectivity of the region
of the sample hit by the laser changes over time (panel b), Figure 2.1) and since
reflectivity is higher for the metallic phase than for the insulating one, we can
also study how the resistivity changes as the material undergoes resistive collapse.
From Figure 2.1 it is possible to appreciate how the resistive transition under an
applied voltage is not a wholly homogeneous process in which the sample becomes
uniformly metallic ; instead we see the formation of metallic regions near the edges
of the electrode that gradually expand over time as the electric field is kept on. Si-
milar optical reflectivity measurements conducted on V3O5 (Figure 2.2)[Add+22]
clearly show that a metallic filament connecting the electrodes appears after the
collapse of the resistance.

These imaging experiments shed a light on the physical origin of the resistive
collapse ; however, the limited temporal resolution of the instrumentation does not
allow to capture the state of the filament during the percolation phase, when it is
only partially formed. Additionally, filament percolation itself requires further in-
vestigation, particularly in regards to whether it is a purely thermal process or one
that is also affected by electronic contributions [Sto+14 ; Li+17]. For these reasons
we’ve employed the Mott Resistor Network (MRN) model to study the resistive
collapse in Mott materials. The MRN (depicted in Figure 2.3) is a mesoscopic phe-

25
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Figure 2.1 – Panel a) : The setup used to measure the resistivity of VO2 and
V2O3 samples. A constant electric field is applied to induce the resistive switching
while a laser beam is shot toward the sample. A photodector measures the reflected
beam, from which the reflectivity of the material, and thus the resistivity, can be
computed. Panel b) ; The evolution of the reflectivity of a horizontal patch of the
sample, parallel to the electrode, as the electric field is kept on. On the y axis the
position of the beam, which moves in parallel to the electrode in order to produce
the figure, and on the x axis time in logarithmic scale. Dashed white lines indicate
the position of the edges of the electrode. Adapted from [Del+21]

Figure 2.2 – On the left, IV curve of a V3O5 sample in a current-controlled
experiment. The jump in the voltage corresponds to the resistive collapse. On
the right, reflectivity measurements showing how the voltage jump, which occurs
between the upper and the lower panel, coincides with the formation of a metallic
filament that connects the electrodes. Adapted from [Add+22]
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nomenological model that is capable of producing snapshots of the temperature
and resistivity of the materials at any point in time, as well as providing readings
for macroscopic quantity such as the sample current [Sto+13].

The model divides the sample into cells, the size of which is assumed to be
large enough to define a resistivity value as well as a phase : either Mott insulator
or correlated metal. Since the gap between the electrodes in the materials under
examination is typically of the order of 1 − 10 µm, a length of approximately
100 cells is chosen for the MRN, which translates to a cell size of 10 − 100 nm,
comparable to the size of the crystalline grains of the experimental films [Val+21].
In order to include the first order character of the IMT in the materials under
study, such as VO2 and V2O3, we assume that the stability of the two phases
depends on the local temperature of the cell via a free energy functional [Tes+18],
which we will define later on.

Using as a reference Figure 2.3, we see that the model includes red cells, which
are ideally metallic and represent the electrodes, white cells, which are in the insu-
lator phase and have high resistivity values, gray cells, which are in the correlated
metal phase and have a lower resitivity, and finally green cells, which are ideally
insulating. Green cells are not required by the model, and only serve the purpose
of reproducing the experimental geometry (also depicted in Figure 2.3, on the left)
while using fewer cells than otherwise necessary. Each of the cell has four resistor,
as shown by the inset of Figure 2.3, all sharing the same resistance value, which
we identify with the resistivity of the cell (the cell is assumed to be of unitary size,
and all the physical quantities have arbitrary units).

When a voltage is applied across the network, currents start flowing through
the resistors. The first step toward the solution of the model consists in computing
these currents. To do so we use Kirchhoff Voltage Law, which states that the sum
of the voltage drops along a closed loop is zero. Looking at Figure 2.4, we see that
for each cell a closed loop can be defined by considering its node and the three
other nodes with which it forms a square. Then, using Ohm’s law IR = V , we can
write the sum of voltage drops across the resistors included in the loop, and impose
that it should be zero, in accordance with KVL. As an example, considering the
cells R3, R4, R7, R8 of Figure 2.4

2I3 (R3 +R4 +R8 +R7)− I0(R3 +R4)+ (2.1)
− I4(R4 +R8)− I10(R8 +R7)− I2(R7 +R3) = 0

The values of the resistive coefficients are known, since initially all the cells are
in the insulator state, however the number of currents (which are the unknown
variables of this equation) to be computed is too high, since at this point we only
have one equation. However, a similar equation can be written for any other cell
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Figure 2.3 – Schematic diagram of the Mott Resistor Network model and the
experimental setup [Val+19]. Cells in red are ideal metal with zero resistivity
and represent the electrodes. Cells in white and grey represent the thin film Mott
material, which is assumed in thermal contact with a perfectly insulating substrate
that is at T0 = 300 arb. units (in blue). These cells can be either in the insulating
or metal states. Green cells are ideally insulating. Each cell is characterized by a
Landau-type free energy that evolves with the temperature of the cell, as shown
in the bottom inset figure. The two minima of the function correspond to the
metal and insulating phase. The energy barrier ∆E of the insulating phase at
three different temperatures is shown.
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Figure 2.4 – Left : For each cell of the mesh it is possible to define a closed loop
and a current that flows within it by considering the three other cells with which
it forms a square. In our example one such loop consists of the nodes 0, 1, 3, 4.
The current takes the name of the top left node Right : To include the external
applied voltage and the load resistor in the computation of the currents we can
consider the loop made of the leftmost column of the mesh, the load resistor and
the applied voltage.
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Figure 2.5 – Each cell contains four resistors, and for each resistor there are two
currents flowing in opposite directions. Here we consider as an example node 8 of
Figure 2.4
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of the network, and we note that the currents are shared by closed loops adjacent
to each other. Thus we end up with a system of linear equations of the form

IR = ∆V (2.2)

where I is a row vector of length n, the total number of cells, containing the
currents of the loops, R is a square matrix of size n which contains the resistive
coefficients, and ∆V is a column vector which in principle should contain voltage
values, but we know it to be zero according to KVL. There is one last equation left
to be written, which is the one of the closed loop that contains the external load
resistor, as well as the voltage generator. This equation is very important, since it
allows us to introduce the external current in the network. To write it, we must
consider a closed loop that contains the voltage generator and the load resistor,
enters the network, runs through it and then exits the network to connect back
to the voltage generator. While any path satisfying these conditions would do, we
choose the one that run alongside the leftmost column of the network, as shown in
Figure 2.4, as this simplifies the writing of Kirchhoff’s equations (since we don’t
have to worry about potential currents shared with the nearest neighbours cells
on the left). As a consequence, the current will enter the network through the top
leftmost cell (as opposed to the center cell, as it might be expected), and this is
why a row of metallic cells is needed to carry the current from that cell to the
center of the sample (as shown in Figure 2.3). This last equation can be written
as follows (using the naming convention of Figure 2.4)

In(R0 + 2R1 + 2R2 + · · ·+RL−1) + InRload+

− I0(R0 +R1)− I1(R1 +R2) + · · · − IL−1(IL−2 + IL−1) = Vapp (2.3)

In total we have a system of linear n + 1 equations that has been set up by
recurrent application of KVL, which we can now solve. We note that the matrix of
resistive coefficients is sparse and mostly empty, since for each equation only the
resistive coefficients of the cells that belong to the corresponding closed loop are
considered. For this reason, we use the library umfpack to solve the system [Dav04]
(here we note that the library requires that the matrix of the resistive coefficients
should be provided in compressed column representation). Once umfpack has sol-
ved the system for an initial applied voltage, we have successfully computed the
currents of the closed loops. Now we must turn our attention to the power that is
generated by these currents as they flow through the resistors.

Heat is locally generated in each cell in accordance with Joule’s first law P =
I2R. In particular, we can see from Figure 2.5 that for any resistor there are two
currents flowing in opposite directions. Thus, taking as an example node 8, the
power generated by a single cell may be written as
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P8 =R8[(I8 − I4)
2 + (I8 − I10)

2+

+ (I10 − I3)
2 + (I3 − I4)

2] (2.4)

The power of any given cell will be the sum of the contributions of its four
resistors. Now that we know how to compute the heat generated by a cell we can
study how the temperature is affected. To write the temperature equation of the
cell we begin by considering Newton’s law of cooling

dq

dt
= −hA∇T (2.5)

which states that the rate of heat transfer is equal to minus the heat transfer
coefficient h multiplied the heat transfer surface A and the temperature gradient.
The thermal conductivity κ is related to the heat transfer by the equation k/dx =
h, where dx is the thickness of the medium. Therefore, the above equation can be
rewritten as

dq

dt
= − k

dx
A∇T (2.6)

Since in our simulations we consider thin films, we assume that the thickness
dx is unitary. We also assume that the surface of the cell A is unitary as well.
Finally, using the definition of the heat capacity as the amount of heat needed to
raise the temperature C = dq/dT , we may rewrite the equation as

dT

dt
= − k

C
∇T (2.7)

The resistor network is assumed in thermal contact with a perfectly insulating
substrate (depicted in blue in Fig.2.3). Each cell dissipates the heat by thermal
conduction to its four neighbouring cells and to the substrate, that is assumed
at a fixed temperature T0. The thermal conductivity κ determines the magnitude
of the heat transfer ; for simplicity we assume the thermal conductivity to be the
same for the dissipation to the substrate and to the nearest neighbours. Therefore,
the temperature gradient for the cell with subscripts ij (identifying the row and
column of the network the cell belongs to) can be written as

∇T = Tij − T0 + 4Tij −
nn∑
kl

Tkl = 5Tij −
nn∑
kl

Tkl − T0 (2.8)

where the subscripts kl run over the nearest neighbours of the cell. The tempe-
rature of each cell results from the action of two effects : a positive contribution,
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due to Joule heating (equation 2.4), and a negative one, due to heat dissipation
(equation 2.8). Putting them together, equation 2.7 becomes

dTij

dt
=

Pij

C
− κ

C

(
5Tij −

nn∑
kl

Tkl − T0

)
(2.9)

where ij and kl are the indexes of the cell, nn denotes nearest neighbours and
C is its thermal capacity. In the limit of the thermal conductivity κ going to 0 the
film self-heats-up approximately homogeneously since the temperature gradients
may be neglected. Then, the temperature change for the film as a whole can be
written as

dT

dt
=

I2R(T )

C
− K

C
(T − T0) (2.10)

where K is the thermal conductance of the interface, and C now denotes the
heat capacity of the film. In the following we will use the symbol K to denote both
the thermal conductivity and the thermal conductance, for the sake of simplicity,
whenever the meaning can be inferred from the context. The temperature T0 is
assumed to be below the insulator to metal transition temperature TIMT , thus,
initially, all cells are in the insulating phase and have a high resistivity value ρhigh.
When the cells undergo the transition to the correlated metal phase, their resisti-
vity value changes to ρlow ≪ ρhigh. For simplicity, both resistivities are assumed
to be independent of T , but the model can be easily generalized to include any
temperature dependence [Sto+14].

The transition of the cell is a thermally activated process that may occur even
for temperatures lower than TIMT , in accordance with the following transition rate

ν(T ) = ν0 exp

(
−∆E(T )

T

)
(2.11)

where T is the local temperature of the cell, ∆E(T ) is the energy barrier of
the cell free energy when it is in the insulating state, and ν0 is the attempt rate
[Sto+13]. The free energy is assumed to follow Landau’s theory and to be of the
shape :

f(T, η) = h(T )η + p(T )η2 + cη4 (2.12)

h(T ) = h1
T − TC

TC

+ h2 (2.13)

p(T ) = p1
T − TC

TC

(2.14)
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where η is the order parameter and h1, h2, p1, c and TC are constants (TC , which
is the critical temperature of the free energy, should not be confused with TIMT ,
which is the insulator to metal transition temperature). Here we do not make any
explicit connection between η and the physical quantities, however we may notice
that a mapping between it and the resistivity of the cell is, in principle, possible.
The parameters of the free energy are tuned as to reproduce the experimental
curves of resistance versus temperature (see insets of Figure 2.6), from which one
can gauge the temperature range within which the system presents meta-stability,
which manifests in the hysteresis.

The model can be simulated both in equilibrium and out of equilibrium, for
small and large applied voltages, and also for arbitrary applied voltage protocols.
In a simulation in equilibrium conditions, a minimal voltage, needed to probe the
resistance, is applied. Then the temperature of the substrate is slowly raised. Under
these conditions the system heats up in an approximately homogeneous fashion.
As the system crosses TIMT , the cells independently and randomly undergo local
transitions and relaxations and no filamentary structure forms. As the temperature
is raised beyond the transition temperature eventually all cells are in the metallic
phase. After the resistive collapse, we gradually decrease the temperature of the
substrate to the initial value, and from the computed R(T ) we obtain the hysteretic
behaviour of the resistance. This is shown in the insets of Fig.2.6, where we compare
the numerical results with experimental data on a VO2 thin film sample.

When a strong voltage is applied, the system is driven out of equilibrium and
the resistive collapse is qualitatively different. The metallic phase takes a fila-
mentary percolation form as is observed in the simulation data of Fig.2.6. The
formation of metallic filaments is a highly non-linear process that originates in a
local thermal imbalance at large current densities. When a voltage is applied to
the electrodes, a current begins to circulate through the Mott resistor network,
and the cells start to generate heat, in accordance with Joule’s law. At first, the
rate at which the heat is generated is comparable to that at which it is dissipated
to the substrate, which is in thermal contact with all cells and is kept at a fixed T0.
However, if the applied voltage is increased, the injected power eventually over-
comes the ability of the substrate to absorb heat. In this situation, a local increase
in the current (such as at the edges of the electrodes due to the point effect) leads
to a local increase in temperature. Then, the probability that a hot cell becomes
metallic also increases, since the transition is a thermally activated process. When
a cell becomes metallic, its resistance decreases dramatically, since ρlow << ρhigh.
This draws more current from the neighboring cells to the metallic one, increasing
its current density. This current focusing effect translates into further local heating,
along with a dramatic increase of the transition probability of the neighboring cells
that also heat up by Joule heating and by thermal conduction. Eventually, this



34 CHAPITRE 2. THE MOTT RESISTOR NETWORK MODEL

process leads to the formation of conductive filaments that connect the electrodes.
It is important to realize that for the resistive collapse to take place the device as
a whole does not need to homogeneously reach the TIMT . It is merely necessary
that TIMT is reached locally and that the ρhigh/ρlow ratio [Del+21] is significant
enough to create the current focusing effect.

The previous qualitative discussion of the filamentary formation process is
confirmed by the numerical simulations that we show in Fig.2.6. There we observe
that, initially, the filaments emerge from the edges of the electrodes and grow in
approximately symmetric fashion, until they eventually connect. This is a mani-
festation of the familiar point-effect, namely, the enhancement of the electric fields
near sharp angles. It is in these regions that the current density is initially stronger,
even though the device cells are originally all identical and in the insulating state.
The current gradients of geometrical origin act as seeds for the filamentary growth
and have recently been directly imaged (Figure 2.1) [Del+21]. The growth of the
filaments is correlated with the resistance of the device, as shown by the right hand
side panel of Fig.2.6 and the respective points indicated along the collapse of the
R(t) in the main panel.

