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Titre : Courbes rationnelles sur les variétés de drapeaux. Calcul de Schubert pour la variété d'incidence Mots clés : Géométrie birationnelle / K-théorie quantique / calcul de Schubert Résumé : Cette thèse présente trois résultats indépendants sur les variétés de drapeaux. Le premier chapitre est consacré à l'étude de l'espace des courbes rationnelles sur une variété de drapeaux partielle. Le deuxième chapitre procure une formule de comparaison entre corrélateurs de genre 0 en K-théorie quantique T -équivariante de différentes variétés de drapeaux. Le troisième chapitre étudie différentes variantes du calcul de Schubert moderne pour la variété d'incidence X paramétrant les inclusions d'un point dans un hyperplan de l'es-pace projectif. Nous y calculons une formule fermée décrivant les coefficients de Littlewood-Richardson dans le groupe de Grothendieck K(X) des faisceaux cohérents sur X. Dans le cadre de l'anneau de petite K-théorie quantique de X QK(X) -qui est une déformation de K(X) par des corrélateurs à 3 points marqués -nous procurons une formule de Chevalley, ainsi qu'un algorithme positif calculant les coefficients de Littlewood-Richardson dans QK(X).
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Introduction

La géométrie énumérative est une branche de la géométrie algébrique considérant le nombre de solutions à un problème géométrique précis. Un exemple marquant de géométrie énumérative est donné par le problème suivant.

Combien de courbes rationnelles de degré d passent par 3d ´1 points en position générale dans P 2 ?

Ce nombre, que l'on notera N d , est donné par des invariants de Gromov-Witten. L'associativité du produit dans l'anneau de cohomologie quantique de P 2 (Cf. la Section 0.2 pour des définitions précises des invariants de Gromov-Witten et de l'anneau de cohomologie quantique d'une variété projective lisse) permet de calculer par récurrence tous ces invariants, en fournissant la relation non triviale suivante.

N d " ÿ d1`d2"d, d1, d2°0 N d1 N d2 ˆd2 1 d 2 2 ˆ3d ´4 3d 1 ´2˙´d 3 1 d 2 ˆ3d ´4 3d 1 ´1˙˙.
On s'intéressera dans cette thèse (cf. Chapitre 3) à une variante particulière de la géométrie énumérative, le calcul de Schubert.

0.1 Calcul de Schubert dans H ˚pG{P, Zq.

Soit X " G{P une variété de drapeaux généralisée, où G est un groupe algébrique linéaire semi-simple complexe, T un tore maximal de G, B un sous-groupe de Borel de G et P un sous-groupe parabolique de G vérifiant T Ä B Ä P Ä G.

Notons W :" N G pT q{T le groupe de Weyl de G. Soit L le sous-groupe de Levi associé à P et B; on note W P :" N L pT q{T le sous-groupe de W associé à P et W P :" W {W P . Un élément u associé à un élément dans W P définit une variété de Schubert Xpuq :" BuP {P .

On note pX u q uPW P les variétés de Schubert de X. Comme prX u sq uPW P forme une base de l'homologie à coe cients entiers de X " G{P , pour tous éléments u et v dans W P , il y a une expression unique

rX u s Y rX v s " ÿ wPI d w u v rX w s.
Les coe cients d w u v sont appelés coe cients de Littlewood-Richardson. Une question naturelle se pose alors:

Comment décrire les coe cients d w u v ? Soit F l 1,n´1 la variété paramétrant les paires pp, hq, où p est un point de P n´1 et h est un hyperplan de P n´1 contenant p. Dans le cas où X est la variété d'incidence F l 1,n´1 , ces coe cients sont calculés dans le chapitre 3. Un algorithme permettant de calculer ces coe cients est appelé règle de Littlewood-Richardson. Dans le cadre des Grassmaniennes, des règles de Littlewood-Richardson ont été développées depuis longtemps, par exemple en utilisant la combinatoire des jeux de taquin [START_REF] Fulton | Intersection theory[END_REF]. Dans le cadre des variétés de drapeaux à deux crans, I. Coskun décrit une règle positive de Littlewood-Richardson [START_REF] Coskun | A Littlewood-Richardson rule for two-step flag varieties[END_REF]. Dans le cadre des variétés minuscules et cominuscules, Thomas et Young ont décrit une règle de Littlewood-Richardson généralisant les jeux de taquin [START_REF] Thomas | A combinatorial rule for (co) minuscule Schubert calculus[END_REF].

Cohomologie quantique et K-théorie quantique

On s'intéresse dans le chapitre 2 aux corrélateurs de genre 0 en K-théorie quantique associés à une variété de drapeaux. On s'intéressera dans les parties 3.5 à 3.8 du chapitre 3 à la petite K-théorie quantique de la variété d'incidence F l 1,n´1 .

Nous rappelons dans cette partie définitions et propriétés classiques des anneaux de grosse cohomologie quantique et de K-théorie quantique d'une variété homogène. Davantage de précisions ainsi que des démonstrations complètes peuvent être trouvées dans [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF] et [START_REF] Lee | Quantum k-theory, i: Foundations[END_REF].

Soit Y une variété projective lisse complexe. Soit " un élément de H 2 pY, Zq correspondant à une classe e ective de courbe. On note M 0,r pY, "q l'espace des application stables de genre 0 à valeurs dans Y représentant la classe ". Associer à une application stable p" : C Ñ Y, tp 1 , . . . , p r uq l'image "pp i q de son i-ème point marqué définit un morphisme d'évaluation ev i : M 0,r pY, "q Ñ Y . Si Y est une variété homogène, M 0,r pY, "q est une variété projective irréductible rationnelle, de dimension la dimension attendue, et à singularités quotient [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF][START_REF] Jf Thomsen | Irreducibility of M 0,n pG{P, -q[END_REF][START_REF] Kim | The connectedness of the moduli space of maps to homogeneous spaces[END_REF].

Cohomologie quantique.

Classes effectives de courbes pour X " G{P . Notons ∆ l'ensemble des racines simples associées à T et positives par rapport à B, et ∆ P l'ensemble des racines simples associées à P . Une racine simple -dans ∆ P :" ∆z∆ P définit une variété de Schubert Xps -q » P 1 de dimension 1. Les classes prXps -qsq -P∆z∆ P engendrent le groupe abélien libre H 2 pX, Zq. Notons EpXq le semi-groupe des classes e ectives de courbe en homologie singulière. EpXq est l'ensemble des combinaisons linéaires à coe cients positifs de classes rXps -qs.

Invariants de Gromov-Witten. Soient -1 , . . . ,r des éléments dans le groupe de Chow A ˚pX q » H ˚pX, Zq, soit " un élément de EpXq. Le morphisme d'évaluation ev i : M 0,r pX, "q Ñ X associe à une application l'image de son i-ème point marqué. Pour X une variéte homogène, le morphisme d'évaluation est plat. L'invariant de Gromov-Witten associé auxi et à " est défini par:

x-1 , . . . ,r y H " " ª M0,rpX,"q ev 1 -1 Y ¨¨¨Y ev rr .

(

Considérons le cas où lesi " rX i s sont les classes de sous-variétés projectives irréductibles de X. Pour g " pg 1 , . . . , g r q en position générale dans G r , l'invariant x-1 , . . . ,r y " compte le nombre d'applications stables pP 1 Ñ X, tp 1 , . . . , p r uq représentant la classe " et envoyant le i-ème point marqué p i P P 1 dans la variété g i ¨Xi .

Anneau de grosse cohomologie quantique. Soit y une classe dans A ˚pX q. On définit un potentiel de Gromov-Witten G H pyq "

ÿ n•3 ÿ -PEpXq 1 n! xy, . . . , y l jh n n y H -.
Fixons une base py e q ePI du groupe A ˚pX q. Pour X une variété homogène, les classes de Schubert forment une base naturelle de A ˚pX q. Notons g ef :"

ª X y e Y y f , et g ef la matrice inverse de g ef . Dans la base donnée par les classes de Schubert, pour chaque e il exsiste un unique f tel que g ef est di érent de 0; g ef vaut alors 1. On définit le produit entre deux éléments y i et y j de la base py e q par :

y i ˚yj " ÿ e,f PI
B 3 G H pyq By i By j By e g ef y f . Ce produit induit par linéarité un produit entre éléments du Qrryss-module A ˚pX q b Z Qrryss, et en fait une Qrryss-algèbre QHpXq commutative, associative, et ayant pour élément neutre rXs. L'associativité du produit dans cette algèbre fournit des relations entre invariants de Gromov-Witten de di érents degrés.

Anneau de petite cohomologie quantique. Pour X une variété homogène, la plupart des calculs en cohomologie quantique ont lieu dans le cadre de l'anneau de petite cohomologie quantique QH s pXq, plus facile à décrire. En particulier Ciocan-Fontanine donne une présentation des anneaux de petite cohomologie quantique de n'importe quelle variété de drapeaux généralisée [START_REF] Ciocan-Fontanine | Quantum cohomology of flag varieties[END_REF].

Fixons une base y 1 , . . . , y p de A 1 X » H 2 pX, Zq, et des bases y p`1 , . . . , y m des autres groupes de cohomologie. On définit le produit en petite cohomologie quantique entre deux classes y i et y j par :

y i ˚S y j " ÿ e,f PI ÿ -PEpXq
xy i , y j , y e y H -q ≥ -y1 1

. . . q ≥ -yp p g ef y f .

On obtient ainsi une Zrq 1 , . . . , q p s-algèbre QH s pXq " pA ˚pX q b Z Zrq 1 , . . . , q p sq associative, commutative et ayant pour unité rXs. On retrouve A ˚X en prenant la limite q i Ñ 0.

K-théorie quantique.

La K-théorie quantique a été introduite par Givental pour les variétés de drapeaux généralisées puis pour toute variété projective lisse en reformulant le formalisme utilisé dans le cadre de la théorie de Gromov-Witten et en l'adaptant à la K-théorie [START_REF] Givental | On the WDVV equation in quantum K-theory[END_REF][START_REF] Lee | Quantum k-theory, i: Foundations[END_REF].

Corrélateurs en K-théorie quantique. Soit T un groupe algébrique complexe, soit X une variété projective irréductible complexe lisse admettant une action de T . Soient E 1 , . . . , E r des classes de fibrés vectoriels T -équivariants dans le groupe K T pXq des fibrés vectoriels T -équivariants de X. Soit -une classe e ective de courbe dans H 2 pX, Zq. On définit le corrélateur associé aux E i et àpar :

x" 1 , . . . , " r y X T,-:"

‰ T ´ev 1 E 1 b ¨¨¨b ev r E r b O vir M0,rpX,-q ¯,
où l'on a noté ‰ T la caractéristique d'Euler-Poincaré T -équivariante, et O vir M0,rpX,-q le faisceau structurel virtuel associé à M 0,r pX, -q. Pour X une variété homogène, O vir M0,rpX,-q est le faisceau structurel O M0,rpX,-q . Considérons en particulier le cas où X " G{P est une variété homogène, T " id, et les E i brO X s " rO Xi s P K ˝pX q » K id pXq sont des classes de faisceaux structuraux au-dessus de sous-variétés X i de X à singularités rationnelles dans le groupe de Grothendieck K ˝pX q des faisceaux cohérents sur X. Alors pour g " pg 1 , . . . , g r q en position générale dans G r , le corrélateur xE 1 , . . . , E r y X -est la caractéristique d'Euler-Poincaré de la sous-variété de M 0,r pX, -q dont les points correspondent à des applications pC Ñ X, tp 1 , . . . , p r uq envoyant leur i-ème point marqué p i dans g i ¨Xi . En particulier, si cette variété est de dimension 0, le corrélateur xE 1 , . . . , E r y X -est égal à l'invariant de Gromov-Witten xrX 1 s, . . . , rX r sy H -défini dans la sous-partie 0.2.1-cf. (1). Anneau de K-théorie quantique. Soit X une variété projective irréductible complexe lisse. On note E Ä H 2 pX, Zq le semi-groupe des classes e ectives courbes. Quand X est une variété homogène, ce semi-groupe est engendré par les classes de variétés de Schubert de dimension 1. Soit CrEs l'anneau de semi-groupe défini par E. On note Q -l'élément de CrEs associé à un élément -dans E. On appelle anneau de Novikov N pXq l'anneau des séries formelles en Q:

N pXq " # ÿ -PE a -Q - | a -P C.

+

Soit pe i q iPI une base du groupe (algébrique ou topologique) KpXq de K-cohomologie de X. Quand X est une variété homogène, le groupe de Grothendieck des faisceaux cohérents sur X est un groupe abélien libre engendré par les classes de faisceaux structuraux sur les variétés de Schubert de X. On note t i les coordonnées duales aux e i . On considère un paramètre formel t :" ∞ iPI t i e i . Le potentiel de Gromov-Witten en K-théorie quantique est donné par

Gptq " `8 ÿ n"0 ÿ -PEpXq Q - n! xt, . . . , t l jh n n y -.
On définit une métrique sur KpXq pe i , e j q :" B 2 Gptq Bt i Bt j .

Cette métrique est une déformation de la métrique induite par l'accouplement de Poincaré pe i , e j q Ñ g ij :" ‰pe i b e j q par les corrélateurs de X. On retrouve la métrique g ij en restreignant G ij :" pe i , e j q à Q " 0. On définit un produit entre éléments e i et e j dans KpXq b Z QrrQss: pe i ˚ej , e k q " B 3 Gptq Bt i Bt j Bt k .

On obtient par linéarité une algèbre QKpXq " pKpXq b Z QrrQ, tss, ˚q qui est une algèbre associative et commutative. On retrouve KpXq en prenant la limite Q Ñ 0. La restriction de l'anneau QKpXq à t " 0 est l'anneau de petite K-théorie quantique pQK s pXq, ‹q.

Calcul de Schubert moderne

On rappelle dans cette partie définitions et propriétés classiques du calcul de Schubert pour une variété de drapeaux généralisée, en reprenant les définitions données dans [START_REF] Brion | Lectures on the geometry of flag varieties[END_REF] pour le calcul de Schubert en K-théorie et dans [START_REF] Lee | Quantum k-theory, i: Foundations[END_REF][START_REF] Anders | Quantum K-theory of Grassmannians[END_REF] pour le calcul de Schubert en petite K-théorie quantique. Des démonstrations complètes peuvent être trouvées dans [START_REF] Fulton | Intersection theory[END_REF] pour le calcul de Schubert en homologie à coe cients entiers, [START_REF] Brion | Lectures on the geometry of flag varieties[END_REF][START_REF] Brion | Positivity in the Grothendieck group of complex flag varieties[END_REF] pour le calcul de Schubert en K-théorie, [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF] pour le calcul de Schubert en cohomologie quantique, et [START_REF] Lee | Quantum k-theory, i: Foundations[END_REF][START_REF] Anders | Quantum K-theory of Grassmannians[END_REF] pour le calcul de Schubert en petite K-théorie quantique.

Définitions. Pour tout u dans W P on note Y puq la variété de Schubert opposée à la variété de Schubert Xpuq.

On s'intéressera ici (cf. chapitre 3) au cas où G " GL n , T est l'ensemble des matrices diagonales, B est l'ensemble des matrices triangulaires supérieures, B ´est l'ensemble des matrices triangulaires inférieures et P est un sous-groupe parabolique de G associé aux racines t-2 , . . . , -n´1 u Ä ∆. La variété X " G{P est alors la variété paramétrant les paires pp, Hq où p est un point de P n´1 inclu dans un hyperplan H de P n´1 . On étudie dans cette thèse (cf. chapitre 3) di érentes variantes du calcul de Schubert moderne dans le cadre de cette variété. Plus précisément, on s'intéresse à la K-théorie et petite K-théorie quantique de la variété d'incidence F l 1,n´1 . 0.3.1 Calcul de Schubert en K-théorie. Soit u un élément dans W P . L'immersion naturelle i : Xpuq ãÑ X définit un faisceau i ˚OXpuq , qui est un faisceau cohérent de O X -modules. On note O u :" ri ˚OXpuq s la classe de i ˚OXpuq dans le groupe de Grothendieck K ˝pX q des faisceaux cohérents de O X -modules. Notons K ˝pX q le groupe de Grothendieck des fibrés vectoriels sur X. Comme X est une variété lisse, l'application naturelle K ˝pX q Ñ K ˝pX q est un isomorphisme. On note KpXq :" K ˝pX q " K ˝pX q. Le produit tensoriel de deux fibrés vectoriels induit une structure d'anneau sur KpXq. Les classes de Schubert pO u q uPW P forment une base de l'anneau KpXq. Pour tous éléments u et v dans W P , il y a donc une expression unique O u ¨Ov "

ÿ wPW P d K w u v O w .
Par analogie avec le cadre classique les coe cients d K w u v sont appelés coe cients de Littlewood-Richardson dans KpXq. Notons que le signe de ces coe cients est connu [START_REF] Brion | Positivity in the Grothendieck group of complex flag varieties[END_REF].

p´1q codimpXpwqq´codimpXpuqq´codimXpvq d K w
u v • 0. Dans le cas où X est la variété d'incidence, ces coe cients sont calculés dans la partie 0.7.2 du chapitre chapitre 3. 0.3.2 Calcul de Schubert en petite cohomologie quantique. On note pQH s pXq, ˚q l'anneau de petite cohomologie quantique de X défini dans la sous-partie 0.2.1. Le semi-groupe EpXq Ä H 2 pX, Zq des classes e ectives de courbes est engendré par les classes de variétés de Schubert de dimension 1, que l'on a notées rXps -qs, où -P ∆ P . On note m " #∆ P le rang de Picard de X. L'anneau QH s pXq est une déformation de H ˚pX q par les variables formelles Q i , où i P t1, . . . , mu. Pour tous éléments u et v dans W P on a une expression unique rXpuqs ˚rXpvqs "

ÿ wPW P ÿ d1,...,dmPN d w, ∞ dirXps-i qs u,v Q d1 1 . . . Q dm m rXpwqs
où pour -P EpXq le coe cient d w,- u,v compte le nombre d'applications Ï : P 1 Ñ X vérifiant :

• Ï ˚rP 1 s " -P A ˚X .

• Pour un élément g " pg 1 , g 2 , g 3 q général dans G 3 , les intersections Ïpr0 : 1sq X g 1 ¨Xpuq, Ïpr1 : 0sq X g 2 ¨Xpvq et Ïpr1 : 1sq X g 3 ¨Y pwq sont non vides.

En particulier les coe cients d w,- u,v sont des entiers positifs. On appelle ces coe cients coe cients de Littlewood-Richardson dans QH s pXq. Dans le cadre des Grassmaniennes, la petite cohomologie quantique a été étudiée entre autres par Siebert et Tian [START_REF] Siebert | On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator[END_REF], Bertram [START_REF] Bertram | Quantum Schubert Calculus[END_REF], Bertram-Ciocan-Fontanine-Fulton [START_REF] Bertram | Quantum Multiplication of Schur Polynomials[END_REF] et Buch [START_REF] Skovsted | Quantum cohomology of Grassmannians[END_REF]. Dans le cadre des variétés de drapeaux, la petite cohomologie quantique a été étudiée entre autres par Ciocan-Fontanine [START_REF] Ciocan-Fontanine | Quantum cohomology of flag varieties[END_REF]. Kresch et Tamvakis ont étudié la petite cohomologie quantique des Grassmaniennes Lagrangiennes [START_REF] Kresch | Quantum cohomology of the Lagrangian Grassmannian[END_REF] et orthogonales [START_REF] Kresch | Quantum cohomology of orthogonal Grassmannians[END_REF]. Buch-Kresch-Tamvakis ont étudié la petite cohomologie quantique des Grassmaniennes isotropes [START_REF] Skovsted | Quantum Giambelli formulas for isotropic Grassmannians[END_REF]. 0.3.3 Calcul de Schubert en petite K-théorie quantique. On note pQK s pXq, ‹q l'anneau de petite K-théorie quantique de X. D'après la sous-partie 0.2.2, QK s pXq est une déformation de le l'anneau de K-théorie KpXq par Q -, pour -dans le semi-groupe EpXq Ä H 2 pX, Zq des classes e ectives de courbes. Par définition on a donc pour tous éléments u et v dans

W P une expression unique O u ‹ O v " ÿ wPW P P w u,v pQqO w ,
où P w u,v pQq est à priori une série formelle en Q. Anderson-Chen-Tseng-Iritani ont montré que les coe cients P w u,v pQq sont en fait des polynômes en Q [START_REF] Anderson | The quantum k-theory of a homogeneous space is finite[END_REF]. On appelle ces polynômes coe cients de Littlewood-Richardson dans QK s pXq. Pour X une Grassmanienne, Buch-Mihalcea donnent un algorithme calculant ces coe cients [START_REF] Anders | Quantum K-theory of Grassmannians[END_REF]. Buch-Chaput-Perrin-Mihalcea étudient ces coe cients dans le cadre des variétés cominuscules [START_REF] Anders S Buch | A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties[END_REF]. Kato étudie l'anneau de petite K théorie quantique des variétés de drapeaux généralisées G{B dans [START_REF] Kato | Loop structure on equivariant K-theory of semi-infinite flag manifolds[END_REF].

On retrouve les coe cients de Littlewood-Richardson dans KpXq en considérant la restriction à Q " 0 de ces coe cients. On considère les coe cients a w;- u,v des polynômes P w u,v pQq, i.e.

P w u,v pQq :" ÿ -PEpXq a w;- u,v Q -.
Les coe cients a w,0 u,v sont les coe cients de Littlewood-Richardson en K-théorie, et vérifient donc d'après la sous-partie 0.3.1 l'inégalité suivante.

p´1q codimpXpwqq´codimpXpuqq´codimXpvq a w,0 u v • 0. (2) Définition 0.3.3.1. Soient u et v des éléments dans W P . Le produit O u ‹ O v " ∞ wPI ∞ -PEpXq a w;- u,v Q -O w
en petite K-théorie quantique est dit positif si pour tous w dans W P et -dans EpXq p´1q codimpXpwqq´codimpXpuqq´codimXpvq`≥ -c1pT X q a w,- u v • 0. On appelle l'anneau de petite K-théorie quantique QK s pXq positif si pour tous éléments u, v dans

W P , le produit O u ‹ O v est positif.
En particulier, pour -" 0 on retrouve l'inégalité (2). Notons que Lenart-Maeno ont conjecturé que le produit de deux classes de Schubert est positif dans QK s pGL n {Bq [START_REF] Lenart | Quantum grothendieck polynomials[END_REF]. Par ailleurs, Buch-Mihalcea ont conjecturé que le produit de deux classes de Schubert est positif dans QK s pGrpk, nqq, et démontré cette conjecture pour n † 14 [START_REF] Anders | Quantum K-theory of Grassmannians[END_REF].

Soit -un élément dans ∆ P . La variété de Schubert h -:" Y p-q est une variété de codimension 1 dans X. Pour tous -dans ∆ P et v dans W P , il existe une expression unique

rO h-s ‹ O v " ÿ wPW P P w -,v pQqO w ,
où les coe cients P w -,v pQq sont des polynômes en Q. Une telle formule est appelée formule de Chevalley dans QK s pXq.

Une formule de Chevalley est calculée dans la partie 3.8 du chapitre 3, en utilisant des résultats des deux chapitres précédents. On appelle ici un algorithme positif si à chaque itération le calcul e ectué est une somme de coe cients de mêmes signes. Un algorithme positif permettant de calculer les coe cients de Littlewood-Richardson dans QK s pF l 1,n´1 q est donné partie 3.8.1. Le signe de ces coe cients en est déduit dans la partie 3.8.2. Enfin, une formule fermée décrivant ces coe cients est conjecturée dans la partie 3.8.3.

Résultats

Soit n °0. On considère une collection I " ti 1 , . . . , i m u de m entiers positifs

i k vérifiant i 0 " 0 † i 1 † ¨¨¨ † i m † i m`1 " n. On note F l I la variété de drapeaux paramètrant les drapeaux d'espaces vectoriels du type V i1 Ä V i2 Ä ¨¨¨Ä V im Ä C n , où V i k est sous-espace vectoriel de C n de dimension i k .

Variétés de Gromov-Witten des variétés de drapeaux partiels.

Lorsque l'on supprime certains de ses espaces à un drapeau d'espaces vectoriels on obtient un autre drapeau, consitué de moins d'espaces. Ceci induit une application d'oubli fi : X Ñ X 1 entre les variétés de drapeaux associées. Considérons une classe nef rCs P H 2 pX, Zq de courbe de X, où la courbe C est isomorphe à son image par la projection fi. Fixons également une classe ⁄ " rls P H 2 pX, Zq de courbe l dont la projection par l'application d'oubli fi est un point. On considère dans le chapitre 1 les liens entre la fibre géométrique du morphisme d'évaluation ev rCs`⁄ : M 0,r pX, rCs `⁄q Ñ X r et la fibre géométrique du morphisme d'évaluation ev rfipCqs à valeur dans pX 1 q r . Pour r " 3 et X une variété cominuscule, Chaput-Perrin ont montré que la fibre générale du morphisme d'évaluation est une variété rationnelle [START_REF] Chaput | Rationality of some gromov-witten varieties and application to quantum k-theory[END_REF]. Pour X " P N , Pandharipande a calculé le genre de la fibre générale de ev d : M 0,r pP N , dq Ñ pP N q r quand cette dernière est de dimension 1 [Pan97]. Définition 0.4.1.1. Soient X 1 , . . . , X r des variétés de Schubert de la variété de drapeaux X, soit d un élément de EpXq. Pour un élément g " pg 1 , . . . , g r q général dans GL r n , on appelle variété de Gromov-Witten de degré d associée aux variétés X i et à g la sous-variété W g,d X;X1,...,Xr :" ev ´1 1 pg 1 X 1 q X ¨¨¨X ev ´1 r pg r X r q de M 0,r pX, dq.

Rappelons qu'un morphisme f :

P 1 Ñ X représente un degré d P EpXq Ä H 2 pX, Zq si f vérifie f ˚rP 1
s " d. Notons que la variété de Gromov-Witten W g,d X;X1,...,Xr paramètre les morphismes P 1 Ñ X de degré d dont l'image a une intersection non vide avec les translatés g i ¨Xi des variétés de Schubert X i . Lorsque ces variétés sont de dimension zéro, leur nombre de points est un invariant de Gromov-Witten.

De facon générale, la caractéristique d'Euler-Poincaré de leur adhérence dans l'espace M 0,r pX, dq est un invariant en K-théorie quantique [START_REF] Givental | On the WDVV equation in quantum K-theory[END_REF].

Soit n • 0, soit I " ti 1 , . . . , i m u un ensemble de m entiers vérifiant 0 † i 1 † ¨¨¨ † i m † n. Considérons la variété de drapeaux X 1 " F l I . Pour une classe e ective d P H 2 pX, Zq, on note ev d : M 0,r pF l I , dq Ñ pF l I q r le morphisme d'évaluation. Rappelons que F l I paramètre les drapeaux d'espaces vectoriels du type

t0u Ä V i1 Ä V i2 ¨¨¨Ä V im Ä C n où dimV i k " i k . Soit J " tj 1 , . . . , j M u un ensemble d'entiers vérifiant 0 † j 1 † ¨¨¨ † j M † n, tel que I est inclu dans J. On note fi : X " F l J Ñ X 1
" F l I le morphisme d'oubli. Le chapitre 1 démontre l'observation suivante-cf. Théorème 1.1.2.1.

Théorème. Supposons que pI, J, rCs `⁄q est une collection stabilisée, au sens de la définition 1.1.1.1.

Alors:

• Pour toutes variétés de Schubert X 1 , . . . , X r de X, pour g en position générale dans GL r n , chaque variété de Gromov-Witten W g,rCs`⁄ F l J ;X1,...,Xr de F l J est une fibration rationnellement connexe audessus de variété de Gromov-Witten W g,rfipCqs F l I ;fipX1q,...,fipXrq de F l I .

• Pour x en position générale dans pF l J q r , la fibre ev ´1 rCs`⁄ pxq est une tour de fibrations unirationnelles au-dessus de la fibre ev ´1 rfipCqs pfipxqq.

Nous avons appelé une variété W une fibration rationnellement connexe (respectivement fibration unirationnelle) au-dessus de W 1 si il existe un morphisme dominant W Ñ W 1 envoyant chaque composante irréductible de W sur une composante irréductible di érente de W 1 , et dont la fibre générale est une variété rationnellement connexe (respectivement unirationnelle). Une variété W est une tour de fibrations unirationnelles au-dessus d'une variété W 1 s'il existe une suite de morphismes

W 1 " W Ñ W 2 Ñ ¨¨¨Ñ W l " W 1
telle que pour 1 § i † l, la variété W i est une fibration unirationnelle au-dessus de W i`1 . 0.4.2 Égalités entre corrélateurs de di érentes variétés de drapeaux partiels. Fixons des entiers 1 § i 1 † ¨¨¨ † i m † n. On considère la variété de drapeaux X paramétrant les drapeaux d'espaces vectoriels

V i1 Ä ¨¨¨Ä V im Ä C . vérifiant dimV i k " i k . La classe d " pd 1 , . . . , d m q d'une courbe C de X est déterminée par m entiers d 1 , d 2 ,.
. . , d m , où d i est le degré de Plücker de la projection de C sur la Grassmannienne Grpn i , nq. Soit T un tore de GL n agissant sur X par multiplication à gauche. Soient E 1 , . . . , E r des fibrés vectoriels de X T-équivariants. Rappelons que les corrélateurs T -équivariants en K-théorie quantique sont donnés par

x" 1 , . . . , " r y X T,pd1,...,dmq :" Théorème. Supposons:

‰ T ´ev 1 E 1 b ¨¨¨b ev r E r b O M0,rpX,dq ¯, (3) 
• @ p † k, d k • n k Q dp´dp´1 np´np´1 U , • d k´1 § t d k`1 n k`1 u, • d k • rpn k ´nk´1 q `dk´1 `pn k ´nk´1 qpt d k`1 ´dk´1 n k`1 ´nk´1 u `1q.
Alors pour tous fibrés vectoriels T -équivariants E 1 , . . . , E r de X p k , les corrélateurs de X et de X p k associés au degré d et aux fibrés E i sont égaux:

xpfi p k q ˚E1 , . . . , pfi p k q ˚Er y X T,pd1,...,dmq " xE 1 , . . . , E r y

X p k T,pd1,...,d k´1 ,d k`1 ,...,dmq .
Notons que dans le cadre des invariants de Gromov-Witten à trois points marqués, un résultat de Peterson/Woodward permet de déduire tous les invariants à 3 points marqués des variétés de drapeaux généralisées G{P des invariants à trois points marqués de G{B [START_REF] Christopher | Peterson's comparison formula for Gromov-Witten invariants of G/P[END_REF].

Calcul de Schubert pour la variété d'incidence

F l 1,n´1 . On s'intéresse dans le chapitre 3 de cette thèse à di érentes variantes du calcul de Schubert moderne pour la variété d'incidence X " F l 1,n´1 paramétrant les paires pp, Hq où p est un point de P n´1 et H est un hyperplan de P n´1 . Notons que X s'écrit sous la forme G{P , où G " GL n , T est l'ensemble des matrices diagonales, B est l'ensemble des matrices triangulaires supérieures et P est le sous-groupe parabolique de G vérifiant B Ä P associé aux racines t-2 , . . . , -n´1 u. Le représentant de plus petite longueur w d'un élément dans W {W P » S n {S n´2 est une permutation vérifiant wp1q " i, wpnq " j, et pour 1 † k † n ´1 wpkq † wpk `1q. On notera w i,j l'élément associé dans W {W P . On peut considérer la variété F l 1,n´1 comme une sous-variété de bidegré p1, 1q de Grp1, nq ˆGrpn ´1, nq » P n´1 ˆPn´1 , définie par la relation d'incidence L Ä H. Pour 1 § i § n, on appelle

L i :" trx 1 : ¨¨¨: x i : 0 . . . 0su,

et

L i :" tr0 . . . 0 : x i . . . x n su.

Les sous-variétés

Xpi, jq :" pL i ˆLj q X F l 1,n´1 Ä F l 1,n´1 Ä P n´1 ˆPn´1 sont les variétés de Schubert Xpw i,j q de F l 1,n´1 , pour 1 § i, j § n et i ‰ j.

Coefficients de Littlewood-Richardson dans KpF l 1,n´1 q. Pour 1 § i, j § n, i ‰ j, l'immersion naturelle i : Xpi, jq ãÑ X définit un faisceau i ˚OXpi,jq , qui est un faisceau cohérent de O F l1,n´1 -modules. On note O i,j :" ri ˚OXpi,jq s la classe de i ˚OXpi,jq dans le groupe de Grothendieck KpF l 1,n´1 q des faisceaux cohérents de O F l1,n´1 -modules. Rappelons que les classes de Schubert pO i,j q 1 §i,j §n, i‰j forment une base de KpF l 1,n´1 q, et le produit

O i,j ¨Ok,p " dimF l1,n´1 ÿ i"0 p´1q i rT or F l1,n´1 i
`OXpi,jq , O Xpk,pq ˘s définit une structure d'anneau associatif et commutatif pKpF l 1,n´1 q, ¨q ayant pour unité rO F l1,n´1 s. On pose O i,j " 0 si i † 1 ou j °n.

Proposition (Coe cients de Littlewood-Richardson dans KpF l 1,n´1 q-cf. Proposition 3.4.1.1). Soient

1 § i, j, k, p § n, où i ‰ j et k ‰ p. Alors # O k,p ¨Oi,j " O i`k´n,j`p´1 si i `k ´n • j `p or i † j or k † p;
O k,p ¨Oi,j " O i`k´n´1,j`p´1 `Oi`k´n,j`p ´Oi`k´n´1,j`p sinon.

Formule de Chevalley et algorithme positif dans QK s pF l 1,n´1 q. Notons l 1 :" Xp2, 1q et l 2 :" Xp1, 2q les deux variétés de Schubert de F l 1,n´1 de dimension 1. Leurs classes rl 1 s et rl 2 s en homologie singulière de F l 1,n´1 engendrent H 2 pF l 1,n´1 , Zq. Rappelons que l'anneau de petite K-théorie quantique QK s pF l 1,n´1 q " pKpF l 1,n´1 qq b QrQ 1 , Q 2 s, ‹q de F l 1,n´1 est une déformation de l'anneau KpF l 1,n´1 q par les variables Q 1 et Q 2 . Cette déformation dépend des corrélateurs xO i,j , O k,p , O s,t y d1rl1s`d2rl2s définis dans la sous-partie 0.2.2. On retrouve l'anneau de K-théorie KpF l 1,n´1 q en prenant la limite Q 1 , Q 2 Ñ 0.

Notons h 1 :" Xpn ´1, 1q et h 2 :" Xpn, 2q les deux variétés de Schubert de F l 1,n´1 de codimension 1.

Proposition (Formule de Chevalley dans QK s pF l 1,n´1 q-cf. Proposition 3.7.0.1).

O h1 ‹ O k,p " $ ' ' ' ' & ' ' ' ' % Q 1 O n´1,n `Q1 Q 2 prO X s ´Oh1 q si k " 1, p " n Q 1 O n,p si k " 1, p † n O 1,2 `Q1 prO X s ´Oh1 q si k " 2, p " 1 O k´1,p si k °1, k ‰ p `1 O p´1,p `Op,p`1 ´Op´1,p`1 si 1 † p † n ´1, k " p `1 O h2 ‹ O k,p " $ ' ' ' ' & ' ' ' ' % Q 2 O 1,2 `Q1 Q 2 prO X s ´Oh2 q si k " 1, p " n Q 2 O k,1 si k °1, p " n O n´1,n `Q2 prO X s ´Oh2 q si k " n, p " n ´1 O k,p`1 si p † n, k ‰ p `1 O p,p`1 `Op´1,p ´Op´1,p`1 si 1 † k † n ´1, k " p `1
Notons que pour X une variété cominuscule, une formule de Chevalley en petite K-théorie quantique est donnée par Buch-Chaput-Mihalcea-Perrin [START_REF] Anders S Buch | A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties[END_REF].

Appelons ici un algorithme positif si à chaque itération le calcul e ectué est une somme de coecients de mêmes signes.

Proposition. L'algorithme donné partie 3.8.1 est un algorithme positif calculant les coe cients de

Littlewood-Richardson dans QK s pF l 1,n´1 q. Corollaire. (Cf. Proposition 3.8.2.1) L'anneau de petite K-théorie quantique QK s pF l 1,n´1 q est positif au sens de la définition 0. 

Summary

We present here an overview of the di erent results presented in this thesis. Chapters 2 and 3 use some of the results of Chapter 1, but are otherwise independent and each of them may be read separately.

Chapter 1: Gromov-Witten varieties of partial flag varieties.

Let n • 0, let J " tj 1 , . . . , j M u be a set of M integers satisfying 0 † j 1 † ¨¨¨ † j M † n. Consider the flag variety X " F l J parametrizing the flags of vector spaces of type

V j1 Ä V j2 Ä ¨¨¨Ä V j M Ä C n ,
where V j k is a vector subspace of C n of dimension j k . For an element d in the semi-group EpXq Ä H 2 pX, Zq of e ective classes of curves, we denote by M 0,r pX, dq the space of maps pf : P 1 Ñ X, tp 1 , . . . , p r uq with r marked points p i on P 1 satisfying f ˚rP 1 s " d. Associating to a map the image of its marked points yields an evaluation morphism ev d : M 0,r pX, dq Ñ X r . For r " 3 and X a cominuscule variety, and in particular for X a Grassmannian, Chaput-Perrin proved that the general fiber of the evaluation map is a rational variety [START_REF] Chaput | Rationality of some gromov-witten varieties and application to quantum k-theory[END_REF]. For X " P 2 , Pandharipande computed the genus of the general fiber of the evaluation map ev d : M 0,r pP 2 , dq Ñ pP 2 q r when this fiber has dimension 1 [START_REF] Pandharipande | The canonical class of M 0,n pP r , dq and enumerative geometry[END_REF], genus which turns out to be positive for d • 3. For X " P 1 , examples of values of d such that the general fiber of ev d : M 0,r pP 1 , dq Ñ pP 1 q r is not a rationally connected variety have been obtained using techniques from quantum K-theory [START_REF] Iritani | Reconstruction and convergence in quantum k-theory via di erence equations[END_REF]. One might wonder what happens for a variety of Picard rank greater than one. Chapter 1 provides a step in that direction by studying the geometry of the general fiber of the evaluation map ev d : M 0,r pX, dq Ñ X r for X a flag variety, and more generally the geometry of Gromov-Witten varieties of flag varieties. Definition 0.4.4.1. Let X 1 , . . . , X r be Schubert varieties of the flag variety X, let d be an element in EpXq. For any element g " pg 1 , . . . , g r q general in GL r n , we call Gromov-Witten variety of degree d associated with the varieties X i and with g the subscheme W g,d X;X1,...,Xr :" ev ´1 1 pg 1 X 1 q X ¨¨¨X ev ´1 r pg r X r q of M 0,r pX, dq.

Note that the Gromov-Witten variety W g,d X;X1,...,Xr parametrizes morphisms P 1 Ñ X representing the class d whose image has a non empty intersection with the translates g i ¨Xi of the Schubert varieties X i . When these varieties are zero dimensional, their number of points is a Gromov-Witten invariant. More generally, the Euler-Poincaré characteristic of their adherence in the space M 0,r pX, dq is a correlator in quantum K-theory [START_REF] Givental | On the WDVV equation in quantum K-theory[END_REF].

Let I " ti 1 , . . . , i m u be a set of m integers satisfying 0 † i 1 † ¨¨¨ † i m † n, such that I is contained in J. We denote by fi : X " F l J Ñ X 1 " F l I the forgeftul map. Fix a class ⁄ " rls P H 2 pX, Zq of a curve l whose projection by the forgetful map fi is a point. We observe in Chapter 1 a relation between the general fiber of the evaluation map ev rCs`⁄ : M 0,r pX, rCs `⁄q Ñ X r and the general fiber of the map ev rfipCqs : M 0,r pX 1 , rfipCqsq Ñ pX 1 q r .

Theorem. (Theorem 1.1.2.1) Suppose the collection pI, J, rCs `⁄q is a stabilized collection in the sense of Definition 1.1.1.1. Then:

• For any Schubert varieties X 1 , . . . , X r of X, for g general in GL r n , the Gromov-Witten variety W g,rCs`⁄ F l J ;X1,...,Xr of F l J is a rationally connected fibration above the Gromov-Witten variety W g,rfipCqs F l I ;fipX1q,...,fipXrq of F l I .

• For x general in pF l J q r , the fiber ev ´1 rCs`⁄ pxq is a tower of unirational fibrations over the fiber ev ´1 rfipCqs pfipxqq.

We called a variety W a rationally connected fibration (respectively unirational fibration) above W 1 if there exists a dominant map W Ñ W 1 sending each irreducible component of W onto a di erent irreducible component of W 1 , and whose general fiber is a rationally connected variety (respectively unirational). A variety W is a tower of unirational fibrations above a variety W 1 if there exists a sequence of morphisms

W 1 " W Ñ W 2 Ñ ¨¨¨Ñ W l " W 1 such that for 1 § i † l, the variety W i is a unirational fibration above W i`1 .

Chapter 2: A comparison formula between genus 0 correlators of flag varieties.

Fix integers 1 § n 1 † ¨¨¨ † n m † n. We consider the flag variety X parametrizing flags of vector spaces

V n1 Ä ¨¨¨Ä V nm Ä C . satisfying dimV ni " n i .
Let T be a torus in GL n acting on X by left multiplication. Let d " pd 1 , . . . , d m q be an e ective class of curve in H 2 pX, Zq. We denote by M 0,r pX, dq the coarse moduli space parametrizing genus 0 stable maps representing the class d. Assocating to a stable map with r marked points the image of its i-th marked point induces an evaluation map ev i : M 0,r pX, dq Ñ X.

Let E 1 , . . . , E r be T -equivariant fiber bundles over X. In quantum K-theory, T -equivariant correlators are defined by

x" 1 , . . . , " r y X T,pd1,...,dmq :"

‰ T ´ev 1 E 1 b ¨¨¨b ev r E r b O M0,rpX,dq ¯, (4) 
where we denote by ‰ T the T -equivariant Euler-Poincaré characteristic [START_REF] Givental | On the WDVV equation in quantum K-theory[END_REF][START_REF] Lee | Quantum k-theory, i: Foundations[END_REF]. For 1 § k § m, we denote by X p k the flag variety obtained from X by forgetting the vector space V n k , and by fi p k : X Ñ X p k the forgetful map. In order to facilitate notations, we set d 0 " 0 " d m`1 . Chapter 2 yields the following equality between correlators-cf. Theorem 2.1.3.1bis.

