
HAL Id: tel-03942902
https://theses.hal.science/tel-03942902

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to computer vision and machine learning
for plant variety testing

Mouad Zine El Abidine

To cite this version:
Mouad Zine El Abidine. Contributions to computer vision and machine learning for plant variety
testing. Signal and Image Processing. Université d’Angers, 2022. English. �NNT : 2022ANGE0019�.
�tel-03942902�

https://theses.hal.science/tel-03942902
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ D’ANGERS
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, Vision

Par

«Mouad Zine El Abidine»
«Contributions to computer vision and machine learning for
plant variety testing»

Thèse présentée et soutenue à « INRAE - Angers», le « 04/10/2022 »
«LARIS - Laboratoire Angevin de Recherche en Ingénierie des Systèmes»

Rapporteurs avant soutenance :

Pr. Jean-Pierre DA COSTA, IMS, Bordeaux, France
Pr. Adel AFIANE, INSA Val de Loire, France

Composition du Jury :

Président :
Examinateur : Pr. Manuela ZUDE-SASSE, Postdam University, Germany.
Examinateur : Pr. Gerhard BUCK SORLIN, Institut Agro, Rennes-Angers, France.
Examinateur : Dr. Maria-José ARANZANA, IRTA, Catalunya, Spain.
Dir. de thèse : Pr. David ROUSSEAU, Université d’Angers, France.
Co-encadrants : Dr. Pejman RASTI, Université d’Angers, France.

Dr. Helin DUTAGACI, Eskisehir Osmangazi University, Eskisehir, Turkey.

Invité(s) :

Dr. François LAURENS, INRAe, Angers, France.





ACKNOWLEDGEMENT

First, I would like to express my sincere gratitude to my mentor and my supervisor,
Pr. David Rousseau. During my journey with him, I learned to control my energy,
analyze carefully, improvise "when it’s needed" and believe in myself. He was very patient,
supportive and enthusiastic. It was truly an honor to be one of his students.

I would like to thank also my supervisor, Dr. Helin Dutagaci, for her continuous
support. She is a very wise person, and we shared unforgettable moments, especially
during the data acquisition in the orchards while eating the apples.

Thanks also go to my supervisor, Dr. Pejman Rasti. He supported me and taught me a
lot. Aside from the professional relationship, Pejman is a great friend, a very experienced
person who always has invaluable advice.

I would like to extend my deepest appreciation to my committee members: Pr.
Manuela Zude-Sasse, Dr. Maria Aranzana, Pr. Gerhard Buck-Sorlin, Pr. Jean-Pierre
Da Costa and Pr. Adel Afiane, who gently accepted to evaluate my work and attend my
Ph.D. defense.

I also had the great pleasure of working with François Laurens, who inspired me a lot
with his charismatic personality and management of projects, and with Roland Robic, for
putting his heart into achieving the tasks.

Thanks should go to all my friends and colleagues in INRAe, Polytech Angers and
especially the ImHorPhen team, including Hadhami Garboug, who shared with me the
office for three years and Natalia Sapoukhina for her constant advice and the fruitful
discussions.

I would like to express my sincere gratitude to my family, including my sister Fatima
Zohra and her adorable daughter Rhita and my cousin Hajar El Hamdouchi, for her
encouragement, which never let me down.

The special thanks go to my parents, for believing in me and giving me the support
and love to fulfill my dreams. I dedicate my Ph.D. to my father, Pr. Abdenbi Zine El
Abidine, for his unwavering efforts. You are the best dad in the universe.

Last and foremost, I would like to thank "Allah" for blessing me and helping me to
choose the right path.

3



NOMENCLATURE

(∆x, ∆y, ∆z) Edge lengths of the voxels for voxelization of a point cloud

(x̂, ŷ, ẑ) Coordinates of a 3D point p̂

(A, B, C, D) Parameters of the trellis-plane

(Is, Js) Location of the sth detected peak in IG

(Nx, Ny, Nz) Size of B and S

(x, y, z) Coordinates of a 3D point p

(xr,1, yr,1, zr,1) Coordinates of the point pr,1

(xr,2, yr,2, zr,2) Coordinates of the point pr,2

Γ Set of semantic labels

γi Predicted semantic label of the ith point pi

γGT
i Ground truth semantic label of the ith point pi

L̂j = (0, ŷj, 0) Location of verified trunk j

L̂s = (0, ŷct
s , 0) Location of candidate trunk s

p̂ A 3D point in PCT P
w

p̂e eth end-point of Cc

p̂q,j Intersection point of qth trellis-line and jth trunk

p̂s,bottom Bottom point of SKs along the Z-axis

p̂s,top Top point of SKs along the Z-axis

ŷct
s y coordinate of the sth candidate trunk location in CT

ẑq Height of tlq

AGT Set of ground truth apples
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A Set of detected apples

CC Set of connected components of Strees

CT Set of candidate trunk locations

IGi,j Set of points in PCts projected to the ground in the grid (i, j)

LHL Set of 3D horizontal lines detected through applying Hough Transform to IH

LT L Set of trellis-lines

T Set of located trees in the scene

τa Predicted tree identity of the ath apple in A

τc Predicted tree identity of the cth connected component Cc

τg Ground truth tree identity of the gth apple in AGT

τi Predicted tree identity of the ith point pi

τGT
i Ground truth tree identity of the ith point pi

{(Cf , τf )} Connected components already assigned to a tree

{Cc,d} Set of connected components of Cc after cutpoints are removed

ACC Accuracy of apple assignment to trees

B Binary 3D volumetric form of PCC
w

Bs Binary 3D volumetric form of PCCT
s

Btrees Binary 3D volumetric form of PCtrees
w

BV P Best View Projection

Cc cth connected component in CC

CA Class Accuracy

CNN Convolutional Neural Network

CP Connecting path between adjacent trees

CTIFL Centre Technique Interprofessionnel des Fruits et Légumes

d(p, hlr) Distance between point p and the line hlr
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dcc
R The minimum distance of the ColorChecker tripod stick to the tree row

dSP
s Length of main axis SPs

dcc
T The distance of the ColorChecker tripod stick to a designated tree

DUS Distinctness, Uniformity And Stability

ECPGR European Cooperative Programme For Plant Genetic Resources

EO Examination Offices

F1 F1 score

FN Number of false negatives

FP Number of false positives

GAN Generative Adversarial Networks

GEV ES Groupe d’Etude et de contrôle des Variétés Et des Semences

hlr rth horizontal line in LHL

IG Histogram of points in PCts projected to the ground

IH Binary image resulting from projecting S to the YZ-plane

INRAe Institut National De Recherche Pour L’agriculture, L’alimentation Et L’environnement

INV ITE INnovations In Plant VarIety Testing in Europe

IoU Intersection over Union

IPPN International Plant Phenotyping Network

ITB Institute Technique De La Betterave

le Line fitted to the points around pe

Lj Location of jth tree in the scene corresponding to (xj, yj, zj) coordinates of the base
of the tree

LDA Linear Discriminant Analysis

lsj,j+1 The line defined by the points p̂q,j and p̂q,j+1

MDS Multidimensional Scaling

6



Ne Number of end-points of Cc

NF Number of connected components already assigned to a tree

NP Number of detected peaks in IG and number of canditate trunk locations in CT

NW Number of points in PCC
w

Napples Number of apples in A

NGT
apples Number of apples in AGT

Ncomp Number of connected components in CC

N c
comp Number of connected components of Cc after cutpoints are removed

Nc Number of trees spanned by a connected component Cc

NHL Number of horizontal lines in LHL

NT L Number of trellis-lines in LT L

nT P Unit normal of the trellis-plane

Ntrees Number of verified trees in the scene

NGT
trees Number of ground truth trees

OT Optimal Transport

p A 3D point

pα
a Position of the ath apple in A

pα,GT
g Position of the gth ground truth apple in AGT

pi ith point in PCC
w

pr,1 A point on hlr

pr,2 A point on hlr

PC A 3D colour point cloud

PCh Reconstructed harvest point cloud before calibration

PCC
h Calibrated harvest point cloud

PCCT
s Subset of PCT P

w ; set of points within a cylindrical region around the sth candidate
trunk location
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PCw Reconstructed winter point cloud before calibration

PCC
w Calibrated winter point cloud

PCT P
w Winter point cloud aligned to the trellis-plane

PCq
j,j+1 Cylindrical region around the qth trellis-line between the points p̂q,j and p̂q,j+1

PCtr Subset of PCC
w ; set of points within 1cm distance to the horizontal lines on the

trellis-plane

PCts Subset of PCT P
w ; set of points within 5cm distance to the trellis-plane

PCC
wh Winter point cloud aligned to PCC

h

PCtrees
w Subset of PCT P

w ; set of points with trellis wires and support pole removed

PCA Principal Component Analysis

Pr Precision

R Rotation matrix to transform PCC
w to PCT P

w

R− CNN Regions-Convolutional Neural Network

Rwh Rotation matrix to align PCC
w to PCC

h

Re Recall

S Skeleton of B

Ss Skeleton of Bs

Strees Skeleton of Btrees

SBIR Sketch-Based Image Retrieval

SDR Sufficient Dimension Reductions

SKs Set of points on the skeleton of sth trunk candidate

SPj Set of points on the main axis of jth verified trunk

SPs Set of points on the main axis of sth trunk candidate

SV M Support Vector Machine

T wh Translation vector to align PCC
w to PCC

h
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Tj jth tree in T

tj Identity of jth tree in T

tlq qth trellis-line in LT L

TN Number of true negatives

TP Number of true positives

TPC Number of true positive apples correctly assigned to respective trees

uX X-axis of the reference frame aligned to the trellis-plane

uY Y-axis of the reference frame aligned to the trellis-plane

uZ Z-axis of the reference frame aligned to the trellis-plane

UPOV International Union for the Protection of New Varieties of Plants

V aDiPom Pip Fruit Diversity Valorization

V CU Value For Cultivation And Use

xmax Maximum of the x coordinates of the points in a point cloud

xmin Minimum of the x coordinates of the points in a point cloud

ymax Maximum of the y coordinates of the points in a point cloud

ymin Minimum of the y coordinates of the points in a point cloud

zmax Maximum of the z coordinates of the points in a point cloud

zmin Minimum of the z coordinates of the points in a point cloud

HSV Hue, Saturation, and Value components of the colour of a 3D point

RGB Red, Green, and Blue channels of the colour of a 3D point
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Chapter 1

INTRODUCTION

1.1 Problematic

In industrialized countries, farmers have to use authorized varieties. The process of
authorizing a new variety to be on the market includes four main entities (see Fig. 1.1).
First, the breeders create candidate varieties, either by classical crossing or by genomic
manipulations. The candidate varieties pass through a set of tests called variety testing,
conducted by examination offices in charge of certifying the quality of these new candidates
and determining how they depart from existing varieties. In France, this is the role of
the "groupe d’étude et de contrôle des variétés et des semences" (GEVES) located in
Angers. Once validated by the examination offices, the candidate varieties are certified
as new varieties and registered to an official catalog, where all commercialized varieties
are listed. The new varieties still need to be tested on larger scales. In France, this is the
responsibility of the technical institutes (such as Arvalis for main crops, ITB for sugar
beet, or CTIFL for fruits and vegetables). The technical institutes also advise farmers on
optimally using these new varieties.

Figure 1.1 – The process of planting authorized varieties starts with variety selection
through plant breeding to variety testing to certify the candidate’s varieties as new vari-
eties. The varieties are then tested on a large scale by technical institutes so that farmers
can plant and produce food using the certified new varieties.

The steps in Fig. 1.1, corresponding to tasks of breeders, technical institutes and
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farmers, already include automation and numerical practices based on computer vision
in their protocols, unlike measurements in variety testing, that are conducted based on
visual inspection (see Fig. 1.2).

Figure 1.2 – (a): High-throughput phenotyping platform in plant breeding [1]. (b): Ex-
ample of measurements conducted manually, in variety testing [2]. (c): Robots used by
technical institutes. The illustrated one is called Phenoarch used in Arvalis technical in-
stitutes [3]. (d): Robots and drones used by farmers [4].

Computer vision is the domain of information sciences that aims to extract information
automatically from images via computers. Nowadays, it is often coupled with machine
learning, which automatically defines rules for this information extraction based on data.
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Computer vision is currently widely used in precision agriculture and plant breeding [5,
6, 7, 8, 9, 10]. In plant breeding, the transition to numerical practices involves training
technicians to handle computer vision tools during workshops.

For instance, in France, the french network of high-throughput plant phenotyping
(PHENOME) is a project that aims to equip the french scientific community with an
infrastructure able to measure the agronomic characteristics of plants using precise and
high throughput methods.

Likewise, the international plant phenotyping network (IPPN) is an association created
to increase the visibility and impact of plant phenotyping and enable cooperation by
fostering communication between stakeholders in academia, industry, government, and
the public. Through workshops and symposia, IPPN seeks to establish different working
groups and distribute all relevant information about plant phenotyping on a web-based
platform.

With the demonstrated potential of computer vision in plant breeding and precision
agriculture, its low exploitation in variety testing earlier seems questionable, especially
since the need to increase the speed and accuracy of variety testing is urgent to certificate
varieties able to adapt to varying climate conditions. This absence of numerical transition
of practices is explained by the specificity and challenges of variety testing, hence the non-
use of computer vision tools developed in precision agriculture and plant breeding. Before
listing the constraints and limitations of the current practices, we define the categories of
variety testing in the next section.

1.2 Type of tests in variety testing

1.2.1 Distinctness, uniformity and stability (DUS)

During the DUS tests, examiners follow instructions and guidelines set by the Inter-
national Union for the Protection of New Varieties of Plants (UPOV), to extract relevant
characteristics (e.g. plant height, leaf shape, time of flowering) to ensure that a new
variety is distinct from existing varieties, that its characteristics are uniform, and that
the variety is stable with consistent phenotypic characteristics from one generation to
the next [2]. The instructions are gathered in the official catalog of DUS variety testing
(see Fig. 1.3). Instructions are either sentences or schemes within the measurement to
conduct.
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Figure 1.3 – A screenshot of UPOV catalog of DUS tests for apples. There are two formats
of instructions: wordy and schemes.

1.2.2 Value for cultivation and use (VCU)

VCU tests are carried out to evaluate a variety’s suitability for growing in given agro-
climatic conditions and the use made of harvested crops and products produced from that
variety [2]. Candidate varieties are evaluated based on:
◦ Yield level;
◦ End-use quality (protein content and micro-malting quality in winter barley, oil

and protein content in rapeseed, animal feed quality in forage maize, etc.);
◦ Resistance to disease, pests, environmental aggressors such as wind and winter

cold;
While DUS is managed by an intergovernmental authority (UPOV), VCU tests are

rather governed by a national authority of each country. Lately, efforts have been made
to unify the VCUs tests, at least at the European level.

1.3 Why variety testing needs specific machine learn-
ing methodologies and computer vision tools.

As illustrated in Fig. 1.2, most measurements in variety testing are conducted manu-
ally based on a visual inspection. In addition to being slow, the accuracy of the experts’
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scoring systems is rather subjective because of visual perception limitations. This can
also impact the reproducibility of the results. This is very important to acknowledge
because often, varieties are planted in several sites to monitor their evolutions during
their interactions with the local climate. The comparison between the performance of the
same variety by the different examination offices is therefore questionable, as there are no
guarantees that the measurement conditions were identical.

Limitations in current practices of variety testing call for the use of computer vision
to increase the speed of the tests, the accuracy of the measurements, and to guarantee
uniform measurement conditions for reproducibility of the results. However, there are
specific challenges that restrains the shift to numerical practices.

DUS Variety testing follows guidelines and instructions imposed by the UPOV. These
instructions are set through a voting system, including all stakeholders and members of
the organization. On the other hand, VCU tests follow specific rules defined by each
country. Such decision systems complexify the possibility of proposing alternative scoring
systems or shifting from manual to automated measurements based on computer vision.

All examination offices in variety testing are state-owned. Budgets assigned for variety
testing are relatively low compared to the agro-industry. This impacts the possibility of
incorporating new technologies and investing in training examiners who often do not have
a background in computer vision or image processing tools.

Measurements in variety testing are conducted on many crops and a smaller scale
than in precision agriculture. Exploiting existing computer vision tools of precision agri-
culture in variety testing is therefore not straightforward nor cost-effective. For instance,
at INRAe of Angers, technicians use a sorting machine (see Fig. 1.4). This machine uses
sensors mounted in a black box to acquire images and perform image processing in real-
time for sorting. This is not suitable for variety testing for the following reasons. First,
the machine costs around (≈ 100ke) and is applied only for sorting. Hence, it is not
generalizable to all post-harvest measurements conducted in variety testing. Secondly,
such commercialized systems do not share the raw data that produce the measurements.
This represents a limitation in variety testing because the data can be requested as proof
for the client to debate the decision of examination offices. Data can also be exploited
in uniformity tests as the results are compared over five years. Third, there is no guar-
antee that the measurements of traits performed by the sorting machine follow the same
instructions and the scale in the UPOV. This makes them unusable in variety testing.
To shift to numerical practices, the examination offices need, therefore to develop new
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computer vision tools that can be generalizable and affordable.

Figure 1.4 – Sorting apple machine used for precision agriculture, located at the experi-
mental unit of INRAe.

1.4 Our contributions

During this PhD, we contribute to computer vision and machine learning for plant
variety testing by developing generalizable methodologies adapted to the specificity and
constraints of variety testing with a focus on low-cost solutions. The materials developed
were shared among the examiners of variety testing in the European project INVITE
(https://www.h2020-invite.eu/).

To demonstrate the possible transition to numerical practices based on computer vi-
sion and machine learning in variety testing, we targeted arboriculture (see Fig. 1.5),
particularly apple fruits, because of the importance of this crop in the Maine-et-Loire as
it is a province where the agro-industry of apples is very active. We also selected apples
because of the proximity to examiners conducting DUS tests on varieties of apples. In
Angers, Pip Fruit Diversity Valorization (VaDiPom) is a research team located at INRAE.
Their main objectives are valorizing apple diversity, breeding programs and conducting
variety testing for apple varieties’ commercialization. VaDiPom is a member from the
so-called European Refpop community [11]. Refpop examiners participated in providing
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data during this thesis. Our exchanges and collaboration were operated in the context of
the European project INVITE.

INVITE is a 5-year European Union-funded project, that aims to valorize and promote
varieties that are more adapted to sustainable management practices and more resilient
to climate change. The selected species in this project are apple, fodder grass, sunflower,
soybean, wheat, maize, potato, tomato, oilseed rape, and lucerne, representing the main
features of propagation, food and having an important breeding activity at the European
level. Among the missions of INVITE, developing new phenotyping tools to enhance the
speed, accuracy and efficiency of variety testing. This meets our purpose of demonstrating
the possibility of incorporating computer vision and machine learning in variety testing.

Figure 1.5 – Types of agriculture. Our field of interest is the arboriculture, highlighted in
red.

Regarding our contributions in variety testing, We chose not to prioritize VCUs tests
because the scoring scale is often not normalized across all examination offices and is
specific to each country. In such a scenario, proposing automated pipelines will be suited
to a particular country and not generalizable.

To contribute on an international level, we target DUS traits, more precisely, the
distinctness test of DUS protocols. The stability is a comparison of the performance of
a variety over five years. We could not address this category due to the limited time of
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the PhD. Uniformity is a comparison between the performance of the same population of
varieties. This test can benefit from works achieved in the automation of the distinctness
test.

The objective of the distinctness tests is to verify that the candidate varieties are
different from the reference varieties of the official catalog, based on measurements of
traits. Machine learning can fit perfectly in this situation because the distinctness test
can be seen as a classification problem (see Annex A). With several measured traits, the
candidate and reference varieties can be represented in a high dimensional point cloud,
where each axis refers to a measurement. The classifier in the high dimensional point
cloud can quantify the separability between the varieties.

The distinctness tests are conducted during the pre-harvest and post-harvest periods.
In each category, trait measurements need to be automated to address the distinctness
test as a classification problem in machine learning. In the pre-harvest period, the tools
developed must be adapted to the specificity of the variety testing orchards. Unlike or-
chards dedicated to producing food, trees in variety testing orchards are planted tightly
(to reduce the investment cost). Therefore, the branches of neighbor trees intersect, mak-
ing the automating of measurements complex. In chapter 2 of this document, we present a
3D computer vision pipeline developed to separate trees. This work is a foundational step
for the automation of apple traits such as estimation of flowering intensity, estimation of
the mean color of fruits and estimation of the mean size of fruits (see Fig. 5.1).

During the post-harvest distinctness tests, the controlling conditions are normalized
and the automation of trait measurements is less complex. To demonstrate the possibility
to incorporate computer vision and machine learning in the distinctness tests of DUS
variety testing, we selected color and shape traits (see chapter 3).

During a numerical distinctness test, the varieties are represented by descriptors in
the feature space (for definitions of machine learning terminology, see Annex D). Some
traits, such as color or stripes, are scored on an ordinal scale (see Fig. ??). Therefore,
the ordinality is also present in the point cloud representing the varieties. We developed,
in chapter 4, a dimension reduction technique to visualize the ordinality in the feature
space and two quantification metrics to understand the decision of machine learning al-
gorithms. These methods will be demonstrated on variety testing, but can be applied to
any application involving ordinal measurements.
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1.5 Structure of this document

The document is organized in three chapters (2,3,4) before a concluding chapter. In
these three chapters, we present our main methodological contributions. In chapter 2, we
present a 3D computer vision pipeline developed to delineate the trees in an apple variety
testing orchards, to overcome a specificity of variety testing orchards and open prospects
for automating DUS traits, accurately. In chapter 3, we present supervised and unsu-
pervised methods to incorporate machine learning in the distinctness tests of the DUS
variety testing. In chapter 4, we present a dimension reduction technique and quantifica-
tion metrics to visualize and quantify ordinality in the latent space. These three chapters
deal with variety testing matters and are all applied on apple variety testing protocols. As
a disclaimer, we stress that they are methodological contributions which are largely inde-
pendent from each others. Consequently, we do not provide a centralized state-of-the-art
chapter, but rather provide bibliographic state-of-the-art sections in the introduction of
each chapter. A common element in the manuscript stands on the adaptation of machine
learning methods. To avoid expanding the introduction of this document, we present in
Annex D, a brief explanation of the terminology of machine learning used in this thesis.

In addition to the main methodological contributions of this work, we have developed
engineering contributions, which are proposed in Annex A. The methods in chapter 4
were incorporated in a ready-to-use application called Ordinalysis. The impact of this
application will be demonstrated on the measurements of the resistance of melon varieties
to powdery mildew, in Annex H. In Annex F, we exploit the transfer learning from
indoor data to outdoor data, to reduce the cost of annotation and enhance the robustness
of a machine learning model at recognizing the russeting on apple fruits in the orchard.
Annex B and C detail the protocol to perform the 3D reconstruction and the visualizations
associated with the work done in chapter 2.
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Chapter 2

COMPUTER VISION FOR VARIETY

TESTING ORCHARDS

2.1 Introduction

In this chapter, we propose a novel methodology to delineate apple trees in a trel-
lis structured orchard. This structure is very common in variety testing orchards where
each tree represents a single different variety and therefore has to be characterized sepa-
rately. The pipeline proposed is tested for the counting of apples (Fig. 2.1). The material
presented in this chapter has been published in [12].

Our strategy is to reconstruct 3D models of the same set of trees twice a year, once
during the winter period and once during the harvest period. We perform delineation of
individual trees on the leaf-off model from winter, which we refer to as winter point cloud.
We detect tree trunks and identify the branches connected to them using winter point
cloud. We employ the 3D model from the harvest period, which we call harvest point
cloud, to localize apples. We determine the tree-membership of each apple in the harvest
point cloud by mapping their locations onto the winter point cloud, where individual trees
are separated. This approach of registering data from two different time instances for fruit
counting is another novelty we introduce to the field. We also propose the use of a known
calibration object to facilitate the registration of two point clouds and to recover the true
metric sizes of the important structures in the scenes.

The main contributions of this study are:
◦ Addressing the problem of apple counting on individual trees from 3D colour point

clouds.
◦ As a way to map detected apples to individual trees, alignment of harvest point

cloud to the winter point cloud, where individual trees are automatically delineated.
◦ A complete pipeline for detecting and removing trellis wires and support poles,

detecting tree trunks and delineating crowns of individual trees in winter point
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clouds.
◦ The use of a calibration object for correct scaling and alignment of point clouds

acquired in different time instances.

Individual tree delineation is the process of separating individual trees, including trunk
detection and crown boundary delineation; i.e. identifying the trunk and branches belong-
ing to a single tree [13]. Delineation of trees in dense orchards or forests is a challenging
task due to interlacing and touching branches of adjacent trees, particularly when there is
high variation among the trees in terms of crown size and shape [13]. Occlusion caused by
dense leaf cover during harvest period further complicates the delineation of trees. Using
leaf-off data collected during winter can alleviate the occlusion and facilitate the capture
of trunk and branch geometry [14, 15].

The architectural structure that determines the connectivity of the branches to a
particular tree trunk becomes ambiguous in 2D images, even during winter period. 2D
projection causes loss of shape and connectivity information of the branches of neighbour-
ing trees. Processing 3D point clouds is more adequate for our application since 3D data
enables a detailed analysis of the geometric structure of trees and localisation of branches
and fruits in the 3D world.

Computer vision techniques aiding management of fruit orchards range from complete
processing pipelines to algorithms performing single tasks such as tree localisation [16,
17, 18, 19, 20, 21, 22, 23, 24]. A vision system was developed by [16] to reconstruct
3D fruit trees and identify branch structure and traits for automatic pruning. In [17]
an automatic trunk-detection system using an infrared sensor was introduced. Medeiros
et al. [18] employed a laser sensor to model dormant fruit trees and identify primary
branches for automatic pruning. In [19] Regions-Convolutional Neural Network (R-CNN)
was applied on depth images for detection of branches of apple trees and localisation of
shaking points to guide a harvesting machine. Zeng et al. [20] developed an algorithm
to segment trellis wires, support poles, and tree trunks in sparse LiDAR point clouds
acquired from trellis-structured apple orchards. In order to optimise the mechanisation of
fruitlet and blossom thinning, Nielsen et al. [21] used LiDAR and stereo vision together
for obtaining 3D models of orchard rows of trees. They fitted mixtures of Gaussians to the
point cloud to cluster the trees into Gaussian shaped cylinders. In [22], LiDAR data was
used for individual tree separation through a hidden semi-Markov model. Their objective
was to develop a pipeline for building detailed orchard maps and an algorithm to match
subsequent LiDAR tree scans to the prior database, enabling correct data association
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for precision agricultural applications. In [23], a procedure for segmenting canopy to
individual trees was proposed. The procedure involved octree construction, clustering,
trunk detection and Ncut segmentation. 3D data was obtained with terrestrial laser
scanning (TLS) and mobile laser scanning (MLS). In [24], a tree trunk detection pipeline
was proposed for identifying individual trees in a trellis structured apple orchard, using
ground-based LiDAR and image data. Hough transformation was performed on 3D point
cloud to search for trunk candidates. These candidates were projected into the camera
images, where pixel-wise classification was used to update their likelihood of being a tree
trunk. Detection was achieved by using a hidden semi-Markov model to leverage from
the contextual information provided by the repetitive structure of the orchard.

Regarding the detection and counting of apples, while the majority of computer vision
techniques for fruit detection and counting relied on RGB (Red, Green, Blue) images,
other types of data including RGB-Depth images [25, 26, 27, 28, 29, 30], spectral images
[31], thermal images [32, 33, 34, 35, 36] images or LiDAR (Light Detection and Rang-
ing) data [37] have also been used. In traditional approaches for fruit detection through
such sensor information, relevant information is extracted from each data instance sep-
arately according to a manually predefined algorithm. The representative quantitative
information obtained in this manner is generally referred to as a hand-crafted feature.
Hand-crafted approaches can involve techniques such as colour thresholding, colour space
clustering, shape analysis, blob detection, circular Hough transform, Ncut algorithm, em-
ployment of Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP) and
Upright Speeded Up Robust Features (U-SURF) for separating fruits from the canopy
[38, 39, 40, 27, 41, 26, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Recently, deep learning
methods have become commonplace for fruit detection and counting [52, 53, 54, 55, 56,
57, 58, 25, 59, 28, 60, 30, 36, 61]. Deep neural networks are employed to learn predictors
from a set of training data through optimising the parameters of feature extraction and
localisation of fruits simultaneously. After prediction, further processing, such as circular
Hough transform and watershed transform [43] for verification and filtering of multiple
counts through 3D (3-Dimensional) reconstruction [62, 41, 57] can be applied to extract
the final fruit count.
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(a) 3D model from harvest period.

Apples’ memberships to individual 

trees are not apparent.

(b) 3D model from winter 

period. Branches are visible. 

Easier to segment neighbour 

trees from each other

(e) Each apple is assigned to the 

tree with the closest branch.

Apple count on individual trees 

is possible.
(c) Trees are automatically 

segmented and all points on the 

branches are labeled with the 

corresponding tree.

(d) Two models from harvest and 

winter periods are registered.

Figure 2.1 – Apple detection algorithms usually estimate the cumulative apple count from
the harvest season. Our aim is to count the number of apples on each individual tree.
The main idea is to register the 3D model from the harvest period (a) with the delineated
3D model from the winter period (c) to align the branches with the detected apples (d).
We assign a different label to each delineated tree as an output of the automatic tree
separation algorithm we perform on the winter model (c). Finally, the detected apples
from the harvest model are mapped to their closest branches, and membership of each
apple to an individual tree is determined (e).

