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R É S U M É

Nous présentons une méthode de simulation à l’échelle des particules pour les écoulements

de suspensions non-Browniennes à faible nombre de Reynolds, basée sur la méthode des

domaines fictifs et complétée par des corrections de lubrification de sous-maille. Dans leur

forme habituelle, ces corrections font intervenir l’écoulement linéaire ambiant. Dans ce

travail, nous déterminons les conditions requises pour éviter de considérer cet écoulement

ambiant tout en conservant l’invariance par changement de référentiel, et nous construisons

une matrice de correction de sorte que ces conditions soient intrinsèquement présentes.

Cette procédure étend l’utilisation correcte de ces corrections aux écoulements non-linéaires.

La méthode est validée pour diverses configurations d’écoulement de particules, impliquant

quelques particules dans des écoulements linéaires et non-linéaires avec diverses conditions

aux limites, ou des suspensions concentrées dans un écoulement de cisaillement simple.

Ensuite, nous étudions le rôle des forces d’adhésion dans les suspensions frictionnelles, en

faisant varier à la fois l’intensité de l’adhésion et la fraction volumique : après avoir présenté

les difficultés liées à la déplétion aux parois et aux bandes de cisaillement, nous montrons

que la viscosité relative de la suspension est fonction à la fois de la fraction volumique φ

et de la contrainte de cisaillement Σ12. La variation de la viscosité en fonction de ces deux

paramètres est bien décrite via une fraction volumique de blocage à condition que celle-ci

dépende de la contrainte sans dimension σ∗ qui s’exprime en fonction de la force d’adhésion

entre les particules. La variation de la fraction volumique de blocage en fonction de la

contrainte peut être interprétée comme la variation de la contrainte seuil en fonction de la

fraction volumique. Cette courbe sépare le plan (φ, σ∗) en deux régions : une dans laquelle

la suspension s’écoule et l’autre dans laquelle elle est bloquée. Dans une dernière partie,

nous étudions la migration des particules induite par le cisaillement dans un écoulement

de Poiseuille. Dans un tel système, les particules migrent vers le centre du canal, ce qui

entraîne le développement d’un gradient de concentration avec l’apparition d’une région

centrale où la fraction volumique de blocage, mesurée dans un écoulement de cisaillement

simple, peut être dépassée. Le profil de vitesse est donc hautement non-linéaire, à la fois en

raison du gradient de pression et du gradient de concentration variant dans le temps, ce

qui justifie l’utilisation de la méthode numérique présentée. Nous comparons les résultats

à une version modifiée du Suspension Balance Model, confirmant les limites bien connues

de ce modèle dans la région centrale. Enfin, nous montrons que les contraintes calculées

obéissent à la loi de conservation de quantité de mouvement dans le canal. Ceci confirme le

bon comportement de la méthode numérique pour des écoulements non-linéaires.
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A B S T R A C T

We present a particle-scale simulation method for non-Brownian suspension flows at low

Reynolds number, based on the Fictitious Domain Method and supplemented by sub-grid

lubrication corrections. In their usual form, sub-grid corrections involve the underlying

linear flow. In the present work, the conditions required to avoid considering this ambient

flow while keeping frame indifference are determined, and a sub-grid correction matrix

is built for the particle-particle and particle-wall hydrodynamic interactions such that the

mentioned conditions inherently hold. This procedure extends the correct use of such sub-

grid corrections to nonlinear flows. The method is validated against various particle-flow

configurations, involving a few particles in linear and nonlinear flows with various boundary

conditions, or concentrated suspensions in simple shear flow. Then, we study the role of

adhesive forces in frictional suspensions, by varying both the intensity of adhesion and the

volume fraction: after presenting the difficulties of simulating adhesive suspensions at low

volume fractions due to particle depletion at the wall and shear-banding, we show that the

relative viscosity of the suspension is a function of both volume fraction φ and shear stress

Σ12. The variation of the viscosity with these two parameters may be understood in the usual

frame of suspension jamming provided that the jamming volume fraction now depends on

the dimensionless suspension stress σ∗ that involves the adhesive force between particles.

The variation of the jamming volume fraction with stress may be interpreted as the variation

of the yield stress with volume fraction. This curve separates the plane (φ, σ∗) into two

regions: one in which the suspension flows and the other in which it jams. We continue by

investigating the shear-induced particle migration in a pressure-driven channel suspension

flow. In such a system, particles are driven toward the channel center, resulting in a volume

fraction gradient across the channel and a plug region where the jamming volume fraction

as measured in shear flow may be exceeded. The flow profile is thus highly nonlinear, both

due to the pressure gradient and the time-varying concentration gradient, which justifies

the use of the present numerical method. We compare the results to a modified version of

the Suspension Balance Model, confirming the well-known limits of such a model in the

plug region. Finally, we show that the computed stresses obey the usual momentum balance

in the channel: the tangential stress is indeed driven by the pressure gradient as predicted

by theory and the second normal stress (parallel to the velocity gradient) does not vary over

the channel width, although contact and hydrodynamic contributions significantly do over

both time and space. This confirms the good behavior of the present numerical method

when nonlinear flows are tackled.
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I N T R O D U C T I O N ( F R )

Que signifie “rhéologie” ? Le terme vient des mots grecs Ĳρέo (rhéo : “écoulement”) et −λoγία

(-logia : “étude de”). Nous appliquons cette étude aux suspensions, donc nous voulons

étudier l’écoulement des suspensions. Le terme “rhéologie” a été inventé par Eugene C.

Bingham en 1920 et s’inspire de l’aphorisme du philosophe grec Héraclite πάντα Ĳρει̃ (panta
rhei : “tout coule”), qui a vécu entre c. 535 BCE et c. 475 BCE. Ce qu’Héraclite suggère, c’est

que tout est en constant devenir, et que rien ne reste jamais identique. Partons donc de ses

précieuses paroles et allons plus loin : Comment les suspensions coulent-elles ? Quels sont

les mécanismes moteurs ? Quels sont les paramètres de contrôle ? Et aussi, les suspensions

coulent-elles vraiment toujours ? Ce sont des questions très complexes, et cela fait maintenant

plus d’un siècle que les chercheurs du monde entier cherchent des réponses. Certaines

questions ont reçu des réponses, d’autres seulement partiellement, certaines réponses se

sont révélées incomplètes ou même fausses. Ce qui est sûr, c’est qu’il s’agit d’un sujet très

stimulant. Notre espoir est de faire un pas en avant précieux avec le présent travail.

Les suspensions sont partout autour de nous : dans l’industrie sous la forme de béton

frais, dans le transport des aliments, dans le carburant des fusées Ariane, dans les peintures

et les cosmétiques ; dans la nature, la boue, la lave, les glissements de terrain sous-marins,

le transport de sédiments dans les rivières ou le sang dans nos veines sont tous des

suspensions complexes. Il est donc très important de comprendre leur rhéologie afin de

prédire le comportement de ces systèmes omniprésents. La nature même de ces matériaux

peut introduire une multitude de paramètres (taille et forme des particules solides, degré de

polydispersité, propriétés rhéologiques du fluide en suspension, différence de densité entre

les deux phases, etc.) et générer une abondance de comportements rhéologiques complexes :

thixotropie, rhéofluidification, rhéoépaississement, contrainte seuil, pour n’en citer que

quelques-uns. Cependant, même une suspension extrêmement simple de particules rigides,

sphériques et non colloïdales immergées dans un liquide Newtonien présente une physique

très riche et complexe qui continue à soulever de nombreuses questions.

Depuis les travaux fondateurs de Einstein (1909, 1911), diverses études théoriques, expéri-

mentales et numériques ont permis une meilleure compréhension en mettant en évidence

des propriétés communes aux suspensions telles que l’augmentation de la viscosité avec la

concentration en particules solides jusqu’à la divergence pour une certaine fraction volu-

mique appelée “fraction de blocage” pour laquelle la suspension se bloque. La compréhension

d’autres propriétés importantes, telles que la structuration des particules dans le cœur ou

au voisinage de parois solides, qui conduit probablement au glissement, ou la localisation

du cisaillement, est également de première importance. Enfin, la migration des particules

1
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induite par le cisaillement est également un enjeu majeur pour la compréhension de la

rhéologie des suspensions d’un point de vue fondamental, mais aussi pour l’optimisation

des procédés industriels qui nécessitent souvent de telles suspensions.

On sait aujourd’hui que l’on peut distinguer deux types d’interactions jouant un rôle

dans l’écoulement des suspensions non-Browniennes concentrées : les interactions hydro-

dynamiques et les interactions non-hydrodynamiques. L’hydrodynamique comprend les

interactions à longue portée et les interactions à courte portée sous forme de forces de

lubrification. Les interactions non-hydrodynamiques sont essentiellement liées au contact

direct entre particules solides, longtemps considéré comme impossible à cause des forces de

lubrification qui divergent lorsque deux particules entrent en contact. En réalité, ces contacts

sont rendus possibles par la présence de rugosités qui tapissent la surface des particules

réelles. La littérature souligne aujourd’hui le rôle majeur que jouent ces contacts directs

dans la rhéologie des suspensions concentrées : ils augmentent drastiquement la viscosité

de la suspension, et peuvent être à l’origine de phénomènes de rhéofluidification et de

migration. En particulier, le Suspension Balance Model (SBM) de Morris & Boulay (1999), qui

est un modèle biphasique, établit que la migration des particules est proportionnelle à la

divergence des contraintes normales particulaires. Plus tard, Lhuillier (2009) et Nott et al.

(2011) ont modifié le SBM en introduisant l’idée que seules les contraintes des particules

dont l’origine est le contact solide entre les particules jouent un rôle dans la migration.

Ceci a motivé de nombreuses études numériques et expérimentales visant à déterminer les

contraintes particulaires impliquées dans la migration.

De manière générale, il existe actuellement un besoin de proposer des lois constitutives

pour les suspensions non-Browniennes afin de pouvoir décrire ou prédire leur écoulement.

Ainsi, si des modèles tels que le SBM semblent prometteurs pour décrire le comportement

rhéologique des suspensions, ils souffrent cruellement d’un manque de mesures expéri-

mentales pour étayer leur théorie. Dans ce cadre, les simulations numériques à l’échelle

des particules entièrement résolues constituent un terrain fertile : ayant un accès complet

à toutes les informations relatives au fluide et aux particules, elles jouent un rôle clé pour

fournir toutes les quantités d’intérêt.

Dans ce travail, après avoir rappelé les généralités des écoulements de suspension

dans Chapter 1, nous employons la méthode des domaines fictifs (FDM) : cette méth-

ode numérique permet le calcul de l’écoulement de suspension à l’échelle de la particule

en utilisant un maillage Cartésien fixe. D’un côté, cela introduit des difficultés dans la

résolution de l’interface particule-fluide, mais d’un autre côté cela réduit les énormes coûts

de calcul qu’un remaillage exigerait, ce qui donne à la FDM un fort attrait. L’approche

numérique, les idées de base de la méthode et son implémentation dans OpenFOAM, ainsi

que les techniques numériques nécessaires, sont entièrement détaillées dans Chapter 2.

Comme un maillage régulier fixe est utilisé, des corrections sous-maille sont nécessaires

pour prendre en compte correctement le flux de lubrification qui se produit entre les partic-
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ules à une distance proche. L’implémentation standard de ces corrections de sous-maille

n’est valable que pour les flux linéaires. Dans Chapter 3, nous développons une version

invariante par changement de référentiel de ces corrections de sous-maille, permettant

leur utilisation correcte également dans des écoulements non-linéaires et, ainsi, s’ouvrant

à une grande variété d’investigations telles que les suspensions dans un écoulement de

Poiseuille. Les détails concernant la théorie de la lubrification, la forme générale des tenseurs

de résistance, les matrices théoriques, la façon dont ces matrices ont été mesurées dans ce

travail, et la façon dont l’invariance par changement de référentiel est obtenue, sont donnés

dans Appendices A to D.

Dans Chapter 4, de nombreuses validations de la méthode numérique et des corrections

de sous-maille sont proposées, où de multiples configurations de particules et d’écoulement

sont étudiées et comparées à la littérature existante : en partant de configurations de une

à trois particules, le chapitre se termine par des suspensions frictionnelles concentrées

bidisperses dans un écoulement de cisaillement simple. Des détails sur la façon dont les

erreurs de mesure sont estimées sont donnés dans Appendix G.

Dans Chapter 5, nous étudions le rôle des forces adhésives entre les particules dans des

suspensions bidisperses frictionnelles modérément concentrées et concentrées subissant un

écoulement de cisaillement simple : nous étudions trois valeurs du coefficient de friction

en faisant varier l’intensité des forces adhésives et la fraction volumique, et nous montrons

que la viscosité relative de la suspension dépend à la fois de la fraction volumique et de la

contrainte de cisaillement. Pour introduire les forces attractives, nous utilisons un modèle

très simple, qui est comparé à un modèle plus complet dans Appendix E.

Enfin, dans Chapter 6, la migration des particules induite par le cisaillement est étudiée

dans des écoulements de suspension en canal sous pression : en considérant des suspensions

frictionnelles bidisperses avec trois fractions volumiques différentes, nous étudions le

comportement des profils de fraction volumique locale et de de vitesse des particules, ainsi

que l’équilibre des contraintes dans la suspension. Les résultats sont comparés à une version

modifiée du SBM proposée par Badia et al. (2022) et dérivée dans Appendix F.

Un long voyage nous attend, et nous espérons savoir satisfaire la curiosité du lecteur.





I N T R O D U C T I O N ( E N )

What does “rheology” mean? The term comes from the greek words Ĳρέo (rhéo: “flow”) and

−λoγία (-logia: “study of”). We apply this study to suspensions, so we want to study the

flow of suspensions. The term “rheology” was coined by Eugene C. Bingham in 1920 and

was inspired by the aphorism by the greek philosopher Heraclitus πάντα Ĳρει̃ (panta rhei:
“everything flows”), who lived between c. 535 BCE and c. 475 BCE. What Heraclitus was

suggesting is that everything is a constant becoming, and nothing ever stays the same. So

let us start from his precious words and go further: How do suspensions flow? What are the

driving mechanisms? What are the control parameters? And also, do suspensions always
flow? These are very complex questions, and it has been now more than a century that

researchers all over the world are hunting for answers. Some of the questions have been

answered, others only partially, and some answers have proved to be incomplete or even

wrong. What is sure is that this is a very challenging topic. We hope to make a valuable step

forward with the current work.

Suspensions are all around us: in the industry in the form of fresh concrete, in food trans-

portation, in Ariane rockets fuel, in paints and cosmetics; in nature, mud, lava, underwater

landslides, sediment transport in rivers or blood in our veins are all complex suspensions.

It is therefore very important to understand their rheology to predict the behavior of such

ubiquitous systems. The very nature of the constituents of these materials can introduce a

multitude of parameters (size and shape of the solid particles, degree of polydispersity, rhe-

ological properties of the suspending fluid, density difference between the two phases, etc.)

and generate an abundance of complex rheological behaviors: thixotropy, shear-thinning,

shear-thickening, threshold stress, to mention a few. However, even an extremely simple

suspension of rigid, spherical, non-colloidal particles immersed in a Newtonian liquid

presents a very rich and complex physics that continues to raise many questions.

Since the seminal work of Einstein (1909, 1911), various theoretical, experimental, and

numerical studies have led to a better understanding by highlighting properties common

to suspensions such as the increase of viscosity with the concentration of solid particles

up to the divergence for a certain volume fraction called “jamming fraction” for which the

suspension jams. The understanding of other important properties, such as the structuring

of the particles in the bulk or in the vicinity of solid walls which probably leads to wall-

slip, or the localization of shear, is also of primary importance. Finally, shear-induced

particle migration is also a major issue in the understanding of suspension rheology from a

fundamental point of view, but also for the optimization of industrial processes that often

require such suspensions.

5
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Today, we know that two types of interactions playing a role in the flow of concentrated

non-Brownian suspensions can be distinguished: hydrodynamic and non-hydrodynamic.

Hydrodynamics includes long-range interactions and short-range interactions in the form of

lubricating forces. The non-hydrodynamic interactions are essentially related to the direct

contact between solid particles, which was considered impossible for a long time because

of the lubrication forces which diverge when two particles come into contact. In reality,

these contacts are made possible by the presence of roughness which lines the surface

of real particles. The literature now emphasizes the major role that these direct contacts

play in the rheology of concentrated suspensions: they drastically increase the viscosity

of the suspension, and can be at the origin of shear-thinning and migration phenomena.

In particular, the Suspension Balance Model (SBM) by Morris & Boulay (1999), which is a

two-phase model, establishes that the migration of particles is proportional to the divergence

of the particle’s normal stresses. Later, Lhuillier (2009) and Nott et al. (2011) modified the

SBM by introducing the idea that only particle stresses whose origin is solid contact between

particles play a role in migration. This has motivated numerous numerical and experimental

studies aimed at determining the particle stresses involved in particle migration.

In general, there is currently a need to propose constitutive laws for non-Brownian

suspensions to be able to describe or predict their flow. Thus, if models such as the SBM

seem promising to describe the rheological behavior of suspensions, they cruelly suffer a lack

of experimental measurements to support their theory. In this framework, fully-resolved

particle-scale numerical simulations have fertile soil: having complete access to all the

information related to both fluid and particles, they play a key role in furnishing all the

quantities of interest.

In this work, after recalling the generalities of suspension flows in Chapter 1, we employ

the Fictitious Domain Method (FDM): this numerical method allows the computation of the

suspension flow at the particle scale employing a fixed Cartesian mesh. The latter, on the

one hand, introduces difficulties in the resolution of the particle-fluid interface, but on the

other hand, it reduces the enormous computational costs that a re-meshing would require,

giving the FDM a strong appeal. The numerical approach, the basic ideas of the method,

and its implementation in OpenFOAM, together with necessary numerical technicalities,

are fully detailed in Chapter 2.

As a fixed regular mesh is used, sub-grid corrections are needed to correctly take into

account the lubrication flow arising between particles at a close distance. The standard

implementation of such sub-grid corrections is valid only in linear flows. In Chapter 3, we

develop a frame-invariant version of such sub-grid corrections, allowing their correct use

also in nonlinear flows and, thus, opening up to a wide variety of investigations such as

suspensions in a Poiseuille flow. Details about the lubrication theory, the general form of

the resistance tensors, the theoretical matrices, how such matrices have been measured in

this work, and how the frame indifference is achieved, are given in Appendices A to D.
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In Chapter 4, numerous validations of both the numerical method and the frame-invariant

sub-grid corrections are proposed, where multiple particles and flow configurations are

investigated and compared to existing literature: starting from one-to-three-particles con-

figurations, the chapter concludes with bidisperse concentrated frictional suspensions in

simple shear flow. Details about how systematic measurement errors are estimated are given

in Appendix G.

In Chapter 5, we investigate the role of adhesive forces between particles in bidisperse

frictional moderately-concentrated and concentrated suspensions undergoing simple shear

flow: we study three values of the friction coefficient by varying the intensity of adhesive

forces and the volume fraction, and we show that the relative viscosity of the suspension

depends on both volume fraction and shear stress. To introduce the attractive forces, we

employ a very simple model, which is compared to a more complete one in Appendix E.

Finally, in Chapter 6, the shear-induced particle migration is studied in pressure-driven

channel suspension flows: by considering bidisperse frictional suspensions at three values

of the volume fraction, we investigate the behavior of the local volume fraction and particle

velocity profiles, as well as the suspension stress balance. The results are compared to a

modified version of the SBM proposed by Badia et al. (2022) and derived in Appendix F.

A long journey awaits, and we hope to gratify the reader’s curiosity.
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Before dealing with the methodology employed and discussing the results obtained, it is

certainly useful to define the context of the current work: we are going to see why it is so

interesting to study the rheology of particulate suspensions, then we are going to see what

are the physical quantities to measure to understand the behaviors of these complex fluids,

and finally we are going to see how the investigation is performed.

Particular attention is given to what directly concerns the current dissertation, while more

complete reviews can be found in the literature, e.g. Denn & Morris (2014), Maxey (2017),

É. Guazzelli & Pouliquen (2018), and Ness et al. (2021), to cite a few.
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1.1 context

The context is defined in the title of the current work: “Simulation of concentrated non-Brownian
frictional and adhesive suspensions in linear and nonlinear flows”. So, let us analyze it:

• a suspension is a mixture of particles and fluid; they are omnipresent in natural

phenomena (e.g., blood, mud, lava, river beds, etc.) and industrial processes (e.g., fresh

concrete, cosmetics, food, solid rocket fluid, etc.);

• we deal with non-Brownian particles, meaning that the suspended particles are

sufficiently large (i.e., with a radius much larger than a micrometer) for random

thermal fluctuations of the positions of the particles to be neglected;

• we are interested in concentrated suspensions, meaning that there is a high density of

suspended particles (in the current work, the terms “dense” and “concentrated” are

used with the same meaning); in such systems, direct interactions between particles

(and between particles and walls) play a central role in the rheology;

• we consider frictional particles, meaning that, as soon as there is contact, there is also

a tangential force; in Chapter 5, an adhesive (i.e. attractive) normal force is added to

the elastic contact force; we want to investigate the effects these direct interactions

have on the rheological properties of particulate suspensions;

• we investigate both linear (e.g., simple shear) and nonlinear (e.g., Poiseille) Stokes

flows, as very interesting and variegate behaviors are observed in these two types of

flow (e.g., shear jamming, shear-induced particle migration);

• we choose to perform such an investigation by the means of numerical simulations,

and we want to do that the hard way, i.e. by writing from scratch our code.

1.2 rheophysics of non-brownian

dense suspensions

We consider non-inertial, non-colloidal, neutrally buoyant, and non-Brownian rigid spherical

particles suspended in an incompressible and Newtonian fluid. In this case, the Reynolds

number (defined as the ratio of inertial forces to viscous ones) is zero, while the Péclet

number (defined as the ratio of advection to diffusion fluxes) is infinity:

• Re =
inertial forces
viscous forces

=
ρfuL

η
= 0

• Pe =
advection
diffusion

=
6πa3γ̇η

kT
=∞

where ρf is the density of the fluid, u is the typical fluid velocity, L is the typical length

scale of the flow, η is the dynamic viscosity of the fluid, a is the particle radius, γ̇ is the

shear rate, and kT is the Boltzmann energy.
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Even in such a – seemingly! – simple case, physics can be complex and non-Newtonian

behaviors may arise. Before proceeding, let us define the two following central quantities:

• relative viscosity = ηs =
viscosity of the suspension

viscosity of the suspending fluid
=
ηsusp

η

• volume fraction = φ =
volume occupied by the particles

total volume

1.2.1 macroscopic behaviors

Adding suspended particles to a fluid increases the effective viscosity of the mixture above

that of the suspending fluid. This has been known for a Newtonian fluid since the work of

Einstein (1909, 1911), who determined the expression of the viscosity of a dilute suspension:

η (1+ 5φ/2). However, this linear dependence of the suspension viscosity with the solid

volume fraction is valid only in very dilute suspensions (up to φ ≈ 0.05). Probably the most

famous of the striking behaviors of particulate suspensions is that the relative viscosity is

found to drastically increase with the volume fraction and to diverge when approaching

the so-called jamming volume fraction φJ, the latter being defined as the volume fraction at

which the suspension flow stops and the corresponding shear rate γ̇ is equal to zero. Other

models have been developed to correctly take into account this behavior, and one of them is

the Maron-Pierce correlation:

ηs =
α

(1−φ/φJ)
2

(1.1)

where α and φJ are fitting parameters. This model will be widely used in the current work.

It is also striking that the value of the jamming volume fraction is not a universal constant,

even for quite large reasonably monodisperse spherical particles. For instance, in Fig. 1.1,

where several viscosity curves from experimental and numerical studies have been gathered,

the experimental jamming volume fraction ranges from 0.58 to 0.605. As will be explained

in the following, the reason for such variations may be found in the particular interaction

forces between particles, including contact forces.

Another important behavior is that of the existence of normal-stress differences, i.e.

normal stresses are no longer isotropic under shear. What are the normal-stress differences?

Since the suspension is incompressible, the pressure (i.e., the trace of the total suspension

stress tensor Σ) is of no rheological interest, and the two relevant quantities are the first

and second normal-stress differences defined as N1 = Σ11 − Σ22 and N2 = Σ22 − Σ33,

respectively, where flow, velocity gradient, and vorticity directions are labeled 1, 2, and

3. Since normal stresses do not depend on the sign of the shear stress, the normal-stress

differences are proportional to the shear stress modulus |τ| via some coefficients which are

solely a function of the volume fraction φ. In addition, these coefficients do not diverge at

φJ, meaning that normal stress differences and shear stress present the same divergence

when approaching the jamming volume fraction and do not diverge (Morris & Boulay, 1999).
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Figure 1.1
Relative viscosity ηs versus the reduced volume fraction φ/φc: experimental and
numerical results, and models (see É. Guazzelli & Pouliquen (2018) for more details).

Moreover, Boyer et al. (2011) unified particulate suspension and dry granular rheology

under the same framework. They employed an original experimental setup, consisting in an

annular shear cell in which pressure-imposed measurements are performed, which is well

suited to explore very high values of the volume fraction. They showed that in the highly

concentrated range 0.45 6 φ 6 0.58 the behavior of a suspension can be fully described by

the macroscopic friction coefficient and the volume fraction, both quantities being a unique

function of the viscous number J = ηγ̇0/Pp (being γ̇0 and Pp the imposed shear rate and

particle pressure, respectively).

1.2.2 microscopic mechanisms

The above-mentioned macroscopic phenomena result from mechanisms occurring at the

particle scale. The microstructure of the particle phase shows very interesting behaviors.

When a suspension of neutrally buoyant hard spheres is sheared, particles follow the mean

motion imposed by shear but also interact with each other, leading to random motion.

However, a certain organization exists in the averaged position of the particles relative to

each other. To investigate the behavior of the microstructure, the pair distribution function

(PDF) can be computed, indicating how the particle density varies as a function of the

distance from a reference particle at the origin and of the angle between the two particles.

This pair distribution function is expected to be independent of the shear rate and to depend

only on the volume fraction. The first attempt at obtaining the PDF was made Gadala-Maria

& Acrivos (1980), who measured the relative arrangement of particles located near the top
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Figure 1.2
Experimental PDF in the plane of the shear for different φ, data from Blanc et al. (2013).

layer of a concentrated suspension sheared in a Couette cell. Recent experiments (Parsi

& Gadala-Maria, 1987; Rampall et al., 1997; Blanc et al., 2011a) and simulations (Sierou

& Brady, 2002; Drazer et al., 2004; Yeo et al., 2010; Gallier et al., 2014a), concerning non-

Brownian suspensions ranging from dilute to dense regimes, show that the microstructure

loses isotropy (see Fig. 1.2), establishing a preferred direction for finding the close-contact

pairs that control the observed rheology of concentrated suspensions (Blanc et al., 2013).

The shape of such PDF (Blanc et al., 2011a) as well as measurements of individual particles

trajectories (Pham et al., 2015) allowed to connect the microscale motion of the particles

to direct contact between surface asperities, highlighting the importance of direct contact

forces, in addition to the usual hydrodynamic interactions. Both types of interaction are

addressed in the following.

1.3 hydrodynamics

The hydrodynamic interactions are of great interest in the current work. That is also why, as

we will see in the following, a numerical method that solves the Navier-Stokes equations

for the flow is chosen. The presence of a particle modifies the flow around itself, and this

perturbation is transferred from the fluid to other surrounding particles, modifying their

dynamics. These hydrodynamic interactions also contribute to the increase of the suspension

viscosity and have a long-range influence as they decrease very slowly with the distance

from the considered particle (typically with 1/r or 1/r2): that is why it is fundamental to

take them into account in dilute and moderately dense suspensions. Also, when studying

systems with few particles, the size of the domain (i.e., the distance between the particles

and the walls) plays a central role.

Short-range hydrodynamic interactions are also present: when two particles approach

each other at a small distance, a lubrication flow that resists the relative motion arises,

leading to lubrication forces acting on both particles. These forces are one of the central

interests in the current work and will be deeply discussed in Chapter 3.
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1.4 direct interactions

In the last decade, the role played by frictional contact in the rheology of dense suspensions

has been widely acknowledged. Thanks to numerical simulations, it is very easy to measure

interactions between particles and the influence they have on microstructure (abbas2007a),

and then estimate the relative importance of the stresses carried by contacts and those due

to hydrodynamic forces to determine which contribution controls the rheological behaviors

observed in experiments.

In Fig. 1.3, the numerical results for the relative viscosity of a sheared suspension from

Gallier et al. (2014b) for different friction coefficients µ are compared to the experimental

measurements by Zarraga et al. (2000) and Dbouk et al. (2013). It can be noticed that the

friction coefficient has to be increased up to 0.5 to recover the values of the viscosity observed

in experiments. This behavior is explained by the variation of the jamming volume fraction

φJ with the friction coefficient µ. Several studies (Gallier, 2014; Mari et al., 2014; Peters

et al., 2016) have indeed shown that the higher the friction coefficient the lower the jamming

volume fraction: in particular, in bidisperse suspensions, the jamming volume fraction φJ
can be decreased from ≈ 0.64 for µ = 0 down to ≈ 0.55 for µ =∞.

As we notice in Fig. 1.4 [a], for frictional suspensions the contribution of contacts remains

negligible for φ . 0.25. For larger volume fractions, the contact contribution rapidly increases

and becomes dominant for φ & 0.4. The hydrodynamic contribution increases too, but at a

lower rate, showing that in the jamming transition the rheology is practically dominated only

by contacts. In Fig. 1.4 [a] and [b], the same analysis can be carried out for the normal-stress

differences: for α1 the hydrodynamics have always a negative contribution, whereas the

contact contribution changes sign at φ ≈ 0.40, so that for larger volume fractions the two

contributions are of the same order of magnitude; the scenario strongly differs for α2, which

is dominated by contacts with a negative contribution.

Figure 1.3
Relative viscosity as a function of the volume fraction for different values of the friction coeffi-
cient µ: comparison between the numerical results by Gallier et al. (2014b) and the experimental
measurements by Zarraga et al. (2000) and Dbouk et al. (2013) (figure from Gallier (2014)).
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Peculiar mechanisms arise when investigating the role of friction on the transient of

shear-reversed suspensions. Studying the re-organization of the microstructure and the

relaxation of contact forces during the transient by varying the contact law parameters

(surface roughness height and friction coefficient), it can be shown that in the long-time

transient the difference between the steady viscosity and the minimum one is proportional

to the contact contribution to the steady viscosity, allowing in principle easy determination

of the latter in experiments (Peters et al., 2016).

What happens when the friction coefficient is allowed to depend on suspension stress?

Frictional contact forces are essential to reproduce the experimentally observed shear-

thickening behavior. The lubricated-to-frictional transition provides a coherent mechanistic

basis for shear-thickening, confirmed by numerical simulations (Wyart & Cates, 2014; Morris,

2018; Abhinendra Singh et al., 2018).

Moreover, a load-dependent inter-particle friction coefficient has arisen as a plausible

explanation of the shear-thinning behavior of non-Brownian suspensions (Lobry et al.,

2019): rough particles come into solid contact through one or few asperities. In such a

few-asperities elasto-plastic contact, the friction coefficient is expected to decrease when

increasing the normal load. This model has been experimentally validated (Arshad et al.,

2021), showing that the inter-particle friction coefficient decreases with the load, contrary to

what is expected for macroscopic contacting bodies.

Other peculiar direct interactions are the adhesive (i.e., attractive) forces between particles

and between particles and walls. Adhesion can lead to very interesting behaviors. This

problem will be tackled in Chapter 5, where the role of adhesion in frictional suspensions

undergoing simple shear flow will be investigated.

Figure 1.4
Relative contribution of the frictional contact (red squares) and the hydrodynamic (blue circles)
stresses to (a) the viscosity, and (b) first and (c) second normal-stress differences α1 = N1/ |τ|

and α2 = N2/ |τ|, respectively, as a function of the volume fraction φ (figure from É. Guazzelli &
Pouliquen (2018), data from the numerical simulations of Gallier et al. (2014b) including particle
roughness as well as frictional contacts with friction coefficient µ = 0.5).
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1.5 nonlinear flows

The previously presented behaviors arise also in very simple flows, like linear flows with

a constant shear rate. The situation seems already quite complicated. As we are doing the

job, let us add some more complications and consider nonlinear flows. As we are going to

see in the following, nonlinear flows are of central interest in the current work. But why

is it interesting to investigate nonlinear flows? Nonlinear flows, i.e. flows with a spatially

variable shear rate (e.g., a pressure-driven flow), can give life to mechanisms that are not

present in linear flows. However, the nature of these mechanisms still has to be enlightened.

One of the mechanisms in question is the viscous resuspension, first discovered by

Gadala-Maria & Acrivos (1980) while measuring the rheological properties of suspensions

of heavy non-Brownian particles in viscous Newtonian fluids using a parallel-plate device.

The initially-settled particles were observed to resuspend under shear and the flowing

suspension was seen to achieve a non-uniform concentration profile. Later, Leighton &

Acrivos (1987b) showed that the equilibrium resuspension height could be modeled as

a diffusive process balancing the downward gravitational flux of particles, both fluxes

acting in the shear-gradient direction. This mechanism has been recently investigated by

d’Ambrosio et al. (2021), who performed local measurements of both velocity and volume

fraction of spherical particles dispersed in a lighter Newtonian fluid sheared in a vertical

Couette cell. We can easily observe in Fig. 1.5 the variation of the resuspension height with

the rotor rotation speed, and the corresponding volume fraction profiles.

In the case of a planar Poiseuille flow, the shear rate (defined as the absolute value of

the derivative of the velocity profile) is not spatially constant and varies across the channel

width, reaching its maximum value at the walls and its minimum value (i.e., zero) at the

Figure 1.5
(a) Typical images recorded for different rotor rotation speeds; we can observe the variation of the
resuspension height with the rotation speed. (b) Examples of the vertical concentration profiles for
two rotation speeds, and comparison with the model proposed by Acrivos (1993). Data and figures
from d’Ambrosio et al. (2021).
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channel center. In this case, we can see at play one of the most common behaviors of nature:

laziness. In this case, particles are lazy. So lazy that they tend to migrate toward regions

where the shear rate is smaller than the one in which they are. The actual mechanisms are

much more complicated and rely on the shear-induced particle migration (Gadala-Maria &

Acrivos, 1980; Leighton & Acrivos, 1987a,b; Nott & Brady, 1994; Mills & Snabre, 1995; Miller

& Morris, 2006; Lhuillier, 2009; Yeo & Maxey, 2011; Abbas et al., 2014). In concentrated

regimes, migration can also lead to a volume fraction at the channel center that exceeds the

jamming one! How is that possible? Is the suspension really jammed in that region? What

are the driving mechanisms? These problems will be deeply treated in Chapter 6. However,

it has to be stressed that simulations of suspensions in nonlinear flows require special care,

as explained in the following.

1.6 numerical methods

In the understanding of the complex physics behind suspension flows, numerical simulations

have been demonstrated to be a fundamental tool that can provide details not easily available

in experiments, helping to identify which factors are most significant in determining the

intricate behaviors observed in the rheology of particulate suspensions. For instance, in

the specific field of non-Brownian suspensions, hydrodynamic interactions, both long- and

short-range, direct interaction, and external potential forces have a prominent influence.

Their relative influence depends on the nature of the fluid, the flow type, the particle volume

fraction, the density mismatch between particles and fluid, and the velocity gradient intensity.

During the last century, many different numerical approaches have been presented, each

one having its advantages and downsides. Therefore, choosing the most suited approach

can be very challenging, and defining the questions to be answered and the applications to

aim for becomes fundamental. The spatial length scale, the computational complexity, and

the available resources are the earliest considerations to tackle.

If the suspended particles are very small compared to the typical length scale of a flow

and the volume fraction is very low, it may be feasible to treat each particle as a point

and determine the fluid force on it from theoretical models or empirical correlations. Point

particle methods typically present a low computational cost – at least for the particle sub-

problem – making it possible to simulate a very large number of particles. These methods

are useful in giving a first answer to how particle transport will develop in a flow, and

can be very useful in finite-Reynolds-number applications. However, there is an inherent

ambiguity because the point force and momentum coupling of a particle to the fluid locally

alter the underlying flow, and this in turn modifies the estimated particle velocity (Squires,

2007). For gas-solid flows with many small particles, this may not be an issue, but may well

be in other contexts (Maxey, 2017).

On the opposite end of the spectrum in terms of particle resolution, we found the full

Arbitrary Lagrangian Eulerian (ALE) simulations, in which the motion of each particle is
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Figure 1.6
Example from a computation of particle-laden isotropic turbulence (Squires, 2007).

determined by the fluid force acting on it, as given by the fluid stress tensor integrated over

the particle surface together with any external forces and non-hydrodynamic interactions

between the particles. A key feature is a need to update the mesh as particles move (Hughes

et al., 1981). Important factors are selecting the velocity of the mesh nodes, updating the

mesh, periodically regenerating a new mesh to maintain the resolution, and interpolating

the flow variables between the meshes. ALE simulations are incredibly effective for high-

resolution studies, as the flow between particles and the particle-particle interactions are

perfectly resolved. However, they present a monolithic computational cost, which makes

them attractive only for a limited number of particles.

A primary tool for investigating the dynamics of both dilute and dense suspensions

of spherical particles in a Stokes flow is the Stokesian Dynamics (SD) approach (Brady,

1988, 2001). This has been a widely employed fruitful method, which has given throughout

the years the majority of the numerical results on the rheology of dense suspensions. The

method is based on a low-order multipole representation of the far-field flow induced by a

particle, including Stokeslet, rotlet, and stresslet terms and associated degenerate multipoles.

These are calculated by pairwise sum and reflection methods to obtain a mobility matrix for

the particle system (Bossis & Brady, 1984). Lubrication corrections for the viscous forces and

torques when particles are close to contact are added in a pairwise manner for the resistance

matrix (Durlofsky et al., 1987). SD is a meshless scheme, similar in style to molecular

dynamics simulations, and is used to evaluate the velocities based on a specific particle

configuration from which an updated configuration is obtained. Until the 2000s, SD has

been employed only for two-dimensional simulations (to be more precise, a mono-layer

of particles), mostly due to the high computational cost related to the inversion of the

resistance matrix for the computation of the velocities of the particles. Works in the last 20

years have obtained a significant reduction of this computational cost, reaching simulations

of up to thousands of particles (Sierou & Brady, 2001, 2002, 2004; Ouaknin et al., 2021).

This approach is only suited for the case of a Newtonian suspending fluid. It has been

mainly implemented for spherical particles, although it can tackle ellipsoidal particles as
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Figure 1.7
Example of a 2D mesh for ALE simulations (Lefebvre & Maury, 2005). High-resolution
studies can be performed. However, as re-meshing – a very expensive operation – has
to be done for each time step, a limited number of particles is typically employed.

well (Claeys & Brady, 1993). Periodic shear flow is usually implemented, but the method

has been upgraded so that plane boundary walls may be tackled (Swan & Brady, 2011).

The lattice Boltzmann method (LBM) has become established as a mesoscopic simulation

tool. The LBM is a weakly compressible flow solver based on the kinetic theory of gases and

the evolution of a molecular distribution function on a lattice. The Navier-Stokes equations

are not solved directly, but the fluid flow is computed using as the primary quantity the

one-particle discrete-velocity distribution function discretized at the nodes of a lattice (Ladd,

1994; Nguyen & Ladd, 2002). The method has a simple structure that easily scales for parallel

computation. However, the time steps are short. One approach is to use the LBM as a flow

solver in combination with an immersed boundary method for the particle phase.

The Smooth Particle Hydrodynamics is an example of lagrangian meshless methods

where flow fields are represented using co-moving fluid volumes interacting via pairwise

forces. Particles and walls are modeled as frozen sets of particles similar to fluid ones. Both

Brownian (Bian et al., 2012) and non-Brownian spherical particles in Newtonian (Vázquez-

Quesada & Ellero, 2016) or non-Newtonian (Vázquez-Quesada & Ellero, 2017) fluids may be

tackled, as well as arbitrary particle shape.

A method that aims at reducing the costs of ALE simulations but maintaining the full

resolution of the flow is the Fictitious Domain Method (FDM). The determination of the

force may involve a Lagrange multiplier (Glowinski, 1999; Glowinski et al., 2001), or not (N.

Patankar et al., 2000). Lagrange-multiplier-free FDMs have been applied to tackle spherical

(Gallier et al., 2014a) or non-spherical particles (Wu et al., 2020). The key feature of the

FDM is that the Navier-Stokes equations for an incompressible flow are solved for the full

domain, and a fixed computational mesh is specified for the whole domain D, including the

volume Dp occupied by the particles, and a force density field λ is set so that the (fictitious)

fluid inside each particle responds as if it were in rigid-body motion. The force density field

is defined throughout the particle volume. Inevitably, the transition from a viscous flow

outside a particle to an equivalent rigid-body motion for the fluid inside leads to a sharp

change in the velocity gradient, even if the velocity field itself is continuous. Therefore,

particle tracking is a primary issue to tackle.
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Figure 1.8
Example of a fixed Cartesian mesh for the FDM (Gallier, 2014).

