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Abstract

The simulation of lattice Hamiltonians in photonic platforms has been enlightening in
the understanding of novel transport and localization properties in the context of solid-
state physics. In particular, exciton-polaritons provide a versatile system to investigate
these properties in lattices with intriguing band structures in the presence of gain and
loss, and particle interactions. Polaritons are hybrid light-matter quasiparticles arising
from the strong coupling between photons and excitons in semiconductor microcavities,
whose properties can be directly accessed in photoluminescence experiments. In this
thesis, we firstly study the features of strained honeycomb lattices made of coupled
polariton resonators having high photonic content. In a critically strained lattice,
we evidence both a semi-Dirac transport and an anisotropic localization of photons.
Secondly, we show that a judicious driving in lattices of lossy resonators allows the
appearance of novel localized modes. Using polariton lattices driven resonantly with
several optical beams, we demonstrate the localization of light in at-will geometries
down to a single site. Finally, we take advantage of the polarization-dependent polariton
interaction to demonstrate an optical Zeeman-like effect in a single micropillar. In
combination with optical spin-orbit coupling inherent to semiconductor microstructures,
the interaction-induced Zeeman effect results in emission of vortex beams with a well-
defined chirality. This thesis brings to light the power of polariton platforms to study
lattice Hamiltonians with unprecedented properties and it also provides a first step
towards the fully-optical generation of topological phases in lattices.

Keywords: Photonic lattices, Exciton polaritons, Semiconductor microcavities, Hon-
eycomb lattice, Drive and dissipation, Light-induced magnetic effects





Résumé

La simulation des Hamiltoniens de réseaux dans les plateformes photoniques a permis
de mieux comprendre les nouvelles propriétés de transport et de localisation dans le
contexte de la physique de l’état solide. En particulier, les exciton-polaritons constituent
un système polyvalent permettant d’étudier ces propriétés dans des réseaux avec des
structures de bande intrigantes en présence de pertes et de gains, et d’intéractions
entre particules. Les polaritons sont des quasi-particules hybrides lumière-matière
résultant du couplage fort entre les photons et les excitons dans les microcavités
semi-conductrices, dont les propriétés peuvent être directement accessibles dans les
expériences de photoluminescence. Dans cette thèse, nous étudions premièrement les
caractéristiques des réseaux en nid d’abeille déformés, composés de résonateurs de
polaritons couplés, à haut contenu photonique. Dans un réseau déformé de façon
critique, nous mettons en évidence à la fois un transport semi-Dirac et une localisation
anisotrope des photons. Deuxièmement, nous montrons qu’un forçage judicieux dans
des réseaux de résonateurs à pertes permet l’apparition de nouveaux modes localisés.
En utilisant des réseaux de polaritons sous un forçage résonant par plusieurs faisceaux
optiques, nous démontrons la possibilité de localiser la lumière sur différentes géométries,
voir jusqu’à un seul site. Enfin, nous profitons de l’intéraction de polaritons dépendant
de la polarisation pour démontrer un effet optique de type Zeeman dans un seul
micropilier. En combinant le couplage spin-orbite optique, inhérent aux microstructures
semi-conductrices, avec l’effet Zeeman, induit par l’intéraction, nous montrons l’émission
de faisceaux de vortex avec une chiralité bien définie. Cette thèse met en lumière
la puissance des plateformes de polaritons pour étudier les Hamiltoniens de réseaux
avec des propriétés sans précédent. Elle apporte également un premier pas vers la
génération, entièrement optique, de phases topologiques dans les réseaux.

Mots-clés: Réseaux photoniques, Exciton-polaritons, Microcavités semi-conductrices,
Réseau nid d’abeille, Forçage et dissipation, Effets magnétiques induits par la lumière
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Chapter 1

Introduction

During the past two decades, artificial lattices have emerged as a test-bed to probe,
emulate and observe a wide variety of phenomena related to condensed-matter physics.
They rely on the very fundamental idea that electrons behave collectively as waves
in crystalline materials and most of their properties are determined by the respective
band structures and Bloch wavefunctions. These lattices have been implemented in
a diversity of wave systems, for instance: atomic, electronic, microwave, acoustic,
mechanical, and photonic systems. Lattices of coupled waveguides and photonic
resonators are some of the most remarkable platforms to explore condensed-matter
phenomena in the optics realm [1], including topological phases of matter [2–6]. The
possibility of engineering the on-site energies, the hopping strengths and the geometry
with high precision are some of the assets of these systems to explore wavepacket
dynamics in periodic [1] and nonperiodic structures [7]. Remarkably, richer lattice
Hamiltonians can be implemented by exploiting unique properties like on-site gain and
loss, and nonlinearities. Furthermore, the use of photons allows directly accessing to
the amplitude and phase of the wavefunctions as well as the coherent properties of the
wavepacket’s evolution by using standard optical techniques.

Some celebrated examples of photonic platforms are photonic crystals [8] and lattices
of microwave cavities [9], coupled ring microresonators [10], coupled waveguides [11]
and coupled semiconductor micropillars [12], which all together cover a wide range
of optical frequencies. In these platforms, the periodic spatial distribution of the
waveguides/resonators plays the role of the atomic potential in crystalline materials.
Photons are tightly confined in the waveguide/resonator and can propagate across the
lattice via evanescent coupling. This coupling arises from the fact that the evanescent
tail of the field in each waveguide/resonator penetrates the neighboring ones, but it can
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Introduction

be also tailored by link resonators [10]. Thus, the propagation of photons in lattices is
accurately described by a Schrödinger-like equation within the tight-binding model.

Pioneering works have reported outstanding and very fundamental solid-state phe-
nomena using coupled waveguide arrays, such as Bloch oscillations and Zener tunneling
in both one-dimensional [13, 14] and two-dimensional [15, 16] lattices. Moreover, linear
localization phenomena were achieved by either adding defects or disorder in the lattices.
The inclusion of disorder in a two-dimensional lattice yielded to the direct observation
of propagation transitions, from ballistic to diffusive propagation, and the subsequent
collapse of the wavefunction on a few lattice sites due to incoherent scattering in the
lattice, effect better known as Anderson localization [17, 18]. The creation of a defect
on two-dimensional square lattices produces a localized state in the bandgap, which
has been observed and has allowed the guidance of light [19]. Interestingly also, it has
been shown that curved waveguides emulate lattices undergoing an external driving
force that can give rise to, for example, dynamical localization [20]. Concurrently,
nonlinear experiments were carried out thanks to the nonlinear response of the material
in which lattices were fabricated. These experiments immediately showed the potential
of photonic systems to simulate more complex conservative lattice Hamiltonians. For
example, the control of the nonlinearity allowed achieving a balance between the lattice
dynamics and the nonlinear Kerr-type response of the material, observing the formation
of lattice or discrete solitons in both one and two dimensions [21–23].

More recently, the exquisite control in the design of lattices has enabled the imple-
mentation of a number of lattice geometries with different transport and localization
properties. By judiciously choosing the periodicity of the waveguides/resonators,
lattices with at least one flat band in their spectra and the consequential compact-
localized eigenstates have been reported [24–31], where the localization is achieved
without breaking translation symmetry. Also, the captivating Dirac physics of graphene
has been implemented using honeycomb lattices [9, 12, 32–34], which has allowed the
observation of its localized edge states [33–36], the so-called conical diffraction [32] and
the rich dynamics provided by the Dirac pseudospin in propagating lattices [37]. Smart
designs of photonic lattices has led photons to undergo artificial gauge fields [38–41]
and non-trivial topological phases as well [5, 6, 42–44], giving rise to robust chiral edge
states. Alternatively, topological insulators have been also realized in lattices with
sensitivity to external magnetic fields [45, 46].

Despite the astonishing capabilities of these platforms, some transport and local-
ization properties have remained elusive due to the need to access simultaneously
spectral information and particle dynamics at desire frequencies or energies. In the
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majority of these photonic systems, there are important limitations in the engineering
of linear localization properties because they are fixed by the lattices and are hardly
adjustable once fabricated. More importantly, the role of external driving forces (or
forcing) to achieve localization has hardly been addressed so far. Additionally, the use
of external magnetic field to trigger certain phenomena introduces more difficulties to
the experiments.

A suitable platform to overcome these difficulties are lattices of exciton polaritons.
Exciton polaritons (or microcavity polaritons) are hybrid light-matter quasiparticles
arising from the strong coupling between the confined photons of microcavities and
the quantum-well excitons (i.e. bound electron-hole pairs) of the embedded material.
The main signature of this coupling is the splitting of the photon and exciton relation
dispersion into two bands called upper and lower polariton bands [47]. Therefore,
polaritons can be described as a linear combination of exciton and photons and their
properties are directly related to those of their constituents. From the photonic
component, polaritons inherit a very low effective mass (about 10−5 times the mass
of free electrons), splitting between transverse-electric (TE) and transverse-magnetic
(TM) polarizations and the feasibility of leaking from the cavity in form of photons,
which encode all the information on amplitude, phase, energy, polarization (pseudospin)
and coherence of polaritons inside the cavity. This allows one to fully characterize
polariton bands and study transport properties via photoluminescence experiments.
Furthermore, lithography and etching techniques acting on the photonic component
makes possible to fabricate one- and two-dimensional lattices. On the other hand, the
excitonic component provides polaritons with sensitivity to external magnetic fields
and nonlinear interactions. Since excitons have an actual spin, they are sensitive to
magnetic fields via Zeeman shift [48] and interactions between them occur mainly via
parallel spin channels [49, 50].

Thanks to the state-of-the-art etching techniques, microcavity polaritons can be
confined in cylindrically-symmetric microcavities of few-µm width, called micropillar,
where polaritons exhibit quantized energy levels. Polaritons in a micropillar mimic
electrons in an atom, therefore, the micropillar can be used as a building block of
polariton lattices. Overlapping hundred of micropillars lattices are formed and they can
be accurately modeled using a tight-binding approach [51]. Despite the losses and the
possibility of inducing local gains by means of pump beams, polaritons can reproduce
properties associated to conservative lattice Hamiltonians such as flat bands [52, 53],
graphene edge states [36] and topological phases [46, 54]. However, the gain and loss
can be exploited in order to simulate non-hermitian Hamiltonians [55, 56], produce
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lasing [57, 58] and other interesting localization effects. Moreover, striking nonlinear
effects can take place in polariton systems such as bosonic condensation [59], which
has been also observed in lattices [60, 61]. Other studies of interactions have been done
in a two-coupled micropillar systems [62, 63] and in more complex lattices observing,
for instance, discrete solitons in a flat-band lattice [64]. Remarkably, the polarization-
anisotropic interactions can be used to break time-reversal symmetry and induced an
effective Zeeman splitting similar to the observed with an external magnetic field.

In this doctoral thesis we use lattices of GaAs-based micropillars arranged in a
honeycomb pattern to unveil anisotropic transport and localization in unconventional
Dirac cones. Taking advantage of the driven-dissipative nature of polaritons, we
experimentally show a new type of localized modes in highly-photonic polariton lattices.
Last but not least, we exploit the spin-dependent interactions of excitons in a single
micropillar to optically break time-reversal symmetry, thus, we give a first step towards
the induction of topological phases in lattice Hamiltonians by purely optical means.
This thesis is organized as follows:

Chapter 2 gives a general introduction to semiconductor microcavities used to
form exciton polaritons. The main properties of these quasi-particles are presented and
the fabrication methods are briefly discussed. The chapter ends with the description of
lattice geometries and the experimental setup to perform spectroscopy of polaritons.

Chapter 3 is devoted to the basics of lattice physics. It briefly presents well-known
condensed-matter tools for modeling lattices such as the Bravais lattice, the Bloch’s
theorem and the tight-binding model. At the end, the particular case of honeycomb
lattices is developed.

Chapter 4 reports the transport and localization properties of semi-Dirac cones
in honeycomb lattices. In graphene, semi-Dirac cones arise when it subject to uniaxial
strains. In order to mimic this phenomenon, honeycomb lattices with anisotropic
hoppings were probed using a linearly polarized laser at energies far from the polariton
bands. This has allowed us to study the polariton emission from several lattices
with different hopping anisotropies in both momentum and real space that, in turn,
has enabled us to unequivocally determine the so-called Lifshitz transition and the
semi-Dirac cone. In addition, resonant experiments and simulations were carried out
to demonstrate an anisotropic localization at the semi-Dirac point energy, which takes
place due to the inherent driving and losses of polariton lattices.

Chapter 5 presents a simple but fascinating localization effect that happens
thanks to the intrinsic driven-dissipative nature of polaritons. This chapter begins
with analytical and numerical studies of localized modes down to a single lattice site
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in one-dimensional lattices driven coherently by external pumps. The condition for
obtaining these localized modes is provided. Then, a generalization in two dimensions
is shown. Finally, we present the experimental demonstration of the localized modes
by performing resonant experiments in honeycomb lattices.

Chapter 6 addresses the study of time-reversal symmetry breaking in a single
micropillar. Firstly, the main signatures of a micropillar are presented such as its
gapped energy spectrum. Secondly, a purely optical Zeeman-like splitting is evinced in
the lowest energy mode of the micropillar by performing non-resonant experiments with
circularly polarized laser beams. Then, we fully characterize the polarization textures
of the first-excited modes, which emerge due to the presence of TE-TM splitting in the
sample. Finally, the optical Zeeman effect is used to split apart two states belonging
to the first-excited multiplet and having opposite chirality between them.

In Chapter 7 we draw some conclusions and give some perspectives of the studied
phenomena.
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Chapter 2

Semiconductor Microcavities

Semiconductor microcavity is one of the platforms to reach sizable light-matter inter-
actions. It usually consists in a Fabry-Perot cavity with an embedded optically-active
material. The confined cavity photons are tuned in the vicinity of the material transi-
tion such that a strong light-matter coupling can be achieved. In this regime, hybrid
light-matter quasiparticles, called exciton polaritons, are the more accurate entity
to describe the observed phenomena. In this chapter we present the fundamental
criteria of semiconductor microcavities to show strong coupling regime and we discuss
two excitation schemes. We also introduce the strategy to engineer semiconductor
micropillars and lattices of coupled micropillars.

2.1 Microcavity photons
A Fabry-Perot cavity can be considered as the simplest optical resonator. It basically
consists of two highly reflected mirrors, parallel to each other and enclosing a medium
of refractive index nc and thickness lc. When computing the electromagnetic field
inside the cavity in the case of plane-wave incidence at zero angle with respect to the
normal axis ẑ of the mirrors, one has to impose the boundary conditions at the mirrors
on the traveling plane waves, which gives as a result standing waves or modes that
obey λc, q = 2nclc/q with q ∈ Z, that is, ωc, q = qπc0/nclc (c0 is the speed of light in the
vacuum) [65]. At these wavelengths or frequencies the intensity inside the cavity is
maximized and the transmissivity (fraction of transmitted light through the cavity)
goes to the maximum value because the accumulated phase of a round-trip is null,
therefore, constructive interference results in multiple resonances. The spacing between
two consecutive resonances defines a special quantity of the cavity that is the free
spectral range:
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Semiconductor Microcavities

FSR = ωq+1 − ωq = πc0/nclc .

Furthermore, the reflection coefficient r of the mirrors is related to the damping of the
amplitude of the field inside the cavity. Specifically, the amplitude of a wave is reduced
by a factor r on each round trip across the cavity, which implies that the transmissivity
and reflectivity of a Fabry-Perot cavity can be respectively written as [65]:

T = 1
1 +

(
2F
π

)2
sin2

(
ω

2F SR

) ; R = 1 − T , (2.1)

where the lossy nature of the cavity is defined by the finesse

F := πr

1 − r2 . (2.2)

This parameter has an important influence on the resolution of the transmissivity
(reflectivity) resonances: They are well resolved in the limit of large finesse. In this limit,
the full width at half maximum (FWHM) of the resonance frequency is proportional
to the ratio between the FSR to the cavity finesse [65], i.e.

δωc = 1
2π

FSR

F
, (2.3)

hence, the larger the finesse, the smaller the linewidth of the resonance. Importantly,
this linewidth provides us the amount of time that a photon stays inside the cavity,
called lifetime,

τc = 1
δωc

. (2.4)

Using these quantities, we can define the quality factor (or Q-factor) of the cavity,
which parametrizes the frequency width of the resonance, as

Q = ωc, q

δωc

, (2.5)

and, from Eq. (2.4), we can see that it is related to the cavity lifetime as τc = Q/ωc, q.
Therefore, this parameter is a measure of the rate at which the optical energy decays
from the cavity, which explicitly is γc = ℏ/τc.

In the general case of plane-wave incidence at a given angle with respect to the
normal axis ẑ of the mirrors, photons get confined along this direction and, as a result,
the respective wave-vector is quantized inside the cavity: kz = πq/lc, being q a positive
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2.1 Microcavity photons

integer. Nevertheless, the in-plane wave-vector k⃗∥ = kxx̂ + kyŷ is still a continuous
vector. Then, the dispersion relation for a photon in the cavity can be written as

Ec(k⃗) = ℏωc(k⃗) = ℏc0

nc

|⃗k| = ℏc0

nc

√
|⃗k∥|2 + k2

z , (2.6)

and, considering that |⃗k∥| ≪ |⃗k|, the cavity photon dispersion takes the form

Ec(k⃗) ≃
ℏ2|⃗k∥|2

2mc

+ ℏω0
c, q , (2.7)

where ω0
c ,q = c0kz/nc and mc = ℏω0

c ,qn
2
c/c

2
0. The latter term is regarded as the effective

photon mass due to the analogy with the parabolic dispersion of a massive particle in
free space. m/m0 ∼ 10−5 ; m0 is the electron rest mass.

The highly reflected mirrors needed for the implementation of Fabry-Perot cavities
can be engineered by using multilayer dielectric materials. A distributed Bragg Reflector
(DBR) is a particular case of these materials and it can reflect a large amount of light
under certain conditions. Precisely, a DBR is composed of many pairs of layers with
alternating refractive index n1 and n2 with the same optical thickness, which is a
quarter of a given wavelength λc, i.e.

λc

4 = d1n1 = d2n2 , (2.8)

where d1 and d2 are the thickness of the layer with refractive index n1 and n2, respec-
tively. This reflector is also viewed as a one-dimensional photonic crystal, where the
length d1 + d2 define the lattice constant along the axis of incidence and, thus, the
well-known transfer matrix method is usually used to calculate the allowed and forbid-
den frequencies [65]. This method enable us to obtain the characteristic reflectivity
spectrum of the DBR as well, which strongly depends on both the polarization and
the angle of incidence of the optical field.

In order to illustrate how the DBR reflects an optical beam, we take into account
a transverse-electric (TE) polarized wave at normal incidence. Figure 2.1(b) shows
the reflectivity of a DBR made of pairs of Al0.10Ga0.90As and Al0.95Ga0.05As layers [see
Fig. 2.1(a)], with refractive index n1 = 3.44 and n2 = 2.95 at the temperature of 4 K
and with a wavelength λc = 890 nm. It can be seen that the reflectivity increases up
to values very close to unity in a range of wavelength around λc with increasing the
pairs of layers. In the case of large number of pairs [blue and black lines in Fig 2.1(b)],
a high-reflectivity range of wavelengths starts to be sharply delimited by reflectivity
dips at which there is a very low reflection and, therefore, a very high transmission of
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Semiconductor Microcavities

Fig. 2.1 Semiconductor Microcavity. (a) Scheme of a semiconductor microcavity
composed of two DBRs of 30 pairs of Al0.10Ga0.90As/ Al0.95Ga0.05As layers and a GaAs
spacer. Details are given in the text. [(b)-(c)] Reflectivity spectrum of a single DBR
(b) and the semiconductor microstructure (c) shown in (a). The quantum well is not
considered in the computation of the spectrum shown in panel (c).

the incident wave. This high-reflectivity region is known as the stop band of the DBR
that is centered at λc and, indeed, corresponds to the forbidden frequency gaps of the
structure. The width of the stop-band region is given by:

∆λsb = 2λc∆n
πneff

, (2.9)

where ∆n = n1 − n2 and neff is the effective refractive index given either by a mean
value of the two refractive indices (∆n is small) or by geometric means (∆n is large) [65].
Note that in this case (normal incidence), a transverse-magnetic (TM) polarized wave
also displays the same reflectivity spectrum, however, the reflectivity spectra of both
polarizations differ among each other as soon as a small angle of incidence is introduced.

We can now consider the case of a Fabry-Perot cavity made of two DBRs and a
spacer of optical thickness of the order of nearly-infrared wavelengths, i.e. lcnc ∼ 900 nm.
The entire heterostructure can be also considered as a one-dimensional photonic crystal
with a defect in the center, which breaks the discrete translation symmetry of the
structure [a scheme of it is shown in Fig. 2.1(a)]. Thus, the confined cavity modes
are seen as defect modes, their frequencies lie in the forbidden gaps and, consequently,
they are evanescent modes decaying exponentially into the DBRs [66]. Figure 2.1(c)
presents a typical reflectivity spectrum of a Fabry-Perot microcavity composed of
Al0.10Ga0.90As/ Al0.95Ga0.05As DBRs, and a GaAs spacer of refractive index nc = 3.55
with a thickness lc = 0.251µm. A clear dip is observed at λ = 890 nm (E = 1393 meV)
that corresponds to the cavity resonance. As it is expected, the linewidth of the dip
becomes narrower when the number of pair layers of the DBRs increases, meaning that
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the Q-factor of the cavity gets higher. Further analyzing this reflectivity spectrum, dips
appear at the eigenfrequencies of this one-dimensional photonic crystal, which means
that light is able to enter in the microcavity and goes through it at these frequencies,
reaching very high values of transmissivity. This is indeed an interference effect that
can be also understood as a resonant tunneling of photons: photons from outside excite
the cavity eigenmodes and then jump out, going through the mirrors. Importantly,
absorption channels have not been taken into account in this calculation, which are
certainly present in experiments.

At this point it is very important to remark that, since the confined cavity mode
penetrates evanescently the DBRs, an effective cavity length leff replaces the actual
cavity length lc [67]. Specifically, leff accounts for the electromagnetic field penetration
into the DBRs (lDBR) as leff = lDBR + lc. Hence, leff is largely determined by lDBR,
which is inversely proportional to the refractive index contrast of adjacent layers.
Comparing with a simple Fabry-Perot cavity made of metallic mirrors, the inclusion
of DBRs results in the reduction of both the FSR and the linewidth of the mode.
Consequently, cavities composed of DBRs have lower losses and longer lifetimes [67].

Moreover, the resonance dip at the central wavelength λc can be tuned by modifying
the thickness of the spacer (lc). Specifically, an increase of lc by a small amount δlc
results in the redshift of the resonance and a widening of the linewidth [68]. Interestingly
also, an energy splitting between TE and TM polarized dispersions arises as soon as this
mismatch is performed, having a quadratic dependency on the in-plane wave-vector. It
mainly appears because the penetration depth of the confined cavity field in the DBRs
depends on both the incidence angle and polarization [69]. Additionally, for a given
wave-vector k⃗∥ the TE-TM energy splitting goes up linearly with δlc with different
slopes that are set by the DBRs parameters [68].