2.2 Materials and methods

We developed a point cloud processing pipeline (Fig. 2.2) in order to locate and count
apples on individual trees. We use a colour camera for capturing images of target trees
in the orchard from multiple views during both winter and harvest periods (Fig. 2.2 (a)).
These images are processed by a structure from motion algorithm to reconstruct winter
and point clouds. The two point clouds are prepared for initial alignment which we refer
to as calibration of point clouds (Fig. 2.2 (b)). A novelty of our pipeline is the use of a
ColorChecker during acquisition. The ColorChecker serves both as a reference for removal
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Figure 2.2 – Pipeline proposed to assign apples to individual trees. (a) Image acquisition
of apple trees in winter and harvest period. (b) Calibration of 3D models and extraction
of region of interest. (c) Registration of calibrated models from winter and harvest period.
(d) Separation of individual trees in winter point cloud. (e) Apple detection from harvest
point cloud. (f) Distance map to assign apples to individual segmented trees.

of irrelevant background information and as a calibration tool. Calibration of the point
cloud, in our case, involves 1) re-scaling the point cloud to the correct metric scale, 2)
orienting the point cloud to a canonical reference frame, 3) extraction of region of interest,
and 4) re-centering the point cloud to a predetermined position. The estimated scale
allows us to impose metric parameters on the pipeline such as range of separation between
trees, separation between trellis wires, diameter of trellis wires, diameter of tree trunks,
the expected pole diameter and height, etc. The orientation and re-centering facilitate
trellis wire removal, tree trunk detection, and delineation of tree crowns (Fig. 2.2 (d)).
The calibration of both harvest and winter point clouds is also crucial for their correct
registration (Fig. 2.2 (c)). We employ a colour-based apple detection algorithm to locate
the apples in the harvest point cloud (Fig. 2.2 (e)). Finally, we map the detected apples
onto the winter cloud via distance calculation to assign them to their bearing trees. We
give detailed explanations of each module of our pipeline in the following subsections.

2.2.1 Experimental field

The experiments were conducted in a dense apple orchard, dedicated to variety testing
at INRAe-Angers (latitude: 47.48226◦N, longitude: 0.6152◦E) in France. The orchard was
composed of 4 years old apple trees organised in I-trellis structure with support poles.
Our target trees were arranged in a row, where each tree was a mutant, being tested to
be established as a new apple variety. The spacing between trees was 1m in average and

39



Part , Chapter 2 – Computer vision for variety testing orchards

the height of the trees ranged from 1 to 3m. The variation of the crown shape among the
trees was high.

2.2.2 Data acquisition and 3D reconstruction

Fig. 2.3 illustrates the data acquisition and point cloud calibration processes of our
pipeline, corresponding to the modules (a) and (b) in Fig. 2.2. We obtained 3D colour
point clouds of seven scenes from the orchard through a multi-view reconstruction process.
A scene, in our study, refers to part of an orchard row; i.e. a set of adjacent trees in the
same row. Each scene contained 4 to 5 apple trees in our experiments, although our
algorithm is capable of processing an entire orchard row. The number of trees in each
scene is given in Tab. 2.1.

A 3D colour point cloud (or a 3D RGB point cloud) PC is a set of 3D points, where each
point is represented by its coordinates (x, y, z) and its colour (R, G, B). Here, (R, G, B)
refers to the values of red, green and blue channels.

We captured multiple RGB images of size 3000× 4000 pixels, of a scene with a colour
camera (Fujifilm X20, Fujifilm Corporation, Tokyo, Japan) in both winter and harvest
periods to reconstruct the point clouds. We acquired images from only one side of the
orchard row; although it is possible to follow the procedure proposed in [63] to recon-
struct and register two sides of a row. Table 2.1 lists the number of images used for 3D
reconstruction of the scenes from winter and harvest periods. In this study, we captured
multiple images from the scene manually, choosing the viewpoints and viewing angles (i.e.
camera positions and orientations) to get visual information covering the scene from top
to bottom and from various sides of the trees. It is important to guarantee that there is
enough overlap between pairs of images for a successful 3D reconstruction. This process
can be automated in a more systematic manner with path planning, using a drone [64] or
a land robot equipped with multiple cameras [16].

The multi-view images were used to reconstruct 3D colour point clouds of the scenes
through VisualSFM [65, 66] and PMVS/CMVS tool [67, 68]. VisualSFM is a freely avail-
able software [65, 66] that performs Structure from Motion (SfM) to estimate unknown
camera locations and orientations. It provides a sparse point cloud of the scene through
keypoint matching and triangulation. In order to obtain a dense point cloud, we used
PMVS/CMVS tool, another freely-available software [67, 68]. This tool takes as input
the images and the camera parameters computed by VisualSFM and provides a dense
reconstruction of the scene through multi-view stereo. For introductory and in-depth

40



2.2. Materials and methods

information on the techniques of SfM and multi-view stereo, we refer the reader to the
textbook of Hartley and Zisserman [69].

Before capturing the images of each scene, we installed a calibration object (Col-
orChecker Passport Photo 2, X-rite, Great Lakes, Midwestern US) mounted on a tripod
stick at a known position. We placed the tripod stick in front of the trees facing the
camera, such that the ColorChecker pattern is almost parallel to the tree row Fig. 2.2 (b).
When the ColorChecker stick was installed, we manually measured two distances with a
tape measure: dcc

R : the minimum distance of the tripod stick to the tree row, and dcc
T :

the distance to a designated target tree. These values are necessary for the calibration
process of the point clouds.

The reconstructed harvest point cloud and winter point cloud of a scene are referred
to as PCh and PCw respectively. Point clouds of a sample scene are given in Fig. 2.3 (c)
with the ColorChecker objects zoomed in.

Table 2.1 – Number of trees in the scenes and number of images acquired in winter and
harvest periods.

# trees # images (winter) # images (harvest)
Scene 1 5 236 364
Scene 2 5 189 382
Scene 3 5 221 380
Scene 4 4 183 374
Scene 5 5 206 380
Scene 6 4 199 376
Scene 7 4 227 376
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Figure 2.3 – Data acquisition and point cloud calibration modules corresponding to (a) and (b) in Fig. 2.2. (a) Multi-
view image acquisition. (b) Apple orchard images acquired in winter and harvest periods. (c) 3D colour point cloud
reconstructions (PCw and PCh) of orchard scenes with zoom on the ColorChecker. (d) 3D colour point clouds after
calibration and extraction of region of interest (PCC

w and PCC
h ). See Annex B for details of the calibration process.

42



2.2. Materials and methods

2.2.3 Calibration and extraction of region of interest

The calibration of the point clouds from harvest and winter periods provides an initial
alignment, which is fundamental for the success of the registration of the two point clouds.
Having the point cloud with the accurate scale also enables us to fix parameters, such as
trunk diameter, tree height, separation between trees, according to the range of expected
metric sizes of the structures in the scene.

The ColorChecker is usually employed as a colour reference to obtain accurate colours
from images under varying lighting conditions [70]. In this work, we do not use the
ColorChecker for this purpose. Instead, we use it as a distinct reference pattern to ge-
ometrically calibrate the raw point clouds. We developed an algorithm for automatic
detection of the ColorChecker, together with the tripod stick it is mounted on, from 3D
colour point clouds. The description of this algorithm can be found in Annex B. The 3D
locations of the centers of the colour patches of the ColorChecker chart are used to guide
the calibration of the point cloud.

The geometric calibration process takes as input the harvest and winter point clouds
(PCh and PCw) and produces the calibrated point clouds (PCC

h and PCC
w ), as shown in

Fig. 2.3 (d). The details of the calibration process are given in Annex B. In summary,
the calibration process consists of 1) estimation of the true scale and re-scaling the point
cloud; 2) re-defining a canonical reference frame and rotating the point cloud to this new
frame; 3) extraction of region of interest, which corresponds to the set of trees just behind
the ColorChecker; and 4) moving the origin of the reference frame to the base of the
designated tree. The canonical reference frame is defined such that Y-axis is parallel to
the tree row and Z-axis is orthogonal to the ground.

2.2.4 Separation of individual trees

In this section, we describe the procedure to separate the trees from each other in
the winter scenes. This procedure involves localisation of target tree trunks, finding the
points on the tree trunks, detecting and removing trellis wires, the water pipe, and the
support poles. After the trees are localised and irrelevant points are removed, the tree
membership of all the remaining points are determined.

Let the number of points in the calibrated winter point cloud PCC
w = {p1, p2, ..., pNW

}
be NW . We aim to map each point pi to a semantic label γi, i = 1, 2, ..., NW where γi ∈ Γ.
Γ is the set of four semantic labels: Γ = { "Tree trunk", "Branch", "Trellis wire+Water
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pipe", "Support pole"}. The process of automatically labeling the points in the cloud with
one of these four classes is called semantic segmentation of the scene. The rationale for
a semantic segmentation stage is to remove irrelevant structures and to eliminate the
connectivity between adjacent trees caused by trellis wires and the water pipe.

In conjunction with semantic segmentation, we also detect trees in the scene and
locate their trunks. Let the set of verified trees in the scene be denoted as T . Each
tree Tj in T is represented by its tree identity tj ∈ {1, 2, ..., Ntrees} and its location Lj,
for j = 1, 2, ..., Ntrees. The location of a tree corresponds to the coordinates of its base
Lj = (xj, yj, zj), j = 1, 2, ..., Ntrees measured in the canonical reference frame.

After removing the irrelevant structures (trellis wires, water pipe and support pole)
we delineate the trees in the winter point cloud. The final output of the tree separation
algorithm is the assignment of each trunk and branch point in the calibrated winter point
cloud PCC

w to one of the trees in the set T .

Detection of trellis wires and tree trunks

The procedure for detecting points on trellis wires is based-on estimation of the trellis-
plane and the trellis-lines along the trellis wires and operating on the points close to these
estimates. Candidate trunk locations are detected along the trellis-plane based on point
density. The points in a cylindrical region along each candidate location is separately
skeletonised. The skeleton and the points surrounding it are examined to verify tree
trunk position and to detect the presence of a supporting pole. 3D points belonging to
the trunk of each individual tree and support pole are identified and labeled. Regions
between tree trunks along the initial line estimates are re-examined through 3D line fitting
to increase the precision of the detection and removal of the points that belong to the
trellis wires. The steps of the procedure are shown in Fig. 2.4 and detailed below:

Step 1: Voxelization The calibrated winter point cloud PCC
w is converted to binary

volumetric form, where a voxel takes the value 1 if the voxel is occupied by the points in
PCC

w . Specifically, we fit a regular 3D grid to the bounding box defined by the minimum
and maximum coordinate values (xmin, xmax), (ymin, ymax), (zmin, zmax) of the points in
PCC

w . Each cell, i.e. voxel, of the grid has edge lengths of ∆x = ∆y = ∆z = 5mm. On
this grid, we define a 3D array B of size Nx ×Ny ×Nz, where
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Nx = ⌊xmax − xmin

∆x

⌋+ 1;

Ny = ⌊ymax − ymin

∆y

⌋+ 1;

Nz = ⌊zmax − zmin

∆z

⌋+ 1.

(2.1)

Here ⌊·⌋ is the floor function. The 3D volumetric form of the point cloud corresponds to
the binary function B computed as

B(k, l, m) =


1, if ∃p = (x, y, z) ∈ PCC

w :

⌊x−xmin

∆x
⌋ = k & ⌊y−ymin

∆y
⌋ = l & ⌊ z−zmin

∆z
⌋ = m

0, otherwise,

(2.2)

for k = 0, ..., Nx − 1, l = 0, ..., Ny − 1, and m = 0, ..., Nz − 1. In Fig. 2.4 (Step 1),
the volumetric model of a sample scene is visualized. Only the voxels with value "1" are
shown.

Step 2: Skeletonisation We extract the skeleton of the volumetric model B using me-
dial axis thinning algorithm given in [71]. Formally, the skeleton of a 3D object is the
set of the centers of all inscribed maximal spheres where these spheres touch the object
boundary at one than more point [71]. The skeletonisation process produces another bi-
nary 3D grid S of size Nx×Ny×Nz, where the structures in B are pruned to curves with
thickness of one voxel. In Fig. 2.4 (Step 2), the skeleton of a sample scene is shown.

Step 3: Projection and Hough Transform The skeleton defined in the binary 3D grid
S is projected to the YZ-plane (parallel to the tree row) as a binary image, IH of size
Ny ×Nz:

IH(l, m) =

1, if ∑Nx−1
k=0 S(k, l, m) > 0

0, otherwise,
(2.3)

for l = 0, ..., Ny − 1, and m = 0, ..., Nz − 1.
In Fig. 2.4 (Step 3), the projected binary image of a sample scene is shown. We apply

2D Hough Transform [72] to IH to extract main horizontal lines in the binary image.
The peaks greater than 20% of the maximum value in the Hough parameter space, and
with angle with the horizontal axis less than 10◦ are selected as the main horizontal lines.
These horizontal lines correspond to candidates for the trellis-lines in the scene.

Step 4: Estimation of the trellis-plane
The detected horizontal lines are back-projected to the 3D space of the point cloud
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PCC
w , as shown with red lines in Fig. 2.4 (Step 4). Let the set of these horizontal 3D

lines be LHL = {hl1, hl2, ..., hlNHL
}, where NHL is the number of horizontal lines. Each

3D line is defined by a pair of points on it, as hlr = (pr,1, pr,2), with pr,1 = (xr,1, yr,1, zr,1)
and pr,2 = (xr,2, yr,2, zr,2). We retrieve the points in PCC

w with distance 1cm to these lines,
and form the subset:

PCtr = {p = (x, y, z) ∈ PCC
w : min

r=1,..,NHL

d(p, hlr) < 1cm}. (2.4)

The distance d(p, hlr) between a point p and the line hlr is calculated as:

d(p, hlr) = ∥(p− pr,1)× (p− pr,2)∥
∥pr,2 − pr,1∥

, (2.5)

where × is the cross product operation, and ∥ · ∥ is the Euclidean norm. We fit a plane
to the points in PCtr using M-estimator SAmple Consensus (MSAC) algorithm given in
[73], which is a variant of RANdom SAmple Consensus (RANSAC) algorithm. Maximum
distance for a point to be an inlier is set to be 0.5cm. The output of the algorithm is a plane
model (A, B, C, D), where the parameters define the plane equation Ax+By+Cz+D = 0.
The unit vector nT P = (A, B, C) corresponds to the normal of the plane. We refer to this
plane as the trellis-plane on which trellis wires and tree trunks are located. Fig. 2.4 (Step
4) shows the trellis-plane fitted to the points in PCtr for a sample scene.

The trellis-plane plays an important role in the following steps. We rotate the cal-
ibrated winter point cloud PCC

w to a new reference frame such that the new YZ plane
coincides with the trellis-plane and Y-axis is parallel to the trellis-lines. The new Y-axis
is computed as the average of the direction vectors of the horizontal lines in LHL:

uY =
∑NHL

r=1 (pr,2 − pr,1)
∥∑NHL

r=1 (pr,2 − pr,1)∥
(2.6)

The new Z-axis is orthogonal to the normal of the trellis-plane and the average direction
of the trellis-lines:

uZ = uY × nT P , (2.7)

and the new X-axis is
uX = uY × uZ (2.8)

We transform each point p = (x, y, z) in the calibrated winter cloud PCC
w using the
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rotation matrix R defined in Eq. (2.9), and obtain a point cloud of the same size, PCT P
w .

We refer to this point cloud as the winter point cloud aligned to the trellis-plane.

PCT P
w = {p̂ = (x̂, ŷ, ẑ) = pR : p ∈ PCC

w }; R =


uX

uY

uZ

 (2.9)

The origin of the new reference frame remains at the base of the target tree (see
Annex B). With the transformation, the trellis-plane coincides with the x̂ = 0 plane in
the new reference frame. This ensures that the x̂ coordinate of each tree trunk is close
to 0. Notice that this transformation is applied only to the winter point cloud. Once the
semantic segmentation of the winter cloud is achieved and the trees are delineated, the
points are transformed back to their original positions using p = p̂R−1.

Step 5: Merge lines The detected horizontal lines are on the trellis-plane; hence, they
are located on the x̂ = 0 plane in the new reference frame. Their average direction is
parallel to the Y-axis. Hence, we represent each line hlr ∈ LHL with the direction vector
(0, 1, 0) and a point on the line (0, 0, ẑr). The value ẑr indicates the height of a horizontal
line on the trellis-plane and is calculated as:

p̂r,1 = (x̂r,1, ŷr,1, ẑr,1) = pr,1R; p̂r,2 = (x̂r,2, ŷr,2, ẑr,2) = pr,2R; (2.10)

ẑr = ẑr1 + ẑr2

2 (2.11)

We merge the lines into parallel lines on the trellis-plane, each separated by at least
30cm to create the set of trellis-lines LT L = {tl1, ..., tlNT L

}. Each line is represented with
the direction vector (0, 1, 0) and a point on the line (0, 0, ẑq), with q = 1, ..., NT L. We use
the following procedure to cluster the horizontal lines in LHL into trellis-lines in LT L: We
first sort the horizontal lines with ascending height. We start from the bottom line on
the trellis-plane, and initialise ẑ1 to the height of the first horizontal line. If the distance
between the closest horizontal line is less than 30cm, we add the line to the group and
update ẑ1 to the average height of the group. Otherwise, we create a new group and
proceed to the next line. In our experiments, the horizontal lines were grouped into 4
lines for all the winter scenes. Fig. 2.4 (Step 5) shows the resulting trellis-lines in red
colour for a sample winter scene. In the rest of the paper we fix NT L = 4. The four height
values {ẑ1, ẑ2, ẑ3, ẑ4} will be used to specify the locations of the trellis-lines.
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Step 6: Trunk candidate localisation To localise candidate tree trunks along the trellis-
plane we limit the search space within 5cm distance to the trellis-plane. We extract a
subset of points PCts from PCT P

w :

PCts = {p̂ = (x̂, ŷ, ẑ) ∈ PCT P
w : |x̂| < 5cm} (2.12)

Fig. 2.4 (Step 6) shows PCts of a sample scene. We define a regular 2D grid, IG on
the z = 0 plane, which is parallel to the ground. Each cell of the grid has edge length
∆̂x = ∆̂y = 1cm. We compute the number of points in PCts falling into each cell:

IGi,j = {p̂ = (x̂, ŷ, ẑ) ∈ PCts : ⌊ x̂− x̂min

∆̂x

⌋ = i & ⌊ ŷ − ŷmin

∆̂y

⌋ = j}; (2.13)

IG(i, j) = |IGi,j|, (2.14)

where x̂min and ŷmin are the minimum of the x̂ and ŷ coordinates of the points in PCts,
and |X | denotes the number of elements in the set X .

IG is the histogram of the points in PCts projected to the ground. The points
on the tree trunks form the densest regions in the histogram correspond to the peaks
of IG. The locations of the peaks are detected via non-maximum suppression [74] as
{(I1, J1), (I2, J2), ..., (INP

, JNP
)}, where NP is the number of detected peaks.

The set of candidate trunk locations in the 3D space are then defined as CT =
{(0, ŷct

1 , 0), (0, ŷct
2 , 0), ..., (0, ŷct

NP
, 0)}; with ŷ1 < ŷ1 < ... < ŷct

NP
. Recall that the trunks

intersect with the trellis-plane. ŷct
s for s = 1, ..., NP is calculated as:

ŷct
s = Js∆̂y + ŷmin. (2.15)

Fig. 2.4 (Step 6) shows the locations of the candidate trunks as vertical purple lines
passing through (0, ŷct

s , 0).
Step 7: Trunk verification Not all the peaks detected in the previous step correspond

to tree trunks. In this step, we examine the points at each candidate trunk location to
verify whether it is a tree trunk, a support pole, or neither. We construct the set of
trees T using the verified trunks. Each tree Tj in T is represented by its tree identity
tj ∈ {1, 2, ..., Ntrees} and the location of its base L̂j = (x̂j, ŷj, ẑj), for j = 1, 2, ..., TNtrees .
The procedure for constructing the set of detected trees is given in Algorithm 1, and
explained below:
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Algorithm 1: Tree trunk verification
Data: PCT P

w : The winter point cloud aligned to the trellis-plane;
(0, ŷct

s , 0): Candidate tree trunk locations for s = 1, ..., NP

Result: T = {T1, ..., TNtrees}: Set of detected trees;
Ntrees: Number of detected trees;
tj: Tree identity of Tj ∈ T ;
L̂j = (x̂j, ŷj, ẑj): Location of Tj ∈ T ;
SPj: Set of points on the main axis of Tj

1 Initialise T = ∅; Ntrees = 0; j = 0;
2 for s← 1 to NP do
3 Extract the point set PCCT

s using Eq. (2.16);
4 Convert PCCT

s to binary volumetric form Bs through voxelization;
5 Compute the skeleton Ss of Bs using medial axis thinning [71];
6 Obtain SKs by retrieving the 3D points on the skeleton Ss ;
7 Find the top and bottom points in SKs with the largest and smallest

z-coordinates and designate them as p̂s,top and p̂s,bottom ;
8 Extract the shortest path between p̂s,top and p̂s,bottom using Breadth-first

search [75] ;
9 Collect the points on the shortest path to form the main axis SPs;

10 Calculate the length dSP
s of SPs;

11 if dSP
s > 1m then

12 Run Support Pole Detection Algorithm on s (Section 19) ;
13 if s is not a Support Pole then
14 j ← j + 1; Ntrees ← Ntrees + 1; tj = j ;
15 L̂j = (0, ŷct

s , 0) ;
16 SPj = SPs ;
17 Tj = (tj, L̂j, SPj) ;
18 T ← T ∪ Tj

19
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We first initialise the set of trees as T = ∅ and the number of tree trunks as Ntrees = 0.
For each candidate trunk indexed with s, we define a cylindrical region, with radius 15
cm, centered at the candidate trunk location (0, ŷct

s , 0), along the trellis-plane. We extract
the points inside this region from PCT P

w :

PCCT
s = {p̂ = (x̂, ŷ, ẑ) ∈ PCT P

w :
√

x̂2 + (ŷ2 − ŷct
s )2 < 15cm} (2.16)

The point cloud PCCT
s is converted to binary volumetric form Bs with voxel size ∆̂x =

∆̂y = ∆̂z = 5mm. Then, the skeleton Ss is extracted from Bs using medial axis thinning
algorithm given in [71]. The points on the skeleton are retrieved from the point cloud
PCCT

s , and denoted as SKs.
The two top and bottom points of the set SKs along the Z-axis p̂s,top and p̂s,bottom are

retrieved. The points on the shortest path between these two points is computed using
the Breadth-first search algorithm described in [75]. We refer to the set of the points on
the shortest path as the main axis of the sth trunk, and denote it as SPs. Fig. 2.4 (Step
7) shows the skeleton with black dots and the points on the shortest path with blue dots
for a candidate trunk location.

If the length of the shortest path dSP
s is less than 1m, then the candidate trunk location

is discarded. Otherwise, it is passed to the support pole detection procedure described in
Section 19. If it is not identified as a support pole, then we update Ntrees ← Ntrees + 1,
and insert the verified trunk into T . We also store the main axis of the verified trunk.
See Algorithm 1 for the formation of the set T .

Step 8: Extraction of trunk points The previous step gives the attributes of each tree
Tj = (tj, L̂j, SPj) ∈ T . The main axis of the jth detected tree is represented by the set of
points SPj. We label a point p̂i in the point cloud PCT P

w as "Tree trunk" if its distance
to the main axis of one of the trees is less than 3cm. Specifically:

γi = "Tree trunk" if min
j

min
p̂∈SPj

∥p̂− p̂i∥2 < 3cm (2.17)

Fig. 2.4 (Step 8) shows the points semantically labeled as "Tree trunk" in a winter
scene.

Step 9: Locating the intersection points of trellis wires and tree trunks
In Step 4, the set of trellis-lines LT L = {tl1, tl2, tl3, tl4} is determined. Recall that each
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line is represented with the direction vector (0, 1, 0) and a point on the line (0, 0, ẑq), with
ẑ1 < ẑ2 < ẑ3 < ẑ4. Now, having located the trunks at L̂j = (0, ŷj, 0) with ŷ1 < ŷ2 < ... <

ŷNtrees , we find the points where the trellis wires intersect with the trunk locations. For a
trellis-line with index q and a trunk location with index j, we find the point p̂q,j ∈ PCT P

w

closest to the location (0, ŷj, ẑq). Fig. 2.4 (Step 9) shows the trellis-lines, located tree
trunks and the intersection points p̂q,j for a winter scene.

Step 10: Finding the end points of trellis wires The end-points corresponding to the
trellis wires in the scene are determined by finding the closest points to the trellis-lines
at the two extremes of the point cloud along the Y-axis. Specifically, for a trellis-line
with index q, we locate two points p̂q,0 ∈ PCT P

w and p̂q,Ntrees+1 ∈ PCT P
w , which are closest

to the locations (0, ŷmin, zq) and (0, ŷmax, zq), respectively. Here, ŷmin and ŷmax are the
minimum and maximum Y-coordinates of the points in PCT P

w . Fig. 2.4 (Step 10) shows
the end points for a winter scene with red and yellow dots.

Step 11: Line fitting to find the points on trellis wires and the water-pipe
The region between each adjacent intersecting points of trellis-lines and the trunks are
examined for a precise determination of the points on the trellis wires and the water-pipe.
For each pair of intersecting points p̂q,j and p̂q,j+1, q = 1, ..., 4 j = 0, 1, ..., Ntrees we
extract the points:

PCq
j,j+1 ={p̂ = (x̂, ŷ, ẑ) ∈ PCT P

w :
(ŷj + 4cm < ŷ < ŷj+1 − 4cm) & (d(p̂, lsj,j+1) < 10cm)}

(2.18)

where lsj,j+1 is the line defined by the points p̂q,j and p̂q,j+1, and d(p̂, lsj,j+1) is the distance
between point p̂ and line lsj,j+1. This region corresponds to a cylinder of radius 10cm
with axis lsj,j+1. We set an offset value of 4cm from the trunk locations not to include
trunk points to the search region for trellis wire points.

Using MSAC algorithm given in [73], we fit two lines to the points in PC0
j,j+1 corre-

sponding to the regions along the lowest trellis-line (one for the trellis wire and one for
the water-pipe). One line is fitted to the points for the rest of the regions PCq

j,j+1 with
q = 2, 3, 4. For a point to be an inlier, the maximum distance to the fitted line is set to
be 7cm for q = 0 and 4cm for q = 2, 3, 4. Fig. 2.4 (Step 11) shows points in two regions
along the trellis wires in blue and the lines fitted to them in black.

If a point p̂i ∈ PCT P
w is an inlier of one of the fitted lines we set its semantic label as

γi = "Trellis wire + Water pipe".
Step 12: Removal of detected trellis wire points
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The detected trellis wire points and the points on the support pole, if there is any, are
removed from the point cloud to form the set:

PCtrees
w ={p̂i ∈ PCT P

w :
(γi ̸= "Trellis wire + Water pipe") & (γi ̸= Support pole")}

(2.19)

The procedure for retrieving points on the support pole is given in Section 19. The
point cloud PCtrees

w is supposed to include only the points on the trees. In Fig. 2.4 (Step
12) the points labeled as "Trellis wire+Water pipe" are shown in dark blue. Also the
resulting PCtrees

w is given for a sample winter scene.

Detection of Support Poles

During the procedure for trellis wire detection and localisation of tree trunks, we
examine each trunk candidate to determine whether it corresponds to a support pole or
an actual tree trunk. We consider the points in a vertical cylindrical region of radius
15cm centered at the candidate trunk location. We partition the points into horizontal
slices of height 2cm. We project the points in each slice onto the XY-plane (the ground
plane) and fit a circle of radius 4.5cm (the actual radius of a support pole in the orchard)
to the projected points, and estimate the center. The centers of the slices form the axis
of the candidate support pole and the new cylindrical region. We count the points in the
cylindrical shell with inner and outer radii, 4.5−0.5 and 4.5+0.5cm, and with height 2.3m
(the actual height of a support pole). If the ratio of this number to the total number of
points in the initial cylindrical region is higher than 0.8, then we declare that the structure
corresponds to a support pole. We label the points in the cylindrical shell as pole points.

Identifying tree membership of points (Tree Separation)

This module of our pipeline is responsible for delineating the trees in PCtrees
w , which

is the point cloud with trellis wires, the water-pipe and the support pole removed. The
output of the delineation process is the assignment of each point in PCtrees

w to one of the
trees Tj = (tj, L̂j, SPj) ∈ T .

The main steps of the tree separation process is given in Fig. 2.5. We convert PCtrees
w to

binary volumetric form and apply skeletonisation to conduct a connectivity analysis. We
delineate adjacent trees if they are touching and we assign isolated connected components
to one of the two nearest trees through a set of rules. The details of the steps are as follows:
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Input Point Cloud

Convert the 3D point cloud to 

volumetric form.

Step 1:Voxelization

Extract the skeleton of the 

volumetric model using medial 

axis transform.

Step 2: Skeleton extraction

Project the skeleton onto YZ-plane 

to obtain a binary image. Apply 

Hough Transform to detect 

horizontal lines.

Step 3: Projection and Hough Transform

Step 4: Estimation of the trellis plane

Back-project the horizontal lines to the 3D space. Fit a plane to 

the points within 1cm distance to the lines using RANSAC.

Step 5: Merge lines

Merge the horizontal lines into four 

parallel lines on the trellis plane. 

These new lines serve as initial 

estimates of the trellis wires.

Step 6: Trunk candidate localisation

Project the points within 5cm distance to the trellis-plane to the 

ground. Designate peaks as tree trunk candidates.

Step 7: Trunk verification and pole detection

For each tree trunk candidate:
• Voxelize and skeletonize the cylindrical region, with radius 15cm,

around the candidate location.

• Extract the shortest path between the top and bottom points (shown in

blue in the figure to the right).

• Discard if the length of the path is less than 1m.

• Otherwise, apply pole detection algorithm (Section 2.4.2).

• Classify the location either as a tree trunk or a supporting pole.

Label the points within 4cm distance 

to the skeleton of each main trunk 

position as trunk points.

Step 8: Extraction of trunk points

Step 9: Intersection points of the wires and tree trunks

Locate the intersection points of the trellis wires and tree trunks.

Step 10: Find the end points

Find the closest points to the trellis 

lines as the two extremes of the 

point cloud to the left and right.

Intersection points in magenta
End points to the left in red
End points to the right in yellow

Step 11: Line Fitting

Fit lines to the points 

between intersection 

points. Mark inliers as 

trellis wires. Fit two 

lines corresponding to 

the lowest trellis line 

to also detect the 

water-pipe.

Step 12: Removal of detected trellis wire points

The detected trellis wires (shown with dark blue in the figure 

below) are removed from the point cloud.

Figure 2.4 – Block diagram for detection and removal of trellis wires and the water-pipe.
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Input Point Cloud

Step 1:Voxelization

Convert the 3D.point cloud to volumetric form.

Step 2: Skeleton Extraction

Extract the skeleton using medial axis transform.