The Force Coupling Method (FCM) is based on a low-order, finite force multipole rep-

resentation of the effect particles have on the surrounding fluid (Maxey & Patel, 2001). It

serves as a bridge between methods for Stokes flow and low-Reynolds-number conditions

(Abbas et al., 2014). The force monopole corresponds to the force a particle transmits to the

fluid if it were replaced by a rigid particle with the same density as the fluid. The force

dipole is a combination of a symmetric stresslet and a torque that acts on the fluid. The

torque is set similarly to the force monopole in terms of the angular momentum of the

particle, which of the displaced fluid, and any external torques on the particles. The stresslet

is chosen to ensure that the average rate of strain is zero within each particle. The aim is

to create a flow outside the particle that matches the actual flow within a short distance

from the surface. The fluid inside the particle volume satisfies the same integral moments as

a rigid particle. This interior flow is an active part of the simulation. Finally, short-range

hydrodynamic interactions are tackled using sub-grid corrections. The FCM gives results

that are equivalent to those of SD. It is well suited for neutrally buoyant particles in Couette

and Poiseuille flows, for both spheres (Yeo & Maxey, 2010a,c) and ellipsoids (Liu et al.,

2009). The FCM has also been used to examine the particle-induced modulation of forced

homogeneous turbulence (Yeo et al., 2010) and the dynamics of finite-Reynolds-number

suspensions in homogeneous shear (Yeo & Maxey, 2013).

Another method involving the actual computation of the suspending fluid flow is the

Immersed Boundary Method (Uhlmann, 2005; Breugem, 2012), in which point forces are

exerted on the fluid in the vicinity of the surface defining the solid boundaries to enforce

the particle rigid body motion.

Finally, the Discrete Element Method (DEM) has emerged as a powerful numerical method.

Originally developed in the field of dry granular material (Pöschel & Schwager, 2005), it

accounts for direct contact interactions, including friction. To allow suspension simulations,

it must be supplemented with short-range lubrication interactions. In the last decade, it

allowed outstanding progress in the understanding of the discontinuous shear-thickening

(DST) in non-Brownian suspensions (Seto et al., 2013; Mari et al., 2014) and of the stress-

induced transition from frictionless to frictional particle interactions (see Morris (2018)

for a review). The influence of various particle contact behaviors on DST has been also
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evidenced, such as adhesion and rolling friction (Abhinendra Singh et al., 2020). Apart

from DST, the effect of adhesive forces in highly concentrated suspensions on jamming

has been probed (Jones & Ness, 2018). The rheology of suspensions in extensional flows

has been also studied (Cheal & Ness, 2018). The main drawback of the method is that

it does not account for long-range hydrodynamics, which seems not that important for

straining flows, except maybe when shear-induced diffusion is addressed (Gallier et al.,

2018). However, problems are expected for flows where particle settling is relevant since

long-range interactions are known to have primary effects (E. Guazzelli et al., 2011). However,

long-range hydrodynamic interactions may be introduced using a pore pressure (Catalano

et al., 2014). Another drawback of DEM is that the underlying flow is needed to compute

the drag, making it difficult to simulate problems where the latter is not prescribed.

1.6.1 our choice

In the current work, we aim at building an efficient and precise tool for the simulation of

particulate suspensions: we want to investigate the physics at a microscopic level, but we

want a reasonable computational cost to simulate a great number of particles. We want

to resolve the flow around the particles, and take into account all the particle interactions.

Yes, we have a lot of demands. That is why we have chosen the FDM as the method to

be employed here. A highly detailed presentation of the method, its implementations, its

performances, and its limitations, can be found in Gallier (2014)’s doctoral dissertation, as

well as in his papers (Gallier et al., 2014a,b, 2016, 2018).

Here, we take inspiration from Gallier’s work and build up a new tool. It should be

stressed again that most of the methods mentioned above need specific treatment to be

able to account for short-range hydrodynamic interactions as particles are at a distance

that is smaller than the smallest length scale specified by the method (mesh size or fluid

particle size). One of the most interesting and challenging developments we performed

is a frame-invariant formulation of the sub-grid corrections needed to correctly take into

account the lubrication forces: this feature makes the current method well suited to the

simulation of non-homogeneous flows. More details will be presented in Chapters 3 and 6.

We also take care of the optimization of the code, using a message-passing standard (MPI)

and multi-threading (OpenMP). The method has been implemented in the OpenFOAM

toolbox, making it cross-platform and easy to use.

In the following chapter, we start by presenting the equations that govern the fluid flow

and the ones that dictate the dynamics of the particles; then, we present the numerical

implementation of the method and we split the fluid sub-problem from the particle one,

giving particular attention to the contact model. After showing the algorithm of the approach,

we will go into important numerical details, explaining the challenges we had to address

and how we tackled them. In the end, the reader will have a complete overview of the code

and its functioning. Numerous validations of the code will be provided in Chapter 4.
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We start by presenting the equations governing the systems considered in the current

work. We want to simulate rigid particles suspended in a Newtonian fluid. Therefore, the

Navier-Stokes equations for an incompressible fluid flow are used, modified by adding

a forcing term λ that reflects the forces and torques acting on the particles and enforces

a rigid body motion inside their domain. Also, the flow equations are coupled to the

particle dynamics via the forcing term (which is also used to compute the hydrodynamic

interactions), for which the classic Newton’s laws for motion are employed. We can start to

seize the difficulties of the numerical procedure that have to be tackled.

23
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Then, after showing in detail how the hydrodynamic interactions are computed, we are

going to see that sub-grid corrections for lubrication are needed: when particles approach

at a distance smaller than the spatial resolution (i.e., the mesh cell size), the solver cannot

correctly compute the squeezing flow arising between their surfaces. The sub-grid corrections

depend on the velocities and positions of the particles, and a linear system that takes into

account all the forces and torques acting on the particles needs to be solved to obtain the

velocities of the particles. Albeit these sub-grid corrections will be deeply treated in the

next chapter, we need to introduce them here to have a wide and complete vision and

understanding of the numerical approach and its algorithm.

Thereafter, the fluid sub-problem can be split from the particle sub-problem. We start by

discussing the finite volume method and why it is so widely employed in CFD; we continue

by presenting the numerical implementation of the governing equations in OpenFOAM: we

discuss in detail the discretization of the different terms as well as the schemes involved, and

we display the numerical procedure proposed by OpenFOAM and how it is employed in

the framework of the current work. We use the SIMPLEC algorithm, which is characterized

by two steps: the first one is the prediction step, in which the (compressible) momentum

equation is solved by using the previous pressure field, obtaining a velocity field that is not

fully divergence-free; then, the correction step follows, in which a pressure field that satisfies

the continuity equation is sought, and the velocity field is accordingly corrected.

Then, the particle sub-problem is treated, and we enhance how it is coupled to the fluid

sub-problem: the difficulty here is to determine the correct forcing term λ to get the right

particle dynamics. To achieve this, the two sub-problems need to proceed simultaneously

until convergence: first, the fluid problem is solved using the previous forcing term; then, the

velocities of the particles are computed, always using the previous forcing term; finally, rigid

body motion is imposed inside the particles domain and the forcing term is consequently

corrected. This is repeated until the forcing term is no more evolving.

After presenting the algorithm, we approach the end of the chapter by talking about

some – very important! – numerical details, such as particle tracking, boundary conditions,

parallelization of both the problems and convergence control, the former being a very

delicate issue. We also present the model employed for the contact forces, both the normal

(using Hertz law) and the tangential (using Amontons-Coulomb friction law) components.

Details about the computational performances will be given at the end of Chapter 4 when

simulations of concentrated suspensions with a high number of particles in a simple shear

flow will be presented.

We conclude the current chapter by defining how the rheological quantities of interest

such as the particle stresslet, the local volume fraction and stresses, and the relative viscosity,

are computed.

This is a long, dense, heavy, but fundamental chapter. We recommend keeping a cup of

coffee, tea, or anything useful to relieve the reading, nearby.
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2.1 governing equations

In the Fictitious Domain Method (FDM), the fluid flow is computed in the whole simulation

domain D including the particles. A Newtonian fluid is assumed, with dynamic viscosity η

and density ρf.

The particles are rigid spheres whose density is denoted by ρp, which can be different

from the fluid one; their rigidity is enforced using a force density ρfλ that acts only in the

volume of each particle Dp. As a consequence, the fluid obeys modified incompressible

Navier-Stokes equations:

ρf

(
∂u
∂t

+ u ·∇u
)

= ∇ ·σ+ ρfλ

∇ · u = 0

(2.1)

σ = −pδ+ η
(
∇u +∇uT

)
(2.2)

with the constraint that the fluid inside the particle undergoes rigid body motion:

u(x) = Up +Ωp × (x − xp) for x ∈ (Dp) (2.3)

where xp denotes the position of the particle (p) center. Then, Newton’s equations read for

each particle (p):

Mp
dUp
dt

=
ρp − ρf
ρp

Mpg + Fhp + Fcp + Fextp

Jp ·
dΩp

dt
+Ωp × (Jp ·Ωp) = Thp + Tcp + Textp

(2.4)

where Mp and Jp are the particle mass and moment of inertia respectively, Fhp, Fcp, and Fextp
respectively stand for the hydrodynamic, contact and additional external forces exerted on

the particle (p), and Thp, Tcp, and Textp are the corresponding torques. Further details about

the contact model will be given in Section 2.6.

Since the gravity force on the fluid has been absorbed in the pressure (Eqs. (2.1) and (2.2)),

the hydrodynamic force Fhp does not include the buoyancy force on the particle, consistent

with Eq. (2.4).

On the one hand, the momentum equations for the fluid (Eq. (2.1)) and the particles

(Eq. (2.4)) are coupled, since the particles (p) and the fluid inside the particles domain Dp

share the same velocity field (Eq. (2.3)), and on the other hand, the hydrodynamic force and

torque exerted on any particle originate in the stress on the particle surface.
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Eq. (2.1) and its counterpart for the angular momentum may be integrated over the volume

of each particle, which, with the help of Eq. (2.3), leads to:

ρf
ρp
Mp

dUp
dt

=

∫
∂Dp

σ · n dS+ ρf
∫
Dp

λdV

ρf
ρp

(
Jp ·

dΩp
dt

+Ωp × (Jp ·Ωp)
)

=

∫
∂Dp

(x − xp)×σ · n dS+ ρf
∫
Dp

(x − xp)× λdV

(2.5)

As a consequence, the hydrodynamic force and torque exerted on each particle (p) as

computed by the fluid flow solver read:

FFDMp =

∫
∂Dp

σ · n dS =
ρf
ρp
Mp

dUp
dt

− ρf

∫
Dp

λdV

TFDMp =

∫
∂Dp

(x − xp)×σ · n dS =
ρf
ρp

(
Jp ·

dΩp
dt

+Ωp × (Jp ·Ωp)
)
− ρf

∫
Dp

(x − xp)× λdV

(2.6)

As already mentioned, the fluid flow solver cannot compute the flow at a scale smaller

than the spatial resolution, i.e. the mesh size ∆. The lubrication flow arising between

particles approaching at a small distance generates strong hydrodynamic forces that heavily

influence the particle dynamics and, therefore, have to be correctly taken into account. Thus,

sub-grid (SG) corrections have to be added to the force and torque on each particle. The

implementation of these sub-grid corrections needs particular attention: a full explanation

and many more details will be presented in Chapter 3. By defining the vector of translational

and rotational velocities:

U = (U1,U2, . . . ,Ω1,Ω2, . . .) (2.7)

the sub-grid corrections for forces and torques read:

FSGp = −RSGFU ·U

TSGp = −RSGTU ·U
(2.8)

where RSGFU and RSGTU are the sub-grid correction resistance matrices that link the sub-grid

correction forces and torques acting on the particles to their velocities and are a function

of the distance between the particles. In particular, the linearity of the relations in Eq. (2.8)

is related to the low Reynolds number flow at the particle scale that is considered in the

current work. The total hydrodynamic force and torque in Eq. (2.4) finally read:

Fhp = FFDMp + FSGp

Thp = TFDMp + TSGp

(2.9)
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From Eqs. (2.4), (2.6) and (2.9) the equations that govern the constraint on the force density

λ are derived, and are written in Eq. (2.10) together with the fluid equations:

ρf

(
∂u
∂t

+ (u ·∇)u
)

= η∆u −∇p+ ρfλ (2.10a)

∇ · u = 0 (2.10b)

u = Up +Ωp × (x − xp) in Dp (2.10c)

ρp − ρf
ρp

Mp
dUp
dt

=
ρp − ρf
ρp

Mpg − ρf

∫
Dp

λdV+ FSGp + Fcp + Fextp (2.10d)

ρp − ρf
ρp

(
Jp ·

dΩp
dt

+Ωp × (Jp ·Ωp)
)

= −ρf

∫
Dp

(x − xp)× λdV+ TSGp + Tcp + Textp

(2.10e)

In the following, inertia at particle scale is neglected, both for the fluid and the particles, so

that the LHS of Eqs. (2.10a), (2.10d) and (2.10e) can be discarded. It should be stressed that

this step is not mandatory and that the method is also convenient for finite-Reynolds-number

flows (Gallier et al., 2014a). Finally, the simplified equations are:

0 = ν∆u −
∇p
ρf

+ λ (2.11a)

∇ · u = 0 (2.11b)

u = Up +Ωp × (x − xp) in Dp (2.11c)

0 =
ρp − ρf
ρp

Mpg − ρf

∫
Dp

λdV+ FSGp (Up,Ωp) + Fcp + Fextp (2.11d)

0 = −ρf

∫
Dp

(x − xp)× λdV+ TSGp (Up,Ωp) + Tcp + Textp (2.11e)

where the unknowns have been put in red and ν = η/ρf is the kinematic viscosity. Eqs. (2.11a)

and (2.11b) correspond to the fluid sub-problem, while Eqs. (2.11d) and (2.11e) correspond

to the particle sub-problem. Eq. (2.11c) links the two sub-problems, imposing rigid body

motion inside each particle domain Dp.

The above equations are solved simultaneously and iteratively with a predictor-corrector

method: the fluid sub-problem is solved using the previous forcing term λn−1, obtaining

u∗∗ which does not fully comply with a rigid body motion inside the particles; then, the

velocities of the particles Un and Ωn are computed using u∗∗ and λn−1; finally, the forcing

term and velocity fields are corrected imposing the rigid body motion inside the particles

domain, obtaining λn and un. More details are given in the following, together with a full

explanation of the numerical procedure.
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2.2 fluid sub-problem

2.2.1 finite volume method

Here, only what concerns the current work is dealt with. A deep and full description of the

finite volume method and its implementation in OpenFOAM can be found in the marvelous

book by Moukalled et al. (2016).

The finite volume method is a numerical technique that transforms the partial differential

equations representing conservation laws over differential volumes into discrete algebraic

equations over finite volumes. This method is strictly conservative, which makes it the

preferred method in CFD (Moukalled et al., 2016). Its popularity (Blazek, 2001; Ferziger &

Perić, 2002) stems also from the high flexibility that comes from the discretization carried

out directly in the physical space.

First, a discretization of the physical domain is needed, i.e. a mesh providing a range of

information both geometric and topological, on which the governing equations are solved.

In general, a structured or unstructured grid system can be generated. In the current work,

only structured grids are employed. In this case, three-dimensional elements are defined by

their local indices (i, j, k) in the (x, y, z) coordinate directions, and every interior cell in the

domain is connected to the same number (six) of neighboring cells, which can be identified

using their indices (see Fig. 2.1). As the size of the elements tends to zero, the numerical

solution is expected to be the exact one; however, the discretized equations must possess

some properties to ensure a meaningful solution field.

From a physical point of view, it is fundamental for the transported variables to be

conserved in the discretized solution domain too, results may be unrealistic otherwise. It

is important to stress that this property is inherent to the finite volume method because

the fluxes (obtained by transforming the volume integrals into surface ones via the Gauss

theorem) integrated at an element face are based on the values of the elements sharing

the face; thus, for any surface common to two elements, the flux leaving the face of one

element will be exactly equal to the flux entering the other element through that same

face. The cell-centered variable arrangement is currently the most popular type of variable

arrangement used with the finite volume method: the variables are stored at the centroids of

grid cells or elements. Thus, the elements are identical to the discretization elements. This

results in a set of equations with the values of the dependent variables at the cell centers

as unknowns. The way these unknowns are organized and solved classifies the adopted

computational approach.

An example of a mesh cell and its neighbors is given if Fig. 2.1, with both a three-

dimensional and a two-dimensional representation for the sake of clarity.
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Figure 2.1
We employ an isotropic mesh, where ∆ is the mesh size. Considering a mesh cell, the distance from
its center C and a face f is then d = ∆/2. The surface of a face is Sf, and the outward-pointing unity
vector is n̂f. Each cell has six neighboring cells N. (left) 3D representation of a cell and one of its
neighbors; (right) 2D representation of a cell and its neighbors.

openfoam

OpenFOAM (Open source Field Operation And Manipulation) is an object-oriented C++

framework that includes several utilities that can be directly used. An important characteris-

tic is its use of operator overloading that allows algorithms to be expressed naturally, as it

will be presented hereafter. We implemented the Fictitious Domain Method in OpenFOAM

because it is an established free open-source CFD toolbox – and not a black-box software! –

with a rich and expanding community – thank you, CFD-online.

Numerous namespaces and operators are available, but the namespaces fvm and fvc are

surely the most significant ones and allow for the evaluation of the operators implicitly and

explicitly, respectively: the explicit operator fvc, named “finite volume calculus”, returns an

equivalent field based on the actual field values; the fvm implicit operator, instead, defines

the implicit finite volume discretization in terms of matrices of coefficients. The role of these

two operators is to construct the right-hand side and the left-hand side, respectively, of a

system of equations representing the discretized form of the governing equations over each

element in the mesh. The discretization process yields a system of equations that can be

represented in the matrix form. The source or the right-hand side is stored under a specific

vector called “source”. Let us now see the numerical procedure used to solve the fluid

sub-problem.
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2.2.2 simplec

The discretization of the Navier-Stokes equations for an incompressible flow is a standard

procedure in OpenFOAM (Jasak, 1996; Moukalled et al., 2016). As clearly explained by

Moukalled et al. (2016), the main difficulty comes from the unavailability of an explicit

equation for the pressure field in the momentum equation. So, in addition to the discretized

velocity equation from Eq. (2.11a), a pressure equation whose solution guarantees the

incompressibility of the velocity field needs to be derived. A cell-centered collocated grid

is used for the pressure and velocity fields, and the pressure equation is built using a

Rhie-Chow interpolation to prevent checkerboard instability (Rhie & Chow, 1983). The

pressure-momentum coupling is addressed using the SIMPLEC (Semi Implicit Method

for Pressure Linked Equations – Consistent) method, a modified version proposed by Van

Doormaal & Raithby (1984) of the SIMPLE method of S. V. Patankar & Spalding (1972) and

S. V. Patankar (1980, 1981). The discretized implicit velocity equation is first solved, using

the forcing term of the previous time step and the pressure of the previous iteration. In a

further step, the pressure equation is solved and the velocity field is corrected according

to the new pressure. The latter step is performed twice to improve consistency between

pressure and velocity.

For the sake of clarity, we recall here the notation employed: (·)n and (·)n−1 respectively

indicate values at the current and at the previous iterations; u∗ is the velocity field obtained

at the end of the prediction phase, it is not fully divergence-free and does not comply a

rigid body motion inside the particles domain; u∗∗ is the velocity field resulting from the

correction phase, it is divergence-free but still does not comply a rigid body motion inside

the particle domain.

prediction

Here, we consider incompressible flows. However, in OpenFOAM we have to start from

Eq. (2.11a) re-written for a compressible fluid flow with zero bulk viscosity:

−ν∇ ·
(
∇u +∇uT

)
+ ν∇ ·

(
2

3
∇ · uδ

)
− λ = −

∇p
ρf

(2.12)

We recall that:

(∇u)ij =
∂ui
∂xj

(
∇uT

)
ij

=
∂uj

∂xi

(∇ · (∇u))i = ∂j
∂ui
∂xj

(
∇ ·

(
∇uT

))
i
= ∂j

∂uj

∂xi

∇ · u = tr (∇u) = tr (∇u)T

(∇ ·T)i = ∂jTij

(2.13)
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The term ∇ · (∇ · uδ) vanishes for an incompressible flow. However, it is kept for stability

reasons, but the factor may be changed from 2/3 to 1/3 via the operators dev and dev2,

respectively, to increase the convergence rate. Choosing the 1/3 factor, we can define:

dev
(
∇uT

)
= ∇uT −

1

3
tr
(
∇uT

)
δ (2.14)

Finally, we can write Eq. (2.12) again as:

−ν∇ ·∇u − ν∇ · dev
(
∇uT

)
− λ = −

∇p
ρf

(2.15)

We integrate now Eq. (2.15) and, as previously introduced, we consider the fluxes at the
element faces transforming the volume integrals into surface ones via the Gauss theorem.

Let us see the discretization of each term. As we are going to see, we will often need to

evaluate some values from the cell centers to the cell faces: we employ a linear interpolation,

a simple scheme that guarantees conservation and second-order accuracy. For the first term,

which is the only one treated implicitly, the component i reads:

[[∇ · (∇u)]i]C =
1

Vc

∫
VC

[∇ · (∇u)]i dV =
1

VC

∫
VC

∂j
∂ui
∂xj

dV =
1

VC

∮
∂VC

∂ui
∂xj

nj dS

=
1

VC

∑
f

∇ui · n̂jSf =
Sf
2dVC

∑
N

(
uiN − uiC

)
=

1

2d2

∑
N

(
uiN − uiC

) (2.16)

where uC and uN are the values of the velocity field at the considered cell center and its

neighbors’ centers, respectively, and
∑
f is the summation over the cell faces, and the gradient

is computed as ∇ui,f · nj,fSf = 1/ (2d)
(
uiN − uiC

)
, for which no explicit interpolation is

needed. As we employ cubic mesh cells VC = Sf2d, and each cell has 6 faces, so:

−ν [[∇ · (∇u)]i]C = ν

(
6

d2
uiC −

∑
N

1

d2
uiN

)
(2.17)

For the second term, we need to perform two consecutive discretizations. Let us start from
∇uT . In the same line as in Eq. (2.16), its value at the cell center is computed as:

[
∇uT

]
C
=

1

VC

∑
f

n̂f ⊗ ufSf (2.18)

for which an interpolation at the cell faces is needed. Its deviatoric part (Eq. (2.14)) reads:[
dev

(
∇uT

)]
C
=

1

VC

∑
f

dev (n̂f ⊗ uf)Sf (2.19)

We have to take its divergence, getting back a vector:

[
∇ ·

(
dev

(
∇uT

))]
C
=

1

VC

∮
∂VC

(
dev

(
∇uT

)
· n̂
)

dS =
1

VC

∑
f

dev
(
∇uT

)∣∣
f
· n̂fSf (2.20)

for which a second interpolation at the faces is needed.
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The forcing term is needed at the cells’ centers, and we suppose that its value varies linearly

with the position. So, its discretization simply reads:

1

VC

∫
VC

λdV ∼= λC (2.21)

The last term (i.e., the pressure gradient) needs particular attention and will be treated

in the following; in particular, it will be discretized in two different manners. Then, the

semi-discretized momentum equation is obtained:

−
ν

VC

∑
f

∇u|f · n̂fSf −
ν

VC

∑
f

dev
(
∇uT

)∣∣
f
· n̂fSf − λC = −

∇p
ρf

(2.22)

We recall here that the first term is the only one treated implicitly and, therefore, computed

at the iteration n; all the other terms except for ∇p, are treated explicitly and their values at

the iteration n− 1 is needed. Eq. (2.22) is written under the form:

aCu∗C +
∑
N

aNu∗N − bC︸ ︷︷ ︸
aCu∗C −H (u∗)

= −
∇pn−1

ρf
(2.23)

where un−1 is needed for bC. We have already seen in Eq. (2.16) that aC = 6ν/d2 and

aN = −ν/d2, so, keeping in mind that we employ an isotropic domain for which each cell

has 6 neighbors, we notice that:

aC +
∑
N

aN = 0 (2.24)

We finally have the equation to be solved for the predictor phase:

aCu∗C = H (u∗) −
∇pn−1

ρf
(2.25)

For this phase, the pressure gradient is discretized explicitly with a Gauss linear scheme:

∇pn−1 = 1

VC

∑
f

pn−1f n̂fSf (2.26)

In order to get u∗, the linear system resulting from Eq. (2.25) needs to be solved.

It should be noted here that because of Eq. (2.24) we need to perform under-relaxation

of Eq. (2.23), which results in the modification of operator H as explained below. The

reason why this step must be executed will be clearly shown in the following. Replacing

aCuC +
∑
N aNuN by bC −∇p/ρf, leads to:

u∗C =
1

aC

(
−
∑
N

aNu∗N + bC −
∇pn−1C

ρf

)
(2.27)
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We now make a weighted average of u∗C and un−1C :

u∗C = α
1

aC

(
−
∑
N

aNu∗N + bC −
∇pn−1C

ρf

)
+ (1−α)un−1C (2.28)

We finally get:

1

α
aCu∗C +

∑
N

aNu∗N = bC −
∇pn−1C

ρf
+
1−α

α
un−1C (2.29)

This modifies the diagonal coefficients and the source term of the linear system, allowing

using SIMPLEC in the case without inertia. This corresponds exactly to an under-relaxation:

this is also needed to improve the convergence of nonlinear problems but also to avoid

divergence when starting with a guessed initial field that could be far from the solution. The

under-relaxation method promotes convergence by “slowing down” the changes made to

the values of the considered variable during the solution. α = 1 means no under-relaxation.

We use α = 0.9, which allows a fast convergence rate with the right amount of stability.

Since Eq. (2.29) takes the same form as Eq. (2.23) with a modified operator H, the expression

of Eq. (2.23) is adopted for the relaxed equation.

openfoam phrasing

Finally, the momentum equation in OpenFOAM reads:

justspacefvVectorMatrix UEqn (

justspace++- fvm::laplacian(nu,U)

justspace++- fvc::div(nu*dev(T(fvc::grad(U))))

justspace++- lambda

justspace);

justspaceUEqn.relax();

justspacesolve(UEqn == - fvc::grad(p));

where the pressure p in OpenFOAM is divided by the fluid density ρf by default. Regarding

the Laplacian operator, it is built to account for space-varying viscosity, which would then

be interpolated to the cell faces. Again, we notice that only the Laplacian term goes into the

matrix (fvm, implicit), while all the other terms go into the source term (fvc, explicit). It is

worth noting here that the equation for the fluid flow (Eq. (2.11a)) is quite different from the

standard equations usually tackled in OpenFOAM: no inertia is accounted for so that the

lacking convective momentum transport is not a source of nonlinearity. In addition, only

steady equations are considered, so that, except for the force density λ inside the particles,

the equations are linear. However, the main difficulty is the determination of the distribution

of λ so that Eqs. (2.11c) to (2.11e) are fulfilled.

The reader can now take a break before dealing with the correction phase.
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correction

Following an iterative solution strategy, the momentum equation is solved using the velocity

and pressure values of the preceding iteration. The velocity obtained is in general not

divergence-free: a pressure-momentum coupling is needed to construct an equation for the

pressure, aiming at obtaining a pressure field which, if inserted in the momentum equation,

delivers a divergence-free velocity field. We seek new velocity and pressure fields u∗∗ and

pn such that:

aCu∗∗C = H (u∗∗) −
∇pn

ρf
(2.30)

where we note that in H (u∗∗) there are some explicit terms (that depend on un−1N ). We add

now a “perturbation” to the velocity and pressure fields, and we define:

u∗∗ = u∗ + u ′ , pn = pn−1 + p ′ ⇒ u∗∗C =
H (u∗ + u ′)

aC
−

∇pn−1

aCρf
−

∇p ′

aCρf
(2.31)

For the moment, ∇p ′ is still not discretized, and:

H
(
u∗ + u ′

)
= −
∑
N

aN
(
u∗N + u ′N

)
+ bC = H (u∗) −

∑
N

aNu ′N (2.32)

The SIMPLEC algorithm assumes the following simplification:

−
∑
N

aNu ′N ≈ −
∑
N

aNu ′C = −u ′C
∑
N

aN = H1u ′C (2.33)

with H1 = −
∑
N

aN. By consequence:

H
(
u∗ + u ′

)
≈ H (u∗) +H1u ′C (2.34)

Getting back to Eq. (2.31), we obtain:

u∗∗C = u∗C + u ′C =
H (u∗)
aC

+
H1u ′C
aC

−
∇pn−1

ρfaC
−

∇p ′

ρfaC
(2.35)

and with Eq. (2.25):

u ′C = −
1

aC −H1

∇p ′

ρf
(2.36)

where aC −H1 = 0 in the case without inertia, so that as mentioned above, under-relaxation

of the velocity equation is needed (Eq. (2.29)). This last equation relates the two unknowns

u ′C and p ′. From Eqs. (2.31) and (2.36) we get:

u∗∗C =
H (u∗)
aC

−
∇pn−1

ρfaC
−

∇p ′

ρfaC

(
1+

H1
aC −H1

)
(2.37)
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We directly search for ∇pn = ∇pn−1 +∇p ′, so:

u∗∗C =
H (u∗)
aC

−
∇pn−1

ρf

(
1

aC
−

1

aC −H1

)
−

∇pn

ρf

1

aC −H1
(2.38)

By searching for a divergence-free velocity field:

∇ · u∗∗ = 0 ⇒ 1

VC

∑
f

u∗∗f · Sf = 0 (2.39)

we finally get to the equation for the correction phase:

1

VC

{∑
f

H (u∗)
aC

∣∣∣∣
f

· Sf −
∑
f

(
1

aC

∣∣∣∣
f

−
1

aC −H1

∣∣∣∣
f

)
∇pn−1f

ρf
· Sf

−
∑
f

1

aC −H1

∣∣∣∣
f

∇pnf
ρf
· Sf

}
= 0

(2.40)

The last term is a Laplacian and is treated implicitly, for which the unknowns are the

pressures at the cells’ centers. All the other terms are treated explicitly and are computed

either by interpolation (first term) or by computing the gradient in the direction normal to

the faces (second term). It should be noted here that if the hypothesis introduced (Eq. (2.33))

was correct, only one correction step would be needed; but it is not exactly the case, and,

therefore, we make two correction steps. After computing the new pressure field pn with

Eq. (2.40), the velocity field u∗ has to be corrected accordingly with Eq. (2.38), obtaining u∗∗.

openfoam phrasing

The pressure-momentum coupling equation in OpenFOAM reads:

+volScalarFieldoooo rAUo = 1.0 / UEqn.A();

ovolScalarFieldooooorAtU = rAU-UEqn.H1();

ovolVectorFieldoooooHbyA(constrainHbyA(rAU*UEqn.H(), U, p));

osurfaceScalarFieldophiHbyA("phiHbyA", fvc::flux(HbyA));

oadjustPhi(phiHbyA, U, p);

ophiHbyA += fvc::interpolate(rAtU-rAU)*fvc::snGrad(p)*mesh.magSf();

oHbyAooo -= (rAU-rAtU)*fvc::grad(p);

oconstrainPressure(p, U, phiHbyA, rAtU);

ofvScalarMatrix pEqn (fvm::laplacian(rAtU, p) == fvc::div(phiHbyA));

opEqn.setReference(pRefCell, pRefValue);

opEqn.solve();

ophi = phiHbyA - pEqn.flux();

oU o = HbyA - rAtU*fvc::grad(p);

oU.correctBoundaryConditions();
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where:

• rAU = 1.0 / UEqn.A() computes the field of the reciprocal of the diagonal entries

of the momentum equation required later to solve the pressure equation so that the

division is done once and then it is multiplied where required (multiplication is

computationally cheaper than division);

• phiHbyA("phiHbyA", fvc::flux(HbyA)) performs (H [u] /aP) · Sf|f, explicitly inter-

polating the field H [u] /aP at the cell faces and making the scalar product of the

interpolated field with the surface vector Sf;

• phiHbyA += fvc::interpolate(rAtU-rAU)*fvc::snGrad(p)*mesh.magSf() and HbyA

-= (rAU-rAtU)*fvc::grad(p) computes the explicit fields required for the SIMPLEC

method and adds the velocity correction to the field HbyA;

• constrainHbyA(rAU*UEqn.H(), U, p) ensures that Eq. (2.31) is satisfied also at the

boundary faces;

• adjustPhi(phiHbyA, U, p) ensures that the global balance is satisfied if one sets a

reference pressure;

• constrainPressure(p, U, phiHbyA, rAtU) updates the pressure gradient for the

patches where a fixedFluxPressure boundary condition is employed.

In the pressure-momentum coupling step, the previous forcing term λn−1 has been used.

Therefore, at the end of the SIMPLEC step, the velocity field denoted by u∗∗ is divergence-

free but not perfectly rigid inside the particles. The velocities of the particles Unp and Ωnp
must be determined, and rigid body motion enforced inside the particles and the force

density accordingly corrected.

2.3 particle sub-problem

In the following, the particles are assumed spherical, so that the inertia tensor amounts to a

scalar quantity. The latter quantity is not explicitly part of the equations at this stage but

will be reintroduced in the course of the resolution.

As previously explained, the fluid velocity u∗∗ is computed by solving Eqs. (2.11a)

and (2.11b) using the forcing term λn−1 from the previous iteration, and so it does not

comply a rigid body motion inside the particles. However, the particles velocities Unp and

Ωnp are still unknown at this stage. We assume that the correction of the force density field

λ reads (Gallier et al., 2014a):

λn = λn−1 +
Unp +Ωnp × (x − xp) − u∗∗

αλ
inside Dp (2.41)
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where αλ has the dimension of time and it is given by the value of the momentum diffusion

time at the scale of the mesh cell ∆: αλ = ∆2/ν. We have observed that this parameter drives

the convergence speed and behavior of λ: a too-small value speeds up convergence but

introduces strong instabilities, while a big value slows down convergence.

Using Eq. (2.41) into Eqs. (2.11d) and (2.11e) yields the following equations that must be

solved for Unp and Ωnp :

ρf
ρp

Mp

αλ
Unp =

ρp − ρf
ρp

Mpg + ρf

∫
Dp

(
u∗∗

αλ
− λn−1

)
dV+ FSGp + Fcp + Fextp

ρf
ρp

Jp

αλ
Ωnp = ρf

∫
Dp

(x − xp)×
(

u∗∗

αλ
− λn−1

)
dV+ TSGp + Tcp + Textp

(2.42)

Computing the velocities of the particles requires particular attention: as already men-

tioned, sub-grid corrections are needed to correctly take into account the lubrication forces

between particles at a close distance.

Replacing Eq. (2.8) in Eq. (2.42), a set of coupled equations involving the translational and

angular velocities of the particles, Up and Ωp, is obtained, which must be solved to get the

particle motion, together with Eqs. (2.1) and (2.2). From Eq. (2.42), the set of linear equations

that must be solved for the velocities of the particles reads:[
ρf
ρp

J

αλ
+RSGF,T

]
·Un = Ftot (2.43)

where J is the diagonal matrix accounting for the particles masses and inertia moments,

RSG is the sub-grid resistance matrix for lubrication correction (RSGF,T =
[
RSGFU ;RSGTU

]
), Un is

the vector of the particles translational and angular velocities, and Ftot is the generalized

force vector that reads:

Ftot =



ρp − ρf
ρp

M1g + ρf

∫
D1

(
u∗∗

αλ
− λn−1

)
dV+ Fc1 + Fext1

ρp − ρf
ρp

M2g + ρf

∫
D2

(
u∗∗

αλ
− λn−1

)
dV+ Fc2 + Fext2

. . .

. . .

ρf

∫
D1

(x − xp)×
(

u∗∗

αλ
− λn−1

)
dV+ Tc1 + Text1

ρf

∫
D2

(x − xp)×
(

u∗∗

αλ
− λn−1

)
dV+ Tc2 + Text2



(2.44)
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Once the velocities of the particles have been computed, an explicit forcing of the rigid

body motion is thus possible:

un = Unp +Ωnp × (x − xp) inside Dp

un = u∗∗ outside Dp

(2.45)

and the force density is corrected according to Eq. (2.41).

Again, we notice a lag between the velocity field and the forcing term: the velocity field un

and the velocities of the particles Unp and Ωnp are first computed using the previous forcing

term λn−1, and only then the forcing term is corrected (Eq. (2.41)) obtaining λn, together

with imposing rigid body motion of the particles (Eq. (2.45)). Therefore, this procedure is

repeated until convergence of λ, i.e. until the field λ is no more evolving (see Section 2.5.5).

2.4 algorithm

Here follows the numerical algorithm implemented in OpenFOAM:

1. Update the particle positions xp: move the particles using the Adams-Bashforth

method.

2. Set the force density field λ = 0 outside the particles.

3. Solve the fluid sub-problem (Section 2.3): solve the pressure-momentum coupling

problem using the previous forcing term λn−1, obtaining u∗∗ and pn.

4. Solve the particle sub-problem using Eq. (2.43), obtaining the particles velocities Unp
and Ωnp (more details about the sub-grid corrections in Chapter 3).

5. Compute the new forcing term λn using Eq. (2.41).

6. Compute the new velocity field un: correct the velocity field u∗∗ by enforcing rigid

body motion in the particle domain (Eq. (2.45)).

7. Repeat steps 3, 4, 5 and 6 until convergence of λ.

8. Proceed to the next time step and repeat.

The reader should note that steps 5 and 6 are independent and switchable. Step 2 is needed

to guarantee the absence of the force density λ outside the particles; alternatively, λ could

be advected using the velocity field u. This is at the cost of too much numerical diffusion so

the advection step has been discarded.
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Figure 2.2
Flowchart of the numerical procedure. The SIMPLEC loop is repeated until convergence.
Details about convergence criteria are given in Section 2.5.5.
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2.5 numerical details

2.5.1 solving the algebraic linear systems

fluid sub-problem

Numerous methods are proposed in OpenFOAM. For the prediction step (Eq. (2.25)), we

have found that the most efficient method is the Preconditioned Conjugate Gradient method

(PCG), using an Incomplete Cholesky Decomposition (DIC). While for the solution of the

linear system coming from the pressure-momentum coupling equation, i.e. the correction

step (Eq. (2.40)), we have seen a different behavior when changing the number of mesh cells

per processor: if each processor has less than 100k mesh cells, the PCG/DIC method is the

most efficient one; but if there are more than 100k cells per processor, the PCG/DIC method

is less efficient and a Geometric agglomerated Algebraic Multigrid (GAMG) solver coupled

with a Gauss-Seidel smoother is the most efficient one.

particle sub-problem

For the solution of the linear system of Eq. (2.43), which solution are the velocities of the

particles, we employ a PCG/DIC method by using the Eigen library, which is a very versatile

toolbox which makes it easy to use sparse matrices, the latter being a fundamental feature

for memory optimization.

residuals in openfoam

For a matrix system Ax = b the residual is defined as:

r = b −Ax (2.46)

Then, residual scaling is applied using the following normalization procedure:

n =
∑

(|Ax −Ax|+ |b −Ax|) (2.47)

where x is the average of the solution vector. The scaled residual is finally given by:

r =
1

n

∑
|b −Ax| (2.48)

This form leads to a normalized residual of 1 for uniform systems, i.e. where x = x. However,

this also shows that if the initial solution changes the normalization also changes, leading

to a different convergence history. In any case, in the current work, we never are in the

conditions for which x = x.
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2.5.2 parallelization

Parallelization is handled via the domain decomposition method proposed in OpenFOAM:

the principle is to break up the domain – geometry and fields – and allocate each part to

a different CPU. Information (namely the velocity and pressure fields u and p) are then

shared using the MPI standard. An example of a decomposed domain is given in Fig. 2.3.

Building up from this method, we carry out the parallelization of the particles following

the same concept: each process manages the particles inside the corresponding domain

together with the particles in the neighboring domains that may interact with them, so that

part of the particles is shared by multiple processes.

Lubrication and contact interactions require listing the particle pairs: each process per-

forms this task for the particles hosted in its domain and builds the local resistance matrix.

Finally, the local matrices are collected by the master process for the inversion of the linear

system obtained for the computation of the velocities of the particles. For the systems

investigated in the current work, delegating this operation to the master process using

the Eigen library was found faster than solving it in parallel using the local matrices with

message-passing between the interacting processes. Further speedup of the latter part can

be obtained by exploiting the multi-threading (OpenMP) available in Eigen.

Figure 2.3
(left) Example of a domain decomposed in four identical sub-domains. (right) Example of how
particles are treated: (red) particles owned by the current process; (blue) neighboring particles that
may interact with the red ones; (white) particles of other processes not interacting.
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2.5.3 boundary conditions

OpenFOAM proposes various built-in conditions. We use the cyclic condition in the case

of periodic boundary conditions for the pressure and velocity fields. If a wall is present,

we use a Dirichlet (fixedValue) condition for u imposing a value for the velocity, and the

fixedFluxPressure condition for p, which sets the pressure gradient for the volume flux on

the boundary to be consistent with the velocity boundary condition. Another condition that

can be used in the presence of a wall is the slip condition, which for a vector sets to zero

the component normal to the wall and uses a zeroGradient condition for the tangential

ones (i.e., zero normal gradient); for a scalar, it is equivalent to the zeroGradient condition.

