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Abstract: The widespread adoption of 5G cel-

lular technology will evolve as one of the major

drivers for the growth of IoT-based applications.

In the first part of this thesis, we consider a ser-

vice provider that launches a smart city service

based on IoT data readings: to serve IoT data col-

lected across different locations, the SP dynami-

cally negotiates and re-scales bandwidth and ser-

vice functions. Network slicing is becoming the

platform of choice for several applications and

services. Nowadays, most applications are virtu-

alized to gain flexibility and portability. With net-

work slicing, operators can create multiple net-

work slices, which can be used for different ap-

plications with specific requirements. Behind the

network slicing, a slice expresses the need to ac-

cess a precise service type, under a fully quali-

fied set of computing and network requirements.

Also, different infrastructure providers charge slic-

ing services depending on specific access tech-

nology supported across sites and IoT data col-

lection patterns.

In the first part of this work, we introduce a

pricing mechanism based on the age of informa-

tion to reduce the cost of service providers. This

provides incentives for devices to smooth traffic

by shifting part of the traffic load from highly con-

gested and more expensive locations to locations

with cheaper prices while meeting the quality of

service requirements of the IoT service. The pro-

posed optimal pricing scheme comprises a two-

stage decision process, where the SP determines

the pricing of each location and devices sched-

ule uploads of collected data, based on the op-

timal uploading policy. First, the upload of col-

lected data to reduce the costs of the SPs is

considered to be a decision problem. By em-

ploying a Markov decision process framework,

we determine threshold-based optimal policies to

achieve the primary objective using dynamic pro-

gramming. We establish that the pricing of the

locations can be reduced to finding appropriate

thresholds respectively for each location, which

shifts part of traffic from the highly congested lo-

cations to locations with lower congestion. Given

the nature of the problem, we propose an algo-

rithm based on simulated annealing to find the

best combination of the thresholds. Then, we

modify the algorithm to perform parallel compu-

tation using a well-known coloring technique that

exploits the neighborhood structure of the loca-

tions to reduce the convergence time twofold.

One of the key contributors to the service

provider cost is the cost of leasing a network slice.

For this reason, we study the resource allocation

for network slices in 5G wireless networks in the

later part of the thesis. Resource allocation en-

compasses a combination of different resource

types (e.g., radio resource, CPU, memory, band-

width). In this work, we explore a differential pric-

ing scheme that maximizes social welfare among

slices as well as among end-users. To do so, we

propose a pricing mechanism that makes fairness

at multiple levels: fairness among slices and fair-

ness among slice locations. Therefore, the pro-

posed scheme is beneficial for both the slices and

the end-users independent of their location. In ad-

dition, we study the case where slices can manip-

ulate their preferences to improve their utility. We

show that the Fisher market game always has a

pure Nash equilibrium and we prove Price of An-

archy is 1/N , where N is the number of slices.

A major drawback of resource allocation with

a centralized approach is the privacy concerns of

the service providers and infrastructure providers.

In general, infrastructure providers do not pre-

fer to reveal information related to the avail-

able resource quantity. On the other hand, ser-

vice providers do not prefer to reveal their util-

ity functions. In the final part of this thesis, we

study a decentralized resource allocation mech-

anism inspired by the Kelly Mechanism that pre-

serves multi-level fairness. In addition, we show

that each infrastructure provider can implement

its own allocation rule independent of the other.

With the proposed mechanism, we establish that

the resulting allocation is a social optimum. Each

theoretical finding in this work is validated by nu-

merical simulations in respective chapters.
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Résumé : L’adoption généralisée des réseaux

cellulaires de cinquième génération (5G) devien-

dra l’un des principaux moteurs de la croissance

des applications basées sur l’Internet des objets

(IoT). En effet, la 5G offre non seulement ces

services classiques (de façon améliorée),mais

également de nouveaux services tel que l’Internet

des Objets (IoT) ou l’Internet Tactile.

Dans la première partie de cette thèse, nous

considérons un fournisseur de services (SP) qui

lance une application nécessitant la récolte de

données à partir d’objets connectés distribués

dans différentes cellules. Cependant, l’objectif

du SP est de minimiser le coût de cette ré-

colte permanente de données. En raison de ces

cas extrêmes d’usage, la 5G donne la possi-

bilité de traiter de façon adaptée chaque trafic

ou application. Pour cela, les techniques de vir-

tualisation ont été introduites dans la 5G pour

traiter les applications par des ressources en

couches (network slicing) de façon à s’adapter

à chaque besoin de façon efficace. Cependant,

le découpage du réseau permet aux opérateurs

de créer plusieurs tranches de réseau, qui peu-

vent être utilisées pour différentes applications

avec des exigences spécifiques. Une tranche ex-

prime le besoin d’accéder à un type de ser-

vice précis, dans le cadre d’un ensemble complet

d’exigences pour respecter le niveau de qualité

de service (SLA : Service Level Agreement). En

outre, différents fournisseurs d’infrastructure fac-

turent des services de découpage en tranches

en fonction à la fois de la technologie spécifique

d’accès prise en charge sur les sites et des mod-

èles de collecte de données IoT.

Dans la première partie de ce travail, afin

de réduire le coût des fournisseurs de services,

nous proposons un mécanisme de tarification

basé sur l’âge de l’information et la tarification.

Ce mécanisme incite les mobiles à lisser leur

trafic en déplaçant une partie de la charge de

trafic des cellules très chargées et plus chère

vers des cellules à prix plus bas, tout en respec-

tant les exigences de qualité de service (SLA).

Le schéma de tarification optimale proposé, com-

prend un processus de décision en deux étapes

: le SP détermine la tarification pour chaque cel-

lule et les mobiles déterminent la stratégie à met-

tre en place pour l’envoi des données en fonc-

tion de l’âge de l’information et sa localisation.

Nous présentons ce problème comme un pro-

cessus de décision markovien et nous détermi-

nons les politiques de seuil optimales qui perme-

ttent d’atteindre l’objectif principal. Nous établis-

sons que la tarification de l’emplacement ou cel-

lule peut être réduite à la recherche de seuils

appropriés pour chaque cellule. Compte tenu de

la nature du problème, nous proposons un algo-

rithme pour trouver la meilleure combinaison de

seuils. Ensuite, nous modifions l’algorithme pour

effectuer un calcul parallèle en utilisant une tech-

nique de coloration qui exploite l’interconnexion

des cellules pour réduire le temps de conver-

gence.

L’un des principaux facteurs du coût du four-

nisseur de services est le coût de location

d’une tranche de réseau. Pour cette raison,

dans la dernière partie de la thèse, nous étu-

dions l’allocation des ressources aux tranches de

réseau, en ce qui concerne les réseaux sans fil

5G. L’allocation de ressources englobe une com-

binaison de divers types de ressources (par ex-

emple, ressource radio, CPU, mémoire, bande

passante). Dans ce travail, nous explorons un

système de tarification différentielle qui max-

imise le bien-être social parmi les tranches ainsi

que parmi les utilisateurs finaux. Pour ce faire,

nous proposons un mécanisme de tarification qui

aboutit à une tarification équitable à plusieurs

niveaux : équité entre les tranches et équité entre

les emplacements des tranches. Par conséquent,

le schéma proposé est bénéfique à la fois pour

les tranches et les utilisateurs finaux, indépen-

damment de leurs emplacements. De plus, nous

étudions le cas où les tranches peuvent manip-

uler leurs préférences pour améliorer leur utilité,

nous montrons que le jeu de marché de Fisher a

toujours un équilibre de Nash en stratégies pures

et nous prouvons que le coût de l’anarchie est de

1/N , où N est le nombre de tranches.

Une insuffisance majeure de l’approche cen-

tralisée de l’allocation des ressources porte sur
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la confidentialité des données des fournisseurs

de services et des fournisseurs d’infrastructures.

En général, les fournisseurs d’infrastructures

ne préfèrent pas révéler les informations rela-

tives à la quantité des ressources disponibles.

En revanche, les fournisseurs de services ne

préfèrent pas dévoiler leurs fonctions d’utilité.

Dans la dernière partie de cette thèse, nous

étudions un mécanisme décentralisé d’allocation

des ressources inspiré du mécanisme de Kelly

qui préserve l’équité à plusieurs niveaux. De

plus, nous montrons que chaque fournisseur

d’infrastructure peut implémenter sa propre rè-

gle d’allocation indépendamment de l’autre four-

nisseur. Avec le mécanisme proposé, nous étab-

lissons que l’allocation qui en résulte est un opti-

mum social. Chaque découverte théorique de ce

travail est validée par des simulations numériques

dans les chapitres respectifs.
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Chapter 1

INTRODUCTION

Wireless networks have been playing a key role in breaking barriers and enabling new services in

various fields such as medical, agriculture, domestic services, and any field that involves communi-

cation from a distance. This enables the service sector, large enterprises to small scale businesses

to perform their daily operations. Starting from 2nd generation, the network architecture has been

constantly modified and adapted to the needs of the users. 2G networks introduced General Packet

Radio Service (GPRS) [27] laying the foundation for packet-based communication. Although bit rates

were significantly lower in the order of a few Kbps, given the timeline, it was a revolutionary idea as it

provided wireless access to the internet. With the introduction of High-Speed Packet Access (HSPA)

[42] in 3rd generation networks, data speeds were improved up to 14.4 Mbps for downlink and 5.8

Mbps for uplink. 3G improved the data rates by using Code Division Multiple Access (CDMA) [95]

instead of the traditional time/frequency division multiplexing that was used in 2G. Despite these

improvements, the data rates were relatively slow and expensive for the users. In parallel, different

wireless services were developed such as ZigBee, Bluetooth, WIFI, etc., that provide wireless ac-

cess from a few meters to hundreds of meters with data rates ranging from a few Kbps to a few

Mbps.

The next generation networks referred to as Long-Term Evolution (LTE) have completely changed

the user experience by deploying Orthogonal Frequency Division Multiple Access (OFDMA) [92].

This 4th generation networks offered a significant increase in data rates and a decrease in cost per

gigabyte of data. The data rates ranged from 10 Mbps to 600 Mbps in LTE-Advanced. Along with

OFDMA different technologies such as Multi Input Multi Output (MIMO) are used to achieve the said

data rates. The network architecture has seen a notable change, the traffic is now completely packet

based including the call service. The network is primarily composed of two fundamental networks

called Radio Access Network (RAN) and Core Network (CN), where the RAN is responsible for

providing access and performing baseband signal processing. On the other hand, the CN is respon-

sible for the management of user traffic. 4G has improved the latency to 20ms - 30ms and provided

better connections for users with faster mobility such as users in high-speed trains. This has given

the necessary boost for businesses to implement digital services more effectively. Smartphones be-

came more and more popular as the number of services improved the quality of experience for the

users. Various services such as video streaming, online gaming, and video conferencing have seen

enormous growth that was not possible with the previous generation of networks.
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1.1. 5G Networks

eMBB

URLLC mMTC

Figure 1.1: 5G use case scenarios.

So far the sole focus of the telecommunication industry has been focused on improving mobile

broadband. But the new innovative ideas of smart homes, smart factories, smart cities, autonomous

driving, and remote health care with heterogeneous access and resource requirements need diverse

network capabilities that can support the ever-growing business ideas. This led to the most important

technology thus far, it is the 5th generation networks. First, we briefly describe 5G networks on an

abstract level, then the network slicing which is responsible for providing tailor-made resources to

the Service Providers (SP). Later, we explain the importance of IoT data services which is in the

scope of this thesis, and the related metric named age of information which is very important for data

services. Finally, this chapter ends with the description of mathematical models that were employed

in this thesis and the organization of the remaining chapters.

1.1 5G Networks

5G, also referred to as New Radio (NR), is designed to accommodate evolved user requirements.

The primary focus of the NR is to provide network access to a wide variety of services. The services

that 5G can support are three broad categories named enhanced Bobile BroadBand (eMBB)[4],

massive machine type communication (mMTC)[26], and Ultra Reliable Low Latency Communica-

tion (URLLC)[21] as shown in figure 1.1. eMBB is considered for regular mobile communication

with higher data rates and better latency requirements to support the end-user needs for various

applications such as online gaming, streaming services such as Spotify, Netflix, Prime Video, etc,

and better audio and video calls. Other use cases like autonomous driving and remote health care

require very high reliability and low latency to run the service without failures that can lead to dis-

astrous outcomes, URLLC is specifically designed for these types of scenarios. With the rise of

IoT, more and more devices are being connected to the internet for remote control and monitoring.

This leads to massive connection requirements that can be categorized under mMTC. There are a

few fundamental technological considerations that allow 5G to successfully achieve its main targets,
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they are:

• millimeter (mm) waves: There are many limiting factors in enabling new technologies, one

such limiting factor for telecommunications is available bandwidth. The available bandwidth for

any major carrier is around 200MHz across various bands as reported in [87]. The number of

users seeking internet connection is growing enormously, on the other hand, the number of

devices per user is growing as well. So it is evident that at some point, we should look for a

frequency band to increase the available bandwidth. As specified in [87], 28 and 38 GHz along

with other bands have been explored for 5G. The waves in this frequency range are referred

to as millimeter waves, extensive research is going on, to find a way to utilize these waves as

they are not suitable in dense scenarios.

• Beamforming and Massive MIMO: millimeter waves are prone to absorption by the objects

such as trees, hence normal methods of signal transmission may not work efficiently. The

idea of concentrating the energy in a specific direction by adjusting the phases of the signals

from multiple antennas, referred to as beamforming, is a well-known concept. Beamforming

has been proven effective in steering the beams in a specific direction referred to as a look

direction [33]. Beamforming is not only effective in steering the signals but also in the reception

of the signals, referred to as spatial filtering [105]. In 5G, the number of antennas used at base

stations is in the order 100s [68]. Implementing this in the cellular systems is a challenge

due to the space constraints but current 5 G-enabled smartphones are equipped with multiple

antennas in a limited capacity to handle the mm-waves.

Further discussion of these technologies is not in the scope of this thesis. With earlier mentioned

technologies, 5G is a very powerful and flexible technology that enables the industry to reach new

frontiers. Another key technology that provides the flexibility required for 5G to provide network

access to heterogeneous services is called network slicing. This allows Infrastructure Providers

(InP) to allocate tailor-made resources to the SPs.

1.2 Network Slicing

Network slicing is a scheme by which a logical network is created on top of the existing physical

infrastructure. Then the logical network is logically separated to create network slices [46]. Such

a slice contains the resources in required proportions to support the use cases mentioned earlier

that has different requirements to run the services as depicted in figure 1.2. Thanks to technologies

such as virtualization and Software Defined Networks (SDN), the realization of network slicing is

achieved. Various SPs try to procure resources such as bandwidth, memory, storage, etc., over

micro, macro, and small cells. These resources are found typically in the core cloud and edge
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Figure 1.2: Schematic representation of Network slicing in 5G (inspired from [81]).

cloud. The core cloud consists of several data centers with incredible computing power and storage

capacity, so the majority of the processing and storage is achieved with the cloud as it allows for

flexible resource sharing.

However, the core cloud is often at a considerable distance compared to the geographic location

at which the SP operates, this can lead to higher latency that is not desirable for services that rely

on low latency. On the other hand, transferring large amounts of data is not appropriate as it creates

enormous bandwidth requirements that can create a bottleneck in the network. Often this data can

be pre-processed and then transfer the resulting data for further processing. This can be achieved

by placing these resources closer to the operating locations in a limited capacity to achieve the

objectives. The corresponding computing paradigm is referred to as edge cloud and this enables

edge computing, an idea that recently gained traction.

Part of this work is focused on the operational aspect of the service providers. We assume that

an IoT network slice has been allocated to the SPs and they run the data collection operation using

mobile IoT devices. And the reminder of the thesis is focused on resource allocation for service

providers with network slicing.

1.3 IoT data services and Age of Information

Data has been playing a decisive role in many applications ranging from health to daily weather and

traffic updates. With the use of machine learning and deep learning, artificial intelligence has been

widely deployed in many applications to predict or analyze the behavior of the subject of interest

in many fields. Proper collection of data that helps to solve many real world problems has been of

pivotal importance. Wide deployment of sensors to collect a wide range of data from agriculture to

health has enabled the idea of the Internet of Things (IoT) that connects all these devices embed-
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Figure 1.3: Age of information.

ded with various sensors to the internet. The predicted importance of IoT and the data collection

concerning future technologies allow for a study of operational aspects of such services.

In this thesis, we study the upload mechanism for collecting data that address two key issues

found in IoT data services: first is the metric that is associated with the data named age of informa-

tion, second is the better management of traffic associated with uploading the collected data. Age

of information is the time lapsed between the data collection and data upload as shown in figure

1.3. In this thesis, we consider that a fleet of mobile IoT devices is deployed to collect necessary

data from diverse locations. A mobile vehicle carrying such a device moves across the region to

collect enough data that represent different locations adequately. We consider that each location

is associated with a price to upload the data depending on the upload traffic. General idea is that

locations with heavy traffic are pricier in comparison to the locations with moderate to light loads.

Hence for some applications that do not require data to be uploaded immediately after collection,

the collected data can be differed anticipating a future incentive in terms of lower upload costs. For

example: assume that there are five locations a, b, c, d, and e out of which location e is a cheaper

option to upload the information, and consider that it takes 2 minutes to reach each location on an

average. Hence as shown in the figure 1.3, data is collected at a location a and the device waits until

reaching the location e before uploading the data as the previously visited locations are expensive

in comparison. In this way, part of the traffic can be moved from highly congested locations to less

congested locations without exceeding the preset constrain on the average age of information.

This is the general idea behind the first part of the thesis that is described in chapter 2 and

chapter 3 with extensive detail. There have been prior works that address the two facets of this

problem separately, but to the best of our knowledge, this is the first proposed work that bridges

these two aspects under a single framework. Given that the upload of data is associated with the

cost that plays a key role in the decision-making process, it is important to study the costs associated
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Figure 1.4: Sequential decision process (inspired from [85]).

with the lease of a slice. With this attempt, we study the resource allocation for network slices in the

second part of this thesis work. In this part we comprehensively study the multi-resource allocation

models for multi-users. We study two different approaches, first based on the Fisher market[17], we

propose a centralized multi-resource allocation scheme with non-linear pricing, and the second work

is based on the Kelly mechanism[60], where we proposed a mechanism for decentralized resource

allocation to preserve the user privacy.

1.4 Mathematical tools

In this section we describe the basic mathematical models that are in use to provide comprehensive

analysis of the problems that are in the scope of this work.

1.4.1 Markov Decision Process

Decision making is a very important process that decides the overall outcome of a system in the

long run. A sequential decision making is a process where an agent takes an action by observing

the state of the system at particular point in time. This results in an immediate reward (or cost)

depending on the action and the system evolves to a new state as shown in figure 1.4. Following

are the key components of a sequential decision theory [85].

• A set of system states S.

• A set of decision epochs N .

• A set of available actions As.

• A set of immediate rewards that depend on state and action Rs.
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• A set of transition probabilities that depend on state and actions pt(.|s, a).

In this work, we employ a particular type of sequential decision model called the Markov Decision

Process (MDP). In which the set of available actions, transition probabilities, and rewards depend

only on the current state but not on the previous history. A decision rule defines the action to be

chosen at a specific time, and a policy(µ) is defined as the sequence of decision rules at all epochs.

The decision process problem aims at choosing a policy before the first decision epoch to maximize

a function of the sequence of rewards. One such function is the long-run average reward, often

referred to as the expected total reward. It is defined as follows,

E[r, µ] = lim
η→∞

1

η

η−1∑

t=0

E[rt(xt, at); µ] (1.1)

where rt(xt, at) is an instantaneous reward, it is defined as follows,

rt(xt, at) =
∑

j∈S

rt(s, a, j)pt(j|s, a) (1.2)

The objective is to find an optimal policy µ that maximizes the average expected E[r, µ]. Further

details of MDP can be found in [85].

Aging control: As described in [110], a new field of network research has emerged referred to

as the timeliness of status updates. In any system with utility based on the status updates, sending

more and more updates can increase the utility, however, this can lead to congestion among the

communication channels which causes delayed updates. On the contrary, sending fewer updates

may not be a good strategy as well, since the received updates can be outdated. In such cases,

a simple optimization of delay is not sufficient, this has led to the interest in a performance metric

called age of information. This metric has been proposed to quantify the freshness of status infor-

mation of a physical process [6, 59]. This has been seen as an end-to-end metric to characterize

the latency in status updating systems and applications [110]. In the current generation, IoT sensing

services that rely on 5G technology pose their own challenges. The informative content of sensed

data changes over time depending on the profile of the IoT sensing service. Information on traffic

mobility, for instance, will retain its value on the timescale of the tenths of seconds, whereas tem-

perature and pollution measurements will change in the timescale of the hours. Clearly, managing

IoT devices requires a mechanism to control information freshness, the latter being also referred

to as the age of information. Such a mechanism, known as aging control, determines when IoT

readings should be uploaded to avoid stale information. Perhaps the earliest use of freshness can

be seen in periodic updates in real-time databases, where the concurrency of the computations was

enforced by using the age of an update [45], the time-stamped fresh measurements were written

into the real-time database by the sensors. Page refresh policies have been adapted to minimize

the AoI of cached pages [22]. The work in [58] focused on minimizing the age of safety messages
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for connected cars. In contrast to the prior work [45, 22, 48] based on the status update age, [59]

looked at the impact of random service times on the age of delivered updates. The focus of the initial

work was on evaluating the time-average AoI

〈∆〉T =
1

T

∫ T

0
∆(t)dt (1.3)

As shown in [110], despite the simplicity, the exact analysis of the age can be challenging, which

prompted an alternate age metric called peak age of information (PAoI) [25]. Another work [109] on

aging control based on a stochastic hybrid system (SHS) [41] provided an alternate approach for

average age analysis. In this approach a hybrid state [q(t), x(t)] was considered, where x(t) ∈ R
1×n

is an age vector and q(t) ∈ Q = {0, 1, ..., M} describes the discrete state of a network and Q is

a continuous-time Markov chain. As mentioned in [119], there are two broad categories of works,

the first category [59, 57, 44, 55, 43, 51, 50] consider that the status packets stochastically arrive

at the source node and model this generation process as a queuing system. The works based on

first come first serve (FCFS) [59], last come first serve (LCFS) [57] used Queuing theory to analyze

and optimize average AoI. Whereas the works in [44, 55, 43], propose scheduling schemes that aim

to minimize the average AoI. In the remaining two works [51, 50] propose decentralized scheduling

policies with near-optimal performance. The second category of works [101, 12, 106, 10, 29, 19]

consider that the status packets can be generated at any time at the source node. Optimal updating

policies are proposed to minimize the average AoI in [101, 12] with single and multiple sources,

whereas the authors in [106, 10, 29] propose updating schemes for an energy harvesting source

to minimize the average AoI. Minimizing the average AoI under resource constraints is the focus

of work in [19]. In our work in the first two chapters, we consider a similar approach to that of the

second category of works where a fleet of mobile IoT devices collect information among a given

number of locations and the information can be collected by the devices as they move from one

location to another location. Controlling the age of information dynamics of data carried by IoT

devices permits a trade-off between the value of IoT device readings and the cost of uploading them

with the 5G IoT slicing service. Hence the problem boils down to making a decision of whether to

upload the data or not at a given location. This is a classic sequential decision problem, we use

the previously described MDP model to design optimal policies that maximize the service provider’s

expected average reward. Another aspect of sensing services is the traffic encountered at various

locations. There may be a few highly congested locations and some may not have such a level of

congestion. So migrating part of the traffic from highly congested locations to other locations may

alleviate the burden on infrastructure provider resource capacities.

