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Résumé : Depuis le début du développement de la théorie de l’apprentissage statistique, un intérêt parti-
culier a été porté aux méthodes efficaces en temps de calcul ainsi qu’en espace de stockage nécessaire, afin
qu’elles soient utilisables en pratique. Ceci a motivé plusieurs théoriciens à formaliser différents problèmes
d’apprentissage statistique sous contrainte d’accès aux données et aux ressources computationnelles. Dans
cette thèse, nous avons considéré plusieurs problèmes d’apprentissage statistiques et d’apprentissage séquen-
tiel, sous différents types de contraintes. Le premier problème traité concerne la régression parcimonieuse
sous une contrainte de nature computationnelle. Nous développons un algorithme effectuant un seul passage
sur les données (celles-ci sont supposées arriver en temps réel) avec une limitation sur l’espace mémoire
disponible. Le deuxième problème traité concerne l’agrégation d’experts. Nous revisitons ce problème dans
le cas où l’accès aux données est limité et développons des méthodes permettant d’atteindre des taux rapides
pour l’excès de risques. Le problème suivant concerne l’agrégation d’experts pour la prédiction des suites
individuelles fixes. Nous introduisant un formalisme similaire à celui utilisé dans le problème précédent:
nous supposons que pour chaque tour, le joueur a une contrainte sur le nombre d’experts à utiliser pour
la prédiction et une contrainte sur le nombre de pertes d’experts individuels observées après avoir fait une
prédiction. Nous présentant des procédures pour chaque cas et développons des garanties théoriques sur
le regret cumulé des stratégies présentées. Le dernier problème considéré est une instance du problème de
l’identification du meilleur bras dans le cadre de la théorie des bandits stochastiques. Nous présentons une
extension du formalisme standard en permettant le tirage de plusieurs bras simultanément. Dans ce cadre,
nous montrons que de nouvelles bornes, potentiellement meilleures que les bornes classiques, sont possibles,
et nous présentons des procédures permettant de les atteindre.

Title : Contributions to Frugal Learning

Keys words : Machine learning, frugal learning, budgeted learning, bandits theory, online learning, active
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Abstract : The increasing size of available data has led machine learning specialists to consider more
complex models in order to achieve better performance. From a theoretical point of view, statistical learning
under resource constraints has known a growing interest in the machine learning community. Many settings
were developed to formalize budgeted limitations. In this thesis, we are motivated by these challenges,
where we consider classical learning problems under the “frugal lens". First, we tackle support recovery in
a sparse linear regression problem, with one pass over data. We develop an online greedy algorithm named
"online orthogonal matching pursuit" that actively selects covariates in a sequential way, with guarantees
on its computational complexity that is adaptive to the unknown magnitude of the regression coefficients.
Second, we consider the problem of model selection aggregation of experts. We present procedures that
achieve fast rates under various budgeted settings and discuss the attainability of fast rates in different
settings. Third, we tackle the problem of online prediction of individual sequences, where no distributional
assumption is made in the process of generating data. We consider some natural budgeted constraints on
the number of experts used for prediction and the number of observed feedbacks. We develop new strategies
for each setting and discuss the attainability of constant regrets. Finally, we consider the problem of fixed
confidence best arm identification. Given a confidence level, the learner wants to identify the arm with the
largest mean using the least number of queries possible. We suppose that simultaneous queries are possible
and prove that significant improvement can be made with respect to the BAI standard algorithms by taking
the unknown covariance of the arms into consideration.
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Chapter 1

Résumé Substantiel

Depuis le début du développement de la théorie de l’apprentissage statistique, un intérêt
particulier a été porté aux méthodes efficaces en temps de calcul ainsi qu’en espace de stock-
age nécessaire, afin qu’elles soient utilisables en pratique. Cette contrainte est primordiale
aujourd’hui en raison de la quantité des données disponibles ainsi qu’à la complexité crois-
sante des modèles utilisés (Brown et al., 2020). En conséquence, l’énergie consommée pour
mettre ces algorithmes à l’œuvre ne cesse de croître, soulevant des inquiétudes sur l’impact
environnemental de l’intelligence artificielle (Strubell et al., 2019). Par ailleurs, d’autres
applications modernes telles que l’internet des objets (Internet of Things) privilégient les
modèles d’apprentissage capables d’être utilisés sur des supports à faible capacité computa-
tionnelle. Ceci a conduit à l’émergence d’un nouveau domaine d’apprentissage automatique
sous le nom de TinyML (Warden and Situnayake, 2019).

Ces applications ont motivé plusieurs théoriciens à formaliser ces problèmes statistiques
sous contraintes d’accès à l’information et aux ressources computationnelles.

L’apprentissage frugal a été étudié sous plusieurs angles dans la théorie de l’apprentissage
automatique [Evchenko et al., 2021]. Dans un cadre général, celle-ci peut-être modélisée
sous forme de contraintes sur les données acquises, sur l’algorithme déployé et sur la nature
de la solution proposée. Ainsi, dans l’apprentissage en ligne, il est souvent considéré que
les données arrivent en temps réel d’une manière séquentielle. Alors que d’autres prob-
lèmes avec une composante combinatoire, tels que la régression linéaire parcimonieuse,
nécessitent une solution efficace en temps de calcul.

Motivé par ces défis, nous avons considéré dans cette thèse plusieurs problèmes clas-
siques de l’apprentissage statistique et de l’apprentissage en ligne, sous différents types de
contraintes.

Le premier problème traité concerne la régression parcimonieuse. On s’intéresse au
modèle linéaire y = 〈β∗, x〉 + ε, où x et y sont des variables aléatoires à support dans Rd

et R, respectivement. On se place dans le cas où la dimension ambiante du problème d est
très grande, et on suppose que seul un petit ensemble noté S de coefficients de β∗ sont non-
nuls (hypothèse de parcimonie). On fixe comme objectif l’identification de cet ensemble S.
Sans aucune hypothèse additionnelle sur la distribution de x, ce problème est connu pour
être NP-difficile (Natarajan, 1995). Ainsi, des hypothèses sur la matrice de covariance
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de x ont été adoptées: notamment l’hypothèse d’isométrie restreinte (restricted isometry
property) et la condition d’incohérence (incoherence condition). Sous ces hypothèses, le
problème de régression parcimonieuse a été étudié (Tibshirani, 1996, Tropp, 2004) dans le
cas où peu de données sont disponibles (n < d). Dans le Chapitre 3, nous introduisons une
contrainte de nature computationnelle. Nous développons un algorithme effectuant un seul
passage sur les données (celles-ci sont supposées arriver en temps réel), avec une limitation
sur l’espace mémoire disponible (notre algorithme utilise un espace avec complexité en
O(d)). Les garanties théoriques sont présentées sous la forme d’une borne supérieure sur
la complexité computationnelle de la procédure. Nous montrons en particulier que dans les
régimes où d est assez grand, notre algorithme est plus rapide que les méthodes classiques.

Le deuxième problème traité dans le Chapitre 4 concerne l’agrégation d’experts. Plus
précisément, étant donné une famille finie de tailleK d’estimateurs (ou d’experts), l’objectif
est de combiner les experts de cette famille afin de garantir une performance de prédiction
aussi précise que le meilleur expert dans cette famille. Ce problème a été étudié en détails
dans la littérature [Tsybakov, 2003, Audibert, 2008a, Lecué and Mendelson, 2009]. On
dispose à présent d’une compréhension complète des bornes optimales et des procédures
permettant de les atteindre. Nous revisitons ce problème dans le cas où l’accès aux données
est limité. Parmi les formalismes introduits, nous supposons que l’algorithme n’a accès qu’à
un sous-ensemble de cardinalité m ≤ K de prédictions d’estimateurs pour chaque donnée.
Nous développons des méthodes permettant d’atteindre des taux similaires à ceux connus
sans la contrainte budgétaire, moyennant un facteur multiplicatif en (K/m)2 dans l’excès
de risque.

Le problème suivant considéré dans le Chapire 5 concerne l’agrégation d’experts pour
la prédiction des suites individuelles fixes. Il s’agit d’un problème classique de la théorie de
l’apprentissage en ligne, où l’objectif est de prédire une suite inconnue y1, y2, . . . , en étant
aidé par les prédictions d’une famille finie d’experts. La quantité d’intêret dans ce cadre est
le regret: il s’agit de la différence des pertes subies par le joueur et les pertes cumulées subies
par le meilleur expert fixe dans cette famille. Nous introduisons un formalisme similaire
à celui utilisé dans le paragraphe précédent: nous supposons que pour chaque tour, le
joueur a une contrainte sur le nombre d’experts p à utiliser pour la prédiction (p ≤ K) et
une contrainte sur le nombre m de pertes d’experts individuels observées après avoir fait
une prédiction (m ≤ K). Nous nous intéressons en particulier à des bornes sur le regret
indépendantes de l’horizon du jeu T (bornes constantes). Celle-ci sont réalisables sous
des hypothèses sur la fonction de perte. Nous supposons que cette dernière est bornée et
exp-concave (des hypothèses similaires sont considérées dans la littérature, voir Van Erven
et al., 2015 ). Nous présentons des algorithmes avec des bornes constantes (en espérance
aussi bien qu’avec grande probabilité) pour le regret si p,m ≥ 2, et nous montrons que le
regret optimal est borné inférieurement par

√
T sinon.

Le dernier problème considéré dans le Chapitre 6 est une instance du problème de
l’identification du meilleur bras dans le cadre de la théorie des bandits stochastiques.
Ce problème a été étudié en détails dans le cas où un seul tirage par tour est possible.
Les résultats optimaux atteignables sont présentés par Garivier and Kaufmann [2016] et
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Carpentier and Locatelli [2016]. Nous présentons une extension naturelle de ce formalisme,
qui consiste à permettre le tirage de plusieurs bras simultanément. Dans ce cadre nous
montrons que de nouvelle bornes, potentiellement meilleures que les bornes du cas classique,
sont possibles, et nous présentons des procédures permettant de les atteindre. L’idée sous-
jacente des nouvelles techniques introduites est l’exploitation de la covariance entre les
bras, qui peut être estimée dans ce nouveau cadre.
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Chapter 2

Introduction

This chapter introduces some problems of interest in statistical and online learning the-
ory. We present a non-exhaustive list of approaches used in the literature. We motivate our
frameworks to tackle these problems and summarize the main contributions made. We inform
the reader that the notation may change from chapter to chapter.

The increasing size of available data has led machine learning specialists to consider
more complex models in order to achieve better performance. With this improvement,
many challenges arise, such as interpretability of large models, security concerns, and
perhaps more imminently, the need for important computational resources to run current
state-of-the-art AI systems [Brown et al., 2020]. As a result, energy levels consumed by
these algorithms have increased significantly, raising environmental concerns about the
carbon footprint required to fuel modern tensor processing hardware [Strubell et al., 2019].
Another closely related challenge consists of on-device learning: implementing machine
learning methods for resource-constrained embedded devices. This has led to the emergence
of TinyML [Warden and Situnayake, 2019], a field aiming at running complex models in
end-user devices.

From a theoretical point of view, statistical learning under resource constraints has
known a growing interest in machine learning community [Evchenko et al., 2021]. Tradi-
tionally, optimization and sampling techniques were developed to achieve efficiency. Earlier
works used convex relaxation techniques in order to bypass computational hardness [Can-
dès and Tao, 2010, Tropp, 2006, Chandrasekaran and Jordan, 2013]. Another line of work
aims to take advantage of the abundance of data to speed-up training time (see Shalev-
Shwartz et al., 2012 for some standard learning problems such as binary classification).
A different and arguably simpler way of formalizing the resources constrained learning is
budgeted learning [Cesa-Bianchi et al., 2011, Nan et al., 2015, Madani et al., 2004]. This
line of work, closely related to active learning [Settles, 2009], constrains access to data
points. These budgeted limitations come with allowing the learner to actively select the
data points from which to learn in an online way.

Motivated by these challenges, we consider some classical statistical learning problems
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under the "frugal lens" in this thesis.
Frugality was considered in various aspects of machine learning (see Evchenko et al.,

2021). It is generally modelled as constraints on input data, during the learning process,
and on the output solution. For instance, in online learning theory, it is commonly assumed
that only one fragment of data is available at a time. In the field of compressed sensing
[Davenport et al., 2012], the aim is to acquire and reconstruct signals efficiently, with as few
measurements as possible. Constraints with the learning algorithm are generally associated
with those on input data. However, additional restrictions are made on the computational
resources used to run algorithms in some cases. A theoretical framework was presented
by Agarwal et al. [2011], where model selection is studied under a computational budget.
The learner allocates computational units to candidate models in an online fashion using
ideas from multi-armed bandits literature. In general, different models of computation are
developed (and still yet to be developed) in the literature, from Turing machines to the
emergent models of bio-computing [Păun, 2000] and quantum machines [Kaye et al., 2006].

We present below a general setting, putting forward the common points of problems
treated in this thesis. Consider a random vector (X,Y ), whereX ∈ Rd represents the input
variable and Y ∈ R is the target variable. The regression problem consists on finding a
measurable function f : Rd → R such that f(X) is close to Y in some sense [Györfi et al.,
2002]. One way to measure the closeness of f(X) to Y is to introduce the L2 risk or mean
squared error, defined by

R(f) := E
[
(Y − f(X))2

]
.

Model selection aims to estimate f on the basis of samples of (X,Y ) and a family of
candidate functions denoted F . When we are restricted to choosing f from F , the problem
is termed as a "proper learning" instance of model selection. For example, in Chapter 3, we
consider the exact linear model Y = 〈β,X〉+ ξ, where ξ is a random variable representing
noise, such that E[ξ|X] = 0. The class of sparse signals correspond the set of linear
functions on Rd with a small number of non-zero coefficients and the solution of the support
recovery problem is within the last class. However, when the algorithm is allowed to output
a solution outside of the class of models F , the procedure is termed as an "improper
learning" rule. To illustrate, a classical instance of the last problem, revisited in Chapters 4
and 5, is when the class F consists of a finite number of functions and the learner is allowed
to output a convex combination of all the functions in F . The objective is to predict as
well as the best function in F up to the smallest possible additive term.

Depending on the assumptions made on the distribution of (X,Y ), the class F and
the risk. The problem presented above results in various instances treated in Chapters 3-6
and summarized below.

Chapter 3: Suppose that f belongs to the space of linear functions on Rd (f = 〈β, .〉, for some
β ∈ Rd), the dimension d is large and the samples of (X,Y ) are i.i.d. More-
over, we are particularly interested in the case where f belongs to the subset of
sparse functions (i.e., linear functions with only a few coefficients different from zero
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‖β‖0 = s� d). This setting is essentially motivated when the number of data points
available is small compared to dimension d, and when the practitioner is interested
in the interpretability of the model. While the sparsity assumption is very useful
in practice, the statistician is faced with the delicate problem of exponential size
(in s) of the set of sparse functions. Minimizing the quadratic risk over all sub-
sets of size s, known as the optimal decoder [Wainwright, 2009a] (optimal from an
information-theoretic viewpoint), has exponential computational complexity. Ad-
ditional assumptions were introduced in the literature to develop computationally
tractable algorithms. We consider this problem, with the additional restriction of
one pass over data, particularly important when the dimension d is huge and memory
resources are limited.

Chapter 4: In the previous case, the main challenge was the large "complexity" of the subset
F . Consider a different problem, where F is constituted of K functions, and the
regression function does not necessarily belong to F . It is well known that any data-
dependent choice of a single element from F cannot achieve rates (see Chapter 4
for more details). To circumvent this limitation, we consider that given access to
information, we want to find a function in the convex hull of F with a prediction error
as good as the best element in F up to a small additive term. This is known as model
selection aggregation. Unlike the previous problem, the constraint here consists of
the amount of information required to achieve this objective. More precisely, one
wants the additive term upper bounding the excess risk to converge to zero as fast
as possible, the optimal rate being O(1/T ) under assumptions on the loss function,
where T is the number of data points. We study this problem under a framework
where access to data is limited.

Chapter 5: Consider the case where no assumptions are made on the distribution of X and Y
(not even independence of samples). Suppose also that F is a finite family of K
functions. The objective is to make predictions as good as possible. This problem
is an instance of individual sequence prediction. Since no assumptions are made
on X and Y , the quantity of interest is, in this case, the cumulative regret. That
is the sum of excess losses of the learner over all rounds, with respect to the best
fixed element of F in hindsight. Various procedures were developed in the literature
(see section 2.3). We consider this problem in chapter 5 under limited access to
information restrictions. More precisely, the evaluation of only m functions from F
are observable, and the predictions are made using only p out K functions.

Chapter 6: Consider the case where F is a set of K functions, and the objective is to identify
the best predictor f ∈ F . This problem is known as model selection in the statistical
learning theory and best arm identification in the literature of multi-armed bandits.
The focus here is put on the number of evaluations of functions from F required
to be confident in our final selection. Unlike standard model selection framework,
where performance is characterized by the number of samples (evaluations of Y and
all the functions in F), best arm identification considers a more refined setting where
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performance is evaluated on the number of individual queries made for functions in
F . We consider an intermediate setting, where the total number of queries made still
evaluates performance, but simultaneous evaluations of predictors in F is possible.

In the sections below, we provide a brief state-of-the-art for each problem considered
and contributions made. A more detailed overview of related work and details on contri-
butions are presented in the following chapters.

2.1 Support recovery

Consider the model: yi = 〈xi, β∗〉+ εi, for i ∈ {1, . . . , n}, where xi ∈ Rd is a measure-
ment vector, εi is an additive σ-sub-Gaussian noise, and β∗ ∈ Rd is an unknown coefficients
vector. In many practical cases (for example, in genomics Libbrecht and Noble, 2015), the
dimension d is very large compared to the sample size n. This phenomenon, referred to as
the "curse of dimensionality", makes inferring statistical information and analyzing data
sets hopeless. This context motivated the rise of the sparsity assumption. Meaning that
the support of β∗, denoted S, is relatively small compared to the ambient dimension d.

Sparse support recovery refers to the problem of estimating the location of non-zero
coefficients of β∗, given a few noisy samples n. This problem was considered in different
fields of statistics (Meinshausen and Bühlmann, 2006, Miller, 1984, Natarajan, 1995). Two
main aspects are considered for sparse models: recovering the exact sparsity pattern and
the estimation of β∗ (mainly with respect to the `2 and `1 norms). The interplay between
the two problems was studied by Ndaoud [2019].

In this thesis, we focus on the task of exact support recovery. Sufficient and neces-
sary information-theoretic conditions on the problem parameters (n, d, s) were analysed by
Wainwright [2009a]. Under the standard Gaussian measurement ensemble, meaning that
vectors xi follow the normal distribution N (0, Id×d), the asymptotic reliability of support
recovery of any algorithm (i.e., the probability of exactly recovery S converges to 1 as
n→∞) is characterized by the quantity:

M(β∗) := min
i∈S
|β∗i |.

More precisely, ignoring logarithmic factors, a necessary and sufficient condition for exact
support recovery is n = Θ

(
1/M2(β∗)

)
, whenM(β∗) is small, which is the case of interest.

The quest for tractable algorithms (i.e., with polynomial time complexity, in problem
parameters) has motivated many works in literature. Two main methods were devel-
oped: convex relaxation through L1-regularization, known as LASSO (Tibshirani, 1996,
Wainwright, 2009b), and greedy algorithms through iterative feature selection/elimination
(Zhang, 2009, Zhang, 2011a). Theoretical guarantees for support recovery were proven
for these methods under additional assumptions. For example, Forward-Backward greedy
feature selection algorithm [Zhang, 2011a], which is a combination of forward steps to se-
lect variables and backward steps to eliminate unnecessary selected variables, assumes the
restricted isometry property (RIC), introduced by Candes and Tao [2005]. While forward
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feature selection algorithm such as Orthogonal Matching Pursuit (OMP) [Zhang, 2009] and
LASSO [Wainwright, 2009b], require the additional irrepresentable assumption introduced
by Tropp [2004].

More formally, denote by X the measurement matrix, whose lines are the vectors xi.
Let XS denote the restriction of columns X to the subset S. Define

ρX(S) := min
{ 1
n
‖Xβ‖22/‖β‖

2
2 : supp(β) ⊂ S

}
.

The restricted isometry property assumes that ρX(S) is bounded away from zero. Further-
more, define

µX(S) = max
j /∈S

∥∥∥(X>SXS)−1X>S xj
∥∥∥

1
. (2.1)

The irrepresentable condition supposes that µX(S) < 1. Both conditions are assumed
to hold in the analysis of Lasso (see Wainwright, 2009b, Zhao and Yu, 2006) and OMP
(see Zhang, 2009). In the latter, the irrepresentable condition is proven to be necessary
for the consistency of feature selection of the algorithm. Since we are interested only in
exact support recovery, we focus on OMP. In fact, the condition on β∗ required for greedy
forward feature selection (or equivalently, the condition on the sample size n), matches the
optimal bound mentioned above from the analysis by Wainwright [2009a] and is weaker
than the corresponding condition for Lasso [Zhang, 2009].

The implementation of OMP, presented in Algorithm 1, is simple and intuitive con-
sisting of an iterative procedure. It picks, in each round, the variable that has the highest
empirical correlation (in absolute value) with the ordinary linear least squares regression
residue of the response variable with respect to features selected in the previous iterations.
The algorithm stops when the maximum correlation is below a given threshold η, that is,
when the information provided by the data sample does not allow further variable selection.

Algorithm 1 OMP(X,Y ,η)
S = ∅, β̄ = 0
while true do
î← argmaxj /∈S|X t

.j(Y −Xβ̄)|.
if |X t

.̂i
(Y −Xβ̄)| < η then

Break
else
S ← S ∪ {̂i}
β̄ ← argmin

supp(β)⊆S
‖Xβ − Y ‖2

end if
end while
return: S, β̄.

While the procedures above provide tractable methods in the high-dimensional regime
(n � d), a recent challenge is designing algorithms adapted to the online/streaming set-
ting. In many applications (such as astrophysics Abazajian et al., 2009, crowd-sourcing
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Ren et al., 2018, Internet of Things Qin et al., 2016), data are generated in real-time,
and memory available for processing such high dimensional vectors is limited. Hence,
developing algorithms making only one pass over data is of interest.

The prediction problem under sparsity assumption was studied in the literature [Stein-
hardt et al., 2014, Duchi et al., 2010], and under limited access to attributes by Foster et al.
[2016]. At each round, the learner observes a covariates vector xt ∈ Rd, makes a prediction
ŷt, and incurs the loss (yt − ŷt)2. The quantity of interest in this setting is the cumulative
regret, corresponding to the difference between the losses incurred by the learner and the
losses she would incur had she predicted knowing β∗.

The sparse streaming regression (SSR) algorithm developed by Steinhardt et al. [2014]
guarantees a regret bounded by O(s log(T )), where s := |supp(β∗)| and T is the number
of data points. SSR only requires O(d) time per data point and O(d) in memory, making
it very suitable for the aforementioned online setting.

While important results were developed for online sparse regression problem, online
sparse support recovery remains much less developed. Motivated by this challenge, we
developed a new algorithm: Online Orthogonal Matching Pursuit (OOMP) (Algorithm 8
in Chapter 3), which requires one pass over data. Similarly to Steinhardt et al. [2014],
we adopted the irrepresentable condition and assumed the restricted isometry property.
Guarantees for our algorithm take the form of control on the computational complexity
required for recovery.

Contributions: In Chapter 3 of this thesis, we design and analyse a procedure for
exact support recovery for high dimensional linear models in the online setting (one pass
over data). We consider the linear model in the random design setting (the feature vector
x is also random). More precisely

y = 〈x, β∗〉+ ε,

where the noise ε satisfies E[ε|x] = 0. We make boundedness assumptions on the dis-
tributions of y and x: |y| ≤ 1 and ‖x‖∞ ≤ M almost surely. Inspired by greedy fea-
ture selection algorithms, we adopt an iterative approach where a subset of variables is
selected in each round. For each subset S ⊂ S∗, define the regression vector βS :=
Arg Minsupp(β)⊆S E

[
(y − 〈x, β〉)2]. The selection criterion relies on the quantities ZSi de-

fined for each S ⊆ JdK and i ∈ JdK as follows:

ZSi := E
[
xi(y − 〈x, βS〉)

]
.

ZSi is the population counterpart of the empirical covariance used in OMP (Algo-
rithm 1). Lemma 3.2.1 in Section 3.1 shows that under a population version of the as-
sumption µX(S) < 1, where µX(S) is defined in (2.1), if S ( S∗ then we have

max
i/∈S∗

∣∣∣ZSi ∣∣∣ < max
i∈S∗

∣∣∣ZSi ∣∣∣.
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This shows in particular that selecting the features with the largest correlation in absolute
value

∣∣∣ZSi ∣∣∣ guarantees support recovery. To summarize, the underlying idea of greedy
feature selection relies on combining the solutions of two problems: An optimization task
consisting of computing the regression coefficients βS after each update of the set S, and
a best arm selection task consisting of identifying the variable with the largest covariance.

The population quantities βS and
∣∣∣ZSi ∣∣∣ are not available, due to the noisy nature of

the samples (y, x). Luckily, the literature for building such solvers is abundant. For exam-
ple, online stochastic optimization algorithms based on stochastic gradient descent allow
us to estimate βS in an efficient online way. Moreover, many algorithms in the litera-
ture were developed for the problem of best arm identification (BAI), through sampling
data points only as needed to be confident about the selection. Finally, we only need to
combine the previous tools in order to build confidence intervals on the key quantities ZSi
(Proposition 3.4.2 in Section 3.3).

We provide a general procedure with Algorithm 8 in Section 3.3, using any black-box
optimization and BAI procedures that come with suitable guarantees. Next, we give an
instantiation of these subroutines using averaged stochastic gradient descent (Algorithm 10
in Section 3.4) and a lower-upper confidence bound type BAI algorithm (Algorithm 11 in
Section 3.4). Naturally, the resulting algorithm benefits from advantages of these instan-
tiations. More precisely, performing only one pass over data, and the adaptivity to the
magnitude of the coefficients of β∗: Larger coefficients are recovered with less queries and
hence more rapidly that smaller coefficients. In contrast, batch OMP uses all available
data in each iteration.

In order to quantify the computational advantage of OOMP with respect to other
batch methods, we develop guarantees on the computational complexity required for the
selection of each variable with Theorem 3.5.2 in Section 3.5. We consider scenarios where
coefficients have a polynomial decay. Corollary 3.5.4 in Section 3.5 shows that the ratio of
computational complexities COOMP /COMP can be as small as (1/s∗), while a comparison
with SSR algorithm leads to a ratio CSSR/COMP that can be as small as (1/s∗)2.

2.2 Model selection aggregation

Estimator aggregation is a standard statistical learning problem introduced in the sem-
inal works of Nemirovski [2000] and Tsybakov [2003]. The objective is to estimate an un-
known regression function f : X → R, from a set of data pointsDn := {(X1, Y1), . . . , (Xn, Yn)},
drawn following the regression model:

Yi = f(Xi) + ξi, i = 1, . . . , n,

where X1, . . . , Xn are i.i.d random vectors with values from a Borel subset X of Rd, and
(ξi)i are independent random variables representing noise. This setup, borrowed from Tsy-
bakov [2003], introduces an idealized framework to study the properties of model selection
procedures independently of the models themselves. Given a family of K ≥ 2 arbitrary
estimators fn,1, . . . , fn,K of the target function f , aggregation aims to construct a new es-
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timate f̃n that mimics in a certain sense the performance of the best among the estimators
fn,i. For simplicity, we focus on the squared loss function. Let R(f̂), denote the quadratic
error of the estimator f̂ :

R(f̂) = E(X,Y )∼P

[(
Y − f̂(X)

)2
]
.

Model Selection aggregation (MS) refers to the problem of constructing an estimator f̃n
given the data set Dn, satisfying

EDnR(f̃n) ≤ min
1≤i≤K

R(fi) + ∆n,K , (2.2)

where ∆n,K is a remainder term independent from f . This problem was studied in the
random design setting by Yang [1999], Catoni [2004], Wegkamp [2003], Györfi et al. [2002]
and Birgé [2004]. Under some standard assumption, It was proven by Tsybakov [2003] that
the optimal residual term satisfies ∆n,K = Θ(logK/n).

The progressive mixture rule, introduced by Catoni [1997], is known to achieve the
above optimal performance. However, it was shown that progressive mixture type rules
are deviation suboptimal for prediction [Audibert, 2008a], that is, their excess risk takes
a value larger than c/

√
n with constant probability over the training data set Dn. To

lift the apparent contradiction between the two last statements, recall that the progressive
mixture rule is an improper learning rule, i.e., it outputs an estimator belonging to a larger
hypothesis class (in this case, the convex hull of the estimators’ family {fi, i ∈ JKK}). Hence
the excess risk may take negative values. Such negative "large" deviations compensate for
the positive "large" (∼ 1/

√
n), so that the expectation is small.

The sub-optimal distribution of the progressive mixture rule motivated the develop-
ment of various deviation optimal methods [Audibert, 2008b, Dai et al., 2012, Lecué and
Mendelson, 2009, Dai and Zhang, 2011, Gaîffas and Lecué, 2011, Rigollet, 2012]. Some
of these methods enjoy the desirable property of outputting sparse estimators. The bulk
of the algorithm presented by Lecué and Mendelson [2009] is to perform an empirical
pre-selection step, then perform empirical risk minimization on the convex hull of the
preselected variables. The Empirical Star algorithm was proposed by Audibert [2008b],
performs empirical risk minimization on a star shaped, data-dependent set, centred at the
estimator with the smallest empirical risk. The advantage of the last method is double:
first, it is a parameter-free method; second, its output consists of a convex combination of
only two estimators.

Optimal bounds for aggregation problems are now well established in the full infor-
mation setting (the framework presented above). The attention shifted to more restricted
settings, known as Budgeted Learning. Various types of constraints were considered in the
literature, namely the "global budget" setting (Deng et al., 2007, Kapoor and Greiner,
2005b, Kapoor and Greiner, 2005a, Greiner et al., 2002 and references therein) and the
"local budget" setting (Ben-David and Dichterman, 1998, Cesa-Bianchi et al., 2011) where
the constraint is active on each data point in the training phase.

An instance of the aggregation problem, namely linear aggregation, where the objec-
tive is to output a combination of experts as good as the best linear combination of the
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estimators up to an additive term, was studied by Cesa-Bianchi et al. [2011]. Having access
in a constrained way to a data set of size n, the learner actively chooses which attributes to
observe for each example, where each attribute corresponds to one estimator’s prediction.
Among the budgeted frameworks presented, the local budget constraint, where the learner
has access to at most m attributes, freely chosen, of each example, where m is a parameter
of the problem. The global budget constraint: where the total number of training attributes
is bounded by a problem parameter C. This setting can be seen as a relaxation of the
"local budget setting". The authors provide an algorithm that recovers the optimal guar-
antees in the full information setting. Later, sharper analysis was presented by Hazan and
Koren [2011], leading to improved guarantees matching the announced lower bounds. The
underlying idea consists of sampling uniformly at random, without replacement, a subset
of experts. Unbiased estimators of the attributes (or losses) are then constructed and fed
into a full-information procedure.

In summary, in the literature, fast rates for model selection aggregation are achievable
under some particular convexity type assumption on the loss function, with access to all
experts in the training (full-information setting). This raises the following question.

Question: For the model selection aggregation problem, under similar convexity type
assumptions on the loss function, can we still have such guarantees under partial access to
information in the training and testing phases?

Contributions: In Chapter 4 of this thesis, we study the problem of model selection
aggregation with limited access to expert advice. We study model selection aggregation
under three settings. We start with the full information case in Section 4.3, which refers to
the standard setting described by Tsybakov [2003]. The learner has access to all estimators’
predictions for each data point. After the training phase, the learner outputs a convex
combination with no constraint on the number of experts used. This setting was considered
to introduce the intuition behind the algorithm used in the following constrained settings.
Second, we consider the global budget constraint case in Section 4.4, where given a total
number of queries C, the learner actively chooses which experts to ask for predictions for the
next data point. Once budget C is consumed, the learner outputs a convex combination
of experts. Finally, we consider the local budget setting in Section 4.5, which is more
restrictive than the previous setting. In the remainder of this section, we denote T the
total number of data points observed (partially) by our procedure, note that T plays
formally the role of n in the full information setting. Given T rounds, the learner has a
constraint m ∈ JKK on the number of experts she can solicit in each round and a constraint
on the number of experts p she can use for prediction.

We focus on achieving fast rates O(1/T ) with high probability, under L-Lipschitz and
ρ-strong-convexity assumption on the loss function (LIST). Such assumption is considered
in some previous works in order to achieve fast rates (Kakade and Tewari, 2008, Sridharan
et al., 2008). LIST is satisfied for some standard loss functions, such as least square on a
bounded domain. It implies, in particular, that the loss function ` is range-bounded.

We introduce the following notation: Each expert is referred to by an index i ∈ JKK,

21



and the experts’ predictions are denoted Fi,t at round t ∈ JT K during the training phase
(each round corresponds to a data point). Let R̂i denote the empirical loss if expert i and
d̂ij = (T−1∑T

t=1(Fi,t − Fj,t)2), the empirical L2-distance between experts i and j.
The high-level idea of our full-information algorithm presented in Section 4.3 consists

of the following: we perform pairwise testing for each pair of experts, using the following
quantity

∆̂ij := R̂j − R̂i − αmax{Ld̂ij , Bα},

where B is a bound on the range of the loss function, α =
√

log(Kδ−1)/T , and δ ∈ (0, 1)
is the confidence parameter. Using Empirical Bernstein inequality (Audibert et al., 2007,
Mnih et al., 2008, Maurer and Pontil, 2009), we prove that ∆̂ij > 0 implies that Rj >
Ri with probability at least 1 − δ uniformly over i, j. Hence the first step consists of
computing ∆̂ij for each i, j and eliminating sub-optimal experts. Let S denote the set of
non-eliminated experts after exhausting the budget:

S :=
{
j ∈ JKK : max

i∈[K]
∆̂ij ≤ 0

}
.

Given S, our rule is illustrated in Figure 2.1. It consists of:

• Choose k̄ ∈ S arbitrarily.

• Pick j̄ ∈ Arg Maxj∈S d̂k̄j .

• Predict F̂ := 1
2(Fk̄ + Fj̄).

Theorem 4.3.1 in Section 4.3 shows that the resulting predictor F̂ satisfies optimal guar-
antees in deviation: with probability at least 1− δ

∆R(F̂ ) . B
log(Kδ−1)

T
, (2.3)

where ∆R(F̂ ) denotes the excess risk of F̂ with respect to the best expert in JKK.
Our rule has the advantage of being easily adaptable to budgeted constraints:

In the global budget setting, presented in Section 4.4, given a confidence parameter
δ and a precision parameter ε, the learner outputs a combination of experts with a per-
formance at least as good as the best expert up to an additive term O(ε). The main
idea consists of running the algorithm above in an online fashion. More precisely, we set
initially S = JKK, for each round (one round corresponds to a fresh data point), we query
all experts in S, we perform the ∆̂-tests and update the set S by eliminating experts that
failed the test. The theoretical guarantees, in this case, take the form of an upper bound on
the budget (number of queries) required to achieve an excess risk of O(ε). For simplicity,
suppose here that there is only one optimal expert denote i∗. For each expert i ∈ JKK,
define

Λi := max
{

L2d2
ii∗

(Ri −Ri∗)2 ; B

Ri −Ri∗

}
,
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Figure 2.1: Illustration of the aggregation rule presented in Section 2.2: the pink
zone represents the set of non-rejected experts S, the blue experts correspond to
(k̄, j̄) and the red point represents the mid-point F̂ .

where dii∗ is the L2 distance between the variables Fi and Fi∗ . Lemma 4.D.3 in Section 4.D
shows that Λi corresponds, up a to logarithmic factor in K, (Ri − Ri∗) and δ−1, to the
number of joint queries for experts i and i∗ to conclude with high probability that expert
Fi is suboptimal. In order to guarantee an output with an excess risk of at most ε, define
the following subset of experts:

Sε =
{
i ∈ JKK : Λi >

1
ε

}
,

let Sε denote its complementary in JKK. Theorem 4.4.1 in Section 4.4 provides the instance-
dependent bound below on the total number of queries C required to have an ε excess risk
output: For any ε > 0, if

C & Cε log
(
Kδ−1Cε

)
,

where
Cε :=

∑
i∈Scε

Λi + |Sε|min
{1
ε
,Λ∗

}
,

with Λ∗ := maxi:Λi<+∞ Λi, then with probability at least 1− δ, the output ĝ satisfies:

R(ĝ)−Ri∗ . Bε.

This result suggests that our algorithm is adaptive to the distribution of the experts’
predictions. Moreover, taking ε = 0, we have S0 = {i∗}, and the problem reduces to iden-
tifying the best expert. Our procedure guarantees the last objective, with high probability,
with a budget of

∑
i 6=i∗ Λi. Observe that in the worst case (where the optimal expert is

independent of all other experts), the last bound recovers the optimal bound known for
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Figure 2.2: Existing bounds from the literature and new bounds presented in this
thesis ( [1] = Chapter 33 of Lattimore and Szepesvári, 2020, [2] = Empirical risk min-
imizer, [3]=Seldin et al., 2014, [4] = Tsybakov, 2003, [Lemma 4.6.1, Lemma 4.6.2]∗
= Lower bound only developed for K = 2 but presumably valid for any K). The
upper bound for m, p ≥ 2 holds with high probability, L(K,T, δ) is a logarithmic
factor in K,T and δ−1, δ being the confidence parameter.

the best arm identification problem [Kaufmann et al., 2016]. In Chapter 6, we explore the
idea of best arm identification using pairwise comparisons and prove that sharper bounds
can be attained.

In the local budget constraints, presented in Sections 4.5 and 4.E, the number of rounds
T is fixed, and the number of observable experts at each round is 2 ≤ m ≤ K. The
theoretical guarantees take the form of an instance independent bound on the excess risk
of the output. We adapt the full-information algorithm to this setting and prove that
fast rates are still achieved in this setting however, a factor of (K/m)2 appears in the
upper bound for our guarantees (see Corollary 4.5.2 in Section 4.5 and Theorem 4.E.1 in
Section 4.E), reflecting the limited access to data.

Finally, we complete the picture by proving that fast rates are only achievable if the
learner is allowed to observe at least two experts per round and combine at least two
experts for prediction (see Lemmas 4.6.1 and 4.6.2 in Section 4.6). Figure 2.2 summarizes
upper bounds in the local budget setting from literature and developed in Chapter 4.
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2.3 Individual sequence prediction with expert advice

Prediction of individual sequences is a classical problem in online learning theory. It
refers to the task of predicting an unknown fixed sequence y1, y2, . . . , under Protocol 2
restated from Vovk [1998]. This framework was introduced by Littlestone and Warmuth
[1994].

Protocol 2 (Vovk, 1998)
for each round t = 1, 2, . . . , T do

Each expert i ∈ JKK, makes a prediction Fi,t ∈ X , where X is a fixed prediction
space.
The learner, who is allowed to see all Fi,t, i ∈ JKK makes his own prediction
zt ∈ X .
The nature chooses some outcome yt ∈ Y , where Y is a fixed outcome space.
Each expert i ∈ JKK, incurs loss `(Fi,t, yt) and the learner incurs `(zt, yt), where
` : X × Y → [0,∞] is a fixed loss function.

end for

The objective is to minimize the regret, defined below, consisting of the difference
between the sum of incurred losses by the learner and the losses of the best fixed expert:

RT :=
T∑
t=1

`(zt, yt)− min
1≤i≤K

T∑
t=1

`(Fi,t, yt).

This problem is well understood in the literature [Vovk, 1990, Cesa-Bianchi et al., 1996,
1997, Vovk, 1998, 2001, Cesa-Bianchi and Lugosi, 2006]. Exponential Weights Algorithms
is an important family of algorithms. A particular simple instance of this family of algo-
rithms is the Exponentially Weighted Average (EWA). Suppose that the sequence of target
numbers (yt) belong to [0, 1], each of K experts i ∈ JKK, provides a prediction fi,t at each
round t. We assume that the loss function is the squared loss: `(x, y) := (y − x)2. The
implementation of EWA is exposed in Algorithm 3.

The regret of Algorithm 3 with input λ ∈ (0, 2) satisfies (Cesa-Bianchi and Lugosi,
2006)

RT ≤
log(K)
λ

.

More generally, the prospect of constant regrets for this problem depend on the nature
of the loss function `, the constraints on information available in each round (namely the
number experts’ feedbacks, denoted m), and the constraints on the number of experts
used in each round for prediction, denoted p. Clearly, the full-information case presented
above corresponds to m = p = K. If the loss function is λ-exp-concave (i.e., exp(−λ`) is
concave with respect to its first argument), then EWA achieves the optimal regret bound
of O

(
log(K)
λ

)
. A more general discussion on various assumptions on the loss function is

presented by Van Erven et al. [2015].

25



Algorithm 3 Exponentially Weighted Average
Input Parameter: λ.
Initialize: Li,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do

Let
pi,t = exp(−λLi,t−1)∑K

j=1 exp(−λLj,t−1)
.

Play: ∑K
i=1 pi,tFi,t, and incur its loss.

Observe the predictions (Fi,t)i∈JKK and yt.
for i ∈ JKK do

Update Li,t = Lt−1,i + `(Fi,t, yt).
end for

end for

The restrictive setting ofm = p = 1 corresponds to the framework used in the abundant
literature on Multi-armed Bandits, where the learner sees only the feedback of the expert
she played (coupled exploration-exploitation setting). In this case, the learner is faced with
two challenges: exploration, to assess the performance of various experts, and exploitation,
through playing best performing experts so far. Many procedures were developed in this
case, under some standard assumptions on the losses. The optimal regret is known [Bubeck
et al., 2012] to be Ω(

√
KT ). The extension to m ≤ K, p = 1 is considered by Seldin et al.

[2014], the optimal regret in this setting is O
(√

K/(mT )
)
.

The EXP3 algorithm (Exponential weights for Exploration and Exploitation, Algo-
rithm 4), achieves the optimal regret rate of

√
KT , up to a logarithmic factor. The strategy

builds unbiased estimates of all the experts’ losses, which are then fed to the exponential
weighting scheme. The played (and observed) expert is then sampled following this law
over JKK.

The regret of Algorithm 4 satisfies [Bubeck et al., 2012]

E[RT ] ≤ 2
√
TK log(K),

where the expectation is with respect to the player’s own randomization (introduced by
the sampling of It).

Guarantees for EXP3 are only valid in expectation with respect to the player’s random-
ization. The importance-weighted estimator for experts’ losses (or arms rewards) suffers
from possibly large variance, leading to a suboptimal distribution of the regret. It is pos-
sible to prove that with constant probability, EXP3 strategy suffers a linear regret Ω(T )
(see the exercises of Chapter 11 of Lattimore and Szepesvári, 2020 ).

In order to achieve high probability guarantees on the regret, the player has to explore
more often than what is prescribed by Algorithm 4. Typically Ω(

√
KT ) queries for each

arm are required (Neu, 2015, Auer et al., 2002, Audibert and Bubeck, 2010b). This remark
was incorporated in the original version: EXP3.P strategy (Auer et al., 2002), which

26



Algorithm 4 Exponential weights for Exploration and Exploitation
Input Parameter: λt =

√
log(K)
tK

.
Initialize: L̂i,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do

Let

p̂i,t =
exp

(
−λtL̂i,t−1

)
∑K
j=1 exp

(
−λtL̂j,t−1

) .
Sample It from JKK following (p̂i,t)i∈JKK, and play FIt,t.
Observe the predictions (FIt,t)i∈JKK and yt.
for i ∈ JKK do

Let ˆ̀
i,t = 1(It=i)

p̂i,t−1
`(Fi,t, yt).

Update L̂i,t = L̂t−1,i + ˆ̀
i,t.

end for
end for

performs an explicit exploration scheme through mixing the uniform and EWA distribution
when sampling. A different algorithm, EXP3-IX, was presented by Neu [2015], which
introduced the exploration implicitly by using a biased bounded estimator of the losses.

Intermediate settings, between full-information and bandit feedback, were studied by
Seldin et al. [2014]. At each round t, after making a prediction, the learner observes her
loss and the feedback of m − 1 ≥ 1 actively chosen experts. Their algorithm adapts the
classical EXP3 procedure [Auer et al., 2002], to benefit from the additional feedbacks.
More precisely, let Ot denote the set of sampled experts. The main difference between the
algorithm presented by Seldin et al. [2014] and Algorithm 4 is the unbiased estimate ˆ̀

i,t,
which takes the following form:

ˆ̀
i,t = 1(i ∈ Ot)

p̂i,t−1 + (1− p̂i,t−1)m−1
K−1

`i,t.

The regret of the obtained algorithm with a learning parameter ηt =
√

m log(K)
tK satisfies

the following bound:

E[RT ] ≤ 2
√
m

K
T log(K).

In summary, in the online prediction literature, constant regret guarantees are only
achievable when the loss function is exp-concave, and the player is allowed to combine
all the experts and then see all the losses. In the partial feedback setting, algorithms
developed in bandit theory have a regret that scales with

√
T , where T is the total number

of rounds. The preceding discussion raises the following question.
Question: Are constant regret bounds still achievable when the player has limited

access to experts, both for prediction and feedback observation?
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Contributions: In Chapter 5, we consider the problem of individual sequence predic-
tion with limited expert advice. We introduce in Protocol 17 Section 5.1 an intermediate
setting between the full-information framework and the multi-armed bandit setting. At
each round t, the learner is allowed to use a convex combination of at most p experts for
prediction, and observe the losses of at most m experts. The emphasis is put on devel-
oping strategies with constant regret bounds guarantees (independent of the time horizon
T ). In order for this objective to be achievable, we make boundedness and exp-concavity
assumptions on the loss function (a function ` is η-exp-concave if exp{−η`} is concave for
some η > 0).

We introduce the following class of functions: Let c > 0

E(c) :={
f : X → R : ∀x, x′ ∈ X , f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− 1

2c
(
f(x)− f(x′)

)2}
.

We show in Lemma 5.1.3 Section 5.1 that for any function satisfying range-boundedness
and exp-concavity assumption belongs to E(c) for some c. Furthermore, for continuous loss
functions, the class E := ∪c>0E(c) corresponds exactly to the class of range-bounded and
exp-concave functions. To the best of our knowledge, this gives a new characterization for
such functions well studied in the literature [Van Erven et al., 2015]. The main interest
of the property satisfied by functions in E(c) is its dependence on only two elements of X ,
which makes it well-suited to our restrictions on the number of used experts.

To illustrate this remark, we consider the classical full information case presented
in Protocol 2. We prove below that it is possible to achieve the same bound as EWA
(Algorithm 3) for the expected regret by using only two experts in each round instead of a
combination of all the experts.

Algorithm 5 Limited Exponentially Weighted Average
Input Parameter: λ.
Initialize: Li,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do

Let
pi,t = exp(−λLi,t−1)∑K

j=1 exp(−λLj,t−1)
.

Sample It and Jt independently from JKK following (pi,t)i∈JKK.
Play 1

2(FIt,t + FJt,t) and incur its loss.
Observe the predictions (Fi,t)i∈JKK and yt.
for i ∈ JKK do

Update Li,t = Lt−1,i + `(Fi,t, yt).
end for

end for
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Let `i,t = `(Fi,t, yt). The expected cumulative loss of Algorithm 5 satisfies

T∑
t=1

E
[
`

(
FIt,t + FJt,t

2 , yt

)]
=

T∑
t=1

K∑
i,j=1

pi,tpj,t `

(
Fi,t + Fj,t

2 , yt

)

≤
K∑
t=1

K∑
i=1

pi,t`i,t −
1
2c

t∑
t=1

K∑
i,j=1

pi,tpj,t(`i,t − `j,t)2, (2.4)

where we used the tower rule, then `(., yt) ∈ E(c) for each t. A classical property satisfied
by the exponentially weighted scheme due to the cancellation of successive logarithmic
terms (see the proof of Theorem 11.1 in Lattimore and Szepesvári, 2020) is the following:

E
[
K∑
t=1

K∑
i=1

pi,t`i,t

]
≤ min

1≤i≤K

T∑
t=1

`i,t + log(K)
λ

+ λ
T∑
t=1

pi,t`
2
i,t.

Notice that the result above still holds by translating all the losses with µt = ∑T
t=1 pi,t`i,t.

