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Titre : Sur de la différentiation numérique à l'aide de polynômes orthogonaux et son application à la détection de défauts et à l'identification de paramètres

Résumé : La reconstruction de grandeurs non mesurées de systèmes dynamiques se résume souvent à la connaissance de dérivées d'ordres arbitraires mais fini des variables connues du système. L'approximation de ces dérivées à partir de mesures perturbées est néanmoins connu pour être un problème complexe. Toutefois, des algorithmes de différentiation numérique basés sur des polynômes orthogonaux et des séries de Fourier généralisées tronquées peuvent le simplifier considérablement. Ces dérivateurs sont en effet robustes aux bruits de mesure et peuvent contribuer à la résolution de problèmes complexes dans le domaine de l'automatique. Néanmoins, la sélection des paramètres des dérivateurs ainsi que leurs implémentations en temps réel constituent des défis critiques lors de l'application de ces méthodes.

Ce travail présente un cadre unifié pour la synthèse et l'analyse de dérivateurs basés sur des polynômes orthogonaux classiques. Des approches existantes sont davantage développées et leurs relations avec les méthodes établies sont analysées. Les dérivateurs basés sur les polynômes de Jacobi, également appelés dérivateurs algébriques, constituent une classe particulière des algorithmes étudiés dans ce travail. Des directives pour la sélection des paramètres sont déduites à partir des interprétations des filtres des dérivateurs afin d'obtenir les propriétés souhaitées dans le domaine fréquentiel. Une nouvelle approche de paramétrage basée sur un problème d'optimisation et nécessitant uniquement le signal mesuré est proposée. Lors de la discussion de l'implémentation en temps discret, la préservation des propriétés dans le domaine fréquentiel est abordée en détail. Une étude expérimentale compare les résultats issus des différents dérivateurs. Les approximations obtenues, la charge de calcul et les besoins de mémoire sont analysés et interprétés. Les deux dernières caractéristiques sont essentielles pour les applications en temps réel.

L'application des dérivateurs dans le domaine de l'automatique est démontrée à l'aide de deux études expérimentales pour la détection de défauts avec des algorithmes basés sur des modèles physiques. Tout d'abord, la collision d'une balle de ping-pong avec une plaque à lévitation magnétique est discutée. Seules la mesure de la position de la plaque et les forces appliquées sont disponibles. L'approche proposée réduit considérablement le temps de calcul et les besoins en mémoire comparée aux méthodes considérées jusqu'à présent. En outre, la nouvelle approche réduit la hauteur de chute minimale détectable de la balle. Ensuite, une approche est proposée pour une détection efficace et en temps réel des défauts dans des roulements. Cette méthode est validée à l'aide de données expérimentales provenant de différents bancs d'essai.

Des approches d'estimation de paramètres sont ensuite discutées. Ce travail généralise des algorithmes récemment proposés. Les conditions de convergence dérivées sont moins restrictives que celles publiées précédemment. De plus, cette approche permet d'identifier un sous-ensemble de paramètres, même si certains ne sont pas excités. Deux études expérimentales valident l'analyse théorique. Les résultats sont comparés à ceux obtenus avec des estimateurs établis et des méthodes algébriques d'estimation des paramètres. Ces exemples confirment les potentiels de ces méthodes développées dans ce travail. of measurement disturbances. The approximation results, the computational burden, and the storage requirements are discussed in detail. Especially the latter two properties are crucial for real-time applications.

The differentiators are used for model-based fault detection problems in two experimental case studies. First, the collision of a table tennis ball with a magnetically supported plate is discussed. Only the measurement of the plate position and the applied forces are known. The proposed approach significantly reduces the computational burden and memory requirements when compared to previously considered methods. Besides, the new approach decreases the minimum detectable falling height of the ball. Then, a model-based approach for the efficient real-time detection of faults in rolling element bearings is proposed. The approach is validated using experimental data from different test benches.

Finally, a parameter estimation problem is discussed. This work generalises recently proposed algorithms. The derived convergence conditions are less restrictive than the previously published ones. Besides, this approach allows identifying a subset of parameters even if some are not excited. Two experimental case studies validate the theoretical analysis. The results are compared to those achieved using standard gradient estimators and algebraic parameter estimation methods. These examples underline the great potential of these methods. 

Introduction

Describing the real world in mathematical terms, i.e., deriving mathematical models from observations, has been a key to understanding natural phenomena and technological systems.

Scientists and engineers employed these models to design the technologies that shaped the course of history and characterise our "modern world". Mathematical models are used, for example, in weather forecasting, to predict planet movements, analyse biomedical images, design electronic circuits, send satellites to their orbits, minimise energy consumption of machines, and detect system malfunctions.

Mathematical models of technical systems are undoubtedly crucial for most modern control methods (see, e.g., [START_REF] Aström | System identification-a survey[END_REF]; Isermann (2013a); [START_REF] Ljung | System identification: Theory for the user[END_REF]). However, a wide variety of information that is required to infer, study, and use these models is not directly accessible to measurements (consider, e.g., numerical values of system parameters and system states). The missing information needs to be extracted from measured signals that are corrupted by disturbances.

It is well known that for linear and nonlinear systems, the outputs and a finite set of their derivatives play an essential role in determining unknown system quantities/variables.

According to Diop andFliess (1991a, 1991b), for instance, a nonlinear input-output system is observable if, and only if, any system variable is a differential function of the inputs and the outputs. This condition means that the system variables are functions of the inputs and the outputs and their respective derivatives of some finite order. In fact, any unknown quantity such as system parameters, faults, or disturbances, may be determined if, and only if, it is expressible as a differential function of the input and output variables (see, e.g., [START_REF] Fliess | An algebraic approach to fault diagnosis for linear systems[END_REF]; [START_REF] Fliess | Non-linear estimation is easy[END_REF]; Fliess and Sira-Ramírez (2003a)). Thus, the problem of extracting the required information boils down to numerical differentiation, i.e., the approximation of derivatives of noisy signals.

Numerical differentiation

The numerical estimation of derivatives of measured signals is a fundamental problem in many fields of applied mathematics and engineering. Application areas range from chemistry (see, e.g., [START_REF] Kiss | Synchronization of non-phasecoherent chaotic electrochemical oscillations[END_REF]), biology (see, e.g., D' Amico and Ferrigno (1992); [START_REF] Schäfer | Synchronization in the human cardiorespiratory system[END_REF]), physics (see, e.g., [START_REF] Ahnert | Numerical differentiation of experimental data: local versus global methods[END_REF]; [START_REF] Raffel | Particle image velocimetry: A practical guide[END_REF]), and applied mathematics (see, e.g., [START_REF] Anderssen | Numerical differentiation procedures for non-exact data[END_REF]; [START_REF] Anderssen | Finite difference methods for the numerical differentiation of non-exact data[END_REF]; [START_REF] Anderssen | For numerical differentiation, dimensionality can be a blessing![END_REF]; Cullum 1. INTRODUCTION fault detection methods have been initiated in [START_REF] Join | Diagnostic des systèmes non linéaires -Contribution aux méthodes de découplage[END_REF] and further discussed in [START_REF] Fliess | An algebraic approach to fault diagnosis for linear systems[END_REF]; Fliess, Join, and Sira-Ramírez (2004). As for the algebraic derivative estimation approaches, fault diagnosis algorithms are derived using differential-algebraic manipulations in the operational domain.

Fault diagnosis methods have also been investigated for nonlinear systems (see, e.g., [START_REF] Alavi | A decentralized technique for robust simultaneous fault detection and control of uncertain systems[END_REF]; De Persis andIsidori (2001, 2002); [START_REF] Jiang | Fault accommodation for References nonlinear dynamic systems[END_REF]; [START_REF] Yan | Nonlinear robust fault reconstruction and estimation using a sliding mode observer[END_REF]; [START_REF] Yang | Monitoring and diagnostics of a class of nonlinear systems using a nonlinear unknown input observer[END_REF]). These methods require a considerable implementation and comprehension effort. In contrast, methods based on numerical differentiation and especially algebraic diffs. have shown a great success in solving challenging problems mainly due to their simplicity and efficient implementations. These approaches and their implementation have been discussed in [START_REF] Ahmed | A fault detection method for automatic detection of spawning in oysters[END_REF]; [START_REF] Fliess | An introduction to nonlinear fault diagnosis References with an application to a congested internet router[END_REF]; Fliess et al. (2008); [START_REF] Kiltz | Fault-tolerant control based on algebraic derivative estimation applied on a magnetically supported plate[END_REF]; Lomakin andDeutscher (2020a, 2022); Mai and Hillermeier (2010); Mai and Hillermeier (2010); [START_REF] Tisserand | Series arcing detection by algebraic derivative of the current[END_REF], for instance. An extensive list of applications in various domains is provided in [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF], for example.

Parameter estimation

When working with a model to predict, explain, or control system dynamics, estimating the numerical values of model parameters is an important task. The literature on parameter estimation is extensive. For general textbooks on the subject from the control theory perspective the reader is referred to Garnier and Wang (2008); Isermann (2013a[START_REF] Isermann | Identifikation dynamischer Systeme 2: Besondere Methoden, Anwendungen[END_REF]; [START_REF] Ljung | System identification: Theory for the user[END_REF]; [START_REF] Unbehauen | Identification of continuous systems[END_REF], for example. Despite the long-standing history of the topic, it still attracts considerable attention and effort. Some of the recently-proposed methods are again based on differential-algebraic manipulations and have their roots in the work Fliess and Sira-Ramírez (2003a). A least squares interpretation and a finite-impulse response (FIR) filter implementation of these algebraic methods have been discussed in [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]. Problems in various domains ranging from electrical to automotive engineering have been solved with these methods. The online estimation of a load of a boost converter has been discussed in [START_REF] Gensior | Algebraic parameter identification and asymptotic estimation of the load of a boost converter[END_REF] for example. The parameters of rigid bodies have been identified in [START_REF] Lomakin | Identification of dynamic parameters for rigid robots based on polynomial approximation[END_REF]. The estimation of the parameters of harmonic signals has been discussed in [START_REF] Liu | An error analysis in the algebraic estimation of a noisy sinusoidal signal[END_REF]; [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]; [START_REF] Ushirobira | An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals[END_REF] for example. A major advantage of these approaches is the simplicity of implementation.

In Aranovskiy, Bobtsov, Ortega, andPyrkin (2016b, 2017), a new approach for parameter estimation has been proposed for models in the form of linear regression equations (LRE).

The convergence of the approach does not depend on a persistence of excitation condition, which is required for the convergence of standard gradient estimators (see, e.g., (Slotine & Li, 1991, Sec. 8.7.3) or (Sastry & Bodson, 1989, Sec. 2.5)). This condition, which is ubiquitous in most adaptive control algorithms (see, e.g., [START_REF] Åström | Adaptive control[END_REF]; [START_REF] Narendra | Stable adaptive systems[END_REF]; [START_REF] Slotine | Applied nonlinear control[END_REF]), is rarely verified in applications. The new approach called Dynamic Regressor Extension and Mixing (DREM) consists of two steps. First, new regression equations are generated by using suitable operators applied on the measurement data. In a second step, these equations are combined in a way to ensure that each parameter 1.4. Contributions and outline of the thesis satisfies an independent regression equation. The parameters can then be estimated using a gradient estimator for example and the convergence depends on the non-square integrability of the determinant of a specific matrix. The approach has attracted a lot of attention (see, e.g., [START_REF] Belov | Parameter identification of linear discretetime systems with guaranteed transient performance[END_REF]; [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF]; [START_REF] Ortega | Adaptive control of linear multivariable systems using dynamic regressor extension and mixing estimators: Removing the high-frequency gain assumptions[END_REF]; [START_REF] Ortega | On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes[END_REF]; [START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF]; [START_REF] Yi | Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters[END_REF]) and has been applied to different problems (see, e.g., Aranovskiy, Bobtsov, Ortega, and Pyrkin (2016a); [START_REF] Bazylev | A new approach for flux and rotor resistance estimation of induction motors[END_REF]; A. [START_REF] Bobtsov | A robust nonlinear position observer for synchronous motors with relaxed excitation conditions[END_REF]; A. A. [START_REF] Bobtsov | A state observer for sensorless control of magnetic levitation systems[END_REF]; [START_REF] Yi | An adaptive observer for sensorless control of the levitated ball using signal injection[END_REF]).

Contributions and outline of the thesis

This thesis can be divided into two main parts. The first part consists of the Chapters 2 and 3 and deals with the derivations, interpretations, tuning, and implementation of numerical differentiation algorithms based on OPs. Chapters 4 and 5 form the second part and discuss different applications of these diffs. in the context of fault detection and parameter identification. In the following, the contributions are outlined and clarified.

Chapter 2: Numerical differentiation using orthogonal polynomials

This chapter presents the general framework for the design of diffs. based on orthogonal functions. In particular, diffs. based on classical OPs are derived, reviewed, and analysed in the time and the frequency domains. Different interpretations for these numerical differentiation schemes are provided. Section 2.1 provides a basic introduction to the approximation problem of arbitrary functions by recalling the mathematical background on which the remaining sections depend.

Sets of orthogonal functions and generalised Fourier series play a predominant role. The notation required for the remaining parts of the chapter is thus introduced. Section 2.2 uses the methods from Section 2.1 to the causal real-time approximation of signals. In particular, general time transformations are introduced to map intervals of interest to the orthogonality intervals of orthogonal functions. These transformations may depend on different parameters. Their influence on the approximation errors is analysed for general orthogonal functions. The estimation delay and the degree of exactness of an approximation scheme are then introduced. It has already been shown in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] that orthogonal differentiators (orth. diffs.) based on Jacobi OPs can yield a delay in the estimation. Here, the delay is derived for general time transformations. The degree of exactness, first introduced in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF], describes the degree of a polynomial the approximation of which is exact up to a known delay (see also [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]).

In Section 2.3, the approximation of arbitrary derivatives of signals is considered using sets of orthogonal functions. The results of the preceding two sections are used and different interpretations for the diffs. are given. The diffs. are then considered from an algebraic point of view where the key ideas are the interpretation of undesired derivatives as disturbances and their annihilation. Then, system theoretic, inverse problem, and wavelet-decomposition viewpoints are presented.

INTRODUCTION

Section 2.4 applies the methods from Sections 2.1 to 2.3 to sets of classical orthogonal polynomials. Thus, diffs. based on Hermite, Laguerre, and Jacobi polynomials are considered and called in the sequel Hermite differentiators (Hermite diffs.), Laguerre differentiators (Lag. diffs.), and Jacobi differentiators (Jac. diffs.), respectively. Their properties in the time and frequency domains are investigated. The Jac. diffs. have already been derived in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] and analysed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013); Liu et al. (2011a); [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]Riachy (2014, 2018) and their properties are only recalled here. Contrarily, the proposed Lag. diffs. and Hermite diffs. are more general than those from [START_REF] Ushirobira | Algebraic differentiators through orthogonal polynomials series expansions[END_REF] in the sense that different tuning parameters are considered. Their influence on the approximation errors, delay, and degree of exactness will also be analysed.

In [START_REF] Ushirobira | Algebraic differentiators through orthogonal polynomials series expansions[END_REF]; [START_REF] Ushirobira | Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials[END_REF], the signal is first expanded into a series of Laguerre or Hermite polynomials. Then, annihilators are derived to identify the coefficients of the required derivatives. Section 2.4 considers directly the Taylor series expansion for the derivation of the annihilators required for the Lag. diffs. as in the works [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] on Jac. diffs.

Chapter 3: Tuning and real-time implementation of classical orthogonal differentiators

The diffs. developed in Chapter 2 depend on numerous parameters that affect the approximation error and delay. Finding good parameter compromises to achieve a satisfying accuracy of the approximated derivatives without relying on trial-and-error approaches is crucial. Besides, in most applications, the measured signals are available at discrete sampling instants only. The discretised diffs. have to preserve the properties of the continuous-time ones.

Achieving this can be challenging, especially for low sampling rates. All these issues are addressed in detail in Chapter 3. Section 3.1 analyses the systematic tuning of diffs. based on OPs. It is shown that these diffs. can be interpreted as low-pass filters, and the parameters can be computed from a desired cutoff frequency. An arbitrary filter order, i.e., stopband slope, can be assigned to the Jac. diffs. and Lag. diffs. These considerations greatly simplify the tuning process as already discussed for Jac. diffs. in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013); [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF].

The discrete-time implementation of the diffs. is analysed in Section 3.2. Different discretisation schemes are considered and their effects, especially on the preservation of frequency domain properties, are investigated. It is shown that all considered diffs. can be implemented as FIR filters or sufficiently closely approximated by the latter. An error norm, initially introduced in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] for the truncation of the filter window length of Jac. diffs., is used here to approximate Lag. diff. and Hermite diffs. by FIR filters. The error norm will be important when experimental approximation results are compared. Besides, it is illustrated that for a particular parameter choice, Lag. diffs. can be efficiently approximated by dynamic systems, the solutions of which converge exponentially to the approximation of the former. This result enables the analysis of the relations to established approaches such as statevariable filters and high-gain (HG) diffs. In particular, it is shown that the latter are a special case of Lag. diffs., which allows the quantification of their estimation delay. Simple academic examples are used for illustration. Section 3.3 applies the previously mentioned tuning and discretisation guidelines to two experimental case studies. First, the derivatives of a disturbed signal are approximated. Then, 1.4. Contributions and outline of the thesis the approximate inversion of analogue anti-aliasing filters is considered as presented in Kiltz et al. (2019); [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]. The approximation results are compared qualitatively and quantitatively for the different diffs. The computational burden and storage requirements for each approach is analysed in detail. These considerations are especially important for industrial applications.

An entirely new and different tuning approach is proposed in Section 3.4. Labelled as "automatic tuning approach", this method is based on an optimisation problem requiring only the measured signal as input and yields the filter parameters as output. An experimental case study shows that the approach furnishes excellent results.

Chapter 4: Model-based detection of impulsive forces

While Chapter 3 illustrates the systematic tuning guidelines in detail on some relatively simple examples, the current chapter applies the methods to two advanced experimental problems.

The results validate the theoretical analysis and support the importance of these numerical differentiation schemes for practical problems. Section 4.1 considers the collision detection of a table tennis ball weighing 2.7 g with a magnetically levitated plate with a mass of 4.7 kg. A detailed description of the experimental setup can be found in [START_REF] Kiltz | Fault-tolerant control based on algebraic derivative estimation applied on a magnetically supported plate[END_REF]; Kiltz and Rudolph (2013). The precise estimation of the collision instant is also investigated. The problem is solved by using the measurement of the vertical position of the plate only. The approach developed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013) is compared to a new one based on Lag. diffs. and notch filters. This new approach requires 95.33 % fewer arithmetic operations than the approach from Kiltz and Rudolph (2013) and 60.77 % less than [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]. The number of filter coefficients to be stored is reduced by 96.14 % compared to that in Kiltz and Rudolph (2013) and by 75.58 % compared to that in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]. Besides, the new approach decreases the minimum detectable falling height of the ball by 11.7 %.

In Section 4.1, a model-based approach for the efficient real-time detection of faults in rolling element bearings is presented. The algorithm is based on a model for the vibrations and efficient numerical differentiation schemes using Jac. diffs. and has been first published in Othmane and Rudolph (2021). The method includes a failure detection threshold specifying the probability of false alarms. The approach is validated by using experimental data1 from different research centres (see CWRU (2015); Daga, Fasana, Marchesiello, andGaribaldi (2009, 2019); [START_REF] Nectoux | PRONOSTIA : An experimental platform for bearings accelerated degradation tests[END_REF]; [START_REF] Smith | Rolling element bearing diagnostics using the case western reserve university data: A benchmark study[END_REF]).

Chapter 5: On the problem of parameter estimation

The parameter estimation problem is considered in Chapter 5, which consists of three parts.

Especially, systems linear in their parameters and LRE are discussed in detail within the framework of the DREM methodology. Section 5.1 recalls some background material on DREM, bibliographical comments, and remarks on using orth. diffs. within this framework.

Two modifications of the DREM parameter estimation approach are proposed in Section 5.2. In the first one, an alternative derivation of the parameter estimation approach 1. INTRODUCTION is provided, which yields weaker convergence conditions than the one by [START_REF] Aranovskiy | Parameters estimation via dynamic regressor extension and mixing[END_REF][START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]; [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF]. The previously published approaches in the latter references are shown to be a special case of the new one. In the second modification, QR decompositions with column pivoting are used to split the system parameters into excited and non-excited ones. This adaptation allows identifying a subset of parameters even if others are not excited. The advantages of the approaches are discussed in simple examples. A counter-example is provided, where none of the DREM approaches yield a convergence of the estimates. Contrarily, an algebraic method (see, e.g., [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF]) yields good results. Section 5.3 validates the new techniques. First, a simulation study is provided to show the properties of the second modification. Then, two experimental case studies investigate the use of Jac. diff. as example orth. diffs. with the proposed modifications. The first one examines the estimation of frequencies from a disturbed measurement of a linear combination of two harmonic functions. The approach requires estimates of the derivatives up to the fourth order. The low Nyquist frequency equal to 100 Hz in comparison to the highest frequency equal to 80 Hz in the signal makes the design of diffs. challenging. The method is compared to the algebraic identification procedure developed in [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]. In the second case study, the parameters of an electro-mechanical system are identified. The estimates are compared to those from a standard gradient estimator. For validation, recorded input trajectories are used to compare simulation results to measurements. These examples confirm the excellent results that can be achieved using the new methods.

Chapter 6: Conclusion

Chapter 6 summarises the contributions of this thesis and provides open problems and further ideas for future research.

Appendices

Appendices A and B contain supplementary material regarding special functions and the Fourier transform.

Numerical differentiation using orthogonal polynomials

The approximation of functions using sets of basis functions has been studied for centuries due to its importance in solving numerous applications in engineering and physics (see, e.g., [START_REF] Davis | The mathematical experience[END_REF]). This chapter first recalls the mathematical background, specifically generalised Fourier series and orthogonal sets, required to derive function approximations based on least squares optimisation problems.

The approximation methods are then used to derive approaches for the causal approximation of arbitrary derivatives of signals affected by additive disturbances. The main ideas here are based on time transformations mapping some orthogonality intervals of functions to an interval containing a known history of the signals of interest. These transformations depend on parameters that shift and dilate or shift and contract the intervals. The effects of these parameters are investigated. In the detailed analysis of the approximation errors, an intriguing yet interesting result will be discussed: Admitting a small but precisely known delay in the causal approximation of a signal or any of its derivatives reduces the order of the approximation error and significantly increases the robustness in the presence of additive disturbances. This has been first observed for example in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] for differentiators (diffs.) based on Jacobi orthogonal polynomials (OPs).

The approximation methods are subsequently applied to sets of classical orthogonal polynomials that include Hermite, Laguerre, and Jacobi polynomials, which have as special case the Gegenbauer, Chebyshev, and Legendre polynomials (see, e.g., [START_REF] Szegö | Orthogonal polynomials[END_REF] for a detailed discussing on these polynomials). It is shown that the resulting approximation methods are linear filters. The kernel of theses filters act on the sought derivatives whereas the derivatives of the kernels act on the measured signals. The properties of these filters in the time and the frequency domains are discussed in detail. Moreover, it is shown that the considered diffs. can be derived using differential-algebraic manipulations of truncated Taylor series in the operational domain. These ideas root1 in the seminal works and ideas of Fliess and his co-authors on parameter estimation in Fliess and Sira-Ramírez (2003a).

While the diffs. based on Jacobi polynomials have initially been derived in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] and investigated in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013);[START_REF] Liu | Analyse d'erreurs d'estimateurs des dérivées de signaux bruités et applications[END_REF][START_REF] Liu | Convergence rate of the causal Jacobi derivative estimator[END_REF]; Liu et al. (2011a); [START_REF] Liu | Error analysis of Jacobi derivative estimators for noisy signals[END_REF]; [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF], those based on Laguerre and Hermite polynomials discussed here are more general than the diffs. derived in [START_REF] Ushirobira | Algebraic differentiators through orthogonal polynomials series expansions[END_REF]; [START_REF] Ushirobira | Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials[END_REF].

NUMERICAL DIFFERENTIATION USING OR THOGONAL POLYNOMIALS

Their properties are studied in great detail. A detailed discussion of the historical development of the diffs. based on Jacobi polynomials and their application can be found in the survey [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] and only a summary is presented here. 

Chapter content

The approximation problem of arbitrary functions

Consider a function f : I 1 → I 2 , with I 1 , I 2 ⊆ R, satisfying some integrability conditions to be specified later. The expansion of f in a convergent2 infinite series

∞ n=0 a n φ n , (2.1) 
with a n ∈ R and φ n : I 1 → I 2 to be specified, has been discussed for centuries. Preliminary results can be found in the works of Euler and Bernoulli on vibrating strings developed in the 18-th century3 where φ n are trigonometric functions. Substantial improvements have been made by Fourier in his works Fourier (1822); [START_REF] Fourier | The analytical theory of heat[END_REF] on heat conduction in the 19-th century for trigonometric functions φ n as well. The concepts of Fourier have then been rigorously analysed and generalised in the 20-th century when the orthogonality property of functions has been understood more thoroughly. This has led to powerful methods for the 2.1. The approximation problem of arbitrary functions approximation of arbitrary functions. Some of these approaches rely on polynomial functions φ n known as OPs, with very interesting properties.

The relevant theoretical background on function approximation and infinite series of the form (2.1) used in the current work is briefly reviewed in the following subsections. For a detailed discussion of function approximation, orthogonal systems, and general OPs the reader is referred to the standard works [START_REF] Bateman | Higher transcendental functions II[END_REF]; [START_REF] Courant | Methoden der mathematischen Physik 1[END_REF]; [START_REF] Kaczmarz | Theorie der Orthogonalreihen[END_REF]; [START_REF] Lebedev | Special functions and their applications[END_REF]; [START_REF] Szegö | Orthogonal polynomials[END_REF][START_REF] Tricomi | Vorlesungen über Orthogonalreihen[END_REF].

Sets of orthogonal functions

Let w be a non-negative function defined on an interval I w = (a, b) ⊆ R and

f 1 , f 2 : I w → R
two real functions for which w 

f 1 , f 2 w = b a w(τ )f 1 (τ )f 2 (τ )dτ. (2.2) 
This scalar product induces the norm and the distance

f 1 w = f 1 , f 1 w , (2.3) d w (f 1 , f 2 ) = f 1 -f 2 w , (2.4) 
respectively. The function w is called the weight function of the interval I w , or shortly weight function.

Denote by L 2 w (I w ) the class of all functions f :

I w → R for which the integral b a w(τ )f 2 (τ )dτ exists. Two distinct functions f 1 , f 2 ∈ L 2
w (I w ) are said to be orthogonal, if their scalar product vanishes, i.e., f 1 , f 2 w = 0. Orthonormal sets can now be defined using these concepts.

Definition 2.1: Orthonormal set (Szegö (1939))

An orthonormal set of functions Φ w = {φ n } l n=0 , l finite or infinite, associated with a weight function w is defined by

φ n , φ m w = b a w(τ )φ n (τ )φ m (τ )dτ = δ nm , n, m = 0, 1, . . . , l,
where δ nm = 0 or 1, according as n = m, or n = m. Here φ n is real-valued and belongs to the class L 2 w (I w ).
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The elements of any finite subset of an orthogonal set are linearly independent (see, e.g., (Bateman & Erdélyi, 1953, P. 154)).

The previously mentioned trigonometric functions used in the early works of Euler, Bernoulli, and Fourier form such orthonormal sets. The approximation of arbitrary functions using these sets is analysed and the concept of best approximation is introduced.

The approximation problem

In various engineering and scientific problems an approximation fN ∈ A w of an element f ∈ L 2 w (I w ) is required, with A w a finite dimensional subspace of L 2 w (I w ) and w : I w → R a weight function. The accuracy of such an approximation can be evaluated using the distance d w (f, fN ) between f and fN defined in (2.4). The approximation problem can then be formulated as follows.

Problem 2.1: The approximation problem

For a given f ∈ L 2 w (I w ) determine an element fN ∈ A w ⊂ L 2 w (I w ), with A w finite dimensional, such that

d w (f, fN ) d w (f, ĥ) (2.5) 
for all ĥ ∈ A w . An element fN satisfying (2.5) is called a best approximation of f with respect to A w .

A simple yet powerful linear approximation scheme can be derived using the orthonormal sets introduced in Section 2.1.1 to solve Problem 2.1. Let Φ w = {φ n } N n=0 ⊂ L 2 w (I w ), with N finite, be an orthonormal set and consider the linear approximation Ansatz

fN = N n=0 c n φ n , c n ∈ R.
Then, Problem 2.1 can be solved by minimising the square of the distance d w (f, fN ) given as

d w (f, fN ) 2 = b a w(τ ) f (τ ) -fN (τ ) 2 dτ = f 2 w - N n=0 f 2 n + N n=0 (c n -f n ) 2 , f n = f, φ n w , (2.6)
with respect to the coefficients c n . This corresponds to an approximation of f in the mean.

The approximation problem is solved if, and only if, the coefficients c n satisfy

c n = f n = b a w(τ )f (τ )φ n (τ )dτ = f, φ n w .
Thus, the function fN minimising the square of the distance d w (f, fN ) is called in the sequel best approximation and corresponds to the N -th order truncation of the Fourier expansion defined below.

Definition 2.2: Fourier expansion (Szegö (1939))

Let Φ w = {φ n } N n=0 , with N finite or infinite, be a given orthonormal set associated with a weight function w : I w → R. To an arbitrary real-valued function f ∈ L 2 w (I w ) let there correspond the formal Fourier expansion

a f ∼ N n=0 f n φ n .
The coefficients f n , called the Fourier coefficients of f with respect to Φ w , are defined by

f n = f, φ n w .
a If two sequences zn and wn have the property that wn = 0 and the sequence |zn| / |wn| has finite positive limits of indetermination, the notation zn ∼ wn is used. The reader is referred to [START_REF] Szegö | Orthogonal polynomials[END_REF] for more details.

Since the squared distance between a function f and its best approximation fN is positive it is clear from (2.6) 

that N n=0 f 2 n f 2 w .
The right side of the inequality is independent of N and it can be concluded that the series

∞ n=0 f 2 n converges and the inequality ∞ n=0 f 2 n f 2 w ,
known as Bessel's inequality (see, e.g., (Bateman & Erdélyi, 1953, P. 157)), is recovered. If the equality holds, i.e.,

∞ n=0 f 2 n = f 2 w , (2.7) 
also known as Parseval's formula, the system Φ w is called closed in L 2 w (I w ) and it follows that

lim N →∞ d w (f, fN ) = 0.
When this equality is satisfied, the partial sum fN = N n=0 f n φ n converges in the mean to f . This is discussed in detail in (Bateman & Erdélyi, 1953, Sec. 10.3), for example.

From the preceding developments it can be concluded that every f ∈ L 2 w (I w ) can be approximated arbitrarily closely, in the mean, by a truncated Fourier expansion with respect to any closed orthonormal set, i.e.

0 d w (f, fN ) d w (f, fN+1 ) and ∀ > 0 ∃N 0 ∈ N | N > N 0 : d w (f, fN ) < .
Moreover, every closed orthonormal set Φ w is also complete, i.e., if f, φ w = 0, for all elements φ ∈ Φ w , then f vanishes almost everywhere.
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Remark 2.1: Convergences properties

The best approximation fN of f is said to converge pointwise to f in I w , if

lim N →∞ fN (τ ) = f (τ )
for all τ ∈ I w . This is a stronger property than the convergence in the mean and requires much more restrictive assumptions on f . This property is only addressed in Section 2. 1.3 for special choices of orthonormal sets formed by classical OPs. General results can be found in (Szegö, 1939, Ch. X) and (Tricomi, 1970, Ch. V&VI), for example.

The orthonormal set Φ w used for the series expansion of f has to be judiciously chosen and can highly influence the approximation results and the computational burden required for its online implementation. The Weierstrass approximation theorem (see, e.g., (Szegö, 1939, Sec. 1.3)) stating that every continuous function defined on a closed interval can be uniformly and arbitrarily closely approximated by a polynomial function motivates the use of polynomials for the generation of orthonormal sets.

Orthogonal polynomial sets

Denote by π N and w the set of polynomials of degree N and a weight function defined on Here p n is a polynomial of degree n and belongs to the class L 2 w (I w ). It is called an OP associated with w on I w .

I w = (a, b), respectively. An element p n ∈ π N is a polynomial of degree n ∈ {0, . . . , N } whose leading coefficient, denoted by k n , is not zero.

General properties

An orthogonal polynomial set Π w associated with w is uniquely determined up to a non-zero scaling factor. Since every p n ∈ Π w has the degree n, every polynomial of degree n can be represented as a linear combination of p 0 , p 1 , . . . , p n . Thus, p n is orthogonal to any polynomial of lower degree.

The elementary properties of the zeros of the polynomials in an OP set Π w are summarised in the following theorems. In Section 2.1.2 it has been shown that for closed orthonormal sets Parseval's formula (2.7) holds and functions can be approximated arbitrarily closely, in the mean, by truncated Fourier expansions. It follows from (Szegö, 1939, Thm. 3.1.5) that the orthogonal polynomial set Π w associated with w is closed for every finite interval I w . This is not necessarily true in general for infinite intervals, as discussed in (Szegö, 1939, Sec. 5.7). However, classical OP sets introduced in the following subsection are closed.

Definition and properties of classical orthogonal polynomials

The most widely used OPs are known as classical OPs and include Hermite, Laguerre, and Jacobi polynomials, which have as special case the Gegenbauer, Chebyshev, and Legendre polynomials. These polynomials will first be defined and then used for the derivation of causal signal estimators. A detailed investigation of the properties of these polynomials can be found in [START_REF] Szegö | Orthogonal polynomials[END_REF], for example.

Let Π w be a set of classical OPs associated with a weight function w defined on an interval I w = (a, b). Let p n ∈ Π w and denote by h n the norm of p n defined in (2.3), i.e., h n = p n w . The weight functions, orthogonality intervals, and notations of the classical polynomials are summarised5 in Table 2.1. All these sets formed by these polynomials are closed. In addition, it is known from Erdélyi, Magnus, Oberhettinger, and Tricomi (1954a); [START_REF] Lebedev | Special functions and their applications[END_REF]; [START_REF] Szegö | Orthogonal polynomials[END_REF] that the series also converges pointwise to f at every continuity point of

f if f is piecewise smooth in I w , i.e., lim N →∞ N n=0 p n , f w p n w p n (x) = f (x),
for every point of continuity x. At a discontinuity point x, it holds that

lim N →∞ N n=0 p n , f w p n w p n (x) = 1 2 lim z→x + f (z) + lim z→x - f (z) .

Approximations based on OP

Observe that an OP set Π w associated with a weight function w defined on an interval I w = (a, b) can be transformed into an orthonormal set by normalising each element p n ∈ Π w , i.e., replacing it by p n / p n w . Thus, only orthonormal sets of polynomials are considered in the sequel for the approximation of functions. Let Π w be one of these, assume it is closed, and denote its elements by p n .
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(α,β) n (-1, 1) (1 -τ ) α (1 + τ ) β 2 α+β+1 Γ(n+α+1)Γ(n+β+1) n!(2n+α+β+1)Γ(n+α+β+1) Gegenbauer C (λ) n (-1, 1) (1 -τ 2 ) λ-1 2 2 1-2λ πΓ(n+2λ) (n+λ)(Γ(λ)) 2 n! Chebychev of the first kind T n (-1, 1) (1 -τ 2 ) -1 2 1 2 π, n > 0 π, n = 0 Chebychev of the second kind U n (-1, 1) (1 -τ 2 ) 1 2 1 2 π Chebychev of the third kind V n (-1, 1) (1 -τ ) -1 2 (1 + τ ) 1 2 π Chebychev of the fourth kind W n (-1, 1) (1 -τ ) 1 2 (1 + τ ) -1 2 π Legendre P n (-1, 1) 1 2 2n+1 Laguerre L (α) n (0, ∞) e -τ τ α Γ(n+α+1) n! Hermite H n (-∞, ∞) e -τ 2 √ π2 n n!
The best approximation of a function f ∈ L 2 w (I w ) is now studied in detail. Let

S{f } = ∞ n=0 f n p n , f n = f, p n w , (2.8) 
and

fN = N n=0 f n p n , (2.9) 
be the Fourier expansion of f and its N -th order truncation, respectively. Recall from Section 2.1.2 that fN is the best approximation of f . The function fN can also be written as

fN = f, R N,τ w , with R N,τ : σ → R N,τ (σ) = N n=0 p n (τ )p n (σ).
(2.10) Since p = p, R N,τ w , for all p ∈ π N , R N,τ is called the reproducing kernel of π N with respect to Π w (see, e.g., [START_REF] Luenberger | Optimization by vector space methods[END_REF]; [START_REF] Meinardus | Approximation of functions: Theory and numerical methods[END_REF]).

The error e = S{f }-fN stemming from the N -th order truncation of S{f } is analysed in the following theorem 6 . It shows that the zeros of OPs play a crucial role for the approximation error. This will be discussed deeper when causal estimators based on classical OPs are introduced in Section 2.2.

The approximation problem of arbitrary functions

Theorem 2.3: Error from truncation

Let Π w be a closed orthonormal set of polynomials associated with a weight function w : I w → R, I w = (a, b) ⊆ R, and f ∈ L 2 w (I w ) be an m + 1 times differentiable function. Denote by S{f } and fN the Fourier expansion and the best approximation of f given in (2.8) and (2.9), respectively.

The N -th order truncation error e = S{f }-fN evaluated at σ ∈ I w satisfies

|e(σ)| sup θ∈Iw f (ρ+1) (θ) ρ! M, (2.11) 
with ρ = min{ N , m},

N =    N + 1, for σ ∈ {z n } N +1 n=0 , N, otherwise, M = b a ∞ n= N +1 h ρ σ , p n p n (σ) dσ, h ρ σ : θ → h ρ σ (θ) =    (σ -θ) ρ , for σ > θ, 0, otherwise. 
(2.12) and z n the zeros of the polynomial p N +1 .

Proof. The truncation error is defined as

e(σ) = ∞ n=0 f n p n (σ) - N n=0 f n p n (σ) for σ ∈ I w . It satisfies e(σ) = ∞ n= N +1 f n p n (σ), for N =    N + 1, for σ ∈ {z n } N +1 n=0 , N, otherwise,
with z n the zeros of the polynomial p N +1 . From Taylor's theorem (see, e.g., [START_REF] Apostol | Calculus[END_REF]) it follows that the expansion of f in I w around t 0 ∈ I w reads

f (σ) = ρ i=0 f (i) (t 0 ) i! (σ -t 0 ) i + R ρ (σ), ρ ∈ {0, . . . , m},
with the remainder

R ρ (σ) = b a f (ρ+1) (θ) ρ! h ρ σ (θ)dθ,
with the function h ρ σ defined in (2.12). Since p n is orthogonal to any polynomial of lower degree, the projection of f onto p n is

f n = f, p n w = ρ i=n f (i) (t 0 ) π i , p n w i! + b a f (ρ+1) (θ) h ρ σ , p n ρ! dθ, 2. NUMERICAL DIFFERENTIATION USING OR THOGONAL POLYNOMIALS with π i : σ → π i (σ) = (σ -t 0 ) i , for ρ n. Choosing ρ = min{ N , m} yields e(σ) = ∞ n= N +1 b a f (ρ+1) (θ) h ρ σ ,pn ρ! dθp n (σ).
Recall that this series converges due to the closure of the orthonormal set considered here.