Step 3: Extract connected components

Extract the connected components of the skeleton.
(Each connected component is shown in a different color in the figure below)

Step 4: Labeling connected components

For each connected component, compute the minimum distance

from all the trunk locations.
• If the distance is below a threshold (30cm) for a trunk location, assign the

label of the trunk location to the connected component (components

coloured according to assigned trunk label in the figure below to the right).

• If not assigned to any trunk location, label the component as "floating"

(components in black colour in the figure below to the right).

• If the connected component is assigned to more than one trunk location, it is

assumed to span several trees (component in gray colour in the figure below

to the right).

Step 5: Split touching trees

Split touching trees using Algorithm 1.

Step 6:Assign floating components to a trunk

All floating components are assigned to a trunk

location using Algorithm 2.

Step 7: Label all the points

Label each point in the point cloud using the tree assignment of

its nearest skeleton point.

(a)

Step 5: Split touching trees

A connected component spanning multiple trees is split using

Algorithm 1.
• The connected component is converted to a graph.

• For each trunk location spanned by the connected component, the shortest

path between highest and lowest points is extracted (depicted in red in the

figure below to the left)

• Find shortest paths between the trunks of adjacent trees (depicted in green

in the figure below to the left)

• Locate cut points on the paths connecting the trunks.

• Remove the cut points, extract new connected components and assign each

to the closest trunk.

(b)

Step 6: Assign floating components to a trunk

All floating components are assigned to a trunk

location using Algorithm 2.
• Convert the points in the floating component to a graph.

• Fit lines to the end-points of the graph and extend these lines.

• The floating point is assigned to the label of the connected

component with the minimum distance to the extended lines.

line 1

line 2

(c)

Figure 2.5 – (a) Block diagram for separating individual trees. (b) Illustration of Step 5
for splitting touching trees, (c) Illustration of Step 6 for labeling floating components.
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Step 1: Voxelization The point cloud PCtrees
w is converted to binary volumetric form

Btrees with voxel size ∆̂x = ∆̂y = ∆̂z = 5mm.
Step 2: Skeletonisation The skeleton Strees is extracted from Btrees using medial axis

thinning algorithm given in [71].
Step 3: Extraction of connected components Connected components of the skeleton

Strees are extracted using flood fill algorithm [76]. We denote the set of connected com-
ponents as CC = {C1, C2, ..., CNcomp}, where Cc is the cth connected component and Ncomp

is the number of connected components. Fig. 2.5 shows each connected component in a
sample Strees in a different colour.

Step 4: Labeling connected components We compute the minimum distance of each
connected component Cc to all trunk locations L̂j = (0, ŷj, 0). If this distance is below
30cm, then we assign Cc to tj. Fig. 2.5 (Step 4) gives the trunk locations as lines in
different colours and the connected components coloured according to the assigned tree
for a sample Strees.

After this procedure a connected component might be assigned to 1) only one tree,
2) to multiple trees, or 3) none of the trees. If the connected component is assigned to
multiple trees, it is assumed to be spanning several trees that are touching each other.
We label the connected components not assigned to any tree as "floating". The floating
components are shown in black colour in Fig. 2.5 (Step 4).

Step 5: Splitting touching trees For a connected component Cc spanning Nc trees {Tj},
j = jc

1, ..., jc
Nc

, we run Algorithm 2. Before running the algorithm, we update SPj, main
axis of the jth trunk, together with the points p̂j,top and p̂j,bottom. Recall that p̂j,top and
p̂j,bottom are the top and bottom points of the skeleton of the jth tree trunk and SPj is
the shortest path connecting them. Fig. 2.5 (b) shows a connected component spanning
three trees. The main axes of them are plotted in red colour, on the left.

Algorithm 2 takes as input the set of trees identities {Tj}, j = jc
1, ..., jc

Nc
spanned by the

connected component Cc. For each adjacent tree pair Tj, Tj+1, the shortest path between
their top points p̂j,top and p̂j+1,top is extracted. We call this path CP , the connecting
path, which contains the touching point of branches from trees Tj and Tj+1. Each such
path is searched for a cut-point to separate the connected adjacent trees. The cut-point
is removed from the component Cc to break the connectivity at that point. The process
is repeated and CP is updated until there remains no connected path between p̂j,top and
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p̂j+1,top. Fig. 2.5 (b) depicts the connecting paths CP between adjacent trees with green
dots.

After all connecting paths are extracted and the cut-points are found and removed,
detached connected components {Cc,d}; d = 1, ..., N c

comp of Cc are extracted. Then each
connected component is assigned to the tree identity of the closest tree trunk. Fig. 2.5 (b)
shows the detached connected components each coloured according to its tree identity.

It is challenging to determine the point where branches from two trees touch each
other. Many architectural and morphological rules concerning apple tree branches can be
incorporated. However, here, we use a simple heuristic based on the assumption that the
point that changes direction along the z-axis (upwards or downwards) corresponds to a
meeting point along the path. We select the global extremum of the z-coordinate as the
cut-point of the connecting path.

Step 6: Assigning floating components to a tree The tree membership of a floating com-
ponent Cc is determined using Algorithm 3. Before running Algorithm 3, we identify the
set C = {(C1, τ1), ..., (CNF

, τNF
)} of connected components already assigned to a tree.

Here τf ∈ {t1, ..tNtrees} is the tree identity of the component Cf . We determine the two
closest components in C to the floating component Cc. If the distance to one connected
component is more than 3 times than the distance to the other component, we assign
the points in Cc to the tree identity of the closest component. Otherwise, we locate the
end-points in Cc, fit lines to these end-points and extend these lines, as shown in Fig. 2.5
(c). The minimum distance of the two closest connected components to these lines are
calculated. The floating component is then assigned to the tree identity of the connected
component with the minimum distance to the extended lines. Algorithm 3 gives the
details of the process.

Step 7: Labeling all points with tree identities After Steps 5 and 6, all connected com-
ponents in Strees are assigned to a tree label τc ∈ {t1, ..tNtrees}. Recall that the connected
components are extracted from the skeleton Strees of the point cloud PCtrees

w . For each
point p̂ ∈ PCtrees

w , we locate the closest component of Strees and assign the tree identity
of the component to the point p̂. Fig. 2.5 (Step 7) shows the points of a sample PCtrees

w

coloured according to their tree identities.
Recall that PCtrees

w is a subset of PCT P
w , which is the winter point cloud aligned to the

trellis-plane. To find the tree identities of the points in the calibrated winter cloud PCC
w ,

we first apply p = p̂R−1 to each point p̂ ∈ PCtrees
w with tree identity τ ∈ {t1, ..., tNtrees}.

Then, we retrieve the closest point pi ∈ PCC
w to p and set τi = τ .
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2.2.5 Apple detection

To detect apples, we applied simple colour thresholding to the calibrated 3D colour
point cloud of the harvest scene PCC

h . First, the RGB colours of points are converted to
HSV (Hue, Saturation, Value) representation. The points in the hue range [0.15-0.2] are
assumed to correspond to green/yellow apple points. The red apple points are assumed to
be in the hue range [0-0.05] and [0.95-1]. The points with hue values in these ranges are
retrieved and converted to volumetric form. The connected components of the volumetric
form and their bounding boxes are extracted. The centers of these bounding boxes are
mapped to the 3D space of PCC

h and are considered to be the locations of detected apples.
We denote the set of detected apples in a harvest scene as A = {pα

1 , ..., pα
Napples

}, where pα
a

is the location of a detected apple.
Although our apple detection approach is primitive, it provides recall rates in the

range of 74% to 90% (see Section 2.3.2). This level of detection success is sufficient
to demonstrate the effectiveness of our approach for assigning retrieved apples to their
respective trees.

2.2.6 Assigning apples to individual trees

The main objective of this work is to automatically assign detected apples to their
respective trees; i.e. to determine the tree identity τa ∈ {t1, ..., tNtrees} of each detected
apple pα

a ∈ A. To this end, we align calibrated winter cloud PCC
w and summer cloud PCC

h

and assign apple pα
a detected from PCC

h to the tree identity of the closest branch point in
the aligned winter cloud.

Since both point clouds were transformed, through calibration, to a common reference
frame with the origin at the base of a reference tree (see Annex B for details), they are
already initially aligned. We apply the standard Iterative Closest Point (ICP) algorithm
[77] to improve the alignment. Point to point metric is used to minimise the alignment
error. ICP returns the transformation parameters; a rotation matrix Rwh and a translation
vector T wh that align the points in PCC

w to the points in PCC
h :

PCC
wh = {p′

i = piR
wh + T wh : (pi ∈ PCC

w ) & τi ∈ {t1, ..., tNtrees}}. (2.20)
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Once the transformed winter point cloud PCC
wh is obtained, the closest branch point

in PCC
wh labeled with a tree identity to the apple location pα

a is retrieved:

i∗ = arg min
p′

i∈P CC
wh

∥p′
i − pα

a∥; (2.21)

and the tree identity of apple a is set as

τa = τi∗ . (2.22)

2.2.7 Ground truth and evaluation metrics

To provide ground truth for evaluation of our semantic segmentation scheme, we man-
ually labeled each point pi ∈ PCC

w with one of the following semantic labels: γGT
i ∈

{"Tree trunk", "Branch", "Trellis wire+Water pipe", "Support pole"}. We used Cloud Com-
pare (2.11, GPL software, 2020) to label the point cloud. Fig. 8.1-(a) shows a sample
winter scene with points coloured according to their manually annotated ground truth
labels.

We evaluated the performance of the semantic segmentation module described in Sec-
tion 2.2.4 using Recall (Re), Precision (Pr), F1 score (F1), Intersection over Union (IoU),
and Class Accuracy (CA), defined as

Re = TP

TP + FN
(2.23)

Pr = TP

TP + FP
(2.24)

F1 = 2× Pr ×Re

Pr + Re
(2.25)

IoU = TP

TP + FN + FP
(2.26)

CA = TP + TN

TP + TN + FP + FN
, (2.27)

where TP , TN , FP and FN , correspond to the number of True Positives, True Negatives,
False Positives, and False Negatives, respectively. These cases for the "Tree trunk" are
determined as follows:
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Casei =



True Positive if γi = γGT
i = "Tree trunk"

True Negative if (γi ̸= "Tree trunk") & (γGT
i ̸= "Tree trunk")

False Positive if (γi = "Tree trunk") & (γGT
i ̸= "Tree trunk")

False Negative if (γi ̸= "Tree trunk") & (γGT
i = "Tree trunk"),

(2.28)

where γGT
i is the ground truth label of point pi and γi is the label predicted by our

automatic semantic segmentation scheme. The cases for "Support pole" and "Trellis
wire+Water pipe" are obtained in a similar manner.

In order to assess the performance of the colour-based apple detection approach, we
manually marked the apple positions in the harvest point clouds and obtained the set
of points AGT = {pα,GT

g }; g = 1, ..., NGT
apples. In Fig. 8.1-(b), a harvest point cloud with

ground truth apple positions is shown. For evaluation, we used Recall (Re) and Precision
(Pr) metrics, defined in Eq. (2.23) and (2.24). Here, the True Positives correspond to
the cases where a ground truth apple is correctly localised. The False Positives are wrong
detections returned by the algorithm. The False Negatives correspond to the ground truth
apple locations missed by the algorithm. A detection pα

a ∈ A is considered a True Positive
if there is a ground truth apple pα,GT

g ∈ AGT such that ∥pα
a − pα,GT∥ < 10cm and there

is no other detected apples closer to pα,GT . We pair the indices (a, g) to indicate that
pα

a ∈ A corresponds to pα,GT
g ∈ AGT . The number of False Positives and False Negatives

are then calculated as:
FP = Napples − TP (2.29)

FN = NGT
apples − TP (2.30)

where TP is the number of True Positives, Napples is the number of detected apples in A
and NGT

apples is the number of ground truth apples in AGT .
The end result of our apple assignment pipeline is the tree identity of each detected

apple, indicating which tree it belongs to. In order to evaluate assignment performance,
we provided the correct tree identities of the ground truth apples via manual inspection;
i.e. we determined τg ∈ {1, .., Ntrees} for each pα,GT

g ∈ AGT . We computed the accuracy
of the apple assignment (ACC) as the ratio of the number of correctly assigned true
positives TPC to the total number of true positives TP in the scene:

ACC = TPC

TP
(2.31)

A detection pα
a ∈ A is considered to be a correctly assigned true positive if its tree
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(a)

(b)

(c)

Figure 2.6 – Ground truth. (a) Manually labeled point cloud for assessment of trellis wire,
tree trunk and support pole detection, (b) Harvest point cloud with ground truth apple
locations, (c) Point cloud manually segmented to individual trees.
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identity τa, determined by Eq. (2.21) and (2.22), is equal to the tree identity τg of its
matched ground truth apple pα,GT

g ∈ AGT .
Recall that we assigned each apple pα

a ∈ A to the tree identity τi∗ of the closest
branch point pi∗ in the aligned winter cloud through Eq. (2.21) and (2.22). In order
to decouple the apple assignment errors due to branch deformation between winter and
summer trees and errors due to our automatic tree separation method, we performed the
apple assignment procedure on two types of data:

1. Manually Separated: We manually separated the winter point clouds into individ-
ual trees and provided the ground truth tree identities τGT

i ∈ {1, ..., NGT
trees} of the

trunk and branch points in the winter cloud. We used CloudCompare (2.11, GPL
software, 2020) for annotation. One example is shown in Fig. 8.1-(c).

2. Automatically Separated: We used the tree identities τi ∈ {1, ..., Ntrees} of the
trunk and branch points in the winter cloud predicted by our automatic tree sep-
aration procedure.

2.3 Results

We first report the results of the semantic segmentation method, which detects the
trellis wires, tree trunks and support poles. Then, we provide the performance of the
apple detection method and the assignment procedure of apples to individual trees in the
scene.

2.3.1 Evaluation of detection of trellis wires, tree trunks and
support poles

In Fig. 2.7, we give visual results of our semantic segmentation method for two winter
scenes. The visual results for all the seven scenes can be found in Annex C. We can
observe that all the trees in the scenes of the apple orchard, the trees were correctly
localised. The number of detected tree trunks and the actual number of trees were equal
for all seven scenes; Ntrees = NGT

trees.
Table 2.2 provides quantitative evaluation of our semantic segmentation method. In

Fig. 2.8, the results are given as bar graphs. The recall and precision values for the
trellis wires are satisfactory. All the support poles in the scenes were correctly identified
and segmented with over 90% success. The recall rate for the trunks is over 90% for all
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Algorithm 2: Separation of a connected component into multiple trees
Data: Cc: Connected component spanning multiple trees;
{Tj}: Trees spanned by Cc; j = jc

1, ..., jc
Nc

;
{SPj}: Main axes of trees;
{p̂j,top}: Top points of the main axes
Result: {Cc,d}: Detached connected components each assigned to a tree;

d = 1, ..., N c
comp

1 for j ← jc
1 to jc

Nc
− 1 do

2 CP ← ∅ ;
3 Extract the shortest path CP between the points p̂j,top and p̂j+1,top;
4 while CP ̸= ∅ do
5 CP ← (CP \ SPj) \ SPj+1 ;
6 Select the global extremum of the z-coordinate in CP as the cut-point;
7 Remove the cut-point from Cc ;
8 Extract the shortest path CP between the points p̂j,top and p̂j+1,top;

9 Apply connected components to Cc to obtain {Cc,d} ;
10 Assign each connected component Cc,d to the closest tree trunk;

(a) (b) (c)

Figure 2.7 – (a) Calibrated point clouds, (b) Manually generated Ground Truth
(cyan:trellis wires, red: tree trunks, black: support poles), (c) Semantic labels obtained
by our method for automatic detection of trellis wires, tree trunks, and support poles
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Algorithm 3: Assignment of a floating branch to a neighbouring tree.
Data: Cc: Floating connected component;
C = {(Cf , τf )}: Connected components already assigned to a tree
(f = 1, 2, ..., NF )
Result: τc ∈ {t1, ..tNtrees}: Tree identity of Cc

1 for f ← 1 to NF do
2 Calculate the minimum distance df between the points in Cc and the points

in Cf ;
3 dF 1 ← Minimum of df ; dF 2 ← Next minimum of df ;
4 CF 1 ← Component with dF 1 ; CF 2 ← Component with dF 2;
5 τF 1 ← Tree identity of CF 1 ; τF 2 ← Tree identity of CF 2;
6 if dF 2

dF 1 > 3 then
7 τc ← τF 1;
8 else
9 Extract the end-points pe of Cc, e = 1, 2, ..., Ne;

10 for e← 1 to Ne do
11 Extract K nearest neighbours of pe with K = 10 ;
12 Fit a line le to the neighbours;
13 deF 1 ← Minimum distance of the points in CF 1 to the line le;
14 deF 2 ← Minimum distance of the points in CF 2 to the line le;
15 if min{deN1} < min{deN2} then
16 τc ← τF 1

17 else
18 τc ← τF 2;
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Table 2.2 – Performance of the method for detection of trellis wires, tree trunks and
support poles in terms of Recall (Re), Precision (Pr), F1 score (F1), Intersection over
Union (IoU), and Class Accuracy (CA). NP is for non-present.

Trellis wires
% Re % Pr % F1 % IoU % CA

Scene 1 84.98 81.61 83.26 71.32 96.42
Scene 2 88.16 76.01 81.63 68.96 95.19
Scene 3 91.48 73.65 81.61 68.93 95.52
Scene 4 86.48 88.20 87.33 77.51 96.88
Scene 5 75.47 85.21 80.04 66.73 95.64
Scene 6 85.82 77.75 81.59 68.90 96.06
Scene 7 79.24 81.16 80.19 66.93 96.48

Tree trunks
% Re % Pr % F1 % IoU % CA

Scene 1 90.26 77.97 83.67 71.92 92.83
Scene 2 91.49 74.89 82.36 70.01 91.77
Scene 3 92.77 70.03 79.81 66.40 91.31
Scene 4 83.23 71.23 76.76 62.29 90.55
Scene 5 94.25 67.03 78.34 64.40 91.56
Scene 6 94.02 70.39 80.51 67.37 92.78
Scene 7 95.47 69.19 80.24 66.99 93.27

Support poles
% Re % Pr % F1 % IoU % CA

Scene 1 95.50 96.24 95.87 92.07 99.44
Scene 2 NP NP NP NP NP
Scene 3 NP NP NP NP NP
Scene 4 NP NP NP NP NP
Scene 5 91.83 98.74 95.16 90.77 98.65
Scene 6 94.44 99.26 96.79 93.78 98.15
Scene 7 97.94 98.96 98.45 96.94 99.64
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(b) Tree trunks
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(c) Support Poles

Figure 2.8 – Performance of the method for detection of trellis wires, tree trunks and
support poles in terms of Recall (Re), Precision (Pr), F1 score (F1), Intersection over
Union (IoU), and Class Accuracy (CA) (in %).
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but one scene, meaning that most of the trunk points are retrieved. The precision rates
are satisfactory for our purposes. The less than perfect precision is due to the fact that
branching points close to the tree trunks are also classified as trunks by our method.

It should be recalled that our aim is not to provide a perfect segmentation, but rather
1) to detect and remove the trellis wires to break connectivity between adjacent trees,
2) to locate the tree trunks correctly to be able to separate individual trees, and 3) to
remove the support poles. For the purposes of our application, these aims were achieved
with this level of automatic point labeling of the scene.

2.3.2 Evaluation of apple detection and assignment to individual
trees

The precision and recall values obtained with colour-based apple detection are given
in Tab. 2.3 and, also presented in Fig. 2.9 as a bar graph. Despite the simplicity of
the detection approach, we achieved over 90.75% recall; i.e. most of the apples in the
ground truth were retrieved. The false negatives occurred since we did not post-process
the connected components for resolving clusters of apples. The over-detection (precision
65,37%) can be explained by the sensitivity of the colour-based algorithm and the lack of
shape-based apple verification. Fig. 2.11 (a) and (b) visually illustrate the performance
of our apple detection method on two sample scenes.

Table 2.3 – Apple detection performance in terms of Recall (Re) and Precision (Pr).

3D scenes % Re % Pr
Scene 1 74.50 61.29
Scene 2 87.34 62.16
Scene 3 88.54 58.21
Scene 4 90.00 48.64
Scene 5 90.62 58.58
Scene 6 77.41 65.62
Scene 7 80.85 66.66

Our main task is to correctly assign the detected apples to the individual trees they
belong to. As we have stated earlier, we performed the assignment procedure to two
types of data: 1) The winter point clouds which are manually segmented to individual
trees, and 2) The winter point clouds where the trees are segmented using our automatic
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Figure 2.9 – Apple detection performance in terms of Recall (Re) and Precision (Pr) (in
%).
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Figure 2.10 – Accuracy of assigning apples to the correct apple trees in 3D models.

tree separation method. Fig. 2.10 shows the assignment accuracy (ACC) on both type
of data. The performance is high for both cases (100% on four scenes). With automatic
tree separation, a performance drop of less than 3% is observed, demonstrating that our
automatic pipeline was able to detach individual trees and correctly assign the detected
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apples.
Fig. 2.11 (c) and (d) show the registration result of winter and harvest point clouds

for two sample scenes. Each separated tree in the winter clouds is shown in a different
colour. In Fig. 2.11 (e) and (f), the detected apples are shown with the colour of their
corresponding tree labels.

2.3.3 Processing time

The average processing times, together with the standard deviations, for the steps
of the pipeline are provided in Tab. 2.4. Given a 3D point cloud reconstructed through
SFM, the total time for processing the point cloud is approximately 3 minutes. We also
give the characteristics of the machine we used to process the data in Tab. 2.5.

Table 2.4 – Average processing times of the steps of the pipeline in seconds.

Step Processing time
Calibration and ROI extraction 16.53 ± 2.02 s
Detection of tree trunks, trellis
wires and support poles

50.20 ± 2.42 s

Tree separation 18.41 ± 2.56 s
Apple detection and assignment 118.40 ± 3.78 s
Total 203.54 ± 10.78s

Table 2.5 – Machine characteristics.

RAM Processor GPU membership

64 GB Intel® Xeon® Silver 4114
CPU @2.20 GHz and 2.19 GHz (2 processors) Quadro P4000 GPU of 8 GB

2.4 Discussion

The full pipeline presented and tested in this manuscript achieves great performance
for assigning apples to individual trees in dense orchards. The main strategy is aligning
summer and winter point clouds. The sub-steps of the pipeline, for which we chose stan-
dard approaches for implementation, are open to improvement for further performance
increase.
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Figure 2.11 – (a), (b) True positives, false negatives, and false positives obtained with
colour-based apple detection method for two sample scenes. (c), (d) Registration of
harvest and winter clouds for the two scenes. Each separated tree is shown with a different
colour. (e), (f) Assignment of true positives to their corresponding trees for the two scenes.69
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Images were acquired manually with a standard camera. This is a rather time consum-
ing process for producing hundreds of images per tree. The speed of acquisition can be
increased and the amount of images can be optimised by a drone with a camera or a land
robot with multiple cameras and automatic navigation via GPS localisation [78]. The
object of reference for calibration and registration of the summer and winter point cloud
was chosen to be the X-Rite ColorChecker, since it is a standard tool in the computer
vision community. In principle, any reference object with a distinctive geometric pattern
could serve the same purpose.

The deformation we observed with our data (young trees of four years old) becomes
even more pronounced for older trees. Registration of winter and summer calibrated point
clouds could be performed efficiently with non-rigid registration while dealing with older
trees, where the deformation during summer could be larger due to increased fruit load.
Non-rigid registration is widely used in medical imaging when data from two different
modalities, such as MRI and X-Ray images, should be registered. Non-rigid deformation
between the image sets are commonly observed due to movement of the patient or artifacts
of the imaging systems. The literature on non-rigid registration of medical images can thus
be revisited for our plant imaging problem [79]. To avoid having a too large exploration
space for this non-rigid registration, one could also use botanical and physical knowledge
on the development of trees. The size and weight of the fruits is important because it can
cause arching of the branches, therefore, a deformation of the architecture. Another factor
that alters the architecture is the secondary growth of the branches. Expert knowledge on
such processes can be used to constrain the deformation space and fix the hyperparameters
of the non-rigid registration algorithms.

We based the evaluation of the registration of winter and harvest point clouds on
the rate of correct assignment of the apples to their corresponding trees. A thorough
evaluation of the matching error is possible through computing distances between cor-
responding keypoints in the two point clouds. However, such a procedure necessitates
manually establishing ground truth correspondences between well-located keypoints. It
will be a worthy endeavor to measure the registration error and decouple errors due to
changing structures in the trees and errors due to the limitations of the matching method.
The decoupling can be done by locating keypoints both on the fixed structures (e.g. on
the trellis structure) and on the trees (e.g. branching locations).

Another issue is the applicability of our method to other orchards and other fruit trees.
The registration method we proposed relies on the initial alignment of two point clouds,
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each of which are calibrated separately. The calibration procedure operates on three
requirements: 1) There should be a reference pattern (in our case, the ColorChecker) in
place to recover the scale and to establish upwards and leftwards directions; 2) The trees
should be organised in a row to establish the -y- direction; and 3) The relative position
of a designated tree to the reference pattern should be known to locate the origin. As
long as these requirements are met, our calibration procedure will be applicable to fruit
orchards organised as rows.

The parameters of our method were fixed for all the scenes we processed in our ex-
periments. We avoided fine tuning the parameters required by some standard procedures
such as voxelization and Hough line extraction via trusting the added robustness of our
further processing steps. For example, for the grid size for voxelization, the choices of
both 5mm and 10mm work effectively for extraction of a representative skeleton, although
the latter gives a coarser skeleton. The grid size should not be too small compared to
the point resolution or to cause computational overload; and it should not be too large to
cause merging unconnected structures into one voxel. The dependency on parameters in
Hough transform on extracting candidate lines is controlled by the line merging step to
extract the expected four trellis lines. These parameters will not require adjustment for
application to apple orchards with a similar trellis-wire organisation.

For other parameters, such as the inlier distance to detect the trellis-plane (1cm – to
cover the thickness of a trellis wire), trunk candidate search distance (5cm – to cover the
thickness of a trunk), and the minimum distance between successive trellis wires (30cm),
we used the actual metric quantities of these structures, again avoiding fine-tuning. For
application to other orchards, these parameters can be adjusted according to geometric
priors such as trellis-wire thickness, distance between trellis-wires and expected trunk
thickness.

The point clouds used in our experiments spanned four to five trees reconstructed
using manually acquired images. The extension of the method to process the whole tree
row in an automatic manner is possible through installation of multiple low-cost reference
patterns along the row. Such patterns can also be installed per tree, together with a
QR code as a tree identifier. Using multiple patterns will help reduce the error in the
directions of the fixed frame through multiple estimations. They can also be used to reset
the reconstruction process of SFM at predetermined locations to avoid the accumulative
drift through providing multiple point clouds covering overlapping regions along the tree
row. These point clouds can be processed separately, and if necessary, can be calibrated
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and registered to obtain the entire row model. Our future work includes installation of one
board with printed ColorChecker structure and a QR code at each tree and the analysis
of the performance of suggested solutions.

In this work, we used connectivity analysis and simple heuristics to disconnect touch-
ing trees. Alternatively, the identification of each tree unit can be achieved using the
architectural criteria specific to each tree. They are linked to the basic architectural mod-
els defined for each taxon [80]. They are supplemented by the growth conditions specific
to each tree and are assessed by the diameter, length, age and branching angles of the
branches but also by the location of inflorescences and fruits.

The apple detection algorithm chosen in this work was extremely simple and it will
be necessary to revisit the huge literature on apple detection to improve the performance,
specially on groups of apples or to reduce the amount of false positives. State-of-the-art
methods employing deep learning architectures, such as [81, 82, 83] have been highly
successful. It is possible, through the projection parameters estimated by the multi-view
reconstruction process, to combine image-based fruit detection methods with 3D point
reconstruction of the scene. Indeed, [84] proposed a method where apple detection is
performed on 2D images and detected apples in images are used to segment the apples
in the 3D reconstruction. A similar method that establishes correspondences between 3D
points and the pixels in 2D images and classifies each 3D point as apple/non-apple can
be integrated into our scheme.

One of the common issues in image-based fruit detection methods is the occlusion
of fruits caused by leaves and other fruits [85]. Imaging trees from various viewpoints
greatly increases the possibility that occluded fruits will be visible in more than one
image. However, association of the same fruits occurring in different images is necessary
for 2D image-based methods to avoid double-counting. The 3D reconstruction pipeline
we used in this work greatly alleviates the occlusion problem by utilising multi-view
reconstruction and inherently registering multiple sightings of a single fruit. A further
research question can be formulated as the systematic investigation of the severity of
occlusion with employing the ground truth count of harvested apples and the analysis of
the impact of the imaging systems and acquisition protocols on capturing heavily occluded
fruits.

Our pipeline enables the assignment of apples to the trees that bear them. This makes
it possible to assess the production and the quality of the fruiting body in variety testing
applications and also in the agronomic management of orchards. We know that fruiting
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is the expression of primary and secondary growth followed by a flowering process with
the formation of inflorescences and flowers. One, two or three years old axes that are part
of the overall architecture of the tree carry these inflorescences. In this biological process,
Laury et al. [86, 87] showed the importance of the age of branches, their position in the
architecture and secondary growth on the fruit load of the tree. Our pipeline opens the way
to acquire data at different developmental stages, analyse the architecture of individual
trees, track primary and secondary growth, determine their axes of different ages. The
location of the fruits and the identification of the characteristics of the axes that carry
them, supplemented by a temporal monitoring of the architectural development could
make it possible to obtain information to manage and improve the agronomic management
of fruit trees.

2.5 Conclusion and perspectives

In this chapter, we presented a pipeline to reconstruct 3D architecture of trees, detect
fruits and associate each fruit to the correct tree. The accuracy of correct assignment of
fruits reached 97% on seven apple tree varieties. This work is a foundational step for the
automation of apple traits in the orchards.

The pipeline is rather time-consuming in its current state, both in terms of data
acquisition and data processing. A logical perspective would now be to increase further
the throughput of the acquisition protocol, ergonomy and speed of the computational
steps. These engineering tasks fall outside the scope of this PhD.

