
HAL Id: tel-03941245
https://theses.hal.science/tel-03941245v1

Submitted on 16 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of a diagnosis application based on
artificial neural networks for the detection of brain

tumors
Brad Niepceron

To cite this version:
Brad Niepceron. Development of a diagnosis application based on artificial neural networks for the
detection of brain tumors. Computer science. Université de Picardie Jules Verne, 2021. English.
�NNT : 2021AMIE0071�. �tel-03941245�

https://theses.hal.science/tel-03941245v1
https://hal.archives-ouvertes.fr

Développement d’une application d’aide au diagnostic basée

sur les réseaux de neurones artificiels pour la détection de

tumeurs cérébrales.

Thèse de Doctorat

Mention Informatique

présentée à l'Ecole Doctorale Sciences, Technologie, Santé

de l’Université de Picardie Jules Verne

par

Brad Niepceron

pour obtenir le grade de Docteur de l’Université de Picardie Jules Verne

Soutenue le 19 Novembre 2021, après avis des rapporteurs, devant le jury d’examen :

M. P. Lorenz, Professeur, Université de Haute Alsace, Président

M. M. Chadli, Professeur, Université Paris-Saclay, Rapporteur

M. L. Navarro, Maître de Recherche, Mines Saint-Étienne, Rapporteur

M. J. Gaber, Maître de Conférences HDR, UTBM, Belfort, Examinateur

M. A. Nait-Sidi-Moh, Professeur, Université de Saint-Étienne, Directeur de thèse

M. F. Grassia, Maître de Conférences, Université d’Amiens, Co-directeur de thèse

Mme. S. Chebi Gamoura, Maître de Conférences, Université de Strasbourg, Invitée

Acknowledgement

I am pleased to express my recognition towards the people who supported me during the

last three years. I would first like to express my deepest gratitude to Dr. Filippo Grassia.

Working under his supervision has been a great privilege and a very enriching experience.

His guidance, optimism and assistance at every stage of this research project have been

crucial for its success. I could not thank him enough for all the support and trust he gave

me. I would also like to thank as warmly, my thesis advisor Pr. Ahmed Nait-Sidi-Moh, for

supporting and trusting me in the making of this work. His benevolence, teaching and

willingness to share his experience was an essential source of motivation and an additional

important assistance for the success of my work.

I would like to express my gratitude to Dr. Laurent Delahoche and Dr. Jaafar Gaber who

both took their time to be part of my thesis monitoring committee and shared insights and

valuable comments on my researches. A warm thank you goes to all jury members of my

thesis defense, Pr. Pascal Lorenz, Pr. Mohammed Chadli, Dr. Laurent Navarro, Dr. Jafaar

Gaber and Dr. Samia Chebi Gamoura. I thank them all for the time they took to take part in

this project and for all the discussions and very interesting comments they had about this

work, it was a pleasure to exchange with all of them. Thank you to Région Hauts-de-France,

Agglomération du Saint-Quentinois and the city of Saint-Quentin for making this project

possible by supporting and partially funding it.

Many thanks to Dr. Harold Trannois for letting me discover research during my master

degree. Working with him was very important for the choice I made to follow the path

that took me to finally write this manuscript. A special thank goes to my friend and former

teacher, Florence Métivier, who always supported me and helped me to develop my interest

and curiosity for a wide range of domains. Her support and guidance have been very

2

3

important in determining the path I felt destined to take. A warm thank you to my friend

and former educator, Frédéric Feyt, for teaching me the valuable lesson that sometimes,

”machines and men aren’t that different”. I feel lucky to have crossed both of their paths

and can only give them my entire gratitude for everything they have taught me.

I also would like to sincerely thank my dearest friends, Lucas, Kenan, Vincent and

Louise. Every second spent with them has been a blessing and an additional crucial help

in the making of this work. I am grateful for the impact they had on my life and thank

them dearly for the kindness and support they brought me. Thank you to my girlfriend,

Lisa, for supporting me from the beginning to the end of my thesis. She has been a great

source of motivation and inspiration for the work I produced to write this manuscript. Her

positivity, care and trust really helped me to go through these last three years with the

greatest optimism.

Last but not least, I want to thank my family, in particular my mother, together with my

siblings Micke, Selena and Laurena for being there during each step of my life. Their love

and recognition have shaped me and guided me towards the making of this work. Thank

you to Jacques, Marie-Claire and their children Laurie, Jimmy and Valentin for making me

part of their family and giving me all the support I needed during this thesis.

To all of them and the ones who contributed to this journey, truthfully, thank you.

Contents

Résumé 12

1 Introduction 19

1.1 Computer vision with Artificial Neural Networks 20

1.2 Deep Learning for brain tumor diagnosis . 22

1.3 The opportunity of spike-based computation for vision tasks 23

1.4 Thesis overview . 24

2 Background and methods 27

2.1 Object recognition . 27

2.1.1 Region selection . 28

2.1.2 Feature Extraction . 30

2.1.3 Classification process . 30

2.1.4 Convolutional Neural Network . 31

2.2 Imaging for brain tumor diagnosis . 36

2.2.1 Brain tumors . 37

2.2.2 Imaging modalities . 37

2.2.3 BraTS dataset . 39

2.3 Computational Neurosciences . 40

2.3.1 Spiking neuron models . 41

2.3.2 Neural coding . 44

2.3.3 Synapses and learning process . 47

2.4 Spike-based Image Processing . 51

2.4.1 Biological vision and perception . 51

4

CONTENTS 5

2.4.2 Pulse-coupled neural networks . 53

2.4.3 Spiking Neural Networks for computer vision 56

2.5 Conclusion . 58

3 Deploying tumor diagnosis on cost-efficient embedded systems 61

3.1 Introduction . 61

3.2 A GPU Embedded system for Deep Learning applications 62

3.3 Compressing the U-net architecture . 64

3.3.1 Group Normalization . 65

3.3.2 Depthwise Separable Convolution . 66

3.3.3 Model quantization . 68

3.4 Experiments and results . 69

3.4.1 Dataset . 69

3.4.2 Experimental protocol . 70

3.4.3 Results . 72

3.5 Conclusion . 74

4 Glioblastoma diagnosis using pulse-coupled neural networks 76

4.1 Introduction . 76

4.2 Modified PCNN models . 77

4.2.1 Unit-Linking PCNN . 78

4.2.2 Fast-Linking Spiking Cortical Model 78

4.3 Medical image fusion . 79

4.3.1 Discrete Wavelet Transform . 80

4.3.2 Multi-channel PCNN . 81

4.4 PCNN for brain tumor feature extraction . 82

4.5 Experiments and results . 84

4.5.1 Dataset . 84

4.5.2 Brain tumor segmentation . 85

4.5.3 Brain tumor detection . 86

4.5.4 Results and discussions . 88

4.6 Conclusion . 91

5 Training an SNN for brain tumor classification 95

5.1 Introduction . 95

5.2 Classification tasks and data processing . 96

5.3 Convolutional SNNs with synaptic plasticity learning rules 97

CONTENTS 6

5.3.1 Network topology . 98

5.3.2 Supervised learning . 101

5.4 Experiments and results . 102

5.4.1 Implementation and experiment . 102

5.4.2 Results and discussions . 102

5.5 Conclusion . 103

6 Conclusion 106

6.0.1 Contributions . 106

6.0.2 Future works . 108

Appendices 127

A Implementation and reproduction 128

A.1 BraTS 2015 data pipeline . 128

A.2 Compressed U-Net . 129

A.3 PCNN Models for segmentation . 129

A.4 PCNN Models for detection . 130

A.5 C-SNN development framework . 130

B Covid-19 Task Force 132

List of Figures

1 Compression de l’architecture U-Net pour la segmentation d’IRM. 15

2 Un réseau de neurones à pulsions couplées. 16

3 Extraction de la signature d’une IRM par un réseau de neurones à pulsions

couplées. 17

4 Réponse de différents filtres de Gabor sur une couche d’IRM. 17

2.1 Recognition process for brain tumors. A) Tumor classification, the MRI is

assigned to a numerical label y B) Tumor detection using a bounding box. C)

Each pixel is classified to perform tumor segmentation. 29

2.2 Example of image feature extraction. 31

2.3 Basic structure of a convolutional neural network. Layers are composed of

Simple Cells (S) that perform feature extraction followed by Complex Cells

(C) that perform pooling to add translation invariance. The bottom layer of

the network is a classifier that receives the transformed representation of the

data obtained from intermediate layers. 32

2.4 Example of the convolution operation using different kernels. 34

2.5 Non-linear activation functions. 35

2.6 Max-pooling operation with a filter (F) of size 2x2 and a stride (S) of size 2. 36

2.7 Simple circuit of an Integrate-and-Fire neuron. 43

2.8 Example of the rate coding method on an MNIST image over a 350 millisec-

onds duration using the Poisson process. 45

2.9 Example of a temporal coding method over an image taken from the MNIST

dataset. 46

7

LIST OF FIGURES 8

2.10 Rank-order population coding with Gaussian Receptive Fields. The value

x = 150 is encoded by 10 neurons with the spike times represented by the

blue squares intersecting each of the distributions. 47

2.11 STDP learning window adapted from Bi and Poo [1]. 49

2.12 ON and OFF receptive fields responses to an image from the MNIST dataset. 53

2.13 The Difference-of-Gaussians. 54

2.14 Gabor filter bank. 55

2.15 A PCNN neuron model. 56

2.16 A general Spiking Neural Network architecture. 58

3.1 The Nvidia Deep Learning Accelerator architecture. Nvdla.org. 64

3.2 Detailed convolution block replacing each convolution operation of the U-net

model. 66

3.3 Separable convolution block. 67

3.4 The compressed U-net architecture. 68

3.5 Four sequences and ground truth map of three cases taken from the BraTS

2015 dataset. The first row is a case of LGG and the next 2 rows are HGG

cases. 70

3.6 Data pipeline applied to the BraTS 2015 dataset before getting fed to the

compressed U-Net. 71

3.7 Results of the compress U-Net taking a 128x128x4 input slice in A). B) is

the ground truth attached to the input and C) the predicted segmentation

map. 72

4.1 Connectivity of neurons in the ULPCNN. 79

4.2 Fusion of a 4 sequence scan using the DWT method. 81

4.3 Sequences of one MRI slice of the BraTS 2020 dataset and the sequence

obtain by m-PCNN fusion. 82

4.4 Example of the PCNN signature extraction on an MRI slice from the BraTS

dataset. 83

4.5 Comparison of the entire MRI slice signature with to the signature of the

tumor ground truth patch. 84

4.6 Correct and wrong detection using different fusion parameters. 88

4.7 Results of three PCNN models on a brain tumor segmentation task. 89

4.8 Detection of a tumor in the last slice of a scan. 91

LIST OF FIGURES 9

4.9 Examples of brain tumor detection obtained by the proposed algorithm. The

red boxes are the predicted detections and the blue boxes are real bounding

boxes created from the ground truth maps. 92

5.1 Data pre-processing pipeline before training the C-SNN. 98

5.2 Anisotropic Diffusion Filter (ADF) applied to an MRI slice. 99

5.3 Output example from the S1 layer. 100

List of Tables

3.1 Nvidia Jetson AGX Xavier specifications. 63

3.2 Nvidia Jetson AGX Xavier power modes. 72

3.3 Results of our proposed approach compared to other similar Deep Learning

based brain tumor segmentation methods. 73

4.1 Optimized parameters of the PCNN models. 86

5.1 Comparative results on the CT1 task. 103

5.2 Comparative results on the CT2 task. 104

10

Résumé

”Développement d’une application d’aide au diagnostic basée sur les réseaux de neurones

artificiels pour la détection de tumeurs cérébrales.”

Au cours de la dernière décennie, l’étude de systèmes de diagnostics de tumeurs

cérébrales a attiré une attention particulière compte tenu de la croissance rapide de

l’apprentissage profond et du développement de réseaux de neurones artificiels efficaces.

Dans le domaine clinique, les algorithmes basés sur l’apprentissage profond sont utilisés

pour résoudre des tâches visuelles, telles que la détection ou la segmentation de tissus

malsains. Ces méthodes ont notamment prouvé leur efficacité dans le diagnostic de tumeurs

agressives telles que les gliomes de haut grade. Néanmoins, contraints par leur important

besoin en ressources de calcul, ces modèles ne peuvent être réalistiquement déployés à

grande échelle. En effet, leurs architectures devenant plus profondes avec l’amélioration de

leurs performances, leur utilisation entrâıne des coûts matériels et énergétiques importants

qui ne correspondent pas aux exigences du domaine médical.

Objectifs

L’objectif de ce travail de recherche consiste alors en l’étude de nouveaux outils visant à

répondre aux pré-requis nécessaires au déploiement d’application d’aide au diagnostic de

tumeurs cérébrales, plus spécifiquement des gliomes, basée sur les réseaux de neurones

artificiels. Cette étude passe par un besoin d’optimisation ou de remplacement des méthodes

déjà utilisées dans l’état de l’art par des solutions moins dépendantes à la disponibilité

12

Chapter 0. Résumé 13

de grandes ressources de calcul. Pour répondre à ces problématiques, la compression de

réseaux de neurones convolutifs pour la création d’application de segmentation de tumeurs

cérébrales sur système embarqué est envisagée.

De plus, bien que de nombreux débats soient apparus sur l’efficacité des modèles

d’apprentissage profond, des solutions basées sur les réseaux de neurones impulsionnels

doivent encore être examinées afin de construire des methodes d’analyse plus rapides et

rentables. L’ordre des contributions exposées dans ce manuscrit permet alors de mettre en

avant une transition graduelle entre la deuxième et la troisième génération de réseaux de

neurones artificiels.

Par conséquent, l’étude présentée dans ce travail se concentre premièrement sur

l’adaptation des réseaux de neurones artificiels à des systèmes possédant des ressources

de calculs limitées par le biais de méthodes de compression. Puis, des modèles neuronaux

pour l’analyse d’images médicales sont étudiés afin de répondre aux problématiques de

coûts posées par l’apprentissage profond. Enfin, une nouvelle méthode de développement

de systèmes de diagnostic de tumeurs cérébrales basée sur des modèles de neurones

biologiques est proposée.

Chapitre 2

Puisque le développement de systèmes modernes et automatiques de diagnostic de tumeurs

nécessite la compréhension de disciplines différentes telles que l’intelligence artificielle,

l’imagerie médicale ou le génie neuromorphique, le premier chapitre de ce travail de thèse

consiste en une introduction à ces sujets afin de bien reconnâıtre les défis et enjeux exposés

par cette thèse. Des notions importantes concernant le fonctionnement des réseaux de

neurones appliqués à la vision artificielles sont premièrement introduites. Pour mieux

comprendre le type de donnée utilisé par les méthodes d’analyse d’images présentées

dans ce manuscrit, des informations concernant l’acquisition d’images médicales et plus

spécifiquement d’images cérébrales sont présentées. Ensuite, une introduction aux neuro-

sciences computationelles est faite afin de comprendre les enjeux que ces outils présentes

pour la création de nouveaux systèmes d’aide à la décision basés sur des règles biologiques.

Ce chapitre se termine enfin par une introduction à la perception et le fonctionnement

des différents acteurs biologiques qui permettent au cerveau humain de reconnâıtre des

formes, des couleurs ou des objects tout en présentant des modèles de filtres numériques

permettant de les approximer.

Chapter 0. Résumé 14

Chapitre 3

Pour qu’un système de diagnostic de tumeurs cérébrales assisté par ordinateur puisse

être déployé et utilisé dans le milieu médical, celui-ci doit répondre aux attentes des

opérateurs en radiologie mais aussi aux exigences, principalement pécuniaire, du milieu

hospitalier. Le chapitre deux présente la première contribution de ce travail de thèse et

s’intéresse directement à la problématique de coût engendrée par l’entrâınement de réseau

de neurones artificiels. Pour cela, l’étude d’une plateforme embarquée est menée et met

en avant l’importance de la migration des algorithmes d’apprentissage profond vers des

systèmes à ressources limitées. Les caractéristiques de ce système sont alors décrites en

détails pour mieux comprendre l’opportunité que présente son usage. Pour que la migration

de ces algorithmes ait alors lieu, leur compression parâıt cruciale.

Bien que les réseaux de neurones convolutifs soient considérés comme les modèles

les plus performants en vision artificielle, ils ne répondent souvent pas aux exigences

d’environnements aux ressources limitées tel que celui du médical. En effet, les opérations

de convolutions sur lesquelles ils basent leurs performances sont coûteuses en ressource

de calcul, en particulier lorsqu’elles sont effectuées sur des données possédant plusieurs

dimensions. De plus, suite à la ruée vers de meilleurs scores de précision, ces modèles sem-

blent devenir de plus en plus profonds ce qui augmente davantage le nombre d’opérations

qu’ils effectuent. Par conséquent, afin d’être bénéfique à un plus large éventail de domaines,

concevoir ce type de réseau doit permettre une réduction des coûts de calcul tout en gardant

les performances des modèles aussi bonnes que possible.

Nous étudions donc la compression de l’architecture U-Net (Fig. 1), un réseau de

neurones convolutifs construit pour la segmentation d’imagerie médicale afin de concevoir

un système d’aide au diagnostic qui répond aux exigences déjà citées. Plusieurs méthodes

sont proposées afin de réduire les paramètres du réseaux et de le rendre déployable sur

système embarqué.

Chapitre 4

Puisque la détection d’anomalies telles que des lésions ou des tumeurs peut être con-

sidérée comme un problème de reconnaissance d’objects, de nombreuses architectures de

réseaux de neurones convolutifs différentes ont été proposées pour effectuer la segmen-

tation ou la classification d’imagerie à résonance magnétique (IRM). Ces méthodes ne

peuvent néanmoins pas être viables en l’absence d’une grande quantité de données et de

ressources de calcul suffisantes. Avec l’indisponibilité des données induite par l’éthique et

Chapter 0. Résumé 15

64 64

128 128

512

256 Modified Separable

Conv Block

2x2 MaxPooling

Upsampling

Concatenate

256

Figure 1: Compression de l’architecture U-Net pour la segmentation d’IRM.

la confidentialité dans le domaine médical ainsi que la haute dimensionnalité inhérente aux

images médicales qui entrâınent de lourdes charges de calcul, il parâıt difficile de continuer

à baser les systèmes de reconnaissance de lésions sur des réseaux de neurones convolutifs.

De plus, ces réseaux sont pour la plupart entrâınés de manière supervisée, ce qui induit la

construction de jeux de données labellisés en amont, nécessitant des moyens humains qui

entrâıneraient des coûts supplémentaires pour les hôpitaux.

Le manque d’explicabilité des réseaux de neurones convolutifs entrâıne également une

pénalité lorsqu’il s’agit de les déployer pour le milieu médical à cause du manque de

compréhension des décisions prises par le système. Ce chapitre marque alors le début de

la transition vers des réseaux de neurones impulsionnels pour construire un système de

reconnaissance de tumeurs cérébrales. Il s’intéresse à l’utilisation de réseaux de neurones

à pulsions couplées (Fig. 2) pour effectuer la segmentation et la détection de tumeurs

cérébrales. Ici, nous présentons une revue de plusieurs modèles de réseaux de neurones

à pulsions couplées et étudions leur capacité à effectuer les tâches de segmentation et de

détection de tumeurs ainsi qu’à être utilisé pour fusioner des séquences d’IRM. Pour cela un

algorithme basé sur la théorie des signatures d’images produites par ce type de réseau est

proposé (Fig. 3). Cet algorithme se base sur une segmentation rapide des images et permet

la création d’une application de détection de tumeurs rapide et efficace.

Chapter 0. Résumé 16

Si,j

Fi,j

1

Li,j β
Ui,j Yi,j

θi,j

exp(-αF)

exp(-αL)

exp(-αθ)

VL

VF Vθ

LinkingFeeding Pulse

W

M

θ

Figure 2: Un réseau de neurones à pulsions couplées.

Chapitre 5

Afin d’étendre les travaux précédents ce chapitre et aller plus loin pour prouver l’efficacité

du calcul neuronal pour l’analyse d’images cérébrales, nous proposons l’étude d’un réseaux

de neurones impulsionnels convolutifs ne possédant qu’une seule couche entrâınable pour

résoudre la classification de différents types de tumeurs cérébrales. Le type d’encodage

utilisé par ce réseau pour représenter la donnée sur le domaine temporelle se base sur des

filtres numériques inspirés de modèles de la perception humaine (Fig. 4). Pour evaluer la

performance du modèle, deux tâches de classification possédant un niveau de complexité

différent sont proposées. Puisque la taille du modèle est la plus basse possible, le but de ce

chapitre n’est pas de proposer une méthode qui surpasserait les performances d’algorithmes

d’apprentissage profond mais plutôt de poser les bases du développement des reseaux de

neurones impulsionnels pour l’étude d’images médicales et prouver les opportunités qu’ils

offrent pour la construction de systèmes de diagnostic légers et rentables.

Conclusion

Dans ce travail de thèse, nous avons abordé la modification et le remplacement des réseaux

de neurones convolutifs, afin de rendre les systèmes de diagnostic de tumeurs cérébrales,

basés sur les réseaux de neurones artificiels, déployables et utilisables dans le milieu médical.

Chapter 0. Résumé 17

0 50 100 150 200
Width

0

50

100

150

200

He
ig

ht

Original image

0 20 40 60 80 100 120
Time (ms)

0

10

20

30

40

50

Nu
m

be
r o

f s
pi

ke
s

Image Time Signature

Figure 3: Extraction de la signature d’une IRM par un réseau de neurones à pulsions
couplées.

Original Gabor response 1 Gabor response 2 Gabor response 3 Gabor response 4

Figure 4: Réponse de différents filtres de Gabor sur une couche d’IRM.

Nous avons proposé différentes méthodes afin d’effectuer les trois tâches de diagnostic

visuel de tumeurs cérébrales, la classification, la segmentation et la détection. Nous avons

exploité les opportunités qu’offrent les modèles de neurones biologiques pour développer

des systèmes d’analyse d’images médicales. Sur ce constat, les objectifs cités ont tous été

atteints. Néanmoins, le travail proposé dans cette thèse laisse place à certaines améliorations

ou opportunités concernant l’entrâınement de réseaux de neurones impulsionnels pour la

reconnaissance de tumeurs cérébrales.

Mots clés

Réseaux de neurones artificiels, vision artificielles, analyse de tumeur cérébrales, imagerie

médicale, neurosciences computationelles, réseaux de neurones impulsionnels.

Chapter 1

Introduction

The malignant, high mortality and shape variety attributes of brain tumors make them one

of the most difficult to detect and harmful type of cancer. It is diagnosed by the manual

analysis of Magnetic Resonance Imaging (MRI) over a certain period of time necessary

for the study of the tumor’s evolution. In some severe cases, decreasing this analysis

period is crucial for the patient’s survival. This goal can be achieved by the development of

fully automatic diagnosis systems to support radiologists in achieving the tumor detection

task. However, the development of accurate solutions that could outperform the human

expertise can be challenging. Nowadays, the progress done in Deep Learning [2], Machine

Learning and the countless successful researches on Artificial Neural Networks (ANN) are

leading to new horizons in the matter of solving and automating these complex tasks. In

fact, computer vision is one of the major topic addressed by ANN, their ability to extract

meaningful features in large visual datasets made them particularly popular. Multiple

studies on deep learning based methods for MRI analysis have thus proven that ANN can

outperform the human brain in segmenting an entire brain tumor. This makes them suitable

for the development of end-to-end disease diagnosis applications.

However some of the major drawbacks of this kind of methods are the high cost, the

lack of portability and the time needed to train and tune them to a particular task. They

induce an important power consumption preventing the large scale deployment of most

deep learning based diagnosis applications. Moreover, their applicability in production

remains tedious as hospitals and healthcare providers already face important daily cost to

treat their patients. In fact, these complex algorithms run on powerful dedicated hardware

that can require the consumption of thousands of Watts while the human brain only works

19

Chapter 1. Introduction 20

consuming 20 Watts [3] for the the same task. This difference motivates the need to rethink,

modify or replace ANN architectures in order to create solutions ready for the clinical

field. Another drawback implied for visual diagnosis tasks is that most ANN models need

to be supervised and thus require data that have been previously manually labelled by

experts. This labelling process can be monotonous and can cost a lot of human and financial

resources.

Lately, the issues implied by ANN in the implementation of scalable and powerful

computer vision solutions have been building intuitions for deploying Deep Learning

applications on low cost and power efficient embedded hardware. Spiking Neural Networks

(SNN) are the spike-based equivalent of ANN. They offer a more understandable model of

neural computation by aiming to get closer to the real biological behaviour of the human

brain. Moreover, the use of SNN based methods implemented on neuromorphic hardware

has been investigated to seek for better accuracy, decrease power consumption and develop

realistic production ready data analysis systems.

In this chapter, a brief introduction to the application of ANN for Computer Vision tasks

is provided. A review on Convolutional Neural Networks (CNN) [4] is also given to build

intuition behind the opportunities brought by deep learning to build image analysis systems.

A discussion on the applicability of deep learning in the medical field is then presented. We

also give an overview of state-of-the-art models build for brain tumor diagnosis systems.

Then, we introduce spike-based computation for vision tasks, review key concepts behind

SNN and discuss the opportunities they bring for medical image analysis. Finally, an

overview of our work is given and details the organization of this thesis.

1.1 Computer vision with Artificial Neural Networks

Artificial neural networks were introduced as a mean to have a better understanding of

the computation occuring in the human brain and to attempt to model biological neural

networks to capture the structure of this computation. The first theory of an ANN model

was proposed by McCulloch and Pitts [5] with a network of neurons implementing a

thresholding function. In this model, each neuron takes a binary state set by the weighted

sum of all the other neurons’ states it is connected to. If this sum exceeds a predefined

threshold the neuron’s state is set to 1, meaning the neuron is active. Otherwise its state is

set to 0 and the neuron stays inactive. This neuron model is defined as follows :

γ(
m∑
j=1

wjxj − w0) (1.1)

Chapter 1. Introduction 21

Where γ is the Heaviside function, x are inputs and w synaptic weights. In addition

to this previous work, Hebb [6] proposed a learning rule that strengthen the connection

between two neurons if they fire or are set to an activate state simultaneously. Thus, the

Hebbian learning specifies if the weights of a connection between two neurons has to

decrease or increase, influencing the state of other neurons in the network. The weight

change ∆wij between pre- and post-synaptic neurons i and j induced by a simple Hebbian

learning rule is thus formulated as :

∆wij = ηaiaj (1.2)

Where ai and aj are the activation levels of pre- and post-synaptic neurons, and η

represent the learning rate. These previous researches motivated the development of binary

classifiers based on an artificial neuronal behaviour like the perceptron [7]. It aimed to

solve the limitations of the tresholding neurons by redefining each neuron outputs by

activation functions like the sigmoid function. The perceptron was thus defined to solve

linear classication tasks and preceded the multilayer perceptron (MLP). The MLP appeared

to solve the major drawbacks of the perceptron by increasing the number of output neurons

and intermediate layers allowing to solve non-linear classification.