Thus, the summation and the integration in the latter equation can be exchanged such that

e(σ) = b a f (ρ+1) (θ) ρ! ∞ n= N +1 h ρ σ , p n dθp n (σ).
By the mean value theorem it finally follows that

|e(σ)| sup θ∈Iw f (ρ+1) (θ) ρ! b a ∞ n= N +1 h ρ σ , p n p n (σ) dθ.
The parameter M from (2.11) depends only on the properties of the orthonormal set used for the approximation and does not depend on the function to be approximated. From the proof of the theorem it is clear that the roots of the OP p N +1 play an import role: Evaluating the approximation at a zero of a specific polynomial decreases the order of the approximation error. This will be even more clear in the next section.

Causal real-time signal approximation

In numerous applications the approximation of a function

f : I(t) → R, τ → f (τ ) (2.13) in I(t) = [0, t],
for an arbitrary t > 0, is sought. Thus, an approximation problem as in Problem 2.1 has to be solved. It shall be assumed in the following that f ∈ L 2 (I(t)). The approximation has to be evaluated at an arbitrary σ ∈ [tt 0 , t] ⊆ I(t), 0 t 0 t.

The interval I(t) does not necessarily correspond to the orthogonality interval I w of an orthonormal polynomial set Φ w associated with a weight function w. Thus, the approximation schemes based on truncated Fourier expansions developed earlier cannot immediately be applied to this problem. However, this can be overcome by suitable time transformations and function extensions.

Causal approximation

In the following a bijective function

ϕ t,T : I w → I(t), τ → ϕ t,T (τ ), (2.14a)
is used to map the orthogonality interval I w of the orthogonal functions of interest to an arbitrary interval I(t) ⊆ R. It shall be assumed that I(t) ⊆ I(t). The function ϕ t,T might depend on some parameter T and its inverse is denoted by

ϕ -1 t,T : I(t) → I w , τ → ϕ -1 t,T (τ ).
(2.14b)

Causal real-time signal approximation

The function ϕ t,T , called time transformation in the sequel, will be defined such that the composition of f , or a suitable extension of it, and ϕ t,T is an element of L 2 w (I w ). The properties of the resulting approximation are then studied.

Time transformations

The time transformations are now discussed for closed, half-open, and open orthogonality intervals separately.

Closed intervals:

For a closed interval

I w = [a, b],
it is sufficient to find a function mapping the orthogonality interval I w to an interval [t -T, t] = I(t), T t 0 . The parameter T might not necessarily be equal to t 0 and is a degree of freedom in the design. The explicit definition of an affine function ϕ t,T from (2.14) performing this transformation is given in Table 2.2. Its effects on the approximation will be discussed in detail in the next section.

Half-open intervals: For a half-open interval7 I w = [a, ∞) the function f can be extended as

f 1 : (-∞, t] → R, τ → f 1 (τ ) =    f (τ ), for τ 0, 0 , otherwise. 
(2.15)

Then, f 1 is approximated in the interval I(t) = (-∞, t] and the approximation is evaluated at

τ = σ.
The explicit definition of an affine function ϕ t,T of the form (2.14) mapping I w to I(t) is given in Table 2.2. This corresponds to flipping and scaling the interval I w . The scaling, here denoted by the parameter T , is a degree of freedom in the design. Its effects on the approximation are discussed in detail in the next section.

Open intervals:

For the open interval I w = (-∞, ∞) the function f can be extended as

f 1 : (-∞, ∞) → R, τ → f 1 (τ ) =    f (τ ), for τ ∈ I(t), 0, otherwise. 
(2.16)

The function f 1 is then approximated on the new interval I(t) = (-∞, ∞). The explicit definition of an affine function ϕ t,T of the form (2.14) mapping I w to I(t) is given in Table 2.2.

The scaling and translation parameters T and µ, respectively, are again degrees of freedom.

Their effects on the approximation are discussed in the next section.

Summary:

All previously discussed time transformations ϕ t,T summarised in Table 2.2 are of the form

ϕ t,T : τ → ϕ t,T (τ ) = κ 0 T τ + t + κ 1
(2.17) with κ 0 and κ 1 depending on the parameters of the orthogonality interval. The function

θ T : τ → θ T (τ ) = ϕ -1 t,T (t -τ ) (2.18)
mapping the point tτ to the corresponding point in the orthogonality interval will be useful in later discussions. 

I(t) ϕ t,T : I w → I(t) τ → ϕ t,T (τ ) ϕ -1 t,T : I(t) → I w τ → ϕ -1 t,T (τ ) 
I w = [a, b] [t -T, t] ϕ t,T (τ ) = t + T b-a (τ -b) ϕ -1 t,T (τ ) = b-a T (τ -t) + b I w = [a, ∞) (-∞, t] ϕ t,T (τ ) = -T (τ -a) + t ϕ -1 t,T (τ ) = t-τ T + a I w = (-∞, ∞) (-∞, ∞) ϕ t,T (τ ) = T τ -µ + t ϕ -1 t,T (τ ) = τ -t+µ

T

Function approximation using time transformations

Using the former time transformation it follows that f 

• ϕ -1 t,T ∈ L 2 w (I w ) when I w is closed. Similarly f 1 • ϕ -1 t,T ∈ L
is S{f } = ∞ n=0 f n p n • ϕ -1 t,T , f n = f • ϕ t,T , p n w . (2.19) 
The best approximation fN of f evaluated at the sought point σ is

fN (σ) = f • ϕ t,T , R N,ϕ -1 t,T (σ) w (2.20)
with the reproducing kernel R N,ϕ -1 t,T (σ) defined in (2.10). The following result bounding the error e = S{f }-fN can immediately be derived from the general Theorem 2.3.

Corollary 2.1

Let Π w be a closed orthonormal set of polynomials associated with a weight function Then, the N -th order truncation error e = S{f }-fN evaluated at σ ∈ I(t) satisfies

w : I w → R, I w ⊆ R. Consider an m + 1 times differentiable function f : I(t) → R satisfying f • ϕ -1 t,T ∈ L
|e(σ)| |κ 0 T | ρ+1 sup θ∈I(t) f (ρ+1) (θ) ρ! M = O T ρ+1 , for T → 0, with ρ = min{ N , m}, N =    N + 1, for ϕ -1 t,T (σ) ∈ {z n } N +1 n=0 , N,
otherwise, and M defined in (2.11).

Causal real-time signal approximation

From Corollary 2.1, it is clear that the approximation error is reduced when the parameter T of the time transformations is decreased. It is also clear that when the approximation is evaluated at σ with ϕ -1 t,T (σ) a zero of the orthonormal polynomial of degree N + 1 the approximation error is reduced by one order.

Observe that any σ ∈ I(t) can be written as σ = tδ, for some δ. The definitions from Table 2.3 of the time transformation yield that ϕ -1 t,T (σ) =: ϑ is independent of t. It depends only on δ and the parameters of the time transformation. Thus, if ϑ is a zero of the orthonormal polynomial of degree N + 1 the order of the approximation error is reduced by one.

Degree of exactness and delay

Evaluating the best approximation fN of a function f at σ = tδ ∈ I(t), for some δ, yields the reproducing kernel R N,ϑ , with ϑ := ϕ -1 t,T (σ), defined in (2.10) and given as

R N,ϑ : σ → R N,ϑ (σ) = N n=0 p n (ϑ)p n (σ). (2.21)
From the definition of the time transformation ϕ t,T given in Table 2.2 it follows that ϑ depends only on T , δ, and the parameters of the OPs but not on t.

Let f (t) = fN (tδ), i.e.,

f (t) = f • ϕ t,T , R N,ϑ w ,
and recall that R N,ϑ is a reproducing kernel of π N . The definitions of the time transformation given in Table 2.2 yield

f (t) = (f • ϕ t,T ) (ϑ) = f (t -δ t ), (2.22) 
for f ∈ π N , where δ t depends on the choice of the OP set. Thus, the approximation is exact up to a delay δ t . This observation motivates the definition of the degree of exactness (DoE) initially introduced in Kiltz (2017) and recalled in [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] for diffs. based on Jacobi OPs.

Definition 2.4: Degree of Exactness

Let R N,ϑ , N ∈ N and ϑ ∈ R, defined in (2.21) be a reproducing kernel of π N with respect to a closed orthonormal set Π w of polynomials associated with a weight function w : I w → R, with I w ⊆ R. The degree of exactness γ of R N,ϑ is the polynomial degree up to which the approximation is exact but delayed with a known delay δ t .

From (2.21) it is clear that if ϑ is a zero of the polynomial p N +1 it holds that R N,ϑ = R N +1,ϑ .

Then, even for f ∈ π N +1 the relation (2.22) is valid. This corresponds to the result from Corollary 2.1 stating that the estimation error is reduced by one order for special choices of the evaluation time instant. Since p 0 ≡ 1, the reproducing kernel R 0,ϑ is independent of ϑ and it holds that

R 0,ϑ = R 1,z1 , (2.23) 
with z 1 the zero of the polynomial p 1 . These observation can be summarised in the following result for the DoE.
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Corollary 2.2: Degree of exactness

Let R N,ϑ , ϑ ∈ R and N ∈ N, defined in (2.21) be a reproducing kernel of π N with respect to a closed orthonormal set Π w of polynomials associated with a weight function w :

I w → R, with I w ⊆ R. The degree of exactness γ R N,ϑ of R N,ϑ is γ R N,ϑ =    N + k, for N = 0 ∨ ϑ ∈ {z n } N +1 n=0 , N, otherwise, with {z n } N +1
n=0 the zeros of the polynomial p N +k .

In numerous applications the function f needs to be approximated at σ = t, i.e., at the upper boundary of its definition interval. It follows from (2.23) that

f (t) = f (t -δ t ), δ t = z 1 ,
for N = 0 and f ∈ π 1 . Thus, for N = 0 the approximation of f at σ = t is independent of ϑ and necessarily delayed. For N > 0, it follows from Table 2.2 that

δ t = θT (ϑ) = t -ϕ t,T (ϑ) (2.24)
and δ t depends only on the parameters ϑ, T , and the orthonormal set chosen for the approximation. By adapting ϑ the parametrisation δ t = 0 is possible, i.e., a delay-free approximation is achieved. For this reason, in the remaining parts of this work the quantity δ t is called the estimation delay of the reproducing kernel R N,ϑ . Its analytic representation for classical OPs is recalled in Table 2.3. These observations are now summarised in the following corollary.

Corollary 2.3: Estimation delay

Let R N,ϑ , ϑ ∈ R, defined in (2.21) be a reproducing kernel of π N with respect to a closed orthonormal set Π w of polynomials associated with a weight function w : I w → R, with

I w ⊆ R. The estimation delay δ t of R N,ϑ is δ t =    θ(z 1 ), for N = 0, θT (ϑ), otherwise,
where z 1 is the zero of the polynomial p 1 ∈ Π w and θT is given in (2.24).

In summary, for N = 0 the best approximation of f is necessarily delayed. By varying the parameter ϑ of the reproducing kernel, an arbitrary value can be assigned to the estimation delay δ t . Accepting a small but known delay increases the degree of exactness and decreases the approximation error by one order. The delay is minimised by choosing the appropriate zero of the corresponding OP. Recalling from Theorem 2.1 that the zeros of OPs are distinct and lie within the interior of the orthogonality interval of the polynomials, it follows that for closed intervals the estimation delay also lies in the interval (t -T, t). Using Theorem 2.2 it can also be concluded that the estimation delay can be decreased by increasing N .

2.3. The approximation problem of derivatives of arbitrary orders 

The approximation problem of derivatives of arbitrary orders

In the preceding section the causal approximation of a function

f : I(t) → R, τ → f (τ ) (2.25) in I(t) = [0, t],
for an arbitrary t > 0, has been discussed. Thus, an approximation problem as in Problem 2.1 has to been solved.

The results of the last section can be immediately extended for the estimation of derivatives of arbitrary large order. Thus, assuming that f is sufficiently smooth, the estimation of f (n) , the n-th order derivative of f , is considered in this section. In the sequel, it is also assumed that only an additively disturbed measurement f of f is available, i.e.,

f : t → f (t) = f (t) + η(t), (2.26) 
where η is a bounded disturbance.

This section is divided into four parts. Application of the previous approaches for the approximation of the derivatives f (n) using only f is first discussed and the different errors are analysed. Then, the derivation of these methods using differential-algebraic manipulations of Taylor series is analysed. Finally, system-theoretic, wavelet-based and a regularisation-based interpretations are provided.

An approximation-theoretic point of view

Using the methods developed in Section 2.2 the following approximation schemes can be immediately derived8 . Recall that the best approximation

f (n) N evaluated at σ = t -δ ∈ I(t), for some δ, of f (n) is f (n) N (t -δ) = f (n) • ϕ t,T , R N,ϑ w , ϑ = θ T (δ), (2.27) 
where the reproducing kernel R N,ϑ is defined in (2.21) and θ T in (2.18). Let

g N,ϑ : τ → g N,ϑ (τ ) = w(τ )R N,ϑ (τ ).
(2.28)

Using the definition of the time transformation in (2.17), a repeated integration by parts of (2.27) yields9 

f (n) N (t -δ) = b a g N,ϑ (τ ) f (n) • ϕ t,T (τ )dτ = 1 κ n 0 T n b a g N,ϑ (τ ) (f • ϕ t,T ) (n) (τ )dτ = 1 κ n 0 T n n-1 m=0 (-1) m g (m) N,ϑ (τ )f (n-1-m) (τ ) b a + (-1) n κ n 0 T n b a (f • ϕ t,T ) (τ )g (n)
N,ϑ (τ )dτ.
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Thus, if the first n -1 derivatives of g N,ϑ vanish at the boundaries of the orthogonality interval n) can be computed using solely f as n) . The latter approximation requires only the measurement f . The concept of differentiation by integration can be clearly seen here. Approaches for the approximation of derivatives using integrals have been known for a long time as can be seen in (Lanczos, 1956, P. 324) and [START_REF] Cioranescu | La généralisation de la première formule de la moyenne[END_REF], for example.

I w = (a, b), the best approximation f (n) N evaluated at t -δ of f (
f (n) N (t -δ) = (-1) n κ n 0 T n b a (f • ϕ t,T ) (τ )g (n) N,ϑ ( 
f (n) N (t -δ) = (-1) n κ n 0 T n b a f • ϕ t,T (τ )g (n) N,ϑ (τ )dτ of f (
The approximated derivative f (n) N (tδ) is corrupted by two sources of errors10 : 1. the bias term, denoted by e N , stemming from the truncation of the Fourier expansion and 2. the variance term, denoted by e η , stemming from the disturbance η.

The bias term e

N = S f (n) - f (n)
N can be immediately bounded using Corollary 2.1 to get the following result.

Corollary 2.4

Let g N,ϑ be an orth. diffs. associated with Π w a closed orthonormal set of polynomials.

Consider an n + m + 1 times differentiable function f : Then, the N -th order truncation error e

I(t) → R satisfying f • ϕ t,T ∈ L 2 w (I w ),
N = S f (n) - f (n) N evaluated at t -δ ∈ I(t) satisfies |e N (t -δ)| |κ 0 T | ρ+1 sup θ∈I(t) f (n+ρ+1) (θ) ρ! M = O T ρ+1 , for T → 0,
with ρ and M defined in Corollary 2.1.

The approximation problem of derivatives of arbitrary orders

The variance term

e η = f (n) -f (n) reads e η (t -δ) = (-1) n κ n 0 T n b a f -f • ϕ t,T (τ )g (n) N,ϑ (τ )dτ = (-1) n κ n 0 T n b a (η • ϕ t,T ) (τ )g (n)
N,ϑ (τ )dτ (2.30) and it is straightforward to see that it satisfies the bound in the following corollary.

Corollary 2.5: Variance term

Let f and η be two functions satisfying f • ϕ t,T , η • ϕ t,T ∈ L 2 w (I w ) and f be the function defined in (2.26). Assume that η is bounded and

f (n) • ϕ t,T ∈ L 2
w (I w ). The variance term e η defined in (2.30) 

satisfies |e η (t -δ)| = O (T -n ) for T → 0.
From Corollaries 2.4 and 2.5 a known dilemma in function approximation can be observed:

Reducing the parameter T reduces the bias term but significantly increases the variance term.

For example, consider a closed orthogonality interval. The parameter T is then the width of the approximation window. For a fixed N decreasing the window length T will decrease the bias term |e N (tδ)|. However, a large T is required to smooth out the effects of the disturbance and thus to reduce the variance term |e η (tδ)|. Hence, finding a compromise is important.

As for reproducing kernels, an orth. diff. has a DoE γ g N,ϑ , i.e., the polynomial degree up to which the derivative approximation is exact but delayed with a known delay. It follows immediately from Corollary 2.2 as n + γ R N,ϑ with γ R N,ϑ the DoE of the corresponding reproducing R N,ϑ . The estimation delay corresponds to that of R N,ϑ given in Corollary 2.3.

In addition to this approximation theoretic derivation of orth. diffs., an algebraic interpretation can be given in terms of a parameter estimation problem with annihilation of undesired structured perturbations as discussed in the next section.

An algebraic point of view

Let f : t → f (t) be analytic in I ⊆ R, with 0 ∈ I, and consider its convergent Taylor series expansion at t = 0 namely

f (t) = ∞ m=0 f (m) (0) t m m! .
For the estimation of the n-th order derivative of f , the truncated Taylor series expansion

f n (t) = n m=0 f (m) (0) t m m! (2.31)
for n n is considered. It satisfies the linear differential equation f

(n +1) n
(t) = 0, which using operational calculus (Laplace transform or Mikusinski's operational calculus detailed in [START_REF] Doetsch | Introduction to the theory and application of the Laplace transformation[END_REF] and [START_REF] Mikusinski | Operational calculus[END_REF], respectively) reads 2.32) where L {f n } is the operational counterpart of f n . It should be noted here that all derivatives f (m) (0), m ∈ {0, . . . , n } are linearly identifiable parameters of (2.32) according to the identifiability definition developed in Fliess and Sira-Ramírez (2003a) using module theory.

s n +1 L {f n }(s) = n m=0 s n -m f (m) (0), ( 
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Annihilators

For the estimation of the n-th order derivative of f all terms s n -m x (m) (0), m = n, i.e., derivatives that are not of interest, are now viewed as perturbations to be annihilated. This can be achieved using differential operators of the form 

D = l * l=0 L {d l }(s) d ds l , L {d l } : C → C, l * finite, (2.33a) satisfying DL {f N }(s) = L {d}(s)f (n) (0), (2.33b 
n (0) = DL f (s).
This equation provides an operational estimator for f (n) (0), observed by f . The latter expression needs now to be transformed in the time domain. Let d and d l be the time-domain counterparts of L {d} and L {d l }, respectively. Writing the latter equation in the time domain

yields 12 d(t) f (n) n (0) = l * l=0 t 0 d l (t -τ )(-1) l τ l f (τ )dτ. (2.34)
Here, the variable t represents the estimation time and the equation has to be considered for fixed t. A finite and an infinite estimation time are considered in the sequel. The relation to truncated Fourier series is discussed.

Finite estimation time

In [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] a finite estimation time t * > 0 has been used in (2.34). This yields the approximated derivative

f (n) n (0) = 1 d(t * ) l * l=0 t * 0 d l (t * -τ )(-1) l τ l f (τ )dτ.

The approximation problem of derivatives of arbitrary orders

A causal approximation of the derivative denoted in the following by f (n) of the n-th order derivative is obtained by replacing in the last equation f (τ ) by -Θ(τ )f (tτ ), for t > t * . The approximated derivative

f (n) (t) = t * 0 l * l=0 d l (t * -τ )(-1) l+1 τ l d(t * ) f (t -τ )dτ
is then obtained. Observing that this corresponds to an approximation in the sliding window [tt * , t] motivates the definition of annihilators that yield a kernel

R(τ ) = l * l=0 d l (t * -τ )(-1) l τ l d(t * ) ,
which is a reproducing kernel of π n -n derived using polynomials orthogonal on a closed interval that can be mapped to the interval [0, t * ] using the time transformation given in Table 2.2.

In [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] annihilators that yield a reproducing kernel based on Jacobi polynomials have been derived. These are recalled in Section 2.4.3, where orth. diff. based on classical OP are discussed.

Infinite estimation time

Assuming that the quantity

f (n) n (0) = lim t * →∞ 1 d(t * ) l * l=0 t * 0 d l (t * -τ )(-1) l τ l f (τ )dτ
exists and is finite, an infinite estimation time can be used. Let

d ∞ (τ ) = lim t * →∞ 1 d(t * ) l * l=0 d l (t * -τ )(-1) l .
A causal approximation of the n-th order derivative is obtained by replacing in the last equation f (τ ) by -Θ(τ )f (tτ ), for t > 0. The approximated derivative, denoted in the following by f (n) , is

f (n) (t) = - ∞ 0 d ∞ (τ )τ l f (t -τ )dτ
is then obtained, which corresponds to an approximation in the growing window [-∞, t].

In [START_REF] Ushirobira | Algebraic differentiators through orthogonal polynomials series expansions[END_REF] annihilators that yield reproducing kernels based on Laguerre and Hermite polynomials have been derived. These are recalled and generalised Section 2.4.2, for example, where orth. diff. based on Laguerre OP are discussed.

A system-theoretic point of view

In addition to the approximation-theoretic and algebraic interpretations of the approximation scheme derived above, a system-theoretic one can be provided by reconsidering the approximation from (2.29).

The approximation f (n)

N defined in (2.29) can be rewritten as where a filter is followed by an ideal diff.

f (n) N (t -δ) = 1 κ 0 T ϕ t,T (b) ϕ t,T (a) f (τ ) (g N,ϑ • θ T ) (n) (t -τ )dτ, ( 2 
The result of the integration by parts of the latter equation yields

f (n) N (t -δ) = (-1) n κ 0 T ϕ t,T (b) ϕ t,T (a) f (n) (τ ) (g N,ϑ • θ T ) (t -τ )dτ.
(2.36) Thus, the approximated derivative is the output of a linear time-invariant filter applied on the sought derivative f (n) . This interpretation can be used for the parametrisation of the orth.

diffs. to achieve desired filter characteristics.

These two interpretations motivate the analysis of the filter characteristics of orth. diff. to derive systematic tuning guidelines.

An inverse-problem point of view

It is well known13 that the n-th order derivative of an n-times differentiable signal x : t → x(t) can be seen as a solution of a Fredholm integral equation (see, e.g., [START_REF] Cullum | Numerical differentiation and regularization[END_REF]; [START_REF] Engl | Regularization of inverse problems[END_REF]). In fact it is an ill-posed inverse problem and the mollification approach (see, e.g., [START_REF] Hegland | A mollification framework for improperly posed problems[END_REF]; [START_REF] Murio | The mollification method and the numerical solution of ill-posed problems[END_REF]), which is a regularisation technique, is one of numerous numerical methods that have been developed to obtain stable algorithms robust to additive noise. In the control community, these methods have been discussed in [START_REF] Diop | On numerical differentiation algorithms for nonlinear estimation[END_REF]; [START_REF] Diop | An algebraic and data derivative information approach to nonlinear system diagnosis[END_REF], for example.

From [START_REF] Hegland | A mollification framework for improperly posed problems[END_REF] it follows that a real function m γ is called a mollifier if there exists a constant integer ν ∈ N such that

m γ (t) = 1 γ m t γ , m ∈ C ν (R), t ∈ R,
with the mollifier's generator m satisfying the following conditions m(t) 0, t ∈ R, (2.37)

m (k) (t) ∈ L 1 (R), k = 0, . . . , s, s ∈ N, ∞ -∞ m(t)dt = 1, ∞ -∞ t k m(t)dt ∈ R, k = 0, 1, 2, . . . where L p (R) = f : R → R | ∞ -∞ |f (x)| p dx < ∞ , for 0 < p < ∞.
This is a generalises the definition of Friedrichs' mollifiers discussed in [START_REF] Adams | Sobolev spaces[END_REF] in the context of function approximation.

It is now straightforward to verify that minimal diffs., i.e., those with N = 0, are mollifiers, and from [START_REF] Hegland | A mollification framework for improperly posed problems[END_REF] it follows that differentiation based on orthogonal polynomials with N = 0 is a regularisation strategy. Affine diffs., however, do not satisfy the non-negativity condition (2.37) in general. The interpretation of diffs. based on Jacobi OPs as mollifiers has been used in [START_REF] Riachy | Universal integral control: An approach based on mollifiers[END_REF] instead of a high-gain observer for the differentiation of the output signal in the context of universal integral control introduced in [START_REF] Khalil | Universal integral controllers for minimum-phase nonlinear systems[END_REF].

2.4. Numerical differentiation using classical orthogonal polynomials

A wavelet-decomposition point of view

Recall the approximation of the n-th order derivative of a function f defined in (2.36) and define

h : τ → h(τ ) =    (-1) n κ0 √ T (g N,ϑ • θ T ) (n) (-τ T ), for τ ∈ [ϕ t,T (a), ϕ t,T (b)] , 0, otherwise. (2.38)
Then, (2.35) can be written as

f (n) N (t -δ) = ∞ -∞ f (τ ) 1 √ T h τ -t T dτ =: W h f (t, T ),
i.e., the approximated derivative is the wavelet decomposition of f , at time t and scale T , denoted by W h f (t, T ) (see, e.g., [START_REF] Mallat | A wavelet tour of signal processing[END_REF]).

Let F {h} be the Fourier transform of h and assume that14 

C h = ∞ 0 |F {h} (ω)| 2 ω dω < ∞. (2.39)
According to (Mallat, 1999, P. 124), this condition is called the wavelet admissibility condition.

Then, from the Calderón-Grossman-Morlet Theorem (see, e.g., (Mallat, 1999, Thm. 4.3)) it follows that any function f ∈ I 2 can be reconstructed from its n-th order derivative approximation W h f (•, T ) with continuously varying parameter T = σ by

f (t) = 1 C h ∞ 0 ∞ -∞ W h f (τ, σ) 1 √ σ h τ -t σ dτ dσ σ 2 .
This wavelet-based interpretation of numerical differentiation using Jacobi polynomials has first been proposed in [START_REF] Mboup | Frequency-domain analysis and tuning of the algebraic differentiators[END_REF].

Numerical differentiation using classical orthogonal polynomials

The classical OPs have already been introduced in Section 2.1.3 as a particular subset of OPs.

The orthonormal sets formed by these polynomials can now be used to approximate functions and their derivatives. The estimation of arbitrary derivatives of a function f defined in (2.25) is considered using these polynomials in the sequel. The disturbance-free case is considered for notational simplicity only since the effects of the additive disturbances in (2.26) necessary functions for the design, analysis, and discretization of Jacobi differentiators (Jac.

diffs.) has been made available in Othmane (2021). Its use is demonstrated in the appendix of [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] and in the examples provided in Othmane (2021). This publicly available code has been used for the generation of all results relying on Jac. diff. in the current work.

Hermite differentiators

Recall from Table 2.1 that Hermite polynomials are orthogonal on the interval

I w = (-∞, ∞)
and their weight function w satisfies lim τ →-∞ w(τ ) = lim τ →∞ w(τ ) = 0. Thus, the effects of the weight function vanish for large absolute values of the argument and the interval has to be shifted using a parameter µ to ensure that the maximum of w is in an interval of interest. A second degree of freedom can be incorporated by adding a scaling parameter T to compress or dilate the orthogonality interval. The transformation follows from Table 2.2 as

ϕ t,T : I w → I(t), τ → ϕ t,T (τ ) = T (τ -µ) + t, (2.40a) 
and its inverse is

ϕ -1 t,T : I(t) → I w , τ → ϕ -1 t,T (τ ) = τ -t T + µ, (2.40b) 
where

I w = (-∞, ∞) and I(t) = (-∞, ∞).
The approximation of a function f : (-∞, t] → R is now considered using Hermite polynomials (see Table 2.1 for a summary of their properties). This can be performed using the filter interpretation of the approximation scheme given in (2.35), the definitions (2.18), (2.21), and (2.28). Then, the delayed approximation is

f (t) = t -∞ f (τ )g N,T,ϑ,µ (t -τ )dτ with 15 g N,T,ϑ,µ = 1 T N n=0 H n (ϑ) H n w (w • H n ) • θ T
where

H n w = √ π2 n n!, w(τ ) = e -τ 2 , θ T (τ ) = µ -τ T and ϑ ∈ R.
The parameter ϑ influences the estimation delay and the degree of exactness as discussed in Corollary 2.2 and Corollary 2.3. Choosing ϑ as a zero of the Hermite OP of degree N + 1 decreases the approximation error by one order as discussed in the Corollaries 2.1 and 2.4

and yields a delayed approximation. The estimation delay is given in Table 2.3 and its variation with respect to the parameter N is shown in Fig. 2.1. As given in Theorem 2.1 increasing N decreases the delay. A delay-free approximation is achieved by choosing ϑ = µ/T .

Since the orthogonality interval of the Hermite polynomials is I H = (-∞, ∞), the latter approximation corresponds to that of the extended function Since f is discontinuous at time τ = t the Fourier expansion of f at τ = t converges to f (t)/2.

f : τ → f (τ ) =    f (τ ), for τ t 0, otherwise.
Thus, if an approximation at τ = t is sought the extension should be adapted such that f is continuous at this point.

For the approximation of the n-th order derivative of a sufficiently differentiable functions

f it has been shown in Section 2.3.1 that the n -1 first derivatives of the kernel g N,T,ϑ,µ must vanish at the boundaries of I w . The analytical form of the derivatives of the Hermite polynomials from #A.3 yields

(g N,T,ϑ,µ ) (n) = 1 T n+1 N m=0 H m (ϑ) H m w (w • H m+n ) • θ T , (2.41) 
and it is clear that the derivatives of the kernel always vanish as required for a diff.

Definition 2.6: Hermite diff.

Let N ∈ N and T, µ, ϑ ∈ R, with T, µ > 0. The function

g N,T,ϑ,µ : τ → g N,T,ϑ,µ (τ ) = 1 T N m=0 H m (ϑ) H m w ((w • H m ) • θ T ) (τ ), (2.42a) 
with

H m w = √ π2 m m!, w(τ ) = e -τ 2 and θ T (τ ) = µ -τ T , (2.42b) 
is called a Hermite diff. Its n-th order derivative is given in (2.41).

Filter characteristics

Since the approximation of functions and their derivatives using Hermite OPs can be interpreted as filtering the measurement, the properties of these filters are now discussed both in the time domain and the frequency domain.

Time-domain properties:

The explicit representation of the impulse response of a Hermite differentiator (Hermite diff.) g N,T,ϑ,µ defined in Definition 2.6 is given in (2.42) and can be
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impulse response delayed approximation rewritten as

N = 0 N = 1 N = 2 N = 3 -4 -2 0 2 4 -16 T 0 16 T 32 T delay-free approximation -4 -2 0 2 4 0 0.3 0.6 0.9 1.2 µ-τ T step response -4 -2 0 2 4 -4 0 4 8 µ-τ T
g N,T,ϑ,µ = N m=0 m 2 l=0 m! H m (ϑ) (-1) l 2 m-2l T H m w l!(m -2l)! (w • π m-2l ) • θ T , (2.43) using #A.1. For N = 0 it satisfies g 0,T,ϑ,µ : τ → g 0,T,ϑ,µ (τ ) = 1 T √ π e -( µ-τ T ) 2 , (2.44)
hence, the normal distribution with mean value µ and variance T 2 /2 is recovered.

The symmetry properties of the Hermite polynomials given in #A.2 yield

g N,T,-ϑ,µ (τ + µ) = g N,T,ϑ,µ (-τ + µ).
Thus, changing the sign of ϑ, which corresponds to mirroring the estimation delay around the point µ, yields the reflection of the diff. across the line µ.

The step response h N,T,ϑ,µ can be computed using the properties of the Hermite polynomi-2.4. Numerical differentiation using classical orthogonal polynomials als from #A.5 to get which results in overshoots in the step responses. The magnitude of the overshoot peaks increase with increasing N . It can be seen that the step response in the delay-free case shows significant overshoots.

-4 -2 0 2 4 -4 T -2 T 0 2 T 4 T µ-τ T impulse repsonse σ = 0 σ = 1 σ = 2 σ = 3 -4 -2 0 2 4 
h N,T,ϑ,µ (τ ) = τ 0 g N,T,ϑ,µ (σ)dσ = 1 2 erf µ T -erf µ -τ T - N m=1 H m (ϑ) H m w w µ T H m-1 µ T -w µ -τ T H m-1 µ -τ T (2.

Frequency-domain properties:

The Fourier transform of a Hermite diff. can be computed using the property in #B.11 as

F {g N,T,ϑ,µ } (ω) = 1 T N m=0 H m (ϑ) H m w F {(w • H m ) • θ T } (ω) = √ πe -ιωµ w T ω 2 N m=0 H m (ϑ) H m w (ιT ω) m , (2.46) 
where

ι 2 = -1. Since ω → F {g N,T,ϑ,µ } (ω) is continuously differentiable it follows that F {h}
with h defined in (2.38) also has this property. It is then easy to show that the admissibility condition in (2.39) is satisfied. Thus, the wavelet interpretation given in Section 2.3.5 is valid for this choice of orth. diffs.

The variation of the amplitude spectrum of the diff., i.e., ω → |F {g N,T,ϑ,µ } (ω)|, as a function of N is given in Figs. 2.4 and 2.6. As for the step response, it can be seen that the amplitude spectrum shows overshoots for N > 0. They are significant for the delay-free case and may yield useless results in practical implementations. The amplitude spectrum also shows a low-pass behaviour: For low frequencies the amplitude spectrum is close to one since

lim ω→0 F {g N,T,ϑ,µ } (ω) = 1.
High frequencies are attenuated. This frequency-domain analysis is used in the next chapter to derive tuning guidelines.

Laguerre differentiators

The Laguerre polynomials are orthogonal over the interval I wα = [0, ∞). Their weight function w α : t → w α (t) = e -t t α , α > -1, satisfies lim τ →∞ w α (τ ) = 0, i.e., the effects of w α vanishes for large arguments. The interval has to be flipped and shifted. A degree of freedom can be incorporated by adding a scaling parameter T . From Table 2.2, the transformation follows as

ϕ t,T : I wα → I(t), τ → ϕ t,T (τ ) = -T τ + t, (2.47a) 
with the inverse ϕ -1 t,T :

I(t) → I wα , τ → ϕ -1 t,T (τ ) = t -τ T , (2.47b) 
where

I(t) = (-∞, t]. The approximation of a function f : (-∞, t] → R using orthogonal
Laguerre polynomials, is now discussed. Their properties are summarised in Table 2.1.

The filter interpretation developed in (2.35) of the approximation scheme and the definitions (2.18), (2.21), and (2.28) can be used to derive the delayed approximation f of f as where

f (t) = t -∞ g (α) N,T,ϑ (t -τ )f (τ )dτ (2.48) with g (α) N,T,ϑ (τ ) = 1 T N n=0 L (α) n (ϑ) L (α) n 2 wα w α • L (α) n • θ T (τ ), 0 4 8 12 0 3T 6T 9T 12T α estimation delay N = 0 N = 1 N = 2 N = 3
L (α) n wα = Γ(n + α + 1) n! , w α (τ ) = e -τ τ α , θ T (τ ) = τ T , ϑ ∈ R and α > -1.
The parameter ϑ influences the estimation delay and the degree of exactness as discussed in Corollaries 2.2 and 2.3. Choosing ϑ as a zero of the Laguerre OP of degree N + 1 decreases the approximation error by one order as discussed in Corollaries 2.1 and 2.4 and yields a delayed approximation. The estimation delay is given in Table 2.3 and its variation with respect to the parameters N and α is shown in Fig. 2.5. Increasing α increases the delay and in accordance with Theorem 2.1, increasing N decreases the delay. A delay-free approximation is achieved by choosing ϑ = 0.

For the approximation of the n-th order derivative of a sufficiently differentiable functions

f it has been shown in Section 2.3.1 that the n -1 first derivatives of the kernel g N,T,ϑ,µ must vanish at the boundaries of I w . Recalling the analytical form of the derivatives of the Laguerre polynomials from #A.8 yields (2.49) for α > n -1 and l ∈ {1, . . . , n -1}, and it is clear that the derivatives of the kernel vanishes. Let N, n ∈ N and T, α, ϑ ∈ R, with T > 0 and α > n -1. The function

g (α) N,T,ϑ (l) = 1 T l+1 N m=0 (m + l)! L (α) m (ϑ) m! L (α) m 2 w w α-l • L (α-l) m+l • θ T ,
g (α) N,T,ϑ : τ → g (α) N,T,ϑ (τ ) = g (α) N,T,ϑ (τ ) = 1 T N n=0 L (α) n (ϑ) L (α) n 2 wα w α • L (α) n • θ T (τ ), (2.50a) 
with

L (α) n wα = Γ(n + α + 1) n! , w α (τ ) = e -τ τ α , and θ T (τ ) = τ T , (2.50b) 
is called a Laguerre differentiator (Lag. diff.) of order n. Its n-th order derivative is given in (2.49).

Filter characteristics

As for the function approximation based on Hermite polynomials the filter properties of Lag.

diffs. are now discussed in the time and frequency domains. The properties of the filter g

(α) N,T,ϑ
and the cascade of several filters for the estimation of higher order derivatives are analysed.

Time-domain properties:

For N = 0 a Lag. diff. g (α)
0,T,ϑ defined in Definition 2.7 can be written as N,T,ϑ can be rewritten as

g (α) 0,T,ϑ = w α • θ T T Γ(α + 1) , ( 2 
g (α) N,T,ϑ = N n=0 n m=0 l (α) n,m,ϑ g (α+m) 0,T,ϑ (2.52a) with l (α) n,m,ϑ = (-1) m Γ(α + m + 1)L (α) n (ϑ) m! L (α) n 2 wα n + α n -m .
(2.52b)

Numerical differentiation using classical orthogonal polynomials

Observing that the latter sum has a triangular structure yields

g (α) N,T,ϑ = N n=0 l(α) n,ϑ g (α+n) 0,T,ϑ , with l(α) n,ϑ = N m=n l (α) m,n,ϑ .
The impulse response of a Lag. diff. g

(α) N,T,ϑ is ḡ(α) N,T,ϑ (τ ) =      g (α)
N,T,ϑ (τ ), for τ 0, 0, otherwise.

