
HAL Id: tel-03938338
https://theses.hal.science/tel-03938338

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web-based data driven network monitoring : from
performance estimation to anomaly detection

Imane Taibi

To cite this version:
Imane Taibi. Web-based data driven network monitoring : from performance estimation to anomaly
detection. Web. Université de Rennes, 2022. English. �NNT : 2022REN1S055�. �tel-03938338�

https://theses.hal.science/tel-03938338
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Imane TAIBI »
Web-based data driven network monitoring : from performance es-
timation to anomaly detection

Thèse présentée et soutenue à Rennes, le « 19 septembre 2022 »
Unité de recherche : Centre Inria Rennes-Bretagne Atlantique (Inria-Rennes)

Rapporteurs avant soutenance :

Pascal LORENZ Professeur d’université de Haute Alsace
Abdelhamid MELLOUK Professeur d’université Paris-Est Créteil

Composition du Jury :

Président : Guillaume URVOY-KELLER Professeur, Université Côte d’azur

Examinateurs : Isabelle CHRISMENT Professeure, Télécom Nancy
Yassine HADJADJ-AOUL Professeur, Université de Rennes 1
Pascal LORENZ Professeur, Université de Haute Alsace
Abdelhamid MELLOUK Professeur, Université Paris-Est Créteil

Dir. de thèse : Gerardo RUBINO Directeur de recherche, Inria Université de Rennes 1
Co-dir. de thèse : Chadi BARAKAT Directeur de recherche, Inria Côte d’Azur

ACKNOWLEDGEMENT

First and foremost, I thank God for His blessings and for giving me the strength

to undertake this work and complete it successfully. All praises to Allah.

I would like to express my deep and sincere gratitude to my supervisors, Dr.

Chadi BARAKAT and Pr. Yassine HADJADJ-AOUL, for their dedicated support,

guidance and encouragement. They were very patient with me during the moments of

my struggles and helped me to overcome difficulties. Without their help, I wouldn’t

be able to reach today. I thank Dr. Gerardo RUBINO for his valuable advice and

the jury for dedicating time to review my thesis.

I’m incredibly grateful to my parents, Abdellah TAIBI and Rekaya BOUKILI, for

their love, prayers and caring. Thank you so much, mother and father. Thank you

for your patience and for believing in me until the end. A warm thank you to my

dear grandmother Fatima.

I would like to extend my heartfelt thanks to my beloved sisters, Hind and Fatima-

Ezzahrae and my close friends for their support and encouragement throughout this

thesis.

Finally, during this PhD, I have learnt many things, especially about myself, and

have grown a lot. I realised that sometimes your most significant achievement is

never to lose hope.

3

ABSTRACT

Web browsing is one of the most widespread applications on the Internet that
allows accessing a massive amount of services. Its accelerated and continuous growth
increases the pressure on the Internet infrastructure and leads to unexpected and
unwanted performance behaviours that negatively impact the quality of service de-
livered to the final customers. Therefore, network operators and service providers
need to ensure that the quality of their services is guaranteed. It is also important
for end-users to be informed about the reality of their network access, especially when
the quality of their services of interest deteriorates. The solution to these challenges
passes by proposing network monitoring solutions able to evaluate the performance of
the underlying network, to detect anomalies and bottlenecks and to identify the root
causes of performance degradation. Many network monitoring and troubleshooting
tools have been recently proposed, in particular, the Web browser-based tools (e.g.,
Speedtest, Netalyzr, HMN, Fathom, etc.); these tools are able to monitor the Inter-
net performance from the end-user point of view in a portable and easy way and to
conduct representative end-to-end network measurements. However, these solutions
are known to incur a high computational cost or exaggeratedly consume data. In
fact, existing tools usually follow what is called the active measurement approach,
which consists in injecting packet probes inside the network to achieve accurate and
precise network measurements, such as latency and bandwidth. This additional mea-
surement traffic is in one side non-negligible, limiting the frequency of usage of the
tools, and on the other side it very likely disturbs the normal network conditions that
the tools are trying to measure. The main purpose of this thesis is to leverage the
passive measurements freely available in the browser and deep learning techniques
to infer network performance without the addition of new measurement overhead.
To that aim, we need to (i) understand the link between the Web browsing and the
underlying Network, (ii) determine the Web metrics that influence the Web Quality
of Experience (QoE), and (iii) propose solutions to infer network states from these
Web metrics as precisely as possible.

We start by inferring the main properties of the underlying Network (in particu-

5

Abstract

lar the delay, the bandwidth and the loss rate) from web performance metrics (e.g.,
Connect Start, Page Load Time, [11],[20]) using passive measurements obtained from
within the browser. We use machine learning to calibrate algorithms that allow such
inference. By comparing deep learning algorithms to classical Machine Learning
(ML) algorithms like Random Forest, we highlight the feasibility of the task but
also its complexity, hence the need for sophisticated deep learning algorithms such
as convolutional neural networks (CNN). Then we study and examine the impact of
Web complexity on estimating the two specific metrics, delay and downloading band-
width. Moreover, and motivated by the concern of a fair comparison with existing
web-based monitoring solutions, we propose an integrated framework where we im-
plement our solution and mimic the behaviour of other solutions in a fully controlled
environment. Later, we propose an original network monitoring framework based on
Bayesian Gaussian Mixture Models (BGMM) coupled with an algorithm to detect in
real-time the occurrence of network anomalies. All these contributions put together
lead to an efficient, light-weight, and Web-based and data-driven network monitoring
and troubleshooting solution that run as a plugin in the end users’ browser.

Keywords: Network measurement, Network performance, Web brows-
ing, Web performance, controlled experimentation, passive measurements,
Quality of Service, prediction, Deep Learning, CNN, clustering, anomaly
detection.

6

RÉSUMÉ EN FRANÇAIS

La navigation Web est l’une des applications les plus répandues sur Internet qui
permet d’accéder à une quantité massive de services. Sa croissance accélérée et con-
tinue accentue la pression sur les infrastructures Internet et entraîne des performances
inattendues et indésirables ayant un impact négatif sur la qualité des services fournis
aux consommateurs. Par conséquent, les opérateurs de réseau et les fournisseurs de
services doivent s’assurer que la qualité de leurs services est garantie. Il est également
important que les utilisateurs soient informés de la réalité de leur accès au réseau,
en particulier lorsque la qualité de leurs services se détériore. La solution à ces dé-
fis passe par la proposition de solutions de surveillance de réseau capables d’évaluer
les performances du réseau sous-jacent, de détecter les anomalies et les blocages, et
d’identifier les causes profondes de la dégradation des performances.

De nombreux outils de surveillance et de dépannage du réseau ont récemment
été proposés, en particulier les outils basés sur le navigateur Web (e.g., Speedtest,
Netalyzr, HMN, Fathom, etc.); ces outils sont capables de surveiller les performances
d’Internet du point de vue de l’utilisateur final de manière facile et portable, et
d’effectuer des mesures représentatives de l’accès réseau. Cependant, ces solutions
sont connues pour leur coût de calcul élevé ou leur consommation exagérée de don-
nées. En fait, les outils existants suivent généralement ce qu’on appelle l’approche de
mesure active, qui consiste à injecter des paquets à l’intérieur du réseau pour obtenir
des mesures réseau précises, telles que la latence et la bande passante. Ce trafic
de mesure supplémentaire est non négligeable, limitant la fréquence d’utilisation de
type d’outils, et pouvant perturber les conditions de réseau que les outils tentent de
mesurer.

L’objectif principal de cette thèse est de tirer parti des mesures passives librement
disponibles dans le navigateur pour déduire les performances du réseau, le surveiller
en temps réel et diagnostiquer ses dysfonctionnements sans ajouter de nouvelles sur-
charges. À cette fin, nous devons (i) comprendre le lien entre la navigation web et
le réseau sous-jacent, (ii) déterminer les mesures web qui influent sur la qualité de
l’expérience web (QoE), et (iii) proposer des solutions pour déduire l’état du réseau

7

Résumé en Français

à partir de ces mesures web le plus précisément possible.

Contributions de la thèse:

Les contributions les plus importantes de la thèse sont:

1. Nous proposons de déduire les principales propriétés du réseau sous-jacent
à partir des mesures de performance web (e.g., Connect Start, Page Load
Time [11], [20]) en se basant sur des mesures passives librement disponibles
dans le navigateur. Nous utilisons l’apprentissage automatique (ML) pour
calibrer les algorithmes qui permettent cette inférence aussi précisément que
possible. En comparant les algorithmes de l’apprentissage profond aux algo-
rithmes ML classiques comme Random Forest, nous soulignons la faisabilité de
la tâche, mais aussi sa complexité, d’où le besoin d’algorithmes d’apprentissage
profond sophistiqués comme les réseaux de neurones convolutifs (CNN). Cette
approche nous a permis d’atteindre nos deux objectifs principaux : (i) réduire
le coût des mesures actives à zéro, et (ii) déduire les caractéristiques du chemin
vers le serveur web de notre choix sans recourir au déploiement d’un serveur de
mesures dédié, comme c’est le cas aujourd’hui avec les outils existants.
Nos modèles d’apprentissage profond sont calibrés à l’aide d’une approche
d’expérimentation contrôlée où nous modifions artificiellement les conditions
du réseau et automatisons une activité de navigation sur le web, puis nous util-
isons la vérité terrain sur l’état du réseau avec les mesures passives disponibles
dans le navigateur pour la formation et la validation de nos modèles. Nous
préparons le terrain pour cette modélisation en effectuant une analyse de sensi-
bilité pour comprendre la dépendance entre la performance au niveau du web et
celle du réseau. Plus en détail, nous concevons une méthodologie pour collecter
un grand ensemble de données qui relie les mesures de performance web aux
conditions de réseau sous-jacent sur un exemple de trois mesures de réseau, à
savoir le temps aller-retour (RTT), la bande passante de téléchargement et le
taux de perte. Nous montrons que nous pouvons les estimer avec une bonne
précision en utilisant uniquement des mesures passivement obtenues à partir
du navigateur, en particulier avec le modèle CNN qui surpasse les techniques
d’apprentissage automatique (ML) traditionnelles.

2. Compte tenu de l’influence du processus de chargement des pages web, nous

8

Résumé en Français

étudions et examinons cet impact sur nos modèles d’estimation, notamment, le
délai et la bande passante de téléchargement. Pour ce faire, nous capturons des
mesures spécifiques au web, avec de l’information sur les caractéristiques des
pages Web visitées (par exemple, la taille de la page Web, le nombre d’objets,
etc.) ainsi que les protocoles pris en charge (par ex. HTTP/1.1, HTTP/2,
HTTPS, etc.). Ensuite, nous appliquons la modélisation du réseau neuronal
convolutif (CNN) pour estimer l’état du réseau à partir de ces mesures pas-
sives. En outre, et aux fins de comparaison avec les solutions de surveillance
en ligne existantes, nous proposons un framework intégré dans laquelle nous
mettons en œuvre notre solution et reproduisons le comportement d’autres so-
lutions pour assurer une comparaison équitable entre les différentes approches
dans un environnement entièrement contrôlé. Nos résultats montrent que les
caractéristiques des pages web influent sur l’estimation des mesures de rende-
ment du réseau; par conséquent, elles peuvent nous permettre de connaître la
façon de choisir les pages web pour en accroître l’exactitude. En outre, notre
méthodologie est en mesure de fournir une très bonne estimation de la perfor-
mance du réseau sous-jacent, surpassant parfois certaines solutions existantes,
en particulier lorsque les paramètres du réseau sont de grandes valeurs.

3. Nous proposons une solution légère pour surveiller la performance du réseau
basée sur la consolidation de notre solution introduite plus tôt afin de dif-
férencier entre les différentes conditions du réseau qui font face aux pages
web visitées par l’utilisateur. Notre contribution consiste en (i) un framework
original de surveillance du réseau, basée sur les modèles de mélange gaussiens
bayésiens (BGMM), capable de fournir de l’information sur l’état sous-jacent
du réseau pour les différentes pages Web visitées par l’utilisateur, et (ii) un
algorithme permettant de détecter en temps réel l’apparition d’anomalies et
d’identifier les pages web qui en sont affectées, conduisant ainsi à une solution
de dépannage de navigation web efficace.

Organisation de la thèse:

Cette thèse est organisée comme suit.

1. Dans le chapitre 2, nous présentons l’état de l’art des différents aspects liés
au web. Ensuite, nous revisitons le thème de la modélisation de la qualité

9

Résumé en Français

des réseaux à partir de métriques de performance web en mettant en avant
les principales approches utilisées par les chercheurs, ainsi que les différentes
métriques web et réseaux. Enfin, nous examinons la documentation sur la
surveillance des réseaux et la détection des anomalies concernant les outils et
les approches de mesure disponibles.

2. Dans le chapitre 3, nous décrivons en détail notre approche pour estimer les
métriques réseau sous-jacent à partir des mesures de performance web ainsi que
le processus de collecte de données. Pour cela, nous concevons une méthodologie
pour collecter un grand ensemble de données qui relie les mesures de perfor-
mance web aux mesures du réseau sous-jacent. Ensuite, nous présentons notre
modèle de réseaux de neurones convolutifs (CNN) pour calibrer les algorithmes
qui permettent l’inférence de l’état du réseau, aussi précisément que possible.
Ensuite, nous validons notre solution et étudions son efficacité en la comparant
avec deux techniques de ML connues : les réseaux neuronaux et les modèles de
forêts aléatoires, et nous discutons les résultats de nos expériences.

3. Dans le chapitre 4, et compte tenu de l’influence de la complexité du web sur la
performance du réseau, nous étudions et examinons cet impact sur l’estimation
des performances du réseau. Nous proposons de capturer des mesures plus spé-
cifiques que nous étendons avec des informations sur les caractéristiques des
pages Web visitées ainsi que les protocoles pris en charge, et nous appliquons
l’algorithme d’apprentissage profond à base de CNNs pour estimer l’état du
réseau à partir de ces mesures passives. Ensuite, nous analysons l’impact de la
complexité du web sur l’estimation. De plus, aux fins de comparaison avec les
solutions de surveillance Web existantes, nous présentons notre framework in-
tégré dans lequel nous mettons en œuvre notre solution et reproduisons le com-
portement d’autres solutions. Enfin, nous montrons comment notre méthodolo-
gie est capable de fournir une très bonne estimation de la performance du réseau
sous-jacent, surpassant parfois certaines solutions existantes.

4. Dans le Chapitre 5, nous commençons par proposer un framework de surveil-
lance de réseau original, basé sur les modèles de mélange gaussiens bayésiens
(BGMM), capable de fournir des informations sur l’état de réseau sous-jacent
pour les différentes pages Web visitées par l’utilisateur. Ensuite, nous validons
notre solution et étudions son efficacité. Finalement, nous proposons un algo-
rithme capable de surveiller le réseau et de détecter l’apparition d’anomalies

10

Résumé en Français

en temps réel, conduisant ainsi à une solution de dépannage de navigation web
efficace.

5. Dans le chapitre 6, nous concluons la thèse, et nous finissons par illustrer
quelques perspectives de travaux futurs.

11

TABLE OF CONTENTS

Acknowledgement 3

Abstract 5

Résumé en Français 7

List of figures 17

List of tables 19

Abbreviations 21

1 Introduction 23
1.1 General context . 23
1.2 Challenges and Motivations . 25

1.2.1 Web-based network monitoring 25
1.2.2 Web and Network performance relationship 26
1.2.3 Network performance anomaly detection 27

1.3 Contributions of the Thesis . 27
1.4 Thesis roadmap . 29

2 State of the art 31
2.1 An overview of the web . 31

2.1.1 Web basics . 32
2.1.2 Web evolution . 34

2.1.2.1 Web content evolution 35
2.1.2.2 Transfer protocols evolution 36

2.1.3 Web page loading process . 38
2.1.4 Web performance . 39

2.2 Network performance monitoring . 41
2.2.1 Network measurement approaches 42

13

TABLE OF CONTENTS

2.2.2 Troubleshooting platforms and tools 43
2.2.2.1 Troubleshooting platforms 43
2.2.2.2 Web based troubleshooting tools 44

2.2.3 Network monitoring and anomaly detection 46
2.3 Web-based network state inference 47

2.3.1 Data collection . 48
2.3.1.1 Crowd-sourcing techniques 48
2.3.1.2 Controlled experiments 49

2.3.2 Web performance metrics . 50
2.3.2.1 Web quality of experience 50
2.3.2.2 Perceived performance metrics 50
2.3.2.3 Web objective metrics 51

2.3.3 Network QoS metrics . 53

3 Network performance inference form within the browser 55
3.1 Introduction . 55
3.2 Estimating network status from web performance measurements . . . 57

3.2.1 Methodology . 57
3.2.2 Sensitivity Analysis . 59
3.2.3 CNN-based network performance estimation 63

3.3 Performance evaluation . 65
3.3.1 Platform implementation . 65
3.3.2 Results . 66

3.4 Conclusion . 69

4 Impact of web page complexity on network performance inference 71
4.1 Introduction . 71
4.2 Delay and bandwidth inference . 73

4.2.1 Data collection phase . 73
4.2.2 Estimation phase . 74
4.2.3 Feature importance study . 76

4.3 Performance evaluation . 78
4.3.1 Impact of web page size and number of objects 78
4.3.2 Protocol impact on estimation: HTTP/1.1 vs HTTP/2 79

4.4 Our approach against other web-based monitoring solutions 82

14

TABLE OF CONTENTS

4.4.1 Integrated platform implementation 82
4.4.2 Results . 84

4.5 Conclusion . 90

5 Leveraging web browsing performance data for network monitoring 91
5.1 Introduction . 91
5.2 Web-based network monitoring using data clustering 92

5.2.1 Data collection . 93
5.2.2 Data-driven network estimation 94
5.2.3 Data clustering . 95
5.2.4 Clustering validation . 96
5.2.5 Real-time anomaly detection 98
5.2.6 Anomaly detection analysis 99

5.3 Performance evaluation . 99
5.3.1 Framework setup . 99
5.3.2 BGMM tuning . 101
5.3.3 Results . 102
5.3.4 Comparison with other clustering methods 105
5.3.5 Anomaly detection validation 106

5.4 Conclusion . 107

6 Conclusion and perspectives 109
6.1 Conclusion . 109
6.2 Perspectives . 110

6.2.1 Extension to further contexts 110
6.2.2 Crowdsourcing and Federated Learning (FL) 112
6.2.3 Localization of anomalies . 113

Publications 115

Bibliography 117

15

LIST OF FIGURES

1.1 Internet evolution timeline . 23
1.2 Internet traffic changes during the outbreak of COVID19 at multiple

vantage points according to Feldmann et al. [28] 24

2.1 Basic Web concepts . 32
2.2 Web evolution timeline . 34
2.3 Timeline of web technologies . 35
2.4 Percentages of websites using HTTPs, HTTP/2, QUIC, and SPDY

today according to W3Techs.com . 36
2.5 How a web page is loaded and displayed 38
2.6 Troubleshooting tools . 43
2.7 From Web performance to Network Quality 48
2.8 Web browsing main events and related metrics according to W3C’s

specifications . 53

3.1 Experimentation methodology . 58
3.2 DNS sensitivity to network QoS . 60
3.3 Connect Start sensitivity to network QoS 60
3.4 Request sensitivity to network QoS 61
3.5 Response sensitivity to network QoS 61
3.6 DOM sensitivity to network QoS . 61
3.7 FCP sensitivity to network QoS . 61
3.8 First Paint sensitivity to network QoS 63
3.9 PLT sensitivity to network QoS . 63
3.10 Comparison between NN and CNN using a different number of neurons 67
3.11 RF performance versus number of trees for Loss Rate 68
3.12 CNN against NN and Random Forest 68

4.1 Data collection and processing phase 74
4.2 Estimation phase . 75

17

LIST OF FIGURES

4.3 Feature importance using Random Forest 77
4.4 Heatmap correlation matrix of features 78
4.5 RTT and bandwidth estimation error for the top 500 web pages . . . 79
4.6 RTT and download bandwidth estimation error in function of the num-

ber of objects for different web page sizes 80
4.7 Estimation error with both HTTP/1.1 and HTTP/2 for different ranges

of delay and bandwidth . 81
4.8 RTT and download bandwidth error in function of number of objects

for HTTP/1.1 versis HTTP/2 . 82
4.9 Integrated platform implementation 84
4.10 RTT error of implemented troubleshooting techniques 85
4.11 Download bandwidth error of implemented troubleshooting techniques 85
4.12 Error of implemented techniques in terms of RTT 86
4.13 Error of implemented techniques in terms of download bandwidth . . 86
4.14 Comparison of performance for estimating RTT and bandwidth be-

tween pages we know and new pages 86
4.15 RTT and download bandwidth error in function of page size 87
4.16 RTT and download bandwidth error in function of number of objects 88

5.1 Our appraoch in three phases . 92
5.2 Flowchart for BGMM network monitoring analysis 96
5.3 Framework implementation . 100
5.4 BGMM clustering accuracy for 500 web pages 103
5.5 Accuracy of finding the right number of clusters 103
5.6 Clustering accuracy versus number of pages 103
5.7 Heat map of the minimum number of pages needed to achieve 85%

clustering accuracy . 104
5.8 Clustering accuracy versus number of pages for different balances be-

tween the network conditions . 105
5.9 Accuracy detection of delay increase and Bandwidth drop for different

percent of web pages . 106

18

LIST OF TABLES

2.1 Main network troubleshooting tools and their approaches 44
2.2 Common web performance time-instant metrics 52
2.3 Some web performance time-integral metrics 53

4.1 Web and network performance metrics 76
4.2 Implemented techniques . 84

5.1 Web performance metrics . 94
5.2 Comparison between clustering models 105

19

ABBREVIATIONS

API Application Programming Interface

ATF Above The Fold

BGMM Bayesian Gaussian Mixture Models

BI ByteIndexe

CDN Content Delivery Network

CNN Concolutional Neural Networks

CSS Cascading Style Sheets

DL Deep Learning

DNS Domain Name System

DOM Document Object Model

GMM Gaussian Mixture Models

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP Secure

IP Internet Protocol

ML Machine Learning

MOS Mean Opinion Score

NN Neural Networks

PLT Page Load Time

QoE Quality of Experience

QoS Quality of Service

QUIC Quick UDP Internet Connections

RF Random Forest

RTT Round Trip Time

SSL Secure Sockets Layer

21

Abbreviations

TCP Transfer Control Protocol

TLS Transport Layer Security

TN True Negative

TP True Positive

UDP User Datagram Protocol

URL Uniform Resource Locator

WebQoE Web Quality of Experience

22

Chapter 1

INTRODUCTION

1.1 General context

The internet has witnessed a massive development in a short period of time,
until it has become today a global entity that extends to all different fields of life
such as education, business, communication, and entertainment. The internet is the
culmination of many efforts and contributions. Its history begins in 1969 with the
creation of a large network that interconnects many computers. Then, Ray Tomlinson
sent the first message through e-mail in 1971, and used “@” to distinguish between
the name of the sender and the name of the network in the e-mail address. Two
years later, the internet Transmission Control Protocol (TCP/IP) was designed and
in 1983 the protocol became the standard for communication between computers.

