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Résumé: La qualité de l’air est l’un des princi-
paux facteurs de risque pour la santé humaine.
La collecte participative ou Mobile Crowd Sensing
(MCS) en anglais, un nouveau paradigme basé sur
la technologie émergente des micro-capteurs con-
nectés, offre la possibilité de mesurer l’exposition
individuelle à la pollution de l’air n’importe où et
n’importe quand. Cela amène à générer en continu
des séries de données géo-localisées, qui finissent
par former une grande masses de données. Celle-ci
constitue une mine d’information pour des analy-
ses variées et une opportunité unique d’extraction
de connaissances sur l’exposition à la pollution.
Toutefois, cette analyse est loin d’être simple, car
il y a un gap entre les séries de données brutes des

capteurs et les informations exploitables. En effet,
les données brutes sont irrégulières, bruitées et in-
complètes. Le défi majeur que cette thèse cherche
à relever est de combler ce gap en proposant une
approche holistique d’analyse et d’extraction de
connaissance des données collectées dans le con-
texte du MCS. Nous mettons en œuvre un pro-
cessus analytique complet comprenant le prétraite-
ment des données, leur enrichissement avec des in-
formations contextuelles, ainsi que la modélisation
et le stockage de ces données. Nous l’avons implé-
menté en veillant à automatiser son déploiement.
Les approches proposées sont appliquées sur des
données réelles collectées au sein du projet Pollus-
cope.

Title: Spatio-temporal Data Analytics in the Context of Environmental Crowdsensing
Keywords: Data mining, data science, enrichment, big data, internet of things, spatiotemporal data

Abstract: Air quality is one of the major risk
factors in human health. Mobile Crowd Sensing
(MCS), which is a new paradigm based on the
emerging connected micro-sensor technology, of-
fers the opportunity of the assessment of personal
exposure to air pollution anywhere and anytime.
This leads to the continuous generation of geolo-
cated data series, which results in a big data vol-
ume. Such data is deemed to be a mine of in-
formation for various analysis, and a unique op-
portunity of knowledge discovery about pollution
exposure. However, achieving this analysis is far
from straightforward. In fact, there is a gap to

fill between the raw sensor data series and usable
information: raw data is highly uneven, noisy, and
incomplete. The major challenge addressed by this
thesis is to fill this gap by providing a holistic ap-
proach for data analytics and mining in the con-
text of MCS. We establish an end-to-end analyt-
ics pipeline, which encompasses data preprocess-
ing, their enrichment with contextual information,
as well as data modeling and storage. We imple-
mented this pipeline while ensuring its automatized
deployment. The proposed approaches have been
applied to real-world datasets collected within the
Polluscope project.
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"And say (O Muhammad SAW) "Do deeds! Allah will see your deeds, and (so
will) His Messenger and the believers."

Quran, Chapter 9, Verse 105
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16 CHAPTER 1. INTRODUCTION

1.1 . Background

With the advancement of Internet of Things (IoT) and geolocation technology,
an increasing number of connected objects are becoming location aware, includ-
ing vehicles, vessels and biological moving entities such as humans and animals.
Nowadays, smartphones with embedded GPS are no longer an emerging trend, but
almost an essential feature. These kinds of mobile pervasive sensing technologies
enhance the continuous generation of large volumes of geo data series, with no re-
striction on time and space, and promote the connectivity between physical objects
and their surroundings.

Therefore, in order to monitor a certain spatial and temporal phenomena (e.g.
air quality monitoring, traffic monitoring, etc), wireless sensing technologies are
certainly used thanks to their ability to sense their surroundings and produce reli-
able measurements. However, traditional wireless sensing networks require a large
number of deployed sensors to ensure the area coverage for large-scale and fine-
grained sensing, which is economically unpractical and uninteresting. For instance,
in order to monitor air quality in the area of the Paris region, Airparif1, which
is responsible for this task, deploys around 50 fixed and permanent stations over
a radius of 100 km around Paris. Around 30 stations are localised in Paris and
its small crown, and the rest are scattered around its large crown. If we want to
extend the air quality monitoring system to cover the whole area of Paris region
at a finer grained level, certainly more than 50 fixed and permanent stations need
to be deployed to ensure full area coverage. However, the expensive cost of fixed
stations and their maintenance would make this system hard to implement.

Luckily, the new paradigm called Mobile Crowd Sensing (MCS) [51, 57] em-
powers volunteers to contribute data acquired by a multi-sensor box, and a mobile
device to monitor large-scale phenomena that is not easy to monitor with a single
sensor or does not offer full coverage with fixed sensors. In MCS scenarios, par-
ticipants are equipped with various sensors plus a GPS embedded mobile device.
They move freely within a monitoring region to take samples and report the col-
lected data to monitoring center to cover the observed phenomena, which leads
to a continuous generation of large volumes of geo data series. The particularity
of this sensing paradigm is the combination of geo-location with observations and
measurements of the observed phenomena over time. Several large-scale appli-
cation scenarios are motivated by MCS paradigm such as noise monitoring [5],
radioactivity monitoring [97], and air quality monitoring and individual exposure
such as in our context of Polluscope project 2.

The general objective of Polluscoe project is to monitor personal exposure to
air pollution, since exposure to air pollution promotes the development of serious
chronic pathologies, in particular cardiovascular and respiratory pathologies and

1https://www.airparif.asso.fr/
2http://polluscope.uvsq.fr/
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cancers, which results in increased mortality, lower life expectancy and increased
use of care. As a matter of fact, air pollution is responsible for nearly 1 in 10
deaths in the Paris region in 2019 [65]. In 2019, mortality related to air pollution
in the Paris region is estimated at 7,920 premature deaths each year. Luckily,
due to the COVID-19 pandemic and health restrictions, 2020 was an exceptional
year in terms of air quality. The restrictive measures have led to a decrease in
nitrogen dioxide (NO2) concentrations and particulate matters (PMs). This drop
in nitrogen dioxide concentrations made it possible to avoid around 310 deaths, and
the decrease of the concentrations of particulate matters pushed back the number
of death by around 180, compared to 2019 [65].

Therefore, in order to monitor personal exposure to pollution, the Polluscope
project recruited participants and equipped each one of them with a sensor kit and a
mobile device to collect air quality measurement and GPS coordinates as geo-dated
data series. The recruited participants, on a voluntary basis, collect air quality
measurements such as Particulate Matters, NO2, Black Carbon, Temperature and
Humidity by the multi-sensor box. The mobile device is used to collect GPS
logs. In addition, a mobile application is provided to participants so that they
can provide information on the context of the measurements. Thus, they are
asked to indicate the type of place (called micro-environment) each time they
change it. They also provide information on specific events that have an impact
on the concentrations of pollutants and therefore on their exposure. This type
of information is commonly referred to as self-reporting. These annotations are
very important in MCS. They are used to interpret the observed measurements
because they are largely dependent on the type of environment (indoor, outdoor
or in transport). Without this information, the collected measurements cannot
be interpreted correctly. In addition, they provide insight at a higher level of
abstraction along participants trajectories.

With such increasing generation of large volume data, there is a growing need
for putting forward a holistic approach for efficiently managing and analysing such
huge amount of spatio-temporal data series produced by moving objects (i.e. par-
ticipants) to fill the gap between data generation and data comprehension. While
the literature proposes different solutions for handling moving objects such as mov-
ing objects data management in the database community, and several data mining
techniques for analytical purposes, these approaches do not provide enriched tra-
jectories mining, which leaves to application developers all the challenges to extract
complex information from raw enriched trajectories.

1.2 . Motivation

One of the characteristics of the MCS paradigm is the combination of spatial
location with continuous measurements and annotations which results in seman-
tically enriched trajectories. Figure 1.1 describes the reconstruction of enriched
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Figure 1.1: An example of enriched trajectory collected in the context of
MCS

trajectory data in MCS. Basically, enriched trajectories are constructed from the
combination of GPS tracks with ambient air measurements (e.g., atmospheric pol-
lutants) plus annotation of contextual information such as the micro-environments
of the participants (e.g., home, office, restaurant, etc.) and air pollution related
events (e.g., smoking).

The construction of enriched trajectories from MCS has several advantages
compared to the usage of traditional monitoring techniques (e.g. fixed stations).
First, it promotes personalised exposure, i.e. each individual will be able to gain
insights on his/her exposure. Second, it measures indoor and outdoor environments
(e.g. home, work, transportation, streets, parks, etc.) and expands the spatial
coverage, depending on human mobility. Finally, it enables insights at a higher
resolution along the participants trajectories, thereby allowing to capture local
variability and peaks of pollution.

Nevertheless, exploiting such complex data series for analytical purpose, such
as exploratory analysis using data mining techniques, is far from straightforward,
since raw sensor data are mostly noisy and acquired at irregular (and asynchronous)
frequencies. Several research [140, 102, 142] has been proposed to shape the field
of trajectory-based application and to provide a roadmap from the derivation of
trajectory data, to trajectory preprocessing, to trajectory data management, and
to a variety of mining tasks (such as trajectory pattern mining, outlier detection,
and trajectory classification). Starting from this roadmap on trajectories, the mo-
tivation of this thesis is to further explore trajectory data mining and analytics and
draw a protocol, not only for trajectory data from a geometric view, but for en-
riched trajectories with complex settings in MCS, due to the additional dimensions
(i.e. temporal and semantic) and their low quality.

We aim at a generic computing model for extracting usable information from
enriched trajectory data, which is qualified to provide information about exposure
at the personal and collective levels. Therefore, we strive to integrate a semantic
enrichment approach for trajectory data analysis, to better understand the personal
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exposure and its relation to people’s whereabouts (i.e micro-environment). Take
the example where no information about participants whereabouts is available. It
would be impossible to get insight about their exposure and therefore, the collected
data would not be used properly. For this reason, there is a great interest in
building an effective model to semantically enrich trajectories with participants
micro-environments. That way, we can compare participants exposures to each
others and build a medium exposure profile which will serve as a reference for an
unobserved population.

Another objective of this thesis work is to compare the collected MCS data to
traditional fixed stations network (i.e. Airparif data) while taking into consideration
the micro-environment. In other words, we are interested in comparing both data
sources at the same time and space; but enclosed micro-environment will not be
object of this comparison. However, this comparison is not straightforward since
the spatio-temporal coverage of both data sources are not aligned. For example,
some fixed station models provide hourly pollutant measurements whilst MCS data
measure air quality data every one minute. In addition, while fixed station network
cover with their models the whole study area geographically at a certain spatial
granularity (which can be a coarse granularity), MCS has low spatial coverage
(depending on the number of volunteers) but with the finest spatial granularity.
The objective here is to overcome the shortcomings of the integration of both data
sources and provide a sound comparison.

As for the analysis of enriched trajectories analysis, a multidimensional analysis
on such complex data is highly desirable, since it allows the exploration of data
from several perspectives. Therefore, on one side, to take full advantage of these
data, it should not be only analysed in isolation, but rather be matched with
the context, and analyse it under multiple dimensionality and scale (e.g., spatial,
user, micro-environment, time dimensions). On the other side, we need to design
some solutions for spatial and temporal data imputation and /or interpolation to
overcome the limitations of MCS (e.g. low coverage and missing data problems).

1.3 . Problem Statement & Research Questions

Data measured by mobile sensors can be represented by multivariate time series
which are characterised by the presence of a spatial dimension forming trajectories.
Equivalently, these data can be seen as spatio-temporal trajectories enriched by
additional measurements throughout the collection period as show in Figure 1.1.
While the human involvement in the MCS process is very important, it makes
this paradigm a double-edged sword. On the one hand, (i) it is easier to deploy
at lower cost compared to traditional stations, (ii) it enables insights at a finer-
grained level of the observed phenomena including indoor and outdoor, and (iii) the
network coverage may be further expanded if needed depending on the number of
deployed volunteers. However, on the other hand, it brings a number of challenging
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characteristics.

Data Imperfection. Data collected in the context of MCS is often imperfect
compared to traditional stations, due to the limitations of accuracy and correctness
of the sensors. The process needs to integrate a comparison step (called quali-
fication campaign) between sensory data and traditional stations measurements,
to ensure that the gap between the two sources of measurements is at its lowest
level. In addition, after sensors deployment, the collected data may exhibit different
problems such as noise, anomalies and sometimes data loss that requires cleaning
and preprocessing. In fact, we could observe timestamps that are closely spaced
or too sparse in different cases. Some sensors may be offline for hours or stay idle
when the device is static then switch to a burst mode on the move. Some are
configured to reduce data transmission when the variation is less than a predefined
threshold. Such data imperfections should be taken into account, which affect
both time series data and geolocation.

Low-confidence in Self-reporting. In real-life application of MCS, the an-
notation of participants contexts is by far the most difficult information to collect,
since very few participants thoroughly annotate their micro-environment, plus the
collected annotations are not guaranteed to be accurate. For example, some partic-
ipants indicate that they are in their offices at 3am, or light a fireplace in a street,
other participants completely exclude this annotation task. Therefore, there is a
great interest in detecting automatically the participants context without burdening
them (possibly from imperfect sensory data and participants annotation).

Difficulty of merging sensory data and integrating external data. In
MCS, we deploy a large spectrum of sensors with different characteristics for sen-
sitivity and sampling frequency. For example, taking two different sensors, one
may generate measurements every minute while the other one may measure every
1 second. The data collected from all sensing objects should be merged, which
could lead to measurements at irregular time intervals and missing data problems.
Furthermore, if the spatial and temporal resolution of the observations is high, the
coverage is very limited and very imbalanced depending on the visited places. In
fact, a high density of data is concentrated in home and office, while very little
data is located in punctual places such as restaurant, station and store, and even
less data is located in crossed places (e.g., street, bus, etc.). Precisely, the spatial
coverage is very irregular. Some places are characterised by a high spatial density,
whilst zero information is available about other locations because nobody sets foot
there. Therefore, it is really difficult to generalize and provide a densification cover-
age similar to the regulatory observation network. Plus, it is not easy to merge and
compare with data of different spatio-temporal resolution and territorial coverage.
For example, fixed station networks provide a full spatio-temporal coverage model
for the study area. However, since the spatio-temporal resolution is different from
sensory data, merging and comparing both sources of data is not easy.

To put our motivation of a "holistic" approach for enriched trajectory data
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analysis into more accurate research statements, we break down the problem under
consideration into a set of fundamental research questions that we will explore,
discuss and answer during this thesis work. Each research question is either form
a scientific or technological challenge :

• R1. What are the fundamental modelings for creating usable information
from raw enriched trajectories ? What are the different facets and views of
enriched trajectory data ? What is the personal exposure to pollution and
how to quantify it ? What are the requirements for getting insights from
enriched trajectories ? What is the gap between raw enriched trajectories
and usable knowledge and how to bridge it ?

• R2. What are the fundamental preprocessing steps for spatio-temporal en-
riched trajectory data ? How to find spatio-temporal noise and outliers ?
How to differentiate between an artifact peak and noise ? What is the gap
between raw enriched trajectory data and clean enriched trajectories, and
how to bridge such gap ? How to achieve purified enriched trajectories ?

• R3. Can we provide a more comprehensive and semantically enriched rep-
resentation of enriched trajectory data ? Any intermediate models are nec-
essary to achieve the semantically enriched representation aforementioned ?
Can we contextualise the data and enrich it with the type of activity and
movement (i.e. micro-environment) ? What are the spatio-temporal require-
ments to characterize the micro-environment and summarize their observed
properties ? Can we combine different sensors (i.e., both GPS and AQ sen-
sors) to automatically infer people’s context ? Which types of algorithms
and computational solutions need to be designed for this purpose ? Do data
mining (e.g. feature representation) or statistical summary techniques have
the ability to provide solutions for such recognition tasks ?

• R4. How to further enrich sensory data ? Does such semantic enrichment
need additional external sources, such as the traditional network of fixed
stations and models ? How to merge sensory data with external data ? How
to align both sources of data with such different spatial and temporal scales
and very low MCS coverage while taking into account micro-environments ?
How to handle the problem of missing value provoked by merging two data
sources with different spatial and temporal scales ? How to integrate and
compare external data to sensory data ? Can we provide a generic model
for external data integration and comparison with sensory data ?

• R5. Can we provide an interactive visualisation platform to explore every
facet of the data, including GPS tracks and measurements ? Is it possible
to visualise the difference between the detected and the declared micro-
environments ? To what extent the computation model can affect the results
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Figure 1.2: An illustration of the architecture pipelines.

of micro-environment’s detection ? Can we visualise that effect ? Which
sensory data contribute more in this inference ?

• R6. Can we automatise the aforementioned process of bridging the gap be-
tween data collection and data comprehension ? How to enable the pipelines
to work properly and efficiently without human involvement ? Which tech-
nologies are best suitable for this purpose ?

1.4 . Contributions

Towards the motivation to establish an effective and efficient multidimensional
data analytic framework in MCS, this dissertation focuses on providing an end-to-
end solution for creating usable information from raw enriched trajectories. Specif-
ically, this thesis formulates the following major six contributions to answer the
aforementioned research questions:

• C1: End-to-End solution for creating usable information from raw
enriched trajectories - The first solution provides a generic end-to-end
solution for creating usable information from raw enriched trajectories from
spatio-temporal semantically enriched data series. Specifically, we provide a
roadmap from the derivation of enriched trajectories data, to spatio-temporal
data series preprocessing, to semantic enrichment of trajectories, to enriched
trajectories data management and a variety of mining tasks such as exposure
profiles mining, to an interactive dashboard for real time data visualization,
to the implementation of a micro-service based architecture for automating
data analytics pipelines.

• C2: Spatio-temporal enriched trajectory construction - We design a
practical computing platform for constructing spatio-temporal enriched tra-
jectories from real-life MCS raw data. Instead of directly extract information
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from raw enriched trajectories, we design an intermediate layer, i.e. pre-
processing spatio-temporal data series, which can bridge the gap between
raw trajectories and purified enriched trajectories. Specifically, we present a
computing approach for reconstructing every view of the data, from real-life
GPS tracks to every dimension of the multidimensional time series, in terms
of cleaning multivariate time series and GPS data from outliers and noise,
and interpolating missing values. As a result, a cleaner version of MCS data
is achieved.

• C3: Methods for trajectories semantic enrichment - To further establish
a sound semantic meaning to enriched trajectories, we add a contextuali-
sation layer to the previous preprocessing platform. Semantic enrichment
can further construct the enriched trajectories and add information about
the context. In order to achieve this semantic enrichment, we develop a
model for multidimensional data segmentation based on change point de-
tection (CPD). This model divide the cleaned enriched trajectories into a set
of coherent segments, where each segment represent a micro-environment.
We contrast the proposed approach with a traditional CPD model and show
the effectiveness and scalability of our approach. We further complete the
semantic enrichment by designing a hybrid model for context recognition
which can integrate geographic view and multivariate time series view to
annotated enriched trajectories with the type of activity and movement.
The geographic view adds semantic annotations to segments (i.e stop and
move annotation; AKA trajectory segmentation) from GPS tracks only. The
multivariate time series view detect the exact label of segments (e.g. home,
office, store, metro, park, etc.).

• C4: Adaptive and flexible system for data management and explo-
ration in MCS coupled with external data - We further propose a seman-
tic enrichment for sensory data from additional external sources that provides
networks data models of fixed stations. Since the two sources of data do not
have the same scale, we first propose the transformation of the spatial and
temporal dimensions into discrete values to facilitate their query, aggrega-
tion and comparison. The fundamental contribution here is the introduction
of a multidimensional model for efficiently querying and computing different
facets of data. In addition to the computation of several statistical mea-
sures, we introduce new operators of spatial and temporal disaggregation to
extract, based on machine learning, finer grained data from coarse data and
handle the problem of missing values and low MCS coverage.

• C5: Interactive dashboards for real-time data visualisation - We present
a two-faces visualisation framework of the semantic enrichment and the en-
riched trajectories. The first dashboard allows users to customise the learn-
ing methods for detecting micro-environments and displays the detected
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Figure 1.3: Dissertation structure organisation.

micro-environments vis-à-vis the declared micro-environments. The second
interactive dashboard displays all the components of the enriched trajectory
through time, including mobility, time series and context.

• C6: Build a microservices based architecture for implementing and
automating data analysis pipelines - We deploy a scalable infrastructure
based on micro-service for the whole model lifecycle. We propose an ar-
chitecture that features the discussed components above (from C2 to C5)
to build a scalable and reliable ecosystem for data ingestion, preprocess-
ing, models predictions, storage and visualisation. Figure 1.2 depicts an
illustration of the proposed architecture pipelines, which implements our
contribution for automating data analysis pipelines based on micro-services,
from raw data collection to knowledge extraction.

1.5 . Structure of the Dissertation

Figure 1.3 portrays the structure of the dissertation. Specifically, the rest of
this thesis is organised as follows:

• Chapter 2 reviews existing works related to enriched trajectory data mining from
several perspectives, including preprocessing, segmentation, activity recognition,
management and warehousing.

• Chapter 3 focuses on trajectory data enrichment with contextual information. It
investigates the time series segmentation approaches as well as activity recog-
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nition algorithms which allows to add semantic enrichment to the trajectory
data.

• Chapter 4 discusses enriched trajectory modeling requirements and issues. It
investigates the mining and exploration of the enriched trajectory data from
different perspectives (i.e. temporal, spatial, longitudinal, semantic).

• Chapter 5 presents a scalable infrastructure based on microservices for the im-
plementation of the whole end-to-end data analysis system lifecycle.

• Chapter 5.7 provides general conclusions of this dissertation and highlights some
future work directionsµ.

1.6 . Scientific Contributions

During this thesis work, several contributions to the research field have been
achieved. Twelve articles have been published or submitted in different venues,
ranging between workshops, national conference, international conference, journals
and book chapters.

1. H. El Hafyani, K. Zeitouni, Y. Taher, L. Yeh, and A. Ktaish, A Multidimen-
sional Trajectory Model in the Context of Mobile Crowd Sensing. To appear
in “Intelligent Distributed Computing for Trajectories: Metamodeling, Re-
active Architecture for Analytics, and Smart Applications”, which is to be
published by CRC Press, Taylor & Francis Group, USA.

2. T. Nabil, K. Radja, P. Schembri, K. Zeitouni and H. EL Hafyani (2021).Vari-
ations spatio-temporelles de l’exposition individuelle aux polluants urbains
mesurée par les micro-capteurs: quelles adaptations des comportements et
des politiques urbaines? To appear in CyberGeo 2021.

3. H. El Hafyani, M. Abboud, J. Zuo, K. Zeitouni and Y. Taher. “Learning the
Micro-environment from Rich Trajectories in the context of Mobile Crowd
Sensing Application to Air Quality Monitoring”.To appear in GeoInformatica.

4. H. El Hafyani, M. Abboud and Y. Taher. “A Microservices Based Archi-
tecture for Implementing and Automating ETL Data Pipelines for Mobile
Crowdsensing Applications”. In 2021 IEEE International Conference on Big
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2.1 . Introduction

Understanding user mobility from GPS and sensory data is a central theme
in ubiquitous computing. Intensive and extensive researches have been done in
the field of sensory data mining to extract usable knowledge from raw data. In
this chapter, we review a large number of state-of-the-art studies related to the
analysis and management of enriched trajectory data. All the figures presented in
this chapter are constructed by the author.

Figure 2.1: Structure of state-of-the-art chapter.

Primarily, a trajectory is defined as a multivariate time series in which one
dimension represents the spatial positions. In contrast, enriched trajectories are
trajectories enriched with other information such as the context or the whereabouts
of the moving object. Thereby, enriched trajectories in the context of MCS are
constructed from the combination of GPS tracks with temporal measurements
plus other contextual information of the moving object. Therefore, we review the
literature related to mining this type of enriched trajectory data according to the
structure shown in Figure 2.1, which emphasises five components:

1. Trajectory data preprocessing.

2. Trajectory data segmentation.

3. Activity recognition.

4. Generic machine learning algorithms.

5. Moving object databases and warehousing.

The structure of enriched trajectory data mining shown in Figure 2.1 was
inspired from the survey of Zheng [140], which provides a review of the existing
techniques that allow to get insightful information from raw trajectory data. In
his survey, Zheng explores the connections and differences between the existing
methods in the literature and establishes a paradigm for trajectory data mining.
The proposed paradigm allows to turn raw trajectory data into usable information
by going through several steps, which have been classified in four groups: (i) the
derivation of trajectory data, (ii) trajectory data preprocessing, (iii) trajectory data
management, (iv) and a variety of mining tasks such as trajectory patter mining
and trajectory classification. While the author lists a variety of trajectory data
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mining approach, an overall approach that combines temporal data besides GPS
data is missing.

Therefore, in this chapter, we conduct a comprehensive review of related stud-
ies to enriched trajectory mining in term of preprocessing, segmentation, activity
recognition, and management and warehousing as shown in Figure 2.1. We differ-
entiate between trajectory data mining and time series mining since the combina-
tion of these two elements constitutes enriched trajectories.

2.2 . Trajectory Data Preprocessing

Zheng [141] describes the basic techniques that one needs to process trajec-
tory data before starting the mining tasks. These techniques evolve around noise
filtering, stay point detection, and trajectory segmentation. In this section, we
will focus mainly on noise filtering, whilst trajectory segmentation and stay point
detection will be the subject of Section 2.3. The objective of noise filtering is
to remove noisy data that may bias the mining. Certainly, sensory data is never
perfectly accurate. It is subject to several errors due to sensors noise and other
factors such as poor receiving positional signals in urban areas. Filtering these
imperfections aims to ensure the quality of the data before starting the mining
tasks.

Elnahrawy and Nath [45] differentiate between the different sources of errors
and broadly classify them into categories: systematic errors (bias) and random
errors (noise). Systematic errors, on the one hand, arise due to changes in the
operating conditions (e.g. temperature, humidity, etc.) or other factor such as
aging of the sensor. They can be corrected by calibration as has been done in
[77]. Random errors, on the other hand, comprise the unpredictable variation
from one measurement to another, and they occur due - but not limited - to
random hardware noise, noise from external sources, and environmental factors.
We are particularly interested in random errors and how to reduce their effects on
sensor readings since they may affect the readings precision. Particularly, the main
objective is to overcome data quality issues within sensory data by employing some
rule-based models or mathematical techniques. These techniques concern both
trajectory data as well as time series data.

2.2.1 . GPS Trajectory Data Noise Filtering
Unfortunately, it is common to get noisy data in the form of inaccurate readings

from GPS devices due to several reasons such as poor receiving signals. Although
this problem is not completely solved, several studies take interest in filtering such
noise. The most common approaches focus on heuristic methods to remove noise
points directly from the trajectory, as has been done in GeoLife [144] and Scikit-
mobility [101]. These heuristic approaches consist of first calculating the travel
speed between consecutive points in the trajectory based on the distance and the
time spent between a point and its successor. If the speed exceeds a certain
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threshold - which is parameterised by the user - (e.g. 300 km/h), the segment of
the two consecutive points is cut off.

However, Hendawi et al. [64] suggest that not all noisy GPS data should be
discarded. Instead, They should be analysed since they may reveal some informa-
tion about the place where the user is such as indoor spaces. For this purpose,
Hendawi et al. focus on discovering the patterns of noisy GPS data and relate them
to specific locations. For example, it is possible to “infer that a driver is passing
by a tall building or through a forest based on the pattern of noise in the GPS
readings”. Thereby, and by tracking the noise pattern, the authors come to the
conclusion that it is possible to identify the road types, the height of surrounding
buildings, the existence of urban constructions, and the existence of tunnels.

2.2.2 . Time Series Noise Filtering

The detection of noise and outliers in time series typically requires dedicated
techniques of different types. Gupta et al. [58] and Blázquez-García et al. [18]
provide an extensive and structured survey of latest techniques that have been
widely used in the time series outlier detection domain. The authors discussed
a numerous existing approaches ranging from statistical methods (such as Auto
regressive (AR) models, and ARIMA models) to more complex and advanced meth-
ods (such as deep learning based approaches). The authors of [58] also provoked
some studies in the literature that aim at detecting and filtering the noise from
time series data such as the work of Cheng et al. [30].

In another line of work, Palshikar [100] proposes a method based on peaks
detection (aka, spikes detection) to clean time series data from outliers. The
peaks are identified as a sudden increase in the values of time series. While these
spikes are easy to identify visually in a short time series, but it is not obvious to
detect them automatically in any time series. Therefore, they introduce a formal
notion of a peak in time series, and propose several algorithms for peak detection.
They define the local peak as the point that is the local maximum within a window
size, and it is isolated i.e. the value of this point is not similar to the other values in
that window. The detection of peaks needs a user-defined threshold of the window
average to differentiate between local outliers and real values.

2.2.3 . Discussion

In this section, we presented the difference between systematic errors and ran-
dom errors, with a focus on the latter one. We discussed how to filter random
noises from GPS data and time series based on heuristic methods and mathemat-
ical techniques. Heuristic methods based on a speed limit has shown remarkable
results in filtering noise from GPS data as shown in [144] and [101]. However,
setting the speed limit remains of a discussion and empirical tests need to be per-
formed in order to find the optimal speed limit that allows to detect real noises. As
for time series, whilst the work done by [100] is very useful, the human still needs
to interact with the algorithm to set appropriate thresholds for the algorithms.
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Automatizing the threshold choice based on the window mean value is very much
needed.

2.3 . Trajectory Data Segmentation

In many real-world applications, we need to segment the trajectory data into
coherent segments for further data analysis. The segmentation enables to mine rich
knowledge from the trajectory data, such as the inference of stay locations. This is
considered as the first step of semantic enrichment of data. The mobility literature
is rich with approaches and methods proposed for trajectory data segmentation.
Each proposal is built on the background of some specific application domain,
such as deriving the stay area of a moving object, or detect transportation mode
transitions within a trajectory, and aims at achieving the objectives of this specific
application domain.

As a matter of fact, this modelling approach is very similar to the Time-
Geography representation proposed by Hägerstrand [62], which is the first suc-
cessful proposal to provide a conceptual approach for representing and analyzing
human activity in space and time. Plus, Figure 1.1 is also inspired from the three-
dimensional representation of a trajectory modelled according to the framework
of Time-Geography. Whereas Time-Geography, which was featured before the era
of smartphones, focused on modeling the constraints on human activity in space
and time, the large collection of location data allows a more analytical approach
of this paradigm. However, this has raised new challenges in terms of data pre-
processing, among which trajectory reconstruction, stop and move detection, and
activity labelling. Also, by instanciating the concept of Time-Geography to real
life measurements, one has to define the scope (are we talking about a typical
daily life mobility or cover a while period of interest?), and the detail level (should
we distinguish between "stations" when the activity changes such as shopping and
dinning in the same mall? and to what extent a multi-modal journey would be
detailed?) [90, 91]

In this section, we focus on and discuss three types of segmentation methods
for trajectory data, namely: (i) stop & move detection based on location, (ii)
move episodes segmentation, which includes trajectory segmentation based on the
speed’s time series, and (iii) general method of change-point-based segmentation
for time series.

2.3.1 . Stop & Move Detection
As mentioned above, trajectory segmentation is driven by the application do-

main. If the trajectory consists of several trips, such as going from start point
A, passing by point B, then point C, to an end point D (cf Figure 2.2), a very
intuitive way of segmenting this trajectory is to split it into segments where the
moving object is stationary, and segments where the moving object is actually mov-
ing. The former segments are called stop segments while the latter are called move
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segments. We refer to this approach as stop and move segments detection. With
this presentation, between two stop segments, there is always a move segment.

Figure 2.2: Stop and move segments in a trajectory.

