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Titre: Conception numérique axée sur l'analyse de microstructure multi-échelles de matériaux Mots clés: Jumeaux numériques, géométrie stochastique, multi-échelles, morphologie mathématique, apprentissage profond Résumé: Cette thèse propose un nouveau cadre numérique permettant la modélisation et la caractérisation des matériaux poreux. L'approche suivie s'appuie sur des modèles aléatoires pour représenter des microstructures multi-échelles réalistes. Plusieurs méthodes numériques ont été développées pour caractériser le réseau de porosité de microstructures complexes, dont un modèle morphologique qui simule de manière originale la physisorption par gaz via des opérateurs de morphologie mathématique et de percolation. Ce modèle a été validé au moyen de comparaisons avec des données expérimentales de matériaux réels conçus pour cette thèse. L'apprentissage profond a également été exploré avec une contribution proposant une stratégie efficace pour aborder le problème de l'apprentissage sur de petits échantillons. L'apprentissage profond a également été utilisé pour réduire considérablement le temps de calcul du modèle de physisorption par gaz.

Title: Analysis-Driven Design of Digital Multi-scale Microstructures of Materials

Keywords: Digital twins, stochastic geometry, multi-scales, mathematical morphology, deep learning Abstract: This thesis proposes a novel numerical framework allowing the modeling and characterization of porous materials. The approach followed builds upon random models to represent realistic multiscales microstructures. Several numerical methods have been developed to characterize the porosity network of complex microstructures, including a morphological model that simulates in an original way gas physisorption by means of mathemati-cal morphology and percolation operators. This model was validated by means of comparisons with experimental data of real materials designed for this thesis. Deep learning has also been explored with a contribution proposing an efficient strategy to tackle the problem of small sample learning. Deep learning has also been used to considerably reduce the computation time of the gas physisorption model.

Abstract

The global demand for energy is increasing rapidly around the world. Heterogeneous catalysis is behind most of the principles of green chemistry: energy saving processes, atom efficiency, cleaning processes, etc. Catalysis in general, and heterogeneous catalysis in particular, has very quickly become an essential tool for the development of industrial chemistry. Currently, 85 % of the industrial processes used throughout the world are catalytic. In this context, many efforts are being made to optimize heterogeneous catalysts to meet the increasing demand for energy while reducing the environmental impact of fuels. For these reasons, and many others, the design of new catalytic materials today is a hot topic. The current approach regarding the design of catalysts tends towards a controlled elaboration of materials whose texture will be controlled, ordered, and hierarchically structured from the nanometer to the micrometer scale. These catalysts will have to be more active, and stable (energy efficiency), and more selective (saving atoms, less rejects). Within this framework, this research work focuses on the creation of numerical twins of microstructures aiming in-fine the retro-design of porous materials for optimal usage properties. The applications concern catalysis supports and construction materials, with priority given to the improvement of multi-physical properties considering textural properties of these materials.

The contribution of this thesis is a new numerical framework allowing the modeling and characterization of these materials. This new approach builds upon random models to represent realistic multi-scale and complex microstructures. To extract the textural properties of these microstructures, two numerical methods have been developed in a first step. The first one allows us to characterize the porosity network of a microstructure and to compute its pore size distribution, and the second one allows us to compute the geometrical tortuosity of these materials with a fast graph search approach. Regarding the same topic, our major contribution is a morphological model that simulates in an original way gas physisorption by means of mathematical morphology and percolation operators. Gas physisorption is one of the most used experimental techniques for the characterization of the textural properties of porous materials. The model has been validated on real materials designed for this thesis. Deep learning has also been widely explored. First, a new approach building upon convolutional neural networks has been proposed. The latter proposes a solution to improve the learning quality when there is little input training data. A second contribution allowed us to store the morphological information of the previous model in a 3D volume, and to capture inter-slice information into 2D slices. The overall process transformed the initial problem into a deep learning problem, which considerably reduced the computation time of the gas physisorption model.

Résumé

La demande globale d'énergie augmente rapidement dans le monde entier. La catalyse hétérogène est à l'origine de la plupart des principes de la chimie verte : procédés d'économie d'énergie, efficacité de l'atome, procédés de nettoyage, etc. La catalyse en général, et la catalyse hétérogène, est très vite devenue un outil essentiel pour le développement de la chimie industrielle. Actuellement, 85 % des procédés industriels utilisés dans le monde sont catalytiques. Dans ce contexte, de nombreux efforts sont déployés pour optimiser les catalyseurs hétérogènes afin de répondre à la demande croissante d'énergie tout en réduisant l'impact environnemental des carburants Pour ces raisons, et bien d'autres, la conception de nouveaux matériaux catalytiques est aujourd'hui un sujet de grande importance. L'approche actuelle concernant la conception de catalyseurs tend vers une élaboration contrôlée de matériaux dont la texture est maîtrisée, ordonnée et hiérarchisée de l'échelle nanométrique à l'échelle micrométrique. Ces catalyseurs devront être plus actifs, stables (efficacité énergétique), et plus sélectifs (économie d'atomes, moins de rejets). Dans ce cadre, ce travail de recherche se concentre sur la création de jumeaux numériques de microstructures visant in-fine le rétrodesign de matériaux poreux pour des propriétés d'usage optimales. Les applications concernent les supports de catalyse et les matériaux de construction, avec une priorité donnée à l'amélioration des propriétés multi-physiques en considérant les propriétés texturales de ces matériaux.

La contribution de cette thèse est un nouveau cadre numérique permettant la modélisation et la caractérisation de ces matériaux. Cette nouvelle approche s'appuie sur des modèles aléatoires pour représenter des microstructures réalistes multi-échelles et complexes. Pour extraire les propriétés texturales de ces microstructures, deux méthodes numériques ont été développées dans un premier temps. La première nous permet de caractériser le réseau de porosité d'une microstructure et de calculer sa distribution de taille de pore, et la seconde nous permet de calculer la tortuosité géométrique de ces matériaux avec une approche rapide de recherche sur graphe. Sur le même sujet, notre contribution majeure est un modèle morphologique qui simule de manière originale la physisorption par gaz au moyen de la morphologie mathématique et des opérateurs de percolation. La physisorption par gaz est l'une des techniques expérimentales les plus utilisées pour la caractérisation des propriétés texturales des matériaux poreux. Le modèle a été validé sur des matériaux réels conçus pour cette thèse. L'apprentissage profond a également été largement exploré. Tout d'abord, une nouvelle approche s'appuyant sur les réseaux de neurones convolutifs a été proposée. Cette dernière propose une solution pour améliorer la qualité de l'apprentissage lorsque les données d'entraînement en entrée sont peu nombreuses. Une deuxième contribution nous a permis de stocker les informations morphologiques du modèle précédent dans un volume 3D, et de capturer les informations inter-coupes dans des coupes 2D. L'ensemble du processus a transformé le problème initial en un problème d'apprentissage profond, ce qui a considérablement réduit le temps de calcul du modèle de physisorption par gaz. This thesis addresses a research problem, driven by an industrial interest with an objective of providing a numerical tool able to contribute to the development of efficient porous materials. This work is based on several fields, explored in the different chapters within the limits necessary for the development of all the methods and models. The key objective of this work is to propose a model for a physico-chemical problem of major importance. From chapter 2 to chapter 5, the foundations of this model as well as some related applications are presented. Chapter 6 presents the model. The following chapters build upon it and propose several improvements. Here, we answer the following questions:

• What is the scientific problem addressed, and what are its industrial interests?

• How is the physico-chemical phenomenon related to this problem?

• And how do we intend to build a mathematical model that allows its representation? Porosity is the key to high-performance materials for the energy efficiency of industrial processes: in energy storage systems, environmental technologies, catalysis, bio-catalysis or for separation and purification operations. The role of porosity consists in controlling the capacity of solid-state materials to store liquids and gases. For such applications, porous materials derive their properties from their particular microstructure, featuring a large quantity of void spaces distributed over a multi-scale size distribution ranging from nanometer to micrometer scale. Figure 1.1 shows microscopy images of a real porous material (described and analyzed in chapter 3). These images reveal that porous materials look like worlds a part. The interior architecture of porous materials is crafted by many factors such as the chemical species composing the material as well as their synthesis process. Another way to realize how fascinating porous materials are is to consider the specific surface area which describes the sum of the boundary surfaces the material (inner and outer surfaces). Considering the internal surface of one gram of a porous material as an even, plane area, the surface of one the materials used in this thesis would cover a few hundred square meters, that of zeolites covers 800 square meters, graphene would reach a surface of almost 3000 square meters, and recently a newly developed material of the name DUT-60 has reached a record of 7800 square meters [HSB + 18], the equivalent of a football field encompassed in one gram.

The design of high-performance materials implies the ability of well controlling the textural properties (pore volume, specific surface area, etc.) in view of the targeted properties while ensuring the mechanical stability of the material. It is in this context that computational methods and simulations are involved by providing a rich ground for experimentation.

In this thesis, we adopt an innovative approach based on numerical twins, developed from random microstructure models and fitted by numerical models that mimic experimental procedures.

While this approach could be applied to a wide range of experimental procedures, here we choose to focus on the gas physisorption technique. It is widely popular and routinely used for the characterization of porous materials.

The modeling of the experimental aspects of gas physisorption is carried out on simulated three-dimensional microstructures and is based on a purely geometrical approach. That is, the computational framework adopted uses correlations between morphological parameters and physical quantities that characterize the system considered. It is this transition from a physical description of quasi-static states of physico-chemical mechanisms (such as phase changes at equilibrium) to a geometrical and morphological description of the phenomena, that constitues a major challenge. Mathematical morphology, a scientific discipline that has long been interested in the characterization of 2D and 3D textural properties of microstructures, is particularly well suited to solve this challenge. We first develop methods to extract the textural properties of 3D microstructures obtained by random models. We then model the phenomenon of gas physisorption to numerically obtain the adsorption-desorption isotherms. To further optimize the computation time of the gas physisorption model without loss of accuracy, deep learning is used. The numerical results obtained are compared to the experimental data. These comparisons are used to calibrate the model, which allows for reaching the digital twin that best represents the real microstructure. In a nutshell, our workflow is the following:

1. Digital microstructures representation → Random models of microstructures 

Contributions

All the contributions of this thesis have been the subject of accepted publications in international journals and conferences.

PNP method (chapter 5) PNP stands for pore network partitioning. Here, we propose an efficient algorithm based on the distance transform. The followed approach suggests that a distance transform map, obtained from a digital representation of a microstructure, passes through different steps. Starting from local maxima extraction and filtering operation, to end up with another distance transform with source propagation. The method is illustrated on a pore network model as well as a multi-scale random model of complex porous microstructure. The method generates pores in the form of partitions with random geometries of different sizes. The pore size distribution, being an important descriptor for porous materials, can be deduced easily.

GM-tortuosity (chapter 5)

GM-tortuosity stands for graph based M-tortuosity. Here, we propose a new way of calculation, based on a graph structure, of the topological descriptor M-tortuosity introduced in [Cha19b]. The former PNP method is used to extract pores in order to construct a graph from the void of a porous microstructure. In this configuration, pores are the nodes, distances between pores are the arcs between nodes and the goal boils down to the determination of the shortest paths between nodes. Solving this problem on a graph requires a tree search formulation. The added value of this method consists in its simplicity of implementation and its reduced execution time.

Morphology preserving-adsorption model (chapter 6)

Here, the proposed simulation approach allows us to handle the physico-chemical phenomena inside complex materials by means of mathematical morphology operators. The latter are used to efficiently mimic processes such as surface adsorption and pore filling. Fluid percolation that provokes phase transition is simulated by labeled connected components. This method relies entirely on morphological and structural operators, which has the advantage of substantially reducing the calculation time compared to that of density functional theory and molecular simulationsbased approaches. In contrast to oversimplified models characterized by ideal pore shape and unconnected pores, this model enables us to calculate the adsorption-desorption isotherms of realistic random models where pore morphology and porous network topology are unknown beforehand. The model has succeed in reproducing the physisorption isotherms of well-known materials (SBA-15 and KIT-5), mesoporous alumina, as well as the other materials designed for the purpose of this thesis.

A deep learning strategy for small sample learning (chapter 7)

To handle cases with limited number of training samples, this contribution proposes a learning strategy that consists of enhancing the learning process by adding structural information with specific distance transform to the input image data, as well as a patch-based procedure with a stratified sampling method at inference. The ability of the approach to segment and predict images is investigated through the ISBI 2012 segmentation challenge dataset and generated electric field CHAPTER 1. INTRODUCTION dataset, respectively. The proposed techniques demonstrate that the established framework is a reliable estimation method that could be used for a wide range of applications. In particular, for the prediction of the adsorption-desorption isotherms, which is the subject of the next contribution.

A deep learning morphology-preserving adsorption model (chapter 8)

In this contribution, we propose a two-step approach to overcome the issue of computation cost of the aforementioned morphology-preserving adsorption model. The first step is to encompass physico-chemical calculation data into 3D adsorption maps. The second step is to train an encoder-decoder convolutional neural network on these maps, to estimate adsorption maps. Using this new approach, the computation time of the adsorption curve for a single run (512 × 512 × 512 voxels) can be reduced by a factor of at least 30. • PNP method : https://www.plugim.fr/plugin/104
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• GM-tortuosity : https://www.plugim.fr/plugin/106

• Morphology-preserving adsorption model : https://www.plugim.fr/plugin/113 CHAPTER 1. INTRODUCTION 

. Introduction

The outline of this chapter is organized as follows: a brief introduction of heterogeneous catalysis and catalytic materials is first given in section 2.2. The following section 2.3 is devoted to a presentation of porous materials, including a definition of porous structures, and their properties. Section 2.4 depicts the technique of gas physisorption, which allows the characterization of porous materials. This part relates the evolution of this technique over time and addresses underlying physico-chemical mechanisms in order to emphasize the constraints and the complexity of these phenomena. The morphological model developed in chapter 6 is directly based on the conclusions drawn in this section. The final section 2.5 presents illustrations of the state of the art in gas physisorption models, discussing their strengths and weaknesses. The objective is to define the guideline of this work and to identify the areas of improvement to overcome the limitations of the methods mentioned.

. Hetetogeneous catalysis

Materials science is the scientific discipline that allows us to respond to an infinite number of demands imposed by the modern industrial context, supporting technological and social progress in all fields [START_REF] Fechete | Védrine : The past, present and future of heterogeneous catalysis[END_REF]. Most processes in the chemical and petroleum industries use catalysts. The International Union of Pure and Applied Chemistry (IUPAC) defines a catalyst as "a substance that increases the reaction rate without changing the overall standard Gibbs energy" [TKN + 15]. In other words, catalysts enable to improve the reaction speed and/or selectivity towards the desired products. The catalytic reaction is a cyclic process and the catalyst is restored after each catalytic act. Catalysts can be liquids, gases or solids. During the catalytic reaction, reactants form complexes with the catalyst, thereby causing their conversion into products. If the catalyst and reactants form a common physical phase, the reaction is called homogeneously catalyzed. However, when the catalyst and reactant exists in the form of two separate physical phases, the process is called heterogeneous catalysis. It generally involves solid phase catalysts and fluid phase reactants. In this case, a cycle of molecular adsorption, reaction and desorption occurs on the catalyst surface [START_REF] Bönnemann | catalysis-concepts and green applications wiley-vch[END_REF]. Solid catalysts can be found in the form of bulk materials like the family of metals, oxides, sulfides, etc., or supported on a catalytic support such as alumina, silica, zirconia, etc. [START_REF] Fechete | Védrine : The past, present and future of heterogeneous catalysis[END_REF]. In this work, we will focus mainly on alumina supported heterogeneous catalysts. The performance of the catalytic process is linked to the catalyst network structure, via its impact on mass transfer properties. There is a need to develop models that can represent not only the whole complexity of the catalyst pore network but also allow the modeling of physico-chemical phenomena that take place during the characterization of these materials. These models are essential so as to optimize and design tailor-made catalytic materials with specific structures [START_REF] Fechete | Védrine : The past, present and future of heterogeneous catalysis[END_REF].

. Porous materials

Technological advances have allowed the creation of a variety of complex porous materials as well as the design of advanced experimental protocols and computation methods to characterize these materials. Three levels of analysis must be considered for a comprehensive characterization of porous materials [START_REF] Kenneth | Characterization of porous materials: past, present and future[END_REF]. The first one concerns the evaluation of the textural properties (e.g., pore volume, surface area, and pore size distribution, etc). Then, the shape of the pores, the surface roughness, and the surface fractal dimension. Finally, the modeling of the topological characteristics of disordered pore networks [RAF + 94]. The evaluation of porosity allows a better control of the chemical reactivity of solids and of the physical interaction of solids with gases and liquids. A porous material can be defined as "any solid material which contains cavities, channels or interstices" [RAF + 94]. In describing a porous material, the pores can be classified according to their availability to an external fluid, and to their morphology. For instance, figure 2.1 shows pores totally closed as in area (a), dead-end pores (area b), and open at two ends (area c). In terms of morphology, we distinguish between cylindrical (area b), ink-bottle shaped (area d), slit-shaped (area e) or having a random geometry (area f). 

. Porous structure

Two forms of porous structures can be distinguished: agglomerates and aggregates. Agglomerates are the assembly of nonrigid, macroscopic bodies in a nonconsolidated way. Aggregates are consolidated, rigid packed assemblages of individual particles. Particles are either non-porous or porous. In the case of non-porous particles (like sand), porosity is formed by inter-particles void, and therefore finds its topology and morphology of pores shaped by the size of particles, their morphology and the way they were packed. For porous particles (like spray-dried catalysts), porosity is made of intra-particles and inter-particles void (Figure 2.2). Although the intra-particles void will not have a consequent contribution to the total pore volume as the inter-particles void, the surface area can be sensitively affected. Porous materials inherently depend on the structure of the material. In the case of crystalline structures (like zeolites), pores are of molecular dimensions and form highly regular networks that constitute CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION the agglomerate structure of zeolites. In the case of aggregates, the pore network structure is the result of the arrangement of primary particles and their size. A subtractive route to create porous materials consists of removing elements of the original structure to create pores (porous metal oxides by thermal decomposition of hydroxides, porous glasses by chemical etching of multiphase solids, etc) [RAF + 94].

Aggregate primary particle

Intra-particles pores

Inter-particles pores 

. Description of porous structures

A porous material can be qualitatively described by evaluating pore volume, specific surface area, and pore size. In the following, these textural properties are addressed point by point.

• Porosity is defined as "the void fraction of empty space within a porous material". Pore volume can refer to open porosity (open pores only) or closed porosity (closed pores) or both types of porosity. The value of porosity depends on the experimental method used to evaluate it. Fluid-based methods give only access to open porosity and is constrained by the size of the molecular probe (adsorbate molecular size). Radiation methods give access to both open and closed pores.

• Specific surface area is defined as "the accessible area of solid surface per mass unit of material". It is also dependant on the experimental method used (size of probe used, wavelength of radiation, etc). The specific surface area measurement is subject to interpretation due to the simplified models used for pore analysis, and therefore its validity depends inherently on the assumptions of the model used.

• In most analysis of porous solids, the size of pores is a major parameter. However, the irregularity of pores and the highly variability of their shapes lead to several definitions CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION of pore size. It is not obvious to consider one shape of pores for the entire material because the same material may contains pores of different shapes. The connections between pores, having different sizes, shapes and locations complicates further the notion of "pore size". For simplicity, the shapes of pores are often assumed as cylinders (like alumina), prisms (some fibrous zeolites), slits (activated carbons), or spheres (silica gel) [RAF + 94]. When the shape of pores is well defined, the pore size has a precise meaning which could be the diameter of the cylindrical or spherical pore or the width of the slit-shaped pore.

2.3.3 . Conclusions Some conclusions can be drawn in view of the definitions given in the above, in order to lay the axiomatic basis for what will follow.

• The aforementioned textural features of porous materials are highly complex.

That is, the theoretical concepts aiming at describing pores are inherently dependent on simplifying assumptions.

• Therefore, pore structures are often based on model systems with assumptions regarding pore morphology and pore network connectivity.

• The measurements of textural features depend on the experimental method used. One should keep in mind that the recorded values by a certain method do not reflect the absolute value of the property. Each method provides information highlighting certain aspects of the materials with respect to its own limitations.

. Gas physisorption

2.4.1 . Historical glimse The derivation of the fundamental equation of capillary condensation by Lord Kelvin in 1871 (the Kelvin equation), has attracted interest and was adopted by early investigators (Zsigmondy, 1911, Anderson, 1914, and Patrick, 1920, and others) [START_REF] Kenneth | Characterization of porous materials: past, present and future[END_REF]. At the beginning of the 20th century, the interest in the characterization of porous materials was motivated by the increasing importance of industrial adsorbents and catalyst supports. This period has been marked by the publication of the theory of multimolecular adsorption [START_REF] Brunauer | Physical Adsorption of Gases and Vapours[END_REF] by Brunauer, Emmett, and Teller (BET). For the rest of the century, the BET-nitrogen (using low temperature nitrogen adsorption) method had become a standard procedure for surface area and pore size distribution. Wheeler, 1946 andShull, 1984 have proposed corrections regarding nitrogen multi-layer adsorption on the pore walls, which has led to several empirical methods for the estimation of the thickness of adsorbed layers. Namely, the BJH method proposed by Barett, Joyner and Halenda (1951) followed by [START_REF] Broekhoff | Studies on pore systems in catalysts: IX. calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores a. fundamental equations[END_REF], who have suggested enhancements in the mathematical analysis of nitrogen adsorption [START_REF] Haul | Adsorption, surface area and porosity. 2. auflage, academic press, london 1982. 303 seiten, preis: $ 49.50[END_REF]. At the same period, adsorption hysteresis has puzzled researchers involved in the subject of physisorption by trying to find an explanation for a phenomenon that raises concerns regarding coherence with CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION the basic principles of thermodynamics. A classification of the reproducible hysteresis loops exhibiting different shapes had been proposed by de Boer, which became later a standardized classification of adsorption isotherms [RAF + 94]. At this point, the study of factors behind adsorption hysteresis is still an active area of research [START_REF] Schlumberger | Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry-a tutorial review[END_REF]. Over the past 30 years, great progress has been made in the physisorption field as well as in the design of model mesoporous materials (MCM-41, SBA-15, etc). These highly ordered materials, with uniform channels and controlled width, allowed direct experimental tests based on X-ray diffraction, and high-resolution transmission electron microscopy methods, in order to check the validity of the macroscopic and thermodynamic models (Kelvin-based methods). The limitations found showed that these models underestimate the pore size in a certain pore range. On the other hand, microscopic methods based on molecular simulation (GCMC) or DFT (Density functional theory) have gained interest and became a potential alternative to overcome the limitations of classical thermodynamic models. Pioneering work of DFT, studying the phase behavior of fluids in confined pores, was first introduced by [Tar85], followed by LDFT (Local density functional theory), which presented a novel analysis method for the determination of the pore size distribution, over both micropore and mesopore size, of porous carbons from nitrogen adsorption measurements [START_REF] Seaton | A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements[END_REF]. Shortly after, the widely used NLDFT (Non local density functional theory) [START_REF] Lastoskie | Pore size distribution analysis of microporous carbons: a density functional theory approach[END_REF] was proposed, and has known refinements since then (such as QSDFT [START_REF] Peter | Density functional theory model of adsorption on amorphous and microporous silica materials[END_REF]). Regarding adsorption hysteresis, the publication of IUPAC report for the classification of physisorption hysteresis loops in 2015 has extended the original IUPAC report to include new characteristic types of isotherms (include image), which offered a richer guide for the analysis of the hysteresis loops. The latter offers new insights about structural information, pore geometry, and pore network connectivity. As of today's state of the art, some conclusions ca be stressed as follows [START_REF] Cychosz | Recent advances in the textural characterization of hierarchically structured nanoporous materials[END_REF]:

• Classical methods based on the Kelvin equation (such as the BJH method) are still useful and routinely used for industrial process control.

• DFT based methods, regarded as standard methods for accurate pore size analysis of narrow mesopores, can only yield accurate evaluation of pore size for small systems, with adapted DFT/MC kernels that are suited for the porous system.

• The recent IUPAC classification of hysteresis loops can be used to obtain unique information about the morphology and topology of hierarchical structured materials.

• Experimental procedures performed using different adsorptives at different temperatures as well as hysteresis scanning can help extracting information about the connectivity of the pore networks and the amount of open and restricted pores.

• It is useful to combine complementary characterization methods with nitrogen adsorption such as mercury porosimetry, X-ray diffraction, neutron scattering, NMR based techniques, etc.

CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION

• To this day, the characterization of interconnected, disordered hierarchical pore networks is still a major challenge, and it is mandatory to go beyond the existing assumptions based on microstructures represented by an array of independant pores of over-simplified geometry.

2.4.2 . Gas physisorption Gas physisorption is one of the most widely used procedures for determining the surface area and pore size distribution of a wide range of powders and porous materials as stressed in [START_REF] Dąbrowski | Adsorption -from theory to practice[END_REF][START_REF] Rouquerol | Chapter 1 -introduction[END_REF]. Adsorption can be regarded as the enrichment of one or more of the components in the region between two phases, called the adsorption space. In the context of solid catalysis, two phases come into play, a solid phase, that of the catalyst, and another fluid phase (gas or liquid), which will penetrate the pores of the solid phase. Adsorption indicates the direct path by which equilibrium states are achieved, while the term desorption indicates the opposite path. Hysteresis occurs when the amount of fluid adsorbed during adsorption is different from that recorded during desorption at a given equilibrium pressure. A schematic representation of an adsorption isotherm is given in figure 2.3. An adsorption isotherm represents the relationship between the quantity of fluid adsorbed and the equilibrium pressure at constant temperature. During the adsorption process, when the molecules of the fluid phase attach to the solid surface, they are called adsorbates, and the solid catalyst in question is called adsorbent. The forces involved in physisorption are the Van der Waals forces including intermolecular repulsion at short distances as well as London dispersion forces at long distances. The process is called physisorption as long as there are CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION no specific chemical reactions or chemical bonds created between the adsorbate and the adsorbent surface [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF].Three interactions govern adsorption in porous materials. First, fluid-fluid forces between the molecules of the adsorbate. Second, fluid-solid forces between the adsorbate and the surface of the adsorbent. Finally, narrow pores, representing confined porosity spaces, have the effect of altering the thermodynamic stability of confined fluids [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF], and causing the condensation of gas below saturation pressure.

. Pore filling mechanism

The isothermal curves generated by physisorption can be decomposed by three phenomena:

• Monolayer adsorption at low relative pressures, defined as the ratio between vapor pressure p and saturated vapor pressure p 0 , (p/p 0 < 0.2), caused by adsorbent-adsorbate interactions. At this stage, small micropores (pore width < 3 times molecular diameter) are filled.

• Multilayer adsorption at intermediate relative pressures (0.2 < p/p 0 < 0.4), caused by adsorbate-adsorbate interactions. Mono and multilayer adsorption are commonly represented using the BET model so as to evaluate the specific surface of the solid:

1/[n((p 0 /p) -1] = (1/n m C) + [(C -1)/n m C](p/p 0 ) (2.1)
where n is the adsorbed amount, n m is the monolayer capacity, p is the vapor pressure, p 0 is the saturated vapor pressure and C is an empirical constant which gives an indication of the order of magnitude of the attractive adsorbent-adsorbate interactions [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF].

• Mesopore filling by capillary condensation at higher relative pressures. From a certain value of the adsorbed layer thickness (critical thickness t c ), the molecular interactions of the fluid become more important and cause the phenomenon of capillary condensation. For simple geometries, such as a cylinder shaped mesopore, this phenomenon is described by the Kelvin equation:

ln(p/p 0 ) = -2𝛾 V m /RT(r c -t c ) (2.2)
where 𝛾 is the vapor-liquid surface tension, V m is the molar liquid volume, R is the gas constant, T is the gas temperature, r c is the curvature radius of the vapor-liquid surface and t c is the adsorbed multilayer film prior to capillary condensation. The Kelvin equation provides a direct relationship between pore diameter and condensation pressures, and constitutes the basis of several pore analysis methods such as the BJH method [START_REF] Bardestani | Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-bet, bjh, and dft[END_REF]. Another way to estimate the pore size distribution from adsorption experiments includes comparison with reference data (BdB technique [START_REF] Haul | Adsorption, surface area and porosity. 2. auflage, academic press, london 1982. 303 seiten, preis: $ 49.50[END_REF]) or through predictions from theoretical methods such as the density functional theory [START_REF] Toulhoat | Heterogeneous catalysis: Use of density functional theory[END_REF].
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2.4.4 . Impact of the pore network geometry N 2 isotherm adsorption/desorption curves present an hysteresis in the capillary condensation region. It is usually admitted that this hysteresis is related to the pore network morphology, through two main phenomena:

• Pore shape: the fluid meniscus during adsorption and desorption is different as a consequence of the delayed vapor-liquid transition, mainly due to adsorption metastability and to obstructed nucleation of liquid bridges [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF].

• Connectivity of pores: during desorption, when large pores are blocked by smaller ones, the evaporation of large pores is delayed.

Based on the arguments above, it is necessary to represent as well as possible the geometry of the pore network while taking into account the causes behind the hysteresis phenomenon.

. Models of gas physisorption

To model gas physisorption, it is necessary to represent both the pore network geometry and the fluid behaviour (i.e. adsorption and capillary condensation). In this part, examples of four families of models are given. For each example, the way in which the geometry of the pore network has been modeled as well as the simulation of the fluid behavior are described to the extent necessary to understand the difference between these models. At the end, the limitations for each example are emphasized.