The two control actions considered in this work are traffic offloading control and aging control.

Traffic offloading is a standard networking technique to perform load balancing and avoid traffic

congestion. However, in 5G networks, it must work on a per-slice basis and must be made available

to SPs in a transparent fashion with respect to InP traffic management tools. Aging control on the
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other hand is a key requirement for sensing applications in IoT systems. These two problems have

been addressed separately [7, 67, 96, 86, 62], but no prior work has considered the two problems at

once to the best of our knowledge. The work presented in chapter 2 and chapter 3 aims to connect

these two research lines within the same control framework, resulting in a scheme for the cost-

efficient brokerage of IoT data using 5G slicing. While IoT data offloading techniques have been

proposed in the context of vehicular networks [86] or sensor networks [62], the proposed solution

is tailored specifically to the case of 5G slicing since the SP can stimulate IoT data offload towards

less congested areas using a distributed and location-aware scheme which operates at the sensing

application level. Furthermore, by means of flexible pricing control, we minimize the cost incurred

by the SP in order to lease slice resources from InPs. Finally, the proposed framework includes

inherently a notion of service level agreement (SLA) since it is rooted in the concept of AoI which

captures latency requirements of IoT data readings.

1.4.2 Market models for resource allocation

Resource allocation is a common problem that appears in a variety of fields such as economics,

computers, etc. This problem has been well studied in the field of economics with many works laying

the foundation for modern studies. Market models provide a standard technique to study resource

allocation under various scenarios. Buyers want to buy the listed goods in exchange for money.

Now the problem is to design a mechanism that adequately allocates the goods. The mentioned

allocation should be efficient and fair among the buyers.

FISHER MARKET: The general equilibrium model proposed by Irving Fisher is a comprehensive

model for computing equilibrium prices [16]. It is one of the fundamental model which has been

extensively applied in multi-resource allocation for wireless networks. In this work, we follow the

Fiher market model defined in [17]. The general idea behind this model is that there are N buyers,

each with a budget Bi, and they try to buy the available resources from a seller. The marketM :=
〈
N , (Bi)i∈N ,R, (ui)i∈N , p

〉
is defined as follows,

• Player set: set of buyers N that are competing to procure resources from the seller.

• Budgets: Budget Bi associated to each buyer i.

• Resource set: Available resources R for provisioning by the seller.

• Utility: Each user i obtains a utility ui for procuring an amount of resource from the seller that

indicates the level of satisfaction by the user for obtaining a certain resource r.

• Prices: Each resource is assigned with a price pr depending on the competition.

The objective of this model is that upon receiving the budgets from all the competing users, the

seller has to compute a price that adequately distributes the resources among the users. Hence,
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the tuple (xi, pr) of resource bundle xi and price play a crucial role in obtaining an optimal resource

allocation. The budget associated with each user plays a key role as the allocation of the resources

can be impacted by Bi. The budget has multiple interpretations, it can be seen as the amount that

a user posses to spend on the resources or it can be seen as market share of a user i. Users

with higher budget can procure higher amount of resource, where as the users with lower budget

get lower resource in comparison. Here, resource bundle xi is a vector of resources allocated to

user i. One way to obtain an adequate resource allocation is to obtain an optimal tuple (x∗, p∗) that

corresponds to a market equilibrium (ME), which is defined as follows,

Definition 1.1. Allocation and price vector (x∗, p∗) is called as Market Equilibrium (ME) of market

M if the following conditions are satisfied.

C1 Each i ∈ N SP gets his favourite bundle x∗
i ,where

x∗
i : argmax

xi≥0;C(xi)≤Bi

ui(xi) (C1)

C2 The demand x∗ meets the supply or the market is cleared, i.e.,

∑

i∈N

x∗
ir ≤ Cr ∀r ∈ R (C2)

and the inequality (C2) is saturated if pr > 0.

Where, C(xi) is the cost for obtaining the resource bundle xi and cr is the available capacity

for resource r. Condition (C1) ensures that the allocated resource bundle provides each user with

maximum utility where the cost of such bundle does not exceed the available budget. On the other

hand condition (C2) warrants that all the users get their requested resource or the resource is

completely sold.

With this set of conditions for allocation, previous works employ [17, 79] a centralized approach

that propose an optimization problem to obtain an optimal allocation among the competing buyers.

PSW : Maximize :
x

∑

i∈N

BiU(xi) (1.4)

∑

i∈N

xir ≤ cr, ∀r ∈ R. (1.5)

Where the objective function (1.4) is an aggregated utility functions weighted by the budget of a
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user i, and the utility function is considered to be α-fair allocation rule and it is defined as follows

U(y) =





(y)1−α

(1−α) if α 6= 1,

log(y) if α = 1.
(1.6)

Depending on the value of the parameter α, different fairness can be achieved among the com-

peting users. Given that each user is associated with a budget Bi, when α = 0, it may be possible

that the user with slightly higher budget can result in allocating the entire resource to that user and

there may be starvation for other users. For this reason, it is preferred to implement some level of

fairness to prevent any user from starvation. When α = 1, the corresponding optimization problem

is known as Eisenberg-Gale program [28] . And it has been proven that the optimal solution for

this problem is an exact ME[17]. Given that the objective function is a concave function, gradient

projection method can be used to find an optimal solution[15]. It is shown that setting α to 1 leads

to the fairness function in [77] referred to as proportional fairness, which is an intermediate choice

between the aforementioned extreme cases. Assuming that x∗ is a feasible solution (5.1)-(5.2), an

allocation x∗ is said to be a proportionally fair allocation, if the aggregate of proportional change

with respect to any other feasible allocation x is negative, i.e.,

∑

i∈N

x∗
i − xi

x∗
i

≤ 0. (1.7)

However, one of the limiting factors of proportional fairness is that this leads to linear pricing

which is often not a practical approach in the real world applications. For this reason non-linear

pricing scheme has been proposed by [34]. Other fariness schemes that are covered under α-fair

allocation rule are detailed in chapter 4. In this work, we use this fisher market approach to propose

non-linear pricing scheme for an optimal resource allocation among service providers competing

for multiple resources. Resource allocation based on this central approach has been significantly

employed in wireless networks, however it has severe drawback as the central entity requires that

service providers to reveal their utility functions which are sensitive for them. For this reason, decen-

tralized resource allocation methods have been investigated. One of prominent works that propose

local algorithms for service provider to obtain an exact optimal allocation achieved by the central

approach has been proposed by Frank Kelly [60].

KELLY MECHANISM: Frank Kelly proposed an alternate model [60] that aims in achieving the

optimal resource allocation for a single resource in decentralized manner to comply with the privacy

aspect of the SPs. In this model, instead of traditional centralized approach that require the SPs to

reveal their utility functions, a decentralized allocation mechanism is proposed by dis-aggregating

the Main optimization problem into two sub optimization problem solved by the InP and SPs respec-

tively.

The objective Kelly mechanism [60] is to find an optimal rate allocation for communication net-
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works, which is defined by following optimization problem.

maximize
x

∑

i∈N

Ui(xir), (1.8)

subject to
∑

i∈N

xir ≤ cr ∀r ∈ R, (1.9)

xir ≥ 0; ∀i ∈ N , ∀r ∈ R. (1.10)

It can be observed that solving above concave optimization problem require that the SPs reveal

the utility functions, which is a sensitive information. For this reason, two sub-optimization problems

are defined for InP and SP respectively that are solved concurrently with exchange of non sensitive

information.

Each user solves the following optimization problem:

maximize
b

Ui

(
bir

φr

)
−
∑

r∈R

bir, (1.11)

over bir ≥ 0; ∀i ∈ N , ∀r ∈ R. (1.12)

Where bir is the bid value of SP i with an interpretation of market power or monitory value

depending on the scenario, φr is the price associated with the resource. User computes an optimal

bid and communicates it to the InP. Then, InP solves the following optimization problem:

maximize
x

∑

i∈N

bi log(xir) (1.13)

subject to
∑

i∈N

xi ≤ cr, (1.14)

xir ≥ 0; ∀i ∈ N . (1.15)

Now, InP sends the price φr and allocation vector x to the users, now the users compute new bid

bir and communicates it to the InP. This iterative process converges to an equilibrium beyond which

no SP has no benefit in changing the bid. It is shown in [60] that the resulting price φr and alloca-

tion vector x solves the system optimization problem defined in (1.11)-(1.12). R. Johari extended

this mechanism for multi-resource context for the communication networks in [53]. We extend this

work to the context of multiple resource types, each supported by a different InP with multiple SPs

submitting a request for available resource types. We employ an α-fair allocation rule at the system

level and allow each InP to implement its own allocation rule. In addition, we propose two separate
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algorithms to obtain the desired results.

1.5 Chapters organization

As mentioned earlier, this thesis consists of two major works, the first part focuses on the opera-

tional aspect of the data collection services, and the second part focuses on the resource allocation

aspect.

• We begin with chapter 2 that focuses on the primary work that consists of the decision-making

problem that is concerned with the age of information. This is an MDP problem, we propose

a threshold-based policy to address this problem. Then, we focus on traffic offloading by for-

mulating an optimization problem that accounts for traffic offloading as well as the age of

information.

• This problem turns out to be an NP-hard problem, we propose a heuristic solution based on

simulated annealing in chapter 3. We describe several algorithms that solve the given combi-

natorial optimization problem and speed up the convergence by exploiting the neighborhood

structure of the locations.

• Chapter 4 describes the central resource allocation mechanism. In this chapter, we focus on

an allocation model that fairness across service providers and locations as well. This multi-

level allocation model focuses on more general pricing that is non-linear pricing instead of the

linear pricing mechanism described in many works. We consider α - fairness to formulate the

optimization problem. We study the strategic aspect of the SPs at the end to understand the

impact of the selfish behavior of SPs on social welfare.

• There are several drawbacks to centralized solutions such as a single point of failure and the

necessity of revealing private information by both the SPs and InPs. In chapter 5, we propose

another mechanism that is based on a distributed approach where each SP locally solves an

optimization problem to increase the value of obtained resources. There is no need for either

the InP or the SP to reveal sensitive information to obtain a solution. The optimal solution is

achieved with an iterative bidding mechanism. It turns out that this optimal solution solves the

social welfare function as well. And finally, this manuscript ends with a conclusion and some

insights into future work.
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Chapter 2

AGING CONTROL

2.1 Introduction

Data collection at scale represents the key signature of future IoT applications, posing significant

challenges in the integration of emerging 5G networks and IoT technologies as identified in early

studies [71]. In fact, pervasive object readings will play a decisive role in the context of smart cities

for both process monitoring and management [63]. Using IoT, a whole new set of applications will

be able to feed local information generated by both objects and mobile devices into their databases.

Such information streams are consumed for management and prediction purposes by services such

as city air management, smart waste management or traffic management, and demand-response

schemes [113]. Data brokerage is thus emerging as one of the most interesting business opportu-

nities: new Service Providers (SP) in 5G networks can seize the opportunity to mediate between

companies purchasing IoT data and device owners. This is considered a cornerstone in creating a

marketplace for IoT data [72, 82, 11, 89] which is essential for the uptake of smart city services.

The architecture of IoT networks must be able to support local data streams from highly hetero-

geneous information sources, including e.g., meters for water and electricity management, outdoor

and indoor positioning data, parking presence sensors, and a whole new set of user-generated

contents related to mobile application-specific data. Indeed, long-standing problem of integrated ar-

chitectures and protocols to support IoT data collection appears finally solved by the uptake of 5G

connectivity [23]. Slicing techniques offered by 5G technology allow Infrastructure Providers (InP) to

offer differentiated services to their customers using shared resource pools. A slice for IoT services,

in this context, is a share of mobile network infrastructure obtained by forming a logical network on

top of the physical one connecting IoT devices (Fig.2.1). More generally, traffic differentiation in 5G

systems can be obtained by isolating specific traffic categories within slices, which in turn can be

dedicated to serving target verticals under specific service isolation guarantees [114, 88]. Smart city

services, where SPs support IoT data readings from mobile sensing devices are a key use case of

slicing service. In this context, the role of the SP is to lease resources (radio, processing, storage,

etc.) in the form of one or more dedicated slices and from one or multiple InPs; the leased slice will

support the connectivity of a fleet of devices taking part in the IoT sensing services with a cost for

the upload of sensed data.

The costs incurred by sensing services depend on a number of factors, including the business
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model and the ownership of the sensing devices. It is possible that the sensing devices are owned

by the SP, whereas the sensing services are designed and run by third parties and offered, e.g., as

a smartphone application. In this case, the sensing services involve payments to the SP [49]. If the

SP is in charge of the sensing services and also the slicing services, in turn, non-monetary costs –

similar to the shadow prices defined in [60] – can be used effectively as a penalty to avoid hot-spot

phenomena by deterring the upload of sensed data in congested areas.

IoT sensing services relying on 5G technology pose their own challenges. The informative con-

tent of sensed data changes over time depending on the profile of the IoT sensing service. Infor-

mation on traffic mobility, for instance, will retain its value on the timescale of the tenths of seconds,

whereas temperature and pollution measurements will change in the timescale of the hours. Clearly,

managing IoT devices requires a mechanism to control information freshness, the latter being also

referred to as the age of information (AoI). Such mechanism, known as aging control, determines

when IoT readings should be uploaded to avoid stale information.

Controlling the AoI dynamics of data carried by IoT devices permits a trade-off between the value

of IoT device readings – indeed specific to a tagged service – and the cost for uploading them with

the 5G IoT slicing service. Motivated by the aging control problem intrinsic to IoT devices, and by the

traffic offloading capabilities enabled by 5G technology, we investigate the following two questions

in chapter 2 and chapter 3 respectively:

1. given the requirements of a tagged IoT sensing service and the SP charging rates, what is the

optimal upload strategy to control information freshness at the device level?

2. how should the SP incentivize users to offload IoT data in order to reduce the costs to lease

the resource slice?

In this chapter, we address the first question via the control of AoI at the device level, and an

optimal upload strategy is derived. Sensing devices trigger the upload of sensed data depending

on two factors: the application profile and the price for the IoT sensing service. It is the application

profile that determines for how long sensed data retains their value, whereas location-dependent

prices determine the unit cost of sensed data uploads performed using the IoT slice. The problem is

formulated as a Markov decision process (MDP). The optimal stationary policy solving the problem

has the multi-threshold structure: the upload of information occurs depending on the upload prices

available to a tagged device, i.e., prices available in the cell it is connected to, and on the AoI

relative to the data stored in the device memory. The next chapter addresses the minimization of

slicing service costs: the SP optimizes the vector of prices that are exposed to devices with the

aim to minimize the cost paid to the InP for leasing the slice while satisfying the applications’ delay

target.
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Following tables summarize all the notations, variables that are used in chapter 1 and chapter 2.

Table 2.1: Table of notations: Basic parameters

Notation Description

L set of regional locations; L = {1, . . . , L}

P set of upload unit prices; P = {p1, . . . , pK}

M set of information age values; M = {1, . . . , M}

Di amount of data generated at location i during a time slot

Πij transition probability from location i to j

Aλn
ij probability of moving from location i to j in n steps without entering

taboo set A

πi occupation probability of location i

Bi maximum bandwidth at location i

B Maximum bandwidth vector

Ci monetary unit cost to lease bandwidth at location i

d target latency

ǫi tolerance factor at location i

N number of IoT devices

F average size of the collected data

κ timeslot duration (seconds)

Table 2.2: Table of notations: States, actions, transitions and rewards

Notation Description

t current timeslot

xt age of information at time t

lt location at time t

st state at time t; st = (xt, lt)

at action at time t, where 1 means upload, and 0 defer

µ(x, l) function expressing the probability that the device performs action

a = 1 in state s = (x, l)

Γs,a,s′ transition probability from s to s′ under action a

rt(st, at) instantaneous reward under state action pair (st, at) at time t
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Table 2.3: Table of variables

∆i(p) random variable characterizing age of information at upload time for

data collected at location i

F∆i
probability distribution (CCDF) for the age of information at upload

time for data collected at location i

Yij(p) average traffic rate for data collected at location i and uploaded at

location j

yij average traffic rate for data collected at location i and uploaded at

location j, per device

f(i, j, t; p) probability that a device collects data from location i and upload it at

time t in location j

U set of prices corresponding to locations wherein the optimal policy is

to upload

K number of threshold values in the current multi-threshold policy

τ (j) jth AoI threshold value, τ (1) = 0, τ (j) ≤ τ (j+1), and τ (K) ≤ M (for

convenience, τ (K+1) = M)

τl AoI threshold for data collected at location l

τ AoI threshold vector (one threshold per location); τ = (τ1, . . . , τL)

τmax AoI threshold vector with all values equal τmax (maximum achievable

AoI)

Prior art and main contribution. The two control actions considered in this work are traffic offload-

ing control and aging control. Traffic offloading is a standard networking technique to perform load

balancing and avoid traffic congestion. However, in 5G networks, it must work on a per slice basis,

and must be made available to SPs in a transparent fashion with respect to InP traffic management

tools. Aging control on the other hand is a key requirement for the sensing applications in IoT sys-

tems. These two problems have been addressed separately [7, 67, 96, 86, 62], but no prior work

has considered the two problems at once to the best of the authors’ knowledge. The work presented

in chapter 2 and chapter 3 aims to connect these two research lines within the same control frame-

work, resulting in a scheme for the cost-efficient brokerage of IoT data using 5G slicing. While IoT

data offloading techniques have been proposed in the context of vehicular networks [86] or sensor

networks [62], the proposed solution is tailored specifically to the case of 5G slicing since the SP

can stimulate IoT data offload towards less congested areas using a distributed and location-aware

scheme which operates at the sensing application level. Furthermore, by means of flexible pricing

control, we minimize the cost incurred by the SP in order to lease slice resources from InPs. Finally,

the proposed framework includes inherently a notion of service level agreement (SLA) since it is

rooted in the concept of AoI which captures latency requirements of IoT data readings.
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Chapter organization. The remainder of this work is organized as follows. A detailed system

description is reported in Sec. 2.3. Then, the two main control actions, namely, traffic offloading

control and aging control are discussed in Sec. 2.4 and in Sec. 2.5, respectively. Sec. 2.6 bridges

the two pillars with a unified framework. We describe the numerical results in Sec. 2.7 to validate

the theoretical findings. The algorithms based on simulated annealing to control the said price are

described in the next chapter.

2.2 Related work

Most related works tackle either the control of AoI in IoT networks or traffic offloading for 5G net-

works.

Aging control for IoT. Aging control is at the core of IoT sensing applications, as it captures the trade-

off between data staleness and resources utilization. Given the increasing demand for IoT systems,

the literature on control of AoI is correspondingly growing. Most of the work on information aging

control focus on users’ standpoint, accounting for costs as perceived by the devices whose AoI is

under control. Connections of AoI with traffic offloading are typically analyzed in the literature as a

downstream effect of aging control. The potential relationship between AoI and traffic offloading has

been signaled in [7]. With previous works mostly focusing on computation and task offloading [65,

67, 96] rather than traffic offloading. In this paper, in contrast, we have considered jointly aging con-

trol and traffic offloading as first class citizens of an ecosystem wherein users and providers interact.

In our scheme SPs influence users via pricing mechanisms able to couple aging control and traffic

offloading in a unified framework.

Traffic offloading and slicing in 5G networks. Utility service providers have long performed IoT data

collection to reduce operational costs. Such traditional schemes are typically based on M2M to

match the requirements of proprietary SCADA systems and charged per message. Nowadays, they

appear inadequate for emerging IoT systems. In fact, the second major driver of the 5G technol-

ogy, beyond multimedia traffic, is the current growth of mobile IoT connections [23]. Actually, with

both new LTE-M radio interfaces and the new suite of architectural paradigms, 5G introduces key

infrastructural assets able to ease both IoT access to radio resources and computing at the edge

of the network. Traffic offloading is enabled by 5G technology through slicing. Technical aspects

such as slice insulation and fair slice allocation are still under development to upgrade LTE tech-

nology towards 5G, with large effort by the research community to overcome such technical issues

[90][52][117]. Nevertheless, slicing techniques are currently under standardization: specifications of

the 5G system’s slicing architecture and its requirements are available [3]. In future 5G networks

virtual private networks for IoT data collection will be shipped to SPs on top of the existing mo-

bile network infrastructure with InP dedicated customer support. The traffic offloading mechanisms

proposed in this work can be used by any such SP at the slice level for cost minimization purposes.
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Figure 2.1: Cutting slices of resources across multiple locations and across multiple InPs.

2.3 System description

A SP offers internet connectivity to heterogeneous IoT devices over a physical region (Fig.2.1).

The SP can act as a data broker, i.e., collects data from device owners or from mobile IoT devices

deployed across the region and sell the data to interested parties under Data as a Service (DaaS)

scheme or use the collected data for own service. To that aim, a single SP can aggregate resources

leased from various available InPs at different locations. Each InP provides dedicated 5G slices for

IoT data collection at certain cost. In practice, sensed data is relayed using a fleet of mobile devices

uploading them at the need while mobile relays are served through resources across a pool of base

stations covered by the selected InPs infrastructures.

Because sensed data belongs to a variety of categories, e.g., healthcare data, environmental

monitoring data, road traffic data, etc., it has different time sensitivity. SP customers will require

brokered IoT data to comply with certain QoS requirements. Throughout this work, the latency of

delivered IoT data is the reference SLA metric (indeed it is a fundamental parameter for, e.g., indus-

trial automation, intelligent transport systems, and healthcare monitoring applications). Latency, in

turn, is impacted by the locations from which mobile devices upload sensed data. Note that aggre-

gated traffic may vary significantly across regional locations, e.g., due to the presence of hotspots.

Ultimately, the SPs need to grant target QoS figures for a given IoT application and obey stan-

dardized SLA. To this aim, the key enabler is 5G network slicing by which the SP negotiates and

adjusts the scale of bandwidth and service functions. In practice, this entails orchestrating slicing

functionality across heterogeneous access technologies (5G, LTE, 3G, and WI-FI), over different

site types (macro, micro, and pico base stations) and over multiple InPs. The cost of leased infras-

tructures depends on chosen InPs, specific access technology supported across regional sites, and

IoT data collection patterns. For the sake of clarity, only bandwidth costs are considered, but the

whole framework may include other costs for local computation and/or storage [3] as well.

In order to comply with SLA agreements for IoT data collection, the SP dynamically determines

the resources per slice required to match the current demand. Due to scarcity of resources, higher
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Figure 2.2: (a) Without traffic offloading mechanism, (b) With traffic offloading mechanism.

costs will be incurred in crowded and congested locations. Hence, the SP designs an IoT data

collection policy by which freshness of IoT data is traded off against costs. In fact, the upload of

non-critical data can be deferred to occur at a location with smaller costs yet complying with SLAs,

i.e., target latency figures.

The key mechanism detailed in the next section is a price-based load balancing scheme where

the SP incentivizes users not to upload data from congested locations. Prices are dynamically set,

e.g., based on the congestion levels. Different locations are tagged by a price to upload a unit

of IoT data. The whole scheme takes advantage of user mobility: while IoT devices are carried by

users appliances and move across the regions, data upload can be diverted towards less congested

locations. Through pricing, the SP can shift the IoT traffic generated by mobile IoT devices from

locations where data are sensed to less crowded ones, where leased slice resources are relatively

cheaper. Following example provides the intuition behind the traffic offloading mechanism,

Fig. 2.2(a) shows a scenario that has no control mechanism for traffic upload. As a result, up-link

traffic is high in location i and SP may lose part of the data due to outage. In addition, upload costs

would be higher as well. In Fig. 2.2(b), in contrast, upload traffic is well distributed. A traffic offloading

mechanism is adopted, and there is no overburden on any particular access point, hence the data

is not lost due to outage. This avoids re-transmissions further congesting the area.

