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Thèse présentée et soutenue à Massy, le 10 Novembre 2022, par

MOHAMED AMINE HMANI

Composition du Jury :

Hossam AFIFI
Professeur, Institut Polytechnique de Paris Président de Jury

Teddy FURON
Directeur de Recherche, INRIA Rapporteur

Chafic MOKBEL
Professeur Universite de Balamand Rapporteur

Bhiksha RAJ
Professeur Carnegie Mellon University Examinateur

Sanjay KANADE
Professeur Bhivarabai Sawant College of Engineering and Research Examinateur

Bernadette DORIZZI
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Abstract

The thesis aims to regenerate crypto-biometric keys (cryptographic keys ob-
tained with biometric data) that are resistant to quantum cryptanalysis meth-
ods. The challenge is to obtain keys with high entropy to have a high level
of security, knowing that the entropy contained in biometric references limits
the entropy of the key. In the last years, mainly due to the advances of deep
learning, and more concretely convolutional networks, the quality of image
recognition and object detection has been progressing at a dramatic pace.
With the advent of GPU computation and big datasets, neural networks saw
a huge resurgence. This results in huge improvements in image recognition
and consequently face recognition. Many works [Den+19a; Tai+14; Yi+14;
Sun+15; PVZ15; SKP15] report near-perfect biometric performance. As such,
we decided to take advantage of facial biometrics.

We started the pipeline by creating a face recognition system based on pub-
licly available databases and models.

With the constant advancements in GPU computational power and the
availability of open-source software, the reproducibility of published results
should not be a problem. But, if the architectures of the systems are private
and databases are proprietary, the reproducibility of published results can
not be easily attained. To tackle this problem, we focus on training and eval-
uation of face recognition systems on publicly available data and software.
We exploit the OpenFace open source system to generate a deep convolu-
tional neural network model using publicly available datasets. We study the
impact of the size of the datasets and their quality and compare the perfor-
mance to a classical face recognition approach. Our focus is to have a fully
reproducible model. To this end, we used publicly available datasets (FRGC,
MS-celeb-1M, MOBIO, LFW), as well publicly available software (OpenFace)
to train our model in order to do face recognition. We also evaluated our
best model on the challenging video dataset MOBIO and report competitive
results with the best-reported results on this database.
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We participated in two H2020 projects using our face recognition system. For
the SpeechXRays project, we provided implementations of classical and can-
celable face biometrics. For the H2020 EMPATHIC project, we created a face
verification REST API. We also participated in the NIST SRE19 multimedia
challenge with the final version of our face recognition system which gave
the best single system performance on the evaluation dataset.

To obtain cryptobiometric keys, it is necessary to have discrete biometric ref-
erences. Crypto-biometric schemes, such as fuzzy commitment, require bi-
nary sources. We introduced a novel approach to binarizing biometric data
using Deep Neural Networks (DNN) applied to facial biometric data. We
present a data-driven template-binarization method using Deep Neural Net-
works, which does not degrade the performance of the baseline system. Fur-
thermore, we seek to obtain long binary representations with high entropy
to be used in crypto-biometric key regeneration schemes. The proposed
binarization method has four main advantages: (i)The degradation in the
recognition performance caused by the binarization is negligible compared
to the baseline system. (ii)The binarization method can be applied to any
type of real representation. (iii) The length of the binary representation can
be controlled. The binarization method provides arbitrary length presenta-
tions that are limited only by the quality of the training database (size, noise).
This allows for flexible representations that can be adapted to multiple appli-
cations, such as crypto-biometric key regeneration, fuzzy commitment, and
fuzzy extraction schemes. (iv) The binarization method keeps the topology of
the original space, which allows the use of binary representation in database
searches and clustering.

The binary representations are evaluated on the MOBIO and Labeled Faces
in the Wild (LFW) databases, where we measure their biometric recognition
performance and entropy. The proposed binary embeddings give state-of-
the-art performance on both databases with almost negligible degradation
compared to the baseline. To get binary representations directly from face
images, we proposed an original method, using auto-encoders and previ-
ously implemented classical face biometrics. We also exploited the binary
representations to create a cancelable face-verification system.

Regarding our final goal, to generate crypto-biometric keys, we focused on
symmetric keys. To this end, we tried to make the binary representation
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longer and more discriminative. For the keys to be resistant to quantum
computing, they should have double the length. The encryption keys need
to have double the entropy of the keys used currently to present the same de-
gree of security [Aug+15]. Symmetric encryption is threatened by the Grover
algorithm because it reduces the complexity of a brute force attack on a sym-
metric key from 2N to 2(N/2). To mitigate the risk introduced by quantum
computing, we need to increase the size of the keys. This is easy for stan-
dard symmetric keys but difficult for crypto-biometrics. Crypto-biometric
keys are limited by the usable information contained in the biometric sample
that they are generated from. The non-repudiation requirement is satisfied
by the intrinsic properties of biometric samples. However, we must ensure
that the scheme used in the key regeneration has a low False Acceptance Rate
(FAR). Biometrics are unique for each user. They can not be changed without
special circumstances (plastics surgery, diseases. . . ). As such, if the regenera-
tion scheme is not revocable, the user will be restricted to a single key across
multiple applications. In addition, in the case the key is compromised, the
user will not be able to create a new one. Thus, we must ensure that the re-
generation scheme is revocable. Finally, the key regeneration scheme should
allow for user convenience. Meaning, at the required security level, the user
should not be rejected multiple times before have access to the system. The
convenience of the system is shown through the FRR metric.

We succeeded in regenerating crypto-biometric keys longer than 400 bits,
with low false acceptance and false rejection rates, thanks to the quality of
the binary embeddings. The crypto-biometric keys have high entropy and
are resistant to quantum cryptanalysis, according to the PQCrypto project, as
they satisfy the length requirement. The keys are regenerated using a fuzzy
commitment scheme that uses BCH codes.

The main contribution of this thesis is the binarization method based on auto-
encoders, which gives long binary representations with high entropy and
recognition accuracy. For future research direction, using newer face recog-
nition systems with higher accuracy as the basis for the auto-encoder will
improve the overall system performance and allow for the use of other tech-
niques such as ’fuzzy extractor’. By implementing a fuzzy extractor scheme
with high accuracy, it would be possible to generate the private key of newer
quantum-resistant public encryption schemes.
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Résumé

Dans cette thèse, nous avons abordé le problème de la régénération de
clés crypto-biométriques (clés cryptographiques obtenues avec des données
biométriques) résistantes aux méthodes de cryptanalyse quantique. L’enjeu
est d’obtenir des clés à haute entropie pour avoir un haut niveau de sécu-
rité, sachant que l’entropie contenue dans les données biométriques limite
l’entropie de la clé. Après un chapitre d’introduction, nous présentons des
travaux liés à nos travaux sur la reconnaissance faciale, la binarisation, la
protection des modèles biométriques et le chiffrement dans le chapitre 2. Le
chapitre 3 donne un aperçu des bases de données utilisées pour entrainer,
tester et valider nos systèmes proposés.

Notre première contribution a été de créer un système de reconnaissance
faciale à la pointe de la technologie basé sur des frameworks publics et des
données accessibles au public. Au chapitre 4, nous présentons notre pipeline
de système de reconnaissance faciale. Le système est construit sur le frame-
work OpenFace, auquel nous avons apporté plusieurs modifications pour
obtenir de meilleures performances, car il a été implémenté dans deux projets
européens et utilisé dans une soumission au défi multimédia NIST SRE2019.

Nous détaillons également comment obtenir un système de reconnaissance
faciale à la pointe de la technologie basé sur des logiciels accessibles au pub-
lic et utilisant des ensembles de données publics. Nous essayons de donner
le plus de détails possibles pour permettre la reproductibilité des résultats.
Lorsque CMU a implémenté OpenFace, la reproductibilité était l’un de ses
principaux objectifs. Ainsi, nous avons pu reproduire et améliorer leurs ré-
sultats. Par exemple, nous avons amélioré les performances de reconnais-
sance biométrique sur l’ensemble de données LFW de 92% pour le modèle
CMU d’origine à 99% de précision.

D’après les résultats que nous avons obtenus, nous pouvons déduire que
le goulot d’étranglement des performances se situe dans le prétraitement,
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notamment la phase de détection des visages. Avec suffisamment de don-
nées, le Deep Convolutional Neural Network (DCNN) donne les meilleures
performances. Néanmoins, dans les situations où les bases de données suff-
isamment grandes ne sont pas disponibles, les approches classiques donnent
de meilleures performances.

Pour améliorer nos résultats, nous avons procédé à la suppression du bruit
de mauvais étiquetage du MS-celeb-1M, qui a donné la plus grande amélio-
ration des performances sur nos protocoles de validation.

Parmi les modifications appliquées à notre cadre, l’utilisation du détecteur
de visage RetinaFace a entraîné l’amélioration la plus significative des per-
formances. La qualité des ‘landmarks’ de visage détectés dépend de manière
significative de la précision de la boîte englobante donnée par le détecteur
de visage. L’utilisation des ‘landmark’ de visage corrects permet d’obtenir
un meilleur alignement du visage et des modèles plus robustes. Notre choix
d’utiliser DCNN pour la reconnaissance faciale a été validé lors du défi mul-
timédia NIST SRE 2019 où notre système a obtenu la meilleure performance
de système unique parmi 14 autres soumissions. Cela montre que DCNN est
l’une des architectures les mieux adaptées à la reconnaissance faciale.

Enfin, l’application du filtrage des enrôlements à l’aide de certaines mesures
de qualité est cruciale pour la performance du système de reconnaissance
faciale. Si la référence d’enrôlement est de mauvaise qualité, une comparai-
son avec de bonnes références de test entraînera des scores de similarité in-
férieurs et de pires performances.

Les schémas crypto-biométriques, tels que l’engagement flou (fuzzy com-
mitment), nécessitent des sources binaires. Notre deuxième contribution,
présentée au chapitre 5, présente une nouvelle approche de binarisation
des données biométriques à l’aide de Deep Neural Network (DNN) ap-
pliquée aux données biométriques faciales. Nous avons suivi une approche
basée sur les données (data-driven) pour binariser les représentations eucli-
diennes basées sur l’utilisation d’auto-encodeurs sous apprentissage super-
visé avec la fonction de perte "Triplet loss". Notre objectif était de créer de
longues représentations binaires avec une entropie élevée pour servir dans
notre schéma de régénération de clé.

Les longueurs des représentations peuvent être contrôlées. En utilisant un
CNN pré-entrainé et en entrainant le modèle sur une version nettoyée de la
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base de données MS-celeb-1M, nous obtenons des représentations binaires
de longueur 4 096 bits et 3 300 bits d’entropie. Les représentations extraites
ont une entropie élevée et sont suffisamment longues pour être utilisées dans
des systèmes crypto-biométriques tels que l’engagement flou.

Nous évaluons les performances des représentations binaires sur les bases de
données MOBIO et Labeled Faces in the Wild (LFW), où nous mesurons leurs
performances de reconnaissance biométrique et leur entropie. Les représen-
tations binaires proposées offrent des performances de pointe sur les deux
bases de données avec une dégradation presque négligeable par rapport
au système de base. L’utilisation de DNN pour extraire les représentations
binaires donne des représentations avec une entropie élevée et des perfor-
mances de reconnaissance élevées. Par rapport aux représentations euclidi-
ennes de base, les projections binaires proposées offrent des performances de
pointe sur les deux bases de données avec une dégradation presque néglige-
able. La dégradation des performances dans les deux bases de données est
d’environ 0.1%.

Nous obtenons une précision de 99.12% sur la base de données LFW, en util-
isant les représentations binaires, contre une précision de 99.22% en utilisant
le système de base. Il en va de même pour la base de données MOBIO, où
nous obtenons une précision de 98.90 % en utilisant les projections binaires
par rapport à une précision de 98.93 % du système de base.

L’approche proposée au chapitre 5 peut être appliquée à n’importe quelle
représentation continue, pas seulement aux représentations euclidiennes de
visage. De plus, la technique de binarisation constitue un hachage préser-
vant la localité (locality presevering hashing), où la distance relative entre
les valeurs d’entrée est préservée dans la distance relative entre les valeurs
de hachage de sortie. La représentation peut être utilisée pour de multiples
applications, telles que la recherche de similarité, la recherche de base de
données et les systèmes biométriques.

De plus, la méthode de binarisation fournit des représentations de longueur
arbitraire qui ne sont limitées que par la qualité de la base de données
d’apprentissage. Ainsi, la longueur des projections peut être adaptée à la sen-
sibilité de l’application. Nous avons comparé notre approche de binarisation
à certaines méthodes de binarisation classiques présentées dans [Dro+18] et
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montrons que notre méthode a une meilleure performance de reconnaissance
biométrique et une entropie plus élevée que les méthodes présentées.

Les représentations binaires créées sont également utilisées pour mettre en
œuvre un système de reconnaissance faciale révocable basé sur une trans-
formation de mélange utilisant un second facteur. Le système révocable
est analysé selon les métriques normalisées données par la norme ISO/IEC
24745:2011. Nous montrons que le système révocable donne des modèles de
haute précision et non liés lorsque le deuxième facteur n’est pas compromis.
Lorsque le deuxième facteur est compromis, la sécurité du système est as-
surée par les performances de reconnaissance des représentations binaires,
qui sont comparables au système non binarisé de base. De plus, la qualité
des représentations binaires impacte le comportement du système révocable.
Si le pouvoir discriminant des représentations est faible, le système révoca-
ble dépend principalement du deuxième facteur, ce qui se traduit par un FAR
plus élevé.

Ces représentations sont destinées à être utilisées dans un schéma de
régénération de clé crypto-biométrique basé sur un engagement flou. C’est
pourquoi on cherche à obtenir des représentations binaires longues à forte
entropie.

Le premier objectif de la thèse est de créer des clés crypto-biométriques à
partir de la biométrie de l’utilisateur. Pour créer les clés crypto-biométriques,
nous avons procédé en extrayant l’entropie des images de visage. Par extrac-
tion d’entropie, nous entendons extraire des informations utiles des données
biométriques sous forme de format binaire.

Les représentations binaires, obtenues au chapitre 5, ne conviennent pas à
une utilisation en cryptographie. La biométrie, par sa nature, n’est pas stable.
Elle souffre de la variabilité introduite par de nombreux facteurs : variabil-
ité de session, conditions d’acquisition, capteurs, etc... Notre contribution
suivante a été d’utiliser une cohorte pour réduire l’intra-variabilité des
représentations. L’approche que nous avons suivie pour régénérer les clés
symétriques est basée sur l’engagement flou. Le schéma d’engagement flou a
été implémenté à l’aide de codes de correction d’erreur Bose, Ray-Chaudhuri
and Hocquenghem (BCH). Dans notre schéma d’engagement flou, une clé
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aléatoire est codée à l’aide de codes de correction d’erreurs (ECC) et est en-
suite XORée avec les données biométriques. Les données XORée sont cryp-
tographiquement sécurisées, car ni la clé ni les données biométriques ne
peuvent en être obtenues sans fournir l’une des deux. La clé aléatoire est
récupérée au moment de la régénération de la clé en fournissant de nouvelles
données biométriques. Ce système nécessite des données biométriques or-
données sous forme binaire. Dans ce schéma, les différences de données
biométriques d’une acquisition à l’autre sont traitées comme du bruit. Ce
bruit provoque des erreurs dans les données transmises qui sont corrigées à
l’aide des ECC. La révocabilité du schéma d’engagement flou est assurée en
utilisant le même schéma de protection décrit dans la sous-section 5.4.2.

Nous rapportons le taux de fausses acceptations (FAR) et le taux de faux
rejets (FRR) sur la base de données MOBIO. Nous avons réalisé 9M de tests
client-client et 10M de tests client-imposteur. Pour les tests client-client, tous
les échantillons biométriques sont croisés. Pour les tests client-imposteur,
21 échantillons sont sélectionnés au hasard parmi chaque utilisateur et sont
ensuite croisés.

Dans toutes les expériences de régénération de clé, le FAR est de 0% car le
nombre de bits erronés est supérieur à la capacité de correction de code dans
le cas des tests client-imposteurs.

Le deuxième objectif de la thèse est que les clés soient post-quantiques. Par
post-quantique, nous entendons que les clés doivent être résistantes aux al-
gorithmes quantiques tels que l’algorithme de Shor [Sho94] et l’algorithme
de recherche de Grover [Gro96]. Il existe deux schémas de chiffrement,
symétrique et asymétrique.

L’algorithme de Grover réduit la complexité d’une attaque par force brute
sur une clé symétrique de 2N à 2N/2. Pour atténuer le risque introduit par
l’informatique quantique, nous devons augmenter la taille des clés. C’est la
raison pour laquelle nous avons essayé de rendre la représentation binaire
plus longue et plus discriminante. Au chapitre 6, nous régénérons les clés
symétriques longues pour la biométrie faciale. Les systèmes de régénération
de clés à la pointe de la technologie qui utilisent la biométrie faciale souf-
frent d’une entropie FRR élevée et faible par rapport aux autres modalités
biométriques [Wan+21]. Dans notre cas, nous avons pu régénérer des clés de
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chiffrement symétriques de plus de 400 bits avec un faible FAR et un faible
FRR en utilisant la biométrie faciale.

Mots clés :

Biométrie, Cryptographie, Vérification de visage, Apprentissage profond



i

Acknowledgements
First and foremost, I would like to express my deepest gratitude and ap-
preciation to my PhD supervisor, DR. Dijana Petrovska-Delacrétaz. Without
her support and encouragement, I would not have been able to complete this
challenging journey. I am deeply thankful for her patience and perseverance,
especially during the difficult times of the COVID-19 outbreak. Her guidance
and valuable input have been invaluable to me throughout this process. I am
also grateful to her for the numerous opportunities she has provided me, in-
cluding the chance to work on two H2020 European projects, the connections
she has helped me make, and the opportunity to visit multiple research insti-
tutions. It has been a great honor and pleasure to have such an exceptional
supervisor as Dijana, and I am truly grateful for all she has done for me.
Thank you Dijana.

I would like to extend my heartfelt thanks to my thesis director, Prof.
Bernadette Dorizzi, for her invaluable guidance and wise counsel through-
out the process of completing my research. Her insights and advice have
been incredibly helpful, and I am deeply grateful for her support. It has been
an honour to work with such a knowledgeable and skilled supervisor, and I
will always be grateful for the opportunity to learn from her.

I would like to express my sincere gratitude to the members of the jury who
have generously dedicated their time and expertise to the review and defense
of my thesis. Their insights, critiques, and questions have been invaluable in
helping me to refine my research and deepen my understanding of my topic.
I am deeply grateful for their guidance, and I am truly appreciative of the
opportunity to present my work to such a distinguished panel of experts. I
would like to thank Dr. Teddy Furon and Prof. Chaic Mokbel, my thesis re-
porters, for their thorough input and corrections. Their insights and critiques
were instrumental in helping me to improve my work, and I am deeply grate-
ful for their guidance. I am also grateful to Prof. Hossam Afifi for presiding
over my PhD defense, and to Prof. Bhiksha Raj for his valuable input.

I would like to express my sincere gratitude to my lab colleagues for their
help and support during the period of my thesis. In particular, I would like
to thank Aymen Mtibaa for his assistance and support. I am deeply grateful
for his help.



ii

I would also like to thank my family and friends for their support and en-
couragement during this time. The process of completing a thesis can be a
challenging and demanding journey, and I am grateful to have had the sup-
port of my loved ones to help me through it. In particular, I would like to
thank Ayman Ben Thabet for his unwavering support and encouragement. I
am deeply grateful to have such a supportive network of loved ones.

Thank you all for your invaluable support.

Mohamed Amine HMANI, November 2022.



iii

Contents

Abstract 3

Résumé 7

Acknowledgements i

1 Introduction 1
1.1 Motivation and Objectives of the Thesis . . . . . . . . . . . . . 1
1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the art 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Crypto-biometrics . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Biometric Template Protection Requirements . . . . . . 11
2.2.2 Biometric Template Protection System Classification . . 13

Cancelable Biometrics . . . . . . . . . . . . . . . . . . . 13
Homomorphic Encryption . . . . . . . . . . . . . . . . 16

2.3 Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Binarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Databases 29
3.1 Labled Faces in the Wild . . . . . . . . . . . . . . . . . . . . . . 29
3.2 WiderFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 AgeDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 MS-celeb-1M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 MOBIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . 35
3.6 ATSIP-2018 face database . . . . . . . . . . . . . . . . . . . . . 36
3.7 VAST Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



iv

3.7.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . 39

4 Proposed Face Recognition System 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Proposed Face Recognition System Pipeline . . . . . . . . . . 43

4.2.1 Face Pre-processing . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Embedding Extractor . . . . . . . . . . . . . . . . . . . . 47

Experimental Results . . . . . . . . . . . . . . . . . . . . 50
Performance on the MOBIO dataset . . . . . . . . . . . 53

4.3 NIST SRE2019 submission . . . . . . . . . . . . . . . . . . . . . 57
4.4 Implementation in H2020 European Projects . . . . . . . . . . 62

4.4.1 The SpeechXRays project . . . . . . . . . . . . . . . . . 62
4.4.2 Empathic Project . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3 Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.4 Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Binarisation 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Proposed Face Binarisation Method . . . . . . . . . . . . . . . 71

5.2.1 Baseline Face Recognition System . . . . . . . . . . . . 72
5.2.2 Locality Preserving Binary Face Representations using

Auto-encoders . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Experimental Performance of the Binary Representations . . . 78
5.4 Application to Cancelable Biometrics . . . . . . . . . . . . . . 88

5.4.1 Cancelable System Requirements . . . . . . . . . . . . . 90
5.4.2 Proposed Cancelable System . . . . . . . . . . . . . . . 91

Biometric Recognition Performance . . . . . . . . . . . 94
Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Irreversibility . . . . . . . . . . . . . . . . . . . . . . . . 97
Unlinkability . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Implementation in the SpeechXRays Project . . . . . . . . . . . 99
5.5.1 The Cancelable Face System Prototype . . . . . . . . . 100
5.5.2 Evaluation of the System . . . . . . . . . . . . . . . . . 100

Biometric Performance . . . . . . . . . . . . . . . . . . . 101
Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Irreversibility . . . . . . . . . . . . . . . . . . . . . . . . 104



v

Unlinkability . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Impact of the Performance of the Binary Representations on

the Cancelable System . . . . . . . . . . . . . . . . . . . . . . . 107
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Crypto-biometric Key Regeneration 113
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Key Regeneration Scheme . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Fuzzy Commitment . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Bit Selection . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.3 Error Correcting Code . . . . . . . . . . . . . . . . . . . 127

6.3 Results of the Proposed Key Regeneration Scheme on the MO-
BIO Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4.1 Stolen Second Factor . . . . . . . . . . . . . . . . . . . . 133
6.4.2 Stolen Biometrics . . . . . . . . . . . . . . . . . . . . . . 134
6.4.3 Stolen Database . . . . . . . . . . . . . . . . . . . . . . . 135
6.4.4 Brute Force Attacks . . . . . . . . . . . . . . . . . . . . . 138

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Conclusions and Perspectives 141
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . 146

References 148





vii

List of Figures

3.1 Examples from the LFW database. . . . . . . . . . . . . . . . . 30
3.2 Examples from the MS-celeb-1M database. The samples pre-

sented come from the same label (identity). . . . . . . . . . . . 32
3.3 Examples from the MOBIO database. . . . . . . . . . . . . . . . 35

4.1 Block diagram of our face recognition system. . . . . . . . . . 43
4.2 The Multi-PIE 68 points mark-up [Gro+10] used for face land-

mark annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Face alignment by applying an affine transformation com-

puted using the outer eyes and nose landmarks. Points of in-
terest (outer eyes and nose) are shown using black dots. . . . . 45

4.4 Example of the pre-processing of an image from LFW using
eyes and nose positions. . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Examples from the alignment of images from the ATSIP2018
database with good acquisition conditions, i.e.: frontal face,
good illumination. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Examples from the alignment of images from the ATSIP2018
database with bad acquisition conditions, i.e.: face turned to a
great degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Illustration of the evolution of the epoch training time using a
low variability dataset originating from the MOBIO dataset. . 51

4.8 DET curves of OpenFace on MOBIO. . . . . . . . . . . . . . . . 54
4.9 DET curve performance of the submitted face recognition sys-

tem on the DEV and TEST partitions of the multimedia chal-
lenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Final EMPATHIC system architecture. . . . . . . . . . . . . . . 65

5.1 Pipeline of the baseline face recognition system. . . . . . . . . 74



viii

5.2 Block diagram of the binarisation method used in approaches
approach (a) and (b). In approach (a), the whole model is
trained from scratch. In approach (b) the FaceNet CNN is pre-
trained using the MS-celeb-1M. . . . . . . . . . . . . . . . . . . 76

5.3 DET curves of the Eval male partition of the MOBIO database
using the standard protocol [Bou16]. The training of the mod-
els is done using the MS-celeb-1M. The training is done from
scratch on the original version of MS-celeb-1M following ap-
proach (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 DET curves of the Eval male partition of the MOBIO database
using the standard protocol [Bou16]. The training of the mod-
els is done using the MS-celeb-1M. The training is done using
a pre-trained CNN on the original version of MS-celeb-1M fol-
lowing approach (b). . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 DET curves of the Eval male partition of the MOBIO database
using the standard protocol [Bou16]. The training of the mod-
els is done using the MS-celeb-1M. The training is done using
a pre-trained CNN on the cleaned version of MS-celeb-1M fol-
lowing approach (b). . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Shuffling scheme with block size of "1" bit. . . . . . . . . . . . 93
5.7 Proposed cancelable biometric scheme. . . . . . . . . . . . . . 94
5.8 Unlinkability analysis of the system based on scores computed

on the LFW dataset. Templates used are of length 1 024. The
templates are obtained using DNN created corresponding to
approach (b) (using a pre-trained CNN with an auto-encoder)
and trained on the cleaned version of MS-celeb-1M. . . . . . . 99

5.9 ROC curve for performance of the protected and non-
protected systems on the MOBIO dataset. . . . . . . . . . . . . 103

5.10 Unlinkability analysis of the system based on scores computed
on the MOBIO dataset. . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Score distribution for shuffled and non shuffled representa-
tions of MOBIO Eval male partition. . . . . . . . . . . . . . . . 108

5.12 Impact of the shuffling on the score distribution of the data.
Score distribution from templates of length 1 024. The tem-
plates are obtained using the DNN corresponding to ap-
proach (b) (using a pre-trained CNN with an auto-encoder)
and trained on the cleaned version of MS-celeb-1M. . . . . . . 109



ix

5.13 Face image samples taken from the MOBIO database. Face
detection is done using the OpenCV SSD face detector. Align-
ment is done using DLIB 68 points landmark detector. . . . . . 110

6.1 Enrolment phase of the fuzzy commitment scheme used in the
key regeneration. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Regeneration phase of the fuzzy commitment scheme used in
the key regeneration. . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Entropy per bit of the 4096-bit binary representations. . . . . 121
6.4 Example of the images used to compute the inter-class vari-

ance. The images are taken from the controlled partition of the
FRGC database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Example of the images used to compute the intra-class vari-
ance. The images are taken from the uncontrolled partition of
the FRGC database. . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Bit reordering of the binary representations created by the
DNN according to the inter-class variance. . . . . . . . . . . . 124

6.7 Bit reordering of the binary representations created by the
DNN according to the intra-class variance. . . . . . . . . . . . 124

6.8 Bit reordering of the binary representations created by the
DNN using the inter-class variance and intra-class variance.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.9 Impact of the bit selection strategy on the accuracy of the bi-

nary representations on LFW. The accuracy is represented as a
function of the length of the representation. . . . . . . . . . . 126

6.10 Examples of bad face samples of MOBIO database. These im-
ages were removed from the testing dataset. . . . . . . . . . . 131

6.11 Normalized Hamming distance distribution for genuine and
impostor comparisons on the MOBIO Eval male partition.
The template used in the comparisons are binary templates of
length 3 000 bits created using bit selection process described
in the previous subsection. . . . . . . . . . . . . . . . . . . . . 132





xi

List of Tables

2.1 Symmary of state-of-the-art Deep Neural Network based face
recognition systems. . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Biometric performance of the face recognition system using
different face detectors. Face landmark detection is done using
DLIB implementation of ERT. Face Embeddings are extracted
using the FaceNet architecture trained on the cleaned version
of MS-celeb-1M. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Biometric recognition performance of the face recognition sys-
tem using different face landmark detection methods. Face de-
tection is done using the SSD model. Face Embeddings are ex-
tracted using the FaceNet architecture trained on the cleaned
version of MS-celeb-1M. . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Our results on the LFW dataset reporting the influence of the
training images compared with Google and CMU results . . . 51

4.4 Results of our OpenFace_best model on MOBIO. . . . . . . . 53
4.5 Comparison of our results of the DNN and the DLDA on MO-

BIO still images and LFW . . . . . . . . . . . . . . . . . . . . . 55
4.6 Biometric recognition performance of the studied DNN ar-

chitectures. The face detection is done using the RetinaFace
face detector. Face landmark detection is carried out using
the DLIB implementation of ERT. The DNN is trained on the
cleaned version of MS-celeb-1M. . . . . . . . . . . . . . . . . . 58



xii

5.1 Details of the nn4.small2 Inception architecture which is a ver-
sion of the nn4 model from FaceNet [SKP15] hand-tuned by
[ALS16] to have less parameters. Each row is a layer in the
neural network and the last six columns indicate the param-
eters of pooling or the inception layers from [Sze+15]. This
model is almost identical to the one described in [Sze+15].The
pooling is always 3×3 (aside from the final average pooling)
and in parallel to the convolutional modules inside each In-
ception module. If there is a dimensionality reduction after
the pooling it is denoted with p. 1×1, 3×3, and 5×5 pooling are
then concatenated to get the final output. . . . . . . . . . . . . 73

5.2 Impact of the length of the binary representations on the
biometric performance of approach (a): Training the Auto-
encoder using Triplet Loss from scratch. The baseline system
is the system used in [HPD18]. The results in the second row
(row ’128*’) are obtained by applying a median binarisation on
the output of the CNN used in [HPD18]. The maximum stan-
dard deviation (std) on LFW is around 1%. The maximum std
on MOBIO is around 0.1%. . . . . . . . . . . . . . . . . . . . . . 79

5.3 Entropy of the representations created using approach (a). The
entropy was measured using 5M samples from MS-celeb-1M.
p(x = 1) is the probability of a bit is equal to 1. . . . . . . . . . 79

5.4 Impact of the length of the binary representation on the bio-
metric recognition performance of approach (b) (Using a pre-
trained CNN with an auto-encoder). Values in bold are given
by models trained using the cleaned version MS-celeb-1M. The
first row is provided to show the degradation in recognition
performance between the initial system (Euclidean embed-
dings) and the binarised embeddings. By ’pre-trained CNN’,
we denote the initial OpenFace DNN. The results in the second
row (row ’128*’) are obtained by applying a median binarisa-
tion on the output of the pre-trained CNN. . . . . . . . . . . . 83

5.5 Entropy of the representations created using the approach (b).
The entropy was measured using 5M samples from MS-celeb-
1M. p(x = 1) is the probability of a bit being equal to 1. Values
in bold are given by models trained using the cleaned version
MS-celeb-1M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



xiii

5.6 Performance of the classical binarisation methods on the LFW
dataset. The binarisation methods are applied to the output
of our version of OpenFace CNN trained on the cleaned ver-
sion of MS-celeb-1M. The entropy of the methods is computed
using the same approach presented previously. . . . . . . . . . 89

5.7 Impact of the length of the shuffled binary representations ob-
tained following approach (b) (using a pre-trained CNN with
an auto-encoder) on the recognition performance. Values in
bold are given by DNN models trained using the cleaned ver-
sion MS-celeb-1M. The results in the second row (row ’128*’)
are obtained by applying a median binarisation on the output
of the initial OpenFace DNN. . . . . . . . . . . . . . . . . . . . 95

5.8 Performance on MOBIO dataset, EER is computed using 42
000 tests for the female partition and 151 620 for the male par-
tition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Performance of the key regeneration scheme. BCH codes are
presented in (n, k, t) format where n is the length of the en-
coded block, k is length of the message block and t is the num-
ber of bits that can be corrected in the encoded block. The
FAR and FRR are computed on the MOBIO database using 9 M
client-client tests and 10 M client-imposter tests. . . . . . . . . 131

6.2 FAR on the MOBIO database in the scenario of stolen second
factor. BCH codes are presented in (n, k, t) format where n
is the length of the encoded block, k is length of the message
block and t is the number of bits that can be corrected in the
encoded block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Number of possible SB for each system configuration. The
number of SB is provided in log2 format. BCH codes are pre-
sented in (n, k, t) format where n is the length of the encoded
block, k is length of the message block and t is the number of
bits that can be corrected in the encoded block. . . . . . . . . . 137





xv

Acronyms

BCH Bose, Ray-Chaudhuri and Hocquenghem.
BE Biometric Encryption.
BRGC Binary Reflected Gray Code.