1973 1971 1969 1991 2022
Birth of Internet Email invented TCP/IP invented WWW established Billion users4.5

Figure 1.1 – Internet evolution timeline

Web browsing is one of the most dominant activities on the internet that allows
accessing a massive number of services, from watching videos and news, searching for
information, to online shopping, etc. In other words, the web has become over the
years a principal pillar of the information age. However, the accelerated and contin-
uous growth of web traffic can still lead to unexpected and unwanted performance
behaviours that negatively impact the quality of service delivered to the customer,
thus leading to session and even service abandonment. Indeed, recent studies have
shown that end-user performance is directly related to the number of visitors and
sales on popular web pages. Consistently, high web page delay increases the aban-
donment rate by end users. For example, according to Amazon, a 100ms additional

23

Introduction

delay in page load time can cause a 1% decrease in sales [25], and for Google adding
500ms in latency can lead to a drop of 20% in their traffic. In addition, for a small-
scale e-commerce web page with daily sales of $100,000, a 3-second page delay can
lead to about 21% loss in sales annually [82]. These implications show the impor-
tance and the potential economic value of detecting web performance problems, and
particularly those of the underlying network infrastructure.

Monitoring network performance in the context of web browsing activities be-
comes, therefore, a necessity today, especially during the COVID-19 pandemic, where
internet traffic has increased significantly due to the sanitary lockdowns (see figure
1.2). On one hand, this monitoring allows network operators and content providers to
evaluate and understand the quality they deliver to their customers, and gives them
hints on the origin of any issues within the network. On the other hand, performing
network measurements gives the end users a better understanding of the actual state
of their networks and the services to which they connect, especially when the quality
of service drops; this gained knowledge allows them to take the appropriate actions
towards improving the quality of their communications [79], [49], [3], [30], [10].

Figure 1.2 – Internet traffic changes during the outbreak of COVID19 at multiple
vantage points according to Feldmann et al. [28]

24

Introduction

1.2 Challenges and Motivations

1.2.1 Web-based network monitoring

Many monitoring platforms and tools have been proposed to monitor the status
of the internet, some of which are standalone applications. As the final user is the one
who best perceives the quality received, there has been in recent years an emerging
need to monitor the internet performance from the end user point of view in a portable
and easy way. This has led to a new trend of network measurement tools [57], [48],
[23],[83],[53] that can run within the browser itself – we talk about web-based network
monitoring, known by their portability and the facility with which they are used, and
allowing to easily establish the link between web and network performance while
staying within the web browser environment.

In general, bridging the gap between web performance and network performance
requires the deployment of either standalone measurement tools in the form of appli-
cations (e.g., pathload for bandwidth measurement [47]), or of browser plugins with
an explicit action by the user in the form of visiting a web page to download a file,
for example [95]. For the latter, many web measurement tools have recently been
proposed to conduct measurements from within the browser itself. For instance, we
find Speedtest.net [83], a web site using Flash and Java Applet to measure the ping
(latency), the download speed and the upload speed. Netalyzr [53] is a Java Applet
that probes many servers and provides information on the network and its access
services. Fathom [23] is a Firefox plugin that performs several passive and active
network measurements using JavaScript.

These solutions are either computationally expensive, less generic, or greedy in
terms of data consumption. In fact, existing tools usually implement an active ap-
proach. By injecting dedicated traffic into the network, they are able to derive accu-
rate measurements with high precision about the network performance, such as the
Round-Trip Time (RTT) and the download speed. These tools are, however, known
to incur cost on the network and the data plane of the end user, especially in a mo-
bile setup, with possible interaction of the measurement traffic with the traffic of the
other applications and users, which if it happens impacts both the other traffic and
the accuracy of the measurement results themselves.

The question of reducing this cost is then open, with some of the tools [5] relaying
for example on lightweight UDP-based probing instead of TCP-based probing [23], to

25

Introduction

reduce the cost of downloading or pushing MegaBytes of files to estimate the network
throughput with TCP at the risk of being filtered or shaped by the network. More-
over, active measurement tools, especially the ones dedicated to bandwidth measure-
ments, require the collaboration of servers on the other side from which to download
files or to which to upload files. The deployment of these measurement servers is a
difficult task, as theoretically they have to be present everywhere if we want to be
general and accurate in our path performance measurements. The common practice
is to deploy them close to the edge, which results in limiting the spectrum of active
measurements to the path between the end-user device and the nearest server, thus
implicitly covering the access network portion.

From these observations, and for web browsing in particular, it turns out that
there is a need to deploy techniques able to carry out network measurements at low
or even zero cost to the web server of our choice. Hence, the interest of resorting to
native browser level passive measurements whenever possible, and to support them
by ML-based algorithms to improve the accuracy of their estimation. This is our
main idea in this thesis.

1.2.2 Web and Network performance relationship

Understanding the relationship between web performance and the actual net-
work state is key to network troubleshooting. However, given the complexity of the
web [14], this task is very challenging [79]. Indeed, today’s web pages incorporate
plenty of objects fetched from multiple servers through multiple connections and
use complicated rendering technologies with advanced underlying protocols such as
HTTP 1.1, HTTP/2 and QUIC (to add to transport and mac protocols). Choosing
the web metrics that faithfully reflect the end-user Quality of Experience (QoE) is
another tough task [11]. The PLT (Page Load Time) is one of the commonly used
metrics. For example, Alexa reports the quantiles of the PLT, and Google uses PLT
to rank search results. However, recent studies deduce that this metric alone cannot
give a precise estimation of web browsing quality, hence the need for finding more
suitable metrics that are closer to screen rendering and its subjective evaluation by
the user [20]. That is why new metrics such as SpeedIndex and Above The Fold
(ATF) render time have seen the light.

In this thesis, we will seek the most relevant web metrics while being as exhaus-
tive as possible. Then, we propose a data-driven methodology based on controlled

26

Introduction

experimentation and machine learning (ML) to establish consolidated links between
what happens at the Web level and the performance conditions of the underlying
network.

1.2.3 Network performance anomaly detection

Detecting performance anomalies and identifying potential root causes are chal-
lenging, mainly because of the scale, heterogeneity and dynamics of today’s internet
infrastructure. A timely detection of performance anomalies is needed to guaran-
tee network and web performance, service reliability, and Quality of Service (QoS),
and this is critical for service providers before anomalies trigger unexpected service
downtime. Considerable efforts have been made to address this issue in the literature.
Many of the proposed solutions focus on solving the problem in specific domains by
leveraging the power of statistical and machine learning techniques [36],[21], [99],
[44], [107], [100]. In fact, a basic network anomaly detection system monitors the
performance behaviours of the underlying network and collects vital measurements
to create baseline models or profiles of typical network behaviours. It continuously
monitors new measurements for deviations in order to detect expected or unexpected
performance anomalies and carries out root-cause analysis to identify associated bot-
tlenecks.

Network performance anomaly detection is often carried out with network-level
data; moving it to the web browser level and seeking solutions to detect anomalies
with web measurements is a challenging task that we handle in this thesis.

1.3 Contributions of the Thesis

The main objective of this thesis is to leverage passive measurements freely avail-
able in the browser and deep learning techniques to infer network performance with-
out the addition of new measurement overhead. For this purpose, several issues have
been addressed. The most significant contributions of the thesis are:

1. We propose to infer the main properties of the underlying network from web
performance metrics (e.g., Connect Start, Page Load Time, [11],[20]) based
on passive measurements obtained from within the browser. We use machine
learning to calibrate algorithms that allow such inference as accurately as pos-

27

Introduction

sible. By comparing deep learning algorithms to classical ML algorithms as
Random Forest, we highlight the feasibility of the task, but also its complex-
ity, hence the need for sophisticated deep learning algorithms as convolutional
neural networks (CNN). This approach allowed us to achieve our two main
goals: (i) reducing the cost of active measurements to zero, and (ii) inferring
the characteristics of the path to the web server of our choice without resorting
to the deployment and choice of a dedicated measurement server, as it is the
case nowadays with existing tools.
Our deep learning models are calibrated using a controlled experimentation
approach where we artificially change the network conditions and automate
a web browsing activity, then we use the ground truth on the network state
together with the passive measurements available in the browser for the training
and validation of our models. We prepare the ground for this modelling by
carrying out a sensitivity analysis to understand the dependency between the
performance at the web level and the one of the network.
In more detail, we engineer a methodology for collecting a large dataset that
links the web performance measurements to the underlying network conditions
over an example of three network metrics, namely the round-trip time (RTT),
the download bandwidth and the loss rate. We show that we can estimate them
with good accuracy by only using measurements passively obtained from within
the browser, especially with the CNN model that outperforms the traditional
Machine Learning (ML) techniques.

2. Considering the influence of the loading process of web pages, we study and
examine this impact on our estimation models, in particular, delay and down-
load bandwidth. To do so, we capture web-specific measurements that we
extend with information on the characteristics of the visited web pages (e.g.,
web page size, number of objects, etc.) as well as the protocols supported
(e.g., HTTP/1.1, HTTP/2, HTTPS, etc.). Next, we apply Convolutional Neu-
ral Network modelling (CNN) to estimate the network state from these passive
measurements. Moreover, and for the purpose of comparison with existing
web-based monitoring solutions, we propose an integrated framework where we
implement our solution and mimic the behaviour of other solutions to ensure a
fair comparison between the different approaches in a fully controlled environ-
ment. Our results show that web page characteristics impact the estimation of

28

Introduction

network performance metrics; thus, it can give us hints on how to choose web
pages to increase accuracy. Furthermore, our methodology is able to provide
a very good estimation of the underlying network performance, outperforming
some existing solutions by times, especially when the network metrics are of
large values.

3. We propose a lightweight solution for monitoring network performance based
on consolidating our solution introduced earlier and building upon it towards
differentiating between the different network conditions that face the web pages
visited by the user, which is essential for network anomaly detection and web
browsing troubleshooting. Our contribution consists of (i) an original network
monitoring framework, based on Bayesian Gaussian Mixture Models (BGMM),
able to provide information on the underlying network state for the different
visited web pages by the user, and (ii) an algorithm to detect in real time the
occurrence of anomalies and identifies the web pages that are affected by them,
thus leading to an efficient web browsing troubleshooting solution.

1.4 Thesis roadmap

The rest of the thesis is organized as follows.

1. In Chapter 2, we overview the state of the art of the different aspects related to
the web, from web basics and evolution to web performance. Then, we revisit
the topic of modelling network quality based on web performance metrics by
highlighting the main approaches used by researchers, as well as the different
web and network metrics. Finally, we review the literature on network mon-
itoring and anomaly detection regarding the available measurement tools and
approaches.

2. In Chapter 3, we describe in detail our approach for estimating the underly-
ing network metrics from web performance measurements, as well as the data
collection process. For that, we engineer a methodology for collecting a large
dataset that links web performance measurements to underlying network mea-
surements. Next, we present our convolutional neural networks (CNN) model
to calibrate algorithms that allow network inference as accurately as possible.
Then, we validate our solution and study its efficiency by comparing it with

29

Introduction

two known ML techniques: Neural Networks and Random Forests models, and
we discuss the results of our experiments.

3. In Chapter 4, and given the influence of web complexity on web and network
performance, we study and examine this impact on the estimation of network
performance, in particular, delay and download bandwidth. We propose to
capture more specific measurements that we extend with information on the
characteristics of the visited web pages as well as the protocols supported, and
we apply the CNN deep learner to estimate the network state from these pas-
sive measurements. Then, We analyze the impact of web complexity on the
estimation. Also, for the purpose of comparison with existing web-based moni-
toring solutions, we propose an integrated framework where we implement our
solution and mimic the behaviour of other solutions to ensure a fair comparison
between the different approaches in a fully controlled environment. Finally,
we show how our methodology is able to provide a very good estimation of
the underlying network performance, outperforming some existing solutions by
times.

4. In Chapter 5, we start by proposing an original network monitoring framework,
based on Bayesian Gaussian Mixture Models (BGMM), able to provide infor-
mation on the underlying network state for the different visited web pages by
the user. Next, we validate our framework and study its efficiency. Then, we
suggest an algorithm able to monitor the network and detect the occurrence of
anomalies in real-time, thus leading to an efficient web browsing troubleshooting
solution.

5. In Chapter 6, we conclude the thesis, and we present perspectives and future
directions for our work.

30

Chapter 2

STATE OF THE ART

In this chapter, we first provide an overview of the web as well as the basics of

its structure, then we highlight the main contributions in the literature related to

network performance monitoring and troubleshooting tools. Finally, we discuss the

different aspects related to inferring network states from web performance metrics.

2.1 An overview of the web

The internet and the web have affected our lives greatly by changing radically

the way we seek, exchange, distribute, and process information. In few decades, the

internet has become a powerful social force, impacting all areas of life, constituting

the most extensive library and largest marketplace on earth.

Although common usage tends to confuse the words “internet” and web, we should

distinguish between them. Indeed, the internet is a global communication network

linking billions of computers, which offers a vast range of services. It is a general term

relative to the underlying networks that compose the internet and the way they are

connected together. On the other hand, the web is related to the information stored

and available on the internet: a huge distributed and dynamic system composed of

many web pages.

31

Chapter 2 – State of the art

2.1.1 Web basics

The WWW or the World Wide Web [8] is one of the most dominant services

running on the internet. We can define it as a set of web pages spread over many sites.

These pages, which are constituted of text, images, sound, etc., are linked together via

hypertext links, hence the possibility of surfing from one page to another. Accessing

information of a web site is managed by a web server. Users retrieve the content of

a website using a web client, which is also called a browser such as Mozilla Firefox

or Google Chrome. Accordingly, the web is implemented based on three elements:

resources, resource identifiers, and transfer protocols that depict respectively how

information is stored, located, and exchanged.

Web Client Web Server

Internet

HTTP

 Over a TCP/IP

Network

HTTP

 Over a TCP/IP

Network

Figure 2.1 – Basic Web concepts

Web resources. A web resource is a basic building block of the World Wide Web

architecture. Resources are entities such as text, images, audio, etc., accessible inde-

pendently from each other. A vast proportion of existing web resources are HTML

documents.

HTML, which stands for "HyperText Markup Language" [42], is a language used

to encode a web document’s content and include hyperlinks to create web pages.

32

2.1. An overview of the web

HTML allows a website creator to manage how their web pages will display on a

screen through the browser. It is based on a system of tags, making it possible to :

— Publish documents online with text, tables, lists, photos, etc.

— Bring information online via hypertext links with a simple click.

— Design forms to conduct transactions with remote services in order to search

for information, make reservations, take orders, etc.

— Include spreadsheets, video or sound clips and other applications directly in

documents.

Resource identifiers. Resource identifiers, or URLs (Uniform Resource Locator)

[45], are commonly known as web addresses. A URL is a uniform string of characters

that specifies the location of a web resource by indicating the name of the protocol

used to retrieve it, the domain name that identifies a specific computer on the internet,

and the access path which (i.e, a hierarchical description) indicates the location of

the file in this computer.

Transfer Protocols. Transfer Protocols are conventions that regulate the exchange

of information between two connected entities; a web client and a web server. The

Hypertext Transfer Protocol, generally abbreviated as HTTP, is a client-server com-

munication protocol developed by Tim Berners-Lee at CERN [17] as the basis for

creating the World Wide Web. While HTML (Hypertext Markup Language) defines

how a website is constructed, HTTP determines how the page is transmitted from

server to client. Today, this protocol is used in a wide variety of ways:

— HTTP allows the browser to request all types of media used on modern websites:

text, images, videos, source code, etc.

— Applications also use HTTP to load files and updates from remote servers.

— HTTP is also involved in REST APIs, a solution for controlling web services.

33

Chapter 2 – State of the art

— In machine-to-machine communication, HTTP is used to communicate between

web services.

— HTTP is also used by media players.

2.1.2 Web evolution

Web 1.0

2006 2011 20221990 1994 1998 2004 2005

Web 2.0 Web 3.0

Figure 2.2 – Web evolution timeline

The process of consulting the information available on the internet with the hy-

pertext protocol was imagined in 1989, at CERN in Switzerland [17]. This center

can thus be considered as the creator of the Web. By creating the WorldWide Web

software, Tim Berners-Lee [91] created both the first web browser and the first web

editor because he wanted to make the web a collaborative medium in which all actors

consult and create information. However, the web immediately turned into a medium

for global information dissemination rather than simple collaboration.

In the first half of the 1990s, the concept of a website at the root of a stable

domain name was not established. Sites were often set up in technical departments

by employees and students, and URLs changed as people and infrastructure changed.

Also, there was no effective search engine, and many pages were lists of links to the

page author’s favourite pages. In January 1994, Yahoo! was created and quickly

became the largest web directory. In the second half of the 1990s, the web became

popular, and all major companies, organizations, schools, administrations opened a

website. Search engines became efficient, notably with the appearance of Altavista

in December 1995, and finally Google in 1998. In this phase of media development, a

flow of top-down information predominated: a website was made to disseminate the

34

2.1. An overview of the web

information of its owner.

In the 2000s, the notions of blog, wiki and social networking (Myspace in 2003,

Facebook in 2004) became popular. User-generated content spreads (Wikipedia in

2001, YouTube in 2005, Twitter in 2006). The Ajax technology (1998, theorized in

2005) is widely used to create complete applications that fit into a single web page

(Google Maps in 2004). The expression Web 2.0, widely popularized in the mid-

2000s, refers to this transition in the flow of information and the way of using the

Web. The popularity of the term “Web 2.0” has led many people to call “Web 2.5”,

3.0, 4.0, etc., their vision of the Web of the future.

2.1.2.1 Web content evolution

1991 1994 1996 1997 1998 2000 2005 2009

HTML HTML2 CSS1 HTML4 AJAX HTML5CSS2 XHTML1

Figure 2.3 – Timeline of web technologies

The content of the web has changed drastically from “read-only mode” in 1990 [69]

to a dynamic and interactive web, including media content of all sorts: images, audio,

tables, etc. In order to handle these new requirements, many technologies have

seen the light, mainly HTML2 alongside JavaScript in 1995, CSS1 (Cascaded Style

Sheets) and XML (eXtensible Markup Language) in 1996, XHTML1 in 2000, AJAX

(Asynchronous JavaScript and XML) in 2005 and HTML5 in 2009. Therefore, web

content has kept evolving throughout the years. Several researchers have studied this

evolution from different aspects: web page size in [12, 8], web page number of objects

in [38, 29], and HTTP request/response size in [38, 16, 68]. All these studies agreed

that, over the years, the number, and size of web pages had increased and become

more and more complex.

35

Chapter 2 – State of the art

2.1.2.2 Transfer protocols evolution

Transfer protocols

0%

25%

50%

75%

100%

HTTPS HTTP/2 QUIC SPDY

Top 10 000 Top 1000

Figure 2.4 – Percentages of websites using HTTPs, HTTP/2, QUIC, and SPDY today
according to W3Techs.com

The history of HTTP begins in 1989 [43]. The initial version of HTTP had version

number 0.9 and was titled “one-line protocol”. It only allowed viewing an HTML file

from a server by simply transmitting the corresponding file. That’s why this version

of the protocol could only handle HTML files.

In 1996, the HTTP/1 version was described by the Internet Engineering Task

Force (IETF) [7], but it was then only a non-binding proposal. A header was added

to specify both the client request and the server response. In particular, the “Content-

Type” header field, which allows files other than HTML documents to be transmitted,

has been introduced.

In 1997, the HTTP/1.1 [31] version appeared, considered the first “official” stan-

dard and is still used today. Some of the most important new features compared to

HTTP/1 are:

— Keep-alive: the client has the option of maintaining the connection beyond

a request (persistent connection) by sending a keep-alive in the header of its

36

2.1. An overview of the web

request.

— HTTP-Pipelining allows the client to send the next request before receiving the

response to the first request.

— Cache: New mechanisms for buffering content are available.

Over the years, websites have steadily grown in size and complexity. To be able

to load a modern website in a browser, this latter must request several megabytes

of data and send up to 100 different HTTP requests. Since HTTP/1.1 allows for

processing requests one after the other in the same connection, the more complex

a website is, the more time it takes to establish the page. That’s why Google has

developed a new experimental protocol called SPDY [71](pronounced “Speedy”). The

latter aroused great interest and resulted in the publication of the HTTP/2 version

of the protocol in 2015 [6]. This new standard brings in particular new features,

all aimed at speeding up the loading of websites. HTTP/2 is quickly becoming the

norm; particularly, internet sites with high traffic did not wait to switch to this new

version. In January 2020, nearly 42 percent of websites were using the HTTP/2

version, according to data from W3Techs.

In all older versions of the HTTP protocol, the underlying TCP transport protocol

was one of the weak points. The latter requires the recipient of each data packet to

confirm its reception, before the sender can send new packets (within the capacity

of the congestion and receiver windows). But if one packet is lost, all other packets

have to wait for the lost packet to be forwarded again. In this case, experts speak

of “head-of-line blocking”. Therefore, the new HTTP/3 must no longer be based

on TCP but on UDP, which does not require any corrective measures of this type.

The QUIC protocol (Quick UDP Internet Connections) [55] was developed for this

purpose by relying on the UDP protocol and is expected to serve as the basis for

HTTP/3 [9]. For the moment, HTTP/3 has not yet been definitively adopted by the

IETF. But according to W3Techs, nearly 3 percent of websites use either QUIC or

HTTP/3.

37

Chapter 2 – State of the art

2.1.3 Web page loading process

Parsing
Web page

Web page

Request 1

2

Rendering
Web page

4

Web page

Building3

Figure 2.5 – How a web page is loaded and displayed

In this section, we provide an overview of what actually happens when a webpage

is displayed in a browser. The process of loading and displaying a web page is based on

four main steps. First, the web browser makes a request when the page link is clicked.