When a quantum well is placed at the center of the microcavity as schematized in
Fig. 2.1(a), electronic excitation can be strongly coupled to the cavity photon if their
resonance energy are approximately equal. Before addressing this situation, we will
review the key elements of quantum well excitations.

2.2 Quantum well excitons
Excitons are electron-hole pairs bound together by the Coulomb attractive interaction.
They arise in a very important class of inorganic and organic materials for which
the Fermi energy lies within its narrow band gap, hence, some conduction at finite
temperature is possible due to thermally activated carriers. These materials are called
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semiconductors and they have a measurable conduction at room temperature if the
band gap is less than approximatively 2 eV [70]. There exists a group classification
for the semiconductors that is based on the position within the periodic table of
their constituent elements. In this thesis we work with inorganic InAs and GaAs
semiconductors that both belong to the group labeled III-V semiconductor. In this
group, atoms arrange in a zinc-blende crystal structure (same as diamond structure),
which has two atoms per unit cell in a face centered cubic (FCC) Bravais lattice. In
general, the physical properties of all materials are governed by the bands closest to
the Fermi energy, namely the conduction band (right above the Fermi energy) and
the valence band (right below the Fermi energy). In the case of GaAs semiconductors,
the are four relevant bands: three nearly degenerate valence bands made of p bonding
orbitals and one conducting band made of s anti-bonding orbitals [70]. Both the
maximum and minimum energy values of the valence and conduction bands, respectively,
are reached at quasi-momentum equal to zero (center of the Brillouin zone or Γ point),
with an energy difference or band gap of ∆ = 1.519 eV at cryogenic temperature [66].

The origin of the splitting of the p bands is the intrinsic spin-orbit coupling in
zenc-blende-like semiconductors. The six degenerate p orbitals with orbital angular
momentum l = 1 are split apart into two groups with total angular momentum j = l+s
(s is the spin quantum number) and projection mj = 0,±1/2,±1, . . . ,±j. At the Γ
point, the lower-energy p band is the result of eigenstates |j = 1/2,mj = ±1/2⟩ that
is called spin-off valence band. While the higher-energy p bands arise from eigenstates
|j = 3/2,mj = ±3/2⟩ and |j = 3/2,mj = ±1/2⟩, which are called heavy-hole (hh) and
light-hole (lh) bands, respectively. Note that these latter bands are still degenerate
at the Γ point, but they split at other quasi-momenta [70]. Since the spin-off valence
band has larger energies than hh and lh bands, we will neglect it from now on.

When an electron is excited, it moves from the valence band into the conduction
band leaving a hole behind that acts as a positive charge. The electron in the conduction
band indeed interacts with the hole as it does with a proton in a hydrogen atom, i.e. the
electron and the hole are bound together by the Coulomb attractive interaction. This
electron-hole pair or exciton is able to propagate in the host semiconductor behaving
as a free particle with an energy of the form

Ex, n(k⃗) = ∆ − Ebind, n + ℏ2|K⃗|2

2mx, eff

, (2.10)

where mx, eff = me, eff +mh, eff is the effective total mass formed by the effective mass
of the electron and hole, which are related to the electron and hole dispersion. mhh

x, eff =
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0.45m0 and mlh
x, eff = 0.08m0 are the heavy-hole and light-hole mass, respectively, with

m0 the electron rest mass in the vacuum [71]. ∆ is the band gap energy and K⃗ is the
wave-vector of the center-of-mass motion. The binding energy Ebind, n is obtained from
the Bohr’s model,

Ebind, n = 1
n2

ℏ2

2mra2
B, x

; aB, x|n=1 = 4πℏ2ϵϵ0

mre2 , (2.11)

being mr = me, effmh, eff/mx, eff and n the principal quantum number. The Bohr
radius aB,x of the fundamental state of this quasi-particle lies in the order of 150 Å for
GaAs semiconductor [66], which means that such excitons can spread over many lattice
sites in the semiconductor (the lattice constant of GaAs is about 5.65 Å). Considering
the spin momentum of the states that are involved in the transition, excitons have
integers total angular momentum j = 0, 1, 2, therefore, they undergo bosonic statistics.
This bound and delocalized excitons are known as Wannier-Mott excitons1 [72, 73].

Excitons can be spatially confined in lower dimensions by engineering the sub-
jacent potential, which can lead to strong modification of the exciton’s energy and
wavefunctions. In two dimensions, excitons are confined by quantum wells, which
consist of a thin semiconductor layer (few nanometers thick) sandwiched by another
semiconductors acting as potential-barrier layers. The chemical composition of the
well is chosen to have the bottom of the conduction (the top of the valence) band at
the lower (higher) energy than the surrounding material and, thus, producing quantum
confinement of both electrons and holes only along the normal direction (known as
growth axis) of the quantum well.

A very important parameter to consider when working with a quantum well is
its thickness LQW , which is normally chosen to be less than or comparable to the
exciton Bohr diameter in the bulk semiconductor (aB, x). The greatest impact of LQW

is on the exciton Bohr radius that, in the ideal 2D case (infinitely high potential),
is half of the exciton Bohr radius in 3D, i.e. a2D

B, x = aB, x/2, leading to an increase
of the exciton binding energy by a factor of four: E2D

bind = 4Ebind [66]. For realistic
quantum-well width, the exciton binding energy ranges from Ebind to E2D

bind and depends
also on the barrier heights for electrons and holes. On one hand, the stronger the
confinement, the higher the binding energy and vice versa. On the other hand, E2D

bind

depends non-monotonically on LQW : for wide wells, E2D
bind increases with decreasing

LQW ; whereas for ultra-narrow wells, the tendency is inverted due to both electron and
1Excitons in inorganic semiconductor are called Wannier-Mott excitons, while they are called

Frenkel excitons in organic semiconductor.
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hole wavefunctions are wider than LQW , and they evanescently decay into the barrier
semiconductor. Then, the exciton dispersion relation can be approximatively written
as [74]

Ex(k⃗) = E0
x +

ℏ2K⃗2
∥

2mx, eff

, (2.12)

where E0
x = ∆ + ∆Ee + ∆Eh − E2D

bind. ∆Ee (∆Eh) represents the energy levels of the
electron (hole) along the quantized direction ẑ. Note that the quasi-momentum has
been split as K⃗ = K⃗z + K⃗∥ due to the confinement. Since ∆Eh is inversely proportional
to the effective mass of the particle, the degeneracy of the hh and lh excitons in the
valence band is lifted at the Γ point [71], thus hh excitons belong to the fundamental
excitation of the quantum well.

Excitons in quantum well can be generated by an optical field. One of the simplest
mechanisms of matter-light interaction is the absorption of a photon by the semicon-
ductor, which can provide enough energy to an electron to cross the band gap, from
a valence-band state to a conduction-band state, and thus exciting an exciton. In
order for this process to occur, both energy and momentum conservation need to be
satisfied. Energy conservation requires the photon energy to be equal or greater than
the lowest energy level of the exciton, while linear momentum conservation needs to
be satisfied along in-plane directions because of in-plane translational invariance. An
exciton with in-plane wave-vector k⃗x can couple only with a photon with the same
in-plane momentum k⃗p that, together with energy conservation, implies that exciton
with k⃗x ≥ 30µm−1 are non radiative.

Furthermore, total angular momentum must also be conserved. Since photons
have total angular momentum j = 1, the optically active excitons are those with the
same angular momentum values. As we mentioned above, there are exciton states
with j = 0, 1, 2, therefore, only excitons with j = 1 are optically accessible. For this
reason they are called bright excitons. Conversely, the other exciton states cannot be
optically excited and are named as dark excitons. However, they can be created in
non-resonant experiment, that is, when the energy of the exciting photon is much higher
than the exciton energy. Notice that, in principle, photons with circular polarization
can efficiently couple to exciton either with pseudospin up (mj = +1) or pesudospin
down (mj = −1), whereas photons with linear polarization produce excitons with both
pseudospins.

Once excitons are created, they decay either by radiative or non-radiative processes.
The radiative process consists in the emission of a photon through exciton recombination,
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which is an irreversible process described by the Fermi golden rule. Its typical timescales
in a 10-nm GaAs quantum well is ∼ 10 ps at 4 K [75]. Non-radiative decay of the
excitons mainly happens due to interaction with carriers and spatial inhomogeneities
in the material (disorder), being the main raison of the broadening of the exciton
linewidth (γx) that gives rise to finite exciton lifetimes τx = ℏ/γx.

When placing the quantum well in a microcavity two different coupling regimes can
take place: weak and strong coupling regimes. In the weak-coupling regime, the photon
emitted by the quantum well has very low probability of being re-absorbed (irreversible
process) because the loss rates overcome the exciton-photon coupling strength and,
therefore, the cavity acts as an enhancer of this spontaneous emission at frequencies
of the cavity modes, which is known as Purcell effect [66, 76]. In contrast, in the
strong-coupling regime, the exciton-photon coupling is stronger than the loss rates
resulting in significant probability of photon re-absorption. In this case, excitons and
photons cannot be modeled as two independent particles, but as a new light-matter
hybrid quasiparticle instead, which is named exciton polariton.

In order to reach strong and quasiresonant coupling of the QW excitons to photons,
one or more QWs have to be embedded in Fabry-Perot microcavities at the position of
the antinodes of the cavity field. Moreover, ω0

c needs to be tuned in the vicinity of the
QW exciton frequency ω0

x = E0
x/ℏ.

2.3 Exciton polaritons
The energy exchange or coupled dynamics of excitons and photons in high-quality
semiconductor microcavities is accurately modeled in the second-quantized formalism
by the Hamiltonian [77, 78]

Hcx =
∫ d2k

(2π)2

[
Ec(k⃗)â†

k⃗
âk⃗ + Ex(k⃗)b̂†

k⃗
b̂k⃗ + ℏΩR

2
(
â†

k⃗
b̂k⃗ + âk⃗b̂

†
k⃗

)]
, (2.13)

where operators â†
k⃗

(b̂†
k⃗
) and âk⃗ (b̂k⃗) create and destroy a photon (exciton) with in-plane

momentum k⃗ = k⃗∥ and with a given circular polarization2, satisfying Bose commutation
rules. The bosonic behavior of exctions is well-grounded when the interparticle distance
is much larger than their Bohr radius, which implies that electronic screening and
interaction between its fermionic constituents is negligible [78]. Ec(k⃗) and Ex(k⃗)
correspond to the parabolic dispersion of cavity photons and QW excitons [Eq. (2.7)

2In order to avoid having several subindices that can make confuse the notation, we have drop the
polarization subindex. However, the Hamiltonian is the same for either of both circular polarizations.
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and Eq. (2.12)], respectively. The light-matter coupling is described by the last term
of Eq. (2.13), which is composed of an emission term (â†

k⃗
b̂k⃗), simultaneous creation

of a photon and destruction of an exciton; and absorption term (b̂†
k⃗
âk⃗), simultaneous

creation of an exciton and destruction of a photon. Additionally, the coupling strength
ΩR/2 reads

ΩR = 2
√√√√ 2c0Γ0

ncleff

∝

√√√√fosc

leff

, (2.14)

where Γ0 is the is the radiative lifetime of excitons at k⃗ = 0 in free space, leff is the
effective cavity length and fosc is the exciton oscillator strength that can be computed
from a perturbative approach [67].

The exciton-photon Hamiltonian (2.13) can take a diagonalized form by considering
a linear combination of the âk⃗ and b̂k⃗ operators of the form [77]

l̂k⃗ = Xk⃗b̂k⃗ + Ck⃗âk⃗ ,

ûk⃗ = −Ck⃗b̂k⃗ +Xk⃗âk⃗ ,
(2.15)

where Ck⃗ and Xk⃗ are known as the Hopfield coefficients. These coefficients depend on
the photon-exciton detuning δk⃗ = Ec(k⃗) − Ex(k⃗) and the Rabi splitting ΩR as

|Xk⃗|2 = 1
2

1 + δk⃗√
4ℏ2Ω2

R + δ2
k⃗

 = 1 − |Ck⃗|2 , (2.16)

and satisfy the condition |Ck⃗|2 + |Xk⃗|2 = 1. Therefore, the Hamiltonian (2.13) can be
written as

Hpol =
∫ d2k

(2π)2

[
ELP (k⃗)l̂†

k⃗
l̂k⃗ + EUP (k⃗)û†

k⃗
ûk⃗

]
. (2.17)

This Hamiltonian indeed describes a free bosonic quasiparticle represented by l̂k⃗
and ûk⃗ operators that results from the linear superposition of exciton and cavity photon
modes, the so-called exciton polaritons. The dispersion of the so-called upper and
lower polariton branches, [EUP (k⃗)] and [ELP (k⃗)], displays an anti-crossing form

EUP, LP (k⃗) = Ec(k⃗) + Ex(k⃗)
2 ± 1

2
√
ℏ2Ω2 + δ2

k⃗
. (2.18)

The sign + [−] refers to the upper (UP ) [lower (LP )] branch. Figure 2.2 shows the
polariton energy dispersion for three different values of the photon-exciton detuning
at k⃗ = 0: δcx = ℏΩR, 0,−ℏΩR, with ℏΩR = 3.5 meV. The exciton dispersion seems
flat because the exciton mass is much larger that photon mass. At δcx = 0 and
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Fig. 2.2 Exciton-polariton energy dispersion. [(d)-(f)] Upper and lower polariton
branches ELP and EUP , respectively, as a function of the in-plane wave-vector k for
three different values of the energy detuning δcx = δk⃗=0; (d) δcx = ℏΩR, (e) δcx = 0,
and (f) δcx = −ℏΩR. Cavity-photon and QW-exciton energy dispersion are plotted
with colored dashed lines. The corresponding Hopfield coefficients, |Xk⃗|2 and |Ck⃗|2, as
a function of the in-plane wave-vector are shown in panel (a)-(c).

k⃗ = 0, it is observed the characteristic anti-crossing of the polariton bands with a
gap proportional to the Rabi splitting ΩR. This is the main signature of the strong
coupling regime. Additionally, polaritons acquire a more excitonic or photonic behavior
depending on both the detuning and the in-plane wave-vector. Focusing on the lower
polariton branch, polaritons can have more excitonic or photonic content at k⃗ ≈ 0,
which depends strongly on the detuning value. Conversely, polaritons always exhibit a
predominant excitonic behavior for k⃗ ≫ 0, as shown in Fig. 2.2(a)-(c). Note that the
lower polariton branch can have a very high photon content at k⃗ ≈ 0 in the case of
negative detuning and large Rabi splitting.

Equation (2.18) describes accurately the in-plane dynamics of polariton in semi-
conductor microcavities. From it one can define the effective mass of the polariton by
expanding the ELP close to zero values of the in-plane momentum [66],

1
mLP

= |X0|2

mx,eff

+ |C0|2

mc

≈ |C0|2

mc

. (2.19)
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The last approximation is valid because mx, eff ≫ mc. Therefore, for δcx ≤ 0, the
effective mass of polaritons in the lower branch is extremely light, being four orders of
magnitude smaller than the electron rest mass. For instance, in typical GaAs based
microcavities at zero detuning mLP ≈ 2mc ≈ 6.4 × 10−5m0.

Nevertheless, the finite lifetime of both photons and excitons can significantly
determine the dynamics of polaritons. Indeed, in order to observe the strong-coupling
regime, the relation ℏΩR > |γc − γx| must be satisfied [74]. Since losses of the cavity-
photon are usually predominant, this regime can be achieved when ℏΩR > γc/2.
Furthermore, the linewidth of the polariton modes can be related to the photon and
exciton linewidths and the Hopfield coefficients as

γLP (k⃗) = |Xk⃗|2γx(k⃗) + |Ck⃗|2γc(k⃗) ,
γUP (k⃗) = |Ck⃗|2γx(k⃗) + |Xk⃗|2γc(k⃗) .

(2.20)

Because γx ≪ γc, the losses of the lower polariton branch at k⃗ = 0 are mostly
determined by the cavity-photon losses, i.e. γLP ≈ γc/2, therefore, the lifetime of
polaritons in the lower branch is τLP ≈ τc/|C0|2.

Interactions are other important effects that can drastically change the dynamics
of polaritons when the particle density increases. There are different interactions,
either between polaritons, excitons or excitons and polaritons. They are generally
repulsive and happen through Coulomb exchange interaction of the excitons [78, 49, 50].
This interaction mechanism depends strongly on the pseudospin of the excitons in the
considered polaritons: two polaritons with same pseudospin interact directly because
it is a resonant process; while interaction of polaritons with antiparallel pseudospin
needs dark excitons as intermediate states, which live at a different energy than the
lower polariton branch, resulting in a much less probable transition [50]. Also, the
presence of each interaction in the polariton dynamics is determined by the driven
optical field, which can be tuned either in resonant or out of resonant with respect
to the polariton modes. These two excitation schemes are known as resonant and
non-resonant excitation (or pumping), respectively, and will be described in detail in
the following sections.

2.3.1 Non-resonant excitation

In this scheme, the pumping laser is far-blue detuned from the polariton modes creating
hot free carriers that relax via phonon emission and, then, form both radiative and
non-radiative QW excitons. The former can enter into the strong-coupling regime with
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cavity photons, while the latter build up a long-lived exciton reservoir that are able
to interact with polaritons via their excitonic component [79]. When the number of
particles becomes relevant, the coupling between the polariton field and the excitonic
reservoir density becomes important producing a nonlinear shift of the polariton energy,
which can be modeled by adding nonlinear terms to the Hamiltonian (2.17) that
describes the polariton dynamics. This Hamiltonian with exciton-polariton interaction
can be accurately described within a mean-field approximation [80]. Focusing on the
lower polariton branch, in the basis of left- or right-circularly polarized (mj = ±1)
polaritons, a generalized Gross-Pitaevskii (GP) equation models the dynamics of the
macroscopic wave function of the lower polariton field ψ±(r⃗, t), which is coupled through
an amplification term R to the local density of the reservoir nR,±(r⃗, t) [80]:

iℏ
∂ψ±(r⃗, t)

∂t
=
[
−ℏ2∇2

2m±
+ Vext(r⃗) + gRnR,±(r⃗, t) + g|ψ±(r⃗, t)|2

+iRnR,±(r⃗, t) − i
γc

2

]
ψ±(r⃗, t) ,

(2.21)

where the cavity losses are represented by the term γc (we assume that they are the
same for both polarizations). The parallel interaction between polaritons and the
exciton reservoir is captured by the term gR. We have also included an external
potential term Vext and taken into account the polariton-polariton interaction captured
by the term g, which can be also present in this excitation scheme. Additionally, the
non-resonant laser feeds the reservoir at a rate P (r⃗) and, thus, the exciton reservoir
density is modeled by a rate equation of the form [80]:

iℏ
∂nR,±(r⃗, t)

∂t
= −

[
γR +R|ψ±(r⃗, t)|2

]
nR,±(r⃗, t) + P (r⃗) , (2.22)

where γR is the relaxation rate. Note that the amplification term R describes the
scattering into the polariton modes.

In a low density regime, interactions are negligible and the exciton reservoir popu-
lates all the available polariton modes at a rate given by R. After tens of picosenconds,
polaritons decay and photons leak out the cavity encoding the energy and the in-plane
momentum of polaritons. Indeed, photons escape at a given angle θ with respect to
the normal which is determined by the in-plane momentum as |⃗k| = (E/ℏc0) sin θ,
forming the well-known microcavity photoluminescence. In experiments, this emission
is acquired in both momentum and real space by standard optical setups, which allows
us to fully characterized the polariton emission. As we will see below, the main inter-
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ests of this thesis are situations in which polaritons are subjected to certain external
potential Vext.

2.3.2 Resonant excitation

A different scenario takes place when the pumping laser is tuned at energies (or
frequencies) of polariton modes: a coherent driven of the polariton field is triggered. A
monochromatic pump laser can only couple to polariton modes matching the energy,
intensity and phase profile, and polarization of the pump. In this situation, the creation
of an exciton reservoir can be neglected and a coherent incident optical field of the
form F (r⃗)eiωpt is considered3 [78]. Thus, a driven-dissipative GP equation describes
the dynamics of polaritons in the lower branch:

iℏ
∂ψ±(r⃗, t)

∂t
=
[
−ℏ2∇2

2m±
+ Vext(r⃗) + g|ψ±(r⃗, t)|2 − i

γc

2

]
ψ±(r⃗, t) + F (r⃗)eiωpt . (2.23)

In the situation of excitation with a low-intensity optical field, the nonlinear term
can be neglected and the dynamics of polariton is fully linear. On the other hand, in the
case of high-intensity pumping, the density of particles increase and, consequently, the
interactions takes a predominant role in the polariton dynamics. Since the interactions
are spin dependent, the term g is composed of parallel α1 (triplet) and antiparallel α2

(singlet) interaction terms and they obey α1 ≫ α2 for the Rabi splitting that we used
(ℏΩR ≥ 3.5 meV). Therefore, g ≈ α1 in our case. In this thesis we only probe resonant
pumping in the linear regime and we do not enter in the nonlinear one. We address
interested readers to the Refs. [78, 83], which give a comprehensive overview of the
reported phenomena in the nonlinear regime.

2.4 Polaritons in lattices
The engineering of potential landscapes for exciton polaritons enables changing radically
their dynamics. For instance, polaritons can be confined in small spatial regions such
that their continuous spectrum turns into a discrete one displaying quantized energy
levels. They can be subjected to periodic potentials leading to the emergence of energy
bands in the spectrum with negative and positive effective mass. A given potential can
be modeled by the term Vext added in the dynamical equations for polariton described

3A reservoir of long-lived excitons could coexist with polaritons in this regime. See Ref. [81, 82]
for more details.
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above and, experimentally, they can be fabricated in semiconductor microcavities by
acting on the excitonic or photonic component of polaritons. Different techniques
have been developed to spatially control and modulate the polariton constituents,
achieving the trapping of polaritons in a diversity of lattice geometries, as reviewed in
Refs. [51, 84]. In the following we will highlight some of these experimental techniques.

In the case of potentials acting on the excitonic component, we would like to
mention briefly two techniques:

• Surfaces acoustic waves (SAWs): Electrically-stimulated acoustic fields propagate
across the semiconductor microcavity changing the local strain environment,
which has stronger impact on the excitonic component of polaritons. Depending
on the applied acoustic waves 1D and 2D lattices can be implemented [85–87].

• Optical manipulation of the excitonic reservoir: The excitonic reservoir induced by
a non-resonant pumping laser provides a purely optical and reconfigurable manner
to confine polariton in desire potential landscapes. This approach exploits the
repulsive Coulomb interaction between the excitons and polaritons [see Eq. (2.21)]
creating a local blueshift in the pumping region. It has allowed to confine polariton
in 1D configurations [88] and generate at-will confined geometries by designing
the pumping laser beam [89–91].

