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Résumé : Cette thése présente trois résultats in-
dépendants sur les variétés de drapeaux. Le pre-
mier chapitre est consacré a |'étude de I'espace des
courbes rationnelles sur une variété de drapeaux
partielle. Le deuxiéme chapitre procure une formule
de comparaison entre corrélateurs de genre 0 en
K-théorie quantique T-équivariante de différentes
variétés de drapeaux. Le troisiéme chapitre étu-
die différentes variantes du calcul de Schubert mo-
derne pour la variété d'incidence X paramétrant
les inclusions d'un point dans un hyperplan de I'es-

pace projectif. Nous y calculons une formule fermée
décrivant les coefficients de Littlewood-Richardson
dans le groupe de Grothendieck K (X) des fais-
ceaux cohérents sur X. Dans le cadre de I'anneau
de petite K-théorie quantique de X QK (X) — qui
est une déformation de K (X) par des corrélateurs
a 3 points marqués — nous procurons une formule
de Chevalley, ainsi qu'un algorithme positif calcu-
lant les coefficients de Littlewood-Richardson dans

QK (X).

Title : Rational curves on flag varieties. Schubert calculus for incidence varieties.
Keywords : Birational geometry / quantum K-theory / Schubert calculus

Abstract : This Phd thesis presents three inde-
pendent results on flag varieties. In the first chap-
ter, we study the space of rational curves going
through points in general position on a partial flag
variety. In the second chapter, we provide a compa-
rison formula between T-equivariant genus 0 quan-
tum K-theoretical correlators of different flag va-
rieties. In the third chapter, we study Schubert
calculus for the incidence variety X parametrizing

points contained in hyperplanes of the projective
space. We provide a closed formula for Littlewood-
Richardson coefficients in the Groethendieck group
K (X) of coherent sheaves on X. We also provide a
Chevalley formula in the small quantum K-theory
ring QK (X )-which is a deformation of K (X) by
3 points correlators— along with a positive algo-
rithm computing all Littlewood-Richardson coeffi-
cients in QK (X).
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Introduction

La géométrie énumérative est une branche de la géométrie algébrique considérant le nombre de solutions
a un probléme géométrique précis. Un exemple marquant de géométrie énumérative est donné par le
probleme suivant.

Combien de courbes rationnelles de degré d passent par 3d — 1 points en position générale dans P? ?

Ce nombre, que 'on notera Ny, est donné par des invariants de Gromov-Witten. L’associativité du
produit dans I'anneau de cohomologie quantique de P? (Cf. la Section 0.2 pour des définitions précises
des invariants de Gromov-Witten et de I'anneau de cohomologie quantique d’une variété projective
lisse) permet de calculer par récurrence tous ces invariants, en fournissant la relation non triviale

suivante. 2d 4 2 4
Ny = > Ng, N, <d%d§ (3d - 2) — dids (3 o 1)) :
di+ds=d, dv, do>0 1= 1=

On s’intéressera dans cette thése (cf. Chapitre 3) & une variante particuliére de la géométrie énuméra-
tive, le calcul de Schubert.

0.1 Calcul de Schubert dans H*(G/P,Z).

Soit X = G/P une variété de drapeaux généralisée, ou G est un groupe algébrique linéaire semi-simple
complexe, T" un tore maximal de GG, B un sous-groupe de Borel de G et P un sous-groupe parabolique
de G vérifiant

TcBcPcdG.

Notons W := Ng(T')/T le groupe de Weyl de G. Soit L le sous-groupe de Levi associé & P et B; on
note Wp := N1(T)/T le sous-groupe de W associé a P et W := W/Wp. Un élément u associé & un
élément dans W définit une variété de Schubert

X(u) := BuP/P.

On note (X,)uewr les variétés de Schubert de X. Comme ([ X, ]) e forme une base de 'homologie
& coefficients entiers de X = G/P, pour tous éléments u et v dans W, il y a une expression unique

[Xu] U [Xo] = Z dy o[ Xw]-
wel
Les coefficients d, sont appelés coefficients de Littlewood-Richardson. Une question naturelle se pose
alors:

Comment décrire les coefficients dy,, 7

Soit Flj ,,—1 la variété paramétrant les paires (p,h), ol p est un point de P"~! et h est un hyper-
plan de P! contenant p. Dans le cas ou X est la variété d’incidence F' 1 n—1, ces coefficients sont
calculés dans le chapitre 3. Un algorithme permettant de calculer ces coefficients est appelé régle de
Littlewood-Richardson. Dans le cadre des Grassmaniennes, des regles de Littlewood-Richardson ont
été développées depuis longtemps, par exemple en utilisant la combinatoire des jeux de taquin [Full3].
Dans le cadre des variétés de drapeaux a deux crans, I. Coskun décrit une regle positive de Littlewood-
Richardson [Cos09]. Dans le cadre des variétés minuscules et cominuscules, Thomas et Young ont
décrit une régle de Littlewood-Richardson généralisant les jeux de taquin [TY09)].



0.2 Cohomologie quantique et K-théorie quantique

On s’intéresse dans le chapitre 2 aux corrélateurs de genre 0 en K-théorie quantique associés a une
variété de drapeaux. On s’intéressera dans les parties 3.5 a 3.8 du chapitre 3 a la petite K-théorie
quantique de la variété d’incidence Fl; ;1.

Nous rappelons dans cette partie définitions et propriétés classiques des anneaux de grosse coho-
mologie quantique et de K-théorie quantique d’une variété homogene. Davantage de précisions ainsi
que des démonstrations complétes peuvent étre trouvées dans [FP96] et [Lee04].

Soit Y une variété projective lisse complexe. Soit v un élément de Hy(Y,Z) correspondant a une
classe effective de courbe. On note My (Y, ) lespace des application stables de genre 0 & valeurs
dans Y représentant la classe . Associer & une application stable (¢ : C — Y, {p1,...,p,}) I'image
¢(pi) de son i-¢me point marqué définit un morphisme d’évaluation ev; : Mo, (Y,7) > Y. Si Y est
une variété homogene, My (Y, ~) est une variété projective irréductible rationnelle, de dimension la
dimension attendue, et a singularités quotient [FP96, Tho98, KP01].

0.2.1 Cohomologie quantique. CLASSES EFFECTIVES DE COURBES POUR X = G/P. No-
tons A Iensemble des racines simples associées a T' et positives par rapport & B, et Ap ’ensemble
des racines simples associées & P. Une racine simple o dans AP := A\Ap définit une variété de
Schubert X (sq) ~ P! de dimension 1. Les classes ([X (sa)])aea\a, engendrent le groupe abélien libre
Hy(X,Z). Notons E(X) le semi-groupe des classes effectives de courbe en homologie singuliere. E(X)
est 'ensemble des combinaisons linéaires a coefficients positifs de classes [X (sq)].

INVARIANTS DE GROMOV-WITTEN. Soient ai, ..., «, des éléments dans le groupe de Chow
A*(X) ~ H*(X,Z), soit v un élément de E(X). Le morphisme d’évaluation ev; : Moy (X,v) - X
associe a une application I'image de son i-éme point marqué. Pour X une variéte homogene, le
morphisme d’évaluation est plat. L’invariant de Gromov-Witten associé aux «; et a y est défini par:

<a1,...,ar>f=JM « )evfalu--~uevfozr. (1)
o,r Y

Considérons le cas ol les a; = [X;] sont les classes de sous-variétés projectives irréductibles de X. Pour
g = (g1, ..,9r) en position générale dans G, 'invariant (o, . .., &, ), compte le nombre d’applications
stables (P! — X, {p1,...,p,}) représentant la classe 7 et envoyant le i-éme point marqué p; € P! dans
la variété g; - X;.
ANNEAU DE GROSSE COHOMOLOGIE QUANTIQUE. Soit y une classe dans A*(X). On définit un
potentiel de Gromov-Witten
Z Z <y,7y>g

n=3 BeE(X) n! N
n
Fixons une base (ye)eer du groupe A*(X). Pour X une variété homogene, les classes de Schubert
forment une base naturelle de A*(X). Notons

Gef 32] Ye VY55
X

et ¢°f la matrice inverse de g. 7. Dans la base donnée par les classes de Schubert, pour chaque e il
exsiste un unique f tel que g.r est différent de 0; g.y vaut alors 1. On définit le produit entre deux
éléments y; et y; de la base (y.) par :

Z aSgH of
yiryi= D), -9y
4 ﬁyzayﬁye !

Ce produit induit par linéarité un produit entre éléments du Q[[y]]-module A*(X)®zQ[[y]], et en fait
une Q[[y]]-algébre QH (X)) commutative, associative, et ayant pour élément neutre [X]. L’associativité
du produit dans cette algebre fournit des relations entre invariants de Gromov-Witten de différents
degrés.



ANNEAU DE PETITE COHOMOLOGIE QUANTIQUE. Pour X une variété homogene, la plupart des
calculs en cohomologie quantique ont lieu dans le cadre de I’anneau de petite cohomologie quantique
QH,(X), plus facile & décrire. En particulier Ciocan-Fontanine donne une présentation des anneaux
de petite cohomologie quantique de n’importe quelle variété de drapeaux généralisée [CF95].

Fixons une base y1, ..., y, de A'X ~ H?(X,Z), et des bases yp1, ..., ym des autres groupes de
cohomologie. On définit le produit en petite cohomologie quantique entre deux classes y; et y; par :

Ssu1 S y
virsyi = >, >, Wnvphveoha’ el g yp
e,fel BeE(X)

On obtient ainsi une Z[qi, ..., gp]-algébre QH (X) = (A*(X) ®z Z[q1, . .., ¢p]) associative, commuta-
tive et ayant pour unité [X]. On retrouve A*X en prenant la limite ¢; — 0.

0.2.2 K-théorie quantique. La K-théorie quantique a été introduite par Givental pour les
variétés de drapeaux généralisées puis pour toute variété projective lisse en reformulant le formalisme
utilisé dans le cadre de la théorie de Gromov-Witten et en 'adaptant & la K-théorie [Giv00, Lee04].

CORRELATEURS EN K-THEORIE QUANTIQUE. Soit 7' un groupe algébrique complexe, soit X une
variété projective irréductible complexe lisse admettant une action de T'. Soient Ff, ..., E, des classes
de fibrés vectoriels T-équivariants dans le groupe K7 (X) des fibrés vectoriels T-équivariants de X.
Soit B une classe effective de courbe dans Ho(X,Z). On définit le corrélateur associé aux F; et a 8
par :

(1, )75 = XT (e”1E1® ®evf B @ O r<Xﬂ>)
Mo, (X,8)

~(x.8) est le faisceau structurel

ott 'on a noté xr la caractéristique d’Euler-Poincaré T-équivariante, et O le faisceau structurel

virtuel associé a My ,(X,3). Pour X une variété homogene, (9””

OFtax.0)°

Considérons en particulier le cas ot X = G/P est une variété homogene, T = id, et les E;®[Ox] =
[Ox,] € Ko(X) ~ K'9(X) sont des classes de faisceaux structuraux au-dessus de sous-variétés X;
de X & singularités rationnelles dans le groupe de Grothendieck K,(X) des faisceaux cohérents sur
X. Alors pour g = (g1,...,9r) en position générale dans G", le corrélateur <E1,...,Er>é{ est la

caractéristique d’Euler-Poincaré de la sous-variété de My (X, 3) dont les points correspondent & des
applications (C' — X, {p1,...,p,}) envoyant leur i-éme point marqué p; dans g; - X;. En particulier, si
cette variété est de dimension 0, le corrélateur (E1, ..., Er>§ est égal a l'invariant de Gromov-Witten
{(X1],-- -, [Xr]>§[ défini dans la sous-partie 0.2.1-cf. (1).

ANNEAU DE K-THEORIE QUANTIQUE. Soit X une variété projective irréductible complexe lisse. On
note F c Ho(X,Z) le semi-groupe des classes effectives courbes. Quand X est une variété homogene,
ce semi-groupe est engendré par les classes de variétés de Schubert de dimension 1. Soit C[E] 'anneau
de semi-groupe défini par E. On note Q° I’élément de C[E] associé & un élément 3 dans E. On appelle
anneau de Novikov N(X) 'anneau des séries formelles en Q:

N(X) = {Z asQ” | as € C.}

BeE

Soit (e;)ier une base du groupe (algébrique ou topologique) K(X) de K-cohomologie de X. Quand
X est une variété homogene, le groupe de Grothendieck des faisceaux cohérents sur X est un groupe
abélien libre engendré par les classes de faisceaux structuraux sur les variétés de Schubert de X. On
note t; les coordonnées duales aux e;. On considére un parametre formel t := Zie ;tiei. Le potentiel
de Gromov-Witten en K-théorie quantique est donné par

Z Z s
n=0 BeE(X \ ~~ -
n



On définit une métrique sur K (X)
*G (1)
(eires) = otiot;

Cette métrique est une déformation de la métrique induite par I’accouplement de Poincaré (e;,e;) —
gij := X(e; ®e;) par les corrélateurs de X. On retrouve la métrique g;; en restreignant G;; := (e;, e;)
& @Q = 0. On définit un produit entre éléments e; et e; dans K(X) ®z Q[[Q]]:

3G (t)
(eixesen) = Gt atn

On obtient par linéarité une algebre QK (X) = (K(X) ®z Q[[@,t]], *) qui est une algebre associative
et commutative. On retrouve K (X) en prenant la limite @) — 0. La restriction de 'anneau QK (X) &
t = 0 est Vanneau de petite K-théorie quantique (QK(X),*).

0.3 Calcul de Schubert moderne

On rappelle dans cette partie définitions et propriétés classiques du calcul de Schubert pour une variété
de drapeaux généralisée, en reprenant les définitions données dans [Bri05] pour le calcul de Schubert
en K-théorie et dans [Lee04, BM11] pour le calcul de Schubert en petite K-théorie quantique. Des
démonstrations complétes peuvent étre trouvées dans [Full3] pour le calcul de Schubert en homologie
a coefficients entiers, [Bri05, Bri02] pour le calcul de Schubert en K-théorie, [FP96] pour le calcul de
Schubert en cohomologie quantique, et [Lee04, BM11] pour le calcul de Schubert en petite K-théorie
quantique.

DEFINITIONS. Pour tout u dans W¥ on note Y (u) la variété de Schubert opposée a la variété de
Schubert X (u).

On s’intéressera ici (cf. chapitre 3) au cas o G = GL,,, T est ’ensemble des matrices diagonales,
B est I'ensemble des matrices triangulaires supérieures, B~ est I’ensemble des matrices triangulaires
inférieures et P est un sous-groupe parabolique de G associé aux racines {as,...,a,—1} < A. La
variété X = G/P est alors la variété paramétrant les paires (p, H) ot p est un point de P! inclu dans
un hyperplan H de P"~!. On étudie dans cette theése (cf. chapitre 3) différentes variantes du calcul
de Schubert moderne dans le cadre de cette variété. Plus précisément, on s’intéresse a la K-théorie et
petite K-théorie quantique de la variété d’incidence Fl; ;1.

0.3.1 Calcul de Schubert en K-théorie. Soit « un élément dans W¥. L’immersion
naturelle i : X(u) — X définit un faisceau i,Ox(y), qui est un faisceau cohérent de Ox-modules.
On note O, := [i4+Ox (] la classe de i4Ox(,) dans le groupe de Grothendieck K, (X) des faisceaux
cohérents de Ox-modules. Notons K°(X) le groupe de Grothendieck des fibrés vectoriels sur X.
Comme X est une variété lisse, 'application naturelle K°(X) — K,(X) est un isomorphisme. On
note K(X) := K,(X) = K°(X). Le produit tensoriel de deux fibrés vectoriels induit une structure
d’anneau sur K (X). Les classes de Schubert (Oy)ewr forment une base de 'anneau K(X). Pour
tous éléments u et v dans W, il y a donc une expression unique

Ou ' Ov = Z dKZ}UOw'
weWw P

Par analogie avec le cadre classique les coefficients d¢ jv sont appelés coefficients de Littlewood-

Richardson dans K(X). Notons que le signe de ces coefficients est connu [Bri02].

(_1)codim(X(w))—codim(X(u))—codimX(v)de > 0.

uv =

Dans le cas ot X est la variété d’incidence, ces coefficients sont calculés dans la partie 0.7.2 du chapitre
chapitre 3.



0.3.2 Calcul de Schubert en petite cohomologie quantique. Onnote (QH (X), *)
l’anneau de petite cohomologie quantique de X défini dans la sous-partie 0.2.1. Le semi-groupe E(X) c
Hy(X,7Z) des classes effectives de courbes est engendré par les classes de variétés de Schubert de
dimension 1, que I'on a notées [X(s,)], ot @ € AP. On note m = #AF le rang de Picard de X.
L’anneau QH(X) est une déformation de H*(X) par les variables formelles @;, ot i € {1,...,m}.
Pour tous éléments u et v dans W¥ on a une expression unique

X)) [X@)]= Y. Y ool Qi x(w)]

weW P di,...,dmeN

ou pour € E(X) le coefficient d;"vﬁ compte le nombre d’applications ¢ : P! — X vérifiant :
o p.[Pl]=p€ A X.

e Pour un élément g = (g1, go,g3) général dans G3, les intersections ([0 : 1]) N g1 - X (u), p([1 :
0]) nge - X(v) et ([1:1]) ngs-Y(w) sont non vides.

En particulier les coefficients dﬁf sont des entiers positifs. On appelle ces coefficients coefficients
de Littlewood-Richardson dans QHs(X). Dans le cadre des Grassmaniennes, la petite cohomologie
quantique a été étudiée entre autres par Siebert et Tian [ST97], Bertram [Ber97], Bertram-Ciocan-
Fontanine-Fulton [BCFF99] et Buch [Buc03]. Dans le cadre des variétés de drapeaux, la petite co-
homologie quantique a été étudiée entre autres par Ciocan-Fontanine [CF95]. Kresch et Tamvakis
ont étudié la petite cohomologie quantique des Grassmaniennes Lagrangiennes [KT03] et orthogo-
nales [KT04]. Buch-Kresch-Tamvakis ont étudié la petite cohomologie quantique des Grassmaniennes

isotropes [BKT12].

0.3.3 Calcul de Schubert en petite K-théorie quantique. On note (QK (X),*)
Panneau de petite K-théorie quantique de X. D’apres la sous-partie 0.2.2, QK (X)) est une déformation
de le 'anneau de K-théorie K (X) par Q°, pour 3 dans le semi-groupe E(X) c Hy(X,Z) des classes
effectives de courbes. Par définition on a donc pour tous éléments u et v dans W’ une expression
unique

OuxOy= ), PL,(Q)0u,

weW P

ou Py, (Q) est & priori une série formelle en Q. Anderson-Chen-Tseng-Iritani ont montré que les
coefficients P¥ (Q) sont en fait des polynémes en Q [ACT18]. On appelle ces polyndmes coefficients
de Littlewood-Richardson dans QK (X). Pour X une Grassmanienne, Buch-Mihalcea donnent un
algorithme calculant ces coefficients [BM11]. Buch-Chaput-Perrin-Mihalcea étudient ces coeffcients
dans le cadre des variétés cominuscules [BCMP16]. Kato étudie "anneau de petite K théorie quantique
des variétés de drapeaux généralisées G/B dans [Kat18].

On retrouve les coefficients de Littlewood-Richardson dans K(X) en considérant la restriction a
@ = 0 de ces coefficients. On considere les coefficients aﬁjvﬁ des polynomes P, (Q), i.e.

PU@) = ). atlQ’.
BeE(X)
w,0

Les coefficients ay,; sont les coefficients de Littlewood-Richardson en K-théorie, et vérifient donc
d’apres la sous-partie 0.3.1 I'inégalité suivante.

(_1)codim(X(w))—codim(X(u))—codimX(v)aqqf,l? > 0. (2)
Définition 0.3.3.1. Soient u et v des éléments dans W7T. Le produit O, » O, =

D wel ZﬁeE(X) aZ’ijBC’)w en petite K-théorie quantique est dit positif si pour tous w dans W¥ et
B dans E(X)

(_1)codim(X(w))—codim(X(u))—codimX(v)-}—Sﬁ cl(TX)aZu,Uﬁ > 0.
On appelle 'anneau de petite K-théorie quantique QK (X) positif si pour tous éléments u, v dans

WP le produit O, x O, est positif.
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En particulier, pour 8 = 0 on retrouve 'inégalité (2). Notons que Lenart-Maeno ont conjecturé
que le produit de deux classes de Schubert est positif dans QK(GL,,/B) [LMO06]. Par ailleurs, Buch-
Mihalcea ont conjecturé que le produit de deux classes de Schubert est positif dans QK ,(Gr(k,n)), et
démontré cette conjecture pour n < 14 [BM11].

Soit o un élément dans AF. La variété de Schubert h,, := Y (a) est une variété de codimension 1
dans X. Pour tous a dans A” et v dans W7, il existe une expression unique

[Oha] * O'U = Z PEU(Q)OMJ’

weW P

ott les coefficients Py, (Q) sont des polynémes en Q. Une telle formule est appelée formule de Chevalley
dans QK4 (X).

Une formule de Chevalley est calculée dans la partie 3.8 du chapitre 3, en utilisant des résultats
des deux chapitres précédents. On appelle ici un algorithme positif si a chaque itération le calcul
effectué est une somme de coefficients de mémes signes. Un algorithme positif permettant de calculer
les coefficients de Littlewood-Richardson dans QK (Fl; ,—1) est donné partie 3.8.1. Le signe de ces
coefficients en est déduit dans la partie 3.8.2. Enfin, une formule fermée décrivant ces coefficients est
conjecturée dans la partie 3.8.3.

0.4 Reésultats

Soit n > 0. On considére une collection I = {i1,...,%,} de m entiers positifs iy vérifiant ip = 0 <
11 < -0 <y < lmy1 = n. On note Flj la variété de drapeaux parametrant les drapeaux d’espaces
vectoriels du type

ViocVi,c-..cV, <C",

ou V;, est sous-espace vectoriel de C" de dimension iy.

0.4.1 Variétés de Gromov-Witten des variétés de drapeaux partiels. Lorsque
I’on supprime certains de ses espaces a un drapeau d’espaces vectoriels on obtient un autre drapeau,
consitué de moins d’espaces. Ceci induit une application d’oubli 7 : X — X'’ entre les variétés de
drapeaux associées. Considérons une classe nef [C] € Hz(X,Z) de courbe de X, ou la courbe C' est
isomorphe & son image par la projection 7. Fixons également une classe A\ = [[] € Ha(X,Z) de courbe
[ dont la projection par 'application d’oubli 7 est un point. On considere dans le chapitre 1 les liens
entre la fibre géométrique du morphisme d’évaluation

eviey4a : Mo (X, [C]+ X)) — X7

et la fibre géométrique du morphisme d’évaluation evp,(cy; & valeur dans (X’)". Pour r = 3 et X une
variété cominuscule, Chaput-Perrin ont montré que la fibre générale du morphisme d’évaluation est
une variété rationnelle [CP11a]. Pour X = PV, Pandharipande a calculé le genre de la fibre générale
de evg : Mo (PY,d) — (PV)" quand cette derniére est de dimension 1 [Pan97].

Définition 0.4.1.1. Soient X, ..., X, des variétés de Schubert de la variété de drapeaux X, soit
d un élément de F(X). Pour un élément g = (g1,...,g,) général dans GL,, on appelle variété de
Gromov- Witten de degré d associée aux variétés X; et a g la sous-variété

WE = er (@i Xn) n - nevy (g,
de M077>(X, d)

Rappelons qu'un morphisme f : P! — X représente un degré d € E(X) < Ho(X,Z) si f vérifie
f«[P'] = d. Notons que la variété de Gromov-Witten W}q(’g(h”_, x, barametre les morphismes P! — X
de degré d dont I'image a une intersection non vide avec les translatés g;- X; des variétés de Schubert X;.
Lorsque ces variétés sont de dimension zéro, leur nombre de points est un invariant de Gromov-Witten.
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De facon générale, la caractéristique d’Euler-Poincaré de leur adhérence dans I'espace Mo (X, d) est
un invariant en K-théorie quantique [Giv00].

Soit n = 0, soit I = {i1,...,4m} un ensemble de m entiers vérifiant 0 < iy < -+ < i, < M.
Considérons la variété de drapeaux X' = Fl;. Pour une classe effective d € Hy(X,Z), on note
eva : Mo (Flr,d) — (Fl;)" le morphisme d’évaluation. Rappelons que Fl; parametre les drapeaux
d’espaces vectoriels du type

{0ycV,cVy---cV;, <cC"

ou dimV;, = ij. Soit J = {j1,...,jn} un ensemble d’entiers vérifiant 0 < j; < -+ < jp < n, tel que
I est inclu dans J. On note 7w : X = Fl; — X’ = Fl; le morphisme d’oubli. Le chapitre 1 démontre
I’observation suivante-cf. Théoréeme 1.1.2.1.

Théoréme. Supposons que (I, J,[C]+ \) est une collection stabilisée, au sens de la définition 1.1.1.1.
Alors:

e Pour toutes variétés de Schubert Xy, ..., X, de X, pour g en position générale dans GL] , chaque
variété de Gromov- Witten Wzg«“’z[f])z/\... x, de Flj est une fibration rationnellement conneze au-
dessus de variété de Gromov-Witten Wg’[ﬂ(c)] de Flj.

Flrm(X1),.oom(X,)

e Pour x en position générale dans (Fl;)", la fibre ev[_c}]+>\(:v) est une tour de fibrations unira-

tionnelles au-dessus de la fibre ev[_ﬂl(c)] (m(x)).

Nous avons appelé une variété W une fibration rationnellement connexe (respectivement fibration
unirationnelle) au-dessus de W’ si il existe un morphisme dominant W — W'’ envoyant chaque com-
posante irréductible de W sur une composante irréductible différente de W/, et dont la fibre générale
est une variété rationnellement connexe (respectivement unirationnelle). Une variété W est une tour
de fibrations unirationnelles au-dessus d’une variété W’ s’il existe une suite de morphismes

W1=W—>W2—>"'—>W12W/

telle que pour 1 < i < [, la variété W; est une fibration unirationnelle au-dessus de W;.

0.4.2 Egalités entre corrélateurs de différentes variétés de drapeaux par-
tiels. Fixons des entiers 1 <i; < -+ < 4, < n. On considere la variété de drapeaux X paramétrant
les drapeaux d’espaces vectoriels
Vic---cV;, cC

vérifiant dimV;, = 4. La classe d = (dy,...,d;,) d'une courbe C' de X est déterminée par m entiers
dy, da,..., dm, ou d; est le degré de Pliicker de la projection de C' sur la Grassmannienne Gr(n;,n).
Soit T un tore de GL,, agissant sur X par multiplication a gauche. Soient Ei, ..., E, des fibrés
vectoriels de X T-équivariants. Rappelons que les corrélateurs T-équivariants en K-théorie quantique

sont donnés par

<¢1, e ¢T>7)g,(d1,...,dm) = XT (eval ®--- @evaT ® OW(X,d)) ) (3)

ou 'on a noté xr la caractéristique d’Euler-Poincaré T-équivariante. Pour un entier 1 < k£ < m, on
note X la variété obtenue a partir de X en oubliant I’espace vectoriel V5, , et

WEZXHX@

le morphisme d’oubli. Afin de faciliter les notations, on note dy = 0 = d,,+1. Le chapitre 2 fournit
I’égalité entre corrélateurs suivante-cf. Théoréme 2.1.3.1bis.
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Théoréme. Supposons:

Np—Np—1

o Vp<k dp >nk[i]

o dpy < |2

o di > (g —mp1) + dio + (g — ) (L] 1 1),

Alors pour tous fibrés vectoriels T-équivariants Ey, ..., E. de X3, les corrélateurs de X et de X3
associés au degré d et aux fibrés E; sont égaux:

X X3
<(7T@)*E17 ) (77@>*ET>T,(d1,...,dm) = <E1, ) ET>T,k(d1,..‘,dk_l,dk_,_l,.“,dm)'

Notons que dans le cadre des invariants de Gromov-Witten a trois points marqués, un résultat de
Peterson/Woodward permet de déduire tous les invariants a 3 points marqués des variétés de drapeaux
généralisées G/P des invariants a trois points marqués de G/B [Woo05].

0.4.3 Calcul de Schubert pour la variété d’incidence Fl;,_;. On s’intéresse
dans le chapitre 3 de cette these a différentes variantes du calcul de Schubert moderne pour la variété
d’incidence X = Fly ,,_1 paramétrant les paires (p, H) ol p est un point de P"~! et H est un hyperplan
de P"~!. Notons que X s’écrit sous la forme G/P, ou G = GL,, T est I'ensemble des matrices
diagonales, B est ’ensemble des matrices triangulaires supérieures et P est le sous-groupe parabolique
de G vérifiant B — P associé aux racines {«as,...,a,—1}. Le représentant de plus petite longueur w
d’un élément dans W/Wp ~ &,,/6,,_5 est une permutation vérifiant w(l) = ¢, w(n) = j, et pour
1 <k<n—1w(k) <w(k+1). On notera w; ; 'élément associé dans W /Wp. On peut considérer
la variété Fl; ,_1 comme une sous-variété de bidegré (1,1) de Gr(1,n) x Gr(n —1,n) ~ P*=1 x Pr=1,
définie par la relation d’incidence L < H. Pour 1 < i < n, on appelle

Li:={[xz1:--:2;:0...0]},

et

Les sous-variétés 4
X(i,j):=(Li x L)Y " Fly 1 < Fly g c P71 x P!

sont les variétés de Schubert X (w; ;) de Fly ,—1, pour 1 <i,j <mneti# j.

COEFFICIENTS DE LITTLEWOOD-RICHARDSON DANS K(Fly ,_1). Pour 1 < 4,5 < n, i # j,
I'immersion naturelle i : X (4,5j) — X définit un faisceau i+Ox; ;), qui est un faisceau cohérent de
Or1,.,,_,-modules. On note O; ; := [i+Ox(; )] la classe de ixOx; j) dans le groupe de Grothendieck
K(Fly 1) des faisceaux cohérents de Oy, ,_,-modules. Rappelons que les classes de Schubert
(O; j)1<i,j<n, i#; forment une base de K(Fl; ,,—1), et le produit

dimFllvnfl

i Flyn
Oij-Orp= >, (=1)[Tor, (Ox (i), Ox (k)]
1=0

définit une structure d’anneau associatif et commutatif (K (Fli,—_1),-) ayant pour unité [Op;, ,_,].
On pose O; ; =0sii<1ouj>n.

Proposition (Coefficients de Littlewood-Richardson dans K (Fl; ,,—1)-cf. Proposition 3.4.1.1). Soient
1<i,j,k,p<n, oui+#jetk+#p. Alors

Okp-0ij=Oighn j+p—1 sit+k—n=j+pori<jork <p;
Okp-0ij=0iskn-1,j+p—1 + Oitb—n jt+p — Oitkon—1j+p sinon.
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FORMULE DE CHEVALLEY ET ALGORITHME POSITIF DANS QK (Fl; ,—1). Notons [; := X(2,1)
et Iy := X(1,2) les deux variétés de Schubert de Flj,_; de dimension 1. Leurs classes [l;] et
[l2] en homologie singuliere de Fly ,_1 engendrent Hy(Fl; ,—1,Z). Rappelons que l'anneau de pe-
tite K-théorie quantique QKs(Flyn—1) = (K(Flin-1)) ® Q[Q1,Q2],*) de Flj ,,_1 est une défor-
mation de 'anneau K (Fly ,—1) par les variables Q1 et Q2. Cette déformation dépend des corréla-
teurs (O; j, Ok p, Os.t)d, [11]+ds[1o] définis dans la sous-partie 0.2.2. On retrouve I'anneau de K-théorie
K (Fly n-1) en prenant la limite Q1,Q2 — 0.

Notons h; := X(n—1,1) et hg := X(n,2) les deux variétés de Schubert de Fl; ,,—1 de codimension
1.

Proposition (Formule de Chevalley dans QK (Fly ,—1)-cf. Proposition 3.7.0.1).

Q1051 + Q1Q2 ([Ox] — On,) sik=1,p=n
Qlon,p sik = 17 p<n
Oh, *Okp =1 012+ Q1 ([Ox]—Op,) sik=2p=1
Ok—1p sik>1, k#p+1
Op—1p+ Oppr1 = Op_1p11 sil<p<n-1,k=p+1
Q2012+ Q1Q2 ([Ox] — Op,) sik=1,p=n
Q201 sik>1,p=n
Ohy *Okp =3 On_in + Q2 ([Ox] — On,) sik=n,p=n-1
Ok.pt+1 sip<n, k#p+1

Op7p+1 + Op_l,p — Op—l,p+1 sil<k<n—-1,k=p+1

Notons que pour X une variété cominuscule, une formule de Chevalley en petite K-théorie quantique
est donnée par Buch-Chaput-Mihalcea-Perrin [BCMP16].

Appelons ici un algorithme positif si a chaque itération le calcul effectué est une somme de coeffi-
cients de mémes signes.

Proposition. L’algorithme donné partie 3.8.1 est un algorithme positif calculant les coefficients de
Littlewood- Richardson dans QK(Fly n—1).

Corollaire. (Cf. Proposition 3.8.2.1) L’anneau de petite K -théorie quantique QKs(Fly n—1) est positif
au sens de la définition 0.3.3.1.

Conjecture. La formule fermée décrite dans la partie 3.8.8 domne les coefficients de Littlewood-
Richardson dans QKs(Flip-1).
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Summary

We present here an overview of the different results presented in this thesis. Chapters 2 and 3 use some
of the results of Chapter 1, but are otherwise independent and each of them may be read separately.

0.4.4 Chapter 1: Gromov-Witten varieties of partial flag varieties. Letn > 0,
let J = {j1,...,7m} be a set of M integers satisfying 0 < j; < --- < ja < n. Consider the flag variety
X = Fl; parametrizing the flags of vector spaces of type

Vi Vycoa,

i & (Cn’

where Vj, is a vector subspace of C" of dimension j;. For an element d in the semi-group
E(X) < Hy(X,Z) of effective classes of curves, we denote by My, (X,d) the space of maps
(f : P - X {p1,...,pr}) with » marked points p; on P! satisfying fy[P!] = d. Associating to a
map the image of its marked points yields an evaluation morphism evq : Mg (X,d) — X". Forr =3
and X a cominuscule variety, and in particular for X a Grassmannian, Chaput-Perrin proved that
the general fiber of the evaluation map is a rational variety [CP11la]. For X = P2, Pandharipande
computed the genus of the general fiber of the evaluation map evy : Mo ,.(P?,d) — (P?)” when this
fiber has dimension 1 [Pan97], genus which turns out to be positive for d > 3. For X = P!, examples
of values of d such that the general fiber of evq : Mg (P!, d) — (P!)" is not a rationally connected va-
riety have been obtained using techniques from quantum K-theory [IMT14]. One might wonder what
happens for a variety of Picard rank greater than one. Chapter 1 provides a step in that direction by
studying the geometry of the general fiber of the evaluation map evq : Mo (X,d) - X" for X a flag
variety, and more generally the geometry of Gromov-Witten varieties of flag varieties.

Definition 0.4.4.1. Let X1, ..., X, be Schubert varieties of the flag variety X, let d be an element
in F(X). For any element g = (g1, ...,¢-) general in GL] , we call Gromov-Witten variety of degree d
associated with the varieties X; and with g the subscheme

Wg(’fxlw,’x = evfl(ngl) NN evr_l(ngr)

of M()’T(X, d).

Note that the Gromov-Witten variety W}"(’&l’_“7 x, barametrizes morphisms P' — X representing
the class d whose image has a non empty intersection with the translates g; - X; of the Schubert
varieties X;. When these varieties are zero dimensional, their number of points is a Gromov-Witten
invariant. More generally, the Euler-Poincaré characteristic of their adherence in the space My (X, d)
is a correlator in quantum K-theory [Giv00].

Let I = {i1,...,im} be a set of m integers satisfying 0 < i3 < -+ < 4, < m, such that I is contained
in J. We denote by 7 : X = Fl; — X' = Fl; the forgeftul map. Fix a class A = [l] € Hy(X,Z) of a
curve | whose projection by the forgetful map 7 is a point. We observe in Chapter 1 a relation between
the general fiber of the evaluation map

evicen : Mo (X, [CT+A) — X7

and the general fiber of the map evpycy : Mo (X', [7(C)]) — (X')".
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Theorem. (Theorem 1.1.2.1) Suppose the collection (I,J,[C] + A) is a stabilized collection in the
sense of Definition 1.1.1.1. Then:

e For any Schubert varieties X1, ..., X, of X, for g general in GL;, the Gromov-Witten va-

riety W%’l[fl;A_" x, of Flj is a rationally connected fibration above the Gromov-Witten variety

[=(C)]
WL (X0 som(x) O FlI-

e For x general in (Fl;)", the fiber evfc}]+A(x) is a tower of unirational fibrations over the fiber

ev[;l(c)] (m(x)).

We called a variety W a rationally connected fibration (respectively unirational fibration) above
W' if there exists a dominant map W — W' sending each irreducible component of W onto a different
irreducible component of W’ and whose general fiber is a rationally connected variety (respectively
unirational). A variety W is a tower of unirational fibrations above a variety W’ if there exists a
sequence of morphisms

W1=W4>W2*>"'*>VV12W/

such that for 1 < ¢ < [, the variety W; is a unirational fibration above W, .

0.4.5 Chapter 2: A comparison formula between genus 0 correlators of flag
varieties. Fix integers 1 <nj; < --- < n,, < n. We consider the flag variety X parametrizing flags

of vector spaces
Vo, C-CVp cC

satisfying dimV,,, = n;. Let T be a torus in GL,, acting on X by left multiplication. Let d =
(di,...,dn) be an effective class of curve in Ha(X,Z). We denote by Mo.(X,d) the coarse moduli
space parametrizing genus 0 stable maps representing the class d. Assocating to a stable map with r
marked points the image of its i-th marked point induces an evaluation map ev; : Mg, (X,d) — X.
Let E1, ..., E, be T-equivariant fiber bundles over X. In quantum K-theory, T-equivariant correlators
are defined by

<¢17 et ¢T>§{7(d1,4.,7dm) = XT (eval ® - ® BU:TET &® OW(X,CI)) ) (4)

where we denote by xr the T-equivariant Euler-Poincaré characteristic [Giv00, Lee04]. For 1 < k < m,
we denote by X the flag variety obtained from X by forgetting the vector space V,,, , and by

TI'E:XHX@

the forgetful map. In order to facilitate notations, we set dy = 0 = d,,+1. Chapter 2 yields the
following equality between correlators-cf. Theorem 2.1.3.1bis.

Theorem. Suppose:

o Vp <k, d an[mw)

Np—MNp—1

d —dj—
o d = r(nk —np-1) + de—1 + (e — 1) ([ =00+ 1).

Then for any T-equivariant fiber bundles Ey, ..., E,. over X3, the correlators of X and X; associated
with the degree d and the fiber bundles E; are equal:

X X3
<(7T@)*E17 SEE) (77@>*ET>T,(d1,...,dm) = <E1, ) ET>T,k(d1,..‘,dk_l,dk_,_l,.“,dm)'

Note that for 3-pointed Gromov-Witten invariants, a result of Peterson/Woodward allows to deduce
all invariants with 3 marked points of generalized flag varieties G/P from 3-pointed Gromov-Witten
invariants of G/B [Woo05].
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0.4.6 Chapter 3: Schubert calculus for the incidence variety Fl; ,_;. Westudy
in Chapter 3 different variations of modern Schubert calculus for the incidence variety X = Fl; ,_1
parametrizing pairs (p, H) where p is a point in P"~! and H is a hyperplane in P"~! containing the
point p. Note that X can be written as G/P, where G = GL,,, T is the set of diagonal matrices, B is the
set of upper triangular matrices and P is the parabolic subgroup of G satisfying B — P associated with
the roots {ag,...,a,—1}. The smallest length representative w of an element in W/ Wp = &,,/6,,_2
is a permutation w; ; satisfying w(1) = ¢, w(n) = j, and such that for 1 <k <n—1w(k) <w(k+1).
For 1 <i,j <nandi# j, we call X(¢,7) := X(w; ;) the Schubert variety of Fi; ,_1 associated with
the element w; ; in WP ~ W /Wp.