Second, the web page and its resources are downloaded. Third, the web browser uses

the fetched objects to create the page. And finally, the page is rendered to the end-

user on the screen. In a nutshell, we refer to these steps as (i) request/response, (ii)

parsing, (iii) building, and (iv) rendering (see Figure 2.5).

The request made for a web page usually occurs when a link is clicked, when

the user types a URL in the Web browser, or when a page is refreshed. We call

the moment the page is requested “Navigation Start” to indicate when the whole

process of downloading and displaying a page begins. This step consists of fetching

the main source of the web page, which is the HTML document located on the Web

server using the HTTP transfer protocol. Then the Server provides the requested

document. In the case of simple web pages, the loading will be complete by receiving

the HTML file. However, most web pages need additional resources such as images,

CSS, and JavaScript.

The purpose of the parsing step is to know whether the page needs additional

resources. In particular, the Web browser will read or “parse” the HTML document

38

2.1. An overview of the web

obtained and looks for any CSS, JavaScript and images to fetch. Then the browser

makes another request to get each resource referenced by the page from the server

(or other servers in case of external resources).

The building step consists of using the resources to create or “build” the web page.

The web browser combines the information found in the HTML file and resources,

and starts by building the “Document Object Model” or DOM. The DOM represents

where objects are displayed on the page based on the HTML. Then, the browser

builds the “CSS Object Map” or CSSOM, a map of the styles referenced by the

CSS. Finally, it creates the Render Tree, which basically combines the DOM and the

CSSOM to create a map of how the web page will be rendered.

Rendering is the final step at which the web browser will eventually display some-

thing on the screen. Here, the browser will start to determine the size of displaying

each object; we talk about layout or reflow. Then, the browser will actually paint

the whole page on the screen by converting each node of the render tree to pixels.

2.1.4 Web performance

In this section, we provide a brief overview of web performance along with the

important factors affecting it. Web performance refers to several factors contributing

to how quickly, efficiently, and correctly a web page loads. In other words, it can be

defined by how fast a website is rendered on the screen of the user, which is becom-

ing crucial nowadays. Indeed, according to Google, adding 500 ms in latency could

lead to a drop of 20% in traffic [82]. Therefore, Google does not hide the fact that

the speed of websites will have a direct impact on search rankings. Also, Amazon

confirmed that a 100 ms additional delay in page load time could cause a 1% de-

crease in sales [25]. However, today’s web pages incorporate plenty of objects fetched

from multiple servers through multiple connections and use complicated rendering

technologies with advanced underlying protocols such as HTTP 1.1, HTTP/2 and

QUIC. This complexity increases the latency of loading web pages and consequently

39

Chapter 2 – State of the art

degrades web performance, hence putting more pressure on servers, devices, and more

importantly the underlying network infrastructure.

Next, we review the factors affecting the web performance, such as the web page

complexity, the transfer protocols and the web content distribution infrastructure.

Webpage complexity. In Section 2.1.2.1, we explained how the web content

has evolved, leading to having more complex web pages consisting of hundreds of

web elements such as HTML, JavaScript, CSS, images, and multimedia content such

as video and Flash. Several works have studied the impact of web complexity on web

performance in terms of the number, the type, and the size of the web objects, as

well as the processing of the objects and the rendering to the browser. For instance,

Wang et al. [101] performed a study to capture the constraints between page parsing,

JavaScript/CSS evaluation, and rendering activity. They find that inter-dependencies

between HTML elements have a significant impact on the page load time and cannot

be ignored, and that synchronous JavaScript plays a significant role in page load

time by blocking HTML parsing. The authors, in [103], also showed that parsing-

blocking CSS and JavaScript files slowed down the web page load time by 20%.

Zhichun Li et al. [58] studied the impact of web object dependencies on predicting

performance in an accurate and scalable manner. Butkiewicz et al. [15] demonstrated

that the number and size of objects composing a web page can affect the download

performance of the website. Transfer protocols. As we mentioned before, HTTP

has evolved [43] from the first HTTP/0.9 to the HTTP/1.0 and sooner to the ‘official

protocol’ HTTP/1.1 [31] with many important extensions namely the HTTP over

TLS [74] (the secured version of HTTP). Then a new protocol SPDY [71] has been

proposed by Google in order to tackle the inefficiencies of HTTP/1.1. Consequently,

HTTP/2 has seen the light and standardized in 2015. Since this latter does not

completely alleviate all the inefficiencies especially related to the TCP transport

protocol, Google also proposed “Quick UDP Internet Connections” (QUIC) [55], a

transport protocol that aims at reducing the network latency.

40

2.2. Network performance monitoring

Many studies have been performed to understand performance-related inefficien-

cies in delivering web pages caused by transfer protocols. For instance, Liu et al. [59]

studied the performance of HTTP/2 and HTTPS to show they could either decrease

or increase the latency of loading web pages under several network conditions and

page characteristics. Naylor et al. [65] also studied the impact of using HTTPS on

latency. Regarding the QUIC protocol, Wolsing et al. [104] show that QUIC outper-

forms HTTP/2 over TCP in a comparison study. In addition, Rüth et al. [77] studied

the impact of using QUIC protocol on end-users. Indeed, they perceive QUIC as a

fast protocol compared to HTTP/2, especially in networks with a high delay and loss

rate.

Web content infrastructure and caching. As stated previously, in order to

ensure rapid availability on a global or near-global scale, Content Delivery Network

(CDN) is needed; it consists of a network of servers that cache and delivers web

data. Basically, CDN stores a cached version of websites around the world. In

general, caching is the temporary storage of data to respond more quickly to future

requests, and it can be used at several levels [97, 90]. Thus, the lack of a web content

infrastructure and caching could negatively impact web performance. Indeed, Zaki et

al. [108] found that the main causes for poor web performance in developing regions

are related to the lack of good caching infrastructure. Also, Fanou et al. [27] showed

that degraded web performance in Africa is related mainly to the inter-AS delays

and the nonavailability of web content infrastructure. Regarding the importance of

caching, Vesuna et al. [96] demonstrate that caching can improve the latency by 34%

on desktops.

2.2 Network performance monitoring

Monitoring network performance is becoming crucial to detect anomalies and

bottlenecks in the underlying network and identify the root causes of performance

41

Chapter 2 – State of the art

degradation. Indeed, content providers need to ensure a good quality of their services.

As for end-users, it is essential for them to know about the actual state of their

networks and the services to which they connect, especially when the quality of

service drops. Such knowledge allows them to take the appropriate actions toward

improving the quality of their communications.

Many approaches have been proposed recently to measure the network perfor-

mance and detect related performance issues. In this section, we present an overview

of some troubleshooting techniques and tools used to monitor the network.

2.2.1 Network measurement approaches

Active measurements. This technique consists of injecting probing packets

into the network in order to measure its characteristics, in particular the round trip

time and the available bandwidth. Some of the traditional active network tools are:

ping, traceroute and tcpdump. Unfortunately, this approach has many limitations:

1. When injected packets are lost, the tools become inefficient and the measure-

ments inaccurate.

2. This method may introduce additional overhead to the network that may dis-

turb the normal traffic flow.

3. The measurement results could be altered due to the extra traffic injected by

the measurement tool itself, or by the other traffic flows.

Passive measurements. This technique consists of recording the internet traffic

and studying its properties without injecting additional overhead, by simply gather-

ing data passively. Unlike active measurements, passive methods do not introduce

additional traffic; therefore, they do not disturb the flow or add extra overhead. Also,

they provide a precise representation of the network traffic.

42

2.2. Network performance monitoring

Network troubleshooting tools

Web based
troubleshooting toolsToubleshooting platforms

HTTP-based Socket-based

Figure 2.6 – Troubleshooting tools

2.2.2 Troubleshooting platforms and tools

Several measurement tools and approaches have been proposed for monitoring

and troubleshooting the performance of the web ecosystem in the last few years. We

can divide them into two main parts: network measurement platforms and web-based

measurement tools [2][92], see Figure 2.6.

2.2.2.1 Troubleshooting platforms

A network measurement platform is a server-based infrastructure dedicated to test

and to measure Internet and network performance using active or passive methods.

Many researchers use PlanetLab [70] to support the development and testing of new

network services, even if the latter is not really meant to be a measurement platform.

Measurement Lab (M-Lab) [61], launched by Google, also allows and facilitates this

kind of task. These platforms are a distributed set of servers hosted at research

institutes.

The ACQUA application developed by the DIANA team at Inria Sophia Antipolis

is another example of monitoring platforms based on crowd-sourcing [5]. ACQUA

aims to estimate the quality of experience related to the different internet services,

such as Skype and video streaming applications, from network-level measurements

such as bandwidth, delay, and loss rate.

These standalone tools are known to be efficient. However, they require a tough

43

Chapter 2 – State of the art

installation. Therefore, the necessity to easily perform measurements in end systems

led to the development of new solutions: web-based measurement tools.

2.2.2.2 Web based troubleshooting tools

Many of these tools have recently seen the light mainly due to their ease of use and

their portability and cross-platform features. For example, the Janc’s method [48]

provides multiple services based on Flash and JavaScript to measure the RTT and the

throughput in a fully controlled way. Netalyzr [53], which is based on a Java applet

accessible from a web page, provides measurements of the latency, the bandwidth

and the buffering at the edge of the network. Speedtest [83], which operates mainly

over TCP testing with an HTTP fallback for maximum compatibility, measures the

latency, the download speed, and the upload speed. How’s My Network (HMN)

[76] is a website that provides predictions for common Internet activities. Table 2.1

gives a summary of the main tools and the approach they follow. In this thesis, we

position ourselves on the front of web measurements tools, given their increased level

of practicality and interest for the end user.

Table 2.1 – Main network troubleshooting tools and their approaches

Troubleshooting tool Nature Methodology Approach
Speedtest.net Website, plugin Flash HTTP
Janc’s study Native JavaScript HTTP
Netalyzr plugin Java Applet Socket
HMN plugin Java Applet Socket
NDT plugin Java Applet Socket
Fathom plugin Java Script HTTP
Navigation timing API Native DOM HTTP

In general, the methods to measure the network from within the browser (e.g.,

delay, bandwidth) consist of recording the time before and after retrieving an object

from the web server. The measurement process used by these methods can therefore

44

2.2. Network performance monitoring

be HTTP-based or socket-based.

HTTP-based. HTTP-based methods are implemented through JavaScript or

Flash. One way of doing this is by using the JavaScript function Date.getTime()

in the date API, with DOM [24] to fetch the wanted resource. This technique is

very simple and supported by all the browsers. Another method is to use the XHR

(XMLHttpRequest) API [105] to request objects using JavaScript’s browser environ-

ment. Alternatively, one can also use Flash, in particular the URLLoader class, which

is able to download data from a URL as text, binary data, or URL-encoded vari-

ables. It is useful for downloading text files, XML, or other information to be used

in a dynamic data-driven application.

Socket-based. On the other hand side, socket-based methods are implemented

through TCP or UDP connections to exchange binary data. Flash Action Script for

example, can create TCP sockets, using the following APIs: Socket, SecureSocket,

ServerSocket as well as XMLSocket. One other way is the use of Websockets, which

are based essentially on HTTP Request/Response. A WebSocket exposes the under-

lying TCP socket, used in an HTTP request, to the Application layer, and hence

creates possibilities for application developers to communicate with the server in a

full-duplex manner.

To summarize, most of existing web-based measurement tools proceed using the

following steps [57][109]:

— Step 1 (initialisation phase): The client downloads from the web server a con-

tainer web page that contains the measurement code.

— Step 2: The client probes the web server for a period of time by sending “re-

quest” messages, to retrieve an object using a specific measurement approach.

The requests are sent using a train of IP packets, the time just before sending

the requests is recorded.

— Step 3: Here the web server returns a “response” message to the client, using a

train of IP packets (one or more), the time just after receiving the responses is

45

Chapter 2 – State of the art

recorded.

— Step 4: Recorded times are then used to estimate relevant information about

the network access performance such as the two-way delay and the available

bandwidth.

2.2.3 Network monitoring and anomaly detection

Network performance monitoring is an active area of research encompassing a

significant number of techniques. One of its goals is to assess the network state and

detect abnormal behaviours deviating from what we consider normal or expected.

Performance stability, improvement, or degradation are all possible outcomes of per-

formance monitoring. In order to guarantee network and web performance, service

reliability, and Quality of Service (QoS), timely detection of performance anomalies

before they trigger unexpected service downtime is critical for service providers. Con-

siderable efforts have been made to address this issue in the literature. Many of these

solutions focus on solving the problem in specific domains, by leveraging the power

of statistical and machine learning techniques [33, 35, 98]. In fact, a basic network

anomaly detection system monitors the performance dynamics of the underlying net-

work and collects the metrics needed to create baseline models or profiles of typical

network behaviour [99, 1]. It continuously collects new measurements to track de-

viations and detect expected or unexpected performance anomalies, then carries out

root-cause analysis to identify associated bottlenecks.

Network performance monitoring is challenging mainly because of the scale, het-

erogeneity and dynamics of today’s Internet infrastructure, which leads to the diffi-

culty to clearly distinguish normal instances from abnormal ones, as the boundary

between the two is usually imprecise and evolves over time. To enable this distinc-

tion, unsupervised learning is more frequently used [19], and consists in clustering the

network data according to a set of features, and identifying those clusters that diverge

from the dominant clusters representing the normal behaviour. Here in this thesis, we

46

2.3. Web-based network state inference

follow a similar approach of unsupervised machine learning based on data clustering,

but this time for the purpose of network monitoring from within the browser.

Data clustering can be defined as a method of analysis that involves studying

a set of data that is not labelled and grouping it into coherent and homogeneous

subsets (i.e., clusters). To implement such an approach, it is therefore necessary to

have a method that allows both to observe and measure the differences between these

data and to propose from this analysis a grouping of data into several distinct and

consistent classes.

While calculating the differences (and similarities) between data is a relatively

easy thing (Euclidean, Manhattan distance etc.), it is more difficult to agree on

how to group this data into coherent subsets. We can then distinguish two main

approaches [78]:

— Hard clustering: this approach considers that the data must belong to clearly

limited subsets; therefore, data cannot evolve between two or more classes.

— Soft clustering: unlike hard clustering, this approach accepts the possibility

that data can belong to more than one class. Therefore, we are here on an

approach to try to calculate a probability (or a score) to belong to one or more

classes.

Following this decomposition, we focus in our work on two popular clustering

techniques, K-means [80] and Gaussian Mixture Models (GMM) [81], belonging suc-

cessively to the hard and soft approaches. For GMM, we consider two variants, the

classical GMM variant and the Bayesian GMM (BGMM) [60]. We will give further

details on the models later in the coming chapters.

2.3 Web-based network state inference

As highlighted in the Introduction, web-based network monitoring consists of

assessing the internet performance from the end-user point of view in a portable and

47

Chapter 2 – State of the art

Web-Based Network states Inference

Crowd-sourcing

Bandwidth

Delay

Loss Rate

 Web performance metrics

Time-instant metrics

Time-integral metrics

Mean Opinion Score

 Network QoS metricsData Collection

Controlled

 Experiments

Figure 2.7 – From Web performance to Network Quality

easy way. It is now a popular approach that involves performing measurements from

within the browser in an effort to capture the network status as close as possible.

From our perspective, this process can be divided into three main steps; (i) the data

collection as most of the works related are data-driven, (ii) the web performance

metrics, and (iii) the QoS Network metrics. In Figure 2.7, we summarize the typical

phases for establishing the link between web and network performance. Each of the

following subsections revisits in detail the different phases.

2.3.1 Data collection

Several recent studies have been carried out to estimate the quality of web brows-

ing [79, 49, 3, 30, 10]. These studies can be divided into two broad classes.

2.3.1.1 Crowd-sourcing techniques

The first class of techniques are based on crowd-sourcing, which consists in col-

lecting data from a large set of real users encountering real network conditions [34,

95]. Network conditions being driven by real scenarios, these techniques do not ex-

plore unrealistic areas, where for example losses are too high or bandwidth is too

large. Some extreme scenarios might exist but given their low probability, they tend

to dilute in the mass of data corresponding to common scenarios. In general, these

48

2.3. Web-based network state inference

techniques should face the heterogeneity of users resulting from differences in ter-

minal capacities, which is not necessarily known, the difference in access networks,

whether or not their traffic is throttled, etc., all this means that the measurements

taken by crowd-sourcing are biased by various factors that are not really controllable.

Fortunately, the large number of users can reduce this measurement bias. On the

positive side, and in addition to capturing the real scenarios, these techniques allow

detecting scenarios that someone might not think of beforehand.

2.3.1.2 Controlled experiments

Second-class techniques are based on the construction of a model (or several mod-

els) for web quality based on datasets collected by controlled experiments [84][50][4]).

Unlike the previous class, the approaches of this class, since they do not necessarily

know the network conditions that users may face in reality, must widely explore the

different possible network conditions. Several methods have been proposed to ef-

fectively explore the very wide space of possible conditions, such as the quasi-Monte

Carlo method [54], the active learning method [51] or the Fourier Amplitude Sensitiv-

ity Test (FAST) [88] that we are exploring in this thesis. Note here that contrary to

existing approaches that focus on estimating web quality based on network conditions,

our approach targets the estimation of the network performance itself, leveraging the

web measurements. The advantage of this approach stems from the fact that Web

measurements are of passive nature and are available at very low cost, at the user

terminal inside the browser, whether mobile or fixed. If proven to capture the net-

work conditions, they can avoid overloading the network with active measurements

(i.e., traffic injection), source of measurement bias and consumers of CPU and data

at the access.

49

Chapter 2 – State of the art

2.3.2 Web performance metrics

As we mentioned before, choosing the web metrics that faithfully reflect the end-

user Quality of Experience (QoE) is challenging. In this section, we revisit this topic,

starting by defining the term Quality of Experience and then presenting the state of

the art of the different web metrics that reflect it.

2.3.2.1 Web quality of experience

In general, Quality of Experience (QoE) refers to the level of satisfaction of the

user with a network service such as web browsing. It is necessary to differentiate

what Quality of Experience represents for a user from how it is actually measured.

Indeed, the QoE represents all the objective and subjective characteristics specific to

satisfying, retaining or giving confidence to a user through the life cycle of a service.

In contrast, the measurement of QoE is done by a subjective evaluation of a person

or a coherent population of users on a service they use.

The official definition of QoE is given by the recommendation P.10/G.110 of the

International Telecommunications Union states that [13]

“Quality of Experience (QoE) is the degree of delight or annoyance of the
user of an application or service. It results from the fulfillment of his
or her expectations with respect to the utility and / or enjoyment of the
application or service in the light of the user’s personality and current
state.”

The Web Quality of Experience denotes the quality of web users’ experience (We-

bQoE).

2.3.2.2 Perceived performance metrics

Subjective approaches usually require direct end-user involvement, and they are

widely used to quantify the perceived QoE for networked applications such as the

web. Numerous publications using these methods have been produced [18, 56, 85].

The most widely used method for subjective tests is the Mean Opinion Score (MOS).

50

2.3. Web-based network state inference

MOS is a user opinion-based metric standardized in an ITU-T recommendation [94].

It has five levels from 1 to 5, where 1 represents bad quality and 5 represents excellent

quality. Each level is meant to reflect users’ judgment of the Web service quality.

However, using MOS to represent the QoE has many shortcomings [41], such as:

— High set-up cost.

— Very time-consuming set-up and production.

— Inappropriateness to be used in real-time.

— Lack of repeatability.

2.3.2.3 Web objective metrics

In order to overcome the limitations of user opinion score-based metrics, re-

searchers have suggested objective metrics to quantify the perceived quality of ex-

perience from measurements performed from within the web browser. For example,

several studies have pointed out the impact of the latency on WebQoE: the lower the

latency, the higher the WebQoE [25]. The loading of a web page involves a long list

of events encompassing the request of the page, the response of the server and the

rendering of the downloaded content. WebQoE is far from being a simple function

of latency, often requiring to monitor the loading in all its finite steps. As a result,

the literature introduces many types of other sophisticated web metrics that can be

easily calculated and that are better related to WebQoE.

In this section, we present the most prominent objective web performance met-

rics. In particular, we have two main categories: time-instant and time-integral

measures [11].

Time-instant Metrics. Time-instant metrics are easily computed since they do

not require any user interaction and are measured directly from within the browser.

Indeed, time instant metrics are basically related to the web page loading process,

specifically when an event occurs, and they are obtained using the browser naviga-

tion timing information. The PLT (Page Load Time) is one of the commonly used

51

Chapter 2 – State of the art

metrics [26, 102, 72, 103]. However, recent studies deduce that this metric alone

cannot give a precise estimation of web browsing quality, hence the need for finding

more suitable metrics that are closer to screen rendering and its subjective evalua-

tion by the user [20]. Table 2.2 summarize the most used metrics that express user’s

WebQoE.

Table 2.2 – Common web performance time-instant metrics

Metric Definition

TTFB When the first byte of the payload of the web page arrives.

DOM When the Document Object Model (DOM) tree is parsed.

FP When the first pixel is rendered on the screen (the first visual
change).

TTI When the web page is able to respond to the user interaction.

ATF When the web page renders the contents within the above the fold
area.

PLT When all the objects are downloaded and the web page is rendered.

Time-integral Metrics. Metrics belonging to this category take into consider-

ation all the events in the web page loading process, and as in the name, they are

computed by integrating the time until the last event in the web page waterfall is

triggered. In particular, Google proposed the Speed Index [40], which expresses the

time until the web page is rendered in the screen’s visible area or what we call the

Above The Fold field [39]. However, measuring the Speed Index is very challenging

since it is computationally intensive and not large scale oriented. Table 2.3 illustrates

some of the time-integral metrics.

In this thesis, we opt for measuring the maximum of timing components related

to navigation, which are well presented in W3C’s specifications ‘Chrome Navigation

Timing API’ [64] and the ‘Paint Timing API’ [73]. So we consider the following:

52

2.3. Web-based network state inference

Table 2.3 – Some web performance time-integral metrics

Metric Description

Speed Index [40] Integral time related to the visual progress of the Web page

Ready Index [67] When objects became ready in the visible area of the Web
page

Byte Index [11] Integral time related to byte level completion of a web page

DNS, the time when finishing looking up for the domain. Connect Start, the time to

start the connection with the server. Request, the time when sending the request to

a server to retrieve a resource. Response, the time when receiving the last byte of

the response. DOM, the time when the load of the document object model finished.

First Paint (FP), the time when the first pixel is rendered. First Contentful Paint

(FCP), the time when the first bit of content is painted. Finally, the Page Load Time

(PLT), the time when the web page finishes loading. We refer to Figure 2.8 for a

chronological illustration of these metrics.