(2.53)

The special parametrisation N = 0 yields

ḡ(α) 0,T,ϑ (τ ) =    1 T Γ(α+1) e -τ T τ T α , for τ 0, 0, otherwise,
and corresponds to the probability density function in the shape-scale parametrisation of a Gamma distribution (see, e.g., [START_REF] Papoulis | Probability, random variables, and stochastic processes[END_REF]) with mean and variance

η = (α + 1)T, (2.54a 
)

σ 2 = (α + 1)T 2 , (2.54b) 
respectively. Furthermore, it also follows from [START_REF] Hegland | A mollification framework for improperly posed problems[END_REF] that for this choice of parameters the diff. is a mollifier and derivative estimation is a regularisation strategy.

The step response h

(α) N,T,ϑ of a Lag. diff. g (α) N,T,ϑ is h (α) N,T,ϑ (t) = t 0 g (α) N,T,ϑ (τ )dτ = 1 Γ(α + 1) γ α + 1, t T + N n=1 L (α) n (ϑ) L (α) n 2 wα t T 0 w α (τ )L (α) n (τ )dτ,
with γ the lower incomplete Gamma function defined in #A.14. With relation #A.9 the step response can be written as

h (α) N,T,ϑ (t) = 1 Γ(α + 1) γ α + 1, t T + N n=1 L (α) n (ϑ) L (α) n 2 wα 1 n w α+1 (t)L (α+1) n-1 (t).
(2.55) Figs. 2.7 to 2.9 show the impulse and step responses of several diffs. As for Hermite diffs.

significant overshoots appear in the step responses when ϑ = 0, i.e, for the delay-free case.

These overshoots decrease with increasing α. Contrarily, the overshoots are negligible when

ϑ = l (α)
N +1 , i.e., when the approximation is delayed. While for α = 0 the maximum of the impulse response is at the beginning of the interval, for increasing α it moves to the right. Thus, for α = 0 the most recent values of f are multiplied with the strongest weights, which is not true any more when α is increased. This corresponds to the increase of the estimation delay for increasing α as shown in Fig. 2.5. 
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Cascade of diffs.

Let ḡi = ḡ(αi) 0,Ti,ϑ and recall that it is a density function with mean value η i and variance σ 2 i given in (2.54). Consider a cascade of p ∈ N diffs. The impulse response G p of this cascade can be written as the convolution product of the impulse responses ḡi of the diffs. From (Papoulis, 1962, Sec. 11.2) it follows that the first and second moments of G p are

η(p) = p n=1 η i and σ 2 (p) = p n=0 σ 2 i . (2.56)
Since the third moments

m 3,i = ∞ -∞ τ 3 ḡi (τ )dτ = T 3 (α + 1)(α + 2)(α + 3)
of ḡi , i ∈ {1, . . . , p}, are finite and lim p→∞ σ 2 (p) = ∞, by using the central-limit theorem (see, e.g., (Papoulis, 1962, Sec. 11.2)) it can be concluded that G p tends to a Gaussian function, i.e.,

G p (t) → 1 σ √ 2π e -(t-η(p)) 2 /(2σ 2 (p)) for p → ∞. Define the duration D t of a function f : t → f (t) by D t {f } = ∞ -∞ t 2 |f (t)|dt, the duration D ω of its Fourier transform F by D ω {f } = ∞ -∞ ω 2 |F(ω)| dω, and its energy by E{f } = ∞ -∞ |f (t)| 2 dt.
The uncertainty principle (see (Papoulis, 1962, Sec. 4.4) and the equality holds only for Gaussian f (t) = β π e -βt 2 , β > 0. Thus, the cascade G p converges to a compromise between the width of the impulse response, i.e. a clear concentration of values to be filtered and thus a high estimation accuracy, and the width of the frequency response, which corresponds to an effective low-pass effect.

) states that if f satisfies lim t±∞ √ tf (t) = 0, then D t {f }D ω {f } E{f } 2 π , 0 

Corollary 2.6: Optimality of cascade of Laguerre diffs.

Consider a cascade of p ∈ N diffs. The impulse response G p of this cascade converges to an optimal compromise in the sense of the uncertainty principle between the resolution in the time and the frequency domain for p → ∞.

It follows that the cascade of first-order Laguerre diffs. for the estimation of higher order derivatives can yield better results. Fig. 2.10 shows the impulse response of a cascade of Lag.

diffs. It can be seen that the responses converge quickly to a Gaussian function.

To parametrise a diff. g (α) 0,ϑ,T with desired mean value η and variance σ 2 it is sufficient to invert (2.54a) and (2.54b) to get Thus, using (2.54) and ( 2.57) a Lag. diff. g

T d = σ 2 /η and α d = η 2 σ 2 -1. (2.57) 2. NUMERICAL DIFFERENTIATION USING OR THOGONAL POLYNOMIALS 0 10 20 p = 2 τ /T impulse response G p 1 σ √ 2π e -(τ -η(p)) 2 /(2σ 2 (p)) g (αp) 0,ϑ,Tp
(αp)
0,ϑ,Tp can be parametrised by

T p = T and α p = p(α + 1) -1 (2.58)
to get the properties of the cascade G p . Fig. 2.10 shows the impulse response of g

(αp)
0,ϑ,Tp for different values of p. It can be seen that, as expected, g (αp) 0,ϑ,Tp converges to a Gaussian function. Thus, for α → ∞ and N = 0 the Hermite diffs. are recovered from the Lag. diffs.

Frequency-domain properties:

Using the Fourier transform of the function

f : t → f (t) =    L (α) n (t)e -t t α , for t 0 0, otherwise,
given in #B.13, the Fourier transform ω → F ḡ(α) N,T,ϑ of ḡ(α) N,T,ϑ can be computed as

F ḡ(α) N,T,ϑ (ω) = N n=0 L (α) n (ϑ) (ιωT ) n (ιωT + 1) (α+n+1) .
(2.59)

Since ω → F ḡ(α) N,T,ϑ (ω) is continuously differentiable it follows that F {h} with h defined in (2.38) also has this property. It is then easy to show that the admissibility condition in (2.39) is satisfied. Thus, the wavelet interpretation given in Section 2.3.5 is valid when Laguerre polynomials are used. Fig. 2.11 shows different amplitude spectra of Lag. diffs. with and without delay. It can be seen that in the delay-free case significant overshoots appear. Delay-free diffs. amplify the low-frequency content of the signals by more than 100% (e.g, by 280% for N = 2 and α = 4), which might yield very bad approximations and may not be tolerable in practice.

Annihilators

The algebraic interpretation of numerical differentiation discussed in Section 2.3.2 is now specified for Lag. diff. and an annihilator of the form (2.33) is derived. As in Section 2.3.2, an analytic function 

f : R + → R (2.60) -1.5 -1 -0.5 0 0.5 0 0.5 1 ϑ = l (α) N +1 log(ωT ) amplitude -1.5 -1 -0.5 0 0.5 0 2 4 ϑ = 0 log(ωT ) N = 1 N = 2 N = 3
ϑ = l (α) N +1 N = 1 log(ωT ) α = 2 α = 4 α = 6 α = 8 Figure 2
.12: Amplitude spectra of Lag. diffs. for different values of α and N . All diffs. exhibit a delay in the approximation.

is considered. In the operational domain, the truncated Taylor series expansion (2.31) corresponds to

L {f n }(s) = n m=0 1 s 1+m f (m) (0).
(2.61)

Recall for convenience that all derivatives, that are not of interest are now considered as undesired perturbations to be annihilated. Assume for the beginning that n = n and consider the differential operator

D L,0 = ρ 0 (s) d ds n+α0 s n
with ρ 0 (s) = 1/(s -1) and α 0 ∈ N. In the sequel, let ᾱ0 = n + α 0 . Applying the operator D L,0 to (2.61) yields

D L,0 L {f N }(s) = ρ 0 (s) d ds ᾱ0 n m=0 s n-m-1 f (m) (0) = (-1) ᾱ0 ᾱ0 ! ρ 0 (s) s ᾱ0+1 f (n) (0).
(2.62)

2. NUMERICAL DIFFERENTIATION USING OR THOGONAL POLYNOMIALS Thus, the differential operator D L,0 and the function s → (-1) ᾱ0 ᾱ0 !ρ 0 (s)/s ᾱ0+1 are associated.

Writing (2.62) in the time domain and replacing f N by f , as in Section 2.3.2, yields

t 0 e -τ τ ᾱ0 f (n) (τ )dτ = (-1) ᾱ0 f (n) (0) t 0 e -τ τ ᾱ0 dτ, = (-1) ᾱ0 γ (ᾱ 0 + 1, t) f (n) (0).
Thus, an approximation of the n-th order derivative is

f (n) (0) = (-1) ᾱ0 γ (ᾱ 0 + 1, t) t 0 e -τ τ ᾱ0 f (n) (τ )dτ.
Recalling from #A.14 that lim t→∞ γ (ᾱ 0 + 1, t) = Γ(ᾱ 0 + 1) = ᾱ0 ! and assuming that the integral on the right side of the latter equation exists 16 , the approximation of the desired derivative after an infinite time is

f (n) ∞ (0) = 1 (-1) ᾱ0 ᾱ0 ! ∞ 0 e -τ τ ᾱ0 f (n) (τ )dτ.
To obtain a causal approximation of the derivate at time t it is now sufficient to replace f (n) (τ ) in the latter equation by (-1) ᾱ0 f (n) (tτ T ) Θ (tτ T ), where the parameter T > 0 can be used to dilate or contract the interval [0, ∞). The obtained approximated derivative is

f (n) (t) = 1 ᾱ0 ! ∞ 0 e -τ τ ᾱ0 f (n) (t -τ T ) Θ (t -τ T ) dτ = t 0 g (α0+n) 0,T,ϑ (t -τ )f (n) (τ )dτ, (2.63) 
with g (α0+n) 0,T,ϑ defined in (2.51), and corresponds to the approximated (2.48) derived using the approximation theoretic approach. Thus, the Lag. diff. defined in Definition 2.7 with α ∈ N and N = 0 can also be derived using differential-algebraic manipulations of truncated Taylor series when the function of which the derivative is to be approximated is analytic.

The case of a Taylor expansion of order n > n is considered by 1. extending the differential operator in (2.60) to also annihilate the derivatives of orders greater than n, and by 2. exploiting the property (2.52) stating that any Lag. diff. with N > 0 can be written as a linear combination of minimal ones.

For this purpose, start with the differential operator

D L,l = ρ 0 (s) d ds n+l 1 s d ds n -n s n +1
that annihilates all derivatives that are not of interest. This operator is associated to the

function ρ l : s → ρ l (s) = (n -n)!(n + l)!(-1) n+l ρ 0 (s)/s n+l+1 . Consider now the differential operator D L = N n=0 n m=0 l (α) n,m,ϑ (n -n)! D L,α+m+1-n , α ∈ N >n-1 , 2.4. Numerical differentiation using classical orthogonal polynomials with l (α)
n,m,ϑ defined in (2.52b), motivated by the linear combination of minimal diffs. in (2.52). This differential operator is associated to the function

ρ : s → ρ(s) = N n=0 n m=0 l (α) n,m,ϑ (n -n)! ρ l (s).
Exploiting the shifting of the origin as in (2.63), a dilatation parameter T , and the property (2.52) yields the approximated derivative

f (n) (t) = t 0 g (α) N,T,ϑ (t -τ )f (n) (τ )dτ.
Thus, with a suitable combination of differential operators, Lag. diff. with α ∈ N can also be derived using differential-algebraic manipulations on truncated Taylor series assuming that the function of which the derivative is to be approximated is analytic.

Jacobi differentiators

Recall from Table 2.1 that Jacobi polynomials are orthogonal on the interval I w (α,β) = (-1, 1).

The time transformation required for the causal approximation of functions follows from Table 2.2 as ϕ t,T :

I w → I(t), τ → ϕ t,T (τ ) = t + τ -1 2 T, (2.64a) 
and its inverse is

ϕ -1 t,T : I(t) → I w , τ → ϕ -1 t,T (τ ) = 1 + 2 τ -t T , (2.64b) 
where

I w = [-1, 1] and I(t) = [t -T, t].
The results from (2.18), (2.21), (2.28), and (2.35) can be used to derive the approximation f of f as

f (t) = T 0 g (α,β) N,T,ϑ (τ ) f (t -τ )dτ (2.65a) with g (α,β) N,T,ϑ (τ ) = 2 T N m=0 P (α,β) m (ϑ) P (α,β) m 2 w (α,β) • P (α,β) m •θ T (τ ), (2.65b) 
where

P (α,β) m 2 = 2 α+β+1 Γ(m + α + 1)Γ(m + β + 1) m!(2m + α + β + 1)Γ(m + α + β + 1) , w (α,β) (τ ) = (1 -τ ) α (1 + τ ) β ,
and θ T (τ ) = 1 -2τ /T . The parameter ϑ influences the estimation delay and the degree of exactness as discussed in Corollaries 2.2 and 2.3. Choosing ϑ as a zero of the Jacobi OPs of degree N +1 decreases the approximation error by one order as discussed in the Corollaries 2.1 and 2.4 and yields a delayed approximation. The estimation delay is given in Table 2.3 and its variation with respect to the parameters α, β, and N is shown in Fig. 2.13. It can be seen that increasing N and β decreases the delay. Contrarily, increasing α increases the delay. These numerical observations can be proved using the properties of OPs in Szegö For the approximation of the n-th order derivatives of a sufficiently differentiable function

f it has been discussed in Section 2.3.1 that the n -1 first derivatives of g (α,β)
N,T,ϑ must vanish at the boundaries of [t -T, t]. Recalling the properties of Jacobi polynomials in #A.12 yields

g (α,β) N,T,ϑ (l) = 2 2l+1 T l+1 N m=0 (m + l)!P (α,β) m (ϑ) m! P (α,β) m 2 P (α-l,β-l) m+l • w (α-l,β-l) • θ T (2.66)
for α, β > n -1 and l ∈ {0, . . . , n -1}. It is thus clear that for α, β > n -1 the derivatives always vanish at the boundaries.

Definition 2.8: Jacobi diff.

Let N, n ∈ N and α, β, ϑ ∈ R, with T > 0 and α, β > n -1. The function

g (α,β) N,T,ϑ : τ → g (α,β) N,T,ϑ (τ ) = 2 T N m=0 P (α,β) m (ϑ) P (α,β) m 2 w (α,β) • P (α,β) m •(θ T (τ )) , with 
P (α,β) m 2 = 2 α+β+1 Γ(m + α + 1)Γ(m + β + 1) m!(2m + α + β + 1)Γ(m + α + β + 1) , w (α,β) (τ ) = (1 -τ ) α (1 + τ ) β ,
and θ T (τ ) = 1 -2τ /T , is called a Jacobi diff. of order n. Its n-th order derivative is given in (2.66).

From this approximation theoretic viewpoint, the estimation process can be explained as 44 2.4. Numerical differentiation using classical orthogonal polynomials

t -T t I T (t) time derivatives 1. Projection t -δt t δ t f (n) (t) time 2. Evaluation f (n) (t) p N (t) f (n) (t) time 3. Repetition Figure 2
.14: Three-step process of the estimation of the n-th order derivative f (n) of a function f : t → f (t) using Jac. diffs. as given in [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF].

in [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] by the following three steps17 illustrated in Fig. 2.14:

1. Projection: At time t, the n-th order derivative f (n) on the interval I T (t) is projected to the space of polynomials of degree N . This yields the polynomial p N depicted in the left and middle part of Fig. 2.14.

Evaluation:

The polynomial p N is evaluated at tδ t , which gives an approximated

derivative ŷ(n) (t) = p N (t -δ t ) for the derivative y (n) (t)
as depicted in the central part of Fig. 2.14. Choosing the delay to be a root of the OP increases the approximation order by 1 with a precisely known delay. Alternatively, a delay-free estimation or even a prediction of the future derivative might be selected, at the cost of a reduced accuracy.

Repetition:

The first two steps are repeated at each time instant t i while keeping the parameters of the diffs. constant, i.e., evaluating (2.35) at every discrete time instant t i .

This yields the approximated derivative f (n) depicted in the right part of Fig. 2.14, where the dots show the evaluation of f (n) at discrete time instants.

Filter characteristics

As for the previous diffs. the filter properties of Jac. diffs. are now discussed in the time and frequency domains. The properties of the filter g

(α,β)
N,T,ϑ and the cascade of several filters for the estimation of higher order derivatives are analysed. The discussions of this section stem almost entirely from [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]. The reader is referred to the latter reference for a more detailed discussion on the effects of the parameters on the estimation errors. Time-domain properties: From (2.65) it is clear that the diffs. act as linear finite-impulse response (FIR) filters on the sought derivative. This motivates the analysis of their impulse and step responses.

The closed form of the impulse response g (α,β) N,T,ϑ is given in (2.67), which simplifies to

g (α,β) 0,T,ϑ = w (α,β) • θ T 2 α+β T B(α + 1, β + 1)
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for N = 0. In the latter equation, B is the Beta function defined in #A.16.

Using the explicit definition of Jacobi polynomials given in #A.11, any g (α,β) N,T,ϑ can be written as a linear combination of minimal Jac. diffs. as

g (α,β) N,T,ϑ = N m=0 m l=0 m + α l m + β m -l (-1) m-l P (α,β) m (ϑ) 2 m-1 T P (α,β) m 2 w (α+m-l,β+l) • θ T = N m=0 m l=0 m + α l m + β m -l (-1) m-l P (α,β) m (ϑ) 2 m-1 P (α,β) m 2 B (α,β) m,l g (α+m-l,β+l) 0,T,ϑ (2.68) with B (α,β) m,l = 2 α+β+m B(α + m -l + 1, β + l + 1
). The step response has been derived in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] and reads

h (α,β) N,T,ϑ (t) =            0,
for t < 0

I t T (ᾱ, β) + N m=0 P (α,β) m (ϑ) P (α,β) m 2 w ( ᾱ, β) • P ( ᾱ, β) m-1 •(θ T (τ )) , for t ∈ [0, T ]
1. otherwise with ᾱ = α + 1, β = 1 + β, and I τ the regularised incomplete Beta function defined in #A.18.

Figs. 2.15 to 2.17 depict the responses for different parameters. For N > 0 the impulse response can become negative and the step response may show an overshoot. This overshoot increases with increasing α and β. As for the previous diffs., the overshoots of a delay-free parametrisation are significant (compare the Figs. 2.16 and 2.17). The variation of the delay as a function of α and β observed in Fig. 2.13 can again be seen in the variation of the impulse response. Increasing α shifts the maximum towards T which increases the approximation delay. Contrarily, increasing β shifts the maximum towards 0 and thus decreases the delay.

For α = β and N = 0 both are symmetric around the axis t = T or the point (T /2, 1/2), respectively. Recall from [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] that this parametrisation corresponds to the Legendre filters. More generally it can be verified that

g (β,α) N,T,ϑ t + T 2 = g (α,β) N,T,-ϑ T 2 -t .
(2.69)

Cascading differentiators: In (Kiltz, 2017, Sec. 3.2.2) it has been proven that a cascade of an infinite number of minimal diffs. converges to a Gaussian kernel

G. Let ḡp (t) = g 1 (t)g 2 (t) • • • g p (t),
where

g i (t) = g (αi,β) 0,Ti,ϑ (t), i = 1, . . . , p, and Tp = p i=1 T i . Then ḡp (t) → 1 σ p G t -µ p σ p for p → ∞
with µ p and σ 2 p the mean value and variance of the filter g p . For their closed-form expressions the reader is referred to (Kiltz, 2017, Eq. (3.11)). It has also been proven there that for p → ∞ the diff. ḡp corresponds to the best compromise between the width of the impulse response and that of the frequency response, i.e., for p → ∞, ḡp converges to an optimal compromise in the sense of the uncertainty principle between the resolutions in the time domain and the frequency domain. This explains the observation made in [START_REF] Mboup | A frequency domain interpretation of the algebraic differentiators[END_REF]: Two successive first-order diffs. instead of one second order diff. can be better. N,T,ϑ with the parameters α, β ∈ {1, 3, 6}, and 
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Figure 2.17: Impulse and step responses of a delay-free Jac. diff. g (α,β)

N,T,ϑ with the parameters α, β ∈ {1, 3, 6}, ϑ = 1, and N = 1.
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Furthermore, it has been shown in (Kiltz, 2017, Sec. 3.2.2) Frequency-domain properties: Denote by ω → F(ω) the Fourier transform of the signal t → f (t). Recall that the algebraic derivative approximation of the n-th order derivative of f is

f (n) (t) = T 0 g (n) (τ )f (t -τ )dτ, with g (n) (τ ) = d dτ n g (α,β) N,T,ϑ (τ ),
the Fourier transform of which reads

F f (n) (ω) = (ιω) n G (α,β) N,T,ϑ (ιω)F(ω), with G (α,β) N,T,ϑ the Fourier transform of g (α,β)
N,T,ϑ . Again it is clear that this numerical differentiation approach falls within the framework of classical approaches for differentiation in the frequency domain, where a smoothing filter, in this case G (α,β) N,T,ϑ , is followed by an ideal differentiation operator (ιω) n .

Analysing G (α,β) N,T,ϑ is thus crucial to tune the parameters. Its closed-form has been derived in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; [START_REF] Kiltz | Fault diagnosis on a magnetically supported plate[END_REF]; [START_REF] Mboup | Frequency-domain analysis and tuning of the algebraic differentiators[END_REF]. One possible

representation of G (α,β) N,T,ϑ is G (α,β) N,T,ϑ (ω) = N i=0 (α + β + 2i + 1)P (α,β) i (ϑ) α + β + i + 1 i k=0 (-1) i-k i k M (α,β) i,k (-ιωT ) with M (α,β) i,k (z) = M(α + i -k + 1, α + β + i + 2, z), z ∈ C
, where M is the confluent hypergeometric function defined in Abramowitz and Stegun (1965).

Since ω → G (α,β) N,T,ϑ (ω) is continuously differentiable it follows that the Fourier transform H of h with h defined in (2.38) also has this property. It is then easy to show that the admissibility condition in (2.39) is satisfied. Thus, the wavelet interpretation given Section 2.3.5 is valid for Jacobi polynomials, which has been first discovered in [START_REF] Mboup | Frequency-domain analysis and tuning of the algebraic differentiators[END_REF].

In the frequency domain, the symmetry property of g (α,β) N,T,ϑ discussed earlier and given in (2.69) corresponds to

e ι ωT 2 G (β,α) N,T,ϑ (ω) = e -ι ωT 2 G (α,β) N,T,-ϑ (-ω) and implies G (β,α) N,T,ϑ (ω) = G (α,β) N,T,-ϑ (ω) .
As in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; [START_REF] Mboup | Frequency-domain analysis and tuning of the algebraic differentiators[END_REF], it is assumed in the sequel that α β. By the latter symmetry property the next results hold also for α > β by exchanging α and β and mirroring the estimation delay at T /2.

Annihilators

For the estimation of the n-th order derivative, n ∈ {0, . . . , n }, the operational domain formulation in (2.32) is reconsidered. All the terms s N -i x (i) (0), i = n, are now viewed as undesired 14 21 0 0.5 
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α = β = 1 ϑ = p (α,β) N +1
ωT in rad amplitude perturbations to be annihilated. Assume first that the Taylor series (2.32) is truncated at the sought derivative, i.e. n = n.

N = 0 N = 1 N = 2 N = 4 N = 6 7 14 21 28 0 2 4 6 α = β = 1 ϑ = 1 ωT in rad

Consider now the differential operator

Π (α0,β0) n = 1 s N +β0+1 d ds n+α0 s n , α 0 , β 0 ∈ N, associated to the rational function ρ (α0,β0) n (s) = (-1) n+α0 (n + α 0 )! s α0+β0+2+2n .
The notation f (n) (0; α 0 , β 0 , T ) is adopted for the approximation of f (n) (0) when n = n.

Transforming 

Π (α0,β0) n X N (s) = ρ (α0,β0) n (s)f (n) (0),
f (n) (0; α 0 , β 0 , T ) = γ α0,β0,n T α0+β0+2n+1 T 0 (T -τ ) β0+n τ α0+n f (n) (τ )dτ,
where T denotes an estimation time and

γ α0,β0,n = (α 0 + β 0 + 2n + 1)! (α 0 + n)!(β 0 + n)! .
To obtain a causal approximation of the n-th order derivative at a time t T , it is sufficient to consider the sliding window I T (t) = [t -T, t], with window length T . This yields linear timeinvariant filters and the resulting approximated derivative corresponds to

f (n) (t) = T 0 g (α0+n,β0+n) 0,T,ϑ (τ )f (n) (t -τ )dτ.
with g (α0+n,β0+n) 0,T,ϑ from (2.65b). Thus, the Jac. diff. with α, β ∈ N and N = 0 can be derived using algebraic manipulations of truncated Taylor series.

Recall from (2.68) that any Jac. diff. with N > 0 can be written as a linear combination of minimal Jac. diffs., i.e., diff. with N = 0. As for the case of Laguerre polynomials in Section 2.4.2, a differential operator can be derived to get the approximation of the derivative.

Since the steps are identical the details are omitted here. The original derivation of the operators for N > 0 has been proposed in [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]; [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF].

Bibliographical and historical comments

In 18 Fliess and Sira-Ramírez (2003a) new algebraic approaches for the non-asymptotic estimation of parameters and states of linear systems have been proposed. These approaches are based on module theory, differential algebra, and operational calculus. They permit the 2.5. Summary and concluding remarks annihilation of structured perturbations and exhibit good robustness properties with respect to corrupting disturbances, without the need to know their statistical properties, as discussed in [START_REF] Fliess | Analyse non standard du bruit[END_REF][START_REF] Fliess | Critique du rapport signal à bruit en communications numériques[END_REF].

The approaches have then been used and extended in [START_REF] Fliess | Compression différentielle de transitoires bruités[END_REF]; [START_REF] Fliess | An introduction to nonlinear fault diagnosis References with an application to a congested internet router[END_REF]; Fliess and Sira-Ramírez (2004) for the estimation of time derivatives of noisy signals. The works [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]; [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] have further extended these approaches to obtain a least squares interpretation for the approximated derivatives and an implementation in terms of linear shiftinvariant finite impulse response (FIR) digital filters. With these filters the estimation of individual derivatives is possible, which avoids the inversion of a possibly ill-conditioned matrix, as discussed in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]. Each of these individual derivatives can be seen as a single parameter to be estimated. In [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] it has been shown that admitting a small delay in the approximation can improve its accuracy by one order, where this favourable delay can be computed from the parameters of the diffs. Later works Kiltz (2017); Kiltz and Rudolph (2013); [START_REF] Liu | Convergence rate of the causal Jacobi derivative estimator[END_REF]Liu et al. ( , 2011a[START_REF] Liu | Error analysis of Jacobi derivative estimators for noisy signals[END_REF] have derived the filters in the time domain by using orthogonal projections and Jacobi polynomials. This has extended the range of the parameters involved from the set of natural numbers to a subset of the real numbers.

The use of the Gaussian kernel from (2.44) as a mollifier has been discussed in detail in (Murio, 2011, Ch. 1) and its use in the control community has been described in [START_REF] Braci | On numerical differentiation algorithms for nonlinear estimation[END_REF]; [START_REF] Diop | A resettable kalman filter based on numerical differentiation[END_REF], for example. However, the resulting estimation delay has not been discussed in earlier works. The use of Hermite polynomials allows richer signals models and decreases the estimation delay. An algebraic derivation of annihilators for Hermite diffs. and Lag. diffs. using Weyl algebra has been proposed in [START_REF] Ushirobira | Algebraic differentiators through orthogonal polynomials series expansions[END_REF]; [START_REF] Ushirobira | Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials[END_REF]. The properties of the resulting diffs., like the estimation error, have been discussed for the first time in this chapter.

Summary and concluding remarks

Different derivation methods and interpretations for numerical differentiation approaches based on OPs have been discussed in this chapter. The differential-algebraic manipulations of truncated Taylor series in the algebraic context has shown the relation to the linear identifiability of parameters. The derivation using the orthogonal projections has been used for the analysis of the estimation errors and the estimation delay. The filter interpretation has permitted to associate to these diffs. a system theoretic interpretation. Table 2.4 summarises these findings 19 . For all discussed approaches it has been shown that admitting a small but known delay reduces the estimation error by one order and avoids overshoots in the amplitude spectra.

All orth. diffs. discussed in this chapter depend on several parameters. During their design for specific applications, it is important to choose the parameters such that the estimation error is minimised. Needless to say that finding good compromises without relying on trial-anderror approaches is important. Moreover, in most applications, measurements are available at discrete sampling instants only. Thus, the convolution integral (2.35) must be approximated 

f (n) g N,ϑ • θ T f (n)

Analysis of filter properties and parametrisation

Linear time invariant filtering of the measured signal in (2.35):

f (g N,ϑ • θ T ) (n) f (n) Implementation
by an appropriate quadrature method. These problems are addressed in detail in the next chapter.

Tuning and real-time implementation of classical orthogonal differentiators

The differentiators (diffs.) developed in the last chapter depend on numerous parameters.

For example, a Jacobi differentiator (Jac. diff.) depends on the parameters α, β, T , ϑ, and N . Thus, five numerical values must be assigned to these parameters, which is challenging since the approximated derivative cannot be compared to the true one. For instance, consider the parameter T : Decreasing it decreases the estimation error stemming from the polynomial approximation and increases the noise contribution, whereas increasing T yields the opposite results (see, e.g., Corollaries 2.4 and 2.5). Finding good compromises without relying on trial-and-error approaches is important in practice. Furthermore, in most applications, the measurement is only available at discrete sampling instants. Thus, the convolution integrals seen in the last chapter must be approximated by sums.

This chapter discusses systematic tuning guidelines for the diffs. based on classical orthogonal polynomials. The guidelines can be used to design diffs. with desired frequency-domain properties. The discrete-time implementation is then addressed in light of these properties.

Different discretisation schemes are discussed, and the preservation of the frequency-domain properties is considered using an error norm initially proposed for Jac. diff. in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF].

It is shown that all diffs. can be implemented as finite-impulse response (FIR) filters, with a filter window length that needs to be computed. It is then shown that Jacobi and Laguerre diffs. can be efficiently implemented using recursive schemes. For the Jac. diffs., the recursive implementation has been derived in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]. This implementation can significantly reduce the memory requirements and computational burden. Moreover, it is shown that Laguerre differentiators (Lag. diffs.) can be efficiently used for the simultaneous approximation of numerous derivatives. This bridges the gap to known approaches like the high-gain (HG) diffs. (see, e.g., Dabroom andKhalil (1997, 1999); [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF]) and the state variable filters (see, e.g., [START_REF] Hofmann | Theoretical and experimental research on parameter tracking systems[END_REF]; [START_REF] Peter | Parameter-adaptive PID-control based on continuoustime process models[END_REF]; [START_REF] Young | Parameter estimation for continuous-time models -A survey[END_REF]). It is shown that for a special parametrisation of the Lag. diffs. it is possible to recover state variable filters and HG diffs.

The parametrisation of Jac. diffs. has first been discussed in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF] and then in [START_REF] Liu | Analyse d'erreurs d'estimateurs des dérivées de signaux bruités et applications[END_REF]; [START_REF] Liu | Convergence rate of the causal Jacobi derivative estimator[END_REF]Liu et al. ( , 2011a) ) The systematic tuning guidelines and the discretisation issues are illustrated using some academic examples first. Then, different experimental case studies are performed to show the application of the diffs. The first and second order derivatives of a known but disturbed laboratory measurement are approximated. The three diffs. are compared with respect to the quality of the estimation and the required computational burden and storage requirements.

Then, the use of diffs. for the approximate inversion of analogue anti-aliasing filters is discussed.

The chapter ends with Section 3.4 discussing an automatic tuning approach for all diffs.

This approach is based on an optimisation problem that requires only the measured signal.

It is shown that the approach yields excellent results with experimental data.

Chapter content

3. 

Systematic tuning of classical orthogonal differentiators

In the following, systematic tuning guidelines for the parametrisation of the diffs. shall be discussed. These approaches rely on the analysis of the Fourier transform of the diffs.

Tuning of Hermite differentiators

From the analysis of the Fourier transform of Hermite differentiators (Hermite diffs.) in Sec- passed through, high-frequency ones are attenuated. In the case of a delay-free approximation, high overshoots can, however, appear in the amplitude spectrum, as shown in Fig. 2.4.

Thus, for a delayed approximation, the parameter T can be adapted to achieve, for frequencies ω that are lower than a specific frequency ω c , an amplitude attenuation lower than F ωc .

The frequency ω c and the interval |ω| ω c are called the cutoff frequency and the passband, respectively. The interval |ω| > ω c is called stopband. This low-pass filter interpretation is illustrated in Fig. 3.1. The parameter µ does not affect the amplitude spectrum and only influences the phase spectrum as can be seen in ( 2.46), for example.

Hermite diffs. with N = 0, also known as Gaussian filters (see, e.g., [START_REF] Papoulis | The Fourier integral and its applications[END_REF]), have been very popular to filter disturbed measurements. Application of these low-pass filters can be found in [START_REF] Canny | A computational approach to edge detection[END_REF]; [START_REF] Koenderink | The structure of images[END_REF]; [START_REF] Marr | Theory of edge detection[END_REF]; [START_REF] Witkin | Scale-space filtering[END_REF] for image processing or Diop et al. (2001[START_REF] Diop | On numerical differentiation algorithms for nonlinear estimation[END_REF]; [START_REF] Murio | The mollification method and the numerical solution of ill-posed problems[END_REF] for numerical differentiation to name only a few.

Tuning of Laguerre differentiators

Recalling the amplitude spectrum of Lag. diffs. depicted in Figs. 2.11 and 2.12 for some example parametrisations, it can be observed that for low frequencies the amplitude is close to 0 dB and decreases significantly for high frequencies. Thus, a piecewise approximation of the amplitude spectrum of (2.59) that yields a low-pass interpretation shall be proposed.

The limit

lim ω→0 F ḡ(α) N,T,ϑ (ω) = 1
and the expansion 1

F ḡ(α) N,T,ϑ (ω) = 1 (ιωT ) α+1 N n=0 L (α) n (ϑ) + O 1 (ιωT ) α+2 , ω → ∞,
(3.1a) 1 The expansion (3.1a) follows from the fact that motivate the piecewise approximation

1 (ιωT + 1) α+1 = 1 (ιωT ) α+1 1 + 1 ιωT -α-1 = 1 (ιωT ) α+1 ∞ n=0 -α -1 n 1 ιωT n , with -α-1 n = (-α -1)(-α -2) . . . (-α -n)/n!.
F ḡ(α) N,T,ϑ (ω) ≈    1, for |ω| < ω c , | ω ωc | -α-1 , otherwise, (3.2a)
of the amplitude spectrum with

ω c = 1 T N n=0 L (α) n (ϑ) 1 α+1
.

(3.2b)

The frequency ω c is called the cuttoff frequency of the diff. The intervals |ω| ω c and |ω| > ω c are called the passband and the stopband, respectively. The amplitude spectrum asymptotically decreases by 20(α + 1) dB per frequency decade for high frequencies. Thus, the diff. can be interpreted as a low-pass filter of order α+1. It can be seen that it well describes the relevant properties of the amplitude spectra except around overshoots that appear for the delay-free parametrisation as shown in Fig. 3.4.

This analysis motivates the following parametrisation procedure. First, choose the polynomial degree N and the order of the low-pass filter α + 1, i.e., the stopband slope. Then, the parameter T can be calculated to achieve a desired cutoff frequency ω c by rewriting (3.2b) as

T = 1 ω c N n=0 L (α) n (ϑ) 1 α+1
.

Tuning of Jacobi differentiators

First tuning aspects of Jac. diffs. have been discussed in the initial works [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF]. Further discussions on the effects of the parameters in the time domain can be found in [START_REF] Liu | Analyse d'erreurs d'estimateurs des dérivées de signaux bruités et applications[END_REF]; [START_REF] Liu | Convergence rate of the causal Jacobi derivative estimator[END_REF]; [START_REF] Liu | An error analysis in the algebraic estimation of a noisy sinusoidal signal[END_REF]. Promising tuning approaches based on the frequency-domain analysis of the diffs. have been proposed in Kiltz and Rudolph (2013); [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]Riachy (2014, 2018); Othmane, Mounier, and Rudolph (2021). The following paragraphs have first been published in [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] and recall the most important approaches that are useful for a systematic tuning of the diffs. to achieve desired frequency-domain properties. 

Exact analysis

The effect of N on the filter amplitude spectrum is considered first. While increasing N augments the accuracy of the underlying signal model, it increases the sensitivity to noise.

It has been shown in (Mboup & Riachy, 2018, Prop. 3.1) 

that the L 2 -norm G (α,β) N,T,ϑ L2
is an increasing function of N . Thus, the filter output noise power increases with N . The variation of G (α,β)

N,T,ϑ (ω) with respect to N is depicted in Fig. 2.19. For the delay-free parametrisation significant overshoots can be observed. This explains the poor performance of the delay-free Jac. diff. noticed in [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] and explained in [START_REF] Mboup | A frequency domain interpretation of the algebraic differentiators[END_REF].

Minimal diffs. allow for a particularly pronounced noise rejection. It has been proven in (Mboup & Riachy, 2018, Lem. 3.1) that

G (α+l,β) 0,T,ϑ L2 < G (α+m,β) 0,T,ϑ L2 , l < m,
i.e., the overall noise power increases with the difference |α -β| as depicted in Fig. 2.20. This effect has first been observed in [START_REF] Mboup | A frequency domain interpretation of the algebraic differentiators[END_REF] and has led the authors in Mboup 

G (α,α) 0,T,ϑ (ω) = e -ι ωT 2 Γ α + 3 2 4 ωT α+ 1 2 J α+ 1 2 ωT 2 ,
where J α+ 1 2 is the Bessel function of the first kind and order α + 1/2 defined in #A.20. The parameters α and T can now be chosen such that the zeros of G (α,α) 0,T,ϑ coincide with specific frequencies. This has been used in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; [START_REF] Kiltz | Algebraic estimation of impact times: Juggling a ball with a magnetically levitated plate[END_REF]; Kiltz and Rudolph (2013) to compute derivatives of experimental signals corrupted by a harmonic disturbance with a known frequency without resorting to further filtering methods. The approach is extended in Othmane, Mounier, and Rudolph (2021) to approximately annihilate disturbances with Fourier transforms showing repetitive peaks and applied to the estimation of derivatives of quantised signals.

Asymptotic analysis

The work Kiltz and Rudolph (2013) shows that algebraic diffs. can be interpreted as low-pass filters with a desired cutoff frequency and arbitrary low-pass order, i.e., stopband slope. This will be briefly reviewed along with the extensions in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF].