. Molecular models

The simulation of gas physisorption by means of molecular simulation requires the modeling of the porous material, the gas molecules and their interactions with the adsorbent. Molecular simulation methods are widely investigated for the evaluation of the effect of confinement on the thermodynamics and fluid dynamics, as well as for the analysis of the textural properties of materials [START_REF] Benoit Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF]. Early works on physisorption simulation are on-lattice approaches, where porous materials are considered as networks of regular cylindrical pores of an infinite length [START_REF] Benoit Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF][START_REF] Hoffmann | Phase transitions and quantum effects in pore condensates: A path integral monte carlo study[END_REF]. In this framework, the fluid-wall interaction is modeled using a mathematical function that depends on the radial position r in the pore. The volume outside the cylindrical pores is modeled as a homogeneous system of particle density, and the interaction is derived from the Lennard-Jones potential of the fluid particles [START_REF] Sokolowski | liquid-vapour' density profiles for fluids in pores from density functional theory[END_REF]. By using a 3D energy grid, extrapolated during the simulation to estimate the potential for wall-fluid interaction, the simulation can be accelerated instead of an explicit summation over all atom-atom interactions [CMP + 09]. Classical approaches dealing with silica pores at the atomistic level consider pores as Lennard-Jones spheres while taking into account only the oxygen atoms as interaction centers (dispersion interaction with Si atoms is generally neglected) [START_REF] Liu | A hybrid cylindrical model for characterization of mcm-41 by density functional theory[END_REF]. There exists more sophisticated models that allow a more realistic description of the surface irregularities, in which all of the silica species (Si and O and H atoms at the pore wall) are taken into account and interact with the adsorbate molecules. In these approaches, the adsorption of any molecule CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION can be considered (for the benzene, see for example [START_REF] Zhu | Fourkas : Ultrafast orientational dynamics of nanoconfined benzene[END_REF]). On-lattice approaches are extremely useful for predicting the behavior of adsorbates within pores, ranging from simple geometries with or without surface defects, to highly disordered materials [START_REF] Detcheverry | Local mean-field study of capillary condensation in silica aerogels[END_REF]. However, taking into account surface roughness and morphological disorder in a more realistic way, requires purely atomistic approaches [START_REF] Benoit Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF]. Another way to model porous solids is to mimic the process of synthesizing real materials [START_REF] Benoit Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF]. In this context, realistic models for materials such as Vycor and controlled pore glasses have been introduced in [GG99], or for silica materials [START_REF] Benoit Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF]. Using simplified potential interactions and representations of the templating micelles, and from Monte Carlo kinetic simulations following the reaction path of the hydrothermal synthesis and calcination of the silica material [START_REF] Siperstein | Phase separation and liquid crystal self-assembly in surfactant-inorganic-solvent systems[END_REF], it was possible to reproduce adsorption properties comparable to the experimental results.

Benefits and drawbacks

Based on the above, the simulation of physisorption requires significant modeling effort of all the components of an adsorption system, fluid/solid molecules and the ongoing interaction between them. The fact that a fluid can be regarded as a Nbody system, where N is the number of molecules forming the fluid, raises the problem of computation complexity and the search for numerical solutions to describe the behaviour of fluid's flow through porous media. Although the DFT is considered as the quickest way to perform useful quantum calculations of electronic structure [START_REF] Burke | Perspective on density functional theory[END_REF], which is directly related to the total energy of the system, it has many limitations in its present form: too many approximations, failures for strongly correlated systems and too slow for crucial application such as molecular dynamics of fluid [START_REF] Burke | Perspective on density functional theory[END_REF]. Therefore, the possibility of simulating larger fluid systems going through the whole microstructure of a realistic porous media is a highly demanding task in terms of modeling effort and computation time. A typical example of the current molecular models of adsorption is shown in figure 2.4 for a slit-pore like material MCM-41 [START_REF] Benoit Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF].

. Pore network models

In the work of [LLVS + 21], a 𝛾-alumina digital twin was represented by a hierarchical pore network model. The parameters of this model were identified by means of a particle swarm optimization (PSO) algorithm that was used to match between the adsorption and desorption branch of the digital isotherm and the experimental isotherm. The final simulated isotherm is obtained from the average of the characterization of 50 different 3D distorted hierarchical pore networks generated with the same input parameters (an example is shown in figure 2.5). The construction algorithm behind the model uses a spherical geometry for the nodes and a cylindrical geometry for the connections between the nodes. Using different kinds of lattices on which the pore network is assembled, the model allows producing regular and irregular networks. The simulation of nitrogen physisorption for this geometrical microstructure models is based on the fast percolation model described in [LVS + 22]. This model has introduced a parameter called triggering diameter (TD) allowing to consider the phenomenon of pore blocking. TD is defined as the parameter triggering the change of state of pores. For each pore in the network, CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION two parameters are defined: the real diameter (D p ) of the pore, used for the calculation of the state change conditions when the network topology has no impact, as in the case of adsorption. TD on the other hand, is defined as the diameter used for the calculation of state change conditions when there are pore network effects. This is the case for desorption. For adsorption, the equilibrium equations of thermodynamics are used to relate pore size to relative equilibrium pressure (to model the vapor-liquid equilibrium for confined media). In particular, the Kelvin-Cohan equation is used for capillary condensation and the Harkins-Jura equation for the calculation of the statistical thickness giving the quantity of adsorbed nitrogen in the form of layers. For each pore, the calculation of the adsorbed volume is evaluated by comparing D p with the equilibrium diameter D eq -2t for a given relative pressure. If D p > (D eq -2t); the volume condensed in the pore is equal to V = 𝜋 × l × (D pt) × t. In the opposite case, the volume is considered condensed and the volume of the liquid is

V = 𝜋/4 × l × D 2
p , where l is the length of pores (defined by the lattice position of the lattice points) and t is the statistical thickness. For desorption, the calculation is done in a similar way with the difference of using TD instead of the real diameter D p to consider the pore blocking phenomenon. The algorithm is optimized with a Max-Heap/Min-Heap sorting technique to manage the search list. The computation time is fast, and depends on the size of the lattice O(Nlog(N)). For example, for an octahedral lattice of about 2 million pores, only 6.7 s is required using the binary heap algorithm.

Benefits and drawbacks

The example mentioned above is based on a pore network model, represented by spherical nodes and cylindrical connections between nodes on a grid with adjustable properties. The simulation of nitrogen physisorption is based on classical thermodynamic equations and a triggering diameter parameter to consider pore blocking. The algorithm uses a search list scheme, and the use of a binary heap technique has made the calculation fast. The model has succeeded in creating a digital twin of a 𝛾-alumina mi-CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION crostructure, through a process of optimization of the physisorption model and which allowed identifying the parameters of the suitable geometrical model. Although this approach has allowed to obtain promising results. Several limitations can be identified; first, the representation of pore networks by spheres and cylinders is a basic representation of real microstructures, often very complex with random pore geometries. Secondly, the simulation does not mimic the processes behind the physical phenomena as they are, but rather is a computational technique that is based entirely on classical thermodynamic equations. While these equations are essential for comparison with experimental results, their use is a part of the model, which makes the results entirely dependent on these equations. Finally, as the digital twin obtained for the 𝛾-alumina was obtained by an optimization process, this raises questions about the practical feasibility of the model, the uniqueness of the parameters of the geometrical model allowing to obtain the suitable isotherm, and the physical interpretation of the parameters of the geometrical model.

. Volume of fluid based models

The work of [START_REF] Stepanek | Characterisation of porous media by the virtual capillary condensation method[END_REF] has proposed a computational methodology for the calculation of pore size distribution from three-dimensional digitally represented porous media with arbitrary pore morphology. The methodology aims to evaluate the pore size distribution by virtue of the simulation of capillary condensation for a given porous medium. This was achieved by means of the Volume of Fluid (VOF) method [START_REF] William | Reconstructing volume tracking[END_REF]. The VOF method was used for several interface tracking phenomena such as bubble nucleation in liquid-saturated porous media [START_REF] Stepanek | The effect of porespace morphology on the performance of anaerobic granular sludge particles containing entrapped gas[END_REF]. A numerical model of a porous medium, which was obtained by computer simulation of a diagenesis process [START_REF] Kosek | Modeling of transport and transformation processes in porous and multiphase bodies[END_REF] has served as input for the calculation of the capillary condensation curve. The structure of the porous medium was coded on a cubic volume of N 3 with a spatial step h by the generalized fluid volume method. The phase function f i (x) represents the volume fraction of the i th phase x. The volume element has been defined as follows: f i (x) = 1 if the discretized element contains only the phase i, or f i (x) = 0 if it does not contain the phase i and 0 < f i < 1 if it contains the interface of the phase i. Phase functions must satisfy i f i (x) = 1 ∀x. In the case of capillary condensation in a porous medium, two phase functions i = S, L are considered. The simulation of capillary condensation shows the dependence of the fraction of pore volume filled by the capillary condensate

𝜓 = V L /(V T -V S )
CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION on the relative saturation of the vapor in the surrounding atmosphere 𝜙 = p/p S . The latter is constructed as follows: from an empty porous medium, a thin layer of liquid is first added at all solid-vapor interfaces, at the points x where 0 ≤ f S (x) ≤ 1. A value of the relative vapor saturation 0 ≤ 𝜙 ≤ 1 is then chosen and the values of the liquid phase function f L at all liquid-vapor interface points are updated iteratively according to the following equation:

f k+1 L (x) = f k L (x) + 𝛼(p -p ★ k (x)) (2.3)
where 𝛼 is a parameter controlling the speed of convergence, p is the partial pressure (𝜙 = p/p S ) and p ★ k is the equilibrium vapor pressure above point x in the i th iteration. Above convex liquid curvature radius, the satisfaction of p ≤ p s triggers capillary condensation. The higher the curvature radius, the higher is the driving force of condensation (pp ★ ). Above concave interfaces, spontaneous evaporation p ★ > p s occurs. If an interface point dries out, the local value of the liquid phase function is set to f L (x) = 0 and all nearest neighboring points that satisfy f L (y) = 1 are initialized to become interface points by deducting a small amount from their liquid phase function. Similarly, if a point is completely filled by the liquid during iteration, its liquid phase function is set to f L (x) = 1f S (x) and all the nearest neighbor points that satisfy the condition f L (y) = 0 are initialized to become interface points by adding a small amount to their liquid phase function. When the iteration stops, the average curvature at each liquid-vapor interface point is such that the Kelvin equation is locally satisfied and a point on the isotherm is drawn. The volumes of the liquid and solid phases, respectively V L and V S , necessary for the calculation of 𝜓 , can be evaluated directly from phase functions such as 3 is the total sample volume of the porous medium. The complete isotherm 𝜓 (𝜙) is constructed punctually by choosing values of 𝜙 and calculating the corresponding 𝜓 . The points on the primary adsorption branch are obtained by starting the iteration from an initially empty solid, and the primary desorption branch is obtained by starting the iteration from a porous medium entirely filled with the liquid (𝜓 = 1). The scanning curves can be generated as well by starting the iteration from a partially filled porous medium on the primary adsorption or desorption branch.

V i = x f i (x)h 3 . V tot = (Nh)

Benefits and drawbacks

In contrast to the classical modeling of microstructures by means of simplified pore networks made of interconnected cylinders representing pores and pore necks, the modeling strategy used by VOF methods allows us to digitally represent microstructures of arbitrary pore network geometry. For instance, digital representations of microstructures in the example above were generated by gaussian porous media, which has an approximately equal proportion of concave and convex solid interface, and random packing of partially overlapping spherical particles. Figure 2.6 shows a typical simulation domain of physisorption. However, the accuracy of the pore size distribution depends on the digital representation of the porous media. Since there are computational limitations on the size of the microstructure volume, the method cannot handle large volumes having wide pore size distribution, restricting to use a volume which is not statistically representative of the porous media. In addition, simulating gas physisorption by means of the interface tracking algorithm to fill and empty pores during adsorption and desorption has its limitations as well. First, the analysis CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION is based on the validity of the Kelvin equation. Second, because some of the phenomena such as the mono and multilayer adsorption or cooperative effects in the adsorbed phase are not taken into account. 

. Morphological models

In the work of [WJW + 18], a numerical methodology for the simulation of adsorption and desorption isotherms in porous media is proposed. The latter is based on morphological operators for simulating several processes involved into the physisorption phenomenon. For instance, the vapour-liquid interface occurring during adsorption is simulated by means of the morphological closing operator by a sphere structuring element. Whereas for the simulation of desorption, both the closing and a hole filling operator help simulating the phenomenon. Material structure is a digital porous media obtained by random Boolean and Cox Boolean models [Mat67, MCF + 18a] for the simulation of one-scale and two-scales microstructures, respectively. In particular, the methodology was illustrated on a digital microstructure of a mesoporous material made of alumina nanoparticles. The parameters of the model, which are the size of grains, aggregates and the size-distribution of pores, were identified and numerically adjusted to experimental porosimetry data and transmission electron microscopy images of the real sample. The steps involved in the simulation adsorption are the following: first, a preprocessing is needed to fill isolated pores before starting the capillary condensation. The filling operation is done through the hole filling operator, which basically identifies connected components, considered as isolated pores and fills them. Second, the capillary condensation process is based on the relationship between the gas pressure and pore radius, given by the Kelvin equation. The criterion of equilibrium of states corresponds to the largest sphere in the porous phase, indicated by the Kelvin equation. For a given Kelvin curvature radius r, the algorithm proceeds by filling all pores having the same radius value. The filling is not instantaneous but rather mimics the menisci flow of condensed liquid-vapour interface, which is formed along the boundaries of spheres. For instance, the filling of areas of high curvature and narrow space are simulated by the closing morphological operator. In theory, desorption is the inverse process of adsorption, thus it could be simulated using the morphological closing operator following decreasing pore radius values, while taking into account a percolation threshold responsible CHAPTER 2. POROUS MATERIALS AND GAS PHYSISORPTION for triggering desorption. However, this description of the process will not include the pore blocking phenomenon, which is a major cause of adsorption-desorption curves hysteresis. The authors proposed the following approach to deal with hysteresis: the evaporation occurs inside connected pores to the borders of the domain, and pores that are satisfying the radius criterion but are blocked by smaller pores are being filled using the hole filling operator. This approach takes into account the pore size parameter, but neglects the connectivity parameter which must also be taken into account. Artificial filling of pores respecting the correct pore size but not connected to the outside leads to incorrect hysteresis.

Benefits and drawbacks

In the example above, Boolean and Cox Boolean models were used to simulate one-scale and two-scales porous media. The parameters of the latter were adjusted by ad hoc experimental analysis. This has the advantage of representing microstructures of any pore network morphology. Due to the relatively low computation time of these models, bigger domains, representative of the porous medium can be simulated. The steps involved in the simulation of physisorption have limitations. For instance, the use of the hole filling operator along with the closing morphological operator for desorption yields a non realistic description of the phenomenon since the accessibility of pores from the exterior of the domain is not respected, leading to incorrectly calculating hysteresis. Other phenomena such as the mono and multilayer adsorption are neglected or artificially imposed. In addition, the model is unable to handle cases where the hysteresis can be produced without the pore blocking effect, as in the case of a cylindrical pore with two open ends.

. Conclusion

Through this chapter, we have seen the characteristics of porous materials, the physicochemical phenomena related to the technique of gas physisorption and finally the pros and cons of state of the art models allowing its simulation. The conclusions drawn from this chapter will be the basis for all the developments that will follow. The next chapter describes the characterization results of the materials used in this thesis.
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-Experimental description of model materials

"Ideas do not always come in a flash but by diligent trial-and-error experiments that take time and thought."

Charles Kao

This chapter presents and interprets the results of the experimental analyses conducted on the model materials used in this thesis, including materials having uniform pore networks where pores are in the form of cylinders and overlapping spheres (i.e., SBA-15 and KIT-5, respectively), and complex materials with hierarchical porosity. The experimental data obtained from this chapter will be used to adjust the morphological model presented in chapter 6. 

. Introduction

This chapter has two objectives. First, to describe the model materials used in this work. Second, to interpret the experimental results of characterization techniques carried out for these materials. The characterization techniques used range from microscopy imaging techniques such as Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Scanning transmission electron microscopy (STEM) to X-ray diffraction (XRD), nitrogen physisorption, and granulometry. The interest of using all these techniques is to have a complete view of textural properties of the materials (specific surface area, pore volume, pore size, etc.) which will help to tailor-design their numerical twins. Subsequently, our morphology-preserving adsorption model (presented in chapter 6) is adjusted and examinated on these materials by comparing the adsorption-desorption experimental and numerical isotherms. Section 3.2 about unimodal mesoporous materials depicts the experimental results of SBA-15, and KIT-5 which are well known materials commonly used to study adsorption, in addition to the data of a mesoporous alumina taken from the literature. The next section is about materials with hierarchical porosity that were developed in the context of this work. These materials were obtained using commercial boehmites. They were shaped by the ice-templating technique and their usage in combination (in the form of a matrix-aggregates mixture) allowed us to obtain materials with three levels of porosity (macroposity, and bimodal mesoporosity). This section describes these materials and their experimental analyses results. A focus on the effect of grinding on the aggregates is also addressed. Similar to the unimodal mesoporous materials, the experimental data obtained from these materials having hierarchical porosity will help to adjust and illustrate our model on more complex materials.

. Unimodal mesoporous materials

Ordered mesoporous materials are mainly characterized by their regular pore system and high surface area by means of structuring the solid at the nanometer level [START_REF] Florek | Ordered mesoporous silica: synthesis and applications[END_REF]. The templating pathways allow the synthesis of nanoporous materials with a high level of control over their structural and textural properties [START_REF] Florek | Ordered mesoporous silica: synthesis and applications[END_REF][START_REF] Lu | Nanocasting: A versatile strategy for creating nanostructured porous materials[END_REF]. These materials are used in many applications as well as to study adsorption and viewed as high performance materials in catalysis, storage or separation [START_REF] Schüth | Microporous and mesoporous materials[END_REF]. The first example of solids having ordered arrangements of mesopores with narrow pore size distribution was a new family of mesoporous silica and aluminosilicate compounds, designated as M41S [BVR + 92]. Silica-based systems are still the most widely studied in the field of ordered mesoporous materials. MCM-41 (Mobil Composition of Matter No41) [BVR + 92] developed in the early 90s was one of the first materials to be characterized by periodic arrangements of pores in the form of highly ordered hexagonal array of cylindrical mesopores with narrow pore size distribution. Since this discovery, important progress in the synthesis, characterization, and porosity control of ordered mesoporous silica has been achieved. A great variety of ordered mesoporous silica have been developed (SBA-15 [ZFH + 98], SBA-16 [ZFH + 98], KIT-5 [START_REF] Mandal | Face-centered-cubic large-pore periodic mesoporous organosilicas with unsaturated and aromatic bridging groups[END_REF], KIT-6 [KKPR05], etc.). The main difference between these materials is the crystalline structure and pore size. In our work, SBA-15 and KIT-5 are considered due to their structural and morphological differences CHAPTER 3. EXPERIMENTAL DESCRIPTION OF MODEL MATERIALS and used as model materials since they are extensively used materials with well-known properties. Correctly setting up our morphological model on these materials is the first building block in the process of modeling materials with hierarchical porosity. In this part, we will analyze the results of several characterization techniques of SBA-15 and KIT-5. In general, it is admitted that the combination of gas physisorption, XRD, and TEM enables accurate description of ordered mesoporous materials [START_REF] Florek | Ordered mesoporous silica: synthesis and applications[END_REF].

3.2.1 . SBA-15 (Santa Barbara amorphous No15) Small angle XRD was used to check the ordered mesoporous structure aspect of SBA-15. The diffraction pattern (Figure 3.1-a) is similar to the one observed by Lee et al. [LKS + 10] and exhibits one strong peak at approximately 0.9 • and two less intense peaks around 1.6 • and 1.9 • . These peaks can respectively be indexed to the (100), ( 110) and (200) plans of the hexagonal p6mm structure. Nitrogen physisorption isotherm (Figure 3.1-b) shows that SBA-15 exhibits a large specific surface area (BET surface) of around 710 m 2 /g. The volume of pores is around 0.63 cm 3 /g and the average pore diameter is 5.1 nm. Both of these values were obtained by applying the BJH method to the desorption branch of the isotherm. TEM images (Figure 3.1-c) reveal the high structural regularity of the SBA-15 material. The pores are highly ordered and stacked along the long axis direction of the 2D hexagonal structure. The width of pores is approximately in the range of [4 -6 nm], which is in good agreement with the data obtained from physisorption. The length of pores can be estimated from the TEM image, which is around 350 nm.

. KIT-5 (Korea Institute of Technology No5)

XRD pattern of KIT-5 (Figure 3.2-a) exhibits one strong peak at approximately 0.8 • , a shoulder around 1.1 • and a broad peak spreading from 1.5 • to 2.0 • . Similar XRD pattern was observed by Kleitz et al. [KLA + 03] and the first strong peak and the shoulder were indexed by the authors as (111) and (200), respectively. The characterization by nitrogen physisorption (Figure 3.2-b) has yielded a BET surface of 347m 2 /g, an average pore diameter of 4.2 nm, and a volume of pores of 0.58cm 3 /g. Akin to SBA-15, pore volume and pore size values were obtained using the BJH method applied to the desorption branch. TEM image of KIT-5 (Figure 3.2-c) shows the periodic structural arrangements of the cubic space group Fm-3m cage-type formed by spheres.

. Mesoporous alumina

The third sample presented here is a mesoporous alumina obtained from a thermal treatment of a commercial boehmite. Details about the preparation of the sample and its characterization can be found in [WPJ + 15]. From nitrogen physisorption isotherm (Figure 3.3-a), the authors reported a BET surface of around 350 m 2 /g. The authors also measured structural density d s = 3.33 g/cm 3 by helium pycnometry and grain density d g = 1.04 g/cm 3 by mercury intrusion, which allowed calculating the porosity of the material 𝜖 = 1d g /d s = 0.69. By using an inverse problem approach with L2-normalization of the correlation function of the TEM images (Figure 3.3-b), the dimensions of the crystallites were identified. More de-CHAPTER 3. EXPERIMENTAL DESCRIPTION OF MODEL MATERIALS tails about this part are reported in chapter 6, where we simulate the adsorption-desorption isotherms of this material using our morphological model. The development and testing of our morphological model of nitrogen physisorption (described in chapter 6) requires the elaboration of model materials with hierarchical porosity, having characteristics close to real materials used as catalyst supports. These materials include a macroporosity created by the ice-templating technique (detailed below) and two levels of mesoporosity. We denote these levels of porosity as Ψ I , Ψ II , and Ψ III respectively:

• Macropores Ψ I with d > 50 nm • Mesopores Ψ II with d ∈ [20 -50] nm • Mesopores Ψ III with d ∈ [2 -20[ nm
The bimodal mesoporosity is created from a combination of two boehmites. The first one is used as a matrix (M), having mesopores Ψ II , whereas the second one is used as aggregates (A) dispersed in the matrix, having mesopores Ψ III . Two commercial boehmites with distinct platelets' size (Dispal 18N4-80 and Disperal P2, presented in what follows) were used. The boehmite with the smallest platelets (Disperal P2) is used to make the aggregates while the other boehmite (Dispal 18N4-80) is used for the matrix. The material composing the matrix and the aggregates is formed as follows: first, the atomized boehmite of the aggregates is solidified by a thermal treatment at 750 • C transforming the boehmite into gamma-alumina. The resulting alumina is ground. Then, the aggregates in the form of gamma-alumina and the matrix which is still in the form of dispersed boehmite are combined and shaped by the ice templating technique. This step is followed by a thermal treatment at 750 • C transforming this time the matrix into gamma-alumina (note here that this is the second thermal treatment that the boehmite of the aggregates undergoes). Figure 3.4 illustrates the strategy for the creation of these materials. To make the reading smoother, instead of designating the boehmites used by their commercial names, the codes 18N4-80, and P2 are adopted hereafter to refer to the matrix and aggregates, respectively. The following notation is used as well to define the treatment conditions of P2. For instance, P2(2 h @ 750 • C/1 h) means that P2 is the powder used, (2 h @ 750 • C) corresponds to 2 h of consolidation thermal treatment at 750 • C, and 1 h corresponds to the grinding time. P2(2 × [2 h @ 750 • C]/1 h) refers to the second thermal treatment that P2 undergoes as a part of the material combining both 18N4-80 and P2. Our system is composed of different quantities of M = 18N4-80 and A = P2 by means of varying the mass M:A ratio from 0 to 100, in steps of 25. Macropores are obtained in the micrometer range (Figure 3.8-a). The two levels of mesoporosity are obtained inside the walls formed by the growing ice crystals during the ice templating process. Since the system was defined in a way that both mesoporosities can be controlled independently by varying their proportions within the material (Figure 3. 

. Ice templating

The physical phenomenon at the origin of freeze-casting techniques is a segregationinduced templating of a second phase by a solidifying solvent [Dev17, Dev13] (Figure 3.5). If the second phase can be dispersed or dissolved in the solvent and is rejected from its growing crystals, then it could be of any nature (ceramic, polymer, metal particles, etc.). In practice, freeze-casting is used as a shaping method to introduce oriented macroporosity. It consists of using the growth of solvent crystals through a suspension of particles as a texturing agent of porosity. The suspension of particles is cooled in a controlled way by a thermal gradient to solidify the solvent (usually water that freezes into ice). As the solvent solidifies, the crystals grow and reject the solid powder in the area between the ice crystals. The solidified solvent is then removed by sublimation in a freeze-dryer. The resulting structure has pores as replicates of crystals and the solid phase is made of particles stacked during freezing. It is possible to control the size and shape of the crystals formulation and process parameters. The thermal gradient is typically between the lower (cold) and upper (room temperature) sides. By keeping the gradient linear, the growth of the crystals is linear as well, which guarantees an oriented porosity of homogeneous size throughout the material. Water has been the most studied system and its controlling parameters are now well described. Regarding the morphology of the macropores obtained, while it can be modified using additives controlling the ice growth, the shape of macropores is not studied in this work. Therefore, we will focus only on the bimodal mesoporosity. 
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. Sasol boehmites

Dispal 18N4-80 and Disperal P2 are boehmites manufactured by Sasol. They are nanosized in the dispersed phase. They are pure and highly dispersible. The typical chemical and physical properties of these boehmites are summarized in table 3.1. In our work, Dispal 18N4-80 plays the role of the matrix, whereas Disperal P2 is used for the aggregates. The characterization results of these materials from the technical sheet provided by Sasol [Sas] are: 3.3.4 . 18N4-80 as the matrix Nitrogen physisorption isotherm (Figure 3.6) shows that 18N4-80(2 h @ 750 • C) exhibits a BET surface of around 117 m 2 /g. The volume of pores is around 0.48 cm 3 /g and the average pore diameter is 12 nm. Both of these values were obtained by applying the BJH method to the desorption branch. TEM images (Figure 3.6) reveal that the crystallites are anisotropic (in the form of platelets), long (in the order of 40 -50 nm) and have a thickness of approximately 4 nm. There is also a platelet size distribution since the size of the platelets seems to be variable. Finally, the STEM image shows the polycrystalline aspect of the material since the platelets are assembled on their front faces. The platelets also exhibit defects in the form of rugosity, and intra-platelet holes.

Al 2 O 3 (%) NO - 3 (%) LBD (g/

. P2 as the aggregates

Nitrogen physisorption isotherm (Figure 3.7) shows that sample P2 (2 h @ 750 • C/1 h) exhibits a larger specific surface area (BET surface) than sample 18N4-80 (2 h @ 750 • C) of around 177 m 2 /g. The volume of pores is around 0.40 cm 3 /g and the average pore diameter is 7 nm. Both of these values were obtained by applying the BJH method to the desorption CHAPTER 3. EXPERIMENTAL DESCRIPTION OF MODEL MATERIALS branch. TEM images (Figure 3.1) reveal a crystallite structure of the sample. In comparison with sample 18N4-80, P2 exhibits smaller crystallites that are also in the form of platelets.

. Effect of grinding on aggregates P2

In order to understand the effect of grinding, the isotherms corresponding to a grinding time of P2 ranging from 1 h to 8 h are given (Figure 3.9-a). These isotherms show that the grinding has an effect on the organization of crystallites (or platelets). For instance, on the first isotherm that corresponds to P2(2 h @ 750 • C/1 h), there is a clear separation between two pore populations (approximately around p/p 0 ≈ 0.8) indicating that there is a large population of large pores in the initial sample. This dropout point seems to shift to the left with respect to increasing grinding time, indicating a decrease in the population of very large pores. The last isotherm, corresponding to P2(2 h @ 750 • C/8 h), follows the same trend as the previous isotherms and exhibits the beginning of hysteresis from large values of (p/p 0 ≈ 0.9). This shift indicates the dispersion of platelets blocking large pores, creating important hysteresis at large pressures, which is in contrast to what shows the ungroud sample. The BET surface of sample P2(2 h @ 750 • C/1 h) is 178 m 2 /g against 154 m 2 /g of sample P2(2 h @ 750 • C/8 h). Similarly, pore volume (evaluated by applying the BJH method to the desorption branch) is 0.40 cm 3 /g against 0.35 cm 3 /g of sample P2(2 h @ 750 • C/8 h). TEM characterization was carried out (Figure 3.9-b) to better understand these differences caused by grinding at the level of the organization of crystallites. According to the MET image at 8 h, the structure is more polycrystalline than before (several crystallites organized in a random way), which explains the decrease of the population of very large pores. The platelets form very dense zones as well, possibly due to a welding phenomenon caused by the grinding. This last observation confirms the decrease in the proportion of the pore volume but also the decrease in the specific surface area.

. Bimodal mesoporosity

The systematic variation of the quantities M and A is reflected at the level of the nitrogen physisorption isotherms by an equivalent variation of the populations of mesoporosities Ψ II and Ψ III , with a clear separation of the two levels of mesoporosity (Figure 3.8-b). The characterization results (pore size (nm), pore volume (cm 3 /g), and BET surface (m 2 /g)) of various M:A materials are summarized in table 3.2. To better visualize the nanometric arrangements of these materials, SEM images of 18N4-80(2 h @ 750 • C):P2(2 × [2 h @ 750 • C]/1 h) at M:A = 50 : 50, for different magnifications (in 𝜇m and nm) are given in figure 3.10. The first image (Figure 3.10-a) provides an overview of the microstructure showing the oriented macroporosity channels made of alumina walls and porosity. Figure 3.10-b shows macropores and walls, and the microstructure (e.g. aggregates). Finally, figure 3.10-c reveals the platelets of the matrix and the aggregates. 
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. Conclusion

The several characterization techniques conducted on the model materials provided us with the data necessary for the validation of our model (chapter 6). The obtained results are also insightful and allowed us to grasp the complexity of the materials in their different configurations. At this stage, all necessary information about the materials and related experiments results was given. The next chapter introduces the mathematical and numerical framework on which all the modeling work in this thesis is based.
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. Introduction

This chapter presents the mathematical and numerical framework of this work. To ensure a common thread with the above, and below, here are some key points that will hopefully help connecting the dots. If the morphology-preserving adsorption model is the main contribution of this thesis, mathematical morphology is the key instrument. The operators of mathematical morphology addressed below mimick the physico-chemical phenomena to a great extent. For instance, the dilation operator can be seen as the image of a process causing the stack of molecules in the form of layers, and the morphological closing can be seen as the image of a rapid and sudden gas condensation. The section about mathematical morphology describes the underlying mathematical operators and their properties, to the extent necessary to understand the model, presented in chapter 6. While our morphology-preserving adsorption model can be applied to any type of binary image volumes, random models, which allow realistic modeling of complex materials, play the role of digital twins of the real materials, presented in the previous chapter. From section 4.4 onwards, we present the key numerical tools on which chapter 5 and chapter 7 are based. In particular, the distance transform allowed us to propose a new method for the extraction of the porosity network of microstructures. In addition, the combination of the distance transform with a graph approach allowed us to compute the geometric tortuosity with a reduced computation time. The distance transform was found to be an effective asset as well to address the problem of small sample learning and adding 3D information to 2D slices in deep learning. The last section about deep learning, explains in a synthetic way the mathematical concepts behind and focuses on a detailed description of the components of convolutional neural networks, which will be used and further explained in chapter 7.