Navigation
start Redirect DNS Connect Request Response DOM processing Page Rendering

DNS ConnectStart Request Response DOM PLTFP FCP

TIME

Figure 2.8 – Web browsing main events and related metrics according to W3C’s
specifications

2.3.3 Network QoS metrics

Before planning how to collect data on the network and the service traffic, it is

important to identify which metrics are necessary to infer the network quality.

A network performance metric is the basic metric of performance specific to the

underlying network; several metrics are proposed in the literature [22][46][63]. How-

53

Chapter 2 – State of the art

ever, according to [37], the most relevant network performance metrics can be defined

into four types: Availability, Loss, Delay and Utilization.

Availability means the functionality as well as the connectivity of the network

elements. Loss represents the percentage of packets lost between the sender and

target during a specific time interval. Delay metrics can measure the one-way delay,

as well as the RTT, the Round Trip Time between the host and the target. They

can also assess variation in the transmission latency or jitter. Utilization stands for

the end-to-end throughput of the link and is expressed as a percentage of the access

rate. Several works consider these network parameters to study network performance,

especially latency and bandwidth, such as in [83][53][23][5], etc.

Taking into consideration the asymmetric nature of web traffic and the fact that

it is primarily download traffic, we have identified three metrics to collect in this

thesis. One of these metrics is the Round-Trip Time (RTT) [110] which is the latency

necessary to communicate from one host and back to it through our final destination.

Then, we have the Download Loss Rate [106], which is the percentage of packets lost

in the download direction (i.e., the number of packets lost over the total number of

packets sent). Finally, one can find the Download Bandwidth [32], which stands for

the maximum end-to-end throughput in the download direction.

54

Chapter 3

NETWORK PERFORMANCE INFERENCE

FORM WITHIN THE BROWSER

3.1 Introduction

Web browsing remains one of the dominant applications of the internet, so in-

ferring network performance becomes crucial for both users and providers (access

and content). Indeed, it allows content providers to ensure a good quality of their

services by identifying the root causes of service degradation. Also, it gives the end-

users a better understanding of the performance they have (state of the networks). A

widely used monitoring technique involves performing measurements from within the

browser to capture the network status as close as possible; we talk about web-based

network monitoring. Consequently, several network troubleshooting tools have seen

the light recently, e.g., NDT [66], MobiPerf [61], SpeedTest [83], and Fathom [23].

Yet, these tools are either computationally expensive, less generic or greedy in terms

of data consumption.

Bridging the gap between web performance and network performance requires de-

ploying measurement tools at both levels (the web and the network) to build models

relating both of them. Once these models built, network performance can thus be es-

timated from web performance measurements without the need to access or probe the

network; the latter measurements are able to be carried out efficiently and passively

within the browser, without extra cost on the user terminal and the network itself.

55

Chapter 3 – Network performance inference form within the browser

So the main purpose of this chapter is to leverage passive measurements and machine

learning techniques (ML) to infer the main properties of the underlying network (e.g.,

delay, bandwidth, and loss rate) from web performance metrics (e.g., Connect Start,

Page Load).

In order to enable this inference, we propose a framework based on extensive

controlled experiments where network configurations are artificially varied, and the

web is browsed. ML is then applied over the collected data to build models that

estimate the underlying network performance. In particular, we contrast classical

ML techniques (such as random forests) to deep learning models trained using fully

connected neural networks and convolutional neural networks (CNN). By doing so,

we realize two main objectives: (i) reducing to zero the cost of active measurements

and (ii) inferring the characteristics of the path to the web server origin of the web

page without the need for the collaboration of a dedicated measurement server, as is

the case with existing tools.

Overall, the contributions of this chapter are :

1. We engineer a methodology for collecting a large dataset that links web per-

formance measurements to underlying network measurements over an example

of three network metrics, namely the round-trip time (RTT), the download

bandwidth and the loss rate.

2. We present our convolutional neural network (CNN) to calibrate data-driven

models that allow network performance inference as accurately as possible.

Our deep learning models are calibrated using a controlled experimentation

approach. We artificially change the network conditions and automate a web

browsing activity; then, we use the ground truth on the network state together

with the passive measurements available in the browser for the training and val-

idation of our models. We prepare the ground for this modelling by carrying out

a sensitivity analysis to understand the dependency between the performance

at the web level and the one of the network.

56

3.2. Estimating network status from web performance measurements

3. We validate our solution and study its efficiency by comparing it with two well

known ML approaches: Neural Networks and Random Forests.

The rest of this chapter is organized as follows. In Section 3.2, we describe in

detail our approach for estimating the underlying network metrics from web perfor-

mance measurements, as well as the data collection process. Then, we present our

convolutional neural network (CNN) to calibrate models that allow network infer-

ence as accurately as possible. Later in Section 3.3, we evaluate our approach and

discuss the results of our experiments. Finally, we summarize in Section 3.4 the main

contributions of this chapter.

3.2 Estimating network status from web perfor-

mance measurements

3.2.1 Methodology

In order to predict network status departing from web measurements, the first

step is to collect a dataset that captures the link between network QoS metrics and

web QoS metrics. We proceed by extensive controlled experiments where network

configurations are artificially modified and measurements of both network and web

browser are collected. Then, we apply data analysis techniques to estimate the net-

work status from the browser-level measurements. For that, we propose a distributed

system based on different entities that provides a platform to link the input (under-

lying network metrics) to the output (web performance metrics), see Figure 3.1 for

more details.

In our system, the Experimenter unit communicates directly with the sampler,

using the GetSample() function, which requests the next configuration to experiment.

The configurations consist in tuples of RTT, download bandwidth and download

packet loss rate. It then enforces these configurations thanks to a Network Emulator,

57

Chapter 3 – Network performance inference form within the browser

Sampler Experimenter Network emulator Web client Data Base

GetSample()

EnforceConfig()

Check()

validate()
If invalidIf invalid

LaunchClient()
Send data

StoreData()

Run loopRun loop

Figure 3.1 – Experimentation methodology

using the EnforceConfig() function.

Our approach is based on lab experiments, where we aim to have under our control

the network conditions between the client and the real web servers. Whereas tcconfig

[89], which we used to enforce network configurations, allows controlling the access

network, it does not provide control over the entire network path to the web server.

On one side the Internet Service Provider is out of our experimental network and on

the other side the experimentation system requires performing a real page loading

from a cloud that is again out of our control. It follows that tcconfig is not always

able to enforce the wanted network conditions (e.g., lower bandwidth or larger delay

than needed). In order to handle the noise coming from the uncontrolled part of our

experimental setup, we integrated measurement tests (using the Check() function)

to ensure the validity of the samples. In particular, for each desired configuration,

we implement:

1. A TCP throughput test to ensure that the available bandwidth is larger than

58

3.2. Estimating network status from web performance measurements

the one we want to enforce.

2. RTT and loss rate noise estimation tests.

Test 1 is performed before enforcing the network state by downloading the web

page directly from the target server and measuring its download rate. Then we check

if this value is higher than the one we want to enforce.

Test 2 is necessary to deduce the network delay from the emulated one. For

example, if the expected RTT is 1000ms and the measured one is 50ms, the final

configuration will be 950ms. This test is implemented by probing web pages using

the ping tool.

Once the network configuration has been validated, the web client is launched,

using the LaunchClient() function. Our developed web extension monitors for each

visited web page the different web metrics (Connect Start, DNS, Request, Response,

DOM, FP, FCP, PLT), as well as other web page characteristics, such as the number

of objects, the size, and the protocol supported. At the end of the experiment, the

results are retrieved, and the resulted statistics are stored by the Experimenter using

the StoreData() function.

Note that we collect statistics from the 100 top popular web pages according to

the Alexa ranking 1. We will give more details on the implementation of our platform

later in the text. The dataset obtained applying our methodology is composed by

10, 000 experiments for each of the 100 top popular web pages. These experiments

correspond to 10 repeated downloads of each page under the same network conditions,

for a number of different network conditions equal to 1000 obtained using the FAST

method defined in Section 3.2.2 [88].

3.2.2 Sensitivity Analysis

In order to have a clear understanding of the correlation between the measured

web metrics and the enforced network configurations, we start our study with a

1. https://www.alexa.com/topsites

59

https://www.alexa.com/topsites

Chapter 3 – Network performance inference form within the browser

sensitivity analysis. This allows to better see the interplay between the network and

the web browsing performance. The idea here is to reveal the degree of dependence

between both of them, and consequently whether the combination of different web

metrics can bring information about the underlying network metrics.

To do so, we consider the Fourier Amplitude Sensitivity Test (FAST) [88], one of

the most widely used sensitivity analysis techniques. FAST implements a periodic

sampling strategy based on appropriate frequencies (one frequency per dimension) to

ensure good coverage of the area to be sampled. In addition to providing a sequence

of input tuples to experiment with, the method also allows assessing the sensitivity

of the output labels (i.e., web metrics in our case) to the input metrics (i.e., network

metrics in our case) through the analysis of the spectrum of the obtained labels.

�� 	�������� ��������
�

���

���

���

���

���

���

���

��
��
���
��
��

��

Figure 3.2 – DNS sensitivity to
network QoS

��� 	�������� ���������
�

���

���

���

���

���

���

���

�
��
���
��
��

�����������

Figure 3.3 – Connect Start sensitivity
to network QoS

Although this technique does not consider the real properties of the network model

in question here, it allows exploring the space of possible network configurations

without missing important points. Unlike a generation of random samples based

on the Monte Carlo method [54]. This technique allows covering, indeed the space

of network configurations efficiently by avoiding repetitions, thanks to the variation

of frequencies. The partial variances obtained in this way make it possible to see

the contribution of network metrics to the overall variation measured. The partial

60

3.2. Estimating network status from web performance measurements

� 	��������
��������
�

���

���

���

���

���

���

���

��
��
���
��
��

�������

Figure 3.4 – Request sensitivity to
network QoS

� 	��������
��������
�

���

���

���

���

���

���

���

��
��
���
��
��

��������

Figure 3.5 – Response sensitivity to
network QoS

�� 	�������� ��������
�

���

���

���

���

���

���

���

��
��
���
��
��

���
������������

Figure 3.6 – DOM sensitivity to
network QoS

�� 	�������� ��������
�

���

���

���

���

���

���

���

��
��
���
��
��

����������

Figure 3.7 – FCP sensitivity to
network QoS

61

Chapter 3 – Network performance inference form within the browser

variance of an input metric corresponds to the partial energy of the output label

summed over all frequencies multiple of the characteristic frequency of the input

metric. The total variance (or total energy) is the sum over all frequencies. The

ratio of partial variance to total variance (being a real number between 0 and 1)

models the sensitivity of the output label to the input metric. One can see this as

the participation of the input metric, by its variability, to the total variability of the

output label.

Sensitivity indices are calculated using ANOVA-like decomposition of the function

for analysis based on a variance-based method. Suppose the function is Y = f(X) =

f(x1, x2, ..., xn) where xi are input model parameters and Y is the output. The

sensitivity index of the input metric xi is then defined as the normalized conditional

variance:

Sxi
= Vi

V (Y) . (3.1)

Where V (Y) represents the variance of model output Y resulting from uncertain-

ties in all input model parameters, such that;

V (Y) =
n∑

i=1
Vi +

n∑
i<j

Vij + · · · + V12...n

Vi is the marginal variance of xi given by :

Vi = Var (E(Y | xi))

And Vij is the contribution of the interaction between xi and xj:

Vij = Var (E (Y | Xi, Xj)) − Vi − Vj

In general, Vi1i2...ir is the cooperative fractional variance of order r.

In our case, we obtain for each web metric and for each web page, three sensitivity

62

3.2. Estimating network status from web performance measurements

indices (SRTT, SBandwidth, and SLossRate). The boxplots (see Figures 5.9a, 5.9b, 3.4,

3.5, 3.6, 3.7, 3.8, and 3.9) display the dispersion of sensitivity indices over web pages

for each of the eight web performance metrics. The y-axis in the figures shows the

sensitivity index. We notice a strong correlation between input and output features,

with some particular behaviors. In particular, Connect Start, DNS and Request are

more sensitive to delay. Response is more sensitive to delay and bandwidth. First

Paint and First Contentful Paint are more affected by bandwidth. PLT, is sensitive

to all the three network metrics, and we observe that their impact is closely the same

��� 	�������� ���������
�

���

���

���

���

���

���

���

��
��

���
��
�

������
��������������

Figure 3.8 – First Paint sensitivity to
network QoS

��� 	��������
��������
�

���

���

���

���

���

���

���

�
��
���
��
��

�
�

Figure 3.9 – PLT sensitivity to
network QoS

From these results, we can conclude that the patterns between network and web

metrics are complex, thus the need of advanced models if we want to estimate network

status from a specific web metric combination.

3.2.3 CNN-based network performance estimation

In this section, we give a detailed overview on the model we opt for to perform

the estimation of network conditions from web measurements. We justify the use of

such model later by comparing it to other machine learning models.

A Convolutional Neural Network (CNN) is a deep neural network topology that

typically combines convolutional filter layers in conjunction with a fully connected

63

Chapter 3 – Network performance inference form within the browser

neural network. A CNN works well for extracting more detailed features within the

data, which will then be used to form more patterns within higher layers. Based

on this advanced technique, we aim to build a model that estimates the network

status by performing a CNN driven regression analysis, considering as input the

web performance metrics (Connect Start, DNS, Request, Response, DOM, FP, FCP,

PLT), and as output the estimated value of the underlying network metric (delay,

bandwidth, or packet loss). Typically, we will have three regressions, one for each of

the network metrics we consider in this work.

We start by processing the obtained data needed to fit the estimator, then we

separate our dataset into training and test sets; for that we pick 70% of the dataset

randomly as training set, and we consider the rest as test set. We use the training

part to calibrate our CNN model and the test part to validate its performance. Our

CNN estimator consists of: (i) an input layer, where we have 11 elements (i.e., the

considered web metrics), (ii) a first 1D CNN layer (one dimension CNN layer), (iii)

a second CNN layer, (iv) a Max pooling layer, (v) and finally the fully connected

neural network layers.

Regarding the hyper-parameters to tune, the most important ones are the kernel

size Ns, the number of kernels (or filters) Nk and the number of hidden neurons

inside the fully connected network part Nn. For the convolutional layers, we define

100 filters (also called feature detectors), so we take Nk = 100 with a kernel size

Ns = 3, this allows us to train 100 different features on the first layer of the network.

For the fully connected feed forward neural network, we consider two hidden layers

with the same number of neurons. The optimal number of neurons for these layers is

studied in the following section. In the hidden layers, we use the activation function

ReLU, which is a non-linear activation function.

We train our model using the ADAM optimization algorithm [52]. This learning

method is very effective since it converges fast and provides good results compared

to the classical gradient descent approach. Furthermore, as training progresses, the

64

3.3. Performance evaluation

ADAM algorithm computes a loss function, the back-propagation of this function

modifies the network in order to minimize the loss which by the end leads to optimal

estimator weights.

In order to evaluate the performance of the obtained CNN model, we calculate the

Mean Absolute Percentage Error (MAPE) over the test set. We target the estimation

of each of the network conditions given the collected web measurements and the pages’

features. We get an estimation of network performance for each visited web page.

MAPE = 100% 1
n

n∑
i=1

| Estimated Value − Real Value
Real Value | (3.2)

3.3 Performance evaluation

3.3.1 Platform implementation

Having introduced the general methodology before (see Figure 3.1), we now fo-

cus on its implementation. In particular, we have the Experimenter that executes

the tests and starts the experiments by communicating with all the other entities.

This Experimenter is composed of four parts. The first part, developed in Python

as a simple Finite State Machine (FSM), sets the network conditions and generates

network configurations to experiment with. These configurations are enforced in the

network through the network emulator tcconfig [89]. The second part is built as a

web page that uses the Service API to control the experiment and collect statistics.

The web client is composed of two entities: the browser (we use Google Chrome)

and the extension; the browser is in charge of loading the web pages while the exten-

sion is a plugin developed in JavaScript to perform measurements based on Chrome

Navigation Timing API and the Performance Navigation API [73, 64], both being

W3C recommendations. The resulting data is then retrieved by the Experimenter

and stored in a database.

65

Chapter 3 – Network performance inference form within the browser

3.3.2 Results

Here, we compare the performance of our CNN-based network estimator with two

ML approaches: Fully Connected Feed Forward Neural Network (NN) and Random

Forest (RF).

Hyper-parameter tuning of the estimators In order to fine-tune the hyper-

parameters of the proposed estimator and the models with which we compare our

solution, it was necessary to use various settings. For neural network models (i.e.,

CNN and NN), we opted for the Keras platform 2 to evaluate the estimation efficiency.

We considered models of neural networks with two hidden layers, for which we varied

the number of neurons from 100 to 500 neurons in steps of 100. We had as input

the web metrics (Connect Start, DNS, Request, Response, DOM, First Paint, First

Contentful Paint, PLT) plus other page features (Global size, Protocol, Number of

objects) and the output is the estimated network metric (one model per network

metric).

Fig. 3.10 shows the scatter plots of the estimated packet loss rate as function of

the real one respectively for 100, 200, 300 and 400 neurons and for both NN and

CNN. The same results were observed for the bandwidth and RTT metrics. We can

see how the performance of both NN and CNN increases significantly when we add

more neurons. Particularly, we obtain a higher accuracy when we reach 400 neurons.

Beyond this value, the accuracy starts to decrease. One can also note that CNN

clearly outperforms NN in predicting the packet loss rate.

The second model that we assessed is Random Forest (RF), which is a regression

technique that consists in calibrating and combining multiple decision trees to create

a more powerful model. To build the RF model we used the scikit-learn library 3.

The number of trees is a main parameter of RF. We changed this number from 100

to 700 in steps of 100 to study its impact. The metric Mean Absolute Percentage

2. https://keras.io/
3. https://scikit-learn.org/

66

https://keras.io/
https://scikit-learn.org/

3.3. Performance evaluation

(a) Estimated loss rate versus real one for NN

(b) Estimated loss rate versus real one for CNN

Figure 3.10 – Comparison between NN and CNN using a different number of neurons

67

Chapter 3 – Network performance inference form within the browser

Figure 3.11 – RF performance versus number of trees for Loss Rate

Figure 3.12 – CNN against NN and Random Forest

68

3.4. Conclusion

Error (MAPE) is plotted versus the number of trees for the Packet Loss Rate in

Figure 3.11. The lowest error was observed for 600 trees, we choose thus this setting

for RF in the rest.

CNN versus NN and RF Now we compare the three ML techniques using their

best tuning found above. Figure 3.12 compares them to each other in terms of MAPE

for different ranges of network QoS metrics. Random Forest, despite its known power,

shows the largest estimation error, which can go up to 80% for low ranges. This

illustrates the difficulty of the task. Fully Connected Neural Networks come next,

then they are followed by CNNs, which show the best estimation accuracy. It can

also be observed how for the three techniques, the relative accuracy improves when

ranges get higher. In particular, when using CNNs, the error drops to less than 10%

for a download bandwidth around 10Mbps.

3.4 Conclusion

We presented in this chapter an efficient and novel method to estimate network

performance metrics from web metrics that can be collected passively and easily from

within the browser. We developed a platform to collect our own dataset and designed

a methodology around deep learning for network estimation and the FAST method

for sensitivity analysis.

Our results underlined the difficulty of the task, given the complexity of the

relationship between the network and the details of the rendering of a web page.

Only Convolutional Neural Networks were able to provide acceptable results that

can get as accurate as a few per cent for some ranges of the underlying network

metrics.

In the coming chapter, we revisit the topic of network performance measurement

from within the web browser. We study the impact of the web page complexity on

the estimation of the network states. To that aim, we capture specific web measure-

69

Chapter 3 – Network performance inference form within the browser

ments that we extend with information on the characteristics of the visited web pages

(e.g., web page size, number of objects, Protocol supported, etc.). Then we study

the efficiency of our approach by comparing it experimentally with other network

troubleshooting solutions.

70

Chapter 4

IMPACT OF WEB PAGE COMPLEXITY ON

NETWORK PERFORMANCE INFERENCE

4.1 Introduction

In the previous chapter, we highlighted through experiments the efficiency of our

method in estimating network performance metrics from web metrics, using Machine

Learning, and Convolutional Neural Networks in particular. For that, we leveraged

end-to-end web measurements that can be easily and passively captured from within

the browser without injecting additional measurement traffic. Our approach allows

us to estimate the end-to-end path performance to the actual web server without

having control of this letter, as required by existing measurement tools. However, the

loading process of a web page is still an essential factor that we must consider in our

estimation models. In fact, today’s web pages incorporate plenty of objects fetched

from multiple servers through multiple connections and use complicated rendering

technologies with advanced underlying protocols such as HTTP 1.1 and HTTP/2.

This complexity raises tow main concerns on two different levels:

— The web page level: in terms of the number, the type, and the size of the

objects, and the page itself, as well as the processing of the objects and the

rendering to the browser.

— The transfer protocols: As we mentioned before HTTP has evolved [43]

from the first HTTP/0.9 to HTTP/1.1 [31] with many important extensions

71

Chapter 4 – Impact of web page complexity on network performance inference

namely HTTP over TLS or HTTPS [74] (the secured version of HTTP). Then,

based on Google’s SPDY protocol, HTTP/2 has seen the light and attempts to

tackle the inefficiencies of HTTP/1. Indeed, HTTP/2 includes the advantages

provided by SPDY and adds its own optimization approaches. The network

estimation can thus depend on which transfer protocol is used.

In this chapter, first, we highlight the impact of these two aspects on estimating

two specific network metrics, the delay, and the download bandwidth. Then we com-

pare the accuracy of our estimation model with the most known monitoring solutions.

As in the previous chapter, we follow a controlled experimental approach to derive

our inference models and to validate them. In more detail, the main contributions of

this chapter are:

1. Considering the influence of the loading process of web pages, we study and

examine this impact on our estimation models, for that we capture web-specific

measurements with information on characteristics (e.g., web page size, number

of objects, etc.) of the visited web pages as well as the protocols supported

(e.g., HTTP/1.1, HTTP/2, HTTPS, etc.).

2. We train and calibrate a Convolutional Neural network model (CNN) to esti-

mate the network state from these passive measurements without probing the

network.

3. To compare with existing web-based monitoring solutions, we propose an inte-

grated framework where we implement our solution and mimic the behaviour

of other solutions to ensure a fair comparison between the different approaches

in a fully controlled environment.