Using the asymptotic expansion of the confluent hypergeometric function (Abramowitz & Stegun, 1965, Ch. 13), it has been proven in (Kiltz, 2017, Sec. B.3.3) that the amplitude

spectrum ω → G (α,β) N,T,ϑ (ω) of the diff. g (α,β) N,T,ϑ satisfies G (α,β) N,T,ϑ (ω) = G (α,β) N,T,ϑ (ω) + O |ω| -µ-min{κ,1} , ω → ∞,
where

G (α,β) N,T,ϑ (ω) = q (α,β,σ) N,ϑ Γ(µ + κ) |ωT | µ , µ = 1 + min{α, β}, κ = |α -β| , (3.3) and q (α,β,σ) N,ϑ =    Γ(µ) max r (µ,0,σ) N,T , s (µ,0,σ) N,T , κ = 0, Γ(µ + κ) r (µ,κ,σ) N,T , κ > 0, σ =    1, α β, -1, α > β, r (µ,κ,σ) N,ϑ = N i=0 c (µ,κ) i Γ(µ + κ + i) P (µ-1,µ+κ-1) i (σϑ), s (µ,κ,σ) N,ϑ = N i=0 (-1) i c (µ,κ) i Γ(µ + i) P (µ-1,µ+κ-1) i (σϑ), c (µ,κ) i = (2µ + κ + 2i -1) Γ(2µ + κ + i -1).
Consequently, for large frequencies the amplitude spectrum ω → G (α,β)

N,T,ϑ (ω) can be approximated by the asymptote ω → G (α,β) N,T,ϑ (ω) . Additionally, in (Kiltz, 2017, Sec. B.3.3) the asymptotes For N = 0 and α = β, it holds that G (α,β)

G (α,β) N,T,ϑ (ω) = r (µ,κ,σ) N,ϑ (ωT ) µ - s (µ,κ,σ) N,ϑ (ωT ) µ+κ , G (α,β) N,T,ϑ (ω) = r (µ,κ,σ) N,ϑ (ωT ) µ + s (µ,κ,σ) N,ϑ (ωT ) 
N,T,ϑ (ω) = 0, which is consistent with the observation that the filter amplitude spectrum has infinitely many zeros. Fig. 3.5 depicts two amplitude spectra with the corresponding approximations. It is clear that even though the latter approximation is derived for large frequencies, the convergence rate of the approximation error is high and the bounds can be used for the in depth of the effects of the parameters on the filter. In Othmane, Rudolph, and Mounier (2021a) a region of validity for the approximation is derived.

The function ω → ∆ G (α,β) N,T,ϑ (ω) = G (α,β) N,T,ϑ (ω) -G (α,β)
N,T,ϑ (ω) describes the distance between the bounds introduced in (3.4). It satisfies

∆ G (α,β) N,T,ϑ (ω) = p (α,β,σ) N,T ω c ω µ+κ , (3.5 
)

for κ = 0 and |ωT | κ > k = r (µ,κ,σ) N,ϑ /s (µ,κ,σ) N,ϑ
. In the latter equation

p (α,β,σ) N,T =    2 min{k, 1/k}, for κ = 0, 2k/ r (µ,κ,σ) N,ϑ κ , otherwise, ω c = 1 T q (α,β,σ) N,ϑ Γ(µ + κ) 1 µ , (3.6) 
where ω c is referred to as the cutoff frequency. N,T,ϑ (ω) between the bounds to zero, which supports the statement from [START_REF] Mboup | Frequency-domain analysis and tuning of the algebraic differentiators[END_REF] reported above that the choice α = β decreases the sensitivity to noise.

Implementation of classical orthogonal differentiators

In most applications, the function f is known at discrete sampling instants only. Then, the convolution integrals must be approximated by an appropriate quadrature method, which 59 3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS yields discrete FIR filters. In the following, equidistant sampling with sampling period t s is assumed for simplicity. For the sake of brevity, the abbreviation f i = f (it s ), i ∈ N, for a sample of a function f at time it s is used in the sequel. The discretisation of the Hermite, Laguerre, and Jacobi diffs. is discussed in the following.
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Implementation of Hermite differentiators

Recall from Section 2.4.1 that the n-th order derivative of a function f can be approximated as

f (n) (t) = t -∞ g (n) (t -τ )f (τ )dτ, g = g N,T,ϑ,µ , (3.8) 
with g N,T,ϑ,µ a Hermite diff. defined in Definition 2.6.

Continuous-time FIR approximation

The values g N,T,ϑ,µ (τ ) vanish for τ µ and τ µ as depicted in Fig. 2.2 for different diffs., for example. This motivates the following approximation

f (n) (t) ≈ µ+τ + µ-τ - g (n) (τ )f (t -τ )dτ, τ -, τ + > 0,
where the integration bounds from (3.8) have been adapted. Thus, an FIR filter is recovered with the window length T L = τ + + τ -.

To determine τ -and τ + the approach proposed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] for the truncation of the filter window length of Jac. diff. is used. Consider the distribution function

Φ(t) = t -∞ g (n) (τ ) dτ m 0 g (n)
, (3.9) 60 3.2. Implementation of classical orthogonal differentiators with m 0 the moment of g (n) of order 0 defined as

T L µ-τ T ġ µ-τ T T L µ-τ T Φ µ-τ T -4 -2 0 2 4 -9 10T -3 5T -3 10T 0 -3 10T 3 5T -4 -2 0 
m 0 g (n) = ∞ -∞ g (n) (τ ) dτ.
To ensure that the truncation at both interval ends is approximately equal it is sufficient to choose Φ(µτ -) = 1 -Φ(µ + τ + ). Assuming that f is continuous, the error stemming from this approximation can be easily upper bounded as

f (n) (t) - µ+τ + µ-τ - g (n) (τ )f (t -τ )dτ 2m 0 g (n) Φ(µ -τ -) max τ ∈(-∞,t] |f (τ )| .
Truncating the interval bounds does not only yield an FIR filter for the estimation of the derivatives but also reduces the estimation delay by µτ -. Using the analytical form of the estimation delay from Table 2.3, the delay after the truncation becomes

δ t = τ --T ϑ.
Example 3.1 FIR formulation of Hermite diff.

Consider the estimation of the first-order derivative of a function using a Hermite diff.

g N,T,ϑ,µ with N = 1 and ϑ the largest zero of the Hermite polynomial of degree 2. Fig. 3.6 shows the evolutions of the first-order derivative of g N,T,ϑ,µ and the distribution function Φ from (3.9). The resulting FIR filter is given by the area in grey where the window is computed such that it starts when Φ takes values greater than 10 -5 .

Discrete-time FIR approximation

It is assumed for simplicity that the window length of the diff. is an integral multiple of the sampling period, i.e., T L = N L t s . Then, various discrete-time approximations (see, e.g., (Stroud, 1974, Ch. 3)) of the integral in the form of the sum

f (n) k+θ ≈ L-1 i=0 w i f k-i , (3.10) 
3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS can be achieved, where θ, L, and w i depend on the numerical integration method used.

In Kiltz (2017) a simple normalisation factor has been introduced to take into account the error stemming from the discretisation. This has also been recalled, for example, in [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]. Instead of using the approach in (3.10) the following discretisation scheme shall be considered

f (n) k+θ ≈ 1 Φ L-1 i=0 w i f k-i , with Φ = t n s n! L-1 k=0 w k (-k) n . (3.11)
The constant Φ is a normalisation factor that takes into account the error stemming from the discretisation when f is assumed to be a polynomial of degree n. This ensures that the lowfrequency amplification of the discrete-time filter corresponds to that of the continuous-time filter.

The tuning and derivation of the diff. have been performed in the continuous-time domain.

Thus, the discrete-time diff. in (3.11) should preserve the input-output properties of the filter.

The discretisation effects can be assessed by comparing the frequency-domain properties of the continuous-time and discrete-time diffs. Denote by G the Fourier transform of the continuous-time filter given in (2.46). Let G d be the Fourier transform of the discrete-time filter from (3.11) given as

G d : ω → G d (ω) = 1 Φ L-1 i=0
w i e -ιω(k+θ)ts .

The effects of the discretisation can then be assessed by considering the error norm

J = Ω 0 |G d (ω) -(ιω) n G(ω)| 2 dω Ω 0 |(ιω) n G(ω)| 2 dω .
(3.12)

The frequency Ω has to be chosen according to the frequency interval of interest. A reasonable choice is the Nyquist frequency ω N = π/t s , i.e., Ω = ω N . The latter error norm has been introduced in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] for the analysis of Jac. diffs. This error norm enables a discretisation analysis that does not depend on the properties of the function f . To interpret J , assume that the filter takes as input a band-limited white noise with bandwidth Ω. Then, J is the ratio of the amplification of the average noise power stemming from the discretisation error and that stemming from the continuous-time filter. Thus, J is a measure that may help to decide if the discretisation error can be neglected in comparison to the noise amplification of the continuous-time diff. Note that the error stemming from the truncation of the integration interval is also considered by this error norm.

In the following, three discretisation schemes are discussed: the mid-point rule, the trapezoidal rule, and the zero-order hold rule.

Mid-point rule

Using the mid-point integration rule yields

θ = 1 2 , w k = t s g (n) k+θ , L = N L .
Thus, the delay is reduced by half a sampling period. The formulation in (3.11) then requires Error norm J from (3.12) for different discretisation methods and amplitude spectrum of the diff. for T /t s = 3.

Trapezoidal rule Using the trapezoidal integration rule yields

θ = 0, L = N L + 1, w k =    t s g (n) k+θ /2, for k ∈ {0, N L }, t s g (n) k+θ ,
otherwise.

This approach requires two more operations than that of the mid-point rule and the storage of one more filter coefficient and past value of f .

Zero-order hold

For the first-order hold approach, the function f is assumed to be constant during a sampling interval, i.e., f (τ ) = f k for τ ∈ (t k-1/2 , t k+1/2 ]. This yields

f (n) (t) ≈ N L -1 k=0 t k+1 t k g (n) (τ )f k dτ. Thus, θ = 1 2 , L = N L , w k = g (n-1) k+1 -g (n-1) k .
for n > 0. As for the mid-point rule, the delay is reduced by half a sampling period.

Example 3.2 Discretisation of a Hermite diff. approximated as an FIR filter

Consider the estimation of the first-order derivative of a function using a Hermite diff.

g N,T,ϑ,µ with N = 1 and ϑ the largest zero of the Hermite polynomial of degree 2. N,T,ϑ from Example 3.3 as an FIR filter with window length T L using the distribution function Φ given in (3.9).

Implementation of Laguerre differentiators

Recall from Section 2.4.2 that the n-th order derivative of a function f can be approximated as

f (n) (t) = t -∞ g (n) (t -τ )f (τ )dτ, g = g (α) N,T,ϑ , (3.13) where g (α) 
N,T,ϑ is defined in Definition 2.7.

FIR-Filter approximation

Due to the multiplication of a decaying exponential function with polynomials in g (α)

N,T,ϑ the kernel vanishes at one boundary of the interval. Moreover, for α = 0 the diff. satisfies g (α)

N,T,ϑ (0) = 0. Increasing α flattens the impulse response for small arguments and shifts its maximum towards the right such that g (α)

N,T,ϑ (t) is a small value for t → 0. This can be seen in Figs. 2.7 to 2.9 for different parametrisations. Thus, the approach developed to truncate the integration interval for Hermite diff. in Section 3.2.1 can also be used for Lag. diffs. to approximate (3.13) as FIR filter of the form

f (n) (t) ≈ t-τ + t-τ - g (n) (t -τ )f (τ )dτ, τ -< τ + 0.
(3.14)

The distribution function (3.9) can again be used to compute τ + and τ -. Thus, the approximated derivative can be computed by an FIR filter with window length

T L = τ --τ + .
For the assessment of the effects of the discretisation on the frequency-domain properties the approaches discussed in Section 3.2.1 for Hermite diffs. can also be used for Lag. diffs.

Example 3.3 FIR approximation of a Lag. diff.

Assume that the first-order derivative of a function f : t → f (t) has to be approximated using a Lag. diff. with the parametrisation N = 1 and α = 1. Then, the approximation of the first-order derivative is

f (t) = t -∞ ġ(t -τ )f (τ )dτ, g = g (1)
1,T,ϑ . The resulting FIR filter is given by the area in grey where the window is computed such that it starts when Φ takes values greater than 10 -5 .

Example 3.4 Discretisation analysis of a Lag. diff.

Consider the Lag. diff. from Example 3.3. Fig. 3.9 shows the variation of the error norm J as a function of T /t s and α. As for the Hermite diff. in Example 3.2, the mid-point and trapezoidal rules preserve better the frequency domain characteristics of the diff. than the zero-order hold method. Furthermore, increasing α decreases J .

IIR-Filter implementation

Consider the following example, where a Lag. diff. is used for the approximation of the first derivative of a function. This simple example shows that a solution of a specific differential equation exponentially converges towards the approximated derivative in (3.13). The observations are then generalised and the discrete-time implementation is discussed. It is assumed in the sequel that α ∈ N.

Example 3.5 Estimation of first-order derivative

Consider the linear time-invariant (LTI) system

T d dt + 1 3 y = d dt -1 + T (ϑ -3) d dt f. (3.16)
with input f and output y for some arbitrary initial conditions. Its transfer function is Continuous-time formulation Consider the stable LTI system

h y f (ιω) = ιω (-1 + T (ϑ -3) ιω) (T ιω + 1)
d dt + T -1 ᾱ y = N m=0 h (α) m,N,ϑ T m+α+1 d dt N +n-m f, ᾱ = α + N + 1, (3.17) 
for some arbitrary initial conditions with

h (α) m,N,ϑ = N -m k=0 N -k m L (α) k (ϑ) (3.18)
where f is the input and y the output. Its transfer function is

h y f (ιω) = 1 T α+1 N m=0 L (α) m (ϑ) (ιω) m+n (ιω + T -1 ) α+m+1 which is the Fourier transform of g (α) N,T,ϑ (n) .
The solution of (3.17) exponentially converges to the approximation of the n-th order derivative of f defined in (3.13) for arbitrary initial conditions. While the error stemming from the initial conditions tends to zero for small T , the transient behaviour needs to be analysed further. In fact, it is straightforward to show that it may contain terms of the form e -t T T -ρ , for some ρ, which approach an impulse function as T tends to zero. Thus, the transient phase may contain a peak with amplitude of order 1/T . This phenomenon is known as peaking phenomenon and has been already observed for HG observers in [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF], for example. The relation to these observers is analysed in detail in the next section. To conclude, the initial conditions can be specified arbitrarily. However, care must be paid to the behaviour in the transient phase.

Discrete-time formulation

For the computation of y in (3.17) in the presence of discrete measurements the differential equation has to be discretised. It can be approximated by a difference equation of the form

P (δ) ξ k = Q(δ) f k (3.19)
with P and Q polynomials and δ the backward shift operator. The output y in (3.17) is then approximated by y(kt s ) = ξ k . The polynomials P and Q depend on the choice of the discretisation approach and can easily be obtained using the approaches found in (Franklin, Powell, Workman, et al., 1998, Ch. 6) or (Oppenheim & Schafer, 1975, Ch. 5). The bilinear2 discretisation scheme, for example, preserves the stability properties of the continuous-time filter. The degrees r P and r Q of P and Q satisfy r P = ᾱ and r Q ᾱ. using the direct form I realisation3 (see, e.g., (Oppenheim & Schafer, 1975, Sec. 4.3)) requires storing r P and r Q past values of ξ and f , respectively. The total number of filter coefficients to be stored is r P + r Q + 1. The number of required operations is 2(r P + r Q ) + 1 (more specifically r P + r Q + 1 multiplications and r P + r Q additions). Thus, the number of required operation (multiplication, addition, and delays) depends linearly on N and α. It does not depend on T , the parameter influencing the cutoff frequency as opposed to the FIR implementation.

As for the approach developed for the FIR approximation, the effect of the discretisation can be assessed by the error norm in (3.12) by computing the discrete transfer function corresponding to the difference equation in (3.19). The following example considers the discretisation of the LTI system discussed in Example 3.5.

Example 3.6 Discretisation of an IIR Lag. diff.

Consider again the diff. from Example 3.5. Fig. 3.10 shows the evolution of the error norm in (3.12) assessing the effect of the discretisation on the frequency domain properties of the diff. for different discretisation schemes. The bilinear transform (BT) shows the lowest error. The forward difference (FD) yields big errors for small T /t s . This is a known problem since this approach does not preserve the stability as discussed in [START_REF] Franklin | Digital control of dynamic systems[END_REF]; [START_REF] Oppenheim | Digital signal processing[END_REF], for example.

The difference equation of the form (3.19) for the BT is

p 3 δ 3 + p 2 δ 2 + p 1 δ + p 0 ξ k = q 3 δ 3 + q 2 δ 2 + q 1 δ + q 0 f k 3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS with p 0 = 8 T 3 + 12 t s T 2 + 6 t 2 s T + t 3 s , q 0 = -4 T t s ϑ + 12 t s T + 2 t s 2 , p 1 = -24 T 3 -12 t s T 2 + 6 t 2 s T + 3 t 3 s , q 1 = 4 T t s ϑ -12 t s T + 2 t s 2 , p 2 = 24 T 3 -12 t s T 2 -6 t 2 s T + 3 t 3 s , q 2 = 4 T t s ϑ -12 t s T -2 t s 2 , p 3 = -8 T 3 + 12 t s T 2 -6 t 2 s T + t 3 s , q 3 = -4 T t s ϑ + 12 t s T -2 t s 2 .
The latest ξ k can then be computed as

ξ k = p3 δ 3 + p2 δ 2 + p1 δ ξ k + q3 δ 3 + q2 δ 2 + q1 δ + q0 f k
with pi = -p i /p 0 and qi = q i /p 0 . Thus, seven filter coefficients and three past values of f and ξ need to be stored. At each instant k the total number of required operations is 13.

The value of ξ k converges towards the approximation of the first-order derivative of f from a Lag. diff. given in (3.15).

Simultaneous derivative estimation

In numerous applications the estimation of derivatives of several orders is required. Moreover, it is often important that all derivatives are filtered by the same filter (recall from Table 2.4

that the approximated derivative is the output of a filter driven by the sought derivative). This ensures that all approximations have the same delay and the same amplitude and phase distortion. The following analysis also shows that HG diff. are special cases of Lag. diff.

Continuous-time formulation

The simultaneous approximation of derivatives of orders up to n can be easily performed using the discussion from the previous section. The approximation of all derivatives of orders m ∈ {0, . . . , n} is considered. Then, the parameter α of the Lag.

diffs. has to satisfy α > n -1 as given in Definition 2.7. Following the lines of Section 3.2.2, it follows that the solution of the stable LTI system

d dt + T -1 ᾱ y = N m=0 h (α) m,N,ϑ T m+α+1 d dt N -m f, ᾱ = α + N + 1, (3.20) with h (α)
m,N,ϑ defined in (3.18), converges exponentially to the approximation

f (t) = t -∞ g (α) N,T,ϑ (t -τ )f (τ )dτ.
Consider the minimal state realisation (see, e.g., (Kailath, 1980, Ch. 2&6)) for the system (3.20) given by

ẋ = Ax + bf, y = c T x, (3.21a) 
3.2. Implementation of classical orthogonal differentiators with x(t) ∈ R ᾱ, suitable initial condition x(t 0 ), and

A =            0 1 0 0 . . . 0 0 0 1 0 . . . 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 1 0 0 0 . . . 0 0 1 - a0, ᾱ T ᾱ - a1, ᾱ T ᾱ-1 . . . . . . - a ᾱ-2, ᾱ T 2 - a ᾱ-1, ᾱ T            , b =       0 . . . 0 1       , c =                  h (α) N,N,ϑ T ᾱ h (α) N -1,N,ϑ T ᾱ-1 . . . h (α) 0,N,ϑ T ᾱ-N 0 . . . 0                  (3.21b)
where

a m, ᾱ = ᾱ m = ᾱ!/(m!(ᾱ -m)!) and h (α)
m,N,ϑ is defined in (3.18). The chain of integrators in (3.21) yields that the linear combination

y l = N m=0 h (α) N -n,N,ϑ T ᾱ-m x m+l , l ∈ {1, . . . , α}, (3.22a) 
converges exponentially to the approximation of the l-th order derivative computed using a Lag. diff. g

N,T,ϑ of order α and given as

f (l) = t -∞ g (l) (t -τ )f (τ )dτ, g = g (α) N,T,ϑ . (3.22b)
It is important to observe here that all the derivatives f (l) act as inputs to the same filter and thus the approximations are a set of matched time derivatives. An important property is that all derivatives have the same estimation delay. State realisations of the form (3.21) with outputs (3.22a) are known as state variable filters (see, e.g., [START_REF] Hofmann | Theoretical and experimental research on parameter tracking systems[END_REF]; [START_REF] Peter | Parameter-adaptive PID-control based on continuoustime process models[END_REF]; [START_REF] Young | Parameter estimation for continuous-time models -A survey[END_REF]). They have been widely used in the context of parameter estimation for linear systems (see, e.g., [START_REF] Isermann | Digitale Regelsysteme[END_REF][START_REF] Isermann | Identifikation dynamischer Systeme 2: Besondere Methoden, Anwendungen[END_REF]; [START_REF] Young | Parameter estimation for continuous-time models -A survey[END_REF]).

In addition to the approximations in (3.22b) it also follows that

ȳl = N -l m=0 h (α) N -n,N,ϑ T ᾱ-m x α+1+l+m , l ∈ {0, . . . , N }, (3.23a) 
exponentially converges to

f (α+1+l) = t -∞ g (α+1+l) (t -τ )f (τ )dτ, g = g (l)
N +α-l,ϑ,T .

(3.23b)

This can be verified by computing the input-output relationship between the input f and the output ȳl . These approximations, however, do not have the same properties as those in (3.22b). In particular, the estimation delays are different.

Due to the importance of this observation, the result is summarised in the following corollary.

Corollary 3.1: Simultaneous approximation of derivatives using Lag. diff.

Let f be a function that is bounded and differentiable N times with bounded derivatives up to the N -th order and piecewise continuous N -th order derivative. Consider The error stemming from the initial conditions converges exponentially to zero. The transient phase, however, may show significant overshoots. In fact, due to the eigenvalue -1/T of algebraic multiplicity N + α + 1 the solution contains expressions of the form e -t T T -ρ , for some ρ. These expressions approach an impulse function as T tends to zero. Thus, when these approaches are used in closed-loop control care must be paid. The problem can, however, be easily solved by saturating the approximated derivative outside a compact region of interest as for HG observers (see, e.g., [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF]).

Relation to high-gain differentiators

The appearance in (3.21) of negative powers of the parameter T that scales the orthogonality interval of the Laguerre polynomials raises the question whether there exists a relation to the well known HG diffs. from Dabroom andKhalil (1997, 1999); [START_REF] Khalil | Analysis of sampled-data high-gain observers in the presence of measurement noise[END_REF][START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]; Vasiljevic andKhalil (2006, 2008).

Let f be a function that is bounded and differentiable n times with bounded derivatives up to the n-th order and piecewise continuous n-th order derivative. Consider the HG diff. of order n with input f , given as

ẋ = Ax + bf, x(t 0 ) = x 0 ∈ R n (3.24a) with A =            -c 0 /T 1 0 0 . . . 0 -c 1 /T 2 0 1 0 . . . 0 . . . . . . . . . . . . . . . . . . -c n-3 /T n-2 0 . . . 0 1 0 -c n-2 /T n-1 0 . . . . . . 0 1 -c n-1 /T n 0 . . . . . . . . . 0            , and b =       c 1 /T c 2 /T 2 . . . c n /T n       , (3.24b)
where the parameters c l , l ∈ {0, . . . , n -1}, are chosen such that the polynomial

λ → λ n + n-1 l=0 c l λ n-l (3.24c)
is Hurwitz. The k-th, k ∈ {1, . . . , n}, component of x is an approximation of the k-th order derivative of f . As shown in [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF], the estimation error decays to O(T )

values after a short transient period of the form [0, T 0 (T )], where lim T →0 T 0 (T ) = 0.

The following result shows that for a special choice of the roots of the polynomial (3.24c) the solution of the dynamic system (3.24) converges to the approximated derivative from a Lag. diff.

Corollary 3.2: Relation between HG and Lag. diffs.

Let f : R 0 → R be a function that is bounded and differentiable n times with bounded derivatives up to the n-th order and piecewise continuous n-th order derivative. Consider the system (3.24) and assume that the polynomial in (3.24c) has the root -1 with an algebraic multiplicity of n. Then, there exists positive scalars κ 1 and κ 2 such that the m-th component x m of the state x satisfies

x m (t) - t 0 g (m-1) m (t -τ )f (τ )dτ < κ 1 e -κ2t , g m (τ ) = g (m-1) n-m,T,0 (τ ) (3.25)
for all t, m ∈ {1, . . . , n}, and arbitrary initial conditions, where g

(m-1)
n-m,T,0 is a Lag. diff. of order m -1 defined in Definition 2.7.

Proof. It can be verified using elementary calculus that

x p (t) =       t t0 g 1 (t -τ )f (τ )dτ t t0 ġ2 (t -τ )f (τ )dτ . . . t t0 g (n-1) n (t -τ )f (τ )dτ      
is a particular solution of (3.24). Then, the general solution of (3.24) is

x(t) = e A(t-t0) x 0 + x p (t),
where each component x m , m ∈ {1, . . . , n}, of x satisfies

x m (t) = e -t/T p m (t) + n-m,T,0 (τ ) from (2.49) yields the result (3.25). Corollary 3.2 shows that the state components x m , m ∈ {1, . . . , n -1}, tend towards the approximation stemming from a delay-free Lag. diff. of order m -1. The last component tends toward the approximation stemming from a minimal Lag. diff. of order n -1 and is thus delayed. This component corresponds to the approximation of the (n -1)-th order derivative of f . Following Table 2.3 and Corollary 2.3 the delay is δ t = T n.

Discrete-time formulation

In the presence of discrete measurements the differential equation (3.21) has to be discretised. It can be approximated by a discrete-time system

ζ k+1 = A d ζ k + b d f k , ξ k = c T d ζ k + d d f k (3.26)
with k ∈ {0, 1, . . .} and the initial conditions ζ t0 = A d,0 x(t 0 ) + b d,0 u(t 0 ). Then, y(kt s ) ≈ ξ k . The involved matrices and vectors depend on the discretisation scheme (see, e.g., Franklin et al.

(1998); Oppenheim andSchafer (1975, 1989); [START_REF] Stroud | Numerical quadrature and solution of ordinary differential equations[END_REF]). 71

TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS

Implementation of Jacobi differentiators

Recall from Section 2.4.3 that the n-th order derivative of a function f can be approximated as

f (n) (t) = t t-T g (n) (t -τ )f (τ )dτ, g = g (α,β) N,T,ϑ , (3.27) 
where g (α,β) N,T,ϑ is defined in (2.67). Jac. diffs. have initially been discretised in [START_REF] Liu | Analyse d'erreurs d'estimateurs des dérivées de signaux bruités et applications[END_REF]; [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] using the trapezoidal rule. This yields discrete filters as discussed for Hermite diff. in Section 3.2.1. Further discretisation approaches as the mid-point rule, zero-order and firstorder hold have then been discussed in Kiltz and Rudolph (2013). For all approaches the approximation (3.27) becomes

f (n) k+θ = L-1 i=0 w k f i-k , (3.28)
where w k is the discrete filter coefficients and the parameter θ depends on the discretisation approach (see, e.g., the detailed discussion for the discretisation of Hermite diff. in Section 3.2.1). This convolution sum has been evaluated non-recursively in each sampling step in all previously cited publications. A drawback of this approach is that the number of required arithmetic operations per step and the number of filter coefficients to be stored increase linearly with increasing filter window length and thus decreasing cutoff frequency. Thus, they may become very large.

A procedure for the recursive evaluation of the Jacobi derivative estimators in the context of parameter estimation has been discussed in [START_REF] Gensior | Beiträge zur flachheitsbasierten Regelung leistungselektronischer Systeme[END_REF]; Gensior, Weber, Güldner, and Rudolph (2007); [START_REF] Gensior | Algebraic parameter identification and asymptotic estimation of the load of a boost converter[END_REF]. In this procedure, the number of computational operations per step and the number of filter coefficients to be stored become independent of the filter window length. This implementation can significantly improve the computational burden and storage efficiency of the discretised diffs. However, this implementation procedure is not applicable for all parameter combinations of the Jac. diffs., and the accuracy of the discrete-time approximation deteriorates as the stopband slope increases. These issues have motivated the investigation of more complex recursive implementation procedures in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]. The mid-point discretisation rule plays an important role, as can be seen in the following motivating example.

Example 3.7 Example recursive implementation of Jac. diff. from Kiltz (2017)

Consider the implementation of a Jac. diff. for the estimation of the first-order derivative of a function f with N = 0 and α = β = 1 from (Kiltz, 2017, Sec. 2.4). The mid-point discretisation rule yields the approximated derivative

ḟk+ 1 2 = L-1 i=0 w i f k-i , w i = 6(L -1 -2i) L 2 T ,
at step k with the filter window length satisfying T = Lt s . Computing this approximation at each step requires 2L -1 operations. Moreover, L filter coefficients and past values of f have to be stored. The latter discrete convolution can however be implemented as a 3.3. Application of systematic tuning guidelines recursion. Then, the approximation is

ḟk+ 1 2 = 6 (L 2 -1)T z k , with z k = d 1 (f k -f k-L-1 ) -d 2 (f k-1 -f k-L ) + 2z k-1 -z k-2 , d 1 = L -1, d 2 = L + 1.
To ensure the stability of this recursion the implementation needs to be performed using fixed point arithmetic. This can be achieved, for example, when f is the output of an analog-to-digital converter. This implementation is independent of the filter window length and requirs only nine operations at each step. However, it requires the history of f in the entire window.

The ideas shown in Example 3.7 have been generalised in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] for arbitrary values of N , α, β, and ϑ. It is shown in (Kiltz, 2017, Sec. 3.4.4) that the output y of a Jac. diff. can be computed as

y k = - r+1 m=0 r + 1 m (-1) m y k-m + 1 Θ q i=0 r m=0 c i,m f k-ki
with Θ the normalisation constant from Section 3.2.1. The quantities r, q, c i,m and k i are parameters that depend on the Jac. diff. that can be taken from (Kiltz, 2017, Eq. (B.79)). The parameter r and q are independent of T and thus of the filter window length. For α, β ∈ N, for example, q = 1 and r = α + β + Nn.

For the stable implementation of the latter recursion a fixed point arithmetic is required.

To ensure that all coefficients c i,m are rational numbers, an approximation of the discretised filter coefficients using discrete Chebyshev polynomials has been used. The effect of this approximation and the required quantisation on the filter properties has been discussed in detail by introducing an error norm that compare these effects with those stemming from the discretisation of the convolution integral in (3.27). The reader is referred to (Kiltz, 2017, Sec. 3.4) for further details.

Evaluating the approximation using the discrete convolution in (3.28) requires 2L -1 arithmetic operations in each step and the storage of L filter coefficients and past values of the measurement, respectively. These numbers clearly increase linearly with increasing L.

Contrarily, the recursive implementation requires only (q + 1)(2r + 1) + 2 operations which is independent of L. The approach requires storing L + r past measurements, r + 1 past outputs, and (q + 2)(r + 1) filter coefficients. Thus, the total required storage capacities are (q +4)(r +1)+L-1 elements compared to 2L for the sum in (3.28). Thus, for large enough L the recursive implementation significantly reduces the computational and storage requirements.

A major drawback of this implementation approach is the importance of the initialisation of the recursion and the required fixed point arithmetic. For the estimation of the third-order derivative using a diff. with α = β = 4, N = 0, and L = 200 a representation with at least 33 bits is required.

Application of systematic tuning guidelines

The systematic tuning guidelines addressed in the last section shall be applied in two case studies. First, the estimation of the first and second-order derivatives of a disturbed experimental signal are approximated. The approximation results of the three diffs. are compared with respect to the quality, computational burden, and memory requirements. Then, the ap- 

Derivative approximation

The tuning approaches proposed in Section 3.1 are demonstrated using experimental data from the following example.

Example 3.8 Derivative approximation using a laboratory measurement

The voltage applied to an electric circuit by a signal generator is measured using an oscilloscope. The applied voltage is = 27 dB, with N y the number of samples of the signal. The total length of the considered signal is 0.4 s. The approximation of the first-order derivative of x using y shall be considered. The measurement is performed at a frequency of 5 kHz.

x(t) = a 1 sin(2πf 1 t) + a 2 sin(2πf 2 
The systematic tuning approach is used to find filter parameters to approximate the first and second-order derivative of x using y from Example 3.8. Hermite, Laguerre, and Jacobi diffs. are considered. In the following, the approximation of the n-th order derivative of x computed using y is denoted by ŷ(n) . Similarly, the approximation computed using x is denoted by x(n) .

To perform a quantitative comparison of the approximation results the output signal to noise ratio (SNRout) of the approximation defined as 

SNRout = Ns k=T L x(n) k 2 Ns k=T L x(n) k - ŷ(n) k 2 , n ∈ {0, . . . ,
= Ns k=T L x (n) δt,k 2 Ns k=T L x (n) δt,k - x(n) k 2 , n ∈ {0, . . . , 2}, are considered, where x (n)
δt is the n-th order derivative of x delayed by the delay δ t of the differentiator. While the SNRout takes into account the error stemming from the measurement disturbance, the SBR describes the error stemming from the generalised Fourier series truncation. The parameter T L denotes the filter window length. For all diffs. the parameter N is equal to 1. According to Corollary 2.2 the obtained diffs. in a parametrisation for a delayed approximation have a degree of exactness (DoE) equal to two and three for the approximation of the first-order and second-order derivatives, respectively.

The resulting delay can be computed according to Corollary 2.3. Contrarily, when a delay-free approximation is considered the DoEs are equal to one and two, respectively. All diffs. are discretised using the midpoint rule and implemented as FIR filters as discussed in Section 3.2.

The windows of the filters are computed such that the window starts when the distribution function from (3.9) takes values greater than 10 -4 . For all diffs. considered in the sequel the error norm in (3.12) is less than -80 dB. Thus, the discrete filters preserve the frequencydomain properties of the continuous ones.

Approximation of the first-order derivative

Comparison of approximation results

Parametrisations that yield delayed approximations are considered first. Start with a parametrisation where the cutoff frequencies of the Lag. diff. and Jac. diff. are chosen as ω c = ω 0 = 8πf 2 rad. Furthermore, α = 3 for the Lag. diff. and α = β = 3 for the Jac. diff. For the Hermite diff. the parameter T is computed such that the amplitude of the Fourier transform at ω c is equal to -3 dB. Table 3.1 summarises the numerical values of the remaining parameters that follow for these parametrisations.

The evolution in time of the approximated derivative using the latter parametrisations of the diffs. is given in Fig. 3.12. It can be seen that the approximation from the Lag. diff. is better than that of the remaining two diffs. This is also confirmed by the SNRout given in Table 3.1 which is equal to 20.0 dB for the Lag. diff. as opposed to 14.47 dB and 13.53 dB Table 3.1: Approximation results for the first-order derivative of the signals from Example 3.8 for N = 1, ω c = 8πf 2 rad. All diffs. are parametrised such that ϑ is a zero of the orthogonal polynomial (OP) of interest with degree N + 1. The zero is chosen such that the delay is minimised. The delay and the FIR window length are given as multiples of the sampling period t s . Hermite diff.

Lag. diff. Jac. diff. 3.1.

for the Hermite and the Jacobi diffs., respectively. However, the SBR of the Jac. diff. is the highest with 44.08 dB as opposed to 34.84 dB and 24.82 dB for the Hermite and the Laguerre diffs., respectively. These differences can be explained by the differences in the amplitude spectra given in Fig. 3.13. While the Jacobi and Laguerre diffs. have the same filter order, the amplitude evaluated at the cutoff frequency is higher for the former compared to that of the latter. Similarly, for the Hermite diff., the amplitude converges faster to zero for high frequencies than for the remaining two. However, the value at the cutoff frequency is comparable to that of the of the Jac. diff. Moreover, the estimation delay of the Jac. diff. equal to six sampling periods is less than the delays of the Laguerre and the Hermite diffs., which are equal to nine and eight, respectively.

Varying the parameters of the Jac. diff. may yield better results. Fig. 3.14 and Table 3.2

show the results when α and the cutoff frequency are kept identical and β is increased. It can be seen that the SNRout increases when β is increased. For β = 3 it is equal to 14.47 dB as opposed to 19.81 dB for β = 45. Contrarily, the SBR decreases from 44.08 dB to 23.20 dB.

These findings can be explained by the variation of the amplitude spectrum as a function of β as shown in Fig. 3.13. It is clear that the value of the amplitude of the Fourier transform at ω c decreases with increasing β. It also approaches that of the Lag. diff. Increasing β also increases the estimation delay. For instance, for β = 45 the delay is eight sampling periods, which is the same as for the Lag. diff.

Decreasing the cutoff frequency of the Jac. diff. and keeping the filter order constant enhances the approximation results as shown in Fig. 3.14, where time evolution of the signals for different values of ω c are given. From Table 3.3 it follows that when ω c is decreased by a factor of 0.4 the SNRout increases from 13.53 dB to 20.14 dB which is comparable to that of the considered Lag. diff. Contrarily, the SBR decreases from 44.08 dB to 31.64 dB. These results

are not surprising since the filter window length T decreases with increasing ω c as it can be seen from (3.6). Unsurprisingly, this confirms the theoretical results from Corollaries 2.4 and 2.5. For a lower cutoff frequency the delay also increases since it is proportional to T . For ω c = 0.6ω 0 and a SNRout comparable to that of a Lag. diff. the delay is nine sampling periods compared to eight for the latter.

Decreasing the cutoff frequency of the Hermite diff. will increase the SNRout and decrease the SBR as given in Table 3.3. For a cutoff frequency ω c = 0.6ω 0 the SNRout equal to 20.77 dB is comparable to that of the Jacobi and Laguerre diffs. with the cutoff frequencies 0.6ω 0 and ω 0 , respectively. The SBR of these three diffs. are also comparable. However, the delay of the Hermite diff. equal to 17 sampling periods is twice as high as for the latter two. Thus, in order to achieve a comparable SNRout, the Hermite diff. yields a higher estimation delay. It has already been observed in Section 2.2.2 that the DoE is reduced when delay-free approximations are considered. In Section 2.4 it has been observed that the amplitude spectra of delay-free diffs. exhibit significant overshoots which may result in bad approximation results. Fig. 3.15 illustrates the experimental results for the estimation of the first-order derivative of the signal y using delay-free Jacobi and Laguerre diffs. All parameters of the diffs. except ϑ are the same as those for the scenario in Table 3.1 and Fig. 3.12. As expected, a significant deterioration of the result can be observed. The SBR of the Jac. diff., for example, is equal to 7.09 dB as opposed to 44.08 dB when a delay is tolerated. Similarly, for the Lag. diff.

the SBR is reduced from 24.82 dB to 2.57 dB. The SNRout are reduced from 13.53 dB to 10.26 dB and from 20.0 dB to 19.5 dB for the Jac. diff. and the Lag. diff., respectively.

Comparison of computational and memory requirements

Consider the approximation results given in Tables 3.1 and 3.4. For an identical cutoff frequency and the approximation of the diffs. as FIR filters, the Jac. diff. has the lowest memory and computational requirements.

