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Title: Resource Allocation and Pricing in 5G Network Slicing
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Abstract: Network slicing is one of the po-
tential technologies to support a higher degree
of heterogeneity and flexibility required by next-
generation services in 5G networks. In 5G en-
vironments, a network slicing is a specific form
of virtualisation that allows multiple logical net-
works (e.g., Mobile Virtual Network Operators
(MVNOs)), to run on top of a shared physical in-
frastructures. In emerging 5G mobile technology,
network design also incorporates data-centers
into their plan to support computation offloading
and network function virtualization. Thus, a slice
will often comprise different resource types. (e.g.,
radio resource, CPU, memory, bandwidth). That
implies that a heterogeneous set of resources is
shared among Slice tenants or MVNOs, and a
portion of them is allocated to each slice to sup-
port dedicated service to their customers. The
core challenge in this context is to determine
at once the price of the available of heteroge-
neous resources and their assignment across dif-
ferent slices. This thesis presents different novel
resource allocation and pricing models for 5G net-
work slicing

First, we devise a flexible sharing mecha-
nism based on a bidding scheme which is prov-
ably overbooking-free even though the players’
bids are oblivious to infrastructure resources con-
straints. The proposed scheme can attain desir-
able fairness and efficiency figures to serve slice
tenants and associated mobile users. This goal is
attained by designing two coupled games entan-
gled by the same Nash equilibrium. The first is a
virtual game that generates the vector of prices
of resources, and for which there exists a unique
generalised Nash equilibrium. The Infrastructure
Provider (InP) can use the price vector to drive
the second game, a multidimensional Kelly mech-
anism based on the so-determined prices, where
customers acquire a slice of resources at a price.
We finally describe how to attain the Nash equi-
librium of the game using an online procedure
based on a primal-dual distributed algorithm.

In the second work, we propose a flexible
resource allocation and pricing scheme for slic-
ing based on a combination of the Fisher mar-
ket model and the Trading post mechanism. By

properly pricing network resources, the desired
allocation can be attained as a market equilib-
rium solution that not only maximizes network re-
source utilization but also assigns slice tenants
with their favourite bundle. To make the scheme
practically viable and enable tenants to reach
market equilibrium in a decentralized manner, we
devise budgets distributing rule via trading post
mechanisms that hand over tenants direct control
to manage their preferences over resources un-
der budget constraints. We theoretically evaluate
the efficiency and fairness of the resulting alloca-
tions by comparing them with different baseline
allocations.

In our third endeavour, we study the busi-
ness aspect of network slicing with a commu-
nication marketplace where slice tenants are in
double-sided competition with each other. One
competition is in terms of quality of service to at-
tract the end-user to their services, and the sec-
ond is to access the limited network resources
for service provisioning. We model the competi-
tive interaction between service providers (lead-
ers) and end-users (followers) with the Stackel-
berg game where end-users decide to choose
their subscribers through imitation process result-
ing in competition between the SPs as a multi-
resource Tullock rent-seeking game. To deter-
mine resource pricing and allocation, we design
two innovative market mechanisms. First, we as-
sume that the Service providers (SPs) are pre-
assigned with fixed infrastructure shares (bud-
gets) and rely on a trading post mechanism to
allocate the resource. Under this mechanism,
the SPs can redistribute their budgets in bids
and customise their allocations to maximise their
profits. We investigate the strategic behaviour of
SPs with a noncooperative game, which admits a
unique Nash equilibrium when dealing with a sin-
gle resource. Second, when SPs have no bound
on their budget, we cast the problem as a coupled
constraints game and show that the market prices
can be obtained as the duals of the coupling con-
straints. Finally, we provide with different learning
algorithms to compute solutions to the proposed
market mechanisms.
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Titre : Allocation des ressources et tarification dans 5G Network Slicing

Mot clés : 5G Network Slicing, Mécanisme, Jeu contraint couplé, Équilibre de Nash normalisé, Mar-
ché des Fisher, Mécanisme de trading post

Résumé : Le "network slicing" est l’une des prin-
cipales technologies permettant de répondre aux
exigences de la vision orientée services des ré-
seaux 5G, à savoir, gérer une hétérogénéité de
réseau élevée tout en garantissant certain degré
de flexibilité. Dans les applications 5G, le net-
work slicing représente un mode particulier de
virtualisation permettant, à titre d’exemple, aux
opérateur de réseau mobile virtuel (MVNOs) et
aux fournisseurs de services (SP), etc., de dé-
ployer chacun ses propres services au moyen
d’une infrastructure physique partagée. Dans la
technologie mobile 5G émergente, la mise en
place de réseaux prévoit également l’intégration
de centres de données afin de prendre en charge
les calculs intensifs et la virtualisation des fonc-
tions du réseau. Ainsi, une slice de réseau com-
prendra souvent différents types de ressources
(par exemple, ressources radio, CPU, mémoire,
bande passante, etc.), cela sous-entend qu’un
ensemble hétérogène de ressources est partagé
entre les détenteurs de slices, et une partie de
celles-ci est allouée à chaque tranche pour lui
permettre de fournir un certain service à ses utili-
sateurs. Le défi fondamental dans ce contexte est
de déterminer à la fois le prix des ressources hé-
térogènes disponibles et leur affectation entre les
différentes slices. Cette thèse présente différents
modèles novateurs d’allocation de ressources et
de tarification pour le 5G network slicing.

Dans un premier temps, nous élaborons un
mécanisme de partage flexible basé sur un sys-
tème d’enchères qui est démontré sans surré-
servation et ce même si les offres des joueurs
ignorent les contraintes liées aux ressources. Le
système proposé peut atteindre une équité et une
efficacité adéquates permettant derépondre aux
besoins des détenteurs de slices et des utilisa-
teurs mobiles associés. Cet objectif est atteint par
la création de deux jeux couplés qui sont liés par
le même équilibre de Nash. Le premier est un jeu
virtuel qui détermine le vecteur des prix des res-
sources, et pour lequel il existe un équilibre de
Nash généralisé unique. Le fournisseur d’infra-
structure peut ainsi utiliser le vecteur de prix pour
piloter le deuxième jeu qui est un mécanisme de
Kelly multidimensionnel basé sur les prix préala-

blement déterminés. Finalement, nous détaillons
la méthode pour atteindre l’équilibre de Nash du
jeu en utilisant un algorithme primal-dual distri-
bué.

Ensuite, nous proposons un schéma d’allo-
cation des ressources et de tarification flexible
pour le découpage en tranches reposant sur la
combinaison du modèle de Fisher market et du
mécanisme de trading post. En tarifant correc-
tement les ressources du réseau, l’allocation re-
cherchée peut être atteinte en tant que solution
d’équilibre du marché qui non seulement maxi-
mise l’utilisation des ressources du réseau, mais
aussi d’attribuer aux détenteurs de slices leur for-
fait (or paquet) de préférence. Afin de rendre le
système pratique et de permettre aux détenteurs
de slices d’atteindre l’équilibre du marché de
façon décentralisée, nous concevons une règle
de répartition des budgets via les mécanismes
de trading post qui confèrent aux détenteurs de
tranches un contrôle direct pour gérer leurs pré-
férences sur les ressources sous contraintes bud-
gétaires. Nous évaluons théoriquement l’effica-
cité et l’équité des allocations obtenues en les
comparant à différentes allocations de référence.

En dernier lieu, nous étudions l’aspect com-
mercial du Network slicing dans le cadre d’un
marché de la communication où les détenteurs
de tranches, c’est-à-dire les fournisseurs de ser-
vices, sont en double concurrence les uns avec
les autres. Une concurrence se fait en termes de
qualité de service pour inciter l’utilisateur final à
utiliser leurs services, et la seconde est pour ac-
céder aux ressources limitées du réseau pour la
fourniture de services. Nous modélisons l’inter-
action concurrentielle entre les fournisseurs de
services (leaders) et les utilisateurs finaux (sui-
veurs) par le jeu de Stackelberg où les utilisa-
teurs finaux décident de choisir leurs abonnés
par le biais d’un processus d’imitation, ce qui
entraîne une concurrence entre les fournisseurs
de services sous la forme d’un jeu Tullock rent-
seeking multi-ressources. Pour déterminer la ta-
rification et l’allocation des ressources, nous éla-
borons deux mécanismes de marché innovants.
Premièrement, nous supposons que les fournis-
seurs de services se voient attribuer à l’avance
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des parts d’infrastructure fixes (budget) et uti-
lisent un mécanisme de trading post pour allouer
les ressources. Suivant ce mécanisme, les four-
nisseurs de services peuvent redistribuer leurs
ressources dans les enchères et modifier leurs al-
locations pour maximiser leurs profits. Nous étu-
dions le comportement stratégique des fournis-
seurs de services à l’aide d’un jeu non coopératif
qui admet un équilibre de Nash unique lorsqu’il

s’agit d’une seule ressource. Ensuite, lorsque les
fournisseurs de services n’ont pas de limite bud-
gétaire, nous considérons le problème comme
un jeu à contraintes couplées et montrons ainsi
que les prix du marché peuvent être obtenus en
tant que duals des contraintes de couplage. En-
fin, nous proposons trois algorithmes d’appren-
tissage différents destinés à déterminer les solu-
tions aux mécanismes de marché proposés.
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Chapter 1

INTRODUCTION

Communication technology has been playing an essential role in society’s digitalization and is
a significant contributor to a growing economy worldwide. The unprecedented increase in mobile
devices has given rise to the explosive growth of mobile data traffic. Looking towards the future,
indeed, mobile communications is expected to grow and extend its utilization in a whole new gen-
eration of applications like Virtual Augmented Reality (AR), Virtual Reality (VR) live broadcast [93],
Internet of things (IoT) [15], Autonomous driving [64], remote healthcare [2], automated manufac-
turing based on smart factories [21], sectors where its potential is not fully being realized. Critical
challenges in mobile network applicability to the sectors mentioned above are their heterogeneity
and conflicting communications needs, that the current monolithic network is insufficient to meet.
For example, automotive and healthcare require ultra-reliable services or extremely low latency,
whereas the Virtual Reality (VR) live broadcast needs ultra-high-bandwidth communication. The 5G
network design should incorporate the capabilities that satisfy all these heterogeneous and conflict-
ing requirements simultaneously. Several new concepts have been proposed for the upcoming 5G
network design to satisfy these critical needs. Out of those, probably one of the most important one
is “network slicing”[40]. Briefly, network slicing is the concept of running multiple independent logical
networks (slice) on top of the common shared physical infrastructure. Each independent logical net-
work (slice) is then explicitly dedicated to meeting each service’s needs, contrary to the approach
“one-size-fits-all,” that was the mainstream approach in the previous mobile generations [40]. Net-
work slicing facilitates slice tenant to share the same physical infrastructure in a flexible and dynamic
manner that helps to utilize the resources in a more efficient and economical way

The next-generation mobile applications/services like AR and VR broadcast demand more data-
intensive operations than those required by traditional mobile applications. Therefore, to cope with
the requirements of additional computational power and memory resources for such services, 5G
mobile network design should also incorporate the data-centres or cloud computing capabilities into
their plan. However, along with the increasing computational demands on networks, many appli-
cations like self-driving cars [114][60], augmented reality, and drones [16] also demand ultra-fast
interactions/quick responses. This leads to placing some of the computational resources closer to
the base stations, or the edges of the network, in the form of what is known as “multi-access edge
commuting (MEC) [51] also know as edge computing/fog computing . This means that you will have
the service at a location that is closest to where the data is generated and processed. Moreover, it
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can significantly lower data transfer costs by processing the information locally. To that end, in next-
generation mobile networks, data centres and edge computing are being integrated into the network
architecture to provide an integrated service delivery platform for various services. As a result, a net-
work slice is usually composed of diverse heterogeneous resources, including radio access capacity
or communication resources, edge storage memory, and computational resources etc. Unlike tra-
ditional cloud servers with infinite virtual capacity, the edge servers are capacity-limited. Moreover,
the resource requirements of emerging services are diverse and conflicting in nature. Which makes
it’s challenging for the Infrastructure provider to jointly price and share resources assigned simulta-
neously across slices.

In this thesis, we study different novel resource allocation and pricing models for network slic-
ing. The pricing and resources allocation scheme have been very well studied in literature [97, 117,
68, 57, 25, 108, 56], assuming agents would demand several resources at once using vectors of
bids and so specify their demands. However, compared to standard settings in cloud computing,
5G networks have significant differences, to mention some of them. First, the resources are often
scarced in 5G deployment compared to the resources in cloud computing. Second, mobile networks
are traditionally designed for fair sharing of resources [97, 117]. Since near-far effects and fading
induce different conditions across a deployment in the same cell and across cells, it is more chal-
lenging to share resources. Third Load conditions in wireless networks may be both dynamic and
heterogeneous. Finally, The joint slice allocation and pricing schemes must adhere to SLAs [43].

The second chapter of the thesis presents a novel theoretical framework for pricing resources
for network slices based on the Kelly mechanism [52]. In our framework, slice tenants compete for
resources, submit bids for each resource type in slices, and pay depending on how much they bid at
a price per resource set by the InP. However, adopting bidding schemes may be prone to overbook-
ing because prices are defined via competitive bidding schemes, and aggregated demand at set
prices may exceed available infrastructure capacity. Thus, under such a scenario where the agents
act greedily, the InPs must design a proper overbooking pricing scheme to achieve social efficiency.
In this chapter, we develop the resource allocation and pricing problem using the game-theoretic
framework. Our study demonstrates that overbooking free pricing can be developed based on the
concept of the normalized Nash equilibrium [88], or variational equilibrium [88, 33, 55] solution for
the coupled constraints non-cooperative game. We observe that agents competing for the resources
through the Kelly mechanism induce a non-cooperative game, and the solution for this game may be
practically infeasible i.e. total demand at Nash equilibrium of game may exceed infrastructure capac-
ity. We develop a new game for resource allocation called "Pricing game ", where agents compete
for the available resources taking into account infrastructure capacity constraints. We extend the
duality results from standard continuous optimization to non-cooperative games [85], and show that
the dual variables of the coupling constraints in the new formulated game can be seen as resource
prices. Finally, combining the two games (a game induced through the Kelly mechanism and the
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Pricing game ) into an Extended Pricing Game that also involves the InP maximizing its profit and
dictating at once the respect of capacity constraints. The latter the game can be implemented in
practice using online learning via a decentralized bidding scheme where the InP refines the prices
per resource and a primal-dual converges to the target normalized equilibrium.

The network slicing brings the paradigm shift towards the multitenancy ecosystem, where simul-
taneously multiple tenants can operate on the shared physical infrastructure to run their services
[11]. When the networking architectures are based on shared resources, it may cause security and
scalability issues. For example, slice tenants naturally demand logical independent and isolated
slices with complete protection of their service level agreement (SLA). That may require a static
allocation of resources at the cost of inefficient resource utilization [79]. However, The tenants loads
may vary with time and can be spatially inhomogeneous; in such a case, dynamic sharing of re-
sources is regarded as one of the efficient ways to share the resources as this lowers the capital
cost and gives better resources utilization [59, 69]. Therefore, one of the critical concerns in 5G net-
work slicing is how to efficiently and dynamically allocate limited resources to tenants with diverse
characteristics and services while maintaining the protection of their service level agreements.

To address the above issues, third chapter of the thesis proposes a flexible resource sharing
scheme based on a combination of the Fisher market model [17] and the Trading post mecha-
nism [96]. In the proposed scheme, each slice tenant (service provider) is pre-assigned with a fixed
share (budget) of infrastructure depending on their service level agreement (SLA) with infrastructure
provider (InP). InP dynamically sets the prices for the resources depending on their demand and
availability. Given prices announced by InP, slice tenants spend their budgets to purchase the opti-
mal bundle of resources that maximizes their utilities. Where particularly utilities capture the effect of
fairness and quality of service employed by the service providers while delivering the service to their
users. The proposed allocation scheme aims to obtain resource allocation and prices functioning as
market equilibrium, where every slice is satisfied with their assignment, and all the resources get
clear.

To obtain the desired resource allocation as the market equilibrium of the the Fisher market
model, we leverage the idea of the Esenberg Gale optimization program [31] [32] and frame the
equilibrium solution as a convex optimization problem. This problem’s primal and dual solution pair
provide us with the equilibrium allocation and prices. However, solving this problem in a central-
ized way demands service providers to disclose their private information (utilities). Thus to solve the
equilibrium problem in a decentralized manner and make the proposed resource allocation scheme
practically viable, we implement it via the Trading post mechanism. In this mechanism, slices dis-
tribute their network shares on different resources in bids depending on their requirements. Each
resource’s price is set as the total bids submitted for that resource, and the resource is allocated
accordingly to SPs bids. This approach regulates the tradeoff between efficient resource utilization
and the degree of protection to SLA. On the one hand, it enables dynamic sharing, where tenants
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can redistribute their network share based on the active user load; on the other hand, it also pro-
vides the slice tenant degree of protection by keeping the preassigned share intact throughout the
allocation process.

As discussed earlier, a paradigm shift is brought about by the implication of network slicing,
where multiple tenants negotiate with multiple InPs to request resources for their service provision.
New players like mobile service providers and virtual network operators are gaining ground by using
the existing physical infrastructure to run their virtual, independent business operations. If the service
providers want to grow their market share, they need to attract end-users with better quality service
and low tariffs. End-users will choose to subscribe to the service provider that provides better service
quality and lower tariffs. The resource inventory available with the service provider characterizes
their service performance; the more the resources available with the service providers, the better the
service they can offer. However, the resources available with the infrastructure provider are limited,
resulting in double-sided competitive interaction between the service provider, one interaction due
to competition for service provision, and the second interaction due to procurement of resources.
Undoubtedly, allocating and pricing resources in such a double sided competitive environment is a
significantly challenging task.

In the fourth chapter of the thesis, we propose a novel resource pricing and allocation scheme for
the communication marketplace, where service provider i.e., slice tenants relying on slicing access
the resources from infrastructure provider and compete to offer a certain communication service to
a geographically distributed pool of end-users. First, we model the interaction between end users
and service providers as Stackelberg game [99] where service providers act as leaders and end-
users as followers. In communication service marketplace, the influence of user’s choices on other
users is a well-known concept. If users are informed about other user’s choices, which is assumed to
improve their service satisfaction, they imitate other user decisions. Thus we model the interactions
between end-users using the replicator dynamics [94]. In comparison, the competition between
service providers results in a Tullock rent-seeking game [102] where service providers anticipate
the behaviour of end-users and attempt to attract them to service by investing resources. To that
end, we propose two resource allocations and pricing schemes.

The first resource allocation scheme is rooted in a trading post mechanism where service
provider distributes their budgets on different resources and the price of each resource is set as
the total shares submitted on that resource; resources are allocated accordingly to the service
providers shares. Trading post mechanism together with original rent seeing game induces new
game. We analyze the existence and uniqueness of the new game and show the presence of pric-
ing and allocation, which satisfies the service provider and utilizes all the resources at once. For the
second resource allocation scheme, we formulate the virtual game we call a pricing game, where
the service providers take into account the infrastructure constraints while making their decisions.
We extend the duality results from standard continuous optimization to the virtual game. The dual
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variable linked to coupled constraints in the pricing game can be interpreted as market price, also
known as shadow price. The Infrastructure provider uses these shadow prices to charge the service
providers depending on how much they contribute to infrastructure utilization. Finally, we provide
the three learning algorithms to implement the proposed pricing and allocation schemes. The first
proposed algorithm is an exponential distributed algorithm based on dual averaging or mirror de-
scent technique, enabling service providers to get a resource allocation and pricing as the nash
equilibrium of game induced through trading post mechanism. The second learning algorithm is a
decentralized algorithm that is based on an extension of the dual averaging technique to coupled
constrained game. This algorithm allows service providers and InP to reach stable allocation and
market prices as a variational nash equilibrium of pricing game.

To the best of our knowledge, in the contest of network slicing, the resource allocation and pricing
schemes presented in this thesis have not been studied before. The developed schemes/mechanism
and algorithms can help the Infrastructure provider and slice tenants/service providers, to efficiently
utilize the network resources while maximizing their benefits from the network slicing environment.

1.1 Outline of Thesis

The rest of this thesis is organized as follows:

— In Chapter 2, we developed an overbooking-free resource sharing mechanism based on a
bidding scheme. This goal is attained by designing two games coupled with the same Nash
equilibrium. The first game is induced through a multidimensional Kelly mechanism is called
as an Allocation game. This game is prone to overbooking, where total resource demand by
the players might violate the infrastructure capacity. The second game is a virtual coupled
constraints game called the “Pricing game", where players consider infrastructure capacity
while making decisions.

In the Pricing game, each player’s admissible strategy set is coupled with other players’ strate-
gies through the capacity constraints. The Pricing game is a special case of the generalized
Nash equilibrium problem (GNEP). It is a noncooperative game in which each player’s admis-
sible strategy set depends on the other players’ strategies [8]. We show that the Pricing game
admits the generalized Nash equilibrium, and the Lagrange multiplier associated with coupled
constraints at NE of the Pricing game can be treated as a resources’ price vector. We show
that the infrastructure provider can drive the allocation game to a socially optimal allocation
by employing a price vector generated by the Pricing game. We provide an online procedure
based on a primal-dual distributed algorithm that helps players reach the game’s Nash equi-
librium. Finally, numerical results demonstrate the applicability of the described theoretical
framework as a general pricing scheme.
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— In Chapter 3, we consider a scenario where service providers or slice tenants need hetero-
geneous resources at geographically distributed locations to support the service for their end-
users. We propose a resource sharing scheme based on the Fisher market model and the
Trading post mechanism. In the proposed scheme, each slice owns the budget representing
its infrastructure share or purchasing power in the market. The slices acquire different re-
sources by spending their budgets to offer the service to different classes of users, which are
classified according to their service needs and priorities. We assume that service providers
employ the well know α fairness criteria [73] while delivering the service to their subscribers.
The proposed allocation scheme aims to find a market equilibrium that provides allocation
and resource pricing where each slice is satisfied with allocation and resources to be fully
utilized. We show that the market equilibrium solution problem can be formulated as a convex
optimization problem whose primal and dual optimal solution provides equilibrium allocation
and pricing. We build a decentralized algorithm based on a convex optimization problem and
potential function technique and proportional sharing rule that enables service providers to
reach the market equilibrium in a decentralized fashion. We theoretically evaluate the pro-
posed allocation scheme’s performance by comparing it with the Social Optimal and Static
Proportional allocation schemes. Finally, we run numerical simulations to analyse the fairness
and efficiency properties of the proposed scheme.

— In Chapter 4, we consider a marketplace where service providers, i.e., slice tenants, are in
competition for the access to the network resource owned by an infrastructure provider who
relies on network slicing. We model the interactions between the end-users (followers) and
the service providers (leaders) as a Stackelberg game. We prove that the competition be-
tween the service providers results in a multi-resource Tullock rent-seeking game. To deter-
mine resource pricing and allocation, we devise two innovative market mechanisms. In the first
mechanism, we assume that the service providers are pre-assigned with fixed shares (bud-
gets) of infrastructure, and rely on a trading post mechanism to allocate the resource. Under
this mechanism, the service providers can redistribute their budgets in bids and customise
their allocations to maximise their profits. We prove that their decision problems give rise to
a noncooperative game, which admits a unique Nash equilibrium when dealing with a single
resource. In the second mechanism, we consider that the service providers have no bound on
their budget, we formulate the problem as a Pricing game with coupling constraints and derive
the market prices as the duals of the coupling constraints. In addition, we prove that the Pric-
ing game admits a unique variational equilibrium. We propose two online learning algorithms
to compute solutions to the market mechanisms. A third fully distributed algorithm based on
a proximal method is proposed to compute the variational equilibrium solution to the Pricing
game. Finally, we run numerical simulations to analyse the economic properties of the market
mechanisms and the convergence rates of the algorithms.
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— In Chapter 5, summary and concluding remarks are provided and possible future research
directions are discussed.
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Chapter 2

OVERBOOK-FREE PRICING FOR 5G
SLICING VIA NORMALISED NASH

EQUILIBRIA

2.1 Introduction

Next generation mobile networks will employ slicing in order to provide multiple tenants with a
shared resource pool served through a common infrastructure. In this context, it is expected that
resources in 5G networks will encompass both computing and communication resources. Slices
comprise different resource types, such as fog/edge storage memory or computing power available
within the Infrastructure provider’s core network, as well as radio access capacity [112]. In fact 5G is
integrating Network Function Virtualization (NFV) technologies with new Edge and Fog computing
paradigms. Thus, mobile networks will be able grant a whole set of communication and computing
resources so as to meet the demands of emerging mobile services. Actually, the most credible
business scenarios in 5G networks predict the presence of several mobile virtual network operators
(tenant) leveraging a slice of resources obtained from a common Infrastruture Provider (InP). A
tenant will offer mobile services to their customers in the form of one or more mobile applications
comprising a set of distributed microservices, e.g., for real time gaming, multimedia applications,
social networks, etc. Slicing will be key to lower the entry barrier for tenant network operators who
do not posses a computing and communication infrastructure.

However, while at the business level high expectations are following slicing standardisation [1],
such technology is not yet sustained by a well accepted pricing model for resource slices [10, 107].
In fact, crucial aspect is how to jointly price resources assigned simultaneously across a slice. Actu-
ally, in mainstream cloud computing literature, pricing of shared resources is a customary topic [97,
117]. Several works have proposed to use multi-dimensional bidding models to encompass multiple
resources and prescribe that customers would demand several resources at once using vectors of
bids. Compared to posted prices, bidding is indeed a very flexible scheme suitable for the time-
varying demands typical of mobile networks [19, 116]. However, porting bidding schemes to 5G
networks poses crucial difficulties for a series of technological reasons. First, traffic in 5G networks
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involves invariably radio access and shared radio resources have critical impact on QoE. This is due
to performance figures related to delay and throughput experienced by end users. In cloud comput-
ing, conversely, the pool of resources is virtually infinite, since datacenters are overprovisioned for
both computing and communication tasks. Second, radio resources allocation is prone to near-far
effects so that every mobile user is bound to experience very different channel conditions over time.
Hence, pricing schemes need to account for fair resources allocation [73, 4] which represents a de-
facto standard (up to the point a built-in proportional fair scheduler is considered state-of-art for any
modern basestations). Finally, and perhaps more important, all network operators need to comply
to standard Service Level Agreements(SLA) [43] which are binding to minimum performance figures
– e.g., minimal nominal throughput – whereas in cloud computing availability is the main target [97,
117, 68].

Once an SLA is signed between a tenant and a InP, a tenant could specify a minimum acceptable
amount of resources she needs in order to maintain mobile services operational. However, adopt-
ing bidding schemes in 5G networks may be prone to overbooking, because they define prices via
competitive bidding schemes, and aggregated demand may exceed available resources, that is the
infrastructure capacity in terms of bandwidth, memory or storage. In this work we develop a theoret-
ical framework where slices of resources are assigned to tenants based on a Kelly mechanism [48],
an aggregate game where players bid for a quantity and obtain an amount of resource proportional
to their bidding values. In our context, a bid for a slice is actually a vector of bids for each resource
type in a slice (bandwidth, memory or storage), and tenants pay depending on how much they bid
at the price per resource set by the InP.

2.1.1 Related work

Mechanisms to price and share resources have appeared in literature [97, 117, 68, 57, 25, 108,
56], assuming customers would demand several resources at once using vectors of bids and so
specify their demands. In an auction mechanism-based resource allocation scheme, agents bid
for the resources and the price of the resource is determined by auction and resources are then
allocated accordingly. One of the well-known schemes for resource allocation in communication
networks is the Kelly mechanism [53], where agents participate in an auction and submit individual
bids for the resources they need. Resources are then allocated to the agents proportional to their
bids. The original model of Kelly, though, is not a bidding scheme. Rather, it solves a network flow
optimisation problem [52], where the customers of a network provider maximise their own benefit
function. Their strategies are coupled only through the price decided by the network provider, and
they act as price takers. The work of Kelly proved the existence of a price, in the form of a multiplier
– or shadow price – which attains the social optimum, i.e., the maximum possible value of the sum
of the benefit functions of the players. However, when agents are price-anticipating and selfish, the
authors in [44] showed that induced non-cooperative game has a unique Nash equilibrium (NE).
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Article Bids Pricing Efficiency Behavior Min.
require-
ment

Kelly in [53] Monetary Uniform 100% Non strategic No
Johari and Tsitsiklis
in [49]

Monetary Uniform ≥ 75% Strategic No

Yang et al. in [111],
Tun et al. in [103]

Monetary Differential 100% Strategic No

Our work, Chapter
2

Quantity Differential 100% Strategic Yes

Table 2.1 – Chapter 2, literature review and research contribution positioning

Techniques for explicit evaluation of the equilibrium with the total demand are used in [67] based on
implicit function techniques and for general convex functions. The work in [28] described the Stack-
elberg equilibrium for the Kelly mechanism with linear costs, and characterised the non-increasing
dynamics of the Nash equilibrium with the price. Further, it was deduced that the efficiency loss at
the NE in the worst case could be at most 25% of the social welfare [49]. To overcome this effi-
ciency loss, the authors in [111] designed a price differentiation in Kelly mechanism, where agents
bid and the resources allocated similarly to the kelly mechanism; however, the price charged for
the resources can vary from agent to agent. The authors showed the existence of differentiation
pricing, which maximize social welfare i.e., the sum of utilities of all the agents. To achieve efficient
resource allocation and interslice protection, the wireless network slicing problem was decoupled in
two sublevel problems in [103]. The two sublevel problems were solved using the generalized Kelly
mechanism (GKM) and optimization technique.

In this chapter, we design a price differentiation kelly mechanism that maximizes social welfare
similar to [111, 103]. However, our work departs from above in the following points. First, agents
bid for resources in terms of quantity instead of money. Second, the framework also accommo-
dates cases where there might be the minimum requirement by the agents, or there might be the
local constraint on the demand for the resources. Third, to build the differential pricing scheme that
maximizes social welfare, we rely on the theory of generalized Nash equilibria or normalized Nash
equilibrium by Rosen [88] and generalized diagonal strict concavity [6]. Further, the learning tech-
niques for the convex game with variational equilibrium or normalized Nash equilibrium are well
developed [71][75]; thus, we adopt them directly in our framework.

2.1.2 Main Contribution

1. We propose a resource allocation scheme based on the solution concept of the generalised
Nash equilibrium [88], where strategy sets of players, i.e., the tenants, depend on the others
through 1) the constraints on the infrastructure capacity per resource and 2) the minimum
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quantity of resources tolerated to run tenant services.

2. We decouple the problem into a price-definition, which is defined as the Pricing Game, and
the actual Allocation Game, where slice tenants are actually competing for resources.

3. We show that the theory of [88] grants that the unique solution of this Pricing Game, which
is a dual virtual game we define for analysis purposes, offers as a byproduct the prices to be
exposed to customers.

4. We combine the two games into an extended Pricing Game, which involves also the InP max-
imising its profit and dictating at once the respect of capacity constraints.

5. We show that the Pricing game can be implemented in practice using online learning via a
decentralised bidding scheme where the InP refines the prices per resources and a primal-
dual converges to the target normalised equilibrium.

2.2 System Model

Table 2.2 – Main notations used throughout the Chapter 2

S = {1, . . . , S} ≜ a set of tenants (the slices)
C := {1, . . . , C} ≜ set of resources (cells)
bs

c ≜ the amount of resource c to slice s

V s
c ≜ the benefit function of slice s by using resource c

V s ≜ the total benefit function of slice s

xs
c ≜ bid of slice s for resource c

xs = (xs
1 . . . xs

C) ≜ vector of bids of slice s for all resources
Xs ≜ Constraint set for bid of player s

x−s
c =

∑
s′ ̸=s xs′

c ≜ bid of all other players but s on resource c

γs
c ≜ unitary price for bids of slice s on resource c

αs ≜ alpha fair scheduling parameter for slice s

hu ≜ channel state of user u

h ≜ the channel state vector for all users
ru ≜ the rate attained by a user u

pu ≜ transmission power of user u

βn ≜ step size for the learning algorithm

We consider a single InP, who leases its physical resources to a set of a slice tenants , S :=
{1, . . . , S}. Each tenant from set S needs some specific service with specific requirements in shared
physical infrastructure. Specifically, in this work, we consider the slicing concept where a set of
network function instances and the required resources (e.g. memory, CPU, storage compute and
networking resources) form a deployed Network Slice and each network slice is administrated by
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2.2. System Model

a tenant. This option is coherent with the definition of a network slice instance given in the Third
Generation Partnership Project (3GPP) standard 1.

Each tenant operating on a given slice provides services to its set of users, and for that, it requires
several possible types of resources, noted by C := {1, . . . , C}. In particular, here, we consider that
resource slicing is decomposed into two levels. On higher-level InP allocates resources to tenants
while on the lower level, each tenant schedules its acquired resources to meet her users’ service
requirements. We assume that each slice needs a minimum amount of resources to meet the service
requirements. Let each tenant s ∈ S needs lsc ∈ R+, a minimum amount of resource c. We assume
each tenant s ∈ S to receive some benefit V s

c (bs
c) by using the amount bs

c of resource c. The total
benefit tenant s get by using vector bs = [bs

1 . . . bs
C ] amount of C resources is V s(bs) =

∑C
c=1 V s

c (bs
c).

A standard assumption is for V s
c to be strictly increasing and concave. In economic theory [70],

this assumption is widely used to signify diminishing returns for increasing the value of the attained
resource. In our context, such an assumption is further justified by the behavior of technological
artifacts such schedulers or orchestrators, which are used to perform resource sharing among users
over time. Resources are in fact, divided into a pool of resources units that are then assigned to
customers on a time-shared manner. The classical scheme is a time division multiplexing, which
assigns units of physical resources such as memory, CPU storage or bandwidth to attain a particular
share. Results in scheduling theory connect the design of long term target benefit functions V s to a
class of algorithms abler to distribute resources over time in the presence of time-varying resources
and demands. Since infrastructure updates occur on a much longer timescale than slices’ demands,
we assume that the total available resources to the InP are inelastic and given in a full capacity Bc

for each resource c ∈ C. The objective for InP is to seek allocation that maximizes the total valuation
of all tenant.

SW : maximize
b

∑
s∈S

V s (bs) (2.1a)

subject to
∑
s∈S

bs
c ≤ Bc, ∀c ∈ C (2.1b)

bs
c ≥ lsc , ∀c ∈ C, ∀s ∈ S (2.1c)

The problem SW is termed as social welfare optimization problem. The InP can solve the prob-
lem (SW) with well-known convex optimization methods, provided the valuation functions V s of all
tenants are known. However, such information is not available to InP when tenants are strategic. In
many cases, even if, when the tenants are not strategic, centralized resource allocation schemes
can properly address the InP constraints on the resource allocation, but are known to lack scal-
ability and may lead to excessive communication overhead of the number of tenants. The central
question we address in this work is how to design a mechanism that solves the problem (SW) in a

1. 3GPP. System architecture for the 5g system. 3GPP TS 23.501 v1.3.0, Tech. Rep., September 2017.
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decentralized manner and without requiring full knowledge of the private valuation of each tenant.

2.3 Mechanism Design

We consider an auction-based resource allocation mechanism, in which each tenant s submits
the bid xs = (xs

1, . . . , xs
C) for each of the C types of resources. The InP collects all bids for each

resource and assigns to each user bs, a fraction of each resource corresponding to the ratio it
attained given the bids received for that resource, namely the quantity

bs
c := Bc

xs
c∑

s′∈S xs′
c

, (2.2)

where Bc represents the total capacity or availability of resource type c. We observe that even
resources may be divided into relatively small discrete units corresponding to integer resources
units, the mechanism allows for a continuous share of resources to be assigned to each customer.
Such assumption is reasonable, in our context, since customers are recurrent, in that the share
of resources is attained by scheduling repeatedly a certain pool of units over time to each target
user, so that any fraction (2.2) can be attained, e.g., scheduling resource units to users with some
probability, which actually corresponds to the current technological practice for most resources,
including memory, CPU and bandwidth. The advantage of using this proportional rule is to guarantee
the mechanism to be scalable when the number of agents increases [49]. Since the allocation of
each tenant is proportional to the ratio of its bid with the total amount of bids, the total benefit tenant
s can get by receiving a share encompassing bs of C resources is V s(bs) with

V s(bs) =
∑
c∈C

V s
c

(
xs

c∑
s′∈S xs′

c

Bc

)
. (2.3)

For each slice s, V s is an increasing function in bs, without any payment slice tenants will always bid
as much as possible in order to increase their own benefit. However, after submitting the bids, each
customer pays to the InP the cumulative sum of prices for the bids it made. More precisely, let γs

c be
the unit cost for bidding for one unit (e.g., one PRB) of resource type c for slice s. Then, each slice
tenant s pays γs

c xs
c for the resources obtained at base station c. In turn, the utility of a tenant s is

defined as the difference between the overall benefit it attained by using the different slice resources
and the total cost it needs to pay for using them:

U s(xs, x−s, γs) =
∑
c∈C

V s
c

(
xs

c∑
s′∈S xs′

c

Bc

)
− γs

c xs
c. (2.4)
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Figure 2.1 – The InP uses the Pricing Game (top) to generate the price vector, whereas the result of
the Allocation Game (bottom) decides the actual resource slicing based on the tenants bids.