The rest of this chapter is organized as follows. In Section 4.2, we describe our

approach for training the deep learner model and for collecting the required data.

Next, in Section 4.3, we present the results related to the impact of the web page

complexity on our estimation models. Then, in Section 4.4, we highlight the efficiency

of our approach. In particular, we present the integrated platform used to compare

72

4.2. Delay and bandwidth inference

our solution with existing solutions, as well as the results of our experiments and our

main observations. Finally, we conclude the chapter in Section 4.5.

4.2 Delay and bandwidth inference

4.2.1 Data collection phase

The same as before, we proceed by extensive controlled experiments, where net-

work configurations are artificially modified and measurements on both levels of net-

work and web browser are collected. For that purpose, we use the distributed system

described in Figure 4.1 based on different entities to provide a platform linking the

input (underlying network metrics) to the output (web performance metrics). Next,

a description of these entities.

The “Experimenter” generates network configurations and enforces them within

the network (Delay and Bandwidth) – Step 1 –, then launches the web client – Step

2 –. This entity is in charge of returning a valid sample. It is in part developed in

Python, as a simple Finite State Machine (FSM) that sets the network conditions,

and in part it is built into a web page, to control the experiment (in our use case the

loading of web pages).

The “Web Client” is composed by two entities: the browser (in our case Google

Chrome) and the extension. The browser is responsible for loading a specific web

page, while the extension developed in JavaScript collects all the information that

we want using “Chrome Navigation Timing API” and the “Performance Navigation

API”, which are w3c recommendations. Finally, the collected data are stored in –

Step 3 –.

As in previous chapter, network configurations are generated using FAST method

(Fourier Amplitude Sensitivity Test [88]). All the traffic generated by the service

goes through a network emulator that enforces the network status when needed. The

web page and the experimenter communicates through a Web socket via custom

73

Chapter 4 – Impact of web page complexity on network performance inference

1

Experimenter

Web client

Web Server

Data Base

2

NE

3

NE

1
2

Physical link
Virtual link
Network Emulaor

Launch Web Client
Recieve measurements

Store data 3

Data processing

Figure 4.1 – Data collection and processing phase

commands. It has to be pointed out that all the local traffic is not affected by the

network emulator, only the traffic between the browser and the web server is managed.

The data set obtained applying our methodology is composed by 5000 entries for each

of the 500 top popular web pages according to Alexa ranking 1.

Before starting the estimation phase, we should first be sure that the data set fits

the estimator well. To do so we perform a data cleaning by removing missing and

erroneous values, then we perform a data transformation that considers as input the

web performance features and as output the network performance metric (i.e., RTT

or bandwidth). Finally, we split our data on training and test sets; for that purpose

we pick 70% of network scenarios and 80% of web pages randomly as training set, we

consider the rest as test set.

4.2.2 Estimation phase

Based on the results of Chapter 3, it can be seen that CNN gives the highest

accuracy compared with traditional machine learning techniques, such as Random

1. https://www.alexa.com/topsites

74

https://www.alexa.com/topsites

4.2. Delay and bandwidth inference

Features Generation Regression

Estimated
Metric

CNN

NN

Figure 4.2 – Estimation phase

Forest. We thus opt for this deep learning technique to build a model that predicts

the underlying network state, considering as input web metrics of a page together

with information on its content, and as output the estimated network metric: RTT

or download bandwidth (as summarized in Table 4.1).

Basically, we have two regression problems, for each network metric. As shown in

Figure 4.2, in the estimation phase, we build the CNN based model consisting on two

1-dimensional convolutional layers, with a number of filters equal to 100, and a kernel

size of 3. This is then followed by a Max pooling layer. Lastly, we have two hidden

layers of a fully connected neural network with 400 neurons each. We use ReLU as an

activation function, which is a simple non-linear activation method. We do not use

any activation function for the last layer, since we are in a regression scenario, and

so we are rather interested in estimating raw values without transformation. Finally,

we use the ADAM algorithm during the training phase in order to optimize the loss

function [52]. Then, we calculate the Mean Absolute Percentage Error to evaluate

the performance of our model.

75

Chapter 4 – Impact of web page complexity on network performance inference

Table 4.1 – Web and network performance metrics

Network metrics RTT – round trip time –
Bandwidth – maximum end-to-end throughput –

Web metrics

Connect Start
DNS
Request
Response
DOM
First Paint (FP)
First Contentful Paint (FCP)
Page Load Time (PLT)

Page characteristics

Page Size (Size)
Number of objects (NumObjects)
Protocol supported (Protocol)
Median of objects size (Median Objects)
Total objects size (Objects’ Size)
First Quantile of object’s size (Q1 Objects)
Third Quantile of objects size (Q3 Objects)
Maximum objects size (Max Objects)
Minimum objects size (Min Objects)

4.2.3 Feature importance study

Feature selection based on feature importance is an important step in deep learn-

ing algorithms, as it brings a huge impact on the accuracy of the model. Indeed, this

study brings several advantages such as reducing over-fitting, increasing accuracy as

well as reducing the training time.

Many techniques can be used to perform this analysis, one way is the use of the

importance feature property in Random Forest regressors. Random Forests are most

often used for estimation purposes, but they also have the ability to know which

feature has the most effect in building the model. Depending on the output of the

training phase, the use of the feature importance capacity of Random Forests gives

a score for each feature of the data. The higher is the score, the more important

or relevant is the feature for the estimation of the output variable. We apply this

method on our dataset by building a random forest model. For that, we consider all

76

4.2. Delay and bandwidth inference

the input features (web performance metrics plus page characteristics, see Table 4.1).

Figure 4.3 shows what are the most important features in our dataset.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Score

PLT
FP

Response
DOM

NumObjects
Global Size
Q3 Objects

FCP
Connect Start

Q1 Objects
Min Objects
Objects Size

Request
Protocol

Median Objects
DNS

Max Objects

W
eb

 m
et
ric

s

Figure 4.3 – Feature importance using Random Forest

Another way to select features is to use the Correlation Matrix. This technique

shows how the features are related to each other, features with high correlation with

each other have more likely the same effect on the target variable, hence we can use

one of them. We plot in Figure 4.4 the correlation heat map of features in our dataset

using the Pearson correlation coefficient [93]. The Pearson correlation coefficient of

two variables X and Y is defined as their covariance divided by the product of their

standard deviations, which gives values between -1 and 1. The smallest the coefficient

in its absolute value, the less the linear correlation between the two variables. The

values -1 or 1 correspond to a total correlation between the two variables, and the

value 0 to a non-linear correlation.

Based on the results above, and the accuracy of the obtained model, we removed

the following web metrics: First Contentful Paint since as shown in the heat map it

is strongly correlated with First paint metric, and the last feature in Figure 4.3, the

maximum size of page objects.

77

Chapter 4 – Impact of web page complexity on network performance inference

Co
nn
ec
t S
ta
rt

DN
S

Re
qu
es
t

Re
sp
on
se

DO
M FP FC
P

PL
T

Nu
m
 O
bj
ec
ts

Si
ze

Pr
ot
oc
ol

Ob
je
ct
s S
ize

M
in
 O
bj
ec
ts

Q1
 O
bj
ec
ts

M
ed
ia
n
Ob
je
ct
s

Q3
 O
bj
ec
ts

M
ax
 O
bj
ec
ts

Connect Start
DNS

Request
Response

DOM
FP
FCP
PLT

Num Objects
Size

Protocol
Objects Size
Min Objects
Q1 Objects

Median Objects
Q3 Objects
Max Objects

1 0.02 0.03 0.01 0.04 0.01 0.03 0.04 0.01 0 0 0.01 0 0 0.01 0.01 0
0.02 1 0.05 0 0 0 0 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01
0.03 0.05 1 0.02 0.01 0.01 0 0.01 0.01 0 0.01 0.06 0.03 0.01 0.01 0 0.03
0.01 0 0.02 1 0.25 0.36 0.28 0.12 0.17 0.38 0 0.04-0.010.05 0.01 0 0.01
0.04 0 0.01 0.25 1 0.12 0.16 0.08 0.01 0.02 0 0.05 0.01 0 0.01 0.03 0.01
0.01 0 0.01 0.36 0.12 1 0.5 0.06 0.23 0.05 0 0.04 0 0 0.03 0 0
0.03 0 0 0.28 0.16 0.5 1 0.33 0.08 0.01 0 0.03 0 0 0 0.01 0.01
0.04 0 0.01 0.12 0.08 0.06 0.33 1 0.25 0.07 0 0 0 0.01 0.04 0.07 0
0.01 0.01 0.01 0.17 0.01 0.23 0.08 0.25 1 0.17 0 0.04 0.02 0.04 0.06 0.01 0
0 0 0 0.38 0.02 0.05 0.01 0.07 0.17 1 0.01 0.23 0 -0.010.01 0.01 0
0 0.01 0.01 0 0 0 0 0 0 0.01 1 0 0 0 0 0 0
0.01 0 0.06 0.04 0.05 0.04 0.03 0 0.04 0.23 0 1 0.01 0 0 0.01 0
0 0.01 0.03-0.010.01 0 0 0 0.02 0 0 0.01 1 0.11 0.02 0.04 0.01
0 0 0.01 0.05 0 0 0 0.01 0.04 0.01 0 0 0.11 1 0.18 0.05 0
0.01 0.01 0.01 0.01 0.01 0.03 0 0.04 0.06 0.01 0 0 0.02 0.18 1 0.15 0.01
0.01 0 0 0 0.03 0 0.01 0.07 0.01 0.01 0 0.01 0.04 0.05 0.15 1 0.05
0 0.01 0.03 0.010.018 0 0.01 0 0 0 0 0 0.01 0 0.01 0.05 1

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4.4 – Heatmap correlation matrix of features

4.3 Performance evaluation

As we previously stated, the loading process of a web page is an essential factor

that we must consider in our estimation models. Thus, in this section, we present the

results related to the impact of the web page complexity and the transfer protocols

on the accuracy of inferring the network state.

4.3.1 Impact of web page size and number of objects

Web pages are key elements of network estimation framework. In order to study

their impact on the accuracy of the estimation, we plot in Figure 4.5 the global

estimation accuracy for 500 web pages for both RTT and download bandwidth, as well

as box plots in Figure 4.6 displaying the RTT and download bandwidth estimation

error as a function of the number of objects for different web page sizes. The y-axis

in all the figures shows the mean percentage error given by Equation (4.1).

78

4.3. Performance evaluation

�

�
��
���

��
��

�	

��

�	

��

�	

��

�	

	�

��
��
���
�
�

Figure 4.5 – RTT and bandwidth estimation error for the top 500 web pages

Error = 100% 1
n

n∑
i=1

| Estimated or Measured Value − Real Value
Real Value | (4.1)

Figure 4.5 shows that the median estimation error does not exceed 22.5% for RTT

and 30% for Bandwidth. And according to Figure 4.6, the accuracy of estimating

RTT improves significantly for web page sizes below 500 KB. As for the download

bandwidth, the error drops greatly in the range above 1000 KB and a number of

objects between 200 and 300. These results and observations can give us hints on

how to choose web pages to achieve the best possible accuracy.

4.3.2 Protocol impact on estimation: HTTP/1.1 vs HTTP/2

We also asked the question if web pages supporting HTTP/2 help to increase

the accuracy of estimating delay and download bandwidth, given its novel mixing

feature. Since we collect data by browsing real web pages in Google Chrome that

require using SSL, we are able to compare the estimation accuracy of both HTTP/2

and HTTP/1.1.

Histograms in Figure 4.7 display, respectively, the estimation error over the same

number of web pages with both HTTP/1.1 and HTTP/2 for different ranges of RTT

and download bandwidth. While histograms in Figures 4.8 show the RTT and down-

79

Chapter 4 – Impact of web page complexity on network performance inference

������� ��������� ���������
�����������������

��

�

��

�

��

�

	�

��
��
���
�
�

���
�����
�
����������
������������

(a) RTT

������� ��������� ���������
�����������������

��

�

��

�

��

�

	�

��
��
���
�
�

���
�����
�
����������
������������

(b) Download bandwidth

Figure 4.6 – RTT and download bandwidth estimation error in function of the number
of objects for different web page sizes

load bandwidth error in function of number of objects for HTTP/1.1 versus HTTP/2.

For RTT, according to Figure 4.7a, the impact on the estimation for HTTP/2 is simi-

80

4.3. Performance evaluation

RTT (ms)

E
rr

or
 (%

)

0%

5%

10%

15%

20%

25%

[0,500] [500,1000] [1000,1500]

HTTP/1.1 HTTP/2

(a) RTT

Download bandwidth (Mbps)

E
rr

or
 (%

)

0,00%

10,00%

20,00%

30,00%

[0,1] [1,2] [2,3]

HTTP/1.1 HTTP/2

(b) Download bandwidth

Figure 4.7 – Estimation error with both HTTP/1.1 and HTTP/2 for different ranges
of delay and bandwidth

lar to HTTP/1.1 for very low RTT. However, for a significantly higher RTT, HTTP/2

give more accurate results than HTTP/1.1. As for the download bandwidth, accord-

ing to Figure 4.7b, for ranges of bandwidth less than 2 Mbps, the estimation accuracy

of HTTP/2 is closely the same as HTTP/1.1. For ranges between 2 Mbps and 3 Mbps

HTTP/2 outperforms HTTP/1.1. Further, we notice in Figure 4.8 that considering

the number of objects of web pages, HTTP/2 outperforms HTTP/1.1 for ranges

between 1 and 200 objects.

81

Chapter 4 – Impact of web page complexity on network performance inference

Number of objects

E
rr

or
 (%

)

0%

5%

10%

15%

20%

25%

[1,100] [100,200] [200,300] [300,400]

HTTP/1.1 HTTP/2

(a) RTT

Number of objects

E
rr

or
 (%

)

0%

5%

10%

15%

20%

25%

[1,100] [100,200] [200,300] [300,400]

HTTP/1.1 HTTP/2

(b) Download bandwidth

Figure 4.8 – RTT and download bandwidth error in function of number of objects
for HTTP/1.1 versis HTTP/2

4.4 Our approach against other web-based moni-

toring solutions

4.4.1 Integrated platform implementation

In this section, we give a detailed overview of the platform used to compare our

approach with other web-based monitoring solutions.

We constructed an integrated framework, where we tried to mimic the behavior of

the best known troubleshooting tools and services to measure the maximum through-

82

4.4. Our approach against other web-based monitoring solutions

put and the RTT, by implementing and simulating their behavior. We also integrated

in the platform our own approach, which is based on passive measurements in within

the browser and deep learning.

As mentioned in Section 2.2.2 about web-based troubleshooting tools, all exist-

ing techniques follow a similar approach in measuring latency and bandwidth, which

consists of send/receive messages between the web client and the web server. De-

parting from this observation, we built our experimental framework around an au-

tomated process that implements multiple measurement methods including Flash,

DOM, XHR, Java Applet, and web socket, see Table 2.1, each of which embedded in

a PHP or HTML index page. The Web Client in our platform requests the container

web page, renders its elements and executes the measurement codes. This latter step

leads to the measurement phase. Finally, the obtained measurements are stored on

a dedicated database.

We designed a test bed consisting of a Web Client: Intel Core i7, with 32 GB

memory, and a local Web Server squid 3.4.7 where we cached 500 landing pages (see

Figure 4.9). In a fully controlled environment, the platform executes the RTT and

bandwidth measurements by doing the following: i) set a tuple of (RTT, bandwidth)

using a network emulator tc_config, ii) check and validating the values using ping

tool for latency, and iperf tool for bandwidth, iii) start the initialization phase,

where the web browser renders the container page, iv) launch the measurements for

each scripting technique including our approach, and lastly, (v) store the resulting

data.

To reduce measurement bias when calculating baselines in the wild, we repeated

the tests for each tuple (RTT, bandwidth) 50 times to retrieve the 500 landing pages

and then considered the average values. In order to simulate the internet environment,

we introduced an additional delay for each website, consisting of the average of four

pings to the real website in normal network conditions.

83

Chapter 4 – Impact of web page complexity on network performance inference

Container Page

Embedded codes

Data
Collection

Web Server

Web Client

Figure 4.9 – Integrated platform implementation

Table 4.2 – Implemented techniques

Implemented techniques

HTTP methods

JavaScript: XHR

JavaScript: DOM

Flash

Socket methods
Java Applet TCP socket

Web Socket

4.4.2 Results

Here, we compare the performance of browser-based solutions (see Table 4.2)

with our own approach, mainly for measuring two network metrics: RTT and down-

load bandwidth. For each technique, we compare the measured or estimated values

with real values. All test conditions were equivalent between our approach and the

simulated techniques except for the number of tuples (RTT, bandwidth) generated:

our technique is based on passive measurements, hence we need to generate a large

dataset if we want to achieve the same accuracy, as active tools. On the other hand,

generating the same number for the active tools would be very difficult or even im-

84

4.4. Our approach against other web-based monitoring solutions

Fla
sh XH

R
DO
M

Jav
a A
pp
let

Ou
r a
pp
roa
ch

We
b S
ock

et

Techniques

5
10
15
20
25
30
35
40
45
50

Er
ro
r (
%
)

Figure 4.10 – RTT error of implemented troubleshooting techniques

XH
R

Fla
sh

DO
M

Ou
r a
pp
roa
ch

We
b S
ock

et

Jav
a A
pp
let

Techniques

5
10
15
20
25
30
35
40
45
50

Er
ro
r (
%
)

Figure 4.11 – Download bandwidth error of implemented troubleshooting techniques

possible due to the huge amount of time they need to perform measurements. For

that purpose, we generated 100 tuples for all the techniques and 5000 tuples for our

approach. However, we considered the same ranges for the network metrics: for RTT

85

Chapter 4 – Impact of web page complexity on network performance inference

[0 , 500] [500 , 1000] [1000 , 1500]
RTT (ms)

0
5

10
15
20
25
30
35
40
45

Er
ro
r (

%
)

XHR
Flash
DOM
Java Applet
Web Socket
Our approach

Figure 4.12 – Error of implemented techniques in terms of RTT

[0 , 1] [1 , 2] [2 , 3]
Bandwidth (Mbps)

0
5

10
15
20
25
30
35
40
45

Er
ro
r (
%
)

XHR
Flash
DOM
Java Applet
Web Socket
Our approach

Figure 4.13 – Error of implemented techniques in terms of download bandwidth

New pages Known Pages

10

20

30

40

Er
ro
r (
%
)

(a) RTT

New pages Known Pages

10

20

30

40

Er
ro
r (
%
)

(b) Download bandwidth

Figure 4.14 – Comparison of performance for estimating RTT and bandwidth between
pages we know and new pages

86

4.4. Our approach against other web-based monitoring solutions

[0,500] [500,1000] Above 1000
Page Size (in Kb)

5

10

15

20

25

30

35

40

45

50

Er
ro
r (
%
)

XHR
DOM
Flash

Java Applet
Web Socket
Our approach

(a) RTT

[0,500] [500,1000] Above 1000
Page Size (in Kb)

5

10

15

20

25

30

35

40

45

50

Er
ro
r (
%
)

XHR
Flash
DOM

Java Applet
Web Socket
Our approach

(b) Download bandwidth

Figure 4.15 – RTT and download bandwidth error in function of page size

it is up to 1500 ms, and for download bandwidth it is up to 3 Mbps.

The box plots in Figures 4.10 and 4.11 display, respectively, the dispersion of

error over web pages using the implemented techniques for both metrics: RTT and

87

Chapter 4 – Impact of web page complexity on network performance inference

[1,100] [100,200] [200,300]
Number of objects

5

10

15

20

25

30

35

40

45

50

Er
ro

r (
%
)

XHR
Flash
DOM

Java Applet
Web Socket
Our approach

(a) RTT

[1,100] [100,200] [200,300]
Number of objects

5

10

15

20

25

30

35

40

45

50

Er
ro

r (
%
)

XHR
Flash
DOM

Java Applet
Web Socket
Our approach

(b) Download bandwidth

Figure 4.16 – RTT and download bandwidth error in function of number of objects

download bandwidth. While histograms in Figures 4.12 and 4.13 compare the im-

plemented solutions to each other in terms of error for different ranges of RTT and

download bandwidth. The same as before, the y-axis in the figures shows the mean

88

4.4. Our approach against other web-based monitoring solutions

percentage error given by Equation (4.2).

Error = 100% 1
n

n∑
i=1

| Estimated or Measured Value − Real Value
Real Value | (4.2)

First, we notice a significant gap between the different techniques. In general,

HTTP-based methods including XHR, DOM, and Flash show the least estimation

accuracy for both RTT and download bandwidth. For XHR and Flash techniques,

the estimation error was extremely high, which can go up to 40%. DOM technique

achieves better results than the latter, but the error still cannot be neglected. On

the other hand, socket-based solutions are able to provide the best overall accuracy.

We can explain this by the fact that HTTP methods add extra headers to retrieve

objects from the web server.

Second, our approach based on passive measurements and deep learning outper-

form most of the implemented solutions, as it ranked the second after the web socket

technique for RTT and the third for the download bandwidth, but with a very small

difference up to 3% if we consider the mean over web pages. Moreover, it is ranked

the first for large values of RTT and download bandwidth (see Figures 4.12, and

4.13). In particular, the error drops to less than 10% for a download bandwidth

around 3Mbps.

Another important result concerns the set of web pages used in the estimation.

In fact, as shown in Figure 4.14, if we estimate over the set of pages we know during

the training phase (different network conditions between training and test though),

the accuracy improves significantly for both RTT and download bandwidth.

Now, in order to study the impact of web page characteristics on the accuracy of

the different troubleshooting approaches, we plotted box plots displaying the error

as function of the page size as well as the number of objects for RTT and download

bandwidth metrics. According to Figure 4.15, the performance of our approach in-

creases significantly for certain intervals and outperforms all the other solutions, this

occurs when page size is under 500 kb for the RTT (Figure 4.15a), and above 1000

89

Chapter 4 – Impact of web page complexity on network performance inference

kb for the download bandwidth (Figure 4.15b). The same thing goes for the number

of objects (see Figure 4.16).

4.5 Conclusion

In this chapter, we consolidated our approach to infer network performance based

on passive measurements freely available from within the web browser and deep learn-

ing models to predict RTT and download bandwidth. Indeed, we highlighted the im-

pact of web page characteristics on estimation accuracy. We implemented a method-

ology consisting mainly of two phases: the data collection phase, where we varied

the network conditions and then captured the extended web measurements, and the

estimation phase, where we calibrated a Convolutional Neural Network (CNN) to

estimate network metrics. Then, we proposed an integrated platform where we im-

plemented our approach as well as several web-based monitoring solutions for com-

parison purposes. Results of our studies show that our approach can give a very

good accuracy compared to others; its accuracy is even higher than most standard

techniques and very close to the rest.