Only 17 filter coefficients and past measurements have to be saved as compared to 55 and 28 for the Laguerre and Hermite diffs., respectively. Thus, for the same cutoff frequency, the Lag. diff. requires to store approximately 323% more measurement values. This implementation, of course, immediately influences the computational requirements, which also increase by 323%. For the Hermite diff. these values increase by 196%. Thus, for the same cutoff frequency, the Jac. diff. is advantageous from a memory and computational perspective.

If the parameter β is increased to 45 such that the SNRout and SBR of the Jac. diff. are Table 3.4: Computational and storage requirements for the approximation of the first-order derivative of the signal from Example 3.8 for N = 1 and ω c = 8πf 2 rad. All diffs. are parametrised such that ϑ is a zero of the OP of interest with degree N + 1. The zero is chosen such that the delay is minimised. The abbreviations C and R stand for the discrete convolution and the recursive implementation, respectively. The X stands for no recursive implementation.

Hermite diff.

Lag. diff. Jac. diff. such that SNRout is comparable to that of the Lag. diff., the computational and memory requirements of the first are 50% less than those of the second, which is a clear advantage.

The requirements for the recursive implementation of the Jacobi and the Laguerre diffs.

discussed in Sections 3.2.2 and 3.2.3, respectively, are summarised in Table 3.1 for equal cutoff frequencies. For the Jac. diff. the bilinear transform has been used for the discretisation and the computations. For the Lag. diff. eleven filter coefficients have to be stored compared to 21 for the Jac. diff. which corresponds to a difference of 50%. The Lag. diff. requires the storage of five past values of the filter output and the input, respectively. Contrarily, the Jac. diff.

requires 23 and seven, respectively. Thus, for the Jac. diff. significantly more values have to be stored. Similar observations can be made for the number of arithmetic operations. While for the Lag. diff. only eleven additions and multiplications are needed in total, the Jac. diff. requires 28, which corresponds to a factor of 2.54. Moreover, the recursive implementation of the Jac. diff. has to be performed in fixed-point arithmetic and requires a careful choice of the initial conditions as discussed in Section 3.2.3. The recursive implementation of the Lag. diff.

does not suffer from these limitations.

When the Jac. diff. is implemented recursively with a cutoff frequency ω c = 0.6ω 0 to achieve the same SNRout as for the Lag. diff. with ω c = ω 0 , the number of required arithmetic operations is the same as above. As discussed in Section 3.2.3, this does not depend on the length of the filter window. However, more filter coefficients, past measurements, and past filter values must be stored.

Approximation of the second-order derivative

Comparison of approximation results

Start with diffs. having the cutoff frequency ω 0 and α = 12 for the Lag. diff. and α = β = 12 for the Jac. diff. The remaining parameters are summarised in Table 3. 5. Fig. 3.16 shows the approximation results when all diffs. have the same cutoff frequency. The numerical values for the SNRout and the SBR are summarised in Table 3.5. As for the approximation of the first-order derivative, the Lag. diff. shows the highest SNRout and the lowest SBR. Thus, these diffs. show the best robustness with respect to the measurement disturbance but the largest error stemming from the truncation of the generalised Fourier series.

Decreasing the cutoff frequency of the Jacobi and the Hermite diffs. yields larger values for the SNRout as given in Table 3.6. The evolution of the signals is shown in Fig. 3.17, where the improvement of the approximation quality can be clearly seen. A decrease of the cutoff frequency from ω 0 to 0.4ω 0 for the Jac. diff., for example, results in a SNRout equal to 20.24 dB, which is comparable to the 21.27 dB for the considered Lag. diff. However, the SBR of the first is larger than that of the second. For this choice of the cutoff frequency, the Jac. diff. has a delay of 37 sampling periods compared to the Lag. diff. with 28. This corresponds to a difference of approximately 25%. Parametrising the Jac. diff. such that the delay is equal to that of the Laguerre one yields a SNRout of 14 dB which is significantly worse than that of the Lag. diff. Similar conclusions can be drawn for the Hermite diff. Decreasing the cutoff frequency Table 3.5: Approximation results for the second-order derivative of the signal from Example 3.8 for N = 1, ω c = 8πf 2 rad. All diffs. are parametrised such that ϑ is the zero of the OP of interest with degree N + 1. The delay and the FIR window length are given as multiples of the sampling period t s . Hermite diff.

Lag. diff. Jac. diff. significantly increases the quality of the approximation as shown in Table 3.6 and Fig. 3.17.

To achieve a SNRout comparable to that of the Lag. diff. a higher delay must be taken into account.

Comparison of computational and memory requirements

As for the approximation of the first-order derivative, the analysis of the computational and memory requirements are considered for the implementation as an FIR filter first. From Tables 3.5 and 3.6 it is clear that in order to achieve comparable values for the SNRout all three diffs. have similar filter window lengths. For instance, for the Jac. diff. it is 87 sampling periods when the cutoff frequency is 0.6ω 0 as compared to the 97 of the Laguerre one. for the Hermite diff. it is 83.

Thus, the computational and the memory requirements are comparable.

However, when the Lag. diff. is implemented as an IIR filter using the bilinear transform, it is straightforward to conclude that the numbers of required arithmetic operations and measurement values to be stored are drastically reduced. For instance, only 14 past values of the measurement and of the approximated derivative need to be stored in comparison to the 97 for the FIR implementation. This corresponds to a reduction of 85% of the memory requirements. Only 57 arithmetic operations need to be performed at each instant as opposed to the 194 for the discrete convolution, which corresponds to a reduction of 70%. Similarly, for the Jac. diff. a recursive implementation reduces the number of required operations and measurement values to be stored. This approach, however, requires to be implemented in fixed-point arithmetic and a proper initialisation is necessary.

Approximate inversion of analogue anti-aliasing filters

Often in practical applications 4 , the achievable sampling rates of the real-time hardware are limited for technical or economical reasons and, thus, analogue low-pass filters are required in order to avoid irreparable signal distortions due to aliasing (see, e.g., [START_REF] Kotelnikov | On the transmission capacity of the 'ether' and of cables in electrical communications[END_REF]; [START_REF] Nyquist | Certain topics in telegraph transmission theory[END_REF]; [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Shannon | Communication in the presence of noise[END_REF]). Unfortunately, these anti-aliasing filters also restrict the dynamics of the sampled signals available for embedded control, state estimation, or diagnosis algorithms, which can deteriorate the achievable system performance.

One way to overcome this is to improve the electronic hardware, e.g, by using a faster computation unit which allows to increase the sampling frequency or by using a more complicated filter circuit with a higher stopband slope. Such measures increase the product costs. As an alternative, a bank of algebraic numerical diffs. can be used for an approximate inversion of the analogue anti-aliasing filter, as proposed in [START_REF] Kiltz | Sensorlose Überwachung[END_REF]Kiltz et al. ( , 2019)). By doing so, an improved signal dynamics and a simultaneous estimation of signal derivatives can be 3.3. Application of systematic tuning guidelines achieved without the need for a higher sampling rate or more complicated filter circuits. This is demonstrated in the following.

The input-output characteristics of typical analogue anti-aliasing filters (from simple RC circuits to higher-order Butterworth, Bessel, Chebyshev or elliptical filters) can be modelled as a linear time-invariant differential equation

n i=0 a i y (i) (t) = u(t)
with the input signal u : t → u(t), the output signal y : t → y(t), and the known scalar filter coefficients a i , i = 0, . . . , n, where n ∈ N is the filter order (see, e.g., (Tietze, Schenk, & Gamm, 2008, Ch. 13)).

In a practical application, the filter output y is sampled by the real-time hardware, whereas the filter input u is unknown. In contrast to this, it would often be desirable for the real-time algorithms to rely on the filter input u (or on one or more time derivatives u (m) , m ∈ N, of u)

instead of the filter output y. In such a case, an approximation û(m) of the sought signal u (m) can be generated from the measurement y by

û(m) (t) = n i=0 a i g (i+m) y (t),
with a diff. g appropriately designed and g (i+m) y the convolution of g (i+m) with y.

Note that the filter characteristics of the diff. can be chosen independently of the filter characteristics of the analogue anti-aliasing filter. In particular, the cutoff frequency of the diff. can be chosen higher and its stopband slope steeper than the respective characteristics of the anti-aliasing filter, which explains the achievable increase in the signal dynamics.

This method has successfully been applied in Kiltz et al. (2019) for the reconstruction of the first-order and second-order derivatives of a measured current signal in an automotive series product with lean embedded hardware.

Practical limitations of the realisable signal dynamics are due to the fact that the discretetime approximations of the convolution integrals g (i+m) y, i = 0, . . . , n, must be sufficiently accurate. See Section 3.2 for suitable discretisation methods and their limitations depending on the sampling rate.

A drawback of the proposed method is that, for the sake of sufficient noise suppression, a delay in the reconstructed input signal or its derivatives must be accepted. This delay tends to increase with the required order m of the reconstructed derivative, the filter order n of the anti-aliasing filter, and the cutoff frequency and stopband slope of the diff. used, i.e., the desired bandwidth of the reconstructed signal. Nevertheless, given the parametrisation rules in Section 3.1, often an acceptable compromise between the signal delay and the bandwidths of the reconstructed signals can be found. In particular, the signal delay might be of minor interest in comparison with the increased resolution of the reconstructed signals especially

for applications such as fault diagnosis, anomaly detection or event detection, as in the case study in Kiltz et al. (2019).

Approximate inversion of a first order filter using experimental measurements

In the following, the method is applied to reconstruct the input signal of a single-stage anti- ûLag.

Figure 3.19: Evolution of the measured input ũ and its approximations using the considered Jacobi and Laguerre diffs.

realised by an RC circuit. The time constant of the anti-aliasing filter is τ = 8.2 ms (which corresponds to a -3 dB cutoff frequency of 19.40 Hz), and the sampling period for the measurement of y is t s = 0.8 ms ≈ τ /10. The filter is driven by the input

u(t) = a 1 sin(2πf 1 t) + a 2 sin(2πf 2 t), f 1 = 10 Hz, f 2 = 80 Hz, a 1 = 2.5 V, a 2 = 1.75 V.
To compare the approximation results, the input u is measured with a sampling period of 0.01 ms. The evolution of the disturbed measurements ũ and ỹ of u and y, respectively, are given in Fig. 3.18.

The signal u is reconstructed using Laguerre and Jacobi diffs. with delays. The parameters N = 1 and α = β = 5 are chosen for both diffs. Fig. 3.20 shows the amplitude and phase spectra of a Laguerre and a Jacobi diffs. with cutoff frequencies equal to 2356.19 rad/s and 1220.09 rad/s, respectively. These values are chosen such that both diffs. have comparable properties for low frequencies. The discrete filters preserve the frequency-domain properties and no aliasing phenomena can occur with these values. The error norm in (3.12) is below -60 dB for the highest derivative order, for both diffs. From Fig. 3.20 it can be seen that for low frequencies the phase spectrum of both diffs.

show a linear dependency on the angular frequency and the phase Jac. diff. is lower than that of the Lag. diff. Thus, a higher delay has to be expected from the former. This is confirmed by the results in Table 3.7: While the Lag. diff. has a delay of two sampling periods, that of the Jac. diff. is equal to three. The reconstructed signals are shown in Fig. 3.19 and confirm this analysis. Both approaches yield convincing results and a very effective reconstruction of the original signal and a good noise suppression can be achieved at the cost of comparably small signal delays.

The Jac. diff. has a window length of eleven sampling periods that is significantly smaller than the Lag. diff. with 19. However, an IIR approximation of the Lag. diff. can significantly decrease the number of required arithmetic operations and the measurement values to be stored as discussed in the previous case studies from Section 3.3.

Automatic tuning of orthogonal differentiators

When designing a diff., a significant issue is the lack of a possibility to compare the estimated signal with the actual derivative, which is unknown. The systematic tuning approaches 

Proposed approach

Let g N,ϑ be an orthogonal differentiator (orth. diff.) of order n as defined in Definition 2.5.

Denote by f and f (n) the approximations of f and f (n) , respectively, computed using the same diff. g N,ϑ . The offline tuning is considered first and the generalisation to an online adaptive tuning is considered later. Assume that f is known in the interval [0, t * ], t * > 0, square integrable, and

P(f ) = 1 t * t * 0 |f (τ )| 2 dτ = 0.
Recall from Table 2.4 that the approximated derivative can be seen as the output of the linear time-invariant filter with impulse response g N,ϑ having as input the sought n-th order derivative f (n) of f . In numerous applications the filtered version of the function f itself is also required. Thus, f and its approximation f shall be used to design the diffs. The new parametrisation approach relies on the comparison of the filter output, i.e., the approximated function, with the signal itself. Since f and the sought derivative are filtered by the same filter, the approximation of f is used to design a suitable cost function.

TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS

The filter shall now be designed such that the ratio

κ P = P( f ) P(f ) (3.29)
is equal to a desired value κ * P ∈ (0, 1]. Thus, the filter shall attenuate the power of the input by the factor κ * P . Denote in the following by p the tuple of non-integer parameters on which the diff. g N,ϑ depends. For the Jacobi and Laguerre diffs. the corresponding tuples are p Jac. = (α, β, T ) and p Lag. = (α, T ). For the Hermite diff. only the parameter T is considered. Thus, p Her. = T . By choosing µ large enough the FIR approximation discussed in Section 3.2.1 yields the filter window length and the corresponding delay and µ does not need to be optimised.

By keeping in mind the effects of discretisation, the diff. can be designed by solving the following optimisation problem:

min p∈Pn |κ P (p) -κ * P | κ * P (3.30a) subject to J (n, p) J max (3.30b) ω n N |F {g N,ϑ } (ω N )| ω n c |F {g N,ϑ } (ω c )| k N,max . (3.30c)
In the latter optimisation problem, P n and κ P (p) are the set of admissible parameters for the estimation of the n-th order derivative and the ratio from (3.29) computed using a diff.

with parameters p, respectively. For a Lag. diff. with a delayed approximation and a fixed polynomial degree N , the parameters are p Lag. = (α, T ) and5 P n = R >n-1 × R >0 , for example. The quantity J (n, p) in (3.30b) denotes the error norm defined in (3.12) computed for a diff. approximating the n-th order derivative using the parameters p. Choosing J max small ensures that the discrete differentiator preserves the frequency-domain properties of the continuous-time one. In the second constraint (3.30c), ω N , F {g N,ϑ } and k N,max denote the Nyquist frequency, the Fourier transform of the differentiator and the weakest relative attenuation the differentiator should have at the Nyquist frequency, respectively. Choosing k N,max small ensures that aliasing problems are avoided. Thus, the approach finds parameters that minimise the relative deviation of the ratio in (3.29) from a desired value κ * P such that the discretisation does not alter the approximation results.

The approach is now first applied for the approximation of the first-order and secondorder derivatives of a measured signal from Example 3.8. The experimental validation of this design approach shows promising results as will be shown in the next section. The theoretical aspects are then discussed in the concluding remarks of this section.

Remark 3.1: Considering a maximally tolerable delay

The optimisation (3.30) can be further extended to include a maximal value for the estimation delay. This can be important when the approximated derivatives are used in closed-loop control.

Remark 3.2: Motivation for the approach

This design approach is motivatived by the concept of power gain used for the design of electronic circuits (see, e.g., (Pettit & McWhorter, 1961, Ch. 1) and (Egan, 2003, App. G)).

For the design of amplifiers where the purpose of the circuit is the amplification of the level of the input signal, for example, the amount of increase is known as gain of the amplifier.

Examples for automatic tuning

The proposed approach is now applied to approximate the first and second-order derivatives of the signal from Example 3.8. Recall that this signal has already been used to discuss the systematic tuning guidelines developed in Section 3.1. For all diffs. the FIR implementation is used, J max = -60 dB and k N,min = -50 dB. Thus, the discrete diff. preserves well the frequency domain properties of the continuous one. The windows of the filters are computed such that the window starts when the distribution function takes values greater than 10 -4 . For the optimisation the entire history of the signal from Example 3.8 is used. All optimisation problems are solved using the interior-point method (see [START_REF] Byrd | An interior point algorithm for large-scale nonlinear programming[END_REF]).

The cost function at the optimal solution is always below 10 -5 . and the window length. These observations also follow from the theoretical considerations in Section 3.1. Thus, a global solution for the optimisation problem exists. Fig. 3.22 shows the variation of κ P , the estimation delay, and the length of the filter window as a function of the parameters T and α of the Lag. diff. It can be seen that level sets exists, where κ P is constant for different values of T and α. Thus, no global solution can be found using the interior-point method. The variation of the quantities for the Jac. diff. is not depicted. However, here again, numerous local minima have been, and no global solution exists.

Estimation of a first-order derivative

Table 3.8 gives the optimal diff. parameters, when the optimisation process is initialised with parameters subject to a difference of 30% from those determined using the systematic tuning guidelines in Section 3.3.1. The desired value of the attenuation is κ * P = 0.99. The table also summarises the estimation delay, the cutoff frequency, the filter window length, the SNRout, and the SBR. For the Hermite diff., the cutoff frequency is computed as the frequency where the amplitude reaches -3 dB. Fig. 3.24 shows the resulting amplitude spectra that are very close to each other for frequencies up to 1000 rad/s. A better disturbance attenuation has to be expected from the Jac. diff. due to the local minima of the spectrum at approximately 1750 rad/s, for example, for the first one. The worst disturbance attenuation should follow for the Hermite diff. since its amplitude spectrum is up to 2000 rad/s higher than that of the other two. Figure 3.22: Variation of the ratio κ P defined in (3.29), the estimation delay and the number of filter coefficients L as a function of the parameter T and α of a Lag. diff. for the estimation of the first-order derivative from Example 3.8. The values resulting from the optimal parameters are given by the red dots and summarised in Table 3.8.

From Table 3.8, the Laguerre and the Jacobi diffs. have the same estimation delay of 11 sampling periods. That of the Hermite diff. is 18. The Jac. diff. has the highest SNRout equal to 25.05 dB and the Hermite diff. the lowest equal to 20.68 dB. This confirms the previous analysis of the amplitude spectra. However, the time evolution of the approximations given in Fig. 3.23 show very good results for all cases. Comparing these results with those obtained using the systematic tuning summarised in Tables 3.1 and 3.3 shows that by accepting a slightly higher delay the quality of the approximations increases significantly. For the Jac. diff. the delay for this parametrisation is only two sampling periods higher than that in Section 3.3.1 for ω c = 0.6ω 0 .

While the Jacobi and Hermite diffs. have a window length of 35t s and 34t s , respectively, the Laguerre one requires 67t s . Thus, computing the approximation with the latter requires storing more filter coefficients and measurement values. However, approximating the optimal Lag. diff. by a Lag. diff. that has the same cutoff frequency but the order ᾱ = 4, which corresponds to the closest integer to the optimal α, yields an SNRout of 22.95 dB, the same -4 , which is close to that of the optimal solution. Thus, using the IIR implementation of this diff. significantly reduces the computational burden and the storage requirements without altering the results.

Estimation of a second-order derivative

Consider again the estimation of the second-order derivative of the signal from Example 3.8.

Table 3.9 summarises the optimal parameters of the diffs. and the results of the derivative approximation process when κ * P = 0.99. The time evolution of the approximations are shown in Fig. 3.25. The Jacobi and Laguerre diffs. have very close SNRout which are equal to 12.96 dB and 12.29 dB, respectively, compared to that of the Hermite diff. having 10.17 dB. The delay of Lag. diff. is equal to 15 sampling periods and is lower than those of the Hermite and Jacobi diffs. and equal to 18 and 20, respectively.

As before, the Lag. diff. has the largest filter window with length equal 69t s as compared to the Jacobi and Hermite with 56t s and 49t s , respectively. However, approximating the Lag. diff. by a Lag. diff. with the same cutoff frequency and a parameter α equal to the closest integer Table 3.10: Approximation results for the second-order derivative of the signal in Example 3.8 for N = 1 using the automatic tuning approach for κ * P = 0.98. All diffs. are parametrised such that ϑ is the zero of the N + 1 OP of interest. The delay and the filter window length are given as multiples of the sampling period t s .

Hermite diff.

Lag. diff. Jac. diff. µ = 1.9 ms, T = 1.84 ms α = 9.14, T = 0.58 ms α = 10.05,β = 9.92 Approximation results for the second-order derivative of the signal x from Example 3.8 using diffs. with parameters computed using the automatic tuning approach for two values of κ * P . The parameters of the diffs. are summarised in Table 3.9.

T =
3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS initialisation of the optimisation algorithms is, however, important due to the existence of multiple local minima. Thus, combining it with the systematic tuning guidelines yields excellent and promising results. Nevertheless, several questions are open and should be addresses in future research projects:

1. How to choose the parameter κ * P ?

2. How is the ratio P f (n) /P f (n) affected by this approach?

3. Which global optimisation scheme is the best adapted for solving the problem (3.30)?

4. How can this approach be used to design adaptive diffs.?

The last question is an interesting application of this design technique. The known history of a signal can then be used to adapt the parameters online.

Summary and concluding remarks

The tuning and discrete-time implementation of Hermite, Laguerre, and Jacobi diffs. have been discussed in detail in this chapter. A distribution function Φ defined in (3.9) has been used to derive an FIR implementation for the diffs. Systematic tuning guidelines have been derived such that desired low-pass properties can be achieved for the diffs. The effect of the discrete-time implementation on these desired properties has been analysed using an error norm defined in (3.12). Different discretisation schemes have been discussed. These properties and ideas have been illustrated using simple examples. For the Jacobi and Laguerre diffs., recursive implementations have been discussed. While those for the Jac. diffs. have already been published in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF], the discussions for the Laguerre ones are new.

For the Lag. diffs., the relation to HG diffs. and state variable filters has been discussed.

It has been shown that the latter two established approaches are recovered for a particular parametrisation of the Lag. diffs. The simultaneous estimation of several derivatives using a filter having the same properties has been considered. Implementing these filters significantly reduces the required computational burden and the number of parameters and measurement points to be buffered.

The systematic tuning guidelines and the use of the diffs. have been illustrated for the approximation of derivatives of a measured signal and the approximate inversion of an analogue anti-aliasing filter. Using experimental data, it has been shown that compelling results can be achieved.

Finally, an automatic tuning approach based on an optimisation problem has been proposed. While the approach shows very convincing results on experimental data for all considered diffs., some theoretical questions remain open for future research.

The use of these diffs. for more elaborated problems is considered in the next chapters.

It is shown that the approaches can be successfully used when higher-order derivatives are required.

Model-based detection of impulsive forces

The detection of abrupt changes in measured signals is crucial in numerous applications.

For instance, popular models for sensor and actuator faults are stepwise changes (see, e.g., (Isermann, 2006, Ch. 5) and (Isermann, 2011, Ch. 2)). The ability to detect these abrupt changes is important to designing fault-tolerant control techniques. The use of numerical differentiation and in particular Jacobi differentiators (Jac. diffs.) for the detection of abrupt changes has been successfully demonstrated in simulations and experimental validations (see, e.g., [START_REF] Belkoura | Estimation problems for a class of impulsive systems[END_REF]; [START_REF] Bourgeot | Fast algebraic impact times estimation for a linear system subject to unilateral constraint[END_REF]; [START_REF] Fliess | Algebraic change-point detection[END_REF]; [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; [START_REF] Kiltz | Fault-tolerant control based on algebraic derivative estimation applied on a magnetically supported plate[END_REF][START_REF] Kiltz | Fault diagnosis on a magnetically supported plate[END_REF]; Kiltz and Rudolph (2013); [START_REF] Tiganj | Spike detection and sorting: Combining algebraic differentiations with ICA[END_REF]). For an extensive list of fault-tolerant control applications based on Jac. diffs., the reader is referred to [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]. In this chapter, Jacobi and Laguerre differentiators (diffs.) are used to detect impulsive forces in two different experimental case studies.

First, the detection of collisions of a table tennis ball with a magnetically levitated plate and the estimation of the collision time is analysed in Section 4.1. The setup of the system can be found in Fig. 4.1. Only the measurement of the vertical displacement of the plate and the applied magnetic forces are known. The position of the ball is not measured. In addition to the corruption stemming from noise, the vertical displacement measurement is disturbed by a signal stemming from an audible mechanical eigenmode of the plate. This problem has been solved in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz et al. (2013); Kiltz and Rudolph (2013) using Jac. diffs.

Therein, the parametrisation of the diffs. allowing the annihilation of undesired harmonic signals recalled in Section 3.1.3 has been used. The current work shows that using Laguerre differentiators (Lag. diffs.) in combination with a notch filter (see, e.g., (Tietze et al., 2008, Sec. 13.8) for a discussion of notch filters) yields better results. For instance, the approach allows to detect a ball falling from a lower height and considerably reduces the computational burden and storage requirements.

Second, Jac. diffs. are used in Section 4.2 for the data and computation efficient detection of faults for rolling element bearings. Numerical differentiation is combined with a physical model of the considered system to derive the required algorithms. Fault-free data can be used to identify the numerical values of the system parameters. Signals sensitive only to faults are designed using a simplified model of the bearing vibrations to detect the faults. These signals, called residuals, are proportional to the force stemming from the faults and are easy to compute and implement. The design of a failure detection threshold is discussed. When the residual value is above the threshold, a defect is detected. The desired probability of 

Model-based collision detection on a magnetically supported plate

The use of Jacobi and Laguerre diffs. for the detection of impulsive forces is first demonstrated on an experimental setup shown in Fig. 4.1. This setup has already been used in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz et al. (2013); [START_REF] Kiltz | Fault-tolerant control based on algebraic derivative estimation applied on a magnetically supported plate[END_REF][START_REF] Kiltz | Fault diagnosis on a magnetically supported plate[END_REF]; Kiltz and Rudolph (2013). It consists of a 4.7 kg rectangular aluminium plate with four iron profiles at its corners. The plate can be lifted by forces generated by four electromagnets mounted to the frame above the plate. Sensors measure the vertical displacement between the plate and the frame. The currents through the magnet coils are driven by current controllers. The controller for the position has been discussed in [START_REF] Kiltz | Fault-tolerant control based on algebraic derivative estimation applied on a magnetically supported plate[END_REF][START_REF] Kiltz | Fault diagnosis on a magnetically supported plate[END_REF].

In this section the following scenario is considered. While the plate is hovering at a constant vertical position equal to -4.5 mm, a 2.7 g table tennis ball is falling on it. The task is to first detect a collision and then to estimate the unknown collision time t c , i.e., the time instant when the ball hits the plate, using only the displacement measurement and the known currents. The difficulties here are the significant difference in the mass between the ball and the plate and the highly disturbed displacement measurement. In fact, an (audible) mechanical eigenmode of the plate corrupts the measurements. False alarms due to disturbances and unmodelled dynamics must be prevented. 

Collision detection and collision time estimation

The vertical motion of the plate may be described as in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013) by the differential equation

M ÿ + M Γ -F = -C + ν, (4.1a) 
with y : R → R the measured vertical displacement of the plate, F : R → R the vertical force generated by the magnets, C : R → R the contact force between the ball and the plate, and ν : R → R model uncertainties, that are assumed to be slowly varying. Moreover, M = 4.691 kg is the mass of the plate and Γ = 9.8091 m/s2 is the gravitational acceleration. The contact force derived in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] can be modelled as

C(t) = ξδ(t -t c ), ξ = m(1 + k) √ 2ΓH, (4.1b) 
where the weight 2 ξ of the Dirac impulse δ depends on the mass m = 2.7 g, the restitution coefficient k = 0.9314, and the falling height H of the ball. Due to the use of the Dirac impulse in the model, functions are identified with their induced distributions in the sense of Schwartz (see, e.g., [START_REF] Schwartz | Théorie Des Distributions[END_REF]) in the sequel. Let g be an orthogonal differentiator (orth. diff.). A signal r : R → R that indicates a collision has been derived in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013) 

as 3 r = M g (3) y -ġ F. (4.2) 
The latter equation can be recovered by differentiating (4.1a) with respect to time in order to eliminate slowly varying model uncertainties. The signal r, which in the sequel is called the residual, can be computed using solely the known signals of the displacement and the applied force. Using (4.1a) yields

r = -ξδ tc ġ + g ν, (4.3) 
where δ tc ġ corresponds to the function ġ delayed by the delay t c . Thus, a reliable detection of collisions can be achieved if the amplitude of ξδ tc ġ is much larger than that of g ν.

In the absence of a collision the residual corresponds to the zero-mean signal ġ ν. To detect collisions it is then sufficient to compare the residual to a constant threshold the value of which should be chosen large enough to prevent false alarms. Consequently, only a ball falling from a minimal height H min can be detected. Its value depends on the choice of the diff.

as will be discussed in the next subsection.

MODEL-BASED DETECTION OF IMPULSIVE FORCES

When a collision occurs, the impulse response of ġ scaled by ξ stimulates the residual, as given in (4.3). When the diff. is properly parametrised a ball falling from low heights can be detected as demonstrated in Fig. 4.2 for a height of 3 cm using Jacobi and Laguerre diffs.

When the residual crosses the threshold, a collision is detected. The crossing time instant denoted by t d is called detection time in the sequel and depends on the chosen diff. As first observed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF], the detection time depends highly on the falling height of the ball (see, e.g., Figs. 4.2,4.3 and 4.9). Therefore, the detection time generally does not allow an exact reconstruction of the collision time. On the other hand, the collision time, denoted by t c , can be estimated with good precision from the zero-crossing that follows the maximum excitation of the collision indicator. This is also illustrated in Figs. 4.2 and 4.3. From the figures it is clear that the measurement of the displacement alone is insufficient for a reliable estimation of the collision time as opposed to the derived residual.

Differentiator parametrisations allowing the detection of collisions for low falling heights and their implementations are now discussed. Jacobi and Laguerre diffs. are used, and the estimation quality, detection times, and the implementation burdens are compared.

Parametrisation of differentiators

If the detection threshold is chosen as ζ = ζ max σ ġ ν , with σ ġ ν the standard deviation of the signal ġ ν in the collision-free case, then the minimal falling weight required for the residual to cross the threshold is

ξ min ≈ ζ max σ ġ ν max τ | ġ(τ )| .
From (Kiltz, 2017, Ch. 4), this weight corresponds to the minimal detectable falling height of

H min ≈ 1 2Γ ζ max σ ġ ν m(1 + k) max τ | ġ(τ )| 2 .
The diffs. shall be parametrised to minimise the minimal detection height. In the following ζ max = 5, which corresponds to a false alarm probability less than 0.6 • 10 -4 % if the collisionfree residual is assumed to be drawn from a normal distribution. In Fig. 4.4 the cumulative distribution function (CDF) of a normal distribution is compared to that of the measurement data for residuals computed using the Jac. diff. parametrised in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] and the approach with two different Lag. diff. This shows that the choice of the threshold is reasonable to have a negligible false alarm probability.

In the absence of collisions the relation ν = M y (3) -Ḟ holds. Hence, an estimate of the discrete Fourier transform D{ ν}(k) =

Lm-1 n=0 ν(nt s )e -ι2πnk/Lm of ν is D{ ν}(k) = -ιω k ω 2 k D{y}(k) + D{F }(k) (4.4) 
with ω k = 2πk Lmts , t s = 0.1 ms the sampling period, and L the number of measurement samples (see, e.g., (Oppenheim & Schafer, 1989, Ch. 8)). Fig. 4.5 shows an estimate of the amplitude spectrum of ν, where a particularly dominant peak arising from the previously mentioned audible mechanical eigenmode at ω r = 946.1 rad/s can be seen. Thus, to be able to detect collisions from low heights a suppression of this disturbing component is necessary.

Jacobi differentiator

In (Kiltz, 2017, Ch. 4), it has been shown that for a Jac. diff. with α = β = 5, N = 0, and 9.1 ms can be achieved. It has also been shown that for this configuration, the resulting filter approximates a matched filter (see, e.g., [START_REF] Turin | An introduction to matched filters[END_REF] for an introduction to matched filters). Fig. 4.8 shows the amplitude spectrum of this diff. It can be seen that its second local minima, the second zero of the Bessel function (see Section 3.1.3 where the zeros of the amplitude spectrum are discussed), corresponds to the dominant resonant peak in the amplitude spectrum of the disturbance. Thus, the effects of mechanical vibrations are exactly annihilated. In the previous discussion on the estimation of the collision time, the zerocrossing of the residual after its maximum excitation has been identified as a mean for the estimation of t c . The impulse response crosses the zero line exactly at the centre of the window of the diff. given by T /2 = 13.7 ms. The reader is referred to (Kiltz, 2017, Ch. 4) for a detailed discussion on the parametrisation.

T = 27.

Laguerre differentiator

Since the amplitude spectrum of the Lag. diffs. does not exhibit zeros, an exact annihilation of the effects of the mechanical vibrations is impossible using only a diff. To this end, the residual r is further filtered by a second-order notch filter. The resulting signal is denoted by ř. Fig. 4.6 summarises the signal flow diagram of the approach in a more comprehensive representation and compares it with the previous approach based on the Jac. diff. The transfer function of the notch filter follows from (Tietze et al., 2008, Sec. 13.8) and is

h ř r (ιω) = -ω ωr 2 + 1 -ω ωr 2 + ι ω ωr 1 Q + 1
where the parameter Q is called the quality factor. The larger Q the steeper the gain falls off in the vicinity of the dominant resonant peak ω r of the mechanical vibrations and the more narrow the stopband is.

In the presence of a collision, the new residual ř is a linear combination of the impulse response of the cascade of the notch filter and the first-order derivative of the Lag. diff. and the influence of the disturbances. In the previous discussion on the estimation of the collision time t c , the zero-crossing of the residual after its maximum excitation has been identified as a mean for the estimation of t c . Fig. 4.7 shows the impulse responses of the cascade and the first-order derivative of the diff. for Q = 30 and two Lag. diffs. with N = 0, α = 5, and two different values for T . It can be seen that while the cascade has a different impulse response than the first-order derivative of the diff., the differences in the zero-crossing are negligible and are less than a sampling period. Thus, the zero-crossing of the first-order derivative of the Lag. diff., whose location at T α is precisely known, can be used to estimate the collision time.

Decreasing the parameter Q of the notch filter, which enlarges the stopband, and keeping the parameters of the Lag. diff. constant will affect the impulse response. The zero of ġ is no longer a good estimate for the collision time.

Fig. 4.8 shows the amplitude spectra of the cascade of filters with different parameters. It can be seen that the dominant resonance frequency is nicely annihilated. For both parametrisations of the Lag. diff. the amplitude is higher or equal to that of the Jac. diff. for high frequencies. For low frequencies, the amplitude of the first is lower than that of the second one. This has already been observed in Section 3. The faster detection observed in these two examples is confirmed by Fig. 4.9 where the detection time is illustrated as a function of the falling height computed using collision free measurements. The Lag. diff. with T = 2.8 ms has a minimum detectable falling height of 0.83 cm compared to the Jac. diff. with 0.94 cm. This corresponds to a decrease for H min of approximately 11.7 %. The detection time for the approach with the Lag. diff. is significantly lower than the one with the Jac. diff. Decreasing the parameter T of the Lag. diff. to 2 ms increases the minimal detectable falling height to H min = 2.3 cm. Thus, decreasing T by 40 % increases H min by 177 %.4

.

Implementation of detection algorithms

The discussions started in Section 3.4 comparing the computational burden and the storage requirements for the simple examples are now extended for this concrete case study. frequency prewarping (see, e.g., (Oppenheim & Schafer, 1975, Ch. 5) and (Franklin et al., 1998, Ch. 6)). The prewarp frequency is ω r . Then, the residual ř can be approximated as

řk = 2 n=1 p n,N řk-n + 2 n=0 q n,N r k-n with p 1,N = 4 cos 2 ωrts 2 Q -2 Q p 0,N , p 2,N = sin ωr ts 2 cos ωr ts 2 -Q p 0,N , p 0,N = -sin ω r t s 2 cos ω r t s 2 -Q, q 0,N = -Q p 0,N , q 1,N = 4 cos 2 ωr ts 2 Q -2 Q p 0,N , q 2,N = -Q p 0,N .
This implementation of the notch filter requires storing five filter coefficients, two past filter outputs, and two measurement samples of the residual r. In total nine arithmetic operations are required in each sampling step.

To conclude, computing the residual ř using the Lag. diff. and the notch filter requires 51 arithmetic operations in each sampling step. In total 21 filter coefficients, 14 past filter outputs, and 14 measurement samples (including the two samples of r) have to be stored.

Comparing this implementation with the non-recursive implementation of the approach using the Jac. diff., the number of arithmetic operations is reduced by 95.33 %. The method also decreases the number of filter coefficients to be stored by 96.17 %. When the approach is compared to the recursive implementation from [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF], the computational burden and the number of filter coefficients to be stored are reduced by 60.77 % and 75.58 %, respectively.

Concluding remarks

The previous analyses have confirmed the results in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013) showing that Jac. diff. can be used for the detection of collisions of a table tennis ball on a plate using only the displacement measurement of the plate and the applied magnetic forces. The unique properties of the Jac. diff. have enabled the annihilation of the disturbance stemming from the audible mechanical eigenmode of the plate. Then, the problem has also been solved using a Lag. diff. together with a notch filter. It has been shown that the approach 4. MODEL-BASED DETECTION OF IMPULSIVE FORCES yields a lower minimal detectable falling height with a lower detection time. Both approaches estimate the same collision time that cannot be estimated using only the disturbed vertical displacement measurement of the plate. This new approach also significantly reduces the computational burden and the storage requirements when the recursive implementation of the filters is used.

Model-based fault detection for rolling element bearings

Rolling element bearings are of paramount importance to almost all forms of rotating machinery. Their failures are among the foremost causes of breakdowns in machines and may be catastrophic and result in costly downtime. In [START_REF] Yung | Repair or replace?[END_REF] [START_REF] Smith | Rolling element bearing diagnostics using the case western reserve university data: A benchmark study[END_REF]. A characteristic frequency can be associated with every single point defect of the components of the bearing. Multiple single point defects can appear simultaneously, and the spectra of the vibrations differ from those observed in the presence of a single defect as analysed in [START_REF] Mcfadden | The vibration produced by multiple point defects in a rolling element bearing[END_REF]. The analysis and the detection of these failures are thus challenging. Finally, distributed point faults or generalised roughness faults are a deterioration of the bearing over a large bearing surface area. As discussed in [START_REF] Stack | Fault classification and fault signature production for rolling element bearings in electric machines[END_REF] and [START_REF] Nectoux | PRONOSTIA : An experimental platform for bearings accelerated degradation tests[END_REF], these faults do not excite any of the characteristic fault frequencies, and their early detection may be complicated.

Different bearing condition monitoring approaches have been discussed in the literature.

For several years signal processing methods [START_REF] Betta | A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis[END_REF];

C. [START_REF] Li | Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement[END_REF]; [START_REF] Nikolaou | Rolling element bearing fault diagnosis using wavelet packets[END_REF]; [START_REF] Smith | Rolling element bearing diagnostics using the case western reserve university data: A benchmark study[END_REF]) have been used. Machine learning methods, such as artificial neural networks and support vector machine methods, recently attracted much attention. In [START_REF] Daga | The Politecnico di torino rolling bearing test rig: Description and analysis of open access data[END_REF] Principal Component Analysis and Linear Discriminant Analysis are used.