Hence, we also have

E
[
K∑
t=1

K∑
i=1

pi,t`i,t

]
≤ min

1≤i≤K

T∑
t=1

`i,t + log(K)
λ

+ λ
T∑
t=1

K∑
i=1

pi,t(`i,t − µt)2. (2.5)

Let X and Y be two bounded independent and identically distributed random variables.
We have E

[
(X − Y )2

]
= 2 Var(X). We Apply the last property to the variables `It,t and

`Jt,t, we have
K∑

i,j=1
pi,tpj,t(`i,t − `j,t)2 = 2

K∑
i=1

pi,t(`i,t − µt)2. (2.6)

We plug (2.6) and (2.5) into (2.4) and choose λ < c. We conclude that

E[RT ] ≤ log(K)
λ

.

The limited feedback setting m < K is more challenging because it requires careful consid-
eration due to the uncertainty introduced by unseen losses. We distinguish between two
regimes: p,m ≥ 2, we provide strategies achieving constant regrets, and p = 1 or m = 1
where we show that regrets are lower bounded by Ω(

√
T ) (the case p = 1 is a direct conse-

quence of previous results from multi-armed bandits literature). The core idea introduces
estimates of unseen losses using a smart centering technique, whose goal is to reduce esti-
mates’ variance in a data-dependent way. The obtained estimates are then biased using a
second order term. Finally, the obtained quantities are fed into an exponential weighting
scheme. The playing strategy always uses the midpoint of two experts sampled following
an exponential weights distribution.

We distinguish between two frameworks; when m ≥ p, if IC = True, where IC stands
for inclusion condition, we impose that the set of chosen experts for prediction, denoted St,
is included in the set of observed experts, denoted Ot. More precisely, in each round t, the
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p = 1 p ≥ 2

Lower bound Upper bound Lower bound Upper bound (p = 2)

m = 1
√
KT

√
KT

√
KT

√
KT

[1] [2] [Thm 5.5.3] [2]

IC = True : K2 log(K)
m = 2

√
KT

√
KT K IC = False : K log(K)

[3] [2] [Thm 5.5.1] [Thm 5.4.3 and 5.4.2]

m ≥ 3
√

K
m
T

√
K
m
T log(K) K

m
K
m

log(K)
[3] [3] [Thm 5.5.1] [Thm 5.4.2]

Figure 2.3: Existing bounds from the literature and new bounds presented in this
thesis ( [1] = Auer et al., 2002, [2]=Audibert and Bubeck, 2010b, [3]=Seldin et al.,
2014). IC refers to the inclusion condition, presented in Protocol 21 in the case
p ≤ m: when IC = True, the learner is constrained to observe the played experts
(coupling between exploitation and exploration), otherwise (if IC = False) the ob-
served experts are decoupled from the used experts for prediction. All new upper
bounds hold with high probability if we replace the factor log(K) with log(Kδ−1),
δ being the confidence parameter.

player first chooses p experts out of K and plays a convex combination of their prediction,
then she observes the feedback of the chosen experts, then picks m− p additional experts
to observe their losses. When IC = False, the choice of played and observed experts is
decoupled.

The case where p = m = 2 and IC = True corresponds to the setting where in each
round t, the player chooses experts out of K denoted {It, Jt}, plays a convex combina-
tion of their prediction, then sees only the feedback of It and Jt. The coupling between
exploration and exploitation necessitates a different sampling strategy presented in Algo-
rithm 20, Section 5.4.

Different upper and lower bounds from literature and developed in Chapter 5 are
summarized in Figure 2.3.
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2.4 Best arm identification

Best Arm Identification (BAI) refers to the problem of finding the arm with the largest
mean in a stochastic multi-armed bandit game. Unlike the standard multi-armed bandits
problem aiming to minimize the cumulative regret, in BAI the objective is to identify the
best arm as fast and accurately as possible. Hence, in the last setting, the exploration and
exploitation are separated.

The framework of a stochastic multi-armed bandits game is defined by K distributions
ν1, . . . , νK associated respectively with arm 1, . . . , arm K. Let µ1, . . . , µK denote the
respective means of ν1, . . . , νK , and µ∗ := maxi∈[K] µi. We suppose for the sake of simplicity
that there is a unique optimal arm denoted i∗ (µi∗ = µ∗).

There are two main variants of BAI problem. The fixed confidence setting, where a
risk parameter δ ∈ (0, 1) is given as a problem input to the learner. The objective is to
output an arm ψ ∈ JKK, such that P(ψ = i∗) ≥ 1− δ, using the least number of arm pulls.
The second setting is the fixed confidence setting: given a fixed number of possible pulls,
the learner aims to minimize the probability of selecting a suboptimal arm at the end.
Different algorithms were developed for each variant, by Garivier and Kaufmann [2016]
for the fixed confidence setting and by Audibert and Bubeck [2010a] for the fixed budget
setting. The complexity of these problems was studied by Kaufmann et al. [2016], where
results were developed for the more general problem of identifying the top m-best arms.

The general framework adopted in the fixed confidence setting (Garivier and Kaufmann,
2016, Kaufmann et al., 2016) defines a strategy as a triple A = ((At), τ, ψ), where:

• the sampling rule determines, based on past observations, which arm is chosen at
round t; in other words, At is Ft−1-measurable, with Ft = σ(A1, X1, . . . , At, Xt).

• the stopping rule τ controls the end of data acquisition and is a stopping time with
respect to the filtration F .

• the recommendation rule provides the arm selected, it is a Fτ -measurable random
variable with support in JKK.

A natural requirement for a solution of BAI, is that the learner takes a finite time to
select the optimal variable. This leads to the definition of sound strategies, exposed by
Lattimore and Szepesvári [2020]:

Definition 2.4.1. A strategy ((At), τ, ψ) is sound at confidence level δ ∈ (0, 1) if:

P(τ < +∞ and ψ 6= i∗) ≤ δ,

where the probability is with respect to the distribution of the arms.

Theoretical guarantees for this problem take the form of a bound on the expected value
E[τ ] (or a high probability bound on τ). Lower bounds for this problem that are valid for
any arms distribution were presented by Garivier and Kaufmann [2016], and an algorithm
achieving matching upper bounds asymptotically was provided. A more standard lower
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bound (specific to some distributions) depending only on the sub-optimality gaps of each
arm

∆i = µ∗ − µi,

for the optimal arm, let ∆i∗ = min1≤i≤K ∆i. The difficulty of the BAI problem is charac-
terized by the quantity

H(ν) :=
K∑
i=1

1
∆2
i

.

LUCB algorithm was proposed by Kalyanakrishnan et al. [2012], with an upper bound
on the stopping rule corresponding to H(ν) up to a logarithmic factor. The dependence
on the logarithms of the gaps ∆i was improved by Jamieson et al. [2014].

Perhaps the most intuitive methods used to achieve these bounds are the ones based
on building confidence intervals for arms sequentially and eliminating arms that are sub-
optimal based on its interval. The last idea was developed earlier by Maron and Moore
[1993] and by Mnih et al. [2008], where concentration inequalities (Hoeffding and Bernstein,
respectively) were used to build confidence intervals.

Contributions: In Chapter 6 of this thesis, we consider the best arm identification
problem in the fixed confidence setting. We suppose that the support of each of the K
arms distribution belongs to the interval [0, B] for a known boundedness parameter B > 0.
We introduce a relaxed setting that differs from the classical multi-armed bandits setting
by allowing the player to query arms simultaneously. We do not suppose that arms are
independent, however, at each round, the sampled rewards are independent of the past
and have the same joint distribution for all observation rounds.

In Section 2.2 (summary of the results of Chapter 4), we showed that the presented pro-
cedure allows for best arm identification in the global budget setting. We briefly mentioned
that sampling arms simultaneously allows the strategy to be adaptive to the unknown co-
variance structure of the arms. Below we illustrate this idea more formally.

Consider two variables X1 and X2 taking values in [0, B], let µ1 = E[X1] and µ2 =
E[X2]. Given a confidence parameter δ ∈ (0, 1), the learner should decide, using a sampling
strategy, which arm has the larger mean with a probability of at least 1 − δ. When the
learner is constrained to sample one variable at a time (i.e., the obtained samples are
independent), Theorem 1 in Mannor and Tsitsiklis [2004] states that an optimal strategy
would require a total number of samples C1 such that:

C1 ≥ cB2 log(δ−1)
(µ1 − µ2)2 , (2.7)

where c is a numerical constant independent of the problem parameters. Now suppose
that the learner can sample from X1 and X2 simultaneously. Define the following quantity
∆̂12,t:

∆̂12,t := µ̂2,t − µ̂1,t − 2

√
2 log(12δ−1)

t
d̂12,t − 12B log(12δ−1)

t
,
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where µ̂i,t denotes the empirical mean of Xi up to round t and d̂12,t denotes the empirical
L2-distance between X1 and X2. Using the empirical Bernstein inequality (Maurer and
Pontil, 2009), one can prove that if ∆̂12,t > 0, then with probability at least 1 − δ it
holds µ2 > µ1. Consider a strategy consisting of sampling X1 and X2 simultaneously and
performing the tests ∆̂12,t > 0 and ∆̂21,t > 0 at each round t. We prove that the last
strategy requires a total number of samples C2 satisfying

C2 ≤ c log(|µ2 − µ1|−1δ−1)
(

d2
12

(µ2 − µ1)2 + B

|µ2 − µ1|

)
,

where c is a numerical constant and d2
12 = E

[
(X1 −X2)2]. Therefore, in the worst case

and neglecting the logarithmic factors, we recover the optimal bounds in (2.7). If the L2-
distance between X1 and X2 is small, our strategy makes a significant improvement with
respect to (2.7).

We generalize the previous remark to the setting of K-arms and provide in Algo-
rithm 22 Section 6.4 a strategy with a bound on the total number of queries for best arm
identification mainly driven by the quantity∑

i∈JKK\{i∗}
min

1≤j≤K
Λij ,

where

Λij :=

 +∞ if µj ≤ µi
d2
ij

(µj−µi)2 + B
µj−µi otherwise.

To conclude, we present in Algorithm 6.4 Section 6.4 a strategy where we compare each
arm to convex combinations of the non-eliminated arms. We provide a similar control on
the budget required for best arm identification.
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Chapter 3

Online Orthogonal Matching Pursuit

Greedy algorithms for feature selection are widely used for recovering sparse high-
dimensional vectors in linear models. In classical procedures, the main emphasis was put
on the sample complexity, with little or no consideration of the computation resources re-
quired. We present a novel online algorithm: Online Orthogonal Matching Pursuit (OOMP)
for online support recovery in the random design setting of sparse linear regression. Our pro-
cedure selects features sequentially, with one pass over data, alternating between allocation
of samples only as needed to candidate features, and optimization over the selected set of
variables to estimate the regression coefficients. Theoretical guarantees about the output of
this algorithm are proven and its computational complexity is analysed.

Based on Saad et al. [2020]: E. M. Saad, G. Blanchard, and S. Arlot. Online orthogonal
matching pursuit. arXiv preprint arXiv:2011.11117, 2020.

3.1 Introduction

In the context of large scale machine learning, one often deals with massive data-sets
and a considerable number of features. While processing such large data-sets, one is often
faced with scarce computing resources. The adaptability of online learning algorithms to
such constraints made them very popular in the machine learning community.

In the current work we address the problem of online feature selection, i.e support
recovery algorithms restricted to a single training pass over the available data. This set-
ting is particularly relevant when the system cannot afford several passes throughout the
training set: for example, when dealing with massive amounts of data or when memory or
processing resources are restricted, or when data is not stored but presented in a stream.

Suppose that there exists a vector β∗ ∈ Rd with ‖β∗‖0 = s∗ ≤ d such that the response
variable y is generated according to the linear model y = 〈x, β∗〉 + ε, where ε satisfies
E[ε|x] = 0, let S∗ = supp(β∗). Throughout the article, we consider that the feature vector
x is random, and we assume that |y| < 1 and ‖x‖∞ < M almost surely for a known
constant M > 0. The straightforward formulation of sparse regression using a l0− pseudo-
norm constraint is computationally intractable. This challenge motivated the rise of many
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computationally tractable procedures whose statistical validity has been established under
additional assumptions such as the Irrepresentable Condition (IC) and Restricted Isometry
Property (RIP).

Many algorithms have been proposed for support recovery, the most popular procedures
use a convex relaxation with the l1−norm (LASSO based algorithms, Tibshirani, 1996),
and greedy procedures such as Orthogonal Matching Pursuit algorithm (OMP, Mallat and
Zhang, 1993), where features are selected sequentially. In this paper, we develop a novel
online variant of OMP. Theoretical guarantees about OMP on support recovery were de-
veloped by Zhang [2011b], under the IC+RIP assumption, and many variants have been
developed [Blumensath and Davies, 2008, Combettes and Pokutta, 2019], where different
optimization procedures are used instead of ordinary least squares. However, the compu-
tational complexity remains of the order O(nd) for one variable selection step and O(s∗nd)
for total support recovery, with a sample size satisfying n = Ω

(
max

(
s∗, 1

min{|β∗i |2,β
∗
i 6=0}

))
for exact support recovery with a high probability guarantee. A drawback of these proce-
dures, besides the need to perform multiple passes over the training set, is that the sample
size, hence the computational complexity of every step, depends on (min{|β∗i |, β∗i 6= 0})−1.
Intuition suggests that recovery of the larger coefficients of β∗ should be possible with less
data and hence less computational complexity. We propose a feature selection procedure
that is consistent with this intuition.

If the support size s∗ is known, the proposed algorithm (OOMP) halts after recovering
all features in S∗. Otherwise, it relies on some external criterion (such as a runtime budget),
whenever halted, the procedure returns a set of features guarantees to belong to S∗ with
high probability. Moreover, we show that support recovery is achieved in finite time and
provide a control on the computational complexity necessary to attain this goal.

3.1.1 Main contributions
This paper is about the design and analysis of support recovery for linear models in

the online setting. We make the following contributions:

• We design a general modular procedure, where the learner can use any black-box
optimization algorithm combined with an approximate best arm identification ap-
proach, provided those procedures come with suitable guarantees. We show that at
any interruption time, it is guaranteed with high probability that the set of selected
features S satisfies: S ⊆ S∗.

• We instantiate the general design using a variant of the stochastic gradient descent
for the optimization and a LUCB-type (Lower Upper Confidence Bound) procedure
for approximate best arm selection. The proposed algorithm has the advantage of
being adapted to the streaming setting (i.e. requiring only one pass over data).

• A prior knowledge on the support size s∗ or the magnitude of the smallest coefficient:
min{|β∗i |, β∗i 6= 0}, is not necessary to run the procedure. We show that OOMP
recovers the support S∗ in finite time and provide a control on the runtime necessary
to achieve this objective.
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• We compare the runtime required for support recovery using OOMP (COOMP) with
the corresponding runtime using batch version OMP (COMP). We show that when
d > (s∗)3, it always holds COOMP = O(COMP log2

(
COMP

)
), and when the coeffi-

cients of β∗ have a different order of magnitude, COOMP can be much smaller than
COMP. We provide some examples (such as polynomially decaying coefficients) to
illustrate the gain in computational complexity of OOMP with respect to OMP.

• OMP was shown to require less data than Lasso for support recovery (Zhang, 2009).
We consider the streaming sparse regression algorithm (SSR) presented by Steinhardt
et al. [2014], which is conceptually related to Lasso, as a benchmark to compare
OOMP with l1-regularization type algorithms. We prove that when d > (s∗)3,
OOMP outperforms SSR in terms of computational complexity.

Organization In section 3.2, we present high level ideas and key properties which
underpin greedy feature selection principles such as the Orthogonal Matching Pursuit al-
gorithm (in the batch as well as in the online setting). We then extend this idea and design
a general Online OMP procedure which is built using two black-box procedures (namely
Optim and Try-Select) in Section 3.3. Then, we instantiate this general procedure using
Algorithms 10 for Optim and 11 for Try-Select in Section 3.4. Finally, we state theoret-
ical guarantees about the output of the presented algorithm and provide a control on its
runtime complexity. The last section presents simulations using synthetic data.

3.1.2 Notations used
Throughout the paper, we use the notation [n] = {1, . . . , n}. We denote by d the total

input space dimension (total number of features), and s∗ denotes the cardinality of the
set S∗ of features to be recovered. For a vector γ ∈ Rd and F ⊆ [d], we denote γi:F the
coordinate of γ corresponding to the i-th element of F ranked in increasing order, and γF
the vector of R|F | such that (γF )i := γi:F . Similarly, for a matrix M ∈ Rd×d we denote
MF the matrix in R|F |×|F | obtained by restricting the matrix M to the lines and columns
with indices in F . For a random vector x ∈ Rd, a random variable y ∈ R and F ⊆ [d] we
denote Cov(xF , y) the vector in R|F | defined by Cov(xF , y)i = Cov(xi:F , y),∀i ∈ [|F |]. We
denote Σ the covariance matrix of x. For β ∈ Rd let us denote R(β) = E(x,y)[(y−〈x, β〉)2]
the (population) squared risk function.

3.2 Batch OMP and oracle version

We start with recalling the standard batch OMP (Algorithm 6) for reference. Then we
will introduce an “oracle” version when the data is random, which will serve as a guide for
constructing the online algorithm.
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Algorithm 7 Oracle OMP
Input: integer s∗(∞ if unknown), µ ∈ [0, 1).
Let S = ∅.
while |S| < s∗ do

Let βS = argmin
supp(β)⊆S

E(x,y)[(y − 〈x, β〉)2]

Let ZS
i = E[xi(y − 〈x, βS〉)], (i = 1, . . . , d).

Select i∗ such that:
ZS
i∗ ∈ [µmaxj∈[d]\S Z

S
j ,maxj∈[d]\S Z

S
j ]

if ZS
i∗ = 0 then Break

S ← S ∪ {i∗}
end while
Output S.
On interrupt: return S.

3.2.1 Batch OMP
Given a batch measurement matrix X ∈ Rn×d and a response vector Y ∈ Rn, at each

iteration, OMP picks a variable that has the highest empirical correlation (in absolute
value) with the ordinary linear least squares regression residue of the response variable
with respect to features selected in the previous iterations. The algorithm stops when the
maximum correlation is below a given threshold η.

Algorithm 6 OMP(X,Y ,η)
S = ∅, β̄ = 0
while true do
î← argmaxj /∈S|X t

.j(Y −Xβ̄)|.
if |X t

.̂i
(Y −Xβ̄)| < η then

Break
else
S ← S ∪ {̂i}
β̄ ← argmin

supp(β)⊆S
‖Xβ − Y ‖2

end if
end while
return: S, β̄.

Each iteration of Algorithm 1 comprises a selection procedure, where one selects a
feature based on its correlation with the current residuals, and an optimization procedure,
in this case the ordinary least squares, where one optimizes the squared loss function over
the space spanned by the set of selected features, and determines the new residuals for the
next iteration.

38



3.2.2 Oracle OMP
To understand why OMP works, we consider the setting where the data is random

and present an “oracle” (or population) version of OMP in order to give an insight about
the core principle of its selection strategy, which we will adapt to the streaming setting.
Throughout this work we assume the following on the generating distribution of feature
vector and noise:

Assumption 1. E[x] = 0, y = 〈β∗, x〉+ ε, and the noise variable satisfies E[ε|x] = 0.

Let us introduce the following classical assumption in support recovery literature, which
appears in Tropp [2004], Zhao and Yu [2006] and Zhang [2009] as the irrepresentable
condition (IC). Consider a subset S ⊆ [d] and denote

µS = max
j∈[d]\S

‖Σ−1
S Cov(xS , xj)‖1.

Assumption 2 (Irrepresentable condition, IC). For all S ⊆ [d] such that |S| = s∗,

0 ≤ µS < 1.

cite: The assumption µS∗ < 1 is often used for exact support recovery, it was shown
by Zhang [2009] that it is a necessary condition for the consistency of batch OMP feature
selection.

Consider for a subset S ⊆ S∗:

βS ∈ argmin
supp(β)⊆S

R(β).

We define the covariance between the oracle residuals with each feature as:

ZSi := E[xi(y − 〈x, βS〉)], i = 1, . . . , d. (3.1)

The selection criterion used in oracle OMP relies on the quantities ZSi , thanks to the
following lemma:

Lemma 3.2.1. Suppose Assumptions 1 and 2 hold. For any S ⊆ S∗, we have (with the
convention max ∅ = 0):

max
j /∈S∗
|ZSj | ≤ µS∗ max

i∈S∗\S
|ZSi |. (3.2)

Algorithm 7 presents the resulting procedure, called Oracle version of OMP. In order
to ease notations will use µ instead of µS∗ in the remainder of this paper.

cites:
• A similar result was used by Zhang [2009] for the case of fixed design with random noise,
where it was shown that either the empirical counterparts of ZSi are small, or they satisfy
an inequality analogous to (3.2).
• The right-hand side of (3.2) can be written as maxi∈S∗ |ZSi |, since ZSi = 0 for all i ∈ S.
• This lemma shows in particular that under Assumptions 1-2, if S ⊆ S∗ and maxi |ZSi | > 0,
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then maxi/∈S∗ |ZSi | < maxi∈S∗ |ZSi |. Hence, unless S∗ = S, picking the feature with the
largest population correlation |ZSi | guarantees that this feature belongs to S∗.
• In the oracle setting, the algorithm stops as soon as maxi |ZSi | = 0, since Lemma 3.2.1
guarantees that S = S∗ then. In the batch setting with a finite amount n of available data,
the algorihm stops when the maximum empirical correlation is too small and and cannot
guarantee maxi |ZSi | > 0 due to estimation error. The threshold for stopping then depends
on estimation error, hence on n, see Zhang [2009].

3.3 Online OMP

3.3.1 Settings
In a computation-resources-constrained setting, one aims at using the least possible

queries of data points and features in order to gain in computational and memory efficiency.
For a data point (x, y) ∈ Rd × R, define z ∈ Rd+1 by: z[d] = x and zd+1 = y.

In this paper, we focus on the the streaming data setting were one-pass over data is
performed, as summarized above:

The algorithm queries quantities through: query-new(F ), which takes as input F ⊆
[d + 1] and outputs the partial observation zF of a fresh data point independent from all
previously queried quantities. One call to query-new(F ) has a time complexity of O(|F |).

In what follows, we will split algorithms into subroutines and assume that the input
of each subroutine only depends on the result of past queries. This ensures that all the
new data accessed by a subroutine can be considered as i.i.d. conditionally to its input.
More formally, let us denote by Fn the σ-algebra generated by all queried quantities up
to the nth query-new query, and let N be the (possibly random) number of queries made
before the call to the current subroutine. Mathematically, N is a stopping time; and,
conditional to FN the K next calls to query-new produce an i.i.d. sequence of (possibly
partially observed) data points. We always assume that the input to each subroutine
is FN -measurable. Below we will analyse each subroutine for a fixed input and derive
probabilities with respect to the queried (i.i.d.) data; in the global flow of the algorithm,
under the above assumption the same probabilistic bounds will hold conditional to FN .

3.3.2 Algorithm
Online OMP (Algorithm 8) selects variables sequentially. In its general form, Algo-

rithm 9 (Select) consists of two sub-routines: Optim and Try-Select. The first provides an
approximation of the regression coefficients for features in S. The latter is an approximate
best arm identification strategy which uses the output of Optim and queries data points
in order to try to select feature i, such that ZSi is large enough (Lemma 3.2.1 shows that
such a feature is in S∗). We now describe how Optim and Try-Select operate:
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Algorithm 8 Online OMP(δ, s∗)
Input: s∗(∞ if unknown), δ ∈ (0, 1)
Input: µ ∈ (0, 1), ρ > 0 (globals)
Let S = ∅.
while |S| < s∗ do
U ← Select(S, δ

2(|S|+1)(|S|+2) , 1)
S ← S ∪ U

end while
Return: S
On interrupt: return S

Algorithm 9 Select(S,δ,ξ)
[Globals: µ ∈ (0, 1), ρ ∈ (0, 1)]
β̃ ← Optim(S, δ, ξ)
(U, Success)← Try-Select(S, δ, β̃, ξ)
if ¬Success then

Return: Select(S, δ/2, ξ/4)
else
return U

end if

Optim sub-routine: is assumed to be a black-box optimization procedure such that
for any fixed subset S ⊆ [d], positive number ξ and δ ∈ (0, 1), Optim(S, δ, ξ) queries fresh
data points through query-new(S ∪{d+ 1}) and outputs an approximation β̃S for βS . We
say that Optim satisfies the optimization confidence property if

P
[
R
(
β̃S
)
−R

(
βS
)
> ξ

∣∣∣S, δ, ξ] ≤ δ, (3.3)

where the probability is with respect respect to the data queried during the procedure,
for any fixed input (S, δ, ξ).

Try-Select sub-routine: Given a set of selected features S, an (approximate) regres-
sion coefficients vector β̃S and a confidence bound ξ (on β̃S), Try-Select(S, δ, β̃S , ξ) queries
fresh data points to approximate ZSi defined by (3.1) for i ∈ [d] \ S∗ and either returns
Success=False, or Success=True along with a set U of new selected features.

We say that Try-Select satisfies the selection property if for any (fixed) input (S, δ, β̃S , ξ),
it holds for the (random) output (Success, U):

provided S ⊆ S∗ and R
(
β̃S
)
−R

(
βS
)
≤ ξ, it holds:

P
[
A(Success, U)

∣∣S, δ, β̃S , ξ] ≤ δ,
where A(Success, U) :=

{
Success = True;∃i ∈ U : µS∗ max

j∈S∗\S

∣∣ZSj ∣∣ ≥ ∣∣ZSi ∣∣}, (3.4)
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where the probability is with respect to all data queries made by Try-Select for fixed input.
This implies in particular that U ⊂ S∗ \ S with probability 1− δ, by Lemma 3.2.1 (and in
particular, with the convention max ∅ = 0, the probability of returning Success = True
when S = S∗ is less than δ).

If Try-Select returns Success = False, this suggests that the bound ξ is not tight
enough, i.e. that the prescribed precision ξ for the optimization part is insufficient to
find a feature with the guarantee (3.4) holding with the required probability. In this case,
using the doubling trick principle, Select is called recursively with the input (S, δ/2, ξ/4).
Algorithm 9 presents the general form of the procedure Select.

If the cardinality |S∗| = s∗ is not known in advance, there is no stopping criterion
and the procedure is run indefinitely. We assume that Online OMP will be interrupted
externally by the user based on some arbitrary criterion, for example a limit on total
computation time or other resource. In this case the current set S of selected features is
returned. The next lemma ensures that at any interruption time, it is guaranteed with
high probability that S ⊆ S∗.

Lemma 3.3.1. Suppose that Assumptions 2 and 1 hold. Consider Algorithm 8 with the
procedure Select given in Algorithm 9, assume that Optim satisfies the optimization
confidence property (3.3) and that Try-Select satisfies the selection property (3.4). Then
when OOMP(δ, s∗) (Algorithm 8) is terminated, the variable S satisfies with probability
at least 1− 2δ: S ⊆ S∗.

cite: The above result only guarantees that the recovered features belong to the true
support. We will see later in Lemma 3.5.1 that for the instantiations of Try-Select and
Optim considered in the next section, unless the support S∗ is completely recovered, the
procedure Select finishes in finite time. Together with the previous lemma, this guarantees
that the support S∗ will be recovered in finite time with high probability, at which point
Select will enter an infinite loop of recursive calls until interruption. In Section 3.5, we will
derive quantitative bounds on the complexity for recovering the full support.

About the stopping rule: OOMP has access to a virtually infinite stream of data points,
so unless it is halted externally by the user, the algorithm can (in principle) continue query-
ing more data to search for potentially extremely small coefficients (in contrast to the batch
setting where the amount of available data is limited). However it is possible, in every call
of the procedure Try-Select, to communicate to the user an upper bound on the maximal
magnitude of the remaining coefficients of variables in S∗ \ S (as shown in Section 3.B).
Therefore, the user can halt the procedure whenever that bound is small enough (alterna-
tively, a threshold can be passed as an input to the algorithm and a corresponding stopping
rule can be derived). We advocate an agnostic point of view where the user can decide
for themselves when to halt the algorithm (based on the information on the magnitude of
the remaining coefficients, but also possibly on limitations of the size of available data or
computation time). Our recovery result guarantees that stopping at any time, the set of
selected variables is (with high probability) a subset of S∗.
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3.4 Instantiation of the optimization procedure and the
selection strategy

In this section we provide an instantiation of Try-Select and Optim procedures.

3.4.1 Assumptions
In addition to the Irrepresentable Condition (IC) (Assumption 2 ) we will make an as-

sumption of Restricted Isometry Property (RIP) [Tropp, 2004, Zhang, 2009, Wainwright,
2009b] for the distribution of (x, y). Denote Λmin

S and Λmax
S the lowest and largest eigen-

value of ΣS respectively.

Assumption 3. [RIP] For all S ⊆ [d] such that |S| = s∗, it holds 0 < ρ ≤ Λmin
S ,Λmax

S ≤ L.

We also make the following assumption:

Assumption 4. Assume that |y| < 1 and ‖x‖∞ < M (a.s.).

3.4.2 Instantiation of Optim and Try-Select
Recall that one call of the procedure Select results in successive calls of Optim and

Try-Select until (at least) a feature is selected. Moreover, the quantities queried in a sub-
routine call (either Try-Select or Optim) are independent from quantities queried during
the execution of previous functions.

Optimization procedure: We opted for the averaged stochastic gradient descent
(Algorithm 10). High probability bounds on the output of this procedure were given by
Harvey et al. [2019b]. We use this finding to build an optimization procedure satisfying
the optimization confidence property (3.3) for an input (S, δ, ξ).

Proposition 3.4.1. Let Assumptions 1,2, 3 and 4 hold. Then Algorithm 10 satisfies the
optimization confidence property.

Try-Select Strategy: Different approximate best arm identification strategies were
developed in the literature. In this work, we opt for a LUCB-type strategy were we use
some ideas from Mason et al. [2020]. We approximate ZSi by (i) replacing βS by an
approximation β̃S assumed to satisfy the condition R

(
β̃S
)
−R

(
βS
)
≤ ξ; (ii) replacing the

expectation by an empirical counterpart using queried quantities. Given an i.i.d sequence
(Xh, Yh), h ≥ 1, we define Z̃Si,n(β̃S) and Ṽi,n(β̃S) for n ≥ 2, using (Xh, Yh), 1 ≤ h ≤ n
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Algorithm 10 Optim (S, δ, ξ)
Input: initial β0, δ, ξ
Let β̃0 = β0, X = B|S|(0, 2√

ρ
)

G← 10|S|M2
√
ρ

+ 2
√
|S|M

Let T ← 21G2 log(1/δ)/(ρξ)
for t← 0, ..., T − 1 do
ηt ← 2

ρ(t+1) , νt ←
2
t+1

(X, Y )← query-new(S ∪ {d+ 1})
γt+1 ← βt − 2ηt(X tβt − Y )X
βt+1 ← ΠX (γt+1)
//where ΠX is the projection operator on X
β̃t+1 ← (1− νt)β̃t + νtβt+1

end for
return β̃T

written in matrix and vector form as X ∈ Rn×d, Y ∈ Rn by:

Z̃Si,n(β̃S) := 1
n
Xt
.i(Xβ̃S − Y ), i = 1, . . . , d;

Ṽi,n(β̃S) := 1
n(n− 1)∑

1≤h,l≤n

(
Xi,h(Xβ̃S − Y )h −Xi,l(Xβ̃S − Y )l

)2
;

Ṽ +
i,n(β̃S) := max

{
Ṽi,n(β̃S); 1

1000
LM2

ρ

}
.

Note that Ṽi,n(β̃S)+ represents a thresholded version of the empirical variance Ṽi,n(β̃S).
Proposition 3.4.2 gives a concentration inequality for Z̃Si,n, using empirical Bernstein bounds
[Maurer and Pontil, 2009]. For i ∈ [d]\S, n ≥ 2 and δ ∈ (0, 1), define B̃(β̃S) := M2‖β̃S‖1 +
M and:

conf(i, n, δ) :=

√
8Ṽ +

i,n(β̃S) log(8dn2/δ)
n

+ 28B̃(β̃S) log(8dn2/δ)
3(n− 1) . (3.5)

Proposition 3.4.2. Consider a fixed subset S ⊆ S∗ and put k := |S|. Suppose As-
sumptions 1, 2, 3 and 4 hold. Assume to be given a fixed β̃S ∈ Rd with support S,
satisfying R

(
β̃S
)
−R

(
βS
)
≤ ξ. For all δ ∈ (0, 1), with probability at least 1− δ it holds:

for all i ∈ [d] \ S, and n ≥ 2 : |Z̃Si,n(β̃S)− ZSi | ≤
1
2conf(i, n, δ) +M

√
ξ. (3.6)

Proposition 3.4.2 entails the following: conditionally to S ⊆ S∗, for all δ ∈ (0, 1), with
probability at least 1 − δ: for all i ∈ [d] \ S, n ≥ 2, the condition 2M

√
ξ < conf(i, n, δ)

implies
|Z̃Si,n − ZSi | ≤ conf(i, n, δ). (3.7)
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Provided inequality (3.7) holds true, and let î ∈ argmax{|Z̃Si,n| + conf(i, n, δ)}, then, if
j ∈ [d] \ S satisfies the following condition:

|Z̃Sj,n| − conf(j, n, δ) ≥ µ
(
|Z̃S
î,n
|+ conf(̂i, n, δ)

)
, (3.8)

then it holds that
∣∣ZSj ∣∣ > µmaxi∈S∗

∣∣∣ZSi ∣∣∣ (see Lemma 3.C.1 for a proof). Thus, in view
of Proposition 3.4.2, under the above conditions, an algorithm selecting features j satisfy-
ing (3.8) satisfies the selection property.

Using this observation, we build Algorithm 11 as follows: the procedure repeatedly
queries fresh data points (x, y) and updates the quantities Z̃Si,n simultaneously for all i ∈
[d] \ S. After each iteration, we pick î ∈ argmax{|Z̃Si,n| + conf(i, n, δ)} and we eliminate
features for j which we are certain that j 6∈ argmaxi|ZSi | (i.e suboptimal features) with
high probability through the test:∣∣∣Z̃Sj,n∣∣∣+ conf(j, n, δ) <

∣∣∣Z̃S
î,n

∣∣∣− conf(̂i, n, δ).

Moreover, we select features satisfying the condition (3.8). The procedure halts when the
condition: ∣∣∣Z̃S

î,n

∣∣∣ ≤ 2
1− µ conf(̂i, n, δ)

is no longer satisfied. The algorithm then returns the set of selected features U . Lemma 3.5.1
shows that unless the support S∗ is completely recovered, U 6= ∅ and the procedure halts
in finite time almost surely. A concise version of Try-Select is given in Algorithm 11 (the
detailed version is in Algorithm 13).

3.5 Theoretical guarantees and computational complexity
analysis

Consider one call of Select(S, δ, 1), for a fixed S ⊆ S∗. Lemma 3.5.1 below shows that,
unless the support of S∗ is totally recovered, the procedure Select(S, δ, 1) halts in finite
time and updates S with a non-empty set of features.

Lemma 3.5.1. Suppose Assumptions 1,2,3 and 4 hold. Consider one call of Select(S, δ, 1)
where Try-Select is given by Algorithm 11, and Optim is given by Algorithm 10. Denote
by τ the stopping time where Select(S, δ, 1) updates S with the set of selected features U
(i.e the subroutine Try-Select returns U and Success = True), then :

If S ( S∗: P(τ < +∞ and U 6= ∅) = 1.
If S = S∗: P(τ = +∞) ≥ 1− 2δ.

Let S ( S∗ be a fixed subset and denote k := |S|. Recall that running Select(S, δ, 1)
results in executing Optim and Try-Select alternatively (see Algorithm 9). Let us denote
by CSOptim the cumulative computational complexity of Optim when running Select(S, δ, 1)
and by CSTry-Select the cumulative computational complexity of Try-Select when running
Select(S, δ, 1).
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Algorithm 11 Try-Select (S, δ, β̃, ξ)
Input: S, δ, β̃, ξ {β̃ is of dim. |S|}
Output: S, Success
Let v, Z, conf be d-arrays
{will store Ṽi,n, Z̃S

i,n and conf(i, n)}
n← 0, Z ← 0, v ← 0, U ← ∅, L← [d+ 1] \ S
while True do
n← n+ 1
(X, Y )← query-new(L)
for all i ∈ {1, . . . d} do
Z[i]← 1

n
Xi(Y −X t

Sβ̃) + n−1
n
Z[i]

Update v[i]
conf[i]← conf(i, n)

end for
if 2M

√
ξ > mini conf[i] then

Success← False, break
end if
î← argmax

i∈[d]\S
{|Z[i]|+ conf[i]}

for all i ∈ L \ {d+ 1} do
if |Z[i]|+ conf[i] ≤

∣∣∣Z [̂i]
∣∣∣− conf[̂i] then

L← L \ {i}
end if
if |Z[i]| − conf[i] ≥ µ

(∣∣∣Z [̂i]
∣∣∣+ conf[̂i]

)
then

U ← U ∪ {i}
end if

end for
if |Z [̂i]| > 2

1−µ conf[̂i] then
Success← True, break

end if
end while
return U, Success
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Theorem 3.5.2. Suppose Assumptions 1, 2, 3 and 4 hold. Consider the procedure Select
given by Algorithm 9, Try-Select given by Algorithm 11, and Optim as in Algorithm 10.
Assume that S ( S∗ and denote k := |S|. Then Select(S, δ, 1) selects a non-empty set of
additional features U such that:

P(U ⊂ S∗) ≥ 1− 2δ.

Moreover, the computational complexity of Select(S, δ, 1) subroutines Optim and Try-
Select satisfy with probability at least 1− δ:

CSOptim ≤ κk3 max
{

1
W 2
i∗
,

√
k

Wi∗

}
log
(

k̄

δWi∗

)
;

CSTry-Select ≤ κ
∑

i∈[d]\S
max

{
1
W 2
i

;
√
k̄

Wi

}
log
(

d

δWi∗

)
log
(

k̄

Wi∗

)
;

where i∗ ∈ argmaxi∈S∗\S
∣∣∣ZSi ∣∣∣; Wi := max((1−µ)

∣∣∣ZSi ∣∣∣, ∣∣∣ZSi∗∣∣∣− ∣∣∣ZSi ∣∣∣); k̄ = max{1, k} and κ
is a constant depending only on ρ, L and M .

Theorem 3.5.2 provides high probability bounds on the computational complexity for a
call to the procedure Select. A crucial point is that the complexity of the k-th step depends
on the largest correlation

∣∣∣ZSi ∣∣∣ over the remaining (yet unselected) features, which in turn
can be related to the average of the corresponding coefficients of β∗ (see Lemma 3.C.12).
By contrast, due to the batch nature of OMP, its complexity is driven by the minimum
coefficient of β∗, which determines the minimum amount of needed data for full recovery.

Let us introduce the following notation: let
(
β(i)

)
1≤i≤s∗

be the coefficients of β∗ ordered

in decreasing sequence of magnitude. Let β̃2
(s∗−k+1) denote the average of the square of the

k smallest non-zero coefficients of β∗: β̃2
(s∗−k+1) := 1

k

∑s∗
i=s∗−k+1 β

2
(i).

Corollary 3.5.3. Under the same assumptions as theorem 3.5.2. The computational
complexity of Select(S, δ, 1) subroutines Optim and Try-Select satisfy with probability
at least 1− δ:

CSOptim ≤ κ
k3

β̃2
(k+1)

log

 k̄

δβ̃2
(k+1)

;

CSTry-Select ≤ κ
d

β̃2
(k+1)

log

 k̄

β̃2
(k+1)

 log

 d

δβ̃2
(k+1)

;

where κ is a constant depending only on ρ, L,M, µ, and k̄ = max{k, 1}.

We use bounds of corollary 3.5.3 to compare the computational complexity of OOMP
with the computational complexity of OMP using the sample size prescribed by Zhang
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[2009] for full support recovery. Then, we compare OOMP with the SSR algorithm pre-
sented by Steinhardt et al. [2014] for streaming sparse regression, as a Lasso-type procedure.
We use Theorem 8.2 in Steinhardt et al. [2014] to derive a sufficient sample size to achieve
full support recovery.

We denote by COOMP the total runtime necessary for OOMP in order to recover the
support completely, and denote by COMP and CSSR the corresponding quantities for OMP
and SSR respectively.

Corollary 3.5.4. Under the same assumptions as theorem 3.5.2. If d > (s∗)3, we have
with probability at least 1− δ:

COOMP

COMP ≤ κ log2
(

s∗

β2
(s∗)

)
1
s∗

s∗∑
i=1

β2
(s∗)

β̃2
(i)

;

COOMP

CSSR ≤ κ log2
(

s∗

β2
(s∗)

)
1

(s∗)2

s∗∑
i=1

β2
(s∗)

β̃2
(i)

;

where κ is a constant depending only on ρ, L,M and µ.

Recall that we have ∀i ∈ [s∗] : β2
(s∗) ≤ β̃2

(i). Hence: 1
s∗
∑s∗
i=1

β2
(s∗)
β̃2

(i)
≤ 1, with equality

only if all the square of the coefficients are equal. The SSR complexity bound have and
additional factor 1

s∗ , the same factor appears when comparing the sample size used by
OMP for support recovery nOMP in Zhang [2009], with the corresponding quantity for
Lasso nLasso in Zhao and Yu [2006]: nOMP = O(nLasso

s∗ ). Since our objective is support
recovery, we will focus on the comparison between OOMP and OMP in the remainder of
this paper.

In order to illustrate the advantage of OOMP over OMP, we consider the specific
situation where the coefficients of β∗ decay polynomially as: βi = 1√

s∗

(
1− i−1

s∗

)γ
, for

i ∈ S∗ and βi = 0 for i /∈ S∗; with γ ≥ 0 and we assume that d > (s∗)3. Then we have,
with probability at least 1− δ:

COOMP

COMP ≤ κ
log2(s∗)

(s∗)min{2γ,1} . (3.9)

where κ is a constant depending only on ρ, L,M and µ. See section 3.D for a proof of
the results above. Thus, in a typical scenario of coefficient decay (γ > 0), OOMP reduces
the complexity of OMP by a large factor (observe that the worst case in this scenario is
γ = 0, i.e. when all coefficients all are of the same order, which is not the typical case in
practice).
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3.6 Simulations

In this section, we aim at comparing the computational complexities of OOMP and
OMP. We denote nOMP the sample size prescribed by- Zhang [2011b] (recalled as The-
orem 3.D.2) to fully recover the support using OMP. We consider COMP = s∗dnOMP +
(s∗)2nOMP as a proxy for the computational complexity of OMP. For OOMP, we use
Lemma 3.C.7 and evaluate COOMP as a function of the quantity of data points queried.

From a practical point of view, the number of iterations theoretically prescribed in
the optimization procedure (the number T in Algorithm 10), and coming from Harvey
et al. [2019b] is very pessimistic, due to the large numerical constant up to which the
confidence bounds of the averaged stochastic gradient descent were developed. Taking this
theoretical prescription to the letter resulted in the Optim step demanding an inordinate
amount of data compared to Try-Select, while we expect the latter step to carry the larger
part of the complexity burden due to the influence of the dimension d. For this reason, in
our simulation we opted to significantly reduce this numerical constant, while ascertaining
(since we know the ground truth) that the optimization confidence property (3.3) was still
satisfied in practice in all simulations.

We generate samples (xt, yt) with each coordinate of xt distributed as Unif[−B;B]
with B = 0.5 and yt = 〈xt, β∗〉 + εt. We pick β∗ to be a sparse vector with s∗ = log2(d)
non zero coordinates and εt ∼ Unif([−η, η]), where η = 0.5. We consider the case where
the coefficients of β∗ decay linearly: β∗i = 1√

s∗

(
1− i−1

s∗

)
for i ∈ [s∗] and β∗i = 0 if i > s∗.

We consider two scenarios for the structure of the correlation matrix Σ: the orthogonal
design Σorth = Id and the power decay Toeplitz design, with parameter φ = 0.1:

ΣToeplitz =


1 φ · · · φd−1

φ
. . . . . .

...
...

. . . . . . φ
φd−1 · · · φ 1


We run OOMP for d ∈

{
22, 23, . . . , 28}, we average the number of queried quantities

over 20 runs and plot the ratio COOMP

COMP in the logarithmic scale with base 2 as a function
of log2 d (Figure 3.1). We set δ = 0.1. In all our simulation runs, the support S∗ was
correctly recovered. The results reported in Figure 3.1 show a significant reduction of the
complexity between OOMP and OMP.
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Figure 3.1: Comparison of computational complexities. The ratio COOMP.

COMP. is plotted
as a function of log2(d) for both the Diagonal and Toeplitz covariance matrix.

3.A Preliminary proofs

3.A.1 Proof of Lemma 3.2.1
Suppose Assumptions 1 and 2 hold. For any subset S ⊆ [d] define βS := Arg Minsupp(β)⊆SR(β),

with R(β) = E(x,y)
[
(y − 〈x, β〉)2

]
.

Let us fix S ⊆ S∗, recall that ZSi = E
[
xi(y − xtβS)

]
; at first we only use the fact that

the support S of βS is a subset of S∗. We have, if S∗ 6= ∅:

max
i∈S∗
|ZSi | = max

i∈S∗

∣∣∣Cov(xi, y − xtβS)∣∣∣ = max
i∈S∗

∣∣∣Cov(xi, xt(βS∗ − βS)
)∣∣∣

= max
i∈S∗

∣∣∣E[xixt(βS∗ − βS)
]∣∣∣

= max
i∈S∗

∣∣∣E[etixxt(βS∗ − βS)
]∣∣∣

= max
i∈S∗

∣∣∣etiΣ(βS∗ − βS)∣∣∣
=
∥∥∥Σ(βS∗ − βS)∥∥∥

∞
.

(The above remains true for S∗ = ∅ with the convention max ∅ = 0). Recall that S ⊆ S∗,
hence the support of βS is included in S∗. Moreover by definition of βS∗ , its support is in
S∗. Therefore, we have:
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max
i∈S∗
|ZSi | = ‖ΣS∗

(
βS
∗

S∗ − βSS∗
)
‖∞.

Let v = ΣS∗

(
βS
∗

S∗ − βSS∗
)
, and assume v 6= 0 (the case v = 0 is trivial). By definition of

µS∗ , we have for any j /∈ S∗, using Assumption 2 and the previous display:

µS∗ = max
j /∈S∗

∥∥∥Σ−1
S∗Cov(xS∗ , xj)

∥∥∥
1

≥

∣∣∣Cov(xS∗ , xj)tΣ−1
S∗ v

∣∣∣
‖v‖∞

=

∣∣∣Cov(xS∗ , xj)t(βS
∗

S∗ − βSS∗)
∣∣∣

‖v‖∞

=

∣∣∣E[xjxtS∗(βS∗S∗ − βSS∗)]∣∣∣
‖v‖∞

=

∣∣∣E[xj(y − xtβS)
]∣∣∣

‖v‖∞

=
|ZSj |

maxi∈S∗ |ZSi |
.

We now use the actual definition of βS , namely βS = Arg Minsupp(β)⊆SR(β), with R(β) =
E(x,y)

[
(y − 〈x, β〉)2

]
. Since ∂iR(β) = −2E(x,y)[xi(y − 〈x, β〉)], we must have 0 = ∂iR(βS) =

−2ZSi for all i ∈ S.
We conclude that maxi∈S∗ |ZSi | = maxi∈S∗\S |ZSi | (including in the case S = S∗ where

the latter right-hand side is 0 by convention), yielding the desired conclusion in conjunction
with the last display.

3.A.2 Technical Results
In this section we collect some technical results we will need for the proofs below.

Recall that we assume the exact linear model:

y = 〈x, βS∗〉+ ε,

with E[ε|x] = 0. In the result to come we restrict our attention to vectors β having support
included in S for a fixed S ⊆ S∗ and denote k := |S|. Consequently we can with some abuse
of notation assume that the ambient dimension is reduced to k (i.e x ∈ Rk, βS ∈ Rk); let
us denote by R : Rk → R the loss function defined by: R(β) = E[(y− xtβ)2], g : Rk → Rk

the gradient function defined by g(β) = ∇R(β) = E[2(xtβ − y)x] and for a sample (x, y)
define: ĝ(x,y)(β) = 2(xtβ − y)x. Denote by Bk(0, r) the closed ball centred at the origin
with radius r in Rk.

Lemma 3.A.1. Suppose Assumptions 3 and 4 hold. Considering the restrictions of func-
tions g, ĝ,R to vectors β having support in S∗ and reducing implicitly the ambient dimen-
sion to s∗ = |S∗|, we have:
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1. for any S ⊆ S∗:
∥∥∥βS∥∥∥

2
≤ 2√

ρ .

2. ∀β ∈ Bk
(
0, 2√

ρ

)
:
∥∥∥ĝ(x,y)(β)

∥∥∥
2
≤ 4kM2

√
ρ + 2

√
kM (a.s).