In the coming chapter, we will present how we can make this lightweight and

accurate monitoring solution to infer performance issues targeting a subset of pages,

and detect in real time when anomalies and degraded network conditions occur.

90

Chapter 5

LEVERAGING WEB BROWSING

PERFORMANCE DATA FOR NETWORK

MONITORING

5.1 Introduction

In the previous chapter, we illustrated how our approach can infer network perfor-

mance as precisely as possible, based only on passive measurements easily collected

from within the browser seconded by deep learning techniques. Our approach leads to

a free, lightweight, and accurate solution that capture the end-to-end path between

the web client and the server hosting the website. In this chapter we build upon

this work to propose a solution for network troubleshooting and anomaly detection

able to provide a very good estimation of the different network conditions of the web

traffic and to detect any shift in performance that targets part of or all the user

web traffic. In particular, we differentiate between the different network conditions

that face the web pages visited by the user, which is essential for network anomaly

detection and web browsing troubleshooting. Our main contributions in this chapter

can be summarized as follows:

1. We engineer a distributed system that collects measurements at the browser

and network levels.

2. We suggest an original network monitoring framework, based on Bayesian Gaus-

91

Chapter 5 – Leveraging web browsing performance data for network monitoring

sian Mixture Models (BGMM), able to provide information on the underlying

network state for the different visited web pages by the user.

3. We propose an algorithm to detect in real-time the occurrence of anomalies and

identify web pages affected by them, thus leading to an efficient web browsing

troubleshooting solution.

The rest of this chapter is organized as follows. In Section 5.2 we describe in detail

our approach for web-based network monitoring using BGMM clustering. In Section

5.3 we present the platform implementation, and then we study the efficiency of our

monitoring solution in detecting anomalies. Finally, we conclude in Section 5.4.

5.2 Web-based network monitoring using data clus-

tering

 2. Estimating network metrics
using CNN based deep learner

Network estimation

Data clustering

3. Clustering of estimated data to
profile the underlying network

1. Data collection and
processing

Data collection

Figure 5.1 – Our appraoch in three phases

Unlike traditional network monitoring methods based on active measurements,

our goal is to develop a lightweight solution that deploys a browser-based passive mea-

surement approach. We then use pre-calibrated machine learning models to bridge

the gap between the browser-level measurements and the network performance.

In real life, the web browsing traffic generated by the user runs in different network

conditions that we don’t all know. Knowing the spectrum of these conditions and

92

5.2. Web-based network monitoring using data clustering

tracking them over time is an important step towards understanding the underlying

network and detecting the prevalence of anomalies, hitting part or all web browsing

activity. For example, an overall change of network performance is a sign of a local

network problem. A part of the traffic being degraded is a sign of a remote problem

specific to the impacted websites, rather than a general access problem. Given these

observations, we propose here a web-based network monitoring framework able to

infer underlying network conditions as well as identifying network anomalies for the

different visited web pages.

As shown in Figure 5.1, our approach consists of three main phases. First, we

collect web measurements from the browser, such as PLT, Connect Start, DNS, and

other web page characteristics (see Table 5.1). Next, in order to estimate the network

state from the web performance metrics and the page characteristics, we rely on the

results of the previous chapter where we propose a Convolutional Neural Network

(CNN) model that has as input the different web metrics and as an output the

estimation of the RTT (Round-Trip Time) and the download network speed for each

of the visited web pages. We then cluster the obtained estimations of network metrics

for a set of visited web pages by the user using clustering techniques such as Gaussian

Mixture models in order to profile the underlying network. We end up proposing an

algorithm to track the clusters in real time to detect any network anomaly and those

pages impacted by it.

5.2.1 Data collection

To validate our method, we need labelled network data where the ground truth

about the network conditions is known. The purpose of this phase is thus to col-

lect a large dataset that captures the link between web browsing performance and

network performance using controlled experiments where we have full control on the

network. For this purpose, we have developed a distributed system where different

network conditions are emulated and network and web measurements are collected.

93

Chapter 5 – Leveraging web browsing performance data for network monitoring

Table 5.1 – Web performance metrics

Web QoS metrics Web page features

Connect Start Page Size (Size)
DNS Maximum objects size (Max Objects)
Request Number of objects (NumObjects)
Response Protocol supported (Protocol)
DOM Median of objects size (Median Objects)
First Paint (FP) Total objects size (Objects’ Size)
First Contentful Paint (FCP) First Quantile of object’s size (Q1 Objects)
Page Load Time (PLT) Third Quantile of objects size (Q3 Objects)

Maximum objects size (Max Objects)

We use our previous CNN model to estimate the network performance from the web

measurements.

To carry out the study, our system involves three main entities; the Experimenter,

the Web Client and the Database. The Experimenter generates and sets the network

configurations, using a traffic shaping emulation tool, and then launches the Web

Client. The Web Client is composed of the browser which is responsible for loading a

specific web page, and running an extension that collects all the information that we

need to build our model. Finally, the database is where the collected data is stored.

We will tackle the framework development thoroughly in the implementation part.

5.2.2 Data-driven network estimation

This phase consists in estimating the underlying network metrics using the col-

lected data from within the browser. Convolutional Neural Networks (CNN) are one

of the best estimation techniques capable of automating the process of feature ex-

traction. A CNN is usually followed by a fully connected Neural Network (NN) to

guarantee a high prediction accuracy as well as the convergence of the model.

In this section, we use this advanced technique since it shows the highest esti-

94

5.2. Web-based network monitoring using data clustering

mation accuracy compared to widely used traditional machine learning techniques.

We consider the regression variant of CNN that we developed earlier in this thesis,

and that has as input the different web metrics (Connect Start, DNS, Request, Re-

sponse, DOM, FP, FCP, PLT), besides some web page related features, such as the

number of objects, the size, and the protocol supported. We obtain as output a tuple

of estimations (r̂tt, b̂d) reflecting the network conditions under which the page was

browsed.

5.2.3 Data clustering

Here we give a detailed overview of the Gaussian Mixture Model (GMM) [81] we

opt for to perform the clustering of network conditions based on estimations provided

by the deep learner. Later on, we justify the efficiency of this clustering algorithm

by comparing its performance to other clustering methods.

In general, a mixture model like GMM is a statistical model used to parametri-

cally estimate the distribution of random variables by modelling them as a sum of

several other simple distributions. In particular, a Gaussian mixture model is a linear

combination of a finite number of Gaussian components with unknown parameters.

Assume the existence of a n-dimensional random variable X = {xi|i ∈ 1, ..., n}, the

probability density g(x) of the Gaussian’s mixture modeling X can be expressed as

the weighted sum of M other components whose densities are gk(x), k ∈ 1, ..., M :

g(x, θ) =
M∑

k=1
πkgk(x, θk), (5.1)

where πk represents the prior probability of a data point belonging to component k.

The πk satisfies the probability conditions ∑
k πk = 1 and 0 ≤ πk ≤ 1. θ and θk

respectively denote the parameters of the model g and gk.

We run GMM taking as input the unlabeled estimated values of the underly-

ing network metrics (delay and bandwidth) and as output the predicted clusters of

95

Chapter 5 – Leveraging web browsing performance data for network monitoring

these metrics together with the parameters of the associated Gaussian components.

Several methods exist to estimate these parameters, the widely used one being the

Expectation-Maximisation method (EM), which proceeds in an iterative way follow-

ing the Maximum Likelihood principle.

One of the challenges of the GMM method is how to set the optimal number of

clusters; that is, the number of Gaussian components that fit best the data. For that,

we use an extension of the EM algorithm built using the Bayesian variational infer-

ence technique (BV). For instance, the new method called BGMM [60] for Bayesian

Gaussian Mixture Model will eventually not only estimate the cluster parameters but

will also give an approximation of the cluster distribution itself. Figure 5.2 displays

the flowchart of the BGMM clustering approach.

BGMM Clustering

Clustering

result

Data estimated
from the network

(Delay and
Bandwidth)

 Data processing

BGMM Validation Network behaviour
 analysis

Figure 5.2 – Flowchart for BGMM network monitoring analysis

5.2.4 Clustering validation

Clustering validation is an essential step to assess how good the clustering model

is. We consider for this validation three widely used scores: purity (P), Rand index

(R) and Fowlkes Mallows Score (FM) [75].

Purity This index measures how pure each cluster is, which means to what extent

the elements of a given cluster are included in the ground truth partition. One way

96

5.2. Web-based network monitoring using data clustering

to express the purity of clustering is given by:

P = 1
n

∑
i

max
j

|Ci ∩ Tj|, (5.2)

where n is the total number of data points, i is the cluster index and |Ci ∩ Tj| is

the number of points that are common between the found cluster Ci and the ground

truth partition Tj. This purity index is in the range [0, 1]; the closer it is to 1, the

better the compatibility with the ground truth.

Rand index Given clustering C and ground truth partitioning T , the pairwise

measures utilize the partition and cluster label information over all pairs of points.

Let (xi, xj) be any two different points in T . If both xi and xj belong to the same

cluster, we call it a positive event, and if they don’t belong to the same cluster, we

call that a negative event. There are four possibilities to consider, depending on

whether there is an agreement between the cluster labels and ground-truth labels.

Based on this concept, the rand index is used to express how similar a cluster is to

a ground-truth partition and is given by R = (TP + TN)/N, where TP denotes the

number of true positive events, TN the number of true negatives, and N =
(

n
2

)
the

number of pairs in the data set. The rand index has a value between 0 and 1; a higher

value indicates a better similarity, which signifies a better clustering performance.

Fowlkes-Mallows index This index measures how well the clustering model per-

forms using two pairwise indicators, pairwise precision and pairwise recall values.

Recall measures the number of data points classified correctly over all points in the

same ground-truth partition, while precision measures the number of data points

classified correctly over all points in the same cluster. The Fowlkes–Mallows index is

defined as the geometric mean of precision and recall:

FM =
√

recall.precision. (5.3)

97

Chapter 5 – Leveraging web browsing performance data for network monitoring

The FM index is also between 0 and 1, with 1 being a scenario with perfect

clustering, FP = 0 & FN = 0.

5.2.5 Real-time anomaly detection

Our goal here is to propose a heuristic algorithm with a periodic process of reset-

tlement that allows tracking clusters over time in order to detect network performance

anomalies. Let P be the current group of already visited web pages with network

performance estimations (r̂tt, b̂d) (one pair of values per visited page) and let Q be

the group of web pages that are to be visited successively with rate λ. We consider a

window of pages W of temporal span T after which we reinitialize the entire process.

In this work, T is taken equal to 48 hours. Let i ∈ Q be a web page that is vis-

ited at time ti within the window, and let B be the baseline distribution of network

performance over P . We proceed as follows for each new page i. First, we define

tag(i) that checks if the data point i is marginal or not to the baseline distribution,

depending on the criterion pvalue(i). The marginality of a web page indicates that it

is out of the normal conditions, so we mark it in red. If it is not the case, we mark

it in blue to indicate that it corresponds to the normal conditions of the network.

Second, we apply BGMM based clustering to see if a new network state emerges.

A perfect scheme will be performing clustering for each point i. However, one must

consider reducing the cost of calculation of our clustering model. So we introduce a

step K (K=10) of re-clustering (only marginal pages are considered in the count).

Third, by checking the clustering results, we have two possibilities; either there is

an emergence of a new cluster or not. A new cluster composed of red points is a

clear sign of a change in network conditions. If the change is to the worst, we return

anomaly detected and the pages impacted by the anomaly.

The algorithm resettlement to initialize the whole process considers two cases:

— If there is an emergence of a new network condition, we change the baseline

distribution in order to adapt it to the new network state.

98

5.3. Performance evaluation

— If no emergence of a new state occurs, we wait until T time units elapse, then

we reset the group P as well as its baseline distribution B.

5.2.6 Anomaly detection analysis

For a better understanding of the anomaly, we consider the following elements:

— Anomaly type and magnitude: which means having either an increasing delay or

a bandwidth drop and by how much compared to the precedent network state.

— Probable source of the anomaly: which consists in identifying which part of the

network bears the major responsibility for the anomaly; the local part or the

WAN part.

— Anomaly duration: the time between the anomaly is detected, and the network

conditions move back to normal.

Now, let Em be the cluster that represents the detected anomaly, and P be the

set of visited web pages. If web pages of Em are only a partial subset of P , we say

that P changed partially (change of network conditions for the same pages). In this

case, the anomaly source will very likely depend on the other part of the Internet.

On the other hand, if all web pages of P are in the emerged cluster, we say that P

changed totally, and the source of degradation is local (the access network).

5.3 Performance evaluation

5.3.1 Framework setup

We built an experimentation framework that integrates our approach based on

the joint use of passive measurements and deep learning (CNN). Our framework is

built around an automated process that consists of sending and receiving messages

between the Experimenter and the Web Client. The Experimenter is divided into a

simple Finite State Machine (FSM), developed in python, and a web page to load the

99

Chapter 5 – Leveraging web browsing performance data for network monitoring

experiments. For the Web Client, we use Google Chrome as a browser, and interact

with it via a JavaScript extension we developed for the purpose of the study, using

Chrome Navigation Timing API and Performance Navigation API, which are w3c

recommendations (see Figure 5.3).

The Web
TC

 Web Servers Web Client

Experimenter Data CNN

Figure 5.3 – Framework implementation

We define the network conditions we want to emulate as N-tuples defined as fol-

lows: {TCi
1, ..., TCi

N} where N (for example N ∈ {2, ..., 5}) is the number of different

network conditions faced by the user at a random time, i is the i-th experimentation

and TC = (RTT, BD, p) is a tuple of network delay RTT , network bandwidth BD

and p being a group of web pages visited by the user and assigned to a particular

network condition (RTT and BD). The values of RTT and bandwidth are picked

randomly from a list of samples generated by the FAST technique (Fourier Amplitude

Sensitivity Test [88]); FAST is a sampling method that covers a given space based on

relevant frequencies, which allows an efficient scan of the area to be sampled. These

values are then enforced by the network emulator using Linux Traffic Control tool tc-

config. The group of web pages p is chosen by picking randomly |p| web pages from

the total group of web pages P , such that: |p| = ⌈ |P |
N

⌉. In this work, we consider as

P the 500 top popular web pages according to Alexa ranking.

Having under our control the end to end network path can be a real challenge; in

fact, we have to load real web pages from the cloud. Unfortunately, this latter is out

100

5.3. Performance evaluation

of our experimental network. In such circumstances, tcconfig may face difficulties in

enforcing the desired configurations. Thus, the need to validate and check samples

of the N-tuples (RTT and bandwidth) before starting the actual experimentation,

through RTT noise estimation and throughput tests.

Our platform performs the measurements of web performance metrics listed in

Table 5.1, then gives estimations of delay and bandwidth for each visited page using

the deep learner CNN we proposed in Chapter 3 [87, 86]. By applying our approach

(all scenarios), we obtain a dataset composed of 8000 different network scenarios for

the 500 considered web pages.

5.3.2 BGMM tuning

GMM possesses several hyper-parameters to be tuned. The most important one

is the number of mixture components or clusters, n_components.

The Bayesian Gaussian Mixture Model (BGMM) determines the optimal number

of clusters by affecting some clusters weights to zero, depending on the value of the

criterion weight concentration prior, so the number of clusters found is always

smaller than n_components. The covariance_type describes the type of covariance

parameters to use. And weight_concentration_prior describes the type of the

weight concentration prior, either using the Stick-Breaking representation (Dirichlet

process) or by favoring more uniform weights using Dirichlet distribution. We also

need to choose init_params, which decides about the method used to initialize the

weights, the means, and the covariances.

For our study, we consider n_components = 5, since in our experiments, we

only consider scenarios with maximum possible five TC configurations. For the

covariance_type, we use ‘full’ since we want to find completely separated clusters

with singular covariance matrix each. Regarding the weight_concentration_prior,

we use Dirichlet process, and finally we set ‘k-means’ as initialization method in

init_params.

101

Chapter 5 – Leveraging web browsing performance data for network monitoring

5.3.3 Results

We run BGMM over the tuples of estimated bandwidth and RTT. We tune BGMM

to find automatically the optimal number of clusters, in the limit of 5 clusters.

General case The box plot in Figure 5.4 displays the dispersion of the global

clustering accuracy over all network configurations. The histogram in Figure 5.5 gives

the accuracy of finding the same number of clusters as the ground truth. In both

figures, the x-axis represents the number of different network configurations which

are supported by the experimentation. The y-axis shows the accuracy in percentage

defined using the Rand index R defined above.

We notice a minor gap between the different scenarios, with the accuracy decreas-

ing with the number of parallel network conditions. In general, the 5 TCs scenario

shows the least accuracy for both the clustering and the identification of the right

number of clusters. Still, the value is as high as 85% for the first metric and 90% for

the second metric. For the 2 TCs scenario, the accuracy of clustering is even higher

(90% on average), and the precision of finding the exact number of clusters is perfect

(near 100%). As for the 3 TCs and 4 TCs scenarios, they display an accuracy higher

than 85% for the clustering as a whole and 95% for the simpler problem of finding

the right number of clusters.

Now, we check whether the accuracy of clustering varies if we change the number

of web pages until we reach the maximum 500. We consider all the scenarios in

Figure 5.6 and show a CDF plot displaying the Accuracy as a function of the number

of visited web pages. We can notice how the performance of our approach increases

significantly with the number of web pages. For example, to reach an accuracy of

75% we need 50 web pages for 2 TCs, 175 web pages for 3 TCs, 225 for 4 TCs, and

500 for 5 TCs. These results give hints on how to choose the minimum number of

web pages to consider for clustering to achieve the best possible accuracy.

102

5.3. Performance evaluation

���
�

���
�

���
�

���
�

����
�����	�

��

��

��

	�

�

���

�
		
��
�	
��
��

�

Figure 5.4 – BGMM clustering accuracy for 500 web pages

Number of Tcs

A
cc

ur
ac

y
(%

)

0%

25%

50%

75%

100%

2 Tc 3 Tc 4 Tc 5 Tc

Figure 5.5 – Accuracy of finding the right number of clusters

Number of pages

A
cc

ur
ac

y
(%

)

0%

25%

50%

75%

100%

100 200 300 400 500

2 Tc 3 Tc 4 Tc 5 Tc

Figure 5.6 – Clustering accuracy versus number of pages

103

Chapter 5 – Leveraging web browsing performance data for network monitoring

��
��
�

��
���

�

��
���

�

��
���

�

��
���

�

��
���

�

��
���

�

���������

���
��
�

���
��
��
�

���
��
�

���
��
��
�

���
��
�

���
��
��
�

���
��
�

���
��
��
�

���
��
�

���
��
��
�

���
��
�

���
��
��
�

	��
��
�

�
��
�
�

�

��
��
��

���

���

���

���

���

Figure 5.7 – Heat map of the minimum number of pages needed to achieve 85%
clustering accuracy

Case of two TCs The identification of the different network conditions depends

on the distance that exists between these conditions. We study this relationship for

the case of two different conditions (N=2). We plot in Figure 5.7 the heatmap of the

minimum number of pages needed to achieve 85% of accuracy, for different distances

in terms of delay and bandwidth. Clearly, the more distant the conditions, the fewer

the number of pages required, with a few pages being sufficient to separate conditions

differing by 7Mbps and 300ms, and 500 pages being needed to differentiate scenarios

with differences of less than 1Mbps and 50ms.

We further provide results where the number of pages is unbalanced between the

two conditions. For some specific scenarios, Figure 5.8 shows that the balance helps in

improving clustering accuracy, and any unbalance can be compensated by increasing

the number of pages to cluster.

104

5.3. Performance evaluation

Gobal number of pages

A
cc

ur
ac

y
(%

)

20%

40%

60%

80%

100%

0 100 200 300 400 500

scenario 1 (50%,50%) scenario 2 (40%,60%)
scenario 3 (20%,80%)

Figure 5.8 – Clustering accuracy versus number of pages for different balances between
the network conditions

5.3.4 Comparison with other clustering methods

Table 5.2 – Comparison between clustering models

Purity Index Rand Index FM score

K-means 0.502 0.662 0.67

GMM 0.84 0.772 0.78

BGMM 0.89 0.886 0.812

Here, we compare the performance of our BGMM based approach with other

two well known clustering methods: K-means [80] and classical GMM [81]. For K-

means, we use a model with N components fit. For GMM, we use a model with

N components fit and Expectation-Maximization for parameters’ estimation. We

consider the Elbow Method to determine this optimal number of clusters (between 2

and 5).

As shown in Table 5.2, K-means shows the worst clustering performance, espe-

cially for the purity index, which illustrates the difficulty of the task and the need

for sophisticated models. GMM comes next, then BGMM; in particular, the purity

105

Chapter 5 – Leveraging web browsing performance data for network monitoring

index can rise up to 0.89 overall with BGMM.

Intervals of delay increase (ms)

D
et

ec
tio

n
 A

cc
ur

ac
y

(%
)

50%

60%

70%

80%

90%

100%

[50,100] [100,200] [200,400] [400,1500]

10% of Web pages 20% of Web pages
30% of Web pages

(a) Increase of delay

Intervals of Bandwidth drop (Mbps)

D
et

ec
tio

n
 A

cc
ur

ac
y

(%
)

50%

60%

70%

80%

90%

100%

[0,5 ,2] [2,4] [4,6] [6,8]

10% of Web pages 20% of Web pages
30% of Web pages

(b) Drop of Bandwidth

Figure 5.9 – Accuracy detection of delay increase and Bandwidth drop for different
percent of web pages

5.3.5 Anomaly detection validation

Here we validate our algorithm for anomaly detection. We consider two different

scenarios with specific anomalies. The first one is a drop in the bandwidth value for

a percentage of web pages (10%, 20% or 30%). We variate the drop from 0.5 Mbps

to 8 Mbps. The second one consists of an increase in the delay respectively for 10%,

20% and 30% of web pages.

We validate our algorithm over 100 visited web pages (maximum anomaly dura-

106

5.4. Conclusion

tion). Indeed, we randomly pick 200 web pages with homogeneous network conditions

from the dataset. We consider 100 pages as the group P representing the baseline dis-

tribution. We consider the rest as the group Q representing the web pages that arrive

after the anomaly occurs. We include the anomaly in the group Q for a percentage

of the pages, then launch the algorithm.