CASIA Chinese Academy of Sciences.
CI Common Identifier.
CNN Convolutional Neural Network.
CTS Conversational Telephone Speech.

DBR Direct Binary Represenation.
DBSCAN Density-Based Spatial Clustering of Appli-

cations with Noise.
DCNN Deep Convolutional Neural Network.
DLDA Direct Linear Discriminant.
DNN Deep Neural Network.

ECC Error Correcting Code.
EER Equal Error Rate.

FAR False Acceptance Rate.
FHE Fully Homomorphic Encryption.
FRR False Rejection Rate.

GMM Gaussian Mixture Model.

HTER Half Total Error Rate.

KDF Key Derivation Function.



xvi

LDC Linguistic Data Consortium.
LFW Labeled Faces in the Wild.
LPDC Low-Density Parity-Check.
LSSC Linearly Separable SubCode.

MDG Minimum Distance Graphs.
MRP Multispace Random Projections.

NIST National Institute of Standards and Technol-
ogy.

PBKDF Password Based Key Derivation Function.
PCA Principal Component Analysis.
PI Pseudonymous Identifier.
PIC Pseudonymous Identifier Comparator.
PIE Pseudonymous Identifier Encoder.
PIR Pseudonymous Identifier Recorder.
PRP Probabilistic Random Projection.

RSA Rivest–Shamir–Adleman.

SB Shuffled Binary Embedding.
SD Supplementary Data.
SE Secure Element.
SK Shuffling Key.

VGG Visual Geometry Group.



1

1 Introduction

1.1 Motivation and Objectives of the Thesis

Cryptography plays an increasingly important role in society, where we have

a growing need for securing data and transactions (in telecommunications,

medicine, financial transactions, as well as cryptocurrency or the protection

of our privacy ). Cryptography is mainly based on the use of cryptographic

keys to encrypt data or sign it to guarantee its authenticity and integrity.

However, cryptography has some problems. First, it is threatened by the

arrival of quantum computers. The prototypes of quantum computers are

increasingly efficient and advanced. It is estimated that within 20 years

these computers will be able to render current cryptographic schemes obso-

lete. Shor’s algorithm [Sho94] challenges classical asymmetric cryptography

schemes, Rivest–Shamir–Adleman (RSA) encryption, and schemes based on

elliptic curves in particular. Grover’s algorithm [Gro96] threatens symmetric

keys; it allows to divide the complexity of the search by two.

Apart from the possible problems caused by quantum computers, crypto-

graphic keys have some inherent disadvantages. The keys are of such length

that one cannot memorize them. Hence, the need to store them, which in-

duces an additional risk of copying the keys if they are not well protected

or even the loss of the key thus causing the loss of encrypted data. By us-

ing classical cryptographic keys, one cannot guarantee non-repudiation, i.e.
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ensure that only the owner of the key uses it. This allows for the sharing of

digital identities and the denial of liability in some cases. When encryption

keys are used, there is no direct link between the keys and the true identity

of the user.

Biometrics can provide answers to this problem. By using biometrics, the is-

sue of non-repudiation is resolved. On the other hand, another problem is

created; non-revocability of biometric keys. We cannot change the biomet-

ric data of an individual at will and, therefore, we always create the same

biometric key for the same user.

Hence the interest of concentrating our efforts to propose methods to create

crypto-biometric keys obtained from the biometric data of the user, which

also have the property of revocability. By using a crypto-biometric key, the

non-repudiation of the key is guaranteed. In addition, the user no longer

needs to memorize the key, since it is built at the time of using the system.

The concept of crypto-biometric keys appeared towards the end of the twen-

tieth century. The first works had the disadvantage of low entropy [Mon+01]

and a non-negligible reconstruction error. Therefore, several works includ-

ing [KPD09; Her+17] have sought to improve the performance of crypto-

biometric keys from a security point of view by increasing the entropy and

from a biometric point of view by improving the accuracy of key reconstruc-

tion.

This work aims to regenerate cancelable crypto-biometric keys that are re-

sistant to quantum cryptanalysis methods. The challenge of this work is to

obtain high entropy keys in order to obtain a high level of security. In fact, for

traditional cryptographic keys, one can control the entropy during their cre-

ation. On the other hand, with crypto-biometric keys, the entropy contained
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in the biometric reference limits the entropy of the key.

1.2 Research Contributions

The work is focused mainly on face biometrics as they are easily accessible.

First, we try to increase the entropy extracted from biometric data. The lower

the False Acceptance Rate (FAR), the higher the entropy of a given biometric

system. So, to increase the entropy, we proceeded by creating a face verifi-

cation system with low FAR. To this end, we improved a state-of-the-art face

verification system using publicly available datasets and frameworks. The

system is based on Deep Neural Network (DNN). Our contributions mainly

concern face detection, landmark extraction as well as optimization of archi-

tecture and loss functions.

Cryptographic applications need the biometric features to be in binary for-

mat. The features extracted from face biometric systems are usually rep-

resented in the continuous domain. This imposes a subsequent module

to transform such continuous features into a binary format without signif-

icantly deteriorating the original classification performance. To this end, we

decided to follow a novel data-driven approach in which the binarization

happens inside the DNN (face feature extractor). More precisely, a DNN is

trained to provide binary representations with high discrimination between

the users resulting in higher entropy. This approach is based on using au-

toencoders under supervised training with the ’Triplet loss’ loss function.

The binary embeddings are first used to create a cancelable face verification

system based on a shuffling transformation using a second factor. The cance-

lable system is analyzed according to the standardized metrics given by the

ISO/IEC 24745:2011.
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The binary representations in their current form are not suitable for use in

cryptography. Biometric data, by their nature, are not stable. They suffer

from variability introduced by many factors: session variability, acquisition

conditions, sensors, etc... Thus, we proceeded to make the binary representa-

tions stable using error-correcting codes. We also used a cohort to reduce the

representations intra-variability (variability of representations obtained from

each user).

To obtain cancelable crypto-biometric keys, we used a key regeneration

scheme based on fuzzy commitment. The keys generated by this system have

a length of 512 bits, 0% FAR and 0.3 FRR on the Mobio database.

The second goal of the thesis is for the keys to be post-quantum. By post-

quantum, we mean that the keys should be resistant to quantum algorithms

such as Shor’s algorithm and Grover search algorithm.

There are two encryption schemes, symmetric and asymmetric. We focus

on symmetric keys. Symmetric encryption is threatened by the Grover algo-

rithm because it reduces the complexity of a brute force attack on a symmetric

key from 2N to 2(N/2). To mitigate the risk introduced by quantum comput-

ing, we need to increase the size of the keys. To this end, we tried to make

the binary representation longer and more discriminative. For the keys to be

resistant to quantum computing, they should have double the length. This is

the reason why we tried to make the binary representation longer and more

discriminative. According to the NIST SP 800-152, 256-bit security is enough

for high-impact applications. As we consistently regenerate keys with length

of 512 bits, they should be resistant to quantum computation.

We succeeded in regenerating crypto-biometric keys longer than 400 bits

(with low false acceptance and false rejection rates) thanks to the quality of
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the binary embeddings. The crypto-biometric keys have high entropy and

are resistant to quantum cryptanalysis, according to the PQCrypto project1,

as they satisfy the length requirement. The keys are regenerated using a

fuzzy commitment scheme that uses BCH codes.

The remainder of the thesis is structured as follows. In Chapter 2 we present

related works to our work in face recognition, binarization, biometric tem-

plate protection, and encryption. In Chapter 3, we give an overview of the

databases used to train, test, and validate our proposed systems. Chapter 4

presents our face verification pipeline and the improvements and enhance-

ments introduced for each of its applications. In Chapter 5, we present the

DNN based binarization method that gives high entropy and long represen-

tations. Finally, before drawing the conclusions in Chapter 7, we describe

our key regeneration scheme in Chapter 6.

1.3 Publications

The papers published throughout the duration of the thesis are the following:

• Hmani, M. A., & Petrovska-Delacrétaz, D. (2018). State-of-the-art

face recognition performance using publicly available software and

datasets. 2018 4th International Conference on Advanced Technologies

for Signal and Image Processing (ATSIP), 1-6. IEEE.

• Hmani, M. A., Mtibaa, A., Petrovska-Delacrétaz, D., Bauzou, C., Cru-

cianu, I. (2020). Evaluation of the H2020 SpeechXRays project Cance-

lable Face System Under the Framework of ISO/IEC 24745:2011. 2020

5th International Conference on Advanced Technologies for Signal and

Image Processing (ATSIP), IEEE.

1https://pqcrypto.eu.org/
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• Hmani, M. A., Mtibaa, A., Petrovska-Delacrétaz, D.,. Joining Forces of

Voice and Facial Biometrics: a Case Study in the Scope of NIST SRE’19.

Chapter 9. In Voice Biometrics: Technology, trust and security. IET.

• Hmani, M.A., Petrovska-Delacrétaz, D., Dorizzi, B.: Locality preserv-

ing binary face representations using auto-encoders. IET Biome.1–14

(2022). https://doi.org/10.1049/bme2.12096.

• Mtibaa, A., Hmani, M. A., Petrovska-Delacrétaz, D., & Hamida, A. B.

et al. (2020). Methodologies of Audio-Visual BiometricPerformance

Evaluation for the H2020SpeechXRays Project. 2020 5th International

Conference on Advanced Technologies for Signal and Image Processing

(ATSIP), IEEE.

• Nasri, M. A., Hmani, M.A, Mtibaa, A., Ben Hamida, A., Petrovska-

Delacrétaz, D., Benslima, M.(2020). Face Emotion Recognition From

Static Image Based on Convolution Neural Networks. 2020 5th Inter-

national Conference on Advanced Technologies for Signal and Image

Processing (ATSIP), IEEE.

• Nautsch, A., Jiménez, A., Treiber, A., Kolberg, J., Jasserand, C., Kindt,

E., Delgado, H., Todisco, M., Hmani, M.A., Mtibaa, A. and Abdelra-

heem, M.A., 2019. Preserving privacy in speaker and speech character-

isation. Computer Speech & Language, 58, pp.441-480

https://doi.org/10.1049/bme2.12096
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2 State of the art

2.1 Introduction

The biometric characteristics of a person are permanently associated with

his identity. Although the property of permanent associatively of biometric

data with the user makes biometric systems useful, it also raises some serious

threats. There are two important issues related to biometric systems.

• Non-revocability: If the biometric data of a person stored in the

database is somehow compromised, it cannot be cancelled or replaced.

Therefore, the person cannot use the same biometric characteristic in

that system and possibly in all other systems based on the same bio-

metric characteristic. This is called non-revocability of biometrics. If it

is a fingerprint-based system, the person has an opportunity to use a

different finger in that system, but still this number of re- enrolments is

limited. In case of face, it is not even possible.

• Privacy compromise: With an increasing use of biometric systems, the

issue of protecting the privacy of a user is becoming prominent. User

privacy is a complicated term. We define three types of privacy com-

promises:

– Biometric data privacy compromise: The raw biometric data of



8 Chapter 2. State of the art

the user can be recovered from the stored templates. For exam-

ple, many fingerprint-based systems use minutiae features and

store minutiae extracted from a reference fingerprint image as tem-

plates. It is possible to reconstruct the original fingerprint image

from the stored minutiae. In some cases, the recovered biometric

data can reveal certain biological conditions (e.g., fingerprints can

reveal some skin conditions). Additionally, synthesized data can

be provided to the system to gain access.

– Information privacy compromise: When a person enrolls in differ-

ent biometric systems with the same biometric trait, his templates

in all these systems are reasonably similar (provided these systems

are based on the same biometric algorithm). Therefore, templates

from one database can be used to gain access to another system,

and thus, the information stored in that system can be compro-

mised.

– Identity privacy compromise: Since the templates stored in differ-

ent databases of a user are reasonably similar, that person can be

tracked from one system to another by cross matching his tem-

plates from the two biometric databases. Similarly, when a system

operates in identification mode, it can simply reveal that a per-

son, to which the presented biometric belongs to, is enrolled in

that particular system. This can be considered as a compromise

of user’s privacy. For example, consider an application of biomet-

rics to the HIV (Human Immunodeficiency Virus) patients’ (or any

other sensitive group) social network. This network is a closed

group of HIV patients, who share information only to the mem-

bers. In this scenario, if the biometric recognition system works
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in identification mode, positive identification of a person based on

the provided biometric data indicates that the person is a member

of such a sensitive group.

Cryptography is a process employed widely in order to secure the storage

and/or transmission of electronic information. The basic idea of cryptogra-

phy involves two phases: encryption and decryption. During encryption,

the data, denoted as plaintext, is transformed into unintelligible gibberish,

denoted as ciphertext, with the help of an encryption key. The decryption

process is the reverse of encryption, i.e., obtaining the plaintext from the ci-

phertext. The pair of algorithms that create the encryption and the reversing

decryption is denoted as cipher.

According to the Kerckhoffs’ principle, the security of a cryptographic sys-

tem lies entirely on the secrecy of the key [Aug+83]. Additionally, for secu-

rity reasons, the cryptographic keys are required to be long. For example,

the possible lengths of keys required in the AES are 128, 192, or 256 bits.

For public-key cryptographic systems such as RSA, the key lengths are even

higher (e.g., 512, 1024, or 2048 bits). Clearly, a user cannot remember such

long keys and therefore, the keys need to be stored somewhere, e.g., on a

smart card or in a computer.

In order to restrict access to these keys only to legitimate users, authenti-

cation mechanisms are used. Traditionally, authentication mechanisms em-

ployed in cryptography are knowledge based (e.g., passwords) or possession

based (e.g., token, smart card, etc.). These authenticators are assigned to the

user identity and do not necessarily indicate the presence of the person to

which they belong. Therefore, they can be (more or less easily) stolen by an

attacker, and in this situation, the system cannot distinguish between the at-

tacker and a legitimate user. Another issue related with these authentication
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mechanisms is repudiation. A user can willfully share his credentials and

later claim that they were stolen. Thus, such a system can be easily cheated.

Biometric systems prevent non-repudiation and can also detect whether an

individual has multiple identities. Biometric systems impart higher levels of

security and have seen a rapid proliferation in a wide variety of government

and commercial applications around the world in the last two decades. How-

ever, various security and privacy challenges deter the public confidence in

adopting biometric based authentication systems.

As described in [MB11] privacy-preserving techniques can be spread into

two categories: hardware-based approaches and software-based approaches.

It has to be noted that the term privacy preserving is rather vague, and term

like privacy by design are also related to it. For example hardware based

approaches for privacy protection like the ones proposed by FIDO1, can be

called privacy by design methods.

Hardware-based approaches: A hardware-based approach involves design-

ing a closed recognition system. In such a system the biometric template

never leaves a physically secure module such as a smart card or a hand-held

device. Such a device matches the input biometric trait with the template

stored in the device and releases a key in case the authentication is success-

ful. This is the configuration adopted in the FIDO alliance proposal.

Software-based approaches: protect the biometric template by storing a mod-

ified version of it, in order to reveal as little as possible information about the

original biometric trait. Software-based approaches can be spread into two

1The Fast Identity Online (FIDO) standard reinforces the security of online identity au-
thentication systems on mobile devices and web applications. Its goal is to replace the ex-
clusive use of passwords with more secure biometric authentication mechanisms that are
protected by encryption systems (see https://fidoalliance.org)
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main categories: template or feature transformation and biometric cryptosys-

tems:

• Template or Feature Transformation: transform the biometric template

based on parameters derived from external information such as user

passwords or keys. The same transformation function is applied to the

query and matched with the stored template.

• Biometric cryptosystems can be defined as the process in which a dig-

ital key (randomly generated) is bound to a biometric template (key

binding) or a key is generated by a biometric template (i.e. key gen-

eration). In both modes ("key binding" and "key generation") of the

Biometric Encryption (BE) methods, the key is "encrypted" with the

biometric trait and the result, which is usually called biometrically en-

crypted key or BE template or helper data is stored either in a database

or locally (i.e. smart card).

2.2 Crypto-biometrics

2.2.1 Biometric Template Protection Requirements

There are some main criteria which a cancelable biometric template should

satisfy:

• Performance: cancelable biometric system should not degrade the ver-

ification performance of the underlying baseline biometric system;

• Revocability: if the stored user template is compromised it should be

possible to cancel that template and reissue a new one. Additionally,

the newly issued template should not match with the previously com-

promised template. Thus, revocability does not mean just to cancel the
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old template and issue a new one; it also means that the authentication

rights of the old authenticator are revoked. The system should be able

to reject a person if he provides the authenticator linked with the old

template. Note that biometrics alone cannot provide this property be-

cause biometric characteristics cannot be changed while systems using

passwords and tokens have excellent revocability;

• Diversity: It should be possible to issue different templates for differ-

ent applications related to the same user. These templates should not

match with each other and should make cross-matching impossible.

Password- and token-based systems are good at that, although prac-

tically, password diversity can be argued. Biometrics, by itself, cannot

have template diversity;

• Irreversibility: It should be computationally infeasible to obtain the

original biometric template from the protected template;

• Unlinkability: the protected biometric templates created from same

biometric sample using two different secret keys should not be linkable.

• High key entropy: If the goal of the crypto-biometric system is to ob-

tain crypto-bio keys, the entropy of such keys should be high.

In order to be coherent with the ISO/IEC 24745:2011 standard, we will be

using the same vocabulary. The ISO/IEC 24745:2011 standard defines the ar-

chitecture of biometric protection systems. The architecture is based on three

important elements:

• Pseudonymous Identifier Encoder (PIE): During enrolment, the PIE

generates a cancelable biometric template based on the Pseudonymous

Identifier (PI) and Supplementary Data (SD).
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• Pseudonymous Identifier Recorder (PIR): During verification, the PIR

generates a pseudonymous identifier (PI*) based on the SD provided

during enrolment and the biometric sample.

• Pseudonymous Identifier Comparator (PIC): compares the PI created

in the enrolment phase and PI* and returns a score.

2.2.2 Biometric Template Protection System Classification

Cancelable Biometrics

The transformations found in literature are of two types: reversible trans-

formations and irreversible transformations. The reversible transformations

make use of a transformation key or token which needs to be kept secret.

Such transformations can be inverted to obtain the original biometric data if

the transformation key is disclosed. Systems based on these reversible trans-

formations are sometimes called salting approaches. The performance of the

cancelable systems when using the reversible transformations is generally

better than the classical biometric systems. The systems based on irreversible

transformations, on the other hand, do not require the transformation pa-

rameters to be kept secret. Even if the transformation parameter is disclosed,

it is infeasible to obtain the original biometric template from the cancelable

template. However, it is observed that the performance of the cancelable bio-

metric systems in such cases degrades compared to the classical biometric

systems [PRC15; Cha+20].

In the following paragraphs, we take a brief look at some systems in trans-

formation based cancelable biometrics category. It has to be noted that the

methods are not related to a specific biometric modality. In 2001, Ratha et
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al. [RCB01] introduced the term cancelable biometrics proposing transfor-

mation of the biometric signal (or features) using irreversible transforma-

tions. The transformation parameters are user specific. In [Rat+07] Ratha

et al. proposed three different transformations (Cartesian, polar, and func-

tional). These transformations provide a different amount of security to the

biometric data. They tested their system on a private database with 188 pairs

of fingerprint images and reported that the performance of the underlying

biometric system always degrades after transformation.

Another interesting and widely used technique called BioHashing [GN03]

was used by Jin et al. [JLG04] for cancelability. In BioHashing, a randomly

generated, user-specific key (denoted as hash key) is used to generate an

ortho-normal matrix. The biometric feature vector is projected onto this ma-

trix and after thresholding; a binary vector is obtained which is denoted

as BioHash. In 2007 (Lumini & Nanni) proposed an improved version of

this BioHashing scheme with modifications such as binarisation threshold

variation, space augmentation, feature permutation, and feature normaliza-

tion. They reported that, in general, BioHashing scheme improves the perfor-

mance of the underlying biometric system. But, the drawback is, in the stolen

key scenario, the performance generally degrades compared to the baseline

biometric system.

In 2007, Boult et al. [BSW07] applied the biotoken scheme to fingerprints

which they earlier proposed for faces in [Bou06]. The scheme is based on

robust distance matching techniques. They reported 30% improvement in

the verification performance for the fingerprint biotoken system.

In 2008, Maiorana et al. [MCN08] proposed a different way of transformation

called BioConvolving which is applied to Hidden Markov Model (HMM)

based signature features. It makes use of a randomly generated sequence to
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divide the features into parts on which convolution is applied. In their later

papers [Mai+08; Mai+10], they showed that the number of different tem-

plates that can be generated using this technique is limited and proposed

some improvements in order to increase this number. In [MCN11] they pro-

posed a multi-biometric approach for cancelable biometrics by employing

BioConvolving and using a combination of different matchers by score-level

fusion.

In [TC10], a cancellable formulation for speech biometrics, which we refer as

Probabilistic Random Projection (PRP) is proposed for speaker verification

system. In this paper, they extend the Multispace Random Projections (MRP)

by using 2D subspace techniques and Gaussian Mixture Model (GMM) for

speaker modeling. PRP shows excellent performance as in MRP for the le-

gitimate token and stolen-biometric scenario. Experiments showed that PRP

does not suffer the problem of stolen-token attacks when the random sub-

space dimension is near to the feature dimension. Also PRP fulfilled other

important properties of cancellable biometrics, i.e. diversity property and

non-invertible property (no recovery of biometric template in the event of

compromise).

Das et al.[DKG12] presented a robust alignment-free fingerprint hashing al-

gorithm based on Minimum Distance Graphs (MDG) for secure authentica-

tion. They report that the matching performance is better than some exist-

ing fingerprint template protection schemes with an Equal Error Rate (EER)

equal to 0.0227 and that this method increases the computational complexity

of brute-force attack and the invertibility of the hash of the actual fingerprint

is intractable.

In [WH14], Wang & Hu proposed the design of alignment-free cancelable

fingerprint template via curtailed circular convolution. By quantizing and
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bin-indexing pair-minutiae vectors, a binary string is generated. The trans-

formed template fulfills the requirements of non-invertibility, revocability

and diversity for cancelable fingerprint templates even when both the trans-

formed template and parameter key are compromised. Also evaluation of

the proposed scheme is reported and it shows that the new method improves

the performance compared to the existing alignment-free cancelable template

schemes.

In 2017, Gomez et al. [GB+17] presented a general framework for the evalua-

tion of unlinkability in biometric template protection schemes, as well as an

improved, unlinkable and irreversible, system based on Bloom filters. With

fully reproducible experimental study, they confirm the irreversibility and

unlinkability of facial Bloom filter-based protection scheme, considering an

advanced adversary model, as well as a full disclosure adversary model,

where a potential attacker is in possession of secret keys. They also report

that the proposed scheme maintains the biometric performance of the un-

protected system.

Homomorphic Encryption

Towards the end of the seventies, in a landmark paper [RAD+78], Rivest,

Adleman and Dertouzos, define and investigate the applicative potential of

a new notion which they call privacy homomorphisms. Indeed, building on

the basic fact that the RSA cryptosystem is multiplicatively homomorphic

– the product of two ciphertexts provides an encryption of the product of

the two corresponding cleartexts – they end up conjecturing the existence of

both secure and malleable cryptosystems, that is cryptosystems allowing to

perform general calculations directly on encrypted data. This idea would re-

main a curiosity for a number of years, the homomorphic properties (always



2.2. Crypto-biometrics 17

limited to one operation) of several cryptosystems (most notably ElGamal

and Goldwasser-Micalli) being remarked and tolerated as apparently benign

is terms of security.

That situation changed towards the end of the nineties, when, mostly due to

the introduction of the Paillier cryptosystem, the search for cryptosystems

homomorphic at the same time for both the addition and the multiplica-

tion operations (so called Fully Homomorphic Encryption (FHE) schemes)

becomes one of the grail quest of part of the cryptographic community. In-

deed, on top of having reasonable performances, the Paillier cryptosystems

allows to perform additions in the encrypted domain as well as multiplica-

tion by a public integer. In essence, it becomes possible to apply any (public)

linear operator directly on encrypted data and to do so at reasonable compu-

tational cost. A possibility which is sufficient to give birth to a new applied

research field based on homomorphic cryptography: signal processing in the

encrypted domain.

In 2009, against all expectations, C. Gentry, then at Standford, proposes a

first credible construction both in terms of security and of theoretical effi-

ciency. Still, in order to properly appreciate the consequences of this initial

breakthrough, it is necessary to precise what efficiency means for a theoret-

ical computer scientist. Indeed, for a given security level ℓ (which drives

the parameterization of the cryptosystem to require an order of magnitude

of 2 ℓ operations for the best known attacks on the underlying mathematical

problem to break the system), a homomorphic encryption system is consid-

ered theoretically efficient if the computational overhead of working in the

encrypted domain is bounded by a polynomial in ℓ. Needless to say, and

this was unfortunately the case for C. Gentry initial construction, that the de-

gree of the polynomial does not need to be very large for the overhead to be
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prohibitive. Furthermore, C. Gentry’s initial proposal was mindbogglingly

complex. Indeed, designing fully homomorphic encryption systems is a diffi-

cult task due to a noising phenomenon which amplitude grows quickly with

the amount of calculations, mostly of multiplications, performed, up to the

point where decryption of the results becomes impossible. To solve this is-

sue, and this is where his main contribution lies, Gentry has introduced a

denoising technique, known as bootstrapping, which loosely speaking con-

sists in homomorphically performing a recrypt operation (i.e., equivalent to

a decryption followed by an encryption without, thanks to the magic of ho-

momorphisms, ever having the data in clear form during the operation).

Unfortunately, this first fully homomorphic cryptosystems, and more gener-

ally any bootstrapping-based cryptosystem known so far, are way too costly

to have any practical relevance whatsoever.