An extensive review of data-driven methods can be found in [START_REF] Cerrada | A review on data-driven fault severity assessment in rolling bearings[END_REF]. A modelbased approach for fault detection using linear observers is proposed in [START_REF] Qian | Observer-based fault detection and estimation of rolling element bearing systems[END_REF].

In this work, a novel model-based approach for detecting failures based on efficient and robust numerical differentiation is introduced. A simplified model for the vibrations is proposed. The parameters may be estimated from fault-free acceleration measurements using Jac. diffs. derived in [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] and analysed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]. A detailed analysis of the estimation errors is carried out in [START_REF] Othmane | Analysis of the parameter estimate error when algebraic differentiators are used in the presence of disturbances[END_REF]. This model is then used to design signals, called residuals, sensitive only to faults. They are easy to compute, interpret and implement. The time evolution of the residuals is proportional to the force stemming from the faults. An approach for a systematic derivation of a failure detection threshold is proposed using the properties of Jac. diffs. This threshold can be designed to 

Modelling

In this section, a physically motivated model for the acceleration of the bearings is sought.

The contact between the bearing pedestal and the other components is modelled as a lumped spring-mass system, where only the vibration of the outer race is considered, as shown in Fig. 4.10. For simplicity, the vibrations in only one direction are considered here. However, the extension of the approach is straightforward. As the rolling elements pass through a defect position, an impulse force f : R → R will be generated. Thus, the vibration produced by a local fault can be modelled as the response of the bearing system to impulses that occur at different time instants (McFadden andSmith (1984, 1985)). The fault force f is modelled as a sum of weighted Dirac impulses

f (t) = i∈N γ i δ(t -t fi ), (4.5a) 
that affect the bearing housing at times t fi 0, i ∈ N. In the latter equation δ : R → R is the Dirac impulse and γ i ∈ R, with i ∈ N, describe the impulse strengths. In the sequel, the explicit dependence of functions on time is omitted when no misinterpretation is possible.

Model-based fault detection for rolling element bearings

In the fault-free case 3 i=0 p i y (i) = -y (4) (4.7)

holds and the Jac. diffs. can be used for the estimation of the parameters. These Jac. diffs. can be seen here as a special choice of modulation functions first introduced by Shinbrot in [START_REF] Shinbrot | On the analysis of linear and nonlinear systems[END_REF]. Let g be a Jac. diff. with the parameters α, β, T g , ϑ and N . Convolving both sides of (4.7) with g yields 3 i=0 p i g y (i) = -g y (4) . Assuming α, β > 3, the differentiation can be transferred from y to g to get 4) , with ŷ(i) = g (i) y. Using N m + 1 discrete measurements ỹ(t k ), k ∈ {0, . . . , N m } of the acceleration y, the four unknown parameters can be estimated by solving the least squares optimisation problem

3 i=0 p i ŷ(i) = -ŷ ( 
J (α,β) N,Tg,ϑ = min p0,...,p3∈R Nm k=0 3 i=0 p i ŷ(i) (t k ) + ŷ(4) (t k ) 2 .
For the parametrisation of the Jac. diffs. the results of the frequency-domain analysis and the tuning guidelines developed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013); [START_REF] Mboup | Frequency-domain analysis and tuning of the algebraic differentiators[END_REF]; Othmane, Rudolph, and Mounier (2021a) can be used. In particular, the choice N = 0 and α = β depicts the best robustness with respect to disturbances. From Kiltz and Rudolph (2013) the filter window length can be computed from a desired cutoff frequency.

The parameters α and β have to be chosen such that the frequency-domain properties of the Jac. diff. are preserved after the discretisation. For small time window lengths T g , or similarly high cuttoff frequencies ω c , the parameters α and β have to be chosen high enough, such that these properties are preserved after the discretisation.

Fault detection

Residual generation

The model (4.6) containing only the acceleration and the faults, can now be used to derive a residual signal by replacing the parameters with their identified values. The residual is zero in the absence of faults and strictly greater than zero otherwise. It is first assumed that the model (4.6) perfectly describes the system. This assumption is dropped in the next subsection.

Denote by pi , i = 0, . . . , 3, the identified parameters from the last section and consider the signal

r = ŷ(4) + 3 i=0 pi ŷi . (4.8a)
In the absence of faults, r contains only measurement noise and errors stemming from the parameter estimation. These errors are analysed in detail in [START_REF] Othmane | Analysis of the parameter estimate error when algebraic differentiators are used in the presence of disturbances[END_REF]. In the presence of a fault f , the function r satisfies r ≈ q 4 g f (4) + q 2 g f = q 4 g (4) f + q 2 g f.

Defining ϕ = q 4 g (4) + q 2 g and using the general definition of the fault in (4.5a), which corresponds to the force generated by rolling elements striking a defect, yields The signal r is now used to derive a residual that is proportional to the impulses strengths. Let P ⊂ R be the domain of definition of the angle of the rotating shaft with respect to a reference and I ⊂ R be the time domain of interest. Let φ : I → P map every time instant to an angle. Assume φ is locally bijective and denote by φ -1 its inverse. From r, a residual can be designed as

r(t) = ∞ -∞ ϕ(τ )f (t -τ )dτ = i∈N γ i ϕ(t -t fi ).
r(t) = 1 T κ(t) φ(t) φ(t)-φ1 r φ -1 (ϕ) dϕ, (4.8b) 
with φ 1 ∈ P and

κ(t) = φ(t) φ(t)-φ1
g (4) (φ -1 (ϕ)) + p1 p3 g(φ -1 (ϕ)) dτ.

The residual (4.8b) can then be computed using (4.8a). For a better understanding of the residual (4.8) , the special case of a shaft rotating with a constant velocity is considered. The residual then simplifies to

r(t) = 1 T κ t t- T |r(τ )| dτ, R T > T g . (4.9)
For the interpretation of this residual, assume f consists only of one impulse, i.e., f (t) = γ 0 δ(tt f0 ), where t f0 > T . Then, the residual r from (4.8) reads

r(t) = q4 T κ t t-T γ 0 g (4) (τ -t f0 ) + q2 q4 g(τ -t f0 ) dτ ∝    |γ 0 | , for t f0 ∈ [t -T , t -T g ],
0, otherwise, i.e., r(t) is proportional to the intensity |γ 0 | of the impulse occurring at t f0 for t f0 ∈ [t -T , t] and zero otherwise. This can be generalised when the fault is a sequence of impulses as 4.2. Model-based fault detection for rolling element bearings initially defined in (4.5a). Assuming that the instants at which the impulses occur satisfy t fi+1t fi > T g , for i ∈ N, the residual is proportional to the moving average of the intensities of the impulse strengths in [t -T , t -T g ].

Decision making

Threshold for fault detection Due to model uncertainties and measurement noise, the residual r in (4.8b) is not identically zero in the fault-free case. Thus, a strategy is required to detect faults reliably. Assume the residual r is a random variable drawn from a Gaussian distribution with mean value µ r and standard deviation σ r . Fig. 4.12 is an example illustrating this approximation using experimental data (the theoretical background is discussed in the following subsection). A κ r -fold of the standard deviation σ r can be interpreted as a threshold value which is not exceeded by the residual with a certain probability (e.g. for κ r = 3 or κ r = 4 the probability is 99.73% or 99.99%, respectively, that the residual does not exceed the threshold value κ r σ r ). Thus, a Gaussian distribution can be fitted to the fault-free data, and by varying κ r , the threshold can be computed to obtain a desired probability of false alarms.

Theoretical background Assume the acceleration y = ẍ = 0, i.e., the measurement ỹ = η consists only of the additive disturbance η, which is now assumed to be a random variable.

It has already been observed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] that the output of an algebraic Jac. diff. applied to a stationary random variable can be well approximated by a random variable drawn from a Gaussian distribution. Fig. 4.11 confirms this observation with a simulation example.

Consider now the residual r in (4.9) which corresponds to the moving average of r after its discretisation. Assume that r(t i ), i ∈ {0, 1, . . .}, are independent identically distributed random variables drawn from a normal distribution. As depicted in Fig. 4.12, the probability density of r can be well approximated by a Gaussian distribution for growing T .

From these two observations, it can be concluded that even when the measurement noise is not drawn from a Gaussian distribution, the residual can be approximated by one.

Experimental validation

The residual is parametrised such that the integration in (4.8) is performed over three revolutions. The threshold for the detection of faults introduced in the last section is parametrised for all experiments such that the probability of a false alarm is 0.01%, i.e., κ r = 4. In the following, the residual is normalised to become unitless.

Case Western Reserve University data set

Test rig description The approach is first validated using the data set from the Case Western Reserve University available at CWRU (2015) and introduced in Smith and Randall [START_REF] Smith | Rolling element bearing diagnostics using the case western reserve university data: A benchmark study[END_REF].

to 1797 rpm are available. For illustration purposes, only the bearing of type 6205-2RSL JEM SKF is considered.

Experimental validation For the parameter estimation approach introduced in Section 4.2.2 the measurements for 0.25 s at the speeds 1730 rpm and 1797 rpm are used to identify one single set of parameters. This corresponds to only 6000 data points. the probability density of the residual in the fault-free case. Figure 4.15 depicts the time evolution of the residual for the fault-free case compared to the three different fault scenarios with the narrowest (0.18 mm) possible fault diameter: inner race, outer race, and roller element defect. The threshold for the detection of a fault is also given. All residuals are above the computed threshold. These results clearly show that a defect can be recognised and confirms the approach developed in this work. All, except 198 and 119, remaining faults in the experiments not considered here were correctly detected, even the defects at the rolling elements, which are certainly the most difficult to diagnose. These two datasets, namely 198 and 119, were not diagnosable with any of the methods applied in the initial work [START_REF] Smith | Rolling element bearing diagnostics using the case western reserve university data: A benchmark study[END_REF].

The Politecnico di Torino data set

Test rig description In [START_REF] Daga | The Politechnico di Torino rolling bearing test rig[END_REF], the DIRG Lab in the Department of Mechanical and Aerospace Engineering at the Politecnico Di Torino provides measurements of a test bench described in detail in [START_REF] Daga | The Politecnico di torino rolling bearing test rig: Description and analysis of open access data[END_REF]. The test rig consists of a driven shaft supported by three bearings B1, B2, and B3. The bearings B1 and B3 are identical. The outer ring of the bearing B2 is linked to a precision sled moving in orthogonal direction with respect to the shaft. It produces a radial force acting on the shaft. The acceleration in all three spatial directions is measured. For more details the reader is referred to [START_REF] Daga | The Politecnico di torino rolling bearing test rig: Description and analysis of open access data[END_REF]. The monitoring of bearing B1 is of interest, and in this work, only the acceleration of the tested bearing is used. The experiments at different speeds and loads are considered. Different types of localised defects have been manually incorporated using a Rockwell tool into the bearing B1. The acceleration is measured at a sampling frequency f s = 51.2 kHz.

Experimental validation

Since measurements of the acceleration in the three spatial directions are available, a model of the form (4.5) is assumed for each vibration axis, and three residuals r i , i ∈ {1, 2, 3}, can be computed, one for each axis. These residuals can be combined to a single one r = 3 i=1 r i . The threshold for the detection of a fault can be computed accordingly. Figure 4.17 depicts the results for different speed and load configurations. The top plot depicts the CDF of the residual in the fault-free case and a fitted Gaussian. The lower plot shows the residual time evolution and shows that the considered defects are correctly detected. However, the approach is not able to correctly detect all defects. For instance, the defects (not depicted in the plot) of diameter 150 µm in the inner ring and on the roller could not be detected. The experimental setup can explain this: The bearings have been removed from the test bench and inserted back to incorporate the defects. Thus, the identified model does not correspond anymore to the monitored one. However, this problem is not a drawback of the approach since the bearing is not disassembled in industrial applications.

The PRONOSTIA data set

Test rig description

The PRONOSTIA is an experimental platform described in [START_REF] Nectoux | PRONOSTIA : An experimental platform for bearings accelerated degradation tests[END_REF] and designed to provide experimental data characterising the degradation of bearings along their duration of operation. A synchronous motor drives a shaft supported by the bearing to be analysed through a gearbox and different couplings. A radial force is applied to the external ring of the test bearing. This force, the rotation speed of the shaft, and the acceleration of the bearing are measured. Two accelerometers are mounted on the bearing's external race, and the acceleration in the orthogonal directions is measured. For illustration purposes, only the data set Bearing1_1 is considered. It represents a run to failure experiment where the rotation speed of the shaft and the radial load are 1800 rpm and 4000 N, respectively. For simplicity, only the vertical acceleration is considered for assessing the bearing health.

Experimental validation

The parameters are identified and the threshold is computed using the methods discussed in the previous sections. In the top of Figure 4.19, the CDF of the residual in the fault-free case and a fitted Gaussian are depicted. This confirms the assumption that the residual can be modelled as a normally distributed random variable in the fault-free case. The figure also depicts the time evolution of the residual for the complete experiment and the standard deviation of the measured acceleration computed for each recording phase. The residual depicts an important jump happening approximately at the 50th minute of the test, followed by an increase in the residual value and a crossing of the threshold. After the jump the residual is increasing exponentially and an exponential model t → c 0 e c1t , with c 0 = 924.57 and c 1 = 0.005/min, can be fitted to the data. This trend that can be seen at an early in the residual is not observed in the acceleration's standard deviation. This example exhibits again the effectiveness of the proposed approach. On the problem of parameter estimation

Inferring mathematical models from measurements is undoubtedly crucial for most modern control methods. However, the numerical values of the parameters of the models are often not or only poorly known in advance and have to be estimated from measurements. The literature on parameter identification is extensive. For general textbooks on the subject from the control area the reader is referred to [START_REF] Aström | System identification-a survey[END_REF]; Garnier and Wang (2008);Isermann (2013a[START_REF] Isermann | Identifikation dynamischer Systeme 2: Besondere Methoden, Anwendungen[END_REF]; [START_REF] Ljung | System identification: Theory for the user[END_REF]; [START_REF] Unbehauen | Identification of continuous systems[END_REF], for instance. Despite the long standing history of the topic, some theoretical questions remain open and new approaches are still developed. Two methods will be discussed and used in this chapter.

An identification approach based on differential-algebraic manipulations in the operational domain has been proposed in Fliess and Sira-Ramírez (2003a). The approach has attracted considerable attention and has been extensively studied and extended in Fliess and Sira-Ramírez (2008); [START_REF] Gehring | Algebraische Methoden zur Parameteridentifikation für lineare unendlichdimensionale Systeme[END_REF]; Gehring, Rudolph, andStauch (2012a, 2012b); [START_REF] Gehring | Parameter identification, fault detection and localization for an electrical transmission line[END_REF]; [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]; [START_REF] Stauch | Algebraic parameter identification for infinite dimensional fluid transmission line models[END_REF]; Ushirobira et al. (2016); Ushirobira, Perruquetti, Mboup, andFliess (2012, 2013) to name only a few examples. Most of these methods are closely related to the Jacobi differentiator (Jac. diff.) as discussed in [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]. A detailed list of applications in various engineering fields can be found in [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF].

Standard gradient estimators (see, e.g., (Slotine & Li, 1991, Sec. 8.7.3) and (Sastry & Bodson, 1989, Sec. 2.5)) for models in the form of linear regression equations (LRE) require the regressor to be persistently excited to ensure the convergence of the estimates. This condition is hardly verified in practice. Recently, the Dynamic Regressor Extension and Mixing (DREM) approach has been proposed in [START_REF] Aranovskiy | Parameters estimation via dynamic regressor extension and mixing[END_REF][START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]. This parameter estimation method is applicable for models in the form of LRE and consists of two steps. First, new equations are generated using a dynamic operator applied to the available data. Then, these new linearly independent equations are "mixed" to obtain a new regression model on which standard parameter estimation techniques can be applied. The convergence of the approach is ensured without the persistency of excitation condition on the regressor. The approach has attracted a lot of attention (see, e.g., [START_REF] Belov | Parameter identification of linear discretetime systems with guaranteed transient performance[END_REF]; [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF][START_REF] Ortega | Adaptive control of linear multivariable systems using dynamic regressor extension and mixing estimators: Removing the high-frequency gain assumptions[END_REF][START_REF] Ortega | On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes[END_REF][START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF]; [START_REF] Yi | Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters[END_REF]) and has shown to be useful in numerous applications (see, e.g., Aranovskiy et al. (2016a); [START_REF] Bazylev | A new approach for flux and rotor resistance estimation of induction motors[END_REF]; A. [START_REF] Bobtsov | A robust nonlinear position observer for synchronous motors with relaxed excitation conditions[END_REF]; A. A. [START_REF] Bobtsov | A state observer for sensorless control of magnetic levitation systems[END_REF]; [START_REF] Yi | An adaptive observer for sensorless control of the levitated ball using signal injection[END_REF]).

In this chapter, the DREM approach is revisited, and two modifications are proposed.

The original approach from [START_REF] Aranovskiy | Parameters estimation via dynamic regressor extension and mixing[END_REF][START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF] is called standard DREM in the 116 5.1. Background material on Dynamic Regressor Extension and Mixing sequel. The first modification yields less restrictive convergence conditions. In the second modification, a QR decomposition with column pivoting is used to ensure that any excited parameter is adapted even if a subset of the parameters is not. Simple examples are provided to illustrate the modifications and their advantages. A specific example is provided where neither the standard DREM approach nor the modified version yield convergence of the estimation error to zero. Contrarily, an approach motivated by the ideas in [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF] yields estimates in finite time.

The modified DREM approach is then validated using two different experimental case studies. Therein it is shown that the orthogonal differentiators (orth. diffs.) discussed in Chapters 2 and 3 can be used as operators to generate new linearly independent equations.

In the first example, the frequencies of a linear combination of harmonic functions are estimated from a disturbed laboratory measurement. The sampling frequency of the system is 100 Hz, and the highest frequency of interest in the measurement is 80 Hz. The tuning of the differentiators (diffs.) is discussed in detail since it is a challenging problem for this case. The estimation results of this approach are compared to those achieved with a method proposed in [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF] and implemented using finite-impulse response (FIR) filters. In the second case study, the parameters of a linear time-invariant (LTI) electro-mechanical system are identified from disturbed laboratory measurements. Comparing simulation results with a validation trajectory confirms the excellent results that can be achieved using this approach.

The chapter ends with concluding remarks on the proposed approach and a brief discussion on the simultaneous state and parameter estimation problem. e.g., [START_REF] Åström | Adaptive control[END_REF]; [START_REF] Ljung | System identification: Theory for the user[END_REF]; [START_REF] Sastry | Adaptive control: Stability, convergence, and robustness[END_REF]). The online estimation of θ using the known signals y and φ is analysed in the following.

Chapter content

For x ∈ R n , x = x T x. The set of nonnegative real numbers is denoted by R 0 . The set L p is defined as 

L p = f : R 0 → R n ∞ 0 f (τ ) p dτ < ∞ , for p ∈ (0, ∞).

Gradient-descent estimator and persistent excitation

The parameter vector θ can be identified using a gradient-descent estimator (see, e.g., (Slotine & Li, 1991, Sec. 8.7.3) and (Sastry & Bodson, 1989, Sec. 2.5)) of the form

θ(t) = Γφ(t) y(t) -φ T (t) θ(t) (5.2)
with Γ ∈ R n×n a positive definite adaptation gain. The parameter estimate error e θ = θ -θ satisfies the linear differential equation

ėθ (t) = -Γφ(t)φ T (t)e θ (t), (5.3) 
whose convergence properties are briefly summarised in the following. The analysis requires the definition of a persistently exciting signal.

Definition 5.9: Persistence of excitation (Sastry and Bodson (1989))

A vector φ : R + → R n is persistently excited (PE) (denoted by φ ∈PE), if there exist

α 1 , α 2 , δ > 0 such that α 2 I n t+δ t φ(τ )φ T (τ )dτ α 1 I n , for all t ∈ R 0 .
As discussed, for instance, in (Slotine & Li, 1991, Sec. 8.7.3) 

Dynamic Regressor Extension and Mixing

The main idea behind the DREM approach is the generation of n new linearly independent onedimensional LRE and a nonlinear manipulation of the data to independently estimate each 118 5.1. Background material on Dynamic Regressor Extension and Mixing parameter. The first step is achieved using a linear, single-input n-output, bounded-input bounded-output (BIBO)-stable operator H (see, e.g., (Khalil, 2002, Ch. 5) for more details on input-output stability).

Using the linearity of this operator and applying it to (5.1) yields

Y (t) = Φ(t)θ, (5.5) 
with

Y (t) = H[y](t) ∈ R n and Φ(t) = H[φ T ](t) ∈ R n×n .
Different operators of this kind have been discussed in the DREM literature and are briefly reviewed and commented.

Remark 5.1: Bibliographical comments

Extending the system (5.1) to obtain a square linear system of form (5.5) or more generally a non square overdetermined one is not a novelty of the DREM methodology. Initial ideas can be traced back to early parameter estimation works based on modulating functions in [START_REF] Jouffroy | Finite-time simultaneous parameter and state estimation using modulating functions[END_REF]; [START_REF] Loeb | More about process identification[END_REF]; [START_REF] Pearson | On the identification of polynomial input-output differential systems[END_REF]; Preisig andRippin (1993a, 1993b); [START_REF] Shinbrot | On the analysis of linear and nonlinear dynamical systems from transientresponse data[END_REF][START_REF] Shinbrot | On the analysis of linear and nonlinear systems[END_REF] A notable difference between the DREM approach and the previously cited works is the estimation of the parameters. For the latter, a well conditioned square or overdetermined linear system of the form (5.5) is sought and solved for the parameter vector θ. In contrast, for the DREM approach a dynamic system is formulated such that the estimation error converges (in finite or infinite time) to zero under some conditions on the matrix Φ. The idea is close to the developments in [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF]; [START_REF] Lion | Rapid identification of linear and nonlinear systems[END_REF] for adaptive state and parameter estimation, where new linearly independent regression equations have been obtained using LTI filters and the application of a gradient-descent estimator. These approaches have also been discussed in [START_REF] Jenkins | Matrix regressor adaptive observers for battery management systems[END_REF] and (Narendra & Annaswamy, 2012, Sec. 6.5), for instance. As for the simple estimator in (5.3) the latter works require the regressor to be PE. The only difference is that the convergence rate can be made arbitrarily fast by increasing the adaptation gain and carefully choosing the operators for the generation of the new equations. However, this remains questionable since it may yield numerical instabilities and a scheme that is less 5.2. Two modifications of the DREM approach are monotonically non-increasing, a property that is strictly stronger than the monotonicity of their norm as in the standard gradient-descent estimator in (5.4). Second, the parameter convergence is established without the restrictive PE assumption. A less restrictive condition, the non-square integrability assumption, is required. Third, the convergence rates of DREM can be adapted for each single parameter by adapting γ i .

Remark 5.2: Use of orth. diffs. in DREM It can be recognised that the orth. diffs. derived in Chapter 2 can be used as operators to get a system of the form (5.5) and the gradient-descent estimator in (5.7) can then be used to estimate the parameters. The detailed discussions concerning tuning guidelines and implementation issues in Chapter 3 can be used to efficiently parametrise the operators.

This will be discussed in detail on the basis of experimental examples in the next section.

Beforehand, an extension of this approach is proposed for general BIBO operators and generalises the method discussed in [START_REF] Othmane | Analysis of the parameter estimate error when algebraic differentiators are used in the presence of disturbances[END_REF].

Two modifications of the DREM approach

In this section, a generalisation of the gradient estimator recalled in Section 5.1.2 in form of a linear time-varying observer is proposed. Consider the linear time-varying system

ż(t) = 0, Y (t) = Φ(t)z(t) (5.9) 
with the state z(t) ∈ R n modelling the sought parameters θ, the bounded output Y (t) ∈ R n satisfying (5.5), and the initial condition z(t 0 ) = θ.

The parameter vector z shall be estimated using an observer

ż(t) = L(t) (Y (t) -Φ(t)ẑ(t)) , (5.10) 
with state ẑ(t), initial condition ẑ(t 0 ) = ẑ0 ∈ R n , and a time-varying gain L : t → L(t). The gain shall be computed such that the estimation error e = zẑ satisfying the differential equation 5.11) converges to zero.

ė(t) = -L(t) (Y (t) -Φ(t)ẑ(t)) = -L(t)Φ(t) (z(t) -ẑ(t)) = -L(t)Φ(t)e(t) ( 
Two approaches for the computation of L are discussed. First, it will be shown that the convergence condition ∆ ∈ L 2 for the estimator (5.7) can be generalised to ∆ ∈ L p for an arbitrary p ∈ (0, ∞). However, similarly to the initially discussed approach, this extension suffers from the following problem: A poor excitation of some parameters in the system during a time interval I h (t) = [th, t], h > 0, yields a rank deficient matrix Φ(t), i.e., det{Φ(τ )} ≈ 0, τ ∈ I h (t). Hence, parameters will not be adapted during this interval. An approach partially overcoming this problem is then proposed. The key idea is to decompose the parameter vector into excited parameters and non-excited ones, at every time instant t. Then, the excited parameters can always be adapted. This can be achieved using a QR factorisation with column pivoting. The resulting approach is called generalised DREM (gDREM) in the sequel.

5.2. Two modifications of the DREM approach converges to zero for t → ∞. For the application of the previously discussed approaches a system of the form (5.5) is required, which can be achieved by defining

Φ(t) = φ(t) φ(t) ,
i.e., the system is augmented by the derivative of the regressor a . This is a reasonable choice since the orth. diffs. discussed in Chapters 2 and 3 can be used to approximate these signals. The determinant det{Φ(t)} of Φ(t) satisfies det{Φ(t)} = sinc(t) for all t, where sinc is the sinc function summarised in #A.19. The function sinc satisfies sinc ∈ L 2 and sinc ∈ L 1 . Thus, the estimation error of the standard DREM approach would fail to converge to zero b . Conversely, the modified approach with p = 1 ensures a convergence to zero.

a Observe that the augmentation of general LRE by derivatives of the regressors yields conditions on the Wronskian of the regressor for the error to converge to zero.

b By increasing the adaptation gain Γ the estimation error of the standard DREM approach can be made arbitrarily small. However, this can yield numerical instabilities as for the approach in [START_REF] Jenkins | Matrix regressor adaptive observers for battery management systems[END_REF] using the methods from [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF]; [START_REF] Lion | Rapid identification of linear and nonlinear systems[END_REF].

Moreover, a bounded function f satisfies

f 2 (t) |f (t)| sup τ ∈R 0 |f (τ )| for all t 0. Thus, every function f ∈ L 1 is also in L 2 . Hence, if the determinant of Φ is ∆ ∈ L 1
neither of the approaches converge. This is again illustrated using an example.

Example 5.10 Counter example for first DREM modification

Consider the estimation of the parameters d, ω ∈ R >0 of the signal y(t) = e -dt sin ωt. As discussed in [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF] the signal satisfies the differential equation

ÿ + 2θ 1 ẏ + θ 2 y = 0, θ 1 = d, θ 2 = ω 2 + d 2 .
According to (Mboup, 2009, Sec. 3) the parameters θ 1 and θ 2 are linearly identifiable a .

On the other hand, d and ω, which are algebraic functions of θ 1 and θ 2 , are weakly linearly identifiable. By defining the regressor φ(t) = [2 ẏ, y]

T an LRE of the form (5.1) is obtained b . Systems of the form (5.5) can be obtained using a delay or a differentiation operator. Denote by Φ 1 and Φ 2 the matrices of systems of the form (5.5) obtained using the derivative of φ and a delayed version of φ with a delay h > 0, respectively. Their respective determinants ∆ 1 and ∆ 2 satisfy

lim t→∞ t 0 ∆ 2 1 (τ )dτ = ω 4 d lim t→∞ t 0 |∆ 1 (τ )|dτ = ω 2 d , lim t→∞ t 0 ∆ 2 2 (τ )dτ = ω 2 sin 2 (hω)e 2dh d , lim t→∞ t 0 |∆ 2 (τ )|dτ = ω| sin(hω)|e dh d .
Thus, none of these approaches yields a convergence of the estimation error to zero.

Contrarily, the algebraic approach from [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF] yields very good estimates.

a The reader is referred to [START_REF] Fliess | Questioning some paradigms of signal processing via concrete examples[END_REF]; Fliess and Sira-Ramírez (2003a) for an in depth discussion of the identifiability concepts used in this example.

Two modifications of the DREM approach

The estimation error e(t) = z(t)ẑ(t) satisfies the differential equation (5.11) which for L computed as in (5.15) becomes

ė(t) = r 1 (t)L(t)Φ(t)e(t) = -r 1 (t)Γ    Π(t)G(t)Q T (t)Q(t)R(t)Π T (t), for κ(t) > 0 ∧ R 2 (t) = 0 κ(t)×κ(t) ∨ κ(t) = n, 0, otherwise, = -r 1 (t)Γ    Π(t)G(t)R(t)Π T (t), for κ(t) > 0 ∧ R 2 (t) = 0 κ(t)×κ(t) ∨ κ(t) = n, 0, otherwise, = -r 1 (t)Γ    Π(t)J(t)Π T (t), for κ(t) > 0 ∧ R 2 (t) = 0 κ(t)×κ(t) ∨ κ(t) = n, 0, otherwise, with 
J(t) = I κ(t)×κ(t) 0 κ(t)×κ(t) 0 κ(t)×κ(t) 0 κ(t)×κ(t) .
Since Π(t) is a permutation matrix, Π(t)J(t)Π T (t) is a diagonal matrix with elements equal to zero or one for all t. Thus, the errors e i , i ∈ {1, . . . , n}, satisfy decoupled differential equations 

ėi (t) = -γ i r 1 (t)f i (t)e i (t) with f i (t) ∈ {0, 1}. Recall that for det{Φ(t)} = 0 the rank of Φ(t) is n and R 1 = R(t). Furthermore, if r 1 (t) = 0 then det{Φ(t)} = 0.
f i (τ )r 1 (τ ) (z i (t 0 ) -ẑi (t 0 )) = 0,
which concludes the proof. The exponential convergence claim follows from the definition of PE.

Computing the observer gain L at each time instant as in (5.15) corresponds to an extension of the result in Proposition 5.1. This can be seen by observing that when Φ(t) is regular, both gains are equal. They differ only for rank deficient Φ(t) with R 2 (t) = 0 κ(t)×κ(t) .

While finding conditions on Φ(t) such that R 2 (t) = 0 κ(t)×κ(t) remains an open problem, the considered examples in the following show that this approach presents numerous advantages.

The following example shows that the condition (5.16) is only a necessary condition for the convergence to zero of all estimation errors.

Example 5.11 Second DREM modification

Consider the regressor

φ(t) = 1 t+1 r(t) , r(t) =    1, for t 1 2 , 0, otherwise. 125 

ON THE PROBLEM OF PARAMETER ESTIMATION

The matrix Φ can be generated using a delay h ∈ (0, 1), for instance, to get

Φ(t) = 1 t+1 r(t) 1 t+1-h r(t -h) .
It is straightforward to see that det{Φ(t)} vanishes in finite time. Thus, the standard DREM estimation approach would fail to converge to zero. However, the QR decomposition as discussed above yields the following error dynamics for the two parameters

ė1 (t) =          -γ 1 1 (t+1-h) p e 1 (t), for t ∈ [0, h] , -γ 1 1 (t+1)(t+1-h) p e 1 (t), for t ∈ h, 1 2 + h , -γ1 t+1 e 1 (t), otherwise , 
ė2 (t) =          -γ 2 1 t+1-h p e 2 (t), for t ∈ [0, h] , -γ 2 1 (t+1)(t+1-h) p e 2 (t), for t ∈ h, 1 2 + h , 0, otherwise.
Thus, the error e 1 converges to zero while the error e 2 remains constant for t > 1.

The standard DREM approach recalled in Section 5.1.2 requires the adjugate matrix of Φ(t), which is the transpose of the matrix of the co-factors of Φ(t). The computation of the adjugate from this definition requires the calculation of n 2 determinants of order n -1. This algorithm has a complexity of O(n 4 ). A more efficient and numerically stable algorithm is the computation of the adjugate using a QR decomposition as discussed in [START_REF] Stewart | On the adjugate matrix[END_REF]. Thus, the slight modification of the gain in Proposition 5.2 for the parameter estimation does not noticeably increase the complexity of the required computations. Hence, when the parameter p in (5.12b) is chosen equal to 2, this modification of the DREM approach does not yield any disadvantages compared to the initial formulation in Section 5.1.2.

Remark 5.1: Nonlinearly parametrised regressions

In [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF] the use of the DREM technique for nonlinearly parametrised regressions with factorisable nonlinearities has been discussed. The approach can also be extended using the observer proposed here.

Validation of the approaches

In the following, the gDREM approach is validated using three case studies. First, a simulation is provided where only the excited parameters are updated. The non excited ones are kept constant. Then, two experimental cases studies where gDREM based on Jac. diffs. are discussed. In the sequel, all dynamic systems are discretised using the Euler backward method. 

Simulation study

Consider the system

y(t) = φ T (t) θ 1 θ 2 , φ(t) = 1 t+1 r(t) T , r(t) =    0, for t 1.75, 1, otherwise.
(5.17)

The regressor φ is not PE since lim t→∞ 1 t+1 = 0. To apply DREM or gDREM one more equation has to be generated. This is done here using a delay operator with a delay h = 1/2. It can be verified that the convergence conditions for the gradient estimator and the standard DREM are not fulfilled. However, the convergence conditions for gDREM with p = 1 are satisfied. In the simulation θ 1 = θ 2 = 1.

The time evolution of the estimates for two different values of Γ is shown in the Fig. 5.1 and Fig. 5.2. It is clear that the gDREM estimates converge to the true values while the remaining two approaches do not. Here it is important to note that the estimate of θ 1 for gDREM starts to converge to its true value from t = 0 on. The estimate of θ 2 starts to converge beginning from t = 1.75. This once again confirms the importance of the approach using the QR decomposition to detect the excited parameters. 

Experimental case study 1

The DREM approach is first validated using a frequency estimation problem. To this end, assume a signal From a signal processing perspective the Fast Fourier Transform (see, e.g., (Oppenheim & Schafer, 1975, Ch. 6)) can be used for the extraction of the frequencies from logged measurements. However, this can be computationally intensive for an online estimation. Numerous other approaches better suited for online applications have been developed. Algebraic parameter estimation approaches4 based on differential-algebraic manipulations in the operational domain inspired by the fundamental ideas in Fliess and Sira-Ramírez (2003a) have been applied in [START_REF] Liu | An error analysis in the algebraic estimation of a noisy sinusoidal signal[END_REF][START_REF] Trapero | An algebraic frequency estimator for a biased and noisy sinusoidal signal[END_REF]; [START_REF] Ushirobira | Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data[END_REF] for the estimation of a single frequency and in [START_REF] Trapero | On the algebraic identification of the frequencies, amplitudes and phases of two sinusoidal signals from their noisy sum[END_REF]; Ushirobira et al. (2016[START_REF] Ushirobira | Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data[END_REF] for the estimation of two frequencies simultaneously with the signal amplitudes and phases. A different approach for the estimation of multiple frequencies relies on adaptive observers that show global or semi-global stability properties. These approaches have been discussed in Chen, Pin, and Parisini (2014); Hou (2012); [START_REF] Marino | Global estimation of n unknown frequencies[END_REF]; [START_REF] Xia | Global frequency estimation using adaptive identifiers[END_REF], for instance. A convergence of the estimates in finite-time can also be achieved using integral operators as proved by [START_REF] Chen | Estimation of multi-sinusoidal signals: A References deadbeat methodology[END_REF]. Therein, the measurement is convolved with a kernel and its derivatives to overcome the problem of unknown derivatives. In this sense, the approach is closely related to the algebraic identification method. In Fedele and Coluccio (2010) modulating functions initially introduced5 in Shinbrot (1954,1957) have been used for the recursive estimation of the frequencies. Due to the importance of modulating functions, their definition is recalled in the following. (2007). When an overdetermined system is used, numerical issues stemming from an ill-conditioning of the matrix Φ are overcome. In the sequel , this approach is called the algebraic approach.

y : t → y(t) = a 0 sin(ω 1 t + φ 1 ) + a 1 sin(ω 2 t + φ 2 ), a 0 , a 1 , φ 1 , φ 2 ∈ R, ( 5 
2. Using 2 different Jac. diff. a linear system of equations

Y = Φθ (5.21) with Y = [ŷ (4) 1 , ŷ (4) 2 ] 
T and Φ = [φ 1 , φ 2 ] T . The gDREM approach 7 is used for the estimation of the parameters. The adaptation gain is Γ = diag 1500 V 2 /s, 1500 V 2 /s and p = 2.

The parametrisation of the diffs. is particularly challenging in this context due to the low sampling frequency compared to the highest frequency in the signal. Thus, the bandwidth where the filters g i act as diffs. must be large enough to ensure that the component from ω 2 is not damped too much, and the discretisation should not alter the continuous-time properties. Jacobi diffs. with N = 0, cutoff frequencies equal to ω c = 500 rad/s, and different values of α and β are considered in the sequel. Fig. 5.4 shows the variation of the error norm defined in (3.12) for a Jac. diff. Thus, to get an error norm less than -95 dB the parameters α and β must be larger than 35.

Systems of equations of the form (5.20) and (5.21) are now generated using sufficiently many Jac. diffs. with cutoff frequency 8 ω c = 500 rad/s and different values of α and β. Table 5.1 summarises the properties 9 of the diffs. used. For the gDREM approach or the algebraic approach with two equations the diffs. g (35,36) 0,ϑ,T and g (36,35) 0,ϑ,T are used. This results in two filters with a window length of 22t s and corresponds to 21 filter coefficients when the mid-point rule 7 In Aranovskiy et al. (2016a) the DREM approach is used for the estimation of the frequencies of a linear combination of two harmonic signals. State variable filters (see, e.g., [START_REF] Peter | Parameter-adaptive PID-control based on continuoustime process models[END_REF]; [START_REF] Young | Parameter estimation for continuous-time models -A survey[END_REF]) are used for the computation of the derivatives of the signal y. New linearly independent equations are generated using pure delay operators. An upper bound on the frequencies in the signal y needs to be known for the choice of the delays. The use of the state variable filters induces an exponentially decaying error term in the estimation of the derivatives as opposed to the approach followed here.

8 Choosing the cutoff frequency of the Jac. diff. and varying the parameters α and β rather than fixing the window length T and varying α and β seems more intuitive to the author. Engineers generally have some basic knowledge of the system and the frequencies to be expected in the signals. Thus, a cutoff frequency can be chosen based on this knowledge.

9 Even though the diffs. have been parametrised such that the cutoff frequency is the same for all of them, the chosen parametrisations result in filters with equal window lengths. This equality is due to the low sampling rate. The reader should be aware that this is no longer the case for a higher sampling rate. For example, choosing the sampling period as ts = 0.1 ms yields for g is used for the discretisation. The parameters α and β are chosen such that the error norm (3.12) is lower than -95 dB. For the algebraic approach, the scenarios with N eq = 3 and N eq = 6 are also considered.