In the following sections, a mechanism that combines the aging control and traffic offloading is

introduced. This mechanism, deployed at each device, is designed based on the aggregated mobility

of the devices. Nonetheless, if the individual mobility of devices is available, the mechanism can

also leverage this information, noting that the objective of the device is to find an optimal strategy

to upload the collected data. If decisions are made per device, using individual mobility patterns,

heterogeneity across devices does not impact the upload decisions of each device.
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2.4 Traffic Offloading

In this section, the SP pricing scheme which is used to minimize the total cost incurred by the SP is

formulated. The resulting control problem accounts for the mobility pattern of devices and the delay

requirements of the IoT data collection service. At each location, the SP selects the corresponding

InPs. Let L = {1, 2, .., L} be the set of locations. Let Bi be the maximum bandwidth available at

location i, 1 ≤ i ≤ L, resulting in a maximum bandwidth vector B. Each location is tagged with a

unit price, resulting in a price vector p = (p(i), i ∈ L) ∈ R
L. The price vector induces a set of K

different prices denoted by PK , PK = {P1, .., PK}, where P1 < . . . < PK . Prices impact location-

dependent upload policies which determine when a mobile IoT device should upload sensed data,

based on the current age of information. The age of information represents the time elapsed from

sensor reading until upload. Let ∆i(p) be the random variable representing the age of information

based on the price vector – at upload time – for data collected at location i. Let Ci be the monetary

unit cost to lease bandwidth at location i. Let Di be the amount of data generated by devices at

location i during a time slot. Finally, the upload control is represented by variable Yij(p) which is the

average traffic rate for data collected at location i and uploaded at location j.

Each SP face with the following optimization problem, named here as

TRAFFIC OFFLOADING:

minimize
p

∑

i∈L

∑

j∈L

Cj Yij(p)

subject to
∑

j∈L

Yji(p) ≤ Bi, ∀i ∈ L (2.1)

∑

j∈L

Yij(p) = Di, ∀i ∈ L (2.2)

P(∆i(p) > d) ≤ ǫ, ∀i ∈ L (2.3)

Yij ≥ 0, ∀i,∀j ∈ L (2.4)

In this problem, eq. (2.1) is the per location constraint on the available bandwidth for the IoT slice,

and eq. (2.2) is concerned with the flow conservation constraint. Constraint (2.3) provides a tunable

SLA constraint on the age of information collected at specific location i ∈ L, depending on a target

latency value d > 0 and on tolerance ǫ > 0.

The main challenge to solve the TRAFFIC OFFLOADING problem is to account for the mobility

pattern of devices. In fact, they collect data at some tagged location, and they upload it according

to the chosen policy, in order to meet QoS requirements. In practice, once a sensing device is

associated with a tagged location, it will be informed of a price available for the IoT slicing service,

so that the decision to upload or not can be implemented onboard of sensing devices in a fully
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distributed fashion. An algorithm that is able to determine the optimal price vector p solving the traffic

offloading problem is described in the next chapter. First optimal upload control at the device for a

given price vector p should be analyzed properly to study the algorithms that solve the combined

problem.

2.5 Aging Control

Each device decides to upload data or defer based on its actual location, the vector of prices, and

the age of information. Let xt be the age of information for data collected at time t by a tagged

device: xt = 1 when the device collects it, and increases by one at every time slot, except when the

device uploads data or the collected data reaches the maximum age, denoted by M . Note that M

is a design parameter, assumed to be fixed and given. Let M = {1, . . . , M} so that xt ∈ M. Let

U(x) be the utility corresponding to uploading data with age of information x, where U(·) is a non-

increasing function. The selection of the utility function is up to the SP. For example, if the SP wants

to collect data concerning traffic updates, the value of the information may decrease exponentially

fast. For pollution level updates, in contrast, the value may not decrease as fast.

The state of a tagged device at time t is denoted st = (xt, lt), where xt is the AoI as described in

the above paragraph and lt is the device’s location at time t. Location lt ∈ L is the state of a finite,

discrete, ergodic Markov chain, whose dynamics determine the mobility pattern. Let the transition

probability between location l and k denoted by λlk; Λ = {λlk}, is the corresponding transition

probability matrix. Finally, let π = [π1, π2, ..πL] be the steady state probability distribution.

The action set available at each device is to upload or defer, i.e., A = {0, 1}, where 0 means

“defer” and 1 “upload”; the action taken at time t is denoted by at. Hence the dynamics of the age of

information at a tagged device is given by

xt+1 =





1, if at = 1,

min(xt + 1, M), if at = 0.

Next, the transition probability of the resulting MDP is characterized. Let s = (x, l) be the current

state of the device and let s′ = (x′, l′) be its next state under action a. The transition probability from

s to s′, under action a, is given by

Γs,a,s′ =





λl,l′ , if x′ = min(x + 1, M) and a = 0

or x′ = 1 and a = 1,

0, otherwise.

(2.5)
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Instantaneous reward. The instantaneous reward under the state action pair (st, at) at time t,

rt(st, at), is

rt(st, at) = U(xt)− p(lt) · at. (2.6)

Upload policy. The upload policy µ for a tagged device is a probability distribution over the

action space. The rest of the discussion is restricted to stationary policies; since the action space is

a binary set, a policy simplifies into function µ = µ(s) expressing the probability the device performs

action a = 1 in state s.

Problem statement: The objective of each device is to maximize the expected average reward:

AGING CONTROL: max
µ

E[r, µ] (2.7)

E[r, µ] = lim
η→∞

1

η

η−1∑

t=0

E[rt(xt, lt, at); µ]

Since the service provider (SP) aims to promote uploads as much data as possible at locations

with smaller cost, it is natural to consider the smallest price to be P1 = 0. As a consequence, in

any optimal strategy the devices will upload immediately their collected data at locations with price

P1 = 0. In [75], All the results are extended for P1 > 0. For this scenario, the instantaneous reward

can be expressed as

rt(st, at) = U(xt)− (p(lt)− P1) · at − P1at (2.8)

Note that the value P1 can be interpreted as the energy cost of each uploaded message. In the

remainder of this work, and without loss of generality, we assume P1 = 0.

The optimal control policy is characterized as follows that solves (2.7). A special type of strategy

is introduced, referred to as a multi-threshold strategy.

Definition 2.1 (Multi-threshold strategy). A multi-threshold strategy is such that there exists K

and threshold values τ (j), j = 0, . . . , K − 1 such that τ (1) ≤ τ (2) ≤ . . . ≤ τ (K) ≤M and

µ(x, l) =





1 if x ≥ τ (j) and p(l) ≤ Pj

0 otherwise

Note that K is the number of thresholds, and τ (1) and τ (K) are the minimum and maximum threshold

values.

A device using this multi-threshold strategy uploads the collected data at its current location l at

price p(l) = Pj if the age of information exceeds τ (j−1). The following theorem reduces the problem

of finding the optimal strategy for the AGING CONTROL problem to the one of finding the K thresholds

τ (j), j = 1, . . . , K.
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Theorem 2.2. The optimization problem (2.7) admits a unique deterministic optimal multi-threshold

strategy.

Proof. See Appendix B

Some further properties of the optimal thresholds are characterized as follows. A qualitative

description of the behavior of the optimal policy is depicted in Figs. 2.3 and 2.4. Observe that a

multi-threshold strategy is a simple procedure to implement the distributed IoT upload control. In

practice, when data is stored on a device, the AoI is one. Thus the device at the beginning will start

by uploading only at locations where the price is P1 = 0, noting that τ (1) = 0. Whenever AoI reaches

τ (2), i.e., x ≥ τ (2), the device switches to a second phase wherein an upload occurs if prices are

less than or equal to P2, that is either in locations with corresponding prices P1 or P2. Similarly, once

a new threshold is reached, say τ (j), the device will upload the collected data at locations with a

price less than or equal to Pj .

Illustrative example. Figure 2.3 displays a simple illustration of the multi-threshold policy,

wherein a device attached to a bicycle enters a location i where the price is P3 and the age of

the information is such that it can only upload if price is P1. After displacement, the device enters a

new location j with a tagged price of P2. By this time, the age is higher than the threshold τ (2), allow-

ing the device to upload information with either P1 or P2. Now, the device can upload the information
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as the price is acceptable.

As an immediate consequence of the proof of the previous theorem, the following corollary is

obtained.

Corollary 2.3. At any location l, µ(x, l) = 1 if x ≥ τ (K).

The above corollary implies that the maximum age that can be reached by a message is τ (K),

where τ (K) ≤M .

In general, the set of locations where a device is allowed to upload data, as well as the age of

information when the upload action is performed, depends on the distribution of the prices across the

set of locations L used for the slice leased by the SP. Such distribution can be optimized to reduce

the cost of infrastructure utilization and yet satisfy the QoS requirements of the IoT service. In the

next section, the dynamics of AoI, the structure of the multi-threshold strategy, and the distribution

of the prices are connected. Before that further characterization of additional properties of the multi-

threshold policy is needed. In particular, a key step is to characterize the number of prices that the

optimal threshold strategy uses with positive probability.

Let Li = {l ∈ L|p(l) ≤ Pi} and KlPi
=
∑

l′∈Li
λll′ . In addition,

S(i) =
M∑

x=2

(U(x)− U(M))(1−KlPi
) + U(1)− U(M) (2.9)

and

K̄lPi
= KlPi

−KlPi−1
. (2.10)

Theorem 2.4. Let U be the set of prices corresponding to locations wherein the optimal policy is to

upload. Then,

• U = {P1}, with P1 = 0, if and only if

S(1) < p(l), ∀l ∈ L/L1, (2.11)

• {Pi} ⊆ U , with Pi 6= 0, if and only if

U(1)− (K̄lPi
U(2) + (1− K̄lPi

)U(M)) > Pi (2.12)

S(i) < p(l), ∀l ∈ L/Li, (2.13)

• {Pi, Pi+1, .., Pi+k} ⊆ U , if and only if condition (2.12) is met and

S(i + k) < p(l), ∀l ∈ L/Li+k. (2.14)

Proof. See Appendix B
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Theorem 2.4 establishes conditions under which devices upload data if and only if they are

found in a given finite set of locations. An optimal pricing assignments minimizing SP costs while

still satisfying users QoS requirements is derived in the following section, for a given assignment of

price to locations.

2.6 Joint Aging Control and Traffic Offloading

Given that the optimal distributed upload control is determined properly, the next task is to ad-

dress the TRAFFIC OFFLOADING problem introduced in Sec. 2.4.

2.6.1 Pricing as a tool for joint aging control and offloading

Recall that the SP aims at setting optimally the value of the shadow prices to reduce the total cost to

lease resources from different InPs. Assume that N IoT devices spread over the set of locations L.

Each device generates data to be collected and sent to the IoT server located in the core network

every κ seconds. Let πj be the ergodic probability of a device collecting data at location j – which

in turn depends on the mobility profile of devices. Hence, the total rate of collected data by devices

in location j is given by

Dj = NπjF/κ, (2.15)

where F is the average size of the collected data.

First, observe that if shadow prices are constant over locations, i.e., p(l) = P1, for l ∈ L, each

device will transmit immediately the collected data and the total cost for SP is

∑

j∈L

CjDj =
NF

κ

∑

j∈L

Cjπj . (2.16)

The primary interest for the distributed upload control via shadow pricing is to perform load balancing

by shifting part of the traffic load from highly congested locations, which are expected indeed to be

more expensive to lease, compared to lesser charged locations. At the same time, the aim is to

ensure that the QoS requirements of the IoT service are satisfied. Under shadow pricing vector p,

the total rate uploaded at location j under the optimal threshold strategy is given by

Yj(p) =
∑

i∈L

Yij(p) =
∑

i∈L

Diyij(p) =
NF

κ

∑

i∈L

πiyij(p). (2.17)
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Hence the total cost writes

∑

j∈L

CjYj(p) =
NF

κ

∑

j∈L

Cj

(
∑

i∈L

πiyij(p)

)
. (2.18)

In what follows, the above equation is leveraged as the objective of the optimization problem.

2.6.2 Formulation of joint offloading and aging control problem

Next, we account for the AGING CONTROL problem introduced in Sec. 2.5 under the TRAFFIC OF-

FLOADING problem introduced in Sec. 2.4. The resulting joint problem is posed as follows.

JOINT OFFLOADING AND AGING CONTROL (JOAC) :

minimize
p

∑

i∈L

πi

∑

j∈L

yij(p)Cj (2.19)

subject to

∑

i∈L

πiyij(p) ≤ Bj , ∀j ∈ L (2.20)

∑

j∈L

yij(p) = Di, ∀i ∈ L (2.21)

P(∆i(p) > d) ≤ ǫ, ∀i ∈ L (2.22)

yij(p) ≥ 0, ∀i,∀j ∈ L (2.23)

where yij is the expected per device upload rate for data collected at location i and uploaded at

location j.

yij(p) can be calculated based on the threshold strategy from section 2.5: the probability that a

device collects data at location i and uploads it at location j needs to be computed. The calculation is

performed by determining f(i, j, t), namely the probability that a device collects data from location i

and uploads it at time t in location j. Such computation involves the use of taboo probability, defined

as follows:

Aλn
ij = P (l1, .., ln−1 6∈ A, ln = j|l0 = i) .

This is the probability of moving from location i to location j in n steps without entering the taboo

set A; such transition probabilities are calculated in the standard way by considering the n-th power

of the taboo matrix, which is obtained by zeroing the columns and the rows of the transition proba-

bility matrix corresponding to the taboo states, i.e., the states in A. Based on the optimal threshold

strategy, if a device collects data from a location i ∈ L1, it will immediately upload it. Thus for i ∈ L1,
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we have

f(i, z, t; p) =





1, if z = i and t = 1,

0, otherwise.

For i 6∈ L1 and z ∈ Lj , let us consider τ̂ (t) = max(τ (j)|τ (j) < t).

The explicit expression can be derived as follows

f(i, z, t; p) = 0, for t < τ (j) (2.24)

f(i, z, t; p) =
∑

l1 6∈L1

∑

l2 6∈L2

. . .
∑

lt−1 6∈L
τ̂(t)

L1
λn1

il1
· L2

λn2
l1l2

. . . L
τ̂(t)

λt−τ̂ (t)−1
lt−2lt−1

λlt−1j

for τ (j) ≤ t ≤ τ (K) (2.25)

f(i, z, t) = 0, for τ (K) < t ≤M (2.26)

where

nk = τ (k+1) − τ (k), k = 1, . . . , K

with τ (K+1) = M . The expression of yiz for z ∈ Lj yields

yiz =
τ (K)∑

t=τ (j)

f(i, z, t; p). (2.27)

Once the values of f(i, z, t) are obtained, the stationary probability distribution for the age of in-

formation can be derived– at the upload time – for the data collected at location i, namely ∆i(p),

F∆i
(d) := P(∆i(p) > d) =

τ (K)∑

t=d+1

∑

z∈L

f(i, z, t; p). (2.28)

Relation (2.28) provides an important measure for SP: it is the probability that an input shadow

price vector can meet the requirements for the IoT data collected at a tagged location. Furthermore

starting from F∆i
(d), it is possible to evaluate the deviation of the age of collected data from its

average value, e.g., by using Chebyshev inequality.

Finally, the expected age of collected data from location i ∈ L is given by

E[∆i(p)] =
τ (K)∑

t=0

∑

z∈L

t · f(i, z, t; p) (2.29)

The JOAC problem is a constrained non-linear integer valued optimization problem defined over

the set of multi-threshold policies. Finding a solution is made difficult because the structure of func-

tion Y is not convex over the shadow price vectors p. A heuristic algorithm which utilizes the structure
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of the devices’ optimal strategy to solve the problem are proposed in the next chapter.

2.7 Numerical evaluation

2.7.1 Experimental setup

We use a vehicular mobility traces of the city of Cologne (Germany), covering a region of 400 km2 in

a period of 24 hours in a typical work day, involving more than 700, 000 individual vehicles to validate

our theoretical findings. The data set is available at [104]. It comprises the list of users’ position

records, each record including a sampling timestamp, the user ID, and her position in (x, y) Carte-

sian coordinates. Positions are sampled each second. User mobility is spanned across 230 (macro)

cells and the coverage of each cell is determined a posteriori according to the Voronoi tessellation

shown in Fig. 2.5. In order to generate the transition probability across cells, it is restricted to a sub-

set of records corresponding to one hour of trace data. Then, the data set is resampled at 2 second

intervals to discretize the process: within such a time step the probability for a user to cross two cells

is bounded below by 0.05.

2.7.2 Aging control analysis

In the first set of experiments, we validate the aging control policy on the real-world traces. The

computation of the optimal policy using the proposed model requires estimating the transitions of

the Markov chain Γ, U(x) and price pl of each location l ∈ L. The reference setting comprises

of the utility of the message that decays linearly over time, and remains zero afterward, U(x) =

max(M − x, 0). Assume that the device collects data as soon as the existing data is uploaded.

Performance of the policy is evaluated over 67 epochs corresponding to a total duration of 134s for a

device: at each epoch, a device either uploads or defers based on the multi-threshold policy obtained

from the model. All 230 locations are divided into 3 effective groups, namely range 1, range 2, and

range 3, each corresponding to a specific cost C1, C2, and C3, respectively, sorted in ascending

order. The grouping of locations is based on the congestion level, corresponding to low congestion,

medium congestion, and high congestion respectively. The intuition is that the location with a higher

cost should be configured with higher price according to the previous analysis. The results displayed

in this section are configured with three prices (P1, P2, P3), τ (1) = 0, two effective threshold values

(τ (2), τ (3)) and M = 10. Locations that belong to range 1, 2 and 3 are assigned P1 = 0, P2 and P3,

respectively.

Note that we consider the initial price to be zero throughout our model description and numerical

experiments. In addition, in these experiments, the maximum price P3 = 9, and the intermediate

price P2 = 6. In particular, the values of P2 and P3 are chosen according to the experimental goals,

namely, to illustrate a threshold policy which is not degenerate to either always transmit or never

40



2.7. Numerical evaluation

Figure 2.5: Voronoi tessellation for the Cologne mobility trace.
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Figure 2.6: (a) Expected average rewards for i. theoretical model, ii. simulation and iii. exhaustive
search; P1 = 0, P2 = 6 and P3 = 9, (b) Effect of price P2 on the average reward; P1 = 0 and P3 = 9;
M = 10, (c) Effect of price P3 on the average reward P1 = 0 and P2 = 6; M = 10.

transmit – P2 and P3 are set with enough separation to illustrate their impact, while remaining in

the same order of magnitude. Since the transition matrix Γ is derived from traces, it is interesting

to compare how the optimal policy obtained by the model compares against its alternatives. In

particular, note that the mobility in the traces is neither stationary nor memoryless. Therefore, one

of the goals is to assess to what extent these results still hold if the considered assumptions are

removed.

Fig. 2.6(a), compares 1) the theoretical optimal reward predicted by the model – i.e., using the

empirical transition matrix Γ, 2) the average reward obtained simulating data collection and upload

using the original real traces under the optimal policy predicted by the model and, finally, 3) the

optimal reward obtained by using the multi-threshold policy obtained by exhaustive search on the

real traces. The match appears quite tight and also rather insensitive to the variation of M .

2.7.3 Offloading under unconstrained aging control

The effects of prices on the freshness of information delivered by each device are explored here. To

this aim, Fig. 2.6(b) and 2.6(c) illustrate how the average reward changes as function of the price.

Fig. 2.6(b) is obtained by fixing P1 and P3 and varying P2 from 2 to 8. It shows that the average reward

decreases with price P2. Indeed, as P2 becomes larger, the device has more incentive to upload

41



Chapter 2 – Aging control

NS d=5 d=6 d=7 d=8 d=9 d=10 d=11 d=12 d=13 d=14 d=15 d=16 d=17 d=18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y
j

Range 1 Range 2 Range 3

Figure 2.7: Effect of pricing for various values of d; ǫ = 0.01.

the collected data to locations in range 1. It is possible that the age of collected data becomes

higher – i.e. upload occurs farther from the origin site – which explains why the average reward

decreases with P2. Same behavior is observed by changing the price P3 and making P1 and P2

fixed, as depicted in Fig. 2.6(c). In summary, if the QoS constraints are ignored, the SP should

indeed increase the price for locations in range 2 and range 3: the effect is to shift all collected traffic

to locations in range 1, which are less expensive to lease.

2.7.4 Offloading under aging control with AoI constraints

Fig. 2.7 shows the relative volume of traffic uploaded in range 1, 2 and 3 under optimal pricing for

increasing values of the AoI constraint d. From these simulation results, some useful insights can

be obtained on the load balancing operated by the proposed pricing scheme. The first point on the

x-axis corresponds to the profile of traffic obtained under uniform flat price, that is No Strategy (NS),

meaning that all IoT traffic is uploaded where it is produced. The remaining points correspond to the

optimal prices for different values of d. Observe that it is possible to shift an important part of traffic

(13%-32%) towards locations in range 1 (which corresponds to price P1 = 0). A smaller part of traffic

(1%-12%) is instead shifted to locations in range 3. When d increases, observe that more traffic is

shifted since devices have more opportunities to upload collected data in locations in range 1.

Fig. 2.8 shows how the price impacts the cost incurred by the SP. A larger value of d for data

generated at a given location means lower sensitivity to delay, which in turn increases the probability

to upload at locations in range 1, which explains why the total cost is ultimately decreasing with the
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Figure 2.8: cost incurred by the MSP for various values of d.

QoS constraint d (total cost reduced by approximately 50% when d = 18).

2.8 Conclusion

Age of information has been a crucial metric in data related services driven by the growth of the

IoT. In addition, the operational cost is of vital importance for the SPs. In this chapter, we studied a

framework that leverages the fact that some data can be applied at a later time for a lower price. We

provide a model for controlling the age of information called aging control which provides an optimal

threshold based policy for the employed MDP problem of sequential upload decision making, and

proved the existance of such policy. The inherent traffic management influences the overall cost

for the SPs and also deals with the resource capacity issues for the InPs. By migrating part of the

traffic to a low traffic locations, traffic demands can be eased on the highly congested locations. We

provided a formulation to combine these two factors under one unified framework for obtaining the

optimal shadow prices to jointly control the aging and traffic offloading issues. This problem is an

NP-hard problem, hence it is opted to use heuristics for faster convergence. In the next chapter, we

describe the proposed algorithms based on a heuristic approach named simulated annealing, and

further enhance it by leveraging the inherent neighbourhood structure of the locations.
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Chapter 3

SIMULATED ANNEALING ALGORITHMS

Having established the optimization problem to jointly control aging and traffic offloading in the pre-

vious chapter, we introduce efficient algorithms in chapter to find the optimal pricing. The algorithms

are driven by the rationale according to which a shadow price vector should permit to offload as

much traffic as possible towards locations with smaller costs. In order to obtain the optimal pric-

ing, we begin by showing that the optimal prices correspond to the optimal thresholds, allowing to

simplify the analysis through the control of thresholds rather than prices (Section 3.1). Then, we con-

sider a Markov Chain Monte Carlo (MCMC) approach to find the optimal thresholds (Section 3.2),

followed by its simulated annealing (SA) extension – a standard technique for constrained combi-

natorial optimization problems [83, 24] (Section 3.3). The special nature of the problem allows for

further refinement of the SA solution leveraging the independence of nodes that are geographically

far apart (Section 3.4 and 3.5).