Since the creation of the MLP, ANN have evolved into powerful decision making models.

With their computational power increasing over the years they also follow the growth of

Big Data and become more and more accurate as they receive more samples to learn on.

With the benefits of having good fault tolerance, being able to compute parallel processes or

storing input data in the network rather than a remote database, they are now successfully

used in a wide variety of domains. In a dynamic of going further with their abilities,

researchers have been studying the benefits of such algorithms to solve vision tasks like

image segmentation [8], object detection [9] or image reconstruction [10].

Convolutional Neural Networks have been at the center of these studies and confirmed

the efficiency of ANN to solve vision tasks. They are commonly used for image processing

such as classification, detection and segmentation. Performing on input images, they mostly

rely on multiple layers built by convolutional and pooling layers. These operations can

capture visual features without supervision, what standard ANN cannot do. They were also

developed in the aim to reduce the computational cost of standard ANN when performing

on image data. However, although they proved to be particularly efficient for vision tasks,

their performance comes with a cost. In fact, most of these models cannot realistically

be used outside the scope of a Graphical Processing Unit (GPU). This makes them rely

on expensive and dedicated hardware to be trained and used for inference efficiently.

Several successful CNN architectures like Inception [11], U-Net [12] or MobileNet [13]

Chapter 1. Introduction 22

are nowadays being extended and used to solve a large amount of computer vision related

problems. They proved to obtain high scores of accuracy on several datasets such as the

famous MNIST [14], for digit recognition, or the ImageNet [15] dataset for visual object

recognition. These advances motivated studies in a wide number of fields including the

medical field in order to adapt ANN for better and faster medical image analysis.

1.2 Deep Learning for brain tumor diagnosis

The early diagnosis of a disease plays an important part in determining and enhancing a

potential treatment in order to improve a patient’s well being or survival [16]. Fast and

accurate diagnoses are essential to the survival of patients with severe diseases. Hence, the

need for computer-aided diagnosis systems appeared as a way to accelerate the evaluation

of medical data and seek for better accuracy [17]. Over the past few years, a lot of studies

demonstrated the efficiency of Machine learning and deep learning methods for medical

image analysis, bringing faster and better diagnoses [18].

The major interest for deep learning in the medical field has allowed breaking advances

for designing fully-automatic diagnosis systems based on the latter tasks. During the last

decade, CNN have been drawing a lot of attention in computer vision and an important

number of different models have been proposed in the aim to build medical image analysis

systems [19, 20, 21]. Additionally to MRI analysis, as diagnosis also aims to predict a

treatment or the survival time of a patient, the diagnosis task needs to be addressed as

an ensemble. However, as accurate CNN models were with basic object recognition tasks,

analysing medical data appears to be more tedious for multiple reasons.

Since, computer-aided medical image analysis often relies on the use of multi-modal

3D images, training CNN requires a large amount of GPU memory. Despite the effort done

to reduce the memory usage of these models and to increase GPU power, most modern

approaches fail to provide lightweight models. For MRI segmentation, the problem induced

by the dimension of the data can be addressed by chunking the slices into patches and

classify them to obtain a segmentation map [22, 23]. However, such process relies on heavy

data pre-processing operations and always requires to chunk each MRI slice before feeding

data to the network. In a scenario when the image analysis system would have to predict a

wide amount of segmentation maps, processing the data in this way each time a slice comes

in for segmentation can be time-consuming.

It is also crucial to emphasize that when choosing CNN for medical image analysis, one

may face limitations with data availability, privacy and ethics concerns. Convolutional

Neural Networks were designed to perform supervised learning and thus require the

Chapter 1. Introduction 23

presence of ground truth labels or segmentation maps according to the performed task.

When benchmark datasets such as the BraTS dataset [24] provide several sequences of MRI

and ground truth maps for each case, the reality of gathering medical data is not as simple

as this in practice.

Finally, training a CNN for tumor segmentation or classification requires the nature of

the data to stay the same. This means that if a new type of tumor is given to the CNN to

perform a diagnosis, the network will fail if it was not retrained with samples of this new

data. Extending the knowledge of the network thus need structural changes. In the medical

field, this makes CNN be lesion specific which suggest that one model cannot realistically be

used for any type of tumor. The clinical perspective of the brain tumor diagnosis problem

exposed in this thesis relies on the detection and the accurate segmentation of a tumor given

Magnetic Resonance Images (MRI) to propose an appropriate treatment. Such perspectives

would mainly consist in solving three vision tasks, namely detection [25], classification

[26] and segmentation [27], each of which can be performed with great accuracy by deep

learning methods. The next section exposes other issues related to the development of CNN

and bring intuition on how to tackle them using spike-based computation.

1.3 The opportunity of spike-based computation for vi-

sion tasks

Capturing the essence of human brain functionality has been an important part of the

premises of Artificial Intelligence (AI) researches. Initially based on neuromorphism, AI

seeks to mimic the way the mammalian cortex functions to automate tedious tasks. It aims

to improve a wide range of different domains such as medicine, security, agriculture or

transportation. However, based on Deep Learning algorithms, modern AI does not rely

on models inspired by biology and fails to mimic neuron dynamics. This step towards

abstract AI lead to the emergence of limits when using and developing deep learning based

solutions [28, 29]. In fact, the wide range of applications based on ANNs developed due

to the growth of the Internet-of-Things (IoT) and cloud technologies emphasized major

drawbacks.

One of most regarded of them is the dependence to powerful and costly hardware that

prevents large scale deployment of deep learning solutions. In fact, while they become

deeper and more powerful over the years, ANNs also become less power efficient and rely

on whether high CPU or GPU resources, which comes with a relatively high purchase and

energy cost [30].

Chapter 1. Introduction 24

Another limitation comes with the lack of explainability of their outputs and the functions

they try to approximate [31]. This obstacle, often referred as ”the black-box issue” [32],

thus limits the use of deep learning in domains like health-care or banking in which a

decision has to be fully explained and understood. This leads us far away from creating

models understandable by humans that would speed up the expansion of AI based products.

Finally, as no rule has ever been stated for the creation of ANNs architecture, developing

them can be a tedious task. What creates yet another issue that prevents their large scale

development and deployment. In fact, having no rigorous way to create these models can

lead to consequent workloads when modeling new architectures to solve new tasks.

Spiking Neural Networks are thus reappearing as a way to step closer towards the

reality of biologically-plausible brain computation and solve most learning and inference

problems induced by ANNs computation [33]. Using models of biological neurons and

encoding stimilus to spikes makes these networks more energy efficient [34]. Trying to

model phenomena that are present in the nervous system can also prevents the use of deep

architectures with hundreds of thousand neurons as they offer the possibility to exploit

each neuron dynamics for learning. Indeed, synchronization of neuronal activity is one of

these phenomena and can be used for learning.

Therefore, the spike-based computation carried by SNNs is trying to address challenges

carried by traditional ANNs by putting neuromorphic computing back to the center of AI

applications in order to make them more suitable for production, real-time environments

and hardware implementation. These facts then motivate researchers to lead AI towards

spike-based models in order to look for better explainability and improve existing solutions

by making them more suitable for local daily use in a wide range of domain.

1.4 Thesis overview

The study covered in this manuscript aims to solve visual tasks to perform brain tumor

diagnosis, specifically for glioma tumors, by the mean of neural networks while addressing

most issues these methods can bring. To this aim, our work focuses on the transition

between deep neural networks and spike-based models to build cost and power efficient

brain tumor diagnosis applications. The following work material is thus divided in four

main chapters as follows :

1. Chapter 2 presents some knowledge and concepts inherent to the subject exposed

in this thesis. Hence, this chapter first gives an introduction to object recognition

in Section 2.1. Then, Section 2.2 details properties inherent to brain imaging and

Chapter 1. Introduction 25

review a benchmark dataset widely used in the state-of-the-art. In Section 2.3, basic

computational neuroscience knowledge is introduced by discussing neuron models

and learning methods. Finally, the applicability of spike-based models to computer

vision is discussed in Section 2.4.

2. Chapter 3 details the first contribution of this thesis and discuss the importance of

cost reduction in Deep Learning based methods in the medical field with the example

of a brain tumor segmentation task. In Section 3.2, we introduce an cost-efficient GPU

embedded system optimized for the development of deep learning applications and

discuss its applicability in the development of CNNs. Section 3.3, provides an overview

of CNN compression methods used to move the computation of such models to cost-

efficient systems. Finally, Section 3.4 provides details about our implementation

and results as well as a comparison of our contribution with other models in the

state-of-the-art.

3. Chapter 4 provides our second contribution and discusses the use of the PCNN for

medical image processing. First, Section 4.2 gives an introduction to the computation

of several different PCNN models. Secondly, in Section 4.3, an introduction to

medical image fusion is provided by emphasizing on the potential of modified PCNNs.

Then, Section 4.5 provides details about our experiments on PCNNs for brain tumor

segmentation and detection tasks.

4. Chapter 5 details our third contribution and investigates the development of a single

layer Convolutional SNN (C-SNN) for brain tumor classification. Section 5.2 first

exposes details on the different classification tasks the model was trained to solve.

Then, a data pre-processing pipeline is discussed to prepare MRI slices to be encoded

for training. Section 5.3 introduces the structure of the proposed C-SNN by detailing

its topology and the learning mechanisms used to train it as well as implementation

details. Finally, the results of our experiments on each of the classification task are

discussed in Section 5.4. We evaluate the performance of the models by comparing

the average classification accuracy to state-of-the-art deep learning models.

Chapter 2

Background and methods

Since the development of modern fully-automatic brain tumor diagnosis systems requires

the understanding of several different disciplines such as medical imaging, computer science

or neuromorphic engineering, an introduction to these subjects is necessary in order to fully

recognize the challenges exposed in this thesis.

Hence, this chapter firstly introduces object recognition in Section 2.1 with a review of

recognition methods and Deep Learning models used to complete computer vision tasks.

Imaging for brain tumor diagnosis is then introduced in Section 2.2 by discussing brain

tumors and imaging as well as reviewing a benchmark dataset of brain scans used in

the state-of-the-art. Next, we provide an introduction to Computational Neurosciences

in Section 2.3 by reviewing spiking neuron models, neural coding as a data conversion

scheme and synaptic learning rules and concepts. Finally, in Section 2.4, we focus on the

development of Spiking Neural Networks for image processing and review some of the

methods used in the state-of-the-art for computer vision tasks.

2.1 Object recognition

Object recognition is a well-known labeling problem that the human brain can solve with

great ease. It aims to match objects perceived in a visual stimulus to some labels already

known by the individual. While it appears natural for humans, computer vision systems

divides an object recognition task in multiple different sub-tasks (See Fig. 2.1) :

• Detection is the task of locating an object within an image and is often performed

using bounding boxes.

27

Chapter 2. Background and methods 28

• Classification aims to identify the object and assign it to a label.

• Segmentation gives a label to every pixel in an image in order to obtain a segmenta-

tion map that divides the image in multiple regions of interest.

When solving these tasks, a large amount of computer vision models are still aiming to

approach human performances in terms of recognition. However, they are limited to the

amount and nature of data they process and often do not come close to the capabilities of

the brain when it comes to generalise. In fact, the high efficiency of the brain to process

visual information allows an individual to accurately recognize any object even after only

seeing it a couple of times. In order to copy this behaviour, a vision system has to be

highly invariant to a wide amount of image properties such as variable lighting [35], visual

variation (e.g. scale, orientation, viewpoint) [36] or situations when the object is occluded

[37]. This can be daunting as it induces the need for large datasets containing these

variations or the use of data augmentation methods. It also means that the extraction of

such properties would have to be performed to discriminate the objects in an image. This

can have the effect of slowing down the recognition process and does not allow real-time

processing which is often demanded for visual systems.

For these reasons, object recognition has been at the core of a wide amount of researches

in computer vision over the last decade [9, 38, 39]. These studies highlighted the fact that

these systems do not incorporate all the necessary processes to build recognition models

that would perform as well as the human brain. In fact, while the brain uses different

visual streams composed by a set of neuron groups used to solve distinct tasks (See Section

2.4.1, the common processing pipeline of a recognition model is much less complicated.

This pipeline starts with region proposal or selection methods to performed the detection

task, then, the extraction of features from the image is computed to finally complete the

classification of the object.

2.1.1 Region selection

The ability of the human brain to differentiate objects in a scene can be pictured as a

division of the visual stimulus in sub-regions holding discriminating properties. In computer

vision, the region selection helps to direct a recognition system towards these sets of pixels

referred as Region-of-Interest (ROI). Hence, to have an accurate interpretation of an image,

this division is mandatory as it allows to discriminate objects or parts of them. A simple

region selection process scans the image using a fixed size window that slides over the

image and later sends each region to a classifier to complete the recognition process [40].

Chapter 2. Background and methods 29

y = 1

A) B) C)

Figure 2.1: Recognition process for brain tumors. A) Tumor classification, the MRI
is assigned to a numerical label y B) Tumor detection using a bounding box. C) Each
pixel is classified to perform tumor segmentation.

This simple method is referred as the Sliding Window algorithm. Although this algorithm

performs great to produce small patches of an image, building an efficient and accurate

recognition model out of it would induce the generation of a large amount of sub-regions

of various sizes and shapes what happens to be computationally costly. Sliding over the

entire image to produce overlapping regions can also be counter productive as different

areas of the image hold a different amount of information. It is the case for MRI slices that

mostly contains background information if they are not cropped.

A way to perform region selection while maintaining its computational cost as low as

possible is to base it on a segmentation process. This kind of process attempts to combine

similar pixels in an image to produce the ROIs. Early image segmentation works made the

assumption that images had to be uniquely divided and attributed a part of this division

to each object outlines [41, 42]. However, the fact that images, and object categories they

hold, are hierarchical implies that this segmentation has to be done at multiple scales [43].

Typically, this means that relying on one segmentation strategy is not realistic to find all

ROIs in an image. Indeed, objects cluttering each other might be separable using different

properties like texture, colour or context. The Selective Search [39] algorithm is one of the

most popular region proposal method that aims to deal with these limitations. It uses a

hierarchical grouping-based segmentation algorithm introduced by F. Felzenszwalb and D.

Huttenlocher [44]. In this algorithm, some initial regions are used to start the hierarchical

grouping, similar regions are merged to produce larger ones, and this process is repeated

until the entire image is represented by a single region. The region proposal list is thus

created with each of the found regions during the process. The merging of regions is based

Chapter 2. Background and methods 30

on different similarity metrics which produces multiple segmentation strategies. Proven to

be efficient and fast, the Selective Search algorithm was successfully used in deep learning

to produce Region Based Convolutional Neural Networks that aimed to perform object

detection. This method is later used in Chapter 4 and combined with a spike-based model

to create a tumor detection system.

2.1.2 Feature Extraction

Feature extraction is a crucial step to build efficient models for computer vision. In the

context of object recognition, it offers a new representation of the original data by extracting

meaningful attributes that may discriminate the information it contains [45]. The type

of these attributes can differ according to the task to perform and can be referred as

global or local features [46]. The algorithms used to retrieve these features are called

descriptors. A global feature descriptor aims to quantify an image globally and retrieves

meaningful information using all the pixels values. Most commonly retrieved global features

in computer vision include textures, global shapes, color histograms and pixel statistics.

Since global feature extraction does not enter the details of the data, descriptors have

the advantage of being computationally efficient. Local feature extraction does the exact

opposite and aims to describe small groups of pixels within the data to highlight small

regions of interest like edges or other distinct structures found in image patches. These

parts of interest are referred as salient regions or key points. Finding local features also

improves recognition models’ sensitivity to variance and can help solving some of the issues

exposed in Section 2.1. In fact, by only highlighting differences between small parts of the

data and their surroundings, local features are robust to occlusion, clutter and variations.

Some commonly used local feature descriptors are Scale Invariant Feature Transform, Harris

Corner or Binary Robust Independent Elementary Features. An example of both global and

local features extraction can be seen in Fig. 2.2.

2.1.3 Classification process

The classification process is the last step in the recognition task pipeline. Algorithms

responsible to perform this process are called classifiers. They make use of feature extraction

to find bounds in the feature space that best discriminate the classes relevant to the data.

Fitting these classifiers to a specific classification task requires to go through three different

phases namely, training, validation and testing. Indeed, in order to be efficient, these

classifiers are firstly trained on a sub-set of the data to learn to map each sample to an

output label. A validation data sub-set is then used to evaluate the performance of the

Chapter 2. Background and methods 31

Original image Harris Corner Detector Histogram of Oriented Gradients

Figure 2.2: Example of image feature extraction.

model during training by the mean of an accuracy rate computed from the classifier’s

prediction and the true label from the data. Finally, the testing phase performs the total

evaluation of the algorithm by sending new samples from a third sub-set and ensures that

the classifier is able to generalize.

A classifier’s poor ability to generalize means poor classification performances which is

mostly caused by two modeling error named under- and over-fitting [47]. Under-fitting

mostly occurs when the chosen classifier cannot approximate the function that explains the

data. A simple example of under-fitting is the use of a linear classifier on a non-linear. It

can also occur if the set of training data was not sufficient to learn the right features. On

the contrary, over-fitting happens when the classifier’s function is too close to the training

data, to the point that it cannot accurately process a sample outside the training scope. A

lack of data to train the classifier can also induce over-fitting. Data augmentation [48] is

a common method used as a solution to this, which allows the creation of new training

samples by performing transformations on the existing ones.

In computer vision, the SVM algorithm has been widely used as an image classification

tool. It aims to discover a hyperplane in an N-dimensional space that classifies each data

sample. Originally used as a linear classifier, non-linear classifications is made possible

by using a high-dimensional space transformation. This is done by changing the kernel

functions used by the algorithm. Although SVM proved its efficiency in image classification

[49], the advances in deep learning offered new opportunities and possibilities to perform

the entire recognition pipeline through the use of Convolutional Neural Networks.

2.1.4 Convolutional Neural Network

In the 1960s, experiments carried by Thorsten Wiesel and David Hubel found that different

visual stimuli were processed by different types of cells in the primary visual cortex (V1).

Chapter 2. Background and methods 32

S1 Sn ClassifierC1

Figure 2.3: Basic structure of a convolutional neural network. Layers are composed
of Simple Cells (S) that perform feature extraction followed by Complex Cells (C)
that perform pooling to add translation invariance. The bottom layer of the network
is a classifier that receives the transformed representation of the data obtained from
intermediate layers.

This cells, named simple and complex cells, highlighted a filtering-like behaviour happening

in the brain. Inspired by this discovery, the first Convolutional Neural Networks appeared

in the 1980s [50] and their breakthrough happened with the development of several

CNN models for handwritten digit recognition [51]. Taking advantage of the growing

amount of visual data to process, CNNs then showed convincing results in a wide range of

applications like self-driving cars, event detection or medical image analysis tasks like the

one exposed in this thesis. These advances thus highlighted their efficiency and made them

the center of attraction in computer vision. In the context of our study, CNNs were used

to design powerful medical image analysis systems to solve brain tumor classification and

segmentation tasks.

The key concept that makes CNNs particularly efficient as image analysis models is

their convolution operations used to apply filters on their inputs. These filters perform

feature extraction and thus reduces the dimensionality of the data and drastically decreases

the amount of parameters used by the model. This makes CNNs to be highly scalable to

large dataset as they can adjust their weights quickly and are more robust to overfitting.

Just like the visual cortex, CNNs are hierarchically organized into a sequence of different

layers. These layers model a succession of simple and complex cells that are responsible for

selecting features and building translation invariance respectively (See Fig. 2.3). In the

context of a object recognition, this organization leads to perform a series of alteration to

the input data so that the last layer offers a representation of the data that would bring

enough information to discriminate it. The architecture of most modern CNNs include

four main types of layers namely convolutional layers, non linearity layers, pooling layers

and fully-connected layers. Moreover, other types of operations like normalization and

regularization can be used to improve CNNs performances.

Chapter 2. Background and methods 33

Convolutional layer

In image processing, convolution operations are used as a technique to alter an image by

convolving a value matrix known as kernel over the entire image. The term filter is used

instead of kernel when the number of channels in the image is greater than one as filters are

simply stacked up kernels. The concept is highly inspired by biological receptive fields (RF)

which are regions of the retina that induce neuronal activity on light stimulus. Mimicking

the local connectivity in RFs, the convolution operation on an image can be seen as a sliding

window over pixels and their local neighbors. The size and values of the kernels influences

the transformations applied to the original data. For example, applying Gaussian kernels

have the effect of adding blur to the image and thus offers a smoothing transformation. A

discrete convolution operation is described as :

f(x, y) · k(x, y) =
∑
i

∑
j

f(i, j)k(x− i, y − j) (2.1)

Where f is the image to transform, k is the convolution kernel and (x, y) the pixel

positions. Some common processing techniques performed by convolution operations with

different kernels include edge detection, blurring and sharpening as seen in Fig. 2.4

Convolutional layers are created upon the combination of these filtering operations.

They aim to model the V1 simple cells discussed above and are responsible for the feature

extraction performed by the network. Typically, a CNN’s parameters are learnable filters

that produce an activation when they passes by visual features like sudden high contrast,

edges or shape patterns. These activations produce a new representation of the input data

called feature maps. For each filter used in the layer, one feature map is created. The maps

are thus stacked to produce a volume that is the output of the layer.

An important concept under the efficiency of convolutional layers is parameter sharing.

Taking the example of an RGB image that passes through a layer that gives an output

volume of 33x33x64 neurons each of which possesses 9x9x3 filters, the total number of

parameters of this layer is of (33 × 33 × 64)(9 × 9 × 3) = 169, 361, 28. Parameter sharing

prevents ending up with this kind of high amount of parameters by constraining each

neuron to use the same filter. This comes from the assumption that some features are

repeated in the data at different position and there is thus no need to compute a different

filter for each channel. Hence, taking the same example, this scheme reduces the amount of

parameters to 64× 9× 9× 3 = 15552 which is extremely lower than the previous number.

However, this scheme comes with limitations that could slow down the training process of

the network. Indeed, sharing parameters does not serve a great purpose in every task. This

is the case in recognition task where the subjects are always located at the same positions

Chapter 2. Background and methods 34

Original image Gaussian kernel Sobel kernel Sharpening kernel

Figure 2.4: Example of the convolution operation using different kernels.

in the image but might use different features to be recognized. In that case, using different

filters is crucial and locally-connected layers should be used instead.

Non-linearity layer

Convolutional layers are often followed by a layer of non-linearities which expands the

capabilities of the model. Indeed, since most natural phenomena do not reply to linear

rules, it is crucial that CNNs can make use of non-linearity to deal with more complex tasks.

To provide this non-linearity, early deep learning models used functions like the hyperbolic

tangent or the Sigmoid function (See Fig. 2.5). However, both were proved to prevent

models to be sparse because of their ranges. In fact, as the outputs of such functions have

low or non existent likelihood of being zero, small neuron weights will still be considered by

the model. Having activation outputs with low values also induces the well-known problem

of the vanishing gradient [52].

To improve the previous statements, the Rectified Linear Unit (ReLU) [53] function was

introduced and is one of the most commonly used activation function to add non-linearity

in modern CNNs. It outputs a zero value for all inputs that are smaller than zero and x to

the other ones as follows :

f(x) = max(0, x) (2.2)

With its zero response on negative values, this function lets neurons that add a poor

contribution to the model to be silent which highly benefits the sparsity of it. The vanishing

gradient problem is also dealt with has the gradient computed during optimization will

always be a constant since the derivative of f(x) = x is one and f(x) = 0 is 0. This eases

the training process of the model by reducing the time needed for it to converge. Since

the computation of ReLU also only relies a on max function, its computationally more

efficient than the hyperbolic tangent or Sigmoid. However, if it performs better than the

Chapter 2. Background and methods 35

4 2 0 2 4
X

1.0

0.5

0.0

0.5

1.0

Y
Tanh

4 2 0 2 4
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Sigmoid

4 2 0 2 4
X

0

1

2

3

4

5

Y

ReLU

Figure 2.5: Non-linear activation functions.

latter functions, ReLU brings its set of issues that need to be considered.

Indeed, keeping the output of low values to zero first causes the dying ReLU problem.

This phenomenon mostly occurs when a network is badly initialized as the weights can be

drawn to the zero output and never be able to recover. At terms, when a large amount

neurons output zero, no more changes are made during training and the network enters a

dead state. Another typical problem induced by the use of ReLU is the production of large

values as the positive side of the function’s domain is limited to infinite. However, in recent

works, many models use modified versions of the ReLU or new activation functions to tackle

these issues such as the Leaky ReLU [54] or the ELU function [55].

Pooling Layer

Often inserted between convolutional layers, they provide a great spatial size reduction

scheme that reduces the amount of parameters of the network and thus ease training while

preventing over-fitting from occurring. Designed as models for complex cells, pooling layers

also allow to provide translation invariance to the network. The most popular form of

pooling in CNNs is the Max-Pooling. It applies a Max operation with a 2x2 filter and a

stride of 2 on each of the feature maps slice to down-samples their width and height by 2

as illustrated in Fig. 2.6. Note that, in recent works, pooling operations are often replaced

by a series of convolutional layers with larger strides to perform the spatial size reduction.