Things subsequently got a lot better in 2012 when C. Gentry and two coau-

thors (Z. Brakerski and V. Vaikuntanathan) proposed a radically new homo-

morphic encryption schemes construction blueprint: the levelled (somewhat)

homomorphic cryptosystems. In such a system, an algorithm is executed on

a sequence of cryptosystems rather than a single one. When executing an

algorithm over a levelled system, as a general rule, additions can be per-

formed within the same level whereas multiplications, which are much more

important noise amplifiers, require a level change. The subtlety resides in the

combination of a tensorial operator which spreads the noise and a projection

operator which reduces its amplitude at the cost of a level change but without

bootstrapping. Additionally, levelled cryptosystems have a very interesting

intrinsic parallelism property, called batching, by which independent calcu-

lations can be (quite massively) multiplexed within a unique ciphertext and

thus processed in parallel at the bit level (in essence, batching parallelism is
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conceptually similar to a technique known as bit-slicing, introduced during

the nineties in the field of cryptanalysis of block cipher). As of 2016, the most

efficient system is still due to Z. Brakerski (first published towards the end

of 2013 and optimized in subsequent publications most notably by Fan and

Vercauteren). It is a levelled system which intrinsic performances and mem-

ory requirements are reasonable enough to consider the first deployments

of homomorphic encryption-based calculations in lightweight-enough real-

world settings. Furthermore, it should be emphasized that, performance-

wise, progress has been fast paced and that a kind of Moore’s law seems

to emerge. As originally stated by C. Aguilar, every 12 to 18 months, the

performance overhead of homomorphic encryption appears to decrease by a

square-root.

Additional systems, coined 2nd generation FHE, such as GSW have been

proposed, but despite being conceptually simpler than leveled FHE they ap-

pear less efficient (also because they lack batching, at least at present). Very

recently, a new breed of credible fast bootstrapping FHE has also started to

appear.

In parallel with the above research, which has been conducted for the most

part within the cryptographic community, the compilation, and parallelism

community has also started to grow a fairly early (as early as end 2010) inter-

est in homomorphic encryption techniques as a new execution environment

for computer programs with a highly promising practical relevance. In par-

ticular, it should be emphasized that a homomorphic encryption system only

provide bit-level operators. Thus, making the connection between an algo-

rithm written in a high level programming language and such a low level

execution environment requires a sequence of non-trivial transformations,

that is, a compiler. If, furthermore, it is required that this compiler mitigates,
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as much as possible, the performance overhead by means (for example) of

parallelism, then techniques from the field of optimizing compilation and

parallel code generation have to be brought into the picture. As of 2016,

the most convincing experimental results have been obtained by combining

careful optimization of the crypto-systems as well as optimized parallel code

generation. In particular, still without diminishing the work remaining to

address more demanding applications, it has been possible to demonstrate

the execution of real yet lightweight algorithms (most notably from the field

of medical diagnostic) with both acceptable performances (significantly less

than a second) and security levels (128 bits) – with yet recourse only to mod-

erate parallelism and no batching.

2.3 Face Recognition

Currently, state-of-the-art facial biometric algorithms are based on Deep Con-

volutional Neural Networks. Table 2.1 summarizes the most prominent pub-

lished Deep Neural Network (DNN) based facial recognition systems. Most

of them are either proprietary, only a description of the system is provided,

or trained on private databases. To compare biometric systems objectively,

it is mandatory to use the same database and the same testing protocols

[PDCD09]. To this end, we will report the performance of the systems on

the Labeled Faces in the Wild (LFW) [HLM14] where the comparison metric

is the pair matching accuracy using the 10-fold cross validation protocol.

Some best performing systems in the face recognition ecosystem are de-

scribed in the next paragraph.

The Camvi’s model [Eri+19] is trained on a subset of MS-celeb-1M face

database, containing around 80k identities and 5 Million (M) faces. The
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authors tried to remove the overlapped faces in LFW with close similarity

scores. The recognition model is a single Convolutional Neural Network

(CNN) with a size of 230 MB, which outputs an embedding vector with 256

float point numbers for an input image. L2 distance is used to measure the

similarity between two feature vectors and compute average accuracy for

each subset using the best threshold from the rest of the nine subsets of the

10-folds.

Ever.ai [Eri+19] trained their model on a private photo database with no

intersection with LFW. They also trained custom face and landmark detec-

tors for pre-processing and built their primary face recognition model on a

database containing over 100k identities and 10M images. The recognition

model is a single deep ResNet model [He+16], which outputs an embedding

vector given an input image, and the similarity between a pair of images

is evaluated via an L2-norm distance between their respective embeddings.

The system is a proprietary system with no extensive description provided

by the authors. We report its performance on the LFW benchmark because it

is one of the best performing systems.

FaceNet [SKP15] was developed by Google. It is a unified system for face ver-

ification, identification, and clustering. It extracts Euclidean representations

from images with the advantage of being general purpose. The features are

also compact (with a dimension of 128) compared to traditional representa-

tions (Gabor features for example). The system was trained on a huge private

database of 260 M images from 8 M subjects. It was trained for 1 000 hours.

DeepFace [Tai+14] is developed by Facebook. It processes images in two

steps. First, it corrects the angle of a face so that the person in the picture

becomes forward-facing, using a 3-D model of an ’average’ forward-looking

face. The second step is to propagate the face to the Deep Neural Network
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(DNN) in order to extract its representation. The system was trained on a

private database consisting of 4.4M images from 4k subjects (average of 1k

per subject). It has 97.35% accuracy on LFW.

DeepID2 [Sun+15] was developed by the Department of Information En-

gineering of the Chinese University of Hong Kong. The features are learned

using deep convolutional networks. The face identification task increases the

interpersonal variations by drawing apart DeepID2 features extracted from

different identities. In contrast, the face verification task reduces the intra-

personal variations by reducing the distance between DeepID2 features ex-

tracted from the same identity, both of which are essential to face recognition.

It was trained on a private database consisting of 200k images from 10k sub-

jects. Compared to other databases such as Google’s or Facebook’s systems,

the size of the database can be considered relatively small. It gives 99.15%

verification accuracy on the LFW database.

VGG-DeepFace [PVZ15] was developed by the Visual Geometry Group

(VGG) from the University of Oxford. The system was trained on 2.6M

images containing 2.6k identities. The published performance on LFW is

98.95%. The VGG system is essentially a very deep convolutional neural

network. It leverages two distinct methods for the training: N-way classi-

fication, and triplet embedding. In the case of this system, the N-way has

the advantage of faster training, while on the other hand, triplet embedding

gives a better overall performance.

CASIANet [Yi+14] was developed by the Institute of Automation, Chinese

Academy of Sciences (CASIA). The system is inspired by many new success-

ful networks, including very deep architecture, low dimensional represen-

tation, and multiple loss functions. It was trained on the publicly available
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CASIA database (500k images representing 10k identities). The reported per-

formance of the system on LFW is 96.13%.

OpenFace [ALS16] is an implementation of the FaceNet system based on

[SKP15]. The source code is publicly available as well as the trained model.

It was trained on the publicly available CASIA-webfaces and FaceScrub

databases. The system has 92.92% accuracy on LFW.

Table 2.1: Symmary of state-of-the-art Deep Neural Network
based face recognition systems.

System
Size of Training
database
(Millions of images)

Accuracy on
LFW ± Std (%) Reproducibility

Camvi [Eri+19] 5.00 99.87 ± 0.18 No
Ever.ai [Eri+19] 10.00 99.85 ± 0.20 No
FaceNet [SKP15] 260.00 99.63 ± 0.09 No
DeepID2 [Sun+15] 0.29 99.52 ± 0.12 No
VGG-DeepFace [PVZ15] 2.60 98.95* Yes
DeepFace [Tai+14] 4.40 97.35 ± 0.25 No
CasiaNet [Yi+14] 0.50 96.13 ± 0.30 No
OpenFace [ALS16] 0.60 92.92 ± 1.34 Yes

* Std is not reported by the authors.

Table 2.1 provides a summary of the performance of some of the face recogni-

tion systems studied. The performance are reported on the LFW benchmark.

The benchmark comprises 6 000 tests, divided in 10 partitions (folds). The

performance is reported in terms of average accuracy and the standard de-

viation over the 10 folds. When computing the accuracy for each fold, one

must use the remaining nine folds in order to determine the threshold that

gives the highest accuracy on the nine folds. Afterwards, the threshold is

applied to the remaining fold giving the accuracy on that folds. This process

is repeated for each fold separately. The accuracies are then averaged to pro-

vide the reported metric along with the standard deviation. Further details

on the LFW database are provided in section 3.1.
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All the mentioned methods use deep neural networks. The reproducibility

of these systems hangs mainly on the availability of the training data. For

example, even when the architecture is described in detail as in the case of

FaceNet, OpenFace, that tried to reproduce FaceNet’s perforamce, achieved

only 92.92% in comparison with the 99.6% accuracy of FaceNet. This might

be due to FaceNet being trained on 260 million images in contrast with the

600k of OpenFace. We suspect that another reason for the difference in per-

formance relates to the quality of the face detector. Our face recognition sys-

tem, described in the following section, is built upon the OpenFace frame-

work. The main reason behind the choice of OpenFace is reproducibilty.

2.4 Binarisation

State-of-art face recognition systems use continuous vector embeddings to

represent the users. However, the majority of biometric template protection

schemes need a binary representation [LTK15] as an input. Thus, the contin-

uous vectors need to be binarised.

Binarisation methods fall into two categories: rule-based and data-driven

methods. For the rule based approaches, different schemes were proposed.

Kevenaar et al. [Kev+05] extract the most reliable components of facial fea-

ture vectors and binarise them for use in a template protection scheme.

Chen et al. [Che+09] present a detection rate optimized bit allocation princi-

ple, which is biometric characteristic-agnostic. Based on the discriminative

power of the features, it assigns more or fewer bits to them during binari-

sation, thus improving the biometric performance of the binarised feature

representation.

Bringer et al. [BD10] transform fingerprint minutiae set using a vicinity-based
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approach, which in addition to producing a compact feature representation,

also exhibits self-alignment property.

When presenting a novel fingerprint minutiae representation scheme, Cap-

pelli et al. [CFM10] note that it can also operate in binarised mode, without

significantly decreasing the biometric performance of the scheme.

Lee et al. [Lee+12] binarise facial Principal Component Analysis/Eigenfeature

Regularization Extraction templates using a generalized Linnartz and Tuyl’s

quantization index modulation scheme for template protection.

Chen et al. [CV11] present a generic (for arbitrary characteristics with float-

valued feature vectors) binarisation scheme using pairwise adaptive phase

quantization and long-short pairing strategy.

In [LT13], Lim et al. propose two new encoding schemes linearly and partially

linearly separable subcodes, which exhibit full-ideal and near-ideal separa-

bility capabilities, respectively.

Schlett et al. [SRB16] describe a simple and effective scheme for binarising

multi-scale local binary pattern histograms. Almost all of the mentioned bi-

narisation methods are either rule-based binarisation schemes or manually

constructed.

In [Dro+18], Drozdowski et al. benchmark data-independent binarisation

methods such as [Kev+05; Che+09; BD10; CFM10; CV11; Lee+12; LT13;

SRB16]. These rule-based methods directly quantize the projected values

with a threshold or use an orthogonal matrix to obtain the binary codes. Such

methods do not preserve the locality structure in the whole learning process.

As for data-dependent approaches, recently, multiple binarisation techniques

based on neural networks such as [Che+18; Sch+19; Mai+21] were intro-

duced. These techniques focus on projecting the input on a predetermined
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space. For example, in [Che+18], the authors map a Low-Density Parity-

Check (LPDC) code to each identity in the training dataset. Thus, each per-

son in the training set has their codeword, resulting in perfect discrimination

between the training subjects. Nevertheless, the system’s performance de-

grades when enrolling a user that did not belong to the training set.

Pandey et al. [Pan+16] use deep convolutional neural networks to learn a

mapping from face images to maximum entropy binary codes. The mapping

is robust enough to tackle the problem of exact matching, yielding the same

code for new samples of a user as the code assigned during training. These

codes are then hashed to generate protected face templates.

In [JCJ18], Jindal et al. generate unique binary codes with maximum entropy.

In order to maximize the entropy of the binary codes, each bit of the binary

code is randomly generated and has no correlation with the original biomet-

ric sample. The binary codes are used to replace the one-hot encoding used

to train the VGG-Face network. The network uses binary cross-entropy as

the loss function, with the last layer activation function being the sigmoid

function instead of the softmax function.

Similar to our approach, Carreira et al. [CPR15] use auto-encoders for the bi-

narisation of the data. The outputs of the hidden layer are passed into a step

function to binarise the codes. Incorporating the step function in the learn-

ing leads to a non-smooth objective function. Optimizing this non-smooth

function is NP-complete. Where the gradients do exist, they are zero nearly

everywhere. They use binary SVMs to learn the model parameters to handle

this difficulty. Whereas, in our case, we ignore the gradient of the binarisa-

tion layer to keep the non-zero aspect of the gradient of the loss function.
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The previously mentioned binarisation methods provide binary representa-

tions with limited length. In this thesis, we aim to obtain long representations

with high entropy to be used in crypto-biometric key regeneration.

As opposed to the methods which use a predefined mapping space, the ap-

proach we present aims to preserve the topology of the embeddings provided

by the baseline DNN architecture. As a result, we preserve the advantages of

the underlying DNN (resistance to noise, higher accuracy, robustness) while

obtaining binary representations. Furthermore, persevering the topology of

the data also allows for using our binarisation method in data retrieval ap-

plications.
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3 Databases

In this chapter, we present the databases used throughout the thesis, as well

as the experimental protocols of the databases if they were used for validat-

ing our systems. Furthermore, we explain the modifications that we intro-

duce to the databases such as data cleaning and pruning.

3.1 Labled Faces in the Wild

The LFW dataset contains 13 233 target face images with a considerable de-

gree of variability in facial expressions, age, race, occlusion, and illumination

conditions. 1 680 of the people pictured have two or more distinct photos in

the data set. The only constraint on these faces is that they were detected by

the Viola-Jones face detector [PM01]. Figure 3.1 shows examples of the faces

present in the LFW dataset. The protocol specifies two views of the data set.

View 1 is for model selection and algorithm development. It contains two

sets: 1 100 pairs per each class (matched/mismatched) for training and 500

pairs per each class for testing. View 2 is designed for performance report-

ing. It is divided into ten sets (folders), each with 300 matched pairs and 300

mismatched pairs. The cross-validation evaluation can be adopted among

these ten folders. The final verification performance is reported as the mean

recognition rate and standard error over the ten-fold cross-validation. It has

to be noted that the task is to do pair matching. Given a pair of images, the
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goal is to decide whether they belong to the same subject. This task is sim-

ilar to face verification, except that the evaluation metrics proposed by the

database collectors is the accuracy of the pair matching.

Figure 3.1: Examples from the LFW database.

3.2 WiderFace

WIDER FACE [Yan+16] dataset is a face detection benchmark dataset, of

which images are selected from the publicly available WIDER dataset. 32 203

images are chosen with 393 703 labeled faces having a high degree of vari-

ability in scale, pose, and occlusion. WIDER FACE dataset is organized based
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on 61 event classes (i.e: parade, meetings, protests).

3.3 AgeDB

AgeDB [Mos+17] is a manually collected, in-the-wild age database contain-

ing images annotated with accurate to the year, noise-free labels. As demon-

strated by a series of experiments utilizing state-of-the-art algorithms, this

unique property renders AgeDB suitable when performing experiments on

age-invariant face verification, age estimation, and face age progression "in-

the-wild". The database contains 16 488 images from 568 subjects.

3.4 MS-celeb-1M

The MS-celeb-1M is one of the largest publicly available database. It has 100K

subjects, and almost 10M images. Popular search engines are used to provide

about 100 images for each subject. The images are collected based on their

metadata, not their content. This results in the dataset having a considerable

amount of noise, as shown in Figure 3.2. The samples presented come from

the same label (identity). This shows the mislabeling noise present in the MS-

celeb-1M as we find males, female, non-living objects classified as the same

identity in the dataset. The dataset is constructed by Microsoft and is avail-

able for noncommercial use. [Guo+16] further describes the process of as-

sembling the images and the metric used for the choice of the 100K celebrity

provided in the dataset. We used the whole dataset for training the neural

network. The Ms-celeb-1M database contains a significant portion of misla-

beling because it is collected automatically using web crawlers.
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Figure 3.2: Examples from the MS-celeb-1M database. The
samples presented come from the same label (identity).
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In order to improve the performance, we leveraged clustering algorithms

to clean the database. We applied Density-Based Spatial Clustering of Ap-

plications with Noise (DBSCAN) [Est+96] to reduce the mislabelling of the

database. We worked under the assumption that there is no overlap between

the identities of the labels provided in the database metadata. In other words,

under the same label we can find multiple identities, but there is no overlap

between the identities belonging to different labels. As the number of the

identities in each label is unknown, we proceed by applying DBSCAN clus-

tering algorithm onto each label. The clustering is done on the embeddings

computed using our model from [HPD18]. The cluster with the highest num-

ber of samples is kept, and the remaining clusters are discarded. In cases

where the number of samples in the biggest cluster is lower than three, the

label is discarded.

Furthermore, the MS-celeb-1M database has a bias towards the LFW dataset,

as there is an overlap of the identities between both databases. To reduce this

bias, we removed the labels (identities) that have a Euclidean distance lower

than 1.2 from any sample from the LFW. Note that the threshold with which

the accuracy is computed on the LFW benchmark in [HPD18] is around 1.

We used a more secure threshold because the model from [HPD18] is trained

on a non-cleaned version of MS-celeb-1M and presents a bias to LFW. As the

comparison score is the Euclidean distance, a more secure threshold means a

lower threshold.

Thus, the cleaning resulted in reducing the training database to 80k identi-

ties from the 100k users provided in the Ms-celeb-1M, and reducing the total

number of images from 10M to 4.5M. The cleaning resulted in better over-

all performance for the baseline face recognition system. For example, in

the case of the LFW database, using the same hyperparameters the accuracy
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is improved from 97.53% to 98.82%. The impact of the cleaning is further

shown in the case of the MOBIO database, where the Equal Error Rate (EER)

of the baseline system improved from 14% to 2%.

3.5 MOBIO

The MOBIO database [McC+12] is a bi-modal (face/speaker) database

recorded from 152 people. The database has a female-male ratio of nearly

1:2 (52 females 100 males). In total 12 sessions were captured for each indi-

vidual. It consists of three sets; training, development, and evaluation. In

our experiments, we used only the development and evaluation sets. We re-

port the result on the protocol described in [Bou16]. The results are reported

separately for males and females because for speaker recognition separating

males from females gives better results. Therefore, face recognition experi-

ments follow the same principle.

Figure 3.3 shows samples from the MOBIO database. The faces were cap-

tured in a normal setting where the subject is in front of their laptop web-

cam. This database presents some difficulties. Some samples have bad illu-

mination as there is a strong light in the background. We notice that the bad

illumination conditions are mainly present in the female image samples. Fur-

thermore, some samples contain only partial face or obstructed faces. These

conditions make the face detection more difficult using standard techniques

such as the Viola-Jones detector [PM01] or the Dlib HoG detector [DT05;

SDF11]. These faces can still be detected using newer techniques such as

CNN (RetinaFace [Den+19b]), however these quality of these faces (partial,

bad illumination) results in worse recognition performance.

The face detection using the Viola-Jones detector on the "Still images" of the
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MOBIO database gives 84 errors from 1890 sample from the female develop-

ment partition compared to 50 errors among 3600 male samples. This shows

that the female partition is harder the male partition for the MOBIO database.

Figure 3.3: Examples from the MOBIO database.

3.5.1 Evaluation protocol

EER & HTER: To measure the accuracy of the presented authentication sys-

tems, we use the evaluation criteria defined in [Bou16]. These measures are

the Equal Error Rate (EER) and Half Total Error Rate (HTER).

The HTER is used to represent the performance of an authentication system

on the unbiased evaluation partition as a single number. To compute the

HTER, a threshold θ is defined on the development partition at the intersec-

tion point of the False Acceptance Rate (FAR) and the False Rejection Rate

(FRR). The corresponding FAR (or FRR) value of the development partition

at this threshold θ is known as the EER. The threshold is applied to the eval-

uation partition to obtain the HTER:
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HTER =
FAR(θ) + FRR(θ)

2
(3.1)

θ is the threshold at the Equal Error Rate (EER) defined on the development

partition. The FAR and FRR are then computed on the evaluation dataset

using the threshold θ.

Accuracy: To measure the accuracy on the MOBIO database, we apply the

10-fold cross-validation pair matching protocol similar to the LFW database

to have the same evaluation metric for both databases. We concatenate the

development and evaluation partitions to obtain a single testing partition

comprised of 100 subjects (62 males and 28 females). We use three frames

from each video. Frames where the face is not present, are discarded. In

order to have a balanced accuracy, we use 50 000 matched pairs and 50 000

mismatched pairs. The accuracy is computed on the 100 000 pairs using 10-

fold cross-validation.

3.6 ATSIP-2018 face database

The ATSIP2018 face database is a face database recorded from 20 people, 15

male, and 5 female. This database was acquired during the ATSIP2018 work-

shop under the framework of the H2020 SpeechXrays European project by

TPS. The subjects were instructed to acquire facial images with their mo-

bile phones in good and bad conditions. Good meaning that the face is

frontal, and bad – not frontal faces or illumination problems. Among the 282

recorded images, only in 275 images faces can be detected using the Viola-

Jones algorithm. The set of 275 images, with successful face detection, is

divided in 61 images for enrolment (with good conditions). For the test: 88
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good images and 108 bad images were used. The number of client-client tests

is 588. As for the number of client-impostor tests, it is 11 172.

The experimental protocol is the following: each subject has 3 images for

enrolment: these images are used to create 3 enrolment templates for each

subject.

In order to evaluate correctly biometric modules, different tests need to be

done. In order to measure the False Rejection Rate (FRR), different images of

the same client need to be tested against his/her enrolment data (called also

templates, models). Those tests are usually denoted as client-client tests. If

the verification threshold is too strict (and the system is not perfect), clients

will be more annoyed, as they will be asked to repeat their verification tests

more often than once.

In order to measure the False Acceptance Rate (FAR) each client’s enrol-

ment data (called also templates, models) need to be tested with verification

data coming from other subjects. Those tests are usually denoted as client-

impostor tests. If the verification threshold is low, more impostors can be

accepted. Client-impostor tests can be done in different manners: if the im-

postor tests are chosen randomly from the other subjects test, they are called

random impostures. If they are designed specifically to impersonate one spe-

cific user, they are called intentional impostures.

For high security applications, it is required to have as low as possible FAR.

As a first step, random impostures can be done quite easily. In order to make

some comparisons for different systems, the Equal Error Rate (EER) is re-

ported where FAR=FRR.

In order to illustrate the influence of the quality of the test images, different

experimental protocols need to be executed. For the ATSIP2018 database,
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different experimental protocols were designed. With enrolment face im-

ages acquired in good conditions, different possibilities exist while testing

with face images of various qualities. If we want to simulate tests done with

only good quality images, then we need to take images with good quality for

client-client tests and client-impostor tests. These protocols are detailed as

follows:

• Target good/imposter good

• Target good/imposter bad

• Target bad/imposter good

• Target bad/imposter bad

• Target good/imposter good + bad

• Target bad/imposter good + bad

• Target good + bad/imposter good + bad

3.7 VAST Corpus

The VAST corpus [TS19] contains amateur video recordings (such as video

blogs) collected by the LDC1 from various online media hosting services.

The videos vary in duration from a few seconds to several minutes and in-

clude speech spoken in English. Each video may contain audio-visual data

from potentially multiple individuals who may or may not be visible in the

recording. Manually produced diarization labels (i.e., speaker time marks),

as well as key face frames and bounding boxes (that mark an individual’s

1The Linguistic Data Consortium (LDC) is an open consortium of universities, libraries,
corporations and government research laboratories (see https://www.ldc.upenn.edu).
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face in the video) were provided for both the DEV set and TEST set enroll-

ment videos (but not for the test videos in either set). The audio is sampled

at 16kHz. This corpus is used in the NIST SRE19 multimedia challenge.

3.7.1 Evaluation Metric

In the NIST SRE challenges, three metrics are considered: EER, min_C, and

act_C. The EER is the Equal Error Rate, where the False Acceptance Rate

(FAR) is equal to the False Rejection Rate (FRR)2. act_C is the primary metric,

and min_C is the secondary metric.

act_C, the actual detection cost, is computed according to a basic cost model.

This model is used to measure the detection performance of the submitted

systems in SRE’19, which is defined as a weighted sum of false-rejection and

false-acceptance error probabilities for some decision threshold θ. The cost

function is normalized to give CNorm(θ) which is defined as follows:

Cnorm(θ) = Pf r(θ) + β × Pf a(θ) (3.2)

where β is defined as:

β =
C f a

C f r
×

1 − Ptarget

Ptarget
(3.3)

The actual detection cost is computed from the trial scores by applying a

detection threshold of log(β), where log denotes the natural logarithm.

2NIST SREs adopt the terminology "false alarm" and "miss" instead of "false acceptance"
and "false rejection".
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For the CTS challenge, the primary cost function is computed using two

thresholds. The thresholds are computed for two values of β, β1 for PTarget1 =

0.01 and β2 for PTarget2 = 0.005, where Ptarget is the a-priori probability of the

specified target speaker. We note that the prior Ptarget is a synthetic parame-

ter used in order to reduce the multi-class problem into a binary classification

problem [Bru10, Chapter 8]. The values are fixed by NIST.

In this case, the actual detection cost is the following:

CPrimary =
CNorm(log(β1)) + CNorm(log(β2))

2
(3.4)

As for the multimedia challenge, the primary cost function is defined using

a single threshold. This threshold is computed for PTarget = 0.005.

CPrimary = CNorm(log(β)) (3.5)
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4 Proposed Face Recognition

System

4.1 Introduction

The goal of this thesis is to generate crypto-biometric keys from facial biomet-

ric data. As such, we started the pipeline by creating a face recognition sys-

tem based on publicly available databases and models. With the constant ad-

vancements in GPU computational power and the availability of open-source

software, the reproducibility of published results should not be a problem.

But, if the architectures of the systems are private and databases are propri-

etary, the reproducibility of published results can not be easily attained. To

tackle this problem, we focus on the training and evaluation of face recog-

nition systems on publicly available data and software. In this chapter we

exploit the OpenFace open-source system to generate a deep convolutional

neural network model using publicly available datasets. We study the impact

of the size of the datasets and their quality and compare the performance to a

classical face recognition approach. Our focus is to have a fully reproducible

model. To this end, we used publicly available datasets (FRGC, MS-celeb-

1M, MOBIO, LFW), and publicly available software (OpenFace) to train our

model in order to do face recognition. We also evaluate our best model on

the challenging video dataset MOBIO and report competitive results with the
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best-reported results on this database.

In the last years, mainly due to the advances of deep learning, and more con-

cretely convolutional networks, the quality of image recognition and object

detection has been progressing at a dramatic pace. With the advent of GPU

computation and big datasets, neural networks saw a huge resurgence. This

results in huge improvements in image recognition and consequently face

recognition. Many works [Den+19a; Tai+14; Yi+14; Sun+15; PVZ15; SKP15]

report near-perfect biometric performance. But in most cases, all systems are

either proprietary or trained on private datasets. This raises the problem of

the difficulty of reproducing published results [PDCD09].

In this chapter, we try to reach the best-reported results on the Labeled

Faces in the Wild (LFW) [Hua+07] database, by using the open-source Open-

Face [ALS16] software. This software is based on Google’s FaceNet archi-

tecture [SKP15] that achieves the best results on LFW, but is fully propri-

etary. CMU has already worked in this direction, but their published results

of 92.92% are far from the 99.6% that Google got on LFW. We have chosen

to exploit the publicly available MS-celeb-1M [Guo+16] dataset. We evaluate

the performance of our newly trained system on the (LFW), as well as the

MOBIO [McC+12] dataset (a very challenging audio-visual dataset). We also

provide the improvements that we introduced to the face recognition system

in order to improve the performance.

The face recognition system described in this chapter was also implemented

in two H2020 European projects and used in a submission to National Insti-

tute of Standards and Technology (NIST) SRE2019 competition.
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4.2 Proposed Face Recognition System Pipeline

In this section, we describe our face recognition system pipeline. Figure 4.1

shows the block diagram of the face recognition system, which is built us-

ing open-source implementations of 1) a face detector named RetinaFace

[Den+19b] and 2) a face embedding extractor based on FaceNet [SKP15]

(built using the OpenFace implementation [ALS16]).

Face 
bounding box

Face 
detector

Face +
landmarks

Facial
Landmark 

detector

Aligned Face Face
Embedding

Embedding 
Extractor

Score

Cosine
Affine 

Tranformation

Pre-processing
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Figure 4.1: Block diagram of our face recognition system.

In the following subsections, we detail the system’s components and explain

the improvement provided by each modification to the OpenFace frame-

work.

4.2.1 Face Pre-processing

Before using the DNN to construct the face embedding, the image containing

the face should be pre-processed. The pre-processing consists of a geometric

alignment of the face. The alignment contains two steps. The first step is

to detect the bounding box of the face. Once the face is detected, we need to

detect the facial landmarks, which in our case, are the 68 facial points defined

by the Multi-PIE 68 points mark-up shown in Figure 4.2. The landmarks that

are used for normalization are the eyes and the nose. Using these landmarks,

the face is rotated, scaled, and cropped. The resulting image has 96x96 pixels.

Figure 4.3 and Figure 4.4 show the effects of pre-processing on one image.
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Figure 4.2: The Multi-PIE 68 points mark-up [Gro+10] used for
face landmark annotation.

The alignment used in the pre-processing of the training set should be ap-

plied in the enrollment and verification phase in the same manner. To achieve

the best performance, the same face detector and landmark detector used in

pre-processing the training data should be used when exploiting the DNN.

Figure 4.5 and Figure 4.6 show examples of the alignment using the affine

transformation on samples from the ATSIP20181 database of good quality

as well as of bad quality. When the subject’s face is not facing forward and

presents a high degree of rotation the alignment results in a stretched face.