The research challenge with this representation is the detection of stop and
move segments. Parent et al. [102] discuss the latest approaches proposed for
finding stops within a trajectory. The authors examine the existing criteria and
assumption for the detection of stops episodes. Some of these assumptions are
based on the spatial distance and temporal duration as investigated in [145]. In this
work [145], Zheng et al. compute the stop episodes as sequences of consecutive
GPS points, where their spatial distance is below a threshold and the temporal
duration is higher than another threshold. In fact, the first work on stay point
detection was proposed by Li et al. [81]. The proposed algorithm works as follows:
first, it checks whether the distance between an anchor point (e.g. P5) in a
trajectory and its successors is below a given threshold (e.g. 100 meters). Then, it
measures the time span between the anchor point and the last successor (e.g. P8)
within the distance threshold. If the time span is greater than a given threshold, a
stop point (which comprises P5, P6, P7, and P8) is detected; the algorithm starts
from P9 to detect the next stop point. This work was further improved by Yuan et
al. [137] based on the idea of density clustering. After finding the stay point (from
P5 to P8 with P5 as an anchor point), their proposed algorithm further examines
the successor points from P6. For example, if the distance between P6 and P9 is
within the threshold, P9 will be added to the stay point.

Other methods identify the stop segments by employing a combination of
spatio-temporal indicators. For example, Yan et al. [133] detect the stop and move
segments by taking into account several spatio-temporal criteria such as position
density, velocity and direction. Other line of methods discover the stop segments by
using only coordinates and time stamps from continuous GPS trajectory, without
referring to the feature of velocity. For instance, Gong et al. [54] propose a two-
step approach for stops detection based on a variant of DBSCAN [46] algorithm
and support vector machine (SVM). The proposed variant, named DBSCAN-TE
(which stands for density-based spatial clustering of applications with noise plus
temporal and entropy constraints) identify the stops clusters, and feed the output
to SVM in order to distinguish between activity stops (such as work, shopping,
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etc.) and non activity stops (such as waiting for a green light, being stuck in a
congestion, etc.).

2.3.2 . Move Episodes Segmentation

Trajectory data can be segmented with other specifications than stops and
moves. For example, one of the popular criteria for segmenting trajectory data is
transportation means. Zheng et al. [143] use speed and acceleration to segment
trajectory data and identify change points. Based mainly on the common sense
that people walk between two transportation modes, the authors conclude that the
start point and end point of a Walk Segment could be a change point. Therefore,
they first distinguish between walk point and non-walk points using a loose upper
bound of velocity and that of acceleration. Then, they construct walk and non-
walk segments by respectively consecutive points walk and non-walk points. As a
result, the start point and end point of each walk-segment are potential change
points to segment the trip. A similar approach was developed by Liao et al.. Using
a Gaussian mixture model based on velocity, the authors classify the trajectory
data into three speed ranges: walking, low speed, and high speed. Therefore, a
new segment is created whenever there is a change in the speed range.

Beyond using any fixed spatial or temporal threshold, Bonavita et al. [19]
provide a general methodology that inspects users mobility, and identifies segmen-
tation thresholds that could match their mobility features. The proposed approach
allows to avoid any input parameters and adapts the thresholds to user’s trajectory
data. Another work proposed by Yan el al. [133] segments the data based on
semantic information such as road categories and public transport networks. For
instance, if the user takes a bike path, we can determine that the transportation
mode is either walking or bike, but certainly not bus, train or car. Also, the location
of bus stops and train stations are indicating whether the the traveling mean is bus
or train. We discuss further trajectory data annotation in Section 2.4.1 and how
to extract the usable information from trajectory data.

2.3.3 . Time Series Segmentation

Time series segmentation refers to the problem of segmenting data into coher-
ent segments. For instance, and depending on the application requirements, the
segmentation can be used to improve the performance of people activity recog-
nition by segmenting the data into the segments into non-overlapping segments,
each segment represents an activity. In this thesis work, we mainly focus on change
point detection which offers a valuable opportunity for univariate time series seg-
mentation and the detection of activities breakpoints. While it is out of our focus,
we list for reference some related work to time series segmentation that does not
use change point detection, but may concern on multivariate time series segmen-
tation.

Existing change point detection approaches in the literature can be classified in
term of sensing technology, types of activities, segmentation methods, and online
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or offline techniques. Offline time series change point detection techniques store
the whole data set at once, and look for point locations where the changes have
occurred based on a global view of the data. Online time series change point
detection is an extension of the offline change point detection methods, where
an offline change point detection is applied on each newly arrived sequence of
data points. The survey of Aminikhanghahi et al.[6] enumerates, categorizes, and
compares methods that have been proposed to detect change points in time series
in both batch and online modes. The choice of the method depends on the desired
outcome of the algorithm. The problem of activity segmentation constitutes one
of the main interests of change point detection in IoT. Several advances based
on wearable sensors [85], camera [2], or Smart Home [7] exist in the literature
for collecting information, segmenting data as well as understanding and inferring
human activities. As a matter of fact, the problem of activity recognition and
activity segmentation are heavily inter-connected topics since the starting point of
human activity recognition is to detect the transition points and label them with
activities.

Figure 2.3 shows an example time series that contains several change points
depicted by the green dashed lines. The time series illustrate the change of tem-
perature as well as the change of activities over 9 hours. This plot highlights that
the human changes its activity 9 times. The segment between two consecutive
change points is referred to as an activity. Thereafter, the objective of change
point detection is to discover these activity borders with change point detection.

Figure 2.3: A sample of time series with several change points depicted
by the green dashed lines.

In their survey paper, Aminikhanghahi et al. [6] provide an exhaustive review
of the existing supervised (e.g. Decision Tree, Support Vector Machine, etc.) and
unsupervised machine learning algorithms (e.g. Cumulative Sum, Bayesian model,
etc.) that have been designed for change point detection. The supervised methods
take a training set to learn a mapping to a target attribute from an input data.
In supervised learning, data is already labeled by activity classes collected during
data collection or provided by an expert. Unsupervised learning algorithms, on
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the contrary, are used to discover change in pattern within unlabeled data. Since
we are dealing with time series data, those approaches can be used to discover
transitions based on statistical properties of time series without prior knowledge
on class labels or a training set.

In another work, Aminikhanghahi et al. [7] used two different unsupervised
method to detect the transition in time series on unlabeled data. The first method
is Relative Unconstrained Least-Squares Importance Fitting (RuLSIF), and the
second one is Bayesian Change Point Detection (BCPD). The results show that
the best performance for activity transition detection can be achieved with RuLSIF
algorithm. However, setting appropriate values for RuLSIF parameters has a major
influence on the change point detection results. The same authors proposed in
another work a real-time non parametric change point detection, called SEP, which
uses Separation distance as a divergence measure to detect change points in high-
dimensional time series [9]. The goal of the proposal is to further advance the
line of research in density ratio change point detection algorithms, and introduce a
new unsupervised algorithm for change point detection in time-series data using the
Separation distance metric. The results show that their algorithm exhibits similar
behaviour as Kullback-Leibler importance estimation procedure (KLIEP) and uLSIF
(Unconstrained Least-Squares Importance Fitting) estimation, which uses Pearson
(PE) divergence as a dissimilarity measure.

Sadri et al. [109] propose an offline change point detection method based on
Information Gain Theory. The authors proposal takes the number of change points
and detects changes that affect the mean of the time series. The proposed method
can also detect changes in the variance of the time series using a moving window.
However, setting in advance the number of change points in the time series may
affects the change point detection performance.

Liu et al. [85] propose two different ways for time series segmentation (not
related to change point detection). The first methodology is an explicit segmenta-
tion whereby the data stream is segmented to a set of subsequences using certain
window size and sliding length. However, the two parameter affect directly the
transition detection precision. The second method is a sensor event-based seg-
mentation, which divides the data stream into subsequences containing certain
number of sensor events. This approach can dynamically adjust the window size
to fit different activities during recognition.

Concerning multivariate time series segmentation, Gharghabi et al. [53] present
a domain agnostic algorithm for multidimensional time series segmentation (which
can handle data streaming at a high rate). The proposed approach called Fast
Low-cost Unipotent Semantic Segmentation (FLUSS) exploits the Matrix Profile
structure introduced in [135] and detects changes in the shape of the time series.

2.3.4 . Discussion
To summarize, the studies of enriched trajectory data segmentation in the liter-

ature can be seen from two perspectives. The first one is based on GPS trajectory
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data, and aims first at segmenting data into stop & move segments, then detect
transportation means transitions within move segments by referring to the speed’s
time series. It is true that speed has shown good results in partitioning people’s
trajectories into several segments according to the change of transportation mode
as shown in [142], however, speed is very sensitive to traffic conditions and weather.
During a traffic jam, the average velocity of driving would be as slow as cycling,
and then the change in participant activities may not be captured.

The second perspective is founded on time series segmentation. In this thesis
work, we reviewed existing studies of change point detection methods for univariate
time series segmentation. Whilst the proposal of [7] showed the best performance
with RuLSIF algorithm for activity transition detection, setting appropriate values
for RuLSIF parameters has a major influence on the change point detection results.
Similarly, in the proposal of [109], which can detect changes in the variance of the
time series using a moving window, setting the number of change points in the
whole of the time series affect the change point detection results. Besides, with
the study of [85] where the authors use a certain window size and sliding length
to segment the data, two different activities may appear in the same window.
Therefore, detecting the exact change point timestamp may not be possible.

Furthermore, the above discussed methods concern only mono-variate time
series. While the work of [53] can be generalized to address multidimensional time
series, it assumes the existence of prior knowledge about the subset of time series
dimensions that are relevant for detection of each change point. In the context
of environmental crowdsensing, the multivariate time series’ dimensions do not
contribute evenly in the detection of activity transition, and no prior knowledge
about the weight of each dimension is known.

2.4 . Activity Recognition

Human activity recognition involves a wide range of applications from smart
homes activities [8] to daily human activities [138][85][31], to human mobility
[37][142] to cite a few. It represents a typical scenario of machine learning, and
some public datasets are widely used in the benchmarks. In this section, we review
some activity recognition studies from mobile sensing data. We mainly focus on
inferring activities from GPS trajectories and wearable sensors.

2.4.1 . Activity Recognition from GPS Trajectories
In the last decades, several studies start to focus on activity recognition using

GPS-based trajectory data. This type of problems aims to tag raw trajectory data
(or its segments) with semantic labels that enables to understand the trajectory
data on a semantic level and the mobility of the moving object as shown in Figure
2.4. The semantic information can be used in several applications, such as identi-
fying the most visited places by the moving object or offering trip recommendation.

In his survey, Zheng [141] differentiate between application requirements for
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Figure 2.4: From raw trajectory data to semantic trajectory.

tagging raw trajectory data (or its segments) with a semantic label such as trans-
portation modes inference and human activities detection. Following his proposed
diagram, the activity recognition from GPS trajectory abides by 3 steps: (1) Seg-
ment trajectory data using a segmentation methods. For instance, segment trajec-
tory data into stop & move segments, then segment the move segments according
the change of transportation means. (2) Extract features for each trajectory seg-
ment (or point). (3) Build a model that allows the classification of segments (or
points). Figure 2.5 depicts the general data flow for activity recognition from GPS
trajectory data. Since trajectory is primarily a sequence, sequence inference models
such as Dynamic Bayesian Network (DBN), Hidden Markov Model (HMM) and
Conditional Random Field (CRF), can be used to integrate information from tra-
jectory local points (or segments) and the sequential patterns between adjacent
points (or segments). In a more recent survey, Mazimpaka and Timpf [88] review
some generic methods for trajectory data mining and the relationships between
them. The authors comply with Zheng’s approach and state that most trajectory
classification algorithms follow a traditional two-step approach: first extracting a
set of discriminative features and then using the extracted features to train an
existing standard classification model.

Rehrl et al. [105] propose and evaluate a three-step trajectory data mining ap-
proach based on machine learning techniques. The authors focus on the detection
and classification problems of stops points in vehicle trajectories. The proposed
approach describes three mining steps that comprise stop detection, feature extrac-
tion, and stop segments classification. The authors first segment the trajectory
into stay points clusters (refer to Section 2.3.1 for stay points detection), then
after extracting 14 characteristics of each stop, they classify the detected stops
into two categories: traffic-relevant and non-traffic-relevant stops.

As for the field of transportation mode detection, the research community has
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Figure 2.5: General data flow for activity recognition from GPS trajec-
tory data.

provided several extensive works based on machine learning techniques. Etemad
et al. [47] provide a framework for the prediction of transportation mode based on
GPS data only. The key contribution of the authors work is to propose trajectory
point features generation and trajectory segments feature extraction which com-
prise bearing rate, the change rate of the bearing rate and the global and local
trajectory features. Thereafter, with the help of several machine learning algo-
rithms such as SVM, Decision Tree, and XGBoost, the authors attempt to classify
the moving object’s trajectory segments by transportation modes, which comprise
walking, train, bus, bike, driving, etc.

Instead of using hand-crafted features with traditional machine learning algo-
rithms, Dabiri and Heaslip [34] propose a travel mode inference model based on
convolutional neural network (CNN) schemes which are able to automatically drive
high-level features from raw input. The authors predict travel mode labels, which
include walk, bike, bus, driving, and train, from raw GPS trajectory data. The
proposed approach based on CNN architectures attains state-of-the-art accuracy
on GPS data from GeoLife dataset [143].

In the work of Zheng et al. [142], and based on GPS logs, the authors pro-
pose a supervised learning-based approach to infer people’s transportation modes,
including driving, walking, bus, and bicycle. The authors start by defining a set of
features that are more robust to traffic conditions, such as heading change rate,
stop rate, and velocity change rate, etc. Thereafter, and by using change point-
based detection to segment the trajectory data (refer to Section 2.3.1), the authors
extract features from each segment and employ them to train a supervised-learning
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model from transportation mode inference.
In another line of work related to vessels trajectory mining, Kontopoulos et

al. [74] attempt to classify vessel trajectories from real time stream into three
activities, which include trawling, longlining, and under way. The proposed method
first splits vessel trajectories into temporal segments of 1, 2, 4, 8, 12, and 24 hours,
and generate a set of features that are representative of the activities in question,
such as the average speed and its standard deviation, the average drift and its
standard deviation, and number of turns. The authors then train a Random Forest
classifier and compare it against three other classifiers: Gradient Boosted Tree,
Linear Discriminant Analysis, and Logistic Regression to learn the fishing activities
of the vessels.

2.4.2 . Activity Recognition from Wearable Sensors

With the recent exceptional development of mobile devices and high-computational,
small-sized, and low-cost sensors, an active area of research has emerged with the
main goal of extracting information from data collected by pervasive sensors. In
particular, human activity recognition from wearable sensors constitutes a high in-
terest task for researchers within the field, and covers a wide range of applications,
including, but not limited to, monitoring diabetes or heart disease patients with
their daily routines, human computer interaction, and following athletic activities.
Therefore, recognizing activities such as running, walking, standing up, and raising
hand is fundamental to provide feedback about the application scenario. In this
section, we review the existing work related to human activity recognition (HAR)
from wearable sensors.

Figure 2.6: Generic data acquisition architecture for Human Activity
Recognition.

In their survey, Lara and Labrado [78] examine the state of the art in HAR
based on wearable sensors, and propose a generic data acquisition architecture for
HAR system based on wearable sensors. Figure 2.6 illustrates the data acquisition
structure from wearable sensors to the storage in a local device or a remote server.
First, sensors that are attached to the human’s body measure information of in-
terest about a certain phenomena such as motion [67], location [32], temperature
[104], ECG [69], etc. These wearable sensors communicate with an integration
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device such as cellphone, PDA, laptop or a customized embedded system. The re-
ceived data from the sensors are then sent to an application server for visualization,
analysis or real time monitoring. UDP/IP or TCP/IP can be used as communica-
tion protocol, according to the desired level of reliability. It is worth mentioning
that these components are not necessarily all implemented in every HAR system,
and their deployment depends on the application scenario.

Figure 2.7: HAR system architecture based on wearable sensors.

Furthermore, the authors present a general architecture of any HAR system.
They argue that activity recognition from wearable sensors, as any other machine
learning application, goes under two stages: the training phase and the testing (also
called evaluation) phase. Figure 2.7 shows the common phases involved in these
two stages. During the training phase, the time series signals are split into time
windows on which features extraction is applied and relevant information is filtered.
Thereafter, machine learning methods are used to generate a HAR model from the
extracted features dataset. Similarly, during the testing phase, data segmented
according to a time window. The segmented data are used to extract the same
features and evaluate the priorly trained model.

Following the same HAR system architecture, Parkka et al. [104] used several
data signal acquiered by wearable sensors, such as accelerometer, microphone, and
air pressure, to classify everyday activities such as walking, running, and cycling.
In their approach, the authors segmented the signal into 1-s segments (72 272
segments were used), and extract six features, such as peak frequency of up-down
chest acceleration, median of up-down chest acceleration, peak power of up-down
chest acceleration, from these segments. For classifying the segments into daily
activities, three different classifiers, namely custom decision tree, an automatically
generated decision, and an artificial neural network (ANN) were used.

In another interesting work of the healthcare assessment domain, Zhang and
Sawchuk [138] present a framework based on Bag-of-Features (BoF) to build ac-
tivity recognition models using motion primitive symbols. The authors validate
the effectiveness of their BoF-based appraoch for the recognition of nine activity
classes, which are walking forward, walk left, walk right, go up stairs, go down
stairs, run forward, jump up, sit on a chair and stand. In contrast, Liu et al. [85]
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build a dictionary of time series patterns (called shapelets) to address the problem
of complex activity recognition, such as gestures or actions, from multiple sen-
sors. The authors extend the concept of shapelet to represent complex activities
by re-defining the shapelet as a representation of the activity.

Alternately, and instead of using handcrafted features from sensors signals, the
study of Jiang et al. [71] proposes to recognize human physical activities from
accelerometers and gyroscopes signals by learning automatically the optimal fea-
tures. The proposed approach transforms sensors signal sequences into images and
use Deep Convolutional Neural Networks (DCNN) to learn the best discriminative
features for recognize activities such as walking, standing, and walking downstairs.

Remaining in deep learning-based proposals, Ordóñez et al. [98] a framework
for activity recognition based on convolutional and LSTM recurrent units. The
main key of their proposal is the automatic design of features that does not require
expert knowledge. The authors demonstrate the suitability of their framework for
activity recognition from wearable sensors to infer activities of locomotion, postures
and gestures. Besides, Wang et al. [126] provide a summary of the recent advances
of sensor-based deep learning approaches for activity recognition.

2.4.3 . Discussion
In the last decades, several studies start to focus on activity recognition. We

reviewed recent approaches for activity detection and classification from wearable
sensors signals and GPS. We covered a breadth of activities, including daily human
activities, such as standing, walking, and going up stair, etc., and transportation
means, to provide a complete and comprehensive review. In addition to the type of
activity, we covered two taxonomy systems for activity recognition based on GPS
data and wearable sensors.

In addition, we provided a large set of research proposals that employ feature
extraction and classification to infer the type of activity, and weather the processing
is based on GPS data or wearable sensors signals. We highlighted that several types
of wearable sensors are used in the HAR research proposals, such as accelerometers,
microphone, and air pressure.

However, in the context of MCS, we do not use accelerometer or sound since
this information is privacy invasive. Furthermore, the previous disused propos-
als are either based on the geographical or temporal information, but an overall
methodological approach for combining these different aspects on real-world en-
riched trajectory data is missing. This combination may lead to a more robust
inference model rather than the usage of a single attribute, and it needs to be
investigated, which we will discussed in Chapter 3 of this dissertation.

2.5 . Generic Machine Learning Algorithms

The previous activity recognition works are based on data collected from GPS
and wearable sensors. As a matter of fact, the human activity recognition problem
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is not confined to only these two approaches, but can also falls into other ap-
plication scenarios where multivariate time series are generated by heterogeneous
sources of data [52]. In this section, we review some generic research designs that
can be employed to infer the human activity from multivariate time series. We
focus on multivariate time series classification (MTSC) and multi-view learning as
the main generic machine learning methods.

2.5.1 . Multivariate Time Series Classification
Human activity recognition falls in the problem of labelling data segments with

the type of activity which leads to a multivariate time series classification (MTSC)
problem based on data collected by multiple sources. There is a wide range of time
series classification approaches that can be classified into four categories: distance-
based methods [12], feature-based methods [104], ensemble methods [52], and
deep learning models [48][29][126]. The one-nearest neighbor (1-NN) classifier
with different distance measures, such as euclidean distance (ED) or dynamic time
wrapping (DTW) [12], is always considered as the benchmark to give a preliminary
evaluation in the MTSC problem. Feature-based methods is based on a variety of
features learned from TS data, through which we can distinguish the differences
between data and classify them. The disadvantages of these methods lie in the
complexity and weak generality of building features, which obviously limits their
versatility. This type of methods follow exactly the approach discussed above and
depicted in Figure 2.7.

Besides hand-engineered features, some methods use deep neural network
(DNN) to extract the features of time series for classification. In their survey,
Fawaz et al. [48] review the current studies of deep learning algorithms for time
series classification (TSC), and present an empirical study of the most recent
DNN architectures for TSC, including convolutional neural network (CNN), recur-
rent neural network (RNN), echo state network (ESN), and multi layer perceptron
(MLP). Besides univariate time series, the authors tested the approaches on 12
multivariate time series datasets, and give an overview of the most successful deep
learning applications.

Considering the real-life scenarios, where it is difficult or expensive to obtain
a large amount of labeled data for training, some studies used both labeled and
unlabeled data to learn the human activity, that is semi-supervised learning (SSL)
[127] on MTSC. The pioneering work by [127] propose a semi-supervised technique
for time series classification. The authors demonstrated that semi-supervised learn-
ing requires less human effort and generally achieves higher accuracy than training
on limited labels. The semi-supervised model [127] is based on the self-learning
concept with the one-nearest-neighbor (1-NN) classifier. First, the labeled set de-
noted by P (as positively labeled) is applied to train the 1-NN classifier C. Then,
the unlabeled samples U are given the pseudo labels progressively based on their
distance to the samples in P . Thereafter, the enriched labeled set P allows itera-
tively repeating the previous step and improving the classifier. More recently, the
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deep learning-based models on MTSC show promising performance under weak
supervision. For instance, Zhang et al. [139] propose a novel semi-supervised
MTSC model named time series attentional prototype network (TapNet) to ex-
plore the valuable information in the unlabeled samples. TapNet projects the raw
MTS data into a low-dimensional representation space. The unlabeled samples ap-
proach themselves to the class prototype in the representation space, where pseudo
labels are generated by the distance-based probability allowing training the model
progressively. Moreover, the hybrid convolutional neural network (CNN) and long
short-term memory (LSTM) structure adopted in TapNet allows modeling, respec-
tively, the variable interactions and the temporal features of MTS.

2.5.2 . Multi-View Learning

Another line of studies propose multi-view learning to classify time series data
originated from multiple sensors to recognize user activities. Garcia-Ceja et al.
[52] propose a method based on multi-view learning and stacked generalization for
fusing audio and accelerometer sensor data for human activity recognition using
wearable devices. Each sensor’s data is seen as a different “view”, and they are
combined using stacked generalization [131]. The approach trains a specific clas-
sification model over each view and an extra meta-learner using the view models
as input. The general idea of the authors is to combine data from heterogeneous
types of sensors to complement each other and thus, increase recognition accuracy.

Wang et al. [125] propose a framework based on deep learning to learn features
from different aspects of the data based on features of sequence and visualization.
In order to imitate the human brain, which can classify data based on visualization,
the authors transform the time series into an area graph. Area graph here is used
to model time series as images in order to apply Convolutional Neural Network
(CNN) on top of it. They use well-trained Long short-term memory with an
attention mechanism (LSTM-A) neural networks and CNN with attention (CNN-
A) to extract the features of time series data. LSTM-A extracts sequence features,
while CNN-A extracts visual features from the time series. Then, based on the
fusion of features, the authors carry out the time series classification task. Although
the approach gained promising results, further performance gain was achieved by
recent deep learning methods such as InceptionTime [49].

Li et al. [82] propose a multi-view discriminative bilinear projections (MDBP)
for multi-view MTSC. The proposed approach is a multi-view dimensionality re-
duction method for time series classification, which aims to extract discriminative
features from multi-view MTS data. MDBP mainly projects multi-view data to a
shared subspace through view-specific bilinear projections that preserve the tem-
poral structure of MTS, and learns discriminative features by incorporating a novel
supervised regularization.

2.5.3 . Discussion
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To summarize, the HAR problem falls into the problem of multivariate time
series classification, with sensors readings as input and the label of the activity
as output. However, MCS data is characterised by its heterogeneous property,
designating that data is originated from different sensors readings. In fact, some
sensors may be offline and do not transfer any data for hours, which may lead
to missing data problems. Therefore, the usage of MTSC is not straightforward.
Naturally, it is necessary to design a model that combines data from heterogeneous
sensors, and has the ability to classify it efficiently even if one (or more) dimension
is missing.

Furthermore, multi-view learning approach seems like a candidate solution for
the heterogeneity characteristic of the used sensors. As stated in [52], Each sensor’s
data is seen as a different “view”, and the combination of the different views may
be achieved by ensemble learning [146]. If some dimensions are missing, the model
would have the ability to infer the final label with the available dimensions.

2.6 . Moving Object Databases and Warehousing

Over the last decades, the interest in mobility data modeling and warehousing
has substantially grown with the larger availability of mobility data generated by
moving objects. Certainly, exploiting and managing moving objects trajectories
are necessary to discover knowledge about the moving object behaviours in sev-
eral applications domains which can include traffic monitoring, wildlife migrations
and movements, vessels trajectories, visitors behaviour in a museum, and many
location-based scenarios. A large number of database researches have been estab-
lished to enhance the data management field such as spatio-temporal database [80],
moving object database [60], and trajectory data warehouse (TDW) [122]. Similar
to traditional databases researches, the ultimate purpose of trajectory databases
is to establish an ad-hoc data representation and storage for the trajectories of
the moving objects. In this section, we summarize database research proposals
that deal with trajectory data in terms of moving objects databases (MOD) and
trajectory data warehouses (TDW).

2.6.1 . Moving Object Databases
Similar to traditional databases researches, the study of moving objects databases

starts by defining specific representations of the moving objects spatio-temporal
trajectories. These specific representations enable trajectory data querying and
processing of moving objects. However, in traditional databases, data is assumed
to be constant, unless it is explicitly modified, which can not be applied on moving
objects.

Solutions such as the proposal of Wolfson et al. [129] offer a representative data
model to deals with the continuous variation of the moving object location. Their
model called Moving Objects Spatio-Temporal (MOST) was proposed for mod-
eling dynamic attributes whose value changes continuously with time. DOMINO
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(Databases fOrMovINg Objects tracking) which is a corresponding moving ob-
ject database prototype, was produced by Wolfson et al. [130]. Built on top of
existing object-relational databases (e.g., Oracle), the system provides temporal
capabilities, uncertainty management, and location prediction.

Another major research prototype for MOD is built by Güting et al. [61] and
called SECONDO. SECONDO is an extensible database system which supports
new kinds of data models, especially spatial and spatio-temporal database models,
and consists of three major components namely the kernel, the optimizer, and the
GUI. The kernel is implemented on top of BerkeleyDB and written in C++. It
includes an extensible list of algebras to support query processing. The optimizer
is implemented in PROLOG, and provides SQL-like syntax with conjunctive query
optimization. The GUI is written in Java and offers an interface for visualizing the
moving objects.

In addition, SECONDO provides two algebras called Parallel SECONDO [87]
and Distributed SECONDO [95] for big data management. Parallel SECONDO,
developped by Lu and Güting [87], is a hybrid parallel processing system built upon
Hadoop and a set of single-computer SECONDO databases to achieve an efficient
parallel system for the mobility data processing. Following the same concept,
Distributed SECONDO, developped by Nidzwetzki and Güting [95], uses Apache
Cassandra as data storage and the extensible DBMS Secondo as a query processing
engine.

Besides SECONDO, HERMES is a similar prototype database engine for mov-
ing objects developed by Pelekis et al. [103]. The system provides a SQL-like query
language on top of OGC-compliant ORDBMS, namely Oracle and PosgreSQL.
HERMES exploits the spatial data types available in Oracle and extends them
through a new data cartridge with the MO types.

On top of the above mentioned trajectory database systems, a new research
prototype of trajectory database called MobilityDB was proposed by Zimányi et al.
[147]. Based on PostgreSQL and PostGIS, MobilityDB extends their type system
with abstract data types for representing moving object data. For example, the
system defines the tgeompoint type to represent moving geometry point objects.
This integration allows a seamless reuse of the powerful data management features
of the platform. Furthermore, MobilityDB is built on top of the existing operations,
indexing, aggregation, and optimization framework.

2.6.2 . Trajectory Data Warehousing
It is certain that MOD uses optimized queries and indexing techniques. How-

ever, according to Leonardi et al. [80], these queries are costly in terms of process-
ing and fetching the required data because of the usage of many JOIN operators.
Therefore, an alternative solution for handling trajectory data is to use trajectory
data warehouses technologies.

Data warehouse (DW), which uses the concept of multidimensional models,
provides tools to integrate heterogeneous sources of data into one common storage



46 CHAPTER 2. STATE OF THE ART

repository for further analysis. The concept of multidimensional models organises
data into a set of dimensions and fact tables. A fact table is composed of different
dimensions and measures, whereas dimensions provide information for the measures
included in the fact table. Figure 2.8 shows an example of the multidimensional
model for a company data warehouse that stores information about sales. DW
provides different analytical tools such as Online Analytical Processing (OLAP)
and data mining techniques to extract usable knowledge. Likewise Trajectory Data
Warehouse (TDW) can take advantage of DW utilities, and exploit moving object
data using OLAP and data mining techniques. In this section, we review the
existing studies in the literature on trajectory data warehousing.

Figure 2.8: An example of a multidimensional model.

In their survey, Alshafi et al. [4] provide a review on existing studies of the
management, the storage, and the analysis of trajectory data using data warehouse
technologies. In addition, the authors propose a framework that summarizes the
requirements to build the TDW. Figure 2.9 describes the structure of the proposed
framework. First, trajectory data is collected from different data sources. Then,
the extraction and integration of data from the different data sources is performed,
followed by a step of transformation of the data to the desired format. Thereafter,
after loading the data to the TDW, OLAP, data mining and visualization techniques
can be performed.

Recent studies follow the same structure as in Figure 2.9 to design a framework
for TDW. For instance, Leonardi et al. [80] create two TDW prototype systems;
the first one is for vessels trajectories and the other for cars trajectories moving
along a road network. The trajectory data cube of the vessels scenario consists of
two fact tables and six dimensions including the spatial and temporal dimensions,
as well as non-spatial dimensions. The spatial domain granularity is structured by
setting a grid of rectangles of size 330 m × 440 m. The spatial hierarchy is then
drawn by a collection of regular grids of increasing size. As for the temporal dimen-
sion, the base granularity of the hierarchy is a one day interval. For the road traffic
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Figure 2.9: TDW framework structure.

scenario, the base granular of the spatial domain hierarchy is set to the segment
of the road network. Similar to the study in [80], Leonardi et al. [79] use the mul-
tidimensional modeling to design a TDW called T-WAREHOUSE. The proposed
framework is implemented to cover all the required steps for TDW, from trajec-
tory reconstruction to OLAP analysis on mobility data. Furthermore, the study of
Campora et al. [24] designs and implements a TDW that support spatio-temporal
concepts on top of relational DBMS. The propose framework demonstrates that it
supports OLAP, SOLAP, and STOLAP queries using traffic data.

Wanger et al. [122] tackle the problem of semantic trajectories data enriched
with domain knowledge such as transportation means, and propose a TDW model
for mobility called Mob-Warehouse. The raised questions of Who, Where, When,
What, Why and How (or 5W1H) address the trajectory’s features and analyse the
different aspects of the “mobility story”. The authors implement a prototype of the
model using a large dataset of car trajectories. According to their proposed TDW
conceptual model, the authors define one fact table and six dimensions, which
address the six question of 5W1H. The two dimension that represent space and
time address the question of, respectively, where and when.

