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Age of digital revolution

Over the last two decades, we have witnessed a digital revolution in which data is at the centre of models. We are dealing with extracting meaningful information from large digital data bases utilizing appropriate deep-learning algorithms. Since the data is so huge, we refer to it as big data that directly impacts the formulation of models in high-dimensional spaces. Mathematics, statistics and computer science are pioneering the introduction of a modern generation of algorithms capable of addressing these issues with the required accuracy and in an acceptable time frame. Moreover, Machine Learning has recently been developed and widely used in various sectors with tangible applications. The optimization problem of a function is critical in the many phases of data processing. An optimization issue of this type reflects the minimizing of errors, that is, the difference between the analyzed data and the mathematical model that describes these data. They have broad usefulness in diverse applications, including signal processing, imaging sciences, machine learning, communication systems and astronomy. As a result, it is not an exaggeration to claim that we are in the age of the digital revolution.
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First-order methods

First-order methods have occupied the forefront of research and became popular recently because of their usefulness in solving large-scale optimization problems in Machine Learning and Data Science by using just the gradient of the function. In particular, thanks to its simplicity, the Gradient Descent Method (GDM) is widely used in data science, image processing to minimize a function in the context of the explosion of digital information. Nevertheless, one of the disadvantages of that method is its slowness.

In 1964, B. Polyak suggested an improvement to the (GDM), adding a momentum term associated to a gradient descent step [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF]. The heavy ball with friction (HBF) is best known as the continuous Ordinary Differential Equation (ODE) model of the Polyak momentum.

That is an inertial dynamical system with a constant viscous damping coefficient. It might be viewed mechanically as the movement of a material point subject to viscous friction dampening and conservative potential forces. The heavy ball with friction is a second-order dissipative system in which the existence of inertia helps the system to overcome some of the (GDM)'s acknowledged disadvantages and accelerates convergence. But the (HBF) is not a descent method. The convergence behavior of the trajectories towards a critical Chapter 1 -Introduction and mathematical background point of the potential is well-known as long as various assumptions, for instance, convexity or analyticity of the potential term are satisfied. For a strongly convex function, (HBF) provides convergence at an exponential rate whenever the viscous damping coefficient is suitably chosen ; while for a general convex function, this rate is only O( 1 t ) (in the worst case). This, however, is not better than the steepest descent.

Later, in 1983, Nesterov [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O(1/k 2 ). (Russian)[END_REF] first introduced another momentum method known as Nesterov Accelerated Gradient (NAG). The continuous ODE associating the Nesterov Accelerated Gradient algorithm was pointed out by Su-Boyd-Candès [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method[END_REF] after Su et al. introduced an Asymptotic Vanishing Damping (AVD) coefficient of the form α t , with α > 0 and the time variable t > 0. Namely, for f being a general convex function, the condition α > 3 ensures not only the asymptotic convergence rate of the values with a rate of order o 1/t 2 but also the weak convergence of the solution trajectories towards optimal points. Chapter 1 -Introduction and mathematical background of both cooperative and noncooperative aspects in decision sciences and game theory, for example. This is the case in physics when the processes of diffusion and convection coexist. Similar structures emerge from the Lagrangian methodology to linear constrained optimization problems. As a result, the study of additively structured monotone problems involving the sum of potential and nonpotential operators is more likely to be as significant as first-order approaches. The purpose of this thesis is to examine the convergence properties of the trajectories generated by damped inertial dynamics driven by the sum of a potential (typically being the gradient of a continuously differentiable convex function) and a nonpotential monotone operator. Our approach is apparently in accordance with the Lyapunov analysis combined with an appropriate adjustment of the parameters involved in the dynamics. The explicit and implicit Newton-type damping will be discussed in more detail throughout Chapters 2 -4.

Composition convex optimization

As we well know, the class composition convex optimization problems is presented in many applications, especially in image processing and machine learning. The accelerated gradient method initiated by Nesterov in 1983 ([61], [START_REF] Nesterov | Introductory Lectures on Convex Optimization : Basis course[END_REF]) is truly a prior step to designing powerful first-order methods for solving smooth convex optimization problems. Based on this acceleration scheme, the amount of algorithms were extensively developed for solving composition convex optimization of the form min{f (x) + Φ(x) : x ∈ R n }, (1.1) in which the objective function is given by the sum of two convex functions including a smooth and a nonsmooth one. Especially, by combining the forward-backward method with Nesterov's acceleration scheme, Beck-Teboulle ( [START_REF] Beck | A fast iterative shinkage-thresholding algorithm for linear inverse problems[END_REF]) have proposed the fast iterative shrinkage-thresholding algorithm (FISTA) for solving (1.1) which has many applications in image processing. Later, in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF] (see also [START_REF] Attouch | Convergence rate of proximal inertial algorithms associated with Moreau envelopes of convex functions[END_REF]), Attouch-Peypouquet have shown that the convergence rate of the accelerated forward-backward method is actually o(1/k 2 ) rather than O(1/k 2 ). Despite the uniform smoothness condition playing a central role in the development and analysis of first-order methods, there are variety applications where the objective function does not have this property, though being convex and differentiable [START_REF] Hanzely | Accelerated Bregman proximal gradient methods for relatively smooth convex optimixation[END_REF]. Therefore, we aim to investigate the algorithms introduced in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF] in case of f is relative smooth and propose a method that employs the Bregman distance of the reference function instead of Euclidean distance. These results will be discussed in Chapter 5.
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Chapter 1 -Introduction and mathematical background

Outline of the dissertation

The fundamental goal of my thesis is to model, mathematically study, and numerically simulate inertial dynamics for first-order optimization. As a result of the growth of various applications in physics, biology, human sciences, and other fields, many problems have arisen that include equations with both potential and nonpotential components. The research on the convergence of damped inertial dynamics involving by maximally monotone operators enables to link between dynamic systems and numerical optimization. The tools used are coming from optimization, variational and set-valued analysis, Lyapunov stability theory and differential inclusions. For each model, we will concentrate on the existence and uniqueness of solution and the asymptotic characteristics of trajectories.

A part from Chapter 1 and Chapter 6 that contains the introduction and conclusions, the dissertation consists of four pivot chapters whose outline is organized as follows.

In Chapter 2, we introduce the following second-order differential equation which will form the basis of our analysis :

ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = 0, t ≥ t 0 .
(DINAM) We show that the Cauchy problem is well-posed (in the sense of existence and uniqueness of solutions) using the first-order equivalent formulation of (DINAM), and we analyze the asymptotic convergence properties of the trajectories generated by (DINAM). Using appropriate Lyapunov functions, we indicate that any trajectory of (DINAM) converges weakly as t → +∞, and that its limit belongs to S = (∇f + B) -1 (0). Also in that chapter, an application to the LASSO problem with a nonpotential operator and a coupled system in dynamical games will be studied. Next, in Chapter 3, we study the convergence properties of the sequences generated by an inertial proximal algorithm obtained by implicit discretization of the continuous dynamics (DINAM). We highlight the interplay between the damping parameters β f , β b , γ and the cocoercivity parameter λ, which plays a significant role in our Lyapunov analysis. We analyze an inertial proximal-gradient splitting algorithm which makes use of the gradient of f and the resolvent of B. We also examine a variant of this proximal-gradient algorithm and the effect of errors, perturbations where the role of the operators is reversed. Furthermore, Chapter 4 is devoted to the study of second-order evolution equation ẍ(t) + γ ẋ(t) + ∇f x(t) + β f ẋ(t) + B x(t) + β b ẋ(t) = 0.

(iDINAM)

Chapter 1 -Introduction and mathematical background

Similarly, we show that the Cauchy problem is well-posed and analyze the asymptotic convergence properties of the trajectories generated by (iDINAM). We study the convergence properties of the sequences generated by an inertial proximal algorithm obtained by discretization of the continuous dynamics (iDINAM).

Lastly, in Chapter 5, we focus on the convergence properties of the generalized Nesterov's algorithm and accelerated forward-backward algorithm for composition convex optimization problem of the form

min{f (x) + Φ(x) : x ∈ R n }, (1.2) 
in which Φ : R n → R ∪ {+∞} is a proper, lower-semicontinuous, convex function and f : R n → R is a continuously differentiable, convex function whose gradient is L-Lipschitz continuous on dom Φ. We also highlight the convergent rate of our scheme by setting appropriate parameters and the smoothness, convexity of function f .

Mathematical background

In this section, we introduce the mathematical background on Hilbert space, convex analysis, caculus, and some technical lemmas. These tools will be used in the whole thesis.

The material which follows is mainly taken from [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF].

Hilbert space basics

Definition 1.3.1 Let H be a complex vector space. An inner product on H is a function,

•, • : H × H → C, such that (i) ax + by, z = a x, z + b y, z ;

(ii) ¯ x, y = y, x ;

(iii) x 2 ≥ 0 and x 2 = 0 if and only if x = 0.

We will often find the following formula useful :

x + y 2 = x + y, x + y = x 2 + y 2 + x, y + y, x = x 2 + y 2 + 2Re x, y .
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Chapter 1 -Introduction and mathematical background Theorem 1.3.1 (Schwartz Inequality) Let H be an inner product space, then for all

x, y ∈ H | x, y | ≤ x y and equality holds if and only if x and y are linearly dependent. Corollary 1.3.1 Let (H, •, • ) be an inner product space and x := x, x . Then • is a norm on H. Moreover •, • is continuous on H × H, where H is viewed as the normed space (H, •, • ). Definition 1.3.2 (Weak convergence) A sequence of points (x k ) in a Hilbert space H is said to converge weakly to a point x in H provided that

x n , y → x, y , as n → +∞ for all y ∈ H. We write x n

x, as n → +∞. 

Convexity

dom(f ) = {x ∈ R n : f (x) < +∞}.
The function f is said to be proper if its effective domain is non-empty. Definition 1.3.5 Let f : R n → R ∪ {+∞} be an extended real-valued function. The function f is said to be lower semi-continous at x 0 ∈ R n if for every λ < f (x 0 ) there exists r > 0 such that λ < f (x) for all x ∈ x 0 + rB.

The function f is said to be lower semi-continous if it is lower semi-continous at each point. for every λ ∈ [0, 1] and every x, y ∈ dom(f ).

If the inequation holds with strictly equality, then f is called strictly convex.

Give a function f : R n → R and a point x ∈ R n , we will denote by ∇f (x) the gradient of f at x (whenever it exists). Definition 1.3.9 Let f : R n → R ∪ {+∞} be a proper convex function. We say that

p ∈ R n is a subgradient of f at a point x 0 ∈ dom(f ) if p, x -x 0 ≤ f (x) -f (x 0 ) for each x ∈ R n .
The set of all such p denoted by ∂f (x 0 ) is called the subgradient of f at x 0 . Proposition 1.3.1 Let f : R n → R be a differential function on an open convex set

Ω ⊂ R n . Then, f is convex on Ω if and only if f (x) ≥ f (x 0 ) + ∇f (x 0 ), x -x 0 ,
for all x, x 0 ∈ Ω.

f is strictly convex on Ω if and only if f (x) > f (x 0 ) + ∇f (x 0 ), x -x 0 , for all x, x 0 ∈ Ω with x = x 0 .

Monotone Operators

Definition 1.3.10 A mapping F : R n → R n is said to be (i) monotone if F (x) -F (y), x -y ≥ 0 for all x, y ∈ R n .

(ii) strictly monotone if F (x) -F (y), x -y > 0 for all x, y ∈ R n with x = y.

(iii) maximally monotone if it is monotone and its graph is maximal in the sense of
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Chapter 1 -Introduction and mathematical background inclusion, i.e., the graph of F is not properly contained in the graph of any other monotone operator.

Proposition 1.3.2 Let f : R n → R n be a differentiable function. Then f is (strictly) convex if and only if ∇f is (strictly) monotone. Definition 1.3.11 Let H be a real Hilbert space. The operator T : H → H is said to be λ-cocoercive for some λ > 0 if T y -T x, y -x ≥ λ T y -T x 2 , ∀x, y ∈ H.

The operator T : H → H is said to be L-Lipschitz for some L > 0 if T y -T x ≤ L y -x , ∀x, y ∈ H.

Let us quickly show that the sum of two cocoercive operators is still cocoercive. For further properties concerning cocoercive operators see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert spaces[END_REF]. Lemma 1.3.1 Let T 1 , T 2 : H → H be two cocoercive operators with respective cocoercivity coefficients λ 1 , λ 2 > 0. Then T := T 1 + T 2 : H → H is λ-cocoercive with λ = λ 1 λ 2 λ 1 +λ 2 . Proof. According to the cocoercivity assumptions of T 1 and T 2 , we have T 1 y -T 1 x, y -x ≥ λ 1 T 1 y -T 1 x 2 , ∀x, y ∈ H, T 2 y -T 2 x, y -x ≥ λ 2 T 2 y -T 2 x 2 , ∀x, y ∈ H.

The following lemmas are useful in future. Firstly, let us show that the sum T = T 1 + T 2 is still cocoercive. As a result of elementary computation in Hilbert spaces, for all x, y ∈ H, we have

T y -T x 2 = T 1 y -T 1 x + T 2 y -T 2 x 2 = T 1 y -T 1 x 2 + T 2 y -T 2 x 2 + 2 T 1 y -T 1 x, T 2 y -T 2 x ≤ T 1 y -T 1 x 2 + T 2 y -T 2 x 2 + λ 1 λ 2 T 1 y -T 1 x 2 + λ 2 λ 1 T 2 y -T 2 x 2 = λ -1 1 + λ -1 2 λ 1 T 1 y -T 1 x 2 + λ 2 T 2 y -T 2 x 2 .
Since T 1 and T 2 are cocoercive, we deduce that

T y -T x 2 ≤ λ -1 1 + λ -1 2 ( T 1 y -T 1 x, y -x + T 2 y -T 2 x, y -x ) = λ -1 1 + λ -1 2
T y -T x, y -x .
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Chapter 1 -Introduction and mathematical background Equivalently, T y -T x, y -x ≥ λ 1 λ 2 λ 1 + λ 2 T y -T x 2 , ∀x, y ∈ H.

So, T is still λ-cocoercive with λ = λ 1 λ 2 λ 1 +λ 2 > 0. Let us indicate that this estimate is sharp. Take T 1 : H → H, x → λ -1 1 x and T 2 : H → H, x → λ -1 2 x. It is clear that T 1 , T 2 are two cocoercive operators with cocoercivity coefficients λ 1 , λ 2 respectively. Then their sum operator is equal to T x = λ -1 1 + λ -1 2

x = λ -1 x with λ = λ 1 λ 2 λ 1 +λ 2 , and hence is λ cocoercive. This shows that we cannot obtain a better estimate.

Technical lemmas

These lemmas will be useful in our thesis and be applied in our arguments multiple times.

For that purpose, we first need to recall the the first pillar, which is the following well-known and fundamental property for a smooth function in the class C 1,1 ; see, e.g., [START_REF] Bertsekas | Nonlinear Programming[END_REF][START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF]. Lemma 1.3.2 Let f : R n → R be a continuously differentiable function with Lipschitz continuous gradient and Lipschitz constant L(f ). Then, for any L ≥ L(f ),

f (x) ≤ f (y) + x -y, ∇f (y) + L 2
x -y 2 for every x, y ∈ R n .

(

The following lemma is a classic result from integration theory, often called Barlabat's theorem in control theory. for almost every t > 0. Then lim t→∞ u(t) = 0. The following lemma will play a key role in the proof of our convergence theorems. The proof can be found in [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert space[END_REF][START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF]. Lemma 1. 3.4 ([8]) If w ∈ C 2 ([0, +∞[, R) is bounded from below and satisfies the following inequality ẅ(t) + γ ẇ(t) ≤ g(t), where γ is a positive constant and g ∈ L 1 ([0, +∞[, R), then w(t) converges as t → +∞. Lemma 1.3.5 Let a, b and c be three real numbers. The quadratic form q : H × H → R q(X, Y ) := a X 2 + 2b X, Y + c Y 2

Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Chapter 1 -Introduction and mathematical background is said to be positive definite if and only if ac -b 2 > 0 and a > 0. Moreover, q(X, Y ) ≥ µ( X 2 + Y 2 ) for all X, Y ∈ H, where µ := 1 2 a + c -(a -c) 2 + 4b 2 is the smallest eigenvalue of the positive symmetric matrix associated with q. The next result is so-called the continuous version of the Opial lemma (see, for example, [START_REF] Peypouquet | Evolution Equations for Maximal Monotone Operators : Asymptotic Analysis in Continuous and Discrete Time[END_REF], [2,Lemma 1.10], [1,Lemma 5.3]). Lemma 1.3.6 Let S ⊆ H be a nonempty set and x : [0, +∞[ a given map. Assume that (i) for every x * ∈ S, the limit lim lim t→+∞ x(t) -x * exists ;

(ii) every weak sequential cluster point of the map x belongs to S. Then there exists

x ∞ ∈ S such that x(t) converges weakly to x ∞ as t → +∞.
The following is discrete version of the Gronwall Lemma, see [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF]Lemma A.9.] for another proof. Lemma 1.3.7 Let a be a positive real and (y k ), (g k ) be nonnegative sequences such that for all k ≥ 0, we have

1 2 y 2 k ≤ 1 2 a 2 + 0≤i<k g i y i .
Then, the succeeding inequality holds for all k ≥ 0 :

y k ≤ a + 0≤i<k g i .
Proof. For any ε > 0, let us define the sequence (z k (ε)) given by

z k (ε) = 1 2 (a + ε) 2 + 0≤i<k g i y i .
We have

z k+1 (ε) -z k (ε) = g k y k and 1 2 y 2 k ≤ z k (ε) for k ≥ 0. Thus, z k+1 (ε) -z k (ε) ≤ √ 2g k z k (ε). (1.4)
Moreover, by the definition of (z k (ε)), we deduce that (z k (ε)) is a nondecreasing sequence as well. Hence,

z k+1 (ε) -z k (ε) = z k+1 (ε) -z k (ε) z k+1 (ε) + z k (ε) ≤ z k+1 (ε) -z k (ε) 2 z k (ε) . (1.5)
From (1.4) and (1.5), we obtain

z k+1 (ε) -z k (ε) ≤ 1 √ 2 g k . (1.6)
Chapter 1 -Introduction and mathematical background That implies

z k (ε) ≤ z 0 (ε) + 1 √ 2 0≤i<k g i ,
for all k ≥ 0. Then,

y k ≤ 2z k (ε) ≤ 2z 0 (ε) + 0≤i<k g i = a + ε + 0≤i<k g i .
Taking ε → 0, we obtain

y k ≤ a + 0≤i<k g i .
This completes the proof. As you know, a massive number of situations which come from physics, biology, human sciences, etc. involve equations containing both potential and nonpotential terms. For example, in human sciences, this comes from the presence of both cooperative and noncooperative aspects. In physics, this comes from the joint presence of terms diffusion and convection. To describe such phenomena, we are often led to solving additively structured monotone problems of the type

Find x ∈ H : ∇f (x) potential + B(x) nonpotential = 0,
where H is a Hilbert space. The presence of the nonpotential term, namely B, makes it impossible to apply classical mathematical analysis methods in this context and consequently, the common tools for simulation of these problems are not appropriate. Our ambition in this chapter is to investigate mathematically a dynamic inertial Newton method which aims at solving additively structured monotone equations involving the sum of both potential and nonpotential terms. Roughly speaking, we are looking for the zeros of the operator A = ∇f + B. In which ∇f is the gradient of a continuously differentiable convex function f and B denotes the nonpotential monotone and cocoercive operator. Apart from a viscous friction term, the dynamic includes geometric damping terms which are regulated respectively by the Hessian of the potential f and a Newton-type correction term attached to nonpotential monotone and cocoercive operator B. Thanks to a fixed point argument, we claim the well-posedness of the Cauchy problem and the weak convergence as t → +∞ of the generated trajectories towards the zeros of ∇f + B.

The convergence analysis relies on the appropriate setting of the viscous parameter γ and geometric damping parameters β b , β f . These geometrical dampings enable us to control and attenuate the known classical oscillations of inertial methods with the viscous damping.

Transforming the second-order evolution equation into a first-order dynamical system, on the other hand, allows such analysis to be extended to nonsmooth convex potentials. Due to the introduction of the nonpotential term, the proofs and techniques are original and different from the classical ones. These brand-new results open the door or propose some new first-order accelerated algorithms in optimization taking into account the specific properties of potential and nonpotential terms.

Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms

Introduction and preliminary results

Throughout this chapter, let H be a real Hilbert space endowed with the scalar product •, • and the associated norm • . We will concentrate on solving problems in the additively structured monotone equations of the form

Find x ∈ H : ∇f (x) + B(x) = 0. (2.1)
In the preceding equation, we recall that ∇f is the gradient of a convex continuously differentiable function f : H → R (that plays as the potential part), and B : H → H is a nonpotential operator, i.e., B is not supposed to be equal to the gradient of a given function which is assumed to be monotone and cocoercive. To reach this end, we consider continuous inertial dynamics whose solution trajectories converge as t → +∞ to solutions of (2.1). Lining with the active research stream, we work on the close relationship between continuous dissipative dynamical systems and optimization algorithms obtained by taking their temporal discretization. The main objective is to analyze the continuous dynamic. The algorithmic part and its correlation with first-order numerical optimization will be discussed in the successive companion chapter. From this viewpoint, damped inertial dynamics are a logical way to accelerate these systems. Serving as the core feature of our study, we will introduce the dynamic geometric dampings respectively driven by the Hessian for the potential component and the corresponding Newton term for the nonpotential one. Furthermore, these terms not only improve the convergence rate but also considerably reduce the oscillatory behaviour of the trajectories. We will give special consideration to the minimal hypothesis which ensure convergence of the trajectories, and emphasize the asymmetric role of the two operators involved in the dynamic. As we shall see, a lot of statements can be enhanced to the case where f : H → R ∪ {+∞} is a convex proper lower semicontinuous function that helps expand the scope of application.

Dynamical inertial Newton method for additively structured monotone problems

Let us introduce the following second-order differential equation which will form the basis of our analysis :

ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = 0, t ≥ t 0 . (DINAM)
Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms

We briefly use (DINAM) as an abbreviation for the dynamical inertial Newton method for additively structured monotone problems. We call t 0 ∈ R the beginning of time. Since the systems are autonomous, we can take any real number for t 0 . For simplicity and without loss of generality, we set t 0 = 0.

To examine the corresponding Cauchy problem, we add the initial conditions :

x(0) = x 0 ∈ H and ẋ(0) = x 1 ∈ H. The term B (x(t)) ẋ(t) is interpreted as d dt (B(x(t))) taken in the distribution sense. Likewise, the term ∇ 2 f (x(t)) ẋ(t) is undertood as d dt (∇f (x(t))
) taken in the distribution sense as well. Because of the following assumptions, these terms are measurable functions and bounded on the bounded time intervals. So, we will only investigate strong solutions of the above equation (DINAM). The chapter is organized as follows. Section 2.1 introduces (DINAM) with some historical perspective. In section 2.2, based on the first-order equivalent formulation of (DINAM), we show that the Cauchy problem is well-posed (in the sense of existence and uniqueness of solutions). In section 2.3, we analyze the asymptotic convergence properties of the trajectories generated by (DINAM). Using appropriate Lyapunov functions, we show that any trajectory of (DINAM) converges weakly as t → +∞, and that its limit belongs to S = (∇f + B) -1 (0). The interplay between the damping parameters β f , β b , γ and the cocoercivity parameter λ will play a significant role in our Lyapunov analysis. In Section 2.4, we perform numerical experiments that show the well-known oscillations in the case of the heavy ball with friction are damped with the introduction of the geometric (Hessian-like) damping terms. Also in that section, an application to the LASSO problem with a nonpotential operator and a coupled system in dynamical games are studied. Section 2.5 deals with the extension of the work to the nonsmooth and convex case. Section 2.6 contains some concluding remarks and perspectives. Before starting, we make throughout this part these following standing assumptions :

                 (A1) f : H → R is convex, of class C 1 , ∇f is Lipschitz continuous on the bounded sets; (A2) B : H → H is λ-cocoercive for some λ > 0; (A3) γ > 0, β f > 0, β b ≥ 0 are given real damping parameters; (A4) the solution set S := (∇f + B) -1 (0) = {p ∈ H : ∇f (p) + B(p) = 0} = ∅.
We highlight the fact that we do not suppose ∇f to be globally Lipschitz continuous. Our analysis is conducted without using any boundedness of ∇f is a key to further extending the theory to the nonsmooth case. As a specific feature, the inertial system (DINAM) includes Note that each driving force term enters (DINAM) with its temporal derivative. In fact, we have

∇ 2 f (x(t)) ẋ(t) = d dt (∇f (x(t))) and B (x(t)) ẋ(t) = d dt (B(x(t))) .
This is crucial to observe (DINAM) to be a first-order system in time, and space ; then the corresponding Cauchy problem is well-posed. This will be proved later (see subsection 2.2.1 for more details). The assumption of the cocoercivity on the operator B is essential in the analysis of (DINAM) in terms of ensuring the existence of solutions and analysing their asymptotic behaviour as time t → +∞. Note that the operator B : H → H is said to be λ-cocoercive for some λ > 0 if

By -Bx, y -x ≥ λ By -Bx 2 , ∀x, y ∈ H.
It is clear that B is λ-cocoercive implies B is 1/λ-Lipschitz continuous. The reverse implication holds true when the operator is the gradient of a convex and differentiable function. Indeed, according to Baillon-Haddad's theorem [START_REF] Baillon | Quelques propriétés des opérateurs angles-bornés et n-cycliquement monotones[END_REF], ∇f is L-Lipschitz continuous implies that ∇f is a 1/L-cocoercive operator (we refer to [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert spaces[END_REF]Corollary 18.16] for more details).

Historical aspects of the inertial systems with Hessian-driven damping

The timeline of studying the inertial systems with Hessian-driven damping was marked by Alvarez, Attouch, Peypouquet, and Redont. Alvarez et al. in their papers (see [START_REF] Alvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF]) first considered the inertial system with Hessian-driven damping in the form

ẍ(t) + γ ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0.
Later, based on the continuous interpretation by Su, Boyd, and Candès [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method[END_REF] of Nesterov's accelerated gradient method, Attouch et al. [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF] replaced the fixed viscous damping

Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0

Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms parameter γ and studied the new one, an asymptotic vanishing damping parameter α t , with α > 0. At first sight, the presence of the Hessian might seem to entail numerical difficulties, however, this is not true in this case since the Hessian intervenes in the above original differential equations (ODE) in the form ∇ 2 f (x(t)) ẋ(t), which is the derivative concerning the time of ∇f (x(t)). Hence, the temporal discretization of these dynamics gives first-order algorithms of the form

   y k = x k + α k (x k -x k-1 ) -β k (∇f (x k ) -∇f (x k-1 )) x k+1 = y k -s∇f (y k ).
In addition, unlike traditional accelerated gradient methods, these algorithms include a correction term that is the difference of the gradient at two successive steps. They give fast convergence to zero of the gradients and eliminate the oscillatory aspects while conserving the convergence properties of the accelerated gradient method. There have been several recent studies on that subject, for example, Attouch, Chbani, Fadili, and Riahi [START_REF] Attouch | First-order algorithms via inertial systems with Hessian driven damping[END_REF], Boţ, Csetnek, and László [START_REF] Boţ | Tikhonov regularization of a second order dynamical system with Hessian damping[END_REF], Kim [START_REF] Kim | Accelerated Proximal Point Method for Maximally Monotone Operators[END_REF], Lin, and Jordan [START_REF] Lin | A Control-Theoretic Perspective on Optimal High-Order Optimization[END_REF], Shi, Du, Jordan, and Su [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF], and Alesca, Lazlo, and Pinta [START_REF] Alecsa | An extension of the second order dynamical system that models Nesterov's convex gradient method[END_REF] for an implicit version of the Hessian driven damping. Recently, Castera, Bolte, Févotte, Pauwels [START_REF] Castera | An Inertial Newton Algorithm for Deep Learning[END_REF] have developed the range of application to deep learning. Additionally, in [3], Adly and Attouch studied the finite convergence of proximal-gradient inertial algorithms combining both dry friction and Hessian-driven damping. Namely, the authors considered temporal discretization of the differential inclusion

ẍ(t) + γ(t) ẋ(t) + ∂φ( ẋ(t)) + ∇f (x(t)) 0, t ∈ [t 0 , +∞[. (2.2)
Then, the sequence (x k ) generated by Inertial Proximal Gradient algorithm with Dry Friction (IPGDF) :

     x 0 , x 1 ∈ H, x k+1 = x k + h prox h 1+hγ φ 1 h(1 + hγ) (x k -x k-1 ) - h 1 + hγ ∇f (x k ) , converges to x ∞ satisfying 0 ∈ ∂φ(0) + ∇f (x ∞ ).
For more details, see Theorem 2.1 in [3].
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Inertial dynamics involving cocoercive operators

Let us now turn to the transposition of these techniques to the case of maximally monotone operators. Álvarez and Attouch [START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[END_REF] and Attouch and Maingé [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF] studied the equation

ẍ(t) + γ ẋ(t) + A(x(t)) = 0, (2.3) 
when A : H → H is cocoercive and hence maximally monotone ; see also [START_REF] Boţ | Second order forward-backward dynamical systems for monotone inclusion problems[END_REF]. The cocoercivity assumption is the pivot in the study of (2.3) not only does guarantee the well-posedness of solutions also analyze their long-term behaviour. Assuming that the damping coefficient γ and the cocoercivity parameter λ fulfill the inequality λγ 2 > 1, Attouch and Maingé [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF] showed that each trajectory of (2.3) converges weakly to a zero of A, i.e. x(t) x ∞ ∈ A -1 (0) as t → +∞. Furthermore, the condition λγ 2 > 1 is sharp. Regarding general maximally monotone operators this property has been further exploited by Attouch and Peypouquet [START_REF] Attouch | Convergence of inertial dynamics and proximal algorithms governed by maximal monotone operators[END_REF], and by Attouch and Laszlo [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF]. The key property is that for λ > 0, the Yosida approximation A λ of A is λ-cocoercive and A -1 λ (0) = A -1 (0). Thus, the idea is to replace the operator A with its Yosida approximation, and adjust the Yosida regularization parameter. Another remarkable work has been done by Attouch and Maingé [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF]. The authors first considered the asymptotic behavior of the second-order dissipative evolution equation with f : H → R convex and B : H → H cocoercive

ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) = 0, (2.4) 
combining potential with nonpotential effects. The properties of the trajectory solution is stated as follows. Theorem 2.1.1 ( [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF]) Let us suppose that f : H → R is a convex differentiable function whose gradient ∇f is Lipschitz continuous on the bounded subsets of H. Suppose that B : H → H is maximal monotone and λ-cocoercive for some λ > 0. Assume that the set S = (∇f + B) -1 = ∅ and the cocoercive parameter λ and the damping parameter γ satisfy

λγ 2 > 1.
Then, for each initial data x 0 and ẋ0 in H, the unique solution x ∈ C 2 ([0, +∞); H) of (2.4) satisfies :

(i) There exists x ∞ ∈ S such that x(t)

x ∞ weakly in H as t → +∞. Based on such historical aspects that we presented in the preceding sections, we therefore, consist initially in introducing the Hessian term and the Newton-type correcting term into this dynamic.

(ii) ẋ ∈ L 2 (0, +∞; H) ; lim t→+∞ | ẋ(t)| = 0 ; (iii) ẍ + ∇f (x) + Bx ∈ L 2 (
Let us clarify the relationship between our research and Newton's method for solving (2.1). The Newton's method for solving ∇f (x) = 0 generates the following sequence (x k ) given by

   x 0 ∈ H, x k+1 = x k -[∇ 2 f (x k )] -1 ∇f (x k ), k ≥ 0.
Equivalently, we deal with

∇ 2 f (x k )(x k+1 -x k ) = ∇f (x k ). (2.5) 
The continuous dynamic associated to (2.5) is

∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0. (2.6)
We can see that (2.6) is ill-posed since ∇ 2 f (x) is only positive semi-definite (if f is only convex).

In order to overcome the ill-posedness of the continuous Newton method for a general maximally monotone operator A, Attouch and Svaiter [START_REF] Attouch | A continuous dynamical Newton-Like approach to solving monotone inclusions[END_REF] studied the first-order evolution system shown below :

v(t) ∈ A(x(t)) γ(t) ẋ(t) + β v(t) + v(t) = 0.
(2.7)

This system (2.7) can be played as a continuous version of the Levenberg-Marquardt method and as a regularization of Newton's method [START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF]. We notice that under a general hypothesis on γ(t), the system (2.7) is well-posed and its generated trajectories converge weakly to equilibria (zeros of A). In parallel, we obtained the results for the associated proximal algorithms by considering its implicit temporal discretization, see [2], [START_REF] Attouch | A dynamic approach to a proximal-Newton method for monotone inclusions in Hilbert Spaces, with complexity O(1/n 2 )[END_REF], [START_REF] Attouch | Global convergence of a closed-loop regularized Newton method for solving monotone inclusions in Hilbert spaces[END_REF] Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms for more details. This system is written formally as

γ(t) ẋ(t) + β d dt (A(x(t))) + A(x(t)) = 0.
Thus, (DINAM) can be considered as an inertial version of this dynamical system for structured monotone operator A = ∇f + B. Our work is also linked to the recent works by Attouch and Laszlo [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF], however, contrasting with [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF], due to the cocoercivity of B, instead of utilizing the Yosida regularization, we only present minimal hypotheses regarding the nonpotential component.

Well-posedness of the Cauchy-Lipschitz problem

We first show the existence and the uniqueness of the solution trajectory for the Cauchy problem associated with (DINAM) for any given initial condition data (x 0 , x 1 ) ∈ H × H.

First-order in time and space equivalent formulation

The following first-order equivalent formulation of (DINAM) was first considered by Alvarez, Attouch, Bolte, and Redont [START_REF] Alvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF] and Attouch, Peypouquet, and Redont [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF] in the framework of convex minimization. In particular, in our context, the following equivalence results from a simple differential and algebraic calculation. Proposition 2.2.1 Suppose that β f > 0. Then the two problems as follows are equivalent :

(i) ⇐⇒ (ii) (i) ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = 0. (ii)        ẋ(t) + β f ∇f (x(t)) + β b B(x(t)) + γ - 1 β f x(t) + y(t) = 0; ẏ(t) -1 - β b β f B(x(t)) + 1 β f γ - 1 β f x(t) + 1 β f y(t) = 0. Proof. (i) =⇒ (ii). For t ≥ 0, set y(t) := -ẋ(t) -β f ∇f (x(t)) -β b B(x(t)) -γ - 1 β f x(t), (2.8) 
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Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms which gives the first equation of (ii). By differentiating y(•) and using (i), we get

ẏ(t) = -ẍ(t) -β f ∇ 2 f (x(t)) ẋ(t) -β b B (x(t)) ẋ(t) -γ - 1 β f ẋ(t) = γ ẋ(t) + ∇f (x(t)) + B(x(t)) -γ - 1 β f ẋ(t) = ∇f (x(t)) + B(x(t)) + 1 β f ẋ(t).
(2.9)

By combining (2.8) and (2.9), we obtain

ẏ(t) + 1 β f y(t) = 1 - β b β f B(x(t)) - 1 β f γ - 1 β f x(t). (2.10)
This indicates the second equation of (ii).