The tenants are rational players and bid for resources so as to optimise their utility (2.4). Thus, the
decision problem of each slice s ∈ S is to find the optimal xs optimizing its own utility:

Qs : maximize
xs

U s(xs, x−s, γs)

subject to xs ∈ Xs

Here set Xs is defined by the minimum requirements for resources by tenant s. Since the utility
of each tenant depends on the decisions made by other tenants and they are selfish, the resource
allocation mechanism translates as a non-cooperative game where players, i.e., the tenants, com-
pete to acquire resources to increase their utility. We denote this game by the standard notation
Q = {Q1 . . . QS}, and we call it the Allocation game, which represents the first component of our
overall the resource allocation mechanism. In the rest of the chapter, we interchangeably use the
term player and tenant. To predict the outcome of the allocation mechanism it is customary to use
the standard notion of competitive equilibrium, that is the Nash equilibrium

Definition 2.1. A multi-strategy x∗ = (x1∗
, . . . , xS∗) is called a Nash equilibrium of the game Q if

∀s ∈ S, U s(xs∗, x−s∗) ≥ U s(xs, x−s∗), xs
c ≥ 0,∀c ∈ C. (2.5)

with ∀s ∈ S, xs∗, xs ∈ Xs, where (xs, x−s∗) is the strategy vector where the sth element equals xs and

29



Chapter 2 – Overbook-free Pricing for 5G Slicing via Normalised Nash Equilibria

Coupled
constrained

Pricing Game
P

Resource
allocation Game

Q

Welfare
optimization
problem S

Pricing

Nash
Equlibrium

Normalized
Nash

Equlibrium

Figure 2.2 – Normalised Nash Equilibria based Mechanism Design

all other elements equal xs′ ∗ (for any s′ ̸= s).

Theorem 2.2. There exists a unique Nash equilibrium point to an Allocation game for every specified
γ > 0 where γ = [γ1 . . . γS ]T

Proof. The game induced through Kelly mechanism admits a unique Nash equilibrium [48], the
uniqueness result extends immediately to the Allocation Game since the resources are orthogonal.

So far, we have presented the first part of the mechanism design and seen that the Allocation
Game admits the unique Nash Equilibrium for any value of price vector γ. Now our next objective is
to design the pricing scheme for the mechanism so that the resulting Nash equilibrium of Allocation
Game is also an optimal solution to the optimization problem SW. We notice that the standard defi-
nition of a Nash equilibrium assumes orthogonal constraints, i.e., the strategy set of each player is
independent of the actions of the other players; therefore, depending on the prices the optimal strat-
egy for players may be to place bids that exceed the system capacity. This is known as overbooking,
and it is a significant concern in any pricing mechanism since the resources assigned to each user
do not match their demand. Thus, it becomes imperative to design the bid price so that the result-
ing Nash equilibrium is the first feasible solution for optimization problem SW. We shall prove that
a price vector that avoids overbooking in the Allocation game can be obtained as a byproduct of
another game, linked to the Allocation game, whose unique equilibrium is a Nash equilibrium with
the resource constraints accounted for. Such a game, which we refer to as the Pricing game, is
introduced in the next section.
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2.3.1 Pricing game

In our scheme, the tenants are strategic; they compete for resource access and do not share
information on the amount of resources they request for. Thus, it is unreasonable to expect; the
tenants respect the resource capacity constraints while submitting their bid. In turn, we consider
a virtual game, where tenants follow the resource capacity constraints while submitting their bid.
The InP determines the price vector as the solution of this virtual game, which we called as Pricing
game. The InP can use the price as a signal to drive the mechanism to an acceptable operating
point. Such prices can be determined using a concept of a normalized Nash equilibrium, a central
concept in this work. In the virtual game, each tenant tries to maximise her benefit while obeying
the coupled constraints ∑

s∈S
xs

c ≤ Bc, ∀c ∈ C. (2.6)

Thus, the decision problem for a tagged tenant s writes as

Ps maximize
xs≥0

V s(xs, x−s)

subject to
∑
s∈S

xs
c ≤ Bc, ∀c ∈ C,

xs ∈ Xs.

The system P = {P1, . . . , PS} represents the formalisation of the Pricing game: the notion of an
equilibrium for such a continuous game requires to account for the presence of constraints, that is

Definition 2.3. A strategy x∗ = (x1∗
, . . . , xS∗) is called Nash equilibrium for the game P if

V s(xs∗, x−s∗) ≥ V s(xs, x−s∗) (2.7)

for all s ∈ S, xs∗, xs ∈ Xs and ∑s∈S xs
c ≤ Bc,∀c ∈ C.

The fundamental difference between the two games, as anticipated, is that in the Pricing game,
the constraints are not orthogonal anymore, but, rather, are coupled constraints. This renders the
strategy set of a tagged user dependent on the other users’ actions xs ∈ Xs. While the Pricing game
in practice may not be practically viable (indeed it is not reasonable to expect players to respect the
aggregate constraint in calculating their best response), the development in this section shows how
to map the Pricing game onto the Allocation game. x is a Nash equilibrium of the game P if and only
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if it satisfies the Karush–Kuhn–Tucker (KKT) conditions conditions, which are: , ∀c ∈ C,∀s ∈ S,

∂V s(x)
∂xs

c

− λs
c + ξs

c = 0 (2.8a)

λs
c

∑
s′∈S

xs′
c −Bs

c

 = 0 (2.8b)

ξs
cxs

c = 0 (2.8c)

λs
c ≥ 0, ξs

c ≥ 0. (2.8d)

In the above KKT conditions, λs = (λs
1, . . . , λs

C)T and ξs = (ξs
c , . . . , ξs

C)T are Lagrange multiplier
vectors, where for each c ∈ C, λc

s and ξs
c are the Lagrange multiplier associated to the cth resource

for the coupled constraint and the non-negative constraint respectively. We are primarily interested
in the Lagrange multipliers associated with the coupled constraints, as we can use this as shadow
prices for resources. Note that the vector λs may be different for different customers s ∈ S, which
results in discriminatory shadow pricing. Generally, the uniform pricing scheme is considered as
fair and easy to handle over discriminatory pricing. However, in [48] the authors showed that under
uniform pricing, there could be up to 25% of efficiency loss of Kelly mechanism at the equilibrium.

Definition 2.4. Let r ∈ RS×C
+ be vector. x is said to be r-normalized Nash equilibrium to pricing

game if there exists λc, ∀c ∈ C such that KKT conditions (2.8) are satisfied with λs
c = λc/rs

c

Here the parameters {r1 . . . rS} intuitively show the proportion of a burden on player s for satis-
fying the coupled constraints among all other players in the set. Notice that the pricing game has
multiple equilibria and in fact, in next the proposition we show that pricing game has infinitely many
equilibria.

Proposition 1. Any x is a Nash equilibrium point to a pricing game if and only if ∑s xs
c = Bc, ∀c ∈ C

Proof. let us assume that x is Nash equilibrium to a pricing game and
∑

s∈S xs
c < Bc, for any c ∈ C

as V s
c is continuous and increasing in xs

c player can get more benefit by increase the xs
c, contradicts

x is Nash equilibrium. If
∑

s∈S xs
c = Bc then no player can increase benefit by deviating from his

strategy hence x is a Nash equilibrium.

From the above result, we should observe that in a coupled constrained game i.e Pricing game,
the equilibrium is, in general, non-unique. Actually, by inspection, we note that the Pricing game has
a manifold of equilibria. However, we shall be interested in the special type of equilibrium, namely
the normalized Nash equilibrium, which, under specific assumptions, results to be unique.

Theorem 2.5. There exists a unique r-normalized equilibrium point to a Pricing game for every
specified r > 0
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Proof. The existence of normalized Nash equilibrium for every specified r follows from Theorem
2[88]. Let us consider that there exists two normalized Nash x and x̂ for any specified r such that the
Lagrange multiplier for coupled constraint are λ

s
c = λc

rs
c

and λ̂s
c = λ̂c

rs
c
. Then the sufficient condition

for uniqueness of normalized Nash equilibrium is

∑
s∈S

∑
c∈C

rs
c (xs

c − x̂s
c)
(

∂V s(x)
∂xs

c

− ∂V s(x̂)
∂xs

c

)
< 0 (2.9)

The above condition is also refered to as Diagonal strict concavity (DSC) by Rosen [88] and can be
interpreted as the generalization of concavity in-game settings.

∂V s(x)
∂xi

= ∂V s(bs
c)

∂bs
c

∂bs
c

∂xs
c

= V s
c

′ (bs
c) x−s

c

(
∑

s′∈S xs′
c )2 Bc

where V s
c

′ (bs
c) is derivative of V s

c wrt bs
c and

at the equilibrium Xc =
∑

s′∈S xs′
c =

∑
s′∈S x̂s′

c = X̂c we can write

∑
s∈S

∑
c∈C

rs
c (xs

c − x̂s
c)
(

∂V s(x)
∂xs

c

− ∂V s(x̂)
∂xs

c

)
(2.10)

as ∑
s∈S

∑
c∈C

(
xs

c

Xc
− x̂s

c

X̂c

)(
x−s

c

Xc
BcV

s
c

′
(

xs
c

Xc
Bc

)
− x̂−s

c

X̂c

BcV
s

c
′
(

x̂s
c

X̂c

Bc

))
(2.11)

and as the above expression is strictly negative [Appendix A.1], the DSC condition holds, and unique-
ness of equilibrium follows from Thm.2 [88]

2.3.2 Characterization of social optimal pricing

In this section, we will show that the proposed mechanism is able to attain the social optimum.
The mechanism achieves the desired goal by simply fixing the pricing that can force slices to choose
an equilibrium that respects the resources coupled constraint and coincides with (SW) ’s optimal
solution. The pricing and allocation are performed in a distributed manner using the cascade of both
the Pricing game and the Allocation game, with no need to exchange per-resource allocation infor-
mation. Now to build the differential pricing, let us recall the original problem introduced in Sec. (2.2),
where the InP’s goal is to solve problem (SW). Concavity of the objective function ensures that
there exists a unique allocation b∗ which maximizes the objective function. Let now consider the La-
grangian associated to problem (SW): it writes L(b, µ, ν) =

∑
s (V s(bs)−

∑
c µc (

∑
s bs

c −Bc)−
∑

c νs
c bs

c).

Since the problem is feasible and constraints are affine, KKT conditions for (SW) are necessary
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and sufficient for optimality of a solution (b∗, µ∗, ν∗) such that ∀s ∈ S ∀c ∈ C

∂V s
c (b∗)
∂bs

c

− µ∗
c + ν∗s

c = 0 (2.12a)

µ∗
c

∑
s′∈S

b∗s′

c −Bc

 = 0 (2.12b)

ν∗s
cb∗s

c = 0, µ∗s
c ≥ 0, ν∗s

c ≥ 0 (2.12c)

Where µ = (µ1, . . . , µC) are the C Lagrange multipliers for the resources’ capacity constraints.

Theorem 2.6. There exists a unique r-normalized equilibrium point x∗ to a Pricing game with
rs

c = Bc

x−s
c

∗ ,∀s ∈ S, ,∀c ∈ C such that x∗ is social optimal

Proof. First claim follows from the preceding theorem (2.5) as for every specified r there exists the
unique r-normalized equilibrium. We will now prove that x∗ is social optimal. For that consider the
KKT condition (2.8a), for any normalized equilibrium x

rs
c

∂V s(x)
∂xs

c

− λc + ξs
c = 0 (2.13)

rs
c

∂V s(bs
c)

∂bs
c

∂bs
c(x)

∂xs
c

− λc + ξs
c = 0 (2.14)

As ∂bs
c

∂xs
c

= x−s
c

(
∑

s′∈S xs′
c )2 Bc and by Proposition 1,at any equilibrium

∑
s′∈S xs′

c = Bc

rs
c

∂V s(bs
c)

∂bs
c

x−s
c

Bc
− λc + ξs

c = 0 (2.15)

Now putting rs
c = Bc

x−s
c

∗ ,∀s ∈ S,∀c ∈ C and for our desired r-normalized Nash equilibrium x∗,

∂V s(bs
c)

∂bs
c

− λc + ξs
c = 0 (2.16)

Now as x∗ satisfies the KKT conditions (2.12) and its necessary and sufficient, thus x∗ is social
optimum equlibrium.

From the result just proved, we obtain the following coupling result:

Corollary 2.7. Every r-normalised Nash equilibrium of the Pricing game with shadow prices λs
c = λc

rs
c

is a Nash equilibrium for the corresponding Allocation game with γs
c = λc

rs
c
.

Proof. Let us consider a normalised Nash equilibrium x of the Pricing game. From (4.24), we have
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that necessary
∀s ∈ S, ∀c ∈ C, ∂V s

∂xs
c

(x) = λs
c − ξs

c .

If we replace λs
c = γs

c for all c ∈ C we get

∂V s

∂xs
c

(x) = γs
c − ξs

c .

Thus
∂Us

∂xs
c

(x) = −ξs
c .

Further, ∀s ∈ x satisfies the conditions of the optimization problem associated to the Allocation
game. Since function Us is concave with respect to variable xs and the constraints are linear, they
are also sufficient and thus x is a Nash equilibrium of the Allocation game.

Despite the fact that the above result provides a solid theoretical foundation for the connection
of pricing and social optimal resources allocation, it would be of scarce practical utility in the form
presented so far. Solving the two games requires perfect information on the players’ utilities at
the InP side. Such assumption is unrealistic and, as such, cannot be part of a viable pricing and
allocation scheme usable in 5G. Hence, in the next section, we will show that the two games can be
solved using a learning approach.

2.4 Learning and System Stability

In the preceding sections, we have already discussed that the proposed allocation mechanism
has a unique equilibrium for any price vector decided by the InP. The InP can fix the price vector in
such a way that the equilibrium to the Allocation game is a socially optimum operating point. These
price vector can be found by solving the Nash equilibrium problem for the Pricing game. However, the
tenants’ valuation of resources is generally unknown to the InP. In view of this, we propose a learning
algorithm to converge iteratively to the target equilibrium in a decentralized fashion. However, the
pricing game has coupled constraints; hence, it is unreasonable to expect players to respect the
coupled constraints without communicating with each other. In this spirit, for the learning purpose,
we first decouple the constraints with the approach of extended game [95], introduce in the next
section. In the proposed solution, the only signal exchanged between the InP and the tenants at
each step are the bid vector and the price vector.

2.4.1 Extended Pricing Game

We consider a game with S + 1 players, where the first S players are the slice tenants and the
(S +1)th player is the InP, who controls the λ price vector. We define the decision problem of the InP,
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PS+1 as below

PS+1 maximize
λ≥0

∑
c

λc

(∑
s

xs
c −Bc

)
. (2.17)

The idea behind using
∑

c λc (
∑

s xs
c −Bc) as the utility for InP in the above decision problem, is that

it solves complementary condition (2.8b) from KKT conditions (2.8). For the remaining S players the
decision problem is

Ps maximize
xs≥0

V s(xs, x−s)−
∑

c

λc

rs
xs

c ∀s ∈ S.

We call P+ ≜ {P1, . . . , PS+1} the extended pricing game. The difference between the extended
pricing game and the pricing game P is that in the former, there are no coupled constraints –
complementary conditions are treated as the utility of an additional player (InP).

Proposition 2. If x is a r-normalized equilibrium of the pricing game then there exist λ ≥ 0 such
that (x, λ) is equilibrium of extended pricing game

Proof. We have already proved that the pricing game P is monotone, which implies that the extended
pricing game is also monotone, the proof follows from [95], Prop.4.

2.4.2 Learning Algorithm

In the algorithmic game theory literature, mostly gradient-based algorithms [71] have been pro-
posed to compute the Nash equilibrium of the game where players estimate their utility gradient
and move along the direction of gradient in feasible action space. We consider a modified gradient
descent based scheme. Instead of moving in the gradient direction, players take a step along the
present action times gradient.

xs
c(k + 1) = xs

c(k) + β(k)bs
c(k)

(
∇V̂ s

c (bs
c(k))−X(k)

)
(2.18)

In the above equation β(k) is a standard step size, where
∑∞

k=0 β(k) = +∞ and
∑∞

k=0 β2(k) < +∞
To show the proposed scheme’s convergence, we first consider the continuous-time version of the
proposed scheme and show that it is dynamically stable.

ẋs
c(t) = xs

c(t)
(
∇V s

c

x−s(t)
(Xc(t))2 − γs

c

)
(2.19)

ẋs
c(t) = xs

c(t)
Xc(t)

(
1
γs

c

∇V s
c

x−s
c (t)

(Xc(t))
−Xc(t)

)
(2.20)
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Let the derivative of effective utility 1
γs

c
V s

c
′ x−s

c (t)
(Xc(t)) = ∇Û s

c (bs
c(t))

ẋs
c(t) = bs

c(t)
(
∇Û s

c (bs
c(t))−Xc(t)

)
(2.21)

Now consider the bs
c = xs

c
Xc

and calculating the time derivative we get

ḃs
c(t) = Xc − xs

c(t)
Xc(t)2 ẋs

c(t)− xs
c(t)

∑
s′ ̸=s

ẋs′
c (t)

Xc(t)2 (2.22)

ḃs
c(t) = ẋs

c(t)
Xc(t)

− xs
c(t)

Xc(t)2

∑
s′

ẋs′
c (t) (2.23)

ḃs
c(t) = 1

Xc(t)

[
ẋs

c(t)− bs
c(t)

∑
s′

ẋj(t)
]

(2.24)

putting in ẋs
c from (2.21)

ḃs
c(t) = 1

Xc(t)

[
bs

c(t)
(
∇Û s

c (bs
c(t))−Xc(t)

)
− bs

c(t)
∑
s′

yj(t)
(
∇Û s′

c (ys′
c (t))−Xc(t)

)]
(2.25)

ẏs
c(t) = bs

c(t)
Xc(t)

[
∇Û s

c (bs
c(t))−

∑
s′

bs′
c (t)∇Û s′

c (ys′
c (t))

]
(2.26)

Now to show the satbility of above dynamics consider a Lyapunov function L(b) =
∑

s bs
c
∗ log bs

c
∗

bs
c

taking derivative with respect to time

L̇(bc) = 1
Xc(t)

∑
s

∇Û s
c (bs

c(t))(bs
c(t)− bs

c
∗) (2.27)

L̇(bc) = 1
Xc(t)

∑
s

∇Û s
c (bs

c(t))(bs
c(t)− bs

c
∗) < 0 (2.28)

As
∑

s∇V̂ s
c (bs

c(t))(bs
c(t)−bs

c
∗) < 0 it proves that system is stable. The convergence of (x(k)) algorithm

to the unique Nash equilibrium of the Allocation game follows from the standard theory of stochastic
approximation, Theorem 6.9 in [12].

On the level of the InP, she updates the prices so that the players are forced to obey coupled
constraints. The prices appear as Lagrange multipliers for coupled constraints (capacity constraints).
As similar to the players, she takes the step along the gradient of Lagrangian and updates the price
per resource:

λc(k + 1) = max

0, λc(k) + β(k)
( ∑

s′∈S
xs′

c −Bc

) (2.29)
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This updated value of Lagrangian multipliers act as new prices for all tenants and resources, that is

γs
c (k) = x−s

c

Bc
λc(k)

We define bs
c(t) = bs

c(γs
c (t)) as the equilibrium allocation under γs

c at time t. If γs
c is governed by

the feedback of bs
c(γs

c (t)) based on above equation the sysytem is stable by Thm. 9[66]. If all the
players and InP simultaneously take action as per the designed algorithm, the proposed algorithm
converges to the unique Normalized Nash equilibrium (x∗, λ∗) of the Pricing Game. Moreover, if
we fixed the prices γ and players are allowed to play only according to the algorithm, the designed
algorithm converges to unique Nash equilibrium of the Allocation Game.

Algorithm 1 On-line Decentralized Learning Algorithm
Require:

∑∞
k=0 β(k) =∞,

∑∞
k=0 β2(k) <∞, as k →∞

1: repeat at time step k = 1, 2, . . . ,
2: for each player s ∈ S
3: for each cell c ∈ C,Take action
4: xs

c(k + 1)← xs
c(k) + β(k)ys

c(k)
(
∇V̂ s

c (bs
c(k))−Xc(k)

)
5: end for
6: end for
7: for each resource c ∈ C update the price
8: λc(k + 1)← max

[
0, λc(k) + β(k)

K (
∑

s∈S xs
c −Bc)

]
9: end for

10: for each player s ∈ S, ∀c ∈ C
11: γs

c ← x−s
c

Bc
λc

12: end for
13: until ∥(x(k + 1), λ(k + 1))− (x(k), λ(k))∥ ≤ ϵ

2.5 Radio Resource Allocation Problem

In this section, we confine the discussion to a RAN version of the slicing problem, where the
InP schedules wireless resources, namely downlink PRBs among multiple tenants. While the RAN
resources allocation problem is a known and well studied one, heterogeneity of traffic demands
across tenants and cells captures the main features of slice resources allocation, including fairness
issues. The case of multi-resource allocation, spanning other types of infrastructure resources be-
yond PRBs is an immediate extension of the scheme presented for RAN resources and shall be
discussed in the next section. Let a single InP owning a set of base stations C be shared by a set
S of tenants that need physical network resources to serve their users. This can be the case of an
application provider serving several customers in mobility. The InP assigns to each tenant a slice of
resources, and we assume that each tenant proposes a service covered by all base stations in C.
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Each tenant’s users generate demands, and such demands will inevitably depend on their specific
location, thus inducing different slice-dependent needs at each base station.

Let each slice tenant s be associated with users presence vector Ns = (N s
1 , N s

2 .., N s
C) where C

is the total number of cells and N s
c is the number of active users on slice s at base station c ∈ C.

Here a base station is modelled as a finite resource shared by its associated users. We observe that
the number of active users associated to the same base station vary across slices, and vary across
base stations also for same slice. First let us consider some fixed channel condition at all users and
at all slices, and let ru be the rate attained by a user u in slice s at cell c. The slice benefit function

V s
c (bs

c) :=
Ns

c∑
u=1

fs (ru(bs
c)) (2.30)

where bs
c is the amount of resources (bandwidth) allocated to slice s at base station c and under

α-fair scheduling it holds

fs(ru) =


(ru)1−αs

(1−αs) if αs ̸= 1

log(ru) if αs = 1
(2.31)

The meaning of (2.31) is that, when slice s has received capacity bs
c, user u of slice s associated

to base station c receives a rate which is the α-fair share attained with his peer users on the same
slice. The average rate ru of any user u is determined by the scheduling policy and by all the specific
techniques used at physical layer and MAC layer, such as modulation, coding, scheduling, etc. In
the case when the channel per user varies over time, let bs

c log(1+ puhu

N0
) the instantaneous rate when

tenant’s user u is scheduled, at transmission power pu, noise power N0 and under channel state hu,
where Hu is the finite set of possible channel states of user u. Vector h = (h1, . . . , hNs

c
) is thus the

channel state vector for all users in cell s. Users of slice s are served under some scheduling policy
Π(·|·) at cell c, which depends on the past and present users’ channel state; at each time-slot, the
slice scheduler then allocates the channel to a tagged user u in cell c with probability Π(u|h). The
average rate achieved by user u under policy Π is

ru = gu(bs
c, Π(u|h)) := Eh

[
bs

c log(1 + hu
pu

N0
)Π(u|h)

]
(2.32)

where the expectation is taken with respect to the channel distribution. We observe that, irrespective
of the actual scheduling policy, the average rate for a tagged user u is linear in the slice bandwidth
bs

c at cell c. Once we fixed k∗
u = (Eh [log(1 + huΛ0)Π(u|h)]), the total benefit function for slice s writes

as

V s
c =

Ns
c∑

u=1
fs (k∗

u bs
c)

which is again an increasing concave function of the allocated bandwidth per slice. The classical

39



Chapter 2 – Overbook-free Pricing for 5G Slicing via Normalised Nash Equilibria

Figure 2.3 – Resource Slicing in 5G Networks: slices are assigned radio resources on a per-cell basis.

optimisation framework for the InP prescribes to provide efficient yet fair allocation for all users be-
longing to the same slice according to slices’ load. Since scheduling is performed per cell, however,
it is necessary for the resources allocation to be fair – within the same slice – also across users as-
sociated to different base stations. Such a trade-off between efficiency and fairness can be captured
by formulating the utility of a given slice as:

V s(bs) =
∑
c∈C

V s
c (bs

c) (2.33)

For the sake of discussion, we shall assume that the number of users is fixed. Applied at the cell
level, utility (2.33), is able to express the customary trade-off between efficiency and fairness among
users associated to a tagged slice service. However, it also allows to achieve such a trade-off hori-
zontally, that is across cells. For α = 1, for instance, the customary log-based proportional-fair utility
will severely penalise serving high throughput in a lightly loaded cell while starving slice users in
another hot-spot cell. The main objective of the InP is to maximise the total utility of slices, leading
to the following 5G resource allocation problem

P : maximize
b

∑
s∈S

V s(bs)

subject to bs
c ≥ 0∑
sS

bs
c ≤ Bc, ∀c ∈ C
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2.6. Numerical Experiments 1

where Bc is the total bandwidth available at base station c. Thus, while (P) still provides reference
performance figure for our slicing problem, we shall focus on a decentralised scheme where the
resources allocation decision is mediated by a pricing scheme pivoting on the Kelly mechanism.

2.6 Numerical Experiments 1

In this section we will provide numerical results to demonstrate the behaviour of the proposed
mechanism. For the numerical experiment we considered a system with three slices S = {1, 2, 3}
and two base stations C = {1, 2}. Tenants of slices 1, 2 and 3 have N1

1 = 3, N2
1 = 5 and N3

1 = 2 users,
respectively, associated at base station 1. At base station 2 they have N1

2 = 2, N2
2 = 4 and N3

2 = 6
users, respectively. The available bandwidth at each base station is 30 MHz and we assume that
the SNR of each user lies in the range between 30 and 75 dBs. Every slice uses some scheduling
policy to assign the acquired bandwidth among its users: for the purpose of numerical illustration
we assume that each slice is served using per-slice proportional fair scheduling. The distributed
learning Algorithm-1 is employed in order to determine the socially optimal Nash Equilibrium.

Plots (a) and (b) in Fig. 2.4 show the converging dynamics of the bandwidth bids vector. As seen
there, it stabilises at the target Nash equilibrium for both base stations 1 and 2. The distribution of
bandwidth allocation at Nash equilibrium is shown in bar graph, Fig.2.6. As it can be clearly seen,
the allocation of bandwidth at both base stations is consistent with the number of user per slices.
In fact, at base station 2, slice 2 has more users compared to the other two slices; as expected, it
attains hence a larger share of the available bandwidth. The target allocation has been achieved by
using the pricing vector which is shown in the plot (a) and (b) of Fig.2.7. In those graphs we observe
the convergence of prices per slice and per base station. The prices charged by InP for each slice
are inversely proportional to number of the users. . Finally, bar graphs (a) and (b) in Fig.2.5 illustrate
the throughput achieved per user under the resulting bandwidth allocation; the graphs indicate a
mild throughput variation across the users within a slice, a result consistent with the use of PFS at
slice level.

2.7 Multi-resource allocation Problem

Recall that each network slice s supports a set of mobile users denote by Ns, The resources
allocated to a slice are redistributed among the slice’s users. Users get some utility by using these
resources. Let fu = [fu

1 , . . . fu
C ] be vector of amount of resources allocated to user u, where fu

c is
fraction of resource of type c allocated to user u. Now we define the utility of each user u

Uu(fu) =
∑
c∈C

ku
c log (fu

c ) (2.34)
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(a)

(b)

Figure 2.4 – Convergence of the Algorithm to the socially optimal Nash Equilibrium at base station
1 and base station 2

Here we assume that each user associated with the slice possibly have heterogeneous require-
ments and ku

c ∈ [0, 1] be a set of parameters representing the relative importance of each resource
c for user u. For example, If in the utility (2.34) we consider only radio resource, and fu

c be the the
rate achieved by user u. Then utility defined in (2.34) resembles Proportional Fair Share type utility.
PFS-type of utilities are standard for handling radio resources: in LTE, the PFS schedulers onboard
of enodeB allocate the rate to their customers such in a way to maximize the sum of the logarithm
of the rates made available to each user. In our context, PFS-type has a further advantage: they
can bind together different resources involved in the completion of a particular task. For instance,
a user evaluates as bad as having much memory but no bandwidth or bandwidth but no memory.
A slice can be used with profit if and only if specific subsets of resources, e.g., CPU, are exploited
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Figure 2.5 – Throughput achieved by the users in base station 1 and base station 2

when other resources are available, e.g., memory and bandwidth. The proportional fairness crite-
rion automatically prevents some resources from vanishing without resorting to multiple additional
constraints. The benefit of each tenant is the weighted sum of the utilities of its users. At the sub
level, each tenant seeks to maximize its valuation by allocating the acquired resources from the InP.
Thus, an optimal value of the following problem defines the valuation of each tenant s ∈ S

V s (bs) := maximize
fc

∑
u∈Ns

wuUu(fu)

subject to
∑

u∈Ns

fu
c ≤ bs

c

fu
c ≥ 0,∀c ∈ C ∀u ∈ Ns

(2.35)
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Figure 2.6 – Allocation of bandwidth among the slices at base station 1 and 2.

Here wu are the weights or priority assign by tenant to each user u ∈ Ns. In above optimization
problem constraints are linear, the feasible set is affine and objective function is concave. Therefore,
∀s ∈ S the optimal value function Vs is concave and strictly increasing in the parameter bs. The
InP aims at maximizing the total sum of utilities of slice tenants and thus apply the proposed price
differentiation Kelly mechanism-based resource allocation.

2.8 Numerical Experiments 2

Similar to the RAN allocation case, we consider a system with three slices S = {1, 2, 3}, and they
require three types of resources for their service provisioning, namely Bandwidth (BW), virtual-CPU
(VCPU) and memory (MEM). Tenants of slices 1, 2 and 3 support the N1 = 12, N2 = 15 and N3 = 8
users, respectively. The slices acquire the resources from the InP and redistribute them among their
users employing the optimization (2.35). The weights (preferences) of slices over resource types
are as mentioned in the Table 2.3. We consider that the available capacities of bandwidth, vcpu and
memory are 60 MHz, 120 units and 200 Gb, respectively. We determine the socially optimal Nash
Equilibrium employing the distributed learning Algorithm-1 with the differential pricing and then an-
alyze its efficiency gain over uniform pricing. As discussed earlier, the proposed scheme has added
advantage over the other Kelly mechanism-based schemes in that it also enables to include the
minimum resource requirement of slices. To evaluate the proposed scheme with minimum resource
requirements, we consider that each tenant needs the minimum amount of each resource for their
service provisioning, details are as mentioned in the Table 2.4. The bar graph in Fig.2.8and Fig.2.9
describes the allocation of VCPU and memory under the differential and uniform pricing and with no
constrained and with minimum requirements. The bar graphs in Fig.2.10 show the benefits gained
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(a)

(b)

Figure 2.7 – Convergence of price vectors for base station 1 and base station 2

by the slice tenants under the various allocation scheme with the same settings.
We observe that the resources allocated to the slice tenants are in proportion with their number

of users and their preference over the resources; for example, slice 2 has both the highest number
of (15) subscribers and the highest weight for memory (0.5) and hence receives the highest portion
compare to others. The VCPU allocated to slice 2 without minimum requirement under differential
pricing is observed to be 47.78 units, but when the minimum requirement for VCPU for slice 2 is
considered to be 50 units,the proposed mechanism assign the slice 2 with its minimum requirement.
This validates the effectiveness of the proposed mechanism for the case of minimum requirements.
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BW VCPU MEM
Slice 1 0.3 0.3 0.4
Slice 2 0.2 0.3 0.5
Slice 3 0.5 0.4 0.1

Table 2.3 – The slices and their weights for different resource types.

1 2 3
Slice Index

0

20

40

60

V
C

P
U

(u
n

it
s
)

SW UP SW-min UP-min

Figure 2.8 – Allocation of of VCPU to the slice tenants under differential pricing (SW), differential
pricing with minimum requirements (SW-min), uniform pricing (UP) and uniform pricing with min-
imum requirements (UP-min).
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Figure 2.9 – Allocation of of memory to the slice tenants under differential pricing (SW), differential
pricing with minimum requirements (SW-min), uniform pricing (UP) and uniform pricing with min-
imum requirements (UP-min).
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Figure 2.10 – Benefits gained by the slice tenants under differential pricing (SW), differential pricing
with minimum requirements (SW-min), uniform pricing (UP) and uniform pricing with minimum
requirements (UP-min).

BW VCPU MEM
Slice 1 10 20 20
Slice 2 35 50 20
Slice 3 50 80 50

Table 2.4 – The minimum requirements by slices for different resource types.
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Chapter 3

FISHER MARKET MODEL BASED

RESOURCE ALLOCATION FOR 5G
NETWORK SLICING

3.1 Introduction

The next-generation wireless network is expected to support emerging sectors like Augmented
Reality (AR), Virtual Reality (VR) live broadcast [93], Internet of things (IoT) [15], Autonomous driv-
ing [64], remote healthcare [2], automated manufacturing based on smart factories [21], etc. Most of
these applications or services demand more data-intensive operations than those required by tradi-
tional mobile applications. To accommodate the requirements of such services, 5G mobile network
design should incorporate the data-centres or cloud computing capabilities into their plan. However,
end-to-end latency is also crucial for some of the aforementioned applications, along with the com-
putational capabilities. This requires some of the computational resources to be placed closer to the
base stations, leading to the rise of edge computing, also referred to as fog computing [98].

Generally, compared to cloud computing with virtually infinite capacity, the resources available
with edge computing facilities are limited. Moreover, the resource requirements of emerging services
are diverse and conflicting in nature. Which all together makes the applicability of mobile networks in
these emerging sectors challenging. Several new concepts have been introduced for the upcoming
5G network design to satisfy these critical needs. Out of those, probably one of the most important
ones is “network slicing" [40]. This is a technique of virtualizing the physical resources and logically
partitioning them with the help of technologies like Software-Defined Networking (SDN), and Net-
work Function Virtualization (NFV) [81]. The logical partitioned part of the network is referred to as
the slice, which is tailored to meet the specific application/service needs. Generally, Infrastructure
providers (InPs) own these resources and provide them to the service providers (SPs) through a
dedicated slice.

The slice-based provisioning is at the core of empowering SPs to manage the performance of
their own dynamic and mobile user load locally. Network slicing facilitates slice tenants to share the
same physical infrastructure flexibly and dynamically, which helps to utilize the resources more effi-
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ciently and economically. When SPs or tenants share a common infrastructure to support their ser-
vice provision, the security and protection of virtual networks are a big concern. Service providers
request logical, independent, isolated slices with complete protection of their service level agree-
ments (SLA). One of the most straightforward allocation solutions that offer SPs a guarantee of slice
level protection is static partitioning [42], where each resource demanded by the service providers
is shared among them depending on their network share or service level agreements. However,
this approach lacks in providing load-driven flexibility when the service providers’ loads may vary
with time and can be spatially inhomogeneous. In this regard, dynamic sharing of resources to slice
users is one natural allocation choice that can meet the flexibility of the slices [3]. Moreover, InPs
want to maximize their return on investment by employing the dynamic sharing of resources as this
lowers the capital cost and gives better resource utilization [59]. However, dynamic sharing of re-
sources can expose the service provider to the risk of violating slice-level agreements. Therefore,
one of the critical concerns in 5G network slicing is how to efficiently and dynamically allocate limited
resources to slice tenants with diverse characteristics and services while maintaining the protection
of their service level agreements.

To address this issue, we propose a Fisher market-based [17] resource allocation scheme,
where market agents i.e. service providers are assigned with the fixed budgets or share of infras-
tructure according to their service level agreement. The infrastructure provider sets the prices for the
resources. Given prices announced by InP, the SPs distribute their budgets over different resources
at different locations to procure the optimal bundle of heterogeneous resources required to support
their services. In this work, we use market equilibrium (ME) solution approach to provide stable
allocation and resource pricing. At the ME, the market is cleared, i.e., demand meets supply, and
every agent is satisfied with allocated resources. To make the proposed resource allocation scheme
practically viable, we implement it via the Trading post (TP) mechanism. This type of distributed
approach protects the sensitive information of SPs and transfers each SP a direct control to tailor
allocation by just adjusting its bids. The required resources are allocated to SPs proportional to their
bids. The proposed approach regulates the trade-off between efficient resource utilization and the
degree of protection to SLA. On the one hand, it enables dynamic sharing, where tenants can redis-
tribute their network share based on the dynamic load; on the other hand, it also provides the SPs
degree of protection by keeping the pre-assigned share intact throughout the allocation process.