As an alternative perspective, we envision a different approach for image acquisition
in the orchard with cameras. In this new approach, a full 3D reconstruction of the scene
is not targeted. Instead, a video locally scanning the object of interest is produced via a
connected stick handheld by the variety testing examiner. Such approach will have several
benefits, such as:
◦ avoiding reconstruction and processing of 3D models, which is heavy;
◦ the approach is adapted to the protocols of examiners as they can acquire data

while performing their examinations;
◦ the annotation will be performed within the acquisition of data which constitutes

a major gain of time.
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Chapter 3

TOWARD THE USE OF MACHINE

LEARNING IN VARIETY TESTING

3.1 Introduction

During the distinctness test of the DUS variety testing, the examiners decide whether
the candidate variety is different from the reference ones. The specificity of the distinctness
test is that the measurements of traits follow a strict scoring system set by UPOV. On
the other hand, the limitation of the decision-making in the current practices in the
distinctness test remains in the comparison between the varieties. Often, examiners use
Gaussian statistical models while there is no certainty that the measurements follow a
Gaussian distribution.

Machine learning can fit well to shift toward automated measurement for the following
reasons. Using data annotated by examiners, measurements of traits can be automated
while respecting the scoring scale set by UPOV. In addition, the distinctness test can
be addressed as a classification problem. After automating the measurement of each
trait, machine learning can process the high-dimensional space where all traits of the
candidate and the reference varieties are measured and quantify the separability between
the varieties. Another advantage of machine learning is that the decision about the
distinctness is made based on the data itself (images and machine learning descriptors)
and not relying on an invalidated statistical hypothesis.

In the first section of this chapter, we introduce a methodology to incorporate super-
vised machine learning in the distinctness test of apple varieties based on color informa-
tion.

In the second section, we propose a new alternative methodology based on non-
supervised machine learning suitable for variety testing protocols. We demonstrate its
potential in the distinctness test of apple varieties based on the shape information. The
material presented in this chapter has been published in [88] and [89].
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3.2 Apple color characterization

Color difference evaluation has been extensively studied by CIE which provides a set
of formulae found in accordance with human perception for more or less simple uniform
images with controlled background and illumination [90]. In our case, we face the question
of differentiation of a large set of textured images of apples which characterizes a variety
from another large set of images. Comparing pairs of individual images of apples with the
standard CIE approach would be a rather brute force approach which is not followed by
the experts in charge of variety examinations. We rather decided to mimic their current
visual approach of these experts, which is to compare two images each containing a large
set of sample apples and decide whether the two sets belong to the same variety or not.
We thus address the problem as a statistical one and consider distinctness as equivalent
to deciding if a set of 3D color histograms representing an apple variety is sufficiently
"distant" from a set of other 3D color histograms corresponding to other sets of apples.

3D color histograms of high-resolution images are dense point clouds and are difficult
to be properly visualized for assessment of the density variations [91]. As a consequence,
3D color histograms have been characterized in many ways in the literature [92]: his-
togram intersection, dominant color descriptor, color correlogram, color co-occurrence
matrix, dominant color descriptor, chromaticity, fractal dimension [93, 94] and fractional
anisotropy [95]. Color histogram matching can also be performed with the help of metrics
developed in information theory such as the Shannon mutual information and their vari-
ants [96, 97] or optimal transport [98, 99] to probe the discrepancy between two statistical
distributions. For a first step of variety testing in the domain of machine learning, we
decided to select a small subset of these features, since we do not claim to provide an
exhaustive analysis of the appropriate features. Here, we rather aim to set the machine
learning scheme and give proof of feasibility in the automation of distinctness.

From the computer vision generic perspective, the applied task considered in this
communication may relate to identification problems such as image retrieval or object
tracking [100, 101, 102, 99]. In our case again, the identification problem is related to a
population of images, while in image retrieval or object tracking [92, 102] the task mostly
targets identifying single image or objects. Fruit characterization is a field of machine
vision in itself, which has received considerable attention either for species identification
or quality control (see [103, 104, 105, 106] for reviews). Again the statistical situation
considered here is different since the goal is not to sort each individual apple but to
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determine if a set of apples can be considered as distinct or not from others. Most related
works to what we propose can be seen as [107, 108] where supervised machine learning
is proposed to classify existing varieties. In our case, while considering other crops and
testing other features, we deal with the situation where a new set of plant has to be
identified as similar to existing ones or distinct up to the point where it deserves to be
designated as a new variety.

3.2.1 Materials and methods

Images Acquisition

The acquisition of the images of the different varieties of apples was carried out with
the help of a conveyor machine, allowing to move the fruits in translation while carrying
out a rotation (see Fig. 3.1). A camera, located at the top of the conveyor belt of the
machine with a perpendicular viewing direction, took pictures of the apples in rotation,
which allowed us to have multiple images providing almost an entire coverage of each
apple. Approximately 9 to 10 views of the same apple were captured thanks to this
rotation-translation process. These multiple views are important since apples may have
several major colors on their skins. With the standard visual approach, experts have to
manually rotate the apples to have a full perception of the variation of color on a single
apple. Here, the machine presented in Fig. 3.1 can acquire a set of 30 apples in a couple
of minutes. Images were acquired in burst mode with a Canon camera (10.1 megapixels
resolution) controlled by a simple Raspberry-pi minicomputer. Apples were segmented
automatically from the background as visible in Fig. 3.1 and assembled in multiple view
images of 30 apples as shown in Figs. figs. 3.2 and 3.3. This machine, developed for
this study, is much simpler and low cost (approximately (≈ 10ke) versus (≈ 100ke) for
classical apple sorting machines) than any commercial system since it does not need to
incorporate any sorting mechanism. Also, by contrast with most commercial systems ,
access to raw image format, i.e. uncompressed format, is possible.

Datasets

Currently, when experts of EO are performing distinctness, they observe directly with
their own eyes boxes of 30 apples of each tested variety and reference varieties manually
positioned in the same room, and they decide from a pure subjective perception if these
sets are distinct or not from one another. An objective of this work is to produce a step
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Figure 3.1 – Acquisition system. Upper panel: Machine equipped with a conveyor belt,
used for the acquisition of images of apples with a high surface coverage. Lower panel:
view of the acquired images of apples after segmentation from the background.

toward automation of such examination through the use of computer vision applied to
images such as Figs. 3.2 and 3.3, which are automatically produced after acquisition on
the system of Fig. 3.1. Two datasets were produced for this study to test the proposed
machine vision approach for distinctness evaluation.

Non-Gala Mutant varieties

We first created a dataset of images of apples with highly distinct color distributions.
The dataset is composed of 1293 images of apples belonging to 8 varieties (see Fig. 3.2)
which we refer to as non-Gala Mutants. These varieties correspond to varieties identified
as distinct from each other by the official examining offices. These varieties are not named.
They simply have a reference number to identify them. The number of images per variety
is given in Tab. 3.1.
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Variety Images
variety30 113
variety37 127
variety40 133
variety41 99
variety42 106
variety44 312
variety46 215
variety47 188

Table 3.1 – Number of images of 8 reference, registered varieties corresponding to Non-
Gala Mutant dataset.

Figure 3.2 – Images representing the 8 non-mutant Gala varieties in the order of appear-
ance in the list of Tab. 3.1.

Gala mutants

As a complement to the first dataset, we built a second dataset containing 4040 images
of apples belonging to 9 different mutants of the variety Gala. These mutants are similar to
each other in terms of color content, as shown in Fig. 3.3. The details of these mutants are
given in Tab. 3.2 where first column gives the encrypted reference of each corresponding
mutant. These mutants are also considered distinct from each other by experts of EO,
but they somehow reach the limit of what they consider as distinct.

3D RGB Histograms

With our objective being to differentiate apples mainly based on the color distribution,
we extracted features from the RGB histogram of the images represented in 3 dimensions
(one axis by component color). We calculated the RGB histogram of each image, and
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References Images
X4111 597
X4410 438
X4712 716
X6716 684
X7440 444
X7812 259
X8125 329
X8594 343
X9214 230

Table 3.2 – Number of images of 9 reference, registered varieties corresponding to Gala
Mutant dataset.

Figure 3.3 – Images showing a subset of each Gala Mutant, in the same order of appearance
as in Tab. 3.2, from left to right and by line, except for the mutant X8594 which is
completely yellow and highly distinctive.

to obtain the RGB histogram of a variety, we simply calculated the sum of the RGB
histograms of the images belonging to the variety. We can see the corresponding summed
histogram of each of the non-Gala mutants in Fig. 3.4 and of the Gala mutants (except
X8594) in Fig. 3.5. It is interesting to see that despite the loss of spatial localization
in RGB histograms, a contrast between colors is clearly visible in this representation
with the non-Gala mutants in Fig. 3.4. However, the contrast is much more difficult to
perceive with RGB histograms in the case of the Gala mutants, which represents a clearly
challenging classification task.
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Figure 3.4 – Images representing histograms of non-mutant Gala varieties. From left to
right, by row: variety30, variety37, variety40, variety41, variety42, variety44, variety46
and variety47.

Figure 3.5 – Images representing histograms of mutant Gala varieties. From left to right,
by row: X4111, X4410, X4712, X6716, X7440, X7812, X8125, X9214.

3.2.2 Color features

Once the histogram of each image and each variety is built, we extract features, al-
lowing us to characterize several aspects of the histograms. The same features were used
for both datasets. We present the features used for this study in the rest of this section.

Average and variance of colors: The first two descriptors are the mean and the
variance of the colors. It seems quite intuitive to use them since they give us respectively
the average color of the variety of apples and the contrast of yellow and red regions are
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captured via the variance. These two values are easily calculated. Let I be an image of
size m × n represented in the RGB space by an array of RGB vectors P = (pi,j) where
pi,j = (ri,j, gi,j, bi,j) ∈ 0, 2553 is the color of the pixel of coordinates (i, j) ∈ 0, m−1×0, n−1
of the image I. Denoting the mean and variance of the colors respectively by P̄ and V

the mean and the variance of the image I, we have:

P̄ = 1
m× n

m−1∑
i=0

n−1∑
j=0

ci,j, V = 1
m× n

m−1∑
i=0

n−1∑
j=0

(ci,j − c̄)2 (3.1)

Fractional Anisotropy: Fractional anisotropy is a number in the interval [0, 1] which
reflects the degree of anisotropy of the shape of the point cloud formed by the 3-dimensional
histogram. This scalar gives a measure of the stretch of the point cloud in various direc-
tions. If its value is 1, it means that the points would all be distributed along a perfectly
linear axis. If its value is zero, it means that the points are distributed homogeneously in
all directions. Thus, a sphere has a zero fractional anisotropy, an ellipse has a fractional
anisotropy between 0 and 1 and a straight line has a fractional anisotropy equal to 1.
After obtaining the eigenvalues λ1, λ2 and λ3 of the PCA (Principal Components Anal-
ysis) on the 3-dimensional histogram of an image, we can easily calculate the fractional
anisotropy, denoted as FA, via the formula

FA =
√

1
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

(3.2)

Fractal box counting dimension: The fractal box counting method [109] subdivid-
ing the 3D color cube 0, 2553 into ’box ’ of the edge length r counts the number of boxes
N(r) necessary to cover each color cell occupied by the point cloud making up the 3D
histogram. This number of boxes N(r) has been found to follow a law of the form r−D

where D is the fractal dimension of the histogram [94, 93]. This number ranging between
2 and 3 for natural images, provides a description of the structure and density of the
point cloud. A smaller value of fractal dimension indicates that although the histogram
is distributed throughout the color space, there remain empty regions.

Mutual entropy: Mutual entropy [110] allows us to compute the information common
to 2 histograms. We include this mutual entropy as the measure of the color similarity
between an image and the target variety. To calculate the mutual entropy, also called
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joint entropy, between two histograms, we use the following formula

ME = −
∑

q(x) log(q(x)
p(x)) (3.3)

where p and q represent the respective pixel distributions represented in the histograms
of the two images.

Cost of optimal transport: As the last feature, we propose to include optimal trans-
port [111] which provides a way of transporting a set of points to another set in the least
expensive way possible. In our case, minimizing the total distance between the two sets
of points fits with the capability of optimal transport. Since we work on 3-dimensional
histograms of our images, we can measure the cost in terms of the distance between the
histogram of an image and the average histogram of a target variety. If we assume we have
k varieties (here k = 8 or 9 depending on the dataset used), we get k values representing
the cost of moving our image to the k varieties. These k values are treated as color features,
each representing a measure of the probability of the image to belong to the correspond-
ing variety. The lower the cost, the closer the histograms are in terms of structure. Let
µ =

m−1∑
i=0

piδai
and ν =

n−1∑
j=0

qjδbj
be two discrete measures associated with two histograms,

and let c be a cost function for which we note cij = c(ai, bj) for all i, j ∈ 0, m−1×0, n−1.
We then try to minimize

∫∫
c(x, y) dx dy. By noting b = {p0, p1, . . . , pm−1, q0, q1, . . . , qn−1}T

and c = {c11, c12, . . . , c1(n−1), . . . , cm1, cm2, . . . , c(m−1)(n−1)}T , the problem then becomes a
minimization problem of cT x under the constraints A.x = b

∀i, j, xij ≥ 0 .
(3.4)

In practice, we calculated this cost using the python package named POT (Python Op-
timal Transport, https://pythonot.github.io/). The cost is computed using the method
based on earth mover’s distance, from 3D histograms. This algorithm has 2 advantages
: histograms do not need to be normalized and they do not need to be of the same size
[112]. All in all, the feature space is composed of features of various dimensions. The
optimal transport feature is a vector for which each component is the value of the norm
of the cost between two varieties. Therefore, if the dataset is composed of k varieties, the
optimal transport is a vector with k components. The other features can be scalars as
fractal dimension or fractional anisotropy, 3 component vectors as RGB means and RGB
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variance, or a vector of the same dimension as the optimal transport for mutual entropy.

3.2.3 Classification setups

In this part, we detail the machine learning classification setups tested to assess dis-
tinctness with both apple datasets presented in the previous section.

Multi-class classification A first setup is simply to perform a multi-class classification
between the varieties, allowing to assess if the varieties are distinguishable between them.
This is a "one versus one" approach, where the tested variety is tested against all the
existing ones individually. For this, we simply separated an initial dataset of images
to create 2 sub-datasets: a test sub-dataset containing 1

3 of the images, and a training
sub-dataset containing the rest. These 2 subsets were used respectively to train the
supervised classifiers and to test their efficiency to distinguish the different varieties. For
this classification, two sets of features were used, a set containing all features and the
other set containing only the most relevant features among all the tested features.

Binary classification The second classification setup was used to test if our model was
able to differentiate the two apple datasets. This is a "one versus all" approach, where the
one tested corresponds to the variety compared with all the existing registered varieties
at once. We gathered the 2 datasets presented previously, thus constituting a dataset of
5333 images, with 4040 images of Gala mutants and 1293 non-Gala mutants which are
our 2 classes. We separated the dataset into test and training sub-sets with a 50-50 ratio.
To mimic the procedure, experts currently follow for apple variety testing, the algorithm
made an individual prediction on each apple and a majority voting over subsets of 30
apples.

3.2.4 Classification results

Multi-class classification between Gala mutant varieties

We first performed the multi-class classification between Gala mutant apples only, in
order to verify that it was indeed possible to distinguish these 9 registered varieties be-
tween them. We first separated the data into test and training sets with a ratio of 2

3 for
the training set, then we used 3 different supervised classifiers: Support vector machine
(SVM), Random Forest and Linear Discriminant Analysis (LDA).
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The classification results visible in Tabs. 3.3 and 3.4 show that the Gala mutant
varieties are distinguishable in terms of color. These results are of the same order of
magnitude for the three tested classifiers. However, SVM gives an F1-score over 97%, and
perform slightly better than others.

A forward analysis, testing the performance of each type of feature, identified that the
best features for the classification happened to those from optimal transport. As visible
in Tabs. 3.5 and 3.6, these features alone do not allow us to obtain an entirely satisfac-
tory classification. However, they are relatively efficient since they yield a classification
accuracy of about 50%. Since our dataset has 9 distinct classes, a random classification of
the data would give 11% accuracy. The relative superiority of optimal transport toward
the other features can be explained since all histograms share the same elongated shape
centered on a red-yellow barycenter.

SVM : All Features
Precision Score 97,13 %
Recall Score 97,10 %
F1-Score 97,07 %

Parameters
Kernel linear
Penalty l2
C 2.0
Loss squared_hinge
Dual False
Tol 0.0001
Multi_class crammer_singer
Class_weight None
Max_iter -1
Data Transformation Normalized

Table 3.3 – Results obtained by SVM with Gala mutant dataset and all features.

3.2.5 Multi-class classification between non-gala mutant vari-
eties

In a second step, we performed the same classification method as in the previous section,
this time using the dataset composed of the non-Gala mutant varieties.
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LDA : All Features
Precision Score 93,39 %
Recall Score 93,32 %
F1-Score 93,30 %

Parameters
Solver SVD
Shrinkage None
Priors None
n_components 1
store_covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : All Features
Precision Score 94,13 %
Recall Score 93,99 %
F1-Score 93,92 %

Parameters
n_estimators 250
criterion entropy
max_depth None
max_leaf_nodes None
bootstrap False
Data Transformation Normalized

Table 3.4 – Results obtained by LDA and Random Forest with Gala mutant dataset and
all features.

SVM : OT Features
Precision Score 50,48 %
Recall Score 50,26 %
F1-Score 46,34 %

Parameters
Kernel linear
Penalty l2
C 8.9
Loss squared_hinge
Dual True
Tol 0.0001
Multi_class None
Class_weight balanced
Max_iter 1,00E+06
Data Transformation Normalized

Table 3.5 – Results obtained by SVM with Gala mutant dataset and optimal transport
only.

For this dataset, the results obtained in Tabs. 3.7 and 3.8 are also very satisfactory,
with F1-scores close to 90%. Once again, the SVM with a polynomial kernel gives the best
results with a precision score of 93.76%. For the Non-Gala mutants, these results show
that the varieties composing this dataset are clearly distinguishable, as also confirmed by
the experts from EO since these are registered as official varieties. The precision score is
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LDA : OT Features
Precision Score 48,39 %
Recall Score 50,56 %
F1-Score 46,56 %

Parameters
Solver lsqr
Shrinkage auto
Priors None
n_components 1
store_covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : OT Features
Precision Score 52,35 %
Recall Score 53,38 %
F1-Score 52,49 %

Parameters
n_estimators 40
criterion entropy
max_depth None
max_leaf_nodes None
bootstrap True
Data Transformation Normalized

Table 3.6 – Results obtained by LDA and Random Forest with Gala mutant dataset and
optimal transport only.

logically found a bit lower than for the non-Gala mutant datasets, since the contrast in
color between varieties is lower.

Again we performed a forward analysis which established optimal transport as pro-
viding the most significant features. As visible in Tabs. 3.9 and 3.10, the classification
only based on these optimal transport features reached their best results with SVM with
a polynomial kernel of degree 3, which gives a precision score of 71.25%. Globally, the
result observed with the well-contrasted dataset non-Gala mutant are robustly conserved
when the method is transposed to less contrasted apples, such as the ones of the Gala
mutants. This demonstrates the high potential of a machine learning framework equipped
with color features for variety testing.

Binary classification with the 2 collected datasets

Once we observed that both datasets were well distinguishable, we focus on the most
difficult dataset and explore the potential of our framework to determine whether a set
of test images corresponds to a certain Gala mutant or not. To mimic the way experts
perform their scoring, we decided to focus not only on individual classification of apples,
but also on a group classification from the same variety. To do so, we selected images from
the test data and by a random draw without replacement of apples of the same variety,
to create subsets of 30 apples. This number exactly corresponds to the size of the group
of apples chosen by the experts when they observe groups of apple for distinctness. Once
our model is trained on classification of individual apple images, we tested its efficiency
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SVM : All Features
Precision Score 93,76 %
Recall Score 93,50 %
F1-Score 93,51 %

Parameters
Kernel poly
Degree 2
Penalty l2
C 12
Gamma auto
Coef0 0.5
shrinking False
tol 0.0001
Class_weight None
Max_iter -1
Data Transformation Normalized

Table 3.7 – Results obtained by SVM with non Gala mutant dataset and all features.

LDA : All Features
Precision Score 89.50%
Recall Score 89.10%
F1-Score 88.96%

Parameters
Solver lsqr
Shrinkage auto
Priors None
n_components 1
store_covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : All Features
Precision Score 89,35 %
Recall Score 89,10 %
F1-Score 88,81 %
Parameters
n_estimators 90
criterion entropy
max_depth None
max_leaf_nodes None
bootstrap True
Data Transformation Normalized

Table 3.8 – Results obtained by LDA and Random Forest with non Gala mutant dataset
and all features.

on the subsets through majority voting.
As can be seen in Tabs. 3.11 to 3.13, we get 100% F1-score with all classifiers when

all features are employed. Consistent with the results of the previous section, optimal
transport again appeared as the most important features in a forward analysis. With
optimal transport only, Random Forest gives the best results in individual classification,
with a precision of 88.13% and an F-score of 75.67%.
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SVM : OT Features
Precision Score 71,25 %
Recall Score 70,53 %
F1-Score 67,22 %

Parameters
Kernel poly
Degree 3
Penalty l2
C 20
Gamma auto
Coef0 0.5
shrinking False
tol 0.0001
Class_weight None
Max_iter -1
Data Transformation Normalized

Table 3.9 – Results obtained by SVM with non Gala mutant dataset and optimal transport
only.

LDA : OT Features
Precision Score 52,96 %
Recall Score 61,72 %
F1-Score 55,20 %

Parameters
Solver svd
Shrinkage None
Priors None
n_components 1
store_covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : OT Features
Precision Score 57,78 %
Recall Score 59,40 %
F1-Score 58,12 %

Parameters
n_estimators 40
criterion gini
max_depth None
max_leaf_nodes None
bootstrap True
Data Transformation Normalized

Table 3.10 – Results obtained by LDA and Random Forest with non Gala mutant dataset
and optimal transport only.

3.2.6 Conclusion

In this section, we have demonstrated, on a use-case dedicated to apples, a supervised
machine learning scheme to identify if a new candidate for variety registration could be
considered as distinct or not from an existing set of varieties. Two datasets corresponding
to highly contrasted varieties and varieties contrasted at the limit of what would be
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SVM – Individual classification – OT only True labels Scores
0 1 Precision 51,16 %

Predictions 0 1014 117 Recall 73,88 %
1 316 331 F1-Score 60,46 %

SVM – Subsets classification – OT only True labels Scores
0 1 Precision 100,00 %

Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

SVM – Individual classification – All features True labels Scores
0 1 Precision 100,00 %

Predictions 0 1330 0 Recall 100,00 %
1 0 448 F1-Score 100,00 %

SVM – Subsets classification – All features True labels Scores
0 1 Precision 100,00 %

Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

Table 3.11 – Results obtained by SVM on individual data and subsets of apples, with
optimal transport only and all features.

LDA – Individual classification – OT only True labels Scores
0 1 Precision 82,26 %

Predictions 0 1286 244 Recall 45,54 %
1 44 204 F1-Score 58,62 %

LDA – Subsets classification – OT only True labels Scores
0 1 Precision 100,00 %

Predictions 0 14 10 Recall 28,57 %
1 0 4 F1-Score 44,44 %

LDA – Individual classification – All features True labels Scores
0 1 Precision 100,00 %

Predictions 0 1330 0 Recall 100,00 %
1 0 448 F1-Score 100,00 %

LDA – Subsets classification – All features True labels Scores
0 1 Precision 100,00 %

Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

Table 3.12 – Results obtained by LDA on individual data and subsets of apples, with
optimal transport only and all features.

considered distinct have been tested. Distinctness was found in perfect accordance with
the human expert. This demonstrates the possibility to introduce more objective and
higher-throughput approaches in the domain of variety testing. We found that among the
tested features, optimal transport was producing the most adapted features, i.e. which
contributed the most in the correct decision-making. It is essential to notice that all
these results were obtained based on a color histogram, i.e. with a total loss of spatial
information.

This first step opens various ways of further investigations. A limit of the result pre-
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RF – Individual classification – OT only True labels Scores
0 1 Precision 88,13 %

Predictions 0 1291 151 Recall 66,29 %
1 40 297 F1-Score 75,67 %

RF – Subsets classification – OT only True labels Scores
0 1 Precision 100,00 %

Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

RF – Individual classification – All features True labels Scores
0 1 Precision 100,00 %

Predictions 0 1330 0 Recall 100,00 %
1 0 448 F1-Score 100,00 %

RF – Subsets classification – All features True labels Scores
0 1 Precision 100,00 %

Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

Table 3.13 – Results obtained by Random Forest on individual data and subsets of apples,
with optimal transport only and all features.

sented so far stands in the absence of negative data, i.e. unregistered varieties in our
dataset. Access and diffusion of such historical data is complex from a legal point of view
when dealing with EO. A workaround approach could consist in simulating fake unreg-
istered varieties from an existing dataset. This requires enlarging the datasets used in
this article and we are currently investigating this direction. On the machine learning
side, several alternatives could be considered. We selected classical shallow learning algo-
rithms (SVM, random forest and LDA). We produced binary decisions in accordance with
the essence of distinctness which is a binary trait. All the tested algorithms could also
provide probabilities and confidence intervals which would provide more insights. Such
output, although not currently in practice in variety testing, would nonetheless be very
useful specially to provide arguments to the breeders when new variety candidates are
rejected by EO. The set of hand-crafted features could be extended to additional color
features mentioned in the related work section. Also, all the analyses were performed in
the native RGB color space and other color spaces more suitable to fit with the human
perception could also be tested with the approach introduced in this paper. Alternatively,
deep learning approaches could be considered. An obvious match would be with gener-
ative adversarial networks (GAN) [113] where the discriminator network could decide if
a variety is distinct from another after the GAN would have been trained to reproduce
images of already registered varieties.

In the next section, we propose an alternative approach, different from the one pre-
sented in this section. This approach is based on non-supervised machine learning, to
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incorporate machine learning in the distinctness tests of the DUS variety testing proto-
cols. The approach is evaluated for the shape characterization test.

3.3 Apple shape charaterisation

Coupling computer vision with supervised machine learning techniques has been proven
to be successful for many phenotyping tasks. However, supervised machine learning being
dependent on data for building models for inference, is not suitable to mimic the current
protocol for variety testing, where experts establish their ratings in reference to the visual
comparison between sketches and the inspected real plants. Also, since the expert can
disagree on their ratings due to subjective interpretations of the official sketches, super-
vised machine learning using ground truth provided by an expert may embed some bias
to their inference models.

In this work, we investigate the approach of directly using reference sketches in an of-
ficial catalog for quantitative matching with images of plants to be assessed (see Fig. 3.9).
We test this approach, which is novel in the context of variety testing, on the problem
of apple shape assessment. The closest related problem in computer vision is sketch-
based image retrieval (SBIR), where the objective is the retrieval of related images from a
database given a sketch query (see [114] for a recent review). The SBIR method combines
information from both datasets (sketches and RGB images) for high image retrieval ac-
curacy. Rather than image retrieval, we target the classification of RGB images of apples
by quantitatively matching them with catalog sketches.

Shape-based classification of fruits based on supervised machine learning has been
widely studied in the literature (see [115, 116, 117, 118] for recent reviews). While we use
classical shape features to characterize the shape of apples, we do not promote supervised
machine learning techniques.

3.3.1 Materials and methods

Reference Sketches

The apple shape classification tool currently follows the UPOV rules. In this variety
testing framework, experts inspect cut apple shapes by comparing them to the reference
sketches in the official variety testing catalog (see Fig. 3.6). Three main classes are used to
designate the shape of apples: Flat, Globose and Oval. For each category, there are sub-
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categories such Flat-Globose, Oblong and Ellipsoid. In this study, we target classification
of apple images to one of the three broad categories: Flat, Globose and Oval.

Figure 3.6 – Reproduced and modified view of the ECPGR catalog. Apple shape sketches
in the catalog of variety testing. The classes considered in this work are highlighted in
the red rectangle.

Data set

The apple images assessed in this work are extracted from the dataset described in
[119]. The image acquisition procedure is shown in Fig. 3.7. As an image acquisition
procedure, apples from the so-called Refpop population [11]) are cut along their medial
axis, placed on their flat, freshly cut side in groups of 6 on an HP Scanjet Pro 4500 fn1
with a resolution of 1200 x 1200 dpi. Since the contrast between the apples and the
background is strong, we used simple thresholding on the brightness channel of HSB color
space to segment the apples from the background. The bounding box of each individual
apple is obtained through connected component analysis. A simple edge detection via
Sobel filter is applied to produce a binary image highlighting the boundaries of the apples
(see Fig. 3.9).
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Figure 3.7 – Acquisition device: HP Scanjet Pro 4500 fn1.

From the original dataset of [119], 1821 images were selected and classified indepen-
dently by two experts. Figure 3.8 shows the distribution of the classes (Flat, Globose
and Oval) corresponding to the annotations of the two experts. Three sets of class labels
resulted from this annotation. The class labels provided by expert 1, by expert 2, and a
subset labeled in agreement by both experts (600 images) were kept. This quantifies the
inter-variability between experts and the current consequences of subjective rating. This
also shows the intrinsic difficulty of the visual tasks raised to experts in variety testing
where experts only agree in 30% of the cases.

Figure 3.8 – Histogram of the distribution of classes (Flat, Globose and Oval) assigned by
experts.
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Shape descriptors

In this article, since our aim is not to provide new features to characterize apple shape
but rather to investigate the possibility to use the reference sketches for apple shape clas-
sification, we used some existing shape descriptors [115]. We used chain-code histogram,
elliptical Fourier descriptors [120] and Frechet’s Ratio with the following hyperparam-
eters. A connectivity of 8, was chosen for the chain-code. The ten first harmonics of
elliptical Fourier descriptors were kept. All features were normalized to 1 to allow the use
of Euclidean distance in the produced feature space.

Experiments

We evaluated two approaches for apple classification: i) reference-based classification
approach and ii-) model-based classification approach, where a support vector machine
(SVM) is used as the machine learning method. The details are provided in the following
subsections.

Reference-based classification approach

In this experiment, we mimic the way variety testing experts use catalogs. We perform
a multi-class classification by computing the Euclidean distance between features of cut
apple query image and features from a reference instance of each class: one for Flat, one
for Globose and one for Oval. A visual abstract of the pipeline is given in Fig. (3.9).
Three types of references were tested i) the original sketches from the official catalog of
ECPGR, ii) the contours from real apples each representing a class, iii) The ECPGR
sketches rescaled.