For all pressure boundary conditions in the current work, pressure is given a reference value

(0) at a single point in the simulation domain.

2.5.4 particle tracking : choice of the

indicator functions

We present here the choice of the indicator functions used to compute the required integrals

over the volume of the particles. Regarding the particle dimensions, we employ two radius

lengths (with a2/a1 = 1.4), to avoid particle ordering usually observed in concentrated

mono-disperse systems (Yeo & Maxey, 2010b; Gallier et al., 2014a, 2016); all lengths are

normalized by a1. As for the influence of the mesh size ∆ compared to the particle radius,

it has been studied before by Gallier et al. (2014a), and in the following the value ∆ = a1/5

will not be changed.

Non-boundary-fitted Eulerian methods are attractive since a fixed mesh avoids any re-

meshing difficulties and computational costs. However, the interface between fluid and

particles is critical and must be properly defined. This issue is made simpler here because

only rigid particles are considered, and their shape consequently remains unchanged. The

tracking of the particles is needed to define and distinguish the particle region Dp from the

fluid one Df. The chosen method rests on the level-set approach, which considers a level-set

function IP(x) equal to 1 inside the particles and 0 outside, with a smeared interface:

IP(x) =
1

2

[
1− tanh

(
b
s

∆

)]
(2.49)

where s = ‖x − xp‖− ap, ∆ is the grid spacing and b is a free parameter controlling the

smearing on a typical size ∼ O(∆/b). The level-set function IP(s) is then used to compute

the particle mass, volume, and inertia tensor as well as any integral of a quantity φ on the

particle volume Dp:∫
Dp

φdV =

∫
D

IP(x)φ(x)dV (2.50)
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The correction of the force density field λ (Eq. (2.41)) and the forcing of the rigid body

motion of the particles (Eq. (2.45)) require an indicator function as well. Finally, we use two

different indicator functions:

• Iu(x) is used to impose rigid body motion inside the particles, to compute the integrals

in which the velocity field is involved, and to compute Mp and Jp;

• Iλ(x) is used to increment the force density field λ and to compute the integrals in

which the force density λ is involved.

We find that the best choice for Iλ is a steep Heaviside function, and for Iu a smooth

indicator function is chosen:

Iλ(x) =


1 if ‖x − xp‖ 6 ap + c∆

0 if ‖x − xp‖ > ap + c∆
(2.51)

Iu(x) =


1

2

[
1− tanh

(
b
s

∆

)]
if ‖x − xp‖ 6 ap + c∆

0 if ‖x − xp‖ > ap + c∆
(2.52)

See Fig. 2.4 for an example of the indicator functions.

Using these indicator functions, Eqs. (2.41), (2.42) and (2.45) write:

ρf
ρp

Mp

αλ
Unp =

ρp − ρf
ρp

Mpg + ρf

∫
D

[
Iu

u∗∗

αλ
− Iλλ

n−1

]
dV+ FSGp + Fcp + Fextp

ρf
ρp

Jp

αλ
Ωnp = ρf

∫
D

(x − xp)×
[
Iu

u∗∗

αλ
− Iλλ

n−1

]
dV+ TSGp + Tcp + Textp

λn = λn−1 + Iλ
Unp +Ωnp × (x − xp) − u∗∗

αλ

un = u∗∗ + Iu
[
Unp +Ωnp × (x − xp) − u∗∗

]
(2.53)

Mainly, the indicator function Iu controls to what extent the velocity inside the particle is

set to rigid body motion at the particle boundary, and connects the particle velocity and

angular velocity to the underlying liquid velocity field. The indicator function Iλ allows the

force density felt by the liquid to be properly transmitted to the particles. Some comments

on the choice of the form of the different indicator functions may be useful:

• due to the small parameter c > 0, the actual size of the particle is slightly larger

than the theoretical size ap. Should it not be the case, the hydrodynamic resistance

coefficients on a sphere would be underestimated, as shown below in the particular

case of the drag on a cubic lattice of particles. The parameters b and c in Eqs. (2.51)

and (2.52) have to be tuned, as explained in the following;
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Figure 2.4
Indicator functions Iλ and Iu from Eqs. (2.51) and (2.52) with b = 5 and c = 0.3.

• the integral of the force density over each particle directly defines the force and torque

felt by the particle due to the stress as computed by the flow solver(Eq. (2.6)). From

Eqs. (2.10d) and (2.10e), the linear and angular momentum balance for each particle is

fulfilled. In addition, the integral of the force density over a volume enclosing a single

particle without any indicator function (i.e., related to the force exerted on the fluid

by the particle) must be equal to the integral involved in Eqs. (2.10d) and (2.10e), in

agreement with Newton’s third law. This is the reason for using a steep Heaviside

function for the integration of λ;

• for the same reason, when two particles are at a close distance their indicator functions

Iλ are both given the value 0.5 at the overlapping positions (only two particles at a

time can overlap);

• the indicator function Iu used in the computation of Mp, Jp,
∫

u∗(x)dV has been given

a smooth shape to limit the oscillations due to the finite mesh-size ∆;

• choosing a smooth Iλ results in a decrease of the convergence rate.

determination of b and c

We can now tune the parameters b and c that determine the shape of the indicator functions

Iu and Iλ (Eqs. (2.51) and (2.52)). To this purpose, we measure the drag coefficient of a

translating periodic array of spheres (a case that will be treated in Section 4.1.1) over 64

positions evenly distributed inside a single mesh cell in a domain of size L/a = 8 by varying

b and c. The main advantage of choosing this particular flow is that a theoretical solution is

available for a finite-size (periodic) domain. Also, in this special case no sub-grid correction

is needed as particles are far from each other and, therefore, the fluid flow solver can

correctly compute the hydrodynamic interactions between particles.
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The different tolerances for the resolution of the algebraic linear systems defined in

Section 2.5.1 are now set to tolp = 5 · 10−6, tolu = 10−6, and tolλ = 10−4 except for the first

position for which we set tolλ = 10−5. This choice is justified in the next section.

The parameter c seems to have the most important role, as it sets the actual size of the

particle, i.e the precise spatial zone where λ is computed. On the contrary, the parameter b

sets the smoothness of the indicator function Iu, and has a role of smoother of some of the

quantities as the particle moves through the mesh; in addition, we recall that the indicator

function Iλ used to increment λ is a discontinuous Heaviside function for which only c is

relevant. We first let b vary while keeping c = 0.3: as we can observe in Table 2.1, the drag

coefficient K keeps nearly constant, and so does its standard deviation σK. This is at first

sight surprising since the role of a smooth indicator function is to limit the oscillations of

particle quantities as it moves across the mesh. However, although not shown here, other

quantities such as the particle mass do oscillate, and the oscillations are all the more intense

as the indicator function Iu is steep. On the other hand, too smooth an indicator function is

not convenient either. Indeed, Iu is forced to vanish at ‖x − xp‖ = ap + c∆ (Eq. (2.52) and

Fig. 2.4), so that a smaller value of b induces a larger discontinuity of Iu. b = 5 turns out to

be a satisfactory compromise and is also the value that has been used in previous works

(Gallier et al., 2014a).

The influence of the parameter c is now probed while keeping b = 5 fixed. As displayed

in Table 2.2, c = 0.3 yields the value of 〈K〉 closest to the theoretical value. In Fig. 2.4 we

represent the indicator function with the optimal parameters.

Table 2.1
Drag coefficient of a translating periodic array
of spheres for different values of the param-
eter b for the indicator function Iu (average
over 64 positions in a single mesh cell and
standard deviation).

b (c = 0.3) 〈K〉 σK

2 1.532135 0.014381

5 1.532059 0.014380

7 1.532041 0.014387

10 1.532030 0.014399

Table 2.2
Drag coefficient of a translating periodic array
of spheres for different values of the parame-
ter c of the indicator functions, mean over 64

positions in a single mesh cell.
space

c (b = 5) (〈K〉−Kth) /Kth [%]

0.10 -5.69

0.20 -3.01

0.25 -1.27

0.30 -0.11

0.35 -1.47

0.40 -3.25

0.50 -6.09
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2.5.5 convergence control

The purpose of the current section is to explain and explore the control of the convergence

of the numerical procedure. Four tolerances have to be defined: one for each of the three

fields p, u, and λ, and one for the resolution of the linear system for the computation of the

velocities of the particles Un+1. The tolerances for p, u, and Un+1 control the inversion of

the corresponding linear systems of equations (steps 3 and 4 of the algorithm in Section 2.4,

Eqs. (2.25), (2.40) and (2.43)).

The linear systems are solved using iterative methods: the inversion procedure is iterated

until the normalized residual falls under the prescribed tolerance. The convergence of the

whole algorithm for a time step is reached when the value of the force density at step n+ 1

is sufficiently close to the value at step n, i.e.:

‖λn+1 − λn‖
‖λn‖

< tolλ where: ‖λ‖ =
∑

cells ci

√∑
k

λk(ci)2 (2.54)

As previously mentioned, the main nonlinearity of the equations lies in the force density

λ, which is recursively modified as the fluid problem is solved. As a consequence, it is

difficult to address separately the resolution of the fluid sub-problem from the particle

sub-problem. In the following, the choice of the value of the different tolerances is explained.

As the solution of the linear system associated with the velocities of the particles is a task

that is a lot cheaper than the flow solution, the tolerance for Un+1 is not investigated here,

and we fix it to 10−6. Hence, we present the investigation of the tolerances for p, u, and λ,

hereafter denoted respectively by tolp, tolu and tolλ. To this purpose, we choose the special

Figure 2.5
Drag coefficient of a translating periodic array of spheres: convergence history for
different values of tolp and tolu.
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case of a translating periodic array of spheres. It should be noted that tolp and tolu are

compared to the absolute residuals computed as in Section 2.5.1, while tolλ is compared to

the relative residuals computed as in Eq. (2.54).

Fig. 2.5 displays the convergence behavior of the drag coefficient K. We observe that tolp
has no effect either on the value of K or on the convergence history. It seems that the value

of tolu has an insignificant influence on the converged solution. However, it determines a

point in the convergence history, i.e. a value of K and a number of iterations (highlighted in

Fig. 2.5), from which the convergence slows down. The smaller the tolerance, the higher the

number of iterations before convergence slowdown.

We turn now to the convergence history of the residual for λ (Fig. 2.6 (top)). At the

same moment as the convergence of K slows down (the points highlighted in Fig. 2.5), the

residual for λ starts to oscillate. Moreover, in this case, we appreciate an effect caused by

tolp: the oscillation amplitude of the residual of λ increases with tolp, and the oscillations

propagate earlier in the convergence. They most probably are responsible for the convergence

slowdown.

Finally, the data in Figs. 2.5 and 2.6 (top) are recast in Fig. 2.6 (bottom), where the

convergence history of the error between K and its final value K0 is displayed as a function

of the residual of λ for different values of tolu and tolλ. Again, two regimes are evidenced,

Figure 2.6
(top) Relative residual for λ: convergence history for different values of tolp and tolu. (bottom) Error
of the drag coefficient w.r.t. the value at convergence for different values of tolp and tolu.
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corresponding respectively to the fast and slow convergence rates. In the fast convergence

regime, the value of the residual for λ determines the difference between the actual value of

K and the converged value. In the slow one, large oscillations of the residual of λ occur, with

a weak effect on the value of K, which slowly tends to the converged value. The transition

between the two regimes is mainly controlled by tolu, which sets the minimum value of the

residual for λ for which the convergence still has a good behavior (i.e., the oscillations are

not important and the convergence is not too slow). Again we observe that tolp plays a role

in the amplitude of these oscillations and lets them propagate earlier.

Figure 2.7
Measures of the fractional rate of expansion for a translating periodic array of spheres
(see Chapter 4 for more details about the simulation setup).
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As a last check, again in the case of a translating periodic array of spheres, we measured

the fractional rate of expansion 〈u〉 of the converged velocity field obtained for different

values of tolp, tolu and tolλ. As we can notice in Fig. 2.7, the tolerances for u and λ do

not play a role, while 〈∇ · u〉a/ |Us| (where Us = 1
V0

∫
D u dV is the slip velocity) decreases

linearly with tolp. This last check simply shows that the pressure-velocity coupling of the

momentum equation is conveniently tackled by OpenFOAM.

From the data shown, we can draw some guiding ideas about the choice of the values of

the different tolerances: tolλ is the stopping criterion and sets the distance of the solution

from the value at convergence; tolu influences the minimal value of the residual of λ for

which a good convergence behavior is still maintained; tolp influences the oscillations of the

residual of λ and sets the fractional rate of expansion.

The purpose of the current chapter is the presentation of the method and its numerical

implementation. In Chapter 4 we are going to concentrate on its validation and, as a

consequence, low tolerances are chosen for the different quantities, keeping in mind that,

depending on the required computation speed and precision, less demanding tolerances

could be chosen. Therefore, for all the validations concerning one, two, or three particles, we

will set tolu = 10−6 and tolp = 5 · 10−6; as for λ, we set tolλ = 10−5 for the first time step

(to correctly compute the initial solution) and tolλ = 10−4 for the next time steps.

2.6 elastic contact model

Some important points should be recalled concerning the interaction forces. During the last

decade, it has been shown that contact forces between particles play a major influence on

the rheological properties of non-Brownian suspensions: even in the case of model spheres,

contact occurs due to micro-asperities on the particle surface (Blanc et al., 2011a; Pham et al.,

2015). In particular, friction between particles significantly enhances the suspension viscosity

(Gallier, 2014; Peters et al., 2016; Abhinendra Singh et al., 2018).

Here, both surface roughness and friction are taken into account using a simple contact

model (see Peters et al. (2016)). Contact occurs between particles as soon as the distance

between their surface is smaller than the roughness height hr, resulting in elastic interaction

forces, both normal (Fn) and tangential (Ft). Sliding is not allowed until the tangential force

reaches the value ‖Ft‖ = µ‖Fn‖, where µ stands for the static friction coefficient. As long as

sliding occurs, the latter relation between normal and tangential forces holds, meaning that

no difference is made here between static and dynamic friction coefficients.

The influence of the roughness height is quite moderate as long as its value is kept under

10−2a1 (Gallier, 2014). In the following, the value hr/a1 = 5 · 10−3 is chosen, which is

consistent with experimental data (Blanc et al., 2011a). In contrast, friction induces a strong

increase of the suspension viscosity (Gallier, 2014; Peters et al., 2016; Abhinendra Singh

et al., 2018) as µ increases in the range [0; 2]. In the following, the friction coefficient value is

chosen constant and equal to µ = 0.5.
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a

hr

Figure 2.8
Sketch of roughness modeling: δ ′ is the actual separation distance, hr the roughness
height and contact occurs when δ = hr − δ ′ > 0.

For a pair of spherical particles (pi) and (pj) undergoing contact, the contact force Fc

exerted by particle (pj) on particle (pi) is classically decomposed into its normal Fcn and

tangential Fct components:

Fc = Fcn + Fct (2.55)

We consider homogeneously distributed asperities all over the surface of the particles.

Considering the roughness height hr, particles radii ai and aj, positions xi and xj and

distance rij = xj − xi, we define the overlap distance as δ = hr −
[
‖rij‖− (ai + aj)

]
. Contact

occurs whenever δ > 0 (Fig. 2.8). The normal contact force is modeled using a Hertz law:

Fcn = −knδ
3/2n (2.56)

where n is the unitary normal vector n = r/‖r‖.

This expression is for instance well adapted to the contact between a single asperity and a

smooth part of another particle or of a bounding wall. In that case, the normal stiffness kn
depends on the Young modulus and Poisson ratio of the particle material, together with the

curvature radius of one asperity (Peters et al., 2016). However, the stiffness computed for the

relevant particle properties turns out to be quite high and may be tackled only at the price

of significant time step reduction. For numerical reasons, the stiffness may be reduced. To

tune its actual value, the average roughness deformation ε = |δ|/hr is estimated. Balancing

contact and hydrodynamic forces (in dilute regimes) yields 6πηγ̇a2c = kn (εhr)
3/2 (here,

ac = 1.0) from which the expression of kn follows. Parametric simulations on ε (and so kn)

have shown that there are weak effects on rheology as long as it is sufficiently small, typically

below 0.2 (Gallier et al., 2014b). We also note that other studies have considered a linear

spring force instead of the nonlinear Hertz law, with similar results for stiff contact (Mari
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et al., 2014; Chèvremont et al., 2019). Usually, the stiffness is tuned to keep low deformation

in the course of the simulation.

However, due to the softness of the normal force, and the high level of contact forces at

a high solid volume fraction, particles may sometimes overlap, meaning that the asperity

is fully flattened out, and the distance between surfaces may become negative. To avoid

this, a threshold (10−5) is imposed on the reduced distances ξ = 2‖rij‖/(ai + aj) − 2 and

ε = ‖rpw‖/a − 1 for the contact between particles and between a particle and a wall,

respectively, and a multiplying function is included, which goes to infinity for δ ′ = δ̂ ′∞ · hr,
so that the distance between the surfaces of the particles, δ ′, is kept larger than δ̂ ′∞ · hr, with

δ̂ ′∞ = 10−5
(
ai + aj

)
/ (2hr) for a particle pair and δ̂ ′∞ = 10−5a/hr for a particle in contact

with a wall. Finally, the normal contact force reads:

Fcn = −knδ
3/2

 1− exp
[
10
(
δ̂ ′∞ − 1

)]
1− exp

[
10

(
δ̂ ′∞ −

δ ′

hr

)]
n (2.57)

When a force scale for the particle interactions F0 is relevant (e.g., when adhesion forces or

load-dependent friction takes place), the dimensionless shear rate Γ̇ measures the strength

of hydrodynamic forces in dilute suspensions compared to this force scale:

Γ̇ =
6πηγ̇a2c
F0

(2.58)

When no other force scale is relevant, the force necessary to achieve the roughness deforma-

tion ε̄hr may be chosen as the force scale, yielding the particular value Γ̇ = 1.

The tangential force is given by:

Fct = −ktY (2.59)

where kt is the stiffness of the tangential spring. A classic choice for kt is (Peters et al., 2016)

kt =
2

7

|Fn|
δ

(2.60)

Y is the relative tangential displacement of the surfaces of the two particles and it is

calculated by integrating the slip velocity Us during the contact:

Y =

∫t
0

Us dt (2.61)

where Us is the slip velocity:

Us = Ui − Uj −
[(

Ui − Uj
)
· n
]
· n +

(
aiΩi + ajΩj

)
× n (2.62)
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According to the classic Amontons-Coulomb law of friction, sliding occurs if the tangential

force exceeds the friction limit µ|Fcn|, where µ is the friction coefficient. The tangential force

is then given by:

Fct = µ |Fcn|
Fct
|Fct |

(2.63)

In particular, no difference is made in this model between static and dynamic friction

coefficients.

Finally, the corresponding contact torques are:

Tci =
ai

ai + aj
x(ij) × Fct,i Tcj =

aj

ai + aj
x(ji) × Fct,j (2.64)

where x(ij) = xj − xi and, obviously, Fct,j = −Fct,i and x(ji) = −x(ij).

2.7 rheology

The computation of the relevant rheological quantities is addressed. The computation of the

volume fraction, the stresses, and the viscosity needs particular attention: as we will show in

Chapter 4, and even though we employ two particle sizes a2/a1 = 1.4, particle ordering is

observed close to the walls. This separates a core region from a wall one: in the wall region,

the local volume fraction varies over a few particle sizes, while in the core region the volume

fraction is practically constant.

The relevant rheological quantities, such as the stresses (and therefore the viscosity), can

have quite different values if computed in the whole domain or the core region exclusively.

Also, it is important to average them over multiple deformation units in the stationary

regime to avoid time-related oscillations.

2.7.1 particle stresslet

hydrodynamic moment

To compute the effective stress in a suspension of solid particles, the first moment of the

hydrodynamic surface stress acting on each particle Dp (Batchelor, 1970; Jeffrey et al., 1993)

is needed:

Dp =

∫
∂Dp

σ · n⊗ (x − xp)dS (2.65)

The anti-symmetric part of the force dipoleDp is related to the hydrodynamic torque exerted

on the particle, while the symmetric part – the stresslet – determines the contribution of
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the particle to the effective stress. The latter is split into the deviatoric stresslet Sp and the

isotropic part sp/3 δ, where sp stands for the trace of the force dipole. Both Sp and sp are

computed from the FDM contribution and the sub-grid correction. The FDM contribution of

the dipole moment is computed from the force density λ and the solver pressure p. In more

detail, using the divergence theorem, Eq. (2.65), together with Eq. (2.11a) yields:

DFDMp = −ρf

∫
Dp

λ⊗ (x − xp)dV+

∫
Dp

σdV (2.66)

The strain rate vanishes inside the particle so that the stress σ written in Eq. (2.2) reduces to

the isotropic pressure component and the FDM traceless stresslet and stresslet trace write:

SFDMp = −ρf

∫
Dp

{
1

2
[λ⊗ (x − xp) + (x − xp)⊗ λ] −

1

3
λ · (x − xp)δ

}
dV

sFDMp = −

∫
Dp

[ρfλ · (x − xp) + 3p] dV

(2.67)

As mentioned previously, a sub-grid correction must be added to the FDM force dipole on

the particles, so that:

Shp = SFDMp + SSGp

shp = sFDMp + sSGp

(2.68)

It should be noted that in such an incompressible flow the overall pressure level is

arbitrary so a reference pressure must be defined. This reference pressure is chosen at each

time step as the mean pressure in the simulation domain, and the relevant pressure is the

difference between the pressure and this reference value.

contact moment

Contact forces also induce an additional stresslet which is given by:

Sci =
1

2

ai
ai + aj

(
Fc ⊗ x(ij) + x(ij) ⊗ Fc

)
Scj =

1

2

aj

ai + aj

(
Fc ⊗ x(ij) + x(ij) ⊗ Fc

) (2.69)

This stresslet is not traceless and its trace determines the contribution of contact to the

particle pressure. Also note that since 〈Fc ⊗ x(ij)〉 may not be symmetric, i.e. there may

exist an antisymmetric contact contribution to the particle stress due to contact torques.

However, due to the lack of particle inertia, this contribution is balanced by its hydrodynamic

counterpart, so that the total torque exerted on each particle vanishes.
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core region

Figure 2.9
Example of the system adopted for simulating a simple shear flow. On the right, the separation of the
core region from wall one is represented, being Hlayer the distance from the wall at which particle
ordering is observed and the volume fraction profile is not constant.

2.7.2 material functions in linear flows

As pointed out at the beginning of this section, particle ordering is observed close to the

walls, and a core region can be identified. Rheological quantities can have quite different

values if computed in the whole domain or the core region exclusively. Let us see how to

define them in a simple shear flow as in Fig. 2.9.

volume fraction

The suspensions investigated in this work are composed of bidisperse particles to reduce

the strength and extension of the wall layering. However, a local ordering is still observed in

the vicinity of the walls, over a shorter extension though. Following (Yeo & Maxey, 2011),

the local volume fraction is computed using the surface averaging procedure:

φ(y) =
1

Lx × Lz

∫∫
{plane y}

∑
p∈D

χp(x)dxdz (2.70)

where χp(x) is the particle indicator function and the integration is performed over the

plane of constant height y. From Eq. (2.70), the mean volume fraction may be computed

as φ0 = (1/Ly)
∫+Ly/2
−Ly/2

φ(y)dy. Based on the variation of the local volume fraction, the

simulation domain may be split into a wall region and a core region. In the former region,

the time-averaged volume fraction varies with the distance to the wall Hlayer with a typical

length scale a1+a2, while in the latter region, the volume fraction is approximately constant,

and the particle velocity profile is nearly linear. The core volume fraction is computed as the

average of the local volume fraction from Eq. (2.70):

φcore =
1

Ly − 2Hlayer

∫Ly/2−Hlayer
−Ly/2+Hlayer

φ(y)dy (2.71)
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stresses and viscosity

The stress in the suspension is usually defined as:

Σ = −Pδ+ ηγ̇ (ex ⊗ ey + ey ⊗ ex) +Σhp +Σc (2.72)

where the last two terms stand respectively for the hydrodynamic and contact contributions

to the particle stress and are respectively computed from the hydrodynamic stresslet

(Eqs. (2.67) and (2.68)) and contact forces on the particles in the core region:

Σhp =
1

Vcore

∑
p∈Dcore

(
SFDMp +SSGp +

sFDMp + sSGp
3

δ

)
=

1

Vcore

∑
p∈Dcore

SHp (2.73)

Σc =
1

Vcore

∑
p∈Dcore

∑
p ′∈Dcore

1

2

ap

ap + a ′p

(
Fp
′→p ⊗ x(pp ′) + x(pp ′) ⊗ Fp

′→p
)

=
1

Vcore

∑
p∈Dcore

Scp

(2.74)

where SHp = Shp + s
h
pδ/3, and x(pp

′) = x(p
′) − x(p). It should be stressed that SHp and Scp are

now both not traceless. The pressure in Eq. (2.72) is the contribution of the mean pressure in

the liquid to the suspension stress (Batchelor, 1970).

In the current work, in line with the computation of the volume fraction, and following

Yeo & Maxey (2011), the local particle contribution to the stress is computed with the

assumption that the particle stresslet is homogeneously distributed over the particle domain

with volume Vp:

Σhp,c(y) =
1

Lx × Lz

∫∫
{plane y}

∑
p

SH,cp
Vp

χp(x)dxdz (2.75)

The local stress is then averaged over the core region in the same way as the volume fraction

in Eq. (2.71), yielding the core stress. The reduced bulk viscosity reads:

ηscore =

〈
Σcorexy

〉
η 〈γ̇core〉

= 1+

〈
Σ
hp,core
xy

〉
+
〈
Σc,corexy

〉
η 〈γ̇core〉

(2.76)

where 〈·〉 denotes time-averaging over the steady flow, and γ̇core is defined by performing

a linear regression of the velocity of the centers of the particles in the core region (usually

γ̇core < γ̇0, being γ̇0 the imposed shear rate).





3

S U B - G R I D C O R R E C T I O N S

3.1 Standard sub-grid corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Two-particle resistance matrix . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 Particle-wall resistance matrix . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Determination of the solver resistance matrix . . . . . . . . . . . . . . . . . . 60

3.3 Two-particle frame-invariant sub-grid correction matrix . . . . . . . . . . . . 62

3.3.1 Ambient flow contribution . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Building a frame-invariant sub-grid correction matrix . . . . . . . . 67

3.3.3 Final relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Particle-wall frame-invariant sub-grid correction matrix . . . . . . . . . . . . 70

Sub-grid corrections are classically implemented for linear flows (e.g., a simple shear flow);

in principle, it would be difficult to use them in nonlinear flows (e.g., a pressure-driven flow).

We developed a new formulation and obtained frame-invariant sub-grid corrections that do

not need to take into account the terms related to the ambient flow, making it possible to

employ them also in heterogeneous flows.

We start by recalling the standard sub-grid corrections. Then, we show how to determine

the resistance matrix as measured by the solver. Finally, we demonstrate how to get a

frame-invariant sub-grid correction matrix for both the cases of two close particles and a

particle close to a wall, by isolating and evaluating the ambient flow contributions.

Many more details about practical ways for measuring the resistance coefficients as well

as their general forms and theoretical expressions are given in Appendices A to D.

57
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3.1 standard sub-grid corrections

Sub-grid corrections aim at supplying the system with the contribution of the short-scale

flow that occurs between close solid surfaces (particle-particle or particle-wall) that is missed

by the fluid flow solver. Since low-Reynolds-number flows at particle scale are considered,

the governing equations for the flow are linear (Stokes equations), resulting in linear relations

between the stress moments exerted on the particles (force, torque, and stresslet), and the

particles and flow velocities (Kim & Karrila, 1991). Such relations hold for the total stress

moment as well as for the sub-grid corrections. As just mentioned, in their usual form they

involve both the particles and the ambient flow velocities. If the length scales of the flow

variations are bigger than the particle size, we may assume the local linearity of the flow at

particle scale, i.e. that the following expression holds for the ambient flow:

u∞(x) = U0 +Ω∞ × x + E∞ · x (3.1)

where U0, Ω∞ and E∞ are respectively the translational and angular velocities, and the

strain tensor of the suspension. The three of them are constant, i.e. do not depend on the

position x. The linear relation between sub-grid forces, torques, and stresslets on the one

hand, and the velocities of the particles, on the other hand, may be written as:

FSG = −RSGFU · (U−U∞) +RSGFE : E∞
SSG = −RSGSU · (U−U∞) +RSGSE : E∞
sSG = −RSGsU · (U−U∞) +RSGsE : E∞

(3.2)

where the tensors RSG... depend on the sizes and positions of the particles, and FSG is

the vector of sub-grid forces and torques exerted on the particles, SSG is the vector of the

sub-grid traceless stresslets, and sSG is the vector of the sub-grid traces of the force dipoles:

FSG =
(
FSG1 , FSG2 , . . . ,TSG1 ,TSG2 , . . .

)
SSG =

(
SSG1 ,SSG2 , . . . ,

)
sSG =

(
sSG1 , sSG2 , . . . ,

) (3.3)

U is the vector of the particle translational and angular velocities, and U∞ is the vector of

the ambient flow velocities at the center of each particle:

U = (U1,U2, . . . ,Ω1,Ω2, . . .) U∞ = (u∞(x1),u∞(x2), . . . ,Ω∞,Ω∞, . . .) (3.4)

The corrections are built as the superposition of the individual contributions of the pairs

of close particles, and the particles close to the bounding walls. Both types of contribution

are detailed in the next two sections.
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3.1.1 two-particle resistance matrix

The building block of the former contribution is the two-particle resistance matrix RSG2p ,

which allows writing the stress moments vector MSG as:

MSG =



FSG1
FSG2
TSG1
TSG2
SSG1
SSG2
sSG1

sSG2



= −RSG2p ·



U1 − u∞(x1)
U2 − u∞(x2)
Ω1 −Ω∞
Ω2 −Ω∞

−E∞
−E∞



= −η



A11 A12 B̃11 B̃12 G̃11 G̃12

A21 A22 B̃21 B̃22 G̃21 G̃22

B11 B12 C11 C12 H̃11 H̃12

B21 B22 C21 C22 H̃21 H̃22

G11 G12 H11 H12 M11 M12

G21 G22 H21 H22 M21 M22

P11 P12 0 0 Q11 Q12

P21 P22 0 0 Q21 Q22



·



U1 − u∞(x1)
U2 − u∞(x2)
Ω1 −Ω∞
Ω2 −Ω∞

−E∞
−E∞



(3.5)

Where the elementary blocks Aαβ, Bαβ, . . . are tensors of different ranks depending on

the quantities that they connect and the superscript (·)SG has been removed for the sake of

clarity. Their physical meaning is straightforward: as an example, the tensor A12 defines the

sub-grid force exerted on particle (p1) in the case where particle (p1) is at rest and particle

(p2) undergoes a translational motion with velocity U2 in a liquid at rest (u∞(x) = 0) with

FSG1 = −ηA12 ·U2. In the case of spherical particles of interest in the present study, these

elementary tensors are simply written as a function of the radii of the particles, the distance

between the centers of the particles, and the unit vector along the centerline. In addition,

they obey symmetry relations that originate either from geometric symmetry argument or

from Lorentz reciprocal theorem (Kim & Karrila, 1991). The general form of the different

tensors, together with the symmetry relations that they obey, are recalled in Appendix A.

It should be noted here that the matrix RSG2p is computed as the difference between the

theoretical matrix from Stokes flow theory (Jeffrey & Onishi, 1984; Jeffrey, 1992; Jeffrey et al.,

1993) and the matrix as seen by the Fictitious Domain Method solver:

RSG2p = Rth2p −RFDM2p (3.6)
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3.1.2 particle-wall resistance matrix

The particle-wall resistance matrix reflects the linear relation between the stress moments

on a particle (p) close to a wall and the generalized relative velocity of the particle. In the

following, the wall is supposed to have zero angular velocity for the sake of simplicity. Any

point of the wall moves with the velocity Uw. A (linear) simple shear flow parallel to the

wall is assumed in the vicinity of the wall, so that the undisturbed velocity reads:

u∞(x) = Uw +Ω∞ × x + E∞ · x (3.7)

where the origin of the frame lies on the wall, and the usual relation between Ω∞ and E∞
for a simple shear flow is assumed. The hydrodynamic stress moments on the particle read:

MSG
p =


FSGp

TSGp

SSGp

sp

 = −RSGw ·


Up − u∞(xp)

Ωp −Ω∞
−E∞

 = −η


Aw B̃w G̃w

Bw Cw H̃w

Gw Hw Mw

Pw 0 0

 ·


Up − u∞(xp)

Ωp −Ω∞
−E∞


(3.8)

Due to the symmetry of the simple shear flow, the matrix Qw yields no force dipole trace so

that it has been removed in Eq. (3.8). The standard sub-grid particle-wall correction matrix

RSGw is defined in the same way as the two-particle one.

3.2 determination of the solver

resistance matrix

In the case of two particles at a close distance, the whole set of resistance functions is

deduced from the computation of 8 particular arrangements of the positions and velocities

of the particles and ambient flows (shown and detailed in Appendix C). Each arrangement

was tackled for 64 positions of the pair with respect to a mesh cell to avoid oscillations due

to the spatial discretization and for 4 sizes of a cubic domain (L/(a1 = 1.0) = 20, 30, 40, 50).

Then, the asymptotic values for an infinite domain size were estimated, to get rid of long-

range hydrodynamic interactions with the bounding walls. This procedure was repeated for

multiple reduced distances ξ = 2‖x2 − x1‖/ (a1 + a2) − 2 of interest.

In Fig. 3.1, an example of the fit obtained for two resistance functions is shown. In the

case of a particle close to a wall, the same procedure was followed, except that fewer

arrangements – namely 5 – were requested to build the whole matrix as written in Eq. (3.8).

In that case, each arrangement was tackled for 16 positions of the particle in the plane
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Figure 3.1
Measured FDM values, theoretical values, and fits of the resistance functions XA21 and YA21 for a
particle pair as a function of the reduced distance ξ = 2‖x2 − x1‖/ (a1 + a2) − 2.

Figure 3.2
Measured FDM values, theoretical (lubrication approximation) values gathered by Yeo & Maxey
(2010c), and fits of the resistance functions XA and YA for a particle close to a wall as a function of
the reduced distance ε = d/a− 1. In blue, the expansion proposed by Chaoui & Feuillebois (2003).

parallel to the wall, again for the same 4 domain sizes, and repeated for multiple reduced

distances ε = d/a− 1 of interest (with d the distance between the particle center and the

wall). In Fig. 3.2 we show as an example the measurement of XA and YA, respectively.

In both figures, the values measured by the fluid flow solver (FDM) are compared to

theoretical expressions and tabulated values (more details can be found in Appendix B). As

we can observe in Fig. 3.1, the X resistance functions need to be corrected earlier (i.e., starting

from a greater ξ) than the Y resistance functions: we choose to correct the X functions for

ξ 6 0.3 and the Y ones for ξ 6 0.15. In Fig. 3.2 we study for YA the difference between the

expressions gathered by Yeo & Maxey (2010c) and the expansions proposed by Chaoui &

Feuillebois (2003). Using the latter (for YA, YB and YC) allows us to precisely determine the

ε-range for which the sub-grid corrections are needed, i.e. starting from ε < 0.3 for the X

terms and from ε < 0.15 for the Y terms.
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3.3 two-particle frame-invariant

sub-grid correction matrix

The expression of the sub-grid correction as written in Eq. (3.2) is well suited to homogeneous

linear flows obeying Eq. (3.1). However, it is not possible to easily implement it when

the ambient flow is not prescribed but evolves in the course of the simulation. It seems

mandatory to locally measure the ambient flow properties (U0, Ω∞ and E∞), which raises

some practical problems. As explained in detail in the following, this may be unnecessary.

The purpose of the following section is to explain under which conditions the influence of

the ambient flow u∞(x) may be ignored in the computation of the sub-grid corrections. In

the next section, a fully frame-invariant correction matrix is built.

3.3.1 ambient flow contribution

The expression of the two-particle stress moments in Eq. (3.5) may be rearranged to separate

the contribution of the velocities of the particles and the contributions of the ambient flow:

−RSG2p ·



U1 − u∞(x1)
U2 − u∞(x2)
Ω1 −Ω∞
Ω2 −Ω∞

−E∞
−E∞


= −RSG2p ·



U1

U2

Ω1

Ω2

0

0


−RSG2p ·



−uRBM∞ (x1)

−uRBM∞ (x2)

−Ω∞
−Ω∞
0

0


−RSG2p ·



−E∞ · x1
−E∞ · x2
0

0

−E∞
−E∞


(3.9)

where uRBM∞ (x) = U0 +Ω∞ × x denotes the rigid body motion (RBM) component of the

ambient flow. The contributions of the ambient flow to the sub-grid correction are thus

constituted by the second and third terms of the RHS of Eq. (3.9). The necessary condition

for those terms to be omitted is that they would vanish, or that they would be far smaller

than the first term. Fortunately, rapid analysis of those terms shows that they are expected to

be small by construction. The second term in the RHS of Eq. (3.9) is the sub-grid correction

for a particle pair that moves according to the RBM velocity −uRBM∞ (x) in a liquid at rest far

away from the pair. In such a motion, no lubrication flow is expected to occur between the

surfaces of the particles, so the flow from the solver should be close to the theoretical flow

everywhere, and the stress moments should not need significant corrections. Regarding

the third term in the RHS, the same trends are expected: it corresponds to corrections to
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the stress moments for two particles at rest in a liquid in pure straining motion. Again, no

lubrication flow is expected, and weak sub-grid corrections may be needed.

In a conclusion, it seems possible at first sight to only keep the first term of the RHS of

Eq. (3.9) as the expression of the sub-grid corrections. We thus propose to omit the second

and third terms and to write the sub-grid corrections for the stress moments as:

MSG = −RSG ·


U1

U2

Ω1

Ω2

 (3.10)

where RSG is identical to RSG2p , except for the two last columns that were removed.

However, it turns out that the expression in Eq. (3.10) has more fundamental implications.

We seek a general relation between stress moments and velocities, which would be valid

as is in any reference frame, i.e. a frame-invariant relation. Since the stress moments do

not depend on a particular reference frame, the second term of Eq. (3.10) should be frame-

invariant. This is indeed the case of the general relation in Eq. (3.9), which involves the

velocities of the particles in the reference frame attached to the liquid in rigid body motion

(first and second terms of the RHS), together with the strain rate tensor E∞ of the ambient

flow. We recall here that the strain rate tensor of any flow is a frame-invariant quantity

(Rivlin & Ericksen, 1955; Saramito, 2016). However, the relation in Eq. (3.10) may not be

invariant to change of reference frame, which cannot be allowed, as a very simple and

intuitive following example shows: considering a particle pair at rest in a liquid at rest, the

flow solver yields a resting system, which is also the theoretical solution, and no sub-grid

correction is needed for the particles at rest, in agreement with Eq. (3.10); considering the

same system in the reference frame that translates with the velocity U0 with respect to the

initial frame, the flow solver now yields the velocities −U0 for both particles, as well as

for the liquid far away from the particles, and the stress moments vector from the solver

vanishes again. The sub-grid stress moments vector MSG is now:

MSG = −RSG ·


−U0

−U0

0

0

 (3.11)

Obviously, the stress moments vector in Eq. (3.11) must vanish, which imposes constraints

on the components of the matrix RSG. Should it not be the case, the sub-grid correction

would introduce fake forces proportional to the frame velocity. The general condition for the

relation in Eq. (3.10) to be frame-invariant can be easily expressed as follows. Assuming that

the particles move with velocities (U1, U2) and angular velocities (Ω1, Ω2) with respect to

a reference frame, any other frame may be characterized by a translational velocity U0 and
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an angular velocity Ω0 such that any point x at rest in this second reference frame moves

with respect to the initial frame with the velocity uref(x) = U0 +Ω0 × x. The condition for

the relation in Eq. (3.10) to be frame-invariant is that for any value of U0 and Ω0:

−RSG ·


U1

U2

Ω1

Ω2

 = −RSG ·


U1 − uref(x1)

U2 − uref(x2)

Ω1 −Ω0

Ω2 −Ω0

 (3.12)

and then, due to linearity:

−RSG ·


U0 +Ω0 × x1

U0 +Ω0 × x2

Ω0

Ω0

 = 0 (3.13)

This last relation is equivalent to the vanishing of the second term in Eq. (3.9). As a

consequence, it should be constrained to vanish. In this respect, neglecting the third term in

Eq. (3.9) is not of equal importance: it may induce a quantitatively imperfect computation

of the sub-grid forces in straining flow, but it does not imply a violation of fundamental

principles. On the contrary, neglecting the second term without caution may induce spurious

frame-dependent forces, torques, etc., which would alter the dynamics of the particles.

Returning to Eq. (3.9), the ambient flow contribution to the sub-grid correction can be

split into three independent contributions, each of which should ideally vanish, or at least

be weak for any value of U ′0, Ω∞, and E∞.:

RSG2p ·



U ′0
U ′0
0

0

0

0


+RSG2p ·



−Ω∞ × rd
2

Ω∞ × rd
2

Ω∞
Ω∞
0

0


+RSG2p ·



−E∞ · rd
2

E∞ · rd
2

0

0

E∞
E∞


= 0 (3.14)

where U ′0 = U0 +Ω∞ × x1+x2
2 + E∞ · x1+x2

2 , r = ‖x2 − x1‖ and rd = x2 − x1.