3. ∀β ∈ Bk
(
0, 2√

ρ

)
: ‖g(β)‖2 ≤ 4kM2

√
ρ + 2

√
kM .

4. R : Rk → R is ρ-strongly convex.

Proof. Recall that from Assumption 3, then the eigenvalues of the matrix ΣS∗ belong to
[ρ, L].

1. Since E[ε|x] = 0, and y = xtβS
∗ + ε, we have for any S ⊆ S∗:

E
[(
y − xtβS

)2
]

= E
[(
xt
(
βS
∗ − βS

))2
]

+ E
[
ε2
]
.

By definition of βS , it holds E
[(
y − xtβS

)2
]
≤ E

[
y2] ≤ 1, together with the above

it gives:

ρ‖βS∗ − βS‖22 ≤
(
βS
∗ − βS

)t
ΣS∗

(
βS
∗ − βS

)
= E

[(
xt
(
βS
∗ − βS

))2
]
≤ 1.

In particular for S = ∅, we have: ‖βS∗‖2 ≤ 1√
ρ . By the triangle inequality, for an

arbitrary S ⊆ S∗:
‖βS‖2 ≤

2
√
ρ
.

2. Let β ∈ Bk
(
0, 2√

ρ

)
, we have:

‖ĝ(x,y)(β)‖2 = ‖2(xtβ − y)x‖2 ≤ |2xtβ|‖x‖2 + 2|y|‖x‖2
≤ 2‖β‖2‖x‖22 + 2|y|‖x‖2
≤ 2k‖x‖2∞‖β‖2 + 2

√
k‖x‖∞

≤ 4kM
2
√
ρ

+ 2
√
kM ;

where we used: ‖x‖2 ≤
√
k‖x‖∞, and the assumptions ‖x‖∞ ≤M , |y| ≤ 1.

3. Let β ∈ Bk
(
0, 2√

ρ

)
, we have:

‖g(β)‖2 =
∥∥∥E[ĝ(x,y)(β)

]∥∥∥
2

≤ E
[
‖ĝ(x,y)(β)‖2

]
≤ 4kM

2
√
ρ

+ 2
√
kM ;

using the estimate of the previous point.

4. Recall that R is twice differentiable and its Hessian is given by E[xxt] = ΣS∗ ≥ ρIs∗ ,
therefore R is ρ-strongly convex.
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3.A.3 Proof of Lemma 3.3.1
Let us start by restating Lemma 3.3.1.

Lemma 3.A.2. Suppose that Assumptions 2 and 1 hold. Consider Algorithm 8 with
the procedure Select given in Algorithm 9, assume that Optim satisfies the optimization
confidence property and that Try-Select satisfies the selection property. Then when the
OOMP(δ, s∗) (Algorithm 8) is terminated, the variable S satisfies with probability at least
1− 2δ: S ⊆ S∗.

Proof. First consider an idealized setting where the algorithm runs indefinitely. Let Up
denote the set of selected features at the p-th iteration of the main while loop of Al-
gorithm 8. It can happen that the call to Select never terminates (this is actually the
expected behaviour if all relevant features have been already discovered), so if τ̄ denotes
the (random) last terminating iteration, we formally define Up = Uτ̄ if p > τ̄ (this is of
course irrelevant in practice but is just needed to always have a formally well defined Up
for all integers p). Denoting Sp :=

p⋃
i=1

Ui, we see that with this definition, for any integer
k ≥ 1:

P(Uk 6⊂ S∗|Sk−1 ⊆ S∗) = P(Uk 6⊂ S∗; τ̄ ≥ k|Sk−1 ⊆ S∗).

The event τ̄ ≥ k implies that all iterations including the kth one have terminated. Fur-
thermore, the kth selection iteration then consisted in calling repeatedly the Try-Select
with allowed error probability δk,i = (k(k + 1)2i)−1δ at the i-th call, until it returned
Success=true (indicating termination of the k-th main selection iteration). Let us denote
Bk,i the event “the i-th call to Optim during the k-th selection iteration, if it took place,
returned β̃S such that the optimization confidence property (3.3) holds”, and Ak,i the event
“the i-th call to Try-Select during the k-th selection iteration, if it took place, returned
Success=true and a subset of features U 6⊂ S∗.” It holds P(Bc

k,i|Sk−1 ⊆ S∗) ≤ δk,i by
the optimization confidence property, and P(Ak,i|Sk−1 ⊆ S∗, Bk,i) ≤ δk,i by the selection
property, so we have

P(Uk 6⊂ S∗; τ̄ ≥ k|Sk−1 ⊆ S∗) ≤ P
[ ∞⋃
i=1

Ak,i
∣∣∣Sk−1 ⊆ S∗

]

≤
∞∑
i=1

P(Ak,i|Sk−1 ⊆ S∗)

≤
∞∑
i=1

P(Ak,i ∩Bk,i|Sk−1 ⊆ S∗) + P(Bc
k,i|Sk−1 ⊆ S∗)

≤
∞∑
i=1

P(Ak,i|Sk−1 ⊆ S∗, Bk,i) + P(Bc
k,i|Sk−1 ⊆ S∗)

≤ 2
∞∑
i=1

δk,i.
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Now, the algorithm may be interrupted at a completely arbitrary time, and returns
the last active set S = Sτ for some τ ≤ τ̄ . We then have

P[Sτ * S∗] ≤ P[∃k ≥ 1 : Sk * S∗] ≤ P[∃k ≥ 1 : Uk 6⊂ S∗;Sk−1 ⊆ S∗]
≤
∑
k≥1

P[Uk 6⊂ S∗;Sk−1 ⊆ S∗]

≤
∑
k≥1

P[Uk 6⊂ S∗|Sk−1 ⊆ S∗]

≤ 2
∞∑

k,i=1
δk,i = 2δ.

3.A.4 Proof of Proposition 3.4.1
In this section we give high probability bounds on the output of the averaged stochastic

gradient descent (ASGD, Algorithm 12). Theorem 3.A.3 below is a slight modification of
the main result in Harvey et al. [2019a], which consists in assuming that the error on the
stochastic sub-gradients is bounded by a constant G > 0 instead of 1. We denote by ΠX
the projection operator on X := B

(
0, 2√

ρ

)
.

Algorithm 12 ASGD(T , β0)
Input: initial β0, T
for t← 0, ..., T − 1 do
ηt ← 2

ρ(t+1) , νt ←
2
t+1

(X, Y )← query-new(S ∪ {d+ 1})
γt+1 ← βt − 2ηt(X tβt − Y )X
βt+1 ← ΠX (γt+1)
β̃t+1 ← (1− νt)β̃t + νtβt+1

end for
return β̃T

We use the same notations as in Section 3.A.2, we assume with some abuse of notation
that the ambient dimension is reduced to k := |S| (i.e x ∈ Rk, βS ∈ Rk). We recall that
we denote by R : Rk → R the loss function defined by: R(β) = E[(y−xtβ)2], g : Rk → Rk

the gradient function defined by g(β) = ∇R(β) = E[2(xtβ − y)x]; in addition we consider
ĝn : Rk → Rk defined by ĝn(β) = 2((x(n)

S )tβ−y(n))x(n), where (x(n), y(n)) are the output of
the nth call of query-new during Algorithm 10. Denote by Bk(0, r) the closed ball centred
at the origin with radius r in Rk.

Lemma 3.A.1 shows that (under Assumptions 3-4), we have via the triangle inequality:

‖ĝt+1(βt)− g(βt)‖ ≤ 8kM
2
√
ρ

+ 4
√
kM. (3.10)
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Where βt are the iterates of Algorithm 10. We denote by G the upper bound in equa-
tion (3.10).

Theorem 3.A.3. Suppose Assumptions 3 and 4 hold. Let δ ∈ (0, 1) and S ⊆ S∗ such
that S 6= ∅. Denote by β̃T the output of ASGD(T, 0) (Algorithm 12).

Then, with probability at least 1 − δ with respect to the samples queried during Algo-
rithm 12:

R(β̃T )−R(βS) ≤ 21G2 log(1/δ)
ρT

,

where G := 8kM2
√
ρ + 4

√
kM .

The following corollary results by simply choosing T large enough such that the opti-
mization confidence property is satisfied by Algorithm 12.

Corollary 3.A.4. Suppose assumptions Suppose Assumptions 3 and 4 hold. Let ξ >

0, δ ∈ (0, 1). Consider algorithm 12 with inputs (T, 0) such that:

T = 21G2 log(1/δ)
ρξ

,

where k := |S| and G := 8kM2
√
ρ + 4

√
kM . Then the output β̃T satisfies with probability at

least 1− δ:
R(β̃T )−R(βS) ≤ ξ.

3.A.5 Proof of Proposition 3.4.2
Technical Results

The following result is a straightforward modification of the empirical Bernstein inequality
from Maurer and Pontil [2009], which consists in assuming that the random variables Ui
belong to [−B,B] for a B > 0, instead of [0, 1].

Lemma 3.A.5. Maurer and Pontil [2009] Let U,U1, . . . , Un be i.i.d. random variables
with values in [−B,B] and let δ > 0. Then with probability at least 1− δ we have:∣∣∣∣∣ 1n

n∑
i=1

Ui − E[U ]
∣∣∣∣∣ ≤

√
2Vn ln(2/δ)

n
+ 14B ln(2/δ)

3(n− 1) ,

where:
Vn = 1

n(n− 1)
∑

1≤i<j≤n
(Ui − Uj)2.

We are interested in applying the Lemma above to the quantities Z̃Si,n. Let (X,Y ) be
a queried sample, the following claim shows that the random variable U := Xi(Xtβ̃S − Y )
for i ∈ [d], where Xi is the ith feature X, satisfies the conditions of Lemma 3.A.5.
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Claim 3.A.6. Suppose Assumption 4 holds. Let (X,Y ) be a sample, β ∈ Rd of support
S ⊆ [d] and such that ‖β‖2 ≤ 2√

ρ . Fix i ∈ [d] and define U = Xi
(
Xtβ − Y

)
. Then it holds

almost surely:

|U | ≤ 2
√
|S|
ρ
M2 +M.

Proof. Using the Cauchy-Schwartz inequality, we have:

|U | ≤ |Xi|(‖XS‖‖β‖+ |Y |)

≤M
(√
|S|M 2

√
ρ

+ 1
)
.

Moreover, a straightforward calculation yields the result below.

Claim 3.A.7. Suppose Assumption 4 holds. Let (X,Y ) be a sample, β ∈ Rd of support
S ⊆ [d]. Fix i ∈ [d] and define U := Xi

(
Xtβ − Y

)
. Then it holds

|U | ≤M2‖β‖1 +M.

Proof. We have:

|U | ≤ |Xi|(‖X‖∞‖β‖1 + |Y |∞)
≤M(M‖β‖1 + 1).

Proof of Proposition 3.4.2

Consider an i.i.d sequence (Xh, Yh). Let n ≥ 1 and denote (Xh, Yh)1≤h≤n in matrix and
vector form as: X ∈ Rn×d,Y ∈ Rn.

Let us first fix a set S ⊆ S∗, a feature i ∈ [d] \ S and a vector β ∈ Rd. Denote for all
j ∈ [n]: Uj := Xj,i(Xt

jβ − Yj), where Xj,i is the ith feature of the jth sample Xj . Recall
that Z̃Si,n(β) = 1

n

∑n
j=1 Uj and ZSi = E(x,y)[xi

(
xtβS − y

)
] . We have:
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∣∣∣Z̃Si,n(β)− ZSi
∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
j=1

Uj − E(x,y)
[
xi
(
xtβS − y

)]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑
j=1

Uj − E(x,y)
[
xi
(
xtβ − y

)]∣∣∣∣∣∣
+
∣∣∣E(x,y)

[
xi
(
xtβ − y

)]
− E(x,y)

[
xi
(
xtβS − y

)]∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑
j=1

Uj − E(x,y)[U1]

∣∣∣∣∣∣+
∣∣∣E(x,y)

[
xix

t
(
β − βS

)]∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑
j=1

Uj − E(x,y)[U1]

∣∣∣∣∣∣+M
∣∣∣E(x,y)

[∣∣∣xt(β − βS)∣∣∣]∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑
j=1

Uj − E(x,y)[U1]

∣∣∣∣∣∣+M
√
R(β)−R(βS).

Let us denote B̃(β) := M2‖β‖1 +M , and Ṽn(β) := 1
n(n−1)

∑
1≤p<q≤n(Uq −Up)2. Since

(Uj)j∈[n] are i.i.d and belong to [−B,B] (Claim 3.A.7, following from Assumption 3 and
Lemma 3.A.1 (i)), we have using Lemma 3.A.5: for any δ ∈ (0, 1), with probability at least
1− δ

4dn2 :

∣∣∣∣∣∣ 1n
n∑
j=1

Uj − E(x,y)[U1]

∣∣∣∣∣∣ ≤
√

2Ṽn(β) log(8dn2/δ)
n

+ 14B̃(β) log(8dn2/δ)
3(n− 1) . (3.11)

Now we apply a union bound over the sample size n ≥ 1 and features i ∈ [d] \ S, we
obtain: with probability at least 1 − δ

2 , bound (3.11) holds for all n and i. To conclude,
we choose β = β̃S and we use the risk bound (3.3) to have: with probability at least 1− δ:
∀i ∈ [d],∀n ≥ 1 :

∣∣∣Z̃Si,n(β̃S)− ZSi
∣∣∣ ≤

√
2Ṽn(β̃S) log(8dn2/δ)

n
+ 14B̃(β̃S) log(8dn2/δ)

3(n− 1) +M
√
ξ.

Recall:

Ṽ +
n (β) := max

(
Ṽn(β), 1

1000
LM2

ρ

)
.

Using the fact that Ṽn(β) ≤ Ṽ +
n (β), combining with the above inequality we get the

announced claim.
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3.B Detailed algorithm for Try-Select

Algorithm 13 is a detailed version of Algorithm 11 (the shortened version in the main
body of the paper).

On the upper bound of the mean of the non-recovered coefficients: The
bound communicated through the command:

Communicate:

√
L

ρ3

(
|Z̃î|+ conf(̂i)

)
Is a direct consequence of the bound in lemma 3.C.12 along with proposition 3.4.2.

3.C Proofs of main results

3.C.1 Proof of the selection property
The proof that the proposed Algorithm 11 satisfies the selection property hinges on

the following lemma:

Lemma 3.C.1. Let S ⊆ S∗ be fixed. Let (β̃S) be given. Assume there exists n ≥ 1,
î, j ∈ [d] \ S and positive numbers (εi)i∈[d]\S are such that:

î ∈ Argmaxi∈[d]\S{|Z̃Si,n|+ εi}; (3.12)
∀i ∈ [d] \ S : |Z̃Si,n − ZSi | ≤ εi; (3.13)

|Z̃Sj,n| − εj ≥ µ
(
|Z̃S
î,n
|+ εî

)
. (3.14)

Then it holds
∣∣ZSj ∣∣ ≥ µmaxi∈S∗

∣∣∣ZSi ∣∣∣.
Proof. First assume S ( S∗. Let i∗ ∈ Argmaxi∈[d]\S{|ZSi |}. We have:

(3.12) implies that:
|Z̃Si∗,n|+ εi∗ ≤ |Z̃Sî,n|+ εî

Moreover, using (3.13) twice along with (3.14):∣∣∣ZSj ∣∣∣ ≥ ∣∣∣Z̃Sj,n∣∣∣− εj ≥ µ(|Z̃Sî,n|+ εî

)
≥ µ

(
|Z̃Si∗,n|+ εi∗

)
≥ µ

∣∣∣ZSi∗∣∣∣
In the case S = S∗, we have that ZSi = 0 for all i, Therefore the claimed conclusion

holds.

Since Proposition 3.4.2 ensures that (3.13) is satisfied with probability 1− δ (for εi =
conf(i, ni, δ), and uniformly for all values of ni), provided 2M

√
ξ < conf(i, n, δ) for all i,

Algorithm 11, which checks the latter condition and selects j satisfying (3.14), satisfies the
selection property.
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Algorithm 13 Try-Select (S, δ, β̃, ξ), Data Stream setting
Input: S, δ, β̃, ξ
Output: S, Success
let n← 0 be the number of queried samples.
let v ← 0 be an array to store the quantities Ṽi,n.
let conf be an array to store the confidence bound values.
let Z be an array to store the quantities Z̃S

i,n.
let U ← ∅ denote the set of selected variables.
let L← [d+ 1] \ S denote the set of candidate variables.
//beginning of initialization
n← 1
(X, Y )← query-new([d+ 1])
Z̃i ← Xi

(
Y −X t

Sβ̃
)
, for all i ∈ [d] \ S.

//initialization for empirical variance quantities
si ← 0, mi ← Xi, for all i ∈ [d] \ S.
// end of initialization
while True do

(X, Y )← query-new([d+ 1])
n← n+ 1
∀ i: Zi ← Xi

(
Y −X t

Sβ̃
)

∀ i: Z̃i ← 1
n
Zi + n−1

n
Z̃i.

// updating the empirical variance
∀ i: tempi ← mi; mi ← mi + (Zi −mi)/ni
∀ i: si ← si + (Zi − tempi) ∗ (Zi −mi)
∀ i: vi ← si/(ni − 1)
∀ i: conf(i)←

√
8vi log(8dn2/δ)

ni
+ 28B log(8dn2/δ)

3(ni−1)

if 2M
√
ξ > mini{conf(i)} then

Success← False, break
end if
let î← argmax

i∈[d]\S
{|Z̃i|+ conf(i)}

//Communicating an upper bound on the mean of the non-
recovered coefficients
Communicate:

√
L
ρ3

(
|Z̃î|+ conf(̂i)

)
for all i ∈ L \ {d+ 1} do
if |Zi|+ conf(i) ≤ |Zî| − conf(̂i) then
L← L \ {i}

end if
if |Zi| − conf(i) ≥ µ

(
|Zî|+ conf(̂i)

)
then

U ← U ∪ {i}
end if

end for
if |Z̃î| > 2

1−µ conf(̂i) then
Success← True, break

end if
end while
return U, Success

59



3.C.2 Proof of Lemma 3.5.1
Lemma 3.5.1 shows that the procedure Select given in Algorithm 9, where Try-Select

is given by Algorithm 11 in the Data Stream setting and Optim given by Algorithm 10,
finishes in finite time if S ( S∗ and with high probability doesn’t select any feature if
S = S∗.

We start by stating the two following technical claim.

Claim 3.C.2. Let Assumptions 1 and 2 hold, and S ( S∗. Then maxi∈[d]\S{
∣∣∣ZSi ∣∣∣} > 0.

This claim is a direct consequence of Lemma 3.C.12 (see the proof of this lemma in
Section 3.C.4).

Consider a set of i.i.d samples (Xj ,Yj)j∈[n], recall the following notation:

Ui,j := Xj,i

(
Xt
j β̃

S − Yj
)
; (3.15)

Z̃Si,n := 1
n

n∑
j=1

Ui,j ; (3.16)

Ṽi,n := 1
n(n− 1)

∑
1≤p<q≤n

(Ui,p − Ui,q)2; (3.17)

Ṽ +
i,n := max

(
Ṽi,n,

1
1000

LM2

ρ

)
; (3.18)

B̃ := M2‖β̃S‖1 +M ; (3.19)

conf(i, n, δ) :=

√
8Ṽ +

i,n log(2dn2/δ)
n

+ 28B̃ log(2dn2/δ)
3(n− 1) . (3.20)

Proof of Lemma 3.5.1. For the situation S = S∗, the argument is a repetition of
the proof of Lemma 3.3.1 (only considered at the particular selection iteration k where
Sk = S∗).

We now deal with the situation S ( S∗. We assume S to be fixed, denote k = |S|.
As explained in the main body of the paper, the argument to follow, for fixed S, can be
transposed directly as a reasoning conditional to FNk , Nk being the number of data used
before starting the k-th selection step, with a random S assumed to be FNk -measurable.

Let i∗ := argmaxi∈[d]\S{
∣∣∣ZSi ∣∣∣} (a deterministic quantity). Proceeding by proof via con-

tradiction, suppose that with positive probability, during the execution of Select (S, δk, 1),
Try-Select either never finishes, or always returns Success = False. Assume for the rest
of the argument that this event is satisfied. We can rule out the fact Try-Select never
stops, since there is a stopping condition of the type conf(i, n, 2−pδk) < cst, which is even-
tually met since n → ∞ during Try-Select, so that the left-hand side goes to zero and
the right-hand-side constant is positive. Therefore, for all p ≥ 0 representing the number
of recursive calls, Try-Select returns Success = False, after having queried a (random)
number np of data points, satisfying (see Algorithms 9 and 11) that
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
2M

√
1
4p > conf

(
ip, np,

δk
2p
)

;

2
1− µS∗

conf
(
i∗, np − 1, δk2p

)
>
∣∣∣Z̃Si∗,np−1

∣∣∣. (3.21)

Using the definition of conf in (3.20), the first inequality of (3.21) implies (using the
fact that: B̃ > M):

2M
√

1
4p >

28M log
(
2p+1dn2

p/δk
)

3(np − 1) .

This implies that np ≥ c2p for some factor c = c(M,ρ, k, d, δk), and in particular that
lim
p→∞

np = +∞.

Now Claim 3.A.6 shows that Ṽ +
i∗,n defined by (3.18) is bounded almost surely by a

constant independent of p. Hence, from the definition (3.20):

lim
p→∞

conf
(
i∗, np − 1, δk

2p+1

)
= 0.

We use the second inequality of (3.21) to conclude that lim
p→∞

∣∣Z̃Si∗,np−1
∣∣ = 0. By the

contradiction hypothesis we assumed that this happens on an event of positive probability.
On the other hand, since the variables Z̃Si∗,n are averages of i.i.d. variables (ξj)1≤j≤n, and
np is a stopping time that is lower bounded by c2p, Lemma 3.C.3 implies that the variance
of Z̃Si∗,np goes to 0 as p grows, hence Z̃Si∗,np converges in probability to ZSi∗ . Finally,

we have Z̃Si∗,np = 1
np
ξp + np−1

np
Z̃Si∗,np−1, hence

∣∣∣Z̃Si∗,np − Z̃Si∗,np−1

∣∣∣ ≤ 2B
np

, so that Z̃Si∗,np−1

converges in probability to ZSi∗ as well. Therefore
∣∣∣ZSi∗∣∣∣ = 0, which contradicts the fact

that maxi
∣∣∣ZSi ∣∣∣ > 0 (see Claim 3.C.2).

We used the following result:

Lemma 3.C.3. Let (Mn)n≥1 be a martingale with respect to the filtration (Fn)n≥1 and
N be a stopping time. Let Un := Mn −Mn−1, for n ≥ 1 (putting M0 = E[Mn]). Assume
E
[
U2
n

]
≤ A2 for all n ≥ 1, and that N ≥ n0 a.s. Then:

Var
(
MN

N

)
≤ A2

 1
n0

+
∑
i>n0

i−2

.
Proof. Assume without loss of generality that E[Mn] = 0 = M0. We have, using the fact
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that the event {N ≥ j} = {N < j}c is Fj−1-measurable since N is a stopping time:

E
[
M2
N

]
= E

 1
N2

N∑
i,j=1

UiUj

 = E

 1
N2

∞∑
i,j=1

UiUj1{N ≥ max(i, j)}


= E

 1
N2

 ∞∑
i=1

U2
i 1{N ≥ i}+ 2

∑
i<j

UiUj1{N ≥ j}


≤
∞∑
i=1

max(n0, i)−2E
[
U2
i

]

+ 2
∑
i<j

E

 1
N2 1{N ≥ j}Ui E[Uj |Fj−1]︸ ︷︷ ︸

=0


≤ A2

∞∑
i=1

max(n0, i)−2.

Finally, the set of selected features U is not empty since the condition:∣∣∣Z̃î,np ∣∣∣ > 2
1− µ conf(̂i, np,

δk
2p ),

implies that the condition:∣∣∣Z̃î,np ∣∣∣− conf(̂i, np,
δk
2p ) ≥ µ

(∣∣∣Z̃î,np ∣∣∣+ conf(̂i, , δk2p )
)
,

is satisfied. Therefore, U contains at least î.

3.C.3 Proof of Theorem 3.5.2
Theorem 3.5.2 states that Select (S, δ, 1) is guaranteed to select a feature in S∗ with

high probability if the support is not totally recovered. This part is directly implied by
Lemma 3.3.1 and the fact that the proposed Optim and Try-Select subroutines satisfy the
optimization confidence property and the selection property, respectively, as established
previously.

More importantly, the theorem gives an upper bound on the cumulative computational
complexity of the sub-routines Try-Select and Optim.

In what follows, following the same approach as in the rest of the paper, we concentrate
on a specific selection iteration (call to Select) and consider S ( S∗ to be fixed. We start
by stating some technical lemmas useful for the proof of this theorem.
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Technical Result

The following concentration inequality is a simple modification of the inequality pre-
sented by Maurer and Pontil [2009] Theorem 10, which consists in assuming that variables
(Uj,i)j∈[n] defined below belong to [−B,B] instead of [0, 1].

Lemma 3.C.4. Consider a fixed i ∈ [d] \ S. Suppose Assumption 4 holds with X and
Y being centred random variables. Consider a set of i.i.d. data points (Xj ,Yj)j∈[n]. Let
β ∈ Rd such that ‖β‖2 ≤ 2√

ρ and supp(β) ⊆ S.

Define for a sample (Xj ,Yj): Uj,i =
∣∣∣Xj,i(Xt

jβ − Yj)
∣∣∣, where Xj,i is the ith feature of

Xj. Finally we define Ṽi,n as:

Ṽi,n = 1
n(n− 1)

∑
1≤l<j≤n

(Uj,i − Ul,i)2. (3.22)

We have in the samples (Xj ,Yj)j∈[n]:

P

√EṼi,n >
√
Ṽi,n +B

√
2 log(1/δ)
n− 1

 ≤ δ;
P

√Ṽi,n > √EṼi,n +B

√
2 log(1/δ)
n− 1

 ≤ δ,

where B = M + 2
√

k
ρM

2.

We refer to Maurer and Pontil [2009] Theorem 10, for a proof; recall that Claim 3.A.6
shows that |Uj,i| < B almost surely.

Claim 3.C.5. Let i ∈ [d] \ S. Under the same assumptions as in Lemma 3.C.4, we have:

EṼi,n ≤ 20LM
2

ρ
,

where the expectation is taken with respect to the sample (Xj ,Yj)j∈[n].

Proof. We have by a simple calculation:

Ṽi,n ≤
2
n

n∑
j=1

U2
j,i. (3.23)
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Hence:

E
[
Ṽi,n

]
≤ 2E(x,y)[U2

1,i]
≤ 2M2E(x,y)[(xtβ − y)2]

≤ 4M2E(x,y)

[(
xtβ

)2
+ y2

]
≤ 4M2

(
βtΣβ + 1

)
≤ 4M2

(
L‖β‖2 + 1

)
≤ 4M2

(4L
ρ

+ 1
)

≤ 20LM
2

ρ
,

where we used the assumption that ‖β‖2 ≤ 2√
ρ (Lemma 3.A.1).

Claim 3.C.6. Let x ≥ 1, c ∈ (0, 1) and y > 0 such that:

log(x/c)
x

> y. (3.24)

Then:

x <
2 log

(
1
cy

)
y

.

Proof. Inequality (3.24) implies
x <

log(x/c)
y

,

and further

log(x/c) < log(1/yc) + log log(x/c) ≤ log(1/yc) + 1
2 log(x/c),

since it can be easily checked that log(t) ≤ t/2 for all t > 0. Solving and plugging back
into the previous display leads to the claim.

Proof of Theorem 3.5.2

It has already been established based on Lemma 3.3.1 that under Assumptions 1,2, 3 and
4, the set of features U selected by Select(S, δ, 1) belongs to S∗ with high probability,
and based on Lemma 3.5.1 that U 6= ∅.We therefore now focus on the control of the
computational complexity.

Let S ( S∗ be a fixed subset and denote k := |S|. Recall that running Select(S, δ, 1)
results in executing Optim and Try-Select alternatively until a condition is verified, imply-
ing that at least one feature was selected (see Algorithm 9). We use the same notations as
in Section 3.5 to denote the computational complexities of Select, Try-Select and Optim.
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Lemma 3.5.1 shows that, unless interrupted, Select(S, δ, 1) terminates in finite time.
Therefore, the number of calls to Optim and Try-Select is finite. Let p denote this (random)
number.

Let us adopt the following additional notations: For q ∈ [p], letm(q) denote the number
of samples queried during the qth execution of Optim. Let, for i ∈ [d] \ S, n(q)

i denote the
sample size used to compute Z̃Si in the qth execution of Try-Select.

The following lemma provides upper bounds for COptim and CTry-Select.

Lemma 3.C.7. Suppose Assumptions 3 and 4 hold. Let S ( S∗, we have almost surely:

1. COptim .
∑p
q=1m

(q)k

2. CTry-Select .
∑p
q=1

∑
i∈[d]\S n

(q)
i ,

where . indicates inequality up to a numerical constant.

Proof. 1. Optim was instantiated using the averaged stochastic gradient descent (Al-
gorithm 10), hence the computational complexity of the qth call of Optim is upper
bounded by |S|m(q) (up to a numerical constant). Therefore:

COptim .
p∑
q=1

m(q)k.

2. Consider the procedure Try-Select given in Algorithm 11. In one iteration, calling
query-new(L) costs O(|L|). Once a sample (X,Y ) is obtained, computing the
residual Y −Xt

S β̃ costs |S| and updating Z̃, vi and conf(i) for all i ∈ L costs O(|L|).
Finally, selecting the feature i∗ with the maximum {|Z̃i|+ conf(i)}i∈L costs O(|L|).
The cost of the last two tests is O(|L|). Let Lq,t denote the active set of features for
the t-th iteration of Try-Select during its q-th call. We therefore have

CTry-Select .
p∑
q=1

∞∑
t=1
|Lq,t| =

p∑
q=1

∑
i∈[d]\S

∞∑
t=1

1{i ∈ Lq,t} =
p∑
q=1

∑
i∈[d]\S

n
(q)
i .

In order to provide a control on the computational complexity of CSelect, we need to
derive a control on the (random) quantities p, m(q) and n(q)

i for 1 ≤ q ≤ p and i ∈ [d] \ S.
In the remainder of this proof, κ will refer to a constant depending only on L, ρ and M .
The value of κ may change from line to line.

Recall the definition:

conf(i, n, δ) :=

√
8Ṽ +

i,n log(2dn2/δ)
n

+ 28B̃ log
(
2dn2/δ

)
3(n− 1) , (3.25)

where B̃ := M +M2‖β̃S‖1 and Ṽ +
i,n is given by (3.22). Since conf(.) is a data-dependent

function, the claim below provides a deterministic upper bound.
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Claim 3.C.8. Suppose Assumption 4 holds with X and Y being centered random variables.
Let Bk := M + 2M2

√
k
ρ and define:

conf(n, δ) := 8
√
LM2 log(2dn2/δ)

ρn
+ 27Bk log

(
2dn2/δ

)
n

. (3.26)

Then, for all δ ∈ (0, 1), with probability at least 1− δ we have: ∀i ∈ [d] \ S, ∀n ≥ 2:

conf(n, δ) ≥ conf(i, n, δ).

Proof. Let δ ∈ (0, 1). Lemma 3.C.4 and Claim 3.C.5 show that with probability at least
1− δ, ∀i ∈ [d] \ S, n ≥ 2:

√
Ṽi,n ≤

√
8LM

2

ρ
+Bk

√
2 log(2dn2/δ)

n− 1 .

Moreover, recall that: B̃ = M2∥∥β̃S∥∥1 + M . Since β̃S ∈ Bk
(
0, 2√

ρ

)
, we have:

∥∥β̃S∥∥1 ≤√
k
∥∥β̃S∥∥2 ≤ 2

√
k
ρ . Hence, we have almost surely: B̃ ≤ Bk. Using the bound on B̃ and on

Ṽi,n we obtain the conclusion.

Let us denote δk := 1/(2(k+1)(k+2)). At each iteration of OOMP (Algorithm 8), the
procedure Select is called with inputs (S, δk, 1). Then Select is run following Algorithm 9
recursively until a condition, implying that at least an additional feature was selected, is
verified. Thus, the inputs of the qth call to Select are (S, δk/2q, 1/4q).

Computational complexity bounds:

We define the following key quantities: for q ≥ 1, for i ∈ [d] \ S, let:

Wi := max


∣∣∣ZSi∗∣∣∣− ∣∣∣ZSi ∣∣∣

4 ; 1− µ
3− µ

∣∣∣ZSi ∣∣∣
, (3.27)

and
n̄

(q)
i := min

{
n > 0 : conf

(
n, 2−qδk

)
< Wi

}
, (3.28)

where i∗ ∈ argmaxi∈[d]

∣∣∣ZSi ∣∣∣.
The following argument proves the existence of n̄(q)

i : By assumption S ( S∗, Claim 3.C.2
shows that

∣∣∣ZSi∗∣∣∣ > 0, thus W1 > 0 as well. Definition 3.26 shows that conf(., δ) is strictly

decreasing and converges to 0 when n→∞, which guarantees that n̄(q)
i exists.

The technical result below gives an upper bound for n̄qi :

Lemma 3.C.9. Let i ∈ [d]\S and n̄(q)
i be defined by (3.28). Let Wi be the quantity defined

by (3.27), We have:

n̄
(q)
i ≤ κmax

{
1
W 2
i

,

√
k

Wi

}
log
(
Bkd2q
δkWi

)
,
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where κ depends only on L, M and ρ, and Bk := M + 2M2
√

k
ρ .

Proof. By definition of n̄(q)
i we have:

conf
(
n̄

(q)
i − 1, 2−qδk

)
≥Wi.

Using Definition 3.26 we have:

8

√√√√√LM2 log
(
2d(n̄(q)

i − 1)22q/δk
)

ρ
(
n̄

(q)
i − 1

) +
27Bk log

(
2d(n̄(q)

i − 1)22q/δk
)

n̄
(q)
i − 1

≥Wi.

Now, using the fact that a+ b > c =⇒ max{a, b} > c/2:

log
(
2d(n̄(q)

i − 1)2q/δk
)

n̄
(q)
i − 1

≥ ρ

256LM2W
2
i

or

log
(
2d(n̄(q)

i − 1)2q/δk
)

n̄
(q)
i − 1

≥ 1
54Bk

Wi.

(3.29)

Now we use Claim 3.C.6:

n̄
(q)
i − 1 ≤ 512LM2

ρW 2
i

log
(

128LM2d2q
ρδkW

2
i

)
or

n̄
(q)
i − 1 ≤ 108Bk

Wi
log
(27Bkd2q

δkWi

)
.

Finally, we upper bound n̄(q)
i by the maximum of these bounds.

For the rest of the proof, we upper bound the complexities of Try-Select and Optim
using n̄(q)

i . The lemma below relates the quantities n(q)
i and n̄(q)

i .

Lemma 3.C.10. Under the assumptions of Theorem 3.5.2:

P
(
∀q ≤ p,∀i ∈ [d] \ S : n(q)

i ≤ n̄
(q)
i + 1

)
≥ 1− 3δk.

Proof. Let us fix i ∈ [d] \ S and q ∈ [p]. We consider the iteration n = n
(q)
i − 1 during the

q-th call of Try-Select, and let L denote the active set of features for this iteration.
Let î ∈ argmaxj∈L

{∣∣∣Z̃j,n∣∣∣+ conf(j, n, δk2−q)
}
. We have by design of Algorithm 11

(since n < n
(q)
i ):

2
1− µconf

(
î, n, 2−qδk

)
>
∣∣∣Z̃S
î,n

∣∣∣,
hence: 3− µ

1− µconf
(
î, n, 2−qδk

)
>
∣∣∣Z̃S
î,n

∣∣∣+ conf
(
î, n, 2−qδk

)
.
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We therefore have (by definition of î):

3− µ
1− µconf

(
î, n, 2−qδk

)
>
∣∣∣Z̃Si,n∣∣∣+ conf

(
i, n, 2−qδk

)
. (3.30)

As in the proof of Lemma 3.3.1, let us denote Bk,q the event “the q-th call to Optim
during the k-th selection iteration, if it took place, returned β̃S such that (3.3) holds” and
recall that the optimization confidence property guarantees P

[
Bc
k,q

]
≤ δk2−q. Provided

this control holds, recall that Proposition 3.4.2 shows that

P
(
∀m ≥ 2, ∀j ∈ [d],

∣∣∣Z̃Sj,m − ZSj ∣∣∣ ≤ 1
2conf

(
j,m, 2−qδk

)
+M2−q

∣∣∣Bk,q) ≥ 1− δk2−q. (3.31)

Let us denote by Ak,q the event:

∀m ≥ 2, ∀j ∈ [d] \ S :
∣∣∣Z̃Sj,m − ZSj ∣∣∣ ≤ conf

(
j,m, 2−qδk

)
(3.32)

Recall that at iteration n, we must have:

∀i ∈ [d] \ S : conf(i, n, 2−qδk) ≥ 2M2−q,

thus (3.31) implies
P
(
Ak,q

∣∣∣Bk,q) ≥ 1− δk2−q, (3.33)

Using (3.30), we have:

P
(3− µ

1− µconf
(
î, n, 2−qδk

)
>
∣∣∣ZSi ∣∣∣∣∣∣Bk,q) ≥ 1− δk2−q. (3.34)

Using Claim 3.C.8, it holds:

P
(
∀m ≥ 2, ∀i ∈ [d] \ S : conf

(
m, δk2−q

)
> conf

(
i,m, δk2−q

))
≥ 1− δk2−q, (3.35)

therefore, (3.34) gives:

P
(
conf

(
n, 2−qδk

)
>

1− µ
3− µ

∣∣∣ZSi ∣∣∣∣∣∣Bk,q) ≥ 1− δk2−q. (3.36)

Let i∗ ∈ argmaxj∈[d]\S

∣∣∣ZSj ∣∣∣. Suppose that event Ak,q is true. Let us show that i∗ ∈ L. In
fact, if i∗ /∈ L, we have by design of the procedure Try-Select: ∃m < n and ∃j ∈ [d] \ S
such that: ∣∣∣Z̃Si∗,m∣∣∣+ conf(i∗,m, δk2−q) <

∣∣∣Z̃Sj,m∣∣∣− conf(j,m, δk2−q)

By definition of event Ak,q in (3.32). We conclude that:∣∣∣ZSi∗∣∣∣ < ∣∣∣ZSj ∣∣∣,
which contradicts the definition of i∗. We therefore have: if Ak,q is true then i∗ ∈ L.
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Moreover, by design of Try-Select:∣∣∣Z̃Si,n∣∣∣+ conf
(
i, n, δk2−q

)
≥
∣∣∣Z̃S
î,n

∣∣∣− conf
(
î, n, δk2−q

)
=
∣∣∣Z̃S
î,n

∣∣∣+ conf
(
î, n, δk2−q

)
− 2conf

(
î, n, δk2−q

)
≥
∣∣∣Z̃Si∗,n∣∣∣+ conf

(
i∗, n, δk2−q

)
− 2conf

(
î, n, δk2−q

)
Therefore:∣∣∣Z̃Si,n∣∣∣−conf(i, n, δk2−q)+2conf

(
i, n, δk2−q

)
≥
∣∣∣Z̃Si∗,n∣∣∣+conf

(
i∗, n, δk2−q

)
−2conf

(
î, n, δk2−q

)
.

Since event Ak,q is true, we upper bound the quantity :
∣∣∣Z̃Si,n∣∣∣−conf(i, n, δk2−q), and lower

bound the quantity:
∣∣∣Z̃Si∗,n∣∣∣+ conf(i∗, n, δk2−q). We obtain:∣∣∣ZSi ∣∣∣+ 2conf

(
i, n, δk2−q

)
≥
∣∣∣ZSi∗∣∣∣− 2conf

(
î, n, δk2−q

)
.

As a conclusion, we have:

P
(∣∣∣ZSi ∣∣∣+ 2conf

(
i, n, δk2−q

)
≥
∣∣∣ZSi∗ ∣∣∣− 2conf

(
î, n, δk2−q

)∣∣∣Bk,q) ≥ 1− δk2−q,

which leads to:

P
(
2conf

(
i, n, δk2−q

)
+ 2conf

(
î, n, δk2−q

)
≥
∣∣∣ZSi∗∣∣∣− ∣∣∣ZSi ∣∣∣∣∣∣Bk,q) ≥ 1− δk2−q.

Finally, we use (3.35) to upper bound conf(i, ., .) and conf
(
î, ., .

)
using conf(.):

P
(
4conf

(
n, δk2−q

)
≥
∣∣∣ZSi∗ ∣∣∣− ∣∣∣ZSi ∣∣∣∣∣∣Bk,q) ≥ 1− δk2−q. (3.37)

We obtain, using (3.37) and (3.36):

P
(
conf

(
n, δk2−q

)
≥Wi

∣∣∣Bk,q) ≥ 1− δk2−q; (3.38)

furthermore by definition of n̄(q)
i (see (3.28)):

conf
(
n̄

(q)
i , δk2−q

)
≤Wi. (3.39)

Using inequalities (3.38)-(3.39), we have:

P
(
conf

(
n

(q)
i − 1, δk2−q

)
≥ conf

(
n̄

(q)
i , δk2−q

)∣∣∣Bk,q) ≥ 1− 2δk2−q.

Denoting Dk,q the event appearing above, we use P
[
Dc
k,q

]
≤ P

[
Dc
k,q ∩Bk,q

]
+ P

[
Bc
k,q

]
≤

P
[
Dc
k,q|Bk,q

]
+ P

[
Bc
k,q

]
≤ 2δk2−q together with a union bound over q ≥ 1 to get

P
(
∀q ≤ p : conf

(
n

(q)
i − 1, δk2−q

)
≥ conf

(
n̄

(q)
i , δk2−q

))
≥ 1− 3δk.

The result follows from the fact that the function n → conf(n, δ) is decreasing for all
δ ∈ (0, 1).
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In order to get an upper bound for the computational complexity of Select, we now
develop a high probability bound on p (the total number of calls of Try-Select and Optim
during one call of Select(S, δk, 1)).

Lemma 3.C.11. Suppose p ≥ 2. Under the assumptions of Theorem 3.5.2, p satisfies the
following inequality:

P
(

2p ≤ κmax
{

1
Wi∗

;
√
Bk
Wi∗

})
≥ 1− 3δk,

where κ only depends on (ρ, L,M).

Proof. By definition of p, the procedure Try-Select returns Success = False in its call
number p− 1. Then (see Algorithm 11) ∃i ∈ [d] \ S such that:

2M
√

1
4p−2 > conf

(
i, n

(p−1)
i ,

δk
2p−2

)
.

Using Definition 3.25 for conf, we deduce:

2M
√

1
4p−2 >

√√√√√8Ṽ +
i,n

(p−1)
i

log
(
2p−1d(n(p−1)

i − 1)2/δk
)

n
(p−1)
i − 1

.

Recall that by definition of Ṽ +
i,ni

, it holds

Ṽ +
i,ni
≥ 1

103
LM2

ρ
,

therefore

2M 1
2p−2 >

1
11

√√√√ LM2

ρ
(
n

(p−1)
i − 1

) log
(

2p−1d
(
n

(p−1)
i − 1

)2
/δk

)
,

and finally

2p ≤ c

√√√√√ ρ(n(p−1)
i − 1)

L log
(
2pd(n(p−1)

i − 1)/δk
) ,

for c an absolute numerical constant.
Using Lemma 3.C.10 along with the fact that the function n → n/ log(an) is non-

decreasing for a > 1, we have:

P

2p ≤ c

√√√√√ ρn̄
(p−1)
i

L log
(
2pdn̄(p−1)

i /δk
)
 ≥ 1− 3δk.

Recall from (3.29) that there is a numerical constant c′ such that:

log
(
d(n̄(p−1)

i − 1)2q/δk
)

n̄
(p−1)
i − 1

≥ c′max
{

ρ

LM2W
2
i ; 1
Bk

Wi

}
.
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Finally, it is elementary to check that ∀x ∈ [0,
∣∣∣ZSi∗∣∣∣]:

max
{1

4
(∣∣∣ZSi∗ ∣∣∣− x), 1− µ

3− µx
}
≥ 3− µ

7− 5µ
∣∣∣ZSi∗∣∣∣

≥ 2
7Wi∗ .

Hence, taking x =
∣∣∣ZSi ∣∣∣ above, we getWi ≥ 2

7Wi∗ . As a conclusion, there exists a constant
κ depending only on ρ, L and M such that:

P
(

2p ≤ κmax
{

1
Wi∗

;
√
Bk
Wi∗

})
≥ 1− 3δk.

Recall that we have: CTry-Select .
∑p
q=1

∑
i∈[d]\S n

(q)
i (Lemma 3.C.7). Therefore, using

Lemmas 3.C.9, 3.C.10 and 3.C.11 above, we have with probability at least 1− 3δk:

CTry-Select .
p∑
q=1

∑
i∈[d]\S

n
(q)
i

.
p∑
q=1

∑
i∈[d]\S

n̄
(q)
i

≤
p∑
q=1

∑
i∈[d]\S

κmax
{

1
W 2
i

,

√
k

Wi

}
log
(
Bkd2q
δkWi

)

≤ pκ
∑

i∈[d]\S
max

{
1
W 2
i

,

√
k

Wi

}
log
(
Bkd2p
δkWi

)
.

In particular, Lemma 3.C.11 shows that:

P
(

2p . max
{

1
Wi∗

;
√
Bk
Wi∗

})
≥ 1− 3δk.

Hence, with probability at least 1− 3δk:

log(2p) ≤ κ log
(

k

Wi∗

)
.

We conclude after some elementary bounding that, with probability at least 1− 6δk:

CTry-Select ≤ κ
∑

i∈[d]\S
max

{
1
W 2
i

;
√
k

Wi

}
log
(

d

δkWi∗

)
log
(

k

Wi∗

)
,

where κ is a constant depending only on L, ρ and M .
Moreover, since the inputs of Optim at its qth call when executing Select(S, δk, 1) are:

(S, δk/2q, 1/4q). Hence, (by design of Algorithm 10) we have:

m(q) ≤ κk24q log
(2q
δk

)
, (3.40)
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where κ depends on L, M , and ρ. We therefore have:

COptim .
p∑
q=1

km(q)

≤
p∑
q=1

κk322q log
(2q
δk

)

≤ κk322(p+1) log
(2p
δk

)
.

We conclude applying Lemma 3.C.11: with probability at least 1− 3δk,

COptim ≤ κk3 max
{

1
W 2
i∗
,

√
k

Wi∗

}
log
(

k

δkWi∗

)
,

where κ is a factor depending only on L, M and ρ.

3.C.4 Lower bound on the scores ZS
i :

Let us denote (βS∗(i) )i the reordered coefficients of βS∗ : |βS∗(1)| ≥ ... ≥ |β
S∗

(s∗)|. Lemma 3.C.12

provides a lower bound for maxi∈[d]\S

∣∣∣ZSi ∣∣∣.
Lemma 3.C.12. Suppose Assumptions 1, 2, 3 and 4 hold. Assume that S ( S∗ and
denote k := |S|, we have:

max
i∈[d]\S

∣∣∣ZSi ∣∣∣ ≥
√
ρ3

L

1√
s∗ − k

∥∥∥βS∗ − βS∥∥∥
2
≥

√
ρ3

L

1√
s∗ − k

∥∥∥βS∗S∗\S∥∥∥2
.

In this section we prove Lemma 3.C.12, we begin by presenting the following technical
lemmas adapted from Zhang [2009] to fit the random design.

Claim 3.C.13. Suppose Assumptions 1 and 3 hold. Then for all i ∈ [d]: ρ ≤ E[x2
i ] ≤ L.

Claim 3.C.13 is a direct consequence of Assumption 3 stating that the eigenvalues of
ΣS are lower bounded by ρ and upper bounded by L, and the observation that E

[
x2
i

]
are

the diagonal terms of ΣS .

Lemma 3.C.14. Let x, y and z be real valued bounded and centered random variables,
such that E

[
x2] = 1. We have:

inf
α∈R

E
[
(y + αx− z)2

]
= E

[
(y − z)2

]
− 1

E[x2]E[x(y − z)]2.

Proof. The proof follows from simple algebra, the minimum is attained for α = −E[x(y−z)]
E[x2] .