First, we considered the original sketches from the official catalog of ECPGR. As the
second option, instead of the sketches provided in a catalog, we considered the contours
of representative apples as reference shapes. The representative apples are chosen from
the dataset of real apple images. For each class, the apple with the aspect ratio closest to
the class average is selected as the class representative. As the third option, we modified
ECPGR sketches such that the aspect ratio of each reference sketch becomes equal to the
corresponding class average. This operation bridges the gap between the aspect ratios of
the sketches and the distribution of the aspect ratio of the apple variety to be tested.

The average aspect ratio was computed in the following unsupervised way. We assigned
the centroids of each cluster as the class average aspect ratio to the corresponding class,
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knowing the ordinal relation between classes. This sorting was obviously not perfect
(otherwise, the task would have been done).

Figure 3.9 – Reference-based classification approach: (a1): reference sketches Dataset,
(a2) RGB images Dataset to be classified. (b1): edge detection. (b2): rescaling of the
aspect ratio of sketches of each class. (c) rescaled sketches. (d1) shape features extraction.
(e): similarity measure. (f): classification results.

Model-based classification approach

In this approach, we do not follow the ECPGR catalog and rather adopt a supervised
machine learning technique. A model is trained to classify the shape of images based
on a training set composed of annotated RGB images. Since our goal is not to claim
optimal performances but rather to provide a comparison with our proposed reference-
based approach, we selected a basic machine learning model, an SVM, with a linear
kernel. To quantify the sensitivity of the chosen data in the training, multiple runs of
the classification experiment were conduced for various values of the train-test split of
the data set and a 10-fold cross-validation. The average value and standard deviation of
the performances of classification were recorded. To quantify the inter-variability between
experts annotations, the experiment was repeated with labels provided by the two experts
for both annotators and with the curated data set containing apples with agreed labels
only.
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Metric

All the classification experiments were evaluated using the accuracy metric:

ACC = TP + TN

TP + TN + FP + FN
. (3.5)

To rely on this metric, the classes Flat, Globose and Oval, on both experts annotated
datasets and cured dataset were balanced with 200 images for each class.

3.3.2 Results

3.3.3 Reference-based classification approach

Table 3.14 provides quantitative evaluation of reference-based approach results. One
can observe low accuracy when the sketches ECPGR catalog as references are used. A
noticeable improvement of 9 to 13 % of accuracy is brought when these reference sketches
are rescaled. The best performance is obtained when the class representatives are selected
as a reference. However, it is to be noticed that the gain of performance is only of a 2 to
4 % by comparison with the unsupervised rescaling of the official sketches. The perfor-
mance are culminating at 77% of accuracy when the data are cured. We reproduced the
experiment after withdrawing the intermediate class Globose. Results given in Tab. 3.15
show similar trends as in Tab. 3.14 but with much higher accuracy around 95%. We still
observe a gain of 2 to 3% after rescaling the reference sketches of the ECPGR catalog
with our proposed supervised approach.

Table 3.14 – Measuring accuracy (ACC) of reference-based approach on expert 1 (E1),
expert 2 (R2) and cured data (CD), to all types of sketches.

Sketches % ACCE1 % ACCE2 % ACCCD

Reference sketches 58% 55% 60%
Classes representatives 69% 67% 77%

Rescaled reference sketches 67% 63% 73%

Comparison with model-based approach

Figure 3.10 shows the performance of the model-based approach as a function of the
ratio of the size of the test set to the size of the training set. As trivially expected, the
performances drop progressively with increasing standard deviation when the amount of
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Table 3.15 – Same as in Table 1 but with only two classes Flat and Oval.

Sketches % ACCE1 % ACCE2 % ACCCD

Reference sketches 94% 90% 95%
Classes representatives 97% 96% 98%

Rescaled reference sketches 97% 95% 97%

data in the training data set reduces. The plateau of performance for low test/training
ratio is around 93% for the cured data sets but drops around 43% with a huge standard
deviation of 14% when only one instance is kept. This is to be compared with the
reference-based classification approach explained in the previous subsection, where only
one image per class was used.

The results of predictions on the test set of cured data, using the model-based approach
and the reference-based approach toward reference sketches, centers representatives and
rescaled reference sketches, are presented in Fig. 3.10. It is important here to recall that
the reference-based approach is purely unsupervised and, therefore, fully automatic in the
case of testing of a new variety while the model-based approach requires labor-intensive
annotation of the newly introduced data set.

The performance of the reference-based classification is found to be stable with the
amount of data used to compute the rescaling aspect ratio and outperforms the model-
based approach when less than 30% of the data sets are not annotated. This experiment
was carried out again while withdrawing the intermediate Globose class with similar results
shown in Fig. 3.11. The difference of plateau of performance between the model-based
approach and the reference-based approach vanishes, and there is here no clear advantage
in annotating the images to train a model. The current approach based on sketches can
directly be automated with the unsupervised approach proposed in this work.

3.3.4 Discussion

As illustrated in Fig. 3.12, variety testing catalogs may differ from one country to
another, as well as between germplasm curators and breeders, or the sketches of reference
may evolve. This situation may cause difficulty of comparison of the results over the time
or even non-communicability between countries not sharing the same references. The
instance-based approach described in this article may actually serve to decipher this babel
tour-like problem. As shown in Tab. 3.16, we investigated the possibility of automatic
translation of one catalog to another. For this purpose, we provided the nearest reference
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Figure 3.10 – Prediction curves of test set of cured data via model-based classification and
reference-based classification using reference sketches, centers representatives and rescaled
reference sketches, after training on cured dataset.

sketches to a query reference sketch from a different catalog.
In Tab. 3.16, some catalogs’ characteristics are found to be directly almost perfectly

matching with each other. In other cases, the designation used in one catalog does not
match with the designation of another catalog. This translation based on pure objective
features enables overcoming the semantic gap that the multiplicity of catalogs may cause.
Consequently, our approach may not only be used to provide objective measurements while
following the current variety testing practices, but it can also be used when measurements
based on different visual references need to be shared. It is here again important to stress
that this translation from one catalog of reference to another, would not be directly
accessible with supervised machine learning. Indeed this would require training models
with an expert looking at sketches from different catalogs. Then it would require to
compare this subjective rating result on testing data. By contrast with the unsupervised
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Figure 3.11 – Same as in Fig. 3.10 with only two classes Flat and Oval.

instance-based model proposed in this article, translation from one catalog to another is
almost instantaneous since only the objective similarity between reference sketches needs
to be computed.

Table 3.16 – Translation between variety testing catalogs.

ECPGR Catalog Upov Catalog
Flat Flat Oblate Globose-Canonical Ellipsoid Oblong Globose

Globose Globose Globose-Canonical Ellipsoid Oblong Oblate Flat
Oval Globose Ellipsoid Oblong Globose-Canonical Oblate Flat

Ellipsoid Oblong Ellipsoid Globose-Canonical Globose Oblate Flat
Flat-Globose Oblate Flat Ellipsoid Globose-Canonical Oblong Globose

Oblong Globose Oblong Globose-Canonical Oblate Ellipsoid Flat

3.3.5 Conclusion

In this work, we have demonstrated the possibility of using reference sketches in a
variety testing catalog, to help the transition from pure manual inspection toward au-
tomated computational practices. The sketches can serve as references for quantitative
matching to classify images of plant instances. Rescaling of the aspect ratio of the ref-
erence sketches was shown to be helpful in boosting the performance of classification.
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Figure 3.12 – Two different variety testing catalogs. (a): Catalog delivered by The Euro-
pean Malus GERMPLASM Workshop (ECPGR 2009). (b): Catalog delivered by UPOV
(2006).

Reference-based approach was shown to be better suited in variety testing as compared
to a model-based approach using standard supervised machine learning methods, since
the latter requires intensive manual annotation and therefore brings no gain of efficiency
to the current practice of manual inspection.

3.4 Conclusion and perspective

In this chapter, we have demonstrated the possibility to incorporate machine learning
in the distinctness test of the DUS protocol, via the supervised approach in the automation
of the measurement of color and the unsupervised approach in the automation of the
measurement of shape.

While supervised machine learning has shown strong potential, the annotation phase
can be heavy for some specific applications. The proposed method in the second section
can be a good alternative, especially in variety testing. The examiners during the dis-
tinctness test follow the instructions in the catalog of UPOV. These guidelines can be
addressed as a numerical ground truth. We demonstrated the success of this approach
using sketches.

Apple varieties are registered based on a large set of traits. In this chapter, we con-
sidered only color and shape. However, it would be interesting to extend the scheme
to incorporate more parameters such as texture (stripes on apple skin), size, etc. As a
perspective, with more extended traits, rather than evaluating the distinctness based on
each trait, the apple varieties could be represented in a high dimensional point cloud with
axes referring to descriptors of the traits. In this scenario, the proposed approach in the
first section, with optimal transport, can be adapted to such higher dimensional space
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and thus offers a generic framework to extend the quest for automation in variety testing
and help numerically and visually the examen offices to decide on the existence of the
tested variety in the registration catalog.
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Chapter 4

PROCESSING ORDINAL DATA IN VARIETY

TESTING

4.1 Introduction

In this chapter, we continue the investigation of the potential use of machine learning
for variety testing. In a numerical test, the distinctness test is a classification problem
where varieties are represented through their traits in the feature space. Some traits are
scored on ordinal scales. In such a case, the structure of the feature space will also follow
an order. Hence, ordinality can serve as a criterion to help the examiners verify if the
selected machine learning strategy respects the meaningful order of the data.

To assess ordinal data in the feature space, specific tools must be developed. Ordinal
classification or ordinal regression tools are already found in the literature [121]. How-
ever, we realized that dimension reduction techniques for ordinality and quantification of
ordinality were still missing. We introduce the method we have developed for these tasks
in this chapter.

A typical structure of a machine learning pipeline includes feature extraction from
raw data and dimension reduction to produce a latent space in which decisions are made
by the machine. These steps can be trained sequentially or in an end-to-end framework
in deep learning approaches [122]. In addition to efficiency, a critical quality expected
from machine learning algorithms lies in the interpretability of their decisions [123, 124].
Understanding the behavior of a machine learning model is especially mandatory for
applications with an impact on daily human lives, such as medical applications [125, 126,
127] but also the selection of plant varieties.

Interpretability methods have been classified [128] in three main approaches according
to whether they are applied before (pre-model), during (in-model), or after (post-model)
building the machine learning model. To investigate the state of ordinality, we target the
"Pre-model" interpretability, which refers to the understanding of the organization of the
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latent space. This space will typically be visualized in 2D or 3D to observe how instances,
to be learned, are organized. In such a reduced space, the only structure of dimensions less
than 2 or 3 can actually be fully interpreted. This can appear as a strong limitation, but
it actually includes all the problems where the latent space is expected to be structured
in 1D. This special case includes the niche of ordinal classification problems.

Ordinal classification refers to the classification problems where there is a natural order
between categories [129]. Examples to ordinal classification are ranking the severity of
a disease [130], prediction of movie preferences [131] or classification of images involving
ordinal quantities [132]. The categories are usually represented with one-dimensional
discrete values following their inherent order. It is expected that the features used to
predict the ordinal categories of the instances also possess an intrinsic order in the high-
dimensional space. In order to visualize and assess whether these features follow the
ordinality of the categories, dimensionality reduction can be used.

Many dimensionality reduction techniques are available to transform the high-dimensional
data into a low-dimensional space for interpretation of the prediction model. Principal
component analysis (PCA) is the leading choice. Other unsupervised techniques include
multidimensional scaling (MDS) [133], Isomap [134], non-negative matrix factorization
(NMF) [135] and t-distributed stochastic neighbor embedding (t-SNE) [136]. When class
information of the training data is available, supervised techniques such as Linear Dis-
criminant Analysis (LDA) [137] or Locality Sensitive Discriminant Analysis (LSDA) [138]
are more effective in retaining meaningful properties of the data that predict the cate-
gories. Although these techniques can be very useful, they do not incorporate the ordinal
structure of the categories into their original formulation for ordinal classification prob-
lems.

There are very few works on dimensionality reduction specific to ordinal classification.
A variant of Kernel Discriminant Analysis has been proposed [139] to find the projection
that simultaneously results in a high separation between classes and maintains the class
order. In [140], a supervised method based on sufficient dimension reductions (SDR)
is developed to regress the response of underlying Gaussian latent variables to ordered
categorical variables. However, this method is more suitable for dimension reduction in
regression problems for predictor selection and better prediction rather than visualization
of the available features.

In this chapter, we propose an intuitive dimensionality reduction technique, which we
call Best-view Projection (BVP), for ordinal classification without imposing a regression
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(a) 3D input data (b) View sphere (c) Projected data

Figure 4.1 – Ordinal classification problem. The original data is shown in (a). The class
centers are enclosed with black circles. The segments joining the class centers are in black
color. The objective is to find the optimum viewpoint on the view sphere (b) such that
the adjacent class centers are seen as apart as possible. The colors on the sphere are
indicative of the objective function defined in 4.2. The 2D visualization (c) of the data is
obtained through projecting the data to the plane defined by the optimum viewpoint.

model. The main motivation is to propose a complementary tool to the classical dimen-
sionality reduction techniques, which fail for special configurations of data distribution in
ordinal classification tasks. We formulate our approach as finding the best viewpoint in
the feature space such that the viewer can "see" the direction of ordinality as clearly as
possible. Inspired by the work for human skeleton visualization in [141], we determine the
optimal viewpoint via maximization of the squared distances between centers of adjacent
classes in the projected space. The dimensionality is reduced by one (i.e. from N to
N − 1) by projecting the features to the lower dimensional space defined by the optimum
viewpoint. The process is repeated until the desired dimensionality is achieved. A major
advantage of our method is that it does not require any parameters to be tuned. We
provide a qualitative and quantitative comparison of our BVP method with a number
of classical dimensionality reduction techniques on simulated and real ordinal datasets,
through two introduced ordinal metrics.

In the last section of this chapter, we present briefly, Ordinalysis, a standalone applica-
tion incorporating an end-to-end machine learning pipeline, dedicated for the automation
of the variety testing protocols following an ordinal scale. More details about Ordinalysis
can be found in Annex H. The material presented in this chapter has been valorized in
[142] and in [143].
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4.2 Method

Let us consider an ordinal classification problem illustrated in Fig. 4.1, where the
features are in 3D space and the categories are ordered. We would like to find a viewpoint
on the view sphere such that when viewed from that point, the adjacent class centers seem
as apart as possible from each other. Our BVP method finds the optimum viewpoint that
maximizes the projected square distances between adjacent class centers and projects the
data points to the space defined by the optimum viewpoint.

To generalize the problem for N -dimensional space, let us first suppose that we have
K classes, ordered and identified as k = 1, 2, ..., K. A class l is adjacent to class k if
l = k− 1 or l = k + 1. The instances of class k are represented as N -dimensional column
vectors denoted as xk

i ∈ RN , with i = 1, 2, ..., Ik, where Ik is the number of instances in
class k. The class centers are denoted as ck corresponding to the arithmetic mean of the
instances in class k. For the sake of simplifying the equation of the view sphere, the data
is translated beforehand such that the origin of the N -dimensional space corresponds to
1
K

∑K
k=1 ck, i.e. the mean of the class centers.

Let us define the n-sphere (n = N − 1) in the N -dimensional space as S = {v ∈ RN :
∥v∥ = 1}. Given a viewpoint v ∈ S, we can define an orthogonal projection P : RN → RN ,
whose N −1 columns are defined by the vectors orthonormal to v, and whose last column
is equal to v. Then, a point x ∈ RN can be projected to the N − 1-dimensional space
defined by v by computing y = Px and dropping the last component of y. This point,
x̄(v) ∈ RN−1 can be interpreted as point x as seen from the viewpoint v. Its component
parallel to v is invisible to the viewer.

Our objective is to find the viewpoint v* on the n-sphere such that the sum of the
squared distances between the centers of the adjacent classes is maximized. If we define
c̄k(v) ∈ RN−1 to be the projected center of class k in the N − 1-dimensional space defined
by viewpoint v, we search for v* maximizing

G(v) =
K−1∑
k=1
∥c̄k+1(v)− c̄k(v)∥2 (4.1)

subject to the constraint ∥v∥ = 1. Maximizing G(v) is equivalent to solving the following
minimization problem:

Minimize F (v) =
K−1∑
k=1

[vT (ck+1 − ck)]2subject to ∥v∥ = 1 . (4.2)
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Algorithm 4: Find the optimum viewpoint.
Data: Class centers: ck, k = 1, 2, ..., K
Result: Optimum viewpoint: v*

1 Initialize v0 randomly such that ∥v0∥ = 1;
2 MaxIter = 100; ϵ = 10−5; γ0 = 0.05 ; j = 0 ;
3 while j < Maxiter do
4 Calculate ∇F (vj) using 4.5 and 4.6;
5 if j > 0 then
6 Calculate γj using 4.7;
7 end
8 v̂j = vj − γj∇F (vj);
9 vj+1 = v̂j

∥v̂j∥ ;

10 if cos−1(vT
j+1vj) < ϵ then

11 v* = vj+1;
12 break;
13 end
14 j ← j + 1
15 end

This is an optimization problem where the search space is constrained to a smooth
Riemannian manifold. We use gradient descent together with the retraction formulation
for a spherical manifold in [144] to find v*. The procedure is given in Algorithm 4. We
randomly pick a viewpoint v0 on S for initialization and update it as:

vj+1 = Retrvj
(ηj) (4.3)

ηj = −γj∇F (vj) . (4.4)

The gradient of F (v) is equal to

∇F (v) = 2AT Av (4.5)

A =


(c2 − c1)T

(c3 − c2)T

...
(cK − cK−1)T

 (4.6)
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(a) 3D input data (b) 3D input data (c) BVP (d) PCA

(e) MDS (f) t-SNE (g) LDA (h) LSDA

Figure 4.2 – Proposed best view point (BVP) algorithm in action with ordinal datasets
by comparison with other classical dimensionality reduction techniques. Panels (a) and
(b) are two views of the synthetic 3D ordinal data set. Panels (c) to (i) show results of
dimensionality reduction from 3D to 2D. The black circles with numbers correspond to
class labels.

We update step size γj according to the formula [145]:

γj =

∣∣∣(vj − vj−1)T |∇F (vj)−∇F (vj−1)|
∣∣∣

∥∇F (vj)−∇F (vj−1)∥2 . (4.7)

The retraction for the sphere can be chosen as [144]:

Retrv(η) = v + η

∥v + η∥
. (4.8)

The iteration is stopped when the angle between vj and vj+1 is smaller than ϵ, and the
optimum viewpoint v* is set to be equal to vj+1. For all experiments, ϵ is set to 10−5.

The cluster centers are then projected to the N − 1-dimensional space defined by v*.
The whole procedure is repeated until the desired dimensionality is achieved.
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4.3 Results on dimension reduction

Since we present our dimensionality reduction method as a complementary visualiza-
tion tool for ordinal datasets rather than reducing the dimension of inputs of classifi-
cation techniques, we provide visual results only. We compare the best-view projection
method with three unsupervised methods 1) PCA, 2) MDS, 3) T-SNE) and two super-
vised methods 4) LDA, 5) LSDA. The comparison is based on: 1) whether the classes
are well-separated, 2) whether the ordinality between classes is preserved, and 3) whether
the distribution of the data is informative in the low-dimensional space. First, we present
results with simulated data where the dimensionality is reduced from 3 to 2. Then, we
provide comparisons with real ordinal datasets of higher initial dimensions.

4.3.1 Simulated data

We created two 3-dimensional ordinal datasets and employed our best-view projection
method and other six algorithms to reduce the dimensionality to 2. Figures 4.2a and 4.2b
show the first dataset, where there are five ordinal classes and the within-class distribution
is Gaussian. 100 instances were generated for each class. The class labels are given in
Fig. 4.2a. In this example, the direction of ordinality in the original space is not aligned
with the principal axes of variation of the whole data; hence PCA fails to appropriately
reduce the dimensionality as seen in Fig. 4.2d. MDS tries to place data points into 2D
space such that the pairwise distances are preserved as much as possible. It does not take
into account the class labels, and it fails when the instances of adjacent classes are close
to each other in the original space (Fig. 4.2e). In t-SNE, local neighborhood of points are
embedded to capture the local structure of the data together with clusters at several scales.
We experimented thoroughly with varying the perplexity parameter, which is a measure
of the effective number of neighbors used in the algorithm. We give the best result, with
perplexity 40, in Fig. 4.2f. Although t-SNE manages to group together samples of the
same class in local clusters, the global ordinality present in the data is lost in the resulting
2D space.

Notice that PCA, MDS and t-SNE are unsupervised techniques, which are great for
revealing the important global or local structure of data. However, the class distribution
is not necessarily aligned with that structure in many cases, as in this example. The
supervised techniques, LDA (Fig. 4.2g) and LSDA (Fig. 4.2h) are able to reduce the di-
mensionality to 2 with good class separation while preserving the ordinality. Our BVP
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(a) 3D input data (b) 3D input data (c) BVP (d) PCA

(e) MDS (f) t-SNE (g) LDA (h) LSDA

Figure 4.3 – Same as Fig. 4.2 with an ordinal dataset composed of partial swiss rolls.

algorithm performs very similarly to LDA and LSDA (Fig. 4.2c). What it does is essen-
tially to rotate of the 3D data given in Fig. 4.2a until it finds the best view that separates
the adjacent cluster centers as well as possible.

The second simulated dataset is shown in Figs. 4.3a and 4.3b. Instances of each class
belong to a 3D partial Swiss roll. 200 instances were generated for each class. The classes
are separated by an offset in 3D in accordance to their ordinality. Similar to the first
dataset, PCA is not effective (Fig. 4.3d) since the principal axis of global data distribution
is not aligned with the direction of ordinality. MDA is successful in this case Fig. (4.3e)
due to the fact that there is greater separation between instances from different classes
in the original space as compared to the first dataset. For t-SNE, the best configuration
was obtained with perplexity 30. In accordance with its objective, t-SNE gathered the
data in local clusters in the 2D space, preserving the separability and ordinality to some
degree Fig. 4.3f; however, the global nature of the data is not observable.

For this dataset, we observe that LDA failed to reduce the dimensionality properly
(Fig. 4.3g). LDA searches for a projection that minimizes the distances of instances of
each class to its center, and in this case, the class centers are located closer to the instances
of adjacent classes in the original space. The result is a 2D configuration where the class
separation is lost. Our BVP method does well in this case (Fig. 4.3c) as does LSDA
(Fig. 4.3c), projecting the data such that the separation and ordinality between classes
are preserved together with an informative distribution in the reduced space.
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4.3.2 Real ordinal data

We tested our dimensionality reduction technique on real ordinal classification datasets
[146, 147]. Due to lack of space, we only give visual comparisons with the two supervised
techniques; LDA and LSDA. The datasets and their properties are given in Tab. 4.1.

Table 4.1 – Real ordinal datasets used for the experiments [146, 147] (I is the total number
of instances, Q is the dimensionality of the original data and K is the number of classes).

Dataset I Q K Class Distribution
contact-lenses 24 6 3 (15,5,4)
pasture 36 25 3 (12,12,12)
squash-stored 52 51 3 (23,21,8)
newthyroid 215 5 3 (30,150,35)
car 1728 21 4 (1210,384,69,65)
bondrate 57 37 5 (6,33,12,5,1)

Figure 4.4 through 4.9 show the dimensionality reduction results obtained by BVP
in comparison to LDA and LSDA. For all cases, BVP was able to provide a glimpse
of the data distribution and relative relations of the classes with respect to each other.
LDA showed good performance in some cases (Figs. 4.4b and 4.7b). In the other cases,
LDA pulled the instances close to the class centers, causing a loss of information within
class distribution. Not originally designed for dimensionality reduction for visualization,
LSDA did not retain class separability in 2 dimensions for the real datasets, except for the
dataset newthyroid (Fig. 4.7c). These results demonstrate that for many ordinal datasets,
classical dimensionality reduction techniques may fail to provide a proper visualization of
the high-dimensional features, and our method can be used as an alternative tool to map
high-dimensional data to 2D for interpretation.

(a) BVP (b) LDA (c) LSDA

Figure 4.4 – 2D visualization of the dataset contact-lenses.
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(a) BVP (b) LDA (c) LSDA

Figure 4.5 – 2D visualization of the dataset pasture

(a) BVP (b) LDA (c) LSDA

Figure 4.6 – 2D visualization of the dataset squash-stored

(a) BVP (b) LDA (c) LSDA

Figure 4.7 – 2D visualization of the dataset newthyroid

(a) BVP (b) LDA (c) LSDA

Figure 4.8 – 2D visualization of the dataset bondrate

(a) BVP (b) LDA (c) LSDA

Figure 4.9 – 2D visualization of the dataset car
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4.4 Ordinality metrics

To go beyond the sole visualization of the dimension reduction, we now target to
quantify ordinality in the reduced latent space. In the literature, several researches have
developed specific metrics dedicated to ordinal classification problems [148, 149, 150,
128]. Nevertheless, these references focus on the characterization of the classification per-
formance themselves, while we care here about the interpretability of the latent space
before classification. Related works [151] proposed a framework, to solve the performance
versus interpretability trade-off in the context of ordinal problems. Although this work
covers interpretability of ordinality, it is related to In-Model and equation-Model inter-
pretability techniques [128] while we focus on Pre-Model here. As the most related work,
[152] focused on the intersection between instances of ordinal data in the latent space. In
this investigation, the authors proposed a projection method from N-dimensional latent
space to 1-dimensional latent space, using insights about the class distribution obtained
from pairwise distance calculation between instances of all classes. The idea in [152] is
to project an instance in the 1D interval of a given class, according to its distance to
instances of other classes. A threshold is set manually, to split the interval on segments
of classes. The output projection is then used to perform an ordinal regression.

By contrast to the pairwise method in [152], we propose metrics to quantify the inter-
section between classes by penalizing the ordinal distance of these misclassifications. This
can not be deduced from [152], where all instances are mapped in their corresponding
class interval. In addition, unlike the thresholds selected manually in [152], our proposed
metric is fully automatic. Moreover, we complement our new metric of ordinal intersection
between classes with another metric assessing the ordinality at the level of the centroids
of the clusters of the classes. This can help to discriminate ordered and unordered latent
space for noise-free datasets having no class intersection in the latent space. This aspect
was not taken into account in [152] which assumes that centroids in latent space are al-
ready well aligned and does not quantify their order in this latent space. We detail the
expression of these two metrics in the next section.

4.4.1 Deviation from ordinality metric

The deviation from ordinality (DFO) is a metric that quantifies how much the order
of the centroids departs from the expected order after dimension reduction. Technically,
it compares the position of centroids in the path connecting them in the expected order
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k = {1, . . . , K} (reference path), with the position of the same centroids in the shortest
path. The shortest path is a path where the nearest centroids are connected to each
other based on the Euclidean distance. This metric can be considered as an edit distance
metric. Several edit distance metrics already exist in the literature [153]. Here, we propose
a simple binary output: ordered or unordered. The mathematical formulation of deviation
from ordinality metric is a simple subtraction between order of centroids in shortest and
reference paths

DFOk = pref
k − pshort

k

K − 2 , (4.9)

where pref
k is the position of centroid k in the reference path and pshort

k is the position of
centroid k in the shortest path. The subtraction is normalized by the maximum distance
K − 2. Centroid of class 1 is chosen as the starting point for the reference path and
the shortest path, hence the normalization by K − 2 provides a metric between 0 and 1.
DFOk equals to 0 if the centroid k has the same position in both paths (ordered case)
while DFO equals 1 if the centroid k is displaced to position K (the extreme case). An
average value of the DFOk over all k can then be computed to provide a global assessment
in addition to the local order DFOk associated to each class.

4.4.2 Inter-class intersection metric

We now introduce a second metric to quantify ordinality coined as Inter-Class inter-
section. The metric has two outputs: the first scalar quantifies the severity of intersection
between classes and the second is a binary scalar which states if the intersection is only
between adjacent classes or also between non-adjacent classes.

The definition of intersection between classes depends on the decision boundaries for
classes. In this work, we assume elliptic regions for data are reduced to two dimensions
to account for second-order statistics of the data. The inter-class intersection metric we
propose can be generalized to higher dimensions (e.g. 3D ellipsoids) and other decision
boundaries such as polygonal shapes.

Here, the computation of the Inter-Class intersection is performed in the following
way. First, a boundary Bk (ellipse) is computed around each class lk (algorithm 5). The
ratio ak

j of instances xk
i inside the boundary Bk is evaluated by counting the number

of instances of the class lk inside Bk, normalized by the dimension Ik. The output is
a confusion matrix K × K. The second step is to penalize boundaries in the confusion
matrix, containing instances of non-adjacent classes (equation 4.10). This is achieved by
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multiplying the ratio ak
j by the square distance (j−k)2 in the matrix K×K. Normalization

is applied on all matrix-elements by dividing over the sum of square distances (j − k)2,
so that the Inter-Class intersection value is between 0 and 1, as given in

ICBk =
∑K

j=1 ak
j × ((j − k))2∑K

j=1(j − k)2 for k={1,. . . ,K} . (4.10)

Inter-Class intersection ICBk equals to 0 when there is no intersection between classes.
To be able to separate the case of intersection only between adjacent classes and intersec-
tion between non-adjacent classes, we add complementary information through a binary
scalar (BS). If all the non-diagonal and the non-adjacent cell values in the matrix K ×K

are equal to 0, the binary output is equal to 0. Otherwise, the binary output is equal to
1.

Algorithm 5: Pseudo-code to compute the Inter-Class intersection metric.
Data: Coordinates of instances xk

j of all classes lk.
Result: KxK matrix containing the percentage of instances xk

j of all class lk in
each boundary Bk

1 Fit an ellipse Bk over instances xk
j , by computing the covariance matrix and eigen

vectors and value; find instances xk
j of class lk inside the boundary Bk;

2 Normalize the number of instances xk
j found by the dimension Ik of the class lk;

3 Save all ratios in an KxK matrix, where K is the number of classes;

4.5 Results on ordinality metrics

The two ordinal metrics of the previous section have been applied on the synthetic
and ordinal data of sections 4.3.1 and 4.3.2. The results are provided in Tabs. 4.2 to 4.7.
The quantitative results are in accordance with the visualizations in Figs. 4.2 to 4.9. It
appears that BVP is providing excellent results, with almost no deviation from ordinality
and low mean inter-class intersection. By comparison with the other classical dimension
reduction methods, BVP provides better results than PCA, TSNE, ISOMAP and MDS.
The closest quantitative results of BVP with existing methods is with LDA and LSDA.