In the case of acting on the photonic component, we would like to mention three
techniques:

• Metallic deposition: This technique relies on the changing of the dielectric
constant when depositing a thin metallic layer with a given pattern on the sample
surface. It is a simple technique and several pioneering experiments in 1D and
2D periodic potential were implemented in such samples [92, 93].

• Etching before top-mirror growth: This technique consists in growing the bottom
DBR together with the cavity spacer and the QW(s). Then, an etching process
reduces locally the thickness of the cavity spacer on top of the QW(s) in desire
zones and, finally, a growing of the top DBR is carried out. It was firstly
implemented in order to reach a 3D spatial confinement of polariton [94] and,
afterwards, to place polaritons in a 2D potential landscape [95].

• Post-growth etching: In contrast with the preceding technique, here the whole
semiconductor microcavity is grown, which can be then etched down to either
the substrate or the cavity spacer (the top DBR is etched only). Both techniques
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have been intensively used to produce different lattice geometry in 1D and 2D
such as the honeycomb lattice [12, 46, 41] and Lieb lattice [52, 53], to name few.

In this thesis we use samples of GaAs-based semiconductor microcavities, which are
fabricated with the post-growth etching technique down to the substrate. The samples
were grown and etched in the facilities of Centre de Nanosciences et de Nanotechnologies
(C2N) in Palaiseau. The growth process is in charge of the group of Aristide Lemaître,
while the etching process is in charge of Luc le Gratiet, Abdelmounaim Harouri and
Isabel Sagnes. The heterostructures are grown layer by layer using the Molecular
beam epitaxy (MBE) method on an epitaxial quality GaAs substrate with a nominal
thickness of 350µm. Importantly, in the MBE reactor, the molecular beams are
not collimated causing a spatial gradient in the molecular deposition, which can be
minimized by rotating the substrate. This effect can be used to generate a gradient
of the central wavelength of the cavity over the samples (known as wedge), enabling
different photon-exciton detuning. In absence of rotation the detuning gradient is
∆cx ∼ 6.5 meV mm−1 and can be reduced up to ∆cx ∼ 0.1 meV mm−1 by rotating the
GaAs substrate [68]. Once the samples are fabricated, a reflectivity spectrum analysis
at room temperature is performed by the group of J. Bloch and S. Ravets. From this, a
spatial map of the cavity resonance is obtained. After this stage, a Silicon Oxynitride
quater-wavelength anti-reflective coating (ARC) can be deposited on the substrate
facet in order to avoid spurious Fabry-Perot effects. The as-grown planar structures
are then processed with electron-beam lithography imprinting the spatial patterns
that will be removed by the Inductively Coupled Plasma (ICP) etching. By properly
designing the electron beam mask, thin micropillars can be made as well as few coupled
micropillars and lattices of coupled micropillars. Specifically, in this thesis we use two
samples, one is studied in reflection geometry in chapter 4 and 6. Its composition
is summarized in Table A.1 in appendix A. The second one is study in transmission
geometry in chapter 5 whose components are tabulated in Table A.2 in appendix A.
Notice that the former is composed of twelve GaAs QWs arranged in three groups of
four QWs each, while the latter has only one InGaAs QW at the center of the cavity.

2.4.1 Single micropillar

Thanks to the etching capabilities developed in C2N, microcavities can be etched
in the form of cylindrically-symmetric thin microcavities with a diameter of a few
micrometers [96]. Figure 2.3(a) shows a scanning electron microscopy (SEM) image of
many cylindrical microcavities of different sizes and a zoomed image of a single one
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2.4 Polaritons in lattices

Fig. 2.3 Micropillar. (a) SEM image of cylindrical microcavities (micropillar) obtained
by deep etching of a planar heterostructure. Right panel shows a zoomed image of
the micropillar. (b) Spatially resolved photoluminescence spectrum of a micropillar
with diameter D = 3.6µm. Inset: scheme of the position of the spectrometer slit. (c)
Calculated intensity profile of the micropillar eigenmodes. Lowest and first-excited
modes are respectively called s and p modes. Es = 1419.2 meV.

is displayed in the right panel. These microcavities, named micropillars, provide a
tight 3D confinement of the optical modes: The DBRs confine along the longitudinal
direction, while the difference of refractive index between the heterostructure and
the air produces a transversal confinement, which results in the discretization of the
polaritonic energy spectrum because both kx and ky wave-number are now quantized.
Indeed, the micropillar can be seen as the well-known box problem in fundamental
quantum mechanics. Let us remember that the time-independent Schrödinger equation
of a particle with a given mass trapped in a potential can be written down in spherical
coordinates and split into two parts, one related to the radial degree of freedom and
another related to the angular degrees of freedom. Considering an infinite circular
barrier at a given radial distance, the problem reduces to solving the so-called radial
equation having two quantum numbers, the radial and the angular ones. Solutions
of this problem result in eigenmodes whose energy is proportional to the number of
zeros of the spherical Bessel functions. The wavefunction of the ground state is radially
symmetric while the first-excited states have a wavefunction showing two main lobes
with a node in the center. These features are indeed found for a micropillar when
solving the scalar Helmholtz equation in an equivalent waveguide problem [97].

Performing non-resonant excitation experiments on a single pillar of a diameter
D = 3.6µm, its typical spatially-resolved photoluminescence (PL) spectrum is obtained
and displayed in Fig. 2.3(b)4. A quantized spectrum with several energy levels is

4Experimental details are given in the last section of this chapter.
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clearly observed. Their eigenstates can be calculated from the paraxial Helmholtz
equation considering a circular-step potential with an effective refractive index of the
heterostructure n = 3.42, which are shown in Fig. 2.3(c). Notice that the lowest energy
states have the spatial profile expected from the circular box problem. The two lowest
energy modes are of special interest for this thesis and we called them s orbital mode
(ground state) and p orbital mode (first-excited state) owing to their symmetry and
similarities with the modes of an atom. Importantly, the energy of the pillar’s modes
can be varied by modifying the pillar diameter: the thinner the pillar the higher the
eigenvalue energies. Interestingly, inherent polarization effects in microcavities can
yield a richer spectrum of the single pillar, as we will see in chapter 6.

For the purpose of this thesis, the micropillar is regarded as the building block of
more complex systems. Indeed, overlapping micropillars allow polaritons to hop from
one pillar to others, which allows the study of lattice Hamiltonians with all the polariton
features included. The simplest case corresponds to two overlapping micropillars with
equal radius R at a center-to-center distance a (this system is also known as dimer),
as shown in Fig. 2.4(a). Providing that the overlapping of the micropillars is small,
this system (dimer) can be described by a basis composed of the s mode of each pillar
connected by a hopping energy term [98]. This model gives as a result the hybridization
of the s modes and the formation of two new states. They are the linear superposition
of the s modes of each pillar and, moreover, they split apart by an energy equal to
twice the hopping energy. Specifically, if |ψR⟩ and |ψL⟩ denote the s modes of the right
and left pillar, respectively, the eigenstates of the dimer read |ψ±⟩ = (|ψR⟩ ± |ψL⟩)/

√
2

and their energy are E = E0 ± t, with E0 the nominal energy of the pillars and t the
hopping energy. In analogy with a dimer molecule, we call |ψ+⟩ the bonding states
and |ψ−⟩ the anti-bonding state. Notice that, this approximation is only valid when
t/E0 ≪ 1, otherwise the hopping term is not perturbative and cannot be decoupled of
effects on the pillar energy E0. This presented model is known as the tight-binding
model or LCAO theory that we will describe in the next chapter.

Figure 2.4(b) shows the spatially-resolved PL of a dimer composed of two micropillar
with R = 2.0µm and a = 3.6µm reported in Ref. [98]. This emission also exhibits a
discretized spectrum where the two lowest energy levels belong to the superposition of s
modes, which are schematized in Fig. 2.4(c). The most important feature of the dimer
is that the hopping energy can be modified by tuning the center-to-center distance a.
Figure 2.4(d) shows the lowest energy emission from a single pillar together with the
two lowest energy levels of various dimers with different center-to-center distances. It
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2.4 Polaritons in lattices

Fig. 2.4 Two overlapping micropillars. (a) SEM image of several overlapping
micropillars forming a dimer with different center-to-center distances. (b) Spatially
resolved photoluminescence spectrum of a dimer with D = 4µm and center-to-center
distance 3.6µm. Inset: position of the spectrometer slit. Adapted from Ref. [68]. (c)
Energy level scheme of the hybridization of the two s modes of a single micropillar
into bonding and anti-bounding orbitals in a dimer. (d) Emission spectrum of a single
micropillar with D = 4µm and two overlapping micropillars with D = 4µm and
various center-to-center distances. Panel (a) and (d) are taken from Ref. [98].

can be clearly observed that the splitting of the energy levels of the dimer increases
with decreasing a.

2.4.2 Lattice Hamiltonian simulation

We have seen that the precise control of the etching technique allows us to carefully tune
both the eigenenergies of a pillar and the hopping energy between two pillars, which can
be exploited when overlapping hundred of micropillars with a given spatial geometry.
Thus, the judicious control of these parameters enables us to study phenomena related to
lattice Hamiltonians and to engineer polariton bands with desire features. For instance,
the physics of graphene has been intensively explored in our group by the overlapping
of hundred micropillars in a honeycomb pattern, which is shown in Fig. 2.5(a). The
remarkable band structure of graphene with the well-known Dirac cones has been
directly observed [12]. Also, other outstanding phenomena have been reported such as
edge states [36, 99], exotic Dirac cones [100] and anisotropic transport of polaritons in
a semi-Dirac cone [101] (chapter 4 is devoted to this phenomenon). In order to give a
glance of the main features of this lattice, we present in Fig. 2.5(b) the measured PL
intensity in momentum space at the energy of the Dirac points of a honeycomb lattice
with pillars of D = 2.6µm and a lattice constant a = 2.4µm. The photon-exciton
detuning is ∼ −15 meV (highly photonic). It can be clearly seen the corresponding
hexagonal shape of the Brillouin zone [16]. Figure 2.5(c) shows the emission spectrum
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Fig. 2.5 Polariton Honeycomb lattice. (a) SEM image of multiple overlapping
micropillars arranged in a honeycomb geometry. (b) Measured photoluminescence
intensity in momentum space at the energy of the Dirac points. (c) Emission spectrum
in momentum space at kx = 4π/3a (a = 2.4µm) pointed out by the dashed white line
in panel (b). s and p bands are indicated.

at kx = 4π/3a, position depicted in panel (b) by a white dashed line. We can observe
two group of bands separated by an energy gap. The two lowest bands arise from the
coupling between the s mode of the micropillars, whereas the higher bands emerge
from the coupling of the p modes. Focusing on the lowest energy bands, a linear
crossing between the two bands can be observed, which corresponds to the Dirac cones
of Graphene.

Other groups have reported the observation of incredible effects in lattices of
overlapping micropillars, corroborating the capability of this platform to simulate
lattice Hamiltonians and observe intriguing phenomena. For example, the observation
of flat-band states [52, 53], gauge field for photons [41] and an exciton-polariton
topological insulator [46].

2.5 Experimental setup
Figure 2.6(a) displays a scheme of the experimental setup used to pump the semiconduc-
tor microcavities and to detect the polariton photoluminescence in real space. Along
this thesis, we use two excitation or pumping schemes called reflection and transmission
geometry. The former is usually used in non-resonant excitation studies, while the
latter allows carrying out both non-resonant and resonant excitation experiments. In
order to perform experiments, the samples are held inside a close-cycle He cryostat at a
temperature of 6 K measured on the sampler holder. The excitation beam comes from
a Ti:Sapph mode laser (< 10 MHz linewidth), which passes through a single-mode
polarization-maintaining fiber to obtain a clean Gaussian mode. Then, the beam can
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Fig. 2.6 Experimental setup. (a) Scheme of the experimental setup to pump the
semiconductor microcavities and measure the polariton photoluminescence (PL) in real
space. The enclosed region shows the pumping beam path for transmission-geometry
experiments. Abbreviations: λ/2 half-wave retarder, PBS polarized beam splitter, BS
beam splitter, F. P. Fourier plane, and R. P. real plane. (b) Detection path to measure
the polariton PL in momentum (Fourier) space. Lenses: f1 = 8 mm, f2 = 300 mm,
f3 = 150 mm, f4 = 200 mm, f5 = 500 mm.

follow either the reflection or transmission path [see enclosed region in Fig. 2.6(a)]
by taking off the mirror that divides the two paths. In both paths the laser beam is
tightly focused on the sample by an aspherical lens of 8-mm focal length and numerical
aperture of 0.45 [f1 in Fig. 2.6(a)]. In reflection geometry, excitation and detection
of the polariton PL are done by the same side of the sample and using the same lens
f1 [see right side of the sample in Fig. 2.6(a)], whereas in transmission geometry the
PL detection is done by the opposite side to the excitation. Notice that the GaAs
substrate is transparent at the working wavelengths. After being collected, the PL
is magnified over 100 times by an image system composed of telescopes. Then, it
arrives at the entrance port of a spectrometer. The spectrometer slit and a scanning
lens placed on a motorized translation stage (f5) allow selecting real-space images of
a vertical slice of the emission. The slit has a width of ∼ 32.5µm that, taking into
account the magnification, corresponds to 0.3µm on the sample. Finally, the 1D slice
of the image is dispersed by the spectrometer and imaged on a CCD.

Additionally, we also perform angle-resolved scans of the momentum space by
adding an extra lens [f4 in Fig.2.6(b)]. By doing so, the imaging system formed by
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the f2-f3 and f4-f5 lenses image the Fourier plane of f1 on the spectrometer slit. Each
point in this plane corresponds to an angle of emission θ of the sample, which is directly
related to the in-plane momentum of polaritons: k∥ = k0 cos θ, where k0 is the total
momentum of the out-coming photons. This configuration enables the observation of
the band structure for given cuts of the Fourier plane, as shown in Fig. 2.5(c) in the
case of a honeycomb lattice. Acquiring a number of cuts in momentum or real space
at different positions of the translation lens, both momentum- and real-space intensity
profile of polaritons at desire energies can be reconstructed.

Modifications of this experimental setup have been implemented for the experiments
described in chapter 5 and 6.
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Chapter 3

Introduction to lattice physics

One of the goals of this thesis is to simulate and study physical phenomena related
to lattice Hamiltonians using exciton polaritons. Our approach relies on the fruitful
understanding of crystals achieved in condensed-matter physics. In the fabrication of a
desire lattice Hamiltonian, we use as a building block a micropillar: thin cylindrically-
symmetric semiconductor microcavity. The micropillar plays the role of an atom in
natural crystals because it confines photons (and, therefore, exciton polaritons) in a
small spatial region about 2 − 4µm. The confined particles thus exhibit a discrete
spectrum of energy levels. This spectrum resembles the atomic orbitals and, hence,
exciton polaritons mimic electrons bound to a simplified crystal atom. Since many
phenomena in crystal have been understood from the wavy behavior of electrons such
as the allowed and forbidden energy bands, artificial lattices offer a playground for
studying phenomena that are rather challenging in crystals and, also, for exploring
novel phenomenology related to nonlinear physics, for instance. In particular, lattices
of coupled micropillars (polariton lattices) allow to directly observe both the eigenstates
and the energy bands by performing simple optical experiments. In this chapter, we
recall some basic concepts of relevance for the study of lattice Hamiltonians.

3.1 Bravais and Reciprocal lattice
Crystals are the thermodynamic equilibrium states of many elements and compounds
found in nature. This crystallization occurs because the atoms arrange themselves
into special positions to minimize their potential energy, which spontaneously breaks
continuous symmetries and gives way to discrete symmetries. One of the consequences
of this natural process is that by knowing the position of a few atoms, the position
of all others can be predicted. The formalism used in condensed matter to describe a
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crystal is to consider a Bravais lattice, which is a set of points (or sites) in the real
space of the form [102]:

R⃗n⃗ = n1a⃗1 + n2a⃗2 , (3.1)

where n⃗ ≡ (n1, n2) is a vector of two integers and a⃗1, a⃗2 are the primitive lattice vectors.
We have restricted ourselves to the two-dimensional (2D) case, but this expression
is easily extended to the three-dimensional (3D) case by adding an orthogonal a⃗3

vector. This mathematical object is the simplest with the desired discrete translation
symmetries. Since atoms are not point-like objects, an alternative way to view a
Bravais lattice is to specify its primitive unit cell, which is a fixed area that precisely
fills space without overlaps when translated by the lattice vectors. There is not a
unique way to define the unit cell, however, any definition must have an area equal to
|⃗a1 · (⃗a2 × ẑ) |.

Every crystal has a corresponding Bravais lattice and, in the simplest case, the
atoms of the crystal are located at the sites of a Bravais lattice. In most cases,
nonetheless, there may be more than one atom per unit cell. In those cases, the lattices
are constructed by attaching a set of m points to sites of the Bravais lattice:

R⃗n⃗,s ≡ R⃗n⃗ + δ⃗s; s = 1, 2, . . . ,m . (3.2)

These lattices are called non-Bravais lattices. If we consider any function that has
the periodicity of the lattice, it can be written in Fourier representation as

f(r⃗) =
∑
G⃗

f̃(G⃗)eiG⃗·r⃗ , (3.3)

where G⃗ is determined from the periodicity condition f(r⃗ + R⃗n⃗) = f(r⃗) and by the
requirement

eiG⃗·(r⃗+R⃗n⃗) ≡ eiG⃗·(r⃗+n1a⃗1+n2a⃗2) = eiG⃗·r⃗ , (3.4)

for every n1 and n2. This means that

G⃗ · a⃗j = 2πmj ; j = 1, 2 , (3.5)

where mj is an integer. The vector G⃗ forms a lattice in wave-vector space known as
reciprocal lattice:

G⃗ = m1⃗b1 +m2⃗b2 , (3.6)
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being b⃗1, b⃗2 the primitive reciprocal lattice vectors. In the 2D case, they are defined by

b⃗j = εji(ẑ × a⃗i), (3.7)

with εji the anti-symmetric Levi-Civita tensor. As a result

a⃗i · b⃗j = 2πδij , (3.8)

and
G⃗ · R⃗ = 2πl ; l = n1m1 + n2m2 . (3.9)

In the same way as the Bravais lattice, the reciprocal lattice has its own unit cell
that is called first Brillouin zone (or Wigner-Seitz cell), and its boundaries are defined
from the Bragg planes that are closest to the origin.

3.2 Bloch’s theorem
In order to describe the motion of electrons in a crystal, an inherently quantum
mechanical approach should be considered, which is based on solving many-body
Schrödinger equations. This can be simplified by assuming the ions of a crystal move
slowly in space and the electrons response instantaneously with the ionic motion.
Thus, the many-body wavefunction depends only on the electronic degree of freedom.
This is known as Born-Oppenheimer approximation. Further approximations can be
done by neglecting the exchange and correlation effects among electrons and taking
them into account in an average way as electron-electron interactions. Thus, these
approximations result in a single-particle picture, which describes the behavior of
electrons as independent particles in an external potential defined by the ions, together
with an external field produced by other electrons. Actually, the single-particle states
are not necessarily related to electrons, but to quasiparticles that represent collective
excitation of electrons [103].

Since the motion of electrons (particles) in a crystal (lattice) is completely deter-
mined by the underlaying crystalline potential V (r⃗), a single-particle Hamiltonian can
be considered,

H(r⃗) = p⃗ 2

2m + V (r⃗) , (3.10)

where p⃗ is the momentum vector and the potential captures the lattice translation
symmetry, i.e., V (r⃗+ R⃗n⃗) = V (r⃗) with R⃗n⃗ satisfying Eq. (3.1). Thus, the Hamiltonian
is also periodic, H(r⃗ + R⃗n⃗) = H(r⃗), and conmutes with the primitive translation
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operator TR⃗n⃗
, that is

[H,TR⃗n⃗
] = 0 . (3.11)

Hence H and TR⃗n⃗
have a common eigenbasis. The Bloch’s theorem states the

wavefunctions that diagonalize both operators must have the same lattice symmetry,
up to a phase factor:

ψ
(n)
k⃗

(r⃗) = eik⃗·r⃗u
(n)
k⃗

(r⃗) , (3.12)

where u(n)
k⃗

(r⃗ + R⃗n⃗) = u
(n)
k⃗

(r⃗). The wavevector k lies in the 1st BZ and n is an integer
that labels the bands. Then, the single-particle Schrödinger equation takes the form

[ 1
2m

(
−i∇⃗ + ℏk⃗

)2
+ V (r⃗)

]
u

(n)
k⃗

(r⃗) = E
(n)
k⃗
u

(n)
k⃗

(r⃗) , (3.13)

which only needs to be solved for r⃗ within the primitive unit cell of the crystal.
The corresponding energy eigenvalues satisfy E(n)

k⃗
= E

(n)
k⃗+G⃗

, having the periodicity of
the reciprocal lattice. For a given n the wavevector k⃗ varies continuously and the
eigenvalues form an energy band. This equation is also known as Bloch’s equation and
the wavefunctions u(n)

k⃗
are called Bloch states.