In the context of OLAP framework, studies such as Spatial OLAP (SOLAP)
[106] offer OLAP functionalities coupled with GIS functionalities for the analysis
of geo-located data. They have the ability to perform multidimensional exploring
of the data which can be presented in both detailed and aggregated forms [16].
The Open Geospatial Consortium (OGC) seeks to take inspiration from OLAP
cubes to apply them on a multi-dimensional ("n-D") array of values. Data Cubes
for geospatial information provide a way to integrate observations and geospatial
data for efficient data analytics, using the geospatial coverages (e.g. rasters and
imagery) data structure. Unlike conventional datacubes in OLAP, the dimensions
refer to metrics and not categorical or semantic data, and cover entirely some
spatial region.
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In addition, sequential OLAP was proposed by Lo et al. [86] to support OLAP
operations for sequences (S-OLAP). An event in an S-OLAP system consists of
a number of dimensions and measures and each dimension may be associated
with a concept hierarchy. If there is a logical ordering among a set of events, the
events can form a sequence. A logical ordering can be based on another attribute
(e.g. time attribute). Built upon Sequential OLAP, Interval OLAP or I-OLAP
[73] was proposed to analyse and process efficiently data organized as intervals in
an OLAP way. Koncilia et al. (2014) define an interval as the time between two
consecutive events.

Last but not least, based on their proposed MOD called MobilityDB, Vaisman
and Zimányi [120] extend existing proposal on TDW and integrate relational ware-
house data with moving object data to realize the notion of spatio-temporal queries
as defined in [119]. Therefore, the authors implement Mobility DW which gives
the possibility to define moving objects as measures in a DW fact table. Similar to
MobilityDB, Mobility DW is impelemented on top of PostgreSQL, but the authors
claim that it can be extended to big data hadoop-based environments.

2.6.3 . Other Works on DW
The previous studies address the problem of defining a DW in a unified-granular

framework. However, the studies of Bimonte et al. [17] and Iftikhar and Pedersen
[66] tackle the problem of multi-granularity in a DW. The study Bimonte et al.
[17] propose a linear framework to handle the missing values in a multi-granular
data warehouse. The authors propose a generic approach called adjustment to
impute missing values from the detailed and aggregated facts. The aggregated
facts are used to estimate detailed missing facts in vertical manner. The detailed
facts, on the other side, are used to estimated missing facts based on facts with
the same dimensions levels in an horizontal manner. Motivated by the lacking
ability of current models to store data at different granularity in DW, Iftikhar and
Pedersen [66] present alternative schema designs to structure both the detail and
the aggregated data at different levels of granularity. The proposed alternatives
define the time dimension granularity as a single hierarchy. Therefore, data in the
fact table is associated with a time dimension in a particular granularity. Both
proposal [17] [66] deal with DW in general and do not concern moving objects.

In the context of moving objects, a tailor-made data model has been proposed
in [124] and [123] where the concepts of continuous dimension and continuous fact
make it possible to capture the spatio-temporal fact of mobility in a pre-defined
network. An adapted indexing method makes it possible to respond effectively to
spatio-temporal aggregate queries. The advantage of this model is to allow spatial
and temporal queries on the fly, without being limited to a prior division of space
or time. The downside is that this model is more difficult to implement. Defining
a granularity and a spatial and temporal frame of reference for the dimensions is a
solution often adopted in practice. This is the case in the model proposed for the
analysis of spatio-temporal activities in [111]. These works are the most similar
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to our context of enriched trajectory data, but they were limited to trajectories
without associated measures.

2.6.4 . Discussion
To summarize, MODs such as MOST [129], SECONDO [61] and HERMES

[103] were proposed to support spatio-temporal data. While these MODs have
the ability to handle MO data, they are oriented toward addressing the problem of
trajectory DWs.

Solutions such as Spatial OLAP [106] have the ability to perform multidimen-
sional exploring of the data which can be presented in both detailed and aggregated
forms. However, in a SOLAP model, the spatial attribute is represented as a car-
tographic object (i.e. points, lines and polygons) [16]. This opens the issue of
drawing the spatial dimension’s hierarchy in SOLAP model. Typically, spatial hi-
erarchy is depicted by the topological relations (i.e. inclusion, overlap) between
members of the same and/or different spatial levels. This affects the accuracy of
the aggregation process [16]. In OGC and unlike conventional data cubes in OLAP,
the dimensions refer to metrics and not categorical or semantic data, and cover
entirely some spatial region. In MCS, only visited locations are materialized.

Other solutions propose conceptual framework to support semantic trajectories
such as Mob-warehouse [122], provide analysis of the mobility story of the moving
object. Indeed, the spatial dimension is an important one in the analysis, yet it
is not the only focus of the analysis related to enriched trajectories. One of the
important facets is to address the continuous measurements facet of the enriched
trajectory combined with any dimensions, and not only on the spatial one, which is
not possible with Mob-Warehouse. We are interested in the analysis of the desired
phenomena during specific time periods with discard to the spatial dimension. In
contrast, Sequential OLAP [86] and Interval OLAP [73] provide analysis for the
temporal perspectives. However, in Sequential OLAP, it is necessary to have a
logical ordering among a set of events. Yet, in MCS context, events are not
as dense and regular as measurements and do not necessarily indicate a logical
ordering. Plus, we are interested in the spatial dimension in the data analysis and
exploration, unlike Sequential OLAP and Interval OLAP.
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3.1 . Introduction

In this chapter, we present the first contributions of this thesis, i.e. trajectory
data construction and semantic enrichment. Trajectory data construction consists
of pre-processing the raw enriched trajectory data, which paves the way for purified
and sound trajectory data series, by cleaning the trajectory data from outliers
and noise, and interpolating missing values. Therefore, a sound version of the
trajectory data is achieved. Furthermore, the major contributions of this thesis
work is the design of a comprehensive annotation framework to enrich trajectory
data with contextual information. Precisely, we build a model for multidimensional
data segmentation based on change point detection (CPD) to detect participants
activities boundaries. Thereafter, we design a hybrid model for context recognition
which can integrate geographic information as well as multivariate time series data
to annotate trajectory data with the type of activity and movement.

This chapter is organised as follows: Section 3.2 presents the segmentation
framework based on change point detection for multidimensional time series. Sec-
tion 3.3 is the fundamental part of trajectory data enrichment, which annotate
MCS data with the type of activity and movement.

3.2 . Multidimensional time series segmentation

Air quality and exposure to pollution are a central concern for people living in
urban areas. As the harmful effects of air pollutants on their health is alarming.
The key concern to reduce the risk of these pollutants on individual’s health is by
understanding the totality of exposure. Air pollution monitoring is getting more
interest nowadays, due to the rapid advances of the Internet of things (IoT) along
with the emergence of the Mobile Crowd Sensing (MCS) paradigm.

The mentioned technologies coupled with the widespread use of GPS, allows
volunteers to contribute their collected data in order to get personalized insights
about their exposures to pollution. Polluscope 1 is a French project deployed in
Île-de-France (i.e., Paris region), and is a typical use case study based on MCS. In
Polluscope, participants are equipped with a sensor kit which can measure different
pollutants such as Nitrogen dioxide (NO2), Particulate Matters (PMS), Black Car-
bon (BC), Temperature, etc., independently form their environment either indoor
or outdoor.

Air quality strongly depends on the context2 of the participant, thus in order to
understand and identify participants’ exposure to pollution, it is essential to identify
the context of the participants. To avoid miss-classification of the exposure wrt
the context (micro-environment), the participants need to fill a time-use diary, but

1http://polluscope.uvsq.fr
2In this thesis, the terms "context" and "micro-environment" are used interchange-

ably.
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in real-life, they rarely thoroughly do this self-reporting task. Therefore, there is a
need to identify the context automatically from the collected raw data. However,
since the context changes with the participants’ activity and whereabouts, this
also means that we need to detect the changes and segment the geo-data series
into non overlapping segments according to participants micro-environments (i.e.
home, work, transport, streets, park, etc.). Segmented data is a prerequisite for
activity recognition mining task, which assigns to each segment a labeled with a
single activity.

As a matter of fact, segmentation in our process means the detection of changes
in micro-environment and events, and not only the change from a stop segment
to a move segment. Segmentation can occur in the same stop segment such as
moving from a shopping gallery to a restaurant in the same shopping mall. It can
also occur with the change of transportation means from one to another in the
same move segments, or because of the events.

In this section, we propose a multi-dimensional time series segmentation to
discover activities and events boundaries in the context of mobile crowd sensing.
The main contribution is precisely the combination of different dimensions in the
change point detection, when not all dimensions may cause or contribute evenly in
discovering the change in participant’s activities or events. Our approach combines
data pre-preparation, change point detection on individual dimensions, and a post-
processing phase to fuse the detection from multiple dimensions. This last phase
is based on a supervised learning approach. We implement and test our framework
in a real-application setting. The rest of this section is organised as follows. We
present a summary of works related to change point detection in Section 3.2.1.
The formal presentation of our change point detection model is explained in Sec-
tion 3.2.2. Section 3.2.3 presents the experimental results and evaluation of the
change point detection model on real-world data. Section 3.2.4 summarises the
main contributions regarding multi-dimensional data segmentation model based on
change point detection.

3.2.1 . Change Point Detection: Summary of Related Work

During the investigation of existing approaches in the literature in Section 2.3.3,
there are a lot of studies on time series segmentation and more precisely change
point detection in time series. Such research operates on limited types of time
series. Some algorithms, such as kernel-based method or Guassian Process, require
the time series to be i.i.d or stationary, and others, such as uLSIF and KLIEP, offer
a parametric approach for non-stationary time series [6]. Another issue raises with
multi-dimensional data, where not all dimensions may cause the change. These
constraints are not coherent with the nature of mobile crowd sensing data, where
time series segmentation should not be subject to any constraints. Additionally,
the inclusion of weak or irrelevant dimensions should not degrade the performance
of the change point detection.
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However, Aminikhanghahi et al.[9] state that, compared with other change-
point detection methods, density ratio based algorithms offer several advantages for
real world problems. One of the direct density ratio change point detection methods
that has no limitations on time series data distribution and does not require any
condition on data stationarity, is the cumulative sum (CUSUM) algorithm [6].
The contribution of this work is formulated as a proposed change point detection
combination of multi-dimensional time series obtained from real world geo-location
and sensors data, where time series dimensions do not contribute evenly in the
activity transition detection. To the best of our knowledge, no prior work focuses
on the segmentation of human whereabouts using climatic sensors, environmental
sensors and geo-location.

3.2.2 . Change Point Detection Model

Change point 
detection

Post-processing

Ensemble method 
learning

Adaboost
Decision Tree

SVM
Logistic Regression

Data collection 
and preparation

Figure 3.1: Architecture of change point detection model.

In this section, we introduce our change point detection approach based on
CUSUM algorithm for multi-dimensional time series in environmental crowd sens-
ing. Both the theory and the implementation aspects of the approach will be
discussed. The holistic schema of our proposed approach is shown in Figure 3.1.
The implementation of our proposed process includes four parts: data collection
and preparation, change point detection, post-processing and ensemble method
learning.
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Data Collection and Preparation

Real-life data are collected within the scope of Polluscope project. Three cohorts
of volunteers are recruited to collect sensory spatio-temporal data series. Partic-
ipants are equipped with air pollution sensors and tablets empowered with GPS
chipsets. The sensors collect time annotated measurements of Particulate Matter
(PM1.0, PM10, PM2.5), NO2, Black Carbon, Temperature and Humidity, and the
tablet records participants’ geo-locations and allows to annotate data with activ-
ities and pollution related events. Activities are depicted by micro-environments
of participants (e.g., Home, Office, Park, Restaurant, etc.). Events are temporary
actions for a brief period (e.g., Start cooking, Open a window, Close a window,
Smoking, Turn on a chimney, etc.). Activity and event recognition allow to en-
rich semantically the collected data with the context. More that 86 volunteers
participated in the data collection phase. Each participant carries a kit composed
of an aethalometer for measuring Black Carbon, a gaz sensor which measures the
Nitrogen dioxide (NO2), and a sensor for various size particulate matters (PM)
measurements (the sensors have been selected after performing evaluation in [76])
- all bundled with a tablet for seven days with no restrictions on space and time.
For more information on data collection’s protocol, refer to Appendix A. As such
the MCS scheme is opportunistic, aiming at reporting the participants’ exposure in
accordance with their habits and their daily life. A sequence of these data contains
kit ID, timestamp, and values from different sensors. Figure 3.2 shows an example
of sequences collected by tablets and different sensors. This sequence contains a
series of logs which include timestamp, kit ID, Latitude, Longitude, ambient air
data (i.e., Temperature, Humidity, PM2.5, PM10, PM1.0, NO2 and Black Car-
bon), activity (Car) and events (Close a window). The air quality (AQ) data plus
GPS data have been undergone a pre-processing phase, which consists of cleaning
data from noise and outliers, as well as interpolating missing values. This phase is
discussed further in Section 3.3.4.

Participants geo-locations are collected as GPS logs. As shown in the upper
part of Figure 3.1 by dotted rectangle, each GPS log is a sequence of GPS points
that contain latitude, longitude and timestamp. We drive the velocity time series
from GPS coordinates.

Figure 3.2: An Overview of data collected in the context of MCS

It is important to emphasize that not all data are thoroughly annotated with
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participants context. Also most sensor data are noisy, and require a prepossessing
phase to clean them from irrelevant measurements. We have observed this espe-
cially in the GPS data, BC, and some PM data. The sensors for climatic parameters
do not show such defect. Therefore, the data preparation is twofold. On the one
hand, a de-noising process is applied to clean the data. On the other hand, the
highest quality sample of annotated data is selected as a baseline to validate the
process of data segmentation. The idea is to generalize the change point detection
to all participants data, by using the model derived from a good-quality dataset.

Change Point Detection

The change point detection problem is the process of detecting abrupt changes
in time series data. The change points are detected when the probability distri-
bution of time series changes abruptly between two consecutive intervals. The
overall question is: how to combine all these different aspects of the data (geo-
location, sensors, partially annotated activities and events) to segment and discover
the context of the user, and to discriminate the observations in different micro-
environment? This is called a holistic approach of activity recognition [40].

The segmentation phase consists mainly in splitting spatio-temporal data into
coherent segments. Each segment represents a micro-environment. One way to
do this segmentation is to detect the changes either in the ambient time series,
or in the geo-location. The former corresponds to the problem of change point
detection (CPD) in time series. Many solutions exist in the literature when it comes
to mono-variate time series. As for the the GPS data, it is related to the so-called
stop & move detection in trajectories. In this thesis work, we use the change point
detection in time series for both problems, simply by adding the velocity dimension,
which is easily derived from geo-location data.

The CUmulative SUM (CUSUM) is one of the main CPD techniques in mono-
dimensional time series. It has no limitation on time series data distribution and
does not require any condition on data stationarity [6]. First introduced by [99],
CUSUM algorithm is a sequential analysis technique, and it is the most familiar
change point detection algorithm. The CUSUM proposed by [99] uses the Sequen-
tial probability ratio test (SPRT) to detect change points. The algorithm performs
by comparing probability distributions of two time series intervals. As the two in-
tervals are moving, the test issues an alarm of a change point when the probability
distributions of the two intervals are significantly different.

One form of implementing the cumulative sum test is given by the Expression
3.1, which detects changes in the positive and negative direction (g+j and g−j ) in
the data (x) [59]. The decision rule is: if g+j and g−j exceeded a user defined
threshold (h), then an alarm is given (talarm), a change point has been detected,
and the test statistic is reset (g+t = 0 and g−t = 0). This algorithm depends also
on another parameter called drift (ν) for drift correction to avoid false alarm or
slow drift. The CUmulative SUM (CUSUM) test is given by:
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st = xt − xt−1
g+t = max(g+t−1 + st − ν, 0)
g−t = max(g+t−1 − st − ν, 0)

(3.1)

if g+t > h or g−t > h :


talarm = t

g+t = 0

g−t = 0

The CUSUM test accuracy depends on tuning the parameters h and ν. Both
parameters present a trade-off between faster detection of true alarms and allowing
more false alarms. High values of ν allow false alarms at the cost of obtaining a
delayed detection [59]. As soon as the CUSUM test exceeds a threshold h, the
change is detected. The accuracy of this algorithm is often computed by indicators
such as false positive rate.

Post-Processing

In multi-dimensional time series, some dimensions may contribute more in the
explanation of the change, while others may be considered as irrelevant. The
participant context is very highly correlated with ambient air temperature and
humidity more than, for example, speed. Because, first, the temperature and
humidity indoor are different than outdoor. When participant changes their micro-
environment, temperature and humidity change abruptly. Second, speed is very
sensitive to traffic conditions. During a traffic jam, using a transportation mode
such as Car or Bus, participant’s speed drops frequently without indicating a change
in micro-environment.

The application of the CUSUM algorithm on different dimensions of time se-
ries may generate numerous false alarms. Post-processing the CUSUM algorithm
results will improve the change point detection accuracy by merging the detected
change points into one change point if a certain condition is verified. The condi-
tion, in this work, is the time difference between two consecutive detected change
points should be less than 5 minutes. If the time difference between two con-
secutive detected change points is less than 5 minutes, then the detected change
points will be merged into one detected change point. As shown in Table 3.1,
participants do not stay in the same micro-environment for a short period of time.
On the average, the least time spent in one micro-environment are found to be 8
minutes.
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Table 3.1: Overview of time spent in every micro-environment for four
participants

Micro-Environment Mean SD Min Median Max

Office 03:58:36 02:32:04 00:02:00 03:58:30 09:19:00
Bus 00:08:02 00:05:09 00:03:00 00:06:00 00:18:00
Cinema 02:00:00 0 02:00:00 02:00:00 02:00:00
Home 04:30:26 05:48:49 00:00:00 01:10:00 23:16:00
Store 00:19:25 00:26:53 00:01:00 00:10:00 01:39:00
Metro 00:25:07 00:09:10 00:15:00 00:23:30 00:40:00
Park 01:20:00 0 01:20:00 01:20:00 01:20:00
Restaurant 00:43:52 00:27:12 00:24:00 00:37:00 01:50:00
Street 00:07:53 00:09:05 00:00:00 00:05:00 00:55:00
Train 00:22:42 00:13:20 00:01:00 00:20:30 00:48:00
Car 00:26:12 00:37:32 00:01:00 00:08:30 02:52:00
Bike 01:08:00 00:44:27 00:14:00 01:12:00 02:22:00

Ensemble Method Learning

One of the contribution of this work is the combination of multi-dimensional sen-
sory time series data and geo-located data (i.e. GPS data) to detect the changes
boundaries of participants micro-environments when some dimensions may be con-
sidered irrelevant to the change detection or not all dimensions cause the change.
In order to enhance the accuracy of the change point detection, many ensemble
methods [146] have been proposed to further enhance the algorithms accuracy by
combining learners rather than trying to find the best single learner.

There are different types of combination methods, among which, the most
popular are: Averaging, Voting and Combining by Learning [146]. Averaging
is the most popular and fundamental combination method for numeric outputs.
Regression is an explicit example of how Averaging works. Voting, on the other
hand, is the most popular and fundamental combination method for nominal out-
put. Classification is an explicit example of how Voting works. There are four
types of voting [146]: (1) Majority Voting is the most popular voting method.
Here, every classifier votes for one class label, and the final output class label is
the one that receives more than half of the votes. (2) Plurality Voting takes the
class label which receives the largest number of votes as the final winner. (3) If
the individual classifiers are with unequal performance, it is intuitive to give more
power to the stronger classifiers in voting and this is realized by Weighted Voting.
These three voting methods are suitable for classifiers that use crisp class labels.
However, if individual classifier produce class probability outputs (such as Naive
Bayes, Logistic Regression), Soft Voting is the choice.

However, CUSUM algorithm produces the timestamp when the change has oc-
curred. Some dimensions (such as Temperature and Humidity) are more important
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and correlated to the change in participants activities than others. The most suit-
able for that type of multi-dimensional time series would be the Weighted Voting.
The key here is to assign weights in proportion to the performance of individual
learners. Assigning inadequate weights has a major effect on the learning accuracy.

To assign automatic weights to single learner, Combining by Learning method
is a procedure where individual learners are trained for the first level learners and
combined by a learner for the second-level learner. Stacking introduced by [132]
[113] [22], can be viewed as a generalization of many Combining by Learning
methods.

In this work, we propose a model that integrates the CUSUM change point
detection algorithm with multi-dimensional time series to achieve a strong com-
bination abilities. The model works as follows: (1) the change point detection
algorithm is applied on each time series dimension separately; (2) each dimension
generates a set of detected change points, with a certain accuracy to the ground
truth; (3) the weights of every dimension are then learned from the gold set data
annotated by activities and events of participants. The model used in this ex-
periment include: AdaBoost with Decision Tree, Decision Tree (DT), SVM and
Logistic Regression. The proposed model allows to understand which dimension is
affected by the changes in participants micro-environments and pollution related
events.

3.2.3 . Experiments and Results

The above-mentioned segmentation model was implemented in Python using
scikit-learn (0.22.2) for Combining by Learning method, and tested on real environ-
mental crowd sensing data to detect boundaries transition in activity and pollution
related events.

Experiments

We evaluate our change point detection model to segment participants’ daily activ-
ities and pollution related events. We use for the experiment phase environmental
crowd sensing data collected over 7 days by two participants. Each participant is
equipped with three sensors that record ambient air data (i.e. Temperature, Hu-
midity, Particulate Matter: PM2.5, PM10, PM1.0, NO2 and Black Carbon) and a
tablet for geo-location and data annotation.

From geo-location data, speed of participant every minute is calculated. Then,
our multi-dimensional time series has six dimensions: Speed, Black Carbon, NO2,
Temperature, Humidity, and Particulate Matter PM2.5.

Parameters optimization

Setting Cumulative Sum algorithm parameters, threshold h and drift ν, depend
on each dimension. Several parameters combinations have been tested to choose
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Table 3.2: Cumulative Sum parameters optimization for each dimension

Dimension Threshold Drift Precision Recall

Temperature 0.6 0.05 0.72 0.78
Humidity 4 0.05 0.70 0.82
PM 2.5 25 0.03 0.87 0.30
NO2 15 15 0.66 0.26
Black Carbon 900 500 0.22 0.65
Speed 1 0.1 0.12 0.52

Post-processing - - 0.45 1

the one that yields the highest performance. The parameters that have been used
in this experiment are given in Table 3.2. To evaluate the overall performance
of the algorithm, we compute the precision to measure the ratio of true positive
change points to total points classified as change points. The recall (true positive
rate) is also computed to measure the portion of change points that was correctly
detected.

To evaluate the performance of the change point detection, we consider as a
true positive every detected change point that belongs to a buffered interval of 5
minutes before and after the actual change. Overall, Temperature and Humidity
have the highest precision and recall at the same time. However, Speed generates
the highest number of false positives. Thereby, Temperature and Humidity should
be assigned with more power than the rest of dimensions. After post-processing
the results, the recall, the true positive rate, records a score of 100%, which
means that all the change points have been detected successfully. However, the
precision indicates that many false alarms are still being detected due to some weak
dimensions

Ensemble learning performance

For the ensemble learning step, a second data set is generated. This data set
contains the output of the CUSUM algorithm results. In other words, the output
of the first-level learners is considered as input for the second-level learner. The
response vector is the vector of the actual change points. This vector is binary
re-coded and takes 1 if there is a change point, and 0 if not.

We study the performance of different classifier models as a predictor of the
response vector. We divided the first participant data into two sets. 70% of the
data is for training the models, and the rest 30% for testing the models. In order
to validate our approach and generalize it on other un-annotated data, we use the
second participant data of one day and compare it with our ground truth. The
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(a) Accuracy (b) AUC

(c) Precision scores (d) Recall scores

Figure 3.3: Performances of CPD during testing and validation phases.

results of the change point detection (CPD) experiment are summarized in Figures
3.3a,3.3b, 3.3c and 3.3d.

The experience conducted on real world data shows that our approach outper-
forms the traditional cumulative sum algorithm. During the testing phase, when
comparing the combining learning algorithms’ precisions to the overall precision
of the traditional CUSUM algorithm in Figure 3.3c, Decision Tree, SVM, Logistic
Regression and AdaBoost with Decision Tree base learner outperform the CUSUM
algorithm. Considering the recall of the CUSUM after post-processing shown in
Figure 3.3d, Decision Tree and AdaBoost show good recall scores with 75% each.

When comparing the performance of the combining learners algorithms, con-
sidering the accuracy in Figure 3.3a, all the algorithms perform well during the
testing phase, and Decision Tree and AdaBoost outperform the other algorithms
with 93%. When considering the validation phase, AdaBoost outperforms all the
other algorithms with an accuracy of 93%. Considering the Area Under the ROC
Curve (AUC), during the testing phase, Decision Tree and AdaBoost outperform
the other algorithms with 87.5%. However, during the validation phase, AdaBoost
outperforms the other algorithms with 89%.

3.2.4 . Summary
Change point detection segmentation can provide insights about human be-

haviour’s transition. Participants’ whereabouts can be learned after segmenting
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the collected multi-dimensional time series, and discover insights about individual
exposure to pollution.

In this section, we presented a change point detection approach based on
the Cumulative Sum algorithm to discover transition points in multi-dimensional
time series using real world data collected in the context of environmental crowd
sensing. The experiment conducted in multi-dimensional time series, where not
all dimensions may cause the change, shows that our approach outperforms the
traditional CUSUM algorithm, using AdaBoost as a combining learner algorithm.

3.3 . Learning the Micro-environment from Rich Trajectories in
the context of Mobile Crowd Sensing

As mentioned in Section 3.2, air quality strongly depends on the context, and
so is the individual exposure to pollution. For this reason, there is a great interest
in making exposure analysis context-aware. Beyond that, ignoring the context
would make the data collection useless, precisely because of the influence of the
micro-environment. However, the context annotation is by far the most difficult
information to collect in a real-life application setting since very few participants
thoroughly annotate their micro-environment. Therefore, there is a great interest
in unburdening the participants by automatically detecting the context.

The problem of automatically annotating MCS data can be seen as a problem
of activity recognition from enriched trajectory data collected by heterogeneous
sensors. There is a broad variability of research studies on the subject of activity
recognition. The survey by Yu Zheng [141] proposes a systematic review of the
major research in trajectory mining. Whilst the author provides a variety of trajec-
tory data mining methods, an overall approach that combines several sensors data
besides GPS data is missing. In contrast, combining several sensory data suggests
the usage of multivariate time series classification (MTSC) for activity recognition.
Although this solution showed excellent performance in some application domains
[107], its success is not guaranteed with heterogeneous sensors such as environ-
mental data. First, the usage of heterogeneous data may induce some missing
data problems when some sensors stop working. Therefore, there is a need for
a model that characterises the micro-environments even with missing dimensions.
Second, it is not known to what extent environmental data can be determining of
micro-environments, which needs to be investigated.

As a matter of fact, when visually exploring the data, we noticed that micro-
environments preserve a certain pattern. Moreover, we observe the existence of
an inter-sensor correlation and with the context. Figure 3.4 shows the evolution
of three dimensions (i.e. Black Carbon (BC), NO2 and Particulate Matters (PM))
with micro-environments identification. As shown in Figure 3.4, BC and NO2 pre-
serve the same shapes and statistical characteristics in the micro-environment “car”.
Specifically, BC maintains the same fluctuations pattern in the micro-environment
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“car” and conserves approximately the same average value in these segments. Like-
wise, NO2 fluctuates promptly and preserves roughly the same average value in
both segments of the micro-environment “car” as well as approximate maximum
values. We also note that NO2 values keep roughly the same pattern in the micro-
environment “indoor”. Moreover, we can observe the existence of a correlation
between the three dimensions during the whole timeline, meaning that when one
of the dimensions fluctuates, the other two follow.

The idea we promote in this section is to utilize a wisely chosen annotated
dataset in order to train a model on the acquired enriched trajectories (com-
posed of both environmental and mobility dimensions) as predictors of the micro-
environment. We hypothesize that the multivariate time series collected by the
MCS campaigns not only depends on the micro-environment but could be a proxy
of it.

Figure 3.4: Inter-sensor and micro-environment correlations.

The question that arises now is how to combine all these different heteroge-
neous aspects of the data (geo-location, sensors) to identify the user’s context
automatically, and how much a model can discriminate the observations in dif-
ferent micro-environments. In this section, we evaluate different approaches and
provide a framework dedicated to the preparation, the application, and the com-
parison of different machine learning algorithms. Precisely, we make the following
contributions in this thesis work:

• first and foremost, we identify the problem of micro-environment recognition
in the MCS context.

• we demonstrate that AQ determines the type of micro-environment.
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• thereafter, we propose a ML approach based on multi-view learning for the
recognition of micro-environment.

• afterwards, we extend the proposed micro-environment recognition approach
to include another layer which consists of the detection of stay locations (i.e.
stop detection) and transportation modes from GPS data; also known as
trajectory segmentation. We refer to this extension as the hybrid approach.

• we optimise the proposed approaches either by analysing the exact geolo-
cation, or simply applying some a priori rules. We emphasize that the first
optimisation is privacy invasive whilst the other one is privacy friendly.

• we conduct extensive experiments in a real scenario setting and compare
with baselines, which shows the effectiveness of our proposed approaches.

In the current work, Polluscope data is considered as a running application
example based on MCS. However, the proposed approach can be generalised on
other MCS applications besides the AQ scenarios. In fact, the same process of
activity recognition of moving objects holds with other sensory data such as sound
for noise sensing or temperature for heat comfort assessment. For instance, the
collaborative AIRLESS project between Cambridge and Beijing, which is a typical
use case study based on MCS, aims to understand the impact of air pollution on
human health in the world’s largest country. One important element of AIRLESS
is to automatically detect and classify major exposure-related micro-environments
(home, work, other static, in-transit) using GPS coordinates, accelerometry, and
noise. The classification of micro-environment can remarkably improve exposure
metrics since pollutant inhalation rates vary significantly by location and micro-
environment [27].

The rest of this section is organised as follows. We summarise the works
related to activity recognition in Section 3.3.1. Section 3.3.2 gives a thorough
problem description. Section 3.3.3 describes the multi-view learning approach. The
presentation of our micro-environment recognition model is discussed in Section
3.3.4 and 3.3.5. Section 3.3.6 presents the experimental results and evaluation of
the micro-environment recognition model in the context of environmental crowd
sensing. Section 3.3.7 gives an extensive discussion of the perspectives of this
work. In section 3.3.8, we summarize our conclusions and provide directions for
future work.

3.3.1 . Activity Recognition: Summary of Related Work
In the last recent years, Human activity recognition (HAR) has gained a great

interest from the research community. Its application domains encompasses all
the activities performed within daily human activities and human mobility. Micro-
environment recognition falls in the same problem of HAR.

As discussed in Section 2.4, a wide range of research proposals exist in the
literature. Such studies are either based on multivariate time series classification
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without any concern or attention to trajectory data to classify the label of the
micro-environment, or related to stop and move detection in trajectory data where
the label of the micro-environment is reduced to stop/move (where stops are indoor
and moves are outdoor, in general). Transportation mode detection approaches
can reveal the label of the move segments but not indoor segments.

However, with the advent of MCS, the focus has shifted to considering both
aspects of the two sources of data, and bring them in the activity recognition loop.
Driven from multivariate time series classification and stop & move detection within
trajectories studies, this thesis investigates semantic enrichment of MCS data com-
ing from multi-sensors and GPS tracks in order to add contextual information to
the data. To the best of our knowledge, no previous approaches that combine en-
vironmental time series and trajectory data in the micro-environment recognition
problem have been proposed so far, which is the focus of the current work.

3.3.2 . Problem Formalization
Before detailing the methodology of the proposed approach, we start with a

thorough description of the problem.

What are rich trajectories ?

In the context of MCS, the collected type of data are typically continuous sensors
measures along with the participant’s spatial location (e.g., GPS coordinates).
They represent a specific type of trajectories that we call rich trajectories. We
define hereafter this concept, starting from the definition of time series.

Definition 3.3.1. (Univariate Time Series). A univariate time series is a
sequence U = [(t1, v1), ..., (tl, vl)] where l is the length of U and for i = 1...l,
ti ∈ T is a timestamp from a time domain T and vi ∈ D is a scalar value of a
domain D.

Example 3.3.1. Environmental sensor measurements such as temperature
constitute a univariate time series.