(ii) =⇒ (i). By differentiating the first equation of (ii), we obtain

ẍ(t) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) + γ - 1 β f ẋ(t) + ẏ(t) = 0. (2.11) 
In order to obtain an equation involving only x, we will eliminate y from this equation by using a simple trick. For this reason, we successively use the second equation in (ii), then the first equation in (ii) to obtain

ẏ(t) = 1 - β b β f B(x(t)) - 1 β f γ - 1 β f x(t) - 1 β f y(t) = 1 - β b β f B(x(t)) - 1 β f γ - 1 β f x(t) + 1 β f ẋ(t) + ∇f (x(t)) + β b β f B(x(t)) + 1 β f γ - 1 β f x(t).
Therefore,

ẏ(t) = ∇f (x(t)) + B(x(t)) + 1 β f ẋ(t).
(2.12)

From (2.11) and (2.12), we obtain (i).

Well-posedness of the evolution equation (DINAM)

The first step towrad our existence and uniqueness result obtained in the present section concerns the definition of a strong global solution of the dynamical system (DINAM). (c) for every > 0, there exists η > 0 such that for every finite family

I k = (a k , b k ) from [t 0 , T ],
the following implication is valid :

I k ∩ I j = ∅, ∀k = j and k |b k -a k | < η ⇒ k x(b k ) -x(a k ) < .
The following theorem indicates the well-posedness of the Cauchy problem for (DINAM). Theorem 2.2.1 Assume that β f > 0 and β b ≥ 0. Then, for any (x 0 , x 1 ) ∈ H × H, there exists uniquely a strong global solution x : [0, +∞) → H of the continuous dynamic (DINAM) which satisfies the Cauchy data x(0) = x 0 , ẋ(0) = x 1 .

Proof. System (ii) in Proposition 2.2.1 can be read equivalently as

Ż(t) + F (Z(t)) = 0, Z(0) = (x 0 , y 0 ),
where Z(t) = (x(t), y(t)) ∈ H × H and

F (x, y) = β f (∇f (x), 0) + β b B(x) + γ - 1 β f x + y, -1 - β b β f B(x) + 1 β f γ - 1 β f x + 1 β f y , y 0 = -x 1 -β f ∇f (x 0 ) -β b B(x 0 ) -γ - 1 β f x 0 .
Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms Therefore, F = ∇Φ + G, where Φ : H × H → R is the convex differentiable function

Φ(x, y) := β f f (x)
and

G : H × H → H × H G(x, y) := β b B(x) + γ - 1 β f x + y, -1 - β b β f B(x) + 1 β f γ - 1 β f x + 1 β f y
is a Lipschitz continuous map as a direct consequence of the Lipschitz continuity of B.

Moreover, the existence of a classical solution to

Ż(t) + ∇Φ(Z(t)) + G(Z(t)) = 0, Z(0) = (x 0 , y 0 )
follows from Brézis [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF]Proposition 3.12]. In fact, the proof of this statement relies on a fixed point argument. It entails finding a fixed point of the mapping u ∈ C([0, T ], H) →

K(u) ∈ C([0, T ], H)
, where K(u) = w is defined as the solution of

ẇ(t) + ∇Φ(w(t)) = -G(u(t)), w(0) = (x 0 , y 0 ).
It is shown that the sequence of iterates (w n ) formed by the corresponding Picard iteration ẇn+1 (t) + ∇Φ(w n+1 (t)) = -G(w n (t)), w n+1 (0) = (x 0 , y 0 ), converges uniformly on [0, T ] to a fixed point of K. When returning to (DINAM), that is, equation (i) of Proposition 2.2.1, we recover a strong solution. In particular, ẋ is Lipschitz continuous on the bounded time intervals, and ẍ taken in the distribution sense is locally essentially bounded. Remark 2.2.1 It should be noted that when ∇f is assumed to be globally Lipschitz continuous, the proof might be notably simplified by applying the classical Cauchy-Lipschitz theorem.

Asymptotic convergence properties of (DINAM)

In this section, we investigate the asymptotic behaviour of the solution trajectories of (DINAM). For each solution trajectory t → x(t) of (DINAM), we will show that the weak Next, we divide our problems into two cases : general case (β b = β f ) and β b = β f .

General case

The general line of the proof is close to that given by Attouch and Laszlo in [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF]. The first significant difference with the approach developed in [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF] is that in our context, due to the hypothesis of cocoercivity on the nonpotential part, we do not go through the Yosida regularization of the operators. The second one is that we treat the potential and nonpotential operators differently. The Yosida regularization's computation of such sum is often beyond numerical ability, and these points, therefore, are meaningful for applications to numerical algorithms.

The asymptotic convergence properties of (DINAM) will be stated in the following theorem. Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms (DINAM) fulfill the following conditions :

β f > 0 and 4λγ > (β b -β f ) 2 β f + 2 β b + 1 γ + 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f . (2.13)
Then, for any solution trajectory x : [0, +∞[→ H of (DINAM), the following properties are satisfied : Proof. Lyapunov analysis. Set A := B + ∇f and

(i) (convergence) x(t)
A β := β b B + β f ∇f . Take p ∈ S. Consider the function t ∈ [0, +∞[ → V p (t) ∈ R + defined by V p (t) := 1 2 x(t) -p + c ẋ(t) + A β (x(t)) -A β (p) 2 + δ 2 x(t) -p 2 , (2.14) 
where c and δ are coefficients to adjust. Using the differentiation chain rule for absolutely continuous functions (see [START_REF] Brézis | Analyse fonctionnelle[END_REF]Corollary VIII.10]) and (DINAM), we get

Vp (t) = ẋ(t) -c (γ ẋ + A(x(t))) , x(t) -p + c ẋ(t) + A β (x(t)) -A β (p) + δ ẋ(t), x(t) -p .
(2.15)

Setting δ := cγ -1 > 0, from (2.15) we obtain

Vp (t) = -cA(x(t)), x(t) -p + c (1 -cγ) ẋ(t) -cA(x(t)), ẋ(t) + A β (x(t)) -A β (p) .
(2.16)
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We have

c (1 -cγ) ẋ(t) -cA(x(t)), ẋ(t) + A β (x(t)) -A β (p) = c(1 -cγ) ẋ(t) 2 + c(1 -cγ) ẋ(t), A β (x(t)) -A β (p) -c 2 A(x(t)), ẋ(t) -c 2 A(x(t)), A β (x(t)) -A β (p) , = c(1 -cγ) ẋ(t) 2 -c 2 β b B(x(t)) -B(p) 2 -c 2 β f ∇f (x(t)) -∇f (p) 2 +c[(1 -cγ)β b -c] ẋ(t), B(x(t)) -B(p) + c[(1 -cγ)β f -c] ẋ(t), ∇f (x(t)) -∇f (p) -c 2 (β b + β f ) B(x(t)) -B(p), ∇f (x(t)) -∇f (p) .
(2.17)

Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

-c A(x(t)), x(t) -p = -c A(x(t)) -A(p), x(t) -p = -c ∇f (x(t)) -∇f (p), x(t) -p -c B(x(t)) -B(p), x(t) -p ≤ -cλ B(x(t)) -B(p) 2 . (2.18) 
From (2.16)-(2.18), we deduce that

Vp (t) ≤ -cδ ẋ(t) 2 -[c 2 β b + cλ] B(x(t)) -B(p) 2 -c 2 β f ∇f (x(t)) -∇f (p) 2 -[cδβ b + c 2 ] ẋ(t), B(x(t)) -B(p) -[cδβ f + c 2 ] ẋ(t), ∇f (x(t)) -∇f (p) -c 2 (β b + β f ) B(x(t)) -B(p), ∇f (x(t)) -∇f (p) . (2.19) 
Let Γ : [0, +∞[→ R be the function defined by

Γ(t) := f (x(t)) -f (p) -∇f (p), x(t) -p ,
and E p : [0, +∞[→ R be the energy function given by

E p (t) := V p (t) + [cδβ f + c 2 ]Γ(t).
Since f is convex, we have Γ(t) ≥ 0, for all t ≥ 0. This implies E p (t) ≥ 0 for all t ≥ 0 as well. We have

Γ(t) = ẋ(t), ∇f (x(t)) -∇f (p) , (2.20 
) 

Ėp (t) = Vp (t) + [cδβ f + c 2 ] Γ(t). ( 2 
+[cδβ b + c 2 ] ẋ(t), B(x(t)) -B(p) + c 2 (β b + β f ) B(x(t)) -B(p), ∇f (x(t)) -∇f (p) ≤ 0.
Let us eliminate the term ∇f (x(t)) -∇f (p) from this relation by using the elementary algebraic inequality

c 2 β f ∇f (x(t)) -∇f (p) 2 + c 2 (β b + β f ) B(x(t)) -B(p), ∇f (x(t)) -∇f (p) ≥ - c 2 (β b + β f ) 2 4β f B(x(t)) -B(p) 2 .
We obtain

Ėp (t) + cδ ẋ(t) 2 + [c 2 β b + cλ - c 2 (β b + β f ) 2 4β f ] B(x(t)) -B(p) 2 +[cδβ b + c 2 ] ẋ(t), B(x(t)) -B(p) ≤ 0.
Equivalently

Ėp (t) + cS(t) ≤ 0, (2.23) 
where

S(t) := δ ẋ(t) 2 + [δβ b + c] ẋ(t), B(x(t)) -B(p) + [cβ b + λ - c(β b + β f ) 2 4β f ] B(x(t)) -B(p) 2 .
Set X(t) = ẋ(t) and Y (t) = B(x(t)) -B(p). We have S(t) = q(X(t), Y (t)), where

q : H × H → R is the quadratic form q(X, Y ) := a X 2 + b X, Y + g Y 2 with a = δ, b = δβ b + c, and g = cβ b + λ - c(β b + β f ) 2 4β f = λ - c(β b -β f ) 2 4β f .
According to Lemma 1.3.5, and since a = δ = cγ -1 > 0, we have that q is positive definite if and only if 4ag -b 2 > 0. Equivalently

4δ λ - c(β b -β f ) 2 4β f -[δβ b + c] 2 > 0. (2.24)
Our goal is to find c such that cγ-1 > 0 and such that (2.24) is fulfilled. Take δ := cγ-1 > 0
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4δ λ - δ + 1 γ . (β b -β f ) 2 4β f -δβ b + δ + 1 γ 2 > 0.
After the development and simplification of the preceding inequation, we obtain

4λ > (β b -β f ) 2 γβ f + 2 γ β b + 1 γ + 1 γ 2 δ + β b + 1 γ 2 + (β b -β f ) 2 γβ f δ.
Thus, our requirement is reduced to

4λ > (β b -β f ) 2 γβ f + 2 γ β b + 1 γ + inf δ>0 1 γ 2 δ + β b + 1 γ 2 + (β b -β f ) 2 γβ f δ .
Elementary optimization argument gives that

inf δ>0 C δ + Dδ = 2 √ CD.
Therefore, we end up with the condition

4λ > (β b -β f ) 2 γβ f + 2 γ β b + 1 γ + 2 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f . Equivalently, 4λγ > (β b -β f ) 2 β f + 2 β b + 1 γ + 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f . (2.25) 
When β b = β f = β, we recover the condition

λγ > β + 1 γ .
Note that cγ = 1 + δ and δ > 0 implies c > 0. According to (2.23), S(t) = q(X(t), Y (t)), and q positive definite, we deduce that there exist positive numbers c and µ such that Let us return to (2.22). We recall that

Ėp (t) + cµ ẋ(t) 2 + cµ B(x(t)) -B(p) 2 ≤ 0. ( 2 
Ėp (t) + cδ ẋ(t) 2 + [c 2 β b + cλ] B(x(t)) -B(p) 2 + c 2 β f ∇f (x(t)) -∇f (p) 2 (2.32) 
+[cδβ b + c 2 ] ẋ(t), B(x(t)) -B(p) + c 2 (β b + β f ) B(x(t)) -B(p), ∇f (x(t)) -∇f (p) ≤ 0.
After integrating on [0, t] and using the integral estimates 

c 2 β f t 0 ∇f (x(s))-∇f (p) 2 ds ≤ C+c 2 (β b +β f ) t 0 B(x(s))-B(p) ∇f (x(s))-∇f (p) ds.
Therefore, for any > 0, we have

c 2 β f t 0 ∇f (x(s)) -∇f (p) 2 ds ≤ C + c 2 (β b + β f ) t 0 1 4 B(x(s)) -B(p) 2 + ∇f (x(s)) -∇f (p) 2 ds.
By taking > 0 such that Moreover, we also have Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms By using (DINAM), we have

β f > (β b +β f ),
+∞ 0 A β (x(t)) -A β (p) 2 dt = +∞ 0 β f (∇f (x(t)) -∇f (p)) + β b (B(x(t)) -B(p)) 2 dt ≤ (β 2 f + β 2 b ) +∞ 0 ∇f (x(t)) -∇f (p) 2 + B(x(t)) -B(p) 2 dt < +∞. ( 2 
ẍ(t) = -γ ẋ(t) -A(x(t)) - d dt A β (x(t)) = -γ ẋ(t) -A(x(t)) -β f d dt A(x(t)) -(β b -β f ) d dt B(x(t)).
Since the second member of the above equality belongs to L 2 (0, +∞; H), we finally get

+∞ 0 ẍ(t) 2 dt < +∞.
Combining this property with (2.30) and using Lemma 1.3.3, we deduce that lim t→+∞ ẋ(t) = 0.

(2.38)

The limit. In oder to indicate the existence of the weak limit of x(t) as t → +∞, we use Opial's lemma (see [START_REF] Peypouquet | Evolution Equations for Maximal Monotone Operators : Asymptotic Analysis in Continuous and Discrete Time[END_REF] for more details). Given p ∈ S, let us define the anchor function given by, for every t ∈ [0, +∞[,

q p (t) := 1 2 x(t) -p 2 .
From qp (t) = ẋ(t), x(t) -p and qp (t) = ẋ(t) 2 + ẍ(t), x(t) -p , we obtain

qp (t) + γ qp (t) = ẋ(t) 2 + ẍ(t) + γ ẋ(t), x(t) -p = ẋ(t) 2 -A(x(t)) + d dt A β (x(t)), x(t) -p ≤ ẋ(t) 2 - d dt A β (x(t)), x(t) -p .
Equivalently,

qp (t) + γ qp (t) + d dt A β (x(t)), x(t) -p ≤ ẋ(t) 2 .
(2.39)

According to the differentiation formula for a product, we can rewrite (2.39) as follows :

qp (t) + γ qp (t) + d dt A β (x(t)) -A β (p), x(t) -p ≤ ẋ(t) 2 + A β (x(t)) -A β (p), ẋ(t) .
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qp (t) + γ qp (t) + d dt A β (x(t)) -A β (p), x(t) -p ≤ ẋ(t) 2 + A β (x(t)) -A β (p) ẋ(t) .
(2.40) Then note that the second member of (2.40)

g(t) := ẋ(t) 2 + A β (x(t)) -A β (p) ẋ(t)
is nonnegative and belongs to L 1 (0, +∞). Indeed, we have We have ϕ (t) = ḣ(t) -g(t) ≤ 0. Hence, the function ϕ is nonincreasing on [0, +∞[. This classically implies that the limit of ϕ exists as t → +∞. Since g ∈ L 1 (0, +∞), we deduce that lim t→+∞ h(t) exists.

+∞ 0 A β (x(t)) -A β (p) ẋ(t) dt ≤ 1 2 +∞ 0 A β (x(t)) -A β (p)
Using the fact that A β (x(t)) -A β (p), x(t) -p tends to zero as t → +∞ (a consequence of (2.37) and x(•) bounded), we obtain

qp (t) + γq p (t) = θ(t)
with limit of θ(t) exists as t → +∞. The existence of the limit of q p can be concluded thanks to a classical general result regarding the convergence of evolution equations governed by strongly monotone operators (here γ Id, see Theorem 3.9 p.88 in [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF]). Hence, for all p ∈ S, lim t→+∞ x(t) -p exists.

To complete the proof via Opial's lemma, we need to verify that any weak sequential cluster point of x(t) belongs to S. Let t n → +∞ such that x(t n )

x * , n → +∞. We have A(x(t n )) → 0 strongly in H and x(t n )

x * weakly in H.

Due to the closedness property of the graph of the operator A in w -H × s -H, we deduce that A(x * ) = 0, that is, x * ∈ S. As a result, x(t) converges weakly as t goes to +∞ and its limit belongs to S. 

4λ > β 2 b + β 2 f γβ f + 2 γ 2 + 2 γ β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f .
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4λ + β 2 b > β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f + 2 γ β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f + 1 γ 2 . (2.42)
Thanks to

β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f + 2 γ β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f + 1 γ 2 =   β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f + 1 γ   2 ,
we immediately deduce that

4λ + β 2 b >   β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f + 1 γ   2 .
Therefore (2.42) is equivalent to

β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f + 1 γ < 4λ + β 2 b .
This in turn is equivalent to

           1 γ < 4λ + β 2 b   β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f   2 < 4λ + β 2 b - 1 γ 2 .
(2.43)

From the first inequation of (2.43), we deduce that

γ > 1 4λ + β 2 b .
(2.44)

From the second inequation of (2.43), we deduce that

β 2 b + 1 γ 2 + β 2 b + β 2 f γβ f < 4λ + β 2 b + 1 γ 2 - 2 γ 4λ + β 2 b .
Therefore, γ > 1 4λ 

β 2 b + β 2 f β f + 2 4λ + β 2 b . ( 2 
β 2 b + β 2 f β f + 2 4λ + β 2 b . 2.3.2 Case β b = β f
Let us specialize the preceding results in the case β b = β f . We set β b = β f := β > 0 and A := ∇f + B. Thus, we consider the evolution system

(DINAM) ẍ(t) + γ ẋ(t) + A(x(t)) + β d dt (A(x(t))) = 0, t ≥ 0.
The existence of strong global solutions of the system is guaranteed by Theorem 2.2.1.

The asymptotic behavior of the solution trajectories of this system is a consequence of Theorem 2.3.1 and is stated as below. Then, for any solution trajectory x : [0, +∞[→ H of (DINAM), the following properties are satisfied :

(i) (convergence) The trajectory x(•) is bounded and x(t) converges weakly, as t → +∞, to an element x * ∈ S. an important case. This also enables us to emphasize this result compared to the existing work for second-order dissipative evolution systems regarding cocoercive operators. Indeed, letting β go to zero in (2.46) gives the condition

(ii) (integral estimate) +∞ 0 ẋ(t) 2 dt < +∞, +∞ 0 ẍ(t) 2 dt < +∞, +∞ 0 A(x(t)) 2 dt < +∞,
λγ 2 > 1 (2.47)
introduced by Attouch and Maingé in [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF] to study the second order dynamic (2.4) without geometric damping. With respect to [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF], the introduction of the geometric damping, i.e., taking β > 0, provides some useful additional estimates.

Numerical illustrations : a first sight

In this section, we give some numerical illustrations of (DINAM). The detailed algorthmic analysis for these dynamical systems will be presented later. Our goal here is to make some numerical experiments to solve some certain problems by using the temporal discretization of (DINAM). At this moment, we postpose to discuss about the convergence of the algorithms.

From continuous dynamic to algorithms

Let us first give some indications concerning the algorithms derived from temporal discretization of the continuous dynamic (DINAM). At the moment, we postpone to next chapter the convergence analysis. Let us recall the condensed formulation of (DINAM)

ẍ(t) + γ ẋ(t) + A(x(t)) + d dt (A β (x(t))) = 0, (DINAM) 
where A := ∇f + B and A β := β b B + β f ∇f . Take a fixed time step h > 0, and consider the following finite-difference scheme for (DINAM) :

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + β b h (B(x k+1 ) -B(x k )) + β f h (∇f (x k ) -∇f (x k-1 )) + B(x k+1 ) + ∇f (x k ) = 0. (2.48)
This scheme is implicit with respect to the nonpotential B and explicit with respect to the potential operator ∇f . The temporal discretization of the Hessian driven dam-

ping β f ∇ 2 f (x(t)) ẋ(t) is taken equal to β f h (∇f (x k ) -∇f (x k-1 )). After expanding (2.48),
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x k+1 + h 2 1 + γh B(x k+1 ) + hβ b 1 + γh B(x k+1 ) = x k + 1 1 + γh (x k -x k-1 ) + hβ b 1 + γh B(x k ) - hβ f 1 + hγ (∇f (x k ) -∇f (x k-1 )) - h 2 1 + hγ ∇f (x k ).
(2.49)

Set s := h 1 + γh and α := 1 1 + γh . So we have

x k+1 + sB h (x k+1 ) = y k , (2.50) 
where

B h = (h + β b )B, and 
y k = x k + α(x k -x k-1 ) + sβ b B(x k ) -s(h + β f )∇f (x k ) + sβ f ∇f (x k-1 ). (2.51)
From (2.51) we get

x k+1 = (Id +sB h ) -1 (y k ). (2.52) 
By combining (2.51) and (2.52), we obtain the following algorithm, called (DINAAM). It is a splitting algorithm which involves the operators ∇f and B separately.

(DINAAM) :

Initialize : x 0 ∈ H, x 1 ∈ H h > 0, α = 1 1 + γh , s = h 1 + γh , y k = x k + α(x k -x k-1 ) + sβ b B(x k ) -s(h + β f )∇f (x k ) + sβ f ∇f (x k-1 ), x k+1 = (I + sB h ) -1 (y k ).
(2.53)
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Numerical experiments for the continuous dynamics (DI-NAM)

A general and wise method to generate monotone cocoercive operators which are not gradients of convex functions is to take Yosida approximation A λ of a linear skew-symmetric operator A. As a model situation, take H = R 2 and start from A is the rotation of angle π 2 . We have

A = 0 -1 1 0
. As a result of an elementary computation, for any λ > 0,

A λ = 1 1 + λ 2 λ -1 1 λ is λ-cocoercive.
Typically, for λ = 1, we obtain that the matrix

B = 1 -1 1 1 is 1 2 -cocoercive.
In addition, many other cocoercive operators that are not potential operators may be readily constructed by using these basic blocks. For that, use Lemma 1.3.1 which gives that the set of cocoercive operators is a convex cone. Example 2.4.1 Let us start this section with a simple illustrative example in R 2 . We take H = R 2 endowed with the normal Euclidean structure and B as a linear operator defined by B = A λ for λ = 5. According to the above remark, we can check that B is λ-cocoercive with λ = 5 and that B is a nonpotential operator. To observe the oscillations, in the model of heavy ball with friction, we take f : R 2 → R given by

f (x 1 , x 2 ) = 50x 2 2 .
We set γ = 0.9. It is obvious that f is convex but not strongly convex. We study three cases :

(1) have

β b = 1, β f = 0.5, (2) 
∇f (x) = M (M x -b), ∇ 2 f (x) = M M.
Since M M is positive semidefinite for any matrix M , the quadratic function

f is convex. Furthermore, if M has full column rank, i.e., rank(M) = n, then M M is positive definite. Therefore f is strongly convex. Take B =           1 -1 0 • • • 0 1 1 0 • • • . . . 0 0 1 • • • . . . . . . . . . . . . . . . 0 . . . . . . . . . 1           ∈ R n×n . Then B is cocoercive. Indeed, for any x, y ∈ R n , Bx -By, x -y = x 1 -y 1 2 + x 2 -y 2 2 + • • • + x n -y n 2 ≥ 1 2 2( x 1 -y 1 2 + x 2 -y 2 2 ) + x 3 -y 3 2 + • • • + x n -y n
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If the matrix M is not full column rank with M M + B nonsingular, we then have

B(x) + ∇f (x) = 0 if and only if x = (M M + B) -1 M b.
In our experiment, we take M a random 10 × 100 matrix which is not full column rank. Set γ = 3, β b = 1, β f = 1 and the operator B as above. Thanks to Corollary 2.3.1, we conclude that the trajectory x(t) generated by the system (DINAM) converges to

x ∞ = (M M + B) -1 M b.
Implementing the algorithm (DINAAM) in Matlab, we obtain the plot of k versus the norm of B(x k ) + ∇f (x k ). Similarly, we study several cases by changing the parameters β b , β f . This is depicted in Figure 2.3. Before closing this part, we study an application of our model to dynamical games.

The following example is taken from Attouch and Maingé [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF] and adapted to our context. Example 2.4.3 We make the following standing assumptions :

(i) H = X 1 × X 2 is the Cartesian product of two Hilbert spaces endowed with norms

• X 1 and • X 2 respectively. In which, x = (x 1 , x 2 ), with x 1 ∈ X 1 and x 2 ∈ X 2 , stands for an element in H ; (ii) f : X 1 × X 2 → R is a convex function whose gradient is Lipschitz continuous on bounded sets ; (iii) B = (∇ x 1 L, -∇ x 2 L) is the maximal monotone operator associated to a smooth convex-concave function L : X 1 × X 2 → R.
The operator B is assumed to be λ-cocoercive with λ > 0.
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In our setting, with x(t) = (x 1 (t), x 2 (t)) the system (DINAM) is written

                 ẍ1 (t) + γ ẋ1 (t) + ∇ x 1 f (x 1 (t), x 2 (t)) + ∇ x 1 L(x 1 (t), x 2 (t)) + β f d dt (∇ x 1 f (x 1 (t), x 2 (t))) + β b d dt (∇ x 1 L(x 1 (t), x 2 (t))) = 0 ẍ2 (t) + γ ẋ2 (t) + ∇ x 2 f (x 1 (t), x 2 (t)) -∇ x 2 L(x 1 (t), x 2 (t)) + β f d dt (∇ x 2 f (x 1 (t), x 2 (t))) -β b d dt (∇ x 2 L(x 1 (t), x 2 (t))) = 0. (2.54) According to Theorem 2.3.1, x(t) x ∞ = (x 1,∞ , x 2,∞ ) weakly in H, where (x 1,∞ , x 2,∞ ) is solution of    ∇ x 1 f (x 1 (t), x 2 (t)) + ∇ x 1 L(x 1 (t), x 2 (t)) = 0 ∇ x 2 f (x 1 (t), x 2 (t)) -∇ x 2 L(x 1 (t), x 2 (t)) = 0.
(2.55)

Structured systems such as (2.55) include potential and nonpotential terms which often present in decision sciences and physics. In game theory, (2.55) describes Nash equilibria of the normal form game with two players 1, 2 whose static loss functions are respectively given by

   F 1 : (x 1 , x 2 ) ∈ X 1 × X 2 → F 1 (x 1 , x 2 ) = f (x 1 , x 2 ) + L(x 1 , x 2 ) F 2 : (x 1 , x 2 ) ∈ X 1 × X 2 → F 2 (x 1 , x 2 ) = f (x 1 , x 2 ) -L(x 1 , x 2 ).
(2.56)

f (•, •)
is their joint convex payoff, and L is a convex-concave payoff with zero-sum rule.

For more details, we refer the reader to [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF]. As an example, take X 1 = X 2 = R and

L : R 2 → R given by L(x) = 1 2 (x 2 1 -2x 1 x 2 -x 2 2 ). Then B = (∇ x 1 L, -∇ x 2 L) = 1 -1 1 1 . Pick f (x) = 1 2 (3x 2 1 -2x 1 x 2 + x 2 2 ) -x 1 -2x 2 .
The Nash equilibria described in (2.55) can be solved by using (DINAM). Take γ = 3, β b = 0.5, β f = 0.5 and x 0 = (1, -1), ẋ0 = (-10, 10) as initial conditions, then the numerical solution for (DINAM) converges to x ∞ = ( 3 4 , 1) which is the solution of (2.55) as well. The numerical trajectories and phase portrait of our model applied to dynamical games are depicted in Figure 2.4.

The nonsmooth case

The equivalence obtained in Proposition 2.2.1 between (DINAM) and a first-order evolution system in time and space enables a logical extension of our results in theoretical and numerical aspects to the case of a convex, lower semicontinuous and proper function f : H → R ∪ {+∞}. It is sufficient to substitute the gradient of f with the convex subdifferential ∂f . We recall that the subdifferential of f at x ∈ H is given by

∂f (x) = {z ∈ H : z, ξ -x ≤ f (ξ) -f (x) for every ξ ∈ H},
and the domain of f is domf = {x ∈ H : f (x) < +∞}. This leads to consider the system (g-DINAM)

       ẋ(t) + β f ∂f (x(t)) + β b B(x(t)) + γ - 1 β f x(t) + y(t) 0; ẏ(t) -1 - β b β f B(x(t)) + 1 β f γ - 1 β f x(t) + 1 β f y(t) = 0.
The prefix g preceding (DINAM) indicates generalized. It should be noticed that the first equation of (g-DINAM) is now a differential inclusion, because of the possibility for ∂f (x(t)) to be multivalued. Take f = f 0 + δ C , in which δ C is the indicator function of a constraint set C, the system (g-DINAM) enables to model damped inelastic shocks in decision sciences and mechanics, see [START_REF] Attouch | A second-order differential system with Hessian-driven damping ; Application to nonelastic shock laws[END_REF]. The original aspect comes from the fact that (g-DINAM) now involves both potential driven forces (attached to f 0 ) and nonpotential driven forces (attached to B). As we will discover, taking into account shocks caused by nonpotential driving forces is a source of difficulties.

Let us first state the well-posedness of the solution trajectory of the Cauchy problem. Proof. The proof is parallel to that of Theorem 2.2.1. The system (g-DINAM) can be equivalently written as

Ż(t) + ∂Φ(Z(t)) + G(Z(t)) 0, Z(0) = (x 0 , y 0 ), (2.57) 
Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms where Z := (x, y), and the function Φ(Z) = Φ(x, y) := β f f (x) is now convex lower semicontinuous and proper on H×H. The operator G is unchanged and is globally Lipschitz continuous. The above equation falls under the setting of the Lipschitz perturbation of an evolution system governed by the subdifferential of a convex lower semicontinuous and proper function. The existence and uniqueness of the strong solution to (2.57) follows from Brézis [43, Proposition 3.12] and the fact that (x 0 , y 0 ) ∈ domΦ. Recall that strong solution means that x(•) and y(•) are locally absolutely continuous functions whose distributional derivatives ẋ and ẏ belong to L 2 (0, T, H) for any T > 0.

Remark 2.5.1 As a consequence of the general theory developed above, the system (g-DINAM) satisfies a regularization effect on the initial condition. Precisely given (x 0 , y 0 ) ∈ domf × H, there still exists a unique strong solution to the corresponding Cauchy problem, but now with

√ t ẋ(t) ∈ L 2 (0, T, H) and √ t ẏ(t) ∈ L 2 (0, T, H) for any T > 0.
The solution set S is now defined by

S := {p ∈ H : ∂f (p) + B(p) 0}.
Before stating our main result, notice that B(p) is uniquely defined for p ∈ S. Lemma 2.5.1 B(p) is uniquely defined for p ∈ S, i.e.,

p 1 ∈ S, p 2 ∈ S =⇒ B(p 1 ) = B(p 2 ).
Proof. The proof is similar to that of Lemma 2.3.1 and is based on the cocoercivity of the operator B and the monotonicity of the subdifferential of f . For the sake of simplicity, we give a detailed proof of the convergence analysis in the case

β f = β b = β > 0.
The system (g-DINAM) takes the simplified form :

(g-DINAM)        ẋ(t) + β∂f (x(t)) + βB(x(t)) + γ - 1 β x(t) + y(t) 0; ẏ(t) + 1 β γ - 1 β x(t) + 1 β y(t) = 0.
To demonstrate the convergence results and associated estimations, we construct the first equation of (g-DINAM) as follows :

ẋ(t) + βξ(t) + βB(x(t)) + γ - 1 β x(t) + y(t) = 0, (2.58) 
where ξ(t) ∈ ∂f (x(t)), and we set A(x(t)) = ξ(t) + B(x(t)). (2.59)

Then, for any solution trajectory x : [0, +∞[→ H of (g-DINAM), the following properties are satisfied :

(i) (integral estimates) Set A(x(t)) := ξ(t) + B(x(t)) with ξ(t) ∈ ∂f (x(t))
as defined in (2.58) and p ∈ S.

Then +∞ 0 ẋ(t) 2 dt < +∞, +∞ 0 B(x(t)) -B(p) 2 dt < +∞, +∞ 0 A(x(t)) 2 dt < +∞, ∞ 0 A(x(t)), x(t) -p dt < +∞.
(ii) (convergence) For any p ∈ S, Proof. Let us extend the Lyapunov analysis presented in the preceding sections to the case where f is nonsmooth. However, the following points have to be paid attention to. First, we must invoke the (generalized) chain rule for derivatives over curves (see [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF]Lemma 3.3]), that is, for a.e t ≥ 0,

1. lim t→+∞ x(t) -p exists.

lim

d dt f (x(t)) = ξ(t), ẋ(t) .
The second ingredient is valid as a consequence of the subdifferential inequality for convex functions.

