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Abstract

This thesis is devoted to the mathematical and statistical modeling of epidemic data and It
is divided into two broad parts, which are subdivided into different sections. The modeling of
infectious diseases has been a subject of interest to researchers, policy makers, and medical
practitioners, most especially during the recent global COVID-19 pandemic, which It has been
devastating to the health infrastructure and socio-economic status of many nations. It has
affected mobility and interaction among citizens due to the many daily new cases and deaths.
Hence, the need to contribute to understanding the mechanisms of virulence and spread using
different mathematical and statistical modeling approaches. The first part is dedicated to the
mathematical modeling aspect, which consists of the deterministic and discrete approaches
to epidemiology modeling, which in this case is mainly focused on the COVID-19 pandemic.
The daily reproduction number of the COVID-19 outbreak calculation is approached by
discretization using the idea of deconvolution and a unique biphasic pattern is observed that
is more prevalent during the contagiousness period across various countries. Furthermore, a
discrete model is formulated from Usher’s model in order to calculate the life span loss due to
COVID-19 disease and to also explain the role of comorbidities, which are very essential in the
disease spread and its dynamics at an individual level. Also, the formulation of Susceptible-
Infectious-Geneanewsusceptible-Recovered (SIGR) age-dependent modeling is proposed in
order to perform some mathematical analysis and present the role of different epidemiology
parameters, most especially vaccination, and finally, a new technique to identify the point
of inflection on the smoothed curves of the new infected pandemic cases using the Bernoulli
equation is presented. This procedure is important because not all countries have reached
the turning point (maximum number of daily cases) in the epidemic curve. The approach is
used to calculate the transmission rate and the maximum reproduction number for various
countries. The statistical modeling of the COVID-19 pandemic using various data analysis
models (namely machine and deep learning models) is presented in the second part in order to
understand the dynamics of the pandemic in different countries and also predict and forecast
the daily new cases and deaths due to the disease alongside some socio-economic parameters.
It is observed that the prediction and forecasting are consistent with the disease evolution
at different waves in these countries and that there are socio-economic determinants of the
disease depending on whether the country is developed or developing. Also, the study of
the shapes and peaks of the COVID-19 disease is presented. The peaks of the curves of the
daily new cases and deaths are identified using the spectral analysis method, which enables
the weekly peak patterns to be visible. Finally, the clustering of different regions in France
due to the spread of the disease is modeled using functional data analysis. The study shows
clear differences between the periods when vaccination has not been introduced (but only
non-pharmaceutical mitigation measures) and when it was introduced. The results presented
in this thesis are useful to better understand the modeling of a viral disease, the COVID-19
virus.
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Résumé

Cette thèse est consacrée à la modélisation des épidémies et elle est divisée en deux parties qui
se subdivisent elles-mêmes en différentes sections. La modélisation des maladies infectieuses a
suscité depuis de nombreuses années (la première modélisation de la propagation de la variole
de D. Bernoulli date de 1760)) l’intérêt des décideurs et des médecins, plus particulièrement
lors de la récente pandémie de COVID-19, qui a déstabilisé les infrastructures de santé, altéré
le statut socio-économique et affecté les interactions entre citoyens dans de nombreux pays, en
raison de multiples cas et décès, d’où la nécessité de comprendre les mécanismes de virulence
et de propagation, à l’aide de diverses approches de modélisation mathématique et statistique.
La première partie est consacrée à l’aspect modélisation mathématique d’une épidémie, qui
consiste en des approches déterministes et discrètes de la propagation épidémique, princi-
palement axée sur la pandémie de COVID-19. Le nombre quotidien de reproduction durant
la période de contagiosité est approché par discrétisation, fondée sur l’idée de dé-convolution,
et la forme bi-phasique a été la plus souvent calculée dans divers pays, ceci étant possible,
si on suppose que la maladie a commencé par un unique patient infectieux « zéro » au dé-
marrage de l’épidémie et que les taux de transmission et la taille de la population susceptible
sont constants en phase de croissance exponentielle des nouveaux cas observés. Ensuite, un
modèle discret été formulé à partir du modèle d’Usher, afin de calculer la perte de durée de
vie des infectés, due à la maladie COVID-19 et afin d’expliquer également le rôle des comor-
bidités, qui est très essentiel dans la propagation de la maladie et sa dynamique au niveau
individuel. En outre, une formulation de la modélisation de la dynamique épidémique dépen-
dante de l’âge des infectés, de type Susceptible-Infectious-Geneanewsusceptible-Recovered
(SIGR), a été proposée, afin d’analyser le rôle de différents paramètres épidémiologiques,
plus particulièrement celui de la vaccination. Enfin, une nouvelle technique a été proposée
pour identifier le point d’inflexion sur les courbes lissées des nouveaux cas infectés, cela à
l’aide de l’équation princeps de Bernoulli. Cette procédure est importante, car les vagues
de nombreux pays n’ont pas atteint le point de retournement (maximum de cas quotidiens)
de leur courbe épidémique, en particulier pour des vagues proches, dans lesquelles on peut
avoir une succession d’épaulements, mais pas de maximas. La modélisation statistique de la
pandémie de COVID-19, à l’aide de divers modèles d’apprentissage automatique et profond,
est présentée dans la deuxième partie, afin de comprendre la dynamique de la pandémie dans
différents pays, ainsi que de prédire et de prévoir les nouveaux cas quotidiens et les décès dus
à la maladie, ainsi que certains paramètres socio-économiques. On observe que la prédiction
et la prévision sont cohérentes avec l’évolution de la maladie durant différentes vagues dans
ces différents pays, et qu’il existe des déterminants socio-économiques de la maladie, selon
que le pays est développé ou en voie de développement. De plus, l’étude du nombre et des
formes des pics de la maladie COVID-19 est présentée. Les pics des courbes des nouveaux cas
et des décès quotidiens sont identifiés à l’aide d’une méthode d’analyse spectrale, qui permet
de visualiser les modèles de pics hebdomadaires. Enfin, la classification des départements
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français vis-à-vis de la propagation de la maladie est effectuée par analyse fonctionnelle des
données. Cette dernière étude montre des différences nettes entre la période où la vaccination
n’a pas encore été introduite (seulement des mesures d’atténuation non pharmaceutiques) et
celle où elle l’a été. Les résultats de cette thèse seront particulièrement utiles dans le futur
pour mieux comprendre les mécanismes de propagation d’une maladie virale, ici la maladie
due au virus SARS-CoV-2.
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Chapter 1

Introduction

1.1 General Background
Epidemiology and infectious disease modeling and its application to actual viral disease data
has been envisioned by many researchers over the years. The modeling of infectious dis-
eases started as early as 1760 by Daniel Bernoulli [1] who proposed the famous deterministic
mathematical model Susceptible-Infected (SI) to solve the epidemic wave of smallpox, but it
is a known fact that the stages of infectious diseases are the stages endemic, epidemic and
eradicated while the model he presented defined but not modeled the endemic state.
He said:
"Le retour d’une épidémie longtemps suspendue fait un ravage plus terrible dans une seule
année qu’une endémie uniforme ne pourrait faire pendant un nombre d’années considérable.",
which means in english:
"The return of a long-suspended epidemic wreaks more terrible havoc in a single year than
a uniform endemic could do for a considerable number of years."
This shortcoming has now been taken into account because we have had many models of
diseases whose endemic state has been considered due to their endemicity. The improvement
of the SI model is now extended to models such as Susceptible-Infected-Recovered (SIR),
Susceptible-Exposed-Infected-Recovered (SEIR), Vaccinated-Susceptible-Infected-Recovered-
Deaths (VSIRD), Susceptible-Infected-Recovered-Deaths (SIRD), etc. which provide an in-
depth understanding of the dynamics of viral diseases. Figure 1.1 is a simple SEIR model
where α is the contact rate and γ is the recovery rate.

Figure 1.1: Schematic diagram of a simple SEIR model.

The problem of the initial conditions of an epidemy has been already evoked by Bernoulli [1],
but in general it is at best only through the hypothesis of a unique “patient zero” allowing the
definition on him of his initial daily reproduction number [2]. The patient zero, also called
index or primary case is the first patient identified in a given population during an epidemi-
ological investigation. Despite the considerable means of current investigation, in particular
those of the World Health Organization (WHO) and the member governments of the WHO,

2



this patient is rarely identified, despite some cases as the H1N1 epidemic in Mexico [3]. In
general, the sources of an infectious disease spread in a given reservoir indicates with their
subsequent clusters the possible existence of an outbreak, but this search is in general very
long and difficult as for HIV in North America [4].
Concerning these initial clusters, from observations made during investigations of the start
of the outbreak in some countries [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], it
is sometime possible to get spatial and temporal information on the start of the epidemy,
but rarely these studies allows estimating the parameters S(0) and τ(0) in the concerned
population and worse, they give no indication of how long they remain constant. This is the
reason why we assumed that they remained constant only during the period of exponential
growth of new cases observed. A way to solve this problem could be to use the probability
distribution given in some of these articles for the length r of the contagiousness period (in
general a not-symmetrical lognormal distribution) considered as a random variable and then,
for a sample of values of r, simulate the case by adding another noise on the new observed
cases Xi at day i of the pandemic, e.g., a Gaussian noise concentrated on the mean values
given by different databases devoted to the new cases counting.
The world is recently facing with a new viral disease named COVID-19, whose modeling is
the main focus of this thesis. The virus was first discovered in Wuhan China in December,
2019 and since then it has spread to more than 230 countries. There are different symptoms
the host of this highly contagious virus do experience which vary in different ways, they are
fever, shortness of breath, fatigue, coughing, loss of smell and taste, difficult in breathing
and other lower respiratory effects. It is also observed that we have more asymptomatic than
those who are symptomatic and it takes about 5-6 days on the average for symptoms to show,
and however, it can take up to 14 days in some cases.
As published by World Health Organization (WHO) [20] in March 2020, there are four types
of COVID-19 transmission: no cases or no reported cases for at least 28 days, sporadic cases
(one or more cases, imported or locally acquired, detected in the last 14 days), clusters of
cases (most cases of local transmission linked in chains of transmission detected in the last 14
days are predominantly limited to well-defined clusters), and community transmission (one
or more cases, imported or locally acquired, detected in the last 14 days). The number of
people infected per unit time is referred to as the incidence in epidemiology. This incidence
increases as the disease spreads from persons to persons.
The spread of the disease from patient zero to other susceptible part of the population during
the contagiousness period without public health interventions is measured by the basic repro-
duction rate. This parameter is important in epidemiology modeling and it will be critically
discussed and estimated in this thesis.
This spread is more severe in people with comorbidities (kidney failure, obesity, cancer,
complicated hypertension, chronic liver disease, psychiatric disorders, dementia, respiratory
and heart failure) and severely immunocompromised persons (people with rare and serious
pre-existing conditions or severe disabilities, history of stroke, patients with autoimmune
diseases or aggressive immunosuppressive therapy, dialysis patients, and hematopoietic stem
cell, solid organ or recent bone marrow transplant recipients) due to their high risk factor
and vulnerability to infectious diseases.
It has been on the top of the agenda of various stakeholders like researchers, scientists, politi-
cians and medical practitioners to find a way to solve this global menace which has cripple
health facilities and economy globally due to its high rate of incidence and fatalities of the
disease which make it to be a major concern and significant disruption has been caused to the
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socio-economic structure. At the beginning of the pandemic, delays in reporting COVID-19
cases and incubation period (the number of days before an infected individual starts showing
symptoms) affect policy making such as the introduction of mitigation measures. Because
many countries most especially developing countries were not prepared even though it ap-
pears no countries was prepared for it so, there were many efforts to scale up Intensive
Care Unit (ICU) beds, ventilators, awareness on sneezing and coughing in elbow, discourag-
ing large gatherings, setting up new isolation centers, encouraging awareness on washing of
hands, provision and use of sanitizers and masks, as well as various medical interventions and
equipment necessary to help those who are critically ill depending on their symptoms and
age because their was a rapid increase in the number of hospitalization cases. Also, place of
work and schools started running their activities online in order to encourage e-learning and
teleworking so as to avoid physical contacts and interactions like handshakes and greetings
with hugs and kisses, and due to isolation, many were affected psychologically with little or
no support from stakeholders. Till date, all efforts to mitigate its spread which are ensuring
facilities that are open put hygiene concepts (well ventilated environment, sanitizers and
nose masks) in place, lock-downs (partial or total), curfew, face-masks, limit in the num-
ber of people gathering, restriction of non-essential businesses, stoppage of social, recreation
and sporting activities, aggressive contact tracing, massive testing and its prerequisite for
travels, social distancing, and administration of different doses of vaccine to the population
especially the most vulnerable (elderly) has not yield major result and we have seen many
reinfections even in fully vaccinated people but we can’t deny the fact that it has helped to
reduce hospitalization and severe illness because the virus keep mutating most especially the
Delta and Omicron variants which are known for their high contagiousness.
There are a lot of concerns when this outbreak will be endemic because it can’t continue to
cripple activities all over the world because mobility, businesses and tourism must continue
and if possible to live with it as normal flu however, the aggressive vaccination campaign its
still ongoing whereby more doses is prescribed by medical scientist so as to proper manage the
situation we have found ourselves. We have also observed that there are some demographic
determinants of the spread of the disease, since we do have more incidence most especially
when lock-downs are eased, during festive and winter period and less cases in other season.
The spread and fatality also depends on age (severe in elderly and less severe in young and
children) but due to its mutation, the recent Omicron variant is highly contagious, then the
epidemic curve shows that children and adult closer to children (like teachers and parents)
are more infected, reason why there is a call for vaccination of children which was not the
case at the beginning of the pandemic.
Developing an infectious disease model appropriate for the current COVID-19 epidemic that
can predict the epidemic’s development trend and can also fit an epidemic that has already
occurred hence, our goal in this thesis is to contribute to the modeling of COVID-19 outbreak
in two directions namely (i) the mathematical modeling and (ii) statistical modeling. In the
next section, we present an overview of some literature work in these two directions.

1.2 Systematic Review of Literature
People across the globe are looking for a way to put an end to the COVID-19 pandemic
even though on medical level, scientists are currently working on drugs to combat the disease
spread and there were different approaches and suggestions by many researchers, some of
these contributions in literature will be discussed in this section based on the direction of
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this thesis in terms of mathematical modeling, statistical modeling, public health policies
and there medical implications.
A lot of mathematical and statistical models have been proposed by researchers in order to
suggest best way to combat the spread of the disease and to understand the disease population
dynamics. On searching the key word ’Mathematical and Statistical modeling of COVID-19’
on cross-reference, there are thousands of articles on this subject which only few of them will
be discussed and the summary of models that have been developed and applied to the study
of COVID-19 outbreak ranges from mathematical to statistical and theoretical ones, these
models employing insight from mathematics, physics, statistics, medicine, epidemiology and
infectious disease.
The models summarized in this section are of the forms: difference equation, ordinary dif-
ferential equation, partial differential equation, matrix model, numerical model, individual-
based model, population-based model, regression model, survival function, hazard function,
stochastic process, and deep learning model. Discrete-time dynamics are used for stochastic
and deterministic population growth models while continuous-time dynamics can be used
for host-virus models, stochastic population growth models and advection-diffusion mod-
els. Also, spatially homogeneous, deterministic and delay formulations are mostly used for
advection-diffusion models, host-virus models and population growth models. Age-structured
population models are characterized by linear system of difference equations and can also in-
clude stochastic effect and agent-based models that simulate actions and interactions among
individuals within the population. They are computer model and can be deterministic or
stochastic. Numerical models solve complex dynamical systems and realistic models. Diffu-
sion equation can be used to study the evolution of these models. The idealistic assumption
of semi-mechanistic model is that the country is viewed as a closed environment, with all
infections assumed to occur within the population. Lastly, statistical tools help to formulate
models based on artificial intelligence, survival analysis, machine learning, logistic regression,
random effects and sometimes these models include spatial effects.
The pandemic started at a time when many countries were not prepared for the impact the
spread would have on the daily activities of the people and scientists are trying to under-
stand if this strain will be like other Coronaviruses strains. Since the pandemic started in
China, a model to study the country preparedness and management was proposed in [21].
In [22] authors used logistic growth model and SIR model to study the outbreak in India
which is one of the country that was badly hit by the pandemic and it is a country with
a very high population so, there was a lot of interactions among people and movement of
people from one place to another enabling contacts which lead to high rate of the spread of
the disease [23]. There are different waves or exponential phases of the pandemic, and most
countries are in their fourth wave while others are already in their fifth wave. A non-linear
mathematical model was proposed in [24] to forecast different waves of COVID-19 pandemic.
Also, authors in [25] proposed a model for the multiple epidemic waves to study different
exponential growth phases of the pandemic. In [26] authors formulated a SEIR compartment
population dynamics model with an added formite term. The formite term is analyzed as
a means of statistically quantifying the contribution of contaminated fomites to the spread
of COVID-19 pandemic. The model helps to guide health policy makers to know the contri-
bution of some fomites to the spread of infection in COVID-19 virus. The use of artificial
intelligence techniques is important in infectious disease modeling. In [27], authors devel-
oped an artificial intelligence tool which combines epidemiology model and medical data.
This approach helped to understand Spanish population movements based on mobile phone
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geographically located information to determine their economy activities hence, an economic
impact is predicted alongside spatio-temporal spread of COVID-19. Travel restrictions is one
of the measures implemented which affected many countries whose national income depends
heavily on tourism. [28] presented and discussed mathematical and statistical analysis of this
measures and its effects in tourism sector. The author in [29] simulated COVID-19 cases in
Nigeria to better understand the peaks in the evolution of the disease recorded using SIR
model with certain parameters to be optimized by using the Nelder-Mead algorithm with
maximum likelihood estimator.
The use of fractional derivative to model physical problems has played important role in
epidemics modeling. It is known to understand the physical meaning of real data fielded into
the model even though the model is old, and there has been some improvements in recent
time. Some of those improvements include applying it to COVID-19 outbreak modeling.
In [30] authors proposed a fuzzy fractional model for COVID-19 epidemic and due to high
transmission rate of the disease, in [31], fractional order of SIR model was used to understand
and predict the transmission of COVID-19 disease.
Age dependent modeling helps to better understand the dynamics of the disease at sub-
population level. Some articles have been devoted to study the role of vaccination at sub-
population level and the spread of the disease based on age whose fatality rate is higher in
elderly class but for the young class, the transmission rate is high. Age structured com-
partment model was proposed to study the spread of COVID-19 in Belgium [32] and in
Switzerland [33]. To see the effect of vaccination in age modeling, authors in [34] used avail-
able data at national level in Italy to validate their proposed model.
The effect of the pandemic on mental health of the people cannot be overemphasized as
many fell into depression and anxiety of the unknown and of what will happen next most
especially health workers, teachers, workers, students and lecturers due to isolation when
various control measures were put in place. As a result, many were separated from families
and loved ones, people could not interact because of social distancing, workers were forced
to do teleworking and students to start taking classes online to reduce physical interactions.
There were reports that psychiatric patients at home were increasing because there was lit-
tle or no support on mental health during the lockdown. Some studies in [35, 36] focus on
mental health during the COVID-19 pandemic. The results presented show that epidemic
risk perception is positively correlated with perceived stress, depression and anxiety.
There is a delay effect between the contact date of a carrier of the virus and the time when
the contact is infectious or starts showing symptoms and also delay in testing and reporting
during quarantine or isolation. This delay can be modeled in a stochastic [37] or a deter-
ministic approach [38]. Studies have shown that many carriers of the virus do not show
symptoms (they are called asymptomatic) but they are infected. This observation and that
of many other factors have led researchers to model this kind of phenomenon using different
approaches but adding a term that takes into consideration delay. [39] proposed a delay
model to better understand the wide spread of the disease in Italy because at the beginning
of the global pandemic there was a collapse of their health infrastructure and many deaths
were recorded. The result presented by authors in this article present an insight for this delay
and how it enhances the spread of the disease in Italy.
The COVID-19 pandemic has spread all over the world and it is important to study the
propagation of information related to the spread of the disease, that is why in [40], the au-
thor presented a SIR model characterized by multi-layer networks which is a framework that
incorporated the study of the interaction and awareness during epidemic spreading specifi-
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cally. A related study proposed this type of framework in the case of COVID-19 outbreak
in terms of misinformation of the people in relation to the virus, spread of rumors and fake
news, and also the role of media (social and print) in the epidemic spread [41, 42, 43, 44].
They proposed that all these factors can affect the spread of the disease and the population
opinion based on the information it accesses.
As the virus spread increases, government, health policy makers and experts suggested differ-
ent prevention strategies which have helped to mitigate the spread of the disease and reduce
the basic reproduction rate per time. Models incorporating these strategies have been devel-
oped, and in [45, 46] authors formulated a SIR model which was based on social distancing,
a measure introduced by government in many countries to control COVID-19 disease spread.
Recently, vaccines to effectively tackle the pandemic were produced after many trials by re-
searchers. Vaccines such as Moderna, Pfizer, AstraZeneca, Novavax, Johnson and Johnson
are many authorized in Europe which have been administered to people based on age and the
number of doses depends on the efficacy of the vaccine because research proves that immu-
nity decreases after some time reason why the third dose was introduced to better tackle the
virus. Mathematical and statistical modeling of the pandemic taking into account vaccina-
tion has been studied. Author in [47] predicts the effectiveness of the vaccination, [48] used
Geo-spatial model with Gillespie algorithm to investigate COVID-19 spread and vaccination,
[49] analyzed and developed SEIR model for COVID-19 pandemic with vaccination and non
singular kernel, [50] investigates the effectiveness of vaccination in the United States using
predictive epidemic model. Authors were able to demonstrate that the implementation of
vaccination depends on other social interventions introduced to reduce transmission rate at
the population level.
There are other models that have been used to study COVID-19 disease. They are SEIR
model with quarantine and fatality compartment [51], lattice model [52], a recursive model
[53], computational model [54], networks based model [55, 56], tailored model [57], growth
rate model [58], parameter estimation model [59], Weibull distribution model [60], Markov-
chain model [61], in-homogeneous spatial model [62], fuzzy model [63], hybrid intelligent
model [64], case based rate reasoning model [65], forecasting model [66], complex mathemat-
ical model [67], time series model [68], and hierarchical epidemic risk model [69]. All these
models were used to predict, forecast and understand COVID-19 spread dynamics.
To conclude this section, it has been shown in this section that a lot of models have been
developed and applied to predict and forecast the pandemic at different waves, by taking
into account different control measures and interventions (quarantine, use of face-mask, so-
cial distancing and vaccination) introduced to avoid escalation of the disease. The estimation
of the basic reproduction number, demographic models and socio-economic impacts of the
pandemic, statistical and mathematical approaches were discussed in some articles. The
goal of this thesis is to contribute significantly to the modeling of COVID-19 pandemic by
developing, applying and suggesting new models using different approaches.

1.3 Thesis Outline
The first chapter is based on the general introduction. Chapter 2 deals with the state of art
and the methodologies used in the thesis. Chapter 3 and Chapter 4 deals with the results
obtained from the mathematical and statistical modeling of the COVID-19 outbreak which
are from the scientific publications (published and in preparation) produced from the thesis.
In the last chapter, the perspectives and conclusions derived from the thesis are discussed
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and also the future works. Links to source code repositories used for the thesis can be found
online at https://github.com/KayodeOshinubi. The thesis has been organized as follows:
Chapter 1 discusses the general introduction, systematic literature review, the thesis outline,
and the list of scientific production from the thesis.
Chapter 2 discusses the mathematical methodology and the statistical methodology used
throughout the work. The mathematical models developed in this thesis are an extension
and improvement of the mathematical methodology presented. Also, the statistical method-
ology used throughout the work helps in predicting and forecasting the COVID-19 evolution
at different waves.
Chapter 3 presents the mathematical models developed for the modeling of the COVID-19
outbreak dynamics and its several applications using a discrete and continuous approach and
describing the importance of the models.
Chapter 4 deals with large scale analysis and the application of several statistical models to
COVID-19 data-sets, time series and some socio-economic and demographic data because it
is essential to understand the relationship between all these data and to properly describe the
evolution of the pandemic and factors influencing the spread of the virus at different stages
along the epidemic curve. Experimental results and analysis are presented
Chapter 5 is based on the conclusions and recommendations drawn from the thesis, descrip-
tion of the scientific contributions, and some future work.

1.4 Publications
The scientific publications, articles not yet published from this thesis, and some collabora-
tive works that are not included in the thesis are listed in this section. Also, a part of the
publications listed are conferences proceedings and posters presented. These publications
also include collaborations with researchers across different countries. Publications from this
research work cut across journals in applied mathematics, statistics, computational science
and infectious disease/epidemiology. The publications are listed as follows:

Peer reviewed papers

• J. Demongeot, K. Oshinubi, M. Rachdi, H. Seligmann, F. Thuderoz and J. Waku. Esti-
mation of Daily Reproduction Rates in COVID-19 Outbreak. Computation, 9(10):109,
2021. doi: 10.3390/computation9100109.

• K. Oshinubi, M. Rachdi and J. Demongeot. Analysis of daily reproduction rates of
COVID-19 using Current Health Expenditure as Gross Domestic Product percentage
(CHE/GDP) across countries. Healthcare, 9(10):1247, 2021.
doi: 10.3390/healthcare9101247.

• K. Oshinubi, F. Al-Awadhi, M. Rachdi and J. Demongeot. Data Analysis and Fore-
casting of COVID-19 Pandemic in Kuwait Based on Daily Observation and Basic Re-
production Number Dynamics. Kuwait J. Sci., Special Issue:1-30, 2021.
doi: 10.48129/kjs.splcov.14501.

• K. Oshinubi, M. Rachdi and J. Demongeot. Modeling of COVID-19 pandemic vis-à-vis
some socio-economic factors. Front. Appl. Math. Stat., 7:786983, 2022.
doi: 10.3389/fams.2021.786983.
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• K. Oshinubi, M. Rachdi A. C. Amakor, J.P. Olumuyiwa, A.A. Ayoade and J. Demon-
geot. Approach to COVID-19 Time Series Data Using Deep Learning and Spectral
Analysis Methods. AIMS Bioengineering, 9(1):1-21, 2021.
doi: 10.3934/bioeng.2022001.

• K. Oshinubi, F. Ibrahim, M. Rachdi and J. Demongeot. Functional Data Analysis: Ap-
plication to Daily Observation of COVID-19 Prevalence in France. AIMS Mathematics,
7(4):5347-5385, 2022. doi: 10.3934/math.2022298.

• K. Oshinubi, S. BuHamra, N. Alkandari, J. Waku, M. Rachdi and J. Demongeot.
Age Dependent Epidemic Modelling of COVID-19 Outbreak in Kuwait, France and
Cameroon. Healthcare, 10(3):482, 2022. doi: 10.3390/healthcare10030482.

• J. Waku, K. Oshinubi and J. Demongeot. Maximal reproduction number estimation
and identification of transmission rate from the first inflection point of new infectious
cases waves: COVID-19 outbreak example. Mathematics and Computers in Simulation,
198:47-64, 2022. doi: 10.1016/j.matcom.2022.02.023.

• K. Oshinubi, C. Fougère and J. Demongeot. A model for the lifespan loss due to a viral
disease: example of the COVID-19 outbreak. Infect. Dis. Rep., 14(3):321-340, 2022.
doi: 10.3390/idr14030038.

Published collaborative works

• J. Demongeot, K. Oshinubi, M. Rachdi, L. Hobbad, M. Alahiane, S. Iggui, J. Gaudart
and I. Ouassou. The application of ARIMA model to analyse COVID-19 incidence
pattern in several countries. J. Math. Comput. Sci., 12:10, 2022.
doi: 10.28919/jmcs/6541.

• A. Glaría, R. Salas, S. Chabert, P. Roncagliolo, A. Arriola, G. Tapia, J. Plaza, M.
Salinas, H. Zepeda, K. Oshinubi and J. Demongeot. A stepforward to formalize Tailored
to the Problem Specificity Mathematical Transforms: Use of ELM and explorations
with new Biosignals. Front. Appl. Math. Stat, 8:855862, 2022.
doi: 10.3389/fams.2022.855862.

• M. Jelassi, K. Oshinubi, M. Rachdi and J. Demongeot. Epidemic dynamics on social
interaction networks. AIMS Bioengineering, 9(4): 348-361, 2022.
doi: 10.3934/bioeng.2022025.

Conference proceedings, contributed talk and poster

• J. Demongeot, K. Oshinubi, M. Rachdi and H. Seligmann. Geoclimatic, Demographic
and Socioeconomic determinants of the COVID-19 prevalence. EGU General Assembly
Conference Abstracts, EGU21-7976, 2021. doi: 10.5194/egusphere-egu21-7976.

• K. Oshinubi, J. Demongeot and M. Rachdi. The biphasic pattern of the virulence curve
of the first and second wave of COVID-19. Coronavirus research conference proceedings,
2021.

• K. Oshinubi, M. Rachdi and J. Demongeot. Age dependent modeling and its application
to COVID-19 outbreak. BAMC conference proceedings, 2022.

• K. Oshinubi, M. Rachdi and J. Demongeot. Mathematical and Statistical Modeling of
COVID-19 Outbreak. Journée des doctorants de l’EDISCE, 2022.
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Chapter 2

State of the Art

2.1 Mathematical Methodology
In this section, we present the mathematical methodologies used in the thesis for the modeling
of the COVID-19 disease. These methodologies include Bernoulli’s epidemiological model,
D’Alembert’s epidemiological model, Ross and McKendrick SIR model, Leslie Model and
Usher’s Model.

2.1.1 Bernoulli’s Epidemiological Model

Daniel Bernoulli [1] developed a mathematical model by taking into consideration the dynam-
ics of smallpox infection. In the model, the whole population was divided into susceptibles
and immunized where the probability of a newborn to be susceptible is denoted by p and the
probability of being immunized to the smallpox infection is denoted as q.

Figure 2.1: Structure of Bernoulli’s epidemiological model for a population divided into
susceptible and immunized. At age x, the probability of surviving the infection is z(x),
transmission rate is β(x) and natural death rate is µ(x).

At age x, the natural death rate is denoted by µ(x), and the transmission rate is denoted
by β(x). Only a fraction of susceptibles z(x) survives to become immune while the rest
b(x) = 1− z(x) dies due to the infection which means that b(x) is the fatality rate. We will
refer to it as case fatality because it is not a rate (with dimension per unit of time) but a
probability, i.e. a dimensionless quantity. Let p(x) denote the likelihood of a newborn being
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alive and susceptible at age x. Figure 2.1 shows the structure of Bernoulli’s epidemiological
model. The differential equation is then satisfied by p(x):

dp

dx
= −(β(x) + µ(x))p,

with the initial condition p(0) = 1.
The probability q(x) to be immunized for life and be alive is represented by the differential
equation below:

dq

dx
= (1− b(x))β(x)p(x)− µ(x)q,

with the initial condition q(0) = 0.
Daniel Bernoulli used the logistic model as a phenomenological approach to fit data to the
model he developed above corresponding to the daily new cases of the smallpox infection.
He described the disease’s endemic state following a wave, but he did not propose a model
for describing the endemic dynamic that is now considered to be a stationary stochastic
process with constant average and variance, nor did he use a precise method to detect critical
boundary times corresponding to ruptures between epidemic and endemic phases.

2.1.2 D’Alembert’s Epidemiological Model

D’Alembert [70] developed in 1761 an alternative method for dealing with competing risks
of death, which is also applicable to non-infectious diseases. D’Alembert developed an al-
ternative solution in approaching epidemiological modeling developed by Daniel Bernoulli
which nowadays one would call a non-parametric approach in contrast to the Bernoulli para-
metric model [71]. Figure 2.2 shows the structure of D’Alembert’s epidemiological model.
D’Alembert approach is quite general and is not restricted to an immunizing infectious dis-
ease. Suppose λ(x) denote the death rate at age x due to a particular infectious disease and
the natural death rate at age x is denoted as µ(x). Let ψ(x) denote the rate at which deaths
due to a specific cause are recorded for people who die at age x. Then we have:

ψ(x) = λ(x)l(x),

where the survival function at age x, l(x), is defined by:

log l(x) =
∑
y≤x

log(1− µ(y)).

If the survival function l(x) is known, the mortality due to the disease can be calculated
by dividing ψ(x) by l(x). The d’Alembert’s epidemiological model is unquestionably more
general than the Bernoulli epidemiological model, which is limited to immunizing against
infections. The Bernoulli’s epidemiological model, on the other hand, provides significantly
more insight for the interpretation of infectious disease data.
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Figure 2.2: Structure of D’Alembert’s epidemiological model where the two deaths rates -
µ(x) (natural death rate) and λ(x) (death rate due to the infectious disease) are assumed to
act independently.

2.1.3 Ross and McKendrick SIR Model

The most common SIR model which is an improvement of Bernoulli epidemiological model
is the SIR Model by Ross and then by McKendrick [72, 73], which was assisted by W.O.
Kermack. The Kermack-McKendrick model is a SIR model for the number of people infected
by an infectious disease in a closed population over time. It was proposed to explain the
rapid rise and fall in the number of infected cases observed in disease outbreaks. This model
represents diseases against which people have a lifetime immunity and it does not consider
the possibility of re-infection with the disease which is also an important factor that should
be considered. The model is expressed as:

dS

dt
= δS + δI + (δ + γ)R− βSI − µS,

dI

dt
= βSI − (µ+ ν)I,

dR

dt
= νI − (µ+ γ)R

where S is the size of the susceptible, I the size of the infectious, and R the size of the
recovered, with the total population N defined as N = S + I + R. β is the transmission
rate, δ the birth rate (supposed to be equal to the death rate µ), γ is the loss of immune
resistance, and ν is the immunization rate. Determining the epidemiological threshold is
a critical component in determining whether or not to implement lockdown. This decision
would also be based on the disease’s fatality, which is beyond the scope of the SIR models.
The basic reproduction number which is the epidemiological threshold is expressed as:

R0 =
βN

ν + δ

The model can also be used for age dependent modeling by defining age classes between 1
and m and by denoting Sj, Ij, Rj, j = 1, 2, . . . ,m, each subpopulation of S, I, and R at age j,
we can define at any stationary state (S∗, I∗, R∗) the probabilities for a newborn individual
of being alive and either susceptible, infectious or immune at age j by the following formula:

u∗(j) =
S∗
j

P ∗ , v
∗(j) =

I∗j
P ∗ , w

∗(j) =
R∗

j

P ∗ , where P∗ =
∑

i=1,...,m

(Si + Ii +Ri)
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These formula make the link between the Bernoulli and the Ross and Kermack-McKendrick
epidemiological models.

2.1.4 Leslie Model

Leslie model which is sometimes called Leslie matrix is the first discrete population growth
model used for age structured modeling and it is well known for projecting how age is dis-
tributed in a particular population. The model was proposed by Leslie in 1945 [74, 75]. It
majorly considers one sex (female), fecundity and deaths among the sub-population (differ-
ent age classes) with a population of closed migration. Leslie model uses the age pyramid
vector p(t) = (pj(t))j=1,2,...,m , where pj(t) represents the size of the age class j at time t,
with j ranging from the birth age 1 to the maximal death age m, whose discrete dynamics
is governed by the matrix equation given as:

p (t) = Lp (t− 1) with L = (ljk) =



f1 f2 f3 . . . . . .
b1 0 0 . . . . . .
0 b2 0 . . . . . .
...

... . . . . . . . . .
...

...
... . . . . . .

0 0 0 . . . bm−1

fm
0
0
...
...
0


where ∀ j = 1, . . . ,m, bj = 1 − µj ≤ 1 (where µj is the death rate at age j) is the survival
probability between ages j and j +1 and f1 is the birth rate at age j (i.e., the mean number
of offsprings from an individual at age j). The dynamic stability of the Leslie system for
a distance d is quantified by the tendency to return to its stationary pyramid p∗ after a
perturbation p∗ + q, such as d(p∗, Lm(p∗ + q)) < Ke−mD tends exponentially to 0, when m
goes to infinity, the parameter D being the stability module. For the L2 distance to the
stationary pyramid p∗, D = |λ − λ,|, absolute value of the difference between the dominant
and sub-dominant eigenvalues of L, i.e., λ and λ, (λ = er, where r is the Malthusian growth
rate, and p∗ is the left eigenvector of L corresponding to λ). For the distance (known as
symmetrized divergence) of Kullback–Leibler, D = kH, where H is the entropy of p∗ and k
is a constant [76, 77].
The Leslie model has the advantage of not requiring a stable age distribution for valid pop-
ulation projections. It also allows for sensitivity analysis to see how changing certain age
classes vital rates affects population size and age structure. It can also incorporate density-
dependence, i.e., dampen values in the matrix to account for density-dependent factors lim-
iting population growth, and it can derive useful mathematical properties from matrix for-
mulas, such as stable-age distribution and finite rate of population change (i.e., the growth
parameter λ). The model’s disadvantages are that it requires a large amount of data (i.e.,
age-specific data on survival, fecundity, and population structure) and estimating fecundity
is difficult atimes.

2.1.5 Usher’s Model

An improvement of the Leslie matrix is the Usher’s model which is sometimes refers to as
Usher’s matrix [78] which is widely used to predict population dynamics and to predict
the dynamics of size-structured or age-structured populations. The model is formulated in
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which it is possible to remain in the same biological age corresponding to an increase of
the longevity (a rejuvenation) or to pass over a biological age state corresponding to an
acceleration of ageing between t − 1 and t as modeled by Usher using the vector of age
class sizes u(t) = [u1(t), · · · , um(t)], whose discrete dynamics is ruled by matrix equation
u(t) = Uu(t− 1), where:

U = (uij) =



f1 + v1 f2 f3 · · · fm−1 fm
α1 v2 0 · · · · · · 0
0 α2 v3 · · · · · · 0
...

... . . . · · ...
...

...
... . . . vm−1

...
0 0 0 · · · αm−1 vm


and where f1, f2, . . . , fm are the fertility rates in age classes, vi is the probability to remain in
state i, αi is the probability to go from state i to state i+1, vi+αi = 1−µi ≤ 1, ∀ i = 1, . . . ,m,
where µi is the death rate at age i. and vj. The probabilities Pi belong to the interval [0,1]:
0 ≤ Pi ≤ 1 ∀ i = 1, . . . ,m. We can also say that (vi + αi) is the general probability of
survival. The dynamical stability modulus for the L2 distance between the current age
pyramid [ui(t)/

∑
j=1,...,m uj(t)] and the stationary age pyramid w is given by e−|λ−λ,|, where

λ( resp. λ,) is the dominant (resp. sub-dominant) eigenvalue of the matrix U. In general, the
explicit calculation of the eigenvalues of the Usher matrix is not possible.
Many theoretical properties of the Usher model are known, particularly its asymptotic be-
havior: the evolution to the stationary state is exponential and is characterized by the growth
rate and the stationary distribution [79, 80]. Figure 2.3 shows the life cycle representation
of the Usher projection matrix model.

Figure 2.3: Life cycle representation of the Usher projection matrix model, where pi is the
probability for an individual to stay in class i, qi is the probability to move up from class
i to i + 1, mi is the probability of dying and f is the average fertility rate supposed to be
constant (after [79]).
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2.2 Statistical Methodology
This section deals with the statistical methodologies used in the thesis for the modeling of the
COVID-19 disease. These methodologies include time series, machine learning (supervised
and unsupervised), deep structured learning (feed-forward neural network and recurrent neu-
ral networks), spectral analysis and functional data analysis. In Figure 2.4, we present the
block diagram for the statistical methodology applications study.

Figure 2.4: Block diagram of the statistical methodology.

The data used throughout this study were collected from public database for all epidemio-
logical, demographic, and socio-economic data and references were provided as appropriate
in various sections and subsections.

Figure 2.5: Data pre-processing of all data-set used in the study.

The data-set used raw file was overflowed by a large quantity of information collected. The
raw file processing ensured the right attributes to be mined for this study. The data-set was
pre-processed and cleaned on Microsoft Excel while some of the data-set was converted to
Comma Separated Values (CSV) files. The data cleaning processes ensure the removal of
unwanted attributes and the quality data-set creation for an excellent analysis. The data
were normalized to generate a cleaned data-set. Figure 2.5 presents the steps involved in data
preparation and cleaning before applying the statistical techniques. In subsequent section,
we present the mathematical formulation of all the statistical methodologies used in this
thesis having in mind that most of these models are already inbuilt in well known software
like Python® and R which were employed for the experimental work.
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2.2.1 Time Series Modeling

Most of the data-sets used in this research are time series data and we shall give details about
some of the time series modeling used to predict and forecast our data-sets. Time series data
set can be hourly, daily, monthly or yearly because one of the variables has to do with time
and it consists of four components which are trend, cyclical, seasonal and irregular and it
depends on the component of interest you want to investigate in the modeling. It can be
represented as follows:

{pt}t=1,...,T

where pt is a random variable which represents a repeated observations.

Auto-regressive integrated moving average

The auto-regressive integrated moving average model, abbreviated as ARIMA, is a well-
known and widely used statistical technique for time series forecasting that uses the form of
the general equation presented in Equation (2.1) to forecast future values of a time series
based on previous values. ARIMA can model non-seasonal time series with non-white noise
patterns. Box and Jenkins introduced the ARIMA model in 1970 [81]. ARIMA model has
proven to be capable of producing accurate short-term forecasts. This model is based on the
idea that a variable’s future value of a time series is determined by its past values and errors.
The model equation is as follows:

p(t) =
∑

i=1,...,r

a(t)p(t− i) + ε(t), (2.1)

where p(t) is the time series real value at a time t and ε is a random residue also known as
noise, whose variance is to minimize. The auto-correlation curve is obtained by calculating
the correlation A(k) between p(t) and the p(t− k)’s (t belonging to a moving time window)
by using the formula:

A(k) =
E[p(t)p(t− k)]− E(p(t))E(p(t− k))

σ(p(t)σ(p(t− k))
. (2.2)

where E denotes the empirical expectation calculated on a chosen moving time window of
length m and σ is the standard deviation.The auto-correlation function A allows examining
the serial dependence of the p(t)’s.
The noise (white if it is Gaussian) ε is a stochastic process and must obey the following rules:

E(ε(t)) = 0

V (ε(t)) = δ2ε < +∞

Cov(ε(r), ε(r − k)) = 0,∀ r and k ̸= 0

where V denotes the variance and Cov the auto-covariance of the stochastic process ε.
In this thesis, we used the classical ARIMA (r, d,m) model, where r means the order of
auto-regression, d the degree of trend difference (related to the polynomial character of the
trend and discrete analog to the order of a differential equation) and m the order of moving
average.
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Exponential smoothing modeling

There are fifteen types of exponential smoothing modeling as stated in [82] which depend
strictly on underlying error (Multiplicative - M or Additive - A), type of trend (None - N,
Additive - A or Damping - D) and type of seasonality (None - N, Additive - A or Multiplicative
- M). The simple exponential smoothing model which has no trend nor seasonality but a
slowly varying mean for a time series pt is given as follows:

pt+h = lt (2.3)

lt = αpt + (1− α)lt−1

where pt+h the h-step ahead forecast, lt is the level of the time series and α is the parameter
which determines the degree of the smoothing and is always estimated by minimizing the
sum of the squared prediction errors.

It is important to first describe the underlying error models which can be described for
simple exponential smoothing model with an additive error as:

pt+h = lt−1 + εt (2.4)

lt = lt−1 + αεt

and for the simple exponential smoothing model with a multiplicative error, is given as:

pt+h = lt−1(1 + εt) (2.5)

lt = lt−1(1 + αεt)

The improvement of Equation (2.3) with a trend behavior of the time series which can
give rise to a model like MAN (exponential smoothing with additive trend without seasonal
component and with a multiplicative underlying model) is expressed as:

pt+h = lt +
m∑
i=1

Φiat

lt = αpt + (1− α)(lt−1 + Φat−1) (2.6)

at = β(lt − lt−1) + (1− β)Φat−1

where β is the parameter that determines the rate of change in trend and Φ is the parameter
that takes into consideration the damping of the trend. Other parameters are defined as
previously. If we set Φ = 0, we will have a simple exponential model without trend (e.g.
ANN or MNN) but if Φ = 1, it gives an exponential model with trend (e.g. AAN).
Another improvement of Equation 2.3 is to add seasonality effects to the model. For additive
seasonality we have:

pt+h = lt +
m∑
i=1

Φiat + st−n+hn

lt = α(pt − st−n) + (1− α)(lt−1 + Φat−1) (2.7)

at = β(lt − lt−1) + (1− β)Φat−1

st = γ(pt − lt−1 − Φat−1) + (1− γ)st−n
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for multiplicative we have:

pt+h = (lt +
m∑
i=1

Φiat)st−n+hn

lt = α(pt/st−n) + (1− α)(lt−1 + Φat−1) (2.8)

at = β(lt − lt−1) + (1− β)Φat−1

st = γ(pt/(lt−1 − Φat−1)) + (1− γ)st−n

. where hn = ⌊(h−1) mod n⌋+1. The seasonality parameter is γ and the number of season
is given as n which for instance for monthly data-set verifies: n = 12. Other parameters are
defined in the same way as before.
Table 2.1 gives a summary of the symbols we have described earlier for all the exponential
smoothing models.

Table 2.1: Exponential smoothing models.

Trend Seasonality

None(N) Additive(A) Multiplicative(M)
None(N) ANN/MNN ANA/MNA MNM
Additive(A) AAN/MAN AAA/MAA MAM
Damping(D) ADN/MDN ADA/MDA MDM

Prophet forecasting modeling

The Prophet forecasting modeling is an improved version of ARIMA model and exponential
smoothing model. It uses three main model components which are trend, seasonality and
holidays. It is described by the model equation below:

y(t) = g(t) + s(t) + h(t) + ε(t), (2.9)

where g(t) is the trend, a piece-wise linear or logistic growth curve for modeling the non-
periodic changes in time series defined for the logistic case by:

g(t) = C/(1 + exp(−k(t− z))),

where C is carrying capacity, z is the growth rate and m is the offset parameter.

Similarly, for the piece-wise linear case, we have:

g(t) = (s0 + s1 + · · ·+ sj)× t+ (C0 + C1 + · · ·+ Cj),

where j is the last change point before t.
Other parameters in Equation (2.9) are as follows: s(t) represents the seasonality, h(t) is
the effect of holidays with irregular schedules and ε(t) is the error term which accounts for
any unusual changes or noise not accommodated by the model [83].
Prophet model forecasts seasonality effects using the Fourier series, and the seasonality mod-
els are specified as periodic functions of t. The arbitrary smoothing of seasonal effects with
a scaling time variable using Fourier series is of the form:

s(t) =
a0
2

+
∞∑

m=1

an cos
2mπt

P
+ bn sin

2mπt

P
,
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where P is the period for fitting the seasonality and the parameters am and bm can be
estimated from the series. The seasonality is multipliable by the trend if the argument
“multiplicative” is specified then we have:

s∗(t) =

{
g(t)× s(t) if multiplicative
s(t), otherwise.

If we take the period P = 1 and 9, by considering additive seasonality (as opposed to
multiplicative), we have:

s(t) = s∗1(t)+s
∗
9(t) = s1(t)+s9(t) =

9∑
m=1

an cos
2mπt

1
+bn sin

2mπt

1
+

5∑
m=1

an cos
2mπt

9
+bn sin

2mπt

9

Also, h(t) can be a multiplicative seasonality and if we introduce a trainable coefficient σm
then it can be defined as follows:

h(t) =
∑

h∗m(t)

where,
hm(t) = σmh(t)

h∗m(t) =

{
g(t)× hm(t) if multiplicative
hm(t), otherwise.

for each m.

Spectral Analysis

The decomposition of a time series into underlying sine and cosine functions of different fre-
quencies allowing us to identify those frequencies that appear to be strong or very important
is called spectral analysis. Another way to think about spectral analysis is as a linear multi-
ple regression problem, with the dependent variable being the observed time series and the
independent variables being the sine and cosine functions of all possible frequencies. Spectral
analysis always identifies the correlation of sine and cosine functions of different frequencies
with the observed data, and if a large correlation is found, one can conclude that the re-
spective function has a strong periodicity in the real data. Spectral analysis is useful for
analyzing stationary time series and identifying noise-corrupted periodic signals [84].
The periodogram is one of the most important tools in spectral analysis because it is an
estimation called spectral density. It quantifies the contributions of individual frequencies
to time series regression and is denoted as Pk = a2k + b2k, where Pk is the periodogram,
ak cosine parameter, and bk sine parameter values at frequency k (for k = 1, 2, . . . , n/2).
The periodogram values can be interpreted in terms of the variances of the real data at the
respective frequencies. A Fourier line spectrum is a plot of Pk (as spikes) versus k. The
periodogram is created by joining the tips of spikes in the Fourier line spectrum to form a
continuous plot and scaling it to an area equal to the variance. The periodogram can also be
smoothed by using different Daniell kernel which can be log or sine or cosine.
Another important tool in spectral analysis is multitapering which is an extension of single
taper approaches that involves dividing the data into overlapping subsets that are individually
tapered and then Fourier transformed. The individual spectral coefficients of each subset are
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averaged to reduce variance. The method of subdividing the data is defined by a set of tapers
indexed by m = 1 · · ·M ; the estimated spectral density at frequency f is expressed as follows:

Z(f) =

∑M−1
m=0 λmZm(f)∑M−1

m=0 λm
,

where Zm(f) is the estimated spectral density using taper m and λm are weights for each
tapered spectral density estimate.
Also, harmonic regression analysis of the frequencies of the time series is important. Suppose
we have a time series pt which contains a periodic component, a phenomenon which spectral
density is known for, the model will be of the form:

pt = µ+ Zcos(ft+ d) + εt,

which can further be expanded to be of the form:

pt = µ+ a cos(ft) + b sin(ft) + εt,

where µ is the mean of the series, Z is the amplitude of variation and d is the horizontal
offset. All other parameters remain defined as earlier stated.
This nonlinear model can be fitted as a linear regression model with two independent vari-
ables, P = cos(ft) and Q = sin(ft). The regression coefficients are J = a and K = b. In
practice, the variation in a time series can be modeled as the sum of several different indi-
vidual sinusoidal terms occurring at different frequencies. The generalization of this model
to the sum of k frequencies, to which we can optionally add a trend term to obtain the
forecasting equation, can be expressed as follows:

pt = µ+ zt+
k∑

m=1

am cos(fmt) +
k∑

m=1

bm sin(fmt) + εt.

2.2.2 Supervised Machine Learning Modeling

Supervised machine learning modeling involves classification and regression supervised learn-
ing problems and processes. In most cases, you give specific instructions to what the machine
will do. Figure 2.6 shows the flowchart of used for supervised machine learning model-
ing, analysis and the process involved while Figure 2.7 shows the flowchart for k-fold cross-
validation strategy which is a re-sampling method to evaluate supervised machine learning
models on a limited dataset sample.
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Figure 2.6: Flowchart of supervised machine learning technique.