3.1 From prices to thresholds

In the JOAC problem introduced in the previous chapter, shadow prices set by SP are the control

variables. Next, we argue that thresholds set by users can alternatively be taken as our controls.

Indeed, SP prices impact users thresholds, and users thresholds impact load at different locations.

Hence, framing the problem exclusively based on users thresholds rather than prices simplifies the

analysis.

Let τl be the AoI threshold corresponding to location l. A threshold τl = t means a device uploads

data collected at location l only if its age exceeds t. Then, the threshold vector τ is an L dimensional

vector given by τ = (τ1, τ2, . . . , τL), comprising one threshold per location.

Let τmax be the maximum threshold induced from all pricing vectors in R
L. Then, τmax is given

by

τmax = max{t ∈ N | P(∆i(t, 0−i) > d) < ǫ,∀i ∈ L} (3.1)

where ∆i(t, 0−i) is the age of data collected at location i, in a setup wherein all locations except i cor-

respond to threshold τi = 0. Let S be the set of feasible threshold values, i.e., S = {0, 1, . . . , τmax}.
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Finally, the threshold-based JOAC is given as follows:

THRESHOLD-BASED JOAC (T-JOAC):

min
τ∈τǫ,d

W (τ ) :=
∑

i∈L

Yj(τ )Cjł (3.2)

yij(τ ) ≥ 0, ∀i,∀j ∈ L (3.3)

where

τǫ,d = {τ ∈ SL | P(∆i(τ ) > d) < ǫ, Yi(τ ) ≤ Bi,∀i}. (3.4)

In the above formulation, the objective function corresponds to (2.18)-(2.19) in JOAC. The con-

straints (3.3) and (3.4) capture (2.23) and (2.19)-(C2), respectively.

Let τ ∗
ǫ,d be the set of optimal threshold vectors,

τ ∗
ǫ,d = {τ ∈ τǫ,d |W (τ ) = min

τ ′∈τǫ,d

W (τ ′)}. (3.5)

Next, efficient algorithms to find elements in τ ∗
ǫ,d are provided.

3.2 Markov Chain Monte Carlo (MCMC)

MCMC starts from a feasible solution and attempts to improve it by performing random perturba-

tions. A key feature of MCMC is the use of trial and error to avoid being trapped at local minima.

Furthermore, it is simple to implement in a distributed way.

Given the current state, the procedure generates a trial state at random and evaluates the ob-

jective function at that state. If the trial state improves the objective function, i.e., if the objective

function evaluated at the trial state is better than at the current state, the system jumps to this new

state. Otherwise, the trial is accepted or rejected based on a certain probabilistic criterion. The main

feature of the procedure is that a worse off solution may be accepted as a new solution with a certain

probability.

Next, we introduce the Boltzmann-Gibbs distribution corresponding to T-JOAC,

πT (τ ) =
1

Z
exp−W (τ )/T , (3.6)

where Z is a normalization constant

Z =
∑

τ∈SL

exp−W (τ )/T , (3.7)

and T is a constant, referred to as the temperature, and whose discussion is deferred to the upcom-
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ing section.

MCMC has multiple flavors. Next, the most common MCMC method, namely Metropolis–Hastings

(MH)[40] is considered. One of the ingredients of MH is a transition matrix Q∗ for any irreducible

discrete time Markov chain (DTMC). The states of the DTMC are given by the reachable T-JOAC

threshold vectors (see (3.4)). Chain Q∗ is the proposal chain, as samples collected from Q∗ are the

proposal threshold vectors. Then, based on those proposals, the MH algorithm decides whether or

not they will be accepted.

Although the algorithm works for any irreducible proposal chain, the choice of the chain impacts

its time to convergence. Consider the simplest chain, whose transition matrix is uniform and sym-

metric. Noting that the threshold vector is an L-dimensional vector τ , in the simplest setting, this

allows every single component of the vector to be updated conditional on the other L − 1 compo-

nents being fixed and given. In this case, the algorithm is also known as Gibbs sampler, and is a

special case of the MH algorithm. Sections 3.4 and 3.5 describe the scheme on how to leverage

spacial information to refine the proposal matrix and reduce convergence time by allowing multiple

dimensions of vector τ to be updated simultaneously.

The proposal chain is given by Q∗. Let q∗(τ , τ ′) be the entry at position (τ , τ ′) of the correspond-

ing transition matrix:

q∗(τ , τ ′) =





1
L (τmax−1) , ∃i : τi 6= τ ′

i and τj = τ ′
j ,∀j 6= i,

0, otherwise.
(3.8)

Clearly,
∑

τ ′ q∗(τ , τ ′) = 1 as each transition corresponds to the change of one of the L thresholds

to one of the distinct τmax − 1 values.

Let δ(τ , τ ′) be the change in the objective function when going from τ to τ ′,

δ(τ , τ ′) = W (τ ′)−W (τ ) =
∑

j

δj(τ , τ ′) (3.9)

where

δj(τ , τ ′) = (Yj(τ ′)− Yj(τ ))Cj . (3.10)

To describe the Markov chain τ (0), τ (1), . . ., assume that the threshold vector at iteration t is

given by τ . Then, the threshold vector is determined as follows

1. choose threshold vector τ ′ according to Q∗, i.e., choose τ ′ with probability given by (3.8).

Threshold vector τ ′ is the proposal threshold vector ;

2. let the acceptance function be given as follows,

ã(τ , τ ′) =
πT (τ ′)

πT (τ )
= e−δ(τ ,τ ′)/T . (3.11)
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If ã(τ , τ ′) ≥ 1, i.e., if δ(τ , τ ′) ≤ 0, then τ ′ is accepted, τ (t + 1)← τ ′. Otherwise, it is accepted

with probability ã(τ , τ ′) and rejected otherwise. If rejected, the threshold vector remains un-

changed, τ (t + 1)← τ (t).

A.

Lemma 3.1. The Markov chain produced by the above algorithm has stationary distribution πT .

Proof. See Appendix B

In what follows, the above algorithm is extended through a simulated annealing approach.

3.3 Simulated Annealing

Next, we consider simulated annealing, that allows T to decrease in time, in order to guarantee the

convergence to an optimal threshold vector (and corresponding pricing). Let Tt be the temperature at

iteration t. For a temperature Tt, an inhomogeneous Markov chain (Yt)t∈N is defined with transition

kernel QTt at time t. If Tt decays to zero sufficiently slowly, the Markov chain QTt will reach a

sufficiently small neighborhood of the target equilibrium, πTt . For this reason Tt is called the cooling

schedule of SA. A standard cooling schedule in the form Tt = â
log(1+t) is used in this work, where

â > 0 is a constant that determines the cooling rate order.

Theorem 3.2. If Tt assumes the parametric form

Tt =
â

log(t + 1)
(3.12)

where

â =
NF

κ
max
j∈L

Cj , (3.13)

then

lim
t→∞

πTt({τ ∈ τ ∗
ǫ,d}) = 1 (3.14)

The above theorem shows that the Markov chain with transition matrix QTt converges to an

optimal threshold s∗ ∈ S∗, where S∗ is the set of the optimal solutions of the T-JOAC problem

(see (3.5)).

Proof. This proof is based on the technique introduced in [36]. Note that the objective function W

is nonnegative and its maximum value is attained when data is collected by all devices at locations

where cost is maximal. Thus â > W (τ ) for all states τ . In particular, letting d∗ denote the maximum

value of W (τ ) at all states τ which correspond to a local but not global minima, and â > d∗. Then,
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∞∑

t=1

exp−d∗/Tt =
∞∑

t=1

exp(− d∗

â
log(t+1)) (3.15)

>
∞∑

t=1

1

t + 1
= +∞ (3.16)

Theorem 1 in [36] ensures that under the above condition the limit (3.14) holds, which completes the

proof.

Algorithm 1: Simulated Annealing (SA) algorithm for T-JOAC at time t, at the neighbor-
hood of location i

Input: L, S, τ (t− 1), i ⊲ i is the candidate location for AoI threshold change

1 Assignment Phase

2 Set temperature Tt = â/log(1 + t)
3 Set new threshold τ ′

i uniformly at random, τ ′
i ∈ S\{τi(t− 1)}

4 Set τ ′
j ← τj(t− 1), ∀j ∈ L\{i}

5 Test Phase

6 At each j ∈ Ni locally measure δj (see (3.10)) and P(∆j(τ ′) > d)
7 Each location j ∈ Ni sends measurements to location i

8 Decision Phase

9 if τ ′ does not satisfy constraints for all locations in Ni then

10 go back to selection phase (line 3)

11 Set δ =
∑

j∈Ni∪{i} δj(τ (t− 1), τ ′) (see (3.9))

12 τi(t)← τi(t− 1)
13 if δ ≤ 0 then

14 τi(t)← τ ′
i

15 else

16 τi(t)← τ ′
i with probability e−δ/Tt (see (3.11))

Output: τi(t)

3.4 Simulated annealing leveraging neighborhoods

3.4.1 Neighborhood structure

Next, the neighborhood structure between locations is leveraged to specialize SA to our T-JOAC

problem. Let the neighborhood set Ni for location i be defined as follows: a location j belongs to Ni

if j is located within a given radius such that data offloaded to j can be impacted by traffic generated

at location i.

Let G(V, E) be the location neighborhood graph, where V is the set of vertices representing the

locations and E is the set of edges, where an edge is a link between two vertices indicating that the
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two corresponding locations are neighbors.

Note that the neighborhood structure depends primarily on the geographic position of the loca-

tions, mobility of the devices, and the maximum time that a device can wait before uploading the

data. Indeed, let τmax be a threshold vector wherein all elements equal τmax. Such threshold vector

corresponds to nodes that defer transmissions as much as possible. Then, the neighborhood of

location i is defined as follows,

Ni = {j ∈ L | Yij(τmax) > 0 or Yji(τmax) > 0}.

Indeed, if traffic at locations i and j does not interfere with each other under the extreme scenario

where all thresholds are set to their maximum values, one can safely assume that locations i and j

are not neighbors.

3.4.2 Simulated annealing leverage neighborhoods

Hereafter, the implementation of the simulated annealing algorithm for solving the T-JOAC problem

(see Algorithm 1) is described in detail. Time is divided into discrete slots. At the first slot, it begins

by initializing the thresholds of all locations to zero, which corresponds to a price p = 0. Then, at

each time slot t, it lets Tt = â/log(1 + t) (the initial temperature Tt should be large enough to allow

all candidate solutions to be accepted uniformly at random), and the system goes through three

phases: assignment, testing, and decision. The SP selects a location i ∈ L uniformly at random and

run Algorithm 1. During the assignment phase, the threshold of location i is modified, while letting

all other thresholds unchanged (lines 1− 4). At the test phase, the SP receives measurements from

all locations which are possibly affected by a change in the threshold of location i, i.e., from all

j ∈ Ni, and checks whether the newly generated threshold vector τ ′ is feasible (lines 5 − 10). If it

isn’t feasible, the algorithm returns to the selection phase. Otherwise, it continues in the decision

phase, by assessing the change in the objective function, δ, again using data from j ∈ Ni ∪ {i}

(line 11). If the change is negative, the new threshold vector is accepted (lines 13− 14). Otherwise,

it is accepted with probability exp(−δ/Tt). SP repeats this procedure until the established stopping

conditions are satisfied. i.e., either threshold vector is not changed for two successive time slots or

Tt < ε.

3.4.3 Independent sets

Independent sets of locations can be exploited to accelerate the SA algorithm, i.e., a partition of

locations into sets where locations within each set are not affected by a change of threshold that

may occur in other locations of the same set. The following paragraph indicates how the proposal

chain can be adapted to account for independent sets of locations, under a serial implementation.
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In practice, the speedup is obtained since the algorithm can be run in parallel for all the locations

that belong to the same independent set, as indicated in Section 3.5. The experiments conducted

demonstrate that this parallelization can attain a two-fold speedup of the run time with respect to the

basic implementation of the algorithm.

3.4.4 Proposal chain leveraging the neighborhood structure

Given the neighborhood structure, the proposal chain introduced in (3.8) is adapted in order to allow

for multiple threshold adjustments at the same iteration. The new proposal chain Q̃∗, whose (τ , τ ′)

entry is denoted by q̃∗(τ , τ ′), is given as follows:

q̃∗(τ , τ ′) =





1
|Mτ | , if τ ∼ τ ′

0, otherwise
(3.17)

where

Mτ = {τ ′|τ ∼ τ ′} (3.18)

and τ ∼ τ ′ denotes that threshold vectors τ and τ ′ are adjacent. Two threshold vectors are ad-

jacent if they differ in at least one position and, in addition, all positions that differ across the two

threshold vectors correspond to locations that belong to the same independent set, i.e., in the loca-

tion neighborhood of graph G(V, E) there is no edge between the locations whose thresholds differ.

If each location corresponds to its own independent set, i.e., if there are L independent sets, then

|Mτ | = L(τmax − 1) and the above proposal chain reduces back to (3.8).

Note that the above proposal chain produces proposal threshold vectors wherein multiple thresh-

olds may change concomitantly with respect to the current threshold vector. Then, a straightforward

adaptation of Algorithm 1 accepts or rejects the proposal threshold vector as a whole, treated as a

single entity.

In the following section, in contrast, each of the neighborhoods is treated independently. In partic-

ular, at each step of the algorithm, there are multiple new proposal thresholds, which are evaluated

in parallel and may be independently accepted or rejected. Even if one neighborhood rejects a par-

ticular proposal for a new threshold, other independent neighborhoods may accept their proposals.
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Table 3.1: Table of notation for coloring algorithm and T-JOAC

Variable Description

H = {h1, . . . , hL} set of colors that can be assigned to a location
cl ∈ H color of location l
φ(c) set of colors used by c

c
(n)

current coloring vector in Algorithm 2
c⋆ best coloring vector so far (broadcast from Algorithm 2 to

Algorithm 3)
c(t) current coloring vector in Algorithm 3

3.5 Accelerated simulated annealing with parallel computations: a

coloring approach

Algorithm 2: SA-based coloring agorithm

Input: L, H, b, c(0)

1 n← 1

2 c⋆ ← c(0)

3 while true do

4 Set T̃n = b/ log(1 + n)

5 Select location l ∈ L and color c′
l ∈ H\{c

(n−1)
l }

6 Set c′
j ← c

(n−1)
j ∀j ∈ L\{l}

7 if c′ is not feasible then

8 go to step 5

9 Set β = |φ(c′)| − |φ(c)|

10 c(n) ← c(n−1)

11 if β ≤ 0 then

12 c(n) ← c′

13 else

14 c(n) ← c′ with probability e−β/T̃n

15 if |φ(c(n))| < |φ(c⋆)| then

16 c⋆ ← c(n)

17 broadcast new coloring c⋆ to all locations

18 n← n + 1

3.5.1 Colorings

Fewer independent sets correspond to more opportunities for concomitant threshold adjustments.

A partition of the locations into independent sets can be obtained as the result of a graph coloring

procedure. The coloring of a graph is a function that assigns different colors to adjacent vertices of

a graph.
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Given a graph G, the Graph Coloring Problem (GCP) seeks the minimum number of colors χ(G)

which can be used to color G. Such a number is called the chromatic number. An upper bound

for the chromatic number is given by the maximum vertex degree plus one, and is attained by a

greedy coloring procedure. Nonetheless, such upper bound (may be loose) and optimal coloring is

an NP-hard problem, motivating heuristic solutions. It is observed that the simulated annealing can

be used as a heuristic to solve GCP [54] to obtain a near optimal solution. Thus this can account for

the coloring process and the resulting parallelization to T-JOAC in an extension to Algorithm 1.

3.5.2 SA for colorings

The location coloring is obtained by using a specialized simulated annealing algorithm. Let H =

{h1, h2, ..., hL} be the set of available colors. Then, the coloring c (vector) indicates, for each location,

its corresponding color, i.e., cl = hm if the color of location l equals hm.

A coloring is feasible if, for any pair of locations i, j such that i ∈ Nj , and cj 6= ci. Let φ(c)

be the set of colors used by coloring c = (c1, c2, .., cL). Thus the objective of the coloring problem

is to find a feasible solution that minimizes the cardinality of set φ(c). The algorithm begins with

an initial feasible coloring scheme, then improve it further using simulated annealing. The initial

coloring schemes could be achieved with a random allocation of one color to each location, where

the number of colors are equal to the number of locations or an intermediate solution is obtained

by greedy algorithm. The temperature T̃n is structurally similar to Tt used in Algorithm 1, noting that

now b plays the role of â, and corresponds to an upper bound on the number of colors to be adopted.

In the simplest setting, we let b = L.

Algorithm 2 is used to continuously search for better colorings. In lines 5 and 6 the algorithm

chooses a location l uniformly at random, and a color from H\{c
(n−1)
l }. Lines 7 and 8 produce

the proposal coloring vector c′. Lines 9 − 15 test if the proposal is accepted or not. Finally, if the

new coloring vector uses fewer colors than the current best candidate, the new coloring vector is

broadcasted to all locations.

In summary, Algorithm 2 is continuously run by the SP, e.g., at a fast time scale, and as improve-

ments are found they are broadcasted to the locations which locally run Algorithm 1. In particular,

the time scale at which Algorithm 2 is executed, whose iterations are denoted by n, is decoupled

from the scale of the time slots considered in Algorithm 1, denoted by t. The integrated solution

involving Algorithms 1 and 2 is presented in Algorithm 3, and is described in the sequel.

3.5.3 SA for T-JOAC with colorings

The accelerated simulated annealing for T-JOAC is obtained by leveraging the colorings produced

by Algorithm 2, integrating them with Algorithm 1 as shown in Algorithm 3. As explained previously,

the SP continuously broadcasts colorings c⋆ obtained using Algorithm 2. At line 5 of Algorithm 3,
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Algorithm 3: Accelerated SA algorithm (at time slot t)

Input: L, H, S, ε, τ (t− 1), c(t− 1), τ ⋆

1 c(t)← c(t− 1); τ (t)← τ (t− 1)
2 if there exists untreated broadcasted c⋆ then

3 update colorings at all locations
4 c(t)← c⋆

5 Choose uniformly at random a color h(t) ∈ φ(c)
6 Optimal threshold search

7 run in parallel

8 run Algorithm 1 at neighborhood of first location with color h(t)

9

...
10 run Algorithm 1 at neighborhood of last location with color h(t)

11 Update τ (t) given outputs from parallel runs of Algorithm 1

12 if W (τ ⋆) > W (τ (t)) then

13 τ ⋆ ← τ (t)

14 if threshold vector is not changed for two successive time slots or Tt < ε then

15 stop

Output: τ (t), τ ⋆ and c(t)

the SP selects a color h(t) from set of colors φ(c) currently in use. Then, Algorithm 1 is run locally

(in parallel) at locations colored with the same color h(t) (lines 7 − 10 in Algorithm 3). As in the

basic implementation, such locations generate new threshold values which are then combined into

a new threshold vector τ (t) (line 11 in Algorithm 3). By locally searching for optimal thresholds at

multiple locations, we improve the running time for computing optimal thresholds, as shown in the

evaluations that follow.

3.6 Numerical evaluation

We use the same experimental setup used in chapter 2 to validate the theoretical findings reported

in the previous sections. Following numerical results show the convergence of the coloring solution

and compare the algorithm 1 with algorithm 3.

3.6.1 Leveraging coloring for joint offloading and aging control

Results concerning location coloring are depicted in Fig. 3.1, where, d = 7, ǫ = 0.01 (factor which

determines the neighborhood of locations in the SA algorithm) and we use the same cell topology

as mentioned in chapter 2. Fig. 3.1 shows the convergence of the minimum number of colors for a

region of 20 locations and 230 locations. Different temperatures are considered to test the conver-

gence of the algorithm. The results obtained using Algorithm 2 are compared to the integer linear

programming ILP (branch-and-bound) [39] which is more conventional and can be considered as
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Figure 3.1: Convergence of SA algorithm for coloring of locations.
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Figure 3.2: Comparing convergence of two algorithms for d = 7.

a baseline solution for coloring algorithms. As shown in Fig. 3.1(a) the SA algorithm has optimal

results for the region with less locations, However, when tested on the region with full 230 loca-

tions the SA algorithm lags behind the ILP as depicted in Fig. 3.1(b). However, for the purposes of

traffic offloading, the near-optimal solution to the coloring problem provided by the SA algorithm is

acceptable as shown in the next set of experiments.

For the results shown in Fig. 3.2-3.4, a 20 macro cell topology is utilized; with no loss of generality,

the traffic generation is normalized as NF
T = 1. Consider d = 7, ǫ = 0.01, and the maximum

threshold tmax = d + 3. The temperature used to control the number of iteration was derived by

trying different configurations; the basic trade-off is to perform a number of iterations large enough

for the algorithm to converge to the minimum value and yet bound it to a maximum value for the

sake of computation time. It is discovered by numerical exploration that use of Tt = â/ log(1 +

t) or Tt = â/t2.8, where â = 106, produces the same optimum value where the latter has faster

convergence. Hence, the temperature setting that is best suited for the algorithm is selected. Fig. 3.2

to Fig .3.4 show the difference in the convergence of average cost using Algo. 1 (without coloring)

and Algo. 3 (with coloring). As it can be observed, the proposed coloring method significantly speeds

up the convergence compared to the case where the coloring method is not deployed. The gain in

performance holds for all the three considered values of d as shown in Fig. 3.2 for d = 7, Fig. 3.3

for d = 9,Fig. 3.4 for d = 12. The improvement in convergence time with respect to the SA without

coloring is approximately 50% .
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Figure 3.3: Comparing convergence of two algorithms for d = 9.
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Figure 3.4: Comparing convergence of two algorithms for d = 12.
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3.7 conclusion

Future IoT service providers will need ubiquitous IoT data collection, mandating in turn the support

of IoT access at scale over the 5G infrastructure. At the same time, new schemes to control data

generation and upload should allow to SPs to perform IoT data brokerage across diverse access

resources made available by concurrent infrastructure providers at different costs, in the form of 5G

IoT resource slices.

This work introduces a new framework to connect two fundamental aspects: the AoI of IoT data

to be uploaded and the cost of 5G resources leased in order to obtain network access services.

The upload control can be performed in a distributed way at the device level using optimal dynamic

multi-threshold policies. Such policies have been showed to outperform their static counterparts. At

same time, a SP can control prices to match optimal multi-threshold policies to service requirements

while minimizing operational costs. It does so at the slice level by incentivizing users to perform IoT

data uploads where resources leased from InPs are cheaper. This work opens new directions at

the bridge between IoT and 5G research, by describing on a quantitative basis how to trade-off

IoT data freshness and load balancing, as supported by the 5G slicing paradigm. In particular,

we envision real testbed deployments and the investigation of strategic mobility patterns to reduce

costs as interesting areas for future exploration. In chapter 2 and chapter 3, we assume that the cost

incurred due to resource procurement from InPs is given. However, this is such an important factor

in deciding the total cost faced by the SPs and the resource prices are crucial for the InPs in order

to increase their profits. We study this aspect in the following chapters.