Let us consider the Lyapunov function

t ∈ [0, +∞[ → E p (t) ∈ R + defined by E p (t) := 1 2 x(t) -p + c ẋ(t) + βA(x(t)) 2 + δ 2 x(t) -p 2 + [cδβ + c 2 ]Γ(t), (2.60) 
where we recall that A(x(t)) := ξ(t) + B(x(t)) with ξ(t) ∈ ∂f (x(t)) as defined in (2.58) and p ∈ S. To differentiate E p (t), we use the formulation (g-DINAM)

ẋ(t) + βA(x(t)) = -γ - 1 β x(t) -y(t).
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Since both x and y are locally absolutely continuous functions, this makes it possible to differentiate ẋ(t)+βA(x(t)) and obtain analogous formulas as in the smooth case. Then a close examination of the Lyapunov analysis indicates that we can obtain the additional estimate

∞ 0 A(x(t)), x(t) -p dt < +∞. (2.61) Set 0 ∈ ∂f (p)+B(p).
To obtain (2.61), we return to (2.18) and study the following minorization, in which we divide into a sum with coefficients and 1-(where > 0 will be taken small enough). According to the monotonicity of ∂f and the definition of A(x(t)), we have

c A(x(t)), x(t) -p = c A(x(t)), x(t) -p + c(1 -) A(x(t)) -Ap, x(t) -p ≥ c A(x(t)), x(t) -p + c(1 -) B(x(t)) -B(p), x(t) -p ≥ c A(x(t)), x(t) -p + c(1 -)λ B(x(t)) -B(p) 2 . (2.62)
In our assumptions, the inequality λγ > β + 1 γ is strict and still satisfied by (1 -)λ when is taken small enough. Therefore, the proof continues with λ replaced by (1 -)λ without changing the conditions on the parameters. Hence, after integrating the resulting strict Lyapunov inequality, we obtain the supplementary property (2.61). Until (2.34), the proof is substantially identical to that of a smooth function f . We obtain these estimates

+∞ 0 ẋ(t) 2 dt < +∞, +∞ 0 B(x(t)) -B(p) 2 dt < +∞, +∞ 0 A(x(t)) 2 dt < +∞.
However, we can no longer apply the Lipschitz continuity to the bounded sets of ∇f . To avoid this obstacle, we modify the rest of the proof as follows. Recall that given p ∈ S, the anchor function is defined by, for every t ∈ [0, +∞[,

q p (t) := 1 2 x(t) -p 2 ,
and that we must to show the existence of the anchor function limit as t → +∞. The goal is to exploit the fact that we have a large collection of Lyapunov functions that are parametrized by the coefficient c. Note that we have claimed that the limit of E p (t) exists as t → +∞, and this is fulfilled for the whole interval of values of c. So, for such c, the

limit of W c (t) := 1 cδβ + c 2 E p (t) as t → +∞ exists, where W c (t) = 1 2(cδβ + c 2 ) x(t) -p + c ẋ(t) + βA(x(t)) 2 + δ 2(cδβ + c 2 ) x(t) -p 2 + Γ(t).
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We have

W c (t) = 1 + δ 2(cδβ + c 2 ) x(t) -p 2 + c 2 2(cδβ + c 2 ) ẋ(t) + βA(x(t)) 2 + c cδβ + c 2 ẋ(t) + βA(x(t)), x(t) -p = γ 2((cγ -1)β + c) x(t) -p 2 + c 2((cγ -1)β + c) ẋ(t) + βA(x(t)) 2 + 1 (cγ -1)β + c ẋ(t) + βA(x(t)), x(t) -p .
Thus, take two values of c, let c 1 and c 2 , we immediately deduce that

W c 1 (t) -W c 2 (t) = γ 2 1 (c 1 γ -1)β + c 1 - 1 (c 2 γ -1)β + c 2 x(t) -p 2 + 1 2 c 1 (c 1 γ -1)β + c 1 - c 2 (c 2 γ -1)β + c 2 ẋ(t) + βA(x(t)) 2 + 1 (c 1 γ -1)β + c 1 - 1 (c 2 γ -1)β + c 2 ẋ(t) + βA(x(t)), x(t) -p .
Notice that

c 1 (c 1 γ -1)β + c 1 - c 2 (c 2 γ -1)β + c 2 : 1 (c 1 γ -1)β + c 1 - 1 (c 2 γ -1)β + c 2 = c 1 ((c 2 γ -1)β + c 2 ) -c 2 ((c 1 γ -1)β + c 1 ) (c 2 γ -1)β + c 2 -(c 1 γ -1)β -c 1 = β(c 2 -c 1 ) (γβ + 1)(c 2 -c 1 ) = β γβ + 1 .
Therefore,

W c 1 (t) -W c 2 (t) = 1 (c 1 γ -1)β + c 1 - 1 (c 2 γ -1)β + c 2 W (t)
in which

W (t) := γ 2 x(t) -p 2 + β 2(γβ + 1) ẋ(t) + βA(x(t)) 2 + ẋ(t) + βA(x(t)), x(t) -p .
So, we obtain the existence of the limit as t → +∞ of W (t). Then note that W (t) =
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γq p (t) + d dt w(t)
where

w(t) := q p (t) + β t 0 A(x(s), x(s) -p ds + β 2(γβ + 1) t 0 ẋ(s) + βA(x(s)) 2 ds.
Reformulate W (t) in terms of w(t) as follows :

W (t) = γw(t)+ d dt w(t)-γβ t 0 A(x(s)), x(s) -p ds+ γβ 2(γβ + 1) t 0 ẋ(s)+A(x(s)) 2 ds .
As a consequence of (2.61) and of the former estimates, it yields the limit of the two previous integrals exists as t → +∞. According to the convergence of W (t), we obtain that

lim t→+∞ γw(t) + d dt w(t) exists.
The existence of the limit of w follows from a classical general result concerning the convergence of evolution equations governed by strongly monotone operators (here γ Id, see Theorem 3.9 p.88 in [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF]). In turn, using the same argument as above, we obtain that, for all p ∈ S, A(x(t)) 2 dt < +∞, which implies that A(x(t)) converges strongly to zero in an "essential" way. Opial's lemma allows to complete the convergence proof likely in the smooth case. This seems to be a challenging question to examine ahead. (ii) A particular situation is the case γ = 1 β , in which case the system (g-DINAM) can be written in an equivalent way

lim
u(t) + γu(t) = 0,
where

ẋ(t) + βA(x(t)) u(t).
The convergence of the trajectory t → x(t) is therefore a result of the characteristic of the Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms semigroup generated by the sum of the subdifferential of a convex, lower semicontinuous, and proper function with a cocoercive operator, see Abbas and Attouch [1]. Note that in this instance, the requirement for the convergence of the trajectories generated by (g-DINAM) is no longer dependent on the coercivity parameter λ.

Conclusion, perspectives

Throughout this chapter, in a general setting of Hilbert's real space, we have studied a dynamic inertial Newton method for solving additively structured monotone problems. In which, the corresponding dynamics are driven by the sum of two monotone operators with distinct aspects : the potential part is the gradient of a continuously convex differentiable function f , and the nonpotential one is a monotone and cocoercive operator B. The presences of the Hessian of the potential f and a Newton-type correction term attached to B have controlled the geometric damping. In addition, we have shown not only the well-posedness of the Cauchy problem but also the asymptotic convergence properties of the trajectories generated by the continuous dynamic. Furthermore, the convergence analysis was also carried out through the parameters β f and β b attached to the geometric dampings along with the parameters γ and λ (the viscous damping and the coefficient of cocoercivity respectively). The oscillations, known for viscous damping of inertial systems, are controlled and attenuated by introducing geometric damping. That gives rise to faster numerical methods. It would be fascinating to extend the analysis for both the continuous dynamic and its discretization to the case of an asymptotic vanishing damping γ(t) = α t , with α > 0 as in [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method[END_REF].This is a significant step toward developing faster methods to solve structured monotone inclusions, which correlate with Nesterov's accelerated gradient method. The work on the corresponding splitting methods is also a crucial topic which needs deeper investigation. In fact, by replacing ∇f with a general maximally monotone operator A, the resolvent of which can be easily computed, it might be worth studying a forward-backward inertial algorithm with Hessian-driven damping for solving structured monotone inclusions of the form : 

Ax + Bx 0.
) nonpotential = 0,
which mainly come from fields of sciences and engineering. This chapter will be the continuation of our framework presented in Chapter 2. Roughly speaking, this one is dedicated to the study of a class of first-order algorithms which aims to solve structured monotone equations involving the sum of potential and nonpotential operators. In detail, we purpose to find the zeros of an operator A = ∇f + B, in which ∇f is the gradient of a differentiable convex function f , and B is a nonpotential monotone and cocoercive operator. This study can be considered as a sequel and enhanced part of the inertial autonomous dynamic previously studied by the authors, which involves dampings controlled respectively by the Hessian of f , and by a Newton-type correction term attached to B. The appearance of these geometric dampings attenuates the classical oscillations which often occur with the inertial methods and viscous damping while temporal discretization of this dynamic provides fully splitted proximal-gradient algorithms. Their convergence properties are shown to be guaranteed according to Lyapunov analysis under certain conditions on parameters. Consequently, these results give us first-order accelerated algorithms that are useful for numerical optimization taking into account the specific properties of both potential and nonpotential terms.

This chapter constitutes the subject of the published paper [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF] in collaboration with S.

Adly and H. Attouch.

Introduction and preliminary results

We recall that H is a real Hilbert space with the scalar product •, • and the associated norm • . Our study is based on the continuous inertial dynamic

ẍ(t)+γ ẋ(t)+∇f (x(t))+B(x(t))+β f ∇ 2 f (x(t)) ẋ(t)+β b B (x(t)) ẋ(t) = 0, t ≥ 0 (DINAM)
previously studied in Chapter 2. (DINAM) stands shortly for Dynamic Inertial Newton method for Additively structured Monotone problems. It is an autonomous dynamic which involves geometric dampings which are respectively controlled by the Hessian of the potential function f , and by a Newton-type correction term attached to B. In Chapter 2, one has Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators been shown the well-posedness of the solution of the Cauchy problem and the weak convergence of the generated trajectories towards the zeros of ∇f + B. As a remarkable property, the introduction of geometric damping attenuates notably the oscillations which naturally occur with the inertial methods. Our goal is to observe the convergence properties of the algorithms acquired by temporal discretization of (DINAM), and thus numerically solve the structured monotone equation (2.1). A particular attention will be paid to the minimal assumptions which guarantee convergence of the sequences generated by the algorithms, and which emphasize the asymmetric role of the two operators involved in the dynamic.

Throughout the chapter, we also make the following standard assumptions :

                   (A1) f : H → R is convex, of class C 1
, ∇f is Lipschitz continuous on the bounded sets;

(A2) B : H → H is a λ-cocoercive operator for some λ > 0;

(A3) γ > 0, β f > 0, β b ≥ 0 are given real damping parameters;

(A4) the solution set

S := (∇f + B) -1 (0) = {p ∈ H : ∇f (p) + B(p) = 0} is nonempty.
Unless specified, we do not assume the gradient of f to be globally Lipschitz continuous. The cocoercivity of the operator B is the pivot in our analysis. Recall that the operator B : H → H is λ-cocoercive for some λ > 0 provided that By -Bx, y -x ≥ λ By -Bx 2 , ∀x, y ∈ H.

The following (DINAAM-split) algorithm is a model example of the splitting algorithms obtained by temporal discretization of the continuous dynamic (DINAM). The positive parameter h is the step size of the discretization.

(DINAAM-split) :

Initialize :

x 0 ∈ H, x 1 ∈ H α = 1 1 + γh , s = h 1 + γh , y k = x k + α(x k -x k-1 ) + sβ b B(x k ) -s(h + β f )∇f (x k ) + sβ f ∇f (x k-1 ), x k+1 = Id +s(h + β b )B -1 (y k ).
Its convergence properties are analyzed in Theorem 3.4.1 (section 3.4). Compared to the classical accelerated proximal gradient algorithms, it contains corrective terms where the Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators potential and nonpotential operators appear asymmetrically, and which make it possible to attenuate the oscillations. The outline of the chapter is the following. Following the introductory Section 3.1, we revisit some of the conclusions reported in Chapter 2 (see also [4]) concerning the continuous dynamics (DINAM) in Section 3.2. In Section 3.3, we analyze the convergence of the sequences generated by an inertial proximal algorithm acquired by implicit discretization of the continuous dynamics (DINAM). We emphasize the interplay between the damping parameters β f , β b , γ and the cocoercivity parameter λ, which plays a significant role in our Lyapunov analysis. In Section 3.4, we analyze an inertial proximal-gradient splitting algorithm which makes use of the gradient of f and the resolvent of B. We also analyze the effect of errors, perturbations in the algorithm. In Section 3.5, we examine a variant of this proximal-gradient algorithm, where the operators' role is reversed. In Section 3.6, we perform numerical experiments which show that the oscillations are considerably reduced with the introduction of geometric damping. Applications to structured monotone equations involving a nonpotential operator are studied.

The continuous dynamic (DINAM)

In this section, we recall the principal results reported in Chapter 2 concerning the second-order differential equation (DINAM) 

ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = 0, t ≥ 0. ( 
> (β b -β f ) 2 4β f + 1 2 β b + 1 γ + 1 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f .
Then, for any solution trajectory x : [0, +∞[→ H of (DINAM) the following properties are satisfied :

(i) x(t) converges weakly, as t → +∞, to an element of S.

(ii) Set A := ∇f + B and p ∈ S. Then,

+∞ 0 ẋ(t) 2 dt < +∞, +∞ 0 ẍ(t) 2 dt < +∞, +∞ 0 B(x(t)) -B(p) 2 dt < +∞, +∞ 0 d dt B(x(t)) 2 dt < +∞, +∞ 0 A(x(t)) 2 dt < +∞, and +∞ 0 d dt A(x(t)) 2 dt < +∞. (iii) lim t→+∞ ẋ(t) = 0, lim t→+∞ B(x(t)) -B(p) = 0, lim t→+∞ A(x(t)) = 0,
where B(p) is uniquely defined for p ∈ S.

Inertial proximal algorithms associated with (DI-NAM)

Set A := ∇f + B and A β := β f ∇f + β b B. Consider the following implicit finite-difference scheme for (DINAM) :

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + 1 h (A β (x k+1 ) -A β (x k )) + A(x k+1 ) = 0, (3.1)
where h > 0 is a fixed time step. After expanding (3.1), we obtain

x k+1 + h 2 1 + γh A(x k+1 )+ h 1 + γh A β (x k+1 ) = x k + 1 1 + γh (x k -x k-1 )+ h 1 + γh A β (x k ). (3.2)
Set s := h 1 + γh and α := 1 1 + γh . So we have

x k+1 + sA h (x k+1 ) = y k , (3.3 

) governed by sums of potential and nonpotential operators

where

A h = (h + β f )∇f + (h + β b )B, (3.4) 
y k = x k + α(x k -x k-1 ) + sA β (x k ). (3.5) 
According to (3.3) and A h maximally monotone, we obtain x k+1 = (Id +sA h ) -1 (y k ). We therefore obtain the following algorithm, where (DINAAM) stands for Dynamic Inertial Newton Algorithm for Additively structured Monotone problems.

(DINAAM) :

Initialize : x 0 ∈ H, x 1 ∈ H α = 1 1 + γh , s = h 1 + γh , y k = x k + α(x k -x k-1 ) + sA β (x k ), x k+1 = (Id +sA h ) -1 (y k ).
The computation of the resolvent of the weighted sum

A h = (h + β f )∇f + (h + β b )B
is required, and therefore (DINAAM) is not a splitting algorithm. Corresponding splitting algorithms will be examined in Sections 3.4 and 3.5.

Lyapunov analysis

Let us state the convergence characteristics of (DINAAM) as below. Theorem 3.3.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a convex differentiable function whose gradient is Lipschitz continuous on the bounded sets. Suppose that the positive parameters λ, γ, β b , β f fulfill

β f > 0, and λγ > (β b -β f ) 2 4β f + 1 2 β b + 1 γ + 1 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f . (3.6)
Then, there exists h * such that for all 0 < h < h * , the sequence (x k ) generated by the algorithm (DINAAM) has the following properties (where p ∈ S) :

(i) (x k ) converges weakly to an element of S ;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 A(x k ) 2 < +∞,
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∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞, and ∞ k=1 B(x k ) -B(x k-1 ) 2 < +∞; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, lim k→∞ ∇f (x k ) -∇f (p) = 0. Proof. The discrete energy. Recall that A := ∇f + B and A β := β f ∇f + β b B. Take p ∈ S.
Consider the sequence (V k ) defined for all k ≥ 1 by the formula

V k := 1 2 (x k -p) + c 1 h (x k -x k-1 ) + A β (x k ) -A β (p) 2 + δ 2 x k -p 2 ,
where c and δ are positive coefficients to adjust. For each k ≥ 1, we briefly write V k as follows :

V k = 1 2 v k 2 + δ 2 x k -p 2 , with v k := x k -p + c 1 h (x k -x k-1 ) + A β (x k ) -A β (p) .
By definition of v k , we have

v k+1 = x k+1 -p + c 1 h (x k+1 -x k ) + A β (x k+1 ) -A β (p) .
Moreover, by using the formulation (3.1) of the algorithm (DINAAM), we have

v k = x k+1 -p + c 1 h (x k+1 -x k ) + γ(x k+1 -x k ) + A β (x k+1 ) -A β (p) + hA(x k+1 ) -(x k+1 -x k ) = v k+1 + (cγ -1)(x k+1 -x k ) + chA(x k+1 ).
Therefore, for k ≥ 1, we have

1 2 v k+1 2 - 1 2 v k 2 = 1 2 v k+1 2 - 1 2 v k+1 + (cγ -1)(x k+1 -x k ) + chA(x k+1 ) 2 = - 1 2 (cγ -1) 2 x k+1 -x k 2 - 1 2 c 2 h 2 A(x k+1 ) 2 -hc(cγ -1) x k+1 -x k , A(x k+1 ) -(x k+1 -p) + c( 1 h (x k+1 -x k ) + A β (x k+1 ) -A β (p)), (cγ -1)(x k+1 -x k ) + chA(x k+1 ) = - 1 2 (cγ -1) 2 x k+1 -x k 2 - 1 2 c 2 h 2 A(x k+1 ) 2 -hc(cγ -1) x k+1 -x k , A(x k+1 ) -(cγ -1) x k+1 -p, x k+1 -x k -ch x k+1 -p, A(x k+1 ) - c(cγ -1) h x k+1 -x k 2 -c 2 x k+1 -x k , A(x k+1 ) -c(cγ -1) A β (x k+1 ) -A β (p), x k+1 -x k -c 2 h A β (x k+1 ) -A β (p), A(x k+1 ) . (3.7)
To write the above relation in a recursive form, we use the elementary identity

1 2 x k+1 -p 2 - 1 2 x k -p 2 = - 1 2 x k+1 -x k 2 + x k+1 -x k , x k+1 -p . (3.8) 
Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators

Let us set X k := x k+1 -x k , Y k := B(x k+1 ) -B(p), Z k := ∇f (x k+1 ) -∇f (p) for k ≥ 0. Since p ∈ S, i.e., ∇f (p) + B(p) = 0, we have A(x k+1 ) = Y k + Z k for k ≥ 0.
In the definition of V k , take δ = cγ -1, which we assume to be nonnegative, i.e., cγ ≥ 1.

According to (3.7), (3.8) and the definition of V k , we obtain after simplification

V k+1 -V k = - 1 2 (cγ -1) 2 X k 2 - 1 2 c 2 h 2 Y k + Z k 2 -hc(cγ -1) X k , Y k + Z k - 1 2 (cγ -1) X k 2 -ch x k+1 -p, A(x k+1 ) - c(cγ -1) h X k 2 -c 2 X k , Y k + Z k -c(cγ -1) β b Y k + β f Z k , X k -c 2 h β b Y k + β f Z k , Y k + Z k .
Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

-ch x k+1 -p, A(x k+1 ) = -ch x k+1 -p, B(x k+1 ) -B(p) -ch x k+1 -p, ∇f (x k+1 ) -∇f (p) ≤ -chλ B(x k+1 ) -B(p) 2 .
By combining the two relations above, we obtain

V k+1 -V k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β f X k , Z k + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ 0. (3.9) 
Let (Γ k ) be the sequence of real numbers defined by

Γ k := f (x k ) -f (p) -∇f (p), x k -p , for k ≥ 0. Since f is convex, we have Γ k ≥ 0, for all k ≥ 0. Moreover, X k , Z k = x k+1 -x k , ∇f (x k+1 ) -x k+1 -x k , ∇f (p) ≥ f (x k+1 ) -f (x k ) -x k+1 -x k , ∇f (p) = Γ k+1 -Γ k . (3.10)
For each k ≥ 1, let us define

E k := V k + c(cγ -1)h + c 2 + c(cγ -1)β f Γ k .
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E k+1 -E k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ 0. (3.11)
Let us eliminate Z k from this relation by using the elementary algebraic inequality

c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≥ - c 2 h(β b + β f + h) 2 4β f + 2h Y k 2 .
Then, from (3.11), we deduce that

E k+1 -E k + q(X k , Y k ) ≤ 0, (3.12) 
where

q(X k , Y k ) = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h(β b + β f + h) 2 4β f + 2h Y k 2 .
Let us observe that q : H × H → R is a quadratic form

q(X k , Y k ) := a X k 2 + b X k , Y k + g Y k 2 , with a = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h , b = c(cγ -1)h + c 2 + c(cγ -1)β b , g = chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h(β b + β f + h) 2 4β f + 2h .
According to Lemma 1.3.5, since a > 0, q is positive definite if and only if 4ag -b 2 > 0.
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4 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h(β b + β f + h) 2 4β f + 2h -c(cγ -1)h + c 2 + c(cγ -1)β b 2 > 0. (3.13)
Our aim is to find c such that cγ -1 > 0 and (3.13) is satisfied. After development and simplification we obtain the following equivalent formulation of (3.13)

4 1 2 (cγ -1) 2 h + 1 2 (cγ -1)h + c(cγ -1) cλ + c 2 β b + 1 2 c 2 h - c 2 (β b + β f + h) 2 4β f + 2h -c(cγ -1)h + c 2 + c(cγ -1)β b 2 > 0. (3.14)
Let us denote by L(h) the left handside of (3.14). We have

lim h→0 + L(h) = 4c(cγ -1) cλ + c 2 β b - c 2 (β b + β f ) 2 4β f -c 2 + c(cγ -1)β b 2 .
To guarantee the existence of h > 0 such that the quadratic form q is positive definite, it is sufficient to find c satisfying cγ -1 > 0 and

4c(cγ -1) cλ + c 2 β b - c 2 (β b + β f ) 2 4β f -c 2 + c(cγ -1)β b 2 > 0.
The preceding inequality can be rewritten equivalently as

4λ > [c 2 + c(cγ -1)β b ] 2 c 2 (cγ -1) -4cβ b + (β b + β f ) 2 β f c = [c + (cγ -1)β b ] 2 cγ -1 + (β b -β f ) 2 β f c.
Let us reformulate this inequation by introducing δ = cγ -1 > 0. Our aim is to find

δ > 0 such that 4λ > δ+1 γ + δβ b 2 δ + δ + 1 γ (β b -β f ) 2 β f .
An elementary algebraic calculation gives us the equivalent formulation

4λ > 2 γ β b + 1 γ + 1 γ (β b -β f ) 2 β f + 1 γ 2 δ + β b + 1 γ 2 + (β b -β f ) 2 γβ f δ.
Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators Therefore, in order to ensure the existence of such δ, it is sufficient to assume that

4λ > 2 γ β b + 1 γ + 1 γ (β b -β f ) 2 β f + inf δ>0 1 γ 2 δ + β b + 1 γ 2 + (β b -β f ) 2 γβ f δ . (3.15)
It is easy to check that

inf δ>0 C δ + Dδ = 2 √ CD, (3.16) 
for any C, D ∈ R + . Combining (3.15) and (3.16), we get the final condition

4λ > 2 γ β b + 1 γ + 1 γ (β b -β f ) 2 β f + 2 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f .
When β b = β f := β, we recover the condition λγ > β + 1 γ . Therefore, under the above condition, and by taking h sufficiently small, there exists a positive real number µ such that for any k ≥ 1,

E k+1 -E k + µ X k 2 + µ Y k 2 ≤ 0. (3.17) 
Estimates. According to (3.17), the sequence of nonnegative numbers (E k ) is nonincreasing, and therefore converges. In particular, it is bounded. From this, we immediately deduce that

sup k (x k -p) + c 1 h (x k -x k-1 ) + A β (x k ) -A β (p) 2 < +∞ (3.18) sup k x k -p 2 < +∞. (3.19) 
Moreover, by summing the inequalities (3.17), we deduce that

∞ k=0 X k 2 < +∞, ∞ k=0 Y k 2 < +∞. (3.20) 
Let us return to (3.11). By using (3.20), we obtain the existence of a constant C > 0 such that

c 2 hβ f + 1 2 c 2 h 2 n k=0 Z k 2 ≤ C + c 2 h(β b + β f ) + c 2 h 2 n k=0 Z k Y k .
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c 2 hβ f + 1 2 c 2 h 2 n k=0 Z k 2 ≤ C + c 2 h(β b + β f ) + c 2 h 2 n k=0 Z k 2 + 1 4 n k=0 Y k 2 .
Taking > 0 such that 

c 2 hβ f + 1 2 c 2 h 2 > c 2 h(β b + β f ) + c 2 h 2 , which is always possible since c 2 hβ f + 1 2 c 2 h 2 > 0, we conclude that ∞ k=0 Z k 2 < +∞. Since A(x k+1 ) = Y k + Z k , we immediately deduce ∞ k=1 A(x k ) 2 < +∞.
B(0, R). Since B is λ-cocoercive, it is 1 λ -Lipschitz continuous.
Therefore, A is L-Lipschitz continuous on the trajectory with

L := L R + 1 λ , which implies, A(x k+1 ) -A(x k ) ≤ L x k+1 -x k for all k ≥ 0.
Therefore,

∞ k=1 A(x k+1 ) -A(x k ) 2 ≤ ∞ k=1 L 2 x k+1 -x k 2 < +∞. By the same argu- ment, we get ∞ k=1 B(x k+1 ) -B(x k ) 2 < +∞, and ∞ k=1 ∇f (x k+1 ) -∇f (x k ) 2 < +∞.
Since the general term of a convergent series goes to zero, we deduce that Convergence of (x k ). Let us first show that every weak cluster point x * of the se-Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators quence (x k ) belongs to S. Consider a subsequence (x kn ) of (x k ), such that x kn x * , as n → +∞. We have A(x kn ) → 0 strongly in H and x kn

lim k→∞ x k+1 -x k = 0, lim k→∞ A(x k ) = 0, and 
lim k→∞ A(x k+1 ) -A(x k ) = 0, lim k→∞ B(x k+1 ) -B(x k ) = 0, lim k→∞ ∇(x k+1 ) -∇(x k ) = 0. ( 3 
x * weakly in H.

From the closedness property of the graph of the maximally monotone operator A in w -H × s -H, we deduce that A(x * ) = 0, that is x * ∈ S. Since the limit of E k exists, and according to the above strong convergence results, we deduce that there exists a positive number r such that, for any p ∈ S lim k→∞

x k -p 2 + r (f (x k ) -∇f (p), x k -p ) exists.
Suppose that the bounded sequence (x k ) has two weak limit points, let p and p . By the above argument p and p belong to S. Therefore, lim 

k→∞ x k -p 2 +r (f (x k ) -∇f (p), x k -p ) and lim k→∞ x k -p 2 + r (f (x k ) -∇f (p ), x k -p ) exist.

Estimation of the upper bound on the time step h

The former results are valid whenever h is taken small enough. For numerical purposes, it is important to specify this result, and find h * > 0 such that the convergence properties hold true for all h ∈]0, h * [. So let us come back to (3.13), which is the key estimate for our Lyapunov analysis. As a result of elementary calculation, it can be written as follows After dividing by cγ -1 > 0 and a few elementary calculation steps, we get

2(cγ -1)(2 + γh) λ + cβ b + 1 2 ch - c(β b + β f + h) 2 4β f + 2h -[(cγ -1)h + c + (cγ -1)β b ] 2 > 0.
(2+γh) (λ+cβ b + 1 2 ch)(4β f +2h)-c(β b +β f +h) 2 -(cγ-1)(2β f +h) h + c cγ -1 + β b 2 > 0.
Let us develop the preceding expression. Then, we acquire a third-order polynomial with respect to h, namely P c (h) = a 0 + a 1 h + a 2 h 2 + a 3 h 3 with

a 0 = 2 4λβ f -c(β b -β f ) 2 -β f (c + β b (cγ -1)) 2 cγ -1 , a 1 = 4λ(1 + γβ f ) -cγ(β b -β f ) 2 -4β f (c + β b (cγ -1)) - 1 cγ -1 (c + β b (cγ -1)) 2 , a 2 = 2λγ -2c -2(cγ -1)(β b + β f ), a 3 = -(cγ -1).
We discovered that choosing appropriately c > 0 with cγ -1 > 0 yields a 0 > 0 under the growth condition (3.6). We can precisely pick c = c * where c * γ -1 =

1 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f - 1 2 
. Hence P c * (0) > 0. In fact, let us consider

1 2 γa 0 (c) = 4λγβ f -cγ(β b -β f ) 2 -β f (cγ + β b γ(cγ -1)) 2 γ(cγ -1) . Since λγ > (β b -β f ) 2 4β f + 1 2 β b + 1 γ + 1 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f ,
we have

1 2 γa 0 (c) > (β b -β f ) 2 + 2β f β b + 1 γ + 2β f β b + 1 γ 2 + (β b -β f ) 2 γβ f -cγ(β b -β f ) 2 -β f (cγ + β b γ(cγ -1)) 2 γ(cγ -1) . Take c = c * where c * γ -1 = 1 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f -1 2
. Shortly, we set

y = β b + 1 γ 2 + (β b -β f ) 2 γβ f .
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1 2 γa 0 (c * ) > - 1 γy (β b -β f ) 2 + 2β f β b + 1 γ + 2β f y -β f y 1 + 1 γy + β b y 2 = - 1 γy (β b -β f ) 2 + 2β f y -β f y - β f y 1 γ + β b 2 = β f y - 1 γβ f (β b -β f ) 2 + 2y 2 -y 2 - 1 γ + β b 2 = 0.
Note that for large h, P c * (h) ∼ -(c * γ -1)h 3 , and so P c * (h) is negative. Therefore, h * > 0 is the smallest positive zero (which exists) of P c * . Its explicit determination is quite technical in our general setting. In practical situations, its calculation results from elementary numerical analysis. Let us stress the fact that h * depends only on the parameters that enter (DINAAM) (not on f ). (DINAAM) :

β b = β f = β Initialize : x 0 ∈ H, x 1 ∈ H α = 1 1 + γh , s = h(h + β) 1 + γh , y k = x k + α(x k -x k-1 ) + hαβA(x k ), x k+1 = (Id +sA) -1 (y k ).
The following result is a particular case of Theorem 3. Then, there exists h * such that for all 0 < h < h * , the sequence (x k ) generated by the Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators algorithm (DINAAM) has the following properties :

(i) (x k ) converges weakly to an element in S ;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 A(x k ) 2 < +∞ ; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ A(x k ) = 0.

An inertial proximal-gradient algorithm

In this section, we assume that f is a C 1 convex function whose gradient is L-Lipschitz continuous. Set A := ∇f + B and

A β := β f ∇f + β b B.
We take a fixed time step h > 0, and consider the following finite-difference scheme for (DINAM) :

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + β b h (B(x k+1 ) -B(x k )) + β f h (∇f (x k ) -∇f (x k-1 )) + B(x k+1 ) + ∇f (x k ) = 0. (3.24) 
This scheme is implicit with respect to the nonpotential B and explicit with respect to the potential operator ∇f . After expanding (3.24), we obtain

x k+1 + h 2 1 + γh B(x k+1 ) + hβ b 1 + γh B(x k+1 ) = x k + 1 1 + γh (x k -x k-1 ) + hβ b 1 + γh B(x k ) - hβ f 1 + hγ (∇f (x k ) -∇f (x k-1 )) - h 2 1 + hγ ∇f (x k ). (3.25) 
Set s := h 1 + γh and α := 1 1 + γh . So we have

x k+1 + sB h (x k+1 ) = y k , (3.26) 
where

B h = (h + β b )B, and 
y k = x k + α(x k -x k-1 ) + sβ b B(x k ) -s(h + β f )∇f (x k ) + sβ f ∇f (x k-1 ). (3.27) 
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(DINAAM-split) :

Initialize :

x 0 ∈ H, x 1 ∈ H α = 1 1 + γh , s = h 1 + γh , y k = x k + α(x k -x k-1 ) + sβ b B(x k ) -s(h + β f )∇f (x k ) + sβ f ∇f (x k-1 ),
x k+1 = (Id +sB h ) -1 (y k ). 

Lyapunov analysis

β f > 0, and λγ > (β b -β f ) 2 4β f + 1 2 β b + 1 γ + 1 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f .
Then, there exists h * (depending on L) such that for all 0 < h < h * , the sequence (x k ) generated by the algorithm (DINAAM-split) has the following properties :

(i) (x k ) converges weakly to an element in S ;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 A(x k ) 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞, and ∞ k=1 B(x k ) -B(x k-1 ) 2 < +∞; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, and 
lim k→∞ ∇f (x k ) -∇f (p) = 0.
Proof. The structure of the proof is similar to that of Theorem 3.3.1. The main difference in Lyapunov's analysis is the use of the global Lipschitz continuity of ∇f to deal with the corresponding gradient method. Take p ∈ S. Let us consider the sequence (V k ) defined by, for each k ≥ 1

V k = 1 2 (x k -p) + c 1 h (x k -x k-1 ) + β b B(x k ) + β f ∇f (x k-1 ) -A β (p) 2 + δ 2 x k -p 2 ,
where c, δ are positive coefficients to adjust. For k ≥ 1, let us briefly write V k as follows

V k = 1 2 v k 2 + δ 2 x k -p 2 ,
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with v k := x k -p + c 1 h (x k -x k-1 ) + β b B(x k ) + β f ∇f (x k-1 ) -A β (p) .
According to the formulation of the algorithm (DINAAM-split), we have

v k = c 1 h (x k+1 -x k ) + γ(x k+1 -x k ) + β b B(x k+1 ) + β f ∇f (x k ) -A β (p) + hB(x k+1 ) + h∇f (x k ) + (x k+1 -p) -(x k+1 -x k ) = v k+1 + (cγ -1)(x k+1 -x k ) + chB(x k+1 ) + ch∇f (x k ). Set X k = x k+1 -x k , Y k = B(x k+1 ) -B(p), Z k = ∇f (x k ) -∇f (p). Taking δ := cγ -1, we obtain V k+1 -V k = - 1 2 (cγ -1) 2 X k 2 - 1 2 c 2 h 2 Y k + Z k 2 -c(cγ -1)h X k , Y k + Z k - 1 2 (cγ -1) X k 2 -ch x k+1 -p, B(x k+1 ) + ∇f (x k ) - c(cγ -1) h X k 2 -c 2 X k , Y k + Z k -c(cγ -1) β b Y k + β f Z k , X k -c 2 h β b Y k + β f Z k , Y k + Z k .
Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

-ch x k+1 -p, B(x k+1 ) + ∇f (x k ) = -ch x k+1 -p, B(x k+1 ) -B(p) -ch x k+1 -p, ∇f (x k ) -∇f (p) ≤ -chλ B(x k+1 ) -B(p) 2 -ch x k+1 -x k , ∇f (x k ) -∇f (p) .
By combining the two relations above, we obtain

V k+1 -V k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β f + ch X k , Z k + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ 0. (3.28)
Let (Γ k ) be the sequence defined by

Γ k = f (x k ) -f (p) -∇f (p), x k -p , for k ≥ 0.
Since f is convex, we have Γ k ≥ 0, for all k ≥ 0. By the gradient descent lemma, since
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X k , Z k = x k+1 -x k , ∇f (x k ) -x k+1 -x k , ∇f (p) ≥ f (x k+1 ) -f (x k ) - L 2 x k+1 -x k 2 + Γ k+1 -Γ k + f (x k ) -f (x k+1 ) = Γ k+1 -Γ k - L 2 X k 2 . (3.29)
Let us define

E k = V k + c(cγ -1)h + c 2 + c(cγ -1)β f + ch Γ k ,
for k ≥ 1. (E k ) will serve us as a discrete energy function. Indeed, it is clear that (E k ) is a sequence of nonnegative numbers. From (3.28), (3.29) and the definition of (E k ), we obtain

E k+1 -E k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h - L 2 c(cγ -1)h + c 2 + c(cγ -1)β f + ch X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ 0. (3.30) 
Let us eliminate Z k from this relation by using the elementary algebraic inequality

c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≥ - c 2 h 2 (β b + β f + h) 2 4hβ f + 2h 2 Y k 2 .
Then, from (3.30) we deduce that

E k+1 -E k + S k ≤ 0, where S k = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h - L 2 c(cγ -1)h + c 2 + c(cγ -1)β f + ch X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h 2 (β b + β f + h) 2 4hβ f + 2h 2 Y k 2 .
We have

S k = q(X k , Y k ) where q : H × H → R is the quadratic form q(X k , Y k ) := a X k 2 + b X k , Y k + g Y k 2 ,
Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators with

a = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h - L 2 c(cγ -1)h + c 2 + c(cγ -1)β f + ch , b = c(cγ -1)h + c 2 + c(cγ -1)β b , g = chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h 2 (β b + β f + h) 2 4hβ f + 2h 2 .
The above coefficients differ from those involved in the Lyapunov analysis of Theorem 3.3.1 only by a, where L enters. Since, for h small, a ∼ c(cγ -1) h it is immediate to verify that a > 0 for h sufficiently small (depending now on L). Moreover the term with coefficient L induces a negligable perturbation. So, by using the same argument as the proof of Theorem 3.3.1, under the condition

4λ > 2 γ β b + 1 γ + 1 γ (β b -β f ) 2 β f + 2 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f .
there exists c such that cγ -1 > 0 and 4ag -b 2 > 0 is satisfied for h sufficiently small. Therefore, there exists a positive real number µ such that for any k ≥ 1,

E k+1 -E k + µ X k 2 + µ Y k 2 ≤ 0. (3.31) 
The rest of the proof is similar to that of Theorem 3.3.1, so we omit it.