3.1.1 Related work

In this work, we model the resource allocation problem for 5G network slicing as a Fisher market
where SPs act as consumers who purchase the different resources available at geographically dis-
tributed locations as goods. Computing the equilibrium to the Fisher market is a challenging problem
and has been the subject of much interest in the theoretical computer science community [45]. The
Eisenberg and Gale in [31] [32] and their generalization [47] showed that if the utilities of agents
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in the market are the homogeneous function 1 of degree one. In that case, the market equilibrium
can be found by solving a convex optimization programme, also widely known as Esenbeg-Gale
(EG) program. It has been observed that the EG program also achieves proportional fairness [50]
or optimum Nash social welfare [76] among the market agents

An approach like the EG program provides a centralized solution to find equilibrium; however,
they do not justify the markets or the equilibrium concepts where agents practically interact with
each other. Thus, the algorithmic game theory community has always been interested in designing
algorithms that could plausibly describe the markets and equilibrium concepts and allow agents to
reach equilibrium [89, 29, 36, 105, 22]. For example, over a century ago, Walras [106, 24] proposed
the most intuitive and natural algorithm, “tâtonnement ", to find the market equilibrium of a market.
In this algorithm price of resources increases with demand exceeding capacity and vice versa. The
shortcomings of this type of approach are that first, they do not provide any causal relation between
the prices and demand. Prices depend on agents’ demand, and their demand depends on resource
prices. Second, total demand by agents may exceed capacity while applying the procedure, so
managing the excess demand is critical.

The Shapley and Shubik [96] sought to answer issues through the Trading post mechanism. In
the TP-mechanism, market agents submit bids for each resource and then resources are distributed
in proportion to their bids; the price per unit of each resource is set to total bids submitted to that re-
source. The same mechanism has been discovered several times with different application domains,
for example, the Kelly mechanism [53] in computer networks, and proportional share scheme by
Feldman et al. [34] in computer systems. The TP-mechanism provides an effective answer to many
questions, however reaching equilibrium via the TP-mechanism is still challenging. Over the past
decade, much attention has been given to designing algorithms to get the Fisher market equilibrium
via TP-mechanism. Zang et al. in [113] showed that when CES 2 utilities with substitute relationships
determine resource demands of market agents, proportional response dynamics converge to Fisher
market equilibrium. Recently, in [23], Cheung et al. extended the above work to a case where any
CES utility functions can determine market agents’ demand and developed the distributed propor-
tional dynamics to find the market equilibrium of the Fisher market.

The first step toward the multi-resource allocation problem in multi-server computing resources
management was made in [109, 37, 72, 110, 92]. All the works just mentioned above proposed
Dominant Resource Fairness (DRF) as criteria for multi-resource allocation. Recently, in [35] Fossati
et al. studied the multiple resource allocation for network slicing under different fairness criteria such
as Ordered weighted averaging (OWA), weighted proportional fairness (WPF), DRF and mood value
rule. The authors proposed an Ordered weighted averaging (OWA) as fairness criteria. To balance

1. A function is called as a homogeneous function of any degree ‘k’ if; when each of its elements is multiplied by
any number t > 0; then the value of the function is multiplied by tk .

2. Constant elasticity of substitution (CES) utiltiy, u(xi) =
(∑

j
aijxij

ρ
) 1

ρ
, if 0 < ρ ≤ 1 signifies substitution

relationship ;if ∞ ≤ ρ ≤ 0 is complemtary relationship
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Article Application Fairness Resources Model Learning
Caballero et
al.in [18]

5G slicing α-fairness Radio Trading Post Best response

Nguyen et al.
in [78, 77]

Fog Com-
puting

None Multi Fisher Market ADMM

Moro et al.
in [74]

5G slicing None Multi Fisher Market None

Our work,
Chapter 3

5G slicing α-fairness Multi Fisher Market
and Trading
Post

Mirror decent

Table 3.1 – Chapter 3, literature review and research contribution positioning.

the trade-off among inter-slice and intra-slice fairness, a new allocation criterion, namely shared
constrained slicing (SCS), was proposed by Zheng et al. in [116]

In [78], Nguyen et al. studied edge computing resource allocation problem for service as Fisher
market model, where they only dealt with computation resources, considering that the linear function
determines the agents’ resource demand. Later in [77], they extended the formulation to a multi-
resource allocation problem by employing Leontief functions as agents’ utilities. Along the same
lines, Moro et al. in [74] cast resource allocation problem for 5G network slicing as Fisher market,
wherein apart from edge resources like computation and memory, authors also included the radio
resource in the model. Above all three works proposed the market equilibrium-based resource al-
location as a solution and showed that the desired equilibrium-based allocation can be obtained by
solving the EG program.

In-network slicing context, similar to our work previously, in [18] Caballero et al. proposed the
TP mechanism for bandwidth allocation problem. In their proposed scheme, tenants can customize
their bandwidth demand by splitting their shares based on their geographically distributed user load.
In advancement with the above work, in [115] Zheng et al. applied the same resource allocation
scheme for statistical multiplexing of stochastic load. They showed that the resource allocation
scheme induces a non-cooperative game, and the slices achieve efficient statistical multiplexing
at the Nash equilibrium of the game. Further advancing on the same line, Caballero et al. in [20]
introduced the admission control over users arrival to ensure the guaranteed service rate for slices’
users.

Our work is closely related to [78, 77, 74], we also formulate the resource allocation problem as
a Fisher market. However, this work departs from their works in following points. First, this work also
accommodates end-user level allocation and fairness in the model. Second, along the lines of [18,
115, 20], we design the distributed resource allocation scheme via a TP-mechanism that allows the
service providers to reach the market equilibrium. However above work only dealt with the bandwidth
allocation problem we generalize the mechanism for multiple resources type allocation. Finally, our
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work also extends the theoretical results from the [23] by providing a TP-mechansim based updating
scheme to reach the ME of the Fisher market with complex utility functions.

3.1.2 Main Contributions

We list below the key contributions of our work in Chapter 3.

1. In the context of network slicing, we formulate the system where the service providers or slices
need heterogeneous resources (Edge resources) at geographically distributed locations to
support users from different service classes.

2. We cast the resource allocation problem for the aforementioned system as a Fisher market
model and propose a market equilibrium as its stable solution.

3. We build a convex optimization programme whose optimal solutions provide market equilib-
rium for the formulated market.

4. We devise the bid updating rule vai Trading post mechanism that enables SPs to reach the
market equilibrium in a decentralized fashion.

5. We investigate the efficiency and fairness properties of the proposed allocation scheme and
perform a comparative analysis with two baseline allocation schemes: optimal social allocation
and static proportional allocation schemes.

The rest of the chapter is organized as follows: Section 3.2 introduces the system model. In Section
3.3, we cast the resource allocation problem as the Fisher market model. In Section 3.4.1 and Sec-
tion 3.4.2, we provide centralized and decentralized approaches respectively to compute the market
equilibrium of the formulated market. Section 3.5 is specially dedicated to constructing a potential
function, which is needed for developing a decentralized allocation scheme. In Section 3.6, we pro-
vide with bid updating rule which allows SPs to reach the desired market equilibrium. In Section
3.7, we investigate the fairness and efficiency properties of the proposed allocation scheme. In sec-
tion 3.8, we validate the performance of the proposed allocation scheme with extensive numerical
simulations.

3.2 System Model

We consider a system with InP, who owns the physical resources such as CPU, memory, radio
resource, etc., at geographically distributed set of locations or cells (macro, micro, small) 3 as rep-
resented in Fig. 3.2. Let set of cells be denoted by C = {1, . . . , C} and Rc = {1, . . . , R} represents
set of resources available at each location c. A set of SPs denoted by S = {1, . . . , S} lease avail-
able resources from InPs through network slicing, where network slicing is a process in which the

3. In this work use of ’cell’ or ’location’ represents the same.
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Table 3.2 – Main notations used throughout the Chapter 3

C := {1, . . . , C} ≜ set of base stations or cells
S := {1, . . . , S} ≜ set of slices (tenants)
Rc ≜ set of resources at base station c

Ks ≜ set of user class supported by slice s

Ks
c ≜ set of user class supported by slice s at cell c

Bs ≜ budget or network share of slice s

xs
ckr ≜ amount of resource type r allocated to slice s for

users from class k at cell c

xs
ck ≜ spending by slice s on users from class k at cell c

bs
ckr ≜ spending by slice s for users from class k on re-

source type r at cell c

bs
ck ≜ spending by slice s on users from class k at cell c

ns
ck ≜ number of user from slice s belonging to class k at

cell c

Dk = (dk1 . . . dkR) ≜ base demand vector for user class k

dkr ≜ the minimum amount of resource type r needed by
a user from class k to achieve unit service rate

uν ≜ service rate experienced by user ν

us
ck ≜ total service rate experienced by users belonging

to class k in cell c

αs ≜ α fairness parameter for slice s

pcr ≜ price per unit of resource type r at cell c.
Φ(b) ≜ potential function to Esenberg-Gale Program
Ψ(x) ≜ objective function of Esenberg-Gale Program
Υ(p) ≜ dual function of Esenberg-Gale Program
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3.2. System Model

Figure 3.1 – The service providers support the different applications through dedicated slices.

physical network is virtualized and then logically separated to match the SP requirements. The SP
then operates on such virtual network (slice 4) to support different services (e.g., IoT, Virtual Reality
(VR), online gaming, autonomous driving and healthcare etc.) for the subscribed users at multiple
locations. The resource requirement of SPs in each cell depends on the number of users in that cell
and the type of service they provide.

3.2.1 User utility model

As shown in Fig. 3.2, a set of users V are categorized into a set of classes K, where each
class represents a different service requirement. Users obtain the resources by subscribing to the
services offered by various SPs. The SP needs to provide heterogeneous resources to meet the
service rate defined per class. We consider that every user needs a minimum allotment of each
resource to meet a certain service rate. Let Dk = (dk1 . . . dkR) be the base demand vector, where
the element dkr is the amount of resource type r required by a user of class k to achieve a unit
service rate. The service rate obtained by the user that belongs to class k for obtaining a resource
bundle (xk1 . . . xkR) is defined by the following Leontief function,

uν = min
r

{
xkr

dkr

}
(3.1)

4. We refer to network slice as ’slice’ for brevity.
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INFRASTRUCTURE PROVIDER

location i

users
class a

users
class b

users
class c

users
class d

location j

resources
cpu, memory,

etc

resources
cpu, memory,

etc

Figure 3.2 – System description: topological view.

where xkr is the amount of resource type r allocated to the user of class k. For instance, consider
that a user from class k with its base demand vector defined as dk,BW = 0.2 and dk,CP U = 0.1
units, receives 0.4 units of bandwidth and 0.2 units of CPU then the service rate achieved by user
v is given by, uv = min

{
0.4
0.2 , 0.2

0.1

}
. Observe that increment in the bandwidth to 0.6 units does not

increase the utility, which highlights the main attribute of the Leontief function, i.e., improvement in
the utility is possible only with proportional increment in all the allocated resources.

3.2.2 Service Provider Utility Model

Let us consider that each slice supports various classes of users at a given location c, and this
support may vary based on the location. Let a set of users classes supported by a slice s denoted
by Ks, ns

kc be the number of users from class k associated to slice s present in cell c, and Ks
c be

the set of classes supported by slice s at location c. We assume that each slice treats the users
in the same class uniformly, i.e., the service rate provided by the slice s is equally divided among
the users in the same class at location c, in general, this is valid for all locations. Thus a class-level
allocation can easily be treated as to user-level allocation. The utility that signifies the benefit of
resource allocation obtained by the slice is defined as follows

Us =
∑
c∈C

∑
k∈Ks

c

ns
ck

(1− αs)

(
us

ck

ns
ck

)(1−αs)

(3.2)
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In the above equation us
ck = minr∈Rc

{
xs

ckr
ds

ckr

}
, where us

ck and xs
ckr represents the total service rate

and the amount of resource type r allocated to set of users belonging to class k in cell c respectively
and ds

ckr = dkr. For the sake of convenience, we replace (ns
ck)αs with ws

ck and write the above utility
as

Us =
∑
c∈C

∑
k∈Ks

c

ws
ck

(1− αs) (us
ck)(1−αs) (3.3)

The utility (3.3) demonstrates that the slices aim to attain well-known α-fairness criteria [73]
among the classes of users while delivering the service at different cells. The values of α ∈ [0,∞]
interpolate between individual fairness among the users and the system’s efficiency. The α = 0
corresponds to the utilitarian (average) objective where the goal is to optimize system efficiency,
while α → ∞ corresponds to max-min fairness (the egalitarian objective). The α = 1 and α = 2
corresponds to the widely established proportional fairness and potential criterion, respectively.

Us =


∑

c∈C
∑

k∈Ks
c

ws
ck

(1−αs) (us
ck)(1−αs) if αs = others

minc,k

{
us

ck
ns

ck

}
if αs =∞∏

ck (us
ck)ws

ck if αs = 1,

(3.4)

We further consider that each slice s ∈ S is allocated with a finite budget or share Bs that represents
its share of total infrastructure such that

∑
s∈S Bs = 1, the budget allocated for each slice depends

on its service level agreement with the InP.

Remark 3.1. In the above model, we have considered that slices treat users uniformly at each cell
while delivering service to users from the same class. However, our framework is more general and
applicable to cases where slices may handle each user independently and provide the service according
to their preferences and priorities; in such cases, each user will be treated as a separate class.

Remark 3.2. We use the Cobb-Douglas function instead of the logarithmic function, generally used
in α fairness criteria; however, both the operations perform the identical task of attaining proportional
fairness among the users.

3.3 Problem formulation

Given that the resources are available in a limited capacity and more than one SP requires the
resources, it is crucial to design a framework that considers the budget constraints of the SP while
allocating the resources and adhere to the capacity limit of each resource type as well. We establish
such a framework by formulating the resource allocation problem as a Fisher market where S slices
act as consumers who spend their budget to purchase the resources available at the different cells
representing the divisible goods. At the same time, infrastructure providers operate as producers
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Figure 3.3 – Fisher Market based resource allocation scheme

who sell capacity-constrained resources in exchange for consumers’ spending. Each SP spends
its budget to obtain the most favoured bundle of resources given the set prices, while the InPs set
the prices in the market to optimize resource utilization. Towards this goal, let us consider pc =
(pcr, . . . , pcR) as the vector of prices charged at cell c where the pcr is the price per unit of resource
type r at cell c. Given the prices charged by the infrastructure provider for resources, we anticipate
the SPs to act as rational agents and spend their budgets to procure the resources in a manner that
maximizes their utility. The decision problem for each service provider s to find an optimal bundle of
resources to be requested is defined by the following optimization problem.

Ps : Maximize :
x,u

∑
c∈C

∑
k∈Ks

c

1
1− αs

ws
ck (us

ck)1−αs (3.5a)

subject to us
ck ≤

xs
ckr

ds
ckr

∀c ∈ Cs, k ∈ Ks
c, r ∈ Rc (3.5b)∑

c∈C

∑
k∈Ks

c

∑
r∈Rc

pcrxs
ckr ≤ Bs (3.5c)

Here, the objective is to find an optimal allocation vector [xs
ckr] that solves the problem (3.5a)-

(3.5c). Such an optimal share of the resources are allocated to the SP through the network slicing
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3.3. Problem formulation

process, i.e., each SP is assigned with a slice that contains the resources that were divided optimally
among the competing SPs. As mentioned before, using αs ensures the fairness criteria among the
users of different classes associated with the slice s. Constraints defined in eq. (3.5b) ensure that
the resulting service rate us

ck does not consider the excess resources but only the resources that
are in proportion. Whereas constraints in eq. (3.5c) guarantee that the resulting allocation adheres
to the budget limitations of the SP. As described earlier, this framework is constructed based on the
Fisher market model, where the market is formally defined as

Definition 3.3. M :=
〈
S, (Bs)s∈S ,

⋃
c∈CRc, (Us)s∈S , p

〉
as follows:

• Player set: the set of service providers S

• Budgets :Bs

• Resources set: ⋃c∈CRc

• Utility: The utility of each SP s is equal to the Us

• Price vector: p

The primary goal of this work is to provide a Fisher market-based resource allocation scheme
that effectively prices and allocates limited physical resources to slices with heterogeneous require-
ments and preferences. Since resources are allocated to service providers depending on their ra-
tional decisions and interactions in the Fisher market, we investigate the outcome of the proposed
Fisher market model in light of game theory and recall the definition of market equilibrium.

Definition 3.4. A market equilibrium (ME) is defined as (p̂, x̂) the prices and resultant allocation,
where the market clears its resources and SPs get their favorite resource bundle. Mathematically
(p̂, x̂) is ME if following two conditions are satisfied.

1. Given the resource price vector, every slice spends its budget such that it receives resource bundle
x̂ that maximizes its utility.

∀s, x̂s ∈ arg max∑
c

∑
k

∑
r

xs
ckr

p̂cr≤Bs

Us(x) (3.6)

2. Every resource is either fully allocated or has zero price, i.e., we have: (
∑

s

∑
k x̂s

ckr−Ccr)p̂cr = 0

In the above definition, the first condition is meant that the equilibrium allocation maximizes
satisfaction or the return of market investment of each service provider; no equilibrium could be
otherwise established. The second condition represents Walras’s law [106], which means that either
the total demand of each resource meets the capacity and will be positively priced; otherwise, that
resource is allocated free of cost. Undoubtedly, zero-priced resources can be allocated arbitrarily
to service providers. However, an additional allocation of these resources will not increase their
satisfaction level.
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Assumption 1. This work considers that each SP’s user load is dynamic and spatially inhomoge-
neous. The shares (budgets) are allocated to SPs over a long timescale (months/days), and the dis-
tribution of shares by the SPs over the resources is performed at a fast time scale (minutes/seconds),
such that user load is regarded as stationary while performing the allocation.

3.4 Resource allocation

There are several ways to obtain an optimal solution for the resource allocation problem defined
in the previous section. In this section, we explore solutions that mainly use either a centralized or
a decentralized approach. In the centralized approach, with the knowledge of SPs utility functions
and base demands the InP optimizes the resource allocation by defining the prices and quantity of
the resources to each SP such that they satisfies the ME, where as in the decentralized approach
that enables SPs to reach the ME with out revealing such private information.

3.4.1 Centralized approach

In order to solve the market equilibrium problem, we first introduce the concept of the Esenberg-
Gale (EG) optimization problem, which can then be used to find the market equilibrium of the Fisher
marketM under some conditions. Suppose all utilities of consumers in the Fisher market are con-
cave and homogeneous of degree one. In that case, according to [89][31], the market equilibrium of
that market can be obtained by solving the below Esenberg-Gale optimization program.

EG : − Maximize :
x,u

∑
s∈S

Bs log(Us) (3.7a)

subject to Us =

∑
c∈C

∑
k∈Ks

c

ws
ck (us

ck)1−αs

 1
1−αs

∀ s ∈ S (3.7b)

us
ck ≤

xs
ckr

ds
ckr

∀ s ∈ S, c ∈ Cs, k ∈ Kc, r ∈ R (3.7c)∑
s∈S

∑
k∈Ks

c

xs
ckr ≤ Ccr, ∀ c ∈ C, r ∈ R (3.7d)

Suppose x∗ and p∗ be the primal and dual optimal solutions of the EG program (3.7), where p∗ be
the dual variable or lagrangian multiplier associated with capacity constraints (3.7d), then x∗ and p∗

represent the market equilibrium allocation and prices of marketM.

Theorem 3.5. Optimal allocation x∗ and corresponding prices p∗ (dual variable associated to (3.7d)
of optimization program (3.7) represents the market equilibrium (ME)
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3.4. Resource allocation

Proof. In the proposed Fisher market model utility of each service provider is concave and homoge-
neous of degree one; hence, the result follows from [31][89]. However, for the sake of completeness,
we provide a few main steps of the proof.

1. First we show that the optimal solution (x∗) to program and its dual solution (p∗) pair is
budgets balancing i.e, at the solution pair the budget of each SP is fully utilize

∀s ∈ S
∑
c∈C

∑
k∈Ks

c

∑
r∈Rc

p∗
crxs

ckr
∗ = Bs

the detailed proof is provided in the Appendix B.4

2. Given price vector (p∗) we find best response (demand) by each SP s by solving (3.5), (the
derivation of best response is provided in Appendices B.3) and it gives the same solution
allocation x∗ or consider any possible allocation y that can be requested by SP such that

∀s ∈ S
∑
c∈C

∑
k∈Ks

c

∑
r∈Rc

p∗
crys

ckr ≤ Bs

3. then we can show that ∀s ∈ S Us(ys) ≤ Us(x∗
s)

which proves that (x∗, p∗) solution to program, is market equilibrium.

3.4.2 Decentralized approach

We have already discussed in Section 3.4, the market equilibrium solution to the proposed prob-
lem (3.5) can be found as a solution to the equivalent convex optimization problem (3.7), which can
then utilize by InP to implement proposed allocation scheme. However, such a centralized imple-
mentation requires that all the SPs’ private utility functions be made available to InP. This is rarely
possible, as it is generally not acceptable for SPs to reveal their private data to third parties. In
this section, we focus on developing the decentralized algorithm that enables the service provider
to reach the market equilibrium of market M. One of the possible solutions in this direction is to
solve the convex optimization problem using a Walras’ tâtonnement-like algorithm where the re-
source price is raised if the demand for a resource exceeds the resource supply and decreases if
the demand for the resource is less than the supply. However, this is not the way how the market
generally functions in practice; this type of approach does not always guarantee the ability to satisfy
the resource capacity while applying a process.

To deal with this issue, we advocate an alternative approach by Shapley and Shubik, well known
as the Trading post mechanism. The proposed method does not require the service providers to
reveal their utilities; SPs can distribute their budgets over the resources and customize their alloca-
tions.[34] In the Trading post mechanism, slices distribute their budget over their required resources
in bids. Once all slices place the bids, each resource type’s price is determined by the total bids
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submitted for that resource. Let slice s submits a bid bs
cr to resource r at cell c. The price of resource

type r at cell c is then set to
∑

s∈S bs
cr, accordingly slice s receives a fraction of xs

cr in return to his
spending of bs

cr

xs
cr =


bs

cr∑
s′∈S bs′

cr
if bs

cr > 0,
∑

s′∈S bs′
cr > 0

0 bs
cr = 0,

∑
s′∈S bs′

cr > 0

as per demand
∑

s′∈S bs′
cr = 0

(3.8)

In our framework, the same resource is required by users from different classes; thus, the total
budget spent by SPs s on resource r is the sum of budgets spent by the SP on resources r for
the set of its users belonging to all possible classes bs

cr =
∑

k bs
ckr. We assume that the SPs are

price takers and request the different amounts of the resources by distributing their budgets over
the resources in bids. The InP announces the resources’ prices and allocates the resources accord-
ing to TP-mechanism. If all the SPs are satisfied with the allocation and costs reported by InP, the
mechanism has reached market equilibrium; otherwise, SPs might modify their distribution of bud-
gets (demand) depending on the current prices. This brings new the challenge of dynamics or bids
updating scheme:(how) do SPs reach a market equilibrium via the TP mechanism. In the coming
sections, we focus on developing the bid updating rule that enables the service providers to reach
the market equilibrium of the proposed allocation scheme. Particularly we focus on designing for
some restricted cases when αs parameter applied by each service provider s takes a value either
0 or in the range of [1,∞]. Now, before moving directly to the main results, we build some mathe-
matical tools that will require afterwards to develop the bid updating rule and prove its convergence
results.

3.5 Potential function

In this section, we construct a potential function to the Eisenberg-Gale program (3.7) and show
the optimal solution to the problem (i.e. market equilibrium) is an optimal point of the candidate
potential function. In this thesis, we restrict our analysis to the case when the αs the alpha fairness
criteria employed by each service provider s takes value in [1,∞], for the remaining case when
αs ∈ [0, 1] requires complex saddle point analysis and we keep this for future work. Next, we show
that when all the SP employ the α fairness criteria with 1 ≤ αs ≤ ∞, our designed potential function
is convex, and its minimal point represents the market equilibrium. Now to start with the designing of
the potential function, we consider the dual of an optimization problem where the goal is to minimize

Υ(p) = max∑
c,k,r

xs
ckr

pcr=Bs

∑
s

Bs log (Us) +
∑
c∈C

∑
r∈Rc

pcr

1−
∑

s

∑
k∈Ks

c

xs
crk

 (3.9)
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3.5. Potential function

Now we introduce the potential function and write separately depending on the parameter value
αs used by the service providers. Let Φ(b#) denote the potential function of the EG-problem when
the alpha fairness parameter α with the condition # has been applied by the service providers.
For example, Φ(b≥) denotes the potential function when service providers apply the fairness with
α ≥ 1. We use the same notation for the remaining article to describe the potential function and its
connection with the SPs’ α fairness parameter.

Φ(b=1) =
∑

s:αs=1

∑
c∈Cs

∑
k∈Ks

c

∑
r∈Rc

ws
ckbs

ckr log
(

bs
ckr

pcrds
ckr

)
(3.10)

Φ(b>1̸={∞}) =
∑

s:1<αs<∞

∑
c∈Cs

∑
k∈Ks

c

∑
r∈Rc

bs
ckr log

(
bs

ckr

pcrds
ckr

)
− 1

(1− αs)
∑
c∈Cs

∑
k∈Ks

c

bs
ck log

(
bs

ck

ws
ck

)
(3.11)

Φ(b=∞) =
∑

s:αs=∞

∑
c∈Cs

∑
k∈Ks

c

∑
r∈Rc

bs
ckr log

(
bs

ckr

ws
ckpcrds

ckr

)
(3.12)

As all cases provided above are disjoint, combining them all, we write the complete potential function
as

Φ(b) = Φ(b=1) + Φ(b>1̸={∞}) + Φ(b=∞) (3.13)

In the following theorem, we establish the relationship between the potential function Φ and its
dual program Υ

Theorem 3.6. Let b be the spending of service providers, and x(b) be the corresponding allocation
according to the TP-mechanism, where xs

ckr = bs
ckr
pcr

and pcr(b) =
∑

s

∑
k bs

ckr then we have following
result

Υ(p(b))−Υ(p(b∗)) ≥ Φ(b∗)− Φ(b)

where b∗ denotes the market equilibrium of the market M

Proof. The detailed proof is provided in Appendix B.1

Moving ahead, we describe some properties of the function Φ, which we will need afterwards to
prove the convergence of the proposed bid updating scheme. First, we introduce the definition of the
L-Bregman convex function and show that our designed potential function Φ admits this property.

Definition 3.7 ([23]). The function f is L-Bregman convex w.r.t Bregman divergence dg if, for any
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y ∈ rint(C) and x ∈ C,

f(y) + ⟨∇f(y), x− y⟩ ≤ f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L.dg(x, y) (3.14)

In the following lemma, we show that the potential function Φ is 1-convex depending on the
parameter αs employed by the service providers for the fairness criteria.

Lemma 3.8. The potential function Φ(b) is 1-Bregman convex concave w.r.t Bregman divergence dg

dg =
∑

s:1≤αs≤∞
KLa (.||.)−

∑
s:1<αs<∞

1
(1− αs)KLb (.||.) (3.15)

where
KLa (x||y) =

∑
c

∑
k

∑
r

xs
ckr log

(
xs

ckr

ys
ckr

)
and

KLb (x||y) =
∑

c

∑
k

xs
ck log

(
xs

ck

ys
ck

)

Proof. We know that the Φ(b) is a convex function then by definition of a convex function, we have

Φ(b′) +
〈
∇Φ(b′), b− b′〉 ≤ Φ(b′) (3.16)

Now consider
Φ(b)− Φ(b′)−

〈
∇Φ(b′), b− b′〉 (3.17)

putting the value of ∇Φ(b′) in above equation and after some calculations, we get

Φ(b)− Φ(b′)−
〈
∇Φ(b′), b− b′〉 =

∑
s:1≤αs≤∞

KLa(bs||b′
s)−

∑
s:1<αs<∞

1
(1− αs)KLb(bs||bs′)−KL(p||p′)

(3.18)

and since KL(p||p′) is non negative

Φ(b)− Φ(b′)−
〈
∇Φ(b′), b− b′〉 ≤ ∑

s:1≤αs≤∞
KLa(bs||b′

s)−
∑

s:1<αs<∞

1
(1− αs)KLb(bs||bs

′) (3.19)

Φ(b) ≤ Φ(b′) +
〈
∇Φ(b′), b− b′〉+ ≤

∑
s:1≤αs≤∞

KLa(bs||b′
s)−

∑
s:1<αs<∞

1
(1− αs)KLb(bs||bs

′) (3.20)

which proves that function Φ(b) is 1 Bergman convex wrt dg (3.15)
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3.6. Bid updating rule

3.6 Bid updating rule

In this section, we provide with bid updating rule which enables the service providers to reach
the market equilibrium of the marketM. We build an analysis of the bid updating rule depending on
the service providers’ αs fairness criteria. We consider a case when all the SPs employ the αs ≥ 1,
calling it a complementary domain; over this domain, as we have shown in the previous section,
the potential function Φ is convex in its argument, and the minimal point of Φ represents the market
equilibrium points. As the function, Φ is separable in each service provider decision. The SPs can
reach the equilibrium by employing a mirror descent update to minimize the potential function Φ in
a decentralized fashion. Let bs

ckr(t) represent the bid submitted by SP s at step t on the resource
type r in the cell c for the class of user k, pcr(t) defines the price of the resource set through TP-
mechanism in time step t, where pcr(t) =

∑
s

∑
kKs

c
bs

ckr(t)
The bid update for service providers in the time step t + 1 is given as

• if αs =∞

bs
ckr(t + 1) = Bsws

ckpcr(t)ds
ckr∑

c

∑
k

∑
r ws

ckpcr(t)ds
ckr

(3.21)

• if 1 ≤ αs <∞

Bs
pcr(t)ds

ckr∑
r

pcr(t)ds
ckr

(ws
ck)

1
αs (

∑
r pcr(t)ds

ckr)
(1−αs)

−αs

∑
c

∑
k

(
ws

ck

) 1
αs
(∑

r pcr(t)ds
ckr

) (1−αs)
−αs

(3.22)

Following theoretical results show that if the service providers update their bids according to the
above-designed rule, then iterative bid updating dynamics of SPs converge to the market equilibrium
of marketM

Theorem 3.9. Consider each SP s ∈ S implement the αs-fairness with its respective fairness pa-
rameter αs ∈ [1,∞] and repeatedly update their distribution of shares using rule (3.21)-(3.22). Then
the potential function Φ from (3.13) converges to the market equilibrium as follows

Φ(bT )− Φ(b∗) ≤ 1
T

∑
s

KLa

(
b∗

s||b0
s

)
− 1

T

∑
s:1<αs<∞

1
(1− αs)KLb

(
b∗

s||b0
s

)
(3.23)

Proof. Steps of proof are as follows
1. we show that if ∀s ∈ S with αs ≥ 1 update rule (3.21) and (3.22) is mirror descent update of

potential Φ wrt

dg =
∑

s:1≤αs≤∞
KLa (.||.)−

∑
s:1<αs<∞

1
(1− αs)KLb (.||.) (3.24)
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the detailed derivation of update rule is provided in the Appendix B.2, where mirror descent
update in step (t + 1) is given as

bs(t + 1)←− arg min∑
c

∑
k

∑
r

bs
ckr

≤Bs

{
∇bsΦ (bs(t)) (bs − bs(t)) + KLa (bs||bs(t))− KLb (bs||bs(t))

(1− αs) )
}

(3.25)

2. from Lemma 3.8, we know that Φ(b) is 1-Bergman convex function wrt to dg(3.24).

3. Now suppose the bT is the point reached after T applications of the mirror descent update rule
then by applying Thm 3.2 [23], we get the desired result (3.23)

Corollary 3.10. Consider SPs apply the fairness criteria with αs ≥ 1 and the given price set by the
TP-mechanism in each time step they update their distribution of shares in each next time step as
the best response. Then the iterative best response dynamics of SPs converges to market equilibrium.

Proof. We show that for all SPs with αs ≥ 1, given resources prices announced by the TP-mechanism,
the bid update rule in the next round is exactly the best response of SPs given resources prices set
in the current round. Hence the convergence of best response dynamics follows from the previous
theorem. The derivation of the best response of SP given prices is given in Appendix B.3

3.7 The fairness and efficiency

This section investigates the fairness and efficiency properties of the proposed allocation scheme.
We measure the performance of the proposed scheme with the help of the social welfare function;
it is a real-valued function that measures the desirability of the allocation outcome. The higher a
value it assigns to the outcome, the more desirable the outcomes for a social planner. Various social
welfare functions have been mentioned in the literature, the most commonly studied among them
are the max-min welfare Φ(x) = min

s
Us(xs) the Nash welfare Φ(x) = ΠsUs(xs)Bs utilitarian welfare

Φ(x) =
∑

s Us(xs).
As per the result established in the Section 3.4.1, the market equilibrium for market M can be

computed by solving EG-optimization program (3.7), Eisenberg and Gale showed in their celebrated
work [32][31] that allocation under market equilibria achieves optimal Nash welfare. This result has
been established based on a relation that the maximization of the objective function in (3.7) is
equivalent to the maximization of Nash welfare function.

arg max
x∈X

ΠsUs(xs)Bs = arg max
x∈X

∑
s∈S

Bs log (Us(xs)) (3.26)
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Therefore proposed allocation scheme maximizes the Nash welfare or achieves the proportional fair
criteria while distributing the resources among the service providers.

3.7.1 Baseline resource allocations

This section presents the two baseline allocation schemes to conduct a comparative analysis of
the efficiency of our proposed resource allocation scheme. As discussed earlier, one of the goals of
our proposed allocation is to achieve a tradeoff between efficiency versus SLA protection, and we
know that the optimal social allocation provides better service utilization. In contrast, static propor-
tional allocation (SS) offers complete protection of SLA among slices. Thus we consider the socially
optimal allocation and the static proportional sharing scheme as baseline allocation schemes.
Socially Optimal Allocation (SO): In this work, we consider that the utility of each SP is its pri-
vate information and not known to others. However, If the SPs’ utilities were known to the InP, the
natural choice of allocation scheme InP could have applied is the socially optimal resource alloca-
tion scheme. Thus to compare the efficiency of the proposed allocation scheme, we consider the
following social welfare optimization problem.

maximize
x

∑
s∈S

Bs (Us(xs))

subject to
∑
s∈S

∑
k∈Ks

xs
ckr ≤ 1,∀c ∈ C, r ∈ R

xs
ckr ≥ 0, ∀c ∈ C, r ∈ R

(3.27)

Static Proportional sharing scheme (SS): It is also known as static proportional splitting. In this
resource allocation scheme, resources are partitioned based on SPs’ network shares (budgets). To
be more precise, every SP is allocated a portion of every demanded resource proportional to its
budget or shares i.e., ∀s ∈ S,∀c ∈ C and ∀r ∈,R xs

cr = Bs∑
s′∈S Bs′

.

Now we analyze the efficiency of the proposed scheme i.e., efficiency of ME to the market M
by comparing it with socially optimal allocation. Let U(SO) denotes social optimum, an optimal
value of optimization problem SW defined in (3.27), and U(ME) denotes the value of social wel-
fare under allocation imposed at ME. We consider standard notion of price of anarchy defined as
PoA = U(SO)−U(ME)

U(SO) . To find the PoA of the given marketM, we first use the result discussed at the
beginning of the section that the resource allocation under ME of the marketM can equivalently be
computed by solving EG-program and the problem’s optimal solution provides the allocation that at-
tains proportional fairness (PF) among the agents. Generally, the attainment of fairness in allocation
results in a decline in the system’s efficiency. The trade-off between efficiency and fairness were well
studied in the [14] using the notion price of fairness (PoF), which is defined as a relative reduction
in social welfare under fair allocation compared to the social optimum, PoF = U(SO)−U(P F )

U(SO) . Where
U(SO) denoted the value of optimal social welfare function while U(PF ) denotes the value of social
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welfare function at proportional faired allocation. In the following theorem, we derive the bound on
PoA for the proposed allocation scheme using results on the bound of PoF established in [14].

Theorem 3.11. Let the maximum achievable utility of each SP s ∈ S in market M is Ûs > 0,
then price of anarchy is bounded by PoA ≤ 1− 2

√
S−1
S

mins∈S Ûs

maxs∈S Ûs
− 1

S + mins∈S Ûs∑
s∈S Ûs

and if the maximum

achievable utilities of all SPs are equal then PoA ≤ 1− 2
√

S−1
S

Proof. Let the price of fairness (PoF) for proportional fairness criteria is defined as PoF = U(SO)−U(P F )
U(SO) .