On some datasets (such as bondrate), BVP shows a deviation from ordinality not
better than LDA and LSDA. However, in other datasets (such as contact lenses), BVP
outperforms LDA and LSDA. This demonstrates the complementary role of BVP in rela-
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Table 4.2 – Inter-Class intersection and Deviation from ordinality values extracted from
latent spaces generated after applying dimension reduction techniques (PCA, TSNE, LDA,
ISOMAP, MDS, LSDA and BVP) on synthetic dataset in Fig. 4.2a.

DRT ICB1 ICB2 ICB3 ICB4 ICB5 Mean IC BS DFO2 DFO3 DFO4 DFO5 Mean DFO

LPCA 0.99 0.48 0.33 0.49 0.96 0.65 1 0 0 0 0 0
LTSNE 0.98 0.49 0.33 0.50 0.84 0.63 1 0 0 0 0 0
LLDA 0.01 0.01 0.01 0.01 0.00 0.01 0 0 0 0 0 0
LISOMAP 0.99 0.48 0.33 0.49 0.93 0.64 1 0 0 0 0 0
LMDS 1.00 0.47 0.32 0.49 0.98 0.65 1 0 0 0 0 0
LLSDA 0.02 0.02 0.02 0.02 0.01 0.01 0 0 0 0 0 0
LBVP 0.03 0.03 0.03 0.04 0.02 0.03 1 0 0 0 0 0

Table 4.3 – Inter-Class intersection and Deviation from ordinality values extracted from
latent spaces generated after applying dimension reduction techniques (PCA, TSNE, LDA,
ISOMAP, MDS, LSDA and BVP) on synthetic dataset in Fig. 4.3.

DRT ICB1 ICB2 ICB3 ICB4 ICB5 Mean IC BS DFO2 DFO3 DFO4 DFO5 Mean DFO

LPCA 0.08 0.12 0.18 0.12 0.10 0.12 1 0 0 0 0 0
LTSNE 0.11 0.06 0.27 0.18 0.25 0.18 1 0 0 0 0 0
LLDA 0.09 0.12 0.18 0.12 0.10 0.12 1 0 0 0 0 0
LISOMAP 0.01 0.05 0.11 0.09 0.11 0.08 1 0 0 0 0 0
LMDS 0.09 0.13 0.18 0.12 0.10 0.13 1 0 0 0 0 0
LLSDA 0.08 0.12 0.19 0.12 0.10 0.12 1 0 0 0 0 0
L BVP 0.09 0.12 0.19 0.12 0.10 0.12 1 0 0 0 0 0

Table 4.4 – Inter-Class intersection and Deviation from ordinality values extracted from
latent spaces generated after applying dimension reduction techniques (PCA, TSNE, LDA,
ISOMAP, MDS, LSDA and BVP) on pasture dataset.

DRT ICB1 ICB2 ICB3 Mean IC BS DFO2 DFO3 Mean DFO

L PCA 0.12 0.3 0.35 0.25 1 0 0 0
L TSNE 0.3 0.4 0.448 0.38 1 0 0 0
L LDA 0 0 0 0 0 0 0 0
L ISOMAP 0.05 0.384 0.334 0.26 1 0 0 0
L MDS 0.12 0.3 0.35 0.26 1 0 0 0
L LSDA 0.72 0.35 0.936 0.67 1 0 0 0
L BVP 0.05 0.34 0.27 0.22 1 0 0 0

tion with the existing literature on dimension reduction. It is important to underline the
quality of BVP on the Inter-class intersection metrics. Indeed, BVP is designed based
on a metric applied on the centroids of the cluster and does not take into account the
dispersion around these clusters. The encouraging results found on Inter-class intersection
indicate that BVP also has the potential to be used for classification purposes. This is
also in agreement with its good performance in comparison with LDA which is specifically
designed for classification. These are interesting perspectives that we currently develop.
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4.6. Application to variety testing

Table 4.5 – Inter-Class intersection and Deviation from ordinality values extracted from
latent spaces generated after applying dimension reduction techniques (same as in ta-
ble 4.4) on bondrate dataset.

DRT ICB1 ICB2 ICB3 ICB4 Mean IC BS DFO2 DFO3 DFO4 Mean DFO

L PCA 0.81 0.42 0.42 0.97 0.66 1 0.5 0.5 1 0.67
L TSNE 0.98 0.42 0.43 0.99 0.70 1 1 0 1 0.67
L LDA 0.05 0.10 0.02 0.01 0.04 0 0 0 0 0
L ISOMAP 0.78 0.42 0.42 0.93 0.64 1 0.5 0.5 1 0.67
L MDS 0.81 0.42 0.42 0.97 0.66 1 0.5 0.5 1 0.67
L LSDA 0.95 0.42 0.38 0.49 0.56 1 0 0.5 0.5 0.33
L BVP 0.66 0.42 0.43 0.97 0.62 1 0.5 0.5 1 0.67

Table 4.6 – Inter-Class intersection and Deviation from ordinality values extracted from
latent spaces generated after applying dimension reduction techniques (same as in ta-
ble 4.4) on contact lenses dataset.

DRT ICB1 ICB2 ICB3 Mean IC BS DFO2 DFO3 Mean DFO

L PCA 1 0.4 1 0.8 1 0 0 0
LTSNE 1 0.28 1 0.76 1 1 1 1
LLDA 1 0.01 0.10 0.37 0 0 0 0
LISOMAP 1 0.4 1 0.8 1 1 1 1
LMDS 1 0.4 1 0.8 1 1 1 1
LLSDA 0.92 0.01 0.10 0.35 0 1 1 1
LBVP 0.76 0.01 0.10 0.29 0 0 0 0

Table 4.7 – Inter-Class intersection and Deviation from ordinality values extracted from
latent spaces generated after applying dimension reduction techniques (same as in ta-
ble 4.4) on newthyroid dataset.

DRT ICB1 ICB2 ICB3 Mean IC BS DFO2 DFO3 Mean DFO

L PCA 0.12 0.04 0.11 0.09 0 0 0 0
LTSNE 0.03 0.24 0.02 0.10 0 0 0 0
LLDA 0.05 0.04 0.18 0.09 0 0 0 0
LISOMAP 0.43 0.04 0.18 0.21 1 0 0 0
LMDS 0.50 0.04 0.36 0.30 1 0 0 0
LLSDA 0.08 0.04 0.17 0.10 0 0 0 0
LBVP 0.09 0.04 0.13 0.09 0 0 0 0

Table 4.8 – Inter-Class intersection and Deviation from ordinality values extracted from
latent spaces generated after applying dimension reduction techniques (same as in ta-
ble 4.4) on squash-stored dataset.

DRT ICB1 ICB2 ICB3 Mean IC BS DFO2 DFO3 Mean DFO

L PCA 0.60 0.40 0.20 0.40 1 0 0 0
LTSNE 1 0.40 0.42 0.61 1 0 0 0
LLDA 0 0 0 0 0 0 0 0
LISOMAP 0.60 0.40 0.21 0.40 1 0 0 0
LMDS 0.78 0.40 0.24 0.47 1 0 0 0
LLSDA 0.97 0.39 0.75 0.70 1 1 1 1
LBVP 0.37 0.39 0.04 0.27 1 0 0 0

4.6 Application to variety testing

To enable examiners to visualize the ordinal feature space in the numerical distinctness
test, we have developed a standalone application called Ordinalysis. This application

117



Part , Chapter 4 – Processing ordinal data in variety testing

incorporates the dimension reduction technique BVP and ordinality metrics presented
in this chapter. The added value of Ordinalysis remains in the non-dependency on the
coding experience of the user.

In Annex E, we presented a pipeline to automate the measurement of the resistance
of melon varieties to powdery mildew pathogen. In this section, we demonstrate the
potential of Ordinalysis at selecting the best machine learning training strategy. We
verify if the visual results and the quantification metrics will select the same machine
learning strategy using the results obtained in Annex E. Fig. 4.10 presents the workflow
to process the powdery mildew ordinal data in Ordinalysis. The results obtained are
presented in Annex H.

Figure 4.10 – Pipeline to illustrate the use of Ordinalysis at automating variety testing
protocols. (1): ordinal data presented in Annex E. (2): interactive space to visualize
image data in Ordinalysis and select the type of features to be extracted. (3): select the
dimension reduction techniques. (4a): visualization of the latent space for each dimension
reduction technique and the associate plots of both ordinal metrics. (4b): values of ordinal
metrics exported as CSV file.
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4.7. Conclusion

4.7 Conclusion

In this chapter, we presented a novel and intuitive dimension reduction technique for
the visualization of high-dimensional data for ordinal classification. We provided visual
comparisons with various dimensionality reduction techniques on both simulated and real
datasets, and demonstrated that BVP is capable of retaining separability and class order
in cases where the other dimension techniques failed. This visualization step is important
for ordinal classification to ensure that the latent space, on which a final classification is
to be performed by a machine, is interpretable to the human eye [128]. We also provided
two metrics to quantify the ordinality in this reduced latent space. The whole set of
tools (dimension reduction and ordinality metrics) are made available as a standalone
application called, Ordinalysis (The description of the application and its application to
variety testing are presented in Annex H).

119





Chapter 5

CONCLUSION AND PERSPECTIVES

5.1 Synthetic view of methodological contributions

Variety testing is a set of tests performed by examiners to certify candidate varieties
to be registered in the catalog of varieties for commercialization. Currently, these tests
are conducted manually. The specific contraints in variety testing have limited so far the
transition toward numerical measurements based on computer vision. On the other hand,
the tools used in precision agriculture and plant breeding are not straightforward and
cost-effective to be exploited in variety testing.

In this thesis, we contributed to computer vision and machine learning for plant va-
riety testing by proposing methodological solutions and engineering tools to incorporate
machine learning and computer vision in variety testing. We targeted the DUS variety
testing, particularly the distinctness test. Our contributions were organized into three
parts.

In the first part, we proposed a computer vision pipeline based on point cloud pro-
cessing to delineate apple trees in variety testing orchards [12]. This work’s novelty lies
in fusing the 3D reconstruction of the orchard in the winter and the harvest periods. We
delineated individual trees on the leaf-off model from winter and employed the 3D model
from the harvest period to localize apples. We determined the tree membership of each
apple in the harvest point cloud by mapping their locations onto the winter point cloud,
where individual trees are separated.

In the second part, we considered the distinctness as a classification problem. We
demonstrated the efficiency of supervised machine learning via the optimal transport at
separating the mutant and non-mutant of Gala based on color information [88]. Alter-
natively, we proposed a novel unsupervised machine learning methodology to automate
shape measurement, directly using sketches from the catalog of variety testing, as a nu-
merical ground truth [89].

In the third part, we proposed a dimension reduction technique called best-view pro-
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jection (BVP) and two quantification metrics (deviation from ordinality and inter-class
intersection) to visualize and quantify the ordinality in the feature space [142, 143]. We
demonstrated the impact of BVP and the quantification metrics at selecting the best
training strategy to automate the measurement of the resistance of melon varieties to
powdery mildew pathogen.

5.2 Engineering contributions

In this thesis, in addition to the proposed methodological contributions, we also devel-
oped computer vision and machine learning tools ready to be used, for traits highlighted in
green in Fig. 5.1. These tools include annotated datasets, 3D models, a sorting machine, a
web application, a standalone application and deep learning models (see Annex A). These
resources were shared with the community of variety testing in the European project IN-
VITE (https://www.h2020-invite.eu/). The process of automating the measurement of
traits using computer vision and machine learning includes three steps: acquisition, an-
notation, and modeling. Our tools are dedicated to serve the examination offices in each
step.

We contributed in the step of data creation by developing a low-cost sorting machine
(≈ 10ke) to acquire images of fruits at a high rate. Such a robot fits with the practices
of measurements in variety testing, in particular, the ones in the post-harvest distinctness
test, unlike the costly commercialized robots developed in precision agriculture (≈ 100ke),
where raw data that produce the measurement is inaccessible.

Annotation is known for being the bottleneck in computer vision and it can be costly
for examination offices. We aim to share annotated data to democratize the use of com-
puter vision in variety testing. In addition, annotated data can also serve for transferring
the knowledge of machine learning models between similar crops [154]. For instance, one
examination office assessing the varieties of pears can use the annotated data of apples
to train machine learning to automate the measurements of traits of pears. We also con-
tribute at the creation of annotated data by developing PanoVar (https://panovar.org/).
PanoVar is a web application dedicated to speeding up annotation. It offers a shared
space for examiners to conduct their measurements interactively, compares their scoring
and runs automatic measurements through trained machine learning models. We aim that
this application will help examination offices and prevent them from paying companies to
build costly applications.
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On the other hand, machine learning models can serve as examination offices to com-
pare the efficiency of existing commercialized tools by comparing their results with the
ones of the machine learning and deep learning models developed in this thesis. In this
context, we also developed Ordinalysis that can impact the selection of training strategies.
Ordinalysis is a standalone application that was developed to visualize and quantify the
ordinality in the feature space where machine learning algorithms make decisions. This
application can serve examiners in the distinctness test to visualize the varieties and ver-
ify if the meaningful order of data is respected. More details about this application are
available in Annex A and H.

Figure 5.1 – Traits of the distinctness tests mentioned in UPOV catalog. Traits highlighted
in green benefited from methodological contributions and engineering tools proposed in
this thesis.

5.3 Discussion

In this thesis, we provided specific perspectives at the end of each chapter. In this
section, we rather discuss how to adjust the variety testing practices to decrease the
complexity of the proposed computer vision and machine learning methodologies.

In this thesis, we have demonstrated that, indeed, computer vision and machine learn-
ing can fit perfectly to shift toward numerical practices and measurements in variety test-
ing. The incorporation of these techniques could even be more successful if there were
less constraints in variety testing. For instance, the pipeline proposed in chapter 2 was
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complex because the trees were planted tightly, which is a specificity of the variety testing
orchards. One can imagine that if the trees were well separated, there would be no need
to afford computation power to run 3D point cloud processing. Instead, machine learning
can be implemented easily to automate measurements of traits on 2D images. Another
illustration of the complexity of variety testing relies in the current scoring system. At
the time when the catalog of variety testing was introduced, the commercialized vari-
eties had different genotyping signatures. Later, several new varieties were created via
the crossing between the registered varieties, leading to a common genotyping signature
between all the varieties. This impacted variety testing because the scoring system to
measure the traits (phenotypes) was not efficient to capture the difference between the
varieties. Recently, UPOV introduced intermediate classes in the scoring system to help
examiners to capture the minimal difference between varieties. However, the threshold
to differentiate these intermediates scores is often neither perceptible by the examiners
nor by the computer vision and machine learning algorithms that process the images.
An alternative method would be to restore the old scoring system and use the machine
learning descriptors to capture the slight difference between the varieties.

The quality of the variety testing catalog can also impact the transition to automated
measurements of trait. In chapter 3, we proposed an idea to use the sketches in the
catalog of variety testing as a numerical ground truth to automate the measurements of
fruit shape. In such a way, we avoid asking examiners to annotate images. However, the
difficulty faced is that the quality of the sketches is mediocre. All of them were just drawn
with no respect to the similarity to the real fruit shape. In the spirit of improving variety
testing protocols, we invite UPOV to revisit these catalogs. For instance, for apple shape,
a proposition for the examiners is to select the actual shape of apples per category (Flat,
ellipsoid, etc.) and assign it as a reference in the catalog.
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Chapter 6

ANNEX A: ANNOTATED DATASETS,
MACHINE AND DEEP LEARNING MODELS

AND APPLICATION DEVELOPED DURING

THIS PHD

6.1 Annotated datasets and machine learning models

6.1.1 Images of apple trees in harvest period

(a) (b)

Figure 6.1 – (a): image of apple tree. (b): rectangles drawn around the apples.

◦ size of data: 700 images and 700 text files containing the coordinates of the apples
in the corresponding images.
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◦ type of annotation: coordinates of rectangles drawn around apples;
◦ computer vision task: detection;
◦ potential variety testing applications: apple counting;
◦ machine and deep learning models: YoloV4 Tiny [155];

6.1.2 3D point cloud of apple trees in harvest period

(a) (b)

Figure 6.2 – (a): 3D point cloud of apple trees. (b): 3D point cloud of apple trees with
ground truth apple locations.

◦ size of data: 7 3D point cloud of apple trees in harvest period;
◦ annotation: ground truth apple locations;
◦ computer vision task: detection;
◦ potential variety testing applications: fruit counting, estimation of volume, local-

ization for fruit picking;
◦ algorithm: 3D point cloud processing;

6.1.3 3D point cloud of apple trees in winter period

◦ size of data: 7 3D point clouds of apple trees in winter;
◦ annotation: points of the branches, the trunks, the trellis-wires and the poles are

respectively colored differently;
◦ computer vision task: segmentation;
◦ potential variety testing applications: Localization of trees in the orchards, esti-

mation of the type, the habit and the dimensions of trees;
◦ algorithm: point cloud processing;
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(a) (b) (c)

Figure 6.3 – (a): 3D point cloud of apple trees in winter. (b): manually generated Ground
Truth (blue: trellis wires, red: tree trunks, black: support poles, green: branches). (c):
labels obtained by our semantic segmentation method (see chapter 2).

6.1.4 Images of apple trees in flowering period

(a) (b)

Figure 6.4 – (a): images of apples trees in the flowering period. (b): pixels of flowers in
the first row are marked with white pixels.

◦ size of data: 50 images and 50 masks;
◦ annotation: pixels that belong to flowers are colored differently;
◦ computer vision task: detection;
◦ potential variety testing applications: estimation of intensity, the beginning and

the end of flowering;
◦ machine and deep learning models: UNET [156];
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Figure 6.5 – 10 cut apples classified as Globose.

6.1.5 Images of apple fruits for measurement of shape

◦ size of data: 1800 images;
◦ annotation: classify the image into: Flat, Globose or Oval;
◦ computer vision task: classification;
◦ machine and deep learning models: shape features (see chapter 3) and support

vector machine [157];

6.1.6 Images of apple fruits for measurement of color

Figure 6.6 – Mutant of Gala.

◦ size of data: 4800 images including mutant and non-mutant of Gala;
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◦ annotation: the name of the mutant and non-mutant of Gala;
◦ computer vision task: classification;
◦ machine and deep learning models: color features and support vector machine

[157];

6.1.7 Images of apple fruits for measurement of russeting in
indoor and outdoor

(a) (b)

(c) (d)

Figure 6.7 – (a): apple without russeting (indoor). (b): apple with russeting (indoor).
(c): apple without russeting (outdoor). (d): apple with russeting (outdoor).

◦ size of data: 1000 images;
◦ annotation: classify the image into: with russeting, without russeting;
◦ computer vision task: classification;
◦ machine and deep learning models: CNN [158];
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6.2 Low-cost acquisition system

To incorporate numerical practices in the post-harvest measurements during the dis-
tinctness tests, we developed a conveyor machine (see Fig. 6.8(a)). Technical details
about this machine’s functionality can be found in section 3.2.1 of this document. In
addition, an object detection deep learning model was built to segment the apples from
the background in real-time, leading to fast processing of images (see Fig. 6.8(b)).

(a) (b)

Figure 6.8 – (a) Low-cost sorting machine, (b) real-time apples detection and segmenta-
tion.

6.3 Applications

6.3.1 PanoVar

Motivation

In order to incorporate supervised machine learning in variety testing, models must
be trained to measure traits. Training requires the existence of annotated data. The
current protocol to ask examiners to annotate data is slow and inefficient. In this thesis,
we developed a web application called PanoVar (https://panovar.org/) (see Fig. 6.9).
PanoVar is dedicated to speed up the process of creating annotated data. It allows the
examiners to upload images and score each trait following the scoring scale indicated in
the UPOV catalog. The benefits of PanoVar are the followings:
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Figure 6.9 – A screenshot of the first page of PanoVar (https://panovar.org/).

◦ annotate the traits numerically: it makes the comparison with the machine learn-
ing scoring fair as both assess the trait on the same images, unlike the current
comparison between manual annotation and machine learning prediction;
◦ visualize the variability between examiners: comparing the scores assigned to the

same images between examiners. It also allows understanding the errors of machine
learning.
◦ speed up the annotation: the scoring is interactive. The examiners must click on

the image and select the corresponding class for the measured trait. The Fig .6.10
shows a screenshot from PanoVar, where examiners are scoring the shape of cut
apples;
◦ correcting the annotations: PanoVar allows the examiners to upload the annota-

tions for verifications or modifications;
◦ creates historical data: the list of the images names and the corresponding classes

can be exported in a CSV file. Such files can serve for stability tests in DUS variety
testing;

Programming environment

PanoVar was built using the web application framework FLASK 1.1.1. Flask is a web
application framework written in Python.
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Figure 6.10 – A screenshot from PanoVar, where examiners are scoring the shape of cut
apples. The sketches represent the scoring scale defined in the UPOV catalog.

Impact

Examiners already tested PanoVar in creating the annotated data exploited in chap-
ter 3.2. In addition, the application was also presented to variety testing community
in the European project INVITE (https://www.h2020-invite.eu/). The feedbacks were
very positive. There was an agreement that the collaboration should continue to adjust
PanoVar to fit the needs of examiners.

Perspectives

For the near future, there are two perspectives:
◦ implement training of machine learning models in PanoVar and allow examiners to

perform both, manual measurements (as it can be done currently) and automatic
measurements.
◦ performs the distinctness test numerically using the machine learning models. Ex-

aminers will import the images of the candidates and the reference varieties and
run the test in PanoVar.

Tutorial

A tutorial video for PanoVar was recorded. It is available at this link.
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6.3.2 Ordinalysis

Ordinalysis is a software that enables to perform dimension reduction, visualization
and quantitative analysis of ordinality. It is provided as a standalone executable file with
a video tutorial. Technical details and illustration of Ordinalysis’s applications are shown
in Annex H.
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Chapter 7

ANNEX B: CALIBRATION OF 3D COLOR

POINT CLOUDS OF APPLE ORCHARD

SCENES

7.1 ColorChecker detection from 3D color point clouds

The ColorChecker detection algorithm is devised to estimate the positions of the color
patches of the ColorChecker (ColorChecker Passport Photo 2, X-rite, Great Lakes, Mid-
western US) (Fig. 7.1a) in a 3D RGB point cloud. The ColorChecker includes a 24-patch
color reference target (Fig. 7.1b).

(a) X-Rite’s ColorChecker Passport Photo
2

(b) 24-patch color reference target of the Col-
orChecker

Figure 7.1 – The ColorChecker object

Fig. 7.3 gives the block diagram of the procedure that takes a 3D color point cloud as
the input and localizes the ColorChecker, if there is any. A color point cloud PC is a set
of 3D points, where each point pm ∈ PC is represented by its coordinates (x, y, z) and its

137



(a) 3D RGB point cloud (b) ColorChecker zoomed

Figure 7.2 – 3D RGB point cloud of an apple orchard scene including a ColorChecker

color (R, G, B). Here, (R, G, B) refers to the values of red, green and blue channels. The
correct metric scale of the point cloud is not known beforehand; therefore, we re-scale the
coordinates of the points in PC such that the maximum pairwise distance of the points
is 100:

(x′, y′, z′) = 100
dmax

(x, y, z) (7.1)

where, dmax is the maximum pairwise distance in the original point cloud:

dmax = max
pm,pn∈P C

∥pm − pn∥ (7.2)

The objective of the procedure is to locate the centers of the color patches ci,j, i =
1, ..., 4, j = 1, ..., 6 of the ColorChecker (Fig. 7.4).

The details of our ColorChecker detection procedure are given below:

Step 1: Color thresholding The colors of the points in PC are converted to HSV (Hue,
Saturation, Value) representation. Points within the hue range of [0.75 0.87] and satura-
tion range of [0.35 0.55] are extracted. Points with colors in these ranges correspond to
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the purple points in the point cloud.

Step 2: Extraction of connected components Connected components of the resulting pur-
ple points are considered to be candidate regions for the purple patch of the ColorChecker.
After obtaining the connected components, small components with less than 20 points
are discarded. Starting from the largest one, Steps 3 to 8 are applied to the connected
components until a ColorChecker pattern is detected in Step 8.

Step 3: Plane fitting A plane is fitted to the points in the connected components using
M-estimator SAmple Consensus (MSAC) algorithm given in [73], which is a variant of
RANdom SAmple Consensus (RANSAC) algorithm. Maximum distance for a point to be
an inlier is set to be 0.01. Fig. 7.3 (Step 3) shows the inlier points for a candidate purple
patch.

Step 4: Diagonal length estimation The center c of the the inlier points is calculated
by averaging their coordinates. The maximum of the distances between pairwise inlier
points is estimated to be the length D of the diagonal of the candidate purple patch. Fig.
7.3 (Step 4) illustrates c and D for a candidate purple patch.

Step 5: ROI extraction The region of the point cloud within distance R from the center
of the candidate purple patch, where R = 8D, is considered to be the region of interest
(ROI). This region has the potential of including a ColorChecker. Fig. 7.3 (Step 5) shows
the points in the region of interest around a candidate purple patch.

Step 6: Plane fitting to the points in ROI MSAC is applied to fit a plane to the points
in the region of interest. Fig. 7.3 (Step 6) shows the inlier points of the fitted plane for a
candidate ROI.

Step 7: Projection onto an image The inlier points of the plane are projected onto a
color image. The size of the image grid is M ×N , where max(M, N) = 200. Each pixel
gets the average color of the 3D points projected onto it. A pixel with no points projected
onto it is interpolated with nearest neighbor interpolation. Fig. 7.3 (Step 7) shows a
sample projected image.
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Step 8: Application of 2D ColorChecker Detector The ColorChecker detection software
developed by Hirakawa [159] is utilized to check whether there exists a ColorChecker in
the image. This software operates on 2D color images and localizes the 2D center of each
color patch. The detected centers for a sample image are depicted with black circles in
Fig. 7.3 (Step 8). If no ColorChecker is found, the next connected component from Step 2
is processed. If all connected components are processed without locating a ColorChecker,
the procedure is terminated.

Step 9: Back-projection to 3D space The 2D patch centers are back-projected to 3D
space to obtain the centers of the color pathces ci,j, for i = 1, ..., 4 and j = 1, ..., 6. In Fig.
7.3 (Step 9) the centers are depicted with black circles.

7.2 Calibration of the 3D point cloud using the Col-
orChecker

Calibration of a point cloud, in our work, corresponds to the procedure that involves
1) re-scaling the point cloud to the correct metric scale, 2) orienting the point cloud to a
canonical reference frame, 3) extraction of region of interest, and 4) re-centering the point
cloud to a predetermined position. We apply calibration to both the harvest point cloud
PCh and the winter point cloud PCw to obtain their calibrated versions PCC

h and PCC
w .

The 3D locations of the centers of the ColorChecker patches are used to determine
the correct scale of the point cloud and "upward" and "leftward" directions relative to the
ColorChecker. The distance between the adjacent centers ci,j and ci,j+1 on the same row
is sij. The average of sij for i = 1, ..., 4 and j = 1, ..., 5, which is denoted as s̄, is used to
re-scale the point cloud.

The upward vector vUP corresponds to the direction pointing away from the ground
of the apple orchard, and the leftward vector vLEF T is towards the left along the apple
tree row when one faces the row. They are estimated as:

vUP = 1
6

6∑
j=1

(c1j − c4j); vLEF T = 1
4

4∑
i=1

(ci1 − ci6). (7.3)
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7.2.1 Re-scaling the point cloud

The actual value of the distances between centers of adjacent patches on the rows of the
ColorChecker chart is 15mm. All the coordinates of the point cloud are thus multiplied by
15
s̄

to get the values of the coordinates in mm units. After this point, all size parameters,
such as the height of the ColorChecker tripod, involved in the processing of the point
cloud are adjusted in accordance with their true metric values.

7.2.2 Rotating the point cloud to a canonical reference frame

We rotate the point cloud to a canonical reference frame, where Z-axis corresponds to
the direction orthogonal to the ground and pointing upwards and Y-axis is parallel to the
tree row and oriented towards left (Fig. 7.5).

In order to estimate the axes of the new reference frame, the stick of the tripod of
the ColorChecker, and the vectors vUP and vLEF T defined in Eq. 7.3 are used. The stick
of the tripod is perpendicular to the ground; therefore the 3D points corresponding to
the stick are used for estimation of the Z-axis. The center of the ColorChecker chart is
calculated by averaging the detected centers of the color patches. Then, points that are
in the distance range [10-65]cm from the chart center in the direction −vUP are gathered
(red points in Fig. 7.6). The principal direction of these points is determined through
principal component analysis, and is established as the Z-axis of the canonical reference
frame. X-axis and Y-axis are then computed through the cross products:

Xaxis = −Zaxis × VLEF T ; Yaxis = Zaxis ×Xaxis. (7.4)

The origin of the reference frame is temporarily moved to the base of the tripod, which
is 1m away from the center of the ColorChecker chart in -Z direction. The temporary
reference frame is shown in Fig. 7.7 (a).

Fig. 7.9 (a) and (b) show an uncalibrated point cloud. After re-scaling and rotating
to the estimated reference frame, we obtain the point cloud shown in Fig. 7.9 (c), (d),
and (e).

7.2.3 Extraction of region of interest

First, points with Z coordinates less than 25cm are discarded from the calibrated
point cloud. This way, both ground points and irrelevant objects close to the ground are
removed. Fig. 7.9 (f) shows a calibrated point cloud with ground points removed.
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We are interested in processing apple trees in the row located behind the ColorChecker.
When the ColorChecker stick was installed, two distances were manually measured with a
tape measure: dcc

R : the minimum distance of the tripod stick to the tree row, and dcc
T : the

distance to a designated tree. All points with X-coordinates greater than dcc
R + 1500m are

removed from the point cloud. The remaining points correspond to the target tree row,
which is closest to the ColorChecker. Fig. 7.9 (g) shows the region of interest extracted
from a calibrated point cloud.

Finally, we remove the ColorChecker object from the scene by removing all the points
that satisfy the conditions (X2 + Y 2) < R2

CC and Z < HCC , with RCC = 20cm and
HCC = 120cm. Recall that the origin of the point cloud is at the base of the ColorChecker
tripod at this point.