The first challenge in the face alignment phase is face detection. This step

constitutes a high impact on the overall performance of the face recognition

system. This impact is especially visible when the acquisition conditions are

1ATSIP2018 is a database acquired in the H2020 SpeechXRays project by TSP.
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Figure 4.3: Face alignment by applying an affine transforma-
tion computed using the outer eyes and nose landmarks. Points
of interest (outer eyes and nose) are shown using black dots.

Figure 4.4: Example of the pre-processing of an image from
LFW using eyes and nose positions.

Figure 4.5: Examples from the alignment of images from
the ATSIP2018 database with good acquisition conditions, i.e.:
frontal face, good illumination.

Figure 4.6: Examples from the alignment of images from the
ATSIP2018 database with bad acquisition conditions, i.e.: face
turned to a great degree.
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adverse (shadows, partial face, occlusion)

To study this impact, we tried different face detection methods ranging from

classical methods such as the Viola-Jones [PM01] algorithm to newer ones

based on Deep Neural Networks such as Single Shot MultiBox Detector

(SSD) [Liu+16] and RetinaFace [Den+19b]. As shown in Table 4.1, the choice

of the face detector has a noticeable impact on the performance of the whole

system.

Table 4.1: Biometric performance of the face recognition sys-
tem using different face detectors. Face landmark detection is
done using DLIB implementation of ERT. Face Embeddings are
extracted using the FaceNet architecture trained on the cleaned
version of MS-celeb-1M.

Face detection method Accuracy
on LFW (%)

EER on SRE’19
multimedia DEV (%)

Viola-Jones 97.53 17.00
SSD 98.82 14.36
RetinaFace 99.32 11.20

In order to apply the affine transformation using the position of the outer

points eyes and nose, we need to detect the facial landmarks. In order

to understand the impact of the quality of the landmark detector we used

three landmark detectors: Ensemble of Regression Trees (ERT) proposed

by [KS14a] and implemented in the DLIB [Kin09a] toolbox; a 2DFAN DNN

based solution was introduced by [BT17]; and a CNN that we trained on

ibug 300W [Sag+16]. From Table 4.2, we can conclude that the impact of the

face landmark detector is negligible on the overall performance of the face

recognition system. This might be due to the embedding extractor neural

network being trained using a training set with the same face landmark de-

tector. In fact, the DNN gets used to the errors induced by the landmark

detector. What is important, is to use the same landmark detector used for

training when exploiting the system for face verification.
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Table 4.2: Biometric recognition performance of the face recog-
nition system using different face landmark detection meth-
ods. Face detection is done using the SSD model. Face Em-
beddings are extracted using the FaceNet architecture trained
on the cleaned version of MS-celeb-1M.

Landmark detection method Accuracy
on LFW (%)

EER on SRE’19
multimedia DEV (%)

ERT DLIB
implementation [KS14a] 98.82 14.36

2DFAN [BT17] 98.90 14.20
CNN (trained on ibug 300W) 98.68 14.56

4.2.2 Embedding Extractor

The embedding extractor used in the face recognition system is a deep con-

volution neural network. The DNN architecture used in OpenFace is an im-

plementation of the FaceNet model based on [SKP15]. It was inspired from

the inception network [Sze+16].

Initial version of the DNN architecture: The initial architecture that we

used, consists of an input layer, an output layer and 24 hidden layers among

which there are 7 inception layers. The initial version of the network counts

3 733 968 parameters. The DNN extracts feature vectors that give the best

possible separation between subjects. It uses triplet embedding to optimize

the representations. [SKP15] details the process of the triplet selection and

optimization. The loss function defined in eq. 4.1 is based on the triplet loss

optimization scheme which consists of choosing two samples from the same

class (the anchor and the positive) and a sample for a different class (the

negative). The goal of the training is to separate the Anchor-Positive pairs

from the Anchor-Negative pairs by at least the margin α. The triplet min-

ing is done online by selecting the triplets that do not follow the rule given
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by eq. 4.2. We select the hard negative triplets where the anchor negative-

distance is less than the anchor-positive distance.

L(θ) =
N

∑
i

max(
∥∥ f (xa

i )− f (xp
i )
∥∥2

2 − ∥ f (xa
i )− f (xn

i )∥
2
2 + α, 0) (4.1)

In eq. 4.1, θ represents the network parameters, xa
i is the anchor sample, xp

i

the positive sample, and xn
i the negative sample for subject i. f (x) is the

DNN representation of the image x. In order for the training to be efficient

(to save computing time), only the triplets that verify eq. 4.2 rule are selected,

as other triplets will not improve the network performance.

∥∥ f (xa
i )− f (xp

i )
∥∥2

2 − ∥ f (xa
i )− f (xn

i )∥
2
2 + α > 0 (4.2)

This selection process allows for the training to run faster and be more effi-

cient because we will not need to back-propagate triplets that have little ef-

fect. If a triplet does not verify the inequality from eq. 4.2 then the considered

samples contain too little intra-class variance and a high inter-class variance.

As a result of such training, the network outputs a low-dimensional repre-

sentation of an input image, which consists of a normalized feature vector of

size 128. This representation can be leveraged to do either verification (one

to one comparisons) or identification (one to many).

The main target of this study is to understand the impact of the training

dataset on the performance. In order to be able to study the effect of the

database we first made a baseline system based on recommended parame-

ters from [SKP15]. We set the parameters as follows. The embedding size,

meaning the length of the representation, was set to 128. We decided to
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stop the training based on two criteria, either we reach 1 000 epochs or af-

ter 170 hours with the condition that results are stagnant. Each epoch con-

sisted of 250 batches. 20 subjects were uniformly sampled in each batch from

the dataset and 18 images per subject were also uniformly sampled form the

available images for each subject. If less than 18 images are available, we take

all available images. Because we are using the triplet loss function we need at

least 2 images per subject. Before the training we removed all subjects from

the dataset who have less than 2 images where DLIB successfully detected

a face. α is a margin used in the process of triplet selection and serves also

in separating the anchor form the negatives. α’s impact is further explained

in [SKP15]. It is set to 0.2 which constitutes a compromise between the com-

plexity of the triplet mining and the separation between the triplets. The

hardware configuration is as follows: an Intel core i7 7700k, 64 Go of DDR4

RAM, 1 TB SSD for storage and a NVIDIA Geforce GTX 1080Ti with 12 GB of

VRAM.

Each epoch of the training consists in optimizing the loss function 250 times

(once every batch). The batch training is done as follows:

1. Generate a batch by random sampling from the database.

2. Represent every image in the batch (forward propagation).

3. Select triplet verifying eq. 4.2. If no triplets are found, return to step 1.

Else compute the loss function.

4. Optimize the network parameters (backward propagation).

For the specified training parameters, the batch generation takes 0.02 sec-

onds. The forward propagation takes 0.4 seconds. The triplet selection, if
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enough triplets are found, takes 0.001 seconds and the backward propaga-

tion takes 0.3 seconds. Thus, the batch lasts for almost 0.7 seconds on av-

erage. However, if no triplets are found (for example due to not enough

variability in the training dataset) the processing time for the batch increases

considerably.

Figure 4.7 illustrates the evolution of the epoch time (250 x average batch

time) where there are not enough triplets. This training was done to study

the limits of the triplet selection process. We used a small dataset with 50

subjects with 4 000 images taken from the MOBIO database. In the beginning,

the model can not separate the dataset correctly, thus we find enough triplets

to optimize the network. As the network performance improves, it becomes

able to discern the identities. This results in less triplets verifying eq. 4.2.

The training process is stacked at step 1, trying different samples in order

to find the triplets it needs to compute the loss function. The process may

try thousands of configurations before finding hard-negative triplets. This

results in exponential increase of the training time. This made us decide to

add another condition to stop the training: if the training period exceeds one

week (170h) and the results are stagnant.

Experimental Results

In this section, we detail the performance of the DNN models we obtained by

training the architecture using different datasets on the LFW dataset and the

MOBIO dataset. We also compare the result of the DNN with a “classic” (not

DNN based) approach. For this purpose we have chosen the Direct Linear

Discriminant (DLDA) [YY01] based system, because it has a similar strat-

egy of building a compact image (face) representation model (at the training

phase) that we can use to project the new incoming faces in order to be able
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Figure 4.7: Illustration of the evolution of the epoch training
time using a low variability dataset originating from the MO-
BIO dataset.

to compare two face images.

Table 4.3: Our results on the LFW dataset reporting the influ-
ence of the training images compared with Google and CMU
results

Exps Preprocessing Training subjects Number Epochs Loss Accuracy
Dataset of images

Google FaceNet private 8 M 260 M - - 99.96%
CMU OpenFace FaceScrub 11k 600k - - 92.92

CASIA-WebFace
Exp.1 OpenFace FRGC 568 39328 700 0.06 77%
Exp.2 OpenFace FRGC 568 39328 1000 0.03 80%
Exp.3 Microsoft MS-celeb-1M 100k 8 M 1000 0.19 86%
Exp.4 OpenFace MS-celeb-1M 100k 4 M 1000 0.19 96.82%
Exp.5 OpenFace MS-celeb-1M 100k 8 M 1000 0.18 97.52%

Our goal is to obtain the best performance with the available datasets. We

achieve a pair matching accuracy of 97.6% on LFW using all of the available

images from the MS-Celeb-1M for training the DNN.

We use the preprocessing of OpenFace. As the preprocessing is based on

DLIB face detector, it is not able to detect faces in 58 images from LFW. As a
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fallback, we use images from the deep funnelled set of LFW in order to do

the verification tests.

We follow the 10-folds cross-validation protocol provided by LFW on the

view two. In which, 6 000 pair matching tests are split into 10 partitions. The

accuracy is defined as the mean value of correctly matched pairs divided by

the number of pairs in each of the 10 folds. The accuracy is defined in eq. 4.3

accuracy = mean(
Nbr o f correctly matched pairs f or f old k

Total Nbr o f pairs in f old k
) (4.3)

Table 4.3 summarizes the most interesting experiments we have done using

OpenFace. In Exp.1, we used the FRGC dataset, we stopped the training

process at 700 epochs because the training time became too long due to not

finding enough triplets satisfying the constraint defined in eq. 4.2. In Exp.2,

we tried to get better results using the same dataset by pushing the training

further. The loss on the training partition and the accuracy on the LFW were

both improved by 3 percentile. Nevertheless, the results were not convincing.

This made evident the need for bigger datasets. The biggest public dataset

that we found was MS-celeb-1M. This dataset was the core of the remaining

experiments. Microsoft provides a pre-aligned version as well as a raw ver-

sion of the dataset. In Exp.3 we used the pre-aligned version by Microsoft.

However, the preprocessing was not adequate to the input of the DNN. The

images were of varying sizes. After 1 000 epochs we obtained 86% accuracy

on LFW. The results are better than when using only FRGC as training data,

but still not at the level of the reported results in the literature. Thus we de-

cided to apply OpenFace alignment on the raw data. This resulted in better

overall performance, as shown in experiments 4 and 5. In Exp.4, only half

of the images were used, and at 1 000 epochs we obtained 96.82% accuracy

on LFW. When we used the whole dataset in Exp.5 we got 97.52% accuracy
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on LFW after 1 000 epochs. The performance only improved by less than

1 percentile, even when doubling the number of images used. We deduced

from both these experiments that the most important aspect is the variability

in the dataset. It is more beneficial to have more identities than to have more

samples per person as the limit for the intra-class variability is achieved fast.

We retained the model created in Exp 5 for the remaining tests. Further on

we will refer to it as OpenFace_best.

Performance on the MOBIO dataset

The MOBIO dataset is divided into 3 partitions: training, development and

evaluation. For the purpose of this work we did not use the training parti-

tion as we wanted to validate the model obtained from training on the MS-

celeb-1M. Table 4.4 details the results on MOBIO of our model with the best

performance on LFW (OpenFace_best). In the table we report the verifica-

tion performance on both still and automatic protocols. Both these protocols

are described further in [Bou16]. For the still protocol we used the still im-

ages provided in the framework of the ICB2013 challenge. For the automatic

protocol we used 3 and 10 frames from the videos. The frames were selected

uniformly from the videos, ie: for 3 frames we took the first, the middle, and

the last frame. The results that we obtained on MOBIO are equivalent if not

better than the commercial system studied in [Bou16]. To measure the perfor-

mance on MOBIO we used the HTER metric which is defined in section 3.5.

Table 4.4: Results of our OpenFace_best model on MOBIO.

Openface_best Eval Female (HTER) Eval Male (HTER)
Still 14.57% 6.43%

3 frames 10.04% 4.79%
10 frames 8.84% 3.99%
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Male, Still, HTER=6.43%

Male, 3 Frames, HTER=4.79%

Male, 10 frames, HTER=3.99%

Figure 4.8: DET curves of OpenFace on MOBIO.
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Table 4.5: Comparison of our results of the DNN and the DLDA
on MOBIO still images and LFW

System Training Dataset Subjects Images MOBIO LFW
Eval Female (HTER) Eval Male (HTER)

SudFrog_1 FRGC 568 39328 17.43% 10.9% 79.94%
OpenFace_1 FRGC 568 39328 21.87% 18.97% 80%

SudFrog_best Mobio train set + FRGC 100 4000 12.64% 7.68% 86%
OpenFace_best MS-celeb-1M 100K 10M 14.57% 6.43% 97.52%

The MOBIO dataset is biased towards males with females representing about

30%. We trained OpenFace on a gender independent database. However

we find relatively different results when comparing the performance be-

tween males and females. The same tendency appear in the systems studied

in [Bou16]. The best reported results are 9% on the eval female partition and

5.5% on the eval male partition when using 10 frames, whereas we got 8.8%

on the eval female partition and 4% HTER on the eval male. We can attribute

the difference in the performance to the poor performance of the face detec-

tor on the female images. OpenCV fails to detect the face in 80 female images

and only 19 in male images. This may be explained either by a bias in the

pretrained face detector module or by bad illumination in the female images.

We studied the impact of the size of the training data on the performance

in both cases of traditional DLDA approach using the SudFrog software and

the deep neural network architecture provided by OpenFace. We decided to

compare OpenFace to the DLDA approach because of fundamental similari-

ties. Both, triplet embeddings and DLDA try to reduce the intraclass distance

and enlarge the interclass distance. SudFrog is a face recognition system that

was developed in Institut Mines Telecom, Telecom SudParis2. It is based on

space reduction techniques. SudFrog does not do neither face detection nor

landmark detection. Moreover, SudFrog aims to construct an Euclidean pro-

jection space, similar to OpenFace. It must be provided with the eyes, nose

and mouth positions for it to do face recognition. For face detection and

2https://github.com/sudfrog/sudfrog
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landmark detection, we use a combination of OpenCV and DLIB. OpenCV

was used for face detection. DLIB was used for landmark detection. We

used the default detectors provided by the software (front_face.xml for face

detection and shape_predictor_68_face_landmarks.dat for landmark detec-

tion). In comparison, OpenFace uses DLIB both for face as well as landmark

detection. OpenCV is slower, but detects more faces than DLIB on the some-

how difficult MOBIO dataset. Using the same amount of data, SudFrog out-

shines the DNN. However, once we use the huge MS-celeb-1M dataset, the

positions are reversed. We can not train SudFrog with MS-celeb-1M dataset

as it is technically infeasible. The feature space becomes too huge for the

memory.

Final version of the DNN architecture: The final version used in the

SRE’19 multimedia submission follows the same approach as the initial DNN

model. However, we introduced the following modifications.

• The inception-v3 layers were replaced by inception-resnet-v1[Sze+17]

layers. Inception-resnet-v1 has a computational cost that is similar to

that of inception-v3 and allows for faster training.

• The triplet loss function was modified according to the equation eq. 4.4.

The modified version takes into account the cosine similarity between

the embeddings. To compensate for the added terms, α is changed from

0.2 to 0.6. The value 0.6 was chosen empirically.

• The size of the embeddings was changed from 128 real components to

512 by trial. The choice of the embedding size was carried out using

the LFW benchmark. We chose the size that gave the best accuracy on

LFW.
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where "." is the dot product. The Euclidean distance component and the cos-

distance have an overlap. We do not remove the overlapping components of

the loss function in order to give more importance to the distance between the

anchors and the negatives samples than the distance between the positives

and the negatives sampled. If we develop eq. 4.4 we obtain:
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The impact of the improvements to the DNN is not evident on the LFW

dataset, however on the AgeDB-30 benchmark and on the SRE’19 multi-

media development partition, the improvement in the performance is much

more visible. On the AgeDB-30 benchmark, the accuracy improved from 89%

to 97% as shown in Table 4.6. This shows that the improved architecture is

more robust to age variance than the initial version provided by the Open-

Face framework.

4.3 NIST SRE2019 submission

We used our face recognition pipeline to participate in the NIST SRE2019

multimedia challenge.
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Table 4.6: Biometric recognition performance of the studied
DNN architectures. The face detection is done using the Reti-
naFace face detector. Face landmark detection is carried out
using the DLIB implementation of ERT. The DNN is trained on
the cleaned version of MS-celeb-1M.

Accuracy
on LFW (%)

Accuracy
on AgeDB-30 (%)

EER on
SRE’19
multimedia DEV (%)

Initial version 99.32 89.00 11.20
Final version 99.80 97.00 4.36

The 2019 speaker recognition evaluation (SRE’19)3 [Sad+20] is part of an on-

going series of speaker recognition evaluations conducted by the US Na-

tional Institute of Standards and Technology (NIST) since 1996. They provide

a common test bed that enables the research community to explore promis-

ing new ideas in speaker recognition, and have a valuable impact to support

the community in their development of advanced technology incorporating

these ideas.

SRE’19 consisted of two separate activities. The first one was a leaderboard-

style challenge using Conversational Telephone Speech (CTS), for text-

independent speaker detection. Moreover, in addition to the regular audio-

only track, the SRE’19 introduced, for the first time, an audio-visual and

visual-only tracks, denoted as Multimedia track.

The audio-visual data for the multimedia challenge were extracted from the

unexposed portions of the Video Annotation for Speech Technology (VAST)

corpus, collected by the Linguistic Data Consortium (LDC).

We trained the face detector using the WIDER FACE dataset with the default

configuration described in [Den+19b]. As for the face embedding extractor,

3https://sre.nist.gov/
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we used the MS-celeb-1M dataset for training. After removing label noise us-

ing the DBSCAN clustering algorithm, the training dataset comprises 80 000

subjects with a total of 4 000 000 images.

For the enrolment, we select the frames provided by the manual annotations

given by National Institute of Standards and Technology (NIST). We then

crop the frame to the bounding box specified in the metadata. The face is

then detected inside the provided bounding box. DLIB [Kin09a] landmark

detector is used to obtain the face landmarks. We use the outer eyes points

and the nose tip in order to align the face to a predefined layout. The aligned

image is resized to 96*96 pixel rectangle and fed to the face embedding ex-

tractor. The result is a 512 component face embedding per frame.

As for the test videos, we begin the processing by extracting one frame per

0.5 seconds from each video. Then we apply the RetinaFace face detector to

each extracted frame to get all the faces present in the frame. We then run the

landmark detector on each bounding box found by the face detector. After

aligning and resizing the faces, we extract the embedding of each face. In

order to compute a single score for each trial involving an enrollment video

and a test video, we compute the maximum of the cosine similarity scores ob-

tained by comparing all of the enrollment embeddings and the embeddings

of the faces found in the video. The scores are not post-processed.

Figure 4.9 reports the performance of the submitted face recognition system

on the dev and test partitions of the multimedia challenge. The curves show

that the submitted system performs better on the test set than on the dev

set. This might be due to the higher number of tests in the test partition in

comparison with the dev partition. In fact, the number of tests in the test

partition is 12 times higher. The difference in the number of tests results also

in higher error margin for the dev set. For example, the error margin at the
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Figure 4.9: DET curve performance of the submitted face recog-
nition system on the DEV and TEST partitions of the multime-
dia challenge.

EER is 1.89% for dev set and 0.55% for the test set.

The scores provided by our face recognition system are computed using the

cosine distance. These scores are suitable for the EER metric. However, they

cannot be used to compute the actual cost (act_C) which is the primary metric

for the SRE’19 challenge. The act_C metric is based on the log likelihood ratio

(LLR) scores. The scores were not post-processed (no Z-norm, T-norm etc...),

but were calibrated using the bosaris toolkit [BV11]. The score calibration is
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done in the same step as the fusion. The multimedia challenge is an audio-

visual task. The face recognition scores need to be fused with the speaker

recognition scores.

Among the modifications applied to the framework, the use of the Reti-

naFace face detector resulted in the most significant improvement in perfor-

mance on the development set. The quality of the detected face landmarks

depends significantly on the correctness of the bounding box given by the

face detector. Using the correct face landmark results in better face alignment

and more robust templates. It is worth noting that this detector, RetinaFace,

was also used by other submissions, which shows its success in the task of

face detection.

Although the majority of the submissions to the challenge used CNN models

for face recognition, a system submitted by one team used TDNN for face

recognition, which gave 19.84% EER on the development set. This shows

that CNN is one of the better-suited architectures for face recognition.

We also note that applying whitening and using PLDA for scoring does not

improve the recognition performance, at least in our submission.

Finally, applying enrollment filtering using some quality measures is crucial

to the performance of the face recognition system. If the enrollment refer-

ence is of bad quality, the comparison against good test references will result

in lower similarity scores and, as a result, impacts the decision threshold.

Some participants implemented enrollment provisioning procedures where

they locate the target face in frames other than the keyframes given by the

metadata to obtain a better enrollment reference. However, in our submis-

sion, we only used the keyframes of the enrollment videos. This helped us
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obtain the best performance in the EER metric between the 14 submitted sys-

tems to the SRE’19 multimedia challenge.

4.4 Implementation in H2020 European Projects

4.4.1 The SpeechXRays project

The H2020 SpeechXRays project is a European project that took place be-

tween 2015 and 2019. Its goal is to develop and test in real-life environ-

ments a user recognition platform based on audio-visual identity verifica-

tion. Under the framework of the SpeechXRays project, a cancelable face

recognition prototype was developed and implemented. The project also

provides classical biometrics using state-of-the-art Deep Convolutional Neu-

ral Network for face recognition coupled with well-established techniques

for speaker recognition. The platform includes anti-spoofing by doing live-

ness detection and prompting the user a different sentence at each access at-

tempt. The system also provides cancelable face biometrics based on binary

embedding shuffling and using a second factor in the form of a password

or a Secure Element4. The SpeechXRays platform provides two types of face

recognition systems; the first method is based on linear space reduction tech-

nique DLDA [YY01], the second method is a DNN based face recognition

system [HPD18] inspired by the FaceNet architecture [SKP15].

The DNN module (which constitutes the default component of the project

face recognition system) outputs a low dimensional representation of an in-

put image, which consists of a normalized Euclidean feature vector of size

128. The resultant embeddings are compared using Euclidean distance. As

4A Secure Element (SE) is a tamper-resistant combination of hardware, software, and
protocols capable of embedding smart card-grade applications. Typical implementations
include UICC, embedded Secure Element, and removable memory cards.
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for the cancelable version, it creates binary templates of 2048 bits and uses

the hamming distance for comparison.

The face biometric module was delivered by Télécom SudParis (TSP) and

came in different versions. The very first version, delivered on June 2017

and denoted as SudFrog, was based on Gabor features, Linear Discrimi-

nant Analysis, and Direct Linear Discriminant Analysis, which improved

cross-class discrimination. We denote them in the SpeechXRays documents

as TSP-DNN face biometric module. Different versions of the initial sys-

tem were proposed. The main releases are SpeechXRays-DNN 4.0 delivered

to SIVECO on August, 2018, and a new improved version of this system

SpeechXRaysDNN 4.1 delivered to SIVECO on October, 2018. The TSP-DNN

face biometric modules are based on an OpenFace implementation of the

FaceNet system. It is inspired by the inception network.

The latest version of TSP-DNN system achieves 98.9%. This is a huge im-

provement over the previous SudFrog system that gave 80% on this same

LFW database.

To facilitate face biometrics solution RealEyes5 has provided different ver-

sions of a Face Detection and Face Landmark Alignment SDK. The SDK is

provided for OSX, Windows, Android, and iOS operating systems, in both

32 and 64 bit versions. The first version of the SDK is based on a variation

of a Viola-Jones type Haar features based face detector. It is a state-of-the-

art face detector that balances well between speed, accuracy and algorithmic

complexity. Its main drawback is inability to detect non-frontal faces. For

landmark tracking we have used an implementation of an ERT (Ensemble

of Regression Trees) based landmark tracking method. It trades off accuracy

5One of the consortium members
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over speed and has been shown to have a very good performance on process-

ing power constrained hardware, such as mobile devices. The second version

of the SDK that was integrated in the final version of the SpeechXRays solu-

tion, has had two major upgrades, both aimed at improvements in accuracy

of face detection and landmark tracking. Its face detector is replaced with a

FastCNN method based on deep convolutional neural networks and trained

on a much larger training dataset, consisting of a mix of RealEyes propri-

etary and third-party datasets. Landmark tracking algorithm is upgraded to

an SDM (Supervised Descent Method) based algorithm, which is capable of

achieving higher landmark fitting accuracy.

4.4.2 Empathic Project

We denote the Empathic Project implementation of our face recognition sys-

tem as IMT-DNN. The IMT-DNN face biometric module is based on the

OpenFace [ALS16] implementation of the FaceNet system. The initial im-

plementation of this module was trained on the the MS-celeb-1M dataset as

it was provided. The Ms-celeb-1M dataset contains a big portion of misla-

belling because it was generated automatically using web crawlers. In order

to improve the performance, we cleaned the database using DBSCAN clus-

tering algorithm.

4.4.3 Version 1

The module leverages the following technologies:

• Java as the programming language.

• SQLite database for session management.

• Libvlc for decoding the h264 video stream.
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Figure 4.10: Final EMPATHIC system architecture.

• OpenCV for image processing and executing the neural networks (face

detection, landmark detection, Euclidean representation extraction).

• Apache webserver to serve the endpoints of the Rest APi.

The biometric authentication module implements a REST API which the Web

UI connects to in order to authenticate the users. Due to difficulties in imple-

menting the media server which manages the video streams we implemented

a second version of our face recognition system.

4.4.4 Version 2

The module has two input channels:

• ActiveMQ Message Broker queue.
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• Socket: Through these connections the module receives the image

frames.

As for the output, for every input image frame processed, the module sends a

JSON message to the AMQ message broker (2DM queue). It is the role of the

Dialogue Manager to decide how to act based on the information provided

by the biometric authentication module. Finally, it should be said that the

module uses an enrollment protocol in order to distinguish between users

and to verify them. The protocol is as follows:

1. When receiving a start message from messaging queue, get user ID.

2. Check if there is a template enrolled using the user ID. If False then go

to step 3 (we are in the first session of the user) else: Go to step 4 (we

are not in the first session).

3. If there is no template enrolled, enroll the user using the first 5 frames

that contains a face. Following this step the templates will be created,

stored and able to be used for further verifications.

4. Check the presence of the enrolled user and send a message for every

image frame processed.

Due to privacy issues and regulations as the Empathic project may contain

sensitve medical data, it was decided to use the face recognition system as a

means to check for the presence of the user in video feed and to check that it

is the same user connecting using the same account across sessions.

During the testing of the final version of the system, the biometric module

successfully enrolled and verified 78 elderly users across multiple sessions.

There were 31 Spanish, 29 French and 18 Norwegian users. According to the



4.5. Conclusions 67

feedback from the users, they did not have any complaints about the face

biometric module.

4.5 Conclusions

In this chapter, we presented our face recognition system pipeline. The sys-

tem is built upon the OpenFace framework, to which we introduced several

modifications to obtain better performance as it was implemented in two Eu-

ropean projects and used in a submission to the NIST SRE2019 multimedia

challenge.

We also detail how to obtain a state-of-the-art face recognition system based

on publicly available software and using public datasets. We try to give the

most possible details to allow for the reproducibility of the results. When

CMU implemented OpenFace, reproduciblity was one of their main goals.

Thus we were able to reproduce their results and improve upon them. How-

ever, we couldn’t get the same results as Google who used huge proprietary

datasets and a proprietary face alignment system. Our OpenFace_best DNN

model gives good verification results on both evaluation datasets, MOBIO

and LFW. From the results that we obtained we can infer that the perfor-

mance bottleneck lays in the preprocessing, notably the face detection phase.

Given enough data, the DNN is unmatched. Nevertheless, in situations

where the databases are not available classical approaches give better per-

formance.

In order to improve our results, we proceeded to remove the misalbeling

noise from the MS-celeb-1M which gave the biggest improvement in perfor-

mance on our validation protocols.





69

5 Binarisation

5.1 Introduction

Face is one of the most widely used biometric characteristics. With the avail-

ability of huge face recognition datasets [Guo+16; HLM14] and growing com-

putational power, face recognition performance keeps improving [Eri+19;

SKP15; ALS16; Liu+17; Den+19a]. Face recognition has seen vast adoption

thanks to its accuracy and ease of use. From Smartphones and computers

to CCTV cameras and surveillance, face recognition is present everywhere.

This widespread presence raises privacy and security concerns. A solution

to these concerns is to employ biometric template protection schemes such

as crypto-systems and cancelable biometrics. However, to protect the face

templates, most of the techniques employed need a binary representation of

the face. In addition, most face verification systems employ continuous rep-

resentations, which are less suitable for template protection schemes.

Crypto-biometric schemes such as fuzzy commitment require binary sources.

This chapter introduces a novel approach to binarising biometric data using

Deep Neural Networks (DNN) applied to facial biometric data. The binary

representations are evaluated on the MOBIO and the Labeled Faces in the

Wild (LFW) databases, where we measure their biometric recognition per-

formance and entropy. The proposed binary embeddings give a state-of-

the-art performance on both databases with almost negligible degradation



70 Chapter 5. Binarisation

compared to the baseline.