For numerical purposes, it is interseting to give an estimate value of the upper bound h * in the theorem. We can obtain this value by proceeding in the same way as in the proof of the Theorem 3.3.1. Precisely, according to Lemma 1.3.5, since a > 0 (for h small enough), q is positive definite if and only if 4ag -b 2 > 0. After a few steps of elementary calculation as in the proof of Theorem 3.3.1, we obtain

2 + γh -Lh(h + β f ) -Lh(c+h) cγ-1 (λ + cβ b + 1 2 ch)(4β f + 2h) -c(β b + β f + h) 2 -(cγ -1)(2β f + h) h + c cγ -1 + β b 2 > 0.
Let us develop the above expression. We obtain a third-order polynomial with respect
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to h, namely P c (h) = a 0 + a 1 h + a 2 h 2 + a 3 h 3 with a 0 = 2 4λβ f -c(β b -β f ) 2 -β f (c + β b (cγ -1)) 2 cγ -1 , a 1 = 4λ(1 + γβ f ) -cγ(β b -β f ) 2 -4β f (c + β b (cγ -1)) - 1 cγ -1 (c + β b (cγ -1)) 2 -L(β f + c cγ -1 ) 4λβ f -c(β b -β f ) 2 , a 2 = 2λγ -2c -2(cγ -1)(β b + β f ) -L(1 + 1 cγ -1 ) 4λβ f -c(β b -β f ) 2 -2λL(β f + c cγ -1
),

a 3 = -(cγ -1) -2λL - 2λL cγ -1 .
Choosing adequately c > 0 with cγ -1 > 0 gives that a 0 > 0 under the growth condition in Theorem 3.4.1. Precisely, we can take c = c * where

c * γ-1 = 1 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f -1 2 . Hence P c * (0) > 0. Note that for large h, P c * (h) ∼ -(c * γ -1 + 2λL + 2λL c * γ -1
)h 3 , and so P c * (h) is negative. Set h min is the smallest positive zero (which exists) of P c * . Therefore, P c * (h) > 0 for all h ∈]0, h min [. Note that the choice of h must ensure that a > 0 as well. For c = c * , we see that

a := a(c * ) = 1 2 (c * γ -1) 2 + 1 2 (c * γ -1) + c * (c * γ -1) h - L 2 c * (c * γ -1)h + c * 2 + c * (c * γ -1)β f + c * h > 0.
Therefore, a := a(c * ) > 0 if and only if

L(1 + 1 c * γ -1 )h 2 + L( c * c * γ -1 + β f ) -γ h -2 < 0.
Let h + be the positive root (which exists) of the second-order polynomial (with respect to h), that is,

L(1 + 1 c * γ -1 )h 2 + L( c * c * γ -1 + β f ) -γ h -2. Then a > 0 for all h ∈]0, h + [.
Therefore, the upper bound h * for the (DINAAM-split) scheme can be defined as

h * = min{h min , h + }.
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Errors, perturbations

Now, we examine the impact of introducing perturbations, or errors in the algorithm (DINAAM-split). Let us begin with the perturbed version of (DINAM)

ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = e(t)
, (DINAM-pert) where the right-handside e(•) accounts for perturbations, errors. An analogous discretization to the one used previously yields

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + β b h (B(x k+1 ) -B(x k )) + β f h (∇f (x k ) -∇f (x k-1 )) + B(x k+1 ) + ∇f (x k ) = e k . (3.32) 
After expanding and rearranging all terms of (3.32), we obtain

x k+1 + h(β b + h) 1 + γh B(x k+1 ) = x k + 1 1 + γh (x k -x k-1 ) + hβ b 1 + γh B(x k ) (3.33) 
-

hβ f 1 + γh (∇f (x k ) -∇f (x k-1 )) - h 2 1 + γh ∇f (x k ) + h 2 1 + γh e k .
Set s := h 1 + γh and α := 1 1 + γh . So we have

x k+1 + sB h (x k+1 ) = y k , (3.34) 
where B h = (h + β b )B, and (DINAAM-split-pert) :

y k = x k + α(x k -x k-1 ) + sβ b B(x k ) -s(h + β f )∇f (x k ) + sβ f ∇f (x k-1 ) + she k . ( 3 
Initialize : Then there exists h * such that the sequence (x k ) generated by the algorithm (DINAAMsplit-pert) has the following properties for all 0 < h < h * :

x 0 ∈ H, x 1 ∈ H α = 1 1 + γh , s = h 1 + γh , y k = x k +α(x k -x k-1 )+sβ b B(x k )-s(h+β f )∇f (x k )+sβ f ∇f (x k-1 )+she k , x k+1 = (Id +sB h ) -1 (y k ).
(i) (x k ) converges weakly to an element in S ;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 A(x k ) 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞, and ∞ k=1 B(x k ) -B(x k-1 ) 2 < +∞; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, and lim k→∞ ∇f (x k ) -∇f (p) = 0.
Passing from the unperturbed Lyapunov analysis to the perturbed case is a typical procedure ; see [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF] for example. It is based on a comparable Lyapunov analysis and the application of the following discrete variant of the Gronwall Lemma ; see Lemma 1.3.7 or [19, Lemma A.9.]. Proof. The proof is similar to that of Theorem 3.4.1. It uses the following sequence (E k ) as a discrete energy function where c > 1 γ is coefficient to adjust, and

E k = V k + c(cγ -1)h + c 2 + c(cγ -1)β f Γ k , Van Nam VO |
V k = 1 2 (x k -p) + c( 1 h (x k -x k-1 ) + A β (x k ) -A β (p)) 2 + cγ -1 2 x k -p 2 , Γ k = f (x k ) -f (p) -∇f (p), x k -p .
By setting

X k = x k+1 -x k , Y k = B(x k+1 ) -B(p), Z k = ∇f (x k ) -∇f (p)
for k ≥ 0 and following the same argument as in the proof of Theorem 3.4.1, we have

E k+1 -E k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ k . (3.36) 
Here,

k = - 1 2 c 2 h 2 e k 2 + c 2 h 2 Y k + Z k , e k + c(cγ -1)h + c 2 X k , e k + ch x k+1 -p, e k + c 2 h β b Y k + β f Z k , e k . (3.37) 
According to an elementary inequality, we have that

X k , e k ≤ 1 2η X k 2 + η 2 e k 2 , (3.38) 
holds for any η > 0. Moreover, by using Cauchy-Schwarz inequality, and the fact that B, ∇f are Lipschitz, we have 

Y k , e k ≤ Y k . e k ≤ 1 λ x k+1 -p . e k , (3.39) 
Z k , e k ≤ Z k . e k ≤ L x k+1 -p . e k . ( 3 
k ≤ - 1 2 c 2 h 2 e k 2 + c(cγ -1)h + c 2 2η X k 2 + η 2 [c(cγ -1)h + c 2 ] e k 2 + ch + c 2 h 2 + c 2 hβ b λ + (c 2 h 2 + c 2 hβ f )L x k+1 -p e k . (3.41) 
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E k+1 -E k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h - c(cγ -1)h + c 2 2η X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ k , (3.42) 
with k = η 2 [c(cγ -1)h + c 2 ] e k 2 + ch + c 2 h 2 + c 2 hβ b λ + (c 2 h 2 + c 2 hβ f )L x k+1 -p e k .
Let us eliminate Z k from this relation by using the elementary algebraic inequality

c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≥ - c 2 h 2 (β b + β f + h) 2 4 hβ f + 1 2 h 2 Y k 2 .
Therefore,

E k+1 -E k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h - c(cγ -1)h + c 2 2η X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h 2 (β b + β f + h) 2 4 hβ f + 1 2 h 2 Y k 2 ≤ k . (3.43) Equivalently E k+1 -E k + S k ≤ k , (3.44) 
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S k = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h - c(cγ -1)h + c 2 2η X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h 2 (β b + β f + h) 2 4 hβ f + 1 2 h 2 Y k 2 .
Similarly, we have S k = q(X k , Y k ) where q : H × H → R is the quadratic form

q(X k , Y k ) := a X k 2 + b X k , Y k + g Y k 2 , with a = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h - c(cγ -1)h + c 2 2η , b = c(cγ -1)h + c 2 + c(cγ -1)β b , g = chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h 2 (β b + β f + h) 2 4 hβ f + 1 2 h 2 .
We choose η > 0 such that a > 0. That means

η > c(cγ -1)h 2 + c 2 h (cγ -1) 2 h + (cγ -1)h + c(cγ -1)
.

Since the time step h will be taken small, there exists η 0 > 0 such that η < η 0 . Again, thanks to Lemma 1.3.5, we have that q is positive definite if and only if 4ag -b 2 > 0.

By using the same argument as in the proof of Theorem 3.3.1, we have the existence of c such that S k > 0. To ensure the existence of such c, we need

4λ > 2 γ β b + 1 γ + 1 γ (β b -β f ) 2 β f + 2 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f .
Therefore, there exists positive real number µ such that for any k ≥ 1, 

E k+1 -E k + µ X k 2 + µ Y k 2 ≤ k . ( 3 
1≤i<k+1 i = ch + c 2 h 2 + c 2 hβ b λ + (c 2 h 2 + c 2 hβ f )L 1≤i<k+1 x i+1 -p e i + η 2 [c(cγ -1)h + c 2 ] 1≤i<k+1 e k 2 ≤ ch + c 2 h 2 + c 2 hβ b λ + (c 2 h 2 + c 2 hβ f )L 1≤i<k+1 x i+1 -p e i + C. (3.47)
From (3.46) and (3.47), we deduce that

cγ -1 2 x k+1 -p 2 ≤ E 1 +C+ ch + c 2 h 2 + c 2 hβ b λ + (c 2 h 2 + c 2 hβ f )L 1≤i<k+1 e i x i+1 -p .
More precisely, we have

1 2 x k+1 -p 2 ≤ 1 2 C 2 0 + c 0 1≤i<k+1 e i x i+1 -p , (3.48) 
where

C 0 = 2(E 1 + C) cγ -1 , c 0 = ch + c 2 h 2 + c 2 hβ b λ + (c 2 h 2 + c 2 hβ f )L.
Now, applying Lemma 1.3.7 to (3.48), we obtain

x k+1 -p ≤ C 0 + c 0 1≤i<k+1 e i < +∞. (3.49)
Therefore, ( x k+1 -p ) and consequently ( x k ) is a bounded sequence.

Returning to (3.47), according to the boundedness of ( x k+1 -p ) and the assumption of (e k ), we obtain

∞ k=1 k < +∞.
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The rest of the proof is similar to that of Theorem 3.4.1, so we omit here. The above inequality allows us to estimate

∞ k=1 X k 2 and ∞ k=1 Y k 2 .

A variant of the proximal-gradient algorithm

In this section, we study a variant of the preceding proximal-gradient algorithm in which the operators' role is reversed. This allows us to weaken the hypothesis on f , assuming that f is a C 1 convex function with a Lipschitz gradient on the bounded sets (instead of globally Lipschitz). We examine the semi-implicit finite-difference scheme for (DINAM) shown below :

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + β b h (B(x k ) -B(x k-1 )) + β f h (∇f (x k+1 ) -∇f (x k )) + B(x k ) + ∇f (x k+1 ) = 0. (3.50)
The temporal discretization of the Hessian-driven damping term

β b B(x(t)) ẋ(t) is ta- ken equal to β b h (B(x k ) -B(x k-1 )) instead of β b h (B(x k+1 ) -B(x k )).
After expanding (3.50), we obtain

x k+1 + h 2 1 + γh ∇f (x k+1 ) + hβ f 1 + γh ∇f (x k+1 ) = x k + 1 1 + γh (x k -x k-1 ) + hβ f 1 + γh ∇f (x k ) - hβ b 1 + hγ (B(x k ) -B(x k-1 )) - h 2 1 + hγ B(x k ). (3.51) 
Set s := h 1 + γh and α := 1 1 + γh . So we have

x k+1 + sF h (x k+1 ) = y k , (3.52) 
where

F h = (h + β f )∇f, (3.53) 
y k = x k + α(x k -x k-1 ) + sβ f ∇f (x k ) -s(h + β b )B(x k ) + sβ b B(x k-1 ). (3.54)
Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators From (3.52) we get x k+1 = (Id +sF h ) -1 (y k ), which gives the following algorithm :

(DINAAM-split-var) :

Initialize :

x 0 ∈ H, x 1 ∈ H α = 1 1 + γh , s = h 1 + γh , y k = x k + α(x k -x k-1 ) + sβ f ∇f (x k ) -s(h + β b )B(x k ) + sβ b B(x k-1 ), x k+1 = (Id +sF h ) -1 (y k ) = prox s(h+β f )f (y k ).
Theorem 3.5.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose the positive parameters λ, γ, β b , β f satisfy

β f > 0, and λγ > (β b -β f ) 2 4β f + 1 2 β b + 1 γ + 1 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f .
Then, there exists h * such that for all 0 < h < h * , the sequence (x k ) generated by the algorithm (DINAAM-split-var) has the following properties :

(i) (x k ) converges weakly to an element in S ;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 A(x k ) 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞, and ∞ k=1 B(x k ) -B(x k-1 ) 2 < +∞; (iii) (pointwise estimates) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, and lim k→∞ ∇f (x k ) -∇f (p) = 0.
Proof. Let us consider the sequence (V k ) given by, for each k ≥ 1

V k = 1 2 (x k -p) + c( 1 h (x k -x k-1 ) + β f ∇f (x k ) + β b B(x k-1 ) -A β (p)) 2 + δ 2 x k -p 2 ,
where c, δ are positive coefficients to adjust. For k ≥ 1, let us briefly write V k as follows

V k = 1 2 v k 2 + δ 2 x k -p 2 ,
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with v k = (x k -p) + c 1 h (x k -x k-1 ) + β f ∇f (x k ) + β b B(x k-1 ) -A β (p) .
By using the formulation (3.50) of the algorithm, we have

v k = c 1 h (x k+1 -x k ) + γ(x k+1 -x k ) + β f ∇f (x k+1 ) + β b B(x k ) -A β (p) + h∇f (x k+1 ) + hB(x k ) + (x k+1 -p) -(x k+1 -x k ) = v k+1 + (cγ -1)(x k+1 -x k ) + ch∇f (x k+1 ) + chB(x k ). Set X k = x k+1 -x k , Y k = B(x k )-B(p), Z k = ∇f (x k+1 )-∇f (p). Taking δ := cγ -1, we get V k+1 -V k = - 1 2 (cγ -1) 2 X k 2 - 1 2 c 2 h 2 Y k + Z k 2 -c(cγ -1)h X k , Y k + Z k - 1 2 (cγ -1) X k 2 -ch x k+1 -p, ∇f (x k+1 ) + B(x k ) - c(cγ -1) h X k 2 -c 2 X k , Y k + Z k -c(cγ -1) β b Y k + β f Z k , X k -c 2 h β b Y k + β f Z k , Y k + Z k .
Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

-ch x k+1 -p, ∇f (x k+1 ) + B(x k ) = -ch x k+1 -p, ∇f (x k+1 ) -∇f (p) -ch x k+1 -p, B(x k ) -B(p) ≤ -chλ B(x k ) -B(p) 2 -ch x k+1 -x k , B(x k ) -B(p) .
By combining the two relations above, we obtain

V k+1 -V k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β f X k , Z k + c(cγ -1)h + c 2 + c(cγ -1)β b + ch X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ 0. (3.55)
Let (Γ k ) be the sequence defined by

Γ k = f (x k ) -f (p) -∇f (p), x k -p , for k ≥ 0.
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Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators Since f is convex, we have Γ k ≥ 0, for all k ≥ 0. Moreover,

X k , Z k = x k+1 -x k , ∇f (x k+1 ) -x k+1 -x k , ∇f (p) ≥ f (x k+1 ) -f (x k ) + Γ k+1 -Γ k + f (x k ) -f (x k+1 ) = Γ k+1 -Γ k . (3.56) 
Let us define

E k := V k + c(cγ -1)h + c 2 + c(cγ -1)β f Γ k ,
for k ≥ 1. (E k ) will serve us as a discrete energy function. Indeed, it is clear that (E k ) is a sequence of nonnegative numbers. From (3.55), (3.56) and the definition of (E k ), we obtain

E k+1 -E k + 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b + ch X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 Y k 2 + c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≤ 0. (3.57) 
Let us eliminate Z k from this relation by using the elementary algebraic inequality

c 2 hβ f + 1 2 c 2 h 2 Z k 2 + c 2 h(β b + β f ) + c 2 h 2 Z k , Y k ≥ - c 2 h 2 (β b + β f + h) 2 4hβ f + 2h 2 Y k 2 .
From (3.57) we deduce that E k+1 -E k + S k ≤ 0, where

S k = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h X k 2 + c(cγ -1)h + c 2 + c(cγ -1)β b + ch X k , Y k + chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h 2 (β b + β f + h) 2 4hβ f + 2h 2 Y k 2 .
We have S k = q(X k , Y k ) where q : H × H → R is the quadratic form

q(X k , Y k ) := a X k 2 + b X k , Y k + g Y k 2 ,
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a = 1 2 (cγ -1) 2 + 1 2 (cγ -1) + c(cγ -1) h , b = c(cγ -1)h + c 2 + c(cγ -1)β b + ch, g = chλ + c 2 hβ b + 1 2 c 2 h 2 - c 2 h 2 (β b + β f + h) 2 4hβ f + 2h 2 .
By using the same argument as the proof of Theorem 3.3.1, we obtain the existence of c such that S k > 0. To ensure the existence of such c, we need

4λ > 2 γ β b + 1 γ + 1 γ (β b -β f ) 2 β f + 2 γ β b + 1 γ 2 + (β b -β f ) 2 γβ f .
Therefore, there exists positive real number µ such that for any k ≥ 1,

E k+1 -E k + µ X k 2 + µ Y k 2 ≤ 0. (3.58) 
The rest of the proof is similar to Theorem 3.3.1, so we omit it.

Numerical illustrations

Remark 3.6.1 As we discussed in Chapter 2, a general and effective method to generate monotone cocoercive operators which are not gradients of convex functions is taking Yosida approximation A λ of a linear skew symmetric operator A . For example, starting from A equal to the counterclockwise rotation of angle π/2 in the plane, we obtain that, for any λ > 0, the following operator is λ-cocoercive 

A λ = 1 1 + λ 2 λ -1 1 λ . ( 3 
f (x 1 , x 2 ) = 50x 2 2 .
We set γ = 0.9. It is clear that f is convex but not strongly convex and its gradient ∇f is L-Lipschitz with L = 100. We study three cases : (1) x ∞ ∈ S = (∇f + B) -1 (0) = {0}. The trajectory obtained by using Matlab is depicted in Figure 1 in Chapter 2. In order to compare the two algorithms, we observe the norm of

β b = 1, β f = 0.5, (2) β b = 0.5, β f = 1
x k -x ∞ . In Figure 3.1, we can see that the two algorithms give almost the same numerical results. The difference between them is the use or not of the resolvent operator of the sum of B and ∇f . In our numerical experiment, we took h = 5.10 -3 as a time-step. According to the proof of Theorem 3.3.1 and 3.4.1, we can estimate the upper bound h * for these schemes. The numerical results are shown in Table 1.

Case DINAAM scheme DINAAM-split scheme Before moving on to another example, let us numerically compare the performance of our algorithms with or without the correcting terms associated with the Hessien and Newton-like damping. For convenience, we keep the function f and the operator B, and Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators the values of the parameters λ, γ as before. We compare the performance of (DINAAM) in two situations, one when β b = β f = 0, and the other when β b and β f are different from 0 (for example, we take β = 1, β f = 0.5). Figure 3.2 illustrates the typical situation of an ill-conditioned problem, where the wild oscillations of (2.4) are neutralized by introducing the Hessian dampings. This shows that the presence of the Hessian-driven damping and the Newton-type correction term attached to B attenuate the oscillations which occur with the inertial methods with viscous damping. The interested reader can find in Chapter 2 an application of our continuous model to dynamic games. Our corresponding algorithmic results provide a new class of best response dynamics with inertia and cost to change, the detailed analysis of which goes beyond the scope of the article. It is an interesting subject for futher studies. Now we study another example to see how our algorithm can be applied to find the zeros of ∇f + B. Example 3.6.2 Nonpotential version of sparse logistic regression. Let us recall the following sparse logistic regression problem for binary classification :

β b = 1, β f = 0.5 10 
min x∈R n 1 m m i=1 log(1 + e -v i u i x ) + µ x 1 ,
where (u i , v i ) 1≤i≤m is the training set with u i ∈ R n is the feature vector of each data sample, and v i ∈ {-1, 1} is the binary label. Here µ > 0 is a regularization parameter. We set

f (x) = 1 m m i=1 log(1 + e -v i u i x ).
The gradient of f is given by ∇f 

(x) = - 1 m A (1 m -q(x)), with A = v 1 u 1 v 2 u 2 . . . v m u m ∈ R n×m , 1 m = 1 1 . . . 1 ∈ R m and q(x) = 1 m ./(
where x ∈ R n and B n =             2 -1 0 • • • • • • 0 -1 2 -1 . . . . . . . . . 0 
            ∈ R n×n .
Let us show that B n is positive definite for all n ≥ 2. Let us denote by y k the k-th leading principal minor of a matrix B n which is the determinant of its upper-left k × k sub-matrix. We have

y k = det(B k ), for 1 ≤ k ≤ n.
For simplify, we define B 1 = 2. By the definition of B n , we have that

det(B n+1 ) = 2 det(B n ) -det(B n-1 ),
for n ≥ 2. An elementary calculation gives det(B n+1 ) = n+2 for n ≥ 1. Thus, y k = k+1 > 0 for all 1 ≤ k ≤ n. Hence, B n is positive definite. Furthermore, B n is cocoercive. Indeed, for any x, y ∈ R n , there exists λ > 0 such that

B n x -B n y, x -y ≥ λ B n x -B n y 2 . (3.60)
Since B n , B n B n are positive (semi)definite, for any x, y ∈ R n we have

B n x -B n y, x -y ≥ λ min (B n ) x -y 2 , (3.61) 
and Let us check that ∇f is Lipschitz continuous. In fact, for any x, y ∈ R n , we have

λ max (B n B n ) x -y 2 ≥ B n x -B n y 2 . ( 3 
m ∇f (x) -∇f (y) = A q(x) -A q(y) = m i=1 v i 1 + e -v i u i x u i - v i 1 + e -v i u i y u i ≤ m i=1 u i .|v i |. 1 1 + e -v i u i x - 1 1 + e -v i u i y ≤ 1 4 m i=1 u i .|u i x -u i y| ≤ 1 4 m i=1 u i 2 . x -y . Therefore, ∇f (x) -∇f (y) ≤ 1 4m x -y m i=1 u i 2 .
It is clear that for any matrix B is λ-cocoercive if B -λB B is positive semidefinite for some λ > 0. For example, we take n = 3, m = 2. Then, Remark 3.6.2 In Example 3.6.2, since the resolvent operator (Id +sA h ) -1 can not be computed easily, we used the algorithm (DINAAM-split) instead of (DINAAM). Then, our algorithm requires to compute (Id +sB h ) -1 and in this situation it is easier to operate. 

B 3 is 1 4 -cocoercive. Set γ = 4, β b = β f = 0.

Conclusion, perspectives

In Chapters 2 and 3, the importance of Hessian-driven damping in the convergence characteristics of inertial algorithms in convex optimization is well demonstrated. While these algorithms preserve the convergence rates associated with the Nesterov accelerated gradient method, they give quick convergence to gradient zeros and significantly reduce oscillations. Our contribution is to combine these two aspects inside the same algorithms and to develop inertial algorithms for structured monotone inclusions with potential and nonpotential components (skew-symmetric operators as a typical instance). As a result, this is critical for numerical reasoning and modeling in engineering and decision sciences with cooperative and noncooperative aspects. Furthermore, our Lyapunov analysis highlighted the two operators' nonsymmetrical roles. That is a major improvement over previous research in which we handled the two operators as a whole. Addressing the issue when B is a generic maximally monotone operator (for example, linear skew-symmetric) is a crucial challenge for dealing with primal-dual techniques from several angles. In this sense, the Yosida approximation of B (a cocoercive operator) allows us to return to the situation discussed in our topic. It is an intriguing subject for future research. Lastly, we finalize a similar methodology to cope with the problem of asymptotic vanishing viscous damping to cover the case of Nesterov's accelerated gradient method.

Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping I n this chapter, we propose and investigate the convergence properties of trajectories produced by a damped inertial dynamic driven by the sum of potential and nonpotential operators. More specifically, we desire asymptotically zero sums of the potential term (the gradient of a continuously differentiable convex function) and nonpotential monotone and cocoercive operator. In addition to viscous friction, the dynamic includes implicit Newtontype damping, which differs from the preceding chapters' investigation, which used explicit Newton-type damping as the potential term and related to Hessian-driven damping. We will study and demonstrate the weak convergence of the generated trajectories towards the zeros of the sum of the potential and nonpotential operators as the time approaches infinity. These results are based on Lyapunov analysis and the appropriate choice of damping settings. The addition of geometric dampings enables for the control and attenuation of the oscillations associated with inertial viscous damping. We might extend the convergence analysis to nonsmooth convex potentials by rewriting the second-order evolution equation as a system containing only first-order derivatives in time and space. Even though our research focuses on the autonomous case with positive fixed parameters, these observations pave the way for their extension to the nonautonomous case and the development of new first-order accelerated algorithms in optimization that take into account the special features of potential and nonpotential terms. Because of the presence of the nonpotential term, the proofs and methodologies are unique.

This chapter constitutes the subject of the published paper [5] in collaboration with S. Adly and H. Attouch.

Problem statement and related works

General presentation

Let H denote a real Hilbert space endowed with the scalar product •, • and the associated norm • . Our research keeps concentrating on the dynamic approach to addressing the additively structured monotone problem

Find x ∈ H : ∇f (x) + B(x) = 0, (4.1)
where ∇f is the gradient of a continuously differentiable convex function f : H → R (this is the potential part), and B : H → H is a monotone and cocoercive operator (this is the nonpotential part). Specifically, our study focuses the convergence properties of the Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping trajectories generated by the second-order evolution equation

ẍ(t) + γ ẋ(t) + ∇f x(t) + β f ẋ(t) + B x(t) + β b ẋ(t) = 0, (iDINAM) 
whose stationary points are solutions of (4.1). The nonnegative coefficients β f and β b in (iDINAM) can be understood as geometric damping parameters, as we will demonstrate.

(iDINAM) is an abbreviation for implicit Dynamic Inertial Newton method for Additively structured Monotone problems. In addition to the modeling characteristics discussed above, this system is part of a large family of inertial systems that have recently been studied for designing fast first-order optimization methods.

Related works

In the potential case (i.e., B = 0), Alesca-Lazlo-Pinta initiated this in [START_REF] Alecsa | An extension of the second order dynamical system that models Nesterov's convex gradient method[END_REF]. For f being a strongly convex function f , the associated autonomous system can be found in [START_REF] Muehlebach | A Dynamical Systems Perspective on Nesterov Acceleration[END_REF]. This ODE, known as (ISIHD) or Inertial System with Implicit Hessian Damping, takes the form

ẍ(t) + α t ẋ(t) + ∇f x(t) + β(t) ẋ(t) = 0, (ISIHD) 
where α ≥ 3 and β(t) = γ + β t , γ, β ≥ 0. That motivated us extend the results for the case B = 0. In addition, the explicit version with the introduction of nonpotential term B ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B (x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = 0, t ≥ 0 (DINAM) was previously studied by the authors in [4] or in Chapter 2. (DINAM) is an autonomous dynamic including geometric dampings controlled by the Hessian of the potential function f , and by a Newton-type correction term attached to B. The following explains the connection between the two dynamics described above and the rationale of their respective explicit and implicit qualifying. When t → +∞ we have ẋ(t) → 0, therefore, thanks to the Taylor expansion, we obtain as t → +∞

∇f (x(t) + β f ẋ(t)) ≈ ∇f (x(t)) + β f ∇ 2 f (x(t)) ẋ(t), B (x(t) + β b ẋ(t)) ≈ B(x(t)) + β b B (x(t))( ẋ(t)).
When these terms in (iDINAM) are replaced by their equivalent expressions, the outcome is (DINAM). As a results, when t → +∞, both systems should behave comparably. The primary goal of this chapter is to investigate the new system (iDINAM) and compare it Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping

Well-posedness of the Cauchy problem for (iDINAM)

In this section, we show the existence and the uniqueness of solution trajectory for the Cauchy problem asscociated with the dynamical system (iDINAM). Depending on the hypothesis on the potential function f , we will provide two distinct approaches and results. 

(ii) ẍ(t) + γ ẋ(t) + ∇f (x(t) + β f ẋ(t)) + B(x(t) + β b ẋ(t)) = 0 for almost every t ≥ 0 ; (iii) x(0) = x 0 and ẋ(0) = x 1 .
Recall that a map x : [t 0 , +∞[→ H is said to be locally absolutely continuous if it is absolutely continuous on any compact interval [t 0 , T ], where T > t 0 . Moreover, we have the following equivalent characterizations of an absolutely continuous function x : [t 0 , T ] → H, (see, for example [2,[START_REF] Attouch | A continuous dynamical Newton-Like approach to solving monotone inclusions[END_REF]) :

(a) there exists y : [t 0 , T ] → H a Lebesgue-integrable function, such that

x(t) = x(0) + t 0 y(s)ds, ∀t ∈ [0, T ];
(b) x is continuous and its distributional derivative is Lebesgue integrable on the interval [0, T ] ;

(c) for every > 0, there exists η > 0 such that for every finite family

I k = (a k , b k ) from [0, T ],
the following implication is valid : Proof Let us reformulate (iDINAM) as a first-order evolution equation. According to its Hamiltonian formulation, the system (iDINAM) can be rewritten as

I k ∩ I j = ∅, ∀k = j and k |b k -a k | < η =⇒ k x(b k ) -x(a k ) < .

Existence and uniqueness : the smooth case

   Ż(t) = F (Z(t)) Z(0) = (x 0 , x 1 ), (4.2) 
where Z(t) = (x(t), y(t)) and F : H 2 → H 2 is given by

F (x, y) = y -γy -∇f (x + β f y) -B(x + β b y) .
The Lipschitz continuity properties of ∇f and B make it obvious that F is a Lipschitz continuous map. We obtain the existence and uniqueness of the solution of (4.2), and therefore of the Cauchy problem, by applying the classical Cauchy-Lipschitz theorem to (iDINAM). Because the vector field F is only Lipschitz continuous, we find a strong solution rather than a classical C 2 solution when no further assumptions are made.

Existence and uniqueness : the nonsmooth case

Let us denote by Γ 0 (H) the set of proper, lower semi-continuous and convex functions on H. We now present another first order formulation of (iDINAM) which is based on the new function

y(t) := x(t) + β f ẋ(t).
Equivalently,

ẋ(t) = 1 β f (y(t) -x(t)). (4.3)
Elementary algebra gives The time derivation of y(t) using the aforementioned formula and the constitutive equation (iDINAM) yields

x(t) + β b ẋ(t) = β b β f y(t) + 1 - β b β f x(t).
ẏ(t) = ẋ(t) + β f ẍ(t) = ẋ(t) -β f γ ẋ(t) + ∇f (y(t)) + B β b β f y(t) + 1 - β b β f x(t) = (1 -γβ f ) ẋ(t) -β f ∇f (y(t)) -β f B β b β f y(t) + 1 - β b β f x(t) . (4.5)
Replacing ẋ(t) with 1 β f (y(t) -x(t)), as given by (4.3), gives

ẏ(t) = 1 -γβ f β f (y(t) -x(t)) -β f ∇f (y(t)) -β f B β b β f y(t) + 1 - β b β f x(t) . (4.6)
In a similar way, the reverse transformation which consists in passing from (4.3), (4.6) to (iDINAM) is obtained. The results are stated in the following theorem. Theorem 4.2.2 Let f ∈ C 1 (H). Suppose that β f > 0. The following statements are equivalent :

1.

x : [0, +∞[→ H is a solution trajectory of (iDINAM) with initial conditions x(0) = x 0 , ẋ(0) = x 1 .

2. (x, y) : [0, +∞[→ H × H is a solution trajectory of the first-order system

       ẋ(t) + 1 β f x(t) - 1 β f y(t) = 0. ẏ(t) + β f ∇f (y(t)) + β f B β b β f y(t) + 1 - β b β f x(t) + 1 -γβ f β f (x(t) -y(t)) = 0.
with initial conditions x(0) = x 0 , y(0

) = x 0 + β f x 1 .
By substituting the gradient ∇f with the subdifferential ∂f , we can readily extend the preceding formulation to the situation when

f ∈ Γ 0 (H). Definition 4.2.2 Let β f > 0, f ∈ Γ 0 (H). Given (x 0 , y 0 ) ∈ H × dom(f ), the Cauchy
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             ẋ(t) + 1 β f x(t) - 1 β f y(t) = 0 ẏ(t) + β f ∂f (y(t)) + β f B β b β f y(t) + 1 - β b β f x(t) + 1 -γβ f β f (x(t) -y(t)) 0.
x(0) = x 0 , y(0) = y 0 .

(4.7)

The 

D(Z) = 1 β f (x -y), β f B β b β f y + 1 - β b β f x + 1 -γβ f β f (x -y) .
The sum of the convex subdifferential operator β f ∂G and the Lipschitz continuous operator 

D(•)

Asymptotic convergence properties of (iDINAM)

In this part, we examine the asymptotic behavior of the solution trajectories of (iDINAM). We demonstrate that the weak limit, wlim t→+∞ x(t) = x ∞ exists for each solution trajectory t → x(t) of (iDINAM), and fulfills x ∞ ∈ S, where

S := {p ∈ H : ∇f (p) + B(p) = 0}.
We complete these results by producing integral and pointwise convergence rates.