According to theorem 2 [14] if maximum achievable utility of each agent s ∈ S in the market M is
Ûs > 0 then value of PoF for proportional fairness is bounded by

U(SO)− U(PF )
U(SO) ≤ 1− 2

√
S − 1
S

mins∈SÛs

maxs∈SÛs

− 1
S

+ mins∈SÛs∑
s∈S Ûs

We notice that the value of social welfare under proportional fair allocation is equal to the value of
social welfare under ME’s allocation. Thus replacing U(PF ) by U(ME) we get

U(SO)− U(ME)
U(SO) ≤ 1− 2

√
S − 1
S

mins∈SÛs

maxs∈SÛs

− 1
S

+ mins∈SÛs∑
s∈S Ûs

(3.28)

Hence bound on PoA write as

PoA ≤ 1− 2
√

S − 1
S

mins∈SÛs

maxs∈SÛs

− 1
S

+ mins∈SÛs∑
s∈S Ûs

Similarly if the maximum achievable utilities of all SPs are equal then by the Thm.1 [14]

PoA ≤ 1− 2
√

S − 1
S

From the above theorem, we can deduce that the efficiency of the proposed resource allocation
scheme decreases with the increase in the number of service providers. Nonetheless, the socially
optimal allocation offers efficient resource utilization, but at the cost of poor fairness. In the numerical
section, we will see that sometimes hardly any resources are allocated for service providers with
low marginal gain under the SO allocation scheme. Further, the SO allocation scheme does not
guarantee the existence of any market equilibrium or stability in the allocation method. Next, we
compare the performance of the proposed scheme with the static proportional allocation scheme

Theorem 3.12. Under the proposed resource allocation scheme, i.e. at the ME of the market M
each SP achieves the utility higher than or equal to the utility under static proportional allocation
(SS).
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Proof. Let (x̂, p̂) be the market equilibrium of market M then by definition of ME

∀s ∈ S
∑
c∈C

∑
k∈Ks

c

∑
r∈Rc

p̂crx̂s
ckr = Bs

and ∀s ∈ S, Us(x̂s) is utility achieved by each SP s under ME. Let x be the resource allocation
under the static proportional allocation scheme. Then to prove the desired results, we first show that
allocation x is budget exhausting with respect to price vector p̂ i.e,

∀s ∈ S
∑
c∈C

∑
r∈Rc

p̂crxs
cr ≤ Bs

Just by replacing xs
cr with Bs∑

s′∈S Bs′
in above inequality gives us first result. Now as x̂ and x both

are feasible and budget exhausting allocation then by definition of market equilibrium

Us (xs) ≤ Us(x̂s), ∀s ∈ S

Hence proves the theorem

The above theoretical result proves that the proposed resource scheme achieves better effi-
ciency than the static proportional allocation scheme. Thus proposed Fisher market-based alloca-
tion brings off a better arbitrage between the system efficiency and protection of the service level
agreement of SPs

3.8 Numerical Experiments

In this section, we numerically evaluate the performance of the proposed allocation scheme.
For the simulation purpose, we consider a scenario where the network consists of four cells, and
each cell accommodates three types of resources: CPU, RAM, and Bandwidth (BW), and their
available capacities at each cell are 30 Units, 126 Gb and 40 MHz, respectively. We assume the
four service providers owning an equal share of infrastructure support the four types of service
class: CPU-intensive, RAM intensive, BW-intensive, and Balanced class. The base demand vector
for each service class is as described in the Table 3.3 [74] For convenience, we assume that each

Service Class CPU RAM BW
BW-Intensive 1CPUs 8Gb 10MHz
CPU-Intensive 4 CPU 8Gb 3MHz
RAM-Intensive 1 CPU 32Gb 3MHz

Balanced 5CPUs 40Gb 5MHz

Table 3.3 – The base demand vector of service classes
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SP supports only a single user class. The SPs’ user load is non-uniform, and the number of users
associated with each SP and each cell is described in the Table 3.4. Assuming the SPs employ

class cell 1 cell2 cell3 cell4
SP1 10 12 7 14
SP2 5 16 11 8
SP3 15 6 10 12
SP4 8 4 15 13

Table 3.4 – Distribution of SPs users across the cells

the different alpha fairness criteria, We calculate the market equilibrium allocations for the given
scenario employing the designed bid updating scheme. (3.6). The bar graphs in Fig 3.4 show the
service rate or utility achieved by the users at different locations under socially optimal allocation
(SO), market equilibrium (ME) and static proportional (SS) allocation schemes.
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Figure 3.4 – Bar graphs describe the utilities (service rate) under Socially optimal allocation (SO),
market equilibrium (ME) and Static proportional (SS) allocation scheme attained by the users as-
sociated with the service providers SP1, SP2, SP3 and SP4 in the cell 1-4, when α fairness criteria
with α = 0, α = 1 and α = 10 applied by the service providers.

We observe from the graphs that for all the values of α, the service rate seen by users at each cell
is inversely proportional to the number of users associated with the same service provider and the
total number of users present in that cell. For instance, in cell 1 SP2 has the least number of users
among the other service providers, and the service rate seen by SPs 2 users is high compared to all
other users. While in the same cell, SP3 users experience a low service rate. We can also notice the
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effect of α fairness applied by the SPs in the graphs. In the first row of graphs, for service providers,
the difference between the highest service rate and the lowest service experienced by their users
decreases with the α in the second and third rows. When SPs employ the proportional fairness
criteria i.e, α = 1, the socially optimal allocation equals the market equilibrium allocation. Moreover,
irrespective of fairness applied by the SPs, utilities gained by the SPs under market equilibrium
allocation are at least equal to those acquired under the static proportional allocation scheme. The

=0

CPU RAM BW
0

0.02

0.04

0.06

0.08

0.1

P
ri

c
e
 p

e
r 

u
n

it

Cell1
Cell2
Cell3
Cell4

=0

SP1 SP2 SP3 SP4
0

5

10

15

20

25

30

U
ti

li
ty

 (
U

s
)

SO

ME

SS

=1

CPU RAM BW
0

0.02

0.04

0.06

0.08

0.1
Cell1
Cell2
Cell3
Cell4

=1

SP1 SP2 SP3 SP4

0

0.5

1

1.5
SO

ME

SS

=2

CPU RAM BW
0

0.02

0.04

0.06

0.08

0.1
Cell1
Cell2
Cell3
Cell4

=2

SP1 SP2 SP3 SP4
0

0.002

0.004

0.006

0.008

0.01

0.012
SO

ME

SS

=5

CPU RAM BW
0

0.02

0.04

0.06

0.08

0.1
Cell1
Cell2
Cell3
Cell4

=5

SP1 SP2 SP3 SP4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
SO

ME

SS

(2.a) (2.b)

(1.a) (1.b)

(2.c)

(1.c) (1.d)

(2.d)

Figure 3.5 – Bar graphs 1. a to 1.d show the price per unit of resources CPU, RAM and Bandwidth
(BW) at cells 1 to 4 when alpha fairness criteria with α = 0, 1, 2 and 5 applied by the service providers.
Each bar graph from 2. a to 2.d describe the total utility achieved by the SPs under optimal social
allocation (SO), market equilibrium (ME) allocation, and static proportional allocation (SS) when α
fairness with α = 0, 1, 2 and 5 applied by the SPs.

bar graphs (1.a)-(1.d) in the Fig.3.5 depict the effect of the parameter α applied by SPs on the prices
of resources. For instance, the price per unit of BW at cell 3 increases with α. As the α increases,
the differences between the highest utility and lowest utility achieved by users associated with the
SPs decreases. The SPs need to pull more resources at the location where users are experiencing
the lowest service rates to achieve the desired results. However, if two or more SPs have the same
pattern in service rates achieved by their users, this results in congestion at some locations, which
further reflects an increase in pricing. The plot in Fig.3.6 shows the fast convergence of prices to
market equilibrium at cell 2 through TP-mechanism.
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Chapter 4

STRATEGIC RESOURCE PRICING AND

ALLOCATION IN A 5G NETWORK SLICING

STACKELBERG GAME

4.1 Introduction

It is predicted that the implication of Network slicing will bring a paradigm shift towards a multi-
tenancy ecosystem where multiple tenants owning individual slices negotiate with multiple infras-
tructure network providers (InPs) to request resources for service provision. In this competitive
multi-agent setting, the service providers (SPs), also called slice tenants, generally express a de-
mand for a dedicated virtual network with full ownership of their service level agreement (SLA). On
the contrary, InPs aim to maximize their return on investment by enabling the dynamic sharing of
the infrastructure, as this lowers their operational and capital costs and allows them to monetize
their infrastructure to its fullest potential. However, the sharing of infrastructure may expose the ten-
ants to the risk of violating their SLAs. Hence, one of the fundamental issues in network slicing is
an efficient sharing of the network resources, which arbitrages between two conflicting interests,
i.e., interslice isolation and efficient network resource utilization. In order to balance the interslice
isolation and efficient resource utilization, Caballero et al. in [19] proposed the “share-constrained
proportional allocation” (SCPA) scheme where each slice is pre-assigned with a fixed share (budget)
of infrastructure. Slices are then allowed to redistribute their shares and customize their allocation
according to the load dynamics. In turn, InP allocates each resource to slices in proportion to their
shares on that resource. This approach allows a dynamic sharing, where tenants can redistribute
their network share based on the load dynamics. At the same time, it provides the slice tenants a
degree of protection by keeping the pre-assigned share intact.

Game-theoretic models have been employed for strategic resource allocation in communica-
tion networks, power systems, and more generally, a large number of deregulated industries. When
dealing with strategic resource allocation, each player’s utility function depends on his own decision
variables, and on that of the other players. The players’ feasibility sets are also coupled through
some (global/local) coupling constraints, capturing the laws of physics or, simply, shared capac-
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ity constraints. Extending duality results from standard continuous optimization to noncooperative
games, the dual variables of the coupling constraints can be interpreted as market prices, also called
shadow prices or locational marginal prices, capturing the state of the network, e.g., congestion.
Applying a similar model to dynamic resource trading in a 5G network, we design a communication
service market where the InP charges dynamically the service providers, depending on how much
they contribute to the infrastructure utilization. The prices are also locational, being differentiated by
cell and resource. Relying on a service market where the prices are automatically adjusted accord-
ing to supply and demand, Lieto et al. proved that the dynamic trading of resources enables service
providers to reduce their costs [63], and therefore maximize their profits.

Relying on network slicing, we consider a market design where a set of SPs lease their re-
spective networks from InP and employ the network slicing mechanism to request the resources
required for their service provision. We assume that the SPs offer a particular service to users, and
the resources inventory available with SPs characterizes their service performance. The users are
free to choose their SP. Their decisions are made based on the service satisfaction attained from
SPs. Furthermore, the SPs collect revenue by providing the service to their customers. Assumum-
ing a dynamic resource sharing mechanism and that SPs are utility maximizing players, it is highly
expected that selfish SPs may exhibit strategic behaviour. For example, they might strategically dis-
tribute their shares on the resources conditioned on the trade-off between the quality of service
(QoS) they want to offer and the congestion perceived by the users. In this work, we focus on (1)
building a game-theoretic model of the communication service market where SPs negotiate with InP
to request resources and compete with one another to serve a pool of end-users, (2) developing a
dynamic resource allocation and pricing mechanism under a competitive environment.

4.1.1 Related work

There is a large part of the literature dedicated to the design of communication service markets.
Broadly, communication service markets have been studied as a two-stage noncooperative game
involving three types of participants: Infrastructure provider (InP), Service provider (SP) 1 and End-
users (EU). In the first level of the game, SPs (buyers) lease the resources from the InPs (sellers),
negotiating for resource prices and resource quantity. In the second level, SPs (buyers) use the
acquired resources from InPs to offer a certain service to their end-users (buyers). At this level, SPs
decide on their service price and the scheduling of resources, while EUs make their subscription
decisions. In [30], SPs’ strategic decision over their service pricing scheme has been analyzed
as a Cournot game. In [54], Korcak et al. considered that the quality of service (QoS) achieved
by the SP’s users depends on the number of subscribers of that SP, and users’ choice behavior
can be analyzed relying on evolutionary game theory (EGT). Li et al. in [62] integrated both the

1. In many articles, the terms Mobile virtual network operator (MVNO), slice tenant, or Mobile service provider
(MSP) are used without distinction to designate SP.
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users’ choice evolution and the SPs pricing scheme. they formulated the resulting problem as a
Stackelberg game. The SPs, interpreted as leaders, strategically decide the price to attract the
users, and the users, seen as followers choose the SPs to maximize their service satisfaction level.
Also, the number of subscribers of the SPs depends on the perceived QoS and, consequently, on
their resources availability. Focusing on competitive aspects, the SPs can act strategically when
computing their resource demand, giving rise to a simultaneous noncooperative game [100]. In [26],
D’Oro et al. used a similar Stackelberg game formulation for resource allocation and orchestration
in the network functions virtualization scenario. In [9], Azouzi et al. considered that the competition
between SPs takes place both in prices and in the QoS. In practice, SPs may not have complete
information about the other SPs resources. Dealing with such an incomplete information setting, Li
et al. in [61] studied SPs’ pricing strategies relying on a Bayesian game formulation, where SPs
compute their prices based on their beliefs about the resource availability. Li et al. also considered
the possibility that the SPs can coordinate and analyzed the impact of cooperation on the pricing
scheme. In all the above works, the SPs lease the resources from the InP and compete to serve EUs,
which is also the case in our work. However, our work innovates in that the resources are shared
using a slice-based dynamic sharing mechanism. Moreover, in our case, resources are spatially
distributed, and service offered in a particular cell can only be supported by the resources available
within that cell. In communication networks, one of the well-known scheme for resource allocation is
the auction-based allocation [25], e.g., Kelly’s mechanism. Tun et al. in [103] proposed multi-bidding
Kelly’s mechanism-based resource allocation for 5G slicing. They showed that Kelly’s mechanism
leads to a fair and efficient resource allocation both at slices and EUs levels. Our work departs from
the auction-based mechanism like [27, 104], where agents’ bids are unbounded.

In follow up work to [19], Zheng et al. in [115] considered the network slicing under stochas-
tic loads and applied SCPA based resource sharing scheme. They modeled the resource sharing
scheme as a noncooperative game and proved that slices achieve efficient statistical multiplexing
at the Nash equilibrium. Guijarro et al. in [41] designed a communication service market where
SPs employ the SCPA mechanism to request the resources from InP. They analyzed the economic
impact of network slicing on the market. In [63], an automated negotiation mechanism is defined
relying on an aggregative game that enables the slice tenants to dynamically trade the radio re-
sources and customize their slices on instantaneous demands, which help tenants achieve higher
profits. Our work is closely related to [41]. The main novelty of our work lies in the fact that we
consider multi-resource service provisioning, contrary to most articles dealing with communication
service market design, which, to the best of our knowledge, only deals with radio resources.

In this work, we leveraged the Tullock contest (TC) framework [5] to model the competition be-
tween slices. This framework has been extensively used in the communication network literature,
to model the interactions between competitive agents. To mention a few, in [87], the competition
between social media users for visibility over the timeline was modeled as a TC. Luo et al. in [65]
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proposed a TC based incentive mechanism for crowdsourcing. The TC framework has been applied
to the multipath TCP network utility maximization problem [86]. In [7], Altman et al. studied the multi-
cryptocurrency blockchain from a game-theoretic perspective, where the competition between the
miners is framed as a TC. To the best of our knowledge, the theoretical results on the TC framework
and its applications in literature only deal with a single resource case. We extend the TC framework
to a multi-resource scenario, and thus our results also contribute to the theoretical literature on the
TC framework.

4.1.2 Main Contributions

We list below the key contributions of our work.

1. We propose a business model for the SPs, where the SPs deploy network slices for their busi-
ness and lease their respective resources through network slicing mechanism (i.e, dynamic
sharing). The SPs compete with one another, with respect to their QoS, to serve end-users.

2. We model the interactions between the SPs and users as a Stackelberg game, where SPs act
as leaders and users as followers.

3. We model the decision-making process among the users with replicator dynamics.

4. We show that the noncooperative game induced by the competition between SPs (that can be
interpreted as a multi-resource Tullock rent-seeking game) admits a unique Nash equilibrium
(NE). Thus, our theoretical results also contribute to the study of the Tullock rent-seeking game.

5. In a market design where the InP prices the resources at their optimal values, we implement
resource pricing through two different approaches.

6. First, when service providers possess finite monetary budgets, we propose the implementation
of pricing through a trading post mechanism.

7. Assuming a single resource is available in the above case, we show analytically that the game
induced by the trading post mechanism admits a unique NE.

8. When budgets do not bind service providers for their demand, we prove that resource pricing
can be implemented by solving a generalized Nash equilibrium problem, involving coupling
constraints capturing the network finite capacity.

9. Finally, we provide two online learning algorithms and a fully distributed proximal based al-
gorithm to reach NE and variational equilibrium solutions of the post trading mechanism and
pricing game respectively.

The rest of the chapter is organised as follows: Section 4.2 introduces the system model. Sec-
tion 4.3 details the game-theoretic model of competition between the SPs. In Section 4.3.2, we
describe the Stackelberg game between SPs and EUs. In Section 4.3.3, we analyse the existence
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Figure 4.1 – Service providers i.e., (slices) compete to offer a certain service to geographically dis-
tributed pool of users

and uniqueness of the NE. Section 4.4 introduces the resource pricing and market equilibrium. In
Section 4.5, we provide two (semi-decentralized) online learning algorithms and a fully distributed
algorithm to compute market equilibria. In Section 4.6, we report on numerical results. A concluding
section ends the chapter.

Notation: Let Rn indicate the set of n dimension real vectors, and Rn
+ its nonnegative orthant. ∥.∥

represents the Euclidean norm. Given a vector x, xT denotes its transpose. Let col(x1, ..., xN ) :=
[xT

1 , ..., xT
N ]. For a closed set F ⊆ Rn, the mapping projF : Rn → F denotes the projection onto F ,

i.e., projF (x) := arg miny∈F ∥y − x∥. Depending on the context, |.| will denote the absolute value of
a scalar or the cardinal of a set. Table 4.1 summarizes the main notation used in the chapter.

4.2 System Model

We consider a market design, where in the first stage, a set of SPs, S, lease their respective
networks from the InP and employ a network slicing mechanism to request the resources required
for their service provision. In stage two, the SPs (sellers) use the leased resources and compete to
maximize their number of end-users (buyers). Specifically, we assume the InP owns a network that
consists of a set of base stations or cells, C. Each base station at different locations accommodates
multiple types of resources such as bandwidth, CPU, memory, etc. Users are spread across the
network, let N c be the number of users present in cell c. We assume that the service offered by the
SP in a particular cell can only be supported by the resources available within that cell.
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Table 4.1 – Main notations used throughout the Chapter 4

C := {1, . . . , C} ≜ Set of base stations or cells
S := {1, . . . , S} ≜ Set of slices (tenants)
Mc ≜ Set of resources at base station c

N c ≜ Number of users in cell c

νc
s ≜ Utility of user associated with SP s in cell c

qs
c ≜ Quality of service offered by SP s in cell c

nc
s ≜ Number (subscribers) users associated with slice s

in cell c

dc
s := (dc

sm)m∈Mc ≜ Bundle of resources available with slice s in cell c

dc
sm ≜ Amount of resource type m available with slice s

in cell c

Dc
m ≜ Capacity of resource type m at base station c

ωc
m ≜ Price per unit resource of type m at base station c

ps ≜ Service fees charge by slice s to users
Rs ≜ SP s expected revenue
Us ≜ SP s profit
Bs ≜ Budget available with slice s

Ks ≜ Local constraint function
τ c

s,s′ (nc, U c) ≜ Revision protocol which defines the switching rate
at which users in cell c switch their choice from SP
s to SP s′

As ≜ Slice association probability function
bc

sm ≜ Bid by SP s to resource m at cell c

λc
sm ≜ Lagrange multipliers of the capacity based cou-

pling constraints
rs ≜ Ratio of the coupling constraint dual variable at r-

normalized Nash equilibrium (λc
m) over dual vari-

able evaluated by SP s (λc
sm)

ys ≜ Auxiliary variable which accumulates discounted
gradient for SP s

αn ≜ Discounting factor or step size
hs(b) ≜ Regularization function or a penalty function
ζ ≜ Vanilla ADMM penalty term
β̃ ≜ Proximal approximation penalty term
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4.2. System Model

4.2.1 User Model

We assume that all the users need the same type of service, and they achieve their demand by
subscribing to one of the SPs. We consider that each user is opportunistic and free to switch from
one SP to another, which is equivalent to choose one slice among the set of available slices at his
base station. The user chooses the slice (or, equivalently, the SP) that offers the better trade-off, i.e.,
the higher QoS at the lowest price. We model the utility of each user served by SP s ∈ S in cell c as
[61]

νc
s(nc

s, qc
s, ps) = log

(
qc

s

nc
s

)
− ps, (4.1)

where qc
s is the QoS of SP s in cell c, nc

s is number of users connected to SP s while ps is the
subscription fees charged by SP s for its service. We assume that the service fees charged by each
SP is the same across all cells. Here the use of a logarithmic 2(concave) function as the user’s utility
in QoS means that the users’ satisfaction level saturates as the QoS increases, which is coherent
with the economic principle of diminishing marginal returns. In turn, the SP QoS depends on the
resources inventory available to him. We assume each SP applies a scheduling policy to distribute
his resources among the users, in order to achieve equal QoS among them, in the long run.

4.2.2 Service Provider Model

We assume that the SPs aim at maximizing their number of subscribers, nc
s, by attracting users

with a better QoS and lower price. We assume that the QoS provided by each SP depends on the
resource inventory available at the slice and is defined according to the relation qc

s ≜ qc
s(dc

s). Let
dc

s ≜ (dc
sm)m∈Mc denote a bundle of resources available with SP s. dc

sm captures the amount of
resource type m acquired by SP s at cell c. We assume that for all c ∈ C and s ∈ S, the function
qc

s (dc
s) is concave non decreasing in dc

s. This assumption is classical in economics, reflecting the
principle of diminishing marginal returns.

Each SP collects revenue from the fees paid by his subscribers. The expected revenue of SP s

over the network is defined as

Rs =
(∑

c∈C
psnc

s

)
. (4.2)

Each SP needs to pay for the resources he leases from the InP. Let ωc
m be the price per unit of

resource of type m charged by the InP, at base station c. The total cost each SP s needs to pay to
the InP for resource activation is therefore

∑
c∈C

∑
m∈Mc ωc

mdc
s,m. We define the profit gained by SPs

2. The logarithm function also signifies that the SPs achieve the proportional fair allocation between the user in the
long run
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as a quasi linear utility function

Us = Rs −
∑
c∈C

∑
m∈Mc

ωc
mdc

s,m. (4.3)

Depending on the SPs’ budgets, we consider two possible cases in the following.

In Case I, we assume that each SP s has a finite budget Bs, which captures the market (pur-
chasing) power of the SP. Another relevant interpretation in the context of network slicing is that it
represents the SP’s priority or a fixed share of the available resource pool, such that

∑
s∈S Bs = 1.

In this case, each SP s must satisfy
∑

c∈C
∑

m∈Mc ωc
mdc

s,m = Bs.

In Case II, we assume that SP s has no bound over his budget. His strategy set is defined as
the set of vectors ds such that dc

s,m ≥ 0,∀m ∈ Mc, ∀c ∈ C. Additional linear local constraints can be
included in the form Ks(ds) ≤ 0.

4.3 Game Theoretic Model

We assume that each user is opportunistic, and takes decisions to maximize his utility. From
(4.1), we observe that the utility of each user depends on the total number of users of the SP.
On the one hand, as the number of users connected to the SP increases, the utility of the user
decreases. Therefore, the decision made by each user is also influenced by decisions taken by the
other users. On the other hand, SPs maximize their revenues by attracting the maximum number of
users. Naturally, each SP anticipates the users’ behaviour while computing their strategy. Therefore,
it is highly expected that users and SPs exhibit strategic behaviors. In our work, the SPs take selfish
decisions while anticipating the rational reactions of the users. We model the interactions between
the users and the SPs as a (two-stage) Stackelberg game, where the SPs act as leaders while users
react rationally as followers, computing their best responses to the signal sent by the SPs. In the first
stage, SPs compete in terms of QoS to attract the maximum number of users. In the second stage,
users optimally select their SPs to maximize their utility given prices and QoS offered by SPs.

In classical game theory, Nash equilibrium is the most popular solution concept to analyze non-
cooperative game solutions. This concept is based on the assumptions that each player has an
exact knowledge about all other players’ strategies at the equilibrium, and no player has an incen-
tive to deviate from his own strategy at equilibrium. In many cases, knowing the exact information
about all other players equilibrium strategies is a strong assumption, particularly when there are
many users, and information about the strategy profile of all opponents is rarely perfectly known. In
light of these limitations, we model the interactions between the users as a population game that
extends the formulation of a noncooperative game by incorporating the notion of population.
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4.3. Game Theoretic Model

4.3.1 Population game E among Users

The population game provides an alternative to the classical equilibrium approach by involving a
dynamic model. Unlike a single-play game or repeated games where all agents take their decisions
simultaneously and repetitions occur at regular time periods, in a population game, each agent
revises his decision sporadically, and the decision made by the revising agent only depends on the
current system state and available payoff opportunities. Now for each cell c, we define the population
game Ec

• Population: set of users N c := {1 . . . N c} in cell c.

• Strategy: it is the choice of SP s ∈ S that each user in cell c opts to join.

• Utility: the utility achieved by each user of slice s ∈ S is equal to νc
s .

In a population game, each agent revises his decision occasionally after some random duration
of time. Whenever an agent reconsiders his decision, it depends on the system state and payoff
opportunity available at that time. A general model of decision of the game is based on the concept of
revision protocol. It is a mapping that translates the current population state (i.e., distribution of user)
and available payoff (i.e., utilities (4.1) ) into a switching rate which determines when users might
update their choice of provider. Let τ c

s,s′ (nc, U c) be the revision protocol which defines the switching
rate at which users switch their choice from SP s to SP s′ given population state nc = [nc

1 . . . nc
S ] and

utility vector νc = [νc
1 . . . νc

S ]. Let Nc = {nc|
∑

s∈S nc
s = N c} defines the set of all possible population

states. Population game E with revision protocol τ generates a continuous time evolutionary process
on set Nc defined as

ṅc
s =

∑
s′

nc
s′τ c

s′,s − nc
s

∑
s′

τ c
s,s′ . (4.4)

The first-term in the right-hand side of equation (4.4) measures the rate at which users connect
to SP s. The second term measures the rate at which the portion of the population connected to SP
s disconnects. A different choice of revision protocol results in different dynamics. In this work, we
assume that the users follow the pairwise proportional imitation behavior, e.g., after every random
interval of time, each user interacts with his opponents (i.e., other users), and only if users meet an
opponent with a higher utility than his own, he imitates the opponent with a probability proportional
to the utility difference. The switching rate at which users in cell c switch from SP s to SP s′ takes
the form

τ c
s,s′ = nc

s′

N c
[νc

s′ − νc
s ]+ . (4.5)

After replacing τ c
s,s′ in (4.4) with (4.5) and after some analytical calculations detailed in Appendix C.4
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Figure 4.2 – Service providers and end users interactions as a stackelberg game

we get the replicator dynamics

ṅc
s = nc

s

[
νc

s −
1

N c

∑
s′

nc
s′νc

s′

]
. (4.6)

An Evolutionarily Stable Strategy (ESS) characterizes the equilibrium solution concept for popu-
lation games. Once the evolutionary process reaches an ESS, the population state will not change.
It is defined as the fixed point of the dynamical system defined through equation (4.4).

Proposition 3. For all c ∈ C and for any bundle of resources available with SP s, the replicator
equation (4.6) admits a unique globally asymptotically stable equilibrium, n̂s. Moreover, the number
of users n̂c

s in cell c associated with SP s at the equilibrium point can be defined as

n̂c
s = N cqc

se−ps∑
s′∈S

qc
s′e−ps′

. (4.7)

Proof. The replicator equation (4.6) is nothing but a set of ordinary differential equations (ODE).
The equilibrium is the stationary point of ODE. Hence, to show that the replicator dynamics admits
a unique equilibrium point, it is sufficient to show that the right-hand side of (4.6) is continuously
differentiable and that it admits a unique stationary point [91]. Replacing νc

s , νc
s′ from (4.1) in (4.6),

we derive analytically the equilibrium point expression (4.7). A detailed proof is provided in Appendix
C.1. For the replicator dynamics considering a function L(n) :=

∑
s

∑
c n̂c

s log
(

n̂c
s

nc
s

)
as the Lyapunov

function, we can show the equilibrium point is globally asymptotically stable, see [46] for more
details.
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4.3.2 Stackelberg game between Service providers and Users

In our game-theoretic formulation of the communication serivce market, the SPs are the leaders,
and the users are the followers. We have proved in previous section that the equilibrium of the
population game Ec between the users admits a unique solution, and the distribution of users at the
equilibrium point is derived relying on the closed form expression (4.7). In this section, we model the
interactions between the SPs as a noncooperative game.

We note that the analytical expression of the number of users n̂c
s in cell c of SP s at equilibrium

is very similar to a contest success function from the well known TC framework [102]. The TC
framework is commonly used in the economics literature to model strategic interactions between
two or more competing agents. The basic contest framework consists of competing agents who
expend costly resources to win a prize (a contest). Given the efforts exerted by all the agents, the
probability of an agent i winning a prize is defined by the contest success function (CSF). Typically,
the CSF function is defined as ρi(x) = (xi)r∑

i′ (xi′ )r where xi is the effort made by a agent i and r is a
parameter. For example, r = 1 is the well know lottery and r →∞ defines the all-pay auction.

In the communication market context, the SPs compete to attract users to their services by
exerting effort on costly resources. The resources acquired by SPs further reflect their service quality
(a higher QoS is seen as a desirable attribute in the process of SP selection). Thus, in our case, the
CSF can be considered as the probability that any SP successfully attracts an end-user. We call it
the slice association probability function As. It is the probability that given resources expended by all
SPs, a user will associate with SP s. For our model, we rely on a more general and multi-resource
CSF function or slice association probability function

Ac
s(dc, p) = f c

s (dc
s, ps)∑

s′∈S
f c

s′
(
dc

s′ , ps′
) . (4.8)

Remark 4.1. Bernstein and Federgruen proposed a very well known general equilibrium model,
named as attraction model, for industries with price and service competition in [13]. It is very similar
to our slice association probability function.

In (4.8), the number of potential users in each cell as well as the slice association probability for
each slice, might vary from cell to cell. The expected number of users choosing SP s is defined as

∑
c∈C

N cAc
s(dc, p) =

∑
c∈C

N cf c
s (dc

s, ps)∑
s′ f c

s′
(
dc

s′ , ps′
) . (4.9)

Incorporating (4.7) and (4.2) in (3), we get

Us(ds, d−s) =
∑
c∈C

ps
N cf c

s (dc
s, ps)e−ps∑

s′∈S
f c

s′(dc
s′ , ps′)e−ps′

−
∑

m∈Mc

ωc
mdc

s,m. (4.10)
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In this work, we set
f c

s (dc
s, ps) = qc

s(dc
s)e−ps . (4.11)

We assume that SPs are selfish, and that each SP aims at maximizing his profit. They take
into account the decisions of the other SPs when computing their own decision. To theoretically
analyze the outcome of these strategic interactions, we define the noncooperative game G ≜〈
S, (Fs)s∈S , (Us)s∈S

〉
as follows:

• Player set: the set of service providers S.

• Strategy: the vector of resource demand ds =
(
d1

s, . . . , dC
s

)
where dc

s is the amount of resource
to be requested by each base station c. The strategy set for each SP s is Fs.

• Utility: the utility of each SP s is defined as Us.

We study the competition between SPs in terms of QoS, i.e., how SPs strategically spend their
budget on the resources to attract the maximum number of users and, in turn, maximize their profits.
The SPs’ profit depends on both their individual decision and the decision taken by the other SPs.
Let ds be the vector of strategy of SP s, d−s ≜ col

(
(ds′)s′ ̸=s

)
is the stack vector which contains the

vector of strategies of all the SPs in S except s. The decision problem of each SP s is defined as

Qs maximize
ds∈Fs

Us(ds, d−s).

To study the outcome of the noncooperative game G, we recall the solution concept of Nash
equilibrium (NE)

Definition 4.2. [82] A strategy profile d∗ = (d1
∗, . . . , dS

∗) is a Nash equilibrium of the game G if

∀s ∈ S, Us(ds
∗, d−s

∗) ≥ Us(ds, d−s
∗),∀ds ∈ Fs. (4.12)

Here, (ds, d−s
∗) denotes the strategy profile with sth element equals ds and all other elements equal

ds′ ∗ (for any s′ ̸= s).

In the next section, we analyze the existence and uniqueness of the Nash equilibrium (NE)
solution of the noncooperative game G.

4.3.3 Existence and Uniqueness of the Nash Equilibrium

In this section, we establish the existence and uniqueness of the NE of game G. To prove the
uniqueness of the NE, we rely on the concept of diagonally strict concavity (DSC) introduced by
Rosen [88]. Intuitively, DSC is a generalization of the idea of convexity to a noncooperative game
setting.
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Definition 4.3 (Diagonal strict concavity [88]). A game with profiles of strategies d and profiles of
utility functions U is called diagonally strict concave (DSC) for a given vector r if for every distinct
d̄ and d̂, [

g(d̄, r)− g(d̂, r)
]

(d̄− d̂)′ < 0, (4.13)

with g the concatenation of the weighted gradients of the players’ utility functions

g(d, r) =
[
r1∇1U1(d), r2∇2U2(d), . . . , rS∇SUS(d)

]
, (4.14)

where ∇sUs(d) denotes the gradient of utility of player s with respect to his own strategy ds

Theorem 4.4. The game G admits a unique NE.

Proof. The utility of each SP in-game G is continuous, increasing, and concave, while the strategy
space for each SP is convex and compact. Therefore, the existence of an equilibrium for the game
follows from [88], Thm.1. To prove the NE uniqueness, we note that if the players’ utilities in the
game G satisfy the DSC property, then G admits a unique NE (see [88], Thm.2).

Let G(d, r) be the Jacobian of g(d, r) with respect to d, where d is any profile of strategies. In
order to prove the strict DSC of g(d, r), from [88], Thm.6, we note that it is sufficient to prove
that the symmetrized version of the pseudo-Jacobian, i.e., Ĝ(d, r) ≜ G(d, r) + G(d, r)′, is negative
definite over the domain of interest. To show that Ĝ(d, r) is negative definite, we must prove that
the following three conditions hold simultaneously:

C 1. each Us(d) is a regular strictly concave function of ds (i.e., its Hessian is negative definite).

C 2. each Us(d) is convex in d−s.

C 3. there is some r > 0 such that function σ(d, r) =
∑

s rsUs(d) is concave in d.

The negative definiteness of [G(d, r) + G′(d, r)] follows from [39], Lem.1. We first consider the
case of a single base station c and show that Ĝc(d, r) is negative definite for this case. We compute
the Hessian (HsU c

s ) of utility of any SP s with respect to SP s owns strategy

HsU c
s = −2

ps
∑

s′∈S,s′ ̸=s
f c

s′( ∑
s′∈S

f c
s′

)3

(∇sf c
s )T∇f c

s −Hs(f c
s )
∑
s′∈S

f c
s′

 . (4.15)

On the right hand side of (4.15), matrix (∇sf c
s )T∇f c

s is positive semi-definite, where ∇sf c
s is the

gradient row vector of f c
s with respect to SP s’s own strategy dc

s, Hs(f c
s ) is the Hessian of f c

s with
respect to dc

s and it is negative definite as f c
s is concave. Thus, the Hessian of utility HsU c

s is negative
definite and satisfies the first condition C1.
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We still need to show that the utility of each SP s is convex in the strategy of all other SPs. For
that purpose, consider the Hessian of utility of SP s with respect to strategy of all other SPs

H−sUs = 2 f c
s( ∑

s′∈S
f c

s′

)3 [M c
s − diag−s {H(f c

u)}] , (4.16)

where is M c
s block matrix and uvth block is defined as

M c
suv = (∇uf c

u)T∇vf c
v where u, v ̸= s, u, v, s ∈ S. (4.17)

∇uf c
u is the gradient row vector of f c

u with respect to SP s’s own strategy and diag−s {H(f c
u)} is the

block diagonal matrix with block u where H(f c
u) is the Hessian of f c

u with respect strategy vector
of u itself ∀u, u ̸= s, u ∈ S. In right hand side of equation (4.16) matrix M c

s is positive definite and
the block diagonal matrix diag−s {H(f c

u)} is negative definite as the each diagonal matrix element.
H(f c

u) is negative definite, thus H−sUs is positive definite, which satisfies the condition C2.
Finally, by choosing rs = 1

ps
∀s ∈ S we check that σ(d, r) ≜∑

s rsUs(d) is concave in d, therefore
satisfying the condition C3.

We now want to extend the previous proof to the multi-base station case. We have already shown
that Ĝc is negative definite for any single base station c. For C base stations consider a Ĝ symmetrized
version of the pseudo Jacobian, after arranging colunms and rows we get (see [80], Cor.2)

(Ĝ) = diag
{

Ĝ1, . . . , Ĝc, . . . ĜC
}

.

The above Ĝ matrix is negative definite as each diagonal matrix is negative definite, which proves
the DSC property holds for the multi-cell setting. By applying [88], Thm.2, we prove that the NE d∗

solution of the game G is unique.

4.4 Resource pricing and equilibrium

We have shown in the previous section that there exists a unique NE solution of the noncoop-
erative game G. We assume that the capacity of the resource released by the InP in each cell is
finite. Given the per-unit prices for resources decided by the InP, the total resource requested by
the SPs at the NE of G may violate the infrastructure capacity. Thus, the InP’s primary concern is
how to efficiently allocate the finite capacity constrained resources to competing SPs. The desired
allocation must satisfy all the SPs’ constraints and simultaneously maintain high resource utiliza-
tion. In this regard, we assume that the InP optimizes the unit price of each resource such that at
the NE of the game G each SP utilizes his entire budget and no resource remains leftover, i.e, the
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total demand of resources matches the available infrastructure capacity. In market economics, this
pricing problem is formulated as a market clearing problem, e.g, a Fisher market, where the market
prices are settled in such a way that the amount of resources requested by the buyers is equal to
the amount of resources supplied by the sellers. We propose two approaches, introduced in Section
II B, to deal with this challenge depending on whether the SPs’ budget is binding.