The representations’ length can be controlled. Using a pre-trained CNN and

training the model on a cleaned version of the MS-celeb-1M database, we

obtain binary representations of length 4 096 bits and 3 300 bits of entropy.

The extracted representations have high entropy and are long enough to be

used in crypto-biometric systems such as fuzzy commitment.

Furthermore, the proposed approach is data-driven and constitutes a locality

preserving hashing that can be leveraged for data clustering and similarity

searches. As a use-case of the binary representations, we create a cancelable

system based on the binary embeddings using a shuffling transformation

with a randomization key as a second factor.

The major contribution presented in this chapter is introducing a data-driven

template binarisation method using Deep Neural Networks, which does not

degrade the performance of the baseline system. Furthermore, we seek to

obtain long binary representations with high entropy to be used in crypto-

biometric key regeneration schemes.

The proposed binarisation method has four main advantages:

• The degradation in the recognition performance caused by the binari-

sation is negligible compared to the baseline system.

• The binarisation method can be applied to any type of real representa-

tion.

• The length of the binary representation can be controlled. The binari-

sation method provides arbitrary length presentations that are limited

only by the quality of the training database (size, noise). This allows
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for flexible representations that can be adapted to multiple applica-

tions, such as crypto-biometric key regeneration, fuzzy commitment,

and fuzzy extraction schemes.

• The binarisation method keeps the topology of the original space,

which allows for the use of the binary representation in database

searches and clustering.

The chapter is organized as follows: In Section 5.2, we explain the different

approaches we followed to extract binary embeddings directly using Deep

Neural Networks (DNN). In Section 5.3, we analyze the performance of the

binary representations in terms of biometric recognition and entropy. In Sec-

tion 5.4, we study a use-case for the binary embeddings consisting in creating

a cancelable biometric system using a shuffling transformation as a protec-

tion scheme. In Section 5.5, we describe a cancelable system that we imple-

mented in the H2020 SpeechXRays project based on the same template pro-

tection scheme. In Section 5.6, we compare both implementation to show the

importance of the performance of the binary representations on the security

of the cancelable system before concluding in Section 5.7.

5.2 Proposed Face Binarisation Method

This study uses deep neural networks to extract binary biometric represen-

tations from face images. This way, we take advantage of data-driven ap-

proaches to generate an optimized binary representation.

Our binarisation method consists of training an end-to-end binary embed-

ding extractor directly from aligned face images. Thus, the binarisation layer

considers the loss function and is optimized for the task. We aim to obtain

locality-preserving binary representations. The locality preserving property
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is defined by eq. 5.1 where a, p and n are three random points from the origi-

nal space and f (.) is the projection function. The triplet loss function (shown

in eq. 5.2 is suitable for this task as the optimization criterion is equivalent to

eq. 5.1. To this end, we based our DNN on the FaceNet [SKP15] architecture

which uses the triplet loss function for the training.

d(a, p) < d(a, n) ⇒ ∥ f (a)− f (p)∥ < ∥ f (a)− f (n)∥ (5.1)

In the following subsections, we present the baseline face recognition system

and describe the approaches taken to binarise the biometric data.

5.2.1 Baseline Face Recognition System

Our goal is to obtain discriminating binary representations from faces that do

not degrade the performance of the baseline system. The proposed binarisa-

tion method transforms Euclidean face embeddings into binary embeddings

of different lengths. The Euclidean embeddings are constructed using a Deep

Neural Network based on FaceNet [SKP15]. In [HPD18] we describe in de-

tail the methodology we followed to create the face recognition system based

on the OpenFace implementation [ALS16]. We trained a convolutional DNN

using the triplet loss function. The triplet loss function, given by eq. 5.2,

takes a triplet comprised of an anchor xa
i and a positive sample xp

i from the

same subject, and a negative sample xn
i selected randomly from the rest of the

dataset. The training goal is to bring closer the anchor and positive samples

and distance the negative sample using the margin α.

L =
N

∑
i

max (0,
∥∥ f (xa

i )− f (xp
i )
∥∥2

2 − ∥ f (xa
i )− f (xn

i )∥
2
2 + α) (5.2)
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The DNN architecture for training the face projection space is composed of 24

layers and 3 733 968 parameters. The training phase aims to obtain the best

representation that separates the positive identities from negative ones using

the triplet loss function. After the training phase, the network outputs a low

dimensional representation of an input image consisting of a normalized Eu-

clidean feature vector of size 128. Further details about the DNN architecture

are provided by Table 5.1.

Table 5.1: Details of the nn4.small2 Inception architecture
which is a version of the nn4 model from FaceNet [SKP15]
hand-tuned by [ALS16] to have less parameters. Each row
is a layer in the neural network and the last six columns in-
dicate the parameters of pooling or the inception layers from
[Sze+15]. This model is almost identical to the one described
in [Sze+15].The pooling is always 3×3 (aside from the final av-
erage pooling) and in parallel to the convolutional modules in-
side each Inception module. If there is a dimensionality reduc-
tion after the pooling it is denoted with p. 1×1, 3×3, and 5×5
pooling are then concatenated to get the final output.

type output size #1×1 #3×3
reduce #3×3 #5×5

reduce #5×5 pool proj

conv1 (7 × 7 × 3, 2) 48 × 48 × 64
max pool + norm 24 × 24 × 64 m 3 × 3, 2
inception (2) 24 × 24 × 192 64 192
norm + max pool 12 × 12 × 192 m 3 × 3, 2
inception (3a) 12 × 12 × 256 64 96 128 16 32 m, 32p
inception (3b) 12 × 12 × 320 64 96 128 32 64 l2 , 64p
inception (3c) 6 × 6 × 640 128 256,2 32 64,2 m 3 × 3, 2
inception (4a) 6 × 6 × 640 256 96 192 32 64 l2, 128p
inception (4e) 3 × 3 × 1024 160 256,2 64 128,2 m 3 × 3, 2
inception (5a) 3 × 3 × 736 256 96 384 l2, 96p
inception (5b) 3 × 3 × 736 256 96 384 m, 96p
avg pool 736
linear (fc) 128
l2 normalization 128
linear N
binarisation N
linear 128
l2 normalization 128
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Figure 5.1: Pipeline of the baseline face recognition system.

Figure 5.1 shows the pipeline of the face recognition system. First, the face

is detected and aligned according to a predefined template. Afterward, the

aligned face is processed by the DNN in order to extract a Euclidean repre-

sentation. This Euclidean representation constitutes the template that defines

the user either for enrolment or verification.

Face alignment consists of three steps: face detection, landmark detection,

affine transformation, and face cropping. The face detection is carried out

using a deep convolutional neural network provided by OpenCV based on

Single-Shot-Multibox Detector (SSD) [Liu+16] and uses ResNet-10 architec-

ture as a backbone. This model gives state-of-the-art performance with a low

computational overhead. The image needs to be resized to 300x300 pixels to

use the face detector. The image is provided in RGB format after subtract-

ing the mean from each value. The output of the SSD detector is a bounding

box. Given the face-bounding box, we use an implementation of [KS14b]

provided by DLIB [Kin09b] to detect the facial landmarks. Further details on
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the face alignment are provided in [HMD21].

Finally, the Euclidean embedding extracted from the aligned face using DNN

can be used for face recognition either in identification or verification scenar-

ios. This work aims to binarise the Euclidean embeddings with the least

amount of degradation, which we explain in the next section.

5.2.2 Locality Preserving Binary Face Representations using

Auto-encoders

Figure 5.2 shows the architecture of the proposed approaches. Both ap-

proaches (a) and (b) follow the same architecture. The difference lies in how

the training data is used. In approaches (a) and (b), we opted to use an auto-

encoder on top of the deep convolutional neural network (FaceNet based) to

obtain the binary code.

The idea was to use an encoder to project the Euclidean representation that

we get from the DNN onto another vector. This vector has the same size as

the intended binary representation. Afterward, we apply a custom binarisa-

tion layer on the vector and finally use a decoder to get back to the Euclidean

representation.

The binarisation layer is defined as follows. In this layer, we apply a thresh-

old to each input component. The output of this layer is defined in eq. 5.3.

The input is compared to a threshold that is specified beforehand. The choice

of the threshold is based on the type of the previous layer activation function.

In our case, we chose a threshold of "0" as the previous activation function is

the hyperbolic tangent. This layer does not have trainable parameters. In the

back-propagation phase of the training, this layer is treated as the identity
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function, and its gradient is equal to 1.

F(input) =


0, if input ≤ threshold

1, otherwise
(5.3)

This idea has two benefits. First, we get more control over the length of the

binary representation (we only need to modify the auto-encoder). The sec-

ond benefit is that we get a continuous output from the auto-encoder, allow-

ing us to use standard optimization methods in conjunction with the triplet

loss criteria. Figure 5.2 illustrates the example where we use a code length

of P. First, the image is fed to the DNN, and we extract a Euclidean repre-

sentation of size 128. Next, encode it on a P-component real vector, which

is, in turn, binarised. Then we reconstruct the initial Euclidean representa-

tion. The architecture described in Figure 5.2 is only used during the training

phase. After training, we remove the decoder, and obtain a binary code given

a face image.
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Figure 5.2: Block diagram of the binarisation method used in
approaches approach (a) and (b). In approach (a), the whole
model is trained from scratch. In approach (b) the FaceNet
CNN is pre-trained using the MS-celeb-1M.
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To put this idea into practice, we first needed to find an auto-encoder ar-

chitecture suitable for the output. In other words, we sought to find the

hyper-parameters of the auto-encoder (number of hidden layers, width of

the layers, and the activation functions) that result in the least degradation

in the recognition performance compared to the original Euclidean represen-

tation. In this step, we did not use the binarisation layer. As the binarisa-

tion step generally degrades the performance, we would not be able to say

whether the performance was degraded due to the auto-encoder or the bi-

narisation step. The architecture that resulted in the least degradation was

constructed using three layers. The encoder consisted of two linear layers

with a hyperbolic tangent as an activation function. We used a single layer

with a ReLU activation function for the decoder. The auto-encoder choice

was based on the difference between the auto-encoder performance and the

baseline performance of the original DNN architecture, which is 97.52% on

the LFW. Once the auto-encoder architecture is set, we introduce the binari-

sation layer between the encoder and the decoder.

The difference between approach (a) and approach (b) is that in (a), we train

the whole architecture from scratch, while in (b), we use a pre-trained model

on MS-celeb-1m. This model is described in [HPD18]. Compared to the ap-

proach (a), where the training is done from scratch, it is much faster for the

DNN to converge towards good results. The loss of the models constructed

using approach (a) stabilizes around 1 000 epochs compared to 100 epochs

for models constructed using approach (b).
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5.3 Experimental Performance of the Binary Rep-

resentations

In this section, we present the biometric performance of the binary represen-

tations. We evaluate the performance on the LFW and the MOBIO databases

using the accuracy, as a common evaluation metric, computed using the 10-

fold cross-validation protocol.

We evaluate the recognition performance and the entropy of the models. As

the goal of the work is to binarise the biometric samples to be suitable for

biometric crypto-systems and biometric protection schemes, the binary rep-

resentations should have high entropy and good recognition performance.

In approach (a), we train the network, shown in Figure 5.2, from scratch on

the MS-celeb-1M dataset using the triplet loss function. We report in Table 5.2

the performance of this approach for various lengths of the binary represen-

tations. The training was carried out for 1 000 epochs. We note that the best

performance on LFW is obtained with 512-bit representations. On the other

hand, 512-bit representations provide the best performance on the MOBIO

dataset. We attribute that to the overlap of the original MS-celeb-1M dataset

with the LFW dataset. As the representation length grows, the model overfits

to MS-celeb-1M resulting in worse performance on MOBIO.

When the length of the embeddings reaches 4 096 bits, the recognition perfor-

mance decreases dramatically. On LFW, the accuracy plummets from 93% to

81% compared to representation with a length of 2 048. The performance

degradation is more accentuated on the MOBIO dataset, where the error

reaches almost 50%. We attribute the cause of the degradation when using

4 096-bit embeddings to the loss of information in the training phase of the

neural network due to the thresholding process. The information propagated
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backward is not enough to optimize the system’s parameters. The number of

trainable parameters in the auto-encoder evolves exponentially from 33 024

parameters for representations with a length of 128 bits to 1 056 768 parame-

ters for the 4 096-bit representations.

Table 5.2: Impact of the length of the binary representations on
the biometric performance of approach (a): Training the Auto-
encoder using Triplet Loss from scratch. The baseline system is
the system used in [HPD18]. The results in the second row (row
’128*’) are obtained by applying a median binarisation on the
output of the CNN used in [HPD18]. The maximum standard
deviation (std) on LFW is around 1%. The maximum std on
MOBIO is around 0.1%.

Length Accuracy
on LFW %

Accuracy on
Mobio %

baseline system 97.52 90.58
128* (median) 89.32 79.74
128 91.73 82.50
256 93.18 83.50
512 94.12 84.23
1024 93.62 81.46
2048 93.07 79.46
4096 81.13 53.60

Table 5.3: Entropy of the representations created using ap-
proach (a). The entropy was measured using 5M samples from
MS-celeb-1M. p(x = 1) is the probability of a bit is equal to 1.

Length p(x = 1) Entropy
128 0.487 98.26
256 0.532 113.87
512 0.514 163.4
1024 0.496 116.65
2048 0.511 143.92
4096 0.503 49.87

Studying the biometric performance of the binary representation alone is not

enough, especially where we are trying to have long representations. Ap-

pending a fixed portion to all the representations will not degrade the recog-

nition performance of the system. However, as our primary goal is to obtain
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Figure 5.3: DET curves of the Eval male partition of the MOBIO
database using the standard protocol [Bou16]. The training of
the models is done using the MS-celeb-1M. The training is done
from scratch on the original version of MS-celeb-1M following
approach (a).
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a long binary representation, we need to study the entropy of the represen-

tations.

In information theory, entropy is a measure of the amount of uncertainty or

randomness in a system. It is a key concept in the field of information theory,

which was developed in the 1940s by Claude Shannon in order to understand

the limits of communication and information storage.

It is defined as:

H = −∑(p(x)× log(p(x))) (5.4)

where H is the Shannon entropy, p(x) is the probability of outcome x, and

the sum is taken over all possible outcomes x. One of the most important

applications of entropy in information theory is in the field of security and

cryptography. In these fields, entropy is used to measure the strength of

a password, the randomness of a key, or the security of a communication

channel.

For example, when choosing a password, it is important to select a password

that is difficult for an attacker to guess. One way to measure the difficulty

of a password is to calculate its entropy, or the amount of uncertainty or ran-

domness it contains. A password with high entropy is more secure, because

it is less likely to be guessed by an attacker.

Similarly, when generating a key for encryption, it is important to select a

key that is random and has high entropy. A key with high entropy is more

secure, because it is less likely to be predicted by an attacker.

Thus, we decided Shannon entropy to measure the performance of the bi-

nary representations, as the main goal of the thesis is crypto-biometric key

regeneration.
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The entropy is measured on 5 million samples from MS-celeb-1M. We use

Monte Carlo random sampling in order to compute the entropy. From the 5M

samples, we select 500k samples randomly and measure the entropy based

on those 500k samples. This step is repeated for 1 000 iterations. The entropy

provided in the tables is the average of the 1 000 iterations.

We report in Table 5.3 the entropy of the binary representations according to

their length. Presentations of length 512 provide the highest entropy with 163

bits. On the other hand, embeddings of length 4 096 give the lowest value for

entropy which is consistent with their biometric recognition performance.

The results of the approach (a), especially the low entropy, led us to use the

pre-trained face recognition models instead of training from scratch. Ta-

ble 5.4 reports the performance of the system when we use a pre-trained

CNN. Using a pre-trained CNN significantly reduces the degradation, espe-

cially for embeddings with 4 096 bits. In addition, the pre-training reduces

the loss of information introduced by the auto-encoder. Using a pre-trained

model on the cleaned version of MS-celeb-1M and adding the auto-encoder

previously discussed resulted in better biometric verification performance

compared to training the model from scratch. The pre-trained CNN is the

FaceNet model trained on the same dataset as the auto-encoder. So, when

we present the performance of the models trained on the original/cleaned

version of MS-celeb-1M, the pre-trained CNN is trained separately on the

same set as the whole module.

We report the entropy of the binary representations obtained using an auto-

encoder with a pre-trained CNN in Table 5.5. For the version trained on the

original MS-celeb-1M, we see that the entropy of the keys reaches its maxi-

mum of 260 for representations of size 1 024. Besides, the p(x = 1) is around
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0.5 (except for length 4 096), which shows that many bits of the representa-

tions are constant. In addition, when we use the cleaned training database for

training the system, we see that entropy improves significantly, in particular

when the length of the representation exceeds 512 bits.

To estimate the degradation of the biometric performance introduced by the

binarisation, we compare the performance of the approach (a) to the system

presented in [HPD18]. For approach (b), we compare the performance of the

binarised embeddings to the pre-trained CNN that was used. Approach (a)

shows higher degradation in the performance, from 97.53% to 94.12% accu-

racy on LFW and from 90.58% accuracy on MOBIO to 84.23%. The degrada-

tion is more pronounced on the MOBIO database due to bias in the original

version of MS-celeb-1M towards the LFW dataset.

Table 5.4: Impact of the length of the binary representation
on the biometric recognition performance of approach (b) (Us-
ing a pre-trained CNN with an auto-encoder). Values in bold
are given by models trained using the cleaned version MS-
celeb-1M. The first row is provided to show the degradation in
recognition performance between the initial system (Euclidean
embeddings) and the binarised embeddings. By ’pre-trained
CNN’, we denote the initial OpenFace DNN. The results in the
second row (row ’128*’) are obtained by applying a median bi-
narisation on the output of the pre-trained CNN.

Length Accuracy
on LFW %

Accuracy
on MOBIO %

Pretrained CNN 97.52 99.22 90.58 98.93
128*(median) 89.32 93.22 79.74 90.15
128 94.88 97.30 81.31 95.27
256 95.37 97.50 87.62 97.84
512 95.85 98.80 87.11 98.28
1024 96.32 99.12 89.35 98.87
2048 95.06 99.00 85.60 98.58
4096 95.15 99.00 80.12 98.90

As for approach (b), we present two cases. The first case is when the pre-

trained CNN and the auto-encoder are trained on the original MS-celeb-1M.
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Table 5.5: Entropy of the representations created using the ap-
proach (b). The entropy was measured using 5M samples from
MS-celeb-1M. p(x = 1) is the probability of a bit being equal to
1. Values in bold are given by models trained using the cleaned
version MS-celeb-1M.

Length p(x = 1) Entropy
128 0.497 | 0.489 112.22 | 116.20
256 0.486 | 0.481 205.67 | 233.59
512 0.493 | 0.482 252.01 | 473.74

1024 0.506 | 0.454 261.29 | 944.24
2048 0.498 | 0.315 223.99 | 1679.25
4096 0.826 | 0.308 179.08 | 3349.47

In this case, as shown in Table 5.4, the accuracy on LFW is decreased by about

1% to 2% compared to the baseline. On the other hand, the accuracy on the

MOBIO dataset improved compared to the performance of approach (a). We

attribute the difference of behaviour of the system to the overlap between the

training and LFW databases. However, when the training is carried out on

the cleaned database, the degradation on both datasets is lower than 1%. On

the LFW database, we obtain 99.12% accuracy using the binary representa-

tions, whereas we get 99.22% accuracy using the baseline system. The same

applies to the MOBIO database, where we get 98.9% accuracy using the bi-

nary representations, compared to an accuracy of 98.93% with the baseline

system. This shows that our binarisation methods are highly dependent on

the quality of the training data. By the quality of the training data, we refer

to the level of the noise, the mislabelling, the quality of the images, and the

size of the database. If we have little data, it will result in low entropy of the

representations. The mislabelling and the noise will also reduce the system’s

accuracy and lower the entropy of the representations at the same time.

As shown in Table 5.5, the entropy of the representations depends on the

quality of the training dataset (non-cleaned/cleaned). For the non-cleaned

version, representations with lengths longer than 256 bits have no further
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Figure 5.4: DET curves of the Eval male partition of the MOBIO
database using the standard protocol [Bou16]. The training of
the models is done using the MS-celeb-1M. The training is done
using a pre-trained CNN on the original version of MS-celeb-
1M following approach (b).
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Figure 5.5: DET curves of the Eval male partition of the MOBIO
database using the standard protocol [Bou16]. The training of
the models is done using the MS-celeb-1M. The training is done
using a pre-trained CNN on the cleaned version of MS-celeb-
1M following approach (b).

useful information. As for the cleaned version, this behaviour appears when

we exceed the length of 4 096 bits. The proposed auto-encoder can provide

longer representations, but their real length, which is shown through their

entropy, is limited.

Finally, in both approaches (a) and (b), the performance is better than bina-

rising simply using the median as described in [Hma+20]. Moreover, our

method has the advantage of providing arbitrary length presentations, lim-

ited only by the quality of the training dataset. The representation length can
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thus be adapted to the sensitivity of the application. We present in Table 5.6

a comparison between our proposed approach and some classical binarisa-

tion methods. These classical methods were presented in [Dro+18; LT13] and

benchmarked on the AR and FERET datasets. We followed the proposed ap-

proach presented in [Dro+18] for binarising the output of the CNN by quan-

tizing the feature space and applying an encoding to the codebook obtained

in the quantization step. We follow the same processing chain presented

in [Dro+18] but we use our DNN features as input for the binarisation meth-

ods. The binarisation methods that we re-implemented are :

• Direct Binary Represenation (DBR), where the decimal values from the

quantization are directly convected into their binary representations.

• Binary Reflected Gray Code (BRGC), similar to the DBR method, the

decimal values are encoded directly to binary format using their BRGC

representations.

• Linearly Separable SubCode (LSSC) [LT13], an encoding method that

aims to keep the distance from the decimal space to the binary space.

• Sparse, in this scheme which is similar to one-hot encoding, the number

of encoded bits per real value is equal to the number of quantization

intervals, and only one bit is set to 1 per encoding.

We followed an equal-width quantization approach where the feature space

is divided into intervals of the same size.

In our comparison, we used the same output lengths for each of the systems

as in [Dro+18]. Furthermore, we also adapted the schemes to obtain 1 024

bits for all the methods, mainly by changing the number of quantization in-

tervals. For example, for DBR to obtain representations with 1 024 bits, we

used 256 quantization intervals to obtain a DBR representation on 8 bits for
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each real value. BRGC, LSSC, and Sparse were quantized over 256, 9, and 8

intervals, respectively.

As shown in Table 5.6, our approach gives better recognition performance

than the classical methods. Furthermore, the entropy of our approach is

higher than the classical approaches presented. For example, LSSC shows

the best performance among the studied classical binarisation approaches

with 98.62% accuracy on LFW compared to an original baseline of 99.2%.

Thus, the recognition degradation of this approach is minor. However, it

provides less than half the entropy provided by our binarisation approach.

In addition, some methods show significant degradation in the performance

when using longer representations (such as DBR) and, as such, limiting the

length of the representation. BRGC and Sparse, and especially DBR suffer

from degradation in performance when increasing the length of the repre-

sentations. We attribute the degradation in performance for DBR to two fac-

tors, first, the high number of quantization intervals; second, the fact the

DBR code does not conserve distances as opposed to LSSC and BGRC. On

the other hand, our method keeps the system’s performance even with much

longer representations as we do not need to change the number of quantiza-

tion intervals by increasing the number of neurons in the bottleneck layer in

the auto-encoder; we can increase the length of the binary representation.

In the following section, we provide a use-case of the binary representations

consisting of a cancelable face verification system.

5.4 Application to Cancelable Biometrics

Biometrics systems are strongly associated with identity, and therefore, bio-

metric recognition creates a strong link between the user’s identity and the
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Table 5.6: Performance of the classical binarisation methods on
the LFW dataset. The binarisation methods are applied to the
output of our version of OpenFace CNN trained on the cleaned
version of MS-celeb-1M. The entropy of the methods is com-
puted using the same approach presented previously.

Encoding Length (bits) Accuracy on
LFW (%) Entropy

Euclidean
representation
(OpenFace)

128 floats 99.22 ∼

DBR 256 97.28 253.23
1024 84.25 650.50

BRGC 256 97.37 146.04
1024 96.17 561.74

LSSC 348 97.38 148.60
1024 98.62 409.03

Sparse 512 96.93 275.31
1024 94.35 418.67

Ours 1024 99.12 944.24

authenticator. However, many privacy concerns are being raised about bio-

metrics. Since biometric characteristics are permanently associated with the

person, they cannot be replaced in case of compromise. This lack of revoca-

bility is a serious issue for user authentication systems. Moreover, biometric

templates originating from the same biometric characteristics stored in dif-

ferent databases are similar. Therefore, biometrics lack diversity, and two

biometric databases can be cross-linked, compromising the user’s privacy.

Recovery of biometric data from the biometric references and possibly re-

vealing physical conditions bring additional privacy issues with biometric

systems.

Cancelable biometrics is proposed in order to address these problems. It con-

sists of transforming the original biometric template to obtain a cancelable

biometric reference that can be revoked. Therefore, when a biometric tem-

plate is compromised, it can be canceled and replaced.
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5.4.1 Cancelable System Requirements

There are some main criteria which a cancelable biometric template should

satisfy:

• Performance: the cancelable biometric system should not degrade the

verification performance of the underlying baseline biometric system;

• Revocability: if the protected biometric template is stolen, it should be

possible to revoke that template and re-issue a new one;

• Diversity: is the maximum number of independently protected tem-

plates that can be created from one biometric sample;

• Irreversibility: it should be computationally infeasible to obtain the

original biometric template from the protected template;

• Unlinkability: the protected biometric templates created from the

same biometric sample using two different secret keys should not be

linkable.

In the following subsection, we present and evaluate the performance of

the biometric protection scheme applied to the binary representations cre-

ated using our binarisation method. In the following evaluation, we use the

terminology of the ISO/IEC 24745:2011 [ISO11]. We use PI to denote the

Pseudonymous Identifier and SD for Supplementary Data. According to the

ISO/IEC 24745:2011, SD is data intended for security amplification of renew-

able biometric references by means of possession, knowledge or application-

based secrets that are both required during enrolment and verification and

are not stored with biometric references nor dependent on biometric charac-

teristics, that are either provided by the data subject or the identity manage-

ment system.
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In order to be coherent with the SO/IEC 24745:2011 standard, we will be

using the same vocabulary. The ISO/IEC 24745:2011 standard defines the

architecture of biometric protection systems. The architecture is based on

three important elements:

• Pseudonymous Identifier Encoder (PIE): During enrolment, the PIE

generates a cancelable biometric template based on the pseudonymous

identifier (PI) and supplementary data (SD).

• Pseudonymous Identifier Recorder (PIR): During verification, the PIR

generates a pseudonymous identifier (PI*) based on the SD provided

during enrolment and the biometric sample.

• Pseudonymous Identifier Comparator (PIC): compares the PI created

in the enrolment phase and PI* and returns a score.

5.4.2 Proposed Cancelable System

To protect the template, we apply the shuffling scheme proposed by Kanade

et al. in [KPDD12]. The shuffling scheme (shown in Figure 5.6) uses a binary

shuffling key. Since this key is a long bit-string, it is stored on a secure token,

or it can be derived from a password. The binary embedding is divided into

blocks of the same length. Two distinct parts are created: the first part con-

tains all the blocks corresponding to the positions where the shuffling key bit

value is "1". All the remaining blocks are taken into the second part. These

two parts are concatenated to form the shuffled binary embedding, treated

as the protected template. The original and shuffled templates have a one-to-

one correspondence. A block from the original vector is placed at a different

position in the shuffled embedding. When two binary embeddings are shuf-

fled using the same shuffling key, the absolute positions of the blocks change,
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but this change occurs in the same way for both of the representations. As a

result, the Hamming distance between them does not change. On the other

hand, if they are shuffled using two different keys, the result is a randomiza-

tion of the representations, and the Hamming distance increases.

For this use-case, we chose a block size of "1" compared to "7" in [KPDD12].

This has two main advantages. First, the size of the shuffling key will be

longer, thus harder to brute-force. Secondly, the permutation space becomes

bigger, allowing for a higher number of possible templates. The shuffled bi-

nary embedding, which is the cancelable template, is the result of combining

the biometric sample and the Supplementary Data (SD) (the shuffling key

in our case). Therefore, it can be revoked in case of compromise, and a new

template can be generated by changing the shuffling key. In our case, we

chose a block size of "1" with a shuffling key of size 1 024. The shuffling keys

can be either generated and stored in the Secure Element or derived from the

password using, for example, a Password Based Key Derivation Function

(PBKDF) such as PBKDF21.

A unique shuffling key is assigned to each user during enrolment, and

he/she has to provide that same key during every subsequent verification.

This means, in an ideal case, that the genuine users always provide the cor-

rect shuffling key.

Figure 5.7 illustrates the architecture of the cancelable system. According to

the ISO/IEC 24745:2011, the system falls under Model G where "Store dis-

tributed on token and server, compare on server". The token in our case being

1PBKDF2 is part of RSA Laboratories’ Public-Key Cryptography Standards (PKCS) series,
specifically PKCS #5 v2.0, also published as Internet Engineering Task Force’s RFC 2898
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Figure 5.6: Shuffling scheme with block size of "1" bit.

the Secure Element (SE), contains the shuffling key and the Common Identi-

fier (CI) to allow checking for the integrity of the data. The CI is an identifier

for correlating identity references and biometric references in physically or

logically separated databases. The communication between the SE and the

client as well as the communication between the SE and the server is done

using asymmetric cryptography. To be precise, RSA 2 048 keys are used to

secure the communication. The data storage is distributed between the to-

ken and the server. At each verification attempt, the client asks the token,

the SE, for the shuffling key. Afterwards, it generates the PI* and sends it

to the server. Then, the server measures the distance between the stored PI

and the PI* and decides based on predefined threshold the outcome of the

verification. In the case where the user opts not to use the SE, instead, he/she

chooses to provide a password at each access attempt. Then as the storage

and the comparisons will be done on the server side, the system follows the

Model A architecture of the ISO 24745 "store on server and compare on server

using RBRs" .