We want to check the ability of our algorithm to detect these anomalies. Figure 5.9

gives an overview of the results. It shows the detection accuracy of the anomalies

depending on whether we are dealing with a drop in bandwidth or an increase in RTT.

We observe that the accuracy in detecting anomalies increases significantly when we

have larger shifts in network performance. Anomaly detection accuracy also increases

when the number of pages impacted by the anomaly increases. For example, if the

drop in bandwidth is between 6 Mbps and 8 Mbps, the accuracy of detection can

go up to 93% for all considered scenarios. An increase in delay between 400 ms and

1500 ms gives an accuracy that can go up to 98%. In all our scenarios, the accuracy

was found to be above 75%. Note that one can further increase the accuracy if the

anomaly lasts longer than the 100 pages limit we consider here.

5.4 Conclusion

We presented and implemented a lightweight web-based network monitoring solu-

tion able to infer the underlying network performance and detect network anomalies.

Our solution consists of:

— An original network monitoring framework, based on Bayesian Gaussian Mix-

ture Models (BGMM), able to provide information on the underlying network

state for the different visited web pages by the user.

— An algorithm to detect in real time the occurrence of performance anomalies.

We validated our approach with controlled experiments where the network condi-

tions were varied while the web pages were browsed. Validation results showed that

107

Chapter 5 – Leveraging web browsing performance data for network monitoring

our approach can yield accurate detection results even in scenarios with small shifts

in network performance and a few percentage of web pages impacted. We will keep

developing this solution towards a deployment in the wild and the identification of

the root causes of the degraded network performance based on the identified subset

of pages impacted by the anomaly.

108

Chapter 6

CONCLUSION AND PERSPECTIVES

6.1 Conclusion

In this thesis, we were mainly interested in inferring the main properties of the un-

derlying network, assessing the network quality and detecting performance anomalies.

In a nutshell, we presented new approaches and frameworks to derive our inference

models.

First, we presented in Chapter 3 an efficient and novel method to infer network

performance metrics from web metrics that can be collected passively and easily

from within the browser. For that purpose, We developed a platform to collect a

large dataset that links the web performance measurements to the underlying net-

work conditions over an example of three network metrics, namely the round-trip

time (RTT), the download bandwidth and the loss rate. After that, we resorted to

machine learning to calibrate our estimation models. Also, by comparing deep learn-

ing algorithms to classical ML algorithms such as Random Forest, we highlighted the

need for sophisticated deep learning algorithms, namely convolutional neural net-

works (CNN). Results show that our solution gives a very good accuracy by only

using measurements passively obtained from within the browser, especially with the

CNN model that outperforms the traditional Machine learning (ML) techniques.

Then, in Chapter 4, we highlighted the impact of web page characteristics and pro-

tocol supported on the estimation accuracy of our models. To that aim, we proposed

a methodology consisting mainly of two phases: the data collection phase, where we

109

Chapter 6 – Conclusion and perspectives

varied the network conditions and then captured specific web measurements with in-

formation on the characteristics of the visited web pages (e.g., web page size, number

of objects, Protocol supported, etc.)., and the estimation phase, where we calibrated

a Convolutional Neural Network (CNN) to estimate network metrics, precisely RTT

and Download bandwidth. Moreover, we studied the efficiency of our approach by

comparing it experimentally with other network troubleshooting solutions using an

integrated platform where we implemented our methodology as well as several web-

based monitoring solutions. The accuracy of our approach was outstanding compared

to others; indeed, it is higher than most standard techniques and very close to the

rest.

Finally, in Chapter 5, we presented and implemented an original network mon-

itoring framework based on Bayesian Gaussian Mixture Models (BGMM), able to

provide information on the underlying network state for the different visited Web

pages by the user. Furthermore, we proposed an algorithm to detect in real time the

occurrence of performance anomalies. Validation results showed that our approach

could yield accurate detection even in scenarios with small network performance

shifts and a few percentages of web pages impacted. All these contributions lead

to an efficient, lightweight, and data-driven network monitoring and troubleshooting

web-based solution that runs as a plugin in the end users’ browser.

6.2 Perspectives

6.2.1 Extension to further contexts

In this thesis, we leveraged passive measurements freely available in the browser

and deep learning techniques to infer network performance without adding new mea-

surement overhead. In Chapter 3 we proposed and evaluated a framework to infer

the main properties of the underlying network (the delay, the bandwidth, and the

loss rate) with a particular focus on web services. However, our approach remains

110

6.2. Perspectives

applicable to further contexts when it comes to network performance inference. For

example, we can extend this work to cover other internet services, such as video

streaming, which is one of the principal contributors to global internet traffic. To

that aim, we need to understand the transmission process of this service (e.g., dy-

namic adaptive streaming over HTTP (DASH) protocol) and identify new metrics

correlated to video quality and related to video play-out, including the video startup

delay, video interruptions or stalls, and resolution switches, etc.

Another perspective is to extend and validate our work on other technologies,

particularly wireless communications (e.g., WiFi). Thus, applying our approach relies

on adding metrics specific to WiFi networks, such as link-layer metrics related to

frame losses due to collision or low signal and the received signal strength indicator

(RSSI) that measures the signal strength. This study will allow us to explore an

essential direction for future work: test the same approach on mobile phones and

tablets, since all our experiments were conducted on desktops using a Chrome plugin.

Today, smartphones and tablets are becoming more powerful; according to Statista,

53.62% of all website traffic was due to mobile phones in 2020. Incorporating our

models in a new mobile application that measures web performance and predicts

the network state from mobile web data will be a good starting point. However,

performing traffic collection and automatic users’ network quality assessment is a

challenging task.

Moreover, our methodology can be developed to infer more network properties, for

example, network neutrality. This concept implies that data on the Internet should

be treated the same way regardless of the service provider, technology, or country

they come from. Accordingly, we examine if our approach can identify whether web

pages are handled differently or they are treated the same.

111

Chapter 6 – Conclusion and perspectives

6.2.2 Crowdsourcing and Federated Learning (FL)

As highlighted in Chapter 3, Our deep learning models are calibrated using a

controlled experimentation approach where we artificially change the network condi-

tions and automate a web browsing activity. Then we use the ground truth on the

network state and the passive measurements available in the browser for the training

and validation of our models. The particularity of our solution is that it covers all

the possible network scenarios, especially extreme ones, where for example, latencies

are too high, or bandwidth is too large. However, to create more robust and precise

models that fit real life, we would like to leverage and incorporate real scenarios where

network traffic is dynamic and where the network state is not necessarily known be-

forehand. So one future direction is to consider data collected from the wild through

crowdsourcing.

Our idea consists of deploying a Google Chrome plugin that measures web and

network metrics using passive/active techniques. Therefore, we will achieve a scalable

and efficient solution able to reach a large group of real users and collect much more

data in a short time. Then we use the data collected to re-calibrate our machine

learning models. Once these models are ready, network performance can thus be

estimated from web performance measurements without the need to access or probe

the network.

Accordingly, this work can be extended to another interesting aspect based on

federated learning (FL), a newly proposed machine learning method that uses a

decentralized dataset. In federated learning, edge devices collaboratively build a

unified learning model by sharing only locally learned models while keeping the local

training data.

We imagine developing a system able to work in a distributed manner by sharing

individual models specific to each end user and producing one more accurate and pre-

cise model by implementing FL algorithms. Such an approach has many advantages.

First, it allows increasing privacy since only models are shared. Second, it helps to

112

6.2. Perspectives

improve learning performance and achieve higher accuracy. Third, it consumes fewer

resources since it doesn’t require exchanging voluminous training data.

6.2.3 Localization of anomalies

In Chapter 5, we presented and implemented a lightweight web-based network

monitoring solution to infer the underlying network performance and detect abnormal

network behaviors. The validation of our framework showed that our solution could

produce accurate detection results. However, to better understand the anomaly, a

complete study on the localization of anomalies is needed.

To that aim, we think of keeping developing this solution towards identifying the

root causes of the degraded network performance based on the identified subset of

pages impacted by the anomaly. In particular, finding which part of the network

bears the major responsibility for the anomaly is a fundamental starting block. Is it

from the client device, the local access, the remaining cloud or the server-side?

We will opt for a solution that, besides deducing any significant change in real

time, is able to analyze and understand its root causes. Indeed, to localize anomalous

events, we will envisage access to further network-level traces as the BGP routing

tables and the traceroutes. Also, we can investigate refined strategies that consider

a more realistic network topology.

113

PUBLICATIONS

Conference Papers

• Imane Taibi, Yassine Hadjadj-Aoul, and Chadi Barakat: When Deep Learn-

ing meets Web Measurements to infer Network Performance _ CCNC

2020-IEEE Consumer Communications & Networking Conference, Las Vegas,

United States: IEEE, Jan. 2020, pp. 1–6.

• Imane Taibi, Yassine Hadjadj-Aoul, and Chadi Barakat: Data Driven Net-

work Performance Inference From Within The Browser_ 2020 IEEE

Symposium on Computers and Communications (ISCC), 2020, pp. 1-6.

• Imane Taibi, Yassine Hadjadj-Aoul, and Chadi Barakat: Leveraging Web

browsing performance data for Network monitoring: A data-driven

approach_ 2022 IEEE Global Communications Conference: Communication

QoS, Reliability and Modeling - Communication QoS, Reliability and Modeling.

115

BIBLIOGRAPHY

[1] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu, « A survey of

network anomaly detection techniques », in: Journal of Network and Computer

Applications 60 (2016), pp. 19–31, issn: 1084-8045, doi: https://doi.org/

10.1016/j.jnca.2015.11.016.

[2] Vaibhav Bajpai and Jürgen Schönwälder, « A Survey on Internet Perfor-

mance Measurement Platforms and Related Standardization Efforts », in:

IEEE Communications Surveys & Tutorials 17 (Apr. 2015), doi: 10 .

1109/COMST.2015.2418435.

[3] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Sto-

ica, and Hui Zhang, « Developing a Predictive Model of Quality of Experience

for Internet Video », in: SIGCOMM Comput. Commun. Rev. 43.4 (Aug. 2013),

pp. 339–350, issn: 0146-4833.

[4] Othmane Belmoukadam and Chadi Barakat, « Unveiling the end-user view-

port resolution from encrypted video traces », in: IEEE Transactions on Net-

work and Service Management 18.3 (Sept. 2021), pp. 3324–3335, doi: 10.

1109/TNSM.2021.3083070, url: https://hal.inria.fr/hal-03230168.

[5] Othmane Belmoukadam, Thierry Spetebroot, and Chadi Barakat, « ACQUA:

A user friendly platform for lightweight network monitoring and QoE fore-

casting », in: 2019 22nd Conference on Innovation in Clouds, Internet and

Networks and Workshops (ICIN), IEEE, 2019, pp. 88–93.

[6] Mike Belshe, Roberto Peon, and Martin Thomson, Hypertext transfer protocol

version 2 (HTTP/2), 2015.

117

https://doi.org/https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1109/COMST.2015.2418435
https://doi.org/10.1109/COMST.2015.2418435
https://doi.org/10.1109/TNSM.2021.3083070
https://doi.org/10.1109/TNSM.2021.3083070
https://hal.inria.fr/hal-03230168

[7] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk, Hypertext transfer protocol–

HTTP/1.0, 1996.

[8] Timothy J Berners-Lee and Robert Cailliau, « WorldWideWeb: Proposal for

a HyperText project », in: (1990).

[9] M Bishop and E Akamai, « Hypertext transfer protocol version 3 (HTTP/3)

draft-ietf-quic-http-18 », in: Internet Requests for Comments, IETF Internet

Draft, Tech. Rep. (2019).

[10] Enrico Bocchi, Luca De Cicco, Marco Mellia, and Dario Rossi, « The Web,

the Users, and the MOS: Influence of HTTP/2 on User Experience », in:

Passive and Active Measurement, ed. by Mohamed Ali Kaafar, Steve Uhlig,

and Johanna Amann, Cham: Springer Int. Publishing, 2017, pp. 47–59.

[11] Enrico Bocchi, Luca De Cicco, and Dario Rossi, « Measuring the Quality of

Experience of Web users », in: ACM SIGCOMM Computer Communication

Review 46 (Dec. 2016), pp. 8–13, doi: 10.1145/3027947.3027949.

[12] Tim Bray, « Measuring the Web », in: World Wide Web J. 1.3 (1996).

[13] Kjell Brunnström, Sergio Ariel Beker, Katrien De Moor, Ann Dooms, Se-

bastian Egger, Marie-Neige Garcia, Tobias Hossfeld, Satu Jumisko-Pyykkö,

Christian Keimel, Mohamed-Chaker Larabi, Bob Lawlor, Patrick Le Callet,

Sebastian Möller, Fernando Pereira, Manuela Pereira, Andrew Perkis, Jesenka

Pibernik, Antonio Pinheiro, Alexander Raake, Peter Reichl, Ulrich Reiter,

Raimund Schatz, Peter Schelkens, Lea Skorin-Kapov, Dominik Strohmeier,

Christian Timmerer, Martin Varela, Ina Wechsung, Junyong You, and Andrej

Zgank, Qualinet White Paper on Definitions of Quality of Experience, Mar.

2013, url: https://hal.archives-ouvertes.fr/hal-00977812.

[14] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, « Characterizing Web Page

Complexity and Its Impact », in: IEEE/ACM Transactions on Networking

22.3 (June 2014), pp. 943–956.

118

https://doi.org/10.1145/3027947.3027949
https://hal.archives-ouvertes.fr/hal-00977812

[15] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar, « Characteriz-

ing Web Page Complexity and Its Impact », in: IEEE/ACM Transactions on

Networking 22.3 (2014), pp. 943–956, doi: 10.1109/TNET.2013.2269999.

[16] Tom Callahan, Mark Allman, and Vern Paxson, « A longitudinal view of http

traffic », in: International Conference on Passive and Active Network Mea-

surement, Springer, 2010, pp. 222–231.

[17] CERN, The birth of the Web, https://home.cern/science/computing/

birth-web.

[18] Kuan-Ta Chen, Chen-Chi Wu, Yu-Chun Chang, and Chin-Laung Lei, « A

Crowdsourceable QoE Evaluation Framework for Multimedia Content », in:

MM ’09, Beijing, China: Association for Computing Machinery, 2009, pp. 491–

500, isbn: 9781605586083, doi: 10.1145/1631272.1631339.

[19] Heng Cui, Ernst Biersack, and Eurecom Sophia Antipolis, Distributed Trou-

bleshooting of Web Sessions Using Clustering.

[20] Diego Da Hora, Alemnew Sheferaw Asrese, Vassilis Christophides, Renata

Teixeira, and Dario Rossi, « Narrowing the gap between QoS metrics and Web

QoE using Above-the-fold metrics », in: PAM 2018 - Int. Conf on Passive and

Active Network Measurement, Berlin, Germany, Mar. 2018, pp. 1–13.

[21] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu, « Ubl: Unsupervised

behavior learning for predicting performance anomalies in virtualized cloud

systems », in: Proceedings of the 9th international conference on Autonomic

computing, 2012, pp. 191–200.

[22] Carlo Demichelis and Philip Chimento, IP packet delay variation metric for

IP performance metrics (IPPM), tech. rep., 2002.

[23] Mohan Dhawan, Justin Samuel, Renata Teixeira, Christian Kreibich, Mark

Allman, Nicholas Weaver, and Vern Paxson, « Fathom: A Browser-based Net-

119

https://doi.org/10.1109/TNET.2013.2269999
https://home.cern/science/computing/birth-web
https://home.cern/science/computing/birth-web
https://doi.org/10.1145/1631272.1631339

work Measurement Platform », in: ACM Internet Measurement Conference,

Boston, United States: ACM, Nov. 2012, pp. 73–86.

[24] DOM, https://dom.spec.whatwg.org/.

[25] KIT EATON, How One Second Could Cost Amazon $1.6 Billion In Sales,

https://www.fastcompany.com/1825005/how-one-second-could-cost-

amazon-16-billion-sales, 2012.

[26] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and Kadangode K Ra-

makrishnan, « Towards a spdy’ier mobile web? », in: IEEE/ACM Transactions

on Networking 23.6 (2015), pp. 2010–2023.

[27] Rodérick Fanou, Gareth Tyson, Pierre Francois, and Arjuna Sathiaseelan,

« Pushing the Frontier: Exploring the African Web Ecosystem », in: Pro-

ceedings of the 25th International Conference on World Wide Web, WWW

’16, Montréal, Québec, Canada: International World Wide Web Conferences

Steering Committee, 2016, pp. 435–445, isbn: 9781450341431, doi: 10.1145/

2872427.2882997.

[28] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,

Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador,

Narseo Vallina-Rodriguez, Oliver Hohlfeld, and Georgios Smaragdakis, « The

Lockdown Effect: Implications of the COVID-19 Pandemic on Internet Traf-

fic », in: Proceedings of the ACM Internet Measurement Conference, IMC ’20,

Virtual Event, USA: Association for Computing Machinery, 2020, pp. 1–18,

isbn: 9781450381383, doi: 10.1145/3419394.3423658, url: https://doi.

org/10.1145/3419394.3423658.

[29] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L Wiener, « A large-

scale study of the evolution of Web pages », in: Computing Reviews 46.1

(2005), p. 51.

120

https://dom.spec.whatwg.org/
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://doi.org/10.1145/2872427.2882997
https://doi.org/10.1145/2872427.2882997
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/3419394.3423658

[30] M. Fiedler, T. Hossfeld, and P. Tran-Gia, « A generic quantitative relationship

between quality of experience and quality of service », in: IEEE Network 24.2

(Mar. 2010), pp. 36–41.

[31] Roy T. Fielding and Julian Reschke, Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content, RFC 7231, June 2014, doi: 10.17487/RFC7231, url:

https://www.rfc-editor.org/info/rfc7231.

[32] Andrew Froehlich, DEFINITION of bandwidth (network bandwidth), https:

//www.techtarget.com/searchnetworking/definition/bandwidth.

[33] Song Fu, Jianguo Liu, and Husanbir Singh Pannu, « A Hybrid Anomaly Detec-

tion Framework in Cloud Computing Using One-Class and Two-Class Support

Vector Machines », in: ADMA, 2012.

[34] Qingzhu Gao, Prasenjit Dey, and Parvez Ahammad, « Perceived Performance

of Top Retail Webpages In the Wild: Insights from Large-scale Crowdsourc-

ing of Above-the-Fold QoE », in: Proceedings of the Workshop on QoE-based

Analysis and Management of Data Communication Networks, Internet QoE

’17, Los Angeles, CA, USA: ACM, 2017, pp. 13–18.

[35] Xiaohui Gu and Yongmin Tan, « Online performance anomaly prediction and

prevention for complex distributed systems », in: 2012.

[36] Qiang Guan, Ziming Zhang, and Song Fu, « Ensemble of Bayesian predic-

tors and decision trees for proactive failure management in cloud computing

systems. », in: J. Commun. 7.1 (2012), pp. 52–61.

[37] Andreas Hanemann, Athanassios Liakopoulos, Maurizio Molina, and Mar-

tin Swany, « A study on network performance metrics and their composi-

tion », in: Campus-Wide Information Systems 23 (Aug. 2006), doi: 10.1108/

10650740610704135.

121

https://doi.org/10.17487/RFC7231
https://www.rfc-editor.org/info/rfc7231
https://www.techtarget.com/searchnetworking/definition/bandwidth
https://www.techtarget.com/searchnetworking/definition/bandwidth
https://doi.org/10.1108/10650740610704135
https://doi.org/10.1108/10650740610704135

[38] Félix Hernández-Campos, Kevin Jeffay, and F Donelson Smith, « Tracking

the evolution of web traffic: 1995-2003 », in: 11th IEEE/ACM International

Symposium on Modeling, Analysis and Simulation of Computer Telecommu-

nications Systems, 2003. MASCOTS 2003. IEEE, 2003, pp. 16–25.

[39] Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis Christophides, Re-

nata Teixeira, and Dario Rossi, « Narrowing the gap between QoS metrics

and Web QoE using Above-the-fold metrics », in: International Conference

on Passive and Active Network Measurement, Springer, 2018, pp. 31–43.

[40] Tobias Hoßfeld, Florian Metzger, and Dario Rossi, « Speed index: Relating

the industrial standard for user perceived web performance to web qoe », in:

2018 Tenth International Conference on Quality of Multimedia Experience

(QoMEX), IEEE, 2018, pp. 1–6.

[41] Tobias Hossfeld, Poul Heegaard, Martín Varela, and Sebastian Möller, « QoE

beyond the MOS: an in-depth look at QoE via better metrics and their relation

to MOS », in: Quality and User Experience 1 (Sept. 2016), p. 2, doi: 10.1007/

s41233-016-0002-1.

[42] HTML basics, https://developer.mozilla.org/en- US/docs/Learn/

Getting_started_with_the_web/HTML_basics.

[43] Evolution of HTTP, https://developer.mozilla.org/en-US/docs/Web/

HTTP/Basics_of_HTTP/Evolution_of_HTTP.

[44] Tian Huang, Yan Zhu, Qiannan Zhang, Yongxin Zhu, Dongyang Wang, Meikang

Qiu, and Lei Liu, « An lof-based adaptive anomaly detection scheme for cloud

computing », in: 2013 IEEE 37th Annual Computer Software and Applications

Conference Workshops, IEEE, 2013, pp. 206–211.

[45] Identifying resources on the Web, https://developer.mozilla.org/en-US/

docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web.

122

https://doi.org/10.1007/s41233-016-0002-1
https://doi.org/10.1007/s41233-016-0002-1
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web

[46] IP Performance Measurement, https://datatracker.ietf.org/wg/ippm/

documents/.

[47] Manish Jain and Constantine Dovrolis, « Pathload: A Measurement Tool for

End-to-End Available Bandwidth », in: Proc. of Passive and Active Measure-

ment Workshop (Mar. 2002).

[48] Artur Janc, Craig E. Wills, and Mark Claypool, « NETWORK PERFOR-

MANCE EVALUATION IN A WEB BROWSER », in: proceeding of IASTED

PDCS, 2009.

[49] Michalis Katsarakis, Renata Cruz Teixeira, Maria Papadopouli, and Vassilis

Christophides, « Towards a Causal Analysis of Video QoE from Network and

Application QoS », in: Proc. of the 2016 Workshop on QoE-based Analysis

and Management of Data Communication Networks, Internet-QoE ’16, Flori-

anopolis, Brazil: ACM, 2016, pp. 31–36, isbn: 978-1-4503-4425-8.