One way to compute the market equilibrium is through Walras’ “tâtonnement” process, i.e., if
the demand exceeds the resource capacity, the market operator increases the resource’s price.
Conversely, the market operator decreases the resource’s price when the demand is smaller than
the resource capacity. The process is repeated until demand equals supply (resource capacity).
The disadvantage of this approach is that its outcome (known as a general equilibrium) relies on
the strong assumption of perfect competition, which in practice does not hold. To overcome this
limitation, we use the approach introduced by Shapley and Shubik in their pioneering work [96],
also known as trading post share constrained proportional allocation (SCPA) scheme[19]. Now we
formally define the trading post mechanism.

4.4.1 Trading post mechanism

In the trading-post mechanism, each player (i.e, SP) places a bid on each type of resource. Once
all SPs have placed their bids, each resource type’s price is determined by the total bids placed for
that resource. Precisely, let SP s submits a bid bc

sm to resource m at cell c. The price per unit of

resource m at cell c is then set to
∑

s∈S bc
sm

Dc
m

. Accordingly, SP s receives a fraction of dc
sm in return to

his spending of bc
sm

dc
sm =


bc

smDc
m∑

u∈S bc
um

if bc
sm > 0,

0 otherwise.
(4.18)

After replacing dc
sm in (3) and (Qs) in terms of bids, the decision problem of each SP s can be written

as follows
Q̂s maximize

bs

Us (bs, b−s) ,

subject to
∑
c∈C

∑
m∈Mc

bc
s,m ≤ Bs, bc

s,m ≥ 0.

We may consider two possible behaviors for the SPs. First, they are price takers, i.e., they accept
the prices decided by the price setter (market operator), and they only act strategically in terms of
QoS by optimizing their demand in the bundle resources. Second, SPs are price makers, i.e., they
anticipate the effect of their demand on the price of the bundle of resources.

The trading post mechanism induces a new noncooperative game Ĝ defined as follows:

• Player set: the set of SPs S.
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• Strategy: the vector of bids bs =
[
b1

s, . . . , bC
s

]
where bc

s is the bid to be submitted to cell c. SP s

strategy set is Fs ≜
{

bs|bc
sm ≥ 0,∀m ∈Mc, c ∈ C,

∑
c∈C

∑
m∈Mc

bc
s,m = Bs

}
.

• Utility: The utility of each SP s is Us.

To study the outcome of the mechanism, we consider the standard notion of NE, applied to the
trading post mechanism

Definition 4.5. A multi-bid strategy b∗ = (b∗
1, . . . , b∗

S) is called a NE of the game Ĝ if

∀s ∈ S, Us(b∗
s, b∗

−s) ≥ Us(bs, b∗
−s), bs ∈ Fs. (4.19)

Here, (bs, b∗
−s) denotes the strategy vector with sth element equals bs and all other elements equal b∗

v

(for any v ̸= s).

For the proposed mechanism, a NE solution of game Ĝ constitutes a stable bidding policy where
each SP maximizes his utility and the InP implements the resource allocation mechanism (4.18).

We investigate conditions for the existence and uniqueness of the NE solution of the game Ĝ.
This requires complex calculations. Thus, to keep the analysis tractable, we restrict the problem to
a single resource (radio resource). We assume that the QoS provided by SP s in cell c is given by
qc

s ≜ (dc
s)ρc

s where ρc
s is the sensitivity parameter and 0 < ρc

s ≤ 1. Such a type of function has been
used in [41] to model the effect of users sensity towards their service provider selection. We replace
qc

s = (dc
s)ρc

s in (4.11) and from (4.8) we get

Ac
s(dc, p) = (dc

s)ρc
s e−ps∑

s′∈S

(
dc

s′
)ρc

s′ e−ps′
. (4.20)

Proposition 4. If for a single resource, the QoS provided by SP s in cell c is defined by qc
s = (dc

s)ρc
s

and 0 < ρc
s ≤ 1, then the game Ĝ admits unique NE.

Proof. If the QoS provided by SP s in cell c is defined by qc
s = (dc

s)ρc
s and 0 < ρc

s ≤ 1, then the
SPs’ utility functions satisfy the three conditions C1,C2 and C3. The detailed proof is provided in
Appendix C.2 The rest of the proof is the same as the proof of Theorem 1.

Moving ahead, we compare the profit gained by SPs at the NE of the game with the baseline
static proportional allocation scheme (SS), i.e., the allocation where each resource is allocated to a
SP s in proportion to his budget, e.g., Bs∑

s′∈S Bs′

Proposition 5. For two service providers, the revenue gained under a dynamic resource sharing
scheme is at least equal to the revenue gained under a proportional allocation scheme

Proof. The proof is provided in Appendix C.3.
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We have seen in the first part of this section, that when SPs are constrained by budgets, the
resource pricing can be implemented by a trading post mechanism. However, this mechanism re-
quires a third-party player (market operator) to centralize the bids made by all the SPs, and thus can
only lead to semi-decentralized implementations. Furthermore, the network capacity constraints are
only implicitly taken into account through the budget constraint.

In the next section, we design a pricing and resource allocation scheme for Case II introduced in
Section II B, that explicitly takes into account network capacity constraints and can be implemented
in a fully distributed way. Case II gives rise to a generalized Nash equilibrium problem (GNEP) in-
volving global coupling constraints, which take into account the network finite capacities. To solve
the GNEP, we rely on a variational reformulation of the noncoperative game, which leads to a unique
variational equilibrium (VE). Using that property, we implement two algorithms to compute the VE:
the first one requires an extended game reformulation of the GNEP and is based on asymmetric pro-
jected gradient descent methods; the second one relies on an extension of the alternating direction
method of multipliers (ADMM).

4.4.2 Pricing Game

We consider a noncooperative game where, similar to game G, each SP aims at maximizing
his profit by requesting resources under a set of local constraints that are not binded by a finite
budget. However, we now assume that the SPs take into account the infrastructure capacity while
requesting resources, therefore giving rise to a global coupling constraint for each cell and each
resource available within that cell

∑
s∈S

dc
sm ≤ Dc

m, ∀c ∈ C, m ∈M, (4.21)

Let F̃s ≜ {ds|dc
sm ≥ 0,∀m ∈ Mc, c ∈ C, Ks(ds) ≤ 0}. The decision problem faced by each SP in this

new noncooperative game can be formulated as a parametrized optimization problem with local and
global coupling constraints

Qs maximize
ds∈F̃s

Rs(ds, d−s),

subject to
∑
s∈S

dc
sm ≤ Dc

m,∀c ∈ C, m ∈M, (λc
sm) (4.22)

where λc
sm at the right of (4.22) and between brackets, is the Lagrange multiplier (shadow price) of

the coupling constraint (4.22).
We define a new noncooperative game Gp ≜

〈
S,
(
F̃s

)
s∈S

, (Rs)s∈S

〉
, where the set of players

and utility is the same as in game G. However, the strategy set of the players are coupled through the
capacity constraint (4.22), giving rise to a GNEP. Consider the generalized Nash equilibrium (GNE)
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as the solution to this game.

Definition 4.6. [55] A strategy profile d∗ = (d1
∗, . . . , dS

∗) is called a GNE of the game Gp if

∀s ∈ S, Rs(ds
∗, d−s

∗) ≥ Rs(ds, d−s
∗), (4.23)

ds ∈ F̃s, dc
sm ≥ 0, ∀m, c and ∑s∈S dc

sm ≤ Dc
m,∀c ∈ C, m ∈M

Due to coupling, solving directly Gp requires coordination among possibly all SPs, which might
be hard to enforce in practice. To solve Gp, we will make use of the duality approach as a natural
way to obtain a hierarchical decomposition of the GNEP. To that purpose, we start by characterizing
the GNE solutions of game Gp in terms of KKTs [55]: any strategy profile d is a GNE of the game Gp

if and only if it satisfies the KKT conditions, which are: ∀s ∈ S, ∀c ∈ C, ∀m ∈Mc,

∂Rs

∂dc
sm

(d) = λc
sm,

λc
sm

(∑
s∈S

d
c
sm −Dc

m

)
= 0,

with λc
sm ≥ 0, ds ∈ F̃s.

(4.24)

In the above KKT conditions, we are primarily interested in λc
sm, the Lagrange multipliers of (22),

as these Lagrange multipliers can be interpreted as shadow prices for the resource allocation and
can be used in the game Gp as the evaluations by the SPs of the prices charged by the InP per
resource unit. However, notice that if implemented without coordination, the Lagrange multipliers
for each SP are different, resulting in possibly discriminatory pricing. Moreover, there can be multi-
ple possible GNEs. In fact, there are infinite GNEs solutions to Gp in this case. Nevertheless, in the
following discussion, we show that there exists an equilibrium solution to Gp with a special character-
istic: it is unique and gives rise to the same valuation among the players. Rosen [88] has introduced
concept of such equilibrium in his seminal work and called it as normalized Nash equilibrium

Definition 4.7. A r-normalized equilibrium point is such that there exists a λc
m > 0 associated to

each resource at each cell so that for all customers λc
sm = λc

m/rs, for a suitable vector of nonnegative
coefficients vector r.

It is very common in the literature, to relate normalized Nash equilibrium to the concept of vari-
ational equilibrium (VE) [55]. A variational equilibrium is a refinement of r normalized nash equilib-
rium when the Lagrange multipliers related to coupled constraints are the same for all players. i.e.,
r = 1 for all players. We will use both concepts without distinction in the following. The parameters
{r1 . . . rS} intuitively show the proportion of a burden on SP s for satisfying the coupling constraints
among all other service providers in the set. Notice, λc

m is the same for all the SP and thus can
be treated as the base price. Next, we prove that such r-normalized Nash equilibrium (variational
equilibrium), is unique for game Gp.
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Corollary 4.8. The Pricing Game Gp admits unique normalized equilibrium for rs = 1/ps.

Proof. In the proof of Theorem 4.4, we have shown that the Game G has the DSC property ∀c ∈ C
and ∀c ∈ M and any ωc

m ≥ 0. The utilities of players in the Game Gp (i.e. revenues) are the same
as in G with ωc

m = 0. Hence, the Pricing Game Gp also satisfies the DSC property . The proof is a
consequence of [88], Thm.4.

Theorem 4.9. Every r-normalized Nash equilibrium of the Pricing Game Gp with shadow prices
λc

sm = λc
m

rs
for all s ∈ S, m ∈ Mc, c ∈ C is a NE for the corresponding Game G with ωc

m = λc
m, ∀m ∈

Mc,∀c ∈ C.

Proof. We reformulate Gp using an augmented system-like utility function, that we call the Nash
game (NG)-game utility function [85]. The NG utility function is defined as a two argument function

R̃(d; x) ≜
S∑

s=1
rsRs(d−s, xs) , ∀x ∈ F̃ ≜

∏
s

F̃s, (4.25)

where x ≜ (xs)s and d−s defined as before. We note that Definition 5 can be equivalently formulated
with respect to the NG utility function. A vector d∗ ∈ F̃ is called a NE solution of this game if its
NG utility function R̃ satisfies

R̃(d∗; d∗) ≥ R̃(d∗; x) ∀x ∈ F̃ (4.26)

Above condition can equivalently be written as follows for given d∗
−s

S∑
s=1

rsRs(d∗
−s; d∗

s) ≥
S∑

s=1
rsRs(d∗

−s; xs), ∀x ∈ F̃ . (4.27)

Note that the NG utility function R̃ is separable in the second argument x for any given first
argument d∗. The existence of NE is guaranteed by Theorem 2 [85]. Now to extend the NG utility
function formulation to coupled constrained game, i.e., pricing game, we use the fact that the pricing
game is related to a constrained maximization of NG utility function with respect to the second
argument keeping the first argument as a fixed point solution. Consider that the SPs maximize their
revenue subject to coupled constraints gi(d) ≤ 0, i ∈ I ≜ C ×M where gi(d) ≜ Dc

m−
∑

s′ dc
s′m. Then

R̃(d∗; d∗) ≥ R̃(d∗; x) x ∈ F , g̃(d∗
−s, xs) ≤ 0, (4.28)

where g̃(d∗; x) =
∑S

s=1 g(d∗
−s, xs). We introduce the augmented Lagrangian function of the con-

strained NG utility maximization problem, with λ a Lagrange multiplier vector

L̃(d; x; λ) ≜ R̃(d; x) + λT g̃(d; x). (4.29)
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In our case ∀s ∈ S, Rs is increasing concave and continuously differential, and g is affine. Thus, all
the constraints are active at the equilibrium. If d∗ is an equilibrium solution of the pricing game Gp,
then by [85], Lem.2, there exists a unique λ∗ > 0 such that ∇dL̃(d, x, λ∗) = 0 and d∗ maximizes the
Lagrangian L̃, over x ∈ F̃ as a fixed point.

Relying on the duality framework, we prove that we can decompose the coupled constrained game
Gp into the equivalent game with no coupled constraints, and indeed the equivalent game coincides
with the noncooperative game G with ωc

m = λc
m. To that purpose, we consider the dual cost function

D(λ) defined as
D(λ) ≜ L̃(d∗; d∗; λ). (4.30)

Equivalently, relying on the notion of fixed point, the dual cost can be written as

D(λ) ≜
[
max
x∈Ω

L̃(d; x; λ)
] ∣∣∣∣

x=d

. (4.31)

The dual NG can then be defined as the minimization of the dual cost function

D∗ = min
λ≥0

D(λ). (4.32)

The Lagrangian function L̃ is separable over each SP, thus, the dual function can be separately
written for each player as

D(λ) ≜
∑
s∈S

[
max
xs∈Ωs

Ls(d−s; xs; λ)
] ∣∣∣∣

xs=ds

(4.33)

=
∑
s∈S

Ls
(
u∗

−s(λ), u∗
s(λ), λ

)
, (4.34)

where
Ls(d−s; xs; λ) = rsRs(d−s; xs) + λT g(d−s; xs). (4.35)

From [85], Thm.3, we prove that D(λ) can be obtained by solving the relaxed game with utility
function Ls and no coupled constrains. Indeed, that relaxed game is the game G with ω = λ, which
concludes the proof.

This approach enables us to reformulate the GNEP Gp, as a lower-level noncooperative Nash
game with utility function Ls (Us) and a higher-level optimization problem for coordination.

4.4.3 Extended Pricing Game

Paccagnan et al. addressed decentralized computation of variational equilibrium (VE) for ag-
gregative games with quadratic utility functions [83, 84]. They relaxed the coupling constraints of the
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generalized Nash equilibrium problem by including a penalty term in the original utility functions. A
VE is then computed applying asymmetric gradient algorithms with constant step size. The purpose
of the penalty term is to assign large penalties to deviations from the constraints. The penalty refor-
mulation helps avoid the high computational complexity of conventional optimization reformulations
or the requirement of projection steps. Traditionally, drawbacks is that penalty method convergence
might be quite sensitive on selecting penalty parameters. To overcome this issue, we follow the for-
mulation proposed in the [95]. We consider a game with S + 1 players, where the first S players are
the SPs and the (S + 1)th player is the InP, who controls the λ price vector. We define the decision
problem of theInP, QS+1 as below

QS+1 maximize
λ≥0

∑
c

∑
m

λc
m

(∑
s

dc
sm −Dc

m

)
. (4.36)

The idea behind using
∑

c

∑
m λc

m (
∑

s dc
sm −Dc

m) as the utility for InP in the above decision problem,
is that it solves complementary condition from KKT (4.24). For the remaining S players the decision
problem is

Qs maximize
ds≥0

Rs(ds, d−s)− 1
rs

∑
c

∑
m

λc
mdc

sm ∀s ∈ S.

We call Q+ ≜ {Q1, . . . , QS+1} the extended pricing game. The difference between the extended
pricing game and the pricing game Gp is that in the former, there are no coupled constraints –
complementary conditions are treated as the utility of an additional player (InP).

Proposition 6. If d is a r-normalized equilibrium of the pricing game, then there exists λ ≥ 0 such
that (d, λ) is an equilibrium of the extended pricing game.

Proof. We have already proved that the pricing game Gp is monotone on F̃ , which implies that the
extended pricing game is also monotone on F̃ × R, the proof follows from [95], Prop.4.

4.5 Algorithms to Compute Market Equilibria

In this section, we introduce two semi-decentralized algorithms to compute the equilibria solu-
tions of the trading post mechanism and extended pricing game, respectively. Computational and
privacy issues might limit the implementation of such algorithms on medium to large-scale prob-
lems. To mitigate these issues, we propose a fully distributed proximal algorithm, inspired from the
inexact-ADMM, to compute the VE of the pricing game Gp.

4.5.1 Semi-Decentralized Learning Algorithms

We have proved in Section 4.3.3 that G admits a unique equilibrium for any price vector decided
by the InP. A similar result also holds for 4.4.1 when dealing with a single resource. However, we still
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need to check whether tenants can reach this equilibrium in a decentralized fashion. In this regard,
we propose the use of the dual averaging or mirror–descent method suggested for continuous action
convex games [71]. We proceed by describing the dual averaging method. In the dual averaging
method, each player, i.e., SP s estimates his marginal utility or utility gradient with respect to his
own strategy. To increase their utilities, the players need to take action along the direction of their
utility gradient while maintaining their action in the feasible action space. In order to achieve this,
each player s at each time step n accumulates his discounted utility gradient in some auxiliary
variable ys

ys(n + 1) = [ys(n) + αn ▽bsUs(bs(n), b−s(n))] . (A1)

In the above equation αn denotes the discount factor or step size. Once the discounted gradient has
been accumulated, every SP s uses his own updated value of the auxiliary variable, ys, to take the
next feasible action

bs(n + 1) = Qs(ys). (4.37)

In turn, each SP s maps the recent value of auxiliary variable ys to his decision space Fs using the
mapping Qs(ys), e.g., Qs can be interpreted as a projection map. The map Qs(ys) is defined more
generically as

Qs(ys) = argmax
bs∈Fs

{⟨ys(n), bs⟩ − hs(bs)} , (A2)

where hs(b) is a regularization function, also called penalty function, over the feasible action set Fs.
The penalty hs(b) aims to force the algorithm to converge within the interior of the feasible domain
set. Different definitions of the regularization functions induce different maps. For instance, the use
of l2 norm hs(·) = ∥·∥ as a regularizer, results in the well-known Euclidean projection map.

For the game G where service providers actions are bounded by the their budgets, we use the
Gibbs entropy function as a regularization function

hs(bs) ≜
∑
c∈C

∑
m∈M

bc
sm log(bc

sm). (4.38)

We replace hs(bs) in equation (A2) by the entropic regularization function and after some calculation
we get the exponential mapping

bc
sm = Bi exp(yc

sm)∑
c∈C

∑
k∈M exp(yc

sk) . (4.39)

The induced map Qs(ys) is similar to the well-know Logit map, where each player distributes his
budget (weights) to different resources depending on exponential of accumulated discounted gradi-
ents.

Theorem 4.10. If Algorithm 1 satisfies the required conditions for step size sequence, e.g., ∑∞
n=0 αn =
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Algorithm 2 Online Learning Algorithm for Ĝ
Require:

∑+∞
n=0 αn = +∞, αn → 0 as n→ +∞

1: repeat n = 1, 2, . . . ,
2: for each SP s ∈ S
3: Observe gradient of utility and update
4: ys = [ys + αn ▽bsUs(bs, b−s)]
5: end for
6: for each SP s ∈ S
7: for each cell x ∈ C and resource m ∈Mc

8: Play bc
sm ←

Bs exp(yc
sm)∑

c∈C

∑
k∈M exp(yc

sk
) .

9: end for
10: end for
11: until ∥(b(n)− b(n− 1)∥ ≤ ϵ

+∞, αn → 0 as n→ +∞, then it converges to the unique NE of the Game G.

Proof. The proposed exponential algorithm is the special case of the dual averaging algorithm. If the
NE of the any continuous action convex game is strictly r-variationally stable, then the converges of
the dual averaging algorithm to a unique NE of the game is guaranteed by [71], Thm. 4.6. Hence to
prove the convergence of the proposed algorithm, it is sufficient to show that the unique NE of game
G is strictly r-variationally stable. The unique NE b̂ to the any convex game is strictly r-variationally
stable if ∀bs ∈ Fs ∑

s∈S
rs∇sUs(b)(bs − b̂s) < 0. (4.40)

As we have already shown in section 4.3.3, the SPs’ utility functions in game G satisfy the DSC for
rs = 1

ps
, ∀s ∈ S ∑

s∈S
rs

[
∇sUs(b)−∇sUs(b̂)

]
(bs − b̂s) < 0. (4.41)

We know that for any continuous action convex game, a feasible point b̂ is a NE of the game if and
only if ∑

s∈S
rs∇sUs(b̂)(bs − b̂s) ≤ 0. (4.42)

Inequalities (4.42) and (4.41) imply (4.40), which proves that the unique NE of game G is strictly
r-variationally stable and then by [71], Thm. 4.6, Algorithm 2 converges to the unique NE of game
G.

For Case II when the SPs have no bound on their budgets, we have proved in the Section VI B
that the resource pricing scheme can be set up by solving the GNEP Gp. Furthermore, we have also
shown that the VE solution to Gp can be computed as the solution of an extended pricing game Q+.
Now, we provide an online semi-decentralized learning algorithm that enables the SPs and the InP
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Algorithm 3 Online Learning Algorithm for Q+

Require:
∑+∞

n=0 αn = +∞, αn → 0 as n→ +∞
1: repeat n = 1, 2, . . . ,
2: for each SP s ∈ S
3: Observe gradient of utility and update
4: ys ← [ys + αn ▽dsUs(ds, d−s, ωs)]
5: end for
6: for each SP s ∈ S
7: ds ← projDs

[ys]
8: end for
9: InP update the resource prices

10: for each Cell c ∈ C
11: for each Resource m ∈M update the base price
12: λc

m ← max [0, λc
m + αn (

∑
s∈S xc

sm − Cc
m)]

13: end for
14: end for
15: until ∥(x(n), ω(n))− (x(n− 1), ω(n− 1))∥ ≤ ϵ

to reach the VE of Gp. In the proposed semi-decentralized algorithm, we leverage on the framework
from [101]: the first S players, i.e., the SPs, follow similar steps as in Algorithm 1. However, an
(S + 1)th player, i.e., the InP, accumulates the augmented discounted gradients of his utility in the
auxiliary variable yS+1

yS+1 = λc
m + αn

[(∑
s∈S

xc
sm − Cc

m

)
− θnλn

]
. (4.43)

Here rationale behind adding an extra term is that the original game is strictly monotone, and thus
convergence is guaranteed in that case. However, the extended pricing game is just monotone
and therefore, to make the algorithm converge to an equilibrium point, an additional term must
be included [101]. InP updates the market price by projecting the stored auxiliary variable on the
positive orthant

λc
m ← projR≥0

(
λc

m + αn

[(∑
s∈S

xc
sm − Cc

m

)
− θnλn

])
. (4.44)

Theorem 4.11. [101] If Algorithm 2 satisfies the required conditions for step size sequence, e.g.,∑+∞
n=0 αn = +∞, αn → 0 as n → +∞ and for an augmented sequence θn,

∑N

n=1 αnθn∑N

n=1 αn
→ 0, N → 0,

then it converges to the unique equilibrium of the extended pricing game.

4.5.2 A Distributed Proximal Algorithm

We assume a fully connected communication graph between the SPs, e.g., Γs ≜ S \{s},∀s ∈ S.
We want to compute the r-normalized Nash equilibrium solution of Gp relying on a fully distributed
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algorithm. To that purpose, we set xs
s ≜ ds as SP s’s own action, xs

−s as SP s’s estimate of the
other SPs’ actions, and xs ≜ col(xs

s, xs
−s) as the concatenation of SP s’s own action and estimate

of the others’ actions. Let F̃s ≜ {xs
s|xs

s ≥ 0, ωT xs
s = Bs} be the strategy set of SP s. Following [90,

58], we decompose the pricing game GP per agent. Some slack variables (vss′)s,s′ and (wss′)s,s′ are
introduced to guarantee the coincidence of the local copies. Let MS−1 be the matrix made of S − 1
blocks, each one of them containing the Identity matrix of size

∑
c |Mc|×

∑
c |Mc|. Each SP s solves

the local optimization problem

min
λs≥0,(wss′ )s′

max
xs

s∈F̃s,(vss′ )s′

[
Rs(xs

s, xs
−s)− λT

s (xs
s + MS−1xs

−s

−D)
]
, (4.45a)

s.t. xs′
= vs′s′′

,∀s′ ∈ S,∀s′′ ∈ Γs′ , (αs′s′′
) (4.45b)

xs′′
= vs′s′′

,∀s′ ∈ S,∀s′′ ∈ Γs′ , (βs′s′′
) (4.45c)

λs′ = rs′ws′s′′ ,∀s′ ∈ S,∀s′′ ∈ Γs′ , (γs′s′′) (4.45d)

λs′′ = rs′′ws′s′′ ,∀s′ ∈ S,∀s′′ ∈ Γs′ . (δs′s′′) (4.45e)

where rs′ = 1
ps′

and rs′′ = 1
ps′′

, ∀s′ ∈ S, s′′ ∈ Γs′ . Note that we use the convention to have superscript
indices for primal variables, and lowerscript indices for duals of Gp. A solution of Gp is obtained by
assuming that each SP s solves the partial dual optimization problem (4.45) and by identifying
xs

s = ds and λs = 1
rs

λ.

Let ζ > 0 be a scalar coefficient. We follow the alternating direction method of multipliers
(ADMM). To that purpose, we explicit the Lagrangian function associated with (4.45)

Ls(xs, {v, α, β}, λs, {w, γ, δ})

:=Rs(xs)− λT
s (xs

s + MS−1xs
−s −D)

−
∑
s′

∑
s′′∈Γs′

[
(αs′s′′)T (xs′ − vs′s′′) + (βs′s′′)T (xs′′ − vs′s′′)

]
+
∑
s′

∑
s′′∈Γs′

[
γs′s′′(λs′ − rs′ws′s′′) + δs′s′′(λs′′ − rs′′ws′s′′)

]
,

and associated KKTs, which give rise to the following relationships: αss′ + βss′ = 0 and γss′ + δss′ =
0,∀s′ ∈ Γs.

To update the SPs’ strategies, we rely on the augmented Lagrangian associated with (4.45):
L̃s(xs, {v, α, β}, λs, {w, γ, δ}) ≜ Ls(xs, {v, α, β}, λs, {w, γ, δ})− ζ

2

(∑
s′
∑

s′′∈Γs′ (∥xs′−vs′s′′∥2 +∥xs′′−

vs′s′′∥2)
)

+ ζ
2

(∑
s′
∑

s′′∈Γs′ ((λs′ − rs′ws′s′′)2 + (λs′′ − rs′′ws′s′′)2
)
. Following vanilla ADMM, the duals
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in (4.45) are updated according to the rules

αs′s′′
(t) =αs′s′′

(t− 1) + ζ

2
(
xs′

(t− 1)− xs′′
(t− 1)

)
, (4.46a)

βs′s′′
(t) =βs′s′′

(t− 1) + ζ

2
(
xs′′

(t− 1)− xs′
(t− 1)

)
, (4.46b)

γs′s′′(t) =γs′s′′(t− 1) + ζ

2
(λs′(t− 1)

rs′
− λs′′(t− 1)

rs′′

)
, (4.46c)

δs′s′′(t) =δs′s′′(t− 1) + ζ

2
(λs′′(t− 1)

rs′′
− λs′(t− 1)

rs′

)
. (4.46d)

We update the slacks v, w by solving the following optimization problems

vss′
(t) = arg max

vss′
L̃s

(
xs(t− 1), {v, α(t), β(t)}, λs(t− 1), (4.47a)

{w(t− 1), γ(t), δ(t)}
)

,

wss′(t) = arg min
wss′

L̃s

(
xs(t− 1), {v(t), α(t), β(t)}, λs(t− 1),

{w, γ(t), δ(t)}
)

. (4.47b)

Assuming that αss′(0) = βss′(0) = 0 and γss′(0) = δss′(0) = 0 and relying on (4.46a)-(4.46d), the
slack update rules (4.47a)-(4.47b) give rise to the following closed form expressions

vs′s′′(t) =1
2
(
xs′(t− 1) + xs′′(t− 1)

)
, (4.48a)

ws′s′′(t) =1
2
(λs′(t− 1)

rs′
+ λs′′(t− 1)

rs′′

)
. (4.48b)

Set Φs ≜ ∑
s′∈Γs

(
αss′ + βs′s

)
and Ψs ≜ ∑

s′∈Γs

(
γss′ + δs′s

)
. From (4.46a)-(4.46b) and (4.46c)-

(4.46d), we get that Φ and Ψ are updated according to the rules

Φs(t) = Φs(t− 1) + ζ
∑

s′∈Γs

(
xs(t− 1)− xs′

(t− 1)
)
, (4.49a)

Ψs(t) = Ψs(t− 1) + ζ
∑

s′∈Γs

(λs(t− 1)
rs

− λs′(t− 1)
rs′

)
. (4.49b)

Let β̃s>0 be a penalty factor for the proximal first-order approximation for s ∈ S.

Following [58], from (4.48a)-(4.48b), the primal update rule for SP s is obtained by solving a local
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optimization problem

xs
s(t) = arg max

xs
s∈F̃s

{
∇xs

s
Rs(xs(t− 1))T (xs

s − xs
s(t− 1))

− 1
2ζ|Γs∥

[
2ζrs

∑
s′∈Γs

λs(t− 1) + λs′(t− 1)
rs + rs′

−Ψs(t)

+xs
s(t− 1) + MS−1xs

−s(t− 1)−D
]T

(xs
s − xs

s(t− 1))

− β̃s

2 ∥x
s
s − xs

s(t− 1)∥2 − Φs
s(t)T xs

s

−ζ
∑

s′∈Γs

∥xs
s −

xs
s(t− 1) + xs′

s (t− 1)
2 ∥2

}
. (4.50)

Dual update rule takes the form

λs(t) =proj
R

∑
c

|Mc|

+

( 1
2ζ|Γs|

(
xs

s(t) + MS−1xs
−s(t− 1)−D

−Ψs(t) + 2ζrs

∑
s′∈Γs

λs(t− 1) + λs′(t− 1)
rs + rs′

))
. (4.51)

Let F̃−s ≜ ∏
s′ ̸=s F̃s′ ⊆ R(S−1)

∑
c

|Mc|
+ . It is a closed set as the product of closed sets. The map-

ping projF̃−s
: R(S−1)

∑
c

|Mc|
+ → F̃−s denotes the projection onto F̃−s. Update of SP s’s estimates

can be obtained as

xs
−s(t) =projF̃−s

(1
2
(
xs

−s(t− 1) + 1
|Γs|

∑
s′∈Γs

xs′

−s(t− 1)
)

− 1
2ζ|Γs|

Φs
−s(t)

)
. (4.52)

Theorem 4.12. If f c
s (.). is Kc

s Lipschitz continuous forall s ∈ S, c ∈ C, Algorithm 4 converges to
the r-normalized Nash equilibrium solution to Gp.

Proof. See Appendix C.5.

4.6 Numerical Experiments

In this section, we analyse numerically the dynamic resource allocation schemes proposed in
our paper. In our simulations, we primarily focus on a network with two cells, C 1 and C 2, and two
service providers SP 1 and SP 2, who request resources for their service provision. This setting
allows us to efficiently study the dynamics of interaction between EUs and SPs, and the effect of
different system parameters on the outcome of the game G.
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Algorithm 4 Distributed Proximal Algorithm for Gp

Require: ζ > 0, β̃s > 0,∀s ∈ S, ϵprimal
stop , ϵdual

stop , tmax
1: ♯ Initialization Step
2: Each SP s builds initial estimate xs(0) ∈ F̃ and λs(0) ≥ 0
3: Set αss′ = βss′ = 0 and γss′ = δss′ = 0,∀s ∈ S,∀s′ ∈ Γs

4: while ϵprimal(t) ≥ ϵprimal
stop ∨ ϵdual(t) ≥ ϵdual

stop ∧ t ≤ tmax
5: ♯ Communication Step
6: Each SP s exchanges his previous estimate xs(t− 1) and his dual Lagrange mutliplier λs(t− 1)

with his neighbors s′ ∈ Γs

7: ♯ Action Step Update
8: for each SP s ∈ S
9: Φs(t) is updated according to (4.49a)

10: Ψs(t) is updated according to (4.49b)
11: xs

s(t) is updated by solving (4.50)
12: λs(t) is updated according to (4.51)
13: xs

−s(t) is updated according to (4.52)
14: end for

t = t + 1
15: end while

We assume there are 200 and 300 EUs present in the cell C1 and C2, respectively. First, we
consider the simple case of a single resource where the QoS offered by the slices only depends on
the radio resource (bandwidth).
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Figure 4.3 – Distribution of users at the NE wrt fees charged by SPs
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Figure 4.4 – Revenue gained by SPs wrt fees charged by them.
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Figure 4.5 – Convergence of Algorithm 1 to the NE

The plot in Fig.4.3 illustrate the impact of the price parameter on the number of EUs in the slices
at the NE of G. For this simulation, we assume that the price applied by the slice 1 is constant and
equal to 5, and we vary the fee applied by SP 2 in the range of 0 to 10. Fig.4.3 shows the change
in the distribution of EUs in the slices as function of the price applied by SP 1. In the same figure
we analyze the effect of slices shares on the distribution of users at the outcome of the game. The
regular line in red and blue shows the distribution of users with slice 1 and slice 2 as a function of
the price provided by the slices and when the slices are assigned with 10% share and 90% share of
the infrastructure, respectively. The plots with the dash line, dot line and dot-dash line are outcome
when 30%, 70% and 90% of share are assigned to SP 1. Under the same settings, Fig.4.4 illustrate
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the impact of the price applied by the slices and their infrastructure share on their profits.

As second case, we consider that the QoS provided by SP s in cell c is given by qc
s = (dc

s)ρc
s

where ρc
s is sensitivity parameter and 0 < ρc

s ≤ 1, we vary ρ2
2, i.e., the SP 2 sensitivity parameter

in cell C 2 from 0.1 to 1. Fig.4.7 shows the comparison of profit gain by SPs at NE with the profit
gained under static resource allocation scheme (SS). For the multi-resource case, we consider that
the SP QoS depends on their bandwidth as well as power allocation. To be precise, we assume that
the QoS is the maximum possible data rate that SP can achieve. It is given by

qs = Bs log2

(
1 + h2Ps

N0

)
,

where Bs and Ps is bandwidth and power allocated to SP s respectively, while h is the channel gain
and N0 the noise. For simulations purpose, we assume that the availability of maximum bandwidth
and transmitting power at each base station is 30 Mhz and 47 dBm respectively. The prices applied
by each SP is constant 1, and each SP is assigned with half of the infrastructure share. For the
numerical experiments, we vary the channel gain to noise ratio for SP2 at cell C2 from 10db to 50db;
for each value of the channel gain to noise ratio, we compute the Nash equilibrium.
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Figure 4.6 – Comparison between the revenue gained by the SPs at the NE of game G vs the revenue
gain under static proportional allocation scheme (SS) for different value of SP 2 power to noise ratio
at cell C2
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Figure 4.7 – Comparison between the revenue gained by the SPs at the NE of game G vs the revenue
gain under static proportional allocation scheme (SS) for different values of ρ2

2.

The Fig.4.6 shows a comparison between the profit gain by SPs at nash equilibrium with profit
gain by SPs under a static resource allocation scheme. The numerical results show a tiny difference
between the SPs’ profits under the dynamic resource sharing scheme and static resource allocation.
In Fig.4.5, we observe the fast convergence of distributions of budgets on the different resources at
different cells by SPs to a Nash equilibrium of game through an exponential learning scheme.