The various terms in Eq. (3.14) correspond to the sub-grid corrections for, respectively, a

translation of the particle pair with velocity −U ′0 in an otherwise resting liquid, a rigid body

rotation of the pair with angular velocity −Ω∞, and a particle pair at rest in a straining flow

with strain rate tensor E∞. We note that the decomposition in Eq. (3.14) is not unique, since

the particular point (x1 + x2) /2 is arbitrary. However, it allows easier algebra while, due to

the linearity of the different relations (see Section 3.3.3), the various expressions that are



3.3 two-particle frame-invariant sub-grid correction matrix 65

Figure 3.3
Sketch of a particle pair translating with velocity U ′0. (a) Translation of the whole pair. Decomposition
in (b) (respectively (c)) a translation of particle 1 (resp. 2) while particle 2 (resp. 1) is at rest.

deduced in the following do not depend on this particular point. Systematic cancellation of

each term yields a set of linear equations with the matrix coefficients as unknowns. As an

example of such relations, the sub-grid force exerted on particle (p1) due to a translation

along the centerline with velocity U ′0 should vanish (Fig. 3.3a):

FSG1 = −η
(
XA,SG11 +XA,SG12

)
U ′0 = 0 (3.15)

where the scalar coefficients XA,SG11 and XA,SG12 only depend on the distance between the

particles and their radii. Since the two-particle sub-grid resistance matrix is the difference

between the theoretical and the FDM solver ones, Eq. (3.15) may be written as:

XA,FDM11 +XA,FDM12 = XA,th11 +XA,th12 (3.16)

which means that the solver should properly account for the force due to the translation of

the pair without the need for any correction.

Thus, the validity of Eq. (3.15) is checked by comparing the two sides of Eq. (3.16). In

Fig. 3.4 [a], the LHS of Eq. (3.16) (FDM resistance coefficient) is displayed as a function of

the reduced distance between particle surfaces ξ for a pair of particles of the same radius

a1 = 1, together with its theoretical counterpart. The agreement is very good, as also shown

in Fig. 3.4 [b] where the relative difference between the two terms is displayed. It should be

stressed here that any of the resistance coefficients, XA11 or XA12, takes very different values

in the low distance range, whether the FDM coefficient or the theoretical one is considered.

Indeed, in Fig. 3.4 [c], XA,th11 is shown to diverge as ξ→ 0. Since XA,th11 accounts for the

force exerted on particle (p1) as it moves while particle (p2) is kept at rest, its high value

reflects the lubrication flow occurring between the particles (Fig. 3.3 [b]). The corresponding

FDM coefficient XA,FDM11 takes values very close to XA,th11 as soon as ξ exceeds a distance

typically equal to the mesh size ∆, but does not diverge at contact. This was indeed expected

since the solver cannot account for the lubrication flow between the particle surfaces. The

same discrepancy is observed for the coefficient XA12 (Fig. 3.4 [d]) due to a lubrication flow in

the opposite direction to the former as only particle (p2) moves (Fig. 3.3 [c]). Despite these

large discrepancies, the sum of the coefficients XA11+X
A
12 from the FDM computations or the

theory yields very close values. This agreement may be qualitatively understood considering

that no lubrication flow develops between the surfaces of the particles as the particles

move as a rigid pair (Fig. 3.3 [a]). For that reason, the sum of the theoretical resistance
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Figure 3.4
Comparison between the FDM and theoretical resistance coefficients XA11 +X

A
12 for the force exerted

on particle (p1) when the particles pair moves rigidly along the center line, as a function of the
distance between the surfaces ξ. (b) shows the relative difference between the two quantities in (a).

coefficients, which accounts for the viscous force on particle (p1), does not diverge as ξ→ 0,

but smoothly decreases (Fig. 3.4 [a]). In the same line, since the flow between particles

is weak, most of the force exerted on particle (p1) originates in the flow outside the gap,

which is correctly computed by the FDM solver, and the sub-grid corrections are not needed.

Nevertheless, considering that the theoretical values of XA11 or XA12 are very large compared

to their FDM counterpart in the low range of ξ and that their sum is quite small compared

to the individual FDM values, keeping also in mind that XA,FDM11 and XA,FDM12 have been

computed separately, the agreement between XA,FDM11 + XA,FDM12 and XA,th11 + XA,th12 is

remarkable and highlights the great quality of the method.

The symmetry of the FDM resistance matrix following the Lorentz reciprocal theorem has

been checked in the same way. Each relation has been found to hold to within a few percent.

For this reason, the third term of the RHS in Eq. (3.9) is simply removed. For the second

terms to be removed and the sub-grid corrections to be written as in Eq. (3.10), the matrix

RSG must be modified in such a way that the relations quoted in Section 3.3.3 rigorously

hold. This is explained in the following.
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3.3.2 building a frame-invariant sub-grid

correction matrix

The idea of a frame-invariant resistance matrix is not new. Such a property has been indeed

sought in earlier works from the literature.

Ball and Melrose (Ball & Melrose, 1997) performed molecular dynamic simulations

of Brownian suspensions. They compute the total resistance matrix of hydrodynamic

interactions as the superposition of two-particle resistance matrices that obey Eq. (3.10). To

this purpose, the motion of the particles is computed in the co-rotational frame, i.e. the frame

attached to the line that joins the centers of the particles. Doing this, they only consider the

internal motion modes corresponding to lubrication flow, i.e. squeeze, shear, pump, and

twist, and they pick the relevant matrix coefficients from the lubrication theory. It should

be noted here that choosing a sub-grid correction matrix that obeys Eq. (3.14) is formally

equivalent to correct only for the above-mentioned internal motion modes. Their model has

been extensively used, and it has been implemented in the molecular dynamics toolbox

LAMMPS (Plimpton, 1995; Ness & Sun, 2015). The computation of the hydrodynamic forces

in Ball & Melrose (1997) does not involve any ambient flow. It neither explicitly accounts for

the many-body long-range hydrodynamic interactions between particles.

In the frame of the Stokesian Dynamics method (Brady, 1988; Sierou & Brady, 2001),

the long-range hydrodynamic interactions are accounted for using a multipole expansion,

supplemented by lubrication corrections in the form of a correction matrix, in the same

general way as in the method presented here. Cichocki et al. (1999) note that a correction

matrix in the form of Eq. (3.10) may not only involve the relative motion of the particles

inside a particle pair, which is responsible for the so-called lubrication interactions, but also

the collective motion of the particles. To get rid of the latter, they build a modified correction

matrix using a convenient projection. It should be noted here that their purpose is very

similar to the one followed here since our objective is to modify the matrix RSG so that a

particle pair in rigid body motion, i.e. undergoing collective motion, may yield no sub-grid

corrections. Then, only the deviation of the motion of the particles from a rigid body motion

will induce sub-grid corrections. Finally, Cichocki et al. (1999) show that using a correction

matrix where the collective motion is not projected out results in an erroneous computation

of the three-particle contribution to the translational short-time self-diffusion in Brownian

suspensions, leading to the divergence of the latter. The explanation that they provide is

akin to the simple example that was given in Section 3.3.1: the translation of a close particle

pair results in a spurious lubrication force, which induces a slow decaying stokeslet flow

proportional to the inverse of the distance from the pair.

In the present study, the raw sub-grid matrix is modified differently compared to the

method explained by Cichocki et al. (1999). It should first be recalled that the matrix RSG in

Eq. (3.10) is identical to the matrix RSG2p in Eq. (3.5), except for the two last columns that

were suppressed. As a consequence, we are mainly interested in the functions defining the

tensors A, B, C, G, H and P, but G̃ and H̃ have to be tackled as well due to the symmetry
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relations resulting from the Lorentz’s reciprocal theorem. The corresponding part of the

matrix involves 52 resistance functions. There are 20 symmetry relations between these

functions due to Lorentz’s reciprocal theorem; now there are 26 linear relations involving

the functions of interest imposed by the cancellation of each of the independent terms of

Eq. (3.14), but they are not linearly independent from the previous ones. In conclusion, we

expect only 10 independent resistance functions for the frame-invariant sub-grid correction

matrix. We choose one function among each group of similar functions: XA21, YA21, YB21, XC21,

YC11, XG11, YG11, YH21, XP21, XP12. The remaining ones are expressed as a function of the 10 base

functions. It should be noted here that the strong reduction in the number of independent

functions is consistent with the approaches developed by Ball & Melrose (1997) and Cichocki

et al. (1999): since such a frame-invariant correction matrix only accounts for the internal

motion mode to the exclusion of collective (rigid body) motion, fewer functions are needed.

3.3.3 final relations

constraints

The whole set of relations that follow from Eq. (3.9), which are required for the relation

between the sub-grid forces and torques and the velocities of the particles to be fully

frame-invariant, are developed in Appendix D. They yield a set of linear relations that the

resistance functions must obey. Those relations are quoted below. The relations for the (·)11
and (·)12 terms are shown: the remaining ones are obtained by simply replacing (·)11 by

(·)21 and (·)12 by (·)22. The superscript “SG” has been omitted for the sake of simplicity. It

should be noted that all resistance functions are dimensioned quantities.
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expressions

Putting together the previous constraints and imposing the symmetry that originates from

Lorentz’s reciprocal theorem, we can get a list of relations between the different resistance

functions. We need to choose only ten independent resistance functions: XA21, YA21, YB21, XC21,

YC11, XG11, YG11, YH21, XP12, XP21. The expressions of the remaining ones are (the superscript “SG”

has been omitted for the sake of simplicity):

XA11 = −XA21 YA11 = −YA21
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A
21 YA12 = Y

A
21
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3.4 particle-wall frame-invariant

sub-grid correction matrix

The sub-grid correction matrix as written in Eq. (3.8) is simplified in the same line as the

two-particle matrix in Section 3.3, and stress moments are split into two contributions:
FSGp

TSGp

SSGp

sSGp

 = −RSGw ·


Up − Uw

Ωp

0

−RSGw ·


−Ω∞ × xp − E∞ · xp

−Ω∞
−E∞

 (3.17)

The first term of the RHS is the stress moments vector on the moving particle as the liquid

far from the wall moves at the same velocity Uw as the wall. Concerning the second term, we

recall here that Ω∞ and E∞ are not independent: they define a simple shear flow parallel to

the wall. The whole term stands for the stress moment on a particle at rest when the wall is

also at rest and the liquid far from it experiences a simple shear flow. The latter contribution

does not involve any lubrication flow so that the corresponding resistance functions do not

diverge as the distance from the wall ε = d/a− 1 goes to zero. It is thus expected to be well

accounted for by the FDM without the need for specific sub-grid corrections.

We check that the ambient flow contribution to the sub-grid corrections can be neglected.

To this purpose, a particle is placed at rest in a simple shear flow close to a fixed wall (same

ambient flow as in Fig. 4.3), and the force and torque friction factors F̂γ̇ and the T̂ γ̇, as

defined below, are computed without any sub-grid correction.

F̂γ̇ =
Fx

6πηa2(1+ ε)γ̇
=

(1+ ε)aYA − (1/2) YB̃ − YG̃

6πa2(1+ ε)

T̂ γ̇ = −
Tz

4πηa3γ̇
=

(1+ ε)aYB + (1/2) YC + YH̃

4πa3

(3.18)

The computed values are compared to the data from Chaoui & Feuillebois (2003), who

performed precise computations of the quantities of interest, in Fig. 3.5. A very good

agreement is observed, although weak oscillations of the quantities with the position due

to the finite mesh size may be noted (we recall that in this case, we averaged over “only”

16 positions inside a mesh-cell-sized plane parallel to the wall). This explicitly shows

that no sub-grid correction is requested for the ambient flow contribution. In addition, the

symmetry of the FDM particle-wall matrix has been checked, meaning that YB,SG = −YB̃,SG,

YG,SG = YG̃,SG and YH,SG = YH̃,SG. Finally, the following expressions are deduced:

YG,SG = −(1+ ε)aYA,SG + (1/2) YB,SG

YH,SG = −(1+ ε)aYB,SG − (1/2) YC,SG
(3.19)
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Figure 3.5
Force and torque friction factors F̂γ̇ and T̂ γ̇ for a particle held fixed near a wall: (N) measured FDM
values, (•) Chaoui & Feuillebois (2003).

which are the counterpart for the particle-wall corrections of the expressions quoted in

Section 3.3.3 for two particles: YG,SG and YH,SG may be directly computed from YA,SG,

YB,SG, YC,SG. This presents the particular advantage that the latter quantities may be

computed with a better precision due to the high quality of the theoretical expressions

proposed by Chaoui & Feuillebois (2003) for YA, YB and YC (Appendix B.2). The stresslet

was also computed, and it is related to the resistance functions through:

Ŝγ̇ =
Sxy

(10/3)πa3ηγ̇
=

−(1+ ε)aYG + (1/2) YH + (1/2) YM

(10/3)πa3
ŝγ̇ = 0 (3.20)

The lubrication approximation of the resistance functions (presented in Appendix B.2)

confirms that no divergence takes place for the stresslet. In addition, the FDM solver yields

a very low value for the trace ŝγ̇,FDM in agreement with Eq. (3.20), and the value of the

stresslet for the smallest distance probed (ε = 10−2) is close to the asymptotic limit from

the lubrication approximation (limε→0Ŝγ̇ = 0.5325). However, a more detailed comparison

is difficult, since the lubrication approximation for Ŝγ̇ cannot be used as soon as ε > 10−2.

Finally, the sub-grid stress moments vector reduces to the first term of the RHS of Eq. (3.17):
FSGp

TSGp

SSGp

sSGp

 = −η


ASGw B̃SGw

BSGw CSGw

GSGw HSGw

PSGw 0

 ·
Up − Uw

Ωp

 (3.21)

Eq. (3.21) does not depend on a specific reference frame, since it precisely involves the

velocity and angular velocity of the particle in the reference frame attached to the translating

wall. As a consequence, it may be used without further caution. As a conclusion, the sub-grid

resistance functions needed are XA,SG, YA,SG, YB,SG, XC,SG, YC,SG, XG,SG, XP,SG, while

YG,SG and YH,SG are computed using Eq. (3.19) and YM,SG is not needed. As we can notice,

we finally save only three resistance functions.
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In this chapter, multiple validations of the numerical method and the new formulation of

the frame-invariant sub-grid corrections are presented. We start by checking the numerical

methods against the computation of flows involving a few particles. The particles may be

either close or far from bounding walls, and when there are several of them, they may be

close or far from each other. Both the cases of a simple shear flow and a pressure-driven

flow are investigated. The computed quantities are compared to either analytical, semi-

analytical, or very accurate numerical computations from the literature. In the second part

of the chapter, the case of particulate suspensions in a simple shear flow is studied and the

computed material functions are compared to earlier computations from the literature. In

all considered flows, the densities of the liquid and the particles are equal.
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4.1 up to three spheres in a stokes flow

4.1.1 stokes flow through a periodic

array of spheres

We consider here the slow flow of a Newtonian liquid through a simple cubic periodic array

of spheres, and we focus on the drag force exerted on the array. This problem has been

solved by Hasimoto (1959) using the Fourier series and by Zick & Homsy (1982) using a

collocation method. The direction of the flow is parallel to one of the lattice basis vectors

and, in the cited papers, the spheres are kept stationary. In this geometry, the slip velocity is

defined as the mean velocity over a unit cell:

Us =
1

V0

∫
Dfluid

u dV =
1

V0

∫
D

u dV (4.1)

where V0 is the volume of the unit cell D. The drag force exerted on each sphere of the array

is given by:

F = 6πηaKUs (4.2)

where K is the drag coefficient. Hasimoto (1959) derives the following expression for K for a

simple cubic lattice:

K =
1

1− 1.7601 3
√
φ+φ− 1.5593φ2 + . . .

(4.3)

where φ is the solid volume fraction of the array:

φ =
4πa3

3V0
(4.4)

The numerical computations by Zick & Homsy (1982) showed that Eq. (4.3) is valid up

to volume fraction values of approximately 0.06. In the present work, we consider volume

fraction lower than 0.0082, i.e. inside the validity range of Eq. (4.3).

In Fig. 4.1 we show the numerical setup that allows measurement of the drag coefficient

K, i.e. a single sphere in a cubic domain of side length L with periodic boundary conditions

for the velocity u and the pressure p on all boundaries. A uniform pressure gradient in

the x-direction is added to the periodic pressure to induce fluid flow. To stick to the usual

algorithm, the particle velocity U is left as a free parameter, but an external force is exerted

on the particle to counterbalance the hydrodynamic force (Eq. (2.42)). This force is deduced

from the fluid momentum balance Eq. (2.1):

0 = ∇ ·σ−∇P0 + ρfλ (4.5)
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Figure 4.1
Stokes flow through a periodic array of particles. F denotes the hydrodynamic drag
force exerted on the particle.

where the stress is split into the periodic component σ and the uniform pressure tensor

−P0δ. Eq. (4.5) is integrated over the simulation domain and, since the periodic component

does not contribute to the integral, the total hydrodynamic force exerted on the particle

reads:

F = −ρf

∫
Dp

λ(x)dV = −V0∇P0 (4.6)

Finally, the slip velocity Us is computed:

Us =
1

V0

∫
D

u(x)dV− U (4.7)

The drag coefficient K follows from Eq. (4.2), averaging over 64 positions inside a single

mesh cell to get rid of the oscillations due to the mesh. As previously explained in Sec-

tion 2.5.4, this simulation allows to tune the parameters b and c involved in the indicator

functions Iu(x) and Iλ(x) (Eqs. (2.51) and (2.52)).

The computed values of K are shown for the best values (b, c) = (5, 0.3) in Fig. 4.2 and

Table 4.1 for different values of the ratio L/a, or equivalently for different values of the solid

volume fraction φ, in very good agreement with the theoretical predictions of Hasimoto

(1959) (Eq. (4.3)). It should be noted here that the long-range hydrodynamic interactions

between the particles in the lattice are always important or at least significant, i.e. K 6= 1,

including the case of the largest unit cell considered (L/a = 50), and that they are properly

accounted for by the FDM.
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Figure 4.2
Drag coefficient K as a function of the reduced size of the cubic cell, or equivalently
as a function of the solid volume fraction φ: red dots: simulation results; plain line:
Hasimoto (1959) predictions.

Table 4.1
Comparison between our simulations and the values predicted by Hasimoto (1959).

L/a φ KH K σK |K−KH|/KH [%]

18 0.00818 1.53041 1.532059 0.014381 0.11

10 0.00419 1.38805 1.389611 0.011877 0.11

20 0.000524 1.16461 1.167027 0.009899 0.21

30 0.000155 1.10427 1.109563 0.014221 0.48

40 0.0000654 1.07627 1.085323 0.018710 0.84

50 0.0000335 1.06012 1.073184 0.021934 1.23

4.1.2 a free sphere in the presence of walls

In the present section, the FDM is tested against various shear flows past a single free sphere

in the presence of solid walls. The first two examples address the case of a simple shear flow,

bounded by either one (in theory) or two planes. It is shown that such flows are conveniently

tackled, whether the particle is close to the wall and sub-grid corrections are needed, or not.

In the latter two-plane configuration, the flow may be strongly confined leading to strong

hydrodynamic interactions with both walls, and it is still suitably computed. Finally, the

case of a single sphere in a confined nonlinear (Poiseuille) flow is addressed.
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a sphere in a simple shear flow close to a wall

A free single particle with radius a is suspended in a simple shear flow close to a wall

with ε = d/a− 1, where d is the distance between the particle center and the wall (Fig. 4.3).

The simulation domain is a square hexahedron with dimension (Lx/a1, Ly/a1, Lz/a1) =

(50, 50, 50). On the top and bottom boundaries (respectively y = Ly and y = 0), the velocity

is prescribed (respectively u = γ̇Lyex and u = 0). The pressure and velocity fields on the

other boundaries (x = ±Lx/2, z = ±Lz/2) obey cyclic boundary conditions.

The quantities of interest, namely the particle velocity, angular velocity, and stresslet,

are computed for different values of the distance to the lower wall d, and both particle

radius values a1 and a2. For each value of the distance to the wall and each particle radius,

the quantities of interest are averaged over 16 different positions of the particle center

evenly distributed in a single mesh cell. The standard deviation is computed to evaluate the

accuracy of the computation and is shown in the following figures as error bars.

Since the size of the simulation box is much larger than the particle radius, the simulation

data may be compared to the case of a free particle close to a single wall in an otherwise un-

bounded liquid. Chaoui & Feuillebois (2003) have performed highly accurate computations

of the velocity and angular velocity of the particles in that case. They provide also a fitting

polynomial expansion in log(ε) for both quantities:

Ux =

∑
j

uj (log ε)j

−1

Ωz =

∑
j

ωj (log ε)j

−1

(4.8)

where the coefficients uj and ωj are given in their paper (Chaoui & Feuillebois, 2003). They

show for instance that the expansion gives a precision better than 10−11 for the velocity

for ε 6 0.4. The data from the present simulations are compared to the values from their

expansion in Fig. 4.4. The agreement is very good, in particular for values of ε lower than

0.15 for which the sub-grid corrections (here, the relevant functions are YA, YB, YC) are

Figure 4.3
Free sphere in simple shear flow close to a wall.
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activated. It should be recalled here that, according to the lubrication approximation, both

the velocity and the angular velocity of the sphere slowly approach 0 as the reduced distance

ε goes to 0 (Chaoui & Feuillebois, 2003).

Sangani et al. (2011) have performed computations of the stresslet in the same flow

conditions. They use a semi-analytical method based on Lamb’s multipoles. They also show

that their data for the normalized stresslet Ŝγ̇ = Sxy/
[
(10/3)πηa3γ̇

]
are well approximated

by the expressions given below (with Y = 1+ ε):

Ŝγ̇ =



[
1−

15

16Y3
+
1

Y5
−
0.65
Y7

]−1
for 0 < 1/Y 6 0.85

0.847 ln ε−1 − 0.41+ 1.44ε ln ε−1 − 0.3ε
0.2 ln ε−1 + 0.6376

for 0.85 < 1/Y 6 1

(4.9)

The data from the present simulations are displayed in Fig. 4.4. Again, a very good

agreement is found between the simulation data and the fitting function Eq. (4.9) over the

Figure 4.4
Normalized translational (top) and rotational (center) velocities and stresslet (bottom)
for a free sphere in a simple shear flow close to a wall as a function of the distance ε
from the wall. Red region: sub-grid corrections needed.
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whole range of the distance to the wall, including the low distance range where the sub-grid

corrections (here, the relevant resistance functions are YA, YB, YC, YG, YH) are needed.

In a conclusion, the interaction between a sphere and a single wall in a simple shear

flow is conveniently tackled by the fictitious domain method supplemented by the frame

invariant sub-grid corrections. Since the underlying shear flow is not explicitly taken into

account in the computation of the sub-grid corrections, this confirms that the FDM solver

without sub-grid correction can capture the specific contribution of the ambient shear flow,

as explained in Section 3.4. Then, this good agreement was indeed expected, since the

particle-wall sub-grid corrections have been built so that this particular flow would be

conveniently tackled. In the following sections, more complicated flows are addressed to

further check the validity of the method.

a sphere in a simple shear flow at the center

of a channel

A free sphere is placed at the center of a channel. The upper and lower walls move with equal

and opposite velocities, inducing a simple shear flow (Fig. 4.5). On the other boundaries,

periodic conditions are applied for the pressure and velocity fields. The flow is computed,

together with the particle angular velocity Ωz and the normalized stresslet Ŝγ̇ for different

values of the reduced distance between the walls H/a. The translational velocity of the

sphere is zero due to the symmetry of the flow. The dimensions of the bounding walls have

been chosen large enough to mimic infinite planes (Lx × Ly) = (60a× 40a).
Again, for each value of H, both particle radii a1 = 1.0 and a2 = 1.4 are considered

and the quantities are averaged over 16 different positions of the particle center evenly

distributed within a single mesh cell.

This case may appear a bit different from that addressed in the previous section, due to

the significant hydrodynamic interactions between the walls. More precisely, in the more

Figure 4.5
Free sphere in a simple shear flow at the center of a channel.
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Figure 4.6
Normalized rotational velocity (top) and stresslet (bottom) for a free sphere in a simple
shear flow at the center of the channel as a function of the reduced distance between the
walls 2a/H. Red region: sub-grid corrections needed. The lines are a guide to the eye.

confined geometry where H ∼ 2a, besides the small scale flow between the sphere surface

and the plane that makes the sub-grid corrections necessary, vortices develop in front of

the sphere and behind it, with a typical dimension of the channel width, or equivalently

of the sphere radius (Sangani et al., 2011). The computed angular velocity and normalized

stresslet are displayed in Fig. 4.6 together with the computational data obtained by Sangani

et al. (2011). The agreement is again satisfactory, still with small oscillations of the angular

velocity (at most 3%). This shows that the present method can account for all components

of the flow despite its complexity.

a free sphere in a channel with a poiseuille flow

We turn now to the flow induced by a free-moving sphere in an ambient Poiseuille flow.

The purpose of this section is to check the validity of the method for a single sphere in a

nonlinear flow, including the sphere-wall sub-grid correction. The plane Poiseuille flow is

bounded by two parallel walls separated by a distance H (see Fig. 4.7), and the unperturbed

velocity reads:

u0(x) = Uc

(
1−

(
2y

H

)2)
ex (4.10)
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Figure 4.7
A free sphere in a plane Poiseuille.

A homogeneous pressure gradient is applied in the whole simulation domain:

∇P0 = −8η
Uc

H2
ex (4.11)

The particle translational Ux and rotational Ωz velocities, as well as the stresslet Sxy, are

computed for different values of the channel height H and of the distance between the

particle center and the bottom wall d/a. Again, the computed quantities are averaged over

16 different positions inside the plane section of a single mesh cell. Two different values

of the radius are considered for the sphere, a = a1 = 1.0 and a = a2 = 1.4. The channel

height H is sampled in the range [2.86a; 20a] and the dimensions of the bounding walls are

chosen as (Lx × Lz) = (60a1 × 40a1).

Using a boundary-integral method, Staben et al. (2003) computed the translational and

angular velocities of the sphere in a similar flow geometry, with infinite planes though. The

present computations are compared to their data in Fig. 4.8. The agreement is very good,

whether the sphere is close to the wall or not, and for all values of 2a/H, including the most

confined case 2a/H = 0.7.

The latter case is probably the most important for our purpose due to the strongly

nonlinear variation of the unperturbed flow at the scale of the sphere: the shear-rate

variation over the sphere diameter 16aUc/H2 amounts to 8a/H ≈ 1.6 times the mean shear-

rate of the flow 2Uc/H, making difficult the definition of a single value for the shear-rate as

seen by the particle. For that reason, the formulation of the particle-wall sub-grid corrections

in Eq. (3.21) is better suited to the present flow geometry than the general expression in

Eq. (3.8), and, as shown in Fig. 4.8, its accuracy is very satisfactory.

Ghalya et al. (2020) computed the stresslet for the ratio of the diameter to the channel

height 2a/H = 0.4 using a bipolar coordinates method (infinite planes). Their results for

the normalised stresslet S∗ = Sxy/
(
4Ucηa

3/H
)

are displayed in Fig. 4.8, together with the

values from the present method. Both sets of values are in close agreement, including the

smallest value of the distance to the wall d/a = 1.1, which requires sub-grid corrections.
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Figure 4.8
Normalized translational and rotational velocities and stresslet for a free sphere in
a plane Poiseuille flow for different channel heights H as a function of the distance
from the bottom wall d/a. (•): Staben et al. (2003) (top and center) and Ghalya et al.
(2020) (bottom), the lines are a guide to the eye. (©): present computations. Red region:
sub-grid corrections needed.
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4.1.3 a particle pair in a simple shear flow

The emblematic case of two particles in a simple shear flow is treated here. The flow is

the same as in Section 4.1.2, with Lx = Ly = Lz = 40a1. The particles are placed in the

same shear plane z = 0, at initial positions x/a1 = ±3, y = ∓ r0y/2, where r0y is the impact

parameter, and the relative trajectory is computed (rx = x1 − x2, ry = y1 − y2). We let vary

the radii ratio a2/a1 and the impact parameter r0y. Two different cases are considered: either

the particles move only due to hydrodynamic interactions, or an additional force is applied

to mimic contact between particles as they are close enough (Section 2.6).

In the former case, the relative trajectory is expected to display fore-aft symmetry (Da

Cunha & Hinch, 1996) due to the linearity of Stokes equations combined with the symmetry

of the ambient flow. In addition, depending on the impact parameter, the trajectories may

either be open ("large" impact parameter) or closed and periodic ("small" impact parameter).

Zarraga & Leighton (2001) showed that for two particles with the same radius a2 = a1, the

smallest distance between the surfaces for an open trajectory is very small, i.e. approximately

4 · 10−5a1, so that a quite short time step is required to obtain sufficient accuracy. The time

step is γ̇0∆t = 10−4 in the following. In Fig. 4.9 (top), the trajectories for a2/a1 = 1 and

different impact factors are showed. They display the expected fore-aft symmetry, suggesting

Figure 4.9
(top) Relative trajectories and (bottom) normalized distance between the particles surfaces of a
particle pair in a simple shear flow without contact (a = (a1 + a2)/2, hr = 0, a2/a1 = 1), for
different values of the impact factors r0y.
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Figure 4.10
(top) Relative trajectories and (bottom) normalized distance between the particles surfaces of a
particle pair in a simple shear flow with contact (a = (a1 + a2)/2, hr = 5 · 10−3a1, a2/a1 = 1.4).

that the hydrodynamic interactions are properly tackled and that the time step is sufficiently

small. The plain lines on the figure correspond to the direct time-integration of the velocity

computed for a pair of free particles using the theoretical two-particle resistance matrix, in

close agreement with the FDM computations. In Fig. 4.9 (bottom), the distance between the

particles is displayed as a function of the relative x-position, rx, of the particles for the same

trajectories, together with its counterpart using direct integration of the theoretical velocity.

Again, the good agreement validates the FDM computations. It should be stressed here that

the cumulative error over 2 · 105 time steps is sufficiently small that fore-aft symmetry is

preserved and that the trajectories from both methods are in close agreement.

On the other hand, the presence of non-hydrodynamic forces such as contact forces is

known to induce asymmetry of the trajectory (Da Cunha & Hinch, 1996; Zarraga & Leighton,

2001). To validate the FDM against the computation of contacting-particles trajectories, a

roughness height hr is defined, and a contact force is triggered as the distance between

the surfaces is smaller than hr. As explained in Section 2.6, a standard contact model is

used, also including constant friction (Gallier et al., 2014b). A typical trajectory is shown

in Fig. 4.10 (top) for size ratio a2/a1 = 1.4, roughness hr = 5 · 10−3 and friction coefficient

µs = 0.5. Fore-aft asymmetry is induced by contact between particles that occurs in the

present trajectory for −1.39 . rx/a1 . 0 (ξ 6 2hr/(a1 + a2) ≈ 4.2 10−3). The simulations

show good agreement with the direct time integration of the theoretical velocity. However,

a slight discrepancy may be observed at the end of the trajectory: this is caused by the

hydrodynamic interactions with the walls that are not accounted for by the theoretical
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two-particle matrix. Even though the domain is quite large compared to the particle sizes,

the residual hydrodynamic interactions with the walls push the particles to the centerline,

slowing them down and causing some delay. This discrepancy is more easily observed in

the present case than in the former probably because one of the particles is larger, and

consequently induces stronger hydrodynamic interactions with the walls.

4.1.4 a particle pair in a confined

poiseuille flow

The purpose of this section is to show that the present numerical method properly accounts

for hydrodynamic interactions between two particles in a nonlinear flow, particularly when

the small distance between the particle surfaces requires sub-grid corrections.

We consider two identical force- and torque-free particles with radius a suspended in a

plane Poiseuille flow bounded by parallel planes Fig. 4.11. This particular flow has been

numerically solved by Bhattacharya et al. (2006) for infinite walls with great accuracy. In

the present study, the dimension of the stationary bounding walls is set to (Lx × Lz) =

(60a1 × 40a1), and the channel height is set to H = 4a. On the other bounding surfaces,

periodic boundary conditions are applied. The unperturbed parabolic flow (Eq. (4.10)) is

induced by an imposed pressure gradient (Eq. (4.11)). Both particles are in the same plane

(ex, ey). The first particle is placed at the center of the channel, while the second one is

placed at a distance from the lower wall d/a = 1.33. The relevant particle translational and

rotational velocities Ux, Uy and Ωz are measured for values of the reduced lateral distance

between the particles ρ12/H ranging from 0.4714 to 1.5, which corresponds to a reduced

distance ξ = 2‖x2 − x1‖/ (a1 + a2) − 2 between the particle surfaces ranging from 10−5 to

4.04. As before, for each value of the lateral distance, the measured quantities are averaged

over 16 different particle positions inside the plane section of a single mesh cell.

Figure 4.11
Two spheres in a plane Poiseuille.
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The normalized velocities Ux/Uc, Uy/Uc and 2aΩz/Uc from the FDM computations are

displayed in Fig. 4.12 together with the results from Bhattacharya et al. (2006). As shown in

the latter paper, the interactions between the particles and between the particles and the

walls are quite strong in that arrangement of the particle positions, resulting in significant

variations of the velocities as a function of ρ12. We note a very good agreement between

the present results and those from Bhattacharya et al. (2006), both in the near-contact and

the far-field regions. In particular, the decay of the far-field flow, which is specific to the

two-wall configuration (Bhattacharya et al., 2006), is properly accounted for by the FDM

solver. We recall that the shortest distance between particle and wall is here 0.33a, meaning

that no sub-grid correction is needed for the particle-wall hydrodynamic interactions.

In the near-contact region, the velocities of the particles primarily depend on the lubrica-

tion flow between the surfaces of the particles. As shown in Fig. 4.12, the sub-grid corrections

Figure 4.12
Normalized translational (top and center) and rotational (bottom) velocities for two free
spheres in a plane Poiseuille as a function of the inter-particular distance ρ12, where
ρc12 is the longitudinal distance at which contact occurs between the two particles. The
lines are a guide to the eye. Red region: sub-grid corrections needed.
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allow accurate computation of the velocities in this distance range. The intermediate range

is accurately described as well, with a sign change in the y-component of the translational

velocities of the particles at ρ12/H ∼ 0.6. It should be stressed again that the expression

of the sub-grid corrections in Eq. (3.10) does not require specifying any ambient strain

rate tensor, which would be difficult to define in this particular case. The shear rate of the

unperturbed flow indeed significantly varies at the scale of the particle, not to mention the

strong influence of the walls on the flow around the particles.

It should be noted that the present case is a very strong validation of the sub-grid

corrections proposed in Chapter 3: indeed, in such a confined Poiseuille flow the hypothesis

introduced in Section 3.1 that we may assume local linearity of the flow at particle scale is

not fulfilled; nevertheless, the agreement with the results obtained with the highly accurate

method by Bhattacharya et al. (2006) is very good. The just-mentioned hypothesis is also

not fulfilled in the case presented in Section 4.1.2 of a single free sphere in a confined

pressure-driven flow which, therefore, is a strong validation of the sub-grid corrections

between a particle and a wall.

4.1.5 three particles in a liquid at rest

We investigate the dynamics of three particles of the same radius a arranged in an equilateral

triangle of side r in a quiescent fluid (see Fig. 4.13). Particle (p1) is driven toward the triangle

centroid with a force Fxex but no torque is exerted, while the two remaining particles

are freely moving. The dimensions of the simulation domain are (Lx, Ly, Lz) = (60, 40, 50).

The plane y = ±Ly/2 are rigid walls at rest, while the other boundaries x = ±Lx/2 and

z = ±Lz/2 are applied periodic conditions. The velocity of all three particles is measured

in the direction of the force (x) and the direction perpendicular to it (y), together with the

angular velocity of particles (p2) and (p3) in the z-direction perpendicular to the plane of

the particle centers. The velocities and angular velocities are made dimensionless using

Figure 4.13
Three spheres arranged in an equilateral triangle of side r, one of which is driven toward
the triangle centroid with a force F.
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respectively Fx/(6πηa) and Fx/(6πηa2). An important feature of the flow is that each particle

is involved in the contribution of two particle-pair sub-grid corrections.

The triangle size, i.e., the distance between the particles, is varied over a range including

both values for which sub-grid corrections are needed or not. For each distance, 64 different

positions of the triangle centroid inside a single mesh cell are considered, and both the

average quantities and their standard deviation are computed. The data are gathered in

Tables 4.2 to 4.4 together with the reference solution provided by Wilson (2013), using a

technique based on the Method of Reflections, for the case of a boundary-free system with

an infinite extension of the fluid.

The velocities in the direction of the force (Table 4.2) from the FDM are significantly

underestimated when compared to Wilson (2013). It was expected, since an external force

parallel to the walls is applied on the triangle of particles, inducing a stokeslet flow far

away from the particles. The latter is a slowly decreasing function of the distance, and thus

induces significant hydrodynamic interactions, both with the walls and with the implied

periodically repeated triangles. The discrepancy between the mean velocity of the three

spheres from the FDM and the infinite size system amounts to 3.5% to 5.5%, which is

roughly consistent with the discrepancy observed for the mobility of one sphere with radius

1.4a1 at the center of the simulation box driven by a force parallel to the walls compared to

the theoretical sphere mobility in a fluid of infinite extension. However, the discrepancy is

strongly reduced if the difference of velocity of particles (p2, p3) with respect to particle (p1)

is considered (Table 4.3). This was indeed expected, due to the small distance between the

particles compared to the distance of the triangles to the walls. As for the velocity normal to

the wall (y-component), the discrepancy between the data from the FDM and the infinite

fluid case is very small (Table 4.4). This is probably because no stokeslet is produced in such

Table 4.2
Velocity components in the direction of the force parallel to the walls. The last two
columns are the relative standard deviation from the 64 measurements (see text).

Wilson (2013) FDM (present work)

r U
p1
x U

p2,3
x U

p1
x U

p2,3
x

σUp1x
U
p1
x

[%]
σUp2,3x

U
p2,3
x

[%]

2.01 0.65528 0.63461 0.61923 0.59857 2.3 2.4

2.10 0.73857 0.59718 0.70256 0.56129 2.2 2.7

2.50 0.87765 0.49545 0.83976 0.45889 1.7 3.1

3.00 0.93905 0.41694 0.90194 0.38084 1.6 3.7

4.00 0.97964 0.31859 0.94362 0.28491 1.4 4.6

6.00 0.99581 0.21586 0.96172 0.18428 1.4 6.6
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a direction that the interactions with the walls are weaker. The angular velocities from the

two methods (Table 4.4) are in better agreement as well.

In a conclusion, except for the discrepancies induced by the hydrodynamic interactions

with the walls due to the stokeslet originating in the external force, the results from the FDM

are in good agreement with the accurate computations from Wilson (2013). In particular, the

short-range hydrodynamic interactions are well tackled by the sub-grid corrections.

Table 4.3
Relative velocity components in the direction of the force parallel to the walls. The last
column is the relative standard deviation from the 64 measurements (see text).

Wilson (2013) FDM (present work)

r U
p1
x −Up2,3x U

p1
x −Up2,3x

σ∆Up1,23x

∆U
p1,23
x

[%]

2.01 0.02067 0.02066 3.5

2.10 0.14139 0.14127 2.8

2.50 0.38220 0.38087 1.0

3.00 0.52211 0.52110 1.1

4.00 0.66105 0.65870 0.6

6.00 0.77995 0.77743 0.5

Table 4.4
Velocity components in the direction perpendicular to the force (left) and angular velocity
component in the direction perpendicular to the force and parallel to the walls. The last column
of each set is the relative standard deviation from the 64 positions measurements (see text).

Wilson (2013) FDM (present work) Wilson (2013) FDM (present work)

r |U
p2,3
y | |U

p2,3
y |

σUp2,3y

|U
p2,3
y |

[%] |Ω
p2,3
z | |Ω

p2,3
z |

σΩp2,3z

|Ω
p2,3
z |

[%]

2.01 0.00498 0.00501 8.9 0.037336 0.036476 5.0

2.10 0.03517 0.03514 5.5 0.052035 0.052299 8.3

2.50 0.07393 0.07372 1.5 0.045466 0.045646 7.2

3.00 0.07824 0.07830 1.1 0.035022 0.035065 5.9

4.00 0.06925 0.06893 0.7 0.021634 0.021648 6.8

6.00 0.05078 0.05003 0.3 0.010159 0.009992 8.7
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4.1.6 three particles in a simple shear flow

We put three free particles in a simple shear flow in two configurations, as shown in Fig. 4.14:

a) aligned in the compression axis with an inclination θ = 30◦ and b) with an L configuration.

The distance between the surfaces of the particles is set to aξ = 10−2. As the particles are in

the shear plane, the velocities Uz,Ωx,Ωy are zero and are not shown in the following tables.