Fully-connected Layer

The fully-connected layer is the bottom part of a CNN. It is mostly used to learn non-

linear patterns from the representation of high-level features obtained from the previous

layers and can be seen as a simple multi-layer perceptron. The input x of this layer is a

1-Dimensional volume obtained from flattening the output of the last layer before it. The

output i-th output yi of a fully-connected layer is defined as :

Chapter 2. Background and methods 36

23 34

34 120

90 56

120 89

Max-Pooling

F = 2; S = 2

7 9 87 10

90 23 0 11

2 49 56 0

Figure 2.6: Max-pooling operation with a filter (F) of size 2x2 and a stride (S) of
size 2.

yi = g(
m∑
n=1

wnxn) (2.3)

Where wn are learnable weights and g is a non-linear activation function like the ones

previously introduced. After a pass through this layer, the classification process is performed

using a Softmax activation function. For a classification problem with N being the number

of classes, the output of this Softmax operation is an N-dimensional vector, each value in

the vector being the probability that the input belongs to the corresponding class.

2.2 Imaging for brain tumor diagnosis

Medical imaging is a crucial part of medical practices and its development has shaped

the modern healthcare industry while offering new tools to better understand the human

body. It serves a great purpose in a wide range of applications like the establishment of a

diagnosis, the progression monitoring of a disease or the support in surgical procedures.

The wide amount of information contained in medical images can also assist healthcare

providers to offer better and more comprehensive treatment. In the context of brain tumor

diagnosis, the advances in medical imaging have enabled the noninvasive study of tumors

and drastically changed the way brain tumors are being treated and diagnosed. Imaging

is in general the first tool used to identify infected tissues and can help to determine the

present type of tumor according to its shape or location. Different imaging techniques

can also be used to proceed to a further examination of the tumor and assist pre-surgical

planning as well as the post-treatment patient’s care.

In this section, we first define brain tumors and emphasize on gliomas which are the

Chapter 2. Background and methods 37

type of tumors treated by the contributions in this thesis. Then, a presentation of different

imaging techniques and their applications to brain tumor diagnosis is given. Finally,

we introduce the benchmark dataset of glioma cases used to carry the majority of the

experiments presented in this manuscript.

2.2.1 Brain tumors

A tumor is defined as an abnormal growth and division of cells that proliferate and stay

alive by ignoring regulation mechanisms. When they grow but do not invade nearby

tissues, these tumors are said to be benign and are usually not life-threatening. On the

contrary, malignant tumors have the ability to spread to other tissues and organs using the

bloodstream or the lymphatic system. This spread is referred as metastasis or secondary

tumor as it originally comes from the primary tumor.

As their name implies, brain tumors affect the brain region. The most commonly found

types of primary tumors in the brain are gliomas that start from glial cells and represent the

majority of malignant cases. Meningioma tumors that originate in the meninges are also

frequent but mostly benign. Moreover, the malignancy of gliomas is noticeable by the World

Health Organization grading system that offers a criteria to anticipate the consequences

of a therapy or the survival time of a patient. Indeed, the overall survival of patients with

grade II gliomas is of more than 5 years while its is of about 3 years for patients with

grade III tumors [56]. The glioblastoma, being a grade IV glioma, is the most aggressive

and infiltrative of them due to its chemotherapy and radiation resistance as well as its

reappearance ability after resection [57]. It is defined by a very low survival rate, inaccurate

prognosis and restricted therapy options.

Since there are no evidences of an effective medical or surgical treatment for this type

of tumor, a diagnosis with an early detection and precise classification is crucial to offer the

right treatment [58]. However, mostly relying on medical imaging, diagnosis methods are

often performed at a late stage due to an absence of clinical symptoms which does not allow

a quick medical response. Reinforcing the medical imaging based diagnosis of glioblastomas

is thus critical to gain time and anticipate the growth of the disease. The contributions in

this thesis thus focus on the analysis of glioblastomas by using an open-source multi-modal

brain image dataset later introduced in Section 2.2.3.

2.2.2 Imaging modalities

Brain Imaging provides a wide range of methods which give enough visual information to

study brain structures and help spotting potential lesions or anomalies. The images retrieved

Chapter 2. Background and methods 38

from these methods are substantially used for diagnosis and to monitor the evolution of

tumors. Depending on the task and the lesion to find, different types of imaging techniques

can be used to ease the diagnosis.

Computerized Tomography

Computerized Tomography (CT) scans are obtained by a series of X-rays taken from different

angles. By measuring the absorption of these X-rays by the tissues in the body, a series of

2D images are gathered and used to create a 3D volume by tomographic reconstruction.

This method provides images with high spatial resolution and have the ability to give good

representations of soft tissues, blood vessels and bones. It also has the advantage to be fast

which makes it suitable for short studies when a quick identification of a lesion is needed.

However, a major drawback of this type of imaging is that the X-rays it relies on produce

ionizing radiation which were found to induce DNA cellular damage and cause cancers.

Positron Emission Tomography

Positron Emission Tomography is a nuclear imaging technique particularly used to study

the metabolic activity of body tissues. It is based on an injection of a radioactive tracer

in the blood that binds to the cells and allow the observations of their metabolisms and

how they are transformed by afflictions. This tracer is made by marking a molecule with a

radioactive isotope and can thus be designed to target specific tissues or organs that may be

ill. In the context of brain tumors, the Fluorodeoxyglucose is often used to trace brain cells

metabolism. Indeed, since the energy and proliferation of brain tumors mostly relies on

glucose, the absorption of this tracer will induce a detection of tumorous cells.

This type of imaging is thus often used to monitor the progression of tumors and

metastasis as well as the response of a therapy. However, the spatial resolution and the

lesion detectability of this method is limited and lower than the other techniques presented

in this Section. The PET is often combined with CT scans to retrieve metabolic and

anatomical information at the same time.

Magnetic Resonance Imaging

The MRI is a technique that produces three dimensional detailed anatomical images of

organs and tissues by using a magnetic field and radio-frequencies. It is based on the

detection of signals generated by the magnetic resonance of atoms, mostly produced by

hydrogen protons. Typically, the magnetic field pushes protons to align with it and are

then stimulated by a radiofrequency current sent through the patient, also called pulse

Chapter 2. Background and methods 39

sequence. This radiofrequency makes the protons lose equilibrium and force them to

resist the magnetic field’s attraction. By turning off the pulse, the protons realign with the

magnetic field and release energy that can be detected by the MRI sensors. The amount of

energy released by the protons and the time they took to realign can thus be monitored to

differentiate various types of tissues, as it highly depends on the nature of the molecules,

and thus detect lesions like tumors.

Different settings in the pulse sequences can lead to the creation of different represen-

tations of the studied tissues with various contrasts referred as MRI sequences. For brain

tumor imaging, some commonly used MRI sequences include the following :

1. T2. Performs a suppression of fat and an attenuation of fluids.

2. FLAIR. Performs a suppression of fat and fluids.

3. T1. Performs fat suppression enhanced by a gadolinium-based contrast agent.

Using multiple MRI sequences allows to get more information on the studied lesion and

can thus ease its analysis as low contrast inherence to some of them often do not help to

provide a detail identification. For brain tumors, the use of several sequences offers the

opportunity to identify different tumorous tissues like edema or necrosis. MRI is thus well

suited for tumor detection and progression monitoring and is more sensitive than other

imaging techniques. It is however not capable to give information on the type of lesion

making it harder to distinguish tumors from other similar lesions like inflammatory masses.

Regarding these facts and the higher availability of MRI scans as open-source datasets, all

the experiments presented in this work were carried using MRI data.

2.2.3 BraTS dataset

The important and difficult nature of computed-aided brain tumor segmentation has brought

a significant attention over the last 20 years. This interest induced the development of

a wide amount of various methods that aimed to perform fully-automated segmentation

of tumorous tissues. The comparison of these methods was however not easy to do has

each method was evaluated on different private datasets with different evaluation metrics.

Indeed, gathering medical data to build computer-aided analysis systems can be a tedious

task. Being protected by ethics committees and hospitals, the absence of this type of data

slows down the growth of deep learning applications for the medical field and prevents

the improvement of existing methods. Hence, providing enough evidences to prove that a

model performs better for the given task than another one is not realistic in these settings.

Chapter 2. Background and methods 40

In order to change that, the Multimodal Brain Tumor Image Segmentation Benchmark

(BraTS) [24] was firstly introduced in 2012. This challenge made available a dataset of

MRI comprising both low- and high-grade glioma cases. The first version of this dataset

contained 51 high-grade cases comprising glioblastoma multiforme tumors and anaplastic

astrocytomas, and 14 low-grade cases comprising astrocytomas and oligoastrocytomas.

The images representing pre- and post-therapy scans were acquired by various institutions,

scanners and clinical protocols. They all incorporate 4 different MRI sequences, namely, T1,

T1c, T2 and FLAIR. Since the T1c volume had the highest spatial resolution, each sequence

was co-registered to it in order to homogenize the data and ease processing.

For each case, a segmentation ground truth was provided and corresponded to a

manual segmentation performed by several experts. In this segmentation map, four labels

corresponding to different tumoral structures were retained, namely necrosis (label 1),

edema (label 2), non-enhancing tumor (label 3) and enhancing tumor (label 4). All other

brain tissues were given label 0 corresponding to non-tumorous cells. For the purpose of the

recognition process, these labels were grouped in 3 regions, The enhancing tumor region

(only containing label 4), the core region (containing all labels except label 2) and the

complete tumor (containing all labels).

By defining a standard for the evaluation of brain tumor segmentation methods, the avail-

ability of this dataset induced a significant growth in the development of fully-automated

diagnosis systems. With time, the dataset grew bigger in the number of cases and data

concerning overall survival was added to extend the challenge to survival prediction models.

Our work uses different versions of this dataset as it provides enough quality and samples

to build powerful tumor recognition systems.

2.3 Computational Neurosciences

Computational neuroscience (CN) is a domain that aims to provide a better understanding

of the brain by modeling neural mechanisms that underpin cognitive skills. It expresses the

possibilities of exploiting computational researches to discover what roles brain structures

have, how they perform different tasks or simply how information is processed by the

nervous system.

While the field originally provided theory about neuronal computation to build models

that replicated the dynamics of brain structures, its implication in Artificial Intelligence

has recently brought a significant interest. Indeed, regarding the success of ANNs, which

computation was firstly inspired by biology, it appears obvious that incorporating compu-

tational neurosciences to AI based researches can lead to new opportunities in terms of

Chapter 2. Background and methods 41

efficiency. Compared to deep learning algorithms, that are predominant in modern AI,

biologically plausible models outputs are explainable which makes them perfectly suited

to build non-abstract AI systems. If early researches in computational neurosciences only

focused on building mathematical models of neurons, recent approaches to this domain

extended these works to build SNNs with the aim to solve cognitive tasks. Multiple works

also investigated how learning was processed in the nervous system by providing trainable

synapse models.

This section thus provides an overview of some of the key concepts of computational

neurosciences. From basic neuron modeling and encoding to an overview of synaptic

plasticity models and basic learning rules, we introduce the methods needed to understand

the work exposed in Chapter 4 and 5.

2.3.1 Spiking neuron models

Neurons are the principal computational elements in the brain. Their main functions are to

encode and transmit information by the mean of action potentials (spikes). These spikes

occur when a neuron was sufficiently excited by other surrounding neurons. Hence, a

spiking neuron can be defined by the integration of a current over time expressed as the

sum of incoming ith spikes as :

I(t) =
∑
s∈S

vig(t− ti) (2.4)

Where vi is the potential of the spike that drives the amplitude of the pulse, ti is the

spike timing and S the set of spikes. g is a pulse function, it often uses the Dirac’s delta to

produce short impulses defined as :

δ(x) =

1 if x = 0

0 otherwise
(2.5)

Building mathematical models of biological neurons dynamics has been, and still is, at

the center of researches in computational neurosciences. A lot of research works hence

provide a substantial range of models and discuss their applications and utility [59]. This

section gives an introduction to some of the most prominent neuron models used in the

state-of-the-art.

Chapter 2. Background and methods 42

Hodgkin-Huxley model

Conductance-based neuron models marked the premises of spiking neurons, the Hodgkin-

Huxley model [60] is amongst the most important ones of them. In their experiments on

the giant axon of the squid, Hodgkin and Huxley investigated ionic flow by introducing

an electrode into the cell and applying a current to see how the flow of ions and the cell’s

membrane changed. They showed that the conductance of the cell’s membrane to potassium

(K) and sodium (Na) ions depends on the membrane potential and were able to construct

precise equations to describe the voltage and time dependence of these ions conductance.

The dynamics of the membrane potential v(t) of the Hodgkin-Huxley model is thus defined

as :

C
dv

dt
= −IL(v)− INa(v)− IK(v) + Isyn(t) (2.6)

With IL being a leak current as IL(v) = gL(v−vL) where vL and gL are the leak potential

and conductance respectively. The potassium current IK and sodium current INa are defined

by :

IK(v) = ḡKn
4(v − vK) (2.7)

τn(v)
dn
dt

= −n− n∞(v) (2.8)

INa(v) = ḡNam
3h(v − vNa) (2.9)

τm(v)
dm
dt

= −m+m∞(v) (2.10)

τh(v)
dh
dt

= −h+ h∞(v) (2.11)

Integrate-and-fire model

Derived from the Hodgkin-Huxley neuron as a simplification of the model, the Integrate-and-

fire (IF) neuron is easily the simplest and most used neuron model in neuronal computation.

It considers every spike as an individual event described by its timing. As its name states, this

model starts with the integration of the membrane potential v until it reaches a threshold

vθ to produce a spike. Once the neuron fired, v is reset to a resting potential vrest and the

neuron is not allowed to fire again during a refractory period τref . This model is defined by

Chapter 2. Background and methods 43

θ

I(t)

R C
δ(t - ti)

Figure 2.7: Simple circuit of an Integrate-and-Fire neuron.

:

Cm
dv

dt
= I(t) (2.12)

if v ≥ vθ, then v ← vrest (2.13)

One of the most popular IF model is the Leaky Integrate-and-fire (LIF). It steps closer to

biological activity by forcing the neuron to go back to a resting potential when no spike has

been received. It does so by introducing a leak to the membrane potential that consists of a

capacitor C in parallel with a resistor R driven by an input current I(t). A LIF neuron can

be expressed as :

τm
dv

dt
= (v(t)− vrest)RI(t) (2.14)

if v ≥ vθ, then v ← vrest (2.15)

Izhikevich Model

The model of spiking cortical neuron proposed by Izhikevich [61] is more complex than the

models exposed above. Unlike the Hodgkin-Huxley model introduced above, the Izhikevich

model does not take the biophysics of neurons into consideration.

dv

dt
= 0.04v2 + 5v + 140− u+ I(t) (2.16)

du

dt
= a(bv − u) (2.17)

Chapter 2. Background and methods 44

if v ≥ 30mV, then

v = c

u = u+ d
(2.18)

Where v is the membrane potential, u represents the membrane recovery variable

and a, b, c and d are dimensionless parameters allowing to model different neuronal

behaviour and firing pattern. This model is able to compute a wide range of different

spiking patterns of cortical neurons, all obtainable by modifying the values of a, b, c and d.

There are two substantially used types of spiking patterns obtained by tuning this set of

parameters, namely Regular Spiking (RS) neurons with {a, b, c, d} = {0.02, 0.2,−65.0, 8.0}
which is mostly used to model excitatory neurons and Fast Spiking (FS) obtained with

{a, b, c, d} = {0.1, 0.2,−65.0, 2.0} to model inhibitory ones.

2.3.2 Neural coding

Neurons in the nervous system transform stimuli into sequences of neural spikes. The

exact timing of these spikes is key for processing information. While conventional artificial

neuron networks lack the ability of encoding information as a temporal code, neural coding

[62] is one of the most important mechanism in SNNs. It is at the core of their power

efficiency. Advances on neural coding led to the development of neuromorphic visual

capturing devices such as Dynamic Visual Sensors (DVS). These devices can receive visual

inputs and output their spike train representation. This drastically reduces the workload

of machine perception. However, when data cannot be directly transformed into spikes,

a conversion as to be implied with the right coding strategy. Different works on SNNs

development debate the use of three main types of coding stategies, namely temporal

coding, population coding and rate coding.

Rate coding

Rate coding is the most popular encoding method used in the state-of-the-art. The method

is based on observations made on biological neurons’ spiking activity [63] and let a neuron

fire at a frequency that is proportional to its input intensity. A high intensity thus leads to a

high neuron firing rate. This method also often relies on Poisson distributions to generate

random spike firing times with respect to the coding frequency. In the context of image

processing, pixels are represented by neurons with firing frequencies that are proportional

to the pixel’s value. When using this method, images are exposed for a certain duration to

make sure that later neurons will receive enough spikes emit post-synaptic spikes. After

Chapter 2. Background and methods 45

0 5 10 15 20 25
Width

0

5

10

15

20

25

He
ig

ht
Original image

0 50 100 150 200 250 300 350
Time (ms)

200

300

400

500

600

Ne
ur

on
 in

de
x

Rate coding representation

Figure 2.8: Example of the rate coding method on an MNIST image over a 350
milliseconds duration using the Poisson process.

each image exposition, a resting period is often used [64] to conduct the neurons to their

resting state a prevent them from firing again before a new image is presented. An example

of an image, from the MNIST dataset, encoded into spike trains with a maximum frequency

of 63.75 Hz can be seen in Fig. 2.8.

Temporal coding

In temporal coding, information is assumed to be carried by the precise firing time of

neurons. With this method, a value is encoded using an individual neuron that only fires

once, meaning that one spike is enough to represent the value. Hence, compared to rate

coding, this method has the advantage of being able to bring a lot of information with a

drastically reduced number of spikes. In image processing, TTFS is a common temporal

coding method and is mostly employed to encode gray pixels into spikes using a sigmoid

function as follows :

T (p) =
Tmax

1 + exp(−σ(128− p)
(2.19)

Where p is the current pixel intensity being encoded and σ is a non-linear coding variable

set to 0.05. Tmax is the maximum firing time. This method is often referred as latency

coding [65] since lower values are encoded to late spikes and higher values to early spikes.

Note that a positive σ as the affect of reversing the function and thus reverses the timing of

spikes. Rank-order coding [66] is another type of temporal coding that does not attribute

any importance to the exact firing time but to the order of the arrival of spikes. Although

Chapter 2. Background and methods 46

0 5 10 15 20 25
Width

0

5

10

15

20

25

He
ig

ht
Original Image

0 2 4 6 8 10
Time (ms)

0

100

200

300

400

500

600

700

800

Ne
ur

on
 in

de
x

Time-to-first spike representation

Figure 2.9: Example of a temporal coding method over an image taken from the
MNIST dataset.

temporal coding provides a good alternative to rate coding by fixing some of its limitations,

it can suffer from noise sensitivity. Indeed, even very small temporal latencies can alter the

information delivered by the spikes issued from the coding method. An example of TTFS

encoding on an MNIST image is shown in Fig. 2.9.

Population coding

Compared to rate and temporal coding, population coding relies on multiple neurons to

encode a value. The representation of that value is thus shared amongst a group of neurons

and not given by only one individual neuron. In a population coding scheme, neurons are

responsible for different representation of the input data which makes this type of coding

more complex than temporal or rate coding. A common technique to perform population

coding is the use of overlapping Gaussian receptive fields in which a neuron corresponds to

a Gaussian distribution as seen in Fig. 2.10. This method is often referred as Rank order

population coding and is an extension of the regular Rank-order coding discussed above.

Hence, if a set of N neurons is chosen to encode a variable x, the Gaussian receptive field

of a neuron i is defined by its width σi and its center µi as :

σi =
1

β
· I

x
max − Ixmin
N − 2

(2.20)

Chapter 2. Background and methods 47

0 50 100 150 200 250
Variable interval

0.0

0.2

0.4

0.6

0.8

1.0
Sp

ik
e

tim
es

Figure 2.10: Rank-order population coding with Gaussian Receptive Fields. The
value x = 150 is encoded by 10 neurons with the spike times represented by the blue
squares intersecting each of the distributions.

µi = Ixmin +
2i− 3

2
· I

x
max − Ixmin
N − 2

(2.21)

Where [Ixmin, I
x
max] is the domain of the variable to encode. β is a parameter that controls

the width of the receptive field and respects 1 ≤ β ≤ 2.

2.3.3 Synapses and learning process

Just like in a biological brain, neurons in SNNs are connected by synapses that act as

information transmitters. They are core components of SNNs topology and their main role

is to carry and regulate spikes sent from a neuron to another. Strengthening or weakening

the influence of an input to an output neuron is done by the presence of a synaptic weight

w that helps to increase or decrease the voltage of a neuron. The strongest the synaptic

weight is, the highest the voltage of transmitted spikes to the output neuron will be, leading

to the emission of post-synaptic spikes. If w is weak, the contrary effect happens and as the

voltage of transmitted spikes is low, the output neuron does not fire.

The changes of synaptic weights is called synaptic plasticity and is at the core of

learning processes. It can induce short or long term effects. Typically, short-term plasticity

defines a rapidly induced and non persistent synaptic strength modulation happening on

a millisecond scale that mostly occurs when only the pre-synaptic neuron is active. On

the contrary, long-term plasticity induces a persistent weight change that can last minutes

or hours and is triggered by pre- and post-synaptic neurons’ mutual activities. Inducing

long-term potentiation (LTP) or depression (LTD) is highly related to the notion of learning

and led to the formulation of learning processes like the well-known STDP [67] rule.

Chapter 2. Background and methods 48

Spike-timing dependent plasticity

As mentioned in Section 1.1, one of the first learning rule introduced was the Hebbian

learning rule that aims to increase the synaptic weight of interconnected neurons that fire

at the same time. The STDP is probably the most popular implementation of this rule.

Following STDP consists in inducing LTP on a synapse if a pre-synaptic neuron fired before

a post-synaptic one. Reversely, the synapse follows a LTD if the pre-synaptic neuron fired

after the post-synaptic one. The synaptic weight changes between a pre-synaptic neuron i

and its post-synaptic neuron j in STDP is described as :

∆wj =
N∑
m=1

N∑
n=1

W (tnj − tmi) (2.22)

Where tmi and tnj are the firing times of pre-synaptic and post-synaptic neurons respec-

tively. W (x) is a function that dictates the order in which weights are decreased or increased

depending on the synchronization of pre and post-synaptic neurons. This function is often

defined as :

W (x) =

A+exp(− x
τ+

) x > 0

A−exp(
x
τ−

) otherwise.
(2.23)

The parameters A+ and A− are constants that define the amplitude of the weight

changes. Their initialization depends on the value given to the initial synaptic weights.

τ+ and τ− are time constants that drive the exponential weight change decay, they are

often initialized as τ+, τ− = 10ms. Fig. 2.11 depicts the evolution of synaptic weights as a

function of the pre- and post-synaptic spike timings.

Competitive learning

In competitive learning, neurons compete with each other to respond to specific input

stimuli. By getting the right to fire when the same inputs are presented and preventing

other neurons to fire, these winner neurons become more sensitive to inputs with the same

characteristics and can thus be used for classification purposes. This process relies on a

biological mechanism called inhibition.

Inhibition is the process of restricting neuronal activity and is mostly achieved by

inhibitory neurons that release neurotransmitters like the gamma amino butyric acid

(GABA). The role of these neurons is to hyper-polarize post-synaptic neurons and thus

reduce their membrane potential in order to prevent them from firing. This hyper-polarized

Chapter 2. Background and methods 49

Δt < 0
Pre

Post

Pre

Post

Δt > 0

Figure 2.11: STDP learning window adapted from Bi and Poo [1].

potential is called inhibitory post-synaptic potential (IPSP). Inhibition thus allows to control

the amount of excitation and regulates the transmission of information done by excitatory

neurons. In opposition to inhibitory neurons, excitatory neurons release neurotransmitters

like glutamic acid or the AMPA that open sodium ions in post-synaptic neurons which in

terms eases their depolarization and leads them to fire. This is referred as the excitatory

post-synaptic potential (EPSP). The distribution of inhibitory neurons in the mammalian

cortex is of about 20 % leaving the last 80 % neurons to account for excitation.

A well-known implementation of competitive learning based on inhibition is the WTA

strategy. In a WTA competition, when a neuron is allowed to fire, all other neurons are kept

silent. In a network of neurons following the WTA principle, that means that a particular

class of input should trigger one output neuron only.

Homeostasis

In biology, homeostasis is a phenomenon that enables cells and organisms to maintain and

control the balance and stability they need to effectively operate. A simple example of

homeostasis happening in the human body is the regulation of blood pressure that prevents

the organs from failing. In the context of neuronal activity in SNNs, homeostasis plays

a crucial role as it aims to prevent excessive firing from the same neurons by controlling

their synaptic strengths or modulating their intrinsic excitability. When performing learning

with STDP, the continuous stimulation of a post-synaptic neuron by a pre-synaptic neuron

Chapter 2. Background and methods 50

induces a lasting growth in their synaptic strengths and leads to an increase of the post-

synaptic firing rate. This enhances the correlation between pre- and post-synaptic activity

which promotes LTP from all pre-synaptic input in an unrestricted positive feedback cycle.

In terms this has the effect of making synapse-specificity disappear. Indeed, without bounds,

this process will infinitely increase the synaptic strength and make some neurons fire

significantly more than others what also makes the stability of the learning process difficult

to maintain. Homeostasis mechanisms are thus necessary to counteract this behaviour.

Synaptic scaling and intrinsic plasticity are amongst the most widely studied homeostasis

mechanisms [68] observed in biology. Synaptic scaling is an adaptive mechanism that

neurons can use to ensure stability in synaptic strengths. It aims to adjust the weights of a

neuron’s excitatory synapses to stabilize firing. A biologically plausible implementation of

such mechanism can be obtained by applying a scaling factor to every synapse as :

dwi
dt

= α · wi(Rtarget −R) (2.24)

Where α is the synaptic strength scaling factor, R is the real post-synaptic firing rate

and Rtarget is the target firing rate of the post-synaptic neuron. While synaptic scaling

modulates the neuronal activity at the synaptic level, the intrinsic plasticity mechanism

aims to do it at the neuron level by modifying neurons’ electrical properties in order to

alter their excitability. In the work of Zhang and Li [69], an intrinsic plasticity rule is

proposed and applied to the LIF model to maximize the entropy of each neuron’s output

firing rate distribution. To do so, the output firing rate distribution was tuned to a specified

exponential distribution. Their online intrinsic plasticity rule was thus defined by :

Rm = Rm + η1

2Rτmvθ − w − vθ −
1

Rtarget

τmVθR
2

Rmw
(2.25)

τm = τm + η2

τrefR− 1− 1

Rtarget

(τrefR
2 −R)

τm
(2.26)

w =
vθ

e
(

1

τm
(
1

R
−τref))

− 1

(2.27)

Where Rm and τm are the membrane resistance and the time constant of the membrane

potential respectively. η1 and η2 are learning rates. vθ is the threshold of the membrane,

τref is the refractory period of the neuron. R and Rtarget are the real output firing rate and

Chapter 2. Background and methods 51

the average expected firing rate respectively.