. Mathematical morphology

Mathematical morphology is a theory of non-linear information processing that appeared in the 1960s (G. Matheron and, J.Serra) and spans over several scientific fields. Namely, it can be viewed through the prism of mathematics, physics, signal processing and computer science [START_REF] Serra | Image analysis and mathematical morphology[END_REF]. The key concepts of mathematical morphology in these domains are the following:

• Mathematics: Lattice algebra, set geometry and topological-probabilistic modeling.

• Physics: Framework with connections between physical properties of structures and their textural properties.

• Signal processing: Non-linear signal processing tools, based on Sup and Inf operations.

• Computer science: Image processing algorithms to extract textural features from images/volumes.
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Throughout this work, whenever mathematical morphology is discussed, it is defined in the specific context of one of these fields. For instance, the conceptualization of our morphological model of gas adsorption is inspired from the correlations between physical quantities and morphological properties. The development of adsorption-desorption operators is based on the well-established framework of mathematical morphology, allowing to create new operators upon existing ones. The implementation of the different operators developed is done using efficient algorithms to ensure a good accuracy/cost effectiveness trade-off.

4.2.1 . Morphological operators on complete lattices An image is a numerical function I : E → F, where E is the space of points and F is the set of the values of I. For a gray-scale image, the space E is discrete (E = Z 2 ), and F = {0, 255} is the set of pixel values. The definition of an image can be extended to a higher dimensional continuous space E = R n and the values of I can span over the entire range of R.

In what follows, we start by defining the basic operators of mathematical morphology in the framework of lattice theory [START_REF] Serra | Lecture notes on morphological operators in first frenchnordic summer course in Mathematics[END_REF][START_REF] Blusseau | Introduction to mathematical morphology[END_REF], which allows to define functions in a complete abstract way without specifying the space of definition of objects. This part will allow us to address the mathematical properties of mathematical morphology operators, which constitute the building block of subsequent part regarding hands-on definitions.

Complete lattice

Let E be a set. A partial order on E is a binary relation ≤ that satisfies the following properties:

for ∀a, b, c ∈ E a ≤ a (reflexivity) (a ≤ b and b ≤ c) =⇒ a ≤ c (transitivity) (a ≤ b and b ≤ a) =⇒ a = b (antisymmetry) (E, ≤
) is called a partially ordered set. A complete lattice is a partially ordered set (L, ≤) such that any subset of L has a supremum and an infimum in L. Let A ⊆ L, the supremum (least upper bound) and infimum (greatest lower bound) of A are respectively noted ∨A and ∧A. They are unique by antisymmetry of the order. In mathematical morphology, the fundamental structure is lattice and the fundamental laws are the supremum and infimum. For X, Y ⊂ L, morphological transformations 𝜓 preserve the laws of lattices (structure of order):

X ≤ Y =⇒ 𝜓 (X) ≤ 𝜓 (Y) (order preserving) 𝜓 (∨X) = ∨𝜓 (X) (commutativity with supremum -dilation operator) 𝜓 (∧X) = ∧𝜓 (X) (commutativity with infimum -erosion operator)
Some examples of lattices: 

• Lattice P(E)

Morphological operators

Let (L, ≤) and (L ′ , ≤ ′ ) be two complete lattices and I ⊆ R + .

Dilation A dilation from (L, ≤) to (L ′ , ≤ ′ ) is an operator 𝛿 : L → L ′ that commutes with the supremum:

∀(x i ) i∈I ⊂ L, : 𝛿(∨ i∈I x i ) = ∨ ′ i∈I 𝛿(x i ) (4.1) Properties: ∀x, y ∈ L, x ≤ y =⇒ 𝛿(x) ≤ ′ 𝛿(y) (increasigness) 𝛿(∧L) = ∧ ′ L ′ (preserves the least element) Erosion An erosion from (L, ≤) to (L ′ , ≤ ′ ) is an operator 𝜖 : L → L ′ that commutes with the infimum: ∀(x i ) i∈I ⊂ L, : 𝜖(∧ i∈I x i ) = ∧ ′ i∈I 𝜖(x i ) (4.2)
Properties:

∀x, y ∈ L, x ≤ y =⇒ 𝜖(x) ≤ ′ 𝜖(y) (increasing) 𝜖(∨L) = ∨ ′ L ′ (preserves the largest element) The couple (𝛿, 𝜖) form a Galois adjunction: ∀x ∈ L, ∀y ∈ L ′ , 𝛿(x) ≤ ′ y ⇐⇒ x ≤ 𝜖(y) (4.3)
Meaning that for every dilation/erosion (𝛿/𝜖), there is only one erosion/dilation (𝜖/𝛿), that satisfies the equation above.
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Opening An opening of (L, ≤) is an operator 𝜙 : L → L that has the properties:

∀x, y ∈ L, x ≤ y =⇒ 𝜙(x) ≤ 𝜙(y) (increasing) 𝜙 • 𝜙 = 𝜙 2 = 𝜙 (idempotent) 𝜙 ≤ id |L (anti-extensive)
The supremum of openings is an operning. Denoting O(L) the set of openings of L:

∀(𝜙 i ) i∈I ⊂ O(L), ∨ i∈I 𝜙 i ∈ O(L) (4.4)
Closing A closing of (L, ≤) is an operator 𝛾 : L → L that has the properties:

∀x, y ∈ L, x ≤ y =⇒ 𝛾(x) ≤ 𝛾(y) (increasing) 𝛾 • 𝛾 = 𝛾 2 = 𝛾(y) (idempotent) id |L ≤ 𝛾 (extensive)
The infimum of closings is a closing. Denoting C(L) the set of closings of L:

∀(𝛾 i ) i∈I ⊂ C(L), ∧ i∈I 𝛾 i ∈ C(L) (4.5) 
Granulometry A family of openings (𝜙 𝜆 ) 𝜆∈I is called a granulometry such that:

∀𝜆, 𝜇 ∈ I, 𝜆 ≤ 𝜇 =⇒ 𝜙 𝜇 ≤ 𝜙 𝜆 (4.6) 
(𝜙 𝜆 ) 𝜆∈I verifies the semi-group property:

∀𝜆, 𝜇 ∈ I, 𝜙 𝜆 • 𝜙 𝜇 = 𝜙 𝜇 • 𝜙 𝜆 = 𝜙 ∨{𝜆,𝜇} (4.7) 
Equation 4.6 is called the absorption law. These definitions allow us to emphasize some of the fundamental properties of morphological operators such as increasigness, idempotence, extensivity, etc. These properties are important to ensure preserving the laws of physics by the operators used to model physico-chemical phenomena.

. Morphological operators, practical definitions

An image can be seen as a projection of a 3D reality, where objects interact in different ways. These interactions can be described in the framework of signal processing by considering the image as a signal having two dimensions. Signals can be added together and all the rules of vectorial space algebric structures can be applied. However, this description of images lacks some interpretability, at least in the sense of describing the interactions between two objects or more [START_REF] Hugues | Introduction à la Morphologie Mathématique[END_REF]. For example, what do we mean by an object + object ? In contrast to linear image processing, mathematical morphology is based on set theory, which makes it a relatively self-contained discipline forming a coherent whole. The definition of an image in this framework is more intuitive and describes well the interactions of objects. For the following definitions of mathematical morphology operators, binary images are considered
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as subsets of a space E such as the lattice P(E) of subsets of E is the fundamental structure [START_REF] Serra | Lecture notes on morphological operators in first frenchnordic summer course in Mathematics[END_REF]. As stressed in a previous example, the latter has the inclusion relation ⊆ as the relation of order, inclusion ∪, and intersection ∩ as the fundamental laws. Hence, objects are defined as subsets of a given space, they can be compared by the relation of order ⊆ (E is the biggest object and ∅ is the smallest object) and their interactions can be described by union and intersection operation.

Morphological operators

Structuring element In mathematical morphology, images are transformed and characterized by a set B ⊂ E called the structuring element. The latter has the role of scanning the image, and evaluating locally the type of interactions it has with the image (intersection or union). The set B x translated by x ∈ E is: Dilation A 𝜏application is all operation 𝜓 : P(E) → P(E) which is translation invariant in E.

B x = {b + x, b ∈ B} (4.
𝜏dilations are called Minkowski additions. We note 𝛿 B (X) = X ⊕ B as the Minkowski addition between set X and set B, such as:

X ⊕ B = ∪{B x , x ∈ X} = ∪{x + b, x ∈ X, b ∈ B} = ∪{X b , b ∈ B} = B ⊕ X CHAPTER 4.
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The dilated set X by B is defined along locations z of transposed set Bz when the latter encounters X:

𝛿 B (X) = X ⊕ B = {z ∈ E, Bz ∩ X ≠ ∅} (4.10)
As its name indicates, the dilation operator magnifies (in the sense of the structuring element) the initial object ( Erosion A Minkowski substraction X ⊖ B is the adjunct erosion of X ⊕ B:

X ⊖ B = ∪{X b , b ∈ B} (4.11)
The eroded set X by B is defined along centers of locations z of set B z when the latter is included in X (Figure 4.3-c).

𝜖 B (X) = X ⊖ B = {z ∈ E, B z ⊆ X} (4.
12)

The erosion operator shrinks (in the sense of the structuring element) the initial object. Dilation and erosion are dual operators by complement: Opening and closing Opening and closing are basic morphological filters that are increasing and idempotent. They can be defined by combining the dilation and erosion operator.

(X ⊕ B) c = X c ⊖ B, and 
(X ⊖ B) c = X c ⊕ B
The opening of set X by B can be written as:

𝜙 B (X) = 𝜖 B • 𝛿 B (X) = (X ⊖ B) ⊕ B (4.14)
Similarly, the closing of set X by B writes:

𝛾 B (X) = 𝛿 B • 𝜖 B (X) = (X ⊕ B) ⊖ B (4.15)
The opening operator removes narrow/small objects, whereas the closing operators fills narrow/small holes (in the sense of the structuring element). Illustrations are shown in figure 4.4. 
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Granulometry

The notion of granulometry is based on the opening operator and allows the study of the size of objects. Physically it corresponds to the sieving for grains. In particular, a series of sieves with increasingly large holes allow to classify a population of grains (a sieve of size 𝜆 1 will stop smaller grains which are left by another sieve of size 𝜆 2 > 𝜆 1 ) [START_REF] Hugues | Introduction à la Morphologie Mathématique[END_REF].

The granulometry curve G X (𝜆) can be written as:

G X (𝜆) = ∫ X - ∫ 𝜙 𝜆 (X) 𝜆 ∈ [0, 1, ..., R] (4.16)
∫ X is the sum of the elements of X in the sense of the cardinality (i.e., area or volume in continuous spaces, or number of elements in discrete spaces) and R corresponds to the boundary value of 𝜆 where no change occurs (Figure 4.5).

. Random models of porous materials

. Representation of a porous media

Half a century ago, the work of G.Matheron [START_REF] Matheron | Éléments pour une théorie des milieux poreux[END_REF] has proposed a modeling framework for real materials using probabilistic approaches. This stochastic parametric modeling has enabled the simulation of complex media in many applications. For instance, random tesselations have provided a morphological description for metals and ceramics, which are made of polycrystals [Jeu17]. Boolean random models have allowed the modeling of two phase-media such as porous materials [Jeu17][MCF + 18a]. In addition, long-fiber networks and stratified media exhibiting large-scale correlations, have been modeled by boolean random varieties, which are generalizations of the Boolean model [Jeu13]. Morphological models provide a valuable framework for the simulation and the prediction of the physical behavior of complex and multi-scale media as well. For instance, by setting a Boolean model in accordance to known microstructure properties and components of an heterogeneous media, it was possible to solve the problem of homogenization of physical properties. Therefore, yielding an estimation of quantities such as the electric [START_REF] Jeulin | Statistical representative volume element for predicting the dielectric permittivity of random media[END_REF] or strain and stress [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF] fields. Recent work [WPJ + 15] has shown that the combination of morphological random models with operators of mathematical morphology is potentially a rich groundwork for the simulation of phenomena such as gas physisorption in porous media. Hereafter, two models are considered and will be used continuously throughout our work. Namely, Boolean models and Cox-Boolean models, allowing the modeling of one scale and multi-scale porous media, respectively.
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Poisson point process A Poisson point process is a random mathematical object that consists of points that are homogeneously distributed in a given mathematical space. In 2D or 3D dimensional space, the Poisson point process is the basic model for complete spatial randomness in stochastic geometry. In this setting, the probability that a compact set K contains n points generated by the poisson distribution is:

P n (K) = (𝜃 𝜇(K)) n n! exp(-𝜃 𝜇(K)) (4.17) 
where 𝜃 and 𝜇(K) are the intensity (average number of points per unit surface or volume) and Lebesgue measure (area or volume of K), respectively. The Poisson point process, as a part of the point pattern theory, provides the basic model of generation of random objects which is known as the Boolean model.

. Boolean models

A porous material can be regarded as a set of particles A embedded in a matrix A c . The simulation of such two-phase material can be done through a random closed set modeling [START_REF] Serra | Image analysis and mathematical morphology[END_REF][Mat67] [START_REF] Jeulin | Random texture models for material structures[END_REF]. Let K be a closed set, the Choquet Capacity T(K) provides a full characterization of K from a probabilistic point of view:

T(K) = P(K ∩ A ≠ ∅) = 1 -P(K ⊂ A c ) (4.18)
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The Choquet capacity is interpreted as the probability for the deterministic set K to hit the random set A. Equation (4.18) can be used for the identification of a model by determining its intrinsic properties such as the volume fraction (considering K a point) and covariance (considering K a bi-point). The first intuition behind Boolean models is a space implementation of grains, which are independent of each other, whereas having the same stochastic properties, namely a common spatial law. Subsequently, the Boolean model is constructed by the union of the generated grains [START_REF] Matheron | Éléments pour une théorie des milieux poreux[END_REF]. Considering a spatial distribution of random grains A ′ with their centers x k located according to a Poisson point process with intensity 𝜃 :

A = ∪A ′ x k (4.19)
The volume fraction V v occupied by the grains of the material depends on the average volume V of the primary grains and on intensity 𝜃 :

1 -V v = 1 -exp(-𝜃 V(A ′ )) (4.20)
Boolean models allow the generation of one-scale models of microstructures. They were extensively used in the past for many applications. Among others, early work [START_REF] Balberg | Excluded volume and its relation to the onset of percolation[END_REF] conducted analytical estimations of the percolation threshold for materials on the basis of Boolean models. Regarding the same topic, it was shown that the percolation threshold can be estimated by means of simulations of the Boolean model generated microstructure as well [START_REF] Jeulin | Percolation d'agrégats multiéchelles de sphères et de fibres -Application aux nanocomposites[END_REF]. Illustrations of two Boolean models of spheres and platelets are shown in figure (4.6). 

. Cox Boolean models

Several materials, in particular those used as catalyst supports, present multi-scale microstructures. For instance, a porous material with two scales of porosity is defined as the space where there is a superposition of two distinct scales of void. One reason is the existence of very dense places, populated by grains and the void between them represents the first scale of porosity. Provided that the grains form aggregates, yielding the first level of porosity, a more important void, located between aggregates represents therefore a second level of porosity. This aspect of multi-scale spatial distribution of the void has important consequences on the physical properties of the material, namely its conductivity, its dielectric permittivity and its mechanical properties of elasticity [Jeu17]. The Boolean model previously described does not allow the modeling of multi-scale microstructures. An alternative is necessary to simulate this type of complex microstructures. Before introducing the Cox Boolean models that take into account the multi-scale aspect, let us investigate the following possibility. Consider two boolean models. The first one describes a spatial distribution of spherical objects having a diameter d 1 , modeling grains. The second Boolean model describes a spatial distribution of spherical objects having a larger diameter d 2 , such as d 2 >> d 1 . These large objects model the aggregates. Generating a two-scale model from the two previous models may seem trivial by performing a set intersection between the two models. In this way, the grains, falling into the aggregates, will be preserved. The addition of grains outside the aggregates can be modeled as well by making the union of the previous model with a new Boolean model of grains. Following this approach, the porosity of a multi-scales model can be controlled by means of basic set operations of Boolean models. The main drawback of this procedure is its lack of realism since grains can be cut because of the intersection operation [MCF + 18b]. Cox Boolean models [START_REF] Jeulin | Multi-scale simulation of random spheres aggregates -application to nanocomposites[END_REF][Jeu17][MCF + 18b] are defined by intersections and unions between objects and points, generated by several Poisson point processes. In other words, a Cox
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Boolean model can be understood as a Boolean model with the only difference that the law of Poisson is replaced by a doubly stochastic Poisson process, or the so-called Cox's law, which is a generalization of the Poisson law [START_REF] Cox | Some statistical methods connected with series of events[END_REF]. Considering the previous example with a Cox Boolean model this time, the centers of grains falling into the aggregates will be preserved instead of the grains. The latter will then be implemented. This avoids the cutting of the grains and the result obtained is more realistic. Figure (4.7) summarizes the Cox Boolean modeling process.

. Distance transform

. Connectivity

Let E be an arbitrary space. A connected space 𝜗 is any family in P(E) that satisfies the properties [START_REF] Serra | Connectivity on complete lattices[END_REF]:

∅ ∈ 𝜗 ∀x ∈ E : {x} ∈ 𝜗 ∀{A i }, A i ∈ 𝜗; {∩A i ≠ ∅} =⇒ ∪A i ∈ 𝜗
The connected space 𝜗 always contains the singletons, plus the empty set, and the union of the elements of 𝜗 whose intersection is not empty is still an element of 𝜗. The elements of 𝜗 are called connected components. This means that, for x ∈ E, the connected component of point x, denoted C x , is the union of all connected subsets of E that contain x [START_REF] Simmons | Introduction to Topology and Modern Analysis[END_REF]. C x is the unique largest (in the sense of the inclusion relation, ⊆) connected subset of E that contains x. The concept of neighborhood Γ is important in defining connectivity in discrete spaces (E = Z 2 for 2D images and E = Z 3 for 3D volumes). Γ is a binary relation on E, reflexive ((x, y) ∈ Γ), and symmetrical ((x, y) ∈ Γ ⇔ (y, x) ∈ Γ) [START_REF] Hugues | Introduction à la Morphologie Mathématique[END_REF]. It is defined as Γ : E → E 2 such as ∀x ∈ E, Γ(x) is the set of the neighbors of x:

Γ(x) = {y ∈ E, (x, y) ∈ Γ} (4.21)
The elements of Γ(x) are called the adjacent neighbors of x and Γ n (x) denotes a neighborhood n-connectivity relation (n being the number of neighbors of x). The morphological operators presented earlier were defined for an arbitrary space E without specifying its structure. In practice, describing connectivity in discrete spaces requires defining pixel connectivity in 2D (voxels in 3D, or hypervoxels in n-dimensional spaces). For an image

(E ⊂ Z 2 ), a point is defined by (x 1 , x 2 ) where x 1 , x 2 ∈ Z. An example of a 4-connectivity of pixel x = (x 1 , x 2 ) is: Γ 4 (x) = {(x 1 + 1, x2), (x 1 -1, x 2 ), (x 1 , x 2 + 1), (x 1 , x 2 -1)} ∩ E. (4.22)
In general, topological definitions of neighborhood relations Γ 4 and Γ 8 (Figure 4.8) can be written for ∀x ∈ Z 2 as: For x ∈ Z 3 , the relations Γ 6 , Γ 18 , Γ 26 (Figure 4.9) can be written as: 

Γ 4 (x) = {y ∈ Z 2 , |y 1 -x 1 | + |y 2 -x 2 | ≤ 1} (4.23) Γ 8 (x) = {y ∈ Z 2 , max(|y 1 -x 1 |, |y 2 -x 2 |) ≤ 1}
Γ 6 (x) = {y ∈ Z 3 , |y 1 -x 1 | + |y 2 -x 2 | + |y 3 -x 3 | ≤ 1} (4.25) Γ 26 (x) = {y ∈ Z 3 , max(|y 1 -x 1 | + |y 2 -x 2 | + |y 3 -x 3 |) ≤ 1} (4.26) Γ 18 (x) = {y ∈ Γ 26 (x), |y 1 -x 1 | + |y 2 -x 2 | + |y 3 -x 3 | ≤ 2}

. Overview of the distance transform

The distance transform (DT) was first introduced in [RP66, RP68] to produce a distance map for binary images (Figure 4.10). The idea behind consists of separating the pixels in the images into two classes: feature pixels (can be points, edges, or objects forming the foreground), and non-feature pixels (having pixel value = 0, forming the background). The background is initially not informative since it has no texture. The distance transform enriches this space by replacing the value of each non feature pixel by its distance to the closest CHAPTER 4. MATHEMATICAL AND NUMERICAL FRAMEWORK feature pixel (hence the name distance map). The distance transform method has been extensively used in several image processing applications: connected components labeling [START_REF] He | A run-based two-scan labeling algorithm[END_REF], segmentation and skeletonization [START_REF] Mark W Jones | 3D distance fields: a survey of techniques and applications[END_REF], morphological filtering [START_REF] Maragos | Differential morphology and image processing[END_REF], computation of geometric tortuosity [Cha19a] and many others. Searching for the minimum distance among all distances of a non-feature pixel to all feature pixels [Cui99] is a global operation, which is computationally intensive [START_REF] Borgefors | Distance transformations in digital images[END_REF]. To overcome this issue, early developments proposed to consider only a small neighborhood at a time, which has led reasonable approximations of the euclidean distance. That is, global distances in the image/volume can be approximated by propagating local distances between neighboring pixels [START_REF] Rosenfeld | Distance functions on digital pictures[END_REF][START_REF] Borgefors | Distance transformations in digital images[END_REF][START_REF] Montanari | A method for obtaining skeletons using a quasi-euclidean distance[END_REF]. The latter are defined on neighborhood relations presented in the previous section (Γ 4 , Γ 8 in 2D, and Γ 6 , Γ 18 , Γ 26 in 3D). The weights, defined as the values of pixels/voxels for each neighborhood, determine the values that will be propagated, and the error on the final distance map. An example of three distance maps generated by distinct local distances (chessboard, octagonal, euclidean) is shown in figure 4 Distance function A distance transform is first of all a distance function and must verify the following properties. For (x, y) ∈ Z 2 , it is defined as:

d : Z × Z → R + (4.28)
Such as ∀x, y, z ∈ Z: An overall formulation of the distance transform that extends to grayscale and color images can be found in [START_REF] Criminisi | erez : Geodesic image and video editing[END_REF]. In general, the distance between two points x and y is expressed by:

• d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y.
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d(x, y) = inf Γ∈P x,y ∫ l(Γ) 0 √︃ 1 + 𝛾 2 ( ∇I(s) • Γ ' (s) 2 ) ds (4.30)
where Γ is a path parameterized by its arc length s ∈ [0, l(Γ)] and P x,y is the set of all differentiable paths. The geodesic factor 𝛾 measures the contribution of the image gradient ∇I(s) and spatial distances. 𝜕Γ(s)/𝜕s is the unit vector tangent to the direction of the path. The binary image/volume distance transform is a special case of Eq.(4.30), where the image/volume has scalar values {0, 255} and 𝛾 = 0. In this case, Eq.(4.30) simplifies to the Euclidean length of path Γ.
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Local DT We have seen that the DT computation is based on the distance metric d. We distinguish between exact methods based on the Euclidean distance [Bai04, SW04] and approximate methods based on the local distances [START_REF] Borgefors | Distance transformations in arbitrary dimensions[END_REF]. The Euclidean distance for two points x and y of the discrete space Z 2 is given by:

d(x, y) = √︃ (x i -x j ) 2 + (y i -y j ) 2 (4.31)
In Z 3 , the equation is similarly given by:

d(x, y) = √︃ (x i -x j ) 2 + (y i -y j ) 2 + (z i -z j ) 2 (4.32)
While the Euclidean metric calculates the exact distance between two points, local distances evaluate the distance between two points as the shortest path according to the an n-connectivity relation. The local distance between two points x and y can be expressed as:

d(x, y) = min r ∑︁ i (W i dt i (x i , x i-1 )) (4.33)
where dt i is the distance between two neighboring points x i and x i-1 . r is the index of the target point y. The computation of DT can be performed by several methods belonging to the family of local distances. These approaches differ in terms of the propagation technique and the weights W i attributed to local displacements. To obtain a global approximation, the kernel of the local distance used is dragged over the whole image volume and the distances are computed locally. There are several methods allowing this. A two-scan raster scanning method is used in this work for the distance transform computation. It is well established in the literature [START_REF] Frank | Fast euclidean distance transformation in two scans using a 3 × 3 neighborhood[END_REF] and consists of a forward and a backward pass. This technique is widely used for the problem of connected component labeling as well [START_REF] He | A run-based two-scan labeling algorithm[END_REF]. Given a square orthogonal grid (considered as the kernel) in E = Z 2 (Figure 4.12) and E = Z 3 (Figure 4.13), centered on each pixel/voxel, the distance to the center of the kernel is the minimum of all neighbors' distances with the corresponding weight added. During the forward pass in the two-scanning algorithm scheme, the kernel is scanned through the image starting from the top to bottom and from left to right. The backward pass allows to calculate the remaining distances starting from the bottom to the top, and from the right to left. Figures 4.12 and 4.13 illustrate this process for the 2D and 3D case for a different set of weighs corresponding to several local displacements. 

Morphological operators

It is possible to compute the dilation 𝛿 r (X) and erosion 𝜖 r (x) morphological operators with a sphere structuring element of radius r by means of DT. For a set X and its complementary X c , we have: Quasi-Euclidean 3 

𝛿 r (X) = X ∪ {x ∈ X c , d(x, X) < r} 𝜖 r (X) = {x ∈ X, d(x, X c ) > r}
× 3 × 3 1 √ 2 Complete Euclidean 3 × 3 × 3 1 √ 2 √ 3 Quasi-Euclidean 5 × 5 × 5 1 √ 2 √ 3 √ 5 √ 6 3

. Deep learning

Here, a brief definition of deep learning is given, as well as a description of the feedforward and backpropagation process. Convolutional neural networks are addressed and described.

. A brief definition

Let us take images as a starting example for a binary classification task, where we have two class labels 1 and 2. To know to which class belongs an image, we can manually design the characteristics of each class and search for them in the images. The key aspect of deep learning is the same with the difference being that these characteristics are learned automatically from the data. Representation learning is a set of methods that extract relevant representations and features from raw data for detection and classification tasks [START_REF] Lecun | Deep learning[END_REF]. Deep learning is a set of methods of representation learning that rely on many levels of representations following a multi-layer architecture (hence the name deep learning). Let us consider a function y = ax that expresses a linear relationship between variable y and characteristic x. For this simple example, the a coefficient can be found by calculating the derivative of y with respect to x. For a more complex example, where Y is an image (an array of pixel values) and X are the features of the image, the relationship between Y and X is in 4.1 for some state of the art local distances.

general nonlinear and complex. Deep learning allows computing a good approximation of the solution. This is achieved by assembling layers that have simple but nonlinear functions in a way that each layer transforms the representation of the previous layer (starting from the input image) into a slightly more abstract representation. Combining these transformations, in a sequential way, allows for learning intricate functions.

A deep learning architecture is made of multiple layers, each layer transforms its input to increase both selectivity (discriminative features) and invariance regarding irrelevant features of the representation. Increasing the depth of the network (number of layers) allows for finding extremely complex functions [GBC16, LBH15].

. Feedforward and backpropagation

There are two macro processes involved in deep learning. A feedforward pass, aiming at approximating some function f * by defining a mapping y = f (x; w) of an input x to an output CHAPTER 4. MATHEMATICAL AND NUMERICAL FRAMEWORK = y It I with respect to the weights of all layers. At each layer, the error derivative with respect to the output of each unit is a weighted sum of the error derivatives with respect to the total inputs to the units in the layer above 𝜕E

𝜕y j = k∈H2 w jk 𝜕E 𝜕z k
. This procedure is repeated to propagate the gradient through all layers, starting from the output all the way to the input. Generally, there are millions (or hundreds of millions) of weights. The weight vector is adjusted in the opposite direction to the gradient vector of the objective function, which indicates if the error would increase or decrease if the weights are to increase by a tiny amount. The intuition behind taking the opposite direction of the gradient vector is the fact that we can't CHAPTER 4. MATHEMATICAL AND NUMERICAL FRAMEWORK tell from looking locally the exact direction to the solution. However, the negative gradient direction is the steepest direction locally and taking a small negative gradient step ensures getting closer to the minimum. In practice, the stochastic gradient descent (SGD) method is widely used [START_REF] Goodfellow | Deep Learning[END_REF] and consists of iteratively computing the gradient and performing a parameter update in a loop for a small set of the input dataset many times. The calculated gradient of the subset of the dataset is considered as a noisy average of the gradient over all examples (hence the name stochastic). This stochastic optimization problem can be written as:

w k+1 = w k -𝛾 k ∇L i (w k ) minimize L(w) = 1 n n ∑︁ i=1 L i (w) L i (w) = ℓ(x i , y j , w)
the goal is to find the set of parameters w that minimize the loss function L (i.e. the error). L i refers to the loss of the network on a single instance. w k+1 is the new value of weight, w k is the previous value, 𝛾 k is the step size, and ∇L i is the gradient of L i .