With these two configurations, particle B is involved in the contribution to the sub-grid

corrections of two-particle pairs. Moreover, the interest of the L configuration is that the

lubrication forces, in this case, are very small and the long-range hydrodynamic interactions

are proportionally more important. Both particle radii a1 = 1.0 and a2 = 1.4 are tested,

and the results shown are the averaged values over 16 positions on the same plane inside a

single mesh cell to check the oscillations with respect to the relative position of the particles

and the mesh. The domain size employed is (Lx × Ly × Lz) = (30× 30× 30)a3.

a) b)

A
A

B

B

C
C

Figure 4.14
Three particles in a simple shear flow: a) aligned configuration with θ = 30◦; b) L
configuration. The distance between the particles is fixed to aξ = 10−2.

We compare the results obtained for the velocities of the three particles with the ones

proposed by Gallier (2014) and with the ones obtained with direct simulations done with

the software COMSOL, where a very fine mesh is employed on the particles’ surface and

the interstitial lubrication flow is explicitly solved (i.e., no sub-grid correction is needed). As

we can see in Tables 4.5 and 4.6, our results are in very good agreement with an average

error of about ≈ 2%, showing that the sub-grid corrections are behaving correctly. Moreover,

in the L configuration, our results seem to be in better agreement than the ones by Gallier

(2014), showing that our formulation of the sub-grid corrections presented in Chapter 3 is

more accurate.
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Table 4.5
Particles velocities for the aligned configuration (θ = 30◦). Comparison between our
results, COMSOL simulations, and Gallier (2014).

COMSOL Gallier (2014) present work

a1 = 1.0 a2 = 1.4

UAx -0.322 -0.321 -0.323 -0.324

UAy -0.463 -0.467 -0.466 -0.466

ΩAz -0.388 -0.389 -0.385 -0.387

UBx -0.000 <0.001 <0.001 <0.001

UBy -0.000 <0.001 <0.001 <0.001

ΩBz -0.341 -0.339 -0.338 -0.338

UCx -0.322 -0.323 -0.322 -0.323

UCy -0.463 -0.463 -0.466 -0.467

ΩCz -0.388 -0.380 -0.385 -0.387

Table 4.6
particles velocities for the L configuration. Comparison between our results, COMSOL
simulations, and Gallier (2014).

COMSOL Gallier (2014) present work

a1 = 1.0 a2 = 1.4

UAx 1.765 1.765 1.761 1.761

UAy 0.132 0.125 0.130 0.130

ΩAz -0.669 -0.669 -0.676 -0.676

UBx 0.135 0.136 0.135 0.134

UBy 0.132 0.125 0.130 0.132

ΩBz -0.500 -0.507 -0.506 -0.506

UCx 0.134 0.135 0.134 0.133

UCy -0.246 -0.250 -0.245 -0.246

ΩCz -0.329 -0.324 -0.327 -0.328
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4.2 suspensions in a simple shear flow

The geometry considered here is the same as in Fig. 4.5. We simulate moderately concen-

trated to concentrated (0.27 6 φ0 6 0.54) frictional (µ = 0.5) suspensions undergoing simple

shear flow, with an imposed shear rate γ̇0 = 1. The particles are initially placed at random

positions and, after a transient that occurs over a few strain units, the volume fraction profile

(defined in Eq. (2.70)) and the particle velocity profile (that will be defined in Eq. (6.4)) reach

steady profiles, from which the rheological quantities are extracted and time-averaged. The

suspensions are made of particles of radii a1 and a2 = 1.4a1 to reduce ordering, and the

two populations occupy the same volume, i.e. φ1 = φ2 = φ0/2. All the quantities presented

are averaged over a deformation of about ≈ 50tγ̇core.

4.2.1 numerical details

The domain size for each simulation is quoted in Table 4.7, together with the main simulation

parameters, some of which will be explained in the following. Aiming at reducing the

computational time, we increased the tolerances for p and u and we set them to tolp = 10−3

and tolu = 10−5. As already presented in Section 2.5, these values still present a good

convergence behavior (fast and stable) and small errors. Also, by studying the residual of λ

and the number of iterations needed for step 7 in the algorithm (i.e., the computation of the

velocity and pressure fields and the update of the velocities of the particles, see Section 2.4),

we decided to fix the number of iterations to limit the oscillations of the latter due to the

mesh instead of requiring ‖λn+1 − λn‖/‖λn‖ < tolλ. As a consequence, the wall time is

shortened at the cost of slight variations of the converged residual for λ. In addition, the

number of iterations required to have a small residual of λ varies with respect to the time

step ∆t employed. For example, for γ̇0∆t = 10−4, ≈ 10 iterations are needed.

Table 4.7
Suspension in a Couette flow: simulations parameters.

φ0 φcore γ̇core/γ̇0
Lx,y

a1

Lz

a1
NP γ̇0∆t

0.27 0.303 0.923 20 20 1350 10−4

0.32 0.359 0.885 20 20 1416 10−4

0.37 0.405 0.873 20 20 1481 10−4

0.42 0.458 0.773 20 20 1547 10−4

0.47 0.493 0.745 25 20 1956 10−4

0.52 0.543 0.563 25 20 1057 10−4

0.54 0.570 0.391 25 20 1098 2 · 10−5
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4.2.2 material functions

Experimental (Blanc et al., 2013; Sarabian et al., 2019; d’Ambrosio et al., 2021) and numerical

(Yeo & Maxey, 2010c; Gallier, 2014; Gallier et al., 2016) studies have shown that, as a non-

Brownian mono-disperse suspension is sheared between smooth walls, the particles near

the walls form layers. Depending on the volume fraction, this local ordering may extend

over several tenths of particle radii inside the suspension (Yeo & Maxey, 2010c; Gallier et al.,

2016). In addition, the rheological properties are strongly affected in the layered region,

leading, in particular, to significant wall slip.

In Fig. 4.15, the time-averaged volume fraction profile is displayed for a suspension with

φ0 = 0.42. The particle ordering is observed close to the walls and decays over a length of

a few particle radius units. The results shown in the following are averaged over the core

region only (Eq. (2.71)), which is defined for all volume fractions as the positions farther

from the wall than Hlayer = 5a1. The core shear rate γ̇core is determined at each time step

from a linear regression of the particle velocity distribution of the particles situated inside

the core region (Table 4.7).

The computed viscosity (using Eq. (2.76)) is displayed as a function of the core volume

fraction in Fig. 4.16. It is compared to results obtained by Lobry et al. (2019) using the

Force Coupling Method, or by Gallier et al. (2018) using the FDM with standard sub-grid

corrections. The different sets of data are in close agreement, with slight but significant

discrepancy for the high volume fraction range (φ > 0.45) where the viscosity from the

present data set is a bit under the data from Gallier et al. (2018). This discrepancy might be

explained by the different sizes of the simulation volume used in either of the two studies.

Figure 4.15
Steady volume fraction profile in a steady plane Couette flow for φ0 = 0.42.
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While the channel width is at most Ly = 25a1 for us, Gallier et al. (2018) chose a wider

channel Ly = 40a1. Thus, a slight residual ordering effect could be responsible for the lower

viscosity in the present simulations.

A classic Maron-Pierce correlation law is fitted to the two FDM data sets:

ηs =
α

(1−φcore/φJ)
2

(4.12)

where α and φJ are fitting parameters. The jamming volume fraction φJ is known to

significantly depend on the friction coefficient µ, and takes decreasing values from 0.64

to approximately 0.55 as the µ increases from 0 to 10, although it hardly varies for µ > 2

(Mari et al., 2014; Peters et al., 2016; Abhinendra Singh et al., 2018; Lobry et al., 2019). In

the present work, the fitting procedure yields close values for the two FDM data sets, i.e.

approximately 0.59, in good agreement with data from the literature for the same µ.

Normal and shear stresses, as well as their contact contribution, have been computed too.

In the following, they are compared to the correlation laws proposed by Badia et al. (2022)

that were obtained by a fitting procedure to the earlier numerical data mentioned above

(Gallier et al., 2018; Lobry et al., 2019). They are displayed as normalized quantities:

N̂1 =
Σ11 − Σ22
Σ12

N̂2 =
Σ22 − Σ33
Σ12

Σ̂c12 =
Σc12
Σ12

Σ̂c11 =
Σc11
Σ12

Σ̂c22 =
Σc22
Σ12

Σ̂c33 =
Σc33
Σ12

(4.13)

Figure 4.16
Suspension viscosity in the core region as a function of core volume fraction. Symbols:
simulation data; dashed lines: Maron-Pierce fits. In the present work, α = 0.803.
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The first and second normal stress differences are displayed in Fig. 4.17 (top), together

with the corresponding data from Gallier et al. (2018) and Lobry et al. (2019) and the

correlation laws. Again, the agreement with earlier simulations is satisfactory, with a larger

discrepancy for the first normal stress difference though. However, the latter quantity is

smaller and subject to relatively higher fluctuations. Finally, the contact contribution to the

shear and normal stresses are important quantities, since they are expected to play a key

role in the shear-induced particle migration (Lhuillier, 2009; Nott et al., 2011). They are

displayed in Fig. 4.17. Again, they stick to the correlation law from Badia et al. (2022).

As we can see, a very good agreement is observed between our results and the ones

obtained by Gallier et al. (2018) by using the FDM with standard sub-grid corrections.

The difference between the results, albeit small, increases with the volume fraction: some

of it could come from the different sub-grid corrections employed. To check this, we can

compare the slip velocity. By taking as an example φ0 = 0.54, we have a low shear rate

equal to γ̇core = 0.563γ̇0, which is much lower than the one obtained by Gallier et al. (2018)

(γ̇G.2018
core = 0.801γ̇0); however, the authors used a bigger domain (Lx = Ly = Lz = 40a1). We

can define the slip velocity as us = (γ̇− γ̇core)Ly/2: at φ0 = 0.54 we obtain us = 5.46 =

9.7γ̇corea1, while Gallier et al. (2018) obtain uG.2018
s = 4 = 5γ̇corea1, showing a greater slip

velocity in our simulations.

Figure 4.17
(top) Normal stress differences, and contact contribution to the total shear stress. (bottom) Contact
contribution to the normal stresses. The normalized quantities (Eq. (4.13)) are displayed as a function
of φ/φJ. Symbols: simulation data from: the present work (•), Gallier et al. (2018) (H), and Lobry
et al. (2019) (N). Plain line: correlation law from Badia et al. (2022).
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4.2.3 mechanical consistency

Let us now check the mechanical consistency of the forces acting in the system. Here we

want to check that the coupling of the momentum equations for the fluid and the particles

is conveniently tackled. This is one of the most important characteristic features of the

Fictitious Domain Method: as the fluid flow is completely solved, we have access to all the

hydrodynamic forces acting on and generated by the fluid, in addition to all the quantities

related to the particles.

We propose to check one of the suspensions treated in the current section: the one with

φ0 = 0.42 (see Section 4.2). However, it should be kept in mind that we rigorously checked

the mechanical consistency for every single case presented in the whole current work.

First, integration of Eq. (2.1) (without inertia and gravity) over the whole simulation

domain, and taking into account that λ is zero outside the particles domain ∪pDp, yields:∫
∂w

σ · n dS+ ρf
∫
∪pDp

λdV = 0 (4.14)

In addition, integration of the same equation only on the particle domain yields:∫
∪p∂Dp

σ · n dS+ ρf
∫
∪pDp

λdV = 0 (4.15)

Figure 4.18
Qualitative representation of the indicator functions Iλ: the particles cannot overlap, but
the indicator functions can; in the overlapping positions (dark red region), Iλ is given
the value 0.5 to avoid the force density to be counted twice. n is the outward normal to
the boundaries ∂w or to the particle surface ∂Dp, and ∪pDp is the particles domain.
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where n is the outward normal to the wall boundaries ∂w or to the particle surface ∂Dp
(see Fig. 4.18). It should also be noted that the net contribution of the periodic boundaries is

equal to zero.

Eq. (4.15) means that the opposite of the integral of the force density equals the hydro-

dynamic force exerted on the solid domain as computed by the solver (see Eq. (2.6)). As

a consequence, Eq. (4.14) means that the force exerted by the boundaries on the fluid is

transmitted to the particle domain. Thus, checking Eq. (4.14) is equivalent to checking that

the integral momentum equation accurately holds.

The hydrodynamic forces produced by the fluid (second term in RHS of Eqs. (4.14)

and (4.15)) can be computed in two ways: either by integrating the force density field λ

directly in the whole volume without the need of indicator functions or by integrating it

in each particle using the corresponding indicator function Iλ and then summing over the

particles (see Section 2.5.4). Clearly, as λ is itself defined equal to zero outside Iλ, the two

procedures should exactly give the same result. However, this is very useful and meaningful:

as the indicator function is bigger than the particle size, they can overlap when two particles

are at close distance, and that is why we decided in Section 2.5.4 to set Iλ equal to 0.5

in the overlapping positions: as a consequence, even though particles overlap, the force

density in the overlapping region is not counted twice. Then, comparing the hydrodynamics

forces produced by the fluid computed in the two proposed manners verifies the correct

implementation and behavior of the indicator functions.

This is particularly important, since the fluid equations, and consequently the computed

flow, account for the force density with no indicator function, while the particle momentum

equation (Eq. (2.4)) is based on the hydrodynamic forces computed using the indicator

functions. It is thus mandatory that the total force exerted by the fluid on the particles be

the same with and without the use of indicator functions.

Therefore, let us define the following quantities:

Fw =

∫
∂w

σ · n dS

FFDM,V = −ρf

∫
∪pDp

λdV

FFDM,parts = −ρf
∑
p

∫
∂Dp

σ · n dS =
∑
p

FFDMp

(4.16)

which are respectively the force exerted by the whole domain boundaries on the fluid, the

force exerted by the fluid on the particle domain, and the sum of the forces exerted by the

fluid on the particles.

Finally, let us compare them in Fig. 4.19 in the three directions (x, y, z), where a zoom

at the beginning of the simulation (0 6 γ̇0t 6 5) is proposed. As we can see, Eq. (4.14) is

extremely well satisfied for the three components, proving also the right implementation of

the indicator functions.
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Figure 4.19
Comparison between the total force exerted by the boundaries on the fluid, and the sum of the
hydrodynamic forces acting of each particle computed in two different manners, along the three
directions (i.e., check of Eqs. (4.14) and (4.15)). Only a zoom at the beginning of the simulation
(0 6 γ̇0t 6 5) is given as an example.
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Let us now turn our attention to the mechanical consistency of each particle, and let

us check that the hydrodynamic forces (and torques) acting on the particles (both the

ones computed by the solver and the ones coming from the sub-grid corrections) are

counterbalanced by the contact ones, i.e. that on each particle and for each time step the

following equations, which follow from Eq. (2.4) without inertia and gravity, hold:

Fhp + Fcp = 0 , Thp + Tcp = 0 (4.17)

with Fhp = FFDMp + FSGp , being FFDMp and FSGp the hydrodynamic forces as seen by the solver

and the ones coming from the sub-grid corrections, respectively (see Section 2.1), and the

contact forces and torques Fcp and Tcp as defined in Section 2.6.

As we can see in Fig. 4.20, where the three components (normalized by Npηγ̇0a21 for the

forces and by Npηγ̇0a31 for the torques) are investigated, Eq. (4.17) is very well satisfied by

each particle at each time step (just to be precise, on each subplot there are [# time steps]×
[# particles] = 10001× 547 = 5470547 points), demonstrating that the contact forces and

torques acting on each particle are perfectly counterbalanced by the hydrodynamic ones,

recalling and stressing out that the hydrodynamic forces and torques have been corrected

using the sub-grid corrections proposed in Chapter 3.

In Table 4.8, the comparisons shown in both Figs. 4.19 and 4.20 are re-proposed by

displaying the error, which has been computed by averaging over the time steps, and

also over the particles when necessary. As we can see, the agreement is very good for all

the quantities and in the three directions, in particular when comparing FFDM,parts with

FFDM,V : FFDM,V was computed during the run so that one single number was written

in the file for each vector component, while each component of FFDM,parts is the sum of

Np = 547 numbers, each of which was written in a file, and the sum was performed in

post-processing so that the difference between the two is related to the writing precision.

This demonstrates again the correct implementation and behavior of the indicator functions.

This quantitatively proves that the mechanical consistency is very well satisfied in the

whole system, for each particle, and at each time step of the simulation.

Table 4.8
Quantitatively comparing the quantities displayed in Fig. 4.19 and Fig. 4.20. The notation (·) stands for
the averaging over the time steps (and an additional averaging over the particles when necessary, i.e.
for Fc,hp and Tc,hp ).√√√√√√

(
F
w
− F

FDM,parts
)2

(
F
w
)2

√√√√√√
(
F
FDM,V

− F
FDM,parts

)2
(
F
FDM,V

)2
√√√√√√
(
F
c
p + F

h
p

)2
(
F
c
p

)2
√√√√√√
(
T
c
p + T

h
p

)2
(
T
c
p

)2
x 0.0229 0.82 · 10−7 0.0019 0.0062

y 0.0016 1.46 · 10−7 0.0020 0.0224

z 0.0225 1.42 · 10−7 0.0017 0.0117
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Figure 4.20
Comparison between the normalized hydrodynamic forces (and torques) acting on the particles
(the sum of the forces computed by the solver and the sub-grid ones) and the contact forces,
along the three directions and for each particle at each time step (i.e., check of Eq. (4.17)), where
F̂ = F/

(
Npηγ̇0a

2
1

)
and T̂ = T/

(
Npηγ̇0a

3
1

)
.
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4.2.4 computational performances

In Table 4.9 we present the relative computational times of the flow resolution (fluid velocity

and pressure fields) and of the computation of the velocities of the particles (inversion of the

linear system of Eq. (2.43)) with respect to the total time step, varying the number of particles

NP. The sum of these two computational times does not make the totality, as the writing of

the results files and the setup of the time step (moving the particles, building the resistance

matrix, etc.) are not shown here. As we can observe, the computation of the velocities of

the particles takes more and more time with respect to the total time step as we increase

the number of particles. We did not test the optimization of this step, however, we easily

could try to reduce it by coupling OpenMP with MPI (OpenMP is already implemented

in the Eigen library, which is used to solve the linear system associated with the velocities

of the particles). We also present the wall times for the different simulations; we employed

two different partitions: one with Intel Xeon Gold 6428 @2.5GHz cores and the other with

AMD Epyc 7302 @3GHz cores (see the technical presentation of the Université Côte d’Azur

cluster Azzurra for more information about the nodes). In Figs. 4.21 and 4.22 and Table 4.9

the strong scaling is tested for three different domain sizes:

• (Lx × Ly × Lz) = (20a1 × 20a1 × 20a1), i.e. 106 mesh cells (size S);

• (Lx × Ly × Lz) = (40a1 × 40a1 × 20a1), i.e. 4 · 106 mesh cells (size M);

• (Lx × Ly × Lz) = (40a1 × 40a1 × 40a1), i.e. 8 · 106 mesh cells (size L).

As we can see, the ideal speedup is rapidly abandoned: this is a known limit in OpenFOAM.

However, we notice that a better speedup is achieved for the domain sizes M and L: indeed,

the number of mesh cells per core seems to be an important factor. It exists a minimum

number of mesh cells per core below which there is no speedup achievable. We also observe

a significant difference between the AMD and the Intel cores: in the cluster, we employed for

the benchmarks (Azzurra, mentioned above) each AMD core has ≈ 1.7 times the memory of

the Intel ones and 4 times the bandwidth.

Table 4.9
Computational times for suspensions in a simple shear flow.

φ0 NP
Lx,y

a1

Lz

a1

flow
res. [%]

parts.
vels. [%]

Ncores
wall

time [s]

0.27 1350 20 20 80 7 196 0.40

0.32 1416 20 20 77 8 196 0.42

0.37 1481 20 20 72 10 196 0.45

0.42 1547 20 20 76 9 164 0.66

0.47 1956 25 20 48 20 128 0.58

0.52 1057 25 20 40 30 192 0.91
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Figure 4.21
Wall times testing the strong scaling performances for three different domain sizes:
(top) (Lx × Ly × Lx) = (20× 20× 20)a31, i.e. 106 mesh cells; (center) (Lx × Ly × Lx) =
(40× 40× 20)a31, i.e. 4 · 106 mesh cells; (bottom) (Lx × Ly × Lx) = (40× 40× 40)a31, i.e.
8 · 106 mesh cells.
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Figure 4.22
Speedup obtained testing the strong scaling performances for three different domain
sizes: (top) (Lx × Ly × Lz) = (20a1 × 20a1 × 20a1), i.e. 106 mesh cells; (center) (Lx ×
Ly × Lz) = (40a1 × 40a1 × 20a1), i.e. 4 · 106 mesh cells; (bottom) (Lx × Ly × Lz) =
(40a1 × 40a1 × 40a1), i.e. 8 · 106 mesh cells.
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We investigate the effect of adhesive forces in frictional suspensions. We start by presenting

the current relevant literature: different experimental studies have been done, but only a few

numerical studies are present. Then, we introduce and justify the contact model employed

here: we choose a very simple but still realistic model. To proceed, we will have to define all

the dimensionless parameters of interest.

After introducing the simulation setup, we present a cartography of the difficulties

encountered. Finally, we display the results and propose a discussion.
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5.1 state of the art

adhesion and yield stress

Following Larson (1999), two yields stresses can be defined. At high shear stresses the

relation between the shear rate and the stress is more or less linear, while at zero shear rate

a positive stress is extrapolated. This defines the “Bingham” yield stress, which differs from

the “real” yield stress, measured by finding the minimum stress required to induce flow.

There has been a long controversy about the existence of a “real” yield stress: Barnes

(1999) claimed that this is a fiction, and gave various illustrations of materials that apparently

tended to limit shear stress at low shear rates but that nevertheless did still flow at lower

shear rates or shear stresses. The statement that a material does not flow is of course

always associated with a particular time scale. Reiner (1959) would argue that even the

mountains flow if you wait long enough. The concept of yielding can be compared with that

of glass transition, which is also based on a kinetic rather than a thermodynamic argument.

Unfortunately, there is no unique experimental procedure to determine the yield stress.

Nevertheless, the yield stress remains a useful and commonly used rheological concept.

In the present study, the yielding mechanism is related to attractive forces between the

particles. Indeed, adhesion can have a significant effect on the microstructure and rheological

properties, and has been widely investigated mainly in Brownian colloidal suspensions

(Larson, 1999; Mewis & Wagner, 2011): in most real systems there are often interparticle

forces causing neighboring particles to attract each other and generate clusters.

the role of the volume fraction on the microstructure

In this framework, the volume fraction plays a central role. At low concentrations, increasing

the intensity of adhesive forces results in floc formation, i.e. dynamic clusters more or less

independent from each other. The instantaneous structure of the flocs is affected by and

has an effect on the flow: the flow accelerates the rate of aggregation as it brings particles

together more quickly, but it also pulls particles apart possibly breaking the aggregates. The

size of these clusters depends on the shear rate: the higher the shear rate the smaller the

flocs (Doi & Chen, 1989; Boromand et al., 2017; Papadopoulou et al., 2020). However, very

low values of the jamming volume fractions may be found at high shear stresses, seemingly

indicating that not all the clusters are destroyed even at high stresses (Papadopoulou

et al., 2020). The strong influence of the clusters on rheology, together with the different

length scales at play (particles and clusters), make the experimental and numerical study of

adhesive suspensions a difficult matter.

Increasing the concentration leads to an increase in the size of the flocs. This also increases

the probability for different flocs to interact; depending on the shear stress, this can either

cause percolation and yielding or flocs breaking and reforming quickly (Larson, 1999).

At very high concentrations, yielding and shear-thinning behaviors may alter the shear-

thickening transition from lubricated to frictional contact (Pednekar et al., 2017; Abhinendra

Singh et al., 2019; Richards, 2021), leading to particular microstructure (Edens et al., 2021).
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the effect on rheology

The complex interplay between microstructure and flow results in strongly-non-Newtonian

behaviors and induces pronounced rheological changes. In semi-dilute regimes, increasing

the interparticle attraction changes the rheological behavior quite suddenly from that of a

liquid to that of a weak solid or gel, as Agbangla et al. (2014) observed in their numerical

investigation of microchannel clogging. While increasing, even more, the concentration of

particles leads to percolation, gelation, and glass formation. In general, an increase of the

adhesive forces can lead to enormous increases in the low-shear viscosity, possibly evolving

into a yield stress below which the suspension does not flow (Mewis & Wagner, 2011).

At low shear stresses, a strong shear-thinning behavior of the viscosity has been observed

in the 2D numerical simulations of non-Brownian suspensions by Doi & Chen (1989). This

is also confirmed by Koumakis et al. (2015), who investigated colloids both experimentally

in a large range of Péclet’s numbers and numerically neglecting hydrodynamic interactions,

at fixed volume fraction φ = 0.44: while increasing the shear rate, they observed a transition

from yielding to Newtonian behavior, and they defined a modified Péclet’s number Pedep
which reflects the ratio of shear to attracting forces and found the limit between the two

above-mentioned behaviors at Pedep = 1. They also observed a very heterogeneous structure

of the particles, evidencing the presence of flocs with very different behaviors at Pedep < 1.

It should be noted that the transition Pedep = 1 occurs at quite a high standard Péclet’s

number (∼ 100) suggesting a limited influence of Brownian motion in the transition.

Yielding is also observed for larger particles for which Brownian motion is negligible

(Zhou et al., 1995; Richards et al., 2020), and it strongly increases with the volume fraction.

our research

Surely, adhesion has a strong appeal, also because a lot of questions are still unanswered

and a clear and shared framework has not been established yet. Here, we want to numeri-

cally investigate the role of adhesion in frictional non-Brownian particles, for moderately

concentrated and concentrated suspensions undergoing simple shear flow. It will be shown

that more dilute systems may be more difficult to tackle. The results are compared to earlier

data obtained with the Force Coupling Method (FCM) and have not been published yet.

The central quantity of interest here is the ratio between the shear stress and the adhesive

force Σ12a2/Fadh (it should be noted that this ratio is equivalent to the definition of Pedep by

Koumakis et al. (2015)); combining this quantity with the idea of a stress-dependent jamming

volume fraction, we propose to search for the behavior of the latter while varying adhesion,

i.e. we want to study φJ = f
(
Σ12a

2/Fadh
)
. This stress-dependent jamming volume fraction

has already allowed rationalizing experimental measurements using modeling (Zhou et

al., 1995; Barnes, 1999; Guy et al., 2018; Richards et al., 2020; Richards, 2021) as well as

numerical simulations (Koumakis et al., 2015), in particular in the field of shear-thickening

transition of adhesive suspensions (Abhinendra Singh et al., 2019; Richards, 2021). As

explained in these papers, this stress-dependent jamming volume fraction is equivalent to a

volume-fraction-dependent yield stress σya2/Fadh = f (φ).
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5.2 contact model : elasticity

and adhesion

In Section 2.6 we already presented the model employed for elastic contact, and we have seen

that this comes from the hypothesis that contact between particles (and between particles

and walls) occurs between asperities present on the particle surface. Now, let us see how the

contact model is modified to introduce an adhesive force.

Contact between two elastic bodies is a very complex mechanism and, as shown by

Johnson (1985) when closely investigating the edge of contact the model proposed by Hertz

(1882) becomes too restrictive. The JKR theory of elastic contact, recalled in Appendix E, has

the same validity domain as Hertz theory and is well suited to spherical smooth bodies or

for mono-asperity contacts. In this case, the dependence of normal load and contact area

on compression is complex, and the maximum value of the tangential (frictional) force is

expected to be proportional to the square of the contact area and nonlinear with the normal

load. Also, as explained below, in JKR theory, when the normal load is zero the contact area

is finite and, consequently, friction is finite too.

slip

stick

hr

Figure 5.1
Contact model: (top) normal force, and (bottom) maximum value of the tangential force. Fn = 0 is
reached at a positive compression δ0, and a positive tangential force is still present (•). At δ = 0 (N),
the tangential force vanishes and the normal one is equal to the (negative) adhesive force.
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It should be stressed that in the situation of real rough surfaces where contact occurs via

numerous asperities, the contact area is lower than the apparent one, and the tribology is

very complicated and system-dependent. However, an in-depth discussion of this subject is

out of the scope of the present study.

The model chosen here is a simplified version of the more complete model presented by

Johnson et al. (1971): we add a constant (negative) adhesive force to the normal elastic force

(the latter coming from the Hertz Law), as represented in Fig. 5.1 [top left] and of the form:

Fn = knδ
3/2 − Fadh (5.1)

As previously, contact occurs when the distance between the particle surfaces is smaller

than the roughness height hr, i.e. the compression δ is positive. The normal contact force is

equal to the (negative) adhesive one when δ = 0 (N in Fig. 5.1), and it is zero at a positive

compression δ0, where the compression force balances the attractive one (• in Fig. 5.1). As a

consequence, the normal force is attractive for δ < δ0 and repulsive otherwise.

The friction force is assumed to be related to the contact area, which is connected to the

elastic contribution of the force, i.e.:

Ft = µ
(
Fn + Fadh

)
(5.2)

This idea is explained in detail in Appendix E, where a comparison with the JKR’s theory

is proposed. In particular, we note here that the vanishing of the tangential force at δ = 0

is expected to be unrealistic since the contact area is not expected to vanish. However, an

important point is that a finite tangential force may occur for zero normal force (•), as

expected. We note also that, in the same way as previously, the relation between Fn and δ is

made steeper for δ→ hr (Eq. (2.57)).

5.3 numerical details

Before proceeding, it should be noted that high adhesive forces need smaller time steps.

Hopefully, decreasing the time-step allows to decrease the number of SIMPLEC loops to

be done in the algorithm over the fields U, p and λ and the velocities of the particles

(Up,Ωp) while keeping a low tolerance for the convergence of the force density field.

However, in general, the computational cost increases when high adhesive forces are

employed. The choices of ∆t and the number of loops have been done using previously-

obtained non-adhesive suspensions simulation results and by checking the overall particle

momentum balance and force density residuals. In conclusion, we employ γ̇0∆t = 10−5 and

γ̇0∆t = 5 · 10−6 with only 1 SIMPLEC loop for the most adhesive cases, and γ̇0∆t = 10−4

with 10 SIMPLEC loops for all the others.
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5.3.1 numerical setup and dimensional

analysis

Time, length, and forces are made dimensionless using respectively 1/γ̇0, a1, and ηγ̇0a21.

Then, the dimensionless parameters used in the simulations are:

• cubic domain → (Lx × Ly × Lz) /a31 = (20× 20× 20): a cubic domain is employed,

which size (kept fixed) leads to a number of particlesNp typically between 300 and 900;

walls are orthogonal to the y-direction with the same but opposite velocity imposing a

shear rate γ̇0 = 1/t;

• volume fraction→ φ0: various values of the mean volume fraction are investigated;

• particles radii→ a2/a1 = 1.4: bidisperse suspensions with two particle radius lengths

a1 and a2 are considered, with equal volume fraction φ1 = φ2 = φ0/2;

• friction coefficient→ µ = [0.0, 0.1, 0.5]: for each considered system, the value of the

friction coefficient is kept constant; however, three values are investigated here, for

which adhesion is varied;

• roughness height→ hr/a1 = 0.005: as previously mentioned, contact occurs through

asperities present on the particle surface, which height hr is kept fixed; this is the

typical value found in experiments for model spherical particles (Blanc et al., 2011b);

• elastic parameter → 6πηa21γ̇0/
(
kn (εhr)

3/2
)

= Γ̇ = 1: the typical hydrodynamic

stress between two particles in a simple shear flow (in dilute suspensions) is 6πηa21γ̇0,

and its ratio to the elastic normal force kn (εhr)
3/2 is set to 1 and kept fixed, leading

to a typical compression of the asperity in dilute suspensions of about 5% (δ ≈ 0.05hr,

see Section 2.6 and Eq. (2.58));

• adhesion parameter→ Gadh0 = Fadh/
(
6πηa21γ̇0

)
: this is the ratio of the intensity of

the adhesive force to the typical hydrodynamic force in a dilute suspension; we are

going to vary this parameter to vary the adhesion between the particles and between

the particles and the walls, or equivalently to vary the shear stress for a constant

adhesion force between particles; we note that Gadh0 does not involve the suspension

viscosity, but only the solvent viscosity and, as a consequence, its inverse is actually to

be considered a reduced shear rate in a concentrated suspension.

In experiments, the shear rate is varied for given properties of the particles (stiffness,

adhesive force). In that frame, both Γ̇ and Gadh0 would vary, such that Γ̇ ×Gadh0 is constant.

This is not done here and, as said above, Γ̇ is kept constant. This should not be of importance

in the present work: without adhesion, this should have no effect if Γ̇ is kept high enough

(Section 2.6), and in previous simulations performed using the FCM with Γ̇ ×Gadh0 = const

this showed no effect (as it will be presented in the following).
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5.3.2 numerical parameters

For each of the three considered values of the friction coefficient µ, sequences of equal or

similar volume fractions φ0 are chosen, for which the adhesion parameter Gadh0 is varied.

In Table 5.1 the parameters used in the simulations for the three friction coefficients

µ = [0.0, 0.1, 0.5] are shown. In general, the main idea is to choose such parameters to

obtain results that fill a grid with more or less constant core volume fractions and shear

stresses. Then, for each value of the volume fraction (or a list of similar volume fractions, as

for µ = 0.0 and µ = 0.1), the adhesion parameter Gadh0 is let vary from high values (strong

adhesive forces) to low ones (weak adhesive forces).

It has to be specified that the campaign for µ = 0.5 was first performed. In that case, the

volume fraction φ0 is kept constant for multiple values of Gadh0 ; this is slightly different

for µ = 0.0 and µ = 0.1, for which each value of φ0 has a specific associated value of Gadh0 .

Also, the volume fractions employed for µ = 0.0 and µ = 0.1 are in general higher, because

we expect higher jamming volume fractions for lower friction coefficients. The other reasons

why for µ = 0.0 and µ = 0.1 higher volume fractions φ0 have been chosen and why they

have been varied more often will be clearer after discussing the results.

Table 5.1
Numerical parameters for the three values of the friction coefficient µ = [0.0, 0.1, 0.5]: chosen volume
fractions φ0 and associated adhesive coefficients Gadh0 .

µ = 0.5

φ0 [%] Gadh0

27 97, 29, 14, 4.4, 2.66, 1.6, 0.66, 0.29

32 184, 92, 37, 7.3, 4.44, 2.3, 0.96, 0.37

37 435, 104, 17.4, 9, 4.4, 1.67, 0.65

42 405, 53, 22.12, 11, 3.63, 1.2

45 377, 226, 44.72, 23, 6.54, 2.5

µ = 0.1

φ0 [%] Gadh0

36, 36, 37, 37 9.34, 4.05, 1.9, 0.9

41, 41, 42, 42 17.9, 7.2, 3.27, 1.5

45, 45, 47, 47 30, 11.3, 6.92, 3

49, 50, 51, 52 84, 33, 17.1, 8.83

52, 54, 55, 56 336, 180, 93, 48

µ = 0.0

φ0 [%] Gadh0

36, 36, 37, 37 4.71, 2.95, 1.72, 0.74

41, 41, 42, 42 13.5, 6.2, 2.85, 1.32

46, 46, 47, 47 24, 10.6, 5.46, 2.43

50, 51, 52, 53 54, 28, 14.4, 7.44

54, 56, 57, 58 216, 199, 103, 53
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5.3.3 simulation domain

As already mentioned, in all the results presented in the current chapter the domain size

is (Lx × Ly × Lz) = (20a1 × 20a1 × 20a1), and a simple shear flow as in Fig. 5.2 [left] is

imposed with a shear rate equal to γ̇0 = 1.

In an attempt to limit wall-depletion and shear-banding (Section 5.4.1), for µ = 0.0 and

µ = 0.1 particles have been “attached” to the walls (i.e., they have the same velocity as the

walls: this choice has been done aiming at better shearing the suspension. Numerically,

the particles are attached to the walls by simply considering a bigger domain size in the

direction of the walls when initially filling the domain with the specified volume fraction.

For the cases presented here, the domain size is increased by a length equal to 1.4a1 for

each wall during the filling.

particles attached
to the walls

Figure 5.2
(left) Numerical domain employed for all the simulations presented in the current chapter. (right)
For µ = 0.0 and µ = 0.1, particles have been attached to the walls to better shear the suspension.

5.3.4 rheology

The mean stress and the volume fraction, as well as their profiles, are computed as in

Section 2.7 (see Eqs. (2.70) to (2.75)). Also, the adhesive part of the stresses can be easily

isolated from the elastic one. Generally speaking, this separation of the two contributions

may be a bit arbitrary, but in the frame of our model, it should be recalled that only

the elastic part affects friction, and therefore it may make sense to separate it from the

adhesive contribution. The volume fraction and particle velocity profiles φ (y) and up,x (y),

respectively, are computed as defined in Eqs. (2.70) and (6.4).
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5.4 results

We present in this section the simulation results obtained with the FDM. We investigate three

values of the friction coefficient: µ = [0.0; 0.1; 0.5]. For each of them, we vary the adhesive

forces, i.e. we vary the adhesive parameter Gadh0 , and we study the typical rheological

quantities. To have a wider view, we integrate also some results earlier obtained with the

Force Coupling Method.

We will show how to analyze the results and exploit them to obtain the desired quantities:

in particular, data will need to be interpolated. But first, the shear-banding and wall-

depletion observed at low volume fractions and high adhesion are displayed. To this

purpose, different quantities may be defined upon averaging either in the core homogeneous

suspension, where the walls exert no influence (core quantities), or in the whole simulation

domain (apparent quantities). In more detail, the apparent relative viscosity reads:

Σ12
ηγ̇0

= ηsapp (5.3)

where Σ12 is the mean shear stress averaged over the whole simulation domain and over

time (in the stationary regime).

Let us now define quantities in the suspension core, where no wall-layering is observed.

The shear rate γ̇core is computed from the linear regression of the particle velocity profile

and is then time-averaged over the stationary regime. Since particle layering in the vicinity

of the walls induces wall slip, the core shear rate is smaller than the imposed one γ̇0, at least

when the walls are not roughened using attached particles. In addition, the volume fraction

in the wall area is smaller than its counterpart in the core region, so that φcore > φ0. This

leads to a measured core adhesive parameter Gadhcore and a core reduced shear stress:

Fadh

6πηγ̇corea
2
1

= Gadhcore

6πΣ12,corea
2
1

Fadh
= σ∗ =

ηscore
Gadhcore

(5.4)

where the core relative viscosity ηscore is computed from the time-averaged core shear stress

and shear rate as:

Σ12,core
ηγ̇core

= ηscore (5.5)

It should be noted that, given a specific system in experiments, keeping a constant σ∗

corresponds to keeping a constant shear stress. Thus, σ∗ is the ratio of the shear stress to the

stress Fadh/
(
6πa21

)
, which is the typical stress needed to separate two particles at contact.
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5.4.1 wall-depletion and shear-banding

In the cases of moderately concentrated suspensions and high adhesive forces, the particles

may form a single cluster, or sometimes two clusters, which do not deform, most of the

time due to a clear layer in the vicinity of the walls that results in a strong wall-slip: this

behavior is called wall-depletion. In such cases, the core shear rate γ̇core drops to very low

values, sometimes exactly zero: this behavior is called shear-banding.

To better understand these mechanisms, an example is given in Fig. 5.3: the results for two

mean volume fractions φ0 = 0.27 (blue lines, upper three rows) and φ0 = 0.45 (green lines,

lower three rows), with same friction coefficient µ = 0.5, and multiple adhesion parameters

Gadh0 (increasing from left to right) are given.

As we can observe, for the cases with low mean volume fraction and high adhesive forces

(on the right of the upper three rows), agglomerations of particles arise, leading to volume

fraction profiles (time-averaged in the stationary regime) that are not constant in the core

region, contrarily to the non-agglomerated cases with low adhesive forces (on the left of

the upper three rows). Also, in the agglomerated cases the core shear rate decreases during

the simulation run and it can reach very low values, sometimes exactly zero, showing that

the suspension is no more deformed and agglomerates are only translated. We note that, in

general, the agglomerated cases exhibit a long transient, so it is very important to wait for

the stationary regime to be able to see such behavior.

The above-mentioned behavior is not observed in suspensions with high volume fractions,

not even in the cases with high adhesive forces, as we observe in the lower three rows of

Fig. 5.3 (i.e., for φ0 = 0.45), where the suspension always shows a finite shear rate γ̇core
and the corresponding volume fraction profiles (time-averaged in the stationary regime)

show a constant region in the core.

The quantities in Fig. 5.3 for φ0 = 0.45 also present strong oscillations, showing the

importance of performing long-lasting simulations. All the simulations have been launched

for a deformation of the core region during the stationary regime of at least ≈ 25tγ̇core.

In the cases where γ̇core ≈ 0, the core relative viscosity ηscore cannot be defined. In

Fig. 5.4 the results for µ = 0.5 are shown, where the computed apparent relative viscosity is

also displayed. We notice that in the agglomerated cases ηsapp levels off: this is only a side

effect of shear-banding (“apparent”, indeed). We note that, in the context of experimental

measurements in the presence of shear-banding, a viscosity close to ηsapp is expected.