Main results

Our main contributions are Theorems 4.3.1 and 4.4.1. These demonstrate that a wise adjustment of the damping parameters guarantees the weak convergence of the trajectories generated by (iDINAM) and the associated proximal-gradient algorithms achieved by temporal discretization. Take p ∈ S. Let x(•) be a solution trajectory of the dynamical system (iDINAM). Applying Lyapunov analysis, we obtain the convergence properties of x(•). Let us introduce the function E p : [0, +∞[→ R+ defined by

E p (t) := a f (x(t) + β f ẋ(t)) -f (p) -∇f (p), x(t) + β f ẋ(t) -p + 1 2 x(t) -p + β f ẋ(t) 2 + d 2 x(t) -p 2 , (4.9) 
that will serve us as a Lyapunov function. The convexity of f indicates that E p (•) is a nonnegative function. Our aim is to adjust the constants a > 0 and d > 0 such that Ėp (t) ≤ 0 for every t ≥ 0. (ii) (integral estimates)

γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) . ( 4 
+∞ 0 ẋ(t) 2 dt < +∞, +∞ 0 ẍ(t) 2 dt < +∞, +∞ 0 B(x(t) + β b ẋ(t)) -B(p) 2 dt < +∞, +∞ 0 ∇f (x(t) + β f ẋ(t)) -∇f (p) 2 dt < +∞, +∞ 0 d dt B(x(t) + β b ẋ(t)) 2 dt < +∞, +∞ 0 d dt ∇f (x(t) + β f ẋ(t)) 2 dt < +∞.
Proof Lyapunov analysis. Let us derivate the function E p (•) defined in (4.9). The derivation chain rule gives

Ėp (t) = a ∇f (x(t) + β f ẋ(t)) -∇f (p), ẋ(t) + β f ẍ(t) + x(t) -p + β f ẋ(t), ẋ(t) + β f ẍ(t) + d x(t) -p, ẋ(t) .
According to the constitutive equation (iDINAM) we have

ẍ(t) = -γ ẋ(t) -∇f (x(t) + β f ẋ(t)) -B(x(t) + β b ẋ(t)).
Therefore,

Ėp (t) =a ∇f (x(t) + β f ẋ(t)) -∇f (p), ẋ(t) + d x(t) -p, ẋ(t) +a ∇f (x(t) + β f ẋ(t)) -∇f (p), β f (-γ ẋ(t) -∇f (x(t) + β f ẋ(t)) -B(x(t) + β b ẋ(t))) + x(t) -p + β f ẋ(t), ẋ(t) + β f (-γ ẋ(t) -∇f (x(t) + β f ẋ(t)) -B(x(t) + β b ẋ(t))) .

Let us denote shortly
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X(t) := ∇f x(t) + β f ẋ(t) -∇f (p), Y (t) := B x(t) + β b ẋ(t) -B(p).
Since p ∈ S, we have ∇f (p) + B(p) = 0. So, we can arrange Ėp (t) as follows

Ėp (t) = a X(t), ẋ(t) + β f (-γ ẋ(t) -X(t) -Y (t)) + x(t) -p + β f ẋ(t), ẋ(t) + β f (-γ ẋ(t) -X(t) -Y (t)) + d x(t) -p, ẋ(t) = -aβ f X(t) 2 + a(1 -γβ f ) X(t)), ẋ(t) -aβ f X(t), Y (t) + β f (1 -γβ f ) ẋ(t) 2 + (d + 1 -γβ f ) x(t) -p, ẋ(t) -β f x(t) -p + β f ẋ(t), X(t) + Y (t) . (4.11)
We may deduce from the convexity of f, that ∇f is monotone. By definition of X(t) this gives

x(t) -p + β f ẋ(t), X(t) ≥ 0.
Furthermore, since B is λ-cocoercive, that implies

x(t) -p + β f ẋ(t), Y (t) = x(t) -p + β b ẋ(t), Y (t) + (β f -β b ) ẋ(t), Y (t) ≥ λ Y (t) 2 + (β f -β b ) ẋ(t), Y (t) .
Combining the aforementioned facts, and assuming d = γβ f -1 > 0, we derive from (4.11) that

Ėp (t) ≤ -aβ f X(t) 2 + a(1 -γβ f ) X(t)), ẋ(t) -aβ f X(t), Y (t) + β f (1 -γβ f ) ẋ(t) 2 -λβ f Y (t) 2 -β f (β f -β b ) ẋ(t), Y (t) . (4.12)
Let us use the following elementary inequalities to majorize the scalar products that appear in (4.12) : for any parameters ρ > 0 and r > 0 that will be adjusted (recall that γβ f > 1) 

a(1 -γβ f ) X(t)), ẋ(t) ≤ 1 2 ρa(γβ f -1) X(t) 2 + 1 2ρ a(γβ f -1) ẋ(t) 2 , (4.13) -aβ f X(t), Y (t) ≤ 1 2 arβ f X(t) 2 + 1 2r aβ f Y (t) 2 . ( 4 
Ėp (t) ≤ -aβ f X(t) 2 + 1 2 ρa(γβ f -1) X(t) 2 + 1 2ρ a(γβ f -1) ẋ(t) 2 + 1 2 arβ f X(t) 2 + 1 2r aβ f Y (t) 2 + β f (1 -γβ f ) ẋ(t) 2 -λβ f Y (t) 2 -β f (β f -β b ) ẋ(t), Y (t) . (4.15)
After rearranging the terms, we get

Ėp (t) ≤ -a β f - 1 2 ρ(γβ f -1) - 1 2 rβ f X(t) 2 -(γβ f -1) β f - a 2ρ ẋ(t) 2 -β f λ - a 2r Y (t) 2 -β f (β f -β b ) ẋ(t), Y (t) . (4.16)
Equivalently,

Ėp (t) + a β f - 1 2 ρ(γβ f -1) - 1 2 rβ f X(t) 2 + β f S(t) ≤ 0, (4.17) 
where

S(t) := λ - a 2r Y (t) 2 + (β f -β b ) ẋ(t), Y (t) + (γβ f -1) 1 - a 2ρβ f ẋ(t) 2 .
We have S(t) = q(Y (t), ẋ(t)) where q : H × H → R is the quadratic form

q(Y, Z) := λ - a 2r Y 2 + (β f -β b ) Y, Z + (γβ f -1) 1 - a 2ρβ f Z 2 .
The system of constraints on the positive parameters a, r, ρ shown below guarantees not only is the coefficient of X(t) 2 in (4.17) positive but also the quadratic form q is positive definite : Let us now examine the last constraint (4.21). Because of the choice of r and ρ, it is simplified as

β f - 1 2 ρ(γβ f -1) - 1 2 rβ f > 0; (4.18) λ - a 2r > 0; (4.19) 1 - a 2ρβ f > 0; (4.20) 4 λ - a 2r (γβ f -1) 1 - a 2ρβ f -(β f -β b ) 2 > 0. ( 4 
∆(τ ) := 4λ 1 - 1 τ 2 (γβ f -1) -(β f -β b ) 2 > 0.
We have

lim τ +∞ ∆(τ ) = 4λ(γβ f -1) -(β f -β b ) 2
and it is positive thanks to our assumption (4.10) on the parameters. Hence, by taking τ large enough, and adjusting a small enough according to (4.22), we obtain that the coefficient of X(t) 2 in (4.17) is positive, and the quadratic form q is positive definite as well. We infer there exist positive real numbers η and µ such that

Ėp (t) + η X(t) 2 + µβ f ẋ(t) 2 + µβ f Y (t) 2 ≤ 0. (4.23)
Estimates. We rely on the estimate (4.23) and integrate it on [0, t], t ≥ 0. Then, one has 

E p (t) + η t 0 X(s) 2 ds + µβ f t 0 ẋ(s) 2 ds + µβ f t 0 Y (s) 2 ds ≤ E p (0). ( 4 
d dt B(x(t) + β b ẋ(t)) 2 dt ≤ 1 λ 2 +∞ 0 ẋ(t) + β b ẍ(t) 2 dt ≤ 2 λ 2 +∞ 0 ẋ(t) 2 dt + 2β 2 b λ 2 +∞ 0 ẍ(t) 2 dt < +∞.
Similarly, we have 

+∞ 0 d dt ∇f (x(t) + β f ẋ(t))
X(t) = lim t→+∞ Y (t) = 0, that is lim t→+∞ B((x(t) + β b ẋ(t)) -B(p) = 0, lim t→+∞ ∇f (x(t) + β f ẋ(t)) -∇f (p) = 0 (4.33)
According to the Lipschitz continuity of B, and the Lipschitz continuity of ∇f on the bounded sets (recall that x(t) and ẋ(t) are bounded) we immediately deduce from (4.33) and lim t→+∞ ẋ(t) = 0, that

lim t→+∞ B(x(t)) -B(p) = 0, lim t→+∞ ∇f (x(t)) -∇f (p) = 0. (4.34)
Convergence of the trajectory. In oder to show the existence of the weak limit of x(t) as t → +∞, we use Opial's lemma (see [START_REF] Peypouquet | Evolution Equations for Maximal Monotone Operators : Asymptotic Analysis in Continuous and Discrete Time[END_REF] for more details). Given p ∈ S, let us define the anchor function given by, for every t ∈ [0, +∞[

q p (t) := 1 2 x(t) -p 2 .
From qp (t) = ẋ(t), x(t) -p and qp (t) = ẋ(t) 2 + ẍ(t), x(t) -p , we obtain

qp (t) + γ qp (t) = ẋ(t) 2 + ẍ(t) + γ ẋ(t), x(t) -p = ẋ(t) 2 -∇f (x(t) + β f ẋ(t)) + B(x(t) + β b ẋ(t)), x(t) -p .
According to the monotonicity of ∇f and B, we have

∇f (x(t) + β f ẋ(t)) + B(x(t) + β b ẋ(t)), x(t) -p = X(t) + Y (t), x(t) -p ≥ -β f X(t), ẋ(t) -β b Y (t), ẋ(t) .
Therefore,

qp (t) + γ qp (t) ≤ ẋ(t) 2 + β f X(t), ẋ(t) + β b Y (t), ẋ(t) . (4.35) 
Applying the Cauchy-Schwarz inequality, we get

qp (t) + γ qp (t) ≤ ẋ(t) 2 + β f X(t) ẋ(t) + β b Y (t) ẋ(t) . (4.36) 
Then note that the second member of (4.36)

g(t) := ẋ(t) 2 + β f X(t) ẋ(t) + β b Y (t) ẋ(t)
Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0

Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping is nonnegative and belongs to L 1 ([0, +∞[, R). Indeed, we have +∞ 0

X(t) ẋ(t) dt ≤ 1 2 +∞ 0 X(t) 2 dt + 1 2 +∞ 0 ẋ(t) 2 dt, +∞ 0 Y (t) ẋ(t) dt ≤ 1 2 +∞ 0 Y (t) 2 dt + 1 2 +∞ 0 ẋ(t) 2 dt.
Using (4.28), we deduce that +∞ 0 g(t)dt < +∞.

Since q p is nonnegative, Lemma 1.3.4 shows that lim t→+∞ q p (t) exists. To complete the proof using Opial's lemma, we need to show that every weak sequential cluster point of x(t) belongs to S. Let t n → +∞ such that x(t n )

x * , n → +∞. According to (4.34)

∇f (x(t n )) → ∇f (p); B(x(t n )) → B(p) strongly in H and x(t n ) x * weakly in H.
We may deduce that ∇f (x * ) = ∇f (p), and B(x * ) = B(p) rrom the closedness property of the graph of the maximally monotone operators ∇f and B in w -H × s -H. As a result, ∇f (x * ) + B(x * ) = ∇f (p) + B(p) = 0, that is x * ∈ S. Consequently, x(t) converges weakly towards an element of S as t goes to +∞. The proof of Theorem 4.3.1 is thus completed. Let us specialize the preceding results in the case β b = β f . We set β b = β f := β > 0 and A := ∇f + B. Thus, we consider the evolution system

(iDINAM) ẍ(t) + γ ẋ(t) + A(x(t) + β ẋ(t)) = 0, t ≥ 0.
The well-posedness of the strong global solution to this system is guaranteed by Theorem 4.2.1 while its convergence properties are a consequence of Theorem 4. (ii) (integral estimate)

+∞ 0 ẋ(t) 2 dt < +∞, +∞ 0 ẍ(t) 2 dt < +∞, +∞ 0 A(x(t) + β ẋ(t)) 2 dt < +∞, and +∞ 0 d dt A(x(t) + β ẋ(t)) 2 dt < +∞.

Comparison of the dynamics with explicit and implicit Newtontype damping

For the sake of simplicity, let us compare the dynamics in the case

β f = β b = β > 0.
According to the authors' prior research in [4] concerning the dynamic (DINAM) with explicit Newton-type damping, the condition on the parameters ensuring the trajectory convergence is

λγ > β + 1 γ (4.37) 
On the other hand, the corresponding condition for (iDINAM), as given by Corollary 4.3.1 is

γβ > 1. (4.38) 
As a result, in contrast to (DINAM), the cocoercivity parameter λ no longer enters the condition relative to (iDINAM). This implies that it would be particularly interesting to study the case of an asymptotic vanishing damping coefficient γ(t) = α t in accordance with the Nesterov accelerated scheme. By modifying the coefficient β(t), which now tends to infinity, it is feasible to achieve fast convergence results for general monotone inclusions. In fact, first results in this approach have been obtained for the ADMM algorithm, see [START_REF] Attouch | Fast convergence of dynamical ADMM via time scaling of damped inertial dynamics[END_REF].

Inertial proximal algorithms associated with (iDI-NAM)

We focus on the convergence properties of several splitting algorithms with inertial features acquired by temporal discretization of the second-order (in time) evolution equation :

ẍ(t) + γ ẋ(t) + ∇f (x(t) + β f ẋ(t)) + B (x(t) + β b ẋ(t)) = 0. (iDINAM) 
Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping Under appropriate parameter and discretization step adjustments, our aim is to achieve continuous convergence results of the same kind as those obtained in the preceding section.

An inertial proximal-gradient algorithm

In this section, f is a C 1 convex function with an L-Lipschitz continuous gradient. Take a fixed time step h > 0, and consider the following finite-difference scheme for (iDINAM) :

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + ∇f x k + β f h (x k -x k-1 ) + B x k+1 + β b h (x k+1 -x k ) = 0. (4.39) 
This scheme is implicit in terms of the nonpotential B but explicit in terms of the potential operator ∇f . When B = 0, we may anticipate the algorithm's gradient-like structure to yield convergence results if the step size h is small enough. After expanding (4.39), we obtain

(1 + γh)(x k+1 -x k ) + h 2 B x k+1 + β b h (x k+1 -x k ) = (x k -x k-1 ) -h 2 ∇f x k + β f h (x k -x k-1 ) . (4.40) 
Set α := 1 + β b h . After arranging (4.40), we obtain equivalently

x k+1 = α -1 α x k + 1 α (Id + αh 2 1 + γh B) -1 (ξ k ), with ξ k = x k + α 1 + γh (x k -x k-1 ) -h 2 ∇f x k + β f h (x k -x k-1
) .
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We thus obtain the following algorithm.

(iDINAAM-split) :

Initialize :

x 0 ∈ H, x 1 ∈ H α = 1 + β b h , ξ k = x k + α 1 + γh (x k -x k-1 ) - αh 2 1 + γh ∇f x k + β f h (x k -x k-1 ) , x k+1 = α -1 α x k + 1 α Id + αh 2 1 + γh B -1 (ξ k ).
Here, (iDINAAM) stands for Implicit Dynamic Inertial Newton Algorithm for Additively structured Monotone problems. Theorem 4.4.1 Let B : H → H be a λ-cocoercive operator and f : H → R a differentiable convex function whose gradient is L-Lipschitz continuous. Suppose the positive parameters

λ, γ, β b , β f satisfy 0 < h < 2 Lβ f , γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) . (4.41) 
Then, the sequence (x k ) generated by the algorithm (iDINAAM-split) has the following properties :

(i) (x k ) converges weakly to an element in S ;

(ii) lim k→∞ ∇f (x k ) -∇f (p) = 0, lim k→∞ B(x k ) -B(p) = 0 ; (iii) ∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (p) 2 < +∞, ∞ k=1 B (x k ) -B(p) 2 < +∞
where ∇f (p), B(p) are independent of the choice of p ∈ S.

Proof The discrete energy. Take p ∈ S. Let us consider the sequence (E k ) defined for all k ≥ 1 by

E k := 1 2 (x k -p) + β f h (x k -x k-1 ) 2 + δ 2 x k -p 2
, where δ is an adjustable positive coefficient. For each k ≥ 1, E k can be rewritten as follows :

E k = 1 2 v k 2 + δ 2 x k -p 2 , with v k := x k -p + β f h (x k -x k-1 ).
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v k+1 -v k = x k+1 -x k + β f h (x k+1 -2x k + x k-1 ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f x k + β f h (x k -x k-1 ) -hβ f B x k+1 + β b h (x k+1 -x k ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f (y k ) -hβ f B(z k ),
where we write shortly

y k := x k + β f h (x k -x k-1 )
,

z k := x k+1 + β b h (x k+1 -x k ).
Therefore, for k ≥ 1, we have

1 2 v k+1 2 - 1 2 v k 2 = - 1 2 v k+1 -v k 2 + v k+1 -v k , v k+1 = - 1 2 (γβ f -1) 2 x k+1 -x k 2 - 1 2 h 2 β 2 f ∇f (y k ) + B(z k ) 2 -hβ f (γβ f -1) x k+1 -x k , ∇f (y k ) + B(z k ) (4.42) 
-x k+1 -p + β f h (x k+1 -x k ), (γβ f -1)(x k+1 -x k ) + hβ f ∇f (y k ) + hβ f B(z k ) .
Then using the elementary identity

1 2 x k+1 -p 2 - 1 2 x k -p 2 = - 1 2 x k+1 -x k 2 + x k+1 -x k , x k+1 -p . (4.43) 
Take δ = γβ f -1. As the result of the first condition on the parameters, it requires that

γβ f > 1. (4.44) 
From (4.42) and (4.43), we deduce that

E k+1 -E k = - 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 - 1 2 h 2 β 2 f ∇f (y k ) + B(z k ) 2 -hβ f δ x k+1 -x k , ∇f (y k ) + B(z k ) -x k+1 -p + β f h (x k+1 -x k ), hβ f ∇f (y k ) + hβ f B(z k ) .
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According to ∇f (p) + B(p) = 0, the previous relation can be rewritten as follows

E k+1 -E k = - 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 - 1 2 h 2 β 2 f Y k + Z k 2 (4.45) -hβ f δ x k+1 -x k , Y k + Z k -hβ f x k+1 -p + β f h (x k+1 -x k ), Y k + Z k ,
where

Y k = ∇f (y k ) -∇f (p) and Z k = B(z k ) -B(p).
B is λ-cocoercive and we thus obtain

x k+1 -p + β f h (x k+1 -x k ), Z k = z k -p + 1 h (β f -β b )(x k+1 -x k ), B(z k ) -B(p) ≥ λ B(z k ) -B(p) 2 + 1 h (β f -β b ) x k+1 -x k , B(z k ) -B(p) = λ Z k 2 + 1 h (β f -β b ) x k+1 -x k , Z k .
In the same way, since ∇f is 1/L-cocoercive, using the constitutive equation (4.39), we have

x k+1 -p + β f h (x k+1 -x k ), Y k = y k -p + x k+1 -x k + β f h (x k+1 -2x k + x k-1 ), ∇f (y k ) -∇f (p) ≥ 1 L Y k 2 + x k+1 -x k + β f h (x k+1 -2x k + x k-1 ), ∇f (y k ) -∇f (p) , = 1 L Y k 2 + x k+1 -x k -γβ f (x k+1 -x k ) -hβ f ∇f (y k ) -hβ f B(z k ), ∇f (y k ) -∇f (p) = 1 L Y k 2 -δ(x k+1 -x k ) + hβ f Y k + hβ f Z k , Y k .
Combining the aforementioned relations with (4.45), then we obtain

E k+1 -E k ≤ 1 2 h 2 β 2 f - hβ f L Y k 2 - 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 -(hβ f δ + β f (β f -β b )) x k+1 -x k , Z k - 1 2 h 2 β 2 f + hβ f λ Z k 2 . (4.46) 
Equivalently,

E k+1 -E k + S k ≤ 1 2 h 2 β 2 f - hβ f L Y k 2 , (4.47) 
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S k = 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 + (hβ f δ + β f (β f -β b )) x k+1 -x k , Z k + 1 2 h 2 β 2 f + hβ f λ Z k 2 .
Acorrding to second conditions on the parameters, we ask

1 2 h 2 β 2 f - hβ f L < 0, hence that is 0 < h < 2 Lβ f . (4.48) 
Then note that

S k = q(x k+1 -x k , Z k ) > 0 if 4ag -b 2 > 0 where q : H × H → R is the quadratic form q(u, v) := a u 2 + b u, v + g v 2 ,
where

a = 1 2 δ 2 + δβ f h + 1 2 δ, b = hβ f δ + β f (β f -β b ), g = 1 2 h 2 β 2 f + hβ f λ.
The third and last condition on the parameters will be fulfilled provided that the quadratic form q is positive definite. Since both a and g are positive, the positivity of q equates to 4ag -b 2 > 0. In addition, we have

4ag -b 2 = 4 1 2 δ 2 + δβ f h + 1 2 δ 1 2 h 2 β 2 f + hβ f λ -(hβ f δ + β f (β f -β b )) 2 = β 2 f 4λδ -(β f -β b ) 2 + 2hδβ f λ(δ + 1) + β f β b + h 2 β 2 f δ ≥ β 2 f 4λδ -(β f -β b ) 2 > 0, (4.49) 
where the last inequality is a consequence of our assumptions. Hence, q is positive definite. As a result, we claim that there exist positive real numbers µ and η such that for any k ≥ 1,

E k+1 -E k + µ x k+1 -x k 2 + µ B(z k ) -B(p) 2 + η ∇f (y k ) -∇f (p) 2 ≤ 0. (4.50)
It should be noted that µ is dependent on all of the damping coefficients in the algorithm as
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Estimates. According to (4.50), the sequence of nonnegative numbers (E k ) is nonincreasing, thus being convergent. In particular, it is bounded. For this reason, we immediately deduce that

sup k (x k -p) + β f h (x k -x k-1 ) < +∞, sup k x k -p < +∞.
Moreover, by summing the inequalities (4.50), we deduce that

∞ k=1 x k -x k-1 2 < ∞, ∞ k=1 ∇f (y k ) -∇f (p) 2 < ∞, ∞ k=1 B(z k ) -B(p) 2 < ∞. (4.51) 
Elementary algebra and the Lipschitz continuity of ∇f give, for each k ≥ 1

∇f (x k ) -∇f (p) 2 ≤ ( ∇f (y k ) -∇f (p) + ∇f (x k ) -∇f (y k ) ) 2 ≤ 2 ∇f (y k ) -∇f (p) 2 + 2 ∇f (x k ) -∇f (y k ) 2 ≤ 2 ∇f (y k ) -∇f (p) 2 + 2L 2 x k -y k 2 ≤ 2 ∇f (y k ) -∇f (p) 2 + 2L 2 β 2 f h 2 x k -x k-1 2 . ( 4.52) 
According to (4.51), one has

∞ k=1 ∇f (x k ) -∇f (p) 2 < +∞.
Likewise, since B is 1/λ-Lipschitz, we consequently obtain

∞ k=1 B(x k ) -B(p) 2 < +∞.
The general term of a convergent series goes to zero, we thus deduce (ii).

Convergence of (x k ). Firstly, we show that every weak cluster point x * of the sequence Thanks to the estimate (iii), we have

∞ k=1 x k -x k-1 2 < +∞.
The general term of a convergent series always goes to zero that implies lim As a result, the two requirements of the Opial's lemma are fulfilled, which shows the convergence of (x k ).

k x k -x k-1 = 0.

Errors, perturbations

We will now examine the impact of introducing perturbations, or errors, into the algorithm (iDINAAM-split). Let us commence with the perturbed version of (iDINAM) shown below :

ẍ(t) + γ ẋ(t) + ∇f (x(t) + β f ẋ(t)) + B (x(t) + β b ẋ(t)) = e(t), (iDINAM) 
where the right-handside e(•) takes into account perturbations, or errors. Similarly, taking the temporal discretization as before gives (iDINAAM-pert) :

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k -x k-1 ) + ∇f x k + β f h (x k -x k-1 ) + B x k+1 + β b h (x k+1 -x k ) = e k . ( 4 
Initialize : Then, the sequence (x k ) generated by the algorithm (iDINAAM-pert) has the following properties (where p ∈ S) :

x 0 ∈ H, x 1 ∈ H α = 1 + β b h , ξ k = x k + α 1 + γh (x k -x k-1 ) - αh 2 1 + γh ∇f x k + β f h (x k -x k-1 ) + αh 2 1 + γh e k , x k+1 = α -1 α x k + 1 α Id + αh 2 1 + γh B -1 (ξ k ).
(i) (x k ) converges weakly to an element in S ;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 ∇f x k + β f h (x k -x k-1 ) -∇f (p) 2 < +∞, ∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇(p) 2 < +∞, ∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 B (x k ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞, and ∞ k=1 B(x k ) -B(x k-1 ) 2 < +∞; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, lim k→∞ ∇f (x k ) -∇f (p) = 0.
Proof The proof's outline is analogus to that of Theorem 4.4.1. It uses the following sequence (E k ) as a discrete energy function 

E k := 1 2 x k -p + β f h (x k -x k-1 ) 2 + δ 2 x k -p 2 ,
δ = γβ f -1, Y k = ∇f x k + β f h (x k -x k-1 ) -∇f (p), Z k = B x k+1 + β b h (x k+1 -x k ) -B(p),
for k ≥ 1 and using the same argument as in the proof of Theorem 4.4.1, we have

E k+1 -E k + S k + hβ f L - 1 2 h 2 β 2 f Y k 2 ≤ ε k , (4.54) 
where

S k = 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 + (hβ f δ + β f (β f -β b )) x k+1 -x k , Z k + 1 2 h 2 β 2 f + hβ f λ Z k 2 ,
and

ε k = hβ f x k+1 -p + β f h (x k+1 -x k ), e k + hβ f δ x k+1 -x k , e k + h 2 β 2 f ∇f (y k ) + B(z k ), e k - 1 2 h 2 β 2 f e k 2 .
As a result of an elementary inequality in Hilbert space, one has

x k+1 -x k , e k ≤ 1 2η x k+1 -x k 2 + η 2 e k 2 , (4.55) 
holds for any η > 0. Likewise, the following inequality

∇f (y k ) + B(z k ), e k = Y k + Z k , e k ≤ 1 2η 1 Y k 2 + 1 2η 2 Z k 2 + η 1 + η 2 2 e k 2 (4.56) 
is valid for any η 1 , η 2 > 0.

Moreover, applying Cauchy-Schwarz inequality, then we have 

x k+1 -p, e k ≤ x k+1 -p e k . ( 4 
E k+1 -E k + S k + hβ f L - 1 2 h 2 β 2 f - h 2 β 2 f 2η 1 Y k 2 ≤ ε k , (4.58) 
where

S k = 1 2 δ 2 + δβ f h + 1 2 δ - β 2 f + δhβ f 2η x k+1 -x k 2 + (hβ f δ + β f (β f -β b )) x k+1 -x k , Z k + 1 2 h 2 β 2 f + hβ f λ - h 2 β 2 f 2η 2 Z k 2 ,
and

ε k = 1 2 η(β 2 f + δhβ f ) + η 1 + η 2 -h 2 β 2 f e k 2 + hβ f x k+1 -p e k .
Taking η > 0 such that

1 2 δ 2 + δβ f h + 1 2 δ- β 2 f + δhβ f 2η > 0 and η(β 2 f +δhβ f )+η 1 +η 2 -h 2 β 2 f > 0. S k is a quadratic form and thus S k > 0 provided that 4 1 2 h 2 β 2 f + hβ f λ 1 2 δ 2 + δβ f h + 1 2 δ - β 2 f + δhβ f 2η -(hβ f δ + β f (β f -β b )) 2 > 0. (4.59) 
Notice that

lim h→0 + 4 1 2 h 2 β 2 f + hβ f λ 1 2 δ 2 + δβ f h + 1 2 δ - β 2 f + δhβ f 2η -(hβ f δ + β f (β f -β b )) 2 = 4β 2 f δ λ - (β b -β f ) 2 4δ > 0 (4.60) 
due to the assumption on the parameters. This ensures the existence of h ∈ 0, 2 Lβ f satisfying (4.59). Hence, there exists a positive real number µ such that for any k ≥ 1,

E k+1 -E k + µ x k+1 -x k 2 + µ B(z k ) -B(p) 2 + hβ f L - 1 2 h 2 β 2 f - h 2 β 2 f 2η 1 ∇f (y k ) -∇f (p) 2 ≤ ε k . (4.61) 
This implies that

E k+1 ≤ E 1 + 1≤i<k+1 ε i .
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Taking into account the form of the energy sequence (E k ), we obtain

δ 2 x k+1 -p 2 ≤ E 1 + 1≤i<k+1 ε i . (4.62) 
According to the assumption

∞ k=1 e k < +∞, this implies that ∞ k=1 e k 2 < +∞. Therefore, there exists C > 0 such that 1≤i<k+1 ε i ≤ hβ f 1≤i<k+1 x i+1 -p e i + C. (4.63) 
From (4.62) and (4.63), we conclude that

δ 2 x k+1 -p 2 ≤ E 1 + hβ f 1≤i<k+1 x i -p e i + C.
More precisely, let us rewrite this estimate as below

1 2 x k+1 -p 2 ≤ 1 2 C 2 0 + c 0 1≤i<k+1 x i+1 -p e i , (4.64) 
in which

C 0 = E 1 + C δ , c 0 = hβ f δ .
Now, by applying Lemma 1.3.7 to (4.64), we obtain

x k+1 -p ≤ C 0 + c 0 1≤i<k+1 e i < +∞.
Therefore, ( x k -p ) and consequently ( x k ) is a bounded sequence.

Returning to (4.63), according to the boundedness of ( x k -p ) and the assumption of (e k ), we obtain

∞ k=1 k < +∞.
The rest of the proof is similar to that of Theorem 4.4.1, so we omit here.
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A variant of the proximal-gradient algorithm

In this section, we will study a variant of the preceding proximal-gradient algorithm, in which we reverse the role of the two operators. We examine the following semi-implicit finite-difference scheme for (iDINAM) :

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + ∇f x k+1 + β f h (x k+1 -x k ) + B x k + β b h (x k -x k-1 ) = 0, (4.65) 
where h > 0 is a fixed time step. After expanding (4.65), we obtain the following algorithm.

(iDINAAM-var) :

Initialize :

x 0 ∈ H, x 1 ∈ H α = 1 + β f h , y k = x k + (h 2 -γh)(x k -x k-1 ) -h 2 B x k + β b h (x k -x k-1 ) , z k = (Id +αh 2 ∇f ) -1 (αy k -(α -1)x k ), x k+1 = 1 α (α -1)x k + 1 α z k .
Theorem 4.4.3 Let B : H → H be a λ-cocoercive operator and f : H → R be a convex differentiable function whose gradient is L-Lipschitz continuous. Suppose that the positive parameters λ, γ, β b , β f satisfy

γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) . (4.66)
Then, there exists h * such that for all 0 < h < h * , the sequence (x k ) generated by the algorithm (iDINAAM-var) has the following properties (where p ∈ S) :

(i) (x k ) converges weakly to an element in S ;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 ∇f x k + β f h (x k -x k-1 ) -∇f (p) 2 < +∞, ∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇(p) 2 < +∞,
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∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 B (x k ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞,
E k := 1 2 x k -p + β f h (x k -x k-1 ) 2 + δ 2 x k -p 2
, where δ is a positive coefficient to adjust. For each k ≥ 1, let us briefly write E k as follows :

E k = 1 2 v k 2 + δ 2 x k -p 2 , with v k := x k -p + β f h (x k -x k-1
). By definition of v k and the formula (4.65), we have

v k+1 -v k = x k+1 -x k + β f h (x k+1 -2x k + x k-1 ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f x k+1 + β f h (x k+1 -x k ) -hβ f B(x k + β b h (x k -x k-1 ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f (y k ) -hβ f B(z k ),
in which

y k = x k+1 + β f h (x k+1 -x k ), z k = x k + β b h (x k -x k-1 ).
Therefore, for k ≥ 1, we have

1 2 v k+1 2 - 1 2 v k 2 = - 1 2 v k+1 -v k 2 + v k+1 -v k , v k+1 ≤ -(γβ f -1) x k+1 -p + β f h (x k+1 -x k ), x k+1 -x k -x k+1 -p + β f h (x k+1 -x k ), hβ f ∇f (y k ) + hβ f B(z k ) . (4.67)
Using the elementary identity, one has

1 2 x k+1 -p 2 - 1 2 x k -p 2 = - 1 2 x k+1 -x k 2 + x k+1 -x k , x k+1 -p . (4.68) 
Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping Take δ = γβ f -1. Then, from (4.67) and (4.68), we deduce that

E k+1 -E k ≤ - δβ f h + 1 2 δ x k+1 -x k 2 -x k+1 -p + β f h (x k+1 -x k ), hβ f ∇f (y k ) + hβ f B(z k ) .
Notice that ∇f (p) + B(p) = 0. Thus, we can rewrite the previous relation as follows

E k+1 -E k ≤ - δβ f h + 1 2 δ x k+1 -x k 2 -hβ f x k+1 -p + β f h (x k+1 -x k ), Y k + Z k ,
where

Y k = ∇f (y k ) -∇f (p) and Z k = B(z k ) -B(p).
Since B is λ-cocoercive, we have

x k+1 -p + β f h (x k+1 -x k ), Z k = z k -p + (1 + 1 h (β f -β b ))(x k+1 -x k ), B(z k ) -B(p) ≥ λ B(z k ) -B(p) 2 + (1 + 1 h (β f -β b )) (x k+1 -x k ), B(z k ) -B(p) = λ Z k 2 + (1 + 1 h (β f -β b )) (x k+1 -x k ), Z k ,
Moreover, due to ∇f is 1/L-cocoercive, we deduce that

x k+1 -p + β f h (x k+1 -x k ), Y k = y k -p, ∇f (y k ) -∇f (p) ≥ 1 L ∇f (y k ) -∇f (p) 2 .
(4.69)

This implies

E k+1 -E k ≤ - δβ f h + 1 2 δ x k+1 -x k 2 + (-hβ f -β f (β f -β b )) x k+1 -x k , Z k -hβ f λ Z k 2 - hβ f L Y k 2 .
Equivalently,

E k+1 -E k + hβ f L Y k 2 + S k ≤ 0, (4.70) 
where

S k = δβ f h + 1 2 δ x k+1 -x k 2 + (hβ f + β f (β f -β b )) x k+1 -x k , Z k + hβ f λ Z k 2 .
Our aim is to seek h > 0 such that S k > 0. Let us observe that q : H × H → R Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping is a quadratic form

q(u, v) := a u 2 + b u, v + g v 2 , with a = δβ f h + 1 2 δ, b = hβ f + β f (β f -β b ), g = hβ f λ. Then, S k = q(x k+1 -x k , Z k ) > 0 if 4ag -b 2 > 0. One has, 4ag -b 2 = 4 δβ f h + 1 2 δ hβ f λ -(hβ f + β f (β f -β b )) 2 = 4 δβ f + 1 2 hδ β f λ -(hβ f + β f (β f -β b )) 2 .
Hence,

lim h→0 + (4ag -b 2 ) = β 2 f (4λδ -(β f -β b ) 2 ) > 0 since 4λδ > (β f -β b ) 2 .
This implies there exists h * > 0 such that for all h ∈ (0, h * ), we have S k > 0. Therefore, under the above condition, and by taking h sufficiently small, there exist positive real numbers µ and η such that for all k ≥ 1,

E k+1 -E k + µ x k+1 -x k 2 + µ B(z k ) -B(p) 2 + η ∇f (y k ) -∇f (p) 2 ≤ 0. (4.71)
The remain of the proof is analogous to Theorem 4.4.1's one, so we omit it.