Theorem. Suppose:

• @ p † k, d k • n k Q dp´dp´1 np´np´1 U , • d k´1 § t d k`1 n k`1 u, • d k • rpn k ´nk´1 q `dk´1 `pn k ´nk´1 qpt d k`1 ´dk´1 n k`1 ´nk´1 u `1q.
Then for any T -equivariant fiber bundles E 1 , . . . , E r over X p k , the correlators of X and X p k associated with the degree d and the fiber bundles E i are equal:

xpfi p k q ˚E1 , . . . , pfi p k q ˚Er y X T,pd1,...,dmq " xE 1 , . . . , E r y X p k
T,pd1,...,d k´1 ,d k`1 ,...,dmq . Note that for 3-pointed Gromov-Witten invariants, a result of Peterson/Woodward allows to deduce all invariants with 3 marked points of generalized flag varieties G{P from 3-pointed Gromov-Witten invariants of G{B [START_REF] Christopher | Peterson's comparison formula for Gromov-Witten invariants of G/P[END_REF]. 0.4.6 Chapter 3: Schubert calculus for the incidence variety F l 1,n´1 . We study in Chapter 3 di erent variations of modern Schubert calculus for the incidence variety X " F l 1,n´1 parametrizing pairs pp, Hq where p is a point in P n´1 and H is a hyperplane in P n´1 containing the point p. Note that X can be written as G{P , where G " GL n , T is the set of diagonal matrices, B is the set of upper triangular matrices and P is the parabolic subgroup of G satisfying B Ä P associated with the roots t-2 , . . . , -n´1 u. The smallest length representative w of an element in W {W P " S n {S n´2 is a permutation w i,j satisfying wp1q " i, wpnq " j, and such that for 1 † k † n ´1 wpkq † wpk `1q. For 1 § i, j § n and i ‰ j, we call Xpi, jq :" Xpw i,j q the Schubert variety of F l 1,n´1 associated with the element w i,j in W P » W {W P . Littlewood-Richardson coefficients in KpF l 1,n´1 q. For 1 § i, j § n, i ‰ j, the natural embedding i : Xpi, jq ãÑ X defines a sheaf i ˚OXpi,jq , which is a coherent sheaf of O F l1,n´1 -module. We denote by O i,j :" ri ˚OXpi,jq s the class of i ˚OXpi,jq in the Grothendieck group KpF l 1,n´1 q of coherent sheaves of O F l1,n´1 -module. Schubert classes pO i,j q 1 §i,j §n, i‰j form a basis of KpF l 1,n´1 q, and the product

O i,j ¨Ok,p " dimF l1,n´1 ÿ i"0 p´1q i rT or F l1,n´1 i `OXpi,jq , O Xpk,pq ˘s
defines a structure of associative and commutative ring pKpF l 1,n´1 q, ¨q with identity element rO F l1,n´1 s. We set O i,j " 0 if i † 1 or j °n.

Proposition (Littlewood-Richardson coe cients in KpF l 1,n´1 q-cf. Proposition 3.4.1.1). Let 1 § i, j, k, p § n, where i ‰ j and k ‰ p. Then # O k,p ¨Oi,j " O i`k´n,j`p´1 if i `k ´n • j `p or i † j or k † p;
O k,p ¨Oi,j " O i`k´n´1,j`p´1 `Oi`k´n,j`p ´Oi`k´n´1,j`p else.

Chevalley formula and positive algorithm in QK s pF l 1,n´1 q. We denote by l 1 :" Xp2, 1q et l 2 :" Xp1, 2q the two one-dimensional Schubert varieties of F l 1,n´1 . Their classes rl 1 s and rl 2 s in the singular homology of F l 1,n´1 generate H 2 pF l 1,n´1 , Zq. The small quantum K-ring QK s pF l 1,n´1 q " pKpF l 1,n´1 qq b QrQ 1 , Q 2 s, ‹q of F l 1,n´1 is a deformation of the ring KpF l 1,n´1 q by the Novikov variables Q 1 and Q 2 associated with the classes rl 1 s and rl 2 s [START_REF] Lee | Quantum k-theory, i: Foundations[END_REF]. This deformation depends on the correlators xO i,j , O k,p , O s,t y d1rl1s`d2rl2s defined by (4). Considering the limit Q 1 , Q 2 Ñ 0 yields the K-ring KpF l 1,n´1 q.

We name h 1 :" Xpn ´1, 1q and h 2 :" Xpn, 2q the two Schubert varieties of F l 1,n´1 of codimension 1. Proposition (Chevalley formula in QK s pF l 1,n´1 q-cf. Proposition 3.7.0.1).

O h1 ‹ O k,p " $ ' ' ' ' & ' ' ' ' % Q 1 O n´1,n `Q1 Q 2 prO X s ´Oh1 q if k " 1, p " n Q 1 O n,p if k " 1, p † n O 1,2 `Q1 prO X s ´Oh1 q if k " 2, p " 1 O k´1,p if k °1, k ‰ p `1 O p´1,p `Op,p`1 ´Op´1,p`1 if 1 † p † n ´1, k " p `1 O h2 ‹ O k,p " $ ' ' ' ' & ' ' ' ' % Q 2 O 1,2 `Q1 Q 2 prO X s ´Oh2 q if k " 1, p " n Q 2 O k,1 if k °1, p " n O n´1,n `Q2 prO X s ´Oh2 q if k " n, p " n ´1 O k,p`1 if p † n, k ‰ p `1 O p,p`1 `Op´1,p ´Op´1,p`1 if 1 † k † n ´1, k " p `1
Note that for X a cominuscule variety, a Chevalley formula in small quantum K-theory is given by Buch-Chaput-Mihalcea-Perrin [START_REF] Anders S Buch | A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties[END_REF].

Since pO w q wPW P is a basis of KpF l 1,n´1 q, for any elements u and v in W P , there is a unique decomposition

O u ‹ O v " ÿ d1, d2PN ÿ wPW P a w;d1,d2 u,v Q d1 1 Q d2 2 O w .
We call the polynomials

∞ d1, d2PN a w;d1,d2 u,v Q d1 1 Q d2 2
Littlewood-Richardson coe cients in QK s pF l 1,n´1 q. We call the ring QK s pF l 1,n´1 q positive if for any elements u and v in W P , d 1 , d 2 in N the sign of the coe cient a w;d1,d2 u,v is given by the following inequality.

p´1q codimXpwq´codimXpuq´codimXpvq`≥ d 1 rl 1 s`d 2 rl 2 s c1pT X q a w;d1,d2 u,v • 0.
Note that for d 1 " 0 " d 2 , this inequality is satisfied according to M. Brion's result on positivity in the Grothendieck groups of generalized flag varieties [START_REF] Brion | Positivity in the Grothendieck group of complex flag varieties[END_REF]. Finally, we call an algorithm positive if at each iteration the computation performed is a sum of coe cients having the same sign.

Proposition. The algorithm given Subsection 3. Let S be a complex scheme. A family of quasi-stable maps with r marked points above S is given by

• A flat and projective morphism fi : C Ñ S equipped with r sections p i : S Ñ C, such that each geometrical fiber is a reduced nodal projective connected curve of genus zero C s and such that the marked points p i psq are distinct and non singular.

• A morphism C Ñ Y .
The space M 0,r pY, "q of genus 0 stable maps to Y representing " is the coarse moduli space parametrizing families of stable maps with r marked points above S from genus 0 curves to Y representing the class ", such that the geometric fiber C s above any points in S defines a stable map C s Ñ Y [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF].

For a homogeneous variety Y , the space M 0,r pY, "q is an irreducible rational projective variety, ofe dimension the expected dimension and with quotient singularities [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF][START_REF] Kim | The connectedness of the moduli space of maps to homogeneous spaces[END_REF]. Furthermore, the subvariety M 0,r pY, "q parametrizing maps P 1 Ñ Y is a dense open subset of M 0,r pY, "q. A general point in M 0,r pY, "q thus corresponds to a map P 1 Ñ Y representing the class ". Note that a general point in M 0,r pY, "q is not necessarily associated with an injective map P 1 Ñ Y . This is immediate if Y " P 1 ; indeed, a general point in M 0,r pP 1 , dq is associated with a degree d map P 1 Ñ P 1 . This phenomenon may also be observed in higher dimensions. Consider for example the full flag variety Y " F l 1,2 " GL 3 {B parametrizing pairs pp, lq where p is a point in P 2 and l is a line in P 2 taht contains p. Fix a line l in P 2 . Denote by " the class of the curve C » P 1 Ä F l 1,2 containing all pairs pp, lq, where p Ä l and by fi : F l 1,2 Ñ P 2 the map forgetting the line l 1 in a pair pp, l 1 q. Then the restriction of fi to the curve C is an isomorphism onto its image, which is the line l Ä P 2 . Denote by fi 1 : F l 1,2 Ñ Grp2, 3q the map induced by forgetting the point p in a pair pp, lq. An irreducible curve C 1 in F l 1,2 of class 2" satisfies fi ˚rC 1 s " 2 in A ˚pP 2 q. Furthermore its image fipC 1 q in P 2 is included in the line in P 2 defined by the image fi 1 pC 1 q P Grp2, 3q. Then the projection fi induces a degree 2 morphism between the curve C 1 and its image fipC 1 q, which contradicts the fact that the restriction of fi to C 1 is an injection. There thus is no irreducible curve of class 2" in F l 1,2 , and a general point in M 0,r pF l 1,2 , 2"q ãÑ M 0,r pF l 1,2 , 2"q corresponds to a degree 2 map P 1 Ñ F l 1,2 . G-action on M 0,r pY, "q. Let G be a complex algebraic group, Y be a smooth projective G-variety (in this thesis G will be the group GL n of invertible matrices and Y will be a flag variety parametrizing flags of vector spaces included in C n ). Let " be an element of H 2 pY, Zq corresponding to an e ective class of curve. We consider the natural transformation of functors associating to a morphism " : S Ñ G and to a family of quasi-stable maps pfi : C Ñ S, µ : C Ñ Y q above S with r marked points representing the class " the following family:

C Y S G¨µ fi
where we denote by G ¨µ : C Ñ Y the morphism C Q c Ñ Õ ˝fipcq ¨µpcq P Y translating curves µpC s q by the element in G image of s by Õ. This natural transformation of functors induces an action M 0,r pY, "q ˆG Ñ M 0,r pY, "q, associating to an element g in G and to a map µ : C Ñ Y the map g ¨µ : C Q p Ñ g ¨µppq P Y.

Flag varieties

We recall here some classical definitions and properties of flag varieties. Let n °0. We consider a collection I " ti 1 , . . . , i m u of m non-negative integers i k satisfying i 0 :" 0

† i 1 † ¨¨¨ † i m † i m`1 :" n.
We denote by F l I the variety parametrizing flags of vector spaces

V i1 Ä V i2 Ä ¨¨¨Ä V im Ä C n ,
where V i k is a vector subspace of C n of dimension i k . Note that the variety F l I represents the functor Sch Ñ Sets associating to a scheme S the following set:

tF 1 Ä ¨¨¨Ä F m Ä O 'n S u
, where the fiber bundles over S F k have rank i k and the quotient sheaves F k {F k´1 are rank pi k ´ik´1 q fiber bundles. Furthermore, we consider the complex algebraic group G " GL n , the maximal torus T of G given by the set of diagonal matrices and the Borel subgroup B Ä G given by the set of upper triangular matrices. We denote by W » S n the Weyl group of G " GL n , and ∆ " -1 , . . . ,n the set of simple roots positive with respect to B. We denote by ∆pIq " t-1 , . . . -i1´1 , . . . , -im´1 u the subset of ∆ associated with I, and by

W I » ± m`1 k"1 S i k ´ik´1
the subgroup of W generated by reflexions s -associated with elements -in ∆pIq. Finally, we denote by P I :" BW I B the parabolic subgroup associated with ∆pIq. Note that the block diagonal matrix whose k-th block is GL i k ´ik´1 is a Levi sugroup L I associated with P I . We have the following identification: F l I » G{P I .

Let 1 § k † m. Composing the map forgetting all vector spaces except from the k-th one with the Plücker embedding Grpi k , nq ãÑ P p n i k q´1 induces a map Ï : F l I Ñ P p n i k q´1 . Let l i be a curve on F l I sent onto a line in P p n i k q´1 by Ï, and such that the restriction of Ï to l i is an isomorphism. The classes rl i s generate the free abelian group H 2 pF l I , Zq, and we may thus identify an e ective class of curve d " ∞ m k"1 d k rl k s in EpF l I q Ä H 2 pF l I , Zq with m positive integers pd 1 , . . . , d m q. 0.7 Algebraic K-theory 0.7.1 Equivariant algebraic K-theory. We recall here some classical definitions and properties of the equivariant K-theory of a variety; complete proofs can be found in [C `09], chapter 5.

Let H be a complex linear algebraic group, let X be an irreducible variety with an H-action. Let E be a vector bundle on X. We call E an H-equivariant vector bundle if there exists an H-action Õ : H ˆE Ñ E satisfying -The map E Ñ X commutes with H-actions.

-For any x in X and g in G, the map Õpg, 'q : E x Ñ E g¨x is a linear map of vector spaces, where we denote by E x the fiber over a point x in X. Let F be a coherent sheaf on X. Denote by a : H ˆX Ñ X the action of H on X, by p : H ˆX Ñ X the projection map and by p 2 3 : H ˆH ˆX Ñ H ˆX the projection along the first factor H. We call F an H-equivariant coherent sheaf if there exists an H-action Õ : H ˆF Ñ F satisfying -There exists an isomorphism I : a ˚F Ñ p ˚F .

-p 2 3 ˚I ˝pid H ˆaq ˚I " pm ˆid X q ˚I of sheaves on H ˆX.

-There is an identification I 1ˆX " id : F " a ˚F|1ˆX Ñ p ˚F|1ˆX " F.

Denote by K H pXq the Grothendieck group of H-equivariant coherent sheaves on X and by K H pXq the Grothendieck group of H-equivariant vector bundles on X. The tensor product of equivariant vector bundles defines a ring structure on K H pXq. Moreover, the map K H pXq b K H pXq Ñ K H pXq defined by the tensor product rEs b rFs Ñ rE b O X Fs makes K H pXq a K H pXq-module. When X is non singular, the map rEs Ñ rE b O X s yields an isomorphism K H pXq » K H pXq. Indeed, any equivariant sheaf then has a finite resolution by equivariant vector bundles. Furthermore, for any equivariant proper morphism of irreducible varieties with an H-action f : X Ñ Y , there is a pushforward map f ˚: K H pXq Ñ K H pY q defined by:

rFs Ñ ÿ i p´1q i rR i f ˚pF qs.
Indeed, if F is an H-equivariant sheaf on X, the Godement resolution implies that R i f ˚pF q will also be an H-equivariant sheaf on Y .

In particular, if X is an irreducible projective H-variety, the equivariant pushforward K H pXq Ñ K H ppointq is called equivariant Euler characteristic, and denoted by ‰ H . Moreover, an equivariant morphism f : X Ñ Y induces a pullback map f ˚: K H pY q Ñ K H pXq:

rEs Ñ rf ˚pEqs.

Consider an equivariant proper morphism f : X Ñ Y of irreducible varieties with an H-action. Let E be an equivariant vector bundle on Y , and F be an equivariant coherent sheaf on X. Note that the following projection formula is satisfied in K H pY q: f ˚pf ˚rEs b rFsq " rEs b f ˚rF s.

Algebraic K-theory of G{P .

We recall here some classical definitions and properties of the Grothendieck ring of coherent sheaves on a variety. Denote by K ˝pX q the Grothendieck group of coherent sheaves on X and by K ˝pX q the Grothendieck group of vector bundles on X. Note that for H " id, the equivariant groups K H pXq and K H pXq are equal to K ˝pX q and K ˝pX q. In particular, the tensor product of vector bundles defines a ring structure on K ˝pX q, and for a non singular variety X we can identify KpXq " K ˝pX q » K ˝pX q. Furthermore, for any coherent sheaves F and G on X we have rFs ¨rGs "

dimX ÿ i"0 p´1q i T or X i pF, Gq.
Furthermore, note that for an irreducible projective variety X, the pushforward K ˝pX q Ñ K ˝pSpecCq is given by:

‰ : K ˝pX q Ñ Z, rFs Ñ ‰pFq " ÿ i p´1q i h i pFq,
where h i denote the dimension of the i-th cohomology group of F; i.e. ‰ is the Euler-Poincaré characteristic of F. A morphism of schemes f : X Ñ Y is called perfect if there is an N such that T or Y i pO X , Fq " 0 for all i °N and for all coherent sheaves F on Y . For a perfect morphism f : X Ñ Y , one can define the pull-back f ˚: K ˝pY q Ñ K ˝pX q by f ˚rF s "

N ÿ i"0 rT or Y i pO X , Fqs.
Furthermore suppose f is a morphism locally of finite type. Then if f is flat or Y is regular, f is perfect-cf. for example Stacks Project 37.53. We will also be using the following easy results.

Lemma 0.7.2.1. Let Y be an irreducible projective variety and Õ be an irreducible projective subvariety of P 1 ˆY . Denote by fi : Õ Ñ P 1 the natural projection. Let p 1 , p 2 be two points on P 1 . Then we have the following equality in K ˝pY q: rO fi ´1pp1q s " rO fi ´1pp2q s

Proof. Since the projection map fi is flat, we have fi ˚rO pi s " rO fi ´1ppiq s in K ˝pÕq. Denote by : Õ Ñ Y the natural projection. We obtain ˚fi˚r O pi s " ˚rO fi ´1ppiq s " rO fi ´1ppiq s in K ˝pY q. Finally, the equality rO p1 s " rO p2 s in K ˝pP 1 q yields the result. Lemma 0.7.2.2. Let X be a projective GL n -variety. Consider a subvariety Y of X. Then for all g in GL n , we have the following equality in K ˝pX q: rO g¨Y s " rO Y s. 

Proof. Let g in GL n . Since GL n is a dense open subset of M n,n » A n 2 ,

Rational singularities.

We recall here known definitions and results on rational singularities. The treatment in this section is inspired by [START_REF] Brion | Positivity in the Grothendieck group of complex flag varieties[END_REF]. An irreducible complex variety X has rational singularities if there exists a desingularization  : r X Ñ X such that:

 ˚OÄ X " O X and @i °0, R i fi ˚OÄ X " 0.

(5)

Note that, according to Zariski's main theorem, the equality  ˚OÄ X " O X is equivalent to the normality of X. The relevance of this notion here comes from the following results.

Theorem 0.8.0.1. (Viehweg [Vie77]) The quotient of a smooth complex scheme by a finite group has rational singularities.

Note that, since for X convex the moduli spaces M 0,r pX, dq have quotient singularities [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF], this implies that for X a generalized flag variety the moduli spaces M 0,r pX, dq have rational singularities.

Let H be a complex linear algebraic group. Recall a variety X is called unirational if there exists a dominant map P N 99K X, and rationally connected if there exists an irreducible rational curve joining two general points in X. Note that since P N is rationally connected, a unirational variety is rationally connected.

Theorem 0.8.0.2. (Buch-Mihalcea [START_REF] Anders | Quantum K-theory of Grassmannians[END_REF], Theorem 3.1.) Let f : X Ñ Y be a surjective equivariant morphism of projective varieties with rational singularities equipped with an H-action. Assume that the general fiber of f is rationally connected. Then f ˚rO X s " rO Y s P K H pY q.

Proof. Buch and Mihalcea prove in [START_REF] Anders | Quantum K-theory of Grassmannians[END_REF] that this statement is satisfied if a desingularization  : Ä X y Ñ X y of the fiber of f over y general in Y satisfying H i p Ä X y , O Å Xy q " 0 for all i °0. Since X y is rationally connected, and Ä X y is birational to X y , Ä X y is also rationally connected. Hence Ä X y is a smooth rationally connected variety, hence according to [START_REF] Debarre | Higher-dimensional algebraic geometry[END_REF], Ä X y satisfies H i p Ä X y , O Å Xy q " 0 for all i °0.

Note that for X a full flag variety, Brion gives a nice proof of the rational singularities of Schubert varieties in [START_REF] Brion | Lectures on the geometry of flag varieties[END_REF].

Theorem 0.8.0.3. (Ramanathan,[START_REF] Ramanathan | Schubert varieties are arithmetically Cohen-Macaulay[END_REF]) Schubert varieties have rational singularities.

Chapter 1

Gromov-Witten varieties of partial flag varieties 1.1 Introduction

Removing subspaces from a partial flag gives another partial flag composed of fewer subspaces. This induces a forgetful map fi : X Ñ X 1 between the corresponding flag varieties. The main result of this chapter is that, for a degree large enough, the variety associated with rational curves of a given degree in X having their marked points within Schubert varieties X i of X is a rationally connected fibration over its image, which is the variety associated with rational curves of a given degree in X having their marked points within Schubert varieties fipX i q of X 1 . These subvarieties of the space of genus 0 stable maps to a homogeneous space are called Gromov-Witten varieties. The Euler characteristics of the structure sheaf of these varieties are quantum K-theoretical invariants [START_REF] Givental | On the WDVV equation in quantum K-theory[END_REF]. When these varieties are zero dimensional, their number of points are Gromov-Witten invariants. Our result in particular implies the equality between (non equivariant) correlators proved in Chapter 2, providing an alternative proof-cf. chapter 2 Section 2.4.

Definitions.

Let n °0. Let I " ti 1 , . . . , i m u be a collection of integers satisfying 0 † i 1 † i 2 † ¨¨¨ † i m † n. Denote by F l I the flag variety parametrizing m-tuples of vector spaces ordered by inclusion

V i1 Ä V i2 ¨¨¨Ä V im Ä C n (1.1) such that dimV i k " i k .
Let B be a Borel subgroup of GL n . Note that F l I is the homogeneous variety F l I » GL n {P I , where P I is the parabolic subgroup of GL n satisfying B Ä P I with associated reductive subgroup L I » ± m`1 p"1 GLpi p ´ip´1 q, where we set i 0 " 0 and i m`1 " n. Let J " tj 1 , . . . , j M u be a collection of integers satisfying 0 † j 1 † ¨¨¨ † j M † n containing I, i.e. for each k there exists an element s such that j s " i k . Consider an integer p such that 1 § p § M . We denote by J •p the collection J •p :" ti 1 , . . . , i p 1 , j p , . . . , j M u, where p 1 is the largest integer such that i p 1 † j p . Forgetting all vector spaces included in V jp except those of the form V i k yields a forgetful morphism

fi I{J•p : F l J•p Ñ F l I .
In the same way, for 1 § p § M , we name J §p :" tj 1 , . . . , j p , i p 1 `1 . . . , i m u, where p 1 is the smallest integer such that j p † i p 1 . We name fi I{J §p : F l J §p Ñ F l I the morphism induced by forgetting all vector spaces containing V jp except those of the form V i k .

Let W " N GLn pT q{T » S n be the Weyl group of the algebraic group GL n . We denote by F l J puq " BuP J {P J the Schubert variety of F l J associated with u P W . Note that the image of a Schubert variety F l J puq by the projection fi I{J is the Schubert variety fi I{J pF l J puqq " F l I puq.

Let r °0. The group H 2 pF l I , Zq is a free abelian group generated by classes of Schubert varieties of dimension 1. Denote by EpF l I q Ä H 2 pF l I , Zq the semi-group of e ective classes of curves. Note that H 2 pGrpk, nq, Zq » Z, and the class of a curve on the Grassmannian Grpk, nq is given by the degree of its image in P p n k q by the Plücker embedding. The class d " pd 1 , . . . , d m q P EpF l I q of a curve C in F l I is determined by m non-negative integers d 1 , d 2 ,. . . , d m , where d k is the degree of the projection of C to the Grassmannian Grpi k , nq. For a class d in EpF l I q, we denote by M 0,r pF l I , dq the moduli space parametrizing stable maps C Ñ F l I from genus 0 curves C with r marked points x i P C to F l I representing the class d. We name ev : M 0,r pF l I , dq Ñ pF l I q r the evaluation morphism sending the point p associated with a map f p : C Ñ F l I to the image ± r i"1 f p px I q of the r marked points x i P C. For any class d in EpF l J q » N M , the morphism fi I{J : F l J Ñ F l I induces a morphism I{J ˆev : M 0,r pF l J , dq Ñ M 0,r pF l I , pfi I{J q ˚dq ˆpFl I q r pF l J q r .

(1.2)

Let 1 § k § M such that the integer j k is not in I. We denote by

J •k ˆev : M 0,r pF l J •k , pfi I{J •k q ˚dq Ñ M 0,r pF l J •k`1 , pfi I{J •k`1 q ˚dq ˆpFl J •k`1 q r pF l J •k q r
the morphism induced by forgetting the vector space V j k and by evaluating the r marked points. Let 1 § µ § k § M such that the element j k is not in I. We denote by J µ §k the collection ti 1 , . . . , i p , j µ , . . . , j k , i p 1 , . . . i m u, where p is the largest element such that i p † j µ and p 1 is the smallest element such that i p 1 °jk . We denote by J µ §k ˆev : M 0,r pF l J µ §k , pfi J µ §k {J q ˚dq Ñ M 0,r pF l J µ §k´1 , pfi J µ §k´1 {J q ˚dq ˆpFl J µ §k´1 q r pF l J µ §k q r the morphism induced by forgetting the vector space V j k from F l µ §k and evaluating the r marked points.

Definition 1.1.1.1. Consider a collection tI, J, du of a set I " ti 1 , . . . , i m u of m positive integers

satisfying 0 † i 1 † ¨¨¨ † i m † n, a set J " tj 1 , . . . , j M u of M positive integers satisfying 0 † j 1 † ¨¨¨ † j M † n
such that I is contained in J, and a set d " pd 1 , . . . , d M q in N M » EpF l J q. We denote by d 1 " pd 1 1 , . . . , d 1 m q P N m » EpF l I q the pushforward of d by the forgetful map fi I{J . Let 1 § µ § M such that j µ is contained in I. We call the collection tI, J, du stabilized with respect to µ if the following conditions are satisfied. First, for all elements 1 § k † µ such that the integer j k is not contained in I, the two following conditions are satisfied.

'

The morphism J •k ˆev is surjective.

(1.3)

' Let k 1 be the largest integer such that i k 1 † j k . For any 1 § p † k 1 we have

d k • P`d 1 p ´d1 p´1 ˘{pi p ´ip´1 q T j k . (1.4)
Futhermore, for all µ § k § M such that the integer j k is not contained in I the two following symmetric conditions are satisfied.

' The morphism J µ §k ˆev is surjective.

' Let k 1 be the smallest integer such that i k 1 °jk . For k 1 † p § m we have

d k • P`d 1 p ´d1 p`1 ˘{pi p`1 ´ip q T pn ´jk q.
A collection tI, J, du will be called stabilized if there exists an integer µ such that the collection tI, J, du is stabilized with respect to µ. A collection tI, J, du will be called stabilized with respect to M if for all 1 § k § M such that j k is not contained in I the conditions (1.3) and (1.4) are satisfied.

Observe that when µ " 1, the conditions (1.3) and (1.4) are empty. For simplicity we have set d 1 0 " d 1 m`1 " 0 " i 0 and i m`1 " n. We have denoted by rqs the ceiling of q P Q. We will see in Section 1.6 some conditions to ensure that a collection is stabilized. The following interesting cases yield examples of stabilized collections (cf. Subsection 1.6.1).

1. Suppose I " ti 1 , . . . , i m u is a collection of integers satisfying 1 † i 1 † ¨¨¨ † i m † n and J " tj 1 , i 1 , . . . , i m u satisfies 0 † j 1 † i 1 . Note that then F l J Ñ F l I is the morphism forgetting the first vector space. Then if d 1 • j 1 pr `1 `td 2 {i 1 uq the collection pI, J, pd 1 , d 2 , . . . d m`1 qq is stabilized.

2. Suppose J " tku and I " H; then F l J is the Grassmannian Grpk, nq and F l I is the point SpecpCq. Then if d • rk or d • rpn ´kq the collection pI, J, dq is stabilized.

Note that the dependency on the integer r in the examples here above comes from the condition asking the surjectivity of the following morphisms.

J µ §k ˆev : M 0,r pF l J µ §k , pfi J µ §k {J q ˚dq Ñ M 0,r pF l J µ §k´1 , pfi J µ §k´1 {J q ˚dq ˆpFl J µ §k´1 q r pF l J µ §k q r Definition 1.1.1.2. Let d be an element in EpF l I q, let u 1 , . . . , u r be elements in W . We call Gromov-Witten variety of degree d associated with u 1 , . . . , u r the subvariety

W g,d F l I ;u1,...,ur :" ev ´1 1 pg 1 ¨F l I pu 1 qq X ¨¨¨X ev ´1 r pg r ¨F l I pu r qq of M 0,r pF l I , dq.
Note that for d in EpF l I q, u 1 , . . . , u r in W , W g,d F l I ;u1,...,ur is the variety associated with degree d rational curves on X having their i-th marked point within g i ¨F l I pu i q. Denote by 1 the identity in W » S n ; note that F l I p1q :" P I {P I a point in F l I . Furthermore, note that W g,d F l I ;1,...,1 is the variety associated with degree d rational curves on X whose i-th marked point is the point g i P I {P I P F l I .

Remark 1.1.1.1. According to the proof of Kleiman's transversality theorem [START_REF] Steven L Kleiman | The transversality of a general translate[END_REF] for a general g P GL r n the fiber product overlineM 0,r pF l I , dq pFl I q r pg 1 ¨F l I pu 1 q ˆ¨¨¨ˆg r ¨F l I pu r qq is a reduced equidimensional scheme. Hence for g general in GL r n , the natural map M 0,r pF l I , dq pFl I q r pg 1 ¨F l I pu 1 q ˆ¨¨¨ˆg r ¨F l I pu r qq Ñ M 0,r pF l I , dq Å W g,d F l I ;u1,...,ur is a closed immersion surjecting into W g,d F l I ;u1,...,ur , and we can identify the two schemes. 

Main results.

Y 1 " Y Ñ Y 2 Ñ ¨¨¨Ñ Y n " Z such that, for all 1 § i † n, Y i is a unirational fibration over Y i`1 . Theorem 1.1.2.1. Consider a set J " tj 1 , . . . , j M u of M integers satisfying 0 † j 1 † ¨¨¨ † j M † n, a set I " ti 1 , . . . , i m u of m integers satisfying 0 † i 1 † ¨¨¨ † i m † n and a degree d " pd 1 , . . . , d M q P EpF l J q » N M
such that the collection tI, J, du is stabilized in the sense of Definition 1.1.1.1.

i) For x general in pF l J q r , the fiber ev ´1pxq Ä M 0,r pF l J , dq is a tower of unirational fibrations over the fiber ev ´1pfi I{J pxqq Ä M 0,r pF l I , pfi I{J q ˚dq.

ii) Let u 1 , . . . , u r be elements in W . For g general in GL r n the Gromov-Witten variety W g,d F l J ;u1,...,ur is a rationally connected fibration over the Gromov-Witten variety W g,pfi I{J q˚d F l I ;u1,...,ur . Let J be a subsrt of I. Denote by W J :" N L J pT q{T the Weyl group associated with P J . Denote by p : W {W J Ñ W {W I the natural projection. For u in W {W I , the inverse image p ´1puq is the set of elements u ¨s, where s is an element in W I {W J . Note that the Schubert variety F L I puq :" BuP I {P I is independent of the choice of a representative in W of the element u.

Corollary 1.1.2.1. Let d " pd 1 , . . . , d m q be a degree in EpF l I q » N m and u 1 , . . . , u r be elements in W such that the following Gromov-Witten invariant is non-zero:

n I,d u1,...,ur :" ª M0,rpF l I ,dq ev 1 rF l I pu 1 qs Y ¨¨¨Y ev r rF l I pu r qs ‰ 0.
Let J and I be sets of increasing positive integers and d be a degree in EpF l J q such that the collection tI, J, du is stabilized in the sense of Definition 1.1.1.1. Then for any elements v i P p ´1pu i q, for g general in GL r n the Gromov-Witten variety W g,d F l J ;v1,...,vr has n I,d u1,...,ur connected components, which are irreducible rationally connected varieties.

Previous research.

Gromov-Witten varieties of P 1 and P 2 that are not rationally connected varieties have been found in [START_REF] Iritani | Reconstruction and convergence in quantum k-theory via di erence equations[END_REF]. For P 2 , the locus of M 0,3d´2 pP 2 , dq corresponding to curves of degree d going through 3d ´2 points is a curve whose genus depends on the degree d, of positive genus as soon as d °2 [START_REF] Pandharipande | The canonical class of M 0,n pP r , dq and enumerative geometry[END_REF]. A recursive procedure computing the geometric genus of 1-dimensional Gromov-Witten varieties of P r was also given in [START_REF] Ran | On the variety of rational space curves[END_REF]. High degree Gromov-Witten varieties have been shown to be rational varieties for Grassmannians by Buch and Milhacea [START_REF] Anders | Quantum K-theory of Grassmannians[END_REF], and more generally for cominuscule varieties by Chaput and Perrin [CP11a]. This chapter is organized as follows. We first prove in Section 1.2 that, when the general fiber of the morphism I{J ˆev defined by (1.2) is rationally connected, Gromov-Witten varieties of F l I are rationally connected fibrations over Gromov-Witten varieties of F l J obtained by projection. We then recall in Section 1.3 results on flags of vector bundles over P 1 . Section 1.4 is dedicated to the study of the general fiber of the map I{J ˆev. We observe that when the flag variety F l I is obtained from F l J by forgetting one vector space, the general fiber of this map is a unirational variety. This result is central in the derivation of Theorem 1.1.2.1 presented in Section 1.5. Finally, we study the surjectivity of the morphism I{J ˆev in Section 1.6.

Conventions

Schemes considered in the subsections 1.2.2 and 1.2.3 will be defined over an algebraically closed field. Schemes considered in all other Sections will be defined over C.

We say a property (P) holds for a general point in a variety X if (P) is true for points belonging to a dense open subset of X. We say the general fiber of a morphism f : X Ñ Y satisfies pP q if f ´1pxq satisfies pP q for points x in a dense open subset of Y . Let G be an integral algebraic group scheme, let Y be an integral scheme endowed with a transitive G-action, let Z be a subscheme of Y , and M Ñ Y be a morphism of integral schemes. We say a property (P) holds for a subscheme M ˆY g ¨Z of M in general position in M if (P) holds for element g of G belonging to a dense open subset of G.

We consider here that a variety is not necessarily irreducible; i.e. a variety is a reduced, finite type scheme defined over an algebraically closed field.

Restriction to a general subvariety

Let X » G{P and X 1 » G{P 1 be (generalized) flag varieties associated with parabolic subgroups P Ä P 1 of a semi-simple linear algebraic group G. We observe here that some properties of Gromov-Witten varieties of X and X 1 can be deduced from properties of the general fiber of the morphism ˆev : M 0,r pX, dq Ñ M 0,r pX 1 , fi ˚dq ˆpX 1 q r X r -cf. Proposition 1.2.4.1. This is one of the key ingredients in the derivation of Theorem 1.2.2.1 we provide in Section 1.5.

More precisely, the property we prove here is the following. Let G be a semi-simple algebraic group, let Z 1 be a projective variety with a transitive G-action, let Z be a projective variety over Z 1 such that the morphism Z Ñ Z 1 is G-equivariant. Let : M Ñ M 1 be a morphism of projective varieties over Z 1 . Let M Ñ Z be a morphism of projective varieties, let X be a subvariety of Z. Then for g general in G the irreducibility (respectively rational connectedness) of the general fiber of the restriction map |gX : M g¨X Ñ M 1 g¨X induced by is implied by the irreducibility (respectively rational connectedness) of the general fiber of the morphism

M Ñ M 1 ˆZ1 Z-cf. Proposition 1.2.3.1.
1.2.1 Rationally connected, unirational and rational schemes. We call a scheme X rationally connected if there is an irreducible rational curve joining two general points on X. Note that a rationally connected scheme is irreducible. By contradiction suppose a scheme Y has several irreducible components Y i and is rationally connected. We can then find two points y 1 and y 2 that each belongs to an irreducible component Y i and is not contained in any other irreducible component of Y such that there is an irreducible curve C joining the points y 1 and y 2 . Then the irreducible curve C belongs to both Y 1 and Y 2 and is not contained in the intersection of the two irreducible components, which is a contradiction.

We call a variety Y rational if there exists N °0 such that Y is birational to P N . A variety Y is called unirational if there exists a dominant rational map P N 99K Y . Note that since P N is rationally connected, rational and unirational varieties are rationally connected.

Composition of rationally connected fibrations.

We call a a morphism of schemes f : Y Ñ S a rationally connected fibration if

• Each irreducible component of Y dominates a di erent irreducible component of S; • Y dominates S;
• The general fiber of f is rationally connected.

We call a scheme Y a rationally connected fibration over a scheme S if there exists a rationally connected fibration Y Ñ S. Definition 1.2.2.1. Let C be a subcategory of the category of schemes Sch. We call a property pP q stable under composition in C if for every morphisms

Y f › Ñ S and S 1 f 1 › Ñ S in C satisfying pP q, the composition f 1 ˝f : Y Ñ S also satisfies pP q.
Types of morphisms of schemes stable under composition are well known; for example flat, smooth or etale morphisms are stable under composition-cf. for example Stacks Project 62.4. We focus here on composing rationally connected fibrations. Grabber-Harris-Starr's Theorem on rational connectedness implies that the composition of rationally connected fibrations is itself a rationally connected fibrationcf. Theorem 1.2.2.1. This property will be a key ingredient in the derivation of Theorem 1.1.2.1 proposed in Section 1.5. Theorem 1.2.2.1. Let C be the category of irreducible projective schemes.

(1) The property "the general fiber is Irreducible" is stable under composition in C.

(2) Let pP q be a property such that, for all morphisms Y Ñ S in C, the following statement is verified:

if S and the general fiber of the morphism Y Ñ S satisfy pP q, then Y satisfies pP q.

Then the property "the general fiber satisfies pP q and is irreducible" is stable under composition in C.

(3) The property "the general fiber is rationally connected" is stable under composition in the category of irreducible complex projective schemes.

(4) Let Y , Z and S be projective complex varieties such that Y is a rationally connected fibration over Z and Z is a rationally connected fibration over S. Then Y is a rationally connected fibration over S. Lemma 1.2.2.1. Let f : Y Ñ Z be a dominant morphism of schemes, of finite presentation, where Y is an equidimensional noetherian scheme. Let V be a dense open subset of Y . Then the intersection of the general fiber of f with V is dense in the fiber.

Proof. First, since the question is local on Z, we can suppose Z irreducible. Since Y is a noetherian scheme, Y zV can be written as the union of a finite number of schemes, i.e. Y zV " Y N i"1 F i , where the F i are closed subschemes of Y , of dimension smaller than the pure dimension of Y . Denote by f |Fi the restriction of f to one of the boundary subschemes F i . If f |Fi does not dominate Z, then the preimage under f |Fi of a general point in Z is empty. On the other side, if f |Fi dominates Z, then the preimage under f |Fi of a general point in Z is a scheme of pure dimension smaller than dimY ´dimZ. Indeed, since f is a morphism of finite presentation, Chevalley's constructibility theorem implies f pF i q contains an open subset of Z; hence the subset of points x in f pF i q such that the fiber

f ´1 |Fi pxq is of expected dimension is an open subset V of Z, verifying dimf ´1 |Fi pxq " dimF i ´dimZ for all points x in V . Thus, since Y is equidimensional, the general fiber Y 0 of f is a scheme of pure dimension dimY ´dimZ, whose intersection with F i is a scheme of dimension smaller than dimY ´dimZ; this implies the intersection Y 0 X V is dense in Y 0 .
Let h : M Ñ M 1 and f : M Ñ Z be morphisms of schemes. We denote by h ˆf : M Ñ M 1 ˆZ the morphism induced by h and f .

Proposition 1.2.2.1. Let M h › Ñ M 1
and M f › Ñ Z be surjective morphisms of finite presentation of integral noetherian schemes.

Then, for z general in Z:

i) The image by h of any irreducible component of f ´1pzq has dimension equal to dimph ˆf qpM q dimZ; ii) Each irreducible component of f ´1pzq dominates one of the irreducible components of hpf ´1pzqq.

Proof. i)

Consider a dense open subset U of phˆf qpM q such that the fiber phˆf q ´1puq is a scheme of pure dimension dimM ´dimph ˆf qpM q for all u in U . Consider a point z general in Z, and an irreducible component Z 0 of f ´1pzq. Denote by Z 0 the variety Z 0 minus the intersection of Z 0 with other irreducible components of f ´1pzq. We first compute the dimension of the fiber h ´1phpµqq X Z 0 , where µ is a point in ph ˆf q ´1pU q X Z 0 , before computing dimhpZ 0 q. Computation of dimh ´1phpµqq X Z 0 . First, we have:

h ´1phpµqq X f ´1pzq " ph ˆf q ´1 phpµq, zq " ph ˆf q ´1ph ˆf qpµq.
Since ph ˆf qpµq lies in U , this implies h ´1phpµqq X f ´1pzq is a scheme of pure dimension dimM dimph ˆf qpM q. Hence the intersection of the irreducible variety Z 0 with h ´1phpµqq is a scheme of pure dimension dimM ´dimph ˆf qpM q. Indeed, the intersection of the open subvariety Z 0 of f ´1pzq with h ´1phpµqq is a non empty open subvariety of h ´1phpµqq X Z 0 disconnected from the other pure dimensional irreducible components of h ´1phpµqq X f ´1pzq. Hence h ´1phpµqq X Z 0 is a scheme of pure dimension dimM ´dimph ˆf qpM q.

Computation of dimhpZ 0 q. Note that, since z is general in Z, according to Lemma 1.2.2.1, ph ˆf q ´1pU q X f ´1pzq is dense in f ´1pzq; hence ph ˆf q ´1pU q X Z 0 is a dense open subset of Z 0 . Consider a point ‹ general in hpZ 0 q; since ‹ is general and h `ph ˆf q ´1pU q X Z 0 ˘is dense in the irreducible variety hpZ 0 q, ‹ belongs to h `ph ˆf q ´1pU q X Z 0 ˘, and we have:

dimZ 0 ´dimhpZ 0 q " dimh ´1p‹q X Z 0 " dimM ´dimph ˆf qpM q
where the first equality is deduced from the general position of ‹ in hpZ 0 q, and the second equality holds since ‹ is in h `ph ˆf q ´1pU q X Z 0 ˘. This implies:

dimhpZ 0 q " dimZ 0 ´dimM `dimph ˆf qpM q " dimf ´1pzq ´dimM `dimph ˆf qpM q,
where the second equality holds since z is general in Z and thus f ´1pzq is equidimensional.

ii) By contradiction, if an irreducible component Z 0 of f ´1pzq has an image strictly contained in h `f ´1pzq ˘, then:

dimhpZ 0 q † dimh `f ´1pzq ˘" dimph ˆf qpM q ´dimZ,
which would contradict iq. 

v in V the intersection Y 1 z X Y v is equal to Y 2 z X Y v ,
Y z X Y V is irreducible, hence Y z is irreducible. (2) Let Y f1 › Ñ S and S f2
› Ñ S 1 be morphisms in C satisfying pP q and whose general fiber is irreducible. Since we consider properties of the general fiber of Y Ñ S 1 , we can assume that Y dominates S. Let U be a dense open subset of S such that the fiber of f 1 over a point in U satisfies pP q. For x general in S 1 , the following properties are satisfied: (e) Y x satisfies pP q.

Note that proving property peq for x general in S 1 is our goal here. Property paq holds since x is general in S 1 . According to Lemma 1.2.2.1 and since x is general in S 1 , property pbq holds. Property pcq holds since x is general in S 1 and according to p1q the general fiber of Y Ñ S 1 is irreducible. pdq is a direct consequence of pbq, the fact that the fiber of Y x Ñ S x over a point y in S x is isomorphic to the fiber Y y " Y ˆS1 tyu, and the fact that Y y satisfies pP q for y in U . Finally peq is implied by paq, pcq and pdq.

(3) Note that, according to Grabber-Harris-Starr's theorem on rational connectedness [START_REF] Graber | Families of rationally connected varieties[END_REF], if the general fiber of a morphism Y Ñ S of irreducible complex projective varieties is rationally connected, and the basis S is rationally connected, then Y is rationally connected. Hence, according to 2., the property "the general fiber is irreducible and rationally connected" is stable under composition in C.

(4) Let Y , Z and S be projective complex schemes, where Y is a rationally connected fibration over Z, and Z is a rationally connected fibration over S. Denote by f : Y Ñ Z and g : Z Ñ S the associated morphisms. First, note that since Y dominates Z and Z dominates S, Y dominates S. Furthermore, each irreducible component S i of S is dominated by exactly one irreducible component Z i of Z, which itself is dominated by exactly one irreducible component Y i of Y ; hence there is a one-to-one correspondence between irreducible components of Y and S. Finally, since by hypothesis the general fibers of Y i Ñ Z i and Z i Ñ S i are rationally connected, according to p3q the general fiber of Y i Ñ S i is a rationally connected variety. Hence Y is a rationally connected fibration over S.

Restriction to a general subvariety.