3.3 Tight-binding model
One of the strategies to tackle the Bloch’s equation is to use the so-called tight-binding
approximation, which considers the limit where electrons are bound to a lattice of ionic
potentials and the quantum mechanical tunneling process of an electron between two
atoms is seen as a perturbation [70]. Let us consider firstly an isolated atom at the
position R⃗j, its Hamiltonian is

Hj = p⃗ 2

2m + V (r⃗ − R⃗j) ,

which can be formally diagonalized

Hjφσ(r⃗ − R⃗j) = Ejσφσ(r⃗ − R⃗j),

where φσ(r⃗ − R⃗j) is the atomic orbital in the atomic state σ (s, p, d, etc) with atomic
energy eigenvalue Ejσ. Recall that for a single atom each atomic orbital is orthogonal
to the other, i.e., ⟨φσ′|φσ⟩ = δσ′σ. Now, the crystal potential can be considered as the
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superposition of atomic potentials

V (r⃗) =
∑

j

V (r⃗ − R⃗j) ,

and the single-particle Hamiltonian of the whole lattice is given by

H = p⃗ 2

2m +
∑

j

V (r⃗ − R⃗j) = Hj + ∆Vj(r⃗) , (3.14)

where
∆Vj(r⃗) ≡

∑
R⃗i ̸=R⃗j

V (r⃗ − R⃗i)

is the potential energy associated to the perturbation of the atom placed at R⃗j due to
the presence of all other atoms. Then, the Schrödinger equation takes the form

[Hj + ∆Vj(r⃗)]ψk⃗(r⃗) = Ek⃗ψk⃗(r⃗) , (3.15)

where ψk⃗(r⃗) is the single-particle wavefunction. The basic assumption of this approxi-
mation is that we can use the atomic orbitals as a basis for expanding the single-particle
wavefunctions. Therefore, ψk⃗(r⃗) can be written as a linear superposition of atomic
orbitals:

ψk⃗(r⃗) = 1√
N

∑
j

eik⃗·R⃗jφσ(r⃗ − R⃗j) . (3.16)

Notice that it can be easily proved that this function satisfies the Bloch’s theorem.
Using now the Dirac notation, we define

⟨r⃗|j, σ⟩ ≡ φσ(r⃗ − R⃗j) ⇒
∣∣∣ψk⃗

〉
= 1√

N

N∑
j=1

eik⃗·R⃗j |j, σ⟩ ,

where N is the total number of atoms in the lattice. Assuming the orthogonality
between orbitals of different isolated atoms, ⟨j′|j⟩ = δj′j , we obtain the matrix elements
of the Hamiltonian from eq. (3.15),

⟨j′, σ′|H |j, σ⟩ = ⟨j′, σ′|Hj |j, σ⟩ + ⟨j′, σ′| ∆Vj |j, σ⟩
= Ejσδj′jδσ′σ + ⟨j′, σ′| ∆Vj |j, σ⟩ . (3.17)

Ej is known as the on-site energy and the second term describes the tunneling of
an electron in the orbital σ of the atom j to the orbital σ′ of the atom j′ when they
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are close enough to each other. This term is also known as hopping matrix element:

⟨j′, σ′| ∆Vj |j, σ⟩ =

−t if atoms j and j′ are nearest neighbors with σ′ = σ

0 otherwise

We only consider the hopping between nearest neighbors with the same orbitals,
however, longer range hoppings could be also considered. A more accurate model that
considers the hopping between different orbital can be found in Ref. [104]. Then, the
single-particle Hamiltonian of eq. (3.15) can be written as

Htb =
∑

j

Ej |j⟩ ⟨j| − t
∑
⟨j′j⟩

(|j′⟩ ⟨j| + |j⟩ ⟨j′|) , (3.18)

where the summation subscripts ⟨j′j⟩ indicates the sum over nearest neighbors. Further-
more, we can recast the tight-binding Hamiltonian in the second-quantized formalism.
Since the states |j⟩ form a basis of the single-particle wavefunction, a creation operator
c†

j can be defined such that |j⟩ = c†
j |0⟩, being |0⟩ the vacuum states. Therefore, the

Hamiltonian now reads

Ĥtb =
∑

j

Ej ĉ
†
j ĉj − t

∑
⟨j′j⟩

(
ĉ†

j′ ĉj + ĉ†
j ĉj′

)
. (3.19)

The operators obey anti-conmutation relation, {ĉ†
j′ , ĉj} = δj′j, for fermions and

conmutation relation, [ĉ†
j′ , ĉj′ ] = δj′j, for bosons. Also, it is required that ĉj |0⟩ = 0.

Notice that we have considered the crystalline potential having the same periodicity of
the Bravais lattice that is not always the case and, for non-Bravais lattices like the
honeycomb lattice, a slight modification is needed as we will see below.

3.4 Introduction to Graphene
One of the most studied models in condensed matter physics is the 2D honeycomb lattice,
which describes the natural arrangement of carbon atoms in graphene. Graphene is the
constituent material of graphite and, since P. R. Wallace first derived its extraordinary
band structure in 1947 [105], it has caught a lot of interest because not only allows to
describe properties of many carbon-based materials but also is an excellent platform for
studying the Dirac equation [106]. Thanks to this latter feature, massless behavior of
quasiparticles in graphene was predicted and experimentally proved [107] together with
some other captivating transport phenomena such as antilocalization, Klein tunneling
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and the quantum Hall effect [106, 108]. In this section we introduce the honeycomb
lattice and its electronic properties by using the concepts illustrated above.

The spatial distribution of the carbon atoms in graphene is displayed in Fig.3.1(a)
and its primitive lattice vectors are:

a⃗1 = a

2
(
3,

√
3
)
, a⃗2 = a

2
(
3,−

√
3
)
, (3.20)

where a ≈ 1.42 Å is the lattice constant. They form the primitive unit cell shown
in gray area in Fig. 3.1(a) that is composed of two carbon atoms connected by
the vector δ⃗1 = (a, 0). Thus, the honeycomb lattice is classified as a non-Bravais
lattice and can be also seen as the composition of two A and B triangular sublattices.
Moreover, each atom has three nearest neighbor with the corresponding vectors δ1 and
δ2,3 = a(−1/2,±

√
3/2). Then, the reciprocal-lattice vectors are:

b⃗1 = 2π
3a
(
1,

√
3
)
, b⃗2 = 2π

3a
(
1,−

√
3
)
, (3.21)

and they build up the first Brillouin zone (1st BZ) of the honeycomb lattice that is
shown in Fig. 3.1(b). It has an hexagonal shape with four highly symmetric points at

Γ⃗ = (0, 0), K⃗ =
(

2π
3a ,

2π
3
√

3a

)
, K⃗ ′ =

(
2π
3a ,−

2π
3
√

3a

)
, M⃗ =

(2π
3a , 0

)
. (3.22)

The tight-binding model captures accurately the transport of particles in graphene
[105]. To further understand this fact, let us go a step back to a single carbon atom,
whose electronic configuration is 1s22s22p2. In this atom, the 1s orbital has very
low energy forming completely filled bands and, therefore, being irrelevant for the
low-energy physics. On the contrary, the four electrons in the 2s and 2p orbitals
determine the low-energy properties of the system. These orbitals are very close in
energy and they become mixed orbitals in the presence of a lattice potential because
of the breaking of rotation symmetry. In graphene, the s, px and py orbitals hybridize
along the direction of the nearest-neighbor bonds and create the so-called σ (or sp2)
orbitals that, in turn, form bonding and anti-bonding bands with energy far below
and far above the Fermi energy. As a result, one electron in the pz orbital (also called
π orbital) per carbon atom does not pair up with any neighbor and it completely
dominates the low-energy physics.
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Fig. 3.1 Honeycomb lattice. (a) Crystalline structure of the carbon atoms in
graphene: Honeycomb lattice. It is composed by two triangular sublattices A and B
(red and blue circles, respectively). The enclosed gray area demarcates its primitive
unit cell. a⃗1 and a⃗2 are the primitive lattice vectors, and δ⃗1, δ⃗2 and δ⃗3 are the nearest-
neighbor vectors. (b) First Brillouin zone of the honeycomb lattice. b⃗1 and b⃗2 are
the reciprocal-lattice vectors and K⃗, M⃗ , K⃗ ′ and Γ⃗ are the high-symmetry points. (c)
Tight-binding band structure (or dispersion) of the honeycomb lattice when considering
nearest- and next-nearest-neighbor hoppings. Red lines demarcate the first Brillouin
zone and Dirac cones are placed at K and K ′ symmetry points.

Using the second-quantized formalism, the tight-binding Hamiltonian for the π
orbitals in graphene reads:

Ĥ = −t
∑
⟨i,j⟩

(
â†

i b̂j + c.c
)

− t̄
∑

⟨⟨i,j⟩⟩

(
â†

i âj + b̂†
i b̂j + c.c

)
, (3.23)

where â†
i (b̂†

i ) creates an electron on the i-th atom of the sublattice A (B), t and t̄ are
respectively the nearest-neighbor and next-nearest-neighbor hoppings1, and the on-site
energy is set to zero. Considering the discrete Fourier transform of each sublattice
operator,

â†
i = 1√

N

∑
k⃗

eik⃗·r⃗i â†
k⃗
, b̂†

i = 1√
N

∑
k⃗

eik⃗·(r⃗i+ax̂)b̂†
k⃗
, (3.24)

where N is the number of A and B sites, the Hamiltonian can be written as

Ĥ =
∑

k⃗

Ψ̂†
k⃗
hk⃗Ψ̂k⃗ , (3.25)

with Ψ̂k⃗ = (âk⃗ b̂k⃗)T , Ψ̂†
k⃗

= (â†
k⃗
b̂†

k⃗
) and

1Here, we have also included the hopping between next-nearest neighbors because it allows us to
better describe the observed asymmetry in the band structure of the exciton-polariton honeycomb
lattice, which is studied in the next section.
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hk⃗ =
h11 h12

h21 h22

 , (3.26)

where

h11(k⃗) = h22(k⃗) = −2t̄
[
cos
(√

3kya
)

+ 2 cos(3kxa/2) cos
(√

3kya/2
)]
,

h12(k⃗) = h∗
21(k⃗) = −t

[
1 + 2 cos

(√
3kya/2

)
e−i3kxa/2

]
.

Then, the energy eigenvalues read as

E±(k⃗) = h11(k⃗) ± |h12(k⃗)| = −t̄f(k⃗) ± t
√

3 + f(k⃗), (3.27)

where f(k⃗) = 2 cos
(√

3kya
)

+ 4 cos(3kxa/2) cos
(√

3kya/2
)
, k⃗ is defined within the first

BZ and the band with sign + (−) is called π (π∗) band. In the case of t̄ = 0, this
spectrum is symmetric with respect to the Fermi energy (EF = 0), but the bands
become asymmetric for finite values of t̄. Figure 3.1(c) presents the well-known band
structure of graphene in the presence of next-nearest-neighbor hoppings. The two
dispersive bands intersect each other at the highly symmetric points K⃗ and K⃗ ′, which
means that there is no band gap. When t̄ = 0, E±(K⃗) = E±(K⃗ ′) = EF and graphene
is a semimetal. Furthermore, expanding E± near K⃗ one finds

E±(K⃗ + k⃗) ≈ ±vF |⃗k| , (3.28)

with vF = 3ta/2 ≈ 107m/s (t ≈ 2.8 eV) the graphene Fermi velocity [108]. Therefore,
the energy bands depend linearly on k⃗ around this symmetric point (same for K⃗ ′). In
this approximation, the Hamiltonian (3.23) can be written as

HK⃗ = vF σ⃗ · k⃗ , (3.29)

where σ⃗ = (σx, σy) and

σx =
0 1

1 0

 , σy =
0 −i
i 0

 , σz =
1 0

0 −1

 , (3.30)

are the Pauli matrices. Likewise, expanding around K⃗ ′ we have HK⃗′ = vF σ⃗
∗ · k⃗.

Therefore, low-energy quasiparticles near the symmetric points K⃗ and K⃗ ′ (Dirac
points) obey an effective Dirac Hamiltonian, resembling massless relativistic particles
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in 2D with the velocity vF given by the bands. This is the reason why the conical
sections of the honeycomb’s band structure are called Dirac cones.

3.4.1 Symmetries

Besides the discrete translation symmetry, which is determined by the primitive lattice
vectors, the honeycomb lattice possesses two other spatial symmetries that give insight
into the properties of the band structure and the eigenstates. They are the three-fold
rotation symmetry (C3) and the reflection (or inversion) symmetry (R). C3 symmetry
is a manifestation of the fact that when rotating the lattice by an angle equal to 2π/3
with respect to a lattice site (fixed point), it remains invariants. R symmetry keeps
invariant the lattice when it is applied with respect to a vertical (or horizontal) axis
that goes through the center of the lattice. This is because A and B sublattices are
indistinguishable. While the former symmetry is responsible for the appearance of
the Dirac cones, the latter plays and important role in the protection of them. By
implementing a staggered potential, such that A and B sublattices have opposite on-site
energy, inversion symmetry can be broken and, as a result, a gap is opened among
the bands that destroys the Dirac cones. Such a case is found in a single layer of
Boron Nitride (h-BN), in which carbon and nitrogen atoms arrange in a honeycomb
pattern [109].

Beyond spatial symmetries and without considering the spin degree of freedom,
the real values of the Hamiltonian’s eigenenergies ensure the presence of time-reversal
symmetry. Taking the complex conjugate of the Schrödinger equation in Fourier space,
we have

(
hk⃗Ψk⃗

)∗
= E±(k⃗)Ψ∗

k⃗
,⇐⇒ h−k⃗Ψ∗

k⃗
= E±(k⃗)Ψ∗

k⃗
, (3.31)

because h∗
k⃗

= h−k⃗. Therefore, we obtain that

E±(k⃗) = E±(−k⃗) . (3.32)

Additionally, the honeycomb Hamiltonian with only nearest-neighbor hoppings (t̄ = 0)
anti-commutes with the σz Pauli matrix,

σzhk⃗σ
†
z = −hk⃗ , (3.33)

which is a hermitian and unitary operator. The main consequence of this special
symmetry is that eigenstate |ψ⟩ with energy ϵ ≠ 0 has its chiral partner |ψ′⟩ with

38



3.4 Introduction to Graphene

energy ϵ′ = −ϵ, thus, giving rise to a symmetric band structure with respect to the Fermi
energy. Moreover, zero-energy eigenstates can be chosen to have non-zero amplitude
on one sublattice only and they are chiral partners of themselves. Indeed, this fact
helps to understand the wavefunction and energy of edge sates in finite graphene as we
will see in Chapter 4.
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Chapter 4

Semi-Dirac Honeycomb Lattices

In the previous chapter we mentioned some extraordinary transport properties of
graphene, which arise from the Dirac cones present in its band structure. These conical
dispersions are modified when graphene undergoes an uniaxial strain, situation that
has driven much attention due to the possibility of modifying the Fermi surface and,
consequently, implementing directional transport properties [110–121]. In particular,
for a critical compression, a semi-Dirac cone is formed with massless and massive
dispersions along perpendicular directions. In this chapter, we show direct evidence
of the highly anisotropic transport of polaritons in a honeycomb lattice of coupled
micropillars implementing a semi-Dirac cone, which is framed in a semimetal-to-
insulator transition (also known as Lifshitz transition). Furthermore, if we optically
induce a vacancy-like defect in the lattice, we observe an anisotropically localized
polariton distribution in a single sublattice, a consequence of both the semi-Dirac
dispersion and chiral symmetry.

4.1 Transport in semi-Dirac honeycomb lattices
Strained graphene with modified Dirac cones has been studied from a theoretical point of
view by tuning the nearest-neighbor and next-nearest-neighbor hoppings among atoms
along a given direction in tight-binding models. Figure 4.1(a) sketches the honeycomb
lattice model, where parameters t′ and t (t̄′ and t̄) account for nearest-neighbor (next-
nearest-neighbor) hoppings. Using this model, it has been shown that tilted Dirac cones
with asymmetric Dirac velocities in the x and y directions can be engineered [110–119],
predicting exotic tunneling properties [120, 121] and high-temperature superconducting
gaps [122]. A peculiar case of Dirac cone manipulation takes place when the two
Dirac cones merge, forming a so-called semi-Dirac cone [112, 115, 123, 124]. The
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Fig. 4.1 Strained honeycomb Lattice. (a) Sketch of a honeycomb lattice, t′ (thick-
continuous line) and t (thick-dashed line) symbolize the nearest-neighbor hoppings,
while t̄′ (thin-continuous line) and t̄ (thin-dashed line) typify the next-nearest-neighbor
hoppings. (b) Electron microscopy image of a polariton honeycomb lattice. Red and
blue circles demarcate A and B sublattices. Yellow and white lines denote hopping
among horizontal an diagonal nearest neighbors. a = a′ = 2.4µm.

semi-Dirac cone is a transition that separates a semimetallic phase with two Dirac
cones from an insulating phase with a gap, which corresponds to a topological Lifshitz
transition [115, 116]. This transition is achieved in graphene when the Dirac cones move
along the edge of the first BZ (line that joins K⃗ and K⃗ ′ points), due to the modification
of the hoppings parameters along one direction only, and it takes place when the
horizontal hopping is twice stronger than the diagonal one. Figure 4.2(a)-(c) show this
situation, the bottom panels schematize the compression of a honeycomb lattice and top
panels display the corresponding tight-binding band structure around the Dirac point
at the edge of the first BZ. It can be seen that the two Dirac cones merge/annihilate
forming the semi-Dirac dispersion at a critical compression [see Fig.4.2(b) top panel].
Interestingly, quasiparticles at the Dirac point behave as massless particles in one
spatial direction and as massive ones in the perpendicular direction. The topological
feature of the transition is determined by the Berry phase. Before the transition and
at low energies, the Berry phase around the Dirac cone at K⃗ (K⃗ ′) takes the value π
(-π) and it becomes zero once the two Dirac cones merge [115]. Furthermore, for a
finite honeycomb lattice, the bearded edge state disappears when the merging of the
two Dirac cones occurs and, conversely, the zigzag edge state extends over the entire
BZ [35]. This is shown in Fig. 4.2(d) where an existence plot of the edge states is
presented as a function of the compression parameter β ≡ t′/t and the wavevector k
that is perpendicular to the lattice edge (adapted from Ref. [35]).

The asymmetry of such exotic Dirac cones anticipates highly anisotropic transport
and localization properties as studied in a number of theoretical works [112, 115, 123–
127]. However, these properties have been hardly explored experimentally due to
the difficulty in synthesizing two-dimensional materials with the required asymmetric
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4.1 Transport in semi-Dirac honeycomb lattices

Fig. 4.2 Lifshitz Transition. (a)-(c) Band structure around the Dirac points for the
indicated β values. Bottom panel of each column show schematically the compression
of the honeycomb lattice. (d) Parametric diagram, β versus momentum k, of the
existence of the bearded and zigzag edge states. Color maps represent the inverse
localization length for the zigzag (red colors) and bearded (green colors) edge states.
Panel (d) is taken from Ref. [35].

hoppings and low disorder. For instance, semi-Dirac cones have been observed in black
phosphorous [128], but no transport studies are available.

Artificial systems, such as ultra-cold atoms [129], lattices of photonic resonators [9,
35] and waveguide arrays [33, 130] have shown the possibility of engineering semi-Dirac
cones with an exquisite control, and demonstrated the effect of the merging of the Dirac
cones on the presence of edge states [35, 33, 130]. Despite these progresses, the exotic
dispersion of the merging has not been reported in these artificial systems. Moreover,
transport and localization properties have not been studied in these platforms because of
the need to access simultaneously spectral information and particle dynamics. Lattices
of semiconductor micropillars allows to overcome these challenges [12, 46, 100, 41] and
provides a controllable platform where the lattice dispersion can be directly observed
and the anisotropic transport that happens in a semi-Dirac scenario can be probed.

4.1.1 Lifshitz transition in a polariton honeycomb lattice

In order to observe the Lifshitz transition in the polaritonic graphene, we fabricate
lattices from a planar semiconductor microcavity made of 28 (top) and 40 (bottom)
pairs of λ/4 alternating layers of Ga0.05Al0.95As and Ga0.80Al0.20As (λ = 783 nm), a λ/2
cavity spacer of Ga0.05Al0.95As, and twelve GaAs quantum wells embedded at the three
central maxima of the electromagnetic field. This microcavity is grown on top of a GaAs
substrate. At 6 K, the temperature of our experiments, the microcavity is in the strong
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coupling regime between quantum-well excitons and confined photons, giving rise to
polaritons characterized by a Rabi splitting of 15 meV. The microcavity is then etched
down to the GaAs substrate into honeycomb lattices of coupled micropillars of 2.6 µm
diameter. By varying the center-to-center distance between micropillars, the amplitude
of the polariton hopping between neighboring micropillars can be engineered [100]
to simulate the homogeneous strain that has been predicted to result in semi-Dirac
dispersions [112, 115, 123, 124]. All experiments are done at a photon-exciton detuning
of −15.2 meV, thus leading to polaritons states with a dominant photonic fraction,
which present the longest polariton lifetimes in our samples.

Figure 4.1(b) shows a scanning electron microscope image of a lattice with isotropic
hoppings, corresponding to a center-to-center distance of a = a′ = 2.4 µm for the
three nearest-neighbors links of each micropillar. To measure the polariton dispersion
and study the transport properties, photoluminescence experiments are done under
excitation at the center of the lattice with a linearly polarized beam in a spot of
8 µm coming from a continuous-wave Ti:Sapphire laser at 745 nm (1660 meV), much
higher energy than the polariton bands. Since the substrate absorbs photons at the
working wavelengths, only experiments in reflection geometry can be implemented.
The absorption of the photon laser by the semiconductors creates a hot cloud of carriers
(electron-hole pairs) that relax incoherently and populate all the polaritonic bands
of the structure. Then, polaritons leak out the microcavity in form of photons that
encode the energy and momentum of the polaritons inside the structure. An image
system generate a 120-times magnified image of the lattice at the entrance port of a
spectrometer. This slit allow selecting a vertical slice of the emission either in real
or momentum space, which is dispersed by the spectrometer an image on a CCD.
Thus, energy-resolved emission from the polariton bands can be recorded along kx (ky)
direction for a specific ky (kx) position. Figure 4.3(b1)-(b2) shows the emission from
the lowest energy bands (s-bands) in momentum space. Along the ky direction [line
1 in Fig. 4.3(a1)] two Dirac crossings are observed in Fig. 4.3(b1), corresponding to
the K and K’ points characteristic of the unperturbed honeycomb lattice. The Dirac
velocities (slopes of the Dirac dispersion) are in this case isotropic around each Dirac
cone, as evidenced when comparing the dispersions close to E0 in Fig. 4.3(b1) for K
along ky [line 1 in Fig. 4.3(a1)] and in Fig. 4.3(b2) along kx [line 2 in Fig. 4.3(a1)].

The polariton dispersion is well reproduced by a tight-binding model, whose eigen-
values as a function of the strain parameter β = t′/t are:

E±(k⃗) = E0 − t̄f(k⃗) ± t
√

(β2 + 2) + f(k⃗) , (4.1)
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Fig. 4.3 Dirac cones merging and semi-Dirac dispersion. (a) Sketch of the
Brillouin zones. Middle and bottom rows of columns (b)-(d) are measured polariton
photoluminescence intensity in momentum space for different values of β. Each image
is normalized to its maximum. (b1), (c1) and (d1) show the emission along ky at
kx = 2π/3a [line 1 in (a)], while (b2), (c2) and (d2) show the emission along kx at both
ky = −4π/3

√
3a (line 2) and ky = −6π/3

√
3a (line 3). White continuous and dashed

lines are fits to the lower and upper bands [Eq. 4.1]. E0 = 1589.2 meV and a = 2.4µm.

with, f(k⃗) = 2 cos
(√

3kya
)

+ 4 cos(3kxa/2) cos
(√

3kya/2
)

and E0 the Dirac-point
energy. β quantifies the engineered compression strength, which is equal to one in the
present case (isotropic hopping). A fit of Eq. (4.1) to the collected photoluminescence
[white lines in Fig. 4.3(b1)-(b2)] results in the hopping parameters t = 0.18 meV
(nearest-neighbor) and t̄ = −0.014 meV (next-nearest-neighbor). Note that in the
micropillar system, the next-nearest-neighbor hopping in Eq. (4.1) is a phenomenological
term that reproduces the observed asymmetry of s-bands. Its origin is the coupling of
s and p-modes, as described in Ref. [104].