2.4 Spike-based Image Processing

Although ANNs have been able to tackle a large amount of visual problems and proved to

outperform most methods used before their ascension, they still bring several issues that

need to be addressed. Indeed, being far away from the brain’s computation performances,

they suffer from high memory and energy cost and induce a long training period consequent

to their great level of performance. Moreover, their outputs lack explainability. Their usage

is thus limited to domains in which high computational resources are available and where

relying on abstract decision making is not a problem.

In fact, if ANNs were originally inspired by biology, the way they function and are

taught to respond to specific stimuli greatly differs from neural computation. Researches in

computational neurosciences highlighted the ability of SNNs to overcome the limits of ANNs.

To recover biological-plausibility, SNNs carry information within their units by the means of

spike timing, rates and latencies. This difference makes the computation of SNNs faster

and allow easy hardware implementations. However, relying on spikes to carry information

induces the use of different learning algorithms since methods like backpropagation cannot

directly be applied to SNNs since the neuron’s transfer function is non-differentiable.

Even though SNNs did not prove to be more accurate than ANNs, the theory on their

computational efficiency suggests that they could however outperform them. In the state-

of-the-art, the transition between ANNs and SNNs computation appears to happen by

gradually removing levels of abstraction, starting by a full model conversion, from the spike-

based implementation of learning algorithms to the implementation of fully biologically-

plausible networks. Motivated by the speed of biological vision in decision making and

the aforementioned statements, the development of SNNs for computer vision offers new

promising opportunities in terms of computational efficiency and performances. In the

next section, we discuss biological vision and perception by introducing methods to model

receptive fields of the visual cortex.

2.4.1 Biological vision and perception

In the case of human perception, visual stimuli are captured by the retina, encoded and

transmitted to the brain using the optic nerve. Connected to the thalamus, the optic nerve

relays the information to the Lateral Geniculate Nucleus (LGN) that transmits it further to

the visual cortex where visual processing happens. This cortex is divided in several visual

Chapter 2. Background and methods 52

areas. The beginning of perception in the visual cortex happens in the area called primary

visual cortex or V1. The two-streams hypothesis of visual processing [70] discusses the

presence of two distinct systems in the visual cortex. When an individual captures visual

information, these streams carry it and aim to perform different tasks. The ventral stream,

consisting of V1 and areas of the extrastriate cortex (V2, V4, inferior temporal cortex (IT))

carries information inherent to object and space recognition. The purpose of V1 cells is

not only to encode a visual stimulus to carry information to other areas in the cortex but

also to provide a good representation of the stimulus. In those terms, these cells are the

first interpreters of the visual stimulus and excel in object and pattern recognition which

motivates the development of SNNs for computer vision.

Model of a retinal receptive field

Retinal receptive fields are visual space areas that are responsible for the modification of the

firing patterns of retinal ganglion cells in response to specific stimuli. These receptive fields

were experimentally found to have center-surround structures. Dividing them into two

types, namely On-center/off-surround if the central region is excitatory and Off-center/On-

surround if it is inhibitory. ”On” receptive regions get excited when exposed to high light

intensity and ”Off” regions are stimulated by darker stimuli. These two types of receptive

fields thus transmit different representations of the input stimulus as illustrated in Fig. 2.12.

These cells are believed to manage the contrast range of visual stimuli and their shape was

often modeled as a Difference-of-Gaussians (DoG). For 2-dimensional Gaussian functions,

the DoG is expressed by the following :

Gσn(x, y) =
1√

2πσ2
n

e

−x2 + y2

2σ2
n


(2.28)

DoG = Gσ1 −Gσ2 (2.29)

In image processing, DoG kernels can be used to create filters in order to apply the

transformation induced by center-surround cells. The shape of this filter is illustrated in Fig.

2.13.

Model of a V1 cell receptive field

After being processed by the retina and transmitted through the LGN, a visual stimulus

arrives to V1 cells. Simple-cells in V1 have an orientation selection property, meaning that

Chapter 2. Background and methods 53

0 5 10 15 20 25

0

5

10

15

20

25

ON

0 5 10 15 20 25

0

5

10

15

20

25

OFF

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.2

0.1

0.0

0.1

0.2

Figure 2.12: ON and OFF receptive fields responses to an image from the MNIST
dataset.

they are exclusively sensitive to variations in spatial intensity along a specific orientation

[63]. It was shown that the receptive field of these cells could be modeled by Gabor filters

which are simply Gaussian functions modulated by sinusoids [71, 72]. These receptive

fields were also found to take place in quadrature pairs, implying that the orientation of

adjacent cells is 90 degrees out of phase. A 2D Gabor filter is thus defined as :

G(x, y) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ φ

)
(2.30)

With θ the orientation of the filter, λ the wavelength of the sinusoidal factor, σ the

standard deviation of the Gaussian function, γ the spatial aspect ratio, φ the phase offset,

x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ. Filter banks of Gabor filters (See Fig. 2.14)

are often used as local feature extraction methods.

2.4.2 Pulse-coupled neural networks

Pulse-Coupled Neural Networks are biologically inspired models that mimic the dynamics

of cortical neurons. Firstly introduced in the work of Eckhorn et al. [73], the PCNN was

proposed as a model of a cat visual cortex and aimed to perform fast image processing.

The model has been successfully explored for its application to segmentation [74] and

detection tasks [75]. Compared to Deep Learning methods, a PCNN does not include a

weight learning process but relies on constant synaptic weights instead. This lack of a

training step, makes it particularly appealing for applications that prioritize quick output

production and allows to solve a variety of vision task without the need for several models

with different structures.

Chapter 2. Background and methods 54

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.05

0.00

0.05

0.10

0.15

0.20

0.25

Center gaussian
Surround gaussian
DoG receptive field

Figure 2.13: The Difference-of-Gaussians.

In a standard PCNN model, neurons are laterally connected and match pixels from the

input image. The intensity of these pixels being the major drive for each neuron’s membrane

potential integration, the neuronal activity of the PCNN allows the creation of clusters of

pixels with similar intensity. This behaviour makes this model a perfect fit for segmentation

processes. Regarding its structure, a PCNN neuron is composed of three main parts namely,

the feeding channel, the linking channel and the pulse generator. The feeding channel is

the start of the neuron’s computation and is responsible for the reception of two inputs, the

feeding input Fij and the linking input Lij. Both receive a grayscale normalized pixel value

at location (i, j) as a stimulus Sij. Since each neuron in a PCNN computes iteratively, the

feeding channel is described by the following equations at the nth iteration :

Fij[n] = exp−αf Fij[n− 1] + VF
∑
k,l

Mij,k,lYij[n− 1] + Sij (2.31)

Lij[n] = exp−αL Lij[n− 1] + VL
∑
k,l

Wij,k,lYij[n− 1] (2.32)

Where M and W are the constant synaptic weight matrices and are set as kernels of a

Gaussian filter. Yij[n− 1] is a binary value corresponding to the previous output pulse of the

neuron and (k, l) refers to neighboring neurons. The voltage potential and the attenuation

time constants of the feeding and linking channels are VF , αF and VL, αL respectively.

The feeding and linking inputs are then merged in the linking channel part of the neuron

Chapter 2. Background and methods 55

Figure 2.14: Gabor filter bank.

to compute the internal neuronal activity Uij as :

Uij[n] = Fij[n](1 + βLij[n]) (2.33)

Where β is the positive linking coefficient. In the pulse generator, the neuron is finally

triggered if the internal activity Uij is greater than the dynamic threshold θij as follows :

Yij[n] =

1, Uij[n] > θij[n]

0, otherwise
(2.34)

θij[n] = exp−αθ θij[n− 1] + VθYij[n] (2.35)

Where the time attenuation constant and the voltage potential of the threshold are

referred as αθ and Vθ respectively. The overall structure of a PCNN neuron is shown in Fig.

2.15.

While this simple PCNN proved its efficiency as an image processing tool [76], the large

number of parameters it embarks makes it tedious to use and optimize. Some attempts

to reduce the number of parameters in the network were then done to accelerate the

computation of each neuron dynamics and reduce the overall complexity of the model.

Such models are discussed in more details in Chapter 4 and used to build a tumor recognition

system.

Chapter 2. Background and methods 56

Si,j

Fi,j

1

Li,j β
Ui,j Yi,j

θi,j

exp(-αF)

exp(-αL)

exp(-αθ)

VL

VF Vθ

LinkingFeeding Pulse

W

M

θ

Figure 2.15: A PCNN neuron model.

2.4.3 Spiking Neural Networks for computer vision

In the aim to have a better understanding of biological perception and seek for computa-

tional efficiency, SNNs are being highly investigated in computer vision. Several studies

have already proved that SNNs could be successfully used for pattern recognition [64, 77],

what motivated the exploration of the transition between ANNs and SNNs. If the use of

ANNs is still dominant in the state-of-the-art, SNNs offer several advantages that motivate

further studies in computer vision.

Indeed, since they are able to be coupled with neuromorphic sensors, building spike-

based recognition systems first comes with a drastic power consumption reduction [78] that

deep learning based vision systems lack. Moreover, SNNs are more computationally efficient

than ANNs and can provide easier hardware implementation. However, if the accuracy of

SNNs in solving vision tasks, such as MNIST or CIFAR-10, tackled ANNs performances and

gave intuition that spike-based models could take over artificial neural networks, dealing

with complex data remains a challenge. In fact, the data encoding step required to perform

image processing through SNNs can induce information loss or bad feature representations.

Another major problem to consider when developing SNNs is the lack of training algorithms

especially to perform supervised learning that most state-of-the-art recognition systems rely

on. This is mostly due to the discontinuous nature of spikes and a lack of understanding of

biological learning mechanisms that makes the design of such algorithms complicated. In

an attempt to overcome these difficulties, many research works have emerged to transfer

Chapter 2. Background and methods 57

the performances of ANNs to SNNs, to match commonly used learning algorithms to spike

computation or develop fully biologically-plausible alternatives to ANNs.

The conversion of pre-trained ANNs to SNNs was proposed [79, 80] as a mean to make

the inference benefit from the energy efficiency provided by SNNs. By using trained weights

and replacing rate-coded neurons to spiking neurons, these methods however only provide

a solution for inference hardware implementation. Hence, although they allow to base the

decision making on spike-based computation, they do not permit to prove the efficiency

of SNNs in computer vision and do not give any insight on the brain’s computation when

dealing with visual stimuli. Some adaptations to the backpropagation algorithm have also

been investigated to tackle the lack of learning methods in SNNs [81]. If new spike-based

learning rules are thus derived from ANNs learning algorithms, most of them do not search

for biological-plausibility what still leaves some of the mentioned issues untackled.

Some further investigations to design SNNs and train them for computer vision using

synaptic plasticity rules like the one introduced in Section 2.3.3 have thus been carried. The

design of these SNNs, their learning methods, the data encoding schemes, and the neuron

models employed vary depending on the visual task to perform. For image classification,

the study of Diehl and Cook [64] introduced an SNN made of 2 layers. The first layer

encodes images into spike trains using a rate coding scheme. The other layer is responsible

for the network’s processing and includes excitatory and inhibitory LIF neurons. Learning is

made in an unsupervised way by STDP and the classification task is solved by analyzing

the firing rate of each neuron regarding the class of which the presented pattern belonged

to. For image segmentation and edge detection, Meftah et al. [82] proposed a 3 layers

feedforward SNN. The first layer receives RGB values and transmits them to the second

layer that encodes the values to temporal codes by the mean of Gaussian radial basis

functions. The last layer outputs the class of the RGB pixel value presented to the network.

As they did not use ground truth segmentation maps, the learning process was unsupervised

and relied on a WTA learning rule that potentiated the synaptic weights between input

neurons and firing output neurons. Another SNN architecture inspired by the primate visual

cortex was introduced by Wu et al. [83, 84] for image segmentation and edge detection.

Their network performed a color feature extraction using ON/OFF receptive fields and an

error-backpropagation training method. A general SNN architecture for recognition tasks is

illustrated in Fig. 2.16.

Chapter 2. Background and methods 58

Stimulus

Encoding Learning Output

Figure 2.16: A general Spiking Neural Network architecture.

2.5 Conclusion

Medical image analysis has brought a particular interest in deep learning research over the

last decade as it exposes challenges to improve the way we diagnose and treat illnesses.

Building fully-automatic brain tumor diagnosis systems is one of the most difficult challenges

brought by this attraction. Many studies have investigated the development of deep CNNs

to solve the tumor recognition task, most of which obtained results that were comparable

to the human accuracy or outperformed it.

Deep learning algorithms are, however, failing at several levels including energy and

cost efficiency, interpretability, high dependence to large datasets that induces long training

time and a dependence to powerful hardware. All of these issues limit their usage and

large scale deployment. The emergence of low-cost and power efficient GPU embedded

systems is thus encouraging deep learning research towards the compression of ANNs. The

structures and operations of Convolutional Neural Networks, being the most commonly

used deep learning methods in computer vision, thus need to be redefined to fit low-cost

deployment requirements. Simultaneously, spike-based computation by the mean of SNNs

is offering new opportunities that aim to address these problems. Being totally bio-inspired,

these neural networks have the advantage to be particularly energy-efficient which makes

their hardware implementation easier than their artificial counterparts. Since they carry

information as neural spikes, they also provide fast processing and memory footprint

reduction. However, while they appear to be very appealing as comparable candidates to

conventional ANNs, training these methods to solve complex cognitive tasks and approach

deep learning performances still remains a challenge. Even with the wide amount of

Chapter 2. Background and methods 59

different SNN architectures proposed in the state-of-the-art, proving the efficiency of spike-

based model for computer vision is yet to be done as the number of benchmark datasets

used stays relatively small. Although it can highly benefits from the cost-efficiency and fast

inference provided by spiking models, the brain tumor diagnosis task exposed in this thesis

has also not been, to our knowledge, investigated in the spike computation domain.

The work detailed in this manuscript mainly focuses on the investigations of cost-efficient

alternatives to Deep Learning approaches to build medical image analysis systems. The

goal of this study is to move brain tumor visual diagnosis tasks to more affordable, fast

and powerful systems to meet the requirements of the clinical field. The contribution in

Chapter 3 provides a framework for the compression of CNNs in order to adapt a brain

tumor segmentation method to devices with limited resources. Following, an investigation

on the ability of Pulse-Coupled Neural Networks to perform glioblastoma segmentation

and detection tasks is carried in Chapter 4. Finally, Chapter 5 proposes an attempt to

perform the visual diagnosis of brain tumors by the mean of different SNNs trained using

the unsupervised and supervised STDP learning rules.

Chapter 3

Deploying tumor diagnosis on cost-efficient
embedded systems

3.1 Introduction

Brain tumor diagnosis relies on the analysis of data obtained by MRI and is often performed

by one or several radiologists. The complexity and high variation in shapes and locations of

certain types of tumor, however, produces challenges regarding their accurate segmentation.

With the increase in the number of medical image data to process, healthcare providers are

thus investigating the use of computer-aided analysis systems that would tackle this issue.

However, to be useful in the medical field, these systems have to meet several requirements

such as cost efficiency, automaticity or the ability to produce fast outputs. Indeed, with the

aim to always decrease expanses, building computer-aided diagnosis system has to come

with awareness in terms of energy consumption. This induce, using low-power hardware to

compute the diagnosis as fast as possible.

As mentioned in the previous chapter, the rise of Deep Learning over the last decade

induced the development of a wide range of models to assist the decision making in hospitals,

specifically for diagnosis tasks. Mostly based on CNNs [12, 22], these solutions aim to meet

most of the above requirements but their poor adaptation capability to devices with limited

resources is preventing their full deployment and usability. Indeed, the efficiency of CNNs in

computer vision is not new [85], they proved to be very powerful to solve recognition tasks

by obtaining outstanding levels of accuracy. In the context of brain tumor detection, CNNs

were tested and applied with success to perform MRI slice classification or segmentation.

61

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 62

Although they appeared to prove excellent results in detecting a large amount of different

types of tumors, most of the models developed do not meet the cost efficiency requirement.

In fact, in a run for better accuracy and performances, these models are growing bigger and

so do their memory footprints. This leads to the use of very powerful GPU based hardware

that comes with high cost in both purchase and energy consumption, which also makes

Deep Learning have a meaningful carbon footprint. Hence, building smaller models or

optimizing larger ones appears crucial to implement computer-aided diagnosis systems on

limited computational resource devices [86] and step towards more profitable solutions.

Discussions about model compression thus emerged in an attempt to confront this

situation as energy-efficiency is not only crucial in the medical field. These studies show an

importance in the modification of existing deep neural networks or provide motivations to

construct new light-weight models. In parallel, in the aim to provide GPU computing while

dealing with cost and power efficiency, new embedded platforms designed as deep learning

accelerators are emerging to offer new perspectives in the development of deep learning

based applications.

In this chapter, we propose mechanisms to optimize an existing neural network archi-

tecture in order to perform a brain tumor segmentation task. To do so, we first discuss

the advantages of a deep learning ready embedded system and its applicability in the

development and deployment of CNNs in Section 3.2. Then, in Section 3.3 we review the

use of CNNs compression methods in order to reduce the number of parameters in the

U-Net [87] architecture. Finally, Section 3.4 provides details on the implementation of an

end-to-end tumor segmentation system deployed on a cost-efficient embedded system and

exposes the results of our compression methods while comparing the performances of the

network to other state-of-the-art CNNs.

3.2 A GPU Embedded system for Deep Learning applica-

tions

The growth in the development of powerful embedded computing systems is leading to

redefine the way neural networks are being conceived in order to fit requirements in

energy-efficiency in domains like healthcare [88] or autonomous transport [89]. In the

context of computer vision, research challenges appeared to discuss the transformation of

these applications to build low-power solutions without sacrificing their performance in

the tasks they are solving [90]. In fact, they highlight the necessity of a balance between

accuracy and computational cost. Only with this balance would a deep learning solution be

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 63

considered applicable on a large scale. Taking advantage of these opportunities, NVIDIA

launched the JAX developer kit [91], one of the most popular cost-efficient embedded

system for machine learning. It comes with deep learning accelerators and aims to simplify

the development of deep learning applications. It was specifically designed to run deep

learning workloads as it embeds a powerful GPU with CUDA and cuDNN supports as well

as common libraries for neural network implementations like Tensorflow and TensorRT.

Jetson AGX Xavier Module

CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3

GPU 512-core Volta GPU with Tensor Cores

Memory 16GB 256-Bit LPDDR4x — 137GB/s

Weight 630 grams

Dimension 100mm x 87mm x 16mm

Storage 32GB eMMC 5.1

Table 3.1: Nvidia Jetson AGX Xavier specifications.

Taking advantage of both CPU and GPU embedded in the platform, the JAX also appears

to be a powerful competitor to other embedded platform investigated for deep learning

applications development such as Field Programmable Gate Arrays (FPGAs) [92]. There

are several reasons that thus motivates moving deep learning workloads to the JAX :

1. Its low weight and dimension feature. Size and weight can be factors of choices

for applications in small or flying embedded systems [93] as well as to improve

the mobility of recognition system in computer vision. In the research field, it also

provides research teams with the ability to process data anywhere at anytime or to try

new models without being connected to powerful servers.

2. Its low power consumption. It allows to drastically reduce energy consumption and

thermal problems inherent to a lot of systems with heavy workloads. Both power

consumption and weight features can be seen in Table 3.1.

3. Its modular scalable architecture. The platform comes with a Deep Learning Accelera-

tor (deep learningA), as seen in Fig. 3.1, which was specifically designed to simplify

the deployment of deep learning applications and optimize the energy efficiency of

the kit when running these applications. It also perfectly fits any requirement in

terms of CNNs implementation as it supports common operations found in this type

of network like convolution, pooling or normalization.

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 64

Configuration and control block

DLA

SDRAM Internal RAM

Input
Activations

Filter
Weights

Convolution
Core

Post-
Processing

Memory Interface

Figure 3.1: The Nvidia Deep Learning Accelerator architecture. Nvdla.org.

4. The JetPack SDK. JetPack embeds an Operating System image as well as all the

developer tools and APIs necessary for Computer Vision, Accelerated Computing and

Deep Learning. It also provides documentation and sample applications for testing.

5. Its available memory slot. The JAX comes with an empty memory slot ready to receive

an NVMe SSD drive. This features allows the availability of a large storage unit to

process and store data locally which makes it interesting when remote services are

not available or when the platform lies in a closed network. Indeed, processing data

directly on the platform gives the opportunity to not rely on a third-party server and

therefore prevent any connection disruption, latency and security flaw when writing

or fetching data.

However, regarding these listed advantages, some modifications in the conception of

CNNs for computer vision have to be made to make the most of the JAX platform. Indeed,

if the JAX provides a power efficient environment it does not perform compression on deep

learning models. There is thus a need to redefine modern CNN architectures to make them

usable on the embedded system.

3.3 Compressing the U-net architecture

While CNNs are regarded as one of the most powerful models being used in computer vision,

they also often do not fit the requirements in a limited resources environment. In fact,

convolutions are computationally expensive, especially when they are performed on a high

number of feature maps for representation learning. Moreover, following the rush for better

accuracy, these networks appear to be deeper over the years, what increase the number

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 65

of operations they perform on the data and the number and size of weight matrices to be

modified during training. Hence, in order to be beneficial to a wider range of domains, the

way we conceive CNN architecture has to evolve in the opposite direction to decrease the

computational cost of computer vision systems while keeping them as powerful as possible.

The U-Net architecture was design to perform medical image segmentation and the model

can be seen as an autoencoder [94] with an encoding part that contracts an image to a

feature vector and a decoding part that uses the feature maps learnt during the encoding

process to expand the feature vector in order to create a segmented image. In this work,

we propose a compressed version of this model by modifying some of its native operations.

3.3.1 Group Normalization

Normalization methods are widely used in deep learning to reduce the number of epochs

necessary to train a deep neural network. It aims to standardize inputs, stabilizes the

learning process, ease the optimization and convergence of ANNs [95]. Performing a global

feature normalization on the batch dimension as in Eq. 3.1, Batch Normalization [96] (BN)

is one of the most well-known of theses methods. It is also often used as a regularizer that

prevents deep learning models from overfitting as a result of the stochastic uncertainty of

the batch statistics.

µi =
1

m

∑
k∈Si

xk, σi =

√
1

m

∑
k∈Si

(xk − µi)2 + ε (3.1)

Although BN was successfully used to optimize the training of ANNs, the method

suffers from inaccuracy on batch statistics estimation with small sizes of batches. This

phenomenon increases the model’s error and prevents the use of BN on devices with limited

resources as large size of batches are necessary to avoid it. It is thus crucial to adapt

normalization methods to smaller batches in order to tackle this issue. Solving the batch

statistics estimation on smaller batches has been attempted by several methods like the

Batch Renormalization [97] and the Synchronized Batch Normalization [98]. While they

performed better than or as well as BN, both methods do not, however, entirely respond to

the computational problem exposed here.

In the last few years, another normalization method appeared and offer great opportuni-

ties for dealing with the problems induced by BN, it’s the Group Normalization (GN) [99].

This new method aims to divide input channels in groups and perform the normalization

within each of them. By doing so, the batch statistic computation is avoided and the method

does not rely on the batch dimension, which makes it a good fit for ANNs deployed on

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 66

IC Layer

GN + Dropout

1x1

Convolution

Leaky ReLU Leaky ReLU

Add

1x1

Convolution

1x1

Convolution

IC Layer

GN + Dropout

IC Layer

GN + Dropout

Figure 3.2: Detailed convolution block replacing each convolution operation of the
U-net model.

resource-constrained systems.

With respect to the computation of µ and σ in Eq. 3.1, and with G being the number of

groups to divide the input in, N the batch axis, C the number of input channels and C/G

the number of channels per group, GN is defined as :

Si = k|kN = iN , b
kC
C/G

c = b iC
C/G

c (3.2)

Following this definition, different values of G can lead to different types of known

normalization. An Instance Normalization [100] is obtained with G = C and if G = 1, a

Layer Normalization [101] will be applied. Obtaining lower training error by replacing BN in

the ResNet-50 network [102], GN gives confidence to train neural networks without relying

on large batches and thus solve the memory contraints imposed by other normalization

methods. In this work, GN was used in Independent-Component (IC) layers [103] as shown

in Fig. 3.2. Each of these layers combines Dropout [104] and GN as a regularization method

and optimize training by reducing the correlation between pairs of neurons.

3.3.2 Depthwise Separable Convolution

As convolutions are the most computationally expensive operations in the network, our

first compression task is to replace them by a cost-efficient process while keeping their

powerful feature extraction capacities. Depthwise separable convolutions (DSC) [105]

were developed in order to enhance AlexNet and seek for convergence speed, accuracy and

computational cost gains. This type of convolution was also used in different architectures

like Xception [106], MobileNets [13] or Inception [96] to decrease their size. The aim of

DSC is to factorize convolutions and decompose them in two different operations namely,

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 67

Pointwise

Convolution

Depthwise

Convolution

1x1

Convolution

NxN

Convolution

Figure 3.3: Separable convolution block.

the depthwise convolution and the pointwise convolution as shown in Fig. 3.3. In the

depthwise operation, the convolution kernel is applied on each input channel individually.