. Convolutional neural networks

Throughout the recent years, convolutional neural networks (CNNs) have demonstrated their remarkable performance in handling a variety of problems in the fields of image processing and computer vision [GLO + 16, LBH15]. They have become a major tool for visual recognition modern tasks such as image classification, segmentation, semantic segmentation and so on. There are many CNNs architectures in the literature but most of them feature convolutional layers, pooling layers, and fully connected layers at the end of the network (Figure 4.15). A detailed description of each layer, based on [START_REF]learning for computer vision[END_REF], is given in what follows.

Convolutional layers

Overall, the goal from a deep learning network is to find the set of parameters that yield the best approximation of the output. For convolutional layers (conv layers), the parameters are a set of learnable filters that are spatially small (often a window from 3 × 3 to 9 × 9 pixels). In the case of images (large data), the use of fully connected layers leads billions of parameters to estimate. Convolution layers allow to break this complexity by considerably reducing the number of parameters to be estimated. During the feedforward pass, the filters are convolved over the input image (or slide across the input image), which gives a response of each filter at every position. This is achieved by the dot products between the entries of the filter and the overlapping input elements. The results are summed up to obtain the output value at the current position (generally the center of the filter). By sliding a filter over the width and height of the input image, a 2D feature map is obtained and expresses the responses of that filter at every position of the input. When training a convolutional neural network with n filters, the network learns which filter activates when it detects interesting features (edges, forms, color intensity, etc.). output of the n filters is n feature maps that get stacked along the depth dimension to produce the output image. Filters can be seen as features detectors. The more filters are used, greater is the depth of the output, and more information is obtained from the input image.

Although the filters are capturing spatial features, they extend in depth of the input image.

For instance, for an input image with three channels, each channel will be convolved with a filter, and the resulting feature maps associated with each channel are summed up element wise to produce the output feature map.

The neurons remain as in the general case of deep learning, only their connectivity is constrained to be spatially local (the neurons are not connected to all pixels of the input image). Therefore, the connectivity of neurons (associated to filters) is local and each neuron is connected to only a local region of the input image (Figure 4.16). The spatial size of this local region is called the receptive field, which is the size of the filter. While this connectivity is spatially local, it extends to the depth of the input image as stressed above. The weights of the neurons (or parameters) define the connectivity with the input. For instance, a filter of 5 × 5 applied to an image of 32 × 32 × 3 yields 5 × 5 × 3 = 75 weights for each neuron. Figure 4.15 shows a classical convolutional neural network architecture which is made of several conv layers, followed by sub-sampling layers (defined below). In this scheme, the filters in the first conv layer are designed to capture low level features (less abstract feature, such as edges) from the input image. In subsequent conv layers, the neurons detect indirect and more abstract features captured this time from previous feature maps. Because of the nested conv layers and sub-sampling layers structure, the receptive field gets larger layer after layer and the output feature maps increasingly detect high-level features that are complex and more abstract. The number of filters defines the depth of the output of each conv layer. For CHAPTER 4. MATHEMATICAL AND NUMERICAL FRAMEWORK input image feature maps standard convolution, the stride parameter s controls the size of the feature map. For s = 1, the filter slides pixel by pixel. For s = 2, the filter jumps two pixels at a time, which produces a smaller size of the output than the input. The handling of borders of the input image is given by the zero-padding p, which also controls the spatial size of the feature map by adding pixels with value 0 on the borders of the image (Figure 4.17). In general, the size of the output image W 2 × H 2 × Z 2 is controlled by the size of the input image W 1 × H 1 × Z 1 , the number of filters k and their receptive field f , the stride s, and the value of zero-padding p: 

W 2 = W 1 -f + 2p s + 1 H 2 = H 1 -f + 2p s + 1 Z 2 = k (4.35)

Pooling layers

A pooling layer consists of a small sliding window (kernel) that reduces the spatial size of the input data (input image and feature maps) to reduce the number of parameters for the following layers (less training time, and also prevents overfitting). Pooling layers also add abstraction by no longer looking directly at the input data, but at a representation of the input data.

Pooling layers are generally inserted between successive conv layers, which leads to a progressive reduction of the spatial dimension of the feature maps. Akin to conv layers, the pooling layers use kernels (or filters) that are applied to the 2D spatial size, but extend to depth. The associated pooling operation is usually a max operation, which takes the max among all the numbers of the kernel. The most popular size of kernels used in pooling layers is a 2 × 2 matrix (or f = 2, following previous notations), applied with no zero-padding (Figure 4.18), and a stride of s = 2. More generally, the size of the output image W 2 × H 2 × Z 2 of a pooling layer depends on the size of the input image W 1 × H 1 × Z 1 , the kernel size f , and the stride s:

W 2 = W 1 -f s + 1 H 2 = H 1 -f s + 1 Z 2 = Z 1 (4.36)
Pooling is similar to discrete convolution with shift, in the sense of dragging a window matrix on the input and providing the content of the window to a pooling function (Figure 4.19). Instead of using the linear combination of the filter used in a conv layer, the pooling uses the max or average function.

Fully connected layer

In a fully connected layer, neurons have full connections to all activations in the previous layer. This means that a fully connected layer acts as a convolutional layer where the filter has a 1 by 1 pixel correspondence. A fully connected layer can therefore be expressed as a conv layer. For a fully connected layer having an input image volume of size 12 × 12 × 256 and k = 2000, the correspoding convolutional layer can be parametrized by f = 12, p = 0, CHAPTER 4. MATHEMATICAL AND NUMERICAL FRAMEWORK 

Activation functions

Another important component of deep neural networks is the activation function, which is responsible for adding non-linearity to the network. At each layer during the feedforward pass, activations functions are considered as an additional step by allowing all kind of computation on the features of the conv layers and transfer the results to the output layer. It is important to use non-linear activation functions instead of linear ones [START_REF]Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks[END_REF]. That is, for an identity linear activation function f (x) = x where the activation is proportional to the input, the weighted sum of the input will be simply passed to the output. This approach doesn't allow backpropagation since the derivative of the function is constant and independent from the input. Another shortcoming of linear activation functions is that no matter the number of layers, the last layer is a linear function of the first one, which collapses the network to only one layer. Hence, causing the loss of all the complexity that a deep neural network can handle.

A typical non-linear activation function allows to apply on the weighted sum at the output of the neurons a threshold value which decides which are the neurons to be activated and those to be deactivated. In other words, it allows to drop the neurons that do not contain relevant features. There are many non-linear activation functions such as the logistic activation function (sigmoid), hyperbolic tangent (Tanh), rectified linear Unit (ReLU), etc. These functions have different derivatives (some have a smooth gradient during backpropagation for example) and other mathematical properties. A comparative study between some of these functions can be found in [START_REF]Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks[END_REF]. In our work, the Sigmoid and ReLU activation functions were used.

A description of each one is addressed in chapter 8.

. CNNs Examples

Most known CNNs are typically made up of convolutional, pooling and fully connected layers. Architectures differ in terms of the number of layers (depth of the network) and the way they are stacked, but not only. The parameters discussed before (size of filters f , stride CHAPTER 4. MATHEMATICAL AND NUMERICAL FRAMEWORK s, zero-padding p, etc.), among others, are called hyperparameters and allow to control the quality of the learning as well. There are several architectures of CNNs. The first successful one is probably the LeNet architecture [LBD + 89], which was applied for the recognition of digits. The need for more advanced models was driven by more complex tasks. It took several years to design architectures with more layers due to limitations in computing power; twelve layers in AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], and sixteen layers in VGGNet [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] which has showed that the depth of the network is a critical component for the quality of training. The ResNet [START_REF] Karol | Recognizing bird species in audio recordings using deep convolutional neural networks[END_REF] architecture has one hundred and fifty two layers and features special skip connections. The current state of the art CNNs models are based on a specific U-shaped encoder-decoder architecture. In this setting, the encoder reduces the spatial dimension progressively in every layer while increasing the number of channels. The decoder restores the spatial dimensions and the features maps from the encoder are passed through skip connections to regain spatial information. The original model was first introduced as U-Net in [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and has known many developments in the recent years that tweak the original architecture such as U-Net++ [START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF]. In this work, this type of architecture is used and will be described in chapters 7 and 8.

. Conclusion

Here, the overall mathematical and numerical framework of the thesis has been presented. All the defined concepts and methods will be used in the following chapters.

. Introduction

This chapter is divided into two independent sections, presenting two methods allowing the characterization of numerical microstructures of materials. In the first section, we develop a method based on the distance transform to describe accurately the pore network of numerical microstructures of materials. The approach followed involves a distance transform applied to the porosity phase to generate a distance map. The maxima points of the latter are extracted and the area around them is covered with the same label. The shape of partitions (or pores) is dependent on subsequent filtering techniques. Two methods were proposed regarding this. The final partitioning of the pore network is obtained using a geodesic distance transform, allowing the propagation of labels from one pore to its neighbors. The method was applied to different models of microstructures and an example of the calculation of the pore size distribution was given. In the next section, the estimation of the sinuosity of digital porous microstructures was addressed by means of an efficient geometric tortuosity descriptor. The method proposed aims to reduce the computation time of the M-tortuosity operator [Cha19a] by using a graph approach. In particular, the PNP method was used to extract pores and construct a graph from the void of a porous microstructure. Through this scheme, pores are the nodes, distances between pores are the arcs between nodes and the goal boils down to the determination of the shortest paths between nodes. Solving this on a graph requires a tree search formulation of the problem, which has led us to use the Djikstra's algorithm. The results obtained have shown a drastic computation time decrease while preserving good agreement with the original results.

. Evaluation of pore size distribution

Extracting the porosity of a digital pore network is an issue of major interest for computation efficiency. Digital microstructures of materials can be computer-generated (e.g., modeled by stochastic processes) or acquired by X-ray/electron tomography acquisition. At a given resolution, the digital microstructure respects the textural and topological properties of the real sample. For instance, the pore network extraction algorithm developed in [YHX + 15] is unsuitable for highly porous materials. Some of the methods that are close to ours are presented in what follows. The first example is skeletonization-based methods, in which the estimation of the medial axis leads to the creation of a graph of pore space. In this approach, pores are placed at the nodes of the skeleton and pore-necks are defined by the curved elements of the skeleton that connect these nodes [START_REF] Bhattad | Effect of network structure on characterization and flow modeling using x-ray microtomography images of granular and fibrous porous media[END_REF]. The drawback of this approach is the difficulty of robustly extracting curved elements of the skeleton. Another example is the marker-based watershed segmentation that proceeds, after applying a distance transform to the void space, by removing all local maxima leading to an over-segmented watershed map [START_REF] Gostick | Versatile and efficient pore network extraction method using marker-based watershed segmentation[END_REF]. This approach is similar to ours, with wathershed replaced by geodesic distance propagation, but differs in terms of local maxima filtering. The method presented below consists of a distance transform-based algorithm, which allows the extraction of pore networks of binary representations of porous materials. Maxima points are first extracted from the CHAPTER 5. NUMERICAL CHARACTERIZATION OF POROUS MATERIALS distance map, and a filtering operation is applied to overcome overlap issues. The void space is then scanned by the geodesic distance transform to generate a discrete space of pores. The following approach takes as input a binary volume representing a porous material. The binary aspect refers to the biphasic composition of the numerical model of the material (solid and porosity phase). While a 2D image of a Boolean model is addressed below for simplicity, the same procedure holds for binary 3D image volumes. Considering the two-dimensional metric space E = Z 2 , we recall the definition of a binary image I following the notations given in chapter 4; I : Ω → {0, 255}, where Ω ⊂ E is the support of E. The image is divided into two subspaces. The first one is the foreground (solid phase) and the second one is its complementary (void phase). The set of foreground elements is S = {x ∈ Ω : I(x) = 255}. Similarly, the set of the background elements is P = {x ∈ Ω : I(x) = 0}. The image given in chapter 4 (Figure 4.10) will be used to demonstrate the PNP-method. The figures below are originally in gray-scale
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values, but a specific color map was used instead to better visualize the several steps.

Distance transform

The first step of the PNP method consists of calculating the distance transform in the background space. We refer to the equations given in chapter 4; the general equation of DT d is given in Eq.(4.29) and the metric d used is a local distance Eq.(4.33) such as the values of the local displacements (or weights) used are those of the quasi Euclidean local distance, given in table 4.1. The distance map (Figure 5.1-a) can be seen as a digital representation of the porosity space, where the intensity of pixels in the background is increasing with respect to their distance to the foreground pixels.

Local maxima extraction

To partition the porosity network, the farthest points from the solid phase are extracted. Each pixel value will be compared with other elements in its neighborhood according to the Γ 8 pixel-connectivity relation (Eq.4.24). The elements having the maximum distance map value are the ones of interest. For x, x k ∈ P, the corresponding operator writes:

𝜃 (DT d (x)) = x k DT d (x k ) (5.1)
for point x k , which meets the condition:

DT d (x k ) ≥ DT d (x ′ k ) (5.2) 
Where point x ′ k ∈ Γ 8 (x k ). In figure 5.1-b, the dots correspond to the local maxima extracted from the distance map.

Maxima filtering

For each maxima point, we create a disk (or a sphere in the 3D case) parameterized by S r k

x k ⊂ P, where the radius is the corresponding distance transform value r k = DT d (x k ). This operation covers the area around the extracted maxima. Following the creation of disks around maxima points, intermediate disks can be trapped in-between other disks, causing an overlap between the center of the intermediate disk and its neighborhood. If a point x k is covered by a disk which has a larger radius, the corresponding maxima point is removed. We write:

∀x k ∈ P, S r k x k ≥ DT d (x k ) =⇒ x k = 0 (5.3)
In figure 5.2, the center of the small disk (P 3 ) is included in a bigger disk (P 1 ), therefore, P 3 and its maxima point are removed. A subsequent operation of creating disks around the remaining points follows, which leads to considering the intersection of disks. In this sense, two filtering techniques are proposed: standard filtering (Figure 5.2-a) and filtering with intersections removal (Figure 5.2-b). We define the partition function M and F for each filtering technique:

M(x) =          r k x ∈ (∃ !S r k x k ) r k ′ x ∈ A, A = i S r i x i , r k ′ ≥ r i 0 otherwise (5.4) CHAPTER 5. NUMERICAL CHARACTERIZATION OF POROUS MATERIALS F(x) = r k x ∈ (∃ !S r k x k ) 0 otherwise (5.5)
M and F refer to standard filtering and filtering with intersections removal respectively. For M, the intersections between pores are preserved, while for F, intermediate pores are created by removing the intersections. The interest of these filtering methods will be addressed further in what follows. For the 3D case, all the operations described above remain the same, replacing disks with spheres. Distance transform with source propagation Previous steps do not yet allow to obtain a partition, some points of the porosity being unlabeled. A geodesic distance, as illustrated in figure (5.3), measures the length of the path between two points, while being constrained to be included in a given set [START_REF] Lantuejoul | Geodesic methods in quantitative image analysis[END_REF]. The geodesic distance between a point x ∈ P and a subset X ⊂ P is denoted:

D G (x, X) = inf x ′ ∈P D G (x, x ′ ) (5.6)
Because the creation of disks does not cover all the porosity space, the geodesic distance transform is used to fill the remaining empty spaces. The distance calculation is carried out step by step and the initial source point is propagated.

S p (x, X) = x ′ | inf x ′ ∈P D G (x, x ′ ) (5.7)
The geodesic distance is propagated starting from a created disk to the next one and so on until all the porosity space is completely filled. The shape of pores can be controlled by the 

. Illustrations

We have seen that the PNP method allows the extraction of porosity network in few simple steps. The algorithm has no preliminary information about the spatial organization of the pores inside the porous space, but manages to gather information through a series of image transformations. This method produces a labeled image of the porosity network, where each pore is identified by its size. The propagation of the geodesic distance transform allows the extraction of pores with arbitrary geometries, therefore allowing the modeling of realistic pore networks. Since we only use two distance transforms throughout the procedure, 
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if M d (n) ≠ 0 then 11: r ← DT d (n) 12:
Create Disk S(n, r); extraction on volumes of 200 3 voxels in 1.6 s and bigger volumes of 500 3 voxels in 29 s. This computation time was obtained using a personal computer (CPU: Intel core i7 2.6 GHz, RAM: 16 GB). For comparison with similar methods from literature, the marker-based watershed segmentation algorithm [Gos17] takes around 200 s for similar size of volumes (500 3 voxels) with approximately the same computer specifications. Here, the results for two types of microstructures are addressed. The first one is a 2D pore network model, taken from [LVS + 22]. It is made of interconnected cylinders assembling pores and pore necks. The parameters of this network consist of cylinders identified by their length and diameter. An image of a pore network model of 800 × 800 pixels and its pore network partition map are shown in figure 5.5. The second example is a multi-scale Cox Boolean model. Multi-scale porosity is achieved by the size of the aggregates R inc , the volume fraction of aggregates V in , and the volume fraction CHAPTER 5. NUMERICAL CHARACTERIZATION OF POROUS MATERIALS of primary grains inside and outside the aggregates V in , V out , respectively. The parameters of the 200 3 voxels model (Figure 5.6) are the following: size of platelets (L = 25, H = 15, T = 5), V in = 0.2, V out = 0.4, R inc = 100, and V inc = 0.4. In general, a porous material is characterized by descriptors such as the volume of pores, specific surface area, pore size distribution, etc. These parameters are obtained experimentally but could also be estimated numerically as stressed in chapter 2. In this context, the PNP method allows to explicitly evaluate the pore size distribution of the pore network. For instance, consider the family of sets (each set is made of pores), and every set has a unique label (pore diameter ≃ DT d ). We consider the family of sets {L r } such that r = 1, 2, ....n and n = max(DT d ). Since pores are labeled as a result of the PNP method, there is no need to calculate the granulometry function using the opening morphological operator as seen in Eq.4.5. Instead a simple granulometry function denoted G r = Cardinal(L r ) can be directly used to compute the number of pores having the same label (or radius). For r = {0, 1, ..., n -1}, the pore size distribution (PSD) is the cumulative sum of the granulometry function G r :

if M d (n) ≠ 0 then 17: r ← DT d (n) 18: if S(n, r) ≥ DT d (n) then
H 0 = 0 (5.8
)

H r+1 = G r+1 + H r (5.9)
The PSD and the cumulative PSD of microstructure (Figure 5.6) is shown in figure (5.7). CHAPTER 5. NUMERICAL CHARACTERIZATION OF POROUS MATERIALS

. Evaluation of geometric tortuosity

Let us consider a particle travelling through a medium where there are different phases, void and matter for instance. Its path is tortuous and ambiguous by virtue of its environment topology and morphology. A multi-scale context of random assembly of aggregates and grains takes that phenomenon to another level of complexity, forcing the particle to cross areas of high and low density. The particle may be part of the diffusion flow phenomenon in a porous media, or the electrical transport of ionic charges by conduction through a solid phase. Under the urge of understanding these transport phenomena, the characterization and the analysis of complex microstructures is a fundamental step. Tortuosity 𝜏 is among the most common descriptors of a porous medium, allowing the evaluation of meandering paths throughout the microstructure. In the history of tortuosity estimation, the focus has often been the characterization of microstructures to estimate their hydraulic and electrical transport properties [START_REF] Ghanbarian | Tortuosity in porous media: A critical review[END_REF]. Considering the diversity of the tortuosity concept, ad hoc models are created to address this issue. By including the transport process being studied, different treatments of tortuosity arise. Until now, unifying these definitions is still a puzzling task [MOK + 01]. Our method is based on the framework of geometric tortuosity, where only the morphological aspects of the microstructure are considered. The M-tortuosity descriptor proposed in [CMS + 19] allows a global characterization of the microstructure by providing topological and morphological information, all contained in one scalar τ. The latter has proven to be an effective descriptor to discriminate microstructures by their tortuosities. The original algorithm of the M-tortuosity lies on multiple computation of geodesic distance maps, which can lead to important time complexity. An estimation of the aforementioned descriptor, allowing faster computation time is proposed. We call it GM-tortuosity. Our procedure can be divided in two steps. First, the pore network structure is extracted by means of the pore network partition PNP method, detailed in the foregoing section. Second, the generated pore network is transformed to a graph where the pores represent nodes and connections between pores are weighted by corresponding Euclidean distances. To find the distance separating two distant pores, the shortest pathway computation algorithm Djikstra's [START_REF] Thomas | Introduction to Algorithms[END_REF] is used. Finally, we follow the guidelines of the original M-tortuosity algorithm with the only difference that the newly calculated distances replace the geodesic distances. + 19] have proposed a novel descriptor for geometric tortuosity. The following ideas recall the most important features and methods of this work. The geometric tortuosity between two points can be defined as the ratio of tortuous and straight distance separating them. The formalism of the geodesic distance transform (GDT ) allows a precise computation of geodesic distances [START_REF] Criminisi | erez : Geodesic image and video editing[END_REF]. GDT is based on the propagation of distances from source points as stressed before. That is, for a given point, it would be possible to have the distance that separates it from each point of the network allowing the generation of a distance map. Hence, the tortuosity between two points can be correctly estimated via GDT. By considering all the points of the network, a deterministic M-tortuosity methodology was proposed: first, on a binary function I : R 3 → {0, 1}, a bounded set of features points, which are pore network elements, can be defined as X = {x ∈ R 3 , I(x) = 1}. For each (x, y) ∈ X 2 where

. M-tortuosity Chaniot et al. [CMS
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x ≠ y and x ≠ c, such that c is the center of inertia of the network, the geometric tortuosity is defined as 𝜏 x,y = D G (y,x;X) D(y,x) where D G is the geodesic distance between points x and y calculated using [START_REF] Criminisi | erez : Geodesic image and video editing[END_REF] and D is the associated Euclidean distance. Given the former x, it is possible to define an arithmetic mean of the geometric tortuosities C x , where the respective weights are the geodesic distances D G (y, x; X). c,D(x,c).

𝜏 M = ∫ X\{x} D(x, c)C x dx ∫ X\{x} D(x, c) dx (5.11)
The evaluation of 𝜏 M provides information about the global geometric toruosity in X. Besides the definition of the geometric tortuosity, and the use of the geodesic distance transform, equations (5.10 and 5.11) offer an overview of the proposed methodology. Since, it is not practical to consider all the points of the network, given the high cost of the geodesic distance map computation time. It is convenient to use an adequate sampling method instead. However, by considering a single source point, all the estimated distances will only refer to that point, and the distance between the other sampled points will not be considered, causing a poor representation of the network. Yet, repeating this process for the case where each sampled point is considered as a source point will allow the exploration of new paths and effectively estimate the tortuosity of the network. While the original work of [CMS + 19] has proposed a deterministic and an estimated Mtortuosity descriptor, our method presents a faster computation strategy of the estimated M-tortuosity. In addition, recent work [HWM + 13] has addressed the question of geometrical tortuosity and constrictivity by means of image analysis and morphological operations. The developed descriptors were performed on membranes of electrolysis cells X-ray tomography images. Experimental and numerical procedures were conducted to understand how these parameters are related to the measured transport properties, which allowed the identification of discriminating parameters. It has been reported that the constrictivity is strongly correlated with the transport properties of the studied membrane materials. The relevant part to us in this work is related to the methodology used to characterize the pore structure by means of image analysis. This method was initially proposed in [START_REF] Lukas | 3d geometry and topology of pore pathways in opalinus clay: Implications for mass transport[END_REF] and goes as follows: first, regions of interest are extracted from tomography images. They undergo filtering and segmentation operation which enables the computation of the porosity of the material. Second, a skeletonization is performed on the resulting image to probe the porous network. Now that the pores were identified by their inertia centers, the porous network is simplified to a string of connected pores, where each pore is carrying information about its distance from nearest pore. Finally, the porous network defines a graph and the distances between pores are estimated by CHAPTER 5. NUMERICAL CHARACTERIZATION OF POROUS MATERIALS the Djikstra's shortest path search algorithm, yielding tortuous distances between two distant pores. The ratio of the latter and the Euclidean distance between the two points defines a local tortuosity estimation. Repeating this process for a large number of data has allowed computing an overall tortuosity estimated as the average of all local tortuosity values. This method and ours share common operations, namely the graph-based organization of pores and distances. Since this method may seem similar considering the sequence of steps on overall, the method presented below is based on the framework of the M-tortuosity, making use of the PNP approach to generate the pore network and yielding an approximation of the global geometric tortuosity.

. Graph-based GM-tortuosity

Inside complex 3D microstructures, it is difficult to visualize geodesic distances between points. Hence the interest of using toy cases, which allow illustrating in a concrete way the results obtained. A simple two-phase scheme (Figure 5.8) is used to demonstrate the concepts behind the techniques used. The first step is pore network partionning by the PNP method, which allows the extraction of the pore network in the form of uniquely labeled pores. Then, the mapping of pores and their adjacency properties into a graph representation. Pore network models are one of the basis of physical and chemical simulation processes in porous materials. The quality of the predictions is sensitively linked to the representation of the pore network [START_REF] Xiong | Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport[END_REF]. For real microstructures, the shape of pores is irregular and their morphology is complex and stochastic. Therefore, it is important to develop numerical methods allowing the characterization of materials independently of the pore network geometry. Figure 5.8 represents a random pore network. By applying the PNP method to this pore network, the latter is divided into distinct pores (Figure 5.9). The resulting pores are labeled according to their size (1 → 15) using an arbitrary unit. The separation of pores allows an accurate representation of a wide range of pores: narrow, wide and in-between the two ranges.
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Procedure By building upon the formalism of the M-tortuosity, our steps proceed in the same way as [CMS + 19]. The latter starts by either considering the whole pore space or only the points on the medial axis obtained from a skeletonization procedure (the used algorithm can be found in [START_REF] Lee | Building skeleton models via 3-d medial surface axis thinning algorithms[END_REF]). This operation is followed by a sampling strategy on the resulting pore space/skeleton. Geometric tortuosities can be computed on the basis of the sampled points. This scheme involves the computation of several geodesic distance transforms starting from source points to assess the overall tortuosity. In our method, we revised the way geodesic distances are computed by transposing this computation process to a shortest path algorithm on a graph. Let I : Z 3 → {0, 1} be a binary volume on a discrete 3D Euclidean space. I = S ∪ P can be seen as the union of the solid S and the pore phase P. After the application of the PNP method, the modified pore phase P can be written as a set of distinct pores

P = {p i } i∈[0,N-1] ,
where N is the total number of pores. Following the guidelines of the original M-tortuosity, a uniform sampling strategy is applied to set P. The sampled points are extracted by a uniform distribution U([0, N -1]) allowing random selection of pores. Considering p i and p j as two pores localized by their center of inertia c p i = {x p i , y p i , z p i } and c p j = {x p j , y p j , z p j }, respectively. The geometric tortuosity between the aforementioned pores can be defined as:

𝜏 i,j = D G (c p i , c p j ) D E (c p i , c p j ) (5.12)
where D G (c p i , c p j ) and D E (c p i , c p j ) denote geodesic and Euclidean distance between p i and p j , respectively. The computation of the Euclidean distance is straightforward:

D E (c p i , c p j ) = √︃ (x p i -x p j ) 2 + (y p i -y p j ) 2 + (z p i -z p j ) 2 (5.13)
The geodesic distance is computed through the Djikstra's algorithm. For that, a graph of the size | P| is constructed. The nodes of the graph are the pores. To establish the adjacency matrix, the neighbors of each pore are identified, and their Euclidean distances from the source pore are stored. Two pores are neighbors if they have a common contact surface.

After transforming the porosity into a graph, the tortuosity between two distant points can be estimated. The evaluation of the global tortuosity requires the computation of the GMcoefficient. Given N sampled pores, for n ∈ [0, N -1]:

Ĉ-1 n = N-1 m=0,m≠n 1 D G (p m ,p n ) N-1 m=0,m≠n 1 D G (p m ,p n ).𝜏 m,n (5.14)
The GM-coefficient is evaluated for every sampled pore. We recall the definition of the GM-tortuosity :

GM = N-1 n=0 1 D E (p n ,c) N-1 n=0 1 D E (p n ,c). Ĉ-1 n (5.15)
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where c is the center of inertia of the porous phase. The computation of τM is the final step of the GM-tortuosity procedure. The definitions given above are all based on the original work [CMS + 19]. The following pseudo code summarizes the aforementioned steps (cf. Algorithm 2). Properties Consider two points of the porosity phase (x, y) ∈ P 2 . We can express the distance between the two points as:

d(x, y) = inf Γ∈P x,y ∫ ℓ(Γ) 0 ds (5. 16 
)
where Γ is a path parameterized by its arc length s ∈ [0, ℓ(Γ)] and P x,y is the set of all differentiable paths. Assuming that P is a convex space, ∀(x, y) ∈ P 2 ∃!Γ such that d(x, y) = d E (x, y). However, this property is not valid for concave spaces, and d(x, y) may be expressed as:

d M (x, y) ≈ inf M ∑︁ i=0 d E (x i , y i ) Γ x i ,y i ⊂ P
(5.17)
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where x 0 = x and y M = y. In this case, d M (x, y) is an approximation of the geodesic distance between points x and y, which is defined as the minimum distance formed by the sum over intermediate paths Γ x i ,y i . We denote the total geodesic path Γ M . Considering the way the total geodesic path Γ GM is calculated using the GM-tortuosity, it can be seen as a graph path.

i.e., as a sequence [x, x 1 , x 2 , x 3 , ..., y] such that (x, x 1 ), (x 1 , x 2 ),..., (x M-1 , y) are the edges, or intermediate paths, of the graph and the x i are distinct pore inertia centers. Notice that, Γ GM , is one of the possible paths given in equation (5.17), whereas Γ M is by definition the shortest possible path. Therefore, we have the property:

d M (x, y) ≤ d GM (x, y) ∀(x, y) ∈ P 2 (5.18)
such that d GM (x, y) is the geodesic distance formed by the edges of the graph. Equation 5.15 provides a direct relationship between the geodesic distance and the M/GMtortuosity descriptors, therefore their values can be predicted from d M and d GM . From equation 5.18, the following property can be derived:

∀P ⊂ I GM(P) ≥ M(P) (5.19)

Morphological analysis

Provided that the difference between the two methods lies in the way the geodesic distance is calculated, figure 5.9 shows three different approaches in the assessment of the path between point 8 and point 9.