Fig. 5.4 displays the trends that have been explained above: at high mean volume fraction

φ0, reducing the stress induces a slight increase of the volume fraction, and a decrease of the

core-shear rate, which keeps finite though. The viscosity seems to diverge, suggesting the

existence of a yield stress. At a lower mean volume fraction, the viscosity increases too as the

stress is decreased, but the conclusions are blurred by the concomitant increase of the core

volume fraction. In that case, low-stress measurements are impeded due to shear-banding.
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Figure 5.3
Volume fraction profiles 〈φ〉 and particle velocity profiles 〈up,x (y)〉 (both time-averaged in the
stationary regime), and evolution in time of the core shear rate γ̇core, for µ = 0.5 and different
adhesion parameters Gadh0 (increasing from left to right): (blue lines, upper three rows) results for
φ0 = 0.27 (σ∗ = [10.59, 0.4, 0.21, 0.07]), and (green lines, lower three rows) results for φ0 = 0.45
(σ∗ = [7.84, 2, 0.9, 0.82]).
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Finally, in both volume fraction ranges, homogeneous straining of the suspension is only

possible for reduced stress larger than typically 1. This suggests that the yield stress satisfies

the following intuitive relation:

σ∗c ∼
Fadh

6πa21
(5.6)

meaning that the stress needs to be high enough for the induced force between the particles

to break adhesive bonds between particles. We finally recover the qualitative definition of a

yield fluid: if the shear stress is too weak, the material does not flow.

To conclude, it is very difficult to simulate systems with σ∗ . 1, and the exact critical

value (the yield stress) depends on the mean volume fraction φ0: for φ0 & 0.4, the core

volume fraction slightly increases and the relative viscosity diverges, leading to prohibitive

computational costs while approaching the yield stress; for φ0 . 0.4, the relative viscosity

increases too, but now the core volume fraction strongly increases, leading to very low

values of the core shear rate (often exactly zero) and results become unclear or unusable.

We recall that µ = 0.5 has been the first simulations campaign, and we have seen that

in some cases, shear-banding and wall-depletion were observed. For µ = 0.0 and µ = 0.1,

we tried to avoid these behaviors: this is why, as previously introduced, we decided to

attach particles to the walls (as shown in Fig. 5.2 [right]), aiming at better shearing the

suspension. In Fig. 5.5, the volume fraction and particle velocity profiles as well as the

Figure 5.4
Time-averaged (upper left) core volume fraction φcore, (lower left) apparent relative viscosity ηsapp,
and (right) core shear rate γ̇core, as a function of the reduced shear stress σ∗, for different values
of φ0 and with µ = 0.5. Symbols: (•) φ0 = 0.27, (�) φ0 = 0.32, (N) φ0 = 0.37, (F) φ0 = 0.42, (�)
φ0 = 0.45. The lines are a guide to the eye. Red region: shear-banding regime.
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temporal evolution of the shear rate for µ = 0.1, φ0 = 0.36− 0.37, and varying the adhesion

parameter (increasing from left to right), are shown. Observing the results, we notice that

the shear rate never reaches values close to zero (the results for µ = 0.0, although not shown

here, are analogous). Therefore, we have the feeling that the suspension is indeed better

sheared in cases with high adhesion when particles are attached to the walls.

However, a definitive conclusion about the effect of attaching particles to the walls cannot

be done at this point, as a systematic comparison of simulations with smooth (but still

frictional) and rough walls and with otherwise same parameters should be done. Also, we

expect this stratagem not to be completely sufficient to avoid shear-banding. Indeed, we

tried to attach particles to the walls in one of the cases with µ = 0.5 showing shear-banding,

but the results showed no difference when compared to the ones obtained without using this

stratagem. Therefore, we expect this expedient to work only – and partially – for moderately

concentrated and concentrated suspensions. Moreover, we note that the volume fraction at

the walls is always larger than the mean volume fraction, meaning that, as the particles at

the walls were frozen, some layering still occurred. Increasing the size of the box used in the

preparation of the roughened wall (Section 5.3.3) may improve this point.

Figure 5.5
(top row) volume fraction and (center row) particle velocity profiles 〈φ (y)〉 and 〈up,x (y)〉, respec-
tively, time-averaged in the stationary regime, and (bottom row) temporal evolution of the core shear
rate γ̇core, for µ = 0.1 and different adhesion parameters Gadh0 (increasing from left to right): results
for φ0 = [0.37, 0.37, 0.36, 0.36], σ∗ = [7.71, 3.74, 1.84, 0.98]).
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5.4.2 material functions : raw data

Let us now investigate the reduced shear stress σ∗ and the core volume fraction φcore,

shear rate γ̇core, and relative viscosity ηscore, for the three values of the friction coefficient

µ = [0.0; 0.1; 0.5] and while varying the adhesion parameter Gadh, i.e. while varying the

reduced shear stress σ∗.

In Fig. 5.6, the shear stress is shown as a function of the shear rate: yield stresses are quite

visible for the two curves for µ = 0.5 with the highest volume fractions (φcore ≈ 0.47 and

φcore ≈ 0.48), for which the stress seems to level off at low shear rate. For lower values of

the friction coefficient the results are more difficult to interpret because, as already pointed

out, the core volume fraction is not constant when varying the shear stress.

As we can see in Fig. 5.7 [top], and as we already explained for µ = 0.5, the core volume

fraction φcore is rarely constant when decreasing the shear stress. For µ = 0.0 and µ = 0.1

we even tried to decrease φ0 when increasing Gadh0 (recall Table 5.1) aiming at obtaining a

more or less constant φcore: however, we notice that we still got an increase of φcore for

the low volume fractions (indicating that a stronger decrease is needed, or equivalently that

we are approaching the shear-banding regime), and for the high ones we got a decrease

of φcore (indicating that a weaker or no preventive decrease should be needed). Also, the

relative viscosity ηscore increases when decreasing the shear stress and approaching σ∗c ∼ 1:

the effect is more pronounced for µ = 0.5, and less visible for the other friction coefficients,

due to the decrease of φcore, which shades the increase of the viscosity.

Figure 5.6
Reduced shear stress as a function of the reduced shear rate, for the three friction coefficients. The
color of the points is related to the core volume fraction (the darker the color, the higher φcore).
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Figure 5.7
Core material functions for (left column) µ = 0.0, (central column) µ = 0.1, and (right column)
µ = 0.5: (top row) core volume fraction, (central row) core shear rate, and (bottom row) core relative
viscosity, as functions of the reduced shear stress. The color of the points is related to the core volume
fraction (the darker the color, the higher φcore).
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5.4.3 material functions : interpolated data

All the quantities considered from now on refer to the core region. Therefore, for the sake of

simplicity, the “core” notation is dropped in the text (but kept in the figures).

We have previously explained that the relative viscosity ηs depends on two parameters: the

volume fraction φ and the shear stress σ∗. However, only the apparent adhesion parameter

Gadh0 is imposed, and not the reduced stress. In addition, the core volume fraction is not

controlled either but only measured. To have a better understanding of the dependence the

quantities show with respect to adhesion, the data need to be interpolated.

Let us start by taking the case µ = 0.5 as an example, and let us interpolate the relative

viscosity at selected values of the volume fraction and shear stress. This has been done

by performing a cubic 2D interpolation and using a logarithmic scale for both ηs and σ∗.

In Fig. 5.8, as an example, an interpolation of ηs over a very fine grid (φ, σ∗) is shown to

evidence the double dependence of the relative viscosity on the volume fraction and the

shear stress. For quantitative processing, to guarantee the accuracy of the interpolated data,

values of φ and σ∗ have been selected close to the raw ones. The interpolated values are

displayed in Fig. 5.9 and are compared to the raw data. As we can see, the yielding behavior

previously shown in Fig. 5.6 is now clearer (Fig. 5.9 [left]). We can also appreciate the effect

of the volume fraction: for the same shear rate γ̇, a higher shear stress σ∗ is obtained for a

higher volume fraction φ; also, we can foresee that the extrapolated value of the shear stress

(i.e., the yield stress) increases with φ. In Fig. 5.9 [right], the relative viscosity is displayed

Figure 5.8
Three-dimensional plot of the core relative viscosity ηscore as a function of both the core volume
fraction φcore and the reduced shear stress σ∗, for µ = 0.5. The raw data (•) have been interpolated
along both φcore and σ∗ with a high number of interpolation points to obtain a smooth fine grid
(surface).
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for different values of the shear stress as a function of the volume fraction: in this case, too,

the jamming mechanism previously shown in Fig. 5.7 is now clearer, evidencing that the

jamming volume fraction φJ decreases with σ∗.

The above-described procedure would be less accurate for the cases with µ = 0.1 and

µ = 0.0 because the raw data are more misaligned. This is why we performed a linear

interpolation of both log (ηs) and φ, separately, at selected values of log (σ∗), the latter

being chosen close to the raw data to increase the accuracy of the interpolation. For the sake

of consistency, we re-interpolated the data for µ = 0.5 with this procedure choosing the

same values for σ∗ as in Fig. 5.9. The interpolation results are proposed in Fig. 5.10, where a

comparison with the raw data is shown. It should be noted that the interpolated values for

µ = 0.5 are indeed closer to the raw data.

Based on the obtained results, we can represent the viscosity with a function of the form:

ηs = f (φ,φJ (σ∗)). This description has already been proposed by other authors (Zhou

et al., 1995; Snabre & Mills, 1996; Abhinendra Singh et al., 2019; Richards et al., 2020; Gilbert

et al., 2022). Fitting the results with such a function, the jamming volume fraction φJ can

be obtained for each specific shear stress σ∗. This procedure is a bit tricky: as noted below,

the available data, including interpolated values, are scarcer in the low-volume-fraction and

low-stress range. In more detail, the data from the simulations are interpolated at constant

values of σ∗ by fitting a stress-dependent Maron-Pierce law:

ηs =
α (σ∗)(

1−
φ

φJ (σ∗)

)2 (5.7)

where α and φJ are free parameters. Then, the jamming volume fractions φJ for different

shear stress values can be obtained.

Figure 5.9
The raw data for µ = 0.5 shown in Figs. 5.6 and 5.7 is interpolated at selected values of the core
volume fraction and reduced shear stress.
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The interpolated data together with the fitting functions from Eq. (5.7) are displayed in

Fig. 5.11. The results without adhesion from Section 4.2 for µ = 0.5, the ones from Gallier

et al. (2018) for µ = 0.0, together with unpublished data by Stany Gallier for µ = 0.1, are

added. As it can be observed, at high shear stress the adhesionless viscosity is recovered,

and the lower the shear stress the lower the jamming volume fraction. The latter behavior

is less and less pronounced when decreasing the friction coefficient, in the limit of µ = 0.0

for which the jamming volume fractions are seemingly almost the same for any of the

considered shear stresses.

Another peculiar behavior can be observed for µ = 0.0: we notice that at high volume

fractions the viscosity diverges more rapidly, losing the linearity of 1/
√
ηs with φ (it is very

clear in the results without adhesion from Gallier et al. (2018)). This could indicate the

presence of two different zones of viscosity: one for low-to-medium volume fractions which

is conveniently described by Maron-Pierce law and one for high volume fractions with a

faster divergence of the viscosity. This trend is absent for µ = 0.5, for which there is a linear

dependence between 1/
√
ηs and φ. While, in the case of µ = 0.1, this double behavior of

the viscosity is visible at high stresses and in the results without adhesion.

For µ = 0.0, the relative viscosity varies quite slowly with the shear stress. This could

suggest that σ∗ has not been decreased enough. On the other hand, we already observe a

strong increase in the core volume fraction suggesting the inception of shear-banding.

Figure 5.10
(•) same data for φcore and ηscore as in Fig. 5.7, interpolated (�) at constant shear stresses σ∗.
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Figure 5.11
Curves obtained by fitting the interpolated data with a Maron-Pierce law (Eq. (5.7)), and comparison
with the raw data: (top) µ = 0.5, (center) µ = 0.1, and (bottom) µ = 0.0. The computations without
adhesion from Section 4.2 (µ = 0.5), the ones by Gallier et al. (2018) (µ = 0.0) together with
unpublished data by Stany Gallier (µ = 0.1) are added (�).
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5.4.4 jamming volume fraction and yield stress

The obtained curves φJ (σ∗) are shown in Fig. 5.12 (which can also be seen as σ∗y (φ) curves),

and are compared to previous results obtained with the Force Coupling Method (FCM) and

not published yet. In particular, the results with the FCM have been obtained using a cubic

domain, periodic in all three directions, with size (16a1)
3 and including adhesive forces

using the same model as the one employed in the present work. Moreover, the horizontal

dotted gray lines in Fig. 5.12 are the jamming volume fractions in the adhesionless case.

We appreciate a very good agreement for µ = 0.5 between FCM and FDM. This has to be

considered a validation because, as already pointed out, in the simulations performed with

the FCM the product Γ̇ ×Gadh0 has been fixed: this has not been done in the present work

and the same results are obtained; therefore, it can be considered that there is no influence

of this choice.

Figure 5.12
φJ (σ

∗): comparison between the results obtained with the FDM in the present work and previous
results obtained with the FCM. The horizontal dotted gray lines are the jamming volume fractions
in the adhesionless case (σ∗ = ∞): (lower line) from Section 4.2 (µ = 0.5, φJ = 0.592), (center
line) unpublished data by Stany Gallier (µ = 0.1,φJ = 0.632), and (upper line) Gallier et al. (2018)
(µ = 0.0,φJ = 0.651); the results by Stany Gallier have been fitted for φ > 0.45.
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For µ = 0.1 and µ = 0.0, the agreement is less satisfactory. We have already seen in

Fig. 5.11 that, in these cases, at high shear stress two different ranges of the volume fraction

can be noticed (more evident for µ = 0.0), and that at high values of the volume fraction

the viscosity curve is not well described by Maron-Pierce law. This behavior can justify the

disagreement with the results obtained with the FCM for µ = 0.0 because it is fundamental

to fit the viscosity at high values of the volume fraction while fitting only at low values of

the volume fraction can mislead to non-reliable values of the jamming volume fraction.

This is clearly shown in Fig. 5.13. In the left and center figures, a comparison between the

fitting done with the results from the FCM and with the results from the current work is

proposed (the results from the FCM have been re-interpolated to perform the comparison

at the same shear stress). In the simulations with the FCM, values of the volume fraction

in the range 0.30 6 φ0 6 0.45 have been employed, while in the present work we get core

volume fractions in the range 0.40 . φ . 0.61. As we can see, fitting only at low values of

the volume fraction has different effects depending on the shear stress: at low shear stresses

this misleads to lower values of the jamming volume fraction (Fig. 5.13 [left]), while at

high shear stresses this misleads to higher jamming volume fractions (Fig. 5.13 [center]).

Therefore, this can justify the disagreement in the case of µ = 0.0.

In Fig. 5.13 [right], only the adhesionless results from Gallier et al. (2018) are taken into

account, but two different ranges of the volume fraction are used to perform the fitting:

considering only φ < 0.45 gives a jamming volume fraction which is considerably higher

than the one obtained considering only φ > 0.45. The values of φJ without adhesion for

µ = 0.0 and µ = 0.1 shown in Fig. 5.12 have been computed by fitting ηs at φ > 0.45.

Figure 5.13
Effect of performing a fit at low or high values of the volume fraction for µ = 0.0: comparison
between the FCM for which only low values of φcore are available and the current work in which
higher values of φcore are obtained, at (left) low values and (center) high values of the shear stress;
(right) comparison between a fit performed only for φcore < 0.45 (red line) and one performed for
φcore > 0.45 (black line), using the data from Gallier et al. (2018) without adhesion.
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Finally, the jamming volume fractions proposed here should be considered more reliable,

also for the case µ = 0.1, for which no results with the FCM are available.

Fig. 5.12 deserves a few comments. First, the jamming volume fraction increases as the

reduced stress increases, and levels off to its adhesionless value. Since the same figure

displays the evolution of the yield stress as a function of the volume fraction (as implied by

Eq. (5.7)), it means that the yield stress increases with the volume fraction, and diverges as

the jamming volume fraction is approached.

Concerning the effect of friction, the high-stress limit of the jamming volume fraction

increases as the friction coefficient increases, as already known from simulations of adhe-

sionless suspensions. For high enough a friction coefficient (µ > 0.5), the jamming volume

fraction converges toward a single value at σ∗ ≈ 0.6− 0.7, suggesting that the influence of

friction on the jamming volume fraction decreases when increasing the adhesive forces. On

the other hand, the overall effect of adhesion seems less pronounced at a lower friction coef-

ficient. This last assertion is to be somewhat softened since shear-banding is still observed,

which in addition impedes probing the low-stress range.

5.5 discussion and perspectives

We have seen that adhesion is indeed a really attractive topic. We are starting to understand

the effect that adhesive forces have on the rheological properties of dense non-Brownian

suspensions in the presence of frictional contact (and in the frictionless case too, for µ = 0.0).

The definition of a jamming volume fraction as a function of the shear stress, i.e. φJ (σ∗),

has already been proposed to describe the yield stress of adhesive suspensions (Zhou et al.,

1995; Snabre & Mills, 1996). More recently, Richards et al. (2020) were able to interpret

experimental data regarding the viscosity of an adhesive suspension by adapting the so-

called “constraint rheology” model proposed by Guy et al. (2015). The authors were able, in

a phase space (φ, σ∗), to define a flow region and a jamming region, separated by a φJ (σ∗)

curve similar to those we have calculated. In their case, they reach much lower volume

fractions, of the order of ≈ 0.35 (≈ 0.20 for Richards (2021)). We stress out that this φJ (σ∗)

curve can also be interpreted as a σ∗y (φ) curve, identifying the two just mentioned regions

where the suspension is either jammed or flowing (see Fig. 5.14). What would be the results

at low volume fractions when σ∗ → 1 is still an open question for us.

From the point of view of the simulations, this same interpretation is implicit in Abhi-

nendra Singh et al. (2019), where the viscosity law of an adhesive suspension is described

as the superposition of a Herschel-Buckley law and the viscosity of a suspension with

discontinuous shear-thickening (DST). The result is the definition of a phase space (φ, σ∗)

where the flow area is bounded at low stresses by the yield stress and high stresses by the

DST threshold. In our case, only the low-stress threshold line is present since we do not

consider shear-thickening suspensions.
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An important result of our study is the dependence of the jamming volume fraction (or

equivalently of the threshold stress) on friction. We recall that for µ > 0.3, φJ decreases

from the adhesionless value, which depends on µ, to a value that is independent of it at low

stress. For lower friction coefficients, the decrease is weaker. This result can be related to

the model proposed by Richards et al. (2020), which defines a stress-dependent jamming

volume fraction for an adhesive suspension, as a weighted average between the jamming

volume fraction without adhesion (φµ = 0.53 in their case) and a volume fraction for an

adhesive suspension (adhesive loose packing 0.35). The weighting coefficient depends on

the stress, as a fraction of particles in adhesive contact.

In our case, we do not manage to decrease the reduced shear stress below ≈ 0.7− 0.8,
and for µ > 0.3 all the curves φJ (σ∗) meet in φJ ≈ 0.5. This suggests that the jamming

volume fraction for these values of σ∗ would be independent of µ and would be ≈ 0.5. For

lower friction coefficients, our data are a bit too patchy, yet it appears that the jamming

volume fraction is larger, which is consistent with the literature (see Richards et al. (2020)

and references therein). Further investigation of our data against the model proposed by

Richards et al. (2020) would be interesting, although not straightforward since we cannot

decrease σ∗ too much.

However, these conclusions should be qualified by the difficulties we had in obtaining

measurements at low reduced shear stress. Indeed, it is likely that the too-small size of

our simulation volume is at the origin of the wall depletion and the shear-banding that we

observe at medium concentrations. Multiple studies, especially for Brownian suspensions,

show the appearance of aggregates of various sizes which make the flow heterogeneous

flowing

jamming

?

Figure 5.14
The results for µ = 0.5 are displayed as a σ∗y (φ) curve. What would be the results at low values of φ
when σ∗ = 1 is approached is still an open question for us.
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and modify the rheology of the suspension, and this all the more as the shear stress is

low (Koumakis et al., 2015). These aggregates, as soon as they develop with a size of a

few particle diameters, would quickly reach the size of our simulation domain. In this

case, this would probably lead to a modification of the measured rheology, and possibly to

the shear-banding that we observe. It would therefore be essential to continue with larger

volume simulations to study the influence of this parameter on the rheology of adhesive

suspensions. In the same vein, a detailed study of the suspension microstructure would

be useful, for example by measuring the aggregates’ size. The pair distribution function of

particles at contact would probably be informative.

In particular, we recall that in concentrated regimes the microstructure loses isotropy,

establishing a preferred direction for finding the close-contact pairs (see Fig. 1.2 in Sec-

tion 1.2.2). Increasing adhesion at medium-to-high volume fractions, we observed that this

isotropy is more and more recovered for particles at contact while decreasing the shear

stress, indicating that the particles remain attached to each other also in the dilatation axis.

This behavior is also illustrated by the distribution of the normal contact forces on the

surface of the particles in Fig. 5.15, showing still-existing adhesive forces in the dilatation

axis that counter-balance the elastic forces, keeping together the particles in such a direction

in which particles are pulled away from each other. This could be associated with the

formation of clusters. At low volume fractions, the investigation becomes complicated due

to the formation of aggregates that do not deform (the so-called flocs).

Peculiar results are found when representing the ratio between the contact (elastic +

adhesive) contribution to the total shear stress against the viscous number computed only

with the elastic normal stress at µ = 0.5: in this case, a master curve can be found. In

Fig. 5.16 a comparison between the results from the current chapter, the adhesionless results

presented in Section 4.2, and the adhesionless results from Gallier et al. (2018), is proposed.

As we can observe, all the results collapse on the same curve. Although not shown here, the

agreement with the adhesionless case is more and more lost when decreasing the friction

coefficient. The reasons for this disagreement still have to be cleared out, but it suggests that

the effect of adhesion might be significant up to larger stresses in the case of frictionless

particles. As already pointed out, the size of the simulation domain could have an impact.

We have started to work on these last points, and we will see what comes of it in the

future. However, regarding the effect of the size of the simulation domain, it is likely that our

numerical method is not the best suited for a parametric study (i.e. systematically varying

σ∗, φ and µ) for large domain sizes, because even though it allows to take into account short

and long-range hydrodynamic interactions, as well as complex contact interactions, the

counterpart is a relatively long computation time, which makes at the moment difficult the

systematic study of systems of more than a few thousands of particles. In the next chapter,

we will turn to an application that better matches the advantages of our numerical method,

i.e. the study of shear-induced particle migration in a pressure-driven flow.
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elastic adhesive total

Figure 5.15
Distribution of the normal contact forces on the surface of the particles for a moderately concentrated
case at relatively low reduced shear stress (σ∗ = 2.2): comparison between the distribution of the
elastic (left) and adhesive (center) contributions to the total elastic normal force (right). The length of
the arrows is qualitative.

Figure 5.16
Ratio between the contact (elastic + adhesive = total contact) contribution to the total shear stress
against the viscous number computed only with the elastic contribution to the normal stress at
µ = 0.5: comparison between the results with adhesion presented in this chapter, the ones without
adhesion presented in Section 4.2, and the ones without adhesion from Gallier et al. (2018). The lines
are a guide to the eye.
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A particulate suspension in a nonlinear flow shows shear-induced particle migration. In

the present chapter, we simulate the pressure-driven flow of a bidisperse three-dimensional

frictional suspension, for three values of the volume fraction. After displaying the chosen

numerical setup, we start by investigating the transient volume fraction and particle velocity

profiles. Then, we concentrate on the steady-state profiles and we compare the results to a

modified version of the Suspension Balance Model (SBM) as proposed by Badia et al. (2022)

and recalled in Appendix F. We finish the chapter by studying the various contributions to

the local stress balance (in particular, we investigate the shear stress and the second normal

stress parallel to the velocity gradient), and by proposing a discussion.
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6.1 state of the art

particle migration

A particulate suspension in a nonlinear flow shows particle migration. The first observations

have been made by Karnis et al. (1966) in a pressure-driven tube flow, who found the

development of a “plug” at the channel center showing high volume fraction, in which the

translational velocity of the particles is almost uniform. Many other experimental studies

on Poiseuille-flow suspensions have been made since then (Koh et al., 1994; Hampton

et al., 1997; Lyon & Leal, 1998; Gao et al., 2009, 2010), all revealing a gradient in the local

concentration. As a result, the suspension velocity develops a blunted profile.

The theoretical development of this kind of suspension flow has been slow due to the

complex hydrodynamic interactions and lack of detailed data about the dynamics of the

particles. Having direct access to information otherwise unreachable in experiments is where

numerical simulations come into play. Many numerical investigations have been performed

in this framework, the first being by Nott & Brady (1994), who employed the Stokesian

Dynamics approach to study the pressure-driven flow of a single-layer of monodisperse non-

Brownian particles at zero Reynolds number: they showed that starting from a homogeneous

concentration, particles migrate toward the channel center. They demonstrated that particle

migration is a different phenomenon than the migration due to inertial forces first observed

by Segré & Silberberg (1962). Nott & Brady (1994) also studied the effect of the volume

fraction: at low concentration, particles are separated from the walls by a zone of clear fluid,

while increasing the volume fraction causes a decrease of the velocity at the channel center.

Moreover, they introduced the concept of “suspension temperature”: this quantity measures

the fluctuating motion of particles arising from their chaotic dynamics.

The phenomena have been confirmed and the associated knowledge enriched by later

three-dimensional numerical studies with different methods, simulating monodisperse

(Yeo & Maxey, 2011; Chun et al., 2017), bidisperse (Chun et al., 2019), and polydisperse

(Di Vaira et al., 2022) suspensions in pressure-driven flow. In their study of monodisperse

suspension, Yeo & Maxey (2011) identified three zones in the flow: layering occurs close to

the walls, while a plug forms at the center of the channel, where the averaged quantities vary

abruptly with the distance in the wall-normal direction. In the intermediate zone between

the mentioned zones, volume fraction, stresses, and velocity fluctuations vary evenly, and

the authors found it possible to extract constitutive laws in overall qualitative agreement

with data from the literature concerning homogeneous shear flow.

Migration and segregation have been studied in bidisperse suspensions. Chun et al.

(2019) showed the typical migration time in bidisperse suspensions to be comparable to

monodisperse suspensions. However, they evidenced particle segregation, meaning that the

large particles preferably migrate toward the center of the channel, while depletion of small

particles is observed there. Segregation is 5-8 times slower than overall migration.

The plug zone has received special attention in the literature. Nott & Brady (1994) observed

that the granular temperature (i.e., velocity fluctuations) is lower at the channel center, where
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the concentration is large, while the local shear rate is zero. This has been confirmed by

Yeo & Maxey (2011) in 3D simulations, who also evidenced that the particle microstructure

turns more isotropic at the center of the channel and that the plug extension increases with

the bulk volume fraction. In addition, Oh et al. (2015) showed in their experimental work

concerning the pressure-driven flow of concentrated non-Brownian suspensions that the

volume fraction in the plug zone could exceed the jamming volume fraction as measured

in homogeneous shear flow, up to the random close packing fraction 0.64 at the pipe

center. This was recently also observed by Gillissen & Ness (2020) in 2D simulations of a

Kolmogorov suspension flow, where the ambient shear flow is given a sine shape. They

showed that the µ (J) rheology (Boyer et al., 2011) was significantly altered at the positions

where the local shear rate vanishes, meaning that the macroscopic friction coefficient µ falls

under its usual value at jamming for J > 0 (i.e., before jamming). They also found that, at the

same position, the volume fraction could exceed the jamming volume fraction as measured

in a homogeneous shear flow. They proposed an explanation based on the fluctuations of

the shear rate tensor, extending a recent constitutive tensor model for the suspension stress.

More generally, the precise local measurement of the whole stress tensors in heterogeneous

flows is of great interest due to its connection with shear-induced migration (see below)

and is a difficult matter, both in experiments and in numerical simulations. In experiments,

such local measurements have been performed in rheometrical flows, such as parallel-plate

geometry using pressure sensors (Anugrah Singh & Nott, 2003; Dbouk et al., 2013). Particle

resuspension in a rotating Couette device allows particle normal stress measurements as

well, either through measurement of resuspension height (Acrivos, 1993) or in a more local

way through measurement of volume fraction fields (Saint-Michel et al., 2019; d’Ambrosio

et al., 2021). In the latter works, normal stress determination requires theoretical modeling

(the so-called Suspension Balance Model, which will be explained in the following). Direct

measurement of the particle normal stress is also possible using a pressure sensor in the

same geometry (Deboeuf et al., 2009), or in parallel plate rheometry (Dbouk et al., 2013) as

well as in the frame of pressure controlled rheometry (Boyer et al., 2011).

Direct measurements of local stress are quite scarce in discrete simulations. As mentioned

above, Yeo & Maxey (2011) measured the particle stresses in steady Poiseuille flow. They

found that the measured stresses in the intermediate zone qualitatively agreed with experi-

mental and numerical measurements in homogeneous shear flow. More recently, in their

study of bedload transport in relation to experiments (Aussillous et al., 2013) using Immersed

Boundary Method, Vowinckel et al. (2021) performed precise local stress balance. They

determined velocity, volume fraction, and stress profiles, showing qualitative agreement

with material functions from homogeneous flow measurement, both in volume-controlled

and pressure-controlled rheology. Finally, Rahmani et al. (2018) studied the homogeneous

shear flow of suspensions at finite particle Reynolds number. They did not measure local

stresses, but they instead integrated the momentum equation for each phase, solid and

fluid, over the whole simulation domain. They could determine this way the contribution of

inertia to the mean suspension stress.
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continuum models

Leighton & Acrivos (1987b) first proposed a phenomenological model to explain their

observation of long-time decrease and short-time increase in the effective viscosity of a

suspension in a Couette viscometer. They proposed that the net flux of particles consists of

two contributions: a diffusive flux driven by a gradient in the shear rate, and diffusion due to

a gradient in the volume fraction. The predictions of this model are in reasonable agreement

with both experimental measurements (Phillips et al., 1992) and numerical simulations

(Chun et al., 2019).

The diffusive flux model has been very useful to open the path to phenomenological

models. A widely accepted model is nowadays the Suspension Balance Model (SBM), first

proposed by Nott & Brady (1994). In this approach, there is no diffusion, but rather mass,

momentum, and energy balances are written for the particulate phase. Then, these balances

are solved simultaneously for concentration, particle velocity, and suspension temperature.

The macroscopic statement that, in a steady state, there is no pressure variation in the

direction perpendicular to the mean motion of the suspension (later confirmed also by Yeo

& Maxey (2011)) gives an equation for the final volume fraction profile.

The basic idea is that the dynamics of the particles are described by Newton’s laws of

motion just as molecules, with the difference that the forces acting on the particles, are

given by rather complex configuration-dependent expressions. The local momentum balance

equation inside the particles is averaged at the suspension scale to yield an equation for the

transport of particles. Then, particle migration occurs due to non-uniformity of the normal

stresses (Morris & Brady, 1998; Morris & Boulay, 1999).

In the original SBM, the particle contribution to the stress is supposed to be responsible

for particle migration. Lhuillier (2009) performed a complete derivation of the particle phase

momentum balance, showing that the divergence of the contact contribution to the stress

is balanced by the interphase force density, but shifting the issue to the formulation of a

constitutive law for each term of the equation. He proposed in particular a more systematic

description of the non-drag part of the hydrodynamic force, debating that in the SBM the

only stress involved in stress-induced migration is that from direct interactions only. In the

same line, Nott et al. (2011) proposed to split the interphase force into the drag component

and the divergence of a stress, hydrodynamic in nature, so that the original form of the SBM

is recovered.

We finally note that the SBM implementation classically assumes a locally-plane shear

flow. It has been extended to a form suitable to general flows, either in 2D (Miller et al.,

2009) or 3D (Badia et al., 2022).

In this framework, as mentioned above, numerical simulations are eagerly needed to

test the relevance of phenomenology and to complete the understanding of shear-induced

particle migration in viscous suspensions.
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6.2 numerical setup

To simulate the pressure-driven flow of a suspension in a channel, the numerical setup

displayed in Fig. 6.1 is employed. In particular, a homogeneous pressure gradient is applied

at each point of the simulation volume:

∇P0 =
dP0
dx

ex (6.1)

We recall that this pressure gradient, should it be applied to the pure suspending fluid with

viscosity η, would produce the following velocity and shear rate profiles:

u0 = −
L2y

8η

dP0
dx

(
1−

4y2

L2y

)
ex , γ̇0 (y) =

∣∣∣∣du0
dx

∣∣∣∣ = 1

η

∣∣∣∣dP0dx
y

∣∣∣∣ → γ̇0 =
Ly

4η

∣∣∣∣dP0dx

∣∣∣∣ (6.2)

where γ̇0 is the mean shear rate in such a pure fluid flow. In the present case, where the

viscosity of the suspension is larger and depends on the position due to shear-induced

particle migration, a different velocity profile is expected. In the following, length, time,

velocity, and stresses are made dimensionless as follows:

y∗ =
y

Ly
, γ̇∗ =

γ̇

γ̇0
, t∗ = γ̇0t , u∗ =

u
γ̇0Ly

, Σ∗ =
Σ

ηγ̇0
(6.3)

Figure 6.1
Numerical setup for the simulation of a pressure-driven particulate flow in a channel: a pressure
gradient is imposed, generating a flow in the opposite direction. Frictional walls are present in y
direction, while periodic boundary conditions are imposed in both x and z directions.
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We simulate bidisperse (a2 = 1.4a1, φ1 = φ2 = φ0/2) suspensions with three values of

the mean volume fraction φ0 = [0.3, 0.4, 0.5]. The particles and the walls are frictional with

a constant friction coefficient µ = 0.5, with roughness height hr = 0.005a1 (see Section 2.6

for more details concerning contact forces between particles). The particles are initially

placed at random positions.

Particle migration is a slow process and, therefore, long-lasting simulation runs are

necessary: for the three values of the volume fraction, the simulations ran until t∗f = 2000. We

employed a time-step sufficiently small for the dynamics of the particles to be conveniently

computed: γ̇0∆t∗ = 10−3 with 10 SIMPLEC loops, checking that the residual of λ (Eq. (2.54))

was always of the order of ≈ 10−4. As for the tolerances, we used the same ones as in

Section 4.2.1 and Section 5.3, i.e. tolp = 10−3 and tolu = 10−5.

data re-sampling

The volume fraction profile is computed as defined in Eq. (2.70), and following Yeo & Maxey

(2011) the particle velocity profile up (y) is computed from the velocities of the particles:

φ (y)up (y) =
1

LxLz

∫∫
{plane y}

∑
p

Upχp (x) dxdz (6.4)

For the moment, we are not interested in variations at a scale smaller than a particle

radius. As a consequence, the different profiles are re-sampled at positions yn such as

yn+1 − yn = ∆y = a1 (see Fig. 6.2). For this purpose, the fine-scale profiles are averaged

over each position bin, e.g. for the volume fraction:

φcoarse (yn) =
1

∆y

∫yn+∆y/2
yn−∆y/2

φ (y) dy (6.5)

Figure 6.2
The profiles of the different quantities are re-sampled and averaged over each position bin.
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6.3 results : volume fraction, velocity,
and shear rate

6.3.1 transient particle migration

To start investigating the results, let us first take the case φ0 = 0.40 as an example. To seek

the steady state, let us take five vertical positions between the channel center and the top

wall y∗ = [0.0125, 0.1125, 0.2125, 0.3125, 0.4125] (being the first point close to the channel

center and the last one close to the top wall), and let us study the evolution in time of the

local (coarse-grained) volume fraction at such positions.

The results are displayed in Fig. 6.3. We can already appreciate particle migration. Indeed,

the volume fraction at the channel center (blue line, y∗ = 0.0125) strongly increases from

≈ 0.45 to over 0.60, while close to the wall (green line, y∗ = 0.4125) the volume fraction

decreases from ≈ 0.40 to ≈ 0.31. We can also notice that the variation of the volume fraction

(i.e., particle migration) is slower at the channel center than close to the wall: in the latter

region the volume fraction reaches its stationary value at t∗ ≈ 750, while at the channel

center we have to wait until t∗ ≈ 1600.

Figure 6.3
Evolution in time of the volume fraction at different vertical positions, being y∗ = 0.0125 close to the
channel center (blue line) and y∗ = 0.4125 close to the top wall (green line). The dotted red vertical
line at t∗ = 1600 is the time at which all the points reach the steady state.
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Figure 6.4
(top) volume fraction and (bottom) particle velocity profiles in time (from light to dark lines). The
profiles are averaged in temporal intervals ∆t∗ = 100, except for the last one (black line) which has
been averaged over the steady state (∆t∗ = 400).
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We can now turn the attention to the volume fraction and particle velocity profiles,

displayed in Fig. 6.4. Each profile has been averaged in a temporal interval ∆t∗ = 100

(observing in Fig. 6.3 that in such an interval the overall variation is indeed small), except

for the last one which has been averaged over the steady state (∆t∗ = 400). Also, in the

computation of the particle velocity profile, the contributions of the rotational velocities are

not accounted for in Eq. (6.4). We have checked that these contributions may be completely

neglected, meaning that they vanish when averaging over multiple particles in the same

planar bin (see Fig. 6.2), with a slightly larger intensity in the wall layer.

Particle migration is now perfectly observable: particles have migrated toward the channel

center, starting from an almost uniform volume fraction profile (lightest line, noticing that,

having averaged for t∗ ∈ [0, 100], a slight migration has already occurred) to a non-uniform

profile (darkest line, t∗ ∈ [1600, 2000], i.e. the steady state), with low values close to the

walls and high values at the channel center. We note that the local volume fraction at the

channel center slightly exceeds the jamming volume fraction φJ = 0.592 that was estimated

from the homogeneous suspension viscosity (Fig. 4.16). This occurs over a quite narrow area,

approximately 4a1 in width (we are going to refer to this zone as “the plug”). The numerical

derivative of the stationary particle velocity profile d
〈
u∗p,x

〉
/dy∗ is displayed in Fig. 6.5. We

can notice that at the channel center, where the local volume fraction exceeds the jamming

volume fraction, the actual shear rate is close to zero, with a mean value γ̇∗plug ≈ 7 · 10−4,

Figure 6.5
Numerical derivative of the stationary particle velocity profile (the line is a guide to the
eye). The inset is a zoom at the channel center region.
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to be compared to the maximum value at the walls γ̇∗max ≈ 0.4. The suspension is thus not

completely jammed in this area, even though the shear rate is very low. We can also clearly

observe particle ordering close to the walls, which extends over ≈ 4a1 at each side, despite

the precaution of mixing particles of two different sizes.

Since the volume fraction at the channel center increases, while it decreases at the walls,

the particle velocity profile (Fig. 6.4) evolves from the usual parabolic profile observed in

pressure-driven flows (lightest line) to one characterized by a blunted region at the channel

center (darkest line, steady state), in agreement with Fig. 6.5. We also note that the particle

velocity does not vanish at the walls: the rapid variation of the particle velocity close to the

walls (i.e., in the first layer at the wall) and the finite value at the walls may be termed as

“wall-slip”, and is classically observed in experiments (Jana et al., 1995).

In Fig. 6.6, the coarse profiles from Eq. (6.5) and presented in Fig. 6.4 are compared to

finer profiles discretized with ∆y = 0.01a1 (referred as “dense” profiles), in the steady state

only. Clearly, in the dense profiles particle ordering close to the walls is more evident, and

the effect of the wall is shown to fade out for distances from the wall larger than ≈ 4− 5a1.

In Fig. 6.7 [left], the particle velocity profile and the suspension velocity profile as

computed by the solver in OpenFOAM averaged in the steady state regime are compared.

In particular, the suspension velocity profile as computed by the solver takes into account

both the fluid and the particles domains. Two different OpenFOAM velocity profiles are

shown: the raw profile (mesh size ∆ = 0.2a1 = Ly/200) and the re-sampled profile with the

same sample rate as the coarse-grained particle velocity profile. We can observe that the two

profiles are very close to each other, showing that the suspension velocity field has almost

Figure 6.6
Comparison between coarse (∆y = a1, see Eq. (6.5)) and dense (∆y = 0.01a1) profiles for the steady
state (left) volume fraction and (right) particle velocity. The blue dotted horizontal line indicates
the jamming volume fraction for this suspension as measured in a simple shear flow, computed in
Section 4.2.2 to be φJ = 0.592.
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Figure 6.7
Comparison between the particle velocity profile and the suspension velocity profile as computed by
the solver in OpenFOAM (both dense and coarse), in the steady state regime.

the same horizontal component as the particles. However, a slight difference can be observed

even far from the walls in Fig. 6.7 [right], where the normalized difference between the data

from OpenFOAM and the particle velocity is displayed. We also note that, as expected, the

dense velocity profile goes to zero at the walls, in agreement with the no-slip boundary

condition imposed by the finite volume solver.

6.3.2 steady profiles : comparison with the sbm

Let us now compare the steady volume fraction and particle velocity profiles to theoretical

computations using the Suspension Balance Model (SBM) (Nott & Brady, 1994; Mills & Snabre,

1995; Morris & Boulay, 1999; Lhuillier, 2009; Nott et al., 2011).