Exploiting the FIR interpretation of the Jac. diffs. and the frequency-domain analysis it can be shown after some tedious but straightforward trigonometric manipulations that t → det{Φ(t)} ∈ L 2 . Thus, the gDREM approach will converge. Fig. 5.5 shows the time evolution of the estimates of the frequencies using the gDREM approach and the algebraic one with N eq = 6. Since the window length of the Jac. diff. for the algebraic approach is 23t s it is clear that the approach will converge in finite time to the true value (except for the effects of (ω iωi (kt s ))

2 ω i , i ∈ {1, . . . , 2}, (5.22) with k 0 the index corresponding to t = 0.15 s and N s the total number of measurements, is used for the quantitative comparison of the results. Table 5.2 summarises its values for the different approaches. The table confirms the observations from Fig. 5.5. The estimates from the gDREM have a root-mean-square error that is lower than those from the algebraic approach. Moreover, increasing N eq decreases the error. 

Experimental case study 2

A second experimental case study for the validation of the parameter estimation approach is performed using a rotary flexible joint system10 from Quanser. Fig. 5.6 shows the experimental setup and a schematic representation of it. The system consist of a rigid link mounted on a flexible joint. An encoder measures the deflection of the joint whose rotation in the horizontal plane is counteracted by two extension springs. The joint is attached to a tower the rotation of which is driven by a DC motor though some gears. The motor and an encoder measuring the angle of the tower are in the fixed base. which is suitable to estimate Θ using again gDREM, for example. Thus, only five parameters are estimated in total as compared to the previous approach where eight are considered.

The measurements of u, φ B , and φ J are sampled at a frequency of 100 Hz. respectively, with N s the total number of measurements. Denote in the following by θ i,j,LS , i ∈ {1, 2} and j ∈ {1, . . . , 4}, the solution of the latter equations. Fig. 5.8 shows the time evolution of the estimates using the gDREM and the standard gradient approach with the previously discussed parameters. It can be seen that the estimates from the standard gradient from (5.2) with gains given in (5.26) do not converge to the values computed using the offline estimation approach. Increasing the adaptation gains significantly increases the effect of measurement disturbances. In contrast, the estimates from the gDREM approach quickly converge to the values from the offline estimation. Moreover, the exponential convergence can be nicely seen especially for the estimates of the parameters θ i,j , i ∈ {1, 2}

and j ∈ {2, . . . , 3}.

Consider now the system φJ = θ * with θ * i,j , i ∈ {1, 2} and j ∈ {1, . . . , 4}, the mean values of the last 100 values of estimates from the gDREM approach, for the validation of the approach. This system is simulated with an input trajectory given in Fig. 5.9 and different from that used for the identification and suitable initial conditions. The time evolution of the angles φ B and φ J from the simulation and the measurement are shown in Fig. 5.9. Comparing the signals proves that the gDREM approach with this Jac. diff. yields very good results.

Concluding remarks

The estimation of parameters satisfying a LRE has been discussed in this chapter. The DREM approach developed in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF] has been recalled, and two modifications have been proposed. These modifications yield less restrictive convergence conditions on the regressor. The second modification ensures that if only a subset of parameters is excited, the adaptation is not entirely stopped as in the standard DREM approach. The advantages of this approach have been discussed using examples. For the generation of new linearly independent equations, the use of Jac. diffs. has been discussed in two experimental case studies. The tuning of the diffs. has been discussed in detail based on the analysis in Chapters 2 and 3. Especially the first example, where derivatives up to the fourth order are required in the presence of a low sampling rate compared to the frequencies in the signals, is challenging. An interesting question for future research is the choice of the parameter p in (5.12) when unmodelled dynamics and disturbances are explicitly considered in the analysis. While choosing p = 1 yields less restrictive convergence conditions, as discussed in Example 5.9, no robustness analysis has been carried out. Figure 5.8: Time evolution of the estimates for the flexible joint system for the gDREM approach, the standard gradient approach. The constant lines show the parameter values estimated offline.

During the discussion of the experimental studies, the concept of modulating function has been recalled, and it has been emphasised that Jac. diffs. can be interpreted as modulating functions. This concept is very useful for the estimation of parameters as shown in Preisig andRippin (1993a, 1993b); [START_REF] Shinbrot | On the analysis of linear and nonlinear dynamical systems from transientresponse data[END_REF][START_REF] Shinbrot | On the analysis of linear and nonlinear systems[END_REF]. Modulating functions have been generalised in [START_REF] Jouffroy | Finite-time simultaneous parameter and state estimation using modulating functions[END_REF]; [START_REF] Liu | Non-asymptotic state estimation for a class of linear time-varying systems with unknown inputs[END_REF] such that the conditions given in Definition 5.10 are relaxed. The generalisation is recalled in the following. Consider a sufficiently smooth function φ : R × R → R and write one of its partial derivatives as

φ (i) (t, t 1 ) = ∂ i φ ∂τ i (τ, t 1 ) τ =t
.

The function φ is called a modulating function (of order k) if there exists t 0 < t 1 such that φ (i) (t 0 , t 1 )φ (i) (t 1 , t 1 ) = 0 for all i ∈ {0, . . . , k -1}. A modulating function for which φ (i) (t 0 , t 1 ) = 0 and φ (i) = 0 is called a left modulating function, while a modulating function for which φ (i) (t 0 , t 1 ) = 0 and φ (i) = 0 is called a right modulating function. A modulating function whose boundaries verify φ (i) (t 0 , t 1 ) = 0 and φ (i) = 0 is called a total modulating function.

These types of functions can be used for the finite-time simultaneous estimation of states and parameters of linear (see, e.g., P. [START_REF] Li | Deadbeat simultaneous parameter-state estimation for linear continuous-time systems: a kernel-based approach[END_REF] 

Concluding remarks and outlook

Approximating the derivatives of measured signals is essential for reconstructing unmeasured quantities. This challenging yet fundamental approximation problem is addressed in this work using methods based on orthogonal polynomials. Chapter 2 discusses differentiators based on the latter functions and provides different interpretations. The analysis of the differentiators shows that the approximated derivatives are solutions to least squares problems. Their algebraic formulation creates a link to parameter estimation problems and their interpretation as linear time-invariant filters is convenient for tuning. While the Jacobi differentiators, also known as algebraic differentiators, have been derived in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF] and thoroughly discussed in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013); [START_REF] Liu | Analyse d'erreurs d'estimateurs des dérivées de signaux bruités et applications[END_REF]; [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]Riachy (2014, 2018); [START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF], those based on Hermite and Laguerre polynomials are discussed in more detail here than in the literature known to the author. In particular, the approximation error, delay, concrete tuning guidelines, and implementation issues are investigated in this work. In the opinion of the author, the here used approximation-theoretical derivation of the differentiators allows for a more illustrative interpretation of the methods and their parameters than the abstract differential-algebraic approach used in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF]; [START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF]; [START_REF] Ushirobira | Algebraic differentiators through orthogonal polynomials series expansions[END_REF]; [START_REF] Ushirobira | Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials[END_REF], for instance. Systematic tuning guidelines are investigated in Chapter 3 for differentiators based on classical orthogonal polynomials. Those based on Hermite, Laguerre, and Jacobi polynomials depend on three, four, and five parameters, respectively, and their choice is essential to achieve satisfying approximations. It is shown that the amplitude spectra of Laguerre differentiators can be well approximated by a simple piecewise function, if a known delay is accepted. This has already been shown for Jacobi differentiators in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013). These simple yet powerful approximations yield straightforward tuning guidelines: The parameters of the differentiators can be computed from desired cutoff frequencies and stopband slopes. Section 3.2.2 shows that high-gain differentiators and state variable filters can be recovered from Laguerre differentiators for particular parameter choices.

The guidelines discussed are crucial to find suitable parametrisations without relying on trial-and-error approaches and allow their use in numerous control engineering applications.

The application of the methods for Jacobi differentiators in the context of model-free control has been considered in Othmane, Rudolph, and Mounier (2021a), for examples. The use of Laguerre differentiators in this context should be considered in future research. The publicly available toolbox from Othmane (2021) for the design, analysis, and discretization of Jacobi differentiators and incorporating the here discussed tuning guidelines significantly simplifies the use of these filters.

In Section 3.3, the developed tuning guidelines are applied in concrete experimental case studies. These discussions show that convincing results can be achieved using all the differentiators, especially when slight delays are tolerable. Comparisons with high-gain and sliding mode differentiators have already been published in [START_REF] Liu | Analyse d'erreurs d'estimateurs des dérivées de signaux bruités et applications[END_REF][START_REF] Othmane | Systematic comparison of numerical differentiators and an application to model-free control[END_REF]; [START_REF] Sidhom | Sur les différentiateurs en temps réel: algorithmes et applications[END_REF], for example, where it has been shown that Jacobi differentiators outperform the other two approaches. In the case study from Section 3.3, the Hermite differentiator requires a larger filter window length than the ones based on Jacobi and Laguerre polynomials to achieve similar noise rejection properties. Thus, a realtime implementation of the former yields a higher computation burden. The experimental results presented in Section 3.3.2 shows that the differentiators can be efficiently used for the approximate inversion of analogue low-pass filters.

Differentiators based on Jacobi polynomials are FIR filters. In contrast, the implementation of those based on Hermite and Laguerre polynomials requires their approximation as FIR filters. The distribution function (3.9) is used for the computation of the filter window length.

In contrast, the estimates of Laguerre differentiators having integer orders can be recovered by the outputs of stable LTI systems, which considerably reduces the computational burden. This is a significant advantage for application scenarios using a low-cost hardware. A further difference between the differentiators can be observed in the phase of their Fourier transform.

Jacobi differentiators can have a linear phase for specific parametrisations as shown in (Kiltz, 2017, Sec. 3.3.1). This property can be a significant advantage. In contrast, neither Hermite nor Laguerre differentiators can be parametrised as linear phase filters. Thus, multiple trade-offs must be considered in designing the differentiators. Despite the numerous tuning guidelines, the final parametrisation of these filters will still most likely be made by engineering judgments on the specifications regarding the frequency-domain properties, method of implementation, computational burden, and memory facilities.

A further simplification of the tuning process is proposed in Section 3.4. The optimisation problem (3.30) is based only on the measured signal and takes into account discretisation effects. The parametrisation problem is boiled down to the choice of a single parameter. The computed filter can then be used for the approximation of derivatives. While Section 3.4.2 shows promising results for an experimental case study, numerous theoretical questions remain open and require further investigations. The choice of the optimisation algorithms needs to be considered in detail. An analysis of the effects of the different parameters on the approximated derivative has to be addressed. A further interesting extension of the approach is the design of adaptive filters that automatically select optimal parameters to maximise the approximation accuracy. The computation of new parameters can then be automatically triggered, if the quantity (3.29) exceeds a given threshold. An adaptive differentiation filter for tracking instantaneous frequencies in power systems has already been developed in [START_REF] Zivanovic | An adaptive differentiation filter for tracking instantaneous frequency in power systems[END_REF], for example. The proposed algorithm automatically adapts the filter window length to maximize measurement accuracy. Large values are chosen if the considered signal has slow dynamics. In contrast, the length is reduced for fast-varying ones.

However, the approach is limited to the estimation of first-order derivatives. Thus, extending the ideas from Section 3.4 seems promising. The tuning approach can be further developed to incorporate a maximally tolerable delay as discussed in Remark 3.1, for example. Moreover, 6. CONCLUDING REMARKS AND OUTLOOK the group delay (see, e.g., [START_REF] Papoulis | The Fourier integral and its applications[END_REF]) of differentiators and its variation should be small to reduce the estimation delay and phase distortion. This can be incorporated into the tuning approach by including in the cost function of (3.30) the arithmetic mean of the group delay and its variance over a set of relevant frequencies. The application considered in Section 4.1 requires the differentiators to attenuate a known but undesired frequency stemming from a mechanical eigenmode. By adapting the cost function such that it includes the amplitude of the Fourier transform of the differentiator evaluated in an interval of interest it can be ensured that the undesired frequency is sufficiently attenuated. Alternatively, the ratio of this amplitude and that evaluated at the cutoff frequency can be considered.

Differentiators based on Jacobi and Laguerre polynomials are used in Chapter 4 for the model-based detection of impulsive forces. In Section 4.1, it is shown that the collision of a table tennis ball with a plate can be efficiently detected. Combining a Laguerre differentiator with a notch filter requires less computational burden and yields a lower minimum detectable falling height than the approach based on Jacobi differentiators from [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz and Rudolph (2013). Other application scenarios for the developed approach might be fault detection and identification on the same experimental setup to implement fault-tolerant control algorithms as discussed in [START_REF] Kiltz | Fault-tolerant control based on algebraic derivative estimation applied on a magnetically supported plate[END_REF][START_REF] Kiltz | Fault diagnosis on a magnetically supported plate[END_REF], for example. In Section 4.2, Jacobi differentiators are used for the model-based detection of faults in rolling element bearings.

The potential of the approach is validated through experiments with several publicly available data sets. While in the considered experimental case studies the shaft is rotating with a constant velocity, the approach is not limited to this case. Investigating the effectiveness of the method for systems with time-varying velocities should be considered in future works. for t ∈ C and a ∈ C with R {α} > 0. From #A.13 it follows that lim t→∞ γ (α, t) = Γ(α). as derived in (Courant & Hilbert, 1924, P. 55) or (Apostol, 1967, P. 286 and 300), for example. However, the integral ∞ 0 |sinc(τ )| dτ diverges as discussed in (Bartle & Sherbert, 2000, P. 297).

A.2.2 Error function

A.2.5 Bessel function of the first kind

#A.20 The Bessel function of the first kind and order ν > 0 is defined as

J ν (z) = ∞ k=0 (-1) k Γ(ν + 1 + k) z 2 2k+ν
for z ∈ C. The function possesses infinitely many zeros j ν,i , i ∈ N, with 0 < j ν,0 < j ν,1 < . . .

B The Fourier transform and its properties

This chapter recalls the properties of the Fourier transform (see, e.g., [START_REF] Papoulis | The Fourier integral and its applications[END_REF] for more details). Furthermore, the Fourier transform of classical OPs and related functions are recalled. The reader is referred to Abramowitz and Stegun (1965); [START_REF] Erdélyi | Tables of integral transforms[END_REF] for more details. 

Titel:

  Beiträge zum numerischen Differenzieren mittels orthogonaler Polynome und seiner Anwendung auf Fehlerdetektion und Parameteridentifikation Schlagwörter: Numerisches Differenzieren, orthogonale Polynome, lineare Filterung, Parameteridentifikation, Fehlerdetektion Zusammenfassung: Die Rekonstruktion nicht direkt gemessener Größen in dynamischen Systemen läuft oft auf die Kenntnis von Ableitungen beliebiger endlicher Ordnung der gemessenen Systemvariablen hinaus. Die Approximation dieser Ableitungen bei Vorhandensein von Messstörungen ist bekanntermaßen eine Herausforderung. Numerische Ableitungsalgorithmen, die auf orthogonalen Polynomen und abgeschnittenen verallgemeinerten Fourier-Reihen basieren, können das Problem jedoch erheblich vereinfachen. Diese Ableitungsschätzer sind robust gegenüber Messstörungen und können zur Lösung komplexer regelungstechnischer Aufgaben beitragen. Kritische Herausforderungen bei der Anwendung der Methoden sind die Auswahl günstiger Parameter und ihre Implementierung in Echtzeit. In dieser Arbeit wird ein einheitlicher Rahmen für die Synthese und Analyse von auf klassischen orthogonalen Polynomen basierenden Ableitungsschätzern diskutiert. Bestehende Ansätze werden erweitert und ihre Beziehungen zu etablierten Methoden untersucht. Ableitungsschätzer, die auf Jacobi-Polynomen basieren, auch algebraische Ableitungsschätzer genannt, bilden eine besondere Klasse der betrachteten Algorithmen. Auf der Grundlage von Filterinterpretationen der Ableitungsschätzer werden Empfehlungen für die Parameterauswahl hergeleitet, um gewünschte Eigenschaften im Frequenzbereich zu erreichen. Bei der Diskussion der zeitdiskreten Implementierung wird auf die Bewahrung dieser Eigenschaften detailliert eingegangen. Des Weiteren wird ein neuer Parametrierungsansatz vorgeschlagen, der auf ein Optimierungsproblems basiert und nur das gemessene Signal benötigt. Eine experimentelle Fallstudie vergleicht die Ergebnisse der Ableitungs-schätzer in Gegenwart von gestörten Messungen. Die Approximationsergebnisse, der Rechenaufwand und die Speicheranforderungen werden ausführlich diskutiert. Insbesondere die beiden letztgenannten Eigenschaften sind für Echtzeitanwendungen entscheidend. Die Anwendung der Ableitungsschätzer im Rahmen regelungstechnischer Aufgaben wird mittels zweier experimenteller Fallstudien zur modellbasierten Fehlerdiagnose demonstriert. Zunächst wird die Kollision eines Tischtennisballs mit einer magnetisch gelagerten Platte diskutiert. Dabei sind nur die Messung der Plattenposition und die eingeprägten Kräfte bekannt. Der vorgeschlagene Ansatz reduziert den Rechenaufwand und den Speicherbedarf im Vergleich zu den bisher betrachteten Methoden erheblich. Außerdem verringert der neue Ansatz die minimal detektierbare Fallhöhe des Balls. Anschließend wird eine modellbasiertere Methode für die effiziente Echtzeiterkennung von Fehlern in Wälzlagern vorgeschlagen. Der Ansatz wird anhand experimenteller Daten von verschiedenen Prüfständen validiert. Schließlich werden Ansätze zur Parameterschätzung diskutiert. Diese Arbeit verallgemeinert kürzlich vorgeschlagene Algorithmen. Die hergeleiteten Konvergenzbedingungen sind weniger restriktiv als die zuvor veröffentlichten. Außerdem ermöglicht dieser Ansatz die Identifikation einer Teilmenge von Parametern, selbst wenn einige nicht angeregt werden. Zwei experimentelle Fallstudien dienen der Validierung. Die Ergebnisse werden mit mittels etablierten Gradientenschätzern und algebraischen Methoden zur Parameterschätzung erzielten Ergebnissen verglichen. Diese Beispiele unterstreichen das große Potential dieser Methoden.
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 112 are square integrable, i.e., the Lebesgue integrals , the scalar product of the functions f 1 and f 2 denoted by f 1 , f 2 w is defined by the Lebesgue integral4 

Definition 2 . 3 :

 23 Orthogonal polynomial set An orthogonal polynomial set Π w = {p n } l n=0 , l finite or infinite, associated with a weight function w defined on I w = (a, b) ⊆ R is defined by p n , p m w = b a w(τ )p n (τ )p m (τ )dτ = 0 for n = m.

Theorem 2 . 1 :Theorem 2 . 2 : 2 )

 21222 Location of zeros (Szegö, 1939, Thm. 3.3.1) The zeros of an OP p n associated with a weight function w on the interval I w = (a, b) are 2.1. The approximation problem of arbitrary functions real and distinct and are located in the interior of the interval I w . Separation of zeros (Szegö, 1939, Thm. 3.3.Let z 1 < z 2 < . . . < z n be the zeros of an OP p n associated with a weight function w on the interval I w = (a, b), z 0 = a, and z n+1 = b. Then each interval (z m , z m+1 ), m ∈ {0, . . . , n}, contains exactly one zero of p n+1 .
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 21 Figure 2.1: Variation of the estimation delay of the Hermite diff. as a function of the parameter N .

Figure 2 . 2 :

 22 Figure 2.2: Variation of the impulse and step responses given in (2.43) and (2.45), respectively, of a Hermite diff. as a function of the parameter N .

Figure 2 . 3 :

 23 Figure 2.3: Variation of the impulse and step responses of a delay-free Hermite diff. with respect to the parameter µ = σκ and N = 1.

  45) with τ → erf (τ ) the Error Function defined in #A.15. The impulse and step responses of Hermite diffs. are shown in Figs. 2.2 and 2.3 for different parameter combinations. The impulse response depicts negative values for N > 0,

Figure 2 . 4 :

 24 Figure 2.4: Variation of the amplitude spectrum of a Hermite diff. for different values of the parameter N .

Figure 2 . 5 :Figure 2 . 6 :

 2526 Figure 2.5: Variation of the estimation delay δ t of Lag. diffs. as a function of the parameters N and α.

  Figure 2.7: Impulse and step responses g = ḡ(α) N,T,ϑ and h = h (α) N,T,ϑ from (2.53) and (2.55), respectively, of a Lag. diff. with N = 0 and various values of α.

  .51) with Γ the Gamma function defined in #A.13. Recalling the explicit definition of Laguerre polynomials from #A.6, any Lag. diff. g (α)
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 28 Figure 2.8: Impulse and step responses of a Lag. diff. for N = 1 and various values of α. Differentiators with delay are shown on the left and delay-free ones on the right.

Figure 2 . 9 :

 29 Figure 2.9: Impulse and step responses of a Lag. diff. for N = 2 and various values of α. Diffs. with delay are shown on the left and delay-free ones on the right.

Figure 2 .

 2 Figure 2.10: Impulse responses of G p , the cascade of p Lag. diffs. with α = 4, a diff. g (αp) 0,ϑ,Tp with α p and T p from (2.58), and a Gaussian for different values of p. The mean η(p) and the variance σ(p) are defined in (2.56).

Figure 2 .

 2 Figure 2.11: Amplitude spectra of Lag. diffs. for α = 4 and different values of N . Differentiators with delay are shown on the left and delay-free ones on the right.
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 2 Figure 2.13: Variation of the delay of Jac. diffs. with respect to the parameters α, β, and N .

Figure 2 .

 2 Figure 2.15: Impulse and step responses of a minimal Jac. diff. g (α,β)

Figure 2 .

 2 Figure 2.16: Impulse and step responses of a Jac. diff. g (α,β) N,T,ϑ with the parameters α, β ∈ {1, 3, 6}, N = 1, and ϑ = p

Figure 2 .

 2 Figure 2.18: Variation of the amplitude spectrum ω → G (α,β) N,T,ϑ (ω) of a diff. g (α,β) N,T,ϑ for fixed N and various values of κ = |α -β|, µ = 1 + min{α, β}, and ϑ.

Figure 2 .

 2 Figure 2.19: Variation of the amplitude spectrum ω → G (α,β) N,T,ϑ (ω) of a diff. g (α,β) N,T,ϑ for fixed parameters α and β and various values of N .

Figure 2 .

 2 Figure 2.20: Variation of the amplitude spectrum ω → G (α,β) N,T,ϑ (ω) of a diff. g (α,β) N,T,ϑ for N = 0 and various values of α and β.

Figure 3 . 1 :

 31 Figure 3.1: Low-pass interpretation of Hermite diffs. with delay for different values of the parameter N . The cutoff frequency is the frequency for which the amplitude is equal to -3 dB.

Figure 3 . 2 :

 32 Figure 3.2: Amplitude spectra of Lag. diffs. with delay for various values of N , α = 4 and ϑ = l (α) N +1 . The approximation (3.2) is depicted with a dashed line.

  Figs. 3.2 to 3.4 depict the amplitude spectra of diffs. for various parameter combinations and the corresponding approximations from (3.2).

Figure 3 Figure 3 . 4 :

 334 Figure 3.3: Amplitude spectra of Lag. diffs. with delay for varying filter orders α, N = 1 and ϑ = l (α) N +1 . Dashed lines show the approximations from (3.2).

  and[START_REF] Mboup | Frequency-domain analysis and tuning of the algebraic differentiators[END_REF] to recommend the parametrisation α = β also for the affine (and minimum variance) diffs. . For α = β and N = 0 the amplitude spectrum possesses infinitely many zeros. In fact, as 57 3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS discussed in Kiltz (2017); Kiltz et al. (2012) the Fourier transform reads

2 .

 2 Implementation of classical orthogonal differentiators for the lower and upper envelopes, respectively, of the amplitude spectrum of the diff. have been derived.

Comparing

  , it can be shown that lim ω→0 G (α,β) N,T,ϑ (ω) = 1,Kiltz and Rudolph (2013) has proposed the following approximation of the amplitude spectrum of the Jac. diff. be seen in Fig.3.5 for two example diffs., (3.7) is a remarkably good approximation of the amplitude spectrum, except around overshoots.The tuning guidelines developed inKiltz and Rudolph (2013) can then be easily deduced from (3.7): The diff. window length T can be chosen by using a desired cutoff frequency from (3.6). The parameter µ = 1 + min{α, β} can be used to get a desired filter order, i.e., the stopband slope given by 20µ dB. It follows from (3.5) that increasing κ = |α -β| increases the convergence speed of the difference ∆ G (α,β)

Figure 3 . 5 :

 35 Figure 3.5: Amplitude spectrum ω → G (α,β) N,T,ϑ (ω) of a Jac. diff. g (α,β) N,T,ϑ along with the upper and lower bounds from (3.4), the approximations G (α,β) N,T,ϑ from (3.7) and the low-pass interpretation for two parametrisations. The left figure shows a diff. with delay. The right figure shows a delay-free one.
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 3 Figure 3.6: Approximation of the first-order derivative of the Hermite diff. g = g N,T,ϑ,µ from Example 3.1 as an FIR filter with window length T L using the distribution function Φ given in (3.9).

2N L - 1

 1 Figure 3.7: Evaluation of the effects of the discretisation on the diff. discussed in Example 3.2:Error norm J from (3.12) for different discretisation methods and amplitude spectrum of the diff. for T /t s = 3.

Figure 3

 3 Figure 3.8: Approximation of the first-order derivative of the Lag. diff. g = g (α)

Figure 3 . 9 :

 39 Figure 3.9: Evaluation of the effects of the discretisation of the Lag. diff. discussed in Example 3.4: Error norm J from (3.12) for different discretisation methods as a function of T /t s and α.

Fig. 3 .

 3 Fig.3.8 shows the filter window when the integration interval is truncated as in (3.14).

  AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS and corresponds to the Fourier transform of the Lag. diff. considered in Example 3.3. It is then easy to show that the solution of (3.16) converges towards (3.15) for arbitrary initial conditions since the system possesses the eigenvalue -1/T with the algebraic multiplicity of three. If the initial conditions are appropriately chosen, the solution even corresponds to the latter approximation of the first-order derivative in (3.15). The differential equation can then be discretised and implemented as a infinite-impulse response (IIR) discrete filter.

  Figure3.10: Evaluation of the effects of the discretisation on the diff. discussed in Example 3.6: Error norm J from (3.12) for different discretisation methods and the amplitude spectrum of the diff. for T /t s = 10.

  the system (3.21). Then, the linear combinations (3.22a) and (3.23a) converge to the approximations of Lag. diffs. in (3.22b) and (3.23b), respectively. 69 3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS

  tτ )f (τ )dτ,for some polynomials p m . Recalling the definition of g (m-1)

  t), f 1 = 10 Hz, f 2 = 80 Hz, a 1 = 2.15 V, a 2 = 0.4 V, and the disturbed measured voltage is denoted by y. The disturbance is assumed to be additive. Fig.3.11 shows the time evolution of x and y. The signal to noise ratio (kx k ) 2

µFigure 3

 3 Figure3.13: Amplitude spectra for the diffs. used for the approximation of the first-order derivative of the signal x from Example 3.8. The parameters of the diffs. are summarised in Table3.1.

Figure 3

 3 Figure 3.14: Approximation results for the first-order derivative of the signal x from Example 3.8 using a Laguerre, two Jacobi and three Hermite diffs. with different cutoff frequencies. The parameters of the diffs. are summarised in Tables 3.1 and 3.3.

Figure 3

 3 Figure 3.15: Delay-free approximation results for the first-order derivative of the signal x from Example 3.8.

µ

  = 90 ms, T = 0.91 ms α = 3, T = 0.6 ms α = β = 3, T = 3of the Lag. diff. the computational and memory requirements of both diffs. implemented as FIR filters are comparable as it can seen by comparing the results in Tables 3.1 and 3.2. If α = β and the cutoff frequency of the Jac. diff. is reduced to ω c = 0.6ω

  Figure 3.16: Approximation results for the second-order derivative of the signal x from Example 3.8. The parameters of the diffs. are summarised in Table 3.5.

µFigure 3

 3 Figure3.17: Approximation results for the second-order derivative of the signal x from Example 3.8 using a Laguerre, two Jacobi and three Hermite diffs. with different cutoff frequencies. The parameters of the diffs. are summarised in Tables 3.5 and 3.6.

  Figure 3.18: Evolution of the measured input and output of an analogue RC circuit with cutoff frequency 19.40 Hz.

Figure 3

 3 Figure3.20: Amplitude and phase spectra of the diffs. used for the approximate numerical inversion of an analogue RC circuit. The parameter ω 0 is equal to π 10ts .

Fig. 3 .

 3 Fig. 3.21 shows the variation of κ P from (3.29), the estimation delay, and the length of the filter window as a function of the logarithm of the parameter T of the Hermite diff. The values that follow from the solution of the optimisation problem are denoted by a star in the superscript and shown in the latter figure. Increasing T decreases κ P and increases the delay

Figure 3

 3 Figure3.21: Variation of the ratio κ P defined in (3.29), the estimation delay and the number of filter coefficients L as a function of the parameter T of a Hermite diff. for the estimation of the first-order derivative from Example 3.8. The values resulting from the optimal parameter T * are given by the red dots and summarised in Table3.8.

  Figure3.23: Approximation results for the first-order derivative of the signal x from Example 3.8 using diffs. whose parameter are computed using the automatic tuning approach. The parameters of the diffs. are summarised in Table3.8.

  Figure3.25: Approximation results for the second-order derivative of the signal x from Example 3.8 using diffs. with parameters computed using the automatic tuning approach for two values of κ * P . The parameters of the diffs. are summarised in Table3.9.

Figure 4 . 1 :

 41 Figure 4.1: Experimental setup of a plate which may move in the field of four electromagnets with a table tennis ball. The vertical position of the plate is captured by four sensors. (Photo: Saarland University, Oliver Dietze)

Figure 4 . 2 :

 42 Figure 4.2: Collision detection using Jacobi and Laguerre diffs. at a specific hovering position of the plate equal to y = -4.5 mm and a falling height of the ball equal to 3 cm: The detection time and the time instant where the residual r from (4.2) crosses the zero line after the maximum excitation are denoted by t d and t z , respectively. The estimated collision time is t c .

4. 1 .Figure 4 . 3 :

 143 Figure 4.3: Collision detection using Jacobi and Laguerre diffs. at a specific hovering position of the plate equal to y = -4.5 mm and a falling height of the ball equal to 15 cm: The detection time and the time instant where the residual r from (4.2) crosses the zero line after the maximum excitation are denoted by t d and t z , respectively. The estimated collision time is t c .

  4 ms a minimal detected falling height of H min = 0.94 cm with a detection time t d = 4.1. Model-based collision detection on a magnetically supported plate disturbance ġ ν CDF Jac. diff.: α = β = 5 T = 27.4 ms, N = 0 disturbance ġ ν Lag. diff.: α = 5 T = 2.8 ms notch: Q = 30 ω r = 946.1 rad/s disturbance ġ ν Lag. diff.: α = 5 T = 2 ms notch:

Figure 4 . 4 :Figure 4 . 5 :

 4445 Figure 4.4: CDFs for the residuals in the collision-free case using measurements of the vertical displacement at a hovering position y = -4.5 mm.

Figure 4 . 6 :

 46 Figure 4.6: Comparison of the signal flow diagrams for the residual generation using the approaches with the Jac. diff. and the Lag. diff.

  3.The parametrisation with T = 2.8 ms has been used for the collision detection in the two examples from Figs.4.2 and 4.3. It can be seen that the detection times are t d = 18 ms and t d = 17.25 ms, for the collision from 3 cm and 15 cm, respectively. For both collisions the detection time is lower when the Lag. diff. is used compared to those for the Jac. diff. For the collision from 3 cm the collision is detected 2 ms faster, which corresponds to 20 sampling periods and a decrease of approximately 10 %. Both approaches estimate the same collision 100 4.1. Model-based collision detection on a magnetically supported plate .: α = 5 T = 2 ms, N = 0 notch: Q = 30, ω r = 946.1 rad/s •10 4 t in ms Lag. diff.: α = 5 T = 2.8 ms, N = 0 notch: Q = 30, ω r = 946.1 rad/s

Figure 4 . 7 :Figure 4 . 8 :

 4748 Figure 4.7: Impulse responses of the cascade of a first-order derivative of Lag. diff. and a notch filter and the first-order derivative of the diff. The parameters Q = 30 and ω r = 946.1 rad/s are chosen for the notch filter and two Lag. diffs. with N = 0, α = 5, and two different values for T are considered.

  Figure 4.9: Detection time t d for the nominal time-evolution of the collision indicator ξδ tc ġ as a function of the falling height of the ball and different diffs. computed using collision free measurements.

Figure 4 .

 4 Figure 4.11: CDFs of a random variable η = 5 + ( + 1) with drawn uniformly from [-0.5, 0.5], the filtered variable η = g (3,3) 0,Tg,ϑ η, and a normal distribution fitted to η. The parameters of the differentiator are T g = 0.045, N = 0, and α = β = 3.

Figure 4 .

 4 Figure 4.12: Probability distribution of the residual from (4.8) and a fitted Gaussian distribution with mean µ = 1.4 m/s 4 and standard deviation σ = 0.07 m/s 4 for the faultfree system of the CWRU data set discussed in Section 4.2.4.

(

  2015). An encoder and a torque transducer are mounted on a shaft driven by an electric motor. A dynamometer is used to apply torque on the shaft, which is supported by the test bearings, including drive end and fan end bearings. Faults of diameters of 7 mil, 14 mil, 21 mil, 28 mil, and 40 mil where 1 mil = 0.001 inch, have been introduced manually to the inner ring, the outer ring, and the rolling elements. Accelerometers are mounted on the bearing housing to collect vibration data sampled at 12 kHz and 48 kHz. In this work, the data sampled at 12 kHz is used. Fault-free measurements for 4 different motor speeds ranging from 1730 rpm4. MODEL-BASED DETECTION OF IMPULSIVE FORCES

Figure 4 .

 4 Figure 4.13: Evaluation of the residual (4.9) when the values r(t i ), i ∈ {0, 1, . . .}, are identically distributed random variables drawn from a normal distribution and T = N n t s .

Figure 4 .

 4 Figure 4.14: CWRU bearing test rig from Smith and Randall (2015).

Figure 4 Figure 4 .

 44 Figure 4.15: Time evolution of the residual of the experimental setup of the CWRU data set for the fault-free case and the experiments 106 (inner race fault), 133 (outer race centered fault), and 118 (ball fault). All defects have a diameter of 0.007 inch.

Figure 4 .

 4 Figure 4.16: The test rig of the The Politecnico di Torino rolling bearing test data set from Daga et al. (2019).

Figure 4 .

 4 Figure 4.17: Analysis of the Politecnico di Torino data set. The rotation speed is denoted by v and is in kHz. The load is denoted by τ and is in kN. The signals are 0A for the fault-free case, 1A and 4A for the inner ring and roller faults of diameters 450 µm and 450 µm, respectively.

Figure 4 .

 4 Figure 4.18: The test rig of the PRONOSTIA (Nectoux et al. (2012)) data set.

Figure 4 .

 4 Figure 4.19: Analysis of the data set Bearing1_1 from the PRONOSTIA data set: CDF of the residual for the fault-free case, time evolution of the residual with the fault detection threshold for a run-to failure experiment, and the standard deviation of the vibration signal.

4. 2 . 5

 25 Concluding remarksA model-based approach for online condition monitoring of rolling element bearings based on efficient and robust numerical differentiation has been proposed. The physical parameters and a fault detection threshold are estimated using fault-free data. The threshold can be designed to guarantee a desired false alarm probability. The detection of sudden degradations and monitoring the evolution of the faults are ensured. The experimental validation using different experimental data sets is promising. These results are very advantageous in terms of implementation simplicity, physical interpretability, low computation complexity, and avoiding training burden.
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 5 

  , for example. More recently, differential algebraic manipulations in the operational domain have been used to generate new linearly independent equations as shown inFliess and Sira-Ramírez (2003a, 2008);[START_REF] Gehring | Algebraische Methoden zur Parameteridentifikation für lineare unendlichdimensionale Systeme[END_REF];Gehring et al. (2012a[START_REF] Gehring | Identification of transmission line parameters using algebraic methods[END_REF][START_REF] Gehring | Parameter identification, fault detection and localization for an electrical transmission line[END_REF];[START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF];[START_REF] Stauch | Algebraic parameter identification for infinite dimensional fluid transmission line models[END_REF];Ushirobira et al. (2016[START_REF] Ushirobira | Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data[END_REF][START_REF] Ushirobira | Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data[END_REF], for example. An advantage of this algebraic approach is the straightforward annihilation of structured perturbations. This can be done in the same manner as for the annihilation of unwanted derivatives in the derivation of diffs. discussed in Section 2.3.2. A connection of these methods of algebraic flavour with orthogonal polynomials (OPs) a has been discussed in[START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF]; Ushirobira (2018);[START_REF] Ushirobira | Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials[END_REF] and extensively used inLomakin and Deutscher (2020a[START_REF] Lomakin | Identification of dynamic parameters for rigid robots based on polynomial approximation[END_REF], 2021[START_REF] Othmane | historical background of Jac[END_REF];[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF][START_REF] Othmane | Analysis of the parameter estimate error when algebraic differentiators are used in the presence of disturbances[END_REF], for instance. In P.[START_REF] Li | Finite-time system identification, estimation and fault detection[END_REF]; Li, Boem, Pin, and Parisini (2020); Pin, Assalone, Lovera, and Parisini (2016); Pin, Lovera, Assalone, and Parisini (2013) a very similar approach to the modulating function method has been discussed. Therein, known signals are convolved with special kernels such that the resulting signals are outputs of stable finite-dimensional state realisations for the integral operators.

Figure 5 . 1 :Figure 5 . 2 :

 5152 Figure 5.1: Time evolution of the parameter estimates for the system in (5.17) with Γ gDREM = Γ DREM = Γ Grad =[START_REF] On | PARAMETER ESTIMATION robust with respect to unmodeled dynamics[END_REF][START_REF] On | PARAMETER ESTIMATION robust with respect to unmodeled dynamics[END_REF] using three different approaches.

Figure 5 . 3 :

 53 Figure 5.3: Time evolution of the measurement for the experimental case study 1 in the time interval [0 s, 0.15 s]: The discrete measurements are displayed by the markers.

  .18) is known at discrete time instances. The frequencies ω 1 , ω 2 > 0 shall be estimated. The signal y is generated in the laboratory using a signal generator where ω 1 = 20π rad/s and ω 2 = 80π rad/s. The signal is recorded using a sampling period of t s = 5 ms. The corresponding Nyquist frequency is 100 Hz. The recorded signal is shown in Fig.5.3. The low sampling rate in comparison to ω 2 makes the problem challenging especially when diffs. are used.

Figure 5 . 4 :

 54 Figure 5.4: Error norm (3.12) for an Jac. diff. with N = 0 and cutoff frequency ω c = 500 rad/s for different values of the parameters α and β.