The pointwise convolution is a regular convolution with a kernel of 1x1 that merges the

features built by the depthwise part. This process breaks down the input and kernel

dimensions and drastically reduces the computational cost of the convolution. Indeed,

assuming an input of shape (W,H,Din), a convolution kernel of size K and an output

dimension Dout, the computational cost λ and the number of trainable parameters ω for a

regular convolution layer is described as :

λ = W ∗H ∗Din ∗K2 ∗Dout (3.3)

ω = Din ∗K2 ∗Dout (3.4)

In contrast, performing the convolution on independent depth gives a DSC layer the

following cost and parameters :

λ = W ∗H ∗Din ∗ (K2 +Dout) (3.5)

ω = Din ∗ (K2 +Dout) (3.6)

The excellent results of DSC in terms of model size and computational cost reduction

motivated the integration of this type of convolution in modern CNN architectures like

MobileNet [13] and ShuffleNet [107]. Both of the latters achieved comptetitve results in

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 68

64 64

128 128

512

256 Modified Separable

Conv Block

2x2 MaxPooling

Upsampling

Concatenate

256

Figure 3.4: The compressed U-net architecture.

computer vision tasks like ImageNet [15]. Encouraged by these advances, we thus applied

DSC on the U-net architecture in both encoder and decoder part. In this modified architec-

ture, every convolution layer is replaced by DSC convolution blocks like the ones used in

MobileNetV2 [108]. Hence, each of the DSC block used in the compressed architecture is

composed of a 1x1 convolution followed by the depthwise and the pointwise convolution

as previously seen in Fig. 3.2. Each convolution except for the pointwise is activated by a

LeakyReLU function and regularization is performed in each layer using the IC component

described above. To aim for more size reduction, two addition modifications are made

in the encoder and decoder part of the network. In the encoder, we set the maximum

feature maps number in the bottleneck to 512, drastically reducing the computational cost

of the entire network. In the decoder part, Bilinear Interpolation [109, 110] was used for

upsampling. The obtained compressed U-net can be seen in Fig. 3.4.

3.3.3 Model quantization

To go further in the compression scheme and respond to the computational cost problems

induced by CNNs, quantization can also be used to reduce the memory footprint of the

model. It refers to methods used for reducing the precision of computations and values

stored by the model. One of the most popular type of quantization in Deep Learning is the

Int8 Quantization that uses 8-bit integers instead of floating points values and operations in

the network. This had the effect of reducing the overall computational cost of the network

and its memory requirements. If quantization implies the presence of errors, the resilience

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 69

of neural networks to noise does not effect their computations as the changes in weight

matrices would be too small to affect their performances. Neural network quantization

[111, 112] was thus used for inference in the proposed compressed U-net without any

penalty on prediction accuracy. The network uses a post-training 8-bit quantization that

has the effect of accelerating predictions and reduce segmentation time.

3.4 Experiments and results

3.4.1 Dataset

Each of the experiment carried to prove the efficiency of the compression applied to U-net

were run using the 2015 version of the BraTS dataset mentioned in Section 2.2.3. Compared

to more recent versions, the 2015 dataset contains a training set with 2 different classes

of tumors namely high-grade glioma (HGG) and low-grade glioma (LGG). We used a set

of 220 cases of HGG and 54 cases of LGG. For each case, a segmentation is provided by

corresponding 4 different types of brain tissues to 5 numerical labels as follows : necrosis

(label 1), edema (label 2), non-enhancing tumor (label 3), enhancing tumor (label 4)

and non-tumorous tissue (label 0). For the purpose of the segmentation performance

quantification these structures form 3 different groups, namely the complete tumor which

contain labels from 1 to 4, the enhancing tumor that is only composed of label 4 and the

tumor core which is composed of all labels except label 2. Fig. 3.5 shows a sample of 3

cases taken from the along with their attributed ground truth map.

Before being used by the network, the entire dataset went through a pre-processing

pipeline. First, sub-datasets for training and validation were created with a ratio of 0.8 / 0.2

respectively. Both contains scan from HGG and LGG cases. Then, N4ITK bias field correction

[113] was applied to both T1 and T1C sequences using the SimpleITK library [114]. After

this correction, normalisation was also applied to the entire dataset. To be able to fit and

process the data on the JAX, empty early and late slices were removed for each case, the

remaining slices were then cropped down to 128x128 images avoiding computation in

background areas. To prevent the model from over-fitting and improve generalisation, an

augmentation process then follows by picking 40% of the cases and randomly applying

different variation operations like flipping, shifting or elastic transformation. Finally, every

case is encoded and saved individually into a TFrecord file. This format uses the Protocol

Buffer Format and allows to save memory and reading time, two important properties that

allows the storage and the analysis of the data on the JAX platform. The entire data pipeline

is illustrated in Fig. 3.6.

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 70

Flair T2 T1 T1C GT

Figure 3.5: Four sequences and ground truth map of three cases taken from the
BraTS 2015 dataset. The first row is a case of LGG and the next 2 rows are HGG
cases.

3.4.2 Experimental protocol

The experiments consisted in training a neural network to perform a brain tumor segmen-

tation task on a cost-efficient platform. This network is an optimized version of the U-net

architecture obtained by reducing its depth and modifying convolution and normalization

operations as well as using quantization to speed up inference. This entire experimental

protocol was implemented using the Tensorflow framework and used the full potential of

the JAX during both training and inference by setting its configuration the the MAXN mode.

This mode brings increased GPU Frequency, the use of all CPU Core available and lead to

speed up training by reducing each epoch time to an average of 20 minutes. Each of the

modes stated in Table 3.2 were also tested and proved the efficiency of our compression

method to run training and inference successfully on the platform. [115].

The input of the network is a mini-batch composed of 2 scan slices to prevent the JAX

from running out of memory during training. The size of the batches was motivated by the

replacement of BN layers by Group Normalization. In the intermediate layers, the weight

kernels were initialised using the glorot normal initialisation [116] and biases were all set

to zeros. We trained the network using a 0.0001 learning rate with an Adam Optimizer

[117]. To record the performance of the network during training and lead the weight

changes, we used a combination of the Dice loss function and the Binary Cross-Entropy

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 71

Figure 3.6: Data pipeline applied to the BraTS 2015 dataset before getting fed to
the compressed U-Net.

(BCE) as follows :

DiceLoss(y, ŷ) = 1− 2
∑
y · ŷ∑
y + ŷ

(3.7)

BCE(y, ŷ) = − 1

N

N∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] (3.8)

TrainingLoss(y, ŷ) = BCE(y, ŷ) +DiceLoss(y, ŷ) (3.9)

Where ŷ and y are the model predictions and the ground truth respectively and N is

the number of cases in the dataset. Recording the loss at each iteration, an early stopping

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 72

MAXN 10W 15W 30W ALL

CPU Cores 8 2 4 8

CPU Max Freq. (MHz) 1377 520 6700 900

GPU Max Freq. (MHz) 2265.6 1200 1200 1200

Memory Max Freq. (MHz) 2133.6 1066 1333 1600

Table 3.2: Nvidia Jetson AGX Xavier power modes.

A) Input Image B) Ground Truth C) Predicted Mask

Figure 3.7: Results of the compress U-Net taking a 128x128x4 input slice in A). B)
is the ground truth attached to the input and C) the predicted segmentation map.

scheme was also used to prevent over-fitting and was set to stop the training after 2

iterations if the network error was not decreasing. Early stopping also allows not to set the

number of training epoch accurately.

Finally, a sigmoid activation sets the output of the network to a pixel-wise probabilistic

mask wherein pixel values are in the range [0, 1]. A threshold is then applied to the mask

as a post-processing operation to obtain a prediction mask composed by the original label

values.

3.4.3 Results

The compressed U-Net proposed in this work was successfully trained to segment both HGG

and LGG cases from the BraTS dataset. The compression method allowed us to obtain a

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 73

parameter reduction of about 93 % with a total number of roughly 2.1 millions parameters

compared to the 31 millions parameters of the original U-Net model. This considerable

reduction was key to deploy the model on the JAX as it highly reduces its memory footprint.

To prove the similarity between the ground truth and the model’s predictions, and evaluate

the segmentation performances on each of the brain tissue groups described in Section

3.4.1, we computed the Dice Coefficient on the validation dataset as follows :

DiceCoefficient =
2|y ∩ ŷ|
|y|+ |ŷ|

(3.10)

As seen in the results showed in Table 3.3 the reduction process did not cause important

penalties to the overall performances of the network. Although our method obtained lower

segmentation scores compared to other methods in Table 3.3, it still approaches these

performances and stay comparable, especially regarding the high parameter reduction

achieved. An example of the results obtain by our network is shown is Fig. 3.7.

Dice Score

Method Complete Core Enhancing

Proposed [118] 0.81 0.77 0.53

Zhao [119] 0.82 0.72 0.62

Pereira [120] 0.84 0.72 0.62

Dong [12] 0.86 0.86 0.65

Table 3.3: Results of our proposed approach compared to other similar Deep Learning
based brain tumor segmentation methods.

While the methods proposed in this chapter to compress a deep CNN permitted sig-

nificant parameter reduction and the implementation of a successful light weight MRI

segmentation system, more investigations could be carried to build an even lighter model

without performance penalty. Knowledge Distilliation [121] is one of these methods and

direct the training of a small model to copy a pre-trained larger model. It is done by

minimizing a loss function that aims to learn the behavior of the larger model by trying to

reproduce its outputs. Parameter Pruning is another popular type of model compression

method and is used to avoid parameter redundancy. It performs on evaluation of the impor-

tance of all the model’s parameters and rank them to remove the ones with small important.

This process results in a much smaller and faster model but can cause major penalties if

the network is not trained even more after the pruning. Note that, however, we did not

consider these methods as they are in both cases time consuming as Knowledge Distillation

Chapter 3. Deploying tumor diagnosis on cost-efficient embedded systems 74

requires the training of a teacher model and the Parameter Pruning runs iteratively and

implies multiple training stages. Using more model compression methods would have thus

taken us far from our primary goal to offer a fast and efficient training scheme.

3.5 Conclusion

In this chapter, a review of some CNN compression and optimization methods was given

with a proof of their efficiency to transform a large model into a much smaller one without

performance penalties. This transformation led to the development of a light and fast

medical image analysis model, able to perform tumor segmentation on a GPU embedded

developer platform with limited resources.

We discussed a step-by-step CNN layer replacement using Depthwise Separable Convo-

lutions and Independent-Component layers composed of Group Normalization and Dropout

to decrease the number of trainable parameters. Moreover, the performances of the com-

pression model were compared to networks performing the same brain tumor segmentation

task and proved to be comparable or better on some of the tumor region segmentation. This

reinforced the efficiency of neural network compression methods and encourages to move

their computation on affordable embedded systems to make the deployment of end-to-end

computer-aided diagnosis realistic in the medical field. However, despite the promising

results demonstrated in this chapter and because model compression is limited, other image

processing methods based or inspired by neural computation can be investigated. In the

next chapter, we study the efficiency of a neural model developed for biomimetic image

processing by addressing the segmentation and detection task of the brain tumor diagnosis.

We will focus on the use of this model for glioblastoma analysis by proposing an easy

detection framework supported by an evolutionary algorithm for parameter tuning.

Chapter 4

Glioblastoma diagnosis using
pulse-coupled neural networks

4.1 Introduction

The glioblastoma is one of the most common primary malignant tumor in adult cases. It

emerges in supporting glial cells and is extremely infiltrative and aggressive. A recent

work also highlighted that they are shape-shifting, what prevents the use of targeted drugs

to treat them [122] and make their detection tedious. Some improvements in diagnosis

technology and the growth of the world’s population have induced an increasing number of

cases regarding this type of tumor. It thus becomes crucial to improve diagnosis systems to

detect them earlier for treatment anticipation and hence increase a patient’s life expectancy.

However, mostly based on MRI analysis, the diagnosis of such brain tumors can be tedious

and most importantly time consuming.

Advances in computer vision along with the appearance of medical image analysis chal-

lenges [24] induced a rise in the interest for computer-aided diagnosis systems development.

In fact, by making large medical image datasets available to the research community, these

challenges brought a rapid growth of deep learning based applications for the medical field.

Mostly based on ANNs and more specifically CNNs, these methods proved to be particularly

efficient for tumor segmentation, detection and classification [12, 22, 123]. They brought

new opportunities to assist health care providers and improve the establishment of the

diagnosis task.

Since the detection of anomalies like lesions or tumors can be seen as an object recogni-

76

Chapter 4. Glioblastoma diagnosis using PCNN 77

tion problem, many different CNN architectures were proposed to perform the segmentation

or classification of medical images [12, 124, 125]. These methods can however not be

viable in the absence of a large amount of data and enough computational resources. With

the unavailability of data induced by ethics and privacy in the medical field as well as the

high dimensionality inherent to medical images that causes heavy computational workloads,

training CNNs to build computer aided diagnosis systems can therefore be challenging. The

use of labelled data is also crucial as most CNNs are trained in a supervised way, which

makes it even more difficult to develop them for the medical field as building these datasets

would require human resources and lead to additional cost for hospitals. Moreover, as

seen in the previous chapter, compressing these CNNs always comes with limits that do

not make their hardware implementation easier. Finally, the lack of explainability of this

type of neural networks causes a penalty when it comes to large scale deployment. Indeed,

choosing a treatment by relying on a decision making system can be sensitive, especially if

the origin of its outcomes cannot be fully understood or explained.

Although deep learning image processing methods showed convincing results for brain

tumor analysis, the aforementioned issues still have to be addressed. In this work, we thus

study the use of the PCNN, a biologically inspired type of neural network to process medical

image data. Since PCNN models can perform image segmentation by the use of spiking

neurons and do not need to be trained they provide a light and fast alternative to deep

learning methods. Moreover they mark a transition between ANNs and SNNs, and let us

investigate the power of neural computation for medical image analysis.

This chapter fist gives an introduction to such model and reviews two versions of

modified PCNNs in Section 4.2. Secondly, Section 4.3 provides a review of medical image

fusion methods to let PCNN models process brain images as they cannot deal with high

dimensionality. Then, we exposes the use of PCNNs as brain tumor feature extraction

methods by recording their output firing activity in Section 4.4. Finally, our experiments

and results on a segmentation and a detection task are given in Section 4.5 where we

provide a framework to obtain the best performances out of the models.

4.2 Modified PCNN models

While the PCNN model introduced in Section 2.4.3 was widely studied for its performances

in image segmentation, the great amount of parameters it embarks makes it tedious to tune

for different tasks. In an attempt to tackle this issue and ease PCNNs usage in computer

vision, some studies discussed the development of modified PCNNs with reduced parameters

and faster outputs.

Chapter 4. Glioblastoma diagnosis using PCNN 78

In this section we review two of the most commonly used type of modified PCNNs and

detail their neuron dynamics.

4.2.1 Unit-Linking PCNN

The ULPCNN [126] represents one of the attempts to accelerate the computation of the

standard PCNN model and to reduce its number of parameters. In this model, most of

the dynamics of the neuron stay unchanged, however, to simplify the initialization of the

feeding channel, the input Fij is set to :

Fij = Sij (4.1)

Then, a concept of unit-linking is also added to the linking channel and redefine it as

follows :

Lij =


1,

∑
(k,j)∈N(i,j

Yk,l > 0

0, otherwise
(4.2)

This modification has the effect of setting the linking channel of a neuron to 1 if

neighboring neurons fired what makes the linking inputs uniform. Moreover, the ULPCNN

threshold θ is now updated following the next equation :

dθ(t)

dt
= −αθij + V θ

ijYij(t) (4.3)

Finally, as seen in Fig. 4.1, each neuron in the network is connected to 8 neighboring

neurons by the linking channel. All these modifications lead to a drastic reduction in the

amount of parameters as ULCPNN now only needs the initialization of the linking coefficient

β as well as the attenuation constant αθ and voltage potential Vθ of the dynamic threshold.

4.2.2 Fast-Linking Spiking Cortical Model

The FLSCM [127] is a type of PCNN based on the neuronal activity of cortical neurons.

It combines a synaptic modulation coming from post-synaptic neighboring neurons to an

external stimulus in order to integrate the neuron’s membrane potential. To produce faster

outputs, the feeding and linking channel of the standard PCNN neurons are not computed

in this model. The rest of neuron’s dynamics are described as :

Chapter 4. Glioblastoma diagnosis using PCNN 79

3x3 kernel Lateral connection

Figure 4.1: Connectivity of neurons in the ULPCNN.

Uij[n] = αUUij[n− 1] + Sij(1 + γ
∑
kl

WijklYkl[n− 1]) (4.4)

θij[n] = αθθij[n− 1] + hYij[n] (4.5)

Yij[n] =

1, Uij[n] > θij[n− 1]

0, otherwise
(4.6)

θij[n] = θij[n− 1]− δ (4.7)

Where, as in the PCNN models above, αθ and αU are the attenuation constants of the

threshold and the neuron’s membrane potential. These parameters are set so that αU
(0 < αU < 1) and αθ (0 < αθ < 1). γ is the linking coefficient and is commonly set as a

factor of a Laplacian operator. h corresponds to the absolute refractory period of the cortical

neuron and δ is the threshold decay factor that allows small intensity pixels to induce

firing. By bringing the synaptic modulation, this model permits a faster firing of neurons

corresponding to pixels with similar intensities whats brings the creation of homogeneous

regions after a few iterations.

4.3 Medical image fusion

Identifying a tumor or any other abnormal cluster of cells in the human body often necessi-

tates the analysis of a series of scans with varying aspects. These series, also known as MRI

sequences, are created by a varying radio frequency pulses and gradients when performing

the scan. Using these sequences is crucial to provide a detailed study of the body portion

Chapter 4. Glioblastoma diagnosis using PCNN 80

that is being scanned as clinical specialists may make use of this amount of information

by examining each sequence slice separately. Most open-source datasets provided to build

tumor segmentation, like the one described in Section 2.2.3, provide multimodal MRI.

This comes particularly useful when building deep learning models for tumor diagnosis

systems, as more data make the network extract every meaningful feature that would help

to discriminate brain lesions. However, the high computational workload caused by the

use of this high dimensional data has to be considered. It appears crucial to whether build

light image processing models that can perform on large data or reduce the dimension of

the data itself. Here, we adopt the second option and propose an introduction to medical

image fusion. Image fusion is a method used to fasten the analysis of multi-channel data. It

allows the creation of a single image containing information merged from other channels.

Note that a good fusion technique will keep the amount of information in the image as high

as possible. This information can be measured by several metrics like the Entropy or the

Mutual Information.

4.3.1 Discrete Wavelet Transform

The DWT is one of the most commonly used technique for medical image fusion [128, 129].

It performs a decomposition of a signal into a higher and a lower frequency band. The results

of this process on a multi-channel image is a set of detail and approximation coefficients

that corresponds to vertical, diagonal and horizontal directions of the input image. DWT

thus leads to the creation of four different intermediate images called high-high (HH),

low-low (LL), low-high (LH) and high-low (HL) bands.

In order to fuse multi-modal medical images, the algorithm is computed on image pairs

to obtain intermediate fused images that will be fused together again until the fusion leads

to one single image corresponding to the results of the whole fusion process. Note that pre-

processing can be needed to obtain the best fusion. Methods like histogram equalization and

normalization are often needed to avoid a potential bias induced by a higher contrast image

within the fusion. To that end, a reference sequence is chosen to match the histograms of

all the others. The decomposition of a multi-modal MRI scan slice from the BraTS dataset

using this method is illustrated in Fig. 4.2

Although it allows an efficient fusion of medical image data, DWT can induce a heavy

workload and be time-consuming because of redundant representation of the input image.

This prevents its use on a large amount of high dimensional data. To tackle this issue, a mod-

ified version of the PCNN, called m-PCNN, was proposed and designed for Computerized

Tomography (CT) scans and MRI fusion [130, 131].

Chapter 4. Glioblastoma diagnosis using PCNN 81

Data (1 case)
size : 155x240x240x4

T1

Flair

T2

T1ce

T1 histogram
matching over Flair

T1ce histogram
matching over T2

T1
cH, cD,

cV

Flair
cA

IDWT
Flair +

T1

T1ce
cH, cD,

cV

T2
cA

IDWT
T2 +
T1ce

Fused data
size : 155x240x240

Figure 4.2: Fusion of a 4 sequence scan using the DWT method.

4.3.2 Multi-channel PCNN

The m-PCNN is a modified version of the standard PCNN and was designed to perform

multi-channel image fusion. In this model, an information fusion layer is added and replaces

the linking channel of the PCNN. This layer receives the high dimensional stimulus and

is responsible for merging each dimension into the internal state of the neuron. This

modification allows the model to receive multiple inputs at the same time, which is different

from the standard PCNN that can only receive a single 2-D image. Taking the example of an

MRI with k = 4 sequences as in the BraTS dataset with the T1, T1c, FLAIR and T2 modes,

this new fusion channel Hij[n] is defined by :

Hij[n] =
K∏
k=4

(1 + βkHk
ij[n]) + σ (4.8)

Where σ is a factor that controls the level of the internal activity. βk is a weighting factor

that modulates the importance of one sequence during the fusion, a higher value of k thus

leads to a stronger representation of the corresponding sequence in the fused image. While

the dynamics of the pulse generator and the threshold are stay unchanged, the internal

activity of the neuron is here changed to :

Uij[n] = Mk(Y [n− 1]) + Skij (4.9)

The absence of a linking channel in the m-PCNN reduces its amount of parameters

Chapter 4. Glioblastoma diagnosis using PCNN 82

compared to the standard PCNN, making it computationally interesting. However, in the

context of MRI fusion, it is important that the scans are skull-stripped and registered to be

able to use this method. Indeed, a wrong layering of the sequences can lead to the creation

of visual anomalies during the fusion process. An result example of the m-PCNN applied to

the 4 sequences of BraTS dataset is shown in Fig. 4.3. The m-PCNN was initialized with

{β1, β2, β3, β4} = {0.8, 0.3, 0.3, 0.8}, where 1, 2, 3 and 4 represents the FLAIR, T1, T1CE

and T2 sequences respectively.

0 50 100 150 200
Width

0

50

100

150

200

He
ig

ht

Fused Sequence

0 50 100 150 200
Width

0

50

100

150

200

He
ig

ht

FLAIR Sequence

0 50 100 150 200
Width

0

50

100

150

200

He
ig

ht

T1 Sequence

0 50 100 150 200
Width

0

50

100

150

200

He
ig

ht

T1CE Sequence

0 50 100 150 200
Width

0

50

100

150

200

He
ig

ht

T2 Sequence

Figure 4.3: Sequences of one MRI slice of the BraTS 2020 dataset and the sequence
obtain by m-PCNN fusion.

4.4 PCNN for brain tumor feature extraction

The effectiveness of spike-based models for computer vision drew attention to the use

of PCNN as an efficient image processing method. Its ability to create clusters of firing

Chapter 4. Glioblastoma diagnosis using PCNN 83

0 50 100 150 200
Width

0

50

100

150

200

He
ig

ht

Original image

0 20 40 60 80 100 120
Time (ms)

0

10

20

30

40

50

Nu
m

be
r o

f s
pi

ke
s

Image Time Signature

Figure 4.4: Example of the PCNN signature extraction on an MRI slice from the
BraTS dataset.

neurons is particularly interesting to perform image segmentation. Although, PCNN models

have primarily shown their effectiveness in handling basic binary segmentation tasks, some

changes to their core processes can allow an extension of their capabilities. The first idea

concerning this process was introduced by McClurkin et al. [132]. In their work, they

studied a macaque’s neural response to patterns and colour stimuli individually. They found

the creation of small patterns in the subject’s brain that reflected the input stimulus. When

presented to a new stimulus containing both patterns and colours, the response appeared

to be the multiplication of both previous individual pattern and colour responses.

Following these findings, Johnson [133] proposed the use of a PCNN to encode images

into a univariate time series called Image Time Signature (ITS). This ITS is simply obtained

by plotting the sum of spikes at each PCNN iteration. Hence, for any type of PCNN and at

iteration n, this time series S is defined as :

S[n] =
∑
ij

Yij[n] (4.10)

The retrieved signature is then specific to the shapes found in the image. The main

advantages of this method are its fast computation and the fact it provides a new represen-

tation of an image that is significantly smaller in size and memory. This makes it particularly

interesting to build cost-efficient image analysis systems.

We thus assume that PCNN can be used to retrieve meaningful information in MRI slices

(See Fig. 4.4) in order to build a brain tumor detection system. One important quality of an

ITS is that it contains sub-signatures of objects held in the image it represents. Typically,

the ITS of an image displaying an object on a background is the summation of the ITS of

Chapter 4. Glioblastoma diagnosis using PCNN 84

0 20 40 60 80 100 120

0

10

20

30

40

50 MRI slice signature
Tumor patch signature

Figure 4.5: Comparison of the entire MRI slice signature with to the signature of the
tumor ground truth patch.

the object and the ITS of the background. This means that although the method is sensitive

to complex background, retrieving the sub-signature that defines the tumor area can still be

done using the MRI slice signature.

This can be seen in Fig. 4.5 in which the signature of an MRI slice from the BraTS

dataset is compared with the signature of a patch extracted using the ground truth maps

also provided in the dataset. The figure shows that although the patch does not include

as much information as the MRI slice, the signature obtained from the patch is clearly

identifiable and thus motivates the use of ITS in a brain tumor detection system.

4.5 Experiments and results

4.5.1 Dataset

The 2020 version of the BraTS dataset presented in Section 2.2.3 was used to carry all of

the experiments exposed in this chapter. As the PCNN models we used take 2-D images

as inputs, fusion was applied to all cases in the dataset using the m-PCNN model. The

initialization of each β being the most important process for the fusion to provide a good

representation of all 4 sequences, the entropy can be computed for each sequence to find

which ones carried the greatest amount of information. Our experiments showed that the

FLAIR and T2 sequences carried significantly more information than T1 and T1Gd, leading

to set βFLAIR and βT2 to high values. This is also reinforced by the fact that performing

an accurate tumor extraction only using T1 and T1Gd is a tedious task even for powerful

methods like ANNs because they mostly hold low-contrast.

However, setting the parameters manually can be tedious, we thus relied on an op-

timization scheme to find these parameters automatically. Using the same dataset for

Chapter 4. Glioblastoma diagnosis using PCNN 85

a segmentation and a detection task separately, this optimization was based on the DE

algorithm and several fitness functions were tested to seek for better performances. More

details about this optimization are given in the next sections discussing the segmentation

and detection tasks. After being fused, each image was normalized so that pixel values

were in the range [0, 1]. Finally, for the segmentation task only, the ground truth maps were

flattened to binary masks in order to compare them to the PCNN segmentation output and

evaluate the models performances.