LITTLEWOOD-RICHARDSON COEFFICIENTS IN K(Fly,_1). For 1 < i,j < m, i # j, the natural
embedding i : X (i, j) < X defines a sheaf i, Ox; ;), which is a coherent sheaf of Oy, ,_,-module. We
denote by O; ; := [ixOx; ;] the class of i,Ox; ;) in the Grothendieck group K (Fl; 1) of coherent
sheaves of Opy, ,_,-module. Schubert classes (O; ;)i<i j<n,i»; form a basis of K(Flin-1), and the

product
dimFllvnfl

i Flypn—
OijOrp= >, (=1)'[Tor; " (Ox(ijy Ox(inp))]
i=0
defines a structure of associative and commutative ring (K (Fly,—1),-) with identity element
[OFi,,,_,].- Weset O;; =0if i <1orj>n.

Proposition (Littlewood-Richardson coefficients in K (Fly ,_1)-cf. Proposition 3.4.1.1). Let 1 <
1,7, k,p <mn, wherei # j and k # p. Then

{th-(’)i,j = Oitkn,jtp—1 ifit+k—m=j+pori<jork <p;

Okyp - Oij = Oitk—n-tjip-1+ Oixkntp — Oitk—n—1j+p else.

CHEVALLEY FORMULA AND POSITIVE ALGORITHM IN QK (Fl; ,,—1). We denote by {1 := X(2,1)
et lo := X(1,2) the two one-dimensional Schubert varieties of Flj ,_1. Their classes [l;] and
[l2] in the singular homology of Flj,_; generate Ho(Fly,—1,Z). The small quantum K-ring
QK (Flin—1) = (K(Flip-1)) ® Q[Q1,Q2],*) of Fly 1 is a deformation of the ring K (Fly n—1)
by the Novikov variables @1 and Qs associated with the classes [l1] and [l2] [Lee04]. This defor-
mation depends on the correlators {O; j, Ok p, Os t)d,[1,]+ds[12] defined by (4). Considering the limit
Q1,Q2 — 0 yields the K-ring K(Flj p_1).

We name hy := X(n—1,1) and hy := X (n,2) the two Schubert varieties of Fly ,_1 of codimension
1.

Proposition (Chevalley formula in QK,(F'l; ,,—1)-cf. Proposition 3.7.0.1).

Q10n 1.0 + Q1Q2 ([Ox] — Oh,) ifk=1,p=n
Qlon,p if k= ]., p<n
On, *Opp =13 012+ Q1 ([Ox]—04)) ifk=2,p=1
Orr ith>1 keptl
Op—1p + Oppr1 — Op—1p11 fl<p<n-1,k=p+1
Q2012 + Q1Q2 ([Ox] — Oh,) ifk=1,p=n
Q2041 ifk>1,p=n
Ohy * Ok p =< On_1n + Q2 ([Ox] — Op,) ifk=np=n-1
Ok.p+1 ifp<n, k#p+1

Op7p+1 + OP—LI) — Op—l,p+1 ifl<k<n—-1,k=p+1

Note that for X a cominuscule variety, a Chevalley formula in small quantum K-theory is given by
Buch-Chaput-Mihalcea-Perrin [BCMP16].
Since (Oy)wewr is a basis of K(Fly,—1), for any elements u and v in W, there is a unique
decomposition
Oux0y= > > ariQlQe0,.

dl, dzEN ’LUEWP
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We call the polynomials >, 4 . amﬁil’dz QY Q% Littlewood-Richardson coefficients in QK y(Fly ,_1).
We call the ring QK (Fly ,—1) positive if for any elements v and v in WP, dy, dy in N the sign of the
coeflicient aﬁfhd? is given by the following inequality.

(_:l)(:odimX(u))7codimX(u)fcodimX('u)JrSd1 [i1]+dalia] € (TX)aZ)jUdl Jdo > 0.

Note that for d; = 0 = da, this inequality is satisfied according to M. Brion’s result on positivity in
the Grothendieck groups of generalized flag varieties [Bri02]. Finally, we call an algorithm positive if
at each iteration the computation performed is a sum of coeflicients having the same sign.

Proposition. The algorithm given Subsection 3.8.1 is a positive algorithm computing Littlewood-
Richardson coefficients in QK(Fly n_1).

Corollary. (Cf. Proposition 3.8.2.1) The small quantum K-theory ring QK(Fli ,—1) is positive.

Conjecture. The closed formula described in Subsection 3.8.3 yields Littlewood-Richardson coeffi-
cients in QKs(Flipn_1).
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Definitions and notations

0.5 Space of stable maps M, (Y,7).

DEFINITIONS. Let Y be a complex projective smooth variety. Let C' be a connecetd reduced nodal
curve of genus zero equipped with r distinct non singular marked points. A morphism C' — Y from C
to the variety Y is called a stable map if each irreducible component of C sent onto a point contains
at least three points that are nodal or marked. Let v be an element in Hy(Y,Z) corresponding to an
effective class of curve. We say the morphism ¢ : C' — Y represents the class v if p[C] = v € Ha(Y,Z).
Let S be a complex scheme. A family of quasi-stable maps with r» marked points above S is given by

e A flat and projective morphism 7 : C — S equipped with r sections p; : S — C, such that each
geometrical fiber is a reduced nodal projective connected curve of genus zero Cs and such that
the marked points p;(s) are distinct and non singular.

e A morphism C — Y.

The space Mo -(Y,7) of genus 0 stable maps toY representing v is the coarse moduli space parametriz-
ing families of stable maps with » marked points above S from genus 0 curves to Y representing the
class v, such that the geometric fiber Cs above any points in S defines a stable map C; — Y [FP96].
For a homogeneous variety Y, the space My ,(Y,7) is an irreducible rational projective variety, ofe
dimension the expected dimension and with quotient singularities [FP96, KP01]. Furthermore, the
subvariety My (Y,7) parametrizing maps P! — Y is a dense open subset of My ,(Y,v). A general
point in My (Y, ~) thus corresponds to a map P! — Y representing the class 7.

Note that a general point in My (Y, ) is not necessarily associated with an injective map P* — Y.
This is immediate if Y = P!; indeed, a general point in My (P!, d) is associated with a degree d map
P! — P!. This phenomenon may also be observed in higher dimensions. Consider for example the full
flag variety Y = Fly » = GL3/B parametrizing pairs (p, 1) where p is a point in P? and [ is a line in P2
taht contains p. Fix a line [ in P2. Denote by v the class of the curve C' ~ P! = Fl; 5 containing all
pairs (p,1), where p = [ and by 7 : Fly 5 — P? the map forgetting the line I in a pair (p,!’). Then the
restriction of 7 to the curve C' is an isomorphism onto its image, which is the line [ = P2. Denote by
7't Fly o — Gr(2,3) the map induced by forgetting the point p in a pair (p,!). An irreducible curve
C' in Fly 5 of class 2y satisfies m4[C'] = 2 in A, (P?). Furthermore its image 7(C’) in P? is included
in the line in P? defined by the image 7/(C’) € Gr(2,3). Then the projection 7 induces a degree 2
morphism between the curve C’ and its image 7(C"), which contradicts the fact that the restriction of
7 to C’ is an injection. There thus is no irreducible curve of class 2y in Fl; 2, and a general point in
Mo (Fly2,27) <> Mo (Fly 2,2v) corresponds to a degree 2 map P* — Flj 5.

G-ACTION ON Mg (Y, 7). Let G be a complex algebraic group, Y be a smooth projective G-variety
(in this thesis G will be the group GL,, of invertible matrices and Y will be a flag variety parametrizing
flags of vector spaces included in C™). Let v be an element of Hy(Y,Z) corresponding to an effective
class of curve. We consider the natural transformation of functors associating to a morphism ¢ : S — G
and to a family of quasi-stable maps (7 : C — S, : C — Y') above S with r marked points representing
the class v the following family:
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where we denote by G - 4 : C — Y the morphism C 3 ¢ — ® o xw(c) - u(c) € Y translating curves
1(Cs) by the element in G image of s by @. This natural transformation of functors induces an action
Mo (Y,7) x G — My (Y, ), associating to an element ¢ in G and to a map p: C — Y the map

g-p:Coap—g-up ey

0.6 Flag varieties

We recall here some classical definitions and properties of flag varieties. Let n > 0. We consider a
collection I = {iy,...,iy,} of m non-negative integers iy satisfying ig := 0 < i1 < -+ < iy < g1 := N.
We denote by F'l; the variety parametrizing flags of vector spaces

n
VicVi,c---cV, <C"

where V;, is a vector subspace of C" of dimension ;. Note that the variety Fl; represents the functor
Sch — Sets associating to a scheme S the following set:

(Ficoc Fuc 02,

where the fiber bundles over S Fj have rank i; and the quotient sheaves Fy/Fi_1 are rank (i —ig—1)
fiber bundles. Furthermore, we consider the complex algebraic group G = GL,,, the maximal torus T’
of G given by the set of diagonal matrices and the Borel subgroup B < G given by the set of upper
triangular matrices. We denote by W ~ &,, the Weyl group of G = GL,, and A = aq,...,q, the
set of simple roots positive with respect to B. We denote by A(I) = {aq,... @ —1,...,0;, -1} the
subset of A associated with I, and by W ~ Zfll &, —i,_, the subgroup of W generated by reflexions
Sq associated with elements o in A(I). Finally, we denote by P; := BW;B the parabolic subgroup
associated with A(I). Note that the block diagonal matrix whose k-th block is GL is a Levi
sugroup L; associated with P;. We have the following identification: Fl; ~ G/P;.

Let 1 < k£ < m. Composing the map forgetting all vector spaces except from the k-th one with

the Pliicker embedding Gr(ix,n) — PG~ induces a map ¢ : Fl; — pli)-1,

Tk —Tk—1

Let I; be a curve on

Fl; sent onto a line in ]P’(Z;)_l by ¢, and such that the restriction of ¢ to l; is an isomorphism. The
classes [l;] generate the free abelian group Hy(Flr,Z), and we may thus identify an effective class of
curve d = 3" | di[ly] in E(Fl;) € Ho(Flr,Z) with m positive integers (d1, ..., dy,).

0.7 Algebraic K-theory

0.7.1 Equivariant algebraic K-theory. We recall here some classical definitions and prop-
erties of the equivariant K-theory of a variety; complete proofs can be found in [CT09], chapter 5.
Let H be a complex linear algebraic group, let X be an irreducible variety with an H-action. Let

FE be a vector bundle on X. We call E an H -equivariant vector bundle if there exists an H-action
® . H x F — FE satisfying

— The map F — X commutes with H-actions.
— For any z in X and ¢ in G, the map $(g, ) : E; — Eg.; is a linear map of vector spaces,

where we denote by E, the fiber over a point  in X. Let F be a coherent sheaf on X. Denote by
a: HxX — X the action of H on X, by p: Hx X — X the projection map and by po3: Hx HxX —
H x X the projection along the first factor H. We call F an H -equivariant coherent sheaf if there
exists an H-action @ : H x F — F satisfying

— There exists an isomorphism [ : o*F — p*F.

— pas¥lo(idg x a)*I = (m x idx)*I of sheaves on H x X.
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— There is an identification I1xx = id : F = a* Fj1xx — p* Flixx = F.

Denote by K (X) the Grothendieck group of H-equivariant coherent sheaves on X and by K (X) the
Grothendieck group of H-equivariant vector bundles on X. The tensor product of equivariant vector
bundles defines a ring structure on K7 (X). Moreover, the map K (X)® Kg(X) — Kg(X) defined
by the tensor product

[E]® [F] = [EQox F]

makes Ky (X) a K#(X)-module. When X is non singular, the map [E] — [E ® Ox] yields an iso-
morphism Kz (X) ~ K#(X). Indeed, any equivariant sheaf then has a finite resolution by equivariant
vector bundles.

Furthermore, for any equivariant proper morphism of irreducible varieties with an H-action f : X — Y,
there is a pushforward map f, : Kg(X) — Kg(Y) defined by:

[F] = Y (~1)'[R fo(F)].

%

Indeed, if F is an H-equivariant sheaf on X, the Godement resolution implies that R f,(F) will also
be an H-equivariant sheaf on Y.

In particular, if X is an irreducible projective H-variety, the equivariant pushforward Ky (X) —
Ky (point) is called equivariant FEuler characteristic, and denoted by xg.

Moreover, an equivariant morphism f : X — Y induces a pullback map f* : K#(Y) — K (X):

[E] = [f*(E)].

Consider an equivariant proper morphism f : X — Y of irreducible varieties with an H-action. Let E
be an equivariant vector bundle on Y, and F be an equivariant coherent sheaf on X. Note that the
following projection formula is satisfied in Kg(Y):

F(FHEI®[F]) = [E]® f«[F].

0.7.2 Algebraic K-theory of G/P. We recall here some classical definitions and properties
of the Grothendieck ring of coherent sheaves on a variety. Denote by K,(X) the Grothendieck group
of coherent sheaves on X and by K°(X) the Grothendieck group of vector bundles on X. Note that
for H = id, the equivariant groups Kz (X) and K (X) are equal to K,(X) and K°(X). In particular,
the tensor product of vector bundles defines a ring structure on K°(X), and for a non singular variety
X we can identify K(X) = K,(X) ~ K°(X). Furthermore, for any coherent sheaves F and G on X

we have
dimX

[F1-[6] = D) (-1)Tor(F,G).

i=0
Furthermore, note that for an irreducible projective variety X, the pushforward K,(X) — K(SpecC)
is given by:
X : Ko(X) — Z, [F] = X(F) = Y,(=1)'n*(F),
where h' denote the dimension of the i-th cohomology group of F; i.e. Y is the Euler-Poincaré
characteristic of 7. A morphism of schemes f : X — Y is called perfect if there is an N such that
TorY (Ox,F) =0

for all i > N and for all coherent sheaves F on Y. For a perfect morphism f: X — Y, one can define
the pull-back
i K(Y) > Ko(X)

by

FFl = ) [Tor} (Ox, F)].

=

=0
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Furthermore suppose f is a morphism locally of finite type. Then if f is flat or Y is regular, f is
perfect-cf. for example Stacks Project 37.53. We will also be using the following easy results.

Lemma 0.7.2.1. LetY be an irreducible projective variety and @ be an irreducible projective subvariety
of P x Y. Denote by m: & — P! the natural projection. Let p1, pa be two points on P'. Then we have
the following equality in Ko(Y):

[Or=1p1)] = [Or-1(p2)]

Proof. Since the projection map 7 is flat, we have 7*[O),] = [Or-1(p,)] in Ko(®P). Denote by IT : & — Y
the natural projection. We obtain I1,7*[O),] = H4[Or-1(p,y] = [Or-1(p,)] in Ko(Y). Finally, the

equality [Op,] = [O,,] in K, (P!) yields the result. O

Lemma 0.7.2.2. Let X be a projective GL,,-variety. Consider a subvariety Y of X. Then for all g
in GL,,, we have the following equality in K(X):

[Ogv] = [Oy].

Proof. Let g in GL,. Since GL,, is a dense open subset of M,, , ~ A"z, there exits an irreducible
rational curve f : P! > U — GL,, sending points p; and p, on P! onto the points g and id. Denote by
& the irreducible projective subvariety of P! x X obtained as the adherence of the image of the map
UxY —UxY cP!x X sending (z,y) to (z, f(x) - y). Denote by m : & — P! the first projection.
Then according to Lemma 0.7.2.1

[Or=1(p1)] = [Or-1(p,)] hence [Og.y] = [Oy].

0.8 Rational singularities.

We recall here known definitions and results on rational singularities. The treatment in this section
is inspired by [Bri02]. An irreducible complex variety X has rational singularities if there exists a

~

desingularization v : X — X such that:
¥4xO% = Ox and Vi > 0, R'm,O% = 0. (5)

Note that, according to Zariski’s main theorem, the equality 1, O% = Ox is equivalent to the normality
of X. The relevance of this notion here comes from the following results.

Theorem 0.8.0.1. (Viehweg [Vie77]) The quotient of a smooth complex scheme by a finite group has
rational singularities.

Note that, since for X convex the moduli spaces My (X, d) have quotient singularities [FP96], this
implies that for X a generalized flag variety the moduli spaces My (X, d) have rational singularities.

Let H be a complex linear algebraic group. Recall a variety X is called unirational if there exists a
dominant map PV --s X, and rationally connected if there exists an irreducible rational curve joining
two general points in X. Note that since PV is rationally connected, a unirational variety is rationally
connected.

Theorem 0.8.0.2. (Buch-Mihalcea [BM11], Theorem 3.1.) Let f : X — Y be a surjective equivariant
morphism of projective varieties with rational singularities equipped with an H-action. Assume that
the general fiber of f is rationally connected. Then fi[Ox] = [Oy] € Ku(Y).

Proof. Buch and Mihalcea prove in [BM11] that this statement is satisfied if a desingularization ) :
Xy — X, of the fiber of f over y general in Y satisfying H"(Xy,(’)?(;) = 0 for all 7 > 0. Since X,

is rationally connected, and va is birational to X, )?; is also rationally connected. Hence )?; is a

smooth rationally connected variety, hence according to [Deb13], va satisfies H i()ffvy, Ox) = 0 for all
Y
1> 0. O
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Note that for X a full flag variety, Brion gives a nice proof of the rational singularities of Schubert
varieties in [Bri05].

Theorem 0.8.0.3. (Ramanathan, [Ram85]) Schubert varieties have rational singularities.
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Chapter 1

Gromov-Witten varieties of partial
flag varieties

1.1 Introduction

Removing subspaces from a partial flag gives another partial flag composed of fewer subspaces. This
induces a forgetful map 7 : X — X’ between the corresponding flag varieties. The main result of this
chapter is that, for a degree large enough, the variety associated with rational curves of a given degree
in X having their marked points within Schubert varieties X; of X is a rationally connected fibration
over its image, which is the variety associated with rational curves of a given degree in X having
their marked points within Schubert varieties 7(X;) of X’. These subvarieties of the space of genus
0 stable maps to a homogeneous space are called Gromov-Witten varieties. The Euler characteristics
of the structure sheaf of these varieties are quantum K-theoretical invariants [Giv00]. When these
varieties are zero dimensional, their number of points are Gromov-Witten invariants. Our result in
particular implies the equality between (non equivariant) correlators proved in Chapter 2, providing
an alternative proof-cf. chapter 2 Section 2.4.

1.1.1 Definitions. Let n > 0. Let I = {i1,...,i,,} be a collection of integers satisfying 0 <
i1 < ig < -+ < 4y, < n. Denote by Fl; the flag variety parametrizing m-tuples of vector spaces

ordered by inclusion

Vi,cVy -V, <C" (1.1)
such that dimV;, = ;. Let B be a Borel subgroup of GL,,. Note that Fl; is the homogeneous variety
Fl; ~ GL, /Py, where Py is the parabolic subgroup of GL,, satisfying B ¢ P; with associated reductive
subgroup L; ~ H;n:ll GL(ip — ip—1), where we set 9 = 0 and 4,11 = n. Let J = {j1,...,jm} be a

collection of integers satisfying 0 < j; < -+ < jyp < n containing I, i.e. for each k there exists an
element s such that j, = i;. Consider an integer p such that 1 < p < M. We denote by J, the
collection Jxp, := {i1,...,4p, jp,...,jm}, where p’ is the largest integer such that i,y < j,. Forgetting

all vector spaces included in Vj;  except those of the form V;, yields a forgetful morphism
W[/sz :F‘lg]%J d Fl[.

In the same way, for 1 < p < M, we name Jgp, := {j1,...,p,ip/41---,%m}, where p’ is the smallest
integer such that j, < iy. We name 77,;_ @ Fl;_, — Fl; the morphism induced by forgetting all
vector spaces containing V; except those of the form V;, .

Let W = Nqr,(T)/T ~ &, be the Weyl group of the algebraic group GL,. We denote by
Fl;(u) = BuPj/Pj the Schubert variety of Fl; associated with u € W. Note that the image of a
Schubert variety Fl;(u) by the projection 7, is the Schubert variety 77/ ;(Flj(u)) = Flr(u).

Let r > 0. The group Hy(Fl;,Z) is a free abelian group generated by classes of Schubert varieties
of dimension 1. Denote by E(Fl;) ¢ Ho(Fl;,7Z) the semi-group of effective classes of curves. Note
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that Ha(Gr(k,n),Z) ~ Z, and the class of a curve on the Grassmannian Gr(k,n) is given by the degree

of its image in p(%) by the Pliicker embedding. The class d = (dy,...,d;) € E(Fl;) of a curve C in
Fl; is determined by m non-negative integers di, ds,. .., d,,, where dj is the degree of the projection
of C' to the Grassmannian Gr(ig,n). For a class d in E(Fly), we denote by My ,(Fl;,d) the moduli
space parametrizing stable maps C' — Fl; from genus 0 curves C with r marked points x; € C to Fl;
representing the class d. We name ev : My .(Fl;,d) — (Fl;)" the evaluation morphism sending the
point p associated with a map f, : C — Fl; to the image [[._; fp(x;) of the r marked points z; € C.
For any class d in E(Fl;) ~ NM the morphism 77y ¢ Fly — Flp induces a morphism

HI/J X ev: MO)T<FlJ7d) — MO’T(FZI, (WI/J)*d) X (Fl) (Fly)r. (1.2)

Let 1 < k < M such that the integer ji is not in I. We denote by

HJzk X ev: MOW(FZJ;M (WI/J>k)*d) - MO,T(FZJ>k+17 (WI/J>k+1)*d) X(FlJ>k+1)T (FlJak)T

the morphism induced by forgetting the vector space V;, and by evaluating the r marked points.
Let 1 < p < k < M such that the element j; is not in I. We denote by J,<; the collection
{i1, . ipsJps- s Jksipry - - - im}, where p is the largest element such that i, < j, and p’ is the smallest
element such that i,y > j,. We denote by

Iy, , xev: Mo (Fly, o, (7g,0)sxd) = Moo (Fly,o_ )y (T, 0)sd) X(F1, (Fly,..)"

uék’fl)r

the morphism induced by forgetting the vector space Vj, from Fl,<) and evaluating the r marked
points.

Definition 1.1.1.1. Consider a collection {I,J,d} of a set I = {i1,...,%4} of m positive integers
satisfying
0<iy <-+r <ip <nm,

aset J = {j1,...,4m} of M positive integers satisfying
O<jpi<--<ju<n

such that I is contained in J, and a set d = (dy,...,dy) in NM ~ E(Fl;). We denote by d’ =
(dy,...,d,,) € N™ ~ E(Flr) the pushforward of d by the forgetful map m7,;. Let 1 < u < M such
that j, is contained in I. We call the collection {I, J,d} stabilized with respect to p if the following
conditions are satisfied. First, for all elements 1 < k < p such that the integer ji is not contained in
I, the two following conditions are satisfied.

The morphism I7;_, x ev is surjective. (1.3)

e Let &’ be the largest integer such that ix < ji. For any 1 < p < k’ we have
dy = [(d; - ;71) /iy — ip*l)]jk- (1.4)
Futhermore, for all 4 < & < M such that the integer ji is not contained in I the two following
symmetric conditions are satisfied.

e The morphism I1;,_, X ev is surjective.

<k

e Let k' be the smallest integer such that i, > j5. For k' < p < m we have
di = [(d; - d;)+1) /(ierl - ip)](n — Jk)-
A collection {1, J,d} will be called stabilized if there exists an integer p such that the collection {I, J, d}

is stabilized with respect to p. A collection {I, J,d} will be called stabilized with respect to M if for
all 1 < k < M such that j; is not contained in I the conditions (1.3) and (1.4) are satisfied.
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Observe that when p = 1, the conditions (1.3) and (1.4) are empty. For simplicity we have set
dy = d,.1 =0 =1y and i1 = n. We have denoted by [¢] the ceiling of ¢ € Q. We will see in
Section 1.6 some conditions to ensure that a collection is stabilized. The following interesting cases
yield examples of stabilized collections (cf. Subsection 1.6.1).

1. Suppose I = {i1,... i} is a collection of integers satisfying 1 < i3 < -+ < 4y, < n and
J ={j1,01,...,0m} satisfies 0 < j; < i1. Note that then Fl; — Fl; is the morphism forgetting
the first vector space. Then if d; > j; (r + 1+ |dz2/i1]) the collection (I,.J, (d1,da,...dm+1)) is
stabilized.

2. Suppose J = {k} and I = ¢J; then Fl; is the Grassmannian Gr(k,n) and Fl; is the point
Spec(C). Then if d = rk or d > r(n — k) the collection (I, J, d) is stabilized.

Note that the dependency on the integer r in the examples here above comes from the condition asking
the surjectivity of the following morphisms.

I, ., xev: Mor(Fly, o (7, /5)sd) = Moo (Fly, oo iy (5, /0)5d) X(Fly, o))" (Fly,..)"

Definition 1.1.1.2. Let d be an element in E(Fi;), let ui, ..., u, be elements in W. We call
Gromov- Witten variety of degree d associated with uy, ..., u, the subvariety

WES s, =€V (g1 Flr(un)) 0 0 ev ™ (gp - Fly(uy))
of MQJ‘(FZI,d).

Note that for d in E(Fl;), u1, ..., u, in W, W?«“ﬁ:ul .., 18 the variety associated with degree d
rational curves on X having their i-th marked point within g; - Fl;(u;). Denote by 1 the identity in
W ~ &,; note that Fl;(1) := P;/Pr a point in Fl;. Furthermore, note that Wf;’ﬁ_l ~ is the variety

associated with degree d rational curves on X whose i-th marked point is the point g; P;/Pr € Flj.

Remark 1.1.1.1. According to the proof of Kleiman’s transversality theorem [Kle74] for a general
g € GL;, the fiber product overlineMg . (Fl;,d) x (g1 Fly(u1) x -+ x gr - Fly(u,)) is a reduced
(Fl])"'

equidimensional scheme. Hence for g general in GL, , the natural map

Mo, (Fl;,d) . (91 Fly(wy) x -+ x g - Fly(u,)) > Moo (Fly,d) > WgS

l[)'

. . . T d . .
is a closed immersion surjecting into Wl??l,-u \....u,» and we can identify the two schemes.

1.1.2 Main results.

Definition 1.1.2.1. Let Y, Z be varieties. We call Y a rationally connected fibration over Z (respec-
tively unirational fibration) if there exists a morphism Y — Z such that each irreducible component of
Y dominates a different irreducible component of Z, Y dominates Z, and the general fiber Y — 7 is
a rationally connected (respectively unirational) irreducible variety. We call Y a tower of unirational
fibrations over Z if there exists a sequence of morphisms

Y=Y Y. Y, =27
such that, for all 1 < i < n, Y; is a unirational fibration over Y;, .

Theorem 1.1.2.1. Consider a set J = {j1,...,jm} of M integers satisfying 0 < j1 < -+ < jp <,
a set I ={i1,...,im} of m integers satisfying 0 < iy < -+ < iy <n and a degree d = (dy,...,dpy) €
E(Fl;) ~NM such that the collection {I,.J,d} is stabilized in the sense of Definition 1.1.1.1.

i) For z general in (Fl;)", the fiber ev='(z) € Mo, (Fl;y,d) is a tower of unirational fibrations
over the fiber 6’071(71']/1(1‘)) < Mo (Flg, (m1))xd).
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it) Letuq, ..., u, be elements in W. For g general in GL the Gromov- Witten variety Wf,’l‘i;

. . . . . ™ d
is a rationally connected fibration over the Gromov- Witten variety W?l(r;/:')f uy

ULy Up

Let J be a subsrt of I. Denote by Wy := N, (T)/T the Weyl group associated with P;. Denote
by
p: W/W] — W/W[

the natural projection. For u in W /Wi, the inverse image p~*(u) is the set of elements u - s, where s
is an element in W;/W;. Note that the Schubert variety FL;(u) := BuPr/P; is independent of the
choice of a representative in W of the element .

Corollary 1.1.2.1. Letd = (dy,...,dn) be a degree in E(Fl;) ~ N™ and uq, ..., u, be elements in
W such that the following Gromov-Witten invariant is non-zero:
ni’f}_”ur = J evf [Flr(u)] v - vevf[Fli(u,)] # 0.
Mo, (Flg,d)

Let J and I be sets of increasing positive integers and d be a degree in E(Fly) such that the collection
{I,J,d} is stabilized in the sense of Definition 1.1.1.1. Then for any elements v; € p~'(u;), for g
general in GL! the Gromov-Witten variety W%7li;v1,...,vr has nifwur connected components, which
are trreducible rationally connected varieties.

1.1.3 Previous research. Gromov-Witten varieties of P! and P? that are not rationally

connected varieties have been found in [IMT14]. For P2, the locus of Mg 34—2(P?,d) corresponding
to curves of degree d going through 3d — 2 points is a curve whose genus depends on the degree d,
of positive genus as soon as d > 2 [Pan97]. A recursive procedure computing the geometric genus of
1-dimensional Gromov-Witten varieties of P” was also given in [Ran01]. High degree Gromov-Witten
varieties have been shown to be rational varieties for Grassmannians by Buch and Milhacea [BM11],
and more generally for cominuscule varieties by Chaput and Perrin [CP11a).

This chapter is organized as follows. We first prove in Section 1.2 that, when the general fiber of
the morphism I7;,; x ev defined by (1.2) is rationally connected, Gromov-Witten varieties of F'l; are
rationally connected fibrations over Gromov-Witten varieties of Fl; obtained by projection. We then
recall in Section 1.3 results on flags of vector bundles over P'. Section 1.4 is dedicated to the study of
the general fiber of the map II;,; x ev. We observe that when the flag variety Fl; is obtained from
Fl; by forgetting one vector space, the general fiber of this map is a unirational variety. This result is
central in the derivation of Theorem 1.1.2.1 presented in Section 1.5. Finally, we study the surjectivity
of the morphism I1,; x ev in Section 1.6.

Conventions

Schemes considered in the subsections 1.2.2 and 1.2.3 will be defined over an algebraically closed field.
Schemes considered in all other Sections will be defined over C.

We say a property (P) holds for a general point in a variety X if (P) is true for points belonging to
a dense open subset of X. We say the general fiber of a morphism f : X — Y satisfies (P) if f~!(z)
satisfies (P) for points x in a dense open subset of Y. Let G be an integral algebraic group scheme, let
Y be an integral scheme endowed with a transitive G-action, let Z be a subscheme of Y, and M — Y
be a morphism of integral schemes. We say a property (P) holds for a subscheme M xy g-Z of M in
general position in M if (P) holds for element g of G belonging to a dense open subset of G.

We consider here that a variety is not necessarily irreducible; i.e. a variety is a reduced, finite type
scheme defined over an algebraically closed field.
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1.2 Restriction to a general subvariety

Let X ~ G/P and X' ~ G/P’ be (generalized) flag varieties associated with parabolic subgroups
P < P’ of a semi-simple linear algebraic group G. We observe here that some properties of Gromov-
Witten varieties of X and X’ can be deduced from properties of the general fiber of the morphism
II x ev : Mo, (X,d) — Mo, (X', myd) x(xy» X"-cf. Proposition 1.2.4.1. This is one of the key
ingredients in the derivation of Theorem 1.2.2.1 we provide in Section 1.5.

More precisely, the property we prove here is the following. Let G be a semi-simple algebraic
group, let Z’ be a projective variety with a transitive G-action, let Z be a projective variety over Z’
such that the morphism Z — Z’ is G-equivariant. Let IT : M — M’ be a morphism of projective
varieties over Z'. Let M — Z be a morphism of projective varieties, let X be a subvariety of Z.
Then for g general in G the irreducibility (respectively rational connectedness) of the general fiber of
the restriction map Il|yx : Mg.x — M, 5’7, yinduced by IT is implied by the irreducibility (respectively
rational connectedness) of the general fiber of the morphism M — M’ x z» Z- cf. Proposition 1.2.3.1.

1.2.1 Rationally connected, unirational and rational schemes. We call a scheme
X rationally connected if there is an irreducible rational curve joining two general points on X. Note
that a rationally connected scheme is irreducible. By contradiction suppose a scheme Y has several
irreducible components Y; and is rationally connected. We can then find two points y; and y- that
each belongs to an irreducible component Y; and is not contained in any other irreducible component
of Y such that there is an irreducible curve C joining the points y; and y,. Then the irreducible curve
C belongs to both Y7 and Y; and is not contained in the intersection of the two irreducible components,
which is a contradiction.

We call a variety Y rational if there exists N > 0 such that Y is birational to PN. A variety Y is
called unirational if there exists a dominant rational map P --» Y. Note that since P¥ is rationally
connected, rational and unirational varieties are rationally connected.

1.2.2 Composition of rationally connected fibrations. We call a a morphism of
schemes f : Y — S a rationally connected fibration if

e Each irreducible component of Y dominates a different irreducible component of .S}
e Y dominates S;
e The general fiber of f is rationally connected.

We call a scheme Y a rationally connected fibration over a scheme S if there exists a rationally
connected fibration Y — S.

Definition 1.2.2.1. Let C be a subcategory of the category of schemes Sch. We call a property (P)
stable under composition in C if for every morphisms Y L sand 8 L5 Sinc satisfying (P), the

composition f'o f: Y — S also satisfies (P).

Types of morphisms of schemes stable under composition are well known; for example flat, smooth
or etale morphisms are stable under composition-cf. for example Stacks Project 62.4. We focus here on
composing rationally connected fibrations. Grabber-Harris-Starr’s Theorem on rational connectedness
implies that the composition of rationally connected fibrations is itself a rationally connected fibration-
cf. Theorem 1.2.2.1. This property will be a key ingredient in the derivation of Theorem 1.1.2.1
proposed in Section 1.5.

Theorem 1.2.2.1. Let C be the category of irreducible projective schemes.
(1) The property "THE GENERAL FIBER IS IRREDUCIBLE" is stable under composition in C.

(2) Let (P) be a property such that, for all morphisms Y — S in C, the following statement is
verified:
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if S and the general fiber of the morphism'Y — S satisfy (P), then Y satisfies (P).

Then the property 'THE GENERAL FIBER SATISFIES (P) AND IS IRREDUCIBLE" is stable under
composition in C.

(8) The property "THE GENERAL FIBER IS RATIONALLY CONNECTED" is stable under composition in
the category of irreducible complex projective schemes.

(4) LetY, Z and S be projective complex varieties such that'Y is a rationally connected fibration over
Z and Z is a rationally connected fibration over S. Then Y is a rationally connected fibration
over S.

Lemma 1.2.2.1. Let f : Y — Z be a dominant morphism of schemes, of finite presentation, where Y
is an equidimensional noetherian scheme. Let V be a dense open subset of Y. Then the intersection
of the general fiber of f with V is dense in the fiber.

Proof. First, since the question is local on Z, we can suppose Z irreducible. Since Y is a noetherian
scheme, Y\V can be written as the union of a finite number of schemes, i.e. Y\V = UN | F;, where
the F; are closed subschemes of Y, of dimension smaller than the pure dimension of Y. Denote by
J|F, the restriction of f to one of the boundary subschemes Fj. If fir, does not dominate Z, then the
preimage under f|p, of a general point in Z is empty. On the other side, if f|r, dominates Z, then the
preimage under fi, of a general point in Z is a scheme of pure dimension smaller than dimY" —dimZ.
Indeed, since f is a morphism of finite presentation, Chevalley’s constructibility theorem implies f(F;)
contains an open subset of Z; hence the subset of points x in f(F;) such that the fiber fﬁ,}(m) is of
expected dimension is an open subset V' of Z, verifying dim fﬁ,j(x) = dimF; — dimZ for all points
xz in V. Thus, since Y is equidimensional, the general fiber Yy of f is a scheme of pure dimension
dimY — dimZ, whose intersection with F; is a scheme of dimension smaller than dimY — dimZ; this
implies the intersection Yy n V is dense in Yj. O

Let h: M — M’ and f : M — Z be morphisms of schemes. We denote by h x f: M — M’ x Z
the morphism induced by h and f.

Proposition 1.2.2.1. Let M 2 M and ML 7 be surjective morphisms of finite presentation of
integral noetherian schemes.
Then, for z general in Z:

i) The image by h of any irreducible component of f~1(z) has dimension equal to dim(h x f)(M) —
dimZ;

ii) Each irreducible component of f~*(z) dominates one of the irreducible components of h(f~1(z)).

Proof. i) Consider a dense open subset U of (h x f)(M) such that the fiber (hx f)~!(u) is a scheme
of pure dimension dimM — dim(h x f)(M) for all w in U. Consider a point z general in Z, and
an irreducible component Zy of f~1(z). Denote by Z§ the variety Zo minus the intersection of
Zo with other irreducible components of f~!(z). We first compute the dimension of the fiber
h=Y(h(u)) N Z§, where p is a point in (b x f)~1(U) n Z§, before computing dimh(Zy).

Computation of dimh~!(h(u)) N Z§. First, we have:

R (h() 0 f7H(2) = (hx )7 (A(p), 2)
= (hx /)7 (h < f)(w).

Since (h x f)(u) lies in U, this implies h=1(h(u)) n f~1(2) is a scheme of pure dimension dimM —
dim(h x f)(M). Hence the intersection of the irreducible variety Z§ with h=!(h(u)) is a scheme
of pure dimension dimM — dim(h x f)(M). Indeed, the intersection of the open subvariety Z§ of
f~Y(2) with h=1(h(u)) is a non empty open subvariety of h=!(h(u)) N Zy disconnected from the
other pure dimensional irreducible components of h=1(h(u)) N f~1(z). Hence h=1(h(u)) n Z§ is
a scheme of pure dimension dimM — dim(h x f)(M).
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ii)

Computation of dimh(Zy). Note that, since z is general in Z, according to Lemma 1.2.2.1,
(h x f)~YU) n f~1(2) is dense in f~1(2); hence (h x f)~Y(U) n Z§ is a dense open subset of
Zo. Consider a point v general in h(Z); since v is general and h ((h x f)~'(U) n Z§) is dense
in the irreducible variety h(Zy), v belongs to h ((h x f)~*(U) n Z3), and we have:
dimZy — dimh(Zy) = dimh™*(v) n Z§
= dimM — dim(h x f)(M)

where the first equality is deduced from the general position of v in h(Zj), and the second equality
holds since v is in h ((h x f)7'(U) n Z3). This implies:

dimh(Zy) = dimZy — dimM + dim(h x f)(M)
= dimf~!(2) — dimM + dim(h x f)(M),
where the second equality holds since z is general in Z and thus f~!(z) is equidimensional.

By contradiction, if an irreducible component Zy of f~1(z) has an image strictly contained in

h(f7'(z)), then:
dimh(Zy) < dimh (f7'(z)) = dim(h x f)(M) — dimZ,

which would contradict ).
O

Proof of Theorem 1.2.2.1. (1) Let h: Y — S and S — Z be morphisms in C whose general fiber is

irreducible. Note that since we consider properties of general fibers, we can assume that both
morphisms are dominant. Since both morphisms are morphisms of projective schemes, they are
then surjective.

Let U be a dense open subset of Z such that the fiber S, over a point z in U is irreducible.
For z general in Z, according to Proposition 1.2.2.1 the image by h : Y — § of each irreducible
component of Y, dominates one of the irreducible components of S,, which is irreducible since
z is general in Z. Since, according to Lemma 1.2.2.1, for z general in Z the fiber Y, has a dense
intersection with the dense open subset Yy, the general fiber Y, is irreducible. Indeed, if we
denote by Y! and Y2 two different irreducible components of Y, and by V the dense open subset
of S, such that the fiber Y, over a point s in V' is irreducible and of exepected dimension, for all
v in V the intersection Y! n'Y,, is equal to Y2 nY,, since both are closed subschemes of maximal
dimension of an irreducible scheme. Hence the intersection of Y, with the dense open subset
Y. n Yy is irreducible, hence Y, is irreducible.

Let Y 25 Sand S 2 S be morphisms in C satisfying (P) and whose general fiber is irreducible.
Since we consider properties of the general fiber of Y — 5’, we can assume that Y dominates S.
Let U be a dense open subset of S such that the fiber of f; over a point in U satisfies (P). For
x general in S’, the following properties are satisfied:

a) The fiber S, satisfies (P);

b) The fiber S, has a dense open intersection with U;

(¢) The morphism Y, — S, is in C;

d) The general fiber of the morphism Y, — S, satisfies (P);

(e) Y, satisfies (P).

(
(
(

Note that proving property (e) for = general in S’ is our goal here. Property (a) holds since x
is general in S’. According to Lemma 1.2.2.1 and since z is general in S’, property (b) holds.
Property (c¢) holds since x is general in S” and according to (1) the general fiber of Y — 5’ is
irreducible. (d) is a direct consequence of (b), the fact that the fiber of Y,, — S, over a point y
in S, is isomorphic to the fiber ¥, = Y xg {y}, and the fact that Y, satisfies (P) for y in U.
Finally (e) is implied by (a), (¢) and (d).
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(3) Note that, according to Grabber-Harris-Starr’s theorem on rational connectedness [GHS03], if
the general fiber of a morphism Y — S of irreducible complex projective varieties is rationally
connected, and the basis S is rationally connected, then Y is rationally connected. Hence,
according to 2., the property "the general fiber is irreducible and rationally connected" is stable
under composition in C.