We study here the restriction of a morphism to a general subvariety. A typical application of the proposition below will be the study of the image of a Gromov-Witten variety. More precisely, consider fi : X Ñ X 1 the projection of a flag variety onto another flag variety, and denote by : M 0,r pX, dq Ñ M 0,r pX 1 , pfiq ˚dq the morphism induced by fi between moduli spaces of genus zero stable maps, where d is the class of a curve in X. We thus obtain the commutative diagram:

M 0,r pX, dq X r M 0,r pX 1 , pfiq ˚dq pX 1 q r fi r
to which we will apply the following proposition.

Proposition 1.2.3.1. Let G be an integral group scheme, let f :

M Ñ Z, f 1 : M 1 Ñ Z 1
, fi : Z Ñ Z 1 be projective morphisms, of integral noetherian schemes, where Z and Z 1 admit a transitive G-action, and the morphism fi is G-equivariant. Let Y be an integral subscheme of Z. Suppose there exists a proper morphism h : M Ñ M 1 such that the following diagram commutes :

M Z M 1 Z 1 h f fi f 1 Furthermore, suppose the morphism h ˆf : M Ñ M 1 ˆZ1 Z induced by the morphisms M h › Ñ M 1 and M f › Ñ Z is surjective.
Consider a point g general in G. We call W g :" f ´1pgY q, W 1 g :" ph ˆf qpW g q, and W 2 g :" hpW g q. We denote by

p 1 : M 1 ˆZ1 Z Ñ M 1 the first projection. Then: i) W 1 g " M 1
ˆZ1 gY and W 2 g " pf 1 q ´1pgfipY qq;

ii) W g , W 1 g and W 2 g are pure dimensional schemes;

iii) The restriction of h ˆf to any irreducible component of

W g is dominant onto an irreducible component of W 1 g ; iv) The restriction of p 1 to any irreducible component of W 1 g is dominant onto an irreducible com- ponent of W 2 g .
Let us introduce the following notation. Let f : Y Ñ Z and Ï : Y 1 Ñ Z be morphisms of schemes, where an integral group scheme G acts on Z. We denote by Y ˆZ pgY 1 q the fiber product induced by the morphism Ï g : Y 1

Ñ Z given by y Ñ g ¨Ïpyq, i.e. Y ˆZ pgY 1 q is the fiber product associated with the following commutative diagram:

Y ˆZ pgY 1 q Y 1 Y Z Ïg f
Notice that, if G acts on Y 1 and Ï is G-equivariant, the fiber product Y ˆZ pgY 1 q will simply be the usual fiber product associated with the following commutative diagram: Then, for a point g general in G:

Y ˆZ pgY 1 q gY 1 Y Z Ï f Lemma 1.2.3.1. Let Y Ñ Z be a morphism
i) The scheme V ˆZ pgY 1 q is a dense subset of Y ˆZ pgY 1 q;

ii) The scheme pgV q ˆZ Y 1 is a dense subset of pgY q ˆZ Y 1 .

Proof. i) Since Y is a noetherian scheme, Y zV can be written as the union of a finite number of irreducible schemes, i.e. Y zV " Y N i"1 F i , where the F i are irreducible closed subschemes of Y , of dimension smaller than the pure dimension of Y . Consider an element g general in G. Suppose the scheme Y ˆZ pgY 1 q is not empty. Then, according to Kleiman's transversality theorem [START_REF] Steven L Kleiman | The transversality of a general translate[END_REF], it has pure dimension given by dimY `dimY 1 ´dimZ 1 . Furthermore, for 1 § i § N , the scheme F i ˆZ1 pgY 1 q is either empty or of pure dimension smaller than dimY `dimY

1 ´dimZ 1 . Hence V ˆZ1 pgY 1 q " pY z Y N i"1 F i q ˆZ1 pgY 1 q is dense in Y ˆZ pgY 1 q.
ii) Consider a point g general in G. Then, according to part iq., the scheme V ˆZ pg ´1Y 1 q is a dense subset of Y ˆZ pg ´1Y 1 q. Furthermore, notice that we have an isomorphism pgY q ˆZ Y 1 Ñ Y ˆZ pg ´1Y 1 q. Indeed, if we denote by g ´1 : Z Ñ Z the isomorphism of Z induced by the action of g ´1, and by g : Z Ñ Z the isomorphism of Z induced by the action of g, the following commutative diagram

Y 1 Y Z Z Ï Ï g ´1 fg f g ´1 g
implies that any morphism T Ñ pgY q ˆZ Y 1 factors through Y ˆZ pg ´1Y 1 q, and reciprocally any morphism T Ñ Y ˆZ pg ´1Y 1 q factors through pgY q ˆZ Y 1 . Finally, in the same tautological way, notice we have an isomorphism pgV qˆZ

Y 1 » V ˆZ pg ´1Y 1 q. Proof of Proposition 1.2.3.1. i) First, since, by assumption, h ˆf : M Ñ M 1 ˆZ1 Z is surjective, W 1
g " ph ˆf q `f ´1pgY q ˘" ph ˆf qpM q X pM 1 ˆZ1 pgY qq is equal to M 1 ˆZ1 pgY q. Furthermore, hpf ´1pgY qq is equal to the image of ph ˆf qpf ´1pgY qq by the first projection p 1 , where p 1 is defined by the following commutative diagram:

M ph ˆf qpM q " M 1 ˆZ1 Z Z M 1 Z 1 h hˆf p1 fi f 1
Meanwhile, pf 1 q ´1pfipgY qq is equal to the image of M 1 ˆZ1 pgY q by the first projection p 1 , hence the equality between hpf ´1pgY qq and pf 1 q ´1pfipgY qq. Finally, since fi is G-equivariant, this yields: W 2 g " pf 1 q ´1pgfipY qq.

ii) According to Kleiman's transversality theorem, since g is general in G, the schemes W g "

f ´1pgY q, W 1 g " M 1
ˆZ1 gY and W 2 g " pf 1 q ´1pgfipY qq are either empty or pure dimensional schemes.

iii) We consider the following commutative diagram:

M Z M 1 ˆZ1 Z Z hˆf f
Denote by U a dense open subset of ph ˆf qpM q such that, for all z in U , ph ˆf q ´1pzq has pure dimension equal to dimM ´dimph ˆf qpM q. Fix an irreducible component W 0 of W g . Denote by W 0 the variety W 0 minus the intersection of W 0 with other irreducible components o W g . We first compute the dimension of ph ˆf q ´1pxq X W 0 , where x is a point in ph ˆf qpW 0 q X U , before computing the dimension of ph ˆf qpW 0 q. Computation of dimph ˆf qq ´1pxq X W 0 . First, the fiber of the restriction ph ˆf q |Wg of the morphism h ˆf to W g is isomorphic to the fiber of h ˆf . Indeed, for pm, zq in ph ˆf qpW g q " M 1 ˆZ1 gY , the fiber ph ˆf q |Wg ´1pm, zq is equal to phˆf q ´1pm, zqXW g " h ´1pmqXf ´1pzqXW g , where z lies in gY . Meanwhile, we observe f ´1pzq X W g " f ´1pzq X f ´1pgY q " f ´1pzq, hence ph ˆf q |Wg ´1pmq is equal to ph ˆf q ´1pmq. Since x lies in U , this implies ph ˆf q ´1pxq X W g is a scheme of pure dimension dimM ´dimph f qpM q. Hence the intersection of the irreducible variety W 0 with ph ˆf q ´1pxq is a scheme of pure dimension dimM ´dimph ˆf qpM q. Indeed, the intersection of the open subvariety W 0 of W g with ph ˆf q ´1pxq is a non empty open subvariety of ph ˆf q ´1pxq XW 0 disconnected from the other pure dimensional irreducible components of ph ˆf q ´1pxq X W g . Hence ph ˆf q ´1pxq X W 0 is a scheme of pure dimension dimM ´dimph ˆf qpM q. Computation of dimph ˆf qpW 0 q. Note that, since g is general in G, according to Lemma 1.2.3.1, ph ˆf q ´1pU q X W g is dense in W g ; hence ph ˆf q ´1pU q X W 0 is a dense open subset of W 0 . Consider a general point ‹ in phˆf qpW 0 q; since ‹ is general and phˆf q `ph ˆf q ´1pU q X W 0 ȋs dense in the irreducible variety ph ˆf qpW 0 q, ‹ belongs to ph ˆf q `ph ˆf q ´1pU q X W 0 ˘, and we have:

dimW 0 ´dimph ˆf qpW 0 q " dimph ˆf q ´1p‹q X W 0 " dimM ´dimph ˆf qpM q
where the first equality is deduced from the general position of ‹ in ph ˆf qpW 0 q, and the second equality holds since ‹ is in ph ˆf q `ph ˆf q ´1pU q X W 0 ˘. This implies: dimph ˆf qpW 0 q " dimW 0 ´dimM `dimph ˆf qpM q " dimW g ´dimM `dimph ˆf qpM q, where the second equality holds since W g is equidimensional. Since ph ˆf qpW 0 q is obviously contained in W 1 g " phˆf qpW g q, and this dimension does not depend on the irreducible component of W g considered, this implies the irreducible variety ph ˆf qpW 0 q is an irreducible component of W 1 g , which has pure dimension equal to dimW g ´dimM `dimph ˆf qpM q. iv) First, denote by fi |Y : Y Ñ fipY q the restriction of the morphism fi to Y . Fix a dense open subset U of fipY q such that, for all x in U , the fiber fi ´1 |Y pxq is a scheme of pure dimension equal to dimY ´dimfipY q.

We consider the following commutative diagram:

M 1 ˆZ1 Z Z M 1 Z 1 p1 p2 fi f 1
where p 1 and p 2 are respectively the first and second projection morphisms. Consider a general element g in G. We denote by p 1 1 the restriction of the morphism p 1 to W 1 g " M 1 ˆZ1 gY . We want to prove here that the image of any irreducible component of W 1 g by p 1 1 is an irreducible component of W 2 g " pf 1 q ´1pgfipY qq. In order to do this, we study the dimension of the fiber pp 1 1 q ´1pmq of p 1 1 at a point m in W 2 g . We will use the following observations. Lemma 1.2.3.2. Let f 1 : M 1 Ñ Z 1 and fi : Z Ñ Z 1 be projective morphisms of integral noetherian schemes. Let Y be an integral subscheme of Z. Suppose there exists an integral group scheme G such that G acts transitively on Z, and fi is G-equivariant. Consider the following commutative diagram:

M 1 ˆZ1 Z Z M 1 Z 1 p1 p2 fi f 1
where p 1 and p 2 are respectively the first and second projection morphisms.

(a) Consider an element g in G. The fiber p ´1 1 pmqXp 2 ´1pgY q of the restriction of the morphism p 1 to pp 2 q ´1pgY q is isomorphic to fi ´1 |Y pg ´1f 1 pmqq, where we denote by fi |Y : Y Ñ fipY q the restriction of the morphism fi to Y ; (b) Consider a dense open subset U of Y . Then, for an element g general in G, p 2 ´1pgU q is dense in p 2 ´1pgY q.

Proof of Lemma 1.2.3.2. (a) Denote by h 1 the restriction of the morphism p 1 to p 2 ´1pgY q.

The fiber ph 1 q ´1pmq is equal to tmu ˆZ1 pgY q, which is isomorphic to fi ´1pf 1 pmqq X pgY q. Furthermore, since fi is G-equivariant, the morphism y Ñ g ´1y induces an isomorphism between fi ´1pf 1 pmqq X pgY q and fi ´1pg ´1f 1 pmqq X pY q. Finally, notice fi ´1pg ´1f 1 pmqq X pY q is equal to fi

´1 |Y pg ´1f 1 pmqq. (b) According to Lemma 1.2.3.1 iiq, since g is general in G, the scheme M 1 ˆZ1 pgU q is dense in M 1
ˆZ1 pgY q. Since the morphism fi is G-equivariant, we have here the following equalities: p 2 ´1pgY q " M 1 ˆZ1 pgY q and p 2 ´1pgU q " M 1 ˆZ1 pgU q. Hence the scheme p 2 ´1pgU q is dense in p 2 ´1pgY q.

Fix an irreducible component W 1 0 of p ´1 2 pgY q " M 1 ˆZ1 gY . For µ general in W 1 0 , we have:

dimW 1 0 ´dimp 1 pW 1 0 q " dimp ´1 1 pp 1 pµqq X W 1 0 " dimfi ´1 |Y `g´1 ¨pf 1 ˝p1 qpµq " dimY ´dimfipY q,
where the first equality holds since the image of a dense open subset of W 1 0 by p 1 is a dense open subset of p 1 pW 1 0 q, the second equality is given by Lemma 1.2.3.2 paq, and the last equality holds since pf 1 ˝p1 qpµq is in g ¨fipU q for µ general in W 1 0 . Indeed, according to Lemma 1.2.3.2 pbq, p ´1 2 pgfi ´1pU qq is dense in p ´1 2 pgY q, hence p ´1 2 pgfi ´1pU qq X W 1 0 is dense in W 1 0 , hence a point in pp 2 ˝fiq ´1pgU q " pf 1 ˝p1 q ´1pgU q is general in W 1 0 . Finally, notice that, since g is general in G, any irreducible component W 1 0 of W 1 g will be of dimension equal to dimM 1 `dimY ´dimZ 1 , hence :

dimp 1 pW 1 0 q " dimM 1 `dimfipY q ´dimZ 1 ,
which is equal to the pure dimension of W 2 g " pf 1 q ´1pgfipY qq since g is general in G. Since p 1 pW 1 0 q is obviously contained in W 2 g , this implies that W 1 0 dominates an irreducible component of W 2 g .

Application to Gromov-Witten varieties.

Consider a semi-simple algebraic group G, a maximal torus T of G, a Borel subgroup B and parabolic subgroups P and P 1 satisfying T Ä B Ä P Ä P 1 . Denote by X :" G{P and X 1 :" G{P 1 the corresponding homogeneous varieties, and by fi : X " G{P Ñ X 1 " G{P 1 the natural projection. For an element u in the Weyl group W :" N G pT q{T , denote by Xpuq :" BuP {P the associated Schubert variety. Note that fipXpuqq " X 1 puq. Let r • 0, u 1 , . . . , u r be elements in W , and d be a degree in the semi-group EpG{P q of e ective classes of curves in H 2 pG{P, Zq. Note that the morphism fi : G{P Ñ G{P 1 induces a morphism: ˆev : M 0,r pG{P, dq Ñ M 0,r pG{P 1 , fi ˚dq ˆpG{P 1 q r pG{P q r , where we denote by : M 0,r pG{P, dq Ñ M 0,r pG{P 1 , fi ˚dq the morphism induced by fi. For an element g " pg 1 , . . . , g r q in G r , we will consider the following commutative diagram:

M 0,r pG{P, dq pG{P q r ± i g i Xpu i q M 0,r pG{P 1 , fi ˚dq pG{P 1 q r ± i g i X 1 pu i q ev fi
This commutative diagram allows us to define the following fiber products:

W g :" M 0,r pX, dq ˆXr π i g i Xpu i q ãÑ M 0,r pX, dq W 1 g :" M 0,r pX 1 , fi ˚dq ˆpX 1 q r π i g i Xpu i q ãÑ M 0,r pX 1 , fi ˚dq ˆXr W 2 g :" M 0,r pX 1 , fi ˚dq ˆpX 1 q r π i g i X 1 pu i q ãÑ M 0,r pX 1 , fi ˚dq
Note that for g " pg 1 , . . . , g r q general in G r , the scheme W g " W g,d u1,...,ur is the variety parametrizing genus zero, degree d, stable maps to X sending their i-th marked point within g i ¨Xpu i q, and W 2 g " W g,fi˚d u1,...,ur is the variety parametrizing genus zero, degree pfi ˚qd stable maps sending their i-th marked point within g i ¨X1 pu i q. Indeed, according to the proof of Kleiman's transversality theorem [START_REF] Steven L Kleiman | The transversality of a general translate[END_REF], for a point g " pg 1 , . . . , g r q general in G r , the natural maps W g Ñ M 0,r pG{P, dq and W 2 g Ñ M 0,r pG{P 1 , dq are both closed immersions. This allows us to identify the schemes W g and W 2 g with their images in the space of stable maps. Proposition 1.2.4.1. Suppose the morphism ˆev is surjective, and suppose its general fiber is connected.

1. For g general in G r , p ˆevqpW g q " W 1 g and pW g q " W 2 g ; 2. For g general in G r , each irreducible component of the Gromov-Witten variety W g surjects into a di erent irreducible component of pW g q, i.e. there is a 1-to-1 correspondence between irreducible components of W g and irreducible components of W 2 g ;

3. Suppose the general fiber of ˆev is rationally connected. Then for g general in G r , the Gromov-Witten variety W g is a rationally connected fibration over both W 1 g and W 2 g , in the sense of Definition 1.1.2.1. Lemma 1.2.4.1. Let S be a normal scheme, and S f › Ñ Y be a surjective morphism. If the general fiber of f is connected, then each irreducible component of f pSq is dominated by exactly one irreducible component of S.

Proof. First, observe that, since the general fiber of f is connected, two connected components of S cannot dominate the same irreducible component of f pSq. Indeed, if we consider a dense open subset U of f pSq such that the fiber f ´1psq is connected for all s in U , two connected components of S dominating the same irreducible component of f pSq would have a point in common in their image and in U ; these two connected components hence would be connected within S. Moreover, since S is normal, its connected components are irreducible. This implies all irreducible components of f pSq are dominated by exactly one irreducible component of S.

For u in W , we denote by xpuq :" uP {P the T -fixed point in Xpuq " BuP {P associated with u.

Lemma 1.2.4.2. Let u P W . i) Let f : Z Ñ Xpuq be a B-equivariant morphism. Then there exists a surjective map f ´1pBuP {P q Ñ f ´1pxpuqq.
ii) Denote by fi |u the restriction of the projection fi to Xpuq. The general fiber of the surjective morphism fi |u : Xpuq Ñ X 1 puq is an irreducible unirational variety.

Proof. This is implied by [START_REF] Chaput | Finiteness of cominuscule quantum K-theory[END_REF], Proposition 2.3. We include here a proof for completeness. We denote by U " BuP {P the open B-orbit of the T -fixed point xpuq.

i) Denote by s : U Ñ B a section of B Ñ BuP {P , i.e. a morphism such that for all elements x in U , spxq ¨xpuq " x. Such a section exists according to [CMBP13], Proposition 2.2. Note that for y in f ´1pU q, the element pspf pyqqq ´1 ¨y lies in f ´1pxpuqq. Indeed, since f is B-equivariant, we have f ppspf pyqqq ´1 ¨yq " pspf pyqqq ´1 ¨f pyq " xpuq. We obtain a morphism:

f ´1pU q Ñ f ´1pxpuqq ˆU y Ñ ppspf pyqqq ´1 ¨y; f pyqq
which is an isomorphism; indeed, the morphism pp, uq Ñ spuq ¨p defines its inverse. Composition with the first projection induces a surjective morphism f ´1pU q Ñ f ´1pxpuqq.

ii) According to iq, there exists a surjective map fi ´1 |u pU q Ñ fi ´1 |u pxpuqq. Hence, since fi ´1 |u pU q is a dense open subvariety of the irreducible rational variety Xpuq, the fiber fi ´1 |u pxpuqq is an irreducible unirational variety. Furthermore, since fi |u is B-equivariant, the fiber fi ´1 |u pxq at a point x in U is isomorphic to fi ´1 |u pxpuqq. Indeed, if x " b ¨xpuq, where b lies in B, the morphism y Ñ b ´1 ¨y defines an isomorphism between fi ´1pxq X Xpuq and fi ´1pxpuqq X Xpuq, since Xpuq is B-stable. Hence the general fiber of fi |u is isomorphic to fi ´1 |u pxpuqq, which is an irreducible unirational variety.

We name p ˆevq |Wg : W g Ñ W 1 g the restriction of the morphism ˆev to the Gromov-Witten variety W g . Lemma 1.2.4.3. If the general fiber of ˆev satisfies a property pP q, then for g general in G r the general fiber of p ˆevq |Wg also satisfies pP q.

Proof. Name M :" M 0,r pX, dq. Let U be a dense open subset of p ˆevqpM q such that the fiber of ˆev over a point in U satisfies pP q. Let pm, xq be a point in U , where m lies in M 1 :" M 0,r pX 1 , fi ˚dq and x lies in X r . Note that, if pm, xq is in the image p ˆevqpW g q, then the fiber over pm, xq of p ˆevq |Wg satisfies pP q. Indeed, we have:

p ˆevq ´1 |Wg pm, xq " pM m ˆXr txuq ˆXr pg π i Xpu i qq " M m ˆXr ˜txu ˆXr pg π i Xpu i qq " M m ˆXr txu " p ˆevq ´1pm, xq,
where the third equality holds since pm, xq is in p ˆevqpW g q, and hence x lies in evpW g q Ä g ± i Xpu i q. Since pm, xq lies in U , the fiber p ˆevq ´1pm, xq satisfies pP q; hence the fiber p ˆevq ´1 |Wg pm, xq satisfies pP q for all pm, xq in p ˆevqpW g q X U Finally, note that for g general in G r , according to Lemma 1.2.3.1 W g X p ˆevq ´1pU q is dense in W g . Hence p ˆevqpW g q X U is dense in p ˆevqpW g q.

Proof of Proposition 1.2.4.1.

1. Since the morphism ˆev is surjective, this follows directly from Proposition 1.2.3.1 iq, applied to h "

:

M " M 0,r pX, dq Ñ M 1 " M 0,r pX 1 , fi ˚dq, f " ev : M 0,r pX, dq Ñ Z " X r , f 1 " ev : M 0,r pX 1 , fi ˚dq Ñ Z 1 " pX 1 q r ,
and from considering the integral group G r .

2. We proceed in two steps; we first prove that each irreducible component of W g surjects into a di erent irreducible component of W 1 g , before proving the correspondence with irreducible components of W 2 g . Correspondence between irreducible components of W g and W 1 g . First, note that, since the space M 0,r pX, dq and Schubert varieties are normal [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF][START_REF] Ramanathan | Schubert varieties are arithmetically Cohen-Macaulay[END_REF], according to Kleiman's transversality theorem W g " ev ´1pg 1 Xpu 1 q ˆ. . . g r Xpu r qq is normal for pg 1 , . . . , g r q general in G r . Furthermore, since the general fiber of ˆev si connected, according to Lemma 1.2.4.3 for g general in G r the general fiber of the restriction p ˆevq |Wg is connected. Hence according to Lemma 1.2.4.1 all irreducible components of p ˆevqpW g q are dominated by exactly one irreducible component of W g .

We then only have to ensure that there is no irreducible component of W g whose image is a strict closed subset of an irreducible component of p ˆevqpW g q " W 1 g . Proposition 1.2.3.1 iiiq, tells us that, since W g is in general position, the image by of any of its irreducible components is an irreducible component of W 1 g , hence the 1-to-1 correspondence.

Correspondence between irreducible components of W 1

g and W 2 g . According to Lemma 1.2.4.2 the general fiber of the restriction fi u :

± i Xpu i q Ñ ± i X 1
pu i q of fi r to Xpu 1 qˆ¨¨¨ˆXpu r q is irreducible, hence there exists an open subvariety U of X 1 pu 1 q ˆ¨¨¨ˆX 1 pu r q such that the fiber of fi at x in U is irreducible. Consider the projections p 1 and p 2 defined by the following Cartesian diagram:

W 1 g ± i g i Xpu i q W 2 g ± i g i X 1 pu i q p1 p2 fiu ev
Note that the fiber p ´1 1 pmq at a point m in p ´1 2 pgfi ´1 u pU qq is irreducible. Indeed, we have: p ´1 1 pmq " tmu ˆpX 1 q r pg 1 Xpu 1 q ˆ. . . g r Xpu r qq » fi ´1 u pevpmqq » g ¨fi´1 u pg ´1evpmqq, which is irreducible since evpmq lies in gfi ´1 u pU q. Furthermore, according to Lemma 1.2.3.2 bq,

for g general in G r , W 1 g X p ´1 2 pgfi ´1 u pU qq is a dense open subvariety of W 1 g " p ´1 2 p ± i g i Xpu i qq.
Hence the general fiber of p 1 is irreducible. Furthermore, note that, since M 0,r pX 1 , fi ˚dq and Schubert varieties are normal [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF][START_REF] Ramanathan | Schubert varieties are arithmetically Cohen-Macaulay[END_REF], according to Kleiman's transversality theorem

W 1
g " M 0,r pX 1 , fi ˚dq ˆpX 1 q r pg 1 Xpu 1 q ˆ. . . g r Xpu r qq is normal for g " pg 1 , . . . , g r q general in G r . According to Lemma 1.2.4.1, all irreducible components of p 1 pW 1 g q " W 2 g are thus dominated by exactly one irreducible component of W 1 g . Finally, Proposition 1.2.3.1 ivq, tells us that, since W 1 g is in general position, the image by p 1 of any of its irreducible components is an irreducible component of W 2 g , hence the 1-to-1 correspondence.

To sum up, each irreducible component of W g surjects into a di erent irreducible component of

W 1
g , and each irreducible component of W 1 g surjects into a di erent irreducible component of W 2 g . Furthermore, W g surjects onto W 2 g . There thus is a 1-to-1 correspondence between irreducible components of W g and irreducible components of W 2 g . 3. The only point left to prove is that the general fiber of W g Ñ W 2

g is an irreducible rationally connected variety. According to Lemma 1.2.4.2 there exists a dense open subset U of ± i X 1 pu i q such that the fiber of fi |u :

± i Xpu i q Ñ ± i X 1
pu i q over a point in U is an irreducible rationally connected variety. For g general in G r , the following properties are satisfied:

(a) `M0,r pX 1 , fi ˚dq ˘g¨U is dense in W 2 g " `M0,r pX 1 , fi ˚dq ˘g¨± i X 1 puiq ; (b) The general fiber of W 1 g Ñ W 2 g is rationally connected; (c) The general fiber of W g Ñ W 1 g is rationally connected; (d) The general fiber of W g Ñ W 2
g is rationally connected. Note that proving pdq is our goal here. paq holds according to Lemma 1.2.3.1. Note that the fiber of the projection p 1 : W 1 g Ñ W 2 g over a point m in `M0,r pX 1 , fi ˚dq ˘g¨U is rationally connected; indeed, it is isomorphic to g ¨pfi |u q ´1pg ´1 ¨evpmqq, where g ´1 ¨evpmq lies in U . Hence, since according to paq `M0,r pX 1 , fi ˚dq ˘g¨U is dense in W 2 g " `M0,r pX 1 , fi ˚dq ˘g¨± i X 1 puiq , pbq holds. pcq holds according to Lemma 1.2.4.3. Finally, pdq is deduced from pbq, pcq and Theorem 1.2.2.1 p3q.

Balanced flags of vector bundles

Let X be a flag variety. We describe here the flag of vector bundles associated with a general point in M 0,r pX, dq for a degree d high enough. All definitions and results presented in this part are contained in I. Coskun's description of rational curves on a flag variety [START_REF] Coskun | The quantum cohomology of flag varieties and the periodicity of the Schubert structure constants[END_REF], or easily deduced from it.

Notations. Fix two positive integers

m † n . Let I " ti 1 , . . . , i m u be a set of integers satisfying 0 † i 1 † ¨¨¨ † i m † n.
Recall F l I is the m-step flag variety parametrizing m-tuples pV i1 , . . . , V im q of vector subspaces of C n , where the subspaces are ordered by inclusion 0

Ä V i1 Ä ¨¨¨Ä V im Ä C n , and V i k is of dimension i k . The class d " pd 1 , . . . , d m q of a curve C in X is determined by non-negative integers d 1 , d 2 ,. . . , d m ,
where d i is the Plücker degree of the projection of C to the Grassmannian Grpn i , nq. A point p in M 0,r pX, dq is associated with a morphism f p : P 1 Ñ X. By the functorial definition of flag varieties, the morphism f p : P 1 Ñ X is uniquely determined by the data of a flag of vector bundles over P 1 :

F p " E 1 Ä ¨¨¨Ä E m Ä O 'n P 1 ,
where rankE k " i k and degE k " ´dk . Note that we have f p S i » E i , where S i is the i-th tautological vector bundle over X.

Admissible sets of sequences. Recall

I " ti 1 , . . . , i m u is a set of m integers 0 † i 1 † ¨¨¨ † i m † n.
Definition 1.3.2.1. Consider a set d " pd 1 , . . . , d m q of m non negative integers. A pI, dq-admissible set of sequences is a set A ' " tpa 1,j q i1 j"1 , pa 2,j q i2 j"1 , . . . , pa m,j q im j"1 u of m sequences of non-negative integers of lengths i 1 , . . . ,i m , respectively, such that:

1. 0 § a k,j § a k,j`1 for every k and every 1 § j § i k ´1; 2. a k`1,j § a k,j for every 1 § k § m ´1 and j § i k ; 3. ∞ i k j"1 a k,j " d k for every k. Definition 1.3.2.2. A pI, dq-admissible set of sequences A ' " tpa k,j qu is balanced if A ' minimizes the function ÿ 1 §k §m ÿ 1 §l †p §ni pa k,p ´ak,l q
among the pI, dq-admissible sets of sequences.

Note that, according to [START_REF] Coskun | The quantum cohomology of flag varieties and the periodicity of the Schubert structure constants[END_REF] (see the proof of Lemma 2.1), for any set d " pd 1 , . . . , d m q in N m there exists a unique balanced pI, dq-admissible set of sequences pa k,j q, which can be constructed by iteration on k in the following way.

' First, set a 1,j " rd 1 {n 1 s´' 1,j where ' 1,j is in t0, 1u and is chosen in such a way that ∞ n1 j"1 a 1,j " d 1 and a 1,j § a 1,j`1 and rqs denote the ceiling of q P Q;

' Let 1 † k § m. Suppose all a k´1,j have been constructed. Denote by r k the largest index such that the element a k´1,r k satisfies a k´1,r k § d k {n k . Set:

a k,j " a k´1,j for 1 § j § r k . (1.5)
Denote by R k the largest index °rk such that the element a k´1,R k satisfies a k´1,R k § pd k ∞r k j"1 a k´1,j q{pi k ´rk q. Repeat the process replacing r k with R k until all elements a k´1,j of index larger than r k are larger than pd k ´∞r k j"1 a k´1,j q{pi k ´rk q. Then set:

@r k † j § i k , a k,j " S pd k ´∞r k j"1 a k´1,j q pa k ´rk q W ´'k,j , (1.6)
where ' k,j is in t0, 1u and is chosen in such a way that ∞ i k j"1 a k,j " d k and a k,j § a k,j`1 . For simplicity, we set d 0 :" 0 and n 0 :" 0.

Proposition 1.3.2.1. Let d " pd 1 , . . . , d m q be a set of nonnegative integers. Let 1 † k § m such that: @ p † k, d k • i k R d p ´dp´1 i p ´ip´1 V . (1.7)
Then the balanced pI, dq-admissible set of sequences tpa 1,j q i1 j"1 , . . . , pa m,j q im j"1 u satisfies a k,j " a k´1,j for 1 § j § i k´1 .

Proof. By iteration on s † k, we prove that for 1 § s † k all elements a s,j satisfy a s,j § d k {n k . According to (1.5) this will yield the expected result. First, for s " 1, since

d k • n k rd 1 {i 1 s, a 1,j § d k {i k . Now let 1 § s † k,
and suppose a s´1,j § d k {i k for all 1 § j § n s´1 . Note that, if r s † i s´1 , then there exists elements a s´1,j larger than pd s ´∞rs j"1 a s´1,j q{pi s ´rs q, where we use the notations of (1.6); hence all elements a s,j are smaller than an element a s´1,s 1 for some s 1 . Hence all elements a s,j then satisfy a s,j § d k {n k . On the other hand, if r s " i s´1 , then according to (1.6):

@i s´1 † j § i s , a s,j § » - - - ´ds ´∞is´1 j"1 a s´1,j pi s ´is´1 q fi § R pd s ´ds´1 q pi s ´is´1 q V § d k n k .

Balanced flag bundles.

The partial flag variety F l I comes equipped with m tautological bundles S 1 , . . . , S m . We describe here the pullback f p S i by a morphism f p : P 1 Ñ X associated with a point p general in M 0,r pX, dq.

Let d " pd 1 , . . . , d m q be an e ective class of curve in H 2 pF l I , Zq, p be a point in M 0,r pX, dq, and f p : P 1 Ñ X be its associated morphism. The pullback f p S s of the s-th tautological bundle S s by f p is a vector bundle of degree d s and rank i s . According to Grothendieck's decomposition of vector bundles, f p S s is isomorphic to a direct sum of line bundles

f p S s » O P 1 p´a s,1 q ' ¨¨¨' O P 1 p´a s,is q,
where ∞ is´ks j"1 a s,j " d s . Suppose, for a given s, the a s,j are ordered in increasing order. Then, since, for all 1 † s § m, f p S s´1 is a subbundle of f p S s , we have: a s´1,j • a s,j . Hence the sequence pa s,j q forms a pI, dq-admissible set of sequence in the sense of Definition 1.3.2.1. We call a s,j the admissible set of sequences associated with p. Proposition 1.3.3.1.

i) The admissible set of sequences associated with a general point in M 0,r pF l I , dq is balanced in the sense of Definition 1.3.2.2;

ii) Suppose @ p † k, d k • n k Q dp´dp´1 ip´ip´1

U

. Denote by F p " E 1 ãÑ ¨¨¨ãÑ E m ãÑ O 'n P 1 the flag of vector bundles associated with a general element p in M 0,r pF l I , dq. Then E k splits into

E k » E k´1 ' ∞ i k s"n k´1 `1 O P 1 p´a k,s q. Proof. i) Cf. proof of [Cos10], Proposition 2.3. ii) Let F p " E 1 Ä ¨¨¨Ä E m Ä O 'n
P 1 be the flag of vector bundles associated with a general element p in M 0,r pX, dq. Then, according to iq, the admissible set of sequences associated with F p is balanced. Since

d k satisfies @ p † k, d k • i k Q dp´dp´1 ip´ip´1

U

, we have according to Proposition 1.3.2.1 the following sequence:

0 ÑE k´1 » O P 1 p´a k´1,1 q ' ¨¨¨' O P 1 p´a k´1,n k´1 q Ñ E k » O P 1 p´a k´1,1 q ' ¨¨¨' O P 1 p´a k´1,i k´1 q ' O P 1 p´a k,i k´1 `1q ' ¨¨¨' O P 1 p´a k,n k q
which splits. Indeed, for all j, l verifying j § l and j § n k´1 † l, we have: a k,j " a k´1,j and a k,j § a k,l , hence a k´1,j § a k,l for any l °ik´1 . Hence according to Lemma 1.3.3.1 the morphisms O P 1 p´a k´1,j q Ñ E k factor through '

n k´1 b"1 O P 1 p´a k,b q ãÑ E k . Finally, since the morphism E k´1 Ñ E k is injective, E k´1 is a rank i k´1 subvector bundle of ' i k´1 b"1 O P 1 p´a k,b q; hence E k´1 » ' n k´1 b"1 O P 1 p´a k,b q. Lemma 1.3.3.1. Let d 1 § ¨¨¨ § d r and d 1 1 " d 1 § ¨¨¨ § d 1 r " d r § d 1 r`1 § ¨¨¨ § d 1
r`p be sequences of non negative integers. Then the following sequence splits.

0 ÑE " O P 1 p´d 1 q ' ¨¨¨' O P 1 p´d r q Ñ F " O P 1 p´d 1 q ' ¨¨¨' O P 1 p´d r q ' O P 1 p´d 1 r`1 q ' ¨¨¨' O P 1 p´d 1 r`p q
Proof. Let k be the largest index such that d k † d r . Note that for i °k all the integers d 1 i are greater than d k`1 or equal to d k`1 and d k`1 " d r °dk . Hence all integers d 1 i are greater than d k for i °k. Hence the induced morphism E 1 :" O P 1 p´d 1 q ' ¨¨¨' O P 1 p´d k q Ñ F factors through a closed immersion O P 1 p´d 1 q ' ¨¨¨' O P 1 p´d k q ãÑ F . Denote by r 1 the largest index such that d 1 r 1 " d r . Note that r 1

• r. Let us now consider the induced exact sequence

0 ÑE{E 1 » O P 1 p´d k`1 q ' ¨¨¨' O P 1 p´d r q » O P 1 p´d k q 'r´k Ñ F {E 1 » O P 1 p´d 1 k`1 q ' ¨¨¨' O P 1 p´d 1 r`p q » O P 1 p´d r q 'pr 1 ´kq ' O P 1 p´d r 1 `1q ' ¨¨¨' O P 1 p´d 1 r`p q. Since for any i °r1 the integer d 1 i is greater than d k , the injective morphism E{E 1 Ñ F {E 1 factors through E{E 1 » O P 1 p´d k q 'r´k ãÑ O P 1 p´d r q 'pr 1 ´kq ãÑ F {E 1
Finally observe that the morphism E{E 1 » O P 1 p´d k q 'r´k ãÑ O P 1 p´d r q 'pr 1 ´kq factors through

E{E 1 » O P 1 p´d k q 'r´k ãÑ O P 1 p´d k q 'r´k ' O P 1 p´d k q 'r 1 ´r ãÑ F {E 1 .

Forgetting one vector space

We denote by fi p k : X Ñ X p k the morphism forgetting the k-th vector space. Let d " pd 1 , . . . , d m q be a degree in EpXq. In this section, our goal is to prove the following results.

Proposition 1.4.0.1. Suppose @ p † k, d k • n k Q dp´dp´1 np´np´1
U . Then the general fiber of p k ˆev : M 0,r pX, dq Ñ ` p k ˆev ˘pM 0,r pX, dqq Ä M 0,r pX p k , pfi p k q ˚dq ˆpX p k q r X r is a unirational variety.

Corollary 1.4.0.1.

Suppose @p † k, d k • n k Q dp´dp´1 np´np´1
U and the map p k ˆev is surjective. Then for x general in X r , the general fiber of the map M 0,r pX, dq Q ev ´1pxq Ñ ev ´1pfi p k pxqq P M 0,r pX p k , pfi p k q ˚dq is a unirational variety.

We will assume in this section

@ p † k, d k • n k Q dp´dp´1 np´np´1

U

. Let pp, xq be a point in p p k êvqpM 0,r pX, dqq, where p is in M 0,r pX p k , pfi p k q ˚dq, and x " px 1 , . . . , x r q is in X r . Denote by p,x the fiber of p k ˆev at pp, xq, i.e. : p,x :" ´1 p k ppq ˆXr x. In order to prove the irreducibility and unirationality of p,x , we define an auxilliary variety Z p,x , which dominates p,x when pp, xq is general in the image p p k ˆevqpM 0,r pX, dqq. 

Notations.

: X Ñ X p k induces a morphism p k : M 0,r pX, dq Ñ M 0,r pX p k , pfi p k q ˚dq. Denote by fi k : X Ñ Grpn k , nq the morphism sending a m-step flag t0u Ä V 1 Ä ¨¨¨Ä V k Ä ¨¨¨Ä V m to the k-th linear subspace V k .
This morphism induces a morphism M 0,r pX, dq Ñ M 0,r pGrpn k , nq, d k q Ñ M 0,3 pGrpn k , nq, d k q into the space of genus zero stable maps with three marked points to the Grassmannian Grpn k , nq. We obtain the following commutative diagram:

M 0,r pX, dq M 0,3 pX, dq M 0,3 pGrpn k , nq, d k q X r Grpn k , nq r M 0,r pX p k , pfi p k q ˚dq X p k r ev r p k fi p k ˆ¨¨¨ˆfi p k fi k ˆ¨¨¨ˆfi k
Furthermore, for p in M 0,r pX, dq, we will denote by:

f p : P 1 Ñ X
the associated morphism. By the functorial definition of flag varieties, f p is uniquely determined by the data of a flag of vector bundles over P 1 :

F p " E 1 Ä ¨¨¨Ä E m Ä O 'n P 1 ,
where rankE i " n i and degE i " ´di . Note that we have f p S i » E i , where S i is the i-th tautological vector bundle over X. Finally, for a point p in P 1 we will denote by pE i q p the fiber at p of the vector bundle E i , which has a natural inclusion pE i q p Ä C n induced by the morphism E i ãÑ O 'n P 1 .

A preliminary result. Denote by

F p " E 1 Ä ¨¨¨Ä E k´1 Ä E k`1 Ä ¨¨¨Ä E m Ä O 'n P 1
the flag of vector bundles over P 1 associated with the point p in M 0,r pX p k , pfi p k q ˚dq. Lemma 1.4.2.1.

i) Consider a dense open subset U of M 0,r pX, dq. Then, for pp, xq general in p p k ˆevqpM 0,r pX, dqq, p,x X U is a dense open subset of p,x ;

ii) For pp, xq general in p p k ˆevqpM 0,r pX, dqq, there exists a dense open subset U of p,x such that, for all q in U , the flag of vector bundles F q associated with q is balanced. Hence there exists an increasing set of integers a n k´1 `1 § ¨¨¨ § a n k such that for all q in U , the flag F q is of the form: 

F q " E 1 Ä ¨¨¨Ä E k´1 Ä E k » E k´1 ' n k i"n k´1 `1 O P 1 p´a i q Ä E k`1 Ä ¨¨¨Ä E m Ä O 'n P 1 . Proof. i) Since
@ p † k, d k • n k Q dp´dp´1 np´np´1
U , the flag of vector bundles associated with a point in p,x X U splits at E k´1 .

Definition of Z p,x .

Our goal here is to construct a rational variety Z p,x dominating p,x . First, consider the integers a n k´1 `1, . . . , a n k defined in Lemma 1.4.2.1 iiq and the following vector space V :" Homp'

n k i"n k´1 `1O P 1 p´a i q, O 'n P 1 q.
The flag variety X is naturally embedded in X p k ˆGrpn k , nq by Plücker-embedding X p k ˆGrpn k , nq in a product of projective spaces, and cutting out X from this product by considering the relations given by the inclusions of flags. Note that, if we denote by rf p : P 1 Ñ X p k , tp 1 , . . . , p r us the stable map associated with p, points q in p,x X M 0,r pX, dq correspond to stable maps rf q : P 1 Ñ X, tp 1 , . . . , p r us satisfying f q pp i q " x i and such that the following diagram is commutative:

P 1 X X p k ˆGrpn k , nq X p k fq fp
Furthermore, by the functorial definition of the Grassmannian, elements u in V corresponding to an injective morphism

Õ u : E k´1 ' i O P 1 p´a i q Ñ O 'n P 1
define a morphism f u : P 1 Ñ Grpn k , nq, where we denote by Õ u the morphism induced by the inclusion E k´1 Ä O 'n P 1 and the morphism O P 1 p´a i q Ñ O 'n P 1 associated with a point u in V . Conversally, any injective morphism E k´1 ' i O P 1 p´a i q Ñ O 'n P 1 can, up to automorphisms of E k´1 , be obtained this way. Points in p,x are thus associated with elements u in V such that:

1. Õ u : E k´1 ' n k i"n k´1 `1 O P 1 p´a i q Ñ O 'n
P 1 is an injective morphism of vector bundles;

2. For all 1 § i § r, pF u q pi " fi k px i q;

3. f p ˆfu : P 1 Ñ X p k ˆGrpn k , nq factors through X Ñ X p k ˆGrpn k , nq, where we denote by pF u q pi the fiber of the vector bundle F u :" Õ u pE k´1 ' i O P 1 p´a i qq Ä O 'n P 1 at the point p i P P 1 , and by f u the morphism associated with the flag of vector bundles F u Ä O 'n P 1 by functorial definition of the Grassmannian. Note that for u in V the morphism Õ u : E k´1 ' i O P 1 p´a i q Ñ O 'n P 1 might not be an injective morphism, and the fiber pF u q pi might be of dimension less than n k . In order to define a closed subset of V , we define Z p,x as the subset of elements u in V such that: @ i P t1, . . . , ru, pF u q pi Ä fi k px i q, where fi k px i q P Grpn k , nq;

(1.8) @p P P 1 , pF u q p Ä pE k`1 q p , (1.9)

where we denote by fi k px i q the vector subspace of C n of dimension n k associated with the point fi k px i q in Grpn k , nq, and by pE k`1 q p the fiber of the vector bundle E k`1 at p. Note that, when Õ u defines a morphism P 1 Ñ Grpn k , nq, Equations (1.8) and (1.9) are equivalent to Equations 2. and 3. here above. Indeed, by construction of Õ u , pF u q p satisfies pE k´1 q p Ä pF u q p for all p in P 1 , hence if u satisfies Equation (1.9), u also verifies: @p P P 1 , pE 1 q p Ä ¨¨¨Ä pE k´1 q p Ä pF u q p Ä pE k`1 q p Ä ¨¨¨Ä pE m q p Ä C n , hence Õ u defines a morphism to the flag variety X.