Next, we present the numerical results to validate the pricing and multi-resource allocation
scheme for the second case where SPs have no budgets. In this scenario, particularly to define
the QoS as a function of multi resources, we consider a general class of utility function known as
CES (constant elasticity of substitution), mathematically defined as

qs(ds) =
(∑

r

vsr(dsr)ρ

)1/ρ

,

where ρ ∈ (−∞, 0) ∪ (0, 1] parameterizes the whole family of utility functions. For example ρ = 1
corresponds to linear (additive) valuations qs(ds) =

∑
r vsrdsr, ρ → 0 corresponds to Cobb Dou-

glas function qs(ds) = Πr(dsr)vsr , ρ → −∞ correspond to Leontief utilities qs(ds) = min
r
{dsr

vsr
}, and

Ds = (vs1 . . . vsr) where vsr is the amount of resource type r needed by SP s to support one unit of
QoS. Linear valuation signifies the perfect substitutes, representing a scenario where the resources
can replace each other in utilization. Contrary, Leontief utilities represent the perfect complement
scenario where one resource may have no value without the other. For instance, the CPU and com-
puter memory are both essential for completing a computing task. CSE utility function interpolate
between perfect substitutes and the perfect complement through the parameter ρ. For numerical
experiments, we consider that each SP needs three types of resources, namely, Bandwidth (Gbps),
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vCPU, Memory (GB). For SP1, we consider v1,BW = 10 and v1,vCP U = 32 and v1,MEM = 244. Simi-
larly for SP2 v2,BW = 10 and v2,vCP U = 40 and v2,MEM = 160. We consider that the total available
capacity of bandwidth and vCPU is fixed at 40 GB and 60 units, respectively. For the memory, we
vary the available capacity from 100 GB to 400 GB, and we examine the its effects on the resources’
prices.
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Figure 4.8 – Changes in the price (λ) with respect to the available memory capacity, with ρ = 0.1,

First, we consider the case where the QoS provided by SPs follows a substitutive relationship
between resources, e.g., we rely on the CSE function with ρ = 0.1. Fig.4.8 illustrates the effect of
available capacity of resources on the resources price. As the total availability of memory increases.
In this case, the cost of memory decreases. However, as the relationship between the resources is
substitutive, we observe from the figure that a change in memory availability does not affect the price
of the other resources. Next, we consider the scenario where the SPs’ QoS is defined by the CSE
function with ρ = −1.5. In this case, the relationship between the resources is more complementary
than the previous one.
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Figure 4.9 – Changes in the price (λ) with respect to the available memory capacity, with ρ = −1.5,

Fig.4.9 illustrates the effect of available capacity of resources on the resources price. As the
availability of memory increases, the cost of memory decreases. However, in this case, we observe
that a change in memory availability also affects the price of the other resources. The cost of band-
width and VCPU also increases with a rise in memory’s availability. An increase in the capacity
of memory gives SPs room to improve their QoS, but at the cost of increasing the other related
resources, Bandwidth and VCPU. Thus, it causes congestion at Bandwidth and VCPU hence result-
ing in a rise in their prices. Similarly, Fig.4.10 presents a change in the prices of the resources with
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Figure 4.10 – Changes in the price (λ) with respect to the available memory capacity, with a)
ρ = −2.5,

respect to the capacity of the memory where QoS is considered a CSE function with ρ = −2.5. In
Fig.4.11 we demonstrate the fast convergence of Algorithm 3. For simulation purposes, we consider
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the availability of Bandwidth, VCPU and Memory as 40 Gbps 60 units and 100 GB, respectively. The
plot in the figure shows the exact convergence of total demand for all three resources to their avail-
able capacity. Fig.4.12 shows the convergence of error in decision variable (resources’ demand) by
the SPs and the convergence of error in price λ.
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Figure 4.11 – Convergence of Algorithm 3, convergence of total resources’ demand to the available
capacity
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Figure 4.12 – Convergence of the primal and dual errors in Algorithm 3.
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Chapter 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusions

Network slicing is emerging as a promising technique to meet the diverse and conflicting re-
quirements of advance applications like Augmented Reality (AR), Virtual Reality (VR) live broadcast,
Internet of things (IoT), Autonomous driving, remote healthcare, etc. Evolving from previous mobile
technology, 5G networks will integrate data centre-based cloud/edge/fog architectures into the plan
to support the data-intensive demand of applications like AR and VR. Thus, a slice will typically
comprise different resource types, such as radio access capacity, edge storage memory and com-
puting power available within the infrastructure. Network slicing enables virtualized and independent
logical networks to multiplex over the same physical infrastructure. This also creates a new business
opportunity for virtual network operators by enabling them to run their virtualized independent ser-
vices on the same infrastructure. Network slicing is a potential technology for next-generation mobile
networks; however, some key challenges still need to be addressed for its efficient implementation.
Challenges include the efficient pricing and allocation of heterogeneous resources to slice tenants
or service providers with diverse and conflicting requirements.

In Chapter 2, we have considered a scenario where customers compete to obtain a slice of re-
sources in 5G networks. We employ a mechanism based on a multi-bid Kelly mechanism, using
as price vector the one resulting from the normalised Nash equilibrium, which solves a dual game
under coupled constraints. The game’s solution is obtained via an online learning mechanism that
ultimately converges to the social optimum. The key technical challenge overcome by the proposed
bidding mechanism is to account for the coupled constraints dictated by the available infrastruc-
ture resources. We have also shown that the proposed mechanism accommodates the case where
slice tenants can have minimum requirements over resources. This renders the proposed one an
interesting candidate mechanism for pricing slicing in 5G networks. In fact, to the best of the au-
thors’ knowledge, no suitable learning mechanism is known for Nash equilibria under the coupled
resources constraints, which are central in 5G resources slicing.

In Chapter 3, we have considered a resource allocation problem where service providers lease
the heterogeneous resources from infrastructure provider through a slicing mechanism to support
their geographically distributed pool of users. In particular, we have assumed that the users are clas-
sified into different classes depending on their service needs. Service providers seek to be α-fair
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while providing the service among their users. As a solution, we have proposed the Fisher market
based multi-resource allocation scheme that enables flexible slicing. In the proposed method, the
service providers can adjust their resources dynamically by distributing their network share over
the geographically distributed heterogeneous resources. We have considered that the proposed al-
location scheme function at market equilibrium, where each service provider is satisfied with the
attained resources and the market gets cleared. We have shown that the desired market equilibrium
of the formulated market can be obtained by solving Esineberg -Gale optimization program, whose
primal-dual solution pair provides market equilibrium allocation and prices. However, such a central-
ized approach requires service providers to disclose their sensitive information. Thus, to overcome
this issue, we have designed the distributed budget distributing scheme that lets service providers
converge to the market equilibrium of the formulated market in a decentralized fashion. We have
evaluated the performance of the proposed scheme by comparing it with social optimal and static
proportional allocations and shown that the proposed allocation scheme achieves better trade off
between efficient resource utilization and interslice protection. Moreover, we have investigated the
fairness properties of the proposed market-based scheme and shown that it maximizes well know
the Nash welfare function.

In Chapter 4, we have considered a setting where service providers lease resources from an
infrastructure provider through a network slicing mechanism and compete with one another to serve
a large pool of end-users. We have shown that the interactions between the end-users and ser-
vice providers can be modelled as a Stackelberg game, where the service providers act as leaders
and the end-users as followers. In addition, we have proved that the competition between the ser-
vice providers results in a multi-resource Tullock rent-seeking game, which admits a unique Nash
equilibrium. The market price is computed by the infrastructure provider for each resource, taking
into account the finite capacity of the network. To compute the market price and resource alloca-
tion, we have proposed two innovative market mechanisms. First, we have implemented a trading
post mechanism taking into account the fact that the SPs have bounds on their budgets. We have
proved that the noncooperative game induced by the trading post mechanism admits a unique Nash
equilibrium in case a single resource is considered. We have implemented a semi-decentralized
exponential learning algorithm to compute the unique Nash equilibrium of this game. However, this
mechanism does not enable an explicit incorporation of the network finite capacity constraints. To
overcome that limitation, in a second design, when SPs have no bound on their budgets but take
into account the network finite capacity as a global coupling constraint, we have shown that the
market equilibrium can be obtained by solving a generalized Nash equilibrium problem. We have
provided a dual averaging-based semi-decentralized algorithm to compute solution of the extended
game reformulation of the pricing game, and a proximal inexact- ADMM based distributed algorithm
that provably converges to the variational equilibrium of the pricing game. Finally, we have provided
numerical results to analyse the economic properties of the two market designs, and confirm the
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fast convergence rate of the inexact-ADMM highlighting its practical applicability.

5.2 Future directions

In Chapter 2, we have developed the resource allocation mechanisms based on a bidding
scheme that maximizes the utilitarian social welfare function i.e. sum of utilities of all agents. While in
the Chapter 3, we have shown that the proposed Fisher market-based resource allocation scheme
maximizes the Nash welfare function. A question arises, what if the social planner wishes to maxi-
mize different welfare functions. For example, if we consider a more general class of welfare function
called the “Constant elasticity of substitution " (CES) welfare function.

Ψρ(d) =
(∑

s

Us(ds)ρ

)1/ρ

In above definition, the values of ρ ∈ [−∞, 0) ∪ (0, 1] interpolates between individual fairness and
efficiency, small ρ corresponds to the egalitarian nature of social a planner, where it cares more
about individual equality (fairness). In contrast, the larger ρ corresponds to utilitarian welfare where
a social planner cares more about societal good (efficiency). To the best of our knowledge, not much
attention has been given in the literature to mechanism designing that maximizes welfare function
other than the commonly know utilitarian social welfare, Nash welfare functions or Max-min welfare.
Recently, authors in [38] developed a nonlinear pricing-based market mechanism that maximizes all
range of CES social welfare functions. However, their proposed mechanism is limited to the special
case where market agents’ resource demand is defined by the Leontief utility function, and their
base demand vector in the utility function is expressed by either 1 or 0. In the future, we plan to
extend the current framework to the settings where social planner or Infrastructure provider aims to
achieve different fairness levels (CES-welfare) while allocating the resources to service providers.

In Chapter 3, while providing the distributed budget distribution rule for the service providers
to converge to a market equilibrium of the formulated market, we have assumed that the service
providers act as price takers i.e., they don’t anticipate the effect of their decision of future prices. In
the proposed rule, the infrastructure provider announces the prices in each round and allocates the
resources according to the Trading post mechanism. In each next round, service providers change
their bids’ distribution depending on the prices reported by the InP in the previous round. How-
ever, in practice, service providers might exhibit strategic behaviour while distributing their budgets.
They could take a selfish decision anticipating the effect of their decisions on the future price. Such
strategic behaviour by service providers could hamper the system’s overall efficiency or conver-
gence properties of the proposed scheme. Thus, in such a scenario, it is imperative to study the
strategic behaviour of the service provider. In the future, we would like to investigate the strategic
behaviour of service providers through the game-theoretic framework.
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While designing all the pricing and resource allocation schemes in the thesis, we have assumed
that the utility functions of the slice tenants or service providers are known precisely. However,
in practice, the utility function of each slice tenant may not be deterministic. For example, if we
consider a case where we allocate the different resources to the service providers in future time
slots. The future user load, as well as the demand of each service provider, may not be known
accurately. Further, in the radio resource allocation problem knowing exact future channel conditions
for users is not possible. Thus one of the interesting directions of research could be to extend the
resources allocation and pricing scheme developed in the thesis to a setting where slice tenants’
utilities are non-deterministic. In recent years the distributed reinforcement learning algorithms to
reach the Nash equilibrium and or generalized Nash equilibrium of convex games when the exact
payoff functions of the game players are unknown were developed in [71]. It would be interesting to
explore and know whether the algorithm proposed in [71] can be useful for developing pricing and
allocation scheme under uncertainty.
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APPENDIX A

A.1 Proof of Theorem 2.5

Proof. [6]
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c) (∇W s(ys
c)−∇W s

c (ŷs
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APPENDIX B

B.1 Construction of potential function and properties

To construct the potential function we consider the objective function for dual of optimization
program. Without loss of generality, for all the proofs in Chapter 3, we consider that all resource
types at all the base stations have a unit capacity
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and goal is to minimize the Υ(p)
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Let b(P ) be the spending that maximizes subject to constraints ∀s (
∑
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The inequality becomes equality if bs = bs(p)
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(
bs

ck(p)
ws

ck

)
(B.8)

Υ(p(b)) =
∑

s

Bs

(1− αs) log

∑
c∈Cs

∑
k∈Ks

c

ws
ck

(
min

r
{ bs

ckr

pcrds
ckr

}
)(1−αs)


≤ Φ<(b) =

∑
s∈S

∑
c∈Cs

∑
k∈Ks

c

∑
r∈Rc

bs
ckr log

(
bs

ckr

pcrds
ckr

)
− 1

(1− αs)
∑
s∈S

∑
c∈Cs

∑
k∈Ks

c

bs
ck log

(
bs

ck

ws
ck

)
(B.9)

Υ(p(b))−Υ(p(b∗)) ≥ Φ(b∗)− Φ(b) (B.10)
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B.2 Derivation of update rule for αs ≥ 1

bs(t + 1) = arg min∑
c

∑
k

∑
r

bs
ckr

≤Bs

{
∇bsΦp (bs(t)) (bs − bs(t)) + KLa (bs||bs(t))− 1

(1− αs)KLb (bs||bs(t)))
}

(B.11)

we consider the Lagrangian

Ls (bs, γ) = ∇bsΦp (bs(t)) (bs − bs(t)) + KLa (bs||bs(t))

− 1
(1− αs)KLb (bs||bs(t))) + γ

(∑
c

∑
k

∑
r

bs
ckr −Bs

)
(B.12)

After applying the first order KKT condition we get

[
1 + log

(
bs

ckr(t)
pcrds

ckr

)]
− 1

(1− αs)

[
1 + log

(
bs

ck(t)
ws

ck

)]
+ 1

+ log
(

bs
ckr

bs
ckr(t)

)
− 1

(1− αs)

[
1 + log

(
bs

ck

bs
ck(t)

)]
+ γ = 0 (B.13)

After some calculation we have

log (bs
ckr) = log (pcrds

ckr) + 1
(1− αs) log

(
bs

ck

ws
ck

)
− γ (B.14)

taking exponentila on both side

bs
ckr = eCpcrds

ckr

(
bs

ck

ws
ck

)1/(1−αs)

(B.15)

summing over r on both side

bs
ck

(
bs

ck

ws
ck

)−1/(1−αs)

= eC
∑

r

pcrds
ckr (B.16)

(bs
ck)

−αs
(1−αs) = ec (ws

ck)−1/(1−αs)
(∑

r

pcrds
ckr

)
(B.17)
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(bs
ck)

1
(1−αs) = ec 1

−αs (ws
ck)

−1
(−αs)(1−αs)

(∑
r

pcrds
ckr

) 1
−αs

(B.18)

replacing (bs
ck)

1
(1−αs) with (B.18) in (B.15) we have

bs
ckr = e

c −αs
(1−αs) pcrds

ckr (ws
ck)

−1
(−αs)

(∑
r

pcrds
ckr

) 1
−αs

(B.19)

summing over all r across all the classes and cell we have

Bs = e
c −αs

(1−αs)
∑

c

∑
k

(ws
ck)

−1
(−αs)

(∑
r

pcrds
ckr

) (1−αs)
−αs

(B.20)

bs
ckr = Bspcrds

ckr (ws
ck)

−1
(−αs) (

∑
r pcrds

ckr)
1

−αs∑
c

∑
k

(
ws

ck

) −1
(−αs)

(∑
r pcrds

ckr

) (1−αs)
−αs

(B.21)

bs
ckr =

Bs
pcrds

ckr∑
r

pcrds
ckr

(ws
ck)

1
αs (

∑
r pcrds

ckr)
(1−αs)

−αs

∑
c′∈C

∑
k′∈Ks

c′

(
ws

c′k′
) 1

αs
(∑

r′ pc′r′ds
c′k′r′

) (1−αs)
−αs

(B.22)

B.3 Best response

We consider the Lagrangian

1
(1− αs)

∑
c

∑
k

ws
ck (us

ck)(1−αs) −
∑

c

∑
k

∑
r

λckr

(
us

ck −
bs

ckr

pcrds
ckr

)
− γ

(∑
c

∑
k

∑
r

bs
ckr −Bs

)
(B.23)

After applying the first order KKT conditions

ws
ck (us

ck)−αs −
∑

r

λckr = 0 (B.24)

λckr

pcrds
ckr

= γ (B.25)
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from (B.24) and (B.25)

ws
ck (us

ck)−αs = γ
∑

r

pcrds
ckr (B.26)

(B.27)

us
ck = (γ)

1
−αs (ws

ck)
1

αs

(∑
r

pcrds
ckr

) 1
−αs

(B.28)

we know that at best response us
ck = bs

ckr
pcrds

ckr

bs
ckr

pkrds
ckr

= γ
1

−αs (ws
ck)

1
αs

(∑
r

pcrds
ckr

) 1
−αs

(B.29)

bs
ckr = γ

1
−αs (ws

ck)
1

αs pcrds
ckr

(∑
r

pkrds
ckr

) 1
−αs

(B.30)

summing over r

∑
r

bs
ckr = γ

1
−αs (ws

ck)
1

αs
∑

r

pcrds
ckr

(∑
r

pcrds
ckr

) 1
−αs

(B.31)

∑
c

∑
k

∑
r

bs
ckr = γ

1
−αs

∑
c

∑
k

(ws
ck)

1
αs

(∑
r

pcrds
ckr

) (1−αs)
−αs

(B.32)

Replacing the value of γ
1

−αs from (B.32) in (B.30)

bs
ckr = Bspcrds

ckr (ws
ck)

1
αs (

∑
r pcrds

ckr)
1

−αs∑
c

∑
k

(
ws

ck

) 1
αs
(∑

r pcrds
ckr

) (1−αs)
−αs

(B.33)

bs
ckr =

Bs
pcrds

ckr∑
r

pcrds
ckr

(ws
ck)

1
αs (

∑
r pcrds

ckr)
(1−αs)

−αs

∑
c

∑
k

(
ws

ck

) 1
αs
(∑

r pcrds
ckr

) (1−αs)
−αs

(B.34)
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B.4 Market equilibrium

Proof. Consider the Lagrangian of EG problem

L(u, x, λ, p) = Bs

(1− αs) log

∑
c∈C

∑
k∈Ks

c

ws
ck (us

ck)(1−αs)

−∑
s

∑
c

∑
Kc

∑
r

λs
ckr

(
us

ck −
xs

ckr

ds
kr

)

−
∑

c

∑
r

pcr

(∑
s

∑
k

xs
ckr − 1

)
(B.35)

After applying first order KKT condition we have ∀s ∈ S,∀c ∈ C, ∀k ∈ Ks
c

Bs
ws

ck (us
ck)−αs(∑

c∈C
∑

k∈Ks
c

ws
ck

(
us

ck

)(1−αs)
) −∑

r

λs
ckr = 0 (B.36)

∀s ∈ S,∀c ∈ C, ∀k ∈ Ks
c, ∀r ∈ Rc following condition

λs
ckr

ds
kr

− pcr = 0 ∀s ∈ S (B.37)

us
ck = xs

ckr

ds
ckr

s ∈ S, c ∈ Cs, k ∈ Kc, r ∈ R (B.38)

pcr

(∑
s

∑
k

xs
ckr − 1

)
= 0 ∀c ∈ C ∀r ∈ Rc (B.39)

λs
ckr ≥ 0, pcr ≥ 0 (B.40)

Bs
ws

ck (us
ck)−αs(∑

c∈C
∑

k∈Ks
c

ws
ck

(
us

ck

)(1−αs)
) =

∑
r

pcrds
ckr (B.41)

Bs
ws

ck (us
ck)(1−αs)(∑

c∈C
∑

k∈Ks
c

ws
ck

(
us

ck

)(1−αs)
) =

∑
r

pcrxs
ckr (B.42)

Bs =
∑

c

∑
k∈Ks

c

∑
r

pcrxs
ckr (B.43)
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summing over the s we get

∑
s

∑
c

∑
r

pcr = 1; (B.44)
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Appendix C

APPENDIX C

C.1 Proof of Proposition 3

To find the equilibrium of the replicator dynamics defined in (4.6) consider log
(

qc
s

nc
s

)
− ps =

log
(

qc
s′

nc
s′

)
−ps′ . Taking the exponential of both sides, we obtain qc

s
nc

s

nc
s′

qc
s′

= eps−ps′ ⇔ qc
s

nc
s
nc

s′ = qc
s′eps−ps′ .

Summing over ∀s′ ∈ S gives us
∑

s′
qc

s
nc

s
nc

s′ =
∑

s′ qc
s′eps−ps′ , which can be rewritten as nc

s = Ncqc
se−ps∑

s′ qc
s′ e

−ps′ ,

i.e., nc
s = Ncfc

s (dc
s)e−ps∑

s′ fc
s′ (dc

s′ )e
−ps′ .

C.2 Proof of Proposition 4

First, we show that the utility of each SP is concave in its own decision variable. ∂2Us

∂bc
1

2 = A+B
C < 0

A = −
(

bc
2

bc
1 + bc

2

)ρ2 ( bc
1

bc
1 + bc

2

)2ρ1 ((
ρ2

2 + ρ2
)

bc
1

2 + 2ρ1bc
2(ρ2 + 1)bc

1 + ρ1bc
2

2(ρ1 + 1)
)

(C.1)

B =
(

bc
2

bc
1 + bc

2

)2ρ2 ( bc
1

bc
1 + bc

2

)ρ1 ((
ρ2

2 − ρ2
)

bc
1

2 + 2ρ1dc
2(ρ2 − 1)bc

1 + ρ1bc
2

2(ρ1 − 1)
)

(C.2)

C = (bc
1 + bc

2)2bc
1

2
((

bc
1

bc
1 + bc

2

)ρ1

+
(

bc
2

bc
1 + bc

2

)ρ2)3
(C.3)

Next, we show that the utility of each SP is convex with respect to the opponents’ decision variable.
∂2Us

∂bc
2

2 = G+H
I > 0

G = −
(

bc
2

bc
1 + bc

2

)ρ2 ( bc
1

bc
1 + bc

2

)2ρ1 ((
ρ1

2 − ρ1
)

bc
2

2 + 2ρ2bc
1(ρ1 − 1)bc

2 + ρ2bc
1

2(ρ2 − 1)
)

(C.4)
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H =
(

bc
2

bc
1 + bc

2

)2ρ2 ( bc
1

bc
1 + bc

2

)ρ1 ((
ρ1

2 + ρ1
)

bc
2

2 + 2ρ2bc
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2 + ρ2bc
1
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(C.5)

I = (bc
1 + bc

2)2bc
2

2
((

bc
1

bc
1 + bc

2

)ρ1

+
(

bc
2

bc
1 + bc

2

)ρ2)3
(C.6)

C.3 Proof of Proposition 5

Consider that for any bid bc
2 > 0 submitted by SP 2 at cell c, SP 1 places a bid of bc

1 = B1
bc

2
B2

at cell

c. Then, the quantity of resource received by SP 1 at cell c is dc
1 =

B1
bc
2

B2

B1
bc
2

B2
+bc

2

= B1
B1+B2

. This proves

that for any strategy played by SP there exists a strategy for the other SP such that he receives the
resource in proportion to his budget.

C.4 Revision Protocol

Let recall the revision protocol, which defines the switching rate at which users switch their choice
from SP s to SP s′ given population state n τs,s′ = ns′ [νs′ − νs]+. Note that for the sake of simplicity,
we omit the cell dependence (c).

Relying on the evolutionary process (4) and by substitution of the revision protocol, we get

ṅs =
∑
s′

ns′τs′,s − ns

∑
s′

τs,s′ ,

ṅs =
∑
s′

ns′ns [νs − νs′ ]+ − ns

∑
s′

ns′ [νs′ − νs]+ ,

ṅs = ns

∑
s′

ns′ [νs − νs′ ] ,

ṅs = ns

[
νs −

∑
s′

ns′νs′

]
.
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Similarly, considering the revision proctocol τs,s′ = ns′
N [U c

s′ − U c
s ]+, we get

ṅs =
∑
s′

ns′τs′,s − ns

∑
s′

τs,s′ ,

ṅs =
∑
s′

ns′
ns

N
[νc

s − νc
s′ ]+ − ns

∑
s′

ns′

N
[νc

s′ − νc
s ]+ ,

ṅs = ns

∑
s′

ns′

N
[νs − νs′ ] ,

ṅc
s = nc

s

[
νc

s −
1
N

∑
s′

nc
s′νc

s′

]
.

C.5 Proof of Theorem 4.12

Taking the gradient of Rs(.) with respect to xs
s := ds, we obtain:

∇xs
s
Rs(d) =

∑
c psN c ∇xs

s
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s (dc
s)e−ps(∑

s′ fc
s′ (dc

s′ )e
−ps′

)2
∑

s′ ̸=s f c
s′(dc
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For any d, d̃ ∈ F , ∥∇xs
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s′ )e
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s
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s)e−ps(∑

s′ fc
s′ (d̃c

s′ )e
−ps′

)2

}
.

∥
∑

s′ ̸=s f c
s′(d̃c

s′)e−ps′ −
∑

s′ f c
s′(d̃c

s′)e−ps′∥ by Hölder inequality. Then, applying Jensen’s inequality, we

obtain that ∥∇xs
s
Rs(d)−∇xs

s
Rs(d̃)∥ ≤

∑
c psN c max

{ ∇xs
s

fc
s (dc

s)e−ps(∑
s′ fc

s′ (dc
s′ )e

−ps′
)2 ; ∇xs

s
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s (d̃c
s)e−ps(∑

s′ fc
s′ (d̃c
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.∑

s′ ̸=s ∥f c
s′(dc

s′)− f c
s (d̃c

s)∥. If f c
s (.) is Kc

s Lipschitz continuous then by setting

Ls :=
∑

c psN c max
{ ∇xs

s
fc

s (dc
s)e−ps(∑

s′ fc
s′ (dc

s′ )e
−ps′

)2 ; ∇xs
s

fc
s (d̃c

s)e−ps(∑
s′ fc

s′ (d̃c
s′ )e

−ps′
)2

}
then for any d, d̃ ∈ F , ∥∇xs

s
Rs(d) −

∇xs
s
Rs(d̃)∥ ≤ Ls∥d − d̃∥1 ≤ Ls.

√
S.
∑

c |Mc|.∥d − d̃∥2. This proves that ∇xs
s
Rs(.) is Ls.

√
S.
∑

c |Mc|
Lipschitz continuous. In addition, the coupling constraints in the pricing game Gp are linear in the
SPs’ decision variables. Though we introduce projection operators in (4.51), (4.52), Cauchy-Schwarz
inequality implies that the norm of the projection matrix can be upper bounded by 1. This enables
us to derive the same upper bound and statement as in [58], Thm.1.
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Abstract—Slicing has been introduced in 5G networks in order
to deliver the higher degree of flexility and scalability required by
future services. Slice tenants such as virtual wireless operators,
service providers or smart-city services will be able to book a
share of the infrastructure, possibly including storage, computing
capacity and link bandwidth. However, 5G slicing is attractive
for infrastructure providers as long as they are able to generate
revenues, while at once satisfying the tenants’ competing and
variable demands and coping with resources availability.

This work proposes a flexible mechanism based on a multi-
bidding scheme for 5G slice allocation. It is able to attain
desirable fairness and efficiency figures in order to serve slice
tenants and associated mobile users. Built on the notion of
normalised Nash equilibrium, it is also provably overbooking-
free even though the players’ bids are oblivious to infrastructure
resources constraints. Also, it is compatible with standard radio
access schedulers used in modern mobile networks.

Finally, a practical algorithm is proposed to drive the system
to the socially-optimal operating point via an online procedure
rooted on a primal-dual distributed algorithm. Numerical simula-
tions confirm the viability of the mechanism in terms of efficiency
and fairness.

Index Terms—Game theory, Kelly mechanism, normalised
equilibrium, primal-dual algorithms, wireless Network slicing,
resource allocation.

I. INTRODUCTION

In the emerging 5G technology, slicing allows mobile
network operators (MNO) to offer differentiated services to
their customers using shared resource pools. A slice, in this
context, is a share of the mobile network operator infras-
tructure obtained via Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) technologies. A
slice forms a logical network on top of the physical one
[1], [2]. Evolving from previous mobile technology, the 5G
core network architecture integrates data-centers into their
architectures to support network function virtualisation and
computation offloading. Thus, a slice will typically encompass
different resource types, such as radio access capacity, edge
storage memory and computing power available within the
MNO infrastructure [1].

Slicing techniques entered the standardisation phase re-
cently [3] so that specifications 5G system’s slicing archi-
tecture and requirements are now available. Some technical
aspects such as slice insulation and fair slice allocation are
still is a key challenge to upgrade LTE technology towards 5G,
with large effort by the research community to overcome such
technical issues [4], [5], [6], [7], [8]. Using slice insulation,

virtual private networks will be shipped on top of the existing
mobile network infrastructure with dedicated customer sup-
port. Thus, new emerging service providers will demand a
slice to offer dedicated services to their customers on top of the
MNO’s infrastructure, e.g., for real time gaming, multimedia
applications, social networks, etc.

Ultimately, slicing will deeply change the business model
in the mobile communication industry [9], [10] and a crucial
aspect is how to jointly price and share resources assigned
simultaneously across slices. Mechanisms to price and share
resources have appeared in literature [11], [12], [13], [14],
assuming customers would demand several resources at once
using vectors of bids and so specify their demands.

However, compared to standard settings, e.g., in cloud com-
puting [11], [12], slicing in 5G networks has key differences.
First, in cloud computing the pool of resources is often over-
provisioned, whereas in 5G scarce radio resources are critical
for QoE and requires careful resources allocation. Second,
mobile networks are traditionally designed for fair resource
sharing, since near far effects and fading induce very different
conditions across a deployment in the same cell and across
cells. Third, load conditions across a 5G deployment may
be at once dynamic and heterogeneous. Finally, joint slice
allocation and pricing schemes need to adhere to Service
Level Agreement (SLA), which are de facto mandatory in
the telecommunication industry [15]. This heavily discourages
overbooking as a viable option for MNOs willing to increase
their revenues by adopting new slicing technology.

In this paper, we propose a new theoretical framework for
pricing slices of resources, based on the Kelly mechanism
and the concept of the normalized Nash equilibrium. The
basic Kelly mechanism is a bidding mechanism where slice
tenants submit an individual bid to the resource owner to
obtain an amount of resource. They receive a fraction of
the whole resource proportionally to the received bids, and
they pay depending on how much they bid. Thus, tenants
bid strategically to obtain a share of a single resources [16],
[17], [18]. We shall consider a multi-bid version of the Kelly
mechanism, where the MNO exposes to tenants a vector of
prices per resource. Multi-bid auctions are a main line of re-
search in cloud computing, where clients compete to purchase
bundles of cloud resources [11], [12]. The case for using the
Kelly mechanism in 5G networks comes from the fact that
it offers high flexibility: it applies to bundled resources, i.e.,
pre-defined blocks of computing and communication resources
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TABLE I
MAIN NOTATIONS USED THROUGHOUT THE PAPER

Symbol Meaning
C := {1, . . . , C} set of base stations
S := {1, . . . , S} set of slices (tenants)
Ns

c number of active users on slice s at base station c
γs
c unitary price for bids of slice s at base station c

Bc total available bandwidth at base station c
bsc the bandwidth allocated to slice s at base station c
V s
c the benefit function of slice s at base station c

Vs the total benefit function of slice s
αs alpha fair scheduling parameter for slice s
hu channel state of user u
h the channel state vector for all users
ru the rate attained by a user u
pu transmission power of user u
xs
c bid of slice s for bandwidth at base station c

xs = (xs
1 . . . x

s
C) vector of bids of player s across base stations

x−s
c =

∑
s′ �=s x

s′
c bid of all other players but s on base station c

βn step size for the learning algorithm

in the form of virtual machines or containers. But it also
applies well to elastic radio resources, where it is customary
to use utility-based schedulers such as the Proportional Fair
Scheduler (PFS) [19].

It is important to notice that, while bidding serves very well
the purpose to generate resources demands at the tenants’ side,
from the MNO’s point of view, overbooking may represent
the major risk when using a competitive bidding mechanism.
In fact, the aggregate behavior of tenants in general will not
comply to the MNO’s system capacity constraints.

Main contribution. We part from standard propositions of
joint pricing and resources allocation in mobile networks in lit-
erature. We provide an explicit theoretical connection between
price definition, bidding mechanism and coupled constraints
across slices. Such fundamental problem can be solved by
rooting the pricing scheme in the theory of normalised Nash
equilibria, according to the seminal work of Rosen [20]. We
solve the problem by cascading two coupled games, namely,
the Shadow Pricing Game and the Allocation Game. In a
fashion which echoes the original ideas of Kelly on shadow
prices for multicommodity flow optimisation [21], the Shadow
Pricing Game let the MNO settle the price vector via a
uniquely determined normalised Nash equilibrium. The result-
ing price vector induces a Nash equilibrium in the Allocation
Game respecting the resources constraint and thus provably
overbooking free. Finally, we show that the price vector can
be designed to attain the social optimum for the game. In order
to render the mechanism practically viable, we provide an
online learning procedure based on a primal-dual distributed
algorithm able to drive the system to the target socially optimal
equilibrium and requiring at each step to disclose solely the
price and the bid vectors generated at each step.

II. OPTIMISATION FRAMEWORK

Let a single MNO having a set of base stations C shared
by a set S of tenants that need physical network resources in
order to serve their users. This can be the case of an appli-
cation provider serving several customers in mobility. The 5G
paradigm envisions for MNO resources to be heterogeneous

and include not only standard radio resources such as PRBs,
but also storage, CPU and backhauling. The MNO assigns
to each tenant a slice of resources, and we assume that each
tenant proposes a service covered by all base stations in C.
Each tenant’s users generate demands, and such demands will
inevitably depend on their specific location, thus inducing
different slice-dependent demand at each base station.

In this section, we confine the discussion to a RAN ver-
sion of the the slicing problem, where the MNO schedules
wireless resources, namely downlink PRBs among multiple
tenants. While the RAN resources allocation problem is a
known and well studied one, heterogeneity of traffic demands
across tenants and cells captures the main features of slice
resources allocation, including fairness issues. The case of
multi-resources allocation, spanning other type of infrastruc-
ture resources beyond PRBs is an immediate extension of the
scheme presented for RAN resources.

Let each slice tenant s be associated with users presence
vector Ns = (Ns

1 , N
s
2 .., N

s
C) where C is the total number

of cells and Ns
c is the number of active users on slice s at

base station c ∈ C. Here a base station is modelled as a finite
resource shared by its associated users. We observe that the
number of active users associated to the same base station vary
across slices, and vary across base stations also for same slice.

First let us consider some fixed channel condition at all
users and at all slices, and let ru be the rate attained by a user
u in slice s at cell c. The slice benefit function

V s
c (b

s
c) :=

Ns
c∑

u=1

fs (ru(b
s
c)) (1)

where bsc is the amount of resources (bandwidth) allocated to
slice s at base station c and under α-fair scheduling it holds

fs(ru) =

{
(ru)

1−αs

(1−αs)
if αs �= 1

log(ru) if αs = 1
(2)

The meaning of (2) is that, when slice c has received capacity
bsc, user u of slice s associated to base station c receives a rate
which is the α-fair share attained with his peer users on the
same slice. The average rate ru of any user u is determined by
the scheduling policy and by all the specific techniques used
at physical layer and MAC layer, such as modulation, coding,
scheduling, etc.

In the case when the channel per user varies over time, let
bsc log(1 +

puhu

N0
) the instantaneous rate when tenant’s user u

is scheduled, at transmission power pu, noise power N0 and
under channel state hu, where Hu is the finite set of possible
channel states of user u. Vector h = (h1, . . . , hNs

c
) is thus the

channel state vector for all users in cell s. Users of slice s are
served under some scheduling policy Π(·|·) at cell c, which
depends on the past and present users’ channel state; at each
time-slot, the slice scheduler then allocates the channel to a
tagged user u in cell c with probability Π(u|h). The average
rate achieved by user u under policy Π is

ru = gu(b
s
c,Π(u|h)) := Eh

[
bsc log(1 + hu

pu
N0

)Π(u|h)
]

(3)

where the expectation is taken with respect to the chan-
nel distribution. We observe that, irrespective of the actual
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Fig. 1. Resource Slicing in 5G Networks: slices are assigned radio resources
on a per-cell basis.

scheduling policy, the average rate for a tagged user u is
linear in the slice bandwidth bsc at cell c. Once we fixed
k∗u = (Eh [log(1 + huΛ0)Π(u|h)]), the total benefit function
for slice s writes as

V s
c =

Ns
c∑

u=1

fs (k
∗
u b

s
c)

which is again an increasing concave function of the allocated
bandwidth per slice.

The classical optimisation framework for the MNO pre-
scribes to provide efficient yet fair allocation for all users
belonging to the same slice according to slices’ load. Since
scheduling is performed per cell, however, it is necessary for
the resources allocation to be fair – within the same slice –
also across users associated to different base stations. Such a
trade-off between efficiency and fairness can be captured by
formulating the utility of a given slice as:

Vs(bs) =
∑

c∈C
V s
c (b

s
c) (4)

For the sake of discussion, we shall assume that the number
of users is fixed. Applied at the cell level, utility (4), is
able to express the customary trade-off between efficiency
and fairness among users associated to a tagged slice service.
However, it also allows to achieve such a trade-off horizontally,
that is across cells. For α = 1, for instance, the customary log-
based proportional-fair utility will severely penalise serving
high throughput in a lightly loaded cell while starving slice
users in another hot-spot cell.

The main objective of the MNO is to maximise the total
utility of slices, leading to the following 5G resource allocation
problem

P : maximize
b

∑

s∈S
Vs(bs)

subject to bsc ≥ 0∑

sS
bsc ≤ Bc, ∀c ∈ C

where Bc is the total bandwidth available at base station c.
This optimisation problem can be solved by well-known

convex optimisation methods. However, such a centralised

Fig. 2. The MNO uses the Shadow Pricing Game (top) to generate the price
vector, whereas the result of the Allocation Game (bottom) decides the actual
resource slicing based on the tenants bids.

resource allocation scheme, while addressing properly the
MNO constraints on the resources allocation, lacks of scal-
ability, and may lead to excessive communication overhead
when the number of slices increases. Furthermore, it is known
that such solutions are rarely viable when under dynamic
network conditions. Thus, while (P) still provides reference
performance figure for our slicing problem, we shall focus
on a decentralised scheme where the resources allocation
decision is mediated by a pricing scheme pivoting on the Kelly
mechanism.