(4) Let Y, Z and S be projective complex schemes, where Y is a rationally connected fibration over
Z, and Z is a rationally connected fibration over S. Denote by f : Y — Z and g : Z — S the
associated morphisms. First, note that since Y dominates Z and Z dominates S, Y dominates
S. Furthermore, each irreducible component S; of S is dominated by exactly one irreducible
component Z; of Z, which itself is dominated by exactly one irreducible component Y; of Y;
hence there is a one-to-one correspondence between irreducible components of Y and S. Finally,
since by hypothesis the general fibers of Y; — Z; and Z; — S; are rationally connected, according
to (3) the general fiber of ¥; — S; is a rationally connected variety. Hence Y is a rationally
connected fibration over S.

O

1.2.3 Restriction to a general subvariety. We study here the restriction of a morphism
to a general subvariety. A typical application of the proposition below will be the study of the image
of a Gromov-Witten variety. More precisely, consider 7 : X — X’ the projection of a flag variety onto
another flag variety, and denote by IT : Mg .(X,d) — Mo (X', (7)sd) the morphism induced by 7
between moduli spaces of genus zero stable maps, where d is the class of a curve in X. We thus obtain
the commutative diagram:

Mo, (X, d) — X7

2

Mo (X', (m)ed) —— (X')"
to which we will apply the following proposition.

Proposition 1.2.3.1. Let G be an integral group scheme, let f : M — Z, f' - M' - Z', n:7Z - 7'
be projective morphisms, of integral noetherian schemes, where Z and Z' admit a transitive G-action,
and the morphism 7 is G-equivariant. Let Y be an integral subscheme of Z. Suppose there exists a
proper morphism h : M — M’ such that the following diagram commutes :

M1z

L

ML g

Furthermore, suppose the morphism h x f: M — M' x z» Z induced by the morphisms M r M and

ML 7z surjective.
Consider a point g general in G. We call Wy := f~1(gY), Wy := (h x [) (W), and Wy := h(Wy).
We denote by p1 : M’ x 71 Z — M’ the first projection. Then:

i) Wy =M xz gY and Wy = (fH)Y(gn(Y));
i) Wy, W, and Wy are pure dimensional schemes;

iti) The restriction of h x f to any irreducible component of Wy is dominant onto an irreducible
component of We;

iv) The restriction of p1 to any irreducible component of W; is dominant onto an irreducible com-
ponent of Wy.
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Let us introduce the following notation. Let f: Y — Z and ¢ : Y’ — Z be morphisms of schemes,
where an integral group scheme G acts on Z. We denote by Y x z (¢Y”) the fiber product induced by
the morphism ¢, : Y’ — Z given by y — g- ¢(y), i.e. Y xz (gY”) is the fiber product associated with
the following commutative diagram:

Y gz (gY") — Y

| ¢

y —1 .z

Notice that, if G acts on Y’ and ¢ is G-equivariant, the fiber product Y xz (¢Y”’) will simply be the
usual fiber product associated with the following commutative diagram:

Y xz (gY) —— gY’

| [

y — 1,z

Lemma 1.2.3.1. Let Y — Z be a morphism of schemes, of finite presentation, where Y is an equidi-

mensional noetherian scheme; let ¢ : Y’ — Z be a morphism of integral schemes. Let V be a dense

open subset of Y. Suppose there exists an integral group scheme G such that G acts transitively on Z.
Then, for a point g general in G:

i) The scheme V xz (gY’) is a dense subset of Y x 7 (gY");
it) The scheme (V) xz Y’ is a dense subset of (9Y) xz Y.

Proof. i) Since Y is a noetherian scheme, Y\V can be written as the union of a finite number of
irreducible schemes, i.e. Y\V = UlY | F;, where the F; are irreducible closed subschemes of Y, of
dimension smaller than the pure dimension of Y. Consider an element g general in G. Suppose
the scheme Y xz (gY”) is not empty. Then, according to Kleiman’s transversality theorem
[KleT4], it has pure dimension given by dimY + dimY”’ —dimZ’. Furthermore, for 1 <1 < N, the
scheme F; x 7 (gY”) is either empty or of pure dimension smaller than dimY + dimY”’ — dimZ’.
Hence V xz (gY") = (Y\ UN., F;) xz (gY") is dense in Y x z (gY”).

ii) Consider a point g general in G. Then, according to part 7)., the scheme V xz (¢71Y”) is a
dense subset of Y x 7z (g71Y”). Furthermore, notice that we have an isomorphism (gY) xz Y’" —
Y xz (g7'Y"). Indeed, if we denote by g~' : Z — Z the isomorphism of Z induced by the
action of g7 !, and by ¢ : Z — Z the isomorphism of Z induced by the action of g, the following
commutative diagram

implies that any morphism 7' — (gY’) x z Y’ factors through Y x 7 (g~'Y”), and reciprocally any

morphism T — Y xz (¢7Y”) factors through (gY) x 7 Y.

Finally, in the same tautological way, notice we have an isomorphism (gV)xzY’ ~ V x z(g71Y").
O

Proof of Proposition 1.2.3.1. i) First, since, by assumption, h x f : M — M’ x z Z is surjective,
W)= (hx f)(f7(gY)) = (h x [)(M) (M’ xz (gY)) is equal to M’ x z (gY). Furthermore,
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ii)

iii)

R(f~1(gY)) is equal to the image of (h x f)(f~'(gY)) by the first projection p;, where p; is
defined by the following commutative diagram:

M (hx M) =M %3 Z —— Z

\ l’” in
M f! 7

Meanwhile, (f)~!(m(gY)) is equal to the image of M’ x 2/ (gY') by the first projection p;, hence
the equality between h(f~1(gY)) and (f")~1(w(gY)).
Finally, since 7 is G-equivariant, this yields: Wy = (f')~!(gn(Y)).

According to Kleiman’s transversality theorem, since g is general in G, the schemes W, =
S7HY), W) = M’ xz gY and W) = (f')"'(gn(Y)) are either empty or pure dimensional
schemes.

We consider the following commutative diagram:

Denote by U a dense open subset of (h x f)(M) such that, for all z in U, (h x f)~!(2) has pure
dimension equal to dimM — dim(h x f)(M). Fix an irreducible component W, of W,. Denote
by W; the variety W, minus the intersection of W, with other irreducible components o W,.
We first compute the dimension of (h x f)~!(x) n W, where x is a point in (b x f)(WS) n U,
before computing the dimension of (h x f)(Wj).

Computation of dim(h x f))~!(x) n Wg. First, the fiber of the restriction (h x f)y, of the
morphism h x f to W, is isomorphic to the fiber of h x f. Indeed, for (m,2) in (h x f)(WV,) =
M’ x z1gY | the fiber (h x f)‘wg_l(m, z) is equal to (hx f) "1 (m, 2) AW, = A=Y (m)n f~1(z) AW,
where z lies in gY. Meanwhile, we observe f~1(2) n W, = f~1(2) n f71(gY) = f~!(z), hence
(h x f)‘wgfl(m) is equal to (h x f)~1(m).

Since z lies in U, this implies (h x f)™'(z) N Wj is a scheme of pure dimension dimM — dim(h x
F)(M). Hence the intersection of the irreducible variety W; with (h x f)~'(z) is a scheme of
pure dimension dimM — dim(h x f)(M). Indeed, the intersection of the open subvariety Wy of
W, with (h x f)~!(z) is a non empty open subvariety of (hx f)~!(z) n W, disconnected from the
other pure dimensional irreducible components of (h x f)~'(z) n W,. Hence (h x f)~ (z) n W§
is a scheme of pure dimension dimM — dim(h x f)(M).

Computation of dim(h x f)(Wp). Note that, since g is general in G, according to Lemma
1.2.3.1, (b x f)~1(U) n W, is dense in W,; hence (h x f)~1(U) n W is a dense open subset of
Wy. Consider a general point v in (hx f)(Wp); since v is general and (hx f) ((h x )~ (U) n W)
is dense in the irreducible variety (h x f)(Wj), v belongs to (h x f) ((h x f)~({U) n W), and

we have:

dimW, — dim(h x f)(Wp) = dim(h x )" (v) n W
= dimM — dim(h x f)(M)

where the first equality is deduced from the general position of v in (h x f)(Wp), and the second
equality holds since v is in (h x f) ((h x f)~'(U) n Wjg). This implies:

dim(h x f)(Wo) = dimWy — dimM + dim(h x f)(M)
= dimW,; — dimM + dim(h x f)(M),
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where the second equality holds since W, is equidimensional. Since (h x f)(Wp) is obviously
contained in Wy, = (hx f)(W,), and this dimension does not depend on the irreducible component
of W, considered, this implies the irreducible variety (h x f)(Wy) is an irreducible component
of Wy, which has pure dimension equal to dimW, — dimM + dim(h x f)(M).

First, denote by my : Y — m(Y’) the restriction of the morphism 7 to Y. Fix a dense open
subset U of w(Y") such that, for all  in U, the fiber ﬂ‘;/l (x) is a scheme of pure dimension equal
to dimY — dimn(Y').

We consider the following commutative diagram:

M xy 7 24 7

bl

M —L Lz
where p; and p, are respectively the first and second projection morphisms. Consider a general
element g in G. We denote by pj the restriction of the morphism p; to Wy = M’ xz gY. We
want to prove here that the image of any irreducible component of W; by p} is an irreducible
component of W) = (f')~!(gn(Y)). In order to do this, we study the dimension of the fiber
(p))~"(m) of pj at a point m in W.
We will use the following observations.

Lemma 1.2.3.2. Let f' : M' — Z' and w : Z — Z' be projective morphisms of integral
noetherian schemes. Let Y be an integral subscheme of Z. Suppose there exists an integral group
scheme G such that G acts transitively on Z, and w is G-equivariant. Consider the following
commutative diagram:
M xz 72 25 7

bl

M —L 7
where p1 and py are respectively the first and second projection morphisms.

(a) Consider an element g in G. The fiber py " (m)np2~'(gY) of the restriction of the morphism
p1 to (p2)~1(gY) is isomorphic to 71'6/1 (g1 f'(m)), where we denote by my : Y — w(Y) the
restriction of the morphism w to Y,

(b) Consider a dense open subset U of Y. Then, for an element g general in G, pa~1(gU) is
dense in pa~1(gY).

Proof of Lemma 1.2.3.2. (a) Denote by h’ the restriction of the morphism p; to pa~!(gY).
The fiber (h')~!(m) is equal to {m} xz (gY), which is isomorphic to 7=1(f'(m)) n (gY).
Furthermore, since 7 is G-equivariant, the morphism y — ¢~ 'y induces an isomorphism
between 7 1(f'(m)) N (gY) and 71 (gL (m)) n (Y). Finally, notice 7=(g=1 f'(m)) n (V)
is equal to ng,l(g_lf’(m)).

(b) According to Lemma 1.2.3.1 i), since g is general in G, the scheme M’ x z (gU) is dense in
M’ %z (gY). Since the morphism 7 is G-equivariant, we have here the following equalities:
P2t (gY) = M’ xz (gY) and pa~1(gU) = M’ xz (gU). Hence the scheme py~1(gU) is
dense in p,~1(gY).

O
Fix an irreducible component W) of p; ' (gY) = M’ x 2 gY. For p general in W), we have:
dimW), — dimp; (W) = dimp;* (p1(1)) n W,
= dimmy* (97" (f o 1) (n))
= dimY — dimn(Y),
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where the first equality holds since the image of a dense open subset of W by p; is a dense open
subset of p1 (W), the second equality is given by Lemma 1.2.3.2 (a), and the last equality holds
since (f o p1)(p) is in g - 7(U) for p general in W{. Indeed, according to Lemma 1.2.3.2 (b),
py H(gn=1(U)) is dense in p; *(gY"), hence py ' (gn=2(U)) n W} is dense in W}, hence a point in
(p2 o) H(gU) = (f o p1)~L(gU) is general in W).

Finally, notice that, since g is general in G, any irreducible component W/ of W; will be of
dimension equal to dimM’ + dimY — dimZ’, hence :

dimp; (Wy) = dimM’ + dim7(Y) — dimZ’,

which is equal to the pure dimension of W) = (f')~'(gn(Y)) since g is general in G. Since
p1(W)) is obviously contained in Wg , this implies that W}, dominates an irreducible component
of Wy.

O

1.2.4 Application to Gromov-Witten varieties. Consider a semi-simple algebraic
group G, a maximal torus T of G, a Borel subgroup B and parabolic subgroups P and P’ satisfying
T c Bc Pc P. Denote by X := G/P and X' := G/P’ the corresponding homogeneous varieties,
and by

7:X =G/P— X' =G/P

the natural projection. For an element u in the Weyl group W := Ng(T)/T, denote by X (u) := BuP/P
the associated Schubert variety. Note that 7(X (u)) = X'(u). Let r = 0, uy, ..., u, be elements in W,
and d be a degree in the semi-group E(G/P) of effective classes of curves in Hy(G/P,7Z). Note that
the morphism 7 : G/P — G/P’ induces a morphism:

II x ev: My,.(G/P,d) - Mo, (G/P',m4d) x(c/pyr (G/P)",

where we denote by II : My ,(G/P,d) — My ,(G/P’,m4d) the morphism induced by m. For an
element g = (g1,...,9,) in G", we will consider the following commutative diagram:

Mo (G/P,d) —=— (G/P)" +—— [1, i X (u;)

» I

Mo (G/P' 7id) —— (G/P')" +— [, 9: X' (u;)

This commutative diagram allows us to define the following fiber products:

Wy i= Mo (X,d) xxr HgiX(ui) — My (X,d)

i
Wy = Mo (X', mad) X (x1)r ngX(uZ) — Mo (X' med) x X7
WY = Mo (X mied) X (x00)r ]‘[ 9 X" (u;) > Mo, (X', med)

Note that for g = (g1,...,9,) general in G”, the scheme W, = W¢:4  "is the variety parametrizing
genus zero, degree d, stable maps to X sending their i-th marked point within g; - X (u;), and Wg =
ng,’f‘?ur is the variety parametrizing genus zero, degree (7, )d stable maps sending their i-th marked
point within g;- X’ (u;). Indeed, according to the proof of Kleiman’s transversality theorem [Kle74], for a
point g = (g1, ..., gr) general in G”, the natural maps Wy, — Mo (G/P,d) and W, — M .(G/P',d)
are both closed immersions. This allows us to identify the schemes W, and W with their images in
the space of stable maps.

Proposition 1.2.4.1. Suppose the morphism Il x ev is surjective, and suppose its general fiber is
connected.
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1. For g general in G, (II x ev)(W,) =W, and II(W,) = Wy;

2. For g general in G", each irreducible component of the Gromov- Witten variety W, surjects into
a different irreducible component of II(Wy), i.e. there is a 1-to-1 correspondence between irre-
ducible components of W, and irreducible components of Wg;

8. Suppose the general fiber of II x ev is rationally connected. Then for g general in G", the
Gromov-Witten variety W, is a rationally connected fibration over both W, and Wy, in the
sense of Definition 1.1.2.1.

Lemma 1.2.4.1. Let S be a normal scheme, and S LY bea surjective morphism. If the general
fiber of f is connected, then each irreducible component of f(S) is dominated by exactly one irreducible
component of S.

Proof. First, observe that, since the general fiber of f is connected, two connected components of S
cannot dominate the same irreducible component of f(.5). Indeed, if we consider a dense open subset
U of f(S) such that the fiber f~(s) is connected for all s in U, two connected components of S
dominating the same irreducible component of f(S) would have a point in common in their image
and in U; these two connected components hence would be connected within S. Moreover, since S is
normal, its connected components are irreducible. This implies all irreducible components of f(S) are
dominated by exactly one irreducible component of S. O

For w in W, we denote by x(u) := uwP/P the T-fixed point in X (u) = BuP/P associated with u.
Lemma 1.2.4.2. Letue W.

i) Let f : Z — X(u) be a B-equivariant morphism. Then there exists a surjective map
f7H(BuP/P) — f~H(x(u)).

ii) Denote by m, the restriction of the projection m to X(u). The general fiber of the surjective
morphism m, : X (u) — X'(u) is an irreducible unirational variety.

Proof. This is implied by [CMBP13], Proposition 2.3. We include here a proof for completeness. We
denote by U = BuP/P the open B-orbit of the T-fixed point x(u).

i) Denote by s: U — B a section of B — BuP/P, i.e. a morphism such that for all elements z in
U, s(x) - z(u) = x. Such a section exists according to [CMBP13], Proposition 2.2. Note that for
y in f~1(U), the element (s(f(y))) " -y lies in f~*(x(u)). Indeed, since f is B-equivariant, we
have f((s(f(¥) ™" -y) = (s(f(1))) " - f(y) = x(u). We obtain a morphism:

FHU) = fHa(w) x U
y = ((s(f®) " -wi f(y)
)

1
Y
which is an isomorphism; indeed, the morphism (p,u) — s(u) - p defines its inverse. Composition
with the first projection induces a surjective morphism f~1(U) — f~1(x(u)).

ii) According to %), there exists a surjective map 7T|;1(U) — ﬁ@l(x(u)) Hence, since 77\;1((]) is a
dense open subvariety of the irreducible rational variety X (u), the fiber 77‘;1 (x(u)) is an irreducible
unirational variety. Furthermore, since 7, is B-equivariant, the fiber 71‘;1 (z) at a point x in U
is isomorphic to 7T‘;1 (x(u)). Indeed, if x = b x(u), where b lies in B, the morphism y — b= -y
defines an isomorphism between 71 (x) N X (u) and 7~ (z(u)) n X (u), since X (u) is B-stable.
Hence the general fiber of 7, is isomorphic to 7'(";1 (z(u)), which is an irreducible unirational
variety.

O

We name (IT x ev)‘wg : Wy — W, the restriction of the morphism IT x ev to the Gromov-Witten
variety Wj.
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Lemma 1.2.4.3. If the general fiber of II x ev satisfies a property (P), then for g general in G" the
general fiber of (I x ev))yy, also satisfies (P).

Proof. Name M := My ,(X,d). Let U be a dense open subset of (I x ev)(M) such that the fiber of
IT x ev over a point in U satisfies (P). Let (m, x) be a point in U, where m lies in M’ := Mg (X', 74 d)
and z lies in X". Note that, if (m,x) is in the image (IT x ev)(Wy), then the fiber over (m,z) of
(I x ev))yy, satisfies (P). Indeed, we have:

(I x ev)yy, (m,x) = (M xxr {2}) xx7 (QHX(W))

=M,, X xr ({Jc} X xr (QHX(“i))>

= M,, xxr {x}
= (I x ev) Y(m,z),

where the third equality holds since (m, x) is in (II x ev)(W,), and hence z lies in ev(Wy) < g [ [; X (u;).
Since (m, z) lies in U, the fiber (IT x ev) ~*(m, x) satisfies (P); hence the fiber (IT x ev)ﬁ/\l,g (m, ) satisfies
(P) for all (m,x) in (IT x ev)(Wy) nU

Finally, note that for g general in G, according to Lemma 1.2.3.1 W, n (I x ev)~*(U) is dense in
Wy. Hence (IT x ev)(Wy) n U is dense in (IT x ev)(W,). O

Proof of Proposition 1.2.4.1. 1. Since the morphism IT x ev is surjective, this follows directly from
Proposition 1.2.3.1 i), applied to h = IT : M = Mg, (X,d) - M' = My, (X', med), f = ev:
Mo, (X,d) > Z = X", f =ev: My, (X',med) > Z' = (X')", and from considering the
integral group G”.

2. We proceed in two steps; we first prove that each irreducible component of W, surjects into
a different irreducible component of Wy, before proving the correspondence with irreducible
components of Wy

Correspondence between irreducible components of 1V, and W;. First, note that, since
the space My (X, d) and Schubert varieties are normal [FP96, Ram85], according to Kleiman’s
transversality theorem W, = ev ™' (g1 X (u1) X ... ¢, X (u,)) is normal for (gi,...,g,) general in
G". Furthermore, since the general fiber of IT x ev si connected, according to Lemma 1.2.4.3 for
g general in G" the general fiber of the restriction (I x ev)‘wq is connected. Hence according
to Lemma 1.2.4.1 all irreducible components of (IT x ev)(W,) are dominated by exactly one
irreducible component of W,.

We then only have to ensure that there is no irreducible component of W, whose image is a strict
closed subset of an irreducible component of (11 x ev)(W,) = W,. Proposition 1.2.3.1 7ii), tells
us that, since W, is in general position, the image by II of any of its irreducible components is
an irreducible component of W;, hence the 1-to-1 correspondence.

Correspondence between irreducible components of Wg’] and Wg . According to Lemma
1.2.4.2 the general fiber of the restriction 7, : [ [, X (u;) — [ [; X'(u;) of 7" to X (uy) x - - x X (u,)
is irreducible, hence there exists an open subvariety U of X'(u1) x -+ x X’(u,) such that the
fiber of m at x in U is irreducible. Consider the projections p; and ps defined by the following
Cartesian diagram:

w, 2 T, 96X (w:)

|m 2

Wg = Hl ng/(uz)
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Note that the fiber p;*(m) at a point m in p; *(gm; 1(U)) is irreducible. Indeed, we have:

P (m) = fm} X oy (91X (ur) X - g, X (u))
~ 7 (ev(m))

-1/ -1

=gy, (g eU(m))v

which is irreducible since ev(m) lies in gm }(U). Furthermore, according to Lemma 1.2.3.2 b),
for g general in G", Wy n py (gn1(U)) is a dense open subvariety of W, = Py (TT; 9: X (us)).

Hence the general fiber of p; is irreducible. Furthermore, note that, since Mg (X', m4d) and
Schubert varieties are normal [FP96, Ram85], according to Kleiman’s transversality theorem

W; = M(),T(X/,ﬂ'*d) X(X/)r (ng(’LLl) X .. ng(u,n))

is normal for ¢ = (g1,...,¢.) general in G". According to Lemma 1.2.4.1, all irreducible compo-
nents of p; (W) = Wy are thus dominated by exactly one irreducible component of W .

Finally, Proposition 1.2.3.1 iv), tells us that, since W, is in general position, the image by
p1 of any of its irreducible components is an irreducible component of Wg , hence the 1-to-1
correspondence.

To sum up, each irreducible component of W, surjects into a different irreducible component of
Wj,, and each irreducible component of Wy surjects into a different irreducible component of Wy
Furthermore, W, surjects onto Wg . There thus is a 1-to-1 correspondence between irreducible

components of W, and irreducible components of Wg .

3. The only point left to prove is that the general fiber of W, — W;’ is an irreducible rationally
connected variety. According to Lemma 1.2.4.2 there exists a dense open subset U of [ [, X'(u;)
such that the fiber of m, : [ [; X(u;) — J[; X'(u;) over a point in U is an irreducible rationally
connected variety. For g general in G, the following properties are satisfied:

a) (Mo, (X', m4d)) p is dense in W = (Mo (X', msd))

(a) p o TL; X (ui)?
(b) The general fiber of Wi — W is rationally connected;
(c) The general fiber of W, — W, is rationally connected;

(d) The general fiber of W, — W/ is rationally connected.
Note that proving (d) is our goal here. (a) holds according to Lemma 1.2.3.1. Note that the fiber

of the projection p; : W, — W over a point m in (MO,T(X/,TI'*CI))Q is rationally connected;
1

U
indeed, it is isomorphic to g - (m,) ' (g~"! - ev(m)), where g~! - ev(m) lies in U. Hence, since
according to (a) (MO’T(X/’T(*d))gU is dense in Wy = (MO’T(X/’W*d»gH x/(uyy (0) holds. (¢)
holds according to Lemma 1.2.4.3. Finally, (d) is deduced from (b), (¢) and Theorem 1.2.2.1 (3).
O

1.3 Balanced flags of vector bundles

Let X be a flag variety. We describe here the flag of vector bundles associated with a general point in
Mo (X, d) for a degree d high enough. All definitions and results presented in this part are contained
in I. Coskun’s description of rational curves on a flag variety [Cos10], or easily deduced from it.

1.3.1 Notations. Fix two positive integers m < n . Let I = {iy,...,i,,} be a set of integers
satisfying 0 < i; < -+ < i, < n. Recall Fl; is the m-step flag variety parametrizing m-tuples
(Viyy ..., Vi, ) of vector subspaces of C™, where the subspaces are ordered by inclusion 0 c V;; < -+
Vi, < C", and V;, is of dimension i;. The class d = (dy,...,d;) of a curve C in X is determined
by non-negative integers di, ds,..., d,,, where d; is the Pliicker degree of the projection of C to the
Grassmannian Gr(n;,n). A point p in My (X, d) is associated with a morphism f, : P! — X. By the
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functorial definition of flag varieties, the morphism f, : P! — X is uniquely determined by the data of
a flag of vector bundles over P':

Fp:Elc-ncEmc(’)D@l",
where rankEy, = i, and degFE) = —dj. Note that we have f;,“ S; ~ E;, where S; is the i-th tautological
vector bundle over X.
1.3.2 Admissible sets of sequences. Recall I = {i,...,i,} is a set of m integers 0 <
1< <y <n.

Definition 1.3.2.1. Consider a set d = (dy,...,d,,) of m non negative integers. A (I,d)-admissible
set of sequences is a set

Ao = {(al,j)j‘lzp (G‘?,j)j‘z:la R (am,j);"zl}

of m sequences of non-negative integers of lengths i1, ... ,i,,, respectively, such that:

1. 0 < ag,j < ag,j+1 for every k and every 1 < j <ip — 1;

2. apy1,5 < apy forevery 1 <k <m—1and j < ig;

3. 23":1 ax,; = dy, for every k.
Definition 1.3.2.2. A (I,d)-admissible set of sequences A, = {(ax,;)} is balanced if A, minimizes
the function

D (aky —ary)
1<k<m 1<i<p<n,;

among the (I, d)-admissible sets of sequences.

Note that, according to [Cos10] (see the proof of Lemma 2.1), for any set d = (d1,...,d,,) in N™
there exists a unique balanced (I, d)-admissible set of sequences (ay,;), which can be constructed by
iteration on k in the following way.

e First, set a1 j = [d1/n1]—e€1; where €1 ; is in {0, 1} and is chosen in such a way that Z;il ai; =di
and a1,; < a1, ;41 and [¢] denote the ceiling of ¢ € Q;

e Let 1 < k < m. Suppose all ar_1; have been constructed. Denote by 7 the largest index such
that the element ay_1 ,, satisfies ag_1,,, < dg/ng. Set:

ap,; = ap—1,forl < j <. (1.5)

Denote by Ry, the largest index > 74 such that the element ay_1, g, satisfies ax_1 r, < (di —
Z;kzl akx—1,j)/(ix —ri). Repeat the process replacing rj, with Ry, until all elements a_1 ; of index
larger than 7 are larger than (dj — Z;’;l ax—1,5)/(ix — 7). Then set:

(dr — 2555, akl,j)}
—€k,j

(ar — k)

Vr < j <ig, agj = { (1.6)

where €, ; is in {0, 1} and is chosen in such a way that Z;’;l ak,; = di, and ag; < agj41-
For simplicity, we set dgp := 0 and ng := 0.

Proposition 1.3.2.1. Let d = (dy,...,dn) be a set of nonnegative integers. Let 1 < k < m such
that:

dp — dp—
Vp <k, d >z‘k[.’"”ﬂ. (1.7)
ip — lp—1
Then the balanced (I,d)-admissible set of sequences {(al,j);}:l, cee (amyj);’ll} satisfies ag; = ax—1,;

for 1< j <ip_q.
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Proof. By iteration on s < k, we prove that for 1 < s < k all elements a,; satisfy as; < di/ng.
According to (1.5) this will yield the expected result. First, for s = 1, since dj, = ng[di/i1], a1,; < di/i.
Now let 1 < s < k, and suppose as—1,; < di/i for all 1 < j < ns_;. Note that, if 7, < i5_1, then
there exists elements as_1,; larger than (ds — Z;;l as—1)/(is — rs), where we use the notations of
(1.6); hence all elements a, ; are smaller than an element a,_;1 o for some s’. Hence all elements a; ;
then satisfy as ; < di/ng. On the other hand, if 7, = i5_1, then according to (1.6):

(ds - Z;;f as—l,j)

v7;5—1 < j < isa Qs,j <

(is —is—1)

O

1.3.3 Balanced flag bundles. The partial flag variety Fl; comes equipped with m tautolog-
ical bundles S, ..., Sp,. We describe here the pullback fS; by a morphism f, : P! — X associated
with a point p general in My (X, d).

Let d = (di,...,dn) be an effective class of curve in Hy(F'l;,Z), p be a point in Mo ,(X,d), and
fp : P! — X be its associated morphism. The pullback f;," S of the s-th tautological bundle S5 by
fp is a vector bundle of degree dy and rank i,. According to Grothendieck’s decomposition of vector
bundles, f;Ss is isomorphic to a direct sum of line bundles

f;SS ~ Op1(—as,1) @@ Op1(—as,,),

where Z;z 71’65 asj = ds. Suppose, for a given s, the a, ; are ordered in increasing order. Then, since,
forall 1 < s < m, f;‘SS_l is a subbundle of f;‘SS, we have: as_1,; > as ;. Hence the sequence (as ;)
forms a (I, d)-admissible set of sequence in the sense of Definition 1.3.2.1. We call a, ; the admissible
set of sequences associated with p.

Proposition 1.3.3.1. i) The admissible set of sequences associated with a general point in

Mo (Fl;,d) is balanced in the sense of Definition 1.5.2.2;

it) Suppose Vp < k, di = nk[m] Denote by F, = Ey — -+ — Ep — (’)H,@ﬂ” the flag

ip—ip_1
of vector bundles associated with a general element p in Mo, (Flr,d). Then Ey splits into
B, ~FE,_4 Din Op: (—ag,s)-

s=np_1+1

Proof. i) Cf. proof of [Cosl0], Proposition 2.3.

ii) Let F, =Er1c---c By, O]P@l” be the flag of vector bundles associated with a general element
p in Mo, (X,d). Then, according to i), the admissible set of sequences associated with F, is

balanced. Since d satisfies Vp < k, dj = ix [M]7 we have according to Proposition 1.3.2.1

ip—ip_1
the following sequence:

0—>E_1~0p(—ak-11)D - ®Op1(—ap—1n,_,) —
Er ~Opi(—ap_11) @@ Op1(—ar-1,ip_,) DOp1(—aki_,+1) D DB Op1(—ak n,)

which splits. Indeed, for all j, [ verifying j < [ and j < nip—1 < [, we have: ar; = ar_1,;
and ap; < ap,, hence ar—1; < ap, for any | > i;_;. Hence according to Lemma 1.3.3.1
the morphisms Op1(—ax—1,;) — Ej factor through @Ziilopl(_ak’b) — E}. Finally, since the
morphism FEj_; — E} is injective, Ey_1 is a rank i;_; subvector bundle of @2":’11 Op1 (—agp);
hence Ej_1 ~ C—BZSIOW (—akp).

O
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Lemma 1.3.3.1. Letd) < - <d, anddy =dy < -+ <d, =d, <d. | < <dy, be sequences of
non negative integers. Then the following sequence splits.

0 —>FE =0pm (*d1) @ - DO (7dr) -
F=0p(~d1)® - ®Op1(—d,) ®Op1(—dy 1) D ®Op1(—d, )

Proof. Let k be the largest index such that di < d,. Note that for ¢ > k all the integers d; are
greater than dj41 or equal to di11 and di11 = d, > dj. Hence all integers d; are greater than dj, for
i > k. Hence the induced morphism F; := Opi(—d;) ® -+ - @ Op:(—dy) — F factors through a closed
immersion Op1(—d1) @ --- @ Op1(—di) — F. Denote by 7’ the largest index such that d, = d,. Note
that ' > r. Let us now consider the induced exact sequence

0 >E/FE) ~ Opi(—dk11)® - ® Opr(—d,.) ~ Op (—dk)@)rik

— F/By ~ Opi (~djy, ) D ® Op1 (—d, ) ~ Opi (=d,) 2" ™ @ Opi (~dyry1) @+ @ Opa (—d,. ).

Since for any ¢ > r the integer d; is greater than dy, the injective morphism FE/FE; — F/FE; factors

through ,
E/E; ~ Opi (—dy,)® % — Op1 (—d, )" % — F/E,

Finally observe that the morphism E/E; ~ Opi(—dp)® % < Opi(—d,)®"" =% factors through
E/Ei ~ Op (=dj)® ™ < Op1 (—di)®" " @ Op1 (—di)®" " — F/E. O

1.4 Forgetting one vector space

We denote by 77 : X — X; the morphism forgetting the A-th vector space. Let d = (di,...,dy,) be a
degree in F(X). In this section, our goal is to prove the following results.

Proposition 1.4.0.1. Suppose Vp <k, di, = ny, [Mw, Then the general fiber of

Np—MNp—1
II; x ev: Mo, (X,d) — (I} x ev) (Mo, (X, d)) € Mo (X3, (77)xd) x(xpr X'

s a unirational variety.

Corollary 1.4.0.1. Suppose Vp < k, dj, = nk[zp%i‘“:

general in X", the general fiber of the map My (X, d) 3 ev™(x) — ev ™! (7 (x)) € Mo (X3, (73)xd)
s a unirational variety.

] and the map II; x ev is surjective. Then for x

We will assume in this section Vp < k, dp = nk[zp%i”:]. Let (p,x) be a point in (IT; x
ev)(Mo,(X,d)), where p is in Mo (X3, (73) *d), and 2 = (z1,...,2,) is in X". Denote by IT, , the
fiber of II; x ev at (p,x), i.e. :

I, , = Uil(p) X xr T.

In order to prove the irreducibility and unirationality of II, ;, we define an auxilliary variety Z, .,
which dominates II,, , when (p, ) is general in the image (II; x ev)(Mo (X, d)).

1.4.1 Notations. The class d = (dy,...,d,,) of a curve C in X is determined by non-negative
integers di, ds,..., d,, where d; is the Pliicker degree of the projection of C' to the Grassmannian
Gr(ni,n). The morphism 73 : X — X; induces a morphism IT; : Mo (X, d) — Mo (X3, (73)xd).

Denote by 7, : X — Gr(ng,n) the morphism sending a m-step flag {0} c Vi c---c V< --- <V, to
the k-th linear subspace V.. This morphism induces a morphism Mo_.(X,d) — My ,(Gr(ng, n), dy) —
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M 3(Gr(ng,n),dr) into the space of genus zero stable maps with three marked points to the Grass-
mannian Gr(ng,n). We obtain the following commutative diagram:

M()’T(X, d) e Mo,g(X, d) e Mo}g(Gr(nhn),dk)

1, X7 XX T

Jﬂ'gx---xw;ﬁ

Mo (X, (m3)xd) ——— X3"

Furthermore, for p in My, (X,d), we will denote by:
fp:Pt > X

the associated morphism. By the functorial definition of flag varieties, f,, is uniquely determined by
the data of a flag of vector bundles over P':

-Fp:Elc"’CEmCOg?lna

where rankF; = n; and degF; = —d;. Note that we have f;‘S,» ~ F;, where S; is the i-th tautological
vector bundle over X. Finally, for a point p in P! we will denote by (E;), the fiber at p of the vector
bundle E;, which has a natural inclusion (E;), < C™ induced by the morphism E; — O]Pe?l".

1.4.2 A preliminary result. Denote by F, = By --- € Ej_1 € Eyy1 < -+ < By, « OF"
the flag of vector bundles over P! associated with the point p in Mg (X3, (73)sd).

Lemma 1.4.2.1. i) Consider a dense open subset U of My ,(X,d). Then, for (p,x) general in
(II;; x ev)(Mo (X, d)), II, . N U is a dense open subset of IT, . ;

ii) For (p,x) general in (II; x ev)(Mo,(X,d)), there exists a dense open subset U of Il . such
that, for all g in U, the flag of vector bundles F, associated with q is balanced. Hence there exists
an increasing set of integers an, ,+1 < -+ < ap, such that for all g in U, the flag F, is of the
form:

fq = E1 [ Ek—l c Ek ~ Ek—l @?ﬁnk_lJrl O]pl (—az) c Ek+1 [ Em = O%ﬂ

Proof. i) Since (p,z) is general in (11 x ev)(Moy(X,d)), according to Lemma 1.2.2.1 the inter-
section of II, , with the dense open subset U is dense in II,, ;.

ii) According to Proposition 1.3.3.1 7), there exists a dense open subset U of My (X, d) such that
a point in U corresponds to a balanced flag of vector bundles over P*. According to i), U N I, .
is dense open subset of II, ;. Finally, notice that according to Proposition 1.3.3.1 i), since

Vp<k, dp = nk[sz:&], the flag of vector bundles associated with a point in II,, , N U splits

Np—1
at Ekfl.
O

1.4.3 Definition of Z,,. Our goal here is to construct a rational variety Z,, dominating
II, .. First, consider the integers a,, ,+1, ..., Gpn, defined in Lemma 1.4.2.1 i7) and the following
vector space

V := Hom(®* Op1 (—as), OF").

i=nk_1+1

The flag variety X is naturally embedded in X7 x Gr(ng,n) by Plicker-embedding X; x Gr(ng,n)
in a product of projective spaces, and cutting out X from this product by considering the relations
given by the inclusions of flags. Note that, if we denote by [f, : P! — Xz, {p1,...,pr}] the stable map
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associated with p, points ¢ in II,, , 0 My (X, d) correspond to stable maps [f, : P* — X, {p1,...,p,}]
satisfying f,(p;) = x; and such that the following diagram is commutative:

P1—>X—>X x Gr(ng,n)

X3

Furthermore, by the functorial definition of the Grassmannian, elements u in V' corresponding to an
injective morphism

@u . Ek—l @i O]pu(—ai) i O]P@ln
define a morphlsm fu : P* — Gr(ng,n), where we denote by @, the morphism induced by the inclusion
B c (’)P1 and the morphism Op1(—a;) — (’)(‘9 associated with a point u in V. Conversally, any
injective morphism Ey_1 @®; Op1(—a;) — O@" can, up to automorphisms of Ey_1, be obtained this
way. Points in I, , are thus associated Wlth elements v in V' such that:

1. &, : By @F s +1 Op1 (—a;) — Oﬂ@l" is an injective morphism of vector bundles;
2. Forall 1 <i<r, (Fy,)p, = mu(x;);
3. fp X fu : P' = X x Gr(ng,n) factors through X — X; x Gr(ng,n),

where we denote by (F,),, the fiber of the vector bundle F, := &, (Ex_1 ®; Opi(—a;)) < OD" at
the point p; € P!, and by f, the morphism associated with the ﬁag of vector bundles F,, c O%”
functorial deﬁnitlon of the Grassmannian. Note that for « in V' the morphism &,, : Ex_1®; Op1(—a;) —
OIF@I" might not be an injective morphism, and the fiber (F,),, might be of dimension less than nj. In
order to define a closed subset of V', we define Z, , as the subset of elements u in V' such that:

Vie {1,...,7}, (Fu)p, < mk(z;), where m(z;) € Gr(ng, n); (1.8)
Vpe P, (Fu)p  (Ekt1)ps (1.9)
where we denote by 7 (z;) the vector subspace of C™ of dimension ny, associated with the point 7y (x;)
in Gr(ng,n), and by (Ek+1)p the fiber of the vector bundle Ejy4q at p. Note that, when &, defines a
morphism P! — Gr(ny, n), Equations (1.8) and (1.9) are equivalent to Equations 2. and 3. here above.

Indeed, by construction of &, (F,), satisfies (Ex_1)y < (Fy,)p for all p in P!, hence if u satisfies
Equation (1.9), u also verifies:

Vp e P, (Br)p € < (Ek=1)p © (Fu)p € (Brs1)p € - € (E)p < C7,

hence @,, defines a morphism to the flag variety X.

1.4.4 Irreducibility and rationality of Z,,. We denote by F, the subsheaf of OF

associated with an element p in V ~ Hom(Ej_1 @; Op (—a;),0F"), and by (F,), the fiber over a
point p € P! of F - We consider the usual construction of P! by gluing two affine schemes together. Let
U := Spec(C[s]), Uy := Spec(C[t]), Uz := Spec(C[s, s 1]) = U;\{0}, and Us; := Spec(C[t,t71]) =
Uz\{0}. Then P! can be obtained by gluing U; and U, together along Ujs ~ Usp, where we consider
the following isomorphism:

Cls,s '] ~C[t,t7'], s >t "

For d € N, we view Op1(—d) as the line bundle satisfying Op: (—d)|y, =~ U; x A' for i = 1,2, obtained
by identifying Uz x Al = Spec[s, s7!] x Al and Us; = Spec[t,t~1] x A! via the following 1somorphlsm.