1.4.4 Irreducibility and rationality of Z p,x . We denote by F µ the subsheaf of O 'r P 1 associated with an element µ in V » HompE k´1 ' i O P 1 p´a i q, O 'r P 1 q, and by pF µ q p the fiber over a point p P P 1 of F µ . We consider the usual construction of P 1 by gluing two a ne schemes together. Let U 1 :" SpecpCrssq, U 2 :" SpecpCrtsq, U 12 :" SpecpCrs, s ´1sq " U 1 zt0u, and U 21 :" SpecpCrt, t ´1sq " U 2 zt0u. Then P 1 can be obtained by gluing U 1 and U 2 together along U 12 » U 21 , where we consider the following isomorphism:

Crs, s ´1s » Crt, t ´1s, s Ñ t ´1.
For d P N, we view O P 1 p´dq as the line bundle satisfying O P 1 p´dq |Ui » U i ˆA1 for i " 1, 2, obtained by identifying U 12 ˆA1 " Specrs, s ´1s ˆA1 and U 21 " Specrt, t ´1s ˆA1 via the following isomorphism: ps, vq Ñ ps ´1, s d vq.

Equivalently we endow O P 1 p´dq with two trivializations on U 1 and U 2 respectively. We consider here the natural bijection V » ' j pC aj rxsq n , associating to a section in pC aj rxsq n the morphism O P 1 p´a j q Ñ O 'n P 1 described by:

SpecCrss ˆA1 Ñ O 'n P 1
ps, vq Ñ ps, P j psqvq SpecCrs ´1s ˆA1 Ñ O 'n P 1 ps ´1, vq Ñ ps ´1, s ´aj P j psqvq

We may hence view a point µ in Z p,x as a set of n k ´nk´1 vectors P j with coe cients in C aj rxs. In order to simplify notations, we keep the dependence of the polynomials P j on the point µ in V associated with them implicit. Lemma 1.4.4.1.

1. There exist N P N, p 1 , . . . , p N P P 1 , such that Z p,x is the subspace of elements µ in V satisfying the following equations: @i P t1, . . . , ru, pF µ q pi Ä fi k px i q, where fi k px i q P Grpn k , nq; @ÿ P t1, . . . , Nu, pF µ q pÿ Ä pE k`1 q pÿ ; 2. Consider a point p in P 1

. We denote by V ppE k`1 q p q the subset of elements µ in V satisfying pE k`1 q p Å pF µ q p . Then V ppE k`1 q p q is a linear subspace of V ; 3. Z p,x is a linear subspace of V .

Proof.

1. By definition, the vectors P j with coe cients in C aj rxs associated with µ P V satisfy:

@p P P 1 , pF µ q p » xpE k´1 q p , pP n k´1 `1ppq, . . . , P n k ppqqy,
where we denote by F µ the subvector bundle of O 'r P 1 associated with µ. Denote by Q j the n k`1 homogeneous polynomials associated with the inclusion of vector bundles E k`1 Ä O 'r P 1 . Then there exist N °0, and points p 1 , . . . , p N in P 1 such that the following statements are equivalent: @ p P P 1 , pF µ q p Ä pE k`1 q p ô@ p P P 1 , xP n k´1 `1ppq, . . . , P n k ppqy Ä xQ 1 ppq, . . . , Q n k`1 ppqy

(1.10) ô@ÿ P t1, . . . , Nu, xP n k´1 `1pp ÿ q, . . . , P n k pp ÿ qy Ä xQ 1 pp ÿ q, . . . , Q n k`1 pp ÿ qy Indeed, µ satisfies the homogeneous equations (1.10) i the polynomials P j associated with µ satisfy (1.10) at N di erent values of p ÿ " rx ÿ , y ÿ s for N large enough. Notice N only depends on the degrees d k and d k`1 , which are fixed here.

From now on, we fix such an N , and fix points pp r`1 , . . . , p N q general in P 1 . Equation (1.9) is thus equivalent to : @ÿ P t1, . . . , Nu, pF µ q pÿ Ä pE k`1 q pi (1.11) 2. We set p :" rx : ys. We will denote by xE, F y the vector subspace of C n generated by any two vector subspaces E and F of C n . The vector subspace pE k`1 q p is described by linear equations. Hence:

V ppE k`1 q p q " tµ " pP i,j q P V | xpE k´1 q p , pF µ q p y Ä pE k`1 q p u " µ " pP i,j q P V | xpE k´1 q p , P n k´1 `1ppq, . . . , P n k ppqy Ä pE k`1 q p ( is the intersection of linear equations on the coe cients of P j , n k´1 `1 § j § n k .

3. Fix i in t1 . . . , Nu. Denote by fi p k px i q the image of x i in the projected flag variety X p k . The subset V pi of elements µ in V satisfying pF µ q pi Ä fi k px i q can be described by: V pi : " tµ " pP i,j q P V | xpF µ q pi y Ä fi k px i qu " µ " pP i,j q P V | xP n k´1 `1pp i q, . . . , P n k pp i qy Ä fi k px i q ( .

Since the vector space fi k px i q is defined by linear equations, V pi is defined by linear equations on the coe cients of the polynomials pP i,j q; V pi is a linear subspace of V .

Finally, according to 1. the variety Z p,x is the intersection of the linear spaces V pi , for 1 § i § r, with the linear spaces V ppE k`1 q pÿ q, for r † ÿ § N . Hence Z p,x is a linear subspace of V .

According to Lemma 1.4.4.1, Z p,x is a linear subspace of V , and hence is an irreducible rational variety.

1.4.5 Image of Z p,x 99K M 0,r pX, dq. First, denote by V inj the subset of elements of V corresponding to injective morphisms E k´1 ' i O P 1 p´a i q ãÑ O 'r P 1 . The complementary of V inj is described by a set of polynomial equations. Indeed, for u " pP j q n k´1 `1 §j §n k in V the associated morphism is injective i xpE k´1 q p , P n k´1 `1ppq, . . . , P n k ppqy is a vector space of dimension n k for all p P P 1 . Hence V inj is an open subset of V . Call

Z inj p,x :" Z p,x X V inj .
By the functorial definition of flag varieties, each element u in Z inj p,x defines a degree d morphism f u : P 1 Ñ X, which by construction of Z p,x is associated to a point in p,x . Furthermore, by construction of Z p,x , any point q in p,x whose associated flag of vector bundles is balanced is the image pF u q of an element u in Z inj p,x . Hence, according to Lemma 1.4.2.1 iiq, for pp, xq general in p p k ˆevqpM 0,r pX, dqq, the variety Z inj p,x dominates p,x .

Algebraicity of

Z inj p,x Ñ p,x . Denote by  : Z inj p,x
ˆP1 Ñ X the function sending an element pz, pq in Z inj p,x ˆP1 to the point of X associated with pF z q p . According to Lemma 1.6.1.1 (Appendix A), Â defines a morphism OE : Z inj p,x Ñ M 0,r pX, dq, which dominates p,x according to here above. 1.4.8 Proof of Corollary 1.4.0.1. For an element x in X r , we denote by x the restriction of the forgetful map M 0,r pX, dq Ñ M 0,r pX p k , pfi p k q ˚dq to ev ´1pxq. First, note that since the map p k ˆev is surjective, according to Proposition 1.2.4.1 1. for x general in X r we have pev ´1pxqq " ev ´1pfi p k pxqq. Hence for x general in X r , the map x : ev ´1pxq Ñ ev ´1pfi p k pxqq is surjective. According to Proposition 1.4.0.1, there exists a dense open subset U of p p k ˆevqpM 0,r pX, dqq " M 0,r pX p k , pfi p k q ˚dq ˆXp k r X r such that for all elements pm, xq in U , the fiber p ˆevq ´1pm, xq " ´1pmq X ev ´1pxq is a unirational variety. Denote by p 1 : M 0,r pX p k , pfi p k q ˚dq ˆXp k r X r Ñ M 0,r pX p k , pfi p k q ˚dq the first projection and by p 2 : M 0,r pX p k , pfi p k q ˚dq ˆXp k r X r Ñ X r the second projection. Note that for all m in p 1 pp ´1 2 pxq X U q the fiber ´1

Proof of

x pmq " ´1pmq X ev ´1pxq " p ˆevq ´1pm, xq is a unirational variety. Furthermore, note that for x general in X r , p ´1 2 pxq X U is a dense open subset of p ´1 2 pxq, and hence p 1 pp ´1 2 pxq X U q is a dense open subset of p 1 pp ´1 2 pxqq " pev ´1pxqq. Hence for x general in X r the general fiber of x is a unirational variety.

Proof of Theorem 1.1.2.1.

Let J " tj 1 , . . . , j M u be a set of M integers satisfying 0 † j 1 † ¨¨¨ † j M † n such that I is contained in J, let d " pd 1 , . . . , d M q be an element in N M and 1 § µ § M be an integer such that the collection tI, J, du is stabilized with respect to µ in the sense of Definition 1.1.1.1. Note that according to Proposition 1.2.4.1 it is enough to prove that the general fiber of I{J ˆev : M 0,r pF l J , dq Ñ M 0,r pF l I , pfi I{J q ˚dq ˆpFl I q r pF l J q r (1.12) is rationally connected. We prove this in two times. We first prove that the general fiber of the morphism J•µ{J ˆev is rationally connected, where J•µ{J is the morphism induced by forgetting vector spaces with indices left of µ not associated with elements in I. We then prove that the general fiber of the morphism I{J•µ ˆev is rationally connected. We finally deduce Theorem 1.1.2.1 from these two facts.

1.5.1 Preliminary results on the base change of I{J ˆev. Let K " tk 1 , . . . , k m 1 u be a set of integers satisfying 0 † k 1 † ¨¨¨ † k m 1 such that K is contained in J and contains I. Our goal here is to prove that the base change of the morphism I{J ˆev defined by (1.12) induced by F l K Ñ F l J is a morphism of equidimensional projective varieties, whose general fiber satisfies the same properties as the general fiber of I{J ˆev. Since the projection morphism F l K Ñ F l I factors through F l J Ñ F l I , we are considering the following morphism:

M 0,r pF l J , dq ˆpFl J q r pF l K q r `M0,r pF l I , pfi I{J q ˚dq ˆpFl I q r pF l J q r ˘ˆpFl J q r pF l K q r M 0,r pF l I , pfi I{J q ˚dq ˆpFl I q r pF l K q r " First, note that M 0,r pF l J , dq ˆpFl J q r pF l K q r is a reduced scheme of pure dimension the expected dimension. Indeed, according to Kleiman's transversality theorem for g general in pSL n q r the projective scheme M 0,r pF l J , dq ˆpFl J q r g ¨pF l K q r is an equidimensional reduced scheme. Furthermore, since the morphism pF l J q r Ñ pF l I q r is G :" pSL n q r -equivariant, the following diagram is commutative M 0,r pF l J , dq ˆpFl I q r pG ˆpF l J q r q G ˆ`M 0,r pF l J , dq ˆpFl I q r pF l J q r G G p " fi "

where p and fi are the obvious projections. This induces an isomorphism p ´1pgq " M 0,r pF l J , dq ˆpFl I q r pg ¨pF l J q r q » fi ´1pgq » g ¨`M 0,r pF l J , dq ˆpFl I q r pF l J q r » M 0,r pF l J , dq ˆpFl I q r pF l J q r which allows us to deduce the equidimensionality and reducibility of M 0,r pF l J , dq ˆpFl J q r pF l K q r from the equidimensionality and reducibility of M 0,r pF l J , dq ˆpFl J q r g ¨pF l K q r . Finally, Lemma 1.5.1.1 here under ensures that the general fiber of the flat base change of I{J ˆev satisfies the same properties as the general fiber of I{J ˆev.

Lemma 1.5.1.1. Let S be a scheme, let S 1 Ñ S, M Ñ S and M 1 Ñ S be schemes over S, and M Ñ M 1 be a morphism of schemes over S. Suppose the general fiber of M Ñ M 1 satisfies a property pP q, and S 1 Ñ S is flat. Then the general fiber of M S 1 Ñ M 1 S 1 satisfies pP q.

Proof. If the morphism M Ñ M 1 is not surjective, it factors through M Ñ ImM and then ImpM S 1 q » pImM q S 1 ; hence we can assume M Ñ M 1 surjective. Denote by U the dense open subset of M 1 such that the fiber of M Ñ M 1 over tmu in U satisfies pP q. Note that, since S 1 Ñ S is a flat morphism, U ˆS S 1 is a dense subset of M 1 ˆS S 1 . Indeed, if we denote by p 1 : M 1 ˆS S 1 Ñ M 1 the first projection, acccording to [Gro] Proposition 2.3.4, all irreducible components of p ´1 1 pM 1 q dominate M 1 ; hence the image of each irreducible component of M 1 by p 1 has a non empty intersection with U , hence each irreducible component of M 1 S 1 has a non empty intersection with U S 1 . Then for pm, sq in U ˆS S 1 Ä M 1 ˆS S 1 , we have:

pM ˆS S 1 q pm,sq " M ˆS tsu ˆM1 tmu " pM ˆM1 tmuq ˆS tsu » M m ,
where M m satisfies pP q since m lies in U . Hence the general fiber of M S 1 Ñ M 1 S 1 satisfies pP q.

1.5.2 Forgetting vector spaces left of V jµ . Recall a point in F l J corresponds to a flag of vector spaces:

t0u Ä V j1 Ä ¨¨¨Ä V j M Ä C n .
Denote by µ 1 the integer such that i µ 1 " j µ . A point in F l J•µ corresponds to a flag of vector spaces:

t0u Ä V i1 Ä ¨¨¨Ä V i µ 1 " V jµ Ä V jµ`1 Ä ¨¨¨Ä V j M Ä C n . For 1 § k † µ, we name X k :" pF l J •k q r , d k :" pfi J •k {J q ˚d and M k :" M 0,r pX k , d k
q. Forgetting all vector spaces left of V jµ that are not of the type V i k induces a morphism J•µ{J ˆev : M 0,r pF l J , dq Ñ M µ ˆXµ pF l J q r . We consider here the general fiber of this map.

Proposition 1.5.2.1. Let tI, J, du be a stabilized collection.

i) The general fiber of the map J•µ{J ˆev is a unirational variety.

ii) For x general in pF l J q r , the fiber ev ´1pxq P M 0,r pF l J , dq is a tower of unirational fibrations over the fiber ev ´1pfi J•µ pxqq P M µ .

Proof. We proceed by iteration on k. i) Let 1 § k † µ such that the general fiber of J •k{J ˆev : M J Ñ M k ˆXk pF l J q r is rationally connected. Suppose j k`1 is not contained in I. Recall d " pd 1 , . . . , d M q.

We denote by pfi I{J q ˚d " pd 1 1 , . . . , d 1 m q. Denote by k 1 the largest integers such that i k 1 † j k . Note that • The degree d k is given by the set

d k " pd 1 1 , . . . , d 1 k 1 , d k k 2 , . . . , d k M 1 q, obtained
from d by removing all integers d s such that s † µ and there exists no integer s 1 satisfying i s 1 " j s .

• The degree d k`1 is given by the sequence 

d k`1 " pd 1 1 , . . . , d 1 k 1 , d k k 2 `1 . . . d k M 1 q, which is
J •k`1 {J •k ˆev : M k Ñ p J •k`1 {J •k ˆevqpM k q " M k`1 ˆXk`1 X k
is unirational, and hence rationally connected. Furthermore, according to Definition 1.1.1.1 the morphism surjects onto M k`1 ˆXk`1 X k . Then according to Subsection 1.5.1 the general fiber of the following morphism

M k ˆXk pF l J q r Ñ M k`1 ˆXk`1 pF l J q r
is also rationally connected. Hence according to Theorem 1.2.2.1 by composition the general fiber of J •k`1 {J ˆev : M J Ñ M k`1 ˆXk`1 pF l J q r is rationally connected. In the same way, if j k`1 is contained in I, the general fiber of J •k`2 {J ˆev : M J Ñ M k`2 ˆXk`2 pF l J q r is rationally connected.

ii) Let 1 § k † µ such that for x general in pF l J q r , the fiber ev ´1pxq P M 0,r pF l J , dq is a tower of unirational fibrations over the fiber ev ´1pfi J •k {J pxqq P M k is unirational. Suppose j k`1 is not contained in I. Corollary 1.4.0.1 and Proposition 1.2.4.1 imply that for x general in pF l J q r , the fiber ev ´1pxq P M 0,r pF l J , dq is a tower of unirational fibrations over the fiber

ev ´1ppfi J •k`1 {J pxqq P M k`1 .
1.5.3 Forgetting vector spaces right of V jµ . We deduce here the rational connectedness of the general fiber of the morphism I{J•µ ˆev from Subsection 1.5.2 by duality. For a set K " tk 1 , . . . , k m u of m integers satisfying 0 † k 1 † ¨¨¨ † k m † n, we call dual partition of K the set K ˚:" tn ´km , . . . , n ´k1 u.

Consider the natural transformation of functors sending a flag F S :" E 1 Ä ¨¨¨Ä E m Ä O 'n S of vector bundles over a scheme S to the dual flag F S :" pO 'n S {E m q ˚Ä ¨¨¨Ä pO 'n S {E 1 q ˚Ä pO 'n S q ˚» O 'n S , where we have chosen an isomorphism pC n q ˚» C n . This natural transformation of functors induces an isomorphism F l K » F l K ˚, and we will call F l K ˚the flag variety dual to F l K . Note that this induces here an isomorphism between the flag variety F l J•µ parametrizing flags of vector spaces

V i1 Ä ¨¨¨Ä V i µ 1 Ä V jµ`1 Ä ¨¨¨Ä V j M Ä C n .
and the dual flag variety F l pJ•µq ˚parametrizing flags of vector spaces

V n´j M Ä ¨¨¨Ä V n´jµ`1 Ä V n´i µ 1 Ä ¨¨¨Ä V n´i1 Ä C n .
This isomorphism sends a curve of class d " pd 1 , d 2 . . . , d m q in EpF l K q » N m onto a curve of class d ˚" pd m , . . . , d 2 , d 1 q in EpF l K ˚q » N m . Furthermore, note that, since tI, J, du is stabilized with respect to µ, according to Lemma 1.5.3.1 the collection

" I, pJ •µ q ˚,
´`fi I{J•µ ˘˚d ¯˚* is stabilized with respect to n in the sense of Definition 1.1.1.1. Hence, according to Subsection 1.5.2 here above, the general fiber of the morphism I ˚{pJ•µq ˚ˆev is rationally connected. Finally, the following commutative diagram allows us to deduce the rational connectedness of the general fiber of I{J•µ ˆev from the rational connectedness of the general fiber of the morphism I ˚{pJ•µq ˚ˆev.

M 0,r pF l J•µ , pfi J•µ{J q ˚dq M 0,r pF l I , pfi I{J q ˚dq pFl I q r pF l J•µ q r M 0,r pF l pJ•µq ˚, ppfi J•µ{J q ˚dq ˚q M 0,r pF l I ˚, ppfi I{J q ˚dq ˚q pFl I ˚qr pF l pJ•µq ˚qr I{J •µ ˆev

I ˚{pJ •µ q ˚ˆev
Note that the isomorphism M 0,r pF l J•µ , pfi J•µ{J q ˚dq » M 0,r pF l pJ•µq ˚, ppfi J•µ{J q ˚dq ˚q is induced by the isomorphism F l J•µ » F l pJ•µq ˚and the isomorphism M 0,r pF l I , pfi I{J q ˚dq pFl I q r pF l J•µ q r » M 0,r pF l I ˚, ppfi I{J q ˚dq ˚q pFl I ˚qr pF l pJ•µq ˚qr is induced by the isomorphisms

F l I » F l I ˚and F l J•µ » F l pJ•µq ˚.
Lemma 1.5.3.1. Let J " tj 1 , . . . , j M u be a set of M integers satisfying 0 † j 1 † ¨¨¨ † j M † n and let I " ti 1 , . . . , i m u be a subset of J. Let d " pd 1 , . . . , d M q be an element in N M and let 1 § µ § M such that the collection tI, J, du is stabilized with respect to µ. Then the collection

! I ˚, pJ •µ q ˚, `pfi J•µ{J q ˚d˘˚)
is stabilized with respect to n.

Proof. We number by I ˚:" ti 1 , . . . , i mu and J ˚" tj 1 , . . . , j M u the dual partitions of I and J, where for any 1 § k § m, i k " n ´im´k`1 and for any 1 § k § M , j k " n ´jM´k`1 . Recall F l I ˚is the flag variety parametrizing flags of vector spaces

V n´im Ä ¨¨¨Ä V n´i1 Ä C n
and F l pJ•µq ˚is the flag variety parametrizing flags of vector spaces

V n´j M Ä ¨¨¨Ä V n´jµ`1 Ä V n´i µ 1 Ä ¨¨¨Ä V n´i1 Ä C n .
We call d 1 :" pfi I{J q ˚d " pd 1 1 , . . . , d 1 m q. We call d ˚" pd 1 , . . . , d M q and d 1 ˚" pd 1 ˚1, . . . , d 1 ˚mq the dual classes, where for

1 § k § M , d k " d M ´k`1 and for 1 § k § m, d 1 k " d 1 m´k`1 . Let µ § k § M such that j M ´k`1 " n ´jk is not contained in I ˚, i.e. let µ † k § M
such that j k is not contained in the set I ˚" I. Since the collection tI, J, du is stabilized with respect to µ, the following properties are satisfied.

• Let k 1 be the smallest integer such that i k 1 °jk . Note that m ´k1 `1 is the largest integer such that i m´k 1 `1 " n ´ik 1 † j M ´k`1 " n ´jk . Then for any k 1 † p § m, i.e. for any 1 § m ´p `1 § m ´k1 `1, we have

d m´k`1 " d k • rpd 1 p ´d1
p`1 q{pi p`1 ´ip qspn ´jk q " rpd 1 m´p`1 ´d1 m´p q{pi m´p`1 ´im ´pqsj M ´k`1 .

• Since the morphism J µ §k ˆev is surjective, the morphism pJ•µq ˚•M ´k`1 ˆev is surjective.

Note that the surjectivity of pJ•µq ˚•M ´k`1 ˆev is implied by the following commutative diagram M0,rpF lJ µ §k , pfi J µ §k {J q˚dq M0,rpF lJ µ §k´1 , pfi J µ §k´1 {J q˚dq pFl

J µ §k´1 q r pF lJ µ §k´1 q r M0,rpF l pJ•µq ˚•M ´k`1 , ppfi J µ §k {J q˚dq ˚q M0,rpF l pJ•µq ˚•M ´k`2 , ppfi J µ §k´1 {J q˚dq ˚q pFl pJ •µ q ˚•M ´k`2 q r pF l pJ•µq ˚•M ´k`1 q r J µ §k ˆev pJ •µ q ˚•M ´k`1 ˆev
where the isomorphism M 0,r pF l J µ §k , pfi J µ §k {J q ˚dq » M 0,r pF l pJ•µq ˚•M ´k`1 , ppfi J µ §k {J q ˚dq ˚q is induced by the isomorphism

F l J µ §k » pF l J µ §k q ˚" F l pJ•µq ˚•M ´k`1 . Hence the collection ! I ˚, pJ •µ q ˚,
`pfi J•µ{J q ˚d˘˚) is stabilized with respect to n.

Proof of Theorem 1.1.2.1.

Let J 1 :" J •pµ;nµq . Consider the morphism M 0,r pF l J1 , pfi J1{J q ˚dq ˆpFl J 1 q r pF l J q r `M0,r pF l I , pfi I{J1 q ˚pfi J1{J q ˚dq ˆpFl I q r pF l J1 q r ˘ˆpFl J 1 q r pF l J q r M 0,r pF l I , pfi I{J q ˚dq ˆpFl I q r pF l J q r " where the first arrow is the morphism obtained by flat base change of I{J1 ˆev over pF l J q r Ñ pF l J1 q r . According to Subsection 1.5.3 the general fiber of I{J1 ˆev is rationally connected, hence according to Lemma 1.5.1.1 the general fiber of M 0,r pF l J1 , pfi J1{J q ˚dqˆp F l J 1 q r pF l J q r Ñ M 0,r pF l I , pfi I{J q ˚dqˆp F l I q r pF l J q r is rationally connected. Furthermore, according to Subsection 1.5.2 the general fiber of M 0,r pF l J , dq Ñ M 0,r pF l J1 , pfi J1{J q ˚dq ˆpFl J 1 q r pF l J q r is also rationally connected. Theorem 1.1.2.1 iiq then follows from the following commutative diagram: M 0,r pF l J , dq M 0,r pF l J1 , pfi J1{J q ˚dq ˆpFl J 1 q r pF l J q r M 0,r pF l I , pfi I{J q ˚dq ˆpFl I q r pF l J q r J 1 {J ˆev I{ J ˆev Indeed, according to Theorem 1.2.2.1 the composition of morphisms of projective complex schemes whose general fiber is rationally connected is a morphism whose general fiber is also rationally connected.

In the same way, since the composition of unirational fibrations is a unirational fibration, Theorem 1.1.2.1 iiq is easily deduced from Subsections 1.5.3 and 1.5.2.

On the surjectivity of I{J .

Let us recall our notations. We consider the flag variety X parametrizing flags V n1 Ä ¨¨¨Ä V nm Ä C n , where V ni is a vector subspace of C n of dimension n i . For 1 § k § m, we denote by X p k the flag variety obtained from X by forgetting the k-th vector space, and call fi p k : X Ñ X p k the forgetful morphism. Let d " pd 1 , . . . , d m q be an element in EpXq » N m . We denote by fi p k˚d " pd 1 , . . . , d k´1 , d k`1 , . . . , d m q its pushforward to EpX p k q. In order to ease notations, we set d 0 " 0 " d m`1 . Finally, we denote by p k : M 0,r pX, dq Ñ M 0,r pX p k , fi p k˚d q the morphism induced by fi p k : X Ñ X p k . Our goal here is to give a condition on the degree d, under which the morphism M 0,r pX, dq Ñ M 0,r pX p k , fi p k˚d q ˆXp k r X r is surjective. We deduce from it examples of stabilized collections in Subsection 1.6.1. Lemma 1.6.0.1. Consider an element p in general position in M 0,r pX p k , fi p k˚d q. Denote by

F p " E 1 Ä ¨¨¨Ä E k´1 Ä E k`1 Ä ¨¨¨Ä E m Ä C n
the flag of vector bundles associated with p. Suppose for

all p † k, d k`1 • n k`1 r dp´dp´1 np´np´1 s. Then: i) E k`1 " E k´1 ' E k`1 {E k´1 ; ii) E k`1 {E k´1 » O P 1 p´t d k`1 ´dk´1 n k`1 ´nk´1 uq 'n´r2 ' O P 1 p´t d k`1 ´dk´1 n k`1 ´nk´1 u `1q 'r2
q, where r 2 is the integer defined by r 2 " pd k`1 ´dk´1 q ´pn k`1 ´nk´1 qt

d k`1 ´dk´1 n k`1 ´nk´1 u;
iii) There exists a P 1 -vector bundle F of degree ´d where d § d k´1 `pn k ´nk´1 qp

Y d k`1 ´dk´1 n k`1 ´nk´1
] `1q and of rank n k such that:

E k´1 Ä F Ä E k`1 Ä O 'n P 1 . Proof. i) Cf. Proposition 1.3.3.1.
ii) Cf. the description of balanced flags of vector bundles in Section 1.3.3.

iii) Call d :" d k`1 ´dk´1 and n :" n k`1 ´nk´1 . Consider two non negative integers p 1 and p 2 such that p 1 † n ´r2 , p 2 † r 2 , and p 1 `p2 " n k ´nk´1 . Denote by F 0 the rank n k ´nk´1 subbundle of E k`1 associated with

O P 1 p´t d n uq 'p1 'O P 1 p´t d n u1 q 'p2 q by the isomorphism E k`1 {E k´1 » O P 1 p´t d n uq 'n´r2 ' O P 1 p´t d n u `1q 'r2
q of iiq. Then F :" E k´1 ' F 0 is a vector bundle of rank n k , of degree the opposite of

d k´1 `p1 pt d n uq `p2 pt d n u `1q § d k´1 `pn k ´nk´1 qpt d n u `1q. Furthermore, F satisfies E k´1 Ä F Ä E k`1 Ä O 'n P 1 .
Proposition 1.6.0.1.

i) Suppose d k´1 § t d k`1 n k`1 u and d k • d k´1 `pn k ´nk´1 qpt d k`1 ´dk´1 n k`1 ´nk´1 u `1q. Then the morphism p k : M 0,3 pX, dq Ñ M 0,3 pX p k , fi p k˚d q is surjective; ii) Consider an integer • such that, for all d k • • , the morphism p k : M 0,3 pX, dq Ñ M 0,3 pX p k , fi p k˚d q is surjective. Suppose d k • • `rpn k ´nk´1 q. Then the morphism p k ˆev r : M 0,r pX, dq Ñ M 0,r pX p k , fi p k˚d q ˆXp k r X r is surjective. Proof. i) Call d p k :" fi p k˚d . Consider an element p in general position in M 0,3 pX p k , d p k q. Since X is convex, M 0,3 pX p k , d p k q is a dense open subset in M 0,3 pX p k , d p k q; hence, according to Lemma 1.2.2.1, p is in M 0,3 pX p k , d p k q.
We will construct an antecedent of p by p k as a concatenation of two morphisms f : P 1 Ñ X and g : P 1 Ñ X. Construction of f . Denote by

F p :" E 1 Ä ¨¨¨Ä E k´1 Ä E k`1 Ä ¨¨¨Ä E m Ä O 'n
P 1 the flag of vector bundles associated with p. According to Lemma 1.6.0.1 iiiq, there exists a P 1 -vector bundle F of degree d § d k´1 `pn k ´nk´1 qpt

d k`1 ´dk´1
n k`1 ´nk´1 u `1q and of rank n k defining the following flag of vector bundles:

F :" E 1 Ä ¨¨¨Ä E k´1 Ä F Ä E k`1 Ä ¨¨¨Ä E m Ä O 'n P 1 .
By the functorial definition of flag varieties, F defines a degree pd 1 , . . . , d k´1 , d, d k`1 , . . . , d m q morphism f : P 1 Ñ X, such that f p : P 1 Ñ X p k , factors through f . We have denoted by f p the morphism associated with p. Construction of g. Denote by g : P 1 Ñ X a rational curve of class pd k ´dq ‡ k , where ‡ k is the degree one Schubert class whose pushforward to Grpn k , nq is not 0. Up to multiplication by an element in SL n , we can assume gpP 1 q intersects f pP 1 q on a point that is not marked. Notice the image of fi p k ˝g : P 1 Ñ X p k is a point. Finally, the stable map P 1 Y P 1 Ñ X induced by f and g defines an element in M 0,3 pX, dq, whose projection by p k is p. ii) Call M 1 :" M 0,r pX p k , fi p k˚d q. Fix a genus zero stable map p :" pg p : P 1 Ñ M 1 , tp 1 , . . . , p r uq corresponding to a general point in M 1 . According to Lemma 1.2.3.1, for any dense open subset U of M 1 , the equidimensional variety X r ˆpX p k q r U is a dense open subset of X r ˆpX p k q r M 1 ; hence it is enough to prove that ´1 p k p‹q dominates X r ˆpX p k q r tpu for a general point p in M 1 . Fix an element px, pq in X r ˆpX p k q r tpu, i.e. fix r points x 1 , . . . , x r on X such that each point x i gets projected by fi p k : X Ñ X p k to g p pp i q. Our goal is to construct an antecedent of px, pq by p k : M 0,r pX, dq Ñ M 1 . We proceed in three steps. First, notice there is a degree pd ´rpn k ´nk´1 q ‡ k q morphism f : P 1 Ñ X getting projected to p, i.e. such that g p " fi p k ˝f . Furthermore, we construct rational curves C i Ñ X of degree n k ´nk´1 joining the points f pp i q and x i . Finally, by concatenation, this gives a degree d stable map rP 1 Y i C i Ñ X, tp 1 , . . . , p r us which is an antecedent of px, gq, as researched. Existence of f . We call: " :" pd 1 , . . . , d k´1 , d k ´rpn k ´nk´1 q, d k`1 , . . . , d m q P A 1 pXq.

Notice that, since g is in general position in M 0,3 pX, dq and the morphism p k : M 0,3 pX, "q Ñ M 0,r pX p k , fi p k˚d q is surjective, its reciprocal image ´1 p k ppq has a non empty intersection with the dense open subset M 0,3 pX, "q of M 0,r pX, "q. We can thus find an element rf : P 1 Ñ X, tp 1 , . . . , p r us in ´1 p k p‹q X M 0,r pX, "q. Construction of C i Ñ X. Fix an integer i in t1, . . . , ru. Denote by

F pi " t W i 1 ¨¨¨Ä W i m Ä C n u
the germ at p i of the flag of P 1 -vector bundles associated with f . Since f : P 1 Ñ X projects to g p , the flag of vector spaces associated with g p pp i q is:

g p pp i q " tW i 1 Ä ¨¨¨Ä W i k´1 Ä W i k`1 Ä ¨¨¨Ä W i m Ä C n u.
Denote by † u n k´1 `1, . . . , u n k °a basis of W i k {W i k´1 . Recall x i is a point in X getting projected to g p pp i q, i.e. corresponds to a flag of vector spaces

W i 1 Ä ¨¨¨Ä W i k´1 Ä V Ä W i k`1 Ä ¨¨¨Ä W i m Ä C n .
Since ev : M 0,2 pGrpn k ´nk´1 , n k`1 ´nk´1 q, dq Ñ Grpn k ´nk´1 , n k`1 ´nk´1 q 2 is surjective for d • pn k ´nk´1 q (cf. for example [START_REF] Anders | Quantum K-theory of Grassmannians[END_REF] Corollary 2.2), there exists a degree pn k ´nk´1 q genus zero stable map

h i : C i " N § j"1 P 1 Ñ Grpn k ´nk´1 , n k`1 ´nk´1 q
joining the rank pn k ´nk´1 q vector spaces V {W i k´1 and

W i k {W i k´1 within W i k`1 {W i k´1 » C n k`1 ´nk´1 .
By the functorial definition of Grassmannians, each morphism h i|P 1 : P 1 Ñ Grpn k ´nk´1 , n k`1 ńk´1 q defines a flag of P 1 -vector bundles

E i j Ä O 'n k`1 ´nk´1 P 1
, which has one fiber given by the flag of vector spaces

V j {W i k´1 Ä W i k`1 {W i k´1 » C n k`1 ´nk´1
, and another fiber given by

V j`1 {W i k´1 Ä W i k`1 {W i k´1 » C n k`1 ´nk´1
, where V 1 " V and V N " W k . Now consider the following flag of P 1 -vector bundles:

F i,j :" W i 1 Ä ¨¨¨Ä W i k´1 Ä W i k´1 ' E i j Ä W i k`1 Ä ¨¨¨Ä W i m Ä O 'n P 1 .
F i,j defines a morphism f i,j : P 1 Ñ X which is projected to g p pp i q. Furthermore, the morphisms f i,j define a degree pn k ´nk´1 q morphism from the tree of P 1 's C i to X which joins by construction x i and g p pp i q. We will denote by f i : C i Ñ X the morphism thus obtained. Construction of an antecedent of p. Finally, consider the stable map q " rP 1 Y i C i Ñ X, tp 1 , . . . , p r us associated with rf : P 1 Ñ Xs and f i : C i Ñ X, where we place each of the marked points p i on an antecedent f ´1 i px i q on C i . Since each of the map f i : C i Ñ X projects to g p pp i q in X p k , the morphism M 0,r pX, dq Ñ M 1 collapses each component C i and sends q to p.

Examples of stabilized collections.

1. Forgetting the first vector space. Suppose I " ti 1 , . . . , i m u is a collection of integers satisfying 1 † i 1 † ¨¨¨ † i m † n and J " tj 1 , i 1 , . . . , i m u satisfies 0 † j 1 † i 1 . Note that then F l J Ñ F l I is the morphism forgetting the first vector space. By definition, if the following condition is satisfied, the collection tI, J, du is stabilized with respect to µ " 2.

• The morphism J•1 ˆev : M 0,r pF l J , dq Ñ M 0,r pF l I , pfi I{J q ˚dqˆp F l I q r pF l J q r is surjective.

Note that since there is no integer i k 1 such that i k 1 † j k , the collection tI, J, du does not have to satisfy any other condition. Furthermore, according to Proposition 1.6.0.1 iq, if d 0 " 0 § t d2 i1 u and d 1 • d 0 `pj 1 ´0qpt d2´d0 i1´0 u `1q " j 1 pt d2 i1 u `1q, then the morphism M 0,3 pF l J , dq Ñ M 0,3 pF l I , pfi I{J q ˚dq is surjective. Note that the first condition is always satisfied. Hence according to Proposition 1.6.0.1 iiq, if

d 1 • j 1 pt d 2 i 1 u `1q `rpj 1 ´0q " j 1 pt d 2 i 1 u `r `1q
then the morphism J•1 ˆev is surjective.

To conclude, we observe the following property:

Appendix A

Let Y be an irreducible projective complex variety, let " P H 2 pY, Zq, and r • 0. We first recall the usual definitions associated with the space of stable maps M 0,r pY, "q. The data of a morphism Ï : C Ñ Y from a genus zero projective connected reduced and nodal curve C to Y along with r distinct non singular points tc 1 , . . . , c r u on C is called a stable map if any irreducible component of C getting sent to a point contains at least three points which are nodal or marked.

Let S be a complex scheme. A family of r-pointed quasi-stable maps over S consists of the data of morphisms C Ñ Y and fi : C Ñ S along with r sections p i : S Ñ C, such that each geometric fiber is a genus zero projective connected reduced and nodal curve C s and the marked points p i psq are distinct and non singular. By construction, M 0,r pY, "q is the coarse moduli space parametrizing isomorphism classes of families over S of r-pointed, quasi-stable maps from genus zero curves to Y representing the class ", and such that each geometric fiber C s over a point in S defines a stable map C s Ñ Y [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF].

Lemma 1.6.1.1. Fix distinct points p 1 , . . . , p r in P 1 . Let S be a complex scheme, and let µ : S ˆP1 Ñ Y be a morphism such that, for all closed points s P S, the restriction µ s of µ to s ˆP1 verifies µ s˚r P 1 s " " P A 1 pY q. Let pr 1 be the natural projection from S ˆP1 to S, and p i : S Ñ S ˆP1 , 1 § i § r, be the morphisms respectively defined by p i : s Ñ ps, p i q. Then the family

S ˆP1 Y S µ pr1
together with the sections p i : S Ñ S ˆP1 is a stable family on S of maps from r-pointed genus 0 curves to Y representing the class ". Furthermore, the morphism f : S Ñ M 0,r pY, "q associated with this family sends a point s P S into the point of M 0,r pY, "q associated with rµ s : P 1 Ñ Y, tp 1 , . . . , p r us.

Proof. Let s be a closed point of S. Then the geometric fiber in s verifies pr ´1 1 psq " pS ˆP1 q ˆS SpecpCpsqq » SpecpCq ˆP1 , i.e. is an irreducible rational projective curve. Hence pr ´1 1 psq is a projective, connected, smooth, reduced, rational curve with r distinct non singular points.

Since charpCq " 0, P 1 is flat on SpecZ, and pr 1 : S ˆP1 Ñ S is a flat morphism. Furthermore, pr 1 may be written down as S ˆP1 » P 1 Z ˆSpecC ˆS Ñ SpecC ˆS » S, hence is a projective morphism. The family ppr 1 : S ˆP1 Ñ S, tp 1 , . . . , p r uq is thus a family of r-pointed genus 0 quasi stable curves on S.

For s in S, denote by µ s : C s Ñ Y the restriction of µ to the geometric fiber C s :" pr ´1 1 psq. Note that µ s is a map from the r-pointed quasi-stable map pC s , tp 1 , . . . , p r uq to Y . The map µ s is stable, and by hypothesis represents the class ". The family ppr 1 : S ˆP1 Ñ S, tp 1 , . . . , p r u, µ : S ˆP1 Ñ Y q hence is a stable family on S of maps from r-pointed genus 0 curves to Y representing the class ", i.e. o " ppr 1 : S ˆP1 Ñ S, tp 1 , . . . , p r u, µ : S ˆP1 Ñ Y q{ " is an element of M 0,r pY, "qpSq.

Let s : SpecpCq Ñ S be a point of S. Since M 0,r pY, "q is a coarse moduli space, the functor M 0,r pY, "q associates to s the map from M 0,r pY, "qpSq Ñ M 0,r pY, "qpSpecpCqq associating to a stable family pfi : C Ñ S, tp 1 , . . . , p r u, µ : C Ñ Y q{ " corresponding to an element in M 0,r pY, "qpSq the isomorphism class of:

SpecpCq ˆS C C Y SpecpCq S µ s
We observe M 0,r pY, "qpsq sends o to the element in M 0,r pY, "qpSpecpCqq associated with pC s , tp 1 , . . . , p r u, µ s : C s Ñ Y q. Since M 0,r pY, "q is a coarse moduli space, there exists a natural transformation of functors :

Õ : M 0,r pY, "q Ñ Hom Sch pS, M 0,r pY, "qq Let f : S Ñ M 0,r pY, "q be the morphism associated by Õ with o " ppr 1 : S ˆP1 Ñ S, tp 1 , . . . , p r u, µ : S ˆP1 Ñ Y q{ ", i.e. f " Õpoq. We obtain :

ÕpSqpoq ˝s " ÕpSpecpCqqpM 0,r pY, "qpsqq, i.e. f sends s to the point of M 0,r pY, "q associated with pC s , tp 1 , . . . , p r u, µ s q.

Chapter 2

A comparison formula between genus 0 correlators of partial flag varieties 2.1 Introduction

Removing a subspace from a partial flag gives another partial flag composed of fewer subspaces. This induces a forgetful map between the corresponding flag varieties. The main result of this chapter is that quantum K-theoretical genus 0 correlators of these two flag varieties are equal to each other, provided their degree is high enough.

Genus zero correlators of G{P .

Quantum K-theory takes its simplest form for homogeneous varieties, and genus zero quantum K-theory actually first introduced and defined in this setting by Givental some twenty years ago [START_REF] Givental | On the WDVV equation in quantum K-theory[END_REF].

Let X be a homogeneous variety G{P , where G is an algebraic group, and P is a parabolic subgroup of G. Fix a degree d in the semi-group EpXq of e ective classes of 1-cycles in A 1 pXq » H 2 pX, Zq. Denote by M 0,n pX, dq the moduli space parametrizing stable maps pµ : C Ñ X, tp 1 , . . . , p n uq from a genus zero curve C to X verifying µ ˚rC s " d, with n marked points p 1 , . . . , p n on C. If X is a homogeneous variety, M 0,n pX, dq is an irreducible rational variety [START_REF] Kim | The connectedness of the moduli space of maps to homogeneous spaces[END_REF][START_REF] Jf Thomsen | Irreducibility of M 0,n pG{P, -q[END_REF], and the subvariety M 0,n pX, dq parametrizing stable maps pµ : P 1 Ñ X, tp 1 , . . . , p n uq from the projective line to X is a dense open subset of M 0,n pX, dq [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF]. The evaluation morphism ev i : M 0,n pX, dq Ñ X assigns to a map the image of its i-th marked point. If X is a homogeneous variety, the evaluation morphism is flat.