Definition 3.3.2. (Multivariate Time Series). A multivariate time seriesMV

is defined as MV = (U1, U2, ..., Ui, ..., Un) where Ui is a univariate time series
for dimension Di, and i = 1, ..., n.

Example 3.3.2. Environmental sensor measurements such as temperature,
humidity and NO2 constitute a 3-Dimensional time series.

Definition 3.3.3. (Trajectory). A trajectory T is defined as a multivariate
time series with two or three dimensions for the spatial position.

Example 3.3.3. A multivariate time series with latitude and longitude as
dimensions represent a trajectory.
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Definition 3.3.4. (Rich Trajectory). A rich trajectory RT is defined as a
multivariate time series where a subset of the dimensions Di where i ∈ [1, ..., n]

constitutes a spatial position, plus additional non-spatial informational.

Example 3.3.4. A GPS trajectory data of a moving object associated with
environmental sensor measures such as temperature, humidity and NO2 is a
typical example of a rich trajectory.

What is micro-environment recognition ?

First, we define a trajectory segmentation, then we introduce the annotated ver-
sion of rich trajectories before defining the target problem of micro-environment
recognition learning.

Definition 3.3.5. (Rich Trajectory Segment). A rich trajectory segment RTS
is defined as a sub-sequence of contiguous vectors of RT between j and k

(1 ≤ j ≤ k ≤ l). So, RTS = RT (j, k) = (U ′1, U
′
2, ..., U

′
i , ..., U

′
n) where U ′i =

[(tij , vij), ..., (tlk, vlk)], and ∀1 ≤ i ≤ n.

Example 3.3.5. A one hour trajectory constitutes a rich trajectory segment
of a one week rich trajectory data.

Definition 3.3.6. (Trajectory Segmentation). Given a trajectory or a rich
trajectory as input, trajectory segmentation is a process that splits it into non
overlapping trajectory segments.

Example 3.3.6. Splitting trajectory data of a moving object into hourly seg-
ments represent a one form of trajectory segmentation.

An annotated rich trajectory is defined as a sequence of trajectory segments along
with annotations that belong to a predefined list of categories. Formally:

Definition 3.3.7. (Annotated Rich Trajectory). An annotated rich trajectory
ART is defined as a sequence of couplesART = [(RT (1, i1), a1), (RT (i1, i2), a2),

..., (RT (ij , ij+1), a2), ..., (RT (ip, l), ap+1)], where RT (ij , ij+1) are rich trajec-
tory segments RTS between j and j + 1, ak ∈ A, and A is a discrete domain.

Example 3.3.7. Rich trajectory segments enriched with contextual informa-
tion such as the whereabouts of a moving object represent an annotated rich
trajectory.

In this work, annotations describe the micro-environment of the participant.
In this work, micro-environments can either be an indoor space (e.g. home, office,
restaurant, etc.), outdoor space (e.g. street, park, etc.) or a transportation mode
(e.g. metro, bus, car, etc.). The micro-environment recognition question relates
to the problem of segmenting data and assigning a label to each segment by
combining every available data.
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Definition 3.3.8. (Micro-environment Recognition). Given a rich trajectory
RT as input, micro-environment recognition is a process that outputs the cor-
responding annotated rich trajectory ART .

Definition 3.3.9. (Micro-environment Recognition Learning). Given a set of
annotated rich trajectories, train a model where the rich trajectory segments
are the predictors, and the annotations constitute the class labels.

Using a trained model on a wisely chosen annotated dataset, we aim at pre-
dicting the annotation on a completely unseen data by the model.

Why is this information of micro-environment important ? Personal exposure
to pollution is directly correlated to people’s habits and where they spend most
of their time. For instance, if a person is highly exposed in his/her home during
cooking time without much room ventilation, it would be time for them to revisit
his/her habits and start ventilating the room when cooking. Therefore, the infor-
mation of micro-environment is necessary to interpret correctly the collected AQ
data, get insight on the individual exposure, and for a participant, adapt his/her
behavior to reduce his/her exposure.

While there are several works related to activity recognition from spatio-temporal
trajectory (e.g. Sardianos et al. [110] and Toch et al. [118]), this work investigates
the capability of environmental data in characterizing and inferring automatically
the activity of the moving object. Therefore, we envision to combine every avail-
able information (i.e., AQ data, mobility data, declared annotations) to detect
efficiently the micro-environment of the moving object.

How can micro-environments be recognised ?

Micro-environments can mainly be characterised by the temporal attributes (i.e.
AQ measures) as well as the spatial one. There are several works for activity
recognition that are either based on the geographical or temporal information.
However, an overall methodological approach for combining these different aspects
on real-world complex trajectory data is missing. This combination may lead to
a more robust detection model rather than the usage of a single attribute, and it
needs to be investigated.

To employ every available facet of the rich trajectories, the design of the micro-
environment recognition model needs to integrate two layers: a geographic layer
and a multivariate time series layer. The geographic layer may infer the stop and
move segments (aka trajectory segmentation) from GPS tracks only. This layer
can go further and discover the location of home and work. The second layer of
the multivariate time series may detect the exact label of segments (e.g. home,
office, store, metro, park, etc.). Usually, this problematic leads to a multivariate
time series (MTS) classification with AQ data as input and the detected micro-
environments as output. However, MCS data is characterised by its heterogeneous
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property, designating that data is originated from different sensors readings. In
fact, some sensors may be offline and do not transfer any data for hours, which
may lead to missing data problems. Therefore, the usage of MTS classification
is not straightforward. Naturally, it is necessary to design a model that combines
data from heterogeneous sensors, and has the ability to classify it efficiently even
if one (or more) dimension is missing.

Furthermore, in real-world settings, problems such as imbalanced data occur.
For instance, we observe that the predominant labels are home and work since
people spend most of their time there. Thereby, most segments are naturally
mistaken by the model as home or work. Therefore, the proposed model should
take into consideration all these aspects of the data and be efficient and robust
enough to overcome these challenges. This model is explained further in Section
3.3.4.

3.3.3 . Multi-view Learning Model
In this section, we present the approach of multi-view learning with stacked

generalisation. We followed the proposal of Garcia-Ceja et al. [52], and adapted
it to best fit for solving our problem.

It is not unusual to have applications in which heterogeneous types of sensors
(e.g. accelerometers, gyroscopes) are involved for activity recognition. One way
to deal with this problem is to extract features from each sensor and aggregate
them to build the final classification model. However, this approach is not optimal
since each sensor has its own statistical properties. Hence the idea of multi-view
stacking to fuse data from heterogeneous sensors.

The multi-view paradigm consists of learning a model based on the different
views of the data. The key idea is to consider each source of data independently
and fuse them with stacked generalization (also called stacking), which is a type
of ensemble methods [146] for combining multiple learners.

The overall process is described as follows:

1. The first step consists of defining the set of first-level learner and meta
learner.

2. Train the first-level learner on each view of the original data.

3. Predict the labels of each view using the first-level learner. Each view will
produce a prediction vector with associated prediction probabilities.

4. Form a new matrix by column binding the prediction vectors and the true
labels. This matrix forms the new training data D′ for the meta-learner.

5. Train the meta-learner with D′.

6. Generate the final multi-view stacking model.
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Table 3.3: An example of the new generated dataset D′.

First-Level Learners Associated Prediction Probabilities True Label
l1 l2 ... li ... ln p1 p2 ... pi ... pn y

From an abstract view, assuming that Yit is a dimension of the n-dimensional
time series Yt = (Y1t, Y2t, ..., Yit, ..., Ynt), each view Vi, where V = (V1, V2, ..., Vi,

..., V n) is the set of views, represents a dimension Yit of the multivariate time
series Yt. Thus, we have as many views as dimensions.

The first-level learner takes as input the time series values coming from each
view. Then, each view will generate its own predicted labels with associated predic-
tion probabilities with the form [li, p1, p2, ..., pj , ..., pk, y], where li is the predicted
label of the first-level learner i, pj is the associated prediction probability for each
class j of the k possible classes, and y is the true label.

A new dataset D′ is then created by column binding the output of each view
and the true labels. We remind that these outputs consist of the predicted labels
and the associated prediction probabilities for each of the k possible classes. Thus
D′ has the form shown in Table 3.3, where li is the predicted label of the first-level
learner i, pi is the probability of this prediction, and y is the true label.

After generating a new dataset D′, a second-level classifier, or meta-learner, is
trained over D′ through ensemble learning [146]. This approach allows to preserve
the statistical properties of each view and learn the classes of the MTS instances
with a significant improvement in the classification accuracy.

Many ensemble methods [146] have been proposed to further enhance the
algorithm accuracy by combining learners rather than trying to find the best single
learner. Due to their versatility and flexibility, ensemble methods attract many
researchers and can be applied in different domains including, but not limited to,
time series classification [52] and time series segmentation [43]. In a previous work
[43], we used a multi-view approach for segmenting MCS data where we employed
an unsupervised learning for change detection on each view.

3.3.4 . Micro-environment recognition model
In this section, we provide an overview of our proposed framework for micro-

environment recognition in the context of MCS [1]. Figure 3.5 provides a panorama
of the steps followed to achieve the micro-environment recognition objective. It
shows a roadmap from the derivation of air quality and trajectory data (i.e. step
1), to data preparation (i.e. step 2) which produce data ready to be consumed
by a univariate time series classification model (e.g. kNN-DTW, LSTM, random
forest, decision tree, etc.) (i.e. step 3). The outputs of the univariate time series
classification constitute a new data set (i.e. step 4) which serves as an input for
a meta-learner (i.e. step 5). The meta-learner produces the final classification
results. In the following sections, we discuss each step separately. It is necessary
to mention that the red dashed lines represent the hybrid approach, which we
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Figure 3.5: Overview of the micro-environment recognition process.

thoroughly discuss in Section 3.3.5..

Data Collection

The first step of the micro-environment recognition process is the data collection,
and it has been fully addressed in Section 3.2.2.

Data Preparation

The second step is the data pre-processing which includes data de-noising, data
imputation, data segmentation, and class balancing.

First, most sensor data are noisy, with irrelevant measurements from the actual
condition. Even though the sensor data quality is a permanent preoccupation of
the project, we observed the noisy data in both GPS (due to signal loss) and air
quality data after careful evaluation before data selection and periodic qualification
during the campaign [77]. The sensors for climatic parameters do not show such
defects. Therefore, a de-noising process is applied on both GPS and air quality
data. Precisely, we distinguish between peaks and artefacts by referring to the
expert’s judgment. The peaks that are judged to be real are then conserved. The
same goes for GPS data which has been cleaned based on a minimum threshold of
velocity (here 130km/h as it is the speed limit in France). Beyond this threshold,
GPS points that are in charge of producing the velocity will be removed.

Second, the collected sensory data are usually incomplete due to device error
or communication issues, with missing values at some time stamps. Therefore,
we set a threshold of ten consecutive missing steps to conduct the imputation
process. In other words, we perform data imputation on missing intervals that do
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not exceed 10 minutes (i.e., 10 steps). Precisely, new values are inferred with the
linear interpolation approach on the non-missing temporal neighbors; that says,
new values are interpolated by a linear function of the two temporal ends of the
missing values. Globally, the highest quality sample of annotated data is selected
as a baseline to validate the process of micro-environment recognition. The idea is
to generalize the micro-environment recognition to all participants’ data by using
the model derived from a good-quality dataset.We describe in Section 3.3.6 how
the high quality sample of annotated data is selected.

Third, data is segmented into samples of fixed length (here 5 minutes). The
choice of the fixed length value is discussed in Section 3.3.6. Each segment will
be assigned a unique label. Essentially, the proposed model will take the observed
measurements of the segment as input and produce a unique label by virtue of the
multi-view learning.

Last but not least, micro-environment recognition is also subject to class im-
balance problem. Usually, individuals spend most of their time indoors, either at
home or at the office. A dataset is imbalanced if the classification categories are
not equally represented, which is the case in our study.Therefore, because of this
problem (home is the majority class, followed by office), the likelihood of having a
good accuracy value of the classification is very high. The classifier will practically
attribute the majority class to almost every data segment and fail to detect the
minority classes, which leads to an overall good accuracy but does not necessarily
reflect the actual performance of the classifier. Hence the solution of re-sampling
and data augmentation, which are the commonly used techniques to solve this
problem.

For data re-sampling, random oversampling of the minority classes and random
under-sampling of majority classes are the most popular approaches. However,
the random oversampling approach usually introduces duplicates to stabilize the
training process, which does not thoroughly explore the valuable information from
the data. Therefore, some work considers synthesizing new samples from the
minority class. For instance, synthetic minority oversampling technique (SMOTE)
[28] under samples the majority class and over samples the minority one based
on the K-nearest neighbors. SMOTE selects samples that are close in the feature
space, then generates a synthetic sample nearby. This procedure can be used to
create as many synthetic examples for the minority class as required.

For data augmentation, Generative Adversarial Network (GAN) [56] has shown
promising performance among various types of data, which uses existing data more
effectively than re-sampling techniques. In Time series domain, the Time series
Generative Adversarial Networks (TimeGAN or TGAN) [136] was proposed recently
to generate realistic time series data considering the temporal dependency. How-
ever, in practice, it is generally hard to converge the adversarial training process
with very limited samples [10], which is the case in our context.

Therefore, we combine both approaches of data re-sampling and data aug-
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mentation. First, we adopt SMOTE to under-sample the majority classes and
over-sample slightly the minority classes. Then we apply the TimeGAN network to
generate new samples over the minority classes. Figure 3.6 and 3.7 show the data
distributions before and after class balancing respectively.

Figure 3.6: Distribution of data over classes before class balancing.

Figure 3.7: Distribution of data over classes after class balancing.

Multi-View Learning Model Application

We propose to learn the micro-environment of participants from multivariate time
series (MTS) through a two-stage model based on multi-view learning. The clas-
sification model consists of training a first-level learner on each view (i.e. step 3
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in Figure 3.5), and then train a meta-learner (i.e. step 5 in Figure 3.5) to combine
the output of each view and enhance the global accuracy of the classification. As
stated before, we have as many views as dimensions. For instance, given a multi-
variate time series with four dimensions: temperature, humidity, speed, and NO2,
each dimension will be considered as a view. Therefore, four different views will be
considered in the multi-view learning model. The spatial dimension as GPS tracks
is not considered as a view because of the low spatial coverage. Also the target
class is the type of micro-environment. The spatial dimension has less impact
than the temporal pattern (2 locations could be spatially close but have different
patterns in terms of exposure if one is indoor and the other outdoor).

In step 3, the first-level learner (e.g. k-NN, LSTM, random forest, decision
tree, etc.) takes as input the values of the time series data coming from each view,
and outputs, for each view, a vector in the form [li, p1, p2, ..., pj , ..., pk, y], where
li is the predicted label of the first-level learner i, pj is the associated prediction
probability for each class j of the k possible classes, and y is the true label. Let
us take the example above of the multivariate time series with four dimensions
which are temperature, humidity, speed, and NO2, and examine the output of the
first level learners. Let us say that our objective is to classify the MTS into three
classes that are indoor, outdoor, and transport, while supposing that the true label
is indoor. The temperature view will generate its own predicted label - let us say-
indoor, and the associated predictions probabilities in this form [ltemperature =

indoor, pindoor = 0.6, poutdoor = 0.2, ptransport = 0.2, y = indoor]. In the same
way, the three remaining dimensions shall generate their own predicted labels with
corresponding probabilities in this structure:
[lhumidity = indoor, pindoor = 0.7, poutdoor = 0.1, ptransport = 0.2, y = indoor],
[lspeed = outdoor, pindoor = 0.4, poutdoor = 0.5, ptransport = 0.1, y = indoor],
[lNO2 = transport, pindoor = 0.2, poutdoor = 0.2, ptransport = 0.6, y = indoor].

In step 4, we aimed at giving a weight for each learner. Therefore, a new
dataset D′ is generated by column binding the output of first-level learner and the
true label as shown in Table 3.3, where li is the predicted label of the first-level
learner i, pi is the probability of this prediction, and y is the true label. Continuing
with the same example of the four dimensional MTS above, the feature structure
of the generated dataset would be in the structure shown in Table 3.4.

Table 3.4: A concrete example of the new generated dataset D′.

First-Level Learners Associated Prediction Probabilities True Labeltemperature humidity speed NO2 temperature humidity speed NO2
indoor indoor outdoor transport 0.6 0.7 0.5 0.6 indoor

In step 5, and after generating a new dataset D′, a meta-learner is trained over
D′. That said, by referring to the example above, the second level-learner (e.g.
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Random Forest) will take the generated features (i.e. every view detected label
plus its corresponding probability) as input and produce the final detected label.
For instance and from D′ shown in Table 3.4, the meta-learner takes as input the
label produced by the view “temperature" (i.e. indoor) and its associated prediction
probability (i.e. 0.6), plus the labels and their corresponding probabilities from the
other three views (i.e. humidity, speed and NO2). Therefore, the meta-learner’s
input has the following structure [indoor, indoor, outdoor, transport, 0.6, 0.7, 0.5,
0.6] and produces the final label (e.g. indoor) from the combination of labels and
their associated prediction probabilities.

One of the advantages of multi-view learning is its versatility in first and second
level learners’ choices. One can flexibly substitute classifier choices as wished
between kNN, LSTM, random forest decision tree, or any other classifier [44]. In
this work, we opt for Random Forest classifier for the first as well as meta-learners
since it has shown high performance when applied in the human activity recognition
domain [52].

3.3.5 . Hybrid Multi-view Learning Model
The multi-view learning model records some limitations, especially when it

comes to discriminating between some indoor micro-environments that share sim-
ilar characteristics such as "home" and "office", or between some transportation
modes. Besides, the time of presence are often characteristic of some micro-
environments (e.g. night time is likely to indicates home, and working time usually
denotes the office). Identifying precisely some stay locations from GPS data is
possible, and may improve discriminating the corresponding micro-environments.
Thus, the need for an improvement in the model seems necessary.

We introduce new optimisations based on these observations. Specifically, the
new optimisations include two approaches. The first one is privacy invasive. It
includes the exact locations of home and office reported by participants in the
post-processing layer. Certainly, it requires to have this private information ahead.
The second approach is privacy friendly. The latter approach (i.e. privacy friendly)
will be the subject of discussion in this section.

Figure 3.5 shows the new privacy friendly optimisations presented by the red
dashed lines, which consist mainly of adding trajectory data as another layer while
post-processing the results of the multi-view learning model, along with the dis-
ambiguation between home and office based on the location.

This post-processing layer consists of splitting trajectory data into stop and
move segments (i.e. the trajectory segmentation box in Figure 3.5). We propose
a stop detection algorithm based on grid density that we will present and discuss
in the following section. We tag every stop with a unique and specific number
to distinguish between them.Plus, we infer the location of home and office based
on a priori rules according to the time of presence in the stop and the density of
the stop. We further discuss these rules in Section 3.3.5. Furthermore, and after
distinguishing between stop and move segments, the move segments are labeled
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by transportation means (e.g., metro, bus, car, etc.), which is represented by the
transportation detection box in Figure 3.5. We take advantage of the work of
Etemad et al. [47], which we have already discussed in Section 3.2.1, to detect the
transportation mode and include the results in the post-processing layer. In the
following section, we present our proposed algorithm for Grid Density-Based Stop
Detection (GDSD).

Stop Detection

In this section, we present a novel and robust algorithm for stop detection based on
GPS data only, namely Grid Density-Based Stop Detection (GDSD). This approach
can be used either as a separate view in the multi-view learning model to infer the
stay places from GPS data (i.e. mobility view), or as a post-processing layer to
correct the ambiguity between home, work, and other stop places. In the current
work, the mobility data is used as a post-processing layer.

GDSD approach takes GPS points as input, and outputs segments of the same
fixed length as the multi-view model’s segments, to ensure their comparability.
Each segment is labeled with the number of the stops or the label “home" or
“office". Let us take an example of four segments s1, s2, s3, and s4. Each
segment is 5 minutes long. The multi-view model results assign to segments s1
and s2 the home label, and to s3 and s4 the work label. However, according to the
results of stop detection model, all the four segments belong to the same cluster,
which implies that the four segments are all together either at home, work, or any
other indoor micro-environment. But, since these four segments (s1, s2, s3, and
s4) are labeled “home" by the GDSD approach, the final class shall be “home".
That is precisely the objective of this stop detection extension: to eliminate the
ambiguity between stops micro-environments and improve the performance of the
multi-view model.

Therefore, in this approach, the GPS tracks (i.e. latitude and longitude) are
transformed into discrete values referencing a pixel of a rectangular grid with a
spatial resolution (here of 50 m3). Then, in order to organize the cells in a way
that allows to maintain the locality of spatially close GPS points, we adopt spatial
indexing using 2D Hilbert Space-Filling Curves (SFC), which provides a grouping
feature per proximity [93]. In other words, neighboring cells are likely to be assigned
to close Hilbert indices. Figure 3.8 shows the rasterization of the spatial dimension
using Hilbert SFC. The spatial extent is defined to cover the study area (i.e. Paris
region). It is worth mentioning that we only maintain cells corresponding to the
locations with GPS data, and discard cells with no GPS data within.

The adopted rasterization approach allows us to derive the stay areas (often
indoors) of participants. We can discover the places where a participant spends

3This value has been chosen in accordance with the resolution adopted by Airparif
(the agency in charge of AQ monitoring in Paris Region, also part of Polluscope
consortium) in their simulation models.
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Figure 3.8: Spatial Dimension Representation

Figure 3.9: Sample trajectory

time the most based on cells densities.
When looking at the sample of GPS trajectory points in Figure 3.9, we can

easily and unambiguously detect the existence of two stops plus some noise points
that may or may not belong to any of the stops. The reason why the human mind
detects or recognizes the stops is because the density of points inside the stops is
higher than outside them. We mimic the same human brain rational reasoning to
detect the stops based on the cell density.

We formalize our intuitive notion of deriving stop places from a spatial dataset
D in a 2D euclidean space. The key idea is to set a minimum density threshold
MinDens in a cell in order to be detected as a stop cell. The adjustment of
MinDens is utterly empirical and depends on the dataset size and GPS sampling
frequency. For instance, the MinDens in a dataset collected over one week with
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a high sampling frequency (e.g. every one second) is naturally different that a
MinDens chosen from a dataset collected over one day with the same sampling
frequency. We explain further in Section 3.3.6 how we set the MinDens threshold.

Furthermore, because of the limitations of GPS readings, some stop clusters
may be shared by more than one cell (e.g. green cells in Figure 3.9). For this
reason, there is a need to include in the detected stop the neighbouring cells that
may belong to the same stop. Yet, as Hilbert SFC are by definition hierarchical, one
has only to divide the Hilbert index by 22n, where n ∈ N to access the neighbouring
cells.

Thereafter, the stop detection algorithm based on grid density takes as input
the minimum density threshold MinDens and n (as in 22n). The algorithm then
joins the neighbouring cells to the detected stop even though these neighbouring
cells do not verify the density condition, forming a new cluster composed of several
cells and at least one cell that verifies the density condition.

Algorithm 1 presents a basic version of the stop detection algorithm without fo-
cusing on GPS data pre-processing and cleaning. Primarily, the algorithm rasterizes
the data and creates a Hilbert index that is assigned to each cell. The algorithm
then selects a set of cells indices whose density is higher than the desired density
threshold MinDens. All the selected cells are stops candidates. The algorithm
moves systematically to higher level of hierarchy by dividing the acquired Hilbert
index by 22n (i.e., a grouping of 4 cells, 16 cells, 64 cells, etc.) and considers the
whole grouping cells around a stop candidate as a stop. The remaining cells will
be considered as move segments. For instance, in Figure 3.9, let us suppose that
only one of the four green cell verifies the density condition (the upper right green
cell), then this cell forms a stop candidate. After dividing its Hilbert index by 22∗1,
we systematically go to a higher level of hierarchy and the whole grouping of the
four green cells will be considered as a stop.

However, some outlier points may slip out of the grouping cells (e.g. blue cells
in Figure 3.9). The algorithm has another step which consists of post-processing
the trajectory segments based on a temporal threshold MinDur . In other words, if
a move (resp. stop) segment is jammed between two stop (resp. move) segments
and the duration of this segment is less than MinDur , then this segment is to be
merged with the previous segments.

A comparison between Grid Density-based Stop Detection (GDSD) and state-
of-the-art approaches is discussed further in Section 3.3.6.

Next comes the step of inferring the location of home and work based on some
a priori rules. The straightforward way is to draw the location of home according
to the time of presence in the stop. If the participant is static between 2am and
4am every day at the same location, it is very likely that the location in question is
home. Another criterion for inferring the location of home and work is the density
of the stops. Usually and based on common sense, people spend the most of their
time in their home followed by their work. Thereby, the densest stop is likely to be
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Algorithm 1 Grid Density-Based Stop Detection (GDSD)
1: procedure GDSD(MinDens, n,MinDur)
2: SetOfCells = {}
3: create HilbertIndex from (Lon, Lat) . Create the Hilbert index

from latitude and longitude.
4: SetOfIndex = {HilbertIndex} . Create a set of all the possible

Hilbert indices.
5: density ← GroupBy(HilbertIndex) and count
6: stops← HilbertIndex where density >= MinDens
7: k = 1
8: for Hindex in stops do
9: x← Floor(Hindex/22n)

10: SetOfCells := SET (i i/22n = x) ∀i ∈ SetOfIndex
label(SetOfCells)← k

11: k := k + 1
12: end for
13: for HindexinSetOfIndex \ stops do
14: label(Hindex)← −1
15: end for
16: segments := Set(segments) . segments is the set of all the stop

segments
17: j := 1
18: while j < segments.size do
19: if Duration(segments[j]) < MinDur
20: & segments[j].label == segments[j + 1].label then
21: segments[j − 1]← concat(segments[j − 1], segments[j)]
22: del segments[j]
23: end if
24: end while
25: return segments
26: end procedure
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home and the second densest stop is work, ceteris paribus. These assumptions are
confirmed by the participants declared annotations of their micro-environments -
if they exist.

3.3.6 . Experiments and Results
The experiments are carried out in different environments. The multi-view

learning model was implemented in Python 3.6 using scikit-learn 0.23.2 and tslearn
[116]. The deep-learning models (MLSTM-FCN [72], TapNet [139]) were trained
on a single Tesla V100 GPU of 32 Go memory with CUDA 10.2, using respectively
Keras 2.2.4 and PyTorch 1.2.0.

Experimental Settings

We evaluate the proposed models in these experiments using real-life data col-
lected in the scope of the Polluscope project. In Polluscope, three data collection
campaigns have been conducted, covering the whole study area (i.e., Paris region).
Each campaign was spread over 12 weeks, with a collection generally carried out
every other week (in order to check and re-qualify the sensors). 103 volunteers
participated in the data collection phase, which lasted one week for each partici-
pant. These participants are equipped with a kit that contains air pollution sensors
and tablets empowered with GPS chipsets. The sensors collect, every one minute,
time annotated concentrations of Particulate Matters (PM1.0, PM10, PM2.5), Ni-
trogen dioxide NO2, Black Carbon (BC), temperature, and relative humidity. The
tablet serves to geolocate the participants and to fill in their time activity via an
Android app developed for this purpose. The speed dimension was derived from
the geo-locational data.

In total, 13 activities (i.e., micro-environment to recognize) are considered in
this study, which can be organized into three categories:

• Indoor environment: home, office, restaurant, store, station

• Outdoor environment: park, walk, run, bike

• Transport environment: metro, car, bus, motorcycle

Previously (i.e. in [1]), we related to the annotation of the given tool (i.e., an
Android app installed in the tablet). In this work, data have been enriched both
based on a tool (called TripBuilder Web) [26], and a thorough human control of
participants’ annotations within the third campaign called RECORD [25]. Thereby,
this data is more reliable than our previously used data collected during the sec-
ond campaign, called VGP. We select the data of 13 participants with the best
annotation activities in the RECORD campaign. Overall, the dataset contains 8
dimensions, more than 1 million rows (per dimension), with an average of 82071
rows per participant. The collected data are split into two thirds for training and
one third for testing, with care taken to keep the data of each participant grouped
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Table 3.5: Average time spent per micro-environment.

Activity Stay duration (in minutes)

Office 446
Bus 13
Home 899
Station 4
Store 24

Motorcycle 20
Metro 17
Park 76

Restaurant 46
Running 76

Car 29
Bike 50
Walk 12

either in training or testing set. We use the cross-validation score with “repeated
stratified k-fold” to re-split the training set into training and validation sets, while
we evaluate the overall model performance on the testing set.

Considering the temporal feature of the data, we segment the collected data
into samples of 5 minutes’ length at maximum. Usually, people spend most of
their time indoors. We should thus consider outdoor activities with a short period
compared to indoor activities. For example, the average time spent in “station"
is around 4 minutes as shown in Table 3.5 which depicts the average time spent
per micro-environment. Participants tend to spend more time in some micro-
environment (typically “home" and “office") than others (e.g. “walk", “metro",
“store", etc.). Globally, as shown in Figure 3.6, the distribution of data samples
is highly imbalanced over the different classes, leading to poor classification per-
formance, especially for the minority classes. More precisely, the model tends to
optimize the global loss error which is biased towards the majority classes while
ignoring the minority ones. In consequence, the obtained accuracy is not reliable
to evaluate the actual model performance. To cope with this problem, we re-
balanced the classes via data re-sampling and data augmentation as mentioned in
section 3.3.4 when pre-processing the data. Figure 3.6 and figure 3.7 show the
data distributions before and after class balancing, respectively.

Experimental Design

First, we evaluate our basic multi-view learning model without integrating the post-
processing layer. Considering the mobility information in our data, we carry out
our experiments on the datasets with or without integrating the speed variable.
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Figure 3.10: Accuracy among different views.

Furthermore, to thoroughly evaluate the importance of the mobility information,
we introduce and evaluate a two-step approach by first discriminating between
indoor, outdoor, and transport micro-environments, followed by a refinement step
to learn a more specific class.

Then, we evaluate our proposed algorithm for stop detection, which is a key
component in our post-processing layer. We compare it with the state-of-the-art
models implemented in Scikit-Mobility [101].

Finally, we conduct an extensive experiment considering various optimization
techniques proposed in the post-processing step. We evaluate the effect of the
post-processing layer not only on our multi-view learning model but also on other
classic MTSC models. We optimize the proposed approaches by either analyzing
the exact geolocation of the participant (privacy-invasive method) or using a priori
rules (privacy-friendly method).

Model Performance without Post-processing

In this section, we detail the experimental results of the multi-view learning model
without integrating the post-processing layer. First, we evaluate the first-level
learners on each single view and the multi-view learner on the global view. We
evaluate as well the multi-view learner when applying the two-step approach which
learns firstly the coarse-grained classes (i.e., indoor, outdoor and transport) then
refine them into more specific classes (e.g., home, park, metro, etc.). Then, we
compare the multi-view learner with MLSTM-FCN [72], the state-of-the-art on
Multivariate Time Series Classification.

As mentioned in Section 3.3.4, the micro-environment recognition can be for-
mulated as a Multivariate Time Series Classification (MTSC) problem, and the
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Table 3.6: Performance of Multi-view Learner ( with/out speed)

class Without Speed With Speed

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.96 0.86 0.91 0.95 0.87 0.91
Bus 0.99 0.96 0.98 0.98 0.97 0.98
Office 0.96 0.88 0.92 0.97 0.92 0.95
Restaurant 0.97 0.97 0.97 0.99 0.97 0.98
Home 0.87 0.97 0.92 0.90 0.99 0.94
Bike 0.92 0.97 0.94 0.96 0.99 0.97
Car 0.99 0.98 0.98 0.99 0.99 0.99
Store 0.94 0.93 0.94 0.96 0.96 0.96
Metro 0.96 0.93 0.94 0.98 0.95 0.96
Station 0.98 0.96 0.97 0.99 0.97 0.98
Motorcycle 0.99 0.99 0.99 0.99 0.99 0.99
Running 0.99 0.99 0.99 0.99 0.99 0.99
Park 0.99 0.98 0.98 0.99 0.98 0.99

multi-view learner combines the predictions of each independent view (i.e., dimen-
sion) from the first-level learners to get the final classification results. In Figure
3.10, we report the accuracy of the first-level learners over the different views, as
well as the multi-view learner and the two-step approach with and without con-
sidering the mobility (i.e., speed) dimension. Globally, the results suggest that
the multi-view learner shows comparable performance, with or without adopting
the two-step approach. Integrating the speed dimension helps slightly improve
the performance of the multi-view learner. We observe that the first-level learners
usually have low accuracy performance, which is not surprising as the incomplete
local information is not enough to train a reliable model. By combining the local
information from different views, the multi-view learner can improve the model
accuracy significantly.