When the applied voltage is terminated, there is no more power input and
the temperature of the cells relaxes back to T0 < TIMT , thus the device recovers
the high resistance state. This relaxation of the filamentary structures has been
studied in recent works [Tes+18 ; Val+19] and may be seen as the inverse of the
filament incubation and growth that we consider here.
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Figure 2.6 – The top panel shows the drop of the resistance of the simulated MRN
when driven out of equilibrium by an applied voltage (blue curve, Vapp = 105 arb.
units, K = 0.1 arb. units). The top inset shows the experimental hysteresis curve
for a V O2 thin-film sample, the bottom one shows the curve produced by the
model simulations in equilibrium conditions. The panels on the bottom show the
resistivity map of the simulated system as it undergoes the resistive switching. The
maps are ordered chronologically and, similarly to Fig.2.3, the electrodes are in
red, the cells in the insulating phase in white and the metallic cells in grey ; green
cells are ideally insulating. We see that the first cells to switch to the metal state
are those near the edges of the electrodes, since the electric field is stronger due
to the point effect. As we keep applying the voltage, the filaments grow, until one
of them shortcircuits the electrodes.





Chapitre 3

Noisy firing in Mott neurons

The first question that we tackle using the MRN is the stochastic nature of the
field driven resistive collapse in VO2 and V2O3 [Roc+22]. It has been observed
that the collapse of the resistance can occur at different times when experiments
are repeated using the same sample and the same applied voltage [Del+21]. If
we define the incubation time as the time between the application of the voltage
and the collapse of the resistance, one can describe quantitatively the stochastic
behavior in terms of variability of the incubation times. It is then possible to plot
the incubation times, and their standard deviation for a certain number of trials,
against the applied voltage. This plot summarizes the stochastic behavior of VO2
and V2O3, and it is the starting point of our analysis. Using the MRN we were
able to understand filament percolation as an intrinsically stochastic process, to
which both thermal and electronic effects, in the form of Joule heating and current
density concentration respectively, contribute. By controlling one of the parameters
of our simulations, the thermal conductivity of the sample, we were able to tune the
stocasticity of the resistive collapse, thus reproducing the experimental incubation
times of VO2 and V2O3.

Stochasticity is an important feature of the spiking behaviour of biological neu-
rons. As expected of biological systems, neurons are not completely deterministic,
and the timings of the spikes of any given neuron will present a certain variabi-
lity [Ger+14]. In other words, spiking is a noisy a process, a fact that is captured
in neuronal models by the use of a probabilistic threshold of firing, which often
takes the form of an exponential escape rate [Jol+06 ; PG00 ; Ger+14]. A noisy
output can negatively impact the performance of neuronal networks as computing
systems ; however, there are instances in which noise can actually enhance perfor-
mance, a phenomenon that is referred to as stochastic resonance [SGJ05]. For these
reasons, it is desirable that memristive neurons should also possess stochasticity.

In this work we go beyond the qualitative description of filament percolation
as a stochastic process to show that the probability distribution of resistive col-
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lapse is the same as that of firing in neuronal models with an exponential escape
rate. In doing so we establish a quantitative connection between conventional ma-
thematical descriptions of noisy firing and stochastic spiking as implemented by
Mott materials ; this allows us also to show that filament percolation is a Poisson
process, in analogy with neuronal firing.

3.1 Stochastic filament percolation

A useful quantity to characterize the formation of filaments is the delay time
between the application of the external voltage and the observation of the resistive
collapse, which we call the incubation time τinc. This quantity is directly accessible
in experiments, which show that τinc depends strongly on the applied voltage,
spanning several orders of magnitude. The lowest voltage that is required to observe
a finite τinc is denoted the threshold voltage Vθ. As we shall discuss below, the
determination of the threshold voltage may be more subtle than naively expected.

In the right panel of Fig.3.1 we show experimental data for the incubation
times of VO2 and V2O3 devices (see Fig.2.3 for the experimental setup). We notice
that, for a relatively small variation of the applied voltage, τinc may change by
orders of magnitude. Upon a closer look, we observe two qualitative features :
one is a steep increase of τinc as the threshold voltage for resistive collapse, Vθ, is
approached ; the second is that the variability (i.e. the experimental error bars)
of τinc also grows when decreasing the voltage. Moreover, in VO2 the error bars
are large and of the same order of magnitude as their respective mean τinc, and in
the case of V2O3, they grow at an even higher rate approaching Vθ. This behavior
indicates that the more the applied voltage approaches the threshold value, the
more unpredictable the filamentary formation becomes, which questions the very
notion of a well defined threshold voltage value.

To understand these experimental findings we turn our attention to the study
of the MRN model. Since it has several parameters, we need to choose a convenient
way to explore the behavior of the resistive collapse. It has been experimentally
observed that a relevant parameter is the ratio of the insulating and metallic
resistivities ρhigh/ρlow across the IMT [Del+21]. However, for the time being, we
find it convenient to keep the values ρhigh, ρlow and T0 fixed and explore the different
resistive collapse modes with the variation of a single parameter, the thermal
conductivity K. A summary of the parameters of the model used in this chapter
is presented in Table 3.1. In the succeeding chapters we will also explore how the
resistive collapse is affected by the resistivity ratio and the substrate temperature,
but for now focus only on the thermal conductivity.

In the limit K → 0 even a very low applied voltage produces self-heating as the
cells do not dissipate the incoming power. The local self-heating is more intense
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Figure 3.1 – In the left panel the incubation times produced by numerical si-
mulations of the MRN model at different K values. The dashed black line is a fit
using the expression Eq.3.3, while the other lines are simple guides to the eyes.
Error bars represent the standard deviation of the incubation times. In the right
panel the incubation times measured for a V O2 and a V2O3 device, in contact with
substrates at T = 334.9K and 132K, respectively. The substrates were made of
Al2O3, which has a thermal conductivity of 25W/mK. The experimental data are
the same as in [Del+21]
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Parameter Value Meaning
h1 71.25 103 Free energy constant
h2 7.5 103 Free energy constant
p1 15.0 103 Free energy constant
c 3.0 102 Free energy constant
TC 380.0 Free energy constant
TIMT 340.0 Insulator to metal transition temperature
T0 300.0 Substrate temperature
ρins 3.5 104 Cell insulating resistivity
ρmet 10 Cell metallic resistivity
RL 5 103 Load resistance
C 10 Heat capacity
W 100 Network width
We 42 Electrodes width
L 100 Network length
K [0.001, 0.1] C Thermal conductivity

Table 3.1 – Values of the parameters used in the simulations presented in this
chapter.

at the edges of the electrodes, where the electric field and the current density are
larger, due to the point effect. Then it spreads out rather homogeneously in the
bulk of the device. The self-heating continues at a rate set by the applied voltage,
and since there is little dissipation, eventually the temperature of the bulk reaches
TIMT and the resistance collapses.

In contrast, in the limit of large K, a stronger voltage must be applied to in-
duce the resistive collapse, since the dissipation to the substrate brings thermal
equilibrium at low injected power. Therefore, one expects stronger temperature
gradients and, consequently, stronger gradients of current density, which may lead
to a less predictable resistive collapse. As we shall see below, in such a case, fila-
mentary structures grow as in a sudden avalanche-like process, especially close to
the threshold voltage.

The results of the simulations are shown in the left panel of Fig.3.1 where
we plot the incubation time τinc as a function of the applied voltage for various
values of the parameter K. We observe that several features of the experimental
data shown in the right panel are present. Firstly, the range of τinc spans several
decades for relatively small variations in the applied voltage. Additionally, there are
two different regimes in τinc(V ) : The first one is at higher voltages, where τinc(V )
shows a relatively weaker V -dependence and smaller error bars. The second regime
is at lower voltages, close to the threshold, showing a steeper increase in τinc with
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V and larger error bars. We thus call the first regime deterministic, and the second
one stochastic. We will now explore the origin of the stochastic behavior.

A first insight comes from the observation that, in the limit of K → 0, the
resistive switching becomes deterministic. This feature can be observed in Fig.3.1
where, in the limit of vanishing thermal conductivity, the variability of the incu-
bation times remains small even close to the threshold voltage. The deterministic
nature of the resistive collapse in this case is further underlined by the fact that
we can obtain an approximate analytic expression for τinc(V ) by solving Eq.2.10
under the assumption of an homogeneous system and that the resistance of the
sample stays constant and equal to Rins before the collapse. Choosing as boundary
conditions for the solution T (0) = T0 and T (τinc)=TIMT and inverting the relation
between temperature and time, we get the thermal incubation time τ thinc :

τ thinc = −C

K
ln

(
1− KRins

V 2
(TIMT − T0)

)
+ τ0 (3.1)

The small constant τ0 is the minimal time that it may take the system to switch
in the infinite V limit. We may define the thermal threshold voltage, Vθ, as the
value of the applied voltage for which incubation times diverge :

Vθ =
√

KRins(TIMT − T0) (3.2)

Thus, equation (3.1) can be rewritten as

τ thinc(V ) = −C

K
ln

(
1− V 2

θ

V 2

)
+ τ0 (3.3)

As shown in the left panel of Fig.3.1, this analytic expression provides an
excellent fitting form for the numerical simulation data obtained at the smallest
K. Thus, we may consider this behavior as the reference for a purely thermal
resistive collapse due to self-heating alone.

We can now examine the dynamical evolution of the system as it evolves to-
wards the resistive collapse at τinc by taking snapshots of the temperature and
resistive maps of the MRN model. We find three different characteristic regimes
(Fig.3.2). The panels of the top row depict the evolution when K is small, i.e.
in the prototypical thermal case. We observe that the temperature gradients are
relatively small, except at the edges of the electrodes. The heating in the central
part of the system is gradual and homogeneous. The color code shows that the
temperature in the center reaches T ≈ TIMT just before the resistive collapse (last
panel).

The second row of panels of Fig.3.2 shows the temperature and resistance
maps in the deterministic regime of large K. This occurs at voltages that are high
compared to the threshold, where the error bars of τinc are relatively small (cf
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Figure 3.2 – Evolution of the temperature and resistivity maps of three different
systems, one with small K in the thermal limit (top row, τinc = 76 arb. units),
and two with a large K in the electro-thermal limit (middle and bottom rows,
with τinc = 75 arb. units and τinc = 1917 arb. units, respectively). The cases with
high K differ in the value of the applied voltage : the bottom row is close to
Vθ (Vapp = 9.5 · 104 arb.units), where the incubation times are highly stochastic,
whereas the middle row is in the deterministic regime (Vapp = 105 arb. units), which
can be observed for high applied voltage in the incubation times curve of Fig.3.1.
The panels capture snapshots of the state of the system as it progresses from the
beginning of the filamentary formation up to the percolation, which corresponds
to the resistive collapse of the system.
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Figure 3.3 – Schematic one-dimensional representation of the formation of a
metallic filament within the insulating bulk. If we assume that the formation may
be described as a one-dimensional process, then the total resistance of the one-
dimensional sample will be given by Rtot = ρmetnM + ρinsnI , where nM and nI are
the number of metallic and insulating cells, respectively. The voltage across gap is
VappρinsnI/Rtot and since ρinsnI ≫ ρmetnM it is approximately equal to the total
applied voltage. In that case, the local voltage drop of the insulator cells will be
Vapp/nI and will increase as the filament grows and the gap shrinks.

Fig.3.1). In this case we observe that, contrary to the previous case, the central
part of the system remains relatively cold, since the thermal conductivity to the
substrate is better. From the maps we also observe the symmetrical and continuous
growth of thin filamentary structures that originate at the sharp edges of the
electrodes. The narrow metallic filaments result from the current focusing effect,
since a large current density needs to develop to maintain the temperature of the
cells above TIMT when K is sizable. We note that the length of those filamentary
structure grows rather linearly with time. This linear progression is indicative of
the deterministic behavior, that translates into the relatively small error bars in
the respective incubation times (cf Fig.3.1).

In contrast to both previous cases, the third row of the panels of Fig.3.2 shows
the stochastic behavior. Here K is relatively large and unchanged from the second
row of panels, but the applied voltage is reduced to approach the threshold value.
Consequently, the incubation time is now much longer. A significant difference, in
sharp contrast with the previous case, is that the filaments do not grow lineraly
with time but remain short stubs most of the time. Eventually, one of them breaks
the symmetry and short-circuits the electrodes. This avalanche-like sudden perco-
lation, which cannot be consistently predicted and is the source of the stochastic
behavior, can be understood as follows. At low applied voltage the transition rate
of the cell is relatively small, since most of the input power is dissipated to the sub-
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strate. However, since a cell can switch to the metallic state even if its temperature
is lower than the transition temperature (although with a very low probability)
it may happen that the cell closest to the tip of the stub, where the temperature
is hotter, will switch. It is important to stress that this is a chance event that
might occur immediately after the application of the voltage, after a long time,
or not occur at all, due to the very low probability of switching. However, if the
cell does become metallic, the stub will get longer, and the insulating gap between
the tip and the lower electrode smaller. If we assume that the applied voltage will
mostly fall across such gap, due to the much higher value of the insulating resis-
tivity, when the gap becomes smaller, the local voltage of the insulating cells will
increase, thus raising the temperature and the probability of switching (see Figure
3.3 for more details). In this way a positive feeback loop is established, in which a
hotter tip results in a longer filament, and thus a smaller gap and an even hotter
tip. This positive feedback loop, which is initiated by a chance event, culminates
in the avalanche-like percolation phenomenon, hence the stochastic nature of the
resistive collapse.

In summary, the transition can have both a thermal and an electronic com-
ponent. When heat dissipation is poor, the sample heats up homogeneously and
gradually to the transition temperature, currents are not densely concentrated and
the transition may be attributed mostly to Joule self-heating. On the other hand,
better heat dissipation promotes the concentration of the electronic currents into
thin metallic domains, resulting in stronger temperature gradients. In this case, if
the applied voltage is big compared to the threshold, the input power overcomes
the dissipation and the filaments grow linearly with time. However, at applied vol-
tages close to threshold, the generated heat is comparable to dissipation, leading
to long incubation times that have a strong stochastic behavior.

With these insights, we can look back at the incubation time data of VO2 and
V2O3 samples (right panel of Fig.3.1). We note that V2O3 has a larger voltage
threshold and larger error bars. This is consistent with our simulations, and speci-
fically the high thermal conductivity limit, in which stronger dissipation requires
a higher applied voltage and can result in a more stochastic behavior. Therefore,
V2O3 can be described as having a resistive collapse with a stronger electric com-
ponent. In contrast, VO2, with smaller threshold voltage and smaller error bars is
relatively closer to the thermal paradigm, consistently with previous experimental
reports [Kal+20 ; Zim+13 ; Val+18]. Nevertheless, the VO2 data near the threshold
still show a steep increase of incubation times and error bars that remain of the
same order of τinc. This indicates that the electro-thermal effects also play a non-
negligible role in the resistive collapse, as has been also reported in other previous
experimental studies [GRR09 ; SPS00]. Thus, our present work sheds light on the
long lasting debate on the nature of the electrically triggered resistive transition
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in these materials, classifying VO2 as a weak electro-thermal and V2O3 as a strong
electro-thermal compound.

One might wonder if the experimental compounds have different thermal conduc-
tivities that could explain the different behaviors of the incubation times and, if
not, what is the physical explanation for such difference. While in the simulations
we have chosen the thermal conductivity as our control parameter, the two factors
that determine whether the resistive collapse will be stochastic or not are Joule
heating and current density concentration, the latter of which is not exclusively
achieved through higher thermal conductivity. For example, in the case of the
compounds used in our experiments, the thermal conductivity of the two samples
was comparable, however V2O3 presented a ratio between the insulator and metal
resistance two orders of magnitude greater than VO2. A higher ratio results in a
stronger concentration of current within the metallic domain, which can explain
the more stochastic behavior, in accordance with our analysis. In the next chapter
we will explore this possibility in more detail, showing how our theoretical results
can be reproduced using the resistivity ratio as the control parameter instead of
the thermal conductivity.

3.2 Probability distribution of resistive collapse

We now turn to another main result of our work, where we shall demonstrate
that vanadium oxide Mott neurons are capable of stochastic spike emission as
observed in biological neurons. This is a remarkable feature that constitutes an
unexpected neuromorphic functionality of these quantum materials.