According to the results reported in Table 5.7, a binary embedding of 1 024

bits gives the best trade-off between size and performance. As such, all sub-

sequent evaluation analyses are carried out using 1 024-bit representations.
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Figure 5.7: Proposed cancelable biometric scheme.

Biometric Recognition Performance

The performance of the verification system is an important point that must

not be degraded by the transformation scheme. Therefore, for a fair compar-

ison, first, the biometric verification performance of the baseline biometric

system should be evaluated, then the performance of the proposed cance-

lable biometric system. It is necessary to evaluate the system performance

when one of the two factors is compromised. Hence, two impostor scenarios

are considered:

• Stolen biometric data: when the biometric data for the user is compro-

mised. Here an impostor will try to provide the stolen biometric data

with the wrong SD;
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Length Accuracy
on LFW %

Accuracy
on MOBIO %

128* 98.32 98.00 99.72 99.67
128 98.27 98.82 99.88 99.67
256 99.68 99.22 99.91 99.88
512 100 99.80 100 100
1024 100 99.88 100 100
2048 100 99.88 100 100
4096 100 99.77 100 100

Table 5.7: Impact of the length of the shuffled binary repre-
sentations obtained following approach (b) (using a pre-trained
CNN with an auto-encoder) on the recognition performance.
Values in bold are given by DNN models trained using the
cleaned version MS-celeb-1M. The results in the second row
(row ’128*’) are obtained by applying a median binarisation on
the output of the initial OpenFace DNN.

• Stolen Supplementary data: when the SD of the user is compromised.

Here an impostor will try to provide erroneous biometric data with the

stolen SD.

The biometric recognition performance of the system is reported in Table 5.7.

The performance of the system is improved compared to using non-shuffled

representations. Moreover, we obtain better overall performance for the

shuffling when using our proposed binarisation method compared to using

median threshold as shown in the first and second row of Table 5.7. We also

note that thanks to the fact that we can control the length of the generated bi-

nary representation, we can improve the recognition performance by using

longer representations.

For the stolen biometric scenario, the system has a False Acceptance Rate

(FAR) of 0%. This point is further developed in the unlinkability analysis.

Therefore, the protected biometric templates created from the same biometric

sample using two different secret keys should not be linkable, which is the

same as using a compromised biometric sample with a different key.
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As for the stolen SD scenario, the performance of the system reverts to the

case of non-shuffled representations shown in Table 5.4. In fact, the attacker

can revert to the original binary representation if they have access to the PI

and SD. As such, this scenario is reduced to the case of regular biometric ver-

ification task using the binary representations. As a result, the performance

of the system in this scenario is the performance of the system presented in

Table 5.4.

Diversity

It is necessary to calculate the maximum number of pseudonymous identi-

fiers (a pseudonymous identifier (PI) is a part of a renewable biometric ref-

erence that represents an individual or data subject) that can be generated.

After that, unlinkability and irreversibility analysis should be done as a func-

tion of PI issued. In the case of the previously described shuffling scheme,

the maximum number of PI is given using the number of possible permuta-

tions. Moreover, because the decision-making is based on a threshold com-

parison, we should not account for templates falling in the same neighbour-

hood. We estimate the maximum number of templates using the hamming-

packing bound. Using a threshold t = 0.2, for binary representations of length

1 024 we get around 2659 possible PI for each user.

Number Of PI =
number o f possible permutation

volume o f Hamming spheres

=
2n − n

∑t×n/2
k=0 (n/2

k )
2

=
21024 − 1024

∑0.2×512
k=0 (512

k )
2 ≈ 2659

(5.5)
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Irreversibility

There are two types of irreversibility analysis. The first type is to analyse

whether we can revert to the original template given the SD. The second

analysis is the analysis of the protected template without having the SD. As

the applied transformation is a shuffling of the bits of the embedding without

a loss of information, given the second factor, the scheme is fully reversible.

However, without access to the second factor and prior knowledge about the

distribution of the non-shuffled templates, it is computationally not feasible

to revert to the original binary embedding as the number of permutations to

be tested which is equal to 21024 − 1024 ≈ 21018 is too big to be brute-forced.

Unlinkability

For this metric, we follow the methodology defined in [GB+17]. Two types

of score distributions will be analysed for the assessment of the unlinkability

provided by the protected templates:

• Mated instances: scores computed from templates extracted from dif-

ferent samples of the same subject using different keys.

• Non-mated instances: scores obtained from templates generated from

samples of different subjects using different keys.

As described in [GB+17] two measures are computed, D↔(s) ∈ [0,1] gives an

estimation of the linkability of a system for a specific score s, and Dsys
↔ ∈[0,1]

gives an estimation of the linkability of a system as a whole, independently

of the score. If for a specific score s0 D↔(s0) = 0, this means that the system

is fully unlinkable for this particular score. Also, if Dsys
↔ = 0 where both score

distributions (mated and non-mated) are overlapping means that the system

is fully unlinkable for the whole score range. The computation of D↔(s) and
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Dsys
↔ depends on the prior probability ratio ω of the mated and non-mated

distributions, which may result in Dsys
↔ = 0 even if the distribution are not

perfectly overlapping. In this analysis, we specify ω = 0.2.

As observed in Figure 5.8, the distribution of mated and non-mated scores

overlap, thus making the function D↔(s) identically-zero over the range of

the possible scores. In addition Dsys
↔ is equal to 0 rendering the system fully

unlinkable. The scores used to estimate the probabilities are computed us-

ing the whole LFW dataset of 5 749 users. For each user, we generate 50

different shuffling keys and thus 50 protected templates. By considering the

whole population of the LFW dataset, we get around 14M mated scores and

80 000M non-mated scores. To have the same number of samples from each

population, we sample uniformly 10M mated scores and non-mated scores.

Hence, D↔(s) and Dsys
↔ are estimated in the mean case and do not take ac-

count of user-specific distributions. Based on D↔(s) and Dsys
↔ we conclude

that the proposed system is fully unlinkable for the whole score range.

The diversity, irreversibility, and unlinkability metrics are tightly correlated.

If the system can not satisfy the diversity requirement, and as such, can not

create different PIs using the same biometric data with different SDs, then

the identities will be linkable. Furthermore, if the irreversibility requirement

is not satisfied, the templates can be linked. Finally, if the system is fully

linkable, then it does not satisfy the diversity requirement as all the generated

PIs are equal. Furthermore, even if the system is not fully linkable and only

partially unlinkable, it will result in easier attacks on the original templates.
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Figure 5.8: Unlinkability analysis of the system based on scores
computed on the LFW dataset. Templates used are of length
1 024. The templates are obtained using DNN created corre-
sponding to approach (b) (using a pre-trained CNN with an
auto-encoder) and trained on the cleaned version of MS-celeb-
1M.

5.5 Implementation in the SpeechXRays Project

The H2020 SpeechXRays project aims to achieve this privacy requirement by

implementing a cancelable biometric system. Using a shuffling transforma-

tion on the binary embeddings extracted from face images combined with

a shuffling key, the users templates are made cancelable and unlinkable to

the users in the same time. We explain how the system follows the ISO/IEC

24745:2011 compliance recommendation, and we report its performance and

evaluate its properties following the ISO standardized metrics, notably the

system irreversibility and its unlinkability. When working under ideal cir-

cumstances (the second factor is not stolen), the system gives 100% accuracy
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on the MOBIO dataset. Moreover, it is fully unlinkable and it is computa-

tionally infeasible to recover the original template without the second factor.

5.5.1 The Cancelable Face System Prototype

In the prototype, we are using Gabor feature vectors of size 40 960. The di-

mension of the feature vectors is reduced from 40 960 to 2 048 components

using Principal Component Analysis (PCA). To binarise the vectors, we ap-

ply thresholding. The thresholding is done based on the median value of the

vectors. From a feature vector X = (x1, ..., x2048), we obtain a binary embed-

ding Xbin = (b1, ..., b2048) by comparing each component to the median value

of the vector.

bi =


0, if xi ≤ median(X)

1, otherwise
for i in (1, ..., 2048)

The median value of vector X is computed for each feature vector separately.

The result is a binary representation with an equal number of ones and zeros

for each embedding.

To protect the template, we apply the shuffling scheme described

in [KAN10].

5.5.2 Evaluation of the System

A workforce use case is one of the main use cases of the SpeechXRays project.

In this use case, the workers need to access workstations, computers and

handheld devices to carry out their tasks. We chose the MOBIO dataset to

evaluate the performance of the system as it illustrates this use case by pro-

viding samples from mobiles and computers with realistic conditions. The
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MOBIO [McC+12] database contains audio visual data recorded from 152

subjects. The database comprises 52 females and 100 males. In total, there

are 12 sessions for each individual. The database is divided into three parts:

training, development and evaluation. We report the results on the proto-

col described in [Bou16]. The results are reported separately for males and

females because for speaker recognition separating males from females is

a common practice. Therefore, the face recognition experiments follow the

same protocol. The development partition consists of 1 890 true and 32 130

false access scores for female trials and 2 520 true and 57 960 false access male

trials. The evaluation partition consists of 2 100 true and 39 900 false attempts

for female trials and 3 990 true and 147 630 false access scores for male trials.

Biometric Performance

In Table 5.8, we report the performance on the MOBIO dataset. The DLDA

approach constitutes the baseline of the comparison. In fact, the protected

templates are created from the Gabor features used in the DLDA represen-

tation, hence to be able to measure the degradation of the performance, we

compare the cancelable system to the DLDA system. Certainly, the DNN

approach for face recognition give better performance than the DLDA ap-

proach. Nevertheless, the cancelable biometrics scheme takes advantage of

the second factor providing better recognition performance. It is only in the

case of stolen shuffling key that the performance degrades compared to the

baseline (and the DNN). Figure 5.11 shows the impact of the shuffling on the

scores. The true access attempts remain unchanged by the shuffling, whereas

the mean of imposter scores is moved to around 0.5. As a consequence, the

client and imposter distributions are separated, allowing for better decision
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Table 5.8: Performance on MOBIO dataset, EER is computed
using 42 000 tests for the female partition and 151 620 for the
male partition.

EER on Eval Female partition (%) EER on Eval Male partition (%)

DNN [HPD18] 5.26 2.97

DLDA (Baseline) 12.43 7.86

Gabor Binary Representation 17.18 13.48
Shuffled Gabor Binary Representation 0 0
Stolen Biometrics 0 0
Stolen Second Factor 17.18 13.48

making. The separation of the two distributions allows for perfect verifica-

tion performance for the system, as shown in Figure 5.9. However, in the

case of a stolen shuffling key, the performance of the system regresses as if

the shuffling was not applied. Thus the performance in case of the stolen

second factor is the same as the non-shuffled binary representations. On the

other hand, if only the biometric sample is stolen, the system will not grant

access. As will be explained when measuring the unlinkability of the sys-

tem, the system is fully unlinkable, hence, with a different second factor, the

biometric data will be considered as if coming from another user.

Diversity

It is necessary to calculate the maximum number of PI that can be generated.

After that, unlinkability and irreversibility analysis should be done as a func-

tion of PI issued. In the case of the previously described shuffling scheme, the

maximum number of PI is given using the number of possible permutations.

Moreover, because the decision making is based on a threshold compari-

son, we should not account for templates falling in the same neighborhood.

We estimate the maximum number of templates using the hamming-packing

bound. Using a threshold t = 0.05, for binary representations of length 2 048
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Figure 5.9: ROC curve for performance of the protected and
non-protected systems on the MOBIO dataset.
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we get almost 21759 possible PI for each user.

Number Of PI =
2048! − 2048

∑0.05∗1024
k=0 (1024

k )
2 ≈ 21759

(5.6)

Irreversibility

Without access to the second factor and prior knowledge about the distribu-

tion of the non-shuffled templates, it is computationally not feasible to revert

to the original binary embedding as the number of permutations to be tested

which is equal to 22048 − 2048 ≈ 22048. The NIST SP 800-152 standard recom-

mends 192 bits of entropy for applications with high impact [BSB14]. Thus

recovering 2048 bits is computationally infeasible. We also note that due to

the thresholding step in the binarisation process, it is not computationally

feasible to recover original Gabor feature vectors.

Unlinkability

For this metric, we follow the methodology defined in [GB+17]. Two types

of score distributions will be analysed for the assessment of the unlinkability

provided by the protected templates:

• Mated instances: scores computed from templates extracted from dif-

ferent samples of the same subject using different keys. It represents

the probabilities p(s|Hm).

• Non-mated instances: scores yielded by templates generated from

samples of different subjects using different keys. It represents

p(s|Hnm).
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As described in [GB+17] two measures are computed, D↔(s) ∈ [0,1] gives an

estimation of the linkability of a system for a specific score s and Dsys
↔ ∈[0,1]

gives an estimation of the linkability of a system as a whole, independently

of the score.

If for a specific score s0 D↔(s0) = 0, this means that the system is fully un-

linkable for this particular score. Also, if Dsys
↔ = 0 this means that the system

is fully unlinkable for the whole score range. As observed in Figure 5.10, the

distribution of mated and non-mated scores overlap, thus making the func-

tion D↔(s) identically-zero over the range of the possible scores. In addition

Dsys
↔ is equal to 0 rendering the system fully unlinkable. The scores used

to estimate the probabilities p(s|Hm) and p(s|Hnm) are computed using the

whole MOBIO dataset of 150 users. For each user, we generate 1 000 different

shuffling keys and thus 1 000 protected templates. By taking into account the

whole population of the MOBIO dataset, we get 150 000 000 mated score and

1 500 000 000 non-mated score. Hence, D↔(s) and Dsys
↔ are estimated in the

mean case and do not take account of user-specific distributions. However,

thanks to the construction scheme of the binary representations making sure

that independently of the user, each embedding contains exactly 1 024 zeros

and 1 024 ones the user-specific distribution is not different from the whole

population distribution. Based on D↔(s) and Dsys
↔ we conclude that the pro-

posed system is fully unlinkable for the whole score range.

We report the cancelable biometric system implemented in the SpeechXRays

based on binary representations and shuffling keys for face verification. The

proposed system improves the verification performance and satisfies the

evaluation criteria of the template protection, mainly the revocability and un-

linkability. Due to the shuffling scheme, the protected face template satisfies

the requirement of revocability. The proposed system can generate different
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Figure 5.10: Unlinkability analysis of the system based on
scores computed on the MOBIO dataset.
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templates for various applications using the same biometric sample, which

conserves privacy. If the stored shuffled template is stolen, the administra-

tor can cancel the old enrolled template and issue a new one by changing

the shuffling key. Besides, the proposed system achieves excellent recogni-

tion performance with an EER of 0% on the MOBIO dataset. The binary em-

bedding being extracted directly from the Gabor feature vectors suffer from

low accuracy without the additional security provided by the shuffling key.

This results in having degraded performance when the second factor is stolen

compared to the state of the art systems in face verification. A data-driven

binary embedding extraction approach should improve the performance of

the system, especially in the event of a stolen shuffling key.

5.6 Impact of the Performance of the Binary Rep-

resentations on the Cancelable System

In addition to the evaluation criteria proposed by the ISO/IEC 24745:2011

standard [ISO11], in the case of cancelable biometrics, one should check if

the security of the system is only based on the second factor. Cancelable

systems tend to rely on the second factor ignoring the biometric component,

which is one of the shortcomings of cancelable biometrics as shown in [RU11;

Kon+06]. In fact, for the used shuffling scheme, if all the users have the same

initial representation, after shuffling, we obtain 100% verification accuracy.

Thus, the protection scheme based on shuffling benefits greatly from the se-

curity of the second factor. However, the combination of the binarisation

method we propose with the shuffling scheme constitutes a system that re-

lies on biometrics as well as on the second factor. This is especially shown

in the difference between the systems trained on the original and cleaned
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Figure 5.11: Score distribution for shuffled and non shuffled
representations of MOBIO Eval male partition.

version of MS-celeb-1M. The degradation in performance of the cancelable

system shown in Table 5.7 when the training is done on the cleaned version

of the MS-celeb-1M is, in fact, due to the bad quality of the images used in

the tests. The system should not accept these images because the face is ob-

structed, distorted, or not present. When the binary embedding extractor is

trained on the cleaned data set, the system rejects client-client tests where ei-

ther the enrolment or probe samples are of low quality. On the other hand,

the version trained on the original version of MS-celeb-1M (non-cleaned) ac-

cepts these images because the verification is done using the second factor,

not the biometric reference. Examples of the images with bad quality are pre-

sented in Figure 5.13b. The test scores from these images are circled in red

in Figure 5.12 (Hamming Distance > 0.4). The face image samples are taken

from the MOBIO dataset. The images of bad quality, such as those presented

in the figure, are not accepted by the cancelable system based on binarised
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DNN embeddings trained on the cleaned version of MS-celeb-1M. The sys-

tem is intended to work with images such as those in Figure 5.13a.

This shows that the system considers the biometric information and does not

only focus on the second factor. As the system trained on the cleaned version

of MS-celeb-1M rejects images of the same user of low quality, it does not rely

solely on the second factor.
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Figure 5.12: Impact of the shuffling on the score distribution
of the data. Score distribution from templates of length 1 024.
The templates are obtained using the DNN corresponding to
approach (b) (using a pre-trained CNN with an auto-encoder)
and trained on the cleaned version of MS-celeb-1M.
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(a) Examples of face images with good quality

(b) Examples of face images with bad quality

Figure 5.13: Face image samples taken from the MOBIO
database. Face detection is done using the OpenCV SSD face
detector. Alignment is done using DLIB 68 points landmark
detector.

5.7 Conclusion

In this chapter we present a novel approach to extract binary embeddings

directly from face images using a Deep Neural Network. We followed a data-

driven approach to binarise the embeddings based on using auto-encoders

under supervised training with the ’Triplet loss’ loss function.

The binary embeddings are analyzed in terms of biometric recognition per-

formance and entropy. The performance is evaluated on the LFW and MO-

BIO databases. The degradation in performance on both databases is around

0.1%.

We obtain 99.12% accuracy on the LFW database, using the binary represen-

tation, compared to 99.22% accuracy using the baseline system. The same

applies to the MOBIO database, where we get 98.90% accuracy using the bi-

nary embeddings compared to an accuracy of 98.93% of the baseline system.

Using DNN to extract the binary embeddings results in representations with

high entropy and high recognition performance. Compared to the baseline

Euclidean representations, the proposed binary embeddings give a state-of-

the-art performance on both databases with almost negligible degradation.
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The approach proposed in this chapter can be applied to any continuous rep-

resentation, not only Euclidean face representations. Moreover, the binarisa-

tion technique constitutes a locality-preserving hash where the relative dis-

tance between the input values is preserved in the relative distance between

the output hash values. The representation can be used for multiple applica-

tions such as similarity search, database search, and biometric systems.

Furthermore, the binarisation method provides arbitrary length presenta-

tions that are limited only by the quality of the training database. The em-

bedding length can thus be adapted to the sensitivity of the application. In

addition, we compared our binarisation approach to some classical binari-

sation methods presented in [Dro+18] and show that our method has better

biometric recognition performance and higher entropy than the presented

methods.

The binary embeddings are also used to create a cancelable face recognition

system based on a shuffling transformation using a second factor. The cance-

lable system is analyzed according to the standardized metrics given by the

ISO/IEC 24745:2011. We show that the cancelable system gives high accu-

racy and unlinkable templates when the second factor is not compromised.

When the second factor is compromised, the system’s security is assured by

the recognition performance of the binary representations, which is compa-

rable to the baseline non-binarised system. Furthermore, the quality of the

binary representations impacts the behavior of the cancelable system. If the

discriminative power of the representations is low, the cancelable system de-

pends mainly on the second factor, which results in higher FAR.

These representations are meant to be used in a crypto-biometric key regen-

eration scheme based on fuzzy commitment. This is why we seek to obtain

long binary representations with high entropy.
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6 Crypto-biometric Key

Regeneration

6.1 Introduction

Obtaining cryptographic keys using biometrics is a remarkable concept be-

cause it offers a distinct advantage over classical methods of generating cryp-

tographic keys. Classical cryptographic systems rely on identifiers such as

passwords or tokens, that are assigned to the users by system administra-

tors in order to authenticate the user and generate secure keys for that user.

However, these assigned secrets have their own disadvantages as they can be

stolen or shared, and hence, are insufficient to prove the user’s identity. Us-

ing biometrics to obtain crypto-biometric keys can provide a better solution

as far as identity verification is concerned.

Biometrics can be employed for obtaining crypto-bio keys in different ways,

such as cryptographic key release, key generation, and key regeneration. In

this chapter, we present the work carried out on key regeneration. We focus

on the regeneration of symmetric keys. The schemes used can be extended

to asymmetric encryption by regenerating the private key of the key pair.

Encryption systems are threatened by quantum computing algorithms. For

symmetric keys, Grover’s algorithm reduces the entropy of brute force at-

tacks by half. Meaning the complexity of a brute force attack on a symmetric
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key is reduced from 2N to 2N/2. As for asymmetric encryption, Shor’s algo-

rithm is able to break the most common encryption schemes used currently,

such as RSA and elliptic curve, instantly.

The Grover algorithm is a quantum algorithm that can search an unsorted

database more efficiently than is possible with classical algorithms. It can

search a database of N items in O(
√

N) time, which is a significant improve-

ment over the O(N) time required by classical algorithms.

While the Grover algorithm is not specifically designed to break symmetric

encryption algorithms, it could potentially be used to break certain types of

symmetric key cryptography if the key size is small enough. This is because

the Grover algorithm can be used to perform a "brute force" search, in which

all possible keys are tried one by one until the correct key is found.

If the key size of a symmetric encryption algorithm is small enough, the

Grover algorithm could potentially be used to perform a brute force search

in a shorter amount of time than is possible with classical algorithms. For ex-

ample, if the key size is 128 bits, the Grover algorithm could potentially find

the correct key in O(264) time, which is significantly faster than the O(2128)

time required by classical algorithms.

As we stand right now, quantum computers still lack the power to run these

algorithms to their full potential. But, the threat is there nevertheless. The

day that quantum supremacy for these algorithms is achieved, the majority

of encryption systems currently used will be in danger. As for how long

before quantum supremacy is reached, it is uncertain (quantum supremacy

is the goal of demonstrating that a programmable quantum device can solve

a problem that no classical computer can solve in a feasible amount of time).

However, the state of the art in quantum computing is advancing at a rapid
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pace.

Vast progress toward quantum supremacy was made in the 2000s, especially

in the last decade. In 2011, D-Wave Systems of Burnaby in British Columbia

became the first company to sell a quantum computer commercially [Mer11].

In 2017, IBM demonstrated the simulation of 56 qubits on a classical super-

computer, thereby increasing the computational power needed to establish

quantum supremacy. In December 2020, a group based in the University

of Science and Technology of China reached quantum supremacy by imple-

menting a type of Boson sampling on 76 photons with their photonic quan-

tum computer Jiuzhang [Bal20]. The paper states that to generate the number

of samples the quantum computer generates in 20 seconds, a classical super-

computer would require 600 million years of computation.

The goal of this work is to obtain post-quantum crypto-biometric keys. This

goal has multiple requirements:

• To be resistant to quantum computing algorithms;

• Non-repudiation: the user cannot share his key and claim that he was

not the one using it;

• To be cancelable;

• Convenience, meaning the regenerated keys has to have low False Re-

jection Rate (FRR) at the required security level.

As we focus on symmetric key regeneration, the keys need to have double

the entropy of the keys used currently to present the same degree of se-

curity [Aug+15]. This is easy for standard symmetric keys but difficult for

crypto-biometrics. Crypto-biometric keys are limited by the usable informa-

tion contained in the biometric sample that they are generated from. The
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non-repudiation requirement is satisfied by the intrinsic properties of bio-

metric samples. However, we must ensure that the scheme used in the key

regeneration has a low False Acceptance Rate (FAR). Biometrics are unique

for each user. They can not be changed without special circumstances (plas-

tics surgery, diseases...). As such, if the regeneration scheme is not revocable,

the user will be restricted to a single key across multiple applications. In ad-

dition, in the case the key is compromised, the user will not be able to create

a new one. Thus, we must ensure that the regeneration scheme is revoca-

ble. Finally, the key regeneration scheme should allow for user convenience.

Meaning, at the required security level, the user should not be rejected multi-

ple times before having access to the system. The convenience of the system

is shown through the FRR metric.

This chapter is structured as follows. First, we introduce the key regenera-

tion scheme used in the proposed system. Afterward, we provide the perfor-

mance of the system. Before concluding, we present the security analysis of

the system.

6.2 Key Regeneration Scheme

6.2.1 Fuzzy Commitment

The system proposed in this section is based on the fuzzy commitment

scheme presented in Figure 6.1 and Figure 6.2. The fuzzy commitment

scheme was first introduced in 1999 by Juels and Wattenberg [JW99]. A ran-

dom key is encoded using Error Correcting Codes (ECC) and is then XORed

with the biometric data. The XORed data is cryptographically secure be-

cause neither the key nor the biometric data can be obtained from it without
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providing one of the two. The random key is retrieved at the time of key re-

generation by providing fresh biometric data. This system requires ordered

biometric data in binary form. In this scheme, the differences in the biometric

data from one acquisition to another are treated as noise. This noise causes

errors in the data being transmitted which are corrected using ECC.

The system is comprised of two phases. The first phase, shown in Figure 6.1

is the enrollment phase where the user generates a symmetric key and links it

to his/her identity. The second phase, shown in Figure 6.2, is the verification

phase where the user regenerates his/her key from his biometric data, stored

helper data, and a secret second factor used to ensure the revocability of the

scheme.

The revocability of the fuzzy commitment scheme is assured using the same

shuffling scheme described in Subsection 5.4.2.

In the enrolment phase, the user provides an image containing his/her face I

and a secret second factor S. The second factor can be a shuffling key stored

on a secure token or a password that is used to derive the shuffling key. The

image I is processed using the DNN described in Section 5.2.2 to provide a

binary embedding B.

The binary embedding is then shuffled using the shuffling key S provided by

the user to achieve the revocability requirement. The shuffled binary embed-

ding is denoted SB. The SB is used to protect the encryption key K generated

by the system at the beginning of the process. The encryption key K is en-

coded using the error-correcting code described in following section creating

an encoded encryption key E(K). The encryption key K is also hashed us-

ing a hash function to provide a hashstring that will be used to verify the

successful regeneration of the encryption key K in the regeneration phase.
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Figure 6.1: Enrolment phase of the fuzzy commitment scheme
used in the key regeneration.

The SB and the encoded key E(K) are XORed to provide the protected en-

cryption key. The security of the scheme is mainly provided by the SB. In

fact, the entropy of the system is the minimum between the entropy of SB

and K.

In the enrolment phase, the system stores the hash of the encryption key

H(K) and the protected encryption key. The two pieces of data do not need

to be protected and can be stored in a non-encrypted database. On the other

hand, the Shuffling Key (SK) must be protected. Should the shuffling key be

compromised, the user’s enrolment must be revoked and a new enrolment

using a different shuffling key SK need to be generated.

In the verification phase, the user provides a new face image sample I’. This

image is processed following the same method as in the enrolment phase

to provide a binary embedding B’. The user also provides the same second

factor, either in the form of a password or a shuffling key S, used in the en-

rolment phase. The binary embedding B’ is shuffled using this second factor

resulting in a shuffled binary embedding SB’. This shuffled binary embdding

SB’ will have some differences from SB due to the variability in the face im-

age sample provided at the beginning of the verification step. SB’ is then

XORed with the protected encryption key recovered from storage. The result
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Figure 6.2: Regeneration phase of the fuzzy commitment
scheme used in the key regeneration.

of the XOR operation is E(K’). The difference between E(K) and E(K’) is con-

sidered the noise introduced by the communication channel. E(K’) is then

decoded using the same error correcting code used in the enrolment phase.

The decoded encryption key is denoted K’. To check if the regeneration of the

key is successful or not, we compare the hash of the decoded key H(K’) with

the hash stored in the enrolment phase H(K). If H(K) is equal to H(K’) the

regeneration is successful and the system provides the user with the encryp-

tion key K’ which is identical to the key K. If H(K) and H(K’) are different the

regeneration fails and the user is asked to provide a new face image.

In a real use case of the system, in order to reduce the failures, quality mea-

sures of the face image should be employed. These quality measures are

discussed in Chapter 4.

The description of the fuzzy commitment scheme provided above explains

only the generic data flow in the system. In our system, the binary embed-

ding extractor (DNN) provides a fixed output of 4096 bits. To adapt the

length of the binary embedding to the need of the security requirement of
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the system, we added a process of bit selection. In fact, according to the pa-

rameters of the error-correcting code and the length of the encryption key K,

the length of the encoded encryption key E(K) will be different. Therefore,

the length of SB will vary as it hides the encoded encryption key E(K). As

such, the length of the binary embedding B and shuffling key S has to vary.

The details about the error-correcting code used as well as the process of bit

selection are provided in the following sections.

6.2.2 Bit Selection

According to the length of the encryption key, the block size used and the

codeword size of the ECC, the output encoded key E(K) will have varying

sizes.