Numerical illustrations

The main purpose of this section is to implement our algorithms to numerically compute the trajectory of the dynamical system (iDINAM). For further applications, we refer the reader to [4], [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF]. Before starting, we recall that a broad and successful method to generate monotone cocoercive operators even if they are not gradients of convex functions is to take Yosida approximation A λ of a linear skew symmetric operator A. For more details, we refer the reader to Remark 3.6.1. Example 4.5.1 We start with a simple illustrative example in R 2 . We take H = R 2 endowed with the usual Euclidean structure. Let B be a linear operator whose matrix in the canonical basis of R 2 is given by B = A λ for λ = 5. Thanks to the previous remark, we Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping can conclude that B is λ-cocoercive and nonpotential. To observe the classical oscillations, in the heavy ball with friction, we take f : R 2 → R defined by

f (x 1 , x 2 ) = 10x 2 2 .
It is obvious that f is convex but not strongly convex. We set γ = 0.9 and consider the dynamical system (iDINAM) which γ, f, and B have already defined before. As a straightforward application of Theorem 4.3.1, we obtain that the trajectory x(t) generated by (iDINAM) converges to x ∞ , where x ∞ ∈ S = (B + ∇f ) -1 (0) = {0} provided that the positive parameters β b , β f fulfill the following constraits

γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) .
The trajectory obtained by using Matlab is depicted in Figure 4.1, where we represent the components x 1 (t) and x 2 (t) in red and blue respectively. x 1 (t) x 1 (t) x 1 (t) trajectories. These oscillations appear whenever β f goes to 0, that is depicted obviously in It is shown that under certain conditions on the parameters, namely

x 2 (t) (a) Case β b = 1, β f = 2.
x 2 (t) (b) Case β b = 2, β f = 2.
x 2 (t) (c) Case β b = 2, β f = 0.
β f > 0 and 4λγ > (β b -β f ) 2 β f + 2 β b + 1 γ + 2 β b + 1 γ 2 + (β b -β f ) 2 γβ f , (4.72) 
then any trajectory generated by (DINAM) converges weakly towards an element of the set S = (∇f + B) -1 (0). Morover, in [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF], the authors proposed some algorithms to find the zeros of ∇f + B. Since our research is in line with that and provides similar results, it is relevant to compare these different types of algorithms. Following the same framework on B and γ as in the previous example and replacing f by f (x) = 5x 2 1 + 10x 2 2 , let us make a comparison of their numerical performance. Figure 4.4a shows the norm of the objective function ∇f (x k )+B(x k ) on a logarithmic scale for each iteration k when we apply our algorithms, namely (iDINAAM-split), (iDINAAMvar) and (DINAAM-split) proposed in [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF]. A numerical comparison among the norms of x k -x ∞ (x ∞ is a zero of ∇f + B) is illustrated in Figure 4.4b as well. We can see that (iDINAAM-split) and (iDINAAM-var) gave the same numerical results while (DINAAM-split) did better in the long term in this case. 

Conclusion and perspectives

We devoted a significant amount of work to this thesis, namely in Chapters 2 -4, finding and designing new algorithms to solve additively structured monotone problems of type

Find x ∈ H : ∇f (x) potential + B(x) nonpotential = 0
by examining temporal discretization of the associated dynamics (DINAM) and (iDINAM).

The gradient of a continuously differentiable convex function f plays as the potential component, while the nonpotential one is a monotone and cocoercive operator B. Specifically, the entire Chapter 4 was designed to address two aspects of (iDINAM) : continuous and discrete cases. The well-posedness of the Cauchy problem, as well as the asymptotic convergence characteristics of the trajectories generated by the continuous dynamic, were demonstrated in continuous analysis. Furthermore, the convergence was carried out using the parameters β f and β b related to the geometric dampings, as well as the parameters γ and λ. Lastly, in the algorithmic section, we propose efficient methods for solving structured monotone inclusions. The algorithm (iDINAAM-split) and its variations add to the library of algorithms for solving additively structured monotone problems.

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization T he accelerated gradient method, developed by Nesterov in 1983 ([61], [START_REF] Nesterov | Introductory Lectures on Convex Optimization : Basis course[END_REF]), which reduces the theoretical convergence rate (for function values) from O(1/k) (of the standard gradient method) to O(1/k 2 ), is now recognized as one of the most powerful firstorder methods for solving smooth convex optimization problems. This acceleration scheme was extensively developed for solving composition convex optimization problems of the form (5.1), in which the objective function is represented by the sum of a smooth convex function and a nonsmooth convex function (see [START_REF] Kim | Optimized first-order methods for smooth convex minimization[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization : Basis course[END_REF][START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF][START_REF] Nesterov | Universal Gradient methods for convex optimization problems[END_REF] and the references given therein).

In this chapter, we focus on studying the problem of minimizing the objective function including the sum of two convex functions f and Φ, in which f is differentiable and relatively smooth to convex function h, and Φ is possibly non-differentiable but simple to optimize. The generalized Nesterov's accelerated proximal gradient algorithm (GAPGA) proposed in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF] gives us a better convergence rate to solve the optimization problem when f is uniform smooth, i.e. ∇f is supposed to be Lipschitz continuous. While the uniform smoothness condition plays a central role in the development and analysis of first-order methods, there are many applications where the objective function does not have this property, despite being convex and differentiable [START_REF] Hanzely | Accelerated Bregman proximal gradient methods for relatively smooth convex optimixation[END_REF]. Therefore, we aim to investigate the algorithms introduced in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF] in case of f is relatively smooth and propose a method that employs the Bregman distance of the reference function instead of euclidean distance.

This chapter constitutes the subject of the joint work in collaboration with S. Adly and H.V. Ngai.

Introduction and preliminary results

Composition convex optimization problem

Let R n be the n-dimensional real euclidean space endowed with the scalar product •, • and norm • . We consider the composition convex optimization problem of the form

min{f (x) + Φ(x) : x ∈ C}, (5.1) 
where C is a closed convex set in R n , Φ : R n → R∪{+∞} is a proper, lower-semicontinuous, and convex function and f : R n → R is a continuously differentiable, convex function whose gradient is L-Lipschitz continuous on dom Φ, for some L > 0, that is, ∇f (x) -∇f (y) ≤ L x -y , ∀x, y ∈ domΦ.

(5.2)

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization First-order methods for solving (5.1) are based on the idea of minimizing a simple approximation of the objective function for each iteration. Particularly, in the proximal gradient method, we begin with an initial point x 0 belonging to the relative interior of a closed convex set C in R n and generate a sequence x k for k = 1, 2, . . . with

x k+1 = argmin x∈C {f (x k ) + ∇f (x k ), x -x k + L k 2 x -x k 2 + Φ(x)}, (5.3) 
where L k > 0 for all k ≥ 0.

In the scope of our research, we restrict ourselves to the case C = R n . However, these theoretical results presented in this chapter can be extended for any closed convex set C in R n provided that f is differentiable on an open set containing the relative interior of C (denoted as rintC or rint(C)).

Related works and outline

The accelerated gradient method proposed by Nesterov in 1983 ([61], [START_REF] Nesterov | Introductory Lectures on Convex Optimization : Basis course[END_REF]) is truly a prior step to designing efficient first-order methods for solving smooth convex optimization problems. Based on this acceleration scheme, many algorithms were developed extensively for solving composition convex optimization of the form (5.1) in which the objective function is represented by the sum of two convex functions including a smooth and a nonsmooth one. Especially, by combining the forward-backward method with Nesterov's acceleration scheme, Beck-Teboulle ( [START_REF] Beck | A fast iterative shinkage-thresholding algorithm for linear inverse problems[END_REF]) have proposed the fast iterative shrinkagethresholding algorithm (FISTA) for solving (5.1) which has many applications, for example, image processing. Later, in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF] (see also [START_REF] Attouch | Convergence rate of proximal inertial algorithms associated with Moreau envelopes of convex functions[END_REF]), Attouch-Peypouquet have shown that the convergence rate of the accelerated forward-backward method is actually o(1/k 2 ) rather than O(1/k 2 ).

Recently, the authors in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF] continued to generalize the Nesterov's accelerated schemes (see [START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF]) and have proposed the new schemes with the convergence rate for the function values attaining the order o(1/k 2 ) for the convex case. For the p-uniformly convex case with p > 2, the convergence rate is O ln k/k 2p/(p-2) and when the objective function is strongly convex, the convergence is linear.

To obtain such good performance, the gradient of f is assumed to be uniformly Lipschitz, i.e., there exists a constant L satisfying (5.2). The uniform smoothness condition (5.2) plays a key role in the development of first-order methods, however, there are many problems where the objective function does not satisfy this property, even if it is convex and differentiable. For example, the gradient of the objective function in D-optimal experiment design (e.g., [START_REF] Kiefer | Optimal design in regression problems[END_REF][START_REF] Atwood | Optimal and eficient designs of experiments[END_REF]) involving the logarithm in the form of log-determinant might blow (ii) D h (x, y) is convex in x for fixed y ;

(iii) D h is not symmetric in general. Thus, in order to emphasize lack of symmetry, D h is also called a directed distance or divergence.

We can see that for h(x) = 1 2 x 2 one has D h (x, y) = 1 2 x -y 2 . Therefore, it is natural for us to replace the squared euclidean distance with a Bregman distance. Below are some specific Bregman distances :

-The generalized Kullback-Leibler (KL) divergence. Let h be the negative Boltmann-Shannon entropy given by

h(x) = n i=1 x (i) log x (i) ,
which is defined on R n + . The Bregman distance associated with h is

D KL (x, y) = n i=1
x (i) log x (i) y (i) -x (i) + y (i) .

-The Itakura-Saito (IS) distance. The IS distance is the Bregman distance associated to Burg's entrophy h(x) = -n i=1 log(x (i) ) with domh = R n ++ . And

D IS (x, y) = n i=1 -log x (i) y (i) + x (i) y (i) -1 .
-Logistic loss divergence. By taking h(x)

= n i=1 (x (i) log x (i) + (1 -x (i) ) log(1 -x (i) )),
then the Bregman distance is given by The function f is called L-smooth relative to h on C if there exists an L > 0 such that f (x) ≤ f (y) + ∇f (y), x -y + LD h (x, y), ∀x ∈ C, y ∈ rintC.

D LL (x, y) = n i=1 x (i) log x (i) y (i) + (1 -x (i) ) log 1 -x (i) 1 -y (i) .
The function f is said to be µ-strong convex relative to h on C if f (x) ≥ f (y) + ∇f (y), x -y + µD h (x, y), ∀x ∈ C, y ∈ rintC, for some µ > 0.

As shown in [START_REF] Bauschke | A descent Lemma beyond Lipschitz gradient continuity : first-order method revisited and applications[END_REF] and [START_REF] Lu | Relatively smooth convex optimization by first-order methods, and applications[END_REF], the relative smoothness is equivalent to the following statements :

-Lh -f is a convex function on rintC.

-If both f and h are twice differentiable, then ∇ 2 f (x) L∇ 2 h(x) for all x ∈ rintC.

-∇f (x) -∇f (y), x -y ≤ L ∇h(x) -∇h(y), x -y for all x, y ∈ rintC.

It is obviously that if ∇f is L-Lipschitz continous, then f is L-smooth relative to h = 1 2 • 2 as well. That motivates us to replace the squared euclidean distance in (5.3) with a Bregman distance :

x k+1 = argmin x∈C {f (x k ) + ∇f (x k ), x -x k + L k D h (x, x k ) + Φ(x)}.
(5.4)

In [START_REF] Hanzely | Accelerated Bregman proximal gradient methods for relatively smooth convex optimixation[END_REF], the authors have proposed an accelerated proximal gradient method with Bregman distances which satisfy a called triangle scaling property : There is some γ > 0 such that for all x, z, z ∈ rintdomh,

D h ((1 -θ)x + θz, (1 -θ)x + θz) ≤ θ γ D h (z, z). (5.5) 
We call γ a (uniform) triangle scaling exponent (TSE) of D h . Let h(x) = 1 2

x 2 and

D h (x, y) = 1 2 x -y 2 . It is easy to check that D h ((1 -θ)x + θz, (1 -θ)x + θz) = 1 2 (1 -θ)x + θz -(1 -θ)x -θz 2 = θ 2 2 z -z 2 = θ 2 D h (z, z).
Thus, the squared euclidean distance has triangle scaling property with γ = 2.

Though the γ uniform triangle scaling exponent is a crucial property in our framework, it is not easy to determine γ TSE of the Bregman distance in general. If D h (x, y) is jointly
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D h ((1 -θ)x + θz, (1 -θ)x + θz) ≤ (1 -θ)D h (x, x) + θD h (z, z) = θ γ D h (z, z).
Hence, it is essential to study jointly convex Bregman distances. The following proposition gives us a criterion to check that if the Bregman distance is jointly convex. 

D h ((1 -θ)x + θz, (1 -θ)x + θz) θ γ < +∞.
In [START_REF] Hanzely | Accelerated Bregman proximal gradient methods for relatively smooth convex optimixation[END_REF], the authors showed that a board family of Bregman distances share the same intrinsic γ in = 2.

Our study will benefit from recent progress concerning Nesterov's accelerated proximal gradient algorithm linked to the Bregman distance of the reference function as the proximity measure. In this chapter, we will present a generalized variant of Nesterov's accelerated proximal gradient method for solving composition convex optimization in which the reference function h : R n → R is convex but not neccessary strongly convex and the key estimate f (x) ≤ f (y) + ∇f (y), x -y + L 2 x -y 2 satisfied by the smoothness assumption on f is replaced with

f (x) ≤ f (y) + ∇f (y), x -y + LD h (x, y), ∀x ∈ domh, y ∈ rintdomh.
We aim to finding another generalized method to solve (5.1) in case f is smooth relative. To meet our expectation, we will investigate and promote the Generalized Nesterov's accelerated proximal gradient algorithm (GAPGA) introduced in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF] by replacing the squared euclidean distance in that algorithm with a Bregman one. After that we introduce a generalized accelerated forward-backward algorithm including Bregman distance.
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In this work, we consider Bregman distances with a Hölderian triangle scaling property which is more general than (5.5), defined as follows. Definition 5.1.4 Let h be a strictly convex function that is differentiable on rint(domh).

The Bregman distance D h has the Hölderian relaxed triangle scaling property if there are some η 1 ∈ (0, 2], η 2 ∈ (0, 1], and M > 0 such that such that for all x, z, z ∈ rintdomh,

θ ∈ [0, 1], D h ((1 -θ)x + θz, (1 -θ)x + θz) ≤ M θ η 1 D h (z, z) η 2 .
(5.6)

We shall call (η 1 , η 2 ), the (Hölderian) triangle scaling exponent pair (TSE) of D h .

The following lemma gives sufficient conditions to guarantee the property (5.6). Lemma 5.1.1 Let h be a convex function which is differentiable on rintdomh. Suppose that the following two conditions are satisfied :

(i) h is uniformly convex of order p ≥ 2.

(ii) The gradient ∇h is Hölderian on rintdomh with exponent ν ∈ (0, 1] :

∇h(x 1 ) -∇h(x 2 ) ≤ a x 1 -x 2 ν ,
for all x 1 , x 2 ∈ rintdomh, for some a > 0. Then the Bregman distance D h associated to h verifies the Hölderian triangle scaling property with the exponent pair η 1 = 1 + ν,

η 2 = (1 + ν)/p.
Proof. For x, z, z ∈ rintdomh, θ ∈ [0, 1], by the mean value theorem, we can find ξ ∈

[(1 -θ)x + θz, (1 -θ)x + θz] such that D h ((1 -θ)x + θz, (1 -θ)x + θz) = h((1 -θ)x + θz) -h(1 -θ)x + θz) -θ ∇h(1 -θ)x + θz), z -z = θ ∇h(ξ) -∇h(1 -θ)x + θz), z -z .
Using (ii), it implies that

D h ((1 -θ)x + θz, (1 -θ)x + θz) ≤ aθ ∇h(ξ) -∇h(1 -θ)x + θz) z -z ≤ aθ 1+ν z -z 1+ν .
On the other hand, as h is uniformly convex of order p, there is ρ > 0 such that D h (z, z) ≥ ρ z -z p , so one has

D h ((1 -θ)x + θz, (1 -θ)x + θz) ≤ M θ 1+ν D h (z, z) (1+ν)/p ,
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1.

Find

x k = argmin{Φ(x) + ∇f (y k ), x -y k + 1 κ D h (x, y k ) : x ∈ R n } (5.9) 2. Find z k = argmin x∈R n F k (x). 3. Set Ψ z k is a lower support function to Φ at z k such that min x∈R n F k (x) = min x∈R n {G k-1 (x) + α k [f (y k ) + ∇f (y k ), x -y k + Ψ z k (x) + µγ i D h (x, y k )]}. 4. Set τ k = α k+1 A k+1 -B k , y k+1 = τ k z k + (1 -τ k )x k . 5. Set G k (x) = G k-1 (x)+α k [f (y k )+ ∇f (y k ), x-y k +Ψ z k (x)+µγ k D h (x, y k )], x ∈ R n ; F k+1 (x) = G k (x) + α k [f (y k ) + ∇f (y k ), x -y k + Φ(x) + µγ k D h (x, y k )], x ∈ R n .
By the definition of the functions F k , G k in the algorithm, one has for all k ∈ N, 

F k (x) = CD h (x, y 0 ) + k-1 i=0 α i [f (y i ) + ∇f (y i ), x -y i + Ψ z i (x) + µγ i D h (x, y i )] + α k [f (y k ) + ∇f (y k ), x -y k + Φ(x) + µγ k D h (x, y k )], x ∈ R n , (5.10) 
G k (x) = CD h (x, y 0 ) + k i=0 α i [f (y i ) + ∇f (y i ), x -y i + Ψ z i (x) + µγ i D h (x, y i )]. ( 5 
Ψ z k (x) := z * k , x -z k + Φ(z k ), x ∈ R n , (5.12) 
where z

* k ∈ ∂Φ(z k ) such that ∂G k-1 (z k ) + α k [∇f (y k ) + z * k ] + µγ k [∇h(z k ) -∇h(y k )] = 0. (5.13)
The existence of such z * k is guaranteed from Step 2 of the algorithm. This remark allows us to derive the two useful variants of Algorithm 1 as follows. Firstly, for all k ∈ N, one takes Ψ z k := Φ, then Algorithm 1 gives a Bregman accelerated dual averaging algorithm which generalizes the one by Nesterov ([63,[START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF]). Secondly, consider for all iterations k ∈ N, Ψ z k is defined by (5.12). At the current iteration k, for the next iteration k + 1, there is some z

* k+1 ∈ ∂Φ(z k+1 ) such that ∂G k (z k+1 ) + α k+1 [∇f (y k+1 ) + z * k+1 ] + µγ k+1 [∇h(z k+1 ) -∇h(y k+1 )] = 0. (5.14) 
Since

∂G k (z k+1 ) = ∂G k-1 (z k+1 ) + α k [∇f (y k ) + z * k ] + µγ k [∇h(z k+1 ) -∇h(y k )] = ∂G k-1 (z k ) + C + µ k-1 i=0 γ i [∇h(z k+1 ) -∇h(z k )] +α k [∇f (y k ) + z * k ] + µγ k [∇h(z k+1 ) -∇h(y k )]
,

Relations (5.13), (5.14) imply

α k+1 [∇f (y k+1 ) + z * k+1 ] + C k [∇h(z k+1 ) -∇h(z k )] + µγ k+1 [∇h(z k+1 ) -∇h(y k+1 )] = 0,
where

C k := C + µ k-1 i=0 γ i , k ∈ N.
Obviously, this relation is equivalent to

z k+1 = argmin x∈R n Φ(x) + ∇f (y k+1 ), x + 1 α k+1 [C k D h (x, z k ) + µγ k+1 D h (x, y k+1 )] .
(5.15) So one obtains the following algorithm as a particular case of Algorithm 1 :
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For k = 0, 1, 2, ..., setting C 0 := C, 1.

x k = argmin{Φ(x) + ∇f (y k ), x -y k + 1 κ D h (x, y k ) : x ∈ R n }; 2. C k+1 = C k + µγ k+1 , z k+1 = argmin x∈R n Φ(x) + ∇f (y k+1 ), x + 1 α k+1 [C k D h (x, z k ) + µγ k+1 D h (x, y k+1 )] .
3.

τ k := α k+1 A k+1 -B k , y k+1 = τ k z k + (1 -τ k )x k .
In particular, when µ = 0, the sequence {z k } defined recurrently in step 2 of Algorithm 1.1 is given simply as

z k+1 = argmin x∈R n Φ(x) + ∇f (y k+1 ), x + C α k+1 D h (x, z k ) .
(5.16)

The following proposition is useful in our analysis. Proposition 5.2.1 Let assumptions (A1) -(A4) hold. Suppose that {z k } is the sequence defined by Algorithm 1. Then for any k ∈ N, one has

G k (x) ≥ min x∈R n G k (x) + s k D h (x, z k ) for all x ∈ R n ,
where G k is given by (5.11), and

s k = C + k i=0 α i µγ i .
(5.17)
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Proof. Let Γ k be a function on R n given by

Γ k (x) = G k (x) -G k (z k ) -s k D h (x, z k ).
By the definition of the Bregman distance, it yields

Γ k (x) = C ∇h(z k ) -∇h(y 0 ), x -z k + k i=0 α i (Ψ z i (x) -Ψ z i (z k )) (5.18) + k i=0 α i (∇f (y i ) + µγ i (∇h(z k ) -∇h(y i )), x -z k . (5.19)
Since z k is a minimizer of G k , one deduces that there are

u i ∈ ∂Ψ z i (z k ), such that C(∇h(z k ) -∇h(y 0 )) + k i=0 α i [∇f (y i ) + u i + µγ i (∇h(z k ) -∇h(y i ))] = 0. (5.20) 
Substituting (5.20) into (5.18) and rearranging the terms, we obtain

Γ k (x) = k i=0 α i (Ψ z i (x) -Ψ z i (z k ) -u i , x -z k ). (5.21) 
As Ψ z i , i = 0, . . . , k are convex functions, we conclude that Γ k (x) ≥ 0 for all x ∈ R n . Consequently,

G k (x) ≥ min x∈R n G k (x) + s k D(x, z k ) for all x ∈ R n .
Theorem 5.2.1 Suppose that the assumptions (A1) -(A4) hold. Let (x k ) and (y k ) be the sequences generated by Algorithm 1. With respect to η 2 ∈]0.1], define the quantities σ 1 , σ 2 , β as follows.

-If η 2 = 1, then σ 1 := 1 and σ 2 := β = 0;

-otherwise η 2 ∈]0, 1[, σ 1 = σ 2 := β β/(β+1) β + 1 , β := η 2 1 -η 2 .
Suppose that 0 < κ < 1/L and the sequences {α k }, {β k }, {γ k } verify the following condition for a sequence of positive reals {ε k } with ε k ∈]0, 1], and ε Then, for all k ∈ N, one has

0 < M σ 1 , C + µ k-1 i=0 α i γ i (A k -B k-1 ) η 1 -1 ≥ M σ 1 κ -1 α η 1 k ε -1 k , for all k ∈ N. ( 5 
k i=0 β i [f (x i ) + Φ(x i )] + (A k -B k )[f (x k ) + Φ(x k )] +(κ -1 -L) k i=0 (A i -B i-1 )D h (x i , y i ) ≤ min x∈R n F k (x) + M κ -1 σ 2 k-1 i=0 τ η 1 i ε β i (A i+1 -B i ).
(5.23)

Here, we set B -1 = 0. Moreover, if f is µ-strongly convex relative to h for some 0

< µ ≤ κ -1 , then (5.23) holds if γ k = 1, k ∈ N and C + µ k-1 i=0 α i (A k -B k-1 ) η 1 -1 ≥ M σ 1 (κ -1 -µ)α η 1 k ε -1 k , for all k ∈ N. (5.24) 
Proof. Now, we prove (5.23) by induction on k ∈ N. For k = 0, one has

min x∈R n F 0 (x) = min{CD h (x, y 0 ) + α 0 [f (y 0 ) + ∇f (y 0 ), x -y 0 + Φ(x) + µγ 0 D h (x, y 0 )] : x ∈ R n } ≥ α 0 min{(C + α 0 µγ 0 )α -1 0 D h (x, y 0 ) + f (y 0 ) + ∇f (y 0 ), x -y 0 + Φ(x) : x ∈ R n } ≥ α 0 min{κ -1 M -1 D h (x, y 0 ) + f (y 0 ) + ∇f (y 0 ), x -y 0 + Φ(x) : x ∈ R n } = α 0 κ -1 M -1 D h (x 0 , y 0 ) + f (y 0 ) + ∇f (y 0 ), x 0 -y 0 + Φ(x 0 ) ≥ (κ -1 -L)α 0 D h (x 0 , y 0 ) + α 0 [f (x 0 ) + Φ(x 0 )] .
That is, (5.23) holds for k = 0. Assuming (5.23) to hold for some k ∈ N, we will prove it for k + 1. In fact, one has for x ∈ R n ,

F k+1 (x) = G k (x) + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + Φ(x) + µγ k+1 D h (x, y k+1 )].
According to Proposition 5.2.1, we have

G k (x) ≥ min x∈R n G k (x) + s k D h (x, z k ).
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F k+1 (x) ≥ min x∈R n G k (x) + s k D h (x, z k ) + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + Φ(x) + µγ k+1 D h (x, y k+1 )]. Since min x∈R n F k (x) = min x∈R n G k (x), using the induction assumption, one has for x ∈ R n , M κ -1 σ 2 k-1 i=0 τ η 1 i ε β i (A i+1 -B i ) + F k+1 (x) (5.25) ≥ k i=0 β i [f (x i ) + Φ(x i )] + (A k -B k )[f (x k ) + Φ(x k )] + (κ -1 -L) k i=0 (A i -B i-1 )D h (x i , y i ) + s k D(x, z k ) + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + Φ(x) + µγ k+1 D h (x, y k+1 )].
By the convexity of f and Φ, we have

f (x k ) ≥ f (y k+1 ) + ∇f (y k+1 ), x k -y k+1 , (5.26) 
and

(A k -B k )Φ(x k ) + α k+1 Φ(x) ≥ (A k+1 -B k )Φ(τ k x + (1 -τ k )x k ). (5.27) 
Hence, for all x ∈ R n ,

(A k+1 -B k )[f (x k ) + Φ(x k )] + s k D h (x, z k ) + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + Φ(x)] ≥ (A k+1 -B k )[f (y k+1 ) + s k (A k+1 -B k ) -1 D h (x, z k ) + τ k ∇f (y k+1 ), x -z k + Φ(τ k x + (1 -τ k )x k )].
In the view of (5.22), we have

s k (A k+1 -B k ) -1 ≥ M σ 1 ε -1 k τ η 1 k κ -1 .
By setting y : 

= τ k x + (1 -τ k )x k ,
C(A k -B k-1 ) γ-1 -α γ k /κ = C( k i=0 ai γ-1 - 1 2 k-1 i=0 ai γ-1 ) γ-1 -a γ k γ(γ-1) /κ ≥ C 1 2 k i=1 ai γ-1 γ-1 -a γ k γ(γ-1) /κ. For γ ≥ 1, one has k i=1 i γ-1 ≥ k-1 i=0 i+1 i x γ-1 dx = 1 γ k γ ; (5.36) otherwise 0 < γ < 1, k i=1 i γ-1 ≥ k+1 i=i i+1 i x γ-1 dx = 1 γ ((k + 1) γ -1) ≥ 2 γ -1 γ k γ , (5.37) 
here the last inequality is due from the fact that for γ < 1, the function ξ(t

) := (1 + t) γ -t γ is decreasing on [0, 1], so for k ≥ 1, ξ(1/k) = (1 + 1/k) γ -1/k γ ≥ ξ(1) = 2 γ -1.
Thus for a given in (5.35) (notice that C ≥ κ -1 ), one has

C 1 2 k i=1 ai γ-1 γ-1 ≥ a γ k γ /κ (5.38)
That is,

C(A k -B k-1 ) γ-1 -α γ k /κ ≥ 0.
That means such α k , β k verify the condition (5.22) with ε k = 1, for k ∈ N * . By setting x = x * in (5.23), then using the convexity of f and the definition of the support function Ψ z i ,

min x∈R n F k (x) ≤ F k (x * ) ≤ CD h (x * ) + k i=0 α i [f (x * ) + Φ(x * )]. (5.39) 
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CD h (x * , y 0 ) + k i=0 α i [f (x * ) + Φ(x * )] ≥ k i=0 β i [f (x i ) + Φ(x i )] + (A k -B k )[f (x k ) + Φ(x k )].
Equivalently,

CD h (x * , y 0 ) ≥ k i=0 β i [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] + (A k -B k )[f (x k ) + Φ(x k ) -f (x * ) -Φ(x * )].
For α k = ak γ-1 and β k = ak γ-1 2 , by estimates (5.36), (5.37), one obtains

a 2 k i=1 i γ-1 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] + aδ 2 k γ [f (x k ) + Φ(x k ) -f (x * ) -Φ(x * )] ≤ CD h (x * , y 0 ),
where δ = 1/γ, if γ ≥ 1, and δ = (2 γ -1)/γ, otherwise. This relation implies

∞ i=0 i γ-1 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] < +∞.
Therefore,

lim k→∞ k i= k/2 i γ-1 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] = 0. One has k i= k/2 i γ-1 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] ≥ min i= k/2 ,...,k k γ [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] k i=[k/2] i γ-1 k γ ≥ 1 γ 1 - 1 2 γ min i= k/2 ,...,k k γ [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )].
The last inequality holds thanks to Lemma 5.2.1. From that we deduce

lim k→∞ min i=[k/2],...,k k γ [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] = 0.
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k i= k/2 i γ-1 k γ ≥ 1 γ 1 - 1 2 γ ,
where k/2 stands for the integer part of k/2. Proof. Firstly, for γ ≥ 1,

k i= k/2 i γ-1 k γ ≥ 1 k γ k-1 i= k/2 -1 i+1 i x γ-1 dx = 1 γk γ [k γ -( k/2 -1) γ ] = 1 γ 1 - ( k/2 -1) γ k γ . For k = 2m, m ∈ N * , 1 γ 1 - ( k/2 -1) γ k γ = 1 γ 1 - 1 2 - 1 2n γ ≥ 1 γ 1 - 1 2 γ . For k = 2m + 1, then 1 γ 1 - ( k/2 -1) γ k γ = 1 γ 1 - n -1 2n + 1 γ ≥ 1 γ 1 - 1 2 γ .
In summary, for k ≥ 0,

k i= k/2 i γ-1 k γ ≥ 1 γ 1 - 1 2 γ . For 0 < γ < 1, k i= k/2 i γ-1 k γ ≥ 1 k γ k i= k/2 i+1 i x γ-1 dx = 1 γk γ [(k + 1) γ -( k/2 ) γ ] = 1 γ (k + 1) γ k γ - ( k/2 ) γ k γ .
Similarly as above, we derive the desired inequality.
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Let h be a strictly convex function defined on R n . A function ϕ : R n → R ∪ {+∞} is said to be p-uniformly convex ralative to h with parameter µ, for some µ ≥ 0, p ≥ 2, or shortly called (µ, p)-uniformly convex if for all x, y ∈ R n , λ ∈ [0, 1] one has

ϕ(λx + (1 -λ)y) ≤ λϕ(x) + (1 -λ)ϕ(y) - 2 p/2 µ p λ(1 -λ)D h (x, y) p 2 .
(5.40)

For p = 2, the function ϕ is said to be strongly convex relative to h with parameter µ.