[50] Muhammad Jawad Khokhar, Thibaut Ehlinger, and Chadi Barakat, « From

Network Traffic Measurements to QoE for Internet Video », in: IFIP Network-

ing Conference 2019, Varsovie, Poland, May 2019, doi: 10.23919/IFIPNetworking.

2019.8816854, url: https://hal.inria.fr/hal-02074570.

[51] Muhammad Jawad Khokhar, Nawfal Abbassi Saber, Thierry Spetebroot, and

Chadi Barakat, « An intelligent sampling framework for controlled experimen-

tation and QoE modeling », in: Computer Networks 147 (2018), pp. 246–261,

issn: 1389-1286.

[52] Diederik P. Kingma and Jimmy Ba, Adam: A Method for Stochastic Optimiza-

tion, 2014, arXiv: 1412.6980 [cs.LG].

[53] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson, « Ne-

talyzr: Illuminating the edge network », in: Proceedings of the ACM SIG-

COMM Internet Measurement Conference, IMC, Jan. 2010, pp. 246–259, doi:

10.1145/1879141.1879173.

123

https://datatracker.ietf.org/wg/ippm/documents/
https://datatracker.ietf.org/wg/ippm/documents/
https://doi.org/10.23919/IFIPNetworking.2019.8816854
https://doi.org/10.23919/IFIPNetworking.2019.8816854
https://hal.inria.fr/hal-02074570
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1879141.1879173

[54] Pierre L’Ecuyer, « Randomized Quasi-Monte Carlo: An Introduction for Prac-

titioners », in: 12th Int. Conf. on Monte Carlo and Quasi-Monte Carlo Meth-

ods in Scientific Computing (MCQMC 2016), Stanford, United States, June

2017.

[55] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Kra-

sic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar,

Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Ra-

man Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang,

and Zhongyi Shi, « The QUIC Transport Protocol: Design and Internet-Scale

Deployment », in: Proc. of the Conf. of the ACM Special Interest Group on

Data Communication, SIGCOMM ’17, Los Angeles, CA, USA: ACM, 2017,

pp. 183–196.

[56] Jong-Seok Lee, Francesca De Simone, Naeem Ramzan, Zhijie Zhao, Engin

Kurutepe, Thomas Sikora, Jörn Ostermann, Ebroul Izquierdo, and Touradj

Ebrahimi, « Subjective Evaluation of Scalable Video Coding for Content Dis-

tribution », in: MM ’10, Firenze, Italy: Association for Computing Machinery,

2010, pp. 65–72, isbn: 9781605589336, doi: 10.1145/1873951.1873981.

[57] Weichao Li, Ricky K.P. Mok, Rocky K.C. Chang, and Waiting W.T. Fok, « Ap-

praising the Delay Accuracy in Browser-Based Network Measurement », in:

Proceedings of the 2013 Conference on Internet Measurement Conference, IMC

’13, Barcelona, Spain: Association for Computing Machinery, 2013, pp. 361–

368, isbn: 9781450319539, doi: 10.1145/2504730.2504760, url: https:

//doi.org/10.1145/2504730.2504760.

[58] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Albert Greenberg, and

Yi-Min Wang, « WebProphet: Automating Performance Prediction for Web

Services », in: 7th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 10), San Jose, CA: USENIX Association, Apr. 2010,

124

https://doi.org/10.1145/1873951.1873981
https://doi.org/10.1145/2504730.2504760
https://doi.org/10.1145/2504730.2504760
https://doi.org/10.1145/2504730.2504760

url: https : / / www . usenix . org / conference / nsdi10 - 0 / webprophet -

automating-performance-prediction-web-services.

[59] Yi Liu, Yun Ma, Xuanzhe Liu, and Gang Huang, « Can HTTP/2 Really Help

Web Performance on Smartphones? », in: 2016 IEEE International Conference

on Services Computing (SCC), 2016, pp. 219–226, doi: 10.1109/SCC.2016.

36.

[60] Jun Lu, A survey on Bayesian inference for Gaussian mixture model, 2021.

[61] M-Lab, https://www.measurementlab.net/.

[62] Victor A. Machado, Carlos N. Silva, Rosinei S. Oliveira, Alexandre M. Melo,

Marcelino Silva, Carlos R. L. Francês, João C. W. A. Costa, Nandamudi L. Vi-

jaykumar, and Celso M. Hirata, « A new proposal to provide estimation of QoS

and QoE over WiMAX networks: An approach based on computational intel-

ligence and discrete-event simulation », in: 2011 IEEE Third Latin-American

Conference on Communications, 2011, pp. 1–6, doi: 10.1109/LatinCOM.

2011.6107419.

[63] A Morton, G Ramachandran, and G Maguluri, Reporting IP network perfor-

mance metrics: different points of view, tech. rep., 2012.

[64] Navigation timing API, https://www.w3.org/TR/navigation-timing/.

[65] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco

Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste,

« The Cost of the "S" in HTTPS », in: Proceedings of the 10th ACM Interna-

tional on Conference on Emerging Networking Experiments and Technologies,

CoNEXT ’14, Sydney, Australia: Association for Computing Machinery, 2014,

pp. 133–140, isbn: 9781450332798, doi: 10.1145/2674005.2674991, url:

https://doi.org/10.1145/2674005.2674991.

[66] NDT, https://www.measurementlab.net/tests/ndt/.

125

https://www.usenix.org/conference/nsdi10-0/webprophet-automating-performance-prediction-web-services
https://www.usenix.org/conference/nsdi10-0/webprophet-automating-performance-prediction-web-services
https://doi.org/10.1109/SCC.2016.36
https://doi.org/10.1109/SCC.2016.36
https://www.measurementlab.net/
https://doi.org/10.1109/LatinCOM.2011.6107419
https://doi.org/10.1109/LatinCOM.2011.6107419
https://www.w3.org/TR/navigation-timing/
https://doi.org/10.1145/2674005.2674991
https://doi.org/10.1145/2674005.2674991
https://www.measurementlab.net/tests/ndt/

[67] Ravi Netravali, Vikram Nathan, James Mickens, and Hari Balakrishnan, « Ves-

per: Measuring {Time-to-Interactivity} for Web Pages », in: 15th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 18),

2018, pp. 217–231.

[68] Ben Newton, Kevin Jeffay, and Jay Aikat, « The Continued Evolution of Web

Traffic », in: 2013 IEEE 21st International Symposium on Modelling, Analysis

and Simulation of Computer and Telecommunication Systems, IEEE, 2013,

pp. 80–89.

[69] First Web page, World Wide Web, https://www.w3.org/History/19921103-

hypertext/hypertext/WWW/TheProject.html.

[70] PlanetLab, https://www.planet-lab.eu/.

[71] SPDY protocol, https://www.chromium.org/spdy/.

[72] Feng Qian, Vijay Gopalakrishnan, Emir Halepovic, Subhabrata Sen, and Oliver

Spatscheck, « Tm3: Flexible transport-layer multi-pipe multiplexing middle-

box without head-of-line blocking », in: Proceedings of the 11th ACM Con-

ference on Emerging Networking Experiments and Technologies, 2015, pp. 1–

13.

[73] W3C recommendation, Paint timing API, https://www.w3.org/TR/paint-

timing/.

[74] Eric Rescorla, HTTP Over TLS, RFC 2818, May 2000, doi: 10 . 17487 /

RFC2818, url: https://www.rfc-editor.org/info/rfc2818.

[75] Mohammad Rezaei, « Clustering validation », PhD thesis, Itä-Suomen yliopisto,

2016.

[76] A. Ritacco, C. Wills, and M. Claypool, « How’s My Network? A Java Ap-

proach to Home Network Measurement », in: 2009 Proceedings of 18th Interna-

tional Conference on Computer Communications and Networks, 10.1109/IC-

CCN.2009.5235346, Aug. 2009, pp. 1–7.

126

https://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
https://www.planet-lab.eu/
https://www.chromium.org/spdy/
https://www.w3.org/TR/paint-timing/
https://www.w3.org/TR/paint-timing/
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC2818
https://www.rfc-editor.org/info/rfc2818

[77] Jan Rüth, Konrad Wolsing, Klaus Wehrle, and Oliver Hohlfeld, « Perceiving

QUIC », in: Proceedings of the 15th International Conference on Emerging

Networking Experiments And Technologies, ACM, Dec. 2019, doi: 10.1145/

3359989.3365416.

[78] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash

Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin, « A

review of clustering techniques and developments », in: Neurocomputing 267

(2017), pp. 664–681.

[79] Raimund Schatz, Tobias Hoßfeld, Lucjan Janowski, and Sebastian Egger,

DataTraffic Monitoring and Analysis, Springer-Verlag, 2013, chap. From Pack-

ets to People: Quality of Experience As a New Measurement Challenge, pp. 219–

263.

[80] scikit-learn, Clustering: k-means, https : / / scikit - learn . org / stable /

modules/clustering.html#k-means.

[81] scikit-learn, Gaussian mixture models, https://scikit-learn.org/stable/

modules/mixture.html.

[82] STEVE SOUDERS, Velocity and the Bottom Line, http://radar.oreilly.

com/2009/07/velocity-making-your-site-fast.html, 2009.

[83] Speedtest, https://www.speedtest.net/.

[84] T. Spetebroot, S. Afra, N. Aguilera, D. Saucez, and C. Barakat, « From

network-level measurements to expected quality of experience: The Skype use

case », in: 2015 IEEE Int. Workshop on Measurements Networking (M N),

Oct. 2015, pp. 1–6.

[85] « Subjective quality evaluation VIA paired comparison: Application to scalable

video coding », English, in: IEEE Transactions on Multimedia 13.5 (Oct.

2011), pp. 882–893, issn: 1520-9210, doi: 10.1109/TMM.2011.2157333.

127

https://doi.org/10.1145/3359989.3365416
https://doi.org/10.1145/3359989.3365416
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/mixture.html
https://scikit-learn.org/stable/modules/mixture.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://www.speedtest.net/
https://doi.org/10.1109/TMM.2011.2157333

[86] Imane Taibi, Yassine Hadjadj-Aoul, and Chadi Barakat, « Data Driven Net-

work Performance Inference From Within The Browser », in: IEEE ISCC

(2020), pp. 1–6.

[87] Imane Taibi, Yassine Hadjadj-Aoul, and Chadi Barakat, « When Deep Learn-

ing meets Web Measurements to infer Network Performance », in: CCNC 2020

- IEEE Consumer Communications & Networking Conference, Las Vegas,

United States: IEEE, Jan. 2020, pp. 1–6, url: https://hal.inria.fr/hal-

02358004.

[88] Stefano Tarantola and Thierry A. Mara, « Variance-based sensitivity indices

of computer models with dependent inputs: The Fourier Amplitude Sensitiv-

ity Test », in: Int. Journal for Uncertainty Quantification 7.6 (Apr. 2017),

pp. 511–523.

[89] tcconfig’s documentation, https://tcconfig.readthedocs.io/en/latest/.

[90] Wei-Guang Teng, Cheng-Yue Chang, and Ming-Syan Chen, « Integrating Web

caching and Web prefetching in client-side proxies », in: IEEE Transactions

on Parallel and Distributed Systems 16.5 (2005), pp. 444–455, doi: 10.1109/

TPDS.2005.56.

[91] Tim Berners-Lee, https://www.w3.org/People/Berners-Lee/.

[92] V. TONG, H. A. TRAN, S. SOUIHI, and A. MELLOUK, « Network trou-

bleshooting: Survey, Taxonomy and Challenges », in: 2018 International Con-

ference on Smart Communications in Network Technologies (SaCoNeT), Oct.

2018, pp. 165–170, doi: 10.1109/SaCoNeT.2018.8585610.

[93] Shaun Turney, Pearson Correlation Coefficient, https://www.scribbr.com/

statistics/pearson-correlation-coefficient/.

[94] IT Union, « Itu-t recommendation p. 800.1: Mean opinion score (mos) termi-

nology », in: International Telecommunication Union, Tech. Rep (2006).

128

https://hal.inria.fr/hal-02358004
https://hal.inria.fr/hal-02358004
https://tcconfig.readthedocs.io/en/latest/
https://doi.org/10.1109/TPDS.2005.56
https://doi.org/10.1109/TPDS.2005.56
https://www.w3.org/People/Berners-Lee/
https://doi.org/10.1109/SaCoNeT.2018.8585610
https://www.scribbr.com/statistics/pearson-correlation-coefficient/
https://www.scribbr.com/statistics/pearson-correlation-coefficient/

[95] Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina Papa-

giannaki, « EYEORG », in: Proceedings of the 12th International on Con-

ference on emerging Networking EXperiments and Technologies, ACM, Dec.

2016, doi: 10.1145/2999572.2999590, url: https://doi.org/10.1145%

2F2999572.2999590.

[96] Jamshed Vesuna, Colin Scott, Michael Buettner, Michael Piatek, Arvind Kr-

ishnamurthy, and Scott Shenker, « Caching Doesn’t Improve Mobile Web Per-

formance (Much) », in: 2016 USENIX Annual Technical Conference (USENIX

ATC 16), Denver, CO: USENIX Association, June 2016, pp. 159–165, isbn:

978-1-931971-30-0.

[97] Jia Wang, « A Survey of Web Caching Schemes for the Internet », in: SIG-

COMM Comput. Commun. Rev. 29.5 (Oct. 1999), pp. 36–46, issn: 0146-4833,

doi: 10.1145/505696.505701.

[98] Tao Wang, Jun Wei, Feng Qin, WenBo Zhang, Hua Zhong, and Tao Huang,

« Detecting performance anomaly with correlation analysis for Internetware »,

in: Science China Information Sciences 56 (Aug. 2013), pp. 1–15, doi: 10.

1007/s11432-013-4906-6.

[99] Tao Wang, Jun Wei, Wenbo Zhang, Hua Zhong, and Tao Huang, « Workload-

aware anomaly detection for Web applications », in: Journal of Systems and

Software 89 (2014), pp. 19–32, issn: 0164-1212, doi: https://doi.org/

10.1016/j.jss.2013.03.060, url: https://www.sciencedirect.com/

science/article/pii/S0164121213000721.

[100] Tao Wang, Wenbo Zhang, Jun Wei, and Hua Zhong, « Workload-aware on-

line anomaly detection in enterprise applications with local outlier factor »,

in: 2012 IEEE 36th Annual Computer Software and Applications Conference,

IEEE, 2012, pp. 25–34.

129

https://doi.org/10.1145/2999572.2999590
https://doi.org/10.1145%2F2999572.2999590
https://doi.org/10.1145%2F2999572.2999590
https://doi.org/10.1145/505696.505701
https://doi.org/10.1007/s11432-013-4906-6
https://doi.org/10.1007/s11432-013-4906-6
https://doi.org/https://doi.org/10.1016/j.jss.2013.03.060
https://doi.org/https://doi.org/10.1016/j.jss.2013.03.060
https://www.sciencedirect.com/science/article/pii/S0164121213000721
https://www.sciencedirect.com/science/article/pii/S0164121213000721

[101] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David

Wetherall, « Demystifying Page Load Performance with WProf », in: 10th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

13), Lombard, IL: USENIX Association, Apr. 2013, pp. 473–485, isbn: 978-1-

931971-00-3, url: https://www.usenix.org/conference/nsdi13/technical-

sessions/presentation/wang_xiao.

[102] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David

Wetherall, « How speedy is {SPDY}? », in: 11th usenix symposium on net-

worked systems design and implementation (nsdi 14), 2014, pp. 387–399.

[103] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall, « Speed-

ing up Web Page Loads with Shandian », in: 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16), Santa Clara, CA:

USENIX Association, Mar. 2016, pp. 109–122, isbn: 978-1-931971-29-4, url:

https://www.usenix.org/conference/nsdi16/technical- sessions/

presentation/wang.

[104] Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver Hohlfeld, « A perfor-

mance perspective on web optimized protocol stacks », in: Proceedings of the

Applied Networking Research Workshop, ACM, July 2019, doi: 10 . 1145 /

3340301.3341123.

[105] XMLHttpRequest, https://xhr.spec.whatwg.org/.

[106] M. Yajnik, Sue Moon, J. Kurose, and D. Towsley, « Measurement and mod-

elling of the temporal dependence in packet loss », in: IEEE INFOCOM ’99.

Conference on Computer Communications. Proceedings. Eighteenth Annual

Joint Conference of the IEEE Computer and Communications Societies. The

Future is Now (Cat. No.99CH36320), vol. 1, 1999, 345–352 vol.1, doi: 10.

1109/INFCOM.1999.749301.

130

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://doi.org/10.1145/3340301.3341123
https://doi.org/10.1145/3340301.3341123
https://xhr.spec.whatwg.org/
https://doi.org/10.1109/INFCOM.1999.749301
https://doi.org/10.1109/INFCOM.1999.749301

[107] Li Yu and Zhiling Lan, « A scalable, non-parametric anomaly detection frame-

work for hadoop », in: Proceedings of the 2013 ACM Cloud and Autonomic

Computing Conference, 2013, pp. 1–2.

[108] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshminarayanan

Subramanian, « Dissecting Web Latency in Ghana », in: Proceedings of the

2014 Conference on Internet Measurement Conference, IMC ’14, Vancouver,

BC, Canada: Association for Computing Machinery, 2014, pp. 241–248, isbn:

9781450332132, doi: 10.1145/2663716.2663748.

[109] Chengwei Zhang, Xiaojun Hei, and Wenqing Cheng, « Performance Evaluation

of Web-based Cloud Services in a Browser-Scripting Approach », in: KSII

Transactions on Internet and Information Systems.10 (June 2016), pp. 2463–

2482, doi: 10.3837/tiis.2016.06.002.

[110] Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy G Griffin, « Internet

routing policies and round-trip-times », in: International Workshop on Passive

and Active Network Measurement, Springer, 2005, pp. 236–250.

131

https://doi.org/10.1145/2663716.2663748
https://doi.org/10.3837/tiis.2016.06.002

Titre : Surveillance du réseau basée sur les données Web : de l’estimation de perfromance à

la détection d’anomalies

Mot clés : Web,mesures passives, surveillance du réseau, détection d’anomalies,CNN

Résumé : L’objectif de cette thèse est de ti-
rer parti des mesures passives librement dis-
ponibles dans le navigateur et des techniques
d’apprentissage profond pour inférer la per-
formance du réseau et détecter les anoma-
lies. Nous commençons par déduire les princi-
pales propriétés du réseau sous-jacent à par-
tir de mesures de performance Web, en se
basant sur des mesures passives obtenues
à partir du navigateur. Nous utilisons le Ma-
chine Learning pour calibrer les algorithmes
qui permettent une telle inférence. En com-
parant des algorithmes du deep learning à
des algorithmes ML classiques comme Ran-
dom Forest, nous soulignons la faisabilité de
la tâche, mais aussi sa complexité, d’où le

besoin d’algorithmes d’apprentissage profond
sophistiqués tels que les réseaux de neu-
rones convolutionnels (CNN). Ensuite, nous
étudions et examinons l’impact de la com-
plexité du Web sur l’estimation de deux para-
mètres spécifiques, le délai et la bande pas-
sante de téléchargement. De plus, nous pro-
posons un framework intégré pour compa-
rer notre approche avec les solutions de sur-
veillance web existantes. Plus tard, nous pro-
posons un système de surveillance réseau
original basé sur des modèles de mélanges
gaussiens bayésiens (BGMM) couplés à un
algorithme pour détecter en temps réel l’ap-
parition d’anomalies.

Title: Web-based data driven network monitoring: from performance estimation to anomaly

detection

Keywords: Web, passive measurements, Network monitoring, anomaly detection,CNN

Abstract: The goal of this thesis is to lever-
age passive measurements freely available in
the browser and deep learning techniques to
infer network performance and detect anoma-
lies. We start by inferring the main proper-
ties of the underlying Network from web per-
formance metrics based on passive measure-
ments obtained from within the browser. We
use machine learning to calibrate algorithms
that allow such inference. By comparing deep
learning algorithms to classical ML algorithms
like Random Forest, we highlight the feasibil-
ity of the task but also its complexity hence

the need for sophisticated deep learning algo-
rithms such as convolutional neural networks
(CNN). Then we study and examine the im-
pact of web complexity on estimating two spe-
cific metrics, delay and download bandwidth.
Moreover, we propose an integrated frame-
work to compare our approach with existing
web-based monitoring solutions. Later, we
propose an original network monitoring frame-
work based on Bayesian Gaussian Mixture
Models (BGMM) coupled with an algorithm to
detect in real-time the occurrence of anoma-
lies.

	Acknowledgement
	Abstract
	Résumé en Français
	List of figures
	List of tables
	Abbreviations
	Introduction
	General context
	Challenges and Motivations
	Web-based network monitoring
	Web and Network performance relationship
	Network performance anomaly detection

	Contributions of the Thesis
	Thesis roadmap

	State of the art
	An overview of the web
	Web basics
	Web evolution
	Web content evolution
	Transfer protocols evolution

	Web page loading process
	Web performance

	Network performance monitoring
	Network measurement approaches
	Troubleshooting platforms and tools
	Troubleshooting platforms
	Web based troubleshooting tools

	Network monitoring and anomaly detection

	Web-based network state inference
	Data collection
	Crowd-sourcing techniques
	Controlled experiments

	Web performance metrics
	Web quality of experience
	Perceived performance metrics
	Web objective metrics

	Network QoS metrics

	Network performance inference form within the browser
	Introduction
	Estimating network status from web performance measurements
	Methodology
	Sensitivity Analysis
	CNN-based network performance estimation

	Performance evaluation
	Platform implementation
	Results

	Conclusion

	Impact of web page complexity on network performance inference
	Introduction
	Delay and bandwidth inference
	Data collection phase
	Estimation phase
	Feature importance study

	Performance evaluation
	Impact of web page size and number of objects
	Protocol impact on estimation: HTTP/1.1 vs HTTP/2

	Our approach against other web-based monitoring solutions
	Integrated platform implementation
	Results

	Conclusion

	Leveraging web browsing performance data for network monitoring
	Introduction
	Web-based network monitoring using data clustering
	Data collection
	Data-driven network estimation
	Data clustering
	Clustering validation
	Real-time anomaly detection
	Anomaly detection analysis

	Performance evaluation
	Framework setup
	BGMM tuning
	Results
	Comparison with other clustering methods
	Anomaly detection validation

	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives
	Extension to further contexts
	Crowdsourcing and Federated Learning (FL)
	Localization of anomalies

	Publications
	Bibliography