Lemma 3.C.15. Let Assumptions 1, 2, 3 and 4 hold, consider a fixed subset S ( S∗ and
denote k := |S|. We have the following:

inf
α∈R,i∈S∗\S

E
[(
xtβS + αβS

∗
i xi − y

)2
]
≤ E

[(
xtβS − y

)2
]
− 1
s∗ − k

ρ

L
E
[(
xt(βS∗ − βS)

)2]
.
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Proof. Let η ∈ R, we have:

min
i∈S∗\S

E
[(
xtβS + ηβS

∗
i xi − y

)2
]
≤ 1
s∗ − k

∑
i∈S∗\S

E
[(
xtβS + ηβS

∗
i xi − y

)2
]

≤ E
[(
xtβS − y

)2
]

+ 1
s∗ − k

∑
i∈S∗\S

η2
(
βS
∗

i

)2
E
[
x2
i

]
+ 1
s∗ − k

∑
i∈S∗\S

2ηβS∗i E
[
xi
(
xtβS − y

)]
.

Recall that optimality of βS implies that for all i ∈ S: E
[
xi
(
xtβS − y

)]
= 0. Hence:

∑
i∈S∗\S

βS
∗

i E
[
xi
(
xtβS − y

)]
=

∑
i∈S∗\S

(
βS
∗

i − βSi
)
E
[
xi
(
xtβS − y

)]
=
∑
i∈S∗

(
βS
∗

i − βSi
)
E
[
xi
(
xtβS − y

)]
=
∑
i∈S∗

(
βS
∗

i − βSi
)
E
[
xi
(
xtβS − xtβS∗

)]
= E

[(
βS
∗ − βS

)t
x
(
xtβS − xtβS∗

)]
= E

[(
xt
(
βS
∗ − βS

))2
]
.

Therefore:

(s∗ − k) min
i∈S∗\S

E
[(
xtβS + ηβS

∗
i xi − y

)2
]

≤ (s∗ − k)E
[(
xtβS − y

)2
]

+ η2 ∑
i∈S∗\S

E
[
x2
i

](
βS
∗

i − βSi
)2

+ 2ηE
[(
xt
(
βS
∗ − βS

))2
]
.

Optimizing over η we obtain:

min
η∈R,i∈S∗\S

E
[(
xtβS + η

(
βS
∗

i − βSi
)
xi − y

)2
]
≤

E
[(
xtβS − y

)2
]
− 1
s∗ − k

E
[(
xt
(
βS
∗ − βS

))2
]2

∑
i∈S∗ E

[
x2
i

](
βS
∗

i − βSi
)2 .

Observe that: E
[(
xt
(
βS
∗ − βS

))2
]

=
∥∥∥Σ1/2

S∗

(
βS
∗ − βS

)∥∥∥2

2
≥ ρ

∥∥∥βS∗ − βS∥∥∥2

2
. Moreover,

E
[
x2
i

]
≤ L. We plug in this inequality into the above and obtain the announced conclusion.
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Now we prove Lemma 3.C.12. Using Lemma 3.C.14 we have:

inf
α∈R,i∈S∗\S

E
[(
xtβS + αβS

∗
i xi − y

)2
]

=

E
[
(y − xtβS)2

]
− max
i∈S∗\S

1(
βS
∗

i

)2E[x2
i

]E[βS∗i xi
(
xtβS − y

)]2
,

which is equivalent to:

max
i∈S∗\S

1√
E
[
x2
i

]E[xi(xtβS − y)] =

(
E
[
(y − xtβS)2

]
− inf
α∈R,i∈S∗\S

E
[(
xtβS + α

(
βS
∗

i − βSi
)
xi − y

)2
])1/2

Using Lemma 3.C.15, we have:

max
i∈S∗\S

1√
E
[
x2
i

]E[xi(xtβS − y)] ≥ ( 1
s∗ − k

ρ

L
E
[(
xt(βS∗ − βS)

)2])1/2
. (3.41)

Now we use Claim 3.C.13 and inequality (3.41):

max
i∈S∗\S

E
[
xi
(
xtβS − y

)]
≥ max

i∈S∗\S

√
ρ

E
[
x2
i

]E[xi(xtβS − y)]
≥ √ρ max

i∈S∗\S

1√
E
[
x2
i

]E[xi(xtβS − y)]

≥ √ρ
( 1
s∗ − k

ρ

L
E
[(
xt(βS − βS∗)

)2])1/2

≥ ρ√
L

1√
s∗ − k

∥∥∥Σ1/2
S∗

(
βS
∗ − βS

)∥∥∥
2

≥

√
ρ3

L

1√
s∗ − k

∥∥∥βS∗ − βS∥∥∥
2
.

The conclusion follows from the definition ZSi = E
[
xi
(
xtβS − y

)]
.

3.D Computational complexity comparisons

3.D.1 Proof of Corollary 3.5.3:
Suppose Assumptions 1, 2, 3 and 4 hold. Consider the procedure Select given by

Algorithm 9, Try-Select given by Algorithm 11, and Optim as in Algorithm 10. Assume
that S ( S∗ and denote k := |S|. Using the result of theorem 3.5.2 we have with probability
at least 1− δ:
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CSOptim ≤ κk3 max
{

1
Z2
i∗

;
√
k

Zi∗

}
log
(

k̄

δ|Zi∗ |

)
;

CSTry-Select ≤ κdmax
{

1
Z2
i∗

;
√
k̄

Zi∗

}
log
(

d

δ|Zi∗ |

)
log
(

k̄

|Zi∗ |

)
;

where |Zi∗ | = maxi∈[d]{|Zi|}, and κ is a constant depending on ρ, L,M and µ (for which
the value may vary from line to line).

We plug-in the inequality of lemma 3.C.12 and obtain:

CSOptim ≤ κk3 max

 s∗ − k∥∥∥βS∗S∗\S∥∥∥2

2

;
√
k(s∗ − k)∥∥∥βS∗S∗\S∥∥∥2

 log

 k̄

δ
∥∥∥βS∗S∗\S∥∥∥2

;

CSTry-Select ≤ κdmax

 s∗ − k∥∥∥βS∗S∗\S∥∥∥2

2

;

√
¯k(s∗ − k)∥∥∥βS∗S∗\S∥∥∥2

 log

 d

δ
∥∥∥βS∗S∗\S∥∥∥2

 log

 k̄∥∥∥βS∗S∗\S∥∥∥2

;

Hence, using the fact that |S∗ \ S| = s∗ − k and the definition of β̃(k+1):

CSOptim ≤ κk3 max

 1
β̃2

(k+1)
;
√
k

β̃(k+1)

 log( k̄

δβ̃2
(k+1)

);

CSTry-Select ≤ κdmax

 1
β̃2

(k+1)
;
√
k

β̃(k+1)

 log2( k̄

δβ̃2
(k+1)

);

The following claim concludes the proof:

Claim 3.D.1. Under the assumptions of theorem 3.5.2:

β̃(k+1) ≤
1√
ρs∗

Proof. We have by definition of β̃(k+1):

β̃2
(k+1) = 1

s∗ − k

s∗∑
i=k+1

β2
(i)

≤ s∗ − k
s∗

1
s∗ − k

s∗∑
i=k+1

β2
(i) + k

s∗
1
k

k∑
i=1

β2
(i)

≤ 1
s∗

s∗∑
i=1

β2
(i) = 1

ρs∗
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3.D.2 Computational complexity of the Orthogonal Matching Pur-
suit

We consider OMP (Algorithm 6) as a benchmark and show that OOMP is more efficient
in time complexity. OMP was initially derived under the fixed design setting presented
below:

Let X = [x1, . . . , xd] ∈ Rn×d an n × d data matrix and Y = [y1, . . . , yn] a response
vector generated according to the sparse model:

Y = XβS
∗ + ε.

Where ε = [ε1, . . . , εn] is a zero mean random noise vector and support(βS∗) = S∗.
Define the following quantities:

µ̂S∗ = max
i/∈S∗

∥∥∥∥(Xt
S∗XS∗

)−1
Xt
S∗xi

∥∥∥∥
1
,

and let ρ̂S∗ be the least eigenvalue of the empirical covariance matrix Σ̂S∗ = 1
nX

t
S∗XS∗ .

OMP theoretical guarantees

Assumption 5. Assume that:

• µ̂S∗ < 1 and ρ̂S∗ > 0.

• εi, for i ∈ [1, n] are i.i.d random variables bounded by σ.

Theorem 3.D.2 (Zhang [2009]). Consider the OMP procedure (Algorithm 6), suppose
Assumption 5 holds. Then for all δ ∈ (0, 1), if the sample size n satisfies:

n ≥ 18σ2 log(4d/δ)
(1− µ̂S∗)2ρ̂2

S∗ mini∈S∗ |βS∗i |2
, (3.42)

then the output of the procedure Algorithm 6 recovers S = S∗, with probability at least
1− δ.

OMP computational complexity: We derive the computational complexity of
OMP. Consider one iteration of Algorithm 6 and denote k := |S|. We assimilate the
command:

i← argmaxj /∈S |Xt
.j(Y −Xβ̄)| (3.43)

to Try-Select and denote CompTry-Select,k its computational complexity. Moreover, we assimilate
the command:

β̄ ← argmin
supp(β)⊆S

‖Xβ − Y ‖2 (3.44)

to Optim and denote CompOptim,k its computational complexity.We assume the OMP is run
with nOMP prescribed by Theorem 3.D.2 for exact support recovery. We introduce the
following additional notation: a ' b if there exists numerical constants c1 and c2 such
that: a ≤ c1b and b ≤ c2a.
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Lemma 3.D.3. Consider Algorithm 6 with inputs (X,Y , δ), and suppose assumption 5
holds. Then if n satisfies (3.42) we have:

CompOptim,k '
σ2k log(d/δ)

(1− µ̂S∗)2ρ̂2
S∗ mini∈S∗ |βS∗ |2

;

CompTry-Select,k '
σ2d log(d/δ)

(1− µ̂S∗)2ρ̂2
S∗ mini∈S∗ |βS∗ |2

.

Proof. Performing command (3.43) requires computing Xt
(
Y −Xβ̄

)
and selecting the

maximum of a list of (at most) d elements, thus CompTry-Select,k ' dnOMP. Command (3.44)
can be performed using a rank one update. Thus: CompOptim,k ' knOMP. To conclude we
use Theorem 3.D.2, which prescribes:

nOMP = 18σ2 log(4d/δ)
(1− µ̂S∗)2ρ̂2

S∗ mini∈S∗ |βS∗i |2
.

Hence, the computational complexity for full support recovery using OMP satisfies:

COMP = O
(

s∗d log(d/δ)
mini∈S∗{(β∗i )2}

)
(3.45)

3.D.3 SSR computational complexity
SSR (Streaming Sparse Regression) is an online procedure guaranteed to perform well

under similar conditions to the Lasso [Steinhardt et al., 2014]. Theoretical guarantees show
that if the number of iterations is large enough the support recovery is achieved with high
probability.

Theorem 8.2 in Steinhardt et al. [2014] states that, the output vector β̂T satisfies with
probability at least 1− 5δ, supp(β̂T ) ⊆ S∗ and:

∥∥∥β̂T − β∗∥∥∥2
= O

(
(s∗)2 log(d log(T )/δ)

T

)
, (3.46)

where we used the bound B ≤ 6
√
s∗M

2
√
ρ . Hence, a sufficient condition to achieve the

full support recovery supp(β̂T ) = S∗ is :
∥∥∥β̂T − β∗∥∥∥2

≤ mini∈S∗{(β∗i )2}. Using (3.46) leads
to the following bound on the number of iterations to recover all the support of β∗:

T = O
(

(s∗)2 log(d/δ)
mini∈S∗{(β∗i )2}

)

One iteration of Algorithm 2 in Steinhardt et al. [2014] has a computational complexity
of O(d). Hence, the total computational complexity for full support recovery CSSR satisfies:

CSSR = O
(

(s∗)2d log(d/δ)
mini∈S∗{(β∗i )2}

)
(3.47)
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3.D.4 Proof of Corollary 3.5.4
Assuming that d > (s∗)3, we have for every S ⊂ S∗: CSOptim ≤ CSTry-Select. Hence, using

corollary 3.5.3, we have:

COOMP ≤ κd
s∗∑
i=1

1
β̃2

(s∗−i)
log
(

d

δβ2
(s∗)

)
log
(

s∗

β2
(s∗)

)
(3.48)

We plug-in the bounds in (3.45) and (3.47):

COOMP ≤ κ
s∗∑
i=1

β2
(s∗)

β̃2
(s∗−i)

log
(

d

δβ2
(s∗)

)
log
(

s∗

β2
(s∗)

)
COMP

s∗ log(d/δ) . (3.49)

COOMP ≤ κ
s∗∑
i=1

β2
(s∗)

β̃2
(s∗−i)

log
(

d

δβ2
(s∗)

)
log
(

s∗

β2
(s∗)

)
CSSR

(s∗)2 log(d/δ) . (3.50)

(3.51)

Recall that:
log
(

d
δβ2

(s∗)

)
log
(

s∗

β2
(s∗)

)
log(d/δ) ≤ log2

(
s∗

β2
(s∗)

)
.

We conclude that:

COOMP

COMP ≤ κ log2
(

s∗

β2
(s∗)

)
1
s∗

s∗∑
i=1

β2
(s∗)

β̃2
(i)

COMP;

COOMP

CSSR ≤ κ log2
(

s∗

β2
(s∗)

)
1

(s∗)2

s∗∑
i=1

β2
(s∗)

β̃2
(i)

CSSR;

where κ is a constant depending only on L,M, ρ and µ.

3.D.5 A specific scenario: Polynomially decaying coefficients
We consider the case where the coefficients of β∗ are given by

β∗q = 1√
s∗

(
1− q − 1

s∗

)γ
, for q ∈ [s∗], (3.52)

with γ > 0. We omit the superscript ∗ to ease notations, in the remainder of this section,
all the inequalities and equalities are up to factors depending only only on ρ, L,M and µ.

The following lemma provides a bound on the computational complexity of OOMP,
OMP and SSR.

Lemma 3.D.4. Under the assumptions of Theorem 3.5.2, suppose that d > (s∗)3 and the
coefficients of β∗ are given by (3.52). Then with probability at least 1− δ: If γ 6= 1

2 :

COOMP ≤ κd
{2γ(2γ + 1)
|2γ − 1| s

2γ+1 + 2γ + 1
|2γ − 1|s

2
}

log(d/δ) log(s)

COMP ' ds2γ+2 log(d/δ)
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If γ = 1
2 :

COOMP ≤ κds2 log2(s) log(d/δ)
COMP ' ds3 log(d/δ)

Proof. Recall that β̃2
(s−k+1) = 1

k

∑s
i=s−k+1 β

2
i .

If γ 6= 1
2 :

s−1∑
k=0

1
β̃2

(s−k)
=

s−1∑
k=0

s− k∑s
q=k+1 β

2
q

≤
s−1∑
k=0

s− k
1
s

∑s
q=k+1

(
1− q−1

s

)2γ

≤
s−1∑
k=0

s2γ+1(s− k)∑s−k
q=1 q

2γ

≤
s−1∑
k=0

s2γ+1(s− k)
1

2γ+1(s− k)2γ+1

≤ (2γ + 1)
s−1∑
k=0

s2γ+1

(s− k)2γ

≤ (2γ + 1)s
s−1∑
k=0

(
1− k

s

)−2γ

≤ (2γ + 1)s2
(

1
s

s−2∑
k=0

(
1− k

s

)−2γ
+ s2γ−1

)

≤ (2γ + 1)s2
( 1

2γ − 1

( 1
s1−2γ − 1

)
+ s2γ−1

)
.

If γ = 1
2 :
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s−1∑
k=0

1
β̃2

(s−k)
=

s−1∑
k=0

s− k∑s
q=k+1 β

2
q

≤
s−1∑
k=0

s− k
1
s

∑s
q=k+1

(
1− q−1

s

)
≤

s−1∑
k=0

s2(s− k)∑s−k
q=1 q

≤
s−1∑
k=0

s2(s− k)
1
2(s− k)2

≤ 2
s−1∑
k=0

s2

(s− k)

≤ s2 log(s),

which gives the result.

Using the lemma above, we conclude that, if d > (s∗)3:

COOMP

COMP ≤ κ
log2(s)
smin{2γ,1}
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Chapter 4

Fast Rates for Prediction with Limited Advice

We investigate the problem of minimizing the excess generalization error with respect to
the best expert prediction in a finite family in the stochastic setting, under limited access to
information. We assume that the learner only has access to a limited number of expert advices
per training round, as well as for prediction. Assuming that the loss function is Lipschitz and
strongly convex, we show that if we are allowed to see the advice of only one expert per round
for T rounds in the training phase, or to use the advice of only one expert for prediction
in the test phase, the worst-case excess risk is Ω(1/

√
T ) with probability lower bounded by

a constant. However, if we are allowed to see at least two actively chosen expert advices
per training round and use at least two experts for prediction, the fast rate O(1/T ) can be
achieved. We design novel algorithms achieving this rate in this setting, and in the setting
where the learner has a budget constraint on the total number of observed expert advices, and
give precise instance-dependent bounds on the number of training rounds and queries needed
to achieve a given generalization error precision.

Based on Saad and Blanchard [2021]: E. M. Saad and G. Blanchard. Fast rates for
prediction with limited expert advice. Advances in Neural Information Processing Systems,
34, 2021.

4.1 Introduction and setting

We consider a generic prediction problem in a stochastic setting: a target random
variable Y taking values in Y is to be predicted by a user-determined forecast F , also
modeled as a random variable, taking values in a closed convex subset X of Rd. The
mismatch between the two is measured via a loss function l(F, Y ). The quality of the
agent’s output is measured by its generalization risk

R(F ) := E
[
l(F, Y )

]
.

To assist us in this task, the forecast or “advice” of a number of “experts” (F1, . . . , FK) (also
modeled as random variables) can be requested. The agent’s objective is to achieve a risk
as close as possible to the risk of the best expert R∗ = mini∈JKKR(Fi) (for a nonnegative

81



integer n, we denote JnK = {1, . . . , n} ). We measure the performance of the user’s forecast
via its excess risk (or average regret) with respect to that best expert.

The literature on expert advice generally considers the cumulative regret over a se-
quence of forecasts Ft followed by observation of the target variable Yt and incurring the
loss l(Ft, Yt), t = 1, . . . , T . In the present work we will separate observation (or training)
phase and forecast phase: the user is allowed to observe (some of) the expert’s predic-
tions and the target variable for a number of independent, identically distributed rounds
(Yt, F1,t, . . . , FK,t)1≤t≤T following certain rules to be specified. After the observation phase,
the user must decide of a prediction strategy, namely a convex combination of the experts
F̂ = ∑K

i=1 ŵiFi, where the weights ŵi can be chosen based on the information gathered in
the training phase. The risk of this strategy is R(F̂ ), where the risk is evaluated on new,
independent data. In other words, if the training phase takes place over T independent
rounds, the forecast risk is the expected loss over the (T + 1)th, independent, round.

In some situations, it may be overly expensive to query the advice of all experts at each
round. The cost can be monetary if each expert demands to be paid to reveal his opinion,
possibly because they have access to some information that others do not. In this case we
may have a total limit on how much we can spend. In a different context, it is unrealistic
to ask for the advice of all available doctors or to run a large battery of tests on each
patient. In this case, we may be have a strong limit on the number of expert opinions that
can be consulted for each training instance. In a more typical machine learning scenario,
each “expert” might be a fixed prediction method Fi = fi(X) (using the information of a
covariate X), where the predictor functions fi have been already trained in advance, albeit
based on different sets of parameters or methodology; the goal then amounts to predictor
selection or aggregation, in a situation where the computation of each single prediction
constitutes the bottleneck cost, rather than data acquisition. Overall the agent’s goal is to
achieve a risk close to optimal while sparing on the number of experts queries – both at
training time and for forecast.

Motivated by these questions we investigate several scenarios for prediction with limited
access to expert advice. Furthermore, our emphasis is on obtaining fast convergence rates
guarantees on the excess risk (i.e. O(1/T ) or O(1/C), where C is the total query budget).
These are possible under a strong convexity assumption of the loss, specified below. Our
contributions are the following.

• As a preliminary, we revisit (Section 4.3) the full information setting, with no limi-
tations on queries. Maybe surprisingly, we contribute a new algorithm that is both
simpler than existing ones and for which the proof of the fast convergence rate for
excess risk is also elementary. Furthermore, for forecast we only need to consult
2 experts. The general principle of this algorithm will be reused in the limited
observation settings.

• We then investigate (Section 4.4) the budgeted setting where we have a total query
budget constraint C for the training phase; then (Section 4.5) the two-query set-
ting where the agent is limited to m = 2 queries per training round. In both
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cases, we give precise efficiency guarantees on the number of training expert queries
needed to achieve a given precision for forecast. The obtained bounds come both in
instance-independent (agnostic) and instance-dependent (depending on the experts’
structure) flavors.

• Finally, we give some lower bounds (Section 4.6) were we show that fast rates cannot
be achieved if the agent is only allowed to consult one single expert per training round
or for forecast.

The following assumption on the loss will be made throughout the paper:

Assumption 6. ∀y ∈ Y: x ∈ X ⊆ Rd 7→ l(x, y) is L-Lipschitz and ρ-strongly convex.

Recall that a function f : X → R is L-Lipschitz if ∀x, y ∈ X :|f(x)− f(y)| ≤ L‖x− y‖,
and ρ-strongly convex if the function: x→ f(x)− ρ2

2 ‖x‖
2 is convex.

Remarks. Assumption 7 implies that the diameter of X is bounded by 8L/ρ2 and
the quantity supx,x′∈X ,y∈Y |l(x, y)− l(x′, y)| is bounded by B := 8L2/ρ2 (this notation
shorthand will be used throughout the paper). Consequently, without loss of generality we
can assume that the loss is bounded by B (see Lemma 4.B.1 and subsequent discussion
for details). It is satisfied, for example, in the following setting: least square loss l(x, y) =
(y−x)2 where x ∈ X and y ∈ Y with X and Y are bounded subsets of Rd. Prior knowledge
on ρ is not necessary if L and an upper bound on the the l∞ norm of the target variable
Y and the experts are known.

4.2 Discussion of related Work

Games with limited feedback (slow rates): Our work investigates what happens between
the full information and single-point feedback games. Learning with a restricted access to
information was considered under various settings in Ben-David and Dichterman [1998],
Madani et al. [2004], Guha and Munagala [2007], Mannor and Shamir [2011], Audibert and
Bubeck [2010b]. A setting close to ours was considered in Seldin et al. [2014], where the
agent chooses in each round a subset of experts to observe their advice, then follows the
prediction of one expert. To minimize the cumulative regret in the adversarial setting, they
used an extension of the Exp3 algorithm, which allows to have an excess risk of O(

√
1/T )

in the limited feedback setting and O(
√

log(C)/C) in the budgeted case with a budget C.
The differences in the setting considered here is that (a) we are interested in the gener-

alization error in the stochastic setting rather than the cumulative regret in an adversarial
setting and (b) our assumptions of the convexity of the loss allow for the possibility of fast
excess risk convergence. Moreover, we consider the more general case where the player is
allowed to combine p out of K experts for prediction. The possibility of playing a subset of
arms was considered in the literature of Multiple Play Multi-armed bandits. It was treated
with a budget constraint by Zhou and Tomlin [2018] for example (see also Xia et al., 2016),
where at each round, exactly p out of K possible arms have to be played. In addition to
observing the individual rewards for each arm played, the player also learns a vector of

83



costs which has to be covered with an a-priori defined budget C. In the stochastic set-
ting, a UCB-type procedure gives a bound for the cumulative regret of O(∆−1

min log(C)/C)
that holds only in expectation, where ∆−1

min denotes the gap between the best choice of
arms and the second best choice. This bound leads to an instance dependent bound of
O(
√

log(C)/C) in the worst case. In the adversarial setting, an extension of Exp3 pro-
cedure gives a bound of O(

√
log(C)/C) for the cumulative regret that holds with high

probability. In another online problem, where the objective is to minimize the cumulative
regret in an adversarial setting with a small effective range of losses, Gerchinovitz and
Lattimore [2016] have shown the impossibility of regret scaling with the effective range of
losses in the bandit setting, while Thune and Seldin [2018] showed that it is possible to
circumvent this impossibility result if the player is allowed one additional observation per
round. However, in the settings considered, it is impossible to achieve a regret dependence
on T better than the rate of O(1/

√
T ).

Fast rates in the full information setting: The learning task of doing as well as the
best expert of a finite family in the sense of generalization error has been studied quite
extensively in the full information case. In an adversarial setting, it is well-known that
under suitable assumptions on the loss function (typically related to strong convexity), an
appropriately tuned exponential weighted average (EWA) strategy has cumulative regret
bounded by the “fast rate” O(log(K)/T ) [Haussler et al., 1998, Cesa-Bianchi and Lugosi,
2006, Audibert, 2009], which, combined with the online-to-batch conversion principle [Cesa-
Bianchi et al., 2004, Audibert, 2009] (also known as progressive mixture rule, Catoni, 1997,
Yang and Barron, 1999), yields a bound of the same order for the expected excess prediction
risk in the stochastic case. However, it was shown that progressive mixture type rules are
deviation suboptimal for prediction [Audibert, 2008a], that is, their excess risk takes a
value larger than c/

√
T with constant positive probability over the training phase. To

lift the apparent contradiction between the two last statements, consider that the excess
risk of the EWA can take negative values, since it is an improper learning rule. Thus
negative and positive “large” deviations can compensate each other so that the expectation
is small. The inefficiency of EWA in deviation is a significant drawback, and alternatives
to the EWA progressive mixture rule that achieve O(log(K)/T ) excess prediction risk with
high probability were proposed by Lecué and Mendelson [2009] and Audibert [2008b]. In
Lecué and Mendelson [2009], the strategy consists in whittling down the set of experts by
elimination of obviously suboptimal experts, and performing empirical risk minimization
(ERM) over the convex combinations of the remaining experts. In Audibert [2008b], the
empirical star algorithm consists in performing an ERM over all segments consisting of
a two-point convex combination of the ERM expert and any other expert. Note that
the empirical star algorithm has the advantage that the final prediction rule is a convex
combination of (at most) two experts.

Linear regression with partially observed attributes: Other related work is that of Cesa-
Bianchi et al. [2011], and Hazan and Koren [2011] on learning linear regression models with
partially observed attributes. The most related setting to ours is the local budget setting,
where the learner is allowed to output a linear combination of features for prediction. The
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key idea is to use the observed attributes in order to build an unbiased estimate of the
full information sample, then to use an optimization procedure to minimize the penalized
empirical loss. In our setting, the minimization of penalized empirical loss was shown to be
suboptimal (see Lecué, 2007). Moreover, while we want to predict as well as the best expert,
in Cesa-Bianchi et al. [2011], the objective is to be as good as the best linear combination
of features with a small additive term (the optimal rate, in this case, is O

(
1/
√
T
)
). Finally,

we consider that the restriction on observed attributes (experts advice) does not apply only
to the training samples but also to the testing data.

Online convex optimization with limited feedback: The idea of using multiple point
feedback to achieve faster rates appeared in the online convex optimization literature (see
Agarwal et al., 2010, and Shamir, 2017). It was shown that in the setting where the
adversary chooses a loss function in each round if the player is allowed to query this
function in two points, it is possible to achieve minimax rates that are close to those
achievable in the full information setting. The key idea is to build a randomized estimate
of the gradients, which are then fed into standard first-order algorithms. These ideas are
not convertible into our setting because we consider a non-convex set of experts.

4.3 The full information case

In this section, we revisit the “classical” case where there is no constraint on the number
of expert queries per observation round; assume the output of all experts are observed for
T rounds (in other words, T i.i.d. training examples), which is the full information or
“batch” setting. We want to output a final prediction rule with prediction risk controlled
with high probability over the training phase.

We start with putting forward an apparently new rule , simpler than existing ones
[Lecué and Mendelson, 2009, Audibert, 2008b], for the full information setting which, like
the empirical star [Audibert, 2008b], outputs a convex combination of two experts. In
contrast to the latter, our rule does not need any optimization over a union of segments.
The underlying principle will guide us to construct a budget efficient expert selection rule
in the sequel.

Define R̂(Fi) := T−1∑T
t=1 l(Fi,t, Yt) the empirical loss of expert i, and d̂ij := (T−1∑T

t=1(Fi,t−
Fj,t)2) 1

2 the empirical L2 distance between experts i and j over T rounds. Finally let
α = α(δ) := (log(4Kδ−1)/T ) 1

2 , where δ ∈ (0, 1) is a fixed confidence parameter. Define

∆ij := R̂(Fj)− R̂(Fi)− 6αmax
{
Ld̂ij , Bα

}
. (4.1)

The quantity ∆ij can be interpreted as a test statistic: if ∆ij > 0, then we have a guarantee
that R(Fj) > R(Fi), so that expert j is sub-optimal; this guarantee holds for all (i, j)
uniformly with probability (1−δ). It therefore makes sense to reduce the set of candidates
to

S :=
{
j ∈ JKK : sup

j∈JKK
∆ij ≤ 0

}
. (4.2)
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Our new full information setting rule is the following:

choose k̄ ∈ S arbitrarily ; pick j̄ ∈ Arg Max
j∈S

d̂k̄j ; predict F̂ := 1
2(Fk̄ + Fj̄). (4.3)

In words, the above rule consists in eliminating all experts that are manifestly outperformed
by another one, and, among the remaining experts, pick two that disagree as much as
possible (in terms of empirical L2 distance ) and output their simple average for prediction.
The next theorem establishes fast convergence rate for the excess risk of this rule:

Theorem 4.3.1. If Assumption 7 holds and δ ∈ (0, 1) is fixed, then for the prediction rule
F̂ defined by (4.3), it holds with probability 1−3δ over the training phase (c is an absolute
constant):

R(F̂ ) ≤ R∗ + cB
log(4Kδ−1)

T
.

Proof. Let d2
ij = E

[
(Fi − Fj)2]. The result hinges on the following high confidence control

of risk differences, established in Corollary 4.C.2 as a direct consequence of the empirical
Bernstein’s inequality: with probability at least 1− 3δ, it holds:

For all i, j ∈ JKK : ∆ij ≤ (Rj −Ri) ≤ ∆ij + 32αmax(Ldij , Bα). (4.4)

Let i∗ ∈ Arg Mini∈JKKRi be an optimal expert. Since Ri∗ − Rj ≤ 0 for all j ∈ JKK, it
follows that if (4.4) holds, then i∗ ∈ S, from the definition of S. So if (4.4) holds, we have

R

(
Fk̄ + Fj̄

2

)
≤ 1

2
(
Rk̄ +Rj̄

)
− ρ2

8 d
2
k̄j̄

= R∗ + 1
2
(
(Rk̄ −Ri∗) + (Rj̄ −Ri∗)

)
− ρ2

8 d
2
k̄j̄

≤ R∗ + 1
2
(
∆k̄i∗ + ∆j̄i∗

)
+ 16α

(
max

(
Ldj̄i∗ , Bα

)
+ max(Ldk̄i∗ , Bα)

)
− ρ2

8 d
2
k̄j̄

≤ R∗ + 32Bα2 + 48Lαdk̄j̄ −
ρ2

8 d
2
k̄j̄

;

where we have used strong convexity of the loss (and therefore of R(.) with respect to the
L2 distance) in the first line; the right-hand side of (4.4) in the third line; and, in the last
line, the fact that j̄, k̄, i∗ are all in S along with dj̄i∗ ≤ dj̄k̄ + dk̄i∗ ≤ 2dj̄k̄ by construction
of j̄. Finally upper bounding the value of the last bound by its maximum possible value
as a function of dk̄j̄ and recalling B = 8L2/ρ2, we obtain the statement.

4.4 Budgeted setting

In this section, we consider the budgeted setting. More precisely, given an a-priori
defined budget C, at each round the decision-maker selects an arbitrary subset of experts
and asks for their predictions. The choice of these experts may of course depend on past
observations available to the agent. The player then pays a unit for each observed expert’s
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advice. The game finishes when the budget is exhausted, at which point the player outputs
a convex combination of experts for prediction.

We convert the batch rule defined in the full information setting to an "online" rule
by performing the test ∆ji > 0 for each pair (i, j) after each allocation. If at any round
an expert i ∈ JKK fails any of these tests (i.e ∃j : ∆ji > 0), it is no longer queried. This
extension allows us to derive instance dependent bounds, which cover the rates obtained
in the batch setting in the worst case.

Since the tests ∆ij > 0 are performed after each allocation, we introduce the following
modification on the definition of ∆ij , for concentration inequalities to hold uniformly over
the runtime of the procedure. We define ∆ij(t, δ) as follows:

∆ij(t, δ) := R̂(j, t)− R̂(i, t)− 6α(t, δ/(t(t+ 1)) max
{
Ld̂ij(t), Bα(t, δ/(t(t+ 1))

}
.

Algorithm 14 Budgeted aggregation
Input δ, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do

Jointly query all the experts in S and update ∆ij > 0 for all i, j.
For all i, j ∈ JKK, if ∆ij > 0, eliminate j: S ← S \ {j}.
if the budget is consumed then

let k̄ ∈ S, and l̄← argmax
j∈S

d̂k̄j.

Return 1
2(Fk̄ + Fl̄).

end if
end for

Let S∗ := Arg Mini∈JKKR(Fi) denote the set of optimal experts. For i, j ∈ JKK, we
denote by dij := (E[(Fi − Fj)2])1/2 the L2 distance between the experts Fi and Fj . For
i ∈ JKK, we introduce the following quantity:

Λi := min
i∗∈S∗

max
{

L2d2
ii∗

|R(Fi)−R(Fi∗)|2
; B

R(Fi)−R(Fi∗)

}
.

Define the following set of experts:

Sε =
{
i ∈ JKK : Λi >

1
ε

}
,

and let Scε be its complementary.

Theorem 4.4.1. (Instance dependent bound) Suppose Assumption 7 holds. Let C ≥ K

denote the global budget on queries and denote ĝ the output of Algorithm 14 with inputs
(δ, L, ρ) when the budget C runs out. For any ε ≥ 0, if:

C > 578Cε log
(
Kδ−1Cε

)
,

87



where
Cε :=

∑
i∈Scε

Λi + |Sε| min
{1
ε

; Λ∗
}
,

where Λ∗ := maxi:Λi<+∞ Λi, then, with probability at least 1− δ:

R(ĝ) ≤ R∗ + cBε,

where c is an absolute constant.

Remark 4.4.2. Observe that the above result gives in particular a query budget bound
for the problem of best expert identification in our setting, by taking ε = 0, in which
case the required expert query budget is of order

∑
i:Λi<+∞ Λi up to logarithmic terms.

We can compare this to the problem of best arm identification in a bandit setting (one
arm pull/query per round); our setting can be cast into that framework by considering
each expert as an arm and only recording the information of the loss of the asked expert.
The known optimal query bound for best arm identification in the classical multi-armed
bandits setting with loss/reward bounded by B is of order

∑
i:Λi<+∞ Λ̃i [Kaufmann et al.,

2016], where Λ̃i = B2(R(Fi) − R(Fi∗))−2. Since the diameter of X is bounded by B/L
(see Lemma 4.B.1), it holds Λi ≤ Λ̃i. Hence, for best expert identification, the bound of
Theorem 4.4.1 improves upon the best arm identification bound, potentially by a signifi-
cant margin (in particular concerning the contribution of suboptimal but close to optimal
experts for which dii∗ � B/L and Ri − Ri∗ � B). Again, the improvement is due to the
Assumption 7 on the loss and the possibility to query several experts per round, which are
not used when casting the problem as a classical bandit setting.

4.5 Two queries per round (m = p = 2)

In this section, we suppose that the decision-maker is constrained to see only two
experts’ advice per round (m = 2). We suppose that the horizon is unknown; when the
game is halted, the player outputs a convex combination of at most two experts (p = 2).
We will show that the rates obtained are as good as in the full information case in its
dependence on the number of rounds T .

Algorithm 15 works as follows. To circumvent the limitation of observing only two
experts per round, in each round, we sample a pair (i, j) ∈ S × S in a uniform way, where
S is the set of non-eliminated experts. Then the tests ∆′ji ≤ 0 and ∆′ij ≤ 0 are performed,
where ∆′ij is defined by (4.5). If i or j fail the test, which means that it is a suboptimal
expert, it is eliminated from S.

Finally, when the algorithm is halted, depending on the number of allocated samples,
we choose either an empirical risk minimizer over the non-eliminated experts or the mean
of two experts from S that are distant enough. This rule allows our algorithm’s output to
enjoy the best of converge rates of the two methods.

We introduce the following notations: In round t, denote Tij(t) the number of samples
where predictions of experts i and j were jointly queried and Ti(t) the number of rounds
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where the prediction of expert i was queried. Denote R̂ij(j, t) the empirical loss of expert
i calculated using only the Tij(t) samples queried for (i, j) jointly. We define αij(t, δ) :=√

log(4Kδ−1)
Tij(t) if Tij(t) > 0 and αij(t) =∞ otherwise. Let d̂ij(t) be the empirical L2 distance

between experts i and j based on the Tij(t) queried samples. Denote δt := δ/(t(t + 1)).
For i, j ∈ JKK we define:

∆′ij(t, δ) := R̂ij(j, t)− R̂ij(i, t)− 6 max
{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
. (4.5)

Algorithm 15 Two-point feedback
Input δ, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do

Let (i, j) ∈ Arg Min(u,v)∈S×S Tuv.
Query the advice of experts i and j and update the corresponding quantities.
For all u, v: If ∆′uv > 0: S ← S \ {v}.

end for
On interrupt: Let k̂ ∈ S and let l̂← argmax

j∈S
d̂k̂j.

Let q̂ denote the empirical risk minimizer on S.
if Tk̂l̂ >

√
log(KTδ−1)Tq̂ then

Return 1
2(Fk̂ + Fl̂).

else
Return Fq̂.

end if

Our first result in this setting is an empirical bound. At any interruption time, it
gives a bound on the excess risk, only depending on quantities available to the user, using
the number of queries resulting from the querying strategy in Algorithm 15. We then
use a worst-case bound on these quantities to develop an instance independent bound in
Corollary 4.5.2.

Theorem 4.5.1. (Empirical bound) Suppose Assumption 7 holds. Let T ≥ 2K2, and
denote ĝ the output of Algorithm 15 with inputs (δ, L, ρ) in round T . Then with probability
at least 1− 3δ:

R(ĝ) ≤ R∗ + c Bmin
{

log
(
TKδ−1)
Tk̂l̂(T ) ,

√
log(TKδ−1)

Tq̂(T )

}
, (4.6)

where k̂, l̂ and q̂ are the experts in Algorithm 15 and c is an absolute constant.
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Proof Sketch of Theorem 4.5.1 We start by noting that when running Algo-
rithm 15, the optimal experts S∗ = Arg Mini∈JKKR(Fi) are never eliminated with high
probability (Lemma 4.D.1). This shows in particular, that when the procedure is termi-
nated, we have S∗ ⊆ ST , where ST is the set of non-eliminated experts at round T .

Then we show the following key result: in each round t ≤ T , for any expert i ∈ St, let
j ∈ Arg Maxl∈St d̂il(t), we have with probability at least 1− δ:

R

(
Fi + Fj

2

)
≤ R∗ + cB

log(Kδ−1
t )

Tij(t)
.

For the second bound, recall that i∗ belongs to ST with high probability. Therefore,
performing an empirical risk minimization over the set of non-eliminated experts leads

to the bound
√

log(KTδ−1)
Tq(T ) , through a simple concentration argument using Hoeffding’s

inequality.

Corollary 4.5.2. (Instance independent bound) Suppose assumption 1 holds. Let T ≥
2K2, and denote ĝ the output of Algorithm 15 with inputs (δ, L, ρ) in round T . Then with
probability at least 1− 3δ:

R(ĝ) ≤ R∗ + c Bmin

K2 log
(
TKδ−1)
T

,

√
K log(TKδ−1)

T

,
where c is an absolute constant.

Proof. We develop an elementary bound on Tk̂l̂ and Tq̂, then we inject these bounds into
inequality (4.6).

Note that: q̂, i∗ ∈ ST , hence Tq̂(T ), Ti∗(T ) ≥ T
2K . Moreover, we have:

Tk̂l̂(T ) ≥ T

K2 .

Using inequality (4.6), we obtain the result.

Remark 4.5.3. Observe that in all the considered settings (full information, budgeted
and limited advice), the number of jointly sampled pairs (Fi, Fj) to attain an excess risk
of O(ε) is of the order of O(K2/ε). Being able to ask a set of m experts simultaneously
in a training round allows to sample m(m − 1)/2 pairs for a query cost of m: this is the
advantage of the budgeted setting, while we have to query each pair in succession under
the strict m = 2 constraint, resulting in a higher cost overall.

Theorem 4.5.4. (Instance dependent bound) Suppose Assumption 7 holds. Let ĝ denote
the output of Algorithm 15 with input (δ, L, ρ) and T denote the total number of rounds.
Let ε > 0, if :

T ≥ 578 Cε log
(
δ−1Cε

)
,

where
Cε := K

∑
i∈Scε

Λi + 2|Sε|2 min
{1
ε
,Λ∗

}
,
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where Λ∗ := maxi:Λi<+∞ Λi, then, with probability at least 1− δ:

R(ĝ) ≤ R∗ + cB ε,

where c is an absolute constant.

Remark 4.5.5. If the algorithm is allowed to query m > 2 expert advices per round,
then it can be modified to attain an improved excess risk. We present this extension in
Section 4.E in the appendix, and prove that it leads to a rate of O

(
(K/m)2

T log(KT/δ)
)
,

which interpolates for intermediate values of m.

Proof Sketch of Theorem 4.5.4 First, we develop instance-dependent upper and
lower bound for Tij(t), for any i, j ∈ JKK such that: R(Fi) 6= R(Fj). To do this we
introduce the following lemma (see Lemma 4.D.3 in the appendix):

Lemma 4.5.6. Let i, j ∈ JKK such that R(Fi) 6= R(Fj). With probability at least 1− 4δ,
for all t ≥ 1, if

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|R(Fi)−R(Fj)|2
; B

|R(Fi)−R(Fj)|

}
,

then we have either ∆′ij > 0 or ∆′ji > 0; furthermore, if

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|R(Fi)−R(Fj)|2
; B

|R(Fi)−R(Fj)|

}
,

then we have: ∆′ij ≤ 0 and ∆′ji ≤ 0.

This lemma gives in particular an upper bound on the number of allocations needed
for an expert i to be eliminated by an optimal expert i∗ (i.e. to fail the test ∆ii∗ ≤ 0).
Then, we derive a bound on the number of rounds Tε required to eliminate all the experts
in Scε and we conclude by showing that T − Tε is large enough to ensure that the experts
k̂ and l̂ in algorithm 15 satisfy Tk̂l̂ > 1/ε with high probability.

4.6 Lower bounds for m = 1 or p = 1

This section considers the case where the agent is restricted to selecting one expert at
the end of the procedure (p = 1), and the case where the learner is restricted to see only
one feedback per round (m = 1). We show that in either case it is impossible to do better
than an excess risk O

(
1/
√
T
)
in deviation.

Lemma 4.6.1 is a direct consequence of a more general lower bound in Lee et al. [1998],
which proved that if the closure of the experts class is non-convex, and a single expert
must be picked at the end (“proper” learning rule), then even under full information access
during training the best achievable rate with high probability is O

(
1/
√
T
)
.
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Lemma 4.6.1. (p = 1) Consider the squared loss function. For K = m = 2 and p = 1,
for any T > 0, and for any convex combination of the experts ĝ output after T training
rounds, there exists a probability distribution for experts {F1, F2} and target variable Y
(all bounded by 1) such that, with probability at least 0.1,

R̂T (ĝ)−R∗ ≥ c1√
T
,

where c1 > 0 is an absolute constant.

The second result shows that the same lower bound holds for the bandit feedback
(m = 1) setting, even if the learner is allowed to predict using a convex combination of
all the experts at the end. To the best of our knowledge, this is the first lower bound for
deviations in this setting.

Lemma 4.6.2. (m = 1) Consider the squared loss function. For K = p = 2, and m = 1,
for any T > 0, for any convex combination of the experts ĝ output after T training rounds,
there exists a probability distribution for experts {F1, F2} and target variable Y (all bounded
by 1) such that with probability at least 0.1,

R̂T (ĝ)−R∗ ≥ 1
2
√
T
.

4.7 Conclusion

We discussed the impact of restricted access to information in generalization error min-
imization with respect to the best expert. As many classical methods, such as progressive
mixture rules (and randomized versions thereof) are deviation suboptimal, we proposed a
new procedure achieving fast rates with high probability. We focused on the global budget
setting, where a constraint on the total number of expert queries is made, and the local
budget, where a limited number of expert advices are shown per round. Moreover, we
proved fast rates are impossible to achieve if the agent is allowed to see just one expert
advice per round or choose just one expert for prediction.

An interesting future direction is allowing experts to learn from data during the process.
In this case, the i.i.d. assumption on the loss sequence is dropped, which necessitates
deriving a new concentration for the key quantities.

4.A Notation

The following notation pertains to all the considered algorithms, where t is a given
training round:

• Let Ti(t) denote the set of training round indices where the advice of expert i was
queried and let Ti(t) := |Ti(t)|.
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• Let Tij(t) denote the set of training round indices where the advice of experts i and
j where jointly queried and let Tij(t) := |Tij(t)|.

• Let R̂ij(j, t) denote the empirical loss of expert j calculated using only the Tij(t)
samples queried for (i, j) jointly:

R̂ij(j, t) := 1
Tij(t)

∑
s∈Tij(t)

l(Fj,s, Ys).

• R̂i(t) denote the empirical loss of expert i calculated using the Ti(t) queried samples:

R̂i(t) := 1
Ti(t)

∑
s∈Ti(t)

l(Fi,s, Ys).

• Define αij(t, δ) :=
√

log(4Kδ−1)
Tij(t) if Tij(t) > 0 and αij(t) =∞ otherwise.

• Define αi(t, δ) :=
√

log(4Kδ−1)
Ti(t) if Ti(t) > 0 and αi(t) =∞ otherwise.

• Let d̂ij(t) denote the empirical L2 distance between experts i and j based on the
Tij(t) queried samples:

d̂2
ij(t) := 1

Tij(t)
∑

s∈Tij(t)
(Fi,s − Fj,s)2.

• Define ∆′ij(t, δ) := R̂ij(j, t)− R̂ij(i, t)− 6αij(t, δ) max
{
Ld̂ij(t), Bαij(t, δ)

}
.

• Let dij denote the L2 distance between experts i and j:

dij := E
[
(Fi − Fj)2

]
.

• We denote R(.) the expected risk function: R(.) = E[l(., Y )], and define Ri = R(Fi)
for i ∈ JKK.

4.B Some preliminary results

The lemma below shows that for a set Y ⊆ Rd and a convex set X ⊆ Rd, if there exists
a function l : X ×Y → R that is Lipschitz and strongly convex on its first argument, then
the function l and the set X are bounded.

Lemma 4.B.1. Let X ⊆ Rd be a non-empty convex set, let Y ⊆ Rd and l : X × Y → R
be a function such that for all y ∈ Y l(., y) is L-Lipschitz and ρ-strongly convex, then we
have:

• supx,x′∈X ‖x− x′‖ ≤ B
L = 8 L

ρ2 .
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• supx,x′∈X ,y∈Y |l(x, y)− l(x′, y)| ≤ B := 8L2

ρ2

Proof. Let y ∈ Y and x0, x ∈ X , using the ρ-strong convexity of l(., y) we have:

l

(
x+ x0

2 , y

)
− ρ2

2

∥∥∥∥x+ x0
2

∥∥∥∥2
≤ 1

2

(
l(x0, y)− ρ2

2 ‖x0‖2
)

+ 1
2

(
l(x, y)− ρ2

2 ‖x‖
2
)

Which implies:

ρ2

2

(1
4‖x0 + x‖2 − 1

2‖x0‖2 −
1
2‖x‖

2
)
≤ l
(
x+ x0

2 , y

)
− l(x, y) + l(x0, y)

2 .

Using the parallelogram law and the assumption that l is L-Lipschitz we have:

ρ2

8 ‖x− x0‖2 ≤ L‖x− x0‖,

which proves that diam(X ) ≤ 8 L
ρ2 . Now using the assumption that l(., y) is L-Lipschitz,

we have:

|l(x, y)− l(x0, y)| ≤ L‖x− x0‖

≤ 8L
2

ρ2 ,

which proves the second claim.

For any y ∈ Y, let l∗(y) = minx∈X l(x, y), which exists since l is continuous in x

and X is a closed bounded set by the previous lemma, and let l̃(x, y) := l(x, y) − l∗(y).
By the previous lemma, l̃(x, y) ∈ [0, B]; also, note that the proposed algorithms remain
unchanged if we replace the loss l by l̃, since the algorithms only depend on loss differences
for different predictions x, x′ and the same y. Similarly, the excess loss of any predictor
remains unchanged when replacing l by l̃. Therefore, without loss of generality we can
assume that the loss function always takes values in [0, B], which we do for the remainder
of the paper.