4.5.2 Brain tumor segmentation

To study the efficiency of the PCNN model for the segmentation of glioblastoma, we tested

each of the different PCNN introduced in Section 4.2. The feeding channel F , the linking

channel L, the internal activity U and the output map Y were all initialized as zero matrices

of the same size as the input stimulus S. The threshold T was initialized as a one matrix of

size S as well. All of the other parameters except the number of iterations n were found

using the DE algorithm. The list of the optimized parameters can be seen in Table 4.1. Since

an optimal value for n can not be easily and automatically determined, the DE process was

set to find optimal results within 10 iterations. This allows to keep the computation of

PCNN as fast as possible and taking advantage of it to obtain good segmentation results

faster. This optimization was carried using a Dice Loss function based on the Dice coefficient

that computes the similarity between a ground truth Ŷ and the PCNN segmentation output

Y . This loss function is defined as :

DiceCoef(Y, Ŷ) =
2|Y ∩ Ŷ |
|Y |+ |Ŷ |

(4.11)

DiceLoss(Y, Ŷ) = 1−DiceCoef(Y, Ŷ) (4.12)

Doing so, we can evaluate the segmentation performance and fine tune the parameters

at the same time by minimizing false segmentation. We recorded the development of the

coefficient after each iteration to create an early stopping strategy to halt the segmentation

process when the loss did not decreased after two iterations, to ensure that we always

obtained the best segmentation. This method is frequently used while training Deep Neural

Networks to ensure that the training process does not continue after the model has attained

its peak performance. This thus allows the model to always output a segmentation map

that is as close as possible to the ground truth.

Chapter 4. Glioblastoma diagnosis using PCNN 86

Model Standard PCNN ULPCNN FLSCM
β 0.47 0.47 0.44
αθ 0.0125 0.015 -
αF 0.96 - -
αL 0.81 - -
Vθ 20 20 20
VF 0.21 - -
VL 0.36 - -
W 3x3 gaussian kernel - -
M W - -
αU - - 0.49

Table 4.1: Optimized parameters of the PCNN models.

4.5.3 Brain tumor detection

It was proven that ITS could be used to build a fast object recognition model by comparing

local ITS, obtained by computing a PCNN over an image sub-region, to a global ITS

representing the spiking activity of neurons from the entire image [134, 135]. While

this method proved to be efficient for small object recognition, some room was left for

improvements as the study presents two major drawbacks. First, the method was only

tested to detect objects that were already distinct from the background they laid on. No

clutter or complex patterned background was used to prove the robustness of the model.

Secondly, when the model was pushed to detect multiple objects, overlapping was not

considered and the model was only proven efficient in a situation when objects stood alone.

Finally, the algorithm used to find sub-regions to build local IS was defined as a moving

window of size N that increments after each iteration if the best fit was not found. This

method can be computationally.

The right choice of image sub-region is thus crucial to decrease the complexity of the

model. In fact, relying on incrementing moving windows does not allow to build an efficient

glioblastoma detection model because of the wide variety of shape and size these tumors

can take. Region proposal algorithms have been widely investigated in deep learning and

their capability to choose regions of interest was successfully applied in CNN to perform

semantic segmentation [136]. They allow to avoid the computing of a multitude of detection

windows with different sizes. In this work we use the Selective Search algorithm discussed

in Section 2.1.1. This algorithm is particularly interesting for glioblastoma detection as it

provides an efficient way to retrieve regions of interest with different width and height.

In fact, as mentioned above, as glioblastoma tumors can take a wide range of shapes and

dimensions, it is important to rely on an algorithm that can fastly produce bounding boxes

Chapter 4. Glioblastoma diagnosis using PCNN 87

with divers sizes.

Combining Selective Search to the PCNN feature extraction discussed in Section 4.4 we

propose the following algorithm to perform a complete tumor detection :

Step 1 : Compute Selective Search on M to create Bij bounding boxes

Step 2 : Remove boxes with area greater than threshold θ

Step 3 : Extract image patches Pij from the boxes

Step 4 : Convert each Pij to signature Sij
Step 5 : Compute the Euclidean distance between each Sij and the signature Msign obtained

from M

Step 6 : Retain Bmin the box that gives the smallest distance Dmin as the complete tumor

detection box

Where the value of θ is obtained from experimental observations regarding the average

volume of the tumors available in the dataset. This threshold permits to fasten the region

selection process by removing abnormal large boxes. To evaluate the performances of

this algorithm, we conducted several experiments regarding the initialization of the PCNN

parameters for the feature extraction and the fusion process. Tuning the parameters for both

processes allowed to analyse their contribution to the detection task. To prove the efficiency

of our algorithm we first started to extend the BraTS dataset by automatically creating

bounding boxes using the ground truth maps. These ground truth bounding boxes were

then used to compute the accuracy of the proposed model by the mean of the Intersection

over Union (IoU) defined as :

IoU =
B ∩G
B ∪G

(4.13)

Where G is the ground truth bounding box and B is the one selected by our algorithm.

The fusion process performed by the m-PCNN is crucial for our algorithm to perform well.

Getting a new representation of the original multi-modal data that gives enough information

to identify the tumor’s edges is an important step before computing the Selective Search. It

can let the right segmented areas to stand-out when computing the over-segmentation with

the Felzenszwalb algorithm. Some pre-processing step can also be added before computing

the algorithm to further enhance edge detection and thus optimize the over-segmentation.

Fig. 4.6 shows the effect of a badly tuned m-PCNN on the performance of the detection

algorithm. It also shows that the amount of box candidates is greater when the image was

badly fused as the pixels intensities around the tumor region were not enhanced. Therefore,

since all the candidates are compared to the main signature Msign, a bad initialization of

Chapter 4. Glioblastoma diagnosis using PCNN 88

0 50 100 150 200

Width

0

50

100

150

200

H
e
ig
h
t

Correct detection

0 50 100 150 200

Width

0

50

100

150

200

H
e
ig
h
t

Wrong detection

Figure 4.6: Correct and wrong detection using different fusion parameters.

the fusion parameters induces a higher computational cost for the detection algorithm.

It hence appears crucial to optimize the fusion parameters initialization. The first

strategy to do so is to use a weight factor over the data sequences that show high contrasts

such as the FLAIR and T2. However, when weighting the β coefficient of the m-PCNN for

these two sequences we observed that global low contrast was key to the creation of local

ITS that could be found in global ITS. We thus employed the DE algorithm to find the

parameters automatically.

We tested the optimization process with two different fitness functions. The first one

aimed to minimize the standard deviation of the fused image to decrease its contrast.

The second fitness function searched to minimize the entropy of the image to induce

a maximization of the information gain. In our experiments, minimizing the standard

deviation appeared to give better results and induce a higher β for the T1CE sequence.

Nevertheless, a minority of samples in the dataset responded negatively to the reduction of

contrast which caused inappropriate ITS creations.

4.5.4 Results and discussions

The experiments carried for both glioblastoma segmentation and detection tasks proved the

efficient of PCNN models for medical image analysis.

Chapter 4. Glioblastoma diagnosis using PCNN 89

A. Standard PCNN B. Unit-Linking PCNN C. Fast-linking SCM D. Ground truth

88.0 : eciD09.0 : eciD97.0 : eciD

Figure 4.7: Results of three PCNN models on a brain tumor segmentation task.

Segmentation

In the segmentation process, each of the PCNN models presented in this chapter were

tested and succeeded in segmenting cases from the BraTS dataset. Their performance

was evaluated using the Dice Coefficient to compare the ground truth maps to the models

segmentation maps. Computation time was also retrieved to reinforce the proof of their

ability to perform this task.

Fig. 4.7 shows the results of a segmentation performed on an scan slice along with

the manually segmented ground truth. Note that, during all the evaluation process, the

FLSCM and the ULPCNN performed better than the standard PCNN in both Dice score and

computation time. Ran on CPU, the standard PCNN had an average segmentation time of

about 60 seconds for roughly 100 slices corresponding to one BraTS scan. Both FLSCM

and ULPCNN were able to segment the same amount of slices in 17 seconds on average.

However, the FLSCM was the only model that could handle small contrast variations

between tumorous and non-tumorous tissues. Its segmentations appeared clearer and

well-defined.

Some limitations regarding this method were however found. The spiking of individual

neuron kept when building the final segmentation map induce the presence of noisy pixels

as seen in B of Fig. 4.7. The only way we found to deal with this problem was to apply post-

processing operations like morphological image processing but this includes an additional

operation and can lead to heavier workloads.

Moreover, note that we kept the segmentation task as a binary problem. Some modifica-

tions in the PCNN models could be further investigated to provide a multi-label segmentation

Chapter 4. Glioblastoma diagnosis using PCNN 90

map.

Detection

Our proposed method was found to be effective in detecting the tumor in the majority

of our experiments. Ran on CPU, our algorithm was able to detect tumors in each MRI

slice in 8 seconds on average when the maximum number of proposal was not specified.

In other trials, limiting the maximum number of boxes created by Selective Search to ten

reduced the algorithm’s computing time to an average of 3 seconds per slice. These results

prove the efficiency of the proposed algorithm as well as its independence to GPU. However,

the selected bounding boxes were often not pixel perfect. This can be due to the lack

of a pre-processing step that could help the Selective Search algorithm in discriminating

meaningful regions. We indeed decided not to apply any pre-processing operation to the

original data in order to keep the computational workload of the entire process as low

as possible. With this strategy we also have a proof of the performance of PCNN models

without data transformation. Some results of our detection method are shown in Fig. 4.9.

Although the average IoU score obtained over the entire dataset proved the efficiency of

our method, some limitations and enhancements have to be considered.

If our method was successful on slices with large tumors, it was often limited when

trying to detect smaller regions in the early and late slices of the scans. This is due to the

particularly small sizes of these tumors, mostly made of a few pixels that can hardly be

identified. Due to the fact that early and late slices only exposes small spatially sparse groups

of voxels, comparing the signature of the whole slice to any of these groups would result in

short euclidean distances, causing the detection procedure to be incorrect. This also had an

impact on the segmentation performed during the Selective Search, since variations in all

similarities computed by the algorithm resulted in the production of incorrect bounding

boxes, as seen in the Fig. 4.8. As a result of the lack of information surrounding the tumor,

the algorithm failed to detect it.

Regarding this issue, the model was only tested on slices containing enough contextual

information to detect tumorous tissues. Our method was thus applied to every scan in

the BraTS dataset, yielding an average IoU score of 0.78. Some further work can thus

investigate pre-processing steps to increase the intensity of these small tumorous region

as well as a tuning process for the Selective Search algorithm to let it propose very small

regions. Enhancing the fusion process with a multi-criteria optimization can also be explored

to provide a balance between contrast and information gain.

By rerunning the algorithm on the predicted picture patches and fine-tuning the fusion

process to increase contrast on certain tumorous areas, this work may be extended to a

Chapter 4. Glioblastoma diagnosis using PCNN 91

IoU Score : 0.08
Predicted box
Ground truth box

Figure 4.8: Detection of a tumor in the last slice of a scan.

multi-label detection approach. For instance, the algorithm was able to recognize the edges

of the core tumor region when the fusion process was heavily impacted by the T1c sequence.

Allowing the FLAIR and T2 sequences to affect the fusion more than other sequences, on the

other hand, improved the accuracy of recognizing the whole tumor. Running the algorithm

on the patches contained in the found bounding boxes could also lead to a tumor sub-region

detection process. However, some changes would have to be made in the computation

of the time signatures to make sure each sub-regions can be find in the global ITS. Note

that this process can be time consuming as the PCNN models used for fusion and feature

extraction would have to be fine-tuned again. Finally, to build a complete recognition

system, a classifier like SVM can be employed to label the sub-regions.

4.6 Conclusion

In this chapter, the use of PCNNs was investigated to solve both glioblastoma segmentation

and detection tasks. Firstly, we employed PCNNs to perform a binary segmentation of scan

slices taken from the BraTS dataset. Our experiments proved the efficiency of all the models

tested even with a simple parameter setting scheme. The differential evolution algorithm

was used in order to get optimal results by finding the best parameters possible for each

PCNN. It was based on a fitness function using the Dice Coefficient as a similarity metric

between the ground truth segmentation and the one obtained by the model. The same

Chapter 4. Glioblastoma diagnosis using PCNN 92

0 50 100 150 200

Width

0

50

100

150

200

H
e
ig
h
t

A) IoU Score : 0.81

0 50 100 150 200

Width

0

50

100

150

200

H
e
ig
h
t

B) IoU Score : 0.83

0 50 100 150 200

Width

0

50

100

150

200

H
e
ig
h
t

C) IoU Score : 0.87

0 50 100 150 200

Width

0

50

100

150

200

H
e
ig
h
t

D) IoU Score : 0.77

0 50 100 150 200

Width

0

50

100

150

200

H
e
ig
h
t

E) IoU Score : 0.9

0 50 100 150 200

Width

0

50

100

150

200
H
e
ig
h
t

F) IoU Score : 0.79

Figure 4.9: Examples of brain tumor detection obtained by the proposed algorithm.
The red boxes are the predicted detections and the blue boxes are real bounding boxes
created from the ground truth maps.

metric was used to build an early-stopping scheme and make sure that the models output

the best segmentation map possible.

Secondly, we discussed the application of PCNNs to build a glioblastoma detection

system by using them as image fusion and feature extraction methods. Coupled with the

Selective Search algorithm, the use of Image Time Signatures produced by PCNN allowed

to build an efficient complete tumor detection framework. To obtain optimal results, the

differential evolution algorithm was used as a mean to optimize the fusion process which is

crucial to increase detection accuracy.

Finally, our investigation showed that a tumor recognition system could be built without

the use of heavy deep learning algorithms. Indeed, the results obtained encourages the

use of simple neural model based image processing methods and build confidence in the

Chapter 4. Glioblastoma diagnosis using PCNN 93

creation of fast, light and scalable medical image analysis systems. In the next chapter,

we go further in investigating brain inspired computation to address the computational

cost, power consumption and explainability issues inherent to deep learning models. We

will discuss the development of a single trainable layer C-SNN for tumor classification and

compare its performances with state-of-the-art deep and machine learning models.

Chapter 5

Training an SNN for brain tumor
classification

5.1 Introduction

As discussed in the previous chapter, the promising opportunities offered by spike-based

computation inspired by biological neurons have been getting more attention in recent

years [137, 138]. With the power to solve some of the issues carried by deep learning

methods like energy consumption, the need for large datasets or the dependence to powerful

hardware, brain inspired computation methods can provide a good alternative to deep

neural networks. If we proved that PCNN models could be use for simple brain tumor

segmentation and detection tasks, they were not designed to perform classification, which

is necessary to complete a diagnosis, and they also lack of a strong feature extraction step.

More complex models of spiking neurons can thus be investigated to have further proofs of

brain inspired computation’s efficiency in computer vision.

Inspired by biology and motivated by the speed of visual processing in the human brain,

SNNs are exploiting the properties of neurons and synapses to carry information and now

appear as powerful competitors to ANNs. The last few years have seen an increase in the

development of these models that aimed for a level of performance that would come close to

deep learning methods. However, although they do solve the computational and energy cost

problems of their artificial counter parts and provide an easier hardware implementation,

SNNs have not been able to outperform ANNs in most vision tasks. This is mostly due to the

lack of efficient training methods and the lossy encoding schemes they induce to represent

95

Chapter 5. Training an SNN for brain tumor classification 96

data.

To extend the work exposed in the previous chapter and go further with applying neural

computation to brain image analysis, which as never been done to our knowledge, we

propose a study of a single trainable layer C-SNN to solve brain tumor classification by using

biologically-plausible plasticity rules. Regarding how small this model is, this work does not

aim to outperform deep CNN but rather gives bases to develop C-SNNs for medical image

analysis and prove the opportunities they bring in building lightweight and cost-efficient

diagnosis systems.

In this chapter, we thus describe the implementation of such model. In Section 5.2

we first describe the classification tasks our proposed approach aims to solve. The data

used for this purpose is also presented along with a pre-processing pipeline designed to

facilitate the feature extraction performed by the C-SNN. Then, in Section 5.3, the structure

of the proposed model is discussed along with the learning mechanisms used. Finally,

our experiments and results are described in Section 5.4. A comparison to deep learning

methods is also provided to place the performance of C-SNNs in the state-of-the-art.

5.2 Classification tasks and data processing

To prove the efficiency of the models proposed in this chapter, we define two classification

tasks with different levels of complexity. The first one (CT1) is a binary classification that

uses the 2015 version of the BraTS dataset to categorize high- (HGG) and low-grade (LGG)

gliomas. For this task, only the FLAIR scans of the dataset were used as they often offer

a greater amount of information to extract tumorous tissues. The other classification task

(CT2) our model aim to solve relies on a dataset composed of 3064 slices from 233 patients

containing 3 types of tumors, namely glioma, meningioma and pituitary tumors. The data

was presented in the work of Cheng et al. [139].

Since SNNs convert input data to spike trains, pre-processing operations can be very

useful to ease the encoding process by reducing the complexity of the data. The MRI

slices from all the datasets mentioned were pre-processed following the same pipeline.

To use the same type of data throughout our experiments we used the method proposed

by Shattuck et al. [140] to perform skull-stripping when needed. This work employed

a combination of processes including Marr-Hildreth edge detection and morphological

operations in order to separate the brain region from the skull surrounding it. Appart from

the BraTS dataset, other MRI slices used were not skull-stripped. Since we used different

datasets, the histograms of all images were matched using a FLAIR scan from the BraTS

dataset as template.

Chapter 5. Training an SNN for brain tumor classification 97

The MRI slices were then converted to grayscale images and then normalized. To

decrease the computational workload of our experiments each slice was also downsized

to a 128x128 image. To account for the fact that brain images are often noisy and that

the dataset used for CT-2 presents some artifacts, Anisotropic Diffusion Filtering (ADF)

[141] was used. This method has been widely investigated in medical image processing

[142, 143, 144] since it allows to conserve the edges of an image while smoothing it out to

remove any outlier or artifact that might be present (See Fig. 5.2). The discrete form of

ADF is described by :

I t+1
p1
≈ I tp1 +

λ

|ηp1 |
∑
p2∈ηp1

f(
∣∣∇I tp1,p2∣∣ , γ)∇I tp1,p2 (5.1)

Where I tp1 corresponds to the intensity of pixel p1 at time t from an image I, ηp1 is a set

neighboring pixels from p1, λ corresponds to a scalar associated to the diffusion rate, γ is a

positive constant that sets the smoothing level of the filter, ∇I tp1,p2 indicates the magnitude

of the directional gradient from pixel 1 to p2 and f is an the edge-stopping function that

performs the smoothing process. These pre-processing pipeline was ran on each slice right

before they were fed to the network and is summed up in Fig. 5.1.

5.3 Convolutional SNNs with synaptic plasticity learning

rules

Convolutional neural networks have been widely investigated in computer vision for their

ability to extract meaningful features to build highly accurate decision making systems.

In parallel, the recent breakthrough of SNNs used for pattern recognition showed the

efficiency of spike-based models to process signals with temporal dependencies. However,

their representation of data in the temporal or rate domain often lacks the ability to perform

complex feature extractions such as the ones found in CNNs. In computer vision, this

explains the gap between the accuracy of CNNs and SNNs. Hence, investigations to build

models that use the best of both types of neural networks led to the development of C-SNNs.

As their name implies, C-SNNs are the spiking equivalent of CNNs and aim to bring

powerful feature extraction to SNNs while taking advantage of the spike-based computa-

tion to reduce computational cost issues involved in CNNs. A simple and typical C-SNN

architecture consists in three main layers that perform encoding, feature extraction and

decision making respectively. The encoding layer is responsible for the conversion of visual

stimuli to spike times and can use any of the coding scheme discussed in Section 2.3.2

Chapter 5. Training an SNN for brain tumor classification 98

Figure 5.1: Data pre-processing pipeline before training the C-SNN.

and can also apply some filters on the data to simulate real perception processes. In the

feature extraction layer, CNN common operations like convolution and pooling are used to

build a new representation of the input data by the mean of feature maps. As the data is

propagated in the network under the form of temporal codes, this layer also contains sets

of spiking neurons that convert the features to spike times. In bio-plausible settings the

connections between the two previous layers are represented as plastic synapses that build

the learning process of the entire network. The output layer often holds groups of neurons

which activities are associated with a decision. Being driven by the activity of neurons in

the feature extraction layer, the decision is often attributed regarding the timing of spikes

so that the first neuron to fire in the output layer indicates the decision. In this section,

we describe the development of such model in details and discuss its application to brain

tumor classification.

5.3.1 Network topology

The network used in this work was created following the architecture of the HMAX [145]

model. It is thus composed of four layers of simple and complex cells. Designed for object

Chapter 5. Training an SNN for brain tumor classification 99

Original Image ADF Image

Figure 5.2: Anisotropic Diffusion Filter (ADF) applied to an MRI slice.

recognition on natural images, this structure simulates the invariance and complexity

observed in the ventral stream. Here, simple cells are used for feature selectivity and

complex cells add the invariance needed for the recognition task.

V1 Simple Layer 1 - S1

Before passing through the first layer and as mentioned in the previous section a denoising

operation was performed on each MRI slice to avoid the detection of features in background

areas cause by possible MRI artifacts or bad acquisition. In the input layer, a DoG filter

was then applied to the brain images to mimic the LGN encoding of visual stimuli. This

transformation is followed by V1 simple-cells as the ones discussed in Section 2.4.1. Since

these cells are sensitive to orientation, they are modeled as Gabor filters that are known

to perform edge detection. In our experiments, we used 4 different filters that were 45

degrees out of phase to extract all oriented edges. The filtered stimuli are then converted to

spike times using the TTFS encoding leading to the creation of four feature maps of the

same size as the input image so that each position in the map corresponds to a pixel firing

time. This allows salient edges to spike earlier and have a stronger effect on later neurons.

An example of this layer output can be seen in Fig. 5.3.

V1 Complex Layer 1 - C1

Complex cells are known for their spatial phase invariance properties. They extend the

features of simple cells by reacting to oriented grating stimuli with a wide variety of spatial

phases. The first layer of complex cells in our network performs a pooling operation on each

Chapter 5. Training an SNN for brain tumor classification 100

Original Gabor response 1 Gabor response 2 Gabor response 3 Gabor response 4

Figure 5.3: Output example from the S1 layer.

of the feature maps retrieved from the S1 layer. It is thus composed of the same amount

of maps as in S1. Just like pooling operations in CNNs, this layer allows to reduce the

dimension of the incoming stimulus by downsizing the number of neurons and consequently

increases computational speed while adding spatial invariance on the detection of edges.

This is done by keeping the earliest spike times in each pooling window. To provide sparse

feature representations, lateral inhibition is also used in this layer. For each feature map, an

inhibition kernel first increases the spike timing of the neurons around the ones that fired

earlier. Moreover, when a neuron spikes in one of the feature maps, the neuron at the same

position in all other maps remains silent while the image is being processed. This helps to

avoid feature redundancy in the layer by making sure each feature map offers a different

representation of the input.

V1 Simple Layer 2 - S2

The second layer of simple cells is responsible for most of the processing happening in the

network and is the only trainable layer. It is composed of sets of IF neurons that integrates

by receiving inputs as kernels of C1 neurons activity and fire when their membrane potential

reaches a threshold value. A refractory period is used to make sure every neuron can only fire

once per image. A WTA mechanism is also triggered by each spike using lateral inhibition.

The synaptic weights between C1 and S2 are updated according to the learning rule used.

With a simple learning rule such as STDP, the order of pre- and post-synaptic spikes defines

the potentiation or depression of weights between the layer. The strengthening of weights

thus carries information about features found in the data to the next layer.

V1 Complex Layer 2 - C2

C2 is the output layer of the network and is responsible for the classification process. Each

neuron in this layer is connected to one set of S2 neurons and transmits the first spike from

Chapter 5. Training an SNN for brain tumor classification 101

it. To classify images, C2 neurons are then assigned to a class label and decision is made

according to the group of neurons that fired earlier.

5.3.2 Supervised learning

Many studies investigated the role of the reward system in the human brain and suggested

that it highly influenced decision making. In such mechanism, rewards are sent to motivate

a state or behaviour to repeat itself. On the contrary, penalty signals can be sent to avoid

triggering these behaviors. When the brain is exposed to the reward signals, it answers by

intensifying the production of dopamine, a neurotransmitter that was found to reinforce

beneficial behaviors. For learning, it was shown that neurotransmitters like dopamine could

have an impact on synaptic plasticity. This kind of system can thus be interpreted as a

supervised learning scheme with reinforcement.

The Reward-Modulated STDP (R-STDP) [146] is an extension of the STDP learning rule

that incorporates this reward mechanism and can be used to train SNNs in a supervised

manner. The idea is to regulate the effect of STDP using the reward mechanism that can

thus change the weight in positive or negative ways according to specific stimuli and not

only the order of pre- and post-synaptic spike timings. The timing of the reward signal is

also important in biological settings. Indeed, if a reward or punishment signal is sent long

after the neural activity that triggered it, it does not have any use as many other events

would have occured. This is discussed in the work of Izhikevich [147]. To avoid this, the

reward system we use employs synaptic traces that store the outcome of STDP to let the

reward be consumed and change the weights at the right time. The weight changes ∆Wij

between pre-synaptic neuron j and post-synaptic neuron i in layers l1 and l2 respectively

driven by R-STDP under a reward signal is then defined as :

∆Wij =

A+Wij · (1−Wij) tl1(j)− tl2(i) > 0,

A−Wij · (1−Wij) tl1(j)− tl2(i) ≤ 0
(5.2)

Where A+ and A− are the magnitude of weight change and t the firing time of a neuron.

In the context of the proposed model, this reward mechanism is thus set to induce weight

changes when the network’s output neurons that fired represent the right tumor label of

the data being processed.

Chapter 5. Training an SNN for brain tumor classification 102

5.4 Experiments and results

5.4.1 Implementation and experiment

The C-SNN discussed in this work was originally implemented using the SpykeTorch

simulator [148]. Compared to other SNN simulator, SpykeTorch was specifically designed

to simulate C-SNNs with at most one spike per neuron and provides the necessary tools to

train them in supervised and unsupervised manner using synaptic plasticity rules. Based

on the PyTorch library, it also has the potential to exploit GPU resources and allows deep

learning developers to use a friendly interface. Although this framework pretends to make

shallow and deep C-SNNs implementation easy, building C-SNNs with more than 3 layers

can quickly become tedious as the networks’ forward passes have to be coded for each layer

in both training and testing phases. The training loops also have to be defined individually

and were not automated considering the networks structure and learning methods used.