7.2.4 Translating the origin of the reference frame

The origin of the reference frame is carried from the base of the ColorChecker tripod
to the base of the designated tree, as shown in Fig. 7.7. All the points in the region
of interest are projected to the ground; i.e. a histogram of points in the XY-plane is
created (Fig. 7.8). The XY-plane is converted to a regular grid; and the number of points
contained in each grid is calculated. The peaks of the histogram correspond to the tree
trunk locations. The distance of the designated tree to the base of the ColorChecker
tripod, dcc

T , is known. Since the distance of the ColorChecker to the tree row, dcc
R , was

also measured, the location of the designated tree with respect to the ColorChecker is
known (Fig. 7.8). A search region of radius 30cm around the location of the designated
tree is examined. The maximum peak location of the histogram in this region is marked
as the base of the designated tree. The point cloud is translated such that the origin of
the reference frame coincides with this location.

The final region of interest of a calibrated point cloud, re-centered at the base of the
designated tree is given in Fig. 7.9 (h).
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Step 1: Color Thresholding
Extract purple points by applying color thresholding.

Hue range: [0.75 0.87] Saturation range: [0.35 0.55]

Input Point Cloud

Step 2: Connected Components
Apply connected components to the purple points to locate candidate purple

patches of the ColorChecker.

R

Step 3: Plane Fitting

Apply MSAC to the points in the candidate connected

component to fit a plane.

Step 4: Diagonal Length Estimation
Find the maximum of the pairwise distances (D) among

the inliers in the candidate planar purple patch.

Find the center point (c) of the inliers.

D

c

Step 5: Extract ROI

Extract the Region of Interest (ROI), which is

defined as all the points in the point cloud within

distance R to the center (c) of the candidate purple

patch (R = 8D).

Step 6: Plane Fitting

Apply MSAC to the points in the ROI to fit

a plane.

Step 7: Projection onto an image

Project the inliers of the plane to a color image.

Apply nearest neighbour interpolation for empty

pixels.

Step 8: Apply 2D ColorChecker Detector

Apply “Colorchecker Finder” by Hirakawa [2] to

detect the centers of the color patches in the 2D

color image.

Step 9: Back-projection to 3D space

Back-project the detected 2D centers of the

patches to the original 3D space.

ColorChecker

detected?

YES

NO

Next candidate 

purple patch

exists?

NO

No ColorChecker detected.

YES

Figure 7.3 – Block diagram of the procedure for ColorChecker detection from 3D RGB
point cloud
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Figure 7.4 – The localized centers of color patches on the ColorChecker are used to
estimate the correct scale and the "upward" and "leftward" directions.

Figure 7.5 – The axes of the canonical reference frame to which the point cloud is rotated.
Y-axis is parallel to the tree row and oriented towards left. Z-axis is orthogonal to the
ground.



Figure 7.6 – Estimation of the Z-axis of the new reference frame. The points below the
ColorChecker chart and on the tripod stick (shown in red) are processed with PCA to
extract the principal direction.

(a) Origin at the base of ColorChecker tripod.
(b) Origin at the base of the designated
tree

Figure 7.7 – (a) The origin of the reference frame is moved temporarily to the base of the
ColorChecker. (b) After the localization of the designated tree trunk, the origin is set at
the base of the designated tree.
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Figure 7.8 – The histogram of the points projected to the XY-plane of the ROI. The peaks
correspond to the tree trunks. The local region around the position of the designated tree
to the ColorChecker is searched for a peak.



(a) Uncalibrated point cloud seen from the

top.

(b) Uncalibrated point cloud seen from the side. The

coordinate frame and the scale are arbitrary.

(c) Point cloud after scaling and rotation to

the new reference frame, seen from the top.

The apple row is parallel to Y-axis.

(d) Point cloud after scaling and rotation to the new

reference frame, seen from the side. Z-axis is orthogonal

to the ground. The scale is measured in millimeters.

(e) Point cloud after scaling and rotation to the

new reference frame. The center of the

coordinate frame is temporarily moved to the

base of the ColorChecker Tripod.

(f) Point cloud after ground removal. Points with

Z coordinates less than 25cm are removed.

(g) Region of interest which is defined as the tree row

just behind the ColorChecker.

(h) Final region of interest of the calibrated point

cloud. The center of the reference frame is moved

to the base of the designated tree.

Figure 7.9 – Calibration of the point cloud and extraction of region of interest.





Chapter 8

ANNEX C: VISUAL RESULTS FOR

DETECTION OF TRELLIS WIRES, TREE

TRUNKS AND SUPPORT POLES

In the chapter 2, we proposed a methodology to separate apple trees in the orchards.
The pipeline relies on the detection of the trellis wires, the tree trunks, the support poles
and the branches, in the 3D point clouds of apple trees in the winter. To evaluate our
detection algorithms, we generated a ground truth associated to the seven 3D point clouds
assessed. The Fig. 8.1 shows the calibrated point clouds, the ground truth generated and
the automatic labeling using the detection algorithms.

Figure 8.1 – First column: Calibrated point clouds, Second Column: Manually gen-
erated Ground Truth (blue: trellis wires, red: tree trunks, black: support poles, green:
branches), Third Column: Labels obtained by our semantic segmentation method.

Calibrated Point Cloud Ground Truth Automatic Labeling

Scene 1

Scene 2
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Scene 3

Scene 4

Scene 5

Scene 6

Scene 7



Chapter 9

ANNEX D: TERMINOLOGY OF MACHINE

LEARNING

9.1 Classical machine learning

Machine Learning is an application of artificial intelligence (AI) and computer science.
It provides systems with the ability to automatically learn and improve from experience
without being explicitly programmed. The improvement of knowledge of machine learning
algorithms comes from the use of data. The data are transcoded by feature vectors. The
feature space is the reference frame where data are represented. Often this feature space
is in Rn where n > 3. Dimension reduction techniques [160] such as PCA, TSNE and
LDA, are used to project the feature space from Rn to R3 or R2, to visualize the structure
of data in the reduced space. There are several ways of learning the structure of the data
in the feature space including supervised learning, unsupervised learning, self-supervised
learning and reinforcement learning. In this thesis, we addressed only supervised and
unsupervised machine learning.

Supervised machine learning refers to the algorithms where you have input variables
x and an output variable Y called labels, and you use an algorithm to learn the mapping
function from the input to the label. The goal is to approximate the mapping function
so well that you can predict the correct Y for a new input data x. On the other hand,
unsupervised machine learning seeks to identify structure among unlabeled data x.

9.2 Deep learning

Although classical machine learning algorithms are robust, they still require human
intervention to set the features and there is no guarantee that these features are the most
discriminate ones to solve a problem. The classical machine learning algorithms are often
not complex and have few parameters to optimize in the training phase. Therefore, they
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reach saturation in their performance levels (see Fig. 9.1), despite the increase of the
dataset size.

On the other hand, the performance of deep learning, which is a subset of a fam-
ily of machine learning methods based on artificial neural networks, increases with the
addition of data. This is explained by the complexity of deep learning algorithms that
have millions of parameters to adjust and therefore require large datasets to be robust.
Deep learning architectures consist of end-to-end transformations of the raw data that
are chained together top to bottom. Unlike in classical machine learning, the features are
selected by the deep learning architectures from the raw data. Currently, in computer
vision applications, supervised machine learning algorithms including deep learning are
the most robust ones. However, they require image annotation.

Figure 9.1 – The plateau of performance of machine learning and deep learning in function
of the amount of data.

9.3 Image annotation

Machine learning algorithms, when used in supervised ways, require considerable
amount of annotated data. Annotation of images is the process of generating a ground-
truth Y for each input variable x. There are three different levels of image annotation,
each one refers to a computer vision task. Figure 9.2, illustrates these different levels.
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Figure 9.2 – Panel of computer vision tasks and associated level of annotation requested
for supervised machine learning.

9.4 Image classification

Image classification (see Fig. 9.2) refers to a predictive modeling problem where a class
label is predicted for a given sample image. A model will use the training dataset (images
and labels) and will calculate how to best map examples of input data to specific class
labels. Some popular examples of classification algorithms are: k-Nearest Neighbors [161],
Decision Trees [162], Support Vector Machine [157], Naive Bayes [163] and convolutional
neural network (CNN) [158].

9.5 Segmentation

Image segmentation (see Fig. 9.2) is the task of clustering parts of an image together
that belong to the same object class. This process is also called pixel-level. There are
two types of image segmentation: semantic segmentation and instance segmentation.
Semantic segmentation labels each pixel in the input image with a category label. It does
not differentiate instances, only cares about categories. It is a pixel-wise classification.
On the other hand, instance segmentation goes further and distinguishes instances of
the same semantic class. Some common image segmentation techniques in computer
vision and machine learning [164] are: thresholding method, edge-based segmentation,
region-based segmentation and cluster-based image segmentation and deep learning-based
segmentation.
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9.5.1 Object detection

Object detection is the task of determining where objects are located in a given image
(object localization) and which category each object belongs to (object classification).
As shown in Fig. 9.2, we usually use a bounding box to describe the spatial location
of an object. The bounding box is a rectangle, which is often determined by the x and
y coordinates of the upper-left corner of the rectangle and the such coordinates of the
lower-right corner. There are two families of object detection architectures [165]: one-
stage methods and two-stage methods.

The one-stage methods such as SSD [166] or YOLO [167] require only a single pass
through the neural network and predict all the bounding boxes in one shot. On the other
hand, the two-stage methods such as R-CNN [168] extract many region proposals from
the input image, use a convolutional neural network to perform forward propagation on
each region proposal to extract its features, then use these features to predict the class
and bounding box of this region proposal.
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Chapter 10

ANNEX E: MACHINE LEARNING-BASED

CLASSIFICATION OF POWDERY MILDEW

SEVERITY ON MELON LEAVES

155



Machine Learning-Based Classification
of Powdery Mildew Severity

on Melon Leaves

Mouad Zine El Abidine1, Sabine Merdinoglu-Wiedemann2, Pejman Rasti1,3,
Helin Dutagaci1, and David Rousseau1(B)

1 LARIS, UMR INRAE IRHS, Université d’Angers,
62 Avenue Notre Dame du Lac, 49000 Angers, France

david.rousseau@univ-angers.fr
2 INRAE-Université de Strasbourg, 21 rue de Herrlisheim, 68000 Colmar, France

3 Department of Big Data and Data Science, école d’ingénieur informatique
et environnement (ESAIP), Saint Barthelemy d’Anjou, France

Abstract. Precision agriculture faces challenges related to plant dis-
ease detection. Plant phenotyping assesses the appearance to select the
best genotypes that resist to varying environmental conditions via plant
variety testing. In this process, official plant variety tests are currently
performed in vitro by visual inspection of samples placed in a culture
media. In this communication, we demonstrate the potential of a com-
puter vision approach to perform such tests in a much faster and repro-
ducible way. We highlight the benefit of fusing contrasts coming from
front and back light. To the best of our knowledge, this is illustrated for
the first time on the classification of the severity of the presence of a
fungi, powdery mildew, on melon leaves with 95% of accuracy.

Keywords: Machine learning · Classification · Plant disease

1 Introduction

During the last decades, precision agriculture benefited from advances in robotics
[1,2], computer vision [3] and artificial intelligence [4,5] to automate the monitor-
ing of crops [6] and harvesting [7]. However, some activities of major importance
for agriculture are still to take benefit from these advances. One such activity
is plant variety testing. To register and protect a new variety in a country, a
plant breeding company has to follow a process managed by a national exami-
nation office within an official framework. The national examination offices run
tests to register new varieties in the official catalogue, protect them with «plant
variety rights» and post control of certified seed lots. Currently, most of these
tests are based on manual measurements performed with visual inspection. This
is an issue for the sake of efficiency due to the time consuming nature of these
tests. In this context, we focus on one of these plant variety tests. We propose
an automated algorithm to detect and quantify the presence of powdery mildew
c© Springer Nature Switzerland AG 2020
A. El Moataz et al. (Eds.): ICISP 2020, LNCS 12119, pp. 74–81, 2020.
https://doi.org/10.1007/978-3-030-51935-3_8



ML Classification of Powdery Mildew Severity Levels on Melon Leaves 75

on melon leaves via in vitro imaging to assess the resistance capability of the
tested varieties. Powdery mildew is a fungal disease infecting melon leaves and
causing a major reduction of yield. The typical symptoms of powdery mildew
are white colonies on the leaf surface consisting of mycelium and spores of the
fungal pathogen. We first describe the current manual method and then explain
the computer vision procedure that we propose, based on machine learning and
fusion of front and back light images. The performance of this automated pro-
cedure is compared with the manual method and previous automated methods
before conclusion.

2 Related Work

Plant disease detection using deep learning has attracted many attention in
the recent past [8–10] due to the large variety of conditions in which diseases
can be studied including conditions of plant-pathogen interactions (virus, bac-
teria, fungi), environmental conditions (field, controlled environment, in vitro,
...), imaging modalities (RGB, thermal, fluorescent, ...) and observation scales
(tissue, leaf, canopy, ...). As closely related work, for powdery mildew detection
observed on foliar disk in vitro, a spatio-spectral analysis based on hyperspec-
tral images of wine grapes was developed to classify powdery mildew infection
levels [11]. An accuracy of 87% was reported to classify “healthy”, “infected” and
“severely” diseased bunches. In another work, a machine vision based phenotyp-
ing system was developed to assess the severity of grapevine powdery mildew
[12]. The system is based on a high-resolution camera and a long working dis-
tance macro-focusing lens. The system acquires an image of each foliar disk inside
a Petri dish and requires an XY motorised stage to move above one foliar disk to
another. A GoogleNet neural network architecture was trained on 9920 images of
two classes “infected” and “not infected”. The training lasted 3.4 h. The resulting
CNN had a classification accuracy of 94.3%. By contrast with these methods,
our computer vision system requires only a simple RGB camera with standard
resolution and a lighting device. This simplicity and low-cost is important for
dissemination of the method as the system is dedicated to pathology tests per-
formed by biologists. Also, acquisition time is important as the global objective is
to implement a high-throughput phenotyping system. Unlike microscope-based
images of [12] that catches only a single foliar disk at a time, we acquire 9
foliar disks in the same snapshot. The previous works have improved disease
detection accuracy by investing in the imaging system (hyper-spectral camera
and microscope). On the side of optics, we propose to fuse front and back light
images to improve classification accuracy and thus implement a high-throughput
phenotyping system at a relatively low cost.

3 Current Manual Procedure

The current manual procedure to assess melon leaves resistance to powdery
mildew is as follows. First, biologists extract foliar disks from melon leaves (as
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illustrated in Fig. 1(a)) and position them inside a Petri dish. A control foliar
disk (very sensitive to powdery mildew), positioned at the center of the Petri
dish, serves to validate the presence of powdery mildew. In the next step, foliar
disks are inoculated with powdery mildew powder inside Petri dishes and left for
an incubation period of 10 days. After that, biologists use a binocular loop to
visualize leaves and assign an ordinal score according to powdery mildew density
on the leaf surface as shown in Fig. 1(b). The encoding of the scoring is provided
in Table 1.

Table 1. Annotation scale of powdery mildew propagation on melon leaves.

Score assigned to powdery mildew density Observation

Resistant One spore of powdery mildew
Moderate 50% of the leaf is infected
Severe Leaf is totally infected

Fig. 1. Schematic visualisation of the current procedure. (a): Petri dish containing
melon foliar disks inoculated with powdery mildew. (b): a biologist visualizes and
annotates powdery mildew propagation using a binocular loop. (c): data generated
after assessment following the annotation scale of Table 1. Each foliar disk is saved in
a CSV file with its corresponding class.

4 Proposed Computer Vision Procedure

To automate the manual procedure described in the previous section, we propose
to follow the pipeline given in Fig. 2. 70 Petri dish images are acquired with a
digital color camera with resolution of 2448 by 2050 pixels. The size of each
foliar disk is approximately 120 000 pixels. The camera is positioned vertically
above the Petri dish as shown in Fig. 2(a). As illustrated in Fig. 2(b), Petri dish
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images are acquired under two lighting techniques, front and back light. After
RGB to HSB conversion, the brightness channel of both images (front and back
light) are fused in a linear blending to enhance the contrast between the lymb
and the fungi.

Fig. 2. Visual scheme of the proposed computer vision procedure. (a): imaging device.
(b): fusing images following a linear blending. (c): generated fused image. (d): front,
back and fused data sets. (e): The foliar disks are segmented from Petri dishes using
the convolutional neural network architecture for semantic segmentation UNET [13]
and cropped individually. (f): foliar disks are assigned to their corresponding ground
truth, produced by an expert in the current manual procedure. (g): feeding training
images to a supervised machine learning classification algorithm.

The partition of foliar disk images per class in front, back and fused data
sets is as follows: 180 images for “Resistant” class, 62 images for “Moderate”
class and 131 images for “Sensitive” class. This data set is rather small in this
work (compared to standard large data sets in machine learning). This consti-
tutes a possible limit to the use of an end-to-end deep learning method due
to the tendency of overfitting. Instead, a shallow supervised learning scheme
based on the concatenation of a deep-feature extraction [14] stage followed by
a linear support vector machine classifier was used for the comparison of the
performance with different images (fused, front and back light). Deep features
trained on ImageNet from well-known architectures were tested in this study
including VGG16 and Resnet50. In addition, a small end-to-end CNN model
with the architecture shown in Fig. 3 was fine-tuned on a validation data set of
20% of training images. The accuracy of the classification of all tested models
was computed per class from the confusion matrix. Due to the lack of enough
data and the imbalance classes in our data set, a data augmentation was used
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to improve the classification accuracy and to be able to compare fairly with a
deep learning architecture. Data were augmented to force invariance to rotation
since the leaves are randomly positioned in the Petri dish invariance to shearing
and zoom to allow for robustness to some plasticity of the leaf tissue. The mix
parameter α in the linear blending to fuse front and back light images was chosen
to maximize the contrast between powdery mildew and healthy lymb computed
with the Fisher ratio which is defined as

FR =
(μ2 − μ1)

2

σ2
2 + σ2

1

(1)

where μ is the mean pixel value in the selected area and σ is the standard
deviation of the pixel values in the selected area. The Fisher ratio was computed
on fused images generated by varying α from 0 to 1. The optimal value of α
for which Fisher ratio is maximum, equals to 0.1. This value was applied in the
linear blending to generate fused images for classification.

Fig. 3. CNN architecture proposed.

5 Results

Classification performances of the supervised machine learning algorithm
described in Sect. 4, are given in Table 2 and Table 3. Best results, highlighted
in blue were systematically obtained with the fused images for the three tested
classifiers with or without data augmentation. Highest scores are obtained with
association of deep features from Resnet50 coupled with a linear SVM with data
augmentation. Other classical classifiers such as random forest or non linear SVM
were also tested (not shown) but results were not significantly improved. The
confusion matrix for this best classifier is illustrated in Fig. 4 which shows that
most errors come from the confusion between moderate and sensitive classes.
Finally, these two classes are merged by biologists when varieties are registered
officially. The classification accuracy achieved in classification of resistant and
sensitive levels are provided in Table 3 with best performances culminating at
95% accuracy.
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Fig. 4. Confusion Matrix of Resnet50 algorithm to classify powdery mildew on 3 infec-
tion levels: resistant & moderate & sensitive.

Table 2. Classification accuracy for 3 infection levels: resistant & moderate & sensitive.

Architecture Training approach Front Back Fused Train/test
VGG16 Raw Data 0.61 0.53 0.7 135/88

Data augmentation 0.69 0.49 0.75 1000/200
Resnet50 Raw Data 0.67 0.59 0.79 135/88

Data augmentation 0.71 0.62 0.82 1000/200
Proposed CNN Raw Data 0.56 ± 0.06 0.40 ± 0.04 0.67 ± 0.04 135/88

Data augmentation 0.64 ± 0.05 0.48 ± 0.07 0.78 ± 0.02 1000/200

Table 3. Classification accuracy for 2 infection levels: resistant & sensitive.

Architecture Training approach Front Back Fused Train/test
VGG16 Raw Data 0.82 0.72 0.86 280/100

Data augmentation 0.81 0.74 0.83 1000/200
Resnet50 Raw Data 0.86 0.81 0.94 280/100

Data augmentation 0.86 0.84 0.95 1000/200
Proposed CNN Raw Data 0.71 ± 0.08 0.65 ± 0.02 0.86 ± 0.04 280/100

Data augmentation 0.79 ± 0.11 0.68 ± 0.01 0.92 ± 0.01 1000/200

6 Discussion

The previous section presented successful results for the classification of the pres-
ence of powdery mildew in foliar disks containing melon leaves. The obtained
performances are similar to the recently published work on the classification of
powdery mildew in two [11] or three classes [12] as presented in the related work
section. It is to be noticed that the closest related method of [12] is applied to
another crop but in a similar in vitro imaging conditions protocol. While neural
networks are also used as the main element of the image processing pipeline, [12]
notably differs from our approach. The work of [12] focuses on a metrological
measurement of the powdery mildew performed with a high resolution imaging
system enabling to detect individual mycelium. By contrast, we propose an ordi-
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nal classification of the foliar disk corresponding to the final annotation of an
expert. We investigated the possibility of addressing this less demanding task by
considering foliar disks as a texture with a much lower spatial resolution. Working
at such degraded resolution could constitute a risk of loosing accuracy specially
at the low grade of the development of the powdery mildew. However, we demon-
strated that this was not the case when considering the final score recorded in
variety testing which only keeps two classes (resistant, sensitive). Our method
is especially suitable for high-throughput application of variety testing to avoid
an overwhelming increase of data while keeping the accuracy of the tests at the
current level. The performance of the classical CNN architecture is promising
and should exceed the 95% accuracy of Resnet50 in case more training images
were provided. A comparison on the same samples of our classification approach
with the metrological quantification of [12] would be an interesting perspective.

7 Conclusion and Future Work

In this paper, we presented a computer vision-based approach to automate a
plant variety test performed to quantify the severity of powdery mildew infection
levels on melon leaves. We demonstrated that fusing front light and back light
images improved powdery mildew contrast. This fusion resulted an improvement
of 10% accuracy with a very low-cost imaging system. Also, we highlighted the
achievement of this performance level with a standard spatial resolution, while
the state of the art on this problem reported the use of microscopic resolution
to track individual mycellium. The use of deep features Resnet50 coupled with
a standard SVM achieved an accuracy of 95%. This automated approach is
expected to improve the speed and accuracy of disease detection and could be
extended to other in vitro pathology tests. The fusion of front and back light was
limited in this communication to a simple linear blending. In the future, we plan
to explore various approaches of image fusion [15] to optimize the combination
of front and back light images.
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Houdault and H. Péteul from GEVES (French authority in variety testing) for acqui-
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Abstract:

Post-harvest measurements in digital horticulture are nowadays well-calibrated. They are done
indoors, i.e., in a controlled environment, with chosen lighting systems and optimized
positioning of the sensors to probe the harvested items. In outdoor conditions, the deployment
of digital horticulture with sensors and cameras remains challenging due to uneven illumination
of the scenes or the spatial 3D complexity of the plants. In this contribution, we consider the
important problem of russeting detection on apples. This is an important trait that impacts the
quality of the fruit for the consumer and is commonly measured in variety testing trials. We
investigate the possibility of using indoor post-harvest russeting data (RGB images of individual
apples) to help the detection of russeting on apple images in orchards. This is obtained with a
shallow learning approach. First, a supervised model quantifies the amount of russeting in
indoor data based on the low-cost apple sorting machine described in [8]. The indoor data set is
then merged with the outdoor data set in the training phase to enhance the presence of
russeting texture information through deep features. The outdoor data set includes images with
several apples encompassed in a single image. The apples are first detected with a standard
object detection algorithm (YOLOv4 Tiny). Inference on these detected objects is then boosted
with the use of the indoor dataset.

Keywords: Transfer learning, Supervised classification, Russeting, Horticulture.

Introduction:
Computer vision is currently extensively applied in digital horticulture [1]. When coupled with
machine learning, it enables high performance for a large variety of informational tasks such as
classification, object detection or segmentation of wide interest to automate agronomic
measures. These annotations are still widely used in the supervised mode, where the machine is
trained on labeled examples. Consequently, the bottleneck in the design of computer vision
solutions shifts from features extraction to data annotation. There are different ways to reduce
this need for data annotation, including self-supervised methods [2], training on synthetic data
sets (either produced by data augmentation [3], virtual environment [4] or generative models
[5]) and in transfer learning [6]. In transfer learning, a model is trained on data similar to the
one of final interest and then just fine-tuned with a smaller amount of target data. In digital

1



horticulture, computer vision is used in two main environments: indoor conditions for
post-harvest measurement and outdoor conditions for pre-harvest measurement. Indoor
conditions are obviously easier because they are obtained with controlled lighting and with
standardized field of views. Also, post-harvest measurement can usually be performed with
fewer constraints in terms of time since the harvest products can be stored. By contrast, outdoor
data is much more challenging due to uneven illumination, variability of field of view from one
field to another and constraints in terms of acquisition timing to be synchronized with the
phenological stages of the horticultural crops. A natural question is therefore to address the
possible use of indoor data for transfer learning to boost machine learning applied on outdoor
data.

We propose to investigate this generic question to transfer learning from indoor data to
outdoor data in a specific variety testing experiment. We consider the detection of rEuusseting
in apples. Russeting is a phenomenon that affects apples and pears, causing slightly harder
patches of brown on the skin of the fruit. It doesn’t harm the fruit. It is an expected feature, but
it’s not always welcome, and it can even decrease the economic value of the variety.

Data acquisition

In this section, we describe steps (a1) and (a2) of the pipeline in Fig. 1. Overall, 50
images of 20 varieties of apple trees, from the so-called Refpop population [7], were acquired
during the harvest period, using a color camera with a resolution of 2000×4000 pixels. After the
harvest period, another 20 varieties different from the one acquired outdoor, each represented
by 30 apples (as shown in figure 2), were acquired using a conveyor machine developed in [8].
The machine allows moving the fruits in translation while carrying out a rotation (see Fig. 3). A
camera, positioned in top view from the conveyor belt of the machine, took pictures of the
apples in rotation, which allowed multiple images with an entire coverage of each apple.
Approximately 9 to 10 views of the same apple were captured thanks to this rotation-translation
process. These multiple views are important since russeting may appear at any location, which
explains why experts have to manually rotate the apples to have an exact assessment. The
machine presented in Fig. 3 can acquire a set of 30 apples in a couple of minutes. Images were
acquired in burst mode with a Canon camera (10.1 megapixels resolution) controlled by a
simple Raspberry-pi minicomputer. Apples were segmented automatically from the background,
as visible in Fig. 3. Overall, 23000 segmented apple images were acquired. Figure 1 (a1) shows
an example of acquired images.
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Figure 1: computer vision pipeline followed to create annotated data. (a1): indoor acquisition.
(a2): outdoor acquisition. (b): cropping apples from indoor and outdoor data. (c): annotated
apples in the class unhealthy (containing Russeting). (d): annotated apples in the class healthy.

Figure 2: Example of input indoor data. 30
representative apples of a variety, stacked in
a box..

Figure 3: Acquisition system. Upper panel:

Machine equipped with a conveyor belt, used

for the acquisition of images of apples with a

high surface coverage. Lower panel: view of

the acquired images of apples after

segmentation from the background.
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Preprocessing

After the acquisition of outdoor data, apples need to be cropped from apple tree images
to be annotated and fed to the classification model. To save time, we exploited an already
existing annotated dataset and trained a YOLO architecture to detect apples on outdoor acquired
images of apple trees. YOLO (You Only Look Once) is a state-of-the-art, real-time object detection
architecture [9]. We opt for a YOLO model because it requires only a small dataset to achieve
good results. YOLO reframes object detection as a single regression problem, straight from
image pixels to bounding box coordinates and class probabilities. A single convolutional
network simultaneously predicts multiple bounding boxes and class probabilities for those
boxes [9]. We trained Yolov4 Tiny using a batch size of 8, one subdivision and 6000 epochs.
Figure 4 shows the learning curve on the validation data. The model achieved a mean-average
precision of 68%. The detection result was sufficient to crop a few apples from apple tree
images, therefore, we didn’t test other approaches to improve the accuracy. Figure 5 shows an
illustrative example of the predicted bounding boxes on an apple tree image from the test set.
Using the bounding boxes coordinates, we cropped the apples, as visible in figure 1(b).

Figure 4: Learning curve of performance as a function of the number of iteration of the model
for apple detection in apple trees. The blue line stands for the loss function, while  the red line

stands for the metric: mean-average precision.
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Figure 5: Example of predicted bounding boxes around apples on an apple tree image from the
test set.

Data annotation

From the original dataset cropped, 700 apple images from indoor data and 550 apple
images from outdoor data were selected to be annotated to healthy and unhealthy (containing
Russeting) classes. In the literature, several annotation tools exist to perform object detection
annotation. For the sake of simplicity, we targeted online tools such as Labelbox LabelMe,
Cytomine, Dataturks, VGG image annotator. The cited annotation tools are well-known for their
interactivity with annotators. However, they do not incorporate one important feature: the
ability of individual volunteers, to participate in the annotation campaign. Sharing the project
with internal collaborators can be a heavy and labor-intensive task. Our objective is to invite
people (experts and none-experts) to perform the task required in the project. This strategy of
annotation motivated us to opt for the platform ”Zooniverse”.
As stated in their website: Zooniverse is the world’s largest and most popular platform for
people-powered research. This research is made possible by volunteers — more than a million
people around the world who come together to assist professional researchers...At the
Zooniverse, anyone can be a researcher You don’t need any specialized background, training, or
expertise to participate in any Zooniverse projects. We make it easy for anyone to contribute to
real academic research, on their own computer, at their own convenience....Our projects
combine contributions from many individual volunteers, relying on a version of the ‘wisdom of
crowds’ to produce reliable and accurate data. By having many people look at the data we often
can also estimate how likely we are to make an error.
For both dataset categories, we build, separately, an annotation project in Zooniverse and set

instructions in the “About” and ”FAQ” sections, to guide annotators (volunteers) to perform the
task correctly; i.e. classify an apple as healthy or unhealthy (containing Russeting). Table 1
presents the distribution of annotated data in healthy and unhealthy classes.
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Data categories Healthy Unhealthy (Russeting)

Indoor Data 350 350

Outdoor Data 250 250

Table 1: Distribution of images in each class for indoor and outdoor data.