Biological neurons emit spikes with an intrinsic stochastic component even
under constant stimulation [Ger+14]. This feature is commonly described in ma-
thematical models of neurons by an Arrhenius-like instantaneous probability of
firing or exponential escape rate [Ger+14 ; PG00 ; Jol+06] :

f(u− θ) =
1

τs
exp [(u− θ)/δu] (3.4)

where u is the neuron’s membrane potential, θ is the membrane threshold, δu
is the width of the membrane potential spike emission zone and τs is the mean
time to spike emission at threshold [Jol+06]. From this mathematical expression,
we can derive the probability P (u,∆t) for the emission of a spike within a time
window of duration ∆t, when the potential is kept fixed at u. We shall show that
the resulting probability also describes the probability of resistive collapse both in
our Mott Resistor Network model and also in experiments done on a vanadium
dioxide device.
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The probability may be derived using the formalism of the survivor function
and renewal theory [Ger+14]. Renewal theory describes the probability P (t|t̃) that
an event, characterized by a stochastic intensity ρ(t|t̃) (also known as hazard func-
tion), will occur at time t given that the last occurrence was at time t̃. The firing of
a neuron can be described as a renewal process if we assume that the probability
of firing does not depend on the spike train but only on the time since the last
spike. We notice that we cannot simply compute the probability that the neuron
should fire in a time interval ∆t by integrating ρ(t|t̃) in said interval :

P (∆t) =

∫ ∆t

0

ρ(t|0)dt (3.5)

since P (∆t) is not bounded by one. The proper approach to obtain this proba-
bility is to recur to the survivor function [Ger+14]. We define the survivor function
S(∆t) as the probability that the neuron will survive for a time ∆t without firing :

S(∆t) = 1− P (∆t) (3.6)

We know for sure that, at time zero, the survivor function is equal to 1, and as
time goes to infinity, since the probability of firing inevitably goes to 1, the survivor
function goes to 0. Consequently, the survivor function decays proportionally to the
rate at which the neuron attempts to fire, which defines the stochastic intensity :

ρ(t|0) = −dS(t)/dt

S(t)
(3.7)

Integration of this equation yields :

S(∆t) = exp

[
−
∫ ∆t

0

ρ(t|0)dt
]

(3.8)

The survivor function can be put back into equation (3.6) to obtain the pro-
bability that the stochastic event will occur in a finite time interval. In our case
the event is the firing of a noisy neuron, therefore the stochastic intensity takes
the form of the instantaneous firing probability f(u(t)− θ) :

P (∆t) = 1− exp

[
−
∫ ∆t

0

f(u(t)− θ)dt

]
= (3.9)

= 1− 1

exp
[∫ ∆t

0
f(u(t)− θ)dt

]
If we assume that u(t) stays constant in the interval ∆t, which is the case if u(t)

represents the voltage applied to the Mott device before the resistive transition
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occurs, then the integral may be approximated as the product of the integrand
times the interval, i.e., ∆t f(u− θ)

P (u,∆t) = 1− 1

exp [∆tf(u− θ)]
(3.10)

To simplify this expression, we may expand the exponential to the first since
we know already that, for ∆t ≫ 0 or u ≫ θ, where the expansion would not be
justified, the probability approaches unity anyway. Thus, we get :

P (u,∆t) ≈ 1− 1

1 + ∆tf(u− θ)
(3.11)

Finally, substituting the instantaneous firing probability f(V−Vθ) =
1
τs
exp[(u−

θ)/δu] in the equation yields the functional form :

P (u,∆t) ≈ 1− 1

1 + ∆t
τs

exp[(u− θ)/δu]
(3.12)

A connection with the MRN model and with experiments in Mott devices can
be established by identifying the parameters of P (u,∆t) as follows : The membrane
potential u can be associated with the applied voltage V . The parameters δu
and θ respectively become the fitting parameters δV and V0. Finally, we take the
microscopic time τs as equal to the time-step, which is the unit of time for the model
simulations. Thus, we shall adopt as the fitting functional for the probability of
filament formation within a time window ∆t at applied voltage V the expression :

P (V,∆t) ≈ 1− 1

1 + ∆t exp[(V − V0)/δV ]
. (3.13)

From this expression we may provide a proper definition of the firing voltage
threshold, for a given arbitrary time window ∆t. We call this quantity the stochas-
tic threshold VS(∆t), which we define as the voltage value where the probability
of incubating a filament is 1/2, i.e. P (VS,∆t) = 0.5. Then, from Equation (3.13)
we obtain :

VS(∆t) = V0 − ln (∆t)δV (3.14)

Since ∆t is in units of time-step, it can’t be smaller than ∆t = 1 and thus
the logarithm is always greater than zero. In Fig.(3.4), we show P (V ) for both
the numerical simulations of the MRN model and experiments on a VO2 device at
room temperature. In this figure, P (V ) is the probability of observing the resistive
collapse as a function of a constant applied voltage V , for different time windows
∆t. The figure also shows how, in both cases, the probability expression derived
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above provides an excellent fit for the data. Interestingly, we also observe in the
small panel of the figure that the behavior of VS(∆t) and δV closely track each
other. We note that the latter is two orders of magnitude larger than the threshold
voltage. This follows from the fact that δV characterizes the voltage transition
range of a single cell, while VS is the voltage applied between the electrodes. Since
the distance between electrodes is L=100, the voltage drop on a single cell is of the
order of VS/L. We may further argue that since VS(∆t) characterizes the typical
voltage value that induces a firing event in the time window T and δV the range of
its stochastic behavior, then the underlying reason for the codependency is that the
filamentary percolation, just like the firing event of spiking neurons, is a stochastic
point process described by a Poisson distribution, which has the property of the
mean being equal to its variance.

One final important observation is that our results also clarify the debated
issue of the threshold voltage. In fact, in previous experimental work the problem of
precisely determining the threshold voltage was already evident [Val+19]. This lack
of precision was assumed to be caused by some source of experimental uncertainty.
However, we now see that the dramatic enhancement of the error bars in the
determination of the long incubation times at threshold is not an artifact but an
intrinsic feature of the stochastic physical process of filamentary formation in Mott
systems.

3.3 Conclusion

In this chapter we have shown that the field-driven resistive transition in Mott
insulators is triggered by the formation of metallic filaments within the insulating
bulk, to which both thermal and electronic effects, in the form of Joule self-heating
and electronic currents concentration, contribute. We have also shown that this
process is highly stochastic and is affected by the magnitude of the applied voltage,
and therefore the Joule heating effect, and by the density of electronic currents,
which in our simulation we control via the thermal conductivity. In particular, a
small thermal conductivity results in a comparatively homogenous and determinis-
tic transition, whereas a higher thermal conductivity produces stronger tempera-
ture gradients and increasingly stochastic incubation times as the applied voltage
is lowered.

Our Mott Resistor Network model simulations are validated by comparison to
data from experiments on devices based on the Mott compounds V O2 and V2O3.
The analysis of the behaviour of the incubation times allowed us to characterize the
resistive collapse in V O2 and V2O3 as weak and strong electro-thermal, respectively,
clarifying a longstanding debate.

Another significant result of the present work was to go beyond the qualitative
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Figure 3.4 – The top panel shows the simulation results for the probability
distribution of filament percolation for K = 0.1 arb. units and different values of
the pulse width ∆t = 105, 5 · 104, 2500, 400 and 100 arb. units from left to right.
Voltage values are normalized by V = 1.4 · 105 arb. units and for each point the
total number of trials was 200. The fits were done using Eq. (3.13). The bottom left
panel is the probability distribution obtained experimentally from a V O2 sample,
for two different pulse widths of ∆t = 10 µs (red curve) and ∆t = 1 µs (blue curve)
and a substrate temperature of T = 300K. For the experimental details of the setup
see Fig.2.3. The bottom right panel shows δV and VS, the parameters of the fit
to the simulation data in the top panel, evolve for different pulse widths. The fits
to the experimental data were also done with Eq. (3.13) and the parameters are :
V0(10µs) = 1.375, V0(1µs) = 1.409, δV (10µs) = 0.002 and δV (1µs) = 0.003. The
size of the circles is comparable to the estimated binomial confidence intervals.
When measuring the experimental probability of resistive transition, a resistive
termination of 50Ω was added to the function generator of Figure 2.3
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description of the filamentary formation, to demonstrate that its stochastic beha-
vior is characterized as a Poisson process. This is a remarkable finding, since spike
emission in biological neurons can also be described as Poisson process. In fact, the
probability distribution of the filament formation that we obtained and observed
follows the same stochastic form as the spike emission in models of neurons with
an exponential escape rate.



Chapitre 4

Tuning stochasticity with the
resistivity ratio

In the previous chapter we explored the stochastic percolation of metallic fi-
laments within Mott insulators such as VO2 and V2O3 under a constant applied
electric field. The MRN model allowed us to study the percolation with greater
temporal resolution than that achievable in experiments. In so doing we were able
to conclude that both thermal and electronic contributions, in the form of Joule
heating and current density concentration, affect the resistive switching pheno-
menon. In particular we established that the stochastic character of the resistive
transition emerges whenever the currents are densely concentrated in thin metal-
lic domains and the input power is comparable to the thermal dissipation of the
substrate. In our theoretical study such conditions could be achieved by increasing
the thermal conductivity of the sample K.

Next, we explore another way of controlling current density concentration, and
thus the stochastic nature of the transition, by tuning the ratio between the resis-
tivity of the insulating and metallic phase. A high resistivity ratio leads to high
current density within the filamentary metallic domains and an inhomogenous re-
sistive transition. This result finds confirmation in experiments conducted on VO2
and V2O3, showing that the latter, which has a higher resistitivity ratio by a fac-
tor of 102, also present a more stochastic resistive switching, as evidenced by the
incubation times curve[Del+21].

We also explore the growth of the metallic domains after the resistive collapse.
The resistive collapse produces a surge in the current, which is now confined within
the thin metallic domains ; this lead to a substantial production of heat and the
exponential growth of the metallic domains [Del+21]. We show that the results of
our simulations are in qualitative agreement with optical reflectivity measurements
done on a VO2 sample

Finally, we extend our modelling work to the nickelates, introucing a tempera-
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ture dependent insulating resistivity. By changing the temperature of the sample
it is thus possible to also change the initial resistivity. Therefore, we show that
a more inhomogenous transition, characterized by stronger current concentration
and temperature gradients, can be achieved in our MRN simulations not only by
changing the resistivity ratio, but also by changing the initial temperature of the
sample, while keeping the base insulating resistivity fixed. This results is confirmed
by experiments conducted on two members of the nickelates family, SmNiO3 and
NdNiO3, in which the resistive collapse is triggered by application of a constant
electric field and for different initial temperatures [Val+21]. By measuring the cur-
rent that flows through the sample, we establish that decreasing the temperature
results in a more abrupt switching behaviour as the applied voltage is lowered,
which is consistent with our model predictions, and with our previous study of the
incubation times in V2O3 and VO2.

4.1 Variability of incubation times

In the previous chapter we explored the stochastic behaviour of the incuba-
tion times for different values of the thermal conductivity K. This allowed us to
control in our simulations the character of the metallic domains formation : more
homogenous and thermal-like for vanishing K, which resulted in incubation times
that could be predicted consistently even for an applied voltage approaching the
theshold value (as demonstrated by our analytic fit) ; filamentary at higher K va-
lues, which produced highly variable incubation times when the input power was
comparable to the dissipation. These predictions can be put to test by engineering
different substrates. Two most common substrates for growing VO2 thin films are
Al2O3 and TiO2. Thermal conductivity of Al2O3 is ≈ 25 W/(mK), which is much
larger compared to the thermal conductivity of TiO2 (≈ 5 W/(mK)). Therefore,
according to our model, the switching of VO2 grown on Al2O3 should display much
more prominent stochastic behavior compared to the VO2 prepared on TiO2. We
note that with the recent progress of synthesis and transfer of nano-membranes
[Lee+21], high quality VO2 films could be integrated with virtually any substrate.
Using such nano-membrane approach, it is possible to test our model at extremes,
for example, synthesizing VO2 on a sulfur crystal (thermal conductivity ≈ 0.2
W/(mK) resulting in deterministic switching) or on diamond (thermal conducti-
vity ≈ 2000 W/(mK) resulting in stochastic switching). From the practical point
of view, the switching in VO2 integrated with a pure silicon substrate, thermal
conductivity ≈ 100 W/(mK), should be rather stochastic, while the switching in
VO2 on SiO2, thermal conductivity ≈ 1 W/(mK), should be nearly deterministic.

The topic of substrate engineering being outside of the scope of this work, we
put to test the predictions of our model by exploring the nature of the resistive
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Figure 4.1 – Schematic representation of the effect of different resistivity ratio
on the concentration of electronic currents. Left : the ratio between the resistivity
of the insulator and correlated metal states is smaller. This allows the current to
fan out from the injection point and disperse rather homogeneously in the bulk.
Right : the higher resistivity ratio confines the current within smaller domains.
Adapted from [Val+21]

collapse in materials that present different ratios of the insulating and metallic re-
sistivity. Indeed, from our previous study of the effect of the thermal conductivity
on the transition, we know that the difference between a transition that presents
variable incubation times and one that is deterministic lies in how densely the elec-
tronic currents are concentrated, i.e. whether the sample will reach the transition
temperature homogeneously or it will develop thin filamentary structures. Our
working hypothesis will be that, for bigger ratios of the resistivity of the insulator
and correlated metal state, the currents will be more strongly concentrated (see
Figure 4.1 for a schematic representation) and will produce a more stochastic tran-
sition, characterized by greater variability in the incubation times as the applied
voltage is lowered ; for smaller resistivity ratios, the currents will fan out from the
cell at the edge of the electrode, the transition will be comparatively homogeneous
and the incubation times not as variable as before. We test our hypothesis first in
our MRN simulations and then in experiments conducted on V2O3 and VO2, the
former having a resistivity ratio two orders of magnitude greater than the latter
(≈ 105 vs ≈ 103, see Figure 4.2).

To study the effect of the resistivity ratio on the variability of the incubation
times, we may look at Figure 4.3, in which the incubation times are plotted against
the normalized applied voltage for two resistivity ratios.

From this figure we can see how the red curve, obtained for a resistivity ra-
tio of ρins/ρmet = 2.7 105 (for all the other parameters, see Table 4.1), is steeper
and presents incubation times with bigger standard deviation than the blue curve,
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Figure 4.2 – Experimental resistive collapse and subsequent relaxation to the
initial insulating state of a VO2 and a V2O3 sample, obtain by changing the tem-
perature of the sample. A minimal electric field was applied to probe the resistance.
Adapted from [Del+21]

Parameter Value
h1 71.25 103

h2 7.5 103

p1 15.0 103

c 3.0 102

TC 380.0
TIMT 340.0
T0 300.0
ρins [103, 2.7 105]
ρmet 1
RL 5 102

C 1
W 100
We 20
L 106
K 0.01

Table 4.1 – Values of the parameters used in the simulations of the incubation
times and temperature maps for different values of ρhigh
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Figure 4.3 – Simulation results for different resistivity ratios. Panel a) : incu-
bation times against applied voltage, ρins/ρmet = 2.7 105 for the red curve and
ρins/ρmet = 103 for the blue one. The applied voltage in both cases has been nor-
malized by the highest value in the respective curve to allow for direct comparison.
Panel b) : temperature maps when the resistance collapses for ρins/ρmet = 103

(right) and for ρins/ρmet = 2.7 105 (left). Adapted from [Del+21]
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which was obtained for a resistivity ratio of ρins/ρmet = 103. These numerical re-
sults are consistent with the experimental findings (right panel of Figure 3.1), in
which VO2, which has a resistivity ratio ≈ 103, is characterized by a less pronoun-
ced stochastic behaviour and a smother dependence on the applied voltage than
V2O3, which has a resistivity ratio ≈ 105. Moreover, they are also consistent with
the incubation times curves obtained previously by changing the thermal conduc-
tivity K (left panel of Figure 3.1), indicating that current density concentration,
and thus stochastic filament percolation at low applied voltage, may be achieved
either by a strong ratio of the insulator to metal resistivity, or strong dissipation
to the substrate. Finally, we also notice that the temperature map produced by
the simulations for a high resistivity ratio is much more inhomogenous than that
obtained at a lower ratio, and is characterized by the presence of a thin metal-
lic filament (Figure 4.3). This is in complete analogy with the temperature maps
obtained when increasing the thermal conductivity, which go from being relati-
vely homogeneous to having strong temperature gradients due to the presence of
filamentary metallic structures (see Figure 3.2).