To ease the development of our experiments and provide a new way to define C-SNNs,

we thus extended the SpykeTorch framework and made it easier to use, especially for

common deep learning framework users. To offer a new interface for creating C-SNNs we

provided a Network class to the framework. This class allows to define C-SNNs in a way

similar to the well-known Keras API and only defines them by convolutional and pooling

layers as well as the learning rule used in each layer. A SupervisedEstimator class was

also added to solve the hard definition of training loops by automating the forward passes

for the layers. This extension along with the implementation of our work can be found

at https://github.com/bniepce/csnn-brain-tumor-classification and is discussed in

Appendix A.5.

The proposed C-SNN was ran for 500 epochs for each of the task. All MRI slices from

both datasets were used and fed to the network by batches of 64 samples. We recorded

the average accuracy at the end of each step and used testing samples to evaluate the

performances of the model. To prove C-SNNs do not need GPU resources to be efficiently

trained, we did not use the CUDA support provided by the framework and ran every

experiment on an Intel Xeon Bronze 3106 CPU. Using this resource, training the network

took 20 and 45 minutes for the CT1 and CT2 tasks respectively.

5.4.2 Results and discussions

Our proposed method was successfully able to classify the different types of tumors provided

by both datasets while obtaining competitive results to state-of-the-art CNNs. The average

accuracy scores of 0.868 and 0.828 were recorded for the CT1 and CT2 tasks respectively.

https://github.com/bniepce/csnn-brain-tumor-classification

Chapter 5. Training an SNN for brain tumor classification 103

These performances were compared to other machine learning and deep learning methods

found in the literature as seen in Table 5.1 and 5.2. The tables show that our model mostly

performed slightly worse than other works but still provides suitable results according

to the fact that the model was only composed of a single trainable layer and requires

significantly less computational power than the methods we compared it to. The results

also demonstrate that simple bio-plausible learning rules can be used to learn complex

features such as the ones inherent to brain scans.

Also note that, while the machine learning models from Polly and Cui exposed in

Table 5.1 obtained a better average accuracy than our model, the length of the set of

data they used was relatively small and do not prove the efficiency of the algorithm on a

large amount of cases or their ability to generalize and be less affected to data variations.

Outperforming all of other methods, the CNNs of Banerjee et al. and D́ıaz-Pernas et al.

proved the superiority of deep learning models in general. They are both however deep

or multi-pathways CNN that do not meet cost efficiency requirements exposed by health

care providers. Moreover, in CT2, our model also closely approached the CNN proposed by

Abiwinanda et al. and outperformed the one proposed in the work of Pashaei et al. This

reinforces the promising abilities of SNNs to be a good alternative to heavy deep learning

models.

Authors Method Total classification accuracy

Banerjee et al. [149] Deep CNN 0.971

F. P. Polly et al. [150] DWT + SVM 0.914

Mzoughi et al. [151] Deep CNN 0.96

Ge Cui et al. [152] Random Forest 0.913

Proposed model Single layer C-SNN 0.868

Table 5.1: Comparative results on the CT1 task.

5.5 Conclusion

In this chapter, we discussed the development of a C-SNN for brain tumor classification.

The aim of our work was to prove the efficiency of SNNs in medical image analysis to

address some issues inherent to deep learning models such as computation cost, power

consumption and explainability. Our study showed promising results and reinforced the

Chapter 5. Training an SNN for brain tumor classification 104

Authors Method Total classification accuracy

D́ıaz-Pernas et al. [153] Multiscale CNN 0.973

Anaraki et al.[154] CNN + Genetic algorithm 0.942

Abiwinanda et al.[155] CNN 0.841

Proposed model Single layer C-SNN 0.828

Pashaei et al.[156] CNN 0.810

Table 5.2: Comparative results on the CT2 task.

opportunities brought by bio-plausible models in computer vision.

Our proposed approach addressed two different brain tumor classification tasks that

were introduced along with the MRI datasets used to train the network. We provided a data

pre-processing pipeline to ease the feature extraction performed during training and supply

a clean representation of the data before the time encoding step required by the C-SNN. The

architecture of the network was then detailed layer by layer and the use of the R-STDP as a

supervised reinforcement learning rule was discussed. We provided an extended version of

the SpykeTorch framework to ease the creation of our experiments and successfully trained

the C-SNN without GPU support. The results we obtained for both classification tasks

proved that the network could converge under 500 epochs and be trained relatively fast.

However, although the accuracy scores the network obtained were acceptable, comparison

to other methods showed that simple C-SNNs could in most cases not outperform deep

CNNs. Our model could however approach state-of-the-art accuracy and was even slightly

better than a CNN. The work exposed in this chapter thus enlightens possible opportunities

to build visual tumor diagnosis tools using brain inspired computation.

Chapter 6

Conclusion

Building computer-aided diagnosis systems based on Artificial Neural Networks has been

getting increasing attention due to the outstanding performances of deep learning models

in a wide range of domains. While they were already proven to be efficient to perform

recognition tasks on medical images, these models do not meet clinical setting requirements.

They indeed suffer from high memory and energy cost, and are dependent to expensive

powerful hardware. Moreover, they require the use of large datasets to generalize, what can

be tedious to rely on in the medical field because of data privacy inherent to this domain.

The goal of this thesis is thus to search for new methods to build computer-aided diagnosis

systems while addressing the aforementioned limitations of ANNs. We proposed a gradual

transition from Deep CNN to lightweight and cost efficient spiking network models. To

this aim, we investigated different ways to deal with common issues found in applied

Deep Learning and tested them on brain tumor diagnosis visual tasks. This conclusion

thus discusses the contributions and results exposed in this work. We then conclude by

addressing future works and perspectives that can extend our work to go further in building

powerful and cost efficient brain tumor diagnosis applications.

6.0.1 Contributions

The work proposed in this thesis aimed to provide frameworks to build brain tumor diagnosis

systems while accounting for the requirements exposed by health-care providers on the use

of such tools. The proposed methods thus intent to redefine or replace powerful computer

vision methods based on ANNs in order to reduce the memory, energy and material cost

106

Chapter 6. Conclusion 107

they imply. Our work is structured to study the transition between heavy deep learning

methods to lightweight networks of spiking neurons for brain tumor analysis.

In Chapter 3, we studied the deployment of a CNN performing brain tumor segmentation

on a device with limited resources. This contribution addresses the computational and

material cost issues inherent to the use of CNNs. Firstly, we discussed the usage of new

GPU embedded platforms for the development and training of deep neural networks. We

investigated the opportunities of such hardware to reduce the cost of existing computer

vision methods. Secondly, we reviewed a compression framework for CNNs that aimed

to drastically reduce their number of parameters. This work was based on redefining

convolutional operations, replacing batch-normalization and using quantization to reduce

the precision of the network’s operations. Finally, our method was applied to the U-Net

neural network to produce a fast and lightweight multi-label brain tumor segmentation

system. The BraTS 2015 dataset was thus used to evaluate the performances of the network

to differentiate 3 tumor sub-regions. While our compression method lead to a parameter

reduction of roughly 93 %, our experiments showed that even if the segmentation scores

were lower than other state-of-the-art CNNs performing the same task, they still remained

comparable.

In Chapter 4 we studied the use of PCNNs for brain tumor segmentation and detection.

This contribution aims to go further in reducing computational time and cost of medical

image analysis methods based on neural networks. It marks the start of the transition to

spiking neuron models to build brain tumor recognition systems. We thus first proposed

a comparative study of several PCNN models to perform a binary segmentation on the

BraTS dataset. Our experiments showed that optimizing the activity of PCNNs’ neurons and

provide a better segmentation accuracy could be done by tuning the models’ parameters

using a simple evolutionary algorithm. Then, we tackled the brain tumor detection task

by proposing a new algorithm based on the FLSCM and the Selective Search algorithm.

Our method relied on tuning an m-PCNN for MRI modalities fusion and use the FLSCM

as a feature extraction method creating image signatures. By comparing local signatures

created from Selective Search patches and the global signatures representing an entire MRI

slice, our algorithm could successfully find whole tumor regions. This work addressed the

limitations of past researches on PCNN object recognition that employed moving windows

to find region of interests by reducing the amount of possible detection proposals with

Selective Search. An optimization scheme was also proposed using the differential evolution

algorithm to find the PCNN parameters that led to more accurate detection. We showed the

importance of fusion parameters and discussed possible extensions to our work to provide

multi-label segmentation and detection.

Chapter 6. Conclusion 108

Finally, in Chapter 5 we proposed the last step of the transition between deep neural

network and spiking bio-plausible networks. This work discusses the implementation of

C-SNNs for brain tumor classification and aims to prove the efficiency of SNNs in solving

complex vision tasks like the ones exposed throughout this thesis. We first proposed a

data processing pipeline to let the computational workload of the network be as low as

possible and to facilitate its training. Then we reviewed two brain tumor classification

tasks with different levels of complexity to have a better proof of the performances of spike-

based models in medical image analysis. A full description of the proposed network was

given along with a bio-plausible supervised learning rule based on a reward / punishment

system. Implemented using a redefined neural simulator, the C-SNN proved its classification

abilities in both task and could easily be trained on CPU resources in less than an hour. A

comparison to other state-of-the-art methods showed that a single trainable layer C-SNN

could approach and even slightly outperform some deep and machine learning based

solutions. However, although our model was significantly more computationally efficient

than the CNNs exposed in the comparison, most of them obtained high accuracy scores.

The work in this chapter thus succeeded in proving the opportunities offered by SNNs in

computer vision and more importantly in the medical field as they do not only provide

lighter and less expensive recognition systems, they also let medical image analysis step

towards bio-plausible solutions that can bring the explainability required in clinical settings.

6.0.2 Future works

The work covered in this manuscript does not seek to outperform state-of-the-art models for

brain tumor diagnosis but addresses real requirements needed in order to realistically use

deep learning based solutions in the medical field. If we were thus successful in building

brain tumor diagnosis systems while considering these requirements, some points still need

to be addressed to find more efficient or more general solutions.

Firstly, we believe that the development of compressed CNNs could be further investi-

gated in the embedded domain by studying the use of smaller cost-efficient hardware like

Field Programmable Gate Arrays (FPGAs). Indeed, FPGAs can provide outstanding flexibil-

ity and cost-efficiency when building deep learning applications. However, implementing

neural networks on FPGAs is not as simple as using common frameworks like Tensorflow or

PyTorch. Although frameworks like Vitis AI appeared to address this issue by easing the

deployment of deep learning inference on FPGAs, it does not rely on a hardware description

language and consequently does not use their full potential. Some works could thus study

this possibility to move the computation of brain tumor diagnosis systems to FPGAs. This

Chapter 6. Conclusion 109

type of hardware could also not only provide the cost-efficiency needed for deep learning

applications but also be used to train and deploy SNNs which can benefit from the low

latency responses in these platforms.

Secondly, further investigations could be carried on the use of SNNs for medical image

analysis. If our work proposed the study of PCNN and C-SNN models, we did not deeply

explore the domain of spiking neurons. Although, we carried some experiments to build

multi-layer SNNs like the one proposed by Diehl and Cook [64] to detect or segment tumors,

they were mostly tedious to tune or analyse and did not appeared in this final work. There

is thus room for investigations to build the tools necessary to have a better understanding of

neural computation and its application to computer vision. In fact, most well-know neural

simulators like Brian2, PyNN, ANNarchy or Nengo were not designed to build deep learning

like applications and do not ease the training of SNNs for complex tasks.

Finally, the unavailability of high quality and large brain imaging data is forcing re-

searchers in the domain to solve the same tasks or focus their investigations on specific

types of tumors, like we did for the glioma. These datasets are also often pre-processed

and provide the same MRI sequences what can lead to build models that are failing when

scans with other acquisition types are added to the experiments. Hence, we believe that

generative models could be investigated to construct larger MRI datasets while adding the

variations needed for generalization. Models like Generative Adversarial Networks could

for example be trained to enlarge small open-source dataset or create brand new cases of

scans showing brain tumors of any type.

Publications

Journal Articles

1. Niepceron, B., A. Nait-Sidi-Moh and F. Grassia. “Moving Medical Image Analysis to

GPU Embedded Systems: Application to Brain Tumor Segmentation.” Applied Artificial

Intelligence 34 (2020): 866 - 879.

Conference Articles

1. Niepceron, B., A. Nait-Sidi-Moh and F. Grassia. “Study of Pulse-Coupled Neural

Network for Glioma Segmentation.” In Proceedings, 26th International Symposium

on Artificial Life and Robotics (2020): 110 - 115. Young Author Award.

Working Titles

1. Niepceron, B., A. Nait-Sidi-Moh and F. Grassia. ”Brain tumor detection using Selective

Search and Pulse-Coupled Neural Network feature extraction”. Submitted and Ac-

cepted in International Conference on Informatics Revolution for Smarter Healthcare

2021.

2. Niepceron, B., A. Nait-Sidi-Moh and F. Grassia. “Study of Pulse-Coupled NeuralNet-

work for Glioma Segmentation.” Submitted in Applied Artificial Intelligence.

110

Seminars

1. Colloque Droit & Médecine - September 2021

Artificial Intelligence in the medical field.

2. EU Interreg AiBle - July 2021

AI & Exoskeleton Workshop Webinar.

Move brain tumor diagnosis to cost-efficient systems.

3. Journée de la SAGIP - July 2021

Developing brain tumor diagnosis applications using Artificial Neural Networks.

4. 6ème Journées Régionales des Doctorants de l’Automatique - July 2019

Brain tumor segmentation using convolutional neural networks.

5. Journée des Doctorants du LTI - June 2019

Compressed convolutional neural network for brain tumor segmentation.

Best poster award.

111

References

[1] G. Bi and M. Poo. Synaptic modifications in cultured hippocampal neurons: Depen-

dence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of
Neuroscience, 18:10464 – 10472, 1998.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[3] Catherine D. Schuman, T. Potok, R. Patton, J. Birdwell, M. Dean, G. Rose, and

J. Plank. A survey of neuromorphic computing and neural networks in hardware.

ArXiv, abs/1705.06963, 2017.

[4] Y. LeCun, P. Haffner, L. Bottou, and Yoshua Bengio. Object recognition with gradient-

based learning. In Shape, Contour and Grouping in Computer Vision, 1999.

[5] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[6] Donald Olding Hebb. The organization of behavior: A neuropsychological theory.

Psychology Press, 2005.

[7] Frank F. Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65 6:386–408, 1958.

[8] Vijay Badrinarayanan, Alex Kendall, and R. Cipolla. Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39:2481–2495, 2017.

112

http://www.deeplearningbook.org

REFERENCES 113

[9] Shaoqing Ren, Kaiming He, Ross B. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39:1137–1149, 2015.

[10] Eunhee Kang, Junhong Min, and J. C. Ye. A deep convolutional neural network

using directional wavelets for low-dose x-ray ct reconstruction. Medical Physics,
44:e360–e375, 2017.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. CoRR, abs/1409.4842, 2014.

[12] Hao Dong, Guang Yang, Fangde Liu, Yuanhan Mo, and Yike Guo. Automatic brain

tumor detection and segmentation using u-net based fully convolutional networks.

Medical Image Understanding and Analysis, page 506–517, 2017.

[13] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications, 2017.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[15] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, June 2009.

[16] N. Hawkes. Cancer survival data emphasise importance of early diagnosis. British
Medical Journal, 364, 2019.

[17] Adriano Lucieri, Muhammad Naseer Bajwa, A. Dengel, and Sheraz Ahmed. Achieve-

ments and challenges in explaining deep learning based computer-aided diagnosis

systems. ArXiv, abs/2011.13169, 2020.

[18] G. Litjens, Thijs Kooi, B. E. Bejnordi, A. Setio, F. Ciompi, M. Ghafoorian, J. V. D. Laak,

B. Ginneken, and C. Sánchez. A survey on deep learning in medical image analysis.

Medical image analysis, 42:60–88, 2017.

[19] F. Milletari, N. Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural

networks for volumetric medical image segmentation. 2016 Fourth International
Conference on 3D Vision (3DV), pages 565–571, 2016.

REFERENCES 114

[20] Qing Li, Weidong Cai, Xiaogang Wang, Yun Zhou, D. Feng, and Mei Chen. Medical

image classification with convolutional neural network. 2014 13th International
Conference on Control Automation Robotics & Vision (ICARCV), pages 844–848, 2014.

[21] Md. Zahangir Alom, M. Hasan, C. Yakopcic, T. Taha, and V. Asari. Recurrent

residual convolutional neural network based on u-net (r2u-net) for medical image

segmentation. ArXiv, abs/1802.06955, 2018.

[22] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville,

Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor

segmentation with deep neural networks. Medical Image Analysis, 35:18–31, Jan

2017.

[23] Bumshik Lee, Nagaraj Yamanakkanavar, and J. Choi. Automatic segmentation of

brain mri using a novel patch-wise u-net deep architecture. PLoS ONE, 15, 2020.

[24] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren,

N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M. Weber, T. Arbel, B. B.

Avants, N. Ayache, P. Buendia, D. L. Collins, N. Cordier, J. J. Corso, A. Criminisi,

T. Das, H. Delingette, C. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes,

E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena,

N. M. John, E. Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, S. Pereira, D. Precup,

S. J. Price, T. R. Raviv, S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H. Shin,

J. Shotton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M.

Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D. H. Ye, L. Zhao,

B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. Van Leemput. The multimodal

brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical
Imaging, 34(10):1993–2024, Oct 2015.

[25] Li Liu, Wanli Ouyang, Xiaogang Wang, P. Fieguth, J. Chen, Xinwang Liu, and

M. Pietikäinen. Deep learning for generic object detection: A survey. International
Journal of Computer Vision, 128:261–318, 2019.

[26] D. Lu and Qihao Weng. A survey of image classification methods and techniques

for improving classification performance. International Journal of Remote Sensing,

28:823 – 870, 2007.

[27] A. Garcia-Garcia, S. Orts, Sergiu Oprea, Victor Villena-Martinez, P. Martinez-

Gonzalez, and J. G. Rodŕıguez. A survey on deep learning techniques for image and

video semantic segmentation. Appl. Soft Comput., 70:41–65, 2018.

REFERENCES 115

[28] Neil C Thompson, Kristjan H. Greenewald, Keeheon Lee, and Gabriel F. Manso. The

computational limits of deep learning. ArXiv, abs/2007.05558, 2020.

[29] Y. LeCun. The power and limits of deep learning. Research-Technology Management,
61:22 – 27, 2018.

[30] Emma Strubell, Ananya Ganesh, and A. McCallum. Energy and policy considerations

for deep learning in nlp. In ACL, 2019.

[31] A. Arrieta, Natalia D’iaz-Rodr’iguez, J. Ser, Adrien Bennetot, S. Tabik, A. Barbado,

Salvador Garc’ia, Sergio Gil-L’opez, D. Molina, Richard Benjamins, Raja Chatila, and

Francisco Herrera. Explainable artificial intelligence (xai): Concepts, taxonomies,

opportunities and challenges toward responsible ai. ArXiv, abs/1910.10045, 2020.

[32] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks

via information. ArXiv, abs/1703.00810, 2017.

[33] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida. Deep

learning in spiking neural networks. Neural networks : the official journal of the
International Neural Network Society, 111:47–63, 2019.

[34] Filippo Giovanni Grassia. Silicon neural networks : implementation of cortical cells
to improve the artificial-biological hybrid technique. Theses, Université Sciences et

Technologies - Bordeaux I, January 2013.

[35] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination

cone models for face recognition under variable lighting and pose. IEEE Trans.
Pattern Anal. Mach. Intell., 23:643–660, 2001.

[36] J. Leksut, Jiaping Zhao, and L. Itti. Learning visual variation for object recognition.

Image Vis. Comput., 98:103912, 2020.

[37] J. Wright, Allen Y. Yang, Arvind Ganesh, S. Sastry, and Y. Ma. Robust face recogni-

tion via sparse representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31:210–227, 2009.

[38] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and J. Malik. Rich feature hierarchies

for accurate object detection and semantic segmentation. 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pages 580–587, 2014.

[39] J. Uijlings, K. V. D. Sande, T. Gevers, and A. Smeulders. Selective search for object

recognition. International Journal of Computer Vision, 104:154–171, 2013.

REFERENCES 116

[40] M. S. Hoque and M. Fairhurst. Face recognition using the moving window classifier.

In BMVC, 2000.

[41] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22:888–905, 2000.

[42] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space

analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24:603–619, 2002.

[43] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical

image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33:898–916, 2011.

[44] Pedro F. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmenta-

tion. International Journal of Computer Vision, 59:167–181, 2004.

[45] Ayodeji Olalekan Salau and Shruti Jain. Feature extraction: A survey of the types,

techniques, applications. 2019 International Conference on Signal Processing and
Communication (ICSC), pages 158–164, 2019.

[46] Leila Kabbai, M. Abdellaoui, and A. Douik. Image classification by combining local

and global features. The Visual Computer, 35:679–693, 2018.

[47] Daniel Bashir, George D. Montañez, Sonia Sehra, Pedro Sandoval Segura, and Julius

Lauw. An information-theoretic perspective on overfitting and underfitting. ArXiv,

abs/2010.06076, 2020.

[48] Connor Shorten and T. Khoshgoftaar. A survey on image data augmentation for deep

learning. Journal of Big Data, 6:1–48, 2019.

[49] Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothée Cour, Kai Yu, L. Cao,

and Thomas S. Huang. Large-scale image classification: Fast feature extraction and

svm training. CVPR 2011, pages 1689–1696, 2011.

[50] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position. Biological Cybernetics,
36:193–202, 2004.

[51] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel.

Handwritten digit recognition with a back-propagation network. In NIPS, 1989.

REFERENCES 117

[52] S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets

and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst., 6:107–116,

1998.

[53] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-

mann machines. In ICML, 2010.

[54] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified

activations in convolutional network. ArXiv, abs/1505.00853, 2015.

[55] Djork-Arné Clevert, Thomas Unterthiner, and S. Hochreiter. Fast and accurate deep

network learning by exponential linear units (elus). arXiv: Learning, 2016.

[56] D. Louis, H. Ohgaki, O. Wiestler, W. Cavenee, P. Burger, A. Jouvet, B. Scheithauer,

and P. Kleihues. The 2007 who classification of tumours of the central nervous

system. Acta Neuropathologica, 114:97 – 109, 2007.

[57] D. Louis. Molecular pathology of malignant gliomas. Annual review of pathology,

1:97–117, 2006.

[58] A. Olar and K. Aldape. Using the molecular classification of glioblastoma to inform

personalized treatment. The Journal of Pathology, 232, 2014.

[59] E. Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions on
Neural Networks, 15:1063–1070, 2004.

[60] A. Hodgkin and A. Huxley. A quantitative description of membrane current and its

application to conduction and excitation in nerve. The Journal of Physiology, 117,

1952.

[61] E. Izhikevich. Simple model of spiking neurons. IEEE transactions on neural networks,
14 6:1569–72, 2003.

[62] A. Borst and F. Theunissen. Information theory and neural coding. Nature Neuro-
science, 2:947–957, 1999.

[63] D. Hubel and T. Wiesel. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of Physiology, 160, 1962.

[64] Peter U. Diehl and Matthew Cook. Unsupervised learning of digit recognition using

spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 9, 2015.

REFERENCES 118

[65] S. Thorpe, A. Delorme, and R. V. Rullen. Spike-based strategies for rapid processing.

Neural networks : the official journal of the International Neural Network Society, 14

6-7:715–25, 2001.

[66] S. Thorpe and J. Gautrais. Rank order coding. 1998.

[67] Sen Song, K. D. Miller, and L. Abbott. Competitive hebbian learning through spike-

timing-dependent synaptic plasticity. Nature Neuroscience, 3:919–926, 2000.

[68] A. Watt and N. S. Desai. Homeostatic plasticity and stdp: Keeping a neuron’s cool in

a fluctuating world. Frontiers in Synaptic Neuroscience, 2, 2010.

[69] Wenrui Zhang and P. Li. Information-theoretic intrinsic plasticity for online unsuper-

vised learning in spiking neural networks. Frontiers in Neuroscience, 13, 2019.

[70] M. Goodale and A. Milner. Separate visual pathways for perception and action.

Trends in Neurosciences, 15:20–25, 1992.

[71] D. Pollen and S. Ronner. Phase relationships between adjacent simple cells in the

visual cortex. Science, 212 4501:1409–11, 1981.

[72] J. Daugman. Uncertainty relation for resolution in space, spatial frequency, and

orientation optimized by two-dimensional visual cortical filters. Journal of the Optical
Society of America. A, Optics and image science, 2 7:1160–9, 1985.

[73] Reinhard Eckhorn, HJ Reitbock, M Arndt, and P Dicke. A neural network for feature

linking via synchronous activity: results from cat visual cortex and from simulations.

1989.

[74] G Kuntimad and Heggere S Ranganath. Perfect image segmentation using pulse

coupled neural networks. IEEE transactions on neural networks, 10(3):591–598,

1999.

[75] Xiaodong Gu, Yuanyuan Wang, and Liming Zhang. Object detection using unit-

linking pcnn image icons. In Jun Wang, Zhang Yi, Jacek M. Zurada, Bao-Liang Lu,

and Hujun Yin, editors, Advances in Neural Networks - ISNN 2006, pages 616–622,

Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[76] Mario I. Chacon M., Alejandro Zimmerman S., and Pablo Rivas P. Image processing

applications with a pcnn. In Derong Liu, Shumin Fei, Zengguang Hou, Huaguang

Zhang, and Changyin Sun, editors, Advances in Neural Networks – ISNN 2007, pages

884–893, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

REFERENCES 119

[77] N. Kasabov, K. Dhoble, Nuttapod Nuntalid, and G. Indiveri. Dynamic evolving spiking

neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural
networks : the official journal of the International Neural Network Society, 41:188–201,

2013.

[78] F. Grassia, L. Buhry, T. Levi, J. Tomas, A. Destexhe, and S. Säıghi. Tunable neu-

romimetic integrated system for emulating cortical neuron models. Frontiers in
Neuroscience, 5, 2011.