We experimentally probe the Dirac cones merging in Fig. 4.3(c1)-(c2) for a lattice
with a′ = 2.2 µm and a = 2.4 µm. Using the tight-binding model with the previously
obtained values of t and t̄, a value of β = 2 reproduces the experimental features.
The recorded spectrum along ky [line 1 in Fig. 4.3(a)] shows not only that the two
Dirac cones have merged but, more importantly, the dispersions of both the upper and
lower bands are now parabolic in this direction, while they remain linear along the kx

direction. This situation is the expected semi-Dirac cone, which combines massless
and massive dispersions along perpendicular directions. If β is further increased, the
Dirac cone merging evolves into a band gap. We implement experimentally this last
situation by reducing further the center-to-center distance a′ to 1.7 µm as shown in
Fig. 4.3(d1)-(d2), corresponding to β = 3.
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Besides the bulk consequences of the Lifshitz transition in graphene, it has also a
strong effect in the existence of graphene’s edge states. The most studied terminations
of graphene are zigzag, bearded and armchair edges. While both zigzag and bearded
edges present localized states, armchair edge state appears when considering anisotropic
graphene, that is, a honeycomb lattice with anisotropic nearest-neighbor hoppings [131–
133]. The zigzag and bearded edge states lie at specific values of k⃗ within the first BZ,
in complementary regions that connect the highly symmetric points K⃗ and K⃗ ′, and at
zero energy due to the presence of chiral symmetry. Specifically, the zigzag edge state
has wavevector kzz

y ∈ [−4π/3
√

3a,−2π/3
√

3a] ∪ [4π/3
√

3a, 2π/3
√

3a] and the bearded
edge state possesses wavevector kbd

y ∈ [−2π/3
√

3a, 2π/3
√

3a]. Since both edge states
live at zero energy for every wavevector kzz

y or kbd
y , their dispersion relation is regarded

as flat band, which becomes slightly dispersive when next-nearest-neigbor hoppings
cannot be neglected. Furthermore, these two edge states are intimately related to
the no-zero Berry phase along a straight trayectory in momentum space defined by
the geometry of the considered edge [134–136], which is understood as a bulk-edge
correspondence. When considering the uniaxial strain in finite graphene, the existence
and localization length of the edge states depend on the strain’s strength β [35]. A
comprehensive evolution of the wavevector of the edge states when graphene undergoes
strain is presented in Fig. 4.2(d), in which black line depicts the wavevector of the
Dirac point. Qualitatively speaking, zigzag edge states exists for any value of strain
and its localization length is directly proportional to β for a given k (perpendicular to
the edge) and, conversely, bearded edge state lives when β ∈ [0, 2] and its localization
length is inversely proportional to β for a given k [see Fig.4.2(d)]. The disappearance
of the bearded edge state is understood as a consequence of the Dirac cones’ merging
and the null value of the Berry phase along any trajectory in momentum space defined
for this edge when β ≥ 2 [35].

The observation of the electronic zigzag and armchair edge states has been achieved
using scanning-tunneling microscopic [137]. However, the electronic bearded edge states
has remained elusive due to the mechanical instability of the dangling bond associated
to this edge. The overcoming of this challenge had to wait for the flourishing of artificial
graphene in photonic realm, where all these edge states have been observed [9, 34, 36].

In order to experimentally probe the existence of both bearded and zigzag edge
states when going through the transition1, we carry out experiments on the edges
of a regular and compressed polariton lattice as shown in Fig. 4.3(a1)-(a2). Red

1Even though this study has been done both theoretically and experimentally in previous works [35,
33] through momentum and real-space measurements, polaritons enable us to directly probe the
energy of the edge states.
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Fig. 4.4 Zigzag and bearded edge states of Honeycomb lattices. Electron
microscopy image of a regular (a1) and compressed (a2) polariton honeycomb lattice.
Red circle schematizes the pump beam on the bearded (a1) and the zigzag (a2) edge.
(b)-column Measured polariton photoluminescence in momentum space along the line
4 (kx ≳ 2π/3a) shown in Fig. 4.3(a1) when pumping on the zigzag edge, for β = 1 (b1)
and β = 3 (b2). (c)-column Measured polariton photoluminescence in momentum space
along the line 1 (kx = 2π/3a) shown in Fig. 4.3(a1) when pumping on the bearded
edge β = 1 (c1) and β = 3 (c2). (d1) and (d2) Emission intensity of the zigzag edge
in real space at E0 = 1582.2 meV (energy of the Dirac point) for β = 1 and β = 3,
respectively. (e) Emission intensity of the bearded edge in real space at the energy
of the Dirac point for β = 1. Hexagons depict the underlying lattice. Each image is
normalized to its maximum intensity.

circles depict the pumping beam that has ∼ 8µm width and covers 6 pillars (an
hexagon). When pumping on the zigzag edge of a regular honeycomb lattice and
collecting the photoluminescence in momentum space along ky direction at a given
kx ∈ [2π/3a, 4π/3a] [line 4 in Fig. 4.3(a1)], the two dispersive bands plus emission at
E0 energy around ky ≈ |4π/3

√
3a| are detected, which confirms the presence of an edge

state. Figure 4.4(b1) shows this case and the inset displays a saturated image that
highlights the emission belonging to the edge states. Likewise, Figure 4.4(c1) shows the
emission along ky direction at kx = 2π/3

√
3a [line 1 in Fig. 4.3(a1)] when a bearded

edge is pumped. A flat band between the two Dirac points is observed, corroborating
the existence of a localized state on this edge. In the case of a compressed honeycomb
lattice (β = 3), the zero-energy emission from the zigzag edge is still present [see
Fig. 4.4(b2)], whereas there is no emission at zero energy from a bearded edge as shown
in Fig. 4.4(c2). Only a gapped spectrum is observed, same than the bulk dispersion
shown in Fig. 4.3(d1).
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Real-space measurement of the photoluminescence allows for the reconstruction
of their associated wavefunction and, owing to chiral symmetry, they are expected
to be localized on one sublattice. Figure 4.4(d1)-(e) shows the zigzag and bearded
edge states, respectively, for a honeycomb lattice without strain. Both edge states are
mostly localized on one sublattice, zigzag (bearded) edge state on B (A) sublattice. A
little emitted intensity is detected from micropillars of the opposite sublattice, which is
caused by the presence of next-nearest-neighbor hoppings in our lattice, which breaks
chiral symmetry and destroys slightly the sublattice polarization. Real-space emission
at E0 energy for a compressed honeycomb lattice is only detected when pumping the
zigzag edge. The reconstruction of the intensity profile exhibits a highly-localized edge
state and it has mostly non-zero intensity on the B sublattice [see Fig. 4.4(d2)]. During
my thesis I participated in experiments in this lattices which measured the topological
invariant associated to the existence of edge states, for different values of β, by means
of the use of a technique known as measurement of the mean chiral displacement. The
results were published in Ref. [138].

4.1.2 Real-space features of the semi-Dirac dispersion

The semi-Dirac scenario predicts strong consequences on the transport properties of
polaritons in the bulk. To verify this, we now pump the lattice in the central region
using the same beam as before and we measure the polariton emission in real space at
several x position. Then, the real-space polariton distribution can be reconstructed
at a number of emission energies by collecting the recorded data. Figure 4.5(a1)-(b1)
shows the real-space emission at the energy of the Dirac point E0 for β = 1 and β = 2,
respectively. For β = 1, polaritons propagate isotropically across the lattice, whereas,
for β = 2, they travel further away along the x direction than the y direction, exhibiting
a significantly anisotropic propagation. By measuring the propagation length along
both x and y directions in both lattices, the anisotropy is quantified. To extract the
propagation length, we firstly select a rectangular region along each direction [enclosed
region in Fig 4.4(a1)-(b1)] and we then integrate along the shorter directions. By
doing so, an integrated intensity profile of the real-space emission on each direction is
obtained. Finally, by fitting an exponential decay to the tails of the x and y profiles,
i.e. |ψ(r)|2 ∝ e−r/Lr , the propagation length Lr (r = x or r = y) is determined.
Notice that we only take into account points far from the pumping region in order to
avoid excitonic construbution to the decay. Figure 4.5(a2)-(b2) show the measured
intensity from each micropillar in the rectangles depicted in Fig. 4.5(a1)-(b1) - each
point corresponds to the emission from a micropillar. For β = 1, the propagation
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Fig. 4.5 Transport at the semi-Dirac point. (a1) and (b1) emission intensity in
real space at the energy of the Dirac point (E0 = 1582.2 meV) for β = 1 and β = 2,
respectively. Each image is normalized to its maximum intensity. (a2) and (b2) the
measured intensity along x (circles) and y (triangles) directions for β = 1 and β = 2,
respectively, extracted from the dashed boxes in (a1) and (b1). Lines are exponential
decay fits. (c1) and (c2) The measured propagation lengths (dots) at several energies
along the y and x directions for β = 1. (d1) and (d2) Same for β = 2. Solid and
dashed lines display the theoretical propagation lengths corresponding to the upper
and lower bands in Fig. 4.3. The vertical line depicts the Dirac-point energy E0.

lengths are Lx = 10.21 ± 2.69 µm and Ly = 9.38 ± 0.23 µm. These values confirm
the isotropic transport of polaritons near the Dirac-point energy, which was previously
measured in the form of conical diffraction [32]. For β = 2, at the same energy, we
obtain Lx = 13.31 ± 1.40 µm and Ly = 4.89 ± 0.84 µm, evidencing the high group
velocity in the direction of the massless dispersion, and the reduced group velocity
along the y direction associated to the parabolic shape of the bands [see Fig. 4.3(c1)].
From this analysis, the polariton population is expected to decay 1/e3 at a distance of
3Ly (about 15µm away), which means that 95% of the population has decayed at such
a distance.

We also perform the same analysis for a number of energies within the s bands.
Figure 4.5(c1)-(d2) shows in filled dots the measured propagation lengths Lx and Ly

as a function of the energy across the Dirac point. This measurement can be directly
compared to the propagation length expected from the tight-binding group velocities,
vg,x(y) = ∂E/∂kx(y), in the following way:

Lx(y) ≈ vg,x(y)τ . (4.2)
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vg,x(y) is calculated from the dispersion curves in Fig. 4.3 along the vertical (kx = 2π/3a)
and horizontal (ky = −4π/3

√
3a for β = 1; ky = −6π/3

√
3a for β = 2) directions,

and τ is the polariton lifetime. The lines in Fig. 4.5(c1)-(d2) show the propagation
lengths calculated from the group velocities predicted by the tight-binding model in
each spatial direction below (continuous line) and above (dashed line) E0. Here we
assume a polariton lifetime of τ = 14 ps and τ = 12 ps, for β = 1 and β = 2 lattices,
respectively, which is used as a fitting parameter to the experimental points.

The calculated propagation distances match well the experimental data and repro-
duce the increase of the propagation length along the x direction when going from β = 1
to β = 2, due to the higher hopping in that direction [see Fig. 4.5(c2)-(d2)]. Along
the y direction, the expected propagation length for β = 2 goes down to zero at the
Dirac-point energy E0, a consequence of the massive dispersion along that direction [see
Fig. 4.5(d1)]. Similarly, the calculated propagation length is also zero at the top and
bottom of the bands. Experimentally, the measured propagation length at those points
is about 4 µm. This value is, in part, determined by the linewidth of 60µeV associated
to the finite polariton lifetime: when selecting a given energy, we are in fact detecting
the emission from a small range of energies around the desired one, corresponding to
states with a nonzero group velocity. Moreover, diffusion of photoexcited excitons away
from the excitation spot might also contribute to the residual measured propagation
distance. The hypothetical case of samples with smaller linewidth (longer lifetime)
would result in a sharper decrease of the measured propagation along the y direction
at E0.

4.2 Vacancy-like behavior of polaritons
Further insight of the polaritons’ transport properties at the semi-Dirac point energy
E0 can be accessed when implementing a resonant-laser excitation scheme. This means
that we tune the energy of the laser to be exactly the energy of the semi-Dirac point
E0 and, consequently, the laser injects polaritons at this energy only as relaxation to
lower states is negligible. Figure 4.6(a) shows the measured intensity when a resonant
laser at E0 is focused on a single micropillar of the A sublattice (marked with a circle)
in a lattice with β = 2. To measure the propagation away from the excitation spot, a
mask was placed at the center of the image (white area) with the aim of blocking the
excitation beam reflecting onto the CCD (the inset shows an image of the reflected
pump beam in the absence of the mask). Note that the laser and the emission are at
the same wavelength and we can only remove the laser reflection from the sample by
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4.2 Vacancy-like behavior of polaritons

Fig. 4.6 All-optical analog of a vacancy localization in semi-Dirac graphene.
(a) and (c) The measured photoluminescence intensity in real space at the energy of
the Dirac point when a single pillar is pumped (demarcated by a circle) in an A pillar
(a) and in a B pillar (c). Insets show the reflected pump spot when the beam block is
removed from the central region. (b) and (d) The polariton distribution calculated
from Eq. (4.3) when a single A and B pillar, respectively, is pumped at E0 energy.
Hexagons depict the underlying lattice.

using the mask. The image shows some stray laser light close to the excitation spot
and a decay of the luminescence on the B sublattice towards the right of the excitation
spot. If the excitation is centered on a pillar of the B sublattice, the decay direction
and the sublattice asymmetry are reversed, as shown in Fig. 4.6(c). Since the reflected
laser beam is not completely removed, the acquired intensity data in Fig. 4.6(a)-(c) are
plotted in logarithmic scale in order to emphasize the photoluminescence away from
the central region.

This behavior is well reproduced using a driven-dissipative model of the polariton
dynamics in resonant excitation [78]:

iℏ
∂ψn

∂t
=
∑

m̸=n

tn,mψm − i
ℏ
τ
ψn + Fδn,npe

−iωpt. (4.3)

ψn represents the polariton amplitude at site n, tn,m is the next- and nearest-neighbor
hopping, and F is the strength of the pump at frequency ωp. In the rotating frame of
the pump frequency, a steady-state solution of Eq. (4.3) has the form ψss

n (t) = ψss
n e

−iωpt.
Then, the steady-state equation of the n-th micropillar reads

ℏωpψ
ss
n =

∑
m̸=n

tn,mψ
ss
m − i

ℏ
τ
ψss

n + Fδn,np , (4.4)
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which can be written in matricial form by considering the vector of the steady-state
amplitudes Ψ⃗ss = (ψss

1 , . . . , ψ
ss
N ), the hopping matrix H (Hn = ∑

m ̸=n tn,m), the dissipa-
tive matrix Γ = i ℏ

τ
I, the pumping energy matrix Ep = ℏωpI (I is the identity matrix)

and the pump vector F⃗ = (0, . . . , F, . . . , 0). Thus, we have

[H − Ep − Γ] Ψ⃗ss = −F⃗ . (4.5)

We define G = [H − Ep − Γ] and, therefore, the steady-state amplitude vector can be
found by:

Ψ⃗ss = −F⃗ · G−1 . (4.6)

Figure 4.6(b) depicts the steady-state solution in the conditions of Fig. 4.6(a):
τ = 12 ps, t = 0.18 meV and t̄ = −0.014 meV, β = 2. It shows that the population
in the pumped micropillar, marked by a circle, is almost zero, and the distribution
extends mainly to the right of the excited micropillar, on the B sublattice. When
moving the excitation spot to a B site [Fig. 4.6(d)], the calculated distribution reverses
its decay direction, as observed in the experiment [panel (c)]. Note that along the y
direction, corresponding to the massive dispersion of the semi-Dirac point, the polariton
distribution is localized within a single hexagon.

To provide further support to these observations, we focus on the single excitation
of a B micropillar. Figure 4.7 displays Fig. 4.6(c) in linear color scale with integrated x
(upper panel) and y (right panel) profiles. They show the emitted intensity integrated
along the vertical (upper panel) and horizontal (right panel) direction within the
dashed rectangles depicted in the central panel. Along the x direction, the integrated
profile clearly presents a much longer decay towards negative values away from the
central region. Conversely, the right panel exhibits a symmetric and fast decay in the
y direction. Along this latter direction we expect the polariton distribution to cover
mainly one hexagon [see Fig. 4.6(d)]. However, scattered light of the reflected pumping
beam is also present at longer distances.

Interestingly, the observed polariton distributions resemble the predicted wave-
functions of electrons bound to a single bulk vacancy in compressed graphene [125].
The wavefunction of the vacancy state acquires an anisotropic distribution: if the
vacancy is in the A sublattice, the state is localized to the right of the vacancy; if
the vacancy is in the B sublattice, it is localized to the left [125]. In both cases the
decay of the amplitude follows a sub-exponential decay, i.e. 1/

√
|x|. In the case of a

single bulk vacancy in unstrained graphene a defect state at the Dirac-point energy
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4.2 Vacancy-like behavior of polaritons

Fig. 4.7 Central panel shows Fig. 4.6(c) in linear color scale. The circle points out
the pumped pillar. Top panel shows a vertical integrated plot along the x direction,
while the right panel shows a horizontal integrated plot along the y direction. Enclosed
regions depict the integrated areas.

E0 also appears, with a decay in amplitude following a 1/r law [139, 140] isotropically
in the 2D plane. The chiral symmetry of the lattice imposes that the wavefunction
of the vacancy resides in one sublattice only: the sublattice opposite to that of the
vacancy. These vacancy states are expected to play an important role in the transport
properties of graphenelike materials in which localization by weak disorder is strongly
decreased due to the Klein tunneling effect.

To experimentally evidence the vacancy-like behavior in an unstrained lattice, we
perform experiments in a different sample because the shorter decay for β = 1 does
not allow observing the polariton distribution with a mask in reflection (as we did for
the situation of β = 2). Hence, we use a honeycomb lattice of coupled micropillars
of 2.75µm, with a center-to-center distance of 2.4µm, which has been fabricated by
etching down a planar semiconductor microcavity made of 28 (top) and 32 (bottom)
pairs of λ/4 alternating layers of Ga0.90Al0.10As and Ga0.05Al0.95As (λ = 880 nm), a
λ spacer of GaAs, and a single 20-nm-width In0.09Ga0.91As QW at the center of the
cavity. At cryogenic temperature the lattices has a Rabi splitting of 3.5 meV. The
In0.09Ga0.91As QW allows for experiments in transmission geometry: a resonant laser
beam impinges on one side of the sample and the photoluminescence is collect from the
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Fig. 4.8 All-optical analog of a vacancy state in a regular honeycomb lattice
β = 1. (a) Measured photoluminescence intensity in the real space at the energy of the
Dirac point E0 when a single A-pillar is pumped (marked by a circle). (b) Steady-state
solution of Eq. (4.3) when a single A-pillar is pumped at E = E0 and considering
t = 0.23 meV, β = 1, and τ = 10 ps.

opposite side. Notice that, in this experimental situation, the pumping laser beam does
not arrive at the CCD camera because it is reflected back by the sample. Figure 4.8(a)
presents the emitted intensity in linear scale when a laser at the Dirac-point energy
(E0 = 1402.54 meV) is focused on a single micropillar of the A sublattice (marked with
a black circle). The intensity distribution decays exhibiting a triangular shape with
a clear predominance of the population on the B sublattice, opposite to that of the
excitation beam. Some little emission is detected from A sublattice because of both the
finite lifetime of polaritons and non-zero next-nearest-neighbor hoppings. In contrast
to the situation for a critically compressed lattice (β = 2), the polariton steady state is
here spread over x and y directions. Figure 4.8(b) shows the steady-state solution of
Eq. (4.3) with the conditions: E = E0, t = 0.23 meV, β = 1 and τ = 10 ps.

The similarity between the measured polaritonic distribution and bound electron
wavefunctions can be interpreted phenomenologically as follows. Under resonant
excitation (ℏωp = E0), the population of the driven micropillar interferes destructively
with the laser, resulting in an almost zero population in the pumped micropillar,
analogous to the effect of a vacancy. This phenomenon was recently reported in the
case of two coupled micropillars [62], and it is expected to happen in any lattice of
micropillars with chiral symmetry.
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4.3 Conclusions
In summary, we have fabricated uniaxial-strain honeycomb lattices and directly ob-
served the consequences of the Lifshitz transition in both momentum and real space.
While in real space this transition is related to the disappearance of the bearded edge
state, in momentum space it is related to the gap opening in between the bands. The
uniaxial strain has been simulated by varying the distances among micropillars along
one direction. At a critical compression, we have evidenced the simultaneous massive
and massless behavior of polaritons in a semi-Dirac honeycomb lattice. Additionally,
the intrinsic driven-dissipative nature of polaritons have allowed us to open up new
possibilities such as the simulation of an all-optical vacancy in Dirac and semi-Dirac
honeycomb lattices when a single micropillar is pumped resonantly. We have demon-
strated this by reporting the polariton steady state that resembles a single-vacancy
bound state in graphene.

55





Chapter 5

Drive-induced localization in
dissipative lattices

Drive and dissipation are intrinsic ingredients in polariton systems. In chapter 4
we have seen that they allow revealing unexpected phenomena in periodic potential
landscapes such as vacancy-like defects. When multiple drives are considered, the
response of a given dissipative photonic lattice is neither trivial nor intuitive due
to the existence of interference effects between the photonic bands and the driving
beams. Interference effects are at the core of wave phenomena and they have been
used to engineer localized modes in photonic structures. In this chapter we treat
polariton lattices as a particular case of lattices of lossy resonators, and we show that
the addition of external optical drives with controlled phase enlarges the possibilities of
manipulating interference effects and allows designing novel types of localized modes.
Using polariton honeycomb lattices resonantly driven by several laser spots at energy
within the photonic bands, we experimentally demonstrate the localization of light in
at-will geometries down to a single site.

One of the strategies to engineer localization of light in optics has been the use of
photonic lattices. The precise control of their fabrication has enabled the engineering of
localized modes by tuning different degree of freedom. Examples are the mode localized
by implementing disorder lattices (phenomenon known as Anderson localization) [17,
141], the compact localized states of flat-band lattices [25, 26, 29, 142, 30, 31], the bound
states in the continuum [143, 144], and localized modes in PT -symmetric lattices [145].
Futhermore, localized modes in the gap of a photonic band structure can be done when
a local potential is added to the subjacent periodic structure, being the principle of
photonic crystal cavities and Tamm modes at the surface of a photonic system [146–
148]. Recently, the use of lattices with non-trivial topological bands has offered new
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possibilities to implement localized modes. They are exponentially localized on the
edges and/or the corners of the lattices with the great asset that both their existence
and optical frequency are protected from certain types of disorder [2, 149–152, 4–6, 54].

One of the characteristics of the localized modes that are mentioned above is that
their localization length is usually larger than a single site. The localization length
of the bound states in the continuum covers several lattice sites [153], and disordered
lattices also create the conditions for having trapped light on few sites. In the case of
the compact states in flat-band lattices, they arise from the interference between at
least two lattice sites with non-zero amplitude and opposite phases [154, 27], which
can be added to form arbitrary light patterns with arbitrary sizes [30]. In all these
cases, the localized modes are eigenmodes of the system, whose amplitude distribution
is independent of the external excitation conditions. This mean that the design of
the lattice, that is, the geometry of the dielectric structure, set the location, shape
and extension of the localized modes. Therefore, once the lattice is fabricated the
localization properties are hardly adjustable.