The following lemma is technical, it will be used in the proof of the instance dependent
bound (Theorem 4.5.4).

Lemma 4.B.2. Let x ≥ 1, c ∈ (0, 1) and y > 0 such that:

log(x/c)
x

> y. (4.7)

Then:

x <
2 log

(
1
cy

)
y

.
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Proof. Inequality (4.7) implies
x <

log(x/c)
y

,

and further

log(x/c) < log(1/yc) + log log(x/c) ≤ log(1/yc) + 1
2 log(x/c),

since it can be easily checked that log(t) ≤ t/2 for all t > 0. Solving and plugging back
into the previous display leads to the claim.

4.C Some concentration results

In this section, we present concentration inequalities for the key quantities used in
our analysis. Recall that Lemma 4.B.1 shows that under assumption 7, without loss of
generality we can assume that the loss function takes values in [0, B], B := 8L2/ρ2.

The following lemma gives the main concentration inequalities we need:

Lemma 4.C.1. Suppose Assumption 7 holds. For any integer t ≥ 1, and δ ∈ [0, 1], with
probability at least 1− 3δ, for all i, j ∈ JKK:∣∣∣(R̂ij(i, t)− R̂ij(j, t))− (Ri −Rj)

∣∣∣ ≤ √2L d̂ij αij(t, δ) + 3B α2
ij(t, δ)∣∣∣d̂2

ij − d2
ij

∣∣∣ ≤ max
{

2B
L
αij(t, δ) dij ; 6

(
B

L

)2
α2
ij(t, δ)

}
∣∣∣R̂i(t)−Ri∣∣∣ ≤ 2Bαi(t, δ).

Proof. The first inequality is a direct consequence of the empirical Bernstein inequality
(Theorem 4 in Maurer and Pontil, 2009). Recall that l is L-Lipschitz in its first argument.
Hence, we have the following bound on the empirical variance of the variable: l(Fi, Y ) −
l(Fj , Y ).

V̂ar[l(Fi, Y )− l(Fj , Y )] :=
2

Tij(t)(Tij(t)− 1)
∑

u,v∈Tij(t)
(l(Fi,u, Yu)− l(Fj,u, Yu)− l(Fi,v, Yv) + l(Fj,v, Yv))2

≤ 1
Tij(t)

∑
u∈Tij(t)

(l(Fi,u, Yu)− l(Fj,u, Yu))2

≤ L2 d̂2
ij .

The second inequality is a consequence of Bernstein inequality applied to d̂2
ij , we used the

following bound on the variance of the variable (Fi − Fj)2:

Var
[
(Fi − Fj)2

]
≤ E

[
‖Fi − Fj‖4

]
≤ sup

i,j∈[K]
‖Fi − Fj‖2E

[
‖Fi − Fj‖2

]
≤
(
B

L

)2
d2
ij .
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Finally, the last inequality stems from Hoeffding’s inequality.

Corollary 4.C.2. Let T > 0 be fixed. In the full information case (m = K), with
probability at least 1− 2δ, it holds:

For all i, j ∈ JKK : ∆ij ≤ (Rj −Ri) ≤ ∆ij + 32αmax(Ldij , Bα). (4.8)

Proof. In the full information case, since all experts are queried at each round we have
Tij(T ) = Ti(T ) = T and αij(T, δ) = α(T, δ) = α for all i, j. Applying Lemma 4.C.1 in
that setting, using the first inequality we obtain that with probability at least 1− 3δ:

∆ij ≤
(
R̂(i, T )− R̂(j, T )

)
−
√

2Ld̂ijα− 3Bα2 ≤ Ri −Rj ,

giving the first inequality in (4.8); and

Ri −Rj ≤
(
R̂(i, T )− R̂(j, T )

)
+
√

2Ld̂ijα+ 3Bα2 ≤ ∆ij + 9αLd̂ij + 9Bα2. (4.9)

From the second inequality in Lemma 4.C.1 we get, putting β := B/L:

d̂2
ij − d2

ij ≤ max
{

2βαdij , 6β2α2
}

≤ max
{

6β2α2 + 1
6d

2
ij , 6β2α2

}
≤ 6β2α2 + 1

6d
2
ij ,

from which we deduce d̂2
ij ≤ 12αmax(β2α2, d2

ij). Taking square roots and plugging
into (4.9), we obtain the claim.

For t ≥ 1, define: δt := δ
t(t+1) . Define the event A:

(A) : ∀t ≥ 1, ∀ i, j ∈ JKK :



∣∣∣(R̂ij(i, t)− R̂ij(j, t))− (Ri −Rj)
∣∣∣

≤ 3 max
{
Ld̂ij αij(t, δt);Bα2

ij(t, δt)
}

(4.10a)∣∣∣R̂i(t)−Ri∣∣∣ ≤ 2B αi(t, δt) (4.10b)

d̂2
ij ≤ 12 max

{
d2
ij ;
(
B

L

)2
α2
ij(t, δt)

}
(4.10c)

d2
ij ≤ 12 max

{
d̂2
ij ;
(
B

L

)2
α2
ij(t, δt)

}
(4.10d)

Using a union bound over t ≥ 1 and i, j ∈ JKK, we have: P(A) ≥ 1− 4δ.
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4.D Proofs of main results

4.D.1 Proof of Theorem 4.5.1 and Corollary 4.5.2
Let t ≥ 1, denote by St the set of non-eliminated experts in Algorithm 15 at round

t. The lemma below shows that conditionally to event A, the best experts S∗ are never
eliminated.

Lemma 4.D.1. If A defined in (4.10) holds, ∀t ≥ 1 we have: S∗ ⊆ St, where we recall
S∗ := Arg Mini∈JKKR(Fi).

Proof. Let t ≥ 1, assume for the sake of contradiction that: i∗ ∈ S∗ but i∗ /∈ St. Then, at
some point, i∗ was eliminated by an expert j. More specifically: ∃s ∈ JtK, ∃j ∈ JKK \ {i∗},
such that ∆′ji∗(t, δt) > 0. It follows by definition of ∆′ji∗ that:

R̂ji∗(i∗, s) > R̂ji∗(j, s) + 6 max
{
Lαji∗(s, δs)d̂ji∗ , Bα2

ji∗(s, δs)
}

which contradicts (4.10a) since we have: R∗ ≤ Rj .

The lemma below gives a high probability deviation rate on the excess of any expert
in St when combined with an appropriate expert. Recall that for i ∈ JKK: Ri = R(Fi).

Lemma 4.D.2. If event A defined in (4.10) holds, ∀t ≥ 1, for all i ∈ St, let j ∈
argmaxl∈St d̂il(t), then we have:

R

(
Fi + Fj

2

)
≤ R∗ + c B

log(Kδ−1
t )

Tij(t)
,

where c is an absolute constant.

Proof. Suppose that A is true. Let t ≥ 1, i ∈ St and i∗ ∈ S∗. Let j ∈ argmaxSt d̂il.
Lemma 4.D.1 shows that : i∗ ∈ St, we therefore have by construction of Algorithm 15:

R̂ij(j, t) ≤ R̂ij(i, t) + 6 max
{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}

R̂ii∗(i, t) ≤ R̂ii∗(i∗, t) + 6 max
{
Lαii∗(t, δt)d̂ii∗(t), Bα2

ii∗(t, δt)
}
.

Using inequalities (4.10a) for (i, j) and (i, i∗) respectively and d̂ii∗(t) ≤ d̂ij(t), we have:

Rj ≤ Ri + 9 max
{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}

(4.11)

Ri ≤ Ri∗ + 9 max
{
Lαii∗(t, δt)d̂ij(t), Bα2

ii∗(t, δt)
}
. (4.12)
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We have:

R

(
Fi + Fj

2

)
≤ 1

2

(
Ri −

ρ2

2 E
[
F 2
i

])
+ 1

2

(
Rj −

ρ2

2 E
[
F 2
j

])
+ ρ2

2 E
[(

Fi + Fj
2

)2
]

= 1
2Ri + 1

2Rj −
ρ2

8
(
2E
[
F 2
i

]
+ 2E

[
F 2
j

]
− E[(Fi + Fj)2]

)
= 1

2Ri + 1
2Rj −

ρ2

8 d
2
ij

≤ 1
2Ri + 1

2Ri + 9
2 max

{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij

= Ri + 9
2 max

{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij

≤ R∗ + 27
2 max

{
Lαij(t, δt)d̂ij(t), Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij .

We used the strong convexity of R in the first inequality and we injected (4.11) to bound
R(Fj) in the fourth line and (4.12) to bound R(Fi) in the last line. Now we use inequality
(4.10b) for (i, j) and obtain:

R

(
Fi + Fj

2

)
−R∗ ≤ 162 max

{
Lαij(t, δt)dij , Bα2

ij(t, δt)
}
− ρ2

8 d
2
ij

≤ c Bα2
ij(t, δt)

≤ c Bα2
ij(t, δt),

where c is an absolute constant. In the final step, we upper bounded the right-hand-
side of the first inequality with a parabolic function in dij , then we replaced dij with the
expression achieving the maximum (recall that B := 8(L/ρ)2).

Proof of Theorem 4.5.1. Let T ≥ 2K2, when Algorithm 15 is halted at T . Let
k̂ ∈ ST and l̂ ∈ argmaxj∈ST d̂k̂j(T ).

Let q̂ denote the empirical risk minimizer on ST :

q̂ ∈ Arg Min
j∈ST

R̂j(T ).

We consider two cases. If Tk̂l̂(T ) >

√
Tq̂(T ) log

(
Kδ−1

T

)
, then the output of Algo-

rithm 15 is Fk̂+Fl̂
2 and we can apply the bound of Lemma 4.D.2.
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If Tk̂l̂(T ) ≤
√
Tq̂(T ) log

(
Kδ−1

T

)
, then the output of Algorithm 15 is Fq̂. We have:

Rq̂ −Ri∗ = Rq̂ − R̂q̂(T ) + R̂q̂(T )− R̂i∗(T ) + R̂i∗(T )−Ri∗

≤ 2B

√√√√ log
(
Kδ−1

T

)
Tq̂(T ) + 2B

√√√√ log
(
Kδ−1

T

)
Ti∗(T )

≤ 2B

√√√√ log
(
Kδ−1

T

)
Tq̂(T ) + 2B

√√√√ log
(
Kδ−1

T

)
Tq̂(T )−K

≤ 5B

√√√√ log
(
Kδ−1

T

)
Tq̂(T ) ,

where we used inequalities (4.10c) for q̂ and i∗, and the fact that the allocation strategy
leads to |Ti∗(T )− Tq̂(T )| ≤ K and Ti(T ) > 2K for all i.

As a conclusion we have:

R(ĝ)−Ri∗ ≤ c Bmin
{

log(KTδ−1)
Tk̂l̂(T ) ;

√
log(KTδ−1)

Tq̂(T )

}
, (4.13)

where c is an absolute constant.

4.D.2 Proof of Theorem 4.5.4
In this section, we prove instance dependent bounds on the number of rounds required

to achieve a risk at least as good as the best expert up to ε > 0.
The following lemma gives an instance dependent upper and lower bound on the quan-

tities Tij(t), for i, j ∈ JKK.

Lemma 4.D.3. Let i, j ∈ JKK such that Ri 6= Rj. If A holds, for all t ≥ 1, if

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
,

then we have either ∆′ij > 0 or ∆′ji > 0.
Furthermore, if

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
,

then we have ∆′ij ≤ 0 and ∆′ji ≤ 0.

Proof. We start by proving the first claim of the lemma. Let i, j ∈ JKK and t ≥ 1 such
that:

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
. (4.14)
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Inequality (4.14) implies:

αij(t, δt) ≤
1
17 min

 |Ri −Rj |Ldij
;

√
|Ri −Rj |

B

.
By simple calculus, we see that:

17 max
{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
≤ |Ri −Rj |.

Now we use inequality (4.10a) from event A to upper bound |Ri −Rj |:

17 max
{
Lαij(t, δt)dij ;Bα2

ij(t, δt)
}

≤∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣+ 3 max
{
Lαij(t, δt)d̂ij(t);Bα2

ij(t, δt)
}
. (4.15)

Using inequality (4.10b), we have:

max
{
d̂ij(t);

B

L
αij(t, δt)

}
≤ 2
√

3 max
{
dij ;

B

L
αij(t, δt)

}
.

We plug in the inequality above in (4.15) and obtain:

6 max
{
Lαij(t, δt)d̂ij(t);Bα2

ij(t, δt)
}
<
∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣,

implying that we have either ∆′ij(t) > 0 or ∆′ji(t) > 0.
For the second claim, Let i, j ∈ JKK and t ∈ JT K such that:

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
; B

|Ri −Rj |

}
. (4.16)

If Tij(t) = 0, then ∆′ij = ∆′ji = −∞.
Otherwise, inequality (4.16) implies that:

|Ri −Rj | ≤ 3 max
{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
.

Now we use inequality (4.10a) from event A to lower bound |Ri −Rj |. We have:∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣− 3 max
{
Lαij(t, δt)d̂ij(t) ; Bα2

ij(t, δt)
}
≤

3 max
{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
.

We plug in inequality (4.10d) to upper bound dij . We conclude that:∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣ ≤ 6 max
{
Lαij(t, δt)d̂ij(t);Bα2

ij(t, δt)
}
,

implying that we have: ∆′ij(t) ≤ 0 and ∆′ji(t) ≤ 0.

Now we turn to the proof of Theorem 4.5.4. Recall the following notations: for i ∈ JKK
define:

Λi := min
i∗∈S∗

max
{

L2d2
ii∗

|Ri −Ri∗ |2
; B

Ri −Ri∗

}
.

Denote the corresponding reordered values:

Λ(1) ≤ Λ(2) ≤ · · · ≤ Λ(K) = +∞,

and Λ∗ := min{Λi; Λi < +∞}.
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Proof of Theorem 4.5.4. By Lemma 4.D.2, in order to show that R(ĝ) ≤ R∗+ cBε,
it suffices to prove that for any i, j ∈ ST , it holds Tij(T ) ≥ B log(Kδ−1

T )/ε.
Let ε > 0, define the following sequences, for N ∈ JK − 1K:{

φN := 289(K −N)2
(
Λ(N) − Λ(N−1)

)
log
(
δ−1Cε

)
;

τN := ∑N
k=1 φk,

where we define Λ(0) = 0 and

Cε := K
∑
i∈Scε

Λi + 2|Sε|2 min
{1
ε
,Λ∗

}
.

Claim 4.D.4. If event A holds, for any N ∈ JKK after round dτNe, all experts i satisfying
Λi ≤ Λ(N) are necessarily eliminated.

Proof. Recall that the number of queries required to eliminate an expert i ∈ JKK is upper
bounded by the number of data points needed to have: ∆i∗i > 0 for any i∗ ∈ S∗, which
would lead to the elimination of i by i∗.

Let i∗ be an arbitrary element of S∗. We use an induction argument, for N = 1 the
claim is a direct consequence of the definition of τ1 and Lemma 4.D.3. Let N < K and
suppose that the claim is valid for all i ≤ N . Let j denote an expert such that Λj = Λ(N+1)
and j was not eliminated before dτNe. For i ≤ N , the induction hypothesis suggests that
between round dτie and dτi+1e there was at most K − i non-eliminated experts. Since the
allocation strategy is uniform over the pairs of experts in S × S, we have:

Tji∗(τN+1) ≥ 2
N∑
i=0

τi+1 − τi
(K − i)(K − i+ 1) , (4.17)

where τ0 = 0. Recall that the definition of τi implies that:

τi+1 − τi = 289(K − i− 1)2 log
(
Cεδ

−1
)(

Λ(i+1) − Λ(i)
)
. (4.18)

We plug in the lower bound given in (4.18) into (4.17) to obtain:

Tji∗(τN+1) ≥ 289 log
(
Cεδ

−1
)
Λ(N+1).

Using Lemma 4.D.3 we conclude that expert j is eliminated before round τN+1, which
completes the induction argument.

Claim 4.D.5. We have for any N ∈ JKK:

τN = 289 log
(
Cεδ

−1
)(N−1∑

i=1
(2(K − i) + 1)Λ(i) + (K −N)2Λ(N)

)
.
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Proof. We have by definition of τN :

τN =
N∑
i=1

φi

=
N∑
i=1

289(K − i)2
(
Λ(i) − Λ(i−1)

)
log
(
δ−1Cε

)

=
N∑
i=1

289(K − i)2Λ(i) log
(
δ−1Cε

)
−

N∑
i=1

289(K − i)2Λ(i−1) log
(
δ−1Cε

)

= 289 log
(
δ−1Cε

)(N−1∑
i=1

(2(K − i) + 1)Λ(i) + (K −N)2Λ(N)

)
.

Conclusion: Let Nε denote the integer satisfying (we do not consider the trivial case
where all the expert have the same risk):

Λ(Nε) <
1
ε
< Λ(Nε+1).

Recall that we suppose that T satisfies:

T ≥ 578Cε log(Cεδ−1).

Observe that (using Claim 4.D.5):

T ≥ τNε + 289 log(Cεδ−1)
(

2|Sε|2 min
{1
ε

; Λ∗
}
− (K −Nε)2Λ(Nε)

)
(4.19)

≥ τNε + 289 log(Cεδ−1)
(

2|Sε|2 min
{1
ε

; Λ∗
}
− |Sε|2Λ∗

)
(4.20)

≥ τNε + 289 log(Cεδ−1)|Sε|2 min
{1
ε

; Λ∗
}
. (4.21)

Claims 4.D.4 and 4.D.5 show that after dτNεe rounds only elements i ∈ JKK satisfying:
Λi ≤ Λ(Nε) are eliminated. Therefore, if 1/ε > Λ∗, we have : Λ(Nε) = Λ∗ and all the
remaining experts are optimal (i.e. in S∗). Hence the mean of any two experts in S
satisfies: R(ĝ) ≤ R∗.

Now suppose that 1/ε < Λ∗. We have for the last T − dτNεe rounds all the experts
in Scε were eliminated (hence there was at most |Sε| non-eliminated experts). Let (k̂, l̂)
denote the pair output by algorithm 15 after T rounds, we have:

Tk̂l̂(T ) ≥ log(Cεδ−1)T − τNε
|Sε|2

≥ 289log(Cεδ−1)
ε

≥ c log(KTδ−1)1
ε
,
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where c is a numerical constant, we used (4.21) for the second line, and a simple calculation
to obtain the last line. Using Lemma 4.D.2, we obtain the desired conclusion.

4.D.3 Proof of Theorem 4.4.1
In this section we will show that for C large enough, if A holds, we have:

R(ĝ)−R∗ . ε.

Let i∗ be an arbitrary element of S∗. Denote Ti the number of queries required to
eliminate an expert i ∈ JKK. Ti is upper bounded by the number of data points needed to
have: ∆i∗i > 0, which would lead to the elimination of i by i∗. The following claim, which
is a consequence of Lemma 4.D.3, provides this upper bound.

Claim 4.D.6. If A holds, let i ∈ JKK be a suboptimal expert (Λi < +∞). We have:

Ti ≤ 289 log
(
KCδ−1

)
Λi.

Proof. Lemma 4.D.1 shows that experts i∗ ∈ S∗ are never eliminated if A is true. Using
Lemma 4.D.3, the number of queries required for the elimination of a suboptimal expert
i by expert i∗, satisfies:

Ti ≤ 289 log
(
KCδ−1

)
Λi.

Let ε ≥ 0. Recall that Sε is defined by:

Sε :=
{
i ∈ JKK : Λi >

1
ε

}
Suppose that we have:

C > 578

∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
} log

Kδ−1

∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
},

We therefore have using Lemma 4.B.2:

C > 289 log
(
KCδ−1

)∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
}.

Let us denote by C1 the total number of queries received by all the experts in Sε
and by C2 the total number of queries received by the remaining experts. We therefore
have: C = C1 + C2. In order to show that at a certain round, all the experts in Scε were
eliminated, it suffices to prove that:

C1 ≥ |Sε|max
i∈Scε

Ti,

since the inequality above shows that the budget is not totally consumed after round
maxi∈Scε Ti where all elements in Scε where eliminated.
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Claim 4.D.6 provides the following upper bound for C2:

C2 ≤ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi.

We therefore have:

C1 = C − C2

≥ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
}− C2

≥ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi + |Sε|min
{1
ε

; Λ∗
}− 289 log

(
KCδ−1

) ∑
i∈Scε

Λi.

Hence:
C1 ≥ 289 log

(
KCδ−1

)
|Sε|min

{1
ε

; Λ∗
}

(4.22)

Recall that by definition of Sε, using Claim 4.D.6 we have:

max
i∈Scε

Ti ≤ 289 log
(
KCδ−1

)
min

{1
ε

; Λ∗
}
,

hence:
C1 ≥ |Sε|max

i∈Scε
Ti.

This shows that S ⊆ Sε. We have two possibilities: if 1
ε < Λ∗, the selected pair

(Fk̄, Fl̄) ∈ S × S satisfies:

Tk̄l̄ = min{Tk̄, Tl̄} ≥
C1
|Sε|

.

Using (4.22), we have:

Tk̄l̄ ≥ 289 log
(
KCδ−1

)1
ε
. (4.23)

Observe that Lemma 4.D.2 applies in this setting. In particular, the total number of rounds
T of algorithm 14, satisfy: T ≤ C. Hence, it holds

R

(
Fk̂ + Fl̂

2

)
−R∗ ≤ c B log(KCδ−1)

Tk̄l̄
.

We conclude by injecting inequality (4.23) in the bound above. We therefore have:

R(ĝ)−R∗ ≤ cB ε,

where c is an absolute constant.
If 1

ε > Λ∗, by definition of Λ∗ and the fact that S ⊆ Sε, we conclude that only the
optimal experts (i.e. the experts i such that Ri = R∗) remain when the budget is totally
consumed. Hence combining any 2 of these expert will lead to the bound: R(ĝ) ≤ R∗.

104



4.D.4 Proof of lower bounds
The lemma below gives a lower bound for the problem of estimating the parameter

describing a Bernoulli random variable.

Lemma 4.D.7 (Anthony and Bartlett [2009], Lemma 5.1). Suppose that α is a random
variable uniformly distributed on {α−, α+}, where α− = 1/2 − ε/2 and α+ = 1/2 + ε/2,
with 0 < ε < 1. Suppose that ξ1, . . . , ξm are i.i.d {0, 1}-valued random variables with
P(ξi = 1) = α for all i. Let f be a function from {0, 1} → {α−, α+}. Then it holds:

P(f(ξ1, . . . , ξm) 6= α) > 1
4

1−
√

1− exp
(−2dm/2eε2

1− ε2
).

Proof of Lemma 4.6.1

Let T > 0 and consider an convex combination of experts ĝ output after full observation
of T training rounds. We will construct two experts F1 and F2 and a target variable Y
and we will show that, for these variables, a strategy for our problem (m = 2 and p = 1)
gives a solution to the problem in Lemma 4.D.7. Finally we will use the lower bound from
this lemma.

For θ ∈ [0, 1], let Pθ denote the probability distribution of T i.i.d. draws Y1, . . . , YT of
Bernoulli variables or parameter θ, while F1,t = 0 and F2,t = 1 almost surely for t ∈ JT K.
Let α be a variable that is uniformly distributed on {α−, α+} with α± = 1

2±
ε
2 , and ε ∈ (0, 1)

is a parameter to be tuned subsequently; let the training obervations be drawn according to
Pα. Since p = 1, the output ĝ is either F1 or F2. Define f : {0, 1}T → {α−, α+} such that
given (Y1, . . . , YT ), f outputs 1

2 −
ε
2 if ĝ = F1 and 1

2 + ε
2 if ĝ = F2. By construction we have

that the events {f = α} and {R(ĝ) = min{R1, R2}} are equivalent. Using Lemma 4.D.7
and setting ε = c0√

T
where c0 is a constant such that the lower bound in Lemma 4.D.7 is

equal to 0.1, we have:

P
(
R(ĝ)−min{R1, R2} ≥

c0√
T

)
> 0.1.

Due to the randomization of α, the above probability is the average of the corresponding
event under Pα− and Pα+ . Therefore, under at least one of these two training distributions,
the deviation event has a probability at least 0.05.

Proof of Lemma 4.6.2

The gist of the proof is the following. We will construct a distribution with two experts
that are very correlated. In this situation, going from a weighted average of the two experts
to a single expert with the largest weight does not change the prediction risk much, and so
we could find a single expert with small risk if the weighted average has small risk. On the
other hand, since the agent only observes one expert per training round, from their point
of view the observational distribution is identical as if the experts were independent – the
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correlation cannot be observed. Therefore the same strategy could be used to find the best
expert in the independent case. This contradicts the lower bounds in this case (which is a
standard bandit setting), therefore it is impossible to pick consistently a weighted average
with small risk in a situation where the correlations cannot be observed.

Let T > 0 be fixed. We consider the particular setting where the target variable Y is
identically 0, and the expert predictions F1 and F2 are two (non independent) Bernoulli
random variables. We define a distribution P− for (F1, F2) such that:

• the marginal distribution of F1 is Bernoulli of parameter α− = 1
2 −

ε
2 ;

• the marginal distribution of F2 is Bernoulli of parameter α+ = 1
2 + ε

2 ;

• it holds that P−(F1F2 = 1) = α−.

Note that this can be easily constructed as F1 = 1{U ≤ α−};F2 = 1{U ≤ α+}, where U is
a uniform variable on [0, 1]. Let P+ be defined similarly with the role of F1 and F2 reversed.
Here, ε is a positive parameter to be tuned later. We denote R−, R+ for the prediction risks
under distributions P−,P+. We have R−(F1) = R+(F2) = α−, R−(F2) = R+(F1) = α+,
and R∗ = α− is the same under P− and P+.

Let us be given an arbitrary training observation strategy π (prescribing at each training
round which expert to observe based only on past observations), and output a convex
combination of experts ĝ. This output is a convex combination of F1 and F2, hence it is
characterized by the weight of F1, which we denote α̂. The parameter α̂ depends on the
observed data. We also define f̂ associated to this training strategy, that outputs F1 if
α̂ > 1

2 and F2 otherwise. Finally, let us denote Q+
π the distribution of the training data

observed by the agent when the T experts opinions are drawn i.i.d. from P− and the agent
observes the expert advices following strategy π; and define Q−π similarly.

Define the event A+ :=
{
R+(ĝ)−R∗ ≥ 1

4ε
}
and similarly A−. In the remainder of the

proof, we will show, using Bretagnolle-Hubert inequality (Theorem 14.2 in Lattimore and
Szepesvári, 2020), that either Q−π (A−) or Q+

π (A+) is lower bounded by a positive constant.
We have under the distribution P−:

R−(ĝ)−R−(f̂) = E−
[
(α̂F1 + (1− α̂)F2)2

]
− E−

[(
1

(
α̂ >

1
2

)
F1 + 1

(
α̂ ≤ 1

2

)
F2

)2
]

= ε(1− α̂)2 − ε
(

1− 1
(
α̂ >

1
2

))
≥ −3

4ε.

Note that the above estimate crucially depends on the fact that F1, F2 are not independent
under P−. In view of the above, the event A− is implied by R−(f̂) − R∗ = ε. Similarly,
A+ is implied by R+(f̂)−R∗ = ε. Hence:

Q−π (A−) + Q+
π (A+) ≥ Q−π

(
R−(f̂)−R∗ = ε

)
+ Q+

π

(
R+(f̂)−R∗ = ε

)
= Q−π

(
f̂ = F2

)
+ Q+

π

(
f̂ 6= F2

)
.
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Now we use Bretagnolle-Hubert inequality:

Q−π (f = F2) + Q+
π (f 6= F2) ≥ 1

2 exp
(
−D

(
Q−π ,Q+

π

))
,

where D(Q−π ,Q+
π ) is the relative entropy between Q−π and Q+

π . In order to conclude,
we need an upper bound on D(Q−π ,Q+

π ). Since the agent only observes one expert in
each round according to strategy π, the distribution of the observed data Q−π or Q+

π is
unchanged if we replace the generating distributions P− or P+ by distributions having the
same marginals, but for which F1 and F2 are independent. Therefore, the observational
distributions Q−π ,Q+

π are equivalent to that of the observational distributions, under the
same strategy, of a canonical bandit model with two arms. We can then use the divergence
decomposition formula (Lemma 15.1 of Lattimore and Szepesvári, 2020) to upper bound
D
(
Q−π ,Q+

π

)
; denoting P(1)

− , P(2)
− the marginals of P− and similarly for P+, it holds

D
(
Q−π ,Q+

π

)
= E−[T1]D(P(1)

− ,P(1)
+ ) + E−[T2]D(P(2)

− ,P(2)
+ ),

where the expectation E−[.] is with respect to the probability distribution Q−π and Ti
denotes the total number of rounds where the advice of expert Fi was queried using the
strategy π. We have: T1 + T2 = T almost surely, and D(P(1)

− ,P(1)
+ ) = D(P(2)

− ,P(2)
+ ) ≤ 4ε2

provided ε ≤ 1
2 . Therefore:

Q−π (A−) + Q+
π (A+) ≥ 1

2 exp
(
−4ε2T

)
.

This shows that there exists a probability distribution P ∈ {P−,P+} for the experts advices
and the target variable such that the prediction ĝ satisfies:

P(R(ĝ)−R∗ ≥ ε) ≥ exp
(
−4ε2T

)
,

We conclude by choosing ε = 1
2
√
T
.
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4.E Intermediate case: m ≥ 3, p = 2

In this section we assume that the learner is allowed to access more than two experts
advices per round. We show that this leads to an improvement of the bound in Theo-
rem 4.5.2. We consider the following extension of Algorithm 15:

Algorithm 16 Intermediate case
Input m, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do

Sample a subsetM of size m from JKK uniformly at random.
Query the advice of experts inM and update the corresponding quantities.
For all i, j: If ∆′ij > 0: S ← S \ {j}.

end for
On interrupt: Let k̂ ∈ S and let l̂← argmax

j∈S
d̂k̂j.

Return 1
2(Fk̂ + Fl̂).

Theorem 4.E.1. (Instance independent bound) Suppose Assumption 7 holds. Let T ≥ 1,
and denote ĝ the output of Algorithm 16 with inputs (m,L, ρ) in round T . If m ≥ 3, then
with probability at least 1− δ:

R(ĝ) ≤ min
i∈JKK

Ri + cB
(K/m)2 log

(
2TKδ−1)

T
,

where c is an absolute constant.

Proof. Let i, j ∈ JKK, denote Tij(T ) the total number of rounds where the advice of expert
i and j were jointly queried:

Tij(T ) =
T∑
t=1

1{i and j were jointly queried at round t}.

We conclude that Tij(T ) is the sum of T independent and identically distributed Bernoulli
variables with parameter: m(m−1)

K(K−1) . We therefore have the following consequence of Bern-
stein concentration inequality, with probability at least 1−δ, for all i, j ∈ JKK and T ≥ K:

|Tij(T )− E[Tij(T )]| ≤
√

2T m(m− 1)
K(K − 1) log(2KT/δ) + 1

3 log(2KT/δ). (4.24)

Suppose that δ satisfies:

log(2KT/δ) ≤ 1
16
m2

K2T.

Then we have:√
2T m(m− 1)

K(K − 1) log(2KT/δ) + 1
3 log(2KT/δ) ≤ 1

2
m(m− 1)
K(K − 1)T, (4.25)
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Observe that the result of Lemma 4.D.2 still holds in this setting for non-eliminated
elements (experts in ST ), since the elimination criterion for an expert j, which consists of
the existence of i such that ∆′ij > 0, is the same as in Algorithm 15. Let ĝ denote the
output of Algorithm 16, we conclude that if A and (4.24) hold for all i, j and T , we have:

R(ĝ)−Ri∗ ≤ κ
log
(
KTδ−1)
Tk̂l̂(T ) , (4.26)

where κ is a constant depending only η, L and ρ. Finally, we use (4.25). We therefore
have with probability at least 1− 4δ:

R(ĝ) ≤ min
i∈JKK

Ri + c B
(K/m)2 log

(
2TKδ−1)

T
.

Now suppose that δ satisfies:

log(2KT/δ) ≥ 1
16
m2

K2T,

then it holds:
(K/m)2 log

(
2TKδ−1)

T
≥ 1

16 .

We conclude that for c̄ = max{c, 16} we have:

R(ĝ)− min
i∈JKK

Ri ≤ B ≤ c̄B
(K/m)2 log

(
2TKδ−1)

T
.
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Chapter 5

Constant Regret for Sequence Prediction with Limited Ex-
pert Advice

We investigate the problem of cumulative regret minimization for individual sequence
prediction with respect to the best expert in a finite family of size K under limited access to
information. We assume that in each round, the learner can predict using a convex combination
of at most p experts for prediction, then they can observe a posteriori the losses of at most m
experts. We assume that the loss function is range-bounded and exp-concave. In the standard
multi-armed bandits setting, when the learner is allowed to play only one expert per round and
observe only its feedback, known optimal regret bounds are of the order O(

√
KT ). We show

that allowing the learner to play one additional expert per round and observe one additional
feedback improves substantially the guarantees on regret. We provide a strategy combining
only p = 2 experts per round for prediction and observingm ≥ 2 experts’ losses. Its randomized
regret (wrt. internal randomization of the learners’ strategy) is of order O

(
(K/m) log(Kδ−1)

)
with probability 1− δ, i.e., is independent of the horizon T (“constant” or “fast rate” regret)
if (p ≥ 2 and m ≥ 3). We prove that this rate is optimal up to a logarithmic factor in
K. In the case p = m = 2, we provide an upper bound of order O(K2 log(Kδ−1)), with
probability 1 − δ. Our strategies do not require any prior knowledge of the horizon T nor of
the confidence parameter δ. Finally, we show that if the learner is constrained to observe only
one expert feedback per round, the worst-case regret is the “slow rate” Ω(

√
KT ), suggesting

that synchronous observation of at least two experts per round is necessary to have a constant
regret.

Based on a joint work with G. Blanchard.
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5.1 Introduction

We study the problem of online individual sequence prediction with expert advice,
based on the setting presented by Cesa-Bianchi and Lugosi [2006, Chap. 2], under lim-
ited access to information. In this game, the learner’s aim is to predict an unknown
sequence (y1, y2, . . . ) of an outcome space Y. The mismatch between the learner’s predic-
tions (z1, z2, . . . ), taking values in a closed convex subset X of a real vector space, and the
target sequence is measured via a loss function `(z, y). The learner’s predictions may only
depend on past observations. Following standard terminology used in prediction games,
we will use the word “play” to mean the prediction output by the learner.

In each round t ∈ JT K (for a non-negative integer n, we denote JnK = {1, . . . , n}), the
learner has access to K experts predictions (F1,t, . . . , FK,t). The performance of the learner
is compared to that of the best single expert. More precisely, the objective is to have a
cumulated regret as small as possible, where the regret is defined by

RT =
T∑
t=1

`(zt, yt)− min
i∈JKK

T∑
t=1

`(Fi,t, yt).

Experts aggregation is a standard problem in machine learning, where the learner observes
the predictions of all experts in each round and plays a convex combination of those.
However, in many practical situations, querying the advice of every expert is unrealistic.
Natural constraints arise, such as the financial cost of consultancy, time limitations in
online systems, or computational budget constraints if each expert is actually the output
of a complex prediction model. One might hope to make predictions in these scenarios while
minimizing the underlying cost. Furthermore, we will distinguish between the constraint
on the number of experts’ advices used for prediction, and the number of feedbacks (losses
of individual experts) observed a posteriori. This difference naturally arises in online
settings where the advices are costly prior to the prediction task but just observing reported
experts’ losses after prediction can be cheaper. If the learner picks one single expert per
round, plays the prediction of that expert and observes the resulting loss, the game is the
standard multi-armed bandits problem. In this paper, we investigate intermediate settings,
where the player has a constraint p ≤ K on the number of experts used for prediction
(via convex combination) in each round and several feedbacks m ≤ K of actively chosen
experts to see their losses. In the standard multi-armed bandit problem, the played arm is
necessarily the observed arm, this restriction is known as the coupling between exploitation
and exploration. In our protocol, we consider a generalization of that restriction through
the Inclusion Condition (IC): when m ≥ p, if IC = True, we require that the set of played
experts for prediction at round t, denoted St , is included in the set of observed experts,
denoted Ct. More precisely, if IC = True, in each round t, the player first chooses p experts
out ofK and plays a convex combination of their prediction, then she observes the feedback
(loss) of the individual selected experts, then picks m − p additional experts to observe
their losses. When IC = False, the choice of played and observed experts is decoupled;
this means that the loss incurred by the p experts used for prediction is not necessarily
observed.
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Protocol 17 The Game Protocol (p,m, IC).
Parameters:
p, the number of experts allowed for prediction.
m, the number of experts allowed for observation as feedback.
IC ∈ {False,True}, inclusion condition (if IC = True, we must have p ≤ m).

for each round t = 1, 2, . . . , T do
Choose a subset St ⊆ JKK such that |St| = p, and convex combination weights
(αi)i∈St .
Play the convex combination ∑i∈St αi,tFi,t and incur its loss.
if IC = True, then

Choose a subset Ct ⊆ JKK such that: |Ct| = m and St ⊆ Ct.
else if IC = False, then

Choose a subset Ct ⊆ JKK such that: |Ct| = m.
end if
The environment reveals the losses (`(Fi,t, yt))i∈Ct .

end for

A closely related question was considered by Seldin et al. [2014], obtaining O(
√
T )

regret bounds for a general loss function (see extended discussion in the next section.) Our
emphasis here is on obtaining constant bounds guarantees on regret (i.e. independent of
the time horizon T ). Such “fast" rates, linked to assumptions related to strong convexity
of the loss function `, have been the subject of many works in learning (batch and online,
in the stochastic setting) and optimization, but are comparatively under-explored in fixed
sequence prediction.

In the literature on the prediction of fixed individual sequences, no assumptions are
made about the distribution of the sequences. The attainability of fast rates (or constant
regrets) is also possible under certain assumptions on the loss function `: the full informa-
tion setting was studied, mainly by Vovk [1990], Vovk [1998], Vovk [2001], where it was
shown that fast rates are attainable under the mixability assumption on the loss function.
The reader can find an extensive discussion of different assumptions considered in the lit-
erature for this problem in Van Erven et al. [2015]. In the present paper, we make the
following assumption on the loss function:

Assumption 7. There exist B, η > 0, such that

• Exp-concavity: For all y ∈ Y, `(., y) is η-exp-concave over domain X .

• Range-boundedness: For all y ∈ Y: supx,x′∈X |`(x, y)− `(x′, y)| ≤ B.

Remark 5.1.1. This assumption is satisfied in some usual settings of learning theory
such as the least squares loss with bounded outputs: X = Y = [xmin, xmax] and `(x, x′) =
(x− x′)2. Then ` satisfies Assumption 7, with B = (xmax − xmin)2 and η = 1/(2B).

Remark 5.1.2. The regret as well as all the algorithms to follow remain unchanged if we
replace ` by ˜̀ : X → [0, B] defined by ˜̀(x, y) := `(x, y)−minx∈X `(x, y), so we can assume
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without loss of generality ` ∈ [0, B] instead of range-boundedness; the results obtained still
hold in the latter more general case.

Assumption 7 was considered in several previous works tracking fast rates both in batch
and online learning (Koren and Levy, 2015, Mehta, 2017, Gonen and Shalev-Shwartz, 2016,
Mahdavi et al., 2015, Van Erven et al., 2015). We introduce a new characterization for the
class of functions satisfying Assumption 7. Let c > 0, define E(c) as the class of functions
f : X → R, such that

∀x, x′ ∈ X : f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− 1

2c
(
f(x)− f(x′)

)2
. (5.1)

We introduce this class to highlight the sufficient and minimal property of ` required for
the proofs in this paper to work, namely we will only make use of (5.1) in the proofs of
the results to come.

Lemma 5.1.3 below relates the class of functions E(.) to the set of functions satisfy-
ing Assumption 7 as well a sufficient condition (Lipschitz and Strongly Convex or LIST
condition).

Lemma 5.1.3. Let y ∈ Y be fixed.

• If `(., y) is B-range-bounded and η-exp-concave, then: `(., y) ∈ E

 ηB2

4 log
(

1+ η2B2
2

).
• If `(., y) ∈ E(c) and is continuous, then: `(., y) is c-range-bounded and (4/c)-exp-

concave.

• If `(., y) is L-Lipschitz and ρ-strongly convex, then `(., y) ∈ E(4L2/ρ).

Figure 5.1 summarizes bounds on regret for bounded and exp-concave loss functions.
We only consider fixed individual sequences, which corresponds to fully oblivious adver-
saries (see Audibert and Bubeck, 2010b for a definition of different types of adversaries).

The remainder of this paper is organized as follows. Section 5.2 presents some results
from the literature relevant to the studied problem. Section 5.3 introduces algorithms
satisfying constant regrets in expectation in the case p = 2 and m ≥ 3; that section aims
to present a preliminary view of the intuitions for attaining our objective. Next, we present
in Section 5.4 our main results consisting of algorithms satisfying constant regrets with a
high probability for p,m ≥ 2. Finally, in Section 5.5, we present lower bounds for all the
possible settings.
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p = 1 p ≥ 2

Lower bound Upper bound Lower bound Upper bound (p = 2)

m = 1
√
KT

√
KT

√
KT

√
KT

[1] [2] [Thm 5.5.3] [2]

IC = True : K2 log(K)
m = 2

√
KT

√
KT K IC = False : K log(K)

[3] [2] [Thm 5.5.1] [Thm 5.4.3 and 5.4.2]

m ≥ 3
√

K
m
T

√
K
m
T log(K) K

m
K
m

log(K)
[3] [3] [Thm 5.5.1] [Thm 5.4.2]

Figure 5.1: Existing bounds from the literature ([1] = Auer et al., 2002, [2]=Audib-
ert and Bubeck, 2010b, [3]=Seldin et al., 2014) and new bounds presented in this
paper. All bounds hold up to numerical constant factors. Under Assumption 7, all
new upper bounds hold with high probability if we replace the factor log(K) with
log(Kδ−1), δ being the confidence parameter. Lower bounds are in expectation.
When bounds are the same, we omit the distinction between the settings IC = True
and IC = False (coupling between exploration and exploitation, see Protocol 21).

5.2 Discussion of related work

Games with limited feedback and O
(√

T
)
regret: In the standard setting of

multi-armed bandit problem, the learner has to repeatedly obtain rewards (or incur losses)
by choosing from a fixed set of k actions and gets to see only the reward of the chosen
action. Algorithms such as EXP3-IX [Neu, 2015] or EXP3.P [Auer et al., 2002] achieve
the optimal regret of order O

(√
KT

)
up to a logarithmic factor, with high probability. A

more general setting closer to ours was introduced by Seldin et al. [2014]. Given a budget
m ∈ JKK, in each round t, the learner plays the prediction of one expert It, then gets
to choose a subset of experts Ct such that It ∈ Ct in order to see their prediction. A
careful adaptation of the EXP3 algorithm to this setting leads to an expected regret of
order O

(√
(K/m)T

)
, which is optimal up to logarithmic factor in K.

There are two significant differences between our framework and the setting presented
by Seldin et al. [2014]. First, we allow the player to combine up to p experts out of K in
each round for prediction. Second, we make an additional exp-concavity-type assumption
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(Assumption 7) on the loss function. These two differences allow us to achieve constant
regrets bounds (independent of T ).

Playing multiple arms per round was considered in the literature of multiple-play multi-
armed bandits. This problem was investigated under a budget constraint C by Zhou and
Tomlin [2018] and Xia et al. [2016]. In each round, the player picks m out of K arms,
incurs the sum of their losses. In addition to observing the losses of the played arms, the
learner learns a vector of costs which has to be covered by a pre-defined budget C. Once
the budget is consumed, the game finishes. An extension of the EXP3 algorithm allows
deriving a strategy in the adversarial setting with regret of order O

(√
KC log(K/m)

)
.

The cost of each arm is supposed to be in an interval [cmin, 1], for a positive constant cmin.
Hence the total number of rounds in this game T satisfies T = Θ(C/m). Another online
problem aims at minimizing the cumulative regret in an adversarial setting with a small
effective range of losses. Gerchinovitz and Lattimore [2016] have shown the impossibility
of regret scaling with the effective range of losses in the bandit setting, while Thune and
Seldin [2018] showed that it is possible to circumvent this impossibility result if the player
is allowed one additional observation per round. However, it is impossible to achieve a
regret dependence on T better than the rate of order O

(√
T
)
in this setting.

Decoupling exploration and exploitation was considered by Avner et al. [2012]. In each
round, the player plays one arm, then chooses one arm out of K to see its prediction (not
necessarily the played arm as in the canonical multi-armed bandits problem). They devised
algorithms for this setting and showed that the dependence on the number of arms K can
be improved. However, it is impossible to achieve a regret dependence on T better than
O
(√
T
)
.

Prediction with limited expert advice was also investigated by Helmbold and Panizza
[1997],Cesa-Bianchi and Lugosi [2006, Chap. 6] and Cesa-Bianchi et al. [2005]. However,
in these problems, known as label efficient prediction, the forecaster has full access to the
experts advice but limited information about the past outcomes of the sequence to be
predicted. More precisely, the outcome yt is not necessarily revealed to the learner. In
such a framework, the optimal regret is of order O

(√
T
)
.

Constant regrets in the full information setting: The setting where the learner
plays a combination of all the experts and is allowed to see all their predictions in each round
is known in the literature as experts aggregation problem. It is a well-established framework
[Cesa-Bianchi and Lugosi, 2006] studied earlier by Freund and Schapire [1997], Kivinen and
Warmuth [1999], Vovk [1998]. This setting was investigated under the assumption that
the loss ` function is η-exp-concave (i.e., the function exp(−η`) is concave). The Weighted
Average Algorithm algorithm [Kivinen and Warmuth, 1999] is known to achieve a constant
regret of order O(log(K)/η). While this result holds for any sequence of target variable
and experts, it requires using a combination of all the experts in each round. In several
situations, it is desirable to query and use the least number possible of experts advice for
various reasons (such as cost or time restrictions). In this paper, we aim at achieving the
same bounds (with high probability) under such constraints.
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Fast rates in the batch setting: Another line of works investigated the problem
of experts (or estimators) aggregation in the batch setting with stochastic and i.i.d sam-
ples (i.e., each expert’s predictions are assumed to follow an independent and identical
distribution, see Tsybakov, 2003). There are two distinct phases: a first step where the
learner has access to training data points, then a prediction step where she outputs a com-
bination of experts. The output in this setting is compared against the best expert. A
non-exhaustive list of works considering this problem includes those of Audibert [2008a],
Lecué and Mendelson [2009], and Saad and Blanchard [2021], where the emphasis was put
on obtaining O(1/T ) “fast” rates for excess risk with high probability under some convexity
assumptions on the loss function. However, these algorithms are not translatable to the
adversarial setting since some of the previous strategies rely on the early elimination of
sub-optimal experts. Saad and Blanchard [2021] presented a budgeted setting where the
learner is constrained to see at most m experts forecasts per data point and can predict
using p experts. This paper is an extension of their framework in the adversarial setting
with a cumulative regret.

Online Convex Optimization with bandit feedback: A different objective is
considered in the online convex optimization framework, where the losses are compared
against the best convex combination of the experts. This problem was studied by Agarwal
et al. [2010] and Shamir [2017] under limited feedback. More precisely, the learner can query
the value of the loss function in two points from the convex envelope of the compact set
over which the optimization is performed. In such a setting, it was shown that for Lipschitz
and strongly-convex loss functions, it is possible to achieve an expected regret bounded
by O

(
d2 log(T )

)
, where d is the dimension of the linear span of experts (which plays a

similar role to K in our setting). Observe that online convex optimization algorithms (eg.
as considered in the cited references) cannot be applied in our setting, where the player is
not allowed to play (or observe) an arbitrary point in the convex envelope of the experts,
but rather convex combinations with support on p (or m) experts. On the other hand, the
goal aimed at is different as well, since we want to minimize the regret with respect to the
best expert, not with respect to the best convex combination of experts (which would not
be an attainable goal under the considered play restrictions).

Why aim at high probability bounds instead of expectation bounds? Con-
sider an algorithm with internal randomization. From a practical point of view, bounds
on its expected regret do not necessarily translate into a similar guarantee with high prob-
ability. In many applications, such as finance, controlling the fluctuations of risk is very
important. From a mathematical point of view, the “phenomenon" of negative regrets
occurs when the player has a chance of outperforming the benchmark (such as the best-
fixed expert in hindsight) for some rounds. In this case, an algorithm may have optimal
expected regret but sub-optimal deviations. A manifestation of this problem is for the
EXP3 algorithm in multi-armed bandit setting (p = m = 1 in Protocol 21), which has a
worst case regret of

√
KT in expectation, but the random regret can be linear Ω(T ) with
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constant probability (see the exercises of Chapter 11 of Lattimore and Szepesvári, 2020).