58



Chapter 4

FISHER MARKET FOR MULTI-RESOURCE

ALLOCATION

4.1 Introduction

5G networks promise to enable new paradigms such as edge and fog computing by deploying vir-

tualized resources in a multi-tenant and multi-service scenario, capable of fulfilling the dynamic

and demanding requirements of numerous applications. With network slicing, the Infrastructure

Providers (InPs) can offer differentiated services using shared resource pools. A slice, in this con-

text, is a share of the mobile network operator infrastructure obtained via virtualization with the help

of Software-Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. A

slice forms a logical network on top of the physical one [115, 13]. Evolving from previous mobile tech-

nology, the 5G core network architecture integrates data-centers into their architectures to support

network function virtualization and computation offloading. Thus, a slice will typically encompass dif-

ferent resource types, such as radio access capacity, edge storage memory, and computing power

available [115]. Hence, with network slicing, InPs can create multiple virtual networks or "Slice",

which can be used for a specific application or service with particular requirements. Currently, most

often these services are virtualized to capitalize on the inherent scaling flexibility of virtualization.

Efficient resource allocation helps to improve resource utilization, provides high quality of ser-

vice for the end-users. But in the context of network slicing, the resource allocation problem is more

challenging when there are multiple resource types and competing Service Providers (SP) with di-

verse characteristics and preferences. Hence, the main goal here is how to enable efficient creation

and fair multi-resource allocation for slices as well as end-users. To address this problem, we pro-

pose a new market-based framework to harmonize the needs of each SP while the system strikes

a balance between fairness and efficiency.

To address the aforementioned challenges, we formulate the multi-resource allocation for net-

work slices as a Fisher Market where the SPs act as buyers and a set of resources are divisible

goods available at different locations. Unlike the previous work, using the fisher market, we propose

a generalized α-fairness resource allocation applied to SPs that allows to adapt the degree of fair-

ness as a function of α ∈ [0,∞). It controls the trade-off between fairness and efficiency. In our
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model, each SP has a certain budget for resource procurement, which represents the market power

of the SP. Given the resource prices, each SP buys an optimal multi-resources to maximize its utility

under budget constraints. Hence the market equilibrium is to compute a vector price of resources

that ensures market cleaning, i.e., the demand of a resource equal its supply. In this work, we show

that the market equilibrium corresponds to the allocations maximizing α-fair utility, which is obtained

under non-linear pricing. Furthermore, we obtain a closed-form of the pricing as a function of α and

resources purchased by SP. In particular, we show that the marginal price increases as more of the

resource is purchased when α > 1 and it decreases when α < 1. Indeed, by choosing α > 1, the

InP may choose to impose an increasing marginal cost to ensure no single SP can monopolize all

resources when its budget is higher compared to other network slices.

Over time resource allocation problem has been well-studied [38] in wireless networks, this prob-

lem resurfaces with the evolution of such networks, namely the introduction of cloud computing and

assigning resources from virtual machines to compute the uploaded user tasks [112, 70] and recent

development of network slicing [118, 18] and edge computing [107, 116] to capture the different use

case scenarios. There has been a constant challenge to adapt the existing methods or to develop

new methods to address these changes in the wireless networks and numerous solutions were

proposed for edge computing and network slicing. Even with these changes, the underlying mecha-

nism remains the same, i.e., agents with specific budgets try to obtain a set of goods that creates a

market. One of the market models that received rigorous treatment in the network economics is the

Fisher Market model [17], which still receives great attention in resource allocation, majority of the

works that employ this model for resource allocation [79, 76] focus on obtaining Market Equilibrium

(ME) by solving Eisenberg-Gale [28] convex programming. This produces linear prices that do not

fit well in the real world scenarios, prices, in general, are non-linear, [34] address this issue very well

but the price curves are constructed with a condition on the agent preferences, that leads to same

price curves for all the agents.

An important aspect that seizes most of the attention in the literature is the fairness and efficiency

[61, 60, 5], most of the auction-based models [69] prefer to allocate a higher share of resources to

SPs with better marginal utilities, this is similar to the utilitarian approach, whereas the Max-min [31]

allocates more resources to the SPs with weaker marginal utilities to make the resource allocation

extremely fair. There is another approach that allocates resources proportionally [80] to achieve

intermediate fairness of the two extremes mentioned earlier, all of the above fairness schemes can

be generalized under the so-called α-fair allocations [73],[97], which provides very good flexibility

to the InP in terms of the trade-off between the fairness and efficiency. Another issue that was not

addressed in these works is the location dependency for the services, as each SP has a user base

that varies across the locations. In this case, the utility of the service provider depends on the utility

obtained per location. To the best of our knowledge, intra-slice fairness (fairness between locations)

was not addressed in combination with inter-slice fairness (fairness between slices). This motivates
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us to propose a Fisher market based model to address these aspects of resource allocation.

Our main contributions are as follows,

• We propose a framework to consider both intra-slice and inter-slice fairness at once. This

model considers α-fairness at the slice level and proportional fairness at the location level.

• This work extends the theoretical results of non-linear pricing [34] by not imposing any condi-

tions on SP’s valuations/preferences, this results in differential price curves.

• We provide numerous numerical results to support our theoretical claims and demonstrate

that our model is consistent and effective.

We believe, this novel approach of incorporating both intra-slice, inter-slice fairness, and non-

linear pricing under the same framework extends the literature of telecommunication network eco-

nomics.

This chapter is organized as follows, section 4.2 introduces the system model with some of

the key aspects, section 4.3 formulates the allocation problem and discuss market equilibrium and

establish two-level fairness mechanism, section 4.3.5 describes the strategic aspect of the Fisher

market model. Finally, this article ends with a conclusion.

4.2 System Model

We begin by presenting the system of interest and introducing some basic terminology. Consider a

system with a set of Infrastructure Providers (InPs), who own the physical resources such as CPU,

memory, radio resource, etc., and lease these resources to a set of SPs, who run different services

(IoT, URLLC, eMMB, etc.) to support the subscribed customers at different locations. The SP ne-

gotiates and scale resources using 5G network slicing by orchestrating slicing functionality across

heterogeneous access technologies (5G, LTE, 3G, and WI-FI), over different site types (macro, mi-

cro, and pico base stations) as shown in Fig.4.1. Cloud Network Slicing is a mechanism that logically

separates the physical resources owned by InPs by virtualizing the physical resources and assigning

only the required resources to support specific use case scenarios as depicted in Fig.1.2.

4.2.1 Key aspects of the system model

Development in technologies has boosted the possibility of accommodating various services under

5G, this brings many changes at the infrastructure level and the business level, there are many

aspects in the unprecedented growth of the electronics and communication business sector for the

foreseeable future. We describe a few of such aspects that are important for our model description.

They are as follows,
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service requests

Figure 4.1: MRA for service requests in heterogeneous multi location scenario.

Services and SPs

The emergence of business ideas such as smart city, smart home, smart factories, autonomous

driving, remote medical assistance, etc., push service providers to run various services to meet

the user demands and create a sustainable business environment. A prime example of such an

idea is the exponential growth of the IoT, these services require massive connections to connect

the sensors and central entities to successfully run smart home applications. Another dimension to

this is the huge data produced by the sensors that must be processed and analyzed, this requires

vast storage and computational capacities. Robust and low latency connections are required to

enable autonomous driving, intelligent traffic management, robotic assistance in smart factories.

This diverse nature of the services requires multiple resource types across heterogeneous access

points to meet the quality of service promised to the users. The user base of an SP varies across

different locations, this leads to higher or lower resource requirements based on the location. Hence,

SPs with a specific budget procure various resource types through network slicing from the InPs

based on the service and locations.

Infrastructure and InPs

Network infrastructure plays an essential role in enabling upcoming technologies especially given

the rise of various use case scenarios with 5G. The use of SDN and Network function virtualization

changes the face of existing wireless networks to be the most flexible and efficient in terms of
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resource allocation. Infrastructure provider is one of the key players in the telecom business, perhaps

performs a very complex and difficult job of Multi Resource Allocation (MRA) to the SPs due to the

diversity of the service requirements. In general, there could be more than one InP who owns the

physical resources across different locations. An InP may not fully cover a region consisting of

multiple locations, other InP may not have all the resource types needed to support a particular

service. As shown in Fig.1.2, there are three key parts in the 5G wireless network architecture, i.e.,

core cloud that consists a majority of core network and manage the network functionalities, edge

network that contains some of the core network functions, computational and storage resources

and the radio access network that consists of heterogeneous radio access elements. An InP who

owns full or part of resource types covering various locations would lease the resources to SP and

benefits from the overall growth in the telecom industry.

Resource scaling with Network Slicing

A key to a successful and sustainable business is to better serve the customers with limited re-

sources, In this context, network slicing facilitates such flexibility and helps both InPs and SPs to

control their costs. We envision a scenario in which, a large metropolitan city is furnished with all the

use case scenarios mentioned earlier. Each location in the city consists of hundreds of users with

various types of service requests. An SP that supports a specific service accepts these requests

and processes them with an agreed Quality of Service (QoS). Of course, to run this service across

multiple locations, SP has to obtain resources from an InP or group of InPs. However, these resource

types can be completely distributed, meaning that the resource is present at each location (e.g., ra-

dio resources), or partially distributed, i.e., a particular resource or pool of resources are present at

a location and is/are shared with a group of neighboring locations(e.g., resources from edge cloud).

Finally, the centralized resources, where the resource is present at a remote location but accessible

to all locations to perform the user tasks(e.g., core cloud). Now, multiple SPs with limited budgets

compete for a bundle of resources to run their respective services, based on the budgets and base

demands, InP or a social planner (in case of multiple InP) allocate resource bundle to SPs, who

in turn support the users in processing their service requests. This process is depicted in Fig. 4.1.

This is formally explained with a Fisher Market analogy in the following sections. Here, each SP is

assigned with a dedicated network slice that is tailored to his requirements.∗

Given the heterogeneous nature of the services offered by the SP, the slice obtained by the SP

contains network and computational resources. However, the service offered to the subscribed users

can be limited by any of the resources that belong to the slice, i.e., exhausting a particular resource

creates a bottleneck for the slice and limits the SP in offering the service to additional users. Hence,

the service capacity of the SP is determined by the bottleneck resource. We elaborate this in the

∗we consider that multi-resource allocation to an SP or a slice is alike (both are used depending on the situation to
convey the same meaning).
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following section where we define a utility function to numerically determine the service capacity of

the SP.

4.2.2 Service utility

We confine the discussion to a single InP that provides a set of resource types, namely R =

{1, 2, .., R}, over a set of locations. Given that each SP is assigned with a dedicated slice by InP,

the total number of slices supported by InP is N = {1, 2, .., N}†. The set of locations Li concerns

SP i. The capacity of resource type r at a given location l is cl,r. The resource requirement across

locations varies based on the service type. For example, to process a single IoT request, SP may

need 4 units of bandwidth, 2 units of RAM, and 2 units of storage and processing resources, respec-

tively. Let a base resource preference vector ai,r represent the need for each resource type r for SP

i, it is the minimum quantity to run the service with certain QoS. Under budget Bi, SP i procures

resources from the InP. She obtains a resource bundle xi = (xil1 . . . xilR), where xilr is the amount

of resource type r at location l allocated to SP i. The utility function for the service level of SP i

writes

ui(xi) =
∑

l∈Li

uil (4.1)

where, the utility of the SP i at location l uil is defined as,

ui,l = min
{ xil1

dilai1
,

xil2

dilai2
, . . . ,

xilr

dilair
, . . . ,

xilR

dilaiR

}
, (4.2)

Where dil represents the overall user demand of SP i at location l. We used Leontief function since

the resource types are perfect compliments [100], i.e, obtaining a resource type r in excess does

not yield higher utility.

Here, service utility ui depends linearly on location-based utility uil, which can lead to unfair

resource allocation between locations, this aspect is discussed in detail in 4.3.4.

4.2.3 Objective of the service providers

The goal of each SP i ∈ N is to meet the variable user demand across multiple locations. Hence, it

requires multiple resources in sufficient proportions at different locations to meet the SLA. For this

reason, SP i with a predefined budget Bi tries to obtain the resource bundle that suffice its service.

Thus the utility of each SP i, named Fi writes

Fi = argmax
xi∈Rm

+ :C(xi)≤Bi

ui(xi) (4.3)

†Since each SP is assigned with a dedicated slice the term ’slice’ or ’SP’ or ’tenant’ is equivalent.
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where C(xi) is the total cost of the resource bundle that should not exceed budget Bi of SP i.

4.3 Resource Allocation Problem

In this section we present different approaches to the allocation problem in the setting described in

section 4.2.

4.3.1 Fisher Market under generalized α-fair resources allocation

The classical optimization framework for the InP is to provide an efficient and fair allocation to all

SPs based on their budgets. To capture the situation that the SPs may have different priorities, we

consider the weighted version of the social welfare objective. Hence the main aim of the InP is to

maximize the total social welfare, leading to the following 5G resource allocation problem (RAP)

PSW : Maximize :
x

∑

i∈N

BiU(ui) (4.4)

subject to ui =
∑

l∈Li

uil ∀ i ∈ N , (4.5)

ui,l ≤
xilr

dilair
∀ i ∈ N , l ∈ Li, r ∈ R, (4.6)

∑

i∈N

xilr ≤ clr, ∀ l ∈ Li, r ∈ R. (4.7)

Given that SPs generally have their services across multiple locations, their utility indeed de-

pends upon the utility obtained from each location as mentioned previously, this location depen-

dency is captured by the constraint 4.5. As described under service utility that the resources are

perfect compliments, hence the utility usually depends on the bottleneck resource, which is the

point of leontief function, 4.6 warrants this functionality. Constraint 4.7 set the seal on the amount of

resource that can be allocated to each SP for each resource type at all the locations where SP has

a presence, this guarantees that the capacity is not exceeded.

The utility U is assumed to belong to the well-known class of fairness [73] that measures canned

α-fairness. Specifically, we have

U(y) =





(y)1−α

(1−α) if α 6= 1

log(y) if α = 1
(4.8)

The values of enclosed α ∈ [0,∞) give the trade-off between individual fairness and efficiency, the

smaller α corresponds to utilitarian welfare where a social planner cares more about societal good
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(efficiency). In contrast, larger α corresponds to the egalitarian nature of social a planner, where it

cares more about individual equality (fairness). For α = 1, for instance, the customary log-based

proportional-fair utility will severely penalize serving high utility in a lightly loaded location while

starving slice users in another location. This corresponds to the social well fair defined in the Fisher

Market solution where the objective function is defined as follows

NSW (x) =
(∏

i∈I

ui(xi)
Bi

) 1
B

. (4.9)

where B is the total budget for all SPs.

4.3.2 Market Equilibrium

We assume that the InP acts as a social planner or mechanism designer whose goal is to maximize

the total social welfare regardless of the budget difference among SPs. Under the α-fair setting,

the market is said to be at equilibrium if the supply provided by InP exactly matches SPs’ demand,

and each SP gets its favorite resource bundle. Even out of markets mentioned in the literature,

probably the simplest one is the fisher market, where each SP owns the finite budget and SPs

purchase the resources based on the linear pricing. For α = 1, Eisenberg and Gale [28] showed

that if the SPs utilities in the fisher market with α = 1, then the market equilibria solution problem is

equivalent to the Nash welfare optimization problem. In other words, resource allocation under fisher

market equilibrium achieves optimal Nash welfare. An immediate question arises what if the social

planner (InP) wishes to maximize a different welfare function. Motivated by this question, we focus

on developing a pricing scheme for the market such that the market equilibrium induced through the

proposed pricing scheme achieves various α fairness criteria. Here the pricing is associated with the

capacity constraints (PSW ) and represents the rate of change of the objective function associated

with any change in the capacity. Without any loss of generality, we assume that each resource type

r is desired by at least one SP, and SPs have no value over their leftover money. We also consider

that the total budgets of SPs (Bi) are normalized to one, i.e.,

N∑

i

Bi = 1.

As discussed above, a fisher market adopts a linear pricing scheme under proportional fairness;

in this work, we consider a more general pricing scheme under α-fair, where α ∈ [0, +∞).

Definition 4.1. Price curves: Let γilr(xi) : R
L×R
+ × R+ → R+ [34], is an increasing function

denoting cost for purchasing of xilr amount of resource of type r at location l given bundle of resources
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si purchased by SP i, thus the total cost for purchasing bundle xi of resources

Cγi(xi) =
Li∑

l=1

R∑

r=1

γilr(xi) (4.10)

we define the market

M :=
〈
N , (Bi)i∈N ,

⋃Li

l=1Rl, (ui)i∈N , γ
〉

as follows:

• Player set: the set of service providers N

• Budgets :Bi

• Resources set:
⋃Li

l=1Rl

• Utility: The utility of each SP i is equal to the ui

• Price curve: γilr(xi)

Definition 4.2. Allocation and price curve vector (x, γ(x)) is called as Market Equilibrium (ME)

of market M if the following conditions are satisfied.

C1 Each i ∈ N SP gets his favourite bundle xi,where

xi : argmax
xi≥0;Cγ(xi)≤Bi

ui(xi) (C1)

C2 The demand x meets the supply or the market is cleared, i.e.,

∑

i∈N

xilr ≤ clr ∀l ∈ Li,∀r ∈ R (C2)

and the inequality (C2) is saturated if γilr > 0.

4.3.3 Fisher Market Equilibrium Price

This section contains the main results of the problem defined in 4.4. The resulting resource allocation

is fair among the slices, which eliminates the starvation of SPs with lower budgets, and the fairness

level can be steered by a factor α. It is important to notice that α = 0 yields worst fairness as the

resource allocation has a strong dependency on the budget of SPs, if all the budgets are equal then,

resources will be allocated in proportion to the demand vector dilr. If budgets are not equal then it

is likely that more resources are allocated to the slices that belong to SPs with higher budgets, this

could cause starvation for other slices. On the contrary, a high α leads to a fair allocation among

SPs while degrading efficiency. Hence, InP should strike a balance between fairness and efficiency

by selecting α value depending on the scenario.
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Theorem 4.3. There exist a price curve vector γ and associated market equilibrium (x, γ(x)) for

the market M such that the allocation x maximizes the social welfare (4.4) and the price curve for

each resource type r at location l for SP i is characterized as

γilr(x) = plrxilr

( ∑

l∈Li

xilr

dilair

)α−1
, if dilair > 0 (4.11)

where plr is the Lagrangian multiplier associated with the capacity constraints in (4.4) and ui is the

utility of each SP i.

Proof. See Appendix B

We observe that the structure of the price function reflects the goal of α-fair. When α is higher,

i.e. α > 1, the price of a resource increases faster proportional to the total utility of SP. Therefore,

the higher the α is, the more we care about SP with low utility. When α = 1, which corresponds

to proportional fairness (PS) or Nash bargaining allocation, the price function becomes linear and

the resource allocation corresponds to a mix of fairness and efficiency. Indeed, under Under PF, if

compared to any other feasible allocation of utilities, the aggregate proportional change is less than

or equal to zero. When α < 1, we have the opposite behavior since the smaller α is, the more we

care about SP with high utility.

4.3.4 Two-level resource allocation

So far, we have focused on achieving the α-fair resource allocation between the SPs. However, we

observe that the utility ui considered in the problem 4.4 is additive in location-based utility and could

result in unbalanced resource allocation towards the locations supported by each SP. To overcome

this, we propose a slightly modified problem that accounts for fairness among slices and locations

supported by each slice. To be more specific, we apply proportional fairness among locations served

by each SP. Here, the most important challenge is the resource allocation among locations with a

fairness guarantee for end-users.

We replace the linear utility function 4.5 with a slightly tweaked CES utility function 4.13 in the

following model to incorporate fairness between different locations of a SP as well, β ∈ [0,∞)
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determines the fairness level.

Maximize :
x

∑

i∈N

BiU(ui) (4.12)

subject to ui =
( ∑

l∈Li

(uil)
1−β

) 1
1−β

∀i ∈ N , (4.13)

uil ≤
xilr

dilair
∀i ∈ N , ∀l ∈ Li, ∀r ∈ R, (4.14)

∑

i∈N

xilr ≤ clr, ∀l ∈ Li, ∀r ∈ R. (4.15)

The market equilibrium of (4.12) subject to the constraints 4.13-4.14 ensures fair allocation

among SPs as well as locations of a SP. Now, we study how the new formulation of the fisher

market influences the price curves.

Proposition 1. There exist a price curve vector γ and associated market equilibrium (x, γ(x)) for

the market M such that the allocation x maximizes the social welfare (4.4). and the price curve for

each resource type r at location l for SP i is characterized as

γilr(x) = plrxilr



(∑

l∈Li

( xilr

dilair

)1−β) 1
1−β




α−1

,

if dilair > 0, (4.16)

where plr is the Lagrangian multiplier associated with the capacity constraints in (4.4).

Proof. See Appendix B

A fundamental aspect of the price function obtained in Proposition 1 is the systematic exploitation

of heterogeneity of traffic in different location.

4.3.5 Strategic service providers

In a strategic setting, SPs are players, and may report a strategy profile sir instead of reporting the

true preferences air, in an attempt to gain larger utility. The use of a plain Fisher market mechanism

in this situation for resource allocation induces game G. There are N SPs and R resource types; for

the sake of simplicity we drop the dependency on location. Now the utility of SP writes

u′
i = min

r∈[M ]





1− s2r

(
B2

smax
2

) 1
α

a1r





. (4.17)
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By inversion, it is possible to compute the expression for the best response strategy of a SP to

other players actions [17]. An explicit formula for a two player market with strategies s1 and s2 is the

following

s1r = 1− s2r

(
B2

smax
2

) 1
α

. (4.18)

where smax
i = max

r∈R
{sir}.

Let s∗ = (s1
∗, . . . , sN

∗) be the strategy profile for the market under strategic players and Si be

the strategy space for player i. The standard definition of equilibrium is as follows,

Definition 4.4. Strategy profile s∗ is a Nash Equilibrium (NE) of the game G if

∀i ∈ N , Ui(si
∗, s−i

∗) ≥ Ui(si, s−i
∗), si ∈ Si (4.19)

Here, (si, s−i
∗) denotes the strategy profile with ith element equals si and all other elements equal

si′
∗ (for any i′ 6= i).

Theorem 4.5. A uniform strategy (sij = 1
M ∀j ∈ [M ]) is a Nash Equilibrium for the given Fisher

market game with leontief utilities where the player utilities are ui =
B

1
α
i∑N

k=1
B

1
α
k

dmax
i

To, see the effect of player’s strategic nature, we use price of anarchy (POA), which is defined

as the ratio between the worst NE social welfare and the optimum social welfare.

Proposition 2. The PoA of the Fisher Market under α-fair utilities is 1
N

Proof.

PoA =

∑N
i=1

1
1−αBi(u

∗
i )1−α

∑N
i=1

1
1−αBi(uNE

i )1−α
,

=

∑N
i=1 Bi(

1
dmax

i
)(1−α)

∑N
i=1 Bi

(
B

1
α
i∑N

k=1
B

1
α
k

dmax
i

)1−α .

We consider that the budgets Bi of the SPs are equal, then we have

PoA = N. (4.20)

The above proposition extends the result in [17], which is covering just the case α = 1. Here we

observe the PoA does not depend on α. Hence, no value of α improves the efficiency when SPs

behave strategically.
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4.4. Numerical evaluations

API Name Bandwidth vCPU Memory Instance Type
(Gbps) (GB)

r4.8xlarge 10.00 32.00 244.00 Memory optimized
r4.16xlarge 25.00 64.00 488.00 Memory optimized

m4.10xlarge 10.00 40.00 160.00 General purpose
m4.16xlarge 25.00 64.00 256.00 General purpose

c5.9xlarge 10.00 36.00 72.00 Compute optimized
c5.18xlarge 25.00 72.00 144.00 Compute optimized
c4.8xlarge 10.00 36.00 60.00 Compute optimized

Table 4.1: API instances from AMAZON EC2
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Figure 4.2: Impact of α on SP utilities.