It would be convenient to engineer reconfigurable localized modes with no depen-
dency on the lattice geometry because it would allow designing on-demand localization
in any lattice with a fully external control. In this chapter, we show a very efficient
method based on drive and dissipation that enables localization in arbitrary lattices.

5.1 Localization by drive and dissipation in 1D
In order to demonstrate the principle of localization by drive and dissipation, we
consider a lattice of coupled photonic resonators. Each of them is subject to radiative
losses to the environment and can be driven by an external laser (coherent field). An
archetypical system implementing this situation is a lattice of coupled semiconductor
micropillars. The dynamics of the photon field in this lattice in the tight-binding limit
can be described by the following set of equations [78]:

iℏ
∂ψn

∂t
= Enψn +

∑
n ̸=m

tn,mψm − i
ℏ
τ
ψn + Fne

−iωpt . (5.1)

ψn is the field amplitude at the center of n-th micropillar, En = E0 is the energy of
considered mode in each micropillar (assumed to be identical for all sites), tn,m is the
coupling matrix and encode the lattice geometry, τ is the radiative photon lifetime in
each micropillar, and Fn is the complex amplitude of the resonant excitation laser at
the n-th site with photon energy ℏωp.
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5.1 Localization by drive and dissipation in 1D

Let us firstly consider the simplest case, a one-dimensional (1D) lattice of coupled
micropillars that is shown in Fig. 5.1(a). Considering an infinite lattice with only
nearest-neighbor hoppings tm+1 = tm−1 = t, the photonic band of this lattice can
be obtained by using a stationary ansatz of the form: ψn(t) = ψne

iEt/ℏ. Thus, the
photonic band has the form

E(k) = E0 − 2t cos(ka) , (5.2)

where a is the lattice constant and k is the wavevector along the lattice direction.
Notice that in order to obtain the band we have neglected the dissipation. Figure 5.1(a)
depicts this photonic band structure, which is centered at energy E0. For a finite
lattice case there are as many equations as lattice sites, therefore, a large eigensystem
problem needs to be solved numerically. Figure 5.1(b) shows the eigenvalues and their
respective energies when a finite lattice composed of 200 sites is considered. It can be
seen that the numerical band reproduces the sinusoidal shape of the photonic band in
the infinite case.

When drive and dissipation are considered, Eq. (5.1) has a family of localized
solutions for specific spatial configurations of the driving field Fn in the stationary state.
To show this we compute the stationary state of Eq. (5.1) when implementing different
configuration of the drives, considering τ = 10ℏ/t. We compute the stationary state
by multiplying the pump vector with the inverted matrix of G, which is the matrix
composed of the hoppings, the dissipation and the pumping energy [see Eq. (4.6)].
Figure 5.1(c) displays the case when a single micropillar in the center of the finite
lattices is pumped by a laser at the frequency ωp = E0/ℏ, at the middle energy of the
photonic band. As it can be observed, the stationary state extends over many lattice
sites on the order of tτ/ℏ. This delocalized behavior is found for any frequency of the
pumping beam within the band but with different extensions. This can be quantified
using the inverse participation ratio, which is defined as

IPR ≡
∑

n |ψn|4

(∑n |ψn|2)2 . (5.3)

It has a value equal to 1 for a stationary state fully localized on one site and it tends to
1/L for extended modes in a finite lattice of L sites. Figure 5.1(d) presents the IPR of
the stationary-state solution of Eq. (5.1) when the frequency of driving laser scans the
entire photonic band, showing that the stationary states are delocalized at any energy.
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Fig. 5.1 Localized modes in a one-dimensional driven-dissipative lattice. (a)
Tight-binding band structure of an infinite one-dimensional lattice of coupled resonators
with center-to-center distance a and nearest-neighbor hopping t. (b) Energy eigenvalues
of a tight-binding 1D lattice of 200 sites. E0 is the mid-band energy. (c)-(e) Normalized
intensity profile of a stationary-state solution of Eq. (5.1) when the lattice is resonantly
driven by a laser beam located at a single site (c) and two laser beams enclosing a single
site (e) at a mid-band energy E0. In panel (e) the stationary-state solution is also shown
in the case when the driving laser beams have an energy away from the resonance, i.e.
ℏωp = E0 + t.(d)-(f) Inverse participation ratio (IPR) of the stationary-state solutions
when the lattice is resonantly driven by a laser beam (d) and two laser beams (f) at
every energy within the band. In panel (f), the IPR is computed considering two values
of the lifetime τ .

The response of the lattice changes drastically when two pumps with equal phase
and amplitude at ℏωp = E0 drive two sites surrounding a single one [see sketch of
Fig. 5.1(e)], the stationary state is almost fully localized at the surrounded site as
shown in Fig. 5.1(e). The field intensity in the pumped sites is almost zero, as well as
in all sites located out of the region defined by the two pumps (it tends strictly to zero
for long lifetimes, i.e., ℏ/τ ≪ t). Conversely, the localized response of the lattice is lost
when the frequency of the drives is shifted from E0 to any energy. This case can be
seen in Fig. 5.1(e), in which the amplitude profile of the stationary states exhibits a
slow decay out of the central peak depicted by black dots. As a result, a resonance
takes place only when the frequency of the driving laser is the same than the one of the
resonators. This is confirmed by the peak of the stationary-state IPR at the energy E0,
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5.1 Localization by drive and dissipation in 1D

however, the strong localization can be damaged by shorter lifetimes (higher losses)
[see Fig. 5.1(f)].

In order to obtain further insight into the nature of this localization, let us consider
Eq. (5.1) in the rotating frame of the pump frequency ωp and in the limit of losses
much weaker than the hopping t, i.e., ℏ/τ ≪ t. By doing so, the term related to the
losses in the equation can be neglected and Eq. (5.1) takes the form:

∆ψn +
∑
m

tn,mψm = −Fn , (5.4)

where ∆ = E0 − ℏωp is the detuning between the onsite energy of the resonators and
the driving energy. Considering two pumping beams placed at sites N − 1 and N + 1
(being the site N the center of the lattice) with amplitudes are FN−1 and FN+1, we
can write Eq. (5.4) for a few lattice sites around the drives:

∆ψN + t(ψN−1 + ψN+1) = 0 (5.5)
∆ψN−1 + t(ψN−2 + ψN) = −FN−1 (5.6)
∆ψN+1 + t(ψN + ψN+2) = −FN+1 (5.7)

∆ψN+2 + t(ψN+1 + ψN+3) = 0 (5.8)
∆ψN+3 + t(ψN+2 + ψN+4) = 0 (5.9)
∆ψN+4 + t(ψN+3 + ψN+5) = 0 (5.10)
∆ψN+5 + t(ψN+4 + ψN+6) = 0 (5.11)

Looking for solutions for which the driven sites N ± 1 have zero amplitude, ψN±1 = 0,
Eq. (5.5) implies that ∆ = 0. If this is so, from Eq. (5.8) we obtain that ψN+3 must be
zero. Subsequently, Eq. (5.10) results in ψN+5 = 0 and this happens for all the sites
n = N ± 2m+ 1, with m ∈ N. Therefore, every site separated by an odd number of
pillars from the central site N must have zero amplitude. Additionally, from Eq. (5.9)
and (5.11) with ∆ = 0, we get ψN±2m = −ψN±2m+2. Consequently, all these sites have
the same amplitude. On the other hand, inspecting the last site of the lattice, we have

∆ψL + tψL−1 = 0 . (5.12)

Then, assuming that this site is an odd one, the site placed at L − 1 is hence even.
Because of ∆ = 0, Eq. (5.12) gives that ψL−1 = 0 and, thus, the amplitudes of all even
sites also vanish. Finally, taking all this into account, from Eqs. (5.6) and (5.7) we
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obtain
ψN = −FN−1/t ; ψN = −FN+1/t =⇒ FN−1 = FN+1 . (5.13)

This means that the pumping beams on the two sites surrounding the N site must
have both equal amplitude and phase in order for the destructive interference effect
away from the N site to take place.

From this analysis we can draw two main conclusions. First, searching for stationary-
state solutions that have zero amplitude on the driven sites leads to the fact that the
frequency of the drives must coincide with the onsite energy of the surrounded site as if
it were detached from the lattice, which is indeed a resonance effect. Second, assuming
the null amplitude on the driven sites results in the vanishing of the amplitude for all
other sites of the lattice except from the surrounded one, meaning that the presence of
the localized mode is independent of the lattice size out of the enclosed region. As a
final remark, we can interpreted this phenomenon as if the effect of the drives at the
localization resonant energy was to detach or isolate the surrounded site from the rest
of the lattice.

5.1.1 Multiple energy localization or resonances

These arguments also apply when the drives reside in sites further than two sites away.
Figure 5.2 shows several cases along with the respective IPR of the stationary state as
a function of the pumping energy within the photonic band. When the pumping beams
enclose a region of two sites [see Fig. 5.2(a)], the localized modes appear at energies ∆
corresponding to the eigenenergies of two isolated coupled sites (a dimer): ∆ = −t and
∆ = t. Both amplitude and phase of the drives must respect the phase distribution of
the dimer modes: for ∆ = −t (bonding mode) F2 = F1; for ∆ = t (antibonding mode)
F2 = −F1. Figures 5.2(b) presents the case when considering three-sites distance
among the pumping beams and, as a result, three resonances appear: at ∆ = ±

√
2t

when the two pumps are in phase, and at ∆ = 0 when the two pumps are out of phase.
Likewise, four resonances emerge when a four-sites configuration is implemented as
shown in Fig. 5.2(c); for in-phase pumps the resonances occur at ∆ = −t(

√
5 + 1)/2

and ∆ = t(
√

5 − 1)/2, for out-of-phase pumps they happen at ∆ = −t(
√

5 − 1)/2
and ∆ = t(

√
5 + 1)/2. Remarkably, the localized resonances take place with energies

given by the eigenstates of the chain in-between the pumps, as if it were completely
detached from the lattice. This is a consequence of the fact that at the resonances, the
amplitude at the pumped resonators is approximatively zero.
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Fig. 5.2 Generation of multiple localized modes in a one-dimensional driven-
dissipative lattice. Scheme of the driving pump separated by (a) 2, (b) 3 and (c) 4
sites. Lower panels exhibit the IPR as a function of the detuning between the onsite
energy and the energy of the pumping laser, ∆ parameter. Blue (red) curve corresponds
to the case when the two pumping beams have the same (opposite) phase.

5.1.2 Shifting the energy of localization or resonance

Intriguing behavior of the resonances happens when considering an extra pumping
beam in the driving configuration of two pumps separated by a single site. We address
the situation by considering FN−1 = FN+1 = F and the additional pump on site N
(surrounded site) having the same photon frequency ωp with amplitude GN [see top
panel of Fig. 5.3]. Equations (5.6) to (5.11) remain intact, while Eq. (5.5) now reads

∆ψN + t(ψN−1 + ψN+1) = −GN . (5.14)

Imposing the condition of zero amplitude on the driven sites, ψN−1 = ψN+1 = 0, we
obtain ψN = −GN/∆. Inserting this into Eq. (5.7) gives

GN = ∆FN+1

t
+ ψN+2 . (5.15)

ψN+2 is the amplitude of a site out of the region in-between the drives and its value
is equal to zero due to similar arguments mentioned above. Thus, the value of the
detuning ∆ for localization is directly proportional to the amplitude of the pumping
beam at the N site:

∆ = GN

F
t . (5.16)

Consequently, the photon energy ℏωp = ∆ + E0 of the driving field at which
localization happens in a single site can be shifted by adding an extra beam of
amplitude GN at the site surrounded by the main driving beams. If this extra beam
is in phase with the pumps F , the resonance energy moves to higher ∆, i.e. higher
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Fig. 5.3 Shifting the energy of the localized mode in a one-dimensional
driven-dissipative lattice. Top panel shows a scheme of the driving pump configu-
ration in the lattice. (a) Photon energy of the IPR peak for the pumping configuration
shown in top panel. Vertical axis corresponds to the amplitude ration between the
surrounding pumps F and the surrounded one G, while horizontal axis is the detuning
energy ∆. Positive (negative) values in vertical axis indicate a zero (π) phase between
the inner and outer drives. (b) Two representative values of the ratio between the
pumping amplitudes, red line for G/F = −1 and blue line for G/F = 1.

energies, whereas an out of phase configuration shifts the resonance condition to lower
energies. The additional drive GN acts as a renormalized onsite energy for the isolated
site. This is evidenced in Fig. 5.3 where the pumping configuration is composed
by three drives; two of them with amplitude F , which define the surrounded region
(cavity); and the other with amplitude G on top of the site where the localization takes
place. The scanning of the photon energy within the band considering several ratios of
the amplitudes (G/F ) produces the energy shift of the highest localized mode as shown
in Fig. 5.3(a). As analytically proved, the energy shift depends linearly on the ratio
of the amplitudes G/F . Two IPR curves for G/F = ±1 are presented in Fig. 5.3(b),
where the IPR peak moves to ∆ = ±t, respectively.

5.2 Localization by drive and dissipation in 2D
The response of a 1D lattice we have just analyzed can be generalized to driven-
dissipative lattices of higher dimensions. To explicitly show this, we consider a
two-dimensional (2D) toy model known as square lattice, which is shown in Fig. 5.4(a).
This lattice has a unit cell composed by one single site that has four nearest neighbors
at a distance a. In the tight-binding picture, the photonic band of an infinite square
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Fig. 5.4 Localized modes in a two-dimensional square driven-dissipative lat-
tice. (a) Scheme of a two-dimensional lattice of coupled resonators with center-to-center
distance a and nearest-neighbor hopping t. (b) Tight-binding band structure of an
infinite two-dimensional square lattice. (c) Energy eigenvalues of a tight-binding 2D
square lattice of 21 × 21 sites. E0 is the mid-band energy. (d)-(f) Normalized intensity
of a stationary-state solution of Eq. (5.1) driven by one (d), four (e), and three (f) laser
beams (blue circles) with energy ℏωp = E0 and with identical phases. (g)-(i) IPR of
the stationary-state solutions when the square lattice is resonantly driven by one (g),
four (h), and three (i) laser beams at every energy within the band. In panel (h), the
IPR is computed considering two values of the lifetime τ .

lattice is:
E(k⃗) = E0 − 2t [cos(kxa) + cos(kya)] , (5.17)

where t is the hopping energy among nearest-neighbor sites and k⃗ is the wavevector.
The band structure is presented in Fig. 5.4(b), it is centered around E0, which is the
onsite energy of a given mode in the resonator (we again assume every mode in all sites
has the same energy). For a finite square lattice, eigenvalues are found numerically
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by solving the set of Eqs. (5.1) without considering the losses, and they are shown in
Fig. 5.4(c) when a lattice of 21 × 21 sites is considered.

In order to probe the response of the square lattice under the driving of a single
resonator, we look for the stationary-state solution of Eq. (5.1) when an optical field
of frequency ωp = E0/ℏ pumps the center of the lattice. Figure 5.4(d) presents the
expected emission from the lattice (blue circle depicts the driven site), which extends
over many sites and, therefore, is completely delocalized as in the 1D-lattice case.
By scanning the entire photonic band with the driving field no localized modes are
found. The computation of the stationary-state IPR shown in Fig. 5.4(g) is almost
flat near zero values and it has a very small increase at E0 energy, which is related to
the presence of a saddle point at the mid-band energy. Then, we search for localized
solution of Eq. (5.1) using a multiple pumps configuration. As we mentioned in the 1D
case, the key ingredients of the drive-induced localization is that the pumping field
must enclose a single site (o a region of the lattice) and they must have the same
amplitude. Figure 5.4(e) displays the stationary-state solution when performing an
in-phase four-pumping configuration (blue circles) such that they surround a single
resonator in the center of a square lattice. A localized response at ℏωp = E0, down to
a single site, is obtained with almost zero amplitude in the pumped sites and in the
sites away from the pumped region. This resonant behavior occurs around the onsite
energy of the resonator, as it can be observed in the IPR curve shown in Fig. 5.4(h).
For smaller lifetimes the highest value of the IPR decreases (similar to the 1D-lattice
case), but it is still very strong, even for losses on the order of the hopping. As a
counterexample, Figure 5.4(f) show the expected emission when the pump spots at
ℏωp = E0 do not fully surround a single resonator. In this situation, the real-space
distribution of the field does not show any confined response at E0 or at any other
laser energy as shown by the respective IPR curve in Fig. 5.4(i).

5.3 Experimental realization
Lattices of semiconductor micropillars are intrinsically dissipative and can be easily
driven by external lasers using a standard optical setup. Therefore, they are an ideal
platform to probe the concept of localization we just introduced. In order to carry
out the experiments, we use coupled micropillars of 2.75µm in diameter arranged
in a honeycomb geometry with a lattice constant of a = 2.3µm. As we previously
mentioned, this lattice is etched from a planar semiconductor microcavity that, in
this case, is made of two AlGaAs Bragg mirrors embedding a GaAs cavity spacer
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Fig. 5.5 Transmission experiments in a photonic honeycomb lattice. (a)
Scheme of the honeycomb lattice of micropillar and of the excitation (left) and emission
(right) beams, which is known as transmission geometry setup. (b) Measured angle-
resolved photoluminescence of the lattice showing the lowest energy bands as a function
of the in-plane momentum ky for kx = 2π/3a, with a = 2.3µm the center-to-center
separation among adjacent micropillars and ED = 1391.7 meV. White line represent
the tight-binding fit.

and a single 20-mm-width InGaAs quantum well (QW) at the center of the cavity.
The whole heterostructure is grown on an epitaxial quality GaAs substrate. Since
the drive-induced localization is a purely photonic phenomena, we use a region of
the wafer in which the lowest photonic modes are red-detuned by 18 meV from the
QW exciton resonance at 1409.9 meV at 6 K. This detuning is much larger than
the Rabi splitting 3.5 meV and implies a predominant photonic component of 99%.
Hence, all the effects reported here can in principle be observed in structures without
excitonic resonances. Because the substrate is transparent with negligible absorption
at the working wavelengths, experiments in transmission geometry are possible: the
vertically polarized laser impinges the sample on the epitaxial side and collection of the
emitted co-polarized photons is done from the opposite side as shown schematically in
Fig. 5.5(a). Angle-resolved photoluminescence experiments with an out-of-resonant
laser excitation at 1535 meV in a 2.3 µm spot (FWHM) centered on top of a micropillar
reveal the two lowest energy bands of the structure [see Fig. 5.5(b)]. As it is mentioned
in chapter 4, this dispersion exhibits two Dirac crossings that are the signature of
honeycomb lattices [12], and no significant polarization splitting is observed in these
photonic bands. Furthermore, the fitting of the measured bands to the tight-binding
model gives us a the values of the nearest-neighbor and next-nearest-neighbor hoppings,
t = 328µeV and t̄ = −42µeV, respectively, with ED = 1391.7 meV the emission energy
at the Dirac crossings.

We firstly explore the response of the lattice when a single micropillar is resonantly
driven at energy ED. The wavelength of the laser is set by a wavemeter with a precision
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Fig. 5.6 Resonant drive of a honeycomb lattice. (a) Measured real-space emission
when driving the micropillar marked with a blue circle with a laser beam at ℏωp = ED.
ED = 1391.7 meV. The center of each micropillar is located at the corner of the
gray hexagon pattern. (b) Same than (a) when driving three micropillars with equal
amplitude and phase enclosing a central one. (c) and (d) Simulated real-space emission
using the experimental conditions shown in panel (a) and (b), respectively. (e) and
(f) Experimental (black circle) and simulated (blue line) IPR curve when driving a
single micropillar at a number of energy in the bands. In panel (f) the dashed blue line
considers a computation with three laser beams having a phase difference of φ = 0.09π
between each other.

of 0.1nm. Figure 5.6(a) presents the collected emission in this situation (blue circle
depicts the pumped micropillar) that extends away from the pump spot resembling the
wavefunction of a bound state of a single vacancy in actual graphene1. Remarkably,
the pumped site shows almost null intensity. As mentioned in chapter 4, this peculiar
response is a consequence of the interference effect at the pumped site between the
laser and polariton population of the pumped site, which was already noticed in a

1Note that this phenomenon is also shown in chapter 4 and, in those experiments, the selected
region of the wafer had a less negative exciton-photon detuning (polaritons with more excitonic
content).

68



5.3 Experimental realization

simpler case of two coupled micropillars pumped at the energy right in between the
bonding and antibonding modes [62].

The photon field distribution is very different when three laser beams of same
amplitude and phase drive the lattice at ED. The three laser configuration are placed
in a triangular geometry surrounding a single micropillar and it is generated thanks
to a spatial light modulator SLM (see appendix B for details). Figure 5.6(b) reports
the emission in this scenario. Similar to the stationary-state emission from a square
lattice shown in Fig. 5.4(e), the field distribution is strongly localized in the micropillar
surrounded by the three drives and no significant emission from other micropillars of
the lattice is observed (including the pumped sites). These spatial distributions of the
photon field are accurately described by Eq. (5.1) and considering the experimental
hopping parameters, the pumping energy ED and a lifetime τ = 9 ps. Thus, their
respective stationary-state solution are presented in Fig. 5.6(c)-(d).

To quantitatively characterize this localized response, we compute the IPR [Eq. (5.3)]
for the emission in the three-pumps configuration when the laser photon energy sweeps
the whole Dirac bands. Fig. 5.6(f) present the measured IPR at the different energies
with dots. This quantity is computed from the emission measured at the center of
each micropillar. The highest localized emission is detected at the energy of the Dirac
point ED, having a value of IPR= 0.35. This photon energy is very close to the
estimated eigenenergy E0 of the fundamental mode of a single detached micropillar
(ED = E0 + 3t̄), and they would both coincide exactly in the absence of next-nerarest-
neighbor coupling. The numerical IPR is displayed in dashed blue lines in Fig. 5.6(f)
and predicts a value of IPR= 0.89 for the polariton lifetime measured in the lattice.
The difference with the value of 0.35 in the experiments arises from an horizontal tilt
of the incident beams, which induces an estimated phase shift of about 0.09π between
three consecutive spots. The solid blue line in Fig. 5.6(f) takes into account this fact
and it reproduces the measured IPR at ED. In contrast, Fig. 5.6(e) shows that for a
single spot excitation, the transmitted signal is extended over many lattice sites for
any photon energy resulting in very low IPR values.