III. KELLY MECHANISM BASED RESOURCE ALLOCATION

In this section, we design a bidding scheme solving problem
(P). The curse of bidding-based schemes is that typically
they cannot rule out the possibility of resources overbooking.
Indeed, it is unrealistic to assume that, under a competitive
pricing scheme, tenants would jointly account for the per-cell
coupled constraint

∑
s b

s
c ≤ Bc, appearing in (P).

The scheme we propose, conversely, is provably
overbooking-free even though the slice bids are oblivious to
infrastructure resources constraints. Our design is based on
two coupled games, entangled by the same Nash equilibrium:
first, a virtual game, namely the Shadow Pricing Game, which
generates the vector of resource prices, and for which there
exist a unique normalised Nash equilibrium, and second the
Allocation Game where – based on the so-determined prices
– the MNO rules a multi- dimensional Kelly mechanism
where each tenant acquires a slice of resource in each cell
c ∈ C at a price.

Overall, the proposed mechanism can be seen as the cascade
of the following two items (see Fig. 2).

• The MNO settles the price obtained by Shadow Game in
a way to respect the coupled constrains of resources;

• The prices are announced to tenants in the Allocation
game to obtain the Nash equilibrium that respects the
resource constraints on resources.

• A specific price will be designed by the MNO to attain
the social optimum for the game.

We observe that the proposed scheme requires indeed full
information at the MNO side on the tenants’ valuations. Thus,
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by itself, it does not represent a feasible scheme. We shall
relax such demanding request with a learning procedure able
to drive the system to the Nash equilibrium resulting from the
aforementioned cascade.

A. Shadow Pricing Game

The Shadow Pricing Game is a virtual game where the
tenants compete for resource access and do not share infor-
mation on the amount of resource they ask for. The result of
this virtual game which matters to the MNO is the resulting
price vector. In fact, the seminal work of Rosen [20] ensures
the existence of a unique equilibrium vector of this game in
the form of a normalised Nash equilibrium, a concept which
is pivotal in this paper. Such equilibrium is given by the
concatenation of a bid vector and a vector of multipliers. The
latter are actually the price vector we are interested in.

This price definition has indeed an algorithmic flavour,
reflected in the scheme in Fig. 2: before posting the unit
prices for resources, the MNO determines the price vector as
the solution of the virtual game. In other words, the Shadow
Pricing Game is a virtual game which solves for the optimal
price as the signal by which the MNO can drive the Allocation
Game to a feasible equilibrium with respect to the capacity
constraints in (P).

In the virtual game, each tenant tries to maximise her benefit
while obeying the coupled constraints

∑

s∈S
bsc ≤ Bc, ∀c ∈ C. (5)

Thus, the decision problem for a tagged tenant s writes as

Qs maximize
bs≥0

Vs(bs,b−s)

subject to
∑

s∈S
bsc ≤ Bc, ∀c ∈ C.

The system {Q1, . . . , QS} represents the formalisation of the
Shadow Pricing Game: the notion of an equilibrium for such
a continuous game requires to account for the presence of
constraints, that is

Definition 1. A strategy b∗ = (b1∗, . . . ,bS∗
) is called Nash

Equilibrium for game {Q1, . . . , QS} if

Vs(bs∗,b−s∗) ≥ Vs(bs,b−s∗) (6)

for all s ∈ S , bsc ≥ 0 and
∑

s∈S bsc ≤ Bc, ∀c ∈ C.

Here, with standard notation, (bs,b−s∗) refers to the multi-
strategy vector whose s-th element equals bs and all other
strategy vectors equal b−s∗.

We should observe that in game with coupled constraints,
the equilibrium is, in general, non unique. Actually, by in-
spection we note that the Shadow Pricing Game has an
infinite number of equilibria. Conversely, it is the normalized
Nash equilibrium that, under specific assumptions, results to
be unique. Its definition requires to introduce some further
notation.

Because of concavity in players’ own strategy [20], a
multistrategy vector b∗ is a Nash Equilibrium for the Shadow
Pricing Game if and only if it satisfies simultaneously the

Karush–Kuhn–Tucker (KKT) conditions, which are:
∀c ∈ C, ∀s ∈ S

∂Vs(b∗)
∂bsc

− λs
c + ξsc = 0 (7a)

λs
c

(∑

s′∈S
bs

′∗
c −Bc

)
= 0 (7b)

ξscb
s∗
c = 0 (7c)

λs
c ≥ 0, ξsc ≥ 0. (7d)

Definition 2. A r-normalized equilibrium point is such that
there exists λc > 0 associated to each base station so that for
all customers λs

c = λc/r
s
c , for a suitable vector of nonnegative

vector of coefficients r.

The important property of normalised Nash equilibria we
are leveraging in the rest of the discussion is in the following

Theorem 1 ([20], Thm. 3). There exists a unique r-normalized
equilibrium point for the Shadow Pricing Game for every
specified r > 0

While the Pricing Game in practice may not be practically
viable (indeed it is not reasonable to expect players to respect
the aggregate constraint in calculating their best response), the
development in this section has showed how to map the Pricing
Game onto the Allocation Game

B. Allocation Game

Once the MNO obtained the vector prices, the actual game
is an auction-based bandwidth allocation mechanism, in which
each slice tenant s submits bid vector xs = (xs

1, . . . , x
s
C), one

bid for each one of the C base stations. Bid xs
c represents the

amount of bandwidth demanded for slice s at base station c.
The MNO collects all bids for each base station and assigns

to each slice s, a fraction of each base station corresponding
to the ratio he attained given the bids received for that base
station, namely the quantity

bsc := Bc
xs
c∑

s′∈S xs′
c

, (8)

where Bc represents the total bandwidth available at base sta-
tion c. As the valuation of each slice is function of bandwidth
received by it, from (1) we write the valuation of slice s as

Vs(bs) =
∑

c∈C
V s
c

(
xs
c∑

s′∈S xs′
c

Bc

)
. (9)

For each slice s, Vs is an increasing function in bsc: without
any payment slice tenants will always bid as much as possible
in order to increase their own benefit. However, after submit-
ting the bids, each customer pays to the MNO the cumulative
sum of prices for the bids she made. More precisely, let γc

s

be the unit cost for bidding for one resource unit (e.g., one
PRB) at base station c for slice s. Then, each slice tenant s
pays γs

cx
s
c for the resources obtained at base station c.

In turn, the utility of a MNO customer is defined as the
difference between the overall benefit obtained by using the
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portion of bandwidth at different base station and the total cost
to pay for using them:

Us(xs,x−s, γs) =
∑

c∈C
V s
c

(
xs
c∑

s′∈S xs′
c

Bc

)
− γs

cx
s
c. (10)

The tenants are rational players and bid for PRBs so as to
optimise their utility (10). Thus, the decision problem of each
slice s ∈ S is to find the optimal xs optimizing its own utility:

Ps : maximize
xs

Us(xs,x−s, γs)

subject to xs
c ≥ 0, ∀c ∈ C

Then, the slicing allocation problem can be interpreted as a
competitive game where players, i.e. the customers compete to
acquire bandwidth for their own slice in order to increase their
utility. The standard notation {P1 . . . PS} describes formally
the bandwidth allocation game.

For this game we can consider the standard notion of a Nash
equilibrium, where we do not have coupled constraints, that
is a multistrategy x∗ = (x1∗, . . . , xS∗

) where for all players
s ∈ S, Us(x

s∗, x−s∗) ≥ Us(x
s, x−s∗) with xs

c ≥ 0, ∀c ∈ C.
In particular, it is known that in the single resource case

Theorem 2 ([16]). The Kelly mechanism has a unique Nash
equilibrium.

Clearly, the uniqueness result extends immediately to the
Allocation Game since the resources are orthogonal1.

The next result is the central result of this paper, since
it provides the connection between the equilibria of the two
games:

Theorem 3. Every r-normalised Nash equilibrium of the
Shadow Pricing Game with shadow prices λc is a Nash
equilibrium for the corresponding Allocation Game with γs

c =
b−s
c

Bc
λs
c.

Proof. Let us consider a normalised Nash equilibrium b of the
Shadow Pricing Game. From (7c), we have that necessarily

∀s ∈ S, ∀c ∈ C, ∂Vs

∂bsc
(b) = λs

c − ξsc .

If we replace λs
c = Bc

b−s
c

γs
c and ηsc = Bc

b−s
c

ξsc for all c ∈ C we
get

∂Vs(x)

∂xs
c

b−s
c

Bc
=

∂Us

∂xs
c

= γs
c − ηsc .

Thus {
∂Us

∂xs
c
(x) ≤ 0 if xs

c = 0
∂Us

∂xs
c
(x) = 0 if xs

c > 0

Thus x satisfies the KKT conditions of the optimization
problem associated to the Allocation Game. Since function Us

is concave with respect to variable xs and the constraints are
linear, they are also sufficient and thus x is a Nash equilibrium
of the Allocation Game.

1The important case when tenants have a total bidding budget is left as part
of future works.

IV. SOCIAL OPTIMAL PRICING

In this section we will show that the proposed mechanism
is able to attain the social optimum. This mechanism is based
on a simple pricing can force slices to choose an equilibrium
(respecting the resources coupled constraint) that coincide with
the optimal solution of (P). Using the cascade of both the
Shadow Pricing game and the Allocation game, the pricing
and allocation are performed in a distributed manner with no
need to exchange per-bandwidth allocation information.

Let us recall the original problem introduced in Sec. (III),
where the MNO’s goal is to solve problem (P). Concavity
of the objective function ensures that there exists a unique
allocation b∗ which maximizes the objective function. Let now
consider the Lagrangian associated to problem (P): it writes
L(b, μ, ν) =

∑
s (V (bs)−∑c μc (

∑
s b

s
c −Bc)−

∑
c ν

s
c b

s
c).

Since the problem is feasible and constraints are affine, KKT
conditions for (P) are necessary and sufficient for optimality
of a solution (b∗, μ∗, ν∗) such that ∀s ∈ S ∀c ∈ C

∂Vs(b
∗)

∂bsc
− μ∗

c + ν∗sc = 0 (11a)

μ∗
c

(∑

s′∈S
b∗s

′

c −Bc

)
= 0 (11b)

ν∗scb
∗s
c = 0, μ∗s

c ≥ 0, ν∗sc ≥ 0 (11c)

Where μ = (μ1, . . . , μC) are the C Lagrange multipliers for
the cells capacity constraints.

Now, if we consider the r-normalized Nash equilibrium for
shadow pricing game with rsc = 1, for ∀s ∈ S and ∀c ∈ C,
we obtain λ1

c = · · · = λS
c = λc for all c ∈ C in the KKT

conditions (7c). For μc = λc the conditions (7c) and (11)
are equivalent and as we have already proved uniqueness of
r-normalized Nash equilibrium in Thm. 1, it holds μ∗ = λ∗.

But then, from Thm. 3 we obtain also that the relation
between the Allocation Game and the Shadow Pricing game

γs
c =

b−s
c

Bc
λ∗
c (12)

settles the Allocation Game on the social optimum.

Theorem 4. The normalised Nash equilibrium attained for
rsc = 1, ∀s ∈ S, ∀c ∈ C by the Shadow Pricing Game attains
the social optimum for problem (P), and so does the Allocation
Game under prices γs

c as in (12).

V. LEARNING AND SYSTEM STABILITY

We have already seen in the previous section that the
proposed mechanism has a unique equilibrium for any price
vector decided by the infrastructure owner. However, while the
MNO can use the price vector as a signal to drive the system
to a socially optimum operating point, the game formulation
of the mechanism has scarce practical relevance. In fact, since
the tenants’ valuation of resources is typically unknown to
the MNO. To this respect, we propose a learning algorithm to
converge iteratively to the target equilibrium in a distributed
fashion. In the proposed solution, the only signal exchanged
between the MNO and the tenants at each step are the bid
vector and the price vector.
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We use the dual averaging or mirror–descent method dis-
cussed in [22], [23]. However, those works only considered
orthogonal constraints. Thus, we have adapted the original
algorithm to tackle the coupled constrained setting. The idea
behind the mirror descent is each player estimates his gradient
and takes steps along the gradient in dual space (where the
gradient lives). The aggregated of the s-th player’s gradient
steps is updated according to equation

ys(n+ 1) =
[
ys(n) + βn �xsUs(x

s(n), x−s(n), γs(n))
]

(A1)
In the above equation ys is an auxiliary variable which
accumulates the discounted gradient and βn is a standard step
size, where

∑∞
n=0 βn = +∞ and

∑∞
n=0 β

2
n < +∞. Every

player s uses his own updated output value ys to take next
action. The technique takes the name mirror–descent because
each player s “mirrors back” the variable ys to his action space
Xs according to the mapping

xs(n+ 1) = argmax
xs∈Xs

{〈ys(n), xs(n)〉 − hs(x
s(n))} (A2)

Here, hs(x) is regularizer, according to definition 3.1 in [22],
or rather a penalty function over the feasible action set Xs.
Penalty hs(x) permits convergence within the interior of the
domain set, that is, the feasible multistrategy set. In our case
we use entropic regularization, also known as Gibbs entropy
function; it takes the form, ∀c ∈ C

hs
c(x

s) = xs
c log(x

s
c) + (1− xs

c) log(1− xs
c)

over domain X s
c = {x : 0 ≤ xs

c ≤ 1}. The advantage of
this formulation is that it can be easily scaled to original
constraints. Furthermore, by applying KKT conditions to max-
imization problem (A2), after some calculations it produces
the exponential mapping for all s ∈ S and c ∈ C:

xs
c(n+ 1) =

Bc exp(y
s
c(n))

1 + exp(ysc(n)))
(13)

The one above is similar to well-know Logit map, where
player gives the weights to different resources depending on
exponential of aggregated gradients. The players take the
actions (in our case the bids) independently of each other,
which could results in violation of the resource capacity
constraints. In order to handle this problem, the MNO updates
the prices in such a way that, the players are forced to obey
coupled constraints. The prices appear as Lagrange multipliers
for coupled constraints (capacity constraints). As similar to
the players, she takes the step along the negative gradient of
Lagrangian and updates the price per resource:

λc(n+ 1) = max

(
0, λc(n) + βn

( ∑

s′∈S
xs′
c −Bc

))
(14)

This updated value of Lagrangian multipliers act as new prices
for all tenants and resources, that is

γs
c (n) =

x−s
c

Bc
λc(n)

If all the players and MNO simultaneously take action as
per the designed algorithm, the proposed algorithm converges
to the unique Normalized Nash equilibrium (x∗, λ∗) of the

Pricing Game. Moreover, if we fixed the prices γ and players
are allowed to play only according to the algorithm, the
designed algorithm converges to unique Nash equilibrium of
the Allocation Game. Note that the update rule of the MNO
corresponds to the choice of vector r such that rc = 1 for
all c ∈ C. To this respect, we provided a formulation where
the r-normalised Nash equilibrium corresponds to the social
optimum. In general, it is possible to set the coefficients of
vector r at will. Clearly, the corresponding solution will not
be converging to the social optimum, but this provides some
space for tenants’ prioritisation, which we leave as part of
future works.

Algorithm 1 On-line Distributed Learning Algorithm
Require:

∑∞
n=0 βn = ∞, βn → 0 as n → ∞

1: repeat at time step n = 1, 2, . . . ,
2: for each player s ∈ S
3: Observe gradient of utility and update
4: y′s ← ys + βn∇xsUs(x

s, x−s, γ)
5: end for
6: for each player s ∈ S
7: for each resource c ∈ C
8: Play x′s

c ← Bc exp(ys
c)

1+exp(ys
c)

9: end for
10: end for
11: for each resource c ∈ C update the price
12: λ′

c ← max
[
0, λc +

βn

K

(∑
s∈S xs

c −Bc

)]

13: end for
14: for each player s ∈ S, ∀c ∈ C
15: γs

c ← x−s
c

Bc
λc

16: end for
17: until ‖(x′, λ′)− (x, λ)‖ ≤ ε

Theorem 5. If algorithm satisfies the required conditions for
step size sequence,

∑∞
n=0 βn = ∞, βn → 0 as n → ∞ then

for sufficiently large K Algorithm 1 converges to the unique
Normalized Nash equilibrium of the Shadow Pricing Game.

Proof. In [24] authors had already proved convergence of
algorithm as similar to ours for the single resource Allocation
Game. We will use the same technique as discussed in
Theorem 2 [24] to prove convergence of the Algorithm 1 to
Normalized Nash equilibrium of the Pricing Game. Now to
show convergence of the Algorithm we will first show the
asymptotic stability of mean dynamics of the algorithm. We
write the continuous-time equivalent from steps 4, 8 and 12
of the algorithm. For simplicity of exposition, we consider
here the single user case, since the general case follows
immediately:

ẏsc =
∂Vs(x)

∂xs
c

− γs
c (15)

xs
c =

exp ysc
1 + exp ysc

(16)

λ̇c =

(∑

s′

xs′
c −Bc

)
(17)
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Taking derivative of (16) and replacing in (15) gives

ẋs
c =xs

c(1− xs
c)

(
∂Vs(x)

∂xs
c

− γs
c

)
(18)

λ̇c =

(∑

s′

xs′
c −Bc

)
(19)

Now to show stability of dynamics, let consider Lyapunov
function

(20)
L(x, λ) =

∑

s

[
x∗s

c log
x∗s

c

xs
c

− (1− x∗s
c) log

1− x∗s
c

1− xs
c

]

+
1

2
‖λc − λ∗

c‖2

Taking derivative gives

L̇ =
∑

s

xc
−sBc

(
∑

s′ x
s′
c )

2

[
∂Vs(y

s
c)

∂ysc
(xs

c − x∗s
c)− λ∗((xs

c − x∗s
c))

]

(21)
where at the equilibrium λ∗ =

∂Vs(y
∗s
c)

∂ys
c

∀s ∈ S .

If the pseudo gradient (∂V1(xc)
∂x1

c
. . . ∂VS(xc)

∂xS
c )

) is diagonally
strict concave (DSC) (see[20]), then L̇ is negative. But in our
case DSC doesn’t hold in general. However it holds for some
neighborhood around the Nash equilibrium x∗, therefore (21)
is negative for some Bc = B′

c which is in neighborhood of∑
s′ x

s. In order to overcome this problem, we scale down
the step length for Lagrange multiplier update rule by some
sufficiently large constant K which makes (21) negative, thus
rendering the dynamics asymptotically stable. The rest of proof
follows from the Theorem 2 [24].

VI. NUMERICAL EXPERIMENTS

In this section we will provide numerical results to demon-
strate the behaviour of the proposed mechanism. For the
numerical experiment we considered a system with three slices
S = {1, 2, 3} and two base stations C = {1, 2}. Tenants of
slices 1, 2 and 3 have N1

1 = 3, N2
1 = 5 and N3

1 = 2 users,
respectively, associated at base station 1. At base station 2 they
have N1

2 = 2, N2
2 = 4 and N3

2 = 6 users, respectively. The
available bandwidth at each base station is 30 MHz and we
assume that the SNR of each user lies in the range between
30 and 75 dBs. Every slice uses some scheduling policy to
assign the acquired bandwidth among its users: for the purpose
of numerical illustration we assume that each slice is served
using per-slice proportional fair scheduling.

The distributed learning Algorithm-1 is employed in order to
determine the socially optimal Nash Equilibrium. Plots (a) and
(b) in Fig. 3 show the converging dynamics of the bandwidth
bids vector. As seen there, it stabilises at the target Nash
equilibrium for both base stations 1 and 2. The distribution
of bandwidth allocation at Nash equilibrium is shown in bar
graph (g). As it can be clearly seen, the allocation of bandwidth
at both base stations is consistent with the number of user
per slices. In fact, at base station 2, slice 2 has more users
compared to the other two slices; as expected, it attains hence
a larger share of the available bandwidth. The target allocation
has been achieved by using the pricing vector which is shown

in the plot (c) and (d) of Fig.3. In those graphs we observe the
convergence of prices per slice and per base station. The prices
charged by MNO for each slice are inversely proportional to
number of the users. Finally, bar graphs (e) and (f) illustrate
the throughput achieved per user under the resulting bandwidth
allocation; the graphs indicate a mild throughput variation
across the users within a slice, a result consistent with the
use of PFS at slice level.

VII. CONCLUSIONS

In this paper, we have considered a scenario where cus-
tomers compete to obtain a slice of resource in 5G net-
works. We employ a mechanism based on a multi-bid Kelly
mechanism, using as price vector the one resulting from the
normalised Nash equilibrium which solves a dual game under
coupled constraints. The solution of the game is obtained via
an online learning mechanism which ultimately converges to
the social optimum. The key technical challenge overcome by
the proposed bidding mechanism is to account for the coupled
constraints dictated by the available infrastructure resources.
This renders the proposed one an interesting candidate mech-
anism for pricing slicing in 5G networks. In fact, to the best
of the authors’ knowledge, no suitable learning mechanism
is known for Nash equilibria under the coupled resources
constraints which are central in 5G resources slicing.

REFERENCES

[1] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung,
“Network slicing based 5G and future mobile networks: Mobility, re-
source management, and challenges,” IEEE Communications Magazine,
vol. 55, no. 8, pp. 138–145, Aug 2017.

[2] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5G network slice broker,” IEEE Com-
munications Magazine, vol. 54, no. 7, pp. 32–39, July 2016.

[3] “5G; management and orchestration; concepts, use cases and require-
ments (3gpp ts 128.530 version 15.0.0 release 15 (2018-10).”

[4] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A
resource allocation framework for network slicing,” in Proc. of IEEE
INFOCOM, April 2018, pp. 2177–2185.

[5] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5g network
slicing resource utilization,” in Proc. of IEEE INFOCOM, May 2017,
pp. 1–9.

[6] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” in Proc. of IEEE
INFOCOM, March 2012, pp. 1206–1214.

[7] J. Zheng, P. Caballero, G. de Veciana, S. J. Baek, and A. Banchs,
“Statistical multiplexing and traffic shaping games for network slicing,”
IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2528–2541, Dec. 2018.

[8] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez, “Multi-
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Abstract—Network Slicing is one of the essential concepts that
has been introduced in 5G networks design to support demand
expressed by next generation services. Network slicing will also
bring new business opportunities for service providers (SPs) and
virtual network operators, allowing them to run their virtual, in-
dependent business operations on shared physical infrastructure.
We consider a marketplace where service providers (SPs) i.e.,
slice tenants lease the resources from an infrastructure provider
(InP) through a network slicing mechanism. They compete to
offer a certain communication service to end-users. We show
that the competition between SPs can be model using the multi-
resource Tullock contest (TC) framework, where SPs exert effort
by expending costly resource to attract users. We study the
competition between the SPs under a static and dynamic resource
sharing scheme. In a dynamic resource sharing scheme, SPs
are pre-assigned with fixed shares (budgets) of infrastructure,
and they are allowed to redistribute their shares and customise
their allocation to maximise their profit. The decision problem
of SPs is analysed using non-cooperative game theory, and it is
shown that the resultant game admits a unique Nash Equilibrium
(NE). Furthermore, a distributed reinforcement algorithm is
proposed that allows each SP to reach the game’s unique Nash
equilibrium. Finally, simulations results are conducted to analyse
the interaction between market players and the economic efficacy
of the network sharing mechanism.

Index Terms—Communication service market, game theory,
tullock contest, trading post mechanism, 5G network slicing,
resource allocation.

I. INTRODUCTION

Next-generation wireless network is expected to spread its ap-
plicability and deliver support to emerging sectors like Virtual
Reality (VR) live broadcast, automotive, healthcare, manufac-
turing etc. Critical challenges in mobile network applicability
to the sectors mentioned above are their heterogeneity and
conflicting communications needs that the current monolithic
network is insufficient to meet. Several new concepts have
been proposed for the upcoming 5G network design to satisfy
these critical needs. Out of those, probably one of the most
important concepts in 5G network design is “network slicing”.

Network slicing is the concept of running multiple in-
dependent logical networks (slice) on top of the common
shared physical infrastructure. Each independent logical net-
work (slice) is then explicitly dedicated to meeting each slice
tenant’s needs, contrary to the approach “one-size-fits-all”
witnessed until previous mobile generations [1].

This work was supported by Nokia Bell Labs and MAESTRO-5G-ANR

The implication of network slicing brings a paradigm shift
towards a multitenancy ecosystem where multiple tenants own-
ing individual slices negotiate with multiple InPs to request
the resources for their service provision. In this scenario, the
SPs or slice tenets generally express a demand for a dedicated
isolated (that may need dedicated fixed resources allocation)
and independent virtual network with full ownership of their
service level agreement (SLA). On the contrary, InPs aim to
maximize their return on investment by enabling the dynamic
sharing of infrastructure, as this lowers the operational and
capital costs and allows InPs to monetize their infrastructure
to its fullest potential. However, the sharing of infrastructure
may expose the tenants to the risk of violating their SLAs.
Hence, one of the fundamental issues in network slicing is
an efficient sharing of the network resources, which regulates
the trade-off between two conflicting interests, i.e., interslice
isolation and efficient network resource utilization.

In order to balance the interslice isolation and efficient
resource utilization, authors of [2] suggested the ‘share-
constrained proportional allocation’ (SCPA) scheme where
each slice is pre-assigned with a fixed share (budget) of
infrastructure; slices are allowed to redistribute their shares
and customize their allocation according to dynamic load. In
turn, InP allocates each resource to slices in proportion to
their shares on that resource. This approach allows a dynamic
sharing, where tenants can redistribute their network share
based on the dynamic load; at the same time, it provides the
slice tenants degree of protection by keeping the pre-assigned
share intact.

In the context of the above resource sharing mechanism,
we consider a market scenario where a set of SPs lease
their respective networks from InP and employ the network
slicing mechanism to request the resources required for their
service provision. We consider the SPs offer a particular
service to users, and the resources inventory available with
SPs characterizes their service performance. The users are
free to choose their SP; their decisions are made based on
the service satisfaction attained from SPs. Furthermore, we
consider that the SP collects revenue by providing the service
to its customer. Under the combined effect of a dynamic
resource sharing mechanism and profit-oriented nature of SPs,
it is highly expected that selfish SPs may exhibit strategic
behaviour. For example, they might strategically distribute
their shares on the resources conditioned on the tradeoff
between quality of service (QoS) they want to offer and the
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congestion perceived at the resources. Such selfish behaviour
could hamper the market’s economic efficiency or cause
instability in the network slicing mechanism. In this work,
we focus on (1) building a business model representing the
communication service market where SPs negotiate with InP
to request resources and compete to serve a pool of end-users.
(2) with the help of the proposed model, analyzing the effect
of the network slicing mechanism (i.e.,SPCA based dynamic
resource sharing mechanism) in terms of the economic effi-
ciency and stability of the network.

Related work: There is an enormous amount of related work
on the communication service market, broadly, the communi-
cation service market has been studied as a two-level market
where three types of participants: Infrastructure provider (InP),
Service Provider (SP1) and (EU) End Users, are generally
considered. In the first level market, SPs (buyers) leases the
resources from the InPs (sellers), negotiating for resource
prices and resource quantity. In the second level, SPs (buyers)
utilize the acquired resources from InPs to offer a certain
service to their end users (buyers). At this level, SPs decide
on their service price and scheduling of resources, while EUs
make their subscription decisions. In [3], SPs’ strategic deci-
sion over their service pricing scheme has been analyzed as
Cournot game. In [4], authors considered that the Qos achieved
by the user from SP depends on the number of subscribers
associated with that SP, and users’ choice behaviour can be
analyzed by evolutionary game theory (EGT). The authors in
[5] integrated both the users’ choice evolution and the SPs
pricing scheme and analyzed it with the Stackelberg game
approach. The SPs, the leaders, strategically decide the price
to attract the users and the users the followers choose the SPs
to maximize their service satisfaction level. Also, the number
of subscribers associated with the SPs depends on QoS and
consequently the resources available with them; bearing in
mind the competition among the SPs, resource demand by
SPs can be analyzed with the non-cooperative game [6]. In
[7], authors considered that competition between SPs takes
place in pricing and quality of service SPs offer. In practice,
SPs may not have complete information about the other SPs
resources. Keeping this in mind, authors of [8] studied SPs’
pricing behaviour with the bayesian game, where SPs decide
the pricing schemes based on their belief about the resources
available with others. Furthermore, the authors also considered
the possibility of cooperation between the SPs and analyzed its
impact on the pricing scheme. In all the above work, the SPs
lease the resources from the InP and compete to serve end-
users, which is also the case in our work. However, our work
departs from these works in that resources are shared using
a slice-based dynamic sharing mechanism. Moreover, in our
case, resources are spatially distributed, and service offered in
a particular cellular cell can only be supported by the resources
available within that cell. In communication networks, one of
the well-known scheme for resource allocation is the auction-
based allocation [9] e.g., kelly mechanism. Authors of [10],
[11] proposed multi-bidding kelly mechanism-based resource
allocation for 5G slicing. They showed that mechanism leads

1In many works term Mobile virtual network operator (MVNO), tenate,
slice, Mobile service provider (MSP) has been used for SP

to a fair and efficient resource allocation on the level of both
the slices and their end-users. Our work departs from the
auction-based mechanism like [10]-[11], where agents’ bids
are unbounded.

In follow up work to [2], authors in [12] considered the
network slicing under stochastic loads and applied SPCA
based resource sharing scheme; they modeled resource sharing
scheme as a game and showed that slices achieve efficient
statistical multiplexing at the Nash equilibrium. The authors
of [13] studied the communication service market where SPs
employ the SPCA mechanism to request the resources from
InP; they analyzed the economic impact of network slicing on
the market. In [14], authors designed an automated negotiation
mechanism based on the aggregate game that enables the slice
tenants to dynamically trade the radio resources and customize
their slices on instantaneous demands, which help tenants
achieve higher profits. Our work is closely related to [13]
however main novelty of our work lies in considering multi-
resource service provisioning; at the best of our knowledge,
the works related to the communication service market only
deals with radio resource.

In this work, we leveraged the TC [15] framework to model
the competition between the slices. This framework has been
extensively used before in the communication field to model
the interaction between competitive agents. To mention a few,
in the paper, [16], the competition between social media users
for visibility over the timeline has been model as a TC. The
authors of [17] proposed the TC based incentive mechanism
for crowdsourcing. The Tullock contest framework has been
applied to the multipath TCP network utility maximization
problem [18]. In the paper [19], authors studied the multi-
cryptocurrency blockchain from a game-theoretic perspective,
where the competition between the miners is framed as a TC.

Main Contribution: The key contributions of this work
are the following 1)We proposed the business model for the
service providers, where the SPs deploy the network slices for
their business and leases their respective resources through
network slicing mechanism (i.e, dynamic sharing). The SPs
compete to serve end-users in terms of QoS. 2)We model
the competition between the SPs as a multi-resource Tullock
contest. To the best of our knowledge, this is the first paper
where the framework of the multi-resource TC is used. 3)We
show that the game induced through competition between the
SP i.e, multi-resource Tullock rent-seeking game admits a
unique Nash equilibrium (NE). Thus our theoretical results
also contribute to the study of the tullock rent-seeking game.
4)We consider that the InP faces with challenge of deciding the
resource pricing and we propose the trading post mechanism
as its pricing solution 6) For some special case, we show that
game induces by trading post mechanism admits unique Nash
equilibrium. 7)We also provide the distributed reinforcement
learning algorithms that provably converge to the game’s
unique NE.

The rest of the paper is organised as follows; Section II
introduces the system model, Section III present the game-
theoretic model of competition between the SPs. In Section
IV, we study the existence and uniqueness properties of NE.
Section V introduces resource pricing and market equilibrium;
in section VI, we provide the distributed learning scheme. In
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Fig. 1: service providers i.e., (slices) compete to offer a
certain service to geographically distributed pool of users

Section VII, we report on numerical results. A concluding
section ends the paper.

TABLE I: Main notations used throughout the paper

C := {1, . . . , C} , set of base stations or cells
S := {1, . . . , S} , set of slices (tenants)
Mc , set of resources at base station c
Nc , number of users in cell c
nc
s , number (subscribers) users associated

with slice s in cell c
dcs :=

(
dcsm, . . . , dcsM

)
, bundle of resources available with slice

s in cell c
dcsm , amount of resource type m available

with slice s in cell c
Dc

m , the capacity of resource type m at base
station c

qcs , the quality of service of slice s in cell
c

ωc
m , the price per unit resource of type m

at base station c
ps , service fees charge by slice s to users
Bs , budget available with slice s

II. SYSTEM MODEL

We consider a market scenario, where in the first stage, a set of
SPs S lease their respective networks from InP and employ the
network slicing mechanism to request the resources required
for their service provision. In stage two, the SPs (sellers) use
the leased resources and compete to serve the large set of
end-users (buyers). Specifically, as described in Figure 1, we
consider InP owns a network that consists of a set of base
stations or cells C. Each base station at different locations
accommodates multiple types of resources such as bandwidth,
CPU, memory, etc. Users are spread across the network, let
N c number of users present in the cell c and service offered by
SP in a particular cell can only be supported by the resources
available within that cell.

A. User Model

We assume all the users need the same type of service, and
they achieve their demand by subscribing to one of the SPs.
We consider each user is opportunistic and free to change its
SP, i.e., a slice from available slices at its base station. The
user chooses a slice as its SP that offers a better deal, i.e.,

higher QoS at a lower price. We model the utility of each
user served by SP s ∈ S in cell c as [8]

U c
s (n

c
s, q

c
s, ps) = log

(
qcs
nc
s

)
− ps (1)

Where qcs is the quality of service of SP s in cell c, nc
s is

number of users connected to SP s while ps is the fees charged
by SP for its service. Here the use of a logarithmic2 function
as the user’s utility in QoS signifies that the users’ satisfaction
level saturates as the QoS increases, which is coherent with
the economic principal of diminishing marginal returns. The
SP’s QoS depends on the resources inventory available with it.
We assume each SP applies a scheduling policy to distribute
its resources among users that achieve equal QoS among users
in the long run. From (1) we observe that the utility of each
user depends on the total number of users associated with the
same SP, as the number of users connected to the same service
increases the utility of the user decreases.

Assumption 1. We assume that users revise their choice
occasionally. As the users’ selection process evolves, the
market reaches equilibrium states where none of the users
alters their SP choice, and the SPs provide equal utilities to
operate with each other.

This type of assumption is generally used in game theory
while analyzing the strategic behaviour of a large number of
selfish decision-makers, where for each decision-maker, exact
information about all other decision-makers is rarely possible
e.g., Evolutionary game theory [20].

Lemma 1. Under assumption 1, the number of users associ-
ated with each SP at equilibrium is given by

nc
s =

N cqcse
−ps

∑
s′∈S

qcs′e
−ps′

(2)

Proof. AppendixA

B. Service provider Model

We assume that the service providers aim at maximizing their
number of subscribers (nc

s) by attracting users with better QoS
and lower price. In (2), the number of users joining a particular
SP depends on QoS and the price offered by that SP and
QoS and price offered by other SPs. Notice that expression
for the number of users associated with SP, in the long run,
resembles a contest success function from well know Tullock
contest framework [21]. The TC framework is commonly
used in economics literature for modeling economic or social
interactions between two or more competing agents. The basic
contest framework consists of competing agents who expend
costly resources to win a prize (a contest); given the efforts
exerted by all agents, the probability of an agent winning
a prize is defined by the contest success function (CSF).
Typically, the CSF function is defined as ρ(x) = (xi)

r
∑

i′ (xi′ )r

where xi is the effort of agent i and r is a parameter, for

2The logarithm function also signifies that the SPs achieve the proportional
fair allocation between the user in the long run

Authorized licensed use limited to: INRIA. Downloaded on January 23,2022 at 13:49:06 UTC from IEEE Xplore.  Restrictions apply. 



4

example r = 1 is the well know lottery and r → ∞ defines
the all-pay auction.

In the slicing context, we consider that SPs compete to
attract users to their services. SPs exert effort by expending
costly resources; the resources acquired by SPs further reflect
their service quality and help SPs to attract users. Thus, in our
case, the contest success function represents the probability
that any SP successfully attracts an end-user to its service.
Keeping in mind the context of this work, we prefer to
call contest success function as slice association probability
function As, representing the probability that given resources
expended by all SPs; a user will associate with a SP s. For
our model, we defined a more general and multi-resource CSF
function or slice association probability function

Ac
s(d

c, p) =
f c
s (d

c
s, ps)∑

s′∈S
f c
s′ (d

c
s′ , ps′)

(3)

Where function f c
s (d

c
s, ps) is concave non decreasing in dcs

and convex and decreasing in ps. We assume that the QoS
provided by SP depends on the resources inventory available
to slice and its relation is defined as qcs := qcs(d

c
s) where

dcs = (dcsm, . . . , dcsM ) denotes a bundle of resources available
with SP s and element dcsm shows amount of resource type m
acquired by SP s at cell c. We assume that ∀c ∈ C and ∀s ∈ S
function qcs (d

c
s) is concave non decreasing in dcs, this type

of assumption is widly use in economics signifying principle
of diminishing marginal returns. In this work, we consider
f c
s (d

c
s, ps) as qcs(d

c
s)e

−ps . In (3) the number of potential users
in each cell as well as the slice association probability for each
slice, might vary from cell to cell. The expected number of
users associated with SP s throughout the network is defined
as.