Methodology: transfer learning from indoor to outdoor data in supervised binary
classification

To show the added value of indoor data on the improvement of classification accuracy of
the outdoor data, we opt for a classical machine learning model. The data set presented in Table
1 is rather small compared to standard large data sets in machine learning. This constitutes a
possible limit to the use of an end-to-end deep learning method due to the tendency of
overfitting. Instead, a shallow supervised learning scheme based on the concatenation of a
deep-feature extraction [10] stage followed by a linear support vector machine classifier was
used. Deep features trained on ImageNet from well-known architectures were tested in this
study, including VGG16 and Resnet50. Three experiments were conducted . In the first one, a
model was trained and tested on indoor data. We expect that the plateau of performance will be
the reference, as the images were taken in a controlled environment. The second experiment
concerns training the model on outdoor data. In the third experiment, we added all indoor data
to outdoor data in the training set, and we tested on only outdoor data. We investigate if the
added set of indoor data helps to improve the classification accuracy obtained in experiment 2.
To quantify the sensitivity to the choice of the data chosen for the training, the experiment was
conducted for various values of the train-test split of the data set and a 10-fold cross-validation.
The average value and standard deviation of the performances of classification were recorded.

Results and discussion :

The plateau of performance of each experiment is shown in Figure 6. As expected, the model,
trained on indoor data and tested on indoor data, provides the best performance among
experiments. The uniformity of the background and the normalized acquisition conditions
guarantee almost identical features for the same class of data, ensuring a correct classification
accuracy.
Regarding the results of experiments 2 and 3, we observe that for small training sets (up to 0.45
of the training set), the model trained on outdoor data performed better than the model trained
on outdoor and indoor data. This behavior happens because the background of outdoor data is
moderately present in the training set. While the region of interest is common between indoor
and outdoor images, the properties of the images are not the same. Illumination, cluttered
apples and shadow, are factors that should be learned in the training set to separate the
background from the foreground in test images and recognize the region of interest, i.e,
Russeting. With few instances of the outdoor data in the training set, the model cannot correctly
perform the classification task. By contrast, when the training set has a balanced combination of
indoor and outdoor data (starting from 0.45 of the training set), the model can learn the context
of the outdoor data background while adding more information about the region of interest
from deep features of indoor data. Figure 7 shows examples of correct and wrong classification
results in experiment 3. We noticed from a visual inspection that high illumination (the
reflection of the sun) or shadow could lead the model to fail in some cases. Such limiting factors
could be overcome by acquiring more apples in these specific illumination conditions or
performing data augmentation by randomly enhancing illumination and adding shadow to
existing images, as demonstrated in [11].
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The gain of performance found with fusion of indoor and outdoor data is significant and
interesting if one considers that indoor data are much more easy to produce. In the example
chosen for illustration this gain of performance was however somehow limited. One reason is
that the performances with pure outdoor data and pure indoor data were already rather high. As
a consequence the maximum gain to be expected in the fusion was limited. The level of
complexity of the informational tasks controls the expected gain by transfer learning.

Figure 6: Evolution of the performance as a function of the Ratio (train/test) of the dataset.

Figure 7: Examples of (a): wrong classification results and (b): correct classification results.
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Conclusion

This work investigated the possible value of indoor data from a controlled environment
to outdoor conditions in computer vision-based horticultural phenotyping. Using a shallow
learning algorithm, we illustrated transfer learning on an example of apple russeting
phenotyping. A gain of +5 % in detection performance was shown. This is encouraging. In our
case the model based with only outdoor data was already found with rather large performances.
This explains the rather limited gain obtained. It would be interesting to revisit the study
presented here with more difficult tasks.
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Abstract:  
 Computer vision and artificial intelligence promise to revolutionize horticulture with au-
tomation and more objective measurements of traits of agronomical importance. While many al-
gorithms are already published in this domain, the transferability of this literature to the techno 
providers or the final users is often limited due to the absence of sharing of the software or of the 
data set used to train these softwares. Some major initiatives to address the lack of reproducibil-
ity, in the plant domain at large, have so far been limited to plant models (Arabidopsis) or major 
crops (Wheat). Horticulture is therefore waiting for more similar initiatives. In this work, we pre-
sent an annotated data set on apple detection that we make publicly available. This data set pro-
duced in collaboration with a group of European variety testing offices on several sites is associ-
ated with a baseline algorithm (deep learning) already providing reasonable results. The chal-
lenge carried out by these data set is typical of an orchard environment with a background creat-
ing a major clutter with the targeted foreground. The test of new algorithms is made accessible 
via the deployment of a data challenge related to this data set. We will present the result of the 
data challenge which is open during the academic year 2021-2022 to master students in data 
science. 
 

Keywords: Deep learning, Data Challenge, Horticulture, Fruit Detection 

 

 
Introduction:  

 Apple is an important horticultural crop and its production has a clear impact on the econ-
omy. Breeders aim to produce apple varieties with an appealing texture, taste and color. Among 
the traits to quantify an apple variety: the counting of fruits. Classical apple counting is conducted 
by sampling a fixed percentage (e.g. 5 or 10%) of trees randomly or systematically and extrapo-
lating the counts on these trees for total yield estimation of the entire orchard [1]. This sampling 
and extrapolation process, in addition to being time-consuming and labor-intensive, does not al-
ways produce the desired precision of yield estimation. Recently, deep learning methods have 
become commonplace for fruit detection and counting [2]–[15]. Deep neural networks are em-
ployed to learn predictors from a set of training data by optimizing the parameters of feature 
extraction and localization of fruits simultaneously. After prediction, further processing, such as 
circular Hough transform and watershed transform [16] for verification and filtering of multiple 
counts through 3D (3-Dimensional) reconstruction [7], [17], [18] can be applied to extract the 
final fruit count.  Although the cited works developed robust models for apple detection, the lack 
of open access code lines and sharing of annotated data, motivated us to organize a data challenge 
where research teams in digital phenotyping are welcome to test their models on our annotated 
Dataset.  It should be mentioned that [19] has already published a benchmark annotated dataset 
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for apple detection and segmentation. The acquisition distance was the same, therefore there is 
no variation in apple scales.  In this work, we present an annotated data set on apple detection 
that we make publicly available. We make accessible the test of algorithms to process these im-
ages through a data challenge. We provide a baseline solution and present the associated results. 
To encourage the community of precision horticulture to engage more in such practices, which 
are common in computer vision, we describe the creation of the data challenge itself. The result 
of the data challenge will be announced during the IHC2020 event. 
 
Data acquisition  

 The data used in this communication was initially acquired for our article [20]. As image 

acquisition procedure, apple trees from the so-called Refpop population [21], were acquired us-

ing a DSLR camera with a resolution of 2000×4000. As described in Figure1, the acquisition was 

conducted from multi-views, to get visual information covering the apple tree from top to bottom 

and from various sides of the trees to guarantee that all fruits appear in the frames. In addition, 

we include in the dataset a subset from the benchmark Dataset for Apple Detection and Segmen-

tation [19]. Table 1 presents the repartition of acquired images according to the distance between 

apple trees and the camera.  

Acquisition categories Number of images 

Close-view images 1738 

Front-view images 3300 

Far view images 712 

Table 1: Number of images acquired for each acquisition category. The category is de ned by the 

distance of the apple trees to the camera.  

 

 

 

 

 

 

 

Figure 1: Multi-view image acquisition protocol. Apple tree is acquired from all angles to  

capture all fruits. 

 

Data annotation 

 From the original dataset in table 1, 678 images were selected for annotation.  In the lit-

erature, several annotation tools exist to perform object detection annotation. For the sake of 

simplicity, we targeted online tools such as Labelbox LabelMe, Cytomine, Dataturks, VGG image 

annotator. The cited annotation tools are well-known for their interactivity with annotators. 

However, they do not incorporate one important feature: the ability of individual volunteers, to 
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participate in the annotation campaign. Sharing the project with internal collaborators can be a 

heavy and labor-intensive task. Our objective is to invite people (experts and non-experts) to per-

form the task required in the project. This strategy of annotation motivated us to opt for the plat-

form ”Zooniverse”.  

 As stated in their website:  Zooniverse is the world’s largest and most popular platform 

for people-powered research. This research is made possible by volunteers — more than a mil-

lion people around the world who come together to assist professional researchers...At the Zo-

oniverse, anyone can be a researcher You don’t need any specialized background, training, or ex-

pertise to participate in any Zooniverse projects. We make it easy for anyone to contribute to real 

academic research, on their own computer, at their own convenience....Our projects combine con-

tributions from many individual volunteers, relying on a version of the ‘wisdom of crowds’ to 

produce reliable and accurate data. By having many people look at the data we often can also 

estimate how likely we are to make an error.  We build our annotation project in Zooniverse and 

set instructions in the ”about” and ”FAQ” sections, to guide annotators (volunteers) to perform 

the task correctly; i.e. draw a rectangle around each visible apple ”in the foreground of images”. 

Figure 2 shows the distribution of annotated data in training, validation, and test sets.  

 

 

 

 

 

 

 

 

 

Figure 2: Distribution of multi-view images in training, validation and test data. 

 

Data challenge creation  

 Machine learning competitions offer one, very effective, platform for the practical appli-

cation of data science techniques. Machine learning competition platforms allow users to find and 

publish data sets, explore and build models in a web-based data-science environment, work with 

other data scientists and machine learning engineers, and enter competitions to solve data sci-

ence challenges. There are several websites that host machine learning competitions. We cite, for 

example, DrivenData, Innocentive, Kaggle, Codalab, Topcoder, AIcrowd, etc. The majority of these 

platforms have a similar format. This typically includes the availability of a wide variety of com-
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petitions ranging in skill level, and both no prize practice problems and competitions with finan-

cial rewards attached. In the following, we will focus on hosting a data challenge on Codalab plat-

form. It is an open-source web-based platform that enables researchers, developers and data sci-

entists to collaborate, with the goal of advancing research fields where machine learning and ad-

vanced computation is used.  CodaLab is centered on the idea of bundles, which can store data. 

You can upload a file / folder to CodaLab to create a bundle, and then you can download the entire 

bundle or parts of the bundle. Each competition is freely created on the platform by uploading a 

bundle to the platform. A competition bundle is simply a zip file containing the competition yaml 

which defines different aspects and attributes of your competition, the logo, the html pages doc-

umenting your competition, and the data associated with your competition. A competition is com-

posed of a phase or many phases defining the active times of the competition, along with some 

other settings such as execution time limit. For each phase, they have one or more tasks attached. 

A task is the problem, the submission should be solving, therefore submissions that solve a task 

can be thought of as a solution. A task consists of reference data, input data, a scoring program, 

and an ingestion program.  
 

Figure 3: Main steps for the creation of a data challenge in Codalab.  

 
Proposal of a code for baseline solution 
             In the proposed data challenge, we care about object detection. Several standard deep 
learning architectures for object detection can be found in the literature [22]. We selected the 
YOLO architecture to serve as the baseline code provided to the competitor of the data challenge. 
YOLO (You Only Look Once) is a state-of-the-art, real-time object detection architecture [23]. We 
opt for a YOLO model because it requires only a small dataset to achieve good results and to allow 
other participants to train their models without the need for powerful resources as YOLO is ex-
tremely fast, more than 1000x faster than R-CNN and 100x faster than Fast R-CNN [24]. 
 
YOLO reframes object detection as a single regression problem, straight from image pixels to 
bounding box coordinates and class probabilities. A single convolutional network simultaneously 
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predicts multiple bounding boxes and class probabilities for those boxes. YOLO trains on full im-
ages and directly optimizes detection performance [23].  The baseline model used in this compe-
tition is YOLOV4 Tiny. The improved architecture is explained carefully in [24].  While the full 
structure remains the same as the classical YOLO, YOLOV4 Tiny is an optimized and efficient ob-
ject detection model.  The architecture of the baseline model is the same one explained in the 
paper [24]. We offered the possibility to train the baseline model in the virtual environment Col-
laboratory.  Google Colaboratory is a research tool for machine learning education developed by 
Google. It is a Jupyter notebook environment that requires no setup to use. Hence, choosing it in 
this competition as it allows every participant to have the required tools to compete in the data 
challenge.    We conducted several training strategies. Table 2 presents the hyperparameters cho-
sen and the mean-average precision metric on test data. Figure 4 shows the associate learning 
curve for strategy 3, on the validation data. 
 

 Hyperparameters  
Training 

Strategies Batch size Subdivision Image resolution Epochs 
Mean-Average Precision 

(mAP) 

Strategy 1 64 16 640x640 6000 30% 

Strategy 2 32 8 640x640 6000 45.35% 

Strategy 3 16 1 640x640 6000 50% 

Table 2: hyperparameters chosen in different training strategies. 

     

Figure 4: Learning curve of strategy 3, detailed in table 2.  

 
We observe from table 2, that when we reduce the batch size, the mAP metric increases. Such 
result is trivial as the number of iterations for model parameters adjustment, increases, making 
the model more generalizable. Image resolution wasn’t modified because the input images in 
YOLOV4 Tiny are compressed to the same resolution. The subdivision parameter is more related 
to memory allocation than model performance, as it allows instances in the batch to be processed 
at the same time and not simultaneously.   
 
Besides the metric value on test data (see table 2), we conducted a visual inspection of the 29 
images in the test set (using the model trained following strategy 3).  Figure 5 shows examples of 
apple trees images after prediction using strategy 3. The model successfully detects apples in far-
view, front view, and close-view images. In addition, the model shows robustness toward variant 
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acquisition conditions (as shown in figure 5 (b)) because these variations were included syn-
thetical through data augmentation. In some cases, the model fails to detect all the apples (as 
shown in figure 5 (c)).   Among the reasons, is the choice of the prediction threshold. If the thresh-
old is higher than the apples confidence scores, they will not be detected. To demonstrate the 
impact of the threshold on the results, we repeated the prediction while reducing the threshold 
from 0.4 to 0.2. Figure 6 shows the image in figure 5(c) with the new prediction threshold. We 
observe more detected apples. In addition, we observe redundant bounding boxes around apples. 
This problem can be overcome with postprocessing operations such as Non-maximum Suppres-
sion [25].  
 

(a)                                                      (b)                                                            (c) 

                         
 

Figure 5: Illustrative examples of test data after prediction using threshold =0.4. 

 

 
Figure 6: Figure 5 (c) using a threshold =0.2 

 
 
Conclusion 
 In this communication, we provided a full pipeline to detect apple including an annotated 
data set, a trained algorithm, and a data challenge public website open to further investigation. 
We detailed all the steps of the creation of this ensemble of public information including the cru-
cial annotation steps which was also performed on a publicly available website. We believe this 
knowhow would be highly valuable for the precision horticulture community to promote repro-
ducible and open science practices and help to enhance the spreading of the numerical expertise 
throughout the community. This is specifically valuable for computer vision problem for which 
solutions already exists but do not include any shared annotated data nor codes. The result of the 
data challenge will be presented during the conference. To encourage more initiative of this kind 
in horticulture we also share a new data set dedicated to flowering (an important phenological 
stage) and an associated trained model. 
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Chapter 13

ANNEX H: Ordinalysis

Code Metadata

Nr. Code metadata description Please fill in this column
C1 Current code version v2022.07.10
C2 Permanent link to code/repository

used for this code version
https://uabox.univ-angers.fr/
index.php/s/OrgEdoXh57hPKRE

C3 Code Ocean compute capsule None
C4 Legal Code License GNU GPL
C5 Code versioning system used None
C6 Software code languages, tools, and

services used
MATLAB(R2021a)

C7 Compilation requirements, operat-
ing environments & dependencies

Windows

C8 If available Link to developer docu-
mentation/

None

C9 Support email for questions zinemouadaix@hotmail.fr

Table 13.1 – Code metadata

13.1 Motivation and significance

In recent years, machine learning algorithms have been exploited tremendously in
all fields of data science due to their efficiency in exploring the data and taking the
decision in feature spaces [169, 170]. A common criticism against the use of machine
learning algorithms is their possible black box aspect. To go beyond their efficiency, it is
therefore important to head toward interpretability of machine learning algorithms [123].
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Interpretability concerns revealing the internal logic of the models, i.e. opening the black
boxes.

In this work, we care about the interpretability of ordinal data, i.e. where an order
is respected between a set of definite classes. Ordinal data exist in several fields such
as pathology in medical imaging, diseases studies in plant sciences, and recommendation
systems. They constitute specific types of data, distinct from nominal and quantitative
data. While ordinal data are frequent, generic tools to analyze and visualize them are few
to be found. In this paper, we present a standalone software named Ordinalysis, which
provides support for the analysis and visualization of ordinality in latent spaces.

Ordinalysis embeds the dimension reduction technique BVP that we specially designed
to project ordinal data in the direction where the ordinality is the most visible [142]. Ordi-
nalysis also incorporates new metrics that we have developed to quantify the ordinality of
ordinal data sets [143]. We provide, through Ordinalysis, the access to these new method-
ological tools with an ergonomic interface. We allow processing synthetic data sets for
didactic purposes and uploading high dimensional latent space and image datasets, by
the users.

13.2 Software description

13.2.1 Software architecture

The application can process three types of input data. First, to serve as an educational
tool, the user can create in Ordinalysis, synthetic ordinal data and observe how the
parameters (noise, number of instances, number of classes, the order of the classes) impact
the ordinality in the feature space. The second and third type of data refer respectively
to, real data of ordinal feature space in the CSV format or images of an ordinal dataset,
saved in a folder with their corresponding ordinal labels (see Fig. 13.1). For these three
types of input data, similar post-processing steps are provided. This includes dimension
reduction, visualization and ordinality quantification. Last, a log window is available for
the user to have a recap of the experiments conducted and the numerical values chosen
during the configuration of ordinal data.
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Figure 13.1 – Illustrative schema to use Ordinalysis, to process image ordinal data. (1):
create the feature space by selecting the image dataset and the type of features. (2):
select the dimension reduction (3): visualize ordinality and the ordinal metrics.

13.2.2 Programming environment

Ordinalysis is written in the MATLAB programming language (R2021a). The soft-
ware can be used in conjunction with MathWorks’ MATLAB commercial application, or
distributed for free as a compiled standalone desktop application running on top of the
MATLAB runtime compiler [171].

13.2.3 Software functionality

Data generation

Ordinal synthetic feature space: the user can adjust several parameters to create a
synthetic ordinal feature space. This includes the following parameters: Shape of data
(Swiss roll, aligned and curved data); Dimension (2D or 3D feature space); Number of
classes (from 4 to 10 classes); The number of instances in each class (data created is
balanced); Noise factor (variance σ in the Gaussian distribution); Pi factor (scalar value
in the equation of the Swiss roll data); State of ordinality (allows permuting the order of
the classes to either respect or break the ordinality).

Ordinal real feature space: an existing ordinal feature space can be imported by
clicking on the button "load your feature space". Currently, two formats of the input are
accepted. The first one is the MATLAB format, where the mat file contains two variables:
Features and Labels. The second format is the CSV file, where the first column contains
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the labels and the rest contains the features. After loading the feature space, its spatial
dimension is displayed.

Ordinal real images space: users can load image datasets with associated ordinal
labels. The software extracts features on the image ordinal dataset. The feature space
created can be exported as a CSV file, where the first column contains the labels and
the rest contains the features. Users can choose among the following features: Local
binary patterns (LBP) [172] and Deep features [173] of the architecture VGG16 and the
architecture ResNet50.

Dimension reduction techniques

Ordinalysis allows the user to visualize ordinal data after different dimension reduction
techniques. Currently, the available dimension reduction techniques in the software are:
PCA, TSNE, LDA, ISOMAP, MDS, LSDA and BVP [142]. The projected feature spaces
can be exported by clicking on "Save feature space after projection".

Quantifying ordinality in latent space

In the reduced latent space, ordinality can be quantified using the metrics, Inter-Class
intersection and Deviation from ordinality, described in [143]. The output values can be
exported by clicking on "Save ordinal metrics". Two types of visualizations are available
for the ordinality metrics. First, a histogram of the percentages of instances of all classes
in each cluster computed via the Inter-Class intersection metric is provided. Second, a
curve passing through the centers of classes in the correct order and in the order following
the minimal distance between classes is provided. If ordinality is not well projected, then
the curves will follow different paths.

13.3 Applications

In this section, we provide an example of the use of Ordinalysis on real ordinal data.

13.3.1 Selection of the best dimension reduction technique

In [142], we introduced a novel dimension reduction technique called BVP (best-view
point), suitable for ordinal classification problems. We highlighted the cases where it
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outperforms the existing dimension reduction techniques, on real ordinal classification
datasets in [174, 175]. The figure shows the output visualizations of the dimension
reduction techniques: TSNE, LDA, LSDA and BVP, applied on the ordinal feature space,
"car", presented in [174, 175]. The ordinality is better projected on the side of BVP and
LSDA with a slight improvement for BVP. This is a simple demonstration of the utility of
the software at observing all results and switching between visualizations quickly. In Fig.
13.2, we show only the feature space, but the histogram and both paths are also updated
while the user switches to different dimension reduction techniques.

Figure 13.2 – Visualizing the dimension reduction techniques: TSNE, LDA, LSDA and
BVP, applied on the ordinal feature space: car, presented in [174, 175].

13.3.2 Ordinality in images

In this work, we demonstrate the utility of Ordinalysis at analyzing ordinal data in
VCU tests of variety testing. The test concerns measurements of the resistance of melon
varieties to powdery mildew (see Fig. 13.3). Details about the manual inspection protocol,
the automatic computer vision pipeline proposed and the results can be found in [176].

Using Ordinalysis, we aim to demonstrate that the classification results are coherent
with the quality of ordinality in the feature space. To do that, we uploaded the annotated
dataset of melon foliar disks, taken in front-lighting as described in [176] and applied the
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following features: LBP, Deep features (VGG16), and Deep features (ResNet50). After,
we projected the feature spaces created from N-D to 2D using the dimension reduction
techniques: PCA, TSNE, and BVP. Figure 13.4 shows the projected feature space.

First, we observe that for all the dimension reduction techniques assessed, the Resnet50
and VGG16 deep features are better than LBP features, because the ordinality is better
projected. We can also remark that BVP is slightly better than the other dimension
reduction techniques as the classes are better distanced, while in TSNE and PCA, the
point cloud of each class is sparse, leading to an intersection between instances of the other
classes. To approve our analysis, we can also rely on the quantification metrics, especially
Inter-Class intersection (ICC) presented in Tab. 13.2. The mean value representing the
intersection between classes reaches its lowest value in the combination: deep features
using ResNet50 and dimension reduction technique BVP. This result is in accordance
with the best machine learning strategy found in [176].

Figure 13.3 – Illustration figure of the associate images to the scale used by the VCU
examiners to measure the propagation of powdery mildew in melon foliar disks.

Table 13.2 – Inter-Class intersection values extracted from LBP, Deep features of VGG16
and deep features of ResNet50 latent spaces generated after applying the dimension re-
duction techniques: PCA, TSNE and BVP.

Features Dimension Reduction Cluster 1 Cluster 2 Cluster 3 Mean Clusters

LBP
PCA 0.948 0.364 0.98 0.764
TSNE 1 0.4 1 0.8
BVP 0.97 0.382 0.962 0.771333

Deep Features VGG16
PCA 0.498 0.4 0.996 0.631333
TSNE 0.622 0.39 1 0.670667
BVP 0.496 0.4 0.978 0.624667

Deep Features ResNet50
PCA 0.59 0.374 0.984 0.649333
TSNE 0.702 0.352 1 0.684667
BVP 0.496 0.348 1 0.614667
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(a) (b) (c)

Figure 13.4 – Visualizing the dimension reduction techniques: PCA, TSNE, and BVP, ap-
plied on (a): LBP features, (b): deep features (VGG16) and (c): deep features (ResNet50)
of the powdery mildew datasets (blue: resistant, cyan: moderate, yellow: severe).

13.4 Impact

Ordinalysis possibly interests several scientific communities, including: (i) computer
scientists interested in ordinal data analysis in medical imaging, plant science and other
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fields using ordinal data (ii) end-users with moderate knowledge of machine learning
but with few experience of coding. The methodological elements of Ordinalysis were
presented in signal processing conference [142, 143]. The proposed application was also
tested on end-users composed of international experts in plant variety testing through
the European project INVITE (https://www.h2020-invite.eu/). This community is very
commonly using ordinal data for rating traits, and received Ordinalysis very positively.

13.4.1 Tutorial

A tutorial video for Ordinalysis was recorded. It is available at this link.

13.5 Conclusion

In this article, we presented Ordinalysis a unique software specially dedicated to the
analysis of ordinal data. The software was successfully applied to real high dimensional
ordinal data and images labeled with ordinal data and is now available for end-users
concerned by the interpretability of their ordinal data sets.
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Titre : Contributions à la vision par ordinateur et à l’apprentissage automatique pour les tests
des variétés végétales

Mot clés : Vision par ordinateur, apprentissage automatique, reconstruction 3D, automatisa-

tion, tests des variétés végétales, pommiers, robotique, apprentissage profond.

Résumé : Cette thèse propose des contribu-
tions originales de vision par ordinateur et ap-
prentissage automatique pour les tests des va-
riétés végétales. L’imagerie pour les plantes
s’est développée ces dernières années en di-
rection du phénotypage pour des expérimen-
tations en milieu contrôlé ou pour le domaine
de l’agriculture. Le domaine des tests des va-
riétés végétales consiste à réaliser des me-
sures pour valider la qualité et l’originalité
de toute nouvelle variété avant d’autoriser sa
commercialisation. Il a été jusqu’ici peu étu-
dié au moyen d’outils numériques et les tests
actuels sont le résultat d’inspections visuelles.
Dans cette thèse, nous avons contribué à la
vision par ordinateur et à l’apprentissage au-
tomatique appliqués aux tests de variétés de
pommes, en particulier les tests de distinction
pendant les périodes de pré-récolte (dans les
vergers) et de post-récolte (dans les milieux
contrôlés). Les méthodologies proposées ont
une valeur générique.

Automatiser les mesures réalisées durant
un test de distinction dans les vergers des
tests des variétés représente un défi puisque
chaque arbre appartient à une variété et
que les arbres peuvent être proches les uns
des autres. Nous avons développé une mé-
thode originale pour séparer les arbres. Cette
méthode a été appliquée au comptage des
pommes en les associant à leurs variétés [12].

Nous avons démontré la possibilité d’évo-
luer vers des tests de distinction numérique
dans des milieux contrôlés en utilisant l’ap-
prentissage automatique de manière supervi-
sée par le biais du transport optimal. Cette
approche a été illustrée dans le test de dis-

tinction basé sur la couleur de pomme [88].
De même, nous avons proposé une méthode
alternative basée sur l’apprentissage automa-
tique non supervisé. Certains traits dans les
tests des variétés sont mesurés par des exa-
minateurs à l’aide des dessins issus du cata-
logue de l’union pour la protection des obten-
tions végétales (UPOV). Nous avons montré
pour la première fois qu’il est possible d’utili-
ser ces dessins comme référence numérique
pour permettre l’automatisation des mesures
sans remettre en cause les pratiques actuelles
[89].

Dans les tests des variétés, certains traits
sont mesurés suivant une échelle ordinale.
L’ordinalité peut être un critère à vérifier dans
l’espace des caractéristiques pour valider une
méthode d’apprentissage automatique. Nous
avons introduit une nouvelle méthode de ré-
duction de dimension spécifiquement adaptée
à la visualisation de données sur des échelles
ordinales et deux métriques pour quantifier
l’ordinalité dans l’espace des caractéristiques
[142, 143]. Ces techniques ont été illustrées
sur des données synthétiques et des données
réelles issues de tests de résistance des ma-
ladies foliaires [177, 176].

L’utilisation de l’apprentissage automa-
tique supervisé nécessite l’annotation des
données, ce qui peut prendre beaucoup de
temps. Nous avons développé une approche
d’acquisition d’images originale qui permet de
réduire le temps d’annotation et envisager une
transition numérique qui ne constitue pas une
perte de temps pour les experts annotateurs
[178]. Dans la même optique, nous avons dé-
montré que les images acquises dans un en-



vironnement contrôlé pouvaient être ajoutées
aux images acquises dans les vergers et ainsi

"booster" l’apprentissage automatique via l’ap-
prentissage par transfert [179].

Title: Contributions to computer vision and machine learning for plant variety testing

Keywords: Computer vision, machine learning, 3D reconstruction, automatisation, variety

testing, apples, robotics, deep learning.

Abstract: This thesis proposes original contri-
butions to computer vision and machine learn-
ing for plant variety testing. Plant variety test-
ing is a set of tests performed by examiners to
certify candidate varieties to be registered in
the catalog of varieties for commercialization.
Computer vision is widely used in precision
agriculture and plant breeding, unlike in variety
testing measurements, which are based on vi-
sual inspection. In this thesis, we contributed
to the computer vision and machine learning
applied to apple variety testing, particularly the
distinctness tests during the preharvest and
post-harvest periods. The methodologies pro-
posed are generalizable and low-cost.

Automating measurements for the prehar-
vest distinctness tests in variety testing or-
chards is challenging since each tree belongs
to a variety and trees can be close to each
other (intersecting). We developed a novel
methodology to separate trees. This method-
ology was applied in the apple fruit counting
and associated the counting to the correct tree
[12].

We demonstrated the possibility to shift to-
ward numerical distinctness tests during the
post-harvest period using machine learning in
a supervised manner through optimal trans-
port. This approach was illustrated in the dis-
tinctness test based on color [88]. Likewise,
we proposed an alternative method based on
unsupervised machine learning. Some traits

in variety testing are measured by examiners
using drawings from the catalog of the interna-
tional union for the protection of new varieties
of plants (UPOV). The drawings serve as a ref-
erence for the human eye. We have shown
for the first time that it is possible to use these
drawings as a numerical reference to allow the
automation of measurements without disrupt-
ing or challenging current practices [89].

In variety testing, some traits are mea-
sured on an ordinal scale. The ordinality can
be a criterion to be checked in the feature
space to validate a machine learning method.
We introduced a new dimension reduction
method specifically adapted to visualize data
on ordinal scales and two metrics to quantify
ordinality in feature space [142, 143]. These
techniques have been illustrated on synthetic
data and real data from disease resistance
testing [177, 176].

The use of supervised machine learning
requires the annotation of data which can be
time-consuming. We developed a novel im-
age acquisition approach that reduces anno-
tation time and allows for a numerical tran-
sition of variety testing that is not a waste
of time for expert annotators [178]. For the
same purpose, we demonstrated that images
acquired in a controlled environment could be
used to perform data augmentation on the or-
chard datasets and thus "boost" the machine
learning training via the transfer learning [179].
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