The presented three-pumps configuration can be used as a building block to engineer
localization in as many sites as it is desired and, therefore, to build up any at-will
intensity pattern in the lattice. For example, Figure 5.7(a) exhibits the emission when
three overlapping building blocks in a triangular shape (blue circles) pump the lattice.
A localized intensity pattern is observed that mostly occupies three sites in-between the
pump spots and forms a staggered triangle. Numerical solution of Eq. (5.1), considering
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Fig. 5.7 Multiple localization in a honeycomb lattice. (a) Optical response of
the honeycomb lattice when arranging three times the localization building block shown
in Fig. 5.6(b) to implement a triangle. Large circles indicate laser spots having twice
the intensity of the ones indicated with small circles. (b) Simulated optical response in
the experimental condition of (a).

this pump configuration and the experimental conditions, reproduces the multiple
localized response of the honeycomb lattice [see Fig. 5.7(b)].

Additionally, we also explore experimentally the case of multiple resonances as
we presented in the 1D-lattice case (see Fig. 5.2). As we mentioned, the resonant
localized modes appear at the molecular eigenenergies of the enclosed region. Thus,
in the honeycomb lattice, we generate a pumping configuration of four drives with
equal amplitude and phase such that it surrounds completely two adjacent micropillars
of the lattice, as depicted by blue circles in Fig 5.8(a). In that configuration, we
expect the appearance of a localized mode at the energy of the bonding state of
a dimer, ℏωp = ED − t, if the hopping among next-nearest neighbors is not taken
into account. Figure 5.8(a) reports the emission at ℏωp = ED − 0.36 meV, which
corresponds to the highest localization of the experimental IPR when the laser energy
scans from the bottom of the photonic bands up to ED + 0.7 meV [see top panel of
Fig. 5.8(c)]. Residual scattered light forbids a confident measurement of the IPR for
higher photon energies. Despite the low value of the measured IPR (∼ 0.08), caused
by a residual misalignment of the excitation spots, the emission is mostly localized in
the two surrounded micropillars having a bonding-like mode shape (some light is also
observed in micropillars near the pumping region). Under a perfect alignment and
considering next-nearest-neighbor hopping, the expected IPR value goes up to 0.32 at
ℏωp = ED − 0.407 meV [see bottom panel of Fig. 5.8(c)], energy that slightly differs
from the measured one by about 15% of t. Figure 5.8(b) shows the expected emission
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Fig. 5.8 Localized bonding mode in a honeycomb lattice (a) Emitted intensity
at the IPR peak, ℏωp = ED − 0.36 meV, in top panel of (c) when four driving beams
of nominally the same amplitude and phase demarcate a two-site molecule or dimer.
Blue circles denote the driven sites. (b) Stationary-state solution of Eq. (5.1) with
the same experimental conditions than (a) at the IPR peak of bottom panel of (c):
ℏωp = ED − 0.407 meV. (c)-top experimental IPR of the emission as a function of the
energy within the photonic bands. For photon energies above ED + 0.7 meV residual
scattered light prevent a confident measurement of the IPR. (c)-bottom Simulated IPR
in the case of perfect alignment. Dashed line in every panel points out the energy of
the highest IPR value.

that is highly localized in the surrounded micropillars. Although the mismatch between
the energy of the experimental and simulated IPR peak is small, it is worth to mention
that the presence of on-site energy disorder in the lattice may cause a slight energy
shift of the IPR peak.

As demonstrated in the 1D-lattice case, the resonant energies at which the localized
modes appear are determined by the eigenenergies of the optically defined cavities
(region surrounded by the drives) as if they were completely detached from the lattice.
We analytically and numerically showed that the resonant energy can be modified
when adding an extra drive on top of the sites surrounded by the main drives. Here,
we experimentally demonstrate this effect in 2D by considering the simplest situation
of three identical pumps that induce a localization in a single site [see Fig. 5.6(b)]. On
top of this site, we add an additional drive of the same frequency as the surrounding
pumps. Remarkably, the frequency (or energy) of the localized mode can be shifted at
any energy within the photonic bands when changing the relative intensity and phase
between the added spot |Fin|2 compared to that of the surrounding spots |Fout|2, as
shown in simulations in Fig. 5.9(a). The relative phase between the outer and inner
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Fig. 5.9 Shifting the energy of the localized mode in a honeycomb lattice
(a) Calculated photon energy of the IPR peak for a pumping configuration of four
drives shown in inset. The vertical axis corresponds to the intensity ratio between
the inner spot |Fin|2 and the outer spots |Fout|2. The sign denotes the relative phase
between the inner and the outer spots: positive (negative) means zero (π) phase. (b)
Measured IPR (dots) when scanning the laser frequency in the configuration of the
inset in (a) for |Fin|2 = 3×|Fout|2. The continuous blue line is the calculated IPR using
the photon lifetime of the lattice and equal phase for the four spots, while the dashed
blue line includes a phase difference of 0.05π for one of the outer spots. (c) Real-space
emission measured at the the energy of the IPR peak in (b), E − ED = 0.69 meV.
The pumping intensity on micropillars denoted by blue circles is three times smaller
than the intensity on the micropillar denoted by red circle. (b) Simulated emission
considering the experimental conditions of (c) and the scenario of perfect alignment.

beams determines if the resonance moves towards negative or positive energies: a
relative phase of π (0) shift the energy to negative (positive) values.

In order to demonstrate this energy shift in the experiment, we consider the
particular case in which the surrounding pumps (blue circles) possess an intensity three
times smaller than the surrounded one, |Fin|2 = 3 × |Fout|2. Performing the photon
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energy scan throughout the photonic bands and collecting the emitted intensity, the
experimental IPR curve is computed. This is displayed in Fig. 5.9(b) by unfilled dots.
A peak at ℏωp = ED +0.69 meV reveals a localized mode on the surrounded micropillar
as shown in Fig. 5.9(c). The measured IPR∼ 0.2 is about four times lower than the
expected IPR [dashed blue line in Fig. 5.9(b)], when no phase between the drives is
taken into account. The expected localized mode is presented in Fig. 5.9(d) and it
exhibits an extreme localization on the surrounded micropillar without any noticeable
emission on other micropillars. Conversely, the measured IPR is well reproduced by
simulations if the pumping configuration has a phase mismatch of φ = 0.05π between
the drives Fout [solid blue line in Fig. 5.9(b)]. It is worth to mention that the lifetime
does not play a major role in the energy shift of the resonance, however, as we already
saw, it has a considerable impact on the degree of localization, the IPR maximum is
strongly modified when varying the lifetime.

5.4 Conclusions
We have predicted and experimentally demonstrated the formation of highly local-
ized modes in photonic lattices made of coupled dissipative resonators. Thanks to
the interplay between dissipation and judicious driving configurations, the induced
localization can be implemented down to a single site in 1D or 2D lattices with any
geometry. The localized modes appear due to the interference between the polariton
distributions created by each drive, which is constructive on the surrounded resonator
and destructive elsewhere, and their energies reside within the bands. Advantageously,
this drive-induced localization in lattices of dissipative resonators allows to design
localized emission pattern in a reconfigurable manner with high flexibility, which may
useful for locally enhancing nonlinear effects and the control of light-matter interactions
that require single site excitation.

Furthermore, the localized resonance reported in this chapter has intriguing similar-
ities with the radiation of quantum emitters coupled to photonic baths. For instance,
quantum emitters interacting with a 2D square photonic bath (or reservoir) can exhibit
directional emission into the lattice when they are properly tuned at a given frequency
within the band [155], which corresponds to the stationary state reported in Fig. 5.4(d).
A two-level atom weakly coupled to photonic lattices shows similar vacancy-like be-
havior to the one shown in Fig. 5.6(a) [156]. Indeed, it has been recently proved that
the stationary states of driven-dissipative lattices are formally linked to that of the
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quantum emitters coupled to lattices [157], opening up the possibility of exploring the
quantum-emitter phenomena in a purely photonic platform.
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Chapter 6

Chiral emission induced by optical
Zeeman effect in micropillars

Up to here we have shown the qualities of exciton-polariton to implement lattice
Hamiltonians with novel ingredients such as drive and dissipation. The studied
phenomena has been purely linear and we have not dealt with the excitonic component
of polaritons. As we have already mentioned, this matter component of polaritons
provides them with sensitivity to magnetic fields as well as nonlinear interactions,
which can be used in lattices to trigger more complex effects.

One of the major challenges when engineering photonic lattices is the implemen-
tation of Hamiltonians with broken time-reversal symmetry. This ingredient in the
photonic toolbox allows the study of photonic Chern insulators and nonreciprocal
structures. A natural way of breaking time-reversal symmetry is the application of
an external magnetic field. For instance, the first demonstration of a Chern insulator
for electromagnetic waves was realized in the microwave domain using a lattice made
of a gyrotropic material subject to a magnetic field [45]. Later, emission from chiral
edge modes was reported at telecom and near-infrared wavelengths in YIG photonic
crystals [158, 159] and in lattices of coupled polariton micropillars [46], respectively.
However, the relatively low magnetic susceptibility of these systems resulted in topolog-
ical gaps of limited size. Moreover, a very interesting perspective would be the spatial
control of the magnitude and direction of the magnetic field at the micron scale in such
photonic lattices. This would allow the exploration of lattice Hamiltonians subject to,
for instance, staggered magnetic fields.

Semiconductor microcavities are an excellent platform to overcome these chal-
lenges at near-infrared frequencies by taking advantage of the excitonic component
of polaritons, which provides matter-like properties. For example, under an external

75



Chiral emission induced by optical Zeeman effect in micropillars

magnetic field, polaritons in GaAs-based micro-cavities show a Zeeman splitting inher-
ited from the excitonic Zeeman splitting of GaAs quantum wells [160, 48, 161, 162].
Magnetic field have been also used to engineer gauge potentials [163] and induce spin
currents [164]. The excitonic component results also in significant polariton-polariton
interactions. They are dominated by excitonic exchange terms [49] giving rise to a
strong polarization anisotropy [165]: polaritons of same circular polarization (i.e., spin)
interact much stronger than polaritons of opposite polarizations [50, 166–168]. Inter-
estingly, polarization-dependent interactions also take place between polariton modes
and the reservoir of excitons excited under nonresonant pumping [169–171]. Therefore,
by optically injecting spin-polarized carriers in the quantum wells, it is possible to
create an interaction-induced Zeeman splitting, i.e., different blueshifts for polaritons
of the same and opposite polarizations than the exciton gas. Recently, this effect has
been reported in transition metal dichalcogenides [172]. As the exciton reservoir can
be localized over a few microns scale [173], the interaction-induced Zeeman splitting
could be engineered with onsite precision in a polariton lattice.

In this chapter we demonstrate the breaking of time-reversal symmetry for polaritons
in a GaAs-based micropillar without the need of any external magnetic field. To do
so we create an optical Zeeman splitting for polaritons by injecting a gas of spin-
polarized excitons. Moreover, in combination with optical spin-orbit coupling inherent
to semiconductor microstructures [174–176], the optically-induced Zeeman splitting
results in emission of vortex beams with a well-defined chirality.

6.1 Polariton modes of a micropillar
For this experiment we use a semiconductor micropillar with a diameter of 2.8µm
[Fig. 6.1(a)]. It is etched from a λ/2 Ga0.05Al0.95As microcavity (λ = 780 nm, Ec =
1589.54 meV) embedded between two DBRs of 40 and 28 pairs of λ/4 layers of
Ga0.05Al0.95As/Ga0.80Al0.20As. Three set of four 7-nm GaAs QWs are grown inside the
microcavity at three central maxima of the electromagnetic field. At the cryogenic
temperature of the experiments (5 K), the exciton polaritons exhibit a Rabi splitting
of 15 meV.

To probe the energy spectrum of the micropillar, we carry out photoluminescence
experiments in reflection geometry using the setup schematized in Fig. 6.2. The sample
hosting the micropillar is placed in a closed-cycle cryostat that allows reaching the
temperature of 5 K. For the off-resonant pumping of the micropillar, we use a beam
coming out from a continuous-wave monomode Ti:Sapph laser tuned at λ = 744.4 nm
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Fig. 6.1 The micropillar and its spectrum. (a) Sketch of the micropillar and
the pumping-detection setup. (b) Photoluminescence spectrum of a 2.8-µm-diameter
micropillar, showing s and p orbital modes. Gray disk depicts a top view of the
micropillar and the unfilled vertical rectangle schematized the selected region by the
slit.

(E = 1665.56 meV). Before reaching the cryostat, the pumping beam is coupled into a
polarization-maintaining monomode optical fiber, for spatial-mode cleaning purposes,
and it then passes through a quarter-wave plate (λ/4) that sets its polarization (either
linear or circular polarization). An aspherical lens with a 8-mm focal length (NA= 0.5)
placed inside the cryostat (f1 in Fig. 6.2) focuses tightly the pumping beam on the
micropillar, which has full width half maximum (FWHM) on the sample is 2.5µm.
Once the pump reaches the micropillar, photons are absorbed and relaxation of carriers
results in the formation of an exciton gas, which then populates the different polariton
modes of the micropillar. After a dozen of picoseconds, polaritons decay and photons
escape from the structure. This emission is collected by the same 8-mm focal lens
(f1) and then it is magnified and imaged at the entrance slit of a spectrometer (signal
path shown in Fig. 6.2). The entrance slit together with a scanning lens placed on a
motorized translation stage allow selecting real-space vertical slices of the micropillar
emission. Each slice of the image is dispersed by the spectrometer and imaged on a
coupled-charge device (CCD) camera, resolving the emission in energy with a resolution
of 33.1 µeV.

Figure 6.1(b) displays the low-power photoluminescence spectrum measured along
the vertical diameter of a micropillar with an exciton-photon detuning δcx = −7.8 meV
for the lowest energy mode (exciton fraction of 27%). The excitation beam is circularly
polarized and the emission is detected in the same polarization. The two sets of
energy levels displayed in the panel correspond to the fundamental and first-excited
modes, called s and p, respectively, owing to their symmetry. The eigenstates of the
micropillar can be accurately described in a basis of Laguerre-Gauss modes in cylindrical
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Fig. 6.2 Scheme of the experimental setup to measure both polarization-resolved and
self-interfered polariton emission of the micropillar. The former is done by blocking the
reference arm of the interferometer along the detection path, which is demarcated by
the dashed rectangle. Lenses: f1 = 8 mm, f2 = 300 mm, f3 = 75 mm, f4 = 100 mm,
f5 = 300 mm. Abbreviations: λ/2 half-wave retarder, λ/4 quarter-wave retarder, PBS
polarized beam splitter, BS beam splitter, CCD coupled-charge device.

coordinates (r, θ) and polarization pseudospin [176, 97, 177]: ψσ
nl = Cσ

n,l(r)eilθ, where
Cn,l(r) is the radial part of the Laguerre-Gauss modes. This basis is characterized
by three quantum numbers: the radial quantum number n, which selects the s or p
modes, the orbital angular momentum (OAM) l, and the circular polarization σ±. The
two s modes present an OAM of l = 0 and are degenerate in polarization (σ±) at
Es = 1574.12 meV.

The splitting of the triplet of p modes visible in Figure 6.1(b) at around Ep =
1576.74 meV is a consequence of the optical spin-orbit coupling present in dielectric
microcavities. Before describing in detail these orbital modes, we will focus on the
s modes of the micropillar in order to explore the consequences of inducing a spin
imbalance in the exciton reservoir.

6.2 Optically induced Zeeman splitting
The micropillar exhibits two degenerate s modes at energy Es with σ+ and σ− polar-
izations. A splitting between them can be induced by taking advantage of polarization-
dependent interactions present in polaritons [165, 50, 178, 179]. It has been shown
that the exchange interaction of exciton with parallel spin is the predominant one
for polariton-polariton interactions at negative exciton-photon detuning [50]. On the
contrary, the exchange interaction between excitons (or polaritons) with antiparallel
spin takes place by intermediate states of total spin momentum s = ±2, which are
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optically inactive states (dark excitons) [50]. This event has a much less probability
because the energy difference between initial and intermediate states is about the Rabi
spliting: polaritons have the energy of the s mode and dark excitons states are at the
energy of the exciton. In samples with relatively low Rabi splitting (∼ 3.5 meV, for
instance), interaction of excitons with opposite spin becomes relevant and they mainly
happen via biexciton states, which can produce phenomena such as the Feshbach
resonance [180].

To experimentally demonstrate this splitting, we perform power-dependent polarization-
resolved photoluminescence measurements. Even though the pump is off resonant, the
polarization of the generated carriers is partially preserved and an excitonic spin imbal-
ance is created with a majority spin determined by the polarization of the laser [178]. At
low pump power [0.26 kW cm−2, Figs. 6.3(d) and 6.3(e)], interactions are negligible and
the spin imbalance of the reservoir does not play any role: both σ+ and σ− polariton
modes emit at the same energy. At high pump powers, excitons with spin + interact
mainly with σ+ polaritons, while excitons with spin − interact with σ− polaritons [165].
As a consequence, when the pump irradiance is ramped up, polaritons co-polarized
with the pump experience a higher energy blueshift than those cross-polarized. This
is clearly evidenced in the spectral profiles displayed in Figs. 6.3(d) and 6.3(e). The
peak energy of the σ+ or σ− polarized polariton emission is shown in Figs. 6.3(a) and
6.3(b) as a function of excitation density for σ− and σ+ polarized pumps, respectively.
The shadowed areas represent the FWHM (linewidth) of the emission peak for each
polarization, which is about 70µeV at the lowest pump irradiance. When the power is
increased, not only a splitting appears between opposite polarizations, but also the
polariton mode co-polarized with the pump exhibits a higher intensity and becomes
narrower in linewidth due to the onset of stimulated relaxation from the reservoir.
Note that under a linearly polarized pump, the excitonic reservoir does not present
any spin imbalance and both σ+ and σ− polariton modes blueshift at the same rate
when the pump power is increased [see Fig. 6.3(c)].

The measured energy difference between the two opposite polarizations under circu-
larly polarized pumping is summarized in Fig. 6.3(f) and shows a behavior analogous to
a Zeeman splitting in which the role of the external magnetic field is played by the power
of the pump laser. The maximum observed splitting is ∼ 200µeV at P = 12.7 kW cm−2,
which is of the same order than Zeeman splittings reported for exciton-polaritons with
similar photon-exciton detuning, but under actual external magnetic fields of 4 − 9 T
in the Faraday configuration [160, 48, 161, 162]. Increasing further the pump power
does not enlarge the splitting because co-polarized polaritons enter into the lasing
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Fig. 6.3 Optical Zeeman effect in a micropillar. [(a)-(c)] Measured energy of s
orbitals as a function of the pump irradiance when detecting with circular polarization,
σ− (blue dots) and σ+ (red dots) with three different polarizations of the pump: (a)
σ+ circularly polarized, (b) σ− circularly polarized, (c) linearly polarized. Shadowed
areas correspond to the measured FWHM of the emission peak. [(d),(e)] Measured
spectra at three pump irradiance values when pumping with σ− and σ+ polarization,
respectively. (f) Absolute value of the splitting between σ+ and σ− peak energies as a
function of the pump irradiance.

regime causing a saturation of their blueshift. Other power-dependent spin-relaxation
effects may also be at the origin of the saturation [181]. From the measured blueshift
and splittings, and assuming that only excitons and polaritons of the same spin in-
teract, we estimate the ratio of σ− to σ+ exciton populations to be n+/n− = 0.78 at
P = 12.7 kW cm−2 under σ− pump.
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6.3 Optical spin-orbit coupling in a micropillar
Now we turn our attention to the p modes of the micropillar. As previously mentioned,
these modes show three energy levels due to the presence of the optical spin-orbit
coupling [see Fig. 6.1(b)]. In planar structures it manifests in the form of a linear polar-
ization splitting between modes polarized along and perpendicular to the propagation
direction within the cavity [69, 182, 183]. The splitting is a function of the in-plane
momentum of the cavity photons and its magnitude depends on the spectral position
of the cavity mode with respect to the center of the high reflectivity stop band of the
structure [69]. This spectral position can be modified by using different values of λ for
the design of the Fabry-Perot mode of the λ/2 cavity and for the design of the λ/4
stacks in the mirrors. From the comparison between the measured value of the linear
polarization splitting and transfer matrix simulations of the structure, we estimate the
two values of λ to differ by 3% in the present case.

In microstructured microcavities, the spin-orbit coupling gives rise to a fine structure
of modes which mixes the orbital and polarization degrees of freedom. This was first
reported in a hexagonal molecule of coupled micropillars in Refs. [175], whose |l| = 1
multiplet shows a triplet similar to the one observed in σ+ (σ−) column of Fig. 6.1(b).
The exact same fine structure was found for p modes in a single photonic dot open
cavity by Dufferwiel and coworkers, who described the spin-orbit coupling effect in
these modes with the following Hamiltonian [176]:

Hp =


Ep 0 0 0
0 Ep tSOC 0
0 tSOC Ep 0
0 0 0 Ep

 , (6.1)

which is written in the basis |l, σ⟩: {| + 1, σ+⟩, | + 1, σ−⟩, | − 1, σ+⟩, | − 1, σ−⟩}. Ep

is the energy of the p modes in the absence of spin-orbit coupling, and tSOC is the
strength of the spin-orbit coupling. The four modes present the following eigenstate
fine structure:

|ψ1⟩ = 1√
2

(| − 1, σ+⟩ − | + 1, σ−⟩) ,

|ψ2⟩ = | + 1, σ+⟩ ,
|ψ3⟩ = | − 1, σ−⟩ ,

|ψ4⟩ = 1√
2

(| − 1, σ+⟩ + | + 1, σ−⟩) ,

(6.2)
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Fig. 6.4 Real-space tomography of the p modes. Bottom, middle and top rows
present the real-space intensity profiles measured at the energies of the ψ1, ψ2,3 and
ψ4 modes, respectively, at low pump irradiance (P = 0.26 kW cm−2) and with either
linear or circular polarizations of detection (pointed out on the very top). Each image
is normalized to its own maximum intensity.

with energy E1 = Ep − tSOC, E2 = E3 = Ep and E4 = Ep + tSOC. This simple model
explains the three p emission lines visible in Fig. 6.1(b) at low excitation power, with
tSOC = 254 ± 17µeV.

The combination of orbital and polarization modes of the eigenstates results in
different polarization textures for each p mode. To extract them, polarization-resolved
tomographies are implemented at low pump irradiance (P = 0.26 kW cm−2). The
four-left columns in Fig. 6.4 shows the reconstructed real-space profiles at the energy
of the three emission lines of the p modes when selecting linear polarization along
horizontal (0◦), vertical (90◦), diagonal (45◦), and antidiagonal (−45◦) directions. A
half-wave plate (λ/2) together with a polarized beam splitter (PBS) set the linear
polarized detection, and the recording of many micropillar spectra at different horizontal
position allows revealing the real-space profile of each mode. ψ1 and ψ4 modes display
two intensity lobes that rotate in the opposite and the same sense as the selected
polarization, respectively. In contrast, ψ2,3 modes exhibit roughly a doughnut-like
shape in every polarization with some changes in the intensity distribution. From these
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Fig. 6.5 Stokes parameters. S1, S2 and S3 Stokes parameters [Eq. (6.3)] at the
energy of the p modes, computed from the images of Fig. 6.4.

images, the Stokes parameters for each pixel in real space are computed at the energy
of the modes. These parameters are defined as

S1 = I0◦ − I90◦

I0◦ + I90◦
, S2 = I45◦ − I−45◦

I45◦ + I−45◦
, S3 = Iσ+ − Iσ−

Iσ+ + Iσ−

. (6.3)

Figure 6.5 shows the Stokes parameters for the three emission energies of the p modes.
For ψ1 and ψ4, the S3 Stokes parameter has very weak values (mostly light-blue and
light-red colors), while S1 and S2 reach values close to 1 and −1 (dark red/blue,
respectively). This means that these modes are well characterized by the linear
polarization angle ϕ = (1/2) arctan(S2/S1) [176], which define the polarization texture
of the p triplet.