5.3 Main results: Algorithm with upper bounds in expec-
tation

In this section, we introduce a new algorithm with constant bounds on the expected
regret, for the setting: p = 2 and m ≥ 3. The aim of this section is to present some central
intuitions, which are complemented in the next section to achieve stronger guarantees. To
ease notation, we denote for each i ∈ JKK and t ∈ JT K: `i,t := `(Fi,t, yt).

The high-level idea of Algorithm 18 is common in the literature. It consists in con-
structing unbiased estimates of unseen losses, which are fed to the classical exponential
weighting (EW) scheme over the experts. The first novelty introduced here is that the
estimates are centered in a “data-dependent" way, whose goal is to reduce variance. This
variance control is essential in our analysis (see sketch of the proof below) in order to have
constant regrets.

Let us denote p̂t the probability distribution derived by the EW principle using esti-
mated cumulated losses L̂i,t over the set of experts at round t. The second novelty consists
in sampling just two experts It and Jt, independently at random following p̂t, and m − 2
additional experts uniformly at random for exploration. Then, we play the mid-point of
the predictions of It and Jt (i.e., predict we predict 1

2FIt,t + 1
2FJt,t).

The main idea for getting a constant regret bound is to compensate the variance term
introduced by the estimates (ˆ̀

i,t) by the negative second order term in inequality (5.1)
satisfied by the loss. The following theorem presents a constant bound on the expected
regret, with a sketch of the proof.
Define the following constant

λ̄ := min

4 log
(
1 + η2B2

2

)
ηB2 ,

1
B

. (5.2)

Theorem 5.3.1. Suppose Assumption 7 holds. For any input parameter: λ ∈
(
0, m−2

4K λ̄
)
,

where λ̄ is defined in (5.2), the expected regret of Algorithm 18 satisfies:

E[RT ] ≤ log(K)
λ

,

where the expectation is with respect to the learner’s own randomization.

Remark 5.3.2. Comparing this result with the guarantees of the classical exponential
weights averaging (EWA) algorithm, one can notice that in the full information feedback
setting (m = K), our guarantee is of the same order, up to a numerical constant, as the
constant regret bound for EWA for exp-concave losses. The advantage of our procedure
is that it necessitates sampling only two experts from the EW distribution instead of full
averaging. In the partial feedback case (m < K), Algorithm 18 guarantees a regret of

118



Algorithm 18 Prediction with limited advice (p = 2,m ≥ 3)
Input Parameters: λ, m.
Initialize: L̂i,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do

Let

p̂i,t =
exp

(
−λL̂i,t−1

)
∑
j exp

(
−λL̂j,t−1

) .
Draw It and Jt according to p̂t independently.
Play: 1

2FIt,t + 1
2FJt,t, and incur its loss.

Sample m − 2 experts uniformly at random without replacement from JKK.
Denote Ut this set of experts.
Query Ct = Ut ∪ {It, Jt}.
for i ∈ JKK do

Let
ˆ̀
i,t = K

m− 21(i ∈ Ut) `i,t +
(

1− K

m− 21(i ∈ Ut)
)
`It,t.

Update L̂i,t = L̂i,t−1 + ˆ̀
i,t.

end for
end for

order O(K log(K)/m), as one would expect, the factor K/m reflects the proportion of the
information available to the learner. The last bound is tight, up to a logarithmic factor in
K (see Theorem 5.5.1).

Proof. Let (Ft) denote the natural filtration associated to the process of available infor-
mation, (St, Ct, (`i,t)t∈Ct), and denote Pt−1 resp. Et−1 the conditional probability resp.
expectation with respect to Ft−1 (“past observations”). The loss functions `t satisfy As-
sumption 7. Therefore, using Lemma 5.1.3, the expected cumulative loss of Algorithm 18
is given by

T∑
t=1

E
[
`t

(
FIt,t + FJt,t

2

)]
≤

T∑
t=1

E
[

1
2`It,t + 1

2`Jt,t −
λ̄

2 (`It,t − `Jt,t)2
]

=
T∑
t=1

K∑
i=1

E[p̂i,t `i,t]︸ ︷︷ ︸
Term 1

− λ̄2

T∑
t=1

K∑
i,j=1

E
[
p̂i,tp̂j,t(`i,t − `j,t)2

]
︸ ︷︷ ︸

Term 2

. (5.3)

Observe that by construction of Algorithm 18, the elements in Ut were sampled uniformly
at random without replacement from JKK. Moreover, Ut is independent of It. Therefore,
ˆ̀
i,t is an unbiased estimator of `i,t conditionally to the available information: Et−1[ˆ̀i,t] =
`i,t.
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Using the tower rule, Term 1 therefore writes∑t

∑
i E[p̂i,t ˆ̀i,t]. Next, we use Lemma 5.E.1

in the Appendix (by cancellation of consecutive logarithmic terms) with µt = ∑K
i=1 p̂i,t`i,t

for each t ∈ JT K. We have the following upper bound for Term 1 in (5.3):
T∑
t=1

K∑
i=1

E
[
p̂i,t ˆ̀

i,t

]
≤ min

i∈JKK

T∑
t=1

E
[
ˆ̀
i,t

]
+ log(K)

λ
+ λ

T∑
t=1

K∑
i=1

E
[
p̂i,t
(

ˆ̀
i,t − µt

)2
]
. (5.4)

We use the definition of ˆ̀
i,t and the tower rule to upper bound the last term in (5.3):

E
[
K∑
i=1

p̂i,t
(

ˆ̀
i,t − µt

)2
]
≤ 2K
m− 2E

[
K∑
i=1

p̂i,t(`i,t − µt)2
]

+ 2K
m− 2E

[
(`It,t − µt)2

]

= 4K
m− 2E

[
K∑
i=1

p̂i,t(`i,t − µt)2
]
.

Finally, we combine (5.3), (5.4) and the bound above to obtain

E[RT ] ≤ log(K)
λ

+ λ
4K
m− 2E

[
K∑
i=1

p̂i,t(`i,t − µt)2
]
− λ̄

T∑
t=1

K∑
i,j=1

E
[
p̂i,tp̂j,t(`i,t − `j,t)2

]
.

Recall that if X and Y are two independent and identically distributed variables, we have
E[(X − Y )2] = 2 Var(X). Applying this identity to Term 2 in (5.3), we have

E[RT ] ≤ log(K)
λ

+
(
λ

4K
m− 2 −

1
B

)
E
[
K∑
i=1

p̂i,t(`i,t − µt)2
]
.

We conclude using λ < m−2
4K λ̄.

5.4 Main results: Algorithms with high probability upper
bounds

In this section, we present new algorithms with guarantees that hold with high prob-
ability with respect to the player’s own randomization. As discussed in Section 5.2, high
probability guarantees are important to assess any algorithm’s goodness due to potential
exposure to negative regrets phenomena and thus the possibility of deviations having larger
order than the expectation.

We introduce sampling strategies for three different settings: p = 2 and m ≥ 3, (p =
2,m = 2, IC = False) and (p = 2,m = 2, IC = True), presented in Algorithms 19 and 20;
Algorithm 19 is common to the first two settings. To ease notations, we denote for each
i ∈ JKK and t ∈ JT K: `i,t := `(Fi,t, yt).

In Algorithms 19 and 20, we build on the idea presented in Algorithm 18 and construct
estimates of unseen losses, which are fed into an EW scheme from which experts are
sampled. Let p̂t denotes the resulting estimated EW distribution. The main differences
between the algorithms below and Algorithm 18 are (a) the constructed loss estimates and
(b) the sampling strategy when m = 2 and IC = True.
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Modified loss estimates: We start with the same unbiased loss estimates, with
data-dependent centering, from Algorithm 2, but additionally introduce a negative (or
“optimistic”) bias on the estimated losses, which takes into account an estimated variance.
This can be conceptually compared to the uniform confidence bound (UCB) algorithm
in the standard stochastic bandit setting, which will select “optimistically” arms which
have the highest potential reward given past information (here, loss is a negative reward).
In this sense, this term tends to encourage diversity in expert sampling (i.e. encourage
sampling experts with a possibly higher estimated loss but also larger variance than the
best estimated experts so far). This is used in both Algorithms 19 and 20.

In the case m ≥ 3 or (m = 2, IC = False), there is still at least one free observation left
for exploration decoupled from exploitation. In these settings, Algorithm 19 uses the same
sampling scheme as Algorithm 18, namely sampling independently at random two experts
following p̂t and playing the central point of the sampled predictions. The remaining “pure
exploration” observations are sampled uniformly at random, with replacement.

Modified sampling scheme: the case (m = 2, IC = True) is more difficult since
there is no “free exploration” observation possible. This is the counterpart of the explo-
ration/exploitation tradeoff of the standard bandit setting, in the framework where we aim
at constant regrets (so that playing combinations of at least two arms is necessary, see next
section). Taking inspiration from the standard bandit setting literature (p = m = 1), intro-
ducing a small uniform exploration component appears necessary for the sampling strategy
for algorithms achieving optimal high probability guarantees (Audibert and Bubeck, 2010b,
Auer et al., 2002, Beygelzimer et al., 2011, Bubeck et al., 2012). For example, EXP3.P
mixes the EW sampling rule with a uniform distribution over the arms. On the other
hand, EXP-IX [Neu, 2015] incorporates the exploration component implicitly through a
biased estimate of the losses. However, this uniform exploration costs O(

√
KT ) on the

cumulative regret. Hence, aiming at constant regret necessitates a more subtle sampling
rule.

We introduce a two-step sampling strategy. The first expert, denoted At, is sampled
following p̂t. The second expert, denoted Bt, is sampled uniformly at random (possibly Bt
and At are identical). The predictions of (At, Bt) are observed after making a prediction.
For the playing strategy, we sample two experts independently (conditionally to At and
Bt) at random, following the restriction of the law p̂t on {At, Bt}, and we play the central
point of the two sampled experts. Therefore, depending on the outcome of the second
step, the algorithm’s prediction can be either one of the two pre-selected experts or the
central point of the two experts. This strategy ensures the necessary uniform exploring
component needed in the adversarial problems.

The possibility of having constant regrets guarantees is due to Property (5.1), satisfied
for the loss functions ` under Assumption 7: Lemma 5.1.3 suggests that when predicting
the central point of two experts, the learner benefits from the distance between the played
predictions. This remark is exploited in constructing of the distribution p̂t.

To summarize, the playing strategy relies on three essential ideas: the (conditional for
m = 2) independence of the played experts, the centering scheme for the losses estimates,
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and the second order term to diversify the played arms.

Algorithm 19 (p = 2, m ≥ 3) or (p = 2, m = 2, IC = False)
Input Parameters: λ,m.
Initialize: L̂i,0 = 0, V̂i,0 = 0 for all i ∈ JKK.
Let m̃ = max{m− 2, 1}.
for each round t = 1, 2, . . . do

Let

p̂i,t =
exp

(
−λL̂i,t−1 + λ2V̂i,t−1

)
∑K
j=1 exp

(
−λL̂j,t−1 + λ2V̂j,t−1

) . (5.5)

Sample It and Jt according to p̂t from JKK independently.
Play: 1

2FIt,t + 1
2FJt,t, and incur its loss.

Sample m̃ experts without replacement, independently and uniformly at ran-
dom from JKK. Denote Ut this set of experts.
if m ≥ 3 then

Let Ct = {It, Jt} ∪ Ut.
else if m = 2 then

Let Ct = {It} ∪ Ut.
end if
Observe: `i,t for i ∈ Ct.
for i ∈ JKK do

Let

ˆ̀
i,t = K

m̃
1(i ∈ Ut) `i,t +

(
1− K

m̃
1(i ∈ Ut)

)
`It,t (5.6)

v̂i,t =
(

ˆ̀
i,t − `It,t

)2
(5.7)

Update L̂i,t = L̂i,t−1 + ˆ̀
i,t and V̂i,t = V̂i,t−1 + v̂i,t.

end for
end for

Remark 5.4.1. • The proposed algorithm can be implemented in an efficient way,
so that after a one-time computational cost of O(K) for initialization, the compu-
tational cost of each round, including suitably keeping track of the distribution p̂t
and sampling from it, is O(m logK) (see Appendix 5.K for details). Therefore, the
computational complexity also depends mildly on the number of experts K.

• Since our analysis suggests that we can restrict possible plays to mid-points of just
two experts, one could argue that the coupled setting (p = m = 2, IC=True) looks
quite similar to learning with expert advice with bandit feedback, where the possible
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Algorithm 20 (p = 2, m = 2, IC = True)
Input Parameters: λ.
Initialize: L̂i,0 = 0 for all i ∈ JKK.
for each round t = 1, 2, . . . do

Let

p̂i,t =
exp

(
−λL̂i,t−1 + λ2V̂i,t−1

)
∑K
j=1 exp

(
−λL̂j,t−1 + λ2V̂j,t−1

) .
Sample one expert from JKK, denoted At, according to p̂t, and one expert from
JKK, denoted Bt, independently and uniformly at random. Let Ct = {At, Bt}.
for i ∈ Ct do

Let

q̂i,t =
exp

(
−λL̂i,t−1 + λ2V̂i,t−1

)
∑
j∈Ct exp

(
−λL̂j,t−1 + λ2V̂j,t−1

) .
Draw It from Ct according to q̂t.
Draw Jt from Ct according to q̂t independently from It.
Play: 1

2FIt,t + 1
2FJt,t, and incur its loss.

Observe: `i,t for i ∈ Ct.
end for
for i ∈ JKK do

Let

ˆ̀
i,t = K 1(Bt = i) `i,t + (1−K 1(Bt = i)) `At,t
v̂i,t =

(
ˆ̀
i,t − `At,t

)2

Update: L̂i,t = L̂i,t−1 + ˆ̀
i,t and V̂i,t = V̂i,t−1 + v̂i,t.

end for
end for

arms would be the K2 “bi-experts” that are mid-points of original experts (i, j). One
could therefore think of a more direct approach: simply applying a bandit-type strat-
egy, say EXP3.P or EXP3-IX (Auer et al., 2002 and Neu, 2015, respectively) to
these K2 “arms”. However, existing generic results only guarantee a “slow” O(

√
T )

regret with respect to the best “bi-expert”, and this cannot be compensated in gen-
eral by exp-concavity, as the best “bi-expert” may not be much better than the best
expert (if the experts are “correlated”: see proof of lower bounds in Theorem 5.5.1
and 5.5.3). Furthermore, in the playing strategy of EXP3.P and EXP3-IX, each
pair of experts is played Ω(

√
K2T ) times, due the uniform exploration component of

their sampling schemes. This will lead regrets scaling with
√
T .
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Theorem 5.4.2. Suppose Assumption 7 holds.
Consider the case (m ≥ 3 and p = 2) or (m = 2 and p = 2 and IC = False). For any

input parameter λ ∈
(
0, m−1

128K λ̄
)
, where λ̄ is defined in (5.2), the regret of Algorithm 19

satisfies with probability at least 1− 8δ, with respect to the player’s own randomization

RT ≤ c
1
λ

log
(
λ̄K

λδ

)
,

where c is a numerical constant.

Theorem 5.4.3. Suppose Assumption 7 holds.
Consider the case p = m = 2 and IC = True. For any input parameter λ ∈

(
0, λ̄

352K2

)
,

where λ̄ is defined in (5.2), the regret of Algorithm 20 satisfies with probability at least
1− 8δ, with respect to the player’s own randomization

RT ≤ c
( 1
λ

+ K

λ̄

)
log
(
λ̄K

λδ

)
,

where c is a numerical constant.

Discussion Notice that prior knowledge on the confidence level δ is not required by
Algorithms 19 and 20. The presented bounds in theorems above are valid for any δ ∈ (0, 1).
Observe that taking λ close tom/(128K) λ̄ leads to a bound of the orderO(K log(Kδ−1)/m)
in Theorem 5.4.2, which is minimax optimal up to a log(K) factor (Theorem 5.5.1). Tak-
ing λ close to 1/(352K2) λ̄, leads to a bound of the order O(K2 log(Kδ−1)) in the special
setting p = m = 2 with IC = True. This bound presents a gap of factor K with the
lower bound presented in Theorem 5.5.1. We emphasize that in the last setting, the player
chooses two experts to combine their predictions and observes only the feedback of these
two experts. Hence, unlike the setting considered in Theorem 5.4.2, the player is deprived
of additional ’freely chosen’ experts to explore their losses. This constraint necessitates a
more careful playing strategy, presented in Algorithm 20.

5.5 Lower bounds

In this section, we provide lower bounds matching the upper bounds in Theorem 5.4.2,
up to a logarithmic factor in K (except for the case p = m = 2, where we have a gap of
factor K). The techniques of the proof are similar to the ones presented by Auer et al.
[1995]. The main difference comes from the construction of the experts’ distributions.

Theorem 5.5.1. Let ` be the squared loss: `(x, y) = (x − y)2 on X = Y = [0, 1].
Consider the game protocol presented in Algorithm 21 with m ≥ 2 and p ≥ 2 and IC ∈
{False,True}. The expected regret satisfies:

inf supE[RT ] ≥ c K
m
,

124



where c is a numerical constant, the infinimum is over all playing strategies and the supre-
mum is over all individual sequences.

Remark 5.5.2. The lower bound presented in Theorem 5.5.1 is valid for any p ≤ K.
Algorithms 19 and 20 match it (up to a log factor in K) using only p = 2, suggesting that
no significant improvements can be obtained if we are allowed to predict using more than
two experts.

Theorem below is of theoretical interest, it shows that if only one feedback is received
per round, then constant regrets are not achievable.

Theorem 5.5.3. Let ` be the squared loss: `(x, y) = (x − y)2 on X = Y = [0, 1]. Con-
sider the game protocol presented in Algorithm 21 with m = 1 and p ∈ JKK and IC ∈
{False,True}, we have

inf supE[RT ] ≥ c
√
KT,

where c is a numerical constant, the infinimum is over all playing strategies and the supre-
mum is over all individual sequences.

For the sake of completeness, we state the following lower bound from Seldin et al.
[2014].

Theorem 5.5.4 (Direct consequence of Seldin et al., 2014). Let ` be the squared loss:
`(x, y) = (x−y)2 on X = Y = [0, 1]. Consider the game protocol presented in Algorithm 21
with p = 1 and m ∈ JKK and IC ∈ {False,True}, we have

inf supE[RT ] ≥ c
√
K

m
T,

where c is a numerical constant, the infinimum is over all playing strategies and the supre-
mum is over all individual sequences.

5.6 Discussion and open questions

• In the setting p = m = 2 with coupled exploration-exploitation (IC = True), Al-
gorithm 20 presents a strategy with a bound of order O(K2 log(Kδ−1)), while the
lower bound presented in Theorem 5.5.1 is of order O(K). It would be of interest to
close this gap.

• Previous works on achieving constant regret under a full observation model only
assumed exp-concavity of the loss (see e.g. Cesa-Bianchi and Lugosi, 2006, Chap.
3). In the limited observation setting, we additionally assume that the loss function is
bounded by a constant B known to the player. It would be of interest to determine if
this condition is necessary. We note, however that loss boundedness is an important
ingredient in applying Bernstein-type inequalities for bounds in high probability.
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• In the stochastic (i.i.d. experts and target variables) setting, a variation of the expert
elimination strategy proposed by Saad and Blanchard [2021] (suitably adapted to
tackle cumulative regret) can be shown to have fast rates for regret in an instance-
free setting, as well as suitable instance-dependent performance bounds (i.e., the
bound depends on the average performance of experts and their correlation, elimi-
nating clearly sub-optimal experts earlier). This a fairly different strategy from the
exponential weighting variations proposed here. In the bandit setting, Seldin and
Slivkins [2014] have proposed a strategy that reaches almost optimal bounds both
in the stochastic and the adversarial settings. It would be interesting to investigate
whether such an omnibus strategy exists.

• We have shown that p = 2 is sufficient to get constant regret with respect to the
best expert, using a strong convexity-type assumption on the loss. For p = K, for
an exp-concave loss there exist strategies having constant regret with respect to the
best convex combination of experts (e.g. Cesa-Bianchi and Lugosi, 2006, Theorem.
3.3), albeit with a O(K) scaling of the regret. It would be interesting to study if
“intermediate” situations exist, for example if it is possible to have constant regret
with respect to k-combinations of experts using only p = O(k) expert predictions.
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Appendix: detailed proofs

5.A Notation

The following notation pertains to all the considered algorithms, where t is a given
training round and T is the game horizon:

• For any x > 0, let log+
2 (x) = max{0, log2(x)}.

• Let RT denote the cumulative random regret of the player over T rounds.

• Let St denote the set of combined experts to make a prediction at round t.

• Let Ct denote the set of observed experts after making the prediction at round t.

• For each i ∈ St, let αi,t denote the weight of expert i in the convex combination
played in round t.

• Let (Ft)t denote the natural filtration associated with the process (St, Ct, (`i,t)i∈Ct)t.

• Denote the conditional expectation with respect to Ft by Et[.] = E[.|Ft].

• For each expert i ∈ JKK, let Ni denote the number of times the prediction of expert
i was observed during the game (over T rounds).

• For each expert i ∈ JKK, letMi denote the number of times the prediction of expert i
was used for prediction during the game (over T rounds): Mi := |{t ∈ JT K : i ∈ St}|.

• For each expert i ∈ JKK, we define `i,t = `(Fi,t, yt).

• Denote by `t : X → R such that ∀x ∈ JXK : `t(x) = `(x, yt).

Notation associated to Algorithms 19 and 20

• Let It and Jt denote the experts used for prediction in round t.

• Let Ut the set of experts queried for exploration (sampled uniformly without replace-
ment from JKK). In Algorithm 20 let Ut = {Bt}.

• Let m̃ = max{1,m− 2}.

5.B Some preliminary technical results

The following device is standard (it is used for instance for proving Bennett’s inequal-
ity).
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Lemma 5.B.1. Let X be a random variable with finite variance, such that X ≤ b almost
surely for some b > 0. For any λ > 0:

log
(
EeλX

)
≤ λE[X] + φ(λb)

b2
E[X2].

Where φ(x) = exp(x)− 1− x.

Proof. The function x 7→ x−2φ(x) is non-decreasing on R. As a consequence, if X ≤ b

a.s., for any λ > 0 it holds exp(λX) ≤ φ(λb)
b2 X2 + 1 + λX, a.s. Taking the expectation,

then applying the inequality log(1 + t) ≤ t yields the result.

Corollary 5.B.2. Let X be a random variable with finite variance, such that X ≥ −b
almost surely for b > 0. For any λ ∈

(
0, 1

b

)
:

log
(
Ee−λX

)
≤ −λE[X] + λ2E[X2].

Proof. This corollary is a direct consequence of applying Lemma 5.B.1 to the variable
−X ≤ b, then using the fact that ∀x ≤ 1 : φ(x) ≤ x2.

We now introduce some technical lemmas used in the proofs. Let us start by reminding
the following standard result (see Theorem 1.1.4 Niculescu and Persson, 2006).

Lemma 5.B.3. A continuous function f : X → R, where X is a convex set, is convex if
and only if: for any x, x′ ∈ X :

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′).

Lemmas below give some bounds for some functions.

Lemma 5.B.4. • We have for any x ∈ R

1 + x2

2 ≤ cosh(x) ≤ exp(x2/2).

• Let c > 0. We have for any x ∈ [0, c]

log(1 + x) ≥ log(1 + c)
c

x.

Proof. The first and third result is a direct consequence of Taylor’s expansion. The second
result follows simply by concavity of x→ log(1 + x).

Lemma 5.B.5. We have for any x, y > 0

log+
2 (x)− x

y
≤ log+

2 (y).
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Proof. Let x, y > 0, we have

log2(y) = log2(x)− log2

(
x

y

)
≥ log2(x)− x

y
,

where we used the fact that log2(t) ≤ t for any t > 0. To conclude we use the inequality

(a)+ − b ≤ (a− b)+,

valid for any a ∈ R and b > 0.

5.C Proof of Lemma 5.1.3

Let y ∈ Y. In this proof, we will denote `(.) instead of `(., y) so as to ease notation.

5.C.1 First claim
By exp-concavity of `, we have for any x, x′ ∈ X

1
2 exp{−η`(x)}+ 1

2 exp
{
−η`(x′)

}
≤ exp

{
−η`

(
x+ x′

2

)}
.

Multiplying both sides by exp
{

1
2η`(x) + 1

2η`(x′)
}
, we have

1 + η2(`(x)− `(x′))2

2 ≤ exp
{
η

2 `(x) + η

2 `(x
′)− η`

(
x+ x′

2

)}
,

where we used the first result of Lemma 5.B.4 to lower bound the left hand side.
Introducing the logarithm and using the second result of Lemma 5.B.4, we obtain

2 log
(
1 + η2B2

2

)
η2B2 η2(`(x)− `(x′)

)2 ≤ η

2 `(x) + η

2 `(x
′)− η`

(
x+ x′

2

)
.

We conclude that

`

(
x+ x′

2

)
≤ 1

2`(x) + 1
2`(x

′)− 1
2c
(
`(x)− `(x′)

)2
,

where

c = ηB2

4 log
(
1 + η2B2

2

) .
5.C.2 Second claim

Let c > 0, we denote E(c) the set of functions f : X → R, such that for any x, x′ ∈ X :

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− 1

2c
(
f(x)− f(x′)

)2
. (5.8)
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Lemma 5.C.1. For any c > 0, we have for any f ∈ E(c)

sup
x,x′∈X

∣∣f(x)− f(x′)
∣∣ ≤ c.

Proof. Put ∆xx′ = f(x′) − f(x), and ∆∗ = supx,x′∈X ∆xx′ . We first prove that ∆∗ ≤ 3c.
Assume this is not the case and let x, x′ ∈ X be such that ∆xx′ > 3c. Let z := 1

2(x+ x′).
Using f ∈ E(c), we obtain

∆xz = f(z)− f(x) ≤ 1
2
(
f(x′)− f(x)

)
− 1

2c(f(x′)− f(x))2 = 1
2∆xx′ −

1
2c∆2

xx′ ≤ −∆xx′ ,

where the last inequality holds because ∆xx′ > 3c. Hence ∆zx > 3c and in turn, if x1 :=
1
2(x+ z), reiterating the above argument we get ∆x1z > 3c and in particular f(x1) < f(z).
Also, we have ∆zx′ = ∆zx + ∆xx′ > 3c, therefore putting x′1 := 1

2(x′ + z), again by the
same token we get f(x′1) < f(z). This is a contradiction, since z = 1

2(x1 + x′1), thus
Assumption 7 implies that f(z) ≤ max(f(x1), f(x′1)).

Since ∆∗ is finite, m := infx∈X f(x) is finite. For any ε > 0, let xε be such that f(xε) ≤
m+ ε. For any x′ ∈ X, putting again z := 1

2(x+ x′), it must be the case that ∆xεz ≥ −ε,
and using again the above display it must hold −ε ≤ ∆xεz ≤ 1

2∆xεx′ − 1
2c∆2

xεx′
. This

implies ∆xεx′ ≤ c+G(ε) for any x′ ∈ X , with G(ε) = O(ε). Since ∆∗ ≤ ε+ supx′∈X ∆xεx′ ,
we conclude to ∆∗ ≤ c by letting ε→ 0.

Lemma 5.C.2. For any c > 0, we have for any continuous function f ∈ E(c): f is
(4/c)-exp-concave.

Proof. Fix c > 0 and f ∈ E(c). Let x, x′ ∈ X . Let us prove that

1
2 exp

{
−4
c
f(x)

}
+ 1

2 exp
{
−4
c
f(x′)

}
≤ exp

{
−4
c
f

(
x+ x′

2

)}
. (5.9)

Recall that since f ∈ E(c), inequality (5.8) gives

2
c2
(
f(x)− f(x′)

)2 ≤ 2
c
f(x) + 2

c
f(x′)− 4

c
f

(
x+ x′

2

)
.

We introduce the exp function on both sides of the inequality and use the first result of
Lemma 5.B.4 to lower bound the left hand side. We have

1
2 exp

{2
c

(
f(x)− f(x′)

)}
+1

2 exp
{2
c

(
f(x′)− f(x)

)}
≤ exp

{2
c
f(x) + 2

c
f(x′)

}
exp

{
−4
c
f

(
x+ x′

2

)}
,

which proves (5.9). We conclude using the characterization provided by Lemma 5.B.3.

5.C.3 Third claim
Lemma 5.C.3. Let f : X → R be a L-Lipschitz and ρ-strongly convex function, then
f ∈ E

(
4L2/ρ

)
.
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Proof. By strong convexity of f , we have for any x, x′ ∈ X

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− ρ

8
∥∥x− x′∥∥2

.

Moreover, f(.) is L-Lipschitz, hence: |f(x)− f(x′)| ≤ L‖x− x′‖. Therefore

f

(
x+ x′

2

)
≤ 1

2f(x) + 1
2f(x′)− ρ

8L2
(
f(x)− f(x′)

)2
.

5.D Concentration inequality for martingales

We recall Bennett’s inequality:

Theorem 5.D.1. Let Z,Z1, . . . , Zn be i.i.d random variables with values in [−B,B] and
let δ > 0. Then with probability at least 1− δ in (Z1, . . . , Zn) we have

∣∣∣∣∣E[Z]− 1
n

n∑
i=1

Zi

∣∣∣∣∣ ≤
√

2 Var[Z] log(2/δ)
n

+ 2B log(2/δ)
3n .

We recall Freedman’s inequality (the exposition here is lifted from Fan et al., 2015).
Let (ξi,Fi)i≥1 be a (super)martingale difference sequence. Define Sn := ∑n

i=1 ξi (then
(Sn,Fn) is a (super)martingale), and 〈S〉n := ∑n

i=1 E
[
ξ2
i |Fi−1

]
the quadratic characteristic

of S.

Theorem 5.D.2 (Freedman’s inequality). Assume ξi ≤ B for all i ≥ 1, where B is a
constant. Then for all t, v > 0:

P
[
Sk ≥ t and 〈S〉k ≤ v

2 for some k ≥ 1
]
≤ exp

(
− t2

2(v2 +Bt)

)
. (5.10)

The following direct consequence also appears in [Kakade and Tewari, 2008, Lemma
3] for fixed k. Here we give a version that holds uniformly in k. See also [Gaillard et al.,
2014, Theorem 12] for a related result.

Corollary 5.D.3. Assume ξi ≤ B for all i ≥ 1, where B is a constant. Then for all
δ ∈ (0, 1/3), with probability at least 1− 3δ it holds

∀k ≥ 1 : Sk ≤ 2
√
〈S〉kε(δ, k) + 4Bε(δ, k),

where ε(δ, k) := log δ−1 + 2 log(1 + log+
2 (〈S〉k/B2)).

If |ξi| ≤ B for all i ≥ 1, observe that ε(δ, k) ≤ log δ−1 +O(log log k).
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Proof. By standard calculations, it holds that if t ≥ v
√

2 log δ−1 + 2B log δ−1, then
t2

2(v2+Bt) ≥ log δ−1. Therefore (5.10) implies that for any v > 0 and δ ∈ (0, 1), it holds

P
[
∃k ≥ 1 : Sk ≥

√
2v2 log δ−1 + 2B log δ−1 and 〈S〉k ≤ v

2
]
≤ δ. (5.11)

Denote v2
j := 2jB2, δj := (j ∨ 1)−2δ, j ≥ 0, and define the non-decreasing sequence of

stopping times τ−1 = 1 and τj := min
{
k ≥ 1 : 〈S〉k > v2

j

}
for j ≥ 0. Define the events for

j ≥ 0:

Aj :=
{
∃k ≥ 1 : Sk ≥

√
2v2
j log δ−1

j + 2B log δ−1
j and 〈S〉k ≤ v2

j

}
,

A′j :=
{
∃k with τj−1 ≤ k < τj : Sk ≥ 2

√
〈S〉kε(δ, k) + 4Bε(δ, k)

}
.

From the definition of v2
j , δj , we have j = log2(v2

j /B
2) for j ≥ 1. For j ≥ 1, τj−1 ≤ k < τj

implies v2
j−1 = v2

j /2 < 〈S〉k ≤ v2
j , and further

log δ−1
j = log δ−1 + 2 log log2(v2

j /B
2) ≤ ε(δ, k).

Therefore it holds A′j ⊆ Aj . Furthermore, for j = 0, we have v2
0 = B2, δ0 = δ. Further, if

k < τ0 it implies 〈S〉k < B2 and therefore ε(δ, k) = log δ−1. Thus, provided log δ−1 ≥ 1
i.e. δ ≤ 1/e, it holds

A′0 ⊆
{
∃k with k < τ0 : Sk ≥ 4B log δ−1

0

}
⊆
{
∃k ≥ 1 : Sk ≥

√
2v2

0 log δ−1
0 + 2B log δ−1

0 and 〈S〉k ≤ v
2
0

}
= A0.

Therefore, since by (5.11) it holds P[Aj ] ≤ δj for all j ≥ 0:

P
[
∃k ≤ n : Sk ≥ 2

√
〈S〉kε(δ, k) + 4Bε(δ, k)

]
= P

[ ⋃
j≥0

A′j

]
≤ P

[ ⋃
j≥0

Aj

]
≤ δ

∑
j≥0

(j ∨ 1)−2 ≤ 3δ.

Corollary 5.D.4. Assume ξi ≤ b for all i ≥ 1, where b is a constant. Let (νt)t denote an
Ft-measurable sequence, such that for any k ≥ 1: 〈S〉k ≤

∑k
i=1 νi. Then for all c > 0 and

δ ∈ (0, 1/3), with probability at least 1− 3δ it holds

∀k ≥ 1 : Sk −
c

b

k∑
i=1

νk ≤
(8
c

+ 4
)(

log(δ−1) + 2 log+
2

(32 + 16c
c2

))
b.

Proof. Let c > 0 and fix δ ∈ (0, 1/3), we have using Corollary 5.D.3: with probability at

132



least 1− 3δ, it holds for any k ≥ 1

Sk −
c

b

k∑
i=1

νi ≤ 2
√
〈S〉kε(δ, k) + 4bε(δ, k)− c

b

k∑
i=1

νi

≤ 2
√
〈S〉kε(δ, k) + 4bε(δ, k)− c

b
〈S〉k

≤ 2
(
c

4b〈S〉k + 4b
c
ε(δ, k)

)
+ 4bε(δ, k)− c

b
〈S〉k

≤
(8
c

+ 4
)
bε(δ, k)− c

2b〈S〉k

=
(8
c

+ 4
)
b
(
log δ−1 + 2 log

(
1 + log+

2 (〈S〉k/b2)
))
− c

2b〈S〉k

≤
(8
c

+ 4
)
b
(
log δ−1 + 2 log+

2 (〈S〉k/b2)
)
− c

2b〈S〉k

The result follows by upper-bounding the function x→ log+
2 (x)− x/y, for x, y > 0 using

Lemma 5.B.5.

5.E Additional technical results

The following lemma is a consequence of Corollary 5.B.2, the chaining rule (i.e can-
cellation in the sum of logarithmic terms) and Fubini’s theorem. Let (ĥi,t)t∈JT K,i∈JKK be a
Ft-adapted process.

For each i ∈ JKK and t ∈ JT K we define: Ĥi,t := ∑t
i=1 ĥi,s, we use the convention that

Ĥi,0 = 0. Let t ∈ JT K and λ > 0, we define the sequence (p̂i,t)i∈JKK:

p̂i,t :=
exp

{
−λĤi,t−1

}
∑K
j=1 exp

{
−λĤj,t−1

} . (5.12)

For each t ∈ JT K, define:

Ẑt :=
K∑
i=1

exp{−λĤi,t} (5.13)

Mt := log
(
Ẑt
)
− Et−1

[
log(Ẑt)

]
. (5.14)

Lemma 5.E.1. Let b > 0 and (ĥi,t)t∈JT K,i∈JKK be a sequence of numbers taking values in
an interval of length b. For each i ∈ JKK and t ∈ JT K, let Et−1[ĥi,t] = hi,t. Let (αt)t∈JT K
be a sequence such that αt is Ft−1-measurable and:

∀i ∈ JKK, t ∈ JT K,
∣∣∣ĥi,t − αt∣∣∣ ≤ b.

Then for any λ ∈ (0, 1/b), for all t ∈ JT K we have:
T∑
t=1

K∑
i=1

p̂i,t hi,t ≤ min
i∈JKK

T∑
t=1

ĥi,t + log(K)
λ

+ 1
λ

T−1∑
t=1

Mt + λ
T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − αt

)2
]
,

where the sequence (p̂i,t)t∈JT K,i∈JKK is defined by (5.12) and (Mt) is defined by (5.14).
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Proof. Let t ∈ JT K, we denote by p̂t the probability distribution on JKK defined by the
weights (p̂i,t)i∈JKK. We apply Corollary 5.B.2 to the random variable Xt := ĥI,t−αt, where
I is drawn from JKK following p̂t: for any λ ∈ (0, 1/b),

log
(

K∑
i=1

p̂i,t exp
{
−λ
(
ĥi,t − αt

)})
≤ −λ

K∑
i=1

p̂i,t
(
ĥi,t − αt

)
+ λ2

K∑
i=1

p̂i,t
(
ĥi,t − αt

)2
.

Rearranging terms we obtain:
K∑
i=1

p̂i,t ĥi,t ≤ αt −
1
λ

log
((

K∑
i=1

p̂i,t exp{−λĥi,t}
)

exp{λαt}
)

+ λ
K∑
i=1

p̂i,t
(
ĥi,t − αt

)2

= − 1
λ

log
(

K∑
i=1

p̂i,t exp{−λĥi,t}
)

+ λ
K∑
i=1

p̂i,t
(
ĥi,t − αt

)2

= − 1
λ

(
log
(
Ẑt
)
− log

(
Ẑt−1

))
+ λ

K∑
i=1

p̂i,t
(
ĥi,t − αt

)2
,

where Ẑt is defined by (5.13). Taking the conditional expectation with respect to Ft−1
gives

K∑
i=1

p̂i,thi,t ≤ −
1
λ

(
Et−1

[
log
(
Ẑt
)]
− log

(
Ẑt−1

))
+ λ

K∑
i=1

p̂i,tEt−1

[(
ĥi,t − αt

)2
]
.

Summing over t ∈ JT K we obtain:

T∑
t=1

K∑
i=1

p̂i,t hi,t ≤
log(Z0)
λ

−
log
(
ẐT
)

λ
+ 1
λ

T−1∑
t=1

Mt + λ
T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − αt

)2
]
.

Finally observe that Z0 = K and that:

− 1
λ

log
(
ẐT
)

= − 1
λ

log
(∑

i

exp{−λĤi,t}
)

≤ min
i∈JKK

Ĥi,t.

5.F A preliminary result for the proof of Theorem 5.4.2
and 5.4.3

In this section we present two key results for the proof of Theorem 5.4.2 and 5.4.3.
Lemma 5.F.5 provides a bound for the cases (p = 2,m ≥ 3) and (p = 2,m = 2, IC = False).
Lemma 5.F.6 presents a similar bound for the particular case (p = 2,m = 2, IC = True).
We decided to separate these two settings because each one requires a different condition
on λ.

We consider the notation of Algorithms 19 and 20. In Algorithm 19 (m ≥ 3), we take
At = It. Recall that m̃ = max{1,m− 2} (as defined in Section 5.A).
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Lemma 5.F.1. For any k ≥ 1,

Et−1

[(
ˆ̀
i,t − `At,t

)k]
=
(
K

m̃

)k−1
Et−1

[
(`i,t − `At,t)k

]
,

where m̃ = max{1,m− 2}.

Proof. Suppose that m ≥ 3. Consider the notation of Algorithm 19. Let k ≥ 1, we have

Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[(
K

m− 21(i ∈ Ut)`i,t +
(

1− K

m− 21(i ∈ Ut)
)
`At,t − `At,t

)k]

= Et−1

[(
K

m− 21(i ∈ Ut)`i,t −
K

m− 21(i ∈ Ut)`At,t
)k]

=
(

K

m− 2

)k
Et−1[1(i ∈ Ut)](`i,t − `At,t)k

=
(

K

m− 2

)k−1
Et−1

[
(`i,t − `At,t)k

]
,

where we used the fact that Ut and At are independent conditionally to Ft−1.
Suppose that m = 2. Consider the notation of Algorithm 20. Let k ≥ 1, we have

Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[(
ˆ̀
i,t − `At,t

)k]
= Et−1

[
(K1(Bt = i)`i,t + (1−K1(Bt = i))`At,t − `At,t)k

]
= KkEt−1

[
1(Bt = i)(`i,t − `At,t)k

]
= Kk−1Et−1

[
(`i,t − `At,t)k

]
.

Introduce the notation

µ̂t :=
∑
i∈JKK

p̂i,t`i,t, (5.15)

ξ̂t := 1
2

∑
i,j∈JKK

p̂i,tp̂j,t (`i,t − `j,t)2, (5.16)

where (p̂i,t) is defined in (5.12). For each t ∈ JT K, let

Ẑt =
K∑
i=1

exp
{
−λL̂i,t + λ2V̂i,t

}
Mt = log

(
Ẑt
)
− Et−1

[
Ẑt
]
, (5.17)

where L̂i,t = ∑t
s=1

ˆ̀
i,t and V̂i,t = ∑t

s=1 v̂i,t, in agreement with the notation used in Algo-
rithms 19 and 20, and in Section 5.E.
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Lemma 5.F.2. Let λ ∈
(
0, 2m̃

K λ̄
)
, where λ̄ is defined in (5.2) and m̃ = max{m − 2, 1}.

For each i ∈ JKK, t ∈ JT K, let ĥi,t = ˆ̀
i,t − λv̂i,t. We have

T∑
t=1

µ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+ 11λK
m̃

T∑
t=1

ξ̂t,

where µ̂t is defined in (5.15), ξ̂t is defined in (5.16) and Mt is defined in (5.17).

Proof. Let hi,t := Et−1[ĥi,t] = `i,t − λEt−1[v̂i,t], we apply Lemma 5.E.1 to the sequence
(ĥi,t)i,t. We take αt = µ̂t, which is an Ft−1-measurable process. For each i ∈ JKK and
t ≥ 0, we have

T∑
t=1

K∑
i=1

p̂i,thi,t ≤ min
i∈JKK

T∑
t=1

ĥi,t+
log(K)
λ

+ 1
λ

T∑
t=1

Mt+λ
T∑
t=1

K∑
i=1

p̂i,tEt−1

[(
ĥi,t − µ̂t

)2
]
. (5.18)

Now, let us develop a lower bound on the left hand side of the inequality above. Recall
that in Algorithm 19, we take At = It, then At ∼ p̂t. In Algorithm 20, Lemma 5.G.1
shows that At ∼ p̂t. Fix t ∈ JT K, we have:

K∑
i=1

p̂i,thi,t =
K∑
i=1

p̂i,t(`i,t − λEt−1[v̂i,t])

=
K∑
i=1

p̂i,t`i,t − λ
K∑
i=1

p̂i,tEt−1

[(
ˆ̀
i,t − `At,t

)2
]

=
K∑
i=1

p̂i,t`i,t − λ
K

m̃

(
K∑
i=1

p̂i,t(`i,t − µ̂t)2
)
− λK

m̃
Et−1

[
(`At,t − µ̂t)2

]
= µ̂t − 2λK

m̃
ξ̂t, (5.19)

where we used in the second line the definition v̂i,t =
(

ˆ̀
i,t − `At,t

)2
, Lemma 5.F.1 with

k = 2 in the third line, and the fact that At is distributed following p̂ in the third and
fourth line.

Next, we develop an upper bound on the last term of the right hand side of (5.18).
We have

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 2

T∑
t=1

K∑
i=1

p̂i,t

{
Et−1

[(
ˆ̀
i,t − µ̂t

)2
]

+ λ2Et−1
[
v̂2
i,t

]}
. (5.20)
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Fix t ∈ JT K. Let us bound each of the terms in the right hand side of the inequality above

K∑
i=1

p̂i,tEt−1

[(
ˆ̀
i,t − µ̂t

)2
]
≤

K∑
i=1

2p̂i,t
(
Et−1

[(
ˆ̀
i,t − `At,t

)2
]

+ Et−1
[
(`At,t − µ̂t)2

])

= 2Et−1
[
(`At,t − µ̂t)2

]
+ 2K

m̃

K∑
i=1

p̂i,tEt−1
[
(`i,t − `At,t)2

]

= 2ξ̂t + 2K
m̃

K∑
i=1

p̂i,t
{

(`i,t − µ̂t)2 + Et−1
[
(`At,t − µ̂t)2

]}
≤ 6K

m̃
ξ̂t, (5.21)

where we used Lemma 5.F.1 for the second line. Moreover, using the same Lemma 5.F.1
with k = 4, we have

K∑
i=1

p̂i,tEt−1
[
v̂2
i,t

]
=

K∑
i=1

p̂i,t

(
K

m̃

)3
Et−1

[
(`i,t − `At,t)4

]

≤
(
K

m̃

)3
B2

K∑
i=1

p̂i,tEt−1
[
(`i,t − `At,t)2

]
= 2

(
K

m̃

)3
B2ξ̂t. (5.22)

We plug the bounds obtained from (5.21) and (5.22) into inequality (5.19), and obtain

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 2

(
6K
m̃

+ 2λ2 K3

(m̃)3B
2
)

T∑
t=1

ξ̂t. (5.23)

Recall that by definition (5.2), λ̄ ≤ 1
B . Hence, λ <

2m̃
K λ̄ gives

λ2K
2

m̃2B
2 ≤ 4,

we plug this bound into (5.23) and obtain

T∑
t=1

K∑
i=1

p̂i,t Et−1

[(
ĥi,t − µ̂t

)2
]
≤ 20K

m̃

T∑
t=1

ξ̂t. (5.24)

Next, we plug the bounds obtained in (5.19) and (5.24) into (5.18) to obtain

T∑
t=1

µ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+ 22λK
m̃

T∑
t=1

ξ̂t.

Lemma 5.F.3. Let λ ∈
(
0, 2m̃

K λ̄
)
, where λ̄ is defined in (5.2) and m̃ = max{1,m − 2}.

Consider the martingale difference sequence (Mt)t∈JT K defined in (5.17). We have
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• ∀t ∈ JT K : |Mt| ≤ 3λKm̃B.

• ∑T
t=1 E

[
M2
t

]
≤ 5Km̃λ2∑T

t=1 ξ̂t.

Proof. Observe that the sequence (Mt,Ft)t∈JT K is a martingale difference. For any t ∈ JT K,
we have

Mt = E
[
log
(
Ẑt+1

)
|Ft
]
− log

(
Ẑt
)

= log
(

Ẑt

Ẑt−1

)
− Et−1

[
log
(

Ẑt

Ẑt−1

)]

= log
(

K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)
− Et−1

[
log
(

K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)]
,

where we used the fact that Ẑt−1 is Ft−1-measurable in the second line.
The loss function `(., y) is B-range-bounded for any y. Let cmin and cmax denote the

lower and upper bounds, respectively, for the values of ` (cmax − cmin ≤ B). Therefore,
for any i ∈ JKK, ˆ̀

i,t ∈
[
cmin − K

m̃B, cmax + K
m̃B

]
and v̂i,t ∈ [0, (Km̃ )2B2]. Therefore

exp
(
λcmax −

K

m̃
λB

)
≤ exp

(
−λˆ̀

i,t + λ2v̂i,t
)
≤ exp

(
−λcmin + λ

K

m̃
B + 2λ2K

2

m̃2B
2
)
.