For example, if the length of the encryption key K is 512, we divide it into

16 blocks of 32 bits. Each block is encoded on a codeword of 63 bits. The

encoded encryption key will have 16 words resulting in a total length of 1 008

bits. If the length of the encryption key is 516 bits (a 512-bit key padded with

4 zeros), the key can be divided into 86 blocks of 6 bits. Each block will be

encoded on a 31-bit codeword. The final output will have a length of 2635

bits.

However, the binary embedding extractor provides binary representations

of a fixed length of 4096 bits. As the histogram in Figure 6.3 shows, not all

the bits of the binary representation have high entropy. As such, we pro-

ceed to select the bits with the most entropy of the binary representations.

Furthermore, we need to preserve the recognition performance of the binary

representations when selecting the bits.



6.2. Key Regeneration Scheme 121

Figure 6.3: Entropy per bit of the 4096-bit binary representa-
tions.

The bit selection is made by first reordering the bits of the binary representa-

tion following the inter-class variance, intra-class variance, or both. Then, we

take the first N bits needed in the fuzzy commitment scheme. The compu-

tation of the inter-class variance and intra-class variance is done on a cohort

database that has no overlap with the validation.

We selected the FRGC database [Phi+05] as the cohort database because of

two reasons. First, it was not acquired in the wild like LFW [LM+16] or MS-

celeb-1m [Guo+16]. As such, there is a low risk of mislabeling or overlap with

other databases. Secondly, it provides images of high quality in controlled

conditions, which are useful for computing inter-class variance without in-

troducing ambiguities due to the acquisition conditions. Figure 6.4 shows

examples of the images used to compute the inter-class variance. The im-

ages are frontal facing with good lighting and uniform background. We also
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Figure 6.4: Example of the images used to compute the inter-
class variance. The images are taken from the controlled parti-
tion of the FRGC database.

computed the intra-class variance using the FRGC dataset, but using the un-

controlled partition as shown in Figure 6.5.

Figure 6.6 shows the process of reordering the bits using the inter-class vari-

ance computed using FRGC. We take a binary representation of a controlled

sample from each subject in the database. Then we compute the variance for

each component (column). We then reorder variance using the descending

order. Following this process, we store the indices following the new order

for future use.

In the key regeneration system, each time the binary representation is ex-

tracted, we use the stored indices to select the suitable number of bits for

the parameters of the system. Using these indices, we can select the N bits

needed for the scheme. The selected bits will be the bits with the highest en-

tropy from the binary face representations. This is under the assumption that

there is no session noise when the data was acquired. That is why we only

computed the inter-class variance using samples only from the controlled
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Figure 6.5: Example of the images used to compute the intra-
class variance. The images are taken from the uncontrolled par-
tition of the FRGC database.

partition.

As for the computation of the intra-class variance, we used the uncontrolled

partition of the FRGC database. In this case, we take all the samples pertain-

ing to each user. Then, we compute the variance for each user independently

using all the samples. As a result, we obtain a variance vector for each user

as illustrated in Figure 6.7. The variance vectors are then averaged to pro-

vide the mean variance vector. In this mean variance vector, the bits with the

highest variance are the bits that represent the session noise contained in the

input samples. In this case, the variance vector is ordered using an ascending

order. And same as the case of the inter variance, we store the indices of the

new order.

As the goal of this type of bit selection is to remove the noisy bits, the need

for using the FRGC database is further emphasized as we are sure that the
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Figure 6.7: Bit reordering of the binary representations created
by the DNN according to the intra-class variance.

data does not contain mislabeling.

Selecting the bits using the inter-class variance gives importance to the secu-

rity of the system at the cost of the convenience of the user. By taking the

bits with the highest inter-class variance, we reduce the false acceptance rate,

which increases the false rejection rate of the system. On the other hand, if

we focus only on the bits with the lowest average intra-class variance, the

user will have an easier time regenerating his/her key, but this will increase

the risk of false acceptance. As such, we tried to combine both approaches
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Figure 6.8: Bit reordering of the binary representations created
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ance.

by selecting the bits using both the intra-class variance and the inter-class

variance.

Figure 6.8 illustrates the process of this selection. We subtract the intra-class

mean variance from the inter-class variance vector. If the bit has high inter-

class variance and low intra-class variance, in the resulting vector, it will ob-

tain a high weight. If the bit has low inter-class variance and high intra-class

variance, it will get a low weight in the new vector. Finally, this new vec-

tor is ordered in descending order, and we use the same selection process

previously described.

To validate the selection process, we used the accuracy on the LFW database

as the benchmark. The tests carried out on the LFW database are divided into

3 000 client-client tests and 3 000 client-imposter tests. As such, the accuracy

metric can give a sensible measure of the usability of the system. If the system

has high accuracy, then it achieves both a low false acceptance rate and a false

rejection rate.

Figure 6.9 shows the performance of the inter-class, intra-class and inter-class
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+ intra-class bit selection strategies. The figure shows the accuracy on LFW

as a function of the length of the binary representation. All the curves are

drawn using the same initial binary representation; we only changed the se-

lection strategy. As the lowest length of the encoded message (encryption

key) is above 1 000 bits, the curves start at length 1 000, and each data point

is computed using an increment of 10 bits.

The average size of the encoded keys in our experiments is between 2 000

and 3 000 bits. Thus, we chose the bit selection based on the third strategy,

which is to use both the inter-class and intra-class variance to select the bits

as this strategy has the best performance in this range as shown in Figure 6.9.

6.2.3 Error Correcting Code

Error correcting codes are techniques used to detect and correct errors that

may occur during the transmission or storage of digital data. These errors

can be caused by various factors such as noise, interference, or hardware

malfunctions. By adding redundant information to the data being transmit-

ted or stored, error correcting codes can help ensure that the data is received

or retrieved accurately.

The error-correcting code that we used for the fuzzy commitment scheme

is the Bose, Ray-Chaudhuri and Hocquenghem (BCH) code. We chose the

BCH code because it is a robust code capable of correcting random errors.

BCH codes are a class of cyclic error correcting codes that are based on alge-

braic concepts. They are widely used in communication systems and storage

devices to detect and correct errors.

The basic idea behind BCH codes is to add redundant bits to the data being

transmitted or stored in such a way that the receiver or reader can use these
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bits to detect and correct errors. These redundant bits are called check bits.

The number of check bits added to the data is determined by the length of

the BCH code and the desired error correction capability.

The BCH code is constructed using a generating polynomial, which is a poly-

nomial equation with coefficients that are used to generate the check bits. The

generating polynomial is chosen such that it has a certain number of roots,

which are values that make the polynomial equation equal to zero. These

roots are used to generate the check bits, and the number of roots determines

the error correction capability of the BCH code. Each coefficient in the poly-

nomial represents a bit of data, and the polynomial as a whole represents the

entire data set. The polynomial is then used to generate a set of check bits,

which are added to the data set to form the coded message.

To encode data using a BCH code, the data is first divided into blocks of a

certain size, and the check bits are generated for each block using the gen-

erating polynomial. The check bits are then appended to the data block to

form the encoded data block. When the encoded data block is transmitted or

stored, errors may occur due to noise or other factors.

To detect and correct errors in the received or retrieved data, the receiver

or reader uses the generating polynomial to calculate the check bits for the

received or retrieved data block. If the calculated check bits match the check

bits in the received or retrieved data block, it is assumed that the data is error-

free. If the calculated check bits do not match the check bits in the received or

retrieved data block, it is assumed that errors have occurred and the receiver

or reader uses the generating polynomial to determine the locations of the

errors and correct them.

One of the advantages of BCH codes is that they have a high error correction
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capability. For example, a BCH code with a length of 127 bits and a desired

error correction capability of t bits can correct up to t errors in the data. This

means that the BCH code can detect and correct errors in the data even if up

to t errors have occurred.

Another advantage of BCH codes is their robustness against errors. These

codes are able to correct a certain number of errors based on their designed

parameters, and are therefore able to tolerate a certain level of noise or inter-

ference during the transmission or storage of data. This makes them partic-

ularly useful for applications where the transmission or storage of data may

be subject to noise or interference.

In summary, BCH codes are a type of error correcting code that are used to

detect and correct errors in digital data. They are based on algebraic concepts

and use a generating polynomial to generate check bits that are appended to

the data being transmitted or stored. The receiver or reader uses the generat-

ing polynomial to detect and correct errors in the received or retrieved data.

BCH codes have a high error correction capability and low overhead, making

them efficient for use in communication systems and storage devices.

The BCH code takes a block of size k and encodes it on a code word of

length n. The code has correction capacity of t, meaning in each codeword

we can correct at most t errors. The parameters n, k and t are defined by

eq. 6.1

For any positive integers m ≥ 3 and t < 2m − 1, there exists a binary BCH

code with the following parameters:



130 Chapter 6. Crypto-biometric Key Regeneration

codeword length n = 2m − 1

number of partiy check bits n − k ≤ m.t

minimum distance dmin ≥ 2t + 1 (6.1)

With the minimum distance being the minimum number of positions in

which any two distinct codewords differ.

The encryption key of length L is divided in N blocks of k bits. Each block

is encoded into a new block of n bits using the BCH error correcting code.

The total length of the encoded key is (N ∗ n). The scheme can correct up to

T = (N ∗ t) errors where t is the correction capacity of the code.

6.3 Results of the Proposed Key Regeneration

Scheme on the MOBIO Database

In this section, we report the performance of the key regeneration scheme

on the MOBIO database. The experimental protocol of the MOBIO [Kho+13]

databases was originally developed for identity verification not for key re-

generation. As such, we introduced some changes to the protocol. We com-

bined the Male and Female partitions of the MOBIO database to obtain more

samples. Furthermore, before carrying the experiments, we removed the

samples that were of low quality where either the face is not present or ob-

structed as shown in Figure 6.10. After the pruning we get a total of 53k

biometric samples from 152 users.

Table 6.1 reports the regeneration performance of the fuzzy commitment

scheme. We report the False Acceptance Rate (FAR) and the False Rejection

Rate (FRR) on the MOBIO database. We carried out 9 M client-client tests
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Figure 6.10: Examples of bad face samples of MOBIO database.
These images were removed from the testing dataset.

and 10 M client-imposter tests. For the client-client tests, all the biometric

samples are cross-matched. As for the client-imposter tests, 21 samples are

randomly selected from each user and are then cross-matched.

In all experiments, the FAR is 0% as the number of erroneous bits is bigger

than the code correction capacity. As shown in Figure 6.11, the minimum

imposter distance is 0.196 for representations with 3 000 bits. This means we

need to correct 588 bits for the imposter to be accepted as the correct user.

However, from Table 6.1 we see that we can correct at most 552 bits.

The goal of the experiments was to regenerate keys with more than 400 bits

to be resistant to quantum computing. As such, we focused on encryption

keys with a length between 400 and 512.

Table 6.1: Performance of the key regeneration scheme. BCH
codes are presented in (n, k, t) format where n is the length of
the encoded block, k is length of the message block and t is the
number of bits that can be corrected in the encoded block. The
FAR and FRR are computed on the MOBIO database using 9 M
client-client tests and 10 M client-imposter tests.

Key length Encoded key
length BCH code FRR on MOBIO FAR on MOBIO

516 2666 (31,6,7) 0.7 % 0%
512 1008 (63,32,11) 0.3 % 0%
510 3213 (63,10,13) 0.3 % 0 %
528 3084 (127,22,23) 0.8 % 0%
420 3556 (127,15,27) 0.3% 0%
430 2047 (2047,430, 214) 1.6% 0%
430 4095 (4095, 495, 430) 1.3 % 0%
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Figure 6.11: Normalized Hamming distance distribution for
genuine and impostor comparisons on the MOBIO Eval male
partition. The template used in the comparisons are binary tem-
plates of length 3 000 bits created using bit selection process de-
scribed in the previous subsection.
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6.4 Security Analysis

Due to the sensitivity of the application as it is intended to be used in crypto-

graphic systems, we need to check the security of the scheme. In this section,

we evaluate the security of the proposed key regeneration system based on

fuzzy commitment against different scenarios of attacks:

• Stolen second factor,

• Stolen biometrics,

• Stolen database,

• Brute force attacks.

The security analysis was carried out on the MOBIO database using the same

protected templates generated in the previous section.

6.4.1 Stolen Second Factor

In this scenario, we study the impact of the theft of the second factor on

the security of the system. The attacker will use the second factor, in this

case, the shuffling key, to regenerate the crypto-biometric key. We assume

that the attacker also has access to the hash of the encryption key and the

protected encryption key of the target user but does not have access to the

target biometric data.

As such, the attacker tries using a facial dataset to access the system. We

simulated this type of attack using the MOBIO database and comparing each

user against the rest of the database. We report in the Table 6.2 the FAR

obtained using the different system configurations.

In fact, as in our protocol we removed the enrollment faces with low quality,

and as the minimum client-imposter distance is 0.19 which is higher than the
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Table 6.2: FAR on the MOBIO database in the scenario of stolen
second factor.
BCH codes are presented in (n, k, t) format where n is the length
of the encoded block, k is length of the message block and t is
the number of bits that can be corrected in the encoded block.

Encryption key
length BCH code FAR

516 (31,6,7) 0
512 (63,32,11) 0
510 (63,10,13) 0
528 (127,22,23) 0
420 (127,15,27) 0
430 (2047,430, 214) 0
430 (4095, 495, 430) 0

error correction capacity of the used ECCs the FAR is 0% in all the experi-

ments.

6.4.2 Stolen Biometrics

In this scenario, we study the impact of the theft of biometric data of the user

on the security of the system. The biometric data, in this case, is the face

of the user. As biometric data are easily accessible, especially using social

networks. This type of attack is also known as spoofing, where the attacker

introduces previously captured data of the user to try and access the system.

The best mitigation is to implement an anti-spoofing measure such as live-

ness detection to assure that the user is present in front of the sensor and that

it is not a picture or a video. In our system, the use of the second factor helps

mitigating the spoofing attack.

We simulate this scenario by using the MOBIO protocol and using wrong

shuffling keys for the client client tests of the protocol. In all the experiments,

the attacker is rejected with 100% accuracy.
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6.4.3 Stolen Database

In this scenario, the attacker has access to the system and to the storage of the

application, where he/she recovers the protected encryption keys PK and the

encryption key hashes H(K) (signature).

This allows for two types of attacks. The first type of attack is to try to gen-

erate an encryption key with the same length. In this case, the complexity

of the attack and the possibility of recovering the original encryption key K

depends only on the security of the hash function used to generate the signa-

ture.

The second type of attack is to try to use protected encryption keys to re-

cover the original encryption key. In this case, the attacker tries to XOR the

protected encryption key with binary strings generated using the metadata

of the system. We suppose that attackers know the statistical distribution

of the binary face representations and how the shuffling keys are generated.

The shuffling keys can either be randomly generated and stored on a special

medium for the user to use (a smart card) or derived using a "Password-

Based Key Derivation Function"1 from a password provided by the user. Us-

ing this information, the attacker can reduce the complexity of his attack by

knowing the average number of activated bits in the shuffled binary embed-

dings SB used to protect the encoded encryption keys E(K). In this attack,

the goal of the adversary is mainly to generate a "pseudo" shuffled binary

embedding to reverse the XOR operation applied to the encoded encryption

1A Key Derivation Function (KDF) is simply any mechanism for taking a password
(something a user remembers or stores in a password manager) and turning it into a sym-
metric key suitable for cryptographic operations (i.e., AES).
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key E(K). It can be considered that the attacker is trying to find the Pseudony-

mous Identifier PI of the user of the cancelable face verification system de-

scribed in Section 5.4.2. The complexity of the attack is equivalent to the di-

versity of the cancelable system computed using the parameters of the fuzzy

commitment scheme. The maximum number of Shuffled Binary Embedding

(SB) is given using the number of possible permutations. Moreover, because

the decision-making is based on a threshold comparison, we should not ac-

count for templates falling in the same neighborhood. We estimate the max-

imum number of templates using the hamming-packing bound.

Number Of SB =
number o f permutation

volume o f Hamming spheres

=
L!

L0!L1! ∑t
k=0 (

L
k)

(6.2)

Where :

L : is the length of the encoded encryption key/shuffled binary represen-

tations.

L0 : is the average number of zeros in the shuffled binary representations.

L1 : is the average number of ones in the shuffled binary representations.

t : the maximum of number of bits that can be corrected using the ECC

used in the fuzzy commitment scheme. Where 2t + 1 is the minimum

distance of the ECC code.

For example, in the case where we use encryption keys of length 528 bits with

a BCH(127,22,23) code with a correction capacity of 23 bits in a block of 127

bits of the encoded message, the encryption key is divided into 24 blocks of

22 bits. Each block is encoded onto a 127-bit block. Thus, the maximum num-

ber of bits that can be corrected is 23 × 24. However, this does not mean that
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we can correct 552 random errors in the encoded message. We can correct

only 23 random bits in each 127-bit block of the encoded message. As such,

the number of possible SB in this case is higher than the lower bound pro-

vided by eq. 6.2. We obtain more than 2992 possible SB for this configuration

as shown in eq. 6.3.

Number Of SB =
3084!

1542!1542! ∑23×24
k=0 (3084

k )
≈ 2992 (6.3)

Table 6.3: Number of possible SB for each system configura-
tion. The number of SB is provided in log2 format. BCH codes
are presented in (n, k, t) format where n is the length of the en-
coded block, k is length of the message block and t is the num-
ber of bits that can be corrected in the encoded block.

Encryption key
length BCH code Number of SB

(log2)
516 (31,6,7) 610
512 (63,32,11) 333
510 (63,10,13) 852
528 (127,22,23) 992
420 (127,15,27) 901
430 (2047,430, 214) 1056
430 (4095, 495, 430) 1916

We show in Table 6.3 the minimum number of possible SB for each config-

uration of the system. We study the number of SB as it is equivalent to the

entropy of the shuffled binary representations used to protect the encryption

keys. For the case of BCH(63,32,11), the complexity of the brute-force attack

is reduced from 512 to 333, which is still not brute-forceable with current

technology but lower than the security requirement we established in Sec-

tion 6.1. As for the rest of the configurations presented in Table 6.3, except

for BCH(63,32,11) , it is computationally infeasible to attack the system using

the information recovered from the protected encryption key. It is easier to

try to brute-force the encryption key directly using its signature.
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6.4.4 Brute Force Attacks

In this paragraph, we study the brute-force attacks possible on the system.

The attacker can either try to directly brute-force the encryption key or brute

force the system by presenting faces and random second factors. The first at-

tack is computationally infeasible for all the system configurations presented

in Table 6.1. The encryption key lengths are longer than 400 bits which are

not brute-froceable even using quantum algorithms such as the Grover algo-

rithm.

As for brute-forcing the system using its inputs (face and shuffling key), this

attack is more complex than brute-forcing the encryption key as the shuffling

key is longer than the original encryption key. Furthermore, if we consider

the best case for the attacker when they have biometric samples of the tar-

get, the attack reverts to the stolen biometric scenario, which is not brute-

forceable.

6.5 Conclusion

This work has two main goals. The first goal is to create crypto-biometric

keys from the users’ biometrics. To create crypto-biometric keys, we pro-

ceeded by extracting entropy from face images. By extracting entropy, we

mean extracting the useful information from the biometric data in the form

of binary format. In sections 4 and 5, we explained how to get entropy from

face templates using a neural network in the form of binary representations.

The entropy of the representations can be controlled using the neural net-

work hyper-parameters.

The binary representations in their current form are not suitable for use in

cryptography. Biometrics, by their nature, are not stable. They suffer from
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variability introduced by many factors: session variability, acquisition con-

ditions, sensors, etc... As such, we used a cohort to reduce the represen-

tations intra-variability (variability of representations obtained from each

user). The approach that we followed for regenerating symmetric keys is

based on ’fuzzy commitment’.

The second goal of the thesis is for the keys to be post-quantum. By post-

quantum, we mean that the keys should be resistant to quantum algorithms

such as Shor’s algorithm [Sho94] and Grover search algorithm [Gro96]. There

are two encryption schemes, symmetric and asymmetric. Grover algorithm

reduces the complexity of a brute force attack on a symmetric key from 2N

to 2N/2. To mitigate the risk introduced by quantum computing, we need

to increase the size of the keys. This is the reason why we tried to make

the binary representation longer and more discriminative. In this chapter,

we regenerate long symmetric keys for face biometrics. State-of-the-art key

regeneration systems that use face biometrics suffer from high FRR and low

entropy compared to other biometric modalities [Wan+21]. In our case, we

succeeded in regenerating symmetric encryption keys longer than 400 bits

with low FAR and low FRR using face biometrics.

On the other hand, current public-key encryption is mainly based on schemes

that are vulnerable to Shor’s algorithm. RSA encryption, which relies on

the factorization problem, and Elliptic-Curve Cryptography (ECC), which is

based on the Discrete Logarithm Problem, are easily broken by Shor’s algo-

rithm. As such, to create asymmetric crypto-biometric keys, we need to use

schemes that are based on other mathematical problems that have no known

vulnerabilities to quantum computing. There are multiple post-quantum en-

cryption schemes [Bas+19]. However, the binary representation that we cre-

ated are not stable enough to be used in fuzzy extractor schemes to reliably



140 Chapter 6. Crypto-biometric Key Regeneration

generate a private key for the proposed post-quantum asymmetric schemes.

On the other hand, if the private key of the asymmetric encryption scheme

is shorter than 600 bits, we can use the same fuzzy commitment scheme to

regenerate a post-quantum asymmetric crypto-biometric private key.
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7 Conclusions and Perspectives

7.1 Summary

In this thesis, we addressed the problem of regenerating crypto-biometric

keys (cryptographic keys obtained with biometric data) that are resistant to

quantum cryptanalysis methods. The challenge is to obtain keys with high

entropy to have a high level of security, knowing that the entropy contained

in biometric references limits the entropy of the key.

After an introductory chapter, we present related works to our work in face

recognition, binarization, biometric template protection, and encryption in

Chapter 2. Chapter 3 gives an overview of the databases used to train, test,

and validate our proposed systems.

Our first contribution was to create a state-of-the-art face recognition sys-

tem based on public frameworks and publicly available data. In Chapter 4,

we present our face recognition system pipeline. The system is built on the

OpenFace framework, to which we introduced several modifications to ob-

tain better performance, as it was implemented in two European projects and

used in a submission to the NIST SRE2019 multimedia challenge.

We also detail how to obtain a state-of-the-art face recognition system based

on publicly available software and using public datasets. We try to give the

most possible details to allow for the reproducibility of the results. When
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CMU implemented OpenFace, reproducibility was one of their main goals.

Thus, we were able to reproduce and improve upon their results. For exam-

ple, we improved the biometric recognition performance on the LFW dataset

from 92% for the original CMU model to 99% accuracy.

From the results that we obtained, we can infer that the performance bottle-

neck is in the preprocessing, notably the face detection phase. Given enough

data, the Deep Convolutional Neural Network (DCNN) gives the best per-

formance. Nevertheless, in situations where the large enough databases are

not available, classical approaches give better performance.

To improve our results, we proceeded to remove the misalbeling noise from

the MS-celeb-1M, that gave the greatest improvement in performance on our

validation protocols.

Among the modifications applied to our framework, the use of the Reti-

naFace face detector resulted in the most significant improvement in perfor-

mance. The quality of the detected face landmarks is significantly dependent

on the accuracy of the bounding box given by the face detector. Using the

correct face landmarks results in better face alignment and more robust tem-

plates.

Our choice to use DCNN for face recognition was further validated during

the NIST SRE 2019 multimedia challenge where our system obtained the best

single system performance among 14 other submissions. This shows that

DCNN is one of the better suited architectures for face recognition.

Finally, the application of enrollment filtering using some quality measures

is crucial to the performance of the face recognition system. If the enrollment

reference is poor quality, a comparison with good test references will result

in lower similarity scores and worse performance.
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Crypto-biometric schemes, such as fuzzy commitment, require binary

sources. Our second contribution, presented in Chapter 5, is introducing a

novel approach to binarizing biometric data using Deep Neural Network

(DNN) applied to facial biometric data. We followed a data-driven approach

to binarize the embeddings based on using auto-encoders under supervised

training with the ’Triplet loss’ loss function. Our goal was to create long

binary representations with high entropy to serve in our key regeneration

scheme.

The lengths of the representations can be controlled. Using a pre-trained

CNN and training the model on a cleaned version of the MS-celeb-1M

database, we obtain binary representations of length 4 096 bits and 3 300 bits

of entropy. The extracted representations have high entropy and are long

enough to be used in crypto-biometric systems such as fuzzy commitment.

We evaluate the performance of the binary representations on the MOBIO

and Labeled Faces in the Wild (LFW) databases, where we measure their

biometric recognition performance and entropy. The proposed binary em-

beddings provide state-of-the-art performance on both databases with al-

most negligible degradation compared to the baseline. Using DNN to extract

binary embeddings results in representations with high entropy and high

recognition performance. Compared to the baseline Euclidean representa-

tions, the proposed binary embeddings give state-of-the-art performance on

both databases with almost negligible degradation. The performance degra-

dation in both databases is around 0.1%.

We obtain 99.12% accuracy on the LFW database, using the binary represen-

tations, compared to 99.22% accuracy using the baseline system. The same

applies to the MOBIO database, where we obtain 98.90% accuracy using the
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binary embeddings compared to an accuracy of 98.93 % of the baseline sys-

tem.

The approach proposed in Chapter 5 can be applied to any continuous rep-

resentation, not only Euclidean face representations. Moreover, the binariza-

tion technique constitutes a locality-preserving hash, where the relative dis-

tance between the input values is preserved in the relative distance between

the output hash values. The representation can be used for multiple applica-

tions, such as similarity search, database search, and biometric systems.

Furthermore, the binarization method provides representations of arbitrary

length that are limited only by the quality of the training database. Therefore,

the embedding length can be adapted to the sensitivity of the application.

We compared our binarization approach to some classical binarization meth-

ods presented in [Dro+18] and show that our method has a better biometric

recognition performance and higher entropy than the presented methods.

The created binary embeddings are also used to implement a cancelable face

recognition system based on a shuffling transformation using a second fac-

tor. The cancelable system is analyzed according to the standardized metrics

given by ISO/IEC 24745:2011. We show that the cancelable system gives

high accuracy and unlinkable templates when the second factor is not com-

promised. When the second factor is compromised, the system’s security is

ensured by the recognition performance of the binary representations, which

is comparable to the baseline non-binarized system. Furthermore, the quality

of the binary representations impacts the behavior of the cancelable system.

If the discriminative power of the representations is low, the cancelable sys-

tem depends mainly on the second factor, which results in a higher FAR.
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These representations are meant to be used in a crypto-biometric key regen-

eration scheme based on fuzzy commitment. This is why we seek to obtain

long binary representations with high entropy.

The first goal of the thesis is to create crypto-biometric keys from the user

biometrics. To create the crypto-biometric keys, we proceeded by extracting

entropy from face images. By extracting entropy, we mean extracting useful

information from the biometric data in the form of binary format.

The binary representations, obtained in Chapter 5, are not suitable for use in

cryptography. Biometrics, by their nature, are not stable. They suffer from

variability introduced by many factors: session variability, acquisition con-

ditions, sensors, etc... Our next contribution was to use a cohort to reduce

the representations intra-variability (variability of representations obtained

from each user). The approach that we followed for regenerating symmet-

ric keys is based on ’fuzzy commitment’. The fuzzy commitment scheme

was implemented using Bose, Ray-Chaudhuri and Hocquenghem (BCH) er-

ror correcting codes. In our fuzzy commitment scheme, a random key is

encoded using Error Correcting Codes (ECC) and is then XORed with the

biometric data. The XORed data is cryptographically secure because neither

the key nor the biometric data can be obtained from it without providing one

of the two. The random key is retrieved at the time of key regeneration by

providing fresh biometric data. This system requires ordered biometric data

in binary form. In this scheme, the differences in the biometric data from one

acquisition to another are treated as noise. This noise causes errors in the

transmitted data that are corrected using ECC. The revocability of the fuzzy

commitment scheme is assured using the same shuffling scheme described

in subsection 5.4.2.

We report the False Acceptance Rate (FAR) and the False Rejection Rate (FRR)
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on the MOBIO database. We carried out 9M client-client tests and 10M client-

imposter tests. For the client-client tests, all the biometric samples are cross-

matched. As for the client-imposter tests, 21 samples are randomly selected

from each user and are then cross-matched.

In all the key regeneration experiments, the FAR is 0% as the number of er-

roneous bits is bigger than the code correction capacity.

The second goal of the thesis is for the keys to be post-quantum. By post-

quantum, we mean that the keys should be resistant to quantum algorithms

such as Shor’s algorithm [Sho94] and Grover’s search algorithm [Gro96].

There are two encryption schemes, symmetric and asymmetric.

Grover algorithm reduces the complexity of a brute-force attack on a sym-

metric key from 2N to 2N/2. To mitigate the risk introduced by quantum

computing, we need to increase the size of the keys. This is the reason why

we tried to make the binary representation longer and more discriminative.

In Chapter 6, we regenerate long symmetric keys for face biometrics. State-

of-the-art key regeneration systems that use face biometrics suffer from high

FRR and low entropy compared to other biometric modalities [Wan+21]. In

our case, we were able to regenerate symmetric encryption keys of more than

400 bits with low FAR and low FRR using face biometrics.

7.2 Future Research Directions

Suggested future research works resulting from this thesis can be summa-

rized as follows.

• Using newer face recognition systems with higher accuracy as the basis
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for the auto-encoder. This allows for more stable and longer represen-

tations. As such, the fuzzy commitment scheme described in Chapter 6,

will provide better security and convenience.