(5,0) = (s71, s%).
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Equivalently we endow Op:(—d) with two trivializations on U; and Us respectively. We consider
here the natural bijection V' =~ @;(C,,[xz])", associating to a section in (C,,[x])” the morphism
Op1(—aj) — OF" described by:

SpecC[s] x A — OF" (s,v) — (s, Pj(s)v)

SpecC[s™!] x A - 05" (s7',v) — (s71, s % Pj(s)v)
We may hence view a point p in Z,, as a set of ny — np_1 vectors P; with coefficients in C,, [z].

In order to simplify notations, we keep the dependence of the polynomials P; on the point p in V/
associated with them implicit.

Lemma 1.4.4.1. 1. There exist N € N, p1, ..., py € P!, such that Z, . is the subspace of elements
win'V satisfying the following equations:
Vie{l,...,r}, (Fu)p, € m(x;), where mp(z;) € Gr(ng,n);
Ve {17 sy N}v (EL)T]L < (Ek-‘rl);m;

2. Consider a point p in P*. We denote by V((Ex41)p) the subset of elements p in V satisfying
(Er+1)p 2 (Fu)p- Then V((Ek+1)p) is a linear subspace of V;

3. Zp4 1s a linear subspace of V.

Proof. 1. By definition, the vectors P; with coefficients in C,, [2] associated with p € V' satisfy:

¥pe Pl (Fl)p =~ (Br—)p (Posy+1(0)s -+, Puc(0))),

where we denote by F), the subvector bundle of OHC,T%" associated with p. Denote by Q; the npi1
homogeneous polynomials associated with the inclusion of vector bundles Er,1 < OIP(J%’”. Then
there exist N > 0, and points p1, ..., px in P! such that the following statements are equivalent:

VpePl (Fu)p © (Bra)p
<:>vp € ]P)l? <P’ﬂk—1+1(p)a ceey Pnk (p)> < <Q1(p)a ceey an+1(p)> (110)
¢>VL € {la sy N}7 <Pnk,1+1(pb)a ey Pmc (pL)> < <Q1(pL)a ey an+1(pb)>
Indeed, p satisfies the homogeneous equations (1.10) iff the polynomials P; associated with p

satisfy (1.10) at N different values of p, = [z,,y,] for N large enough. Notice N only depends
on the degrees di and dy. 1, which are fixed here.

From now on, we fix such an N, and fix points (p,y1,...,pn) general in P1. Equation (1.9) is
thus equivalent to :
Vie{l,...,N}, (F.)p, © (Eks1)ps (1.11)

2. We set p := [z : y]. We will denote by (E, F') the vector subspace of C™ generated by any two
vector subspaces E and F' of C". The vector subspace (Ex+1), is described by linear equations.
Hence:

V((Eki1)p) = {pn = (Pij) € V| {(Ek-1)p, (Fu)p) © (Et1)p}
= {/”L ‘PZJ G Vv | <( ) P’ﬂk—1+1(p)7 ERE nk(p)> c (EkJrl)P}

is the intersection of linear equations on the coefficients of Pj, ny—1 + 1 < j < ng.

3. Fixiin {1..., N}. Denote by 7;(x;) the image of z; in the projected flag variety X;. The subset
Vp, of elements o in V' satisfying (F),)p, < 7 (x;) can be described by:

Voo i =A{p=(Pi;) € V[ {(Fp)p,) < mr(x)}
={n=(Py) €V | {Puys1(pi)s- -, Pop(p)) = (i)} -
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Since the vector space 7 (z;) is defined by linear equations, Vj, is defined by linear equations on
the coefficients of the polynomials (P; ;); Vj, is a linear subspace of V.

Finally, according to 1. the variety Z, . is the intersection of the linear spaces V,,, for 1 <i <,
with the linear spaces V((Ex41)p, ), for < ¢ < N. Hence Z, , is a linear subspace of V.
O

According to Lemma 1.4.4.1, Z, , is a linear subspace of V, and hence is an irreducible rational
variety.

1.4.5 Image of Z,, --» M,,(X,d). First, denote by V" the subset of elements of V
corresponding to injective morphisms Ex_1 @®; Opi(—a;) — O]P@lr. The complementary of V™ is
described by a set of polynomial equations. Indeed, for u = (Pj)n, ,+1<j<n, i V the associated
morphism is injective iff ((Ex—1)p, Pp,_y+1(0), ..., Pn,(p)) is a vector space of dimension ny for all
p e PL. Hence V¥ is an open subset of V. Call

ng .__ inj
2 = Zp NV

By the functorial definition of flag varieties, each element u in Z;,"gg defines a degree d morphism
fu : P! — X, which by construction of Z,, is associated to a point in II,,. Furthermore, by
construction of Z, ;, any point ¢ in II, , whose associated flag of vector bundles is balanced is the
image (F,) of an element u in Z/"J. Hence, according to Lemma 1.4.2.1 ii), for (p,z) general in

(IT; x ev)(Mo(X,d)), the variety Z/"/ dominates II, .

1.4.6 Algebraicity of Z;;flxj — II, ;. Denote by ¢ : Z)"/ x P! — X the function sending
an element (z,p) in Z" x P! to the point of X associated with (F;),. According to Lemma 1.6.1.1
(Appendix A), ¢ defines a morphism ¥ : Z;”g — My (X, d), which dominates II,, , according to here
above.

1.4.7 Proof of Proposition 1.4.0.1. Let (p,z) be a general point in (IT; x ev)(Mo (X, d)).
We have obtained a dominating morphism ¥ : Z/"J — IT,, ,. Since Z/"J is a dense open subset of the

irreducible rational variety Z, ., Z,"/ is an irreducible rational variety. Hence II}, , is an irreducible
unirational variety.

1.4.8 Proof of Corollary 1.4.0.1. For an element x in X", we denote by IT, the restriction
of the forgetful map My ,(X,d) — Mo, (X;, (77)xd) to ev™'(z). First, note that since the map
IT; x ev is surjective, according to Proposition 1.2.4.1 1. for  general in X" we have II(ev™!(z)) =
ev!(mp(2)). Hence for  general in X", the map II, : ev™*(x) — ev™! (7 (x)) is surjective.

According to Proposition 1.4.0.1, there exists a dense open subset U of (1T x ev)(Mo(X,d)) =
Mo (X5, (77)+d) xx.- X" such that for all elements (m,x) in U, the fiber (IT x ev)™'(m,z) =
II7'(m) n ev™'(z) is a unirational variety. Denote by p1 : Mo, (X3, (17)sd) xx.» X7 —
Mo (X3, (m3)«d) the first projection and by ps : Mo (X3, (77)+d) x x,» X” — X" the second projec-
tion. Note that for all m in p1(py ' (z) " U) the fiber IT; ' (m) = IT~*(m) nev™'(x) = (IT x ev) ™ (m, z)
is a unirational variety. Furthermore, note that for x general in X", p5’ 1(:1:) N U is a dense open subset
of py *(2), and hence p;(py ' (z) N U) is a dense open subset of p1(py ' (x)) = II(ev—'(x)). Hence for z
general in X" the general fiber of IT, is a unirational variety.

1.5 Proof of Theorem 1.1.2.1.

Let J = {j1,...,Jm} be a set of M integers satisfying 0 < j; < --- < jp < n such that I is contained
in J, let d = (di,...,dy) be an element in N™ and 1 < u < M be an integer such that the collection
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{I,J,d} is stabilized with respect to p in the sense of Definition 1.1.1.1. Note that according to
Proposition 1.2.4.1 it is enough to prove that the general fiber of

HI/J X ev: M()m(FlJ,d) i MO,T‘<F113 (WI/J)*d) X(Flp)" (Fl])r (112)

is rationally connected. We prove this in two times. We first prove that the general fiber of the
morphism I7;_ ;7 % ev is rationally connected, where II;_ ,; is the morphism induced by forgetting
vector spaces with indices left of © not associated with elements in I. We then prove that the general
fiber of the morphism Il7/;_, x ev is rationally connected. We finally deduce Theorem 1.1.2.1 from
these two facts.

1.5.1 Preliminary results on the base change of II;/; x ev. Let K = {ki1,..., kps}
be a set of integers satisfying 0 < ky < --+ < ky,» such that K is contained in J and contains I. Our
goal here is to prove that the base change of the morphism I7;,; x ev defined by (1.12) induced by
Flix — Fl; is a morphism of equidimensional projective varieties, whose general fiber satisfies the
same properties as the general fiber of II;,; x ev. Since the projection morphism Flx — Fl; factors
through Fl; — Fl;, we are considering the following morphism:

M(),r(FZJ,d) X(Fl‘])r (FZK)T E— (M07T(FZI, (W]/J)*d) X(FZI)T (FZJ)T) X(Fl‘])r (FlK)T

|

Mo (Flr, (m770)5d) X (pipyr (Flx)”

First, note that My ,(Fl;,d) X (pi,yr (Flg)" is a reduced scheme of pure dimension the expected
dimension. Indeed, according to Kleiman’s transversality theorem for g general in (SL,,)" the projective
scheme My ,.(Fly,d) x g,y g (Fli)" is an equidimensional reduced scheme. Furthermore, since the
morphism (Fij)" — (Fi;)" is G := (SL,)"-equivariant, the following diagram is commutative

Mo (Fly,d) x gy (G x (Fly)7) —— G x (Mo, (Fly,d) x gy (Fly)")

I [

G - G

where p and 7 are the obvious projections. This induces an isomorphism

P (9) = Mo (Fly.d) % pr (g (FL)) ~ 7 (9)
~g- (MO,T.(FZJ, d) X(Fll)““ (FZJ)T)
~ Mo, (Fly,d) x g1,y (FLy)"

which allows us to deduce the equidimensionality and reducibility of Mg ,(Fl;,d) x (Fi,)r (Flg)" from
the equidimensionality and reducibility of My ,.(Fl;,d) Xpiyr 9 (Flg)"

Finally, Lemma 1.5.1.1 here under ensures that the general fiber of the flat base change of 117,y x ev
satisfies the same properties as the general fiber of 11, x ev.

Lemma 1.5.1.1. Let S be a scheme, let 8" — S, M — S and M’ — S be schemes over S, and
M — M’ be a morphism of schemes over S. Suppose the general fiber of M — M’ satisfies a property
(P), and S" — S is flat. Then the general fiber of Mg — Mg, satisfies (P).

Proof. If the morphism M — M’ is not surjective, it factors through M — ImM and then Im(Mg/) ~
(ImM)g; hence we can assume M — M’ surjective. Denote by U the dense open subset of M’ such
that the fiber of M — M’ over {m} in U satisfies (P). Note that, since S’ — S is a flat morphism,
U xg S’ is a dense subset of M’ xg S’. Indeed, if we denote by p; : M’ x5 S’ — M’ the first
projection, acccording to [Gro] Proposition 2.3.4, all irreducible components of pfl(M ") dominate M’;
hence the image of each irreducible component of M’ by p; has a non empty intersection with U,
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hence each irreducible component of Mg, has a non empty intersection with Ug/. Then for (m,s) in
UxgS cM xg8' we have:

(M Xs Sl)(m,s) =M X s {S} X M {m}
= (M xpp {m}) xg {s} ~ My,
where M, satisfies (P) since m lies in U. Hence the general fiber of Mg — Mg, satisfies (P). O
1.5.2 Forgetting vector spaces left of Vj, . Recall a point in Fi; corresponds to a flag

of vector spaces:
{0} eV eV, = Cn.

IMm

Denote by ' the integer such that 4, = j,. A point in Fl;_, corresponds to a flag of vector spaces:

{O}CVilc...CViMI:VjMCV. c..-c V. cC"

Jp+1 Im

For 1 < k < p1, we name Xy, := (Fl,_, )", d* := (Tyeysg)ed and My := Mo (Xy,d¥). Forgetting all
vector spaces left of V;, that are not of the type V;, induces a morphism I1;_ /7 x ev: Mo, (Fly,d) —
M, xx, (Fly)". We consider here the general fiber of this map.

Proposition 1.5.2.1. Let {I, J,d} be a stabilized collection.

i) The general fiber of the map II;_ /5 % ev is a unirational variety.

ii) For x general in (Fl;)", the fiber ev™'(z) € Mo, (Fl;,d) is a tower of unirational fibrations
over the fiber ev=!(my., (x)) € M,.

Proof. We proceed by iteration on k.

i) Let 1 < k < p such that the general fiber of I1;_, , x ev: M; — My xx, (Fl;)" is rationally
connected. Suppose jgi1 is not contained in I. Recall

d=(d,...,du).

We denote by
(TI'I/J)*d = (dll, ey d;n)

Denote by k' the largest integers such that i, < jg. Note that

e The degree d¥ is given by the set
dk = ( /1,..., %/,dz//,...7dk /),

obtained from d by removing all integers d, such that s < p and there exists no integer s’
satisfying iy = js.

e The degree d**! is given by the sequence
dk+1 = (dll’ ceey %/,dlz//_‘_l .. d]X4/)7
which is obtained from the set d* by forgetting the integer df,.

Note that according to Definition 1.1.1.1 for all p < k,

iy > Rd; - défl)/(ip - ipflﬂjk'
Then according to Proposition 1.4.0.1 the general fiber of

HJ>k+1/~]>k X ev : Mk — (H']szrl/J;k X ev)(Mk) = Mk+1 ><Xk+1 Xk
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is unirational, and hence rationally connected. Furthermore, according to Definition 1.1.1.1 the
morphism surjects onto M1 X x,,, Xx. Then according to Subsection 1.5.1 the general fiber of
the following morphism

Mk X X (FZJ)T — Mk+1 XXk+1 (FlJ)T

is also rationally connected. Hence according to Theorem 1.2.2.1 by composition the general
fiber of I1;_, /7 x ev: My — Myy1 xx,,, (Fly)" is rationally connected. In the same way, if
Jr+1 is contained in I, the general fiber of I1;_, ,/;xev: My — Myyo xx, ., (F1;)" is rationally
connected.

ii) Let 1 < k < p such that for z general in (Fl;)", the fiber ev™!(z) € Mo, (Fl;,d) is a
tower of unirational fibrations over the fiber ev™'(m;_, ;(x)) € Mj is unirational. Suppose
Jk+1 is not contained in I. Corollary 1.4.0.1 and Proposition 1.2.4.1 imply that for = general
in (Fl;)", the fiber ev=1(z) € My, (Fl;,d) is a tower of unirational fibrations over the fiber

ev_l((ﬂ—c];kJrl/J(x)) € Mk:Jrl'

O

1.5.3 Forgetting vector spaces right of V; . We deduce here the rational connectedness
of the general fiber of the morphism II7,; X ev from Subsection 1.5.2 by duality. For a set K =
{k1,...,kn} of m integers satisfying 0 < k1 < -+ < ky;, < n, we call dual partition of K the set

K*:={n—kpy,...,n—ki}.

Consider the natural transformation of functors sending a flag Fg:= Fy < ---c E,, C O?” of vector
bundles over a scheme S to the dual flag 7% := (0%"/E,,)* < - < (O2"/Ey)* < (0€")* ~ O,
where we have chosen an isomorphism (C™)* ~ C™. This natural transformation of functors induces
an isomorphism Flx ~ Flg«, and we will call Flgx the flag variety dual to Fli. Note that this
induces here an isomorphism between the flag variety F;, parametrizing flags of vector spaces

n
VilC---CVi“,CVjMHC---cV}MCC.

and the dual flag variety Fl(;_ )» parametrizing flags of vector spaces

Vo—ju € Vy c Vn_i“, c-rc Vo, cC™

—Ju+1

This isomorphism sends a curve of class d = (dy,ds...,dy,,) in E(Flg) ~ N™ onto a curve of class

d* = (dm,...,ds,dy) in E(Flgx) ~ N™. Furthermore, note that, since {I,J,d} is stabilized with
*

respect to p, according to Lemma 1.5.3.1 the collection {I, (J=p)*, ((WI/JZM)* d) } is stabilized with

respect to n in the sense of Definition 1.1.1.1. Hence, according to Subsection 1.5.2 here above,
the general fiber of the morphism I« ;. ,)x x ev is rationally connected. Finally, the following
commutative diagram allows us to deduce the rational connectedness of the general fiber of II7,;_ x ev
from the rational connectedness of the general fiber of the morphism Iy« (s_,)* X ev.

HI/JZ‘LXE’U

MO,T(FlJz,u (W.]Zu/J)*d)

I 1

- HI*/(J; )k Xev.
Mo (Flig s, (e, 0)5d)*) ———— Mo (Flpx, ((77/5)«d)*) (sz . (Fliys,y%)"
I%

Mo (Flr, (m775)sd)  x  (Flg,)"
(FVI)T

Note that the isomorphism Mo ,.(Fl;.,, (7., /7)s«d) =~ Mo (Flis. )%, (77, /7)«d)*) is induced by
the isomorphism F'l;>, ~ Fl(j>,)+ and the isomorphism

Moyr(Flb(’]T[/.])*d) X (Fl,]ZM)T ZMO,T(FZI*,((’ITI/J)*CI)*) X (FZ(J%L)*)T
(Fir)r (Flps)"

is induced by the isomorphisms Fl; ~ Flps and Flj>, ~ Fl(jz,)%.
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Lemma 1.5.3.1. Let J = {j1,...,jm} be a set of M integers satisfying 0 < j1 < -+ < jy <
n and let I = {i1,...,im} be a subset of J. Let d = (di,...,dpn) be an element in NM and let
1 < p < M such that the collection {I,J,d} is stabilized with respect to p. Then the collection

{I*, (J=p)*, ((WJZM/J)*CI)*} is stabilized with respect to n.

Proof. We number by I'* := {i¥,... 4%} and J* = {j5,...,j%} the dual partitions of I and J, where
for any 1 <k <m, i} =n—iy,_py1 and for any 1 <k < M, 5 = n—jy—ps1. Recall Fljx is the flag
variety parametrizing flags of vector spaces

Viei, € - Vyyy < C?
and Fl(j>,)+ is the flag variety parametrizing flags of vector spaces

Vn*jM c e Vn*jw—l < Vn*i‘/ c Vn*h cC".

We call d’ := (m7/7)d = (d},...,d},). Wecall d* = (d¥,...,d%,) and d'* = (d'*,...,d'",,) the dual
classes, where for 1 <k < M, d}f = dp—p4+1 and for 1 < k <m, dy = d_niq- Let p <k < M such
that ji;_,., = n — jx is not contained in I*, i.e. let u < k < M such that ji is not contained in the
set I* = I. Since the collection {I,J,d} is stabilized with respect to u, the following properties are

satisfied.

e Let &’ be the smallest integer such that iy > ji. Note that m — k' + 1 is the largest integer
such that ¥ ,, ., = n —ix < ji;_4.1 = n—jr. Then for any ¥ < p < m, ie. for any
1<m-p+1<m—Fk +1, we have

d:‘n—k-}—l = dk = [(d; - d;+1)/(ip+1 _’L;D)-l(n_.jk) = [(d/’:@*p+1 - d/:‘nfp)/(i;knprrl _i::@fp)-lj;\l}—k-i—l'

e Since the morphism I1;,_, X ev is surjective, the morphism = _,, eea X €U is surjective.

Note that the surjectivity of II(;_ )« x ev is implied by the following commutative diagram

>M—k+1
HJuék Xev
MO7T(FZ‘][L<IC7 (ﬂJugk/J)*d) MO7T(Fl‘][L<k—17 (TrJugkfl/J)*d)
:[ (Fly,cp1)
MO’T(FZ(Jzu)*szkH’ ((WJuék/J)*d)*) MOvT(Fl(Jzu)*szfw&’ ((WJ#Lgkfl/J)*d)*) (F1 . yr (Fl<‘]>“)*
ev <J>“‘)*21W—k+2

1T X
(CE L VR Y

where the isomorphism Mo, (Flj, o, (77,_,/7)%d) ~ Mos(Flig e, o ((T7,00)d)*) s in-

duced by the isomorphism Flj . =~ (Flj,.)* = Fly.yx_, , - Hence the collection

{I*, (J=p)*, ((WJZ“/J)*d)*} is stabilized with respect to n. O

1.5.4 Proof of Theorem 1.1.2.1. Let J; := J>(,;,,). Consider the morphism

Mo, (Flyy s (T5,/5)xd) X (p1,, e (FlL)" — (Mo (Flr, (7105 (T 0)xd) X (pipye (FLL)T) X (Fiy, ) (FLp)"

lz
Mo (Flr, (77)5)%d) X iy (Flg)"

where the first arrow is the morphism obtained by flat base change of I1;,;, x ev over (Fl;)" — (Fl;,)".
According to Subsection 1.5.3 the general fiber of II;,;, x ev is rationally connected, hence according to

Lemma 1.5.1.1 the general fiber of Mo .(Fl;,, (7, /7)sd) X(F1J1)7~(FZJ)T — Mo (Flp, (77/7)«d) X (pi,)yr
(Fly)" is rationally connected. Furthermore, according to Subsection 1.5.2 the general fiber of
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Mo (Fly,d) — Mo (Fly,, (75,/5)xd) X1,y (Fly)" is also rationally connected. Theorem 1.1.2.1
i1) then follows from the following commutative diagram:

I, ,5%ev

Mo, (Fly,d) Mo, (Flyy s (T5,/5)xd) X (1, yr (FL)"

M l

MO’T(FZI, (WI/J)*d) X(Fl;)" (Flj)r

Indeed, according to Theorem 1.2.2.1 the composition of morphisms of projective complex schemes
whose general fiber is rationally connected is a morphism whose general fiber is also rationally con-
nected.

In the same way, since the composition of unirational fibrations is a unirational fibration, Theorem
1.1.2.1 41) is easily deduced from Subsections 1.5.3 and 1.5.2.

1.6 On the surjectivity of I1;;.

Let us recall our notations. We consider the flag variety X parametrizing flags V,,, < --- < V,,, < C",
where V;,, is a vector subspace of C" of dimension n;. For 1 < k < m, we denote by X; the flag variety
obtained from X by forgetting the k-th vector space, and call 7 : X — X; the forgetful morphism.
Let d = (dy,...,d,,) be an element in £(X) ~ N™. We denote by m; . d = (di,...,dr—1,dks1,-..,dm)
its pushforward to F(X7;). In order to ease notations, we set dy = 0 = dy,11. Finally, we denote by
II; : Mo, (X,d) > Mo (X3, 77,d) the morphism induced by m; : X — X;.

Our goal here is to give a condition on the degree d, under which the morphism My ,(X,d) —

Mo,r(X;, U >X<d) xx,~ X" is surjective. We deduce from it examples of stabilized collections in Sub-
section 1.6.1.

Lemma 1.6.0.1. Consider an element p in general position in Mo ,(X;,n;,d). Denote by F, =
Eic---c By 1c Eyyc---c E, cC™ the flag of vector bundles associated with p. Suppose for
allp < k, dis1 > njsr [22=%=1] " Then:

Np—MNp—1

1) Exry1 = Epo1 @ By /Er—1;

i) Egi1/Er—1 ~ (’)Ipn(—[wj)@”_’"2 @ Opl(—[wj + 1)®2) where 1o is the integer

Nk+1—MNk—1 MNk4+1—MNk—1

defined by ro = (g1 — dg—1) — (k41 — nkfl)l%b

iii) There exists a P-vector bundle F of degree —d where d < dj,_1 + (ny — nk_l)({MJ +1)

Np+1—Nk—1
and of rank ny such that:

Er1cFcFEgc O%al".
Proof. i) Cf. Proposition 1.3.3.1.
ii) Cf. the description of balanced flags of vector bundles in Section 1.3.3.

iii) Call d := dg41 — dg—1 and n := ng1 — nk—1. Consider two non negative integers p; and ps such
that p1 <n —1r9, po <79, and p; + p2 = Ngp — Ng_1.
Denote by Fy the rank ny —nj_1 subbundle of Ej; associated with Op: (—| 2 ])®P1 @ Op: (—| 2|+
1)®P2) by the isomorphism Eyy1/Ej_1 ~ Op1 (—|£])®" 72 @ Op1 (—|£] + 1)®72) of id).
Then F := F,_1 @ Fy is a vector bundle of rank nyg, of degree the opposite of

At + (15D + 22151+ 1) < dis + (=) (5] +1),

Furthermore, F' satisfies Fy_1 € F < Epy1 C Op@l".
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Proposition 1.6.0.1. ) Suppose di_1 < [:’;—i] and dy, > di_y + (ng — np_y) (| 222Gt | 4 7).

N1~ Nk—1

Then the morphism 7 .
H@ : MO,S(Xv d) - M0,3(XE’ ﬂ—@*d)

18 surjective;

ii) Consider an integer T such that, for all dy > 7, the morphism II; : Mosz(X,d) —

Mo 3(X3, m7,d) is surjective.
Suppose dy, = 7 + r(ng — ng—1). Then the morphism

HE x ev' : M()’r(X, d) - MO’T(XE,TFQ*CI) XX;ET X

18 surjective.

Proof. i) Call d; := 7,d. Consider an element p in general position in Mg 3(Xz,d;). Since X

ii)

is convex, Mg 3(X;,d;) is a dense open subset in My 3(X;,d); hence, according to Lemma
1.2.2.1, p is in Mg 3(X3;,d;). We will construct an antecedent of p by II; as a concatenation of
two morphisms f: P! — X and g: P! — X.

Construction of f. Denote by 7, ;= E1 < --- Cc Ey1 € By < - B, C OE@,I” the flag
of vector bundles associated with p. According to Lemma 1.6.0.1 ii4), there exists a P!-vector
bundle F of degree d < di—1 + (ng —nkfl)([%J +1) and of rank n;, defining the following
flag of vector bundles:

.7:::E1c~-~cEk,1chEkHc-ncEch]%al".

By the functorial definition of flag varieties, F defines a degree (di,...,dg—1,d,dgs1,---,dm)
morphism f : P — X such that f, : P! — X3, factors through f. We have denoted by f, the
morphism associated with p.

Construction of g. Denote by g : P! — X a rational curve of class (dy — d)oy,, where oy, is the
degree one Schubert class whose pushforward to Gr(ng,n) is not 0. Up to multiplication by an
element in SL,,, we can assume g(P!) intersects f(P!) on a point that is not marked. Notice the
image of m; 0 g : P! — X7 is a point.

Finally, the stable map P! U P! — X induced by f and g defines an element in My 3(X,d),
whose projection by II7, is p.

Call M’ := My, (X;,7;,d). Fix a genus zero stable map p := (g, : P! — M’ {p1,...,p,})
corresponding to a general point in M’. According to Lemma 1.2.3.1, for any dense open subset
U of M’, the equidimensional variety X" x X;)" U is a dense open subset of X" x X M’; hence
it is enough to prove that Hgl(y) dominates X" x(x - {p} for a general point p in M.

Fix an element (z,p) in X" X(Xp)r {p}, i.e. fix r points x1, ..., z, on X such that each point
x; gets projected by 77 : X — X7 to g,(p;). Our goal is to construct an antecedent of (z,p) by
II; : Mo, (X,d) > M.

We proceed in three steps. First, notice there is a degree (d — r(ng — ng—_1)or) morphism
f: P! - X getting projected to p, i.e. such that gp = 70 f. Furthermore, we construct rational
curves C; — X of degree ny — ni_1 joining the points f(p;) and z;. Finally, by concatenation,
this gives a degree d stable map [P! u; C; — X, {p1,...,p,}] which is an antecedent of (z, g), as
researched.

Existence of f. We call:

4= (dl,...,dk_l,dk —r(nk _nk—l)adk+1>---adm) € Al(X)

Notice that, since g is in general position in My 3(X,d) and the morphism IT; : Mg 3(X,d) —
W(X@,ﬂg*d) is surjective, its reciprocal image Hg_l(p) has a non empty intersection with
the dense open subset Mg 3(X,d) of My, (X,d). We can thus find an element [f : P* —
X, {p1,..-,pr}] in Hil(u) N Mo (X, 9).

Construction of C; — X. Fix an integer i in {1,...,r}. Denote by F,, = { W} --- < W} < C"}
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the germ at p; of the flag of P'-vector bundles associated with f. Since f : P! — X projects to
gp, the flag of vector spaces associated with g,(p;) is:

gp(pi):{ch~-~cW,i_1CW,i_Hc---chnc(C"}.

Denote by < wn, 41, .-, Un, > a basis of Wi/W}_,.
Recall z; is a point in X getting projected to g,(p;), i.e. corresponds to a flag of vector spaces

i i i i n
Wic---cW,_ cVcW, - --cW, cC".

Since ev : Mo o(Gr(ng — ng—_1,ngr1 — nk—1),d) = Gr(ng — ng_1,nk41 — ng_1)? is surjective for
d = (ng —ng—1) (cf. for example [BM11] Corollary 2.2), there exists a degree (ny — ni—1) genus

zero stable map
N

hi : Cy = U P' — Gr(ng — ng—1,mp+1 — Nk—1)
j=1
joining the rank (ngy — ng—1) vector spaces V/Wji_, and Wi/Wj_, within W}, /Wi | =~
(C"k+1—7lk—1 A

By the functorial definition of Grassmannians, each morphism /;p1 : P! — Gr(ng —ng_1, g1 —
ni_1) defines a flag of P!-vector bundles

i Dng+1—nk—1
E; < Op ,

which has one fiber given by the flag of vector spaces V;/W}_, = W12+1/Wli—1 ~ Cre+1=me=1 gand
another fiber given by Vj41/Wi_; € Wi, /Wi_; ~ Ct+17"-1 where Vi = V and Vy = Wj.
Now consider the following flag of P'-vector bundles:

"T"i,j ::Wlic"'CW/i—lcwé—l@E;CWI:‘+1C"‘CWTZ-”CO§1",

Fi,; defines a morphism f; ; : P! — X which is projected to gp(p;). Furthermore, the morphisms
fi; define a degree (ny—nj_1) morphism from the tree of P!’s C; to X which joins by construction
x; and g,(p;). We will denote by f; : C; — X the morphism thus obtained.

Construction of an antecedent of p. Finally, consider the stable map ¢ = [P! u; C; —
X, {p1,...,pr}] associated with [f : P! — X] and f; : C; — X, where we place each of the
marked points p; on an antecedent fi_l(:ci) on C;. Since each of the map f; : C; — X projects
to gp(ps) in X7, the morphism My ,.(X,d) — M’ collapses each component C; and sends ¢ to p.

O

1.6.1 Examples of stabilized collections.
1. FORGETTING THE FIRST VECTOR SPACE. Suppose I = {i1,...,i,,} is a collection of integers
satisfying 1 < i1 < -+ < 4, < m and J = {j1,41,...,4m} satisfies 0 < j; < i;. Note that

then Fl; — Fl; is the morphism forgetting the first vector space. By definition, if the following
condition is satisfied, the collection {I, J,d} is stabilized with respect to pu = 2.

e The morphism I17>1 x ev : Mo, (Flj,d) — Mo, (Flr, (77/5)+d) X g,y (F17)" is surjective.

Note that since there is no integer 45 such that ipr < jg, the collection {I,J,d} does not
have to satisfy any other condition. Furthermore, according to Proposition 1.6.0.1 i), if
dg = 0 < [%J and d; = do + (1 — O)([dfl;_‘ffj +1) = jl(ﬁ—fj + 1), then the morphism
Moz(Fly,d) — Moz(Flr,(m7/5)«d) is surjective. Note that the first condition is always satis-
fied. Hence according to Proposition 1.6.0.1 ), if

B +rGi-0) =i+ 1)

di = j1(|

then the morphism 77>, X ev is surjective.

To conclude, we observe the following property:
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if di = j1 (r +1+ |da/i1]) the collection (I,J, (d1,ds,...dm+1)) is stabilized.

2. PROJECTION FROM A GRASSMANNIAN TO THE POINT. Suppose J = {k} and I = ¢J. Then Fl;
is the Grassmannian Gr(k,n) and Fl; = Gr(k,n) — Fl; = SpecC is the projection to the point.
By definition, the collection {1, J,d} is stabilized iff the morphism

IOjsq x ev: Mo, (Gr(k,n),d) — My, x (Gr(k,n))"

is surjective. Since the projection My 3(Gr(k,n),d) — My = SpecC is always surjective,
according to Proposition 1.6.0.1 #4), if

d=r(k—-0)=rk,
then 1171 X ev is surjective. Hence:

if d = rk the collection {I, J, d} is stabilized.

Finally, since the collection {I, J, d} is stabilized, according to Lemma 1.5.3.1, the dual collection
{I*, J*,d* = d} is also stabilized. Note that Filj+ = Gr(n — k,n). Hence:

if d = r(n — k) the collection {I, J, d} is also stabilized.
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Appendix A

Let Y be an irreducible projective complex variety, let v € Ha(Y,Z), and r > 0. We first recall the usual
definitions associated with the space of stable maps Mo (Y, 7). The data of a morphism ¢ : C' - Y
from a genus zero projective connected reduced and nodal curve C' to Y along with r distinct non
singular points {c1,...,¢.} on C is called a stable map if any irreducible component of C' getting sent
to a point contains at least three points which are nodal or marked.

Let S be a complex scheme. A family of r-pointed quasi-stable maps over S consists of the data of
morphisms C — Y and 7 : C — S along with r sections p; : S — C, such that each geometric fiber is a
genus zero projective connected reduced and nodal curve Cy and the marked points p;(s) are distinct
and non singular. By construction, My (Y, ) is the coarse moduli space parametrizing isomorphism
classes of families over S of r-pointed, quasi-stable maps from genus zero curves to Y representing the
class v, and such that each geometric fiber Cs over a point in S defines a stable map Cs — Y [FP96].

Lemma 1.6.1.1. Fiz distinct points p1, ..., pr in P'. Let S be a complex scheme, and let p :
S x P! - Y be a morphism such that, for all closed points s € S, the restriction us of p to s x P!
verifies pusx[Pt] = v € A1(Y). Let pry be the natural projection from S x P! to S, and p; : S — S x PL,
1 <@ < r, be the morphisms respectively defined by p; : s — (s,p;). Then the family

Sxpl L,y

J/P"‘l

S

together with the sections p; : S — S x P! is a stable family on S of maps from r-pointed genus 0
curves to Y representing the class 7.

Furthermore, the morphism f : S — Mo (Y,7) associated with this family sends a point s € S into
the point of Mo (Y,7) associated with [ps : P* — Y, {p1,...,pr}].

Proof. Let s be a closed point of S. Then the geometric fiber in s verifies pri*(s) = (S x P') xg
Spec(C(s)) ~ Spec(C) x P!, i.e. is an irreducible rational projective curve. Hence pri*(s) is a
projective, connected, smooth, reduced, rational curve with r distinct non singular points.

Since char(C) = 0, P! is flat on SpecZ, and pry : S x P! — S is a flat morphism. Furthermore, pry
may be written down as S x P* ~ PL x SpecC x S — SpecC x S ~ S, hence is a projective morphism.
The family (pry : S x P — S, {p1,...,p,}) is thus a family of r-pointed genus 0 quasi stable curves
on S.

For s in S, denote by p, : Cs — Y the restriction of p to the geometric fiber Cy := pry*(s). Note
that ps is a map from the r-pointed quasi-stable map (Cs, {p1,...,p-}) to Y. The map us is stable,
and by hypothesis represents the class . The family (pry : S x P! — S, {p1,...,p.},un: S x P} - )
hence is a stable family on S of maps from r-pointed genus 0 curves to Y representing the class v, i.e.
o= (pr1:SxP' - S {p1,....p},u: S x P! - Y)/ ~ is an element of Mo _.(Y,7)(S).

Let s : Spec(C) — S be a point of S. Since My ,(Y,7) is a coarse moduli space, the functor
Mo (Y, ) associates to s the map from My (Y, 7)(S) — Mo (Y, v)(Spec(C)) associating to a stable
family (7 : C — S, {p1,...,pr},pt : C = Y)/ ~ corresponding to an element in My ,.(Y,7)(S) the
isomorphism class of:

Spec(C) xgC —— C —t— Y

! |

Spec(C) —— S

We observe Mo, (Y,7)(s) sends o to the element in Moy, (Y,v)(Spec(C)) associated with

(Cs,{p1s -, pr}ps 1 Cs = Y).
Since My (Y, ) is a coarse moduli space, there exists a natural transformation of functors :

@ : Mor(Y,7) = Homsen (8, Mo, (Y,7))
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Let f:S — My, (Y,7) be the morphism associated by ® with o = (pry : S x P! — S, {p1,...,pr},p:
SxP'—-Y)/ ~, ie f=®(0). We obtain :

B(S)(0) o s = P(Spec(C)) (Mo, (Y, 7)(s)),

i.e. f sends s to the point of My (Y, 7) associated with (Cs, {p1,...,pr}, its). O
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Chapter 2

A comparison formula between
genus 0 correlators of partial flag
varieties

2.1 Introduction

Removing a subspace from a partial flag gives another partial flag composed of fewer subspaces. This
induces a forgetful map between the corresponding flag varieties. The main result of this chapter is
that quantum K-theoretical genus 0 correlators of these two flag varieties are equal to each other,
provided their degree is high enough.

2.1.1 Genus zero correlators of G/P. Quantum K-theory takes its simplest form for
homogeneous varieties, and genus zero quantum K-theory actually first introduced and defined in this
setting by Givental some twenty years ago [Giv00)].

Let X be a homogeneous variety G/P, where G is an algebraic group, and P is a parabolic subgroup
of G. Fix a degree d in the semi-group E(X) of effective classes of 1-cycles in A;(X) ~ Ha(X,Z).
Denote by My (X, d) the moduli space parametrizing stable maps (1 : C — X, {p1,...,pn}) from
a genus zero curve C to X verifying p.[C] = d, with n marked points p;, ..., p, on C. If X is a
homogeneous variety, Mg (X, d) is an irreducible rational variety [KP01, Tho98], and the subvariety
Mo n(X,d) parametrizing stable maps (1 : P! — X, {p1,...,pn}) from the projective line to X is a
dense open subset of Mo ,(X,d) [FP96]. The evaluation morphism ev; : Mo n(X,d) — X assigns to
a map the image of its i-th marked point. If X is a homogeneous variety, the evaluation morphism is
flat.

Consider an algebraic group H acting on X = G/P. Let ¢1, ..., ¢, be elements in the Grothendieck
ring Ky (X) of H-equivariant coherent sheaves on X. The equivariant correlator {¢1,..., ¢T>)I§, g of
elements ¢; in K, (X) is defined as:

@1 0030 = (evE(01)« o - evE(6)) [Oxp=(xa))

where xp denotes the H-equivariant sheaf Euler characteristic.

2.1.2 H-equivariant decomposition of the diagonal. Let H be a complex linear
algebraic group, let X be an irreducible variety with an H-action. Let R(H) denote the representation
ring of H, and Ky (X) denote the Grothendieck ring of H-equivariant coherent sheaves on X. We
say X admits a diagonal decomposition in K (X) if there exists a basis («);er of the R(H)-module
K (X), and a dual basis (a" )i of K (X) such that

A]Ox] = Y el (e’ ®[Ox]) € Ku(X x X),

ael
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where A : X — X x X is the diagonal embedding, and («" );es is the dual basis of (a);e; with respect
to the pairing given by the H-equivariant sheaf Euler characteristic, i.e. xp(a¥ ® 8) = dq,p for all
elements a, f in Kp(X).

We study here the following setting. Consider a complex linear algebraic subgroup H of GL,, acting
on flag varieties via left multiplication such that flag varieties GL,,/P admit a diagonal decomposition
in Ky(X). Note that this is in particular true when considering the non equivariant setting or,
according to [GKO08], when considering the action of a maximal torus T of GL,,.

2.1.3 Main result. Fix two positive integers m < n. Let 0 < n; < --- < n,, < n be a strictly
increasing collection of non negative integers. Denote by X the m-step flag variety parametrizing
m-tuples of vector spaces ordered by inclusion

OcVy ooV, cC?

such that dimV;,, = n;. Fix a positive integer k, 1 < k < m. Denote by X; the (m—1)-step flag variety
obtained from X by forgetting the k-th vector subspace. Denote by 7; : X — X the projection. The
class d = (dy,...,dn) of a curve C in X is determined by non-negative integers di, da,. .., d;,, where
d; is the Pliicker degree of the projection of C' to the Grassmannian Gr(n;,n). Note that 77 and the
evaluation morphism M (X, d) — X" induce a morphism Mo (X, d) — Mo (X3, (73)+d) x x,+ X"
Denote by H an algebraic subgroup of GG acting via left multiplication on X and X3, such that X;
admits a diagonal decomposition in K (X3).