4.4 Numerical evaluations

In this section, we provide numerical results to support the mechanisms that we have described so

far. We consider Amazon EC2 instances [8] to compute numerical results, some of these instances

are described in table 4.1.

We consider first a simple set up with two slices, both slices cover demands at two locations

and each SP needs three resource types to run their services. Assume that each SP provides

two application services with the APIs mentioned in the table, SP1 supports API m4.10xlarge and

m4.16xlarge, SP2 supports API c5.9xlarge, and c5.18xlarge. In order to generate Monte Carlo

simulations, we let each SP support services at each location with given probability pkl per gener-

ated instance, where, pkl is the probability to support API k at location l. SP i has fixed budget Bi

(normalized to 1). Capacity clr is available at each location l for resounce r, and resource prefer-

ences are aggregated for both SPs as they support only one service at the time:

a′
ir = p1la

1
ir + p2la

2
ir, l ∈ Li (4.21)
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Budget Bi, α, and demand dil per location l has a great impact on the resource allocation for the

slice and in turn, impact the utility of the SP. Hence, we focus on the impact that these factors have on

resource allocation. For the remainder of this section, we consider the same preferences evaluated

using (4.21) based on the Amazon instances mentioned earlier. First we provide the impact of α

in tuning the degree of fairness, then the impact of budget and parameter α. Finally we show the

impact of demands by imposing higher fairness at both levels.

4.4.1 Impact of factor α

As described throughout the article, the factor α tunes fairness in the proposed mechanism, im-

posing different degrees of fairness across the slices. Instead of comparing the utilities U1 and U2

side by side, we prefer to observe the change in |U1 − U2|, which provides a better illustration for

observing the fairness variation. Figure 4.2 displays this by varying α over the range 0-10 with an

interval of 0.5. Figure 4.2 shows that at the increase of α, the difference between the utility of SP

decreases. I.e., the allocation of resources is more and more fairly distributed, thus vanishing the

difference between U1 and U2. We compare two scenarios to show the consistent behavior of the

fairness: first, we let B1 > B2, uniform demand across locations, and the resource preferences are

as mentioned earlier (aggregated for the two APIs). In the second scenario SP 2 has higher bud-

get. In both cases, higher α leads to higher fairness. Though the behaviour appears similar for both

scenarios, the curve in the first scenario decreases sharply than the other curve. In fact, the utility

depends on resource preferences as well, and not only on the budget. The preference for resources

are higher for slice 1 than for slice 2. Based on the numerical results, we observe that the value of

β does not play a role because corresponding fairness is at the location level not at the slice level;

the objective of the comparison is at slice level.

4.4.2 Impact of SP budget Bi

To show the impact of purely the budget under higher fairness criteria, we consider uniform demands

(dil = 1), α = 10, β = 5. When α and β are zero, allocations depend for the major part on budget.

A trivial solution is for the SP with the higher budget to get all the resources, starving all other SPs’

users due to lack of resources, as known in the literature for the utilitarian approach. The proposed

scheme, as reported in figure 4.3, avoids starvation effects both at the slice level and at the location

level, whereas the SP with higher budget gets relatively higher resources. In the same figure, it can

be observed that slice 2 is not allotted with higher resources compared to slice 1 even when the

SP2 budget is higher than SP2, the reason being that the allocation depends not only on the budget

but also on their resource preferences as described earlier.
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Figure 4.3: Resource allocation for slice 1 and slice 2 respectively, with change in SP budgets.

4.4.3 Insights of user demand dil

Figure 4.4 displays the results for different demands of SP1 at location 1. Here, B1 > B2, resource

preferences as in previous experiments and the user demands d12 = 1, d21 = 1.5, and d22 = 1; α

= 10, β = 5. It can be observed that as d11 increases the allocation for location 1 served by SP1

increases as well, at the same time resources for location 1 of SP 2 is decreasing to satisfy the

capacity constraint 4.7. But the increment in allocation is rather low due to fairness imposed by α

and β.

4.5 Conclusion

Resource allocation has always been a very challenging aspect in telecommunication due to the

scarcity of resources and high demand from the users, even more so in the context of 5G, which

is by far the most diverse and complex system. In this work, we investigated a method to cope up
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Figure 4.4: Resource allocation for slice 1 and slice 2 respectively, with change in the demand at
location 1.

with those challenges by emphasizing the fact that the resources should be fairly allocated to the

SPs competing for the resources. We demonstrated that our model is capable of allocating multiple

resource types that are fair among slices and among the locations of a slice with help of the factors

α and β respectively, which act as control parameters to balance the trade-off between fairness

and efficiency. On top of this, by defining POA, we have shown that the social welfare deteriorates

significantly when players strategically report false preferences. This unified framework that focuses

on a non-linear pricing scheme to allocate resources with multi-level fairness can be applied to

various scenarios under the 5G network slicing phenomenon. This centralized approach for resource

allocation has several drawbacks: central entity that is responsible for resource allocation needs

need information such as resource capacity and utility functions which can be sensitive to InPs

and SPs respectively, and it does not allow InPs to choose their own resource allocation rule for

allocation. For these reasons we propose a decentralized resource allocation mechanism in the

next chapter to address these issues.

74



Chapter 5

PRIVACY PRESERVING DECENTRALIZED

RESOURCE ALLOCATION MECHANISM

5.1 Introduction

Web and mobile applications have seen exceptional growth in both quality and quantity due to the

excellent support provided by companies such as Google, Microsoft, Amazon, and others through

cloud services. They use cloud computing to remove the hardware bottlenecks for consumers and

enterprises. This idea paved the way for industries to use centralized resources to run their oper-

ations. However, recent developments in unnamed areal vehicles (UAV) [47, 32], and autonomous

driving [64] to name a few, require high reliable connections with excellent connectivity and very low

latency. Edge computing[93] and fog computing [111] have been developed to achieve nearby and

assured level computational capacity. In this, most of the resources supported by the core cloud are

shifted closer to serving locations. Other services that are data intensive transmit large amounts of

data to the central cloud, which can increase the congestion along network paths, thus leading to

increased delay and re-transmissions where available bandwidth gets reduced. Instead, edge cloud

can pre-process the data locally, eventually send the result to the cloud for computation or storage,

hence reducing the strain on the central cloud and routes leading to it. This combination of central-

ized and distributed placement of resources is being extensively adapted in the current and next

generation networks.

Cloud computing also ease the softwarization of the network functions (or Network Function

Virtualization, NFV), increasing the flexibility reachable to satisfy current and future needs of net-

work Service Providers (SPs) and end-users. Complementary architectures such Software defined

networking (SDN) can further provide flexible routing while moving the control from the devices to

a central entity; this eliminates the need for individual update of the routing tables and protocol

metrics, which can be prone to errors [99]. Such network softwarization evolutions extend the ca-

pabilities of communication networks, starting notably with the 5th generation of cellular networks,

and beyond 5G. A significant benefit of incorporating the network softwarization is the novel idea

called Network Slicing that logically separates the virtualized resources involved in the end-to-end

network provisioning, creating a logical network partition called network slice [46]. Network slicing
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enables the independent and flexible scaling of the resources for each SP, in a chain of SPs involved

in network service provisioning [66]; this helps the SPs to obtain resources that are tailored to their

service needs.

Generally, the cellular network is segregated into Radio Access Network (RAN) and Core Net-

work (CN). RAN provides the access to the User-Equipments (UE), RAN functions such as Base

Band Units (BBU) perform digital signal processing on the received signals. Cloud-RAN (C-RAN)

allows the placement of BBUs on central or edge cloud [20]; this allows C-RAN to dynamically scale

the resources based on the requirements. Other functionalities such as Access and Mobility Man-

agement (AM), Session Management (SM), authentication, user and data plane management that

are part of the core network can also be performed in the similar approach[2]. Further RAN function

disaggregation is envisioned in novel Open-RAN architectures [94]. This architectural desegregation

helps the SPs to efficiently manage radio resource, also in coordination with the orchestration layer

and other resource controllers.

Such diversity in the service types creates heterogeneous resource requirement which poses

severe challenges to the network design; 5G wireless networks have been developed to address

these challenges. Three main use-case scenarios, namely, enhanced mobile broad band (eMBB)

[4], massive machine type communication (mMTC)[26], and ultra reliable low latency communica-

tion (URLLC) [21] have been created in 5G to address the needs of ever increasing business ideas

such as smart cities, autonomous driving, smart factories, online gaming, high resolution streaming

services, etc [84, 103]; additional services are being introduced with 6G, namely, ubiquitous Mo-

bile UltrabroadBand (uMUB), ultraHigh-Speed-with-Low-Latency Communications (uHSLLC), and

ultraHigh Data Density (uHDD), with possible integration of undersea, terrestrial, non terrestrial and

satellite networks. Each use case is designed to address the specific needs of the service providers

(SP) such as low latency, higher throughput, and ability to handle massive connections to support

IoT devices. For instance, 5G supports a modified data frame with introduction of frame numerlogies

to enable multiple sub carrier spacings ranging from 15kHz to 960kHz [1]; this further expands the

capabilities of the 5G network as it can facilitate higher bandwidths by using millimeter Waves[87].

Each use-case mentioned earlier require multiple resources in a specific proportion to maintain

the Quality of Service. To this aim, SPs have to jointly provide various resources namely, CPU, RAM,

storage, bandwidth, from the infrastructure providers (InP) that can own one or multiple resources

resources. In some cases, an SP may be an InP as well, typically for the radio access domain,

simplifying the end-to-end resource provisioning. Nonetheless, given the changes in the data frame

structure and network architecture, the resource allocation has never been more complex and chal-

lenging, as for the 5G and beyond-5G or 6G environments. Consider that each SP can be allocated

with one or multiple dedicated network slices for each communication service offered. From here on,

resource allocation to the network slices refers to the resource allocation for the SPs and network

slice is referred as slice for brevity.
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In this new communication service provisioning landscape, multi-resource provisioning systems

are therefore needed. Open-RAN, in conjunction with NFV and SDN systems, is in this respect

opening the scheduling logic at different resource controllers to facilitate multi-resource integration.

At the state of the art, the majority of the multi-resource allocation rules are based on a centralized

approach [74, 14, 31, 80] as shown in figure 5.1: a central slice orchestrator mediates between SPs

and InPs to obtain the best possible outcome for both sides; both parties prefer that their interests

are better served, in that each InP tries to maximize revenues with the efficient use of the resources,

and the SPs prefer slice isolation. As described in the previous chapter, with network slicing, the slice

orchestrator has the burden of dynamically allocating the resources that best serve the interests of

InPs and SPs. In chapter 4, we introduced one such centralized resource allocation framework with

multi-level fairness. However, this approach has several drawbacks [37, 80]:

• To realize the resource allocation through central allocation rules, the orchestrator needs in-

formation such as available resource capacity from InPs and utility functions of the SPs. This

is private information that they can be reluctant to share.

• With dynamic changes in the network due to varying growth in the number of slices, scalability

is a big issue for the orchestrator.

• Finally, as with any centralized solution, a single point of failure is an inevitable drawback.

To address these issues, distributed resource allocation rules were developed [60, 53], where

each SP can directly communicate with InPs and obtain the resources as shown in the figure 5.2

without the need to disclose private information. Thus, said distributed multi-resource allocation

rules help preserve privacy on multiple ends. In this chapter, we investigate the following question:

1. Does decentralized resource allocation mechanism achieve social optimal where each InP can

implement an independent resource allocation scheme?

5.2 Related Work

Resource allocation in wireless networks is a well-studied area of research[38], however, with the

constantly evolving network architectures and heterogeneous requirements of the SPs, the models

that allow for efficient and fair resource allocation have to be proposed to address these changes.

Despite all the complex requirements, the underlying phenomenon remains the same, i.e., infras-

tructure provider wants to maximize their revenues by leasing the resources and the clients try to

procure resources at the best price to minimize their costs. There have been many notable works

that address this problem with different approaches, in [79, 76], the authors obtain an optimal re-

source allocation with the use of Eisenberg - Gale convex programming [28] to solve the proposed
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market model that employs proportional fairness. With auction-based models [69], SPs with better

marginal utilities obtain a higher share of resources, whereas the authors in [Ali] employ max-min

fairness that allocates as much resource as possible to the SPs with weaker marginal utilities to

make the resource allocation extremely fair. A common observation in all these models is that there

is no flexibility to choose an appropriate fairness model depending on the requirement. But authors

in [73] propose an α - fairness based model that provides the necessary flexibility.

A common drawback of the above-mentioned works is that they employ central allocation mod-

els that lead to privacy concerns for InPs and SPs. F P Kelly [60] proposed a distributed resource

allocation model that suppresses the need for resource providers and procurers to reveal sensitive

information. R. Johari [53] extended this work to the network with multiple resources. The authors

of [30] provide a nice framework to allocate resources in a distributed manner but it does not guar-

antee particular fairness for the proposed solution. The model proposed in [37] based on the Kelly

mechanism, employs an α - fair allocation mechanism that achieves optimal allocation. However,

there is no particular control for the individual InP to choose their own allocation model.

Main contributions:

• Given the privacy concerns for SPs and InPs alike, we design mechanism for optimal resource

allocation in a decentral approach. This mechanism allows each InP to independently choose

an allocation rule for each associated resource by choosing a specific value for parameter

βr. We define an optimization problem for each SP that can be locally solved to obtain the

resource allocation in conjunction with InPs who allocate resources based on its allocation

rule. We prove that such a mechanism results in an allocation that can optimally solve the

allocation scheme employed by the central system.

• We provide two resource control algorithms that can be implemented at InP for obtaining an

optimal pricing and resource allocation. These algorithms are easy to implement in the current

network architectures or future O-RAN enabled networks. In addition, we provide the proof for

the convergence of the algorithms. Finally, We provide numerous simulation results to back

our theoretical claims which include the convergence of resource allocation, impact of α on

the overall allocation.

Organization of the chapter:

Section 5.3 consists of the system description, utility function definition and detailed interpre-

tation, and the resource allocation rule for each InP. Section 5.5 contains the mechanism designs

corresponding to the two prominent pricing schemes with price taking SPs and associated theo-

rems to prove the existence of equilibrium and optimal solutions. Section 5.6 comprises of several

simulated results to validate the theoretical claims and it concludes with final remarks and future

directions.

78



5.3. System Model

Notations Description

i service provider identifier
m infrastructure provider identifier
r resource type indicator
N set of service providers; N = {1, 2, . . . , N}
M set of infrastructure providers; M = {1, 2, . . . , M}
R set of information age values; R = {1, 2, . . . , R}
Cr capacity of resource type r
xir allocated quantity of resource type r to SP i
xi resource bundle allocated to SP i
dir base demand of SP i for resource type r
uir utility of SP i for resource type r (single resource)
ui utility of SP i for obtaining multiple resource
bir bid submitted by SP i for resource type r
bi vector of bids corresponding to SP i
pr price of resource type r (uniform price)
pir price of resource type r for SP i (differential pricing)

Table 5.1: Table of notation

InP1 InP2 InPM

S1 S2 SN

crcr cr

d, u

Resource orchestrator
x

d, u d, u

Figure 5.1: Central resource
allocation example with N
slices and M InPs.

InP1

InP2

InPM

S1 S2 SN

x x x

d

d

d

Figure 5.2: Distributed re-
source allocation with N slices
and M InPs.

InP1 InP2 InPM

S1 S2 SN

x x x

b b b

Figure 5.3: Decentralized re-
source allocation with N slices
and M InPs.

5.3 System Model

Consider a 5G system with multiple service providers N = {1, 2, . . . , n, . . . N}, where each SP

requires different resource types R = {1, 2, . . . , r, . . . R} to run their services and meet users’ de-

mands. There are several InPsM = {1, 2, . . . , m, . . . M}, each of them owns at least one resource

with an available capacity cr; let us assume that no resource is commonly owned by two InPs. Each

InP has the freedom to employ a specific allocation mechanism. Figure 5.4 shows the architecture

of the network with the introduction of O-RAN. We can easily extend the general description pro-

vided in this section to the new architecture by considering that the data centers in different parts

of the network are supported by different InPs. Every SP has a base demand dir that conveys the

SP’s preference for a specific resource r to maintain the service rate. The required resources are

79



Chapter 5 – Privacy preserving decentralized resource allocation mechanism

O_RAN
radio
unit

O-DU O-CU

core network
Transport
NetworkRAN

Figure 5.4: Schematic representation of Beyond 5G network architecture with open-RAN.

procured from various InPs depending on the service requirements. Before establishing the problem

formulation, it is crucial to qualify an utility function of the SP as it plays a key role in the mecha-

nism design for an optimal resource allocation. In addition, formulating a precise utility function can

provide a measure to understand the service rate based on the amount of resource obtained from

InPs.

In this work, we consider that a feasible resource allocation vector x satisfies following conditions

[102].

• Non negativity: the amount of resource type r allocated to SP i is non-negative.

i.e., xir ≥ 0 ∀ i ∈ N ; ∀ r ∈ R, (5.1)

• Capacity limitation: the total allocation does not exceed the available capacity.

i.e.,
n∑

i=1

xir ≤ cr. (5.2)

5.3.1 service utility function

For any given SP, the service rate is crucial to cope with the user demand. Hence, the SP must

procure enough resources to maintain the desired service rate. It is important to define a service

utility function that quantitatively determines the service rate based on the resources obtained by

the SP and the base demand. From here on, the service utility function is referred to as utility for

brevity. The utility of the SP is defined as follows, depending on the number of resources required.

Single resource utility: in this case, it is trivial to see that the ratio of the obtained quantity of

resource xi and the base demand di is the utility of the SP i.

i.e, ui =
xi

di
(5.3)

Multi-resource utility: services that are currently offered by the SPs require more than one re-

source, hence the definition of the utility shall depend on the relation of resource types and the
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service. There is a well-known class of utility functions that is referred to as the constant elasticity of

substitution (CES) function [9]. It is defined as follows:

ui =

(
R∑

r=1

uρ
ir

) 1
ρ

(5.4)

where ρ ranges from −∞ to 0. The factor ρ determines the utility type of the SP; it originates

from the field of economics, used to measure buyer satisfaction based on the amount of goods

purchased.

In general, there are three popular cases that are well studied and extensively used in the liter-

ature [17]: (i) linear (ρ → 1), (ii) Cobb-Douglas (ρ → 0), and (iii) Leontief (ρ → −∞) functions. The

Leontief one captures the utility of goods that are perfect complements, that is a set of goods lose its

value without another set of goods, for example, a pair of shoes. Buying any number of the left shoe

has no value for the buyer if the same number of right shoes are not purchased; as resources in

wireless networks are known to be perfect complements (to execute a specific vnf, the slice requires

resources such as bandwidth, cpu, memory. Without any of the mentioned resources the vnf can

not be executed), we use as utility one defined based on the Leontief function, as follows

i.e., ui = min{uir} = min{
xir

dir
} ∀ r ∈ R (5.5)

So the increment in utility is a function of the proportion of the obtained resource: the utility

increases only when all the resources are increased by the same proportion, which is the reason

why the utility is defined as the minimum of the ratios of the allocated resource xir and the SP base

demand dir.

Example: for illustration purposes, let us consider that an SP requires 3 resource types, band-

width, vCPUs, and memory, to run a service. Assume that the base demand vector is d = (2

Gbps, 4, 200 Mb). The following cases represent 3 possible allocations highlighting the impact of

increased/decreased allocation on utility:

• case 1: the allocated resource vector is x = (1 Gbps, 2, 100 Mb).

ui = min{
1

2
,
2

4
,
100

200
} = 0.5

• case 2: x = (1 Gbps, 4 100 Mb), SP does not get additional benefit despite receiving additional

vCPUs as the service rate is limited by the other two resources. This can be observed with the

computation of utility,

ui = min{
1

2
,
4

4
,
100

200
} = 0.5
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• case 3: x = (2 Gbps, 4, 200 Mb);

ui = min{
2

2
,
4

4
,
200

200
} = 1

now the utility of the SP is 1. In this case, all the resources increased in proportion by twofold,

hence the utility is increased by twofold.

It is clear to see that the SP utility increase only when all the resources increase in proportion, as

the Leontief function takes a minimum of ratios between the base demand and allocated resources.

It is not necessary that all of the SPs require every available resource type; to address this, an SP

can submit a base demand of zero for any resource that is not desired by the SP. This ensures that

the utility is computed based on the resources that are compulsory for SP.

5.3.2 InP allocation rule

We consider that all InPs have the freedom to choose their own allocation rule and based on the

information provided by the SPs that does not reveal any private details, InP can allocate resources

to each SP that has a non-negative preference for a resource referred to as a bid in this work. In

this work, we consider that each InP implement α - fair allocation rule which is discussed in detail

in the next section. We use the notation βr instead of α while referring to the allocation rule for InP,

hence the rule remains the same except for the notation. Each InP can propose a specific value for

βr and determines the resource quantity xir to be allocated to each slice. In this model, we assume

that the vnf placement has already been defined. Every slice must evaluate the amount of resource

that can be procured from each InP who owns the corresponding resource to meet the SLA of the

respective SP. To this aim, each slice sends a signal containing the bid value of the required resource

to the corresponding InP. By receiving all the bids from slices, the InP then computes the optimal

resource bundle xi to be allocated to each slice. This information is then communicated back to the

corresponding slice.

Let br = [bir]i∈N be the vector of demands (referred to as bids∗) submitted by each SP i ∈ N

for a resource r ∈ R, xr = [xir]i∈N is a vector of allocated quantity of resource type r ∈ R for every

SP i ∈ N that submitted a positive bid. The following optimization problem is the mathematical

representation of such an allocation method, as considered in this work, for each InP m ∈M.

∗In this mechanism, bids acts as signaling between the SP and InP to obtain an optimal resource allocation with
out the need for SPs to reveal utility function
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INFRA(br, φr, xr) : maximize
x

Hm :
∑

i∈N

bir
1

1− βr
x1−βr

ir (5.6)

subject to
∑

i∈N

xir ≤ cr (5.7)

The objective of the above optimization problem is to compute an optimal resource allocation

vector x for based on the bid values submitted by the slices. The parameter βr allows each InP to

implement a specific allocation rule for the slices. More details on this are provided in the following

section. The constraint (5.7) ensures that the addition of allocated resources xir does not exceed

the available capacity cr. In the following, we write the closed form expressions for obtaining the

resource quantity xir by each InP and the corresponding price φr which is a Lagrange multipler

associated with the capacity constraint (5.7). In this work, we consider this as a price charged by

the InP as it ensures that the aggregated resource allocation
∑

i∈N xir does not exceed the available

capacity cr of a resource r. The price φr reaches a significantly high value as aggregated demands

of SPs approaches available capacity cr, on the contrary it reaches zero as the aggregated demand

is considerably lower than available capacity.

Now, we write the Lagrangian for INFRA(br, φr, xr)

Linfra(xr, φr) =
∑

i∈N

1

1− βr
birx1−βr

ir − φr

(
∑

i∈N

xir − cr

)
. (5.8)

by writing the first order necessary and sufficient conditions, we have

∂Linfra

∂xir
= birx−βr

ir − φr = 0.