Figure 2.7: Flowchart for k-fold cross-validation strategy to evaluate supervised machine
learning technique.
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Regression modeling

Here we describe the linear regression model, log-linear regression model, generalized linear
models, polynomial regression (order ≥ 2) model, regression splines, multivariate ordinary
least square model, ridge regression model and lasso regression model.
Linear regression model uses some historic data of independent and dependent variables and
consider a linear relationship between both. The model is of the form:

y = bx+ a,

where a is the intercept, b is the slope, x is the independent variable and y is the dependent
variable.
Log-linear regression model is coming from the common exponential model which is given
as:

y = aebx, (2.10)

where y is the daily number of incidence in the case of modeling COVID-19 outbreak which
is the subject of the thesis, x is the number of days, b is the slope and a is a constant, and
the log-linear model is derived by taking the log of both sides of Equation (2.10) which can
be written as:

log y = log a+ bx.

It means that the log of the daily number of incidence will be used as the dependent variable.
Generalized linear models are models that fit a linear response function yi as linear combina-
tion of the predictors xpi to a data that is likely to have errors εi that are normally distributed
[85]. It can be written as follows:

yi = b0 +
∑
p

bpxpi + εi, (2.11)

where yi can be any exponential family distribution i.e., Binomial, Bernoulli, Gamma, Nor-
mal, Poisson etc. and εi ∼ N(0, σ2) which means that the mean is equal to 0 and constant
variance is σ2. The intercept is b0 and bp is commonly estimated using ordinary least squares
model.
Polynomial regression models use a similar approach as linear regression model but the
dependent variable is modeled as a degree n (n ≥ 2) polynomial in x. We can describe a
cubic polynomial (n = 3) regression as follows:

y = b1x+ b2x
2 + b3x

3 + b0,

where b1, b2, b3 are the weights of the coefficients of x. Other parameters are defined in the
same way as before. To model other type of polynomial regression, the power of x will just
be increased.
A spline is a smooth piecewise polynomial function with a fixed degree z defined and con-
structed by joining polynomials smoothly at values τi = 1, . . . ,m. The values τi are known
as knots or breakpoints, and they are given as follows:

t1 = τ1 < · · · < τm = tn.

Regression splines of order m with knots εk, k = 1, . . . , K is a piecewise-polynomial of order
m − 1, which has a continuous derivatives up to order m − 2 whose basis functions is as
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follows:

y =
K+m∑
n=1

βnhn(x) + ε.

The general formula for the truncated-power basis set is

hk(x) = xk−1, k = 1, . . . ,m

hk+m(x) = (x− εk)
m−1
+ , k = 1, . . . , K

The regression spline can be linear or cubic but it is claimed that cubic splines are the lowest-
order splines in which the knot-discontinuity is not visible to the naked eye. The set of linear
or cubic splines with fixed knots is a vector space. There is almost never a good reason to
go beyond cubic-splines. In practice the most widely used orders are m = 1, 2 and 4.
Multivariate ordinary least squares model allows us to test much more complex relations
between variables. It can be can be represented as follows:

y = β1x1 + β2x2 + · · ·+ ε, (2.12)

where β1, β2 , . . . are coefficients or weights, ε is the residual noise, y is the dependent variable
and x1, x2 , . . . are the independent variables.
Ridge regression is a modeling approach that can be used to reduce model complexity and
false positive which may result from the classical linear regression model. The cost function
for ridge regression is given as follows:

m∑
i=1

(
yi −

p∑
j=0

βj × xij

)2

+ α

p∑
j=0

β2
j ,

for all c > 0,
∑p

j=0 β
2
j < c, while α is the penalty term that regularizes the coefficients. If the

coefficients take large values, the optimization function is penalized. Ridge regression puts
constraints on the coefficients β.
In data modeling, Lasso (Least absolute shrinkage and selection operator) regression model
helps to regularise data models and to select the best feature for the model. The cost
function for Lasso regression is obtained in the same way as that of Ridge regression with
little modification which is given as:

m∑
i=1

(
yi −

p∑
j=0

βj × xij

)2

+ α

p∑
j=0

|βj|.

Support vector machine

Support vector machine is a supervised machine learning model that draws a hyperplane
relating to the data points and creates a boundary of possible data points (high and low)
for prediction. The goal of the model is to find the maximum margin, which means to
minimize error. A tolerance margin (ϵ) is set to approximate the model and minimize error,
individualizing the hyperplane that maximizes the margin while keeping in mind that some of
the error is tolerated. The mathematical formulation of the support vector regression where
b and w are the coefficients is given as:

y = f(x,w) =< w, x >=
m∑
j=1

wjxj + b, (2.13)

23



with wj > 0. The support points minimize prediction error where ∥w∥ is the magnitude of
the vector w :

min
w

1

2
∥w∥2, (2.14)

with constraints
| yj − wjxj |≤ ε. (2.15)

The error term is instead handled in the constraints, where we set the absolute error less than
or equal to a specified margin, called the maximum error (ε). Parameters used for support
vector machine are shown in Table 2.2.

Table 2.2: Model parameters for support vector machine.

Hyperparameter Nature/Value

Type Eps-regression
Kernel Radial
Cost 1

Gamma 1
Epsilon 0.1
p-value < 2.2e−16

Canonical correlation analysis

Canonical correlation is an aspect of multivariate statistical modeling that is used to simulta-
neously correlate several metric dependent variables and several metric independent variables
measured on or observed with similar experimental units. It finds linear combinations within
a data set with the goal of maximizing the correlation between these linear combinations
[86]. Mathematically, it can be expressed as two groups of n-dimensional variables

X = [xi] = [x1, x2, . . . , xp]

and
Y = [yi] = [y1, y2, . . . , yq],

where

xi =


xi1
xi2
...
xip

 , yi =

yi1
yi2
...
yiq

 .
The purpose of canonical correlation analysis is to find coefficient vectors

a1 = (a11, a21, . . . , ap1)
T and b1 = (b11, b21, . . . , bq1)

T ,

in order to maximize the correlation β = corr(Xa, Y b), while U = Xa and V = Y b. Linear
combinations of X and Y components respectively, constitute the first pair of canonical
predictors. Then, the second pair of canonical response can be found in the same way subject
to the constraint that they are uncorrelated with the first pair of variables. By repeating this
procedure, the r = min{p, q} pairs of the canonical response can be found and we will finally
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get the matrix A = [a1, a2, . . . , ar] and the matrix B = [b1, b2, . . . , br] to transfer X and Y to
canonical responses U and V following the below expression:

Un×r = Xn×pAp×r, Vn×r = Yn×qBq×r

If X and Y are both centered, we can concatenate them and calculate the covariance matrix
given as:

C = Cov([XY ]) =
1

n− 1
[XY ][XY ]T =[

Cxx Cxy

Cyx Cyy

]
,

where Cxx and Cyy are within the set of covariance matrices and Cxy = [Cyx]
T is between the

set of covariance matrices. The first canonical response a and b maximize the equation:

β =
aTCxyb√

aaTCxx

√
bbTCyy

The generalized formulae to calculate other canonical responses ai and bi ∀ i ≥ 2 can be
expressed as follows:

βi =
aTi Cxybi√

aiaTi Cxx

√
bibTi Cyy

,

subject to the constraint:

aja
T
i Cxx = 0 ∀ j < i, bjb

T
i Cyy = 0 ∀ j < i.

2.2.3 Unsupervised Machine Learning Modeling

Principal component analysis

Principal component analysis is an exploratory data analysis technique which uses the obser-
vations in a data set say p for each m individuals or quantities [87]. A p m-dimension vector
xi of observations on the ith variable and a linear combination and the variance of the data
set matrix denoted as X with minimum variance is defined as follows:

p∑
i=1

bixi = Xbi,

var(Xbi) = bTSbi;

where b is a vector whose components are constants which are commonly called eigenvectors,
S is the sample covariance matrix associated with the data set. The linear combinations
Xbi are called principal components of the data set. The elements of the eigenvectors bi are
called principal components loadings and elements of the linear combinations Xbi are called
the principal components scores which are values each m of the individuals or quantities will
score on principal components. The first principal component gives the most information in
principal component analysis.
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Clustering analysis

Clustering is a data analysis technique that divides objects into different clusters by measuring
distances and identifying individual clusters [88]. K-means and Hierarchical techniques are
two main types of clustering analysis that will be discussed in this section. Figure 2.8 shows
the flowchart of clustering techniques algorithm.
K-means clustering technique is a centroid-based or distance-based algorithm that uses dis-
tances to assign a point to a cluster. Each cluster is associated with a centroid in this
clustering technique. The main goal of this technique is to maximize the sum of distances
between the points and their respective cluster centroid. The steps involve selecting the
number of clusters (k), randomly selecting the centroid for each cluster, assigning each point
to the closest cluster centroid, computing the centroids of newly formed clusters, and then
repeating the process of assigning each point to the closest cluster centroid to form another
new cluster.
Hierarchical Clustering is a popular clustering technique for estimating patterns in multi-
dimensional data-sets. Examining groups of data with a similar pattern can lead to a better
understanding of the functions and state of the data set used in this thesis. The steps involved
are to determine the distance between each data point, consider all of the data points to be
individual clusters, determine the number of cluster groups required, calculate the proximity
of the new clusters and merge the two closest clusters to form new clusters and finally, merge
all available clusters to form a new cluster. Ward’s method was used in the hierarchical
clustering method to determine the similarity between two clusters. This method was chosen
due to its excellent performance in separating clusters even when there is noise between
clusters. The ward’s linkage method was used to compute the distance matrix between the
closest features considered in the hierarchical clustering technique [89]. It can be expressed
mathematically using Equation (2.16).

D(c1, c2) =
∥c1∥∥c2∥

∥c1∥+ ∥c2∥
∥c1 − c2∥2, (2.16)

where c1 and c2 are the two closest clusters and the norm is defined on the set of subsets of
the data set (e.g., the norm of their barycenter).

Table 2.3: Hierarchical clustering algorithm parameters.

Hyperparameter Nature

Number of clusters Three
Affinity Euclidean
Linkage Ward

A Dendrogram was used to depict the hierarchical clustering method. A dendrogram rep-
resents the results of cluster analysis; it reveals all of the steps taken in the hierarchical
algorithm, including the distance at which clusters merged [90]. Dendrograms provide a con-
venient method for exploring various data-combination possibilities. The number of clusters,
affinity, and linkage are the parameters used in the training of a hierarchical algorithm, as
shown in Table 2.3. All of these parameters are optimized to improve model optimization.
The number of clusters to form and centroids to generate was set at three. The affinity used
for this technique was Euclidean distance, which refers to the distance between all points in
the selected data. The ward linkage method estimates the proximity between two clusters.

26



Figure 2.8: Flowchart of clustering technique.
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2.2.4 Deep Structured Learning Modeling

Deep structured learning modeling involves the use of artificial intelligence or artificial neu-
ral network in modeling different phenomena; however, in this case it will be used to model
COVID-19 outbreak from several of its epidemiological, socio-economic and demographic
determinants. Artificial neural network modeling was developed to study interconnected
networks which can be in form of nodes or neurons with many layers involved. It can be
applied to biological systems, stochastic processes, computing among several others. It is
divided into two major classes which are feed-forward artificial neural network and recur-
rent artificial neural networks. These classes are based on several improvements over the
years which show that one model is performed better than the others when applied to an
experimental work. In Table 2.4, the list of hyper-parameters for artificial neural network
modeling, their definitions and values are presented while in Figure 2.11, the work flow of
how the deep structure learning modeling was carried out using France, India and Turkey as
an example in the flow chart.

Recurrent artificial neural networks

Recurrent artificial neural network is a type of artificial neural network in which node con-
nections form a directed or not directed graph along a temporal sequence. This enables it to
exhibit temporal dynamic behavior [91, 92]. There are two major types of recurrent artificial
neural networks which are Long Short-Term Neural Network (LSTM) and Gated Recurrent
Unit (GRU). The most advanced types of Recurrent Neural Networks are LSTM and GRU
(RNN). The LSTM addresses an inherent problem of recurrent neural networks, the gradient
vanishing problem. It is intended to model long-term dependencies and determine the opti-
mal time lag for the time series by granting the memory unit the ability to decide, remember,
or forget some information. This complex positioning among the recurrent neural networks
allows the LSTM network to recall past data, making it easier to create connections between
current and past data points, allowing the network to find patterns that play out over time.
The GRU is similar to the LSTM in that it uses gates to control data set flow, but unlike
the LSTM, it lacks a separate cell state and instead has only a hidden state. The GRU has
some parameters that help to accelerate data set training. Figure 2.9 depicts the LSTM and
GRU architectures.

Feed-forward artificial neural networks

Feed-forward artificial neural network is sometimes called deep feedforward artificial neural
network are models that enable information to flow through the function being evaluated, the
intermediate computations used to define the function, and finally give an output. There are
no feedback connections where the model’s outputs are fed back into itself. There are basi-
cally four types of this model which are Convolutional Neural Network (CNN), Deep Neural
Network (DNN), Extreme Learning Machine (ELM) and Multilayer Perceptron (MLP).
The hidden layer of an artificial neural network is used to store and evaluate how significant
one of its inputs is for the output. Figure 3b depicts an artificial neural network with only
one hidden layer. A CNN (see Figure 2.10(a)) is a type of neural network composed of
neurons with learnable weights and biases and it requires significantly less pre-processing
than other classification algorithms. It is made up of filters that are applied to the input
data set, effectively condensing the data set into a smaller resolution. CNN is well-positioned
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to remove noise in the inputed data set so that it can be fed into basic neural networks. The
advantage of this method is that it approaches the data set spatially [93].
A DNN is a multi-layer artificial neural network in which data flows from the input layer to
the output layer without going backward, and the links between the layers only go forward
and never touch another node again. It is also referred to as a feed forward network. A
DNN is shown in Figure 2.10(b). A MLP is a feed-forward ANN with at least three layers
of nodes: an input layer, a hidden layer, and an output layer, as shown in Figure 2.10(b),
whereas ELM is used in the training algorithm for a feed-forward artificial neural network,
which converges much faster than traditional methods and yields promising results [94].

Neural prophet forecasting modeling

Neural prophet forecasting model is an extension of Equation (2.9) with neural network
components (auto-regression and covariates modules) and it is as expressed as follows:

y(t) = g(t) + s(t) + h(t) + f(t) + a(t) + l(t) + ε(t). (2.17)

For all m ∈ [1, h], h is the step length, and we have:

y(t+m−1) = g(t+m−1)+s(t+m−1)+h(t+m−1)+f(t+m−1)+a(t+m−1)+l(t+m−1),

where f(t) is the forecast covariates or future known variables, a(t) auto-regression of the
form Equation (2.1) and l(t) is the lagging current covariate by m time period or lagged
observations of the known variable. Other parameters are defined in the same way as before.
f(t) can be multiplicative like seasonality which was earlier defined with a trainable coefficient
σm then it can be defined as follows:

f(t) =
∑

f ∗
m(t)

where, for each m:
fm(t) = σmf(t)

f ∗
m(t) =

{
g(t)× fm(t) if multiplicative
fm(t), otherwise.

Given a set of covariates x and if we create a separate lagged regressor module for each of m
covariates x of length T , l(t) can be expressed as follows:

l(t) =
∑
p

lx(xt−1, . . . , xt−p).

The p last observations of the covariate x are the inputs to the module (instead of the series
y itself as in auto-regressor) [95].
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Figure 2.9: LSTM and GRU architectures (after ([96]). The calculation unit uses cell state
(C) and hidden state (H) variables for LSTM and only H for GRU, with a control variable
(Xt) for both.

Figure 2.10: (a) A CNN sequence illustration (after [96]). (b) Deep neural network with two
or more hidden layers.
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Table 2.4: Artificial neural network models parameters.

Hyperparameter Definition Values

Batch size and max-pooling layers Batch size is the number
of sub-samples given to

the neural networks after
which parameters is

updated

30, 32, 64, 128, 256, . . .

Number of epoch It is the number of
iterations or times in

training a neural
network

100, . . .

Number of hidden layers and units It is the layers between
input layers and output

layers

32, 50, 64, 128, 256, . . .

Dropout It is used to regularize
artificial neural network

models to avoid
over-fitting

20 - 50%

Optimizer It is used to change the
attributes of the neural

networks such as weights
and learning rate so as

to reduce losses

Adam, stochastic
gradient and gradient

descent

Activation function It decides whether the
neurons should be
activated or not

Sigmoid, Rectified
Linear Unit (ReLU) and

tanh
Filter size/Kernel in CNN layers It helps to pad the input

volume with zeros in
such a way that the
CNN layers does not
alter the dimension of

the input

3× 3 or 5× 5

Pooling size It reduces the dimension
of the feature map

2× 2

Verbose It is a setting that allows
you to see wordy

information in neural
network modeling while

it is training.

0, 0.2, 1, 2, . . .

Validation split It’s a float value for
validation data which is
not used for the training,
but to evaluate the loss

and the accuracy

Between 0 and 1
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Figure 2.11: Flowchart of deep structured learning modeling.
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2.2.5 Functional Data Analysis (FDA)

Functional data analysis deals with data from curves, surfaces, or anything else that varies
along a continuum (e.g. time, spatial location, wavelength, probability, etc.). Data is only
sampled at certain points along the continuum, either very precisely or with intricate noise
structure, because the observed data are generally filled with observational errors (or noise)
that are superimposed on the underlying signal. The main assumption is that the underlying
random processes are intrinsically regular. In the real world, we could see a scenario with
M processes being observed at the same time [97]. Let t be a one-dimensional argument
sometimes referred as time. Functions of t are observed over a discrete grid {t1, . . . , tK} ∈ ∆
at sampling values tk, which may or may not be equally spaced. Let Y be a vector of M
functional data Y = [Y T

1 , . . . , Y
T
M ]T , each functional data is expressed as follows:

Yik = Xi(tk) + εik, 1 ≤ k ≤ K, 1 ≤ i ≤M,

where Yik is a noisy observation of the stochastic process Xi(tk) and εik is a random error
with zero mean and variance function σ2

i associated with the ith functional raw data. In
vector notation, the Xi(t) is of the form:

Xi(t) ≈ cTi .α(t),∀t ∈ ∆, i = 1, . . . ,M,

where ci and α(t) are n-vectors.

Smoothing techniques

The idea behind smoothing procedures is to estimate a curve that fits the data set well while
not becoming too ’wiggly’ or locally variable. This is accomplished by allowing the curve
estimate at a point t to be heavily influenced by observations near t. B-spline technique is one
of the tools used in smoothing (curve estimation modeling) a functional data and this can be
done by changing the number of basis functions (n = 2, 3, 4, . . . , p). The most commonly used
basis functions are Fourier, polynomial, splines and wavelets. A mathematical expression for
the basis representation for the curve of the functional data set is of the form:

f(t) =
n∑

j=1

bjαj(t),∀ t ∈ ∆, (2.18)

where bj’s are basic coefficients and αj’s are the basis functions for j = 1, . . . , n.
Sometimes one can use the Fourier basis for the functions to further see the variations in the
curves, which is the most appropriate basis for periodic functions defined on an interval ∆
where αj’s take the following form:

α0(t) = 1/
√

|∆|, α2r−1(t) =
sin(rωt)√

|∆|/2
and α2r(t) =

cos(rωt)√
|∆|/2

,

for r = 1, . . . , n−1
2
, where n is the number of basis functions and n must be odd to compute

a Fourier basis. The frequency ω determines the period and the length of the interval |∆| =
2π/ω.
The non-parametric method (kernel smoothing) of smoothing for functional data is based on
the smoothing matrix M given:

mij =
1

h
K(

ti − tj
h

), (2.19)
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m(h) = (sj(ti)) =
K(

ti−tj
h

)∑T
k=1K(

tk−tj
h

)
, (2.20)

where K(.) is the Kernel function and h is smoothing parameter.

Functional principal component analysis

Principal component analysis (PCA) is a dimension reduction analysis tool in unsupervised
machine learning modeling, whereas functional principal component analysis (FPCA) is a
dimension reduction with high correlation in functional data analysis that completes the sta-
tistical tools used in biomedical data modeling, particularly epidemiologic data.
Let {xi(t)}i=1,m be a given set of function and let α be a weight. To compute functional
principal components, the following steps are involved:
- We first find the principal component weight function α1(t) for which the principal compo-
nent score is given as follows:

fi1 =

∫
α1(t)xi(t)dt

while maximizing
∑

i=1,m f
2
i1 is subjected to:∫

α2
1(t)dt = ∥α1∥2 = 1

- Next, the weight function α2(t) is computed and the principal component score maximizing∑
i=1,m f

2
i2 is subjected to ∥α2∥2 = 1 and to the additional constraint:∫

α2(t)α1(t)dt = 0

- Then, the process is repeated for as many iterations.

Functional clustering analysis

The two-stage approaches for functional data clustering consist of a first step, referred to
as the filtering step, in which the dimension of data is reduced, and a second step in which
classical clustering tools for finite dimensional data are used. The reducing dimension step
consists in general in approximating the curves to a finite basis of functions. Because of their
superior properties, spline bases are a popular choice. Clustering algorithms, such as the k-
means algorithm, are commonly used to estimate clusters of functional data. Nonparametric
approaches for functional data clustering include hierarchical and k-means clustering, which
are tools that use standard nonparametric clustering techniques with specific distances or
dissimilarities. Several works [98, 99] consider the following measures of proximity between
two curves xi and xj:

dl(xi, xj) =

(∫
T

(xli(t)− xlj(t))
2dt

)1/2

,

where xl is the l − th derivative of x.
It has been proposed [98, 99, 100] to use hierarchical clustering in conjunction with the dis-
tance d0 (the L2-metric) or d1 (the semi-norm in the Hilbert space) or with the semi-metric
d2. Another proposal is the use of k-means algorithm with d0, d1 and with (d20+d

2
1)

1/2, as well
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as d0 with k-means for Gaussian processes. It was demonstrated, in particular, that cluster
centers are linear combinations of functional principal component analysis eigenfunctions.
The same distance d0 with k-means is considered when defining time-dependent clustering.
Following the approach used to estimate the distance d0, nonparametric analysis can be ap-
plied to raw-data clustering or to two-stage analysis. Indeed, if d0 is approximated directly
using discrete observations of curves, nonparametric analysis is equivalent to raw-data clus-
tering analysis. Similarly, if an approximation of the curves into a finite basis is used to
approximate d0, nonparametric analysis is equivalent to two-stage methods with the same
basis approximation.

Functional linear regression analysis

This section describes two functional linear regression analysis methodologies which are (i)
function to scalar linear regression and (ii) function-on-function linear regression.
To describe the function to scalar linear regression model, Let

Y =< θ,X > +ε, (2.21)

where θ is the unknown function of the model, X is a functional covariate belonging to some
functional space H which is endowed with an inner product < ·, · >, Y is the response variable
and ε is the random error term. Usually, H is L2([a, b]) of square integrable functions on
some real compact interval [a, b] and

< f, g >=

∫ b

a

f(t)g(t)dt, (2.22)

is the corresponding inner product, where the functions f, g ∈ L2([a, b]). Considering C =
[0, 1], so the Equation (2.21) can be written as:

Y =

∫ 1

0

θ(t)X(t)dt+ ε, (2.23)

where θ is a square integrable function which is defined on C and ε is a random variable such
that E(ε) = 0 and E(X(t)ε) = 0, then Equation (2.23) can be rewritten as:

Y = (ΨX) + ε, (2.24)

where Ψ represents the integral.
If the functional linear regression model is considered as a functional input/output regression
model where y(t) is response variable and x(t)’s are predictors at each time t, i.e., x(t) → y(t).
The functional linear model with an intercept is of the form:

y(t) = β0(t) +

∫
β(s, t)x(s)ds+ ε. (2.25)
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Chapter 3

Mathematical Modeling of COVID-19
Outbreak

This chapter deals with a wide range of mathematical models developed to model the COVID-
19 pandemic. Section 3.2 describes the use of matrix algebra to estimate the daily repro-
duction numbers during the COVID-19 outbreak. The discrete dynamics of the epidemic’s
growth equation is presented with the estimation of the daily reproduction numbers using a
de-convolution technique on a series of new COVID-19 cases, then the discussion of the role
of noise on the stability of the epidemic’s dynamics using a stochastic framework is proposed.
The shapes of the daily reproduction number distribution in the COVID-19 outbreak dynam-
ics are similar to other viral diseases, such as influenza, with two successive reactions from
two immune defense barriers, innate cellular immunity first, which is insufficient if symptoms
persist, then adaptive immunity, resulting in a transient decrease in contagiousness between
the two phases. In Section 3.3, the estimation of maximum reproduction number using con-
tinuous formulation of the epidemic’s growth equation is presented and applied to different
countries in order to show the effectiveness of the method. In Section 3.4 the identification
of the first point of inflexion using Bernoulli SI equation and the estimation of transmis-
sion rate of the COVID-19 outbreak is presented. The method is applied to real data from
Cameroon and its regions, then to the world data. The results derived from this analysis
shows its applicability to countries whose epidemic curves did not reach the turning point. In
Section 3.5 a discrete epidemic model on the ageing and lifespan loss in COVID-19 outbreak
and the role of comorbidities of infected patients using the Usher’s model for different age
classes and gender (male and female) at sub-population level is presented. Also, the pro-
portion of sensitivity of the model parameters so as to see the most important parameter at
different age groups is established. The result is consistent with the observed cases and the
semi-quantitative mathematical modeling approach at the population level. The Section 3.6
describes a mathematical age dependent model for two age groups (20-64 years and people
above 64) named Susceptible-Infectious-Goneanewsusceptible-Recovered (SIGR) model for
COVID-19 outbreak and then some mathematical results by showing the positivity, bound-
edness, stability, existence and uniqueness of the solution are proved. Numerical simulations
of the model with parameters coming from Kuwait, France and Cameroon are presented. The
results are centred around the role of different parameters used in the model mainly the effect
of vaccination on the epidemic dynamics. Finally, Section 3.7 discusses the perspectives of
this chapter and some conclusions based on the models developed.
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3.1 Introduction
Mathematical modeling of infectious diseases is important to better understand the evolution
of any pandemic most especially now that the world is faced with the COVID-19 outbreak
which was first discovered in Wuhan, China in December, 2019 and since then we have had
different waves of the pandemic as most countries is battling with their fifth wave due to
the most recent variant, the omicron variant, which is known for its high contagiousness but
not as deadly as previous variant Delta. Recently, in Ireland and some other countries, we
are having a rise in hospitalization cases and daily new cases among children, primary school
children, their adult contacts and their parents which is one of the reason why the vaccination
campaign is now extended to younger ones.
COVID-19 pandemics has affected every facet of our lives. The introduction of various
mitigation measures has helped to curtail the spread of the disease but this has had adverse
effects on the well being of many people due to isolation, psychological effect, lost of jobs and
many more impacts on the people. The patterns of cases have shown that the unvaccinated
are at far greater risk and there is a lot of debates on declaring that COVID-19 is endemic
since the managing of the spread of the disease is getting difficult by the day due to an
extended period.
As the virus keeps mutating, the onus lies on us as researchers to keep studying the patterns
and the spread of the virus hence, the reason for which we propose different mathematical
approaches to better understand the basic reproduction number, the transmission rate from
the first point of inflection and the dynamics of the spread of COVID-19 virus at the sub-
population (age group) level.

3.2 Estimation of Daily Reproduction Rates in COVID-
19 Outbreak

3.2.1 The basic reproduction number

The ability of an infectious disease to spread is quantified by the basic reproduction number
R0 (also called the average reproductive rate), a classical epidemiologic parameter that de-
scribes the transmissibility of an infectious disease and is equal to the number of susceptible
individuals that an infectious individual can transmit the disease to during his contagiousness
period.
Given an SI Equation of the form:

dS

dt
= −νSI,

dI

dt
= νSI − µI, (3.1)

where S and I are respectively the size of the susceptible and infectious populations. µ is
the death rate and ν is the rate of contact. If we assume that S is approximately 1 i.e.,
everyone in the population is susceptible to the disease, then dI/dt = νI−µI. An individual
is expected to infect a number of ν/µ secondary cases which represents the basic reproduction
number R0 at the individual level modeling i.e., R0 = ν/µ. It has been established that if
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R0 = ν/µ > 1, the pandemic is an epidemic, and if R0 = ν/µ < 1, the pandemic is extinct
or the disease can be control but a times that is not the case.
Following the outbreak of the COVID-19 disease caused by coronavirus SARS CoV-2 which
is the third coronavirus outbreak to occur in the past two decades. SARS CoV-2 can be
transmitted from person to person by respiratory droplets and through contact and fomites.
Therefore, the severity of the disease symptoms, such as cough and sputum (see Figure 3.2),
and their viral load, are often the most important factors in the virus’s ability to spread,
and these factors can change rapidly within only a few days during an individual’s period of
contagiousness. For contagious diseases like COVID-19, the transmissibility is not a biolog-
ical constant: it is affected by numerous factors, including endogenous factors, such as the
concentration of the virus in aerosols emitted by the patient (variable during his contagious-
ness period), and exogenous factors, such as geo-climatic, demographic, socio-behavioral and
economic factors governing pathogen transmission (variable during the outbreak’s history)
[101, 102, 103] which will be discussed and taking into consideration in the modeling of the
COVID-19 disease in some part of this thesis.
In epidemiology, there are essentially two broad ways to calculate R0, which correspond
to the individual-level modeling and to the population-level modeling. At the individual
level, if we suppose the susceptible population size constant (hypothesis valid during the
exponential phase of an epidemic), the daily reproduction rates of an individual are typically
non-constant over his contagiousness period, and the calculations we present define a new
method for estimating R0, as the sum of the daily reproduction rates. This new approach
allows us to have a clearer view on the respective influence on the transmission rate by
endogenous factors (depending on the level of immunologic defenses of an individual) and
exogenous factors (depending on environmental conditions). Due to these exogenous factors,
R0 might change seasonally, but these factor variations are not significant if a very short
period of time is considered. R0 depends also on endogenous factors such as the viral load
[104] of the infectious individuals during their contagiousness period, and the variations in
this viral load (see Figure 3.2) must be considered in both theoretical and applied studies on
the COVID-19 outbreak, in which the authors estimate a unique reproduction number R0

linked to the Malthusian growth parameter of the exponential phase of the epidemic, during
which R0 is greater than 1 (Figure 3.1). The corresponding model has been examined in
depth, because it is useful and important for various applications, but the distribution of
the daily reproduction number Rj at day j of an individual’s contagiousness period is rarely
considered within a stochastic framework.
We therefore defined a partial reproduction number for each day of an individual’s conta-
giousness period, and, assuming initially that this number was the same for all individuals, we
obtained the evolution equation for the number of new daily cases in a population. Assuming
that the distribution of partial reproduction numbers (referred to as daily for simplicity) was
subject to fluctuations, we calculated the consequences for their estimation, and we estimated
them for a large number of countries, taking a duration of contagiousness of 3 followed by 6
and 7 days.
When this distribution is considered, it is possible to calculate its entropy as a parame-
ter quantifying its uniformity and to simulate the dynamics of the infectious disease either
using a Markovian model such as that defined in Delbrück’s approach [105] or a classical
discrete or ODE SIR deterministic model. In the Markovian case, R0 can be calculated from
the evolutionary entropy defined by L. Demetrius as the Kolmogorov–Sinaï entropy of the
corresponding random process [106], which measures the stability of the invariant measure,
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dividing the population into the subpopulations S (individuals susceptible to but not yet
infected with the disease), I (infectious individuals) and R (individuals who have recovered
from the disease and now have immunity to it). In the deterministic case, R0 corresponds
to the Malthusian parameter quantifying its exponential growth, and the stability of the
asymptotic steady state depends on the subdominant eigenvalue [107].

3.2.2 The contagion mechanism from a first infectious case zero

In [108], Eric Goles and his colleagues investigated the spread of an epidemics where an
infected patient can recover only if he is not isolated from a central “node” (agent or set of
agents), which could represent a public health or medical authority able to prescribe mitiga-
tion measures, treatments or vaccines. They used a SIS (for Susceptible-Infected-Susceptible)
model, on an underlying network of individuals susceptible to enter in contact or to have in-
teractions implying a physical proximity. Then, the infected individuals contaminate healthy
people, and the epidemic spreads. The infected people can only recover when it remains
connected to the central node through a path of contacts involving only healthy individuals.
In such an epidemic, clusters of infected people will contaminate their healthy strict interior
(with empty intersection with cluster boundary) because it has no contact with the central
node no path. For example, in an Apollonian network (i.e., an undirected graph formed
by a process of recursively subdividing a triangle into three smaller triangles) an infection
without reinfection (i.e., with a perfect immunization) starting at the central nodes of such
a network will spread until the periphery and stops; on the contrary, an infection starting on
the network boundary will reach the central node, or be blocked if there is simultaneously
a start in different central nodes (Figure 3.1 Top left). A more realistic network, called the
“school network” authorizes long distance links breaking the regular vertices topology of an
ideal Apollonian network and seems to be more realistic for modelling interaction networks
in which a real epidemic diffuses [109].
Let us suppose that the secondary infected individuals are recruited from the centre of the
sphere of influence of an infectious case zero and that the next infected individuals remain on
a sphere centred on case 0, by just widening its radius on day 2. Therefore, the susceptible
individuals C(j), which each infectious on day j − 1 can recruit, are on a part of the sphere
of influence of case 0 reached at day j (rectangles on Figure 3.1).
Let us suppose now that the daily reproduction number denoted as a depends on the day
j : aj => C(j), where C(j) represents the number of susceptible individuals, which can
be met by one contagious individual at day j. If infected individuals (supposed to all be
contagious) at day j are denoted by Ij, we have:

Xj =
∆Ij
∆j

=
Ij+1 − Ij
j + 1− j

= νC(j)Ij (3.2)

Let us suppose that the first infectious individual 0 recruits from the centre of its sphere of
influence secondary infected individuals remaining in this sphere, and that the susceptible
individuals recruited by the Ij infectious individuals present at day j are located on a part of
the sphere of centered on the first infectious 0 obtained by widening its radius (Figure 3.1).
Then, we can consider that the function C(j) increases, then saturates due to the fact that an
infectious individual can meet only a limited number of susceptible individuals as the sphere
grows. We can propose for C(j) the functional form C(j) = S(j)/(c + S(j)), where S(j) is
the number of susceptible individuals at day j. Then, we can write the following equation,

39



taking into account the mortality rate µ:

Xj =
∆Ij
∆j

= νC(j)Ij − µIj = νIj
S(j)

c+ S(j)
− µIj (3.3)

This discrete version is used much less than the classic continuous version, corresponding to
the ODE SIR model, with which we will show a natural link. Indeed, the discrete Equa-
tion (3.3) is close to SIR Equation (3.4) , if the value of c is greater than that of S:

dI

dt
= ν

IS

(c+ S)
− µI (3.4)

Figure 3.1: Top left: Spread of an epidemic from a first infectious case 0 (located at its
influence sphere center) progressively infecting its neighbours in some regions (rectangles)
on successive spheres. Top right: Apollonian interaction graph with 1096 nodes and aver-
age degree of connectivity k approximately 5.99 (after [108]). Bottom left: Spread of an
epidemic from a first infectious “patient zero” (in red) located on the centre of its influence
sphere made of the successive generations of infected individuals, with same value of the
reproduction number R0 = 3 and same inter-generation time interval i between two succes-
sive generations of infected. Bottom right: same epidemic, but with a stochastic dynamics
defined by a uniform distribution of the reproduction number on an interval centred in R0

with a standard deviation σ, and a random inter-generation time interval i (after [110]).
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3.2.3 The biphasic pattern of the virulence curve of coronaviruses

Mostly, the clinical course of patients with seasonal influenza shows a biphasic occurrence
of symptoms with two distinct peaks. Patients have a classic influenza disease followed by
an improvement period and a recurrence of the symptoms [111]. The influenza RNA virus
shedding (the time during which a person might be contagious to another person) increases
sharply one half to one day after infection, peaks on day 2 and persists for an average
total duration of 4.5 days, between 3 and 6 days, which explains why we will choose in the
following contagiousness duration these extreme values, i.e., either 3 to 7 days, depending on
the positivity of the estimated daily reproduction numbers. It is common to consider this
biphasic evolution of influenza clinically: after incubation of one day, there is a high fever
(39–40◦C), then a drop in temperature before rising, hence the term “V” fever. The other
symptoms, such as coughing, often also have this improvement on the second day of the flu
attack: after a first feverish rise (39–39.5◦C), the temperature drops to 38◦C on the second
day, then rises before disappearing on the 5th day, the fever being accompanied by respiratory
signs (coughing, sneezing, clear rhinorrhea, etc.). By looking at the shape of virulence curves
observed in coronavirus patients [110, 112, 113, 114, 115], we often see this biphasic pattern.
Figure 3.2 shows a U-shaped evolution for the viral load in real [116] and in simulated [117]
COVID-19 patients, and in real influenza-infected animals for the viral load and the body
temperature [118].
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Figure 3.2: (a) Viral load in real COVID-19 patients [104], (b) in influenza-simulated pa-
tients [116] and (c) in real influenza-infected animals (red curve [117]), and (d) body tem-
perature in real influenza-infected animals (red curve [117]).

3.2.4 Weekly patterns in daily infected cases

Daily new infected cases are highly affected by weekdays, such that case numbers are lowest
at the start of the week and increase afterwards. This pattern is observed at the world
level, as well as at the level of almost every single country or USA state. Hence, in order
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to estimate biologically meaningful reproduction numbers, clean of weekly patterns due to
administrative constraints, analyses have to be restricted to specific periods shorter than a
week, or at rare occasions when patterns escape the administrative constraints. This weekly
phenomenon occurs during exponential increase as well as decrease phases of the pandemic
and during endemic periods in numbers of daily cases (Figure 3.3). In addition, the daily new
infected case record is discontinuous for many countries/regions, which frequently publish,
on Monday or Tuesday, a cumulative count for that day and the weekend days. For example,
Sweden typically publishes only four numbers over one week, the one on Tuesday cumulating
cases for Saturday, Sunday and the two first weekdays. Discontinuity in records further limits
the availability of data enabling detailed analyses of daily reproduction numbers and can be
considered as extreme weekday effects on new case records due to various administrative
constraints.
We calculated Pearson correlation coefficients r between a running window of daily new case
numbers of 20 consecutive days and a running window of identical duration with different
intervals between the two running windows. These Pearson correlation coefficients r typically
peak with a lag of seven days between the two running windows.
The mean of these correlations are for each day of the week from Tuesday (data making
up for the weekend underestimation) to Monday: 0.571, 0.514 (0.081), 0.383 (0.00008),
0.347 (0.000003), 0.381 (0.000006), 0.468 (0.000444) and 0.558 (0.03916), with, in paren-
theses, the p-value of the one-tailed paired t-test showing that the correlation observed with
running windows starting Tuesday are more than the others (see Table A.1 in Appendix A).
This could reflect a biological phenomenon of seven infection days. However, examination of
the frequency distributions of lags for r maxima reveals, besides the median lag at 7 days,
local maxima for multiples of 7 (14, 21, 28, 35, etc.). About 50 percent of all local maxima
in r involve lags that are multiples of seven (seven included).
This excludes a biological causation, except if data periodicity comes from an entrainment by
the weekly “Zeitgeber” of census, near the duration of the contagiousness interval. We tried to
control for weekdays using two methods, and combinations thereof. For the first method, we
calculated z-scores for each weekday, considering the mean number of cases for each weekday,
and subtracted that mean from the observed number for a day (Figure 3.3). This delta was
then divided by the standard deviation of the number of cases for that weekday. The mean
and standard variation are calculated across the whole period of study for each weekday.
The second method implies data smoothing using a running window of 5 consecutive days,
where the mean number of new cases calculated across the five days is subtracted from the
number of new cases observed for the third day. Hence, data for a given day are compared
to a mean including two previous, and two later days (Figure 3.4).
We constructed two further datasets, where z-scores are applied in the first to data after
smoothing from the second method and are applied in the second data after smoothing from
the first method (not shown) (Figure 3.5 and Figure 3.6).
These four datasets from daily new cases database [119] transformed according to different
methods and combinations thereof designed to control for weekday were analysed using the
running window method. Despite attempts at controlling for weekday effects, the median
lag was always seven days across all four transformed datasets, and local maxima in lag
distributions were multiples of seven. After data transformations, about 50 percent of all
local maxima were lags that are multiples of seven, including seven.
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Figure 3.3: Confirmed world daily new cases (from [119]) as a function of days since 26
February until 23 August 2020 + indicates Sundays, x indicates Mondays.

Figure 3.4: Z-transformed scores of confirmed world daily new cases [119], from Figure 3.3,
as a function of days since 26 February 2020 until 23 August 2020 + indicates Sundays, x
indicates Mondays. Z-transformations are specific to each weekday.

Visual inspection of plots of these transformed data versus time for daily new infected cases
from the whole world shows systematic local biases in daily new infected cases (after trans-
formation) on Sundays and Mondays, for all four transformed datasets, with Sundays and/or
Mondays as local minima and/or local maxima, according to which method or combination
thereof was applied to the data.
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Figure 3.5: Smoothed confirmed world daily new cases [119], from (Figure 3.3, as a function of
days since 26 February 2020 until 23 August 2020 + indicates Sundays, x indicates Mondays.
For each specific day j, the mean number of confirmed daily new cases calculated for days
j − 1, j − 2, j, j + 1 and j + 2 is subtracted from the number for day j.

Figure 3.6: Smoothed confirmed world daily new cases [119] applied to z-scores from (Fig-
ure 3.4, as a function of days since 26 February 2020 until 23 August 2020 + indicates
Sundays, x indicates Mondays. Z-transformations are specific to each weekday. For specific
day j, the mean number of confirmed new cases calculated for days j − 1, j − 2, j, j +1, j +2
is subtracted from the number for day j.

Hence, the methods we used failed to neutralize the weekly patterns in daily new cases due to
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administrative constraints. This issue highly limits the data available for detailed analyses of
daily new cases aimed at estimating biologically relevant estimates of reproduction numbers
at the level of short temporal scales. By smoothing on five consecutive days of raw data
(confirmed world daily new infected cases [119]) and applying the z-transformation, we obtain
a better result in Figure 3.7 than in Figure 3.6 in order to neutralize the weekly pattern. The
reason is that the smoothing largely eliminates the counting defect during weekends due
either to fewer hospital admissions and/or less systematic PCR tests or to a lack of staff at
the end of the week to perform the counts.

Figure 3.7: Z-transformed scores of smoothed confirmed world daily new cases [119] smoothed
data from Figure 3.5, as a function of days since 26 February 2020 until 23 August 2020. +
indicates Sundays, x indicates Mondays. Z-transformations are specific to each weekday.

3.2.5 A deterministic contagion discrete mechanism

In the following, we suppose that the susceptible population size remains constant, which
constitutes a hypothesis valid during the exponential phase of epidemic waves. The ODE
deterministic approach is linked by a common background consisting of the birth and death
process approach used in the kinetics of molecular reactions by Delbrück [105], then in dy-
namical systems theory by numerous authors [106, 107], namely in modeling of the epidemic
spread in exponential growth. In the ODE approach, the Malthusian parameter is the dom-
inant eigenvalue.
The methodology chosen starts from an attempt to reconstruct an epidemic dynamic only
from the observation of the number Rikj of people infected at day j by a given infectious
individual i during the kth day of his period of contagiousness of length r. By summing
on the number of new infectious individuals Xj−k at day j − k where their contagiousness
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started, the number of new infected people on day j is equal to:

Xj =
∑

k=1,...,r

∑
i=1,...,Xj−k

Rikj (3.5)

We assume now that Rikj is the same, equal to Rk, for all individuals i and day j, and
depends only on day k. Then, we have:

Xj =
∑

k=1,...,r

Xj−kRk (3.6)

Xj−1 =
∑

k=1,...,r

RkXj−1−k, . . .

Xj−r+1 =
∑

k=1,...,r

RkXj−r−k

The convolution Equation 3.6 is the basis of our modelling of the epidemic dynamics and the∑
k=1,...,r Rk plays the same role as the classical basic reproduction number R0 [113].

Let us choose a simple deterministic rule of infection, and denote by Xj the number of new
infected cases at day j(j ≥ 1), and Rk(k = 1, . . . , r) the daily reproduction number at
day k of the contagiousness period of length r for all infectious individuals. Then, we have
obtained in Equation (3.6) by supposing that contagiousness behaviour is the same for all
the infectious individuals: for example, if r = 3, for the number X5 of new cases at day 5,
the equation

X5 = R1X4 +R2X3 +R3X2

means that for example new cases at day 4 have contributed to new cases at day 5 with the
term R1X4, R1 being the reproduction number at first day of contagiousness of new infected
individuals at day 4.
In matrix form, we get:

X =MR (3.7)

where X = (Xj, . . . , Xj−r−1) and R = (R1, . . . , Rr) are r-dimensional vectors and M is the
r − r matrix:

M =


Xj−1 Xj−2 · · · Xj−r

Xj−k Xj−k−1 · · · Xj−k−r+1

· · ·
Xj−r Xj−r−1 · · · Xj−2r+1


(3.8)

It is easy to show that, if X0 = 1 and r = 5 we obtain:

X5 = R5
1 + 4R3

1R2 + 3R2
1R3 + 3R1R

2
2 + 2R2R3 + 2R1R4 +R5 (3.9)

The length r of the contagiousness period can be estimated from the ARIMA series of the
stationary random variables Yj’s, equal to the Xj’s without their trend, by considering the
length of the interval on which the auto-correlation function remains more than a certain
threshold, e.g., 0.1 [101]. For example, by assuming r = 3, if R1 = a,R2 = b and R3 = c, we
obtain:
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X0 = 1, X1 = a, X2 = a2 + b, X3 = a3 + 2ab+ c, X4 = a4 + 3a2b+ b2 + 2ac,

X5 = a5 + 4a3b+ 3ab2 + 3a2c+ 2bc, X6 = a6 + 5a4b+ 4a3c+ 6a2b2 + 6abc+ b3 + c2,

X7 = a7 + 6a5b+ 5a4c+ 10a3b2 + 12a2bc+ 4ab3 + 3b2c+ 3ac2 (3.10)

If R1 and R2, respectively, to a and b, and if a = b = R/2, c = 0, then X5 is given by:

X5 =
1

32
R5 +

1

4
R4 +

3

8
R3 (3.11)

If R = 2, {Xj}i=1,...,∞ is exactly the Fibonacci sequence, and more generally, for R > 0, the
generalized Fibonacci sequence.
In the general case, where different clusters appear independently at different times, the
problem is much more difficult. It can be simplified if it is assumed that these different
clusters appear at the same time with the same age of infection. If we suppose that there
is more than a unique infected, i.e., if the initial number of infected is I0 = X0 > 1 at time
0 and if these I0 first infected are infectious at same age of infection at time 0, then the
Equation (3.5) can be written as:

Xj =
∑

d=1,...,t

RdXj−d, ∀ j > 0

or:
Xj =

∑
d=1,...,r

RdXj−d for all t > 0 with Xj−d = 0, if j − d < 0

This problem of the initial conditions is crucial. It is relatively simple in the case of a single
infected appearing at day 0 (unique cluster) or in the case of multiple infected individuals
but with the same age of infection, in which case the infection dynamics proceeds according
to Equation (3.5), where Xj is the number of new infected individuals at day j and Rd is
the daily basic reproduction number at the day d of the period of contagiousness of length r
(Rd and r being supposed to be the same for all individuals and constant during the growth
phase of new cases).
Another problem is the presence of noise on the registered data. Let us consider X0, the
size of the first cluster of infectious individuals as a Gaussian random variable with a normal
distribution N(µ0, σ0). Then, if Rd represents the daily basic reproduction number at day
d of the contagiousness period of length r and if Rd and r, supposed to be not random real
numbers are identical for all infectious individuals and constant during the growth epidemic
period, we have, for m = 6:

X1 = R1X0

X2 = R1X1 +R2X0 = (R2
1 +R2)X0

X3 = R1X2 +R2X1 +R3X0 = (R3
1 + 2R1R2 +R3)X0

X4 = R1X3 +R2X2 +R3X1 +R4X0 = (R4
1 + 3R2

1R2 + 2R1R3 +R2
2 +R4)X0

X5 = R1X4 +R2X3 +R3X2 +R4X1 +R5X0

= (R5
1 + 4R3

1R2 + 3R2
1R3 + 3R1R

2
2 + 2R2R3 + 2R1R4 +R5)X0

X6 = R1X5 +R2X4 +R3X3 +R4X2 +R5X1 +R6X0

= (R6
1 + 5R4

1R2 + 4R3
1R3 + 3R2

1R4 + 6R2
1R

2
2 + 6R1R2R3 +R3

2 +R2
3 + 2R2R4 + 2R1R5 +R6)X0

X7 = R1X6 +R2X5 +R3X4 +R4X3 +R5X2 +R6X1
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and more generally:

Xt =
∑

d=1,...,r

RdXt−d for t ≥ 0 with Xd−k = 0, for d < k, then Xt = K(t)X0

and
µt =

∑
d=1,...,r

Rd µt−d, for t ≥ 0 with µd−k = 0, for d < k, then µt = K(t)µ0

where µt is the expectation of Xt and K(t) the general term of the generalized Fibonacci
(or discrete Volterra) series. Because X0 is Gaussian, all the Xt’s are Gaussian with dis-
tribution N(K(t)µ0, K(t)σ0). If we consider now the vectors R = (R1, . . . , Rr)

T ,Xt =
(Xt, . . . , Xt−r+1)

T and µt = (µt, . . . , µt−r+1)
T for t > r, then we have:

Xt =MtR

where the matrix Mt is given by:

Mt =


Xt−1 Xt−2 · · · Xt−r

Xt−k−1 Xt−k−2 · · · Xt−k−r

· · ·
Xt−r Xt−r−1 · · · Xt−2r+1


and, for the expectations:

µt = MtR

where the matrix Mt is given by:

Mt =


µt−1 µt−2 · · · µt−r

µt−k−1 µt−k−2 · · · µt−k−r

· · ·
µt−r µt−r−1 · · · µt−2r+1


If random variable Xt’s are observed, a deconvolution of equations above allows obtaining
the vector R.
The deconvolution of the first matrix equation leads to random values of the daily basic
reproduction numbers Rd and of the second leads to deterministic values of the numbers
Rd, but it is clear that the first matrix equation can only be obtained by simulation or by
observing epidemic in different countries supposed to have the same spread characteristics
(concerning in particular r and Rd parameters), which requires extensive investigation work
on reliable data all around the world.
As regards the case of several clusters at the start of the epidemy with different ages of
infection, a model generalized to multiple cohorts would make it possible to consider an
estimation of the Rd’s for the various initial clusters, if it would be possible to define a
non-degenerate deconvolution operator.