Note that if ϕ is (µ, p)-uniformly convex, then for all x, y ∈ R n , all x * ∈ ∂ϕ(x), Let f be (µ, 2p/γ)-uniformly convex relative to h with p > γ, µ > 0. Let 0 < κ ≤ L -1 , and

x * , y -x ≤ ϕ(y) -ϕ(x) - 2 p/2 µ p D h (x * , y i ) p/2 . ( 5 
C, m > 0 such that mµκ ≥    2 2γ p-γ p γ-1 ((2-γ)p+γ 2 ) (p-γ) γ , if γ < p < γ+γ 2 γ-1 , 2 γ-1 p γ-1 ((2-γ)p+γ 2 ) (p-γ) γ , if p ≥ γ+γ 2 γ-1 , C ≥      2 2γ p-γ κ -1 p p -γ γ-1 , if γ < p < γ+γ 2 γ-1 , p-γ (2-γ)p+γ 2 mµ, if p ≥ γ+γ 2 γ-1 .
In Algorithm 1, pick α k = k p+γ p-γ , β k = 0, γ 0 = 0 and γ k = mk -γ for k ≥ 1. Then, for a minimizer x * of problem (5.8), one has

f (x k ) + Φ(x k ) -f (x * ) -Φ(x * ) ≤ 2p p -γ CD h (x * , y 0 ) + 1 2 (p/2) 2 p-γ m p p-γ ln(k + 1) k - 2p p-γ , for all k ∈ N.
Proof. The proof is considered as a generalized of the one of Corollary 2 in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF]. Let us start with the inequalities

k i=1 i α ≥ k-1 i=0 i+1 i x α dx = 1 α + 1 k α+1 , (5.42) 
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k i=1 i α ≥ k i=1 i+1 i x α dx = 1 α + 1 [(k + 1) α+1 -1], (5.43) 
if -1 < α ≤ 0. Thus, for k ≥ 1, we have

C + µ k-1 i=0 α i γ i A γ-1 k ≥ ( p -γ 2p ) γ-1 k 2p(γ-1) p-γ [C + p -γ (2 -γ)p + γ 2 mµ(k -1) (2-γ)p+γ 2 p-γ ], if γ < p < γ+γ 2 γ-1 , and if p ≥ γ+γ 2 γ-1 , C + µ k-1 i=0 α i γ i A γ-1 k ≥ p -γ 2p γ-1 k 2p(γ-1) p-γ [C + p -γ (2 -γ)p + γ 2 mµ(k (2-γ)p+γ 2 p-γ -1)].
In the view of these two inequalities, we will show the valid of (5.22) in Theorem 5.2.1. That means

( p -γ 2p ) γ-1 k 2p(γ-1) p-γ [C + p -γ (2 -γ)p + γ 2 mµ(k -1) (2-γ)p+γ 2 p-γ ] ≥ κ -1 k (p+γ)γ p-γ (5.44) 
and

p -γ 2p γ-1 k 2p(γ-1) p-γ [C + p -γ (2 -γ)p + γ 2 mµ(k (2-γ)p+γ 2 p-γ -1)] ≥ κ -1 k (p+γ)γ p-γ .
(5.45)

In fact, the inequality (5.44) can be written as

( p -γ 2p ) γ-1 k -(2-γ)p+γ 2 p-γ [Cκ + p -γ (2 -γ)p + γ 2 mµκ(k -1) (2-γ)p+γ 2 p-γ ] ≥ 1. (5.46) 
Or equivalently,

Cκ( p -γ 2p ) γ-1 k -(2-γ)p+γ 2 p-γ + ( p -γ 2p ) γ-1 p -γ (2 -γ)p + γ 2 mµκ(1 -k -1 ) (2-γ)p+γ 2 p-γ ≥ 1. (5.47)
From the conditions on the parameters, we deduce that

Cκ( p -γ 2p ) γ-1 ≥ 2 (2-γ)p+γ 2 p-γ -1 , ( p -γ 2p ) γ-1 p -γ (2 -γ)p + γ 2 mµκ ≥ 2 (2-γ)p+γ 2 p-γ -1 .
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Cρκ( p -γ 2p ) γ-1 k -(2-γ)p+γ 2 p-γ + ( p -γ 2p ) γ-1 p -γ (2 -γ)p + γ 2 mµκ(1 -k -1 ) (2-γ)p+γ 2 p-γ ≥ 2 (2-γ)p+γ 2 p-γ -1 [k -(2-γ)p+γ 2 p-γ + (1 -k -1 ) (2-γ)p+γ 2 p-γ ] ≥ 1.
Now we will deal with (5.45). It can be rewritten as

[Cκ - p -γ (2 -γ)p + γ 2 mµκ]( p -γ 2p ) γ-1 k -(2-γ)p+γ 2 p-γ + ( p -γ 2p ) γ-1 p -γ (2 -γ)p + γ 2 mµκ ≥ 1.
(5.48) The validation of (5.48) is guaranteed by the conditions on parameters. For k ≥ 1, let us define

J k := {i ∈ {1, . . . , k} : D h (x * , y i ) ≤ 1 2 (mp/2) γ p-γ i γ-2-2γ p-γ }.
Then

i∈J k α i γ i D h (x * , y i ) ≤ 1 2 (p/2) γ p-γ m p p-γ k i=1 i p+γ p-γ i -γ i γ-2-2γ p-γ (5.49) = 1 2 (p/2) γ p-γ m p p-γ k i=1 i -1
(5.50)

≤ 1 2 (p/2) γ p-γ m p p-γ (ln k + 1), (5.51) 
where the last inequality follows from the one

k i=1 i -1 ≤ 1 + k i=2 i i-1 x -1 dx = 1 + ln k. For i ∈ {1, . . . , k} \ J k , then D h (x * , y i ) > 1 2 (mp/2) γ p-γ i γ-2-2γ p-γ , therefore 2 p/γ α i p D h (x * , y i ) p γ = 2 p/γ α i p D h (x * , y i ) p γ -1 D h (x * , y i ) ≥ 2 p α i (mp/2)k -γ D h (x * , y i ) = α i γ i D h (x * , y i ).
(5.52)

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization

Returning to (5.23), by setting x = x * , we can derive that

A k [f (x k ) + Φ(x k )] ≤ min x∈R n F k (x) ≤ F k (x * ). (5.53) 
Moreover, we also have that

F k (x * ) ≤ CD h (x * , y 0 ) + k i=0 α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + µγ i D h (x * , y i )] = CD h (x * , y 0 ) + k i∈J k α i µγ i D h (x * , y i ) + k i∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * )] + k i=0,i / ∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + µγ i D h (x * , y i )] ≤ CD h (x * , y 0 ) + 1 2 (p/2) γ p-γ m p p-γ (ln k + 1) + k i∈J k α i [f (x * ) + Φ(x * )] + k i=0,i / ∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + 2 p/γ µ p D h (x * , y i ) p/γ ]. Since f is (µ, 2p/γ)-uniformly convex relative to h, k i=0,i / ∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + 2 p/γ µ p D h (x * , y i ) p/γ ] ≤ k i=0,i / ∈J k α i [f (x * ) + Φ(x * )].
Thus, , for all k ≥ 0 C(q -1) + µ(q k -1) q k+1 -1 γ-1 ≥ µq k q k+1 -1 γ-1 .

F k (x * ) ≤ CD h (x * , y 0 ) + 1 2 (p/2)
Thus, (5.59) holds true if µq k q k+1 -1 γ-1 ≥ q γk (κ -1 -µ)(q -1) γ , ∀k ∈ N.

It can be simplified to q k+1 -1 γ-1 ≥ q (γ-1)k (q -1) γ-1 , ∀k ∈ N.

Due to q > 1, the previous condition reduces to q k+1 -1 ≥ q k (q -1), ∀k ∈ N.

The last inequation holds as q = 1 + µ κ -1 -µ > 1.

According to Theorem 5.2.1, one deduces that

A k [f (x k ) + Φ(x k )] ≤ min x∈R n F k (x).
Note that f is µ-strongly convex relative to h, for all i = 1, . . . , k f (y i ) + ∇f (y i ), x -y i + µγ i D h (x, y i ) ≤ f (x), ∀x ∈ R n , therefore, F k (x) ≤ CD h (x, y 0 ) + A k [f (x) + Φ(x)]. This implies

A k [f (x k ) + Φ(x k )] ≤ min x∈R n F k (x) ≤ F k (x * ) ≤ CD h (x * , y 0 ) + A k [f (x * ) + Φ(x * )].
That shows f (x k ) + Φ(x k ) -f (x * ) -Φ(x * ) ≤ q -1 q k+1 -1 CD h (x * , y 0 ), for all k ∈ N.

We consider now the case when the Bregman distance D h satisfies the Höderian triangle property with respect to the pair of parameters (η 1 , η 2 ) with η 1 ∈]0, 2], η 2 ∈]0, 1], and Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization γ = η 1 + η 2 -1 and a > 0 will be chosen such that condition (5.22) in Theorem 5.2.1 is satisfied with a suitable sequence {ε k }. Define the parameters as in Theorem 5.2.1 :

σ 1 = σ 2 := σ = β β/(β+1) β + 1 , β := η 2 1 -η 2 .
By taking ε k = k η 2 -1 , (5.22) becomes

Ca η 1 -1 k i=1 i γ-1 η 1 -1 ≥ M σ 1 κ -1 a η 1 k (γ-1)η 1 +1-η 2 ,
or equivalently,

C k i=1 i γ-1 η 1 -1
≥ M σ 1 κ -1 ak (γ-1)η 1 +1-η 2 (5.60)

By using the estimates (5.36), (5.37) in the proof of Theorem 5.2.2 (noticing that γ(η 1 -1) = (γ -1)η 1 + 1 -η 2 ), the above inequality, so (5.22), holds provided that

0 < a ≤ Cδκ M σ
, where, δ = 1/γ γ-1 , if γ ≥ 1, δ = (2 γ -1) γ-1 /γ γ-1 , otherwise. 

(A k -B k )[f (x k ) + Φ(x k )] ≤ min x∈R n F k (x) + M κ -1 σ 2 k-1 i=0 τ η 1 i i β A i+1 ,
which implies that for a minimizer x * of problem (5.8),

A k [f (x k )+Φ(x k )-f (x * )-Φ(x * )] ≤ CD h (x * , y 0 )+M κ -1 σ 2 a η 1 k-1 i=0
(i+1) (γ-1)η 1 i β(η 2 -1) A 1-η 1 i+1 .

As A k = O(k γ ), then Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization (B3) f : R n → R is a continuously differentiable, convex function which is L-smooth relative to h on R n , for some L > 0 and a stricltly convex function h.

(B4) The Bregman distance D h has the Höderian relaxed triangle scaling property for some M > 0 and η 1 ∈ (0, 2], η 2 ∈ (0, 1], i.e., for all x, z, z ∈ rint dom h, and θ ∈ [0, 1],

D h ((1 -θ)x + θz, (1 -θ)x + θz) ≤ M θ η 1 D h (z, z) η 2 .
Before we start, let us recall some conditions on choosing parameters. For any parameters C, κ, µ > 0 and three sequences of positive reals {α k }, {β k }, {γ k } that verify the condition

A k := k i=0 α k ≥ B k := k i=0 β k , for all k ∈ N.
The algorithm is stated in the following scheme.

Algorithm 2.

Initialization : x 0 = z 0 = y 0 ∈ dom Φ. Set k = 0.

Main loop : For k = 0, 1, ...

Set

τ k = α k A k -B k-1 , y k = τ k z k + (1 -τ k )x k .

Find

x k+1 = argmin{Φ(x) + ∇f (y k ), x -y k + 1 κ D h (x, y k ) : x ∈ R n }. 

Find

C + µ k-1 i=0 α i γ i (A k -B k-1 ) η 1 -1 ≥ M σ 1 (κ -1 -µ)α η 1 k ε -1
k , for all k ∈ N.

(5.74)

Proof. We will prove ( α i γ i . This leads us

E k (x) + M κ -1 σ 2 k-1 i=0 τ η 1 i ε β i (A i -B i-1 ) = M κ -1 σ 2 k-1 i=0 τ η 1 i ε β i (A i -B i-1 ) + E k-1 (x) + α k [f (x k+1 ) + Φ(x k+1 ) - 1 κ ∇h(x k+1 ) -∇h(y k ), x -x k+1 - 1 κ D h (x k+1 , y k ) + µγ k D h (x, y k )] ≥ k-1 i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k-1 -B k-1 )[f (x k ) + Φ(x k )] + s k-1 D h (x, z k ) + α k [f (x k+1 ) + Φ(x k+1 ) - 1 κ ∇h(x k+1 ) -∇h(y k ), x -x k+1 - 1 κ D h (x k+1 , y k ) + µγ k D h (x, y k )].
In the view of Proposition 5.3.1, we have

(f + Φ)(x k ) ≥ (f + Φ)(x k+1 ) - 1 κ D h (x k+1 , y k ) - 1 κ ∇h(x k+1 ) -∇h(y k ), x k -x k+1 .
Therefore,

M κ -1 σ 2 k-1 i=0 τ η 1 i ε β i (A i -B i-1 ) + E k (x) ≥ k i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k -B k )[f (x k+1 ) + Φ(x k+1 )] + ω k (x),
where

ω k (x) := s k-1 D h (x, z k ) - A k-1 -B k-1 κ D h (x k+1 , y k ) - A k-1 -B k-1 κ ∇h(x k+1 ) -∇h(y k ), x k -x k+1 - α k κ ∇h(x k+1 ) -∇h(y k ), x -x k+1 - α k κ D h (x k+1 , y k ).
We shall show that ω k (x) ≥ -M κ -1 τ η 1 k σ 2 ε β k (A k -B k-1 ) for all x ∈ R n . Indeed, by the definition of τ k , we have that

(A k -B k-1 ) -1 ω k (x) = M s k-1 A k -B k-1 D h (x, z k ) -κ -1 D h (x k+1 , y k )
-κ -1 ∇h(x k+1 ) -∇h(y k ), (1 -τ k )(x k -x k+1 ) + τ k (x -x k+1 ) .

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization From (5.72), we deduce that

s k-1 A k -B k-1 ≥ M σ 1 ε -1 k τ η 1 k κ -1 . Hence, κ(A k -B k-1 ) -1 ω k (x) ≥ M σ 1 ε -1 k τ η 1 k κ -1 D h (x, z k ) -D h (x k+1
, y k ) -∇h(x k+1 ) -∇h(y k ), (1 -τ k )(x k -x k+1 ) + τ k (x -x k+1 ) .

By setting y = τ k x + (1 -τ k )x k , and thanks to the triangle scaling property of D h , we have

D h (y, y k ) = D h (τ k x + (1 -τ k )x k , τ k z k + (1 -τ k )x k ) ≤ M τ η 1 k σ 1 D h (x, z k )ε -1 k + σ 2 ε β k .
Thus,

κ(A k -B k-1 ) -1 ω k (x) ≥ D h (y, y k ) -D h (x k+1 , y k )
-∇h(x k+1 ) -∇h(y k ), y -x k+1 -M τ η 1 k σ 2 ε β k .

Now, using the definition of D h and the fact that h is convex, we deduce that

κ(A k -B k-1 ) -1 ω k (x)
≥ h(y) -h(x k+1 ) -∇h(y k ), y -x k+1 -∇h(x k+1 ) -∇h(y k ), y -x k+1 -M τ η 1 k σ 2 ε β k = h(y) -h(x k+1 ) -∇h(x k+1 ), y -

x k+1 -M τ η 1 k σ 2 ε β k ≥ -M τ η 1 k σ 2 ε β k .
From that, we can conclude that ω k (x) ≥ -M κ -1 τ η 1 k σ 2 ε β k (A k -B k-1 ) for all x ∈ R n . This implies

E k (x)+M κ -1 σ 2 k i=0 τ η 1 i ε β i (A i -B i-1 ) ≥ k i=0 β i [f (x i+1 )+Φ(x i+1 )]+(A k -B k )[f (x k+1 )+Φ(x k+1 )]
for all x ∈ R n . This completes the first part of the proof. The remain part is simimilar to the one in Theorem 5.2.1, so we omit here. One again, from the preceding theorem, by picking sequences of parameter in special ways such that the assumptions of Theorem 5. 

a 1 k γ-1 + b 1 ≤ β k ≤ a 2 k γ-1 + b 2 , a 3 k γ-1 + b 3 ≤ α k ≤ a 4 k γ-1 + b 4 .
Hence, for k large enough,

(A k -B k-1 ) γ-1 ≥ k i=0
(a 3 i γ-1 + b 3 ) - So there exists C 0 > 0 such that

C 0 (A k -B k-1 ) γ-1 ≥ α γ k κ -1 .
That means the condition (5.72) is satisfied for all C ≥ C 0 . For x * being a minimizer of problem (5.8), in the view of Proposition 5. order in theory, from Figure 5.1 and 5.2, we can see that Algorithm 2 gave better numerical result in this problem. Now, we consider some applications of relatively smooth convex optimization : D-optimal experiment design, Poisson linear inverse problem, and relative-entropy nonnegative regression.

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization x (i) = 1,

x (i) ≥ 0, i = 1, . . . , n.

D-optimal designs are one form of design provided by a computer algorithm. These types of computer-aided designs are particularly useful when classical designs do not apply. It was shown in [START_REF] Lu | Relatively smooth convex optimization by first-order methods, and applications[END_REF] that the function f (x) = -log det( In our this experiment, we take m = 80 and n = 200 and generate n random vectors in R m , where the vector entries were generated using independent Gaussian distributions with a zero mean and unit variance. Figure 5.3 shows the comparison of different algorithms on another random problem. All algorithms we used converge. From this we can see that our two methods give equivalently numerical results while Primal Gradient Scheme (for short PGS) which was proposed in [START_REF] Lu | Relatively smooth convex optimization by first-order methods, and applications[END_REF] gives a better numerical experiment.
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To finish this section, we continue to consider two problems in which we can apply our algorithms to solve them numerically.

Poisson linear inverse problem

Given a nonnegative observation matrix A ∈ R m×n 

(i) a (n) i a i x + a (n) i         
.

In our algorithms, we should find

x k+1 = argmin{Φ(x) + ∇f (y k ), x -y k + 1 κ D h (x, y k ) : x ∈ R n + }.
The optimality condition leads us re + ∇f (y k ) + 1 κ (∇h(x k+1 ) -∇h(y k )) = 0.

Then, we can compute x k+1 effectively. In our experiment, we take m = 40 and n = 100 servered as the size of the problem and generated n random vectors in R m , where the entries of the vectors were generated following independent Gaussian distributions with This time, we vary the parameter µ while applying our methods, namely we took µ = 0, µ = 1 and µ = 10. From this, it can be concluded that the choice of parameters also effects the numerical results. Figure 5.5b indicates that µ = 0 is not a good choice in that instance problem. 

Conclusion and perspectives

Until now, we have proposed the two generalized accelerated proximal gradient schemes in the framework of the Bregman distances for solving the composition convex problem (5.1).

The convergence rate and some initial computational results demonstrate the efficiency of the proposed algorithms in the theoretical and computational aspects. However, we have not yet considered adaptive versions of the algorithms when the parameter of the relative smoothness and the triangle scaling exponents of the associated Bregman distance are not known priorly. This issue and the applications of the algorithms for solving large-scale problems in practice will be challenging topics in future works.

6

Conclusions & Perspectives

This thesis aimed to analyze inertial dynamics and associated algorithms for first-order optimization. Overall, we devoted ourselves to studying the continuous inertial dynamics, which involve dampings controlled by the Hessian of f and a Newton-type correction term attached to B.

The continuous dynamics part reported in chapters 2 -4 dealt with two different secondorder dynamics, known as (DINAM) and (iDINAM). For each model, we have shown the well-posedness of the solution and its weak convergence. These results relied on the Lyapunov analysis and the appropriate setting of damping parameters. The proofs and techniques are original due to the presence of the nonpotential term.

For the algorithmic part, we have proposed several brand-new algorithms that aim to find the zeros of an operator A = ∇f + B, where ∇f is the gradient of a differentiable convex function f , and B is a nonpotential monotone and cocoercive operator. This part is a continuation and enhanced version of the continuous case. Our contribution is to combine these two aspects within the same algorithms and design inertial algorithms for structured monotone inclusions involving potential and nonpotential terms (skew-symmetric operators as a typical instance). As a sequel, this is fundamental for numerical reasons and modeling in engineering and decision sciences, whose processes involve cooperative and noncooperative aspects. Furthermore, our Lyapunov analysis emphasized the nonsymmetrical role played 
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Definition 1 . 3 . 3

 133 A subset C of R n is called convex if for each x, y ∈ C and for each λ ∈ [0, 1] we have λx + (1 -λ)y ∈ C, i.e.the closed line seqment [x, y] ⊂ C whenever x, y ∈ C. Definition 1.3.4 Let f : R n → R ∪ {+∞} be an extended real-valued function. The effective domain of f is defined by

Definition 1 . 3 . 6 Chapter 1 -

 1361 Let S ⊂ R n . The affine hull or affine span of a set S in Euclidean space R n is the smallest affine set containing S, or equivalently, the intersection of all affine sets containing S. Definition 1.3.7 The relative interior of a set S denoted rint(S) is defined as its interior Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Introduction and mathematical background within the affine hull of S. Definition 1.3.8 A proper function f : R 2 → R is said to be convex if f (λx + (1 -λ)y) ≤ λf (x) + (1 -λ)y,

Lemma 1 . 3 . 3

 133 Let 1 ≤ p < ∞ and 1 ≤ r ≤ ∞. Suppose that u ∈ L p ([0, ∞[; R) is a locally absolutely continuous nonnegative function, g ∈ L r ([0, ∞[; R) and u(t) ≤ g(t)

Chapter 2 -

 2 Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms two different types of driving forces associated respectively with the potential operator ∇f and the nonpotential operator B. It also involves three different types of friction, namely : (a) The term γ ẋ(t) stands for viscous damping with a positive coefficient γ > 0. (b) The term β f ∇ 2 f (x(t)) ẋ(t) is referred to Hessian driven damping, which attenuates the oscillations that naturally occur in the inertial gradient dynamics. (c) The term β b B (x(t)) ẋ(t) is the nonpotential variant of the Hessian driven damping. It acts as a Newton-type correction term.
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 2 0, +∞; H) whenever p ∈ S ; Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms (iv) for every p ∈ S, lim t→+∞ |x(t) -p| exists. 2.1.4 Link with Newton-like methods for solving monotone inclusions

Theorem 2 . 3 . 1

 231 Let B : H → H be a λ-cocoercive operator and f : H → R be a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose that S = (∇f + B) -1 (0) = ∅, and that the parameters involved in the evolution equation Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0

  t)) -B(p) = 0, lim t→+∞ A(x(t)) = 0, where B(p) is uniquely defined for p ∈ S.

Corollary 2 . 3 . 1

 231 Let B : H → H be a λ-cocoercive operator and f : H → R be a C 1 convex function with a Lipschitz continuous gradient on the bounded sets. Suppose that the solution set S = (∇f + B) -1 (0) = ∅. Consider the evolution equation (DINAM), where A = ∇f + B, β b = β f := β > 0 and where the related parameters fulfill the following conditions : γ > 0, β > 0, and λγ > β
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 2 . (iii) (pointwise estimate) lim t→+∞ ẋ(t) = 0, and limt→+∞ A(x(t)) = 0. Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms Remark 2.3.2 It is worth presenting the result of Corollary 2.3.1 apart because this is

  β b = 0.5, β f = 1, and (3) β b = β f = 0.5. As a straightforward application of Theorem 2.3.1, we obtain that the trajectory x(t) generated by (DINAM) converges to x ∞ , where x ∞ ∈ S = (B + ∇f ) -1 (0) = {0}. The trajectory obtained by using Matlab is depicted in Figure 2.1, where we represent the components x 1 (t) and x 2 (t) in red and blue respectively. Now we examine the trajectory behaviour by studying more different values of β b and β f . We study four cases in Figures 3.2. The traces of the second solution variable have been depicted in Figure 3.2(a), while in Figure 3.2(b) the number of iterations k versus B(x k ) + ∇f (x k ) is plotted. Through Figures 2.1 and 3.2, we can conclude that by introducing the Hessian damping (β f > 0), the oscillations of the trajectories in Figure 3.2 are attenuated. The oscillations of the solutions appear whenever β f goes to 0. Example 2.4.2 Now we are looking at another higher dimensional example. Let us consider f : R n → R given by f (x) = 1 2 M x -b 2 , where M ∈ R m×n and b ∈ R m . We

  Case β b = 1, β f = 0.5.

  Case β b = 0.5, β f = 1.

  Case β b = 0.5, β f = 0.5.

Figure 2 . 1 - 5 ,Figure 2 . 2 -

 21522 Figure 2.1 -Trajectories of (DINAM) for different values of the parameters β b , β f .

Figure 2 . 3 -

 23 Figure 2.3 -The behaviour of (DINAAM) for a high dimension problem.

Figure 2 . 4 -

 24 Figure 2.4 -An application of (DINAM) to dynamical games : trajectories (a) and phase portrait (b).

Theorem 2 . 5 . 1

 251 Let f : H → R ∪ {+∞} be a convex, lower semicontinuous, and proper function. Assume that β f > 0 and β b ≥ 0. Then, for any (x 0 , y 0 ) ∈ domf × H, there exists a unique strong global solution (x, y) : [0, +∞[→ H × H of (g-DINAM) which satisfies the Cauchy data x(0) = x 0 , y(0) = y 0 .

Theorem 2 . 5 . 2 2 -

 2522 Let B : H → H be a λ-cocoercive operator. Let f : H → R ∪ {+∞} Chapter Asymptotic behaviour of Newton-like inertial dynamics involving the sum of potential and nonpotential terms be a convex, lower semicontinuous, proper function. Assume that S = {p ∈ H : 0 ∈ ∂f (p) + B(p)} = ∅. Consider the evolution equation (g-DINAM) where the parameters fulfill the following conditions : β f = β b = β > 0 and γ > 0, β > 0 and λγ > β + 1 γ .

t→+∞B

  (x(t)) -B(p) = 0, where B(p) is uniquely defined for p ∈ S.

  DINAM)The following existence and uniqueness result for the Cauchy problem was proved in Chapter 2. Theorem 3.2.1 Suppose that β f > 0 and β b ≥ 0. Then, for any (x 0 , x 1 ) ∈ H × H, there exists a unique global classical solution x : [0, +∞[→ H of the continuous dynamic (DINAM) which satisfies the Cauchy data x(0) = x 0 , ẋ(0) = x 1 . Let us point out that B(p) and ∇f (p) are uniquely defined for p ∈ S := (∇f + B) -1 (0). Lemma 3.2.1 B(p) is uniquely defined for p ∈ S, i.e., p 1 ∈ S, p 2 ∈ S =⇒ B(p 1 ) = B(p 2 ). For a proof of Lemma 3.2.1, we refer to Lemma 2.3.1 in Chapter 2. The following theorem establishes the asymptotic convergence properties of (DINAM), see Chapter 2 for the proof. Theorem 3.2.2 Let B : H → H be a λ-cocoercive operator and f : H → R be a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose that the Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators parameters involved in (DINAM) satisfy β f > 0 and λγ

Furthermore, according to ( 3 . 19 )

 319 the trajectory (x k ) is bounded. Set R := sup k≥0 x k . By assumption, ∇f is Lipschitz continuous on the bounded sets. Let L R < +∞ be the Lipschitz constant of ∇f on the ball

. 21 )

 21 Likewise, we also have lim k→∞ B(x k ) -B(p) = 0, and lim k→∞ ∇f (x k ) -∇f (p) = 0. (3.22)

  By taking the difference, and using that ∇f (p) = ∇f (p ), we deduce that lim k→∞ x k -p 2 -x k -p 2 exists. Equivalently lim k→∞ x k , p -p exists. By specializing this result to the subsequences defining p and p we get p, p -p = p , p -p , that is p -p 2 = 0, which gives p = p . The sequence (x k ) has a unique weak cluster point, and hence converges weakly.
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3. 3 . 3

 33 Case β b = β f In this case, the formulas are simplified, and we have the following result. Set β b = β f := β > 0, and A := ∇f + B. The algorithm (DINAAM) is written as follows :

3 . 1 .

 31 Corollary 3.3.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose that β b = β f := β > 0, and that the parameters γ, λ, β satisfy the following conditions γ > 0, β > 0 and λγ > β + 1 γ .

Theorem 3 . 4 . 1

 341 Let B : H → H be a λ-cocoercive operator and f : H → R a C 1 convex function whose gradient is L-Lipschitz continuous. Suppose that the positive parameters λ, γ, β b , β f satisfy

. 35 )Chapter 3 -

 353 Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators From (3.34), we get x k+1 = (Id +sB h ) -1 (y k ). Combining the aforementioned facts, we obtain the following algorithm :

Theorem 3 . 4 . 2

 342 Let us make the assumptions of Theorem 3.4.1, and suppose that the sequence (e k ) of perturbations, errors satisfies : ∞ k=1 e k < +∞.
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. 59 ) 3 . 6 . 1

 59361 Example Take H = R 2 equipped with the Euclidean structure. Let us consider the linear operator B whose matrix in the canonical basis of R 2 is given by (3.59) with λ = 5, i.e., B = A λ . According to Remark 3.6.1, B is a nonpotential operator which is λ-cocoercive with λ = 5. In Chapter 2, we observed the oscillations, in the heavy ball with friction, when f : R 2 → R is defined by

Chapter 3 -

 3 Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators and (3) β b = β f = 0.5. As a straight application of Theorem 3.3.1 and 3.4.1, we obtain that the sequences (x k ) generated by (DINAAM) and (DINAAM-split) converge to x ∞ , where

3 (- 6 (Figure 3 . 1 -

 3631 Figure 3.1 -A comparison between (DINAAM) and (DINAAM-split).

Figure 3 . 2 -

 32 Figure 3.2 -Evolution of the objective (left) and trajectories (right) for (DINAAM) when adding the Hessian dampings.

. 62 )Chapter 3 -

 623 Here, λ min (B n ), λ max (B n B n ) are the smallest eigenvalue of B n and the greatest eigenvalue of B n B n respectively. For instance, take λ =λ min (B n ) λ max (B n B n ) , from(3.61) and (3.62), we deduce that (3.60) holds. Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators

5 ,Figure 3 . 3 -

 533 Figure 3.3 -The plot of k versus the norm of ∇f (x k ) + B 3 (x k ) obtained by (DINAAM-split).

Example 3 . 6 . 3

 363 Let us return to Example 3.6.1 and consider the effect of the introduction of perturbations, errors. With the same numerical values of the involved parameters, we just add the errors e k = 1 k 2 and ēk = 1 √ k . Clearly, the errors (e k ) satisfy the assumptions of Theorem 3.4.2 while (ē k ) does not. Running algorithm (DINAAM-split-pert) in Matlab, the plot of x k -x ∞ versus k is depicted in Figure 3.4. We observe that if the perturbed term e k satisfies the assumptions of Theorem 3.4.2, then algorithm (DINAAM-split-pert) Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators behaves as well as the nonperturbed version.

Figure 3 . 4 -

 34 Figure 3.4 -The effect of perturbations, errors in the algorithm (DINAAM-split).

Theorem 4 . 2 . 1 Chapter 4 -

 4214 Suppose that f : H → R is differentiable with ∇f globally continuous Lipschitz on H. Suppose that β f > 0 and β b > 0. Then, for any (x 0 , x 1 ) ∈ H × H, there Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping exists a unique strong global solution x : [0, +∞[→ H of the continuous dynamic (iDINAM) which satisfies the Cauchy data x(0) = x 0 , ẋ(0) = x 1 .
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Theorem 4 . 3 . 1

 431 Let B : H → H be a λ-cocoercive operator and f : H → R a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose that S = (∇f + B) -1 (0) = ∅. Consider the evolution equation (iDINAM) where the involved parameters fulfill the following conditions :

. 10 )Chapter 4 -

 104 Then, for any solution trajectory x : [0, +∞[→ H of (iDINAM) the following properties are satisfied : Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping(i) (convergence)x(t) converges weakly, as t → +∞, to an element of S. t)) -B(p) = 0, lim t→+∞ ∇f (x(t)) -∇f (p) = 0, where B(p) and ∇f (p) are uniquely defined for p ∈ S.

. 14 )Chapter 4 -

 144 Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping Combining (4.12) with (4.13) and (4.14), one has

3 .1 and are given below. Corollary 4 . 3 . 1 Chapter 4 -

 34314 Let B : H → H be a λ-cocoercive operator and f : H → R be a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose that the solution set S = (∇f + B) -1 (0) = ∅. Consider the evolution equation (iDINAM), where A = ∇f + B, β b = β f := β > 0 and where the involved parameters satisfy the following condition γβ > 1. Then, for any solution trajectory x : [0, +∞[→ H of (iDINAM), the following properties are satisfied : Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping (i) (convergence) The trajectory x(t) converges weakly, as t → +∞, to an element x * ∈ S. Moreover lim t→+∞ ẋ(t) = 0, and lim t→+∞ A(x(t) + β ẋ(t)) = 0.

(Chapter 4 -

 4 x k ) belongs to S. Consider a subsequence (x kn ) of (x k ) satisfying x kn x * , as n → +∞. According to the item (ii) already proved we have ∇f (x kn ) → ∇f (p), B (x kn ) → B(p) strongly in H, Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping and x kn x * weakly in H. The closedness property of the graph of the maximally monotone operators ∇f and B in w -H × s -H leads us to the conclusion that ∇f (x * ) = ∇f (p), and B(x * ) = B(p). Therefore, ∇f (x * ) + B(x * ) = ∇f (p) + B(p) = 0, that means x * ∈ S.

  Furthermore, according to the definition of E k , and since lim k E k exists (indeed it is nonincreasing), we claim that, for any p ∈ S lim k→∞ x k -p exists.

. 53 )Chapter 4 -

 534 Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping Hence, we obtain the following algorithm.
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 442 Let us make the assumptions of Theorem 4.4.1, and suppose that the sequence (e k ) of perturbations, errors satisfies : ∞ k=1 e k < +∞.

Van123Chapter 4 -

 4 Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping where δ are positive coefficient to adjust. By setting
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 574 Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping Combining these facts (4.54)-(4.57), we obtain

and ∞ k=1 B

 k=1 (x k ) -B(x k-1 ) 2 < +∞; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, lim k→∞ ∇f (x k ) -∇f (p) = 0.Proof The discrete energy Take p ∈ S. Consider the sequence (E k ) defined for all k ≥ 1 by the formula

  Case β b = 3, β f = 2.

Figure 4 . 1 -

 41 Figure 4.1 -Trajectories of (iDINAM) for variety values of the parameters β b , β f .

4 -

 4 and 4.2, we can observe that the presence of Hessian damping (β f > 0) attenuates the oscillations of the Chapter Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping Case β b = 2, β f = 0.1. Case β b = 0, β f = 0.1.

  Case β b = 0, β f = 0.

Figure 4 . 2 -

 42 Figure 4.2 -Oscillation of the trajectories of (DINAM) for different values of β b , β f .

Figure 4

 4 βf = 0, βb = 0 βf = 0, βb = 2 βf = 0.1, βb = 2 βf = 2, βb = 2 x∞

Figure 4 . 3 -

 43 Figure 4.3 -The attenuation of the oscillations of (iDINAM) by introducing the Hessian damping (β f > 0).

Example 4 . 5 . 2 Chapter 4 -

 4524 In Chapter 2, we considered the dynamical systemẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = 0, t ≥ 0.(DINAM) Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping The convergence rates of ( ∇f (x k ) + B(x k ) ) The convergence rates of (x k ) obtained by algorithms

Figure 4 . 4 -

 44 Figure 4.4 -The numerical performance of algorithms (iDINAAM-split), (iDINAAM-var) and (DINAAM-split) to find the zeros of ∇f + B with the time step h = 10 -2 .
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 453445 Figure 4.5 -The effects of pertubations on the algorithm (DINAAM-split).
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 5 Generalized accelerated Bregman proximal algorithms for composition convex optimizationFrom the definition of D h , we immediately deduce some basic properties. Proposition 5.1.1 Let D h be the Bregman distance associated with a strictly convex function h. Then, (i) D h (x, y) ≥ 0 for all x ∈ domh, y ∈ rintdomh and D h (x, y) = 0 if and only if x = y ;

Definition 5 .Chapter 5 -

 55 1.2 ([50]) Let C ⊆ rint(domh) be a closed convex set in R n .Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Generalized accelerated Bregman proximal algorithms for composition convex optimization
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 115 Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Generalized accelerated Bregman proximal algorithms for composition convex optimization Remark 5.2.1 Obviously, the usual two ways to pick the lower support function to Φ at z k which fulfills Step 3 of Algorithm 1 are either Ψ z k := Φ, or
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 225 Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Generalized accelerated Bregman proximal algorithms for composition convex optimization
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 5 due to the Höderian triangle scaling property of D h , Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Generalized accelerated Bregman proximal algorithms for composition convex optimization choosen suitablely. By checking directly, we have for all k ≥ 0

. 41 )

 41 Theorem 5.2.3 Assume that D h satisfies the triangle scaling property (5.5) with γ ∈]0, 2].
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 5 (ln k + 1) + k i∈J k α i [f (x * ) + Φ(x * )] + k i=0,i / ∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + 2 p/γ µ p D h (x * , y i ) p/γ ] ≤ CD h (x * , y 0 (ln k + 1) + A k [f (x * ) + Φ(x * )].(5.54)From (5.53) and (5.54), we haveA k [f (x k ) + Φ(x k )] ≤ CD h (x * , y 0 (ln k + 1) + A k [f (x * ) + Φ(x * )].(5.55) Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Generalized accelerated Bregman proximal algorithms for composition convex optimization Since C ≥ µ q -1

η 1 + η 2 > 1 .