Theorem 2.1.3.1. Letr > 0, k€ {1,...,m}, d = (dy,...,dn) be a nef class of 1-cycles such that

Vp <k, dy >nk[M

Np—MNp—1

] and such that the morphism
MQ77-(X7 d) i MO,T(X;;7 (WE)*d) XXT X"
&

is surjective. Then for all elements ¢y, ..., ¢, in Kg(X), the correlators of X and X; associated
with H, d, and the elements ¢; are equal:

X+
<¢17 A ¢T‘>§7d = <(7TE)*(¢1)7 ey (WE)*(¢T)>H?(7F%)*(1
According to Chapter 1 Proposition 1.6.0.1, Theorem 2.1.3.1 implies the following result.

Theorem 1bis. Letr >0, ke {l,...,m}, d = (d1,...,dn) be a nef class of 1-cycles such that

~Vp<k, d >nk[m],

MNp—Np—1

—di—1 < lz%:L

= dy = (g — ng—1) + dg—1 + (ng — nmﬁ([%] +1).
Then for any elements ¢1, ..., ¢, in Kg(X), the correlators of X and X; associated with H, d, and

the elements ¢; are equal:

(D1, 000a = (T (01)s o, (TR w(O )i

This Chapter is organized as follows. Sections 2.2 is devoted to recalling some standard facts about
equivariant algebraic K-theory, and fixing the notations we use in the rest of the chapter. A proof of
Theorem 2.1.3.1 is presented in Section 2.3, using results of Chapter 1. In the non equivariant setting
a more geometric proof of Theorem 2.1.3.1 is provided in part 2.4, relying heavily on results from
Chapter 1.
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2.2 Preliminaries on equivariant algebraic K-theory

2.2.1 Diagonal decomposition of Kr(X). Recall G is a semi-simple linear complex
algebraic group, T is a maximal torus of GG, B is a Borel subgroup of G and P is a parabolic subgroup
of G such that T < B < P. For any element u in the Weyl group W recall X(u) := BuP/P is
a Schubert variety of X = G/P, and Y (u) := wqg - BwouP/P is the Schubert variety opposite to it.
Furthermore, denote by 0Y (u) := Y (u)\(woBwouP/P) the complementary of the dense open Schubert
cell in Y (u). According to [GKO08] we have the following decomposition in K7 (X).

AOx] = ) [Ox(w)] B[Oy (—0Y (u))] € Kp(X x X),

ueW P

where A : X — X x X denotes the diagonal embedding. Note that this was first observed in the non
equivariant setting by Brion [Bri02].

2.2.2 Equivariant flat base change. We describe here the class of an equivariant flat base
change. The main application of this result will be the following setting. Let H be a linear subgroup
of GLy, let X be the flag variety parametrizing flags of vector spaces V,,, < --- < V,, < C", let X;
be the flag variety obtained by forgetting the vector V;,,, and denote by 77 : X — X; the associated
morphism. For a class 8 of curve on X, we consider the fiber product described by the following
H-equivariant Cartesian diagram :

X" % MO,T(XE7B) B MO,T(X]Ang)

(Xp)r J

< ()"

Note that, since the action of (GL,,)" on (X3)" is transitive, the morphism (73)" : X" — (X3)" is flat.

Consider two morphisms of schemes f; : M7 — X7 and fy : My — X5. We denote by f; x f3 :
My x My — X7 x X5 the morphism induced by f; and fs, i.e. the morphism induced by the following
commutative diagram:

M1XM24>M2

X1 ><X2 4) XQ
\ lﬂ.l

where p; : My x My — M; and 7; : X; X Xo — X; are the projection morphisms. Finally, let H be a
complex linear algebraic acting on M; and Ms. We denote by

®: KM x K (M) - K5 (M, x M)
(0:9) — (pT9) ® (P3)

the external product.

Proposition 2.2.2.1. Let H be a linear algebraic group. Consider two equivariant morphisms of
projective varieties with an H-action f1 : M1 — Y and fo : My — Y, such that M1 — Y s flat.
Denote by A :'Y — Y x Y the diagonal morphism, p; : My xy Ms — M; the projection morphisms,
and i : My xy My — My x My the natural morphism; i.e. we consider the following commutative
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diagram:

M xy Mo —i>M1><M2
K
P1 M,y fix f2
s
My —I sy A L yxy

Suppose Y is non singular. Let (¢c)eer be a basis of Kg(Y) ~ KH(Y). Suppose there exists a
decomposition of the diagonal in Kg(Y), i.e. suppose there exists a basis (¢ )eer of Ku(Y') such that

A:[0y] =Y. 6 R Y € K(Y xY)

eel

where we consider the diagonal action of H on'Y x'Y. We then obtain:

i[Oty ar] = ) g% (ffde R f5or) € Ku(My x Moy),
e, fel

where we denote by ¢°f = ge_f1 the pairing dual to gey, and consider the diagonal action of H on
My x My and My xy Ms.

Lemma 2.2.2.1 (Flat base change in equivariant K-theory). Let H be a linear algebraic group.

Consider a Cartesian diagram of proper, equivariant morphisms of varieties with an H-action:

X -2 x
Il
S —2— 9
where S — S is a flat morphism. Then, for all a in Ky (X):
filg™a) = g*(fxa) € Ku(S).
Proof. Cf. [CT09] Proposition 5.3.15. O

Proof of Proposition 2.2.2.1. We call f := f; op; = fo o py. First, notice that, since f; and p; are
flat, f is a flat H-equivariant morphism. We hence have: [Ong, xy 1, ] = f*([Oy]). Now consider the
diagonal action of H on My x My and Y x Y. Since A: Y - Y x Y and i : My xy My — My x M,
are proper H-equivariant morphism, f; x fo is an H-equivariant morphism, and the morphism f; is
flat, we can apply Lemma 2.2.2.1 to the following commutative diagram of H-equivariant maps.

M, xy My —22 M,

lpl lfz

M —TI Ly

‘We obtain:
ix[On, xy M, ] = 15 f¥[Oy] = (fi x f2)*As[Oy] € Ku(Y)

Furthermore, we have supposed: Ay[Oy] =33, fc; 9o X ppe Ky(Y) ~ KA (Y). We thus obtain:

ix[Ontyxy ] = (fr x f2)*( Y] 970 War) = D) % (fide W f3dy) € Ku(My x Mp).

e, fel e, fel
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2.3 Proof of Theorem 2.1.3.1.

2.3.1 Properties of M, (XE7 (Wg)*d) X (Xp)r X7". We use here the same notations as in the
preceding parts. Let X be the flag variety parametrizing flags of vector spaces V,,, < --- < V,, < C™.
For 1 < k < m, we denote by X; the flag variety obtained from X by forgetting the k-th vector
space, and call m = m; : X — X the forgetful morphism. For a class 3 of curve on X, we denote
by M' := Mioﬂ.(Xg, B) the moduli space parametrizing stable maps from genus 0 r-pointed curves to
X;. We observe here that the scheme M’ x x, X" associated with the following Cartesian diagram is

a projective variety with rational singularities, obtained via flat base change of M’ over (X3;)".

M xx.r X7 —— X"

e

M/ ev (Xg)r
Lemma 2.3.1.1. Mo, (X3, (77)xd) X (x,)» X" is a projective variety with rational singularities.

Proof. For simplicity set M’ := Miom(Xg, (m7)xd). First, notice that since M’ x (x;)r X" is a projective
base change, it is projective over the projective scheme X" and hence over SpecC. Furthermore,
according to Kleiman'’s transversality theorem, for g general in GL;, the scheme M’ x(x )r g - X"
is reduced. Since the morphism X" — (X;)" is GL, -equivariant, and the action of GL;, on (X3)"
is transitive, the action of g~! induces an isomorphism M’ X(xr g X"~ M’ X (x;)~ X". Hence
M’ x (XIAC)TXT is reduced. Note that according to Theorem 0.8.0.1, M’ has rational singularities. Hence,
according to [CMBP13], Theorem 2.5, since all varieties considered here have rational singularities,
for g general in GL; the scheme M’ X(x)r 9 X" has rational singularities. Hence M’ X (xp)r X7 has
rational singularities.

Finally, note that since 77 : X — X7 is a fibration in Grassmanians, it is flat.

2.3.2 Proof of Theorem 2.1.3.1. We denote by i : M, (X, (m7)xd) x X7 —
(X))
Mo (X3, (13)«d) x X7 the natural morphism.

Let (¢¢)cer be a basis of Ky (X) ~ K (X). By hypothesis there exists a basis (¢ )ces such that
Xl ¢y is a diagonal decomposition of X. Note that X" admits a diagonal decomposition in Kg(X"),
which is given by A*[OXT] = Zel,...,eT BI(1<2<T¢67:)61 ,,,,, erel(lsigrﬁsevi)el,---,erel € KH(XT X XT)-
Lemma 2.3.2.1. Let d = (dy,...,dn) be a degree in E(X) such that Vp < k, dj, = nk[%].
Suppose the morphism I x ev : Mo (X, d) — Mo (X3, (73)xd) x X" is surjective. Then

k

(T x V) [Oximixa | = 2 (evfdn) @@ (vt ) B (7*(02,) B+ B (@r,))

€1,...,erEl

Proof. For simplicity, set M’ := My (X3, (73)+d), S := X", and S’ := (X;)". According to Lemma
2.3.1.1, M’ xg S is a projective variety with rational singularities. Furthermore, since IT x ev is
surjective, M’ x g S is irreducible. Finally, according to Chapter 1 Proposition 1.4.0.1 since Vp <

k, di = ny, [g”%‘rjf’i] the general fiber of IT x ev is a rationally connected variety. Hence IT x ev is an
P P—

H-equivariant surjective morphism of irreducible projective varieties with rational singularities with
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rationally connected general fiber, hence according to Theorem 0.8.0.2 we have in Ky (M’ x S'):

ix(IT X ev)s [OW,AXA)] = lx [Omxww;(x,d)]

=iy [OM'XS/S]

= D e (g H.. e, ) B ((m))* (¢, B B6)
€1,...,erEl

= D (0fde) @ ® (evFde, ) W (T*(0) K- R 7*(¢7)))
€1,...,epEl

where the third equality holds since the morphism (7)" is a flat H-equivariant morphism-cf. Lemma
2.2.2.1. O

Lemma 2.3.2.2. Let Y and Z be projective varieties with an H-action. Suppose Z non singular
and suppose both Y and Z are irreducible. Then for a € Kg(Y), B € Kgy(Z) ~ KH(Z), we have

xu(aXB) = xm(a)xmz ().

Proof. We consider the following Cartesian diagram

Yx2Z "7
b
Y —=— Spec(C)
where we have denoted by p1 : Y X Z - Y and ps : Y x Z — Z the H-equivariant projections. Since

Y is irreducible the morphism Y — Spec(C) is flat. Since x g is the H-equivariant pushforward to the
point, we have:

g(a®B) = xu(pia®p; )
=xu(a@® (pl)*pQﬁ)

= (m)x (@@ ((72)+))

= xu(a)xu(B),
where the third equality holds according to Lemma 2.2.2.1 and the last equality holds according to
the projection formula. O
Proof of Theorem 2.1.3.1. Let a, ..., a;, be elements in K (X). Note that the following diagram is

a commutative diagram of proper morphisms:

Mo (X, med) x(x, ) X7 — Mo (Xg, med) x X7 —= X7
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We obtain in K (Mo (X3, msd) x X7):

is(IT X ev)y (evf‘al ® - Revia,® [OW(X@)])

=i (1T X ev)4 (ev*(al e Xan)® [OW,T»(XA)])

(I ev)s (2 oo (IT x e0) (a1 B+ B ay) @ [Ogzx.a)))
((p2)* (1 -+ R ) @i (IT % €v) 5[ Oz x a)]

= <[OM70,T(X,;JF*CU] (@1~ ar)) ® iy (I x ev)*[OMio,r(X’d)]
(O ) B @B Ba)) @ Y ((€0f6n) 8 @ (eofd, ) B (r*(62) 6 B r(6)
e1,...,er€l

D (evfde,) ® - ® (evige, ) K ((7*(4),) ®an) K-+ (7*(¢)) ® )

e1,...,ep€l

where the third equality holds according to the projection formula, and the last equality holds according
to Lemma 2.3.2.1. Finally, decompose each element 7y a; in the basis (¢¢)eer of Kp(X3;) ~ KH (X37):
ey = Y5 Gicpe. Note that we have x g (me0y ®q§]¥) = a;,¢. Denote by ps :Mio)r(X%,w*d) x X" —
X" the second projection, and by p : (X;)" — SpecC the H-equivariant projection to the point. We
obtain:

XH (evi"al ®---® eU:O‘T ® [OW(X7d)]>

= Pu(T")se(P2) i (I X €v)s (evi"al ® - @evyar® [OW(X,CI)])

=p*(7r’")*(p2)*< Y (evioe) @ @ (evfde,)) B ((r*( !1)®041)~~(7T*(¢ZT)®04T))>

e1,...,eql

Y xu (evfde,) ® - @ (evfde,)) pa(n")s (1*(02) ® 1) B+~ (T*(9))) ® )

€1,...,er€l

= > xa((evfde)®@ @ (evfde) [ xul(or ®a)
e1,...,erel 1<i<r

= Z xu ((evide,) ® -+ ® (evy ¢e,)) H Qie;
€1,...,er€l 1<i<r

where the before last equality is obtained by applying the projection formula to the flat morphism
(m)". Finally, we obtain:

XH (evi‘al ®- - Qevior @ [Om(x,d)]) = Y xu(ae(efe) ® - ©are, (evfee,))
€1,.eny erel
which yields the expected result since Zee] iehe = Ty, O

2.4 Geometric interpretation in the non equivariant setting

Consider the case when H is the identity element of G. We provide here an alternative proof of the
equality between correlators provided by Theorem 2.1.3.1, using results of Chapter 1.

We use here the same notations as in Chapter 1. As usual, we say a property (P) holds for a
general point in a variety X if (P) is true for points belonging to a dense open subset of X. Recall a
flag variety X can be written as G/P, where G = GL,, and P is a parabolic subgroup of X containing
a Borel subgroup B ¢ P < (. For an element u in the Weyl group W of G = GL,, we denote by
X(u) := BuP/P the associated Schubert variety, and by O, := [Ox(,)] the associated class in the
Grothendieck ring K (X) of coherent sheaves on X. Let r > 0. Let uq, ..., u, be elements in W. Let
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d = (di,...,dn) be a degree in E(X). Recall for an element (g1, ..., g,) in G" we call Gromov- Witten
variety associated with the u; the variety

i=1
parametrizing genus zero degree d stable maps into X sending their i-th marked point within the
variety ¢; X (u;). Note that for an element (g1,...,g,) general in G" the correlators (O,,,..., O da
satisfy
(Ouyyo s Ou )k = XOWV5h )

g1y--,9r

The flag variety X parametrizes flags of vector spaces V,,, < --- < V,,, < C”, where 0 <n; < --- <
Ny < n. Let X’ be the flag variety obtained from X by forgetting the k-th vector space. Denote by
7 : X — X' the forgetful map. Note that for all i we have m,O,, = [Ox/(u,)] = Ou, € K(X'). We
obtain / )

Ourse s Oudmga = XWiy g)-

gi,--59r

Now suppose the morphism IT x ev : Mo (X,d) — Mo,(X', med) x (x> X7 is surjective. Furthermore

dp—dp_1
Np—MNp—1

suppose Vp < k, di = nk[ ] Then according to Chapter 1 Theorem 1.1.2.1 for an element

(91,--.,9r) general in G" each irreducible component of the variety W;f ...g Surjects into a different

9r
irreducible component of the variety W;f:”_,gr, and the general fiber of the projection Wﬁ,---,gr
gf l g, 18 a rationnally connected variety. Furthermore according to [CMBP13] Theorem 2.5 for an
element (g1, ..., g,) general in G” the variety W,, ., has rational singularities. Theorem 0.8.0.2 then
yields

<Ou1, ey Our>§ = <0u1, ey Our>d, 9
which is the equality described by Theorem 2.1.3.1.
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Chapter 3

Schubert calculus for Flj ;,_;

3.1 Introduction

Let X = Fl; ,—1 be the incidence variety parametrizing lines contained in hyperplanes of C". We
study here the product of Schubert classes in the small quantum K-ring of X. Part 3.2 is devoted
to recalling some standard facts about incidence varieties, and fixing the notations we use in the rest
of the chapter. The aim of parts 3.3 and 3.4 is to prove a closed formula for Littlewood-Richardson
coefficients in K(X). Part 3.3 describes one parameter degenerations of Richardson varieties, from
which the expression of Littlewood-Richardson coefficients in K (X) is derived in Part 3.4. The aim
of Part 3.5.2 is to compute all three points quantum K-theoretical correlators of X. Note that in the
context of small quantum cohomology the product of two Schubert classes is given directly by three
points Gromov-Witten invariants. In small quantum K-theory, the product of two Schubert classes is
an alternate sum involving three points correlators and two points correlators. Part 3.6 is dedicated
to finding a boundary on the degree of the product of two classes in QK (X). A Chevalley formula
in QK4(X) is proven in Part 3.7. Finally we study Littlewood-Richardson coefficients in QK (X) in
Part 3.8. We provide an algorithm computing these coefficients, and conjecture a closed formula for
them. We additionally prove that they satisfy a "positivity rule".

3.2 Incidence varieties.

Let us begin by fixing down some of the usual notations associated with a generalized flag variety. Let
G := GL,, let T be a maximal torus of G and B be a Borel subgroup of G containing T". A generalized
flag variety can be written as X := GL,,(C)/P, where P is a parabolic subgroup of GL,, and satisfying

TcBcPcd.

Let usname W = Ng(T)/T ~ &,, the Weyl group of G, Wp := N (T)/T the subgroup of W associated
with P, and W¥ := W/Wp. For w € W¥ | note that the variety Bw/P/P does not depend on the
choice of an element w’ in W representing w; we obtain a Schubert variety X (w) := BwP/P. The
homology classes [X (w)] from a basis of the integral homology of X, where w runs over W¥. The
classes Oy := [Ox ()] form an additive basis of the Grothendieck ring K, (X) of coherent sheaves on
X. Furthermore, we denote by (Z,)ewr the dual basis of (O,,) for the Euler characteristic. If we
denote by d,,, the symbol equal to 1 if u = v, and else equal to 0, we have for all u,v e wF.

X(O’LMI’U) = 6u,v~

For an element w in W¥, we denote by £(w) the length of a minimal length representant of w. Note
that £(w) = dimX (w).

We consider here the incidence variety X = Fl; ,,—1 parametrizing lines included in hyperplanes
of C". Forgetting a line or a hyperplane yields a forgetful map X — P"~! which is a fibration in
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P"~2’s. Fix a basis < ei,...,e, > of C*. In this basis, consider the maximal torus in G = GL,
consisting of diagonal matrices, the Borel subgroup B consisting of upper triangular matrices of GL,,,
and the parabolic subgroup P © B associated with the reductive group GL; x GL,,_s x GL;. Note
that W = Ng(T)/T ~ &,,. We denote by wq the element of W of greatest length. Note that wy is
the permutation of 1 ... n defined by wo(i) = n —i + 1. Furthermore, an element in W¥ ~ &,,/6,,_»
is uniquely determined by the choice of a permutation sending 1 to ¢ and n to j, where 1 < i,5 < n
and i # j. We name w; ; the element in W7 thus defined. Schubert varieties of X ~ GL,,(C)/P are
described by:

X(i,)) : = X(wij) = Bw;;P/P
= {(L7H) €X|L c<el,r,6 >, <€, ,€-1 >C H} (31)

Schubert varieties can be embedded in P?*~1 x P*~! as:

X(i,j)—{([xl:-~:xi:0:~-~:0],[0:...0:yj:--~:yn])€]P’”1><]P’"1

Dlapye = 0}. (3.2)

Note that for i < j the condition ,xryr = 0 is redundant, and X (4, j) can simply be described as:
X(,j)={(z1: 20 :0,,[0:...0:y; - ry,]) e PP x PP (3.3)

For 1 <i,7 <n,i# j, we name
(97;7]‘ = [OX(wi,j)] € KO(X)
the class of the pushforward of the structure sheaf Oy (y, ;) in the Grothendieck group Ko (X), and by

Ti; := Ly, its dual with respect to the pairing x : a, 8 — x(a - 3). For any u € WP, the Schubert
variety opposite to the Schubert variety X (u) is

X" = woX (wouw).
Applying wg to (3.1) yields the following description of opposite Schubert varieties of X:
Xkt = woX (wpy) = {(L, H) € X|L C< €p_ps1,* €n >, < €n_ig2, -, e, >C H} . (3.4)

Given v, w in WF_ the corresponding Richardson variety is XY := X(w) n woX (wov). Consider
1<i,j,k,1<n,i#jand k # [. Richardson varieties of X are described by:

Xf;.l = X 0 = X (wi ;) 0 woX (wy)
={(L,H)e X|LC<ep_ki1,---,€6 >} <€1,...€j_1,€n_[42,...,n >C H}, (3.5)

ifn—k+1<tandj—1<n-—1I0+2 and thj = J else. The second equality comes from considering
the description of Schubert varieties given by (3.1) and of opposite Schubert varieties given by (3.4).

3.3 Degenerating Richardson varieties of F; ,_;.

We describe here one parameter families of deformations of Richardson varieties. More precisely,
we describe irreducible projective varieties @ of P! x X such that one fiber of the projection
morphism & — P! is a Richardson variety, while another fiber is a union of Schubert varieties, up to
multiplication by elements of GL,,.

To facilitate the proof, let us first introduce an auxilliary variety. Set e,.1 = 0 = ¢y. For
1<r<h<n, 0<p<n-—r—1, we will consider the following subvariety of X:

Vi i={(L,H)e X|Lc<ey,...ep>, <€1,...€r €npil,-..,en > H}. (3.6)
The Pliicker embedding X — Gr(1,n) x Gr(n—1,n) ~ P*~! x P"~! embeds Y,", as:
P

yh {[x1,- 20,0, 0]5[0: 20 ypyq i i Ypp:0:---:0] e P! ><]P’"_1|Zxaya:0}.
a
(3.7)
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Lemma 3.3.0.1. 1. Let 1 < i,j,k,l < n, wherei # j and k # [. Suppose n —k +1 < i and
j—1l<n—-1+2.
Denote by r the number of shared wvectors between (ep—ki1,...,€;) and
(e1,...€j—1,€n—142,...,€p). Callh:=i+k—mn, andp:=j+1—-2—r.
There exists g in GL,, such that g - Xi’f;-l = Yffp.

2. Fixr1<r<n,0<p<n-—r—1.Then there exists g in GL,, such thatYT”:p=g~X(T,r+p+ 1).
8. Fiz1<r<h<n. Then Yy = X(h,r+1).

Proof. 1. Recall we have defined r as the number of shared vectors between (e,_g41,...,€;) and
(e1,...€j—1,€n—142,...,€n), and p = j +1 —2 — r. Notice:

p=j+l-2—-r=j—14n—(n—I01+1)—r

= #(ela s €j—1,6n—142,--- 7en) )
hence p is the number of vectors in (e1,...€j—1,en—i42,...,€5) not belonging to
(én—k+1s---,€;). Now call (e1,...,¢,) these p vectors, and (€pi1,...,€p+,) the r vec-
tors in (e1,...€j_1,€n—it2;--.,€,) belonging to (e,—_k+1,...,¢€;). Finally, call (9,41,...,7)
the #(en—g+1,.-.,€;) — r = h — r vectors of (ep—g+1,-..,¢;) that do not belong to
(e1,...€j—1,€n—142,...,€n), and (Np41,...,Mn—p) the remaining vectors. Denote by g the fol-
lowing permutation of the basis vectors:
(617 ey en) - (€p+17 s €ptry e ls o o5 TRy 415 - - 5 Tln—py €15+ -+ ep)'
Then, according to (3.1), we have:
g~ij ={(L,H)e X|Lc<ey,...,ep>, <€1,...€r,En_pi1,...,n >C H}

_vh
= Y;",p
where the first equality follows directly from the definition of g and the definition (3.5) of X Zk }l:
Xﬁ;l = {(L,H) € X|L C< Cln—k+ly--+7,6; > <€1,...€j-1,Cn—[42,...,6np >C H}

2. By definition, we have:
Y, = {(L,H)e X|Lc<eq,...ep >, <€1,...€r,n_pil,...,€q >C H}.
If r =n —p, set g := id. Else, denote by g the permutation of the basis vectors sending:
(€1, s€r€rity ey Crepy € ptls - €n) = (€1, s €y €ty vy Cry €rtly ey Cnp).
Then, according to (3.1), we have:
g Y, ={(LLH)e X|[Lc<er,...,er >, <€l,...Cr,Cr41,...,Cr1p >C H}
=X(r,r+p+1)

3. We have:

Viyi={(L,HeX|[Lc<ey,...ep > <ei,...e, > H}
= X(h,r+1)

where the first equality is the definition (3.6) of Y}/, and the third equality is the definition (3.1)

of Schubert varieties.
O
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Proposition 3.3.0.1. Let 1 <i,j,k,l <n, wherei # j and k # 1.
1. Ifn+1>i+korj+l=n+2, thenX{f}l:Q;

2. Supposei+kz=n+1landj+1l<n+1and (i <jork<l). Then there exists g in GL, such
that:
Xij =g X(i+k—nj+l-1)

3. Suppose i +k—n=j+1and j+1 < n+ 1. Then there exists g in GL,, and an irreducible
projective subvariety & of Pt x X such that:

A ([ 0]) ={[1: 0]} x g X[/ and  a N([0:1]) ={[0: 1]} x X(i+k—n,j+p—1);
where m: @ < P! x X — P! is the natural projection;

4. Suppose l <i+k—-—n<j+l—1<nandi>j andk > 1. Then there exists g in GL,, and an
irreducible projective subvariety @ of P! x X such that:

1)

1:0 [1:0]} x g- X
7 1([0:1])

1:
. i+k—n—1 . i+k—
[0:1]} x er’fkfnnfl,jJrlflfikarn {0 1]} x }/iirkfr:fjJrlflfikarn

-
=

where m: @ < P x X — P! 4s the natural projection.
Proof. 1. By definition of X lk Jl

2. Notice that then all vectors of Ey = (€p—g41,...,€;) belong to Ea = (e1,...€j_1,€n—142,--.,€n),
hence the number r of shared vectors between F; and Es is equal to h = #FE; = i+ k—n. Hence,
according to Lemma 3.3.0.1 (¢), there exists g in GL,, such that

kil h
9 Xij =Yy

where h=i+k—nandp=j5+1—2—h.
Furthermore, according to Lemma 3.3.0.1 (i¢), there exists ¢’ in GL,, such that

Vi, =g -X(i+k—nj+1-1).

Hence:
XM =gt Y, =g X(i+k—nj+1-1).

3. We use here the same notations as in Lemma 3.3.0.1. Denote by r the number of shared vectors
between (ep—k+1,--.,¢€;) and (e1,...€j-1,€p—i+2,...,€,). Call h :=i+k—n,and p := j+1—-2—r.
Let @ be the subvariety of X x P! defined by :

S={([u:v];[xr: - ap:0::0L[0: - :0:yprr:--:yn]) eP x PP x PPt
h
Z ZTaYo = 0andVr <a <7 +p, vy, :uynprrafr}
a=r+1

As usual, we denote by D(v) (respectively D(u)) the subvariety of elements ([u : v];[21 : -+ - :

Tolilyr oo s yn]) in Pt x PP=1 x PP~ satisfying v # 0 (resp. u # 0). On D(v), we have
Doy = {(t[21, - xn s [0 10ty pi1 o Y Yrgpr1 st Yn] €C X Pt x prt
r+p h
|t Z TaYn—p+a—r T Z ZTaYa = 0}
a=r+1 a=r+p+1

Sincer+p=j+l—-2<itk—n—1=h—1<h, dp(, is irreducible. In the same way, @|p .,
is also irreducible. Hence @ is an irreducible projective subvariety of X x P!
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Denote by 7 : & — P! the natural projection. 7 verifies :

7 ({[1: 0]}

={([1:0;[zy: - :ap:0:-:0l[0: 20 yppr i i Yn_p,0,...,0]) € Pt x PP~ x P71
h
> @iy =0}
i=r+1

={[1:0]} x Y},
={[1:0]} x g- X}

where the existence of the element ¢ is ensured by Lemma 3.3.0.1 (i7), and the second equality
is the definition (3.7) of Y} .

Finally, 7w verifies:

h
a0 1]) ={([0: sy iwp 0o 0)[0: 20 Ypypyrr i oo i yn]) PP PP 2 ZTaYa = 0}

a=r+1

{[0:1]} x {(L,H) e X|L c<ey,...ep >, <e1,...€p4, >C H}

{l0: 17} x Y5

={[0: 1} x X(i+k—n,j+1—-1)

where the second equality is the definition (3.7) and the last equality holds according to Lemma
3.3.0.1 (4i1).

. Again, we use the same notations as in Lemma 3.3.0.1. Denote by r the number of shared vectors
between (ep—k+1,--.,¢;) and (e1,...€j-1,€n—i+2,...,¢€,). Call h :=i+k—n,and p := j+I—-2—r.
Let @ be the subvariety of X x P! defined by:

525—{([u:v];[ml:~-~::rh:0:--~:O];[0:---:0:yr+1:~-~:ynpr+h1:0:---:0])6P1><IP’"_1><IP’"_1

h
Vi<a<h—1-r7 Yrtiq = UYn—pta, and Z TalYa = 0}.

a=r+1
On D(v), we have @|p(,) ~ SpecC[t] x P" ! xY, where Y = {[0: -+ : 0 ypy1 t -+ 1 yn] € PP7H}
¢\D(v)2 Kt§hha~-7xh:0:"':OL[OZ"':O:tyn7p+r+1:"':tynfp+r+h71:yh:"':ynfp+r7h71:0"':q
h—1
eCxPrLxprlit Z TaYn—pta + ThYn = 0} )
a=r+1

Now notice that, since j < n—1+ 2, the number r of shared vectors between (e,—g+1,- .-, ¢€;) and
(€15 €j_1,€n_142,...,6,) satisfies r < h = #(en_g11,...,6;). Hence @|p(,) is irreducible. In

the same way, @|p(y) is also irreducible. Hence @ is an irreducible projective subvariety of X x P!

Denote by 7 : @ — P! the natural projection. 7 satisfies:
7 1([1:0])
={([1:0};[zy:-:@p:0:---:0]; [0 :0:Ypy1 i :Ynp,0,...,0]) € Pt x PP~ x Pt
h
| Z TalYa = 0}

a=r+1
{[1:0]} x V]
{[1:0]) x g- X5
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where the existence of the element ¢ is ensured by Lemma 3.3.0.1 (i7), and the second equality
is the definition (3.7) of ¥, .
Finally, we observe:

7'('71([0 1)

={([0:1);[zy:--:@p:0:-- 200 :0:Yn: Ynprin1,0,...,0]) € P x P 1 x P"L|z}5; = 0}

={([0:1);[zy s :@p1:0:---:0}[0:--:0:Yn:  :Ynprsn_1,0,...,0]) e Pt x P"~1 x Pn—1}
U{([0: 1];[@y s iap 0ot 0020 Ypgt t  Yneprph1,0,...,0]) € P x P71 x PP 1}

={[0:1]} x Yhh:ll,errchrl v {[0: 1]} x Yhh,p+r—h+1

={[0: 1 x Y V{0 I X YR

where the third equality is the definition (3.7) and the last equality is deduced from h =i+ k—n
andr+p=j+1-2.
O

3.4 Littlewood-Richardson coefficients in K(Fl;,_1).

3.4.1 Computing Littlewood-Richardson coefficients. We deduce here Littlewood-
Richardson coefficients in K (Fly 1) from the results of Part 3.3. For simplicity, we set O; ; = 0 if
t<lorj>n.

Proposition 3.4.1.1. Let 1 <i,j,k,p <n, wherei # j and k # p. Then

Ok’p . Oi’j = Oi+k7n’j+p71 ifit+k—m>=j+pori<jork <p;

Okp-0ij = Oisi—n-1,j+p—1 + Oitbnjtp — Qitk—n—1j+p otherwise.

where, for all 1 < k,p < n, k # p, we call O := [Ox(w, )] the class in K.(X) associated with

the longest length element wy, ;, in the n-th symetric group sending 1 to k and n to p.

Lemma 3.4.1.1. Let1<h<n,0<p<n—h-—1.
Then we have the following equality in K(Fly p—1):

[Oyh—l Uy}ip] = [Oyf:ﬁp] + [OYhﬁ;p] - [Oyh—l ]

h—1,p h+1,p

Proof. Denote by I; and I the bihomogeneous ideals defining Yh”,p and Yhhjl{p embedded in
ProjClz1,...,zs] X ProjClyi, ..., yn]-
According to (3.7) we have:

Il :<xh+17'"amn;ylv'"ayh>ynfp+17"'ayn> and -[2 :<xhw'-axn;ylw"7yh71aynfp+1a"'7yn>'

Call S = C[z1,...,z,] and T = C[yu, . .., yn] the graded rings. The following is an exact sequence of
S ® T bigraded-modules:

0—’ S@T/<Ilﬁ[2> — S@T/[l (—BS@T/]2 — S@T/<Il’12> — O

This induces the following exact sequence of Opn—1 pn—1-modules:

O g O yh g Oi]}?:ll,p @ OYh},’;p - S®T/<Il,12> - 07

h—1
Y, oYY,

where ST@_Y/”/dl’IP is the Opn-1ypn—1-module associated to the S ® T bigraded-module S ®

T/<Ihs'~~7xn§yla~~~7yh,,ynfp+1~,~~ayn>

. This implies the following equalities in K (Fly ,—1):
[Ox(ij)ox(i-1,j-1)] = [Oyh}gp S OY::ip] —[S®T)<n 1]
= [OY’{LP] + [OY}ifﬁp] — [OY}L—I ]

h+1,p

The second equality is deduced from ST /<11, 1> = Oyn-1 , which is a direct consequence of (3.7).

h+1,p

O
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Finally, Proposition 3.4.1.1 follows directly from Lemmas 0.7.2.2, 0.7.2.1, 3.4.1.1 and from Propo-
sition 3.3.0.1. Indeed, notice for any 1 < 4,7, k,I < n, such that i # j and k # [, we have:

[Ox ] [Oxrn] = [Oxrtl,

since the intersection between a Schubert varieties and its opposite variety is transverse, and Schubert
varieties have rational singularities-cf. for example [Bri05], Theorem 4.2.1 (7). Furthermore, according
to Lemmas 0.7.2.1, 3.4.1.1, translations by ¢ and one parameter deformations do not change the sheaf
class. Finally, Lemma 3.4.1.1 and Proposition 3.3.0.1 give the result.

3.4.2 Link with cohomological Littlewood-Richardson coefficients. Let i, &, j
and [ be integers between 1 and n such that ¢ # j and k # [. Since the morphism A, (X) — GrK,(X)
is a morphism of graded abelian groups, we can deduce the intersection product between two classes
[X(i,5)] and [X(k,1)] in A4(X) from the product betweeen [O; ;] and [Oy;]. Proposition 3.4.1.1
describes Littlewood-Richardson coefficients in A, (X) ~ H*(X):

[X(k,D]u[X(4)]=0 ifi+tk<norj+l=n+2;

Xk, D] U[XG, )] = [X(G+k—n—1,7+1-D]+ [XG+k—-nj+0D]
fl<i+k—n<j+l—1<nandi>j k>

[X(E,D]u[X@G)]=[X(i+k—n,j+1—1)] otherwise.

Remark 3.4.2.1. Chevalley’s formula for generalized flag varieties already gives us the intersection
product between a codimension 1 Schubert class and any other Schubert class. Let us check we do
recover the same formula.

According to the generalization of Chevalley’s formula to general G/P (cf. for example [FW04], lemma
8.1), for all u € W/Wp, for all 5 € A\Ap, we have :

[Y(sp)] v [Y(u)] = Tha(ws)[Y (@sa)],

where the sum goes over all postive roots « such that ¢([dse]) = f(u) + 1, where hq(wg) =
nag(B, 8)/(ca, &) (where nqypg is the coefficient of 5 in the expansion of a as a positive linear com-
bination of positive roots), and where we write @ a minimal length representative of u in .

We thus obtain here :

[Y(a)] v [Y(u)] = XY (tsa)],

where the sum goes over the a € {€; — ;|2 <i < n} c RT — R}, verifying £([@s,]) = €(u) + 1

Let @ = w; j and s; = S¢,—¢,. We observe : f(w; ;) =i—1+n—jifi < j, and f(w; ;) =n+i—j—2
else; hence £([as;]) = (u) +1iffl =i+1landi<j)or (I =mnand j=i+1)or (I =¢andi>j),
from which we deduce :

[Y(a)]u[Y(E )] =[Y(E+1,5)] ifj#i+1,1#mn;
[Y(a1)] v [Y(n,j)] =0;
[Y(a)]u[Y(,i+1)]=[Y(E+2,s4+1)]+[Y(i+1,4)],

which does indeed gives us [X(n — 1,1)] u [X(k,p)] = [X(k — 1L,p)] if & # p+1
[X(n—1,D)]u[X(1,p)]=0,and [X(n—1,1)] v [X(k,k—-1)]=[X(k—-2,k—1)] + [X(k—

s ko# 1
1,k)].

Remark 3.4.2.2. Let 8 € A\Ap. If we use the notations of Remark 3.4.2.1, we can write here:

[Oy(s)]"[Oy(w)] = > ha(ws)[Oy (as.)]— > >, ha(wg)hy (ws)[Oy(w)]-
aeRT\R}E, a,veRN\RE veRT\RY, £(v)=£(u)+2,
([@sa])=£(u)+1 (([asa])=E(u)+1=L([ds+]) vEQet vy
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3.5 Three points correlators of Fl;,_;.

3.5.1 Three points correlators of P". Let n > 0. We compute here genus zero correlators
of P™. Note that Buch-Mihalcea fully described the product of two Schubert classes in the ring Q K (P™)
[BM11]; we could compute three points correlators using this description. We give here a different
proof, by studying the geometry of Gromov-Witten varieties of P". This result plays a key role in our
derivation of correlators of X presented Part 3.5.3. For 1 < i < n + 1, we denote by L; the Schubert
variety associated with the permutation w; ; permuting 1 and é:

Li={[z1::2;:0:---:0]€P" | 2q,...,2;, € C}.

Let d in E(P") ~ N. We consider here the compactification of morphisms P! — P" given by the space
of quasi-maps [Bra06]. A degree d morphism P! — P" is defined by (n + 1) homogeneous polynomials
of degree d. We may thus parametrize degree d morphisms P* — P™ by P = P(C@+D(+1)) where we
view a point in C4*+D(+1) a5 a set of (n+1) degree d polynomials. For a point p in P = P(C(d+D(n+1)),
we will denote by

fo: Pt ——sP"

the associated map. Note that if the polynomials associated with a point p in P have common roots
z;, then f, is a rational map which is not defined on the points x; € P!. The dense subvariety U of
P parametrizing polynomials having no common roots is in bijection with Hom(P!,d). Fix distinct
points p1, p2, p3 on P, According to the appendix of Chapter 2, sending a point p in U to the point
in Mo 3(P", d) associated with (f, : P* — P", {p1,p2, p3}) defines a morphism ¢ : U — Mo 3(P", d).
Since Mg 3(P",d) is irreducible [KP01] and ¢ is an injective dominant morphism of quasi-projective
normal complex varieties, ¢ is birational. We may hence identify a dense open subset V' of Mg 3(P", d)
with its reciprocal image by ¢. Finally, note that for an element p in V' < P, the evaluation morphism
ev; assigns to the (n + 1) polynomials associated with p the projectivization of their value at p;.