3.2.6 A stochastic contagion discrete mechanism: obtained from the
SIR equation

In the following, we suppose that the susceptible population size remains constant, which
constitutes a hypothesis valid during the exponential phase of epidemic waves. The Marko-
vian stochastic approach is linked by a common background consisting of the birth and death
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process approach used in the kinetics of molecular reactions by Delbrück [105], then in dy-
namical systems theory by numerous authors [106, 107], namely in modeling of the epidemic
spread in exponential growth. In the Markovian approach, the Malthusian parameter is
equivalent to the Kolmogorov–Sinai entropy (called evolutionary entropy in [76, 77, 120]).
Another way to derive the SIR equation is the probabilistic approach, which comes from the
microscopic equation of molecular shocks by Delbrück [105] and corresponds to a classical
birth-and-death process: if at least one event (with rates of contact ν, birth f , death µ
or recovering ρ) occurs in the interval (t, t + dt), and by supposing that births compensate
deaths, leaving constant the total size N of the population, we have:

P ({S(t+ dt) = k, I(t+ dt) = N − k})
= P (S(t) = k, I(t) = N − k)[1− [µk + νk(N − k)− fk − ρ(N − k)]dt]

+P (S(t) = k − 1, I(t) = N − k + 1)[f(k − 1) + ρ(N − k + 1)]dt (3.12)
−P (S(t) = k + 1, I(t) = N − k − 1)[µ(k + 1) + ν(k + 1)(N − k − 1)]dt

Hence, we have, if Pk(t) denotes Probability({S(t) = k, I(t) = N − k}):
dPk(t)

d
= [P (S(t+ dt) = k, I(t+ dt) = N − k)− P (S(t) = k, I(t) = N − k)]/dt

= −P (S(t) = k, I(t) = N − k)[µk + νk(N − k)n− fk − ρ(N − k)]

+P (S(t) = k − 1, I(t) = N − k + 1)[f(k − 1) + ρ(N − k + 1)]

−P (S(t) = k + 1, I(t) = N − k − 1)[µ(k + 1) + ν(k + 1)(N − k − 1)],

and we obtain:
dPk(t)

dt
= −[µk + νk(N − k)− fk − ρ(N − k)]Pk(t) + [f(k − 1) + ρ(N − k + 1)]Pk−1(t)

−[µ(k + 1) + ν(k + 1)(N − k − 1)]Pk+1(t)

Then, by multiplying by sk and summing over k, we obtain the characteristic function of the
random variable S. If births do not compensate deaths, we have:

P ({S(t+ dt) = k, I(t+ dt) = j})
= P (S(t) = k, I(t) = j)(1− [µk + νkj − fk − ρj]dt)

+P (S(t) = k − 1, I(t) = j + 1)[f(k − 1) + ρ(j + 1)]dt

−P (S(t) = k + 1, I(t) = j − 1)[µ(k + 1) + ν(k + 1)(j − 1)]dt

If S and I are supposed to be independent and if the coefficients ν, f, µ and ρ are sufficiently
small, S and I are Poisson random variables [121], whose expectations E(S) and E(I) verify:

dE(S)

dt
= fE(S)− νE(SI)− µE(S) + ρE(I),

or, if f = µ,
dE(S)

dt
≈ E(I)[−νE(S) + ρ],

leading to the SIR equation for the variables S, I and R considered as deterministic:
dS

dt
= −νSI + ρR,

dI

dt
= νSI − kI − µI, (3.13)

dR

dt
= kI − ρR
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3.2.7 A stochastic contagion discrete mechanism: obtained from
Boolean networks

If we choose now a stochastic Hopfield-like transition for the calculation of the Boolean weight
state Oi(t + 1) of an individual i (equal to 0 in case of normal weight and to 1 in case of
overweight or obesity) as a function of Oi(t), by using a potential function Pi:

Pi(t) =
∑

k∈N(i)

Wik
Ok(t)

Tk
(3.14)

where N(i) is the set of nodes linked to i in the interaction network between the individ-
uals of the studied population, Ti is a tolerance parameter (varying between 0 and +∞)
quantifying the level of indifference shown by i to the weight state of the nodes belonging
to his neighbourhood N(i), and Wik is the interaction coefficient measuring the influence
(positive or negative) individual k has on individual i (its value can be equal to 1, 0 or -1, in
absence of precise estimation of this influence). Then, the stochastic transition rule with H
the Heaviside function (H(x) = 1, if x ≥ 0;H(x) = 0, if x < 0) is as follows: Oi(t+ 1) = H(Pi(t)), if Ti = 0

Probability({Oi(t+ 1) = 1}) = ePi(t)

1 + ePi(t)
, if Ti > 0

(3.15)

In Equation (3.15), the function Pi is the analogue of the Hamiltonian function in the
Hopfield model [114], and the tolerance parameter Ti is analogue to the temperature: higher
the indifference, nearer 1/2 the probability to become obese, which corresponds to a quasi-
absence of influence on the individual i by his neighbours regardless of their weight status.
There are four classical types of centrality in an interaction graph G with n nodes (like the
graph of Figure 3.1 Top right). The first is the betweenness centrality, defined for a node k
as follows [115]:

CB(k) =
∑

i ̸=j ̸=k∈G

βij(k)

βk
(3.16)

where βij(k) is the total number of shortest paths from node i to node j that pass-through
node k, and βk =

∑
i ̸=j∈G βij(k).

The second type of centrality is the degree centrality, defined from the notions of out-, in-
or total-degree of a node i, corresponding to the number of arrows of the interaction graph,
respectively outing from or entering in the node i, or both. For example, the total-degree
centrality is defined by the following formula:

Cin−deg
i =

∑
j=1,...,n;j ̸=i |aij|
n− 1

(3.17)

where aij = sign(Wij) denotes the general coefficient of the signed incidence matrix A of the
graph G.
The third type of centrality is the closeness centrality. The closeness is the inverse of the
average farness, which is defined by averaging over all nodes j of the network else than i the
distance between i and j ̸= i:

Cclo
i =

n− 1∑
j=1,...,n;j ̸=i L(i, j)

(3.18)
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where the distance chosen here is L(i, j), the length of the closest path between i and j.
The last type of classical centrality is the spectral centrality or eigen-centrality, which takes
into account the fact that neighbours of a node i can be also highly connected to the rest of
the graph, considering that connections to highly connected nodes contribute to the centrality
of i more than connections to weakly connected nodes. Hence, the eigenvector centrality of
the node i measures more the global influence of i on the whole network and verifies [122]:

Ceigen
i =

∑
j∈N(i)WijVj

λ
(3.19)

where λ is the greatest eigenvalue of the incidence matrix of the graph and V its eigenvector.
The four centralities above can be very different (Figure 3.8), but they have each their
intrinsic interest: i) betweenness centrality relates to the global connectivity with all nodes
of the network, ii) degree centralities corresponds to the local connectivity with only nearest
nodes, iii) closeness centrality measures the relative proximity with other nodes for a given
distance on the interaction graph, and iv) spectral centrality corresponds to the ability to be
connected to possibly a few number of nodes, but having a high connectivity, for example
important hub-relays controlling wide sub-networks. Despite the already complementary
properties of the classical centralities, we introduce a new notion of centrality, called entropy
centrality, taking into account the heterogeneity of the distribution of states of the neighbours
of a node i, and not only its connectivity in the graph, and highlighting the symmetric sub-
graphs:

Centropy
i = −

∑
k=1,...,si

νk log2 νk (3.20)

where νk denotes the kth frequency among si frequencies of the histogram of the observed
state values in the neighbourhood N(i) of the node i, set of the nodes out- or in-linked to
the node i.

3.2.8 A stochastic contagion discrete mechanism: application to co-
morbidity risk factor (obesity)

We are interested in modeling the social contagion mechanism through which the obesity can
propagate from individual to individual in same or near classes from a high school through
the pupil population, pupils changing their weight under the influence of their school friends
connected to them through a declared friendship link (possibly not reciprocal).

Obesity in the friendship graph of a Tunisian high school

In Figure 3.8 , we have represented on the left the observed friendship interactions graph in
two classes (of level 4 and 5) of a Tunisian high school with 274 pupils having 524 friendship
links between them [123, 124, 125]. The Tunisian sample contains 18 individuals overweight
or obese. We will represent first the friendship network (Figure 3.8a) by putting in blue the
links between the nodes of the network, which represent the school children in question.
The links are directed, and they can be unique between two nodes, when a friendship without
reciprocity has been detected (for the sake of simplicity, arrows have not been represented,
but in a couple of potential friends, the final node has in general an area more important
than the first one). To visually represent the connectivity of the network, we have chosen
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to give the nodes a surface proportional to their in-degree centrality in Figure 3.8a,b, total-
degree centrality in Figure 3.8c, and spectral centrality in Figure 3.8d. In the three last
representations, we have leaved the friendship network evolve to its asymptotic state following
the Equation (3.15), we have kept the proportionality of the node area to its centrality and
put together the nodes of the network having their centrality in the same value interval. As
we can see on Figure 3.8b and Figure 3.8c, the total-degree and in-degree centralities give
about the same feature, but for the spectral centrality in Figure 3.8d, the neighbors of a node
i play contribute more to its area if they are highly connected to the other nodes, because
these second level highly connected nodes contribute to the spectral centrality of i more than
the weakly connected ones.
We see in Figure 3.8 that the spectral centrality (b) gives priority to the nodes of the contagion
network (a) connected to hubs on the left bottom part of the contagion network. On the
contrary, the total degree centrality (c) favors all the hubs even when they are connected to
a relatively small number of nodes and the in-degree centrality (d) gives an importance to
all the nodes depending to the number of other nodes expressing their friendship for them.
If the aim of such a study is to diminish the number of obese, the identification of the obese
hubs is important: a nutritional reeducation on a part of these obese or overweight hubs can
reduce drastically the number of obese or overweight in their neighbourhood. For example, if
we diminish their influence by increasing their tolerance parameter Ti, we can suppress this
influence, then reduce the risk to become obese at their contact. Suppose that we start with
an interaction network of 100 individuals including 100 obese or overweight and zero normal
weight, with interaction weights wij chosen at random either 0 or 1.
The Figure 3.9 shows that, by increasing the value of the tolerance parameter Ti for the 8
most connected nodes, the mean percentage of normal weight individuals increases until the
value 1/2, corresponding to a random choice equilibrated between the normality on one hand,
and overweight or obesity on the second hand. That shows that the states of the nodes of the
network can be regularized to the normality after a campaign targeted at the most influential
obese or overweight individuals of the interaction network.

Obesity in the friendship graph of a French high school

The top image of Figure 3.10 shows the main connected component (89 nodes) of a friendship
interaction graph is observed in two classes of a French high school with 104 pupils having
348 friendship links between them [123, 124, 125]. The French sample contains 17 overweight
or obese individuals.
We see in Figure 3.10 that the spectral centrality (middle-left) of the French sample friendship
interaction graph gives priority to the big hubs and nodes connected to these hubs. On the
contrary, the total-degree centrality (middle-right) favors all hubs, even those connected to
a relatively small number of nodes.
The entropy centrality identifies nodes having different states in their neighbourhood and
gives them an importance higher than for the nodes having only one type of state in their
neighbourhood. Once stabilized after changing the state of the 20 most influential nodes (for
example after a dedicated nutritional education) on the left and of the 21 most influential in
the right image of the bottom of Figure 3.10, we can observe that the stationary state of the
network is fully overweight or obese in the first case of 20 state changes, and fully normal
in the second case of 21 state changes, showing a transition of the invariant measure of the
contagion network.
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Figure 3.8: a): Friendship empirical network representing a Tunisian sample, with 274 pupils
among which 18 overweight or obese (in red) observed from classes of a Tunisian high school,
with 524 links between them (only the links having a weight over a fixed threshold have
been represented for the sake of visibility). The vertex size is proportional to the in-degree
centrality of the corresponding node in the friendship interaction graph. b): Representation
of the Tunisian friendship interaction graph at its stationary state, iterated from the empirical
network as initial state to the asymptotic state under the stochastic transition rule given in
Equation (3.15), with node size proportional to its in-degree centrality. c): Representation
of the total-degree centrality of the nodes of the graph b). d): Representation of the spectral
centrality of the nodes of the graph b).

In the two applications of Boolean dynamics we have presented in this section, we can see
some simplifications:

- The small number of states simplifies the dynamics but complicates the examination
of realistic solutions to stop the epidemic. We should for example distinguish overweight
and obese states in the second case, because the return to a normal weight is much easier
for an overweight individual than for an obese one. In the first case, the two-state variable
“vaccinated or not” should be added, in order to properly take into account, the effect of the
vaccination policy.

- The diffusion through fixed nearest neighbours is often unrealistic, hence it is necessary
to build interaction networks with variable links over time, to take into account for example
the movement of individuals. This non-constancy of the links can be the subject of a periodic
dynamic (linked to school or professional constraints), but it adds a high complexity to the
classical Boolean modeling with fixed links over time.
Modeling of the spread of epidemics using Boolean dynamics on an ideal Apollonian net-
work or on a more realistic school network was done by Eric Goles and his colleagues [108].
The current context of comorbidity risk factor (obesity) closely monitored by the WHO, a
contagious social pandemic shows that this problem is now highly relevant. The particular
chapter of Boolean dynamics applied to pandemics is far from over and the combined efforts
of several research communities will continue to make decisive contributions (like we did in
this thesis) to this new disciplinary field in the future.
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Figure 3.9: Percentages of obese or overweight (red) and normal weight (green) individuals
evolving from an initial population with 100 obese or overweight with increasing values of
Ti for the 8 individuals with the most neighbours: (a) Ti = 0.1, (b) Ti = 0.5, (c) Ti =
1, (d) Ti = 2, (e) Ti = 3, (f) Ti = 4, (g) Ti = 5, (h) Ti = 10 and (i) Ti = 100, value for
which the percentage of normal is 1/2.
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Figure 3.10: Top. Friendship empirical network representing the largest connected compo-
nent of a sample of 104 pupils from which 17 overweight or obese (in red) from a French
high school, with 348 links between them (only the links having a weight over a fixed thresh-
old have been represented for the sake of visibility). Node sizes are proportional to their
in-degree centrality. Middle: Friendship interaction graph iterated from the empirical net-
work as initial state to the asymptotic state under the stochastic transition rule given in
Equation (3.15), with node size proportional to spectral centrality (left) and to total-degree
centrality (right). Bottom: Friendship interaction graph iterated from the empirical graph
with entropy centrality once stabilized by changing the state of the 20 most entropy-central
nodes (left) and of the 21 most entropy-central nodes (right): stationary state is fully over-
weight or obese in first case and fully normal in the second case, showing a “phase transition”
of the asymptotic invariant measure.
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3.2.9 Distribution of the daily reproduction numbers along the con-
tagiousness period of an individual: a theoretical approach

If R0 denotes the basic reproduction number (or average transmission rate) in a given popu-
lation, we can estimate the distribution V (whose coefficients are denoted Vj = Rj/R0) of the
daily reproduction numbers Rj along the contagious period of an individual, by remarking
that the number Xj of new infectious cases at day j is equal to Xj = Ij−Ij−1, where Ij is the
cumulated number of infectious at day j, and verifies the convolution equation (equivalent
to Equation (3.6):

Xj =
∑

k=1,...,r

RkXj−k, giving in continuous time : X(t) =

∫ r

1

R (s)X (t− s) ds, (3.21)

where r is the duration of the contagion period, estimated by 1/(ρ+ µ), ρ being the recovering
rate and µ the death rate in SIR Equations:

dS

dt
= −νSI, (3.22)

dI

dt
= νSI − (k + µ)I, (3.23)

where S and I are respectively the size of the susceptible and infectious populations.
Also, r and S can be considered as constant during the exponential phases of the pandemic,
and we can assume that the distribution V is also constant; then, V which is an entropy can
be estimated as the Kolmogorov-Sinaï entropy of the Markovian Delbrück scheme ruling the
Xj’s and giving new parameters for characterising pandemic dynamics, namely for quanti-
fying its robustness and stability ([77, 120]) and by solving the linear system (equivalent to
Equation (3.7):

R =M−1X (3.24)

where M is given by Equation (3.8). Equation (3.24) can be solved numerically, if the
pandemic is observed during a time greater than 1/(ρ + µ).
For showing the existence of a unique solution to the deconvolution problem defined to get
the daily basic reproduction numbers Rd in simple cases, take the example of r = 2, with
R1 = a and R2 = b. In this case, if X0 = 1, the matrix M5 is defined by:

M5 =

 X4 X3 X2

X3 X2 X1

X2 X1 Xo

 =

 a4 + 3a2b+ b2 a3 + 2ab a2 + b
a3 + 2ab a2 + b a
a2 + b a 1


Then, det M5 = a6 + 3a4b − a4 − 2a3b + 2a2b2 − a2b − 2ab2 is a polynomial in a and b,
which vanishes on a set of Borel measure zero of R2. In the particular case a = b, we have
det M5 = a3(a − 1)(a2 + 4a + 3) and this set is equal to {0,1}, because the roots of the
polynomial a2 + 4a+ 3 are complex conjugates.
The entropy H of V is equal:

H = −
∑

k=1,...,r

Vk log(Vk)

If there are negative Vj’s like the Kuwait example in Section 3.2.12, it is still possible to define
an index of proximity to uniformity of V by considering the entropy of the distribution W
defined by: Wj = [(Vj −min{Vk ≤ 0})/

∑
i=1,...,rWi].
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We will first demonstrate an example of how the matrix M can be repeatedly calculated
for consecutive periods of length equal to that of the contagiousness period (supposed to be
constant during the outbreak), giving matrix series M1,M2, . . . Following Equation (3.8),
we put the values of Xi’s in the two matrices below, with r = 3 for two periods, the first
from day 1 to day 3 and the second from day 4 to day 6.

M1 =

 X4 X3 X2

X3 X2 X1

X2 X1 X0

 , M2 =

 X6 X5 X4

X5 X4 X3

X4 X3 X2

 , . . .
where, after Equation (3.10), M1 can be calculated from the Rj’s as:

M1 =

 R4
1 + 3R2

1R2 + 2R1R3 +R2
2 R3

1 + 2R1R2 +R3 R2
1 +R2

R3
1 + 2R1R2 +R3 R2

1 +R2 R1

R2
1 +R2 R1 1

 ,
Additionally, from Equation (3.6), if, for instance, j = 8 and r = 3, then we have the
expression below, which means that the new cases on the 8th day depend on the new cases
detected on the previous days 7, 6 and 5, supposed to be in a period of contagiousness of
3 days:

X8 =
∑

k =1,2,3

RkX8−k = R1X7 +R2X6 +R3X5 (3.25)

Let us suppose now that the initial Rj’s on a contagiousness period of 3 days, are equal to: R1

R2

R3

 =

 2
1
2

, then matrixM defined byMij = X7−(i+j) gives theRj’s from Equation (3.24),

hence allows the calculation of Xj =
∑

k=1,2,3RkXj−k.

The inverse ofM is denoted byM−1 and verifies: R =M−1X, where X = (X6, X5, X4), with X1 =
1, X2 = 2, X3 = 5, X4 = 14, X5 = 37, X6 = 98 and we obtain:

M−1
1 =

 37 14 5
14 5 2
5 2 1

−1

=

 −1/4 1 −3/4
1 −3 1

−3/4 1 11/4

 ,
and a deconvolution gives the resulting Rj’s: −1/4 1 −3/4

1 −3 1
−3/4 1 11/4

 98
37
14

 =

 2
1
2

 =

 R1

R2

R3

 ,
thanks to the following calculation:

R1 = −49/2 + 37− 21/2 = 2

R2 = 98− 111 + 14 = 1

R3 = −147/2 + 37 + 77 = 2

We obtain for the resulting distribution of daily reproduction numbers the exact replica of
the initial distribution. We obtain the same result by replacing M1 by the matrix M2.
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3.2.10 Distribution of the daily reproduction numbers: a stochastic
approach

Let us consider a stochastic version of the deterministic toy model corresponding to Equa-
tion (3.25), by introducing an increasing noise on the Rj’s, e.g., by randomly choosing their
values following a uniform distribution on the three intervals: [2−a, 2+a], [1 - a/2, 1 + a/2]
and [2−a, 2+a] (for having a U-shape behavior), with increasing values of a, from 0.1 to 1, in
order to see when the deconvolution would give negative resulting Rj’s, with conservation of
the average of their sum R0, if the random choice of the values of the Rj’s at each generation
is repeated, following the stochastic version of Equation (3.6):

Xj =
∑
k=1,r

(Rk + εk)Xj−k,

where r is the contagiousness period duration and εk is a noise perturbing Rk, whose distri-
bution is chosen uniform on the interval [0, 2a] for k = 1, 3, and [0, a] for k = 2. This choice
is arbitrary, and the main reason of the randomization is to show that the deconvolution can
give negative results for Rk’s, as those observed for increasing values of a, from 0.1 to 1, with
explicit calculations for three consecutive periods, from day 1 to day 3, from day 4 to day 6,
and from day 7 to day 9.
For each random choice of the values of the daily reproduction numbers Rj’s, we can calculate
a matrix M1 corresponding to Equation (3.7). Its inversion into the matrix M−1

1 makes it
possible to solve the problem of deconvolution of Equation (3.6)—that is to say, to obtain
new Rj’s as a function of the observed Xk’s. We can then calculate a new matrix M2 from
these new Rj’s and thus continue during an epidemic the estimation of the daily reproduction
numbers Rj’s from the successive matrices M1,M2, . . . , and observed Xk’s.

1. For a = 0.1, let us randomly and uniformly choose the initial distribution of the daily
reproduction numbers R1 in the interval [1.9, 2.1], R2 in [0.95, 1.05] and R3 in [1.9, 2.1]
as R1 = 2.1, R2 = 0.95, R3 = 2.1. Then, the transition matrix M1 is equal to:

M1 =

 41.7391 15.351 5.36
15.351 5.36 2.1
5.36 2.1 1


and we have:

M−1
1 =

 −0.2154195 0.92857143 −0.7953515
0.92857143 −2.95 1.2178571
−0.7953515 1.2178571 2.705584


From X6 = 113.491, X5 = 41.7391, X4 = 15.351, resulting Rj’s are:

R1 = 2.1, R2 = 0.95 and R3 = 2.1.

The next initial Rj’s are chosen as: R1 = 2, R2 = 0.95, R3 = 1.9 and we have:

X7 = 2X6 + 0.95X5 + 1.9X4 = 226.982 + 39.652 + 29.17 = 295.8

X8 = 2X7 + 0.95X6 + 1.9X5 = 591.6 + 107.816 + 79.304 = 778.72
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Then, we obtain the matrices M2 and M−1
2 :

M2 =

 295.8 113.491 41.7391
113.491 41.7391 15.351
41.7391 15.351 5.36



M−1
2 =

 −0.07779371 0.20964295 0.00524305
0.20964295 −1.0123552 1.26721348
0.00524305 1.26721348 −3.48354228


Then, the resulting Rj’s equal:

R1 = 2.0279, R2 = 7.6158 and R3 = −16.426.

The next initial Rj’s are: R1 = 2, R2 = 1.05, R3 = 1.9 and we have:

X9 = 2X8 + 1.05X7 + 1.9X6 = 1557.44 + 310.59 + 215.63 = 2083.66

X10 = 2X9 + 1.05X8 + 1.9X7 = 4167.32 + 817.656 + 562.02 = 5546.996

From these values of X9 and X10, we obtain the matrices M3 and M−1
3 :

M3 =

 2083.66 778.72 295.8
778.72 295.8 113.491
295.8 113.491 41.7391



M−1
3 =

 0.02596375 −0.05192766 −0.04280771
−0.05192766 0.0256605 0.29823273
−0.04280771 0.29823273 −0.48358035


Then, the resulting Rj’s equal:

R1 = 2.486, R2 = −2.33 and R3 = 7.38769.

2. For a = 1, let us choose the initial R1 in [1, 3], R2 in [0.5, 1.5] and R3 in [1, 3], e.g.,
R1 = 1, R2 = 1.355 and R3 = 1.1. Then, the transition matrix M1 is equal to:

M1 =

 9.101 4.81 2.355
4.81 2.355 1
2.355 1 1


and its inverse is given by:

M−1
1 =

 −1.11983471 2.02892562 0.60828512
2.02892562 −2.93801653 −1.84010331
0.60828512 −1.84010331 1.40759184


New cases are: X6 = 18.209, X5 = 9.101, X4 = 4.81, X3 = 2.355, X2 = 1, X1 = 1, and by
deconvoluting, we obtain the resulting Rj’s equal to: R1 = 1, R2 = 1.355, R3 = 1.1, i.e., the
exact initial distribution.
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Let us now consider new initial Rj’s: R1 = 1, R2 = 1, R3 = 1. That gives a new matrix
M2, with new X7 and X8 calculated from the new initial Rj’s, by using the former values of
X6, . . . , X2 :

X7 = X6 +X5 +X4 = 18.209 + 9.101 + 4.81 = 32.12

X8 = X7 +X6 +X5 = 32.12 + 18.209 + 9.101 = 59.43

Hence, we obtain:

M2 =

 32.12 18.209 9.101
18.209 9.101 4.81
9.101 4.81 2.36


and

M−1
2 =

 −0.35061537 0.1839519 0.97925345
0.1839519 −1.47916605 2.31025157
0.97925345 2.31025157 −8.0783421


and the resulting Rj’s equal: R1 = 2.90, R2 = 5.4888, R3 = −14.696.

Table 3.1: Simulation results obtained for extreme noises a = 0.1 and a = 1, showing great
variations of deconvoluted distribution of daily reproduction numbers Xj’s and a qualitative
conservation of their U-shaped distribution along contagiousness period.

a Initial Rj’s t Xt Xt+1 Xt+2 Resulting Rj’s Ro U-shaped
0.1 2.1;0.95;2.1 4 15.35 31.74 113.5 2.1;0.95;2.1 5.15 Yes

2;0.95;1.9 6 113.5 295.8 778.7 2.03;7.6;-16.4 -6.77 Inverted
2;1.06;1.9 8 778.7 2083.7 5547 2.49;-2.33;7.39 7.55 Yes
1.9;1.05;1.9 10 5547 14207 36776 2.69;-16.7;43.8 29.8 Yes
1.9;0.95;1.9 12 36776 93910 240359 2.92;1.68;-6.7 -2.1 No
1.9;1;1.9 14 240359 622149 1605227 2.29;-4.83;14.3 11.8 Yes
2;1.05;1.9 16 1605227 4331630 11561153 2.76;27;-70 -40.2 Inverted
1.9;1;1.95 18 11561153 29558395 76502587 2.49;-6.48;17.9 13.9 Yes
2;1;2.1 20 76502587 207683519 556226772 2.67;-7.6;19.7 14.8 Yes

1 1;1.355;1.1 4 4.81 9.1 18.21 1;1.355;1.1 3.455 Decreased
1;1;1 6 18.21 32.12 59.43 2.90;5.49;-14.70 -6.31 Inverted
3;0.5;2.9 8 59.43 247.16 864.34 3.67;-33.9;61.32 31.1 Yes
2.6;0.7;2.6 10 864.34 2574.82 7942.19 3;-1.79;7.14 8.35 Yes
2.5;0.75;1.5 12 7942.2 23083.1 67526.6 3.35;2.54;-11.6 -5.71 Decreased
2.4;0.8;2.4 14 67526.6 199590 588437 2.58;-0.5;4.8 6.88 Yes
2;1;2 16 588437 1511517 4010652 2.72;-1.08;3.19 4.83 Yes
2.3;1.15;2.3 18 4010652 12316150 36415885 2.88;-7.9;21.7 16.7 Yes
2.8;0.6;2 20 36415885 117375471 375133150 3.7;4.1;-17 -9.2 Inverted

We calculate X9 and X10 using new initial Rj’s: R1 = 3.0, R2 = 0.5, R3 = 2.9 :

X9 = 3X8 + 0.5X7 + 2.9X6 = 178.29 + 16.06 + 52.81 = 247.16

X10 = 3X9 + 0.5X8 + 2.9X7 = 741.48 + 29.715 + 93.148 = 864.343

60



Hence, we obtain:

M3 =

 247.16 59.43 32.12
59.43 32.12 18.209
32.12 18.209 9.101


and

M−1
3 =

 0.00718287 −0.00805357 −0.00923703
−0.00805357 −0.22288084 0.47435642
−0.00923703 0.47435642 −0.80659958


and the resulting Rj’s equal:

R1 = 3.66898, R2 = −33.857 and R3 = 61.32.

More precise simulation results are given in Table 3.1, which summarizes computations made
for random choices of Rj’s distributions, for a = 0.1 and a = 1 and until time 20. These
simulations show a great sensitivity to noise, but a qualitative conservation of their U-shaped
distribution along the contagiousness period of individuals. More precisely, because of the
presence of noise on the Rj’s, we cannot always obtain positive values from the data for
the Rj’s by applying the deconvolution, which explains the presence of negative values in
empirical examples, as in the theoretical noised examples. A way to solve this problem
could be to suppose that noise is stationary during all of the growth period of a wave, then
calculate the Rj’s for all running time windows of length equal to the contagiousness duration
and then obtain the mean of the Rj’s corresponding to these windows. As this stationary
hypothesis is not widely accepted, we prefer to keep negative values and focus on the shape
of the distribution of the Rj’s.

3.2.11 Distribution of the daily reproduction numbers: application
to real data from several countries

A case of 3 days for the duration of the contagiousness period

Figure 3.11 gives the effective transmission rates Re calculated between 20–25 October 2020
just before the second lockdown in France [126, 127]. As the second wave of the epidemic
is still in its exponential phase, it is more convenient (i) to consider the distribution of
the marginal daily reproduction numbers and (ii) to calculate its entropy and simulate the
epidemic dynamics using a Markovian model [101]. By using the daily new infected cases
given in [119], we can calculate, as in Section 3.2.9, the inverse matrix M−1 for the period
from 20 to 25 October 2020 (exponential phase of the second wave), by choosing 3 days for the
duration of contagiousness period and the following raw data for new infected cases: 20,468
for 20 October, then 26,676, 41,622, 42,032, 45,422 and 52,010 for 25 October. Then, for
France between 15 February and 27 October 2020, we obtain the daily reproduction numbers
given in Figure 3.11 with a U-shape as observed for influenza viruses.
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Figure 3.11: Top: estimation of the effective reproduction number Re’s for 20 October and
the 25 October 2020 (in green, with their 95% confidence interval) [126, 127]. Bottom left:
daily new cases in France between 15 February and 27 October [119]. Bottom right: U-
shape of the evolution of the daily Rj’s along the 3-day contagiousness period of an individual.

We have:

M−1 =

 45, 422 42, 032 41, 622
42, 032 41, 622 26, 676
41, 622 26, 676 20, 468

−1

=

 −0.0000163989812 −0.0000292188776 0.00007142863
−0.0000292188776 0.0000938161392 −0.0000628537817
0.00007142863 −0.0000628537817 −0.00001447698


Hence, we can deduce the daily Rj’s, i.e., the vector (R1, R2, R3) : −0.0000163989812 −0.0000292188776 0.00007142863

−0.0000292188776 0.0000938161392 −0.0000628537817
0.00007142863 −0.0000628537817 −0.00001447698

 52, 010
45, 422
42, 032


=

 −0.852911911949567 −1.32717986039119 3.00228812555347
−1.51967382631645 4.26131667592337 −2.64187015405365
3.71500298367996 −2.85494447414886 −0.60849658654673


=

 0.82219725466
0.0997726955533
0.2515619229844

 =

 R1

R2

R3


The effective reproduction number is equal to R0 ≈ 1.174, a value close to that calculated
directly (Figure 3.11), giving V = (0.7, 0.085, 0.215), with a maximal daily reproduction
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number the first day of the contagiousness period. The entropy H of V is equal to:

H = −
∑

k=1,...,r

Vk log(Vk) = 0.25 + 0.21 + 0.33 = 0.79.

A case of 6 days for the duration of the contagiousness period

By using the daily new infected cases given in [119] for Chile, we can calculate M−1 for the
period from 1 to 12 November 2020 (endemic phase), by choosing 6 days for the duration of
the contagiousness period and the following 7-day moving average data for the new infected
cases (Figure 3.12): 1400 for 1 November, then 1370, 1382, 1359, 1362, 1405, 1389, 1385,
1384, 1387, 1394 and 1408 for 12 November. We have:

M−1 =


1394 1387 1384 1385
1387 1384 1385 1389
1384 1385 1389 1405
1385 1389 1405 1362
1389 1405 1362 1359
1405 1362 1359 1382

1389 1405
1405 1362
1362 1359
1359 1382
1382 1370
1370 1400



−1

=


−0.05714222 0.01016059 −0.00901664 0.01474588
0.01016059 −0.01827291 0.0106261 −0.00763363
−0.00901664 0.0106261 −0.00544051 0.02150289
0.01474588 −0.00763363 0.02150289 −0.01796266
0.00640175 0.02139586 −0.01468484 −0.00553414
0.03539322 −0.01613675 −0.00286391 −0.00509801

0.00640175 0.03539322
0.02139586 −0.01613675
−0.01468484 −0.00286391
−0.00553414 −0.00509801
−0.00305831 −0.00452917
−0.00452917 −0.00686198


Hence, after deconvolution, we obtain:

R =


−0.36256122
0.22645436
0.01488726
0.33918287
0.28557502
0.50696243


The effective reproduction number is equal to R0 ≈ 1.011, a value close to that calculated
directly, with a maximal daily reproduction number the last day of the contagiousness period.
The quasi-endemic situation in Chile since the end of August, which corresponds to the in-
crease of temperature and drought at this period of the year [101], gives a cyclicity of the new
cases occurrence whose period equals the length of the contagiousness period of about 6 days,
analogue to the cyclic phenomenon observed in simulated stochastic data of Section 3.2.10.
with a similar U-shaped distribution of the Rj’s.
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Figure 3.12: Top: estimation of the effective reproduction number Re’s for the 1 November
and the 12 November 2020 (in green, with their 95% confidence interval) [126, 127]. Bottom
left: Daily new cases in Chile between 1 November and 12 November [119]. Bottom right:
U-shape of the evolution of the daily Rj’s along the infectious 6-day period of an individual.

A case of 7 days for the duration of the contagiousness period

Let us consider now the beginning of COVID-19 outbreak in USA, for which the estimation
of the length of the contagiousness period equals about 7 days ([114, 115, 119]). The numbers
of new cases at the start of the disease from February 21 to March 5 2020 are (from [119]):
Feb 21 20, 0, 0, 18, 4, 3, 0, 3, 5, 7, 25, 24, 34, 63 March 5

Then, we have by deconvoluting Equation (3.6):

R =



0.466
0.584
1.547
−1.044
0.174
0.297
0.692


The evolution of the Rj’s shows on Figure 3.13 a U-shape on day 4 with a sum of the Rj’s
equal to 2.72, less than the effective reproduction number Re = 3.27 [126]. This U-shape is
similar to the classical shape observed for the influenza disease [116].
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Figure 3.13: Values of the daily reproduction numbers Rj along the period of contagiousness
of length 7 days.

3.2.12 The biphasic pattern of distribution of the daily reproduction
numbers

A case of U-shaped of the evolution of the daily Rj’s

If we use the daily new infectious cases given in [119] during the exponential phase of the
second wave of COVID-19 outbreak in Kuwait, we can calculate M−1 for the period from
December 30 2020 to January 4 2021, by choosing 3 days for the duration of the infectiousness
period and the following raw data for the new infected cases are X1 = 205 the 30th December,
X2 = 286 the 31th, X3 = 285 the 1st January, X4 = 205 the 2nd, X5 = 269 the 3rd and
X6 = 372 the 4th.
Hence, giving for the matrix M :

M =

269 205 285
205 285 286
285 286 205


Then, we have:

M−1 =

 0.00504561 −0.00852449 0.00487808
−0.00852449 0.00563046 0.00399594
0.00487808 0.00399594 −0.00747849
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Figure 3.14: U-shape of the evolution of the daily Rj’s along the infectious 3-day period of
an individual, daily new cases in Kuwait between December 30 2020 and January 4 2021 in
worldometer and estimation of the average transmission rate Ro for December 30th 2020 and
January 4th 2021 with its 95% confidence interval (in green).
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Because

X =

X6

X5

X4

 =

372269
205

 ,
we get R =M−1X, where:

R1 = 0.58388424

R2 = −0.83734838

R3 = 1.35646161

Then, we can give a graphical representation of the Rj’s (Figure 3.14). The average trans-
mission rate Ro equals about 1.1, value close to that calculated directly, with a maximal daily
reproduction rate the first day of the infectiousness period. Because of the negativity of R2,
we have to calculate the entropy H of the distribution

W = [(R1 −R2)/(R1 − 2R2 +R3), 0, (R3 −R2)/(R1 − 2R2 +R3)] = (0.393, 0, 0.607),

which is equal to H = 0.691, the same value than for the first wave.

A case of increased shape of the evolution of the daily Rj’s

By using the daily new infected cases given in [119] for COVID-19 outbreak in Nigeria, we
can calculate M−1 for the period from 5 November to 10 November 2020 (endemic phase),
by choosing 3 days for the duration of the contagiousness period and the following raw data
for the new infected cases (Figure 3.15): 141 for 5 November, then 149, 133, 161, 164, and
166 for 10 November.
We have:

M−1 =

 164 161 131
161 131 149
131 149 141

−1

=

 0.01796807 0.01502897 −0.03283028
0.01502897 −0.02832263 0.01575332
−0.03283028 0.01575332 0.02141264


After deconvolution, we obtain:

R =

 0.16177513
0.38618314
0.58115333


The effective reproduction number is equal to R0 ≈ 1.129, value close to that calculated
directly, with a maximal daily reproduction number the last day of the contagiousness period.
The distribution V equals (0.143, 0.342, 0.515) and its entropy H is equal to:

H = −
∑

k=1,...,r

Vk log(Vk) = 0.29 + 0.37 + 0.34 = 1.
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Figure 3.15: Top: estimation of the effective reproduction number Re’s for 5 November and
10 November 2020 (in green, with their 95% confidence interval) [126, 127]. Bottom left:
Daily new cases in Nigeria between 15 February and 21 November [119]. Bottom right:
increasing evolution of the daily Rj’s along the 3-day contagiousness period of an individual.

A case of decreased shape of the evolution of the daily Rj’s
By using the daily new infected cases given in [119] for COVID-19 outbreak in Cameroon,
we can calculate M−1 for the period from 19 June to 24 June 2020 during the first wave, by
choosing 3 days for the duration of the contagiousness period and the following raw data for
the new infected cases (Figure 3.16): 643 for 19 June, then 329, 281, 149, 229, and 322 for
24 June.
We have:

M−1 =

 229 149 281
149 281 329
281 329 643

−1

=

 0.00943779 −0.00043748 −0.0039006
−0.00043748 0.00889635 −0.00436075
−0.0039006 −0.00436075 0.00549107


After deconvolution, we obtain:

R =

 2.35759568
1.24664136
−1.43643763


The effective reproduction number is equal to R0 ≈ 2.17, value close to effective reproduction
number Re = 2.56 [126].
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Figure 3.16: Decreasing evolution of the daily Rj’s along the infectious 3-day period of an
individual, calculated for the period from June 19 to June 24 2020 during the first wave of
COVID-19 outbreak in Cameroon.

A case of inverted U-shaped of the evolution of the daily Rj’s
By using the daily new infected cases given in [119] for COVID-19 outbreak in Morocco,
we can calculate M−1 for the period from 20 October to 25 October 2020 during the first
exponential phase, by choosing 3 days for the duration of the contagiousness period and the
following raw data for the new infected cases (Figure 3.17): 3254 for 20 October, then 3577,
4151, 3685, 4045, and 3020 for 25 October.
We have:

M−1 =

 4045 3685 4151
3685 4151 3577
4151 3577 3254

−1

=

 −0.00020957 0.00084048 0.00119126
−0.00084048 0.00119679 −0.00024342
0.00119126 −0.00024342 −0.00094475


After deconvolution, we obtain:

R =

 0.35711358
1.40577244
−0.86841626


The effective reproduction number is equal to R0 ≈ 0.90, value close to that calculated
directly, with a maximal daily reproduction number the last day of the contagiousness period.
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Figure 3.17: Inverted U-shaped evolution of the daily Rj’s along the infectious 3-day period
of an individual, calculated for the period from October 20 to October 25 2020 during the
first exponential phase of COVID-19 outbreak in Morocco.

In Appendix A, Table A.2 gives the shape of the Rj’s distribution for 194 countries. Table A.2
is built from new COVID-19 cases at the start of the first and second waves for 194 countries;
it shows 42 among these 194 countries having a U-shape evolution of their daily Rj’s twice, for
12.12 ± 6 expected with 0.95 confidence (p < 10−12), and 189 times, a U-shape evolution for
all countries and waves (397), for 99.3 ± 9 expected with 0.95 confidence (p < 10−24). Hence,
the U-shape is the most frequent evolution of daily Rj’s, which confirms the comparison with
the behavior of seasonal influenza. The duration of the contagiousness period, as well as
the daily virulence, are not constant over time. Three main factors, which are not constant
during a pandemic, can explain this:

- In the virus transmitter, the transition between the mechanisms of innate (the first de-
fense barrier) and adaptive (the second barrier) immunity may explain a transient de-
crease in the emission of the pathogenic agent during the phase of contagiousness [115],

- In the environmental transmission channel, many geophysical factors that vary over
time can influence the transmission of the virus (temperature, humidity, altitude, etc.)
[101, 102, 103],

- In the recipient of the virus, individual or public policies of prevention, protection, evic-
tion or vaccination, which evolve according to the epidemic severity and the awareness
of individuals and socio-political forces, can change the sensitivity of the susceptible
individuals [103].

It is therefore very important to seek to estimate the average duration of the period of
contagiousness of individuals and the variations, during this phase of contagiousness, of the
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associated daily reproduction numbers [122, 128, 129, 130, 131, 132, 133]. If the duration
of the contagiousness phase is more than 3–5 days, for example ±7 days, the periodicity of
seven days observed for the new daily cases could result of an entrainment of the dynamics
of new cases driven by the social “Zeitgeber” represented by the counting of new cases, less
precise during the weekend (probably underestimated in many countries not working at this
time). That questions the deconvolution over 3 and 5 days, giving some negative Rj. We have
extended our study using a duration r = 3 of contagiousness to r = 7, the result which is the
example of USA in Section 3.2.11 show the same existence of identical variations of U-shape
type but specify the values of Rj’s, more often positive and of more realistic magnitude,
while keeping a sum approximately equal to R0. Rhodes and Demetrius have pointed out
the interest of the distribution of the daily reproduction numbers [76] with respect to the
classical unique R0, even time-dependent [77]. In particular, they found that this distribution
was generally not uniform, which we have confirmed here by showing many cases where we
observe the biphasic form of the virulence already observed in respiratory viruses, such as
influenza. The entropy of the distribution makes it possible to evaluate the intensity of its
corresponding U-shape. This entropy is high if the daily reproduction numbers are uniform,
and it is low if the contagiousness is concentrated over one or two days. If some Rj are
negative, it is still possible to calculate this uniformity index of proximity, by shifting their
distribution by a translation equal to the inverse of the negative minimum value. We have
neglected in the present study the natural birth and death rates by supposing that they are
identical, but we could have taken into account the mortality due to the COVID-19. The
discrete dynamics of new cases can be considered as Leslie dynamics governed by the matrix
equation:

Xj = LXj−1,

where Xj is the vector of the new cases living at day j and L is the Leslie matrix given by:

L =



R1 R2 R3 . . . . . .
b1 0 0 . . . . . .
0 b2 0 . . . . . .
...

... . . . . . . . . .
...

...
... . . . . . .

0 0 0 . . . br−1

Rr

0
0
...
...
0


and Xj−1 =



Xj−1

Xj−2

Xj−3
...
...

Xj−r


,

where bj = 1− µj ≤ 1,∀i = 1, . . . , r, is the recovering probability between days j and j + 1.
The dynamical stability for L2 distance to the stationary infection age pyramid

P =
limj Xj∑
i=j,j−r+1Xi

is related to |λ − λ′|, the modulus of the difference between the dominant and sub-dominant
eigenvalues of L, namely λ = eR and λ′, where R is the Malthusian growth rate and P
is the left eigenvector of L corresponding to λ. The dynamical stability for the distance
(or symmetrized divergence) of Kullback–Leibler to P considered as stationary distribution
is related to the population entropy H [103, 119, 120, 121, 126, 127], which is defined if
lj =

∏
i=1,j−1 bi and pj = ljRj/λ

j, as follows:

H = −
∑

j=1,...,r

pj∑
j=1,...,r jpj

log(pj) (3.26)
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The mathematical characterization by the population entropy defined in Equation (3.24) of
the stochastic stability of the dynamics described by Equation (3.24) has its origin in the
theory of large deviations [134, 135, 136]. This notion of stability pertains to the rate at
which the system returns to its steady state after a random exogenous and/or endogenous
perturbation and it could be useful to quantify further the variations of the distribution of
the daily reproduction numbers observed for many countries [137, 138, 139, 140, 141]. In
summary, the main limitations of the present study are:

- The hypothesis of spatio-temporal stationarity of the daily reproduction numbers is
no longer valid in the case of rapid geo-climatic changes, such as sudden tempera-
ture rises, which decrease the virulence of SARS CoV-2 [101], or mutations affecting
its transmissibility. The medium of atmospheric, cutaneous or intestinal transmission
is of great importance because it depends on numerous environmental conditions, such
as humidity.

- The still approximate knowledge of the duration r of the period of contagiousness
necessitates a more in-depth study at variable durations, by retaining the value of r,
which makes all of the daily reproduction numbers positive.

- The choice of uniform random fluctuations of the daily reproduction numbers is based
on arguments of simplicity. A more precise study would undoubtedly lead to a unimodal
law varying throughout the contagious period, the average of which following a U-
shaped curve, of the type observed in the literature on a few real patients [104, 116, 117]

- Another limitation is the comparison of the results of the simulations with the real
behaviour of the epidemic, of which we see, in the COVID-19 outbreak, that most of
the parameters of transmissibility and contagiousness can change over time. These
changes are linked to [137, 138, 141, 142, 143, 144, 145, 146, 147, 148]:

i) the source host of the virus (in whom the intensity of the symptoms varies during
the period of contagiousness),

ii) the infectious agent (whose virulence is variable, due for example to the mutations
observed),

iii) the future virus host (in whom, the immunological state depends on multiple factors
as age, comorbidities, cross immunity, etc.).

The long reaction time to mitigation or vaccination measures decided on the basis of the
models makes it very difficult to adapt them to the new propagation conditions and
considerably limits the operational character of the models, even if their short-term
predictions are often of very good quality.

Among other possible approaches is the use of the Caputo fractional derivative [149],
which is particularly interesting. The Caputo fractional derivative of a function f equals

Dq
c(f(t)) =

∫ T

0
fn(y)

(t− y)q+1−n
dy

where the integers n and p verify n− 1 < q < n.

The use of the fractional derivative in the models makes it possible to obtain simulations
of the increase in the cumulative cases of infected individuals, which fits the data
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better than the classical derivative, particularly when the phenomenon of growth of
the infected is damped (at the end of an epidemic wave), i.e., after the very early
exponential phase where the classical approach presents a slightly lower error than the
fractional one [149].

3.3 Maximal Reproduction Number Estimation in COVID-
19 Outbreak

3.3.1 Maximal reproduction number model

Suppose that the observation time is continuous and that the new cases of infectious X(t)
depend on the distribution of the quantities O(s) = R(s)/E(R), where the quantity E(R) =∫
R
R(t)dt :

X(t) =

∫
R

R(s)X(t− s)ds = E(R)

∫
R

X(t− s)O(s)ds (3.27)

(a) suppose in a first case that the curve O(s) is a Gaussian curve N (m,σ) then:

R(s) = Rmax exp

(
−(s−m)2

2σ2

)
, (3.28)

where Rmax is the maximum of the daily reproduction numbers, and to show that the con-
tinuous equivalent of Equation (in Section 3.2) can be solved if X(t) is supposed to be
exponential: X(t) = 100eB(t−t0) = c eBt, for all t ≥ t0, where c = 100e−Bt0 , Equation (3.28)
can be written as:

ceBt =

∫
R

Rmax exp

(
−(s−m)2

2σ2

)
c eB(t−s)ds,

from which the following equations can be deduce:

1 = Rmax

∫
R

exp

(
−(s−m)2

2σ2
−Bs

)
ds

1 = Rmax

∫
R

exp

(
−(s−m+Bσ2)2

2σ2
−Bs

)
+B2σ2/2−Bm) ds

1 = Rmax σ(2π)
1/2 exp(B2σ2/2−Bm)

∫
R

exp

(
−(s−m+Bσ2)2

2σ2

)
/σ(2π)1/2 ds

Hence,
1 = Rmaxσ(2π)

1/2 exp(B2σ2/2−Bm) (3.29)

and if σ(4σ ≈ r, the duration of the contagiousness period), m ≈ 2σ and B(the transmission
rate), then Rmax, the value at day m(the middle of the contagiousness period) of the maximal
daily reproduction number.
(b) if the curve of the daily reproduction numbers R(s) is the sum of two Gaussian-shaped
curves, the first corresponding to the activation of the innate immunity and the second to
the activation of the adaptive immunity, then:

R(s) = Rmax1 exp(−(s−m1)
2/2σ2

1 +Rmax2 exp(−(s−m2)
2/2σ2

2
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in this case, Equation (3.28) can be written as:

c eBt =

[∫
R

Rmax1 exp(−(s−m1)
2/2σ2

1) +Rmax2 exp(−(s−m2)
2/2σ2

2)

]
c eB(t−s) ds (3.30)

Then,
1 = Rmax1 exp(B2σ2

1/2−Bm1 +Rmax2 exp(B2σ2
2/2−Bm2) (3.31)

formula from which the calculation of the value of a parameter in function of the value of
others. If 4σ1 + 4σ2 can be estimated by the duration of the contagiousness period and if
suppose that σ1 is close to σ2, with m1 = 2σ1 and m2 = 4σ1 + 2σ2, then the only remaining
unknown parameters are Rmax1 and Rmax2 . If these two maximal daily reproduction num-
bers are supposed to be close, the Equation (3.31) allows the final calculation of a unique
Rmax, which could be compared to the one obtained by the discrete method of deconvolution
presented in Section 3.2.