In the next section we turn our attention to the growth of the metallic domains
after the resistive collapse, to see how it is affected by different resistivity ratios in
both experiments and simulations.

4.2 Filament growth after the resistive collapse

In the preceding sections we have studied how the resistivity of the sample can
affect the incubation times and the temperature gradients leading up to the collapse
of the resistance. Now we turn our attention to the expansion of the metallic
domains after the resistance has collapsed. We start with the experimental results
shown in the top panels of Figure 4.4. Here a map of the reflectivity of the sample
is presented, in which the x-axis represents the duration of the applied voltage
pulse and the y-axis the spatial coordinate that runs parallel to the electrode (the
dashed white lines indicate the edges of the electrodes). The map has been obtained
as follows [Del+21] : a beam laser with a wavelength of 660 nm was pointed at
the VO2 sample and focused down to a spot of 3 µm. The power of the laser
is around 1 mW , most of which is lost when the beam is focused. Hence, we can
exclude the possibility that the temperature of the sample might be affected by the
laser. A photodiode is used to capture the reflected beam. Additionally, a system
of computer controlled deflecting mirrors allows to translate the laser along the
y-axis (for a schematic repesentation of the setup see Figure 2.1). As before, the
resistive collapse is induced by applying a constant electric field. The normalized
reflectivity which is used in the figure has been computed as
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Figure 4.4 – Panel a) : Temporal evolution of the reflectivity of a VO2 sample.
A voltage of 12 V is applied to the sample, which is in contact with a substrate at
a temperature of 335 K, and a laser beam with a wavelength of 660 nm is pointed
at the sample. While the voltage is kept on, the laser is translated along the y
direction, and the reflected beam is measured by a photodiode. The reflectivity is
normalized according to Equation 4.1. The white dashed lines indicate the edges
of the electrode, the black dashed line the moment when the collapse of the re-
sistance occurs. Inset : Zoomed in reflectivity map. Panel b) : Temporal evolution
of the metallic fraction of a simulated sample. The metallic fraction for a given
y coordinate is defined as the fraction of cells with that coordinate which are in
the metallic state. Time scales in all panels are logarithmic. We notice that the
simulations do not include metallic defects. Adapted from [Del+21]
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Figure 4.5 – Comparison of the resistance (red) and the reflectivity (black) of a
VO2 sample (defined in Equation 4.1) as it’s being heated up via thermal contact
with the substrate. A minimal voltage is applied to probe the resistance. Adapted
from [Del+21]

rnorm =
r − rins

rmet − rins
(4.1)

where r is reflectivity, measured as the square of the ratio of the amplitude of
the reflected beam and the incident beam, and rins and rmet are the reflectivity
of the low temperature insulator state and the high temperature metal state, res-
pectively (see Figure 4.5 for a measure of these two quantities in VO2). Since the
measured reflectivity correlates to the resistivity of the region of the sample where
the beam was focused, as evident from Figure 4.5, it is possible to study how the
metallic domains grow by looking at the reflectivity map of Figure 4.4.

We notice that, at first, the normalized reflectivity is higher near the edges of
the electrode (which in the figure are indicated by dashed white lines), meaning
that in that region the sample is becoming hotter and more metallic. This is
particular evident in the top right panel, in which we present a zoomed in section
of the reflectivity map. This observation is consistent with our previous findings,
i.e. that the increased electric field near the edges of the electrodes, due to the
point effect, results in higher temperatures and thus a higher transition rate of
the insulating cells. After 30 µs approximately, the resistive collapse occurs, as
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indicated by the black dashed line, and with it a surge in the current that flows
through the sample. The increased current is confined within the thin metallic
domains, which leads to very high temperatures due to the Joule heating effect.
The heat cannot be efficiently dissipated to the substrate, and therefore spreads
to the insulating bulk, thus promoting the expansion of the metallic domain that
can be appreciated from the reflectivity measurements.

These observations find confirmation in the map of the metallic fraction pro-
duced by our simulations, which is presented in the bottom panel of Figure (4.4).
The metallic fraction for a given y coordinate is defined as the fraction of cells
with that coordinate which are in the metallic state. It is therefore a measure of
the degree to which a given slice of the sample has become metallic, in analogy
with the experimental normalized reflectivity as described above. In our simulated
map we see once again that the sample at first becomes metallic near the edges
of the electrodes. Until the collapse of the resistance the metallic fraction does
not increase substantially, nor do the metallic domains grow in width. Eventually
though the metallic domain short-circuits the electrode, triggering the collapse of
the resistance and a sudden surge in the current. In turn, the increased current
further raises the temperature of the metallic domains, promoting the transition
of the neighbouring insulating cells and thus the observed exponential growth.

4.3 The nickelates case

So far we have focused our attention on vanadium oxides, particularly VO2
and V2O3, which are among the most studied materials in the literature [SPS00 ;
Kim+04 ; Bro+14 ; Del+21]. However, it is worth asking oneself if the generality
of the MRN model allows to cover other cases, what modifications to the model
might be required and, most importantly, if the results that have been found so far
are applicable to these new materials. This is exactly what we do in this section,
examining two members of the nickelates family : NdNiO3 and SmNiO3 [Tor+92 ;
Med97 ; Cat+18]. Like before we induce the resistive switching by applying an
electric field, and we use the MRN model to study the phenomenon. In particular,
we study the effects of a change in the resistivity of the material and in its starting
temperature, and we find that bigger resistivity ratios focus the current into thinner
metallic domains and produce stronger temperature gradients, as was the case for
the vanadium oxides [Val+21].

We begin by studying the experimental resistivity versus temperature curve
of the two materials under consideration (Figure 4.6), and observing that they
both present a strong dependence of the resistivity of the insulator state on the
temperature. For this reason we decide to modify our model so that the insulating
resistivity of a given cell should change with the temperature of the cell, according
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Figure 4.6 – Comparison of the resistivity of SmNiO3 and NdNiO3. Adapted
from [Val+21]

to the following activation law [CBG00] :

ρins(T ) = ρ0e
∆
(

1
T
− 1

TC

)
(4.2)

where ρ0 is a constant equal to the insulating resistivity at the transition tem-
perature, TC the transition temperature of the material and ∆ is also constant.
Experimental measurements of the resistivity in NdNiO3 and SmNiO3, such as
the ones presented in Figure 4.6 (we notice here that the resistivity scale is lo-
garithmic), allow us to appreciate the temperature dependence of the insulating
resistivity. We should stress that the transition of the cell to the metallic state
remains a thermally activated process with an Arrhenius-like probability, as per
Equation 2.11, regardless of the fact that now the insulating resistivity is tempe-
rature dependent.

We begin by examining the effect of different resistivity ratios on the tem-
perature and resistivity maps produced by our simulations. Since the insulating
resistivity is temperature dependant, there are two ways of increasing the resis-
tivity ratio : either by changing the substrate temperature, and thus the initial
temperature of the simulated sample, or by changing the base value of the insula-
ting resistivity, i.e. ρ0. The metallic resistivity, as well as the ∆ parameter of Eq.
4.2, are always kept constant ; all the parameters used for the simulations presen-
ted in this section are summarized in Table 4.2. We start by examining the case
in which the substrate temperature is kept constant and ρ0 is changed. From our
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Parameter Value
h1 71.25 103

h2 7.5 103

p1 15.0 103

c 3.0 102

TC 380.0
TIMT 340.0
T0 [64, 120, 300]
ρ0 [101, 102, 103]
ρmet 1
∆ 650
RL 5 5 102

C 1
W 100
We 20
L 103
K 0.01

Table 4.2 – Values of the parameters used to obtain the temperature and resisti-
vity maps presented in this section. In the comparison of the maps for different ρ0,
the substrate temperature was kept fixed at T0 = 64. In the comparison in which
the substrate temperature changes, ρ0 was kept fixed at ρ0 = 102
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Figure 4.7 – Temperature and resistivity maps produced by the simulations for
different values of the resistivity ratio. Here the ratio is to be intended between the
base insulating resistivity ρ0 of equation 4.2 and the metallic resistivity, which is
independent of the temperature. All simulations were done keeping the substrate
temperature constant at T0 = 64. Adapted from [Val+21].
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previous study of the resistive switching phenomenon in vanadium oxides, we’d ex-
pect higher resistivity ratios to result in stronger temperature gradients and more
filamentary metallic structures. This is precisely the case, as shown by Figure 4.7.
Here we notice that the resistivity maps present smooth gradients, unlike before
when were simulating the vanadium oxides, due the temperature dependence of
the insulating resistivity that we introduced. As the resistivity ratio is increased,
we see that both the temperature and resistivity maps become less homogeneous,
as expected, and that the metallic domains become thinner and hotter as well, due
to the increase in current density.

Up to now the substrate temperature has been kept constant. However, it
should be possible to reproduce the results obtained above, for a fixed value of ρ0,
by changing the temperature substrate from trial to trial. Indeed we know that
both SmNiO3 and NdNiO3 present a strong temperature dependence of the resis-
tivity in the insulating state. Since the materials are in thermal equilibrium with
the substrate at the beginning of the simulations, by changing the substrate tem-
perature we also change the temperature of the materials, and thus their starting
resistivity. Therefore, we expect that, as the substrate temperature is decreased,
we should obtain increasingly inhomogenous temperature maps and filamentary
metallic structures. This is precisely the case, as shown in Figure 4.8.

We now turn our attention to the experimental results, to check consistency
with our simulations. From our previous study of the vanadium oxides we know
that materials which present a more inhomogenous resistive transition, like for
instance V2O3 with respect to VO2, also feature a curve of the incubation times
against the applied voltage that look steeper. Therefore, to verify that lower tem-
peratures induce a more inhomogenous transition in the nickelates, we measured
the electric current that flows through the sample at different values of the ap-
plied voltage and for the same initial temperature. From these measurements we
computed the incubation time as the delay between the application of the voltage
and the moment the current sharply increases (as an effect of the collapse of the
resistance). We then repeated the same experiments for a different starting tem-
perature. The data for NdNiO3 is shown in Figure 4.9, that for SmNiO3 in Figure
4.10. In both materials we observe that, for a given temperature, incubation times
become longer when the applied voltage is decreased, since less power is being pro-
duced and thus more time is required to heat up the sample. We also see that, if
the starting temperature is increased, the samples exhibit a resistive collapse even
for applied voltages that had failed to induce it at lower temperatures. This can
be easily explained as an effect of the temperature dependence of the insulating
resistivity. If the starting temperature is higher, the resistance of the sample in
the insulating state will be lower, and thus a smaller applied voltage is required to
heat up the sample and make the resistance collapse. Finally, we also notice that
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Figure 4.8 – Temperature and resistivity maps produced by the simulations for
different values of the substrate temperature, keeping the base insulating resistivity
fixed at ρ0 = 102. Adapted from [Val+21].
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for higher temperatures, the materials present a less abrupt switching behaviour
as the applied voltage is increased, which is consistent with our prediction that at
a higher temperatures the transition will be comparatively homogeneous, and the
dependence of the incubation times on the applied voltage less steep.

It is also possible to compare the behaviour of the two materials for different
applied voltages and different temperatures. This can be done by looking at the
incubation times versus applied voltage curves of Figure 4.11. Different colors
are used to represent different temperatures, and the time scale is logarithmic.
Once again we see that the material which has the higher resistivity ratio, namely
NdNiO3, present steeper incubation times curve, characterized by increasing error
bars, as was the case for V2O3. On the other hand the incubation time curves of
SmNiO3 look smoother, and are characterized by the absence of any variability
whatsoever. This can be explained in light of the fact that SmNiO3, unlike NdNiO3,
present a second order transition characterized by a lack of hysteretic behaviour
(as evident from Figure 4.6) and thus metastability. The behaviour of materials
presenting a second order transition will be investigated thoroughly in the next
chapter.

4.4 Conclusion

In conclusion, we have used the MRN model to show that higher resistivity
ratios lead to a comparatively inhomogenous resistive switching, characterized by
stronger temperature gradients and the concentration of electric currents into thin
metallic domains. The dependence of the incubation times on the applied voltage
also becomes steeper, and the incubation times more difficult to predict as the
applied voltage is lowered. These results are in analogy to those obtained in the
previous chapter by using the thermal conductivity as the control parameter. We
then show that our findings are consistent with VO2 and V2O3 experiments, in
which it is found that V2O3, which presents a higher resistivity ratio, is charac-
terized by a more abrupt switching behaviour and more variable incubation times
as the applied voltage is lowered. We also study the growth of the metallic domain
after the resistive collapse, finding that the increased power after the collapse of
the resistance promotes an exponential growth. Our MRN simulations well capture
this feature and are in qualitative agreement with the experimental results.

We then showed that it is possible to extend the MRN model to include a tem-
perature dependent insulating resistivity. This feature is responsible for a more
inhomogenous resistive transition at lower starting temperatures, since the star-
ting resistivity is higher an so is the ratio between it and the metallic resistivity.
This finding is consistent with the results obtained for the vanadium oxides, and in
particular with the fact that V2O3 has more inhomogenous transition that VO2,
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Figure 4.9 – Current flowing through a NdNiO3 sample versus time for different
applied voltage. In the top panel initial temperature of the sample is at 4.2 K, in
the bottom one it is a 60 K. The inset of the top panel shows a zoomed in view of
the figure during the first 10 ns. Adapted from [Val+21].
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Figure 4.10 – Current flowing through a SmNiO3 sample versus time for different
applied voltage. In the top panel initial temperature of the sample is at 260 K, in
the bottom one it is a 340 K. Adapted from [Val+21].
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Figure 4.11 – Incubation times, in logarithmic scale, against voltage for a Nd-
NiO3 sample in the top panel and a SmNiO3 sample in th bottom one ; each curve
was obtained for a different initial temperature. Adapted from [Val+21].



4.4. CONCLUSION 69

having a higher resistivity ratio. We then showed that our simulations correctly
predict the experimental behaviour : as the temperature of the substrate is lowe-
red, the switching of the experimental sample to the metallic state becomes more
abrupt. This is equally true for SmNiO3 and NdNiO3 samples. However, when
the two materials are directly compared, it is found that the former generally has
a more homogeneous behaviour, characterized by a less steep dependence of the
incubation times on the applied voltage, and the absence of any variability in the
incubation times. These features can be explained in light of the smaller resistivity
ratio of SmNiO3, for any of the initial temperatures that have been chosen, and
by the second order nature of its IMT, about which we will have more to say in
the next chapter.





Chapitre 5

Oscillations in Mott neurons

Oscillatory patterns are typical of neurophysiology and are observed at different
systems levels : single neuron, population dynamics and also Electro Enecephalo
Graph (EEG) recordings (Figure 5.1) [Ger+14 ; Pey+12 ; War03 ; Don+98]. They
can serve many different purposes, such as neuronal communication [Fri05] and
motor coordination [SG05], just to give two examples. It is therefore of the utmost
interest to study the possibility of inducing an oscillatory regime in a Mott neuron.
Such regime may emerge in the presence of a capacitor that is put in parallel to
the Mott sample, but might also arise spontaneously if the self capacitance of
the material is high enough. Being able to induce an oscillatory regime in Mott
materials, without the need for an external capacitor, would represent an advantage
over traditional CMOS technology, since capacitors are particularly challenging to
miniaturize [Hoe16 ; Par15 ; Mue+05].