To know how our multi-view learner performs compared to the state-of-the-art
work, we select MLSTM-FCN [72], a powerful deep learning model for Multivariate
Time Series Classification. We show as well the detailed evaluation results when
applying the two-step approach. Since MLSTM-FCN requires enormous compu-
tational resources for parameter optimization, we train the model on GPU. In
contrast, our multi-view-based approaches are trained on a normal CPU with less
requirement on computational resources. For each of the models, we study the
impact of using or not the mobility data and report the performance in terms of
precision, recall, and F1 score.

The detailed results are grouped in Table 3.6, 3.7, and 3.8. Globally, the three
models have comparable results before and after adding mobility. While MLSTM
shows slightly better performance than the two-step model, the latter outperforms
the multi-view model. Looking at the F1-score, the out-performance of MLSTM,
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Table 3.7: Performance of MLSTM-FCN ( with/out speed)

class Without Speed With Speed

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.98 0.95 0.96 0.94 0.97 0.96
Bus 1.0 1.0 1.0 1.0 1.0 1.0
Office 0.97 0.95 0.96 0.96 0.94 0.95
Restaurant 1.0 1.0 1.0 1.0 1.0 1.0
Home 0.97 0.97 0.97 0.98 0.97 0.97
Bike 0.98 1.0 0.99 0.98 1.0 0.99
Car 0.99 1.0 1.0 0.98 1.0 0.99
Store 0.99 1.0 0.99 0.99 1.0 0.99
Metro 0.99 1.0 0.99 1.0 0.97 0.99
Station 0.99 1.0 1.0 1.0 1.0 1.0
Motorcycle 1.0 1.0 1.0 1.0 1.0 1.0
Running 1.0 1.0 1.0 0.99 1.0 0.99
Park 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.8: Performance of Multi-view Learner (2-step approach with/out
speed)

class Without Speed With Speed

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.93 0.97 0.95 0.95 0.96 0.95
Bus 0.99 0.99 0.99 0.99 0.99 0.99
Office 0.97 0.92 0.94 0.97 0.91 0.94
Restaurant 0.99 0.98 0.98 0.99 0.98 0.98
Home 0.93 0.97 0.95 0.93 0.98 0.95
Bike 0.97 0.96 0.96 0.97 0.97 0.97
Car 0.98 0.99 0.99 0.99 0.99 0.99
Store 0.98 0.97 0.97 0.98 0.96 0.97
Metro 0.98 0.97 0.98 0.98 0.98 0.98
Station 1.0 1.0 1.0 0.99 1.0 0.99
Motorcycle 0.99 0.98 0.98 0.99 0.99 0.99
Running 0.98 0.98 0.98 0.98 0.98 0.98
Park 0.99 0.96 0.97 0.99 0.97 0.98
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(a) With Speed (b) Without Speed

Figure 3.11: Multi-view Approach Confusion Matrix

compared to the two-step model, does not go beyond 3 point (e.g. 0.96 and 0.99
for the class bike) before adding mobility, and 2 points (e.g. 0.97 and 0.99 for the
class store) after adding mobility, whereas the difference between the two-steps
model and the multi-view model does not exceed 4 points (e.g. 0.91 and 0.95 for
the class walk) before and after adding mobility.

As for our multi-view learner, when integrating the speed dimension for model
training, we observe an improvement in the model’s performance, particularly the
F1-score, while the performance of MLSTM-FCN does not improve or even dete-
riorates. Figure 3.11 shows the confusion matrix of multi-view approach. Figure
3.11a reports the confusion matrix with the presence of the mobility dimension
(i.e. speed), while figure 3.11b corresponds to the confusion matrix of the model
with the absence of mobility dimension. We notice that the model can easily dis-
criminate between the “indoor”, “outdoor” and “transport” activities, but it cannot
perfectly distinguish between the micro-environments inside each category. For
example, even though some of the samples in the “home” micro-environment are
falsely predicted as “restaurant” or “office”, the three micro-environments, “home”,
“office” and “restaurant” can be classified as indoor. Thereby, we introduced a
grouping step before recognizing the micro-environment. In this step we classify
the sample into either an “indoor”, “outdoor”, or “transport” environment. Based
on the classification result, a model will be specialized for each indoor, outdoor or
transport micro-environments. Table 3.8 shows the results of the added step.

Stop Detection Performance

In this section, we evaluate our proposed algorithm, Grid Density-based Stop De-
tection (GDSD). First, we study the parameter effects on GDSD’s performance
and select the best ones when applying the algorithm. Then, we compare GDSD
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(a) Performance of GDSD wrt
to the density threshold per
cell.

(b) Performance of GDSD wrt
to parameter n.

Figure 3.12: Parameters’ effect on Grid-Density Stop Detection (GDSD)

with Scikit-Mobility [101], the state-of-the-art approach designed for stop detec-
tion. Here, we adopt only the GPS data of the 13 participants in the Polluscope
RECORD campaign.

Before applying the proposed approach, the critical question is to set the min-
imum density per cell (i.e., density threshold) and the number of grouping cells
within a stop. Generally, these parameters are set empirically. Without prior
knowledge of the data, it is necessary to conduct various tests to discover the best
parameters. To this end, we tune one parameter while blocking another one to
observe how the model performance evolves. Precisely, we set the values between
100 and 1000 points, with a step of 100, for the density threshold. The number of
grouping cells n varies between 0, 1, 2, and 3, meaning a grouping of, respectively,
1, 4, 16, and 64 cells. Firstly, we start by searching for the optimal value of the
number of grouping cells. We iterate over the values of the density threshold (i.e.
between 100 and 1000 with a step of 100). On each round, we compute the perfor-
mance of the model while iterating the values of n. We report the results with the
optimal iterations. Figure 3.12 shows the parameters’ effects on the model’s per-
formance. From Figure 3.12a (with n=3), we observe that the precision improves
slightly, whereas the recall drops with the increase of density threshold, indicating
a trade-off between precision and recall when the density threshold equals 100.
This observation is supported by the F1-score, which values is optimum at 100. As
for the parameter’ effect of n, Figure 3.12b (with density threshold equal to 100)
shows that when n increases, the precision drops slightly, whereas the recall score
increases a little, depicting an adequate trade-off between precision and recall when
n equals 3 (i.e. a grouping of 64 cells). We observe as well an optimal F1-score
under this setting. In the rest of the chapter, we set grid density threshold to 100
and set n to 3.

To validate the performance of our proposed stop detection algorithm GDSD,
we compare it with the state-of-the-art models implemented in Scikit-Mobility
[101]. We conduct the experiments of the stop detection for each campaign par-
ticipant separately. Table 3.9 depicts the results of this comparison. On the one
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Table 3.9: Comparison between Scikit-Mobility and grid density based
model.

Row ID Participant ID Scikit-Mobility Grid Density Based

Precision Recall F1 Precision Recall F1

1 988088403 0.988 0.891 0.937 0.985 0.993 0.989
2 988231648 0.988 0.961 0.974 0.981 0.995 0.988
3 982228564 0.936 0.849 0.89 0.953 0.945 0.949
4 986002161 1.0 0.82 0.901 1.0 0.969 0.984
5 986939872 0.813 0.78 0.796 0.826 0.895 0.859
6 988335737 0.908 0.299 0.45 0.858 0.658 0.745
7 986174566 0.96 0.854 0.904 0.991 0.971 0.981
8 986884172 0.92 0.66 0.769 0.985 0.956 0.97
9 986938604 0.995 0.684 0.811 0.995 0.99 0.992
10 985935431 0.812 0.325 0.464 1.0 0.6 0.75
11 987014104 0.936 0.92 0.928 0.993 0.995 0.994
12 82119412 0.84 0.559 0.671 0.953 0.9 0.926
13 983602168 0.934 0.963 0.948 0.966 0.973 0.969

hand, when looking at the precision of the two models, the two approaches are
comparable for some participants (e.g., rows ID 1, 2, 4, 5, and 9), our approach
outperforms the baseline for others except for one participant (i.e., row ID 6).
On the other hand, the recall score and the F1-score show that the grid-density-
based approach outperforms the baseline on all participants. Overall, the proposed
approach always has better performance than the baseline.

Experiment Extension

In this section, we extend the experiments by applying the proposed post-processing
techniques which are designed to enhance the micro-environment detection model.
We apply four basic MTSC models:

• MVB: our proposed Basic Multi-View learning model.

• MV-2steps: our proposed Basic Multi-View learning model with two-step
classification as shown in Section 3.3.6.

• MLSTM-FCN [72]: a powerful deep learning model for Multivariate Time
Series Classification.

• KNN-DTW [12]: the most popular benchmark for Time Series Classifica-
tion which adopts K-nearest neighbor (K-NN) classifier with dynamic time
wrapping (DTW) distance.

As the models are trained on different hardware environments (e.g., MLSTM-
FCN is training on a GPU, which is ten times faster than running on CPU), it is



3.3. LEARNING THE MICRO-ENVIRONMENT 87

unfair to compare them in terms of efficiency. However, according to the recent
study [108], the deep learning-based models usually require more computational
resources than classic data mining approaches; the lazy classifiers (e.g., KNN-
DTW) are much slower than the tree-based classifier (e.g., Random Forest) due
to the costly distance computations (e.g., DTW). As the first-level learner and
meta-learner in our multi-view learning model are based on Random Forest, thus
the model training and prediction are quite efficient compared to other models.

The model variants after applying the post-processing techniques are detailed in
Table 3.10. We go through extensive experiments and test various model variants
to select the best model combinations. We organize the model variants into two
categories: privacy-friendly and privacy-invasive models. For privacy-friendly
models, post-processing is performed using stop detection and transportation mode
detection techniques, while for privacy-invasive models, additional private informa-
tion is adopted such as Location of Home (LH) and Location of Office (LO).

Global accuracy comparison on the model variants
In this section, we used the trained model to predict the context of our real MCS
data and we adopted the post-processing techniques on the results. Here, we
show the global accuracy comparison between the models within each privacy
category. Tables 3.11 and 3.12 report the accuracy of various privacy-friendly
and privacy-invasive models, respectively. The NaN in the results of MLSTM and
KNN models indicates that no complete data is collected, thus, the models are not
applicable. More precisely, some variables are missing during the data collection
process. However, the multi-view-based models succeed all to detect the micro-
environment even some dimensions are missing.

For the privacy-friendly models, all the proposed multi-view-based models show
higher accuracy compared to baselines (i.e., KNN-based and MLSTM-based mod-
els). On the one hand, there is a big performance difference between multi-view-
based models and the baseline models, especially for the participants who did not
collect the complete variable data on which the baseline models are not applicable
(i.e., NaN value). On the other hand, the post-processing does show its gener-
alizability which improves the performance of both multi-view-based and baseline
models. Among all the privacy-friendly models, the MVP (Multi-view with Post-
processing) model shows the best performance, which validates our reliability of
our proposed model.

For the privacy-invasive models, we adopt the additional private information:
Location of Home (LH) and Location of Office (LO), to check their impact on
the models. However, since the baselines showed poor performance in the privacy
friendly models, they will not be considered in this comparison. It is already known
that, even with the exact locations of home and office, they will fail with missing
dimensions. By considering the office location correction, the MVP+LO model
demonstrates the best performance among the privacy-invasive models. More
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Table 3.10: The description of various model variants

Model Description

MVB Basic multi-view model

MV-2steps
Multi-view model having 2 steps, first discriminate
between indoor/outdoor/transport and then clas-
sify the micro-environment.

MV-
2stepsP

Multi-view model having 2 steps, first discriminate
between indoor/outdoor/transport and then clas-
sify the micro-environment, with a pre-processing
step based on stop detection transportation mode
detection models.

PMV
Multi-view model with a pre-processing step based
on stop detection transportation mode detection
models.

MVP
Multi-view model with a post-processing layer
based on stop detection and transportation mode
detection models.

MLSTMB Basic MLSTM-FCN model.

MLSTMP
MLSTM-FCN with a post-processing layer based
on stop detection and transportation mode detec-
tion models.

KNN-
DTWB

Basic KNN-DTW model.

KNN-
DTWP

KNN-DTW with a post-processing layer based on
stop detection and transportation mode detection
models.

MVB+LO Basic multi-view model with a post-processing step
based on the location of office.

MVB+LH Basic multi-view model with a post-processing step
based on the location of home.

MVP+LO
Multi-view model with a post-processing layer
based on stop detection and transportation mode
detection models as well as the location of office.

MVP+LH
Multi-view model with a post-processing layer
based on stop detection and transportation mode
detection models as well as the location of home.
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Table 3.11: Performance comparison of various privacy-friendlymodels

Participant ID MVB MV-2steps PMV MVP MV-2stepsP MLSTMB MLSTMP KNN-DTWB KNN-DTWP

988088403 88.2 89.2 89.6 95.9 95.8 63.5 66.6 85.8 86.5
988231648 90.9 90.7 90.9 93.5 93.6 NaN NaN NaN NaN
982228564 94.3 93.8 91.7 94.8 94.9 23.6 24.0 74.8 76.7
986002161 91.0 89.5 89.5 91.0 89.7 NaN NaN NaN NaN
986939872 83.3 82.2 80.0 88.1 86.4 34.4 34.4 72.0 75.2
988335737 60.9 59.2 59.2 61.2 59.5 NaN NaN NaN NaN
986174566 92.0 92.5 92.1 92.2 93.5 10.8 11.3 76.7 78.3
986884172 85.9 85.7 86.5 88.6 88.3 NaN NaN NaN NaN
986938604 98.6 98.4 98.3 98.8 98.7 37.6 37.3 91.4 91.9
985935431 90.7 90.8 91.1 90.9 91.1 NaN NaN NaN NaN
987014104 98.1 97.6 97.6 99.1 98.6 38.5 39.6 89.8 92.2
82119412 96.8 95.9 96.0 97.2 96.2 10.0 9.8 66.0 65.5
983602168 89.8 89.9 89.1 92.4 92.5 NaN NaN NaN NaN

Overall Accuracy 91.33 91.0 90.71 93.43 93.10 31.14 31.70 83.48 85.06

Table 3.12: Performance comparison of various privacy-invasivemodels

Participant ID MVB +LO MVB +LH MVP +LO MVP +LH

988088403 92.3 92.6 94.9 96.0
988231648 95.4 94.8 96.0 95.6
982228564 95.8 94.4 95.9 94.3
986002161 95.7 95.7 95.7 95.7
986939872 87.2 87.3 89.2 89.2
988335737 67.2 67.2 67.2 67.2
986174566 93.2 93.2 93.3 93.3
986884172 94.4 94.2 94.3 93.6
986938604 99.7 99.1 99.8 99.2
985935431 94.9 94.9 95.0 95.0
987014104 92.2 97.7 99.4 97.9
82119412 NaN 98.0 NaN 98.3
983602168 94.4 92.7 94.5 93.3

Overall Accuracy 94.70 94.20 95.27 94.87
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importantly, MVP+LO shows as well the highest overall accuracy among both
privacy-friendly and privacy-invasive models. The NaN in the results of MVB+LO
and MVP+LO models indicates that the location of office is unknown, and there-
after, the post-processing task is not applicable. Globally, the privacy-invasive
models show better performance than the privacy-friendly models, indicating that
the private information does help improve the models. However, in practice, the
private information is not always available. Therefore, a trade-off between model
performance and user privacy should be considered in practice.

Post-processing effects on various basic MTSC models
In this section, we report the detailed results of various model variants applied to
new data (not seen before by the model) to show the effects of the post-processing
techniques. First, we show the performance of the privacy-friendly models before
and after adopting the post-processing layer (i.e., stop-mode and transportation-
mode detection). Then, for privacy-invasive models, we briefly compare the effects
between various location-correction techniques (i.e., LO and LH) on our multi-view
learner after post-processing (i.e., MVP).

For privacy-friendly models, we show the results on four basic MTSC models
(i.e., multi-view learner, two-step multi-view learner, MLSTM-FCN, and KNN-
DTW) with or without pre-processing. Tables 3.13, 3.14, 3.15 and 3.16 show the
metric comparison (i.e., precision, recall, F1-Score) of the four models, respectively.
Globally, the multi-view models (i.e., MVB and MVP) show better performance
than both MLSTM-FCN and the two-step multi-view models. Furthermore, the
post-processing allows improving all the basic models, especially for the F1-score,
in which we can observe a noticeable improvement. To have a more detailed
understanding of the results, we show in Figures 3.13, 3.14, and 3.15 the related
confusion matrices of the models where we report the percentage of true predictions
in each class. From the results, we observe that the post-processing improved
largely the recognition of the outdoor (e.g., walk, bike, park) and transport
(e.g., car, bus, metro) micro-environments, whereas the performance on indoor
micro-environments (e.g. station, restaurant, and store) recognition is only slightly
improved, which is mainly due to the limited sample numbers in the testing set.

However, as shown in Table 3.15 and 3.16, MLSTM-FCN-based and KNN-
DTW-based models show bad performances even after post-processing. For in-
stance, in Table 3.15, the MLSTM-FCN-based models fail to detect most of the
micro-environments, even they perform relatively better on detecting home, the
performance is still much worse than multi-view-based models. Therefore, we
draw a similar conclusion as mentioned in Section 3.3.6: the baseline models are
not applicable on such complex scenarios where some dimensions are missing dur-
ing data collection process; In other words, some sensors may be inoperative due
to a technique issue for a long time, thus, some samples contain less dimensions
than others. On this aspect, our multi-view-based models show a key advantage
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Table 3.13: Performance of Multi-view Learner on Participants’ data
(before/after) post-processing

class MVB MVP

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.82 0.79 0.80 0.85 0.83 0.84
Bus 0.85 0.64 0.73 0.96 0.69 0.79
Office 0.86 0.85 0.85 0.92 0.90 0.90
Restaurant 0.42 0.60 0.50 0.44 0.60 0.50
Home 0.95 0.95 0.95 0.96 0.96 0.96
Bike 0.57 0.61 0.59 0.61 0.61 0.61
Car 0.51 0.18 0.27 0.78 0.25 0.38
Store 0.61 0.61 0.61 0.64 0.68 0.64
Metro 0.62 0.70 0.66 0.71 0.70 0.71
Station 0.16 0.17 0.16 0.25 0.16 0.20
Motorcycle 0.33 0.08 0.12 0.65 0.30 0.41
Running 0.30 0.61 0.40 0.38 0.61 0.48
Park 0.32 0.86 0.47 0.36 0.85 0.50

Figure 3.13: MVP confusion matrix
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Table 3.14: Performance of Multi-view Learner (2 steps classification) on
Participants’ data (before/after) post-processing

class MV-2steps MV-2stepsP

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.75 0.79 0.77 0.78 0.83 0.80
Bus 0.73 0.64 0.68 0.81 0.69 0.74
Office 0.85 0.87 0.86 0.92 0.96 0.94
Restaurant 0.43 0.60 0.50 0.48 0.60 0.54
Home 0.95 0.95 0.95 0.97 0.97 0.97
Bike 0.43 0.38 0.41 0.52 0.41 0.44
Car 0.50 0.14 0.22 0.88 0.23 0.36
Store 0.45 0.62 0.53 0.60 0.68 0.60
Metro 0.57 0.50 0.53 0.76 0.45 0.53
Station 0.46 0.15 0.23 0.80 0.14 0.22
Motorcycle 0.27 0.04 0.07 0.76 0.28 0.40
Running 0.24 0.61 0.35 0.38 0.60 0.46
Park 0.41 0.93 0.57 0.38 0.96 0.54

Table 3.15: Performance of MLSTM-FCN on Participants’ data (be-
fore/after) post-processing

class MLSTMB MLSTMP

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.13 0.02 0.03 0.13 0.09 0.01
Bus 0.0 0.0 0.0 0.0 0.0 0.0
Office 0.13 0.60 0.22 0.13 0.58 0.21
Restaurant 0.0 0.0 0.0 0.0 0.0 0.0
Home 0.73 0.27 0.40 0.74 0.28 0.41
Bike 0.0 0.0 0.0 0.67 0.06 0.11
Car 0.0 0.0 0.0 0.0 0.0 0.0
Store 0.0 0.0 0.0 0.0 0.0 0.0
Metro 0.0 0.0 0.0 1.0 0.08 0.16
Station 0.0 0.0 0.0 0.0 0.0 0.0
Motorcycle 0.0 0.0 0.0 0.55 0.33 0.42
Running 0.0 0.0 0.0 0.0 0.0 0.0
Park 0.0 0.0 0.0 0.0 0.0 0.0
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Figure 3.14: MLSTMP confusion matrix

Table 3.16: Performance of KNN-DTW on Participants’ data (be-
fore/after) post-processing

class KNN-DTWB KNN-DTWP

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.13 0.52 0.20 0.26 0.62 0.36
Bus 0.06 0.55 0.11 0.1 0.83 0.17
Office 0.59 0.64 0.62 0.66 0.82 0.74
Restaurant 0.04 0.24 0.06 0.05 0.33 0.09
Home 0.92 0.74 0.82 0.97 0.87 0.92
Bike 0.22 0.33 0.26 0.55 0.40 0.46
Car 0.0 0.0 0.0 0.0 0.0 0.0
Store 0.11 0.41 0.18 0.0 0.0 0.0
Metro 0.09 0.40 0.16 0.37 0.55 0.44
Station 0.09 0.11 0.10 0.33 0.20 0.25
Motorcycle 0.05 0.08 0.06 0.44 1.0 0.62
Running 0.17 0.71 0.27 0.11 0.27 0.15
Park 0.04 0.50 0.08 0.33 0.50 0.40
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Figure 3.15: KNN-DTWP confusion matrix

Figure 3.16: MVP + Office location Correction confusion matrix

compared to the baseline models, which can be explained by the fact that the
meta-learner allows weighting the predictions of the fist-level learners, thus elimi-
nating the effects of the missed dimensions. To this end, considering as well the
high computation cost of the MLSTM-FCN and KNN-DTW models, we judge that
the the baseline approaches are not qualified as appropriate models for predicting
the micro-environments.

For privacy-invasive modes, we show in Table 3.17 and Figure 3.16 the perfor-
mance of the MVP model when adopting the location-correction techniques (i.e.,
LO and LH). Compared to the MVP model’s performance reported in Table 3.13,
we observe that adding the location corrections of home or office not only leads to
better predictions on the target classes (i.e., home, office) but also improves the
general model performance. Moreover, the location of office (LO) helps the MVP
model achieve better predictions in most classes than the location of home (LH),
which is coherent with our conclusion in Section 3.3.6 where the MVP+LO model
shows the best accuracy for most campaign participants. However, even though
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Table 3.17: Performance of Multi-view Learner with Location Correction
and Post-processing on Participants’ data

class MVP + LH MVP + LO

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.89 0.78 0.83 0.88 0.80 0.84
Bus 1.0 0.53 0.69 0.95 0.56 0.71
Office 0.94 0.93 0.93 0.92 0.95 0.94
Restaurant 0.51 0.60 0.55 0.49 0.60 0.54
Home 0.96 0.98 0.97 0.97 0.98 0.98
Bike 0.67 0.54 0.59 0.68 0.62 0.65
Car 0.84 0.15 0.26 0.84 0.15 0.26
Store 0.78 0.54 0.64 0.71 0.41 0.52
Metro 0.78 0.49 0.60 0.83 0.64 0.72
Station 0.42 0.14 0.20 0.35 0.16 0.22
Motorcycle 0.74 0.35 0.47 0.67 0.31 0.42
Running 0.24 0.30 0.27 0.41 0.60 0.49
Park 0.32 0.96 0.48 0.31 0.96 0.47

the location information allows to greatly improve the model’s performance, the
privacy stays as a crucial issue during both the data collection and data application
process. In practice, a trade-off between the privacy and model performance should
be considered.

In conclusion, MVP with location correction and MVP classifiers have com-
parable results. Although location corrections (i.e., LH and LO) can improve the
model’s performance, those location data are not always available due to privacy
issues.

Model Generalization

In practice, we should consider the model generalization on unseen data, which
allows evaluating the model in more complex scenarios. We have used the multi-
view model (which have been trained over RECORD campaign data) to classify
data that have never been seen by it before. We opt for the VGP campaign data,
which was collected during a different time period from RECORD, to prove the
generalization ability of the proposed model. For VGP campaign, we don’t have the
ground truth for the data, so we have plotted the predictions versus the declared
activities (which is not guaranteed to be accurate). Figure 3.17 shows the plot of
declared versus predicted micro-environments. For this participant (i.e. participant
9999988), we trust his/her annotations, so we can notice that the model have
performed well. While for figure 3.18, as we don’t have the real ground truth, we
can see that the model’s predictions are more reliable than the annotations. For
instance, the participant in the plot has declared three times staying outdoors in the
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Figure 3.17: Predictions of VGP campaign for participant 9999988.

middle of the night (i.e. 24, 25 and 26th of October 2019), which is very unlikely
to be true. Some participants may completely forget to annotate the change of
micro-environment, so the declared annotations are indeed imperfect.

3.3.7 . Discussions & Perspectives

In this section, we discuss the perspectives for improving our multi-view learning
model and the possibility for tackling the practical label issue in the context of
Polluscope.

Multi-view Learner

The multi-view learner adopted in this work is composed of the base learner (i.e.,
Random Forest) and the meta-learner (i.e., Random Forest), which has greatly
improved the performance compared to the single kNN-DTW classifier. The ob-
jective of this work is not to propose the best classifier for MTS classification,
but to provide an insight that the multi-view learner is capable of coordinating
effectively the information from different variables and achieving more reliable per-
formance than a single base learner. Moreover, the results of the grouping approach
which is based on the multi-view approach confirms that there is a clear signature
for each micro-environment, thus we can have an effective prediction with this
approach. Moreover, multi-view approach offers the reusability of the first-level
learners, and allows using different classifiers and combinations for the first-level
learners. Multi-view model doesn’t require a special hardware such as GPU for
training Neural Networks (i.e. MLSTM-FCN). In addition, it doesn’t require a
long time for classification as other classifiers such as KNN-DTW do. Besides, us-
ing multi-view approach allows the prediction of micro-environments in the absence
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Figure 3.18: Predictions of VGP campaign for participant 9999944.

of some dimensions in the data. Another advantage of using multi-view approach
is that its meta-learner is trained on out-of-fold predictions thus the model will not
over fit.

Nevertheless, the kNN-DTW is considered as the baseline for MTS classi-
fication and is widely outpaced by the advanced approaches such as Shapelets
[134, 149, 148] or the frequent patterns [94]. Essentially, the kNN-DTW captures
the global feature based on the distance measure between the entire sequences,
while the local features (e.g., the frequent patterns [94], the interval features [35],
Shapelets [134], etc.) are more appropriate when a specific pattern character-
izes a class. More specifically, a combination of features extracted from different
domains may dramatically improve the performance of the base learner [83]. There-
fore, one of the perspectives consists of the optimization of the base learner and
the exploration of the explainability of the multi-view learner on both the feature
interpretation and the variable importance for building the classifier. For this rea-
son, we have removed the NO2 and BC dimensions to show their importance for
some classes. Table 3.18 shows the precision, recall, and F1 score for MVB while
removing some dimensions (NO2 and BC) compared to the MVB model containing
all dimensions. The comparison shows that the F1-score of the MVB model for all
classes is greater than that model without NO2 and BC. Except for Running class
which is only one point difference. This comparison shows the importance and
role of those dimensions (NO2 and BC) in context prediction. We have chosen to
remove NO2 and BC because depending on figure 3.10, these 2 dimensions have
the highest accuracy compared to other dimensions. The visual representation of
Shapelets make them good candidates for such improvement.
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Table 3.18: Performance of MVB without NO2 and BC VS. MVB

class MVB without NO2 and BC MVB

Precision Recall F1
Score Precision Recall F1

Score
Walk 0.74 0.76 0.75 0.82 0.79 0.80
Bus 0.58 0.54 0.56 0.85 0.64 0.73
Office 0.78 0.74 0.76 0.86 0.85 0.85
Restaurant 0.43 0.60 0.50 0.42 0.60 0.50
Home 0.92 0.93 0.93 0.95 0.95 0.95
Bike 0.49 0.47 0.48 0.57 0.61 0.59
Car 0.34 0.15 0.20 0.51 0.18 0.27
Store 0.54 0.57 0.55 0.61 0.61 0.61
Metro 0.52 0.60 0.55 0.62 0.70 0.66
Station 0.10 0.12 0.11 0.16 0.17 0.16
Motorcycle 0.25 0.07 0.11 0.33 0.08 0.12
Running 0.32 0.61 0.42 0.30 0.61 0.40
Park 0.26 0.89 0.41 0.32 0.86 0.47

Label Shortage Issue

The label shortage is a practical issue when building the learning model. In the
context of Polluscope particularly, post-labelling for time series sensor data is much
more costly than classic data (e.g., image, text, etc.) due to the low interpretability
over the real-valued sequence. Therefore, the data need to be annotated during
the data collection process. However, certain practical factors limit the availability
of labels. For instance, the participants are not always conscious in annotating
their micro-environment. Therefore, for certain time periods, no annotations were
marked.

In order to give an insight about the consistency between the labeled and unla-
beled data, and to see if the unlabeled data are valuable for improving the classifier’s
performance in our context, we conduct a preliminary test on the Polluscope data
with the newly proposed semi-supervised MTSC model TapNet [139].

TapNet [139] is a deep learning based approach designed for multivariate time
series classification. By adopting the prototypical network [114], TapNet allows
learning a low-dimensional embeddings for the input MTS where the unlabelled
samples help adjust the class prototype (i.e., class centroid), which leads to a
better classifier than using only the labelled samples. Table 3.19 shows the semi-
supervised learning results on Polluscope data considering or not the speed variable.
We evaluate the performance of TapNet under different supervision ratios in the
training set. The results show that the unlabeled samples and the speed variable
do improve the performance of the classifier. Besides, the accuracy didn’t drop a
lot when eliminating the annotations in training set (from ratio=1 for fully labelled
to 0.5, and even for 0.2 when only 20% data in labelled), indicating that the
collected data within each class is not sparsely distributed. Thus learning under
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weak supervision is reliable with the aid of the unlabeled samples.

Table 3.19: The accuracy results of TapNet on Polluscope data under
different supervision ratios

Condition Sup_ratio=1 Sup_ratio=0.5 Sup_ratio=0.2
Speed 0.746 0.725 0.717

No speed 0.713 0.703 0.695

Giving the promising results on the data distribution consistency, another av-
enue worth exploring is to consider and integrate a semi-supervised model into
our multi-view learner. Various semi-supervised frameworks are applicable to our
model, such as applying self-learning [127] to produce the pseudo labels on the
multi-view learner, or adopting the label propagation and manifold regularization
techniques [121] on the base learner.

3.3.8 . Summary
Activity recognition has gained the interest of many researchers nowadays, due

to the widespread use of mobility sensors. Micro-environment recognition is es-
sential in MCS projects such as Polluscope, in order to analyse the individual’s
exposure to air pollution and to relate it to her context. The major finding of our
study is to show to some extent that the environmental observations can character-
ize the micro-environment. Moreover, the accuracy of the model is high enough to
consider an automatic detection of the micro-environment without burdening the
participants with self-reporting. By using the mobility feature as a time series, the
accuracy improves slightly though the gain is moderate. Therefore, we can keep
characterizing the micro-environment even in the absence of the speed dimension.