First, the propagation of the geodesic distance transform between the two endpoints, in the domain constrained by the porosity phase, produces the shortest geodesic path. Second, the propagation of the same geodesic distance transform in a much more restricted domain (the morphological skeleton of the pore phase of width = 1 pixel), extends the shortest path by forcing the algorithm to pass through unnecessary skeleton points. The latter corresponds to a longer geodesic distance between the two points. These two approaches may be seen as another way of calculating M-tortuosity in constrained domains (porosity phase or skeleton).

On the other hand, the procedure proposed in this work suggests constructing a path by linking only the centers of inertia of the intermediate partitions between the two endpoints (Djikstra's shortest path). To justify this choice, we refer to the concept of the morphological skeleton [START_REF] Serra | Image analysis and mathematical morphology[END_REF]. The latter is formed along the centers of balls of maximum radius that can be contained between two points of the same domain. As explained in section 5.2 regarding the PNP method, the maxima filtered points correspond to the maximum values of the distance map after the filtering operation. These maxima points, which will subsequently be the centers of inertia of the partitions, can be approached by the centers of balls, having the maximum radius and contained in the same phase. Therefore, they are sampled points of the skeleton. According to this approach, GM-tortuosity produces intermediate distances between the calculation of geodesic distance in the whole porosity space and the one based in the skeleton. To validate this proposal, the M-tortuosity was calculated by considering the whole porosity and skeleton domain in figure (5.9). These values are then compared with the result found by our approach. The following results are obtained: M-tortuosity = 1, 041, M-tortuosity in the skeleton = 1, 21 and GM-tortuosity = 1.049. Our method overestimates the values of one approach and underestimates the ones of the other. are illustrated (Euclidean distance, geodesic distance, the path on the skeleton, and the Djikstra's shortest path). (b) is a graph representation of the partitioned network above, on which the Djikstra's shortest path was calculated. The Euclidean distances (in pixels) between pores are given for reference.

CHAPTER 5. NUMERICAL CHARACTERIZATION OF POROUS MATERIALS

. Illustrations

Boolean models and Cox Boolean models are used to illustrate our method. For comparisons with the M-tortuosity original results, we generate four microstructures, 1-scale and 2-scales models of spheres and platelets. We fix the dimensions of the spheres and the platelets, R = 10, L = 10, H = 5, T = 5 for all microstructures. V v = 0.4 and V v = 0.3 are fixed for the 1-scale model of spheres and platelets, respectively. R inc = 30, V inc = 0.5, V in = 0.3 and V out = 0.5 are the parameters for the 2-scales model of spheres. The 2-scales model of platelets is characterized by: R inc = 30, V inc = 0.4, V in = 0.3 and V out = 0.7. Microstructures 
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Time complexity

In what follows, the time complexity of M-tortuosity and GM-tortuosity is addressed, and the mean computation time of the two methods on the volumes (Figure 5.10) is given. Additional illustration of computation time on a bigger microstructure of the size 300 3 voxels is provided as well. As specified above, the generation of the pore network by means of the PNP method requires the use of two distance transforms. For both operations, a two-pass scanning algorithm was used (refer to the distance transform section in chapter 4 for more details). Assuming that the total number of pixels is n, the PNP method requires 2(n) + 2(n) operations, which leads us to a linear time complexity O(n). On the other hand, the implementation of the Djikstra's shortest path is based on a priority queue algorithm.

Assuming that there are v vertices present in the graph constructed from the PNP output, the queue contains O(v) vertices and each pop operation takes a time O(log v). Therefore, the time complexity of the main loop is linearithmic O(v log(v)). In practice, n denotes millions of pixels while v is of the order of thousands of elements. The M-tortuosity implementation
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used for comparison is based on a raster-scanning algorithm as well [CMS + 19]. Provided that the algorithm performs a sampling strategy over the porosity space followed by a geodesic distance transform operation, the time needed for the computation is N × O(n), where N is the number of the sampled points. The algorithm requires a linear time complexity O(n).

We conclude that the time complexity in the case of the original M-tortuosity algorithm exceeds significantly the time complexity of the GM-tortuosity algorithm. The M-tortuosity and GM-tortuosity simulations were conducted on a (CPU: i7 2.6 Ghz, RAM: 16 GB) personal computer. In the provided benchmark, N is taken equal to 64. Given the models in figure (5.10), the mean M-tortuosity computation time for a given microstructure is about 58 s, wheareas for the GM-tortuosity, the mean computation time marks a very important decrease to reach 5 s. This gap in computation time is even more important for larger volumes. For instance, a rendered 1-scale boolean model of spheres of the size 300 3 voxels requires 1832 s for the original method and 107 s for ours, including the computation time of the PNP method. Concerning GM-tortuosity, computation time is highly governed by PNP construction. For M-tortuosity, the number of points has a strong impact on performance, while the latter is negligible for GM-tortuosity.

Comparison with M-tortuosity

Based on the microstructures generated (Figure 5.10), a comparison is conducted between the results of the M-tortuosity original estimator, available in [plu22], and the results of our GM-tortuosity estimator. The main advantage of the M-tortuosity method lies in its discriminating ability between microstructures. GM-tortuosity is expected to produce a bigger tortuosity value for the same microstructure as the graph construction strategy forces the passage through each center of inertia of the pores, and consequently increases the estimated geodesic distance. We check the consistency between the results of the two methods in the sense that the values of our method must follow the same trend as those of the original method. Thus, the maximum and minimum values must match and the rest of the results should follow the same logic. The validation of this proposition would imply that the GM-tortuosity is a reliable descriptor in distinguishing between microstructures based on their geometric tortuosities. Considering 64 uniformly sampled points (pores in GM-tortuosity ), table 5.1 depicts the mean geometric tortuosities related to M-tortuosity and GM-tortuosity for four simulations of four types of microstructures (figure 5.10: a,b,c,d), evaluated in the pore and solid phase. The 2-scales model of platelets has the highest coefficient for both methods. Similarly, the 1-scale model of platelets presents the lowest coefficient for both methods. In addition, the results related to the evaluation of the M-tortuosity on the skeleton, given in table 5.1, illustrates the validity of our proposal. Indeed, the GM-tortuosity underestimates/overstimates the results of M-tortuosity evaluated in the skeleton/microstructure, respectively.

. Conclusion

Two methods for numerical characterization of porous materials were presented. The PNP method is a mapping from the continuum void space contained in a microstructure of a material to a discrete space made of distinct pores in terms of size and shape. The examples given illustrated that the method can efficiently handle microstructures modeled by discrete grids of interconnected spheres and cylinders as well as complex random models of microstructures. Regarding GM-tortuosity, the proposed method is fast and provides accurate results allowing to preserve the discriminating aspect of the original descriptor.
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-Morphology-preserving adsorption model

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong."

Richard Feynman

This chapter presents a novel gas physisorption model based on mathematical morphology. The model is illustrated on several cases ranging from unimodal mesoporous materials to materials with hierarchical porosity. The simulation results are compared to the experimental results related to these materials and given in chapter 3. 

. Introduction

This chapter is devoted to the presentation of a morphological model for the simulation of gas physisorption. The chapter is divided into several sections allowing to understand the interest behind such a model, the mathematical formalism on which it is based, and illustrations on model materials and applications of complex materials to illustrate its limitations. The first section emphasizes important elements of chapter 2 to lay out the motivations behind this model, including the limits of the current gas physisorption analysis methods and how our model is able to overcome them. In the following section, we set the mathematical framework on which the following developments are based. We recall the classical morphological operators (introduced in chapter 4) from a physico-chemical point of view. We introduce two new operators and prepare the ground for more complex operators allowing to simulate the phenomenon of gas physisorption. Section 6.5 presents the gas physisorption model, which we have called the morphologypreserving adsorption model. Through this section, we follow a mathematical, physics-oriented approach. That is, for each physico-chemical phenomenon to be modeled, the design of its mathematical operator is directly inspired from reality. Since our objective is to be able to calculate the nitrogen (N 2 ) physisorption isotherm of a numerical microstructure representing a biphasic material, we present two operators allowing to realize this. Namely the adsorption and desorption operator. As the theoretical aspect alone is not enough in this context, section 6.5 shows the validation results of our model on unimodal mesoporous materials, which are model materials of simple morphology and topology, and commonly used in the literature. These materials have been synthesized and characterized for this thesis (chapter 3).

Once the model has presented the expected results on these relatively simple materials, section 6.6 deals with more complex materials, developed specifically for this work (chapter 3). These materials are derived from commercial boehmites (Disperal P2 and Dispal 18N4-80 from Sasol) which have been shaped by the ice-templating technique (chapter 3). First, we model these boehmites transformed to aluminas separately and compare the simulation results with experimental results. Subsequently, models combining both materials with different mass fractions are built and their simulation results are compared with experimental results. The last part pushes the limits of the model further by simulating the isotherm physisorption curve, not of several material configurations as above but of the same material Disperal P2, at different grinding times. The obtained result also allowed us to understand some hidden physical phenomena that the material had to undergo during these transformations. Before starting this chapter, here are some key points to be mentioned:

• The model is entirely morphological. This means that the operators allowing the modeling of gas physisorption phenomenon do not depend on physical quantities.

• Classical thermodynamic models are only used as a step after simulation to compare simulation results with experimental results. These models are not part of the morphology-preserving adsorption model.

• As the model is independent of pore morphology, it was first validated on models of microstructures formed by organized networks of spheres and cylinders, and then random models such as the Boolean model and Cox Boolean model were used to represent more complex materials. The pore space in these materials is not predefined as it is the complementary of the solid phase. The results demonstrate that these models are compatible with the complex materials used in this thesis.

This work was the subject of an accepted paper for the journal Microporous and Mesoporous Materials in 2022, with a publication in 2022.

. Background

At this stage of the manuscript, we now have a sense of the importance the pore network structure as well as pore morphology and topology. In order to reach a thorough comprehension of the interplay between pore network structure and related physico-chemical phenomena, it is mandatory to gain a deep understanding of the obtained results through the characterization techniques of porous materials. This is because the physico-chemical phenomena that occur inside the porous bodies (such as mass transfer, catalytic reactions, capillary effects) are highly impacted by the geometric properties of the pore networks, including porosity, pore size distribution, and connectivity. Here, we recall some of the important points stressed in chapter 2. Over the years, several characterization techniques have been developed to acquire textural properties of pore networks. The most common ones are mercury porosimetry and nitrogen physisorption, which consist in measuring the quantity of probe molecules that accumulate in the porous network of a solid at different fluid phase pressures. The advantage of these techniques is their sensitivity to nearly all the properties cited above. The drawback is that the classical models used to process the experimental data yield approximated or even erroneous results. For example, it is well-known that the Barret-Joyner-Halenda (BJH) model yields two different pore size distributions from the adsorption and desorption branch of the nitrogen isotherm. The first reason for these discrepancies is the complexity of the physico-chemical phenomena occurring inside the pore network. The second reason is the intrinsic complexity of the pore networks of most catalysts and adsorbents. Apart from very particular solids, such as zeolites or meso-structured materials, the size of pores and geometry of catalysts are generally unknown. Also, different levels of porosity can be present in the pore structure, yielding hierarchically organized materials. Recent works dealing with adsorption-induced deformation of mesoporous materials with corrugated cylindrical pores have shown the sensitivity of the adsorption isotherm to the geometry of pores [KBG20, KGB + 18, Gom12], which encourages developing models not assuming ideal geometry of pores. The experimental part of the characterization techniques has been extensively advanced in the last decades [START_REF] Schlumberger | Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry-a tutorial review[END_REF], yet the interpretation and analysis of the obtained results can still be considered as a major challenge [START_REF] Schlumberger | Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry-a tutorial review[END_REF]. In this context, we are interested in the characterization of textural properties of nanoporous materials from a numerical point of view with a focus on gas adsorption. This phenomenon has the advantage of covering the entire nano/mesopore scale [START_REF] Rouquerol | Adsorption by Powders and Porous Solids[END_REF]. The foundations CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL of our knowledge concerning gas adsorption are based on theoretical models from the early 20th century [START_REF] Haul | Adsorption, surface area and porosity. 2. auflage, academic press, london 1982. 303 seiten, preis: $ 49.50[END_REF][START_REF] Broekhoff | Studies on pore systems in catalysts: IX. calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores a. fundamental equations[END_REF], chapter 2. Advances in experimental techniques [START_REF] Espinal | Porosity and its measurement[END_REF] and numerical models [WSM02, VN01, RN02] have allowed the understanding of underlying phenomena at the pore scale. The most popular gas adsorption porosity analysis models can be grouped within the following families (examples given in chapter 2):

• Statistical micro models, allowing the description of physico-chemical phenomena using statistical mechanics, such as density functional theory based approaches and molecular simulation methods. The advantage of these models is that they consider the fluid/fluid and fluid/solid interactions at the molecular level, and can simulate in detail the impact of pore shape or adsorption strength [START_REF] Landers | Density functional theory methods for characterization of porous materials[END_REF][START_REF] Kikkinides | Sorption isotherm reconstruction and extraction of pore size distributions for serially connected pore model (scpm) structures employing algorithmic and statistical models[END_REF]. However, they are very timeconsuming and therefore limited in terms of computation volume.

• With the new modeling strategy described in this chapter, also based on classical thermodynamics, it is possible to simulate the adsorption behavior of any complex pore network (i.e. without assumption on pore shape or connectivity).

Our approach is mainly based on correlations, derived from classical pore size analysis methods, between morphological parameters and physical quantities characterizing the system. Following this path, it is possible to transform the description of quasi-static states of physicochemical systems, such as phase changes at equilibrium, to a purely geometrical and morphological description of the same phenomena. Mathematical morphology (chapter 4) as a theory and technique for the analysis and processing of geometrical structures [START_REF] Serra | Image analysis and mathematical morphology[END_REF], has been interested since its birth in the characterization of the textural properties of images and volumes of microstructures. In our approach, we show that the behavior of several morphological operators, taken individually or in combination, can mimic several physico-chemical phenomena. As our focus is the simulation of gas adsorption, the promise of this chapter is to deliver numerical tools allowing accurate modeling of gas adsorption and related phenomenon such as multilayer gas adsorption, capillary condensation, thermodynamic hysteresis and gas phase percolation through the simulation of finite size systems instead of infinite ones.

. Morphological operators

In what follows, E refers to a construction space describing spatial phenomena, for instance, a binary microstructure. We denote K(E) the set of interacting objects of the mi-CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL crostructure such as solid, liquid or void phase. A physical process can be seen as a phenomenon that is revealing a certain spatial structure. It can be examined from a mathematical morphology point of view as the family of subsets K(E) existing in the space of definition E, which hosts physical transformations. K(E) is a Boolean algebra [START_REF] Serra | Introduction to mathematical morphology[END_REF]. A description of the phenomenon boils down to the determination of existing relationships between the subsets of K(E). Given two subsets X and B belonging to K(E), B helps to describe unrecognized patterns of X by the application of morphological transformations [START_REF] Serra | Introduction to mathematical morphology[END_REF]. This approach also allows to mimic quasi-static phenomena since B constantly alters the structure of X based on some morphological criteria. That is, B is serving as the structuring element to X (see chapter 4). Let the Euclidean space E = R 3 be the space of definition. X ⊂ R 3 is defined as a set of elements belonging to the binary microstructure. X translated by u ∈ E is written: X u = {u + x, x ∈ X}. Throughout our work, the structuring element B denotes a sphere (leading B = B, chapter 4). Morphological transformations are referred to by the symbol 𝜓 :

𝜓 : E → E X → 𝜓 (X)
Morphological operators (introduced in chapter 4), applied to the problem of gas physisorption, are presented in what follows.

6.3.1 . Basic operators Gas physisorption involves interactions between fluid molecules and solid phase or solid surface. In particular, gas physisorption is built upon two processes. First, a multilayer adsorption step takes place on the pore walls. This process can be mimicked by a sliding sphere along the solid surface which causes the creation of adsorbed layers. The layer size is equal to the sphere radius. This operation can be modeled by the morphological dilation:

𝛿 u (X) = {u : B u ∩ X ≠ ∅} (6.1)
𝛿 u (X) is the set of all points u such that structuring element B u hits X. The opposite operation, causing the solid object to shrink, is given by the morphological erosion:

𝜖 u (X) = {u : B u ⊂ X} (6.2)
𝜖 u (X) is the set of all the points u such that B u is included in X. Second, the condensation of gas due to capillary forces requires a rather more sophisticated operator, capable of modeling sudden filling of pores. The morphological closing operator allows to mimick this phenomenon:

𝛾 u (X) = 𝜖 u • 𝛿 u (X) (6.3)
As seen in chapter 4, the closing operator can be obtained by combining the erosion and dilation operator. That is, the erosion of a dilated object leads to filling pores and narrow spaces. Figure 6.1 illustrates the three morphological operators on a simple shaped 2D object using a disk structuring element. applied to an arbitrary shape X, in black color. 𝛿(X) results in gray area. In erosion 𝜖(X), the black area is reduced resulting in the gray area. During morphological closing 𝛾(X), the disk fills narrow areas.

. Connected components labeling

A pore network is constructed by interconnected open and closed-end pores of different size. The shape, size and connectivity to the exterior and to neighbor objects of each pore are important variables affecting undergoing transformations. Percolation of fluid phase through the pore network requires a connected components labeling step. As a matter of fact, this technique holds for the concept of percolation simulation in general [START_REF] Hoshen | Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm[END_REF]. In this configuration, connected pores may behave simultaneously in the same way if they share common properties. In the Euclidean space R 3 , a connected set X is defined as follows:

∀x ∈ X ∀y ∈ X ∃ 𝜁 (x, y) (6.4)
where 𝜁 (x, y) is a path included in the set X linking x and y (refer to chapter 4 for general concepts about connectivity). As connected component labeling is a widely used operation in pattern recognition, there exists many algorithms addressing this issue quite efficiently [HRG + 17]. The goal is to map a binary image/volume from its initial form to a set of separate labeled connected components. A connected component is denoted by CC. It can CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL be defined as follows: CC = {q n 1 ,n ★ , q n 2 ,n ★ , q n 3 ,n ★ , ....., q n m ,n ★ } (6.5)

By construction, q in Eq.(6.5) is broadly defined. It can refer to a pore or a pixel/voxel. It should be considered as the basic unbreakable element in the space of definition. n k∈{1...m} are the labels initially attributed to each element of the CC. After labeling connected components, each element in CC is labeled by the same label n ★ . That is, it is possible to go from an element q to any other element q ′ by a path which contains only elements of the CC. An example of the connected components labeling operation is illustrated in figure 6.2. Original image shows 11 pores with unique labels 1 → 11. The labeling of connected components for this example consists in identifying connected pores which allows to classify three different components; A = 1 → 5, B = 6 → 8 and C = 9 → 11. Subsequently, each component will be uniquely labeled.

. Hole filling

Regions of isolated pores, where gas molecules have no path in gas phase to reach them, can be extracted by the hole filling morphological operator. The latter is defined as a combination of two operators. A complementary operator considering the microstructure is first applied to extract porous space. Second, connected components in contact with the boundaries of the domain are identified and removed. This operation is called border kill. A subsequent step consists in performing union set operation between the output image and initial image. The complementary operator is defined by: 𝜓 𝛽 (X) = X. The border kill operator requires the use of topological boundary concepts and the notion of connected components. The boundary of a subset of a topological space, e.g. in this case, a subset X of the digitized CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL space Z 3 , is defined as the closure X minus the interior X o :

𝜕X := X \ X o (6.6)
The border kill operator is defined as follows:

𝜓 𝛼 (X) = k CC k | 𝜕X ∩ CC k = ∅ ∀k ∈ {1, ..., n} (6.7)
where CC = {CC 1 , CC 2 , ...., CC n } is the set of the n connected components belonging to X. The hole filling operator writes:

𝜓 𝛾 (X) = 𝜓 𝛼 • 𝜓 𝛽 (X) ∪ X (6.8)
This procedure is illustrated in figure 6.3. Hereafter, the binary microstructure is considered to form a space denoted I. Let X ⊂ 𝜙(I) be the porosity phase subset. Its complementary X c is the subset featuring solid phase. 

. Morphology-preserving adsorption model

Porosity within porous materials is created during synthesis processes [START_REF] Espinal | Porosity and Its Measurement[END_REF]. It is defined as the void fraction of empty space within a porous material.

𝜖 = V v V t (6.9)
where V v is the void space and V t is the total volume of the sample. Depending on the complexity of the material, pore size can be uniform or distributed and the pores of different sizes can be randomly distributed in space or hierarchically organized. Gas physisorption ([Tho10], chapter 2) is a powerful and popular technique for the characterization of porous materials. It allows the evaluation of textural properties such as specific surface area and CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL pore size distribution [START_REF] Benoit Coasne | Adsorption, intrusion and freezing in porous silica: the view from the nanoscale[END_REF]. For gas physisorption, the minimum analyzable pore size depends inherently on the size of the gas probe molecule used. Most of the analysis procedures consist on methods underpinning correlations between physical and morphological parameters. Kelvin's equation [START_REF] Halsey | Physical adsorption on non-uniform surfaces[END_REF] maps from the physical space, relative gas pressure p/p 0 , to the morphological space, fluid curvature radius of the vapor-liquid surface, which is considered as pore radius r in our approximation. The following equation expresses this type of relation:

V = C f (r) (6.10)
where C is a constant including several physical or geometrical properties of the system and V denotes the corresponding fluid volume. In our approach, the morphological operators are the unique tools allowing to simulate adsorption and capillary condensation. Kelvin and Harkins-Jura equations (detailed below) serve as a mapping between the morphological/geometrical space and the parameters of the physical system. In other words, these equations are used in a post-processing step in order to convert pore radius to p/p 0 , which is necessary to compare simulated and experimental adsorption isotherms. For a fixed gas temperature, an adsorption branch is obtained by gradually increasing the relative pressure to the saturation pressure, and a desorption branch by decreasing the relative pressure from the saturation pressure to zero. Usually the adsorption and desorption branch follow different paths, which gives rise to hysteresis. In what follows, the modeling of this phenomenon is discussed in details.

The objective of our model is to mimic the behavior of fluid during gas physisorption (described in chapter 2). The set of tools developed in this section will allow to calculate the adsorption-desorption isotherm for a wide range of microstructures for which no simplifying assumptions on the pore geometry and pore network are imposed.

Notations

The binary microstructure I is constructed as the space of binary abstract pores and solid objects. This representation allows an abstract and generalizable formulation for the phenomena discussed in this thesis. However, the practical representation is that of the digitized space Z 3 . The porosity phase X is evolving with respect to pore radius r. It is defined as X = ∪ r X r . Pores are identified by their inter-connectivity. In particular, they are located through the connected components operator defined in (Eq.6.5). The set of connected components belonging to X r is denoted CC r . The modeling of gas physisorption is based on two parameters. The first is pore radius r, whereas the second, denoted 𝜆, defines pores connected to the outside. For an arbitrary set Y ⊂ X, we denote Y r ≥ and Y r ≤ as the set of elements having radius value exceeding (or equal) and limited (or equal) by reference value r, respectively. The subset of Y respecting some radius criterion r ★ and belonging to connected elements reaching the exterior is referred to by Y 𝜆 r ★ .

6.4.1 . Adsorption When a porous medium is placed in a vapour atmosphere with gradual increase of gas pressure, a spontaneous process, consisting in the adsorption of gas molecules on the pore CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL walls, is triggered. A monolayer of one gas molecule thick is first formed as a consequence of the coverage of adsorbed molecules. Subsquently, the begining of multilayer stacking of the molecules is caused by increasing pressure. According to the calculation scheme of the BJH method [START_REF] Rouquerol | Adsorption by Powders and Porous Solids[END_REF], which is based on a discrete analysis of the adsorption and desorption branch, relative pressure intervals (or pore radius values in this case) are considered. For each pore radius, the quantity of adsorbed gas comes from two phenomena. First, the increase of the thickness of adsorbed layer for a certain pore size or relative pressure range. Second, from the capillary condensation of gas, i.e. the phenomenon by which a gas in a capillary pore condenses to a liquid-like phase at gas pressure p below the saturation pressure p 0 [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF]. This process can be formulated as follows:

ΔV ads = Δt • A + V r p (6.11)
where ΔV ads denotes the total condensed volume of gas at radius value r p . Multilayer pore filling is expressed by the product of the film thickness and accessible surface area Δt • A, whereas V r p denotes the volume condensed throughout capillary condensation. The Harkins-Jura equation [START_REF] William | Surfaces of solids. xiii. a vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid[END_REF] for nitrogen can be used to calculate the film statistical thickness t: t = 0.1[ 13.99 0.034 -0.4343 log(p/p 0 ) ] 0.5 (6.12)

While our model relies on a morphological approach based on the pore radius, (Eq.6.12) describes the dependence of the film thickness to gas relative pressure. The Kelvin's equation is a key tool for pore size analysis, in particular for mesopore analysis [TKN + 15]. It has provided a relationship between the capillary radius and saturated vapor pressure of adsorbate on spherical meniscus at capillary condensation. However, the original model fails to take into account the adsorbed film thickness formed on pore walls. This issue can be solved by the Derjaguin-Broekhoff-de Boer (DBdB) theory [START_REF] Peter | Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures[END_REF][START_REF] Kolesnikov | Models of adsorptioninduced deformation: ordered materials and beyond[END_REF], which, in addition to the capillary gas pressure, considers the disjoining pressure of liquid film in describing adsorption. Since our model is interested only in reproducing experimental adsorption curves without calculating solid-fluid interactions, the disjoining pressure is omitted. In this case, the DBdB equation reduces to the Cohan-Kelvin equation [START_REF] Zhang | Review of Kelvin's equation and its modification in characterization of mesoporous materials[END_REF]. Moreover, the DbdB approach is only valid for a thermodynamically isolated system and requires the calculation of the Minskowski invariants of the pore. This is not possible in a sufficiently accurate way on numerical volumes, in particular for the Gaussian curvature integral [START_REF] König | Morphological thermodynamics of fluids: Shape dependence of free energies[END_REF][START_REF] Ohser | The euler number of discretised sets -surprising results in three dimensions[END_REF]. The Cohan-Kelvin is a modified Kelvin's equation describing capillary condensation with consideration of adsorbed film for an open-ended cylindrical pore. According to this model, the meniscus between the adsorbed film and vapor is cylindrical at capillary condensation for an infinite cylindrical pore:

ln(p/p 0 ) = -𝛾 V m RT(r -t) (6.13)
According to the same model, desorption is described with the formation of a hemispherical meniscus between the condensed fluid and vapor:

ln(p/p 0 ) = -2𝛾 V m RT(r -t) (6.14) CHAPTER 6.
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where p vapor pressure, p 0 saturated vapor pressure, 𝛾 vapor-liquid surface tension, V m molar liquid volume, R gas constant and T gas temperature (77 K for nitrogen). These parameters are usually considered to be constant under some assumptions. r is the pore radius. t is the adsorbed multilayer film which can be obtained from (Eq.6.12). While keeping in mind the underlying assumptions behind the Cohan's model, (Eq.6.13) and (Eq.6.14) are used in our simulation framework to generate adsorption isotherms in terms of relative vapor pressure p/p 0 instead of pore radius r. Two types of gas behavior are considered. The first one refers to a progressive gas-liquid phase transition that occurs over the area of pores in a layered form. This process can be simulated using the dilation operator described in (Eq.6.1). One dilation operation over the original microstructure with structuring element B t as a sphere of radius t, corresponds to monolayer adsorption. Assuming that the sphere radius t is equal to the film thickness, multiple use of the dilation operator with increasing t, given in (Eq.6.12), allows simulating multilayer adsorption:

𝛿 t n • 𝛿 t n-1 X n ∈ {1, ..., N} (6.15)
where 𝛿 t n is the dilation operation by a sphere with radius t n and 𝛿 t 0 (X) = X. The number of adsorption layers is reflected by the range of n and t n-1 is the film thickness for n -1.

Note that for the first dilation operation 𝛿 t 1 , the sphere radius t 1 is equal to the radius of one nitrogen molecule (roughly 0.15 nm, which imposes a resolution of 1 voxel = 0.15 nm in a 3D discrete grid, yielding an accuracy of one layer at a time). If the resolution R is imposed and R > 0.15 nm, then the precision decreases by a factor of R/0.15. For instance, for an imposed resolution of 1 voxel = 0.3 nm, two layers will be filled at a time. Capillary condensation exhibits a different kind of gas behavior that is characterized by sudden gas condensation. This process is achieved by using the morphological closing operator. The capillary condensation operator writes:

𝛾 r n • 𝛿 t n (X) (6.16)
where 𝛾 r n is the closing operator (Eq.6.3) provided with structuring element of increasing size r n = r + t n , such that r is calculated from (Eq.6.13) and n ∈ {1, ..., N}. The latter fills narrow regions and pore space in proportion to r n until all pore space is filled. In the standard representation of adsorption isotherm, the values of condensed vapor volume are plotted against their related increasing relative pressures p/p 0 . Another representation of the adsorption isotherm in the context of morphological simulation is given by considering the number of voxels |.| resulting from morphological dilation and closing as condensed volume.

The function allowing to compute the number of elements contained in the transformed porosity phase, i.e. condensed volume, is given by:

G n (X) =          |𝛿 t n (X) -𝛿 t n-1 (X)| |𝛾 r n • 𝛿 t n (X) -𝛾 r n-1 • 𝛿 t n-1 (X)| 1 ≤ n ≤ N (6.17)
Traditionally, the measurement of granulometric functions, allowing the computation of size distribution of grains or pores in binary images, is done by the opening morphological operator, CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL as introduced in ([Mat67, Mat74], chapter 4). However, it is not the case here, since both the closing and the dilation operators violate the anti-extensivity axiom (i.e, ∀ X ⊆ I, 𝜓 (X) ⊆ X). G n (X) is dependent on pore radius r and film thickness t. That is, the initial porosity set X will be continuously transformed by morphological operators which yields to subsets {X r n | 1 ≤ n ≤ N}. The adsorption curve is cumulative:

         A 0 (X) = 0 A n+1 (X) = A n (X) + G n+1 (X) n ∈ {0, .., N -1} (6.18)
A(X) is to be considered as a sequence of elements in the ascending order. These elements refer to the amount of the condensed vapor. Following this approach, a new isotherm curve parameterized by the pair (number of voxels, pore radius) is obtained from which the pore size distribution can be deduced straightforwardly. Figure (6.4) illustrates the different steps of capillary condensation for a system of pores having radius in range [1, 4] voxels. It is shown that during adsorption, the only criterion for a pore to be filled is pore radius.