In this section we extend the MRN model to describe the oscillatory regime
which emerges in a V3O5 sample when a voltage ramp is applied. We do so by
introducing a capacitor in parallel to the resistor network, which we use to model
any capacitance the experimental system might have : self capacitance, external,
parasitic or a combination thereof. We should stress that, experimentally, a capa-
citor might not be needed to observe an oscillatory regime, as it will be the case in
the experiments presented in the next chapter. Since V3O5 presents a second or-
der transition, characterized by a smooth resistance versus temperature curve and
the lack of a hysteresis loop, we modify the MRN model to also account for these
differences. Finally, we round off the edges of the simulated electrodes to induce
the formation of the metallic filament in the middle of the sample, rather than at
the edges, in analogy with the V3O5 optical imaging experiments presented in this
chapter.

Using the MRN we find that, by applying a voltage ramp, it is possible to
induce an oscillatory regime, which emerges after the collapse of the resistance,
and eventually dies out as the voltage is increased. We produce resistivity maps,

71
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Figure 5.1 – Neural oscillations in the brain from the macroscopic to the single
cell levle. a) EEG traces b) Local field potential recordings c) Raster graph : the
dots represent spiking events (each vertical coordinate corresponds to a different
neuron), red dots are spikes from inhibitory connections and blue ones from ex-
citation connections. Oscillatory patterns may be identified in the succession of
periods of activity, when multiple neurons fire at the same time, and of silence.
d) Firing rate histograms normalized by the number of neurons. Adapted from
[Pey+12].

from which we are able to understand the oscillatory regime as an effect of the
coupling of the Mott sample with the capacitor. In particular, we see that the
resistive collapse provokes a discharge of the capacitor. The Mott material then
cools down and relaxes back to the insulating state, while the capacitor gradually
charges back. When the capacitor is charged, the Mott sample will heat up and
metallize once again. This cycle continues until the applied bias is so high that
the capacitor charges too fast for the sample to cool down, and the metallic fila-
ment stabilizes, thus interrupting the oscillatory regime. We also study the effect of
different capacitance values on the amplitude and frequency of the oscillations, fin-
ding that a bigger capacitance results in a higher amplitude and a lower frequency,
as expected.

We finally turn our attention to the results of the V3O5 experiments. We find
that the predictions of our simulations are validated by the experiments and allow
to better understand the growth and subsequent shrinking of the metallic filament
which is observed in the oscillatory regime.
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Figure 5.2 – Left panel : experimental resistance versus temperature curve of
a V3O5 sample. Gray color indicates the crossover region around the transition
temperature. Right panel : resistivity versus temperature curve adopted in the
simulations presented in this chapter. Adapted from [Add+22]

5.1 Expanding the MRN

In this section we extend the MRN model in order to describe materials, such
as V3O5, which present a second order IMT, characterized by a resistance versus
temperature curve which lacks the abrupt resistive collapse and hysteresis loop
that could be found in materials with a first order transition like VO2. We also
round the edges of the electrodes in order to reduce the point effect, decrease the
temperature near the edges and induce the formation of the metallic filament in the
middle of the sample. Finally, we introduce a capacitor in parallel to the sample,
in order to model the capacitance of the experimental setup which gives rise to
the oscillatory behaviour which is studied in depth in the next section.

We begin by looking at the left panel of Figure 5.2, in which the resistance of
an experimental V3O5 sample is plotted against the temperature. We see that, as
the temperature is increased, the resistance decreases exponentially. Unlike VO2
and V2O3, V3O5 does not present a sudden jump of the resistance when the tran-
sition temperature TIMT = 415 K is reached, but rather a smooth crossover region
(colored in gray in the figure) in which the resistance decreases at a faster rate
than before. We also notice that the curve lacks an hysteresis loop, meaning that
the resistance of the material, and therefore of the cells of the MRN, is univocally
determined by the temperature. All of these considerations lead us to implement
the following changes to the MRN. The cells of the MRN do not undergo anymore
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Parameter Value
ρ0 400
a 0.1
b 0.2
c 5
TIMT 410

Table 5.1 – Constants used in the phenomenological expression of the tempera-
ture dependent resistivity (Equation 5.1)

a transition from an insulating to a metallic state according to an Arrhenius like
probability law. Instead, the resistivity of a cell is determined by its temperature
according to the following phenomenological equations, which are written as to
reproduce the experimental resistance versus temperature curve (see right panel
of Figure 5.2)

ρ(T ) = ρ0 α(T ) (a+ b σ(T )) (5.1)

α(T ) = exp

[
c

(
TIMT − T

TIMT

)]
(5.2)

σ(T ) = (1 + exp [∆(T )(T − TIMT )])
−1 (5.3)

∆(T ) = d θ(TIMT − T ) +
d

5
θ(T − TIMT ) (5.4)

where ρ0, a, b and c are constants that are chosen in order to approximate as
much as possible the R(T ) experimental curve (the values used in the simulations of
this chapter are presented in Table 5.1 ; the other simulation parameters are listed
in Table 5.2). This set of equations can be understood as follows : ρ(T ), which is the
temperature dependent resistivity of a given cell of the MRN, has a crossover region
around the transition temperature TIMT which, in logarithmic scale, approximately
looks like a sigmoid. Therefore, we use Equation 5.3 to describe this contribution,
which we call σ(T ). However, since the shape is approximately sigmoidal only in
logarithmic scale, σ(T ) needs to be multiplied by an exponential, α(T ) (Equation
5.2), similarly to how we multiply the constant a by the same exponential to
reproduce the linear decrease that occurs before the crossover region. Different
exponents ∆(T ) are used for the exponential contribution, depending on whether
the temperature is lower or higher than the transition temperature (here we note
that the θ(T ) of Equation 5.4 are Heaviside functions).

We now move on to the issue of inducing the filament formation in the middle of
the sample. Up until now all the simulations that we have presented have featured
electrodes with sharp 90 degrees angles. This has resulted in a strong point effect
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and, as a consequence, strong electric fields and temperature gradients around
the edges ; this is the reason why filaments always protrude from the edges of the
electrodes in our simulations. To remedy this, in order to bring the simulations
closer to the optical imaging experiments presented in this chapter, we make the
edges of the electrodes rounded. In this way the point effect is not as strong as
before, and the filament will form in the middle of the sample, which is now the
region of the materials that warms up the fastest.

In order to better appreciate the effects of these changes on the simulations, we
present an IV curve obtained using a current ramp, as well as temperature maps
that show the growth of the metallic filament (Figure 5.3). We would like to stress
that, in these simulations, we haven’t introduced the capacitor yet. These results
are to be compared with the experimental V3O5 IV curve and optical reflectivity
maps that are shown in Figure 5.4. The optical reflectivity measurements were done
using the setup that is schematically shown in the left panel of Figure 5.5. A white
LED illuminates the sample through a 100x objective and a Charged-Coupled
Device (CCD) camera images the device as shown in the right panel of Figure
5.5. The exposure time is 55ms, so every image is effectively a time-average of the
state of the sample within the exposure window. The optical reflectivity images
of Figure 5.4 are produced by subtracting the image taken at the corresponding
point of the IV curve to an image taken before the current was turned on.

From the comparison we can appreciate how the IV curve produced by the
simulations is qualitatively comparable to that of the experiments. We also notice
that the simulations predict the formation of the metallic filament in the middle
of the sample and its subsequent growth that is observed in the optical reflectivity
maps.

We now turn to the problem of modelling the capacitance of the circuit. The
source of this capacitance might be a physical capacitor that is put in parallel to
the sample, as it will be the case in the next section, or the sample itself, which
could potentially have a self capacitance. Finally, a parasitic capacitance, due to
the cables and the instrumentation used, might also be present. Regardless, our
solution is to put a capacitor in parallel to the MRN, as shown in the right panel
Figure 5.6. Then, using Ohm’s and Kirchhoff’s laws, we compute its current and
voltage, IC(t) and VC(t). Since the capacitor and the sample are in parallel, we
can easily compute the sample voltage as VS(t) = VC(t) + IC(t)RC , where RC

is a resistor that could potentially be put in series to the capacitor, to faithfully
reproduce the experimental setup ; the voltage just computed is then applied to
the MRN and the simulation proceeds as usual, following the steps described in
Chapter 2.

Here we illustrate in detail the mathematical derivation that allows us to write
the equation for the sample voltage, VS(t), exclusively in terms of known quantities.
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Figure 5.3 – IV curve of a MRN simulation, implementing the temperature de-
pendent resistivity described by Equation 5.1. A current ramp was applied to
produce the curve. In the simulations, the current control regime is actually achie-
ved by controlling the applied voltage and choosing a load resistance which is high
(i.e. comparable to the insulating value of the resistivity). In this way the current
through the sample will remain approximately equal to Vapp/Rload. The bottom
panels show temperature maps produced at 4 different times during the applica-
tion of the current ramp.
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Figure 5.4 – Top panel : IV curve of the V3O5 sample used in the experiments
mentioned in this chapter. A current sweep was applied to produce the curve.
Bottom panels : differential reflectivity maps, obtained by shining a light on the
sample using a white led and capturing the reflected beam using a CCD camera
(see Figure 5.5). Each map has been subtracted from an image capture before the
current was turned on in order to enhance its features. Adapted from [Add+22]
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Figure 5.5 – Left panel : experimental setup used to capture the optical reflecti-
vity images shown in this chapter. Right panel : example of an optical reflectivity
image captured before the current was turned on. Adapted from [Add+22]

Firstly, we must must compute IC (t is omitted for the sake simplicity). We begin by
writing the voltage of the sample by considering the closed loop made of the voltage
generator and the sample itself and applying Kirchhoff Voltage Law (KVL) :

VS = ISRS = Vapp − IRL (5.5)

Where IS is the current that flows through the sample and I = IC + IS the
total current. The current of the sample can then be written as :

IS =
Vapp − IRL

RS

(5.6)

If we are in the voltage controlled regime, as will be the case in the following, I
is the only unknown among the quantities that appear in the equation. Vapp and RL

are parameters that can be chosen at will ; the initial value of the sample resistance
RS depends on the chosen resistivity and the geometry of the sample, and can be
measured by probing the MRN with a small voltage after having momentarily
disconnected the capacitor. Kirchhoff Current Law (KCL) gives us :

I = IS + IC (5.7)

Therefore we can rewrite Equation 5.6 as :

IS =
Vapp − (IS + IC)RL

RS

(5.8)

Solving for IS we obtain :
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RC

C

Figure 5.6 – Left : Experimental circuit. SMU is the source meter unit. CH1 al-
lows a measurement of the current through the series resistor, RS, which gives an
oscillatory behavior for a certain voltage range, used to measure the frequency of
oscillations (see [Add+22]). CH2 provides the voltage across the capacitor, which
allows for the determination of the resistance of the device. CH3 gives a mea-
surement of the current going through the V3O5 device, which gives the spiking
behavior. Right : Circuit that is adopted in our simulations. The MRN is now in
parallel with a capacitor which is itself in series with resistor RC . This resistance
is included in our calculation for the sake of generality, however it was put to 0 in
our simulations. We also notice that the resistivity of the cells depends smoothly
on the temperature.
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IS =
Vapp − ICRL

RS +RL

(5.9)

We still don’t know IC , so the above equation can not be solved yet. Therefore
we move on on to the capacitor branch, and once again we apply KVL, this time to
the closed loop made of the sample, the capacitor and the resistor RC , to obtain :

ICRC = −VC + ISRS

IC =
−VC + ISRS

RC

(5.10)

Plugging in Equation 5.9 we get :

IC =
1

RC

(
−VC +RS

Vapp − ICRL

RS +RL

)
(5.11)

Finally we solve for IC :

IC =
RSVapp − VC(RS +RL)

RC(RS +RL) +RSRL

(5.12)

In the above equation the only unknown quantity is VC . However, starting from
the definition of the capacitance C = dQ/dV we have :

C =
dQ

dV
=

dQ

dt

dt

dV
= IC

dt

dV
(5.13)

Since we are considering simulations with a finite time-step, the increments are
also finite, and the above equation can be written as :

C = IC
∆t

∆V

VC(t) = VC(t− 1) +
IC(t)∆t

C
(5.14)

We have re-introduced the variable t, which is discrete in our simulations ;
additionally, we decide to keep the time-step ∆t even if in our simulations ∆t = 1,
as a reminder of the physical dimensions of the equations. At any point in time t
the quantities computed at time t− 1, i.e. the previous iteration of the simulation,
are known. Therefore, we can take Equation 5.14 and put it in 5.12, and after
solving for IC we obtain :

IC(t) = C
RS(t)Vapp(t)− VC(t− 1)(RS(t) +RL)

C[RC(RS(t) +RL) +RS(t)RL] + ∆t(RS(t) +RL)
(5.15)
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Parameter Value Meaning
TIMT 410.0 Insulator to metal transition temperature
T0 280 Substrate temperature
RL 5 102 Load resistance
RC 0 Resistance in series with capacitor
C 1 Capacitance
W 80 Network width
We 42 Electrode width
L 80 Network length
K 0.01 Thermal conductivity
ρ0 400 Resistivity at TIMT

a 0.1 Resistivity curve constant
b 0.2 Resistivity curve constant
c 5 Resistivity curve constant

Table 5.2 – Parameters used in the simulations of this chapter. Since we model
a second order transition, some of the parameters of the previous simulations are
not applicable. The constants that concern the phenomenological resistivity curve
are reported here for convenience’s sake and can also be found in Table 5.1

Now that the current of the capacitor has been computed, we ca use Equation
5.14 to derive the voltage of the capacitor and from it that of the sample. We then
apply this voltage to solve the MRN model, which yields the new values of the
sample resistance RS and current IS, which will be used at the next step to solve
equation 5.15. Thus the loop is closed and the simulation can continue.

5.2 The oscillatory regime
We now study the oscillatory regime that is observed in MRN simulations

when a voltage ramp is applied to a sample and a capacitor in parallel (a current
ramp may also be applied to achieve similar results). More specifically, the voltage
protocol is defined as follows : starting from zero applied voltage, the voltage is
increased up to a value of Vapp = 6000 (arb. units) in steps of 10 (arb. units) for a
total of 600 steps. Each step has a length of 100 simulation loops, during which a
fixed voltage is applied to the circuit, before it is increased by 10 (arb. units) at
the 101-th loop, when the next voltage step begins. A visualization of a subset of
the voltage protocol (up until Vapp = 200 (arb. units)) is provided in the inset of
Figure 5.7.

We begin by taking a look at the IV curve and the resistivity maps of the
simulated sample that are shown in Figure 5.7. While the ramp voltage applied
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Figure 5.7 – Top panel : IV curve obtained by applying a voltage ramp to the
simulated MRN and measuring the voltage across the sample and the total current.
Inset : visualization of a subset of the voltage ramp that goes up until Vapp = 200
(arb. units). For each voltage step the values of the current and voltage were
captured only once at the end of the step. Bottom panels : resistivity maps captured
at eight different point in times during the application of the voltage ramp.
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to the circuit goes up to a value of Vapp = 6000, the IV curve is cut short at
around Vapp = 4870 (arb. units) (when the total current reaches a value of I = 9
(arb. units)), since by then the oscillatory regime has clearly ended. Moreover,
the resistance in series with the capacitor RC (see Figure 5.6) has been taken out
for simplicity, so now the capacitor and the sample share the same voltage, which
is plotted on the x-axis of the main panel, while on the y-axis we plot the total
current, i.e. the sum of the current that flows through the sample and the current
of the capacitor I = IS + IC . Also, we would like to notice that each point of the
IV curve was taken at the end of the corresponding step of the voltage protocol,
so there are as many data points in the IV curve as steps in the voltage ramp.