3.3.2 Application of the model

The method derived in Section 3.3 will first be applied to Cameroon’s data concerning the
COVID-19 outbreak from the Cameroon Situation Reports (weekly regional new cases and
deaths [150]) and from the public database Worldometers (weekly national new cases and
deaths [119]) and then to six other countries.

- From Equation (3.29), the maximal daily reproduction number Rmax can be estimated

1 = Rmaxσ(2π)
1/2 exp(B2σ2/2−Bm),

Then, from [151], σ = 1,m = 2,B = 0.4. Then,

Rmax = 1/(2π)1/2 exp(0.8− 0.08) ≈ 0.9,

which corresponds to the case of a Gaussian shape for the daily reproduction numbers R′
js

along the contagiousness period of length r ≈ 4σ to a basic reproduction number

R0 =
∑

k=1,...,r

Rk ≈ 2.1.

- To calculate Rmax for six other countries using same procedure as above using the
transmission rate of the first wave in 2020: Australia = 4.6214× 10−8, Italy = 1.2292× 10−8,
Spain = 3.3182×10−7, United States = 3.1828×10−7, United Kingdom = 1.1526×10−7 and
Canada = 2.0731 × 10−7 given in [152], with σ = 1 and σ = 2, corresponding to a duration
of the contagiousness period respectively 4 and 8 days. It is also possible to calculate Rmax2

by using Equation (3.31) as presented in Table 3.3. The values of Rmax in Table 3.2 is used
for Rmax1 while still maintaining the values for the transmission rate and σ.

Table 3.2: Result for Rmax for different countries.

Countries σ = 1 σ = 2

United Kingdom 0.39978 0.20031
Australia 0.40018 0.20071
Italy 0.39927 0.19980
Spain 0.40136 0.20190
Canada 0.40018 0.20098
United States 0.40126 0.20180
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Table 3.3: Result for Rmax2 while using Rmax in Table 3.2 as Rmax1 for different countries.

Countries σ = 1 σ = 2

United Kingdom 0.79842 0.59769
Australia 0.79742 0.59608
Italy 0.79970 0.59974
Spain 0.79440 0.59129
Canada 0.79673 0.59498
United States 0.79466 0.59169

3.4 Estimation of Transmission Rate From Identification
of the First Inflection Point of New Infectious Cases
Waves in COVID-19 Outbreak

Following the same approach as in [153], the inflection point during the outbreak of COVID-
19 pandemic can be derived using Bernoulli equation and to analyze this Susceptible–Infected
(SI) compartment model for calculating the time of the inflection point of the curve of new
infectious cases. First, let’s recall that the SI Bernoulli differential equation model of an
outbreak epidemic is given as:

dS

dt
=

β

S0

S(t)I(t) + dS(t), (3.32)

dI

dt
=

β

S0

S(t)I(t)− νI(t),

where d is the susceptible demographic balance, ν the specific mortality rate due to the
disease, β/S0 the disease transmission rate, S(t) the number of susceptible individuals, I(t)
the number of infectious individuals at time t ≥ 0, and the initial conditions of the model
are: S(0) = S0 > 0 and I(0) = 1.
By simulating Equation (3.32), the results obtained by neglecting the mortality due to
the COVID-19 outbreak and to the demography of the susceptible population are given on
Figure 3.19.
The Figure 3.18 shows slight differences at the beginning of the epidemic wave between Model
1, corresponding to Equation (3.32) in which the fertility is neglected and the mortality
(d = ν = 0) and Model 2, corresponding to Equation (3.32) by fixing the demographic
balance of susceptibles d to 0.01 and the specific mortality due to the COVID-19 outbreak ν
to 0.01, which are realistic values for Cameroon.
Let’s assume we want to simulate Bernoulli equation if it is evolving in time due to various
influences as geoclimatic, socio-economic and demographic factors but Equation (3.32) must
be rewritten as follows:

dS

dt
= BSI − µS + f + σI, (3.33)

dI

dt
= BSI − νI + f + ρI,

with S(0) = S0, I(0) = I0 and where S(t) (resp. I(t)) is the size of susceptible (resp.
infected) at time t, B the transmission rate, µ (resp. ν) the natural (resp. viral) death rate,
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f the fecundity, σ (resp. ρ) the post-infected non immunized (resp. immunized) rate. If
f = µ = ρ = σ = ν = 0, the solution of Equation (3.33) is given by:

S(t) =
S0

1 + eB(t+t0)
and I(t) =

S0e
B(t+t0)

1 + eB(t+t0)
, (3.34)

with S + I = S0. If I(0) = 1, then if t0 = −log(S0 − 1)/B, S(0) = S0/1 + eBt0 ≈ S0 − 1. If
S0 is large, then during the time lapse at which S(t) remains close to S0, if µS0 = f, then
Equation (3.33) becomes close to the linear system:

dS

dt
= (−BS0 + ρ)I and

dI

dt
= (BS0 − ν − ρ)I, (3.35)

with the solution:

S(t) =
(−BS0 + ρ)e(BS0−ν−ρ)t

(BS0 − ν − ρ)
and I(t) = e(BS0−ν−ρ)t, (3.36)

where BS0 represents the basic reproduction number of the epidemic disease, usually denoted
R0.
The present models are in general used to simulate an epidemic wave, as an excursion in the
phase plane of an ordinary two-dimensional differential system having some excitable ability,
i.e., the existence in his phase portrait of large return trajectories after perturbation of its
stable stationary state or of its parameters, these trajectories returning to either an endemic
or an eradicated final state. The difference between these two asymptotic behaviors is that
in endemic case, the final value of the infected, back to the stationary state is non-zero
and, in eradicated case, this value is zero. These behaviors are illustrated by simulations
of the Bernoulli model in the possible final states corresponding to epidemic (transients
in Figure 3.21), eradication (end state in Figure 3.21 top) and endemic (low level end in
Figure 3.21 middle and high level in Figure 3.21 bottom).
Suppose that a parameter of the Bernoulli model like the transmission rate B is evolving
in time due to various influences as geo-climatic factors (temperature, humidity, elevation,
etc.), socio-demographic determinant (density and median age of the target population)
and economic variables (GDP, Gini’s index, inequality index, etc.), the actual curve of the
new infected cases observed during the epidemic outbreak is in fact also driven by the slow
dynamics of the seasonally varying or linearly growing parameters.
Then, the observed dynamics of new infected cases results from the epidemic dynamics com-
bined with slow evolution of these external factors on variation surfaces mixing both epidemic
variables and parameters dynamics. The Figure 3.20 shows such a surface corresponding to
the variations of the transmission rate B due to climate changes (transition between winter
and summer times) or public health policies (quarantine, vaccination, etc.), and the actual
(S, I) trajectory lies on the corresponding surface. The influence of these different factors on
the variations of the trajectories (S, I) are difficult to take into account in a differential model
of the type Equation (3.33), which is why Section 4.5 will treat the statistical approach pro-
viding a better understanding of the correlations between the exogenous determinants of the
epidemic and the level of new cases of infected.
Graphical representation of the inflection point PI of the curve of I(t) is given in Figure 3.19,
for the first half part of the second wave of the COVID-19 weekly new reported cases between
week 5 2021 and week 12 2021 (data from [150]). The red curve represents the cubic spline

76



approximation of the raw data with the following statistics: p-value = 0.03, Multiple R-
squared (MR) = 0.90, Relative Mean Square Error (RMSE) = 0.247.
During the same period, it is also possible to smooth the death data (from [119]) with a
cubic spline with the following statistics: p-value = 0.12, Multiple R-squared (MR) = 0.99,
Relative Mean Square Error (RMSE) = 4.380 (see Figure 3.22).

Figure 3.18: Top: simulation of the evolution of the number of new infected I in Model
1 (Equation (3.32) with d = ν = 0) and Model 2 (Equation (3.32) with d = ν = 0.01)
Bottom: simulation of Models 1 and 2 with same initial conditions for infected (I(0) = 1)
and susceptible individuals (S(0) = 400).
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Figure 3.19: COVID-19 weekly new cases in Cameroon showing the inflection point PI (red
arrow) during the first half part of the second wave between week 5 of 2021 and week 12 of
2021. (after [150]).

Figure 3.20: Surface of evolution of 3 covariables, S, I and B, the transmission rate.
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Figure 3.21: Dynamics of the variables S and I in eradication (top) and endemic behavior
(bottom) (after https://elsenaju.eu/ Calculator/ODE-System-2-2.htmRWD-1). (a) Eradica-
tion B = 0.6, f = 4, µ = 2, ρ = 0, σ = 0, ν = 4, S(0) = 40, I(0) = 1; (b) Endemic behavior
B = 0.5, f = 6, µ = 0.5, ρ = 0, σ = 0, ν = 4, S(0) = 40, I(0) = 1.

Figure 3.22: Spline graph for COVID-19 deaths in Cameroon during the second wave between
week 5 of 2021 and week 14 of 2021.
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3.4.1 Mathematical formulation of the identification model

The problem can be formulated in a way that all parameters can be identified from the set
Θ = {(S0, I0, a, β)} ⊂ (0,∞)4 if the reported daily infectious cases I ′

(t) is known for all
times t ≥ 0. It should be noted that it is not sufficient alone to know the value of I ′

(t) at any
time t ≥ 0, because the knowledge about the value of S0, the number of susceptible people
in the population before the epidemic outbreak is also necessary to allow to obtain a precise
information about the values of I0, a, β (see [137, 153]).
If the solution of the Bernoulli Equation (3.32) with (d = ν = 0)(fertility and mortality
rates are negligible):

I(t) =
S0e

β(t−a)

1 + eβ(t−a)
and S(t) =

S0

1 + eβ(t−a)
,

where S0, β and a represent respectively the susceptible size at endemic start, transmission
rate and endemic start time.
For any time t, we have:

I(t) + S(t) = S0

[
eβ(t−a)

1 + eβ(t−a)
+

1

1 + eβ(t−a)

]
= S0e

β(t−a) =
I(t)

S0 − I(t)

If the epidemic wave starts at time 0, where I(0) = 1, then:

1 =
S0e

−βa

1 + e−βa

Then, S(0) = S0 − 1 and a is given by the following equation:

a =
log(S0 − 1)

β
(3.37)

3.4.2 Derivation of the equation of the inflection point

From the Bernoulli’s equation, where ν = 0, we have:

I
′
(t) =

dI

dt
=

β

S0

SI × S0

1 + eβ(t−a)
× S0e

β(t−a)

1 + eβ(t−a)
=

βS0e
β(t−a)

(1 + eβ(t−a))2

The sufficient existence condition for a point of inflection of order 2 for I ′
(t) in the case

that I(t) is 3-times continuously differentiable in a certain neighbourhood of a point ti, with
I

′′′
(ti) = 0, and I

′′
(ti) ̸= 0. Then, I ′

(t) has an inflection point (PI) of order 2 at ti, and by
differentiating I ′

(t) twice, then:

I
′′
(t) =

d2I

dt2
= β2S0

eβ(t−a) − 2e2β(t−a)

(1 + eβ(t−a))3

I
′′′
(t) =

d3I

dt3
= β3S0

eβ(t−a)(1− 6eβ(t−a) + 2e2β(t−a))

(1 + eβ(t−a))4

Then, the equation given by β and a from its lowest root xi = 3−
√
7 = eβ(ti−a) =

I(ti)

S0 − I(ti)
(depending on I(ti) is:

1− 6xi + 2x2i = 1− 6eβ(t−a) + 2e2β(t−a) = 0 (3.38)

If I(0) = 100, then from the same calculations, the values of β and a can be identified from
Equation (3.37) and Equation (3.38).
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3.4.3 Identification method and its application

If the value of the time ti is calculated from the first PI of an observed wave and if the value
of S0 is known, then it is easy to estimate the maximal reproduction number as I ′′

(t) and
identify β and a from Equation (3.37) and Equation (3.38). The steps of identification
method are as follows:

• From an interpolation of the curve of the daily reported new cases (see for example red
curve in Figure 3.19) of a particular country epidemic wave, calculate the lowest ti of
the wave at which I ′′′

(t) = 0,

• From the value of ti, estimate the maximal reproduction number as I ′′′
(ti),

• From the knowledge of S(0), the number of susceptible people in the population at the
start of a particular country epidemic wave, one can get S0,

• From Equation (3.37) and Equation (3.38), β and a can be identified.

The identification method is first applied to Cameroon COVID-19 data and then applied to
the world COVID-19 outbreak.

Figure 3.23: Spline graph for COVID-19 deaths in Cameroon during the second wave between
week 5 of 2021 and week 14 of 2021.
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Figure 3.24: Evolution of the daily new cases numbers in Cameroon along the second wave
between weeks 1 and 10 of 2021.

For Cameroon, to calculate the time ti of the first inflection point PI of the second wave of
the new infectious cases X(t), for that, the smoothed raw data of the weekly reported new
infectious cases in Figure 3.19 by using a cubic spline and the maximal reproduction number
is estimated by the maximal value of its slope divided by X(t) at t = ti = 4 (weeks), equal
to R0max = 2.04, close to the maximal value of the effective reproduction number given for
this period by the public database Renkulab [126]. The evolution of the daily new cases and
cured cases in Cameroon can be seen in Figure 3.24 and Figure 3.25.

Figure 3.25: Evolution of cured cases numbers in Cameroon along second wave between
weeks 1 and 10 of 2021.

From Equation (3.37) and Equation (3.38):

a = log(S0 − 1)/β and 1− 6eβ(t−a) + 2e2β(t−a) = 0,

with S0 = 27, 000, 000 and ti = 4. Then a = 7/β and 1 − 6e4β−7 + 2e8β−14 = 0, from
which β = 2.0 and a = 3.5, which is consistent for a with the previous estimation of ti,
but overvalued for β, perhaps due to the overestimation of S0. Indeed, if S0 corresponds
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to the population of the 3 regions (Littoral, Center and Northwest) giving the essential of
the infectious cases (for example, 325/371 = 88% of all the new cases during the week of
23/06/2021). More, considering the cumulative number of infectious during the whole week 8
of 2021, there was 2000 cases and if the susceptible population in contact with these infectious
is 2000× 50 = 100, 000, then from Equation (3.37) a = 11.5/β, and from Equation (3.38),
β = 2.4 and a = 4.7, which shows the sensitivity of calculation of β to initial conditions
concerning the susceptible population.

Figure 3.26: Spline graph for COVID-19 deaths in Cameroon during the second wave between
week 5 of 2021 and week 14 of 2021.

The same approach is used for COVID-19 outbreak in the world by presenting in Figure 3.23
the global daily new cases of COVID-19 in the world and then smooth the weekly data from
October 26 2020 to January 17 2021. The red curve in Figure 3.26 represents the cubic spline
approximation of the raw data with the following statistics for the second wave: p-value =
0.05592, Multiple R-squared MR = 0.9949, Relative Mean Square Error RMSE = 41426.05.
To calculate the time ti, of the first inflection point PI of the second wave (which presents
a shoulder and no maximum) of the new infectious cases X(t) for the entire world: this
time corresponds to a second wave shoulder, in which the maximum of the new cases is not
existing for this wave, hence cannot be used for identifying the epidemiologic parameters as
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in [152, 153]. For that, the smoothing of the raw data is done for the weekly reported new
infectious cases in Figure 3.23 by using a cubic spline and found ti = 4 (weeks).
Then, from Equation (3.37) and Equation (3.38):

a = log(S0 − 1)/β and 1− 6eβ(ti−a) + 2e2β(ti−a) = 0,

with S0 = 7, 000, 000, 000 and ti = 4. Then a = 10/β and 1−6e4β−10+2e8β−20 = 0, from which
β = 2.575 and a = 3.883, which is consistent with the values of the effective reproduction
number calculated in [154].
To conclude this section, methods developed in Section 3.2, Section 3.3 and Section 3.3.2
is applied to Cameroon regions data from [150] in order to obtain the value of the main
epidemiologic parameters, using new cases during the beginning of the second wave in 2021
to calculate the discrete R0 and also the total number of new cases as S0 in order to calculate
the transmission rate β when ti = 4 and finally Rmax with σ = 1 and σ = 2, corresponding
to a duration of the contagiousness period respectively 4 and 8 days. The summary of the
result is presented in Table 3.4. The evolution of the daily new cases and cured cases for the
regions in Cameroon can be seen in Figure 3.27 and Figure 3.28.
It was observed that there is a big difference between the urban regions, essentially the
regions of Yaoundé and Douala (i.e., respectively the Center and Littoral regions) whose
urban density is high and the other mainly rural regions.

Figure 3.27: Evolution of the daily new cases numbers in the 10 regions of Cameroon along
the second wave between weeks 1 and 10 of 2021.
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Figure 3.28: Evolution of the cured cases numbers in the 10 regions of Cameroon along the
second wave between weeks 1 and 10 of 2021.

Table 3.4: Values of epidemiologic parameters for different regions of Cameroon.

Cameroon regions Discrete R0 Transmission rate β Rmax(σ = 1) Rmax(σ = 2)

Adamaoua 1.30175 1.50 2.60143 0.89396
Center 1.04135 1.75 2.85711 0.47851
Est 2.18015 1.50 2.60143 0.89396
Extreme-Nord 1.74880 1.50 2.60143 0.89396
Littoral 0.91404 1.75 2.85711 0.47851
Nord 1.31392 1.50 2.60143 0.89396
Nord-Ouest 3.64468 1.50 2.60143 0.89396
Ouest 3.38611 1.50 2.60143 0.89396
Sud 1.19674 1.50 2.60143 0.89396
Sud-Ouest 0.88279 1.50 2.60143 0.89396
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3.5 A Model for the Lifespan Loss Due to COVID-19 Out-
break

3.5.1 Formulation of epidemic ageing model in human populations

Let us consider a population with four age classes (i = 1, · · · , 4) that is (0, 19), (20, 39), (40, 59),
and (≥ 60) where f1, f2, f3, f4 are the fertility rates in the age classes, v1, v2, v3, v4 are the
probability to remain in state i, α1, α2, α3, α4 are the probability to go from state i to state
i + 1, vi + αi = 1 − µi ≤ 1, ∀ i = 1, · · · , 4, where µi is the death rate at age i. and vj. The
probabilities Pi is on the interval 0 ≤ Pi ≤ 1∀ i = 1, · · · , 4. We can also say that (vi + αi) is
the general probability of survival. If the two first only being fertile with non-zero fertility
rates f1 and f2, and if a disease like an epidemic outbreak concerning all the age classes
occur adding to the natural mortality rate of each of the three first classes a fatality rate,
the sum of the natural and disease dependent mortality, denoted 1 − αi = µi . We present
in Figure 3.29 the flow chart illustrating the epidemiology ageing model.
The Usher matrix can be written as the following epidemic matrix E∗:

E∗ = (eij) =


f1 + v1 f2 0 0
α1 v2 0 0
0 α2 v3 0
0 0 α3 v4


The characteristic polynomial of the matrix E∗ is given by:

P (λ) = (f1 + v1 − λ)(v2 − λ)(v3 − λ)(v4 − λ)− f2α1(v3 − λ)(v4 − λ)

= [λ2 − λ(f1 + v1 + v2) + v2(f1 + v1)− f2α1](v3 − λ)(v4 − λ)

Then, we can calculate explicitly the values of the spectrum of E∗:

v3, v4, (f1 + v1 + v2)± [(f1 + v1 + v2)
2 − 4(v2(f1 + v1)− f2α1)]

1/2/2

The population growth is stable if λ = 1, increases if λ > 1 and decreases if λ < 1.
The proportion of sensitivity sij of λ (the dominant eigenvalue of E∗) to a variation of

the general element eij of E∗, is given by:

sij =
eij
λ
(

V ∗
i V

v
j∑

k V
∗
k V

v
k

)

where V v is the eigenvector corresponding to the eigenvalue v and V ∗ is the eigenvector
corresponding to λ. Then, the total sensitivity equals 1:∑

i,j
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∑
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Figure 3.29: Flow chart illustrating the epidemiology ageing model.

3.5.2 Application to COVID-19 outbreak in some countries

We first start by describing the model formulated in terms of normal ageing in Cameroon
without considering an outbreak of a viral disease in the population and then apply the model
formulated to COVID-19 outbreak in Cameroon, France and Ireland. In the case of Ireland,
we extend the age class to five age classes since this country has more data relating to more
age groups and most especially the children and teenagers.

Normal ageing in Cameroon

From [155, 156, 157, 158, 159, 160], all the values of parameters like fertility and mortality
rates needed to complete the Usher matrix for Cameroon can be found. Table 3.5 gives the
list of all the parameters with their signification and Table 3.7 summarizes their values.
Concerning the mortality, the death rate for 1,000 in 2019 is equal to 9.059 [158] and life
expectancy at birth is 59.292 years [159]. Values of coefficients f1, f2 and f3 have been
calculated in Table 3.7, taking in demographic databases the age-specific fertility rates when
available, estimating this rate for the age sub-classes (13,19) and (50,52), considering that
the last age class (≥ 60) has no fecundity and weighting all these age-specific fertility rates
by the proportions of women in each age class.
Then, considering the values of normal fecundity, ageing and mortality (neglecting infantile
mortality), we can calculate the Usher matrix (see Table 3.7):

U =


0.015 + 0.95 0.095 0.015 0

0.05 0.942 0 0
0 0.049 0.93 0
0 0 0.04 0.6


The dominant eigenvalue of U is λ = 1.026. It is equal to the exponential of the Malthusian
parameter of the Cameroon population growth, the real value given in [155] being equal to
1.0258 in 2020.

87



Table 3.5: List of variables and parameters considered in the paper.

Population dynamics

ui(t) Size of the age class i at time t
U, A Usher matrix, Hahn matrix
fi Fertility rate
µi Mortality rate in age i, with vi + αi = 1− µi

vi (resp. αi) Probability to remain in age i (resp. go to (i+ 1)) between t and t+ 1
λ (resp. λ, and v ) Dominant eigenvalue (resp. subdominant and current eigenvalue) of U
S, sij Sensitivity matrix S and its general coefficient sij
Pi Probabilities on the interval 0 ≤ Pi ≤ 1 ∀ i = 1, . . . ,m.
u(a,t,s) Cell concentration at age a, time t and space s
vi (resp. βi) Probability to remain in age i (resp. go to (i+ 2)) between t and t+ 1
Q Mitotic abortive coefficient (0 < Q ≤ 1)
∆ (resp. □) Laplacian (resp. Dalembertian) partial derivative operator
Epidemiologic dynamics
E∗, eij Epidemiologic matrix E∗, its general coefficient eij
EM (resp. EW ) Epidemiologic matrix relative to men (resp. women)
w,H Invariant measure of E∗, entropy of the invariant measure w of E∗

Application to COVID-19 outbreak in Cameroon

Consider Cameroon, which has a portion of its population affected by the COVID-19 out-
break. The data coming from [119, 155, 156, 157, 158, 159, 160, 161] allow to calculate the
epidemic matrix in the cases of normal ageing and supplementary ageing due to the COVID-
19 outbreak. We suppose that the fecundity does not change during the epidemy, and we will
show the influence of the epidemy during the period of virulence in the host for the infected
population. For the sake of simplicity, we suppose that all the infected individuals have the
same characteristic of ageing and that the increase of the Malthusian parameter log λ, where
λ is the dominant eigenvalue of E, concerns a constant percentage of the whole population
(equal to the small proportion 2× 10−4 after [161]).
By neglecting the effect of the viral disease on the fecundity and by taking into account the
specific ageing and in worse cases the mortality due to the disease for the fraction of the
population affected by COVID-19 [119, 161], with 1418 deaths during the three waves after
the first one, between the 1st February 2021 and the 31 January 2022, the matrix E∗ becomes
with the same reasoning that for the normal population:

E∗ =


0.015 + 0.95 0.095 0.015 0

0.05 0.94 0 0
0 0.044 0.8 0
0 0 0.035 0.5


The dominant eigenvalue of E is equal to λ = 1.0236, slightly less than the observed value
1.0258, and represents the exponential of the Malthusian parameter for the subpopulation
affected by the COVID-19, largely less important than the rest of the Cameroon population,
which constitutes the large majority of the whole population (99.98 % after [119]).
The data used for Cameroon are all coming from public databases (either demographic or
epidemiological) and results from counting published without standard errors. Only median
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ages of menarche and menopause have a 95%-Confidence Interval (CI) in the literature (see
Table 3.7) and [158, 159]). If we take the left and right limits of these intervals and if we
calculate their impact on demographic data, we find for the fertility rate a 95%-CI equal to
[0.013, 0.017] at age (0, 19) and [0.014, 0.016] at age (40, 52). Consequently, the dominant
eigenvalue of the E∗ matrix belongs to the interval [1.02476, 1.02736]. The real value given
in [155] is equal to 1.0258 in 2020, and hence, it belongs to this interval.

Application to COVID-19 outbreak in France

We used the same method for calculating and estimating parameters used in Cameroon,
which is presented in Table 3.7 for France, while using raw data from France.
From [119, 162], we know that France fertility rate in 2020 is equal to 1.85 children / fertile
woman and that women of the second age class (20-39) represents 85% of the whole fertile
women during this period of 20 years. Because the second age class size is twice its woman
size, the coefficient f2 of U is equal to ((1.85 / 0.85) / 20) / 2 = 0.108.
The value of the coefficient f1 (resp. f3) is obtained in the same way, by considering that
only 6% (resp. 10%) of the woman population of the first (resp. third) age class are able
to get children. Using data from France [162], population affected by COVID-19 in acute
infectious phase is about 4% of the total population at the middle of the fifth wave and mean
value of daily cases between 18th and 23rd January 2022 equals 402,984 [119], according to
the calculation:

(mean daily cases) × (acute phase duration)
(population size)

= 403, 000× 7/65, 518, 000 = 0.043

Hence, from Figure 3.30 and from the fecundity rate (1.85) and mortality rate (9.37 / 1000)
given in [119, 162], we can calculate with same method as for Cameroon the epidemic matrix
for the COVID-19 affected population:

E∗ =


0.01 + 0.95 0.06 0.01 0

0.05 0.9 0 0
0 0.045 0.87 0
0 0 0.035 0.5


Then, the dominant eigenvalue of E∗ in French COVID-19 population (whose size was
6,100,000 individuals during the month between 19th December 2021 and 18th January 2022)
is equal to 1.00107 vs 1.0021 in the general population, and the monthly loss of population
due to COVID-19 deaths has been equal to (1.0021− 1.00107)× 6, 000, 000 = 6, 283, the real
observed death number being equal to 127,638 – 121,493 = 6,145.
The coherence between the orders of magnitude of the calculated and observed death numbers
in France during the fifth wave constitutes a semi-quantitative validation of the mathematical
modelling approach at the population level.
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Figure 3.30: Histogram of weekly COVID-19 incidence rates / age class in France during 10
weeks from the 17th January 2022. The global daily incidence rate on the day 17th January
2022 was equal to 3,264 / 100,000 (taking into account the age class sizes) ([162]).

Application to COVID-19 outbreak in Ireland

In Ireland, we will consider five age classes (from estimated data in 2020 [96]) and used the
same method for calculating and estimating parameters used in Cameroon, which is presented
in Table 3.7, while using raw data from Ireland.

Table 3.6: Distribution of Irish population into 5 age classes in 2020.

Age class Men Women

0 - 14 560.338 534.570
15 - 24 316.239 308.872
25 - 54 1098.058 1085.794
55 - 64 278.836 278.498
≥ 65 331.772 383.592

Table 3.6 shows a slight difference due to sex. The fertility rate is equal to 1.808 in 2021 [119].
On Figure 3.32, the epidemiologic data from [163, 164] concerning three young age classes
show an increase of notified incidence rate in week 2 of 2022 due to a change in test policy, but
a decrease in Epiet data incidence rate at the same time. This can be explained by the fact
that the notification requires an administrative validation, which is undoubtedly the cause of
the discrepancy observed between the reported incidence curves (on the left in Figure 3.32)
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Figure 3.31: Cumulative age and sex-specific incidence rates of confirmed COVID-19 cases
per 100,000 population notified in Ireland between week 51 in 2021 and week 8 in 2022 (after
[164]).

and the incidence curves early observed by the Irish Health Population Surveillance Center of
the European Program for Intervention Epidemiology Training (on the right in Figure 3.32).
Figure 3.31 shows a notable difference of incidence rate due to both age and sex.
If we neglect sex influence, the epidemiologic matrix E corresponding to the 5 age classes is:

E∗ =


0.01 + 0.95 0.06 0.01 0 0

0.05 0.925 0 0 0
0.04 0.9 0 0 0
0 0.03 0.7 0 0
0 0 0 0.02 0.4


Then, the dominant eigenvalue of E∗ is equal to 1.007, which shows that during the month
between 19th December 2021 and 18th January 2022, the loss of population due to COVID-
19 deaths has been equal to (1.012 − 1.007) × 458342/12 = 191, the real observed death
numbers being equal to 6035 – 5835 = 200, which once again confirms the realistic nature of
the model.
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Figure 3.32: Ireland weekly age-specific incidence rates of confirmed COVID-19 cases per
100,000 population among children aged 0 - 18 years by notification (left) and from Epiet
data (right) from week 51 in 2021 to week 8 in 2022 (after [163]).

3.5.3 Role of comorbidities

Let us consider now the distribution of age classes of the subpopulation of infected patients
presenting the most frequent comorbidity, i.e., cardiovascular pathologies (cf. Figure 3.33)
and where males are most numerous than females [119].
For each comorbidity, we can estimate its effect on the Malthusian parameter by taking into
account the distribution of the cumulated COVID-19 cases on the age classes. For example,
the cardiovascular comorbidity causes the majority of new cases between 40 and 59 years for
both sexes, and we have for men (M):

EM =


0.015 + 0.95 0.095 0.015 0

0.05 0.938 0 0
0 0.04 0.77 0
0 0 0.03 0.4


and for women (W):

EW =


0.015 + 0.95 0.095 0.015 0

0.05 0.94 0 0
0 0.043 0.79 0
0 0 0.034 0.45


The difference between the values of the exponential growth parameters is equal to that
between the dominant eigenvalues: λM = 1.0234 and λW = 1.0173, indicating that among
patients suffering from cardiovascular pathologies, men are more affected by the COVID-
19 than women, as confirmed by the statistics on 485 cumulated COVID-19 cardiovascular
deaths observed among the 22,421 cumulated new cases on 9th September 2020 in Cameroon
after 6 months of pandemic [161], from which 278 observed are men and 207 observed are
women, that is a sex ratio M / W observed of 1.343 and a differential growth rate ratio
calculated equal to (1.026 - 1.0226) / (1.026 - 1.02352) = 1.369.
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Table 3.7: List of parameter values used for Cameroon.

Parameter Nature/Source Value/Year

Fertility rate of class i [156, 160] Births ‰ women (2020)
F1 at age 13 - 14 years Estimated [85‰, 95‰]
F2 at age 15 - 19 years Raw data 105.8‰
F3 at age 20 - 24 years Raw data 211.22‰
F4 at age 25 - 29 years Raw data 210.03‰
F5 at age 30 - 34 years Raw data 187.84‰
F6 at age 35 - 39 years Raw data 138.59‰
F7 at age 40 - 44 years Raw data 50.54‰
F8 at age 45 - 49 years Raw data 16.57‰
F9 at age 50 - 52 years Estimated [8‰, 12‰]

Age pyramid(P) M,W [157] PiM , PiW (2019)
(0, 14)P1M , P1W Raw data 21,2%, 20.9%
(15, 19)P2M , P2W Raw data 5.4%, 5.3%
(20, 24)P3M , P3W Raw data 4.6%, 4.5%
(25, 29)P4M , P4W Raw data 4%, 4%
(30, 34)P5M , P5W Raw data 3.5% 3.5%
(35, 39)P6M , P6W Raw data 2.9%, 2.9%
(40, 44)P7M , P7W Raw data 2.3%, 2.3%
(45, 49)P8M , P8W Raw data 1.8%, 1.8%
(50, 59)P9M , P9W Raw data 2.4%, 2.5%
(13, 14)P

′
1M , P

′
1W Estimated 3.1% [3.5%, 2.5%]

(50, 52)P
′
9M , P

′
9W Estimated 0.4% [0.4%, 0.6%]

Median age (menarche) Raw data (95% -CI) [158] 13.03 [12.47, 13.83] (2016)
Fertility F1 at age (0,19) =

(F1P
′
1W + F2P2W )/(P1W + P2W )

Calculated 31.7%

Women % W1 (0,19) Calculated 26.2 / 52.8
f1 = F1W1 Calculated [0.013, 0.017]

Fertility F2 at age (20,39) =∑
i=3,6 FiPiW/

∑
i=3,6 PiW

Calculated 19.13%

Women % W2 (20,39) Calculated 14.9 / 29.8
f2 = F2W2 Calculated 0.095

Median age (menopause) Raw data (95% -CI) [159] 48 [44, 52] (2005)
Fertility F3 at age (40,52) =

(F7P7W + F8P8W ) +
F9P

′
9W/(P7W + P8W + P9W )

Calculated 29.9%

Women ratio W3 (40,59) Calculated 6.6 / 13.1
f1 = F3W3 Calculated [0.013, 0.017]

Natural death rate / 1000 Raw data [160] 9.059 (2019)
Life expectancy (years) Raw data [160] 59.292 (2019)

Men / Women ratio Raw data [119] 59 / 41 (2021)
COVID-19 deaths Raw data [161] 1418 (2021)

Death rate (20,39) M, W Raw data 2%,7%
Death rate (40,59) M, W Raw data 23%,12%
Death rate (>60) M, W Raw data 34%,22%
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Figure 3.33: On the left, Table of cumulated COVID-19 cases by pathologies and sex on the
9th November 2020. On the right, pyramids of ages by sex for the major comorbidity, the
cardiovascular diseases.

3.5.4 Sensitivity analysis and lifespan loss due to a viral disease

Let consider now as toy example the following epidemiologic matrix of the same form as the
previous ones:

Es =


0.93 0.07 0 0
0.035 v2 0 0
0 0.03 0.7 0
0 0 0.03 0.7


The dominant eigenvalue of Es is equal to 0.9847, if v2 = 0.94, and 0.9467, if v2 = 0.8. Using
the method proposed in [165], Figure 3.34(a) shows dominant eigenvalues while varying
value of probability v2 of remaining in second age class (20-39): when v2 is greater than
0.96, the dominant eigenvalue is greater than 1 and the population of observed COVID-19
cases exhibits an exponential growth. The second age class is the only class having a large
effect on the population growth, because others have no birth rate. Figure 3.34(b) shows the
proportion of sensitivity of λ to various changes in ageing, death and fecundity rates.
Figure 3.34(b) confirms that the second age class which contributes the most to population
growth is also that which is the most sensitive to its fecundity rate f2. In Figure 3.34(b),
the bj curve shows also that the probability of remaining in the third and fourth age class
does not have effect on λ value while the first age class has the most effect which aligns with
our assumption in the equation describing the epidemic ageing model. Biologically, it means
that changes of the ageing parameter b in two last age classes do not affect the growth rate
of the population. We are also able to deduce from the vj curve that the largest effect on
the sensitivity of λ values is due to the first age class while the second age class has an effect
reduced by half and others have no effect, which means that changes in survivability of the
first age class is of great importance for the growth of the population.
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Figure 3.34: (a) Dominant eigenvalue plotted against the varying values of probability v2 of
remaining in the same age class (20-39), during COVID-19 outbreak in France. (b) Sensitivity
curves for France. (c) Histogram of changes in dominant eigenvalue λ of E∗ for the variations
in different percentages of the different E∗ coefficients in Ireland. (d) Pie chart to compare
the sensitivities for the different categories of Es coefficients in Ireland.

Figure 3.34(c) affirms that “stay in same state” coefficient of the first two age classes (v1 =
A1S and v2 = A2S) in Ireland is crucial to the population growth which is also the same
with the results we observed in France. Figure 3.22d confirms that λ is sensitive to vi =
AiS(i = 1, 2) because corresponding sensitivities are the highest.
The last example of Ireland has shown that it was difficult to overlook the class of young
people under 18, who shows an incidence reaching a peak of 3% during the fifth wave (Fig-
ure 3.32) and a cumulative rate of approximately 13000 new cases per 100,000 in 10 weeks
of this wave (Figure 3.31). Then, we added one more age class in this last example. On
the other hand, to refine the coefficients of the epidemiological matrix E∗, it is necessary to
better understand the specific ageing processes due to the SARS-CoV-2 virus, in particular
that which affects anti-apoptosis proteins such as Gaf1. Indeed, these processes affect the
mortality specific to COVID-19, hence the coefficient of the matrix E∗ which quantifies the
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transition from an age class i to the following age class i + 1. In what follows, we will seek
to lay the foundations for future study of these specific ageing processes.

3.5.5 Cells targeted by SARS-CoV-2 and its implications in cell
lifespan loss

In SARS-CoV-2, the main target cells are the alveoli cells of the lungs, the pneumocytes.
The turn-over of the 300-700 million of human alveoli [166] is about 4 months [167]. The
Type I pneumocytes constitute the major part (95%) of the alveolar surface: they are large
(approximately 200µm) and thin (less than 0.2µm) cells, so their barrier to drug transport
is at least one order of magnitude lower than typical mucosal or epithelial membranes [168].
Then, each type I pneumocyte covers in mean 5, 000µm2 at the alveolar surface [166]. The
diameter of an alveolus is between 200 and 500µm [169]. If we retain the value of 200µm,
their surface is about 280000µm2, hence we have about 6 pneumocytes/alveolus. For the
whole pulmonary tissue, we have then 18 × 108 pneumocytes, from which natural loss each
day is about 18 × 108/120 = 1.5 × 106 cells. Because the SARS CoV-2 is infecting at most
107 cells each day [170], the COVID-19 viral disease causes an accelerated ageing in days of
the pulmonary tissue, equal to 1.5 times the duration of the acute phase of virulence in the
host.
Another origin of specific ageing comes from the hybridization of mRNA of proteins involved
in vital metabolisms. In search of hybridization germs, we have inspected viral RNA se-
quences from different databases [171, 172, 173], using the classic BLAST software. For
example, we have already noticed in a previous work [139] that miR 129-5p was a known
inhibitor of the biosynthesis of gamma-globin 2, a subunit of human fetal hemoglobin, re-
placed in adults by beta-globin, also dysregulated in some blood diseases, like the other
subunit alpha-globin, by several miRs, including miR 451a [174, 175, 176]. The search for
hybridization germs having the same inhibition potential as that of miRs 129-5p and 451a
has led to the identification of two subsequences of RNA-dependent RNA polymerase and S
genes of SARS-CoV-2. Figure 3.35 shows these subsequences identified as inhibitors of the
biosynthesis of human beta-globin. Figure 3.36 shows, for its part, two hybridizations, by
subsequences of the gene of the S protein of the Omicron variant of SARS-CoV-2, parts of
human interferon mRNA and anti-aging human Gaf1 protein mRNA by subsequences from
S protein gene of Omicron variant of SARS-CoV-2 [177].
The primary targets of many viruses are the cells of the most sensitive tissue developing
the viral disease, such as in the case of SARS-CoV-2, the cells presenting the ACE2 (for
Angiotensin-Converting Enzyme 2) receptor, or in the case of HIV, the cells most infected by
the virus, i.e., immune cells CD4+ T cells and macrophages, as well as cells of microglia. In
both cases, the viral disease causes a pathologic ageing, even if the patient survives (the death
being often due to an opportunistic superinfection). Cytoplasmic nucleases (e.g., RNases)
in the cells targeted by the virus are indeed enzymes capable of cleaving the phosphodiester
bonds of viral RNA, and the viral genome fragments thus obtained can subsequently form
complexes with mRNAs and/or proteins in the host cell, preventing ribosomal translation of
proteins, just as miRs do. When targeted proteins are vital, pathogenicity may be greater
than that due to viral replication. RNA viruses reproduce their capsid proteins in host cells
and duplicate their genome leaving behind RNA fragments, which can behave like miRs in
the host genome, if they bind to Argonaut proteins facilitating hybridization to mRNA and
then its hydrolysis [178, 179, 180, 181, 182, 183, 184, 185, 186].
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In HIV, the main target cells are the T cells of the immune system. HIV can infect up to 2
billion of T cells per day, while no more than 2% (from in mean 500 billion in whole blood
of an individual) can be reconstituted per day (by division), that is, about one billion of
cells [187]. Then, the HIV virus causes an accelerated aging of the immune system, equal to
2 times the duration of the phase of virulence in the host, which can be chronic in absence
of tri-therapy.

Figure 3.35: Complete fetal human hemoglobin beta (HBB) subunit mRNA sequence poten-
tially targeted by SARS-CoV-2 gene fragments, those from RNA-dependent RNA polymerase
(also targeted by the βA siRNA in violet [187, 188]) and from protein S (in blue), and by the
human miR hsa miR 451a (in red). Also shown (in red) are fragments containing deletions of
protein S in its N-terminal domain and mutations N501Y, E484K and D614G (base mutated
in green). The probability of a hybridization by chance of length 8 in red (resp. 10), for 624
nucleotides, is equal to 0.04 (resp. 0.005), hybridizations TG and GT counting for 1/2.

If we consider the organ level, the high rate of death in COVID-19 patients with cardiac
or pulmonary chronic comorbidities (Figure 3.33) indicates that the corresponding organs
(heart and lung, respectively) struggle to compensate for the loss of cells destroyed by the
SARS-CoV-2 virus, resulting sometimes in a pathologic ageing followed by a failure of these
critical organs (critical, because their collapse causes the death of the whole organism of the
patient). A source of supplementary pathologic ageing is the inhibition of the biosynthesis
of the protein Gaf1, involved in the processes preventing the cell apoptosis, when the viral
RNA contains subsequences capable, if it is fragmented by nucleases of the host, to hybridize
the mRNA of Gaf1, protein necessary for survive because deeply involved in anti-apoptosis
processes [177].
A first example of that is given by fragments of the SARS-CoV-2 virus in Figure 3.36. A
second example of the existence of accumulation of small RNA fragments exists in Sclerotinia
sclerotiorum infected with the SsHV2-L virus. These virus-derived small RNA fragments
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measure about 22 nt, the same length as the miRs, suggesting a cleavage by a Dicer-like
protein [189]. Regarding SARS-CoV-2, such an influence on protein translation has already
been described [190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202], causing
observed effects on the concentration of certain proteins, such as a dramatic decrease in
hemoglobin as in other blood diseases [174, 175, 176].

Figure 3.36: At the top, partial sequence of the mRNA of the S protein of the Omicron
variant of the SARS-CoV-262 virus with indication (in red) of the subsequences of the human
interferon gene and the human Gaf1 gene anti- aging that they hybridize. In the bottom,
the corresponding hybridization (in red) of part of the anti-aging human Gaf1 gene [177].

If we assume that these short RNA subsequences from the genes of the SARS-CoV-2 virus can
bind to Argonaut proteins and hybridize the mRNA of key human proteins involved in im-
portant metabolisms such as oxygen metabolism, it follows that mutations and/or deletions
observed in the SARS-CoV-2 genome (such as those which appeared in the United Kingdom,
South Africa, France or spontaneously in vitro [180, 202]) reinforce the possible existence of
these RNA fragments, capable of hybridizing, for example, the mRNA of hemoglobin sub-
units (Figure 3.35 and Figure 3.36), such as beta-globin [139], impacting oxygen transport
in infected patients and of Gaf1 protecting against apoptosis [177]. This mechanism can be
marginal but has to be considered in future studies on ageing due to viral infections, which
could include a part dedicated to prevention and therapy [203] involving circular RNAs, which
serve as “sponges” or “decoys” to small RNA fragments, to prevent them from hybridizing
certain proteins vital to the body [204].
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3.5.6 Cell ageing due to the virulence: a discrete approach

To model the virus impact on the cell lifetime, causing cell death or disrupting the cell
cycle, (when it can be documented), the Hahn model can be used to quantify the loss of
function of an organ targeted by the virus. If a certain proportion of cells are destroyed,
the virus causes critical organ failure, resulting in the patient’s death. Taking the heart
as an example, the inhibition of Gaf1 by SARS-CoV-2 (as already proposed in [139]) could
activate apoptosis by shortening the cell cycle [177]. Then, using the Hahn model, we could
quantify the viral influence on the cell replacement rate in the organ, allowing us to refine
the specific mortality rate due to the virus by organ already weakened due to comorbidities.
Cell population growth has been already modeled by Hahn [205], using a discrete dynamic
ruled by the matrix equation:

u(t) = Au(t− 1),

with Hahn matrix defined by:

A = (aij) =



α1 0 0 · · · 2Qγn−1 2Qβn
β1 α2 0 · · · 0 2Qγn
γ1 β1 α3 · · · 0 0
...

... . . . · · ...
...

...
... . . . ...

...
0 0 0 · · · βn−1 αn


where ui(t) represents the size of the cell population in state i of the cell cycle at time t, Q
is the mitotic abortive coefficient (0 < Q ≤ 1), αi( resp. βi and γi) the probability to remain
in state i (respectively to go to state (i + 1) and (i + 2)) between times t and t + 1, and µi

mortality rate with:

αi + βi + γi = 1− µi ≤ 1, for all i = 1, . . . , n.

As with the Usher model, the L2 dynamical stability modulus of the invariant measure w of
A is equal to e−|λ−λ,|, where the dominant and sub-dominant eigenvalues of the Hahn matrix
if matrix coefficients do not depend on i equal:

λ = α + (2Q)1/nβ + (2Q)2/nγ and λ, = α + (2Qϕ)1/nβ + (2Qϕ)2/nγ

where ϕ is the second largest absolute value of the nth root of 1. The Kullback-Leibler
stability modulus is defined as the cell evolutionary entropy H defined by [142, 206]:

H = −α/λ log(α/λ)− (2Q)1/nβ/λ log((2Q)1/nβ/λ)− (2Q)2/nγ/λ log((2Q)2/nγ/λ)

In certain cases, cell therapies could cause a rejuvenation of the tissue damaged by the virus,
and the value of α(a) could in this case increase and change the value of H.

3.5.7 Cell ageing due to the virulence: a continuous approach

Several works have introduced continuous models with the demographic variable age in order
to differentiate the reactions to the virulence of the different age groups of a population, in
particular because of an immune response which gradually decreases with age [207, 208, 209].
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We consider also as an ultimate perspective the building of a global continuous model inte-
grating both the cell cycle of the organ cells and the age of the patient. For that purpose, we
recall that the continuous equivalent of Usher model derives from the classical von Foerster
equation [210], where u(a,t,s) is the cell concentration at age a, time t and space s:

∂u

∂a
+
∂u

∂t
= −µ(a)u

By adding a second order term ∂2u
∂a2

taking into account the existence of the parameter γ in
the Hahn matrix, the dynamical behavior of this continuous equation is the same as for the
discrete Hahn model. The main interest of the continuous formulation is the possibility to
add a diffusion term [211], if cells are moving to repair an organ damaged by the virus:

∂u

∂a
+
∂u

∂t
− (a)

∂2u

∂a2
− σ(a)∆u = −µ(a)u⇔ ∂u

∂a
+
∂u

∂t
−□u− = −µ(a)u,

where □u =
∂2u

∂a2
−σ(a)∆u can be considered as a Dalembertian operator taking into account

accelerated ageing and diffusion in space. Then, we obtain the most general continuous
operator including pathological cell ageing and cell motion represented by what J. Besson
and J.P. Caubet [212, 213] called the charge of Sinbad the Porter (the Dalembertian symbol
□) and the sail of Sinbad the Sailor (the Laplacian symbol ∆).

3.6 Age Dependent Epidemic Modeling of COVID-19 Out-
break

The purpose of this section is to improve age dependent modeling which was presented in
the previous section by using a deterministic approach with a system of ordinary differential
equations and we have been able to also show in the previous section the influence of the
median age of a country on the incidence of COVID-19 which has been highlighted, in
particular through the appearance of many asymptomatic cases in the age groups below
50.For example, on the site of Johns Hopkins University dedicated to COVID-19 [214], data
clearly shows this influence on the case fatality rate corresponding to the cumulative deaths
recorded 5 months after the beginning of the outbreak (12 May 2020) vs. the median age of
many countries in 2017 (Figure 3.37). This first observation has been confirmed by studies in
France (Figure 3.40), and we will confirm in this section that the age of the patients suffering
from COVID-19 is a good predictor of severity.
The data used in this section is from public epidemiologic and demographic databases [157,
215] and the reference methods are both from classical demographic (such as Leslie) and epi-
demiologic (such as Ross and Kermack-McKendrick) models. In Figure 3.38 and Figure 3.39,
we present visualizations for pandemic dynamics in different age groups and sexes for Kuwait
and Cameroon, respectively, to support the motivation for this section that pandemic evo-
lution and severity are related to age classes, and thus modeling is important as various
researchers and health experts are investigating SAR-CoV-2 mutations. The countries un-
der consideration have a higher proportion of young people, while the elderly have a lower
proportion. Only 2% of the total population in Kuwait is over 65 and vulnerable to the pan-
demic, whereas 20.8% of the population in France is over 65 and vulnerable to the pandemic,
and 2.7% of the population in Cameroon is over 65 and vulnerable to the pandemic.
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Figure 3.37: Dependence of the case fatality rate (from cumulative deaths on the 20 May
2020) vs. median age of several countries in 2017 (from [214]). The area of a country circle
is proportional to the number of cumulated deaths due to COVID-19 on the 20 May 2020,
e.g., for the USA: 99,643 (in red).
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Figure 3.39: Left: Distribution of cumulated confirmed cases of COVID-19 by age group
and gender in Cameroon as of 23 June 2021 [216]. Right: Distribution of deaths due to
COVID-19 infection by age group and gender in Cameroon as of 23 June 2021 (after [150]).
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Figure 3.40: Top left: COVID-19 percentage of death in France by age class [215]. Bottom
left: Influence of age (curves with color coding) on COVID-19 hospitalizations in France in
the extreme age classes [215]. Bottom right: age classes pyramid in 2020 in France (total
population size: 65,273,512) [157].

We propose a model which is an improvement of the Ross and Kermack-McKendrick model
by trying to compensate some deficiencies in this model. We will first introduce two age
classes to account for adults and the elderly in the population and then take account of
vaccination before applying our model to some countries chosen as examples.