From the above equation, we can write the closed form solution for resource allocation xir by an InP

to each SP i ∈ N

xir =

(
bir

φr

) 1
βr

. (5.9)

By applying sum on both sides, we have the following,

1 =
∑

i∈N

(
bir

φr

) 1
βr

With that we can write the closed form expression for the price of a resource

φr =

(
∑

i∈N

b
1

βr

ir

)βr

. (5.10)

Each InP returns to every SP that submitted a positive bid bir, a price φr and xir based on
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eq.(5.10) and (5.9) respectively.

EXAMPLE: Consider that there are 3 InPs, each provide one resource type and 3 SPs procuring

the resources from each InP to support the corresponding services. InP1 provides bandwidth and

implements proportional fairness (βr = 1) while allocating the resources to the SPs. InP2 provides

CPU and implements max-min fairness (βr →∞) among the competing SPs. InP3 provides Memory

and employ proportional fairness criterion while allocating the resources to SPs. As per this scheme,

the InPs are not forced to choose a specific allocation rule. In the following sections, we explain the

possibility of obtaining such different allocation rules by selecting an approapriate value for βr.

5.4 Social welfare function

Each SP shall obtain a slice to run its services with a certain QoS. To obtain the resources, every

SP submit their demand dir to the resource orchestrator (RO), who is responsible for resource

provisioning for the associated slice. The slice shall obtain the resource bundle xi = [xir]r∈R that

maximizes the SP utility ui. Hence, the resource orchestrator shall employ an allocation mechanism

that computes such resource quantities for each slice corresponding to the submitted demands dir.

The optimization problem shown in (5.11) - (5.13) is associated with the social welfare of all the SPs.

Usually, it consists of maximizing the aggregated utility of their concerning utilities. However, we

consider the α - fair function that provides the system with needed flexibility in employing a fair and

efficient resource allocation. Let x = [xi]i∈N , then the objective of the RO is to find x that maximizes

the following optimization problem.

SY STEM(λ, x) : maximize
x

G :
N∑

i=1

U(ui) (5.11)

subject to
N∑

i=1

xir ≤ cr ∀ r ∈ R (5.12)

ui ≤
xir

dir
∀r ∈ R,∀i ∈ N (5.13)

The first constraint (5.12) ensures that the allocated resources do not exceed the available ca-

pacity, and the constraint (5.13) ensures that the resulting utility from the multiple resources obtained

by the SP follows the Leontief utility function. Here, U(ui) is assumed to follow the α - fair alloca-

tion rule [74, 98] as it has the flexibility in achieving a trade-off between efficiency and fairness by

adjusting the factor α. It is defined as follows,

U(ui) =





(ui)
1−α

(1−α) if α 6= 1

log(ui) if α = 1
(5.14)
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5.4. Social welfare function

α defines the level of fairness achieved while allocating the resources to the slices. Every InP

chooses a specific α for computing the optimal allocation for each resource type that is associated

with InP m. The following are some of the popular fairness rules that are generalized under α-fair

allocation.

• α→ 1: this leads to the fairness function in [77], which is an intermediate choice between the

aforementioned extreme cases. Assuming that x∗ is a feasible solution (5.1)-(5.2), an alloca-

tion x∗ is said to be a proportionally fair allocation, if the aggregate of proportional change with

respect to any other feasible allocation x is negative, i.e.,

∑

i∈N

x∗
i − xi

x∗
i

≤ 0. (5.15)

This is also referred to as Nash Welfare function [56, 78], where the welfare function is defined

as the product of utilities.

NSW (x) =
∏

i∈N

ui(xi) (5.16)

• α → ∞: this is a popular fairness rule often referred to as Max-min or bottleneck optimality

criterion [14]. A feasible allocation x is said to be Max-min fair, if an increment in xi leads to

a decrement in xj , where xj ≤ xi. In this approach, the InP is concerned with the equality

among the individual utilities of the SPs [91].

In general there are three types of approaches for multi-resource allocation, they are: centralized

approach, distributed approach, and decentralized approach as shown in figure 5.1-5.3.

Centralized approach: As described earlier, there have been many works that employ a central

entity to compute the optimal resource quantities for each of the competing client using gradient

projection method [15]. As shown in the figure 5.1, all the SPs competing for resources with a

dedicated slice Si communicates the resource orchestrator with necessary information like demand

vector d and the corresponding utility function ui, where demand d is a vector of individual resource

demand dir. Every InP communicates the resource capacities cr associated with the resources they

own. Now, the resource orchestrator has the burden of finding an optimal solution that serves the

best interest of InPs and SPs as well. However, this approach has several drawbacks [37, 80]:

• To realize the resource allocation through central allocation rules, the orchestrator needs in-

formation such as available resource capacity from InPs and utility functions of the SPs. This

is private information that they can be reluctant to share.

• With dynamic changes in the network due to varying growth in the number of slices, scalability

is a big issue for the orchestrator.
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• InPs can not choose their individual allocation rule in this approach.

• Finally, as with any centralized solution, a single point of failure is an inevitable drawback.

Distributed approach: To avoid the issuess encountered in the central approach, solutions

based on distributed approach were proposed in [30]. In this approach there is no need for the

central resource orchestrator as shown in figure 5.2. Resource allocation is achieved with a minimal

information exchange between InPs and SPs. As reported in [30], InPs can independently implement

a specific allocation rule. However, there is a need for some coordination among the InPs to allocate

resources to the SPs. In addition to that, there is no control over the fairness among the SPs.

Decentralized approach: As opposed to both approaches described before, decentralized mech-

anisms do not require any information sharing among InPs or there is no need for a central resource

orchestrator. On the other hand, there is no necessity for the SPs reveal sensitive information. So,

as far as the privacy is concerned, this is by far the suitable approach for multi-resource allocation.

Inspired by the works of Kelly in [60], and other works [53, 37], we design a mechanism by defining

two sub optimization problems, one for InPs and another for the slices. The mechanism employs

a game between InPs and slices to iteratively improve the allocation vector by exchanging non

sensitive data and eventually converge to the optimal allocation vector. The optimization problem

associated with the InPs has been introduced in section 5.3.2. The optimization problem associated

with the slices is defined in the following section along with the associated game.

5.5 Decentralized Resource Allocation Mechanism (DRAM)

Resource allocation under network slicing in 5G wireless networks is a challenging issue due to the

involvement of numerous resources and distinct SP requirements. In addition, privacy is an impor-

tant aspect of the resource allocation process. In general, neither the InPs nor the SPs are willing to

share the sensitive information as described earlier. In this section, we propose a decentralized re-

source allocation mechanism that preserves the sensitive information of the stakeholders and allows

for each InP to different allocation rule. In fact, this holds efficient as long as the objective function

is concave or strictly concave.

We consider that very SP is aware of the value for βr for all InPs. Now, we define a local optimiza-

tion problem for each SP that allows them to obtain an optimal allocation vector x that maximizes

the social welfare function G.

SP (φ, bi) maximize
b

Qi :
1

1− α
u1−α

i −
∑

r∈R

b
1

βr
r , (5.17)

subject to : ui ≤

(
bir

φr

)βr 1

dir
∀r ∈ R. (5.18)
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In this Mechanism, each SP sends a bids [bir]i∈N to the InP that owns the corresponding re-

source r. In return, InPs provide each SP with φ by using the following relation that is obtained by

solving the optimization problem INFRA(br, φr, xr) defined in (5.6)-(5.7).

From eq.5.9, we have the closed form expression for price for resource r

φr =

(
∑

i∈N

b
1

βr

ir

)βr

. (5.19)

Each SP use the price vector φ to compute optimal bids that maximize their pay-off function

defined in (5.17)-(5.18) with a motivation to obtain an optimal allocation that is a social optimal.

The user optimization problem is defined in such a way that the resulting allocation vector for this

mechanism is a social optimal.

Theorem 5.1. Let x∗
i be an optimal allocation for the local optimization problem defined in (5.17)-

(5.18) for each SP i ∈ N in conjunction with optimization problem defined in (5.6)-(5.7) for each

InP m ∈M, then x∗ solves the social welfare function defined in (5.11)-(5.13).

Proof. We can prove that above theorem by writing the KKT conditions [15], and finding the

similarity between them. First, we write the Lagrngian for SYSTEM(λ, x), where λ = [λr]r∈R,

γ = [γir]i∈N ,r∈R are the Lagrange multipliers associated to the capacity constraint (5.12) and Leon-

tief utility constraint (5.13) respectively.

Lsys(u, x, γ, λ) =
∑

i∈N

1

1− α
u1−α

i −
∑

i∈N

∑

r∈R

γir(ui −
xir

dir
) −

∑

r∈R

λr

(
∑

i∈N

xir − cr

)
(5.20)

By writing the first order necessary and sufficient conditions, we have

∂Lsys

∂ui
= 0 =⇒ u−α

i −
∑

r∈R

γir = 0, (5.21)

∂Lsys

∂xir
= 0 =⇒

γir

dir
− λr = 0. (5.22)

From the above equation, we can write

γir = λrdir. (5.23)

Now, we write the Lagrangian for INFRA(br, φr, xr), where φr is a Lagrange multipler associated

with the capacity constraint (5.7).

Linfra(xr, φr) =
∑

i∈N

1

1− βr
birx1−βr

ir − φr

(
∑

i∈N

xir − cr

)
. (5.24)
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by writing the first order necessary and sufficient conditions, we have

∂Linfra

∂xir
= birx−βr

ir − φr = 0.

From the above equation, we can write the closed form solution for allocated resource quantity xir

by an InP

xir =

(
bir

φr

) 1
βr

. (5.25)

By applying sum on both sides, we have the following,

1 =
∑

i∈N

(
bir

φr

) 1
βr

.

With that we have,

φr =

(
∑

i∈N

b
1

βr

ir

)βr

. (5.26)

Finally, we write the Lagrangian for SP(φ, bi), where γi is the Lagrange multipliers associated

with the constraint (5.18)

Lsp(ui, xi, φ, γi) =
1

1− α
u1−α

i −
∑

r∈R

(bir)
1

βr −
∑

r∈R

γir(ui −

(
bir

φr

)βr 1

dir
). (5.27)

∂Lsp

∂ui
= 0 =⇒ u−α

i −
∑

r∈R

γir = 0, (5.28)

∂Lsp

∂bir
= 0 =⇒ −φ

1
βr
r + γirdir = 0.

From the above equation, we can write

γir = φ
1

βr
r dir. (5.29)

From eq. (5.28) and eq. (5.29), we can write

u−α
i =

∑

r∈R

φ
1

βr
r dir.
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Given that we have ui = xir

dir
, we can write

xir = dir


∑

r′∈N

dir′φ
1

β
r′

r′




−1
α

. (5.30)

Each service provider uses eq.5.32 to compute the resource quantity given the price vector φ sent

by the infrastructure providers.

By comparing the results in eq. (5.21), (5.23) with the results in eq. (5.28) - (5.29), we can

conclude that with λr = φ
1

βr
r , r ∈ R, (xi, i ∈ N ) maximizes the optimization problem defined in eq.

(5.11) - (5.13).

For the reasons mentioned earlier, implementing this mechanism using a centralized RO is dif-

ficult. In the following, we provide an algorithm that can be implemented by each InP to determine

the optimal pricing vector φ with which the SPs can obtain the optimal allocation vector x that is a

social optimal.

5.5.1 Online distributed algorithm for multi-resource allocation

We propose an algorithm based on the dual variable φr associated to the capacity constraint (5.7)

to obtain the optimal allocation vector x for the system. This is based on simple gradient projection

method with a constant step size δ. By choosing an appropriate choice of step size δ, we prove that

the φ converges to φ′. The resulting allocation vector x is an optimal solution for system.

Now, we define a pricing update mechanism for each InP as follows

φr(t + 1) = max(0, φr(t) + δ(
∑

i∈N

xir − cr)). (5.31)

• Each InP computes the price φr as per pricing update defined in (5.31) and communicates the

updated price to the corresponding SPs.

• Then each SP locally computes the resource allocation as per eq.(5.32), which is

xir(φ) = dir


∑

r′∈N

dir′φ
1

β
r′

r′




−1
α

. (5.32)

• Then SP communicates the resulting adjusted resource quantity to InP. This iterative improve-

ment continuous till the price vector φ convergence in φ̂.

• Given that the allocation is computed as a function of φ, when the prices converge to an

optimal vector φ̂, according to theorem 5.1, the resulting allocation is an optimal solution for

the social welfare function defined in (5.11)-(5.13).
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API Name vCPU Memory (Gb) Storage (Gb) Bandwidth (Gbps) Instance Type

i3en.large 2 16 1250 25 Storage optimized
i3en.xlarge 4 32 2500 25 Storage optimized

r5d.large 2 16 75 10 Memory optimized
r5d.xlarge 4 32 150 10 Memory optimized
c6gd.large 2 4 118 10 Compute optimized

c6gd.xlarge 4 8 237 10 Compute optimized

Table 5.2: API instances from AMAZON EC2.

• We set bounds on the value of φr ∈ [φmin, φmax] such that φr = φmax when the aggregated

resource allocation
∑

i∈N xir exceeds the available capacity cr, this prevents the value of φr

reaching∞, on the contrary, φr = φmin when
∑

i∈N xir is significantly lower in comparison to

cr, this prevents the value of φr from reaching zero.

Theorem 5.2. Let {φ} be sequence generated by the eq. (5.31) such that φ(0) ∈ R
|R| and δ ∈ (0, 2

σ )

where

σ = R
∑

i∈N

1

α

(
1

φmin

)−( 1
α

+1)

max
r′

Kr′

the sequence φ(t) converges to {φ̂}, i.e., limt→∞ φ(t) = φ̂.

Proof. See appendix C.1.

In the following paragraphs, we explain the implementation of our mechanism in the O-ran sys-

tem envisioned for the beyond 5G networks. However, our algorithm is not limited to just RAN, but

can be applied for end-to-end resource allocation for a given slice by considering each data center

as an InP proving the resources. This algorithm is suitable for near-real-time scheduling.

Here, we provide a simple example for a high-level description regarding the implementation of

the proposed mechanism in Open-RAN to illustrate the operational aspects motivated by [37]. We

consider that there are four vendors who provide COTS hardware, two at the distributed unit and

two at the centralized unit† as shown in figure 5.5. Each vendor provides 3 types of resources

such as CPU, memory(mem), and bandwidth(BW ), each resource is associated with a con-

troller responsible for computing the resource quantities xir based on the bids bir submitted by

the slices. Consider that a slice manager pre-determined the placement of vnfs. Now each slice

submits a beginmechrequest signal to the resource controllers which conveys that the slice wants

to begin the resource allocation mechanism, then the resource controller acknowledges with a

beginmechrequestack. After that slice sends a initialdemand signal (this can be a guess by the

slice based on the resource demand submitted by the SP), then the controller returns the computed

†In this work, we consider that a vendor is simply an infrastructure provider who owns the resources.
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CPU mem BW

v1 COTS hardware v2 COTS hardware

open− distributed unit

v1 COTS hardware v2 COTS hardware

open− central unit

Open−RAN

slice 1 slice 2

Slice manager

b x b x

CPU mem BW CPU mem BW CPU mem BW

Figure 5.5: Game implementation with multi-vendor COTS hardware in open-RAN.

price per resource quantity resourceprice. Now, the slice submits the adjusted demand based on

the information received from the controller and replies to the controller as updateddemand. This

process continues until there is convergence, then slice returns convergencereached and controller

replies with stopmech to end the mechanism. Finally, the slice returns stopmechack which concludes

the mechanism with each of the slices obtaining the optimal resources. This mechanism is concur-

rently running between all the controllers and slices.

5.6 Numerical solutions

In this section, we provide numerical results to validate the theoretical findings described in the

previous section. We consider AMAZON ec2 instances to generate the demand vector di for service

providers. We use CVX package [35] for producing the numerical results, it is a matlab software

designed for solving convex optimization problems.

The system setting goes as follows: There are 3 SPs running various services each requiring a

resource combination that belongs to a particular ec2 instance, and there are 3 InPs supporting 3

resource types (each provides one resource type) such as vCPUs, memory, and bandwidth respec-

tively. Each SP has a non-negative demand for all resource types. Let the capacity of each resource
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Figure 5.6: Convergence of resource allocation for CPU, Memory, Bandwidth for three users.

type be CvCP U = 14, Cmemory = 86.4 Gb, and Cbandwidth = 72 Gbps. Here, each SP tries to procure

as many resources as possible. First, we show the convergence of the algorithms described in the

previous section with α = 5 for social welfare function, β1 = 1, β2 = 5, β3 = 1 for 3 InPs respectively.

We let ∆ to be a difference between the prices for successive iterations, it gives a trade-off between

the solution quality and convergence time and we found that ∆ = 10−4 results in a good balance. In

figure 5.6, we show the convergence of all three resources as it can be observed, they converge in

few hundreds of iterations.

In figure 5.7, we compare our decentralized mechanism DRAM labeled with DRAM (initial)

and DRAM (converged), with the centralized approach labeled as central. DRAM (initial) shows

the allocation of each InP during the initial phase of the algorithm, InP 1 and InP 3 are assigned

with proportional allocation fairness, whereas InP 2 is assigned with β2 = 5 which imposes higher
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Figure 5.7: Comparison of resource allocation for CPU, Memory, Bandwidth with optimal allocation.

fairness compared to the other two InPs. At this point, we do observe any influence of the fairness

α employed at the system level. But this changes in a few iterations and we notice the influence of

system level α on the resource allocation. Bars labeled with DRAM (converged) in figure 5.7, are

associated with the resource allocation after the convergence of the algorithm, we can notice that

they match exactly the allocation obtained using the central solution. Now, we can no longer see

the impact of the individual allocation rule by InPs as it is overridden by the system-level allocation

rule. We compare this pattern for all the resources shown in figure 5.7. We describe the impact of α

value on the fairness among the slices in the next paragraphs.

5.6.1 Impact of α on SP utility and allocation

The system setting for the remainder of the section goes as follows: There are 6 SPs running

various services each requiring a resource combination that belongs to a particular ec2 instance,

and there are 4 InPs supporting 4 resource types such as vCPUs, memory, storage, and bandwidth

respectively. Each SP has a non-negative demand for all resource types. The demand vectors for

SP1 - SP6 are listed in the table 5.2 with API Name i2en.large to c6gd.xlarge respectively. Let

the capacity of each resource type be CvCP U = 14, Cmemory = 86.4 Gb, Cstorage = 3464 Gb, and

Cbandwidth = 72 Gbps. Here, each SP tries to procure as many resources as possible. First, we

compare the utilities of the SPs to describe the impact of α, then we compare the allocations of

each SP for different values of α.

The purpose of tuning factor α is to achieve the desired fairness criterion depending on the

system requirements. Fig.5.8 compares the utilities of 6 SPs for the values of α ranging between 1

and 10 with an increment of 0.5. Observe that the utility for SP2 and SP5 are considerably higher

than the rest of the SPs for α = 1. Among all the SPs, SP2 has the lowest utility. As the value of α is

increasing, the difference between the utilities gets smaller and smaller. As α reaches the value of
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Figure 5.8: Impact of α on SP utilities.

10, the difference between SPs is nominal validating our theoretical claim that a higher value for α

leads to better fairness among the SPs.

Fig. 5.9 shows the comparison of resource allocation under three different α values, where each

plot displays the allocated resource in comparison to the demanded resource. For α = 1, every

SP gets a lower allocation than their base demand except SP3 and SP5 who gets higher resource

than their base demand. The reason for this behavior is that the base demand of SP3 and SP5 for

bandwidth as shown in fig. 5.12 is significantly lower than SP1 and SP2 and relatively lower than

SP4 and SP6, i.e., in order for the allocation to be effective for SP1 and SP2 all allocations of other

resource types should be in proportion to that of bandwidth. As the bandwidth is limited and can

not be assigned as desired by the SP1 and SP2, allocation of other resources should be reduced

as they can not be effective for them while the bandwidth acts as the bottleneck. This additional

resource is allocated to SP3 and SP5 who have the least amount of demand for bandwidth. This

situation is unfair for other SPs as their utilities fall well below the utilities of SP3 and SP5 as shown

in fig. 5.8. Hence, a fairness mechanism should ensure that the desired fairness is achieved among

the competing SPs. As shown in fig. 5.9 - 5.12, the increment in value of α ensures that no SP

gets more resource in comparison to other SPs. For α = 10 in spite of lower bandwidth demand by

SP3 and SP5, they do not get higher allocation. This prevents SPs from strategically reporting lower

demands and anticipating higher returns.

5.7 Conclusion

For an orchestrator to manage resource allocation using the centralized approach, it is necessary

for the InPs reveal the available resource quantity and SPs reveal the utility functions. However, this

is private information that both entities do not want to reveal. To account for privacy, In this work,

we proposed a decentralized mechanism that addresses multi-resource allocation problems with
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Figure 5.9: Impact of alpha on allocation of CPU.
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Figure 5.10: Impact of alpha on allocation of Memory (Gb).

heterogeneous requirements. Majority of the models proposed in the literature address this issue

either at the SPs level or InP level. Our approach provides a unified mechanism that accounts for

multi-level privacy. This mechanism allows each InP to implement its preferred allocation rule. One

of the interesting aspects of this problem is to study the impact of the intrinsic strategic nature of

the SPs on social welfare. We elaborate on this in the next chapter, where we provide the overall

conclusions and future directions.
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Figure 5.11: Impact of alpha on allocation of Storage (Gb).
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Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusions

Future IoT service providers will need ubiquitous IoT data collection, mandating in turn the support

of IoT access at scale over the 5G infrastructure. At the same time, new schemes to control data

generation and upload should allow to SPs to perform IoT data brokerage across diverse access

resources made available by concurrent infrastructure providers at different costs, in the form of 5G

IoT resource slices.

IN chapter 2, we introduced a new framework to connect two fundamental aspects: the AoI of IoT

data to be uploaded and the cost of 5G resources leased in order to obtain network access services.

The upload control can be performed in a distributed way at the device level using optimal dynamic

multi-threshold policies. Such policies have been showed to outperform their static counterparts.

At same time, a SP can control shadow prices to match optimal multi-threshold policies to service

requirements while minimizing operational costs. It does so at the slice level by incentivizing users to

perform IoT data uploads where resources leased from InPs are cheaper. In chapter 3, we proposed

low complexity algorithms to determine the best shadow prices to migrate the traffic from highly

congested areas with lower congestion. This reduces the operational cost for the SPs and also

reduce the congestion issue for the InPs. We proposed a further enhancement to these algorithms

to reduce the convergence time in obtaining the best pricing for the locations that account for aging

control and balance the traffic load. This work opens new directions at the bridge between IoT and

5G research, by describing on a quantitative basis how to trade-off IoT data freshness and load

balancing, as supported by the 5G slicing paradigm.

In chapter 4, we addressed resource allocation that has always been a very challenging aspect

in telecommunication due to the scarcity of resources and high demand from the users, even more

so in the context of 5G, which is by far the most diverse and complex system. In this chapter, we

investigated a method to cope up with those challenges by emphasizing the fact that the resources

should be fairly allocated to the SPs competing for the resources. We formulated a model that based

on Fisher market that allocate resources based on the budget available for each SP. Our objective

is to enforce fairness such that SPs with lower budget are not starved due to the lack of resources.

We demonstrated that our model is capable of allocating multiple resource types that are fair among

slices and among the locations of a slice with help of the factors α and β respectively, which act as
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control parameters to balance the trade-off between fairness and efficiency.