Proposition 3.5.1.1. Let 1 <iq,i0,i3 <n+ 1. Let d € N*.

i) Let g1, ga, g3 be elements in GL, 11, let z be an element in P™. The variety evy (g1 - Li,) N
evy *(g2 - Li,) 0 evy H(gs - Liy) 0V is either empty or an irreducible rational variety. The same
holds for the variety evy*(g1 - Li,) 0 evy (g2 - Li,) nevy ' (2) n V.

i) For (g1,92,93) general in GL2 |, the Gromov-Witten variety evy*(g1 - Li,) N evy (g2 - Liy) 0
ev:;l(g?, - Li) is either empty or an irreducible rational variety. In the same way, for
(91,92) general in G2, the general fiber of the morphism evs : evy *(g1Li,) N evy *(gaLi,) —
evs (6111_1(91111'1) N 6’1]2_1(92LZ‘2)) < P evaluating the third marked point is an irreducible ra-
tional variety.

iii)

0 ifd=1landiy +is+i3<n+2
<w1,i17w1,i2aw1,i3>d = { 1 else

Proof. i) We denote by L := ev; *(g1 - Li,) 0 evy *(g2 - Li,) nevy (g3 - Liy) 0V, which we see here
as a subvariety of P = P(C4*D(+1)) Note that, if we denote by (Py,...,P,;1) the (n + 1)
polynomials associated to a point in P, L is defined by:

L= {(P17-~-7Pn+1)evc (Cd+1)n+1 | V1 <k<3, [Pl(pk) : "'3Pn+l(pk)] Egk'Lik}'

Since gy, - L;, is a linear subspaces of P", the compactification of L in P = (C4*1)"*! is defined by
linear equations. Hence L is the intersection of the dense open subset V' with a linear subspace
of P, hence L is an irreducible rational variety.

In the same way, if L := ev; (g1 - Li,) N evy *(g2 - Li,) nevy(2) NV, since gy - Ly, is a linear
subspace of P™ and a point in P" can be described as the zero locus of a set of linear equations,
L is an irreducible rational variety.
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ii)

iii)

Since P" is convex, My 3(P",d) is a dense open subset of Mg 3(P",d) [FP96], hence V is a
dense open subset of My 3(P", d). According to Chapter 1, for g = (gx) general in GL2 ,,,
ev™Y(g- (Li, x Ly x L;y)) has a dense intersection with the dense open subset V' of Mo 3(P",d),
hence is an irreducible rational variety according to 7).

For (g1, g2) in G2 denote by W,, 4, := evy *(g1 - Li,) nevy (g2 - Li,). For g = (g1,92) general
in G? the variety W,, 4, has a dense intersection with the dense open subset V; hence for z
general in evz(W,, 4,), the fiber evy'(2) N W,, 4, has a dense intersection with the open subset
V. Hence for (g1, g2) general in G2 and z general in ev3(W,, 4,), the variety evy ' (2) 0 Wy, 4, is
an irreducible rational variety.

We name G := GL, 1. Since L; is the Schubert variety associated with wi ;41, according to
(3.17) we have for (g1, g2, g3) general in G*:

Wi 415 W41, Wi +10d = X(Oeutt (g1.1, ) revy (92-Lig vy (g3 Liy))

Suppose i1 + i3 + i3 + 1 < n and d = 1. Then according to Lemma 3.5.1.1 for (g1, 92,93)
general in G®, the Gromov-Witten variety ev; ! (g1 - Li,) nevy (g2 - Li,) nevy ' (g3 - Li,) is empty,
hence (w1 i, 41, W1,i+1, W1,i5+191 = 0. Now suppose d > 1, or d = 1 and i1 +i2 + i3+ 1 >
n. Then according to Lemma 3.5.1.1 for (g1, g2, g3) general in G, the Gromov-Witten variety
evy *(g1-Li,) nevy t(ga- Li,) nevy (g3 - Li,) is non empty. Furthermore, according to [CMBP13]
Theorem 2.5. for (g1, go,g3) general in G this variety has rational singularities. Hence its sheaf
Euler characteristic is equal to the sheaf Euler characteristic of its desingularization, which is
also a projective rational variety; hence it is equal to 1.

O

Let ]. < Z.l,igﬂig < n.

Lemma 3.5.1.1. i) Ford = 2, there exists a genus zero stable map of degree d joining the varieties

g1-Liy, g2 Ly, and gs - L, for any element (g1, g2,93) in GLiH;

ii) For (g1, 92,93) general in GLELH, there exists a line joining the varieties g1 - Li,, g2 - L;, and

g3~Li3 zﬁ21+22+13>n+2

Proof. i) We first consider the case when dy = 2. It is enough to show that for any three points

ii)

Py, P, and P5 in P there is a genus zero stable map of degree 2 whose image contains all points
P;. Consider a line joining the points P, and Ps; now glue this line at P, with a line joining the
points P, and P;. We obtain a genus zero degree 2 stable map P! U P! — P joining all three
points P;.

Now suppose d > 2. Consider a genus zero degree 2 stable map f : C — P" joining all three
points P;. Let P! — P" be a genus zero degree d — 2 map, whose image intersects f(C) at the
image f(p) of a non special point p € C. Such a map can ba obtained by translating the image
of any degree d — 2 map by an element in GL, ;. Now glue C and P! together at the point p.
We obtain a degree d stable map C' U P! — P" joining all three points P;.

Name G := GL, ;. Let g; and g» be elements in G2. By the functorial definition of P", there
exist vectors u; and v; in C™*! such that g; - L;, parametrizes lines in C"*! included in the linear
subspace < uy,...,u;, > C"*! and g, - L;, parametrizes lines in C**! included in the linear
subspace < vy,...,v;, > C"*1. For (g1, g2) general in G2, the vector space generated by the
vectors u; and v; is of dimension min(n,i; + i + 1). Hence for (g1, g2) general in G? the set of
points lying on a line joining g; - L;, and g - L;, parametrizes lines in C"*! included in the linear
subspace
ULy eee g Uy y ULy ey Uy > Crin(ntliitiz) — gr+l

This can be rephrased more formally as:

61}3(6’01_1(91 ' Lll) N 61)2_1(92 : LZ2)) =h- Lmin(n+1,i1+i2)a
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where h lies in G and we denote by ev; : Mg 3(PP", 1) the evaluation morphism. Hence for
(91,92, 93) general in G2, there exists a line joining the varieties gy - L;,, g2 - Ly, and g3 - L;, iff
the intersection between h - Lyin(n41,i;+i5) and g3 - L;, is non empty for g3 general in G-where
h is an element in G' depending only on the choice of an element (g1, g2) general in G2. This is
equivalent to the following condition in the Chow ring A, (P"):

[93 - Lis] U [h+ Linin(n,iy+i2)] = [Lis] U [Lmin(n+1,i1442)] # 0.

Finally, the equality [L;] U [Lj] = [Lwmin(n,i+j—n)] in Ax(P") yields the result, where we set
Li= ( fori<0.
O

3.5.2 Computing correlators of X. We list here properties of X that will allow us to
compute genus zero correlators of X in Part 3.5.3. Recall X can be described as X ~ GL,, /P, where
P o B o T is a parabolic subgroup of G = GL,,. Note that P is a parabolic subgroup with associated
reductive subgroup the block diagonal matrix GL; x GL,_s x GL; with GL,,_5 as the central block.
Recall for 1 < ,j < n, where i # j, we denote by w; ; the representant in W/Wp of any permutation
in Ng(T)/T ~ &,, sending 1 to i and n to j. Let r > 0, let 1 < iy1,...,%,J1,-..,Jr <n, where iy # j.
For an element (g1,...,g,) in G", we denote by

W, 1= ey (g1 X (wiy 3,)) 0 - 0vevg (g - X (wi, j,))

the Gromov-Witten variety parametrizing rational curves of degree d with marked points in the Schu-
bert varieties g, X (w;, j,) in Mo r4+1(X, d).

(a) COMPUTING CORRELATORS BY CONSIDERING THE IMAGE OF GROMOV-WITTEN VARIETIES.

Proposition 3.5.2.1. i) Let (¢1,...,9-) be an element in G" such that

A) The general fiber of the evaluation morphism ev,y1 @ W, = mzzlevlzl(gk .
X(wiy, 5, ) — Im(evry1) € X is a rationally connected variety;

B) TO’I";-X (Om(X,d)’ OH;=1 gk:X(wik,jk)) =0 fOT all 1 > O"
C) The Gromov-Witten variety Wy, has rational singularities;
D) The projected Gromov-Witten variety evy1(Ws,) has rational singularities;

Then for any « in K°(X)
<Oi1,j17 sty Oir,jra Oé>d =X (Oé : [Oevr+1(ng)]) .

it) If for (g1,...,9r) general in G":

A) The general fiber of the evaluation morphism ev,y1 @ W, = mzzlevlzl(gk :
X (wiy,j,.)) = Im(evy 1) € X is a rationally connected variety;

B) The projected Gromov-Witten variety evy,1(Wy, ) has rational singularities

then for any o in K°(X) and for (¢1,...,9,) general in G":
<Oi1,j1, ceey Oir,jm a>d =X (a . [Oevr“(wgk)])

iii) If
A) For (g1,92) general in G2, the general fiber of the evaluation morphism evs : Wy, 4, =
evy (91X (i1, 71)) N evy * (gawo X (i2, j2)) — Im(evs) = X is a rationally connected va-
riety;
B) The projected Gromov-Witten variety evs(Wi v,) has rational singularities,

then
<Oi17j1a0i2,j27a>d =X (a : [061J3(W1,wo)])
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Proof. i) Since TorX" (Om(x ay O, !JkX(wiw'k)) = 0 for all i > 0, we have the following
identity in Ko(Mo,r41(X,d)).

r
ev® (H Oik,jk) = ev*[oﬂgzl gch(wik,jk)]
k=1

X’V’
= ) [Tor; (OMO,H_l(X,d))’ O, gkX(wik,jk))]

1=
= O8Iy an X (i )
= [Ow, ] (3.8)

By definition for v in K°(X) the correlator associated with i, ji and « is given by

(=)

- 0. *O. . ev* - [O——o
Oy vy Oy 004 = X (evl Oirgr---evy Oy 5, - evy [OMU,TH(X,d))])

Using (3.8) here above and the projection formula in K,(X), we obtain:

<Oi1,j1 geeey Oiryj'r’ Ol>d =X (GU;kJrle . evf(’)il,jl e evf(’)“’jr . [Om(X,d))])
—x (evfii0- [Ow,]1)
=X (a. (evr+1)*[Ong]) .

Moreover, since the projected Gromov-Witten variety ev,;1(W;, ) has rational singularities,
according to [BM11] Theorem 3.1 we have in K, (X):

(€Ur+1)*[(9wgk] = [Oev,,.Jrl(ng)]a (39)

which yields the expected equality.

ii) First, according to [CMBP13] Theorem 2.5 for (g1,...,g.) general in G” the Gromov-
Witten variety W, has rational singularities. Furthermore, according to Sierra’s ho-
mological Kleiman-Bertini theorem [Sie09], for (g¢1,...,9,) general in G", we have
TorX (OW(X,d)’Oﬂizlgkx(wik,jk)) = 0 for all # > 0. Hypothesis A) and B) finally
imply the expected equality according to 7).

iii) Since for (g1,g2) general in G2, the general fiber of the evaluation morphism evs : W,, —
Im(evs) © X is a rationally connected variety there exists a dense open subset U of G2 such
that elements in U satisfy conditions A) and B) and C) of part 7). Since the evaluation
morphism ev : My 3(X,d) — X3 is G-equivariant, U is invariant by the diagonal action of
G. Hence according to [FW04] Lemma 7.1, there exists (h1, ho) in U such that hy X (w;, j,) =
X (wiy,5,) and hoX(wiy j,) = woX(wi, j,). Since the projected Gromov-Witten variety
ev3(Wh, .h,) has rational singularities, we obtain according to ©):

(Oir 2 Otz a = X (@ [Ocugows )] - (3.10)
O

(b) COMPUTING CORRELATORS OF Fli,—1 WHEN THE NATURAL MAP Mj3(X,d) —
Mo 3Pt dy) X (pn—1)3 X3 IS SURJECTIVE. Recall X parametrizes lines included in hyper-
planes of C". Denote by m : X — P"~! the projection induced by forgetting the hyperplane. Let
d = (d1,d2) := dily + dalay be an effective class of curve in E(X). Note that my(dy,d2) = dj €
E(P"~1). The forgetful morphism 7 induces a morphism II : Mg 3(X,d) — My 3(P"1, dy).
Together with the evaluation morphisms ev;, this induces a morphism:

II xev: Mo,g(X, d) d Mo’g(]Pm_l,dl) X(]}anl)B XS.
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Proposition 3.5.2.2. If
o The morphism IT x ev : Mo 3(X,d) — Mo s(P" !, med) X (pn-1ys X? is surjective,

e The projected Gromov-Witten variety evy(Wi ., ) = evs (evy ' (X (i1, j1)) N evy ' (woX (i2, j2)))
has rational singularities,

Then
<Oi1,j1a OiQ,j27a>d =X (O‘ ’ [Oevg(Wl,wO)]) :

Proof. Denote by P,, D B the parabolic subgroup associated with P*~!, i.e. P,, is a parabolic
subgroup satisfying
BcPcPkh,

with associated reductive subgroup the block diagonal matrix GL; x GL,_; whose first block is
GL;. Note that the image of w; ; by the forgetful morphism W/Wp — W /Wp, is the element
wy,; in W/Wp_ associated with any permutation sending 1 to 4. Recall the Schubert variety of
P! associated with the element wy ; in W/Wp, is L; := {[xq : -+ : @; : 0 : -+ : 0]}. For an
element (g1, g2) in G3, denote by

Mo s(X,d) oW, = H evy ' (gr X (wiy 5, )) and Wy, = H evy M(grLiy) © Mos(P™" 1, dy)
k=1,2 k=1,2

the Gromov-Witten variety of X (respectively P"~!) associated with the translated Schubert
varieties gr X (wi, ;) (respectively giL;, ).

Since the morphism IT x ev is surjective and X is a two step flag variety, according to Chapter
2 (Proposition 1.4.0.1) the general fiber of IT x ev is rational. Hence according to Chapter 1
(Proposition 1.2.4.1) the general fiber of the restriction Wy, 4, — Wy, o X @n-1)3 g1 X (i1, 1) X
92X (2, j2) X X of IT x ev is rationally connected. Furthermore, according to Proposition 3.5.1.1,

the general fiber of the morphism

evgt W evg(W) cprt

91,92 g1192)
evaluating the third marked point is an irreducible rational variety. Note that since X —
P"~! is a fibration in P"~?’s, it is a flat morphism. Recall from Chapter 1 that the flat base
change and composition of a rationally connected fibration is a rationally connected fibration
(Theorem 1.2.2.1 (3) and Lemma 1.5.1.1); hence the general fiber of the morphism Wy, X pn-1)s
ng(i17j1) X gQX(’L'Q,jg) x X — Ppr—1 X (pn—1)3 ng(ilzjl) X 92X<i2,j2) x X = X is also rationally
connected. We obtain the following commutative diagram of rationally connected fibrations.

We, 9o X@n-1)3 91X (i1, J1) % g2 X (i2,j2) x X

dy
J/C'UB

Pnfl

By composition the general fiber of the morphism ev$ : Wy, 4, — ev§(Wy, 4,) is rationally
connected. Since the projected Gromov-Witten variety evg(WLwO) has rational singulari-
ties, then according to Proposition 3.5.2.1 for any « in K.(X) we have (O;, j,,0i, j,, 00d =

X (a : [Oeua(wl,wo)])- O

SYMMETRY OF CORRELATORS OF Fly ,_1. The isomorphism Gr(1,n) ~ Gr(n — 1,n) yields an
automorphism ¢ of X, which implies the following symmetry for correlators of X.
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Proposition 3.5.2.3.
<wi11j1 yen e 7wir7j7‘>dlll+d212 = <wn—j1+1,n—i1 +1- - 7wn_jr+17n_ir+1>d2ll+d112'

Proof. We consider here X as the flag variety parametrizing lines included in hyperplanes of C".
We identify explicitly a line in C™ with a hyperplane in C" in the following way. Consider a
Hermitian inner product {- | -) on C™. For vectors uy, ..., u, in C", we denote by < uy,...,u, >
the C-linear vector space generated by the w;. For any linear space £ =< uq,...,u, > in C"
denote by E* its orthogonal with respect to (- | -); E* may be defined as the intersection of
the kernels of the r linear maps sending a vector v in C™ to the complex number (%@; | v), where
we denote by ; the conjugate of u;. Then the morphism [L] — [L*] yields an identification
P*~! ~ Gr(n — 1,n). Furthermore, for any hyperplane H in C" consider the one dimensional
linear space H* orthogonal to it. Since (L*+)* = L, we obtain the inverse map Gr(n — 1,n) —
P"~!. Now consider the natural embedding X <> P"~! x P?"~!, The automorphism ¢ may be
seen as the restriction to X of the map P"~! x Gr(n — 1,n) — P! x Gr(n — 1,n) sending the
projectivization of a line and a hyperplane ([L], [H]) onto the projectivization of the orthogonal
spaces ([HY],[L*]). Note that ¢ exchanges classes I; and lo, and sends a Schubert variety
X (w; ;) onto a translate of the Schubert variety X (wy—jt1,n—i+1). Indeed, according to (3.1)
the image by ¢ of any Schubert variety X (w; ;) may be described in the following way, where
we consider a basis (e;)1<i<n 0f C" which is orthogonal with respect to the inner product ¢ | -).

(p(X(’U)lj)) ZQD({(L,H)€X|L c<el,r,6 >, <er, 61 >C H})

= {(HL,LL)6X|LL S(<er, e >)l, (<er, -+ ,e-1 >)J' DHJ'}
= {(L,H)GX’H D< €1, L6 >, < €5, €p >)t DL}
:wo-{(L,H)eX|H D< e, i >, <€, ,en_jtl >)+ DL}

=wo - X(Wn—jt1,n—i+1)s

where wq is the element in G = GL,, associated with a maximal length permutation of the
basis vectors e;. Furthermore, we have ¢, (l1) = [p(X(wan))] = [wo - X (w1 n-1)] = l2, and
in the same way ¢4(l2) = {1. The isomorphism ¢ : X — X induces an isomorphism ¢ :
W(X, dyly -I—dglg) — MOJ‘(X, O (dlll +d2l2)) = W(X, doly -‘y—dllg). ‘We obtain the fOHOWil’lg
commutative diagram.

Mo (X, dily + daly) —2— Mo, (X, doly + dylo)

Jo : J=

X d X

Since ¢ and ¢ are isomorphisms, for « in K°(X) ~ K,(X) the projection formula implies
bx ((evi)*a : [OW(X’dlll+d212)]) = Ox ((EU)?QO*‘F*O‘ : [OW(X,dll1+d2l2)])
= Q4 ((]5*6112‘90*04' [OMoﬁr(X,dlzﬁ.d?lQ)])

— * . )
= U Pxt [OMU,T(Xdell‘i’dllQ):l.

This yields the following equalities, where we denote by x : Ko (Mo, (X, d)) — Ko(Spec(C)) the
pushforward to the point.

Wiy s+ ey Wiy Gy Ddaly+dals
((Evl)*owil,jl """ (evr)*Ous,, ,, - [OW(X,dﬂlerzlg)])
(Qb* (¢*€Uf<ﬂ*0w,;l,jl Tt ¢*6’U;’f§0*oww,” : [Om(x7dlll+d2l2)]))
= x (e0F (O, )+ €0 (4O, ) - [O%= .ty 1))
(

ev:(OUJnfirﬁ»l,n—jri»l) ! [OMO,’V‘(X)lel-"dllZ)]) y
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where the last equality holds since ¢4Ou,; = @«[Oxw, ]l = [Opx.,nl =
[meX(wanl,nﬂ-“)] = On—jt1,n—i+1. To sum up, correlators of X exhibit the following sym-
metry.

<wi1,j17 cee 7wir7jr>d1l1+d2l2 = <wn*j1+1,n7i1+lv oo 7wn*jr+1,n7ir+1>dgl1+d1l2’

O

Remark 3.5.2.1. Let G be a semi-simple linear algebraic group, let P be a parabolic subgroup of G and
H be a subgroup of G acting on G/P by left multiplication. Then point (a) holds for H-equivariant
correlators of G/P. If G = GL,, then point (c¢) implies that H-equivariant correlators of the flag
variety GL,, /P are equal to the corresponding correlators of the dual flag variety. The symmetry
observed here comes from the fact that Fl; ,_; is self dual.

3.5.3 Three points correlators of X. We use here the results of the preceding parts to
compute all genus zero three points correlators of X = GL,,/P. Let 1 < 43,19, 13, J1, jo, j3 < n, where
ik # jk. Recall for 1 < 4,5 < n, ¢ # j, we denote by w;; the element in WP representing any
permutation sending 1 to ¢ and n to j. For a point x in P*~! x P*~!, we denote by

(Lp, H,) e C" x C"

vectors satisfying z = ([L.], [H.]). We consider here X as a subvariety cut out from P"~! x Pn~! by
the incidence relation "line included in hyperplane" in the following way. Consider a Hermitian inner
product ¢ | -y on C™. Consider a basis (e;) of C™ orthogonal with respect to {- | -). Denote by w the
conjugate of a complex number. The isomorphism P"~! ~ Gr(n — 1,n) identifies H, € C" with the
kernel H; of the linear map C" 3 v — (H, | v) € C, which is a hyperplane of C". For any vectors L,
H, in C" the associated point ([L.], [H.]) lies in X iff L, lies within the hyperplane H < C", i.e. iff
(L, | Hyy = 0. For an element g in G = GL,,, we denote by g+ the adjoint of § for the inner product
(|, ie (gL | g+L"y = (L | L'y for any L, L' in C*. We consider here the following action of G.

G % Pn—l % Pn—l _)Pn—l % ]Pm—l
(9, ([Lz], [Hz]) —([g - L], [gl - H.])

The action of G on P*~! x P"~! we just described induces by restriction the natural action of G by
left multilication on X ~ G/P. For 1 <1i < n, we set

Li:={[xy:-:2;:0...,0]} c P L
Recall we denote by wqg the permutation of 1 ... n of largest length. Note that we have
woLi = {[0:...50: Ty jy1:---:a,]} P!
Lf‘ ={[0:...50: 241 :xy]} = woLlp—;.

Recall for 1 < 4,5 < nand i # j, w;; denotes the element in WPF representing any permutation
sending 1 to 7 and n to j. Using (3.2) Schubert varieties of X can be described in the following way.

X(w;j) ={x = ([La],[Hs]) € X | Ly c<e1, -+ ,e; >, Hy c<ej, -+, e, >}
= (Ll X woLn_j+1) N X. (311)
Let d be a degree in E(X). For (g1,g2) in G2, we denote by

X2 = evi (g1 X(wiy ) 0evy g X(wiy 5)) © Mos(X,d)

91,92

the Gromov-Witten variety parametrizing genus zero degree d stable maps sending their marked points
into the translated Schubert varieties gr - X (wi, j, )-
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(a) WHEN d = ly. Denote by 7y : X < P*~1 x PP~ — Pn~! (respectively 73) the first (respectively
second) projection. Note that since Iy is a generating element in the Chow ring A, (X), curves
of class Iy are irreducible. Furthermore, since m14ly = 0 € A, (P"~1), a curve C of class Iy in X
projects to the point, and since malo = I € A4 (P"1), a curve C of class Iy projects to a line in
P"~!. Hence curves of class l» in X are curves of the form {z} x L, where x is a point in P"~?
and L is a line in P*~!. Since lines are rational, any such curves are rational. In particular we
observe that there is either a unique rational curve of class ls joining two distinct points in X,
or none.

We denote by evs),, 4, the restriction of the morphism evaluating the third marked point to the

Gromov-Witten variety X'2

&g, Denote by U < X 3 the dense open subset parametrizing distinct
triplets of points in X2.

Lemma 3.5.3.1. i) For (g1,92) general in G?, the variety Xffw2 has a dense intersection
with (evy x evs) H(U).

ii) For (g1,92) general in G*, the general fiber of evs|y, 4, is a rational variety.

iii) Suppose j1 + jo < n + 2. Then there exists an element h in G such that evg(Xwa) =
h- X(wiy4is—na) if i1 +i2>n+1, and evg(X{wa) =h-X(wig) ifi1 +ia=n+1, and is
empty else.

— x!
Proof. We set Xg, g, 1= X2 .

i) Note that for (g1,g2) general in G2, the intersection of X2 — with (ev; x evs)™*(U) is a

dense open subset of X;ﬁ)gg. Indeed, since X is convex, the subset Mg 3(X,la) = Mg 3(X,l2)
parametrizing degree I stable maps P! — X is a dense open subset of Mg 3(X,l2) [FP96],
whose image is contained in U. Hence (ev; x ev3) 1 (U) is a dense open subset of Mg 3(X, l2).
Then for (g1,g2) general in G? the variety X 521792 has a dense intersection with (ev; x
evs)~H(U).

ii) Let (g1,92) be an element in G2, let z = (21, 22) be a point in evs(X,, 4,). According to
(3.11), we have:

P2 (1 X (wi, 5,) % 92X (wiy 5,)) = g1 - p2(X (w3, j,)) % g3 - p2(X (i 5,)) < P71 x PP

= (gll : wOLnfjlel) X (g2L . wOLnszle)
=Ly xL

g2»

where we denote by Ly, := 91l ~woLp—j,+1 and Ly, := 92L - woLn—j,+1. The point z; in
P"~! defines by duality a codimension one linear subspace Hy in P*~! ~ Gr(n — 1,n). We
consider the set of points in (L4, x Lg,) n H; distinct from z that lie in a line containing
29 = [z} : -+ : 2"]; this can be seen as the intersection of the image of the following map
with (Lg, x Lg,) n Hi.

Al x Ly \{z2} - P 1 x P!
f: (t,x =[x a™]) - (z,[zr + 2t o2+ t2]).
Note that since Ly, and H; are described by linear equations, Imf n (Lg, x Ly, ) is described

by linear equations on the z* and ¢, and hence is a rational variety. We now consider the
morphism ev3|_gi 5 (2) = X2 < (P! xP"1)2 evaluating the first two marked points. Note

that this morphism factors through efu;g,l_gig2 (2) = ({z1} x P»=1)2 ~ (P"~1)2. We denote
by fu the restriction of this morphism to the subset evg‘;igz (2) N (evy x evy) H(U). By
definition, 61}3';}7!]2(2) N (evy x evg) "1 (U) parametrizes degree lo stable maps (h : P! —
{z1} x P71 ~ Pt {py, pa, p3}) satisfying the following conditions:

e h sends its first two marked points into the projection (g X (w;, j,)) of the Schubert
varieties considered here, i.e. h(p1) € Lg,, h(p2) € Lg,;
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e 1 sends its third marked point into z, i.e. h(ps) = z9;

e h(p1) # 22 and h(ps2) # z2;

e The image of h is contained in X, i.e. h(p1) € Hy and h(p2) € H;.
Since a degree Iy map (P — P"~1 {p;,ps,ps}) is uniquely determined by the data of three
distinct points in P"~! joined by a line, points in the fiber ev3|_gi g (2) 0 (ev1 x eve) "H(U)
are in one-to-one correspondence with distinct points in Imf n (Lg, % Lg,) N Hy. Hence
fu is an injective morphism of quasi-projective complex varieties, dominating the rational
variety Imf n (Ly, x Lg,) n Hy. Hence 61)3‘;} 92(z) N (evy x ev3)~1(U) is a rational variety.
Finally, since according to i) for (gi,g2) general in G2, Xg,,9o has a dense intersection
with (evy x ev3)~Y(U), for (g1,g2) general in G2, the general fiber 61)3'_91 g, (2) has a dense
intersection with (ev; x evs)~!(U), and hence is also a rational variety.

iii) evs(X1.w,) parametrizes elements (L, H) in P"~! x P"~! such that:

— There exists a line in P*~! joining H with elements L; c< €j1s---16n > and Ly c<
€1y Cnjotl >
—Lc<er,. ..., >N <e€pn_igtl,---,6n >
- Lc H.
First note that the subset of elements H satisfying the first condition is the vector sub-
space generated by < e1,...,ep_jy41,€5,.-.,6n > Cmin(n,2n—j1-j2+2) ~ Note that the
second condition is impossible iff i1 < n — iy + 1, and else describes elements L in
< €n—igtly.--r6;y >~ Cat27nFl Hence evs(X7 ) is the set of elements (L, H) in
P! x P*~1 such that
~ Hc<er,. .. ln_jot1,€j15--56n >;
- Lc< Chn—ig+1ly---5€ip >3
- Lc HL
Note that for j; + jo < n+ 2, the linear subspace < ey, ..., en—j,+1,€j,,...,n > is C*, and
hence the first condition is allways satsified. Then
ev3(Xiwo) ={([0: -+ :0:Tpoipgr1-.. 24 1 0...0],[v1...yn]) € X}.
Translation by a permutation h of the basis vectors yields
ev3(X1wy) = b -{([z1- Tiytig—n : 02 0], [y1 ... yn]) € X},
which is equal to h- X (Wi, 4iy—n,1) if 91 +iz—n # 1, and is equal to h- X (wy 2) if 41 +iz = n+1.
O

Suppose j1 +j2 < n+2 and i1 +i3 = n+1. According to Lemma 3.5.3.1 i7) the general fiber of the

map evs : Xé’i ¢» — X induced by evaluating the third point is a rational variety. Furthermore,

according to Lemma 3.5.3.1 #4) its image evs(X1 4, ) is a translate of a Schubert variety by an
element h in G, and hence has rational singularities according to Theorem 0.8.0.3. According to
Part 3.5.2 (b), we have for i; + i3 > n + 1:

(Wiy 1> Wiz 5 Lig,js D1a = X ([Oh-x(wi1+iz—n,1)] 'Ii37j3)
=X ([OX('LUilJriQ—n,l)] : Iis,ja) . (312)
and if i1 + 1o =n+1

<wi17j1 ) wi27j2’Ii37j3>l2 =X ([OX(w1,2)] 'Ii3,j3)
= 81y 10,2 (3.13)

Furthermore, according to Lemma 3.5.3.1 i) if j1 + jo < n + 2 and i1 + i3 <n + 1, then

<wi17j17wi27j271i37j3>l2 =0 (3'14)
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(b) WHEN d = l; +l5. An irreducible rational curve of degree (d1l; +dsl3) on X may be parametrized
as
P's [u:v] = ([Pr(u:v)],[Pe(u:v)]) € X,

where P, and P, are homogeneous polynomials of degree d; and dy respectively. Furthermore,
for an element (g1, g2, g3) general in G3, we denote by
d _ _ _
MGy, =01 (91 X (Wi 3,) 0evy (g2 - X (wiy,j,)) 0 evs™ (g5 - X (wig )

the Gromov-Witten variety associated with the iy, ji, where evy : Mo 3(X,d) — X denotes
evaluation at the k-th marked point. For a point (x,y) general in X2 we denote by Cy , the line
joining the points [L,] and [L,] in P"~!, and by C, , the line joining the points [H,] and [H,]
in P"~1. Recall the varieties h; are the classes of the Schubert varieties of codimension 1 of X.

Note that the class [h1] (respectively [hz]) in the Chow ring A, X is the pullbacks of the Cartier
divisor ¢1(Opn-1(—1)) by the first (respectively second) projection P! x Pr~1 — pr—1,

Lemma 3.5.3.2. i) For a point (z,y) in X? one of the two following properties is verified:

e There exists a unique connected rational curve of class (11 + l2) joining the points x and
y. This curve is the intersection of the variety Cy y ¥ Cg’gyy c Pl x PP with X.

e There are infinitely many rational curves of class (I1 + l2) joining the points x and y.
These curves cover the intersection of the variety Cy 4 X Cg’gyy with X.

ii) For a point (z,y) general in X2, the rational curve in X of class (I + l2) joining the points
x and y is unique and irreducible.

iii) For (g1,g2,93) general in G3, the Gromov-Witten variety /\/llglktffk% is birational to its

image in X3 by the evaluation morphism.

iv) Let (g1,g2) be a general element in G*. Then
evs (evy (g1 - hi) N evy (g2 - X (wiy 3,))) = X.

Proof. i) We consider X as a divisor of class [h1] + [ha] in AL(P"~1 x P*~1). Let p; = (z1,1)
and py = (x2,y2) be points on X. If x1 = xo, we can construct infinitely many genus zero
stable map of class ({1 + l) whose image contains the points p; by glueing together the
degree Iy map P' — X joining p; and p» with any map P! — X of degree [; intersecting
this curve at another point than the p;. The same holds if y; = y». Now suppose z1 # x5
and y; # y2. Denote by L; a line in P"~! joining the points 21 and x5, and by L» a line in
P"~! joining the points 3; and y2. Note that any rational curve of class (I +13) in X joining
the points p; projects to Ly, hence any such rational curve is contained in the intersection
(L1 x Ly) n X. Since the projective variety P"~! x P*~! is smooth, the intersection of X
with L; x Ly has dimension at least 1. If the variety (L1 X L) n X has dimension 2, then
any parametrization P! — L; and P! — L, sending the points [1 : 0] and [0 : 1] in P! onto
the points p; yield a degree (I; + l2) map P! — X joining the points p;. We thus obtain
infinitely many irreducible rational curves of class (I; + l3) joining the points p;. Indeed,
since the classes I; generate A;(X), the map P! — X cannot be a multiple covering onto its
image, which is then a curve of class (I3 + l2). Now suppose the variety (L; x L) n X has
dimension 1. Note that we have the following equality in the Chow ring Ay (P"~! x Pn~1):

where we also denote by [; the pushforward to P~ x P"~! of the classes l; € Hy(X,Z) ~
A4 (X). Hence €' is a curve of class (I3 + l2) in X. We now only have to consider the
case where C” has several irreducible components. Since C’ is a curve of class (I3 + l2)
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ii)

iii)

iv)

contained in Ly x Lg, C' can be described as C’ = (L1 x {y}) u ({z} x L2) where z and y are
points in P"~!. Note that since x; # z2 and y; # y2, both points p; cannot belong to the
same irreducible component. For example suppose p; lies on C; and ps lies on Cy. Then
C" = (L1 x {y1}) U ({x2} x La). Since L; joins x1 and x5, we obtain that (x2,y;) belongs
to L1 x {y1}. In the same way, (z2,y;) belongs to {x3} x Lo; hence the two irreducible
components of C’ come together at (x2,y1). We obtain a genus zero degree (I; + l2) stable
map P U P! ~ (L; x {y1}) U ({2} x La) — X whose image contains the points p;.

According to here above, the morphism of irreducible projective varieties
ev : MO)Q(X, I+ lg) — X2

is dominant, and hence is surjective. Hence for (z,y) general in X2, the general fiber
ev~1(x,y) has dimension:

dimev ™ (z,y) = dimMo 2(X, 11 + lo) — 2dimX

= dimX + J a(Tx) —1—2dimX
l1+12

N Jl ) ((n=D[h1] + (n = D[he]) — dimX —1
= 0.

The general fiber ev~!(x,y) thus contains finitely many points; hence according to i) it
contains only one point. The connected rational curve of class ({1 + l2) joining two points
of X in general position thus is unique. Finally, according to here above such a curve is
irreducible.

According to ii), there exists a dense open subset U = X? such that there exists a unique
irreducible rational curve of class (I +l3) joining any two points in U. Since the evaluation
map evy X evy : Mo 3(X, 11 + 1) — X? is surjective, according to Chapter 1 Lemma 1.2.3.1
for (g1,92) general in G2 the variety ev; (g1 - X (wi, j,)) N evy (g2 - X (wy, ;,)) has a dense
intersection with the dense open subset (ev; x eve)~1(U). Now denote by V the dense open
subset of U x X containing distinct points x, y and z in U x X. Note that the restriction
of the evaluation morphism

eVgy.g, ¢ (ev1 (g1 - X (wiy 1)) 0 ey (g2 X (wiy 3))) nev™ (V) — X7

is an injective map. Indeed, if we specify two points = and y in U, by definition there is a
unique irreducible curve C of class (I; + l2) joining « and y. Consider a third point z lying
on C, distinct from x and y. There exists a unique parametrization P! — C sending the
points [1: 0], [0: 1] and [1 : 1] onto the points x, y and z; hence the data of three distinct
points z, y and z in U x X defines a unique point in Mg 3(X,l; + l2). The restriction
of the evaluation morphism to Mi]lk-;fg;k’jk nev (V) = evg, g, (93 - X(wyy,5,)) thus is an
injective morphism of quasi-projective complex varieties, hence is birational onto its image.
Finally, note that for (g1, g2, 93) general in G® according to Chapter 1 Lemma 1.2.3.1 the
variety Mglkfiik,jk has a dense open intersection with ev=1(V'), and hence is birational onto
its image by the evaluation morphism.

Consider points p; and ps respectively in go - X (w;,,j,) and X. According to ¢) there exists
a connected rational curve C' in X of class (I; + l2) joining p; and py. Denote by i : X —
P"~1 x P*"~1 the natural embedding. We have the following equality in A, (P"~1 x Pn—1):

[hi] U [C] = [hi] L (l +12) = [pt],

hence the intersection between h; and C' is non empty.

81



According to Lemma 3.5.3.2 iii) for (g1, g2) general in G2, the Gromov-Witten variety Wy, 4, :=
evy (g1 - h1) N evy ' (g2 X (wi, ;,)) is birational onto its image in X3 via the evaluation map.
Then the map evs : Wy, 4, — X induced by evaluating the third point is a degree 1 map of
projective complex varieties. Furthermore, according to Lemma 3.5.3.2 iv) its image evs(Way,)
is the smooth variety X. According to Part 3.5.2 (b), we have:

<wi17j1ﬂwiz’j2ﬂIi3’j3>l1+lz =X ([OX] : Ii37j3)
=X ([Ox(wn)]  Lis.js)

= 01,1501, -

WHEN d = dyl1 + dsla, WHERE 0 < dy < dy AND do > 2. Recall X is the variety parametrizing
lines included in hyperplanes of C™. A point in X corresponds to the inclusion of a line in a
hyperplane of C*. Denote by 7 : X — P! the projection induced by forgetting the hyperplane.
Let d = (dy,ds) := dily +dsly € E(X). Note that my(dy,ds) = dy € E(P"~!). The forgetful mor-
phism 7 induces a morphism IT : Mg 3(X,d) — Mg 3(P""1,d;). Together with the evaluation
morphisms ev;, this induces a morphism:

II x ev : M073(X7 d) — M073(Pn71, dl) X (pn—1)3 X3,
We begin by studying when IT x ev is surjective, before computing correlators of X.
Proposition 3.5.3.1. ) Ifd = (0,ds), where dy = 2, then IT x ev is surjective;
it) Suppose d = (1,ds), where do = 2. The morphism II x ev is surjective;
i1i) Suppose d = (dy,ds), where dy = 2
i) Suppose d = (d1,dz), where dy =2 and dy > 2. Then ev? : Mo 3(X,d) — X3 is surjective.
=2

v) Suppose d = (1,d3), where da . Then evg(Xif;;;ile) = h- X(w;,4iy.1), where h is an
element in G.

and dg = dy. Then II x ev is surjective.

Lemma 3.5.3.3. Let f : Y — Z be a morphism of projective irreducible varieties. Let Zy be
a subvariety of Z of codimension 1 in Z. Suppose the image of [ contains Zy. Furthermore,
suppose the inverse image by f of Zoy is a strict subvariety of Y, i.e. suppose f~1(Zy) < Y.
Then f is surjective.

Proof. By contradiction, suppose f is not surjective. Then f(Y') has dimension smaller than
dimf(f~1(Zp)). Indeed, we have dimf(f~1(Zp)) = dimZy = dimZ — 1, hence dimf(f~1(Zy)) =
dim f(Y) since f(Y) is a strict closed subvariety of the irreducible variety Z. Furthermore, note
that the irreducible projective variety f(Y) contains the projective variety f(f~!(Zy)). Hence
f(f~Y(Zy)) is a projective subvariety of the irreducible variety f(Y) of dimension larger than
f(Y); hence f(Y) = f(f~1(Zp)) and f(Y) is contained in Zy. Thus Y = f~(Z,), which
contradicts the fact that f=1(Zp) is a strict closed subvariety of Y. O

Proof of Proposition 3.5.3.1. We consider here X as a subvariety of P"~! x P"~! where X is
cut out from P*~! x P"~! by the relation 'line included in hyperplane" in the following way.
Consider a point (z,y) in P*~! x P*~1. By the functorial definition of P"~!, x defines a line
L, = C™ and, if we identify P"~! with its dual, y defines an hyperplane H, < C". Then (z,y)
lies in X iff L, < H,. We call curve a projective variety of dimension 1. We will denote by pi;
(respectively o) the first (respectively second) projection X — Pn—1

i) Consider a point p on P"~!; denote by L, = C" the line defined by p. Let (p,y;) be three
points on X, where the point y; in P"~! correspond to a hyperplane H; in C" containing
the line L,. Our goal here is to construct a genus zero stable map C' — X of degree dyl»
whose three marked points are the points (p,y;). We first construct a curve of degree Iy
joining the points (p,y1) and (p, y2), before constructing a genus zero stable map of degree
2l3, and finally a genus zero stable map of degree dsls joining all three points (p, y;).
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ii)

Suppose the points y; and y, are distinct. Denote by C' a line in P*~! joining the points
y1 and yo; C can be described as the subset of points in P"~! associated with hyperplanes
uH; + vHy, where [u : v] runs over PL. Since the line L, is included in H; and H», for all
[u:v] in P! it is also included in wH; +vHs,. Hence the curve Cp := {p} x C in P*~! x pr—1
induced by C is a curve of class I3 lying in X joining the points (p,y1) and (p,y2). In the
same way, if the points y» and y3 are distinct, we may construct a rational curve C' < X of
class Iy joining the points (p,y2) and (p, y3). Consider parametrizations f; : P! — C;, where
we fix points ¢1, g2, g3 and g4 on P! such that f; sends ¢; and g2 to (p,y1) and (p, y2), and
fo sends g3 and g4 to (p,y2) and (p,y3). Consider the tree of P’s P! U P! with 3 marked
points obtained by glueing (P!, {q1,q2}) with (P!, {g3,q4}) by identifying g2 and gz. The
morphisms f; induce a genus zero, degree 2y stable map (f : P! UP! — X {q1,q2,q})
joining all three points (p,y;). Finally, notice that if two points y; and y2 come together,
a degree 2l stable map P! U P! — X collapsing an irreducible component P! to the point
(p,y1) joins all three points (p, y;).