. Desorption

Adsorption systems often reveal associated hysteresis to the capillary condensation process [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF]. This phenomenon carries valuable information regarding the internal structure of porosity and topology of pores. Correlations between textural information and some of the most common hysteresis loops are given by the IUPAC report [TKN + 15]. Hysteresis occurs at different scales of porosity. That is, hysteresis may occur at the level of one pore or at the level of pore network. A modeling procedure taking into account multi-scale hysteresis by means of morphological parameters is required. At the pore level, hysteresis is principally triggered by delayed vapor-liquid transition, mainly due to adsorption metastability and to obstructed nucleation of liquid bridges [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF]. At the pore network level, hysteresis is due to the pore blocking effect [START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF]. The latter describes the obstruction of big pores by smaller ones, meaning that their evaporation is no longer pressure dependent but delayed until the smaller pores are evaporated. This phenomenon alters the order of desorption process, leading to hysteresis. The onset of desorption is the endpoint of adsorption. In spite of their divergence caused by hysteresis, their boundary conditions are maintained identical. Our modeling strategy for desorption and hysteresis is the following. For cylindrical pores, Cohan's model is used to take into account the hemispherical meniscus between the adsorbed film and vapor during desorption, which allows to mimic delayed evaporation. The modeling of pore blocking effect in complex pore networks is done through a sequence of steps. First, connected components to the boundaries of the microstructure domain are identified, then grouped by classes according to their radius so that future actions can be applied on a set of separated pores of the same class X m . Second, a percolation operator is applied on the elements contained in each X r n . The operation is applied step-by-step on the CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL basis of radius values until the end of the process. For pore blocking modeling:

CC 𝜆 r n≥ = ∀ CC a ⊂ CC r n≥ radius criterion CC a ∩ 𝜕I f ≠ ∅ condition 𝜆 (6.19)
CC 𝜆 r n≥ is the set of the connected components verifying radius criterion r n ≥ and having contact with the exterior according to condition 𝜆. 𝜕I f denotes the boundaries of the binary microstructure domain. The pore percolation operator, when applied to X, is responsible for extracting the elements of (Eq.6.19): ) summarizes this process. Three CC can be identified. Starting from maximum radius value, it is shown that large pores in contact with the boundaries of the domain evaporate first. It is noticed as well that although pore (R = 4) forms one single CC with smaller pores, it is the only one to be evaporated. At the next step, the evaporation is not occurring since pore (R = 3) is obstructed by smaller pores that are in contact with the vapor phase. Afterwards, pore (R = 2) evaporates when the radius criterion is reached. The 𝜆 condition is verified as well. The same computation scheme is maintained for the rest of pores until total evaporation occurs at R = 1. The desorption operator writes:

1 1 4 3 1 3 3 2 1 1 3 R= 2 R=1 R= 2 R=1 R= 3 R= 2 R=1 R= 1 R=1 R=1 R= 4 R= 3 R= 2 R=1 R= 1 R=1 R=1 R = 1 R = 2 R = 3 R = 4
P n (X) = CC 𝜆
W r n (X) = |G N (X) -P n (X)| n ∈ {N, .., 1} (6.21)
where G N = W r 1 and G 1 = W r N .

. Unimodal mesoporous materials

On the one hand, lattices as uniform tilings by cylinders and spheres were used to represent model materials SBA-15 and KIT-5 (Figure 6.5). Details about the preparation and characterization of the real materials are given in chapter 3, respectively. On the other hand, Cox Boolean models were used to model mesoporous alumina (Figure (6.5). The adsorbed fluid incorporates two processes. The first one can be assimilated by the dilation operation of a sphere of radius t n given by (Eq.6.1), mimicking the statistical growing thickness t representing monolayer and multilayer adsorption. The second process is given by a closing operation of a sphere of radius r rendering the capillary condensation. At iteration n, all voxels encompassed in spheres of radius t n and r n = r + t n , that belong to porosity phase will be considered as adsorbed fluid. Iteratively, this process continues for all accessible pore sites until all the voxels of the pore network have been visited. All simulations were performed using a personal computer (CPU: intel core i7 2.6 GHz, RAM: 16 GB). On average, our N 2 physisorption simulation algorithm requires about 40 min for volumes of 250 nm 3 with resolution 1 voxel = 0.5 nm, but can be extended to several hours for larger volumes having bigger pores. With regard to the experimental isotherms of model materials SBA-15 and KIT-5, simulated isotherms were generated on the basis of numerical model materials (Figure 6.5). Hereinafter, we give a point by point analysis of the obtained results.

. SBA-15

SBA-15 is characterized by excellent structural order and a narrow distribution of mesopores [GNAC + 16] as exhibited by a steep capillary condensation step at high relative pressures in the experimental isotherm (Figure 6.6). Another essential feature of the SBA-15 material is a pronounced hysteresis. This brings us to the global question of hysteresis in microstructures with simple topology, consisting of straight, disconnected pores. For this type of microstructures, the interpretation of hysteresis is yet to be entirely solved [BMN + 15]. One of the possibilities that explains the occurrence of hysteresis is the existence of narrow sections inside the pores, which was first introduced in [START_REF] Everett | Pore systems and their characteristics[END_REF]. The latter can be conceptualized as the roughness of the material, i.e., surface CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL imperfections on the pore walls. The modeling of this phenomenon requires distorting the internal diameter of the pore. In this case, the evaporation of the pore will be delayed by the largest percolating section of the pore. With reference to this possibility, several works have proposed a model of cylindrical pore with constrictions [BMN + 15, BE89] that have been observed experimentally [GFW + 09]. A second interpretation, particularly relevant in the case of smooth pore walls, is the dependence of hysteresis upon pore length. For instance, [GNAC + 16, NDN11] report that pore length plays an important role in determining the shape of hysteresis loop in the case of finite length cylindrical pores. In particular, Grand Canonical Monte Carlo (GCMC) based simulation of argon adsorption at 87.3 K in cylindrical pores [GNAC + 16] has shown that reversible isotherm is observed for extremely short (L = 4 nm) pores, whereas for longer pores, large hysteresis occurs. Its shift to the left of the desorption curve is proportional to the increase in pore length. Similar work modeling large systems by using the three-dimensional Lenz-Ising model has studied the impact of the pore length on the hysteresis loop. Analogous conclusions were reported in [ACLE + 15] confirming that the maximum hysteresis loop width is found in the case of infinite pores, wherein finite pores exhibit narrower hysteresis. 
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The Cohan's model allows to obtain a hysteresis loop due to different meniscus shape during adsorption and desorption. However, this approach, which is widely used to model equilibrium phase transitions, is based on the assumption that cylindrical pores are infinitely long [NRV00, RVT + 10]. The adsorption branch is located at a higher pressure than that of the desorption branch with a fixed gap given by the ratio of pore radius during adsorption and desorption r ads /r des = 2. By comparing the result of this approach with experimental isotherms of SBA-15, the numerical isotherm found exhibits larger hysteresis. A direct inference from this observation, coupled with the arguments from the above, raise concerns about the use of the Cohan's model to describe hysteresis for finite cylindrical pores that are more likely to be an accurate representation of real SBA-15 like materials. We propose a correction factor calculated from experimental reference data and which allows to find the right gap between the two branches. Assuming that hysteresis depends on the pore length, the correction factor can be calculated through an empirical model [GNAC + 16, NDN11]:

K c = 1 0.5 + e -L/m 2 (6.22)
where L is the length of the pore and m is a constant factor allowing to find the correct K c by comparing simulated isotherm with experimental isotherm. Figure 6.6 shows the hysteresis loop calculated for four cylindrical pores of radius r = 4 nm while having different pore length (L = 5, 25, 50 nm and infinity).

Feeding the correct length of pores into the model and adjusting m in accordance with experimental isotherm allows to find the right gap between the adsorption and desorption branch. Our modeling in this part is based on the reference [LOMEC + 03], indicating reliably the length, the diameter and the technique used (nitrogen adsorption). In accordance with experimental observation, we find K c = r ads /r des = 1.41. The simulated isotherm (Figure 6.6), shows good agreement with its experimental equivalent in the hysteresis region.

The fact that the length of SBA-15 pores from TEM images observations (chapter 3) is found to be of the same order of magnitude (approximately 350 nm) as the length of the SBA-15, on which the model was calibrated. It is shown that the trend of the multilayer adsorption is respected. However, there may be some inconsistencies compared to the experimental isotherm. The latter are related to the experimental model of Harkins-Jura (Eq.6.12) on which the calculation is based. The calculated curve is scaled with respect to the experimental curve.

Real SBA-15 contains large mesopores outside the cylinders pores, giving rise to a gradual filling of these regions at large pressures. This part is not taken into account in our modeling, hence the stop of the simulated curve at volume ≃ 0.9. Best agreement with reference to the experimental isotherm was found for a narrow pore size distribution (≃ 14 % relative standard deviation). The pore network is made of cylinders of radius in range [2.8, 3.4] nm, which is close to the BJH desorption average pore radius (= 5.1 nm) given in chapter 3. This result identifies type IV(a) isotherm as well as an H1 hysteresis loop [TKN + 15], which corresponds to the expected features of the SBA-15 material. KIT-5 has a face-centered-cubic Fm3m symmetry structure with interconnected pore channels [KLA + 03, DLK14]. The cage-like structure is modeled by a spatial repeatability of a basic mesh. The latter is characterized by its size W, the radius of spherical pores r s and the spacing between pores S p (> 0 if there is no overlapping and ≤ 0 otherwise) . Tuning these parameters allows to obtain different accessible pore volume and surface area values. The interconnectivity of pores, controlled by S p in our model, plays a major role in defining the shape of the adsorption-desorption isotherm. In contrast to the SBA-15 material, which has no network impact on the hysteresis loop, KIT-5 material can have several neck sizes according to the ink-bottle pore model, which directly controls the shape and width of the hysteresis loop. The reference experimental isotherm, shown in figure 6.7 is of type IV with a broad H2 hysteresis loop. At high relative pressure (p/p 0 ≃ 0.7), a sharp increase in the adsorption curve is indicative of large uniform cage-type pores. Similar to SBA-15 numerical isotherm, the calculated curve has been scaled with respect to the experimental isotherm (accessible volume stops at approximately 0.9). In our approach, hysteresis is due to two distinct phenomena. On the one hand, Cohan's model is applied, as the pores are assumed to be cylindrical. On the other hand, pore blocking effect is pronounced as a consequence of the interconnectivity of pores. It was found that the combination of these two factors along with the parameters (r s = 3.1 nm, S p = -1.4 nm) yield numerical isotherm which is in good qualitative agreement with the experimental reference. Note that r s is close to the BJH adsorption average pore radius (≃ 2.55 nm). Mesoporous alumina is represented by a Cox Boolean model in a 3D voxel array. The aggregates and platelets are randomly packed following Cox's law according to the process CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL explained in chapter 4. Each voxel is either classified as a pore space (voxel value = 255) or material space (voxel value = 0). Edge effects are minimized by employing periodic boundary conditions, such that if a part of a platelet is extended outside the cell edge, it gets wrapped around the other side. The parameters of a Cox Boolean model are related to the total porosity 𝜖 by the relation:

V out (1 -V inc ) + V in V inc ≃ 1 -𝜖 (6.23)
where V inc is the volume fraction of the aggregates inside the material and V in , V out are the volume fractions of the grains inside and outside the aggregates, respectively. Grains and aggregates are modeled by platelets and spheres, respectively. The parameters used for mesoporous alumina were directly taken from reference [WJW + 18]. The shape of grains is assumed to be parallelepipedic. The dimensions of platelets were identified using an inverse problem approach with L2-normalization of the correlation function on the basis of TEM image of sliced sample [WPJ + 15]. The parameters used for platelets are: L (length) = 14.3 nm, H (height) = 4.4 nm and T (thickness) = 3.3 nm. The sharp increase in the adsorption branch at high relative pressures shown in figure 6.8 is featuring narrow pore size distribution. The proportion of small pores is relatively low compared to larger pores which suggests a dominance of inter-aggregates void. Therefore, the quantity of grains inside the aggregates V in must be larger than the quantity of grains outside the aggregates V out (reference [WJW + 18] reports a low volume fraction of aggregates V inc = 0.2). This observation is very much reversed when the aggregates are present in a more important proportion. For mesoporous alumina, there are two possible factors causing the appearance of hysteresis. First, pore blocking which is present but to a lesser extent compared to KIT-5 material. In contrast to the latter, the majority of large pores are already percolating with the outside and only few are blocked by smaller pores. If only the pore-blocking effect is taken into account, a narrower hysteresis is observed compared to the experimental reference. The pore length correction factor (Eq. 6.22) can adjust the gap between the adsorption and desorption branch. As seen before, the value of K c is related to the pore length (i.e. K c = 1 for closed cylinders and K c = 2 for infinitely long open cylinders). However, for an isolated pore of given geometry, K c (or r ads /r des ) can be related to the pore shape as well [START_REF] Mecke | Fluids in porous media: a morphometric approach[END_REF]. In our case, K c is optimized in a way that it represents the average K c for all pore shapes encountered in the Cox Boolean Model (including the models below). Best agreement with reference to the experimental isotherm curve is found for V in = 0.95, V out = 0.12 and K c = 1.22.

. Materials with hierarchical porosity

In this section, simulation results for the custom real materials developed in this thesis are presented and compared with experimental results. In chapter 3, materials with hieararchical porosity have been described and characterized. In particular, commercial boehmite and gamma-alumina shaped by the ice templating technique (Dispal 18N4-80, and Disperal P2 from Sasol, respectively). The characterization results of these materials (taken individually or combined forming a matrix-aggregates scheme) by means of SEM, TEM, and nitrogen physisorption were described and interpreted (chapter 3). These characterization results
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provided us with important data on elementary particles size, specific surface area, and pore volume. Here, we will use these data as input to random microstructure models and simulate gas physisorption using the morphology-preserving adsorption model. Table 6.1 is a summary of the experimental data (given in chapter 3) and simulation data for Dispal 18N4-80, Disperal P2, and materials formed by different mass fractions of the former materials. We recall that Dispal 18N4-80 was used as the matrix (M), and Disperal P2 as the aggregates (A). We have seen in chapter 3 that the systematic variation of quantities M and A are reflected on the N 2 physisorption isotherms. In what follows, we present N 2 physisorption simulation results for the matrix, the aggregates and their combination (in steps of 25 of mass fraction; M:A = 25 : 75, 50 : 50, and 75 : 25). Hereafter, all the simulations were conducted on microstructure volumes of size 512 3 voxels, with a resolution of 1 voxel = 0.5 nm (meaning that approximately 3 layers during multilayer adsorption will be filled at time). This choice of resolution is due to a trade-off that we have ensured between accuracy and representativeness of the system. Indeed, our systems are complex, as we will see in what follows, which makes the use of a relatively low resolution ( 1 voxel = 0.5 nm instead of 1 voxel = 0.15 nm) an important parameter to well handle all the underlying phenomena (as pore blocking). In addition to the inaccuracy of the empirical Harkins-Jura model used (as seen before for unimodal mesoporous materials), the resolution chosen affects the simulation of a proportion of multilayer adsorption (few simulation points). We will then consider only the part beyond The Boolean model (one scale of porosity) was found sufficient in representing Dispal 18N4-80. This material has anisotropic elementary particles (in the form of platelets), with an approximate size according to TEM images of L = 45 nm, H = 45 nm, and T = 5 nm. By using these values to parameterize the platelets in the Boolean model, and fixing their volume fraction to V in = 0.4, we obtain a digital microstructure having a specific surface area and a pore volume close to the real material (Table 6.1). On the basis of this microstructure, our morphology-preserving adsorption model allowed us to obtain numerical N 2 physisorption isotherm which is in good agreement with the experimental isotherm (figure 6.9).
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. Disperal P2

In the case of the Disperal P2, it was necessary to go beyond a Boolean model to well represent the system. Indeed, the shape of the experimental isotherm shows a deviation around p/p 0 ≈ 0.8 which could be explained by the existence of an important range of mesopores of larger size. This effect has been reproduced while respecting the real constraints of the material (table 6.1) by using a Cox Boolean model with two scales of porosity (without considering platelets outside the aggregates V out = 0). The numerical N 2 isotherm is in good agreement with the experimental isotherm (figure 6.10). It allowed us to reproduce the key steps of the experimental isotherm, namely the starting of capillary condensation (p/p 0 ≈ 0.6), and the beginning and end of hysteresis (p/p 0 ≈ 0.8, and p/p 0 ≈ 0.6, respectively).

. Bimodal mesoporosity

In this part, systems composed of Dispal 18N4-80 and Disperal P2 combined are modeled and their N 2 physisorption isotherms are simulated using the morphology preserving adsorption model. We have seen that Dispal 18N4-80 can be modeled by a Boolean model and Disperal P2 can be modeled by a Cox Boolean model. In this new configuration, the former is CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL considered as the matrix (M) and the latter as the aggregates (A). We will show in what CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL follows that a Cox Boolean model can represent the material combining these two materials as well. It is possible because we have been able to model Disperal P2 by using only the parameters related to the aggregates and the quantity of platelets inside the aggregates in the Cox Boolean model (R inc , V inc , V in ) while letting the matrix (the outside space of the aggregates) empty V out = 0. This leaves room to implement the Boolean model of Dispal 18N4-80.

While the Cox Boolean model allows us to specify the volume fraction of both the matrix and aggregates, the experimental data available are in mass fractions (ratio of M : A). With regard to this, the mass and volume fractions in this case are almost equivalent. Let us take an example for this: consider the sample M : A = 25 : 75, its mass is 0.21 g, the volumic mass of alumina is d a = 3.3g/cm 3 , and the volume of pores of A and M taken individually (Table 6.1) are 0.42cm 3 /g and 0.48cm 3 /g, respectively. Let V T be the total volume of pores of material M : A = 25 : 75. V T can be expressed as:

V T = V A + V M (6.24)
where V A and V M are the volumes of pores in the aggregates and matrix when combined. These two variables are the inputs for our Cox Boolean model. We write:

V M = m M d + m M V M (6.25) V A = m A d + m A V A (6.26)
m M is the mass of the matrix inside the material M : A = 25 : 75, which can be calculated as m M = 0.25 × 0.21 = 0.053 g. Similarly, m A = 0.16 g and the volumes found are V M = 0.038cm 3 and V A = 0.125cm 3 , which leads to V T = 0.163cm 3 . Thus, the volume fractions of the matrix and the aggregates are 0.24 and 0.76, respectively. This demonstration shows that mass and volume fractions are similar. However, there is a trick here. Since we were able to model Disperal P2 using a Cox Boolean model with volume fraction of aggregates V inc = 0.8 and a quantity of platelets inside these aggregates of V in = 0.5, the volume fraction of platelets inside the model is V inc V in = 0.4. This value corresponds to the case where we have 100% of Disperal P2. For the other cases where we have experimentally 75%, 50%, or 25%, the volume fraction of Disperal P2 must be calculated using the absolute value of the quantity of platelets. For instance, for the case of 75%, the quantity of platelets inside the material is 0.75 × 0.4 = 0.3, which can be obtained from having V inc = 0.6 and V in = 0.5 or vice-versa. We choose to maintain V in as in the material alone, and tune V inc since it corresponds to what happens in reality. This allows us to keep all the parameters of Disperal P2 and Dispal 18N4 -80 the same when modeled separately and only modify the volume fraction of the aggregates V inc . Similarly, we obtain V inc = 0.4 for M : A = 50 : 50 and V inc = 0.2 for M : A = 75 : 25. The data used for the generation of the Cox Boolean models (Table 6.1) shows that the experimental constraints on the specific surface area S p and pore volume V p were respected in most cases. Following this approach, we were able to keep the parametrization of the new models simple, by changing only one parameter (V inc ). The Cox Boolean models and simulation results of CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL three systems corresponding to configurations (M : A = |25 : 75|, |50 : 50|, |75 : 25|) are shown in figures 6.12,6.13, and 6.14. This process has allowed us to obtain physisorption isotherms that are close in shape to the experimental isotherms, but sometimes shifted as in figure 6.12. This result could be explained by the fact that the model has a lesser pore volume than the real material (V p = 0.37 instead of V p = 0.43).

Without modeling the systems with different M : A ratios, we can hypothesize that the combination of the two materials in a matrix-aggregate scheme does not create new phenomena other than those present in each material individually. This assumption is encouraged by the fact that Dispal 18N4-80 contains much larger platelets than Disperal P2 (45 nm versus 16 nm for the largest dimension). In the present scheme, where Dispal 18N4-80 is considered as the matrix, a new phenomenon of pore blocking will probably not take place since larger pores (created by larger platelets) are not blocked by smaller pores (created by smaller platelets). This hypothesis can be checked by considering a linear combination between N 2 physisorption isotherms obtained for both Dispal 18N4-80 and Disperal P2. For each M : A ratio, the resulting N 2 physisorption isotherm can be written as:

C p/p 0 = xA p/p 0 + (1 -x)M p/p 0 (6.27)
where A p/p 0 is the normalized volume obtained from simulating the aggregates at p/p 0 (Figure 6.10) and M p/p 0 corresponds to the matrix (Figure 6.9). C p/p 0 denotes the normalized volume of the material combining the matrix and aggregates and x = 0.25, 0.5, 0.75. This hypothesis was verified and the resulting isotherms are in good agreement with the experimental data (Figure 6.11). Simulating Disperal P2 material at different grinding times is a key step for two reasons: first, to know to which extent our model is able to simulate complex systems. Second to know if we can gain insights from simulations about what truly happens to the material during these transformations. In the case of grinding, we are confronted with a situation where the same material is ground at different times (from 1 h to 8 h). The question that arises is how to take this time factor into account in our simulations. The approach to follow is rather to imagine what the material CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL undergoes during each grinding time. First, the volume of the void is not likely to change, because the system is closed during these transformations and there is no mixing with other material. However, the specific surface area is likely to change. Let us see why: in chapter 3, TEM images showed that grinding causes the platelets to disperse outside the aggregates. This results in a higher hysteresis for longer grinding times. It was also seen that there was a CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL Grinding time Experimental Model decrease in the amount of large pores, resulting in more clustering of platelets, forming dense zones. By considering these observations while trying to identify the key parameters that will allow us to obtain simulation results as close as possible to the experimental results, two key ideas emerge:
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• The platelets inside the aggregates tend to disperse, which leads to a reduction of the size of aggregates (considered as spheres in the Cox Boolean model) and creating smaller ones.

• Due to grinding, the platelets stick together more (kind of a welding phenomenon), which leads to the decrease of the specific surface surface.

The first idea can be translated in our modeling approach by using smaller aggregates R inc for increasing grinding times. Meaning that R inc/1h >> R inc/8h . To implement the second idea, we introduce a platelet size distribution. That is, instead of using a fixed platelet size as before, here we consider that the platelets stick together forming platelets of different sizes. We propose using the log-normal probability distribution Log -N (𝜇, 𝜎) to control the size (in every dimension) of the platelets. Let X be the size of the platelet X = (L, H, T), we introduce 𝜅 ∼ Log -N (0, 𝜎), (𝜎 > 0) such as the new size of platelets is obtained by multiplying the values of 𝜅 by X. Increasing the value of 𝜎 allows for increasing the standard deviation of 𝜅, thus including bigger platelets (the values < 1 of 𝜅 are disregarded). For example, for 𝜎 = 0.3, the standard deviation SD(𝜅) = 0.321 and the expectation value is E(𝜅) = 1.046. Similarly, for 𝜎 = 0.4, SD(𝜅) = 0.451, and E(𝜅) = 1.083. Table 6.2 summarizes the experimental data for four grinding times (1 h, 3 h, 5 h, and 7 h). Experimentally, we notice that the pore volume remains almost the same for the four configurations, but the specific surface area tends to decrease with increasing grinding time. The Cox Boolean models respect these constraints. First, let us consider cases 1 h, 3h, and 5 h before discussing case 7 h separately. Reducing the value of R inc allowed us to create dense areas of platelets and 𝜎 introduced platelets of bigger size (Figure 6.15). The N 2 physisorption isotherms simulated show that these parameters have contributed in obtaining isotherms that are in relatively good agreement with the experimental isotherms. For grinding time 7 h, it is a bit more tricky. By following the same approach (V inc < 25 nm, V in ≠ 0, V out = 0), the isotherm found by simulation does not correspond to the experimental reference. One way to get around this is to reverse the placement of the platelets, while preserving their quantity. We have found out that placing the platelets in the matrix V out instead of the aggregates V in allowed us to obtain a better result. There is a possible physical interpretation for that. The platelets were CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL probably fully dispersed from the aggregates, letting more void, which can be mimicked by empty aggregates. The numerical isotherm found (Figure 6.15) approximately reproduces the shape of the experimental isotherm.

. Conclusion

A modeling approach based on morphological operators has been developed to efficiently calculate gas physisorption isotherms. Mathematical morphology operators have allowed to mimic the quasi-static phase transition behavior of fluid during gas physisorption. A percolation algorithm was deployed to handle pore blocking during desorption. The adsorptiondesorption operators were developed under a generic mathematical formalism, specifically developed for this study with the potential to build on it for other modeling applications. While Boolean and Cox Boolean models were used to illustrate that the model can be extended to random geometries of pores. The latter is not mandatory for the model, which is by no means restricted to random models of microstructures and can be applied to any 3D representation of a binary microstructure. The results found are very encouraging. These findings could open a new research path for morphological models to model this kind of phenomenon. To our knowledge, no other work has been able to treat the case of gas physisorption by purely morphological models and has been able to obtain results as close to the experimental results for a varied set of microstructures, having different settings.

CHAPTER 6. MORPHOLOGY-PRESERVING ADSORPTION MODEL

-A Deep Learning strategy for small sample learning

"In God we trust. All others must bring data."

W. Edwards Deming

This chapter is dedicated to contributions in deep learning to improve the quality of learning in general and in particular in cases where only limited training data is available in the context of convolutional neural networks.

. Introduction

In this chapter, we propose two contributions related to the patch-wise network scheme in the context of Fully Convolutional Neural Networks (FCNNs). First, we propose to reinforce the spatial-awareness of a patch-based training by adding geodesic information to the original images yielding richer spatial representations. Second, we propose a sampling strategy at inference time to overcome border effects, appearing when the assembled patches are added uniformly. The outline of this chapter is organized as follows:

In the background section, brief introduction of FCNNs (that extends further the notions emphasized in chapter 4) is given along with the encoder-decoder architecture used. We also describe some patch-based methods from the literature. We conclude this part by explaining our patch-based training procedure. In section 7.3, and section 7.4, our two contributions are elaborated and discussed. Namely, adding geodesic information to the original training data, together with a stratified sampling strategy at inference time. In section 7.5, two datasets corresponding to two different tasks are introduced. The goal of this part is to illustrate the learning strategy proposed in this chapter on image prediction and segmentation task. This part is followed by section 7.6, which presents the evaluation metrics used for each task. In section 7.7, several results are given and discussed. First, the ability of the U-Net network to preserve invariance under shift transformation is investigated. The results found demonstrate the necessity of a specific inference strategy using patches. Subsequently, several comparisons between our learning strategy and state of art methods are given to illustrate the effectiveness of our contributions. In section 7.8, prediction results of additional applications related to other datatsets are given. Namely, the segmentation of gamma-alumina SEM images, and the detection of sulfure molybdene active phases. The work presented here, except additional applications of section 7.8, was the subject of an accepted publication for the journal Neurocomputing, Special Issue on Deep Learning with Small Samples, published in 2021.

. Background

A Deep Convolutional Neural Network (DCNN) starts the process of features extraction according to a growing architecture from low level to high level features. Convolutional filters capture abstract features, often, not relevant for a human observer, they are recognized as crucial image characteristics. Seeking for more informative representations help extracting more features. A recent regression approach for semantic segmentation suggests that constraining the network to learn spatial information allows reducing blurry boundaries and ill segmented shapes in predictions [START_REF] Audebert | Distance transform regression for spatially-aware deep semantic segmentation[END_REF]. The proposed technique is based on the distance transform. The latter yields a distance map, where, each pixel acquires a spatial awareness about its local proximity. In this configuration, less informative surfaces become more informative throughout all the image space. Without changing the network architecture, and by adding distance transformed labels as regression targets, the method demonstrated to be an asset for the task of semantic segmentation. However, our method operates differently by combining the geodesic information, extracted from the distance map, with the original images. The addition of the distance map provides information about elements outside the scope of a patch, implicitly increasing the field of view of the network. DCNNs are believed to be translation invariant [START_REF] Le | Learning invariant feature hierarchies[END_REF] at some degree. Although convolutional layers have a property of equivariance to translation [START_REF] Goodfellow | Deep Learning[END_REF], it is not exactly the same for the complete network. This general consensus is supported by the fact that the networks have the inherent ability of learning arbitrary features: important ones, but also features as affine transformations that are irrelevant and must be discarded. Two main ideas in the literature try to address this issue. According to the first, the ability to learn translation invariance is due primarily to the networks architecture, in which the succession of convolution layers augments the receptive field of neurons [START_REF] Gens | Deep symmetry networks[END_REF], and to pooling layers that select a value from convolution layer output regardless of its position [START_REF] Jaderberg | Spatial transformer networks[END_REF]. That is, the imperfect translation invariance is due to pooling layers [START_REF] Kauderer-Abrams | Quantifying translation-invariance in convolutional neural networks[END_REF]. Using translation sensitivity maps and radial translation-sensitivity to quantify shift invariance introduced in [Kau18], it can be demonstrated that the use of appropriate input data along with data augmentation comes beyond the network architecture in terms of learning translation invariant representation. A careful examination of the extent to which the network architecture is shift invariant is a relevant information for data preparation. We propose a throughout study of the translation invariance of the U-Net architecture using several metrics computed on the common area of translated inference patches. Additionally, we propose an adequate stochastic sampling strategy to overcome the lack of strict translation invariance. ing a single class for a whole image, FCNNs can be used to make dense predictions. Given an input image of any size, a FCNN produces an output having the same spatial support (possibly re-sampled) and predicting a value associated to each input pixel (or each group of pixels). For instance, the tasks of semantic segmentation require a pixel-wise (or a patchwise) labeling of the output image. Therefore, feature elements are distinguished from each other by unique labels obtained from a classification process, at the pixel or patch level. It is common that in a Convolutional Neural Network (CNN), the input image goes through convolutional layers for features extraction and gets downsized by pooling layers (chapter 4). Thereupon, the results of a sequence of convolution/pooling operations are fed to a fully connected layer (FC) to classify the image. At this stage, two situations arise, if the labeling process yields one class for the whole image, it becomes a classification task. If the image is classified by a label map, where each sub-part of the image is uniquely labeled, the corresponding task is image semantic segmentation. To obtain a label map instead of a single value label, an up-sampling step is mandatory to calculate a pixel wise output. Our attention is drawn to encoder-decoder like FCNNs and dense prediction [LWL + 17, LR19] since they recapture the spatial information lost during down-sampling operations by upsampling. Encoder-decoder like architecture recovers the size of the input image through an up-sampling process. Hence, the output image have a pixel-to-pixel correspondence with the input image. U-Net is a popular encoder-decoder like network. It has first appeared under the scope of biomedical images semantic segmentation [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. It consists of a contraction path made of consecutive (3 × 3) convolutions followed by (2 × 2) max pooling matrices. The extension path, which is composed of consecutive (3 × 3) convolutions and (2 × 2) transposed convolution matrices. To regain spatial information lost during the contraction path, and to minimize vanishing gradient effects, a concatenation procedure that consists of transferring feature maps to the expansion path, through a layer-by-layer correspondence, is established. The final step is a (1 × 1) convolution matrix along with a Softmax activation function. Our experimental setup is more or less identical to the U-Net architecture (Figure 7.1). It consists of an alternating sequence of two convolutions per max pooling operations. ReLU is used as an activation for each convolution and it is preceded by a batch normalization operation. The max pooling downsizes the image by a factor of two and the number of features maps (or, channels) is doubled. The transposed convolution operation can be seen as a learned up-sampling (through a stride of (2, 2), that has the effect of spacing out the input) while the concatenation operation collects information from feature maps of the contraction path. The U-Net architecture is customized for use with a patch-wise procedure. The network is rather focused on image patterns occurring locally at the patch level. The resulting output is a prediction patch. The training is carried out by a set of sliding 48 × 48 windows cropped from training images. The output is obtained from a linear operation 1 × 1 convolution followed by a Sigmoid activation function.