Consider an algebraic group H acting on X " G{P . Let " 1 , . . . , " r be elements in the Grothendieck ring K H pXq of H-equivariant coherent sheaves on X. The equivariant correlator x" 1 , . . . , " r y X H,d of elements " i in K ˝pX q is defined as:

x" 1 , . . . , " r y X H,d :" ‰ H ´ev 1 p" 1 q ¨. . . ¨ev r p" r q ¨rO M0,rpX,dq s

¯,

where ‰ H denotes the H-equivariant sheaf Euler characteristic.

H-equivariant decomposition of the diagonal.

Let H be a complex linear algebraic group, let X be an irreducible variety with an H-action. Let RpHq denote the representation ring of H, and K H pXq denote the Grothendieck ring of H-equivariant coherent sheaves on X. We say X admits a diagonal decomposition in K H pXq if there exists a basis p-q iPI of the RpHq-module K H pXq, and a dual basis p-_ q iPI of K H pXq such that

∆ ˚rO X s " ÿ -PI -b p-_ b rO X sq P K H pX ˆXq,
where ∆ : X Ñ X ˆX is the diagonal embedding, and p-_ q iPI is the dual basis of p-q iPI with respect to the pairing given by the H-equivariant sheaf Euler characteristic, i.e. ‰ H p-_ b -q " " -,-for all elements -, -in K H pXq.

We study here the following setting. Consider a complex linear algebraic subgroup H of GL n acting on flag varieties via left multiplication such that flag varieties GL n {P admit a diagonal decomposition in K H pXq. Note that this is in particular true when considering the non equivariant setting or, according to [START_REF] Graham | On positivity in T-equivariant K-theory of flag varieties[END_REF], when considering the action of a maximal torus T of GL n .

Main result.

Fix two positive integers m † n. Let 0 † n 1 † ¨¨¨ † n m † n be a strictly increasing collection of non negative integers. Denote by X the m-step flag variety parametrizing m-tuples of vector spaces ordered by inclusion

0 Ä V n1 Ä ¨¨¨Ä V nm Ä C n such that dimV ni " n i . Fix a positive integer k, 1 § k § m. Denote by X p
k the pm´1q-step flag variety obtained from X by forgetting the k-th vector subspace. Denote by fi p k : X Ñ X p k the projection. The class d " pd 1 , . . . , d m q of a curve C in X is determined by non-negative integers d 1 , d 2 ,. . . , d m , where d i is the Plücker degree of the projection of C to the Grassmannian Grpn i , nq. Note that fi p k and the evaluation morphism M 0,r pX, dq Ñ X r induce a morphism M 0,r pX, dq Ñ M 0,r pX p k , pfi p k q ˚dqˆX p k r X r . Denote by H an algebraic subgroup of G acting via left multiplication on X and X p k , such that X p k admits a diagonal decomposition in K H pX p k q. Theorem 2.1.3.1. Let r °0, k P t1, . . . , mu, d " pd 1 , . . . , d m q be a nef class of 1-cycles such that

@ p † k, d k • n k Q dp´dp´1 np´np´1

U

and such that the morphism

M 0,r pX, dq Ñ M 0,r pX p k , pfi p k q ˚dq Xp k r X r
is surjective. Then for all elements " 1 , . . . , " r in K H pXq, the correlators of X and X p k associated with H, d, and the elements " i are equal:

x" 1 , . . . , " r y X H,d " xpfi p k q ˚p" 1 q, . . . , pfi p k q ˚p" r qy Theorem 1bis. Let r °0, k P t1, . . . , mu, d " pd 1 , . . . , d m q be a nef class of 1-cycles such that

-@ p † k, d k • n k Q dp´dp´1 np´np´1 U , -d k´1 § t d k`1 n k`1 u, -d k • rpn k ´nk´1 q `dk´1 `pn k ´nk´1 qpt d k`1 ´dk´1 n k`1 ´nk´1 u `1q.
Then for any elements " 1 , . . . , " r in K H pXq, the correlators of X and X p k associated with H, d, and the elements " i are equal:

x" 1 , . . . , " r y X H,d " xpfi p k q ˚p" 1 q, . . . , pfi p k q ˚p" r qy

X p k H,pfi p k q˚d .
This Chapter is organized as follows. Sections 2.2 is devoted to recalling some standard facts about equivariant algebraic K-theory, and fixing the notations we use in the rest of the chapter. A proof of Theorem 2.1.3.1 is presented in Section 2.3, using results of Chapter 1. In the non equivariant setting a more geometric proof of Theorem 2.1.3.1 is provided in part 2.4, relying heavily on results from Chapter 1. 57

Preliminaries on equivariant algebraic K-theory

Diagonal decomposition of K T pXq.

Recall G is a semi-simple linear complex algebraic group, T is a maximal torus of G, B is a Borel subgroup of G and P is a parabolic subgroup of G such that T Ä B Ä P . For any element u in the Weyl group W recall Xpuq :" BuP {P is a Schubert variety of X " G{P , and Y puq :" w 0 ¨Bw 0 uP {P is the Schubert variety opposite to it. Furthermore, denote by BY puq :" Y puqzpw 0 Bw 0 uP {P q the complementary of the dense open Schubert cell in Y puq. According to [START_REF] Graham | On positivity in T-equivariant K-theory of flag varieties[END_REF] we have the following decomposition in K T pXq.

∆ ˚rO X s " ÿ uPW P rO Xpuq s b rO Y puq p´BY puqqs P K T pX ˆXq,
where ∆ : X Ñ X ˆX denotes the diagonal embedding. Note that this was first observed in the non equivariant setting by Brion [START_REF] Brion | Positivity in the Grothendieck group of complex flag varieties[END_REF].

Equivariant flat base change.

We describe here the class of an equivariant flat base change. The main application of this result will be the following setting. Let H be a linear subgroup of GL n , let X be the flag variety parametrizing flags of vector spaces V n1 Ä ¨¨¨Ä V nm Ä C n , let X p k be the flag variety obtained by forgetting the vector V n k , and denote by fi p k : X Ñ X p k the associated morphism. For a class -of curve on X p k , we consider the fiber product described by the following H-equivariant Cartesian diagram :

X r pX p k q r M 0,r pX p k , -q M 0,r pX p k , -q X r pX p k q r ev pfi p k q r
Note that, since the action of pGL n q r on pX p k q r is transitive, the morphism pfi p k q r : X r Ñ pX p k q r is flat. Consider two morphisms of schemes f 1 : M 1 Ñ X 1 and f 2 : M 2 Ñ X 2 . We denote by f 1 ˆf2 : M 1 ˆM2 Ñ X 1 ˆX2 the morphism induced by f 1 and f 2 , i.e. the morphism induced by the following commutative diagram:

M 1 ˆM2 M 2 M 1 X 1 ˆX2 X 2 X 1 p2 p1 f1ˆf2 f2 f1 fi1 fi2
where p i : M 1 ˆM2 Ñ M i and fi i : X 1 ˆX2 Ñ X i are the projection morphisms. Finally, let H be a complex linear algebraic acting on M 1 and M 2 . We denote by b : K H pM 1 q ˆKH pM 2 q Ñ K H pM 1 ˆM2 q p", Âq Ñ pp 1 "q b pp 2 Âq the external product. 

Proposition 2.2.2.1. Let H be a linear algebraic group. Consider two equivariant morphisms of projective varieties with an H-action f

1 : M 1 Ñ Y and f 2 : M 2 Ñ Y , such that M 1 Ñ Y is flat. Denote by ∆ : Y Ñ Y ˆY the diagonal morphism, p i : M 1 ˆY M 2 Ñ M i the
M 1 ˆY M 2 M 1 ˆM2 M 2 M 1 Y Y ˆY i p1 p2 f1ˆf2 f2 f1 ∆
Suppose Y is non singular. Let p" e q ePI be a basis of K H pY q » K H pY q. Suppose there exists a decomposition of the diagonal in K H pY q, i.e. suppose there exists a basis p" _ e q ePI of K H pY q such that

∆ ˚rO Y s " ÿ ePI " e b " _ e P K H pY ˆY q
where we consider the diagonal action of H on Y ˆY . We then obtain:

i ˚rO M1ˆY M2 s " ÿ e,f PI g ef `f 1 " e b f 2 " f ˘P K H pM 1 ˆM2 q,
where we denote by g ef :" g ´1 ef the pairing dual to g ef , and consider the diagonal action of H on M 1 ˆM2 and M 1 ˆY M 2 . Lemma 2.2.2.1 (Flat base change in equivariant K-theory). Let H be a linear algebraic group.

Consider a Cartesian diagram of proper, equivariant morphisms of varieties with an H-action:

X 1 X S S 1 g 1 f 1 f g
where S Ñ S 1 is a flat morphism. Then, for allin K H pXq:

f 1 ˚pg 1˚-
q " g ˚pf ˚-q P K H pSq.

Proof. Cf. [C `09] Proposition 5.3.15.

Proof of Proposition 2.2.2.1. We call f :" f 1 ˝p1 " f 2 ˝p2 . First, notice that, since f 1 and p 1 are flat, f is a flat H-equivariant morphism. We hence have:

rO M1ˆY M2 s " f ˚prO Y sq. Now consider the diagonal action of H on M 1 ˆM2 and Y ˆY . Since ∆ : Y Ñ Y ˆY and i : M 1 ˆY M 2 Ñ M 1 ˆM2
are proper H-equivariant morphism, f 1 ˆf2 is an H-equivariant morphism, and the morphism f 1 is flat, we can apply Lemma 2.2.2.1 to the following commutative diagram of H-equivariant maps.

M 1 ˆY M 2 M 2 M 1 Y p2 p1 f2 f1
We obtain:

i ˚rO M1ˆY M2 s " i ˚f ˚rO Y s " pf 1 ˆf2 q ˚∆˚r O Y s P K H pY q
Furthermore, we have supposed:

∆ ˚rO Y s " ∞ e,f PI g ef " e b " f P K H pY q » K H pY q.
We thus obtain:

i ˚rO M1ˆY M2 s " pf 1 ˆf2 q ˚`ÿ e,f PI g ef " e b " f ˘" ÿ e,f PI g ef `f 1 " e b f 2 " f ˘P K H pM 1 ˆM2 q.
2.3 Proof of Theorem 2.1.3.1.

2.3.1

Properties of M 0,r pX p k , pfi p k q ˚dq ˆpX p k q r X r . We use here the same notations as in the preceding parts. Let X be the flag variety parametrizing flags of vector spaces

V n1 Ä ¨¨¨Ä V nm Ä C n .
For 1 § k § m, we denote by X p k the flag variety obtained from X by forgetting the k-th vector space, and call fi " fi p k : X Ñ X p k the forgetful morphism. For a class -of curve on X p k , we denote by M 1 :" M 0,r pX p k , -q the moduli space parametrizing stable maps from genus 0 r-pointed curves to X p k . We observe here that the scheme M 1 ˆXp k r X r associated with the following Cartesian diagram is a projective variety with rational singularities, obtained via flat base change of M 1 over pX p k q r .

M 1 ˆXp k r X r X r M 1 pX p k q r pfi p k q r ev Lemma 2.3.1.1. M 0,r pX p k , pfi p k q ˚dq ˆpX p k q r X r
is a projective variety with rational singularities.

Proof. For simplicity set M 1 :" M 0,r pX p k , pfi p k q ˚dq. First, notice that since M 1 ˆpX p k q r X r is a projective base change, it is projective over the projective scheme X r and hence over SpecC. Furthermore, according to Kleiman's transversality theorem, for g general in GL r n the scheme M 1 ˆpX p k q r g ¨Xr is reduced. Since the morphism X r Ñ pX p k q r is GL r n -equivariant, and the action of GL r n on pX p k q r is transitive, the action of g ´1 induces an isomorphism M 1 ˆpX p k q r g ¨Xr » M 1 ˆpX p k q r X r . Hence M 1 ˆpX p k q r X r is reduced. Note that according to Theorem 0.8.0.1, M 1 has rational singularities. Hence, according to [CMBP13], Theorem 2.5, since all varieties considered here have rational singularities, for g general in GL r n the scheme M 1 ˆpX p k q r g ¨Xr has rational singularities. Hence M 1 ˆpX p k q r X r has rational singularities.

Finally, note that since fi p k : X Ñ X p k is a fibration in Grassmanians, it is flat.

Proof of Theorem 2.1.3.1.

We denote by i : M 0,r pX p k , pfi p k q ˚dq pX p k q r X r ãÑ M 0,r pX p k , pfi p k q ˚dq ˆXr the natural morphism. Let p" e q ePI be a basis of K H pXq » K H pXq. By hypothesis there exists a basis p" _ e q ePI such that " e b " f is a diagonal decomposition of X. Note that X r admits a diagonal decomposition in K H pX r q, which is given by ∆ ˚rO X r s " ∞ e1,...,er ßI pb 1 §i §r " ei q e1,...,erPI pb 1 §i §r " _ ei q e1,...,erPI P K H pX r ˆXr q.

Lemma 2.3.2.1. Let d " pd 1 , . . . , d m q be a degree in EpXq such that

@ p † k, d k • n k Q dp´dp´1 np´np´1
U .

Suppose the morphism ˆev : M 0,r pX, dq Ñ M 0,r pX p k , pfi p k q ˚dq pX p k q r X r is surjective. Then

i ˚p ˆevq ˚"O M0,rpX,dq ı " ÿ e1,...,erPI ppev 1 " e1 q b ¨¨¨b pev r " er qq b `fi˚p " _ e1 q b ¨¨¨b fi ˚p" _ er q Proof.
For simplicity, set M 1 :" M 0,r pX p k , pfi p k q ˚dq, S :" X r , and S 1 :" pX p k q r . According to Lemma 2.3.1.1, M 1 ˆS1 S is a projective variety with rational singularities. Furthermore, since ˆev is surjective, M 1 ˆS1 S is irreducible. Finally, according to Chapter 1 Proposition 1.4.0.

1 since @ p † k, d k • n k Q dp´dp´1 np´np´1
U the general fiber of ˆev is a rationally connected variety. Hence ˆev is an H-equivariant surjective morphism of irreducible projective varieties with rational singularities with rationally connected general fiber, hence according to Theorem 0.8.0.2 we have in K H pM 1 ˆS1 q:

i ˚p ˆevq ˚"O M0,rpX,dq ı " i ˚"O p ˆevqM0,rpX,dq ı " i ˚"O M 1 ˆS1 S ‰ " ÿ e1,...,erPI ev ˚p" e1 b . . . " er q b ppfiq r q ˚`" _ e1 b ¨¨¨b " _ er " ÿ e1,...,erPI
ppev 1 " e1 q b ¨¨¨b pev r " er qq b `fi˚p " _ e1 q b ¨¨¨b fi ˚p" _ er q where the third equality holds since the morphism pfiq r is a flat H-equivariant morphism-cf. Lemma 2.2.2.1.

Lemma 2.3.2.2. Let Y and Z be projective varieties with an H-action. Suppose Z non singular

and suppose both Y and Z are irreducible. Then for -P K H pY q, -P K H pZq » K H pZq, we have

‰ H p-b -q " ‰ H p-q‰ H p-q.
Proof. We consider the following Cartesian diagram

Y ˆZ Z Y SpecpCq p2 p1 fi1 fi2
where we have denoted by p 1 : Y ˆZ Ñ Y and p 2 : Y ˆZ Ñ Z the H-equivariant projections. Since Y is irreducible the morphism Y Ñ SpecpCq is flat. Since ‰ H is the H-equivariant pushforward to the point, we have:

‰ H p-b -q " ‰ H pp 1 -b p 2 -q " ‰ H p-b pp 1 q ˚p2 -q " pfi 1 q ˚p-b fi 1 ppfi 2 q ˚-qq " ‰ H p-q‰ H p-q,
where the third equality holds according to Lemma 2.2.2.1 and the last equality holds according to the projection formula.

Proof of Theorem 2.1.3.1. Let -1 , . . . ,r be elements in K H pXq. Note that the following diagram is a commutative diagram of proper morphisms:

M 0,r pX, dq M 0,r pX p k , fi ˚dq ˆpX p k q r X r M 0,r pX p k , fi ˚dq ˆXr X r ev ˆev i p2
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We obtain in K H pM 0,r pX p k , fi ˚dq ˆXr q:

i ˚p ˆevq ˚´ev 1 -1 b ¨¨¨b ev r -r b rO M0,rpX,dq s " i ˚p ˆevq ˚´ev ˚p-1 b ¨¨¨b -r q b rO M0,rpX,dq s " i ˚p ˆevq ˚´pp 2 ˝i ˝p ˆevqq ˚p-1 b ¨¨¨b -r q b rO M0,rpX,dq s " ppp 2 q ˚p-1 b ¨¨¨b -r qq b i ˚p ˆevq ˚rO M0,rpX,dq s " ´rO M0,rpX p k ,fi˚dq s b p-1 b ¨¨¨b -r q ¯b i ˚p ˆevq ˚rO M0,rpX,dq s " ´rO M0,rpX p k ,fi˚dq s b p-1 b ¨¨¨b -r q ¯b ÿ e1,...,erPI
ppev 1 " e1 q b ¨¨¨b pev r " er qq b `fi˚p " _ e1 q b ¨¨¨b fi ˚p" _ er q " ÿ e1,...,erPI

ppev 1 " e1 q b ¨¨¨b pev r " er qq b `pfi ˚p" _ e1 q b -1 q b ¨¨¨b pfi ˚p" _ er q b -r qq ˘,
where the third equality holds according to the projection formula, and the last equality holds according to Lemma 2.3.2.1. Finally, decompose each element fi ˚-i in the basis p" e q ePI of K H pX p k q » K H pX p k q: fi ˚-i " ∞ ePI a i,e " e . Note that we have ‰ H pfi ˚-i b " _ f q " a i,f . Denote by p 2 : M 0,r pX p k , fi ˚dq ˆXr Ñ X r the second projection, and by p : pX p k q r Ñ SpecC the H-equivariant projection to the point. We obtain:

‰ H ´ev 1 -1 b ¨¨¨b ev r -r b rO M0,rpX,dq s " p ˚pfi r q ˚pp 2 q ˚i˚p ˆevq ˚´ev 1 -1 b ¨¨¨b ev r -r b rO M0,rpX,dq s " p ˚pfi r q ˚pp 2 q ˚˜ÿ e1,...,erPI ppev 1 " e1 q b ¨¨¨b pev r " er qq b `pfi ˚p" _ e1 q b -1 q b ¨¨¨b pfi ˚p" _ er q b -r q ˘" ÿ e1,...,erPI
‰ H ppev 1 " e1 q b ¨¨¨b pev r " er qq p ˚pfi r q ˚`pfi ˚p" _ e1 q b -1 q b ¨¨¨b pfi ˚p" _ er q br q " ÿ e1,...,erPI ‰ H ppev 1 " e1 q b ¨¨¨b pev r " er qq π 1 §i §r

‰ H p" _ ei b -i q " ÿ e1,...,erPI ‰ H ppev 1 " e1 q b ¨¨¨b pev r " er qq π 1 §i §r a i,ei
where the before last equality is obtained by applying the projection formula to the flat morphism pfiq r . Finally, we obtain:

‰ H ´ev 1 -1 b ¨¨¨b ev r -r b rO M0,rpX,dq s ¯" ÿ e1,...,erPI
‰ H pa 1,e1 pev 1 " e1 q b ¨¨¨b a r,er pev r " er qq which yields the expected result since ∞ ePI a i,e " e " fi ˚-i .

Geometric interpretation in the non equivariant setting

Consider the case when H is the identity element of G. We provide here an alternative proof of the equality between correlators provided by Theorem 2.1.3.1, using results of Chapter 1.

We use here the same notations as in Chapter 1. As usual, we say a property (P) holds for a general point in a variety X if (P) is true for points belonging to a dense open subset of X. Recall a flag variety X can be written as G{P , where G " GL n and P is a parabolic subgroup of X containing a Borel subgroup B Ä P Ä G. For an element u in the Weyl group W of G " GL n we denote by Xpuq :" BuP {P the associated Schubert variety, and by O u :" rO Xpuq s the associated class in the Grothendieck ring KpXq of coherent sheaves on X. Let r • 0. Let u 1 , . . . , u r be elements in W . Let d " pd 1 , . . . , d m q be a degree in EpXq. Recall for an element pg 1 , . . . , g r q in G r we call Gromov-Witten variety associated with the u i the variety W X g1,...,gr :" M 0,r pX, dq ˆXr

r π i"1 g i Xpu i q
parametrizing genus zero degree d stable maps into X sending their i-th marked point within the variety g i Xpu i q. Note that for an element pg 1 , . . . , g r q general in G r the correlators xO u1 , . . . , O ur y d satisfy xO u1 , . . . , O ur y X d " ‰pW X g1,...,gr q. The flag variety X parametrizes flags of vector spaces V n1 Ä ¨¨¨Ä V nm Ä C n , where 0 † n 1 † ¨¨¨ † n m † n. Let X 1 be the flag variety obtained from X by forgetting the k-th vector space. Denote by fi : X Ñ X 1 the forgetful map. Note that for all i we have fi ˚Oui " rO X 1 puiq s " O ui P KpX 1 q. We obtain xO u1 , . . . , O ur y X 1 fi˚d " ‰pW X 1 g1,...,gr q. Now suppose the morphism ˆev : M 0,r pX, dq Ñ M 0,r pX 1 , fi ˚dqˆp X 1 q r X r is surjective. Furthermore

suppose @ p † k, d k • n k Q dp´dp´1 np´np´1

U

. Then according to Chapter 1 Theorem 1.1.2.1 for an element pg 1 , . . . , g r q general in G r each irreducible component of the variety W X g1,...,gr surjects into a di erent irreducible component of the variety W X 1 g1,...,gr , and the general fiber of the projection W X g1,...,gr Ñ W X 1 g1,...,gr is a rationnally connected variety. Furthermore according to [CMBP13] Theorem 2.5 for an element pg 1 , . . . , g r q general in G r the variety W g1,...,gr has rational singularities. Theorem 0.8.0.2 then yields

xO u1 , . . . , O ur y X d " xO u1 , . . . , O ur y X 1 d 1 ,
which is the equality described by Theorem 2.1.3.1.

Chapter 3

Schubert calculus for F l 1,n´1

Introduction

Let X " F l 1,n´1 be the incidence variety parametrizing lines contained in hyperplanes of C n . We study here the product of Schubert classes in the small quantum K-ring of X. Part 3.2 is devoted to recalling some standard facts about incidence varieties, and fixing the notations we use in the rest of the chapter. The aim of parts 3. We provide an algorithm computing these coe cients, and conjecture a closed formula for them. We additionally prove that they satisfy a "positivity rule".

Incidence varieties.

Let us begin by fixing down some of the usual notations associated with a generalized flag variety. Let G :" GL n , let T be a maximal torus of G and B be a Borel subgroup of G containing T . A generalized flag variety can be written as X :" GL n pCq{P , where P is a parabolic subgroup of GL n and satisfying

T Ä B Ä P Ä G.
Let us name W " N G pT q{T » S n the Weyl group of G, W P :" N L pT q{T the subgroup of W associated with P , and W P :" W {W P . For w P W P , note that the variety Bw 1 P {P does not depend on the choice of an element w 1 in W representing w; we obtain a Schubert variety Xpwq :" BwP {P . The homology classes rXpwqs from a basis of the integral homology of X, where w runs over W P . The classes O w :" rO Xpwq s form an additive basis of the Grothendieck ring K ˝pX q of coherent sheaves on X. Furthermore, we denote by pI w q wPW P the dual basis of pO w q for the Euler characteristic. If we denote by " u,v the symbol equal to 1 if u " v, and else equal to 0, we have for all u, v P W P :

‰pO u , I v q " " u,v .
For an element w in W P , we denote by ¸pwq the length of a minimal length representant of w. Note that ¸pwq " dimXpwq.

We consider here the incidence variety X " F l 1,n´1 parametrizing lines included in hyperplanes of C n . Forgetting a line or a hyperplane yields a forgetful map X Ñ P n´1 which is a fibration in w0w k,l wi,j " Xpw i,j q X w 0 Xpw k,l q " tpL, Hq P X|L Ä † e n´k`1 , . . . , e i °; † e 1 , . . . e j´1 , e n´l`2 , . . . , e n °Ä Hu, (3.5) if n ´k `1 § i and j ´1 § n ´l `2, and X k,l i,j " H else. The second equality comes from considering the description of Schubert varieties given by (3.1) and of opposite Schubert varieties given by (3.4).

Degenerating Richardson varieties of F l 1,n´1 .

We describe here one parameter families of deformations of Richardson varieties. More precisely, we describe irreducible projective varieties Õ of P 1 ˆX such that one fiber of the projection morphism Õ Ñ P 1 is a Richardson variety, while another fiber is a union of Schubert varieties, up to multiplication by elements of GL n .

To facilitate the proof, let us first introduce an auxilliary variety. Set e n`1 " 0 " e 0 . For 1 § r § h § n, 0 § p § n ´r ´1, we will consider the following subvariety of X: Denote by r the number of shared vectors between pe n´k`1 , . . . , e i q and pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q. Call h :" i `k ´n, and p :" j `l ´2 ´r. There exists g in GL n such that g ¨Xk,l i,j " Y h r,p .

Y h r
2. Fix 1 § r § n, 0 § p § n ´r ´1.Then there exists g in GL n such that Y r r,p " g ¨Xpr, r `p `1q.

3. Fix 1 § r § h § n. Then Y h r,0 " Xph, r `1q.
Proof.

1. Recall we have defined r as the number of shared vectors between pe n´k`1 , . . . , e i q and pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q, and p " j `l ´2 ´r. Notice:

p " j `l ´2 ´r " j ´1 `n ´pn ´l `1q ´r " #pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q ´r, hence p is the number of vectors in pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q not belonging to pe n´k`1 , . . . , e i q. Now call p' 1 , . . . , ' p q these p vectors, and p' p`1 , . . . , ' p`r q the r vectors in pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q belonging to pe n´k`1 , . . . , e i q. Finally, call p÷ r`1 , . . . , ÷ h q the #pe n´k`1 , . . . , e i q ´r " h ´r vectors of pe n´k`1 , . . . , e i q that do not belong to pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q, and p÷ h`1 , . . . , ÷ n´p q the remaining vectors. Denote by g the following permutation of the basis vectors:

pe 1 , . . . , e n q Ñ p' p`1 , . . . , ' p`r , ÷ r`1 , . . . , ÷ h , ÷ h`1 , . . . , ÷ n´p , ' 1 , . . . , ' p q.
Then, according to (3.1), we have: where the first equality follows directly from the definition of g and the definition (3.5) of X k,l i,j :

g ¨Xk,l i,j "
X k,l i,j " tpL, Hq P X|L Ä † e n´k`1 , . . . , e i °; † e 1 , . . . e j´1 , e n´l`2 , . . . , e n °Ä Hu.

By definition, we have:

Y r r,p :" tpL, Hq P X|L Ä † e 1 , . . . e r °, † e 1 , . . . e r , e n´p`1 , . . . , e n °Ä Hu. If r " n ´p, set g :" id. Else, denote by g the permutation of the basis vectors sending: pe 1 , . . . , e r , e r`1 , . . . , e n´p , e n´p`1 , . . . , e n q Ñ pe 1 , . . . , e r , e n´p`1 , . . . , e n , e r`1 , . . . , e n´p q.

Then, according to (3.1), we have: g ¨Y r r,p " tpL, Hq P X|L Ä † e 1 , . . . , e r °, † e 1 , . . . e r , e r`1 , . . . , e r`p °Ä Hu " Xpr, r `p `1q

We have:

Y h r,0 : " tpL, Hq P X|L Ä † e 1 , . . . e h °, † e 1 , . . . e r °Ä Hu " Xph, r `1q

where the first equality is the definition (3.6) of Y h r,0 and the third equality is the definition (3.1) of Schubert varieties. Proposition 3.3.0.1. Let 1 § i, j, k, l § n, where i ‰ j and k ‰ l.

1. If n `1 °i `k or j `l • n `2, then X k,l i,j " H;
2. Suppose i `k • n `1 and j `l § n `1 and (i † j or k † l). Then there exists g in GL n such that: X k,l i,j " g ¨Xpi `k ´n, j `l ´1q;

3. Suppose i `k ´n • j `l and j `l § n `1. Then there exists g in GL n , and an irreducible projective subvariety Õ of P 1 ˆX such that:

fi ´1pr1 : 0sq " tr1 : 0su ˆg ¨Xk,l i,j
and fi ´1pr0 : 1sq " tr0 : 1su ˆXpi `k ´n, j `p ´1q;

where fi : Õ Ä P 1 ˆX Ñ P 1 is the natural projection; 4. Suppose 1 § i `k ´n § j `l ´1 § n and i °j and k °l. Then there exists g in GL n , and an irreducible projective subvariety Õ of P 1 ˆX such that:

fi ´1pr1 : 0sq " tr1 : 0su ˆg ¨Xk,l i,j fi ´1pr0 : 1sq " tr0 : 1su ˆY i`k´n´1 i`k´n´1,j`l´1´i´k`n Y tr0 : 1su ˆY i`k´n i`k´n,j`l´1´i´k`n
where fi : Õ Ä P 1 ˆX Ñ P 1 is the natural projection.

Proof. 1. By definition of X k,l i,j . 2. Notice that then all vectors of E 1 " pe n´k`1 , . . . , e i q belong to E 2 " pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q, hence the number r of shared vectors between E 1 and E 2 is equal to h " #E 1 " i`k ´n. Hence, according to Lemma 3.3.0.1 piq, there exists g in GL n such that g ¨Xk,l i,j " Y h h,p , where h " i `k ´n and p " j `l ´2 ´h. Furthermore, according to Lemma 3.3.0.1 piiq, there exists g 1 in GL n such that Y h h,p " g 1 ¨Xpi `k ´n, j `l ´1q.

Hence: X k,l i,j " g ´1 ¨Y h h,p " g ´1g 1 ¨Xpi `k ´n, j `l ´1q.

3. We use here the same notations as in Lemma 3.3.0.1. Denote by r the number of shared vectors between pe n´k`1 , . . . , e i q and pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q. Call h :" i`k´n, and p :" j`l´2´r.

Let Õ be the subvariety of X ˆP1 defined by : Õ " tpru : vs; rx 1 : ¨¨¨: x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y r`1 : ¨¨¨: y n sq P P 1 ˆPn´1 ˆPn´1 ˇˇˇˇh ÿ a"r`1

x a y a " 0 and @ r † a § r `p, vy a " uy n´p`a´r u

As usual, we denote by Dpvq (respectively Dpuq) the subvariety of elements pru : vs; rx 1 : ¨¨¨: x n s; ry 1 : ¨¨¨: y n sq in P 1 ˆPn´1 ˆPn´1 satisfying v ‰ 0 (resp. u ‰ 0). On Dpvq, we have Õ |Dpvq » tpt; rx 1 , . . . , x h s; r0 : ¨¨¨: 0 : ty n´p`1 : ¨¨¨: ty n : y r`p`1 : ¨¨¨:

y n s P C ˆPn´1 ˆPn´1 |t r`p ÿ a"r`1
x a y n´p`a´r `h ÿ a"r`p`1

x a y a " 0u.

Since r `p " j `l ´2 † i `k ´n ´1 " h ´1 † h, Õ |Dpvq is irreducible. In the same way, Õ |Dpuq is also irreducible. Hence Õ is an irreducible projective subvariety of X ˆP1 .

Denote by fi : Õ Ñ P 1 the natural projection. fi verifies : fi ´1ptr1 : 0suq " tpr1 : 0s; rx 1 : ¨¨¨: x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y r`1 : ¨¨¨: y n´p , 0, . . . , 0sq

P P 1 ˆPn´1 ˆPn´1 | h ÿ i"r`1 x i y i " 0u " tr1 : 0su ˆY h r,p " tr1 : 0su ˆg ¨Xk,l i,j
where the existence of the element g is ensured by Lemma 3.3.0.1 piiq, and the second equality is the definition (3.7) of Y h r,p . Finally, fi verifies: fi ´1pr0 : 1sq " tpr0 : 1s; rx 1 : ¨¨¨: x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y r`p`1 : ¨¨¨:

y n sq P P n´1 ˆPn´1 | h ÿ a"r`1
x a y a " 0u " tr0 : 1su ˆtpL, Hq P X|L Ä † e 1 , . . . e h °, † e 1 , . . . e p`r °Ä Hu " tr0 : 1su ˆY i`k´n j`l´2,0

" tr0 : 1su ˆXpi `k ´n, j `l ´1q
where the second equality is the definition (3.7) and the last equality holds according to Lemma 3.3.0.1 piiiq.

4. Again, we use the same notations as in Lemma 3.3.0.1. Denote by r the number of shared vectors between pe n´k`1 , . . . , e i q and pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q. Call h :" i`k´n, and p :" j`l´2´r.

Let Õ be the subvariety of X ˆP1 defined by: Õ " " pru : vs; rx 1 : ¨¨¨: x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y r`1 : ¨¨¨: y n´p´r`h´1 : 0 : ¨¨¨: 0sq P P 1 ˆPn´1 ˆPn´1 ˇˇˇˇ@ 1 § a § h ´1 ´r, vy r`a " uy n´p`a , and h ÿ a"r`1

x a y a " 0 + .

On Dpvq, we have Õ |Dpuq » SpecCrtsˆP h´1 ˆY , where Y " tr0 : ¨¨¨: 0 : y r`1 : ¨¨¨: y n s P P n´1 |u.

Õ |Dpvq » tpt; rx 1 , . . . , x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : ty n´p`r`1 : ¨¨¨: ty n´p`r`h´1 : y h : ¨¨¨: y n´p`r´h´1 : 0 ¨¨¨: 0s

P C ˆPn´1 ˆPn´1 ˇˇˇˇt h´1 ÿ a"r`1
x a y n´p`a `xh y h " 0 + . Now notice that, since j † n ´l `2, the number r of shared vectors between pe n´k`1 , . . . , e i q and pe 1 , . . . e j´1 , e n´l`2 , . . . , e n q satisfies r † h " #pe n´k`1 , . . . , e i q. Hence Õ |Dpuq is irreducible. In the same way, Õ |Dpuq is also irreducible. Hence Õ is an irreducible projective subvariety of X ˆP1 .

Denote by fi : Õ Ñ P 1 the natural projection. fi satisfies: fi ´1pr1 : 0sq " tpr1 : 0s; rx 1 : ¨¨¨: x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y r`1 : ¨¨¨: y n´p , 0, . . . , 0sq

P P 1 ˆPn´1 ˆPn´1 | h ÿ a"r`1
x a y a " 0u

" tr1 : 0su ˆY h r,p " tr1 : 0su ˆg ¨Xk,l i,j
where the existence of the element g is ensured by Lemma 3.3.0.1 piiq, and the second equality is the definition (3.7) of Y h r,p . Finally, we observe: fi ´1pr0 : 1sq " tpr0 : 1s; rx 1 : ¨¨¨: x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y h : ¨¨¨: y n´p´r`h´1 , 0, . . . , 0sq P P 1 ˆPn´1 ˆPn´1 |x h y h " 0u " tpr0 : 1s; rx 1 : ¨¨¨: x h´1 : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y h : ¨¨¨: y n´p´r`h´1 , 0, . . . , 0sq P P 1 ˆPn´1 ˆPn´1 u Y tpr0 : 1s; rx 1 : ¨¨¨: x h : 0 : ¨¨¨: 0s; r0 : ¨¨¨: 0 : y h`1 : ¨¨¨: y n´p´r`h´1 , 0, . . . , 0sq P P 1 ˆPn´1 ˆPn´1 u

" tr0 : 1su ˆY h´1 h´1,p`r´h`1 Y tr0 : 1su ˆY h h,p`r´h`1 " tr0 : 1su ˆY i`k´n´1 i`k´n´1,j`l´1´i´k`n Y tr0 : 1su ˆY i`k´n i`k´n,j`l´1´i´k`n
where the third equality is the definition (3.7) and the last equality is deduced from h " i `k ´n and r `p " j `l ´2.

Littlewood-Richardson coe cients in

KpF l 1,n´1 q.

Computing Littlewood-Richardson coe cients.

We deduce here Littlewood-Richardson coe cients in KpF l 1,n´1 q from the results of Part 3.3. For simplicity, we set O i,j "

0 if i † 1 or j °n. Proposition 3.4.1.1. Let 1 § i, j, k, p § n, where i ‰ j and k ‰ p. Then # O k,p ¨Oi,j " O i`k´n,j`p´1 if i `k ´n • j `p or i † j or k † p;
O k,p ¨Oi,j " O i`k´n´1,j`p´1 `Oi`k´n,j`p ´Oi`k´n´1,j`p otherwise.

where, for all 1 § k, p § n, k ‰ p, we call O k,p :" rO Xpw k,p q s the class in K ˝pX q associated with the longest length element w k,p in the n-th symetric group sending 1 to k and n to p. Lemma 3.4.1.1. Let 1 § h § n, 0 § p § n ´h ´1.

Then we have the following equality in

KpF l 1,n´1 q: rO Y h´1 h´1,p YY h h,p s " rO Y h´1 h´1,p s `rO Y h h,p s ´rO Y h´1 h`1,p s
Proof. Denote by I 1 and I 2 the bihomogeneous ideals defining Y h h,p and Y h´1 h´1,p embedded in ProjCrx 1 , . . . , x n s ˆProjCry 1 , . . . , y n s. According to (3.7) we have: I 1 " † x h`1 , . . . , x n ; y 1 , . . . , y h , y n´p`1 , . . . , y n °and I 2 " † x h , . . . , x n ; y 1 , . . . , y h´1 , y n´p`1 , . . . , y n °.

Call S " Crx 1 , . . . , x n s and T " Cry 1 , . . . , y n s the graded rings. The following is an exact sequence of S b T bigraded-modules:

0 Ñ S b T { †I1XI2°Ñ S b T {I1 ' S b T {I2 Ñ S b T { †I1,I2°Ñ 0.
This induces the following exact sequence of O P n´1 ˆPn´1 -modules:

0 Ñ O Y h´1 h´1,p YY h h,p Ñ O Y h´1 h´1,p ' O Y h h,p Ñ É S b T { †I1,I2°Ñ 0,
where É S b T { †I1,I2°i s the O P n´1 ˆPn´1 -module associated to the S b T bigraded-module S b T { †x h ,...,xn;y1,...,y h ,yn´p`1,...,yn°. This implies the following equalities in KpF l 1,n´1 q: rO Xpi,jqYXpi´1,j´1q s " rO

Y h h,p ' O Y h´1 h´1,p s ´r É S b T { †I1,I2 s " rO Y h h,p s `rO Y h´1 h´1,p s ´rO Y h´1 h`1,p s.
The second equality is deduced from

É S b T { †I1,I2°" O Y h´1 h`1,p
, which is a direct consequence of (3.7).

Finally, Proposition 3.4.1.1 follows directly from Lemmas 0.7.2.2, 0.7.2.1, 3.4.1.1 and from Proposition 3.3.0.1. Indeed, notice for any 1 § i, j, k, l § n, such that i ‰ j and k ‰ l, we have: rO Xpi,jq s ¨rO Xpk,lq s " rO

X k,l i,j s,
since the intersection between a Schubert varieties and its opposite variety is transverse, and Schubert varieties have rational singularities-cf. for example [START_REF] Brion | Lectures on the geometry of flag varieties[END_REF], Theorem 4.2.1 piq. Furthermore, according to Lemmas 0.7.2.1, 3.4.1.1, translations by g and one parameter deformations do not change the sheaf class. Finally, Lemma 3.4.1.1 and Proposition 3.3.0.1 give the result.

Link with cohomological Littlewood-Richardson coe cients. Let i, k, j

and l be integers between 1 and n such that i ‰ j and k ‰ l. Since the morphism A ˚pX q Ñ GrK ˝pX q is a morphism of graded abelian groups, we can deduce the intersection product between two classes rXpi, jqs and rXpk, lqs in A ˚pX q from the product betweeen rO i,j s and rO k,l s. Proposition 3.4.1.1 describes Littlewood-Richardson coe cients in A ˚pX q » H ˚pX q:

$ ' ' ' & ' ' ' % rXpk, lqs Y rXpi, jqs " 0 i f i `k § n or j `l • n `2;
rXpk, lqs Y rXpi, jqs " rXpi `k ´n ´1, j `l ´1qs`rXpi `k ´n, j `lqs if 1 § i `k ´n § j `l ´1 § n and i °j, k °l;

rXpk, lqs Y rXpi, jqs " rXpi `k ´n, j `l ´1qs otherwise.

Remark 3.4.2.1. Chevalley's formula for generalized flag varieties already gives us the intersection product between a codimension 1 Schubert class and any other Schubert class. Let us check we do recover the same formula.

According to the generalization of Chevalley's formula to general G{P (cf. for example [START_REF] Fulton | On the quantum product of Schubert classes[END_REF], lemma 8.1), for all u P W {W P , for all -P ∆z∆ P , we have :

rY ps -qs Y rY puqs " Àh -pÊ -qrY pũs -qs,
where the sum goes over all postive roots -such that ¸prũs -sq " ¸puq `1, where h -pÊ -q " n --p-, -q{p-, -q (where n --is the coe cient of -in the expansion of -as a positive linear combination of positive roots), and where we write ũ a minimal length representative of u in W .

We thus obtain here :

rY p-1 qs Y rY puqs " ÀrY pũs -qs, where the sum goes over the -P t' 1 ´'i |2 § i § nu Ä R `´R P verifying ¸prũs -sq " ¸puq `1.

Let ũ " w i,j and s l " s '1´' l . We observe : ¸pw i,j q " i ´1 `n ´j if i † j, and ¸pw i,j q " n `i ´j ´2 else; hence ¸prũs l sq " ¸puq `1 i (l " i `1 and i † j) or (l " n and j " i `1) or (l " i and i °j), from which we deduce :

rY p-1 qs Y rY pi, jqs " rY pi `1, jqs if j ‰ i `1, i ‰ n; rY p-1 qs Y rY pn, jqs " 0; rY p-1 qs Y rY pi, i `1qs " rY pi `2, i `1qs `rY pi `1, iqs, which does indeed gives us rXpn ´1, 1qs Y rXpk, pqs " rXpk ´1, pqs if k ‰ p `1, k ‰ 1,
rXpn ´1, 1qs Y rXp1, pqs " 0, and rXpn ´1, 1qs Y rXpk, k ´1qs " rXpk ´2, k ´1qs `rXpk ´1, kqs.

Remark 3.4.2.2. Let -P ∆z∆ P . If we use the notations of Remark 3.4.2.1, we can write here:

rO Y ps -q s¨rO Y puq s " ÿ -PR `zR P , ¸prũs-sq"¸puq`1 h -pÊ -qrO Y pũs-q s´ÿ -,"PR `zR P ¸prũs-sq"¸puq`1"¸prũs" sq ÿ vPR `zR P , ¸pvq"¸puq`2, v•-et v•" h -pÊ -qh " pÊ -qrO Y pvq s.
3.5 Three points correlators of F l 1,n´1 .

Three points correlators of P n

. Let n °0. We compute here genus zero correlators of P n . Note that Buch-Mihalcea fully described the product of two Schubert classes in the ring QK s pP n q [BM11]; we could compute three points correlators using this description. We give here a di erent proof, by studying the geometry of Gromov-Witten varieties of P n . This result plays a key role in our derivation of correlators of X presented Part 3.5.3. For 1 § i § n `1, we denote by L i the Schubert variety associated with the permutation w 1,i permuting 1 and i: L i :" trx 1 : ¨¨¨: x i : 0 : ¨¨¨: 0s P P n | x 1 , . . . , x i P Cu.