Hence

λcmax − λ
KB

m̃
≤ log

(
K∑
i=1

p̂i,t exp{−λˆ̀
i,t + λ2v̂i,t}

)
≤ −λcmin + λ

KB

m̃
+ 2λ2K

2B2

m̃2

Recall that Mt is a centered variable and λ < m̃
128KB . Therefore

|Mt| ≤ 4λK
m̃
B. (5.25)

Now, let us bound the quadratic characteristic of (Mt)t. We have

Et−1
[
M2
t

]
= Vart−1

(
log
(
Ẑt
))

= Vart−1
(
log
(
Ẑt
)
− log

(
Ẑt−1

))
, (5.26)

where we used the fact that Ẑt−1 is Ft−1-measurable.
Furthermore we have

Ẑt =
K∑
i=1

exp
(
−λL̂i,t + λ2V̂i,t

)

=
K∑
i=1

exp
(
−λL̂i,t−1 + λ2V̂i,t

)
exp

(
−λˆ̀

i,t + λ2v̂i,t
)

=
K∑
i=1

p̂i,tẐt−1 exp
(
−λˆ̀

i,t + λ2v̂i,t
)
.
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Hence

Ẑt

Ẑt−1
=

K∑
i=1

p̂i,t exp
(
−λˆ̀

i,t + λ2v̂i,t
)

=
K∑
i=1

p̂i,t exp
(
−λ
(
`At,t + K

m̃
1(i ∈ Ut)(`i,t − `At,t)

)
+ λ2K

2

m̃21(i ∈ Ut)(`i,t − `At,t)2
)

= exp(−λ`At,t)
K∑
i=1

p̂i,t exp
(
−λK

m̃
1(i ∈ Ut)(`i,t − `At,t) + λ2K

2

m̃21(i ∈ Ut)(`i,t − `At,t)2
)

= exp(−λ`At,t)EA′t

[
exp

(
−λK

m̃
1
(
A′t ∈ Ut

)
(`A′t,t − `At,t) + λ2K

2

m̃21
(
A′t ∈ Ut

)
(`A′t,t − `At,t)

2
)]
,

(5.27)

where A′t is a random variable, independent of At, such that for each i ∈ JKK, P(A′t = i) =
p̂i,t, and EA′t is the expectation with respect to the random variable A′t. So as to ease
notation, denote

Dt := K

m̃
1
(
A′t ∈ Ut

)
(`A′t,t − `At,t)− λ

K2

m̃21
(
A′t ∈ Ut

)
(`A′t,t − `At,t)

2.

We take the logarithm of both sides of inequality (5.27), we have

log
(
Ẑt
)
− log

(
Ẑt−1

)
= −λ`At,t + log

(
EA′t [exp(−λDt)]

)
.

We inject the equality above in (5.26). We obtain

Et−1
[
M2
t

]
= Vart−1

(
−λ`At,t + log

(
EA′t [exp(−λDt)]

))
≤ 2 Vart−1(λ`At,t) + 2 Vart−1

(
log
(
EA′t [exp(−λDt)]

))
≤ 2 Vart−1(λ`At,t) + 2Et−1

[
log2

(
EA′t [exp(−λDt)]

)]
. (5.28)

Observe that

|λDt| =
∣∣∣∣∣λKm̃1(A′t ∈ Ut)

(
`A′t,t − `At,t

)
− λ2K

2

m̃21
(
A′t ∈ Ut

)
(`A′t,t − `At,t)

2
∣∣∣∣∣ ≤ 1

5 .

where we used λ ∈
(
0, m̃

128KB

)
.

The function x 7→ log2(x) is convex on [e−1, e]. Hence, using Jensen’s inequality, we have

Et−1
[
log2

(
EA′t [exp(−λDt)]

)]
≤ Et−1EA′t

[
log2(exp(−λDt))

]
= Et−1EA′t

[
λ2D2

t

]
(5.29)

From (5.28) and (5.29), we conclude that

Et−1
[
M2
t

]
≤ 2λ2 Vart−1(`At,t) + 2Et−1EA′t

[
λ2D2

t

]
≤ 2λ2ξ̂t + 2Et−1EA′t

[
λ2D2

t

]
. (5.30)
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where we used Vart−1(`At,t) = ξ̂t. Furthermore:

Et−1EA′t
[
λ2D2

t

]
≤ 2Et−1EA′t

[
λ2K2

m̃2 1
(
A′t ∈ Ut

)(
`A′t,t − `At,t

)2
+ K4λ4

m̃4 1
(
A′t ∈ Ut

)(
`A′t,t − `At,t

)4
]

≤ 2
(
λ2K2

m̃2 + λ4K4

m̃4 B2
)
Et−1EA′t

[
1
(
A′t ∈ Ut

)
(`A′t,t − `At,t)

2
]

≤ 3λ
2K2

m̃2 Et−1EA′t
[
1
(
A′t ∈ Ut

)
(`A′t,t − `At,t)

2
]

≤ 3λ
2K2

m̃2 EA′t
[
Et−1

[
1
(
A′t ∈ Ut

)]
Et−1

[
(`A′t,t − `At,t)

2
]]

= 3λ
2K2

m̃2
m̃

K

K∑
i,j=1

p̂i,tp̂j,t(`i,t − `j,t)2

= 3K
m̃
λ2ξ̂t, (5.31)

where we used the independence of Ut and At conditionally to Ft−1.
We plug (5.31) into (5.30). Therefore, it holds

T∑
t=1

Et−1
[
M2
t

]
≤

T∑
t=1

(
2λ2ξ̂t + 3K

m̃
λ2ξ̂t

)

≤ 5K
m̃
λ2

T∑
t=1

ξ̂t.

The following lemma provides a bound with high probability on the quantity L̂i,T −
λV̂i,T , for each i ∈ JKK.

Lemma 5.F.4. For any i ∈ JKK and λ ∈ (0, m̃λ̄
128K ), with λ̄ defined in (5.2) and m̃ =

max{1,m− 2}. We have for any δ ∈ (0, 1/3), with probability at least 1− 6δ:

L̂i,T − λV̂i,T ≤ Li,T + 721
λ

log
(

m̃

KBλδ

)
.

Proof. Let i ∈ JKK. Recall that we have for any t ∈ JT K

ˆ̀
i,t − `i,t =

(
K

m̃
1(i ∈ Ut)− 1

)
(`i,t − `At,t)

ˆ̀
i,t − `At,t = K

m̃
1(i ∈ Ut)(`i,t − `At,t).

We introduce the following notation

νi,t := Et−1
[
(`i,t − `At,t)2

]
.
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We have

L̂i,T − λV̂i,T = Li,T +
T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ

T∑
t=1

(
K

m̃

)2
1(i ∈ Ut)(`i,t − `At,t)2

= Li,T +
T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ K2m̃

T∑
t=1

νi,t︸ ︷︷ ︸
Term 21

+ λ
K

2m̃

T∑
t=1

νi,t − λ
T∑
t=1

(
K

m̃

)2
1(i ∈ Ut)(`i,t − `At,t)2

︸ ︷︷ ︸
Term 22

. (5.32)

Bounding Term 21: Observe that (ˆ̀
i,t − `i,t)t is a martingale difference with re-

spect to the filtration F , bounded in absolute value by K
m̃B. Let us bound its quadratic

characteristic. Recall that At and Ut are independent conditionally to Ft−1. We have

T∑
t=1

Et−1
[
(ˆ̀
i,t − `i,t)2

]
=

T∑
t=1

Et−1

[(
1− K

m̃
1(i ∈ Ut)

)2
(`i,t − `At,t)2

]

=
T∑
t=1

Et−1

[(
1− K

m̃
1(i ∈ Ut)

)2
]
Et−1

[
(`i,t − `At,t)2

]

≤ K

m̃

T∑
t=1

Et−1
[
(`i,t − `At,t)2

]

= K

m̃

T∑
t=1

νi,t.

Next, we apply Corollary 5.D.4 to the sequence (ˆ̀
i,t−`i,t)t∈JT K: We take c = λKB/(4m̃) ≤

1, with probability at least 1− 3δ, it holds

T∑
t=1

(
ˆ̀
i,t − `i,t

)
− λ K2m̃

T∑
t=1

νi,t ≤
720
λ

log
(

m̃

KBλδ

)
. (5.33)

Bounding Term 22: Define the sequence (Qt)t∈JT K as follows:

Qt := −λK
2

m̃21(i ∈ Ut)(`i,t − `At,t)2 + λ
K

m̃
νi,t.

Notice that (Qt) is a martingale difference sequence with respect to the filtration F , and
bounded in absolute value by 2λK2B2

m̃2 . Let us bound its quadratic characteristic. We have
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T∑
t=1

Et−1
[
Q2
t

]
≤ λ2

T∑
t=1

Et−1

[
K4

m̃41(i ∈ Ut)(`i,t − `At,t)4
]

≤ λ2K
4B2

m̃4

T∑
t=1

Et−1[1(i ∈ Ut)]Et−1
[
(`i,t − `At,t)2

]

= K3λ2B2

m̃3

T∑
t=1

νi,t.

Next, we apply Corollary 5.D.4 to this sequence. We take c = 1, we have with probability
at least 1− 3δ:

T∑
t=1

Qt − λ
K

2m̃

T∑
t=1

νi,t ≤ 36λK
2

m̃2B
2 log

(
δ−1

)
≤ 9

32B log(δ−1). (5.34)

Conclusion: To conclude, we inject bounds obtain in (5.33) and (5.34) into (5.32).

We provide a key lemma that will be used in the proof of Theorem 5.4.2 and 5.4.3.

Lemma 5.F.5. Let λ ∈
(
0, m̃

128K λ̄
)
, where λ̄ is defined in (5.2). Consider Algorithm 19

with inputs (λ,m). We have with probability at least 1− 9δ
T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
(
m̃

Bλδ

)
where m̃ = max{1,m− 1} and c is a numerical constant.

Proof. For each i ∈ JKK and t ∈ JT K, let ĥi,t := ˆ̀
i,t − λv̂i,t and hi,t := Et−1

[
ĥi,t
]
. Using

Lemma 5.F.2, we have
T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+
(11λK

m̃
− 7

32 λ̄
) T∑
t=1

ξ̂t

≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt −
λ̄

8

T∑
t=1

ξ̂t + log(K)
λ

, (5.35)

where we used the fact that λ ∈
(
0, m̃

128K λ̄
)
.

In order to conclude, we only need bounds on the terms mini∈JKK
∑T
t=1 ĥi,t and 1

λ

∑T
t=1Mt.

Recall that Lemma 5.F.3 shows that (Mt) is a martingale difference sequence and provides
a bound on its conditional variance. Hence, applying Corollary 5.D.4 to this sequence with
c = 3Bλ̄/40, with probability at least 1− 3δ, it holds

1
λ

T∑
t=1

Mt −
m̃λ̄

40λ̄2K

T∑
t=1

5K
m̃
λ2ξ̂t ≤

324K
m̃λ̄

(
log δ−1 + 2 log+

2

( 7024
B2λ̄2

))
.
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We conclude that
1
λ

T∑
t=1

Mt −
λ̄

8

T∑
t=1

ξ̂t ≤ 8428 K
m̃λ̄

log
( 1
Bλ̄δ

)
. (5.36)

Next, to bound the term mini∈JKK
∑T
t=1 ĥi,t we use Lemma 5.F.4. We have with probability

at least 1− 6δ

min
i∈JKK

T∑
t=1

ĥi,t = min
i∈JKK

L̂i,T − λV̂i,T

≤ min
i∈JKK

Li,T + 721
λ

log
(
m̃

Bλδ

)
. (5.37)

Finally, we inject (5.36) and (5.37) into (5.35) and use λ ∈
(
0, m̃

128K λ̄
)
. We obtain that

with probability at least 1− 9δ

T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
(
m̃

Bλδ

)
,

where c is a numerical constant.

The following Lemma is specific to the case m = p = 2 and IC = True in Algorithm 20.

Lemma 5.F.6. Let λ ∈
(
0, λ̄

352K2

)
, where λ̄ is defined in (5.2). Consider Algorithm 20

with input λ. We have with probability at least 1− 9δ

T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
( 1
Bλδ

)
,

where c is a numerical constant.

Proof. For each i ∈ JKK and t ∈ JT K, let ĥi,t := ˆ̀
i,t − λv̂i,t and hi,t := Et−1

[
ĥi,t
]
. Using

Lemma 5.F.2, we have

T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt + log(K)
λ

+
(

11λK − 3λ̄
32K

)
T∑
t=1

ξ̂t

≤ min
i∈JKK

T∑
t=1

ĥi,t + 1
λ

T∑
t=1

Mt −
λ̄

16K

T∑
t=1

ξ̂t + log(K)
λ

, (5.38)

where we used the fact that λ ∈
(
0, λ̄

352K2

)
.

The remainder of the proof is similar to the proof of Lemma 5.F.5.
Lemma 5.F.3 provides the following bound with probability at least 1− 3δ

1
λ

T∑
t=1

Mt −
λ̄

16K

T∑
t=1

ξ̂t ≤
3520
λ̄

log
( 1
Bλ̄δ

)
. (5.39)
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Moreover, Lemma 5.F.4 provides the following bound with probability at least 1− 6δ

min
i∈JKK

T∑
t=1

ĥi,t = min
i∈JKK

Li,T + 721
λ

log
( 1
Bλδ

)
. (5.40)

Finally, we inject (5.39) and (5.40) into (5.38). We obtain that with probability at least
1− 9δ

T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
( 1
Bλδ

)
,

where c is a numerical constant.

5.G On the sampling strategy in the case m = p = 2, IC =
True

Let p denote a distribution over JKK. Let E = {A,B} denote a random set of elements
in JKK, such that A is sampled from JKK following p and B is sampled independently and
uniformly at random from JKK (possibly A = B and E is a singleton). Therefore, we have
for each u, v ∈ JKK, such that u 6= v:

P(E = {u, v}) = pu + pv
K

,

and
P(E = {u}) = pu

K
.

Finally, let pE denote the restriction of the distribution p on E , conditional to E . Let X
denote a random variable following pE

∀i ∈ E : pE(X = i) = p(X = i|E) = pi∑
j∈E pj

.

Let I and J denote two random variables on JKK sampled conditionally to E , independently
following pE (with replacement).

In this section, we prove two results: the marginal distribution of I on JKK is identical
to p, and a bound on the probabilities of the joint unconditional distribution of (I, J).

Lemma 5.G.1. For each i ∈ JKK,

P(I = i) = pi.

Proof. Fix i ∈ JKK. Let K denote the set of subsets of JKK, constituted of at most two
elements.

For any subset a ∈ K, define
pa :=

∑
i∈a
pi.
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We have

P(I = i) =
∑
a∈K

P(I = i, E = a)

= P(I = i|E = {i}) P(E = {i}) +
∑

u∈JKK\{i}
P(I = i|E = {u, i}) P(E = {u, i})

= pi
K

+
∑

u∈JKK\{i}

pi
pu + pi

pu + pi
K

= pi
K

+ pi
K

(K − 1)

= pi.

Lemma 5.G.2. For each i, j ∈ JKK,

P(I = i, J = j) ≥ 1
K
pipj .

Proof. Fix i, j ∈ JKK. Let K denote the set of subsets of JKK, constituted of at most two
elements.

Suppose that i = j. We have

P(I = i, J = i) =
∑
a∈K

P(I = i, J = i, E = a)

=
∑
a∈K

P(I = i, J = i|E = a)P(E = a)

=
∑
a∈K

P(I = i|E = a)2P(E = a),

where we used the fact that I and J are independent conditionally to E and that I and J
follow the same distribution. We use Jensen’s inequality:

P(I = i, J = i) ≥
(∑
a∈K

P(I = i|E = a)P(E = a)
)2

= p2
i .

Now suppose that i 6= j. We have

P(I = i, J = j) = P(I = i, J = j, E = {i, j})
= P(I = i|E = {i, j})P(J = j|E = {i, j})P(E = {i, j})

= pi
pi + pj

pj
pi + pj

pi + pj
K

= pipj
K

.
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5.H Proof of Theorems 5.4.2 and 5.4.3

We consider the notation of Algorithms 19 and 20. Let π̂ij,t = P(It = i, Jt = j|Ft−1).
Introduce (µ̂t and ξ̂t are the same quantities as in the previous section):

µ̂t :=
∑
i∈JKK

p̂i,t`i,t,

ν̂t := 1
2

∑
i,j∈JKK

π̂ij,t (`i,t − `j,t)2

ξ̂t := 1
2

∑
i,j∈JKK

p̂i,tp̂j,t (`i,t − `j,t)2

We have, using (5.8) with c = 1/λ̄ (implied by Assumption 7, see Lemma 5.1.3):

T∑
t=1

`t

(
FIt + FJt

2

)
≤

T∑
t=1

(
1
2`It,t + 1

2`Jt,t −
λ̄

2 (`It,t − `Jt,t)2
)

= 1
2

T∑
t=1
Ut + 1

2

T∑
t=1
U′t −

m̃λ̄

32K

T∑
t=1

ξ̂t −
λ̄

2

T∑
t=1
Wt −

λ̄

4

T∑
t=1

ν̂t︸ ︷︷ ︸
Term 1

+
T∑
t=1

µ̂t + m̃λ̄

32K

T∑
t=1

ξ̂t −
λ̄

4

T∑
t=1

ν̂t︸ ︷︷ ︸
Term 2

,

where
Ut := `It,t − µ̂t; U′t := `Jt,t − µ̂t; Wt := (`It,t − `Jt,t)2 − ν̂t.

Section 5.H.1 below is common to Theorem 5.4.2 and 5.4.3. In Section 5.H.2, we
distinguish between the case where (p = m = 2, IC = True) and (p = 2,m ≥ 3) or
(p = 2,m = 2, IC = False).

5.H.1 Bounding Term 1
Recall that in Algorithm 19 we have by definition of It, conditionally to Ft−1: It ∼ p̂t.

Furthermore, in Algorithm 20, using Lemma 5.G.1, conditionally to Ft−1, we have: It ∼ p̂t.
Hence, (Ut)t∈JT K is a martingale difference sequence bounded in absolute value by B.
Moreover, we have for all t ∈ JT K

E
[
U2
t |Ft−1

]
= ξ̂t.

Next we apply the high probability bound provided by Corollary 5.D.4 to the sequence
(Ut)t∈JT K, with c = m̃Bλ̄/(32K). We have with probability at least 1− 3δ

T∑
t=1
Ut −

m̃

32K λ̄
T∑
t=1

ξ̂t ≤ 7700 K
m̃λ̄

log
(

K

m̃Bλ̄δ

)
. (5.41)
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Recall that in Algorithm 19 and 20, It and Jt have the same marginal distribution. There-
fore, with probability at least 1− 3δ, (5.41) holds with Ut replaced by U′t.
Similarly, the sequence ((−λ̄/2)Wt)t∈JT K is a martingale difference bounded in absolute
value by λ̄B2. For any t ∈ JT K,

λ̄2

4 E
[
W2

t |Ft
]
≤ λ̄2

4 E
[
(`It,t − `Jt,t)4|Ft−1

]
≤ λ̄2B2

4 ν̂t.

Next, we apply Corollary 5.D.4 to the sequence ((−λ̄/2)Wt)t∈JT K: We take c = 1, we have
with probability 1− 3δ:

− λ̄2

T∑
t=1
Wt −

λ̄

4

T∑
t=1

ν̂t ≤ 72λ̄B2 log(δ−1)

≤ 72B log(δ−1). (5.42)

Using (5.41) and (5.42), we conclude that with probability 1− 9δ

Term 1 ≤ 7772 K
m̃λ̄

log
(

K

m̃Bλ̄δ

)
. (5.43)

5.H.2 Bounding Term 2
We divide this part of the proof into two section (depending on the expression of the

joint distribution π̂t).

Case (p = 2 and m ≥ 3) or (p = 2, m = 2 and IC = False)

Recall that conditionally to Ft−1, the played experts It and Jt are sampled independently
according to p̂t from JKK. Therefore for any i, j ∈ JKK, π̂ij,t = p̂i,tp̂j,t and ν̂t = ξ̂t.
Hence, Term 2 satisfies the following bound

Term 2 ≤
T∑
t=1

µ̂t −
7λ̄
32

T∑
t=1

ξ̂t.

Using the first claim of Lemma 5.F.5, we have if λ ∈
(
0, m̃

128K λ̄
)

Term 2 ≤ min
i∈JKK

Li,T + c
1
λ

log
(
m̃

Bλδ

)
, (5.44)

where c is a numerical constant. The conclusion of the theorem follows by combining the
upper bounds obtained in (5.43) and (5.44).
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Case m = p = 2 and IC = True:

Using Lemma 5.G.1 we have It ∼ p̂t. Furthermore, using Lemma 5.G.2 we have that for
any i, j ∈ JKK, any t ∈ JT K:

π̂ij,t ≥
1
K
p̂i,tp̂j,t.

Therefore ν̂t ≥ 1
K ξ̂t, and we have the following bound on Term 2:

Term 2 ≤
T∑
t=1

µ̂t −
3λ̄

32K

T∑
t=1

ξ̂t.

Using the second claim of Lemma 5.F.6, we have if λ ∈
(
0, λ̄

352K2

)
T∑
t=1

µ̂t −
7

32B

T∑
t=1

ξ̂t ≤ min
i∈JKK

Li,T + c
1
λ

log
( 1
λBδ

)
. (5.45)

The conclusion of the theorem follows by combining the upper bounds obtained in (5.43)
and (5.45).

5.I Proofs of lower bounds, Theorem 5.5.1 and Theo-
rem 5.5.3

The proofs of Theorem 5.5.1 and Theorem 5.5.3 are presented in four steps. The only
difference between the proofs is in the last step. Thus the first three steps are common to
both proofs.

We adapt the main steps of Auer et al. [1995] to our setting. The gist of the proof is
the following. We construct a distribution with very correlated experts. In this situation,
going from a weighted average of experts to a single expert with the largest weight does
not change the prediction risk much. Then, we use some classical arguments in deriving
lower bounds for the expected regret using information theory results.

Let T > 0 be fixed, we consider that the loss function is the squared loss and we focus
on the particular setting where the target variables (Yt) are identically 0.

First step: Specifying the distributions. We start by considering a deterministic
forecaster. We denote by Pi the joint distribution of expert predictions, where all experts
are identical and distributed as one and the same Bernoulli variable with parameter 1/2,
except the optimal expert i who has distribution B

(
1
2 − ε

)
but is still strongly correlated

to the others.
More precisely, let (Ut)t∈JT K be a sequence of independent random variables distributed

according the uniform distribution on [0, 1]. We consider that in each round the expert
predictions have the following joint distribution Pi:

• For j 6= i: Fj,t = 1
(
Ut ≤ 1

2

)
.
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• Fi,t = 1
(
Ut ≤ 1

2 − ε
)
.

Recall that in this setting we have for any k, j ∈ JKK \ {i}

Ei[Fj,tFk,t] = 1
2

Ei[Fi,tFj,t] = 1
2 − ε.

Finally, we denote by P0 the joint distribution where all experts are equal to the same
Bernoulli(1/2) variables, i.e., experts predictions are defined by Fi,t = 1(Ut ≤ 1/2), i ∈
JKK.

Second step: Strategy Reduction. Suppose that the player follows a deterministic
strategy A. In each round t, given Ft−1, this strategy selects a subsets St of JKK of size
m and a sequence of non-negative weights (αi,t)i∈St , such that

∑
i αi,t = 1, and plays the

convex combination
∑
i∈St αi,tFi,t.

For such a strategy A, we associate a strategy Â, such that in each round, we run the
strategyA except that we play only the expert with the largest weight ît ∈ Arg Maxi∈St αi,t.

Let us analyse the difference of the cumulative loss between the strategies A and Â.
Let lt(A) denote the loss of the strategy A at round t. We have

Ei
[
lt(A)− lt(Â)

]
= Ei

( ∑
j∈St

αj,tFj,t

)2
− Ei

( ∑
j∈St

1
(
ît = j

)
Fj,t

)2
.

If i /∈ St then we have Ei[lt(A)− lt(Â)] = 0.
If i ∈ St and ît = i, we have (let j ∈ JKK such that j 6= i)

Ei
[
lt(A)− lt(Â)

]
= Ei

[
((1− αi,t)Fj,t + αi,tFi,t)2

]
− Ei[Fi,t]

= (1− αi,t)2 1
2 + α2

i,t

(1
2 − ε

)
+ 2αi,t(1− αi,t)

(1
2 − ε

)
− 1

2 + ε

= ε(1− αi,t)2

≥ 0.

If i ∈ St and ît 6= i, we have (let j ∈ JKK such that j 6= i)

Ei
[
lt(A)− lt(Â)

]
= Ei

[
((1− αi,t)Fj,t + αi,tFi,t)2

]
− Ei[Fj,t]

= (1− αi,t)2 1
2 + α2

i,t

(1
2 − ε

)
+ 2αi,t(1− αi,t)

(1
2 − ε

)
− 1

2
= εα2

i,t − 2εαi,t

≥ −3
4ε,

where we used the fact that αi,t ∈ [0, 1/2], since ît 6= i.
To summarize, in the worst case, the excess loss between A and Â is −3

4ε. Hence, we
have the following lower bound on the expected regret between the two strategies:

RT (A)−RT (Â) ≥ −3
4Tε. (5.46)
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Third step: Information theoretic tools. Let us introduce the following notation:
assume the player follows a deterministic strategy A, and let Zt = (Ct, łt(Fi,t)i∈Ct) denote
the information disclosed to the player at time t. Denote Zt = (Z1, . . . , Zt) the entire
information available to the player since the start. The quantities Zt,Zt are considered as
random variables, whose distribution is determined by the underlying experts distribution,
and the player strategy A.

Lemma 5.I.1. Let F (ZT ) be any fixed function of the player observations, taking values
in [0, B]. Then for any i ∈ JKK and any player strategy A,

Ei
[
F
(
ZT

)]
≤ E0

[
F
(
ZT

)]
+ B

2

√
E0[Ni] log(1− 2ε)−1,

where Ni = ∑T
i=1 1{i ∈ Ct}.

In the case where |Ct| = 1 for all t, the following sharper bound holds:

Ei
[
F
(
ZT

)]
≤ E0

[
F
(
ZT

)]
+ B

2

√
E0[Ni] log(1− 4ε2)−1,

Proof. Fix i ∈ JKK. Denote Qi the distribution of ZT induced by expert distribution
Pi and a fixed player strategy A (omitted from the notation for simplicity). For any
function G bounded by R, it is well-known that it holds |EX∼P[G(X)]− EX∼Q[G(X)]| ≤
2R‖P−Q‖TV , where ‖·‖TV denotes the total variation distance. Hence, by shifting F by
−B/2, we get

Ei
[
F (ZT )

]
− E0

[
F (ZT )

]
≤ B‖Qi −Q0‖TV ≤ B

√
1
2KL(Q0‖Qi),

by Pinsker’s inequality, where KL(.) denotes the Kullback-Leibler divergence.
Next, we will compute the quantity KL(Q0‖Qi). The chain rule for relative entropy

(Theorem 2.5.3 in Cover, 1999) gives:

KL(Q0‖Qi) =
T∑
t=1

KL
(
Q0
{
Zt|Zt−1

}
‖Qi

{
Zt|Zt−1

})
, (5.47)

where

KL
(
Q0
{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
:=
∑
zt

Q0
{
zt−1

}
Q0
{
zt|zt−1

}
log
(
Q0
{
zt|zt−1}

Qi{zt|zt−1}

)

=
∑
zt

s.t. i∈Ct

Q0
{
zt−1, Ct

}
Q0{zt|Ct} log

(Q0{zt|Ct}
Qi{zt|Ct}

)
.

The last line holds because Q•
{
zt|zt−1} = Q•

{
zt|zt−1, Ct

}
Q•
{
Ct|zt−1}, and it holds

Q0
{
Ct|zt−1} = Qi

{
Ct|zt−1} since the strategy’s play only depends on past observa-

tions; also Q•
{
zt|zt−1, Ct

}
= Q•{zt|Ct} since the observed experts’ losses at round t

are independent of the past given the choice of Ct. Furthermore, if i 6∈ Ct, one has
Q0{zt|Ct} = Qi{zt|Ct}.

On the other hand, if zt is such that i ∈ Ct, then:
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• under Q0 since all experts are identical and equal to the same Ber(1/2) variable (and
Yt is identically 0), Q0(zt|Ct) only charges the two points with all observed losses
equal to 0 (denote this u0) or all equal to 1 (denote this u1), each with probability
1/2;

• under Qi, it holds Qi(u1|Ct) = 1
2 − ε and Qi(u0|Ct) ≥ 1

2 . In fact, if |Ct| ≥ 2, then
Qi(u0|Ct) = 1

2 (since with probability ε under Qi, we observe a state that is neither
u0 nor u1, namely when all observed experts err but Fi), and if |Ct| = 1, then
Qi(u0|Ct) = 1

2 + ε (since Fi alone is observed then).

Therefore, in general

KL
(
Q0
{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
≤ P0(i ∈ Ct)

(1
2 log

( 1/2
1/2− ε

)
+ 1

2 log
(1/2

1/2

))
≤ 1

2P0(i ∈ Ct)log(1− 2ε)−1.

In the case where |Ct| = 1 for all t, we get the sharper bound

KL
(
Q0
{
Zt|Zt−1}‖Qi{Zt|Zt−1

})
= P0(i ∈ Ct)

(1
2 log

( 1/2
1/2− ε

)
+ 1

2 log
( 1/2

1/2 + ε

))
= 1

2P0(i ∈ Ct)log
(
1− 4ε2

)−1
.

Plugging this into (5.47), we obtain
KL(Q0‖Qi) ≤ −1

2E0[Ni] log(1− 2ε), resp. KL(Q0‖Qi) ≤ −1
2E0[Ni] log

(
1− 4ε2

)
, if

|Ct| = 1 for all t, leading to the claims.

Fourth step for Theorem 5.5.1: lower bounding the regret of Â in the
case |Ct| ≥ 2. Recall ît denotes the single expert played by the “reduced” strategy Â.
At round t, the expected loss for the player playing Â is given by

Ei
[
lt,̂it

]
=
(1

2 − ε
)
Pi
(
ît = i

)
+ 1

2Pi
(
ît 6= i

)
= 1

2 − ε Pi
(
ît = i

)
.

For each j ∈ JKK let Mj := ∑T
t=1 1

{
ît = j

}
. Hence

T∑
t=1

Ei
[
lt,̂it

]
= T

2 − ε Ei[Mi],

and the regret with respect to the optimal arm i under Pi is

Ei
[
RT (Â)

]
= ε(T − Ei[Mi]). (5.48)

We can apply Lemma 5.I.1 to F (Zt) = Mi: since we assume the player follows a
deterministic strategy, Mi is a function of the information Zt available to the player,
bounded by T . Thus it holds:

Ei[Mi] ≤ E0[Mi] + T

2

√
E0[Ni] log(1− 2ε)−1. (5.49)
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Observe that
∑K
i=1Mi = T and

∑K
i=1Ni = mT . Hence

K∑
i=1

Ei[Mi] ≤
K∑
i=1

E0[Mi] + T

2

K∑
i=1

√
E0[Ni] log(1− 2ε)−1

≤ E0

[
K∑
i=1

Mi

]
+ TK

2

√√√√ 1
K

K∑
i=1

E0[Ni] log(1− 2ε)−1

= T + T
3
2
√
mKε,

where we used the fact that for ε ∈ (0, 1/4) : − log(1− 2ε) ≤ 4ε. Let P∗ = 1
K

∑K
i=1 Pi the

adversary choosing uniformly at random among the expert distributions Pi at the start of
the game (i.e. choosing at random the optimal expert). From the above and (5.48) we
deduce

E∗
[
RT (Â)

]
≥ 1
K

K∑
i=1

Ei
[
RT (Â)

]
≥ ε

(
T

(
1− 1

K

)
− T

3
2

√
mε

K

)

Using inequality (5.46), we obtain

E∗[RT (A)] ≥ ε
(
T

(1
4 −

1
K

)
− T

3
2

√
mε

K

)
≥ εT

 1
20 −

√
Tmε

K

,
if K ≥ 5. Choosing ε = 1

900
K
mT , we get

E∗[RT (A)] ≥ 10−5 K

m
.

Recall that this lower bound was derived for deterministic players. Generalizing this
bound to random players follows simply by applying Fubini’s theorem. Also since the
bound is in expectation over expert predictions drawn according to P∗, for any strategy A
there exists at least one deterministic sequence of expert forecasts with regret larger than
its expectation.

Fourth step for Theorem 5.5.3: lower bounding the regret of Â in the
case |Ct| = 1. The only difference between the proof in this case and the proof in the
previous case is the bound given by Lemma 5.I.1. The regret with respect to the optimal
arm i under Pi is

Ei
[
RT (Â)

]
= ε(T − Ei[Mi]). (5.50)

We can apply Lemma 5.I.1 to F (Zt) = Mi: since we assume the player follows a
deterministic strategy, Mi is a function of the information Zt available to the player,
bounded by T . Thus it holds:

Ei[Mi] ≤ E0[Mi] + T

2

√
E0[Ni] log(1− 4ε2)−1.
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Observe that
∑K
i=1Mi = T and

∑K
i=1Ni = T . Hence

K∑
i=1

Ei[Mi] ≤
K∑
i=1

E0[Mi] + T

2

K∑
i=1

√
E0[Ni] log(1− 4ε2)−1

≤ E0

[
K∑
i=1

Mi

]
+ TK

2

√√√√ 1
K

K∑
i=1

E0[Ni] log(1− 2ε2)−1

= T + T
3
2
√

2Kε2,

where we used the fact that for ε ∈ (0, 1/4) : − log
(
1− 4ε2

)
≤ 8ε2. Let P∗ = 1

K

∑K
i=1 Pi

the adversary choosing uniformly at random among the expert distributions Pi at the start
of the game (i.e. choosing at random the optimal expert). From the above and (5.50) we
deduce

E∗
[
RT (Â)

]
≥ 1
K

K∑
i=1

Ei
[
RT (Â)

]
≥ ε

T(1− 1
K

)
− T

3
2

√
2 ε

2

K


Using inequality (5.46), we obtain

E∗[RT (A)] ≥ ε

T(1
4 −

1
K

)
− T

3
2

√
2 ε

2

K

 ≥ εT
 1

20 −

√
2Tε

2

K

,
if K ≥ 5. Choosing ε = 1

30

√
K
T , we get

E∗[RT (A)] ≥ 10−5 √KT.

The generalization for the random players follows directly using the same argument as
in the fourth step of the proof of Theorem 5.5.1.

5.J Proof of Theorem 5.5.4

Let ` be the squared loss: l(x, y) = (x − y)2 on X = Y = [0, 1]. Consider the game
protocol presented in Algorithm 21 with p = 1 and m ∈ JKK. Suppose that the target
variable y is identically equal to 0 (yt = 0 for all t ∈ JT K). Suppose that at each round
t ∈ JT K, for each expert i ∈ JKK, the prediction Fi,t follows a Bernoulli distribution of a
parameter denoted `i,t. We have

E[RT ] =
T∑
t=1

E[FIt,t]− min
i∈JKK

T∑
t=1

E[Fi,t].

The game protocol presented in Algorithm 21 reduces to the K-armed bandit game with
m feedbacks in each round, analysed in Seldin et al. [2014].

Theorem below presented in Seldin et al. [2014] (the full version including appendices)
as Theorem 2, provides a lower bound for the regret.
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Theorem 5.J.1 (Seldin et al. [2014]). For the K-armed bandit game with mT observed
rewards and T ≥ 3

16
K
m ,

inf supE[RT ] ≥ 0.03
√
K

m
T,

where the infinimum is over all playing strategies and the supremum is over all individual
sequences.

The result stated in Theorem 5.5.4 is a direct consequence of the Theorem 5.J.1 and
the setting described above.

5.K Some implementation details and algorithmic com-
plexity

We discuss here some details of the implementation of Algorithms 18, 19, 20, more
specifically concerning the cost of keeping track of the distribution p̂t and of sampling from
it at each round. We concentrate on Algorithm 19 for simplicity, but the arguments below
apply to all algorithms.

We start with a fundamental observation. While the definitions (5.6), (5.7) for ˆ̀
i,t and

v̂i,t were written in order to emphasize the unbiased character of the loss estimates, the
algorithm is unchanged if we use instead the shifted “pseudo-loss” estimates

˜̀
i,t := ˆ̀

i,t − `It,t = K

m̃
1(i ∈ Ut)(`i,t − `It,t), (5.51)

and further observe that it holds v̂i,t = ˜̀2
i,t. Using the above pseudo-losses in place of the

estimated losses does not change the sampling distribution p̂t, since all estimated losses
are shifted by the same quantity `It,t, which gets cancelled through the normalization in
the definition (5.5) of the EW distribution p̂t.

Observe that the pseudo-loss estimates ˜̀
i,t (as well as the corresponding variance es-

timates v̂i,t) are equal to zero for all i 6∈ Ut. Therefore, to keep track of the cumulative
pseudo-loss estimates L̃i,t = ∑

k≤t
˜̀
i,k, only |Ut| = max{m − 2, 1} of them have to be

updated at each round.
In order to keep track and sample efficiently from p̂t, we propose the following con-

struction. Let T be a balanced binary tree of depth dlog2(K)e, with K leaves, such that
each leaf i ∈ ∂T is identified to an expert index. Furthermore, assume that each inter-
nal node u of T stores the partial sum Su,t = ∑

v∈∂Tu exp
(
−λL̃v,t + λ2V̂v,t

)
, where Tu

is the subtree of T rooted at node u. Then, by the above considerations, it holds that
Su,t = Dt

∑
v∈∂Tu p̂u,t = Dtp̂t(∂Tu), where Dt is a factor depending only on t but not on

the node u. Note also that Dt = S∅, where ∅ denotes the root note of T . It is then possible
to sample efficiently It ∼ p̂t in a standard manner, as follows:

1. Generate U ∼ Unif[0, 1], and put Z = S∅U . Let v = ∅.

2. If v is a leaf of T , stop and output v.
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3. Let vleft, vright denote the two descendent nodes of v.

4. If Z < Svleft , then let v ← vleft and go to step 2.

5. Otherwise, i.e. Z ≥ Svleft , let v ← vright, Z ← Z − Svleft , and go to step 2.

It easy to check that the above sampling returns a random sample from the probability
p̂t. (Namely, each time that step 2 is reached, conditionally to past steps Z is uniformly
distributed in the interval [0, Sv], and therefore the left or right descendent of u is picked
with probability p̂t(∂Tvleft |∂Tv) resp. p̂t(∂Tvright |∂Tv); the chain rule yields the claim.)
Obviously, the computing complexity of the above is O(logK) (the depth of the tree).

Furthermore, to update the quantities stored at the nodes of T at each round, since
only the estimated cumulative pseudo-losses of experts i ∈ Ut have their value modified, it
is sufficient to do the following for each i ∈ Ut:

1. Let v be the leaf representing i. Update Sv ← Sv exp
(
−λ˜̀

i,t + λ2v̂i,t
)
.

2. Go up the tree to the root and sequentially update all ancestors w of v according to
Sw = Swleft + Swright .

Again, the computing complexity of this update operation is O(logK).
All in all, the computational cost of the initialization of the tree is O(K), but then at

each round the computational cost of the sampling and update operations is O(m log(K)).
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Chapter 6

Covariance Adaptive Best Arm Identification

We consider the problem of efficient best model selection from a finite number of candi-
dates as a generalization of best arm identification in the multi-armed bandit setting. While
best arm identification is now well understood, we introduce a relaxed setting where arms
rewards can be queried simultaneously instead of the more standard one query per round set-
ting. We show that this modification allows the player to potentially accelerate the selection
of the best arm by inferring the covariance structure of the arms distributions. We give new
algorithms that are adaptive to the unknown covariance of the arms. We show that our theo-
retical guarantees recover the optimal lower bounds in the classical multi-armed bandit model
in the worst case (i.e., the arms are independent). We present examples where a substantial
improvement can be made in some cases.

Based on a joint work with Gilles Blanchard.

6.1 Introduction and setting

Selecting the best-performing model from a finite set of models is a classical statical
learning problem. Many procedures are developed in the literature to tackle this challenge,
such as cross-validation procedures [Arlot and Celisse, 2010]. When the number of possible
models or training points is very large, cross validation becomes computationally intensive.
Many methods, known as model selection racings (Moore and Lee, 1994, Mnih et al., 2008),
were developed to alleviate this burden by eliminating “bad" models as early as possible
and concentrating the computational effort on “good" models. A closely related problem in
multi-armed bandit theory is best arm identification (BAI). In the fixed confidence setting,
given a confidence parameter δ ∈ (0, 1), the objective is to output the arm with the largest
mean with probability at least 1 − δ, using the least number of samples possible. While
model selection racing problem shares the same goal with the literature on fixed confidence
BAI, we emphasize that in model selection, one can make simultaneous queries of samples
of different models, instead of querying only one arm per round. However, in both cases,
the theoretical guarantees take the form of a control on the total number of individual
queries, sufficient to select the best model.
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In this work, we adopt the best arm identification terminology. Let ν be a collection
of K arms and νi, for i ∈ JKK, is its marginal distribution. We denote the corresponding
random variable by Xi, its sample at round t by Xi,t, and its expectation by µi. Given a
confidence level δ ∈ (0, 1), the goal is to find the arm with the largest mean with probability
at least 1−δ. We present below the game protocol for this problem, which differs from the
classical multi-armed bandits model by allowing simultaneous queries of arms’ rewards. We
will show that this simple addition accelerates the selection procedure by being adaptive
to the unknown correlation structure, henceforth computable.

Throughout this paper, we make the following assumptions on the distribution of the
rewards:

Assumption 8. Boundedness: the support of ν is in [0, B]K .

Assumption 9. IID assumption with respect to t: (Xt)t≥1 = (X1,t, . . . , XK,t)t≥1 are
independent and identically distributed variables following ν.

Assumption 10. There is only one optimal arm:
∣∣∣Arg Maxi∈JKK µi

∣∣∣ = 1.

Protocol 21 The Game Protocol
Parameters: B, δ.
while [condition] do

Choose a subset S ⊆ JKK.
The environment reveals the rewards (Xi)i∈S.

end while
Output the selected arm: ψ.

We use the formalism presented by Garivier and Kaufmann [2016] and Kaufmann et al.
[2016], restated below for completeness.

A round corresponds to an iteration in Protocol 21. Denote by i∗ ∈ JKK the optimal
arm. The learner uses a strategy to sample from, consisting of: A sequence of queried
subsets (St)t of JKK, a halting condition to stop sampling (i.e. a stopping time denoted τ)
and an arm ψ to output after halting the sampling procedure. Hence the player’s strategy
consists of a triple π = ((St), τ, ψ) where

• The sampling rule, determines based on past observations, which subset of arms is
queried at round t. We denote (Ft) the natural filtration associated to the chosen
arms and their observed rewards prior ro t: Ft = σ(S1, (Xi,1)i∈S1 , . . . , St, (Xi,t)i∈St).

• The stopping rule τ , which indicates when the player is confident to output a rec-
ommendation for the best arm. Formally, it is a stopping time with respect to the
filtration F .

• The recommendation rule, which is a Fτ -measurable random variable of JKK con-
sisting of the player’s guess of the best arm.
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The theoretical guarantees take the form of a high probability control on the stopping rule
τ and on the total number of queries made through the game, denoted Cπ. More precisely

Cπ :=
τ∑
t=1
|St|. (6.1)

Observe that when the player is constrained to pick one arm per round, as in the multi-
armed bandit setting, we have Cπ = τ .

We adopt the following definition characterizing sound strategies, exposed by Lattimore
and Szepesvári [2020].

Definition 6.1.1. A triple ((St), τ, ψ) is δ-sound at confidence level δ ∈ (0, 1), if

P(τ <∞ and ψ 6= i∗) ≤ δ.

Notation. We summarize here some of the notation used throughout this paper. For
each arm i ∈ JKK, let µ̂i,t := (1/t)∑t

s=1Xi,t and µ̂t := (µ̂1,t, . . . , µ̂K,t). For any two random
variables G ∈ [0, B]K and H ∈ [0, B]K , let d̂t(G,H) denote the empirical L2-distance
computed using t samples (Gs, Hs)s≤t and let d(G,H) denote its population counterpart.
We denote a . b, if there exists a numerical constant independent of a and b such that
a ≤ cb log(b). Let a ∧ b := min{a, b}.

6.2 Related work

Best arm identification: The introduction of the best arm identification problem
dates back to Thompson [1933] in the context of medical trials. It the machine learning
literature, it was re-introduced by Even-Dar et al. [2002]. The fixed budget setting was
considered by Bubeck et al. [2009] and Bubeck et al. [2011], it refers to the setting where the
learner, given a fixed number of total queries C, identifies the best arm with a probability
as large as possible. In this paper, we focus on the fixed confidence setting, where the
learner is given a confidence level δ ∈ (0, 1) and should use as few queries as possible to
identify the best arm. Generic complexity notions for the fixed confidence and fixed budget
setting were introduced by Kaufmann et al. [2016], allowing a comparison between the two
settings.

BAI in the fixed confidence setting was studied by Even-Dar et al. [2002], Mannor and
Tsitsiklis [2004], and Even-Dar et al. [2006], where the objective is to find ε-optimal arms
under the PAC (“probably approximately correct") model. Later, Gabillon et al. [2011]
proved a tight lower bound on the query complexity and proposed an asymptotic optimal
‘Track-and-Stop’ strategy. A summary of various lower bounds for BAI is presented by
Carpentier and Locatelli [2016].
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Covariance in the Multi-Armed Bandits model: The extension of the stan-
dard multi-armed bandit setting to multiple-point bandit feedback was considered in the
stochastic combinatorial semi-bandit problem (Audibert et al., 2014, Cesa-Bianchi and
Lugosi, 2012, Chen et al., 2013 and Gai et al., 2012). At each round t ≥ 1, the learner
pulls m out of K arms and receives the sum of the pulled arms rewards. The objective is
to maximize the cumulative regret with respect to the best choice of arms. This problem
was studied by Cesa-Bianchi and Lugosi [2012], Combes et al. [2015] and Kveton et al.
[2015], where two different algorithms were devised to tackle the specific case when arms
are independent and the general case. Later, Degenne and Perchet [2016] proposed a new
algorithm adaptive to the covariance structure of the problem, requiring an upper-bound
on the covariance matrix of the arms reward distribution. An improved version was pre-
sented by Perrault et al. [2020], where a prior knowledge on the covariance matrix is not
needed.

While this line of work shares with our paper the same intuition of exploiting the
covariance structure, we note that essential differences arise between the two settings. On
the one hand, receiving the sum rewards of all pulled arms in each round, and minimizing
the cumulative regret, imposes a more careful exploration during the game. On the other
hand, we assume that no constraint on the number of queried arms is imposed in each
round, and the player task is concentrated purely on exploration.

Model selection racing: Racing algorithms for model selection refers to the problem
of selecting the best model out of a finite set efficiently. The main idea consists of early
elimination of poorly performing models and concentrating the selection effort on good
models. This idea was seemingly first exploited by Maron and Moore [1993] through
Hoeffding Racing. It consists of sequentially constructing a confidence interval for the
generalization error of each (non-eliminated) model. Once two intervals become disjoint,
the corresponding sub-optimal model is discarded. The use of racing algorithms for model
selection is an instance of lazy learning methods [Maron and Moore, 1997]. Later Mnih
et al. [2008] presented an adaptive stopping algorithm using confidence regions derived
with empirical Bernstein concentration inequality (Audibert et al., 2007). The resulting
algorithm is adaptive to the unknown marginal variances of the models.

Hoeffding and Bernstein races evaluate the models individually (building a confidence
interval for each model using only its queries). When many models are very similar, the
behavior of such algorithms suffers because the near-identical “good" models will have to
run through the whole race. To circumvent this scenario, Box et al. [1978] and Moore
and Lee [1994] proposed eliminating near-identical models and race only representative
candidates through a statistical method called Blocking. A more formal approach was
presented by F -Race methods [Birattari et al., 2002], where the similarity of models is
assessed through Friedman post hoc tests.

While the idea of exploiting the possible dependence between models was shown (Bi-
rattari et al., 2010, Moore and Lee, 1994) to empirically outperform methods based on
individual performance monitoring, such as Hoeffding racing, there is an apparent lack of
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theoretical guarantees. This work aims to develop a control on the number of sufficient
queries for reliable model selection, while being adaptive to the unknown correlation of the
candidate models.

6.3 Motivation and main contributions

In many practical settings, the arms distributions are not independent. In such cases,
Protocol 21 allows the player to estimate the means and the covariances of arms. This
additional information naturally raises the following question: can we accelerate best arm
identification by inferring the covariance structure of the arms and exploiting it?

We show through some toy examples that the answer to this question is positive.
To give some context, an optimal bound for best arm identification in the multi-armed

bandit (presented by Kaufmann et al., 2016) consists of

E[τ ] &
∑
i 6=i∗

log(δ−1)
(µi − µi∗)2 .

Observe that 1/(µi − µj)2 corresponds to the information-theoretic number of queries
required to decide which of j and i has the largest mean with high probability. This
suggests that an optimal best arm strategy pays for each arm i the minimal cost required
to decide that it is a suboptimal arm, without knowing i∗ a priori. We show through a
second toy example that this idea is no longer valid if simultaneous queries are possible
(Protocol 21); in particular, a sub-optimal arm can be eliminated much faster by comparing
it to another sub-optimal arm when their correlation is taken into consideration.

6.3.1 Toy example 1
Suppose that K = 2. Let B > 0 and (Ut)t be a sequence of independent random

variables following the uniform distribution over [0, B]. Let (X1,t, X2,t) denote the rewards
of the arms at t., we assume that:

• X1,t = 1
(
Ut ≤ B

2

)
.