Now suppose dy > 2. Consider the degree 2ly stable map (f : P* U P! — X, {q1,q2,q})
described here above. Now add an irreducible component P! to P! U P!, which we glue
to P! U P! at a non marked point, and send this irreducible component to X via a degree
(dg — 2)lz map. We obtain a degree daly stable map (P! UP* UP! — X, {q1, ¢2,q4}) joining
all three points (p,y;)-

Let L be a line in P"~! let py, p2, p3 be three points on L. Denote by (p;,y;) three points
on X satisfying 7(p;, ;) = pi, i.e. the point y; in P"~! corresponds to a hyperplane in C"
containing the line L; associated with the point p;. Our goal here is to prove that there
exists a genus zero stable map of degree [; + dsls projecting to L and whose image contains
the points (p;, ;). Consider a genus zero stable map (P! — C — P"~! {ny,ns}) of class
daly in P! sending its marked points n; onto the points y; and yo. If dy > 2, we also
consider the case where P! — X is a genus zero stable map of class dals in P"~! sending
its marked points onto the three points 7;. Since P*~! x P*~! is a smooth variety and the
intersection (L x C) n X is non empty, (L x C') n X is of dimension at least 1. If it has
dimension 2, then L x C is contained in X. Then identify the line L with P!; by considering
the product of the closed immersion L < P! with the map P! — P*~! we obtain a genus
zero stable map P! — X of degree (I; + daly) whose image contains all points (p;, ;).
Now consider the case where the dimension of the intersection (L x C)n X is 1. Denote by hy
(respectively ho) the pullbacks of the Cartier divisor ¢ (Opn—1(—1)) by the first (respectively
second) projection. Note that we have the following equality in A, (P"~! x Pn71): [X] =
hi + hy. Furthermore, denote by & the degree of C; note that P! — C is a degree dy/d
covering. If the variety (L x C') n X has dimension 1, it is a curve C” in X satisfying the
following equality in the Chow ring A, (P"~1 x Pn1):

[C'] = [L x Clu[X]
= (L ®dly) U (hy + ha)
:ll +5127

where we also denote by [; the pushforward to P~ x P! of the classes l; € Hy(X,Z) ~
A4(X). Hence €' is a curve of class (I3 + dl2) in X. Note that, since the points (p;, y;)
belong to both L x C' and X, they lie on C’. Furthermore, the image of C’ by the first
projection 1 : P"~1 xP"~1 — P"~1is L. Indeed, C” is a curve of class (I; +dl) contained in
L x C; hence its image by the projection 7 is a curve of class (71 )« (l1 +9l2) = 1 € AL (P 1)
contained in the irreducible degree one curve L < P"~!. Hence C’ surjects onto L.

We now only have to prove that C’ can be descibed as the image of a stable map. Note
that the curve C” is either the union of two curves C; satisfying (m2)«[C1] + (7m2)«[C1] =
0 = m(C"), or is an irreducible curve of class (I3 + 0lz). First consider the case where
C" is the union of two curves C;, where the first curve C; surjects onto L. Then Cs is
obtained as {Q2} x C, where Q2 is a point on P"~!. Indeed, Cy is a curve satisfying
(m2)[C2] = m2(C2) projecting to the irreducible degree § curve C, hence the restriction
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iii)

iv)

ma|c, Of the projection map to Cs is a degree 1 map onto C, hence is an isomorphism. In
particular Cs is a curve of class dls. In the same way, C is a curve of class [; projecting
to L, hence is obtained as L x {Q1}, where Q; is a point in P"~!. Then either the points
(pi,yi) all lie on the irreducible rational curve Co-which yields a rational curve of class iy
containg all points (p;, y;)- or Cy contains one or two point (p;,y;). We will consider here
the case where C contains one point (p;,y;), the same proof holds when Cy contains two
points. If C4 = L x {@1} contains a point (p;,yi), for example the point (p1,y1) then
Q@1 = y1 and both (p1,y1) and (p2,y1) lie on C;. We obtain a genus zero degree I stable
map fi := (P' ~ L — X, {(p1,51), (p2,41)}). Denote by fo := (Cy — X,{c1,ca,c3}) a
genus zero stable map of class dals sending its marked points ¢; onto the points (p2,y1) and
(p2,y2) and (p2,y3); such a map exists according to i). Now glue P! and C} together by
identifying the points (p2,%1) and c;; we obtain a genus zero stable map P! U C5 — X of
class (I1 + dl2) joining all points (p;, y;).

Finally consider the case where C’ is irreducible. Denote by m; : P*~1 x Pr—! — Ppr—1
the first projection. Since C” is irreducible and (m1)[C’] = 1 = [71(C")] in A4 (P"~1), the
projection (m1);cr of the curve C” to P"~! is a degree 1 map; hence C’ is birational to its
image L in P"~! hence C’ is an irreducible rational curve.

We proceed by iteration on (dy,ds). Let us name D(dy — 1,1) the boundary locus of
Mo 3(P"~1,dy) which is naturally isomorphic to Mo 3(P" 1, dy — 1) xpn-—1 Mo 2(P"71 1),
and by D(d — (I1 + l2),l1 + l2) the boundary locus of Mg 3(X,d — (I; + l2)) ismorphic
to M073(X,d — (ll + lg)) X x MO,Q(X,ll + ZQ) Note that, since D(d — (ll + 12),l1 + lg)
is a strict closed subvariety of the irredudible projective variety My 3(X,d), according to
Lemma 3.5.3.3 it is enough to prove that D(d — (I3 + l2), 11 + l2) surjects into D(d; — 1,1).
Consider an element p in D(d; — 1,1). Denote by (f, : C, — P"7! {p1,pa,p3}) and
(hy : P1 — P71 {g1,¢2}) the genus zero stable maps associated with p; f, is a degree
(d1 — 1) map and h,, is a degree 1 map defining a line h,(P') intersecting the curve f,(C)
at hp(q1) = fp(p3) = x3. The induction hypothesis, or if d; = 2 Lemma 3.5.3.2, ensure that
there is a genus zero degree (d — (I1 + l2)) stable map (f, : C}, — X, {p1,p2, ps}) such that

— The image by IT of f;, is fp;
— The points f;(p1) and f}(p2) in X are projected to the points f,(p;) in P"~! by the
forgetful map X — P"~ 1.

If di > 2, this is a direct consequence of the induction hypothesis. If d; = 2 note that
according to Lemma 3.5.3.2 there exists a genus zero degree (I + l3) stable map projecting
to fp. We can then choose marked points p; projecting to the points f,(p;). Denote by pj
a non singular point in fz’,*l(pg). Denote by (z3,ys) a point in X such that ys is contained
in f7(f; " (p3)). According to Lemma 3.5.3.2 there exists a genus zero degree (I; + I2) stable
map (h, : Cy — X, {q1,¢5}) sending the point ¢} to the point (z3,y3) and the point ¢; to a
point of the form (h,(g2),y’) in X. Now glue the genus zero curves C;, and C, together by
identifying the point p3 on Cj, with the point ¢j on ;. We obtain a genus zero degree d
stable map (C, u Cy — X, {p1,p2, 4}, ¢5}) whose projection by II is p.

Let p1, pa, p3 be three points on X. According to i), there exist genus zero degree (I + l2)
stable maps f; := (C; — X, {z1,22}) and fy := (Cy — X, {y1,y2}) sending the marked
points x; onto the points p; and ps and the marked points y; onto the points py and ps.
Glue C; and Cy together by identifying 25 and y;, and furthermore glue Cy with P! at a
non special point g of Cy. Consider a degree d — 2(I; + l3) map P! — X sending ¢ onto
f2(q). We obtain a genus zero degree d stable map (C; UCy UP! — X, {21, 72, y2}) sending
its marked points onto the points p;.

Let W := X{ﬁle? be the Gromov-Witten variety of X associated with the ik, ji, and
W = Mo 3 (PP 1 1) x n-1)2 (Li, xwo Li,) be the Gromov-Witten variety of P~ associated
with the i,. We consider the map W' x (pn-1s X3 — X induced by the third projection
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X3 — X. We obtain the following commutative diagram.

.

W' X pr-1y2 X (wi j,) X X (wiy 5,) X X —— 7~ Hev§y W) c X

\ ™
dy <4
E’US

evgl1 W' c Pt

Since according to ii) the map IT x ev is surjective, according to Chapter 1 the re-
striction W — W' X(pn-1y2 X(wi, j,) X X(wi,j,) x X of II x ev to W is also sur-
jective. Furthermore note that since # : X — P"~! is surjective, the projection
w’ X(]}Dn 1y X(wzml) x X (wi, j,) — 7 (evi" (W) is also surjective. Hence by composition
evd W — 71~ (6’03 (W) A (X (wi, j,)) is also surjective. Note that ev§' (W') is the locus
of points p in P"~! such that

— p lies on a line L < P~ 1;

— apoint in L;, = {[x1,..., 24 :0:---:0]} lies on L;

— apoint in woL;, = {[0:--+:0:Tp_jyt1:---:2y]} lieson L.
p satisfies these three conditions iff p lies in {[z1...2; : 0...0 @ Tp_jpy1...20]} = h -
Linin(n,i, +iz)» where h is a permutation in &,. We obtain

-t (h : Lmin(n,il +i2))

evs(W)

ST (me(n i1 +12))
{([ 'xmin(ni1+i2):O"'ZO]v[yl:"':yn])eX}

X(wmm(n i1+1i2), 1)

Il
;“D‘D‘ﬂ

O

Suppose ds = 2. According to Proposition 3.5.3.1 v) the projected Gromov-Witten variety

evg(XifltOd?lz) is the translate of a Schubert variety and hence according to Theorem 0.8.0.3 has

X{l +d2l2) _
»Wo

rational singularities. Furthermore there exists an element h in G such that evs(
h - X(w;, 44,.1). Part 3.5.2 (b) then implies the following identity.
YV dy =2, Wiy 1> Wiy gas Lis js )l +dals = X ([Oev‘lﬁrdzlz(xl,wo)] 'L'g,j3>
=X ([Oh X w,,,h,(n,iﬁiz),l)] ‘Iz'g,jg.)
= X (Omin(nir+iz)1 * Lis.js) - (3.15)
Consider the partial order > on E(X) defined by:
d>d'iffd —d e E(X).

Note that classes d = (dy,ds) and d' = (d},d5) in E(X) satisfy d = d’ iff d; > d} and ds > d.
According to Proposmon 3.5.3.1 iv) the image of evy (X (wi, j,) N evy (woX (wi, j,)) by the
morphism ev3 evaluating the third marked point is X for d > 2(l; + l3). Since X is smooth,
Proposition 3.5.3.1 4ii) and Part 3.5.2 (b) yield the following implication.

d=> (211 + 212) = <wi1,j1,wi2,j2,Ii3,j3>d ([OX] 23,]3) . (3'16)
WHEN d = dyl; + doly, WHERE 0 < dy < dy. Then according to Part 3.5.2 (¢) we can dedude

degree d correlators from the preceding points using the symmetry between corelators of degree
dily + dsls and correlators of degree doli + dyls.
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3.6 Degree of Oy, x O,.

3.6.1 Definitions. Consider a degree d in the semi-group E(X) ~ N? of effective classes of
curves in Hy(X,Z) ~ Z2. For r > 0, denote by Mo_.(X,d) the variety parametrizing degree d genus
zero stable maps to X. The evaluation morphism ev; : Mgy (X,d) — X assigns to a map the image
of its i-th marked point. For X a homogeneous variety, the evaluation morphism is flat. Recall for u
in W¥, we denote by [0,] := [Ox ()] the associated Schubert class in the Grothendieck group Ko (X)
of coherent sheaves. Since X is non singular, an element O,, in K,(X) is assimilated with an element
in the Grothendieck group K°(X) ~ K,(X) of locally free sheaves on X. Let uq, ..., u, be elements
in the Weyl group W; the correlator {uy, ..., u,yq associated with the elements u; is defined by:

U, ., Urpa 1= X (evf((’)ul) c et (Oy,) - [OWJ'(X!d)]> .

Note that for X a homogeneous variety, this correlator is equal to the sheaf Euler characteristic of the
Gromov-Witten variety associated with the u; (cf. for example [BM11], Part 4.1); i.e. for (¢1,...,9r)
general in G", we have:

Uty .y Urpa 1= X (Oevfl(gl~X(u1>>m~--mev:1(gr-xmr))) : (3.17)
We consider the basis (Oy)uewr of K(X) := K°(X) ~ K, (X). Let t = > yrt*O4. Classes
l1 == [X(wen,)] and lo := [X(w1,,-1)] of one dimensional Schubert varieties form a nef basis of
Hy(X,Z). Denote by Q1 and Q2 the Novikov variables associated with I; and ls. For a degree
d = (dy,dy) := dily + doly in E(X), we write Q9 := ‘111 32. Introduce the Gromov-Witten potential
+00 Ad
Gt)y== > > =t oD,
deE(X)r=0 N~

T

We define a deformed metric by (On, Op) = §%67G(0), where §% = §/5t* . The genus zero big quantum
product O, o Og of two basis elements of K°(X) is defined by:

(04 0 03,0,) := §6°57G(1).

It is then extended by bilinearity over K°(X) ® Q[[Q,t]] and defines the big quantum K-ring
(K°(X) ® Q[[Q,t]],®). This ring is associative and commutative [Lee04], and we recover the ring
K°(X) by taking the classical limit @ — 0. The restriction of the big quantum K-ring to ¢t = 0 defines
the small quantum K-ring (QK,(X), *). Note that for X a homogeneous variety, the product of two
basis elements in QK,(X) is a polynomial in @ [ACT18]. The pairing defined by

G(Oa; 0p) = Ga,p = (Oa, Op)

is extended to a Q[[Q, t]]-bilinear pairing G on K (X) ® Q[[Q, t]]. Denote by G*# the inverse matrix.
By definition, we have:

Ou * Ov = Z 5u6v5'yg(0) g%wouw

v, weW ¥

3.6.2 A combinatorial lemma. We prove here a purely combinatorial lemma that will
imply that the product of two elements in K (X) is a polynomial in the Novikov variable Q.

Lemma 3.6.2.1. Let n, m and N be positive integers.

L W) -0
(k,p)e]£[0;n]] x [0;m], AN N

+p=N
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Hence for 0O < N <n,m :

and for N =2n, N <m :
(") - ()
= \kJ\N —k N
Proof. (x +y)"(z + y)™ = (z +y)"t™. O

Lemma 3.6.2.2. Let n and k be positive integers, with n = 2.

kio (Z) (—1)%k = 0.

Proof. Let f:z— (x—1)" =Y, _; (})(=1)""*z*. Then f'(1) = 0. O
Lemma 3.6.2.3. Let (d,5) € N2, let (do, o) € N? such that 6o <5 —1 ordy <d—1. Then

(d,8)=((do,d0);+;(dr,0r))

where we consider the sum over all integers r and all possible decompositions of a pair (d,d) in N? on
a (r+1)-tuple ((do,b0);- - ; (dr,6,)) satisfying >_odi =d, >i_y6; =6, and d; > 0 or &; > 0 for all
1> 0.

Proof. Let 0 < dy <dand 0 < g <d—1. Weset S = Z(d,6)=((do,6o);~--;(d,.ﬁ,,))(_l)r' Let r1 be the
elements d; other than dy that satisfy d; # 0. Note that 1 < ry < d — dy. For a given r; the number
r varies from r to  — §g + r1. Denote by ro the number of elements §; # 0 where ¢ # 0; for given rq

and r, ro varies from max(1,r — r1) to min(é — dg,r). For given r1, r and 72, we have (:1) possible
choice of an ¢ satisfying d; # 0, (m_rr1 +T1) possible choice of an ¢ satisfying §; # 0, (d;dﬂzl) possible

choice of the d;, and (5;52;1) choice for the integers ¢;. Hence:

o dilo 5*%7“1 min(525o,r) ( 1)7” r d—dy—1 71 0 — 60 -1
h ) e rp—1 ro—1 4T ro—1 )

ri=1 r=ri1 ro=max(l,r—r;

Let us now consider S(ry,7) = Zmin(é_(s”’r) )(—1)T(T)(d_d°_1)( " )(6_50_1); alors

ro=max(1,7—ry 1 ri—1 ro—r+1r] ro—1

d—do 0—d0+711

S = Z Z S(ry,r).

ri=1 r=ry
If r > 6 — 6gp. Then according to Lemma 3.6.2.1, if weset k =ro — 1, n=86d—90g—1, m =r,
N =r — 1, we obtain:
(5—(50—].4-7" d—do—].
=(—1)" .
s (B

Let r >ri. Set k =ro—r+ri,n=r;,m=96—06—1, N=6—09 —r + ri. Note that
60—dp—r+ri<rpand § —dg— 7+ 711 <d— 09— 1. Then according to Lemma 3.6.2.1 we have

r 6—0g—1+7m d—dy—1
= (=1)" .
S(Tl,'f’) ( )(7‘1)<550T+7‘1)( T‘lfl )
Ifr<d—dg. Set k=ro—1,n=96—06y—1, m=r, N =r—1. Then according to Lemma 3.6.2.1

we have S(Tyr):(l)r(é(solw) (dd01>.

r—1 ’1"1—1
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Letry <r. Setk=ro—r+r, N=ri,n=0—0y+r1—r,m=r—1. Notethat  —dg—r—+ry =1
et r1 <r — 1. Then according to Lemma 3.6.2.1 we have

sewn =0 ()0 ) e ()
) (—1)T(:1) <5 - 52 - 1 + rl) (d ;ld: 1>;
S (DGR

Note that § — dp > 2. According to Lemma 3.6.2.2, 2575(’”1(—1)’"7"(5_60) = (=1)"*1 which yields

r=r1+1 r—ry

d—do+71 d—do+71
0—0o00+m —1)! d—do—1
Z S(ri,r) = Z (71)7«7"73! ( ol ! ( : );

el el r—r)) (=g +r1 —r)\ r—1

=(_1)r1+1 6—0g+r1—1 d—dy—1
7’1—1 ’1"1—1 '

Hence Zi;ff;”l S(ry,7) = 0, hence S = 0.

Finally, since this problem is symmetric relatively to d and J, the same result holds for dy <d —1
and §y < . We now only have left to consider the case whare dy = d and §y < d — 1, or §p = J and
dy < d — 1. For example suppose dy = d. Then, since g < 6 — 1

5—30 e
N i B (R i
r=1

O

3.6.3 Geometric interpretation of elements in O, x Oy, for k # p + 1. From
now on we fix elements u and v in W¥ such that X (u) = h; and v = Wg,p, Where k # p 4+ 1. Recall
hy := X(wp—11) and hy 1= X(w,2). We fix a degree d € E(X)\{0}. We suppose d > Iy,ls, i.e. we
suppose d = dql; + daly where d; = 1 or dy > 1.

Letd =dg+ Zlgisk d; be a decomposition of d into a sum of degrees d;. We denote by Mg, ....a,
the following scheme

Ma,,...a, = Mos(X,do) xx Mo2(X,d1) xx -+ xx Mo 2(X,dg).

Note that Mgq,,....a, is in bijection with the boundary stratum of My 3(X, d) parametrizing genus zero
stable maps (f : Co u Cy -+ U Cy — X, {p1,p2, p3}) such that

— The curve Ug<;<rC; is a union of k genus zero quasi-stable curves C; meeting in a point.
— The first two marked points p; lie on Cy and ps lies on Cy,
— For all 0 <i < k, the map f¢, represents the degree d;.

Furthermore, note that Mgy, .. 4, is equipped with evaluation maps ev;, where 1 < i < 3. We call
boundary Gromov-Witten variety associated with v and v the inverse image

Mg, .4, (u,v) := evl_l(X(u)) N evgl(on(v)) < Ma,,... dy-

Note that Mgq,.... a,(u,v) parametrizes stable maps (f : Co v Cy -+ v Cy — X, {p1,p2, p3}) satisfying
the three conditions here above and sending the first two marked points p; within the varieties X (u)
and woX (v) respectively. Finally, we denote by Iy, .. a, (¢, v) the projection of the boundary Gromov-
Witten variety Mgq,,....a, (¢, v) by the third evaluation morphism, i.e.

Tay.....a, (u,v) := evs(Mq,,...q,(u,v)) < X.



Note that Iq,... 4, (u,v) is the set of points = in X such that there exists a stable map (¢ : C —
X, {p1,p2,p3}) associated with an element in My, . a4, such that the image ¢(p1) of the first marked
point belongs to the Schubert variety X (u), the image ¢(p2) of the second marked point belongs to
the opposite Schubert variety woX (v) and the image of the third marked point ¢(ps3) is the point x.

Lemma 3.6.3.1. i) Let f: M — X and g; : M' — X be morphisms of schemes, where i = 1,2.
Let Y be a subvariety of X. Denote by M xx M’ the fiber product defined by f and g1, and
by g : M xx M' — X the morphism induced by go. Note that the morphim f induces a map
M xxY — X, and the morphisms g; induce maps g, : M' xx Y — X. Then

g(M xx xM' xx Y) = gi (617" (F'(M xx V).

i) Let k= 1. Set Y := evs(Mg,.. a,_,(u,v)). Then evs(Maq,. _a,(u,v)) = evs*(evy 1 (Y)).
Proof. i) This is a direct consequence of M xx xM' xxY = (M xxY) xx M'.

ii) Apply i) to M := Mq,,... a4, ,, M = Mo2(X,di) and Y = X (u).
]

Lemma 3.6.3.2. Let d be a degree in E(X). Then ev§(evy (X (u))) is a Schubert variety, and for
any a in K(X), {(O,,0)a = x(a- [Oevg(w;l(){(um]).

Proof. We consider the Gromov-Witten variety ev; (X (u)) € Mpo(X,d). Let us consider the mor-
phism evd : Mo2(X,d) o ev;'(X(u)) — X evaluating the second marked point. According to

[BM11] Proposition 3.2., the general fiber of ev; is an irreducible rational variety and the image

evS(ev; H(X (u))) is a Schubert variety, and hence has rational singularities. Note that since ev; and

evq are G-equivariant, for any element g; in G the variety evd(evy (g1 - X (u))) = g1 - ev$(evy (X (u)))

is also a Schubert variety. Finally Part 3.5.2 (a) yields the result. O

Proposition 3.6.3.1. Let u be an element in W¥ such that X (u) is a codimension 1 Schubert
variety hi, and v = wg, be an element in W satisfying k # p+ 1. Let d = Z:=1 d; be an
element in E(X), where k > 0.

1. The projected Gromouv-Witten variety Ly, . a,(u,v) := ev§°+"'+d"(Md07___7dk (u,v)) is the trans-
late of a Schubert variety of X.

.....

2 <Oua Ou,Ia1>do<Oa17Ia1>d1 s <Oak7Iw>dk = X([OFdO

OéiEWP

dy, (u,v)]aIw)'

Proof. 1. By iteration on k. First note that for dy > 0 according to Lemma 3.5.3.2 and Proposition
3.5.3.1 there exists an element h in G such that ev$® (Mg, (u, v)) = ev$® (Mo3(X, do) x x2 (X (u) x
woX (v)) is given by the translation by h of a Schubert variety. For dg = 0, since k # p + 1,
according to Proposition 3.3.0.1 ev§ (Mo 3(X,dg) x x2 (X (u) x weX (v)) = X (u) nwoX (v) is the
translation by ane element h in G of a Schubert variety. Now suppose the induction hypothesis
verified for all ¢+ < k. Then the projected Gromov-Witten variety evs(Ma,,. .. 4, ,(u,v)) is the
translation by an element h in G of a Schubert variety X (w). According to Lemma 3.6.3.1 we
have

€03 (May,...a, (4, v)) = eva(evy (- X(w)) = h - evs(evi (X (w)),

where we consider the maps ev; : Mo 2(X,d;) — X, ¢ = 1,2. Finally according to [CMBP13]
Proposition 3.2 the variety evs(ev; (X (w))) is a Schubert variety.

2. By iteration on k. According to Lemma 3.5.3.2 and Proposition 3.5.3.1 since dg > I1,l> we have

<Ou,0vvza1>do = X(Oﬂ 'Ioél)?
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where h is an element in G and 3 is an element in W¥ such that I'y,(u,v) = h- X(3). Finally
notice that X([Oh-X(,ﬁ)]?Iou) = X(037Ia1)‘

Let us now suppose the induction hypothesis satisfied for i = k — 1. According to i) there exists
hin G and 8 in W¥ such that I'q,, . a,(u,v) = h- X (3). Hence the induction hypothesis yields

Z <Oua OvaIa1>do<Oa171.0t1>d1 .- ‘<Oak—17zak—l>dk = X([Oh-X(B)LIOqu) = 55,0%71’

a,eWP 1<i<k—1

where the symbol 634, , is one if 5 = ap_1, 0 else. We now only have to compute
Y ewr 98,05 1{Ow, Lw)a, - Let v’ be the element in WP such that ev§* (ev7 (X (8)) = X (u).
We obtain

Z 08,01-1{Ow;, Tw)a, ={O0s,1p)a,

ak,1€WP

where Oﬁ = [Oe'[}gk’ (e'U;l(X(B)))] [O

dk(uﬂ))] according to Lemma 3.6.3.1.

h~ev‘;k<ev;1<xw>>>] - [Oev;jk(evfl(rdo dk,l(u,v)))]

Hence for v = wy, ,, where k # p + 1, the product h; * O, can be rewritten as

On; * Oy = Oh, - Oy + +Q1 ([Om(hi,v)] - [Oro,zl(hi,v)])
+ Q2 ([OFzQ(hzwv)] - OFo,Q(’MW)])
+ Q1Q2 ([OrllJrlQ(hi,U)] - [Oﬂl,zz(hz,v)] - [OFlz,ll(hi,U)] - [OFO,ll+l2(hi7U)]

+[OF0,11,12 (hi7'U)] + [Ofo,zz,zl (hi,v)])

3.6.4 Computing the degree of O, x O,. Let 1 < is,j> < n where iy # jo. We note
v = W, j,.- We compute here the degree of Oy, x O, := Oy, x O, j,. More precisely, we prove the
following result.

Proposition 3.6.4.1. For any element v in W% the product Oy, *O;, 5, only includes terms of degree

Q1, Q2, and Q1Q2, i.c.
On, * Oiy.5, = On, - Oy + Q1P (4,v) + Q2 P, (4,v) + Q1Q2P, +1, (4, v),
where for d in E(X), Pa(i,v) is an element in K(X).

Our proof occurs in two times. We begin by rewriting the quantum product between two classes
Oy, and O, in K(X). We then note that most of these terms cancel together.

REWRITING THE QUANTUM PRODUCT. Denote by g the bilinear pairing on K(X) induced by the
sheaf Euler characteristic; we write g g := X(Oq - Og). We have

Gop= Y, QU0a,0p)a

deE(X)

=gap+ O, Q%04 Opa.
deE(X)\{0}
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The identity (g + A)~! = (g(id + g7t A))~1 = D) (~1)* (g1 A)*g~! yields the following equality:
Goo

+00
Z Qd Z (_1)k Z Z ga,a1<0a1 ’ Oaz >d1ga27a3 e ga2k_2’a%_1<0a2k71 ? 00421c>dkga%7[;g

deE(X) k=0 dieB(X)\{0} aeWP
d;+-4dip=d
+o
S SR Y Qi N 00, T (O T,
k= d;e E(X)\{0} ueWP

since Z,, is the element in K(X) dual to O, for the pairing g. This implies for any elements u and v
in W¥

X ((Ou x Oy) - 1)

+©
= Z Z Qd<0u70vv Oaya | 9" + Z (_l)k Z Qi td 2 900y, Laz)d; - - -{Oay, Luw)a,

aeWP deE(X) k=0 d;eE(X)\{0} a; WP
+o0

= Z (_1)k Z Qdo+dl+m+dk Z <Ouv Ovaa1>do<Oa1 7Ia1>d1 s <Oak’Iw>dk
k=0 d;eE(X)\{0}, doeE(X) a,eWP

CANCELLATION BETWEEN DIFFERENT TERMS OF Oy, » O,.
Lemma 3.6.4.1. Let1<i,7<n,1#].
i) Forany 1 < s,t<mn, s #t, {O0;;j,Ls)t, = 0sn0t;(1 —0jn) + 05005 n—10¢n.
it) Forany 1 < s,t <mn, s #t, {O0;j,Lst)i, = 0s,i0¢,1(1 — 0;1) + 0;,10¢,205.1.

iii) For any 1 < ia,jo < n, ia # ja,

Z <O (R ,]1>11<011 2J1s l2,]2>l2

1<iy,ji<n, i1#J1

= (1= 0j,n)0iz,n0j5,1 + 0jnbian—1045,1-
i) For any 1 < g, jo < n, iz # ja,

Z <O 4,55 1J1>l2<011»]17 121.]2>l1

1<iy,ji<n, i1#j1

= (]. — 57;11)(51'21715]‘271 + 51’,161'2,7163'2,2'
v) For any 1 <is,jo < n, i # ja,

Z <Oi,jaIu>l1<ou7zv>lz<0v’Ii27jz>l1 = 0iyn0js,1-

u,veWF

vi) Let 1 < iy, j1,42,J2 < N, i # ji, such that j1 + jo < n+2. Then for any 1 <i,j <n, i # j, we
have

2 <O’wi17]‘1 ) Owi2=1'2 7Iw>lg<0w71i,j>l2 = <0u7 O’LMIi,j>l2 .

weW P

Proof. i) According to (3.12) we have

Oy Tws = X ([Ow; (ev;1<X<wi,j>>>]’IW> '

Note that evh! (ev; ! (X (w; j)) parametrizes points (z,y) in X such that
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—y=[0::0:zp_jp1...25];
— z lies on a line L < P!,

— L; ={[z1...2;:0...0]} intersects L.

Since there is a line joining any two points in P"~1, evh (ev; * (X (w; ;) is the set of points (z, )
in X such that y = [0:---:0:@p_j41...2,]; this is the Schubert variety X (wy, ;) if j # n and
X(wp-1,n) if j =n.

By symmetry, cf. Part 3.5.2 (c).
This is obtained by multiplying the expressions found in ¢) and 7).

)
)

iv) This is obtained by multiplying the expressions found in ¢) and 7).
) This is obtained by multiplying the expressions found in ¢) and ).
)

vi) This obtained by multiplying the expression in i) with the expression from (3.12).
O

Recall from Subsection 3.6.3 the following definition. For classes do, ..., dj in E(X), for elements
wand v in WP, we set

Ia,....d, (u,v) := evs (evfl(X(u)) ) ev;l(on(v))) cX

the projected boundary Gromov-Witten variety associated with the classes d; and the Schubert vari-
eties X (u) and woX (v). In particular when v = wy satisfies X (wp) = X, we name

Tag.....a, (1) := Ta,....a, (wo,u) := evs (evy (X (u))),
and when u satisfies X (u) = h;, we name
Ta,,....a, (i,0) == evs (evy ' (h;) N evy ' (X (v))) .

Lemma 3.6.4.2. i) Letd = Zle d; be a degree in E(X).

Z <Oqua2>d1 oo <Oak7zﬁ>dk =X ([Ordl

aiEWP

,,,,, ap ()] Iﬁ) :

”) VAN (u) =X =10, (u> = [‘l1+l2,l1(u) = I 141, (u)
iii) Ty, (uw) and Lg,(u) do not depend on the choice of d = 2.

iv) Consider a degree d = dily + dals in E(X) such that dy > 2. Then

+00
DD, Y7 0o, Tar)a, (08, Tg)a, = 0.
k=0 d;eE(X)\{0} a;eWP

leisk d;=d

Proof. i) This is a direct consequence of the equality ([Ox], a, 5)a = {a, £)a for all a, 8 in K(X)
and of Proposition 3.6.3.1.

ii) Cf. Lemma 3.6.4.1.
iii) Cf. Lemma 3.6.4.1.
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iv) By applying 4), i) and 4ii) we obtain

+00
Z (_1)k Z Z <Oa17Ia2>d1 s <Oak’Iﬂ>dk
k=0 d;eE(X)\{0} a,eWPF
1<i<k di=d
+o0
k
=208 X X ([Ordl,__,dk(u)]vlﬂ)
k=0 d;eE(X)\{0}
Zl<i<k d;=d
+0o0
= x([0x],Z5) D (-1)F# {di e EQO\{0}, D) di= d}
k=0 1<i<k

+
8

+ (X([Or,1; a1 Tw) — X ([Ox1,Z5)) <—1>’“#{( Ld)eNF dy = Y di dy= )] dé}

1<i<k 1<i<k

B
Il
o

1%

+ (X([Opdzlg,dlll]7zw) - X([Ox],Ig)) (_l)k# {(di7d%) € Nkﬂ di = Z dliﬂ dy = Z dlz}

k=0 1<i<k 1<i<k

Finally, since d; = 2 or dy > 2, Lemma 3.6.2.3 yields the annulation of the three components of
the sum. The annulation of the first component comes from applying the lemma to dy = 0 = §g
and d; = (d;,0;). The annulation of the second and third part of the sum comes from applying
the lemma to dy = 0 = §p and d; = d} and §; = 0 if d; > 2, and to dy = 0 = Jy and d; = 0 and
8 = db if do = 2.

O
We denote by
Pd(lﬂ))
+o0
= Y (~1)k > QUrdit e N (O, 00, T01)dy(Our Lo Va, - - Oar Tu)a, Ow € K(X) ® QalC
k=0 d;eE(X)\{0},doeE(X) a,ewr

do+2<;<p di=d

the term of Oy, * O, of degree d. Let d be a degree in E(X) such that d > 2l; or d > 2l5. According
to Lemma 3.6.4.2 most of the elements in Pgq(u,v) cancel. More precisely, for a given dg satisfying
do < d -2l or dyg < d — 2I5, all terms associated with decompositions d = dg + leisk d; cancel
together. Suppose d; = 2 and dy > 2. The only terms left are then the ones associated with dg = d,
dgp=d—-1;,dp =d—1s and dg =d — I; — l3. Using Proposition 3.6.3.1 we obtain

Pd(u’v) = Qd ([Oevg(Fd(u,v))] - [OEUS(Fd—ll,ll (u,’u)):l - [Oevg(lﬂd,b,lz (u,v))]
_[Oevg(Fd_ll_12)11+;,2(u,v))] + [061)3([',1_11_127111],2(u,’U))] + [OEU3(F,1_],1_12J21],1(u,’U))]) 9

which is equal to 0 since according to Lemma 3.6.4.2 for dy > 2 and dy > 2 the projected varieties are
equal to X. Now suppose da > 2 and d; = 0,1. The only terms left in Pq(i,v) are those associated
with dg = d and dg = d — 5. We obtain

Pa(i,0) = Q% ([Ocuyrution] = [Ocusru sy yion])

which is equal to zero since 1 + jo < n + 2 according to Lemma 3.5.3.1. Furthermore by symmetry if
dy = 2, since n + is = n + 2 we have Pq(i,v) is equal to 0.

Hence for any element v in W /Wp all terms of degree d > I3 and of degree d > [y cancel in the
product Oy, x O, j,, which finally yields

Ohi * Oig,jg = Ohl . O’U + Ql-Pll (Z) U) + QQPZQ (iﬂv) + QlQQ-Pll+l2 (Z) 'U).
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3.7 A Chevalley formula in QK (X)

Recall hy := X(wp—1,1) and hy := X(w,2) are the two Schubert varieties whose classes generate
AYNX) ~ Z%. We name O, := [Op,] the two Schubert classes associated. Let 1 < k,p < n, where

k # p. This part is dedicated to proving the following expressions.

Proposition 3.7.0.1.

Q10n—1n + Q1Q2 ([Ox] — On,) iftk=1,p=n
Qlon,p ifk = 1, p<n
On, *Okp =13 012+ Q1 ([Ox]—04,) ifk=2p=1
Ok—1p iftk>1, k#p+1
Op—1p+ Oppr1 = Op_1p11 fl<p<n-1k=p+1
Q2012 + Q1Q2 ([Ox] — On,) ifk=1,p=n
Q201 ifk>1,p=n
Oy * Op =4 On—1,n + Q2 ([Ox] — On,) ifk=np=n—1
Ok p+1 ifp<nk#p+1

Op7p+1 +Op,17p—0p,17p+1 ifl<k<n—-1,k=p+1

(3.18)

3.7.1 Computing terms of degree ;. CompuriNnG O, * O,. According to (3.14) if

n—1+k<n+1,ie. if k=1, we have

Oy Ok,p, Lijoi, = 0
According to (3.13) if n — 1+ k =n+ 1, ie. if k = 2 we have

(Ohys Ok,ps Lij 1, = 01,16 2.
According to (3.12) if k£ > 2 we have
(Oh,, Ok p, Li i1, = 0i k—1041-
Furthermore, the product in K-theory is given by
Ou-0p= > X(0u-0y-L,)0p = Y. (04,04, L0

weW P weW P

Hence Proposition 3.4.1.1 directly yields the invariants {Op,, Ok p,Z; j )o-

{Ohy Ok p, Zi jpo = 0 ifk=1
(Ohy, Ok p, Lij)o = 6ik—10]p ifk#p+1, k#1
OhysOkp, Li 50 = i i—205p + 0i k=105 p+1 — Oi k—205 p41 itk=p+1
Recall from Lemma 3.6.4.1 that for any 1 < s,t <n, s # t,{0; j, Ls 1 )1, = 05,i0¢,1(1 —04,1) +0;,105,10¢ 2.
We deduce
0 ifk=1
Z <Oh1 ) Ok,p7z-w>0<0wvz-wi,j >l2 = 51‘,16‘72 ifk=2
weW P 5i,k’—16j,1 itk >2

Moreover recall that the term of degree [; in O, * O, is given by

Pli (’LL7 U) = Z <Ou7 Ova Iw>li Ow - Z <OU7 O'U7Iw>0<0w7Iw’>li Ow’~

weWw P w,w'eWF

We obtain for all v in WP
.P12 (hl, ’U) = 0
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COMPUTING Oy, * O,,. According to (3.13) if n + k =n+1, i.e. if k =1 we have
(Ohs, Okps Lijj i, = 051052,

According to (3.12) if k£ > 1 we have
(Ohys Okp, Li i1, = 0i k051

We now obtain the invariants (Op,, Ok p, Z; j)o from Proposition 3.4.1.1.

{Ohy, Ok p, Lijo = 0 ifp=n
<Oh270k,p7zi,j>() =03 10j,pt1 ifk#p+1, k#1
{Ohys Ok ps Lij)o = 6ipOjpr1 + 0ipy10jps2 — 0 p0jpro ifk=p+ 1.