3.4 . Conclusion

In this work, we covered time series segmentation based on change point de-
tection to demonstrate the change points in participants’ contexts detected au-
tomatically by a multi-dimensional CPD model. The experiment conducted using
real-world data, showed the effectiveness of our proposed approach for multidimen-
sional time series segmentation, where not all dimensions may cause or detect the
change.

Additionally, we promoted the idea of multi-view learning with stacking to
detect the user context from environmental data collected from several sensors
plus mobility. We employed different approaches and learners, and conducted a
thorough experimental study, which shows the efficiency of the multi-view approach
for time series classification, even some dimensions are missing. We have also
compared the results with the MLSTM-FCN and kNN-DTW classifier which were
considered as the baselines. During training phase, MLSTM-FCN, on the one hand,
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showed promising results that could not be confirmed during the phase of applying
the model on new data due to over-fitting. kNN-DTW, on the other hand, was not
comparable, plus it is not suitable because of its time consumption. Furthermore,
training on a previous data set was biased by the quality of the annotation. But
this limitation was overcome by using a more reliable data that we did not have
before.

Furthermore, we extend the proposed approach to include the detection of stay
locations based on trajectory segmentation into stop and move segments. The
move segments were labeled by the type of transportation mode. We combine
time series plus trajectory data as a pre-processing and a post-processing layers to
bring the best of them.

In addition, we present two optimisation methods which are either privacy
friendly or privacy invasive. The later approach adds the private location of home
and office in post-processing, whilst the first approach uses a priori rules. According
to our experiments, we highly recommend using the privacy friendly models due to
their ability to respect the private lives of the participants.
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4.1 . Introduction

In this chapter, we address the fourth contribution of this thesis, i.e. trajectory
data management and warehousing. Resulting from trajectory data pre-processing
and enrichment in Chapter 3, we have already achieved a sound trajectory data
enriched with contextual information. To analyse these semantically enriched tra-
jectory data and better understand the exposure to pollution per participant and
for all participants combined, this chapter focuses on designing a multidimensional
trajectory data model in the context of mobile crowd sensing called MULTICS,
which allows trajectory data mining and exploration from different perspectives
(i.e. temporal, spatial, longitudinal).

This chapter is organised as follows: The following section presents motiva-
tion for a multidimensional data model and the encountered challenges. Section
4.2 presents the main challenging characteristics for multidimensional rich trajec-
tories modeling. Section 4.3 introduces MULTICS conceptual model. Section 4.4
introduces the proposed data model. Section 4.5 presents the implementation of
MULTICS. Experiments are conducted on real environmental data from MCS cam-
paigns. Finally, the last section summarizes our main contributions and draws our
perspectives.

4.1.1 . Motivation and Challenges

As has been addressed in Chapter 1, combining spatial location with continuous
measurements, and time activity diary result in rich trajectories. Figure 4.1 shows
an example of a typical rich trajectory evolving along space and time. In addition to
ambient air measurements such as temperature and air pollutants, this trajectory
is enriched with contextual information such as participants’ micro-environments
(e.g. home, office, restaurant, etc.) and air pollution related events (e.g. smok-
ing). Therefore, rich trajectory data does confirm the representation mentioned
above, which can be described by a vector (user id, timestamp, latitude, longitude,
measurements, semantic). The challenge then is to perform analytical processing
of rich trajectory data. For instance, to answer a query like Which category of
participant is the most exposed to NO2 and in which micro-environment? requires
aggregating measures (here NO2) at some space and time granularity while con-
sidering other categorical dimensions. Other queries may need not only trajectory
data and contextual information, but also the ability to integrate external data
and perform complex analysis. For instance, answering this query: What is the
difference between the collected AQ measurements and fixed stations AQ data for
the same localization and at the same time? This query involves the integration
of AQ data from fixed stations and the alignment of the spatial and temporal
granularities of the two data sources, in order to match and compare them. The
combination and the aggregation of rich trajectories data calls for the concept of
Trajectory Data Warehouse (TDW).

However, one particularity of MCS is its heterogeneous and imperfection prop-
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Figure 4.1: An example of rich trajectory collected in the context of
MCS.

erties, designating that rich trajectory data is originated from different sensors that
may exhibit some issues. In fact, some sensors may be offline and do not transfer
any data for hours, which may lead to missing data problems. Furthermore, partic-
ipants may not thoroughly annotate their micro-environments or may completely
forget to fill in this information, resulting in trajectory data with low-confidence in
self-reporting, or in worst cases, trajectory data with no semantic contextual infor-
mation. With this missing data issue, analysing rich trajectory data and extracting
the complete exposure story of participants is not straightforward. The complete
story of a subject has been addressed in [122] to analyse the different aspects of
the “mobility story” of a moving object. In our case, we intend to use this approach
for extracting the complete information from rich trajectories, including interpo-
lating missing values, inferring the context of the participants, and analysing the
exposure story of the participants.

Information of the exposure story benefits participants in triple ways: (i) Dis-
cover periods and/or location with high pollution phenomena along the partici-
pant’s trajectory, so they can change their mobility habits - if possible. (ii) Have
a view on their exposure over time and detect the micro-environment with the
highest/lowest level of pollution. Users can then take actions to improve their AQ
(e.g., open/close window). (iii) Provide participants with complete information on
their exposure even if they did not thoroughly annotate their data or the data were
not acquired. Hence providing information from such enriched trajectory data is a
fundamental issue in real-world applications.

Consequently, the multidimensional feature of rich trajectories motivates a mul-
tidimensional analysis since it allows the exploration of these data from several
perspectives (i.e., longitudinal, spatial and temporal perspectives) and multi-scale,
which allows exploring the MCS data at different granularity levels.
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4.1.2 . Problem Statement

Despite extensive research efforts on modeling Trajectory Data Warehouse
(TDW) and OLAP systems [106, 86, 122], none of them are applicable on our
MCS data enriched with measurements and semantics since it is non-trivial to
adapt generic Data Warehouse (DW) for spatio-temporal trajectories.

One of the strengths of MCS is the usage of different sensors designed by dif-
ferent manufacturers. The used sensors may differ in their sampling frequencies,
which could lead to measurements at irregular, potentially asynchronous time in-
tervals, and missing values. In other words, we can not get a complete measured
state due to various times of sensor data acquisitions. For instance, GPS tracks
are collected every second, while AQ data are collected every minute. The user
needs to recognize the periods and location with a high level of exposure. Com-
bining GPS tracks and AQ time series will create a missing value issue. Plus, the
time and spatial dimensions are not finite and discrete and cannot be used for
aggregation, unless they are previously discretized according to a given granularity.
This raises the question of how to manage the diversity of the granularity of these
data ? How to ensure the usage of grouping and aggregating of measurements
whilst some dimensions such as time and space do not present finite and discrete
domains? Since the data captured by the sensors are provided with a given accu-
racy, for comparable measurements, aggregation or grouping these data may not
be possible. For example, the coordinates of two participant trajectories walking
together may not be numerically identical even though they are acquired at the
same time. Thus, a query that requires the grouping of these similar trajectories
cannot be computed. In addition to this, another question that arises itself is how
to associate a concept hierarchy to these two continuous dimensions? And lastly,
how to handle the missing values in a multi-granular data warehouse?

Furthermore, the semantic of events reporting the time activity (i.e. context)
is also different from the sensor updates, because it is categorical and relates to
large intervals or sporadic events while sensor updates are numerical and reported
continuously. For instance, micro-environments depict participants’ contexts for a
period of time (possibly a large interval), whilst air pollution related events report
temporary and sporadic activities for a brief period. Therefore, a natural question
arises how to model events reporting with respect to their semantics?

Additionally, in the context of MCS, sensors continuously collect huge amounts
of rich trajectory data. Thereby, we need an efficient implementation of the data
model to handle the volume and the velocity of this large-scale data.

4.1.3 . Concepts of Semantic Trajectory Data Modeling

Following the huge generation of spatio-temporal data, it became commonly
known that non-spatial data warehouses are not sufficient to fully exploit the spatial
dimension of geo-located data [106] [70]. A re-thinking of the traditional solutions
was needed. In this section, we provide a summary of the main research on rich
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Solutions Semantic Trajectories Spatial perspective Temporal perspective Missing Data Solution

Spatial OLAP [106] No Yes No No
Iftikhar and Pederson [66] No No Yes Yes
Sequential OLAP [86] Yes No Yes No
Interval OLAP [73] Yes No Yes No
OGC [96] No Yes No No
STOLAP [124] No Yes Yes No
Mob-Warehouse [122] Yes Yes No No
Leonardi et al. [80] No Yes Yes No
Mobility DW [120] Yes Yes No No
MULTICS Yes Yes Yes Yes

Table 4.1: Existing work on mobility analysis in DW and OLAP systems.

trajectories modeling. Depending on whether the model requires spatio-temporal
data enriched with measurements and events, we discuss their compliance to MCS
contect. Table 4.1 presents some existing works related to mobility DW and OLAP
systems.

Based on our deep study and analysis of the literature related to moving ob-
ject management (see Section 2.6), we have identified two families of databases
research that have been successfully tackled in the literature; i.e. moving objects
databases and trajectory data warehousing. More specifically, we have consid-
ered trajectory-based models and enriched trajectory models from trajectory data
warehouses’ family, which are the case studies of this thesis work.

A thorough comparative analysis between state-of-the-art proposals reflects
that each work involves various facets of the trajectory data. Notably, the Mob-
warehouse [122] proposal is an interesting study introduced as a key work to inves-
tigate all the aspect of the “mobility story”. Whilst the authors interrogate the data
from different perspectives and answer questions in the form of where, when, who,
whom, what why and How, one important facet of the data is still missing and
it concerns the continuous measurement. Indeed, the continuous measurements
are as important as any other dimensions in MCS data. Other initiatives such as
Mobility DW [120] provide a data warehouse for moving objects. It is true that
the semantic information about the moving object is not excluded in the proposal,
However, continuous measurements are not included, and it remains an important
facet in MCS data mining and analysis. Sequential OLAP [86] and Interval OLAP
also [73] deal with semantically enriched trajectory data. However, they do not
introduce the spatial dimension in the data analysis and exploration.

On the other hand, trajectory-based models encompass studies such as Spatial
OLAP [106], the work of Iftikhar and Pederson [66], OGC [96], STOLAP [124]
and the work of Leonardi et al. [80], which do not consider the semantic facet of
the trajectory data. While these approaches are key guidance for trajectory data
modelling, they present some limitations concerning the spatial persepective or the
temporal one as described in Table 4.1.

Motivated by these limitations, in this work, we propose a multidimensional
data model for rich trajectories data modeling and analysis which takes into con-
sideration the particularity of MCS data, as well as the specific semantic and nature
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Figure 4.2: The conceptual architecture of the proposed solution for rich
trajectories.

of self-reporting (i.e. micro-environments and events declared by participants) to
capture every facet of the data.

4.1.4 . Contributions

To the best of our knowledge, this is the first contribution that adopts a multi-
dimensional model to meet the requirements of the complete exposure and mobility
stories. We investigate the capability of online analytical processing (OLAP) sys-
tems in handling MCS data and identify their limitations. Precisely, we adopt the
discretization method of the spatial and temporal dimensions so they can be used
in an OLAP system. Based on machine learning, we propose new operators for
spatial and temporal disaggregation to deal with missing values in a multi-granular
DW. Figure 4.2 illustrates the conceptual architecture of the proposed solution.
Specifically, the main contributions of this work are :

• We propose MULTICS, a MULTI-dimensional model for Crowd Sensing
to deal with the multidimensional feature of MCS data and capture every
facet.

• We adopt the discretization method of the spatial and temporal dimensions
by setting a minimal granularity.

• Time is also discretized (in our application, the granularity of the minute
was chosen).

• For the spatial dimension, the study area is divided into pixels of predefined
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size1. Trajectories are converted to pixel references combined with time
units (i.e., members of spatial and time dimensions), which adapts to the
exploration at different scales in a hierarchical manner. We also adopt a
spatial index to speed-up the spatial queries.

• Besides the embedded operators, we introduce two operators of spatial and
temporal disaggregation based on machine learning to handle the problem
of missing values by producing finer resolution data from coarse data.

• Along with the collected data, the proposed model has the ability to store
external facts and/or dimensions, as well as data derived by, e.g., a machine
learning process.

• Finally, extensive experiments on real-world data collected by participants
demonstrate the usefulness of our proposed model in solving real applications
scenarios.

4.2 . Requirements of Multidimensional Data modeling in MCS

This section introduces the main characteristics of rich trajectories data col-
lected in MCS, which are subject to many limitations. Indeed, data measured by
mobile sensors can be represented by multivariate time series which are charac-
terised by the presence of a spatial dimension forming trajectories. Equivalently,
we can use these data as spatio-temporal trajectories enriched by additional mea-
surements throughout the collection period. Such type of data exhibits a number
of challenging characteristics.

Spatial and Temporal Autocorrelation. From the modeling view, a distinc-
tive aspect of such data series is the spatial autocorrelation [89]. The same holds
for consecutive observations, as the variation of physical phenomena is usually
smooth. This means that collected data are not independent, and so, the spatial
and the temporal dimensions should be organized and indexed accordingly.

Multi-Granularity. Another fundamental characteristic of mobile sensor data
is the diversity of their granularity, both under the temporal and spatial dimensions.
The temporal domain is typically represented at different time granularities. The
spatial entity can be represented at different scales within a hierarchy of regions
or cells. Combining multiple datasets with several granularities or changing the
granularity of a dataset are important analysis tasks that we intend to deal with.
Thus, we need to define a framework that takes into account spatial and temporal
granularities, and allows the shifting from one granularity to another. The passage
from a finer resolution to a higher resolution is motivated by temporal / spatial

1The chosen division follows the same division as the Air Quality Monitoring As-
sociation in the Paris region AirParif (https://www.airparif.asso.fr/). It is set to
12.5x12.5 m2 in Paris, 25x25m2 in the inner suburbs and 50x50m2 elsewhere in the
rest of the region.
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aggregation. While spatial / temporal disaggregation is advocated when the lower
granularity data is missing.

Data Volume. Huge amounts of data are being collected continuously in MCS
campaigns (as many as the number of equipped holders) in different geographical
areas. Big data processing techniques are necessary to allow an efficient interactive
data analysis.

4.3 . Background

In this section, we define the main concepts for multidimensional data models.
The notion of granularities has been deeply studied in the literature, Bettini et

al [13, 14, 15] define the temporal granularity as a partition of the time domain.

Definition 4.3.1. (Temporal Granularity). Formally, a temporal granularity
gT is a function from an ordered set IT to the power set of the temporal domain
T such that:

∀i, j, k ∈ IT , (i < k < j ∧ gT (i) 6= ∅ ∧ gT (j) 6= ∅ =⇒ gT (k) 6= ∅)

∀i, j ∈ IT , (i < j =⇒ ∀x ∈ gT (i) ∀y ∈ gT (j) x < y)

Typical examples of temporal granularities are days, weeks, months. gT (i) are
called temporal granules of the granularity gT . The first condition states that the
subset of the set that maps to non-empty subsets of the time domain is contiguous.
The second condition states that granules do not overlap and that their order is the
same as their time domain order. Besides, Camossi et al. [23] define the spatial
granularity as a mapping from an index set to subsets of the spatial domain (i.e.
a set of 2−dimensional points)

Definition 4.3.2. (Spatial Granularity) Formally, a spatial granularity gS is
a function from an ordered set IS to the power set of the spatial domain S

such that:
∀i, j ∈ IS ,

(i 6= j ∧ gS(i) 6= ∅ ∧ gS(j) 6= ∅ =⇒ intersects(gS(i), gS(j) 6= ∅)

Typical examples of spatial granularities are pixels of different sizes, or a spatial
hierarchy such as administrative subdivisions of a country. gS(i) are called spatial
granules of the granularity gS .

Definition 4.3.3. (Time Series). We define a time series as an infinite se-
quence of values where a value is a couple (t, v) where t ∈ T is a timestamp
(at a given granularity) from a time domain T with discrete time units in in-
creasing order and v is a vector (v1, ..., vn) where each value is a measurement
or scalar value, v is an n-uplet of a fixed size.
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Definition 4.3.4. (Spatio-Temporal Data Series). We define a Spatio-Temporal
Data Series (STDS) as a time series where the location (e.g., latitude and lon-
gitude) belongs to the vector v.

Definition 4.3.5. (Hierarchy) A hierarchy is a set of binary relationships be-
tween the members of dimension. It is a systematic way of organizing the
dimension into a logical tree structure, which defines parent-child aggregation
relationships. The aggregate member, called parent, corresponds to the con-
solidation of another member called child.

Typical example of a simple hierarchy in a multidimensional Data Warehouse
(DW) is the date (day, month, quarter, year).

Definition 4.3.6. (Dimension) Dimension (Di) is an object that contains
attributes that belong to the same category in the user’s perception of data.

Example: Minute, Hour, Day, Month and Year may make up a Time dimen-
sion.

Definition 4.3.7. (Fact) A fact is represented by a set of values which are
related to a set of dimensions. The values of a Fact are usually measurements
that can be numeric or alphanumeric.

Example: measurement in Figure 4.3 constitutes a fact table containing five
dimensions (i.e. user_id, campaign_id, time_id, location_id and measurement_
value_id ) and relating to the measure measurement_value which is a numeric
value.

Definition 4.3.8. (Temporal Disaggregation) Temporal disaggregation, also
known as Temporal Distribution, is the process of converting a low granularity
time series (e.g. annual time series) to a higher granularity time series (e.g.
monthly time series). Denoting m the disaggregation function and S (optional)
one or more external time series used to perform the disaggregation, temporal
disaggregation is defined by the following expression:

TDAgggT ,m[,TProjf (S)](R) = {(v, s)) | s ∈ GT (R)}

The set GT (e.g.,GT =March, April, June, July) ranges over the granules
of a granularity gT (e.g., months).

Example: For each air pollutant measure that is initially sampled every hour,
estimate its value every minute. This might be based on mathematical criteria or
time series models such as ARIMA , or on other consistent temporal data used
as a proxy. For instance, if we know either the sum, the average, the first or the
last value of Particulate Matter (for which the sampling frequency is lower), we
can use a consistent time series such as NO2 (which is sampled every minute)
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to disaggregate or interpolate Particulate Matter from low frequency to higher
frequency time series with Chow-Lin-Maxlog method (See section 4.5).

TDAggPM10,Chow−Lin−Maxlog[,TProj(NO2)](PM10)

Definition 4.3.9. (Spatial Disaggregation) Spatial disaggregation refers to
the process of producing high resolution estimates of data distribution (e.g.
25m square) from coarse geospatial data (e.g. 1km square). The generation of
fine gridded data can be done based on techniques that are often in conjunction
with ancillary data, or statistical modeling methods. Denoting m the spatial
disaggregation method and S the external geospatial data (optional), spatial
disaggregation is defined as :

SDAgg(gS ,m,S)(R) = {(v, s)) | s ∈ GS(R)}

GS is the spatial counterpart of GT .

Example: Disaggregating the values of NO2 from a coarse resolution (e.g. 300
m2) to a finer resolution (e.g., 50 m2 using the distribution of roads for example
as ancillary data with a machine learning algorithm such as Random Forest (RF)
(See section 4.5).

SDAgg(gS ,RF,Roads)(NO2)

4.4 . Multidimensional Data Model

As discussed in Section 4.1, the key insight of this work is to adopt a multidi-
mensional model to mine rich trajectory data and extract users’ complete story of
exposure to pollution so that they possess the ability to take appropriate actions.
In this section, we define the proper steps taken to achieve the ultimate goal. First,
we introduce an overview of MCS data used for modeling rich trajectories. After-
wards, we discretize the spatial and temporal dimensions along with introducing
two operators: spatial and temporal disaggregation (cf. Figure 4.2). Thereafter,
we demonstrate the proposed model for rich trajectories, MULTICS, including the
overall framework and the details of each component.

4.4.1 . Overview
Data collected in the context of MCS combines geolocation with observations

and measurements over time, resulting in “rich trajectories”. As a running appli-
cation example, we consider a database obtained from the Polluscope project. A
cohort of volunteers have been equipped with individual sensors collecting several
pollution measurements along with GPS data. In Polluscope, three data collec-
tion campaigns have been conducted. Each campaign is characterised by a start
date, an end date and a person in charge (i.e. responsible). Each campaign was
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Figure 4.3: MULTICS conceptual Schema.

spread over 12 weeks with a collection generally carried out every other week (in
order to check and re-qualify the sensors). 103 volunteers participated in the cam-
paigns.We remind that these participants are equipped with a kit which contains air
pollution sensors and tablets empowered with GPS chipsets. The sensors collect,
every one minute, time annotated measurements of Particulate Matters (PM1.0,
PM10, PM2.5), Nitrogen dioxide NO2, Black Carbon (BC), temperature and rel-
ative humidity. The tablet was used to geolocate the participants (GPS tracks are
collected between 1 to 30 seconds) and to fill in their time activity via a mobile
app developed for this purpose. Activities last a certain time and represent micro-
environments which can be indoor environments (e.g. home, office, restaurant,
etc.), outdoor environments (e.g., park, street, etc.) or even transportation modes
(e.g., car, bus, etc.). In addition, the participant fills in the events related to air
pollution, designating temporary actions over a short period (e.g., opening a win-
dow, cooking, smoking, lighting the fireplace, etc.). For more information on data
collection’s protocol, refer to Appendix A

It becomes obvious that the collected data show properties of auto-correlation
and multi-granularity. The proposed solution should maintain the locality of the
spatially close data, and to take into account the diversity of granularities. We
introduce spatial discretization and indexing in order to keep spatially close data
together and guarantee a hierarchical spatial representation.

4.4.2 . Spatial Discretization

In a multidimensional model and OLAP systems, dimensions have finite and
generally known values in advance, so as to be used for grouping and aggregating
the measures reported in the fact table. However, spatial and temporal data
represent a continuous domain. They can not be used for aggregation as they are
represented. Subsequently and in order to allow the representation of the spatial
dimension, we transform the reported positions (i.e. latitude and longitude) into
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Figure 4.4: Spatial dimension representation

Figure 4.5: Spatial hierarchy representation

discrete values referencing a pixel of a rectangular grid with a spatial resolution
(here of 50 m). The center subplot of Figure 4.4 illustrates the partition of the
Paris region into a rectangular grid along the longitude and latitude dimensions.

Assuming the minimum latitude and longitude of the region are respectively
Latmin and Lonmin, and the maximum values are Latmax and Lonmax. We split
the region into cw ∗ ch cells along the 2D axes with a grid side length of λ (here
λ = 50m), where cw and ch are the number of vertical and horizontal splits of
the grid. The finer granularity of the spatial dimension is a cell of 50m (the choice
of this value is discussed in Section 4.1.4). The spatial hierarchy can then be
represented by grouping cells with a grid side length of k ∗ λ, where 2k is the
number of cells in the grouping (cf Figure 4.5).

4.4.3 . Temporal Discretization

Likewise, the temporal data are brought back to a minimum threshold. A care-
ful choice of the lowest level of granularity in time is needed in order to provide
a good trade-off between precision and storage costs. In fact, while AQ mea-
surements are acquired every one minute, GPS data are collected every 1 to 30
seconds. However, participants do not change their location very frequently within
one minute inside a cell of 50 m spatial resolution. Hence, the temporal minimum
threshold of one minute was chosen here. In this way, spatial and temporal di-
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mensions can be supported by OLAP systems, unlike the original representation of
infinite space and time.

4.4.4 . Spatial Indexing
There remains the question of maintaining locality in the organization of the

spatial dimension. For this, we adopt the spatial indexing using 2D Hilbert Space-
Filling Curves (SFC), which provides a grouping feature per proximity [93]. In other
words, neighboring cells are likely to be assigned to a close Hilbert index. Moreover,
Hilbert SFC shows a fractal property that eases the exploration at different levels
of spatial hierarchy, leaving the way for the "Roll-up" and "Drill-down" within
the spatial dimension like zooming in images. By dividing the Hilbert index, we
systematically move to a higher level of hierarchy with a grouping of 22n cells.

Figure 4.4 shows our spatial data indexation and representation using Hilbert
space-filling curves. The spatial extent is defined to cover the study area (i.e.
Paris region). It is worth noting that we only maintain cells corresponding to
the locations with GPS data, which is much more compact than solutions like
geo-cubes [96].

The adopted rasterization approach is gainful in different ways. It allows to
derive the stay areas (often indoors) of participants. For example, we can discover
the places where a participant spends time the most based on cell densities, which
can be calculated by counting the number of measurements associated with the
cell (the pixel) per participant in the period. This approach also makes it possible
to detect spatial outliers and spatial noise. Furthermore, it provides an equal-area
pixelization that makes it easy to share the spatial dimension with external sources
provided in raster formats (tiff, geoTIFF, NetCDF,...) such as Air Quality Maps2.

4.4.5 . Temporal Disaggregation
One of the main contributions of our MULTICS model is the introduction of

new operators, namely, spatial and temporal disaggregation, to derive finer grained
data from coarse data.

Temporal disaggregation methods aim at deriving the data from low frequency
time series to higher frequency time series. These methods can be categorised as
models that:

• do not rely on any indicator series. These models purely rely on mathematical
criteria or time series models such as ARIMA to obtain data at a higher level.

• use one or more indicators series observed at higher frequency as proxy to
derive the finer level time series.

The former approach deals with the case where the only available data are the
aggregated time series. It includes mainly mathematical methods proposed by [20]

2https://www.breezometer.com/
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and [68] and more theoretically founded model-based methods [128] relying on the
ARIMA representation of the series to be disaggregated.

On the other hand, when one or more logically correlated high frequency indi-
cators are available, ideal approach for temporal disaggregation are those belonging
to the family of regression models, among which the Chow-Lin method proposed
by [33], further developed by [21], [50] and [84]. The regression model of Chow-Lin
estimates the coefficients at the low frequency level, then uses them to estimate the
target time series at a higher frequency using as input the original high frequency
indicators.

In this chapter, we offer an illustrative example of temporal disaggregation using
R package “tempdisagg” [112] to perform the optimal procedures of Chow-Lin-
Maxlog [33]. This example illustrates how we can descend from a low granularity
time series to a higher granularity time series by applying one of the temporal
disaggregation methods with the help of ancillary time series data. The temporal
disaggregation allows then to unify data on the same level of granularity as ancillary
data, and consequently solve the multi-granularity problem. (See Section 4.5).

4.4.6 . Spatial Disaggregation
Spatial disaggregation, on the other hand, refers to the process of converting

low resolution spatial data to higher resolution data. The most basic approach for
spatial disaggregation is mass-preserving areal weighting [55] whereby we assume
a homogeneous distribution of data. The process is based on a discretized grid,
where each cell in the grid is assigned a value based on the proportion of the source
zone (i.e. the polygon over which data is aggregated) contained in each cell (e.g.
disaggregating the count of population based on the proportion of polygon that
overlaps with the cell). However, mass-preserving areal weighting is based on the
assumption that the observed phenomena is evenly distributed on the polygon
which is often incorrect. Pycnophylactic interpolation [117] is an extension of
mass-preserving areal weighting, which starts by applying mass-preserving areal
weighting on the grid. Then, a smoothing function is applied which replaces the
cell values with the average of their four nearest neighbours. To avoid the incorrect
assumption that the data is evenly distributed, mask area weighting schemes [39]
are based on creating a binary dasymetric mapping within the target zone where the
source data should be allocated. Source units are divided into binary sub-regions
(i.e., populated and unpopulated) and the source information is then allocated
only to the populated areas. Dasymetric disaggregation [39] is an improvement of
mask areal weighting that uses ancillary spatial data to augment the interpolation
process.

In recent research, methods exploring machine learning techniques for combin-
ing pycnophylactic interpolation and dasymetric weighting were proposed. Mon-
teiro et al. [92] present a hybrid disaggregation procedure to historical data (e.g.,
estimate population in one census year within the units of another year). Stevens
et al. [115] combine widely available, remotely-sensed and geospatial data (also
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referred to as covariates), such as presence of hospitals, road networks, land cover,
etc., that contribute to the modelled dasymetric weights to disaggregate census
counts at a country level. Each covariate is projected on a grid pixel of 100 m
spatial resolution, and then aggregated by census units or villages. Their key con-
tribution is to extract a training set at villages level to learn a Random Forest (RF)
regression model. The RF model is then able to predict the population density at
a finer level (100m spatial resolution). An illustrative example of spatial disaggre-
gation is discussed in Section 4.5 in which we combine different geospatial data
such as road networks and the presence of parks to disaggregate NO2 values.

4.4.7 . MULTICS General Schema
With the transformation of the spatial dimension, the use of OLAP function-

alities is obviously possible via our presentation. In this subsection, the schema of
MULTICS is described in detail. It adopts a snowflakes multi-dimensional model.

The multi-dimensional model in MULTICS is generic and can be used for many
MCS applications. We use the context of Polluscope in this subsection for illus-
tration purpose.

The general schema is presented in Figure 4.3, which illustrates how we de-
fine the dimensions and fact tables. It contains six fact tables. The first table
measurement stores the sensors’ readings. The fact table measurement relates air
pollutants measurements values depicted by the attribute measurement_value,
to five dimensions:

1. users assigns participants their demographic data.

2. campaign assigns to each campaign a specific campaign_id and gives in-
formation about the start_date, the end_date and the person in charge,
i.e. the responsible.

3. location is the spatial dimensions which gives information about the Hilbert
SFC indices assigned to the grid cells.

4. time is the time dimension.

5. measurement_type depicts a dictionary of the type of measurements (e.g.,
PM2.5, NO2). This could be any observation or measurement, as for in-
stance, noise, ozone, pollen, etc. The schema is therefore generic and ap-
plicable to any MCS application context.

Thereafter, MULTICS defines five additional fact tables: declared_micro_
environment_record, detected_micro_environment_record, declared_event_
record, detected_event_record and EXTMAP. The first table links the partici-
pants information to their declared self-reporting. It describes the micro-environment
with a start and end time of presence. The dimension micro_environment con-
tains descriptions about indoor and outdoor micro-environments as well as the
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exhaustive list of transportation means. Identically, the fact table declared_
event_record is similar to the declared_micro_environment_record, except
the events are characterized by a temporary timestamp because they are brief.
The dimension event depicts the information about the exhaustive dictionary of
air pollution related events.

However, not all the participants thoroughly annotate their micro-environment.
Therefore, there is a great interest in automatically detecting the context of the
participants without burdening them, which have been addressed in Section 3.3.

We emphasise that MULTICS tackles the particularity of rich trajectories col-
lected in the context of MCS as location-based data series. But, in addition to
this, MULTICS can integrate external information as dimensions or fact tables. We
extend the traditional data warehouse to support external geographic and temporal
information from other sources. For instance, we can enrich the data warehouse
with external geographic sources such as cartographic layers (e.g. roads, city
boundaries) and Points of Interest (PoIs). External temporal sources can be, for
instance, temporary events related to the observed phenomena, such as a fire that
emits pollutants, or a confinement leading to a significant drop in traffic which is a
source of pollution. EXTMAP fact table represents spatio-temporal external sources,
such as air quality maps that can be compared with the collected MCS data.

4.4.8 . Application Scenarios

The multidimensional model thus proposed allows analysing data at different
scales and hierarchies. Besides, it enables data to be viewed and modelled in differ-
ent views, more generally from different facets of dimensions, and more precisely at
different locations and periods of time. We emphasise its usefulness in analysing
and exploring rich annotated trajectories in the context of MCS by introducing
some use cases:

• Longitudinal Analysis which refers to the analysis and assessment of in-
dividual exposure over time. It allows to follow the evolution of individual
exposure to pollution while detecting periods of high and low levels of pol-
lution. Data can be aggregated over time periods, such as rush hours,
weekend, weekdays, etc. The analysis can also be broken down into pe-
riods spent by micro-environment, which is valuable for understanding the
exposure contexts and the difference between them.