• X2,t = 1
(
Ut ≤ B

2 − ε
)
,

where ε ∈ (0, B/2). Denote τ1 the stopping rule for a strategy, in the multi-armed bandit
setting (i.e., only one reward is queried by round Kaufmann et al., 2016) . Using standard
information theoretic lower bound, we have (Mannor and Tsitsiklis, 2004):

inf E[τ1] &
(
B

ε

)2
,

where the infinimum is with respect to all strategies.
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Now consider Protocol 21, allowing the learner simultaneous queries for the rewards.
Define for t ≥ 1

δt := δ/(t(t+ 1)) (6.2)

α(t, δ) :=

√
log(6δ−1

t )
t

. (6.3)

Furthermore, we introduce the following key quantity for each t > 0 and i, j ∈ {1, 2}:

∆̂ij(t, δ) := (1/t)
t∑

s=1
(Xj,s −Xi,s)− 2

√
2α(t, δ)d̂t(i, j)− 12Bα2(t, δ), (6.4)

where d̂t(i, j) :=
(
(1/t)∑t

s=1(Xi,s −Xj,s)2
)1/2

, is the empirical L2-distance between Xi

and Xj up to round t. As a direct consequence of empirical Bernstein inequality (Maurer
and Pontil, 2009, Audibert et al., 2009, stated in Theorem 6.F.1 in the appendix), if
∆̂ij(t, δ) > 0, then with probability at least 1− δ it holds µi ≥ µj .

Consider the strategy where we sample in each round both the rewards X1,t and X2,t,
perform the tests ∆̂12(t, δt) > 0 and ∆̂21(t, δt) > 0, and stop the sampling once one of
these conditions is satisfied, then return the optimal arm.

Lemmas 6.B.1 and 6.B.5 in the appendix provides the following bound on the number
of rounds sufficient to decide which of the arms is optimal with probability at least 1 − δ
(i.e., to have ∆̂12(t, δ) > 0 or ∆̂21(t, δ) > 0)

t & log(δ−1) max
{

d2
12

(µ1 − µ2)2 ,
B

µ1 − µ2

}
,

where d2
12 is the population L2-distance between the arms X1 and X2.

Using the distributions of the arms we have

max
{

d2
12

(µ1 − µ2)2 ,
B

µ1 − µ2

}
= B

ε
.

We conclude that the stopping time for the second distance-adaptive procedure, denoted
τ2, satisfies with probability at least 1− δ

τ2 .
B log(δ−1)

ε
.

Hence, taking the covariance into consideration, can substantially improve the best arm
identification task.

6.3.2 Toy example 2
Let (Ut)t and (Vt)t be sequences of independent and identically distributed random

variables following the uniform law on [0, B]. Let

• X1,t = 1
(
Vt ≤ B

2

)
.
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• X2,t = 1
(
Ut ≤ B

2 − ε
)
.

• X3,t = 1
(
Ut ≤ B

2 − 2ε
)
,

where ε ∈ (0, B/4). Consider the procedure presented in the previous example consisting
of running sequentially the pairwise tests on quantities ∆̂ij . Using the same notations, we
have

Λ31 '
(
B

ε

)2

Λ32 '
B

ε
.

This suggests that the sub-optimal arm X3 is eliminated by X2 faster than the optimal
arm X1.

6.3.3 Main contributions
In this work, we consider a relaxed setting for best arm identification, where simul-

taneous queries for arm rewards can be made (Protocol 21). We provide two algorithms
for this setting. The first procedure is based on sequential elimination via testing using
pairwise comparisons of arms rewards. We prove that our algorithm satisfies new theoret-
ical guarantees. We show that these guarantees match the lower bounds for the classical
one query per round framework in the worst case, and provide examples suggesting that a
substantial improvement can be made due to the algorithm’s adaptability to the unknown
covariance structure of the arms.

We go one step further by generalizing the pairwise algorithm into a procedure perform-
ing sequential comparisons of each arm with convex combinations of all the non-eliminated
arms. We provide different theoretical guarantees outperforming, in some cases, the per-
formance of the previous algorithm.

6.4 Algorithms and main theorem

Algorithm 19 builds on the idea presented in Section 6.3.1, consisting of performing
tests sequentially between each pair (i, j) of non-eliminated experts using the quantities
∆̂ij(t, δ) defined in (6.4).

The empirical Bernstein inequality (Theorem 6.F.1) guarantees that if ∆̂ij(t, δ) > 0,
then µj > µi with probability at least 1−δ. Moreover, Lemma 6.B.5 gives upper and lower
bounds on the number of queries in order for the test to be conclusive (i.e., ∆ij(t, δ) > 0).
This bound is mainly driven by the following key quantity, defined for each pair of arms
(i, j) ∈ JKK:

Λij :=

 +∞ if µj ≤ µi
d2
ij

(µj−µi)2 + B
µj−µi otherwise,
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where we denote dij = d(Xi, Xj). The improvement with respect to the known opti-
mal bounds with one query per round is made whenever the arms i and j are positively
correlated, which would lead to a small L2 distance dij , and Λij � 1/(µi − µj)2.

Furthermore, Toy Example 2, presented in Section 6.3.2 shows that a sub-optimal arm
i may be eliminated by another sub-optimal arm j much faster than by the optimal arm
i∗ (we may have Λij � Λii∗). This suggests that a suitable procedure should be able to
exploit this idea by guaranteeing that each arm i is eliminated by the best possible arm
j (the arm achieving the smallest Λij). In this case, the bound on the total number of
queries would be:

Cπ . log(δ−1)
∑
i 6=i∗

Λ∗i , (6.5)

where for each i ∈ JKK \ {i∗}, Λ∗i = minj∈JKK Λij . Algorithm 19 achieves this bound
(Theorem 5.4.2).

Let σ : JKK → JKK such that σ(i) ∈ Arg Minj∈JKK Λij , for each i ∈ JKK \ {i∗} and
denote St the set of candidate arms at round t in Algorithm 19. The best possible scenario
to achieve (6.5) when proceeding by successive elimination based on the ∆̂-test, is to have
for each arm i ∈ St, σ(i) ∈ St. Algorithm 19 does not guarantee the last condition as σ(i)
can be eliminated prior to i. However, we bypass this problem by still querying each arm
j for an additional controlled number of rounds after the round it failed the test based on
∆̂ (i.e., ∆̂jk(t, δt) > 0, for some k ∈ JKK). Theorem 5.5.1 gives high probability bounds on
τ and Cπ for the procedure presented in Algorithm 19.

A generalization of Algorithm 19 is presented in Algorithm 18, where tests are per-
formed for each arm i against convex combinations of all the non-eliminated arms instead
of individual arms j. Let i ∈ JKK, let G := {w ∈ RK : ∀i ∈ JKK wi ≥ 0 and ‖w‖1 = 1}.
We consider the following quantity:

Γ̂i(w, t, δ) := 〈w, µ̂t〉 − µ̂i,t − 2
√

3Kα(t, δ)d̂t(Xi, 〈w,X〉)− 18BKα2(t, δ),

where α(t, δ) is defined in (6.3) and w ∈ G.
Lemma 6.B.1 guarantees that if Γi(w, t, δ) > 0, then we have with high probability µi <
〈w,µ〉. Hence, since w consists of convex weights, there must exist j ∈ supp(w) such that
µi < µj . Moreover, just like the pairwise testing setting, Lemma 6.B.6 gives upper and
lower bounds for the number of queries needed to be made in order for the elimination test
to be conclusive. These bounds are proportional to KΞi(w), where Ξ is defined by:

Ξi(w) :=
{

+∞ if 〈w,µ〉 ≤ µi
d2(Xi,〈w,X〉)
(〈w,µ〉−µi)2 + B

〈w,µ〉−µi otherwise

Algorithm 18 guarantees through Theorem 5.4.2 that each suboptimal arm i is eliminated
by the best possible convex combination of arms. Let S ⊆ JKK, we introduce the notation
G(S) to denote the set of convex weights defined by

G(S) := {w ∈ G such that: supp(w) ⊆ S}.
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Algorithm 22 ∆-Testing
Input δ, κ,B.
Initialization: S ← JKK, C ← JKK, µ̂0 ← (0, . . . , 0), t← 1.
while |S| > 1 do

Jointly query all the experts in C.
Update µ̂t and compute maxj∈C ∆̂ij(t, δ) for each i ∈ S.
for i ∈ S do
if maxj∈C ∆̂ij(t, δ) > 0 then

Eliminate i from S: S ← S \ {i}.
Activate a counter to eliminate i from C at round (1 + κ)t.

end if
end for
Increment t.

end while
Return S.

Algorithm 23 Γ-Testing
Input δ, κ,B.
Initialization: S ← JKK, C ← JKK, µ̂0 ← (0, . . . , 0), t← 1.
while |S| > 1 do

Jointly query all the experts in C.
Update µ̂t and compute supw∈G(C\{i}) Γ̂i(w, t, δ) for each i ∈ S.
for i ∈ S do
if supw∈G(C\{i}) Γ̂i(w, t, δ) > 0 then

Eliminate i from S: S ← S \ {i}.
Activate a counter to eliminate i from C at round (1 + κ)t.

end if
end for
Increment t.

end while
Return S.
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Remark 6.4.1. In Algorithm 6.4, we did not specify a method to perform the test:
supw∈G(St) Γ̂i(w, t, δ) > 0. Several developments can be envisioned, such that using meth-
ods for convex optimization over a simplex.

The first guarantees for Algorithms 19 and 6.4 are presented in Theorem 5.5.3 below.
It states that both strategies are sound according to Definition 6.1.1.

Theorem 6.4.2. Suppose Assumptions 8, 9 and 10 hold. Both Algorithms 22 and 6.4
with input (δ,B, κ) are δ-sound for any κ ≥ 0.

Stronger guarantees for Algorithm 19 are presented in Theorem 5.5.1 below. Recall
the following notation

∀i ∈ JKK \ {i∗}, let Λ∗i := min
j∈JKK

Λij and Λ∗ := max
i∈JKK\{i∗}

Λ∗i . (6.6)

Theorem 6.4.3. Suppose Assumptions 8, 9 and 10 hold. Consider Algorithm 19, with
input (δ, κ,B) such that κ ≥ 26. With probability at least 1− δ

τ ≤ c(1 + κ) log(KΛ∗δ−1) Λ∗.

Moreover, we have
Cπ ≤ c(1 + κ) log(KΛ∗δ−1)

∑
i∈JKK\{i∗}

Λ∗i ,

where c is a numerical constant, Λ∗i and Λ∗ are defined in (6.6).

Finally, Theorem 6.4.4 below provides guarantees on the strategy of Algorithm 6.4.
Where tests are performed for each expert against convex combination of all arms.

∀i ∈ JKK \ {i∗}, let Ξ∗i := min
w∈G

Ξi(w) and Ξ∗ := max
i∈JKK\{i∗}

Ξ∗i . (6.7)

Theorem 6.4.4. Suppose Assumptions 8, 9 and 10 hold. Consider Algorithm 6.4, with
input (δ, κ,B) such that κ ≥ 215. With probability at least 1− δ

τ ≤ c(1 + κ) log(KΞ∗δ−1) KΞ∗.

Moreover, we have
Cπ ≤ c(1 + κ) log(KΞ∗δ−1)K

∑
i∈JKK\{i∗}

Ξ∗i ,

where c is a numerical constant, Ξ∗i and Ξ∗ are defined in (6.7).

6.5 Conclusion and future directions

We aim to complete this work in the future by introducing intermediate algorithms
using the comparisons of each arms with sparse combinations of arms. The following step
is to provide a strategy aggregating all these procedures into one algorithm satisfying the
best of all worlds guarantees. The lower bound for the best arm identification with one
query per round still applies to our setting, however, we aim at providing a refined new
lower bound for this covariance-adaptive framework.
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Appendix: detailed proofs

6.A Notations

• Let X = (X1, . . . , XK) denote the vector of arms.

• For each round t ≥ 1 let Xt = (X1,t, . . . , XK,t) denote the rewards.

• Let µ̂i,t denote empirical mean of samples pulled from arm i up to round t:

µ̂i,t := 1
t

t∑
s=1

Xi,s.

Denote µ̂t = (µ̂i,t, . . . , µ̂K,t).

• Let (At)t and (Bt)t denote a sequence of random variables distributed following A
and B respectively:

d̂t(U, V ) =
(

(1/t)
t∑

s=1
(Us − Vs)2

)1/2

denote the empirical L2-distance between U and V .

• For any two random variables U and V let d(U, V ) =
(
E[(U − V )2]

)1/2 denote the
population L2-distance, between U and V .

• For i, j ∈ JKK, let d̂ij,t := d̂t(Xi, Xj), dij = d(Xi, Xj).

• Define δt := δ/(t(t+ 1)) and α(t, δ) :=
√

log(6Kδ−1
t )

t .

• Define

Γ̂i(w, t, δ) := 〈w, µ̂t〉 − µ̂i,t − 2
√

3Kα(t, δ)d̂t(Xi, 〈w,X〉)− 18BK α2(t, δ),

where w ∈ G and G := {w,w ∈ [0, 1]K and ‖w‖1 = 1}.

• Define
∆̂ij(t, δ) := µ̂j,t − µ̂i,t − 2

√
2α(t, δ)d̂ij,t − 12B α2(t, δ).

• Define for S ⊆ JGK and t ≥ 1

G(S) := {w ∈ G such that: supp(w) ⊆ G}.

• For i ∈ JKK and w ∈ G, define

Ξi(w) :=
{

+∞ if 〈w,µ〉 ≤ µi
max

{
d2(〈X,w〉,Xi)
(〈w,µ〉−µi)2 ; B

〈w,µ〉−µi

}
otherwise
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• For i, j ∈ JKK, define

Λij :=

 +∞ if µj ≤ µi
max

{
d2
ij

(µj−µi)2 ; B
µj−µi

}
otherwise

• Let i∗ denote the optimal arm. For i ∈ JKK \ {i∗}, define

Λ∗i := min
j∈JKK

Λij and Ξ∗i := min
w∈G

Ξi(w).

• Notation for Algorithms 6.4 and 22: In round t, let St denote the set of candidate
arms and Ct the set of arms that actively participate in the testing procedure.

6.B Key lemmas

Define the event (A1): ∀t ≥ 1,∀ i, j ∈ JKK : |(µ̂i,t − µ̂j,t)− (µi − µj)| ≤
√

2α(t, δ)d̂ij,t + 6B α2(t, δ) (6.8a)∣∣∣d̂ij,t − dij∣∣∣ ≤ √6Bα(t, δ). (6.8b)

where α(t, δ) is defined in Section 6.A.
Define the event (A2): ∀t ≥ 1,∀ i ∈ JKK,∀w ∈ G(Ct): |(〈w, µ̂t〉 − µ̂i,t)− (〈w,µ〉 − µi)| ≤

√
3Kα(t, δ)d̂t(Xi, 〈w,X〉) + 9BKα2(t, δ) (6.9a)∣∣∣d̂t(Xi, 〈w,X〉)− d(Xi, 〈w,X〉)

∣∣∣ ≤ 4B
√
Kα(t, δ), (6.9b)

where G(St) is defined in Section 6.A.
We show that events (A1) and (A2), defined in (6.9a), (6.9b) and (6.8a), (6.8b) respec-

tively, hold with high probability.

Lemma 6.B.1. We have P(A1) ≥ 1− 2δ.

Proof. We apply Theorem 6.F.1 to the sequence of i.i.d variables (Xi,s−Xj,s)s≤t. Observe
that its empirical covariance satisfies

1
t

t∑
s=1

(Xi,s −Xj,s − (µ̂i,t − µ̂j,t))2 ≤ 1
t

t∑
s=1

(Xi,s −Xj,s)2

= d̂2
ij,t. (6.10)

Using a union bound over i, j ∈ JKK and t ≥ 1 we get (6.8a) is true with probability at
least 1− δ.

Next, we apply Theorem 6.F.1 to the sequence of i.i.d variables ((Xi,s − Xj,s)2)s≤t
bounded by B2, we have with probability at least 1− δt

∣∣∣d̂2
ij,t − d2

ij

∣∣∣ ≤
√

2V̂ij,t log(3δ−1
t )

t
+ 3B2 log(3δ−1

t )
t

, (6.11)
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where V̂ij,t is the empirical variance of the sequence ((Xi,s−Xj,s)2)s. We have the following
bound

V̂ij,t = 1
t

t∑
s=1

(
(Xi,s −Xj,s)2 − d̂2

ij,t

)2

≤ 1
t

t∑
s=1

(Xi,s −Xj,s)4

≤ B2d̂2
ij,t. (6.12)

We plug the bound on the empirical variance above into inequality (6.11) and obtain
(rearranging the terms)d̂ij,t −B

√
log(3δ−1

t )
2t

2

≤ d2
ij + 7B2 log(3δ−1

t )
2t .

Hence, using the inequality
√
a+ b ≤

√
a+
√
b, for positive a and b

d̂ij,t − dij ≤

√
7B2 log(3δ−1

t )
t

. (6.13)

Furthermore, we have using a different rearrangement from (6.11)

d2
ij −

5B2 log(3δ−1
t )

2t ≤

d̂ij,t +B

√
log(3δ−1

t )
2t

2

.

Hence

dij − d̂ij,t ≤

√
6B2 log(3δ−1

t )
t

. (6.14)

Combining (6.13) and (6.14) and using an union bound over i, j ∈ JKK and t ≥ 1 we
conclude that (6.8b) is true with probability at least 1− δ. As a conclusion, we have

P(A1) ≥ 1− 2δ.

Lemma 6.B.2. We have P(A2) ≥ 1− 2δ.

Proof. We use a standard covering argument. Recall that the set of convex weights (de-
noted SK) is a subset of the unit ball with respect to the L1 norm in RK . Hence the
ε−covering number, with respect to ‖.‖1, is upper bounded by (3/ε)K (Lemma 5.7 in
Wainwright, 2019).

Fix δ ∈ (0, 1). For each t ≥ 1, let εt > 0 be a parameter to be specified later. Let
Nt be an εt-cover of the set of G, with respect to ‖.‖1. We will first prove that (A2) is
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true for all w ∈ Nt then using the triangle inequality, we will prove the inequality for any
w ∈ G.

Let i ∈ JKK and w ∈ Nt. Applying Theorem 6.F.1 to the sequence of i.i.d variables
(〈w,Xs〉−Xi,s)s≤t bounded by B and bounding the empirical variance similarly to (6.10),
we have with probability at least 1− δt,

|(〈w, µ̂t〉 − µ̂i,t)− (〈w,µ〉 − µi)| ≤

√
2 log(3δ−1

t )
t

d̂t(Xi, 〈w,X〉) + 6B log(3δ−1
t )

t
.

Using a union bound over t ≥ 1, i ∈ JKK and w ∈ Nt, we have with probability at least
1− δ: ∀t ≥ 1, i ∈ JKK, w ∈ Nt:

|(〈w, µ̂t〉 − µ̂i,t)− (〈w,µ〉 − µi)| ≤
√

2 α(t, |Nt|δ)d̂t(Xi, 〈w,X〉) + 6B2α2(t, |Nt|δ)
≤
√

2K α(t, εtδ/3)d̂t(Xi, 〈w,X〉) + 6BKα2(t, εtδ/3).
(6.15)

Moreover, applying Theorem 6.F.1 to the sequence of i.i.d variables ((〈w,Xs〉−Xi,s)2)s≤t,
bounded by B2, we have with probability at least 1− δ

∣∣∣d̂2
t (Xi, 〈w,X〉)− d2(Xi, 〈w,X〉)

∣∣∣ ≤
√

2V̂t log(3δ−1)
t

+ 3B2 log(3δ−1)
t

,

where V̂t is the empirical variance of the sequence ((〈w,Xs〉 − Xi,s)2)s≤t. Recall that
similarly to (6.12), we have

V̂t ≤ B2d̂2
t (〈w,X〉, Xi).

Following similar steps as in the proof of Lemma 6.B.1 we conclude that with probability
at least 1− δ ∣∣∣d̂t(Xi, 〈w,X〉)− d(Xi, 〈w,X〉)

∣∣∣ ≤ B
√

6 log(3δ−1)
t

.

Now, we use a union bound over t ≥ 1, i ∈ JKK and w ∈ Ct to obtain with probability at
least 1− δ: ∀t ≥ 1, i ∈ JKK, w ∈ Nt∣∣∣d̂t(Xi, 〈w,X〉)− d(Xi, 〈w,X〉)

∣∣∣ ≤ B√6Kα(t, εtδ/3).

Now let us prove that (A2) is true for any w ∈ G. Fix t ≥ 1. Let w ∈ G, since Nt is a
covering for G(Ct), we have: ∃w′ ∈ Nt such that ‖w − w′‖1 ≤ εt.
Hence

|(〈w, µ̂t〉 − µ̂i,t)− (〈w,µ〉 − µi)| ≤
∣∣(〈w′, µ̂t〉 − µ̂i,t)− (〈w′,µ〉 − µi)∣∣+ ∣∣〈w′ − w, µ̂t − µ〉∣∣

≤
√

2Kα(t, εtδ/3)d̂t(Xi, 〈w′,X〉) + 6BKα2(t, εtδ/3) +Bεt,

where we used (6.15) and ‖w − w′‖1 ≤ εt. Moreover, we have

d̂t(Xi, 〈w′,X〉) ≤ d̂t(Xi, 〈w,X〉) +Bεt.
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Therefore

|(〈w, µ̂t〉 − µ̂i,t)− (〈w,µ〉 − µi)| ≤
√

2Kα(t, εtδ/3)d̂t(Xi, 〈w,X〉)

+ 6BKα2(t, εtδ/3) +Bεt
(
1 +
√

2Kα(t, εtδ/3)
)
.

(6.16)

We choose
εt = δt

K
.

Hence
log
(
9Kε−1

t δ−1
t

)
≤ 2 log(3Kδ−1

t ),

and
α(t, εtδ/3) ≤

√
2α(t, δ). (6.17)

Furthermore, we have

Bεt
(
1 +
√

2Kα(t, εtδ/3)
)
≤ B δt

K

(
1 + 2

√
Kα(t, δ)

)
≤ B δt

K

(
1 + 2

√
K log(3Kδ−1

t )
)

≤ BK log(3Kδ−1
t )

t

δ

t+ 1
1 + 2

√
K log(3Kδ−1

t )
K log(3Kδ−1

t )

≤ BK log(3Kδ−1
t )

t
≤ BKα2(t, δ).

Therefore,
Bεt

(
1 +
√

2Kα(t, εtδ/3)
)
≤ BKα2(t, δ). (6.18)

We plug (6.17) and (6.18) into (6.16), and obtain that with probability at least 1− δ

|(〈w, µ̂t〉 − µ̂i,t)− (〈w,µ〉 − µi)| ≤
√

2Kα(t, δ)d̂t(Xi, 〈w,X〉) + 7BKα2(t, δ). (6.19)

We proceed similarly for the second concentration inequality. We have with probability
at least 1− δ∣∣∣d̂t(Xi, 〈w,X〉)− d(Xi, 〈w,X〉)

∣∣∣ ≤ ∣∣∣d̂t(Xi, 〈w′,X〉)− d(Xi, 〈w′,X〉)
∣∣∣+Bεt

≤ B
√

6Kα(t, εtδ/3) +Bεt

≤ 3B
√
Kα(t, δ). (6.20)

We conclude by combining (6.19) and (6.20).

Lemma 6.B.3. If (A1) defined in (6.8) holds, we have the following:
For any i ∈ JKK, if there exists t ≥ 1 and j ∈ JKK such that ∆̂ij(t, δ) > 0, then i 6= i∗.

171



Proof. Suppose that (A1) is true. Let t ≥ 1, i, j ∈ JKK. We have

µj − µi = ∆̂ij(t, δt) + µj − µi − (µ̂j,t − µ̂i,t) + 2
√

2α(t, δ)d̂t(Xi, Xj) + 12Bα(t, δ)
≥ ∆̂ij(t, δt),

where we used (6.8a). If ∆̂ij(t, δ) > 0, we have µj > µi.

Lemma 6.B.4. If (A2) defined in (6.9) holds, we have the following:
For any i ∈ JKK, if there exists t ≥ 1 and w ∈ G(Ct) such that: Γ̂i(w, t, δ) > 0, then

i 6= i∗.

Proof. Suppose that (A2) is true. Let t ≥ 1, i ∈ JKK and w ∈ G(Ct). We have

〈w,µ〉 − µi = Γ̂i(w, t, δ) + 〈w,µ〉 − µi − (〈w, µ̂t〉 − µ̂i,t)
+ 2
√

3Kα(t, δ)d̂t(Xi, 〈w,X〉) + 18BKα(t, δ)
≥ Γ̂i(w, t, δ),

where we used (6.9a). If Γ̂i(w, t, δ) > 0, we have 〈w,µ〉 > µi. Since w is a vector of convex
weights, we conclude that maxj∈supp(w) µj ≥ 〈w,µ〉 > µi.

Lemma 6.B.5. If (A1) defined in (6.9) holds, then for any t ≥ 1, i, j ∈ Ct:
If ∆̂ij(t, δ) > 0, then

t ≥ 2 log(6Kδ−1
t )Λij .

Furthermore, if ∆̂ij(t, δ) ≤ 0, then

t ≤ 18 log(6Kδ−1
t )Λij .

Proof. Suppose that (A1) is true. Let t ≥ 1, i, j ∈ JKK. Suppose that ∆̂ij(t, δt) > 0. We
have

µj − µi = ∆̂ij(t, δt)− (µ̂j,t − µ̂i,t) + µj − µi + 2
√

2α(t, δ)d̂ij,t + 12Bα2(t, δ)
≥ ∆̂ij(t, δt) +

√
2α(t, δ)d̂ij,t + 6Bα2(t, δ)

>
√

2α(t, δ)dij + 2Bα2(t, δ), (6.21)

where we used (6.8a) in the second line and (6.8b) with ∆̂ij(t, δt) > 0 in the third line.
Solving inequality(6.21), gives

α(t, δ) ≤

√
2d2

ij + 16B(µj − µi)−
√

2 dij
8B

= 2(µj − µi)√
2d2

ij + 16B(µj − µi) +
√

2 dij
.
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Therefore, we have

t ≥ log(6Kδ−1
t )

(
2d2

ij

(µj − µi)2 + 8B
µj − µi

)
≥ 2 log(6Kδ−1

t ) Λij .

Which gives the first result.
Similarly, we prove that if ∆̂ij(t, δ) ≤ 0, then t ≤ 18 log(6Kδ−1

t ) Λij .

Lemma 6.B.6. If (A2) defined in (6.9) holds, then for any i ∈ St, t ≥ 1 and w ∈ G(Ct):
If Γ̂i(w, t, δ) > 0, then

t ≥ 3
2K log(6Kδ−1

t ) Ξi(w).

Furthermore, if Γ̂i(w, t, δ) ≤ 0, then

t ≤ 108K log(6Kδ−1
t ) Ξi(w).

Proof. Suppose that (A2) is true. Let t ≥ 1, i ∈ St and w ∈ G(Ct). Suppose that
Γ̂i(w, t, δ) > 0. We have

〈w,µ〉 − µi = Γ̂i(w, t, δ)− (〈w, µ̂t〉 − µ̂i,t) + 〈w,µ〉 − µi
+ 2
√

3Kα(t, δ)d̂t(Xi, 〈w,X〉) + 18BKα2(t, δ)
≥ Γ̂i(w, t, δ) +

√
3Kα(t, δ)d̂t(Xi, 〈w,X〉) + 9BKα2(t, δ)

>
√

3Kα(t, δ)d(Xi, 〈w,X〉) + 2KBα2(t, δ),

where we used (6.9a) in the second line and (6.9b) with Γ̂i(w, t, δ) > 0 in the third line.
Solving the inequality above in α(t, δ), gives

α(t, δ) ≤
√

3d2(Xi, 〈w,X〉) + 8B(〈w,µ〉 − µi)−
√

3 d(Xi, 〈w,X〉)
4B
√
K

= 2(〈w,µ〉 − µi)√
K
(√

3d2(Xi, 〈w,X〉) + 8B(〈w,µ〉 − µi) +
√

3 d(Xi, 〈w,X〉)
) .

Therefore, we have

t ≥ K log(6Kδ−1
t )

(
3d2(Xi, 〈w,X〉)
2(〈w,µ〉 − µi)2 + 4B

〈w,µ〉 − µi

)

≥ 3
2K log(3Kδ−1

t ) Ξi(w).

Which gives the first result.
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Now let us prove the second claim. Suppose that Γ̂i(w, t, δ) ≤ 0. We have

〈w,µ〉 − µi = Γ̂i(w, t, δ)− (〈w, µ̂t〉 − µ̂i,t) + 〈w,µ〉 − µi
+ 2
√

3Kα(t, δ)d̂t(Xi, 〈w,X〉) + 18BKα2(t, δ)
≤ Γ̂i(w, t, δ) + 3

√
3Kα(t, δ)d̂t(Xi, 〈w,X〉) + 27BKα2(t, δ)

≤ 3
√

3Kα(t, δ)d(Xi, 〈w,X〉) + 27BKα2(t, δ),

where we used (6.9a) in the second line and (6.9b) with Γ̂i(w, t, δt) ≤ 0 in the third line.
Suppose that 〈w,µ〉 > µi. Solving the inequality above in α(t, δ), gives

α(t, δ) ≥
√

27d2(Xi, 〈w,X〉) + 108B(〈w,µ〉 − µi)− 3
√

3d(Xi, 〈w,X〉)
54B
√
K

= 2(〈w,µ〉 − µi)√
K
(√

27d2(Xi, 〈w,X〉) + 108B(〈w,µ〉 − µi) + 3
√

3d(Xi, 〈w,X〉)
) .

Therefore, we have

t ≤ K log(6Kδ−1
t )

(
27d2(Xi, 〈w,X〉)

(〈w,µ〉 − µi)2 + 54B
〈w,µ〉 − µi

)
≤ 108K log(6Kδ−1

t )Ξi(w).

If 〈w,µ〉 ≤ µi, then Ξi(w) = +∞ and the inequality above is straightforward.

6.C Proof of Theorem 6.4.3

Lemma 6.C.1. Let i, j and k ∈ JKK, we have:

Λij ≤ max{Λik,Λkj}.

Proof. Let i, j and k ∈ JKK.
Suppose that µj > µi (hence Λij < +∞). We have

dij
µj − µi

≤ dik + dkj
(µj − µk) + (µk − µi)

≤ max
{

dkj
µj − µk

,
dik

µk − µi

}
,

where the first line follows by the triangle inequality and the second is a consequence of
the inequality a+b

c+d ≤ max{ac ,
b
d} (Lemma 6.F.2). Moreover, we have

B

µj − µi
= B

(µj − µk) + (µk − µi)

≤ max
{

B

µj − µk
,

B

µk − µi

}
.
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Combining the previous bounds, we obtain the result.
Suppose that µj ≤ µi. Hence, for any k ∈ JKK, µk ≤ µi or µk ≥ µj . Therefore

max{Λik; Λkj} = +∞,

which proves the result.

For any i ∈ JKK \ {i∗}, let us define Υi by

Υi := Arg Min
j∈JKK

Λij . (6.22)

Lemma 6.C.2. Consider Algorithm 19 with inputs (δ,B, κ) such that κ ≥ 26. If (A1)
defined in (6.9) holds, then for any i ∈ JKK \ {i∗} and t ≥ 1:

If i ∈ St, then Υi ∩ Ct 6= ∅, where Υi is defined in (6.22).

Proof. Suppose that (A1) holds. Let t ≥ 1, i ∈ JKK \ {i∗}. Proceeding by proof via
contradiction, suppose that Υi ∩Ct = ∅. This implies in particular that all elements in Υi

were eliminated prior to t. Let j denote the element of Υi with the largest mean:

j ∈ Arg Max
l∈Υi

{µl}.

Let s denote the round where j has failed the test (i.e. ∃k ∈ Cs, ∆̂jk(s, δ) > 0).
Hence, using Lemma 6.B.5, we have

2 log(6Kδ−1
s )Λjk ≤ s. (6.23)

Moreover, j was kept for testing up to round (1 + κ)s (i.e. j ∈ C(1+κ)s) and (1 + κ)s < t

(since j /∈ Ct). At round (1 + κ)s we necessarily had ∆̂ij((1 + κ)s, δ) ≤ 0.
Therefore, using Lemma 6.B.5

(1 + κ)s ≤ 18 log(6Kδ−1
(1+κ)s)Λij . (6.24)

Combining (6.23) and (6.24) gives

2(1 + κ) log(6Kδ−1
s )Λjk ≤ 18 log(6Kδ−1

(1+κ)s)Λij .

Therefore, since κ ≥ 26

Λjk ≤
(

9
1 + κ

+ 18
1 + κ

log(1 + κ)
log(6Kδ−1

s )

)
Λij ≤ Λij . (6.25)

Using Lemma 6.C.1, we have
Λik ≤ max{Λij ,Λjk}. (6.26)

We plug the bound Λjk ≤ Λij from (6.25) into (6.26) and obtain Λik ≤ Λij . Therefore
k ∈ Υi.

To conclude, recall that k eliminates j, hence µk > µj . The contradiction arises from
k ∈ Υi and the definition of j as the element with largest mean in Υi.
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We introduce the following notation. For i ∈ JKK and t ≥ 1 let Ni,t denote the number
of queries made for arm i up to round t

Ni,t :=
t∑

s=1
1(i ∈ Cs). (6.27)

Lemma 6.C.3. Consider Algorithm 19 with inputs (δ,B, κ) such that κ ≥ 26. If (A1)
defined in (6.9) holds, then we have for each i ∈ JKK \ {i∗}:

∀t ≥ 1 : Ni,t ≤ 72(1 + κ) log(216KΛ∗i δ−1)Λ∗i ,

where Ni,t is defined in (6.27).

Proof. Suppose (A1) holds. Let i ∈ JKK \ {i∗} and t ≥ 1. Let u denote the last round
such that i ∈ Su. Lemma 6.C.2 states that Υi∩Cu 6= ∅, where Υi is defined in (6.28). Let
j ∈ Υi ∩ Cu, since i ∈ Su, we necessarily have

∆̂ij(u− 1, δ) ≤ 0.

Using Lemma 6.B.5, we have

u− 1 ≤ 18(1 + κ) log(6Kδ−1
u−1)Λij .

Recall that u is the last round such that i ∈ Su, hence i /∈ C(1+κ)u+1. Therefore, for any
t ≥ 1

Ni,t = (1 + κ)u ≤ 18(1 + κ) log(6Kδ−1
u )Λij

≤ 72(1 + κ) log(216KΛ∗i δ−1)Λ∗i ,

where we used Lemma 6.F.3 with x = u and c = δ/6K.

Proof for Theorem 6.4.3 Suppose Assumptions 8-10 hold. Consider Algorithm 19
with input (δ, κ,B) such that κ ≥ 26. Suppose that event (A1) holds. The stopping time
τ in Algorithm 19 is given by

τ := max
i∈JKK\{i∗}

Ni,t,

whereNi,t is defined in (6.27). Using Lemma 6.C.3, we have: τ ≤ 72(1+κ) log(216KΛ∗δ−1)Λ∗.
Moreover, we have by definition of the total number of queries made Cπ:

Cπ =
∑

i∈JKK\{i∗}
Ni,t.

Therefore, Lemma 6.C.3 gives the result.
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6.D Proof of Theorem 6.4.4

We provide the same type of guarantees for Algorithm 6.4. For any i ∈ JKK \ {i∗}, let
us define Ψi by

Ψi := Arg Min
w∈G

Ξi(w). (6.28)

For any u, v ∈ G, we overload the notation Ξi(u) into

Ξu(v) :=
{

+∞ if 〈u,µ〉 ≤ 〈v,µ〉
max

{
d2(〈X,u〉,〈X,v〉)
(〈u,µ〉−〈v,µ〉)2 ; B‖u−v‖1

〈v,µ〉−〈u,µ〉

}
otherwise

In particular we have Ξei(w) = Ξi(w), where (ei)i∈JKK is the canonical basis of RK . We
say that an arm i ∈ JKK has failed the Γ-test at round t, if

sup
w∈G(Ct\{i})

Γ̂i(w, t, δ) > 0.

Lemma 6.D.1. Let i ∈ JKK, u, v ∈ G, we have

Ξi(v) ≤ max{Ξi(u),Ξu(v)}.

Proof. Let i ∈ G, u, v ∈ G. Suppose that µi < 〈v,µ〉. We have

d(Xi, 〈v,X〉)
〈v,µ〉 − µi

≤ d(Xi, 〈u,X〉) + d(〈u,X〉, 〈v,X〉)
(〈v,µ〉 − 〈u,µ〉) + (〈u,µ〉 − µi)

≤ max
{
d(Xi, 〈u,X〉)
〈v,µ〉 − 〈u,µ〉

,
d(〈u,X〉, 〈v,X〉)
〈u,µ〉 − µi

}
,

where the first line follows by the triangle inequality and the second is a consequence of
the inequality a+b

c+d ≤ max{ac ,
b
d} (Lemma 6.F.2).

Moreover we have

B‖v − ei‖1
〈v − ei,µ〉

≤ B(‖v − u‖1 + ‖u− ei‖1)
〈u− ei,µ〉+ 〈v − u,µ〉

≤ max
{
B‖u− ei‖1
〈u− ei,µ〉

,
B‖v − u‖1
〈v − u,µ〉

}
.

Combining the previous bounds, we obtain the result.
If µi ≥ 〈v,µ〉, we have µi ≥ 〈u,µ〉 or 〈u,µ〉 ≥ 〈v,µ〉. Hence

max{Ξi(u); Ξu(v)} = +∞,

which proves the result.

Lemma 6.D.2. Consider Algorithm 6.4 with input (δ, κ,B) such that κ ≥ 215. If (A2)
defined in (6.9) holds, then for any i ∈ JKK \ {i∗}, t ≥ 1:

If i ∈ St, then there exists a vector w∗ ∈ Ψi such that: supp(w∗) ⊆ Ct.
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Proof. Let t ≥ 1, i ∈ JKK \ {i∗}. We take w∗ to be one of the vectors from the set Ψi,
such that the mean 〈w∗,µ〉 is the largest for all vectors in Ψi. More formally:

w∗ ∈ Arg Max
w∈Ψi

{〈w,µ〉}.

Proceeding by proof via contradiction, we suppose that supp(w∗) 6⊂ Ct. Then, we will
build a vector w′ ∈ Ψi, such that 〈w∗,µ〉 < 〈w′,µ〉, the contradiction follows from the
definition of w∗. Let j be the first eliminated element in supp(w∗). Let s denote the round
where j has failed the Γ-test (i.e. ∃w̃ ∈ G(JKK \ {j}), Γ̂j(w̃, s, δ) > 0).
Let us define w′ ∈ RK as follows: w′j = 0 and for k ∈ JKK \ {j}, w′k = w∗k + w∗j w̃k. Recall
that ∥∥w′∥∥1 =

∑
k∈JKK\{j}

w∗k + w∗j w̃k

=
∑

k∈JKK\{j}
w∗k +

∑
k∈JKK\{j}

w∗j w̃k

= 1− w∗j + w∗j
∥∥w′∥∥1

= 1,

where we used the fact that j /∈ supp(w̃). We conclude that w′ ∈ G. Let us show that
w′ ∈ Ψi. Let u ∈ RK , we have

〈w∗ − w′, u〉 = w∗juj +
∑

k∈JKK\{j}
(w∗k − w∗k − w∗j w̃k)uk

= w∗juj − w∗j
∑

k∈JKK\{j}
w̃kuk

= w∗j (uj − 〈w̃, u〉). (6.29)

In particular, for u = µ, we have

〈w∗ − w′,µ〉 = w∗j (uj − 〈w̃, u〉) < 0, (6.30)

since w̃ eliminated j.
Using (6.29) we have

Ξw∗(w′) = max
{
E
[
〈w∗ − w′,X〉2

]
(〈w∗ − w′,µ〉)2 ; B‖w

∗ − w′‖1
〈w′ − w∗,µ〉

}

= max

E
[
w2
j (Xj − 〈w̃,X〉)2

]
w2
j (µj − 〈w̃,u〉)2 ; B

〈w̃,µ〉 − µj


= Ξj(w̃).

Therefore, using Lemma 6.D.1

Ξi(w′) ≤ max
{
Ξi(w∗); Ξw∗(w′)

}
= max{Ξi(w∗); Ξj(w̃)}. (6.31)
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Recall that Γ̂j(w̃, s, δ) > 0. Hence using Lemma 6.B.6, we have
3
2K log(6Kδ−1

s )Ξj(w̃) ≤ s. (6.32)

Moreover, since j failed the Γ-test at round s, we have by construction of Algorithm 6.4:
j ∈ C(1+κ)s. Recall that j is the first element of the support of w∗ that was eliminated,
then we necessarily have supp(w∗) ⊂ C(1+κ)s. Since we assumed that supp(w∗) 6⊂ Ct, we
have (1 + κ)s < t, hence i ∈ C(1+κ)s and Γ̂i(w∗, (1 + κ)s, δ) ≤ 0. Using Lemma 6.B.6

(1 + κ)s ≤ 108K log(6Kδ−1
(1+κ)s) Ξi(w∗). (6.33)

Combining inequalities (6.32) and (6.33), we have
3
2K(1 + κ) log(6Kδ−1

s )Ξj(w̃) < 108K log(6Kδ−1
(1+κ)s)Ξi(w

∗).

Therefore

Ξj(w̃) ≤ 216
3(1 + κ)

log(6Kδ−1
(1+κ)s)

log(6Kδ−1
s )

Ξi(w∗)

≤ 216
3(1 + κ)

(
1 + 2 log(1 + κ)

log(6Kδ−1
s )

)
Ξi(w∗)

≤ Ξi(w∗),

where we used the fact that κ < 215. Combining the bound above with (6.31), we conclude
that Ξi(w′) ≤ Ξi(w∗). Hence w′ ∈ Ψi.

Finally, recall that by (6.29) 〈w′,µ〉 > 〈w∗,µ〉. The conclusion follows from w′ ∈ Ψi

and the definition of w∗.

Lemma 6.D.3. Consider Algorithm 6.4 with input (δ, κ,B) such that κ ≥ 215. If (A2)
defined in (6.9) holds, then we have for each i ∈ JKK, t ≥ 1:

Ni,t ≤ 432 log
(
1296KΞi(w∗)δ−1

)
KΞi(w∗).

Proof. Suppose (A2) holds. Let i ∈ JKK \ {i∗} and t ≥ 1. Let u denote the last round
such that i ∈ Su. Lemma 6.D.2 states that there exists w∗ ∈ Ψi such that supp(w∗) ⊂ Cu,
where Ψi is defined in (6.22). Since i ∈ Su, we necessarily have:

Γ̂i(w∗, u− 1, δ) ≤ 0.

Using Lemma 6.B.5, we have

u− 1 ≤ 108K log(6Kδ−1
u−1)Ξi(w∗).

Recall that u is the last round such that i ∈ Su, therefore i /∈ C(1+κ)u+1. Hence, for any
t ≥ 1

Ni,t = (1 + κ)u ≤ 108(1 + κ)K log(6Kδ−1
u )Ξi(w∗)

≤ 432 log
(
1296KΞi(w∗)δ−1

)
KΞi(w∗),

where we used Lemma 6.F.3 with x = u and c = δ/6K.
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Proof for Theorem 6.4.4 Following the same arguments as in the proof of Theo-
rem 6.4.3, the conclusion is a direct consequence of Lemma 6.D.3 and definitions of τ and
Cπ.

6.E Proof of Theorem 6.4.2

Consider Algorithm 19 with input (δ,B, κ) such that κ ≥ 0. The event {τ <∞ and Ψ 6=
i∗} implies that: ∃t ≥ 1 and j ∈ JGK \ {i∗} such that: ∆i∗j(t, δ) > 0. Using Lemma 6.B.4,
the latter event implies that (A1) defined in (6.8) does not hold, which occurs with prob-
ability at most δ (Lemma 6.B.1). As a conclusion we have

P({τ <∞ and Ψ 6= i∗}) ≤ δ.

The same arguments apply to Algorithm 6.4.

6.F Some technical results

We state below a version of the empirical Bernstein’s inequality presented by Audibert
et al. [2007].

Theorem 6.F.1. Let X1, . . . , Xt be i.i.d random variables taking their values in [0, b]. Let
µ = E[X1] be their common expected value. Consider the empirical expectation X̄t and
variance Vt defined respectively by

X̄t =
∑t
i=1Xi

t
and Vt =

∑t
i=1(Xi − X̄t)2

t
.

Then for any t ∈ N and x > 0, with probability at least 1− 3e−x

∣∣∣X̄t − µ
∣∣∣ ≤

√
2Vtx
t

+ 3bx
t
.

The following lemma is technical, it will be used in the proof of Lemma 6.C.1.

Lemma 6.F.2. Let a, b, c and d > 0, we have

a+ b

c+ d
≤ max

{
a

c
,
b

d

}
.

Proof. Let ρ = c
c+d ∈ (0, 1). Observe that

a+ b

c+ d
= ρ

a

c
+ (1− ρ) b

d
,

and 1−ρ = d
c+d ∈ (0, 1). Taking the maximum of the convex combination above gives the

result.
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Lemma 6.F.3. Let x ≥ 1, c ∈ (0, 1) and y > 0 such that:

log(x/c)
x

> y. (6.34)

Then:

x <
2 log

(
1
cy

)
y

.

Proof. Inequality (6.34) implies
x <

log(x/c)
y

,

and further

log(x/c) < log(1/yc) + log log(x/c) ≤ log(1/yc) + 1
2 log(x/c),

since it can be easily checked that log(t) ≤ t/2 for all t > 0. Solving and plugging back
into the previous display leads to the claim.
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Chapter 7

Conclusions and Future Directions

The aim of this chapter is to present some possible extensions and future developments on
the results presented here.

Chapter 3 uses the number of elementary operations required to run the algorithm as
time complexity. From a theoretical point of view, the last model shows our procedure’s
capacity to adapt to the unknown order of magnitude of the regression coefficients. How-
ever, from a practitioner’s perspective, the quantities of interest are the clock time and
the power consumption of the algorithm. This naturally raises questions about the ade-
quacy of the considered model, as the last criteria generally depend upon the hardware
being considered. On a more statistical side, another interesting line for future work is to
relax the assumptions made on the data distribution. We considered two assumptions on
the covariance matrix of data, namely restricted isometry property (RIP) and the irrep-
resentable condition. The last assumption allows us to make correct forward steps (with
large probability). In the batch setting, Zhang [2011a] analysed a forward-backward fea-
ture selection algorithm (FoBa) requiring only RIP assumption on the covariance matrix.
FoBa selects features incrementally and introduces backward steps to eliminate wrongly
selected features. A possible extension of OOMP is extending the last idea in order to
drop the irrepresentable condition assumption.

Chapter 4 analyses the problem of model selection aggregation with restricted access
to data. We showed that accessing at least two covariates per data point and predicting
using at least two covariates allows us to achieve fast rates with high probability. The
presented procedure samples covariates uniformly at random. We showed the limited
access to points is paid through a multiplicative factor of (K/m)2, with K being the total
number of covariates and m the number of observed covariates in each round. A natural
question is whether a smarter sampling rule would improve the dependency of the excess
risk on the ratio K/m. In the case m = 2, a possible direction would be to sample the
first covariate uniformly at random for exploration and to sample the second on a criterion
depending on the first sampled point, such as L2 empirical distance. Another possible
improvement is considering more general assumptions on the loss function allowing fast
rates.

Chapter 5 revisits the classical problem of individual sequence prediction but with
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limited access to expert advice. In online learning literature, the only algorithms known
to achieve a constant regret guarantee were exponentially weighted averaging procedures
that require using all the experts in each round. We prove that constant regrets are still
achievable when constrained to using only two experts. In the considered problem, the
benchmark is the best-fixed expert in hindsight (the expert with the smallest cumulative
regret). A possible extension would be to consider sparse combinations of experts as refer-
ences. The last problem undoubtedly raises additional issues related to its combinatorial
nature, it would be challenging to derive an efficient algorithm in this case.

Chapter 6 builds on an idea presented in Chapter 4 for model selection aggregation
based on performing tests sequentially on the difference between each pair of experts. We
present two new algorithms for best arm identification based on pairwise comparison and
on comparing each arm with a convex combination of all arms. The new bounds recover,
in the worst case, the known bounds for one arm per round framework. Whenever the
arms are dependent, our algorithms adapt to the underlying correlation, which results
in faster best arm selection. A possible future work is assessing the optimality of the
obtained bounds. This raises the challenge of developing “second order" lower bounds
(lower bounds depending on the vector of means µ and the covariance matrix Σ of the
arms) and to provide an algorithm achieving such optimal bounds.
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