Let d in EpP n q » N. We consider here the compactification of morphisms P 1 Ñ P n given by the space of quasi-maps [START_REF] Braverman | Spaces of quasi-maps into the flag varieties and their applications[END_REF]. A degree d morphism P 1 Ñ P n is defined by pn `1q homogeneous polynomials of degree d. We may thus parametrize degree d morphisms P 1 Ñ P n by P " PpC pd`1qpn`1q q, where we view a point in C pd`1qpn`1q as a set of pn`1q degree d polynomials. For a point p in P " PpC pd`1qpn`1q q, we will denote by f p : P 1 99K P n the associated map. Note that if the polynomials associated with a point p in P have common roots x i , then f p is a rational map which is not defined on the points x i P P 1 . The dense subvariety U of P parametrizing polynomials having no common roots is in bijection with HompP 1 , dq. Fix distinct points p 1 , p 2 , p 3 on P 1 . According to the appendix of Chapter 2, sending a point p in U to the point in M 0,3 pP n , dq associated with pf p : P 1 Ñ P n , tp 1 , p 2 , p 3 uq defines a morphism " : U Ñ M 0,3 pP n , dq. Since M 0,3 pP n , dq is irreducible [START_REF] Kim | The connectedness of the moduli space of maps to homogeneous spaces[END_REF] and " is an injective dominant morphism of quasi-projective normal complex varieties, " is birational. We may hence identify a dense open subset V of M 0,3 pP n , dq with its reciprocal image by ". Finally, note that for an element p in V Ä P , the evaluation morphism ev i assigns to the pn `1q polynomials associated with p the projectivization of their value at p i .

Proposition 3.5.1.1. Let 1 § i 1 , i 2 , i 3 § n `1. Let d P N ˚.
i) Let g 1 , g 2 , g 3 be elements in GL n`1 , let z be an element in P n

. The variety ev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q X ev ´1 3 pg 3 ¨Li3 q X V is either empty or an irreducible rational variety. The same holds for the variety ev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q X ev ´1 3 pzq X V .

ii) For pg 1 , g 2 , g 3 q general in GL 3 n`1 , the Gromov-Witten variety ev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q X ev ´1 3 pg 3 ¨Li3 q is either empty or an irreducible rational variety. In the same way, for pg 1 , g 2 q general in G 2

, the general fiber of the morphism ev 3 :

ev ´1 1 pg 1 L i1 q X ev ´1 2 pg 2 L i2 q Ñ ev 3 `ev ´1 1 pg 1 L i1 q X ev ´1 2 pg 2 L i2 q ˘Ä P n´1
evaluating the third marked point is an irreducible rational variety.

iii)

xw 1,i1 , w 1,i2 , w 1,i3 y d " " 0 if d " 1 and i 1 `i2 `i3 † n `2 1 else
Proof. i) We denote by L :" ev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q X ev ´1 3 pg 3 ¨Li3 q X V , which we see here as a subvariety of P " PpC pd`1qpn`1q q. Note that, if we denote by pP 1 , . . . , P n`1 q the pn `1q polynomials associated to a point in P , L is defined by:

L " pP 1 , . . . , P n`1 q P V Ä pC d`1 q n`1 | @1 § k § 3, rP 1 pp k q : ¨¨¨: P n`1 pp k qs P g k ¨Li k ( .
Since g k ¨Li k is a linear subspaces of P n , the compactification of L in P " pC d`1 q n`1 is defined by linear equations. Hence L is the intersection of the dense open subset V with a linear subspace of P , hence L is an irreducible rational variety.

In the same way, if L :" ev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q X ev ´1 3 pzq X V , since g k ¨Li k is a linear subspace of P n and a point in P n can be described as the zero locus of a set of linear equations, L is an irreducible rational variety.

ii) Since P n is convex, M 0,3 pP n , dq is a dense open subset of M 0,3 pP n , dq [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF], hence V is a dense open subset of M 0,3 pP n , dq. According to Chapter 1, for g " pg k q general in GL 3 n`1 , ev ´1pg ¨pL i1 ˆLi2 ˆLi3 qq has a dense intersection with the dense open subset V of M 0,3 pP n , dq, hence is an irreducible rational variety according to iq.

For pg 1 , g 2 q in G 2 denote by W g1,g2 :" ev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q. For g " pg 1 , g 2 q general in G 2 the variety W g1,g2 has a dense intersection with the dense open subset V ; hence for z general in ev 3 pW g1,g2 q, the fiber ev ´1 3 pzq X W g1,g2 has a dense intersection with the open subset V . Hence for pg 1 , g 2 q general in G 2 and z general in ev 3 pW g1,g2 q, the variety ev ´1 3 pzq X W g1,g2 is an irreducible rational variety.

iii) We name G :" GL n`1 . Since L i is the Schubert variety associated with w 1,i`1 , according to (3.17) we have for pg 1 , g 2 , g 3 q general in G 3 :

xw 1,i1`1 , w 1,i2`1 , w 1,i3`1 y d " ‰pO ev ´1 1 pg1¨Li 1 qXev ´1 2 pg2¨Li 2 qXev ´1 3 pg3¨Li 3 q q.
Suppose i 1 `i2 `i3 `1 † n and d " 1. Then according to Lemma 3.5.1.1 for pg 1 , g 2 , g 3 q general in G 3 , the Gromov-Witten variety ev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q X ev ´1 3 pg 3 ¨Li3 q is empty, hence xw 1,i1`1 , w 1,i2`1 , w 1,i3`1 y 1 " 0. Now suppose d °1, or d " 1 and i 1 `i2 `i3 `1 • n. Then according to Lemma 3.5.1.1 for pg 1 , g 2 , g 3 q general in G 3 , the Gromov-Witten variety ev ´1

1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 q X ev ´1 3 pg 3 ¨Li3 q is non empty. Furthermore, according to [CMBP13] Theorem 2.5. for pg 1 , g 2 , g 3 q general in G 3 this variety has rational singularities. Hence its sheaf Euler characteristic is equal to the sheaf Euler characteristic of its desingularization, which is also a projective rational variety; hence it is equal to 1.

Let 1 § i 1 , i 2 , i 3 § n. Lemma 3.5.1.1. i) For d • 2
, there exists a genus zero stable map of degree d joining the varieties g 1 ¨Li1 , g 2 ¨Li2 and g 3 ¨Li3 for any element pg 1 , g 2 , g 3 q in GL 3 n`1 ;

ii) For pg 1 , g 2 , g 3 q general in GL 3 n`1 , there exists a line joining the varieties g 1 ¨Li1 , g 2 ¨Li2 and

g 3 ¨Li3 i i 1 `i2 `i3 • n `2.

Proof.

i) We first consider the case when d 2 " 2. It is enough to show that for any three points P 1 , P 2 and P 3 in P n there is a genus zero stable map of degree 2 whose image contains all points P i . Consider a line joining the points P 1 and P 2 ; now glue this line at P 2 with a line joining the points P 2 and P 3 . We obtain a genus zero degree 2 stable map P 1 Y P 1 Ñ P n joining all three points P i . Now suppose d • 2. Consider a genus zero degree 2 stable map f : C Ñ P n joining all three points P i . Let P 1 Ñ P n be a genus zero degree d ´2 map, whose image intersects f pCq at the image f ppq of a non special point p P C. Such a map can ba obtained by translating the image of any degree d ´2 map by an element in GL n`1 . Now glue C and P 1 together at the point p. We obtain a degree d stable map C Y P 1 Ñ P n joining all three points P i .

ii) Name G :" GL n`1 . Let g 1 and g 2 be elements in G 2 . By the functorial definition of P n , there exist vectors u i and v i in C n`1 such that g 1 ¨Li1 parametrizes lines in C n`1 included in the linear subspace † u 1 , . . . , u i1 °Ä C n`1 and g 2 ¨Li2 parametrizes lines in C n`1 included in the linear subspace † v 1 , . . . , v i2 °Ä C n`1 . For pg 1 , g 2 q general in G 2 , the vector space generated by the vectors u i and v i is of dimension minpn, i 1 `i2 `1q. Hence for pg 1 , g 2 q general in G 2 the set of points lying on a line joining g 1 ¨Li1 and g 2 ¨Li2 parametrizes lines in C n`1 included in the linear subspace † u 1 , . . . , u i1 , v 1 , . . . , v i2 °» C minpn`1,i1`i2q Ä C n`1 . This can be rephrased more formally as:

ev 3 pev ´1 1 pg 1 ¨Li1 q X ev ´1 2 pg 2 ¨Li2 qq " h ¨Lminpn`1,i1`i2q ,
where h lies in G and we denote by ev i : M 0,3 pP n , 1q the evaluation morphism. Hence for pg 1 , g 2 , g 3 q general in G 3 , there exists a line joining the varieties g 1 ¨Li1 , g 2 ¨Li2 and g 3 ¨Li3 i the intersection between h ¨Lminpn`1,i1`i2q and g 3 ¨Li3 is non empty for g 3 general in G-where h is an element in G depending only on the choice of an element pg 1 , g 2 q general in G 2 . This is equivalent to the following condition in the Chow ring A ˚pP n q: rg 3 ¨Li3 s Y rh ¨Lminpn,i1`i2q s " rL i3 s Y rL minpn`1,i1`i2q s ‰ 0.

Finally, the equality rL i s Y rL j s " rL minpn,i`j´nq s in A ˚pP n q yields the result, where we set L i " H for i † 0.

Computing correlators of X.

We list here properties of X that will allow us to compute genus zero correlators of X in Part 3.5.3. Recall X can be described as X » GL n {P , where P Å B Å T is a parabolic subgroup of G " GL n . Note that P is a parabolic subgroup with associated reductive subgroup the block diagonal matrix GL 1 ˆGL n´2 ˆGL 1 with GL n´2 as the central block.

Recall for 1 § i, j § n, where i ‰ j, we denote by w i,j the representant in W {W P of any permutation in N G pT q{T » S n sending 1 to i and n to j. Let r • 0, let 1 § i 1 , . . . , i r , j 1 , . . . , j r § n, where i k ‰ j k . For an element pg 1 , . . . , g r q in G r , we denote by

W g k :" ev ´1
1 pg 1 ¨Xpw i1,j1 qq X ¨¨¨X ev ´1 r pg r ¨Xpw ir,jr qq the Gromov-Witten variety parametrizing rational curves of degree d with marked points in the Schubert varieties g k Xpw i k ,j k q in M 0,r`1 pX, dq.

(a) Computing correlators by considering the image of Gromov-Witten varieties. Proposition 3.5.2.1. i) Let pg 1 , . . . , g r q be an element in G r such that

A) The general fiber of the evaluation morphism ev r`1 : W g k :" X r k"1 ev ´1 k pg k Ẍpw i k ,j k qq Ñ Impev r`1 q Ä X is a rationally connected variety; B) T or X r i pO M0,r`1pX,dq , O ± r k"1 g k Xpwi k ,j k q q " 0 for all i °0; C) The Gromov-Witten variety W g k has rational singularities; D) The projected Gromov-Witten variety ev r`1 pW g k q has rational singularities; Then for anyin K ˝pX q xO i1,j1 , . . . , O ir,jr , -y d " ‰ ´-¨rO evr`1pWg k q s ¯.

ii) If for pg 1 , . . . , g r q general in G r :

A) The general fiber of the evaluation morphism ev r`1 : W g k :" X r k"1 ev ´1 k pg k Ẍpw i k ,j k qq Ñ Impev r`1 q Ä X is a rationally connected variety; B) The projected Gromov-Witten variety ev r`1 pW g k q has rational singularities then for anyin K ˝pX q and for pg 1 , . . . , g r q general in G r :

xO i1,j1 , . . . , O ir,jr , -y d " ‰ ´-¨rO evr`1pWg k q s īii) If A) For pg 1 , g 2 q general in G 2
, the general fiber of the evaluation morphism ev 3 : W g1,g2 " ev ´1

1 pg 1 Xpi 1 , j 1 qq X ev ´1 2 pg 2 w 0 Xpi 2 , j 2 qq Ñ Impev 3 q Ä X is a rationally connected variety; B) The projected Gromov-Witten variety ev 3 pW 1,w0 q has rational singularities, then xO i1,j1 , O i2,j2 , -y d " ‰ ´-¨rO ev3pW1,w 0 q s Proof.

i) Since T or X r i pO M0,r`1pX,dq , O ± r k"1 g k Xpwi k ,j k q q " 0 for all i °0, we have the following identity in K ˝pM 0,r`1 pX, dqq.

ev ˚˜r π k"1 O i k ,j k ¸" ev ˚rO ± r k"1 g k Xpwi k ,j k q s " ÿ i•0 rT or X r i pO M0,r`1pX,dqq , O ± r k"1 g k Xpwi k ,j k q qs " rO M0,r`1pX,dqˆXr ± r k"1 g k Xpwi k ,j k q s " rO Wg k s. (3.8) 
By definition for -in K ˝pX q the correlator associated with i k , j k and -is given by 

xO i1,
‰ ´ev r`1 -¨rO Wg k s " ‰ ´-¨pev r`1 q ˚rO Wg k s ¯.
Moreover, since the projected Gromov-Witten variety ev r`1 pW g k q has rational singularities, according to [BM11] Theorem 3.1 we have in K ˝pX q: pev r`1 q ˚rO Wg k s " rO evr`1pWg k q s, (

which yields the expected equality.

ii) First, according to [START_REF] Chaput | Finiteness of cominuscule quantum K-theory[END_REF] Theorem 2.5 for pg 1 , . . . , g r q general in G r the Gromov-Witten variety W g k has rational singularities. Furthermore, according to Sierra's homological Kleiman-Bertini theorem [START_REF] Sierra | A general homological Kleiman-Bertini theorem[END_REF], for pg 1 , . . . , g r q general in G r , we have T or X r i pO M0,r`1pX,dq , O ± r k"1 g k Xpwi k ,j k q q " 0 for all i °0. Hypothesis Aq and Bq finally imply the expected equality according to iq.

iii) Since for pg 1 , g 2 q general in G 2 , the general fiber of the evaluation morphism ev 3 : W g k Ñ Impev 3 q Ä X is a rationally connected variety there exists a dense open subset U of G 2 such that elements in U satisfy conditions Aq and Bq and Cq of part iq. Since the evaluation morphism ev : M 0,3 pX, dq Ñ X 3 is G-equivariant, U is invariant by the diagonal action of G. Hence according to [START_REF] Fulton | On the quantum product of Schubert classes[END_REF] Lemma 7.1, there exists ph 1 , h 2 q in U such that h 1 Xpw i1,j1 q " Xpw i1,j1 q and h 2 Xpw i2,j2 q " w 0 Xpw i2,j2 q. Since the projected Gromov-Witten variety ev 3 pW h1,h2 q has rational singularities, we obtain according to iq:

xO i1,j1 , O i2,j2 , -y d " ‰
´-¨rO ev3pW1,w 0 q s ¯.

(3.10) (b) Computing correlators of F l 1,n´1 when the natural map M 0,3 pX, dq Ñ M 0,3 pP n´1 , d 1 q ˆpP n´1 q 3 X 3 is surjective. Recall X parametrizes lines included in hyperplanes of C n . Denote by fi : X Ñ P n´1 the projection induced by forgetting the hyperplane. Let d " pd 1 , d 2 q :" d 1 l 1 `d2 l 2 be an e ective class of curve in EpXq. Note that fi ˚pd 1 , d 2 q " d 1 P EpP n´1 q. The forgetful morphism fi induces a morphism : M 0,3 pX, dq Ñ M 0,3 pP n´1 , d 1 q. Together with the evaluation morphisms ev i , this induces a morphism: ˆev : M 0,3 pX, dq Ñ M 0,3 pP n´1 , d 1 q ˆpP n´1 q 3 X 3 . Proposition 3.5.2.2. If

• The morphism ˆev : M 0,3 pX, dq Ñ M 0,3 pP n´1 , fi ˚dq ˆpP n´1 q 3 X 3 is surjective, • The projected Gromov-Witten variety ev 3 pW 1,w0 q " ev 3 `ev ´1 1 pXpi 1 , j 1 qq X ev ´1 2 pw 0 Xpi 2 , j 2 qq has rational singularities,

Then xO i1,j1 , O i2,j2 , -y d " ‰ ´-¨rO ev d 3 pW1,w 0 q s ¯.
Proof. Denote by P m Å B the parabolic subgroup associated with P n´1 , i.e. P m is a parabolic subgroup satisfying B Ä P Ä P m with associated reductive subgroup the block diagonal matrix GL 1 ˆGL n´1 whose first block is GL 1 . Note that the image of w i,j by the forgetful morphism W {W P Ñ W {W Pm is the element w 1,i in W {W Pm associated with any permutation sending 1 to i. Recall the Schubert variety of P n´1 associated with the element w 1,i in W {W Pm is L i :" trx 1 : ¨¨¨: x i : 0 : ¨¨¨: 0su. For an element pg 1 , g 2 q in G 3 , denote by

M 0,3 pX, dq Å W g k :" π k"1,2 ev ´1 k pg k Xpw i k ,j k qq and W 1 g k :" π k"1,2 ev ´1 k pg k L i k q Ä M 0,3 pP n´1 , d 1 q
the Gromov-Witten variety of X (respectively P n´1 ) associated with the translated Schubert varieties g k Xpw i k ,j k q (respectively g k L i k ).

Since the morphism ˆev is surjective and X is a two step flag variety, according to Chapter 2 (Proposition 1.4.0.1) the general fiber of ˆev is rational. Hence according to Chapter 1 (Proposition 1.2.4.1) the general fiber of the restriction W g1,g2 Ñ W 1 g1,g2 ˆpP n´1 q 3 g 1 Xpi 1 , j 1 q ĝ2 Xpi 2 , j 2 q ˆX of ˆev is rationally connected. Furthermore, according to Proposition 3.5.1.1, the general fiber of the morphism ev d1

3 : W 1 g1,g2 Ñ ev 3 pW 1 g1,g2 q Ä P n´1 evaluating the third marked point is an irreducible rational variety. Note that since X Ñ P n´1 is a fibration in P n´2 's, it is a flat morphism. Recall from Chapter 1 that the flat base change and composition of a rationally connected fibration is a rationally connected fibration (Theorem 1.2.2.1 (3) and Lemma 1.5.1.1); hence the general fiber of the morphism W 1 g1,g2 ˆpP n´1 q 3 g 1 Xpi 1 , j 1 q ˆg2 Xpi 2 , j 2 q ˆX Ñ P n´1 ˆpP n´1 q 3 g 1 Xpi 1 , j 1 q ˆg2 Xpi 2 , j 2 q ˆX " X is also rationally connected. We obtain the following commutative diagram of rationally connected fibrations.

W g1,g2 W 1 g1,g2 ˆpP n´1 q 3 g 1 Xpi 1 , j 1 q ˆg2 Xpi 2 , j 2 q ˆX X P n´1 ev d 3 ˆev ev d 1 3
By composition the general fiber of the morphism ev d 3 : W g1,g2 Ñ ev d 3 pW g1,g2 q is rationally connected. Since the projected Gromov-Witten variety ev d 3 pW 1,w0 q has rational singularities, then according to Proposition 3.5.2.1 for any -in K ˝pX q we have xO i1,j1 , O i2,j2 , -y d "

‰ ´-¨rO ev3pW1,w 0 q s ¯.

(c) Symmetry of correlators of F l 1,n´1 . The isomorphism Grp1, nq » Grpn ´1, nq yields an automorphism Ï of X, which implies the following symmetry for correlators of X. Proof. We consider here X as the flag variety parametrizing lines included in hyperplanes of C n . We identify explicitly a line in C n with a hyperplane in C n in the following way. Consider a Hermitian inner product x¨| ¨y on C n . For vectors u 1 , . . . , u r in C n , we denote by † u 1 , . . . , u r °the C-linear vector space generated by the u i . For any linear space E " † u 1 , . . . , u r °in C n denote by E K its orthogonal with respect to x¨| ¨y; E K may be defined as the intersection of the kernels of the r linear maps sending a vector v in C n to the complex number xu i | vy, where we denote by u i the conjugate of u i . Then the morphism rLs Ñ rL K s yields an identification P n´1

» Grpn ´1, nq. Furthermore, for any hyperplane H in C n consider the one dimensional linear space H K orthogonal to it. Since pL K q K " L, we obtain the inverse map Grpn ´1, nq Ñ P n´1 . Now consider the natural embedding X ãÑ P n´1

ˆPn´1 . The automorphism Ï may be seen as the restriction to X of the map P n´1 ˆGrpn ´1, nq Ñ P n´1 ˆGrpn ´1, nq sending the projectivization of a line and a hyperplane prLs, rHsq onto the projectivization of the orthogonal spaces prH K s, rL K sq. Note that Ï exchanges classes l 1 and l 2 , and sends a Schubert variety Xpw i,j q onto a translate of the Schubert variety Xpw n´j`1,n´i`1 q. Indeed, according to (3.1) the image by Ï of any Schubert variety Xpw i,j q may be described in the following way, where we consider a basis pe i q 1 §i §n of C n which is orthogonal with respect to the inner product x¨| ¨y. " w 0 ¨Xpw n´j`1,n´i`1 q, where w 0 is the element in G " GL n associated with a maximal length permutation of the basis vectors e i . Furthermore, we have Ï ˚pl 1 q " rÏpXpw 2,n qqs " rw 0 ¨Xpw 1,n´1 qs " l 2 , and in the same way Ï ˚pl 2 q " l 1 . The isomorphism Ï : X Ñ X induces an isomorphism " : M 0,r pX, d 1 l 1 `d2 l 2 q Ñ M 0,r pX, Ï ˚pd 1 l 1 `d2 l 2 qq " M 0,r pX, d 2 l 1 `d1 l 2 q. We obtain the following commutative diagram.

ÏpXpw i,j qq " Ï ` pL, Hq P X - -L Ä † e 1 , ¨¨¨, e i °, † e 1 , ¨¨¨, e j´1 °Ä H (" pH K , L K q P X - -L K Å p † e 1 ,
M 0,r pX, d 1 l 1 `d2 l 2 q M 0,r pX, d 2 l 1 `d1 l 2 q X r X r " 'v ev Ï r
Since Ï and " are isomorphisms, for -in K ˝pX q » K ˝pX q the projection formula implies " ˚´p'v i q ˚-¨rO M0,rpX,d1l1`d2l2q s ¯" " ˚´p'vq i Ï ˚Ï˚-¨rO M0,rpX,d1l1`d2l2q s " " ˚´" ˚ev i Ï ˚-¨rO M0,rpX,d1l1`d2l2q s " ev i Ï ˚-¨rO M0,rpX,d2l1`d1l2q s. This yields the following equalities, where we denote by ‰ : K ˝pM 0,r pX, dqq Ñ K ˝pSpecpCqq the pushforward to the point. xw i1,j1 , . . . , w ir,jr y d1l1`d2l2 " ‰ ´p'v 1 q ˚Owi 1 ,j 1 ¨¨¨¨¨p'v r q ˚Owi r ,jr ¨rO M0,rpX,d1l1`d2l2q s " ‰ ´"˚´" ˚ev 1 Ï ˚Owi 1 ,j 1 ¨¨¨¨¨" ˚ev r Ï ˚Owi r ,jr ¨rO M0,rpX,d1l1`d2l2q s

¯"

‰ ´ev 1 pÏ ˚Owi 1 ,j 1 q ¨¨¨¨¨ev r pÏ ˚Owi r ,jr q ¨rO M0,rpX,d2l1`d1l2q s " ‰ ´ev 1 pO wn´i 1 `1,n´j 1 `1 q ¨¨¨¨¨ev r pO wn´i r `1,n´jr `1 q ¨rO M0,rpX,d2l1`d1l2q s ¯,

where the last equality holds since Ï ˚Owi,j " Ï ˚rO Xpwi,j q s " rO ÏpXpwi,j qq s " rO w0¨Xpwn´j`1,n´i`1q s " O n´j`1,n´i`1 . To sum up, correlators of X exhibit the following symmetry.

xw i1,j1 , . . . , w ir,jr y d1l1`d2l2 " xw n´j1`1,n´i1`1 , . . . , w n´jr`1,n´ir`1 y d2l1`d1l2 .

Remark 3.5.2.1. Let G be a semi-simple linear algebraic group, let P be a parabolic subgroup of G and H be a subgroup of G acting on G{P by left multiplication. Then point paq holds for H-equivariant correlators of G{P . If G " GL n , then point pcq implies that H-equivariant correlators of the flag variety GL n {P are equal to the corresponding correlators of the dual flag variety. The symmetry observed here comes from the fact that F l 1,n´1 is self dual.

Three points correlators of X.

We use here the results of the preceding parts to compute all genus zero three points correlators of X " GL n {P . Let 1 § i 1 , i 2 , i 3 , j 1 , j 2 , j 3 § n, where i k ‰ j k . Recall for 1 § i, j § n, i ‰ j, we denote by w i,j the element in W P representing any permutation sending 1 to i and n to j. For a point x in P n´1 ˆPn´1 , we denote by pL x , H x q P C n ˆCn vectors satisfying x " prL x s, rH x sq. We consider here X as a subvariety cut out from P n´1 ˆPn´1 by the incidence relation "line included in hyperplane" in the following way. Consider a Hermitian inner product x¨| ¨y on C n . Consider a basis pe i q of C n orthogonal with respect to x¨| ¨y. Denote by u the conjugate of a complex number. The isomorphism P n´1 » Grpn ´1, nq identifies

H x P C n with the kernel H K x of the linear map C n Q v Ñ xH x | vy P C, which is a hyperplane of C n .
For any vectors L x , H x in C n the associated point prL x s, rH x sq lies in X i L x lies within the hyperplane H K x Ä C n , i.e. i xL x | H x y " 0. For an element g in G " GL n , we denote by g K the adjoint of g for the inner product x¨| ¨y, i.e. xgL | g K L 1 y " xL | L 1 y for any L, L 1 in C n . We consider here the following action of G. G ˆPn´1 ˆPn´1 ÑP n´1 ˆPn´1 pg, prL x s, rH x sqq Ñprg ¨Lx s, rg K ¨Hx sq

The action of G on P n´1 ˆPn´1 we just described induces by restriction the natural action of G by left multilication on X » G{P . For 1 § i § n, we set L i :" trx 1 : ¨¨¨: x i : 0 . . . , 0su Ä P n´1 .

Recall we denote by w 0 the permutation of 1 . . . n of largest length. Note that we have w 0 L i " tr0 : . . . ; 0 : x n´i`1 : ¨¨¨: x n su Ä P n´1 L K i " tr0 : . . . ; 0 : x i`1 : ¨¨¨: x n su " w 0 L n´i .

Recall for 1 § i, j § n and i ‰ j, w i,j denotes the element in W P representing any permutation sending 1 to i and n to j. Using (3.2) Schubert varieties of X can be described in the following way.

Xpw i,j q " tx " prL x s, rH x sq P X | L x Ä † e 1 , ¨¨¨, e i °, H x Ä † e j , ¨¨¨, e n °u " pL i ˆw0 L n´j`1 q X X. (3.11) Let d be a degree in EpXq. For pg 1 , g 2 q in G 2 , we denote by X d g1,g2 :" ev ´1 1 pg 1 ¨Xpw i1,j1 qq X ev ´1 2 pg 2 ¨Xpw i2,j2 qq Ä M 0,3 pX, dq the Gromov-Witten variety parametrizing genus zero degree d stable maps sending their marked points into the translated Schubert varieties g k ¨Xpw i k ,j k q.

(a) When d " l 2 . Denote by fi 1 : X Ä P n´1 ˆPn´1 Ñ P n´1 (respectively fi 2 ) the first (respectively second) projection. Note that since l 2 is a generating element in the Chow ring A ˚pX q, curves of class l 2 are irreducible. Furthermore, since fi 1˚l2 " 0 P A ˚pP n´1 q, a curve C of class l 2 in X projects to the point, and since fi 2˚l2 " l 2 P A ˚pP n´1 q, a curve C of class l 2 projects to a line in P n´1 . Hence curves of class l 2 in X are curves of the form txu ˆL, where x is a point in P n´1 and L is a line in P n´1 . Since lines are rational, any such curves are rational. In particular we observe that there is either a unique rational curve of class l 2 joining two distinct points in X, or none.

We denote by ev 3|g 1,g2 the restriction of the morphism evaluating the third marked point to the Gromov-Witten variety X l2 g1,g2 . Denote by U Ä X 3 the dense open subset parametrizing distinct triplets of points in X 2 . Lemma 3.5.3.1. i) For pg 1 , g 2 q general in G 2

, the variety X l2 g1,g2 has a dense intersection with pev 1 ˆev 3 q ´1pU q.

ii) For pg 1 , g 2 q general in G 2

, the general fiber of ev 3|g 1,g2 is a rational variety.

iii) Suppose j 1 `j2 § n `2. Then there exists an element h in G such that ev 3 pX l2 1,w0 q " h ¨Xpw i1`i2´n,1 q if i 1 `i2 °n `1, and ev 3 pX l2 1,w0 q " h ¨Xpw 1,2 q if i 1 `i2 " n `1, and is empty else.

Proof. We set X g1,g2 :" X l2 g1,g2 . i) Note that for pg 1 , g 2 q general in G 2 , the intersection of X l2 g1,g2 with pev 1 ˆev 3 q ´1pU q is a dense open subset of X l2 g1,g2 . Indeed, since X is convex, the subset M 0,3 pX, l 2 q Ä M 0,3 pX, l 2 q parametrizing degree l 2 stable maps P 1 Ñ X is a dense open subset of M 0,3 pX, l 2 q [FP96], whose image is contained in U . Hence pev 1 ˆev 3 q ´1pU q is a dense open subset of M 0,3 pX, l 2 q. Then for pg 1 , g 2 q general in G 2 the variety X l2 g1,g2 has a dense intersection with pev 1 êv 3 q ´1pU q. ii) Let pg 1 , g 2 q be an element in G 2 , let z " pz 1 , z 2 q be a point in ev 3 pX g1,g2 q. According to (3.11), we have:

p 2 pg 1 Xpw i1,j1 q ˆg2 Xpw i2,j2 qq " g K 1 ¨p2 pXpw i1,j1 qq ˆgK 2 ¨p2 pXpw i2,j2 qq Ä P n´1 ˆPn´1

" pg K 1 ¨w0 L n´j1`1 q ˆpg K 2 ¨w0 L n´j2`1 q " L g1 ˆLg2 ,
where we denote by L g1 :" g K 1 ¨w0 L n´j1`1 and L g2 :" g K 2 ¨w0 L n´j2`1 . The point z 1 in P n´1 defines by duality a codimension one linear subspace H 1 in P n´1 » Grpn ´1, nq. We consider the set of points in pL g1 ˆLg2 q X H 1 distinct from z that lie in a line containing z 2 " rz 1 : ¨¨¨: z n s; this can be seen as the intersection of the image of the following map with pL g1 ˆLg2 q X H 1 .

A 1 ˆLg1 ztz 2 u Ñ P n´1 ˆPn´1 f : pt, x " rx 1 : ¨¨¨: x n sq Ñ px, rx 1 `tz 1 : ¨¨¨: x n `tz n sq.
Note that since L g2 and H 1 are described by linear equations, Imf XpL g1 ˆLg2 q is described by linear equations on the x i and t, and hence is a rational variety. We now consider the morphism ev 3 ´1 |g1,g2 pzq Ñ X 2 Ä pP n´1 ˆPn´1 q 2 evaluating the first two marked points. Note that this morphism factors through ev 3 ´1 |g1,g2 pzq Ñ ptz 1 u ˆPn´1 q 2 » pP n´1 q 2 . We denote by f U the restriction of this morphism to the subset ev 3 ´1 |g1,g2 pzq X pev 1 ˆev 2 q ´1pU q. By definition, ev 3 ´1 |g1,g2 pzq X pev 1 ˆev 2 q ´1pU q parametrizes degree l 2 stable maps ph : P 1 Ñ tz 1 u ˆPn´1 » P n´1 , tp 1 , p 2 , p 3 uq satisfying the following conditions:

• h sends its first two marked points into the projection fi 1 pg k Xpw i k ,j k qq of the Schubert varieties considered here, i.e. hpp 1 q P L g1 , hpp 2 q P L g2 ;

• h sends its third marked point into z, i.e. hpp 3 q " z 2 ;

• hpp 1 q ‰ z 2 and hpp 2 q ‰ z 2 ;

• The image of h is contained in X, i.e. hpp 1 q P H 1 and hpp 2 q P H 1 . Since a degree l 2 map pP 1 Ñ P n´1 , tp 1 , p 2 , p 3 uq is uniquely determined by the data of three distinct points in P n´1 joined by a line, points in the fiber ev 3 ´1 |g1,g2 pzq X pev 1 ˆev 2 q ´1pU q are in one-to-one correspondence with distinct points in Imf X pL g1 ˆLg2 q X H 1 . Hence f U is an injective morphism of quasi-projective complex varieties, dominating the rational variety Imf X pL g1 ˆLg2 q X H 1 . Hence ev 3 ´1 |g1,g2 pzq X pev 1 ˆev 3 q ´1pU q is a rational variety.

Finally, since according to iq for pg 1 , g 2 q general in G 2 , X g1,g2 has a dense intersection with pev 1 ˆev 3 q ´1pU q, for pg 1 , g 2 q general in G 2 , the general fiber ev 3 ´1 |g1,g2 pzq has a dense intersection with pev 1 ˆev 3 q ´1pU q, and hence is also a rational variety. iii) ev 3 pX 1,w0 q parametrizes elements pL, Hq in P n´1 ˆPn´1 such that: -There exists a line in P n´1 joining H with elements L 1 Ä † e j1 , . . . , e n °and L 2 Ä † e 1 , . . . , e n´j2`1 °; -L Ä † e 1 , . . . , e i1 °X † e n´i2`1 , . . . , e n °; -L Ä H K . First note that the subset of elements H satisfying the first condition is the vector subspace generated by † e 1 , . . . , e n´j2`1 , e j1 , . . . , e n °» C minpn,2n´j1´j2`2q . Note that the second condition is impossible i i 1 † n ´i2 `1, and else describes elements L in † e n´i2`1 , . . . , e i1 °» C i1`i2´n`1 . Hence ev 3 pX 1,w0 q is the set of elements pL, Hq in P n´1

ˆPn´1 such that -H Ä † e 1 , . . . , e n´j2`1 , e j1 , . . . , e n °; -L Ä † e n´i2`1 , . . . , e i1 °; -L Ä H K . Note that for j 1 `j2 § n `2, the linear subspace † e 1 , . . . , e n´j2`1 , e j1 , . . . , e n °is C n , and hence the first condition is allways satsified. Then ev 3 pX 1,w0 q " tpr0 : ¨¨¨: 0 : x n´i2`1 . . . x i1 : 0 . . . 0s, ry 1 . . . y n sq P Xu.

Translation by a permutation h of the basis vectors yields ev 3 pX 1,w0 q " h ¨tprx 1 . . . x i1`i2´n : 0 : ¨¨¨: 0s, ry 1 . . . y n sq P Xu, which is equal to h¨Xpw i1`i2´n,1 q if i 1 `i2 ´n ‰ 1, and is equal to h¨Xpw 1,2 q if i 1 `i2 " n`1.

Suppose j 1 `j2 § n`2 and i 1 `i2 • n`1. According to Lemma 3.5.3.1 iiq the general fiber of the map ev 3 : X l2 g1,g2 Ñ X induced by evaluating the third point is a rational variety. Furthermore, according to Lemma 3.5.3.1 iiiq its image ev 3 pX 1,w0 q is a translate of a Schubert variety by an element h in G, and hence has rational singularities according to Theorem 0.8.0.3. According to Part 3.5.2 (b), we have for i 1 `i2 °n `1: xw i1,j1 , w i2,j2 , I i3,j3 y l2 " ‰ ´rO h¨Xpwi 1 `i2 ´n,1q s ¨Ii3,j3 " ‰ ´rO Xpwi 1 `i2 ´n,1q s ¨Ii3,j3 ¯.

(3.12) and if i 1 `i2 " n `1 xw i1,j1 , w i2,j2 , I i3,j3 y l2 " ‰ `rO Xpw1,2q s ¨Ii3,j3

"

" i3,1 " j3,2 (3.13)
Furthermore, according to Lemma 3.5.3.1 iiiq if j 1 `j2 § n `2 and i 1 `i2 † n `1, then xw i1,j1 , w i2,j2 , I i3,j3 y l2 " 0 (3.14) (b) When d " l 1 `l2 . An irreducible rational curve of degree pd 1 l 1 `d2 l 2 q on X may be parametrized as P 1 Q ru : vs Ñ prP 1 pu : vqs, rP 2 pu : vqsq P X, where P 1 and P 2 are homogeneous polynomials of degree d 1 and d 2 respectively. Furthermore, for an element pg 1 , g 2 , g 3 q general in G 3 , we denote by

M d g k ,wi k ,j k :" ev ´1
1 pg 1 ¨Xpw i1,j1 qq X ev ´1 2 pg 2 ¨Xpw i2,j2 qq X ev ´1 3 pg 3 ¨Xpw i3,j3 qq the Gromov-Witten variety associated with the i k , j k , where ev k : M 0,3 pX, dq Ñ X denotes evaluation at the k-th marked point. For a point px, yq general in X 2 we denote by C x,y the line joining the points rL x s and rL y s in P n´1 , and by C 1 x,y the line joining the points rH x s and rH y s in P n´1 . Recall the varieties h i are the classes of the Schubert varieties of codimension 1 of X. Note that the class rh 1 s (respectively rh 2 s) in the Chow ring A ˚X is the pullbacks of the Cartier divisor c 1 pO P n´1 p´1qq by the first (respectively second) projection P n´1 ˆPn´1 Ñ P n´1 . Lemma 3.5.3.2. i) For a point px, yq in X 2 one of the two following properties is verified: • There exists a unique connected rational curve of class pl 1 `l2 q joining the points x and y. This curve is the intersection of the variety C x,y ˆC1

x,y Ä P n´1 ˆPn´1 with X. • There are infinitely many rational curves of class pl 1 `l2 q joining the points x and y.

These curves cover the intersection of the variety C x,y ˆC1

x,y with X. ii) For a point px, yq general in X 2 , the rational curve in X of class pl 1 `l2 q joining the points x and y is unique and irreducible.

iii) For pg 1 , g 2 , g 3 q general in G 3 , the Gromov-Witten variety M l1`l2 g k ,wi k ,j k is birational to its image in X 3 by the evaluation morphism. iv) Let pg 1 , g 2 q be a general element in G 2 . Then

ev 3 `ev ´1 1 pg 1 ¨hi q X ev ´1 2 pg 2 ¨Xpw i2,j2 qq ˘" X.
Proof. i) We consider X as a divisor of class rh 1 s `rh 2 s in A 1 pP n´1 ˆPn´1 q. Let p 1 " px 1 , y 1 q and p 2 " px 2 , y 2 q be points on X. If x 1 " x 2 , we can construct infinitely many genus zero stable map of class pl 1 `l2 q whose image contains the points p i by glueing together the degree l 2 map P 1 Ñ X joining p 1 and p 2 with any map P 1 Ñ X of degree l 1 intersecting this curve at another point than the p i . The same holds if y 1 " y 2 . Now suppose x 1 ‰ x 2 and y 1 ‰ y 2 . Denote by L 1 a line in P n´1 joining the points x 1 and x 2 , and by L 2 a line in P n´1 joining the points y 1 and y 2 . Note that any rational curve of class pl 1 `l2 q in X joining the points p i projects to L k , hence any such rational curve is contained in the intersection pL 1 ˆL2 q X X. Since the projective variety P n´1 ˆPn´1 is smooth, the intersection of X with L 1 ˆL2 has dimension at least 1. If the variety pL 1 ˆL2 q X X has dimension 2, then any parametrization P 1

Ñ L 1 and P 1 Ñ L 2 sending the points r1 : 0s and r0 : 1s in P 1 onto the points p i yield a degree pl 1 `l2 q map P 1 Ñ X joining the points p i . We thus obtain infinitely many irreducible rational curves of class pl 1 `l2 q joining the points p i . Indeed, since the classes l i generate A 1 pXq, the map P 1 Ñ X cannot be a multiple covering onto its image, which is then a curve of class pl 1 `l2 q. Now suppose the variety pL 1 ˆL2 q X X has dimension 1. Note that we have the following equality in the Chow ring A ˚pP n´1 ˆPn´1 q:

rC 1 s " rXs Y rL 1 ˆL2 s " prh 1 s `rh 2 sq Y rL 1 s b rL 2 s " prh 1 s `rh 2 sq Y pl 1 `l2 q " l 1 `l2
where we also denote by l i the pushforward to P n´1 ˆPn´1 of the classes l i P H ˚pX, Zq » A ˚pX q. Hence C 1 is a curve of class pl 1 `l2 q in X. We now only have to consider the case where C 1 has several irreducible components. Since C 1 is a curve of class pl 1 `l2 q contained in L 1 ˆL2 , C 1 can be described as C 1 " pL 1 ˆtyuq Y ptxu ˆL2 q where x and y are points in P n´1 . Note that since x 1 ‰ x 2 and y 1 ‰ y 2 , both points p i cannot belong to the same irreducible component. For example suppose p 1 lies on C 1 and p 2 lies on C 2 . Then C 1

" pL 1 ˆty 1 uq Y ptx 2 u ˆL2 q. Since L 1 joins x 1 and x 2 , we obtain that px 2 , y 1 q belongs to L 1 ˆty 1 u. In the same way, px 2 , y 1 q belongs to tx 2 u ˆL2 ; hence the two irreducible components of C 1 come together at px 2 , y 1 q. We obtain a genus zero degree pl 1 `l2 q stable map P 1 Y P 1 » pL 1 ˆty 1 uq Y ptx 2 u ˆL2 q Ñ X whose image contains the points p i . ii) According to here above, the morphism of irreducible projective varieties ev : M 0,2 pX, l 1 `l2 q Ñ X 2 is dominant, and hence is surjective. Hence for px, yq general in X 2 , the general fiber ev ´1px, yq has dimension:

dimev ´1px, yq " dimM 0,2 pX, l 1 `l2 q ´2dimX " dimX `ªl1`l2 c 1 pT X q ´1 ´2dimX " ª l1`l2
ppn ´1qrh 1 s `pn ´1qrh 2 sq ´dimX ´1 " 0.

The general fiber ev ´1px, yq thus contains finitely many points; hence according to iq it contains only one point. The connected rational curve of class pl 1 `l2 q joining two points of X in general position thus is unique. Finally, according to here above such a curve is irreducible.

iii) According to iiq, there exists a dense open subset U Ä X 2 such that there exists a unique irreducible rational curve of class pl 1 `l2 q joining any two points in U . Since the evaluation map ev 1 ˆev 2 : M 0,3 pX, l 1 `l2 q Ñ X 2 is surjective, according to Chapter 1 Lemma 1.2.3.1 for pg 1 , g 2 q general in G 2 the variety ev ´1 1 pg 1 ¨Xpw i1,j1 qq X ev ´1 2 pg 2 ¨Xpw i2,j2 qq has a dense intersection with the dense open subset pev 1 ˆev 2 q ´1pU q. Now denote by V the dense open subset of U ˆX containing distinct points x, y and z in U ˆX. Note that the restriction of the evaluation morphism ev g1,g2 : `ev ´1

1 pg 1 ¨Xpw i1,j1 qq X ev ´1 2 pg 2 ¨Xpw i2,j2 qq ˘X ev ´1pV q Ñ X 3 is an injective map. Indeed, if we specify two points x and y in U , by definition there is a unique irreducible curve C of class pl 1 `l2 q joining x and y. Consider a third point z lying on C, distinct from x and y. There exists a unique parametrization P 1 Ñ C sending the points r1 : 0s, r0 : 1s and r1 : 1s onto the points x, y and z; hence the data of three distinct points x, y and z in U ˆX defines a unique point in M 0,3 pX, l 1 `l2 q. The restriction of the evaluation morphism to M l1`l2 g k ,wi k ,j k X ev ´1pV q " ev g1,g2 ´1pg 3 ¨Xpw i3,j3 qq thus is an injective morphism of quasi-projective complex varieties, hence is birational onto its image. Finally, note that for pg 1 , g 2 , g 3 q general in G 3 according to Chapter 1 Lemma 1.2.3.1 the variety M l1`l2 g k ,wi k ,j k has a dense open intersection with ev ´1pV q, and hence is birational onto its image by the evaluation morphism. iv) Consider points p 1 and p 2 respectively in g 2 ¨Xpw i2,j2 q and X. According to iq there exists a connected rational curve C in X of class pl 1 `l2 q joining p 1 and p 2 . Denote by i : X ãÑ P n´1 ˆPn´1 the natural embedding. We have the following equality in A ˚pP n´1 ˆPn´1 q: rh i s Y rCs " rh i s Y pl 1 `l2 q " rpts, hence the intersection between h i and C is non empty.