(

  40,35) 0,ϑ,T and g (38,37) 0,ϑ,T windows of lengths 1151ts and 1128ts, respectively. 130 5.3. Validation of the approaches

  the measurement disturbance) at t = 0.115 s. Contrarily, the gDREM estimates converge only asymptotically. However, from the figure it is clear that the convergence is very fast. Both estimates show qualitatively good results, while the ones from the gDREM show slightly less fluctuation around the true value. The normalised root-mean-square error NRMS error ω i = Ns k=k0

2 Figure 5 . 5 :Figure 5 . 6 :

 25556 Figure 5.5: Time evolution of the estimates for the experimental case study 1. For the algebraic approach N eq = 6.Table5.2: Normalised root-mean-square errors from(5.22) for the first experimental case study.
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 57 Figure 5.7: Time evolution of the voltage u and the angles φ B and φ J of the identification trajectory.

Fig. 5

 5 .7 shows the time evolution of these signals that shall be used for the identification of the parameters. A single Jac. diff. with parameters N = 0, α = β = 40, and cutoff frequency ω c = 250 rad/s is used in the following. This cutoff frequency corresponds to 80 % of the Nyquist frequency.Using the mid point rule yields a discrete filter with 25 coefficients. To reduce the computation requirements, the six new equations that are required for the application of gDREM to each of the LRE in (5.25) are created using a pure delay operator with delay d = 20t s . The parameter p is chosen equal to 1 and the adaptation gains areΓ 1 = Γ 2 = diag (1, 0.2, 1, 1) /sVfor the estimation of θ 1 and θ 2 , respectively. Note that for this example it is analytically not possible to verify the convergence condition in Proposition 5.2. The results will be verified by comparing measured trajectories with simulated ones. As a comparison the estimates from standard gradient estimators of the form (5.2) with gains Γ1 = Γ2 = diag 3.2/s, 0.04 s, 0.32 s, 36/(s V 2 )(5.26) shall be considered. Furthermore, the parameters in θ 1 and θ 2 are also estimated offline as 5
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 5 11: Right and left modulating function (Jouffroy and Reger (2015))

Figure 5 . 9 :

 59 Figure 5.9: Time evolution of the voltage u and the angles φ B and φ J of the measurement and the simulated system.

n 1

 1 The ideas developed for parameter estimation problems in Chapter 5 extend previously published works (see, e.g.,[START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF];[START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF];[START_REF] Othmane | Analysis of the parameter estimate error when algebraic differentiators are used in the presence of disturbances[END_REF]). Their experimental validation and the comparison with other approaches show promising results. However, numerous open questions have to be considered. Even if the analysed examples contain disturbed measurements and the approach yields convincing results, the effects of disturbances has yet to be analysed systematically. Moreover, the tuning parameter p used in Section 5.2 may be considered in more detail. Especially the robustness of the approach with respect to unmodelled dynamics and the influence of p require further investigations.#A.3 Recalling that d dτ e -τ 2 H m (τ ) = -e -τ 2 H m+1 (τ ) yields d dτ n e -τ 2 H m (τ ) = (-1) n e -τ 2 H m+n (τ ). #A.4 From #A.3 it follows that d dτ n e -τ 2 = (-1) n e -τ 2 H n (τ ).#A.[START_REF] On | PARAMETER ESTIMATION robust with respect to unmodeled dynamics[END_REF] The Hermite polynomials satisfyτ 0 w(σ)H n (σ)dσ = H n-1 (0)w(τ )H n (τ ) τ → erf (τ )the error function defined in #A.15.A.1.2 Laguerre polynomials#A.6 The explicit expression of a Laguerre polynomial denoted by L • w α , with w α (τ ) = e -τ τ α , can be written asw α (τ )L (α) n) e -t t α-n+1 L (α-n+1) m+n-1 (t)1 The pointwise product of two functions f and g is denoted by f • g.142A.2. Other functions #A.10 Let g(α) : τ → g (α) (τ ) = e -τ τ α and α ∈ N >1 . A proof by induction yields It then follows that the functionf : τ → f (τ ) = N n=0 c n g (α+n) (τ ) satisfies the differential equation w (n-m,m) (τ ) with w (α,β) (τ ) = (1τ ) α (1 + τ ) β .#A.12 The n-th order derivative of the product w (α,β) Gamma function and related functions #A.13 The Gamma function Γ : z → Γ(z) is defined asΓ(z) = ∞ 0 τ z-1 e -τ dτ, z ∈ C,with R {z} > 0, where R {z} denotes the real part of z. For a natural number α ∈ N it simplifies to Γ(α) = (α -1)!. The Gamma function can be used to define a lower incomplete gamma function γ : (α, t) → γ (α, t) is defined as γ (α, t) = t 0 τ α-1 e -τ dτ.

  #A.15 The error function erf : τ → erf (τ ) is defined aserf (τ ) = 2 √ π τ 0 e -σ 2 dσ.A.2.3 Beta function and related functions:#A.16 The beta function B : (α, β) → B(α, β) is defined asFor natural numbers α and β it simplifies toB(α, β) = (α -1)!(β -1)! (α + β -1).#A.17 The incomplete beta function B τ : (α, β) → B τ (α, β) is defined asB τ (α, β) = τ 0 σ α-1 (1σ) β-1 dσ. #A.18 The regularised incomplete beta function I τ : (α, β) → I τ (α, β) is defined asI τ (α, β) = B τ (α, β) B(α, β) .A.2.4 Sinc function#A.19 The sinc function x → sinc(x) is defined as

ContentB. 1 FF 2 m=0(

 12 Properties of the Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 B.2 Fourier transform of special functions . . . . . . . . . . . . . . . . . . . . . . . . . 146 B.1 Properties of the Fourier transform #B.5 The Fourier transform F {f } of a function f is defined asF {f } (ω) = F (ω) := ∞ -∞ f (t)e -ιωt dt, ι 2 = -1.The inverse of the latter transformation is f (ω)e -ιωt dω.#B.6 The shifting property isf (tµ) ↔ e -ιωµ F {f } (ω) . ιωµ |T | F {f } (T ω) .#B.9 The Fourier transform of a multiplication of a function with a monomial ist n f (t) ↔ ι d dω n F {f } (ω).B. THE FOURIER TRANSFORM AND ITS PROPER TIES B.2 Fourier transform of special functions B.2.1 Hermite polynomials #B.10 The Fourier transform of the weight function w : τ → w(τ ) = e -τ 2 is Fourier transform of w • H n can be computed using the property #B.9 and the explicit definition of the Hermite polynomial H n given in #A.1. It follows that F {w • H n } (ω) = n! Using the higher order derivative of the weight function given in #A.4 the Fourier transform becomesF {w • H n } (ω) = n! √ π n -1) m m!(n -2m)! (-ι) n-2m e -ω 2 4 H n-2m ω 2 = (-ι) n √ πe -ω 2 4 ω n .Combining this results with the property #B.8 yieldsF {(w • H n ) • θ T } (ω) = T √ πe -ιωµ w T ω 2 (ιT ω) n , for τ → θ T (τ ) = µ-τ T ,for T > 0. B.2.2 Laguerre polynomials #B.12 The Fourier transform of the function w α : τ → w α (τ ) = ιω) α+1 , with Γ the Gamma function from #A.13. #B.13 Using the explicit definition of a Laguerre polynomial L (α) n given in #A.6 and the Fourier transform from #B.12 it can be shown that F w α • L (α) n = Γ(α + n + 1)(ιω) n n!(1 + ιω) α+n+1 .

  

Table 2 .

 2 1: Properties of classical OPs (see, e.g.,Abramowitz and Stegun (1965)): Orthogonality intervals, weight functions, and norms. The parameters α, β, and λ satisfy the constraints α, β > -1, λ > -1/2, and λ = 0.

	Name	p n	I w	w : τ → w(τ )	p n	2 w

Table 2 .

 2 2: Time transformation ϕ t,T defined in (2.14) mapping the orthogonality interval I w to I(t) and its inverse ϕ -1 t,T . It is assumed that T, µ > 0.

  2 w (I w ) with f 1 given in (2.15) and (2.16) for half-open and open interval I w , respectively. Then, the approximation schemes developed earlier can be applied. To simplify the notation, f is considered in the sequel and it should be replaced by f 1 whenever half-open or open intervals are considered. The generalised Fourier transform of f with respect to an orthonormal polynomial set Π w

Table 2 .

 2 3: Delay δ t from Corollary 2.3 for N > 1 computed for classical OPs.

		Jacobi Laguerre Hermite
	δ t	1-ϑ 2 T	T ϑ	µ -T ϑ

Definition 2.5: Orthogonal differentiator Let

  R N,ϑ , ϑ ∈ R and N ∈ N finite, defined in (2.21) be a reproducing kernel of π N with respect to a closed orthonormal set Π w of polynomials associated with a weight function w : I w → R, with I w ⊆ R. Assume that the first n -1 derivatives of g N,ϑ defined in (2.28) vanish at the boundaries of I w . The function g N,ϑ is called an orthogonal diff. of order n

	τ )dτ.	(2.29)
	This observation yields the definition of an orthogonal differentiator (orth. diff.) used in the
	remaining parts of this work.	
	associated with Π w .	
	Replacing in (2.29) the function f by the measurement f yields the approximation	

  It has been shown in the latter reference that for L {d l } ∈ C(s) the operator D is proper if, and only if, each L {d l } is a proper rational function 11 .

			)
	for some function L {d} : C → C. As in Mboup et al. (2009), a differential operator of the form (2.33a) is called an annihilator for f (n) (0). Obviously, such operators exist and are not
	unique. However, it is clear that to each annihilator D, there is a unique L {d} : C → C such that (2.33b) is satisfied. The operator D and the function L {d} are said to be associated. The operator D has to be judiciously chosen to ensure that only integral operators are involved when the relations are interpreted in the time domain. In the sequel, an operator
	satisfying this condition is called a proper differential operator in accordance with the discus-
	sions in Mboup et al. (2009). Time-domain approximation	
	Replacing in (2.33) the truncated Taylor series expansion f n by the actual known signal	f
	from (2.26) yields	
	L {d}(s)f	(n)

  that the diff. g

													( ᾱp, βp) 0, Tp,ϑ with
	ᾱp =	µ p σ p	2	1 -	µ p Tp	-1 +	µ p Tp	and βp =	µ p σ p	2	+ 1	µ p Tp	-2 +	Tp µ p σ 2

p is an approximation of a Gaussian kernel with mean value µ p and variance σ 2 p .

Table 2 .

 2 4: Summary of the interpretations of the discussed diffs. g N,ϑ from Definition 2.5 and the practical usage of each.

	Context	Interpretation	Practical usage
	Algebraic	Annihilation of undesired perturbations with the annihilator in (2.33)	Relation to linear identifiability
	Approximation theoretic	Polynomial approximation of derivative using a Hilbert reproducing kernel	Analysis of estimation properties and relation to established differentiation methods
		Linear time invariant filtering of	
		the sought derivative in (2.36):	
	Systems theoretic		

  TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS Laguerre and Hermite polynomial-based diffs. have been proposed in Ushirobira (2018); Ushirobira and Quadrat (2016), no tuning guidelines have been developed and the discrete-time implementation has not been addressed in the literature.

in the time-domain. Later works

[START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]

;

Kiltz and Rudolph (2013)

;

[START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF] Riachy (2014, 2018) 

propose frequency-domain tuning guidelines. A summary of these discussions is provided in

[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]

. Thus, this chapter only summarises the most important tuning guidelines for the Jac. diffs. While 53 3.

  Approximation results for the first-order derivative of the signal x from Example 3.8. The parameters of the diffs. are summarised in Table3.1.

							3.3. Application of systematic tuning guidelines
			Hermite			Laguerre			Jacobi
	signals in V/s	-140 0 140 280			-140 140 280 0			-140 140 280 0			ẏ ẋ ẋδt
		0.1	0.11	0.12	0.13	0.1	0.11	0.12	0.13	0.1	0.11	0.12	0.13
			t in s			t in s			t in s
	Figure 3.12: and the signal to bias ratio (SBR) given as					
				SBR							
										2},		
	74											

Table 3 .

 3 2: Approximation results for the first-order derivative of the signals from Example 3.8 using a Jac. diff. with N = 1, α = 3, and a cutoff frequency ω c = ω 0 = 8πf 2 rad and different values of β. The delay and the FIR window length are given as multiples of the sampling period t s . Table3.3: Approximation results for the first-order derivative of the signals from Example 3.8 using Jacobi and Hermite diffs. with different values for the cutoff frequency and N = 1. For the Jac. diff. α = β = 3. The delay and the FIR window length are given as multiples of the sampling period t s and ω 0 = 8πf 2 rad.

		β		3	15	30			
		delay		6	7	8			
		window length	17	55	60			
		SNRout in dB	14.47 19.03 19.81		
		SBR in dB	44.08 33.13 23.20		
			Jac. diff.			Hermite diff.	
	cutoff frequency	ω 0	0.8ω 0 0.7ω 0 0.6ω 0	ω 0	0.8ω 0 0.7ω 0 0.6ω 0
	delay	6	7	8	9	9	12	14	17
	window length	17	22	27	31	28	36	40	47
	SNRout in dB	13.53 18.01 18.43 20.14 14.47 17.23 18.84 20.77
	SBR in dB	44.08 39.16 35.12 31.64 34.84 34.8	31.62 26.21

Table 3 .

 3 6: Approximation results of the second-order derivative of the signal from Example 3.8 for Jacobi and Hermite diffs. with different cutoff frequencies and N = 1. For the Jac. diff. α = β = 12. The delay and the FIR window length are given as multiples of the sampling period t s and ω 0 = 4πf 2 rad.

			Jac. diff.			Hermite diff.	
	cutoff frequency	ω 0	0.8ω 0 0.7ω 0 0.6ω 0	ω 0	0.8ω 0 0.6ω 0 0.4ω 0
	delay	21	28	32	37	13	16	22	33
	window length	52	65	75	87	34	42	55	83
	SNRout in dB	9.61 14.00 16.99 20.24 -0.13	4.7	10.40 18.75
	SBR in dB	28.61 26.60 26.14 21.32 39.01 33.77 24.71 22.14

Table 3 .

 3 7: Results for the approximate inversion of a first-order analogue anti-aliasing filter using Jacobi and Laguerre diffs. The latter are approximated by FIR filters. The delay and the filter window lengths are given in multiples of the sampling period.

		window length delay cutoff frequency
	Lag. diff.	19	2	2356.19 rad/s
	Jac. diff.	11	3	1220.09 rad/s

discussed in Section 3.1 have been developed separately for each diff. by considering the low-pass properties of the filters. A more general and automatic tuning approach requiring only the design of one parameter is proposed here. It relies on the filter interpretation of the diffs.

Table 3

 3 

	.8.

Table 3 .

 3 8: Approximation results for the first-order derivative of the signal in Example 3.8 for N = 1, ω c = 8πf 1 rad/s using the automatic tuning approach with κ * P = 0.99. All diffs. are parametrised such that ϑ is the zero of the N + 1 OP of interest. The delay and the filter window length are given as multiples of the sampling period t s .

		Hermite diff.	Lag. diff.	Jac. diff.
				T = 7.25 ms,
	cutoff freq. in rad/s 1215.18	1816.02	476.23
	delay δ t	18	11	11
	window length T L	34	67	35
	SNRout in dB	20.68	22.82	25.05
	SBR in dB	26.04	24.86	23.76

µ = 1.6 ms, T = 1.5 ms α = 3.898, T = 0.66 ms α = 1.467,β = 1.216 delay, and equal SBR. The cost (3.30) for this diff. is equal to 6 • 10

  , it is claimed that at least 50% of electric motor failures start as bearing failures. According to[START_REF] De Azevedo | A review of wind turbine bearing condition monitoring: State of the art and challenges[END_REF], vast quantities of failures of wind turbines are caused by bearing failures. To prevent catastrophic damages and costly downtime, early detection of failures is thus crucial.Bearing faults can be classified into single, multiple, or distributed point faults. The single point defects are single localised defects on an intact bearing surface and may be cracks, pits, or holes on the inner race, outer race, roller elements, or cage. These defects generate characteristic frequencies that appear in the vibration or acoustic emission signals and depend on the bearing geometry as discussed in[START_REF] Mcfadden | Model for the vibration produced by a single point defect in a rolling element bearing[END_REF] and Smith

  This section is structured as follows. The physically motivated model for the vibrations is discussed in Section 4.2.1. The estimation of the model parameters and the diff. parametrisation is explained in Section 4.2.2. An approach for the computation of a failure detection threshold is proposed in Section 4.2.3. Finally, the approach is validated using different experimental4 data sets in Section 4.2.4.

	4.2. Model-based fault detection for rolling element bearings
	Bearing pedestal
		x
	c	d
	Figure 4.10: Simplified model of a rolling element bearing.
	meet a desired probability of false alarms.	
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	5.1 Background material on Dynamic Regressor Extension and Mixing
	Consider a piecewise constant unknown parameter vector θ ∈ R n satisfying the LRE

5.1 Background material on Dynamic Regressor Extension and Mixing . . . . . . . . 5.1.1 Gradient-descent estimator and persistent excitation . . . . . . . . . . . . 5.1.2 Dynamic Regressor Extension and Mixing . . . . . . . . . . . . . . . . . . . 5.2 Two modifications of the DREM approach . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 A first modification of the DREM approach . . . . . . . . . . . . . . . . . . . 5.2.2 A second modification of the DREM approach . . . . . . . . . . . . . . . . . 5.3 Validation of the approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5y(t) = φ T (t)θ (5.1) with the known and bounded signals y : t → y(t) ∈ R and φ : t → φ(t) ∈ R n . LRE of the form (5.1) appear in numerous problems of parameter estimation and adaptive control (see, 5. ON THE PROBLEM OF PARAMETER ESTIMATION

  The action of an operator H : L p → L p on a signal u : t → u(t) is denoted by H[u](t). The identity matrix of size n is denoted by I n . The adjugate matrix of an n × n matrix M is denoted by adj{M }. A matrix inequality of the form A 1 > A 2 , where A 1 and A 2 are square matrices of the same dimension, means that A 1 -A 2 > 0, i.e., that the matrix A 1 -A 2 is positive definite. Similar notations apply to the concepts of positive semi-definiteness, negativ definiteness, and negative semi-definiteness.

  , the error e θ exponentially converges to zero, if and only if φ ∈ PE. Moreover, its norm e θ is monotonically non-

	increasing, i.e.,		
	e θ (t 1 )	e θ (t 2 ) , ∀t 1 t 2 ∈ R 0 .	(5.4)
	Persistence of excitation is a restrictive condition for most practical applications. In Ara-
	novskiy et al. (2017) an approach called DREM with weaker convergence conditions has been
	proposed and is now briefly recalled.		

Table 5 .

 5 1: Jac. diffs. used for the generation of new equations in the first experimental case study and the value of the error norm (3.12) quantifying the effects of the discretisation for ω c = 500 rad/s.

	Approach	diffs. error norm (3.12) in dB	T
	gDREM and Alg. N eq = 2 Alg. N eq = 3 Alg. N eq = 6	g 0,ϑ,T (35,36) g (36,35) 0,ϑ,T g (35,37) 0,ϑ,T g (36,36) 0,ϑ,T g (37,35) 0,ϑ,T g (35,40) 0,ϑ,T g (36,39) 0,ϑ,T g (37,38) 0,ϑ,T g (38,37) 0,ϑ,T g (39,36) 0,ϑ,T g (40,35) 0,ϑ,T	-99.324 -99.324 -96.274 -96.600 -96.274 -101.819 -103.075 -103.721 -103.721 -103.075 -101.819	22t s 22t s 22t s 22t s 22t s 23t s 23t s 23t s 23t s 23t s 23t s

The experimental validation of the approach for the fault detection in rolling element bearing elements developed in this thesis would not have been possible without the use of the publicly available experimental data sets. The author of this thesis is greatly indebted to the research centres providing them.

See the survey[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] for a detailed discussion of the history of diffs. based on Jacobi diffs.

Different convergence definitions (e.g., convergence in the mean, uniform convergence, absolute convergence, pointwise convergence) can be considered for an infinite series of the form(2.1). A series might convergence if one definition is used and diverge for an other. This will be addressed in detail in the sequel.

The reader is referred to the beautiful work[START_REF] Davis | The mathematical experience[END_REF] where the history of Fourier expansion has been presented, and the evolution of the mathematical thinking has been presented.

When f 1 and f 2 are complex functions, f 2 must be replaced in (2.2) by its complex conjugate. The reader is referred to[START_REF] Szegö | Orthogonal polynomials[END_REF] for a more general definition of the scalar product by a Stieltjes-Lebesgue integral. This definition is required for the analysis of functions of discrete variables, for example.

Appendix A.1 summarised useful properties of classical OPs. The notation #A.1 indicates the item in the appendix A where further details on a particular mathematical notion are given.

The proof of Theorem 2.3 follows the lines of the proof developed in[START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF] for the numerical differentiation using Jacobi OPs.

A similar procedure can be used for the interval Iw = (-∞, a].

When an open or half-open orthogonality interval Iw is used the function f(n) needs to be replaced in the following by the extended function as discussed in detail in Section 2.2

For a function f and a = ∞ the notation f (a) should be read as f (a) = limτ→∞ f (τ )

The nomenclature of the errors follows the lines of[START_REF] Mboup | Numerical differentiation with annihilators in noisy environment[END_REF].

A rational function is called proper if, and only if, the degree of the nominator is less or equal to that of the denominator.

Recall from the classical rules of operational calculus that d ds in the operational domain corresponds to a multiplication by -t in the time domain (see, e.g.,[START_REF] Doetsch | Introduction to the theory and application of the Laplace transformation[END_REF];[START_REF] Mikusinski | Operational calculus[END_REF]).

This subsection stems literally from[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF].

It is straightforward to show that this condition is satisfied for the diffs. based on classical OPs discussed in Section 2.4. Indeed, as discussed in(Mallat, 1999, P. 124), it is sufficient to see that in this special case F {h} is continuously differentiable and satisfies F {h} (0) = 0.

The pointwise product of two functions f and g is denoted by f • g.

Recall that this corresponds to the assumption on f (n) used for the derivation of the diffs. using the approximation-theoretic approach in Section 2.1.2. 

This time-domain interpretation of the numerical differentiation using Jacobi OPs has first been described in[START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF];Kiltz and Rudolph (2013).

These bibliographical and historical comments related to the Jac. diffs. stem entirely from[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]. The reader is referred to this reference for a more detailed discussion and an exhaustive survey of applications of Jac. diff.

A similar table summarizing the properties of Jac. diffs. has first been published in[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] 

The bilinear discretisation scheme is also known as Tustin's method after the British engineer Arnold Tustin 1899-1994.

The direct form I is not a realisation with the minimum number of shift operators as discussed in(Oppenheim & Schafer, 1975, Sec. 

4.3). Different other forms known as canonic forms can be derived and use the minimum number of shift operators. However, the direct form I is used in this section due to its simplicity.

The theoretical part of this subsection has first been published in[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF]. The experimental validation and the comparison of the different diffs. are first published here.

The set R>x is defined as R>x = {y ∈ R|y > x}.

The weight ξ in (4.1b) corresponds to the change in momentum of the ball as a result of the collision (see(Kiltz, 2017, Sec. 4.1) for more details)

The convolution of two functions f and g is written f g.

The experimental validation of the approach developed in this work would not have been possible without the use of the publicly available experimental data sets. The author is greatly indebted to the research centres providing them.

Recall that for a square n × n matrix M it holds that adj{M (t)} M (t) = det{M (t)}In.

It can be recognised, that the gain computed using(5.13) corresponds to a solution of the equation L(t)Φ(t) = f (Φ(t)) Γ. The QR or the Singular Value decompositions can be used to compute the inverse of Φ(t) as discussed, for instance, in[START_REF] Golub | Matrix computations[END_REF] or[START_REF] Press | Numerical recipes: The art of scientific computing[END_REF] in the context of linear algebraic equations.

For the determination of the rank of a matrix using a QR factorisation the reader is referred to(Golub & Van Loan, 2013, Sec. 5.4.3), for example.

In[START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF] a least squares interpretation is attached to an algebraic identification approach.

See Preisig and Rippin (1993a, 1993b) for a detailed review on modulating functions.

This equation can also be recovered using differential-algebraic manipulations in the operational domain as discussed in[START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF]. This can be easily seen by recalling the differential-algebraic derivation of Jac. diffs. inSection 2.4.3. 

See https://www.quanser.com/products/rotary-flexible-joint/ (accessed: 31:07:2021) for more details.

Photo of flexible joint system from https://www.quanser.com/products/rotary-flexible-joint/ (accessed: 31.07.2021)

[START_REF] Othmane | Analysis of the parameter estimate error when algebraic differentiators are used in the presence of disturbances[END_REF] the errors arising in the estimation of parameters using this approach with Jac. diff. are discussed. In[START_REF] Othmane | Survey on algebraic numerical differentiation: Historical developments, parametrization, examples, and applications[END_REF] an approach for the choice of the parameters of Jac. diff. for this application is discussed in detail.

Lag. Jac.

Figure 3.24: Amplitude spectra of the differentiatiors parametrised using the automatic tuning approach for the estimation of the first and second-order derivatives of the signal x from Example 3.8. The parameters of the diffs. are summarised in Tables 3.9 and 3.10.

Table 3.9: Approximation results for the second-order derivative of the signal in Example 3.8 for N = 1 using the automatic tuning approach with κ * P = 0.99. All diffs. are parametrised such that ϑ is the zero of the N + 1 OP of interest. The delay and the filter window length are given as multiples of the sampling period t s .

Hermite diff.

Lag. diff. Jac. diff. µ = 1.6 ms, T = 1.5 ms α = 8.93, T = 0.41 ms α = β = 6.04 to the optimal solution, yields a delay of 15t s and a SNRout equal to 12.36 dB and the same SBR. The cost function for this diffs. is 1 • 10 -5 , which is close to that for the optimal solution.

Thus, a very efficient IIR implementation can be used without altering the results.

The approximation results when κ * P = 0.98 are summarised in Table 3.10. It can be seen that the cutoff frequencies decrease in comparison with those computed for κ * P = 0.98. This is not surprising since reducing the cutoff frequencies is required to attenuate the signals more.

The time-evolution of the approximated derivatives is given in Fig. 3.25. Similar observations can be made regarding the delay, the SNRout and the quality of the approximation as before.

A detailed discussion is thus omitted. Comparing the results with those achieved with the systematic tuning guidelines shows, for example, for the Jac. diff. that a higher SNRout can be achieved with a lower delay.

Concluding remarks

The previous examples show that the proposed approach for the automatic tuning of the differentiators is promising and reduces the number of free parameters to a single one. The

Jacobi differentiator

The window length of the Jac. diff. g with the previously mentioned parametrisation equals 274 sampling periods. Thus, computing the first-order derivative of the force F using ġ and the third-order derivative of the displacement using g (3) requires 1094 arithmetic operations in each sampling step, if the mid-point rule is used for the discretisation. For the implementation, 548 filter coefficients and past measurements have to be stored. In contrast, the recursive implementation schemes briefly discussed in Section 3.2.3, has been used in (Kiltz et al., 2014, Sec. 4.3) to reduce the required arithmetic operations by 88.1 % and the storage requirements by 84.3 %. Thus, 130 operations are required in each step, and only 86 filter coefficients have to be stored. The recursive approximation of Ḟ and y (3) require an implementation in a 26 bit and 33 bit fixed point arithmetic system, respectively.

Laguerre differentiator

Discretising the Lag. diffs. for the approximation of Ḟ and y (3) as in Section 3.2.2 by an infinite-impulse response (IIR) filters using the bilinear transform yields the recursive scheme , and q 0,F = 2 t s 5 p 0 , q 1,F = 8 t s 5 p 0 , q 2,F = 10 t s 5 p 0 , q 3,F = 0, q 4,F = -10 t s 5 p 0 , q 5,F = -8 t s 5 p 0 , q 6,F = -2 t s 5 p 0 , q 0,y = 8 t s 3 p 0 , q 2,y = -24 t s 3 p 0 , q 4,y = 24 t s 3 p 0 , q 6,y = -8 t s 3 p 0 , q 1,y = q 3,y = q 5,y = 0.

Thus, the approximation of the two derivatives requires storing 16 filter coefficients, 12 past filter outputs (six for each) and 12 measurement samples (six for each). In very sampling period, 42 arithmetic operations have to be performed to compute the residual r.

For the annihilation of the disturbance stemming from the audible mechanical eigenmode of the plate, the mentioned notch filter can be discretised using the bilinear transform with

Remark 4.1: Shaft rotating with time-varying velocity

It is assumed for notational simplicity that the shaft is rotating with a constant velocity.

The generalisation of the approach is straightforward by assuming the velocity to be known. The system parameters are then a function of the velocity. The experimental validation shows that a set of identified parameters can yield good results for intervals of velocities.

The displacement t → x(t) of the bearing pedestal satisfies

where m b ∈ R denotes the mass of the outer race and associated bearing pedestal, d ∈ R and c ∈ R the damping and stiffness of the outer race and pedestal, respectively, and u 0 ∈ R the input gain. The system is excited by the input u. Model uncertainties and forces acting on the system such as gravity or radial forces are summarised in h : R → R. In the sequel it is assumed that

and that the input u satisfies the differential equation

i.e., u is a harmonic function with frequency ω u . Due to the introduction of the Dirac impulse in the model, functions are identified with their induced distributions in the sense of Schwartz (see, e.g., [START_REF] Schwartz | Théorie Des Distributions[END_REF]) in the following.

In practice, the acceleration ẍ is measured by vibration transducers mounted at the bearing pedestal. In the sequel the measurement is denoted by ỹ and is assumed to satisfy ỹ = y + η, with y = ẍ and η an additive disturbance.

Parameter estimation

To estimate all unknown parameters of the model (4.5) an equation involving only known signals and their derivatives is required, i.e., the input u has to be eliminated and the acceleration y incorporated. Differentiating (4.5b) twice with respect to time and using the model of the input (4.5d) yields

By differentiating the latter equation twice and using the assumption (4.5c) the model uncertainties vanish and a formulation

with the acceleration y and the fault force f is obtained. In the latter equation

1/m b , and q 2 = ω 2 u /m b . Equation (4.6) can now be used to identify the parameters p i , i = 0, . . . , 3. Since the fault f is unknown, the identification of q i , i ∈ {2, 4}, is not necessary.

Summary and concluding remarks

The previous two sections clearly illustrate that numerical differentiation using orthogonal polynomials (OPs) does not only perform well in simulation studies but also in experimental ones. The successful detection of collisions of a table tennis ball with a mass of 2.7 g on a magnetically hovering plate with mass equal to 4.7 kg using the measurement of the vertical displacement of the plate and Jacobi and Laguerre diffs. shows that even in highly disturbed environments higher-order derivatives can be reliably estimated. The approach based on the Lag. diff. does not only achieves a lower detectable minimum falling height of the ball but also considerably reduces the computational burden and the required storage capacities. The implementation of the Jac. diff. for the specially chosen parametrisation shows that the ability to eliminate harmonic disturbances without additional filters is a decisive advantage of these numerical differentiation schemes as previously reported in [START_REF] Kiltz | Algebraische Ableitungsschätzer in Theorie und Anwendung[END_REF]; Kiltz et al. (2013); [START_REF] Kiltz | Fault-tolerant control based on algebraic derivative estimation applied on a magnetically supported plate[END_REF]; Kiltz and Rudolph (2013). The use of the Jac. diffs. for the model-based fault detection of rolling element bearings has shown that combining a simple physically motivated model and numerical differentiation can yield powerful tools for fault detection. These tools, validated using different experimental case studies, do not require extensive training with large data sets.

DREM-operators

Different formulation for the BIBO-stable operators H have been introduced in the literature.

In [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF], exponentially stable low-pass filters of first order and pure delay operators are discussed. In [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF], a generalisation of the latter two operators is proposed in form of linear time-varying operators

∈ R time-varying functions, T i 0, and i ∈ {1, . . . , n -1}.

In (Ortega et al., 2021, Prop. 4), it is shown that Kreisselmeier's regressor extension developed in [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] is a special case of the latter operators. Linear time-varying operators are used in [START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF] to attach a Luenberger observer interpretation to this parameter estimation approach.

Parameter estimation

Multiplying both sides of (5.5) with the adjugate of Φ(t) yields 1

with

(5.6b)

The relation in (5.6a) can also be written componentwise for each element of the parameter vector θ as Y i (t) = ∆(t)θ i , i ∈ {1, . . . , n}. The parameters θ i , i ∈ {1, . . . , n}, can be estimated in continuous-time by the gradient-descent estimator

proposed in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]. The estimation errors e θ,i = θ i -θi , i ∈ {1, . . . , n}, According to [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF], this estimation approach has three main advantages over the standard gradient-descent estimator. First, the individual parameter errors in (5.8)

A first modification of the DREM approach

The first idea for a modification of DREM is based on the generalisation of (5.6) to

with Γ = diag(γ 1 , . . . , γ n ) a diagonal matrix with positive diagonal entries and the function

(5.12b)

A matrix L that satisfies (5.12) is 2

for det{Φ(t)} = 0, 0, otherwise.

(5.13)

The estimation error e(t) = z(t)ẑ(t) satisfies the differential equation (5.11), which for this choice of L becomes ė(t) = -f p (Φ(t))Γe(t). Its solution is

The individual components e i , i ∈ {1, . . . , n}, of the error e can be written as

The derivations above establish the following result and it is easy to verify that for p = 2 the DREM approach with the adjugate matrix is recovered.

Proposition 5.1: First modification of DREM

Consider the estimation error e = zẑ(t) with z from (5.9) and ẑ(t) from (5.10), where the gain L is computed according to (5.13). The following equivalence holds

for all components e i , i ∈ {1, . . . , n}, of the error e. The convergence is exponential if

The condition t → det{Φ(t)} ∈ L p , p ∈ (0, ∞), is less restrictive than the condition recalled in Section 5.1.2 requiring that t → det{Φ(t)} is not square integrable, as demonstrated in the following example for p = 1.

Example 5.9 Example for first DREM modification

Consider the regressor While this modification of DREM yields weaker convergence conditions, no adaptation is performed as soon as one parameter is not excited. This shall be overcome in the next modification of DREM, which is an extension of the first one.

A second modification of the DREM approach

Suppose Φ(t) has rank 3 κ(t) ∈ N. Using a QR factorisation with column pivoting (see, e.g., (Golub & Van Loan, 2013, Sec. 5.2)), the matrix Φ(t) can be decomposed as 5.14) at each instant t, with Q(t) ∈ R n×n an orthogonal matrix, R(t) ∈ R n×n an upper triangular matrix. The matrices R 1 (t) and R 2 (t) of dimensions κ(t) × κ(t) and κ(t) × κ(t), respectively, contain the information stemming from the excited parameters. These can be extracted from the parameter vector using the permutation matrix Π(t). If Φ(t) has full rank, i.e., κ(t

As opposed to the standard DREM with the adjugate operator in (5.6), or the generalisation proposed in (5.12), the extension and mixing is now performed in a different but closely related manner.

Proposition 5.2: Second modification of DREM

Consider the estimation error e = zẑ with z from (5.9) and ẑ from (5.10) where the gain t → L(t) is computed at each instant t as

with Γ = diag(γ 1 , . . . , γ n ) a diagonal matrix with positive entries and

where Π(t), R(t), Q(t), R 1 (t), and R 2 (t) are given in (5.14). The errors e i , i ∈ {1, . . . , n} satisfy decoupled differential equations. If 5.16) then lim t→∞ e i (t) = 0. Moreover, the convergence is exponential if det{Φ(t)} ∈ PE.

Proof. For notational simplicity, let

Definition 5.10: Modulation function (Preisig and Rippin (1993a))

A function φ : [0, T ] → R is called a modulating function (of order α ∈ N) if it is sufficiently smooth and if, for some fixed T

for all i ∈ {0, . . . , α -1}.

From Definition 2.8 of Jac. diff. g (α,β)

N,T,ϑ , it is clear that it is a modulating function of order min(α, β). This property of Jac. diffs. has been used in [START_REF] Liu | Non-asymptotic state estimation for a class of linear time-varying systems with unknown inputs[END_REF] for the simultaneous estimation of the state and unknown input of a nonlinear system. It is now used for the estimation of the frequencies ω 1 and ω 2 .

It is well known that the signal y from (5.18) satisfies the differential equation

Thus, according to [START_REF] Mboup | Parameter estimation for signals described by differential equations[END_REF] the parameters θ 1 and θ 2 are linearly identifiable. On the other hand, the parameters ω 1 and ω 2 , which are algebraic functions of θ 1 and θ 2 , are weakly linearly identifiable. The latter equation is used in the following for the estimation of θ 1 and θ 2 . Denote by θ1 and θ2 the corresponding estimates. The estimates of the frequencies ω 1 and ω 2 , denoted in the sequel by ω1 and ω2 , respectively, can then be computed as the positive roots of the polynomial λ 2 + θ1 λ + θ2 .

Let g i = g

(αi,βi) 0,Ti,ϑ be a Jac. diff. with α i , β i > 3 and denote by

For notational simplicity, the explicit time dependence of signals is dropped in the sequel.

Convolving both sides of the differential equation (5.19) with g i yields 6 ,

Two approaches for the estimation of the frequencies are now discussed:

1. Using N eq 2 different Jac. diff. a linear system of equations

1 , . . . , ŷ( 4) Neq ] T and Φ = [φ 1 , . . . , φ Neq ] T is generated. For N eq > 2 the system is overdetermined and a least squares solution can be computed. In all cases the solution can be computed using a Singular Value Decomposition as described in Press et al.

Validation of the approaches

Mathematical model of the system

Denote in the following by φ B the angle of the tower with respect to some reference as shown in Fig. 5.6. The deflection of the joint with respect to a fixed reference on the tower is denoted by φ J . A viscous damping with parameter d is assumed for the joint and the springs shall be approximated by a linear torsion spring with stiffness c T . Neglecting the electrical dynamics of the system and applying the Lagrange formalism yield the differential equations φJ = -Θcφ J -ΘD φJ + K φBbu (5.23a)

with u the voltage applied to the DC motor. In the latter equations the parameters are:

with Θ B and Θ J inertia parameters of the tower and the link, respectively, K u the motor constant, and R the electrical resistance in the motor. The knowledge of the parameters Θ B , Θ J , R, K u , d, c T is not required for the design of controllers or observers. Only the numerical values of Θ, c, D, K, and b are required. Their estimation is now discussed.

Parameter estimation

Let g = g (α,β) 0,T,ϑ be a Jac. diff. with α, β > 1 defined in Definition 2.8 and denote by

the approximation of the n-th order derivative of some square integrable function f . Convolving both sides of (5.23a) and ( 5 

A Special functions and their properties

This chapter lists the properties of special functions used in this work. For a detailed discussion the reader is referred to Abramowitz and Stegun (1965); [START_REF] Lebedev | Special functions and their applications[END_REF]; [START_REF] Szegö | Orthogonal polynomials[END_REF]; [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF].

Chapter content

A