• Current public-key (asymmetric) encryption is mainly based on

schemes that are vulnerable to Shor’s algorithm. RSA encryption,

which relies on the factorization problem, and Elliptic-Curve Cryp-

tography (ECC), which is based on the Discrete Logarithm Problem,

are easily broken by Shor’s algorithm. To create asymmetric crypto-

biometric keys, we need to use schemes that are based on other mathe-

matical problems that have no known vulnerabilities to quantum com-

puting. As such, a possible research direction is to implement a fuzzy

extractor scheme based on binary embeddings to generate the private

key of newer quantum-resistant public encryption schemes.





149

Bibliography

[ALS16] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satya-

narayanan. “Openface: A general-purpose face recognition li-

brary with mobile applications”. In: CMU School of Computer Sci-

ence 6 (2016).

[Aug+15] Daniel Augot et al. “Initial recommendations of long-term se-

cure post-quantum systems”. In: (2015).

[Aug+83] Kerckhoffs Auguste et al. “La cryptographie militaire”. In: Jour-

nal des sciences militaires 9.538 (1883), p. 5.

[Bal20] Philip Ball. “Physicists in China challenge Google’s ’quantum

advantage’”. In: Nature 588.7838 (2020), p. 380. ISSN: 14764687.

DOI: 10.1038/d41586-020-03434-7.

[Bas+19] Kanad Basu et al. “NIST Post-Quantum Cryptography-A Hard-

ware Evaluation Study.” In: IACR Cryptol. ePrint Arch. 2019

(2019), p. 47.

[BD10] Julien Bringer and Vincent Despiegel. “Binary feature vector

fingerprint representation from minutiae vicinities”. In: IEEE

4th International Conference on Biometrics: Theory, Applications and

Systems, BTAS 2010 (2010), pp. 1–6. DOI: 10.1109/BTAS.2010.

5634488.

https://doi.org/10.1038/d41586-020-03434-7
https://doi.org/10.1109/BTAS.2010.5634488
https://doi.org/10.1109/BTAS.2010.5634488


150 Bibliography

[Bou06] T Boult. “Robust distance measures for face-recognition sup-

porting revocable biometric tokens”. In: 7th International Con-

ference on Automatic Face and Gesture Recognition (FGR06). IEEE.

2006, pp. 560–566.

[Bou16] Thirimachos Bourlai. “Face Recognition in Challenging Envi-

ronments: An Experimental and Reproducible Research Sur-

vey”. In: Face recognition across the imaging spectrum. Springer,

2016, pp. 269–270. ISBN: 3319285017.

[Bru10] Niko Brummer. “Measuring, refining and calibrating speaker

and language information extracted from speech”. PhD thesis.

Stellenbosch: University of Stellenbosch, 2010.

[BSB14] Elaine Barker, Miles Smid, and Dennis Branstad. “A Profile for

US Federal Cryptographic Key Management Systems”. In: NIST

Special Publication 800 (2014), p. 152.

[BSW07] Terrance E Boult, Walter J Scheirer, and Robert Woodworth. “Re-

vocable fingerprint biotokens: Accuracy and security analysis”.

In: 2007 IEEE Conference on Computer Vision and Pattern Recogni-

tion. IEEE. 2007, pp. 1–8.

[BT17] Adrian Bulat and Georgios Tzimiropoulos. “How Far are We

from Solving the 2D & 3D Face Alignment Problem? (and a

Dataset of 230,000 3D Facial Landmarks)”. In: Proceedings of

the IEEE International Conference on Computer Vision 2017-Octob

(2017), pp. 1021–1030. ISSN: 15505499. DOI: 10.1109/ICCV.2017.

116. arXiv: 1703.07332.

[BV11] Niko Brummer and Edward de Villiers. “The BOSARIS Toolkit

User Guide: Theory, Algorithms and Code for Binary Classifier

Score Processing”. In: i (2011), pp. 1–24. URL: https://sites.

google.com/site/bosaristoolkit/.

https://doi.org/10.1109/ICCV.2017.116
https://doi.org/10.1109/ICCV.2017.116
https://arxiv.org/abs/1703.07332
https://sites.google.com/site/bosaristoolkit/
https://sites.google.com/site/bosaristoolkit/


Bibliography 151

[CFM10] Raffaele Cappelli, Matteo Ferrara, and Davide Maltoni. “Minu-

tia Cylinder-Code: A new representation and matching tech-

nique for fingerprint recognition”. In: IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 32.12 (2010), pp. 2128–2141.

ISSN: 01628828. DOI: 10.1109/TPAMI.2010.52.

[Cha+20] Donghoon Chang et al. “Cancelable multi-biometric approach

using fuzzy extractor and novel bit-wise encryption”. In: IEEE

Transactions on Information Forensics and Security 15 (2020),

pp. 3152–3167.

[Che+09] C. Chen et al. “Biometric quantization through detection rate

optimized bit allocation”. In: Eurasip Journal on Advances in Sig-

nal Processing 2009 (2009). ISSN: 16876172. DOI: 10.1155/2009/

784834.

[Che+18] Lingying Chen et al. “Face template protection using deep

LDPC codes learning”. In: IET Biometrics 8.3 (2018), pp. 190–197.

ISSN: 2047-4946. DOI: 10.1049/iet-bmt.2018.5156.

[CPR15] Miguel A Carreira-Perpinán and Ramin Raziperchikolaei.

“Hashing with binary autoencoders”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2015,

pp. 557–566.

[CV11] Chun Chen and Raymond Veldhuis. “Binary biometric repre-

sentation through pairwise adaptive phase quantization”. In:

EURASIP Journal on Information Security 2011.1 (2011), p. 543106.

ISSN: 1687-417X.

[Den+19a] Jiankang Deng et al. “ArcFace: Additive Angular Margin Loss

for Deep Face Recognition”. In: CVPR. 2019.

https://doi.org/10.1109/TPAMI.2010.52
https://doi.org/10.1155/2009/784834
https://doi.org/10.1155/2009/784834
https://doi.org/10.1049/iet-bmt.2018.5156


152 Bibliography

[Den+19b] Jiankang Deng et al. “RetinaFace: Single-stage Dense Face Local-

isation in the Wild”. In: (2019). arXiv: 1905.00641. URL: http:

//arxiv.org/abs/1905.00641.

[DKG12] Priyanka Das, Kannan Karthik, and Boul Chandra Garai. “A

robust alignment-free fingerprint hashing algorithm based on

minimum distance graphs”. In: Pattern Recognition 45.9 (2012),

pp. 3373–3388.

[Dro+18] P. Drozdowski et al. “Benchmarking Binarisation Schemes for

Deep Face Templates”. In: Proceedings - International Conference

on Image Processing, ICIP (2018), pp. 191–195. ISSN: 15224880.

DOI: 10.1109/ICIP.2018.8451291.

[DT05] Navneet Dalal and Bill Triggs. “Histograms of oriented gradi-

ents for human detection”. In: 2005 IEEE computer society confer-

ence on computer vision and pattern recognition (CVPR’05). Vol. 1.

Ieee. 2005, pp. 886–893.

[Eri+19] Learned-Miller Erik et al. LFW : Results. 2019. URL: http://vis-

www.cs.umass.edu/lfw/results.html (visited on 04/29/2019).

[Est+96] Martin Ester et al. “A density-based algorithm for discovering

clusters in large spatial databases with noise.” In: Kdd. Vol. 96.

34. 1996, pp. 226–231.

[GB+17] Marta Gomez-Barrero et al. “General Framework to Evaluate

Unlinkability in Biometric Template Protection Systems”. In:

IEEE Transactions on Information Forensics and Security 13.6 (2017),

pp. 1406–1420. ISSN: 15566013. DOI: 10 . 1109 / TIFS . 2017 .

2788000.

[GN03] Alwyn Goh and David CL Ngo. “Computation of cryptographic

keys from face biometrics”. In: IFIP International Conference on

https://arxiv.org/abs/1905.00641
http://arxiv.org/abs/1905.00641
http://arxiv.org/abs/1905.00641
https://doi.org/10.1109/ICIP.2018.8451291
http://vis-www.cs.umass.edu/lfw/results.html
http://vis-www.cs.umass.edu/lfw/results.html
https://doi.org/10.1109/TIFS.2017.2788000
https://doi.org/10.1109/TIFS.2017.2788000


Bibliography 153

Communications and Multimedia Security. Springer. 2003, pp. 1–

13.

[Gro+10] Ralph Gross et al. “Multi-pie”. In: Image and Vision Computing

28.5 (2010), pp. 807–813.

[Gro96] Lov K Grover. “A fast quantum mechanical algorithm for

database search”. In: Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing. 1996, pp. 212–219.

[Guo+16] Yandong Guo et al. “Ms-celeb-1m: A dataset and benchmark

for large-scale face recognition”. In: European Conference on Com-

puter Vision. Springer, 2016, pp. 87–102.

[He+16] Kaiming He et al. “Deep residual learning for image recogni-

tion”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016, pp. 770–778.

[Her+17] Charles Herder et al. “Public Key Cryptosystems with Noisy Se-

cret Keys.” In: IACR Cryptology ePrint Archive 2017 (2017), p. 210.

[HLM14] Gary B Huang and Erik Learned-Miller. “Labeled faces in the

wild: Updates and new reporting procedures”. In: Dept. Comput.

Sci., Univ. Massachusetts Amherst, Amherst, MA, USA, Tech. Rep

(2014), pp. 3–14.

[Hma+20] Mohamed Hmani et al. “Evaluation of the H2020 SpeechXRays

project Cancelable Face System Under the Framework of

ISO/IEC 24745:2011”. In: 2020 5th International Conference on Ad-

vanced Technologies for Signal and Image Processing (ATSIP). IEEE.

2020, pp. 1–6.

[HMD21] Mohamed Amine Hmani, Aymen Mtibaa, and Dijana Petro-

vska Delacretaz. “Voice Biometrics: Technology, trust and se-

curity”. In: Security. Institution of Engineering and Technology,

2021. Chap. Joining forces of voice and facial biometrics: a case



154 Bibliography

study in the scope of NIST SRE19, pp. 187–217. DOI: 10.1049/

PBSE012E_ch9.

[HPD18] Mohamed Amine Hmani and Dijana Petrovska-Delacrétaz.

“State-of-the-art face recognition performance using publicly

available software and datasets”. In: 2018 4th International Con-

ference on Advanced Technologies for Signal and Image Processing

(ATSIP). IEEE, 2018, pp. 1–6. ISBN: 1538652390.

[Hua+07] Gary B Huang et al. Labeled faces in the wild: A database for study-

ing face recognition in unconstrained environments. Tech. rep. Tech-

nical Report 07-49, University of Massachusetts, Amherst, 2007.

[ISO11] ISO/IEC JTC1 SC27 Security Techniques. ISO/IEC 24745:2011.

Information Technology - Security Techniques - Biometric Information

Protection. International Organization for Standardization. 2011.

[JCJ18] Arun Kumar Jindal, Srinivas Chalamala, and Santosh Kumar

Jami. “Face template protection using deep convolutional neu-

ral network”. In: IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition Workshops 2018-June (2018),

pp. 575–583. ISSN: 21607516. DOI: 10.1109/CVPRW.2018.00087.

[JLG04] Andrew Teoh Beng Jin, David Ngo Chek Ling, and Alwyn

Goh. “Biohashing: two factor authentication featuring finger-

print data and tokenised random number”. In: Pattern recogni-

tion 37.11 (2004), pp. 2245–2255.

[JW99] Ari Juels and Martin Wattenberg. “A fuzzy commitment

scheme”. In: Proceedings of the 6th ACM conference on Computer

and communications security. 1999, pp. 28–36.

[KAN10] Sanjay Ganesh KANADE. “Enhancing information security and

privacy by combining biometrics with cryptography”. Theses.

https://doi.org/10.1049/PBSE012E_ch9
https://doi.org/10.1049/PBSE012E_ch9
https://doi.org/10.1109/CVPRW.2018.00087


Bibliography 155

Institut National des Télécommunications, 2010. URL: https://

tel.archives-ouvertes.fr/tel-01057728.

[Kev+05] T. A.M. Kevenaar et al. “Face recognition with renewable and

privacy preserving binary templates”. In: Proceedings - Fourth

IEEE Workshop on Automatic Identification Advanced Technologies,

AUTO ID 2005 2005 (2005), pp. 21–26. DOI: 10.1109/AUTOID.

2005.24.

[Kho+13] Elie Khoury et al. “The 2013 speaker recognition evaluation in

mobile environment”. In: 2013 International Conference on Biomet-

rics (ICB). IEEE. 2013, pp. 1–8.

[Kin09a] Davis E. King. “Dlib-ml: A machine learning toolkit”. In: Jour-

nal of Machine Learning Research 10 (2009), pp. 1755–1758. ISSN:

15324435.

[Kin09b] Davis E. King. “Dlib-ml: A Machine Learning Toolkit”. In: Jour-

nal of Machine Learning Research 10 (2009), pp. 1755–1758.

[Kon+06] Adams Kong et al. “An analysis of BioHashing and its variants”.

In: Pattern recognition 39.7 (2006), pp. 1359–1368.

[KPD09] Sanjay Kanade, Dijana Petrovska, and Bernadette Dorizzi.

“Multi-biometrics based cryptographic key regeneration scheme”.

In: IEEE 3rd International Conference on Biometrics: Theory, Appli-

cations and Systems, BTAS 2009 (2009). DOI: 10.1109/BTAS.2009.

5339034.

[KPDD12] Sanjay G Kanade, Dijana Petrovska-Delacrétaz, and Bernadette

Dorizzi. “Enhancing information security and privacy by com-

bining biometrics with cryptography”. In: Synthesis Lectures on

Information Security, Privacy, and Trust 3.1 (2012), pp. 1–140. ISSN:

1945-9742.

https://tel.archives-ouvertes.fr/tel-01057728
https://tel.archives-ouvertes.fr/tel-01057728
https://doi.org/10.1109/AUTOID.2005.24
https://doi.org/10.1109/AUTOID.2005.24
https://doi.org/10.1109/BTAS.2009.5339034
https://doi.org/10.1109/BTAS.2009.5339034


156 Bibliography

[KS14a] Vahid Kazemi and Josephine Sullivan. “One millisecond face

alignment with an ensemble of regression trees”. In: Proceedings

of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (2014), pp. 1867–1874. ISSN: 10636919. DOI:

10.1109/CVPR.2014.241.

[KS14b] Vahid Kazemi and Josephine Sullivan. “One millisecond face

alignment with an ensemble of regression trees”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition.

2014, pp. 1867–1874.

[Lee+12] Hyunggu Lee et al. “A secure biometric discretization scheme

for face template protection”. In: Future Generation Computer Sys-

tems 28.1 (2012), pp. 218–231. ISSN: 0167-739X.

[Liu+16] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European

conference on computer vision. Springer, 2016, pp. 21–37.

[Liu+17] Weiyang Liu et al. “SphereFace: Deep hypersphere embedding

for face recognition”. In: Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017 2017-Janua

(2017), pp. 6738–6746. DOI: 10.1109/CVPR.2017.713.

[LM+16] Erik Learned-Miller et al. “Labeled faces in the wild: A survey”.

In: Advances in Face Detection and Facial Image Analysis. 2016,

pp. 189–248. ISBN: 9783319259581. DOI: 10.1007/978-3-319-

25958-1_8.

[LT13] Meng Hui Lim and Andrew Beng Jin Teoh. “A novel encoding

scheme for effective biometric discretization: Linearly separa-

ble subcode”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 35.2 (2013), pp. 300–313. ISSN: 01628828. DOI:

10.1109/TPAMI.2012.122.

https://doi.org/10.1109/CVPR.2014.241
https://doi.org/10.1109/CVPR.2017.713
https://doi.org/10.1007/978-3-319-25958-1_8
https://doi.org/10.1007/978-3-319-25958-1_8
https://doi.org/10.1109/TPAMI.2012.122


Bibliography 157

[LTK15] Menghui Lim, Andrew Beng Jin Teoh, and Jaihie Kim. “Biomet-

ric feature-type transformation: Making templates compatible

for secret protection”. In: IEEE Signal Processing Magazine 32.5

(2015), pp. 77–87. ISSN: 10535888. DOI: 10 . 1109 / MSP . 2015 .

2423693.

[Mai+08] Emanuele Maiorana et al. “Cancelable biometrics for hmm-

based signature recognition”. In: 2008 IEEE Second International

Conference on Biometrics: Theory, Applications and Systems. IEEE.

2008, pp. 1–6.

[Mai+10] Emanuele Maiorana et al. “Cancelable templates for sequence-

based biometrics with application to on-line signature recogni-

tion”. In: IEEE Transactions on Systems, Man, and Cybernetics-Part

A: Systems and Humans 40.3 (2010), pp. 525–538.

[Mai+21] Guangcan Mai et al. “SecureFace: Face Template Protection”. In:

IEEE Transactions on Information Forensics and Security 16 (2021),

pp. 262–277. ISSN: 15566021. DOI: 10.1109/TIFS.2020.3009590.

[MB11] A Mitrokotsa and J Bringer. “D5. 1: Privacy preservation tech-

niques”. In: Evaluation 1 (2011).

[McC+12] Christopher McCool et al. “Bi-modal person recognition on a

mobile phone: using mobile phone data”. In: 2012 IEEE Interna-

tional Conference on Multimedia and Expo Workshops. IEEE, 2012,

pp. 635–640. ISBN: 1467320277.

[MCN08] Emanuele Maiorana, Patrizio Campisi, and Alessandro Neri.

“On-line signature authentication: user adaptive template pro-

tection and renewability”. In: Mobile Multimedia/Image Process-

ing, Security, and Applications 2008. Vol. 6982. SPIE. 2008, pp. 263–

274.

https://doi.org/10.1109/MSP.2015.2423693
https://doi.org/10.1109/MSP.2015.2423693
https://doi.org/10.1109/TIFS.2020.3009590


158 Bibliography

[MCN11] Emanuele Maiorana, Patrizio Campisi, and Alessandro Neri.

“Bioconvolving: Cancelable templates for a multi-biometrics

signature recognition system”. In: 2011 IEEE International Sys-

tems Conference. IEEE. 2011, pp. 495–500.

[Mer11] Zeeya Merali. “First sale for quantum computing”. In: Nature

474.7349 (2011), p. 18. ISSN: 00280836. DOI: 10.1038/474018a.

[Mon+01] Fabian Monrose et al. “Using voice to generate cryptographic

keys”. In: 2001: A Speaker Odyssey-The Speaker Recognition Work-

shop. 2001.

[Mos+17] Stylianos Moschoglou et al. “AgeDB: The First Manually Col-

lected, In-the-Wild Age Database”. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops

2017-July (2017), pp. 1997–2005. ISSN: 21607516. DOI: 10.1109/

CVPRW.2017.250.

[Pan+16] Rohit Kumar Pandey et al. “Deep Secure Encoding for Face

Template Protection”. In: IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops (2016), pp. 77–

83. ISSN: 21607516. DOI: 10.1109/CVPRW.2016.17.

[PDCD09] Dijana Petrovska-Delacrétaz, Gérard Chollet, and Bernadette

Dorizzi. Guide to biometric reference systems and performance eval-

uation. Springer, 2009. ISBN: 1848002912.

[Phi+05] P Jonathon Phillips et al. “Overview of the face recognition

grand challenge”. In: 2005 IEEE computer society conference on

computer vision and pattern recognition (CVPR’05). Vol. 1. IEEE.

2005, pp. 947–954.

[PM01] Viola Paul and Jones Michael. “Prefacio Prólogo”. In: February

(2001). ISSN: 1063-6919. DOI: 10.1109/CVPR.2001.990517. arXiv:

arXiv:1011.1669v3.

https://doi.org/10.1038/474018a
https://doi.org/10.1109/CVPRW.2017.250
https://doi.org/10.1109/CVPRW.2017.250
https://doi.org/10.1109/CVPRW.2016.17
https://doi.org/10.1109/CVPR.2001.990517
https://arxiv.org/abs/arXiv:1011.1669v3


Bibliography 159

[PRC15] Vishal M Patel, Nalini K Ratha, and Rama Chellappa. “Cance-

lable biometrics: A review”. In: IEEE signal processing magazine

32.5 (2015), pp. 54–65.

[PVZ15] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman.

“Deep face recognition.” In: bmvc. Vol. 1. 3. 2015, p. 6.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. “On

data banks and privacy homomorphisms”. In: Foundations of se-

cure computation 4.11 (1978), pp. 169–180.

[Rat+07] Nalini K Ratha et al. “Generating cancelable fingerprint tem-

plates”. In: IEEE Transactions on pattern analysis and machine in-

telligence 29.4 (2007), pp. 561–572.

[RCB01] Nalini K. Ratha, Jonathan H. Connell, and Ruud M. Bolle. “En-

hancing security and privacy in biometrics-based authentication

systems”. In: IBM systems Journal 40.3 (2001), pp. 614–634.

[RU11] Christian Rathgeb and Andreas Uhl. “A survey on biometric

cryptosystems and cancelable biometrics”. In: EURASIP Journal

on Information Security 2011.1 (2011), p. 3. ISSN: 1687-417X.

[Sad+20] Seyed Omid Sadjadi et al. “The 2019 NIST audio-visual speaker

recognition evaluation”. In: Proc. Speaker Odyssey (submitted),

Tokyo, Japan (2020).

[Sag+16] Christos Sagonas et al. “300 Faces In-The-Wild Challenge :

database and results”. In: Image and Vision Computing 47 (2016),

pp. 3–18. ISSN: 02628856. DOI: 10.1016/j.imavis.2016.01.002.

[Sch+19] Jo Schlemper et al. “Deep Hashing using Entropy Regularised

Product Quantisation Network”. In: (2019), pp. 1–11. arXiv:

1902.03876. URL: http://arxiv.org/abs/1902.03876.

https://doi.org/10.1016/j.imavis.2016.01.002
https://arxiv.org/abs/1902.03876
http://arxiv.org/abs/1902.03876


160 Bibliography

[SDF11] Chang Shu, Xiaoqing Ding, and Chi Fang. “Histogram of the

oriented gradient for face recognition”. In: Tsinghua Science and

Technology 16.2 (2011), pp. 216–224. ISSN: 1007-0214.

[Sho94] Peter W Shor. “Algorithms for quantum computation: discrete

logarithms and factoring”. In: Proceedings 35th annual symposium

on foundations of computer science. Ieee. 1994, pp. 124–134.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Face-

net: A unified embedding for face recognition and clustering”.

In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2015, pp. 815–823.

[SRB16] Torsten Schlett, Christian Rathgeb, and Christoph Busch. “A bi-

narization scheme for recognition based on multi-scale block lo-

cal binary patterns”. In: Biosig 2016 (2016). ISSN: 3885796546.

[Sun+15] Yi Sun et al. “Deepid3: Face recognition with very deep neural

networks”. In: arXiv preprint arXiv:1502.00873 (2015).

[Sze+15] Christian Szegedy et al. “Going deeper with convolutions”. In:

Proceedings of the IEEE conference on computer vision and pattern

recognition. 2015, pp. 1–9.

[Sze+16] Christian Szegedy et al. “Rethinking the inception architecture

for computer vision”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016, pp. 2818–2826.

[Sze+17] Christian Szegedy et al. “Inception-v4, inception-ResNet and

the impact of residual connections on learning”. In: 31st AAAI

Conference on Artificial Intelligence, AAAI 2017 (2017), pp. 4278–

4284. arXiv: 1602.07261.

https://arxiv.org/abs/1602.07261


Bibliography 161

[Tai+14] Yaniv Taigman et al. “Deepface: Closing the gap to human-level

performance in face verification”. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition. 2014, pp. 1701–

1708.

[TC10] Andrew Beng Jin Teoh and Lee-Ying Chong. “Secure speech

template protection in speaker verification system”. In: Speech

communication 52.2 (2010), pp. 150–163.

[TS19] Jennifer Tracey and Stephanie Strassel. “VAST: A corpus of

video annotation for speech technologies”. In: LREC 2018 -

11th International Conference on Language Resources and Evaluation

(2019), pp. 4318–4321.

[Wan+21] Peiyi Wang et al. “Biometric key generation based on generated

intervals and two-layer error correcting technique”. In: Pattern

Recognition 111 (2021), p. 107733. ISSN: 00313203. DOI: 10.1016/

j.patcog.2020.107733. URL: https://doi.org/10.1016/j.

patcog.2020.107733.

[WH14] Song Wang and Jiankun Hu. “Design of alignment-free cance-

lable fingerprint templates via curtailed circular convolution”.

In: Pattern Recognition 47.3 (2014), pp. 1321–1329.

[Yan+16] Shuo Yang et al. “WIDER FACE: A Face Detection Benchmark”.

In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2016.

[Yi+14] Dong Yi et al. “Learning face representation from scratch”. In:

arXiv preprint arXiv:1411.7923 (2014).

[YY01] Hua Yu and Jie Yang. “A direct LDA algorithm for high di-

mensional data with application to face recognition”. In: Pattern

recognition 34.10 (2001), pp. 2067–2070.

https://doi.org/10.1016/j.patcog.2020.107733
https://doi.org/10.1016/j.patcog.2020.107733
https://doi.org/10.1016/j.patcog.2020.107733
https://doi.org/10.1016/j.patcog.2020.107733


Titre : Utilisation des données biométriques pour la régénération des clés cryptobiométriques révocables

Mots clés : biometrie, cryptographie, verification de visage, Apprentissage profond

Résumé : Ce travail de thèse vise à régénérer des
clés crypto-biométriques (clés cryptographiques ob-
tenues avec des données biométriques) résistantes
aux méthodes de cryptanalyse quantique. Le défi est
d’obtenir des clés avec une haute entropie pour avoir
un haut niveau de sécurité, sachant que le l’entro-
pie contenue dans les références biométriques limite
l’entropie de la clé. Notre choix a été d’exploiter la
biométrie faciale.
Nous avons d’abord créé un système de reconnais-
sance faciale de pointe basé en utilisant des bases
de données publiques. Notre architecture utilise des
réseaux de neurones profonds avec une fonction de
perte‘Triplet loss’. Nous avons participé à deux Pro-
jets européens H2020 pour lesquelles nous avons
fournit des adapations de notres systeme de recon-
naise de visage. Nous avons également participé au
challenge multimédia NIST SRE19 avec la version fi-
nale de notre système classique de reconnaissance
faciale qui a donnée d’excellents résultats.
Pour obtenir des clés crypto-biométriques, il est
nécessaire de disposer de références biométriques
binaires. Pour obtenir les représentations binaires
directement à partir d’images de visage, nous

avons proposé une méthode novatrice tirant parti
des auto-encodeurs et la biométrie faciale clas-
sique précédemment mise en œuvre. Nous avons
également exploité les représentations binaires pour
créer un système de vérification de visage cancelable.
Concernant notre objectif final, générer des clés
crypto-biométriques, nous nous sommes concentrés
sur les clés symétriques. Le chiffrement symétrique
est menacé par l’algorithme Groover parce qu’il réduit
la complexité d’une attaque par force brute de 2N

à 2(N/2). Pour atténuer le risque introduit par l’infor-
matique quantique, nous devons augmenter la taille
des clés. Pour cela, nous avons essayé de faire la
représentation binaire plus longue et plus discrimi-
nante.
Nous avons réussi à régénérer des clés crypto-
biométriques de plus de 400 bits grâce à la qualité des
plongements binaires. Les clés crypto-biométriques
ont une haute entropie et résistent à la cryptanalyse
quantique selon le PQCrypto projet car ils satisfont à
l’exigence de longueur. Les clés sont régénérées à
l’aide d’un schéma de ”fuzzy commitment” en utilisant
les codes BCH.

Title : Use of Biometrics for the Regeneration of Revocable Crypto-biometric Keys

Keywords : biometrics, cryptography, face verification, Deep Learning

Abstract : This thesis aims to regenerate crypto-
biometric keys (cryptographic keys obtained with bio-
metric data) that are resistant to quantum cryptana-
lysis methods. The challenge is to obtain keys with
high entropy to have a high level of security, knowing
that the entropy contained in biometric references li-
mits the entropy of the key. Our choice was to exploit
facial biometrics.
We first created a state-of-the-art face recognition
system based on public frameworks and publicly avai-
lable data based on DNN embedding extractor archi-
tecture and triplet loss function. We participated in
two H2020 projects. For the SpeechXRays project, we
provided implementations of classical and cancelable
face biometrics. For the H2020 EMPATHIC project, we
created a face verification REST API. We also parti-
cipated in the NIST SRE19 multimedia challenge with
the final version of our classical face recognition sys-
tem.
In order to obtain crypto-biometric keys, it is neces-
sary to have binary biometric references. To obtain
the binary representations directly from face images,

we proposed an original method, leveraging autoen-
coders and the previously implemented classical face
biometrics. We also exploited the binary representa-
tions to create a cancelable face verification system.
Regarding our final goal, to generate crypto-biometric
keys, we focused on symmetric keys. Symmetric en-
cryption is threatened by the Groover algorithm be-
cause it reduces the complexity of a brute force attack
on a symmetric key from 2N to 2(N/2). To mitigate the
risk introduced by quantum computing, we need to in-
crease the size of the keys. To this end, we tried to
make the binary representation longer and more dis-
criminative. For the keys to be resistant to quantum
computing, they should have double the length.
We succeeded in regenerating crypto-biometric keys
longer than 400bits (with low false acceptance and
false rejection rates) thanks to the quality of the binary
embeddings. The crypto-biometric keys have high en-
tropy and are resistant to quantum cryptanalysis, ac-
cording to the PQCrypto project, as they satisfy the
length requirement. The keys are regenerated using
a fuzzy commitment scheme leveraging BCH codes.

Institut Polytechnique de Paris
91120 Palaiseau, France
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