 121 In algorithm 1, set α k = ak γ-1 , β k = 0, k ∈ N * , α 0 = β 0 = 0, where Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0

(5. 61 )

 61 Then, relation (5.23) in Theorem 5.2.1 gives

O i - 1 =

 1 O(ln k), therefore the preceding inequality implies that there is some constant ρ > 0 such that Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0
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 5695325 k+1 = argmin x∈R n CD h (x, y 0 ) i+1 ) -∇h(y i ), x -x i+1 + µγ i D h (x, y i )] . Generalized accelerated Bregman proximal algorithms for composition convex optimization for Algorithm 2 given byE k (x) = CD h (x, y 0 ) + k i=0 α i [f (x i+1 ) + Φ(x i+1 ) -1 κ ∇h(x i+1 ) -∇h(y i ), x -x i+1 -1 κ D h (x i+1 , y i ) + µγ i D h (x, y i )]. (5Proposition Assume that assumptions (B1)-(B4) hold. Let E k be function given by (5.69). Then, for any k ∈ N, one hasE k (x) ≥ min x∈R n E k (x) + s k D h (x, z k+1 ), for x ∈ R n , where z k+1 = argmin x∈R n E k (x) and s k = C + µ k i=0 α i γ i . Proof. Set Γ k (x) := E k (x) -s k D h (x, z k+1 ) -E k (z k+1 ).Let xk be a minimizer of Γ k . Without confusion, we write x instead of xk . Then,k i=0 α i [-κ -1 ∇h(x i+1 ) + κ -1 ∇h(y i ) + µγ i ∇h(x) -µγ i ∇h(y i )] +C[∇h(x) -∇h(y 0 )] -s k [∇h(x) -∇h(z k+1 )] = 0. Hence, k i=0 α i [-κ -1 ∇h(x i+1 ) + κ -1 ∇h(y i )] = -k i=0 α i (µγ i ∇h(x) -µγ i ∇h(y i )) -C[∇h(x) -∇h(y 0 )] + s k [∇h(x) -∇h(z k+1 )].(5.70) Generalized accelerated Bregman proximal algorithms for composition convex optimization Then for all k ∈ N,k i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k -B k )[f (x k+1 ) + Φ(x k+1 )] ≤ min x∈R n E k (x) + M κ -1 σ 2 k i=0 τ η 1 i ε β i (A i -B i-1 ),(5.73)for all k ∈ N. Here, we set B -1 = 0. Furthermore, if f is µ-strong convex relative to h, then the condition (5.72) holds if γ k = 1, k ∈ N, and the sequences {α k }, {β k } fulfill the condition
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 5 5.73) by induction on k ∈ N. For k = 0, one hasE 0 (x) = CD h (x, y 0 ) + µα 0 γ 0 D h (x, y 0 ) + α 0 [f (x 1 ) + Φ(x 1 ) -1 κ ∇h(x 1 ) -∇h(y 0 ), x -x 1 -1 κ D h (x 1 , y 0 )] = (C + µα 0 γ 0 )D h (x, y 0 ) + α 0 [f (x 1 ) + Φ(x 1 ) -1 κ ∇h(x 1 ) -∇h(y 0 ), x -x 1 -1 κ D h (x 1 , y 0 )] ≥ α 0 [f (x 1 ) + Φ(x 1 )] + α 0 κ -1 [D h (x, y 0 ) -∇h(x 1 ) -∇h(y 0 ), x -x 1 -D h (x 1 , y 0 )] = α 0 [f (x 1 ) + Φ(x 1 )] + α 0 κ -1 [h(x) -h(x 1 ) -∇h(x 1 ), x -x 1 ] ≥ α 0 [f (x 1 ) + Φ(x 1 )],for all x ∈ R n . The last inequality holds since h is convex. That shows (5.73) holds for k = 0. Suppose that (5.73) is true for k -1 ∈ N, we will show that it holds for k as well.In fact, since z k = argmin x∈R n E k-1 (x), according to Proposition 5.3.2, one hasE k-1 (x) ≥ min x∈R n E k-1 (x) + s k-1 D h (x, z k ),Generalized accelerated Bregman proximal algorithms for composition convex optimization for x ∈ R n , where s k-1 = C + µ k-1 i=0

3 . 1 Chapter 5 -< lim inf k→∞ β k k γ-1 ≤ lim sup k→∞ α k k γ- 1 < +∞, lim sup k→∞ β k α k < 1 .

 31511 are verified, we obtain the convergence rates of Algorithm 2. First of all, let us consider the case where the Bregman distance verifies the triangle scaling property (5.5), that is assumption (B4) withη 1 = γ ∈]0, 2], η 2 = 1, M = 1.Theorem 5.3.2 Suppose that D h satisfies the triangle scaling property (5.5) with γ ∈]0, 2]. In Algorithm 2, let us pick µ = 0 and any two sequences of positive reals {α k } and {β k } Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 Generalized accelerated Bregman proximal algorithms for composition convex optimization with α k ≥ β k for k ∈ N and 0 (5.75)Then, there exists C 0 > 0 satisfying the conditionC 0 (A k -B k-1 ) γ-1 ≥ α γ k κ -1 , ∀k ∈ N (5.76)and for any C ≥ C 0 , the sequence {x k } defined by Algorithm 2 has the following property∞ i=0 β i [f (x i+1 ) + Φ(x i+1 ) -f (x * ) -Φ(x * )] < +∞.Proof. With the assumptions on {α k }, {β k } there are 0 < a 1 < a 2 < a 3 < a 4 and b 1 , b 2 , b 3 , b 4 ∈ R such that for k large enough, we have

k- 1 i=0(a 2 i γ- 1 + b 2 ) γ- 1 =

 1121 O(k γ(γ-1) ), andα γ k ≤ (a 4 k γ-1 + b 4 ) γ = O(k γ(γ-1) ).
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 52 3.1, one hasE k (x * ) = CD h (x * , y 0 ) + k i=0 α i [f (x i+1 ) + Φ(x i+1 ) -1 κ ∇h(x i+1 ) -∇h(y i ), x * -x i+1 -1 κ D h (x i+1 , y i )] ≤ CD h (x * , y 0 ) + A k [f (x * ) + Φ(x * )].(5.77) Generalized accelerated Bregman proximal algorithms for composition convex optimization where A ∈ R m×n , b ∈ R m , c ∈ R n and r > 0. In the form of problem (5.8) we havef (x) =1 Ax -b 2 + c x and Φ(x) = r x . It is clear that f is convex and its gradient is Lipschitz. In our experiment, for example, we take A = = 0.001. In order to apply our algorithms to solve this problem, we pick C, ρ, κ, µ and three positive sequences {α k }, {β k }, {γ k } as in Corollary 5.2.2 and take h = 1/2 . 2 as a referece function. We notice that if x * is a minimizer of (5.89), then0 ∈ A (Ax * -b) + c + ∂Φ(x * ).Thus, we compute A (Ax k -b) + c + ∂Φ(x k ) at each iteration to observe the convergence rate order of our algorithms. Though both Algorithm 1 and 2 have the same convergence
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 51 Figure 5.1 -A (Ax k -b) + c + ∂Φ(x k ) in k obtained by using Algorithm 1 in log-log plot.

Figure 5 . 2 -

 52 Figure 5.2 -A (Ax k -b) + c + ∂Φ(x k ) in k obtained by using Algorithm 2 in log-log plot.
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 5 (i) v i v i ) is 1-smooth relative to the Burg entropy h(x) = -n i=1 log(x (i) ). In this case, D h is the IS-distance. We notice that (5.90) can be reformulated as minimize f (x) := -log det(HXH )Here, X = Diag(x), e = (1, 1, ..., 1) ∈ R n and H = [v 1 , v 2 , ..., v n ].In order to apply our Algorithms to compupte the solution, we should solve the fol-Generalized accelerated Bregman proximal algorithms for compositionThe first-order optimality conditions read e, x = 1, x ≥ 0, and c -X -1 e = -θe for some scalar multiplier θ. Given θ, it then follows that x (i) = 1/(c (i) + θ), i = 1, ..., n.Notice that θ must satisfyd(θ) := n i=1 1 c (i) + θ -1 = 0for some θ ∈ (-min i {c (i) }, +∞). Since d(•) is strictly decreasing on (-min i {c (i) }, +∞), d(θ) → +∞ as θ → -min i {c (i) } + , and d(θ) → -1 as θ → +∞. That ensure the existence and uniqueness of the solution of d(•) on (-min i {c (i) }, +∞).
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 53 Figure 5.3 -Performance of three algorithms for a random D-optimal designs.
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  and a noisy measurement vector b ∈ R m ++ . Our aim is to reconstruct the signal x ∈ R n + such that Ax ≈ b. We consider problems of the formminimize {D KL (b, Ax) + Φ(x) : x ∈ R n + } (5.93)where Φ(x) is a simple regularization function, for example, we take Φ(x) = r x 1 , with r = 0.001. It was shown thatf (x) = D KL (b, Ax) is L-smooth relative to h(x) = -n i=1 log(x (i) )on R n + for any L ≥ b 1 . Let us denote by a i the i-th row of matrix A for i = 1, ..., m. Then,f (x) = D KL (b, Ax) = m i=1 b (i) log b (i) a i x -b (i) + a i x .
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Figure 5 .

 5 Figure 5.5 shows the results for a randomly generated instance with n = 100, m = 40.This time, we vary the parameter µ while applying our methods, namely we took µ =
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 55 Figure 5.5 -One random example of relative entropy nonnegative regression.

  converges weakly, as t → +∞, to an element of S.

	(ii) (integral estimates) Set A := B + ∇f and p ∈ S. Then
		+∞	+∞						
			ẋ(t) 2 dt < +∞,	ẍ(t) 2 dt < +∞,
	0		0						
	0	+∞	B(x(t)) -B(p) 2 dt < +∞,	0	+∞	d dt	B(x(t))	2	dt < +∞,
	0	+∞	A(x(t)) 2 dt < +∞, and	0	+∞	d dt	A(x(t))

  .26) 

	Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving
		the sum of potential and nonpotential terms
	Estimates. Let us start from (2.26) that we integrate on [0, t], t ≥ 0. We obtain	
		t	t	
	E p (t) + cµ	ẋ(s) 2 ds + cµ	B(x(s)) -B(p) 2 ds ≤ E p (0).	(2.27)
		0	0	
	From (2.27) and the definition of E p , we immediately deduce	
	sup	x(t) -p < +∞,		(2.28)
	t≥0			
	sup	x(t) -p + c( ẋ(t) + A β (x(t)) -A β (p)) < +∞,	(2.29)
	t≥0			
	+∞		
		ẋ(t) 2 dt < +∞,		(2.30)
	0			
	+∞		
		B(x(t)) -B(p) 2 dt < +∞.	(2.31)
	0			
	Van Nam VO | Thèse de doctorat | Université de Limoges		
	Licence CC BY-NC-ND 3.0			

  which is always possible since β f > 0, we conclude

	Chapter 2 -Asymptotic behaviour of Newton-like inertial dynamics involving
		the sum of potential and nonpotential terms
	+∞	
	Combining this with	B(x(t)) -B(p) 2 dt < +∞, it follows immediately
	0	
		+∞
		A(x(t)) -A(p) 2 dt < +∞.	(2.33)
		0
		+∞
		∇f (x(t)) -∇f (p) 2 dt < +∞.
	0	
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	Licence CC BY-NC-ND 3.0	

  These topics are open and challenging for future research.Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators

	I	n the prior chapter, we deal with solving additively structured monotone problems of the type
		Find x ∈ H : ∇f (x)
		3
		Newton-type inertial algorithms for
		solving monotone equations governed
		by sums of potential and nonpotential
		operators
		. .	75
		3.4 An inertial proximal-gradient algorithm . . . . . . . . . . . . . . . . .
		3.4.1 Lyapunov analysis . . . . . . . . . . . . . . . . . . . . . . . . .	77
		3.4.2 Errors, perturbations . . . . . . . . . . . . . . . . . . . . . . .	82

Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 3.1 Introduction and preliminary results . . . . . . . . . . . . . . . . . . . 3.2 The continuous dynamic (DINAM) . . . . . . . . . . . . . . . . . . . . 3.3 Inertial proximal algorithms associated with (DINAM) . . . . . . . . . 3.3.1 Lyapunov analysis . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Estimation of the upper bound on the time step h . . . . . . . 73 3.3.3 Case β b = β f . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 A variant of the proximal-gradient algorithm . . . . . . . . . . . . . . 3.6 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Conclusion, perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 potential + B(x

  Chapter 3 -Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operatorsTaking into account the form of the energy sequence (E k ), we obtain

	cγ -1 2	x k+1 -p 2 ≤ E 1 +	1≤i<k+1	i .	(3.46)
	∞			∞	
	According to the assumption	e k < +∞, this implies that	e k	2 < +∞. Therefore,
	k=1			k=1	
	there exists C > 0 such that				
					.45)
	From (3.45) we deduce that				
		E k+1 ≤ E 1 +	i .		
		1≤i<k+1		
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Table 3 .

 3 

1 -Numerical values for the upper bound h * in (DINAAM) and (DINAAM-split) schemes.

  The first is a very easy example in which f is differentiable with ∇f globally continuous Lipschitz on H. It is based on a straighforward application of the Cauchy-Lipschitz theorem to the Hamiltonian formulation of (iDINAM). The second, more complicated proof concerns the case where f : H → R ∪ {+∞} is a convex lower semi-continuous proper function. In both circumstances, we will employ the concept of a strong solution, as defined below.

Definition 4.2.1 The function x : [0, +∞[→ H is called a strong global solution of the dynamical system (iDINAM) if it satisfies the following properties : (i) x, ẋ : [0, +∞[→ H are locally absolutely continuous ;

  following theorem establishes the well-posedness of a global strong solution of the Cauchy problem (4.7).

Theorem 4.2.3 Let f ∈ Γ 0 (H). Suppose that β f > 0, β b > 0. Then, for any Cauchy data (x 0 , y 0 ) ∈ H × dom(f ), there exists a unique global strong solution (x, y) : [0, +∞[→ H × H of the generalized (iDINAM) system (4.7) satisfying the initial condition x(0) = x 0 ,

y(0) = y 0 . Moreover when f ∈ C 1 (H), x(•) is a classical (i.e. C 2 )

global solution of the Cauchy problem associated with (iDINAM).

Proof We reformulate (4.7) in the product space H × H by setting Z(t) = (x(t), y(t)) ∈ H × H, and thus (4.7) can be equivalently written as

Ż(t) + β f ∂G(Z(t)) + D(Z(t)) 0,

(4.8)

where the function G ∈ Γ 0 (H × H) is defined as G(Z) = f (y), and operator D : H × H → H × H is given by

  drives the differential inclusion(4.8). A straightforward application of [43, Proposition 3.12] results in the existence and uniqueness of a global strong solution for the Cauchy problem (4.8), and hence for (4.7). In turn, (4.7) admits a uniqueC 1 ([0, +∞[) global solution (x, y) if f ∈ C 1 (H).The first equation in (4.7) implies that ẋ is a C 1 ([0, +∞[) function, and hence x ∈ C 2 ([0, +∞[) function. Based on the equivalence in Theorem 4.2.2, the existence and uniqueness of a classical global solution to the Cauchy problem associated with (iDINAM) are then established. Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping

  Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping

	following integral estimates			
	+∞		+∞		+∞
	X(t) 2 dt < +∞,		ẋ(t) 2 dt < +∞,	Y (t) 2 dt < +∞. (4.28)
	0		0			0
	Let us rewrite (iDINAM) equivalently as follows (recall that ∇f (p) + Bp = 0)
		ẍ(t) = -γ ẋ(t) -X(t) -Y (t).
	According to (4.28) the second member of the above equality belongs to L 2 (0, +∞; H). The-
	refore		+∞	
				ẍ(t) 2 dt < +∞.	(4.29)
			0		
				lim t→+∞	ẋ(t) = 0.	(4.30)
	Furthermore, since B is λ-cocoercive, it is	1 λ	-Lipschitz continuous. Therefore,
	d dt	B(x(t) + β b ẋ(t)) ≤	1 λ	ẋ(t) + β b ẍ(t) , for all t ≥ 0.	(4.31)
	Hence,				
	+∞				
	0				
			sup	x(t) -p < +∞,	(4.25)
			t≥0		
		sup	x(t) -p + β f ẋ(t) < +∞.	(4.26)
		t≥0			
	From (4.25)-(4.26) and β f > 0, according to the triangle inequality we claim that
			sup	ẋ(t) < +∞.	(4.27)
			t≥0	

.24) From this we immediately obtain that E p (t) ≤ E p (0), i.e. E p (t) is bounded from above. According to the definition of E p (•) we deduce that Moreover, we immediately deduce from (2.29) and nonnegative property of E p (t) the Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0 From (4.28) and (4.29) we have ẋ ∈ L 2 ([0, +∞[; H) and ẍ ∈ L 2 ([0, +∞[; H). By Lemma 1.3.3 applied to u = ẋ with p = r = 2 we deduce that

  Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping From (4.28)-(4.32), by applying Lemma 1.3.3 we deduce that lim

	Chapter 4 -t→+∞	
									2				
										dt < +∞	
	where have used that x(t) + β f ẋ(t) remains bounded (according to (4.25) and (4.27))
	and that ∇f is Lipschitz continuous on the bounded sets. So, according to the definition
	of X(t) and Y (t) we have									
	0	+∞	d dt	X(t)	2	dt < +∞,	0	+∞	d dt	Y (t)	2	dt < +∞.	(4.32)

  Proposition 5.1.2 ([36]) Suppose h : R → (-∞, +∞] is strictly convex and twice continuously differeniable on an open interval in R. Then, the Bregman distance D h (•, •) is jointly convex if and only if 1/h is concave. Specially, whenever h can be written separably (i) ) and 1/h i is concave for each i = 1, ..., n, then one has D h has a uniform TSE of at least 1.In the view of Proposition 5.1.2, we can conlude that D KL and D LL has a uniform TSE γ = 1 while D IS has a uniform TSE likely to be less than 1. For more examples, we refer the reader to[START_REF] Hanzely | Accelerated Bregman proximal gradient methods for relatively smooth convex optimixation[END_REF].

	n	
	as h(x) =	h i (x
	i=1	

Definition 5.1.3 ([50]

) The intrinsic TSE of D h , denoted γ in , is the largest γ such that for all x, z, z ∈ rintdomh, lim sup θ→0

des dynamiques inertielles et algorithmes associés pour l'optimisation du premier ordre

  Cette thèse est divisée en deux grandes parties. La première est consacrée à l'étude d'une classe d'algorithmes du premier ordre visant à résoudre des équations monotones structurées impliquant la somme de deux opérateurs : un opérateur potentiel ∇f (le gradient d'une fonction convexe différentiable f ) et un autre non potentiel B (monotone et cocoercif). Le caractère bien posé et le comportement asymptotique des trajectoires des solution,s générées par la dynamique inertielle du second ordre impliquant ces deux opérateurs, sont analysés en détail. La discrétisation temporelle de ces dynamiques fournit des algorithmes de gradient proximal de type splitting ou décomposition. Leurs propriétés de convergence sont prouvées en utilisant l'analyse de Lyapunov. La seconde partie est dédiée à l'étude et à l'extension des algorithmes introduits par Nesterov dans le cas où f est relativement lisse. Une méthode, utilisant la distance de Bregman de la fonction à minimiser, est proposée. L'analyse de convergence des algorithmes associés est aussi étudiée et quelques simulations numériques sont proposées pour illustrer la partie théorique.
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Chapter 4 -Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping to (DINAM). In the potential case, (i.e.B = 0), such comparision research was carried out in [START_REF] Attouch | On the effect of perturbations in first-order optimization methods with inertia and Hessian driven damping[END_REF] from the viewpoint of the dynamics' stability concerning disturbances and errors.

The study is also related to the recent works by Attouch-Laszlo [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF] who considered the general case of monotone equations. In contrast to [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF], we do not apply the Yosida regularization and exhibit minimum assumptions involving just the nonpotential component based on the cocoercivity of B.

Our main motivation for studying these dynamical systems originates from the fact that geometric damping allows us to regulate and attenuate the oscillations known for the viscous damping of the inertial methods. This is critical for the development of appropriate fast optimization algorithms acquired by temporal discretization. Throughout the chaper we set up the following standing assumptions 1 :

(A2) B : H → H is a λ-cocoercive operator for some λ > 0;

(A3) γ > 0, β f > 0, β b > 0 are given real damping parameters;

(A4) the solution set S := (∇f + B) -1 (0) = {p ∈ H : ∇f (p) + B(p) = 0} = ∅.

We emphasize that the assumption of cocoercivity on the operator B is crucial our analysis. The content of this chapter is organized as follows. After the introductory Section 4.1, in Section 4.2, we show the well-posedness of the Cauchy problem for (iDINAM). In Section 4.3, we analyze the convergence properties of the solution trajectories generated by the continuous dynamics (iDINAM). We highlight the interplay between the damping parameters β f , β b , γ and the cocoercivity parameter λ, which plays a significant role in our Lyapunov analysis. In Section 4.4, we analyze various inertial proximal-gradient splitting algorithms which come naturally from the temporal discretization of (iDINAM). We also examine the effect of errors, perturbations in these algorithms. In Section 4.5, we perform numerical experiments which show that the oscillations are considerably reduced with the introduction of geometric damping. Applications to structured monotone equations involving a nonpotential operator are considered.

1. At several places the assumption (A1) will be relaxed, just assuming ∇f to be Lipschitz continuous on the bounded sets Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization up towards the boundary of the feasible region. To solve the familiy of such problems, the notion of relative smoothness was introduced in several recent works such as [START_REF] Bauschke | A descent Lemma beyond Lipschitz gradient continuity : first-order method revisited and applications[END_REF][START_REF] Lu | Relatively smooth convex optimization by first-order methods, and applications[END_REF][START_REF] Zhou | A unified approach to proximal algorithms using Bregman distance[END_REF].

In those works, the Bregman distances have been used instead of the usual euclidian distance ; recently, some accelerated schemes with the Bregman distances have been studied in [START_REF] Hanzely | Accelerated Bregman proximal gradient methods for relatively smooth convex optimixation[END_REF][START_REF] Gutman | A unified framework for Bregman proximal methods : subgradient, gradient, and accelerated gradient schemes[END_REF]. In these papers, the authors considered problem (5.1) when the function f is relative smooth with respect to a Bregman distance satisfying the called generalized triangle scaling property, and with this property, the proposed accelerated algorithms attain a convergence rate of order O(1/k γ ) with γ being the triangle scaling exponent of the respected Bregman distance (as γ = 2 for the euclidian distance, so the convergence rate established in the latter mentioned papers is of O(1/k 2 ) as the Nesterov-type accelerated algorithms, e.g., (FISTA) in the euclidean case). Thus, this chapter is a development of the accelerated algorithms proposed in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF] to the framework of the Bregman distances for problem (5.1). Throughout this chapter, we consider the Bregman distances satisfying the Hölderian triangle scaling property. This property, a generalization of the triangle scaling property considered in [START_REF] Hanzely | Accelerated Bregman proximal gradient methods for relatively smooth convex optimixation[END_REF] covers some important situations for which the latter property is not satisfied ; for example, while the gradient of the convex function h defining the Bregman distance is not Lipschitzian (on the interior of its domain) but merely Hölderian. The established convergence rates show the efficiency in the theoretical aspect of the accelerated schemes proposed in the present paper ; some initial numerical experiments are reported to demonstrate the efficiency in the computational aspect of the proposed algorithms. The outline of the chapter is the following. In the introductory Section 5.1, we introduce our problem and recall some of preliminary results concerning the Bregman distance and relative smoothness of a function. The main contribution is presented in Section 5.2 and 5.3. In Section 5.2, we aim to analyzing the convergence properties of the generalized Nesterov's algorithm. We also highlight the convergent rate of our scheme by setting appropriate parameters and the smoothness, convexity of function f . In Section 5.3, we continue to analyze the convergence rate of the generalized accelerated forward-backward algorithm. Some numerical experiments will be shown in Section 5.4 to see how these new schemes to be applied in certain problems. Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization

Divergence and relative smoothness

The following elementary inequality will be used in the sequel. Lemma 5.1.2 For all three positive reals α, β, t, one has

Proof. Considering the function ϕ(t) := t β + α t , t ∈ (0, +∞), one has ϕ (t) = -α t + βt β-1 , so for t = (α/β) 1/(β+1) , ϕ ( t) = 0; ϕ (t) > 0 for all t ∈ ( t, +∞), and ϕ (t) < 0 for all t ∈ (0, t). Hence, ϕ attains minimum at t, that is,

The following corollary is straightforward from the preceding lemma and the definition of the Hölderian triangle scaling property. Corollary 5.1.1 Assume that the Bregman distance D h has the Hölderian triangle scaling property with respect to η 1 ∈ (0, 2], η 2 ∈ (0, 1], and M > 0. Then for all x, z, z ∈ rintdomh,

where,

-If η 2 = 1, then σ 1 := 1 and σ 2 := β = 0;

Generalized Nesterov's Algorithm and convergence rates

Let us consider the composition convex optimization problem of the form

where Φ : R n → R ∪ {+∞} is a proper, lower-semicontinuous, and convex function and 

Obviously, Φ and the linear function

where z * ∈ ∂Φ(z), the subdifferential of Φ at z, are two usual lower support functions of a convex Φ, at a point z Throughout in this part, we make the following assumptions :

(A1) The optimal solution set of problem (5.8) is nonempty.

(A2) Φ : R n → R ∪ {+∞} is a proper, lower-semicontinuous, and convex function.

(A3) f : R n → R is a continuously differentiable, convex function which is L-smooth relative to h on dom Φ, for some L > 0 and a stricltly convex function h.

(A4) The Bregman distance D h has the Höderian relaxed triangle scaling property for some M > 0 and η 1 ∈ (0, 2], η 2 ∈ (0, 1], i.e., for all x, z, z ∈ rint dom h, and θ ∈ [0, 1],

Pick parameters C, κ, µ > 0 and three sequences of positive reals {α k }, {β k }, {γ k } that verify the condition

The algorithm is stated in the following scheme.

Algorithm 1.

Initialization :

Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization in view of Corollary 5.1.1, we have

Thus,

Therefore, the previous relations imply

(5.28) By (5.9), we have

(5.29)

Combining (5.25), (5.28) and (5.29) together, we get

That means (5.23) holds for k + 1 and it completes the proof of the first part.

Suppose that now f is µ-strongly convex relative to h and γ k = 1, k ∈ N. The proof follows the same lines as the above. The different point is as follows. Instead of (5.26),

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization by the strongly convex relative to h with the parameter µ,

(5.30)

Since D h (•, •) is convex in its first argument, we have that

(5.31)

x k , we write shortly

(5.32)

Using this fact and the inequality (5.32), we obtain

where

Once gain, in the view of (5.24) and Corollary 5.1.1, one has

Hence,
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Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization Thus,

The remain of the proof is similar to the one in the first part, so we omit it. From the preceding theorem, we will obtain the convergence rates of Algorithm 1 by picking sequences of parameter in special ways such that the assumptions of Theorem 5.2.1 are verified. Firstly, we consider the case where the Bregman distance verifies the triangle scaling property (5.5), that is assumption (A4) with η 1 = γ ∈]0, 2], η 2 = 1, M = 1. Theorem 5.2.2 Assume that D h satisfies the triangle scaling property (5.5) with γ ∈]0, 2].

In Algorithm 1, let us pick C, κ > 0 such that C ≥ κ -1 ≥ L, and

Then, for a minimizer x * of problem (5.8),

where,

where k/2 stands for the integer part of k/2. Therefore, if {f 

(5.56)

Combing (5.55) and (5.56), we obtain for all k ∈ N

We showed that with a suitable choice of parameters, the convergence rate for the function valued of this proposed algorithm is of order o(1/k γ ) when the objective function is convex. Moreover, for the case of (µ, p)-uniform convexity of the objective function, we attains an O(ln k/k 2p/(p-γ) ) convergence rate for some µ > 0, p > γ.

Next we consider the case where f is µ-strongly convex relative to h for µ > 0. The following theorem for the linear convergance of Algorithm 1 in the case of strong convexity. Let f be µ-strongly convex relative to h for some 0 < µ < κ -1 and let q, C > 0 such that q = 1 + µ κ -1 -µ and C ≥ µ q -1 .

(5.57)

Then the sequence {x k } generarted by Algorithm 1 with sequences α k = q k , β k = 0, and

Here, x * is a minimizer of problem (5.8).

Proof. For α k = q k with q > 1 and β k = 0, relation (5.24) becomes

Equivalently, C(q -1) + µ(q k -1) q k+1 -1 γ-1 ≥ q γk (κ -1 -µ)(q -1) γ , ∀k ∈ N.

(5.59)
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So one obtains the following convergence result. Theorem 5.2.5 Assume that D h satisfies the Höderian relaxed triangle scaling property (A4) with respect to parameters M > 0,

, where

Then, for a minimizer x * of problem (5.8), there is ρ > 0 such that

(5.63)

Generalized accelerated forward-backward algorithm

In [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF], the authors have studied the following accelerated forward-backward scheme for solving (5.8) :

in which α > 0, κ > 0. It was shown that the convergence rate of the order o(1/k 2 ) when α > 3, κ ≤ 1/L and f is supposed to be convex differential whose gradient is L-Lipschitz on the whole space R n . Recently, in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF], the authors have developed that scheme by introducing a strongly convex function h in their algorithm and obtain the convergence rate of order o(1/k 2 ). In this section we consider to generalize the algorithm given in [START_REF] Ngai | A generalized Nesterov's accelerated proximal gradient algorithm with convergence rate faster than o(1/k 2 )[END_REF] when the squared norm is replaced by the Bregman distance, under the assumptions (B1), (B2), (B4) (identical to (A1), (A2), (A4)), while (A3) is replaced by a stronger one (B3) :

(B1) The optimal solution set of problem (5.8) is nonempty.

(B2) Φ : R n → R ∪ {+∞} is a proper lower-semicontinuous, and convex function.

Van Nam VO | Thèse de doctorat | Université de Limoges Licence CC BY-NC-ND 3.0

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization

Let us define the operator G k which plays a key roles in the proof of the convergence result.

The following property of the operator G κ is useful in our argument. Proposition 5.3.1 Suppose that h : R n → R is strictly convex. Let f : R n → R be a constinuous differentiable function which is L-smooth relative to h on R n and 0 < κ ≤ 1/L. Then, for ȳ = y -κG κ (y), one has the following inequality

is valid for all x, y ∈ R n . Proof. We have

Thus,

Since f, Φ are convex we have f (x) ≥ f (y) + ∇f (y), x -y , (5.66)

(5.67)

Moreover, due to f is L-smooth relative to h, then f (ȳ) ≤ f (y) + ∇f (y), ȳ -y + LD h (ȳ, y).

(5.68)

Summing the above inequalities yields

Equivalently,

This completes the proof. Now, we define the following functions E k , k ∈ N which play as "estimating functions"

Chapter 5 -Generalized accelerated Bregman proximal algorithms for composition convex optimization

In the other hand,

(5.71) Substitute (5.70) into (5.71), it yields

Therefore, for all x ∈ R n , one has

Now we are at the position to state the main result in this part. Theorem 5.3.1 Suppose that the assumptions (B1) -(B4) hold. Let (x k ) and (y k ) be the sequences generated by Algorithm 2. With respect to η 2 ∈]0, 1], we define the quantities σ 1 , σ 2 , β as follows.

-If η 2 = 1, then σ 1 := 1 and σ 2 := β = 0;

Suppose that 0 < κ < 1/L and the sequences {α k }, {β k }, {γ k } verify the following condition for a sequence of positive reals {ε k } with ε k ∈]0, 1], and 

From (5.77) and (5.78), we obtain

Hence,

Let us return to Theorem 5.3.2. If we pick

, which a is an appropriate positive real satifying the condition (5.75), then, by using the same argument as in the proof of Theorem 5.2.2, we obtain the following theorem. Theorem 5.3.3 Suppose that D h satisfies the triangle scaling property (5.5) with γ ∈]0, 2].

Then, for a minimizer x * of problem (5.8),

where,

where k/2 stands for the integer part of k/2. Therefore, if {f (x k ) + Φ(x k )} is a decreasing
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for x * being a minimizer of problem (5.8). Theorem 5.3.4 Suppose that f is (µ, p)-uniformly convex with µ > 0, p > 2. Then with the same conditions as in Theorem 5.2.3, for any sequence {x k } defined by Algorithm 2, one has

(5.80) Theorem 5.3.5 Let f be µ-strongly convex relative to h for some 0 < µ < κ -1 and let q, C > 0 such that q = 1 + µ κ -1 -µ and Cρ ≥ µ q -1 .

(5.81)

Then the sequence {x k } generated by Algorithm 2 with sequences α k = q k , β k = 0, and

(5.82)

Here, x * is a minimizer of problem (5.8). The proof of Theorems 5.3.4 and 5.3.5 are similar to the ones of Theorems 5.2.3 and 5.2.4, respectively. In these proofs, we use the following proposition. Proposition 5.3.3 Suppose that h : R n → R is strictly convex. Let f : R n → R be a constinuous differentiable function which is L-smooth relative to h on R n and 0 < κ ≤ 1/L. Then, for ȳ = y -κG κ (y), one has (i) If f is (µ, p)-uniformly convex, then for any x, y ∈ R n

Proof. The proof is the same as in Proposition 5.3.1, just a diffent point is as follows.
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(5.85)

(5.86)

Before finishing this part, it is worth to considering the case when the Bregman distance D h satisfies the Höderian triangle property with respect to the pair of parameters (η 1 , η 2 ) with η 1 ∈]0, 2], η 2 ∈]0, 1], and

Similarly, in algorithm 2, we set α k = ak γ-1 , 

(5.87)

Then, for a minimizer x * of problem (5.8), there is ρ > 0 such that

(5.88)

Numerical experiments

In this section, we start to apply our schemes to solve these poptimal problems and study numerical performce of them.

A simple problem

Let us consider the following problem 

Relative-entropy nonnegative regression

An alternative approach to what was developed in the previous section consists in minimizing minimize {D KL (Ax, b) + Φ(x) : x ∈ R n + } (5.94)

In [START_REF] Bauschke | A descent Lemma beyond Lipschitz gradient continuity : first-order method revisited and applications[END_REF], it was shown that f

A ij . Therefore, in our experiment, we use the KL-divergence D KL as the proximity measure and apply l 1 -regularization Φ(x) = λ x 1 with λ = 0.001. Then, f reads
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In parallel, Chapter 5 dealt with the two generalized accelerated proximal gradient schemes in the framework of the Bregman distances for solving the composition convex optimization problem (5.1). The convergence rate and some initial computational results demonstrate the efficiency of the proposed algorithms in the theoretical and computational aspects. We also made some numerical performances on our algorithms to solve some problems in practice.

Apart from what has been done in the thesis, we raise some open questions :

• It would be interesting to extend the analysis for both the continuous dynamic and its discretization to the case of an asymptotic vanishing damping γ(t) = α t for both explicit and implicit models. • Taking the coefficients β f (t) and β b (t) time-dependent could help to accelerate the convergence in both the discrete and continuous case.

• The limit dynamic when α goes to +∞ : α → x α (t).

All these questions will be the subject of a forthcoming research project.
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Analysis of inertial dynamics and associated algorithms for first-order optimization

Abstract : This thesis is divided into two main parts. The first one is devoted to the study of a class of first-order algorithms aiming at solving structured monotone equations involving the sum of two operators : a potential operator ∇f (the gradient of a differentiable convex function f ) and a nonpotential one B (monotone and cocoercive). The well-posedness and the asymptotic behavior of the solution trajectories generated by the second-order inertial dynamics involving these two operators are analyzed in detail. The temporal discretization of these dynamics provides fully split proximal gradient algorithms. Their convergence properties are proved using Lyapunov analysis.

The second part is dedicated to the study and extension of the algorithms introduced by Nesterov in the case where f is relatively smooth. A method, using the Bregman distance of the function to be minimized, is proposed. The convergence analysis of the associated algorithms is also studied and some numerical simulations are proposed to illustrate the theoretical part.