According to Lemma 3.5.3.2 iiiq for pg 1 , g 2 q general in G 2 , the Gromov-Witten variety W g1,g2 :" ev ´1 1 pg 1 ¨h1 q X ev ´1 2 pg 2 Xpw i2,j2 qq is birational onto its image in X 3 via the evaluation map. Then the map ev 3 : W g1,g2 Ñ X induced by evaluating the third point is a degree 1 map of projective complex varieties. Furthermore, according to Lemma 3.5.3.2 ivq its image ev 3 pW w0 q is the smooth variety X. According to Part 3.5.2 (b), we have:

xw i1,j1 , w i2,j2 , I i3,j3 y l1`l2 " ‰ prO X s ¨Ii3,j3 q " ‰ `rO Xpwn,1q s ¨Ii3,j3 " " n,i3 " 1,j3 . (c) When d " d 1 l 1 `d2 l 2 , where 0 § d 1 § d 2 and d 2 • 2.
Recall X is the variety parametrizing lines included in hyperplanes of C n . A point in X corresponds to the inclusion of a line in a hyperplane of C n . Denote by fi : X Ñ P n´1 the projection induced by forgetting the hyperplane. Let d " pd 1 , d 2 q :" d 1 l 1 `d2 l 2 P EpXq. Note that fi ˚pd 1 , d 2 q " d 1 P EpP n´1 q. The forgetful morphism fi induces a morphism : M 0,3 pX, dq Ñ M 0,3 pP n´1 , d 1 q. Together with the evaluation morphisms ev i , this induces a morphism: ˆev : M 0,3 pX, dq Ñ M 0,3 pP n´1 , d 1 q ˆpP n´1 q 3 X 3 .

We begin by studying when ˆev is surjective, before computing correlators of X.

Proposition 3.5.3.1. i) If d " p0, d 2 q, where d 2 • 2, then ˆev is surjective; ii) Suppose d " p1, d 2 q, where d 2 • 2. The morphism ˆev is surjective; iii) Suppose d " pd 1 , d 2 q, where d 1 • 2 and d 2 • d 1 . Then ˆev is surjective. iv) Suppose d " pd 1 , d 2 q, where d 1 • 2 and d 2 • 2. Then ev d : M 0,3 pX, dq Ñ X 3 is surjective. v) Suppose d " p1, d 2 q, where d 2 • 2. Then ev 3 pX l1`d2l2 1,w0
q " h ¨Xpw i1`i2,1 q, where h is an element in G. Lemma 3.5.3.3. Let f : Y Ñ Z be a morphism of projective irreducible varieties. Let Z 0 be a subvariety of Z of codimension 1 in Z. Suppose the image of f contains Z 0 . Furthermore, suppose the inverse image by f of Z 0 is a strict subvariety of Y , i.e. suppose f ´1pZ 0 q à Y . Then f is surjective.

Proof. By contradiction, suppose f is not surjective. Then f pY q has dimension smaller than dimf pf ´1pZ 0 qq. Indeed, we have dimf pf ´1pZ 0 qq " dimZ 0 " dimZ ´1, hence dimf pf ´1pZ 0 qq • dimf pY q since f pY q is a strict closed subvariety of the irreducible variety Z. Furthermore, note that the irreducible projective variety f pY q contains the projective variety f pf ´1pZ 0 qq. Hence f pf ´1pZ 0 qq is a projective subvariety of the irreducible variety f pY q of dimension larger than f pY q; hence f pY q " f pf ´1pZ 0 qq and f pY q is contained in Z 0 . Thus Y " f ´1pZ 0 q, which contradicts the fact that f ´1pZ 0 q is a strict closed subvariety of Y .

Proof of Proposition 3.5.3.1. We consider here X as a subvariety of P n´1 ˆPn´1 , where X is cut out from P n´1 ˆPn´1 by the relation "line included in hyperplane" in the following way. Consider a point px, yq in P n´1 ˆPn´1 . By the functorial definition of P n´1 , x defines a line L x Ä C n and, if we identify P n´1 with its dual, y defines an hyperplane H y Ä C n . Then px, yq lies in X i L x Ä H y . We call curve a projective variety of dimension 1. We will denote by pi 1 (respectively fi 2 ) the first (respectively second) projection X Ñ P n´1 . i) Consider a point p on P n´1 ; denote by L p Ä C n the line defined by p. Let pp, y i q be three points on X, where the point y i in P n´1 correspond to a hyperplane H i in C n containing the line L p . Our goal here is to construct a genus zero stable map C Ñ X of degree d 2 l 2 whose three marked points are the points pp, y i q. We first construct a curve of degree l 2 joining the points pp, y 1 q and pp, y 2 q, before constructing a genus zero stable map of degree 2l 2 , and finally a genus zero stable map of degree d 2 l 2 joining all three points pp, y i q.

Suppose the points y 1 and y 2 are distinct. Denote by C a line in P n´1 joining the points y 1 and y 2 ; C can be described as the subset of points in P n´1 associated with hyperplanes uH 1 `vH 2 , where ru : vs runs over P 1 . Since the line L p is included in H 1 and H 2 , for all ru : vs in P 1 it is also included in uH 1 `vH 2 . Hence the curve C 0 :" tpu ˆC in P n´1 ˆPn´1 induced by C is a curve of class l 2 lying in X joining the points pp, y 1 q and pp, y 2 q. In the same way, if the points y 2 and y 3 are distinct, we may construct a rational curve C 1 Ä X of class l 2 joining the points pp, y 2 q and pp, y 3 q. Consider parametrizations f i : P 1 Ñ C i , where we fix points q 1 , q 2 , q 3 and q 4 on P 1 such that f 1 sends q 1 and q 2 to pp, y 1 q and pp, y 2 q, and f 2 sends q 3 and q 4 to pp, y 2 q and pp, y 3 q. Consider the tree of P 1 's P 1 Y P 1 with 3 marked points obtained by glueing pP 1 , tq 1 , q 2 uq with pP 1 , tq 3 , q 4 uq by identifying q 2 and q 3 . The morphisms f i induce a genus zero, degree 2l 2 stable map pf : P 1 Y P 1 Ñ X, tq 1 , q 2 , q 4 uq joining all three points pp, y i q. Finally, notice that if two points y 1 and y 2 come together, a degree 2l 2 stable map P 1 Y P 1 Ñ X collapsing an irreducible component P 1 to the point pp, y 1 q joins all three points pp, y i q. Now suppose d 2 • 2. Consider the degree 2l 2 stable map pf : P 1 Y P 1 Ñ X, tq 1 , q 2 , q 4 uq described here above. Now add an irreducible component P 1 to P 1 Y P 1 , which we glue to P 1

Y P 1 at a non marked point, and send this irreducible component to X via a degree pd 2 ´2ql 2 map. We obtain a degree d 2 l 2 stable map pP 1 Y P 1 Y P 1 Ñ X, tq 1 , q 2 , q 4 uq joining all three points pp, y i q.

ii) Let L be a line in P n´1 , let p 1 , p 2 , p 3 be three points on L. Denote by pp i , y i q three points on X satisfying fipp i , y i q " p i , i.e. the point y i in P n´1 corresponds to a hyperplane in C n containing the line L i associated with the point p i . Our goal here is to prove that there exists a genus zero stable map of degree l 1 `d2 l 2 projecting to L and whose image contains the points pp i , y i q. Consider a genus zero stable map pP 1 Ñ C ãÑ P n´1 , tn 1 , n 2 uq of class d 2 l 2 in P n´1 sending its marked points n i onto the points y 1 and y 2 . If d 2 • 2, we also consider the case where P 1 Ñ X is a genus zero stable map of class d 2 l 2 in P n´1 sending its marked points onto the three points y i . Since P n´1 ˆPn´1 is a smooth variety and the intersection pL ˆCq X X is non empty, pL ˆCq X X is of dimension at least 1. If it has dimension 2, then L ˆC is contained in X. Then identify the line L with P 1 ; by considering the product of the closed immersion L ãÑ P n´1 with the map P 1 Ñ P n´1 , we obtain a genus zero stable map P 1 Ñ X of degree pl 1 `d2 l 2 q whose image contains all points pp i , y i q. Now consider the case where the dimension of the intersection pLˆCqXX is 1. Denote by h 1 (respectively h 2 ) the pullbacks of the Cartier divisor c 1 pO P n´1 p´1qq by the first (respectively second) projection. Note that we have the following equality in A ˚pP n´1 ˆPn´1 q: rXs " h 1 `h2 . Furthermore, denote by " the degree of C; note that P 1 Ñ C is a degree d 2 {" covering. If the variety pL ˆCq X X has dimension 1, it is a curve C 1 in X satisfying the following equality in the Chow ring A ˚pP n´1 ˆPn´1 q:

rC 1 s " rL ˆCs Y rXs " pl 1 b "l 2 q Y ph 1 `h2 q " l 1 `"l 2 ,
where we also denote by l i the pushforward to P n´1 ˆPn´1 of the classes l i P H ˚pX, Zq » A ˚pX q. Hence C 1 is a curve of class pl 1 `"l 2 q in X. Note that, since the points pp i , y i q belong to both L ˆC and X, they lie on C 1 . Furthermore, the image of C 1 by the first projection fi 1 : P n´1 ˆPn´1 Ñ P n´1 is L. Indeed, C 1 is a curve of class pl 1 `"l 2 q contained in LˆC; hence its image by the projection fi 1 is a curve of class pfi 1 q ˚pl 1 `"l 2 q " 1 P A ˚pP n´1 q contained in the irreducible degree one curve L Ä P n´1 . Hence C 1 surjects onto L. We now only have to prove that C 1 can be descibed as the image of a stable map. Note that the curve C 1 is either the union of two curves C i satisfying pfi 2 q ˚rC 1 s `pfi 2 q ˚rC 1 s " " " fi 2 pC 1 q, or is an irreducible curve of class pl 1 `"l 2 q. First consider the case where C 1 is the union of two curves C i , where the first curve C 1 surjects onto L. Then C 2 is obtained as tQ 2 u ˆC, where Q 2 is a point on P n´1 . Indeed, C 2 is a curve satisfying pfi 2 q ˚rC 2 s " fi 2 pC 2 q projecting to the irreducible degree " curve C, hence the restriction fi 2|C 2 of the projection map to C 2 is a degree 1 map onto C, hence is an isomorphism. In particular C 2 is a curve of class "l 2 . In the same way, C 1 is a curve of class l 1 projecting to L, hence is obtained as L ˆtQ 1 u, where Q 1 is a point in P n´1 . Then either the points pp i , y i q all lie on the irreducible rational curve C 2 -which yields a rational curve of class "l 2 containg all points pp i , y i q-or C 1 contains one or two point pp i , y i q. We will consider here the case where C 1 contains one point pp i , y i q, the same proof holds when C 1 contains two points. If C 1 " L ˆtQ 1 u contains a point pp i , yiq, for example the point pp 1 , y 1 q then Q 1 " y 1 and both pp 1 , y 1 q and pp 2 , y 1 q lie on C 1 . We obtain a genus zero degree l 1 stable map f 1 :" pP 1 » L ãÑ X, tpp 1 , y 1 q, pp 2 , y 1 quq. Denote by f 2 :" pC 1 2 Ñ X, tc 1 , c 2 , c 3 uq a genus zero stable map of class d 2 l 2 sending its marked points c i onto the points pp 2 , y 1 q and pp 2 , y 2 q and pp 2 , y 3 q; such a map exists according to iq. Now glue P 1 and C 1 2 together by identifying the points pp 2 , y 1 q and c 1 ; we obtain a genus zero stable map P 1 Y C 1 2 Ñ X of class pl 1 `"l 2 q joining all points pp i , y i q. Finally consider the case where C 1 is irreducible. Denote by fi 1 : P n´1 ˆPn´1 Ñ P n´1 the first projection. Since C 1 is irreducible and pfi 1 q ˚rC 1 s " 1 " rfi 1 pC 1 qs in A ˚pP n´1 q, the projection pfi 1 q |C 1 of the curve C 1 to P n´1 is a degree 1 map; hence C 1 is birational to its image L in P n´1 , hence C 1 is an irreducible rational curve.

iii) We proceed by iteration on pd 1 , d 2 q. Let us name Dpd 1 ´1, 1q the boundary locus of M 0,3 pP n´1 , d 1 q which is naturally isomorphic to M 0,3 pP n´1 , d 1 ´1q ˆPn´1 M 0,2 pP n´1 , 1q, and by Dpd ´pl 1 `l2 q, l 1 `l2 q the boundary locus of M 0,3 pX, d ´pl 1 `l2 qq ismorphic to M 0,3 pX, d ´pl 1 `l2 qq ˆX M 0,2 pX, l 1 `l2 q. Note that, since Dpd ´pl 1 `l2 q, l 1 `l2 q is a strict closed subvariety of the irredudible projective variety M 0,3 pX, dq, according to Lemma 3.5.3.3 it is enough to prove that Dpd ´pl 1 `l2 q, l 1 `l2 q surjects into Dpd 1 ´1, 1q. Consider an element p in Dpd 1 ´1, 1q. Denote by pf p : C p Ñ P n´1 , tp 1 , p 2 , p 3 uq and ph p : P 1 Ñ P n´1 , tq 1 , q 2 uq the genus zero stable maps associated with p; f p is a degree pd 1 ´1q map and h p is a degree 1 map defining a line h p pP 1 q intersecting the curve f p pCq at h p pq 1 q " f p pp 3 q " x 3 . The induction hypothesis, or if d 1 " 2 Lemma 3.5.3.2, ensure that there is a genus zero degree pd ´pl 1 `l2 qq stable map pf 1 p : C 1 p Ñ X, tp 1 , p 2 , p 3 uq such that -The image by of f 1 p is f p ; -The points f 1 p pp 1 q and f 1 p pp 2 q in X are projected to the points f p pp i q in P n´1 by the forgetful map X Ñ P n´1 .

If d 1 °2, this is a direct consequence of the induction hypothesis. If d 1 " 2 note that according to Lemma 3.5.3.2 there exists a genus zero degree pl 1 `l2 q stable map projecting to f p . We can then choose marked points p i projecting to the points f p pp i q. Denote by p 1 3 a non singular point in f 1´1 p pp 3 q. Denote by px 3 , y 3 q a point in X such that y 3 is contained in f 1 p pf ´1 p pp 3 qq. According to Lemma 3.5.3.2 there exists a genus zero degree pl 1 `l2 q stable map ph 1 q : C q Ñ X, tq 1 1 , q 1 2 uq sending the point q 1 1 to the point px 3 , y 3 q and the point q 1 2 to a point of the form ph p pq 2 q, y 1 q in X. Now glue the genus zero curves C 1 p and C q together by identifying the point p 1 3 on C 1 p with the point q 1 1 on C q . We obtain a genus zero degree d stable map pC 1 p Y C q Ñ X, tp 1 , p 2 , q 1 1 , q 1 2 uq whose projection by is p. iv) Let p 1 , p 2 , p 3 be three points on X. According to iiq, there exist genus zero degree pl 1 `l2 q stable maps f 1 :" pC 1 Ñ X, tx 1 , x 2 uq and f 2 :" pC 2 Ñ X, ty 1 , y 2 uq sending the marked points x i onto the points p 1 and p 2 and the marked points y i onto the points p 2 and p 3 .

Glue C 1 and C 2 together by identifying x 2 and y 1 , and furthermore glue C 2 with P 1 at a non special point q of C 2 . Consider a degree d ´2pl 1 `l2 q map P 1 Ñ X sending q onto f 2 pqq. We obtain a genus zero degree d stable map pC 1 Y C 2 Y P 1 Ñ X, tx 1 , x 2 , y 2 uq sending its marked points onto the points p i . v) Let W :" X l1`d2l2 1,w0 be the Gromov-Witten variety of X associated with the i k , j k , and W 1 :" M 0,3 pP n´1 , 1qˆp P n´1 q 2 pL i1 ˆw0 L i2 q be the Gromov-Witten variety of P n´1 associated with the i k . We consider the map W 1 ˆpP n´1 q 3 X 3 Ñ X induced by the third projection X 3 Ñ X. We obtain the following commutative diagram.

W W 1 ˆpP n´1 q 2 Xpw i1,j1 q ˆXpw i2,j2 q ˆX fi ´1pev d1 3 pW 1 qq Ä X ev d1 3 pW 1 q Ä P n´1 ev d 3 ev d 1 3 fi
Since according to ii) the map ˆev is surjective, according to Chapter 1 the restriction W Ñ W 1 ˆpP n´1 q 2 Xpw i1,j1 q ˆXpw i2,j2 q ˆX of ˆev to W is also surjective. Furthermore note that since fi : X Ñ P n´1 is surjective, the projection W 1 ˆpP n´1 q 3 Xpw i1,j1 qˆXpw i2,j2 q Ñ fi ´1pev d1 3 pW 1 qq is also surjective. Hence by composition ev d 3 : W Ñ fi ´1pev d1 3 pW 1 qq X pXpw i3,j3 qq is also surjective. Note that ev d1 3 pW 1 q is the locus of points p in P n´1 such that -p lies on a line L Ä P n´1 ; -a point in L i1 " trx 1 , . . . , x i1 : 0 : ¨¨¨: 0su lies on L; -a point in w 0 L i2 " tr0 : ¨¨¨: 0 : x n´i2`1 : ¨¨¨: x n su lies on L. p satisfies these three conditions i p lies in trx 1 . . . x i1 : 0 . . . 0 : x n´i2`1 . . . x n su " h Lminpn,i1`i2q

, where h is a permutation in S n . We obtain ev 3 pWq " fi ´1ph ¨Lminpn,i1`i2q q " h ¨fi´1 pL minpn,i1`i2q q " h ¨tprx 1 : ¨¨¨: x minpn,i1`i2q : 0 ¨¨¨: 0s, ry 1 : ¨¨¨: y n sq P Xu " h ¨Xpw minpn,i1`i2q,1 q.

Suppose d 2 • 2. According to Proposition 3.5.3.1 v) the projected Gromov-Witten variety ev 3 pX l1`d2l2 1,w0

q is the translate of a Schubert variety and hence according to Theorem 0.8.0.3 has rational singularities. Furthermore there exists an element h in G such that ev 3 pX l1`d2l2 1,w0 q " h ¨Xpw i1`i2,1 q. Part 3.5.2 (b) then implies the following identity.

@ d 2 • 2, xw i1,j1 , w i2,j2 , I i3,j3 y l1`d2l2 " ‰ ´rO ev l 1 `d2 l 2 3
pX1,w 0 q s ¨Ii3,j3 " ‰ ´rO h¨Xpw minpn,i 1 `i2 q,1 q s ¨Ii3,j3 " ‰ `Ominpn,i1`i2q,1 ¨Ii3,j3 ˘.

(3.15)

Consider the partial order • on EpXq defined by:

d • d 1 i d ´d1 P EpXq. Note that classes d " pd 1 , d 2 q and d 1 " pd 1 1 , d 1 2 q in EpXq satisfy d • d 1 i d 1 • d 1 1 and d 2 • d 1 2 .
According to Proposition 3.5.3.1 ivq the image of ev ´1 1 pXpw i1,j1 q X ev ´1 2 pw 0 Xpw i2,j2 qq by the morphism ev d 3 evaluating the third marked point is X for d • 2pl 1 `l2 q. Since X is smooth, Proposition 3.5.3.1 iiiq and Part 3.5.2 (b) yield the following implication.

d • p2l 1 `2l 2 q ñ xw i1,j1 , w i2,j2 , I i3,j3 y d " ‰ prO X s ¨Ii3,j3 q . (3.16) (d) When d " d 1 l 1 `d2 l 2 , where 0 § d 2 § d 1 .
Then according to Part 3.5.2 (c) we can dedude degree d correlators from the preceding points using the symmetry between corelators of degree d 1 l 1 `d2 l 2 and correlators of degree d 2 l 1 `d1 l 2 .

Let r 1 † r. Set k " r 2 ´r `r1 , N " r 1 , n " " ´"0 `r1 ´r, m " r ´1. Note that " ´"0 ´r `r1 • r 1 et r 1 § r ´1. Then according to Lemma 3.6.2.1 we have Spr 1 , rq " p´1q r ˆr r 1 ˙ˆ" ´"0 ´1 `r1 r 1 ˙r1 !p" ´"0 ´1q! pr ´1q!p" ´"0 `r1 ´rq! ˆd ´d0 ´1

r 1 ´1 ˙; " p´1q r ˆr r 1 ˙ˆ" ´"0 ´1 `r1 r ´1 ˙ˆd ´d0 ´1 r 1 ´1 ˙;
" p´1q r ˆr r 1 ˙ˆ" ´"0 ´1 `r1

"

´"0 ´r `r1 ˙ˆd ´d0 ´1 r 1 ´1 ˙.

Note that " ´"0 • 2. According to Lemma 3.6.2.2, ∞

"´"0`r1 r"r1`1 p´1q r r `"´"0 r´r1 ˘" p´1q r1`1 , which yields

"´"0`r1 ÿ r"r1`1 Spr 1 , rq "

"´"0`r1 ÿ r"r1`1 p´1q r r p" ´"0 `r1 ´1q! r 1 !pr ´r1 q!p" ´"0 `r1 ´rq! ˆd ´d0 ´1

r 1 ´1 ˙; " p´1q r1`1 ˆ" ´"0 `r1 ´1 r 1 ´1 ˙ˆd ´d0 ´1 r 1 ´1 ˙.
Hence ∞

"´"0`r1 r"r1

Spr 1 , rq " 0, hence S " 0.

Finally, since this problem is symmetric relatively to d and ", the same result holds for d 0 † d ´1 and " 0 † ". We now only have left to consider the case whare d 0 " d and " 0 † " ´1, or " 0 " " and d 0 † d ´1. For example suppose " 0 " d. Then, since " 0 † " ´1 S "

"´"0 ÿ r"1 p´1q r ˆ" ´"0 ´1 r ´1 ˙" ´p1 ´1q "´"0´1 " 0.

Geometric interpretation of elements in O h

i ‹ O k,p for k ‰ p `1.
From now on we fix elements u and v in W P such that Xpuq " h i and v " w k,p , where k ‰ p `1. Recall h 1 :" Xpw n´1,1 q and h 2 :" Xpw n,2 q. We fix a degree d P EpXqzt0u. We suppose d • l 1 , l 2 , i.e. we suppose d " d 1 l 1 `d2 l 2 where d 1 • 1 or d 2 • 1.

Let d " d 0 `∞1 §i §k d i be a decomposition of d into a sum of degrees d i . We denote by M d0,...,d k the following scheme M d0,...,d k " M 0,3 pX, d 0 q ˆX M 0,2 pX, d 1 q ˆX ¨¨¨ˆX M 0,2 pX, d k q.

Note that M d0,...,d k is in bijection with the boundary stratum of M 0,3 pX, dq parametrizing genus zero stable maps pf :

C 0 Y C 1 ¨¨¨Y C k Ñ X, tp 1 , p 2 , p 3 uq such that -The curve Y 0 §i §k C i is a union of k genus zero quasi-stable curves C i meeting in a point.
-The first two marked points p j lie on C 0 and p 3 lies on C k -For all 0 § i § k, the map f |Ci represents the degree d i .

Furthermore, note that M d0,...,d k is equipped with evaluation maps ev i , where 1 § i § 3. We call boundary Gromov-Witten variety associated with u and v the inverse image M d0,...,d k pu, vq :" ev ´1 1 pXpuqq X ev ´1 2 pw 0 Xpvqq Ä M d0,...,d k .

Note that M d0,...,d k pu, vq parametrizes stable maps pf : where h is an element in G and -is an element in W P such that ≈ d0 pu, vq " h ¨Xp-q. Finally notice that ‰prO h¨Xp-q s, I -1 q " ‰pO -, I -1 q.

C 0 Y C 1 ¨¨¨Y C k Ñ X,
Let us now suppose the induction hypothesis satisfied for i " k ´1. According to iq there exists h in G and -in W P such that ≈ d0,...,d k pu, vq " h ¨Xp-q. Hence the induction hypothesis yields ÿ -iPW P ,1 §i §k´1 xO u , O v , I -1 y d0 xO -1 , I -1 y d1 . . . xO -k´1 , I -k´1 y d k " ‰prO h¨Xp-q s, I -k´1 q " " -,-k´1 , where the symbol " -,-k´1 is one if -" -k´1 , 0 else. We now only have to compute ∞ -k´1 PW P " -,-k´1 xO w , I w y d k . Let u 1 be the element in W P such that ev d k 2 pev ´1 1 pXp-qq " Xpu 1 q. We obtain ÿ Hence for v " w k,p , where k ‰ p `1, the product h i ‹ O v can be rewritten as O hi ‹ O v " O hi ¨Ov ``Q 1 ´rO ≈ l 1 phi,vq s ´rO ≈ 0,l 1 phi,vq s Q2 ´rO ≈ l 2 phi,vq s ´O≈ 0,l 2 phi,vq s Q1

Q 2 ´rO ≈ l 1 `l2 phi,vq s ´rO ≈ l 1 ,l 2 phi,vq s ´rO ≈ l 2 ,l 1 phi,vq s ´rO ≈ 0,l 1 `l2 phi,vq s `rO ≈ 0,l 1 ,l 2 phi,vq s `rO ≈ 0,l 2 ,l 1 phi,vq s 3.6.4

Computing the degree of O h i ‹ O v . Let 1 § i 2 , j 2 § n where i 2 ‰ j 2 . We note v " w i2,j2 . We compute here the degree of O hi ‹ O v :" O hi ‹ O i2,j2 . More precisely, we prove the following result.

Proposition 3.6.4.1. For any element v in W P , the product O hi ‹O i2,j2 only includes terms of degree Q 1 , Q 2 , and Q 1 Q 2 , i.e.

O hi ‹ O i2,j2 " O hi ¨Ov `Q1 P l1 pi, vq `Q2 P l2 pi, vq `Q1 Q 2 P l1`l2 pi, vq, where for d in EpXq, P d pi, vq is an element in KpXq.

Our proof occurs in two times. We begin by rewriting the quantum product between two classes O hi and O v in KpXq. We then note that most of these terms cancel together.

Rewriting the quantum product. Denote by g the bilinear pairing on KpXq induced by the sheaf Euler characteristic; we write g -,-:" ‰pO -¨O-q. We have

G -,-" ÿ dPEpXq Q d xO -, O -y d " g -,-`ÿ dPEpXqzt0u Q d xO -, O -y d .
-y " r0 : ¨¨¨: 0 : x n´j`1 . . . x n s;

-x lies on a line L Ä P n´1 ; -L i " trx 1 . . . x i : 0 . . . 0su intersects L.

Since there is a line joining any two points in P n´1 , ev l1 2 pev ´1 1 pXpw i,j qq is the set of points px, yq in X such that y " r0 : ¨¨¨: 0 : x n´j`1 . . . x n s; this is the Schubert variety Xpw n,j q if j ‰ n and Xpw n´1,n q if j " n.

ii) By symmetry, cf. Part 3.5.2 (c).

iii) This is obtained by multiplying the expressions found in iq and iiq. iv) This is obtained by multiplying the expressions found in iq and iiq. v) This is obtained by multiplying the expressions found in iq and iiiq. vi) This obtained by multiplying the expression in iq with the expression from (3.12).

Recall from Subsection 3.6.3 the following definition. For classes d 0 , . . . , d k in EpXq, for elements u and v in W P , we set ≈ d0,...,d k pu, vq :" ev 3 `ev ´1 1 pXpuqq X ev ´1 2 pw 0 Xpvqq ˘Ä X the projected boundary Gromov-Witten variety associated with the classes d i and the Schubert varieties Xpuq and w 0 Xpvq. In particular when v " w 0 satisfies Xpw 0 q " X, we name ≈ d0,...,d k puq :" ≈ d0,...,d k pw 0 , uq :" ev 3 `ev ´1 2 pXpuqq ˘, and when u satisfies Xpuq " h i , we name ≈ d0,...,d k pi, vq :" ev 3 `ev ´1 1 ph i q X ev ´1 2 pXpvqq ˘. ii) ≈ l1,l2,l1 puq " X " ≈ l2,l1,l2 puq " ≈ l1`l2,l1 puq " ≈ l1,l1`l2 puq.

iii) ≈ dl1 puq and ≈ dl2 puq do not depend on the choice of d • 2. iv) Consider a degree d " d 1 l 1 `d2 l 2 in EpXq such that d 2 • 2. Then We are now ready to compute P l1`l2 ph 1 , W k,p q. Moreover recall that the term of degree pl 1 `l2 q in O h1 ‹ O v is given by . We obtain P l1`l2 ph 1 , w 1,n q " Q 1 Q 2 pO n,1 ´On´1,1 q " Q 1 Q 2 prO X s ´Oh1 q .

P l1`
To sum up, we have P l1`l2 ph 1 , w k,p q " " 0 i f pk, pq ‰ p1, nq Q 1 Q 2 prO X s ´Oh1 q if pk, pq " p1, nq (3.23) Finally, by symmetry we deduce P l1`l2 ph 2 , w k,p q " " 0 i f pk, pq ‰ p1, nq Q 1 Q 2 prO X s ´Oh2 q if pk, pq " p1, nq 

Comparison with small quantum cohomology. Fulton and Woodward provide

a Chevalley formula in in the small quantum cohomology ring of any generalized flag variety [START_REF] Fulton | On the quantum product of Schubert classes[END_REF]. In the case of the incidence variety, this formula yields $ ' & ' % h 1 ‹ S rXpi, jqs " h 1 ¨rXpi, jqs `q1 rXs" i,2 " j,1 if i ‰ 1;

h 1 ‹ S rXp1, jqs " q 1 rXpn, jqs if j † n; h 1 ‹ S rXp1, nqs " q 1 rXpn ´1, jqs `q1 q 2 rXs if j " n, . Furthermore suppose dimXpuq " dimXpu 1 q ´1. Then for any element v in W P the product O u ‹ O v is positive. iv) Let u be an element in W P . Suppose there exists an element u 1 in W P such that O u " Q j O u 1 , where j P t1, 2u, and O u 1 ‹ O v is positive for all v in W P . Furthermore suppose dimXpuq " dimXpu 1 q ´pn ´1q. Then for any element v in W P the product O u ‹ O v is positive.

Let 1 § k, p § n.

Proof. i) We compute explicitly p´1q dimpXpvqq´codimphiq´dimpXpwqq`≥ -c1pT X q N w,- u,v using (3.18). Note that according to [Bri02] N w,0 u,v has the expected sign, hence we only have to consider terms N w,- u,v with -°0.

(a) Recall we have O h1 ‹ O 1,n " Q 1 O n´1,n `Q1 Q 2 prO X s ´Oh1 q. We have p´1q dimXpn´1,nq´dimXp1,nq´codimh1`pn´1q " p´1q pn´1q´0´1`pn´2q`pn´1q " p´1q 2n´4 • 0. " p´1q pn´p´1q´p2n´p´2q´1`pn´1q • 0.

(c) Recall we have O h1 ‹ O 2,1 " O 1,2 `Q1 prO X s ´Oh1 q. We have p´1q dimX´dimXp2,1q´codimhi`pn´1q " p´1q p2n´3q´pn´2q´1`pn´1q • 0.

3.8.3

A conjectural formula for Littlewood-Richardson coe cients in QK s pXq. We computed for various values of n Littlewood-Richardson coe cients in QK s pXq using the code in Appendix B. The results allowed us to guess and write down the following formula. This formula has been verified for small values of n. Let us now introduce some specific notations we need to express our result. First, we define "degree operators" d i on pW P q 3 by : @1 § i, j, k, p, s, t § n, i ‰ j, k ‰ p, s ‰ t, d 1 pw i,j , w k,p , w s,t q " 1 ´t i `k ´s n u;

d 2 pw i,j , w k,p , w s,t q " t j `p ´t n u,

where txu is the integer part of x. Furthermore, let us define maps t i : pW P q 2 Ñ W P by : @1 § i, j, k § n, i ‰ j, k ‰ p, t 0 pw i,j , w k,p q " w pi`k´1qmodpnq`1,pj`p´2qmodpnq`1 t 1 pw i,j , w k,p q " w pi`k´2qmodpnq`1,pj`p´2qmodpnq`1 t 2 pw i,j , w k,p q " w pi`k´1qmodpnq`1,pj`p´1qmodpnq`1 t 3 pw i,j , w k,p q " w pi`k´2qmodpnq`1,pj`p´1qmodpnq`1 .

Finally, we define an operator ∆ on pW P q 3 by setting : @u, v, w P W P , ∆pu, v, wq " 1 ifp´1q

¸pw0wq´¸pw0uq´¸pw0vq`≥ d 1 pu,v,wql 1 `d2 pu,v,wql 2 c1pT X q

• 0 " 0 ifp´1q ¸pw0wq´¸pw0uq´¸pw0vq`≥ d 1 pu,v,wql 1 `d2 pu,v,wql 2 c1pT X q † 0 Conjecture 3.8. 

Appendix B

Here under is the python code used to compute the product between any two Schubert classes in QKpF lp1, n ´1q; these computations helped us write down the Littlewood-Richardson formula we show in chapter 4. [ i , j ]= c o e f f i j ( r +1,n ) R= ' ' R=R+"O_"+ s t r ( l )+ ' , '+ s t r ( p )+" "+"úO_"+ s t r ( i )+ ' , '+ s t r ( j )+"= " i f ( l+i <n+1 and j+p<n+1 and ( ( i >j and l >p ) or ( i+l <j+p and i >j and l <p ) or ( i+l <j+p and i < f o r s i n range ( 0 , n ú ( n ´1)): i f (A[ s , r ]==0): R=R e l s e : [ u , v]= c o e f f i j ( s +1,n ) R=R+'+('+ s t r (A [ s , r ] ) + ' ) ú ' + 'O_'+ s t r ( u)+" ,"+ s t r ( v)+" " #p r i n t (R) Text . append (R+ ' ; ' ) #p r i n t ( Text ) numpy . s a v e t x t ( " Output . t x t " , Text , d e l i m i t e r = " ; " , fmt='%s ' ) p r i n t ( "Ok" )

# Computing product in the small quantum

• Pour x en position générale dans pF l J q r , la fibre ev ´1 rCs`⁄ pxq est une tour de fibrations unirationnelles au-dessus de la fibre ev ´1 rfipCqs pfipxqq.

Nous avons appelé une variété W une fibration rationnellement connexe (respectivement fibration unirationnelle) au-dessus de W 1 si il existe un morphisme dominant W Ñ W 1 envoyant chaque composante irréductible de W sur une composante irréductible di érente de W 1 , et dont la fibre générale est une variété rationnellement connexe (respectivement unirationnelle). Une variété W est une tour de fibrations unirationnelles au-dessus d'une variété W 1 s'il existe une suite de morphismes W 1 " W Ñ W 2 Ñ ¨¨¨Ñ W l " W 1 telle que pour 1 § i † l, la variété W i est une fibration unirationnelle au-dessus de W i`1 . , Zq. Rappelons que l'anneau de petite K-théorie quantique QK s pF l 1,n´1 q " pKpF l 1,n´1 qq b QrQ 1 , Q 2 s, ‹q de F l 1,n´1 est une déformation de l'anneau KpF l 1,n´1 q par les variables Q 1 et Q 2 . Cette déformation dépend des corrélateurs xO i,j , O k,p , O s,t y d1rl1s`d2rl2s définis dans la sous-partie 0.2.2. On retrouve l'anneau de K-théorie KpF l 1,n´1 q en prenant la limite Q 1 , Q 2 Ñ 0.

Égalités

Notons h 1 :" Xpn ´1, 1q et h 2 :" Xpn, 2q les deux variétés de Schubert de F l 1,n´1 de codimension 1.

Proposition (Formule de Chevalley dans QK s pF l 1,n´1 q-cf. Proposition 3.7.0.1).

O h1 ‹ O k,p " $ ' ' ' ' & ' ' ' ' % Q 1 O n´1,n `Q1 Q 2 prO X s ´Oh1 q si k " 1, p " n Q 1 O n,p si k " 1, p † n O 1,2 `Q1 prO X s ´Oh1 q si k " 2, p " 1 O k´1,p si k °1, k ‰ p `1 O p´1,p `Op,p`1 ´Op´1,p`1 si 1 † p † n ´1, k " p `1 O h2 ‹ O k,p " $ ' ' ' ' & ' ' ' ' % Q 2 O 1,2 `Q1 Q 2 prO X s ´Oh2 q si k " 1, p " n Q 2 O k,1 si k °1, p " n O n´1,n `Q2 prO X s ´Oh2 q si k " n, p " n ´1 O k,p`1 si p † n, k ‰ p `1 O p,p`1 `Op´1,p ´Op´1,p`1 si 1 † k † n ´1, k " p `1
Notons que pour X une variété cominuscule, une formule de Chevalley en petite K-théorie quantique est donnée par Buch-Chaput-Mihalcea-Perrin [START_REF] Anders S Buch | A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties[END_REF].

Appelons ici un algorithme positif si à chaque itération le calcul e ectué est une somme de coecients de mêmes signes.

Proposition. L'algorithme donné partie 3.8.1 est un algorithme positif calculant les coe cients de

Littlewood-Richardson dans QK s pF l 1,n´1 q. Corollaire. (Cf. Proposition 3.8.2.1) L'anneau de petite K-théorie quantique QK s pF l 1,n´1 q est positif au sens de la définition 0.3.3.1. Conjecture. La formule fermée décrite dans la partie 3.8.3 donne les coe cients de Littlewood-Richardson dans QK s pF l 1,n´1 q.
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  since both are closed subschemes of maximal dimension of an irreducible scheme. Hence the intersection of Y z with the dense open subset

  (a) The fiber S x satisfies pP q; (b) The fiber S x has a dense open intersection with U ; (c) The morphism Y x Ñ S x is in C; (d) The general fiber of the morphism Y x Ñ S x satisfies pP q;

  Proposition 1.4.0.1. Let pp, xq be a general point in p p k ˆevqpM 0,r pX, dqq.We have obtained a dominating morphism OE : Z inj p,x Ñ p,x . Since Z inj p,x is a dense open subset of the irreducible rational variety Z p,x , Z inj p,x is an irreducible rational variety. Hence p,x is an irreducible unirational variety.

  obtained from the set d k by forgetting the integer d k k 2 . Note that according to Definition 1.1.1.1 for all p † k, d k k 2 • rpd 1 p ´d1 p´1 q{pi p ´ip´1 qsj k . Then according to Proposition 1.4.0.1 the general fiber of

  p k q˚d . According to Chapter 1 Proposition 1.6.0.1, Theorem 2.1.3.1 implies the following result.

  3 and 3.4 is to prove a closed formula for Littlewood-Richardson coe cients in KpXq. Part 3.3 describes one parameter degenerations of Richardson varieties, from which the expression of Littlewood-Richardson coe cients in KpXq is derived in Part 3.4. The aim of Part 3.5.2 is to compute all three points quantum K-theoretical correlators of X. Note that in the context of small quantum cohomology the product of two Schubert classes is given directly by three points Gromov-Witten invariants. In small quantum K-theory, the product of two Schubert classes is an alternate sum involving three points correlators and two points correlators. Part 3.6 is dedicated to finding a boundary on the degree of the product of two classes in QK s pXq. A Chevalley formula in QK s pXq is proven in Part 3.7. Finally we study Littlewood-Richardson coe cients in QK s pXq in Part 3.8.

  tp 1 , p 2 , p 3 uq satisfying the three conditions here above and sending the first two marked points p j within the varieties Xpuq and w 0 Xpvq respectively. Finally, we denote by ≈ d0,...,d k pu, vq the projection of the boundary Gromov-Witten variety M d0,...,d k pu, vq by the third evaluation morphism, i.e. ≈ d0,...,d k pu, vq :" ev 3 pM d0,...,d k pu, vqq Ä X.
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  k´1 PW P " -,-k´1 xO w , I w y d k " xO -, I -y d k where O -p≈ d 0 ,...,d k´1 pu,vqqq s " rO ≈ d 0 ,...,d k pu,vq s according to Lemma 3.6.3.1.

  d i be a degree in EpXq. ÿ-iPW P xO u , I -2 y d1 . . . xO -k , I -y d k " ‰ ´rO ≈ d 1 ,...,d k puq s, I - ¯.

  xO -1 , I -1 y d1 . . . xO -, I -y d k " 0.Proof.i) This is a direct consequence of the equality xrO X s, -, -y d " x-, -y d for all -, -in KpXq and of Proposition 3.6.3.1.ii) Cf. Lemma 3.6.4.1.iii) Cf. Lemma 3.6.4.1.