In practice, cost for obtaining resources is not linear, it generally depends on the amount of

resource procured. Higher amount of resource leads to lower price per unit of resource. In this work,

we address this aspect designing a non-linear pricing for allocating the resources. This also allows

the InP to employ different welfare functions other than Nash welfare function. In general, SPs are

self centric and may not report the true preferences to the InP. This strategic nature has an impact

on the social welfare. We study the loss of efficiency due to strategic nature of the service providers

and we provide price of anarchy, which is a measure to indicate the deterioration in social welfare

due to selfish behaviour of the SP compared to the social optimal. Thus, this unified framework

focuses on a non-linear pricing scheme to allocate resources with multi-level fairness that can be

applied to various scenarios under the 5G network slicing phenomenon.

For an orchestrator to manage resource allocation using centralized approach, it necessary that

the InPs reveal the available resource quantity and SPs reveal the utility functions. However, this is

a private information that both entities do not want to reveal. To account for the privacy, In chapter 5,

we proposed a distributed mechanism that address multi-resource allocation problem with hetero-

geneous requirements. Majority of the models proposed in the literature address this issue either at

SPs level or InP level. Our approach provides a unified mechanism that accounts for the multi-level

privacy.

6.2 Future directions

• In chapter 2 and 3, we defined threshold based policies based on that leverages device mobility

and optimal price design to partially move the traffic away from congested areas. However, it

is interesting study if it is possible to divert users to a specific path by providing additional

incentives. We would like to explore this idea in future works.

Recently in many IoT applications, it has been observed that while uploading the data, con-

sidering the just factor of the information age is insufficient. The quality of data which is being

uploaded also plays an important role. For instance, if a platform is gathering data from a

group of sensors, the precision of data or variance of noise that has been added to data is

also crucial. In such cases, the end users might be incentivised depending on the quality of in-

formation and its age. Thus in future, we would like to design a policy for end users considering

the age and quality or value of information.

• In chapter 5, we proposed distributed resource allocation mechanism that preserve the privacy

concerns of various entities involved. However, in this case it is interesting study the impact of

strategic SPs, where the SP report false preferences to gain additional utility benefit. This can

worsen the social welfare, to this aim, we would like to obtain a closed form solution for price
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of anarchy to effectively understand the effect such selfish behaviour.

• In chapters 4 and 5, while designing the resource allocation mechanism, we have considered

that the user load with service providers is stationary; however, in practice, the users’ load

might vary with time. Thus it would be interesting to explore how our proposed method can

be extended to the scenario where load varies with time. Moreover, end users could have

a minimum requirement over their service rates in many cases. Due to limitations over the

resource inventory, providing the minimum service requirements of all the users is not always

feasible. To handle such situations, admission control over the arrivals of the end-users has to

forced. Thus extending current formation with admission control over the users’ arrivals would

be potential direction for research.
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Appendix A

APPENDIX A

A.1 Proof of Theorem 2.2

Next, we present the proof of Thm.2.2. We begin by noting that from [85] there exist a value function

V (x, l) and a scalar ρ satisfying the Bellman equation for the average cost MDP problem

V (x, l) + ρ = max
(
U(x)− p(l) +

∑

l′∈L

λll′V (1, l′),

U(x) +
∑

l′∈L

λll′V (min(x + 1, M), l′)
)

(A.1)

An optimal policy µ able to select the per-state action maximising the right hand side of (A.1)

is an optimal solution (2.7). Moreover, it is known that an unconstrained MDP admit a deterministic

optimal policy [85]. Since a multi-threshold strategy belongs to this class of policies, we restrict our

discussion to the case of deterministic policies.

In what follows, we consider locations sorted by increasing price order, that is p(l) ≤ p(l + 1), for

l = 1, . . . , L. Let define the function H :M×L× {0, 1} → R as follows

H(x, l, 1) = U(x)− p(l) +
∑

l′∈L

λll′V (1, l′) (A.2)

H(x, l, 0) = U(x) +
∑

l′∈L

λll′V (x + 1, l′) (A.3)

∆H(x, l) = H(x, l, 1)−H(x, l, 0) (A.4)

Hereafter we shall demonstrate that i) the value function is decreasing in the age of information

for any given location, ii) that the optimal policy for any given location switches from 0 to 1 at most

once and finally iii) that if uploading is optimal for a certain value of the age of information at a

given price, it is also optimal for larger prices as well. Such facts are proved formally in the following

lemma.

Lemma A.1. For any optimal policy, for x = 2, . . . , M the following facts hold:

i. V (x− 1, l) ≥ V (x, l), ∀l ∈ L.

ii. ∆H(x− 1, l) ≥ 0⇒ ∆H(x, l) ≥ 0, ∀l ∈ L.
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iii. ∆H(x, l) ≥ 0⇒ ∆H(x, l − 1) ≥ 0, ∀l ∈ L.

iv. V (x, l − 1) ≥ V (x, l), ∀l ∈ L.

Proof. We show each of the four items above in the corresponding order.

i. We can verify the result directly by backward induction on (A.1). For a deterministic policy,

we define

Zl(x) := V (x, l)− U(x) + ρ = (A.5)

= max
(
− p(l) +

∑

l′∈L

λll′V (1, l′),

∑

l′∈L

λll′V (min(x + 1, M), l′)
)

(A.6)

We shall prove that Zl(x) ≥ Zl(x + 1). This implies V (x, l) ≥ V (x + 1, l) since V (x, l) − U(x) ≥

V (x + 1, l) − U(x + 1) ≥ V (x + 1, l) − U(x), where the last step holds because U is non increasing.

First, we observe that

Z(M − 1) = (A.7)

max
(
− p(l) +

∑

l′∈L

λll′V (1, l′),
∑

l′∈L

λll′V (M, l′)
)

= Zl(M)

so that the inductive basis holds true.

Now, in the general case we can observe that if the statement is true for x+1, that is Zl(x+1, l) ≥

Zl(x + 2, l), it needs to hold for x as well. Using the induction hypothesis, we have V (x + 1, l) ≥

V (x + 2, l) and thus

Zl(x) = max(−p(l) +
∑

l′∈L

λll′V (1, l′),
∑

l′∈L

λll′V (x + 1, l′))

≥ max(−p(l) +
∑

l′∈L

λll′V (1, l′),
∑

l′∈L

λll′V (x + 2, l′)) (A.8)

= Zl(x + 1) (A.9)

which concludes the inductive step.

ii. It is sufficient to write ∆H(x− 1, l)−∆H(x, l) =
∑

l′∈L λll′ [V (x + 1, l′)− V (x, l′)] ≤ 0.
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iii. In this case, we can directly verify

∆H(x, l − 1)−∆H(x, l) = −p(l − 1) + p(l) +
∑

l′∈L

(λ(l−1)l′ − λll′)[V (1, l′)− V (x + 1, l′)]

≥ κ̃
∑

l′∈L

(λ(l−1)l′ − λll′) = 0

where

κ̃ = sup
l′∈L
{V (1, l′)− V (x + 1, l′)}. (A.10)

iv. Immediate since p(l + 1) ≥ p(l).

In what follows, we complete the proof of Theorem 2.2.

Proof. The proof of the multi-threshold structure is a consequence of Lemma A.1. In particular, let

us define

τ (l) := max{x|∆H(x, l) < 0}, l = 1, . . . , L.

so that in location l it is optimal to upload for x ≥ τ (l) for all prices p ≤ Pl; also, from ii., it follows

that τ (1) ≤ τ (2) . . . ≤ τ (L).

A.2 Proof of Theorem 2.4

Proof. (i) The following condition has to be satisfied for the optimal policy to be always using price

P1 = 0 :

∆H(x, l) < 0, ∀l ∈ L/L1, x = 1, .., M. (A.11)

From (A.2) and (A.3), the condition (A.11) yields

∑

l′∈L

λll′ [V (1, l′)− V (x + 1, l′)] < p(l),

∀l ∈ L/L1, x = 1, .., M − 1. (A.12)

Since the value function V is non-increasing, the conditions in (A.12) are satisfied if and only if

∑

l′∈L1

λll′ [V (1, l′) − V (M, l′)] +
∑

l′ /∈L1

λll′ [V (1, l′) − V (M, l′)] < p(l), (A.13)

∀l ∈ L/L1. Let assume the device can upload data only at location l ∈ L1: from (A.1) we have

V (x, l)− V (x− 1, l) = U(x)− U(x− 1), ∀l ∈ L1 (A.14)

V (x, l)− V (x− 1, l) = U(M)− U(x− 1), ∀l ∈ L/L1 (A.15)
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(A.14) and (A.15) yield, respectively,

V (1, l)− V (M, l) = U(1)− U(M), ∀l ∈ L1 (A.16)

V (1, l)− V (M, l) =
M∑

x=1

(U(x)− U(M)), ∀l ∈ L/L1 (A.17)

Plugging these values of V (1, l)− V (M, l) into (A.13) gives the condition (2.11).

The derivations of (ii) and (iii) are similar to the above proof.

A.3 Proof of Lemma 3.1

If the temperature is fixed, the transition matrix of the resulting time-reversible Markov chain, QT =

(qT (τ , τ ′)), 0 ≤ τi, τ ′
i ≤ τmax, is given by:

qT (τ , τ ′) = (A.18)




q∗(τ , τ ′)ã(τ , τ ′) if ã(τ , τ ′) < 1 and τ 6= τ ′

q∗(τ , τ ′), if ã(τ , τ ′) ≥ 1 and τ 6= τ ′

q∗(τ , τ ) +
∑

z
q∗(τ , z)

(
1−min{1, πT (z)

πT (τ )}
)

,

if τ = τ ′.

(A.19)

where,

ã(τ , τ ′) =
πT (τ ′)

πT (τ )
from (3.11)

In what follows, we drop subscript T to simplify presentation.

Proof. The above discrete time Markov chain, with transition probability matrix given by (A.18),

has stationary distribution given by π(τ ) if the following balance equations hold

∑

τ∈S

π(τ )q(τ , τ ′) = π(τ ′). (A.20)

Next, we show that the above equality holds. Indeed,

∑

τ∈S

π(τ )q(τ , τ ′) = (A.21)

=
∑

τ∈C1(τ ′)

π(τ )q(τ , τ ′) +
∑

τ∈C2(τ ′)

π(τ )q(τ , τ ′)+

+ π(τ ′)q(τ ′, τ ′) (A.22)

104



where

C1(τ ′) = {τ ∈ τǫ,d \ {τ
′} | π(τ ′) < π(τ )} (A.23)

C2(τ ′) = {τ ∈ τǫ,d \ {τ
′} | π(τ ′) ≥ π(τ )} (A.24)

Then,

∑

τ∈S

π(τ )q(τ , τ ′) = (A.25)

=
∑

τ∈C1(τ ′)

π(τ )
q∗(τ , τ ′)π(τ ′)

π(τ )
+

∑

τ∈C2(τ ′)

π(τ )q∗(τ , τ ′)

+ π(τ ′)


q∗(τ ′, τ ′) +

∑

z∈C2(τ ′)

q∗(τ ′, z)

(
1−

π(z)

π(τ ′)

)
 (A.26)

=
∑

τ∈C1(τ ′)

π(τ ′)q∗(τ , τ ′)

+

✘
✘
✘
✘

✘
✘

✘
✘
✘
✘✘

∑

τ∈C2(τ ′)

π(τ )q∗(τ , τ ′) + π(τ ′)q∗(τ ′, τ ′)

+ π(τ ′)
∑

z∈C2(τ ′)

q∗(τ ′, z)−

✘
✘
✘
✘
✘
✘
✘
✘

✘
✘

∑

z∈C2(τ ′)

q∗(τ ′, z)π(z) (A.27)

Finally, as Q∗ is symmetric and stochastic, q∗(τ , τ ′) = q∗(τ ′, τ ),

∑

τ∈S

π(τ )q(τ , τ ′) = (A.28)

= π(τ ′)


 ∑

τ∈C1(τ ′)

q∗(τ , τ ′) +
∑

τ∈C2(τ ′)

q∗(τ , τ ′) + q∗(τ ′, τ ′)


 (A.29)

= π(τ ′), (A.30)

which shows that (A.20) holds and concludes the proof.
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Appendix B

APPENDIX B

B.1 Proof of theorem 4.3

Proof. We write the Lagrangian for the optimization problem defined in (4.4)-(4.7),

L1(x, λ, p, u) =
N∑

i=1

Bi
u1−α

i

1− α
−

N∑

i=1

Li∑

l=1

R∑

r=1

λilr

(
uil −

xilr

dilr

)
−

Li∑

l=1

R∑

r=1

plr

(
N∑

i=1

xilr − Clr

)
(B.1)

By writing first order necessary and sufficient conditions [15], we have

∂L1

∂uil
= 0 i ∈ N ,∀l ∈ Li. (B.2)

∂L1

∂xilr
= 0 i ∈ N ,∀l ∈ Li,∀r ∈ R. (B.3)

From (B.2), we have

Biu
−α
i =

R∑

r=1

λilr,∀i ∈ N ,∀l ∈ Li (B.4)

From (B.3), we have

λilr

dilr
− plr = 0,∀i ∈ N , ∀l ∈ Li, ∀r ∈ R (B.5)

λilr = plrdilr, (B.6)

Further, we have

uil =
xilr

dilr
for λilr > 0,∀i ∈ N , ∀l ∈ Li,∀r ∈ R
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By using relations in eq. (B.6) and eq.(B.1), we can rewrite the eq. (B.4) as follows

Biu
−α
i =

1

uil

R∑

r=1

plrxilr, (B.7)

Biu
−α
i uil =

R∑

r=1

plrxilr. (B.8)

By summing over l ∈ Li on both sides, we have

Biu
1−α
i =

Li∑

l=1

R∑

r=1

plrxilr. (B.9)

we can rewrite the above equation as follows

Bi = uα−1
i

Li∑

l=1

R∑

r=1

plrxilr. (B.10)

Now, we construct the price curve as

γilr(xi) = plrxilr(ui)
α−1,∀i ∈ N , ∀l ∈ Li ∀r ∈ R. (B.11)

Given that the cost of the resource bundle is

Cγ(xi) =
Li∑

l=1

R∑

r=1

γilr(xi).

Now to show that (x, γ(x)) is a price curve market equilibrium, we need to show that (x, γ(x))

satisfies the conditions C1 and C2 of Definition 4.2

Cγ(xi) =
Li∑

l=1

R∑

r=1

γilr(xi)

By substituting γilr(xi) in the above equation, we have

Cγ(xi) = uα−1
i

Li∑

l=1

R∑

r=1

plrxilrCγ(xi). (B.12)

From eq.(B.10), can write

Cγ(xi) = Bi. (B.13)
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Bundle xi is affordable to user i, and γ(x) is strictly increasing, that implies bundle xi belongs

to the demand set. Hence (xi, γ(x)) satisfies the condition C1 and as x satisfies the KKT condition

of (4.4) it satisfies the C2 as well thus it proves that (x, γ(x)) is a ME.

B.2 Proof of proposition 1

Proof. We write the Lagrangian for the optimization problem defined in (4.12)-(4.15)

L2(x, λ, p, u) =
N∑

i=1

Bi
u1−α

i

1− α
−

N∑

i=1

Li∑

l=1

R∑

r=1

λilr

(
uil −

xilr

dilr

)
−

Li∑

l=1

R∑

r=1

plr

(
N∑

i=1

xilr − Clr

)
. (B.14)

And, we already have

ui =
( ∑

l∈Li

(uil)
1−β

) 1
1−β

. (B.15)

By writing first order necessary and sufficient conditions [15], we have

∂L2

∂uil
= 0 i ∈ N ,∀l ∈ Li. (B.16)

∂L2

∂xilr
= 0 i ∈ N ,∀l ∈ Li,∀r ∈ R. (B.17)

From (B.16), we have

Biu
−α
i




Li∑

l=1

uil
1−β




( 1
1−β

)−1

uil
1−β−1 =

R∑

r=1

λilr,∀i ∈ N , l ∈ Li. (B.18)

From (B.17), we have

λilr

dilr
− plr = 0,∀i ∈ N , ∀l ∈ Li, ∀r ∈ R, (B.19)

λilr = plrdilr. (B.20)

Further, we have

ui =
xilr

dilr
for λilr > 0.
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From last two equations, we can write

λilr = plru−1
il xilr. (B.21)

By substituting the above equation, we can rewrite the equation in eq.(B.18) as follows

Biu
−α
i




Li∑

l=1

uil
1−β




( 1
1−β

)−1

uil
1−β−1 =

R∑

r=1

plru−1
il xilr. (B.22)

We can rewrite the above equation as follows

Biu
−α
i




Li∑

l=1

uil
1−β




( 1
1−β

)−1

uil
1−β =

R∑

r=1

plrxilr. (B.23)

By summing over l ∈ Li on both sides, we have

Biu
−α
i




Li∑

l=1

uil
1−β




( 1
1−β

)−1
Li∑

l=1

uil
1−β =

R∑

r=1

plrxilr. (B.24)

By simplifying the terms in the above equation, we can write

Bi = uα−1
i

R∑

r=1

plrxilr. (B.25)

Now, we construct the price curve as

γilr(xi) = plrxilr(ui)
α−1,∀i ∈ N , ∀l ∈ Li ∀r ∈ R. (B.26)

Given that the cost of the resource bundle xi is

Cγ(xi) =
Li∑

l=1

R∑

r=1

γilr(xi).

Now, to show that (x, γ(x)) is a price curve market equilibrium, we need to show that (x, γ(x))

satisfies the conditions C1 and C2 of Definition 4.2,

By substituting the value of γilr(xi) in the above equation, we have
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Cγ(xi) = uα−1
i

Li∑

l=1

R∑

r=1

p∗
lrxilr.

From (B.25), we can write

Cγ(xi) = Bi. (B.27)

Bundle xi is affordable to user i, and γ(x) is strictly increasing, that implies bundle xi belongs

to the demand set. Hence (xi, γ(x)) satisfies the condition C1 and as x satisfies the KKT condition

of (4.4) it satisfies the C2 as well thus it proves that (x, γ(x)) is a ME.

110



Appendix C

APPENDIX C

C.1 Proof for theorem 5.2

Proof. The parameter φr has several interpretations, it is referred as price per resource as it controls

the user demands based on the available capacity in market models. In flow control, φr is seen as a

congestion indicator, where it depends on the aggregate flows through each switch. In this work, we

considered φr to be price associated to the resource r. In chapter 5, we defined a pricing mechanism

for each InP as follows

φr(t + 1) = max(0, φr(t) + δ(
∑

i∈N

xir − cr)).

Given the price vector φ, the SPs can compute the resource allocation xir for resource r ∈ R

according to the following formulation,

xir(φ) = dir


∑

r′∈N

dir′φ
1

β
r′

r′




−1
α

. (C.1)

Hence, if the price vector φ is optimal, then the SPs can compute the optimal allocation vector

x∗ that is a social optimal.

At optimal price vector, we have the following

∂

∂φr
(Lsys(u, x, γ, φ)) = 0, ∀r ∈ R. (C.2)

The theorem in [108] shows that if we prove that the gradient ∂
∂φr

(Lsys(u, x, γ, φ)) is Lipschitz

continuous, then with an appropriate selection of step size δ, the price vector φ will converge in φ̂.

At this point the gradient satisfies the relation in (C.2).

Hence the proof of the theorem 5.2 strongly depends on proving that the ∂
∂φr

(Lsys(u, x, γ, φ)) is

Lipschitz continuous. To show that the gradient in question is Lipschitz continuous, we must prove

the following inequality is true.

‖
∂

∂φr
(Lsys(u, x, γ, φ))−

∂

∂φ̄r

(Lsys(u, x, γ, φ̄))‖1 ≤ K‖φ− φ̄‖1 (C.3)
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where,
∂

∂φr
(Lsys(u, x, γ, φ)) =

∑

i∈N

xir − cr, ∀r ∈ R. (C.4)

We can write

|xr(φ)− xr(φ̄)|1 ≤
∑

i

|xir(φ)− xir(φ̄)|. (C.5)

By using the expression xir presented in eq. (C.1), we can write the following

|xir(φ)− xir(φ̄)| = dir|


∑

r′∈R

dir′φ
1

β
r′

r′




−1
α

−


∑

r′∈R

dir′(φ̄r′)
1

β
r′




−1
α

| (C.6)

let

y =
∑

r′∈N

dir′φ
1

β
r′

r′

Then, consider

h(y) = y−1/α

Following is the first derivative of the h(y),

∂h(y)

∂y
= −

1

α
y− 1

α
−1.

We set bounds on the value of φr ∈ [φmin, φmax] such that φr = φmax when the aggregated

resource allocation
∑

i∈N xir exceeds the available capacity cr, this prevents the value of φr reaching

∞, on the contrary, φr = φmin when
∑

i∈N xir is significantly lower in comparison to cr, this prevents

the value of φr from reaching zero.

|h(y)− h(ȳ)| ≤
1

α

(
1

φmin

)−( 1
α

+1)

|y − ȳ| (C.7)

Now, let z = φr and f(z) = z
1

βr , the first derivative of f(z) with respect to z is

f ′(z) =
1

βr
z

1
βr

−1

if βr > 1, then

|f(z)− f(z̄)| ≤
1

βr
(φmin)

1
βr

−1 |z − z̄|, (C.8)

if βr < 1, then

|f(z)− f(z̄)| ≤
1

βr
(φmax)

1
βr

−1 |z − z̄|. (C.9)
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From eq.(C.8) and (C.9), we can write the following

|
∑

r′∈R

φ
1

β
r′

r′ −
∑

r′∈R

(φ̄r′)
1

β
r′ | ≤

∑

r′∈R

1

βr′

max
r′

(
dir′(φmin)

1
β

r′

−1
, dir′φmax)

1
β

r′

−1
)
|φr′ − φ̄r′ |. (C.10)

Let,

Kr′ = {
dir′

βr′

(φmin)
1

β
r′

−1
,
dir′

βr′

(φmax)
1

β
r′

−1
} (C.11)

Now, we can rewrite the eq. (C.10)

|
∑

r′∈R

φ
1

β
r′

r′ −
∑

r′∈R

(φ̄r′)
1

β
r′ | ≤ max

r′

Kr′

∑

r′∈R

|φr′ − φ̄r′ | ≤ max
r′

Kr′‖φr − φ̄r‖1. (C.12)

From eq. (C.5), (C.6), (C.7) and (C.12), we have the following

|xr(φ)− xr(φ̄)| ≤ dir

∑

i∈N

1

α

(
1

φmin

)−( 1
α

+1)

max
r′

Kr′‖φ− φ̄‖1. (C.13)

By taking
∑

r∈R on both sides, we have

‖xr(φ)− xr(φ̄)‖1 ≤ R
∑

i∈N

1

α

(
1

φmin

)−( 1
α

+1)

max
r′

Kr′‖φ− φ̄‖1. (C.14)

Let σ = R
∑

i∈N
1
α

(
1

φmin

)−( 1
α

+1)
max

r′

Kr′ , then we can rewrite the above equation as follows

‖xr(φ)− xr(φ̄)‖1 ≤ σ‖φ− φ̄‖1. (C.15)

Therefore, ∂
∂φr

(Lsys(u, x, γ, φ)) is σ - Lipschitz continuous. Following the proof in [108], we can

conclude that if the gradient of C(φ) is σ - Lipschitz continuous, then given a step size δ ∈ (0, 2/σ],

φ will converge in φ̂.
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