The main trends of the SBM as used in the current work (see also Badia et al. (2022))

are recalled here. This model mainly considers the suspension as a continuum undergoing

incompressible flow. The governing equations are the momentum balance equation together

with the mass balance equation:

∇ · u = 0 (6.6)

∇ ·Σ−∇P0 = 0 (6.7)

where u denotes the suspension velocity field, and Σ is the bulk suspension stress. The latter

is computed from the suspension velocity gradient and the solid volume fraction using the

material functions defined in Section 4.2.2.
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In the frame of this model, particle migration is induced by stress gradients. When inertia

and gravity forces are not relevant, the SBM describes the transport of momentum and

particles using the suspension and particle phase velocity fields u and up:

∂φ

∂t
+∇ · (φu) +∇ ·φ (up − u) = 0 (6.8)

In the simplest version of the SBM, which we use here, the particle velocity may be

computed from the following relation, which originates from the momentum balance

equation of the particle phase (Lhuillier, 2009; Nott et al., 2011):

9

2

η

a2
φ

f (φ)
(u − up) +∇ ·Σc = 0 (6.9)

where f (φ) = (1−φ)5.1 is the hindered settling function, and a is the relevant particle

size, which can be chosen as a = (a1 + a2) /2. Σc is the contact contribution to the bulk

suspension stress Σ, as defined in Section 2.7.2 and recalled in Section 4.2.2.

In Eq. (6.9), the first term denotes the hydrodynamic force density exerted on the particle

phase by the liquid phase (interphase force), while the second term is the force density

exerted on the particle phase due to contacting neighbors, i.e. inside the particle phase.

Writing Eq. (6.9) involves quite a strong assumption, namely that the hydrodynamic force

density only originates in the difference between the suspension velocity as a whole and

the particle phase velocity, which is still a largely open question (Lhuillier, 2009; Nott et al.,

2011). Nevertheless, in the present study, Eq. (6.9) is employed as is.

We note that this version of the SBM has been extensively studied by Badia (2021) and

Badia et al. (2022) in various flow geometries including pressure-driven flow using finite

volume element modeling. The SBM equations in the present flow geometry are derived in

Appendix F. They involve the material functions that were determined from the discrete

simulations and mentioned in Section 4.2.2. The dimensionless steady particle velocity and

volume fraction profiles obey the following equations:

du∗x
dy∗

= −
4

ηs (φr (y∗))
y∗ (6.10a)

dφr
dy∗

= −
Σ̂c22

y∗
dΣ̂c22
dφr

(6.10b)

with the constraint that the total particle volume is kept constant, i.e.:

∫+1/2
−1/2

φr dy∗ =
φ0
φJ

(6.11)

where φr = φ/φJ. Eq. (6.10a) states that the shear stress is driven by the pressure gradient,

while Eq. (6.10b) controls the steady volume fraction profile.
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Once Eqs. (6.10b) and (6.11) are solved, the velocity profile is simply determined by

integration of Eq. (6.10a). It should be noted that the SBM as presented here suffers important

drawbacks (see Snook et al. (2016) for a discussion). In particular, the steady-state volume

fraction is allowed to exceed the jamming volume fraction φJ, which is easily understood

by inspection of Eq. (6.10b): the multiplying factor of 1/y∗ in the RHS is negative so that φ

increases as |y∗| decreases; in addition, this factor does not vanish as φ/φJ → 1 so that the

volume fraction gradient diverges as |y∗|→ 0, and φ exceeds φJ. To avoid this divergence, it

has been proposed to slightly modify the expression of the particle flux with a non-local

stress. This non-local stress may be induced by a suspension “temperature” (Nott & Brady,

1994), a force network (Mills & Snabre, 1995), or the finite size of the particles (Miller &

Morris, 2006). These approaches deserve to be examined against the present data. However,

as a first approximation, we follow here a simple empirical idea: we postulate that the

particle flux vanishes as soon as φ reaches φJ. As a consequence, a jammed zone where

φ = φJ develops in the vicinity of the channel center plane. Finally, to avoid the difficulties

associated with particle layering and wall slip on the one hand, and with the central plug

region, on the other hand, Eqs. (6.10a), (6.10b) and (6.11) are solved outside the layering

region, i.e. at a distance from the bounding walls larger than ≈ 2.5a1 (it is fine-tuned for

each value of φ0), and outside the plug region. As a consequence, only the mean volume

fraction inside this region is considered while solving Eqs. (6.10a), (6.10b) and (6.11).

The steady-state volume fraction and particle velocity profiles are displayed in Fig. 6.8

for the three values of the volume fraction investigated here, together with the shear rate,

the latter computed by performing the numerical derivative of the steady-state particle

velocity profile. Having verified in Fig. 6.7 that the particle velocity and the velocity of the

suspension as a whole are very similar, and having checked that the difference between

the two profiles predicted by Eq. (6.9) is indeed small in the x-direction, we compare the

particle velocity from the simulations with the predictions of the SBM for the suspension

velocity. The simulation results and the SBM predictions are in close agreement for the three

quantities, except in the direct vicinity of the walls and at the channel center. As mentioned

above, the discrepancies at the walls are related to particle layering.

For the highest concentrations, i.e. φ0 = 0.40 and φ0 = 0.50, in the jammed region, the

volume fraction from the simulations is larger than the jamming volume fraction φJ, as

also experimentally observed by Oh et al. (2015), and reaches approximately the value

0.62 for φ0 = 0.40 and 0.64 for φ0 = 0.50. This may appear surprising, since the shear

rate from the average velocity profile does not vanish, except at the exact center plane.

However, it is very low, and, as already noted by Yeo & Maxey (2011) in their simulations

of monosized suspensions in Poiseuille flow, velocity fluctuations never vanish, so they

may play a significant role in the central region, as also confirmed by the 2D simulations

performed by Gillissen & Ness (2020) of a Kolmogorov suspension flow, in particular, they

may help particle rearrangement and induce this concentration increase. We can also observe

that the plug region width increases from ≈ 4a1 for φ0 = 0.40 to ≈ 10a1 for φ0 = 0.50. It

should be noted that the case with φ0 = 0.30 never reaches the jamming volume fraction, so
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also in this case the volume fraction profile at the channel center is not correctly accounted

for by the SBM. This last observation is in qualitative agreement with previous experimental

measurements (Lyon & Leal, 1998; Snook et al., 2016) and numerical simulations (Nott &

Brady, 1994; Yeo & Maxey, 2011; Chun et al., 2019; Di Vaira et al., 2022) from the literature.

We note here that the agreement between the simulated profiles and the predictions of the

SBM is somewhat less good for the less concentrated case.

Concerning the shear rate, we observe that the higher the volume fraction the lower the

shear rate. Indeed, its minimum value in the plug region is γ̇∗plug ≈ 10−5 for φ0 = 0.50,

γ̇∗plug ≈ 2 · 10−4 for φ0 = 0.40, and γ̇∗plug ≈ 4 · 10−3 for φ0 = 0.30. The version of the SBM

employed here clearly miscalculates the shear rate in this region, being the velocity uniform,

and, therefore, the associated shear rate is perfectly zero.

Figure 6.8
Comparison of the steady-state (top row) volume fraction, (central row) particle velocity, and (bottom
row) shear rate profiles between (black bullets) the simulation data and (red-dashed lines) the
predictions of the modified version of the SBM employed in the current work, for the three values of
the volume fraction: (left column) φ0 = 0.30, (center column) φ0 = 0.40, (right column) φ0 = 0.50.
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6.4 suspension stress balance

6.4.1 local stress computation

We observed in the previous section the spatial and temporal behavior of volume fraction,

particle velocity, and shear rate. Let us now investigate the profiles of both the shear stress

Σ12 and the second normal stress Σ22. But first, let us recall the expression of the stress in

the suspension, which is usually defined as:

Σ = −Pδ+ ηγ̇ (ex ⊗ ey + ey ⊗ ex) +Σhp +Σc (6.12)

where the first term of the RHS is the contribution of the mean pressure in the liquid

to the suspension stress (Batchelor, 1970). It should be recalled that in an incompressible

flow the overall pressure level is arbitrary so a reference pressure must be defined. This

reference pressure is chosen at each time-step as the mean pressure p, as computed by the

finite volume solver Eq. (2.11a), in the simulation domain, and the relevant pressure is the

difference between the pressure and this reference value.

Let us re-write a local version of Eq. (6.12) inside the particles. For each vertical position yn:

Σyn = − [1−φyn ] 〈p〉
f
yn
δ+ ηγ̇yn (ex ⊗ ey + ey ⊗ ex) +Σ

hp
yn +Σ

c
yn

(6.13)

where φyn , γ̇yn , and 〈p〉fyn are the local volume fraction, shear rate, and fluid pressure

(outside the particles domain), respectively, averaged over the position bin of interest. It

should be noted that the pressure P0 from Eq. (6.1) should contribute to the equation above;

however, we make the hypothesis that it can be neglected by horizontal (in x-direction)

translation indifference of the volume fraction and, therefore, it is omitted in the following

(see also the last comment at the end of the current section).

Being χp the indicator function delimiting the particle domain (i.e., this corresponds to Iλ

as defined by Eq. (2.51)), the term [1−φyn ] 〈p〉
f
yn

is computed as:

[1−φyn ] 〈p〉
f
yn

=
1

∆y Lx Lz

∫∫
{plane yn}

∫yn+∆y/2
yn−∆y/2

p (x) [1− χp (x)] dy dxdz (6.14)

The last two terms of Eq. (6.13) stand respectively for the hydrodynamic and contact

contributions to the particle stress. We recall here the definition of the hydrodynamic

stresslet of a particle (p) and its trace as computed by the solver (see Section 2.7):

SFDMp = −ρf

∫
Dp

{
1

2
[λ⊗ (x − xp) + (x − xp)⊗ λ] −

1

3
λ · (x − xp)δ

}
dV

sFDMp = −

∫
Dp

[ρfλ · (x − xp) + 3p] dV

(6.15)
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to which a sub-grid correction must be added, so that:

Shp = SFDMp + SSGp

shp = sFDMp + sSGp

(6.16)

As for the contact stresslet, it reads:

Scp =
∑
p ′∈Dp

1

2

ap

ap + a ′p

(
Fp
′→p ⊗ x(pp

′) + x(pp
′) ⊗ Fp

′→p
)

(6.17)

The contact stresslet as defined in Eq. (6.17) is not traceless, while the hydrodynamic one is.

Finally, the local hydrodynamic and contact contributions to the suspension stress are:

Σhyn = − [1−φyn ] 〈p〉
f
yn
δ+ ηγ̇yn (ex ⊗ ey + ey ⊗ ex) +

+
1

∆y Lx Lz

∫∫
{plane yn}

∫yn+∆y/2
yn−∆y/2

∑
p

Shp + 1
3s
h
pδ

4
3πa

3
p

χp (x) dy dxdz
(6.18)

Σcyn =
1

∆y Lx Lz

∫∫
{plane yn}

∫yn+∆y/2
yn−∆y/2

∑
p

Scp
4
3πa

3
p

χp (x) dy dxdz (6.19)

The equations above deserve a few comments concerning the influence of the pressure as

computed by the solver:

• pressure is involved in two different contributions to the stress, namely the mean fluid

pressure (Eq. (6.14)) and the trace of the hydrodynamic stress (Eqs. (6.15) and (6.18));

in both cases, the mean pressure is involved, either in the fluid or in the particles;

• a close look at those terms reveals that their sum should yield the local mean pressure

over fluid and particles; this has been checked to quantitatively hold;

• one of the consequences of this is that the pressure P0 = (dP0/dx) x, whose average

along x-direction is zero, does not contribute to the total stress profile since variations

are examined against y position; in addition, the influence of P0 on each of the two

terms, fluid and particle stress, is expected to be small, due to statistical indifference

of the suspension volume fraction along the x-direction.

All profiles are averaged over time to lower statistical fluctuations. The shear rate profile

is computed as the numerical derivative of the time-averaged velocity profile, which is

computed according to Eq. (6.4), and re-sampled according to Eq. (6.5).
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6.4.2 local stress balance

In Fig. 6.9, the steady state profile of the shear stress Σ12 = Σxy is displayed for the three

values of the mean volume fraction. The results are compared to the theoretical values (black

line), and the hydrodynamic (H) and contact (N) contributions to the total shear stress (•) are

evidenced. The theoretical expression of Σ12 (Eq. (F.6a)), whose dimensionless expression

(Eq. (6.3)) is Σ∗12 = −4y∗, classically shows that, in a pressure-driven flow, the tangential

stress is driven by the pressure gradient. As we can see, there is a very good agreement with

the theory. In particular, the shear stress vanishes at the channel center. We note that the pure

fluid term ηγ̇yn must be accounted for to recover this good agreement, at least for the two

lowest values of the mean volume fraction. Also, we can notice that the contact contribution

increases with volume fraction. This is in agreement, at least outside the walls and plug

regions, with Fig. 4.17, where the ratio Σ̂c12 = Σ
c
12/Σ12 is displayed. It can be observed that

the contact contribution is larger than the hydrodynamic contribution for φ/φJ & 0.70, i.e.

φ & 0.42. This is indeed observed for all values of the mean volume fraction φ0 in Fig. 6.9.

However, the relative level of contact and hydrodynamic stresses seems not to obey

Fig. 4.17 in the central region. Considering the lowest concentration φ0 = 0.30, even

though the volume fraction keeps smaller than φJ, it significantly exceeds 0.42. Despite

this, the contact contribution hardly reaches the hydrodynamic contribution. In the more

concentrated cases, the volume fraction in the plug is larger than φJ, so that the correlation

laws displayed in Fig. 4.17 cannot be used anymore. It is clear though that the hydrodynamic

contribution may be completely neglected and that the shear stress is completely and

exclusively dominated by contact forces.

Figure 6.9
Time-averaged steady-state shear stress profiles: total shear stress Σ

∗
12 (•), theoretical expression

−4y∗ (black line), contact contribution Σc
∗
12 (N), and hydrodynamic contribution Σh

∗
12 (H).
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Finally, the evolution of the second normal stress Σ22 = Σyy and its hydrodynamic and

contact contributions are displayed over time in Fig. 6.10. It should be stressed that, although

the contact and hydrodynamic contributions significantly vary over the channel, the total

stress Σ22 does not, in agreement with the standard momentum balance in y-direction. This

first check validates the numerical method and allows us to consider testing the SBM in the

future with confidence.

As already mentioned, a gradient of the contact contribution to the stress, as well as

of its hydrodynamic counterpart, is evidenced. In more detail, the gradient of contact

stress denotes the force density on the particle phase originating from contacting neighbors

(Lhuillier, 2009; Nott et al., 2011; Andreotti et al., 2013):

〈fc〉 = ∇ ·Σc (6.20)

In the present case, the force 〈fc〉 = ∂yΣcyy drives the particles toward the channel center.

In addition, in agreement with the SBM, the stress gradient fades out as particle migration

occurs. However, we note that a significant stress gradient persists at the end of the simu-

lation, more pronounced in the central region, but not limited to it, especially in the less

concentrated case (φ0 = 0.30). It is now difficult to ascertain that the steady volume fraction

profile has been reached due to significant temporal fluctuations of the volume fraction.

Longer simulations would probably be required.

The statements above surely deserve a comment. Since the total stress is uniform, it means

that this contact force density is balanced by the hydrodynamic stress gradient, as evidenced

in Fig. 6.10. It should be stressed here that, since no inertia is accounted for in the simulations,

the total force on each particle, i.e. the sum of the contact and hydrodynamic contributions,

is zero at each time, as shown in Section 4.2.3. As a consequence, the hydrodynamic force

density exerted on the particle phase in the y-direction is:

〈
fhy
〉
= −∂yΣ

c
yy = ∂yΣ

h
yy (6.21)

where the last equality follows from the uniformity of Σyy. The hydrodynamic force density

is thus related to the hydrodynamic stress gradient, in the same way as the contact force

density to the contact stress gradient. We note that simulations allow us to compute both

sides of Eqs. (6.20) and (6.21). We checked that both equations, if properly time-averaged to

lower statistical fluctuations, quantitatively hold.

Another striking feature in Fig. 6.10 is that the contact stress does not vanish at the center

of the channel, while the shear rate does. This is another hint that the suspension behavior

at this point seems quite different from the usual viscous constitutive equation, where the

normal stresses are proportional to the tangential stress.

Nevertheless, this assertion should be softened by the following remarks. First, care

should be taken while analyzing time-averaged values: since the tangential stress is not

instantaneously the same at the two walls, the linear stress profile fluctuates with time,

meaning that the position where it vanishes changes too. Due to the linearity of the profile,
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this does not affect the mean tangential stress profile. However, since the contact normal

stress is not sensitive to the sign of the tangential stress, fluctuations will not be averaged

out. In the same line, the instantaneous velocity profile is a spatial average too, meaning that

velocity and velocity gradient fluctuations are expected to occur at the particle level, even at

the channel center, possibly generating stresses. The effect of such fluctuations is expected

to play a role at the channel center, where the mean value of the tangential stress is zero.

Figure 6.10
Second normal stress profiles: evolution in time (from lightest to darkest), averaged over temporal
intervals ∆t∗ = 100, except for the steady state. Comparison between (left column) the total stress
Σ∗22, (center column) the hydrodynamic contribution Σh

∗
22 , and the contact contribution Σc

∗
22.
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Finally, as evidenced in Eqs. (6.18) and (6.19), the computation of stresses is not itself a

perfectly local operation, since stresslet is an integral quantity over each particle, which is

further re-scattered over the particle (Eq. (6.19)). As a consequence, it is expected to probe

stresses with a smoothing length scale of at least one particle diameter. In other words, a

continuum modeling of the suspension is not expected to hold at a length scale smaller than

a few particle diameters at positions where the local quantities abruptly vary, such as the

near-wall and plug areas regions.

6.5 discussion and perspectives

In this last chapter, we were able to calculate transient and steady-state velocity, volume

fraction, and stress profiles in a pressure-driven suspension flow in a channel. In particular,

the volume fraction and velocity profiles in the steady state have been studied and compared

with a modified version of the SBM for which migration is artificially blocked for volume

fractions higher than the jamming volume fraction measured in simple shear flow. An

important point in this regard is that the material functions that were used for the SBM

were determined by the same discrete numerical method used in the present study.

Three different zones have been highlighted, in agreement with Yeo & Maxey (2011): a

zone close to the walls, where particle layering develops over a width of about two particle

diameters and strong wall-slip is observed; a second zone, located between the structured

zone and the central zone, is reasonably well described by the SBM as implemented here in

steady state; finally, a third, central zone, where the observed rheology seems quite different

from the usual behavior in shear flow. In the central zone, the SBM does not correctly

describe the observed volume fraction and velocity distributions: at low mean concentration,

the volume fraction does not reach the jamming volume fraction in the center, which is

rather a confirmation that this version of the SBM is not adapted to the description of this

region of the suspension flow where the shear stress cancels out. A more important point is

the appearance, for mean volume fractions higher than 0.40, of a central region where the

volume fraction exceeds the jamming volume fraction φJ measured in simple shear flow.

The width of this region can be as large as 4− 10 particle radii, i.e. well above the size of

a particle. It is possible that velocity and stress fluctuations, in a zone where the average

shear rate is very low, are the cause of an over-concentration of particles. However, questions

about the relationship between stress and shear rate in this zone arise.

To go further, it will be necessary to closely examine the stresses that develop in the

suspension, and their relationship with the kinematic quantities that characterize the flow. A

first approach, necessary, was to check the good coherence of the measured local constraints,

i.e. that they obey the local momentum balance. This is perfectly achieved for stresses

averaged over short time intervals during the transient regime and during the subsequent

stationary flow. This verification fully validates the use of the numerical method presented

here for nonlinear flows.
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On the other hand, a gradient of contact stresses at each instant has been revealed,

which is naturally counterbalanced by the gradient of the hydrodynamic contribution. This

gradient decreases as the migration takes place, to approximately disappear once particle

migration is completed and the volume fraction profile is established. The existence of this

gradient, directed to push particles toward the center of the channel, and its decrease during

migration, is in qualitative agreement with the SBM, which states that particle migration is

driven by a particle stress gradient.

Several points remain to be clarified, which sets the direction for future work. First, it

will be interesting to investigate the quantitative relationships between particle flux and

transient stress gradient within this Poiseuille flow and to compare them to those prevailing

in the SBM framework. This work could of course be extended by studying a resuspension

flow, which adds a term to the stress balance, in addition to the contact and hydrodynamic

contributions. One could also compare the local constitutive equation that relates the stresses

to the velocity gradient to the one determined in simple shear. In particular, the material

functions from the two types of simulations can be compared.

On the other hand, the behavior of the suspension in the central region should be clarified.

In the case of the lowest mean volume fraction φ0 = 0.30, the jamming volume fraction

is not reached, contrary to what is expected by the SBM as implemented here. This has

already been observed in experiments and numerical simulations in the literature. One of

the proposed explanations is based on the non-locality of the constitutive equation which

would have as origin the velocity fluctuations (i.e., the local “temperature”) (Nott & Brady,

1994), the existence of a network of forces (Mills & Snabre, 1995) or the finite size of the

particles (Miller & Morris, 2006). Such non-locality would not be surprising in our case, since

the area where the SBM predictions differ from simulation calculations extends over two or

three particle diameters: it is not feasible to apply a continuous medium at smaller scales.

However, it would be instructive to precisely determine the extension of the central zone.

The measurement of the local constitutive equation would probably allow us to characterize

it precisely since it is likely to differ from the law measured in simple homogeneous shear

in this zone.

In the case of larger mean volume fractions, we have seen that the volume fraction could

exceed φJ, on a scale quite larger than one particle diameter. It seems likely that velocity and

stress fluctuations, in this zone where the tangential stress is close to zero, are responsible

for the densification of the suspension, in the manner of the standard tapping in granular

materials. However, the nature of the stresses in this zone is also an important question. In

particular, it is questionable whether a true flow is still taking place. One way to answer these

questions would be to measure velocity correlations in the suspension. We can recall that

Guasto et al. (2010) have experimentally demonstrated a higher spatial velocity correlation in

the central zone. In the same line, Yeo & Maxey (2011), in their simulations of monodisperse

suspensions, have shown a different structure, more isotropic, within the central zone.
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We started this project by wanting to propose a numerical method for the simulation of

three-dimensional concentrated non-Brownian suspensions in linear and nonlinear flows.

We wanted a precise tool, able to correctly take into account both contact and hydrodynamic

interactions between particles, i.e. we wanted to solve the Navier-Stokes equations for an

incompressible Newtonian fluid and couple them with the particle dynamics.

We opted for the Fictitious Domain Method (FDM), as it has all the characteristics we

were searching for. Then, we decided to implement it in the OpenFOAM toolbox, due to its

large quantity of libraries useful for simulating fluid flows and to the growing number of

users, making it a reference in the CFD community. Also, this makes our implementation of

the FDM portable and easy to use, being OpenFOAM open-source and free.

In Chapter 2 we deeply detailed all the numerical features characterizing the method.

We started by defining the governing equations for both fluid and particles, and then

we separated the fluid sub-problem from the particle sub-problem. The former is solved

by the solver in OpenFOAM: we chose the SIMPLEC algorithm, and we fully detailed

the complete numerical procedure together with the discretization of the various terms.

Then, we explained how the two sub-problems are coupled: the difficulty in the numerical

approach employed here is that the two sub-problems proceed consecutively, presenting

a lag between the force density and the velocity and pressure fields, and, by consequence,

imposing the use of an iterative approach. We then tackled all the numerical details: how

to solve the involved linear systems, how to deal with the parallelization of the tasks, the

boundary conditions to employ, the use of indicator functions to track the particles, and

how to control convergence. We ended Chapter 2 by displaying the contact model chosen

here, and defining how the rheological quantities of interest are measured.

After having chosen the numerical method and understood how to implement it, the first

issue to tackle has been the sub-grid corrections. We have seen in Chapter 3 that, as the FDM

uses a fixed Cartesian mesh, the solver is not able to correctly compute the lubrication flow

arising between particles approaching at a distance smaller than the mesh grid size. The

implementation of the sub-grid corrections is today a standard procedure, and many authors

have proposed it. However, the standard implementation of such corrections involves the

underlying linear flow. To appropriately expand our research to nonlinear flows, we propose

an innovative modification of the sub-grid corrections, which does not need to take into

account the ambient flow, and we did this for both the cases of two close particles and a

particle close to a wall. We provided the reader with the full details about this matter in

Chapter 3, together with even further details in Appendices A to D.
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We had the numerical procedure, and we had this new version of the sub-grid corrections

that opens up to nonlinear flows. The next natural step has been to verify the correct

implementation of the method. Therefore, we tested several configurations: starting from

one or two particles in both linear and nonlinear flows, with different boundary conditions,

with or without walls, with or without contact, needing or not sub-grid corrections, to

three particles in more “exotic” configurations, and finally up to concentrated bidisperse

frictional suspensions in simple shear flow. All these validations are collected in Chapter 4.

We compared the results to existing literature, and we definitively proved the correct im-

plementation of the method and the proposed sub-grid corrections. Moreover, we checked

the mechanical consistency of a suspension in a simple shear flow, and, again, the results

confirmed the relevance of the numerical method. Finally, we wanted to check the compu-

tational performances of the method. The computational costs and the strong scaling are

displayed at the end of Chapter 4.

At that point, we had a very precise and accurate tool in our hands, and it was time to take

advantage of it. The first application we decided to investigate was to study the influence that

adhesive forces between particles have on the rheological properties of bidisperse frictional

suspensions: for three values of the friction coefficient, we performed a parametric study by

varying both volume fraction and intensity of the adhesive forces. We encountered several

difficulties in simulating cases with low volume fraction and high adhesion, which showed

wall depletion and shear-banding. However, we were able to retrieve useful information

from our simulations (displayed in Chapter 5), and we observed that the relative viscosity

of the suspension is a function of both volume fraction and reduced shear stress (the

latter taking into account adhesion). This led to the definition of a curve describing the

jamming volume fraction as a function of shear stress, which can also be interpreted as a

curve of the yield stress as a function of volume fraction. This separates the phase space

(volume fraction, shear stress) into two regions: one in which the suspension flows and one

in which the suspension jams.

We decided to keep the cherry on the top for the end: the investigation of the shear-induced

particle migration occurring in a bidisperse frictional suspension in a planar pressure-driven

flow (note: it is the “cherry on the top” simply because it is an application that perfectly

matches the advantages of our numerical method). We performed the investigation for three

values of the mean volume fraction, and the results are shown in Chapter 6. We observed

that, as expected, particles migrate toward the center of the channel, where the shear rate

fades out, and this is reflected by a blunted particle velocity profile. This behavior happens

whatever the volume fraction. However, for the two higher volume fractions, in the channel

center, the volume fraction locally exceeds the jamming volume fraction as measured in

simple shear flow, and particles form a plug with a width of a few particle diameters. We

compared the results with a modified version of the Suspension Balance Model (SBM),

showing the well-known limits of this simplified model. Finally, we investigated the balance

of the local stresses in the suspension, and we checked that they obey the conservation law



conclusion 155

of the local momentum all along the simulation run: we observed that the shear stress is

driven by the pressure gradient, as expected by theory, and that the second normal stress

(i.e., parallel to the velocity gradient) does not vary across the channel width, and a gradient

in the contact stress (directed as to push the particles towards the center) is found, which is

counter-balanced by the hydrodynamic stress.

Beyond having answered several questions about the rheological properties of the systems

studied here, many further questions have arisen. Concerning the role of adhesion in

frictional suspensions, further investigation of our results with recent models would be

interesting (although not easy, due to the difficulties in decreasing the shear stress). Moreover,

a complete investigation of the behavior of the stresses when varying adhesion together with

volume fraction should be proposed. Also, the formation of aggregates should be studied,

investigating the behavior and evolution of the microstructure and employing larger domain

sizes to evaluate the influence of this parameter on the computed rheology. Concerning

particle migration in pressure-driven flows, the peculiarities characterizing the plug region

should be cleared out, and a deeper and more precise investigation of the temporal and

spatial evolution of the stresses needs to be performed. A complete investigation of the

microstructure is needed in this case too. More generally, the relation between particle flux

and stress gradient should be precisely determined.

Finally, further developments should be performed also from a numerical point of view,

the most important one being the optimization of the code. Albeit it is something that

has been deeply carried out all along the implementation of the method (and even after),

there surely are some more features that can be added. For example, the solution of the

linear system for the computation of the velocities of the particles could be parallelized

with the message passing interface (MPI) standard, using already existing libraries such as

PETSc. This would allow us to further increase the number of particles without reaching

unmanageable computational costs.
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The general form of the resistance tensors for a particle pair is given here, together

with the symmetry relations from Lorentz’s reciprocal theorem and the relations from the

geometrical symmetry. As for the resistance functions for a particle close to a wall, the same

reasoning can be followed with the required cautions.
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a.1 particle pair

Considering two particles (p1) and (p2) and the unitary vector connecting their centers

d = (x2 − x1) /‖x2− x1‖, the general forms of the resistance tensors in Eq. (3.5), valid for the

theoretical matrices as well as for the FDM matrices and the sub-grid correction matrices,

are (Kim & Karrila, 1991):

A
(αβ)
ij = XAαβdidj + Y

A
αβ

(
δij − didj

)
B
(αβ)
ij = YBαβεijkdk

B̃
(αβ)
ij = YB̃αβεijkdk

C
(αβ)
ij = XCαβdidj + Y

C
αβ

(
δij − didj

)
G

(αβ)
ijk = XGαβ

(
didj −

1

3
δij

)
dk + Y

G
αβ

(
diδjk + djδik − 2didjdk

)

G̃
(αβ)
ijk = XG̃αβ

(
djdk −

1

3
δjk

)
di + Y

G̃
αβ

(
djδki + dkδij − 2didjdk

)
H

(αβ)
ijk = YHαβ

(
diεjkmdm + djεikmdm

)
H̃

(αβ)
ijk = YH̃αβ

(
djεkimdm + dkεjimdm

)
M

(αβ)
ijkl =

3

2
XMαβ

(
didj −

1

3
δij

)(
dkdl −

1

3
δkl

)
+
1

2
YMαβ

(
diδjldk + djδildk

+ diδjkdl + djδikdl − 4didjdkdl
)
+
1

2
ZMαβ

(
δikδjl + δjkδil − δijδkl

+ didjδkl + δijdkdl + didjdkdl − diδjldk − djδildk − diδjkdl − djδikdl
)

P
(αβ)
i = XPαβdi

Q
(αβ)
ij = XQαβ

(
didj −

1

3
δij

)
where the scalar resistance functions XAαβ, ldots, depend on a1, a2 and on the reduced

distance between the particles surfaces ξ = 2‖x2 − x1‖/ (a1 + a2) − 2.

The resistance matrix obeys symmetry relations from Lorentz reciprocal theorem:

A
αβ
ij = Aβαji B̃

αβ
ij = Bβαji C

αβ
ij = Cβαji

G̃
αβ
ijk = Gβαjki H̃

αβ
ijk = Hβαjki M

αβ
ijkl =M

βα
lkij
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Then, from the definition of the terms, we obtain:

XAαβ = XAβα YAαβ = YAβα XCαβ = XCβα

XMαβ = XMβα YMαβ = YMβα YCαβ = YCβα

YB̃αβ = −YBβα XG̃αβ = XGβα ZMαβ = ZMβα

YG̃αβ = YGβα YH̃αβ = YHβα

Moreover, the relations for λ =
a2
a1

and λ−1 originating from geometrical symmetry read,

for the dimensionless functions (Jeffrey & Onishi, 1984; Jeffrey, 1989; Jeffrey et al., 1993):

X̂Aαβ(s, λ) = X̂
A
(3−α)(3−β)(s, λ

−1) ŶAαβ(s, λ) = ŶA(3−α)(3−β)(s, λ
−1)

ŶBαβ(s, λ) = −ŶB(3−α)(3−β)(s, λ
−1) X̂Cαβ(s, λ) = X̂C(3−α)(3−β)(s, λ

−1)

ŶCαβ(s, λ) = Ŷ
C
(3−α)(3−β)(s, λ

−1) X̂Gαβ(s, λ) = −X̂G(3−α)(3−β)(s, λ
−1)

ŶGαβ(s, λ) = −ŶG(3−α)(3−β)(s, λ
−1) ŶHαβ(s, λ) = Ŷ

H
(3−α)(3−β)(s, λ

−1)

X̂Mαβ(s, λ) = X̂
M
(3−α)(3−β)(s, λ

−1) ŶMαβ(s, λ) = ŶM(3−α)(3−β)(s, λ
−1)

ẐMαβ(s, λ) = Ẑ
M
(3−α)(3−β)(s, λ

−1) X̂Pαβ(s, λ) = −X̂P(3−α)(3−β)(s, λ
−1)

X̂
Q
αβ(s, λ) = X̂

Q
(3−α)(3−β)(s, λ

−1)

a.2 particle-wall

The same general forms hold for the particle-wall interaction matrices Matw as for their

two-particle counterpart Mat11 provided that d is now the unit vector normal to the wall

into the wall. The scalar resistance functions depend on the radius of the particle a and the

reduced distance of the particle surface to the wall ε = [(xw − xp) · d] /a− 1, where xw is

the position of the wall.
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Here, the theoretical expressions of the resistance functions are collected. In the case of a

particle close to a wall, the expressions proposed by Chaoui & Feuillebois (2003) are found

to be preferable to the expressions from the lubrication approximation.
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b.1 two-particle resistance matrix

Depending on the reduced distance ξ = 2‖x2 − x1‖/ (a1 + a2) − 2 between the particles’

surfaces, the theoretical resistance functions are computed either from expressions obtained

in the frame of the lubrication approximation (Jeffrey & Onishi, 1984; Jeffrey, 1992; Jeffrey

et al., 1993) (ξ 6 0.01) or by interpolation of tabulated values (ξ > 0.01). The tabulated

values were computed using the programs made available on the web by Jeffrey (2021).

The expressions are quoted below for the particular coefficients that are needed in the

frame-invariant sub-grid correction matrix (see Section 3.3), as a function of ξ and the

particles’ radii ratio λ = a2/a1. They are made dimensionless according to Appendix A.

The constants at the end of each expression, such as AX21(λ), A
Y
21(λ), etc., may be computed

using programs available on the same web page. We note here that the resistance functions

in the sub-grid correction matrix diverge as ξ→ 0. To keep the linear system in Eq. (2.43)

reasonably well conditioned, a threshold (10−5) is imposed on the reduced distance ξ, below

which the resistance functions are kept constant.

XA21
3π (a1 + a2)

= −
4λ2

(1+ λ)4
ξ−1 −

2λ
(
1+ 7λ+ λ2

)
5 (1+ λ)4

lnξ−1

−
2
(
1+ 18λ− 29λ2 + 18λ3 + λ4

)
42 (1+ λ)4

ξlnξ−1 +AX21 (λ)

YA21
3π (a1 + a2)

= −
8λ
(
2+ λ+ 2λ2

)
15 (1+ λ)4

lnξ−1 −
4
(
16− 45λ+ 58λ2 − 45λ3 + 16λ4

)
375 (1+ λ)4

ξlnξ−1 +AY21 (λ)

XC21

π (a1 + a2)
3
=

2λ2

(1+ λ)4
ξlnξ−1 +CX21 (λ)

YC11
8πa31

=
2

5
λ (1+ λ)−1 lnξ−1 +

1

125

(
8+ 6λ+ 33λ2

)
(1+ λ)−1 ξlnξ−1 +CY11 (λ)

YB21

π (a1 + a2)
2
= −

4λ−1
(
4+ λ−1

)
5 (1+ λ−1)

4
lnξ−1 −

4
(
32− 33λ−1 + 83λ−2 + 43λ−3

)
250 (1+ λ−1)

−4
ξlnξ−1 +BY21 (λ)

XG11
4πa21

=
3λ2

(1+ λ)3
ξ−1 +

3
(
λ+ 12λ2 − 4λ3

)
10 (1+ λ)3

lnξ−1

+
5+ 181λ− 453λ2 + 566λ3 − 65λ4

140 (1+ λ)3
ξlnξ−1 +GX11 (λ)
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YG11
4πa21

=
4λ− λ2 + 7λ3

10 (1+ λ)3
lnξ−1 +

32− 179λ+ 532λ2 − 356λ3 + 221λ4

500 (1+ λ)3
ξlnξ−1 +GY11 (λ)

YH21

π (a1 + a2)
3
=
8
(
λ−2 + 7λ−3

)
20 (1+ λ−1)

5
lnξ−1 +

8
(
43λ−1 + 147λ−2 − 185λ−3 + 221λ−4

)
1000 (1+ λ−1)

5
ξlnξ−1 +HY21 (λ)

XP12

π (a1 + a2)
2
= −

12λ2

(1+ λ)5
ξ−1 −

12
(
λ− 4λ2

)
10 (1+ λ)4

lnξ−1

−
4
(
5− 97λ+ 64λ2 − 44λ3 + λ4

)
140 (1+ λ)4

ξlnξ−1 + PX12 (λ)

XP21

π (a1 + a2)
2
=

12λ−2

(1+ λ−1)
5
ξ−1 +

12
(
λ−1 − 4λ−2

)
10 (1+ λ−1)

4
lnξ−1

+
4
(
5− 97λ−1 + 64λ−2 − 44λ−3 + λ−4

)
140 (1+ λ−1)

4
ξlnξ−1 + PX21 (λ)

b.2 particle-wall resistance matrix

Concerning the lubrication between a particle and a wall, no tabulated values are available.

Therefore, we have to use the theoretical expressions as soon as we need the sub-grid

correction. Yeo & Maxey (2010c) propose a compilation from the literature for XA, YA,

YB, XC, YC, YG and YH that is quoted below for the sake of completeness. As to the

remaining functions, following Gallier et al. (2014a) we compute XG and XP starting from

the expressions for two particles with radii a and λa and we compute the limit for λ→∞.

Finally, the term O(1) is taken from Jeffrey (1992) for λ = 100, which is the maximum value

that we considered.

However, these theoretical expressions should be used in principle only for ε 6 0.01 (with

ε = [(xw − xp) · d] /a− 1, where xw is the position of the wall), because they are less and

less accurate for larger distances. Chaoui & Feuillebois (2003) investigated the flow of a

particle close to a wall in a shear flow, and they slightly modified some of the lubrication

expressions and proposed some expansions for further distances for the force friction factor

and the torque friction factor for translation along a wall (YA and YB), and for the torque

friction factor for rotation close to a wall (YC). We finally use these latter expressions to

compute the sub-grid correction matrix.

As in the two-particle case, the resistance functions in the sub-grid correction matrix

diverge as the distance between the particle surface and a wall tends to zero. Following the

same reasoning, a threshold (10−5) is imposed on the reduced distance ε, below which the

resistance functions are kept constant.
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The expressions gathered by Yeo & Maxey (2010c) and the ones obtained following Gallier

(2014) and Jeffrey (1992) are:

XA

6πa
= ε−1 +

1

5
lnε−1 +

1

21
εlnε−1 + 0.8193

XC

8πa3
= −

1

2
εlnε−1 + 1.2021

XG

4πa2
=
3

2
ε−1 −

6

5
lnε−1 + 0.3912

YB

4πa2
= −

3

15
lnε−1 −

43

125
εlnε−1 + 0.3852

XP

4πa2
=
3

2
ε−1 −

6

5
lnε−1 − 0.552

YA

6πa
=
8

15
lnε−1 +

64

375
εlnε−1 + 0.9557

YC

8πa3
=
2

5
lnε−1 +

66

125
εlnε−1 + 0.3720

YG

4πa2
=
7

10
lnε−1 +

221

250
εlnε−1 − 0.923

YH

8πa3
= −

1

10
lnε−1 +

2

250
εlnε−1 + 0.0916

YM

20

3
πa3

=
24

25
lnε−1 +

1182

625
εlnε−1 − 0.685

It should be noted that the constant term for XG has not the same value as the one

proposed by Gallier (2014), and it is now set to 0.3912. This value has been chosen after

evaluating XG varying the particles’ radii ratio λ and choosing the value for λ = 100. Also,

the simulations pointed out that no sub-grid correction is needed for XC.