  Computing the Chevalley formula. [Proof of Proposition 3.7.0.1] According to Part 3.6 the only terms appearing in O hi ‹ O v are those of degree l i and of degree pl 1 `l2 q. We now only have to sum the classical part O hi ¨Ov computed Proposition 3.4.1.1 with the part of degree l 1 given by (3.22) and (3.21), the part of degree l 2 given by(3.19) and (3.20), and finally the part of degree pl 1 `l2 q given by (3.23) and (3.24).

  p´1q dimX´dimXp1,nq´codimh1`2pn´1q " p´1q 2n´3´1 • 0. Hence O h1 ‹ O 1,n is positive. (b) Let 1 † p † n. Recall we have O h1 ‹ O 1,p " Q 1 O n,p . We have p´1q dimXp1,pq´dimXpn,pq´codimhi`pn´1q 

  K´t h e o r y QKs o f i n c i d e n c e v a r i e t i e s Fl ( 1 , n´1;n ) # Date : 18/04/2019 # Author : S y b i l l e Rosset import math from sympy import ú from sympy import Matrix import numpy # Parametrizing n n=5 #i . e . we l o o k a t l i n e s i n h y p e r p l a n e s o f C^n ## T h i s c o d e computes t h e p r o d u c t i n s m a l l quantum K t h e o r y o f F l ( 1 , n ´1;n ) between #S c h u b e r t v a r i e t i e s and w r i t e s i t down w i t h i n a f i l e named " Output . t x t " #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´# I n d e x i n g S c h u b e r t v a r i e t i e s X( i , j ) by a 1D a r r a y ! #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´d e f c o e f f i j ( k , n ) : #Function s e n d i n g 0<k<=n ( n´1)) to the c o r r e s p o n d i n g p a i r ( i , j ) i=math . c e i l ( k /( n´1)) i f ( k´( i ´1)ú(n´1) < i ) : j=k´( i ´1)ú(n´1) e l s e : j=k+1´(i ´1)ú(n´1) r e t u r n ( [ i , j ] ) d e f i n v c o e f f i j ( i , j , n ) : #Function s e n d i n g ( i , j ) to the c o r r e s p o n d i n g 0<k<=n ( n´1)) i f ( j>i ) : t =( i ´1)ú(n´1)+j ´1 e l s e : t =( i ´1)ú(n´1)+ j r e t u r n ( t ´1)#f o r k i n range ( 1 , n ú ( n ´1)): #[ i , j ]= c o e f f i j ( k ) #t=i n v c o e f f i j ( i , j ) #p r i n t ( i , j , k , t ) p r i n t ( i n v c o e f f i j ( 1 , 2 , 3 ) ) #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´# D e f i n i n g t h e a c t i o n o f O_h1 and O_h2 on QKs ! #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´q 1 = Symbol ( ' q1 ' ) q2 = Symbol ( ' q2 ' ) # ! ! . I . ! ! Defining the action of O_h1 d e f h1 ( n ) : h1 = z e r o s ( n ú ( n´1)) # defining Oh1úO1 , n h1 [ i n v c o e f f i j ( n´1,n , n ) , i n v c o e f f i j ( 1 , n , n )]= q1 h1 [ i n v c o e f f i j ( n , 1 , n ) , i n v c o e f f i j ( 1 , n , n )]= q1 ú q2 h1 [ i n v c o e f f i j ( n ´1 ,1 ,n ) , i n v c o e f f i j ( 1 , n , n)]=´q1 ú q2 #d e f i n i n g Oh1úO1 , p f o r p i n range ( 2 , n ) : h1 [ i n v c o e f f i j ( n , p , n ) , i n v c o e f f i j ( 1 , p , n )]= q1 #d e f i n i n g Oh1úO2 , 1 h1 [ i n v c o e f f i j ( 1 , 2 , n ) , i n v c o e f f i j ( 2 , 1 , n )]=1 h1 [ i n v c o e f f i j ( n , 1 , n ) , i n v c o e f f i j ( 2 , 1 , n )]= q1 h1 [ i n v c o e f f i j ( n , 2 , n ) , i n v c o e f f i j ( 2 , 1 , n)]=´q1 #d e f i n i n g Oh1úOp+1 ,p f o r p i n range ( 2 , n ) : h1 [ i n v c o e f f i j ( p´1,p , n ) , i n v c o e f f i j ( p+1,p , n )]=1 h1 [ i n v c o e f f i j ( p , p+1,n ) , i n v c o e f f i j ( p+1,p , n )]=1 h1 [ i n v c o e f f i j ( p´1,p+1,n ) , i n v c o e f f i j ( p+1,p , n)]=´1 #d e f i n i n g Oh1úOk , p f o r k i n range ( 2 , n+1): f o r p i n range ( 1 , n+1): #p r i n t ( k , p ) i f ( k!=p+1 and k!=p ) : h1 [ i n v c o e f f i j ( k´1,p , n ) , i n v c o e f f i j ( k , p , n )]=1 r e t u r n ( h1 ) # ! ! . II . ! ! Defining the action of O_h2 d e f h2 ( n ) : h2 = z e r o s ( n ú ( n´1)) # defining Oh2úO1 , n h2 [ i n v c o e f f i j ( 1 , 2 , n ) , i n v c o e f f i j ( 1 , n , n )]= q2 h2 [ i n v c o e f f i j ( n , 1 , n ) , i n v c o e f f i j ( 1 , n , n )]= q1 ú q2 h2 [ i n v c o e f f i j ( n , 2 , n ) , i n v c o e f f i j ( 1 , n , n)]=´q1 ú q2 #d e f i n i n g Oh2úOk , n f o r k i n range ( 2 , n ) : h2 [ i n v c o e f f i j ( k , 1 , n ) , i n v c o e f f i j ( k , n , n )]= q2 #d e f i n i n g Oh2úOn, n´1 h2 [ i n v c o e f f i j ( n´1,n , n ) , i n v c o e f f i j ( n , n´1,n )]=1 h2 [ i n v c o e f f i j ( n , 1 , n ) , i n v c o e f f i j ( n , n´1,n )]= q2 h2 [ i n v c o e f f i j ( n ´1 ,1 ,n ) , i n v c o e f f i j ( n , n´1,n)]=´q2 #d e f i n i n g Oh2úOp+1 ,p f o r p i n range ( 1 , n ´1): h2 [ i n v c o e f f i j ( p , p+1,n ) , i n v c o e f f i j ( p+1,p , n )]=1 h2 [ i n v c o e f f i j ( p+1,p+2,n ) , i n v c o e f f i j ( p+1,p , n )]=1 h2 [ i n v c o e f f i j ( p , p+2,n ) , i n v c o e f f i j ( p+1,p , n)]=´1 #d e f i n i n g Oh2úOk , p f o r p i n range ( 1 , n ) : f o r k i n range ( 1 , n+1): i f ( k!=p+1 and k!=p ) : h2 [ i n v c o e f f i j ( k , p+1,n ) , i n v c o e f f i j ( k , p , n )]=1 r e t ur n ( h2 ) #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´# D e f i n i n g t h e a c t i o n o f O_k, p on any O_i , j ! #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´d e f O( n ) : O=[None ] ú n ú ( n´1) #we c r e a t e a l i s t O, where we w i l l s t o c k O_k, p as the i n v c o e f O[ i n v c o e f f i j ( n , 1 , n )]= eye ( n ú ( n´1)) #i n i t i a l i z i n g OX as the i d e n t i t y matrix 104 a = h1(n) b=h2 ( n ) J=b´eye ( n ú ( n´1)) #We f i r s t d e f i n e O_k, 1 f o r k i n range ( 1 , n ´1): O[ i n v c o e f f i j ( n´k , 1 , n)]= aúO[ i n v c o e f f i j ( n´k +1 ,1 ,n ) ] #We t h e n d e f i n e O_k, p , where k>p f o r k i n range ( 2 , n+1): f o r p i n range ( 2 , k ) : #p r i n t ( k , p ) O[ i n v c o e f f i j ( k , p , n )]= búO[ i n v c o e f f i j ( k , p´1,n ) ] #We now d e f i n e O_p, p+1 O[ i n v c o e f f i j ( 1 , 2 , n )]= aúO[ i n v c o e f f i j ( 2 , 1 , n )]+ q1úJ f o r p i n range ( 2 , n ) : #p r i n t ( " p " , p ) O[ i n v c o e f f i j ( p , p+1,n )]= aúO[ i n v c o e f f i j ( p+1,p , n )]+ JúO[ i n v c o e f f i j ( p´1,p , n ) ] #We f in a l l y d e f i n e O_k, p f o r k<p and k !=p´1 f o r p i n range ( 3 , n+1): f o r k i n range ( 2 , p ) : p r i n t ( k , p ) O[ i n v c o e f f i j ( p´k , p , n)]= aúO[ i n v c o e f f i j ( p´k+1,p , n ) ] r e t u r n (O) #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´# MAIN TASK : computing O_i , j úO_k, p ! #´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´# Computing QKs( Fl ( 1 , n ´1)) L=O( n ) #W ri ti ng down s m a l l quantum K t h e o r y p r o d u c t i n a t e x t f i l e named " Output . t x t " Text = [ ] f o r k i n range ( 0 , n ú ( n ´1)): A=L [ k ] [ l , p]= c o e f f i j ( k+1,n ) f o r r i n range ( 0 , n ú ( n ´1)):

  

  

  1.6.1 Examples of stabilized collections. . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Genus zero correlators of G{P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 H-equivariant decomposition of the diagonal. . . . . . . . . . . . . . . . . . . . . 2.1.3 Main result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Preliminaries on equivariant algebraic K-theory . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Diagonal decomposition of K T pXq. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Equivariant flat base change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Proof of Theorem 2.1.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	2 A comparison formula between genus 0 correlators of partial flag varieties
	2.1

2.3.1 Properties of M 0,r pX p k , pfi p k q ˚dq ˆpX p k q r X

r . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Proof of Theorem 2.

  . . . 3.6.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.2 A combinatorial lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.3 Geometric interpretation of elements in O hi ‹ O k,p for k ‰ p `1. . . . . . . . . . 3.6.4 Computing the degree of O hi ‹ O v . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 A Chevalley formula in QK s pXq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.1 Computing terms of degree l 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.2 Computing terms of degree l 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.3 Computing terms of degree l 1 `l2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.4 Computing the Chevalley formula. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.5 Comparison with small quantum cohomology. . . . . . . . . . . . . . . . . . . . . 3.7.6 Generalization to other adjoint varieties ? . . . . . . . . . . . . . . . . . . . . . . 3.8 On Littlewood-Richardson coe cients in QK s pXq. . . . . . . . . . . . . . . . . . . . . .

3.8.1 An algorithm to compute Littlewood-Richardson coe cients in QK s pXq. . . . . 3.8.2 Positivity in QK s pXq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definitions and notations 0.5 Space of stable maps

  M 0,r pY, "q.Definitions. Let Y be a complex projective smooth variety. Let C be a connecetd reduced nodal curve of genus zero equipped with r distinct non singular marked points. A morphism C Ñ Y from C to the variety Y is called a stable map if each irreducible component of C sent onto a point contains at least three points that are nodal or marked. Let " be an element in H 2 pY, Zq corresponding to an e ective class of curve. We say the morphism Ï : C Ñ Y represents the class " if Ï ˚rC s " " P H 2 pY, Zq.

	8.1 is a positive algorithm computing Littlewood-
	Richardson coe cients in QK s pF l 1,n´1 q.
	Corollary. (Cf. Proposition 3.8.2.1) The small quantum K-theory ring QK s pF l 1,n´1 q is positive.
	Conjecture. The closed formula described in Subsection 3.8.3 yields Littlewood-Richardson coe -
	cients in QK s pF l 1,n´1 q.

  there exits an irreducible rational curve f : P 1 Å U Ñ GL n sending points p 1 and p 2 on P 1 onto the points g and id. Denote by Õ the irreducible projective subvariety of P 1 ˆX obtained as the adherence of the image of the map U ˆY Ñ U ˆY Ä P 1 ˆX sending px, yq to px, f pxq ¨yq. Denote by fi : Õ Ñ P 1 the first projection. Then according to Lemma 0.7.2.1 rO fi ´1pp1q s " rO fi ´1pp2q s hence rO g¨Y s " rO Y s.

  The class d " pd 1 , . . . , d m q of a curve C in X is determined by non-negative integers d 1 , d 2 ,. . . , d m , where d i is the Plücker degree of the projection of C to the Grassmannian Grpn i , nq. The morphism fi p k

  pp, xq is general in p p k ˆevqpM 0,r pX, dqq, according to Lemma 1.2.2.1 the intersection of p,x with the dense open subset U is dense in p,x . ii) According to Proposition 1.3.3.1 iq, there exists a dense open subset U of M 0,r pX, dq such that a point in U corresponds to a balanced flag of vector bundles over P 1 . According to iq, U X p,x is dense open subset of p,x . Finally, notice that according to Proposition 1.3.3.1 iiq, since

  ,p :" tpL, Hq P X|L Ä † e 1 , . . . e h °, † e 1 , . . . e r , e n´p`1 , . . . , e n °Ä Hu.

	Lemma 3.3.0.1.	
		(3.6)
	The Plücker embedding X ãÑ Grp1, nq ˆGrpn ´1, nq » P n´1	ˆPn´1 embeds Y h r,p as:
	Y h r,(3.7)

p :" trx 1 , . . . , x h , 0, . . . , 0s; r0 : ¨¨¨: 0 : y r`1 : ¨¨¨: y n´p : 0 : ¨¨¨: 0s P P n´1 ˆPn´1 | ÿ a x a y a " 0u.

1. Let 1 § i, j, k, l § n, where i ‰ j and k ‰ l. Suppose n ´k `1 § i and j ´1 § n ´l `2.

  j1 , . . . , O ir,jr , -y d " ‰ ´ev 1 O i1,j1 . . . ev r O ir,jr ¨ev r`1 -¨rO M0,r`1pX,dqq s Ūsing (3.8) here above and the projection formula in K ˝pX q, we obtain: xO i1,j1 , . . . , O ir,jr , -y d " ‰ ´ev r`1 -¨ev 1 O i1,j1 . . . ev r O ir,jr ¨rO M0,r`1pX,dqq s

	"

  xw i1,j1 , . . . , w ir,jr y d1l1`d2l2 " xw n´j1`1,n´i1`1 , . . . , w n´jr`1,n´ir`1 y d2l1`d1l2 .

	Proposition 3.5.2.3.

  ¨¨¨, e i °qK , p † e 1 , ¨¨¨, e j´1 °qK Å H

K ( " pL, Hq P X --H Å † e i`1 , ¨¨¨, e n °, † e j , ¨¨¨, e n °qK Å L ( " w 0 ¨ pL, Hq P X --H Å † e 1 , ¨¨¨, e n´i °, † e 1 , ¨¨¨, e n´j`1 °qK Å L (

  l2 ph 1 , vq xO h1 , O v , I w y l1`l2 O w ´ÿ w,w 1 PW P xO h1 , O v , I w y l1 xO w , I w 1 y l2 O w 1 ´ÿ w,w 1 PW P xO h1 , O v , I w y l2 xO w , I w 1 y l1 O w 1 `ÿ w,w 1 ,w 2 PW P xO h1 , O v , I w y 0 xO w , I w 1 y l1 xO w 1 , I w 2 y l2 O w 2 `ÿ w,w 1 ,w 2 PW P xO h1 , O v , I w y 0 xO w, I w 1 y l2 xO w 1 , I w 2 y l1 O w 2 ´ÿ w,w 1 PW P xO h1 , O v , I w y 0 xO w , I w 1 y l1`l2 O w 1 . a) If v " w k,p ,where k ‰ 1. Note that then the second and fourth terms of the sum are equal, and the third and fifth terms are equal, and the first and last terms are equal. We obtainP l1`l2 ph 1 , w k,p q " Q 1 Q 2 pO n,1´On,1 ´On,1 `On,1 `On,1 ´On,1 q Note that then all terms of the sum are equal to zero, except from the first term ∞wPW P xO h1 , O v , I w y l1`l2 O w , which is non zero i w " w n,1 , and ∞ w,w 1 PW P xO h1 , O v , I w y l1 xO w , I w 1 y l2 O w 1 ,which is also non zero i w " w n,1 . We obtainP l1`l2 ph 1 , w 1,p q " 0 i f p † n c) if v "w 1,n . Note that then O v " rO Xpw1,nq s " rO point s in KpXq. Then all terms of the sum are zero, except from the first term ∞ wPW P xO h1 , O v , I w y l1`l2 O w , which is non zero i w " w n,1 , and ∞ w,w 1 PW P xO h1 , O v , I w y l1 xO w , I w 1 y l2 O w 1 , which is non zero i w " w n´1,1

		ÿ
	"	wPW P
		" 0	i f k ‰ 1.

b) If v " w 1,p , where p † n.

•

  Let 1 § p † k § n. Suppose the product O k,p´1 ‹ O v is positive for all v P W P . Note that O k,p " O h2 ‹ O k,p´1 . Let v be an element in W P . According to Lemma 3.8.2.1 iq O h2 ‹ O v is positive, Hence according to Lemma 3.8.2.1 iiiq O k,p ‹ O v is positive. Indeed, for 1 § p † k § n we have p ´1 † k and dimXpk, pq " k `n ´p ´1 " dimXpk, p ´1q ´1.• For k " 1 and p " 2. Let v be an element in W P . Note that O w1,2 " O h1 ‹ O w2,1 ´Q1 prO X s Óh1 q. Since dimXp1, 2q " n ´2 " dimXp2, 1q ´1, according to Lemma 3.8.2.1 iiq and iiiq the term mathcalO h1 ‹ O w2,1 ‹ O v has the expected sign. Furthermore, since dimX ´1 ´pn ´1q " 2n ´4 ´n `1 " dimXp1, 2q , according to Lemma 3.8.2.1 ivq, the terms ´Q1 rO X s ‹ O v andQ 1 O h1 ‹ O v havethe expected sign. Hence the product O k,p ‹ O v is positive for all w P W P . • Let 1 § p † n. Let v be an element in W P . Suppose the product O p`1,p ‹ O v is positive. Note that O wp,p`1 " O h1 ‹ O wp`1,p `pO h2 ´idq ‹ O wp´1,p . Note that dimXpp, p `1q " n ´2 " dimXpp `1, pq ´1. Hence, since O p`1,p ‹ O v is positive ´Op`1,p ‹ O v has the same sign as the expected sign for O p,p`1 ‹ O v . Furthermore, according to Lemma 3.8.2.1 both O hi ‹ O p,p`1 ‹ O v have the same sign as the expected sign for O p,p`1 ‹ O v . Hence O p,p`1 ‹ O v is positive. • Let 1 § k † p § n, where k ‰ p ´1. Let v be an element in W P . Suppose the product O k`1,p ‹ O v is positive. Note that O w k,p " O h1 ‹ O w k`1,p .Since k † p ´1, dimXpk, pq " k `n ´p ´1 " dimXpk `1, pq. Hence according to Lemma 3.8.2.1 iiiq the product O k,p ‹ O v is positive. Finally by induction O k,p ‹ O v is positive for all v in W P . P . Suppose there exists an element u 1 in W P such that O u " O hi ‹ O u 1 , and O u 1 ‹ O v is positive for all v in W P

	Lemma 3.8.2.1.

i) For any element v in W P the product O h1 ‹ O v is positive. ii) For any element v in W P the product O h2 ‹ O v is positive.

iii) Let u be an element in W

entre corrélateurs de di érentes variétés de drapeaux par- tiels.

  Fixons des entiers 1 § i 1 † ¨¨¨ † i m † n. On considère la variété de drapeaux X paramétrant les drapeaux d'espaces vectorielsV i1 Ä ¨¨¨Ä V im Ä C . vérifiant dimV i k " i k . La classe d "pd 1 , . . . , d m q d'une courbe C de X est déterminée par m entiers d 1 , d 2 ,. . . , d m , où d i est le degré de Plücker de la projection de C sur la Grassmannienne Grpn i , nq. Soit T un tore de GL n agissant sur X par multiplication à gauche. Soient E 1 , . . . , E r des fibrés vectoriels de X T-équivariants. Rappelons que les corrélateurs T -équivariants en K-théorie quantique sont donnés parx" 1 , . . . , " r y X T,pd1,...,dmq :"‰ T ´ev 1 E 1 b ¨¨¨b ev r E r b O M0,rpX,dq ¯,(3.26)où l'on a noté ‰ T la caractéristique d'Euler-Poincaré T -équivariante. Pour un entier 1 § k § m, on note X p k la variété obtenue à partir de X en oubliant l'espace vectoriel V i k , et fi p Afin de faciliter les notations, on note d 0 " 0 " d m`1 . Le chapitre 2 fournit l'égalité entre corrélateurs suivante-cf. Théorème 2.1.3.1bis. et l 2 :" Xp1, 2q les deux variétés de Schubert de F l 1,n´1 de dimension 1. Leurs classes rl 1 s et rl 2 s en homologie singulière de F l 1,n´1 engendrent H 2 pF l 1,n´1

k : X Ñ X p k le morphisme d'oubli.

if d 1 • j 1 pr `1 `td 2 {i 1 uq the collection pI, J, pd 1 , d 2 , . . . d m`1 qq is stabilized.

2. Projection from a Grassmannian to the point. Suppose J " tku and I " H. Then F l J is the Grassmannian Grpk, nq and F l J " Grpk, nq Ñ F l I " SpecC is the projection to the point. By definition, the collection tI, J, du is stabilized i the morphism J•1 ˆev : M 0,r pGrpk, nq, dq Ñ M 0,r ˆpGrpk, nqq r is surjective. Since the projection M 0,3 pGrpk, nq, dq Ñ M 0,3 " SpecC is always surjective, according to Proposition 1.6.0.1 iiq, if d • rpk ´0q " rk, then J•1 ˆev is surjective. Hence:

if d • rk the collection tI, J, du is stabilized.

Finally, since the collection tI, J, du is stabilized, according to Lemma 1.5.3.1, the dual collection tI ˚, J ˚, d ˚" du is also stabilized. Note that F l J ˚" Grpn ´k, nq. Hence:

if d • rpn ´kq the collection tI, J, du is also stabilized. P n´2 's. Fix a basis † e 1 , . . . , e n °of C n . In this basis, consider the maximal torus in G " GL n consisting of diagonal matrices, the Borel subgroup B consisting of upper triangular matrices of GL n , and the parabolic subgroup P Å B associated with the reductive group GL 1 ˆGL n´2 ˆGL 1 . Note that W " N G pT q{T » S n . We denote by w 0 the element of W of greatest length. Note that w 0 is the permutation of 1 . . . n defined by w 0 piq " n ´i `1. Furthermore, an element in W P » S n {S n´2 is uniquely determined by the choice of a permutation sending 1 to i and n to j, where 1 § i, j § n and i ‰ j. We name w i,j the element in W P thus defined. Schubert varieties of X » GL n pCq{P are described by: Xpi, jq : " Xpw i,j q " Bw i,j P {P " pL, Hq P X --L Ä † e 1 , ¨¨¨, e i °, † e 1 , ¨¨¨, e j´1 °Ä H ( .

(3.1) Schubert varieties can be embedded in P n´1 ˆPn´1 as:

Xpi, jq " " prx 1 : ¨¨¨: x i : 0 : ¨¨¨: 0s, r0 : . . . 0 : y j : ¨¨¨: y n sq P P n´1 ˆPn´1 ----

Note that for i † j the condition ∞ x k y k " 0 is redundant, and Xpi, jq can simply be described as:

Xpi, jq " prx 1 : ¨¨¨: x i : 0 : ¨¨¨: 0s, r0 : . . . 0 : y j : ¨¨¨: y n sq P P n´1 ˆPn´1 ( .

For 1 § i, j § n, i ‰ j, we name O i,j :" rO Xpwi,j q s P K ˝pX q the class of the pushforward of the structure sheaf O Xpwi,j q in the Grothendieck group K ˝pX q, and by I i,j :" I wi,j its dual with respect to the pairing ‰ : -, -Ñ ‰p-¨-q. For any u P W P , the Schubert variety opposite to the Schubert variety Xpuq is X u :" w 0 Xpw 0 uq.

Applying w 0 to (3.1) yields the following description of opposite Schubert varieties of X: X w0w k,l " w 0 Xpw k,l q " pL, Hq P X --L Ä † e n´k`1 , ¨¨¨, e n °, † e n´l`2 , ¨¨¨, e n °Ä H ( .

Given v, w in W P , the corresponding Richardson variety is X v w :" Xpwq X w 0 Xpw 0 vq. Consider 1 § i, j, k, l § n, i ‰ j and k ‰ l. Richardson varieties of X are described by: X k,l i,j :" X

Degree of

3.6.1 Definitions. Consider a degree d in the semi-group EpXq » N 2 of e ective classes of curves in H 2 pX, Zq » Z 2 . For r • 0, denote by M 0,r pX, dq the variety parametrizing degree d genus zero stable maps to X. The evaluation morphism ev i : M 0,r pX, dq Ñ X assigns to a map the image of its i-th marked point. For X a homogeneous variety, the evaluation morphism is flat. Recall for u in W P , we denote by rO u s :" rO Xpuq s the associated Schubert class in the Grothendieck group K ˝pX q of coherent sheaves. Since X is non singular, an element O u in K ˝pX q is assimilated with an element in the Grothendieck group K ˝pX q » K ˝pX q of locally free sheaves on X. Let u 1 , . . . , u r be elements in the Weyl group W ; the correlator xu 1 , . . . , u r y d associated with the elements u i is defined by: xu 1 , . . . , u r y d :" ‰ ´ev 1 pO u1 q ¨. . . ¨ev r pO ur q ¨rO M0,rpX,dq s ¯.

Note that for X a homogeneous variety, this correlator is equal to the sheaf Euler characteristic of the Gromov-Witten variety associated with the u i (cf. for example [START_REF] Anders | Quantum K-theory of Grassmannians[END_REF], Part 4.1); i.e. for pg 1 , . . . , g r q general in G r , we have:

We consider the basis pO u q uPW P of KpXq :" K ˝pX q » K ˝pX q. Let t " ∞ -PW P t -O -. Classes l 1 :" rXpw 2,n qs and l 2 :" rXpw 1,n´1 qs of one dimensional Schubert varieties form a nef basis of H 2 pX, Zq. Denote by Q 1 and Q 2 the Novikov variables associated with l 1 and l 2 . For a degree

Introduce the Gromov-Witten potential Gptq :"

We define a deformed metric by pO -, O -q " " -" -Gp0q, where " - " "{"t -. The genus zero big quantum product O -' O -of two basis elements of K ˝pX q is defined by: pO -' O -, O " q :" " -" -" " Gptq.

It is then extended by bilinearity over K ˝pX q b QrrQ, tss and defines the big quantum K-ring pK ˝pX q b QrrQ, tss, 'q. This ring is associative and commutative [START_REF] Lee | Quantum k-theory, i: Foundations[END_REF], and we recover the ring K ˝pX q by taking the classical limit Q Ñ 0. The restriction of the big quantum K-ring to t " 0 defines the small quantum K-ring pQK s pXq, ‹q. Note that for X a homogeneous variety, the product of two basis elements in QK s pXq is a polynomial in Q [START_REF] Anderson | The quantum k-theory of a homogeneous space is finite[END_REF]. The pairing defined by

is extended to a QrrQ, tss-bilinear pairing G on KpXq b QrrQ, tss. Denote by G -,-the inverse matrix. By definition, we have:

A combinatorial lemma.

We prove here a purely combinatorial lemma that will imply that the product of two elements in KpXq is a polynomial in the Novikov variable Q. Proof. px `yq n px `yq m " px `yq n`m . Lemma 3.6.2.2. Let n and k be positive integers, with n • 2.

Then f 1 p1q " 0. Lemma 3.6.2.3. Let pd, "q P N 2 , let pd 0 , " 0 q P N 2 such that " 0 † " ´1 or d 0 † d ´1. Then ÿ pd," " "q"ppd0,"0q;¨¨¨;pdr,"rqq p´1q r " 0,

where we consider the sum over all integers r and all possible decompositions of a pair pd, "q in N 2 on a pr `1q-tuple ppd 0 , " 0 q; ¨¨¨; pd r , " r qq satisfying andd 

Proof. Let 0 § d 0 † d and 0 § " 0 † " ´1. We set S " ∞ pd," " "q"ppd0,"0q;¨¨¨;pdr,"rqq p´1q r . Let r 1 be the elements d i other than d 0 that satisfy d i ‰ 0. Note that 1 § r 1 § d ´d0 . For a given r 1 the number r varies from r 1 to " ´"0 `r1 . Denote by r 2 the number of elements " i ‰ 0 where i ‰ 0; for given r 1 and r, r 2 varies from maxp1, r ´r1 q to minp" ´"0 , rq. For given r 1 , r and r 2 , we have `r r1 ˘possible choice of an i satisfying d i ‰ 0, `r1 r2´r`r1 ˘possible choice of an i satisfying " i ‰ 0, `d´d0´1 r1´1 ˘possible choice of the d i , and `"´"0´1 r2´1 ˘choice for the integers " i . Hence:

"

´"0`r1 ÿ r"r1 minp"´"0,rq ÿ r2"maxp1,r´r1q p´1q r ˆr r 1 ˙ˆd ´d0 ´1

Let us now consider Spr 1 , rq " ∞ minp"´"0,rq

Spr 1 , rq.

If r • "

´"0 . Then according to Lemma 3.6.2.1, if we set k " r 2 ´1, n " " ´"0 ´1, m " r, N " r ´1, we obtain:

Let r °r1 . Set k " r 2 ´r `r1 , n " r 1 , m " " ´"0 ´1, N " " ´"0 ´r `r1 . Note that " ´"0 ´r `r1 § r 1 and " ´"0 ´r `r1 § " ´"0 ´1. Then according to Lemma 3.6.2.1 we have Spr 1 , rq " p´1q r ˆr r 1 ˙ˆ" ´"0 ´1 `r1

"

´"0 ´r `r1 ˙ˆd ´d0 ´1 r 1 ´1 ˙.

If r § "

´"0 . Set k " r 2 ´1, n " " ´"0 ´1, m " r, N " r ´1. Then according to Lemma 3.6.2.1 we have Spr, rq " p´1q r ˆ" ´"0 ´1 `r r ´1 ˙ˆd ´d0 ´1

Note that ≈ d0,...,d k pu, vq is the set of points x in X such that there exists a stable map pÏ : C Ñ X, tp 1 , p 2 , p 3 uq associated with an element in M d0,...,d k such that the image Ïpp 1 q of the first marked point belongs to the Schubert variety Xpuq, the image Ïpp 2 q of the second marked point belongs to the opposite Schubert variety w 0 Xpvq and the image of the third marked point Ïpp 3 q is the point x.

Lemma 3.6.3.1. i) Let f : M Ñ X and g i : M 1 Ñ X be morphisms of schemes, where i " 1, 2. Let Y be a subvariety of X. Denote by M ˆX M 1 the fiber product defined by f and g 1 , and by g : M ˆX M 1 Ñ X the morphism induced by g 2 . Note that the morphim f induces a map f 1 : M ˆX Y Ñ X, and the morphisms g i induce maps

ii) Let k • 1. Set Y :" ev 3 pM d0,...,d k´1 pu, vqq. Then ev 3 pM d0,...,d k pu, vqq " ev d k 2 pev ´1 1 pY qq.

ii) Apply iq to M :" M d0,...,d k´1 , M 1 " M 0,2 pX, d k q and Y " Xpuq.

Lemma 3.6. Proof. We consider the Gromov-Witten variety ev ´1 1 pXpuqq Ä M 0,2 pX, dq. Let us consider the morphism ev d 2 : M 0,2 pX, dq Å ev ´1 1 pXpuqq Ñ X evaluating the second marked point. According to [BM11] Proposition 3.2., the general fiber of ev 1 is an irreducible rational variety and the image ev d 2 pev ´1 1 pXpuqqq is a Schubert variety, and hence has rational singularities. Note that since ev 1 and ev 2 are G-equivariant, for any element g 1 in G the variety ev d 2 pev ´1 1 pg 1 ¨Xpuqqq " g 1 ¨ev d 2 pev ´1 1 pXpuqqq is also a Schubert variety. Finally Part 3.5.2 paq yields the result.

Proposition 3.6.3.1. Let u be an element in W P

such that Xpuq is a codimension 1 Schubert variety h i , and v " w k,p be an element in

1. The projected Gromov-Witten variety ≈ d0,...,d k pu, vq :" ev d0`¨¨¨`dr 3 pM d0,...,d k pu, vqq is the translate of a Schubert variety of X.

2.

ÿ

Proof. 1. By iteration on k. First note that for d 0 °0 according to Lemma 3.5.3.2 and Proposition 3.5.3.1 there exists an element h in G such that ev d0 3 pM d0 pu, vqq " ev d0 3 pM 0,3 pX, d 0 qˆX2 pXpuqŵ 0 Xpvqq is given by the translation by h of a Schubert variety. For d 0 " 0, since k ‰ p `1, according to Proposition 3.3.0.1 ev 0 3 pM 0,3 pX, d 0 q ˆX2 pXpuq ˆw0 Xpvqq " Xpuq X w 0 Xpvq is the translation by ane element h in G of a Schubert variety. Now suppose the induction hypothesis verified for all i † k. Then the projected Gromov-Witten variety ev 3 pM d0,...,d k´1 pu, vqq is the translation by an element h in G of a Schubert variety Xpwq. According to Lemma 3.6.3.1 we have ev 3 pM d0,...,d k pu, vqq " ev 2 pev ´1 1 ph ¨Xpwqqq " h ¨ev 2 pev ´1 1 pXpwqqq, where we consider the maps ev i : M 0,2 pX, d k q Ñ X, i " 1, 2. Finally according to [CMBP13] Proposition 3.2 the variety ev 2 pev ´1 1 pXpwqqq is a Schubert variety.

2. By iteration on k. According to Lemma 3.5.3.2 and Proposition 3.5.3.1 since d 0 °l1 , l 2 we have

The identity pg `Aq ´1 " pgpid `g´1 Aqq ´1 " ∞ p´1q k pg ´1Aq k g ´1 yields the following equality:

since I -is the element in KpXq dual to O -for the pairing g. This implies for any elements u and v in

xO i,j , I i1,j1 y l1 xO i1,j1 , I i2,j2 y l2 " p1 ´"j,n q" i2,n " j2,1 `"j,n " i2,n´1 " j2,1 .

Proof. i) According to (3.12) we have

Note that ev l1 2 pev ´1 1 pXpw i,j qq parametrizes points px, yq in X such that iv) By applying iq, iiq and iiiq we obtain

3 yields the annulation of the three components of the sum. The annulation of the first component comes from applying the lemma to d 0 " 0 " " 0 and d i " pd i , " i q. The annulation of the second and third part of the sum comes from applying the lemma to d 0 " 0 " " 0 and d i " d i 1 and " i " 0 if d 1 • 2, and to d 0 " 0 " " 0 and d i " 0 and

We denote by 

A Chevalley formula in QK s pXq

Recall h 1 :" Xpw n´1,1 q and h 2 :" Xpw n,2 q are the two Schubert varieties whose classes generate A 1 pXq » Z 2 . We name O hi :" rO hi s the two Schubert classes associated. Let 1 § k, p § n, where k ‰ p. This part is dedicated to proving the following expressions. Proposition 3.7.0.1.

According to (3.12) if k °2 we have xO h1 , O k,p , I i,j y l2 " " i,k´1 " j,1 .

Furthermore, the product in K-theory is given by

Hence Proposition 3.4.1.1 directly yields the invariants xO h1 , O k,p , I i,j y 0 .

Recall from Lemma 3.6.4.1 that for any 1 § s, t § n, s ‰ t, xO i,j , I s,t y l2 " " s,i " t,1 p1 ´"i,1 q `"i,1 " s,1 " t,2 . We deduce

Moreover recall that the term of degree l i in O u ‹ O v is given by P li pu, vq "

We obtain for all v in W P P l2 ph 1 , vq " 0.

(3.19)

According to (3.12) if k °1 we have xO h2 , O k,p , I i,j y l2 " " i,k " j,1 .

We now obtain the invariants xO h1 , O k,p , I i,j y 0 from Proposition 3.4.1.1.

Recall from Lemma 3.6.4.1 that for any 1 § s, t § n, s ‰ t, xO i,j , I s,t y l2 " " s,i " t,1 p1 ´"i,1 q `"i,1 " s,1 " t,2 . We deduce for p † n 

Recall from Lemma 3.6.4.1 that for any 1 § s, t § n, s ‰ t, xO i,j , I s,t y l1 " " s,n " t,j p1 ´"j,n q "j,n " s,n´1 " t,n . We deduce

Furthermore, according to Lemma 3.6.4.1 for any 1 § i 2 , j 2 § n, i 2 ‰ j 2 , ÿ 1 §i1,j1 §n, i1‰j1

xO i,j , I i1,j1 y l1 xO i1,j1 , I i2,j2 y l2 " p1 ´"j,n q" i2,n " j2,1 `"j,n " i2,n´1 " j2,1 .

Hence

Moreover according to Lemma 3.6.4.1 for any

Finally according to Lemma 3.6.3.2 and Lemma 3.5.3.2 we have xO u , I w y l1`l2 " ‰ prO X s ¨Iw q hence

h 2 ‹ S rXpi, jqs " h 2 ¨rXpi, jqs `q2 rXs" n,i " n´1,j si j ‰ n; h 2 ‹ S rXpi, nqs " q 2 rXpi, 1qs si i °1;

" q 2 rXp1, 2qs `q1 q 2 rXs si i " 1, where the product ‹ S is the product in the small quantum cohomology ring of X. If we compare the product in small quantum cohomology to the product in small quantum K theory, we observe (in blue the terms which are present in small quantum K-theory but not in small quantum cohomology):

Generalization to other adjoint varieties ? In [CP11b] Chaput-Perrin interpret

Fulton and Woodward's Chevalley formula in quantum cohomology in terms of roots systems. Note that their construction can be generalized to describe the Chevally formula in quantum K-theory described in Proposition 3.7.0.1. One might wonder if this construction holds for other types of adjoint varieties.

On Littlewood-Richardson coe cients in QK s pXq.

Recall that for any elements u and v in W P there is a unique expression

where P w u,v pQ 1 , Q 2 q is a polynomial in the Novikov variables Q 1 , Q 2 . Note that taking the limit Q 1 , Q 2 Ñ 0 of P w u,v pQ 1 , Q 2 q yields the Littlewood-Richardson coe cients in KpXq. We provide here an algorithm computing all coe cients P w u,v pQ 1 , Q 2 q, and provide a closed formula that matches our computations for small values of n. Furthermore, we prove that the signs of the coe cients of the polynomials P w u,v pQ 1 , Q 2 q satisfy a positivity rule.

An algorithm to compute Littlewood-Richardson coe cients in

This Chevalley formula allows us to write down an algorithm computing the product between any two Schubert classes in QKpXq (cf. appendix C for a python code implementing this algorithm); we indeed can compute for all 1 § k, p § n, where k ‰ p, @u P W P , the product O w k,p ‹ O u by following the here under steps :

Positivity in

For any elements u and v in W P , we call the product O u ‹ O v positive if for all w P W P , -P EpXq, we have :

Note that this is equivalent to

Buch-Chaput-Mihalcea-Perrin proved that the product of any two Schubert classes is positive for X a cominuscule variety [START_REF] Anders S Buch | A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties[END_REF]. Denote by O u ¨Ov " ∞ wPW P N w u,v O w the decomposition of the product of two Schubert classes in KpXq. Note that for -" 0 (3.25) yields p´1q codimpXpwqq´codimpXpuqq´codimpXpvqq N w u,v • 0. Brion proved that, for X any generalized flag variety, the product of any two Schubert classes satisfies this positivity rule.

Let us go back now to our setting, i.e. let X " F l 1,n´1 .

Proposition 3.8.2.1. Let u, v be elements in

Let u " w k,p in W P . We will prove here that the product of O u with any Schubert class is positive by induction on pk, pq, running over the steps of the algorithm described here above. We will use the following formulas. According to (3.3) Xpi, jq " prx 1 : ¨¨¨: x i : 0 : ¨¨¨: 0s, r0 : . . . 0 : y j : ¨¨¨: y n sq P P n´1 ˆPn´1 ( ,

where we denote by ≈ n,0 the symbol of value 1 if n • 0, 0 else. Furthermore note that since X is a degree p1, 1q hypersurface of P n´1 ˆPn´1 the adjunction formula yields for any

Let us our now begin our induction. iii) Let v be an element in W P . Consider the decomposition

the Schubert basis. Since the quantum product ‹ is associative we have

,-2 hi,w . Since dimXpuq " dimXpu 1 q ´1 and the products O u 1 ‹ O v and O hi ‹ O w are positive we have

. Since dimXpuq " dimXpu 1 q ´pn ´1q and the product O u 1 ‹ O v is positive we have

Annexe C: résumé

Nous présentons ici les di érents résultats exposés dans ce manuscrit.

Soit n °0. On considère une collection I " ti 1 , . . . , i m u de m entiers positifs i k vérifiant i 0 " 0 † i 1 † ¨¨¨ † i m † i m`1 " n. On note F l I la variété de drapeaux paramètrant les drapeaux d'espaces vectoriels du type [START_REF] Chaput | Rationality of some gromov-witten varieties and application to quantum k-theory[END_REF]. Pour X " P N , Pandharipande a calculé le genre de la fibre générale de ev d : M 0,r pP N , dq Ñ pP N q r quand cette dernière est de dimension 1 [Pan97]. Définition 3.8.4.1. Soient X 1 , . . . , X r des variétés de Schubert de la variété de drapeaux X, soit d un élément de EpXq. Pour un élément g " pg 1 , . . . , g r q général dans GL r n , on appelle variété de Gromov-Witten de degré d associée aux variétés X i et à g la sous-variété W g,d X;X1,...,Xr :" ev ´1 1 pg 1 X 1 q X ¨¨¨X ev ´1 r pg r X r q de M 0,r pX, dq.

Rappelons qu'un morphisme f : P 1 Ñ X représente un degré d P EpXq Ä H 2 pX, Zq si f vérifie f ˚rP 1 s " d. Notons que la variété de Gromov-Witten W g,d X;X1,...,Xr paramètre les morphismes P 1 Ñ X de degré d dont l'image a une intersection non vide avec les translatés g i ¨Xi des variétés de Schubert X i . Lorsque ces variétés sont de dimension zéro, leur nombre de points est un invariant de Gromov-Witten. De facon générale, la caractéristique d'Euler-Poincaré de leur adhérence dans l'espace M 0,r pX, dq est un invariant en K-théorie quantique [START_REF] Givental | On the WDVV equation in quantum K-theory[END_REF].

Soit n • 0, soit I " ti 1 , . . . , i m u un ensemble de m entiers vérifiant 0 † i 1 † ¨¨¨ † i m † n. Considérons la variété de drapeaux X 1 " F l I . Pour une classe e ective d P H 2 pX, Zq, on note ev d : M 0,r pF l I , dq Ñ pF l I q r le morphisme d'évaluation. Rappelons que F l I paramètre les drapeaux d'espaces vectoriels du type

" F l I le morphisme d'oubli. Le chapitre 1 démontre l'observation suivante-cf. Théorème 1.1.2.1.

Théorème. Supposons que pI, J, rCs `⁄q est une collection stabilisée, au sens de la définition 1.1.1.1.

Alors:

• Pour toutes variétés de Schubert X 1 , . . . , X r de X, pour g en position générale dans GL r n , chaque variété de Gromov-Witten W g,rCs`⁄ F l J ;X1,...,Xr de F l J est une fibration rationnellement connexe audessus de variété de Gromov-Witten W g,rfipCqs F l I ;fipX1q,...,fipXrq de F l I .

Théorème. Supposons:

• d k • rpn k ´nk´1 q `dk´1 `pn k ´nk´1 qpt

n k`1 ´nk´1 u `1q.

Alors pour tous fibrés vectoriels T -équivariants E 1 , . . . , E r de X p k , les corrélateurs de X et de X p k associés au degré d et aux fibrés E i sont égaux:

xpfi p k q ˚E1 , . . . , pfi p k q ˚Er y X T,pd1,...,dmq " xE 1 , . . . , E r y X p k T,pd1,...,d k´1 ,d k`1 ,...,dmq .

Notons que dans le cadre des invariants de Gromov-Witten à trois points marqués, un résultat de Peterson/Woodward permet de déduire tous les invariants à 3 points marqués des variétés de drapeaux généralisées G{P des invariants à trois points marqués de G{B [START_REF] Christopher | Peterson's comparison formula for Gromov-Witten invariants of G/P[END_REF].

3.8.6 Calcul de Schubert pour la variété d'incidence F l 1,n´1 . On s'intéresse dans le chapitre 3 de cette thèse à di érentes variantes du calcul de Schubert moderne pour la variété d'incidence X " F l 1,n´1 paramétrant les paires pp, Hq où p est un point de P n´1 et H est un hyperplan de P n´1 . Notons que X s'écrit sous la forme G{P , où G " GL n , T est l'ensemble des matrices diagonales, B est l'ensemble des matrices triangulaires supérieures et P est le sous-groupe parabolique de G vérifiant B Ä P associé aux racines t-2 , . . . , -n´1 u. Le représentant de plus petite longueur w d'un élément dans W {W P » S n {S n´2 est une permutation vérifiant wp1q " i, wpnq " j, et pour 1 † k † n ´1 wpkq † wpk `1q. On notera w i,j l'élément associé dans W {W P . On peut considérer la variété F l 1,n´1 comme une sous-variété de bidegré p1, 1q de Grp1, nq ˆGrpn ´1, nq » P n´1 ˆPn´1 , définie par la relation d'incidence L Ä H. Pour 1 § i § n, on appelle L i :" trx 1 : ¨¨¨: x i : 0 . . . 0su, et L i :" tr0 . . . 0 : x i . . . x n su.

Les sous-variétés

Xpi, jq :" pL i ˆLj q X F l 1,n´1 Ä F l 1,n´1 Ä P n´1 ˆPn´1 sont les variétés de Schubert Xpw i,j q de F l 1,n´1 , pour 1 § i, j § n et i ‰ j.

Coefficients de Littlewood-Richardson dans KpF l 1,n´1 q. Pour 1 § i, j § n, i ‰ j, l'immersion naturelle i : Xpi, jq ãÑ X définit un faisceau i ˚OXpi,jq , qui est un faisceau cohérent de O F l1,n´1 -modules. On note O i,j :" ri ˚OXpi,jq s la classe de i ˚OXpi,jq dans le groupe de Grothendieck KpF l 1,n´1 q des faisceaux cohérents de O F l1,n´1 -modules. Rappelons que les classes de Schubert pO i,j q 1 §i,j §n, i‰j forment une base de KpF l 1,n´1 q, et le produit O k,p ¨Oi,j " O i`k´n´1,j`p´1 `Oi`k´n,j`p ´Oi`k´n´1,j`p sinon.