. Patch-based learning

Training a FCNN at the pixel level of an image can be a challenging task in several cases. For instance, in many medical applications [START_REF] Nazeri | Two-stage convolutional neural network for breast cancer histology image classification[END_REF], the training data is a set of high resolution images, which require a very large memory footprint. The process of gathering a CHAPTER 7. A DEEP LEARNING STRATEGY FOR SMALL SAMPLE LEARNING large set of training data in many domains is not always possible. An additional drawback to this approach arises, which is the risk to bias the training by forcing the network to only learn the most distinctive features from the whole image. Many attempts have been made to address this issue. In particular, evidence from [START_REF] Cireşan | Deep neural networks segment neuronal membranes in electron microscopy images[END_REF] draw our attention to a patch-wise setup. In order to overcome the small sample learning (SSL) issue, the latter suggests training the network on large set of patches instead of few original training images. By means of this scheme, the question of the use of context arises regarding the ability to learn compelling patterns. Basically, the size of the patches and the number of hidden layers of the FCNN control the field of view of the network and contribute explicitly in the learning of important features. For example, the authors in [AAC + 17] postulate that a small patch size is not needed for their specific case, since there is little chance of finding relevant information in small image regions. Other techniques, such as proposed in [START_REF] Wang | Combining pixellevel and patch-level information for segmentation[END_REF], combine pixel-level and patch-level (ie. one label per patch) to improve segmentation accuracy. We build our method in compliance with the patch-based method proposed in [START_REF] Cireşan | Deep neural networks segment neuronal membranes in electron microscopy images[END_REF]. Traditionally, patches are assembled in a mosaic way or by overlapping half patches. In our configuration, a patch is characterized by its size K × K with a sliding step s over the image. That makes a total number (1 + (I W -K)/s) × (1 + (I H -K)/s) of patches for an image of size I W × I H . The following patch parameters are adopted: patch size K = 48 with a sliding step s = 24. s is chosen in a manner to cause the overlap of patches. Significant information captured in-between patches can be extracted. This hypothesis was verified empirically by trying different sliding steps. For instance, a training image of the size I W = I H = 512, contains L = 400 overlapping patches. Figure (7.2) illustrates this process. contained in images are less informative than textured surfaces (chapter 4). The lack of information in these regions makes convolution operations useless. The features larger than the size of the patch will not be extracted. Here, the distance transform is used (details in chapter 4). Consider the two dimensional metric space E = R 2 . Let I : 𝜓 → {0, 1} be a binary image and 𝜓 ⊂ E the support of I. The latter can be divided into background and foreground subspace. We let the set of foreground elements 𝜔 = x ∈ 𝜓 : I(x) = 1 be the reference set of features. We recall the expression of the distance transform in the background:

DT d (x) = min {y|I(y)=0} d(x, y)
x, y ∈ 𝜓 Our strategy to extract a maximum amount of information from the image consists of probing both the background and foreground space. The related distance transform in the foreground writes:

DT d c (x) = min {y|I(y)=1} d(x, y)
x, y ∈ 𝜓

(7.2)
Our main assumption is that distance maps can favorably enhance the spatial information contained in the image. We propose to combine the original image and distance maps and use this enhanced image for training the network. Denoting I e the enhanced image, we have:

I e (x) = I(x) + 𝛼DT d (x) -𝛽DT d c (x) 𝛼, 𝛽 constants (7.
3)

It is possible to compute the distance map for a grayscale image using the approach from [START_REF] Ilya | Distance transforms for real-valued functions[END_REF]. It corresponds to a distance transform starting from lowest to highest grayscale intensities:

D T d (x) = ∑︁ i d(x, F i )w i |F i = {x; I(x) ≥ i}, w i = 1 (7.4)
Similarly, an extended symmetric distance map starting from highest to lowest grayscale intensities can be defined:

D T d c (x) = ∑︁ i d(x, G i )w i |G i = {x; I(x) < i}, w i = 1 (7.5)
The resulting enhanced image writes:

I e (x) = I(x) + 𝛼 D T d (x) -𝛽 D T d c (x) 𝛼, 𝛽 constants (7.6) 
The former distance has an important time complexity, which leads us to define an approximated distance map for grayscale images that can be deduced from a functional projected distance map d ⊥ [Cha19b]. The latter is independent of grayscale scaling. A formulation of the distance in the background space is achieved by using the set of pixels of low intensities:

DT d (x) = min {y|I(y)=min(I)} d ⊥ (x, y)
x, y ∈ 𝜓

(7.7)
where d ⊥ is the projected distance of the one developed in Eq. (4.30), chapter 4. Likewise, its symmetric distance map is given by:

DT d c (x) = min {y|I(y)=max(I)} d ⊥ (x, y) x, y ∈ 𝜓 (7.8)
The enhanced image writes:

I e (x) = I(x) + 𝛼 D T d (x) -𝛽 D T d c (x) 𝛼, 𝛽 constants (7.9)
The distance transform was calculated according the procedure explained in chapter 4. The utility of the distance transform is stressed by the added information, emphasized in Eqs. (7.3), (7.6) or (7.9). Figure 7.3 illustrates this process for binary and grayscale images. For our illustrations and results parts, 𝛼 and 𝛽 are taken equal to 1.
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. Stochastic sampling of patches

On the basis of individual patches extracted from the input image, the output image is fully assembled by adding the corresponding predicted patches. It was found that an exact convolution strategy (one patch for each pixel) leads to fuzzy and low quality results. This problem is tackled in the experiments section through the shift invariance analysis. However, a major shortfall needs to be considered when using patches. When the latter are regularly distributed and summed to produce the whole prediction image, an edge effect at the border of each patch may appears (Figure 7.9), due to the fact that border pixels are estimated with less data (data outside the patch are not available). Thereby, an adequate sampling strategy is required to reduce this effect. Consider the set of patches contained in one image 𝜒 = 𝜒 i,j . Each patch occupies a total area of A = W × H where W and H are the width and the height of each patch respectively. An uniform sampling strategy consists of cropping patches as fragments of the original image following a scanning strategy from top to bottom and from left to right. This sampling strategy can be written as:

𝜒 i,j = x, y | x ∈ [i, W + i] , y ∈ [j, H + j] , with (7.10) i = 0, s ′ , (2 × s ′ ), (3 × s ′ ), ..., (I w -W + s ′ ) j = 0, s ′ , (2 × s ′ ), (3 × s ′ ), ..., (I h -H + s ′ ) (7.11)
Eq.(7.10) corresponds to a formulation of the patches. The indexation strategy expressed in Eq.( 7.11) yields a uniform sampling. To remove the edge effect at the borders, patches can be drawn stochastically. We propose using a stratified sampling strategy [START_REF] Neyman | On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection[END_REF]. It consists of a uniform density of values drawn in the interval [-s ′ , s ′ ] denoted U(-s ′ , s ′ ). Indexing the patches with random coordinates will guarantee the generation of new patches every time. The new indexation strategy writes:

i r = s ′ 2 + U(-s ′ , s ′ ), 3s ′ 2 + U(-s ′ , s ′ ), 5s ′ 2 + U(-s ′ , s ′ ), ... j r = s ′ 2 + U(-s ′ , s ′ ), 3s ′ 2 + U(-s ′ , s ′ ), 5s ′ 2 + U(-s ′ , s ′ ), ... (7.12)
Consider N random samples of the whole set of patches contained in one image. The latter yields N predictions. The final result is obtained by averaging over the N samples. We write:

I f = 1/N × N ∑︁ v=1 ∑︁ i r ,j r
χi r ,j r (7.13) where χ refers to inferred patches. i r and j r have random values according to Eq.(7.12) and are subject to constant change. Thus, the distribution of patches in each image is unique.
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We evaluate the proposed distance transform-based enhancement and patch sampling strategy for two datasets. One is a state-of-the-art example on 2D semantic segmentation of electron microscopic (EM) images of neuronal structures, while the other is about predicting the electric field from binary images of heterogeneous materials. Each dataset requires a different task. In particular, image segmentation and prediction. Results are evaluated using scoring metrics, namely: VRand for image semantic segmentation and PSNR, UIQ, SSIM for image prediction. The training dataset is a part of the public ISBI 2012 EM segmentation challenge [ACTB + 15]. The aim is to accurately segment an EM image, where, pixels inside a cell area have value 1 and pixels at the boundaries between neurite cross sections have value 0. A set of 30 training images 512 × 512 pixels along with their ground truth annotations are made public for participants. Another set of 30 validation images of the same resolution is available. Its corresponding ground truth data is kept secret by the organizers. The latter is used to evaluate the performance of the proposed algorithms. Comparisons between some of the existing state-of-the-art methods, such as the original U-Net network (without using patch-wise learning), also, with and without data augmentation (mainly, affine transformations), are investigated and compared to our approach. 

L(y, y ′ ) = -1/N × N ∑︁ i=1 (y log(y ′ i )) + (1 -y) log(1 -y ′ i ) (7.14)
y and y ′ being ground truth and predicted patches, respectively. It was noticed that the stability of accuracy and loss values requires a number of epochs ≥ 25. For a batch size of 4, 30 epochs are performed. Afterwards, the measures are done for the 5 networks that were trained on random combinations of the data above. As we are not using the validation set of the competition, our results cannot be compared with the results from other participants. We have instead reproduced some of the state-of-the-art methods and networks, and evaluated them in our configuration. Our contributions are focused on demonstrating the effect of adding the distance transform to the initial image, and of using a stochastic patch-wise procedure. Detailed comparisons showing improvements are presented in the results section. Knowing properties of components and spatial distribution of heterogeneous media, an efficient way to solve the problem of homogenization of physical properties is by using numerical solutions of the corresponding partial differential solutions before estimating the effective properties by spatial averaging of the solution. The case of dielectric permittivity conducts to the prediction of electric field by solving the Gauss equation of electrostatics from Maxwell's equations. Iterative Fourier Transform numerical scheme allows the computation of this field [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF]. Here we explore the possibility of estimating this field directly from the media using deep learning. The heterogeneous media are modeled by Cox Boolean models of spheres CHAPTER 7. A DEEP LEARNING STRATEGY FOR SMALL SAMPLE LEARNING (chapter 4). A specific algorithm described in [START_REF] Jeulin | Multi-scale simulation of random spheres aggregates -application to nanocomposites[END_REF] uses an original construction method which allows to run large simulations with the least computational cost. We use this algorithm to generate our training images. In this framework, a multi-scale microstructure is modeled by volume fractions that define aggregates V inc , grains inside and outside the inclusion areas V in and V out , respectively. The training dataset is made of 500 2 pixel images. The parameters R = 20 (radius of spheres), V inc = 0.4,V in = 0.6 and V out = 0.7 are fixed for the whole image set. Based on the foregoing microstructures and phase dielectric properties, we use a numerical scheme to estimate the electric field. This method lies on several works, namely [START_REF] Moulinec | A fft-based numerical method for computing the mechanical properties of composites from images of their microstructures[END_REF], [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF], [START_REF] Jeulin | Statistical representative volume element for predicting the dielectric permittivity of random media[END_REF] and [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF]. Labeled images are representations of electric field response E(x) estimated inside and outside microstructures. For dielectric constants of the phases of the binary microstucture, 0.1 and 100 (no imaginary part) are used for the black and white pixels respectively. The resulting electric field response module is converted to 8 bit format (256 values). The training is performed on a dataset of 4800 training and 800 validation patches. Only binary and grayscale images are used, colored illustrations are shown for clarity. The experimental setup is akin to the one described for the EM images of the brain. The network reaches its optimal performance after few epochs and a batch size = 4.

. Evaluation metrics

. Image segmentation

Foreground-restricted Rand scoring V Rand . The probability maps assessment is done on the basis of the official metric of the ISBI 2012 challenge. Such a boundary detection problem is sensitive to split and merge errors, where one feature element is incorrectly split into two segments, and where two distinct feature elements are incorrectly merged into one segment [ACTB + 15]. The foreground-restricted rand scoring V Rand combines the two errors:

V Rand 𝛼 = ij p 2 ij 𝛼 k s 2 k + (1 -𝛼) k t 2 k (7.15)
where ij p 2 ij is the probability that two random elements belong to the same segment of the predicted segmentation S and to the same segment of the groundtruth segmentation T. A segment by definition is a connected component. Belonging to an object A in this context means having the same label as A. The parameter 𝛼 measures the importance of both the merge and split errors. They can be derived from the equation above. We have:

V Rand 𝛼=0 =V Rand split and V Rand 𝛼=1 =V Rand merge . Finally, k s 2 k and k t 2
k are appropriate normalizations. The used code allowing the computation of V Rand is the one that is proposed in the website of the challenge [ACTB + 15].

. Image prediction

For the evaluation of the predicted electric field image, we use some of the most common image quality measures, in particular the ones that are based on different measuring CHAPTER 7. A DEEP LEARNING STRATEGY FOR SMALL SAMPLE LEARNING approaches. The goal is to measure dissimilarities between two images. Hereafter in this part, we use the formulation I ★ = {I ★ (i, j); ∀i = 1, ...W, ∀j = 1, ...H}, with ★ = o or ★ = d for both original (ground truth) and predicted image, respectively.

Peak signal-to-noise ratio. Related to the mean squared error (MSE), peak signal-tonoise ratio is based upon an explicit numerical criterion which is the comparison between pixel values. Let I o be the original image and I d the predicted image. To perform a comparison between these images, the PSNR metric writes:

PSNR(I o , I d ) = 10 × log 10 (2 d -1) 2 MSE(I o , I d ) , with (7.16 
)

MSE(I o , I d ) = 1 W × H W-1 ∑︁ i=0 H-1 ∑︁ j=0 I o (i, j) -I d (i, j) 2 (7.17)
2 d -1 denotes the maximum possible value that a pixel can have. For d = 8 bit coded image, the maximum value is 255. Eq. (7.17) measures the value differences between corresponding pixels of each image. PSNR is expressed in decibels which is a logarithmic unit. From Eq. (7.16), we can see that higher PSNR value is an indicator of highly similar images.

Universal Image Quality. UIQ is an important tool to measure dissimilarities between two images in terms of their statistical properties [START_REF] Zhou | A universal image quality index[END_REF]. The UIQ index writes:

UIQ(I o , I d ) = 𝜎 I o I d 𝜎 I o 𝜎 I d × 2 Īo Īd Īo 2 + Īd 2 × 2𝜎 I o 𝜎 I d 𝜎 2 I o + 𝜎 2 I d (7.18)
where Ī and 𝜎 2 denote mean and variance values, respectively. Eq. (7.18) is an expression of the UIQ index as a product of three factors: loss of correlation (measures of linear correlation), luminescence and contrast distortion. UIQ range is [-1,1] and the index of very similar images approaches 1.

Structural similarity index measure. SSIM is an adaptation of the human visual system (HVS) that aims to assess the structural information of an image [START_REF] Wang | Sheikh : Structural similarity based image quality assessment[END_REF]. The SSIM equation writes:

SSIM(I o , I d ) = A(I o , I d ) × B(I o , I d ) × C(I o , I d ) , where (7.19 
) 

A(I o , I d ) = (2 Īo Īd + C 1 )/( Īo 2 + Īd 2 + C 1 ) B(I o , I d ) = (2𝜎 I o 𝜎 I d + C 2 )/(𝜎 2 I o + 𝜎 2 I d + C 2 ) C(I o , I d ) = (𝜎 I o I d + C 3 )/(𝜎 I o 𝜎 I d + C 3 ) CHAPTER 7. A DEEP LEARNING STRATEGY FOR SMALL SAMPLE LEARNING Results C 1 = (K 1 × L) 2 , C 2 = (K 2 × L)

. Results

In this section, experiments regarding the design of the patch U-Net network are conducted. The ability of preserving network's invariance under shift transformation is investigated to demonstrate the necessity of a specific inference strategy using patches. Afterwards, comparisons between predicted results and ground truth data is presented. 

. Shift invariance
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Considering the electric field dataset, shift transformations are conducted from -5 to +5 pixels (in axis x) applied to all patches of validation images. Given a fully trained patch U-Net on the original dataset, we firstly compare the binary cross entropy value for each shift value. The goal is to evaluate the ability of the network to predict translated images from non translated training data. Figure 7.6 shows that the minimum error value coincides with the prediction of a non translated image, and, thence, the network gradually looses accuracy proportionally to increasing shift values. An alternative approach would consists to feed a trained network a prediction image I p that yields a prediction field F p . We select a patch X p of the size W × H centered at position (x, y), the network result is an estimated patch field f p at position (x, y). Considering shift values h, patches X ph of the same size and their respective estimations f ph are assessed. The intersection area of these patches is of the size (W -2h × H) centered at (x, y). For h = [-5, 5], we compare the dissimilarities through the PSNR, UIQ and SSIM mean values of three different patches between the common area of each shifted patch. Table 7.1 and figure 7.6 show these differences and quantify the shift "invariance" of the U-Net architecture. That suggests that the network, in our specific case, is not suited for a pixel-wise approach. Rather, a patch based procedure is stabilizing the network by forcing it to learn features from the whole patch dumping non-important features as the shift transformation. The use of U-Net as a predictor for central pixel of patch (pixelby-pixel approach) leads to fuzzy results due to the averages of patch estimates that are not completely similar.

. ISBI 2012 segmentation challenge

Based on the dataset described in section 7.5, two settings regarding patch-wise U-Net and standard U-Net are conducted.

Patch-wise U-Net

The first goal is to investigate the effect of training the network on the enhanced image dataset. In contrast to the binary microstructures case, where there is plenty of untextured areas, void areas that made the contribution of the distance map information, intuitively useful. This application is based on grayscale and highly textured images. Since the difference between the original and the transformed images is not clear from a visual point of view (Figure 7.7), the small change in the pixel values of the image is expected to have a proportional improvement on the quality of the resulting probability maps. Such results will allow to show the contribution of the distance transform, even for a challenging dataset in terms of textural complexity. The sample is prepared differently, with and without the distance map. Correspondingly, probability maps are evaluated and compared to the ground truth segmentation images using the V Rand metric. From the results shown in table 7.2, more specifically by comparing the uniform sampling strategy results, it is clear that the V Rand error has improved by training the network on the enhanced image dataset instead of the original images.

U-Net

At this stage, a comparison with a state-of-the-art data augmentation method is achieved. It was found that random elastic deformations are very efficient to overcome overfitting in the case of small data samples. Examples are illustrated here [RFB15, SWJ + for the ISBI 2012 segmentation challenge dataset. In our experiment, the following transformations are used: rotation, width and height shift, shear, zoom and horizontal flip. Slight changes induced by the former transformations makes the model more robust and generalizable. The use of these operations creates artificially new images. We started with 26 samples from the original challenge dataset. With data augmentation, the model reaches its optimal performance for 1000 steps per epoch. Each operation is defined on a range of values. The number of the possibly generated samples is limited by the number of pixels allowed. For instance, height and width shifts operations are restricted by the dimensions of the patch (W × H). For a height shift range h s = 0.05, the number of the generated samples is equal to GS i = h s × 2 × H, considering the two translation directions, top to bottom and vice versa. Similar arguments can be invoked to compute the number of generated images from the other operations. The product i GS i × N samples yields the total number of samples. Results in table 7.2 reveal that the patch-wise U-Net with the stratified sampling strategy performs better on the dataset considered compared to the U-Net with data augmentation.

. Electric field estimation

For this dataset, we investigate the effect of the enhanced images for the task of image prediction. As pointed out in section 7.3, the distance transform enriches the information to be extracted. A comparison of the PSNR, UIQ and SSIM indices is performed for two types The network processes patch by patch and yields accordingly a prediction for each one separately. To bring together the patches, a sampling strategy needs to be defined. Uniform and stratified sampling methods are investigated. In contrast to the first one, which consists of distributing the predicted patches uniformly over all the image size, the latter allocates random positions to each patch based on uniform sampled points. Thus, for each stratification iteration, new patches and their respective predictions are created. Visually, stratified sampling reduces considerably the edge effect on the borders of patches, related results are shown in figures 7.9, and 7.10.

EM segmentation challenge ISBI 2012

Here, semantic segmentation results are compared to ground truth probability maps. Apart from the edge effect, which is the main drawback of the uniform sampling strategy, the predicted membranes obtained from the stratification strategy are clear and accurate (Figure 7.9). From a quantitative point of view, the V Rand values related to the stratified sampling, shown in table 7.2, exceed the ones obtained from the uniform sampling. 
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Electric field estimation A comparison between ground truth image and predicted results in terms of evaluation indices is shown in table 7.3. For the enhanced images, stratified sampling has proven its ability to improve results in terms of scoring metrics. However, comparison between measures from the original data, subject to the two sampling strategies is not sufficient since the evaluation metrics are averaged over the entire image and do not reflect the visual aspect. To check this, two masks isolating both the edge borders and the inside area of patches are considered. A local similarity comparison between the two masks and to groundtruth electric field has been conducted. As expected, PSNR, UIQ and SSIM indices for uniform sampling evaluated at the edge borders area are lower than prior evaluated indices in the case of stratified sampling. 7.8 . Other illustrations 7.8.1 . Semantic segmentation of gamma-alumina SEM images Gamma-alumina is a widely used material as catalyst support. Among the different steps involved in its preparation process, the peptization operation allows to carry out specific shaping techniques by the dispersion of the alumina in an acidic solution [FKR + 00]. The latter causes the material to have hieararchical organization and spatial heterogeneity of its pore network, with dimensions ranging from nano-scale to the milimiter-scale. On [START_REF] Guo | Deep learning for visual understanding: A review[END_REF], SEM images of gamma alumina were taken and processed by our algorithm. The goal is to provide segmented images of gamma-alumina, which will serve as an input for two-phase analytical models [AEL + 22]. Processing such images using classical image processing tools is a challenging task and requires many post-processing operations because of the low grey-scale contrast between the aggregates and the matrix. In our approach, we use 30 SEM images and their corresponding groundtruth manually segmented images to train the network. In spite of the small learning dataset, the trained FCNN showed prominent inference results. We use Patch-wise U-Net with stratified inference patch procedure. Figure 7.11 illustrates the obtained results. In particular, the defects of cross and mixed stacks were investigated using high resolution transmission electron microscopy (HRTEM). It was found that these defects are closely correlated with increasing active sites of the catalyst. According to [START_REF] Tan | Arfbf morphological analysis -application to the discrimination of catalyst active phases[END_REF], the detection of the active sites (deposited on defects) is generally composed of several steps: noise reduction, CHAPTER 7. A DEEP LEARNING STRATEGY FOR SMALL SAMPLE LEARNING contrast enhancement and segmentation. We try to short-circuit this process by feeding our FCNN with catalyst images obtained by HRTEM and their corresponding manually segmented ground truth images, in order to make predictions on the basis of the trained network. The resulting segmented image will allow morphological analysis such as length and tortuosity measurements such as in [HMG + 17, DBR + 22]. The results obtained are shown in figure 7.12. Our approach has provided satisfactory results with regard to fringes detection.

. Conclusion

This chapter constitutes a bridge between the previous chapter and the next one, where deep learning will be used for the prediction of isotherms generated by our morphologypreserving adsorption model.
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-Accelerating the morphology-preserving adsorption model

"I regarded as quite useless the reading of large treatises of pure analysis: too large a number of methods pass at once before the eyes. It is in the works of application that one must study them; one judges their utility there and appraises the manner of making use of them."

Joseph-Louis Lagrange

This chapter concludes the work presented in this thesis. So far, we have succeeded in developing methods to characterize numerical microstructures. We have been able to build our morphological model to simulate gas physisorption. We have also presented a new strategy to improve predictions of convolutional neural networks for the case of small sample learning. Now, the missing element is to make our morphology-preserving adsorption model a deep learning model to run it faster. That is the purpose of this chapter.

Contents

. Introduction

This chapter is dedicated to a novel method allowing the acceleration of the morphologypreserving adsorption model presented in chapter 6. Although our model is fast compared to other statistical heavy models, the calculation time for a single run on a large microstructure may still require many hours. This issue is a bottleneck because the model is intended to calibrate microstructure models to real materials. Since this process requires several trials to evaluate the correlations between the physical quantities of the material and the parameters of the microstructure models, it is not practical to wait an hour or more for each simulation. Fortunately, our work in the previous chapter provided us with the tools to solve this problem. What remains is to know how to connect the dots and build a method to accelerate our morphological model based on deep learning. The previous chapter has mainly presented a learning strategy that is based on a patch approach and an enrichment of the input images with geodesic information obtained by the distance transform. This last idea will be of great importance to us here. The problem can be formulated as follows: the output of the morphological model is an adsorption isotherm obtained through a series of morphological operations, which are costly in computation time. The question is how to make this calculation entirely based on deep learning. Here is the outline of this chapter: section 8.2 takes up some elements of this introduction and explains how to proceed. Section 8.3 presents the concept of adsorption maps, in which all the morphological information of the microstructure is stored. Then, the architecture of our ADS-net, inspired by the U-Net++ architecture, is presented in section 8.4. The training dataset, and the strategy to augment this dataset through the distance transform, are presented in section 8.5. We demonstrate that the distance transform is able to embed 3D information in 2D images. The evaluation metrics adopted are presented in section 8.6 followed by results in section 8.7. This work was the subject of an accepted publication for the 29th IEEE International Conference on Image Processing (IEEE ICIP), 2022.

. Background

In chapter 6, the problem of gas physisorption is modeled following a morphological-based approach. Morphological operators have allowed to model in a comprehensive manner the adherence of gas molecules on pore walls (adsorbed multilayers film), and sudden condensation of gas when a critical pore size is reached. This approach has the advantage of being far less time-consuming than micro statistical models, which are based on a detailed description of molecule/surface interactions at the pore level. In general, processing large volumes of microstructures by exact morphological operators is still a computationally heavy task. Since the aim of these models is to optimize the mass transfer properties of materials by running multiple tests on random digital twins, it is necessary to provide models with reduced computing time. As seen in chapter 7, methods based on Convolutional Neural Networks are today the most efficient state of the art approaches in semantic segmentation and image prediction [START_REF] Lecun | Deep learning[END_REF]. In particular, the large success of the encoder-decoder architectures such as U-Net have of-Adsorption map fered a large spectrum of applicability due to their capacity to capture different levels of abstract features while preserving spatial arrangement. In what follows, we provide an answer to the two following questions. How can adsorption curves obtained by our morphology-preserving adsorption model be transformed into images/volumes in the form of adsorption maps and vice-versa? And what is the adequate CNN learning strategy to efficiently predict these maps? Adsorption maps contain all the computation data in the form of varying voxel gray-scale intensities. When running the algorithm laid out in chapter 6 for a binary microstructure (e.g. pore phase = 0 and solid phase = 255), a complete Euclidean distance transform (EDT) (chapter 4 for more details) is first performed in the pore phase. For gas physisorption simulation, instead of performing a dilation operation for each sphere radius r = {1, 2, ..., n} in a 3D grid, the former EDT encompasses all dilation layers. This part is not time consuming, since it requires one EDT operation of linear time complexity O(m), where m is the number of voxels. However, for capillary condensation, n closing operations of linear time complexity O(m) are required, making it the major bottleneck of the original approach. The issue of repeated heavy closing operations is addressed by generating an adsorption map. The latter is a copy of the microstructure, where the porous phase is full of labeled spheres, obtained from the former morphological closing operations. Spheres are labeled by their corresponding size value. The volume of spheres (i.e. number of included voxels) in one iteration at radius r mimics the condensed volume of gas V at relative pressure p/p 0 . The obtained results will be processed according to the Barrett, Joyner and Halenda (BJH) [START_REF] Rouquerol | Adsorption by Powders and Porous Solids[END_REF] framework in order to generate the adsorption curve V = f (p/p 0 ). As this step consists mainly in connected components analysis and handling of arrays, the computational cost is low and adsorption maps can be processed. The mapping between the morphological space (radius, r) and the physical space (relative gas pressure, p/p 0 ) was detailed in chapter 6. The following pseudo-code explains the process of obtaining the adsorption maps (Algorithm 3). end for 13: end for

. Network architecture

Encoder-decoder networks with skip connections, popularized by U-Net, have become a fairly common architecture, with variants such as U-Net++ [START_REF] Zhou | Unet++: A nested u-net architecture for medical image segmentation[END_REF]. This network allows learning high and low level abstract features by using convolutions followed by down-sampling operations. Similarly, the output is rebuilt from up-sampling operations and convolutions. Spatial representativity of features is preserved by connecting the two paths through a series of nested and dense skip pathways. By fast-forwarding high and low resolution features maps from the encoder to the decoder, the semantic gap is minimized. In our framework, a similar architecture (ADS-Net), tailored for adsorption simulation, was used with adapted parameters: in particular, (3 × 3) convolutions followed by batch normalization and ReLU activation function were used. Down-sampling was performed using (2 × 2) Max pooling operations. Up-scaling was achieved by using the depth to space subpixel convolution layer (Subpixel-Conv) introduced in [SCH + 16]. Finally, the prediction map was obtained by concatenating dense-block output layers and passing them through a linear activation function. Given that 3D CNNs are computationally intensive and require large memory footprint in addition to the large number of parameters that 3D convolutional kernels leverage, which can risk over-fitting, a 2D architecture was preferred in our framework. The volume is split into several slices and predictions are obtained for a single slice at a time. The prediction map is built by assembling the slices. 
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While 2D convolutional kernels are able to capture context across X and Y directions, they may fail to leverage context across depth Z (e.g. adjacent slices). However, in the case of the U-Net-like architecture, many works [NFY + 20, ZM21] have reported that both 2D and 3D approaches lead to close results in the context of semantic segmentation for the used medical datasets.