Initially the capacitor is empty and the voltage starts at 0. As the applied
voltage is increased, the capacitor charges and the voltage goes up. The increasing
voltage makes the sample heat up and eventually the resistive collapse occurs. The
sudden drop of the sample resistance makes the capacitor discharge (i.e. charge
flows from the plate of the capacitor into the sample), resulting in the downward
swing of the voltage. Resistivity map 1 was taken right before the resistive collapse
and the discharge of the capacitor, while map 2 was taken when the filament is
formed and the discharge has ended, and they are both qualitatively comparable to
temperature maps 2 and 3 of Figure 5.3, where no capacitor was present. However,
we notice that the voltage drop is bigger than in the IV without the capacitance
(despite using the same parameters for the circuit) because the discharge of the
capacitor produces an influx of extra current into the sample, which thickens the
metallic filament, further lowering the resistance.

The discharge of the capacitor can’t go on indefinitely, since the charge accu-
mulated on the plate is limited, and eventually it stops, and so does the downward
trend of the voltage. As the current flowing from the capacitor into the sample
first decreases and then disappears, the hot metallic filament cannot be sustained
and cools down, gradually relaxing to the insulating state. At the same time, the
depleted capacitor begins to accumulate charge once again, raising the voltage and
heating up the sample, now fully in the insulating state (resitivity map 3). Thus
a new resistve collapse is triggered, which is followed by another discharge of the
capacitor.

We notice that, as the applied voltage is increased, the amplitude of the oscil-
lations also increases, due to the fact that the capacitor accumulates more charge
(higher peaks) which then flows into the sample during the discharge, resulting in
a thicker filament and a smaller resistance (lower peaks - see for instance resistivity
map 4). However, past a certain applied voltage the amplitude starts decreasing
until the oscillations disappear altogether. Since the charging time of the capacitor
lowers with the increasing applied voltage, eventually the filament does not have
enough time to fully relax to the insulating state (resistivity map 5) before the
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capacitor charges to a high enough voltage to heat it up and expand it (resistivity
map 6). If the amplitude of the oscillations decreases, so does the charge accu-
mulated by the capacitor and the ensuing discharge current, leading to thinner
filaments than before (compare maps 6 and 4). A smaller metallic domain needs
less power to be sustained, while the applied voltage is actually increasing, and
so the capacitor charges to the required, lower voltage faster than ever (resistivity
map 7) : thus a positive feedback loop is established which ultimately leads to the
stabilization of the metallic state (resistivity map 8).

5.2.1 Oscillations at fixed applied voltage

To further investigate the oscillatory regime we study the system when a
constant voltage, equal to Vapp = 2300 arb.units, is applied. The stimulus pro-
tocol is defined as follows : firstly a voltage ramp is applied, like before, to heat
up the sample and induce the resistive collapse. Once the sample has entered the
oscillatory regime and has reached the target voltage Vapp = 2300 arb.units, the
applied voltage is fixecd. In Figure 5.8 we plot the data produced by the simu-
lations for two values of the capacitance, C = 5 and C = 10 arb. units. From
top to bottom we plot the sample resistance, the voltage across the sample and
the capacitor, the sample current and the capacitor current, all against time. The
dashed lines are guidelines that indicate the moment when the metallic filament
is formed and the resistance is the lowest.

Following the numbered dots of Figure 5.8 we may elucidate the relation bet-
ween the resistance, the voltage and the current during the oscillations. Starting
at number 1, when the resistance is the highest, we notice that, immediately after,
the sample current begins to increase (blue curve) and the capacitor current to
decrease (red curve). That is to say, as the filament forms and the resistance goes
down, more current flows in the sample and less in the capacitor. However, since
the capacitor current is still positive, the capacitor continues to charge, albeit slo-
wer than before, and the voltage to rise. Eventually though the capacitor current
goes below zero (dot number 2), and the discharge begins : current flows from
the capacitor into the sample, drastically lowering its resistance, while the voltage
goes down. The discharge cannot continue indefinitely, and so a minimum of the
resistance is reached (dot number 3), after which the discharge still continues, but
at a slower pace, as less and less current flows from the capacitor into the sample.
If the discharge current decreases the metallic filament cannot be sustained and
so it begins to cool down, and the resistance goes up ; the discharge current ends
and the capacitor begins to charge again (dot number 4), raising the voltage until
it is enough to heat up the sample and induce a new resistive collapse.

Finally, we notice that, when the capacitance is smaller both the period of
the oscillations and the amplitude of the current are smaller, since less time is
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required to charge the capacitor, and less charge is accumulated and subsequently
discharged.

5.2.2 Experimental results

We now turn to the experiments to check if the results of the simulations find
confirmation. We start with optical imaging experiments conducted on a V3O5
sample in parallel to a capacitor, as shown the left panel of Figure 5.6, to which a
ramp current was applied. In particular, we are interested in imaging the growth
and subsequent relaxation of the metallic domain in the oscillatory regime. In
Figure 5.9 we show four differential contrast reflectivity images. The first one
from the left was acquired before the oscillatory regime, the second and the third
during the oscillatory regime, and the last one after. Surprisingly, the two pictures
taken during the oscillatory regime do not clearly show the presence of a metallic
domain ; however, at the same time, the gap does not appear to be completely
insulating since a light trace of the metallic phase, indicated by the color orange,
is appreciable. The simulations allow us to understand this puzzling result : from
the resistivity maps presented in Figure 5.7, we know that during the oscillatory
regime the metallic filament shrinks and then grows, concurrently with the rise
and fall of the voltage. Since the time resolution of the instrumentation used in
the experiments is limited, due to an exposure time of 55 ms, we are not capable
of imaging this behaviour. Instead, the differential contrast images provide a time-
average of the state of the system (each image is an average of 38 to 55 oscillations,
depending on the bias), therefore the light orange trace that is observed can be
explained as the superimposition of two snapshots of the system, when it is fully
insulating and no filament is present (like, for instance, in map 3 of Figure 5.7),
and when the gap has become fully metallic (map 4).

Figure 5.10 shows the current that flows through the experimental sample when
a constant bias, high enough to induce the resistive collapse, is applied. These
measurements, which clearly indicate the presence of an oscillatory regime in the
experimental sample, are to be compared with the simulation results of Figure 5.8.
We notice that the experimental results are qualitatively comparable to those of
the simulations, and that when the capacitance is increased, the amplitude and
the period of the oscillations increase as predicted.

5.3 Conclusion

In this chapter we have extended the MRN model to describe the behaviour
of materials presenting a second order IMT under a bias. We did so by replacing
the thermally activated switching mechanism used in the previous chapter with



86 CHAPITRE 5. OSCILLATIONS IN MOTT NEURONS

0

200

400

R
S

(a
rb

. 
u
n
it
s)

200

400

600

V
(a

rb
. 
u
n
it
s)

0

10

20

30

I S
(a

rb
. 
u
n
it
s)

0 1000 2000 3000 4000
Time (arb. units)

C=5 (arb. units) C = 10 (arb. units)

0 1000 2000 3000 4000
Time (arb. units)

30

20

10

0

I C
(a

rb
. 
u
n
it
s)

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Figure 5.8 – From top to bottom : sample resistance, voltage of the sample and
of the capacitor, current of the sample and current of the capacitor against time.
Data from the simulations obtained for a fixed applied voltage of Vapp = 2300
arb.units. Left column figures were obtained for a capacitance value of C = 5 arb.
units, those on the right for C = 10 arb. units.
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Figure 5.9 – Contrast differential optical reflectivity images of a V3O5 sample
under a current ramp and in parallel to a capacitor. The first picture from the left
was taken before the oscillatory regime, the second and third during, and the last
one after. Adapted from [Add+22]

Figure 5.10 – Current measurements of V3O5 under a constant bias current and
in parallel to a capacitor. Two different capacitance are employed : C = 47, and
2200 nf. The resistance of the sample, of the load resistor and the capacitance all
affect the period of the oscillations. In particular, it is found that the period of the
oscillations is proportional to R̃C, where R̃ = RS||RL is the series of the sample
and load resistors. For more details see [Das+22]. Adapted from [Add+22]
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a smooth resistivity vs temperature curve, which maps the temperature of a gi-
ven cell of the model to its resistance. Such curve was obtained empirically by
comparison with the experimental R(T) curve obtained in V3O5 experiments. We
then added a capacitor in parallel to the MRN to model any capacitance that the
overall circuit might have. Finally, we rounded the edges of the electrodes in order
to reduce the point effect and focus the creation of the filament in the middle of
the gap.

We proceeded to simulate the model under a ramp current, first in the case
in which the capacitance was put to 0. We observed that the resulting IV curve
was qualitatively comparable to the experimental one. The temperature maps pro-
duced by the simulations also indicated that the metallic filament, which forms
during the resistive collapse, grows in width as the current is increased. This result
is in agreement with the optical reflectivity maps that were produced in the V3O5
experiment. We then turned on the capacitance and repeated the previous simu-
lations, observing that, after the voltage jump, the system enters an oscillatory
regime, as evident from the IV curve. Eventually the amplitude of the oscillations
start to decrease, until no oscillations are observed anymore. To better understand
this oscillatory regime, we produced resistivity maps, from which we concluded
that the rise and fall of the voltage coincide with the charge and discharge of the
capacitor. Concurrently, the sample relaxes to the insulating state and then heats
up once again, becoming metallic. As the bias is increased, the capacitor charges
faster, the resistor network has less time to cool down and the metallic filament
shrinks less and less at every new cycle, until eventually it stabilizes, ending the
oscillatory regime. We then studied the system once a constant applied voltage, big
enough to induce oscillations, was applied. This gave us the possibility to study
more accurately the relation between resistance, voltage and the discharge cur-
rent, and how a bigger capacitance can induce current oscillations with a bigger
amplitude and a smaller frequency.

We compared the resistivity maps produced in the oscillatory regime to the
optical reflectivity images of V3O5 experiments. While the temporal resolution
of the experimental instrumentation is such that it was impossible to image the
growth and subsequent relaxation of the metallic domain, we were able to inter-
pret the time-averaged pictures as a superposition of the insulating and metallic
states revealed by our resistivity maps. We then found further confirmation of
the oscillatory regime in the experimental measurements of the sample current
conducted at a constant bias current, which also confirmed our prediction that
a bigger capacitance would result in oscillations with a bigger amplitude and a
smaller frequency.



Chapitre 6

Coupled stochastic Mott oscillators

In the previous chapters we have studied two prominent features of Mott ma-
terials under an applied voltage : one is the stochastic nature of the resistive
collapse, and the other is the oscillatory regime that is observed in the presence of
a capacitance, which may be due to an external capacitor, like before, or the self
capacitance of the sample, as it will be the case in this chapter. In this chapter
we see how these two features can affect one another by considering the setup of
Figure 6.1, in which two oscillating VO2 samples under an applied voltage, each
with its own self capacitance, are coupled by an external capacitor. This configu-
ration is of particular interest to us in that it may be considered a prototypical
realization of two coupled oscillatory neurons.

If a constant voltage is applied to the circuit, the two samples will enter an
oscillatory regime, as was the case for the V3O5 device of the previous chapter,
the difference being that now the oscillations are induced by the self capacitance
of the sample, rather than an external capacitor. If the coupling capacitor is remo-
ved from the setup, the devices will oscillate independently of one another. If the
characteristics of the two samples, like the resistivity and geometry, are such that
the samples have different voltage threshold values, their stochastic behaviour, as
described by the probability of resistive collapse derived before (Eq. 3.13), will
be different, and the one with the lower threshold will undergo faster oscillations.
Therefore, while at first the two materials undergo the resistive collapse roughly
at the same time, their oscillations are not synchronized and gradually grow apart
(Fig. 6.2). Introducing a small coupling capacitor has the effect of synchronizing
the two devices, which now switch to the metallic state in turns at regular intervals
(Fig. 6.5, left panels). However, if the coupling capacitance is increased, disruption
in the sequence of oscillations are observed ; in other words, the sample with lo-
wer voltage threshold will undergo the resistive collapse several consecutive times
before the other sample can (Fig. 6.3 and Fig. 6.5, right panels). This is a surpri-
sing result, since intuitively one might expect that a greater coupling capacitance
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would result in a stronger synchronization.
The applicability of coupled oscillators is not limited to spiking neural networks,

but also extends to oscillator-based computing, which can be employed in a range
of different problems and notably combinatorial tasks [CP20 ; Mal+20 ; Dut+21 ;
Ahm+21]. Recently there has been a great interest in replacing CMOS oscillator
circuits with devices based on quantum materials, such as Mott insulators, in order
to reduce energy consumption and circuit footprint. Therefore, understanding how
the stochasticity of coupled Mott oscillators can be tuned would represent an
important step toward the realization of these systems.

In this chapter we use numerical simulations, that build on the theoretical re-
sults of the previous chapters, and chiefly the probability of filament percolation
(Eq. 3.13), to model and understand the behaviour of the circuit of Figure 6.1.
We show that, when there is no coupling capacitor, the inter-spike distributions
of the two independent Mott neurons have a bell-shape. However, as the coupling
capacitance is introduced and then increased, additional peaks emerge, and the
distributions become multimodal. This indicates the emergence of disruptions in
the sequence of oscillations, which break the regularity of the spike train. We find
further confirmation of this in the voltage traces of the simulated Mott materials,
which show how a big coupling capacitance induces the discharge of both samples
when one of them fires, thus favouring the one with the lower voltage threshold,
which will fire more frequently. Finally we compare our results with VO2 experi-
ments, finding that they are in excellent qualitative agreement [Qiu+].

6.1 The model

We are interested in understanding the origin of the increasingly stochastic
behaviour that emerges as the coupling capacitance C0 of the circuit of Figure 6.1
is increased. When a small coupling capacitance is introduced, the two VO2 oscil-
lators, which we represent with the colors red and black throughout the chapter,
spike in turns : a spike from the red device is followed by one from the black device.
However, as C0 is gradually increased, disruptions in the sequence appear in the
form of a spiking event that immediately follows a spike generated from the same
device (so, for example, two consecutive spikes coming from the black device). To
understand this behaviour it is not necessary to visualize the formation of the
metallic filament within the insulating gap, for which reason we decided against
using the MRN. However, it remains necessary to accurately predict the timings
of the resistive collapse events which occur once a voltage has been applied to the
devices. To do so we use the previously derived probability distribution of resistive
collapse (Eq.3.13), which we report here for convenience sake.
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P (V, t) = 1− 1

1 + t
∆t

exp[(V − Vθ)/δV ]
. (6.1)

Where V is the voltage across the sample, t is the time elapsed since the last
collapse, ∆t is the unit of time, so in other words the time step of the simulation, δV
is the range of stochastic behaviour and V0 the typical voltage at which the collapse
occurs, i.e. the firing threshold. Therefore, since Vθ, δV and ∆t are constant, one
only needs to know the voltage of the sample and the time elapsed since the last
spike or the beginning of the simulation to compute the probability of spiking.
The rest of this section explores how the voltage of the sample may be derived by
applying Kirchhoff laws.

In order to model the experimental setup the following assumptions were made.
Firstly, a capacitor was put in parallel to each device in order to model the self
capacitance presented by the experimental samples. Secondly, the resistance of
the insulating state for both devices is assumed to be constant and equal to RS.
Finally, when the resistive collapse occurs and the current of the sample spikes, we
assume that the voltage of the sample, VS, goes to 0 and remains in that state for
a fixed period of time, as to model the recovery phase of the sample during which
the filament relaxes back to the insulating state. All of these considerations result
in the circuit diagram that is shown in the right panel of Figure 6.1, which is to
be compared with the experimental setup in the left panel.