• Spatial Analysis consists of detecting locations with high level pollution
phenomena. It allows to emphasize pollution phenomena in different loca-
tions. For one participant, the spatial analysis permits to follow the level of
pollution throughout the participant’s trajectory, and therefore discover lo-
cations with high levels of pollution. Likewise, for all participants combined,
we can identify on the map the locations with high level pollution phenom-
ena. Spatial analysis can be generalized to types of micro-environments
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as reported by participants, which opens the way to the traceability of the
micro-environment with the highest and lowest exposure for each participant
or for all participants combined.

• Temporal Analysis which refers to the analysis of measurements over time.
In addition to the aforementioned longitudinal analysis which focuses on the
individual dimension, we are interested in other temporal analysis which
combine data from several participants. One example is to analyze the set
of measurements reported for different time periods (e.g., peak hours, day of
the week, weekend, month, season, year). Another is to focus on a specific
micro-environment or area to assess the impact of certain policies on the
level of pollution over time.

• Temporal Disaggregation, also known as Temporal Distribution, is the
process of converting a low frequency time series (e.g. annual time series)
to a higher frequency time series (e.g. monthly time series). This might
be based on mathematical criteria or time series models such as ARIMA,
or on other consistent temporal data used as a proxy. For instance, if we
know either the sum, the average, the first or the last value of Particulate
Matter (for which the sampling frequency is lower), we can use a consistent
time series such as NO2 (which is sampled every minute) to disaggregate
or interpolate Particulate Matters from low frequency to higher frequency
time series.

• Spatial Disaggregation refers to the process of producing high resolu-
tion estimates of data distribution (e.g. 25m2) from coarse geospatial data
(e.g. 1km2). The generation of fine gridded data can be done by utilising
techniques that are often in conjunction with ancillary data, or statistical
modeling methods. For instance, disaggregating NO2 values from a coarse
resolution, such as 200m2, to a finer resolution, such as 50m2, using the
distribution of buildings and roads for instance as ancillary data in a machine
learning model.

4.5 . Implementation and Experimentation

4.5.1 . Experimental Design

MULTICS is implemented under Spark3 3.1.2, Hadoop4 3.2.2 and Python
3.9.2. We take advantage of Spark SQL OLAP-Like querying capabilities. Spark
SQL employs Hadoop HDFS for data distribution and answer to simple queries,
plus it provides optimized OLAP operators.

3https://spark.apache.org
4https://hadoop.apache.org
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As mentioned above, more than 103 volunteers have participated in the data
collection phase which lasts one week for each participant. GPS data is collected
at a frequency of 1 to 30 seconds, whilst pollutants’ measurements are collected
every minute, thus, resulting in approximately 10 millions rows of time annotated
measurements, plus few annotations of data by the type of micro-environment and
pollution related events.

The spatial dimension is defined by the pixels (finite set and easiest to compare)
rather than the exact position and is organized according to the Hilbert index order.
This spatial organisation is gainful for dimensional analysis. Indeed, by referring to
longitudinal analysis, one individual can discover the pixels with high pollution and
the time spent within, and thus generate heat maps of their exposure. Likewise,
this comparison can be performed for different participants combined at the same
location (at the fine pixel level or at any level of the spatial hierarchy), in order
to identify the participants with the highest exposure. As we can see, there are
many different facets for exploring the data. All the possible combinations need
to be reachable. In the next section, we introduce and discuss some possible
combinations of the dimensions, i.e. location, time, pollutant types, etc.

4.5.2 . Longitudinal Analysis

Longitudinal analysis consists of analysing participant exposure over time. It
captures the individual exposure view. In our context, we intend to compare par-
ticipants individual exposure to a fictitious medium exposure profile. That says,
we need to calculate different aggregates of pollutants per participant and for all
participants combined to constitute the fictitious medium exposure profile.

We take advantage of the ROLLUP operator to navigate through the dimension
hierarchy and explore all possible facets. This operator is used to respond to queries
such as the query in Example B.1.1 (see Appendix B).

The analysis can go beyond and illustrate the perspective of the individual
analysis along their daily activities (i.e., for each time interval that the individual has
spent in each micro-environment). Figure 4.6 depicts the evolution of the collected
pollutants throughout the whole period of the campaign as well as the correlation
between the concentrations of pollutants and the detected micro-environments.

4.5.3 . Spatial Analysis

Spatial analysis addresses the problem of detecting locations with high level
pollution phenomena. It consists of expressing this phenomena spread in the ge-
ographical localisation and selecting the most visited locations by all participants
with high or low level of pollution.

As Hilbert SFC is by definition hierarchical, moving to a coarse level of hierarchy
only needs to divide the Hilbert index by 22n where n is a given hierarchy level as
shown in Example B.2.1 (see Appendix B). Moreover, this harmonized presentation
of the spatial dimension allows to maintain proximate objects close. In Figure 4.7,
the upper map indicates the aggregated trajectories of all our participants combined
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Figure 4.6: Longitudinal analysis per micro-environment.

in Paris region, the lower left map consists of a zoom of the upper map on Versailles
region, while the lower right map depicts a parcel of one participant’s trajectory
over the whole period of the campaign. On the one hand, this spatial presentation
allows us to discover the stay areas of participants based on cell density. The
circles on the maps depict the places where participants spend most of their time;
the radius of the circle is proportional to the time spent in the cell. On the other
hand, by setting a threshold, this approach allows the detection of spatial outliers
and spatial noise that are close to stay areas; below this threshold, the points will
be considered as outliers. Moreover, because neighboring cells are likely to be
assigned a close hilbert index, finding the cells that are close to the stay areas is
not problematic.

4.5.4 . Temporal Analysis
Temporal analysis consists of analysing the exposure to pollution over time.

It permits to get insight about the phenomena during specific periods of time
while navigating through the temporal hierarchy. The temporal hierarchy can be
defined in many ways. For instance, it can be illustrated by minute → hour →
weekdays/weekend → month → year.

Besides obtaining each pollutant time series, one of the applications of our
MULTICS model is to get aggregates of pollutants over a time hierarchy (e.g. every
10 minutes, every one hour, every weekend, etc.). Figure 4.8 shows the average
concentrations of NO2 every 10 minutes for each day, including weekdays and
weekends, for one participant without any restriction on their whereabouts. The
graph shows a recurrent behaviour of the PM2.5 depicted by high concentration
values every weekday around 9am (i.e. morning rush hours) and between 5pm and
8pm (i.e., evening rush hours).

The analysis can go further by adding a GROUP BY clause on participants’
micro-environments and compute the hourly average per micro-environment for all
participants combined to uncover the micro-environment with the richest pollu-
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Figure 4.7: Concentrations of NO2 for all participants combined in Paris
and Versailles regions.

tion phenomena. Figure 4.9 depicts the maximums of hourly averages per micro-
environment for all participants combined. That says participants are mostly ex-
posed to the highest hourly average of NO2 and particulate matters in the micro-
environment “Office”. As for BC, participants are mostly exposed to the highest
hourly average in indoor spaces.

Figure 4.8: 10 minutes average concentrations of each day.

As we have said above, the MULTICS model can integrate external information
that can be used in order to enrich the data with air quality information and/or
to compare it to the collected data. In our context, and as an example, we added
Airparif5 air quality data as an external source into the model. Airparif provides the

5Air quality observatory in Paris region https://www.airparif.asso.fr/
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Figure 4.9: Maximum of hourly averages per micro-environment for all
participants combined.

same area pixelization as ours in the Paris region. It is set to 12.5x12.5 m2 in Paris,
25x25m2 in the inner suburbs and 50x50m2 elsewhere in the rest of the region.
Therefore, by matching the hilbert index and the timestamp, we can compare
Airparif values with the collected data. Figure 4.10 depicts such comparison of
NO2 values throughout one participant trajectory. The two graphs preserve the
same tendency, indicating the existence of a correlation between the two sources
of data. However, we can remark that for some periods of time (denoted by the
black dashed squares in Figure 4.10), the red and the blue lines do not share the
same behaviour. After verifying the participant declared micro-environment, this
difference is due to an indoor space where participant was in during these periods
of time.

Figure 4.10: Airparif data versus the collected data for N02 in one tra-
jectory.

4.5.5 . Temporal Disaggregation
In this section, we illustrate an example of temporal disaggregation of Partic-

ulate Matter PM10 using NO2 time series data as proxy. As a matter of fact,
Particulate Matters are available every minute. So, for the sake of the experiment,
we compute the average of PM10 every hour to get the low frequency time series,
and then disaggregate these data into a higher frequency using NO2 time series as
a proxy and the maximum log likelihood estimates of Chow-Lin (Chow-Lin-Maxlog)
method. Therefore, we have the ground truth data to compare the results with.

Figure 4.11 expresses the results of the temporal disaggregation process. NO2_
1minute illustrated by the green line, denotes the time series of NO2 at 1 minute
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frequency. PM10_1hour illustrated by the red curve, denotes the hourly average
of the PM10 time series. PM_1minute illustrated by the orange curve, indicates
the ground truth of the collected measurements of PM10 at the frequency of one
minute. Lastly, PM_predicted_1minute illustrated by the blue curve, indicates the
predicted values of the disaggregation process on PM10 data from a low frequency
(i.e. every hour) to a higher frequency (i.e. every minutes).

As shown in Figure 4.11, the estimates of PM10 follow the trend of NO2 with
respect to the aggregated values of PM10. More particularly, extreme values in
NO2 pull the estimates values to their levels, which explains the occurrence of
peaks in the estimates values of PM10. The results of temporal disaggregation
show a clear match between the blue curve (prediction) and the orange (ground
truth) PM10 value. The root mean square error (RMSE) was found to be equal
to 4.079.

Figure 4.11: Example of the disaggregation of PM10 time series using
NO2 data as proxy with the Chow-Lin-Maxlog method

4.5.6 . Spatial Disaggregation
In our context, we train a Random Forest (RF) regression model on a resolution

of 200m2 to estimate the values of NO2 at a finer level of 50m2. For this purpose,
the average values of NO2 collected over one week by 11 participants are computed
over pixels of 200 m spatial resolution. These values are used as a response variable
in the model.

As for the model features, pollution level is highly correlated with land use cat-
egories, so we integrate this information using Open Street Map (OSM) data sets.
Appendix C expresses the land cover information types used in the RF regression
model as explanatory variables.

The distance from pixel center to covariates included in the model is added to
the data, so that it can be incorporated in the model. We conducted a colinearity
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test between covariates to ensure the validity of the model. The RF model is then
trained at a coarse level (i.e. 200 m2). Thereby, to ensure the validity of our
model, we use the data over a whole week of one participant in the testing phase.
As inputs, we feed to the model the distance to covariates from finer level (i.e.
50 m2 pixels). The model returns then as output the estimates values of NO2
as shown in Figure 4.12. The blue line denotes the real values while the red line
indicates the predicted values. Root mean square error (RMSE) was calculated
to report the performance of the disaggregation model. Compared to the ground
truth, the NO2 model returns an RMSE of 8.29. We notice that the estimates
of NO2 follow the trend of the real values. With respect to the statistical values
shown in Appendix C, the RMSE of NO2 shows that the spatial disaggregation
model performance is acceptable. Figure 4.12 also shows a reasonable fit in the
predicted values (red) versus the real values (blue). Notice that the x-axis is the
Hilbert index, which captures the variation amongst neighbouring pixels.

Figure 4.12: Real versus estimated values of NO2 after the spatial disag-
gregation.

4.5.7 . Computational Costs
In order to evaluate the performance of the MULTICS model in term of execu-

tion time, we have used a distributed system of 5 nodes, each node with a capacity
of 32 Go. As the Polluscope deployment remains limited due to its exploratory
project, the data warehouse does not reach the expected volume in MCS context
in spite of its 4.4 millions tuples in the fact table measurement. Therefore, we opt
for synthetic data to augment the data and achieve the desired volume. Further-
more, we selected six different queries with different complexity either by adding
a ROLLUP clause to the queries, or computing different aggregated values with
different conditions, or performing a LEFT JOIN operator on two fact tables and
compute then the different aggregates. Therefore, we compare the performance of
the model with respect to the data volume and query complexity. We express each
query and its utility to remark the wide variety of queries that the model allows to
mine data from different perspectives.
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Query 1. Detection of stops based on cell density.
The multidimensional model can be used for data enrichment such as deriving
stops, which are defined as the locations where a participant spends most of their
time. For this, the query calculates the densities of the cells of the predefined grid,
simply by counting the number of measurements per cell and per participant in the
period. The most dense cells (the density threshold can be given as a parameter;
here 200) is a probable stop.

1 SELECT user_id , Location_id , count (*) as ’density ’
2 FROM measurement
3 WHERE location_id is not null
4 GROUP BY user_id , location_id
5 Having count (*) > 200
6 ORDER BY density desc

Query 2 (aggregations). Exposition to PM2.5 per participant.
This query returns a view of the individual average value (alias Exposure) to PM2.5
as well as the average values of other participants, which allows them to compare
their exposures to others, and discover if they are more or less exposed. The output
of this query expresses the exposure to PM2.5 per participant, the encountered
maximum value, and the exposure duration.

1 SELECT M.user_id , round(avg(M.measurement_value) ,2) as
Exposure , count (*) as duration ,max(M.measurement_value)
as Peak_value

2 FROM measurement M, measurement_type MT
3 WHERE M.measurement_type_id=MT.measurement_type_id
4 AND MT.measurement_name="PM2.5"
5 GROUP BY M.user_id
6 ORDER BY Exposure_PM25

Query 3 (aggregations, Roll-up). Longitudinal analysis: Exposure to PM2.5
per participant over time.
Longitudinal analysis involves analyzing exposure per participant over time. This
query requires aggregation along the temporal dimension, a Roll-up operation over
the user’s dimension, and a Dice operation to select the exposure for all participants
combined at the Day and Hour levels, as well as the peak value.

1 SELECT M.user_id , day(T.time) AS Day ,hour(T.time) AS Hour ,
round(avg(M.measurement_value) ,2) AS Exposure , max(M.

measurement_value) AS Peak_value
2 FROM measurement M, measurement_type MT, time T
3 WHERE MT.measurement_type_id = M.measurement_type_id AND T

.time_id=M.time_id AND MT.measurement_name=’PM2.5’
4 GROUP BY M.user_id , day(T.time), hour(T.time)
5 WITH ROLLUP ORDER BY 1,2,3

Query 4 (aggregations, Roll-up, two subqueries). Longitudinal analysis
with participants’ micro-environments.
Longitudinal analysis can be considered to cover individual exposure by micro-
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environment over time (i.e., for each time interval that the individual has spent in
that micro-environment). The output of this query returns the start time of the
activity of the participant in question, his micro-environment, the duration of time
spent in this micro-environment, the exposure to PM2.5 during this duration as
well as the recorded peak value.

1 SELECT r1.user_id , r2.time as start_time , r2.description ,
round(avg(r1.measurement_value) ,2) as Exposure , count
(*) as Duration , max(r1.measurement_value) as Peak_val

2 FROM
3 (SELECT user_id , time , measurement_name , measurement_value
4 FROM measurement_type MT, measurement M, time T
5 WHERE MT.measurement_type_id=M.measurement_type_id
6 AND M.time_id=T.time_id
7 AND MT.measurement_name = "PM2.5"
8 AND M.user_id=’9999946 ’) as r1,
9 (SELECT MR.user_id , T.time , LEAD(T.time) over (ORDER BY T.

time) AS next_row , ME.description
10 FROM micro_environment_record MR , time T,

micro_environment ME
11 WHERE T.time_id = MR.start_time
12 AND ME.micro_environment_id=MR.micro_environment_id) as r2
13 WHERE r1.user_id=r2.user_id
14 AND r1.time between r2.time and r2.next_row
15 GROUP BY r1.user_id , r2.time ,r2.description
16 WITH ROLLUP ORDER BY 1,2,3

Query 5 (aggregations, left join). Compare external data to the collected
data.
This query allows to perform a comparison between the external data (e.g. Airparif)
and the collected data. The purpose of this comparison is to see to what extent the
two sources of data are consistent, either by calculating a correlation coefficient
and/or plotting a graph of the two data sources to visually examine the difference
between the two sources.

1 SELECT r1.*, r2.airparif
2 FROM
3 (SELECT user_id , time , location_id , measurement_value as

VGP
4 FROM measurement M, time T
5 WHERE M.user_id = ’9999915 ’
6 AND M.measurement_type_id = 3
7 AND T.time_id = M.time_id
8 AND M.location_id IS NOT NULL ) AS r1
9 LEFT OUTER JOIN

10 (SELECT time , location_id , measurement_value as airparif
11 FROM airparif , time
12 WHERE airparif.measurement_type_id = 3
13 AND airparif.time_id = time.time_id) AS r2
14 ON (r1.time = r2.time AND r1.location_id=r2.location_id)
15 ORDER BY r1.time
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Query 6 (aggregations, Roll-up, two subqueries). Individual exposure per
micro-environment.
This query is similar to query 4. By removing the time dimension, this query returns
the total time spent in each micro-environment, the average value of PM2.5 in each
micro-environment, plus the recorded peak value.

1 SELECT r1.user_id , r2.description , r1.measurement_name ,
round(avg(r1.measurement_value) ,2) as Exposure , count
(*) as Duration , max(r1.measurement_value) as Peak_val

2 FROM
3 (SELECT user_id , time , measurement_name , measurement_value
4 FROM measurement_type MT, measurement M, time T
5 WHERE MT.measurement_type_id=M.measurement_type_id
6 AND M.time_id=T.time_id
7 AND MT.measurement_name = "PM2.5" ) as r1,
8 (SELECT MR.user_id , T.time , LEAD(T.time) over (ORDER BY MR

.micro_environment_record_id) AS next_row , ME.
description

9 FROM micro_environment_record MR , time T,
micro_environment ME

10 WHERE T.time_id = MR.start_time
11 AND ME.micro_environment_id=MR.micro_environment_id) as r2
12 WHERE r1.user_id=r2.user_id
13 AND r1.time between r2.time and r2.next_row
14 GROUP BY r1.user_id , r2.description , r1.measurement_name

WITH ROLLUP
15 ORDER BY 1,2,3

The results of the performance tests are shown in Figure 4.13. The curves show
that the execution time seems to follow a linear behaviour along data volume. It
can also be seen that the difference between execution times of the six queries is
not uncanny, and it varies between 10 seconds and 20 seconds.

Figure 4.13: Execution time varying the data volume.
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4.6 . Conclusion and Perspectives

This chapter tackles the exploration and analysis of geo referenced data series
collected in the context of Mobile Crowd Sensing. Several works attempted to deal
with the complex nature of such data. This chapter tries to fill the gap between
raw data and usable information, by providing a multidimensional view on the data.

After analysing the requirements of multidimensional data modeling in MCS,
this chapter introduces such multidimensional data model designed for processing
and querying the different aspects of individual trajectories together with underlying
pollution measures. The implementation of the model was based on the Spark SQL
and Hadoop ecosystem for data analysis in order to consider all the aspects of the
data. The core data model and the methodology considered is applied to urban
mobility and pollution data but is generic enough to act as a reference model for
other applications.

We intend to use OLAP model, on one hand, to detect anomalies by exploring
the data and correcting it by applying for instance statistical smoothing methods
such as the moving average and the exponential moving average. On the other
hand, OLAP model can be utilised for data enrichment such as the derivation of
stops (i.e. stay locations) according to the density of points per cell, or according
to the sparsity of GPS readings over time. Finally, in the case of real life use, the
volume increases continuously which could be a bottleneck. The question which
arises, therefore, is "with the incurred data volume, is it reasonable to store all the
data in the data warehouse, or store only the fresh measurement stream, or use
a hybrid model where historical data are aggregated to some extent to achieve a
trade-off between utility and efficiency?". This leads to new challenges in terms
of model and maintenance operation (to trigger the aggregation). The suggested
disaggregation operators will be useful to estimate the original facts in this context.
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5.1 . Introduction

In Chapter 1 of this dissertation, we have motivated our proposal for our sixth
contribution, i.e. an end-to-end infrastructure based on micro-services for the
whole data analytics lifecycle. Therefore, we present in this chapter a scalable
infrastructure based on microservices for the implementation of the whole system
lifecycle. The proposed architecture includes the discussed components in Chapters
3 and 4 in order to build a scalable and reliable ecosystem for automating data
analysis pipelines.

As discussed in Chapters 3 and 4, we have come to the conclusion that the
combination of databases with machine learning (ML) algorithms constitutes the
backbone of our computing infrastructure. Therefore, a design methodology that
takes into consideration the different challenges of MCS data is highly desirable.
The solution design needs to (i) digest data coming from different sensors and
process them in a way that guarantees the efficient management of different data
formats and granularities, (ii) annotate the observed measurements and identify
their meaning and context in order to proficiently analyse the collected data, and
most importantly, (iii) orchestrate the whole process, rather than use monolithic
approaches.

Therefore, to provide a robust and scalable embedded model design, such
as automated data analytics pipelines, for data processing and analysis in MCS,
we focus on the following key questions: What are the main components for
extracting usable information from raw sensory data ? How can an analytics
model be developed using microservices ? How can the identified components
be orchestrated to achieve analytics services ? How can the analytics results be
delivered for different users and decision makers?

Microservices architecture is a software development methodology that seeks
to break down an application into core functions, each of which is referred to as
a "service", which is designed to meet a specific and unique business need. So, in
this work, we present an envisioned End-to-End microservices-based architecture for
implementing and automating data analytics pipelines to extract usable information
from MCS. We identify the main features for extracting information and deploy
them into microservices [41]. The proposed architecture assigns to each service
a specialised functionality which is scaled and operated independently of other
services. The whole microservices pipelines are orchestrated using Apache Kafka.

The remainder of this chapter is organised as follows. In Section 5.2, we give
a thourough problem description. Section 5.3 reviews the principles designing and
automatising data analytics pipelines based on microservices in MCS applications.
Section 5.4 presents the proposed design methodology of our system for MCS
applications while introducing two visualisation platforms. Section 5.5 discusses the
design of microservices. Section 5.6 focuses on illustrating some demonstrations
scenrarios for data visualisation. Finally, Section 5.7 presents the conclusion.
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5.2 . Problem Statement

As described above, designing an innovative system for data analytics pipelines
built of MCS sensors is the main objective here. In MCS environment, machine
learning-based approaches have become an important part for automatising data
processing and knowledge discovery. This field has seen a great spread of technolo-
gies that support data mining analytics. These technologies support data querying
and predictive models with systems such as SQL-based databases, No-SQL-based
databases, machine learning based tools such as Python, R and Scala. While these
technologies may operate independently from each other, it is natural to seek a sin-
gle platform with connector to each system, that can automatise the data analytics
workflow in an autonomous way.

Furthermore, even with the development of several machine learning-based so-
lutions for data analysis, data analytic designs for MCS which can process hetero-
geneous MCS data and get meaningful insights from it are still limited. Particularly,
due to the huge amount of the collected data nowadays, a MCS analytics system
must be designed to be scalable and fault tolerant, so it is able to handle future
developments, and to keep pace with the increase of data volume without loosing
any.

Moreover, since the deployment of machine learning models can be done
through two possible ways: either by (i) pre-training the model off-line and in-
tegrating it directly into the workflow, or by (ii) training and using the model on
the fly. The designed system should present high flexibility which allows to easily
add or remove component from the system without compromising its robustness.

5.3 . Microservices Architectures: Related Work

In recent years, architectures based on microservices have become a popular
technique for several platforms for the development of flexible applications. Dmitry
and Manfred [36] demonstrate the benefit of using microservices in M2M develop-
ments to overcome the limitations of monolithic approaches in IoT applications.
Ali et al. [3] propose a design methodology based on microservices to support
predictive analytics for IoT applications. In their proposed framework, each part of
the analytics process is embedded in a service and can handle a specialised func-
tionality. Apache Kafka was chosen to process IoT data in the proposed design.
Furthermore, the authors focus on ML based approaches to provide predictive ana-
lytics capabilities for IoT data, and validate their approach using two datasets with,
at most 700 instances. However, MCS data is characterised by its large scale, and
the usefulness and scalability of this approach on such huge data is not confirmed.

In the context of smart cities, Bellini et al. [11] propose a system for knowledge
base construction process of smart cities related aspects, from data ingestion to
knowledge base construction and validation. The proposed system allows managing
large volumes of data coming from a variety of sources. However, the approach of
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[11] did not consider embedding ML algorithms in the knowledge base construction
pipelines, which is an important component in our case. Krylovskiy et al. [75] build
a smart city IoT platform based on microservices architecture style for a variety of
applications. The authors demonstrate the benefits of using microservices based
architecture in large-scale cross-domain application development for smart city
environment. As the authors claim, the proposed platform is at its early stages
and a more thorough evaluation is needed to extract more objective conclusions.

In a more generic line of works, Hamilton et al. [63] introduce an Apache Spark
based microservice orchestration framework that integrate intelligent and cognitive
services provided by ML into big data applications. The authors demonstrate the
scalability of their approach and its competitive quality for a variety of intelligence
tasks data such as text, vision, face and numeric data. The applicability of this
approach on heterogeneous sensory data needs to be verified.

In this work, we propose an architecture based on microservices and ML to
process and analyse MCS data. The process is orchestrated by Apache Kafka,
which allows the migration from monolithic approaches to an automatised and
autonomous workflow.

5.4 . System Architecture

Figure 5.1: Design of microservices for automating data analytics
pipelines in MCS.

Dragoni et al. [38] define microservice as a cohesive, independent process
interacting via messages. This view suggests that microservices are independent
components. Each component is conceptually deployed in isolation and targets
one single task. Starting from this point of view, we define the main tasks for
extracting usable information and deployed them as microservices embedded in an
envisioned architecture for data processing in MCS applications. The proposed
architecture, as shown in Figure 5.1, provides a roadmap from data collection and
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ingestion, to data preprocessing (such as data cleaning, noise removal, and data
imputation), data enrichment with the context of the measured observations, data
storage and analytics in a multidimensional schema, and data visualisation.

5.4.1 . Data Processing

In Chapters 3 and 4, we discussed thoroughly the contents of the three micro-
services, i.e. data pre-processing, data enrichment, and data analytics. Section
5.4.2 tackles the purpose and content of the last micro-service, i.e. visualisation.

In summary, in the first layer of the design, (i.e. data collection and ingestion),
the raw data is pushed and stored into the database (e.g. PostgreSQL). We have
chosen Apache Kafka to deploy our data analytics pipelines. Kafka is a powerful
event-streaming platform, which can process huge amounts of real time data. Plus,
it is scalable and fault tolerant. Using Kafka connect plug-in, we set a change data
capture (CDC) model, which is the process of capturing any change in the database
in real time, that listens to the database and pulls new events in the preprocessing
services. Capturing changes can help in synchronizing data to other applications
on the fly without passing through scheduler or batch process. Kafka will act as
an orchestrator between the different microservices and components.

The collected time series data are segmented into segments of length n, where
n can be a specified window length depending on the needs (i.e., n=5 minutes, n=
1 hour, or n= 1 week, etc.). Obtained data segments are then pushed to our first
microservice, the pre-processing micro-service. Such as micro-service is responsible
of improving the quality of the unprocessed data by applying data cleaning, noise
removal with peak detection, while filling missing values with appropriate data
imputation techniques.

The preprocessing micro-service will publish back the data into Kafka, which
will be pushing them to a higher level microservice (i.e., data enrichment mi-
croservice). Such a data enrichment microservice, is in charge of segmenting and
enriching data with the context based on some data mining techniques and by
applying some pre-trained ML algorithms. The results of such an enrichment will
be published back through Kafka connect to Kafka, which will forward data to the
next microservice of data analytics. The data analytics microservice is in charge of
performing analysing on the enriched and ready-to-use data, which are stored in a
multidimensional data warehouse. Furthermore, external sourced data is integrated
to be compared with MCS and further enrich them if needed. Since the two sources
of data do not necessarily have the same scale, we introduce spatial and tempo-
ral disaggregation to extract, based on ML, finer grained data from coarse data
and handle the problem of low MCS coverage, and facilitate the comparability of
both data sources. The results are delivered to the data vizualisation microservice,
which is discussed in the following section.

The proposed architecture offers many advantages to our data flow pipeline:

• Fault tolerance, since Kafka is fault tolerant. If a microservice is down, we
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will not lose data, and when it is back, it starts from where it stops.

• Testing new microservices in run time without affecting the whole pipeline
(i.e. testing new classification model with new features on real data, while
keeping the old model running in the pipeline).

• Kafka will allow adding new microservices if needed or removing existing
ones while the system is up and running.

• The system decouples microservices from data; they do not need to run
processes to check if there is new data, they will be notified when their data
is ready.

• Kafka Connect can help in transforming data while passing them from and
into Kafka (i.e. we can change some values if needed, or even rename some
fields to be coincident and understandable by other microservices)

5.4.2 . Visualisation
We provide two frameworks for data visualisation of the enriched trajectory

data, which presents our fifth contribution, i.e. interactive data visualisation plat-
forms. The first platform consists of a Graphic User Interface (GUI), called COMIC
(Context Of MobIle Crowdsensing), that we implement to show the different rec-
ognized micro-environments vis-à-vis the declared one, and allow the user to cus-
tomise the learning algorithms. The second visualisation tool, which is based on
Grafana1, displays all the components of the enriched trajectory data through time,
including AQ data, trajectory, and contexts.

COMIC system overview

We addressed previously in Chapter 3 the usefulness of identifying automatically the
micro-environments and its value in understanding personal exposure to pollution.
We presented a robust hybrid model for micro-environment recognition based on
multi-view learning that outperforms state of the art baselines, i.e. kNN-DTW and
MLSTM-FCN.

In this section, we present a full-fledged implementation COMIC that can be
used in real-world applications to infer the micro-environment from environmental
crowd sensing data. It allows to tune the learning algorithms and compare the
results to the baselines. The proposed system consists of a Graphic User Interface
(GUI) and four layers: (1) The declared micro-environments by the participants, (2)
the environmental data measurements over time, (3) the detected change points,
and (4) the detected context.

• Interface. The GUI of COMIC is a front-end interactive interface which
has three functionalities. It provides a list of all the participants. The

1https://grafana.com
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user is invited to choose one participant’s data then the interface provides
the plotted measurements with the corresponding user annotations (i.e.,
declared). The user is also allowed to choose the first-level and meta learners
among a predefined learning models list. COMIC back-end then applies the
classification for this participant’s data and shows the predicted context for
each single view and for the multi-view.

• Declared micro-environments. This information, which is also called
self-reporting, characterizes the declared micro-environment by participants.
This information is not always accurate as participants do not bother to fill
thoroughly this information. Our GUI permits to show to what extent this
information is accurate or not compared to our detected contexts and vice
versa.

• Data measurements. Data measurements consist of the collected data by
the participants. These data is used as input for the multi view learning
model to detect automatically the context of the participants.

• Change points. Change points consist of the exact timestamps of the
change in participants’ micro-environments. Based on participants mea-
surements, our GUI calls on the back-end the detected change points based
on multidimensional change point detection [42], and displays the results.

• Micro-environment recognition. Our micro-environment recognition model
is based on multi view learning modeling. The user is allowed to choose
which model to use for the first-level and the meta learners. The GUI dis-
plays then the detected micro-environment for the selected participant.

COMIC leverages our idea in Chapter 3 and improves it. Instead of being
restricted to RF as first-level learner and meta-learner, we carried several extensive
experiments trying different classifiers (including SVM, and kNN) and added a new
multi-view model with kNN as first-level learner and RF as a meta learner to show
the effect of the first-level learner and meta-learner on the results. Plus, even
in the case of missing dimensions, COMIC maintains its robustness and detects
the context with the existing dimensions. Furthermore, we have implemented and
included in COMIC the results of the Multivariate Long Short Term Memory with
Fully Connected Network model (MLSTM-FCN) as well as KNN-DTW classifier
for the aggregated data (all views are aggregated together) which are considered
as state-of-the-art by the time series classification community [48].

Additionally, COMIC includes another component which consists of segmenting
the multivariate time series into coherent segments, each segment represents a
micro-environment by resorting to multivariate time series change point detection.
Our change point detection approach consists of applying the CUSUM algorithm
as first-level learner on each dimension separately. Each dimension generates a set
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of detected change points. The output is then fed to a second-level learner to
learn the weights of every dimension in proportion to the performance of individual
learners using a gold set of annotated data as ground truth.