∑

c∈C
N cAc

s(d
c, p) =

∑

c∈C

N cf c
s (d

c
s, ps)∑

s′ f
c
s′ (d

c
s′ , ps′)

(4)

Each service provider collects the revenue from the fees paid
by its subscribers. The expected revenue generated by SP s
by its subscriber over the network is defined as.

Rs(d, p) = ps

(∑

c∈C
N cAc

s(d
c, p)

)
(5)

On the other hand, each SP needs to pay for the resources it
leased from the InP. Let ωc

m be the price per unit resource of
type m charge by InP at base station c. Thus total cost each
SP s needs to pay for its resources is

∑
c∈C
∑

m∈Mc ωc
mdcs,m.

The profit gained by SPs is defined as

Us(d, p) = ps

(∑

c∈C
N cAc

s(d
c, p)

)
−
∑

c∈C

∑

m∈Mc

ωc
mdcs,m (6)

We assume that each SP s is pre-assigned with a finite budget
Bs, which depends on its service level agreement (SLA) with
the InP, and this budget represents the SP’s priority or a fixed
share of the available resources pool, such that

∑
s∈S Bs = 1.

We observe that the profit gain by the SPs depends not only
on their own decisions but also on decisions made by other
SPs; in such a scenario, SPs might exhibit strategic behaviour

and face the non-cooperative game.

III. GAME MODEL

In this section, we model the interaction between the service
providers as a non-cooperative game; we assume that the SPs
are selfish, and each SP aims at maximizing its profit. We
study the competition between the SPs in term of their quality
of service, that is, how SPs strategically spend their budget
on the resources to attract the users and, in turn, maximize
their profits. The profit gain by the SPs depends on both their
individual decision and the decision taken by their counterpart.
The decision problem of each SP s is defined as.

Qs maximize
ds∈Bs

Us(ds, d−s)

We assume that the service providers are strategic while mak-
ing a decision; they also take into account the decision of other
SPs. To theoretically analyze this strategic interaction, we
define the non-cooperative game G :=

〈
S, (Bs)s∈S , (Us)s∈S

〉

as follows:
• Player set: the set of service providers S
• Strategy: the vector of resource demand ds =(

d1s, . . . , d
C
s

)
where dsc is the amount of resource to be

requested to the each base station c. The strategy set for
each SP s is Bs

• Utility: The utility of each SP s is equal to the Us

To study the outcome of the defined game, we consider the
standard notion of a Nash equilibrium,

Definition 1. A strategy profile d∗ = (d1
∗, . . . , dS

∗) is called
a NE of the game G if

∀s ∈ S, Us(ds
∗, d−s

∗) ≥ Us(ds, d−s
∗), ds ∈ Bs (7)

Here, (ds, d−s
∗) denotes the strategy profile with sth element

equals ds and all other elements equal ds′
∗ (for any s′ 6= s).

In the next section, we analyze the existence and uniqueness
of Nash equilibrium for the game G

IV. EXISTENCE AND UNIQUENESS OF THE NASH
EQUILIBRIUM

In this section, we establish the existence and the uniqueness
of Nash equilibrium of game G; for the proof of the uniqueness
of NE, we rely on the concept of diagonally strict concavity
(DSC) introduced by Rosen [22]. Intuitively, DSC is a gener-
alization of the idea of convexity to a setting of games.

Definition 2 (Diagonal strict concavity [22]). A game with
strategy vectors d and utility function U is called diagonally
strict concave (DSC) for a given vector r if for every distinct
d̄ and d̂, [

g(d̄, r)− g(d̂, r)
]
(d̄− d̂)′ < 0 (8)

with

g(d, r) =
[
r1∇1U1(d), r2∇2U2(d), . . . , rS∇SUS(d)

]
. (9)

where ∇sUs(d) denotes the gradient of utility of player s with
respect its won strategy ds
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Theorem 1. The game G always admits a unique NE.

Proof. The utility of each SP in-game G is continuous, in-
creasing, and concave, while the action space for each SP is
convex and compact. Therefore the existence of an equilibrium
for the game is followed by (Theorem 1 [22]). Now for the
uniqueness of Nash equilibrium, If the utilities of players in
the game G satisfies the DSC property, then the uniqueness of
NE to game G follows by (Theorem 2 [22])

Let G(d, r) be the Jacobian of g(d, r) with respect to d,
where d is any multistrategy of the game. In order to prove
strict diagonal concavity of g(d, r), by (Theorem 6 [22]),
it is sufficient to prove that the symmetrized version of the
pseudo-jacobian, i.e., Ĝ(d, r) = G(d, r)+G(d, r)′, is negative
definite for all the domain of interest. To show that the Ĝ(d, r)
is negative definite it must be shown that following three
conditions are satisfied:

C 1. each Us(d) is a regular strictly concave function of ds
(i.e., its Hessian is negative definite)

C 2. each Us(d) is convex in d−s

C 3. there is some r > 0 such that function σ(d, r) =∑
s rsUs(d) is concave in d

then negative definiteness of [G(d, r) + G′(d, r)] follows
from Lemma 1 [23]. We first consider a case of single base
station c and show that Ĝc(d, r) is negative definite for this
case. We calculate the Hessian (HsU

c
s ) of utility of any SP s

with respect to SP s owns strategy.

HsU
c
s = −2

ps
∑

s′∈S,s′ 6=s

f c
s′

( ∑
s′∈S

f c
s′

)3

[
(∇sf

c
s )

T∇f c
s −Hs(f

c
s )
∑

s′∈S
f c
s′

]

(10)

on the right hand side of (10) matrix (∇sf
c
s )

T∇f c
s is positive

semi-definite, where ∇sf
c
s is gradient row vector of f c

s with
respect to its own strategy dcs, Hs(f

c
s ) is the Hessian of f c

s with
respect to dcs and its negative definite as f c

s is concave. Thus
the Hessian of utility HsU

c
s is negative definite and satisfies

the first condition C1. Now we will show that the utility of
each SP s is convex in the strategy of all other SPs, for that
purpose consider the Hessian of utility of SP s with respect
to strategy of all other SPs

H−sUs = 2
f c
s( ∑

s′∈S
f c
s′

)3 [M c
s − diag−s {H(f c

u)}] (11)

where is M c
s block matrix and uvth block is defined as

M c
suv = (∇uf

c
u)

T∇vf
c
v where u, v 6= s, u, v, s ∈ S (12)

∇uf
c
u is gradient row vector of f c

u with respect to its own
strategy and diag−s {H(f c

u)} is block diagonal matrix with
block u is H(f c

u) hessian of f c
u with respect strategy vector

of u itself ∀u, u 6= s, u ∈ S . In right hand side of equation (11)
matrix M c

s is positive definite and the block diagonal matrix
diag−s {H(f c

u)} is negative definite as the each diagonal

matrix element H(f c
u) is negative definite thus H−sUs is

positive definite, which satisfies the condition C2. Now we
take the rs = 1

ps
∀s ∈ S and then σ(d, r) =

∑
s rsUs(d) is

concave in d
Now we will extend the proof for multi-base station case;

we have already shown (Ĝc) is negative definite for any single
base station c. For C base stations, consider a Ĝ symmetrized
version of the pseudo-Jacobian; after arranging columns and
rows, we get (see Corollary 2 in [24])

(Ĝ) = diag
{
Ĝ1, . . . , Ĝc, . . . ĜC

}

The above Ĝ matrix is negative definite as each diagonal
matrix is negative definite, which proves the DSC property
holds for the multi-cell scenario. Then by Theorem 2 [22] the
equilibrium point d∗ for the game G is unique.

V. RESOURCE PRICING AND EQUILIBRIUM

We have shown in the previous section that there exists a
unique NE to game G. We assume that the physical resources
available with the InP in each cell are finite. Given per-unit
prices for resources decided by the infrasture provider, the total
resource demanded by SPs at NE of game G may violate the
Infrastructure capacity. Thus, InP’s primary concern is how to
efficiently allocate the limited physical resources to competing
SPs with diverse characteristics and preferences. The desired
allocation must satisfy all the SPs and simultaneously maintain
high resource utilization. In this regard, we assume that InP
seeks the prizing scheme (per-unit prices) for each resource
such that at the Nash equlibrium of game G each SP utilizes
its entire budget and no resources remain leftover i.e, the
total demand of resources matches the available infrastructure
capacity. In economics, such a pricing decision problem has
been often studied as a market equilibrium problem e.g, Fisher
market [25]; market equilibrium is a solution concept where
market prices are settled in such a way that the amount
of resources requested by buyers is equal to the amount of
resources produced or supplied by sellers.

One way to find market equilibrium or pricing scheme
is through a tatonnement process, i.e., if the demand for
resources exceeds its capacity, increase the resource’s price.
Contrarily decreases resource’s price when the demand is
smaller than the capacity. The disadvantage of the above
approach is that it does not always guarantee the ability to
satisfy the resource capacity while applying such a process.
To overcome this limitation, we use the approach introduced
by Shapley and Shubik in their pioneer work [26], also known
by the various names like Trading Post, share-constrained
proportional allocation (SCPA) scheme [2]. Now we formally
define the Trading post mechanism.

A. Trading post mechanism

In the trading post mechanism, each player (i.e, SP) places a
bid on each type of resource. Once all SPs place the bids, each
resource type’s price is determined by the total bids placed for
that resource. Precisely, let SP s submits a bid bcsm to resource
m at cell c. The price per unit of resource m at cell c is then
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set to
∑

i∈N bcsm
Dc

m
, accordingly SP s receives a fraction of dcsm

in return to his spending of bcsm.

dcsm =

{
bcsmDc

m∑
u∈S bcum

if bcsm > 0

0 otherwise
(13)

After replacing dcsm in (6) in terms of bids and the decision
problem of each SP s is written as below.

Q̂s maximize
bs

Us (bs, b−s)

subject to
∑

c∈C

∑

m∈Mc

bcs,m ≤ Bs, b
c
s,m ≥ 0.

Here we consider two possible nature of the service providers;
first, they are price takers. i.e., they accept the price decided
by the market, and they only act strategically in terms of
demand for the resources. Second, SPs are price anticipating;
they expect the effect of their demand on the price of the
resources. Hence they act strategically in term of resource and
the congestion on the resources. When SP are strategic in both,
the trading post mechanism induces a new non-cooperative
game. We define the non-cooperative game Ĝ as follows:

• Player set: the set of SPs S
• Strategy: the vector of bids bs =

[
b1s, . . . , b

C
s

]

where bcs is the bid to be submitted to the resource
cell c. The strategy set for each SP s is Bs ={
bs|
∑

c∈C
∑

m∈Mc bcs,m = Bs,
}

• Utility: The utility of each SP s is equal to the Us

To study the outcome of the mechanism, we consider the
standard notion of NE,

Definition 3. A multi-bid strategy b∗ = (b∗1, . . . , b
∗
S) is called

a NE of the game Ĝ if

∀i ∈ N , Us(b
∗
s, b

∗
−s) ≥ Us(bs, b

∗
−s), bs ∈ Bs (14)

Here, (bs, b∗−s) denotes the strategy vector with sth element
equals b and all other elements equal b∗v (for any v 6= s).

For the proposed mechanism, interpretation of NE of
game Ĝ constitutes a stable bidding policy where each SP
is satisfied with its individual utility characteristics and the
existing resource allocation mechanism. Now, we investigate
the existence and uniqueness properties of NE; showing the
uniqueness and existence of multi-resource Ĝ game requires
complex calculations; thus, we keep our theoretical analysis
of game Ĝ limited to a single resource (radio resource). We
assume that the QoS provided by SP s in cell c is given
by qcs = (dcs)

ρc
s where ρcs is a sensitivity parameter and

0 < ρcs ≤ 1, such type of function has been used in [13] to
model the effect of users sensity towards their service provider
selection. We replace qcs = (dcs)

ρc
s in (1) and from (3) we get

Ac
s(d

c, p) =
(dcs)

ρc
s e−ps

∑
s′∈S

(dcs′)
ρc
s′ e−ps′

(15)

Proposition 1. If for single resource case, the QoS provided
by SP s in cell c is defined by qcs = (dcs)

ρc
s and 0 < ρcs ≤ 1

then game Ĝ admits unique NE.

Proof. If the the QoS provided by SP s in cell c is defined by

qcs = (dcs)
ρc
s and 0 < ρcs ≤ 1 then utilities of SPs satisfies the

conditions C1,C2 and C3, rest of proof is same as the proof
of theorem 1.

Moving ahead, now we compare the profit gain by service
providers at the Nash equilibrium of the game with baseline
static proportional allocation scheme (SS)i.e. allocation where
each resource is allocated to a service provider s in proportion
to its budget Bs∑

s′∈S Bs′

Proposition 2. For two service providers, the revenue gain
under a dynamic resource sharing scheme at least equal to
the revenue gain under a proportional sharing scheme

Proof. Appendix C

In the next section, we provide the distributed learning
algorithm, which provable converge to both G and Ĝ games’
unique Nash equilibrium.

VI. DISTRIBUTED LEARNING ALGORITHM

We have already proved in the previous section that the Game
G admits a unique equilibrium for any price vector decided
by the Infrasture provider. However, we still need to verify
whether tenants can reach this equilibrium in a distributed
fashion. In this regard, we propose an exponential learning
algorithm that allows the tenants to converge to the game’s
unique NE. The proposed learning algorithm is a special case
of dual averaging or mirror–descent method suggested for
continuous action convex games [27]. Now, we proceed by
describing the dual averaging method; in the dual averaging
method, each player i.e., SP s estimates its marginal utility
or utility gradient with respect to its own strategy. To increase
their utilities, players need to take action along the direction of
their utility gradient while maintaining their action in feasible
action space. In order to achieve this, each player s at each
time step n accumulates its discounted utility gradient in some
auxiliary variable ys,

ys(n+ 1) = [ys(n) + αn ▽bsUs(bs(n), b−s(n))] . (A1)

In the above equation αn denotes the discount factor or step
size. Once the discounted gradient has been accumulated ,
every SP s utilize its own updated value of the auxiliary
variable ys to take the next feasible action.

bs(n+ 1) = Qs(ys). (16)

In turn, each SP s maps the recent value of auxiliary variable
ys to its decision space Bs using the some mapping Qs(ys),
e.g., Qs can be projection map. The map Qs(ys) is defined in
more general as

Qs(ys) = argmax
bs∈Bs

{〈ys(n), bs〉 − hs(bs)} , (A2)

where hs(b) is regularization function or a penalty function
over the feasible action set Bs. Here penalty hs(b) helps the
convergence of algorithm within the interior of the feasible
domain set. The different value regularization functions induce
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different maps. We propose using the Gibbs entropy function
as a regularization function

(17)hs(bs) =
∑

c∈C

∑

m∈M
bcsm log(bcsm).

We replace hs(bs) in equation (A2) by the entropic regular-
ization function and after some calculation we get exponential
mapping

bcsm =
Bs exp(y

c
sm)∑

c∈C
∑

k∈M exp(ycsk)
. (18)

The induced map Qs(ys) is similar to well know Logit map,
where each player distributes his budget (weights) to different
resources depending on exponential of accumulated discounted
gradients.

Algorithm 1 On-line Distributed Learning Algorithm

Require:
∑∞

n=0 αn =∞, αn → 0 as n→∞
1: repeat n = 1, 2, . . . ,
2: for each SP s ∈ S
3: Observe gradient of utility and update
4: ys = [ys + αn ▽bsUs(bs, b−s)]
5: end for
6: for each player s ∈ S
7: for each cell x ∈ C and resource m ∈Mc

8: Play bcsm ← Bs exp(yc
sm)∑

c∈C
∑

k∈M exp(yc
sk)

.

9: end for
10: end for
11: until ‖(b(n)− b(n− 1)‖ ≤ ǫ

Theorem 2. If the Algorithm 1 satisfies the required conditions
for step size sequence,

∑∞
n=0 αn = ∞, αn → 0 as n → ∞

then distributed Algorithm 1 converges to the unique NE of
the Game G
Proof. As we have already discussed, the proposed expo-
nential algorithm is the special case of the dual averaging
algorithm. If the NE of the any continuous action convex game
is strictly r-variationally stable, then the converges of the dual
averaging algorithm to a unique NE of the game is guaranteed
by Theorem 4.6 [27]. Hence to prove the convergence of the
proposed algorithm, it is sufficient to show that the unique
NE of game G is strictly r-variationally stable. The unique NE
b̂ to the any convex game is strictly r-variationally stable if
∀bs ∈ Bs ∑

s∈S
rs∇sUs(b)(bs − b̂s) < 0 (19)

As we have already shown in section IV that utility of
SPs in game G satisfies the diagonal strict concavity for
rs =

1
ps
, ∀s ∈ S
∑

s∈S
rs

[
∇sUs(b)−∇sUs(b̂)

]
(bs − b̂s) < 0 (20)

Now we know that for any continuous action convex game, a
feasible point b̂ is a Nash equilibrium of the game if and only
if ∑

s∈S
rs∇sUs(b̂)(bs − b̂s) ≤ 0 (21)

From inequality (21) and (20) implies (19), which proves that
the unique NE of game G is strictly r-variationally stable and
then by Theorem 4.6 [27] Algorithm1 converges to unique NE
of game G

VII. NUMERICAL EXPERIMENTS

In this section, we illustrate an analysis of the dynamic
resource allocation scheme with the support of numerical
results. Our simulation primarily focuses on a network with
two cells, CI and CII, and two service providers SP1 and
SP2, who request the resources for their service provision.
This setting allows us to efficiently study the dynamics of
interaction between users and SPs and the effect of different
system parameters on the outcome of the game G. We assume
there are 200 and 300 users present in the cell CI and CII,
respectively. First, we consider the simple case of a single
resource where the quality of service offered by the slices
only depends on the radio resource (bandwidth). The plot in
Figure 2 (c) illustrates the impact of the price parameter on the
number of users associated with the slices at the NE of G. For
this simulation, we assume that the price applied by the SP1
is constant 5, and we vary the fee applied by SP2 in the range
of 0 to 10. Figure 2(c) shows the change in the distribution of
users associated with the SPs as a function of price applied by
SP1. In the same figure, we also analyze the effect of slices
shares on the distribution of users at the outcome of the game.
The regular lines in red and blue show the distribution of
users with SP1 and SP2 as a function of price provided by
SP1 and when SP1 and SP2 are assigned with 10% share and
90% share of the infrastructure, respectively. The plots with
the dashed line, dot line and dot-dash line are the outcome
when 30%, 70% and 90% of share are assigned to SP1. With
the same settings, the simulations in Figure 2(d) illustrate the
impact of price applied by the slices and their infrastructure
share on the revenue gain by them. From Figure 2(c) we can
observe that the SPs’ subscribers decrease with their offered
price, while the rate in the fall in the subscriber’s is reducing in
their budgets. The Figure 2(d) shows that the revenue gain of
SPs is increasing in their budgets. As second case, we consider
QoS provided by SP s in cell c is given by qcs = (dcs)

ρc
s where

ρcs is sensitivity parameter and 0 < ρcs ≤ 1, we vary the ρ22
i.e. the sensitivity parameter for SP2 in cell C2 form 0.1 to 1,
the Figure 2(b) shows the comparison of profit gain by SPs
at Nash equilibrium with the profit gain under static resource
allocation scheme. For the multi-resource case, we consider
that the quality of service provided by the SPs depends on
their bandwidth as well as power allocation. To be precise,
we assume that the QoS is the maximum possible data rate
that SP can achieve, given by

qs = Bs log2

(
1 +

h2Ps

N0

)
(22)

Where Bs and Ps is bandwidth and power allocated to
SP s respectively, while h is channel gain and N0 noise,
For simulations purpose, we assume that the availability of
maximum bandwidth and transmitting power at each base
station is 30Mhz and 47dBm, respectively. The prices applied

Authorized licensed use limited to: INRIA. Downloaded on January 23,2022 at 13:49:06 UTC from IEEE Xplore.  Restrictions apply. 
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a) b)

c) d) e)

Fig. 2: a) Comparison between the revenue gain by the SPs at NE of game vs the revenue gain under SS for the different
value of power to noise ratio of SP2 at C2. b) Comparison between the revenue gain by the SPs at NE of game vs the

revenue gain under SS for the different value of the sensitivity parameter ρ22. c) The distribution of users at NE wrt fees
charged by SPs d) The revenue gain by SPs wrt fees charged by them e) Converges of the distributed algorithm 1 to NE

by each SP is constant 1, and each SP is assigned with half
of the infrastructure share. For the numerical experiments, we
vary the channel gain to noise ratio for SP2 at cell C2 from
10db to 50db; for each value of the channel gain to noise ratio,
we compute the Nash equilibrium. The Figure 2(a) shows a
comparison between the profit gain by SPs at Nash equilibrium
with profit gain by SPs under a static resource allocation
scheme. Figures 2(a) and 2(b) show a negligible difference
between the revenue gain under the dynamic resource sharing
scheme and static resource allocation and dynamic resource
sharing scheme. It allows service providers with efficient
resource sharing while keeping the revenue of SPs coherent
with their SLA.

VIII. CONCLUSION

In this work, we have considered a communication market
scenario where service providers lease resource from in-
frastructure provider through a network slicing mechanism
(SPCA) and compete to serve a large pool of end-users. We
have modeled the competition between the service provider as
the muti resource tullock rent-seeking game. We have proved
that the resultant game admits a unique Nash equilibrium. We
have considered that InP faces the challenge of finding the
pricing scheme (per-unit prices) for each resource such that at
the Nash equilibrium of the game, total demand satisfies the
capacity of the infrastructure. In this regard, we have proposed
the trading post-mechanism-based resource allocation. For
some limited cases, we have shown that game induced by the
trading post mechanism admits a unique Nash equilibrium;
thus, resource allocation through the slicing mechanism is
provably stable. We have provided the distributed exponential
learning algorithm, which allows service providers to reach the
unique Nash equilibrium of the game. Our numerical results
confirm that under SPCA, the network slicing mechanism en-
ables service providers with stable and economically efficient
resource utilization. In the future, we will consider different

types of SLA models for SPs and develop a general resource
sharing and resource pricing scheme based on the concept of
normalized Nash equilibrium and coupled constrained game
[22][15].

APPENDIX

A. Proof Of Lemma I

To find the equilibrium of above dynamics consider

log

(
qcs
nc
s

)
− ps = log

(
qcs′

nc
s′

)
− ps′ (23)

taking exponential of both sides

qcs
nc
s

nc
s′

qcs′
=eps−ps′ (24)

qcs
nc
s

nc
s′ =qcs′e

ps−ps′ (25)

summing over ∀s′ ∈ S
∑

s′

qcs
nc
s

nc
s′ =

∑

s′

qcs′e
ps−ps′ (26)

nc
s =

N cqcse
−ps

∑
s′ q

c
s′e

−ps′
(27)

B. Proof of Preposition 1

∂2Us

∂d1
2 = A+B

C < 0

(28a)A = −
(

bc2
bc1 + bc2

)ρ2
(

bc1
bc1 + bc2

)2ρ1 ((
ρ2

2 + ρ2
)
bc1

2

+ 2ρ1b
c
2(ρ2 + 1)bc1 + ρ1b

c
2
2(ρ1 + 1)

)
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(28b)
B =

(
bc2

bc1 + bc2

)2ρ2
(

bc1
bc1 + bc2

)ρ1 ((
ρ2

2 − ρ2
)
bc1

2

+ 2ρ1d
c
2(ρ2 − 1)bc1 + ρ1b

c
2
2(ρ1 − 1)

)

(28c)C = (bc1 + bc2)
2bc1

2

((
bc1

bc1 + bc2

)ρ1

+

(
bc2

bc1 + bc2

)ρ2
)3

∂2Us

∂d1
2 = G+H

I > 0

(29a)
G = −

(
bc2

bc1 + bc2

)ρ2
(

bc1
bc1 + bc2

)2ρ1 ((
ρ1

2 − ρ1
)
bc2

2

+ 2ρ2b
c
1(ρ1 − 1)bc2 + ρ2b

c
1
2(ρ2 − 1)

)

(29b)
H =

(
bc2

bc1 + bc2

)2ρ2
(

bc1
bc1 + bc2

)ρ1 ((
ρ1

2 + ρ1
)
bc2

2

+ 2ρ2b
c
1(ρ1 + 1)bc2 + ρ2b

c
1
2(ρ2 + 1)

)

(29c)I = (bc1 + bc2)
2bc2

2

((
bc1

bc1 + bc2

)ρ1

+

(
bc2

bc1 + bc2

)ρ2
)3

C. Proof of Preposition 2

Consider that for any bid bc2 > 0 submitted by SP 2 at cell
c SP 1 place a bid of bc1 = B1

bc2
B2

at cell c then quantity of

resource received by SP1 at cell c dc1 =
B1

bc2
B2

B1
bc2
B2

+bc2

= B1

B1+B2

this proves that for any strategy played by service provider
there exist strategy for opponent SP such that it receives the
resources in proportion to its budget
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Abstract. Games with Common Coupled Constraints represent many
real-life situations. In these games, if one player fails to satisfy its con-
straints common to other players, then the other players are also penal-
ized. Therefore these games can be viewed as being cooperative in goals
related to meeting the common constraints, and non-cooperative in terms
of the utilities. We study in this paper the Tullock rent-seeking game with
additional common coupled constraints. We have succeeded in showing
that the utilities satisfy the property of diagonal strict concavity (DSC),
which can be viewed as an extension of concavity to a game setting. It
not only guarantees the uniqueness of the Nash equilibrium but also of
the normalized equilibrium.

Keywords: Normalized equilibrium · Common Coupled Constraints ·
Diagonal strict concavity

1 Introduction

Games with constraints have long been used for modeling and studying non-
cooperative behavior in various areas. This includes road traffic [7,12] and
telecommunications [9]. Various types of constraints may appear in everyday
game situations; the simplest ones consisting of orthogonal constraints, where the
strategies of the players are restricted independently of each other [15]. The sec-
ond type of constraints are called Common Coupled Constraints (CCC) [3,14,15]
in which all players have a common convex non-orthogonal multi-strategy space.
This model can be viewed as constraints that are common to all users. A unilat-
eral deviation of a player from some feasible multi-strategy (one that satisfies the
constraints) to another strategy that is feasible for that player, does not result,
therefore, in the violation of constraints of other users. CCC has often been used
in telecommunications networking problems as well as in power transfer over a
smart grid, where capacity constraints of links are naturally common. Games
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with this type of constraints are a special case of General Constrained Games
(GCG) [6], see also [3–5,8,10,16].

In this paper, we study the well known Tullock rent-seeking game with Com-
mon Coupled Constraints. This game describes contest over resources. Each
player bids an amount that she is ready to pay. She then pays an amount pro-
portional to her bid and receives, in turn, a payoff that is proportional to her
bid divided by the sum of bids of all players.

The presence of a capacity constraint results in infinitely many equilibria
and we are faced with a question of equilibrium selection. Using Kuhn Tucker
conditions to the best response, we can solve a relaxed game instead of the
original constrained game, which has, however, the same equilibria as the original
game. The Lagrange multipliers can be interpreted as a shadow cost that a
manager sets in order to guarantee that the equilibrium achieved satisfies the
constraints. This approach may, however, be completely unscalable since KKT
Theorem does not guarantee that the price per resource unit is the same for all
players. In fact, since the Lagrange multipliers are obtained for the best response
function, they could depend not only on the player but also on the policy of
all other players, rending the approach even less scalable. We are interested in
finding such shadow cost which is fixed per resource unit. Such an equilibrium
along with a fixed shadow price is called a normalized equilibrium.

The Tullock rent-seeking game has been used recently to model and study
several game phenomena in networking. It was used to model contests over time-
lines in social networks for maximizing visibility [17]. Each player i controls the
rate λiai of a Poisson process of posts that player i sends into a common timeline
of length K. This rate is given by a basic popularity rate λi times the accelera-
tion effort (e.g. through advertisement) given by ai. Using basic queueing theory,
the authors show that the stationary expected number of posts in the timeline
originating from player i is given by

K
λiai

∑N
j=1 λjaj

This visibility measure is the payoff in Tullock’s model, while the cost for accel-
eration at a rate ai is proportional to ai as in Tullock’s model.

Another application of the Tullock rent-seeking game is in the study of con-
tests between miners in blockchain [2].

A few words on rent-seeking. According to Wikipedia, “In public choice the-
ory and in economics, rent-seeking involves seeking to increase one’s share of
existing wealth without creating new wealth. Rent-seeking results in reduced eco-
nomic efficiency through the poor allocation of resources, reduced actual wealth-
creation, lost government revenue, increased income inequality, and (potentially)
national decline.”

Wikipedia further describes the origin of the idea: “The idea of rent-seeking
was developed by Gordon Tullock in 1967, while the expression rent-seeking itself
was coined in 1974 by Krueger [11]. The word “rent” does not refer specifically to
payment on a lease but rather to Adam Smith’s division of incomes into profit,
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wage, and rent. The origin of the term refers to gaining control of land or other
natural resources.”

Our first contribution is to show that the utilities satisfy a property that
extends concavity to games, and is called Diagonally Strict Concavity. This is
shown to imply the existence and uniqueness of a normalized equilibrium. We
shall then show that this property further extends to the case of contests over
several resources.

2 A Single Resource

Consider an N players game. Player m bids a quantity xm. We have minimum
constraints xm ≥ ε for all m.

The payoff from this contest to player m is

Pm =
xm

∑M
j=1 xj

.

This comes at a cost of xmγ to player m where γ is a constant. The utility for
player m is thus

Um(x) =
xm

∑M
j=1 xj

− xmγ.

Theorem 1. (i) The utility of player m is concave in its action and is contin-
uous in the actions of other players.
(ii) For any strictly positive value of γ, the above game has a unique Nash equi-
librium in pure policies.

Proof. Direct calculation leads to (i). The existence then directly follows
from [15]. Uniqueness is established in [1], see also [18]. Other related uniqueness
results in the asymmetric case can be found in [17,19].

3 Normalized Equilibrium

The games we have seen so far involved orthogonal constraints. By that, we mean
that the actions that a player can use do not depend on the actions of other
players. We next introduce capacity constraint. We require that the following
holds for some constant V :

M∑

j=1

xj ≤ V (1)

Capacity constraints may represent physical bounds on resources, such as
bounded power, or resources that are bounded by regulation. For example, leg-
islation may impose bounds on the power used or on the emission of CO2 by
cars. With the additional capacity constraint, the Nash equilibrium is no more
unique and there may, in fact, be an infinite number of equilibria. We call this
the game with capacity constraint.
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Let y be an equilibrium in the above game and let y[−m] denote the action
vectors of all players other than m. By KKT Theorem, since for each m, Um is
concave in xm, there is a Lagrange multiplier λm(y[−m]) such that ym maximizes
the Lagrangian

Lm(xm) = Um(x, y[−m]) − λm(y[−m])

⎛

⎝Vk −
M∑

j=1

xj

⎞

⎠

and

λm(y[−m])

⎛

⎝V −
M∑

j=1

xj

⎞

⎠ = 0

(complementarity property). We call the game with the Lagrangian Lm replacing
the utilities Um the relaxed game.

The Lagrange multipliers can be interpreted as shadow prices: if a price is
set on player m such that when other players are at equilibrium, the player pays
xmλm(y[−m]) for its use of the capacity, then y is an equilibrium in the game
with capacity constraints. Yet this pricing is not scalable since for the same use
of the resources it may vary from user to user and it further depends on the
chosen equilibrium. For billing purposes, one would prefer λm not to depend on
y nor on m, but to be a constant.

Does there exist a constant Lagrange multiplier λ independent of strategies
of the payers and of the identity m of the player, along with an associated
equilibrium y for the corresponding relaxed game? If the answer is positive then
y is called a normalized equilibrium [15].

Our goal is to establish the existence and uniqueness of the normalized equi-
librium.

4 Diagonal Strict Concavity

For a vector of real non-negative numbers r, define

σ(x, r) =
N∑

m=1

rmUm(x)

g(x, r) =

⎡

⎢
⎢
⎢
⎣

r1
∂

∂x1
U1(x1, x−1)

r2
∂

∂x2
U2(x2, x−2)

...
rN

∂
∂xN

UN (xN , x−N )

⎤

⎥
⎥
⎥
⎦

(2)

σ is called diagonally strict concave (DSC) for a given r if for every distinct x0

and x1,
(x1 − x0)′g(x0, r) + (x0 − x1)′g(x1, r) > 0
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Let G(x, r) be the Jacobian of g(x, r) with respect to x and let Gi,j be ith

row and jth column of G(x, r). Then a sufficient condition for σ to be diagonally
strict concave for some r is that for all x, [G(x, r)+G′(x, r)] is negative definite.

Our interest in diagonally strict concave utility functions is due to the fol-
lowing properties of games possessing such utilities.

Theorem 2 (Theorem 4 from [15]). Let σ be diagonally strict concave for some
r. Then there exists a unique normalized equilibrium.

5 Proof of DSC

In this section we establish that the Tullock game with capacity constraint has
a DSC structure and thus has a unique normalized equilibrium.

In our case we have

g(x, r) =

⎡

⎢
⎢
⎢
⎣

r1x−1
X

r2x−2
X
...

rNx−N

X

⎤

⎥
⎥
⎥
⎦

(3)

where X =
∑N

i=1 xi and x−m =
∑N

i=1,i �=m xi

Gi,j =
∂

∂xj

(
∂

∂xi

rixi

X

)

(4)

ri
∂

∂xj

(x−i

X2

)
=

{
ri

−2xi

X3 if i = j

ri
xi−x−i

X3 if i �= j
(5)

For [G + G′] consider

Gi,j + Gj,i =

{−4rix−i

X3 if i = j
ri(xi−x−i)+rj(xj−x−j)

X3 if i �= j
(6)

[G + G′] is negative definite if A′ [G + G′] A < 0,∀A,A �= 0 where A is the
column vector

A =

⎡

⎢
⎣

a1

...
aN

⎤

⎥
⎦

A′ [G + G′] A

=
∑N

i=1

[∑N
j=1,j �=i aiaj

ri(xi−x−i)+rj(xj−x−j)
X3

]
− a2

i
4rix−i

X3

(7)
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We choose ri = 1 for all i. Then (7) equals −Z/X3 where Z is given by

N∑

i=1

a2
i 4x−i +

⎡

⎣
N∑

j=1,j �=i

aiaj ((x−i − xi) + (x−j − xj))

⎤

⎦ (8)

=
N∑

i=1

a2
i 4 (X − xi) +

⎡

⎣
N∑

j>i

4aiaj (X − xi − xj)

⎤

⎦ (9)

= 4
N∑

i=1

a2
i (X − xi) +

⎡

⎣
N∑

j>i

aiaj (X − xi − xj)

⎤

⎦ (10)

= 4
N∑

i=1

⎡

⎣a2
i

N∑

j=1,j �=i

xi +
N∑

j>i

aiaj

N∑

k=1,k �=j,k �=i

xk

⎤

⎦ (11)

=
N∑

i=1

4xi

⎡

⎣
N∑

j=1,j �=i

a2
j + aj

N∑

k>j,k �=i

ak

⎤

⎦ (12)

Now (12) is positive for any positive value of x and hence [G’+G] matrix is
negative definite.

6 Several Resources

We consider next the following extension to the case of K resources. Each player
m of the M players has a budget B(m) that he can invest by bidding xm

k of
resource k. The following (orthogonal) constraint should hold:

K∑

k=1

xm
k ≤ B(m).

The payoff for player m is the sum of payoffs in all K contests, i.e.

Pm(x) =
K∑

k=1

Pm
k (xk)

where xk is the vector x1
k, . . . , xM

k and where

Pm
k (xk) =

xm
k

∑M
j=1 xj

k

.

and the cost of a contest k to player m is γ(k)xm
k . Player m’ s utility is thus

Um(x) =
K∑

k=1

(
xm

k
∑M

j=1 xj
k

− γkxm
k

)
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For the study of such games, see [17].
We next define capacity constraint on each of the K resources. Let V be the

column vector with the kth entry being a constant Vk. We then require for each
k that

N∑

m=1

xm
k ≤ Vk

Note that when applying KKT conditions to the best response at equilibrium,
we shall have K Lagrange multipliers. We wish to find a vector of K Lagrange
multipliers that do not depend on the player nor on the policy of other players,
such that the Nash equilibrium for the relaxed game will be an equilibrium for
the original constrained game and in particular the constraints would be met
and would satisfy the complementarity conditions. This is the vector version of
a normalized equilibrium.

According to Theorem 4 of Rosen [15], we have to show that the set of
utilities is diagonally strict concave in order to have existence and uniqueness of
the normalized equilibrium. The latter follows from the fact that DSC holds for
each resource separately and then apply the proof of Corollary 2 in [13].

7 Conclusions and Future Work

We have shown that the utilities in the Tullock game are strict diagonal concave.
This allows to conclude using Rosen’s result that in absence of common corre-
lated constraints, the Nash equilibrium exists and is unique, while in presence
of such constraints, the normalized equilibrium exists in pure strategies and is
unique. Note that while the statements on the Nash equilibrium have already
been available in [1] which proposed an extension to the DSC property, that
reference does provide tools to handle the normalized equilibrium.

Another advantage from the derivation of the DSC structure is that one can
use dynamic distributed algorithms to converge to the normalized equilibrium
and convergence is guaranteed under DSC, see [15].
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