3.6.1 New SIGR model formulation

The heterogeneity in the age of the populations studied here (Kuwait, France, and Cameroon)
leads to considering a model in age groups with specific susceptibilities for each age class,
which makes the prediction problem of the new infectious growth more difficult. Basically,
there are three age groups of interest in the COVID-19 outbreak, which are, respectively,
0–19 years, 20–64 years, and >64 years, but here we only consider two (20–64 years and >64
years) age groups because the group 0–19 years is widely seen as being less infectious by
SARS-CoV-2 since this age group had a low infection rate throughout the period considered
in this study, especially the countries data used for simulation.
This heterogeneity in individual age and the reaction to biological and environmental changes
that have been observed in COVID-19 dynamics in terms of different reactions to vaccination
by age group, severity of infection per age group, hospitalization, and intensive care unit
(ICU) records show different patterns, which is why it is important to improve mathematical
models for COVID-19 pandemic prediction to account for different proportions of ages in
the population, which is a major factor in epidemic history [216]. Here, the originality is to
propose an improvement of the classical Ross and Kermack-McKendrick model and use it
for giving a theoretical and numerical framework for interpreting the relationship between
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demographic parameters such as age pyramid, fertility and mortality, and epidemiological
parameters such as the basic reproduction number R0 and vaccination rate.

Table 3.8: List of the parameters considered in the SIGR (Susceptible–Infectious–
Goneanewsusceptible–Recovered) model.

Epidemiologic Parameters

Si Susceptible individuals of age class i
Ii Infectious individuals of age class i
Gi Gone anew susceptible individuals of age class i
Ri Fully recovered and resistant individuals of age class i
R0 Basic reproduction number
ϕi Transmission rate of age class i
ηi Relapsed rate of age class i
γi Recovering rate of age class i
aK1 Survival rate from age 1 to age 2 for compartment K of age class 1
µK
2 Natural death rate of compartment K of age class 2

Demographic Parameters
βi1 Birth & loss of resistance of recovered from compartments of age class i
β22 Loss of resistance of recovered rate from compartments of age class 2
θKi Vaccination rate from compartment K of age class i
ϵi Specific fatality rate ϵ due to the disease of age class i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

22 

11 
Infectious 

Reversible 
recovering 

Definitive 
recovering 

Figure 3.41: Age-dependent scheme for COVID-19 outbreak modeling.

We propose a Susceptible–Infectious–Goneanewsusceptible–Recovered (SIGR) model as an
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improvement of the Ross and Kermack-McKendrick models including age class and vacci-
nation state for COVID-19 in a given population. Neglecting differences between kids and
young adults, we only retain two age classes: adult and elderly, 1 and 2. We assume that all
infectious are symptomatic and we consider birth and natural death rates β and µ, as well
as specific fatality rate ϵ due to the disease. Age groups (i = 1, 2) concern individuals sus-
ceptible, infectious Ii, gone anew susceptible Gi, and a fully recovered and resistant Ri. We
denote for each age group (i = 1, 2) the transmission rates φi, fertility, and loss of resistance
rates βij (supposed to be equal inside an age class, for the sake of simplicity), natural death
rates µS

2 , µ
I
2, µ

G
2 and µR

2 , vaccination rates group θGi and θRi , survival rates from age 1 to age
2 aS1 , aI1, aG1 and aR1 , specific death rate due to the disease ϵi, relapsed rate ηi and recovery
rate γi (cf. Table 3.8).
The description above can be illustrated by the following set of non-linear differential Equa-
tion (3.39), while the graphical representation of the model is given in Figure 3.41:

dS1

dt
= β11 (S1 +G1 +R1) + β21 (S2 +G2 +R2) –

(
aS1 + θG1 + θR1 +φ1(I1 + I2))S1

dS2

dt
= aS1S1 – µ2

SS2 −
(
θG2 + θR2 +φ2(I1 + I2))S2 + β22 (G2 +R2)

dI1
dt

= φ1 (I1 + I2)S1 − (aI1 + η1)I1

dI2
dt

= φ2 (I1 + I2)S2 + aI1I1 − η2 I2 – µ2
II2

dG1

dt
= η1I1+ θG1 S1 –

(
aG1 + γ1 + ϵ1)G1

dG2

dt
= η2I2+ aG1 G1 + θG2 S2 –

(
γ2 + µ2

G + ϵ2 + β22)G2

dR1

dt
= γ1G1 + θR1 S1 − aR1 R1

dR2

dt
= γ2G2 + θR2 S2 + aR1 R1 – (µ2

R + β22)R2 (3.39)

with S1 (t) ≥ 0, S2 (t) ≥ 0, I1 (t) ≥ 0, I2 (t) ≥ 0, G1 (t) ≥ 0, G2 (t) ≥ 0, R1 (t) ≥
0, R2 (t) ≥ 0.

3.6.2 Positivity and boundedness of the solution

Lemma 1. Let the initial conditions be given as follows:
{S1 (0) , S2 (0) , I1 (0) , I2 (0) , G1 (0) , G2 (0) , R1 (0) , R2 (0) ≥ 0} , then solutions of the

system of equations (3.39) are positive for all t > 0.

Proof. From the first equation in the model Equation (3.39), we obtain:

dS1/dt = β11 (S1 +G1 +R1) + β21 (S2 +G2 +R2) –
(
aS1 + θG1 + θR1 +φ1(I1 + I2))S1,

Hence, dS1/dt ≥ β11 − aS1 − θG1 − θR1 )S1.
By using the separating variable method and then, integrating, we obtain:∫

dS1

S1

≥
∫ (

β11 − aS1 − θG1 − θR1
)
dt
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lnS1 ≥
(
β11 − aS1 − θG1 − θR1

)
t+ k

Finally, by writing S1(0) = ek, we have:

S1 (t) ≥ S1 (0) e
(β11−aS1−θG1 −θR1 )t ≥ 0.

By applying the same process to other equations in (1), we have:

S2 (t) ≥ S2 (0) e
(aS1−θG2 −θR2 −µ2

S)t ≥ 0

I1 (t) ≥ I1 (0) e
−(aI1+η1)t ≥ 0

I2 (t) ≥ I2 (0) e
−(η2 I2+ µ2

I)t ≥ 0

G1 (t) ≥ G1 (0) e
−(aG1 +γ1+ϵ1)t ≥ 0

G2 (t) ≥ G2 (0) e
−(γ2+ µ2

G+ϵ2)t ≥ 0

R1 (t) ≥ R1 (0) e
−aR1 t ≥ 0

R2 (t) ≥ R2 (0) e
−µ2

Rt ≥ 0

Then, the solutions of the system of equations (3.39)

{S1 (t) , S2 (t) , I1 (t) , I2 (t) , G1 (t) , G2 (t) , R1 (t) , R2 (t)}

are positive for all t > 0. □

Also, Let denote by S the total size of all individuals:

S(t) = S1(t) + S2(t) + I1(t) + I2(t) +G1(t) +G2(t) +R1(t) +R2(t)

Then, by adding all the model Equation (3.39), we have:

dS

dt
= β11 (S1 +G1 +R1) + β21 (S2 +G2 +R2) – (µ2

SS2 + µ2
II2 + µ2

GG2 + ϵG2 + µ2
RR2

Let us denote µ = inf{µS
2 , µ

I
2, µ

G
2 + ϵ, µR

2 }. By neglecting the fecundity rate of the young
class and if β = β21 ≤ µ, we have:

dS

dt
≤ β(S2 + I2 +G2 +R2)−−µ(S2 + I2 +G2 +R2) ≤ 0,

Then, we can conclude that the total size S is bounded, which implies the boundedness of
the partial sizes S1 (t) , S2 (t) , I1 (t) , I2 (t) , G1 (t) , G2 (t) , R1 (t) , R2 (t).

3.6.3 Disease-Free (Eradication) equilibrium and stability of the en-
demic state

Setting the right hand side of the equations in the model Equation (3.39) to zero, i.e.,

dS1

dt
=
dS2

dt
=
dI1
dt

=
dI2
dt

=
dG1

dt
=
dG2

dt
=
dR1

dt
=
dR2

dt
= 0

and supposing that all infectious class sizes are equal to zero which means that there is no
disease (eradication) in the studied population, thus the disease-free equilibrium state is:

(S1
∗, S2

∗, I1
∗, I2

∗G1
∗, G2

∗, R1
∗, R2

∗) =

{
β21S2

aS1 + θG1 + θR1 − β11
,

aS1S1

µ2
S + θG2 + θR2

, 0, 0, 0, 0, 0, 0

}
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To show the stability of the endemic state, let us fix a set of values for the model parameters,
where k is a scale parameter:

φ1 = φ2 =
4k2

100
, µ2

S = ϵ1 = β22 = 0, µ2
I =

499k

100
, µ2

G =
49k

100
, µ2

R =
2k

5
, β11 = β21 =

k

5
,

θG1 = θR1 = γ1 = γ2 = 0.1k, θG2 = θR2 = k, aS1 = aI1 = aG1 = aR1 =
98k

96
, ϵ2 =

4k

5
, η1 = η2 = 0.2k

The two stationary points are labeled with * (resp. **) for the eradication (resp. endemic)
state:

(S1
∗, S2

∗, I1
∗, I2

∗G1
∗, G2

∗, R1
∗, R2

∗) =

(
β21 S2

aS1 + θG1 + θR1 − β11
,

aS1S1

µ2
S + θG2 + θR2

, 0, 0, 0, 0, 0, 0

)
and

(S1
∗∗, S2

∗∗, I1
∗∗, I∗∗2 , G1

∗∗, G2
∗∗, R1

∗∗, R2
∗∗) = (10, 10, 10, 10, 20, 40, 15, 15) , if k = 1.

Let us show that the endemic state is locally stable. With the chosen parameter values and
k = 1, from the model Equation (3.39), we have:

dS1

dt
= 0.2G1 − 1.02S1 + 0.2R1 + 0.2S2 + 0.2G2 + 0.2R2 − 0.04I1S1 − 0.04I2S1

dS2

dt
= 1.02S1 − 2S2 − 0.04I1S2 − 0.04I2S2

dI1
dt

= 0.04I1S1 + 0.04I2S1 − 1.04I1

dI2
dt

= 0.04I1S2 + 0.04I2S2 + 1.02I1 − 5.19I2

dG1

dt
= 0.2I1 + 0.1S1 − 1.12G1 (3.40)

dG2

dt
= 0.2I2 + 1.02G1 + S2 − 1.39G2

dR1

dt
= 0.1G1 + 0.1S1 − 1.02R1

dR2

dt
= 0.1G2 + S2 + 1.02R1 – 0.4R2

By calculating the Jacobian matrix M of the system of Equation (3.40) at the endemic state,
where I is the identity matrix and finding the roots of its characteristic polynomial PM , we
have for the second stationary point the expression as follows:

M−λI =



−1.02− λ 0.2 −0.4 −0.4 0.2 0.2 0.2 0.2
1.02 −2− λ −0.4 −0.4 0 0 0 0
0.8 0 −1.04− λ 0 0 0 0 0
0 0.8 1.02 −5.19− λ 0 0 0 0
0.1 0 0.2 0 −1.12− λ 0 0 0
0 1 0 0.2 1.02 −1.39− λ 0 0
0.1 0 0 0 0.1 0 −1.02− λ 0
0 1 0 0 0 0.1 1.02 −0.4− λ
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The roots of the characteristic polynomial of M,PM , satisfy:

PM(λ) = det (M − λI) = (λ+ 0.706923) (λ+ 5.13103)
(
λ2 + 0.973528λ+ 0.34052

)(
λ2 + 2.0371λ+ 1.03861

) (
λ2 + 3.69142λ + 3.53083

)
= 0

The real parts of the eigenvalues of the matrix M are all negative, equal to:

−0706923,−5.13103,−0.486764,−1.01855,−1.84571

Hence, with the set of chosen parameter values, the stability of the endemic state is proved.

3.6.4 Existence and unicity of the solution

We want to establish existence and unicity of the solution for the model Equation (3.39). Let
us denote the second member of Equation (3.39) by H = (H1,H2,H3,H4,H5,H6,H7,H8)
and the state vector by Z = (S1, S2, I1, I2, G1, G2, R1, R2) , with Z (0) = Z0, Z (t, ϵ) =
H (t, ϵ)Z (t) .
Let us define the Volterra integral equation of the second kind which is given as:

S (t) = S (0) +

∫ t

0

H (t, ϵ)S (ϵ) dϵ

where H (t, ϵ) is a kernel and S (t) is the function to be solved.
The Volterra integral equation formulation of the model Equation (3.39) is the following:

S1 (t) = S1 (0) +

∫ t

0

H1 (t, ϵ)S1 (ϵ) dϵ

S2 (t) = S2 (0) +

∫ t

0

H2 (t, ϵ)S2 (ϵ) dϵ

I1 (t) = I1 (0) +

∫ t

0

H3 (t, ϵ) I1 (ϵ) dϵ

I2 (t) = I2 (0) +

∫ t

0

H4 (t, ϵ) I2 (ϵ) dϵ

G1 (t) = G1 (0) +

∫ t

0

H5 (t, ϵ)G1 (ϵ) dϵ

(3.41)

G2 (t) = G2 (0) +

∫ t

0

H6 (t, ϵ)G2 (ϵ) dϵ

R1 (t) = R1 (0) +

∫ t

0

H7 (t, ϵ)R1 (ϵ) dϵ

R2 (t) = R2 (0) +

∫ t

0

H8 (t, ϵ)R2 (ϵ) dϵ

Let S1 be the solution for S1 and kernels Hi, i = 1, 2, . . . , 8 satisfy Lipschitz conditions:

sup0<t≤1∥S1∥ ≤ c1, sup0<t≤1∥S2∥ ≤ c2, sup0<t≤1∥I1∥ ≤ c3, sup0<t≤1∥I2∥c4,
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sup0<t≤1∥G1∥ ≤ c5, sup0<t≤1∥G2∥ ≤ c6, sup0<t≤1∥R1∥ ≤ c7, sup0<t≤1∥R2∥ ≤ c8

and ci > 0, for i = 1, 2, . . . , 8. Then, following inequalities hold, using triangle inequality
and properties of the H′

is norm:

∥H1 (S1)−H1 (S1) ∥ ≤ ∥
[
β11 –

(
aS1 + θG1 + θR1 + φ1 (I1 + I2)

)]
S1

−
[
β11 – (aS1 + θG1 + θR1 + φ1 (I1 + I2))

]
S1∥

≤ ∥β11 –(aS1 + θG1 + θR1 + φ1 (I1 + I2))∥∥S1 − S1∥
≤ ∥β11 – (aS1 + θG1 + θR1 + φ1c3 + φ1c4)∥∥S1 − S1∥
= ∂1∥S1 − S1∥

where ξ = β11 (G1 +R1) + β21(S2 +G2 +R2), ∂1 = β11 – aS1 − θG1 − θR1 − φ1c3 − φ1c4.
Therefore, H1 satisfies the Lipschitz conditions. We can show in the same way that other
functions Hi, i = 2, . . . , 8 in the model Equation (3.39) satisfy the Lipschitz conditions as
follows:

∥H2 (S2)−H2 (S2) ≤ ∥ ∂2∥S2 − S2∥

∥H3 (I1)−H3 (L1) ≤ ∥∂3∥I1 − L1∥

∥H4 (I2)−H4 (L2) ≤ ∥ ∂4∥I2 − L2∥

∥H5 (G1)−H5 (G1) ≤ ∥ ∂5∥G1 − G1∥

∥H6 (G2)−H6 (G2) ≤ ∥ ∂6∥G2 − G2∥

∥H7 (R1)−H7 (ℜ1) ≤ ∥ ∂7∥R1 −ℜ1∥

∥H8 (R2)−H8 (ℜ2) ≤ ∥ ∂8∥R2 −ℜ2∥
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Let us now consider the following Neumann series:

S1m (t) = S1 (0) +

∫ t

0

H1 (t, ϵ)S1m−1 (ϵ) dϵ

S2m (t) = S2 (0) +

∫ t

0

H2 (t, ϵ)S2m−1 (ϵ) dϵ

I1m (t) = I1 (0) +

∫ t

0

H3 (t, ϵ) I1m−1 (ϵ) dϵ

I2m (t) = I2 (0) +

∫ t

0

H4 (t, ϵ) I2m−1 (ϵ) dϵ

G1m (t) = G1 (0) +

∫ t

0

H5 (t, ϵ)G1m−1 (ϵ) dϵ

G2m (t) = G2 (0) +

∫ t

0

H6 (t, ϵ)G2m−1 (ϵ) dϵ

R1m (t) = R1 (0) +

∫ t

0

H7 (t, ϵ)R1m−1 (ϵ) dϵ

R2m (t) = R2 (0) +

∫ t

0

H8 (t, ϵ)R2m−1 (ϵ) dϵ

These Neumann series are convergent due to the Lipschtizian character of H′s, then:

∥S1m+1 − S1m∥ ≤
∫ t

0

∥H1 (t, ϵ)S1m (ϵ)−H1 (t, ϵ) , S1m−1 (ϵ) dϵ∥

≤
∫ t

0

∥S1m (t)− S1m−1 (t) ∥dϵ ≤ ∂1∥S1m (t)− S1m−1(t) ∥∞

Other equations are given as follows:

∥S2m+1 − S2m∥ ≤ ∂2∥S2m (t)− S2m−1(t) ∥∞
∥I1m+1 − I1m∥ ≤ ∂3∥I1m (t)− I1m−1(t) ∥∞
∥I2m+1 − I2m∥ ≤ ∂4∥I2m (t)− I2m−1(t) ∥∞
∥G1m+1 −G1m∥ ≤ ∂5∥G1m (t)−G1m−1(t) ∥∞
∥G2m+1 −G2m∥ ≤ ∂6∥G2m (t)−G2m−1(t) ∥∞
∥R1m+1 −R1m∥ ≤ ∂7∥R1m (t)−R1m−1(t) ∥∞
∥R2m+1 −R2m∥ ≤ ∂8∥R2m (t)−R2m−1(t) ∥∞

The above inequalities prove the existence of the function H. We now show the uniqueness
of the solution by assuming that the kernels Hi, i = 1, 2, . . . , 8 are separable, i.e., H1 (t, ϵ) =
∅ (t) ς (ϵ). By denoting:

ζ (t) =
∫ t

0

S1 (ϵ) ς (ϵ) dϵ
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then, because S1 (t) = S1 (0) +

∫ t

0

H1 (t, ϵ)S1 (ϵ) dϵ = S1 (0) +

∫ t

0

∅ (t) ς (ϵ)S1 (ϵ) dϵ,

we have:
ζ ′ (t) = ∅ (t) ς (t) ζ (t) + S1 (0) ς (t)

If ς (0) = 0, the solution ζ (t) follows ζ (t) = e

∫ t

0

∅(ϵ)ς(ϵ)dϵ
and from the definition of ζ (t),

the solution of S1 (t) is given as:

S1 (t) = S1 (0) +∅ (t)

∫ t

0

S1 (ϵ) ς (ϵ) dϵ = S1 (0) +∅ (t) ζ (t) = S1 (0) +∅ (t) e
∫ t
0 ∅(ϵ)ς(ϵ)dϵ

Hence, by the unicity of the solution ζ (t), there exists just only one continuous solution
for S1 (t). Following the same approach, we can obtain a unique solution for the remaining
equations of the system in Equation (3.41).

3.6.5 Basic reproduction number

It is possible to apply the idea of a next-generation matrix by linearizing the model Equa-
tion (3.39) near the endemic state, for the infectious part of the system in Equation (3.39),
and then obtain:

dI1
dt

= φ1 (I1 + I2)S1
∗∗ − (aI1 + η1)I1,

dI2
dt

= φ2 (I1 + I2)S2
∗∗ + aI1I1 − η2I2 µ2

II2, (3.42)

dG1

dt
= η1I1 + θG1 S

∗∗
1 −

(
aG1 + γ1 + ϵ1

)
G1,

dG2

dt
= η2I2 + aG1 G1 + θG2 S2

∗∗ −
(
γ2 + µ2

G + ϵ2 + β22
)
G2

By summing Equation (3.42) and by denoting I as the size of all infectious, we have:

I(t) = I1(t) + I2(t) +G1(t) +G2(t),

and

dI

dt
= φ1 (I1 + I2)S1

∗∗+φ2 (I1 + I2)S2
∗∗ −µ2

II2+ θG1 S1
∗∗− (γ1+ ϵ1)G1 − (γ2+ ϵ2+β22)G2

The matrix J of the linearized system near a state (S1, S2) is:

J =


φ1S1 − aI1 − η1 φ1S1 0 0
φ2S2 + aI1 φ2S2 − η2 − µ2

I 0 0
η1 0 −aG1 − γ1 − ϵ1 0
0 η2 aG1 −γ2 − µ2

G − ϵ2 − β22


The corresponding characteristic polynomial PJ(λ) is equal to:

(φ1S1 − aI1 − η1 − λ)(φ2S2 − η2 − µ2
I − λ)

(
−aG1 − γ1 − ϵ1 − λ

) (
−µG

2 − γ2 − ϵ2 − β22 − λ
)

− φ1tS1

(
φ2S2 + aI1

) (
−aG1 − γ1 − ϵ1 − λ

) (
−µG

2 − γ2 − ϵ2 − β22 − λ
)
= PJ (λ)
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The positive eigenvalues of J are roots of the following polynomial:

λ2−
(
φ1S1 − aI1 − η1 + φ2S2 − η2 − µ2

I
)
λ− φ1S1

(
φ2S2 + aI1

)
+(φ1S1−aI1−η1)(φ2S2−η2− µ2

I)

These roots are equal to: B ± (B2 − C)1/2, where B and C are equal to:

B =
φ1S1 − aI1 − η1 + φ2S2 − η2 − µ2

I

2

C = − φ1S1

(
φ2S2 + aI1

)
+ (φ1S1 − aI1 − η1)(φ2S2 − η2 − µ2

I)

Then, we have:

B + (B2 − C)1/2 =
φ1S1 − aI1 − η1 + φ2S2 − η2 − µ2

I

2

+
[(φ1S1 − aI1 − η1 + φ2S2 − η2 − µ2

I)2

4

+ φ1S1

(
φ2S2 + aI1

)
−
(
φ1S1 − aI1 − η1

) (
φ2S2 − η2 − µ2

I
) ]1/2

Hence, near unstable endemic state the positive dominant eigenvalue Λ is equal to:

Λ =
φ1S1 − aI1 − η1 + φ2S2 − η2 − µI

2

2

+

[
(φ1S1 − aI1 − η1 − φ2S2 + η2 + µI

2)
2

4
+ φ1S1

(
φ2S2 + aI1

)]1/2
Therefore, the basic reproduction number R0 equal to Λ near the endemic stationary state
depends mainly on the infection rates φ1 and φ2, when the sizes S1 and S2 are sufficiently
important. If after a change of parameter values, the endemic state becomes unstable and
R0 is becoming more than 1, then an epidemic wave starts.

3.6.6 Numerical simulation of the model: examples of the COVID-
19 outbreak in some countries

The numerical simulation of the model developed is done using data coming from Kuwait,
France and Cameroon. First, we provide some explanations for the data used for the simu-
lations, including how we assumed some of the parameters, calculated others, and selected
some from the literature cited in this article. In order to determine the susceptible classes
sizes, we used Wikipedia data on the three studied countries to obtain their total population
size. We then calculated the ratio between the young and elderly from the data presented
in Figure 3.38, Figure 3.40 and Figure 3.39 and used this ratio to determine the sizes value
for the two susceptible classes at the exponential phase considered (for Kuwait 28 December
2020, France 30 October 2021, and Cameroon 19 September 2021), because the Ross and
Kermack-McKendrick model is only suited for the exponential growth phase of an epidemic
wave. Because the progression rates to the classes reversed recovery and fully recovered in
Figure 3.41 are not zero, we assumed that they should have some populations at the start
of the wave, even if they were small. The transmission rate for Cameroon was chosen at the
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start of the second wave in January 2021 from [119, 151], for France at the start of the fifth
wave in December 2021 [217], and for Kuwait at the start of the fourth wave in December
2021 [214]. The values of specific death rates due to disease and natural death rates for
Kuwait and France were taken from [160, 214, 217]. For Cameroon, the natural death rate
was taken from [218], while the specific death rate due to disease was calculated from the
cumulated deaths number due to the disease in two years divided by the cumulated infectious
number in these two years [218]. The vaccination rate was chosen from [126], while the loss
of resistance was chosen from [214]. Other parameters were assumed.

Numerical simulation based on COVID-19 outbreak in Kuwait

We have chosen the following set of parameter values corresponding to the COVID-19 out-
break at the start of the fourth wave in December 2021 in Kuwait:

φ1 = 1.7, φ2 = 0.9, µ2
S = 0.003, ϵ1 = 0.28, β22 = 0, µ2

I = 0.0025,

µ2
G = 0.002, µ2

R = 0.0021 , β11 = 2.1 , β21 = 2.3 , θG1 = 0.765, θR1 = 0.678,

γ1 = 0.62, γ2 = 0.74, θG2 = 0.45 , θR2 = 0.33, aS1 = 0.7, aI1 = 0.54, aG1 = 0.65,

aR1 = 0.8, ϵ2 = 0.19 , η1 = 0.3 and η2 = 0.38,

with initial values for S1 = 4413099, S2 = 51422, I1 = 65, I2 = 194, G1 = 20, G2 = 17, R1 = 30
and R2 = 73.

We present the visualization results for the simulated values in Figure 3.42.

Numerical simulation based on COVID-19 outbreak in France

We have chosen the following set of parameter values corresponding to the COVID-19 out-
break at the start of the fifth wave in December 2021 in France:

φ1 = 1.2, φ2 = 0.9, µ2
S = 0.009, ϵ1 = 0.28, β22 = 0, µ2

I = 0.0025,

µ2
G = 0.002, µ2

R = 0.0021 , β11 = 1.9, β21 = 2.2, θG1 = 0.735, θR1 = 0.678,

γ1 = 0.62, γ2 = 0.74, θG2 = 0.45, θR2 = 0.33, aS1 = 0.7, aI1 = 0.54, aG1 = 0.65,

aR1 = 0.8, ϵ2 = 0.19, η1 = 0.3 and η2 = 0.38,

with initial values for S1 = 53372880, S2 = 14017120, I1 = 3912, I2 = 1757, G1 = 200, G2 =
170, R1 = 300 and R2 = 730.

We present the visualization results for the simulated values in Figure 3.43.

Numerical simulation based on COVID-19 outbreak in Cameroon

We choose the following set of parameter values corresponding to the COVID-19 outbreak
at the start of the second wave in January 2021 in Cameroon:

φ1 = 1.3, φ2 = 0.9, µ2
S = 0.009, ϵ1 = 0.28, β22 = 0, µ2

I = 0.0025,

µ2
G = 0.002, µ2

R = 0.0021 , β11 = 4.5, β21 = 4.1, θG1 = 0.024, θR1 = 0.678,

γ1 = 0.62, γ2 = 0.74, θG2 = 0.45, θR2 = 0.33, aS1 = 0.7, aI1 = 0.54, aG1 = 0.65,

aR1 = 0.8, ϵ2 = 0.19, η1 = 0.3 and η2 = 0.38,
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Figure 3.43: Numerical simulation of the variables I1 and I2, R1 and R2, G1, G2 for Cameroon.

with initial values for S1 = 25828973, S2 = 721027, I1 = 151, I2 = 21, G1 = 75, G2 =
33, R1 = 56 and R2 = 64.

We present the visualization results for the simulated values in Figure 3.43.
The results for the three considered countries present some similarities but also some differ-
ences that we will discuss in the following.
First, in each case, the exponential growth of the infectious I1 + I2 and completely recov-
ering R1 + R2 populations sizes correspond roughly to the data given in [119]. The model
simulations give more, i.e., allows to see the part brought by each age class to the global
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growth.
Second, for Kuwait, Figure 3.42 shows a faster growth of infectious (I) in the young class
(≤65 years) than in the older class (>65 years), which is also the case for France (Figure 3.43)
and for Cameroon (Figure 3.43). On the other hand, this phenomenon is reversed in the three
countries, with regard to the growth of populations immunized in a transient manner (G)
and in a lasting manner (R). The phenomenon is more marked for Kuwait than for France,
France itself having a more marked difference than for Cameroon. This is partly explained
by the better vaccination rate of Kuwait than that of France and Cameroon in the young
class, the effectiveness of the vaccination (which decreases in the older class) having been
assumed to be equal for the three countries.
Taking age into account in modeling the COVID-19 pandemic makes it possible to simulate
the differential dynamic behavior of the growth of infectious and immune populations, young
and old, in order, for example, to adjust the vaccine policy according to the age.

3.7 Conclusion
Concerning contagious diseases, public health physicians are constantly faced with three
challenges. The first concerns the estimation of the basic reproduction number R0. The
systematic use ofR0 simplifies the decision-making process by policymakers, advised by public
health authorities, but it is too much of a caricature to account for the biology behind the
viral spread. We have observed in the COVID-19 outbreak that it was non-constant during
an epidemic wave due to exogenous and endogenous factors influencing both the duration of
the contagiousness period and the daily transmission rate during this phase [219, 220, 221].
Then, the second challenge concerns the estimation of the mean duration of the infectious
period for infected patients. As for the transmission rate, realistic assumptions made it
possible to obtain an upper limit to this duration [137], mainly due to the lack of viral load
data in large patient cohorts (see Figure 3.2 from [116, 117, 118]), in order to better guide the
individual quarantine measures decided by the authorities in charge of public health. This
upper bound also makes it possible to obtain a lower bound for the percentage of unreported
infected patients, which gives an idea of the quality of the census of cases of infected patients,
which is the second challenge facing specialists of contagious diseases. The third challenge is
the estimation of the daily reproduction number over the contagiousness period, which was
one of the issue we tackle in this chapter.
Eventually, our approach using marginal daily reproduction numbers involving a certain level
of noise in the dynamics of new daily infected cases defines a stochastic framework which
describes phenomenologically the exponential phase as our results show for countries such
as France, Russia, Sweden, etc. This stochastic modeling allows a better understanding of
the role of the contagiousness period length and of the heterogeneity (e.g., the U-shape) of
its daily reproduction number distribution in the COVID-19 outbreak dynamics. On the
medical level, the important message about the U-shape is that COVID-19 is similar to
other viral diseases, such as influenza, with two successive reactions from the two immune
defense barriers, innate cellular immunity first, which is not sufficient if symptoms persist,
then adaptive immunity (cellular and humoral), which results in a transient decrease in
contagiousness between the two phases. The medical recommendations are, in this case,
never to take a transient improvement for a permanent disappearance of the symptoms.
One could indeed, for a public health use, be satisfied after estimating the sum of the Rj’s,
that is to say, R0 or the effective Re. For an individual health use, it is important to
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know the existence of a minimum of the Rj’s, which generally corresponds to a temporary
clinical improvement, after the partial success of the innate immune defenses. This makes it
possible to prevent the patient from continuing to respect absolute isolation and therapeutic
measures, even if a transient improvement occurs; otherwise, they risk, as in the flu, a
bacterial pulmonary super-infection (a frequent cause of death in the case of COVID-19).
On the theoretical level, the interest of the proposed methods is its generic character: it can
be applied to all contagious diseases, within the very general framework of Equation (3.6),
which makes no assumption about the spatial heterogeneity or the longitudinal constancy of
the daily reproduction numbers. The deconvolution of Equation (3.6) poses a new theoretical
problem when it is offered in this context.
The current context of the pandemic closely monitored by the WHO, a contagious social
pandemic and a contagious infectious pandemic, COVID-19, shows that this problem is now
highly relevant.
To be able to be both retro-predictive on past pandemics (like the great plague of 1348 in
Europe) or anticipatory on present and future pandemics, it is necessary to be able, from
observed data (which are daily in the case of the COVID-19 [119] and annual in the case
of obesity [214]), to estimate the parameters of the model, then simulate it and interpret
the scenarios of the simulations within the framework of concrete public health measures
(change in eating behaviours, preventive preparation of the system immunity, implementa-
tion of mitigation measures, vaccination, preventive education etc.). This part is the most
difficult and is only effective within the framework of multidisciplinary teams, with very
good mathematicians of dynamical systems and very good nutritionists and infectiologists.
Solid knowledge in the genetics of infectious agents and in the monitoring of environmental
conditions is necessary because:

- the dynamic phenomena of propagation present isolated or periodic waves of the new
cases, with bifurcations (in the deterministic case) or phase transitions (in the stochastic
case) often difficult to study theoretically and to simulate numerically [222, 223, 224]

- the changes in the infectious genius of the agents at the origin of pandemics need a new
knowledge about mechanisms often partly unknown, because linked to uneasily predictable
and often hypothetical [139, 225] modifications in their genome (such as point mutations,
deletions and insertions of more or less long sequences, re-combinations with other genomes,
passages in the host nuclear genome, etc.).
Furthermore, we have been able to use a continuous approach in estimating the maximal
reproduction number in COVID-19 outbreak and by extension estimating the transmission
rate, a parameter which helps to know how a disease is spread by identifying the point of
inflexion during the exponential phase of the pandemic wave, we have then deduced the
value of the basic reproduction rate at this point of inflexion while the method was validated
by linking the correlation of these epidemiology parameters with some socio-demo-economic
parameters.
Finally, we used a matrix population growth modeling on countries where age data were
available for this study and also propose some panorama on cells targeted by SARS-CoV-2
and cell lifespan loss and also on how the method can be extended to ageing in cell populations
using discrete and continuous approach. The model developed in this study differs from many
previously constructed agent-based and dynamical system models of population dynamics,
particularly when considering viral infection. Its greatest utility is that it can be used to
highlight specific characteristics of the life span caused by viral infection, which have a
significant impact on population growth. As a result, the findings of this study may be
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useful in developing management programs to reduce the potential for COVID-19 epidemics,
particularly when comorbidities and ageing are considered. We used data from Cameroon to
investigate the role of comorbidities in age-dependent COVID-19 modeling, while data from
France were used to assess the proportion of parameter sensitivity at the sub-population
level. Data from Ireland were used to examine the evolution of the pandemic in young
people because this country has seen a sharp increase in cases among children and teenagers
as at the time of this study. Age dependent modeling is important to better understand
the dynamics of viral diseases, and we have been able to present another perspective to
this research direction using a discrete approach, matrix algebra and an ODE compartment
model. It is a known fact that due to a new variant of the disease, there is an increase
in infection rate in different age groups. Our work was able to provide a link between the
dominant eigenvalue which represents the exponential growth parameter and the COVID-19
affected sub-population and also the differential dynamic behavior of the growth of infectious
and immune populations between young and old.
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Chapter 4

Statistical Modeling of COVID-19
Outbreak

In epidemiology, statistical modeling helps to understand the mechanisms that influence the
spread of infectious diseases, and it suggests prevention and control strategies. It can be used
to comprehend how a virus spreads across a large region or country hence, this chapter is
devoted to large scale analysis and application of different statistical tools such as machine
learning and deep learning to model the COVID-19 pandemics so as to predict and fore-
cast the evolution of the disease at the population level. COVID-19 cases prediction models
are currently divided into three categories: theoretical models, single artificial intelligence
models, and decomposition integration models. The majority of statistical methods are used
in the case study of COVID-19 to make prediction of the pandemic evolution at different
phases. We present in this chapter some useful quantitative statistical tools for analysing
epidemiological data.
Section 4.1 examines the application of ARIMA, regression models, exponential smoothing
model and prophet model on several time series. The slope of the regression line is calcu-
lated using an exponential model, while the initial auto-correlation slope of new cases were
forecasted using an ARIMA model for the two waves observed at the time of this study. The
best statistical model to describe the daily count of new cases and deaths due to COVID-19
infections in Kuwait is presented by testing the model’s performance, accuracy, and valida-
tion, as a result, the best model to estimate the number of new cases as well as a model for
COVID-19 infection-related mortality were utilized. The findings indicate that the COVID-
19 outbreak in Kuwait is divided into two stages i.e., first wave and transition to second wave.
In Section 4.2, the application of deep learning to COVID-19 pandemic time series data has
been done for the United States (USA), United Kingdom (UK), India, Russia, Brazil, France,
and Turkey, which are countries where the pandemic is more prevalent globally. Multi-layer
Perceptron (MLP), Long Short-term Memory (LSTM), Gated Recurrent Unit (GRU), Con-
volution Neural Network (CNN), and Deep Neural Network (DNN) methods were used on
time series data from the beginning of the pandemic until September 3, 2021 to predict daily
new cases and daily deaths at different waves of the pandemic in countries considered, with
MLP forecasted until December 2021 due to the model performance. The performance of
the methods was accessed using Root Mean Square Error (RMSE) and relative Root Mean
Square Error (rRMSE). The results have depicted the impact of COVID-19 management
across the countries studied. In Section 4.3 spectral analysis method is used to convert time
(days) for COVID-19 pandemic time series data from United States (USA), United Kingdom
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(UK), India, Russia, Brazil, France, and Turkey to analyze the frequency peaks and periodic-
ity of the time series data. It was discovered that the pandemic’s peaks detection was central
in the analysis and short-term forecasting. In Section 4.4 the modelling of the COVID-19
pandemic against some socio-economic parameters is presented by examining the time series
of infection spread throughout the first and second waves in all countries (OECD, developing
and developed countries namely African countries), as well as their socio-economic statistics.
The proof of a mathematical and statistical relationship between Theil and Gini indices is
presented, and then multiple machine learning and deep learning approaches investigate the
association between epidemiological data and socioeconomic variables. Also the relation-
ship between epidemiologic and socio-economic variables such as CHE/GDP data is studied
thanks to ordinary least square multivariate modelling and classifying countries is using
principal component analysis, K-means, and hierarchical clustering. The study demonstrates
that there are correlations between growth parameters directly linked to the occurrence of
new cases of COVID-19 and socio-economic variables, specifically current health expendi-
ture as a percentage of gross domestic product (CHE/GDP) is anti-correlated with basic
reproduction number, demonstrating the effectiveness of public health mitigation measures,
even if they involve significant medico-economic costs. The result reveals a disparity between
developed and developing countries, despite the fact that rapid implementation of isolation
and vaccination measures allowed them to anticipate and mitigate the effects of the second
wave. Section 4.5 deals with the techniques of functional data analysis applied to model daily
hospitalized, deceased, Intensive Care Unit (ICU) cases, and return home patient numbers
along the COVID-19 outbreak, considered as functional data across different departments in
France, while response variables are numbers of vaccinations, deaths, infected, recovered, and
tests numbers. The first functional principal component well characterized the forms seen
for the data connected to the first three principal components, according to the functional
principal component analysis. This discovery confirms the significance of the first component
in explaining and qualitatively predicting the observed data. The influence of vaccination is
visible because the shapes are attenuated after vaccination and do not resemble the shapes
observed in Section 3.2 for seasonal influenza. Finally, this chapter is concluded in Section 4.6
with some perspectives and conclusions.

4.1 Data Analysis and Forecasting of COVID-19 Pan-
demic Based on Daily Observation Dynamics

This section deals with the application of several statistics tools for modelling epidemic data
such as ARIMA model, Exponential smoothing model, Holt’s method, Prophet forecasting
model and machine learning models. Among machine learning models, log-linear, polynomial
and support vector regressions were used in order to compare these models. The main
objective and motivation is to present the best statistical model to describe the daily count
of new cases and deaths due to COVID-19 outbreak. The best model is therefore used to
predict the number of new cases and to model the mortality due to the COVID-19 pandemic.
Another objective is to decompose the COVID-19 data into two main waves and model each
wave separately using different tools along with the classical time series model that depends on
the basic reproduction number Ro, followed by many different additive models to predict the
time series such as Exponential regression, log-linear and Polynomial with different degrees.
In addition, several smoothing methods, Prophet and Support vector methods were applied
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to COVID-19 data. A comparison is made between these different techniques for the best fit.
These different tools have been applied to some countries data and the models are supported
by validity and accuracy tests. The sensitivity analysis for the parameters used in the ARIMA
model and exponential models are presented.

4.1.1 ARIMA modeling for first wave and second wave

This section deals with the application of ARIMA model to calculate the initial autocorre-
lation slope and also to forecast new cases for both waves for some countries. The ARIMA
model shows more than 95% confidence interval as it can be seen in Figure 4.1(a)-(d) with
p-value for Mali for first wave is p = 0.01 and for second wave it is p = 6.3 ×10−10 while for
first wave for Slovenia p = 0.01 and for second wave in Luxembourg p = 0.01.
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Figure 4.1: (a) First wave moving average and standard deviation of new cases (left) plotted
against time in days on x-axis and (b) autocorrelation curve for Mali (right). (c) First wave
moving average and standard deviation of new cases (left) plotted against time in days on
x-axis and (d) autocorrelation curve for Luxembourg (right).

Figure 4.1 compares two countries, one from Sahelian Africa, Mali and one from western
Europe, Luxembourg during the first wave of COVID-19 outbreak during the spring 2020:
Mali shows a quasi-endemic behavior with a weakly varying autocorrelation function and
Luxembourg a frank epidemic wave with a classic shape. For the second wave in fall 2020,
Mali presents an attenuated epidemic shape (due probably to specific geoclimatic conditions
in western Africa [102]) and a country from central Europe, Slovenia, shows at this period
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an endemic behavior with an oscillatory occurrence of new cases. Figure 4.3 proposes a
forecasting based on ARIMA decomposition for the first and second waves in Mali with a
better approximation for the epidemic second wave than for the quasi-endemic first wave. It
is the same for Luxembourg with an inversion of the phases order, an epidemic wave followed
by an endemic state well predicted. On the contrary, for Slovenia, the endemic state with
oscillations is badly predicted.
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Figure 4.2: (a) Second wave moving average and standard deviation of new cases (left)
plotted against time in days on x-axis and (b) autocorrelation curve for Mali (right). (c)
Second wave moving average and standard deviation of new cases (left) plotted against time
in days on x-axis and (d) autocorrelation curve for Slovenia (right).

The comparison during the first wave between two countries (Figure 4.1), one developed
(Luxembourg) and one developing (Mali) shows a difference in length of contagiousness period
(linked to the value of the opposite to the slope at origin of the autocorrelation function) and
shape of the growth curve, indicating a lower virulence of the SARS Cov-2 in Mali, possibly
due to the influence of the temperature [102]. This tendency is reversed during the second
wave between Mali and Slovenia (Figure 4.2). The forecast using the ARIMA method shows
a good retrospective adjustment to past data, but a weak predictive power of the future trend
of new cases, in particular for the prediction of the entry into the endemic phase after an
epidemic wave (Figure 4.3).
The initial negative autocorrelation slope of the epidemic spread averaged on six days is also
calculated and presented for Kuwait while other countries is summarized in Appendix B,
Table B.1. As expected, the 100 first days of the first wave start show a positive slope
(0.0687) and the 100 first days of the second wave transition show a negative slope (-0.0094).
The results is compared using parameters (p,d,q) and the best result gave lower RMSE and
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p-value. We trained 60% of the data and forecast 100 days while the rest was tested to
show the validation and accuracy of the model. It was observed that while the RMSE of the
tested data was high, by checking the residual using Ljung-Box test, the Q∗ is large with
p-value < 0.05 which shows that the autocorrelation did not come from white noise. The
visualisation result is in Figure 4.4: for first wave new cases the ARIMA parameters used are
(0,1,1) with drift, RMSE for training = 30.7, RMSE for test = 533.5, Q∗ = 33 and p-value=
0.00007. For second wave transition new cases the ARIMA parameters used are (0,1,2) with
drift, RMSE for training = 74.5, RMSE for test = 402.3, Q∗ = 15 and p-value= 0.04.
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Figure 4.3: (a) First and (b) second wave forecast for Mali. (c) First wave forecast for
Luxembourg. (d) Second wave forecast for Slovenia. All plotted against time in days on
x-axis.

Using the Death data we apply the ARIMA model and got: for first wave deaths the
ARIMA parameters used are (1,1,1), RMSE for training = 2.2, RMSE for test = 2.37,
Q∗ = 16 and p-value= 0.04. For the second wave transition deaths the ARIMA parameters
used are (0,1,0) and this is the only case where the p-value was high despite low RMSE:
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the model degree of freedom is zero, RMSE for training = 2.21, Root MSE for test = 0.894,
Q∗ = 13 and p-value= 0.2. It can be concluded that the ARIMA model best fits the first
wave deaths with the best performance.

Figure 4.4: (a) ARIMA forecast for first wave new cases in Kuwait. (b) ARIMA forecast for
second wave transition cases in Kuwait. (c) ARIMA forecast for first wave deaths in Kuwait
and (d) ARIMA forecast for second wave transition deaths in Kuwait.

4.1.2 Regression analysis for first wave and second wave

In this Section, regression models are applied on the daily new cases for both waves observed
in Kuwait and it is also applied to some countries epidemiologic variables (maximum repro-
duction number, exponential slope calculated in this section and the initial autocorrelation
slope calculated in the previous section) in order to establish the relationship among them.
Looking at the pattern of COVID-19 data of Kuwait, one realises that it consists of two main
waves. Each wave lasts approximately three months. Based on available data, 100 days both
in the first wave and second wave was considered. First wave new cases were considered from
25/02/2020 to 03/06/2020 while second wave new cases were considered from 15/10/2020 to
22/01/2021. For the first wave, daily deaths data is from 04/04/2020 to 12/07/2020, while for
the second wave is from 15/10/2020 to 22/01/2021. The slopes from the log-linear regression
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analysis is calculated using exponential model. The result of exponential slope for Kuwait is
presented in this section while other countries is summarized in Appendix B, Table B.1.

Figure 4.5: (a) Log-linear and polynomial regression for first wave cases in Kuwait. (b)
Support vector regression for first wave cases in Kuwait. (c) Log-linear and polynomial
regression for second wave transition cases in Kuwait and (d) Support vector regression for
second wave transition cases in Kuwait. The origin of time corresponds to the corresponding
wave start.

For first wave, the exponential model: y = 0.8e0.07x, based on the following results:

• Log-linear regression: slope = 0.0686852051631, intercept=0.800565672854, r = 0.939152595486,
p-value = 2.079801359e−45, standard error = 0.002591135543915, R-squared = 0.882008,
RMSE = 0.711400960815.

• Using polynomial regression of order 4 we have: R-squared = 0.787421, RMSE =
0.586403581239, p-value< 2.2e−16, standard error = 0.6069, F-statistics = 256.7.

• Using Support vector regression we get: R-squared = 0.98382, RMSE = 0.263424533991,
slope = 0.0128466, intercept= 3.697591, p-value< 4.33e−15.

For second wave transition, the exponential model is y = 6.5e−0.009x, based on the following
results:
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• Log-linear Regression: slope = -0.0093674219195, intercept = 6.5198283885, r = -
0.57106504118, p-value = 5.50386624132e-10, standard error = 0.00136023603, R-squared
= 0.326115, RMSE = 0.388700386316,

• Polynomial of order four Regression: R-squared = 0.0927367, RMSE = 0.1818719990,
p-value< 2.2e−16, standard error = 0.186, F-statistics = 137.2,

• Support Vector Regression: R-squared = 0.9680774158, RMSE = 0.0846001608, slope
= -0.2570435, intercept= -1.370541, p-value = 0.2775.

Figure 4.5 show different regressions for the first and transition to second waves of COVID-19
in Kuwait. All coefficients for the first wave and transition to second wave for both Log-linear
and polynomial regression are significant with p-value less than 0.001. The residuals of the
log-linear regression were examined and it was discovered that the median for both the
cases were close to zero with median = 0.06031 for the first wave and median = 0.07629 for
transition to the second wave. The normality of the residual was tested using Jarque-Bera
test and with high p-value we fail to reject the null hypothesis that the skewness and kurtosis
of the residuals are significantly equal to zero. Also, the median of the residual for both first
wave and transition to second wave of polynomial regression of order four is close to zero
with median = 0.0271 and median = 0.00669 respectively. For support vector regression, we
tested the normality of the residual using the Jarque-Bera test and it was discovered that
it’s skewness and kurtosis are significantly equal to zero since the p-value is large.
We now apply linear regression model by using some historic data (100 days infectivity period
in this case) on some countries epidemiologic variables and consider a linear relationship
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Figure 4.6: Regression plots for developed countries of (a) first and (b) second wave maximum
R0 of the new cases curve.

between them while polynomial regression models use a similar approach but the dependent
variable is modeled as a degree n (6 ≥ n ≥ 2) polynomial in x. It is presented as follows:

• Linear Regression

– Figure 4.6(a): slope = 0.03612, intercept = 0.0062, r-value = 0.3299, p-value =
0.0352, standard error = 0.0165, R-squared = 0.109, RMSE = 0.116.

– Figure 4.6(b): slope = 0.05223, intercept = -0.0421, r-value = 0.434366, p-value
= 0.0051, standard error = 0.01757, R-squared = 0.18867, RMSE = 0.01689.

– Figure 4.6(a) and Figure 4.6(b) show a positive correlation between the slope of the
logarithmic regression curve of the new cases of COVID-19 as a function of time
(a sign of rapid growth of the epidemic if it is high). The early implementation
of mitigation measures in developed countries helps in reducing the exponential
growth of new cases in the second wave. This trend is confirmed in the study of
the correlation between the slope of the logarithmic regression and the maximum
R0 (Figure 4.6(a) and Figure 4.6(b)), which increases during the second wave in
developed countries (the correlation coefficient rising from 0.33 to 0.44), show-
ing a growth of the new cases more brutal, but shorter, undoubtedly due to the
establishment of a faster and more effective lock-down.

• Parabolic and Cubic Regression

– Figure 4.7 show the classical linear and polynomial regressions (parabolic for
Graphs (a) and (b) and cubic for Graph (c)) between the opposite of the slope at
the origin of the autocorrelation function of the ARIMA model and successively
the slope of the logarithmic regression line of the new daily cases of COVID-19
of the first wave (a), then that of the second wave (b), and finally the number of
days since the start of the outbreak (c).
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More precisely, on Figure 4.7(a)-(b) first and second waves of the COVID-19 pan-
demic are compared using linear and parabolic or cubic regression, showing a
significant positive (resp. negative) correlation between the opposite of the initial
autocorrelation slope and exponential regression slope of the first (resp. second)
wave for developed (resp. all) countries. This opposition between the two waves
could result from the application of a more severe lockdown in developed countries
during the second wave. On Figure 4.7(c), the opposite of the initial autocorrela-
tion slope decreases significantly if the start of the first wave in a country is late
with respect to the start of the COVID-19 outbreak in China due probably to
the progressive implementation of mitigation measures in that country taking into
account the experience of the countries starting first wave before.

– For Figure 4.7(a):

• Linear regression: slope = −0.193, intercept = 0.102, r -value = −0.394, p-value =
1.026 × 10−7, standard error = 0.03467, RMSE = 0.0385,

• Polynomial regression (order 2): p-value = 0.00145, standard error = 0.54339, R-
squared = 0.19, , RMSE = 0.046.

– For Figure 4.7(b):

• Linear regression: slope = 1.867, intercept = 0.089, r -value = 0.487, RMSE = 0.063,

• Polynomial regression (order 2): R-squared = 0.37, RMSE = 0.094.