Grafana dashboard

We took advantage of the visualisation platform of Grafana2 to offer to participants
an interactive experience with their enriched trajectory data. This involves explor-
ing and analyzing the collected data along all their dimensions (spatial, temporal,
quantitative or semantic measures, etc.) and at different levels of granularity. The
visualisation platform Grafana is used for interactive visualisation of pollution levels
encountered throughout participants’ micro-environments and trajectories. Figure
5.2 presents an example of a trajectory with a dynamic link between the location
of the participant (the blue dot on the map) and the concentration of pollutants
according to the red sliding line on the measurement curves. Section 5.6.2 gives
more details about the functionalities of Grafana.

Figure 5.2: Visual analysis of a trajectory and its associated measure-
ments.

5.5 . Design of the Microservices

To realize the proposed architecture design of microservices for automating
data analytics in MCS, an implementation prototype has established as shown in
Figure 5.3. A virtual machines on Debian system has been prepared with deployed
docker images. Each instance of the docker hosts a microservice. A machine with
a configuration of Xeon Gold processor and 32 GB of RAM, running Linux OS

2Open source data visualisation and analysis platform: https//grafana.com
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hosts the Docker setup. The docker images together form a cluster of containers,
which contains Zookeeper, Kafka, Kafka Connect, PostgreSQL and Python. The
data pipeline is described is Figure 5.3.

Figure 5.3: The system implementation prototype.

In this proposed architecture, data is extracted from different data sources
and stored in PostgreSQL. Using Kafka connect plug-in, we set a change data
capture (CDC). It provides the capability to capture any changes in the database
in real time. Kafka Connect is connected to the data source (i.e. PostgreSQL)
to fetch new tuples as they arrive. Since Kafka allows publishing and subscription
of data into topics, Kafka Connect pushes the fetched data into a Kafka topic for
any application to consume it directly using the consumer API. In our case, the
preprocessing microservices read from the topic using a consumer API (Python in
our case), and publish the results of the preprocessing back into another Kafka
topic. In addition, these results are also sent to a target datastore (PostgreSQL
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here). We set in parallel two preprocessing microservices. The first one pre-
processes AQ data, by cleaning it from noise and outliers, and interpolating missing
values. The second microservice pre-processes GPS data, which consists of (i)
cleaning it from noise, (ii) rasterizing it into a grid, and finally (iii) assigning a
Hilbert index to each grid cell as shown in Sections 4.4.2 and 4.4.4.

Thereafter, the classification microservice reads from the Kafka topics written
by the AQ pre-processing microservices, and publishes the results of classification
into another topics. In parallel, the stop & move detection microservices based
on GPS data only, as discussed in Section 3.3.5, is running. It reads from the
Kafka topics written by the GPS pre-processing micro-services, and publishes the
results into another topic. The two results is combined with a post processing
microservices, which post-processes the results of classification with the results of
stop detection, and publishes the results, i.e. the detected micro-environment into
Kafka. Therafter, Kafka Sink Connector write data from the Kafka cluster to a
new data warehouse (postgreSQL here) for other purposes such as data mining and
visualisation. At the end, both the preprocessing results and the detected micro-
environments are stored in the target database (PostgreSQL here) for data mining,
analysis and visualisation. We define new schema for each result. The preprocessed
data follows the schema of the input data collected by Kafka Source Connect,
and stored in the target database. As for the detected micro-environments, the
schema is first declared in the target database for the results of the post-processing
microservice to take into account the participant ID, its micro-environment and
the start time of entring the micero-environment.

Furthermore, the microservice, i.e. data analytics, allows to apply some data
mining techniques to get insights from the data by analyzing it and/or compare it
to external-sourced data (e.g. Airparif).

Last but not least, the microservice visualisation is directly connected to the
data warehouse. On the one hand, it permits to inspect data and interact with it
using Grafana. On the other hand, COMIC GUI allows to investigate the detected
micro-environments and compare them with the declared micro-environments. The
user can also switch the learning method and examine its impact on the results.
Some visualisation scenarios are discussed in Section 5.6.

In this proposed architecture, when there is a new update, microservices can
publish events and read them from Kafka without the need to communicate with
each other. Indeed, communication between microservices is asynchronous and
they are unaware of each other. If one microservice crashes, the system does not
follow and continues to operate, which makes it efficient and easy to maintain on
a large scale.

5.6 . Visualisation Demonstration
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In this section, we demonstrate the user interaction experience with our two
visualisation tools, i.e. COMIC and Grafana dashboard.

5.6.1 . COMIC Demonstration Scenario

In this section, we illustrates the user interaction with COMIC interface. The
experiments are carried out on different environments. The multi-view learning
model was implemented in Python 3.6 using scikit-learn 0.23.2 and tslearn [116].
The deep-learning model MLSTM-FCN [72] was trained using Keras 2.2.4. Our
GUI (graphical user interface) was implemented using python 3.6, Plotly 3, and
Dash 4 framework. A real-world environmental data collected in the context of
Polluscope project is used as a benchmark of environmental crowdsensing data. In
this context, participant collect air quality measurements (NO2, PM1.0, PM2.5,
PM10, BC, Temperature, Humidity) plus GPS locations which are used to derive
participants speed. The recruited participants where given a mobile app in order
to annotate their micro-environments whenever it changes. Micro-environments
are grouped into five categories: Home, Office, Indoor, Outdoor and Transport.
Indoor spaces incorporate all closed spaces except home and office, such as restau-
rants, stores and stations, while outdoor spaces, as its name indicates, consist of
open spaces such as park and street. Users can load our interface and start en-
joying its appealing functionalities. We emphasize three main scenarios of COMIC:

Data visualisation:
User can visualize the collected data during the campaign period. Each di-

mension is plotted in a separate graph. Along with each plot, the corresponding
declared activity at that time is shown. Thus users can easily see visually how
much the changes in participant’s context and the changes in data are correlated.
Figure 5.4 shows the different dimensions plots with the corresponding declared
activities. Users can choose the participant id from the drop down in order to
navigate through the data of different participants.
Classification and CPD over all dimensions: Users are able to perform classification
and change point detection algorithm over the data of a specified participant. The
users need only to specify the participant id, then they can choose the learner in
the first-level learner (i.e., KNN-DTW or Random Forest), and by clicking on the
classify button, classification and change point detection (CPD) will be applied on
each view.

As shown in Figure 5.5a, each dimension is plotted with its declared micro-
environments versus the ones detected by the first level learner on this dimension.
Moreover, three plots appear showing the aggregated view using the KNN-DTW,
the MLSTM-FCN algorithm, and another one showing the results of the multi-view
learner. We can also notice that in the absence of some dimensions, KNN-DT and

3https://plotly.com/
4https://dash.com/
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Figure 5.4: COMIC visualisation GUI.

MLSTM-FCN will fail to detect the micro-environment, while the multi-view learner
keeps detecting the micro-environments. Furthermore, the detected changes by
the CPD algorithm are plotted also as red dash lines. This interface allows users
to see to what extent the results of COMIC are accurate vis-a-vis the declared
micro-environments and vice versa, by comparing the declared micro-environments
in Figure 5.5a (e.g., BC - Declared labels) and the predicted micro-environments
(i.e., Multi-view - Predictions).

Classification and CPD over a specified dimension: Another functionality of COMIC
allows users to focus on one dimension and plot the classification result of the first-
level learner, which in most the cases is not accurate. Users only need to specify
the participant id, the dimension, and the first level learner from the drop-down
lists, then they are invited to click on the classify button. The output of this
functionality shows three plots: (1) a plot of the specified dimension with the
declared micro-environment, (2) another plot showing the results of the chosen
first level learner on the specified dimension, and (3) a third plot showing the
results of the multi-view learner. All the plots include the Change points detected
as a vertical dashed red line.

Figure 5.6 shows the comparison between the declared micro-environments,
the ones predicted from the single dimension in question, and the ones detected by
the COMIC model. On the one hand, the first graph indicates that the participant
stayed outdoor for two consecutive days, meaning that this participant did not
thoroughly annotated their data. Yet, our multi-view model (third plot) can detect
successfully the micro-environment of this participant during this two days. On
the other hand, the second plot shows the results of the first level learner. While
this learner fails to detect all the micro-environments correctly, we recognize that
the multi-view approach does a good job in detecting the participant’s micro-
environments. It is worth mentioning that when no data is collected whatsoever,
our multi-view model can not detect the micro-environment.
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(a) First Level Classification versus Declared Classes.

(b) Multi-view Classification versus Declared Classes.

Figure 5.5: Classification and CPD Dashboard

Note that all the plots of the different scenarios are interactive plots, thus users
have flexibility to select some areas or to zoom in/out over the plot. Moreover,
users can download these plots as a PNG images.

5.6.2 . Grafana Demonstration

In this section, we illustrates the functionalities of Grafana that we offer to
participant an interactive visualisation experience with their data. The dashboard
as shown in Figure 5.2 lays out the different dimensions of the collected data (i.e.
AQ, trajectory, and micro-environments) in several panels. Five panels are reserved
for AQ data, i.e. particulate matters (PMs), NO2, black carbon (BC), plus the
temperature and relative humidity. Another panel is created for the participant
trajectory which is dynamically linked to the concentrations of pollutants. For
instance, participants can zoom in on only one panel and visualize the data of all
the sixth panel at the same time range. Figure 5.7 depicts a zoom in on the same
data as in Figure 5.2. We emphasize that no contribution has been suggested here.
We simply took advantage of Grafana’s functionalities to provide a user-friendly



142 CHAPTER 5. AUTOMATING DATA ANALYSIS PIPELINES

Figure 5.6: Comparison between single-view and multi-view models.

visualisation experience to the participants.

Figure 5.7: A zoom in on the collected data.

5.7 . Conclusion

In this chapter, we have presented an envisioned system for implementing data
analytics pipeline based on micro-services architecture and Kafka. We identified
the main features for extracting usable information from raw MCS data and deploy
them into microservices. Kafka will act as an orchestrator that have the knowl-
edge of the services, and takes care of communication between micro-services.
Our proposed architecture will allow the automation of processing raw data into
meaningful information in a scalable, and fault tolerant manner.

Furthermore, we developed COMIC, a visualisation GUI to show the different
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recognized context and highlight the importance of multi-view learning compared to
single view learning and other baseline approaches. COMIC covered also time series
segmentation based on change point detection to demonstrate the change points
in participants’ contexts which are detected automatically by a multi-dimensional
CPD model.
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This is the last chapter of the dissertation. We will summarize the work pre-
sented throughout the previous chapters, and emphasize our achievements against
the research questions presented in Chapter 1 in Section 6.1. Thereby, we will
highlight possible future research directions in Section 6.2.

6.1 . Summary of Contributions

We started this dissertation by emphasizing the need of a holistic approach for
data management and analysis of spatio-temporal data series produced by moving
objects in the context of Mobile Crowd Sensing (MCS). While the literature pro-
poses different solutions for handling moving objects such as moving objects data
management in the database community and several data mining techniques for
analytical purposes, an overall approach that fills the gap between data collection
and comprehension is missing. Therefore, and as stated in Chapter 1, the primary
research question this dissertation was prepared to address is:

Problem Definition & Research Question #1: What is the gap between
raw enriched trajectory data and usable knowledge, and how to bridge it ?

To address this problem and based on a thorough investigation of the existing
research proposals in the literature, we have identified the main structural compo-
nents of extracting comprehensive and usable information from enriched trajectory
data. We have broken down these components into a set of research questions
that this thesis work answers.

Research Question #2
What are the fundamental preprocessing steps for spatio-temporal enriched trajec-
tory data ? How to find spatio-temporal noise and outliers ? How to differentiate
between an artifact peak and noise ? What is the gap between raw enriched tra-
jectory data and clean enriched trajectories, and how to bridge such gap ? How to
achieve purified enriched trajectories ?

To answer this question, we started by differentiating between systematic errors
and random errors. We evaluated then state of the art methods that focus on
reducing the effect of random errors on sensor readings. Therefore, we designed
pre-processing layer that can bridge the gap between raw trajectories and purified
enriched trajectories. Specifically,in Chapter 3, we presented a computing approach
for reconstructing the enriched trajectory data in terms of time series and GPS data
cleaning from outliers and noise, as well as interpolating missing values.

Research Question #3
Can we provide a more comprehensive and semantically enriched representation of
enriched trajectory data ? Any intermediate models are necessary to achieve the se-
mantically enriched representation aforementioned ? Can we contextualise the data
and enrich it with the type of activity and movement (i.e. micro-environment) ?
What are the spatio-temporal requirements to characterize the micro-environment
and summarize their observed properties ? Can we combine different sensors (i.e.,
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both GPS and AQ sensors) to automatically infer people’s context ? Which types
of algorithms and computational solutions need to be designed for this purpose
? Do data mining (e.g. feature representation) or statistical summary techniques
have the ability to provide solutions for such recognition tasks ?

To answer this question, we have investigated a wide range of state of the
art proposals in the area of data segmentation and activity recognition from GPS
trajectory and time series. Although these two subjects are chained to each other,
yet, they have been studied distinctly and together in the literature depending
on the application domain. Chapter 2 presents the finding of this investigation
depending on the origin of data (i.e. GPS data, wearable sensors) and exhibits
some generic methods independently of the origin of the data.

Therefore, we developed a model for multidimensional data segmentation based
on change point detection (CPD). The proposed model divide the cleaned enriched
trajectories into a set of coherent segments, where each segment represent a micro-
environment. We contrast the proposed approach with a traditional CPD model
and show the effectiveness of our approach. We further complete the semantic en-
richment by designing a hybrid model for context recognition which can integrate
geographic and multivariate time series views to annotated enriched trajectories
with the type of activity and movement. The geographic view adds semantic
annotations to segments (i.e stop and move annotation, transportation mode an-
notation) from GPS tracks only. The multivariate time series view detect the exact
label of segments (e.g. home, office, store, metro, park, etc.). The designed model
combines data from heterogeneous sensors, and has the ability to infer efficiently
the label even if one (or more) dimension is missing.

Research Question #4
How to further enrich sensory data ? Does such semantic enrichment need addi-
tional external sources, such as the traditional network of fixed stations and models
? How to merge sensory data with external data ? How to align both sources of
data with such different spatial and temporal scales and very low MCS coverage
while taking into account micro-environments ? How to handle the problem of
missing value provoked by merging two data sources with different spatial and
temporal scales ? How to integrate and compare external data to sensory data ?
Can we provide a generic model for external data integration and comparison with
sensory data ?

To allow data mining and analysis of the collected data, we proposed an adap-
tive and flexible system for data management and exploration in MCS. The pro-
posed model captures every facet of the multidimensional data and allows its explo-
ration from several perspectives (i.e., longitudinal, spatial and temporal perspec-
tives) and multi-scale. In addition to this, we adopted the discretization method of
the spatial and temporal dimensions. Therefore, the integration of external data
from fixed stations and the alignment of the spatial and temporal granularities of
the two data sources in order to match and compare them has become possible.
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Moreover, we introduced new operators of spatial and temporal disaggregation to
extract, based on machine learning, finer grained data from coarse data and handle
the problem of missing values and low MCS coverage. This spatial and temporal
disaggregation allowed us to provide the complete exposure story of participants
even if their sensors stopped collecting data for a while.

Research Question #5
Can we provide an interactive visualisation platform to explore every facet of the
data, including GPS tracks and measurements ? Is it possible to visualise the differ-
ence between the detected and the declared micro-environments ? To what extent
the computation model can affect the results of micro-environment’s detection ?
Can we visualise that effect ? Which sensory data contribute more in this inference
?

To answer this question, we presented a two-faces visualisation framework of
the enriched trajectories. First, we developed a visualisation Graphic User Inter-
face (GUI) to show the different recognized context and highlight the importance
of multi-view learning compared to single view learning and other baseline ap-
proaches. It allows users to customise the learning methods for detecting micro-
environments and displays the detected micro-environments vis-à-vis the declared
micro-environments. This functionalities permit to discover visually the best model
for micro-environment detection and, thereby, choose the most suitable model for
the data.

The second visualisation tool was based on Grafana to offer to participants an
interactive experience with their enriched trajectory data. The Grafana dashboard
plots the different dimensions of the collected data plus the GPS trajectory on a
map. Participants can zoom in and zoom out on the data. They can select periods
of time with high exposure to pollution and discover the micro-environment related
to this phenomena. Furthermore, an interactive link between the map and the AQ
plots is created so the participants can see visually the location of their collected
data.

Research Question #6
Can we automatise the aforementioned process of bridging the gap between data
collection and data comprehension ? How to enable the pipelines to work properly
and efficiently without human involvement ? Which technologies are best suitable
for this purpose ?

An envisioned system for implementing and automating data analysis pipelines
has been proposed to answer this question. We deployed a scalable infrastructure
based on micro-service for the whole model lifecycle. Kafka was chosen to act
as an orchestrator that has the knowledge of the services, and to take care of
communication between micro-services. The proposed prototype will allow the
automation of processing raw data into meaningful information in a scalable, and
fault tolerant manner.
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6.2 . Future Work

As discussed in Chapter 1, the ultimate goal of this thesis work is the ability to
extract usable information from raw MCS data. The novel approaches for analyzing
enriched trajectory data and better understanding personal exposure proposed in
this thesis open many opportunities for future research.

6.2.1 . Map-matching Based Enrichment
The first perspective of this thesis work is to extend the proposed enrich-

ment model proposed in Chapter 3 for further enhancements of micro-environment
recognition. More specifically, we intend to add other external contextual data that
might be of interest such as map-matching with Point of Interest (POIs) and trans-
portation network. Map-matching refers to the procedure of matching trajectory’s
GPS points with road networks, public transportation system, and POIs within the
city. This process will further enhance the performance of the micro-environments
recognition model when the detected micro-environments GPS tracks are matched
with their exact locations on the map.

Therefore, the expected model will be established on a dimension multiplicity
process depicted by the underlying micro-environment (e.g., home, office, restau-
rant, etc.), contextual data (e.g., POIs), as well as sensors data.

6.2.2 . Events Processing
The next important action item in our future work agenda is the incorporation

of pollution-related events in the MCS data analysis. Typically, some events where
the air quality is a marker (i.e., opening a window, smoking, cooking, etc.) might
be of interest to understand personal exposure.

6.2.3 . Exposure Profiles
On another perspective, we are interested in mining MCS data in order to

define an exposure profile. Particularly, we are interested in answering the following
question: Are there any regularities or patterns (typical profiles) that could allow
us to generalize to an unobserved population ?

Therefore, taking advantage of the multidimensional model proposed in Chap-
ter 4 and OLAP functionalities will allow us to mine participants trajectories and
extract meaningful patterns. Typically, we are curious about discovering similar
patterns shared by participants in terms of exposure and time spent per micro-
environment. This problem falls into the classical sequential data mining. The
exposure profiles can then be derived from as clusters of participants that share
similar patterns.

6.2.4 . Privacy and Participants’ Incentives
The human (i.e. crowd) involvement in collecting MCS data naturally brings

privacy concerns. People may not be encouraged to volunteer in collecting sensory
data, because it may contain private and sensitive information, such as their where-
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abouts all the time. Privacy is an important issue for real-life application domains
such as MCS. While this thesis work did not cover the privacy and security issues
of enriched trajectories, but it will definitely be an important research topic in the
future. While participating in MCS, the volunteers engage themselves to meet a
strict protocol by carrying the sensors continuously, charging them, sometimes car-
rying out some maintenance (such as changing the filter every day), self-reporting
their activities or filling a diary. These constraints may discourage potential par-
ticipants. Therefore, incentive procedures are necessary to provide the volunteers
with rewards for their participation, and for holding the kit and collecting data for
the whole campaign period. The main incentive is their own benefit in terms of
insights in their exposure. This has been observed in the Polluscope project, where
a personalized report has been produced and distributed to the participants, in
combination with a general workshop on the project intermediary results. Another
way is to gamify the collection protocol, or to foster participants’ interaction via a
social notwork.
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In this appendix, we describe the data collection protocol in the Polluscope
project, the objective of which is to estimate and analyze the personal exposure to
air pollution in the Paris region, as well as its health effects, using individual sensors
measuring the concentrations of several atmospheric pollutants [77]. During three
campaigns, more than one hundred participants have been recruited to collect
environmental measurements along with geo-location for one week, 24 hours a
day, while performing their daily activities.

A.1 . Data Collection Campaigns

The sensors used for the collection of quantitative data are identical, geo-
located and deployed by a total of 103 participants. These voluntary individ-
uals participated in the two RECORD (Residential Environment and CORonary
heart Disease) cohorts and the VGP (Versailles Grand Parc) cohort. Table A.1
presents the general characteristics of the three campaigns, i.e. VGP, RECORD1
and RECORD2. More specifically, 27 participants from the RECORD1 cohort, 63
participants from the VGP cohort and 13 participants from RECORD2 cohort wore
identical sensors continuously for 7 days over three different seasons of 2019 and
2020. It is the summer season (June-September) for the RECORD1 cohort, the
fall-winter season (October-December) for the VGP cohort and the winter-spring
season (January-March) for the RECORD2 cohort.

In addition to this temporal dimension, the spatial distribution, particularly
with regard to the place of residence, distinguishes the three cohorts. As shown
in Figure A.1, the RECORD cohorts are mainly concentrated in Paris and its inner
suburbs, while the VGP cohort is spread over the Community of Versailles Grand
Parc, in the outer suburbs, with a significant part located in Versailles.

Table A.1: General characteristics of the two campaigns VGP and
RECORD.

Campaign Number of Measurement Sensor’s Used
Participants period wearing time Sensors

RECORD1 27 June - September 2019 7 days

VGP

15 October 2019

7 days

Canarins for
12 November 2019 PMs, AE51
09 November 2019 for BC
15 December 2019 and Cairsens
12 December 2019 for NO2

RECORD2 13 January - March 2020 7 days
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Figure A.1: Illustration of the spatial distribution of participants in the
two cohorts according to their place of residence.

A.2 . Data Collection

A kit comprising three sensors plus a tablet was carried by the participants in a
backpack during the cohorts. The deployed sensors operate with a time step of one
minute. The tablet collects GPS data at a frequency of 1 to 30 seconds. Fifteen
kits have been prepared for deployment by rotation in several waves of one week
each, separated by a week of verification and qualification. Thus, the collection
was spread over ten to twelve weeks for each of the cohorts.

The sensors allow to estimate in real time the exposure to NO2, PM1.0, PM2.5,
PM10 and Black Carbon (BC) pollutants. They also measure the temperature and
relative humidity in real time. The tablet equipped with a GPS allows participants
to annotate on a mobile application the change of their micro-environments, which
is also called space-time budget. More specifically, the participant indicates any
change in micro-environment by selecting the new one from among several cate-
gories of frequented places (home, work, transport, other), means of travel (car,
metro, train, tram, bus, motorbike, bicycle, walking), but also between various
activities carried out (sport, rest, walking, dog walking, catering, cinema, shop-
ping, etc.). In addition, this mobile application allows participants to select certain
events or activities that may impact pollutants’ concentrations (cooking, opening
or closing a window, lighting the fireplace, smoking, walking, etc.).

A new campaign will be conducted in VGP. Part of the participants are from
the previous cohort, which will allow to compare the seasonal effect. Besides, a new
sensor has been introduced for particulate matters. Indeed, among the objectives of
Polluscope was the evaluation of environmental sensors as the technology advances,
and the selection of the most adapted solutions for the campaigns. The adopted
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solution is PMSCAN (also called AirDIAMS in the DIAMS project1).

1https://www.airdiams.eu/tutoriel-microcapteurs-airdiams
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B.1 . Longitudinal Analysis

Example B.1.1. What is the individual exposure to the PM2.5 pollutant and
the maximum exposure periods ?

1 SELECT M.user_id ,day(T.time) AS Day ,hour(T.time) AS Hour ,
avg(M.measurement_value) AS Exposure , max(M.
measurement_value) AS Peak_value

2 FROM measurement M, measurement_type MT, time T
3 WHERE MT.measurement_type_id = M.measurement_type_id AND T

.time_id=M.time_id AND MT.measurement_name=’PM2.5’
4 GROUP BY M.user_id , day(T.time), hour(T.time) WITH ROLLUP

We imply by exposure the average concentration of pollutants. The duration
of exposure makes it possible to generate the received dose. Thus, the query of
Example B.1.1 returns the individual exposure to PM2.5 over time which is illus-
trated in Figure B.1. The query output shows the individual exposure to PM2.5
from user_id drilling down to the Day, drilling down to the Hour. The aggre-
gates at the participant level are denoted by null in the Hour attribute, and all
participants combined aggregates are denoted by null in the user_id attribute.

Figure B.1: Longitudinal analysis over time hierarchy.

B.2 . Spatial Analysis

As shown in Example B.2.1, the spatial indexing representation allows to answer
queries such as : What is the level of pollution of frequently visited locations by
participants at different levels of the spatial hierarchy? The P64 and P16 columns
indicate coarse levels of hierarchy where each pixel contains respectively a grouping
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of 64 and 16 finer pixels. The query creates a subtotal of the hierarchy levels of
P64 drilling down to P16. This is equivalent to computing the aggregates for the
following grouping sets: (P64, P16), (P64) and (i.e. all). The query returns also
the exposure to PM2.5 at coarse levels of hierarchy (i.e. 16 and 64 pixels). An
excerpt of the query’s output is displayed in Figure B.2 which shows the frequency
of visiting the coarse levels of hierarchy as well as the exposure level to PM2.5 in
these levels. Thus, in order to get the most visited places, an ORDER BY Frequency
clause at the end of the query is sufficient.

Example B.2.1. What is the level of pollution at the different levels of the
spatial hierarchy ?

1 SELECT FLOOR(M.location_id /64) AS P64 , FLOOR(M.location_id
/16) AS P16 , count (*) AS Frequency , avg(M.
measurement_value) AS Level

2 FROM measurement M, measurement_type MT
3 WHERE MT.measurement_type_id = M.measurement_type_id AND

MT.measurement_name=’PM2.5’
4 GROUP BY FLOOR(M.location_id /64), FLOOR(M.location_id /16)

WITH ROLLUP

Figure B.2: Exposure at coarse levels of the spatial hierarchy.
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Type Features Description

Traffic Point

Turning circle
Parking

Mini roundabout
Crossing

Traffic signals
Fuel

Transport Point

Tram stop
Bus stop

Railways halt
Bus station

Taxi
Railways station

Landuse Polygon Forest
Park

Railways Line Subway
rail

Roads Line

motorway
trunk

secondary
tertiary
primary

Max speed = 30km/h
Max speed = 50km/h
Max speed = 70km/h
Max speed = 100km/h
Max speed = 130km/h

Table C.1: Description of the used covariates for the spatial disaggrega-
tion of NO2 values.

Pollutant Min Max Mean Standard Deviation
NO2 0 52 24.06 11.4

Table C.2: A statistical summary of NO2 values.

171





D - Appendix D

Résumé en Français

La surveillance et la mesure de la qualité de l’air constituent un enjeu actuel
majeur pour les politiques urbaines visant à lutter contre les pollutions atmo-
sphériques et à mettre en œuvre des actions d’adaptation. En effet, la mauvaise
qualité de l’air est l’un des principaux facteurs de risque pour la santé humaine.
Elle est responsable de près d’un décès sur dix en Île-de-France en 2019 et d’environ
7 millions de décès prématurés chaque année dans le monde d’après l’OMS. Par
conséquent, la qualité de l’air doit être surveillée afin de réduire le développement
de pathologies chroniques graves liées à l’exposition à la pollution de l’air, qui se
traduisent par une augmentation de la mortalité, une diminution de l’espérance de
vie et un recours accru aux soins.

La collecte participative - Mobile Crowd Sensing (MCS) en anglais - constitue
un nouveau paradigme basé sur la technologie émergente des micro-capteurs con-
nectés. Elle offre la possibilité de mesurer l’exposition individuelle à la pollution
de l’air n’importe où et n’importe quand. Elle offre une opportunité unique pour
estimer et analyser l’exposition individuelle selon les habitudes de vie, d’activité et
de déplacement propres à chacun et qui est mal connue jusque-là. La particularité
de ce paradigme de collecte est la combinaison de la localisation spatiale avec des
mesures et des annotations continues dans le temps. Dans le contexte de cette
thèse, des participants ont été recrutés et équipés d’un kit de capteurs et d’un ap-
pareil mobile pour collecter des mesures de la qualité de l’air telles que les particules
fines de différentes tailles, le dioxyde d’azote, le carbone suie, la température et
l’humidité. L’appareil mobile est utilisé pour collecter les traces GPS. De plus, une
application mobile est mise à la disposition des participants afin qu’ils puissent in-
diquer le type de lieu (appelé micro-environnement) tel que le domicile, le bureau,
le métro, le bus, etc., et ce à chaque fois qu’ils en changent. Cela amène à générer
en continu des séries de données géo-localisées, qui finissent par former une grande
masses de données. Celle-ci constitue une mine d’information pour des analyses
variées et une opportunité unique d’extraction de connaissances sur l’exposition,
sa variation temporelle, spatiale, mais aussi la caractérisation de la qualité de l’air
par micro-environnement et de la fréquence et durée de leur fréquentation.

Par ailleurs, pour interpréter l’exposition individuelle des participants à la pol-
lution, les données de capteurs doivent être contextualisées non seulement par
la localisation, mais aussi par le micro-environnement où elles ont été mesurées.
Sans ces informations, les mesures collectées sont difficilement exploitables pour
analyser et comprendre l’exposition individuelle et les risques engendrés.

Toutefois, cette analyse est loin d’être simple, car il y a un gap important
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entre les séries de données brutes des capteurs et les informations exploitables. En
effet, les données brutes sont imparfaites. Elles sont souvent bruitées, comportent
des anomalies de mesures et parfois des pertes de données, ce qui nécessite un
nettoyage et un prétraitement minutieux. De telles imperfections de données, qui
affectent à la fois les données de séries chronologiques et la géolocalisation, doivent
être prises en compte dans le processus de traitement et d’analyse. En outre, les
annotations des changements de micro-environnement sont elles aussi imparfaites
et incomplètes, ce qui constitue un autre défi. Par exemple, certains participants
indiquent qu’ils sont dans leur bureau à 3h du matin ou allument une cheminée
dans une rue, d’autres ignorent cette tâche d’annotation. Il y a donc un grand
intérêt à détecter automatiquement le contexte des participants pour compenser
les annotations manquantes. Par ailleurs, une telle automatisation permettrait
d’alléger le protocole de collecte pour les futurs participants en se passant de leur
renseignement systématique.

Une autre caractéristique des données collectées par campagnes de MCS est
que la couverture spatiale est très irrégulière. Certains endroits sont couverts par
une forte densité spatiale, tandis que d’autres n’ont aucune mesure. A contrario,
les réseaux de stations fixes de surveillance réglementaire de la qualité de l’air four-
nissent un modèle de couverture spatio-temporelle complet pour la zone d’étude.
Cependant, la résolution spatio-temporelle de ces stations fixes est très différente
des données de capteurs mobiles. Fusionner et comparer ces deux sources de don-
nées, de résolution spatio-temporelle et de couverture territoriale si différentes, est
difficile.

Le défi majeur que cette thèse cherche à relever est de combler le gap en-
tre les séries de données brutes des capteurs et les informations exploitables en
proposant une approche holistique d’analyse et d’extraction de connaissance des
données collectées dans le contexte du MCS. Plus précisément, nous mettons en
œuvre un processus analytique de bout en bout qui comprend le prétraitement des
données, leur enrichissement avec des informations contextuelles, la modélisation
et le stockage de ces données, ainsi que la mise en œuvre d’un tableau de bord
interactif pour la visualisation des données en temps réel. Nous avons implémenté
notre proposition en veillant à automatiser son déploiement. Les approches pro-
posées sont appliquées sur des données réelles collectées au sein du projet ANR
Polluscope.
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