To address the issue of missing inter-slice information and bridge the gap further between 2D and 3D strategies, a distance transform was applied to the initial volume before slicing. This approach, introduced in chapter 7, allows to enhance 2D images by adding geodesic information in non-textured areas. The ADS-net, trained on augmented 2D images by 3D geodesic information, can be considered somehow as a 2.5D network. Indeed, it is a 2D network, but also predicts 3D features. If the goal is for the network to predict areas of different gray-scale intensities, it is reasonable to use a perceptually motivated loss function such as SSIM (also used as an evaluation metric, its definition was given in chapter 7):

L SSIM = 1 N N ∑︁ i M ⊗ (1 -SSIM(y i , ŷi )) (8.1) M i =          1 if y i ≠ 0 1 ≤ i ≤ N 0 else (8.2)
y and ŷ are the groundtruth and predicted adsorption map of size N. The evaluation of SSIM in the background only (pore phase), which is our region of interest, is achieved by performing element-wise product between the background mask M (of size N) and SSIM(y, ŷ).

The ADS-net architecture is shown in figure 8.2.

. Training dataset

A Boolean model is used to represent a two-phase one scale porous material. Several onescale microstructures with a large spectrum of pore sizes can be generated by using different V in (chapter 4) . Feeding the network with a comprehensive dataset is important to avoid over-fitting. The idea behind using exclusively one-scale microstructures with different configurations is to test the ability of the network to make efficient predictions for more complex models of two-scales of porosity. In particular, two-scales Cox Boolean models are used to test the performance of the model. For training, 15 Boolean models (512 3 voxels) of platelets are considered with V in = {0.1, 0.3, 0.5, 0.7, 0.9}. For every V in , three microstructures of different platelets (in nm, L = 3,8,15, H = 2,7,12, T = 2, 5, 10) are used. A resolution of 0.2 nm = 1 voxel is considered. Since the training is performed on images, inter-slice area is overlooked as mentioned before. Adding geodesic information to the pore phase has the advantage of incorporating 3D information into 2D images. By using an enhanced volume, we enable the network to learn features in the Z direction as well. In figure 8.4, the effect of adding 3D geodesic information to a body-centered Cubic Unit Cell (BCC) is shown. A comparison with 2D geodesic information, applied to the slice of the front view, shows that the augmented image now takes into account the proximity of the sphere in the middle, and not only the four 1/4 spheres at the edges of the cell, resulting into two different distance transform maps. A quantitative analysis of the contribution of 3D geodesic information is given in the next section.

V v = 0.3 V v = 0.5 V v = 0.7 V v = 0.9 V v = 0.1 P 1 P 2 P 3

. Evaluation metrics

First, PSNR is used to measure the difference between pixel values of two images (I and I ′ ). Second, SSIM is used as well to assess perceptual similarity by comparing luminance, contrast and structure. Finally, the Mean absolute error (MAE) is used to evaluate quantitatively the difference between the estimated and groundtruth adsorption curve. MAE is defined as the arithmetic average of the absolute errors

|y i -y ′ i |: MAE = Σ max(I) i=1 |y i -y ′ i | n (8.3)
where y i and y ′ i are the data points y = f (I) and y ′ = f (I ′ ) obtained from post processing groundtruth and predicted adsorption maps, respectively. Adsorption maps are compared using PSNR and SSIM (the higher, the better). Adsorption curves are compared using MAE-A for adsorption and MAE-D for desorption (the lower, the better).

Our approach is illustrated on a two-scales Cox Boolean model (Figure 8.5), which is significantly different and more complex than the one-scale Boolean models used for training data (Figure 8.3). The parameters of the model are; V inc = 0.4 (volume fraction of the aggregates), V in = 0.85, and V out = 0.05 (volume fraction of platelets inside and outside the aggregates, respectively). The latter are modeled by spheres of size 50 nm and the platelets are characterized by (L = 7 nm, H = 6 nm, and T = 4 nm). Table 8.1 shows the results of U-Net++ and ADS-net on the same dataset with and without 3D geodesic information (DT). The predicted adsorption maps are shown in figure 8.6 for the case of U-Net++ and in figure 8.7 for ADS-net. Our strategy integrating an adapted up-scaling technique and geodesic 3D information yielded the best result. Using the subpixel convolution allowed predicting small details without introducing blur, which achieved better SSIM and PSNR results for ADS-net. Combining the training dataset with 3D geodesic information allowed overcoming the barrier of limited capacity of the 2D networks to learn inter-slice information, which led U-Net++ and ADS-net to better perform when trained on enhanced slices. The comparison of the adsorption curves confirms these findings by emphasizing that ADS-net yielded accurate results regardless of the 3D geodesic information. For this example (512 3 voxels), the computation of the adsorption map by the morphologypreserving adsorption model takes around 50 min (on CPU: Intel core i7 2.6 GHz, RAM: 16 GB), while the prediction by the proposed approach takes 1.5 min (required time for predicting 512 slices of size 512 × 512), which provides us with an acceleration factor of approximately 33. This factor is likely to increase significantly depending on the microstructure. There are two factors that cause the slowness of the original approach, namely the size of the volume, and the size of the largest pore n, which trigger n morphological closing operations. In the proposed approach, the first factor has little impact on the inference time, while the second one has no impact. 

. Conclusion

This final chapter presents a method to encompass physical data obtained from the morphology-preserving adsorption model into what we have called an adsorption map. Subsequently, a specific neural network, ADS-net, has been trained on 1-scale Boolean models and was able to predict the adsorption map of a 2-scales Cox Boolean model. ADS-net was adapted to our specific issue by using depth to space subpixel up-scaling layers and a perceptually based loss function. The enhancement of the training dataset with 3D geodesic information before slicing allowed to overcome the limited capacity of 2D architectures for predicting 3D information. This framework outperformed U-Net++ and achieved good results in predicting accurately the adsorption map, which has led to almost a perfect fit of the adsorption curve. Finally, this approach has reduced the computation time of the adsorption map by a factor of 30. A factor that is likely to increase for larger volumes. 
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. Conclusions

In this thesis, a new framework for numerical characterization of porous materials has been proposed. The encouraging results show that the proposed mathematical framework is particularly well suited to the modeling of physico-chemical phenomena, such as gas physisorption. This is for the following reasons:

• Real microstructures are complex as underlined throughout this thesis. Complex means: a random pore geometry, different levels of porosity ranging from nano to meso and macrometer scale, and the resulting pore networks are neither ordered nor regular. In this sense, it is unlikely that a simplified microstructure system can be a reliable and an easy to generalize representation of microstructures given the underlying assumptions (simple pore geometry, unconnected pores with infinite length, etc). The approach followed in this thesis, based on random models as a way to represent microstructures is a close picture of reality. Indeed, random models of microstructures have arbitrary pore geometry, as well as complex and disordered pore networks.

• One can model the phenomenon of mono/multilayer adsorption and capillary condensation, for example, in three ways: first, following an atomic approach, by evaluating the interactions between the particles taken individually or forming a density. This strategy is accurate but limited, because the volumes of microstructures that can be considered are limited in size due to computational complexity. Second, following a purely computational way based on some simplified pore network model, without considering atomic interactions, but only by calculating the simulation parameters from classical equations of thermodynamics. This approach is practical, but ultimately limited by these equations which are approximative, and subject to all the underlying assumptions. Following this type of approach, the effect of the model representing the microstructure is questionable, and its uniqueness is uncertain. If we design a model, and optimize its parameters to fit the experimental results while obeying the classical equations, would we not have the same result whatever the pore morphology, and the connectivity within the pore network?

The third approach, the one we have implemented, goes around these limits. The simulation by morphological operators mimics and reproduces the physico-chemical processes. The morphological dilation for example mimics the stacking of condensed gas molecules in the form of layers. This way of simulating is "macroscopic" in the sense that molecular interactions are not considered, making it a qualitative approach. However, correctly adjusting the modeling procedure to reproduce the experimental gas physisorption isotherms for instance can be of great utility. New ideas can be experimented numerically and the effects of a new purely numerical microstructure can be investigated in a practical way.

• The Deep learning part is a plus that has an important practical dimension. Since our method is based on images and volumes, why not taking advantage of the potential of deep learning in image prediction to enhance the model. In this sense, we have proposed a novel strategy to store morphological data that can be converted to the gas physisorption isotherm, so as to formulate the problem as a deep learning problem that can be solved using convolutional neural networks. In this way, the computation cost of the morphological modeling can be bypassed.

. Perspectives

While the proposed morphological modeling framework has been applied to the case of the gas physisorption phenomenon, its scope could be extended to other similar applications. The resulting perspectives can be grouped by each of the blocks constituting our framework. Namely, the block concerning the representations of microstructures, the block of the morphological model, and the block of deep learning.

. Representation of microstructures

Random models have proven to be good candidates for the modeling of complex microstructures. The Boolean model with one porosity scale and the Cox Boolean model with two porosity scales have been used. These models are based on elementary objects, modeling the primary grains of the solid by objects such as spheres or platelets. Their quantity in space defines the porosity. In the case of two scales, spherical objects, modeling the aggregates embed these objects and the porosity of the material is then defined by the quantity of primary grains inside and outside these spherical aggregates. Several perspectives can be considered to improve these models.

• Go beyond two scales: In the case of microstructures treated in this thesis, there was no need to go beyond two scales. For more complex microstructures, we may need to go further than that. Instead of defining a model where the platelets for example are distributed between aggregates and matrix; we can imagine that the aggregates contain smaller aggregates within, like fractal representation. Ditto for the matrix which can contain aggregates of its own. By following this scheme, a random model of 4 scales of porosity can be generated. However, this approach will raise a question about the representativeness of the system which might require a multi-scale approach in order to represent each part accurately.

• Morphology of the aggregates: The aggregates in our models have been modeled by spheres. We could imagine other morphologies such as ellipsoids which would fit perhaps better with the real materials [START_REF] Duchêne | Small angle x-ray scattering intensity of multiscale models of spheroids[END_REF]. Then, the size of the aggregates in our models is fixed. It is totally possible to consider changing this by a Log-Normal probability law for example which could, again, better fit with reality.

• Morphology of the primary grains : The TEM observations of the Dispal 18N4-80 material show that the primary grains have imperfections (roughness) and holes. This CHAPTER 9. CONCLUSIONS AND PERSPECTIVES suggests that these primary grains have a porosity and therefore a pore size distribution. As a perspective, rough platelets having a pore size distribution, could be a better representation for this material.

. Morphological Modeling

The proposed morphological model is based on a mathematical morphology approach able to mimic the physico-chemical phenomena of gas physisorption. Three phenomena are taken into account during the simulation: mono/multilayer adsorption, capillary condensation and pore blocking during desorption. The classical thermodynamic equations are used later to obtain the adsorption isotherms. Here are some perspectives for improvement of this model:

• Considering more accurately physico-chemical phenomena: Cavitation is a phenomenon present in several materials and could play an important role in hysteresis. It would be interesting to study this issue and include it in the model. In the same context, it has been seen that the Cohan model that explains hysteresis in an open cylindrical pore using the shape of the meniscus during adsorption and desorption is limited. Alternatives in the literature rather suggest a phenomenon of pore blocking within the same pore, due to constriction effects and diameter shrinkage (this could also relate to the roughness issue discussed above). Other explanations suggest that the effect of pore morphology and pore length contributes to the hysteresis of the system. Our approach has been to find the right length-dependent hysteresis correction factor for a given type of material, but it would be interesting to investigate this further and create a model that would allow for multiple factors to be considered at once.

• Extending the scope of applications: It is well known that the characterization of porous materials requires several complementary characterization techniques. In this context, our modeling framework is well adapted to the mercury porosimetry technique and to the cryogenic nuclear magnetic resonance (NMR) technique. The former includes mercury intrusion and extrusion phenomena, governed by the Weshburn equation, which, similarly to the Kelvin equation, emphasizes the relationship between pore radius and mercury injection pressure. The hysteresis during this setting is related to a phenomenon of entrapment of mercury. As far as Cryogenic-NMR is concerned, this technique involves water freezing and melting phenomena dictated by thermodynamic equations describing these transformations in pores, and which includes cooperation phenomena between pores.

Although the physical phenomena in these techniques are significantly different from those in gas physisorption, the developed morphological model could be extended to encompass them and morphological operators could be derived ad hoc. This is because the global framework is the same: a fluid goes through a porous material, undergoes phase transformation in a pore or succeed in penetrating a pore due to a size criterion with or without pore network effects. This fluid will then evaporate, recede, or melt, due to gas pressure, mechanical pressure, or temperature. Again with or without pore network effects.

. Deep Learning

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES

The proposed deep learning approach has allowed a huge acceleration of our morphological model. With the results obtained so far, it has been shown that the choice of convolutional neural networks and in particular the ADS-net architecure with the addition of distance transform for the training data is a reasonable choice. Two perspectives seem straight forwardly implementable:

• Stability of the quality of predictions : The idea here is to test the quality of the predictions for a large number of microstructures, to check if the model has learned all the possible characteristics to be encountered in this kind of systems. In case of degraded predictions, the solution would be to feed the learning base with more volumes of new microstructures.

• Optimization : As the deep learning morphological model is very fast, it would be possible to find the exact parameters of random models by taking the path of optimization.

In view of the current results, optimization is not necessary because the microstructure parameters fit well to the experimental results. However, optimization can be practical in the case where the connection between the model and the experiment is not clear and a trial-and-error step is needed to understand the intricacies of the system under study and how the physical quantities are related to the morphological parameters.

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES
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Figure 4 . 19 :
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 55 Figure 5.5: Illustration of the PNP method with standard filtering applied to a pore network model image volume; (a) the original microstructure (pores are in the form of white interconnected cylinders), (b) corresponding pore network partition (pores are labeled by their size).
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 56 Figure 5.6: Illustration of the PNP method with standard filtering applied to a Cox Boolean model image volume; (a) A 3D image of the original microstructure, (b) a section of (a) with pores labeled by their size.
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 557 Figure 5.7: Pore size distribution and cumulative PSD of the microstructure shown in figure (5.6-a).
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 58 Figure 5.8: A simple illustration of a 2D object with an arbitrary geometry designating a porous network.
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 59 Figure 5.9: Illustrations of the pore network partition of figure 5.8 and its graph representation; (a) shows the pores generated by means of the PNP method. The pores are labeled by their size (1 → 15) using an arbitrary unit. Four paths between pore 8 and 9
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 510 Figure 5.10: Boolean and Cox models representing mono/multi scales microstructures; (a) and (b) are one-scale microstructures of spheres and platelets, respectively. (c) and (d) are multi-scale microstructures of spheres and platelets, respectively. The parameters of these microstructures are given in subsection 5.3.3.
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 61 Figure 6.1: Illustration of the morphological dilation 𝛿, erosion 𝜖 and closing operator 𝛾 applied to an arbitrary shape X, in black color. 𝛿(X) results in gray area. In erosion 𝜖(X), the black area is reduced resulting in the gray area. During morphological closing 𝛾(X),
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 62 Figure 6.2: Labeling of connected components in a 2D grid considering a pixel 4adjacency Γ 4 . (a) original image contains pores in black. (b) labeled image contains classified connected pores A, B and C in different colors.
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 63 Figure 6.3: Steps of the hole filling operation. Image (a) contains in its center the hole to fill. (b) Complementary of the initial image. (c) Removing connected components touching the boundaries of the image. (d) Union of (a) and (c).
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 64 Figure 6.4: Illustration of adsorption (on top) and desorption (on bottom) for a system of pores with radius in range [1,4]. Monolayer and multilayer adsorption are illustrated simultaneously. Void phase is represented by black color and condensed liquid phase is represented by blue color. Hysteresis starts at R = 3 because of the obstruction of pores with radius (R = 3) by smaller pores during desorption.

  Figure (6.4) summarizes this process. Three CC can be identified. Starting from maximum radius value, it is shown that large pores in contact with the boundaries of the domain evaporate first. It is noticed as well that although pore (R = 4) forms one single CC with smaller pores, it is the only one to be evaporated. At the next step, the evaporation is not occurring since pore (R = 3) is obstructed by smaller pores that are in contact with the vapor phase. Afterwards, pore (R = 2) evaporates when the radius criterion is reached. The
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 65 Figure 6.5: (Top row) 3D microstructures of model materials considered in this work and mesoporous alumina. SBA-15 and KIT-5 are highly ordered microstructures in the range of mesopore, made of cylinders and spheres shaped pores. Mesoporous alumina is modeled by a Cox Boolean model of platelets. (Bottom row) 2D corresponding slices of the 3D models in top row.
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 66 Figure 6.6: Comparison between experimental and simulated N 2 physisorption isotherms for SBA-15; (a) Adsorption and desorption images at different stages (a,b,c,d,e,f,g,h) are captured from simulation. (b) Experimental and simulated isotherms. (c) Simulation of N 2 physisorption for cylinders pores of 4 nm radius (with different lengths). The isotherms of the 25, 50 nm and infinity are shifted up by 0.8, 1.6 and 2.4, respectively.
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 67 Figure 6.7: Comparison between experimental and simulated N 2 physisorption isotherms for KIT-5; (a) Adsorption and desorption images at different stages (a,b,c,d,e,f,g,h) are captured from simulation. (b) Experimental and simulated isotherms.
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 68 Figure 6.8: Comparison between experimental and simulated N 2 physisorption isotherms for Mesoporous alumina; (a) Adsorption and desorption images at different stages(a,b,c,d,e,f,g,h) are captured from simulation. (b) Experimental and simulated isotherms.

  Figure 6.9

Figure 6 . 9 :

 69 Figure 6.9: Comparison between experimental and simulated N 2 physisorption isotherms for Dispal 18N4-80; (a) Left: 3D volume of the Boolean model on which the simulation was conducted. Right: a slice of the former volume that shows the platelets and their spatial distribution. (b) Experimental and simulated isotherms.
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 610611 Figure 6.10: Comparison between experimental and simulated N 2 physisorption isotherms for Disperal P2; (a) Left: 3D volume of the Cox Boolean model on which the simulation was conducted. Right: a slice of the former volume that shows the platelets and their spatial distribution. (b) Experimental and simulated isotherms.
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 612613614 Figure 6.12: Comparison between experimental and simulated N 2 physisorption isotherms for (M : A = 25 : 75); (a) Left: 3D volume of the Cox Boolean model on which the simulation was conducted. Right: a slice of the former volume that shows the two types of platelets and their spatial distribution. (b) Experimental and simulated isotherms.
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 615 Figure 6.15: Models of Disperal P2 at different grinding times (Table 6.2) and their results of simulation. (a -d) are slices of the Cox Boolean models used. (e -h) are comparisons between corresponding experimental N 2 physisorption and simulation isotherms.
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 71 Figure 7.1: Patch U-Net architecture. Left: contraction path; right: expansion path. After each set of operations, the size of the image and the number of channels is indicated. Operations are: convolution, transposed convolution, max pooling and concatenation. Input and output images are described later. While Deep Convolutional Neural Networks (DCNNs) for image classification are predict-
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 7273 Figure 7.2: Illustration of the patch extraction process. Parameters: I H = I W = 512, K = 48 and s = 24
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 74 Figure 7.4: The ISBI 2012 segmentation challenge training dataset. (a) EM image of neuronal structures. (b) Boundaries of cells annotated in black by a human expert.

  To extract training, validation and inference images, the original training dataset is randomly shuffled into k = 5 equal sized samples. Each subsample contains 26 training images, 3 validation images and 1 inference image. The outcome estimation is the average of the 5 predicted images. With the chosen k and s parameters (see section ??), one network is trained on a dataset of 11466 patches and is validated on 1323 patches. The sigmoid activation function f (x) = 1/(1 + e -x ) is computed over the final feature map. The network is trained using the CHAPTER 7. A DEEP LEARNING STRATEGY FOR SMALL SAMPLE LEARNING Adam [KB14] optimizer and binary cross entropy loss function defined as:
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 75 Figure 7.5: The dataset used for the image prediction task. (a) is a binary microstructure obtained from a Boolean model of spheres and (b) its corresponding computed electric field image. Field intensity is given by pixel values.
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 76 Figure 7.6: (a); Evolution of the binary cross entropy loss in terms of shift transformations applied to patches of the validation dataset. (b); Dissimilarities given by PSNR, SSIM and UIQ mean values between common area of original and shifted patches.
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 77 Figure 7.7: Segmentation results for ISBI 2012 challenge dataset; (a) original image, (b) enhanced image (geodesic information), and (c) groundtruth probability map. The results are given for five configurations: patch-wise U-Net applied to original and enhanced images (with two sampling strategies, (U)niform and (S)tratified), and using U-Net with augmented dataset (affine transformations).
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 772 A DEEP LEARNING STRATEGY FOR SMALL SAMPLE LEARNING V Rand evaluation of probability maps of the ISBI 2012 segmentation challenge dataset for two networks: Patch-wise U-Net and U-Net, using uniform and stratified sampling strategies. Original, enhanced and augmented images by affine transformations are used as datasets (Figure 7.7).

Figure 7 . 8 :

 78 Figure 7.8: Prediction results for the electric field dataset; (a) original image, (b) enhanced image (geodesic information), and (c) groundtruth field. The results are given for four configurations: patch-wise U-Net applied to original and enhanced images (with two sampling strategies, (U)niform and (S)tratified).
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 79 Figure 7.9: Segmentation results with uniform sampling (a) and stratified sampling (b).
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 7 10 illustrates this operation and related results are shown in table 7.3.
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 710 Figure 7.10: Border area mask (a) and inside area mask (b). Prediction results with uniform sampling (c) and stratified sampling (d).
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 77 Figure 7.11: (a) SEM image of gamma-alumina support and its corresponding segmented image (b) using the FCNN described above. Examples of segmented aggregates are shown in red rectangles.
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 81 Figure 8.1: a slice of a 3D binary microstructure (a), and its corresponding adsorption map (b). The size of spheres inter-platelets is shown by pixel intensities.
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 35 Computation of Adsorption map 1: I ← Binary Microstructure 2: Adsorption Map A computation: 3: Euclidean distance transform D E (I) 4: for r ∈ [0, max(D E )] do Morphological closing 𝜙 r (I) 6: for x ∈ I do 7: if A(x) == 0 then 8:if 𝛾 r (x) ≠ 0 then
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 82 Figure 8.2: ADS-net architecture. Nested dense convolutional blocks allow forwarding features from the encoder to the decoder. Encoder: (3 × 3) convolutions, batch normalization with ReLU activation functions and (2 × 2) Max pooling. Decoder: Upsampling is achieved by the depth to space subpixel convolution. The size of the filters is (32, 64, 128, 256, 512). The prediction map is obtained from a linear activation function performed on the concatenated dense-block output layers.
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 83 Figure 8.3: Slices of 15 Boolean models enhanced with 3D geodesic information (512 3 voxels) of platelets are considered with V v = {0.1, 0.3, 0.5, 0.7, 0.9}. For every V v , three microstructures of different platelets (P 1 , P 2 , P 3 ) are used. In this figure, solid phase = 255 and void phase = 0.
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 784 Figure 8.4: The effect of adding 2D or 3D geodesic information to a slice of a 100 3 voxel BCC unit cell (a). 3D and 2D geodesic map combined with solid phase are shown in (b) and (c). 3D geodesic map is found to be more insightful since it captures inter-slice context.
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 85 Figure 8.5: (a) Illustration of a Cox Boolean model (512 3 voxel), and a slice (X, Y, 0) of its corresponding groundtruth adsorption map (b).
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 86 Figure 8.6: The predicted adsorption curves and maps, which were obtained from U-Net++ with and without 3D geodesic information (DT).
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 87 Figure 8.7: The predicted adsorption curves and maps, which were obtained from ADS-Net with and without 3D geodesic information (DT).
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Table 3 . 2 :

 32 Nitrogen physisorption analysis results of different M:A ratios, where M is 18N4-80(2 h @ 750 • C) and A is P2(2 × [2 h @ 750 • C]/1 h). Pore size and pore volume were obtained using the BJH method applied to the desorption branch.

	M:A	Pore size (nm) BET surface (m 2 /g) Pore volume (cm 3 /g)
	0 : 100 6.3	194	0.40
	25 : 75 8.2	153	0.43
	50 : 50 9.3	142	0.46
	75 : 25 10.4	125	0.46
	100 : 0 12	117	0.48

Table 4

 4 

.1 gives the appropriate weights values (a,b,c,d,e,f) for each local distance. Here, we have picked some of the most known local distances (Manhattan, chessboard, quasi-Euclidean, and complete Euclidean). Throughout our work, the quasi-Euclidean distance with a kernel of size 3×3×3 is used for the computation of DT.

Table 4 .

 4 

1: The values of weights shown in figure 4.13. For each local distance kernel, the set of weights and their values are different.

  The classical convolutional neural network (introduced in [LBB97]) for a classification task. This architecture features successive convolutional layers and sub-sampling layers. The convolutional layers preserve the size of the input image/precedent feature maps, whereas the sub-sampling layers reduce the size of the previous feature maps. The feature maps of the final pooling layer are fed to a fully connected layer (FCL). The final output, representing the score for every class label, in the case of a classification task for instance, is obtained using an activation function.

	Convolutional layer i	Convolutional layer i + 1
	(6 feature maps)		(8 feature maps)	Fully connected
					layer
	input image	Sub-sampling layer i (reduces size)	Sub-sampling layer i + 1	output layer
	Figure 4.15:			
					The final
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1: M-tortuosity and GM-tortuosity mean values of four models of every microstructure shown in figure 5.10.

  Macroscopic models based on classical thermodynamics, such as the Langmuir or Brunauer, Emmett and Teller (BET) model for adsorption and the Kelvin or Cohan model for capillary condensation. These models can be applied to different pore network geometries, from unconnected pores, as in the well-known BJH model[START_REF] Schlumberger | Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry-a tutorial review[END_REF][START_REF] Thommes | Physical adsorption characterization of nanoporous materials[END_REF], to more complex pore networks, based on interconnected cylinders or spheres [LVS + 21, IC93, XBJ16]. These models are less time-consuming than molecular simulations but cannot represent adequately the disordered pore network geometry of most catalysts.

Table 6 .

 6 1:A table summarizing the experimental and simulation data of the Dispal 18N4-80 and Disperal P2 materials, mentioned without their commercial names. The experimentally obtained platelet dimensions were used to generate the platelets of random models. Using a Boolean model for 18N4-80 and a Cox Boolean model for P2, values of specific surface

	/g) obtained numerically are close to the experimental values. A comparison	
	area S p (m 2 /g) as well as pore volume V p (cm 3	between the numerical and experimental N

2 physisorption isotherms is given in the referenced figures for each material.

Table 6 . 2 :

 62 Experimental and simulation data of Disperal P2 at different grinding times.

	g)

  2 and C 3 = C 2 /2. L is the image dynamic, i.e. difference between minimum and maximum intensities of the image, K 1 , K 2 are constants and Ī and 𝜎 2 are the mean and variance values, respectively. SSIM aims to identify the perceptual similarity between two images through the evaluation of luminance (A-Eq.(7.19)), contrast (B-Eq.(7.19)) and image structure (C-Eq.(7.19)). In the proposed application, K 1 and K 2 are taken equal to 0.01 and 0.03, respectively.

Table 7 . 1 :

 71 PSNR, UIQ, SSIM mean values and BCE values evaluated between common area of original and shifted patches.

	Shift values -5	-4	-3	-2	-1	0	1	2	3	4	5
	PSNR	26.7	30.2	28.2	32.6	29.9	50	29.8	33.4	28.3	30.3	26.4
	UIQ	0.95	0.97	0.96	0.98	0.97	1	0.96	0.98	0.96	0.97	0.95
	SSIM	0.95	0.98	0.96	0.98	0.97	1	0.97	0.98	0.96	0.97	0.95
	BCE	0.254 0.251 0.247 0.244 0.250 0.240 0.241 0.244 0.248 0.251 0.254

Table 7 . 3 :

 73 of training data. Primarily, the network is trained on the original dataset. Afterwards, another training is performed on the enhanced image dataset. A visual comparison (Figure7.8) and the values of the evaluation metrics are presented in table 7.3. A concluding remark is that the PSNR, UIQ and SSIM indices have improved remarkably in the case of the enhanced dataset. PSNR,UIQ and SSIM values comparison of predicted images (Figure7.7) from original and enhanced electric field dataset.

	7.7.4 . Stochastic sampling of patches

Table 8 .
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	Dataset	Method	Maps	Curves
			PSNR SSIM MAE-A MAE-D
	Without DT	U-Net++ 34.67 0.915 0.091 ADS-net 38.66 0.949 0.030	0.101 0.023
	With DT	U-Net++ 39.44 0.961 0.052 ADS-net 42.79 0.981 0.013	0.057 0.009

1: Comparison of the results of U-Net++ and ADS-net.
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