– For Figure 4.7(c):

• Linear regression: slope = 0.000295, intercept = 0.0765, r -value = 0.195469, p-value =
0.01415, standard error = 0.000119, R-squared = 0.038, RMSE = 0.04,

• Polynomial regression (order 3): R-squared = 0.1, RMSE = 0.0414825.

The curves show a different behavior between the two waves (a) and (b), probably due
to an increase in the contagion parameter, the basic reproduction number R0 (linked
to the Malthusian parameter of the exponential growth phase), despite a shortening of
the duration of contagiousness (linked to the slope at the origin of the auto-correlation
function, which is all the stronger as the distance from the start of the epidemic in-
creases, no doubt because of the mitigation measures, which decrease the duration of
the contagiousness period).
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r value = correlation coefficient, p value = p value of the nullity test of correlation coeffi-

cient, stderr = standard error of the regression, RMSE = root of mean square error. 

  

(a) (b) 

• Quartic Regression

Figure 4.8 is obtained by using a polynomial of degree 4, a fit showing a minimum for
the value of the maximum R0 equal to 3.5, which is considered as the observed value for
the maximal effective reproduction number at start of the first wave in many developed
countries (France, Germany, Switzerland, UK, USA, etc.) [126], which corresponds to
the fact that the opposite of the initial autocorrelation slope (indicating that the length
of the contagiousness is short when the absolute value of the slope is high) decreases
(the contagiousness duration increases) when the maximum R0 increases, which seems
logical. The result is as follows:

– Linear regression: slope = 0.01034, intercept = 0.1019, r -value = −0.3578, p-value
= 0.02163, standard error = 0.00433, RMSE = 0.0303,

– Polynomial regression (order 4): RMSE = 0.0349, R-squared = 0.33.
On Figure 4.8, the opposite of the initial autocorrelation slope is significantly
negatively correlated with the maximum R0 observed at the inflection point of the
new cases curve, confirming that long contagiousness periods give high exponential
increases of the new cases.
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Figure 1. Linear (in red) and parabolic or cubic (in green) regression plots of the opposite of the initial autocorrelation 
slope vs. (a) first wave exponential regression slope for all countries, (b) second wave exponential regression slope for 
developed countries and (c) days from the start of the first wave observed in China for all countries. (a): LinregressResult 
slope = −0.193, intercept = 0.102, r value = −0.394, p value = 1.026 × 10−7, stderr = 0.03467, p value = 0.00145, stderr = 0.54339, 
R-squared for order two polynomial regression = 0.19, RMSE for linear regression = 0.0385, RMSE for polynomial regres-
sion = 0.046, (b): LinregressResult slope = 1.867, intercept = 0.089, r value = 0.487, R-squared for order two polynomial 
regression = 0.37, RMSE for linear regression = 0.063, RMSE for polynomial regression = 0.094, (c): LinregressResult slope 
= 0.000295, intercept = 0.0765, r value = 0.195469, p value = 0.01415, stderr = 0.000119, R-squared linear regression = 0.038, 
R-squared for order three polynomial pegression = 0.1, RMSE for linear regression = 0.04, RMSE for polynomial regression 
= 0.0414825. 

Figure 1 aims to show that classical linear and polynomial regressions (parabolic for 
Graphs (a) and (b) and cubic for Graph (c)) between the opposite of the slope at the origin 
of the autocorrelation function of the ARIMA model and successively the slope of the log-
arithmic regression line of the new daily cases of COVID-19 of the first wave (a), then that 
of the second wave (b), and finally the number of days since the start of the outbreak (c).  

The curves show a different behavior between the two waves (a) and (b), probably 
due to an increase in the contagion parameter, the basic reproduction number R0 (linked 
to the Malthusian parameter of the exponential growth phase), despite a shortening of the 
duration of contagiousness (linked to the slope at the origin of the autocorrelation func-
tion, which is all the stronger as the distance from the start of the epidemic increases, no 
doubt because of the mitigation measures, which decrease the duration of the contagious-
ness period). 

3.1.2. Quartic Regression 
We have used in Figure 2, a polynomial of degree 4 for obtaining a fit showing a 

minimum for the value of the maximum R0 equal to 3.5, which is considered as the ob-
served value for the maximal effective reproduction number at start of the first wave in 
many developed countries (France, Germany, Switzerland, UK, USA, etc.) [4], which cor-
responds to the fact that the opposite of the initial autocorrelation slope (indicating that 
the length of the contagiousness is short when the absolute value of the slope is high) 
decreases (the contagiousness duration increases) when the maximum R0 increases, which 
seems logical. 

Figure 4.7: Linear (in red) and parabolic or cubic (in green) regression plots of the opposite
of the initial autocorrelation slope vs. (a) first wave exponential regression slope for all
countries, (b) second wave exponential regression slope for developed countries and (c) days
from the start of the first wave observed for all countries.
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Figure 2. Linear (in red) and quartic (in green) regression plots of the opposite of the initial autocor-

relation slope of the first wave vs first wave maximum R0 for developed countries. LinregressResult 

slope = 0.01034, intercept = 0.1019, r value = −0.3578, p value = 0.02163, stderr = 0.00433, RMSE for 

linear regression = 0.0303, RMSE for polynomial regression = 0.0349, R-squared for order four poly-

nomial regression = 0.33. 

3.1.3. Sextic Regression  

We studied the correlation between the value of the opposite of the slope at the origin 

of the autocorrelation function of the first wave and the economic and health index 

CHE/GDP, by studying a polynomial regression of degree 6 (Figure 3). It shows an anti-

correlation in the linear regression and a local maximum for countries with an average 

CHE/GDP ratio of around 7. Countries with a high CHE/GDP ratio (such as France and 

the United States) have a low value of l in opposite to this slope. The explanation for this 

phenomenon may come from the correlation reported in the introduction between the 

CHE/GDP and Gini indices, the poor classes having a longer duration of contagiousness 

due to a less important state of immunological defense and perhaps less compliance with 

mitigation measures. 

Figure 4.8: Linear (in red) and quartic (in green) regression plots of the opposite of the initial
autocorrelation slope of the first wave vs first wave maximum R0 for developed countries.

4.1.3 Performance, accuracy and validation of the regression models

In order to know the performance of the regression models we trained 80% of the data from
Kuwait and test 20% percent of the data and also did cross validation to be sure of the
accuracy. The predicted and the observed values are very close to the result presented for
all the regression models. For Log linear model we present the cross validation result in
Figure 4.9(a) whose average mean square errors for the 5 portion folds are 0.5027791 for first
wave on the left and 0.1533665 for second wave transition on the right. We observed high
correlations between the tested and the predicted values (R-squared = 0.9278587 for first
wave cases and R-squared = 0.5312499 for second wave transition cases) for both cases.
For polynomial regression of order four, we present the performance of the test model as
follows: for first wave cases, multiple R-squared= 0.9437, p-value= 3.448e−09, relative stan-
dard error is 0.5152 and the residual median is 0.03408, value close to zero which shows that
the model performs very well; for second wave transition cases, multiple R-squared= 0.9039,
p-value= 1.829e−07, relative standard error is 0.194 and the residual median is 0.00386, value
close to zero which shows that the model performs optimally.
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Figure 4.9: (a) Cross validation result for Log linear model for new cases in Kuwait. (b)
Comparison of the tuned support vector model and support vector regression model with
the test prediction for first wave new cases in Kuwait. (c) Comparison of the tuned support
vector model and support vector regression model with the test prediction for second wave
transition new cases in Kuwait.

Lastly for support vector regression we present the optimum model with parameters (ϵ = 0
for both cases, and cost = 4 and cost = 10) respectively, for the first and second wave tran-
sition cases in Figure 4.10(a) and Figure 4.10(b) with mean square error values of 0.3840138
and 0.03 respectively using 10 folds cross validation. RMSE for the first and second wave
transition cases are 0.5757138 and 0.16 respectively, slope values of -0.0452387 and -0.1503307
respectively, p-value = 1.554e−15 for first wave cases, p-value = 0.293 for second wave transi-
tion cases and intercept values 3.751997 and 3.85671 respectively. We present a comparison
of RMSE for support vector model, tuned support vector model, constructed support vector
model and also the test model in Figure 4.9(b) for first wave cases and Figure 4.9(c) for
second wave transition cases. The left hand side of both figures is the tuned support vector

133



model while the right hand side is the test model prediction. The test model performance is
presented as follow: first wave cases: R-squared = 0.8450823 and RMSE = 0.784234; second
wave transition cases: R-squared= 0.8516843 and RMSE = 0.1668129.

Figure 4.10: (a) Optimum support vector model mean square error visualisation for first wave
new cases in Kuwait and (b) Optimum support vector model mean square error visualisation
for second wave transition new cases in Kuwait.

4.1.4 Exponential smoothing method

Simple exponential model (SES or ANN) is a good forecasting tool and in this case we used
α = 0.2 as one of the parameters while other parameters varies depending on the case in
consideration. The degree of freedom (df) is 8 while the model degree of freedom is 2 with
10 lags. Also, 60% of the Kuwait data was trained with 100 days forecasting while 40%
was tested. It was observed that while training and testing the model, the best exponential
model is when the trend is removed from the test set as it can be seen in Figure 4.11 even
though the test RMSE is quite large but the p-value is low. Other exponential models like
diff.SES (removing trend from SES), simple exponential smoothing with multiplicative errors
(MNN) and simple exponential smoothing with additive errors (MAN) did not give better
performance when their RMSE was compared which were extremely larger than the simple
exponential model without trend. The median of the residual is zero for all cases except
first wave cases whose median is -55, which shows that residual is normally distributed. The
parameters and result for each case is as follows: for first wave cases the parameters used
are l = 0.48 and σ = 39, RMSE for training = 38.3, RMSE for test = 219.9, Q∗ = 78 and
p-value= 1e−13; for second wave transition cases the parameters used are l = 0 and σ = 92.3,
RMSE for training = 90.7, RMSE for test = 76.2, Q∗ = 30 and p-value= 2e−04; for first
wave deaths the parameters used are l = 0.0106 and σ = 2.73, RMSE for training = 2.69,
RMSE for test = 2.07, Q∗ = 29 and p-value= 4e−04 and for second wave transition deaths
the parameters used are l = 0.4891 and σ = 2.49, Root MSE for training = 2.45, RMSE for
test = 1.05, Q∗ = 14 and p-value= 0.09. It can be concluded that the simple exponential
smoothing model without trend works better for first wave deaths.
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Figure 4.11: (a) Simple exponential smoothing for first wave cases in Kuwait. (b) Simple
exponential smoothing for second wave transition cases in Kuwait. (c) Simple exponential
smoothing for first wave deaths in Kuwait and (d) Simple exponential smoothing for second
wave transition deaths in Kuwait.

It is also important to present the visualisation of different types of exponential smoothing
models (see Figure 4.12(a)-(d)) to give significance for recent observations and produce ac-
curate forecasts of 100 days while Holt’s model (AAN) as shown in Figure 4.13(a)-(d) gives
the trend and level of a time series and is computationally more efficient than double moving
average. Holt’s-Winters’ model considers randomness using efficient smoothing process and
is computationally efficient too. Holt’s linear method with additive errors did not give bet-
ter performance when we compared with the optimal Holt’s model because the RMSE was
extremely larger.
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Figure 4.12: Comparison between different exponential smoothing methods for (a) first wave
deaths, (b) first wave cases, (c)second wave transition deaths and (d) second wave transition
cases in Kuwait.

Figure 4.13: Holt method for (a) first wave deaths, (b) first wave cases, (c)second wave
transition deaths and (d) second wave transition cases in Kuwait.
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4.1.5 Performance, accuracy and validation of the exponential mod-
els

We give an explicit analysis of the performance and accuracy of the simple exponential
without trend and Holt’s model using Kuwait data. Figure 4.15(a)-(d) gives the comparison
between optimal RMSE’s of simple exponential model without trend and Holt’s model. We
trained 60% of the model while others were tested and 10 lags were used for the modelling.
Figure 4.14(a)-(d) show visualisation of comparison between the holts model and the optimal
Holt’s model

Figure 4.14: Comparison of Holt’s model and optimal Holt’s model forecast for (a) first wave
cases, (b) second wave transition cases, (c) first wave deaths and (d) second wave transition
deaths in Kuwait.

• for first wave cases : Optimal model for simple exponential model without trend pa-
rameters are α = 0.05, l = 1.3 and σ = 36.4, with result of RMSE for training =
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35.8, RMSE for test = 219.4, Holt’s model parameters are α = 0.04095, l = 8.9848, b =
3.0532, β = 0.0004, df= 6, model df = 4 and σ = 31.8, with result of RMSE for training
= 30.7, RMSE for test = 534.4, Q∗ = 32 and p-value= 1e−05, Holt’s optimal model
result of RMSE for training = 21.3, RMSE for test = 409.3;

• for second wave transition cases : optimal model for simple exponential model without
trend parameters are α = 0.05, l = −5.0588 , df= 8, model df = 2 and σ = 86.7, with
result of RMSE for training = 85.2, RMSE for test = 73.2, Q∗ = 30 and p-value= 2e−04,
Holt’s model parameters are α = 0.7798, l = 755.866, b = −9.4126, β = 0.0004, df= 6,
model df = 4 and σ = 84.9, with result of RMSE for training = 82, RMSE for test =
422, Q∗ = 35 and p-value= 4e−06, Holt’s optimal model result of RMSE for training =
84.6, RMSE for test = 504.5;

• for first wave deaths : Optimal model for simple exponential model without trend
parameters are α = 0.05, l = 0.107 , df= 8, model df = 2 and σ = 2.55, with result of
RMSE for training = 2.51, RMSE for test = 2.06, Q∗ = 27 and p-value= 6e−04, Holt’s
model parameters are α = 0.5016, l = 0.6829, b = 0.0621, β = 0.0004, df= 6, model
df = 4 and σ = 2.38, with result of RMSE for training = 2.3, RMSE for test = 271,
Q∗ = 27 and p-value= 1e−04, Holt’s optimal model result of RMSE for training = 2.40,
RMSE for test = 2.46;

• for second wave transition deaths : Optimal model for simple exponential model without
trend parameters are α = 0.05, l = 0.0422 , df= 8, model df = 2 and σ = 2.32, with
result of RMSE for training = 2.28, RMSE for test = 0.94, Q∗ = 13 and p-value= 0.1,
Holt’s model parameters are α = 0.0004, l = 6.8362, b = −0.0891, β = 0.0004, df= 6,
model df = 4 and σ = 1.92, with result of RMSE for training = 1.85, RMSE for test
= 1.50, Q∗ = 8 and p-value= 0.2, Holt’s optimal model result of RMSE for training =
1.79, RMSE for test = 1.79.

To conclude this Section, it is very important to give a critical look at the RMSE comparison
in Figure 4.15a-d because it guides the choice of parameters to be used in the model. In
Figure 4.15a we observed that for simple exponential model without trend on the left, if the
α value is increased beyond 0.2, the RMSE value is on the increasing trend while for Holt’s
model on the right, it is best to use β of about 0.05 and after then the RMSE is on the
increasing trend. In Figure 4.15b we notice that for the simple exponential model without
trend on the left the choice for α must be below 0.2 and after that the RMSE continues
to increase while for Holt’s model on the right, β must be below 0.1 else the RMSE value
becomes large. The Figure 4.15c is a bit tricky because for the choice of α makes the values
of RMSE to be stationary till the point where α is 0.6 where the increasing trend begins for
simple exponential model without trend on the left while for Holt’s model on the right there
was turning point when the value of β is 0.15 but the value gives minimum RMSE when
β = 0.04 and β = 0.38, which means that the choice of β for this case is very critical and
must be precise. In Figure 4.15d, the simple exponential model on the left shows that there
was a turning point at α = 0.5 with the highest RMSE and the least RMSE is for values
α = 0 and α = 1.0. For Holt’s model the minimum RMSE values is for β = 0 and β = 0.1,
and any other values increases the RMSE value.
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Figure 4.15: Comparison of simple exponential model without trend optimal RMSE and
Holt’s model optimal RMSE for (a) first wave cases, (b) second wave transition cases, (c)
first wave deaths and (d) second wave transition deaths in Kuwait.

4.1.6 Sensitivity analysis

Here, we present the sensitivity analysis of the parameters used in the modelling of our study.
The support vector model performance is sensitive to the choice of the cost function, γ and ϵ
parameters for the data set and that is why we used the idea of cross validation and optimal
model to choose the best parameters that best fit the model.
From Table 4.1, we present the sensitivity parameters for the cases we considered. We
discovered that for ARIMA models, all the cases are more sensitive to the choice of the order
of the auto regression and moving average while it is least sensitive to the trend difference.
For exponential models, the data is very sensitive to the choice of σ and α but least sensitive
to the number of lags and choices of β. The optimal algorithm was able to choose the best
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parameter that fit the model.

Table 4.1: The sensitive parameters for the analysis showing their Root MSE results (Note:
FWC means first wave new cases, SWC means transition to second wave new cases, FWD
means first wave deaths and SWD means transition to second wave deaths).

FWC SWC FWD SWD

ARIMA(6,1,0) = 281.5 ARIMA(6,1,0) = 200.7 ARIMA(6,1,0) = 3.0 ARIMA(6,1,0) = 2.0
ARIMA(2,1,0) = 98.1 ARIMA(0,1,2) = 73.1 ARIMA(2,1,3) = 1.9 ARIMA(0,1,1) = 1.6
ARIMA(0,1,1) = 30.7 Holt’s = 82.0 ARIMA(1,1,1) = 2.4 ARIMA(0,1,0) = 0.9
Holt’s = 30.7 SES = 76.8 Holt’s = 2.3 MNN = 1.7
SES = 31.4 diff.SES = 90.7 SES = 2.3 Holt’s = 1.9
MAN = 111.0 - MAN = 2.2 SES = 1.9
diff.SES = 38.3 ARIMA(0,1,2) with drift = 74.5 diff.SES = 2.7 diff.SES = 2.5

4.1.7 Prophet and neural prophet forecasting

Prophet is a procedure for forecasting time series data based on an additive model where
non-linear trends fit yearly, weekly, and daily data seasonal and holiday effects while neural
prophet is a auto-regressive deep learning tool use for forecasting by using classical neural
networks components. We observed that the death data from Kuwait has a better perfor-
mance than the new case data. We present the visualisation and 100 days forecasting of
the results in Figure 4.16(a)-(d) and the trend plots in Figure 4.17(a)-(d). Also we present
in Table 4.3 and Table 4.2 the predicted values for Kuwait daily new cases and deaths for
October, 2020 along with predicted range. It is observed that some of the numerical values
generated using this model are close to the observed values of the COVID-19 pandemic in
Kuwait. The mean square error is given as follows: first wave cases = 79247.71, second
wave transition cases = 40288.81. The MSE for first wave deaths = 9.04 and second wave
transition deaths = 3.93.
We have also presented in Figure 4.17(a)-(d) a loss plot for our neural network model which
helps to know the performance of the model. It was observed that the loss plot shows a
good fit and convergence of the model. The plot of training loss decreases to a point of
stability and also the plot of validation loss decreases to a point of stability and has a small
gap (generalisation gap) with the training loss. In Figure 4.17e-f we provide the visualisation
of the neural forecast of 100 days for the first wave cases and second wave transition cases
which aligns with the trend of results we have presented in other forecasting results in the
previous Section, and also from the observed results from worldometer, we noted a decrease
in daily cases from end of April to May 2021 and this also aligns with the result presented
in Table 4.2.
The two phases of the COVID-19 outbreak in Kuwait present differences: (a) the first wave
start shows an increase of the daily new cases (with a peak of 1000 daily new cases) during
about 60 days with a slope of the exponential regression equal to 0.07, followed by an endemic
phase with a high mean number of daily new cases (about 600) and with a delay of about
15 days an increase of deaths and (b) the second wave transition shows a decrease of the
new cases during about 50 days with a slope of the exponential regression equal to -0.009,
followed by an increase during about 20 days.
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Figure 4.16: Prophet forecast for (a) first wave deaths, (b) second wave transition deaths,
(c) first wave cases and (d) second wave transition cases in Kuwait.

Figure 4.17: Trend plots for (a) first wave deaths, (b) second wave transition deaths, (c) first
wave cases and (d) second wave transition cases in Kuwait.
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Figure 4.18: (a) Loss plot for second wave transition deaths in Kuwait, (b) Loss plot for
second wave transition cases in Kuwait, (c) Loss plot for first wave deaths in Kuwait, (d)
Loss plot for first wave new cases in Kuwait, (e) Neural forecast for first wave cases in Kuwait
and (f) Neural forecast for second wave transition cases in Kuwait.
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Table 4.2: Kuwait number of daily deaths and daily cases predicted for April and May, 2021
(Note: PRD means predicted range for daily deaths, PVD means predicted values for daily
deaths, PRC predicted range for daily cases and PVC means predicted value for daily cases).

No Date PRD PVD PRC PVC

1 17-04-21 1 ∼ 8 5 344 ∼ 1223 766
2 18-04-21 1 ∼ 8 4 467 ∼ 1303 869
3 19-04-21 1 ∼ 8 3 267 ∼ 1164 704
4 22-04-21 0 ∼ 7 4 380 ∼ 1276 824
5 23-04-21 0 ∼ 7 3 237 ∼ 1172 716
6 24-04-21 1 ∼ 9 5 345 ∼ 1241 776
7 25-04-21 0 ∼ 8 4 445 ∼ 1303 879
8 26-04-21 1 ∼ 8 4 268 ∼ 1131 714
9 27-04-21 0 ∼ 7 3 336 ∼ 1233 776
10 28-04-21 0 ∼ 7 3 397 ∼ 1280 857
11 29-04-21 0 ∼ 8 4 395 ∼ 1271 834
12 30-04-21 0 ∼ 7 3 281 ∼ 1166 725
13 01-05-21 1∼ 8 5 340 ∼ 1216 786
14 02-05-21 0∼ 8 4 439 ∼ 1311 888
15 03-05-21 0 ∼ 8 4 282 ∼ 1151 723
16 04-05-21 0 ∼ 7 3 369 ∼ 1228 786
17 05-05-21 0 ∼ 7 3 455 ∼ 1313 867
18 06-05-21 0 ∼ 8 4 387 ∼ 1274 844
19 07-05-21 0 ∼ 7 3 280 ∼ 1178 735
20 08-05-21 1 ∼ 8 5 357 ∼ 1215 795
21 09-05-21 0∼ 8 4 478 ∼ 1342 898
22 10-05-21 1 ∼ 8 4 291 ∼ 1155 733
23 11-05-21 0 ∼ 7 3 371 ∼ 1230 795
24 12-05-21 0 ∼ 6 3 457 ∼ 1345 877
25 13-05-21 0 ∼ 8 4 447 ∼ 1302 853
26 14-05-21 0 ∼ 7 3 330∼ 1211 744
27 15-05-21 1 ∼ 9 5 383 ∼ 1259 805
28 16-05-21 0 ∼ 8 4 448 ∼ 1369 908
29 17-05-21 1 ∼ 8 4 308 ∼ 1193 743
30 18-05-21 0 ∼ 7 3 381 ∼ 1245 805
31 19-05-21 0 ∼ 7 3 450 ∼ 1333 886
32 20-05-21 0∼ 7 4 441 ∼ 1291 863
33 21-05-21 0 ∼ 7 3 299 ∼ 1184 754
34 22-05-21 1 ∼ 9 5 332 ∼ 1284 815
35 23-05-21 0 ∼ 7 4 467 ∼ 1354 917
36 24-05-21 1 ∼ 8 4 279 ∼ 1184 753
37 25-05-21 0 ∼ 7 3 362 ∼ 1262 815
38 26-05-21 0 ∼ 7 3 494 ∼ 1332 896
39 27-05-21 0 ∼ 7 8 406 ∼ 1299 873
40 28-05-21 0 ∼ 7 3 340 ∼ 1213 764
41 29-05-21 1 ∼ 9 5 367 ∼ 1241 824
42 30-05-21 0 ∼ 7 4 510 ∼ 1375 927
43 31-05-21 1 ∼ 8 4 328 ∼ 1207 762
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Table 4.3: Kuwait number of daily deaths predicted for October, 2020 (Note: PR means
predicted range, OV means Observed value from worldometer and PV means predicted value).

Date PR OV PV In range?

11/10/20 0 ∼ 5 3 2 YES
12/10/20 0 ∼ 6 6 3 YES
15/10/20 0 ∼ 6 8 3 NO
16/10/20 0 ∼ 6 6 3 YES
17/10/20 1 ∼ 6 4 3 YES
18/10/20 0 ∼ 5 7 2 NO
19/10/20 0 ∼ 6 9 3 NO
20/10/20 0 ∼ 5 4 3 YES
21/10/20 1 ∼ 6 7 3 NO
22/10/20 0 ∼ 6 9 3 NO
23/10/20 0 ∼ 6 10 3 NO
24/10/20 1 ∼ 5 4 3 YES
25/10/20 0 ∼ 5 2 2 YES
26/10/20 0 ∼ 6 3 3 YES
27/10/20 0 ∼ 5 7 3 NO
28/10/20 0 ∼ 6 7 3 NO
29/10/20 0 ∼ 6 4 3 YES
30/10/20 0 ∼ 6 6 3 YES
31/10/20 0 ∼ 6 6 3 YES

4.2 Approach to COVID-19 Time Series Data Using Deep
Learning Method

This section aims to use a data-driven approach to retro-predict and forecast the daily new
cases and deaths of the COVID-19 outbreak from the start of the pandemic until September
3, 2021 at various stages of the waves in USA, India, Brazil, France, Turkey, UK, and Russia,
which are the top seven countries in the world where the pandemic is the most prevalent. For
prediction, various deep learning methods was used, while for short term forecasting, ELM,
MLP and spectral analysis were used, and comparison of their performance was done using
root mean square error (RMSE) and relative root mean square error (rRMSE).

4.2.1 Time series and evaluation metrics

Here, the time series visualization (see Figure 4.19) for Turkey, the United Kingdom, the
United States, Russia, India, France, and Brazil for daily new cases, 3-day moving average,
and 7-day moving average from [119] is presented. This time series data from [119] will be
used throughout the analysis.
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Figure 4.19: Times series visualization of daily new cases for (a) USA, (b) UK, (c) Turkey,
(d) Russia, (e) India, (f) Brazil and (g) France.

When analyzing a model, it is critical to measure its performance in order to draw the best
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conclusion and interpretation for the time series data. Two errors were used to estimate
the prediction and forecasting precision for the models, where for i = 1, 2, . . . , n, Yi’s are the
observed values, n is the number of data points and yi’s are the predicted values given below:
- Root Mean Square Error (RMSE), given as:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − yi)2,

- relative Root Mean Square Error (rRMSE), given as:

rRMSE =

√
1
n

∑n
i=1(Yi − yi)2

max(Yi)−min(Yi)
.

4.2.2 Parameters for the modeling in LSTM, GRU, CNN, and DNN
methods

To evaluate the model, 80% of the data set was trained and 20% was tested. The MinMaxS-
caler feature in Python was used to normalize the data. The errors are shown in Table 4.4
and Table 4.5. Figure 4.20 shows the visualization of the results for daily new cases and
Figure 4.21 for daily deaths. Other specific details of the parameter used for each model is
presented as follows:

• LSTM: The best hyperparameter tuning for the LSTM, as determined by a manual
search, is: Batch size of 32, epochs of 100, drop out = 0.2, and units = 50. Adam
optimizer was used, and mean square error measures the effectiveness of the loss. The
Adam optimizer was found to slightly outperform other learning algorithms.

• GRU: the best hyperparameter tuning for the model, as determined by a manual search,
is: Batch size of 30, epochs of 100, drop out = 0.2, and units = 50. Adam optimizer was
used and tanh activation function. Mean square error measures the effectiveness of the
loss. The Adam optimizer was found to slightly outperform other learning algorithms.

• CNN: An input layer with three neurons was found, followed by convolution layers
with 128 units, 64 units, and 16 units, a max-pooling layer with 64 units, and a kernel
size of 3. The best hyperparameter tuning for the model, as determined by a manual
search, is: Batch size of 32, epochs of 100, verbose = 0.2 but 0 for checkpoint, and
validation split = 0.2. Adam is the optimizer in use. While the mean square error was
used to assess the effectiveness of the loss, the relu activation function was used for all
layers expecting the output with linear function. Adam optimizer was found to slightly
outperform other learning algorithms.

• DNN: The DNN has two hidden layers with 32 and 8 neurons, respectively, and it was
discovered that if the model goes beyond 32 neurons, the model tends to give much
higher error with poorer prediction. The best hyperparameter tuning for the model, as
determined by a manual search, is: Batch size of 32, epochs of 100, verbose = 0.2 but 0
for checkpoint, period = 1, and validation split = 0.2. The optimizer used is Adam, and
mean square error measures the effectiveness of the loss. The relu activation function
was used for all layers expecting the output with linear function. Adam optimizer was
found to slightly outperform other learning algorithms.

146



Figure 4.20: LSTM, GRU, CNN, and DNN results of daily new cases for (a) USA, (b) UK,
(c) Turkey, (d) Russia, (e) India, (f) Brazil and (g) France.
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Figure 4.21: LSTM, GRU, CNN, and DNN results of daily deaths for (a) USA, (b) UK, (c)
Turkey, (d) Russia, (e) India, (f) Brazil and (g) France.
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4.2.3 Parameters for the modeling in ANN method

Here, a visualization of the network weights and the bias between the data is presented. As
shown in Figure 4.22 and Figure 4.23, the weights are good with low bias. Also, some of the
data were predicted (the test data) and the daily new cases prediction scores in Figure 4.22
for (a) France is 1.0, (b) India is 0.99, (c) USA is 1.00, (d) Brazil is 0.99, (e) Russia is 0.99,
(f) Turkey is 0.10, and (g) UK is 0.99. In Figure 4.23, shows the daily deaths prediction
scores for (a) France is 0.93, (b) India is 0.85, (c) USA is 0.99, (d) Brazil is 0.88, (e) Russia
is 0.15, (f) Turkey is 0.99, and (g) UK is 0.51.
It was discovered that the daily deaths errors were lower than those of the daily new cases.

4.2.4 Parameters for the modeling in MLP and ELM methods

Here, the description of the best parameter used for each case based on performance and
forecasting of daily new cases and deaths. For Turkey daily deaths and Russia daily new
cases and deaths, 12 lags, five hidden layers, and 20 repetitions were used, with series modelled
in difference and forecast combined using the median operator, as shown in Figure 4.24(d),
Figure 4.25(c) and Figure 4.25(d).
For daily new cases, 24 lags for Turkey, India, and Brazil was used, as well as for death
cases for the United Kingdom while keeping 12 lags and testing the rest for inclusion. Other
parameters, such as those shown in Figure 4.24(c), Figure 4.24(f), Figure 4.25(b) and Fig-
ure 4.25(e), were kept. In addition, for daily new cases in France, United States, United
Kingdom, and Brazil, 24 lags was used while retaining all lags, as shown in Figure 4.24(a),
Figure 4.24(b), Figure 4.24(g) and Figure 4.25(f). For India daily death cases, four hidden
layers was used, 20 repetitions, and 12 lags while keeping the same parameters for forecasting
and series modelling as shown in Figure 4.24(e). Figure 4.25(a) shows the use of 24 lags for
daily deaths in the United States, with no testing for inclusion. Finally, for France daily
deaths, the trend with no differencing was removed while also using regressors and 12 lags.
The errors are shown in Table 4.4 and Table 4.5.
According to Table 4.4 and Table 4.5, DNN has the least error for the daily new cases in
the United States, and by looking at Figure 4.20(a), one can say that the estimation is good
and it reflects the situation of the pandemic in the country as new cases fluctuate, just like
daily deaths, which are best predicted by GRU with the least error. For the UK, MLP
performed better than other models with the least error, as shown in Figure 4.24(b), where
daily new cases are decreasing from November 2021 as observed from real data, while CNN
best predicts daily deaths, as shown in Figure 4.21(b). For Russia, the daily new cases and
daily deaths are best predicted by MLP, which has the least error, and from Figure 4.24(d)
and Figure 4.25(d), we can see that the forecast curve is increasing, which corresponds to
the current situation in the country, and with the festive season approaching in December
2021, it is expected that cases will increase if not controlled and also as new variants emerges
because the virus keeps mutating. For France, CNN best predicts daily deaths, indicating
that, despite a decreasing trend, cases will fluctuate as shown in Figure 4.21(g), and MLP
best predicts daily new cases, indicating a slight increase in September 2021 as shown in
Figure Figure 4.24(g). We discovered that MLP achieves the best prediction for daily new
cases and daily deaths in India, Brazil, and Turkey, as shown in Figure 4.24c, Figure 4.24(e),
Figure 4.24(f), Figure 4.25(c), Figure 4.25(e), and Figure 4.25(f). Despite a slight increase in
September cases, the pandemic dynamics from October in India, Brazil, and Turkey shows
a decreasing but fluctuating trend.
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Figure 4.22: Neural network for daily new cases in (a) France, (b) India, (c) USA, (d) Brazil
(e) Russia, (f) Turkey, and (g) UK. In figures, x represents daily new cases and t represents
days.
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Figure 4.23: Neural network for daily deaths in (a) France, (b) India, (c) USA, (d) Brazil (e)
Russia, (f) Turkey, and (g) UK. In figures, x represents daily deaths while t represents days.
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Figure 4.24: MLP and ELM results of daily new cases for (a) USA, (b) UK, (c) Turkey, (d)
Russia, (e) India, (f) Brazil and (g) France.

It is also observed that all the methods are sensitive to the parameters being used: for
instance, for DNN if we go beyond 32 neurons, the model tends to give much higher error
with poorer prediction. Also, for MLP if we use too many lags and neurons for some of
the data, the prediction will be poorer, which was explained earlier in Section 4.2.2. The
training time used in the modelling varies across models and that is one factor that enhances
their performance: it is observed that LSTM training time was the lowest, hence, it does
not perform better in any of the data set. Eventually, it was noticed also that the model
performance depends highly on the data size.
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Table 4.4: Comparison of the prediction performances of daily new cases for deep learning
results.

Country
name

RMSE
LSTM

RMSE
GRU

RMSE
CNN

RMSE
DNN

RMSE
MLP

RMSE
ELM

Mean
daily
cases

USA 15484.45 10401.13 10308.60 9630.55 5031.00 11149.23 73122.00
India 28990.34 11526.90 76877.87 114120.26 7503.58 7956.88 59147.00
Brazil 16355.71 11223.93 15638.27 214359.20 5324.19 11700.93 37607.00
Turkey 2327.30 1577.54 2151.18 3936.00 578.38 1434.25 11595.00
France 6708.81 4734.50 4358.47 4062.04 1864.17 7163.29 12231.00
Russia 1728.23 1676.55 1165.26 1115.78 640.81 643.54 12523.00
UK 5022.61 4381.44 4205.14 5613.93 1330.47 2689.11 12394.00

rRMSE
LSTM

rRMSE
GRU

rRMSE
CNN

rRMSE
DNN

rRMSE
MLP

rRMSE
ELM

USA 0.08 0.06 0.05 0.05 0.11 0.11
India 0.11 0.04 0.28 0.42 0.02 0.22
Brazil 0.16 0.11 0.15 0.14 0.11 0.14
Turkey 0.10 0.07 0.09 0.17 0.03 0.07
France 0.22 0.16 0.14 0.13 0.10 0.22
Russia 0.10 0.09 0.07 0.06 0.03 0.23
UK 0.11 0.08 0.08 0.11 0.07 0.10

Table 4.5: Comparison of the prediction performances of daily deaths for deep learning
results.

Country name RMSE
LSTM

RMSE
GRU

RMSE
CNN

RMSE
DNN

RMSE
MLP

RMSE
ELM

Mean
daily

deaths

USA 225.66 105.15 249.55 194.62 130.77 288.84 1202.00
India 387.64 223.58 1670.94 301.49 95.26 182.50 790.40
Brazil 739.86 276.26 579.29 397.66 110.27 369.81 1046.00
Turkey 16.49 14.54 15.96 15.61 8.54 9.98 103.30
France 35.08 37.80 28.72 31.20 79.30 122.88 206.10
Russia 97.66 73.74 149.56 122.06 32.66 38.03 333.20
UK 29.43 37.82 27.32 69.16 35.77 124.91 238.90

rRMSE
LSTM

rRMSE
GRU

rRMSE
CNN

rRMSE
DNN

rRMSE
MLP

rRMSE
ELM

USA 0.12 0.06 0.13 0.10 0.24 0.13
India 0.08 0.05 0.35 0.06 0.01 0.10
Brazil 0.29 0.11 0.23 0.50 0.06 0.08
Turkey 0.06 0.06 0.06 0.06 0.04 0.06
France 0.17 0.19 0.14 0.15 0.15 0.24
Russia 0.19 0.15 0.30 0.24 0.11 0.18
UK 0.14 0.18 0.13 0.33 0.17 0.24
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Figure 4.25: MLP and ELM results of daily deaths for (a) USA, (b) UK, (c) Turkey, (d)
Russia, (e) India, (f) Brazil, (g) France.

4.3 Approach to COVID-19 Time Series Data Using Spec-
tral Analysis Method

In this section, spectral analysis is used to measure the different frequencies in COVID-19
data set presented in Section 4.2.1 during the contagiousness period by estimating the time
series periodicity and analyzing their peaks. Spectral analysis allows to remove the weekly
and seasonal components discovered on the epidemiological data of incidence and mortality.
Firstly, the stationarity and normality is checked before applying spectral analysis to the set
of time series data. The Box-Lung test, the Jarque-Bera normality test, and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test was used and it was found that the p-value ≤ 0.01 for all
of these tests and for all of the time series considered in this article, leading to the conclusion
that the data set is stationary and its residual is normal. So, the estimation of the spectral
density and smoothed the periodogram was done and also the plotting of the spectral density
and spectrum and then performed harmonic regression because the goal of spectral analysis
is to decompose a time series into periodic components. This was considered by performing
a regression, in which the time series was regressed on a set of sine and cosine waves and
then attempted to regress the time series on harmonic waves, including daily harmonics as
well as other harmonics. For the entire data set, a p-value ≤ 0.05 is obtained. The daily
variation were accurately described and the median of the residual was negative and close to
zero, confirming the normality. The scaling of both x and y using a continuous scale for x
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and log scale for y is done. Log-scaling has some theoretical advantages. The periodogram
values should be roughly normally distributed in the log scale, and log scaling can be useful
because it spreads out the low frequencies while squashing the high frequencies. Due to the
noisy nature of the periodogram, it was smoothed by using 9 moving averages for the kernel
functions of the periodogram. To estimate the spectral density, tapering and multi-taper was
used, which is a method that allows to test for peaks using the F-test. It was discovered
that p-value ≤ 0.001 for the entire data set, indicating that there are peaks in the model.
The time bandwidth parameter (NW) used is 16 and the number of tapers is 31. Figure 4.27
and Figure 4.26 show the results of the spectral analysis as well as a forecasting using the
analysis, methods and theoretical study given in [226].
Figure 4.27 and Figure 4.26 show a clear peak of frequency at value 0.145, which is approxi-
mately a 7 days period showing a weekly pattern for countries considered, both for daily new
cases and daily deaths, except for Turkey daily deaths as seen in Figure 4.26(f), where peaks
are not really visible with a slight peak at 0.14 and another at 0.08.
India daily deaths, Russia daily new cases, and the United Kingdom daily new cases have
only one clear peak (see Figure 4.27(e), Figure 4.27(g) and Figure 4.26(b)), whereas others
have smaller peaks at 3.6 days and 3.4 days, which represent approximately mid-week, which
is an expected phenomenon due to accumulated cases from the beginning of the week, and
as also seen in some countries collating their infection records after three days or more (e.g.,
one week in Cameroon).
Furthermore, the forecasting pattern of the spectral analysis results corresponds to that of
the MLP forecasting results presented in Section 4.2.4, with the exception of Russia daily
new cases and daily deaths, which have different results for both methods. Forecasting
based on spectral analysis also confirms fluctuations in MLP forecasted values presented in
Section 4.2.4.
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Figure 4.26: Spectral analysis and forecasting of daily deaths for (a) France, (b) India, (c)
USA, (d) Brazil (e) Russia, (f) Turkey and (g) UK.
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Figure 4.27: Spectral analysis and forecasting for daily new cases in (a) France, (b) India,
(c) USA, (d) Brazil (e) Russia, (f) Turkey and (g) UK.

4.4 Modeling of COVID-19 Pandemic vis-à-vis Some Epi-
demiology, Socio-economic, Geo-climatic and Demo-
graphic Factors

The use of machine learning methods to analyze data has been helpful over the years to get
a proper view on how a model behaves. In this Section, some supervised and unsupervised
machine learning methods were used and also tried to use two deep learning methods. To
jointly interpret the socio-economic, geo-climatic, demographic and epidemiological data,
these main classes of the descriptive statistics was chosen, which allows to compare them.
Supervised learning is used in its regression function (prediction of a quantitative variable
from annotated examples) and unsupervised learning (in which the data is not labeled) in
its classification function. As for deep learning, it makes it possible to create a model from
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large-scale unlabeled data.
The supervised machine learning methods used are first univariate polynomial regression,

linear regression, lasso regression, and ridge regression. Also, some of these methods was used
to make prediction by training the model and testing some percentage of the values. Lasso
regression helps to know the best variables to be used in the modeling. After the univariate
regressions, multivariate least square methods was introduced, allowing to test much more
complex relations between variables.

After the supervised learning methods, unsupervised learning approaches was applied
to cluster variables across countries and the methods proposed to validate the results were
K-means clustering, Hierarchy clustering, and Principal Component Analysis (PCA). Cor-
relation calculations was performed among parameters used in the modeling step. An opti-
mization method called Ordinary Least Square (OLS) for the epidemiology, socio-economic,
geo-climatic and demographic determinants of COVID-19. Eventually, the deep learning
methods used were Neural Network (NN) and Multi-Layer Perceptron (MLP) regressor, which
is a class of feedforward Artificial Neural Network (ANN).

4.4.1 Socio-economic, geo-climatic and demographic variables

Socio-economic, geo-climatic and demographic variables constitute a strong determinant of
the spread of the pandemic. These variables were extracted from [96, 160, 214, 217, 227, 228,
229, 230, 231], while some were calculated like the socio-economic fracture index. Some of
the observed variables used are immigration rate (IR), average life expectancy (LE), Tuber-
culosis incidence (TB), temperature, percentage of gross domestic product devoted to health
expenditure (CHE/GDP), percentage of 10% lowest (LI) and 10% highest incomes (HI), gov-
ernment response stringency index (SI), sustainable development goal (SDG) index, human
development index (HDI), environmental performance index (EPI), consumer confidence in-
dex (CCI), stringency index (SI), Theil index (TI), and Gini index (GI). Other variables used
are in Table 4.6, precisely for Cameroon regions. The data was collated based on the available
countries and most recent years in public databases [96, 160, 214, 217, 227, 228, 229, 230, 231].
The calculated socio-economic variables are as follows:

- Social fracture (SF) index is the ratio between the 10% highest income and the 10%
lowest income. In brief, it is expressed by the equation below:

SF =
10%HI
10%LI

- Demo-economic (DI) index is the ratio between the percentage of GDP devoted to health
expenditure and social fracture index. It is expressed by the equation below:

DI =
CHE/GDP

SF

The precise value of all variables are in Table 4.8, Table 4.9, Table 4.10, Table A.2 in the
Appendix A, Table B.1 and Table B.2 in the Appendix B.

4.4.2 Epidemiology variables

The epidemiologic variables are: first wave maximum Ro, second wave maximum Ro, first
wave deterministic Ro, second wave deterministic Ro, maximal reproduction number Rmax,
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transmission rate β and opposite of the initial autocorrelation slope averaged on 6 days for
both first and second wave of the daily new cases for developed and developing countries.
Other epidemiologic variables values are defined in Table 4.6.
The epidemiologic variables were recorded during the exponential phase of the first and
second wave of the pandemic. Daily new cases observed during the first 100 days were used
to calculate the exponential slope for the first and second wave. The opposite of the initial
autocorrelation slope was averaged on 6 days for the first and second wave. The maximum
Ro was collated from Table B.1 in the Appendix B while observing this value during the first
and second waves of countries considered. Also collated from Table A.2 in the Appendix A
is the deterministic Ro for the first and second wave of the pandemic taking 6 days as length
of contagiousness period.
In this present study, the results were validated by performing cross-validation and also
training 80% of the data and training 30%.

4.4.3 The relationship between Theil index and Gini index: math-
ematical and statistical approach

Firstly, the relationship between Theil index and Gini index is proved mathematically. The
Gini index is defined as follows [96]:

GI = 1−
∑

k=1,...,n

(xk − xk − 1)(yk − yk − 1) = 1− E(∆) = E(1−∆),

where xk(resp. yk) denotes the kth cumulative part of the population (respectively income).
On choosing the population increments, dk = xk − xk−1 are equal to 1/n, and if E(∆)
represents the expectation of the increment, ∆k = yk − yk−1 for the distribution dk. Then,
the Theil index applied to the percentage yk of the total income relative to a percentage xk
of the total population ([96]) is defined by the following equation:

TI = −
∑

k=1,...,n

(yk − yk − 1) log(yk − yk − 1) = −
∑

k=1,...,n

∆k log(∆k).

If the first increment of y,∆1 = y1 ≤ 1, is close to 1 [which corresponds to a square-shaped
Lorenz curve, i.e., close to a left right triangle-shaped income vs. population curve (in red
on Figure 4.28), or to a high Gini index close to 1], then: − log(∆1) ∼ 1−∆1 and then:

TI ∼ − log(∆1) ∼ 1−∆1GI,

the equality being available only if the Lorenz curve presents a perfect left right triangle
shape.
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Figure 4.28: Lorenz curve showing the cumulated part of income vs. cumulated part of a
population having this cumulated income. The curve in red represents left right triangle-
shaped Lorenz curve.

Lastly, the statistical approach is in two folds: (1) to visualize the weights of the neural
network and the bias between Theil and Gini index, and as it can be seen in Figure 4.29H,
the weights are good with low bias and (2) to use linear and polynomial regression model of
order 2 in order to see the relationship between Theil index and Gini index.
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Figure 4.29: (A) Linear regression line (in green) with the confidence interval (in gray). (B)
Residual plot for the linear regression. (C) Partial regression plot. (D) Fit plot. (E) On
left-hand side is the cross-validation plot for the linear regression and on right-hand side is
the polynomial regression plot. (F) Residual plots for polynomial regression. (G) Heat map
for the correlations between all variables. (H) Neural network visualization.

For the linear regression as shown in Figure 4.29A, the intercept is 31.03, p-value is 0.0181,
R-squared is 0.4881, residual standard error is 3.116, and all coefficients are significant with p-
value< 0.05 for both the train and test data for linear and polynomial regression. The median
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of the residual plot in Figure 4.29B and Figure 4.29F are 0.2111 and 0.2566, respectively, for
both linear and polynomial regression, which are low values. The normality of the residual
was tested using Jarque-Bera and Durbin-Watson tests, which gave a high p-value, and the
null hypothesis was rejected, that is, the skewness and kurtosis of the residuals are statistically
equal to zero. In order to know the performance of the linear regression model, 80% of the
data was trained and 20% was tested and also did cross-validation to be sure of the accuracy.
The predicted and the observed values are very close to the results presented for the regression
models used. For the linear model, the cross-validation result is in Figure 4.29E whose average
mean square error for the five portion folds is 11.72794. The correlation between the tested
and the predicted values has high accuracy (R-squared = 0.97). The test set p-value is 0.02
with a residual standard error of 3.528. For polynomial regression of order 2, the train set
has the following results: R-squared = 0.6, p-value = 0.002, and residual standard error =
2.935. The test set has the following results: R-squared = 0.99, p-value = 0.008, and residual
standard error = 0.5639.

4.4.4 Correlations between epidemiologic, socio-economic and de-
mographic parameters

In this section, two sets of correlation is done: (i) correlation between Theil and Gini indices
with all epidemiologic, demographic, and socio-economic variables for Latino-American coun-
tries and (ii) correlation between epidemiologic, demographic, and socio-economic variables
for Cameroon regions.
In Figure 4.29G, Theil and Gini indices are highly positively correlated with coefficient 0.7.
By observing the epidemiologic variables (numbers of weekly reported new infectious cases,
cured and deceased patients) during the 19 first weeks of 2021 (cf. in Figure 3.19, data
from [119]). The parameters list is given in Table 4.6 and their values are extracted from
Table 3.4 and from [126, 227]. The correlations between the parameters of Table 3.2 con-
sidered as variables on the 10 regions of Cameroon can be analyzed thanks to Figure 4.30
and Figure 4.31, which show that the epidemiologic parameters (from parameter Dose 1 to
parameter Recovered) are significantly anti-correlated (pink color) with many socio-economic
and demographic parameters, namely the three first ones (Subnational Human Development
Index, International Wealth Index and Gross National Income per capita) and to those linked
to the house holding, showing the influence of a good socio-economic state on the resistance
against the virus. By exploiting the data corresponding to the parameters of Table 4.6, it is
possible to analyze the correlations existing between three families of parameters observed
in the different regions of Cameroon during the second wave of the COVID-19 outbreak.
In Figure 4.30, it can be observed that the socio-economic factors are highly positively cor-
related with each other, but negatively correlated with demographic parameters and not
correlated with epidemiologic parameters, except those corresponding to vaccination and
death which are anticorrelated with the signs of wealth. This can be explained by a higher
socio-cultural level, which pushes individuals to monitor their health more and to get vacci-
nated. In Figure 4.31, it can be deduce that a greater number of demographic parameters are
anti-correlated with socio-economic factors. These are in particular infant mortality, mean
age, fertility and poverty indicators, which have positive or zero correlation coefficients be-
tween them and very negative with wealth indicators, such as GNI or possession of material
goods or land (television and house), because in general a rise in the standard of living causes
fertility and infant mortality decrease.
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Figure 4.30: Correlations between various epidemiologic, socio-economic and demographic
parameters observed in the different regions of Cameroon during the second wave. The false
color scale indicates the intensity of the correlation between −1 and 1.

In Figure 4.34 a high correlation between Sud-Ouest and Littoral is observed with the score
0.918 and the least correlations are between Center and Adamaoua with the score 0.242,
between Est and Center with the score 0.282 and between Nord and Center with the score
0.253. In Figure 4.32 there is high correlations between Ouest and Center with score 0.9308
and also between Littoral and Nord-Ouest with score 0.936967. The least correlation is
between Extreme-Nord and Sud with score 0.04. In Figure 4.33 there is three anticorrelations:
(i) between Nord and Adamaoua with score -0.00967, (ii) between Nord and Sud-Ouest
with score -0.18, and (iii) between Sud-Ouest and Ouest with score -0.09988. The highest
correlation is Nord-Ouest and Center with score 0.845.
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Figure 4.31: Correlations between various epidemiologic, socio-economic and demographic
parameters observed in the different regions of Cameroon during the second wave. The false
color scale indicates the intensity of the correlation between −1 and 1.
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Figure 4.32: Correlations of the cured cases numbers between the 10 regions of Cameroon.