Recall from Lemma 3.6.4.1 that for any 1 < s,t < n, s # t, <Oi,jaIs,t>l2 = 55,2‘61571(1—(51‘71) +6i,16s,15t,2-
We deduce for p < n

575,15j,2 ifk=1
0i.k051 ifk>1landk #p+1
> (Ohys Okpy Lu)olOuw, Luoy Dy = 3 Gipr10j1  if2 <k <nandk=p+1
weWP | 1<i,j<n, i#£j 0i,201 ifk=2andp=1
0in—10;1 ifk=nandp=n-—1
We obtain for 2 < k,p<n, k #p
Py, (ha,w1,p) = 6pnQ201 2
Py, (h2, wkn) = Q201 ifk>1
Py, (ho,wnm—1) = Q2(On1 — On_11) = Q2([Ox] — On,)
Py, (ha,wgp) =0 if(l<k<nandp<n)or(k=nandp<n-—1)

(3.20)

3.7.2 Computing terms of degree [;. Recall from Part 3.5.2 (c) that correlators of degree
1y associated with h; and wy, , are equal to correlators of degree l» associated with hg and wy,—pi1,n—k+1-
We deduce from (3.19)

Py, (ha, wip) =0, (3.21)
and we deduce from (3.20)
P (hi, W) = 051Q100-1,n
Py (hi,w1p) = Q100 ifp<n
Biy(h,we1) = Q1(Ony — On ) = Qu([Ox] = On,)
P (hi,wp) =0 if(2<kandp <n)or(k=2andp>1)

(3.22)

3.7.3 Computing terms of degree [, + l5. According to (3.15), forall 1 <i,j <n, i #j
(Ohy Ok py Lij)1, 415 = Omin(n,k+n—1),i0n—min(@n+1-p,n)+1,; = On,i01 ;-
According to (3.13) if n + k =n + 1, i.e. if K = 1 we have
(Ohy, Ok p, Li j 1, = 6:1052-
According to (3.12) if £ > 1 we have

(Ohsys Okps Lij o1, = 03,105,
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By symmetry we have

(Ohy, Ok py Lij1, = 8jnbin-1 ifp=n
Oy Okpy Lij1, = 0j,p0in ifp<n

Recall from Lemma 3.6.4.1 that for any 1 < s,t <n, s # t,{O0; j, Ls 1)1, = 05,:0¢,1(1—0;,1) + 0,105,104 2.

We deduce
{ 51"”,1(5'71 lfp =n

2 <Oh1;Ok,paIw>l1<Ow7Iwi,j>lg = 6i,n6j,1 ifp <n

weW P
If K =1, we have
Oy Ok p, Lijp, = 0

If K = 2 we have
(Ohy, Ok ps Lij 1, = 051052

If k£ > 2 we have
(OhysOkp, Li i1, = 0i k—104,1-

Recall from Lemma 3.6.4.1 that for any 1 < s,t < n, s # t, (O, Lsi)1, = 05001 ;(1 —n) +
0j.n0s,n—10¢,n. We deduce

0 ifk=1
Y (Oni: Ok Tt (Ous Ty s = 3 iy ik =2
weW P 5i,n6j,1 ifk>2
According to Proposition 3.4.1.1 we have
{Ohy, Ok p, Lijyo = 0 ifk=1
(Ohys Ok ps Lij)o = 0ik—10jp ifk#p+1, k#1
{Ohys Ok ps Lij)o = 6ik—20jp + 0 k105 p11 — 03 k205 pr1 iftk=p+1.

Furthermore, according to Lemma 3.6.4.1 for any 1 < 49, jo < n, 19 # Jo,

> (05,5, Liy j: 11O j1 s Lig i )ts = (1 = 65,)6i5,m6j2,1 + 61,0005 m—1055,1-

1<iy,j1<n, t1#J1

Hence
0 ifk=1
D1 LOnys Okpy Tu)olOuw, Ty, Out i i1y = § Gim—1651 ifp=mn, k>1
w,w'eWF 51"”(5%1 ifk>1 andp <n

Moreover according to Lemma 3.6.4.1 for any 1 < iy, jo < n, ig # jo,

D (055, Liy i1 12O 1> Lig s )iy = (1 = 03,1) 03,0055 1 + 03,1055, 2-

1<iy,ji<n, i1#J1

Hence
0 ifk=1
> (Ohy s Ok ps T )0l O T 21Ot Ti i1, = § Ginja ifk =2
w,w'eWP  1<i,j<n, i#] 6i,7L6j,1 itk >2

Finally according to Lemma 3.6.3.2 and Lemma 3.5.3.2 we have (O, Z,)1, +1, = X ([Ox] - Z.») hence
{ 0 ifk=1

0inlj1 else

> {Ony, Ok, T)oCOus T i, 11, =

ueWwr
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We are now ready to compute P, 41, (hi, Wy ). Moreover recall that the term of degree (I; + l2)
in Oy, * O, is given by

P 1, (R, v)
Z <Oh1 ’ OU 5 Iw>l1 +l2 Ow - Z <Oh1 ) Ova Iw>l1 <Ow 5 Zw’>l2 Ow’ - Z <Oh1 ) Ova Iw>l2<ow P I11)’>l1 Ow’
weW P w,w' eWF w,w'eW P
+ Z <Oh1 ; OU ’ Iw>0<ow 5 Zw’>l1 <Ow’ ) Iw”>lz Ow” + Z <Oh1 ) OU ) Iw>0<0wa Iu/>lg<0w’ ) Iw”>l1 Ow”
w,w’ w’eWF w,w’ ,w’eWF
- Z <Oh1 ) Ome>0<Owazw’>l1 +lo Ow“
w,w'eWF

a) If v = wy p, where k # 1. Note that then the second and fourth terms of the sum are equal,
and the third and fifth terms are equal, and the first and last terms are equal. We obtain

Pll+l2 (hhwk,p) = Q1Q2 (On,l - On,l - On,l + On,l + On,l - On,l)
=0 if k # 1.

b) If v = wy,, where p < n. Note that then all terms of the sum are equal to zero, ex-
cept from the first term >, 11 p{On,, Ou, L)1, +1,Ow, which is non zero iff w = wy,, and
Y ewPl{On1s O, L )1,{Ow, Ly )1, Oy, which is also non zero iff w = w,, ;. We obtain

Py i, (ha,wip) =0 ifp<n

c) if v = wy . Note that then O, = [Ox(w, )] = [Opoint] in K(X). Then all terms of the sum
are zero, except from the first term >, 1, »{Oh,, O, Zu )1, +1, Ow, Which is non zero iff w = wy, 1,
and Y e p{Ony, Ou, L)1, {Ow, Zuy )i, Ony, which is non zero iff w = wy,_; 1. We obtain

Pty (hi,wrn) = QiQ2(0nt — On_11) = Q1Q2 ([Ox] — Oh,) .

To sum up, we have

0 i )
Py i, (h1,wrp) = { 010> ([Ox] = On.) if (k.p) (3.23)

Finally, by symmetry we deduce

0 if (k,
‘Pll+l2(h2’wkyp) = { X ( p;

)
Q1Q2 ([Ox] — O,) if (k,p ) (3.24)

3.7.4 Computing the Chevalley formula. [Proof of Proposition 3.7.0.1] According to
Part 3.6 the only terms appearing in O, * O, are those of degree I; and of degree (i1 + l2). We now
only have to sum the classical part Op, - O, computed Proposition 3.4.1.1 with the part of degree [y
given by (3.22) and (3.21), the part of degree lo given by (3.19) and (3.20), and finally the part of
degree (I1 + l3) given by (3.23) and (3.24).

3.7.5 Comparison with small quantum cohomology. Fulton and Woodward provide
a Chevalley formula in in the small quantum cohomology ring of any generalized flag variety [FWO04].
In the case of the incidence variety, this formula yields

hi*s [X(i,7)] = ha - [X(4,5)] + @[ X]6:2051  if i # 1
hi*s [X(1,7)] = 1[X (n, 5)] ifj <m
hixs [X(1,n)] = q1[X(n —1,5)] + q1g2[ X] if j =n,
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and
ha xs [X(4,5)] = ha - [X (i, )] + q2[X]0n,i0n—1; sij#n;

ha x5 [X(i,n)] = g2[ X (i, 1)] sii > 1;
= ¢2[X(1,2)] + q1g2[X] sii =1,
where the product *g is the product in the small quantum cohomology ring of X. If we compare the

product in small quantum cohomology to the product in small quantum K theory, we observe (in blue
the terms which are present in small quantum K-theory but not in small quantum cohomology):

Q10n -1 + Q1Q2 ([Ox]-On,) iftk=1p=n
Q105 p ifk=1,p<n
Ohl * Ok’p = 01,2 + Q1 ([OX]—O;U) ifk = 2,p =1
Ok—1,p ifk>1,k#p+1
Opfl’p + Op)p+1—op71?p+1 ifl<p<n-1,k=p+1

3.7.6 Generalization to other adjoint varieties 7 In [CP11b] Chaput-Perrin interpret
Fulton and Woodward’s Chevalley formula in quantum cohomology in terms of roots systems. Note
that their construction can be generalized to describe the Chevally formula in quantum K-theory
described in Proposition 3.7.0.1. One might wonder if this construction holds for other types of
adjoint varieties.

3.8 On Littlewood-Richardson coefficients in QK (X).
Recall that for any elements u and v in W7 there is a unique expression

Ou * 01) = Z P&?U(le QQ)Ow

weW P

where P}, (Q1,Q2) is a polynomial in the Novikov variables Q1, Q2. Note that taking the limit
Q1,Q2 — 0 of P, (Q1,Q2) yields the Littlewood-Richardson coefficients in K (X). We provide here
an algorithm computing all coefficients P}, (Q1,Q2), and provide a closed formula that matches our
computations for small values of n. Furthermore, we prove that the signs of the coefficients of the
polynomials P, (Q1,Q2) satisfy a positivity rule.

3.8.1 An algorithm to compute Littlewood-Richardson coefficients in
QK (X) Recall from Part 3.7

Q10n-1n + Q1Q2 ([Ox] — Oh,) ifk=1,p=n
Qlon,p ifk = 1, p<n
Op, *Opp = 012+ Q1 ([Ox] — On,) ifk=2p=1
Ok_1, ifk>1, k#p+l
Op-1p+Oppi1—Op_1p11 fl<p<n-1,k=p+1
Q2012 + Q1Q2 ([Ox] — On,) ifk=1,p=n
@20k 1 ifk>1,p=n
th *O}C’p = On_17n+Q2 ([Ox] —OhQ) if k& =n,p=n-—1
Ok p+1 ifp<nk#p+1

Op7p+1 +Op717p—0p717p+1 if 1 <k<n—-1,k=p+1

This Chevalley formula allows us to write down an algorithm computing the product between any
two Schubert classes in QK (X) (cf. appendix C for a python code implementing this algorithm); we
indeed can compute for all 1 < k,p < n, where k # p, Yu € W, the product Ou,,., * Oy by following
the here under steps :
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e For all 1 < k < n, compute Oy, , * O, iteratively by noticing O, , = On, * Oy,,,, and
initializing with O, , * Oy = [Ox] * Oy = Oy;

e for all 1 <p <k < n, compute O, , * O, iteratively by noticing O, , = On, * Oy, , 13
e compute O, , * O, by noticing Oy, , = Op, * Ou,, — Q1([Ox] — On,);
= Ohl * pr+1,p + (Oh2 —

e for all 1 < p < n, compute O * O, iteratively by noticing O

id) » O

Wp,p+1 Wp,p+1

w1y
o for all 1 < k < p < n, where k # p — 1, compute O, , * O, iteratively by noticing O, , =
Ohl * O

Wk+1,p°

3.8.2 Positivity in QK (X). Let X ~ G/P be a generalized flag variety. For u, v in WP
decompose the quantum product O, x O, = ZwewpﬂeE(X) Ni‘i;jﬁQﬁ(’)w. For any elements u and v in
WP we call the product O, * O, positive if for all we WF, 3 e E(X), we have :

(_1)codim(X(w))7codim(X(u))fcodim(X(U))JrSB c1 (TX)N,Z:};;B > 0. (325)

Note that this is equivalent to
(_1)dim(X(v))7codim(X(u))fdim(X(w))+SB c1 (TX)N;Ij;;ﬁ > 0.
Buch-Chaput-Mihalcea-Perrin proved that the product of any two Schubert classes is positive for X

a cominuscule variety [BCMP16]. Denote by O, - O, = >} e N,,O, the decomposition of the
product of two Schubert classes in K(X). Note that for 8 = 0 (3.25) yields

(_1)codim(X(w))—codim(X(u))—codim(X(v))N;uv > 0.
Brion proved that, for X any generalized flag variety, the product of any two Schubert classes satisfies

this positivity rule.
Let us go back now to our setting, i.e. let X = Fly ,,_1.

Proposition 3.8.2.1. Let u, v be elements in W. The product O, * O, is positive.

Let u = wy,, in WP, We will prove here that the product of O, with any Schubert class is positive
by induction on (k,p), running over the steps of the algorithm described here above. We will use the
following formulas. According to (3.3)

X(,j)={(ar: 20 :0,,[0:...0y; - ry,]) e PP x PP
we have
. [ E+n—-p—-1 ifk<p
d1mX(k;,p)—{ ktn—p—2 ifk>p =(k+n—p—2)+1Ip_ko

where we denote by I, o the symbol of value 1 if n > 0, 0 else. Furthermore note that since X is a
degree (1, 1) hypersurface of P*~! x P"~! the adjunction formula yields for any dy,ds > 0

J Cl(Tx):dl(n—l)-f—dg(’rL—l)
dyli+dals

Let us our now begin our induction.

o Let 1 < k£ <n. Then O = Op, * Orq1,1. Suppose the product Opy1,1 x O, is positive
for all v € WP. Let v be an element in W¥. According to Lemma 3.8.2.1 i) Oy, x O, is
positive, Hence according to Lemma 3.8.2.1 #ii) Oy 1 x O, is positive. Indeed, for k > 1 we have
dimX (k1) =k +n—3 = dimX (k+ 1,1) — 1.
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e Let 1 < p < k < n. Suppose the product Oy ,_1 * O, is positive for all v € WF. Note that
Ok,p = Op, * Op p—1. Let v be an element in WP, According to Lemma 3.8.2.1 i) Oy, * O, is
positive, Hence according to Lemma 3.8.2.1 i4i) O, x O, is positive. Indeed, for 1 <p <k <n
we have p — 1 < k and dimX (k,p) =k+n—p—1=dimX(k,p—1) — 1.

e For k=1 and p = 2. Let v be an element in W¥. Note that O, , = Op, * O, , — Q1([Ox] —
Op,). Since dimX (1,2) = n — 2 = dimX(2,1) — 1, according to Lemma 3.8.2.1 7i) and i) the
term mathcalOp, x Oy, , * O, has the expected sign. Furthermore, since dimX —1—(n—1) =
2n —4 —n+1 = dimX(1,2) , according to Lemma 3.8.2.1 iv), the terms —Q;[Ox] * O, and
@104, * O, have the expected sign. Hence the product O, x O, is positive for all w € WP,

e Let 1 < p < n. Let v be an element in WF. Suppose the product 0,1, * O, is positive.
Note that Oy, ,,, = On, * Ow,,,, + (O, —id) * Oy, _, ,. Note that dimX(p,p+1) =n -2 =
dimX (p + 1,p) — 1. Hence, since Opy1, * O, is positive —Opy1p, * O, has the same sign as the
expected sign for O, p41 x O,. Furthermore, according to Lemma 3.8.2.1 both Oy, x Op 41 * O,
have the same sign as the expected sign for O 11 * O,. Hence O, 11 * O, is positive.

e Let 1 <k < p<mn, where k # p— 1. Let v be an element in W*. Suppose the product

Okg1p * Oy is positive. Note that O, , = On, * Oy, ,.Since k < p — 1, dimX(k,p) =
k+n—p—1=dimX(k+1,p). Hence according to Lemma 3.8.2.1 ii7) the product O, *x O, is
positive.

Finally by induction O, * O, is positive for all v in W7
Lemma 3.8.2.1. i) For any element v in WT the product Oy, x O, is positive.
ii) For any element v in WE the product Oy, x O, is positive.

iii) Let u be an element in WE. Suppose there exists an element v’ in WE such that O, = O, * Oy,
and Oy x O, is positive for all v in WT. Furthermore suppose dimX (u) = dimX (u') — 1. Then
for any element v in WT the product O, * O, is positive.

iv) Let u be an element in WT. Suppose there exists an element v’ in W¥ such that O, = Q;O0u,
where j € {1,2}, and Oy x O, is positive for all v in WT. Furthermore suppose dimX (u) =
dimX (v') — (n —1). Then for any element v in WX the product O, * O, is positive.

Let 1 < k,p<n.

Proof. i) We compute explicitly (—1)dim(X(v))7°°dim(hi)7dim(x(w))+sﬁ cl(TX)N;‘j;)B using (3.18). Note
that according to [Bri02] ijj;JO has the expected sign, hence we only have to consider terms N:ji;f
with 8 > 0.

(a) Recall we have Op, * O1, = Q10p—1.n + Q1Q2 ([Ox] — Oy, ). We have
(_l)dimX(nfl,n)7dimX(1,n)fcodimh1+(n71) _ (_1)(n71)7071+(n72)+(n71) _ (_1)2n74 > 0.
(_1>dimX—dimX(1,n)—codimh1+2(n—1) _ (_1)2n—3—1 > 0.

Hence Oy, x Oy, is positive.
(b) Let 1 < p < n. Recall we have O, x O, = Q10,, . We have

(_1)dimX(l,p)—dimX(n,p)—codimhi-&-(n—l) _ (_1)(n—p—l)—(2n—p—2)—1+(n—1) > 0.

(c) Recall we have Op, * 021 = 012+ Q1 ([Ox] — Op,). We have

(_1)dimX—dimX(271)—codimh¢+(n—1) _ (_1)(2n—3)—(n—2)—1+(n—1) > 0.
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ii) Note that by symmetry if there is a term in Q2Okjp in Op, * O;;, we have a term in
Q10n—piin—k+1 in On, * Op_jp1,n—j+1, and if there is a term in Q1Q20k, in O, x O, 4,
we have a term in Q1Q20,—pi1,n—k+1 0 Op, * Op_ig1,n—jt+1. Since

dimX(n—j+ln—i+l)=n—j+l+n—(n—i+1) =1+ i1 (n—j+1)0

:7’L+7:—j—1+Fj_i,0
dimX (4, j),

part i) yields the positivity of Oy, * O, for all v in WF.

iii) Let v be an element in W . Consider the decomposition O, * O, = D weWw P BeB(X) Nw’ﬁQBOw

u' v

of Oy * O, in the Schubert basis. Since the quantum product * is associative we have

Oux0y =04, xOyx0,= 3 NyiQM O * Oy
weWP gieE(X)
_ Z Nfﬁ’fl Q61 N}Z:fz QBz Owr

w, w'eWP, 81,826 E(X)

hence N;f;;ﬁ = D wewr Zﬁl,ﬂzeE(x),Nﬁ’le;g’f2~ Since dimX (u) = dimX(u') — 1 and the
B=pB1+pP2
products O, x O, and Oy, * O,, are positive we have

(71)dimX(u)—dimX(w')—codimX(v)-}—Sﬂ c1 (TX)quﬁ'U,B
_ Z (_1)dimX(u’)—l—dimX('u/)—codimX(v)-ﬁ-Sﬁ Cl(TX)Nﬁ:le;:;:’gz

weW P
Z (_ 1)dimX(u')—dimX(u))—CodimX(v){—Sﬁ1 c1 (TX)Nui’Bl

weW P

(_1)dimX(w)7dimX(w')fcodimhi +852 c1 (TX)N;LL;',BZ

i W

X

=0

iv) Let v be an element in W¥. Consider the decomposition O, * O, = D iweW P feB(X) N;jff}QﬁOw
of O, * O, in the Schubert basis. We have

Ou*x0, =Q0u*0,= > NyThQlo,
weW P ,BeE(X)
- Y Nt

weW P, BeE(X)

hence N2y% = 3 or 2i8eE(X), =1, N:;:f_lj. Since dimX (u) = dimX (v') — (n — 1) and the

u,v

product O, x O, is positive we have
dim X (u)—dim X (w’)—codim X (v)+ T ’
(_1) imX (u)—dimX (w’) —codimX (v) Sﬂ c1( X)N::Uﬁ

Z (_1)dimX(u')f(nfl)fdimX(w')7C0dimX(v)+Sﬁ c1 (TX)Nw,ﬁ*lj

u’ v
weW P
dimX (v')—dimX (w)—codimX (v)+§,_, c1(Tx) r,w,8—1;
= Z (71) Pl Nu/,v ’
weW P
=0
L
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3.8.3 A conjectural formula for Littlewood-Richardson coefficients in
QK (X ) We computed for various values of n Littlewood-Richardson coefficients in QK¢(X) using
the code in Appendix B. The results allowed us to guess and write down the following formula. This
formula has been verified for small values of n. Let us now introduce some specific notations we need
to express our result. First, we define "degree operators" d; on (W)3 by :

.. . i+ k—
V1 < Z7Jak7p757t < n, 1 7&.]’ k ;ép7 S # ta dl(wi,jvwk,p7ws,t) =1- ll SJ?
n
Jtp—t

I

da(wi j, Wi p, W) = | "

where |z| is the integer part of x. Furthermore, let us define maps t; : (W¥)2 — W¥ by :

Vi<i,jk<n,i#j, k#p, to(wj Wkyp

(
t1(
(
(w

W(i+k—1)mod(n)+1,(j+p—2)mod(n)+1

ta(wi,j, Wi p

t3

) =

Wi, 5, Wk p) W(i+k—2)mod(n)+1,(j4+p—2)mod(n)+1
) W(i+k—1)mod(n)+1,(j+p—1)mod(n)+1
) =

Wi, 5, Wk,p W(i+k—2)mod(n)+1,(j+p—1)mod(n)+1-
Finally, we define an operator A on (W)? by setting :
Yu, v, w € WP A(u,v,w) = 1 if (—1) (o) =ECwom) o), vyt vtz 1 TX) 5

=0 if (_1)Z(w()“’)*Z(U’O“)*g(wﬂv)*Sdl(u,ru,w)zl+d2(u,u,w)12 c1(Tx) <0

Conjecture 3.8.3.1. The product between two Schubert classes in QKs(X) is given by the following
formula :

Vu,ve WP, Oy«0, = A(u,v,to(u,v)) qfl(“ wsto(u,w) ;l2(u vto(u,v) Oto(u )
+(1— A(u,v,tl(u,v)))( q‘lil(u’y’tl(u’v))QSQ(U’U’tl(u’v))(’)tl(u,u)
+qf1 (u,v,t2(u,v)) qu (u,v,t2 (u,v)) Otz(uﬂ))

qill(u,v,ts(u,v))qu(u,v,ta(u,v))otg(u)v)>
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Appendix B

Here under is the python code used to compute the product between any two Schubert classes in
QK(Fl(1,n — 1); these computations helped us write down the Littlewood-Richardson formula we
show in chapter 4.

# Computing product in the small quantum K-theory QKs of incidence varieties Fl(1,n—1;n)
# Date : 18/04/2019

# Author : Sybille Rosset

import math

from sympy import x

from sympy import Matrix

import numpy

# Parametrizing n
n=5 #i.e. we look at lines in hyperplanes of C™n

## This code computes the product in small quantum K theory of Fl(1,n—1;n) between
#Schubert varieties and writes it down within a file named "Output.txt"

#
#Indexing Schubert varieties X(i,j) by a 1D array !

#
def coeffij(k,n): #Function sending O<k<=n(n-—1)) to the corresponding pair (i,j)
i=math. ceil (k/(n—1))

if (k—(i—-1)*(n—-1) < i):

j=k—(i —=1)x(n—1)

else:

j=k+1—(i —1)*(n—1)

return ([i,j])

def invcoeffij(i,j,n): #Function sending (i,j) to the corresponding O<k<=n(n-—1))

if(j>i):
t=(i—1)%(n—1)+j—1
else:

t=(i—1)*(n—1)+]
return (t—1)

#for k in range(l,nx(n—1)):
#[i,j]=coeffij (k)
#t=invcoeffij(i,j)

#print (i,j,k,t)

print (invcoeffij (1,2,3))

i
#Defining the action of O_hl and O_h2 on QKs !

#
ql = Symbol(’ql”’)
q2 = Symbol(’q2"’)

# 1. 1.1 Defining the action of O_hl

def hl(n):

hl = zeros(n*(n—1))

# defining Ohl1xO1l,n
hl[invcoeffij(n—1,n,n),invecoeffij(1,n,n)]=ql
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hl[invcoeffij(n,1,n),invcoeffij(1l,n,n)]=ql*q2
hl[invcoeffij(n—1,1,n),invcoeffij(1,n,n)]=—qlxq2
#defining OhlxO1,p

for p in range(2,n):
hl[invcoeffij(n,p,n),invcoeffij(1,p,n)]=ql
#defining Ohl1x02,1
hl[invcoeffij(1,2,n),invcoeffij(2,1,n)]=1
hl[invcoeffij(n,1,n),invcoeffij(2,1,n)]=ql
hl[invcoeffij(n,2,n),invcoeffij(2,1,n)]=—ql
#defining Ohl+Op+1,p

for p in range(2,n):
hl[invcoeffij(p—1,p,n),invcoeffij(p+1,p,n)]=1
hl[invcoeffij(p,p+1,n),invcoeffij(p+1,p,n)]=1
hl[invcoeffij(p—1,p+1,n),invcoeffij(p+1,p,n)]=-1
#defining OhlxOk,p

for k in range(2,n+1):

for p in range(l,n+1):

#print (k,p)

if (k!=p+1 and kl=p):
hl[invcoeffij(k—1,p,n),invcoeffij(k,p,n)]=1
return (hl)

# !N1.II.!! Defining the action of O_h2

def h2(n):

h2 = zeros(nx(n—1))

# defining Oh2x01,n
h2[invcoeffij(1,2,n),invcoeffij(1,n,n)]=q2
h2[invcoeffij(n,1,n),invcoeffij(1,n,n)]=qlxq2
h2[invcoeffij(n,2,n),invcoeffij (1,n,n)]=—qlxq2
#defining Oh2xOk,n

for k in range(2,n):
h2[invcoeffij(k,1,n),invcoeffij(k,n,n)]=q2
#defining Oh2xOn,n—1
h2[invcoeffij(n—1,n,n),invcoeffij(n,n—1,n)]=1
h2[invcoeffij(n,1,n),invcoeffij(n,n—1,n)]=q2
h2[invcoeffij(n—1,1,n),invcoeffij(n,n—1,n)]=—q2
#defining Oh2+Op+1,p

for p in range(l,n—1):
h2[invcoeffij(p,p+1,n),invcoeffij(p+1,p,n)]=1
h2[invcoeffij (p+1,p+2,n),invcoeffij (p+1,p,n)]=1
h2[invcoeffij(p,p+2,n),invcoeffij(p+1,p,n)]=-1
#defining Oh2xOk,p

for p in range(l,n):

for k in range(l,n+1):

if (k!=p+1 and kl=p):
h2[invcoeffij(k,p+1,n),invcoeffij(k,p,n)]=1
return (h2)

#

#Defining the action of O_k,p on any O_i,j !

#

def O(n):

O=[None]*n*(n—1) #we create a list O, where we will stock O_k,p as the invcoe

Olinvcoeffij(n,1l ,n)]=eye(n*x(n—1)) #initializing OX as the identity matrix
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a = hl(n)

b=h2(n)

J=b—eye (n*(n-1))

#We first define O_k,1

for k in range(l,n—1):

Olinvcoeffij(n—k,1 ,n)]=a*xO[invcoeffij (n—k+1,1,n)]
#We then define O_k,p, where k>p

for k in range(2,n+1):

for p in range(2.,k):

#print (k,p)
Olinvcoeffij(k,p,n)]=bxO[invcoeffij(k,p—1,n)]
#We now define O_p,p+1

Ol[invcoeffij (1,2,n)]=a*xO[invcoeffij (2,1 ,n)]+qlxJ
for p in range(2,n):

#print ("p",p)
Olinvcoeffij(p,p+1l,n)]=a*xO[invcoeffij (p+1,p,n)]+J+xO[invcoeffij(p—1,p,n)]
#We finally define O_k,p for k<p and kl=p-1

for p in range(3,n+1):

for k in range(2,p):

print (k,p)

Olinvcoeffij(p—k,p,n)]=a*xO[invcoeffij (p—k+1,p,n)]
return (O)

#
# MAIN TASK : computing O_i,j*O_k,p !
#
#Computing QKs(F1(1,n—1))
L=O(n)

#Writing down small quantum K theory product in a text file named "Output.txt'
Text =[]

for k in range(0,n%(n—1)):

A=L[k

[1,p]= coeffij(k+1,n)

for r in range(0,nx(n—1)):
[i,j]=coeffij(r+1,n)

R:77

R=R+'O_"+str(1)+’, +str(p)+" "+"«O_"+str (i)+’, +str(j)+"'= "
if (1+i<n+1 and j+4p<n+l and ((i>j and I>p) o

for s in range(0,nx(n—1)):

if (A[s,r]==0):

R=R

else:

[u,v]=coeffij(s+1,n)

R=R+"+(+str (Als,r])+")*"+°0 +str (u)+","+str (v)+" "
#print (R)

Text.append (R+ ;)

#print (Text)

numpy . savetxt (" Output.txt ", Text,delimiter=";", fmt="%s")
print ("Ok")
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Annexe C: résumé

Nous présentons ici les différents résultats exposés dans ce manuscrit.

Soit n > 0. On considére une collection I = {iy,..., i} de m entiers positifs i;, vérifiant ig = 0 <
i1 <o <y < ime1 = n. On note Fl; la variété de drapeaux parameétrant les drapeaux d’espaces
vectoriels du type

VicVi,c--cV, <C",

m

ot V;, est sous-espace vectoriel de C" de dimension iy.

3.8.4 Variétés de Gromov-Witten des variétés de drapeaux partiels. Lorsque
I’on supprime certains de ses espaces a un drapeau d’espaces vectoriels on obtient un autre drapeau,
consitué de moins d’espaces. Ceci induit une application d’oubli 7 : X — X' entre les variétés de
drapeaux associées. Considérons une classe nef [C] € Hz(X,Z) de courbe de X, ou la courbe C' est
isomorphe & son image par la projection 7. Fixons également une classe A = [I] € Ha(X,Z) de courbe
l dont la projection par I'application d’oubli 7 est un point. On considere dans le chapitre 1 les liens
entre la fibre géométrique du morphisme d’évaluation

€U[0]+)\ . MO,T(X7 [C] + )\) — X"

et la fibre géométrique du morphisme d’évaluation evp,(cy; & valeur dans (X’)". Pour r = 3 et X une
variété cominuscule, Chaput-Perrin ont montré que la fibre générale du morphisme d’évaluation est
une variété rationnelle [CP11a]. Pour X = PV, Pandharipande a calculé le genre de la fibre générale
de evg : Mo, (PYN,d) — (PY)" quand cette derniére est de dimension 1 [Pan97].

Définition 3.8.4.1. Soient X1, ..., X, des variétés de Schubert de la variété de drapeaux X, soit
d un élément de F(X). Pour un élément g = (g1,...,9,) général dans GL;, on appelle variété de
Gromov- Witten de degré d associée aux variétés X; et a g la sous-variété

W)g(’g(h...,Xr = evfl(ngl) N-en evr_l(ngr)

de MQJ,(X, d).

Rappelons qu'un morphisme f : P! — X représente un degré d € E(X) < Hy(X,Z) si f vérifie
f«[P'] = d. Notons que la variété de Gromov-Witten Wg(’fxl,..., x, parametre les morphismes P! - X
de degré d dont 'image a une intersection non vide avec les translatés g;- X; des variétés de Schubert X;.
Lorsque ces variétés sont de dimension zéro, leur nombre de points est un invariant de Gromov-Witten.
De facon générale, la caractéristique d’Euler-Poincaré de leur adhérence dans I'espace Mo (X, d) est
un invariant en K-théorie quantique [Giv00].

Soit n = 0, soit I = {i1,...,im} un ensemble de m entiers vérifiant 0 < i3 < -+ < i, < M.
Considérons la variété de drapeaux X' = Fl;. Pour une classe effective d € Hy(X,Z), on note
evq : Mo, (Flr,d) — (Fl;)" le morphisme d’évaluation. Rappelons que Fl; parametre les drapeaux
d’espaces vectoriels du type

{0}cV,, cVsyooocV;, <cC”

ot dimV;, = ij. Soit J = {j1,...,jm} un ensemble d’entiers vérifiant 0 < j; < -+ < jpr < n, tel que
I est inclu dans J. On note 7w : X = Fl; — X’ = Fl; le morphisme d’oubli. Le chapitre 1 démontre
I’observation suivante-cf. Théoreme 1.1.2.1.

Théoréme. Supposons que (I, J,[C]+ \) est une collection stabilisée, au sens de la définition 1.1.1.1.
Alors:

e Pour toutes variétés de Schubert X1, ..., X, de X, pour g en position générale dans GL] , chaque
variété de Gromov- Witten ng,l[f];l)‘ x, de Flj est une fibration rationnellement conneze au-
dessus de variété de Gromov-Witten Wg’[w(c)] de Flj.

Flrsm(X1) e m(X)
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e Pour x en position générale dans (Fljy)", la fibre ev[_cl]JM(x) est une tour de fibrations unira-

tionnelles au-dessus de la fibre ev[_ﬂl(c)] (m(z)).

Nous avons appelé une variété W une fibration rationnellement connexe (respectivement fibration
unirationnelle) au-dessus de W’ si il existe un morphisme dominant W — W' envoyant chaque com-
posante irréductible de W sur une composante irréductible différente de W', et dont la fibre générale
est une variété rationnellement connexe (respectivement unirationnelle). Une variété W est une tour
de fibrations unirationnelles au-dessus d’une variété W’ §’il existe une suite de morphismes

Wi=W—>Woo-o> W, =W

telle que pour 1 < i < [, la variété W; est une fibration unirationnelle au-dessus de W, ;.

3.8.5 Egalités entre corrélateurs de différentes variétés de drapeaux par-
tiels. Fixons des entiers 1 <i; < --- < 4,, < n. On considére la variété de drapeaux X paramétrant

les drapeaux d’espaces vectoriels
Vic---cV, cC

vérifiant dimV;, = 4;. La classe d = (dy,...,d;,) d’'une courbe C' de X est déterminée par m entiers
dy, da,. .., dm, ol d; est le degré de Pliicker de la projection de C sur la Grassmannienne Gr(n;,n).
Soit T un tore de GL,, agissant sur X par multiplication a gauche. Soient Ei, ..., E, des fibrés
vectoriels de X T-équivariants. Rappelons que les corrélateurs T-équivariants en K-théorie quantique
sont donnés par

(D1, s S0 gy = XT (evml ®- - @ev*E, @(DM—M(M)) : (3.26)

ou l'on a noté xr la caractéristique d’Euler-Poincaré T-équivariante. Pour un entier 1 < k < m, on
note X; la variété obtenue a partir de X en oubliant I'espace vectoriel V;, , et

ﬂ;:X—>XE

le morphisme d’oubli. Afin de faciliter les notations, on note dy = 0 = d,,+1. Le chapitre 2 fournit
I’égalité entre corrélateurs suivante-cf. Théoreme 2.1.3.1bis.
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Théoréme. Supposons:

Np—Np—1

o Vp<k dp >nk[i]

o dpy < |2

o di > (g —mp1) + dio + (g — ) (L] 1 1),

Alors pour tous fibrés vectoriels T-équivariants Ey, ..., E. de X3, les corrélateurs de X et de X3
associés au degré d et aux fibrés E; sont égaux:

X X3
<(7T@)*E17 ) (77@>*ET>T,(d1,...,dm) = <E1, ) ET>T,k(d1,..‘,dk_l,dk_,_l,.“,dm)'

Notons que dans le cadre des invariants de Gromov-Witten a trois points marqués, un résultat de
Peterson/Woodward permet de déduire tous les invariants a 3 points marqués des variétés de drapeaux
généralisées G/P des invariants a trois points marqués de G/B [Woo05].

3.8.6 Calcul de Schubert pour la variété d’incidence Fl;,_;. On s’intéresse
dans le chapitre 3 de cette these a différentes variantes du calcul de Schubert moderne pour la variété
d’incidence X = Fly ,,_1 paramétrant les paires (p, H) ol p est un point de P"~! et H est un hyperplan
de P"~!. Notons que X s’écrit sous la forme G/P, ou G = GL,, T est I'ensemble des matrices
diagonales, B est ’ensemble des matrices triangulaires supérieures et P est le sous-groupe parabolique
de G vérifiant B — P associé aux racines {«as,...,a,—1}. Le représentant de plus petite longueur w
d’un élément dans W/Wp ~ &,,/6,,_5 est une permutation vérifiant w(l) = ¢, w(n) = j, et pour
1 <k<n—1w(k) <w(k+1). On notera w; ; 'élément associé dans W /Wp. On peut considérer
la variété Fl; ,_1 comme une sous-variété de bidegré (1,1) de Gr(1,n) x Gr(n —1,n) ~ P*=1 x Pr=1,
définie par la relation d’incidence L < H. Pour 1 < i < n, on appelle

Li:={[xz1:--:2;:0...0]},

et

Les sous-variétés 4
X(i,j):=(Li x L)Y " Fly 1 < Fly g c P71 x P!

sont les variétés de Schubert X (w; ;) de Fly ,—1, pour 1 <i,j <mneti# j.

COEFFICIENTS DE LITTLEWOOD-RICHARDSON DANS K(Fly ,_1). Pour 1 < 4,5 < n, i # j,
I'immersion naturelle i : X (4,5j) — X définit un faisceau i+Ox; ;), qui est un faisceau cohérent de
Or1,.,,_,-modules. On note O; ; := [i+Ox(; )] la classe de ixOx; j) dans le groupe de Grothendieck
K(Fly 1) des faisceaux cohérents de Oy, ,_,-modules. Rappelons que les classes de Schubert
(O; j)1<i,j<n, i#; forment une base de K(Fl; ,,—1), et le produit

dimFllvnfl

i Flyn
Oij-Orp= >, (=1)[Tor, (Ox (i), Ox (k)]
1=0

définit une structure d’anneau associatif et commutatif (K (Fli,—_1),-) ayant pour unité [Op;, ,_,].
On pose O; ; =0sii<1ouj>n.

Proposition (Coefficients de Littlewood-Richardson dans K (Fl; ,,—1)-cf. Proposition 3.4.1.1). Soient
1<i,j,k,p<n, oui+#jetk+#p. Alors

Okp-0ij=Oighn j+p—1 sit+k—n=j+pori<jork <p;
Okp-0ij=0iskn-1,j+p—1 + Oitb—n jt+p — Oitkon—1j+p sinon.
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FORMULE DE CHEVALLEY ET ALGORITHME POSITIF DANS QK (Fl; ,—1). Notons [; := X(2,1)
et Iy := X(1,2) les deux variétés de Schubert de Flj,_; de dimension 1. Leurs classes [l;] et
[l2] en homologie singuliere de Fly ,_1 engendrent Hy(Fl; ,—1,Z). Rappelons que l'anneau de pe-
tite K-théorie quantique QKs(Flyn—1) = (K(Flin-1)) ® Q[Q1,Q2],*) de Flj ,,_1 est une défor-
mation de 'anneau K (Fly ,—1) par les variables Q1 et Q2. Cette déformation dépend des corréla-
teurs (O; j, Ok p, Os.t)d, [11]+ds[1o] définis dans la sous-partie 0.2.2. On retrouve I'anneau de K-théorie
K (Fly n-1) en prenant la limite Q1,Q2 — 0.

Notons h; := X(n—1,1) et hg := X(n,2) les deux variétés de Schubert de Fl; ,,—1 de codimension
1.

Proposition (Formule de Chevalley dans QK (Fly ,—1)-cf. Proposition 3.7.0.1).

Q1051 + Q1Q2 ([Ox] — On,) sik=1,p=n
Qlon,p sik = 17 p<n
Oh, *Okp =1 012+ Q1 ([Ox]—Op,) sik=2p=1
Ok—1p sik>1, k#p+1
Op—1p+ Oppr1 = Op_1p11 sil<p<n-1,k=p+1
Q2012+ Q1Q2 ([Ox] — Op,) sik=1,p=n
Q201 sik>1,p=n
Ohy *Okp =3 On_in + Q2 ([Ox] — On,) sik=n,p=n-1
Ok.pt+1 sip<n, k#p+1

Op7p+1 + Op_l,p — Op—l,p+1 sil<k<n—-1,k=p+1

Notons que pour X une variété cominuscule, une formule de Chevalley en petite K-théorie quantique
est donnée par Buch-Chaput-Mihalcea-Perrin [BCMP16].

Appelons ici un algorithme positif si a chaque itération le calcul effectué est une somme de coeffi-
cients de mémes signes.

Proposition. L’algorithme donné partie 3.8.1 est un algorithme positif calculant les coefficients de
Littlewood- Richardson dans QK(Fly n—1).

Corollaire. (Cf. Proposition 3.8.2.1) L’anneau de petite K -théorie quantique QKs(Fly n—1) est positif
au sens de la définition 0.3.3.1.

Conjecture. La formule fermée décrite dans la partie 3.8.8 domne les coefficients de Littlewood-
Richardson dans QKs(Flip-1).
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