We now move on to the issue of computing the voltage of the sample VS by
applying Kirchhoff laws. For the sake of simplicity we assume that all the constants
of the circuit are the same for the left and right sides, including the load resistor
R0, the sample resistance RS and the parallel capacitance CP . In order to observe
asynchronous oscillations the two devices should have different voltage thresholds,
so we decide that the threshold of the left device should be 10% lower than that of
the right device, i.e. V L

θ = 90%V R
θ . All of the parameters used in the simulations

are summarised in Table 6.1.
We begin by writing the current that flows though the left capacitor. From the

application of KCL it follows that

ILCp
(t) = ILR0

(t) + IC0(t)− ILS (t) (6.2)

We use the subscripts to designate a given component of the circuit, such as
S for the sample, R0 for the load resistor, C0 for the coupling capacitor and Cp

for the capacitor in parallel to the device ; the superscripts are used to indicate
the left or the right side of the circuit. Therefore, ILCp

is the current of the left
device capacitor, ILR0

the current that flows through the left load resistor, IC0 the
current of the coupling capacitor and ILS that that flows through the sample. The
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ILR0 IRR0

ILCp IRCp

IC0

a b

Figure 6.1 – Circuit diagram of the system under study. Left panel is the expe-
rimental setup, the right panel the simulated one. The only difference lies in the
fact that, in order to model the oscillatory regime, an external capacitor CP is
added to the simulated circuit in parallel to each sample. When one of the devices
spikes in our simulations, it’s voltage is set to zero short-circuiting the coupling
capacitor. Adapted from [Qiu+]
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sign of the currents are conventional and the same as those of Figure 6.2 ; what is
important is that they should be consistent throughout the derivation.

The current through the sample can be written as the sample voltage divi-
ded the sample resistance following Ohm’s law ILS (t) = V L

S (t)/RS, and since the
capacitor Cp and the sample are in parallel this is equal to

ILS (t) =
V L
Cp
(t)

RS

(6.3)

Inserting this expression into Equation 6.2 we obtain

ILCp
(t) = ILR0

(t) + IC0(t)−
V L
Cp
(t)

RS

(6.4)

From the equation of the capacitance C = dQ/dV we may write the voltage of
the left device capacitor as

V L
Cp
(t) = V L

Cp
(t−∆t) +

ILCp
∆t

Cp

(6.5)

where ∆t is the time-step of the simulation. This expression can be expanded
by using the previously derived definition of the left device capacitor current Eq.
6.4

V L
Cp
(t) = V L

Cp
(t−∆t) +

(
ILR0

(t) + IC0(t)−
V L
Cp
(t)

RS

)
∆t

Cp

(6.6)

Grouping by V L
Cp
(t) we obtain

V L
Cp
(t) =

RSCp

RSCp +∆t

[
V L
Cp
(t−∆t) +

(
ILR0

(t) + IC0(t)
) ∆t

Cp

]
(6.7)

For the right device it is possible to write a similar equation following the same
steps

V R
Cp
(t) =

RSCp

RSCp +∆t

[
V R
Cp
(t−∆t) +

(
IRR0

(t)− IC0(t)
) ∆t

Cp

]
(6.8)

Our goal is computing the voltage of the sample using the above expressions so
that the probability of spiking, which depends on the voltage, may be computed.
We assume that the voltage at the previous time step V L,R

Cp
(t − ∆t) is known ;

therefore the only unknown quantities are ILR0
(t), IRR0

(t) and IC0(t).
Once again we focus our attention first on the left side of the circuit, and we

consider the closed loop that consists of the voltage generator, the load resistor
and the device capacitor. Applying KVL we obtain
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ILR0
(t)R0 + V L

Cp
(t) = Vapp

ILR0
(t) =

Vapp − V L
Cp
(t)

R0

(6.9)

Simulations are carried in the voltage control regime and Vapp is a known quan-
tity. Therefore, we have expressed one of the missing variables, ILR0

(t), in terms of
the quantity that we want to compute, V L

Cp
(t). If we take Equation 6.9 and we put

it in Equation 6.7, we can then group by V L
Cp(t) arriving at

V L
Cp
(t)

(
1 +

∆tRS

(RSCp +∆t)R0

)
=

RSCp

RSCp +∆t

[
V L
Cp
(t−∆t) +

Vapp/R0 + IC0(t)

Cp

∆t

]
A =

(
1 +

∆tRS

(RSCp +∆t)R0

)
B =

RSCp

RSCp +∆t

V L
Cp
(t)A =B

[
V L
Cp
(t−∆t) +

Vapp/R0 + IC0(t)

Cp

∆t

]
(6.10)

Where all the constant pre-factors have been put into A and B for the sake of
readability. Following similar arguments we can write for the right capacitor

V R
Cp
(t)A = B

[
V R
Cp
(t−∆t) +

Vapp/R0 − IC0(t)

Cp

∆t

]
(6.11)

By looking at Equations 6.10 and 6.11 we may notice that it is possible to
obtain an expression for IC0(t), the last unknown quantity, by subtracting one
from the other. Additionally, if we consider the closed loop made of the two device
capacitors and the coupling capacitor, we can apply KVL to obtain the relation
V R
Cp
(t)− V L

Cp
(t) = VC0(t). It follows then that :

B

A

[
V R
Cp
(t−∆t)− V L

Cp
(t−∆t)− 2

IC0(t)∆t

Cp

]
= VC0(t) (6.12)

Expanding the voltage of the coupling capacitor in VC0(t) = VC0(t − ∆t) +
IC0(t)∆t/Cp we can express the current IC0(t) in terms of quantities that have
been already computed at the previous time-step, and specifically
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Name Value
(arb.units) Definition

R0 1.000 Load resistance
RS 1.000 Sample resistance
Cp 0.500 Device capacitor
V L
θ 0.450 Left device voltage threshold

V R
θ 0.500 Right device voltage threshold

δV 0.005 Probability distribution width
Vapp 1.000 Applied voltage
∆t 0.001 Time-step
τr 5.000 Relaxation time

Table 6.1 – Constants used in the simulations presented in this chapter. Several
values for the coupling capacitance C0 were adopted and they are reported in the
appropriate figures and in the main text.

B

A

[
V R
Cp
(t−∆t)− V L

Cp
(t−∆t)− 2

IC0(t)∆t

Cp

]
= VC0(t−∆t) +

IC0(t)∆t

C0

B

A

[
V R
Cp
(t−∆t)− V L

Cp
(t−∆t)

]
− VC0(t−∆t) = IC0(t)∆t

(
1

C0

+ 2
B

ACp

)
(6.13)

Equation 6.13 defines the current of the coupling capacitor in terms of constants
and quantities that have been computed at the previous time step and are, there-
fore, known. It is the starting point to solve the system. Once the coupling current
has been computed, it can be used to compute the voltage of the samples using
equations 6.10 and 6.11. In turn the voltage allows us to compute the probability of
observing a spiking event using Equation 6.1. If, by comparing a random number
extracted from a uniform distribution between 0 and 1 to the probability of firing,
we determine that one of the devices should undergo the resistive collapse, we set
its voltage to zero and we keep it at that level for the duration of the relaxation
time (which is fixed). No modifications other than resetting the voltage are needed
in order to describe the electric breakdown and the simulation carries on according
to the previously described equations.

6.2 Simulation results
The simplest case to start with is the one in which no coupling capacitor is

present. In this case the devices will oscillate independently of each other. Since
the two devices are characterized by the same set of parameters, except for the
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firing threshold, which is lower in the left black device than in the red right one,
we expect the former to feature a higher frequency of oscillations than the latter.
This is indeed the case, as can be seen from Figure 6.2. In panel a) we plot the
distribution of the voltage values at which the resitive collapse occurs. We notice
that the black distribution has a lower mean value, as expected from the fact that
the black device has a lower voltage threshold. Both distributions may be described
as Poissonian, which follows from our use of Equation 6.1 to model the probability
of resistive collapse. Indeed, as was already noticed in a previous chapter, the
resistive collapse in Mott materials under an applied voltage is a Poissonian event
whose probability can be described accurately by Equation 6.1 (see Figure 3.4).
Panel b) shows the Inter Spike Intervals (ISI) distribution for the two devices. The
ISI is defined as the period of time between the two most recent spikes. Faster
oscillations result in smaller ISI, which explains why the distribution for the black
device is centered around a lower mean value than that of the red device. The shape
of the two ISI distributions closely follow that of the firing voltage. The inset shows
the distributions for the experimental oscillators, which is shown and discussed in
more details in the section dedicated to the experimental results. In panels c) and
d) we plot the voltage traces of the two devices, from which it can be appreciated
how a smaller voltage threshold in the black one results in faster oscillations with
slightly smaller amplitudes, as could be expected from our analysis of the ISI and
firing voltage distributions.

We now consider the case in which a coupling capacitor C0 is introduced in the
circuit, as shown in Figure 6.1. The introduction of the capacitor has the effect
of synchronizing the oscillators, which now spike in turn instead of overlapping
each other. However, occasionally it may occur that the sequence of alternating
spikes from the black and red device is disrupted by two or more consecutive spikes
generated by the same device. Interestingly, as the value of the coupling capacitance
is increased, the number of disruptions also grows. This can be appreciated from
Figure 6.3. In panel a) we plot the percentage of disruptions against the value of
the coupling capacitance, in logarithmic scale. The inset shows the experimental
results. In panel b) we show three spike trains for the following value of the coupling
capacitance : from top to bottom C0 = 1, 5, 10 arb. units. The color turquoise is
used to mark a disruption event. Panel c) shows the spike trains of the experimental
VO2 oscillators.

Plotting the ISI interval distribution also allows us to appreciate the increase
in disruption events as the coupling capacitance is increased. Indeed, a disruption
results in a shortened ISI for the device that spikes and a prolonged ISI for the
device that could not spike and has to wait for the next turn. Therefore, we expect
the simple Poissonian distribution that we observed in the absence of a coupling
capacitor to become a multimodal distribution. This is precisely the case, as can
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Figure 6.2 – Behaviour of the two simulated devices when they spike indepen-
dently of one another in the absence of a coupling capacitance. a) Distribution
of the voltages at which the devices undergo the resistive collpase (black for the
left device, red for the right one) b) Distribution of the ISI. The inset shows the
distribution of the ISI of two coupled VO2 oscillators as measured in experiments
(see next section "Experimental results"). c) d) Voltage traces of the devices.
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Figure 6.3 – Effect of the coupling capacitance on the spiking sequence of the
simulated devices. Panel a) percentage of disruptions against the coupling capaci-
tance, in logarithmic scale. The inset shows the percentage of the disruptions in
a experimental setup with two coupled VO2 oscillators (see next section "Experi-
mental results"). Panel b) output current of both samples against time for three
values of the coupling capacitance (from top to bottom : C0 = 1, 5, 10 arb. units).
The colors red and black indicate the two samples, the color turquoise is used to
emphasize the disruptions. Panel c) output currents of two coupled VO2 oscillators
in an experimental setup (see next section "Experimental results").
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be seen from Figure 6.4

In particular, in the top panel, in which C0 = 1 arb. units, we observe that
both the red and black distributions have two peaks. The highest one corresponds
to the regular ISI unaffected by disruptions, whose value can be compared with
the period of the current oscillations. For instance, for the black device we see
from the distribution of Figure 6.4 that the average ISI is approximately t = 600
arb. units, which is precisely the time interval between two black spikes separated
by one red spikes in panel b) of Figure 6.3. The smaller peak corresponds to an
ISI approximately half the length of the regular ISI : this the case in which one
disruption event occurs, and the same device spikes two consecutive times. On the
other hand, for the red device we see that the smaller peaks is centered around a
value which is greater than the regular ISI by roughly half its length : this is the
interval between two red spikes that are separated not by one, but by two black
spikes (i.e. when a disruption occurs).

As we increase the coupling capacitance in the middle and bottom panels of
Figure 6.4 (C0 = 5 and C0 = 15 arb. units, respectively), we see the emergence of
additional peaks corresponding to ISI which are either multiples or half the length
of the regular ISI (the insets with magenta borders show zoomed-in sections of the
graph to better appreciate them). These additional peaks are due to the increased
capacitance, which result in more disruptions and occasionally sequences of three
or more consecutive spikes generated by the same device.

We now turn to the problem of understanding the mechanism by which dis-
ruptions arise as the coupling capacitance is increased. To do that we may take a
look at the voltage traces that are plotted in Figure 6.5, focusing on the simula-
tion results for now. In the left panel we see the voltages traces of both devices
when the coupling capacitance equals C0 = 0.5 arb. units, whereas in the right
panel the capacitance is equal to C0 = 10 arb.units. Red and black stripes are
used to indicate which device spikes, and stripes with thicker outlines correspond
to disruptions events. As expected, when the coupling capacitance is higher more
disruptions appear. We also notice that, when the capacitance is small, a spike
produced by a certain device results only in the partial discharge of the other ; ho-
wever, as the capacitance is increased, the discharge is almost complete, similarly
to what happens to the device that has produced the spike. This explains why the
number of disruptions increases with the coupling capacitance : if the voltage of
the device that has not spiked is reset only partially, it will reach the threshold
voltage faster than the device that has spiked (whose voltage is always reset to 0
regardless of the value of the coupling capacitance). This mechanism assures that
the two devices will take turn in firing. However, if both devices are subjected to
a near total reset of the voltage, the one to fire first will generally be the device
with the lower voltage threshold (the black one in our case), possibly resulting
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Figure 6.4 – Evolution of the ISI distribution of the simulated devices as the cou-
pling capacitance is increased. From top to bottom C0 = 1, 5, 15 arb. units. As the
capacitance is increased additional peaks appear. The color red is semi-transparent
in order to appreciate the overlap between the distributions. The insets with ma-
genta borders in the middle and bottom panels are zoomed in visualizations. The
insets in the top right corner of each panel show the ISI distributions of the cou-
pled VO2 oscillators of an experimental setup (see next section "Experimental
results").
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Figure 6.5 – Voltage traces of the two devices when a coupling capacitance
is introduced. Top panels are from the simulations and bottom ones from the
experiments. In both experiments and simulations, the black color is used for the
device with the faster firing rate, consistently with the other figures. Looking at
the simulations results, in the left panels the coupling capacitance is C0 = 0.5 arb.
units, in the right ones it is C0 = 10 arb. units. The gray and light red bars are used
to indicate which device spikes : a light red bar indicates that the device whose
voltage trace is also red has reached the voltage threshold first and has produced
a spike. Whenever a bar has thick borders it means that it represents a disruption
in the spiking sequence. More details on the experimental results are given in the
next section.
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Figure 6.6 – Sample voltage distributions for different value of the coupling
capacitance. Each panel features two distributions, both of which belong to either
the left (cool colours) or the right (warm colours) device. The difference between
the two is that the distribution with the stronger colour (red or black) represents
the voltage of the sample when it itself spikes, while the distribution with the
weaker colour (orange or blue) represents the voltage of the sample when the
other sample spikes.
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in sequences of multiple consecutive spikes produced by the same device. As for
the reason why a bigger coupling capacitance results in a stronger discharge, by
taking a look at Figure 6.1 one may notice that, after a given device has spiked,
the coupling capacitor becomes in parallel to the other device capacitor. This may
also be understood as the sample that has not spiked now having a capacitance
equal to the sum of its own capacitance and that of the coupling capacitor, i.e.
C̃p = Cp + C0. From the equation of the capacitor we know that V = Q/C, so
the sudden increase in the capacitance parallel to the sample causes a drop of the
voltage which is proportional to the capacitance itself, and specifically that of the
coupling capacitor.