Figure 4.33: Correlations of the deceased cases numbers between the 10 regions of Cameroon.
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Table 4.6: List of the parameters considered for the different regions of Cameroon.

Socio-economic parameters

HDI Subnational Human Development Index
IWI International Wealth Index
GNI Gross National Income per capita
PoorHighest Percentage poor households (IWI value under 70)
PoorLowest Percentage poor households (IWI value under 35)
MeanEducation Mean years education population aged 20+
Household-TV Percentage households with a TV
Household-C Percentage households with a computer
Household-W Percentage households with piped water
Household-E Percentage households with electricity
Household-P Percentage households with a phone
Household-I Percentage households with internet access
HouseholdSize Average household size
Patrilocality Patrilocality index (positive values patrilocal)
Dependency Dependency ratio
Demographic parameters
FertilityRate Total fertility rate
InfantMortality Infant mortality rate
Population Total area population in millions
PopulationU Urban population size
Epidemiologic parameters
Dose1 Number of vaccinated people that have received first dose
Dose2 Number of vaccinated people having received second dose
Pfizer Number of vaccinated people with Pfizer vaccine
Sinopharm Number of vaccinated people with Sinopharm vaccine
Test Number of tested people
PositiveCases Number of people that tested positive
ASYM Patients that are asymptomatic and mild symptoms
Hmoderate Patients with moderate symptoms
Hsevere Patients with severe symptoms
Deaths Number of deaths recorded
Recovered Number of recovery recorded
R1 Daily reproduction number of the first day of infection
Rmax1 R maximum first wave
Rmax2 R maximum second wave
BETA Transmission rate
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Figure 4.34: Correlations of the new cases numbers between the 10 regions of Cameroon.

4.4.5 Multivariate analysis, clustering and prediction for Latino-
American countries

The multivariate analysis using ordinary least square method, clustering analysis using PCA,
K-means and Hierarchy clustering and the prediction of the Gini index using MLP regressor
which is a deep learning method, linear, lasso and ridge regression for Latino-American
countries is presented.
Figure 4.37 corresponds to the ordinary multivariate least square methods with R-squared
= 0.674. Figure 4.37A shows Paraguay as outlier not fitting data, Figure 4.37B normalizes
all countries and does not point any country in the plot. Using cross-validation method, the
best parameter α for the modeling is shown in Figure 4.35C. For ridge regression, α=0.142
with a mean square error of 1.36 and α=0.368 for lasso regression with a mean square error
= 5.10. For Figure 4.35E, training score = 1.000 and test score = 0.641; for Figure 4.35F,
training score = 0.992 and test score = 0.497; for Figure 4.36A, training score = 0.99 and
test score = 0.406; and for Figure 4.36B, training score = 0.984 and test score = -0.077. It
is evident from these results that linear regression best predicts Gini index with the highest
test score, and predicted values are very close to each other as presented in Table 4.7. Also,
the same pattern of prediction is observed in Figure 4.35E–F and Figure 4.36A-B showing
that all methods used in this section have the same predictive behavior.
Figure 4.38C, the first two clusters have 14 countries and the third has three countries, which
are Uruguay and El Salvador on the same hierarchy while Argentina is on another hierarchy.
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Only the first cluster in the dendrogram is presented. In Figure 4.38F, the Gini index has the
highest positive correlation of 0.44 with the principal component PC 1 and Theil index has
only the value 0.34 with PC 1. The main variable causing the separation into three classes
is the Gini index.

Figure 4.35: (A) Residual plot for lasso regression. (B) Residual plot for ridge regression.
(C) Lasso regression cross-validation error. (D) Prediction error for the lasso regression. (E)
Linear regression prediction plot. (F) Lasso regression and (G) ridge regression prediction
plots. (H) MLP regression prediction plot.
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Figure 4.36: (A) Ridge regression prediction plots. and (B) MLP regression prediction plot.

Figure 4.37: (A) Influence plot. (B) Leverage vs. Normalized residuals squared plot. (C)
Partial regression plot. (D) Component–Component plus residual plot.
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Figure 4.38: (A) Scree plot. (B) Plot for projection of points for PC1 and PC2. (C) Hi-
erarchy clustering dendrogram. (D) Parallel coordinates plot for the clusters. (E,F) PC’s
visualization. (G) Box plot for the clusters. (H) Parallel coordinates plot for the centroids.
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Table 4.7: Comparison of different regression models for the prediction.

S/N Country Name Gini
Index

Linear
Regres-

sion

Lasso
Regres-

sion

Ridge
Regres-

sion

MLP
Regres-

sor

1 PARAGUAY 46.2 46.5 46.3 46.5 46.0
2 PANAMA 49.2 50.7 51.2 51.3 51.5
3 BRAZIL 53.9 58.4 58.9 59.6 61.7
4 BOLIVIA 42.2 42.2 43.2 42.7 42.0
5 HONDURAS 52.1 56.6 57.6 - 59.6
6 DOMINICAN 43.7 43.4 43.5 43.4 43.8
7 CHILE 46.0 46.9 - 47.0 48.3
8 MEXICO 45.4 - 45.8 45.7 -
9 COLUMBIA 50.4 51.3 51.4 51.7 52.8

Table 4.8: Latino-American countries data.

Country Name Gini
index

10% LI 10% HI SF
index

Demographic
index

Theil
index

Argentina 41.4 1.8 29.9 16.61 0.58 0.312583
Bolivia 42.2 1.5 30.4 20.27 0.31 0.474293
Brazil 53.9 1.0 42.5 42.50 0.22 0.528996
Chile 46.0 1.8 37.1 20.61 0.44 0.529734
Colombia 50.4 1.4 39.7 28.36 0.27 0.569899
Costa Rica 48.0 1.5 36.3 24.20 0.31 0.429539
Dominican 43.7 2.3 35.2 15.30 0.37 0.429447
Ecuador 45.4 1.6 34.4 21.50 0.38 0.404237
El Salvador 38.6 2.4 29.4 12.25 0.58 0.327834
Guatemala 48.3 1.7 38.0 22.35 0.26 0.509287
Honduras 52.1 0.9 39.1 43.44 0.16 0.476235
Mexico 45.4 2.0 36.4 18.20 0.30 0.511219
Nicaragua 46.2 2.0 37.2 18.6 0.46 0.479821
Panama 49.2 1.2 37.1 30.92 0.24 0.491384
Paraguay 46.2 1.7 35.9 21.12 0.31 0.618109
Peru 42.8 1.8 32.1 17.83 0.29 0.355739
Uruguay 39.7 2.3 29.7 12.91 0.71 0.307564

4.4.6 Multivariate analysis, clustering and prediction for developed
and developing countries

The multivariate analysis using ordinary least square method, clustering analysis using PCA,
K-means and Hierarchy clustering and the prediction of the percentage GDP devoted to
health expenditure using MLP regressor which is a deep learning method, linear, lasso and
ridge regression for developed and developing countries is presented.
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Figure 4.39: Linear regression plots for (A) the first wave slope vs. the demo-economic index
for the developed and developing countries, (B) second wave slope vs. immigration rate for
developed countries, (C) the opposite of the initial auto-correlation slope for first wave vs.
social fracture index, (D) opposite of initial autocorrelation slope for second wave vs. social
fracture index. (E) Influence plot. (F) Leverage vs. normalized residuals squared plot. (G)
Partial regression plot. (H) Component–Component plus residual plot.
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Figure 4.40: (A) Residual plot for lasso regression. (B) Residual plot for ridge regression.
(C) Lasso regression cross-validation error. (D) Prediction error for lasso regression curve
(R = 0.8). (E) Linear regression prediction plot. (F) Lasso regression prediction plot. (G)
Ridge regression prediction plot. (H) MLP regression prediction plot.
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Figure 4.41: (A) Heatmap of the parameter’s correlations. (B) Scree plot. (C,D) PCs
visualization. (E,F) Hierarchy clustering dendrogram. (G) Boxplot of the clusters. (H)
Parallel coordinates plot for the clusters. (I) Parallel coordinates plot for the centroids. (J)
Projection points for PC1 and PC2. 177



Table 4.9: Developed and developing countries data.

Country Name 10%
LI

10%
HI

SF DI CCI GI Country Name Immigration
rate

ALBANIA 3.1 24.8 8.00 0.66 - 33.2 AUSTRIA 7.4
AUSTRIA 3.0 23.0 7.67 1.35 99.15 29.7 BELARUS 1.9
BELGIUM 3.3 21.9 8.11 1.27 100.75 27.4 BELGIUM 4.2
BHUTAN 2.7 27.9 10.33 0.30 - 37.4 BRAZIL 0.1
BULGARIA 1.9 31.9 16.79 0.44 - 40.4 BULGARIA -0.3
CANADA 2.7 25.3 9.37 1.15 - 33.3 CANADA 6.6
CHILE 2.3 36.3 15.78 0.58 96.55 44.4 CHINA -0.2
CROATIA 2.7 22.8 8.44 0.81 - 30.4 CYPRUS 4.2
CYPRUS 3.4 25.5 7.50 0.90 - 31.4 CZECH 2.1
CZECH 4.2 21.5 5.12 1.49 98.97 24.9 DENMARK 2.6
DENMARK 3.7 24.0 6.49 1.55 100.50 28.7 ESTONIA 0.3
DJIBOUTI 1.9 32.3 17.00 0.14 - 41.6 FINLAND 2.5
EGYPT 3.8 26.9 7.08 0.70 - 31.5 FRANCE 0.6
ESTONIA 3.0 22.5 7.50 0.89 97.59 30.4 GERMANY 6.6
FINLAND 3.8 22.6 5.95 1.52 100.27 27.4 GREECE -1.5
FRANCE 3.2 25.8 8.06 1.40 98.12 31.6 HUNGARY 1.3
GABON 2.2 27.7 12.59 0.22 - 38.0 IRELAND 4.9
GREECE 2.4 25.9 10.79 0.72 98.11 34.4 ISRAEL 1.2
HUNGARY 3.0 23.9 7.97 0.84 98.88 30.6 ITALY 2.5
IRAN 2.3 31.3 13.61 0.64 - 40.8 KOSOVO -
ITALY 1.9 26.7 14.05 0.62 100.25 35.9 LATVIA -7.6
KAZAKHSTAN 4.3 23.0 5.35 0.55 - 27.5 LITHUANIA -11.6
KOSOVO 3.8 24.6 6.47 - - 29.0 LUXEMBOURG 16.3
LATVIA 2.3 26.9 11.70 0.53 95.05 35.6 MALTA 2.1
LESOTHO 1.7 32.9 19.35 0.48 - 44.9 MEXICO -0.5
LITHUANIA 2.1 28.4 13.52 0.49 100.98 37.3 NETHERLANDS 0.9
LUXEMBOURG 2.4 25.8 10.75 0.49 98.52 34.9 MACEDONIA -0.5
MALTA 3.4 23.3 6.85 1.31 - 29.2 NORWAY 5.3
MAURITIUS 2.9 29.9 10.31 0.57 - 36.8 POLAND -0.8
MYANMAR 3.8 25.5 6.71 0.71 - 30.7 PORTUGAL -0.6
N.LANDS 3.5 23.3 6.66 1.50 99.93 28.5 ROMANIA -3.8
NORTH.M 1.7 23.8 14.00 0.47 - 34.2 RUSSIA 1.7
NORWAY 3.3 21.6 6.55 1.53 - 27.0 SERBIA 0.5
POLAND 3.2 23.5 7.34 0.86 98.70 29.7 SLOVAK 0.3
PORTUGAL 2.7 26.7 9.89 0.95 97.41 33.8 SLOVENIA 1.0
ROMANIA 1.6 24.9 15.56 0.36 - 36.0 SPAIN 0.9
SERBIA 1.4 25.6 18.29 0.47 - 36.2 SWEDEN 4.0
SAO TOME 1.3 49.1 37.77 0.17 - 56.3 SWITZERLAND 6.1
SLOVENIA 4.1 20.4 4.98 1.67 96.34 24.2 TURKEY 3.5
SPAIN 2.1 25.4 12.09 0.74 96.61 34.7 UKRAINE 0.2
SWEDEN 3.0 22.3 7.43 1.47 101.89 28.8 UK 3.9
SWITZERLAND 3.1 25.5 8.23 1.44 97.47 32.7 USA 2.9
TANZANIA 2.9 33.1 11.41 0.32 - 40.5 - -
ZIMBABWE 2.5 34.8 13.92 0.34 - 44.3 - -
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• In Figure 4.39C and Figure 4.39D, the type of regression used is polynomial or order 6
while Figure 4.39A and Figure 4.39B is linear regression.

• The Figure 4.39 present regression analyses with the following parameters:

• Figure 4.39A:

Linear regression: slope = 0.11463663009107196, intercept = -0.0037118697103040027,
r-value = 0.4387157758684147, p-value = 0.0032517683682962654, standard error =
0.03667137141150123, R-squared = 0.192472 and RMSE = 0.1044724946057671.

• Figure 4.39B:

– Linear regression: slope = -0.002547609589041096, intercept = 0.07888755616438356,
r-value = -0.3272886357381478, p-value = 0.03672803730354382, standard error =
0.0011777868896598461, R-squared = 0.107118 and RMSE = 0.03065537183298402.

• Figure 4.39C:

– Linear regression: slope = 0.0017309145398433248, intercept = 0.06695128460299407,
r-value = 0.263675660748951, p-value = 0.08754941979369255, standard error =
0.0009889311191763849, R-squared = 0.069525 and RMSE = 0.0354860744891158,

– Polynomial regression (order 6): R-squared = 0.3 and RMSE = 0.04060485094256808.

• Figure 4.39D:

– Linear regression: slope = 0.0015999465132904799, intercept = 0.0810899892250729,
r-value = 0.2861266574746827, p-value = 0.13239511534872409, standard error =
0.001031140187045727, R-squared = 0.081868 and RMSE = 0.05492215494302141,

– Polynomial regression (order 6): RMSE = 0.07286590609946085 and R-squared =
0.35.

• Figure 4.39E–H correspond to the ordinary multivariate least square method with
R-squared = 0.76. Figure 4.39E shows some developing countries as outliers, while
Belgium is the only developed country, which does not fit the data. Cross-validation
method helps to choose the best parameter α for the modeling as shown in Figure 4.40C.
For ridge regression, α = 0.012 with a mean square error = 2.32 and α = 0.029 for the
lasso regression with a mean square error = 2.21. For Figure 4.40E, training score =
0.983 and test score = 0.607; for Figure 4.40F, training score = 0.170 and test score
= 0.021; for Figure 4.40G, training score = 0.854 and test score = 0.115; and for Fig-
ure 4.40H, training score = 0.980 and test score = -2.386.

It is evident from the results that linear regression best predicts GDP percentage de-
voted to health expenditure with the highest test score, and all predicted values are very
close. In Figure 4.41E and Figure 4.41F, the first cluster has 15 countries, the second
cluster has 27 countries, while the last cluster has 2 countries, which are Tanzania and
Mauritius. Only the first two cluster dendrograms are presented. With PC1, Gini index
GI has the highest positive correlation of 0.52 with PC1 and demo-economic index DI
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has the second highest negative correlation of -0.53, while with PC2, first wave max-
imum R0 has the highest positive correlation of 0.70 (Figure 4.41C). The first cluster
contains a majority of developing countries, and the second cluster contains a majority
of developed countries, the main variable causing the separation into two classes being
the Gini index in PC1.

Also, sextic regression (polynomial regression of order six) was used to studied the
correlation between the value of the opposite of the slope at the origin of the auto-
correlation function of the first wave and the economic and health index CHE/GDP,
by studying a polynomial regression of degree 6 (Figure 4.42) whose results is as follows:

– Linear regression: slope = 0.01117, intercept = 0.0664, r -value = 0.47219, p-value
= 0.0097, standard error = 0.004, RMSE = 0.0387,

– Polynomial regression (order 6): RMSE = 0.04399, R-squared = 0.4.

It shows an anti-correlation in the linear regression and a local maximum for countries
with an average CHE/GDP ratio of around 7. Countries with a high CHE/GDP ratio
(such as France and the United States) have a low value in opposite to this slope.
The explanation for this phenomenon may come from the correlation reported in the
introduction between the CHE/GDP and Gini indices, the poor classes having a longer
duration of contagiousness due to a less important state of immunological defense and
perhaps less compliance with mitigation measures.
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• The correlation between the first wave exponential regression slope and the CHE/GDP
index for developed and developing countries is significantly positive (R = 0.57) in
Figure 4.44 with the result as follows:

slope = 0.026632, intercept = −0.1052912, r -value = 0.5661, p-value = 7.60 ×10−5,
standard error = 0.00605655, R-squared = 0.320470, RMSE = 0.095836.

• In Figure 4.43, the regression analysis result is as follow:

(a) slope = 0.0320468, intercept = −0.16158, r -value=0.6481, p-value = 4.62 13 ×10−6,
standard error = 0.00603, R-squared = 0.42, RMSE = 0.09359760581,

and (b) slope = −0.0010489, intercept = 0.01994, r -value = 0.1340845, p-value = 0.4094462,
standard error = 0.001258, R-squared = 0.018, RMSE for linear regression = 0.018583749.

• Figure 4.43(a) and Figure 4.44 show a positive correlation while Figure 4.43(b) show
a negative correlation between the slope of the logarithmic regression curve of the new
cases of COVID-19 as a function of time (a sign of rapid growth of the epidemic if it is
high) and the economic index CHE/GDP. This is true when we observe the developed
and developing countries (Figure 4.44) or the developed countries alone for which the
positive correlation is higher, the correlation coefficient increased from 0.57 to 0.65
(Figure 4.43(a)), but this trend is reversed for the second wave (Figure 4.43(b)), where
the correlation coefficient equal −0.57, this being possibly due the early implementation
of mitigation measures in developed countries, reducing the exponential growth of new
cases in the second wave.

4.4.7 Multivariate analysis, clustering and prediction for African
countries

The multivariate analysis using ordinary least square method, clustering analysis using PCA,
K-means and Hierarchy clustering and the prediction of the temperature (which is a variable
seen to influence the spread of the pandemic in this continent due to low cases and deaths
observed) using MLP regressor which is a deep learning method, linear, lasso and ridge
regression for African countries is presented.

• Figure 4.47A–D correspond to the ordinary multivariate least square method with
R2 = 0.60.

• Figure 4.47A shows Botswana and Tanzania as outliers not fitting the data. Cross-
validation method helps to choose the best parameter α for the modeling as shown in
Figure 4.45C.

• For ridge regression, α = 1.005 with a mean square error of 19.13,

• For lasso regression, α = 6.018 with a mean square error = 16.93. For Figure 4.45E,
training score = 0.647 and test score = -2.228

• For Figure 4.45F, training score = 0.316 and test score = 0.154,

• For Figure 4.45G, training score = 0.573 and test score = -1.136,
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• For Figure 4.45H, training score = -6.728 and test score = -4.714.

It is evident from these results that the lasso regression best predicts temperature with the
highest test score, and predicted values of temperature for lasso and ridge regression are
close. All the regression methods give about the same result with the maximum accuracy for
the ridge regression. In Figure 4.46E and Figure 4.46F, the first cluster has 40 countries, the
second cluster has 13 countries, while the last cluster has only 1 country, which is Botswana.
Only two cluster dendrograms with many countries are presented. In Figure 4.46C, average
life expectancy has the highest positive correlation of 0.46 in PC 1 while first wave determin-
istic Ro (first wave D) has the highest positive correlation in PC 2, equal to 0.47. The two
socio-economic variables explaining the most clustering are the average life expectancy (LE)
and the stringency index (SI).

4.4.8 Multivariate analysis, clustering and prediction for OECD
countries

The multivariate analysis using ordinary least square method, clustering analysis using PCA,
K-means and Hierarchy clustering and the prediction of the percentage GDP devoted to
health expenditure using MLP regressor which is a deep learning method, Linear, Lasso and
Ridge regression for OECD countries is presented.

• Figure 4.48 corresponds to the ordinary multivariate least square method with R2 =
0.90.
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Figure 4.45: (A) Residual plot for lasso regression. (B) Residual plot for ridge regression. (C)
Lasso regression cross-validation error. (D) Prediction error for lasso regression curve. (E)
Linear regression prediction plot. (F) Lasso regression prediction plot. (G) Ridge regression
prediction plot. (H) MLP regression prediction plot.
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Figure 4.46: (A) Heatmap of the parameter’s correlations. (B) Scree plot. (C,D) PCs
visualization. (E,F) Hierarchy clustering dendrogram. (G) Parallel coordinates plot for the
centroids. (H) Projection points for PC1 and PC2. (I) Boxplot of the clusters. (J) Parallel
coordinates plot for the clusters.
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Figure 4.47: (A) Influence plot. (B) Leverage vs. normalized residuals squared plot. (C)
Partial regression plot of the temperature vs. maximal R0 of the first wave. (D) Fit plot.
The first wave maximal R0 is negatively correlated with the mean temperature of the country
([101, 102]).
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• Figure 4.48A shows Iceland, United States, Austria, and Belgium as outliers not fitting
the data.

• The partial regression plots in Figure 4.48C shows that the best correlation observed
is between CHE/GDP and the demo-economic index DI as observed before in [232].

• Cross-validation method was used to choose the best parameter α for the modeling as
shown in Figure 4.49D.

• For ridge regression, α = 0.005 with a mean square error of 1.905, and for Lasso
regression, α = 0.027 with a mean square error = 1.657.

• For Figure 4.49E, training score = 0.993 and test score = 0.535.

• For Figure 4.49F, training score = 0.898 and test score = 0.629.

• For Figure 4.49G, training score = 0.983 and test score = 0.259.

• For Figure 4.49H, training score = −0.072 and test score = −0.196.

It is evident from these results that the lasso regression best predicts percentage of GDP
devoted to health expenditure with the highest test score and predicted values are very close.
All the regression methods give about the same result with the maximum accuracy for the
ridge regression.

Figure 4.48: (A) Influence plot. (B) Leverage vs. Normalized residuals squared plot. (C)
Partial regression plot. (D) Component–Component plus residual plot.
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In Figure 4.50E and Figure 4.50F, the first cluster has 20 countries, and the second has 5
countries, which are United States and Bulgaria on the same hierarchy, Mexico and Costa
Rica on the same hierarchy, and Chile standing alone. The third cluster has 12 countries.
Only the two highest cluster dendrograms is presented. In Figure 4.50C, the Gini index and
social fracture index have the highest positive correlation of 0.45 and 0.46, respectively, in PC
1 while the percentage of GDP devoted to health expenditure and demo-economic index have
the highest positive correlation in PC 2, whose values equal to 0.65 and 0.41, respectively.
The two main clusters correspond both to developed countries, but in the first, countries are
more continental, and in the second, countries are more maritime, which could be explained
by their difference in consumer confidence index (CCI), which is less important in maritime
countries than in continental ones.
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Figure 4.49: (A) Residual plot for lasso regression. (B) Residual plot for ridge regression. (C)
Prediction error for lasso regression curve. (D) Lasso regression cross-validation error. (E)
Linear regression prediction plot. (F) Lasso regression prediction plot. (G) Ridge regression
prediction plot. (H) MLP regression prediction plot.
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Figure 4.50: (A) Heatmap of the parameter’s correlations. (B) Scree plot. (C,D) PCs
visualization. (E,F) Hierarchy clustering dendrogram. (G) Parallel coordinates plot for the
centroids. (H) Projection points for PC1 and PC2. (I) Boxplot of the clusters. (J) Parallel
coordinates plot for the clusters. 190



Table 4.10: OECD countries data.

S/N Country Name 10%
LI

10%
HI

SF
index

CCI Gini
index

Demographic
Index

1 AUSTRALIA 2.8 26.1 9.32 100.86 32.5 1.00
2 AUSTRIA 3.3 22.5 6.82 99.15 28.0 4.52
3 BELGIUM 3.6 20.6 5.72 100.75 25.8 1.80
4 BULGARIA 1.9 31.9 16.79 - 40.8 0.44
5 CANADA 2.6 24.2 9.31 - 30.3 1.15
6 CHILE 1.8 37.1 20.61 96.55 46.0 0.44
7 COSTA RICA 1.5 36.3 24.20 98.94 47.8 0.31
8 CZECH 4.0 22.2 5.55 98.97 24.9 1.38
9 DENMARK 4.0 21.2 5.30 100.50 26.4 1.90
10 ESTONIA 2.3 26.3 11.43 97.59 30.5 0.59
11 FINLAND 4.0 21.2 5.30 100.27 26.9 1.71
12 FRANCE 3.5 24.2 6.91 98.12 30.1 1.63
13 GERMANY 3.5 23.5 6.71 98.97 28.9 1.70
14 GREECE 2.2 25.4 11.55 98.11 30.6 0.67
15 HUNGARY 3.1 22.5 7.26 98.88 28.9 0.92
16 ICELAND 4.1 20.6 5.02 - 25.0 1.69
17 IRELAND 3.1 24.4 7.87 100.48 29.5 0.88
18 ISRAEL 2.0 26.3 13.15 99.15 34.8 0.57
19 ITALY 2.1 24.4 11.62 100.25 33.4 0.75
20 KOREA 2.2 22.0 10.00 99.43 34.5 0.76
21 LATVIA 2.4 26.1 10.88 95.05 35.1 0.57
22 LITHUANIA 2.1 28.4 13.52 100.98 36.1 0.49
23 LUXEMBOURG 3.5 22.1 6.31 98.52 31.8 0.84
24 MEXICO 1.7 36.4 21.41 99.42 45.8 0.25
25 NETHERLANDS 3.3 22.7 6.88 99.93 28.5 1.45
26 NORWAY 3.4 20.6 6.06 - 26.2 1.66
27 POLAND 3.1 23.4 7.55 98.70 28.1 0.84
28 PORTUGAL 2.4 26.2 10.92 97.41 31.7 0.86
29 ROMANIA 1.6 24.9 15.56 - 35.0 0.36
30 RUSSIA 2.9 29.1 10.03 96.12 33.1 0.53
31 SLOVAK 3.3 21.6 6.55 97.71 23.6 1.02
32 SLOVENIA 3.6 20.4 5.67 96.34 24.9 1.46
33 SPAIN 2.0 24.7 12.35 96.61 33.0 0.73
34 SWEDEN 3.5 22.6 6.46 101.89 27.5 1.69
35 SWITZERLAND 3.4 24.1 7.09 97.47 29.9 1.68
36 UK 2.7 28.6 10.59 98.71 36.6 0.94
37 USA 1.6 29.2 18.25 98.68 39.0 0.93
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4.4.9 Multivariate analysis, clustering and prediction for all coun-
tries in the world

Figure 4.52 show a positive correlation between the slope of the logarithmic regression curve of
the new cases of COVID-19 and the economic index CHE/GDP and the correlation coefficient
for the first wave remains for all countries close to that for developed countries. The result
for the linear regression is as follows:
slope = 0.01214439, intercept = −0.0159087, r -value = 0.3655, p-value = 2.71 ×10−6, stan-
dard error = 0.00249223, R-squared = 0.13359, RMSE = 0.0819603345.
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Figure 4.51: (a) Boxplots of the clusters. Visualizations of (b) more “developing” (in red with
some notable exceptions such as the Czech Republic and Germany) and (c) more “developed”
(in green and partially in orange) countries parts of the hierarchy tree.
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Figure 6. Regression plot of first wave exponential regression slope vs CHE/GDP for all countries. LinregressResult slope 

= 0.01214439, intercept = −0.0159087, r value = 0.3655, p value = 2.71 × 10−6, stderr = 0.00249223, R-squared = 0.13359, RMSE 

for linear regression = 0.0819603345. 

3.3 ARIMA Model for First and Second Wave 

The ARIMA model shows more than 95% confidence interval as it can be seen in 

Figures 7a to 7d with p value for Mali for first wave is p = 0.01 and for second wave it is p 

= 6.3𝑒−10 while for first wave for Slovenia p = 0.01 and for second wave in Luxembourg p 

= 0.01.  

3.3.1. First wave ARIMA Model  

The comparison during the first wave between two countries (Figure 7), one devel-

oped (Luxembourg) and one developing (Mali) shows a difference in length of conta-

giousness period (linked to the value of the opposite to the slope at origin of the autocor-

relation function) and shape of the growth curve, indicating a lower virulence of the SARS 

Cov-2 in Mali, possibly due to the influence of the temperature [7]. This tendency is re-

versed during the second wave between Mali and Slovenia (Figure 8). 

Figure 4.52: Regression plot of first wave exponential regression slope vs CHE/GDP for all
countries.

The clustering and multivariate analysis using ordinary least square method for all countries
from epidemic and economic variables is described in Figure 4.51 to Figure 4.54 and shows
several features:

1. The hierarchical clustering (Figure 4.51 and Figure 4.54(b)) shows a trend common
to developed countries (shown in green), with the notable exception of Germany and
Czechia,

2. The principal component analysis shows the importance of the CHE/GDP index in the
first principal component (Figure 4.54(a),(c),(d)) and of the deterministic R0(R

det
0 ) of

the exponential phase of the first wave in the second principal component and of the
second wave in third principal component (Figure 4.54(e));

3. The analysis of parallel coordinates for cluster centroids also shows the importance of
the deterministic R0 in the discrimination of clusters (Figure 4.55);

4. The analysis of the residuals shows a good explanatory power of the first three principal
components (60% of the total variance in Figure 4.54(c), confirmed by the projections
on the two first principal planes of Figure 4.54(d)-(e)), and a weak correlation of the
principal components with these residuals (Figure 4.53(a)-(b)).

195



Healthcare 2021, 9, x  20 of 28 
 

 

 
(a) 

 
(b) 

Figure 13. (a) Leverage vs normalized squared residuals plot. (b) Residuals regression plots for initial variables. 

4. Discussion 
There are a lot of differences between the first and second wave results concerning 

the exponential regression slope and the autocorrelation initial slope: while some coun-
tries have higher figures for the first wave, others have lower figures for the second wave 
and vice versa. This was also evident for the regression plot where some countries have 
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Figure 13. (a) Leverage vs normalized squared residuals plot. (b) Residuals regression plots for initial variables. 

4. Discussion 
There are a lot of differences between the first and second wave results concerning 

the exponential regression slope and the autocorrelation initial slope: while some coun-
tries have higher figures for the first wave, others have lower figures for the second wave 
and vice versa. This was also evident for the regression plot where some countries have 

Figure 4.53: (a) Leverage vs normalized squared residuals plot. (b) Residuals regression
plots for initial variables.
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Figure 10. (a) Boxplots of the clusters corresponding to the hierarchical clustering. Visualizations of (b) more “developing” 
(in red with some notable exceptions such as the Czech Republic and Germany) and (c) more “developed” (in green and 
partially in orange) countries parts of the hierarchy tree. 
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Figure 11. (a) Principal components (PC) plot from the principal component analysis (PCA) on the initial variables: first 
and second waves maximum R0, first wave R0 and second wave R0, deterministic R0, first wR0det and second wR0det, first 

wave Arima slope, second wave Arima slope, and CHE/GDP. (b) Projection of the points corresponding to 204 countries 
of the PCA’s plot on the first PC plane with more developed countries in green and more developing in orange. (c) Ex-
plained variance plot. (d,e) Correlation circles for the two first PC planes. 

Figure 4.54: (a) Principal components (PC) plot from the principal component analysis
(PCA) on the initial variables: first and second waves maximum R0, 1st wave R0 and 2nd
wave R0, deterministic R0, 1st wR0

det and 2nd wR0
det, 1st wave Arima slope, 2nd wave

Arima slope, and CHE/GDP. (b) Projection of the points corresponding to 204 countries
of the PCA’s plot on the first PC plane with more developed countries in green and more
developing in orange. (c) Explained variance plot. (d,e) Correlation circles for the two first
PC planes.
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Figure 12. Parallel coordinates for cluster centroids. 

3.5. Ordinary Least Square Method. The Multivariate Case. 

The clustering of the countries from epidemic and economic variables is described in Fig-

ures 10 to 13 and shows several features: 

1. The hierarchical clustering (Figures 10 and 11b) shows a trend common to devel-

oped countries (shown in green), with the notable exception of Germany and 
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(R0det) of the exponential phase of the first wave in the second principal compo-
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Figure 4.55: Parallel coordinates for cluster centroids.

The multivariate analysis using ordinary least square method, clustering analysis using PCA,
K-means and Hierarchy clustering and the prediction of the percentage GDP devoted to
health expenditure using MLP regressor which is a deep learning method, linear, lasso and
ridge regression for all countries is presented.
To conclude this section, a new approach to the modeling of epidemiology, socio-economic,
geo-climatic, and demographic determinants of COVID-19 outbreak during the exponential
phase has been developed. Some of these determinants have shown high correlation with
epidemiologic parameters as it can be seen in the heatmap diagrams in Figure 4.29G, Fig-
ure 4.41A, Figure 4.46A, and Figure 4.50A, explaining the role of each variable thanks to
these correlations.
For developed and developing countries, the lasso regression reduced the correlation between
the social fracture index and the 10% highest income, while for OECD countries, the corre-
lation between the Gini index and social fracture index was reduced to zero. Some of the
variables were not used in the optimization method-OLS due to multicollinearity observed
on results summary. For the two sets of countries, consumer confidence index, opposite of
the initial autocorrelation slope averaged on 6 days for the first and second wave, 10% lowest
income, and 10% highest income were not used in the modeling. The R-squared for OLS
results for developed, developing, and OECD countries are 0.76 and 0.90, respectively, which
shows a high significance rate (Figure 4.41E, Figure 4.41F and Figure 4.48).
The principal component analysis shows high correlation for the numbers of new cases used
in this analysis. The social fracture index has high correlation in PC1 for both cases, while in
PC2, percentage of GDP devoted to health expenditure was dominant for OECD countries,
and maximum Ro for the first wave was dominant for both developed and developing countries
(see Figure 4.41C and Figure 4.50C). What can be deduce from all these observations is that
the socio-economic determinants are key to the modeling of infectious diseases like COVID-
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19 as these parameters give high signals on the trend during the spread of the pandemic for
various countries ([138, 139, 143, 233]).
Similarly, there are a lot of differences between the first and second wave results concerning
the exponential regression slope and the auto-correlation initial slope: while some countries
have higher figures for the first wave, others have lower figures for the second wave and
vice versa. This was also evident for the regression plot where some countries have negative
correlation values for the first wave of some growth parameters with the CHE/GDP and
positive for the second wave, and vice versa for other countries. These phenomena prove that
the way the pandemic spread in the second wave is different from what was experienced in the
first wave. In the principal component analysis, we discovered that first wave deterministic
R0 and CHE/GDP health had high weights in first and second principal components (PC1
and PC2), which are dominant components in the PC analysis.
More precisely, on Figure 4.42, for the first wave the opposite of the initial auto-correlation
slope is positively (resp. negatively) correlated with the CHE/GDP (resp. maximum R0)
for developed countries, which could correspond to the efficiency of the mitigation measures
decided in these countries. This is confirmed on Figure 4.44, where the first wave expo-
nential regression slope is positively correlated with the CHE/GDP in a mix of developed
and developing countries. The Figure 4.43a shows the same type of effect of public health
policies in developed countries for the first wave, where CHE/GDP increases with the first
wave exponential regression slope, but this result is inverted on Figure 4.43b for the second
wave perhaps due to a rationalization of the care activity between the first two waves. For
the first wave of all countries, Figure 4.52 shows the same positive correlation as Figure 4.43a
between the exponential regression slope and CHE/GDP.
Clustering of all countries is then studied on Figure 4.51, Figure 4.55 and Figure 4.54. Fig-
ure 4.51a shows the box-plot of the seven initial variables used in hierarchical clustering: the
first and second wave opposite of the initial auto-correlation slope (respectively ARIMAF
and ARIMAS), exponential regression slope and maximum R0 (respectively FirstwaveD,
SecondD, FirstwaveR, SecondR), and CHE/GDP. The box-plots contain five clusters repre-
sented in Figure 4.51(b)-(c) corresponding to more “developing” (in red with some notable
exceptions such as the Czech Republic and Germany) and (c) more “developed” (in green
and partially in orange) countries parts of the hierarchy tree, with a small “exotic” cluster
for Tanzania and Mauritius. Figure 4.54(a)-(e) shows the results of the principal component
analysis (PCA), with (a) the three principal components declined on the initial variables
calculated for all countries (first and second waves maximum R0’s denoted first wR0 and
second wR0, deterministic R0’s denoted first wRdet

0 and second wRdet
0 , Arima slopes denoted

first wArima, second wArima slopes, and the current health expenditure as gross domestic
product percentage denoted CHE/GDP), (b) the projection of the points corresponding to
countries of the PCA’s plot on the first PC plane, (c) the explained variance plot and (d,e)
the correlation circles for the first three principal components with projection of the initial
variables as vectors (having 195 components corresponding to the 195 countries of the table in
appendix on the corresponding principal planes. In Figure 4.54(a), the main initial variable
in the linear combination of the first (resp. the second) principal component is the first wave
deterministic Rdet

0 (resp. the CHE/GDP) and these two initial variables Rdet
0 and CHE/GDP

are anti-correlated as we have already noticed when commenting before on the Figure 4.42
(a country devoting a large share of its GDP to health expenditure reduces the occurrence
of new cases). Figure 4.54(b) gives the projection of 204 countries on the first PC plane and
distinguishes two main clusters of 118 and 85 countries, respectively, plus a singleton repre-
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senting Botswana, with more developed countries in green and more developing countries in
orange. Figure 4.54(c) shows that 60% of the variance is explained by the three first PCs,
and Figure 4.54(d)-(e) presents the correlation circles with projection of the initial variables
as vectors on the corresponding two principal planes (PC1, PC2) and (PC2, PC3), showing
such as in Figure 4.54(a) the preeminence of the opposite vectors, the first wave deterministic
R0 and the CHE/GDP. Figure 4.55 shows also for the first K-means cluster the importance
of the first wave deterministic R0.
Finally, Figure 4.53(a)-(b) corresponds to the ordinary multivariate least square method.
Figure 4.53(a) shows the eccentric position of developed countries such as Belgium and USA
and developing countries such as Equatorial Guinea and Suriname as outliers not fitting the
data bulk, and Figure 4.53(b) the concentration of the initial variable CHE/GDP with the
first and second waves deterministic Rdet

0 , in agreement with the fact that they are the most
dominant initial variables in PCA and k-means clustering.

4.5 Functional Data Analysis: Application to Daily Ob-
servation of COVID-19 Prevalence

The main purpose of this section is to revisit the data on COVID-19 from public databases
using methods that are still little used, such as Functional Data Analysis (FDA), in which
there is a great deal of theoretical work [234, 235, 236, 237, 238, 239, 240, 241, 242, 243], but
practical applications are still rare. In particular, the generalization at the FDA of classical
finite-dimensional methods, such as estimation, regression and principal component analysis,
shows that it is possible to process epidemic data obtained from a large sample (approxi-
mately one million data) concerning the incidence, mortality and exogenous or endogenous
factors associated with the COVID-19 epidemic. This sampling concerns about ten variables
(sometimes missing, in particular those concerning risk factors) and includes longitudinal
(about 600 days all over the world but in this case about 469 days for French departments)
and cross-sectional data (about 200 countries, some comprising up to a hundred documented
regions while for France which is the main focus of this section there are 101 departments),
for the monitoring and prediction of a pandemic whose origin and end are still uncertain, but
which, by its magnitude and its dramatic consequences (around 5 million deaths) justifies
such a descriptive statistical investment. The descriptive study of many factors associated
with the epidemic (namely the socio-economic and geoclimatic ones) makes it possible to un-
derstand closely linked mechanisms, those exogenous or endogenous to the viral pathogeny
of propagation and endogenous ones of pathogenicity [101, 102, 103, 139, 233]. The seminal
paper by Bernoulli [1] on the SI model is the origin of all future discussions about epi-
demic modelling, in particular the first by d’Alembert [70] in his Opuscules mathématiques
and Lambert until its last recent refinements. It contains the explicit solution of the SI
model given in Equation (3.36) and permits to consider the empiric S(t) and I(t) curves as
functions. It can be manipulated (after smoothing) as elements in a functional space. The
goal here is to apply to these elements the FDA descriptive techniques like Canonical Cor-
relation Analysis (CCA), K-means clustering and Functional Principal Component Analysis
(FPCA) in order to compare these functions among different departments in France before
vaccination started and after vaccination has started and to finally make some predictions
about the evolution of the disease in France. The functional variables are numbers of ICU
cases, daily deceased (DD), daily return home (DRH) and hospitalization which are given as
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X1, X2, X3, X4 while response variables are given as Y1, Y2, Y3, Y4, Y5, Y6 are numbers of recov-
ery, deaths, infected, vaccination, vaccination per 1000 population and number of tests. All
the data are from [119, 244, 245]. This approach is complementary of the works estimating
the parameters of the functions S and I (namely R0 and B) presented in Section 3.3.

4.5.1 Time series and curve fitting

The time series analysis of daily new cases in France, daily hospitalization in three French
departments out of 101 in France, and curve fitting for two French departments is presented.

Figure 4.56: (a) Time series modelling of daily new cases between 01/05/2021–15/07/2021
in France. (b) GRU deep learning forecasting method for daily new cases between
25/02/2020–03/09/2021 in France. (c) Daily hospitalization cases in three French depart-
ments: Nord, Paris and Essonne. (d) Fit curve for hospitalization cases in Paris and Seine-
Maritime.

The RMSE for other curve fittings is shown in Table 4.11 and it was computed using the
formula presented in Section 4.2.1. Figure 4.56(a) gives the time series of recent daily cases of
COVID-19 in France which shows stationarity with rolling values (window = 12) appearing
to be varying slightly. Also, Augmented Dickey-Fuller Test was used to test for stationarity
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of the time series by accepting the alternative hypothesis with a p-value less than the 5%
(p-value = 0.02) critical value, so it is 95 percent certain that this is a stationary series. Also,
Figure 4.56(c) shows the plotting of three French departments (Nord, Paris and Essonne)
with more prevalent COVID-19 hospitalization cases and Figure 4.56(d) shows the fitted
curve of two of the French departments (Paris and Seine-Maritime) while all departments
have RMSE in the interval 0.51 ≤ RMSE ≤ 17.38 with Essonne department having the
highest RMSE and Lozère department having the lowest RMSE. Other RMSE values are
in Table 4.11. A deep learning forecasting result using GRU for France data between the
beginning of the pandemic in France till September 3 2021 by training 80% of the data and
testing 20% is presented Figure 4.56(b). The predicted cases curve values decline over the
whole-time.

Table 4.11: RMSE confidence interval for all French departments for the fitness curve of the
four functional data.

RMSE before vaccination
started

RMSE after vaccination has
started

Hospitalized 0.51 ≤ RMSE ≤ 17.38 1.00 ≤ RMSE ≤ 18.00
ICU 0.05 ≤ RMSE ≤ 2.60 0.35 ≤ RMSE ≤ 5.20
Daily return home 0.25 ≤ RMSE ≤ 12.49 1.10 ≤ RMSE ≤ 17.50
Daily deceased 0.04 ≤ RMSE ≤ 4.52 0.32 ≤ RMSE ≤ 4.10

4.5.2 Data smoothing

The first step in analyzing functional data is to smooth the curves. In this section, different
smoothing techniques which shall be illustrated and basic explanation of the techniques
deployed for smoothing the functional data will be presented. The mean of the data set
which corresponds to elastic mean and the cross-sectional mean is plotted (see Figure 4.57),
which corresponds to the karcher-mean under the L2 distance.
The karcher-mean has an important role in the warping framework and is used to align the
functions in order to improve the matching of features (peaks) across functions for a given
set of warping functions ∂1, ∂2, · · · , ∂n ∈ ∆ as

∂̃n = argmin∂∈L2=S∆

n∑
i=1

dist(∂, ∂i)
2,

where S is a quotient space, ∆ is the differential geometry, ∂ ∈ ∆, ∂i is the set of warping
functions [246].
It was observed that the elastic mean better captures the geometry of the curves compared to
the standard L2 mean for some of the functional data set considered, since it is not affected
by the deformations of the curves. This phenomenon can be seen in Figure 4.57(a)–(c) and
Figure 4.57(e)–(g), but Figure 4.57(d) and Figure 4.57(h) show a bad shape for elastic mean.
The B-spline smoothing technique was used in smoothing the functional data where the
number of basis function n = 7 which was discovered that it best suit for the modelling
of the data as number of elements. The result of this smoothing technique can be seen in
Figure 4.58.
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Figure 4.57: (a,c,e,g) - hospitalized, ICU, daily return home and deceased cases before start
of vaccination, (b,d,f,h) - hospitalized, ICU, daily return home and deceased cases.
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Figure 4.58: Smoothed curves for the shape of COVID-19 epidemic in all departments in
France: (a) hospitalized cases, (b) hospitalized when vaccination has started, (c) daily de-
ceased, (d) daily deceased when vaccination has started, (e) daily return home, (f) daily
return home when vaccination has started, (g) ICU cases and (h) ICU cases when vaccina-
tion has started.
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Figure 4.59: Correlation coefficients between all French departments contour plot. (a) hos-
pitalized cases, (b) hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases
when vaccination has started, (e) daily return home, (f) daily return home when vaccination
has started, (g) daily deceased and (h) daily deceased when vaccination has started.
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Figure 4.60: (a) Hospitalized cases interpolation smoothing, (b) hospitalized monotone
smoothing, (c) ICU cases interpolation smoothing, (d) ICU cases monotone smoothing, (e)
daily deceased interpolation smoothing and (f) daily deceased monotone smoothing.
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Figure 4.61: Kernel smoothing method for (a) hospitalized cases, (b) hospitalized when
vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily
return home and (f) daily return home when vaccination has started.

In Figure 4.59, the correlation coefficient between all the departments in France based on the
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functional data in consideration is plotted, in order to see how well the data is well correlated
between the departments and it was observed that there is a high correlation between various
departments with except in few cases where low correlation is observed as we can see in the
contour plots presented in Figure 4.59(a)–(h).
The further smooth the data, spline interpolation of order 3 and smoothing the interpolation
using the smoothness parameter equal to 1.5 in the cubic spline smoothing was used. Also
the monotone technique and a piece-wise cubic Hermite interpolating polynomial (PCHIP)
was used. The visualization of the results is in Figure 4.60.
From graphs Figure 4.603(a)–(f) one can deduce that cubic spline smoothing curves exhibit
oscillations and oscillations are important to know the low and high data thresholds in case
the consecutive data points experience a significant change in slope. It was also observed
that PCHIP is smooth and non-oscillatory despite some sharp increase as the U-shape of the
curve deepens.
Figure 4.61 shows the Kernel smoothing for the smoothed curves of the functional data set
for three different smoothing methods to see how cross validation score varies over a range of
different parameters used in smoothing methods. The essence of this smoothing is to estimate
the smoothing parameter h that better represents functional data. It has been selected by
Generalised Cross-Validation criteria (GCV). The results show a comparable behavior of
these scores by varying the smoothing parameter h.

4.5.3 Functional principal component analysis (FPCA)

Functional principal component analysis (FPCA) is a dimension reduction with high corre-
lation in functional data analysis which completes the statistical tools used in the modelling
of epidemiology data. In this section, the 4 PCs values plot is presented throughout the
days considered and the principal component scores plot for all the different departments
providing functional data being before vaccination started and during vaccination.
In Figure 4.62(a) it was observed that PC 1 peaked in the early days of the pandemic
between February and March 2020 and then there was a decline after about 50 days becoming
stationary till day 150 possibly due to mitigation measures promulgated during this period.
The same phenomenon has been observed for PC 2. In Figure 4.62(a), PC 4 shows a sinusoidal
shape, peaked at day 100 which is around June 2020 with least values at day 30 and day 180
which are respectively in March and August 2020. Figure 4.62(b) shows the same sinusoidal
shape for PC 4 and same shape for PC 3 but with a drift in the observation with a difference
between the dynamics of hospitalization cases before and after vaccination has started in
France. PC 1 in Figure 4.62(b) shows a decline across the infective period which may be due
to the aggressive vaccination campaign in the country.
In Figure 4.62(c) it was observed that from day 50 (around April 2020) till day 150 (around
July 2020), the PC 1 value which is the major PC is stable throughout this period of various
confinement measures in France and all PCs tend to show increasing behavior after the con-
finement measures have been relaxed and in Figure 4.62(d), PC 1 has strictly positive values
while PCs 2–4 show negative values between February to June 2021. In Figure 4.62(e) PC 1
peaked with a positive value at the beginning of the pandemic in France which validates the
percentage of recovery in France (about 71% as at 14/11/2021) while PC 1 in Figure 4.62(f)
shows a positive decline across the days considered, with a disparity between the period of
vaccination and without vaccination.
On the y-axis of Figure 4.62(g) and Figure 4.62(h), it was observed that this is the only result
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with low values for the PCs because the deaths due to COVID-19 in France remain at a low
level (about 2% as at 14/11/2021), while all PCs show almost the same pattern as what was
observed previously for the other variables.
In Table 4.12, the PCs variance proportion is presented and it was observed that PC 1 is the
most important principal component.

Table 4.12: PCA variance proportion for 4 PCs before and after vaccination started in France.