Figure 6.6(b) shows the total intensity profile of each mode (sum of all polarizations,
I0◦ + I90◦). Lines on top indicate the orientation of the linear polarization at each point
extracted from S1 and S2. The length of each line corresponds to the magnitude of the
linear polarization angle. These two polarization textures, azimuthal and radial one
for ψ1 and ψ4, respectively, were also reported in an open microcavity [176] and in a
structure composed of six coupled micropillar forming a benzene-like molecule [175]. On
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Fig. 6.6 p-orbitals fine structure of the micropillar.(a) Energy level of p orbital
modes of the micropillar in presence of the optical spin-orbit coupling, Eq. 6.2. (b)
Real-space emission measured at low-pump irradiance (0.26 kW cm−2) at the energy
of the ψ1,2,3,4 modes indicated in Fig.6.1(b). The bars show the measured orientation
and degree of linear polarization at each point in space (polarization texture). (c)
Retrieved phase at the energy of ψ2 and ψ3 modes when selecting σ+ (top) and σ−
(bottom) circular polarization of emission.

the other hand, the two middle states (ψ2 and ψ3), degenerate with energy Ep, present
a phase vorticity of topological charge ±1 with circular polarization σ±, respectively.
The observed linear polarization pattern at the energy of these modes is determined
by a phase relation between the two modes established by local disorder [176].

The presence of l = ±1 OAM coupled to σ± circular polarizations in states ψ2 and
ψ3 can be evidenced by doing a polarization-resolved interferometric measurement. To
do so, an interferometer is set up along the detection path (see region enclosed by a
dashed rectangle in Fig. 6.2). The detection path is split into two path of the same
length (zero delay time between the two arms). Along one of the arms, the image
of the micropillar is magnified by a factor of 3 (reference beam) with respect to the
image obtained along the other arm (signal beam). Consequently, the signal beam
interfieres with a small area of the reference beam, which is used as a phase reference.
This interference of the emission is then diffracted by the spectrometer and recorded
by the CCD camera, which enables the reconstruction of an interference pattern at
the energy of each mode. Figure 6.7(a) shows the reconstructed interference pattern
for |ψ3⟩ mode (σ− polarized detection). To understand how the phase pattern of the
signal beam can be extracted from the interference, let us write the two interfering
beams in the following way:

84



6.3 Optical spin-orbit coupling in a micropillar

Fig. 6.7 Retrieving of the wavefront phase. (a) Interference pattern for the middle
p mode when selecting σ− polarization at low pump irradiance (P = 0.26 kW cm−2).
This is produced by interfering the signal and reference arm (see Fig. 6.2) with a given
wavevector difference ∆k⃗. (b) Fast Fourier transform (FFT) of the interferogram. (c)
Filtered and translated image of (b). (d) Real-space phase pattern φ(r⃗) of the emission
after Fourier transform of (c).

As(r⃗, t) = As(r⃗)e−i(ωt−k⃗s·r⃗+φ(r⃗)) ,

Ar(r⃗, t) = Ar(r⃗)e−i(ωt−k⃗r·r⃗) ,
(6.4)

where As(r⃗) [Ar(r⃗)] is the amplitude of the signal [reference] beam, r⃗ = (x, y) is the real-
space vector across the transverse plane of the micropillar (perpendicular to the growth
direction z), ω is the frequency of the emitted mode (selected by the spectrometer), k⃗s

and k⃗r are the transverse wavevectors of the signal and reference beam, respectively,
and φ(r⃗) is the wavefront phase of the p mode that varies throughout the r⃗ plane of
the micropillar. Since the reference beam is three times bigger than the signal one,
we assume the reference beam having a constant wavefront phase in the region of
interference with the signal beam. Therefore, the interference can be written as:

I(r⃗) = |As(r⃗, t) + Ar(r⃗, t)|2 ,

I(r⃗) = |As(r⃗)|2 + |Ar(r⃗)|2 +
[
As(r⃗)A∗

r(r⃗)e−i(∆k⃗·r⃗+φ(r⃗)) + cc.
]
,

(6.5)

where ∆k⃗ = k⃗s − k⃗r is set by the angle between the signal and reference beams at
the entrance slit of the spectrometer. The angle between the two beams lies within
the horizontal plane, resulting in an interference fringes in the vertical direction. The
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Fourier transform of this interference pattern, Ĩ(k⃗) = F [I(r⃗)], gives three peaks that
are shown in Fig. 6.7(b). One peak is at the center of the reciprocal space and it comes
from the first and second terms of eq. (6.5). The other two peaks are translated by ±∆k⃗
with respect to the origin and they come from the third and fourth terms of eq. (6.5).
In consequence, these non-centered peaks carry the information of the wavefront phase
φ(r⃗). In order to retrieve it, firstly, a translation equal to −∆k⃗ of the reciprocal space
is done, thus, the right peak stays on the center of the reciprocal space. Secondly, a
filtering process erases all other frequencies as shown in Fig. 6.7(c). Specifically, this
filtering process selects the frequencies only within a small region in the center by using
either a circular (sharp) or a gaussian-like shape, both filters giving similar results.
The remaining peak corresponds to Ĩ(k⃗′) = F [As(r⃗)A∗

r(r⃗)e−iφ(r⃗)]. Finally, an inverse
Fourier transform of the filtered momentum space image is implemented. Its argument
directly gives the phase φ(r⃗) shown in Fig. 6.7(d). The same procedure is done for
the |ψ2⟩ mode (σ+ polarized detection), which is shown in Fig. 6.5(b) along with the
|ψ3⟩ mode. They display respectively a clear 2π and −2π winding of the phase in the
micropillar.

One of the most interesting features of this level structure [Fig. 6.6(a)] is that
it can give rise to chiral modes with nonzero orbital-phase winding if a polarization
splitting is induced between modes ψ2 and ψ3. Without inducing any splitting, Carlon
Zambon and coworkers showed lasing in one of these degenerate modes in the weak-
coupling regime using a hexagonal molecule of coupled micropillars [184]. In that
paper, a spin imbalance in the exciton reservoir favored lasing gain in a mode with a
given circular polarization and orbital angular momentum. Here we will show that a
splitting between these levels can indeed be induced by taking advantage of polarization-
dependent interactions. In this way time-reversal symmetry is broken without the need
of any external magnetic field.

6.4 Chiral emission in p modes
The optically induced Zeeman splitting we have described for the s modes can be
directly used to lift the degeneracy of middle modes in the p multiplet, and to obtain
the emission of modes with a net chirality. To experimentally demonstrate so, we now
focus on power-dependent photoluminescence experiments in the p modes. Taking
advantage of the cavity wedge present in the wafer of the sample, we use a different
micropillar of the same diameter as previous experiment with an emission energy for
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the p modes very close to that of the s modes discussed in Fig. 6.1 and, therefore, with
the same photon-exciton detuning.

Figure 6.8(b) displays the measured peak energy of each state extracted from a
multi-gaussian fit as a function of the power irradiance of a σ− polarized pump when
detecting either σ− or σ+ polarizations. Every curve exhibits a monotonous blueshift
of the energy when ramping up the power. More importantly, it is observed that modes
|ψ3⟩ = | − 1, σ−⟩ and |ψ2⟩ = | + 1, σ+⟩ lift their degeneracy when the irradiance is
increased. A maximum splitting ∆Ez = 94µeV is observed at P = 10.7 kW cm−2 [see
Fig. 6.8(c)]. This is in contrast with the lower and uppermost modes corresponding,
respectively, to ψ1 and ψ4, which present a negligible polarization splitting (within our
spectral resolution), see Fig. 6.8(c).

The observed blueshifts and splittings in the p manifold can be simulated using the
hamiltonian in Eq. (6.1) with an extra Zeeman term ∆Ez

Hp =


Ep − ∆Ez

2 0 0 0
0 Ep + ∆Ez

2 tSOC 0
0 tSOC Ep − ∆Ez

2 0
0 0 0 Ep + ∆Ez

2

 . (6.6)

We consider a saturable exciton reservoir with total density ntot = n− + n+ = βP/(1 +
P/Psat), in which P is the pump irradiance, Psat is the saturation value, and β is a
proportionality factor. Thus, the energy of the p modes evolves as Ep = E0

p + α1ntot/2,
where now E0

p = 1574.58 meV is the energy of the p modes in absence of interactions
and spin-orbit coupling, and α1 accounts for the interaction of excitons with same-spin
polaritons (we neglect cross-spin interactions for the reasons mentioned in section 6.2).
Additionally, we consider the Zeeman term as ∆Ez = α1(n− − n+), which takes into
account the reservoir spin imbalance. Figure 6.8(a) shows the computed eigenenergies
as a function of the pump irradiance P, considering n+/n− = 0.86, and Psat and α1β

as fitting parameters. The fit was done to match the measured energies for ψ2 and ψ3,
resulting in an overall good agreement for the ensemble of the p modes.

The direct consequence of the optically induced Zeeman splitting between states ψ2

and ψ3 is that orbital modes with opposite chirality are emitted at different energies.
Therefore, frequency filtering of the emitted light is enough to select a mode with
a given chirality. Figures 6.8(d1)-(e1) show the interference pattern measured in
the energy-resolved tomographic experiment described above at the energy of the
ψ2 and ψ3 modes, respectively, at an excitation density of P = 10.7 kW cm−2. In
this experiment, the total emitted intensity at a given energy is measured without
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Fig. 6.8 Chiral emission induced by optical Zeeman effect. (a) Computed
energy of p orbitals from Hamiltonian (6.6) as a function of excitation density (see
text for parameters). (b) Measured energy of the p modes as a function of the
pump irradiance when detecting with the two circular polarizations. Blue (red) dots
correspond to σ− (σ+) polarization of emission, and the pump is σ− polarized. (c)
Measured photoluminescence spectra at two values of the pump irradiance, which are
denoted by continuous and dashed lines in (b). The optical Zeeman splitting between
the ψ2 and ψ3 modes is highlighted in the top panel. (d1),(e1) Measured interference
patterns of middle p modes at the energies of the ψ2 and ψ3 modes, respectively,
without any polarization selection. The orbital angular momentum of the modes is
evidenced in (d2) and (e2), which show the retrieved phase gradients [see Fig. 6.6(b)
for comparison]

any polarization selection. From the interference patterns, the phase of the emitted
field can be extracted by performing a filtered double Fourier transform, and it is
shown in Fig. 6.8(d2) and (e2) (same procedure described above and summarized in
Fig. 6.7). A phase singularity is observed close to the center of the micropillars, with a
clockwise phase winding of 2π around the center for the emission energy of ψ2 and a
counterclockwise winding at energy of ψ3. The phase singularity visible at the upper
right edge of the micropillar in Fig. 6.8(d2) is an artifact related to a region of high
gradient of intensity. Therefore, emission with energy-split vorticity is observed in our
experiment thanks to the breaking of time-reversal symmetry optically induced by a
polarized laser pump.
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The value of the optical Zeeman splitting can be enlarged by increasing the excitonic
component of the polaritons modes of interest. This can be done straightforwardly by
changing the photon-exciton detuning. Concurrently, the photon component would
decrease and with it the value of the spin-orbit coupling. In our experiments we chose
the best available compromise in our structure to observe the splitting between the
modes with opposite chirality. Increasing the spin-orbit coupling in further asymmetric
microcavity structures would allow access to larger Zeeman splittings.

6.5 Conclusions
The method we have demonstrated to break time-reversal symmetry without the
need of an external magnetic field has direct applications in the optical control of
the topological phases of polariton Chern insulators in lattices [185, 186]. Indeed,
the micropillar system we have discussed here is the building block to engineer one-
and two-dimensional lattices. Moreover, the local control of the spin of the excitonic
reservoir using external beams of different circular polarizations permits the breaking
of time-reversal symmetry in more sophisticated manners. For example, one could
envision lattices subject to staggered Zeeman fields, generating interfaces between two
regions of a lattice illuminated with beams of opposite circular polarizations, which
may show several topological edge modes.
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Chapter 7

Conclusions and outlooks

In this thesis we have explored transport and localization properties of exciton polaritons
in two-dimensional lattice potentials. The fabrication techniques developed in the
laboratories of C2N have allowed us to study high-quality honeycomb lattices made
of coupled semiconductor micropillars. Studies have been done by observing the
photoluminescence of polariton systems. The precise control on the cavity wedge,
micropillar width and inter-micropillar distances has enabled us to investigate tight-
binding lattice Hamiltonians with impressive features.

Studying the polariton honeycomb lattices we have addressed Dirac physics present
in graphene. We have taken as a landmark the preceding research of our group [12,
36, 99, 58]. We have simulated uniaxial compression in graphene via anisotropic
inter-micropillar distances in the lattices, demonstrating experimentally a long-sought
anisotropic transport of particles that happens due to the merging of the Dirac cones
and the emergence of a semi-Dirac dispersion. Moreover, we have generated an
all-optical analog of a bulk-vacancy state in graphene by harnessing the driving of
polaritons, which has been reported in Ref. [101]. A promising perspectives is the study
of nonlinear modes at the Dirac and semi-Dirac points in conservative lattices [187]
and PT -symmetric lattices [130], hardly studied so far due to the rarity of systems
with engineered Dirac cones, loss and gain control, and nonlinearities.

Exploiting drive and dissipation in lattices of micropillar resonators, we have
proposed novel types of localized modes. In general, we have shown that implementing
multiple external optical drives in lattices of lossy resonators enlarges the possibility
of manipulating interference effects in lattices and allows the appearance of localized
modes down to a single lattice site. In particular, we have used a highly-photonic
polariton honeycomb lattice resonantly driven by several laser beams at energies within
its photonic bands to demonstrate this localization effect [188]. These localized modes
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are analogous to the localized emission patterns expected from quantum emitters in
photonic lattices [155, 156], as it was recently proposed [157]. Thus, ideas from this
area could be studied in polariton platforms enlarging the possibilities of manipulating
light-matter interaction.

Furthermore, we have inquired into the interaction between reservoir excitons and
polaritons in a single micropillar structure. Performing power-dependent non-resonant
experiments with circularly polarized laser beams, we have shown that time-reversal
symmetry can be broken and an effective Zeeman splitting can be induced for the s
modes of a micropillar. Using this effect along with the inherent TE-TM splitting in
our sample, we have proven the splitting of two opposite chiral states that are present
in the p orbitals of the micropillar, enabling the energy (or frequency) selection of these
states [189]. This optical Zeeman effect can be implemented in lattices [190], which
could permit the study of topological phases without the need of an external Zeeman
field.

One can conceive more sophisticated lattices thanks to the capabilities of the fabri-
cation process in C2N. For instance, lattices composed of micropillars with alternating
width can be fabricated, giving way to the hopping between s and p orbitals and, thus,
the implementation of negative hoppings. Preliminary studies in a Lieb lattice with s-p
hopping show that bands with dispersion along one direction only can be engineered.
All the eigenstates are extended along one direction and localized in the orthogonal
one, allowing unidirectional transport in the lattice. A natural next step is the study of
this lattice in the nonlinear regime thanks to the sizable nonlinearity that the exciton
component provides. The emergence of topological phases in the excitation spectrum
of this lattice has been predicted [191].

On the other hand, the precise control of the optical drives presented in chapter 5
could open the way to the exploration of topological phases induced by nonlinearity.
Specifically, an interesting avenue is the appearance of edge states in the excitation
spectrum of a lattice by judiciously designing the resonant pumping beam [192].
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Appendix A

Sample details

Desing 1 δz [nm] n(λc = 780 nm) Rep
Layer1 Ga0.80Al0.20As 56.6 3.45 1
DBR1 Ga0.05Al0.95As 65.0 2.99 27
DBR2 Ga0.80Al0.20As 56.6 3.45 27
Layer2 Ga0.05Al0.95As 65.0 2.99 1
QWs GaAs 7.0 3.58 4

Layer2 Ga0.05Al0.95As 3.0 2.99 4
Sp Ga0.05Al95As 39.6 2.99 1

QWs GaAs 7.0 3.58 4
Layer2 Ga0.05Al0.95As 3.0 2.99 4

Sp Ga0.05Al95As 36.6 2.99 1
Layer1 Ga0.80Al0.20As 56.6 3.45 1
Layer2 Ga0.05Al0.95As 65.0 2.99 4
QWs GaAs 7.0 3.58 4

Layer2 Ga0.05Al0.95As 65.0 2.99 1
DBR2 Ga0.80Al0.20As 56.6 3.45 39
DBR1 Ga0.05Al0.95As 65.0 2.99 39
Sub GaAs 3.5 · 105 3.58 1

Table A.1 Reflection sample parameters. Nominal parameters used for the growth
of the heterostructure. The target central cavity wavelength is λc = 780 nm. Abbre-
viations: DBR1,2 distributed Bragg reflector or quarter-wave stacks, Sp spacer layer,
QW quantum well, Sub substrate wafer. δz indicates the thickness of the layers, n
correspond to the refractive index of the alloys calculated at λc and Rep points out
the number of repetitions of each layer.
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Sample details

Desing 2 δz [nm] n(λ = 890 nm) Rep
DBR1 Ga0.90Al0.10As 64.76 3.44 28
DBR2 Ga0.05Al0.95As 75.35 2.95 28

Sp GaAs 116.93 3.51 1
QW In0.09Ga0.91As 20 3.51 1
Sp GaAs 116.93 3.51 1

DBR2 Ga0.05Al0.95As 75.35 2.95 32
DBR1 Ga0.90Al0.10As 64.76 3.44 32
Sub GaAs 3.5 · 105 3.51 1
ARC SiO0.18N1.22 ∼ 112 1.88 1

Table A.2 Transmission sample parameters. Nominal parameters used for the
growth of the semiconductor microcavity. The target central cavity wavelength is
λc = 890 nm. The Abbreviation are the same as in Table A.1 and ARC refers to the
anti-reflective coating. Also, δz indicates the thickness of the layers, n correspond to
the refractive index of the alloys calculated at λc and Rep points out the number of
repetitions of each layer.
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Appendix B

Multiple-beams generation

The generation of multiple-beams excitation is made thanks to a reflective phase-only
Spatial Light Modulator (SLM) PLUTO-2.1-NIR-015 (HR). This device is a liquid
crystal on silicon (LCOS) microdisplay with a full HD resolution, 1920 × 1080 pixels,
a 8µm pixel pitch and an input frame rate of 60 Hz. This SLM is set up along
the excitation path as schematized in Fig. B.1(a). Before the laser arrives to the
SLM, it firstly passes through a single-mode polarization-maintaining optical fiber
to be mode cleaned and collimated. Then, the beam is directed at normal incidence
towards the SLM screen with the use of a beam splitter (BS). At this point, the SLM
imprints the phase information of the desire real-space pattern to the beam. Then,
the beam reflected by the SLM goes through the BS and it is directed towards the
close-cycle cryostat where the sample is held at cryogenic temperature. A 8-nm lens
inside the cryostat focus it on the sample generating the multiple-beams excitation, as
schematized in Fig. B.1(b) for the case of exciting with three beams.

The basic operation of SLMs consists in changing the phase of a beam by addressing
voltage signals to each pixel of the device. This voltage signal is encoded into 256 gray
levels, which needs to be calibrated in order to know how much phase is added with
each gray level. There are different methodologies to calibrate phase-only SLM and, in
this thesis, we have used a method based on diffractive optics following the Ref. [193].
One of the advantage of diffractive methods compare to others, like ones based on
interferometry measurements, is that this method is less sensitive to environmental
fluctuations [193]. The method that we follow consists in measuring the focal irradiance
of binary phase Fresnel lenses imprinted in the SLM screen as a function of the gray
levels.

A binary phase Fresnel lens is an optical element composed of a set of radially
symmetric rings with alternating phase values, which focus a beam at different focal
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Multiple-beams generation

Fig. B.1 (a) Scheme of the experimental setup used to generate multiple laser beams.
Abbreviations: SLM spatial light modulator, BS beam splitter. (b) Scheme of the
excitation of the honeycomb lattice with three beams in order to obtain the localized
mode in the surrounded resonator.

planes. For a given focal plane the beam intensity is determined by the phase difference
among the alternating rings [193] as

I = 4
π2 sin2

(
ϕ2 − ϕ1

2

)
, (B.1)

where ϕ1 and ϕ2 are the phases of the alternating rings. Since the phase modulation of
the SLM is encoded into gray levels, a full characterization of the intensity can be done
by varying one of the two gray levels and keeping the other at a given value. In order
to do so, we use binary Fresnel lenses generated with the Pattern Generator software
or the SLM Slideshow Player software, which is given by the Holoeye company, and we
have controlled the gray levels with the same software. Specifically, once generated a
binary Fresnel lens, one gray level is kept at value 0 while the other is varied from 0 to
255. The intensity in the central region of the beam is recorded by a CCD camera,
which capture the light reflected by the SLM [the camera is placed right after the BS in
the beam path reflected from the SLM, see Fig. B.1(a)]. Fig. B.2(a) shows the intensity
as a function of the gray levels. As it is expected, the curve shows a sinusoidal shape.
Replacing this values in Eq. (B.1) the phase shift as a function of the gray level is
obtained, as shown in Fig. B.2(b).

The shaping of the laser in arbitrary input beams is done using a Matlab tool-
box [194], which is composed of algorithms commonly used for generating patterns in
beam shaping applications. In particular, we use the well-known iterative algorithm
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Fig. B.2 Calibration of the SLM(a) Intensity at the focal as a function of the Gray
level for binary phase Fresnel lenses. (b) Phase shift as a function of the gray level
obtained from Eq. (B.1) when replacing the values of the intensity obtained in (a).

called 2-D Gerchberg–Saxton that allow us to generate a far-field phase pattern of the
target amplitude pattern. This method consists in 6 steps [194]: (1) Generate an initial
guess of the phase pattern at the SLM, (2) Calculate the output amplitude profile by
using the Fourier transform., (3) Multiply the output phase by the target amplitude, (4)
perform the inverse Fourier transform, (5) Extract the phase of the generated complex
amplitude, which is the new guess, and (6) Iterate until converged. In our case we
create the multiple-beams target amplitude with the honeycomb geometry using a
matlab code, which enters the iteration in step 3 and converges after 20 iterations.
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