[79] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-

Chii Liu. Conversion of continuous-valued deep networks to efficient event-driven

networks for image classification. Frontiers in Neuroscience, 11, 2017.

[80] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn

conversion for fast and accurate inference in deep spiking neural networks. In IJCAI,
2021.

[81] S. Bohté, J. Kok, and H. L. Poutré. Spikeprop: backpropagation for networks of

spiking neurons. In ESANN, 2000.

[82] B. Meftah, O. Lézoray, S. Chaturvedi, A. Khurshid, and A. Benyettou. Image process-

ing with spiking neuron networks. In Artificial Intelligence, Evolutionary Computing
and Metaheuristics, 2013.

[83] Q. Wu, T. McGinnity, L. Maguire, A. Belatreche, and B. Glackin. Edge detection

based on spiking neural network model. In ICIC, 2007.

[84] Q. Wu, T. McGinnity, L. Maguire, German D. Valderrama-Gonzalez, and P. Dempster.

Colour image segmentation based on a spiking neural network model inspired by

the visual system. In ICIC, 2010.

[85] Zewen Li, Wenjie Yang, Shouheng Peng, and Fan Liu. A survey of convolutional

neural networks: Analysis, applications, and prospects. CoRR, abs/2004.02806,

2020.

[86] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu,

Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. Going deeper

with embedded fpga platform for convolutional neural network. In Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’16, pages 26–35, New York, NY, USA, 2016. ACM.

REFERENCES 120

[87] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedi-

cal image segmentation. In MICCAI, 2015.

[88] L. Minh Dang, Kyungbok Min, Dongil Han, Md Jalil Piran, and Hyeonjoon Moon. A

survey on internet of things and cloud computing for healthcare, June 2019.

[89] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated

testing of deep-neural-network-driven autonomous cars. Proceedings of the 40th
International Conference on Software Engineering - ICSE ’18, 2018.

[90] S. Alyamkin, M. Ardi, Achille Brighton, A. Berg, Yiran Chen, Hsin-Pai Cheng, Bo Chen,

Zichen Fan, Chen Feng, Bo Fu, Kent W. Gauen, Jongkook Go, A. Goncharenko,

Xuyang Guo, Hong Hanh Nguyen, Andrew G. Howard, Yuanjun Huang, Donghyun

Kang, Jaeyoung Kim, A. Kondratyev, Seungjae Lee, Suwoong Lee, Junhyeok Lee,

Zhiyu Liang, Xin Liu, Juzheng Liu, Zi mei Li, Yang Lu, Yung-Hsiang Lu, Deeptanshu

Malik, Eunbyung Park, Denis Repin, Tao Sheng, Liang Shen, Fei Sun, D. Svitov, G. K.

Thiruvathukal, Baiwu Zhang, Jingchi Zhang, Xiaopeng Zhang, and Shaojie Zhuo.

2018 low-power image recognition challenge. ArXiv, abs/1810.01732, 2018.

[91] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume Abella, and

Francisco J. Cazorla. Generating and exploiting deep learning variants to increase

heterogeneous resource utilization in the nvidia xavier. In Sophie Quinton, editor,

31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 133 of

Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1–23:23, Dagstuhl,

Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[92] Sparsh Mittal and Jeffrey S. Vetter. A survey of methods for analyzing and improving

gpu energy efficiency. ACM Comput. Surv., 47(2):19:1–19:23, August 2014.

[93] N. Tijtgat, W. V. Ranst, B. Volckaert, T. Goedemé, and F. D. Turck. Embedded

real-time object detection for a uav warning system. In 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), pages 2110–2118, Oct 2017.

[94] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal

representations by error propagation. In Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Volume 1: Foundations, pages 318–362. MIT Press,

Cambridge, MA, 1986.

[95] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and Muller

K., editors, Neural Networks: Tricks of the trade. Springer, 1998.

REFERENCES 121

[96] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15,

pages 448–456. JMLR.org, 2015.

[97] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence

in batch-normalized models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 1945–1953. Curran Associates, Inc., 2017.

[98] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu,

and Jian Sun. Megdet: A large mini-batch object detector. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Jun 2018.

[99] Yuxin Wu and Kaiming He. Group normalization. Lecture Notes in Computer Science,

page 3–19, 2018.

[100] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The

missing ingredient for fast stylization, 2016.

[101] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[102] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

770–778, June 2016.

[103] Guangyong Chen, Pengfei Chen, Yujun Shi, Chang-Yu Hsieh, Benben Liao, and

Shengyu Zhang. Rethinking the usage of batch normalization and dropout in the

training of deep neural networks, 2019.

[104] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15:1929–1958, 2014.

[105] Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for texture classification.

CoRR, abs/1403.1687, 2014.

[106] François Chollet. Xception: Deep learning with depthwise separable convolutions.

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

1800–1807, 2017.

REFERENCES 122

[107] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolu-

tional neural network for mobile devices. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6848–6856, June 2018.

[108] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4510–4520, June 2018.

[109] Ram Krishna Pandey, Aswin Vasan, and A G Ramakrishnan. ”segmentation of liver

lesions with reduced complexity deep models”, 2018.

[110] J. A. Parker, R. V. Kenyon, and D. E. Troxel. Comparison of interpolating methods for

image resampling. IEEE Transactions on Medical Imaging, 2(1):31–39, March 1983.

[111] E. Park, J. Ahn, and S. Yoo. Weighted-entropy-based quantization for deep neural

networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7197–7205, July 2017.

[112] Szymon Migacz. Gpu technology conference. In 8-bit Inference with TensorRT, 5

2017.

[113] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and

J. C. Gee. N4itk: Improved n3 bias correction. IEEE Transactions on Medical Imaging,

29(6):1310–1320, June 2010.

[114] Bradley C. Lowekamp, David T. Chen, Luis Ibáñez, and Daniel J. Blezek. The design

of simpleitk. In Front. Neuroinform., 2013.

[115] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,

Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,

Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[116] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,

REFERENCES 123

Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256,

Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[117] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2014.

[118] B. Niepceron, A. Nait-Sidi-Moh, and F. Grassia. Moving medical image analysis to

gpu embedded systems: Application to brain tumor segmentation. Applied Artificial
Intelligence, 34:866 – 879, 2020.

[119] Xiaomei Zhao, Yihong Wu, Guidong Song, Zhenye Li, Yazhuo Zhang, and Yong Fan.

A deep learning model integrating fcnns and crfs for brain tumor segmentation.

Medical Image Analysis, 43:98 – 111, 2018.

[120] S. Pereira, A. Pinto, V. Alves, and C. A. Silva. Brain tumor segmentation using

convolutional neural networks in mri images. IEEE Transactions on Medical Imaging,

35(5):1240–1251, May 2016.

[121] Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. Distilling the knowledge in a neural

network. ArXiv, abs/1503.02531, 2015.

[122] C. Neftel, J. Laffy, Mariella G Filbin, T. Hara, M. Shore, G. Rahme, Alyssa R. Richman,

Dana Silverbush, McKenzie L. Shaw, Christine M. Hebert, J. DeWitt, S. Gritsch, Eliza-

beth M. Perez, L. Castro, X. Lan, Nicholas Druck, C. Rodman, Danielle Dionne, Alexan-

der B Kaplan, Mia S Bertalan, J. Small, K. Pelton, Sarah Becker, D. Bonal, Q. Nguyen,

Rachel L. Servis, Jeremy M. Fung, R. Mylvaganam, Lisa Mayr, Johannes Gojo,

C. Haberler, R. Geyeregger, T. Czech, I. Slavc, B. Nahed, W. Curry, B. Carter, H. Waki-

moto, P. Brastianos, T. Batchelor, A. Stemmer-Rachamimov, M. Martinez-Lage,

M. Frosch, I. Stamenkovic, Nicolò Riggi, Esther Rheinbay, M. Monje, O. Rozenblatt-

Rosen, D. Cahill, Anoop P. Patel, T. Hunter, I. Verma, K. Ligon, David N. Louis,

A. Regev, B. Bernstein, I. Tirosh, and M. Suvà. An integrative model of cellular states,

plasticity, and genetics for glioblastoma. Cell, 178:835–849.e21, 2019.

[123] Sharan Kumar and Dattatreya P. Mankame. Optimization driven deep convolu-

tion neural network for brain tumor classification. Biocybernetics and Biomedical
Engineering, 40(3):1190 – 1204, 2020.

[124] M. Bada and M. Barjaktarovic. Classification of brain tumors from mri images using

a convolutional neural network. Applied Sciences, 10:1999, 2020.

REFERENCES 124

[125] N. Arunkumar, M. A. Mohammed, S. A. Mostafa, D. Ibrahim, J. Rodrigues, and V. Al-

buquerque. Fully automatic model-based segmentation and classification approach

for mri brain tumor using artificial neural networks. Concurrency and Computation:
Practice and Experience, 32, 2020.

[126] Xiao-Dong Gu, Shi-De Guo, and Dao-Heng Yu. A new approach for automated image

segmentation based on unit-linking pcnn. In Proceedings. International Conference on
Machine Learning and Cybernetics, volume 1, pages 175–178. IEEE, 2002.

[127] Kun Zhan, Jinhui Shi, Qiaoqiao Li, Jicai Teng, and Mingying Wang. Image segmenta-

tion using fast linking scm. In 2015 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2015.

[128] V. Bhavana and H. Krishnappa. Multi-modality medical image fusion using discrete

wavelet transform. Procedia Computer Science, 70:625–631, 2015.

[129] A Anoop Suraj, Mathew Francis, TS Kavya, and TM Nirmal. Discrete wavelet

transform based image fusion and de-noising in fpga. Journal of Electrical Systems
and Information Technology, 1(1):72–81, 2014.

[130] Zhaobin Wang and Yide Ma. Medical image fusion using m-pcnn. Information Fusion,

9(2):176–185, 2008.

[131] Yaqian Zhao, Qinping Zhao, and Aimin Hao. Multimodal medical image fusion using

improved multi-channel pcnn. Bio-medical materials and engineering, 23:S221–S228,

11 2013.

[132] J. W. McClurkin, J. A. Zarbock, and L. Optican. Temporal codes for colors, patterns,

and memories. 1994.

[133] J.L. Johnson. Time signatures of images. In Proceedings of 1994 IEEE International
Conference on Neural Networks (ICNN’94), volume 2, pages 1279–1284 vol.2, 1994.

[134] Xiaodong Gu, Y. Wang, and L. Zhang. Object detection using unit-linking pcnn image

icons. In ISNN, 2006.

[135] Xiaodong Gu. Feature extraction using unit-linking pulse coupled neural network

and its applications. Neural Processing Letters, 27:25–41, 2007.

[136] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN.

CoRR, abs/1703.06870, 2017.

REFERENCES 125

[137] Yongqiang Cao, Y. Chen, and D. Khosla. Spiking deep convolutional neural networks

for energy-efficient object recognition. International Journal of Computer Vision,

113:54–66, 2014.

[138] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J. Thorpe, and Timothée

Masquelier. Stdp-based spiking deep neural networks for object recognition. CoRR,

abs/1611.01421, 2016.

[139] Jun Cheng, W. Huang, Shuangliang Cao, Ru Yang, Wei Yang, Z. Yun, Zhijian Wang,

and Qianjin Feng. Enhanced performance of brain tumor classification via tumor

region augmentation and partition. PLoS ONE, 10, 2015.

[140] D. Shattuck, S. Sandor-Leahy, K. Schaper, D. Rottenberg, and R. Leahy. Magnetic

resonance image tissue classification using a partial volume model. NeuroImage,

13:856–876, 2001.

[141] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic

diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12:629–639, 1990.

[142] G. Gerig, O. Kübler, R. Kikinis, and F. Jolesz. Nonlinear anisotropic filtering of mri

data. IEEE transactions on medical imaging, 11 2:221–32, 1992.

[143] K. Krissian and S. Aja-Fernández. Noise-driven anisotropic diffusion filtering of mri.

IEEE Transactions on Image Processing, 18:2265–2274, 2009.

[144] Caio Palma, F. Cappabianco, J. S. Ide, and P. Miranda. Anisotropic diffusion filtering

operation and limitations - magnetic resonance imaging evaluation. IFAC Proceedings
Volumes, 47:3887–3892, 2014.

[145] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.

Nature Neuroscience, 2:1019–1025, 1999.

[146] Nicolas Frémaux and W. Gerstner. Neuromodulated spike-timing-dependent plasticity,

and theory of three-factor learning rules. Frontiers in Neural Circuits, 9, 2016.

[147] E. Izhikevich. Solving the distal reward problem through linkage of stdp and

dopamine signaling. BMC Neuroscience, 8:S15 – S15, 2007.

[148] Milad Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier. Spyketorch:

Efficient simulation of convolutional spiking neural networks with at most one spike

per neuron. Frontiers in Neuroscience, 13, 2019.

REFERENCES 126

[149] Subhashis Banerjee, S. Mitra, F. Masulli, and S. Rovetta. Deep radiomics for brain

tumor detection and classification from multi-sequence mri. ArXiv, abs/1903.09240,

2019.

[150] F. P. Polly, S. K. Shil, M. A. Hossain, A. Ayman, and Y. M. Jang. Detection and

classification of hgg and lgg brain tumor using machine learning. 2018 International
Conference on Information Networking (ICOIN), pages 813–817, 2018.

[151] Hiba Mzoughi, Ines Njeh, A. Wali, M. Slima, A. Benhamida, C. Mhiri, and Khare-

dine Ben Mahfoudhe. Deep multi-scale 3d convolutional neural network (cnn) for

mri gliomas brain tumor classification. Journal of Digital Imaging, pages 1–13, 2020.

[152] Ge Cui, J. Jeong, Bob Press, Y. Lei, H. Shu, Tian xing Liu, W. Curran, H. Mao, and

Xiaofeng Yang. Machine-learning-based classification of lower-grade gliomas and

high-grade gliomas using radiomic features in multi-parametric mri. arXiv: Medical
Physics, 2019.

[153] F. D́ıaz-Pernas, M. Mart́ınez-Zarzuela, M. Antón-Rodŕıguez, and D. González-Ortega.

A deep learning approach for brain tumor classification and segmentation using a

multiscale convolutional neural network. Healthcare, 9, 2021.

[154] Amin Kabir Anaraki, M. Ayati, and Foad Kazemi. Magnetic resonance imaging-based

brain tumor grades classification and grading via convolutional neural networks and

genetic algorithms. Biocybernetics and Biomedical Engineering, 39:63–74, 2019.

[155] Nyoman Abiwinanda, Muhammad Hanif, S. T. Hesaputra, A. Handayani, and

T. Mengko. Brain tumor classification using convolutional neural network. 2019.

[156] A. Pashaei, H. Sajedi, and N. Jazayeri. Brain tumor classification via convolutional

neural network and extreme learning machines. 2018 8th International Conference
on Computer and Knowledge Engineering (ICCKE), pages 314–319, 2018.

Appendices

127

Appendix A

Implementation and reproduction

The entirety of experiments discussed in this work were designed using the Python program-

ming language and can all be found in distinct github repositories to use for reproduction

or extension. To ensure that the code can be reused, we also provide a Dockerfile for

each implementation. This document gives instructions on how to retrieve and run these

implementation.

A.1 BraTS 2015 data pipeline

The pipeline used in Chapter 3 can be found in the following repository : https://

github.com/bniepce/mmiages-data-pipeline. Once the dataset downloaded and the

setup steps followed, the script can be launched with the following command line :

$ python make t ra in ing data . py

The program asks for path variables to locate the BraTS training, validation and test

datasets, and save the tfrecord files containing the processed data. The pipeline was

designed as a Python generator and can thus be extended by simply providing new image

processing functions under ./pipeline/processing.py. These functions take a tuple

containing the images and the ground truth as input and return the same tuple containing

the transformed data. Minor modifications can be done to support new version of the

BraTS dataset. Indeed, the get scan function in ./pipeline/processing.py supports the

listing of mha files but can easily be modified to list the nii files of the newer versions of the

dataset.

128

https://github.com/bniepce/mmiages-data-pipeline
https://github.com/bniepce/mmiages-data-pipeline

Appendix A. Implementation and reproduction 129

Other types of data augmentations can also be used by providing new functions under

./pipeline/augmentations.py and add them to the aug operations list variable in the

same file. Note that the augmentations functions in this script use the tensorlayer library,

new augmentation functions will thus need to have the same input and output shapes.

A.2 Compressed U-Net

The implementation of our compressed U-Net is available at : https://github.com/

bniepce/mmiages-neural-network. Launching the training of the network can be done

by simply running the bash file under ./scripts/train default.sh or by calling the

./train.py file with the required flags as follows :

python t r a i n . py \
−−data path ” . / data / ” \
−− l o g d i r ” log / ” \
−−opt imizer ”Adam” \
−−l e a r n i n g r a t e 0.0001 \
−−b a t c h s i z e 64 \
−−epochs 10 \
−−job name t r a i n i n g u n e t

When the training is completed the model is saved an H5 file and can be reuse for

transfer learning or inference. Running inference can be done two ways, namely native and

tensorrt. The scripts to run both methods can be found under ./experiments/inference/.

The ./predict.py file and the ./scripts/predict default.sh script can also be used to

run a tensorrt inference given the right data and model file path. The scripts then performs

the segmentation of the given data and displays each segmentation map found over the

MRI slices in a matplotlib grid. A video illustration of this process working on the JAX

embedded platform can be found at : https://www.youtube.com/watch?v=33nlnjTrmSc.

A.3 PCNN Models for segmentation

The implementation of the PCNN models used in Chapter 4 for brain tumor segmenta-

tion can be found at : https://github.com/bniepce/pcnn-brain-tumor-segmentation.

Three scripts are available to reproduce our experiments :

1. ./run all.py : Evaluate the segmentation on a list of scans contained in an h5 file.

This script takes a dataset path and a param file flag to provide the path to the h5

https://github.com/bniepce/mmiages-neural-network
https://github.com/bniepce/mmiages-neural-network
https://www.youtube.com/watch?v=33nlnjTrmSc
https://github.com/bniepce/pcnn-brain-tumor-segmentation

Appendix A. Implementation and reproduction 130

file containing the dataset and the json file containing the parameters of the PCNNs.

By default, it evaluate all models presented in the chapter but this can be changed by

removing or adding new models to the models list found in the script.

2. ./run single.py : Unlike the previous script, this one only evaluate one MRI case

for segmentation. It takes the same flags with an additional one called image indice

to choose which case will be segmented in the dataset. By default, this evaluation is

done using the Unit-linking PCNN but can be changed by redefining the model object.

3. ./run optimization.py : This script performs the discussed optimization scheme

based on Differential Evolution. By default, it is ran on an PCNN models and only

needs the dataset path flag.

The repository also provides default parameters for each PCNN in the params.json file.

A.4 PCNN Models for detection

The experiments carried for our detection algorithm presented in Chapter 4 is available at :

https://github.com/bniepce/pcnn-brain-tumor-detection . It uses the PCNN models

found in the PCNN tumor segmentation repository mentioned above. Unlike the previous

implementation, this one was done in a jupyter notebook and can be used by executing the

cells in the tumor detection.ipynb file.

A.5 C-SNN development framework

The modified SpykeTorch framework as well as the code running the experiments car-

ried in Chapter 5 are available at : https://github.com/bniepce/csnn-brain-tumor

-classification

By default the experiments are ran on the available device found on the host computer.

Hence if a GPU with CUDA is present, the networks will be computed using the GPU support,

otherwise, the CPU will be used. Two scripts are provided to run each experiment in this

repository, namely ct1.sh and ct2.sh. The user can also use the code present in the

repository as a framework to build C-SNNs with the SpykeTorch simulator. To do so, the

folder structure is as follows :

1. dataset : Provides the classes to load and encode data.

https://github.com/bniepce/pcnn-brain-tumor-detection
https://github.com/bniepce/csnn-brain-tumor-classification
https://github.com/bniepce/csnn-brain-tumor-classification

Appendix A. Implementation and reproduction 131

2. estimator : The SupervisedEstimator allows to automatically run the training of a

C-SNN in a supervised way.

3. models : They are predefined C-SNNs from other works also available on the Spyke-

Torch repository to test the framework.

4. topology : Holds all the classes for network definition such as convolutional layers or

pooling layers.

5. utils : Provides the SpykeTorch utils.

Appendix B

Covid-19 Task Force

The appearance and increasing number of Covid-19 infections during the year 2020 enlisted

many researchers in the fight against the virus. The crisis had major negative effects on

hospitals as they were quickly overwhelmed by an important amount of patients to treat.

During the early stages of the pandemic, an increasing amount of daily positive cases

was recorded in northern France. Regional hospitals were thus seeking for research and

engineering support to take action against the consequences of the pandemic. To contain

the upcoming infection wave, the University Hospital of Amiens-Picardie called up for the

creation of a Task Force composed of researchers from local laboratories.

In the context of this research project initiated by the MIS laboratory in Amiens, this

Task Force aimed to decrease the amount of people waiting at the emergency service and

anticipate the number of hospitalizations due to Covid-19. Indeed, during the crisis, the

average waiting time for hospitalization was of about 1h30 because of the increasing

number of patients going to the hospital with or without Covid-19 symptoms. Ideally, the

emergency staff should have taken care of incoming patients in no longer than 15 minutes.

Our contribution was thus sought to develop several models for predicting these hospi-

talizations on the basic of retrospective data. These models had to be used when a patient

entered the emergency services and indicate, with the best possible reliability, the need for

a hospital bed according to a predicted severity index. Two different classification tasks

were then designed. The first one was binary, and aimed at deciding if a patient should be

kept in the hospital rooms or not. The other one aimed to choose the destination of the

patient to provide a more accurate decision making.

Accounting for the emergency to use such a tool, the Task Force was set up for 6 days

132

Appendix B. Covid-19 Task Force 133

at the end of which the predictive models had to be integrated as a software used by the

hospital’s emergency staff. The data was composed of numerical and categorical variables

summing up the patients state at the caring moment like blood pressure, body temperature

or their level of pain. The variables were recorded between 2015 and 2019 for roughly

200,000 patients. To solve the binary classification problem and complete the work already

done by the research team that called up the Task Force, we proposed the use of XGBoost, a

gradient boosting algorithm and optimized it using the Differential Evolution algorithm.

The fitness function of the algorithm was chosen to decrease the amount of false positives

as needed by the hospital.

At the end of this Task Force, all the models proposed by the teams were merged into

one and successfully integrated to the emergency software of Amiens’ hospital.

Résumé

Dans le domaine clinique, les réseaux de neurones artificiels sont utilisés pour résoudre des

tâches visuelles telles que la détection et la segmentation de tissus malsains. Ayant démontré

leurs performances exceptionnelles, ils sont néanmoins contraints par leur besoin important

en ressources de calcul qui empêche leur déploiement à grande échelle. L’optimisation ou

le remplacement de ces méthodes par des solutions moins dépendantes de la disponibilité

de ressources de calcul élevées est donc cruciale. L’objectif de ce travail est de proposer

de nouvelles méthodes pour concevoir des systèmes d’analyse d’images médicales, en

particulier pour le diagnostic de gliomes. Ce manuscrit couvre trois contributions qui

marquent une transition entre les méthodes d’apprentissage profond et le calcul neuronal

par le biais de la compression de réseaux de neurones et de l’implémentation des réseaux

de neurones à impulsions afin de construire des applications de diagnostic de tumeurs

cérébrales efficaces et rapides.

Mots clés

Réseaux de neurones artificiels, vision artificielle, analyse de tumeurs cérébrales, imagerie

médicale, neurosciences computationnelles, réseaux de neurones impulsionnels.

Abstract

In the clinical field, Artificial Neural Networks (ANNs) are being used to solve visual tasks

such as the detection and segmentation of unhealthy tissues. While they proved outstanding

performances, they are constrained by their important need in computational resources,

which prevents their large scale deployment. The optimization or replacement of these

methods by solutions that are less dependent on the availability of high computational

resources is thus crucial. The objective of this work is to propose new ways to design

medical image analysis systems, specifically for glioma tumors diagnosis. This manuscript

covers three contributions that mark a transition between deep learning methods and

spike-based models by the mean of neural network compression and the use of neural

computation in order to build efficient and fast brain tumor diagnosis applications.

Keywords

Artificial neural networks, computer vision, brain tumor analysis, medical imaging, compu-

tational neurosciences, spiking neural networks.

	Résumé
	Introduction
	Computer vision with Artificial Neural Networks
	Deep Learning for brain tumor diagnosis
	The opportunity of spike-based computation for vision tasks
	Thesis overview

	Background and methods
	Object recognition
	Region selection
	Feature Extraction
	Classification process
	Convolutional Neural Network

	Imaging for brain tumor diagnosis
	Brain tumors
	Imaging modalities
	BraTS dataset

	Computational Neurosciences
	Spiking neuron models
	Neural coding
	Synapses and learning process

	Spike-based Image Processing
	Biological vision and perception
	Pulse-coupled neural networks
	Spiking Neural Networks for computer vision

	Conclusion

	Deploying tumor diagnosis on cost-efficient embedded systems
	Introduction
	A GPU Embedded system for Deep Learning applications
	Compressing the U-net architecture
	Group Normalization
	Depthwise Separable Convolution
	Model quantization

	Experiments and results
	Dataset
	Experimental protocol
	Results

	Conclusion

	Glioblastoma diagnosis using pulse-coupled neural networks
	Introduction
	Modified PCNN models
	Unit-Linking PCNN
	Fast-Linking Spiking Cortical Model

	Medical image fusion
	Discrete Wavelet Transform
	Multi-channel PCNN

	PCNN for brain tumor feature extraction
	Experiments and results
	Dataset
	Brain tumor segmentation
	Brain tumor detection
	Results and discussions

	Conclusion

	Training an SNN for brain tumor classification
	Introduction
	Classification tasks and data processing
	Convolutional SNNs with synaptic plasticity learning rules
	Network topology
	Supervised learning

	Experiments and results
	Implementation and experiment
	Results and discussions

	Conclusion

	Conclusion
	Contributions
	Future works

	Appendices
	Implementation and reproduction
	BraTS 2015 data pipeline
	Compressed U-Net
	PCNN Models for segmentation
	PCNN Models for detection
	C-SNN development framework

	Covid-19 Task Force