In Figure 6.6 we plot the voltage distributions of the two samples, when either
of them spikes, for different values of the coupling capacitance. From top to bottom
we have : a) right device voltage distributions when C0 = 10 arb. units and b) when
C0 = 5 arb. units ; c) left device voltage distributions when C0 = 10 arb. units and
d) when C0 = 5 arb. units. Each panel contains two distributions, one representing
the voltage of the device when it spikes, the other the voltage of the device when
the other device spikes. From this figure we can appreciate how, when the coupling
capacitance is increased, the two distributions become much more similar (panel
a) and c)). In other words, a near complete discharge of the sample that has not
fired allows the other device to also reach near threshold voltage values. As an
example, we may focus on the left device, panel c) and d). In panel d), when
the coupling capacitor is small, we see that the voltage values attained by the left
device when the right one spikes are generally smaller than the threshold for firing,
which we identify with the mean of the black distribution. This occurs because the
right device only partially discharged the last time the left one spiked, due to the
small coupling capacitance, and thus was able to reach its own firing threshold in
a short amount of time, not enough for the left device, whose voltage was set to 0,
to charge back. On the other hand, when C0 is increased (panel c)), the discharge
of the right device is almost complete, and thus the left device has enough time to
charge back and reach the firing threshold.

6.3 Experimental results

We now move on to comparing our findings with experimental results obtained
from a system of coupled VO2 oscillators, depicted in panel a) of Figure 6.1.
Firstly, we consider the case in which no coupling capacitor is present, and the
two devices are independent. In this setup (panel a) of Figure 6.7), dc voltage
produced by a function generator is applied to a 100×400 nm2 VO2 nanodevice
with an estimated self capacitance of 0.2 nF that is connected in series with a load
resistor. A multichannel oscilloscope is used to monitor the voltage on nanodevice
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Figure 6.7 – Panel a) : Experimental setup. Panel b) : ISI distributions of the
two uncoupled VO2 samples. Panel c) : Current readings of the uncoupled devices.
Adapted from [Qiu+]

and the current flowing in the circuit. Figure 6.7 shows the current readings for
the two indipendent device (panel c)), as well as the distribution of ISI (panel b)).
These results are qualitatively comparable with our simulations, and specifically
Figure 6.2, where we show the voltage traces and the ISI distributions of the two
uncoupled devices.

We now consider the case in which the coupling capacitor is introduced. In
Figure 6.8 panel a) we plot the percentage of disruption events as a function of
the coupling capacitance, and in panel b) we plot the current readings for three
different values of the coupling capacitance : from top to bottom C0 = 0.5, C0 = 1
and C0 = 10 nF. Like before turquoise stripes designate disruptions. We note
that the data presented in the figures were recorded in the same pair of VO2
nanodevices that were studied before independently and that the only modification
needed to induce stochastic disruption events in the alternating spiking sequence
was introducing the coupling capacitance. We observed similar behavior in multiple
pairs of different VO2 nanodevices, therefore the emergence of disruption events
in the deterministic alternating spiking sequence is not accidental, but rather a
general property of these coupled spiking oscillators. These experimental results
may be compared with our simulations, and in particular Figure 6.3, where we
plot both the disruptions density and the currents reading for different values of
the coupling capacitor.
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Figure 6.8 – Panel a) : Percentage of disruptive events plotted against the cou-
pling capacitance in logarithmic scale. No disruptions was observed in the gray
area, whereas the color orange designates the region within which disruptions start
appearing. Panel b) : Output current readings of the two devices for three values
of the coupling capacitance. From top to bottom C0 = 0.5, C0 = 1 and C0 = 10
nF. The color turquoise marques disruptions in the spiking sequence.
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Figure 6.9 – ISI distribution for the two VO2 nandodevices as the strength of the
coupling capacitance is increased. From top to bottom the values of the coupling
capacitance are : 0.5, 1.0, 4.7, 10 nF. Adapted from [Qiu+]

In Figure 6.9 we plot the experimental ISI distribution for both devices and
several values of the coupling capacitance, from which we can appreciate the emer-
gence of additional peaks as the capacitance is increased, as was the case for our
simulations (Figure 6.4).

Finally in Figure 6.10 we show the voltages traces of the two devices for two
different values of the coupling capacitance. As was the case for the simulations,
a small coupling capacitance results in a partial discharge of the oscillator that
has not spiked, allowing it to reach the firing threshold before the other and thus
ensuing the synchronized alternating sequence of black and red spikes. On other
other hand when the capacitance is big even the device that does not spike di-
scharges almost completely, resulting in a race between the two devices to reach
the firing threshold and, occasionally, in disruptions due to the intrinsically dif-
ferent stochastic behaviours of the devices (which can be appreciated in Figure 6.7
where no coupling capacitor is present).
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Figure 6.10 – Voltage traces of the experimental nanodevices when a coupling
capacitor of 0.5 (left panels) and 10 nF (right panels is introduced). The arrows
and the thicker outlines indicate a disruption. Adapted from [Qiu+]

6.4 Conclusion

In this chapter we have explored the effects of coupling two VO2 oscillators
using a capacitor. This has given us the opportunity to further investigate two
topics that we have encountered in the previous chapters : the stochastic nature
of the resistive collapse of Mott materials under an applied voltage and their
oscillatory regime. To do so we developed a numerical model in which a capacitor
was added in parallel to each oscillator, in order to account for the self capacitance
of the experimental samples, and the previously derived probability of filament
percolation (Equation 6.1) was used to predict the timing of the resitive collapse.
Firstly we applied this model to the simple case in which no coupling capacitor
is present, and the two oscillators are independent. As expected, no synchronicity
between the oscillators was observed ; we plotted the distribution of the two devices
voltages at the time of firing, finding that they have a Poissonian shape, which
follows from our use of (Equation 6.1), which describes the resistive collapse as a
Poissonian process. We also plotted the distribution of the Inter Spike Intervals
(ISI) of the two independent oscillators, whose shape closely follow that of the
voltage distributions.

We then considered the case in which a coupling capacitor was introduced,
which results in the synchronization of the two devices, which now take turns in
firing. In other words, a spike from a certain device is followed by a spike from the
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other device, an so on for the rest of the simulation. However, when the coupling
capacitance is increased, disruptions in the spiking sequence emerge, in the form of
one or multiple consecutive spikes produced by the same device. Interestingly, the
percentage of disruptions increase with the coupling capacitance. This can be ap-
preciated not only from the readings of the currents that flow through the devices,
from which we can see that sometimes the same device undergoes the resistive
collapse two or more consecutive times, but also from the ISI distribution. Indeed,
while in the previous case, when no coupling capacitor was present, both devices
had simple Poissonian distributions, as the coupling capacitance is increased ad-
ditional peaks appear. For instance, we observe an extra peak centered around a
value half that of the regular ISI. This peak corresponds to the occurrence of a
single disruption event, in which the same device spikes twice with no interruption
from the other one, resulting in a ISI half the length of the regular period of os-
cillations. We also observe peaks centered around ISIs which are multiples of the
oscillations period, which we connect to the opposite scenario, in which the device
is prevented by one or multiple disruption from firing when it should be, and has
to wait for at least the next turn.

In order to understand this unexpected stochastic behaviour we looked at the
voltage traces of the oscillators for two different values of the coupling capaci-
tance. We observed that, in both cases, when one device undergoes the resistive
collapse, and its voltage goes to zero, the other device also discharges ; however,
the discharge is found to be proportional to the coupling capacitance. Therefore,
while the device that spikes always has its voltage set to zero, as an effect of the
switching to the metallic state, only a big coupling capacitance results in the al-
most complete discharge of the other device. In this case, after the spike both
devices will begin the charging phase from a starting voltage close to zero, and the
one with the lower voltage threshold will tend to fire first, possibly resulting in
sequences of consecutive spikes produced by the same device. On the other hand,
if the coupling capacitance is smaller, the discharge of the device that does not
spike won’t be as important, and this will allow it to fire first at the next turn
even if its voltage threshold is higher. To understand why the coupling capacitance
affects the discharge of the device, we may assume that, when one device spikes,
its resistance momentarily goes to zero. In that case the coupling capacitor will
become in parallel with that of the device that did not spike, thus increasing the
total capacitance. It is this sudden increase in the capacitance that causes the
sample to discharge, therefore the higher the coupling capacitance, the bigger the
discharge.

Finally, we compare our numerical results with measurements conducted on a
system of coupled VO2 oscillators. In particular we look at the ISI distribution with
and without the coupling capacitor, as well as the current output, the voltage traces
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and the percentage of disruptions for different value of the coupling capacitance.
In all cases we found qualitative agreement with our simulations.





Chapitre 7

Conclusion

In today’s world there is a increasingly high demand for smart devices capable
of executing tasks that were once thought to be beyond the reach of computers.
Neural networks have emerged as the most appropriate computational paradigm to
achieve this lofty goal ; however, modern hardware implementation of neural net-
works often rely on the same CMOS technology that powers traditional computers,
old and new alike. This comes at the expense of power efficiency, which is far be-
low that of the human brain. In order to build a future in which the proliferation
of smart devices becomes environmentally sustainable, the current trend of ever
increasing computational prowess must be accompanied by an equally important
reduction of the energy footprint of these devices. Therefore, in addition to the
shift in design from the classic Von Neumann architecture to modern Deep Neural
Networks, an equally important step must be taken toward the development of
new technologies alternative to CMOS for the implementation of hardware neural
networks.

Quantum materials are excellent candidates for implementing neural networks
at a fraction of the energy cost of traditional CMOS implementation. This advan-
tage comes from the neuromorphic features that some of these materials possess,
which allow them to be used as both neurons and synapses in hardware neural net-
works, as well as their intrinsic potential for miniaturization, that could go beyond
the limits of current CMOS fabrication terminology. Among these materials we
studied the family of the Mott insulators, such as VO2 and V2O3, which possess
several neuromorphic properties and chiefly a volatile resistive collapse that can
occur under different conditions. This physical phenomenon is key to implementing
the spiking functionality of biological neurons : when the resistance of the material
collapses a surge in the current that flows through the sample is recorded, which
may be compared with the spike that ensues the depolarization of the neuronal
membrane. Interestingly, this resistive collapse may be induced by application of
a voltage and at temperatures close to room temperature, thus making it possible
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to integrate Mott materials with traditional electronic circuit with ease.
However, the characterization of Mott materials, which is necessary to their

deployment in real world applications, is a challenging topic, since the Insulator
to Metal Transition (IMT) that these materials undergo is a complex physical
phenomenon that stems from the interaction of many coupled electrons under a
strong electric field. Thus it becomes necessary to adopt a more phenomenological
view, and to develop the appropriate numerical models, to make contact with
the experiments. In this work we present the Mott Resistor Network (MRN), a
mesoscopic phenomenological model of a Mott material under an applied voltage,
in which the sample is described as a network of resistors with a variable resistance
that depends on the temperature. Using this model we were able to investigate
the field driven resistive switching in Mott materials and to further understand
their neurmorphic properties. In particular, the most important contributions of
our study are :

1. The understanding of the field induced resistive switching as a thermo-
electronic process in which both thermal and electronic effects, in the form
of Joule heating and current density concentration respectively, play an
important role

2. The characterization of the metallic filament percolation, that triggers the
resistive collapse, as a stochastic Poissonian process, comparable on a quan-
titative basis with the noisy firing of the exponential escape rate neuronal
model.

3. The systematic study of how different properties of the sample, and chiefly
the thermal conductivity to the underlying substrate and the ratio of its
insulating to metallic resistance, can affect the stochastic behaviour.

4. The discovery that certain properties of the resistive switching, such as the
effect of the resistivity ratio on the incubation times, can be generalized to
materials other than VO2 and V2O3, such as the nickelates NdNiO3 and
SmNiO3.

5. The characterization of the oscillatory regime that emerges when a current
ramp is applied to a sample in parallel to a capacitor, which is of particular
interest in the context of neuromoprhic computing due to the oscillatory
nature of neuronal patterns.

6. The description of the dynamics of a system of coupled VO2 oscillators,
and in particular the increasingly stochastic behaviour, in the form of dis-
ruptions of the expected sequence of alternating spikes coming from both
devices, that emerges when the coupling capacitance is increased, a result
whose relevance extends beyond the field of hardware neural networks to
that of oscillatory computing.
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In so doing we have extended the original MRN model to account for the
peculiarity of the different materials that we’ve studied, such as VO2, V2O3, V3O5,
SmNiO3 and NdNiO3, which present different transitions, of first and second order,
and different physical properties, such as the presence of a self capacitance, or the
lack thereof. It is our hope that our work will contribute to the development of
energy efficient neural networks that can meet the needs of modern society.
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Titre : Propriétés neuromorphiques des materiaux de Mott sous un champ électrique
Mots clés : Materiaux de Mott, systèmes neuromorphiques, collapse de la résistance

Résumé :Les isolants de Mott sous un champ élec-
trique externe présentent une transition isolant-
métal (IMT) qui leur permet de reproduire le train
de «spikes» des neurones biologiques. Ces maté-
riaux ont aussi la possibilité d’achever un niveau
de miniaturisation supérieur à celui des disposi-
tives CMOS, et donc ils pourraient être utilisé pour
réaliser des réseaux des neurones numérique plus
efficients. Néanmoins, la IMT est un phénomène
physique complexe qui dérive de l’interaction entre
beaucoup d’électrons sous un fort champ électrique
et il pose des difficultés importantes concernant
la description théorique de ces matériaux. Dans
cette thèse nous adoptons un modèle mésosco-
pique et phénoménologique qui s’appelle Réseau
des Résistors de Mott (MRN). Grâce à ce mo-
del nous sommes capable d’expliquer la nature de
la IMT sous un champ électrique, qui est le pro-
duit des effets et thermique et électronique, et
plus précisément l’effet Joule et la concentration
de courent électronique dans les domaines métal-

liques du matériel. Nous identifions le collapse de
la résistance du matériel comme un process sto-
chastique, et plus précisément un évènement de
Poisson, en analogie avec les «spikes» des mode-
lés mathématiques des neurones avec une probabi-
lité de type exponentielle. Nous démontrons aussi
que la nature stochastique de la chute de la résis-
tance, qui est observé dans la variabilité de délais
entre l’application du champ électrique et le col-
lapse de la résistance, peut être changée par la
conductivité thermique du matériel et aussi le rap-
port entre la résistivité isolant et la résistivité mé-
tallique. En outre, nous étudions les oscillations qui
émergent sous hauts champs électriques, et aussi
la dynamique des matériaux VO2 couplés, en par-
ticulier les interruptions de la séquence régulier de
spikes produits par une haute capacité électrique
de couplage. Nous comparons nos résultats avec
des expérimentes conduites sur les vanadates et
les nickélates, en trouvant un très bon accord.

Title : Neuromorphic properties of Mott materials under an electric field
Keywords : Mott materials, neuromorphic systems, resistive switching

Abstract : Mott insulators under an applied elec-
tric field present an insulator-to-metal transition
that enables them to reproduce the spiking func-
tionality of biological neuron. These materials also
have the potential of achieving greater miniaturi-
zation than conventional CMOS devices and thus
could be used to create energy efficient hardware
neural networks. However, the understanding of
the IMT, which is a complex physical phenomenon
that stems from the interaction of many correla-
ted electrons under strong electric fields, poses im-
portant challenges to the characterization of these
materials. In this work we adopt a mesoscopic phe-
nomenological model known as the Mott Resistor
Network. In so doing we are able to elucidate the
nature of the field driven IMT, to which both ther-
mal and electronic effects contribute, in the form
of Joule heating and current density concentration,

respectively. We characterize the resistive collapse
as a stochastic process, and more exactly a Poisso-
nian event, in analogy with the firing of noisy neu-
rons described by the exponential escape rate mo-
del. We show how the stochastic nature of the re-
sistive collapse, which is observed in the increased
variability of the incubation times as the applied
voltage is lowered, can be tuned by controlling the
thermal conductivity of the sample and also the ra-
tio of the insulating to metallic resistivity. We then
study the oscillatory regime that appears at high
applied voltage, as well as the dynamics of coupled
VO2 oscillators, focusing on the disruptions of the
regular spiking sequence that emerge as the cou-
pling capacitance is strengthened. We compare our
results with experiments conducted on vanadates
and nickleates, finding an excellent agreement.
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