Finally, the expansions for further distances for the force friction factor and the torque

friction factor for translation along a wall (YA and YB), and for the torque friction factor

for rotation close to a wall (YC) proposed by Chaoui & Feuillebois (2003) – preferred to the

expressions from the lubrication approximation mentioned above – are quoted below:

YACF
6πa

=

5∑
j=0

[
φtjε

jlnε+ ftjε
j
]

YBCF
−8πa2

=

5∑
j=0

[
γtjε

jlnε+ ctjε
j
]

YCCF
8πa3

=

5∑
j=0

[
γrjε

jlnε+ crjε
j
]

(B.1)
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where:

φt0 = −8/15

φt1 = −64/375

φt2 = 0.011595712294862

φt3 = −0.002559314461340

φt4 = 0.002165777707452

φt5 = 0.000351260314552

ft0 = 0.954293724783876

ft1 = 0.429450132564500

ft2 = −0.001897844702304

ft3 = 0.002058408405495

ft4 = 0.000096108639584

ft5 = −0.001248147281379

γt0 = −1/10

γt1 = −43/250

γt2 = −0.036913066460225

γt3 = 0.001486892317125

γt4 = 0.000012689734456

γt5 = 0.000103798994187

ct0 = −0.192952745666190

ct1 = 0.100579155700110

ct2 = 0.094493729126963

ct3 = 0.003821112414990

ct4 = −0.000819028830091

ct5 = −0.000097511506358

γr0 = −2/5

γr1 = −0.528001276176667

γr2 = −0.212879560114862

γr3 = −0.035965644690736

γr4 = −0.006385459746252

γr5 = 0.000167620439255

cr0 = 0.370892565890165

cr1 = 0.340079923061464

cr2 = 0.225531274283815

cr3 = 0.097897336215370

cr4 = 0.005878696055717

cr5 = 0.001503759398496
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x

y

z

Recalling the two-particle resistance matrix in Section 3.1 and Eq. (3.5),

we concentrate here on measuring the resistance functions for (p1) (the

ones for (p2) are analogous). Each resistance function is linked to

specific movements of the particles and of the flow. One has to carefully

choose the right configuration to measure them separately. In all the

expressions given in the following, d = (x2 − x1) / ‖x2 − x1‖ is the vector linking the centers

of the two particles. Also, the practical configurations employed are shown. The same

setups can be used when measuring the resistance functions for a particle close to a wall,

by replacing (p2) with the considered wall. The figure here represents the reference frame

employed in the present chapter.
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c.1 1
st

and 2
nd

columns : a , b , g , p

The first two columns link the resistance functions to the translational velocities of (p1)

and (p2). So, to measure A,B,G and P for (p1), everything is put at rest, and only the

translational velocity of (p1) is non-null: u∞ = 0, Ω1 =Ω2 = 0, U1 6= 0, U2 = 0

1

η
F1 = −A11 ·U1 = −

[
XA11d⊗ d + YA11 (I − d⊗ d)

]
·U1

1

η
T1 = −B11 ·U1 = −YB11U1 ∧ d

1

η
S1 = −G11 ·U1 = −XG11U1 · d

(
d⊗ d −

1

3
I
)
− YG11 (d⊗U1 + U1 ⊗ d − 2 (U1 · d)d⊗ d)

1

η
s1 = −P11 ·U1 = −XP11U1 · d

c.1.1 1st setup

The two particles are aligned along x, and (p1) has a translational velocity parallel to the

vector linking the centers (i.e., towards (p2)).

XA11 = −
F1,x
ηu1,x

XG11 = −
S1,xx − S1,yy − S1,zz

4
3ηu1,x

XA21 = −
F2,x
ηu1,x

XG21 = −
S2,xx − S2,yy − S2,zz

4
3ηu1,x

XP11 = −
s1
ηu1,x

XP21 = −
s2
ηu1,x

c.1.2 2nd setup

The two particles are aligned along x, and (p1) has a translational velocity orthogonal to the

vector linking the centers.

~d = = ~0

YA11 = −
F1,y

ηu1,y
YG11 = −

S1,xy + S1,yx
2ηu1,y

YA21 = −
F2,y

ηu1,y
YG21 = −

S2,xy + S2,yx
2ηu1,y

YB11 = +
T1,z
ηu1,y

YB21 = +
T2,z
ηu1,y
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c.2 3
rd

and 4
th

columns : b̃ , c , h

The third and fourth columns are linked to the rotational velocities of (p1) and (p2). So, to

measure B̃,C and H for (p1), everything is put at rest, and only the rotational velocity of

(p1) is non-null: u∞ = 0, U1 = U2 = 0, Ω1 6= 0, Ω2 = 0

1

η
F1 = −B̃11 ·Ω1 = −YB̃11Ω1 ∧ d

1

η
T1 = −C11 ·Ω1 = −XC11 (d⊗ d) ·Ω1 − YC11 (I − d⊗ d) ·Ω1

1

η
S1 = −H11 ·Ω1 = −YH11 [d⊗ (Ω1 ∧ d) + (Ω1 ∧ d)⊗ d]

c.2.1 3rd setup

The two particles are aligned along x, and (p1) has a non-null rotational velocity Ωy.

XC11 = −
T1,x
ηΩ1,x

XC21 = −
T2,x
ηΩ1,x

c.2.2 4th setup

The two particles are again aligned along x, and (p1) has a non-null rotational velocity Ωz.

YB̃11 = −
F1,y

ηΩ1,z
YH11 = −

S1,xy + S1,yx
2ηΩ1,z

YB̃21 = −
F2,y

ηΩ1,z
YH21 = −

S2,xy + S2,yx
2ηΩ1,z

YC11 = −
T1,z
ηΩ1,z

YC21 = −
T2,z
ηΩ1,z
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c.3 5
th

and 6
th

columns : g̃ , h̃ , m , q

The last two columns are linked to the strain tensor. So, to measure G̃, H̃,M and Q, the

strain tensor has to be non-null, leading non-null translational velocities of both (p1) and

(p2): u∞ = E∞ · x, U1 = E∞ · x1, U2 = E∞ · x2, Ω1 =Ω2 = 0
1

η
F1 =

(
G̃11 + G̃12

)
· E∞ =

(
XG̃11 +X

G̃
12

)
[E∞ : (d⊗ d)]d

+ 2
(
YG̃11 + Y

G̃
12

)
[E∞ · d − (E∞ : (d⊗ d))d]

1

η
T1 =

(
H̃11 + H̃12

)
· E∞ = 2

(
YH̃11 + Y

H̃
12

)
d ∧ (E∞ · d)

1

η
S1 = (M11 + M12) · E∞ =

3

2

(
XM11 +X

M
12

)
(E∞ : (d⊗ d))

(
d⊗ d −

1

3
I
)

+
(
YM11 + Y

M
12

)
[d⊗ (E∞ · d) + (E∞ · d)⊗ d − 2 (E∞ : (d⊗ d)) (d⊗ d)]

+
(
ZM11 +Z

M
12

) [
E∞ +

1

2
(E∞ : (d⊗ d)) (I + d⊗ d) − d⊗ (E∞ · d) − (E∞ · d)⊗ d

]

1

η
s1 = (Q11 + Q12) · E∞ =

(
X
Q
11 +X

Q
12

)(
d⊗ d −

1

3
I
)

: E∞

c.3.1 5th setup

A pure straining flow is imposed, and the two particles are aligned along x.

E∞ =
γ̇

2


0 −1 −0

1 −0 −0

0 −0 −0



U1 =
γ̇

2
(y1ex + x1ey)

U2 =
γ̇

2
(y2ex + x2ey)

YG̃11 + Y
G̃
12 =

F1,y

ηγ̇

YH̃11 + Y
H̃
12 =

T1,z
ηγ̇

YM11 + Y
M
12 =

S1,xy + S1,yx
ηγ̇
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c.3.2 6th setup

A pure straining flow (different from the one in setup 5) is imposed, and the two particles

are aligned along x.

E∞ =
γ̇

2


1 −0 −0

0 −1 −0

0 −0 −0



XG̃11 +X
G̃
12 =

2F1,x
ηγ̇

U1 =
γ̇

2
(x1ex − y1ey)

U2 =
γ̇

2
(x2ex − y2ey)

c.3.3 7th setup

A pure straining flow as in setup 5 is imposed, and the two particles are aligned along z.
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1 −0 −0

0 −0 −0



ZM11 +Z
M
12 =

S1,xy + S1,yx
ηγ̇

U1 =
γ̇

2
(y1ex + x1ey)

U2 =
γ̇

2
(y2ex + x2ey)

c.3.4 8th setup

An elongational flow is imposed, and the two particles are aligned along x.
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We show here how the constraints quoted in Section 3.3.3 are obtained. We recall that to

obtain them, the second and third terms in the RHS of Eq. (3.9) have to be put exactly equal

to zero: this means that no sub-grid correction is wanted in both the cases of a particle pair

with a rigid body motion in a liquid at rest and a particle pair at rest in a pure straining

flow, respectively.

The superscript SG has been removed for the sake of simplicity.
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d.1 a particle pair with a rigid body

motion in a liquid at rest

Imposing the first and second terms of Eq. (3.14) to be zero leads to the following relations:
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d.2 a particle pair at rest in a pure

straining flow

Imposing the third term of Eq. (3.14) to be exactly zero leads to the following relations:

F1
η

=
[ r
2

(
−XA11 +X

A
12

)
+
(
XG̃11 +X

G̃
12

)]
· (E∞ : (d⊗ d))d

+
[ r
2

(
−YA11 + Y

A
12

)
+ 2

(
YG̃11 + Y

G̃
12

)]
(E∞ · d − (E∞ : (d⊗ d))d) = 0

⇒

r

2

(
−XA11 +X

A
12

)
+
(
XG̃11 +X

G̃
12

)
= 0

r

2

(
−YA11 + Y

A
12

)
+ 2

(
YG̃11 + Y

G̃
12

)
= 0

T1
η

=
[ r
2

(
−YB11 + Y

B
12

)
− 2

(
YH̃11 + Y

H̃
12

)]
(E∞ · d)× d = 0

⇒ r

2

(
−YB11 + Y

B
12

)
− 2

(
YH̃11 + Y

H̃
12

)
= 0

S1
η

=

[
r

2

(
−XG11 +X

G
12

)
+
3

2

(
XM11 +X

M
12

)]
(E∞ : d⊗ d)

(
d⊗ d −

1

3
I
)

+
[ r
2

(
−YG11 + Y

G
12

)
+
(
YM11 + Y

M
12

)]
[d⊗ (E∞ · d) + (E∞ · d)⊗ d − [2E∞ : (d⊗ d)] (d⊗ d)]

+
1

2

(
ZM11 +Z

M
12

) [
E∞ − (d⊗ (E∞ · d) + (E∞ · d)⊗ d) +

1

2
E∞ : (d⊗ d) (I + d⊗ d)

]
= 0

⇒

r

2

(
−XG11 +X

G
12

)
+
3

2

(
XM11 +X

M
12

)
= 0

r

2

(
−YG11 + Y

G
12

)
+
(
YM11 + Y

M
12

)
= 0

1

2

(
ZM11 +Z

M
12

)
= 0

s1
η

=
[ r
2

(
−XP11 +X

P
12

)
+
(
X
Q
11 +X

Q
12

)]
E∞ : (d⊗ d) = 0

⇒ r

2

(
−XP11 +X

P
12

)
+
(
X
Q
11 +X

Q
12

)
= 0





E

J K R C O N TA C T T H E O RY
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The first satisfactory analysis of the stresses at the contact of two elastic solids is due to

Hertz (1882). He first made the hypothesis that the contact area generally is elliptical. He

then introduced the simplification that each body can be regarded as an elastic half-space

loaded over a small elliptical region of its surface. This simplification is justifiable if the

significant dimensions of the contact are small compared to the dimensions of each body and

the radius of curvature of the surfaces. Finally, the surfaces are assumed to be frictionless so

that only a normal load is transmitted between them. However, the assumptions made in

this theory can become too restricting when closely investigating the edge of contact.

Even though in the current study we are not interested in deeply investigating the tribology

of two rigid spheres and we accept the assumptions made by Hertz, when considering

adhesive forces questions arise on how to implement them. As it is presented in Section 5.2,

we decide to opt for a very simple but easily employable model. Nevertheless, other models

can be found in the literature, and one that has to be mentioned is the theory proposed by

Johnson et al. (1971). We present their model and we show the differences with the model

employed here.
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e.1 the contact of elastic solids

In Section 5.2 we present the contact model employed in the current work. Let us now recall

the contact theory for the normal force developed by Johnson et al. (1971) and let us see the

differences with the model chosen here.

Following Johnson (1985), two ideally flat surfaces have an equilibrium separation distance

z0: for z < z0 they will repel each other, while for z > z0 they will attract. The variation

of force per unit area as a function of separation z is usually represented by a law of the

following form (displayed in Fig. E.1):

p (z) = −Az−n +Bz−m with m > n (E.1)

In these circumstances, a tensile (negative) force – the force of adhesion – has to be exerted

to separate the two surfaces. It is usual to measure the work 2γ required to separate the

surfaces (see Fig. E.1) and to ascribe a surface energy γ to each newly created free surface.

To study the effect of adhesive forces in the absence of surface roughness, we shall consider

two spheres of radii R1 and R2 which make contact over a circular area of radius a, as

represented in Fig. E.2. The normal elastic displacement in the contact circle must satisfy:

uz1 + uz2 = δ−
r2

2R
(E.2)

where uz1 and uz2 are the vertical (i.e., parallel to the normal force, see Fig. E.2) displacement

of the surface of each body toward their respective centers of curvature due to contact

pressure, r is the position inside the contact circle, and 1/R = (1/R1 + 1/R2) is the relative

CO
M
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SI
ON

TE
NS

IO
N

Figure E.1
Force-separation curve and the positive shaded area is the energy that must be provided
to separate the surfaces (Eq. (E.1)).
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curvature (this comes directly from the Hertz’s theory of elastic contact), and δ is the

compression. This condition is satisfied by a pressure distribution of the form:

p (r) = p0

(
1−

r2

a2

)1/2
+ p ′0

(
1−

r2

a2

)−1/2

(E.3)

where:

p0 =
2aE∗

πR
(E.4)

and:

E∗ =

(
1− ν21
E1

+
1− ν22
E2

)−1

(E.5)

being E and ν Young’s modulus and Poisson’s coefficient, respectively.

In the presence of attractive forces we cannot exclude the possibility of a negative p ′0.

Considering the work done in compression, the elastic strain energy stored in the bodies is:

UE =
π2a3

E∗

(
2

15
p20 +

2

3
p0p

′
0 +

(
p ′0
)2) (E.6)

The total compression is:

δ =
πa

2E∗
(
p0 + 2p

′
0

)
=
a2

R
+
πap ′0
E∗

(E.7)

where the definition of p0 has been used. The variation in strain energy UE with contact

radius a, keeping the overall relative displacement of the two bodies δ constant is (after a

few lines of calculus):[
∂UE
∂a

]
δ

=
π2a2

E∗
(
p ′0
)2 (E.8)

contact line

1

2

Figure E.2
Two elastic spheres at contact: from an initial position at which δ = 0, sphere 2 moves towards sphere
1 with a displacement δ > 0. uz1 and uz2 are the vertical displacement of the surface of each body
due to contact pressure. Eq. (E.2) can be deduced.
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Since δ is kept constant, no external work is done, therefore for equilibrium we would expect

∂UE/∂a to vanish, giving p ′0 = 0, as indeed it is in Hertz theory.

In the present problem, adhesive forces introduce a surface energy that decreases when the

surfaces come into intimate contact and increases when they separate:

US = −2γπa2 (E.9)

The total free energy of the system is now UT = UE +US. For equilibrium, [∂UT/∂a]δ
vanishes giving:

π2a2

E∗
(
p ′0
)2

= −
∂US
∂a

= 4πγa (E.10)

leading to:

p ′0 = −

(
4γE∗

πa

)1/2
(E.11)

where the positive sign has been voluntarily omitted because it would have the wrong

implication (contact outside the circle with radius a). We recall here that negative p ′0 implies

a tensile contribution to the contact force (Eq. (E.3)). Then, substituting for p0 and p ′0, the

net contact force is given by:

P =

∫a
0

πrp(r)dr =
(
2

3
p0 + 2p

′
0

)
πa2 = 2πa2

(
2aE∗

3πR
−

(
4γE∗

πa

)1/2)

⇒ P (a) =
4E∗a3

3R
−
√
16πγE∗a3

(E.12)

Replacing p ′0 in Eq. (E.7) leads to:

δ (a) =
a2

R
−
(πγa
E∗

)1/2
(E.13)

Eqs. (E.12) and (E.13) define the JKR adhesive contact law. Before explaining these equations

in some detail, they are made dimensionless. By searching for the minimum net contact

force with respect to the contact area, we can define the corresponding contact area ac:

dP
da

= 0 (E.14)

After some derivatives, it finally leads to:

ac =

(
9

4

πR2γ

E∗

)1/3
(E.15)

We can define the associated critical load as:

Pc = P (ac) = −3πRγ (E.16)
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Let us now introduce the following dimensionless expressions, represented in Fig. E.3:

P

Pc
= f
(
a

ac

)
=

(
a

ac

)3
− 2

(
a

ac

)3/2
Rδ

a2c
= f
(
a

ac

)
=

(
a

ac

)2
−
4

3

(
a

ac

)1/2 (E.17)

We note that in both equations in Eq. (E.17), the first term of the RHS corresponds to Hertz

law without adhesion. When the two bodies are loaded by a compressive force, the adhesive

forces pull the surfaces into contact over an area that exceeds the one given by Hertz theory

(see Fig. E.3 [a]); zero load leaves the surfaces adhering together with a finite area and a

positive compression δ; a tensile (negative) load causes the contact area to shrink further;

beyond the (N) point (P = −Pc, and a = ac), the situation becomes unstable and they

separate. The latter is true only when the load is imposed; if we impose the separation

distance, this part of the curve is stable and the point (•) can be reached without separation,

meaning that the (negative) compression δ can be further decreased (Fig. E.3 [center]).

Before proceeding, it should be noted that Johnson et al. (1971) also propose in their

paper an approximated theory in which Hertz relation between the contact area and the

compression holds a2 = Rδ, and surface energy is added to Hertz elastic energy:

U
approx
T =

8

15
E∗
(
Rδ5

)1/2
− 2γπRδ (E.18)

In this case, the normal load becomes:

Papprox =
dUS
dδ

=
dUE
dδ

− 2γπR =
4

3
E∗
(
Rδ3

)1/2
− 2γπR = Fel − Fadh (E.19)

with Fadh = 2Pc/3, leading to:

(
P

Pc

)approx
=

(
a

ac

)3
−
2

3(
Rδ

a2c

)approx
=

(
a

ac

)2 (E.20)

We note that the relation between the load P and the compression δ in Eq. (E.19) is formally

identical to the modeling that is used in the present work (Eq. (5.1)). This approximate

approach is compared to the complete JKR theory in Fig. E.3, where the corresponding

relations in the frame of non-adhesive Hertz contact are displayed as well for the sake of

completeness.

In Fig. E.3 [a] and [b] the reduced contact area radius is represented as a function of both

the reduced load and the reduced compression, while in Fig. E.3 [c] the reduced normal

load is represented as a function of the reduced compression. In the JKR theory, the contact

area decreases with the compression δ until separation (point (•), δmin < 0), but after



184 jkr contact theory

reaching ac (N) the load slightly increases again. As we can see, for both the JKR model and

the approximated theory a tensile (i.e., adhesive) force can exist even without separation

of the surfaces for positive compression (contact inception, point H at δ = 0). Moreover,

at zero load there exists a positive compression (point �), at which the associated elastic

force counterbalances the attractive one. Additionally, the area of contact is an increasing

function of the load for P > −Pc. However, the approximate theory does not allow contact

for δ < 0, and the area of contact is zero at maximum traction (δ = 0), which is not true for

the JKR model. Indeed, in the frame of the JKR model, contact is maintained for negative

displacement. We suppose that the slight difference in the force at small positive values of δ

does not have a qualitative effect on suspensions; anyway, this difference quickly vanishes for

higher values of δ. The latter discrepancy (a = 0 for P = −Fadh) is important for frictional

contact as explained in the following.

In Fig. E.4 the maximum value of the tangential force against the normal load is shown.

The most natural way of including friction in the JKR model would be to assume that the

largest friction force that the contact can bear before sliding is proportional to the contact

area. Considering the curve for P > −Pc and a > ac (otherwise the situation may be

unstable): max (Ft) is never zero, as ac 6= 0, meaning that friction is maintained as the

particles detach (which is not the same for our model, in which we can have zero tangential

force); the dependence of the normal force on the tangential one in such a frictional JKR

model is not linear, as displayed in Fig. E.4.

Figure E.3
(a) normalized contact area radius a/ac over the normalized load P/Pc, (b) normalized contact
area radius a/ac over the normalized compression δ/

(
a2c/R

)
, and (c) normalized load P/Pc over

the normalized compression δ/
(
a2c/R

)
. (�) point at which the load is zero; (H) point at which the

compression (and thus the separation distance) is zero; (N) point at which a = ac and P = −Pc,
point after which the situation becomes unstable and surfaces separate when the load is imposed
(stable when compression is imposed); (•) point of minimum compression at which the situation
becomes unstable and the surfaces separate.
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If the same relation Ft ∝ a2 is assumed in the simplified approach, the relation between Ft
and P is not linear either, and in that case, it vanishes for the largest traction. The influence

of the precise relation between friction force and load surely deserves a specific study. We

note that in the field of non-adhesive particle suspensions, this issue has been tackled. In

more detail, in most of the computational work, a constant friction coefficient has been used

(Ft ∝ P), yielding rate-independent rheology. However, if a mono-contact is assumed, the

friction coefficient decreases with load and shear-thinning behavior is observed (Lobry et al.,

2019). This question is out of the scope of the present study, since we do not want to precisely

conclude on the nature of adhesive contact in a specific suspension, but rather to evaluate

the influence of coupled friction and adhesion in the frame of a simple contact model. As a

consequence, we choose a simple constant friction coefficient, using the following relation

between Ft and P:

Ft = µ

(
P+

2

3
Pc

)
(E.21)

Such a relation is qualitatively displayed in Fig. E.4.

Figure E.4
Qualitative maximum value of the frictional force as a function of the normalized
normal load: comparison between a frictional JKR model, a simplified approach with a
variable friction coefficient, and a simplified approach with constant friction coefficient
(employed in the current work). The evidenced points are the same as in Fig. E.3. We
recall that below point (N), the situation is unstable.
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f.1 The SBM in a planar Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . 188

We recall here the modified version of the Suspension Balance Model (SBM) as proposed

by (Badia et al., 2022), and we derive the governing equations in the case of a planar

pressure-driven flow. This is useful for comparing the results in Chapter 6.
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f.1 the sbm in a planar poiseuille flow

The governing equations are:

∇ · u = 0

∇ ·Σ−∇P0 = 0

∂φ

∂t
+∇ · (φu) +∇ ·

(
2a2

9η
f (φ)∇ ·Σc

)
= 0

(F.1)

where u denotes the suspension velocity field, Σ the bulk suspension stress tensor, Σc the

contact contribution to the stress, f (φ) = (1−φ)5.1 (Badia et al., 2022) is the hindered

settling function, and a is the relevant particle size, which can be chosen as a = (a1 + a2) /2.

The last equation governs particle transport, while the first two equations govern the flow

of the suspension as a continuous medium. In general flow geometry, the expression of the

stresses is a quite involved task (Miller et al., 2009; Badia et al., 2022). In the present case,

the velocity and volume fraction fields are assumed to only depend on y-coordinate:

u = u (y, t) ex , φ = φ (y, t) (F.2)

In such a plane shear flow, the stresses are given simple expressions (Badia et al., 2022):

dev(Σ) = 2ηηs (φ)E + ηηs (φ) γ̇


1
3(2N̂1 + N̂2) 0 0

0 1
3(−N̂1 + N̂2) 0

0 0 1
3(−N̂1 − 2N̂2)

 (F.3)

Σc = 2ηcηE + ηηs (φ) γ̇


Σ̂c11 0 0

0 Σ̂c22 0

0 0 Σ̂c33

 (F.4)

where the normalized quantities ηc, N̂i, Σ̂cii only depend on the reduced volume fraction

φ/φJ, and the shear rate tensor and shear rate read:

E =
∂u

∂y


0 1

2 0

1
2 0 0

0 0 0

 , γ̇ =

∣∣∣∣∂u∂y
∣∣∣∣ (F.5)

Eq. (F.1) may be simplified using Eqs. (F.3) and (F.4) in a standard way (Snook et al., 2016;

Badia et al., 2022) to obtain the equations that govern the volume fraction and velocity

profiles in the channel:

Σxy = ηηs (φ)
∂u

∂y
=

dP0
dx

y (F.6a)

∂φ

∂t
+
2a2

9η

∂

∂y

(
f (φ)

∂

∂y

(∣∣∣∣dP0dx

∣∣∣∣ |y| Σ̂c22)) = 0 (F.6b)
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Eq. (F.6a) states as usual that the shear stress is controlled by the pressure gradient, while

Eq. (F.6b) is a kind of diffusion equation, with boundary conditions on the walls such that

the particle flux vanishes:

Jy=±Ly/2 = f (φ)
∂

∂y

(∣∣∣∣dP0dx

∣∣∣∣ |y| Σ̂c22) = 0 (F.7)

Eqs. (F.6a) and (F.6b) may be made dimensionless using the shear rate γ̇0 =
Ly

4η

∣∣∣∣dP0dx

∣∣∣∣ and

the length Ly. Switching to dimensionless unknown functions, we obtain:

∂u∗

∂y∗
= −

4

ηs (φr (y∗))
y∗ (F.8a)

∂φ

∂t∗
+
8

9

(
a

Ly

)2
∂

∂y∗

(
f (φ)

∂

∂y∗
(
|y∗| Σ̂c22

))
= 0 (F.8b)

The transient variations are not tackled in the present work. However, the typical dimen-

sionless transient duration may be estimated from Eq. (F.8a):

τm ∼
9

8

(
Ly

a

)2
≈ 300 (F.9)

which is in roughly qualitative agreement with the transient time mentioned in the article

(t∗ ≈ 1500). In steady state, the reduced volume φr = φ/φJ profile obeys the following

ordinary differential equation:

dφr
dy∗

= −
Σ̂c22

y∗
dΣ̂c22
dφr

(F.10)

with the constraint that the total particle volume is kept constant, i.e.:∫+1/2
−1/2

φr dy∗ =
φ

φJ
(F.11)

Once Eqs. (F.10) and (F.11) are solved, the velocity profile is simply determined by integration

of Eq. (F.8a). It should be noted that the SBM as presented here suffers important drawbacks

(see Snook et al. (2016) for a discussion). In particular, the steady-state volume fraction is

allowed to exceed the jamming volume fraction φJ, which is easily understood by inspection

of Eq. (6.10b): the multiplying factor of 1/y∗ in the RHS is negative, so that φ increases

as |y∗| decreases; in addition, this factor does not vanish as φ/φJ → 1, so that the volume

fraction gradient diverges as |y∗| → 0, and φ exceeds φJ. To avoid this divergence, it has

been proposed to slightly modify the expression of the particle flux with a non-local stress.

This non-local stress may be induced by a suspension “temperature” (Nott & Brady, 1994),

a force network (Mills & Snabre, 1995) or the finite size of the particles (Miller & Morris,

2006). These approaches deserve to be examined against the present data. However, as a

first approximation, we follow here a simple empirical idea: we postulate that the particle

flux vanishes as soon as φ reaches φJ. As a consequence, a jammed zone where φ = φJ

develops in the vicinity of the channel center plane.
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Numerical results may be subject to systematic errors, and it is essential to obtain an

estimate of their statistical significance. Following Allen & Tildesley (2017), we assume

that the quantities of interest are Gaussian processes, which is a reasonable assumption if

the quantity is essentially the sum of a large number of “random” quantities (statistically

independent or not). Our problem, then, is to estimate the mean and the variance on a long

(but finite) simulation run.
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g.1 estimating systematic errors

The data points are usually not independent, as we normally store configurations sufficiently

frequently and, therefore, they are correlated with each other. The main idea is to break the

signal into several blocks, and then compute the error in the simulation run average of these

blocks. As an example, let us consider the quantity A. Its signal has τrun time-steps and its

average is simply:

〈A〉run =

∑τrun
τ=1A (t)

τrun
(G.1)

The first thing to do is to estimate the number of steps for which the correlations persist.

Let us break the signal into nb blocks of size τb, whose average is:

〈A〉b =

∑τb
τ=1A (t)

τb
(G.2)

the mean values for all the blocks may then be used to estimate the variance:

σ2 (〈A〉b) =
1

nb

nb∑
b=1

(〈A〉b − 〈A〉run)
2 (G.3)

We expect this quantity to be inversely proportional to τb at large τb, as the blocks become

large enough to be statistically uncorrelated, which allows us to estimate the variance for

the entire run.

To estimate τb, we can define the statistical efficiency as the limiting ratio of the observed

variance of an average to the limit expected on the assumption of uncorrelated Gaussian

statistics:

s = lim
τb→∞

τbσ
2 (〈A〉b)
σ2 (A)

(G.4)

where:

σ2 (〈A〉b) =
∑nb

b=1 (〈A〉b − 〈A〉run)
2

nb
(G.5)

The above quantity increases with τb until it reaches a plateau, which gives the number of

configurations to wait for them to be uncorrelated.

The error bars showed in the current work are obtained by computing the statistical

efficiency on the signal of the considered quantity and by using Eq. (G.3).







B I B L I O G R A P H Y

Abbas M., Magaud P., Gao Y., & Geoffroy S. (2014). Migration of finite sized particles in a
laminar square channel flow from low to high Reynolds numbers. Physics of Fluids, 26(12),

123301. https://doi.org/10.1063/1.4902952 (cit. on pp. 17, 20)

Acrivos A. (1993). Shear-induced resuspension in a Couette device. https://doi.org/10.1016/0301-

9322(93)90043-T (cit. on pp. 16, 133)

Agbangla G. C., Climent É., & Bacchin P. (2014). Numerical investigation of channel blockage
by flowing microparticles. Computers & Fluids, 94, 69–83. https://doi.org/10.1016/j.

compfluid.2014.01.018 (cit. on p. 107)

Allen M. P., & Tildesley D. J. (2017). Computer simulation of liquids (Second edition). Oxford

University Press. https://doi.org/10.1093/oso/9780198803195.001.0001. (Cit. on

p. 191)

Andreotti B., Forterre Y., & Pouliquen O. (2013). Granular Media: Between Fluid and Solid
(First). Cambridge University Press. https://doi.org/10.1017/CBO9781139541008.

(Cit. on p. 148)

Arshad M., Maali A., Claudet C., Lobry L., Peters F., & Lemaire E. (2021). An experimental
study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian
suspensions. Soft Matter, 17(25), 6088–6097. https://doi.org/10.1039/D1SM00254F

(cit. on p. 15)

Aussillous P., Chauchat J., Pailha M., Médale M., & Guazzelli É. (2013). Investigation of the
mobile granular layer in bedload transport by laminar shearing flows. Journal of Fluid

Mechanics, 736, 594–615. https://doi.org/10.1017/jfm.2013.546 (cit. on p. 133)

Badia A. (2021). Modélisation numérique de suspensions non-browniennes concentrées en écoulement
rhéométrique ou général (Doctoral dissertation). Université Côte d’Azur. https://www.

theses.fr/2021COAZ4093. (Cit. on p. 142)

193

https://doi.org/10.1063/1.4902952
https://doi.org/10.1016/0301-9322(93)90043-T
https://doi.org/10.1016/0301-9322(93)90043-T
https://doi.org/10.1016/j.compfluid.2014.01.018
https://doi.org/10.1016/j.compfluid.2014.01.018
https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1017/CBO9781139541008
https://doi.org/10.1039/D1SM00254F
https://doi.org/10.1017/jfm.2013.546
https://www.theses.fr/2021COAZ4093
https://www.theses.fr/2021COAZ4093


194 bibliography

Badia A., D’Angelo Y., Peters F., & Lobry L. (2022). Frame-invariant modeling for non-Brownian
suspension flows. Journal of Non-Newtonian Fluid Mechanics, 309, 104904. https:

//doi.org/10.1016/j.jnnfm.2022.104904 (cit. on pp. 3, 7, 94, 95, 131, 134, 141, 142, 187,

188)

Ball R., & Melrose J. (1997). A simulation technique for many spheres in quasi-static motion under
frame-invariant pair drag and Brownian forces. Physica A: Statistical Mechanics and its

Applications, 247(1-4), 444–472. https://doi.org/10.1016/S0378-4371(97)00412-3

(cit. on pp. 67, 68)

Barnes H. A. (1999). The yield stress — a review or ‘panta rei’ — everything flows? 46. https:

//doi.org/10.1016/S0377-0257(98)00094-9 (cit. on pp. 106, 107)

Batchelor G. K. (1970). The stress system in a suspension of force-free particles. Journal of Fluid

Mechanics, 41(3), 545–570. https://doi.org/10.1017/S0022112070000745 (cit. on

pp. 52, 55, 145)

Bhattacharya S., Bławzdziewicz J., & Wajnryb E. (2006). Hydrodynamic interactions of spherical
particles in Poiseuille flow between two parallel walls. Physics of Fluids, 18(5), 053301.

https://doi.org/10.1063/1.2195992 (cit. on pp. 85–87)

Bian X., Litvinov S., Qian R., Ellero M., & Adams N. A. (2012). Multiscale modeling of particle
in suspension with smoothed dissipative particle dynamics. Physics of Fluids, 24(1), 012002.

https://doi.org/10.1063/1.3676244 (cit. on p. 19)

Blanc F., Lemaire E., Meunier A., & Peters F. (2013). Microstructure in sheared non-Brownian
concentrated suspensions. Journal of Rheology, 57(1), 273–292. https://doi.org/10.

1122/1.4766597 (cit. on pp. 13, 93)

Blanc F., Peters F., & Lemaire E. (2011a). Experimental Signature of the Pair Trajectories of Rough
Spheres in the Shear-Induced Microstructure in Noncolloidal Suspensions. Physical Review

Letters, 107(20), 208302. https://doi.org/10.1103/PhysRevLett.107.208302 (cit. on

pp. 13, 49)

Blanc F., Peters F., & Lemaire E. (2011b). Local transient rheological behavior of concentrated
suspensions. Journal of Rheology, 55(4), 835–854. https://doi.org/10.1122/1.3582848

(cit. on p. 110)

Blazek J. (2001). Computational fluid dynamics: principles and applications (1st ed). Elsevier.

https://doi.org/10.1016/B978-0-08-044506-9.X5000-0. (Cit. on p. 28)

Boromand A., Jamali S., & Maia J. M. (2017). Structural fingerprints of yielding mechanisms
in attractive colloidal gels. Soft Matter, 13(2), 458–473. https://doi.org/10 .1039/

C6SM00750C (cit. on p. 106)

https://doi.org/10.1016/j.jnnfm.2022.104904
https://doi.org/10.1016/j.jnnfm.2022.104904
https://doi.org/10.1016/S0378-4371(97)00412-3
https://doi.org/10.1016/S0377-0257(98)00094-9
https://doi.org/10.1016/S0377-0257(98)00094-9
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1063/1.2195992
https://doi.org/10.1063/1.3676244
https://doi.org/10.1122/1.4766597
https://doi.org/10.1122/1.4766597
https://doi.org/10.1103/PhysRevLett.107.208302
https://doi.org/10.1122/1.3582848
https://doi.org/10.1016/B978-0-08-044506-9.X5000-0
https://doi.org/10.1039/C6SM00750C
https://doi.org/10.1039/C6SM00750C


bibliography 195

Bossis G., & Brady J. F. (1984). Dynamic simulation of sheared suspensions. I. General method. The

Journal of Chemical Physics, 80(10), 5141–5154. https://doi.org/10.1063/1.446585

(cit. on p. 18)

Boyer F., Guazzelli É., & Pouliquen O. (2011). Unifying Suspension and Granular Rheology.

Physical Review Letters, 107(18), 188301. https://doi.org/10.1103/PhysRevLett.107.

188301 (cit. on pp. 12, 133)

Brady J. F. (1988). Stokesian Dynamics. Annual Review of Fluid Mechanics, 20(111-57), 47.

https://doi.org/10.1146/annurev.fl.20.010188.000551 (cit. on pp. 18, 67)

Brady J. F. (2001). Computer simulation of viscous suspensions. Chemical Engineering Science,

56(9), 2921–2926. https://doi.org/10.1016/S0009-2509(00)00475-9 (cit. on p. 18)

Breugem W.-P. (2012). A second-order accurate immersed boundary method for fully resolved
simulations of particle-laden flows. Journal of Computational Physics, 231(13), 4469–

4498. https://doi.org/10.1016/j.jcp.2012.02.026 (cit. on p. 20)

Catalano E., Chareyre B., & Barthélémy E. (2014). Pore-scale modeling of fluid-particles interaction
and emerging poromechanical effects: pore-scaling modeling of fluid-particles interactions.

International Journal for Numerical and Analytical Methods in Geomechanics, 38(1),

51–71. https://doi.org/10.1002/nag.2198 (cit. on p. 21)

Chaoui M., & Feuillebois F. (2003). Creeping flow around a sphere in a shear flow close to a
wall. The Quarterly Journal of Mechanics and Applied Mathematics, 56, 381–410.

https://doi.org/10.1093/qjmam/2F56.3.381 (cit. on pp. 61, 70, 71, 77, 78, 163, 165,

166)

Cheal O., & Ness C. (2018). Rheology of dense granular suspensions under extensional flow.

Journal of Rheology, 62(2), 501–512. https://doi.org/10.1122/1.5004007 (cit. on

p. 21)

Chèvremont W., Chareyre B., & Bodiguel H. (2019). Quantitative study of the rheology of
frictional suspensions: Influence of friction coefficient in a large range of viscous numbers.

Physical Review Fluids, 4(6), 064302. https://doi.org/10.1103/PhysRevFluids.4.

064302 (cit. on p. 51)

Chun B., Kwon I., Jung H. W., & Hyun J. C. (2017). Lattice Boltzmann simulation of shear-
induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension.

Physics of Fluids, 29(12), 121605. https://doi.org/10.1063/1.4991428 (cit. on p. 132)

Chun B., Park J. S., Jung H. W., & Won Y.-Y. (2019). Shear-induced particle migration and
segregation in non-Brownian bidisperse suspensions under planar Poiseuille flow. Journal

of Rheology, 63(3), 437–453. https://doi.org/10.1122/1.5065406 (cit. on pp. 132, 134,

144)

https://doi.org/10.1063/1.446585
https://doi.org/10.1103/PhysRevLett.107.188301
https://doi.org/10.1103/PhysRevLett.107.188301
https://doi.org/10.1146/annurev.fl.20.010188.000551
https://doi.org/10.1016/S0009-2509(00)00475-9
https://doi.org/10.1016/j.jcp.2012.02.026
https://doi.org/10.1002/nag.2198
https://doi.org/10.1093/qjmam/2F56.3.381
https://doi.org/10.1122/1.5004007
https://doi.org/10.1103/PhysRevFluids.4.064302
https://doi.org/10.1103/PhysRevFluids.4.064302
https://doi.org/10.1063/1.4991428
https://doi.org/10.1122/1.5065406


196 bibliography
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R É S U M É

Nous présentons une méthode de simulation à l’échelle des particules pour les écoulements

de suspensions non-Browniennes à faible nombre de Reynolds, basée sur la méthode des

domaines fictifs et complétée par des corrections de lubrification de sous-maille. Dans leur

forme habituelle, ces corrections font intervenir l’écoulement linéaire ambiant. Dans ce

travail, nous déterminons les conditions requises pour éviter de considérer cet écoulement

ambiant tout en conservant l’invariance par changement de référentiel, et nous construisons

une matrice de correction de sorte que ces conditions soient intrinsèquement présentes.

Cette procédure étend l’utilisation correcte de ces corrections aux écoulements non-linéaires.

La méthode est validée pour diverses configurations d’écoulement de particules, impliquant

quelques particules dans des écoulements linéaires et non-linéaires avec diverses conditions

aux limites, ou des suspensions concentrées dans un écoulement de cisaillement simple.

Ensuite, nous étudions le rôle des forces d’adhésion dans les suspensions frictionnelles, en

faisant varier à la fois l’intensité de l’adhésion et la fraction volumique : après avoir présenté

les difficultés liées à la déplétion aux parois et aux bandes de cisaillement, nous montrons

que la viscosité relative de la suspension est fonction à la fois de la fraction volumique φ

et de la contrainte de cisaillement Σ12. La variation de la viscosité en fonction de ces deux

paramètres est bien décrite via une fraction volumique de blocage à condition que celle-ci

dépende de la contrainte sans dimension σ∗ qui s’exprime en fonction de la force d’adhésion

entre les particules. La variation de la fraction volumique de blocage en fonction de la

contrainte peut être interprétée comme la variation de la contrainte seuil en fonction de la

fraction volumique. Cette courbe sépare le plan (φ, σ∗) en deux régions : une dans laquelle

la suspension s’écoule et l’autre dans laquelle elle est bloquée. Dans une dernière partie,

nous étudions la migration des particules induite par le cisaillement dans un écoulement

de Poiseuille. Dans un tel système, les particules migrent vers le centre du canal, ce qui

entraîne le développement d’un gradient de concentration avec l’apparition d’une région

centrale où la fraction volumique de blocage, mesurée dans un écoulement de cisaillement

simple, peut être dépassée. Le profil de vitesse est donc hautement non-linéaire, à la fois en

raison du gradient de pression et du gradient de concentration variant dans le temps, ce

qui justifie l’utilisation de la méthode numérique présentée. Nous comparons les résultats

à une version modifiée du Suspension Balance Model, confirmant les limites bien connues

de ce modèle dans la région centrale. Enfin, nous montrons que les contraintes calculées

obéissent à la loi de conservation de quantité de mouvement dans le canal. Ceci confirme le

bon comportement de la méthode numérique pour des écoulements non-linéaires.

Mots-clés :
R H É O L O G I E – S U S P E N S I O N S – S I M U L AT I O N S – O P E N F O A M – A D H É S I O N
– É C O U L E M E N T S N O N - L I N É A I R E S – C O R R E C T I O N S D E S O U S - M A I L L E –
L U B R I F I C AT I O N – M I G R AT I O N – M É T H O D E D E D O M A I N E F I C T I F
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