Before After

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
Hospitalized 0.945 0.039 0.008 0.005 0.938 0.041 0.012 0.004
ICU 0.960 0.028 0.009 0.001 0.962 0.023 0.008 0.004
Daily return home 0.925 0.045 0.015 0.007 0.953 0.030 0.009 0.004
Daily deaths 0.965 0.017 0.013 0.003 0.914 0.055 0.016 0.010

For functional principal component scores and clusters, the focus will be on the departments
where the pandemic is most prevalent, as well as on PCs 1 and 2, while ignoring the other PCs.
Recall that French departments have code numbers, for example, Nord is code number 59,
and these codes will be used this to described the departments as well as in the visualization of
results shown in Figures 6 and 7. For a complete list of all French department code numbers
see [96]. In Figure 4.63a, the Paris department (code number 75) and Nord department
(code number 59) have a positive score in PC 1 and negative score in PC 2 while the Essonne
department is positive in both PCs. In Figure 4.63b, the Paris department and Essonne
department (code number 91) are negative in both PCs while the Nord department is positive
in PC 2 with the highest score and negative in PC 1. Figure 4.63c, Nord and Essonne
departments are negative in PC 2 but positive in PC 1 while the Paris department is positive
in both PCs.
The Paris department and Essonne department are negative in both PCs in Figure 4.63d
while the Nord department is positive in PC 2 and negative in PC 1. In Figure 4.63e, Paris
and Nord departments have positive scores in both PCs while the Essonne department is
negative in PC 2 and positive in PC 1. Nord department has the highest positive score in PC
1 for Figure 4.63f and negative for PC 1, Paris department is positive in PC 2 and negative in
PC while Essonne department is negative in both PCs. The Paris department has the highest
positive score in PC 1 and negative in PC 2 in Figure 4.63g, Nord department is positive
in both PCs while Essonne department is negative in PC 2 but positive in PC 1. Finally,
in Figure 4.63h while Nord department is positive and highest in PC 2, Paris department is
the lowest with negative score in PC 2. Both departments are negative in PC 1. Essonne
department is positive in PC 2, but negative in PC 1.
This description shows that there is a difference between the vaccination period in France
and the period when measures like lockdown, social distancing etc. were only used to control
the spread of the virus despite the fact that it has been proven medically that people can be
vaccinated and still be infected. The diagrams in Figure 4.63a–h show the same shift toward
positive PC 1 values. These shifts demonstrate the effect of various mitigation measures dif-
ferences in the departments and based on population and migration in this area, particularly
the five departments (Mayotte, Guadeloupe, La Réunion, Guiana and Martinique) outside
France’s metropole where the rules in France are not strictly enforced. It also demonstrates
that PC 1 is the most important PC, from which the majority of the analysis information
can be obtained.
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Figure 4.62: Functional PCs for different functional data before the start of vaccination
(19/03/2020–29/10/2020) and when vaccination has started (27/12/2020 to 30/06/2021):
(a) hospitalized cases, (b) hospitalized when vaccination has started, (c) ICU cases, (d)
ICU cases when vaccination has started, (e) daily return home, (f) daily return home when
vaccination has started, (g) daily deceased and (h) daily deceased when vaccination has
started. 211



Figure 4.63: FPCA scores for different functional data before the start of vaccination
(19/03/2020–29/10/2020) and when vaccination has started (27/12/2020–30/06/2021). (a)
hospitalized cases, (b) hospitalized when vaccination has started, (c) ICU cases, (d) ICU
cases when vaccination has started, (e) daily return home, (f) daily return home when vacci-
nation has started, (g) daily deceased and (h) daily deceased when vaccination has started.
Note that the numbering of points on the diagram are codes for each French department.
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4.5.4 Canonical correlation analysis (CCA)

Canonical correlation is a statistical analysis method that is used to simultaneously correlate
several metric dependent variables and several metric independent variables measured on
or observed with similar experimental units. It helps to find linear combinations within a
data set with the goal of maximizing the correlation between these linear combinations. The
variables used in this section are presented in Table 4.13. X are the variables listed in the
first row of Table 4.13 i.e., total number of hospitalizations, daily return home, deceased
and ICU cases for all departments before and after vaccination has started in France and
Y variables are the response variables described earlier as presented in the first column of
Table 4.13. The visualization of the results can be found in Figure 4.64 and Figure 4.66 and
also the correlation scores is presented in tabular form (see Table 4.13).
The helio plot in Figure 4.64 depicts the relationships between the different departments in
France, as well as the epidemiology variables and control measures (vaccination).
Figure 4.64(a), Figure 4.64(c) and Figure 4.64(e) showed a negative correlation between the
epidemiology variables and the hospitalization, ICU, and daily return home cases across de-
partments, whereas Figure 4.64(g) showed a positive correlation between the epidemiology
variables and the deceased cases across departments. Figure 4.64(b), Figure 4.64(d) and Fig-
ure 4.64(f) confirm the effect of vaccination on the number of hospitalizations, ICU, and daily
return home during vaccination, demonstrating a positive correlation and the effect of this
control measure, whereas Figure 4.64(h) shows a negative correlation, indicating a negative
relationship between the deceased and the vaccination introduced. The results presented
in Figure 4.66 show the linear relations in the scatter plot as most of the variables show
95% significance level and from Table 4.13 there is high correlations between the variables
considered. The Figure 4.65 presents the redundancy between the canonical variates.
The canonical correlation is tested and the null hypothesis is when the canonical correlation
is equal to zero. Figure 4.66(a) shows hospitalized cases with p-value < 0.05 for all canonical
variate, Figure 4.66(b) shows hospitalized when vaccination has started with p-value < 0.05
except the last canonical variate with p-value = 0.88, Figure 4.66(c) shows ICU cases with
p-value < 0.05 for all canonical variate, Figure 4.66(d) shows ICU cases when vaccination
has started with p-value < 0.05 except the last two Canonical variate with p-value = 0.68
and p-value = 0.87 respectively, Figure 4.66(e) shows daily return home with p-value <
0.05 for all canonical variate, Figure 4.66(f) shows daily return home when vaccination has
started with p-value < 0.05 except the last two canonical variate with p-value = 0.14 and
p-value = 0.34 respectively, Figure 4.66(g) shows daily deceased with p-value < 0.05 except
the last canonical variate with p-value = 0.08 and Figure 4.66(h) shows daily deceased when
vaccination has started with p-value < 0.05 except the last two canonical variate with p-value
= 0.08 and p-value = 0.46 respectively.
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Figure 4.64: Helio plot for the correlation of French departments for (a) hospitalized cases,
(b) hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination
started, (e) daily return home, (f) daily return home when vaccination started, (g) daily
deceased and (h) daily deceased when vaccination started.
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Figure 4.65: Canonical variate redundancy plot for (a) hospitalized cases, (b) hospitalized
when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, (e)
daily return home, (f) daily return home when vaccination has started, (g) daily deceased
and (h) daily deceased when vaccination has started.
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Figure 4.66: Canonical correlation visualization of (a) hospitalized cases, (b) hospitalized
when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, (e)
daily return home, (f) daily return home when vaccination has started, (g) daily deceased
and (h) daily deceased when vaccination has started.
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Table 4.13: Canonical correlation scores for the variables before and after vaccination started
in France.

Before After

Hospitalized ICU DRH Daily
deaths

Hospitalized ICU DRH Daily
deaths

Deaths 0.996 0.926 0.859 - 0.989 0.689 0.745 -
Recovered 0.970 0.973 0.941 0.961 0.838 0.865 0.846 0.797
Test 0.950 0.937 0.911 0.816 0.685 0.750 0.776 0.736
Vaccination - - - - 0.924 0.942 0.939 0.936
Infected - 0.998 0.992 0.987 - 0.980 0.971 0.970
Vaccination/1000 - - - - 0.901 0.885 0.917 0.841

4.5.5 Clustering method

The clustering of functional data is one method that statisticians are always interested in
and in this section the K-means and fuzzy K-means techniques whose algorithm is already
in Python was used. These methods will enable us to visualize how various departments
are clustered based on our functional data and to give it the best interpretation based on
their geographical location. The basic function used for the K-means clustering is a B-spline
and results of the clusters are presented. The result in the cluster form and also on the
map of France with indication of the membership to the 3 (i.e., K=3) clusters (0, 1 or 2)
to get a clearer view of the result are presented. Even if the value of K is increased, it
won’t improve the results as K is optimal. Only the result for two cases (daily hospitalized
and daily deceased) for the period before vaccination begins in France and two cases (daily
return and ICU cases) for the period when vaccination has started in France is presented.
Figure 4.67(a)–(d) presents the clusters (0, 1 or 2) that each French department belongs to.
The result clustered French departments outside metropole or the French hexagon to the
same clusters which of course are not binded with mitigation measures and rules used in
departments within France [96]. Also, departments close to Paris are in the same cluster
which is the same with departments having the same trend of the pandemic prevalence as
presented in Figure 4.67(a)–(d). In Figure 4.67(e) and Figure 4.67(g) the same pattern for
the data points in the clustering were observed which means that the same way that there
are more hospitalization cases before vaccination, also there are more people returning home
during vaccination which affirm the fact that the vaccination campaign in France has helped
to mitigate the spread of the disease.
Figure 4.67(f) and Figure 4.67(h) is a bit tricky because of the pattern they followed but it
is not surprising that there is more deceased in most departments before vaccination period
and less ICU cases during the vaccination period. These patterns of having more cluster
points attaining the highest peak in PC 1 is distinct in the results presented.
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Figure 4.67: Clustering of all departments in France using K-means: (a) hospitalized, (b)
daily deceased, (c) daily return home when vaccination has started and (d) ICU cases when
vaccination has started, and fuzzy K-means, (e) clusters for hospitalized, (f) clusters for daily
deceased, (g) clusters for daily return home when vaccination has started and (h) clusters for
ICU when vaccination has started. 218



4.5.6 Function to scalar linear regression modeling

This section describes the used function to scalar linear regression model to predict two of
our response variables which is of the form:

YDeaths =

∫ 177

1

θ(t)XfdDataHospitilization(t)dt+ ε

YTests =

∫ 177

1

θ(t)XfdDataHospitilization(t)dt+ ε

The data considered in this section are data before vaccination started in France and 80%
was trained and 20% was tested. By applying the model presented Equation (2.23), in this
case, the functional data is X (hospitalization) which is a curve whose prediction is linked
to a scalar Y (number of deaths and tests between 19/03/20 – 13/09/20 which is the time
interval representing [1, 177]) response variable. The time interval for in which the response
was predicted is from 14/09/20 – 29/10/20 which represent [178, 225] (the test data). The
visualization of the results is presented in Figure 4.68 and the tabular form of the numerical
results can be found in Table B.3 in the Appendix B. The prediction affirms the fact that
the relaxation in the mitigation measures during the studied period increases the number of
deaths and tests in France, the predicted results of deaths being systematically higher than
the observed values as seen in Figure 4.68a and Table B.3 in the Appendix B.

4.5.7 Function-on-function linear regression modeling

The modeling of the functional data using function-on-function linear regression of the form
of Equation (2.25) i.e.,

yAllfdData(t) = β0(t) +

∫ 101

1

β(s, t)xAllfdData(s)ds+ ε

by using the functional data curves of 101 days (predictors) to predict another set of curves
of 101 days (response) while also estimating the slope β(s, t), whose results in considered
cases are presented in 3D diagrams of Figure 4.69.
Figure 4.69(a) shows hospitalized cases with the slope on the interval −2.799063 ≤ β(s, t) ≤
1.980147, Figure 4.69(b) shows hospitalized when vaccination has started with the slope on
the interval −1.501887 ≤ β(s, t) ≤ 1.076421, Figure 4.69(c) shows ICU cases with the slope
on the interval −1.0733846 ≤ β(s, t) ≤ 0.841100, Figure 4.69(d) shows ICU cases when
vaccination has started with the slope on the interval −0.5646148 ≤ β(s, t) ≤ 0.3661280,
Figure 4.69(e) shows daily return home with the slope on the interval −0.6755000 ≤ β(s, t) ≤
0.7030529, Figure 4.69(f) shows daily return home when vaccination has started with the
slope on the interval −0.4333295 ≤ β(s, t) ≤ 0.4300995, Figure 4.69(g) shows daily deceased
with the slope on the interval −0.3277864 ≤ β(s, t) ≤ 0.4002531 and Figure 4.69(h) shows
daily deceased when vaccination has started with the slope on the interval −0.3284866 ≤
β(s, t) ≤ 0.3641679. The observation from all the figures in this section is that the 3D surfaces
yield results whose shapes look roughly similar to the slope curve, functional predictors curve
and functional response curve.
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Figure 4.68: (a) Functional linear regression model prediction for number of deaths in France
as response variable before vaccination begins and (b) Functional linear regression model
prediction for number of tests in France as response variable before vaccination begins.
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Figure 4.69: The 3D visualization of function-on-function regression for (a) hospitalized cases,
(b) hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination
has started, (e) daily return home, (f) daily return home when vaccination has started, (g)
daily deceased and (h) daily deceased when vaccination has started.
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4.6 Conclusion
Modern statistics applied to large-scale data analysis is computationally intensive, because
many routine statistical tasks, such as distance matrix calculations, hierarchical clustering,
principal component analysis, and so on, are difficult to calculate. Data analysis is widely
used to gain new insights into viral disease evolution and to develop better mitigation methods
and approaches. The current study demonstrated the ability of machine learning models and
deep learning to accurately identify major components of viral disease such as COVID-19
and several determinants. Through the feature selection process, some of the regression
models predicted some epidemiology variables and socio-economic variables, as dominant
determinants in statistical modeling of the COVID-19 outbreak. The role of social inequalities
in the current COVID-19 pandemic is becoming increasingly clear, both in terms of disease
incidence and severity. Although the exact magnitude of these health disparities is difficult
to quantify, the populations most at risk or vulnerable are frequently underrepresented in
epidemiological studies and data. Many countries are in the grip of a severe and destructive
recession. A significant number of firms and businesses have been downsized or closed.
We have proposed a set of different regression methods in order to find the best ones in the
Kuwait context, both for daily new cases and deaths, without a priori about the degree of non-
linearity and the stochastic structure of noise behind the data. Surprisingly, we discovered
that often the best regression method was the support vector one and that the stochasticity
of the data at the start of the two waves was the same. This result confirmed our choice of
comparing several regression methods (exponential regression being the most commonly, and
often the only one, chosen) and showed that once the trend due to epidemic dynamics and its
seasonality has been removed, the random factors explaining the variations compared to the
deterministic model of Bernoulli-Ross-McKendrick (namely the uncertainties related to the
counting of new cases and deaths) were expressed through a similar noise for the first and the
second wave. More, these two phases show a certain homogeneity in their stochastic structure
at their beginning, because they have the same level for the variation coefficient (around 0.5),
both for daily new cases number and for death number, and for the auto-correlation initial
slope (-0.031 for the first phase and -0.038 for the second).
We have shown in this chapter that there exist correlations between the growth parameters
directly linked to the occurrence of new cases of COVID-19 and socio-economic variables,
in particular the ratio between the current health expenditures and gross domestic product
percentage (CHE/GDP) anti-correlated with the basic reproduction time R0, which shows
the effectiveness of public health mitigation measures, even if they involve significant medico-
economic costs. Larger perspectives are offered by combining this study with others on
geoclimatic and demographic severity factors of the COVID-19 outbreak [102, 247] with the
present socio-economic determinants, in order to obtain the most comprehensive and accurate
picture of non-biological exogenous influences on the expanding COVID-19 pandemic.
In general, we have also been able to access the interplay between socio-demo-economic
variables and epidemiologic variables for explaining how inequalities in these socio-demo-
economic variables across countries, i.e., in terms of developed countries and developing
countries responded to the COVID-19 outbreak. Also, from the results presented we can see
that, there is a nexus between economic decisions taken by these countries and COVID-19
pandemic effects on the general economic activities in those countries.
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Chapter 5

General Conclusion and Future Work

5.1 Scientific Contribution of the Research
The contributions made by this thesis are as follows:

■ We have been able to provide the equation of the discrete dynamics of the epidemic’s
growth and obtain an estimation of the daily reproduction rates by using a deconvolu-
tion technique on a series of new COVID-19 cases from many countries. We established
that the daily reproduction rates has four unique shapes but the U-shape is the most
frequent evolution of daily reproduction rates, which confirms the comparison with the
behavior of seasonal influenza.

■ We have proved that socio-demo-economic determinants play a crucial role and that
there is a relationship between these determinants during the exponential phase of the
COVID-19 pandemic modeling.

■ We have employed functional data analysis method to analyze the shapes of COVID-
19 outbreak incidence rate curves in different departments in France and statistically
group them into distinct clusters according to their shapes. The result reveals that
pandemic curves often differ substantially across departments of same country, and
we show that it is possible to analyze epidemic data obtained from a large sample
concerning the incidence, mortality and exogenous or endogenous factors associated
with the COVID-19 epidemic.

■ We used the spectral analysis method to convert time (days) to frequency in order to
analyze the peaks of frequency and periodicity of the time series data. Some of the peaks
observed in the time series data correspond with the proven pattern of weekly peaks
that is unique to the COVID-19 time series data and is due to the weekly incidence
reporting.

■ We proposed a new mathematical age-dependent SIGR (Susceptible–Infectious–
Goneanewsusceptible–Recovered) model for the COVID-19 outbreak. We were able
to simulate the differential dynamic behavior of the growth of infectious and immune
populations, young and old in different countries, in order, for policy makers, to be able
to have an idea of when to adjust the vaccine policy according to the age groups.
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■ We have been able to use different deep learning methods to retro-predict COVID-19
time series data from different countries. The results are closed and coincide often with
the observed values of the time series based on our methods.

■ We have been able to propose a continuous formulation of a unique maximum repro-
duction number estimate with an assumption that the epidemic curve is in form of
the Gaussian curve and then compare the model with the discrete forms and the basic
reproduction numbers observed during the contagiousness period considered. We also
estimated the transmission rate from identification of the first inflection point of a wave
on the curve of daily new infectious cases using the Bernoulli S–I (Susceptible–Infected)
equation. We applied this new method to the real data from Cameroon COVID-19 out-
break both at national and regional levels and to the second wave COVID-19 outbreak
for the world data which is a period the phenomena we are considering were observed.

■ We developed an epidemic ageing model in human populations in order to estimate
the lifespan loss due to the disease and ageing. This model was applied to COVID-19
outbreak data from different countries as well as the role of comorbidities and sensitivity
of the model to various parameters was established.

■ We applied the ideas in the Boolean dynamic context to comorbidity risk factor (obe-
sity) by establishing a modeling epidemic propagation in a Boolean framework (Hop
field-type propagation equation, notion of centrality to interpret interaction graphs,
existence of stationary states), we presented an application of the model chosen within
the framework of the observation of real data and we show the contribution of the model
in their interpretation in order to increase the efficiency of the model currently used,
for the understanding of the mechanisms and the prediction of the dynamic behaviours
of the pandemics present and future.

5.2 General Conclusion and Some Perspectives
We have provided in this thesis the intertwine between mathematical and statistical models
for the modeling of infectious disease.
Concerning the contagious diseases, public health physicians and policy-makers are constantly
faced with four challenges. The first concerns the estimation of the basic reproduction number
R0. The systematic use ofR0 simplifies the decision-making process by policy-makers, advised
by public health authorities, but it is too caricature to account for the biology behind the
viral spread. We have observed that R0 was not constant during an epidemic wave due
to exogenous and endogenous factors influencing both the duration of the contagiousness
period and the transmission rate during this phase. Then, the first challenge concerns the
estimation of the mean duration of the contagiousness period for infected patients. As for
the transmission rate, realistic assumptions made it possible to obtain an upper limit to this
duration, in order to better guide the individual quarantine or lockdown measures decided
by the authorities in charge of public health. This upper bound also makes it possible to
obtain a lower bound for the percentage of unreported infected patients, which gives an
idea of the quality of the census of cases of infected patients, which is the second challenge
facing specialists of contagious diseases. The third challenge is the estimation of the daily
reproduction numbers over the contagiousness period and the fourth and final interesting
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challenge is the extension of the methods developed in the present paper to contagious non-
infectious diseases (i.e., those without causal infectious agents), such as social contagious
diseases, the best example being that of the pandemic linked to obesity, for which many
concepts and modelling methods presented here remain available.
Also, the severity of public health mitigation strategies implemented in different cities or re-
gions across countries demonstrates that demographic fluctuations are important factors for
the spread and prevalence of COVID-19 due to its stochastic transmission nature. Environ-
mental factors have an impact on these demographic events. We discovered that demographic
factors, regardless of reopening or closing strategies, can change the time and scale of infec-
tion. The public health mitigation, in conjunction with our mathematical and statistical
models of the COVID-19 pandemic, is used to build a detailed picture of the distribution
of immunity to SARS-CoV-2 and determine the severity of consecutive waves of infection
given the specific public health mitigation programs. Test, trace and isolate approaches
will better control the disease spread but observations from different countries showed how
limited capacities for this approach can imply a fast growth in undetected incidence cases.
Adaptions of non-pharmaceutical interventions were associated with changes and fluctuation
in the effective reproduction number and also in the daily reproduction rates our modeling
approach has calculated in this thesis. The perspective generated by studying epidemic age-
ing model in human populations support the continued use of matrix population models for
understanding the epidemiology of viral infections across the life span, by noticing that each
time the virus mutates, it is necessary to re-estimate the coefficients of the matrix model
again.
Finally, we have presented a large scale data analysis and also assessed the efficiency of many
statistical models. We have adopted a retrospective modelling approach which has shown to
us that the results are coherent with observations based on different parameters or counts
in the COVID-19 pandemic having in mind that the prevention protocols varied during the
different phases of the pandemic throughout the epidemic period. Interestingly, the results
of the prediction models show these models are more or less adapted for COVID-19 data
set with different fluctuations. Through the fitting and prediction of the data set, we reveal
that some of the models have more advantages in the prediction of the epidemiological data
coming from COVID-19 outbreak.

5.3 Recommendations
While previous research by our research network indicated that geo-climatic factors such as
temperature change is likely to extend the geographical spread of the disease and has had
the greatest influence on the spread of the epidemic, we were able to demonstrate that socio-
economic factors such as GDP dedicated to health expenditures and demographic factors
such as age also had the greatest influence on the spread of the epidemic. We observe a
correlation of about 42 percent when GDP dedicated to health expenditures is correlated
with epidemiologic variable, and of course, using ordinary least square method by adding
more socioeconomic variable to the modeling, a strong correlation is observed, proving that
GDP dedicated to health expenditures takes a chunk of this correlation. In this thesis, we
used different modeling strategies to demonstrate the impact of vaccination on older and
younger age groups, as well as to demonstrate a faster growth of infectious in the younger
sub-population than the older sub-population since younger population with active social
activities are more likely to be exposed to COVID-19. Our modeling approach was able to
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confirm what was observed in real life, indicating that age has an impact on epidemic spread.
The role of vaccination has been globally positive, most notably in the reduction of mortality
and hospitalization cases, which we studied using a functional data analysis approach to
study the dynamics of diseases in French departments before and after vaccination. As a
result, it is critical to encourage people to get vaccinated in order to avoid severe illness and
hospitalization. One key reason we predicted the test response variable using functional linear
model is because multiple testing campaigns helps to improve COVID-19 surveillance day by
day, particularly in the case of "false" peaks where one observe only shoulders detected by
our inflection point estimation method, reason we recommend that researchers and modelers
should not only estimate parameters or be interested in the dynamics of the disease at the
exponential phase alone but also at the shoulders before the different waves of the pandemic
which we have investigated in this thesis since many countries don’t attain the different peaks
detected during the spread of the disease.
We also observed that socio-economic demographic variables show an anti-correlation for
vaccination (Dose 1 and Dose 2) and number of tests. This demonstrates that individuals
with a high socio-cultural level are more likely to monitor their health by getting tested and
vaccinated when vaccines were introduced because these socioeconomic factors we considered
affects the quality of life.
We investigated all of these in order to localize mitigation measures and how to allocate
intervention resources for future epidemics using sub-population modeling approach, and if
government policies can aid in the increase in GDP dedicated to health expenditures, allowing
countries to strengthen their health infrastructures, it will aid in proper preparedness for
future pandemics and preventing future pandemic outbreaks because the COVID-19 epidemic
has wreaked havoc on the healthcare system as well as the socioeconomic standing of many
countries.
These modeling approaches we have presented will be useful for predicting, preventing, and
controlling the spread of COVID-19, and thus future epidemics.

5.4 Future Work
There are several possible extensions of the two approaches in this thesis.
On the mathematical modeling side, in the future, we will compare the results generated
from the estimation of daily reproduction rates by varying contagiousness duration between
3 and 12 days in order to obtain possibly more realistic values for the Rj’s, and hence, have
perhaps a double explanation for the 7 days periodicity, both sociological and biological.
One interesting challenge for infectious disease modeling is the improvement and extension
of the decovolution method developed here to the contagious non-infectious diseases (i.e.,
without causal infectious agent), such as social contagious diseases, the best example being
that of the pandemic linked to obesity, for which many concepts and modelling methods
remain available and our future research will propose new avenues of research in this field.
In the first case (discrete), the two-state variable "vaccinated or not" should be added, in
order to properly take into account the effect of the vaccination policy. We intend to extend
the epidemic ageing model in human population to more age classes (6, 7, etc.) in more
countries in which data are available in order to better understand the evolution of the
disease in subpopulations; now that we are observing a sharp increase in the number of
children infected and those who interact with them, such as parents and teachers in some
countries; then, we will consider the role of comorbidities in the subpopulations of more
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countries, and build a global continuous model. It is possible to use a matrix population
model that considers Intensive Care Unit (ICU) and hospitalization cases due to COVID-19
and then see the effect of therapies at different life history points. Another future work for age
dependent modeling should, for example, take into account more age groups, at least four:
children (age ≤ 12 years), adolescents (12 years < age ≤ 18 years), young adults (18 years <
age ≤ 65 years), and older adults (>65 years). The most important pitfall in simulations of
such a model is the estimation (by observation, calculation, or assumption) of its parameters,
already difficult with two age groups. A random choice of the values of the parameters in
plausible intervals followed by a study of the sensitivity to the parameters of the model, could
make it possible to partly overcome the constraint of parameter estimation in a more precise
future epidemiological–demographic model, in particular with regard to age groups. Also we
can introduce an accelerated ageing due to infection, as well as an influence of exogenous
determinants such as geo-climatic, socio-economic, and health-related factors, which weight
differently on the different age groups, therefore, change the growth dynamics specific to
each of the sub-populations studied in this thesis. It is possible to estimate cell ageing
due to the virulence which supplementary cell lifespan loss which could cause pathological
events like infectious diseases, by using discrete and continuous formulation of Hahn’s model.
From endotracheal cytometry we count the alveolar cells in order to have information about
their loss and also from the protein profile we will get information on proteins involved in
apoptosis like Gaf2 and then this information will be fielded into the mathematical model
(Hahn’s model) in order to estimate the lifespan loss. Also, we can introduce the influence
of altitude in the modeling of the cell lifespan loss because it has been established that the
beneficial effects of altitude on lung function could be due to changes in the expression level
of ACE2, which is not only the primary route of entry for the COVID-19 virus into cells, but
also appears to play a key role in acute lung injury and other organ damages.
On the statistical modeling side, to benchmark the statistical studies in this thesis, mixed
effect models, generalized additive models and spatial data analysis will be used to further
predict the evolution and dynamics of the spread of COVID-19 pandemic. As demonstrated
by the COVID-19 pandemic, spatial epidemiology is an important field of study. For instance,
Hidden Markov models are popular time series models. It can be defined over discrete or
continuous time. In the mathematical modeling in this thesis, we have been able to de-
velop an epidemic ageing model for human populations which we can now exploit using a
statistical approach by studying the State-dependent distributions and state estimations,
developing transition probability matrix, marginal distributions and temporal dependence,
estimating the initial state distribution and assessing model adequacy using forecast (pseudo-
)residuals and posterior predictive checks. Also, spatial statistics and disease mapping are
well-developed in literature, however, there are notable computational bottlenecks when it
comes to the application of spatially-fine grained epidemiological models. We will investigate
the application of recently proposed deep learning approaches to efficiently encode spatiotem-
poral data before standard (non-spatial) epidemiological modeling approaches, such as SEIR,
renewal process, and ODE-based models. Spatial epidemiology is designed to find patterns,
and in this case, it will help us detect peaks at different waves of the pandemic while taking
demographic factors into account. The goal is to investigate the evolution and dynamics of
disease spread over time along the epidemic curve in various regions, countries, and conti-
nents. Also, we can investigate the relationship between comorbidities like obesity, diabetes,
cardiovascular diseases or asthma and epidemic-socio-demo-economic determinants, using
several machine learning and deep learning methods and then predict some of these determi-
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nants since we have already shown in this thesis how they were associated with COVID-19
prevalence. In addition to improving the section of the thesis dedicated to spectral analysis
methods in which time (days) was converted to frequency, it is possible to examine the pe-
riodicity and frequency peaks of time series data by converting time series data (pandemic)
from a time domain to a frequency domain and applying a Dense Convolutional Neural Net-
work (DenseCNN) or CNN and producing the scalogram generated from Discrete Fourier
transform (DFT) transformation of the pandemic data and training the DenseCNN for a
time series by performing a regression or classification target.
Also, another future work could be to try to model the change-points between different phases
of a pandemic, namely the transition between an endemic phase and the future epidemic
wave. The estimation and forecast of this transition time is a difficult challenge rarely faced
by the modelers (using in general change-points estimation in linear models or algorithms
for detection of abrupt changes in signals and systems) and could constitute if it provides
accurate and reliable methods a huge progress in epidemic studies.
Finally, the population distribution of viral loads observed under random or symptom-based
surveillance reverse transcription quantitative polymerase chain reaction (RT-qPCR) tests,
which provide semiquantitative results in the form of cycle threshold (Ct) values that change
during an epidemic and are an important predictor of pandemic trajectory, should be inves-
tigated. We intend to estimate the epidemic’s trajectory using both statistical modeling (in
this case, the branching process) and mathematical modeling (in this case, the exponential
model and the SEIR model).
The publications in preparation are as follows:

• K. Oshinubi, J.P. Olumuyiwa, M. Rachdi and J. Demongeot. The modeling of COVID-
19 data sets using generalized addictive models and mixed models (in preparation).

• K. Oshinubi, M. Rachdi and J. Demongeot. Spatial Epidemiology Modeling of COVID-
19 Pandemic (in preparation).

• K. Oshinubi, S. Flaxman, M. Rachdi and J. Demongeot. Estimating Viral Load Dis-
tribution using a Time-varying Branching Process and Epidemic Transmission Models
(in preparation).

228



229



Appendix A

Appendix

Table A.1: Presentation of the Pearson correlation coefficients between 20 numbers of world
daily new cases observed between the days 34 to 53 after the 24 January 2020 (date of the
start of the COVID-19 outbreak with confirmed cases in Europe) and series of 20 numbers of
world daily new cases observed in running windows of length 20 days until day 213, calculated
using the online facility https://www.socscistatistics.com/tests/pearson/default2.aspx, and
data from [119]. The last column of the Table gives the mean of the correlation coefficients
between the first window and the 20 running windows starting at week day E and after the
number of such 20 correlation coefficients which are significantly strictly positive.

Day N Daily cases PCN D PCD E W PCEW MCC
34, Wed 1155
35, Thu 1472
36, Fri 1835
37, Sat 2218
38, Sun 2662
39, Mon 2644
40, Tue 3331

41 3206
42 4327
43 5174
44 5771
45 5963

46, Mon 7294
47 8858
48 11465
49 13420
50 16767
51 17329
52 19500

53, Mon 20715
54, Tue 22788 0.871903 1 0.871903 1 1 0.871903 0.513784 14/20
55, Wed 26840 0.833092 2 0.833092 1 2 0.665054
56, Thu 31636 0.798643 3 0.798643 1 3 0.052967
57, Fri 38016 0.774313 4 0.774313 1 4 0.215606
58, Sat 33019 0.763159 5 0.763159 1 5 0.296313
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Day N Daily cases PCN D PCD E W PCEW MCC
59, Sun 36073 0.789508 6 0.789508 1 6 0.395235
60, Mon 43671 0.767306 7 0.767306 1 7 0.428514

61 44250 0.665054 1 0.665054 1 8 0.669878
62 48363 0.540774 2 0.540774 1 9 0.778017
63 59111 0.383754 3 0.383754 1 10 0.719714
64 62936 0.311278 4 0.311278 1 11 0.625795
65 64624 0.266571 5 0.266571 1 12 0.66546
66 57929 0.276242 6 0.276242 1 13 0.780229
67 61794 0.230716 7 0.230716 1 14 0.72027
68 70581 0.052967 1 0.052967 1 15 0.707716
69 74667 -0.06834 2 -0.06834 1 16 0.653118
70 76882 -0.17189 3 -0.17189 1 17 0.656816
71 81598 -0.17193 4 -0.17193 1 18 0.368153
72 78609 -0.00811 5 -0.00811 1 19 0.004649
73 68517 0.311795 6 0,311795 1 20 0.000278
74 71938 0.39616 7 0.39616 2 1 0.833092 0.383302 13/20
75 76716 0.215606 1 0.215606 2 2 0.540774
76 82115 0.027762 2 0.027762 2 3 -0.06834
77 83995 -0.03645 3 -0.03645 2 4 0.027762
78 90241 -0.05802 4 -0.05802 2 5 0.248403
79 77692 0.116351 5 0.116351 2 6 0.145776
80 70237 0.307003 6 0.307003 2 7 0.389544
81 69497 0.298721 7 0.298721 2 8 0.545406
82 71977 0.296313 1 0.296313 2 9 0.71472
83 78993 0.248403 2 0.248403 2 10 0.571106
84 79123 0.202059 3 0.202059 2 11 0.56017
85 81357 0.320394 4 0.320394 2 12 0.609405
86 78838 0.440548 5 0.440548 2 13 0.718404
87 72258 0.527497 6 0.527497 2 14 0.602925
88 73597 0.526067 7 0.526067 2 15 0.605019
89 73426 0.395235 1 0.395235 2 16 0.494937
90 77928 0.145776 2 0.145776 2 17 0.477868
91 82020 0.08347 3 0.08347 2 18 0.071667
92 96755 0.102804 4 0.102804 2 19 -0.18503
93 87252 0.320819 5 0.320819 2 20 -0.23757
94 71139 0.499389 6 0.499389 3 1 0.798643 0.346759 13/20
95 67460 0.548743 7 0.548743 3 2 0.383754
96 74207 0.428514 1 0.428514 3 3 -0.17189
97 76455 0.389544 2 0.389544 3 4 -0.03645
98 84890 0.400223 3 0.400223 3 5 0.202059
99 92685 0.470877 4 0.470877 3 6 0.08347
100 81538 0.632728 5 0.632728 3 7 0.400223
101 81295 0.699566 6 0.699566 3 8 0.451569
102 78898 0.715578 7 0.715578 3 9 0.698072
103 79759 0.669878 1 0.669878 3 10 0.527833
104 93179 0.545406 2 0.545406 3 11 0.574066
105 93583 0.451569 3 0.451569 3 12 0.621132
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Day N Daily cases PCN D PCD E W PCEW MCC
106 93736 0.506118 4 0.506118 3 13 0.674633
107 86990 0.607988 5 0.607988 3 14 0.59476
108 78677 0.702738 6 0.702738 3 15 0.575404
109 71674 0.771323 7 0.771323 3 16 0.488039
110 84952 0.778017 1 0.778017 3 17 0.402127
111 88726 0.71472 2 0.71472 3 18 0.009761
112 96296 0.698072 3 0.698072 3 19 -0.11507
113 99237 0.692351 4 0.692351 3 20 -0.22695
114 95176 0.726056 5 0.726056 4 1 0.774313 0.38065 12/20
115 81646 0.75754 6 0.75754 4 2 0.311278
116 90580 0.783995 7 0.783995 4 3 -0.17193
117 95791 0.719714 1 0.719714 4 4 -0.05802
118 103269 0.571106 2 0.571106 4 5 0.320394
119 108305 0.527833 3 0.527833 4 6 0.102804
120 107714 0.562433 4 0.562433 4 7 0.470877
121 100380 0.610005 5 0.610005 4 8 0.506118
122 97159 0.666455 6 0.666455 4 9 0.692351
123 91816 0.686601 7 0.686601 4 10 0.562433
124 93546 0.625795 1 0.625795 4 11 0.602733
125 107449 0.56017 2 0.56017 4 12 0.667945
126 117149 0.574066 3 0.574066 4 13 0.685452
127 126792 0.602733 4 0.602733 4 14 0.594878
128 125224 0.634611 5 0.634611 4 15 0.592655
129 109948 0.746575 6 0.746575 4 16 0.59711
130 105959 0.788147 7 0.788147 4 17 0.462685
131 116523 0.66546 1 0.66546 4 18 0.043801
132 121422 0.609405 2 0.609405 4 19 0.000826
133 131498 0.621132 3 0.621132 4 20 -0.1457
134 131555 0.667945 4 0.667945 5 1 0.763159 0.467941 13/20
135 129557 0.726055 5 0.726055 5 2 0.266571
136 114896 0.795896 6 0.795896 5 3 -0.00811
137 108855 0.811018 7 0.811018 5 4 0.116351
138 122083 0.780229 1 0.780229 5 5 0.440548
139 136934 0.718404 2 0.718404 5 6 0.320819
140 139155 0.674633 3 0.674633 5 7 0.632728
141 143260 0.685452 4 0.685452 5 8 0.607988
142 135048 0.733599 5 0.733599 5 9 0.726056
143 124422 0.777163 6 0.777163 5 10 0.610005
144 126372 0.784775 7 0.784775 5 11 0.634611
145 144280 0.72027 1 0.72027 5 12 0.726055
146 146482 0.602925 2 0.602925 5 13 0.733599
147 141526 0.59476 3 0.59476 5 14 0.668216
148 182683 0.594878 4 0.594878 5 15 0.667777
149 158002 0.668216 5 0.668216 5 16 0.683387
150 131120 0.736841 6 0.736841 5 17 0.537366
151 140363 0.759236 7 0.759236 5 18 0.114956
152 164750 0.707716 1 0.707716 5 19 0.161079
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153 174539 0.605019 2 0.605019 5 20 -0.04435
154 181353 0.575404 3 0.575404 6 1 0.789508 0.557804 14/20
155 195611 0.592655 4 0.592655 6 2 0.276242
156 178369 0.667777 5 0.667777 6 3 0.311795
157 164816 0.706037 6 0.706037 6 4 0.307003
158 162497 0.692452 7 0.692452 6 5 0.527497
159 175710 0.653118 1 0.653118 6 6 0.499389
160 199422 0.494937 2 0.494937 6 7 0.699566
161 210308 0.488039 3 0.488039 6 8 0.702738
162 215135 0.59711 4 0.59711 6 9 0.75754
163 196362 0.683387 5 0.683387 6 10 0.666455
164 178891 0.7602 6 0.7602 6 11 0.746575
165 172555 0.783989 7 0.783989 6 12 0.795896
166 209690 0.656816 1 0.656816 6 13 0.777163
167 215081 0.477868 2 0.477868 6 14 0.736841
168 225012 0.402127 3 0.402127 6 15 0.706037
169 238630 0.462685 4 0.462685 6 16 0.7602
170 217665 0.537366 5 0.537366 6 17 0.600851
171 199356 0.600851 6 0.600851 6 18 0.195316
172 197440 0.574631 7 0.574631 6 19 0.282929
173 221056 0.368153 1 0.368153 6 20 0.016546
174 236580 0.071667 2 0.071667 7 1 0.767306 0.571253 15/20
175 250058 0.009761 3 0.009761 7 2 0.230716
176 241680 0.043801 4 0.043801 7 3 0.39616
177 227333 0.114956 5 0.114956 7 4 0.298721
178 222884 0.195316 6 0.195316 7 5 0.526067
179 206535 0.208246 7 0.208246 7 6 0.548743
180 240767 0.004649 1 0.004649 7 7 0.715578
181 281499 -0.18503 2 -0.18503 7 8 0.771323
182 276640 -0.11507 3 -0.11507 7 9 0.783995
183 289991 0.000826 4 0.000826 7 10 0.686601
184 261967 0.161079 5 0.161079 7 11 0.788147
185 225286 0.282929 6 0.282929 7 12 0.811018
186 219632 0.258542 7 0.258542 7 13 0.784775
187 249892 0.000278 1 0.000278 7 14 0.759236
188 290363 -0.23757 2 -0.23757 7 15 0.692452
189 287597 -0.22695 3 -0.22695 7 16 0.783989
190 291504 -0.1457 4 -0.1457 7 17 0.574631
191 259867 -0.04435 5 -0.04435 7 18 0.208246
192 224589 0.016546 6 0.016546 7 19 0.258542
193 200970 0.038824 7 0.038824 7 20 0.038824
194 255117
195 272913
196 283977
197 283782
198 271031
199 225645
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200 219202
201 268712
202 287955
203 286629
204 287391
205 265682
206 216826
207 198498
208 254103
209 272134
210 267720
211 258578
212 268958
213 210600

Note: PCN is Pearson correlation coefficient of the 140 mobile windows starting at day N,
PCD is Pearson correlation coefficient of the 20 mobile windows starting at week day D,
PCEW is Pearson correlation coefficient of the 140 mobile windows starting at week day E of
the week W, and MCC is Mean of the correlation coefficients between the first window and
the 20 mobile windows starting at week day E and number of such correlation coefficients
significantly > 0.

Table A.2: Calculation of the daily Rj’s and shape of their distribution for 194 countries and
for the two first waves.

Country Name First wave Second wave
R0 Rj’s U-shape R0 Rj’s U-shape

AFGHANISTAN 0.65 0.17; 0.09; 0.39 YES 0.04 −1.38; −0.36; 1.78 INCR
ALGERIA 1.25 3.93; −6.21; 3.53 YES 0.91 1.28; −1.06; 0.69 YES
ARUBA 5.46 10.31; −39.32; 34.47 YES 1.10 1.54; −1.60; 1.16 YES
ANDORRA 1.36 1.00; 0.79; −0.43 DECR 0.12 4.34; −1.63; −2.59 DECR
ANGOLA 0.63 0.33; 1.42; −1.12 INV 1.70 9.22; −1.58; −5.94 DECR
ANTIGUA 1.92 0.00; 1.25; 0.67 INV 2.13 −0.40; 1.33; 1.20 INV
ALBANIA 0.96 0.48; 0.50; −0.02 INV 0.66 1.98; −0.56; −0.76 DECR
ARGENTINA 0.73 0.57; −1.28; 1.44 YES 0.36 1.27; 0.75; −1.66 DECR
ARMENIA 4.43 17.99; −36.99; 23.43 YES 0.86 1.41; −0.97; 0.42 YES
AUSTRALIA 2.79 −1.02; 3.47; 0.34 YES 1.50 −0.88; 0.68; 1.70 INCR
AUSTRIA 1.17 −1.78; −0.05; 3.00 INCR 2.08 0.62; −3.55; 5.01 YES
AZERBAIJAN 1.16 1.23; −1.32; 1.25 YES 0.37 10.36; −6.45; −3.54 YES
BAHAMAS 0.57 −0.13; −0.98; 1.68 YES 1.22 0.22; −0.86; 1.86 YES
BAHRAIN 1.10 −0.74; 0.28; 1.56 INCR 1.14 1.98; −2.69; 1.85 YES
BANGLADESH 1.04 2.37; −2.97; 1.64 YES 0.99 0.86; −0.69; 0.82 YES
BARBADOS 1.86 0.86; −0.64; 1.64 YES 1.14 0.22; −0.81; 1.73 YES
BELARUS 1.57 −2.37; −4.58; 8.52 YES 1.07 −0.33; 0.24; 1.16 INCR
BELGIUM 0.43 11.66; −15.63; 4.41 YES 2.23 1.17; −2.39; 3.45 YES
BELIZE 0.99 0.80; 0.42; −0.23 DECR 0.51 1.77; −0.21; −1.05 DECR
BENIN 0.85 0.81; 0.47; −0.43 DECR 0.85 1.17; 0.22; −0.54 DECR
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R0 Rj’s U-shape R0 Rj’s U-shape

BHUTAN 15.00 14.00; 15.00; −14.00 INV 1.08 0.80; 0.57; −0.29 DECR
BOLIVIA 2.17 8.47; −1.17; −5.13 DECR 1.61 0.96; −0.30; 0.95 YES
BOSNIA 0.09 −1.06; −1.05; 2.20 INCR 1.56 −0.57; −0.51; 2.64 INCR
BOTSWANA 28.47 0.22; 0.00; 28.25 YES 28.43 0.22; −0.05; 28.26 YES
BRAZIL 0.77 0.31; 1.08; −0.62 INV 0.46 1.21; 0.16; −0.91 DECR
BRUNEI 1.08 0.10; −0.15; 1.13 YES 1.00 1.00; −1.00; 1.00 YES
BULGARIA 5.06 14.73; −66.02; 56.35 YES 0.75 1.34; −0.98; 0.39 YES
BURKINA FASO 1.08 0.72; −0.34; 0.70 YES 0.94 0.31; 0.24; 0.39 YES
BURUNDI 1.33 1.33; −0.67; 0.67 YES 2.18 0.53; 1.80; −0.15 INV
CABO VERDE 0.82 −0.08; −0.26; 1.16 YES 0.19 0.56; 1.37; −1.74 INV
CAMBODIA 0.34 0.08; 0.25; 0.01 INV 0.27 0.06; 0.15; 0.06 INV
CAMEROON 2.17 2.36; 1.25; −1.44 DECR 2.48 0.50; −0.25; 2.23 YES
CANADA 1.10 −0.55; −0.72; 2.37 YES 0.44 2.36; −0.44; −1.48 DECR
CAR 1.66 −0.07; 0.64; 1.09 INCR 0.33 0.44; −0.22; 0.11 YES
CHAD 1.19 0.77; −1.15; 1.57 YES 0.77 1.19; 0.25; −0.67 DECR
CHILE 1.00 0.72; 0.17; 0.11 DECR 1.64 0.37; −4.45; 5.72 YES
CHINA 1.10 0.90; −0.49; 0.69 YES 0.87 1.16; 0.60; −0.89 DECR
COLUMBIA 1.00 1.75; −0.86; 0.11 YES 1.47 −1.14; 3.08; −0.47 INV
COMOROS 3.75 0.00; −2.75; 6.5 YES 1.65 −0.58; 1.24; 0.99 INV
CONGO DEM. 0.03 −0.37; −0.39; 0.79 YES 0.88 0.66; 0.74; −0.52 INV
CONGO REP. 0.92 0.92; 0.92; −0.92 DECR 0.39 −0.12; 0.19; 0.32 INCR
COSTA RICA 0.50 −2.79; −3.84; 7.13 YES 1.26 1.21; −0.85; 0.90 YES
COTE D’VOIRE 1.18 −0.49; −0.63; 2.30 YES 2.09 4.32; −7.09; 4.86 YES
CROTIA 0.75 0.53; 0.79; −0.57 INV 0.57 0.68; −0.64; 0.53 YES
CUBA 0.48 −37.25; 16.17; 21.56 INCR 0.78 0.34; −0.73; 1.17 YES
CURACAO 0.50 3.00; −1.00; −1.50 DECR 4.19 1.93; −4.01; 6.27 YES
CYPRUS 0.69 0.27; 2.49; −2.07 INV 0.45 −0.42; 1.76; −0.89 INV
CZECH 0.16 −0.16; 3.88; −3.56 INV 0.88 1.88; −1.41; 0.41 YES
DENMARK 0.80 −0.11; 0.41; 0.50 INCR 0.64 −0.03; 4.65; −3.98 INV
DJIBOUTI 0.17 1.23; 0.24; −1.30 DECR 0.36 0.64; 0.41; −0.69 DECR
DOMINICAN 1.02 1.05; −0.31; 0.28 YES 1.57 0.32; −0.06; 1.31 YES
DOMINICA 7.75 2.00; −4.00; 9.75 YES 0.67 −0.36; 0.72; 0.31 INV
ECUADOR 1.46 −0.47; 1.06; 0.87 INV 1.14 0.73; −0.14; 0.55 YES
EGYPT 0.84 0.30; 0.37; 0.17 INV 0.51 11.99; −3.76; −7.72 DECR
EL SALVADOR 1.70 −0.20; 0.59; 1.31 INCR 0.66 −0.76; −14.49; 15.91 YES
EQUATORIAL G. 0.38 0.85; −0.20; −0.27 DECR 1.48 0.81; −0.66; 1.33 YES
ERITREA 1.18 1.44; −0.05; −0.21 DECR 0.80 1.02; 0.20; −0.42 DECR
ESTONIA 0.87 1.96; 0.82; −1.91 DECR 3.04 −0.70; −1.80; 5.54 YES
ESWATINI 0.94 1.41; −1.42; 0.95 YES 0.71 −0.02; 1.52; −0.79 INV
ETHIOPIA 0.80 −0.56; −1.45; 2.81 YES 1.24 0.34; 0.13; 0.77 YES
FIJI 2.00 0.00; 1.00; 1.00 INCR 0.50 0.75; −0.50; 0.25 YES
FINLAND 1.14 0.91; −0.42; 0.65 YES 2.41 0.56; −2.38; 4.23 YES
FRANCE 1.17 0.82; 0.10; 0.25 YES 2.17 0.88; −0.86; 2.15 YES
GABON 0.97 0.20; 0.47; 0.30 INV 0.19 −0.51; 0.00; 0.70 INCR
GAMBIA 0.83 −0.25; 0.43; 0.65 INCR 0.37 −0.38; 0.00; 0.75 INCR
GEORGIA 1.23 0.16; 0.43; 0.64 INCR 0.79 1.52; −0.49; −0.24 YES
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GERMANY 0.73 0.15; −1.04; 1.62 YES 0.79 1.15; −0.56; 0.20 YES
GHANA 1.48 0.55; 0.70; 0.23 INV 0.62 0.13; −0.81; 1.30 YES
GREECE 0.71 0.33; −0.27; 0.65 YES 0.71 0.95; 0.28; −0.52 DECR
GRENADA 14.00 −5.00; 3.00; 16.00 INCR 0.10 −0.15; 0.00; 0.25 INCR
GUADELOUPE 1.35 0.00; 0.76; 0.59 INV 1.35 0.00; 0.76; 0.59 YES
GUATEMALA 0.25 2.01; −0.70; −1.06 YES 0.27 1.19; −0.11; −0.81 DECR
GUIANA 0.88 1.30; −0.38; −0.04 YES 0.43 0.99; 0.27; −0.83 DECR
GUINEA 0.46 0.65; −0.56; 0.37 YES 1.68 0.21; 0.68; 0.79 INCR
GUINEA BISSAU 1.14 0.06; 1.59; −0.51 INV 4.20 −0.11; 0.04; 4.27 INCR
GUYANA 2.38 −3.45; −0.20; 6.03 INCR 4.23 −0.53; 0.58; 4.18 INCR
HAITI 0.60 0.30; −0.13; 0.43 YES 0.61 0.32; 0.42; −0.13 INV
HONDURAS 0.57 −2.94; 3.12; 0.39 INV 1.64 0.13; 0.54; 0.97 INCR
HONG KONG 0.04 0.95; −0.69; −0.22 YES 0.24 2.50; −8.79; 6.53 YES
HUNGARY 0.90 0.66; −0.12; 0.36 YES 1.93 1.91; −2.72; 2.74 YES
ICELAND 2.28 −0.85; 3.93; −0.80 INV 0.66 0.84; 0.22; −0.40 NO
INDIA 0.98 1.82; 0.53; −1.37 DECR 0.96 1.08; −0.57; 0.45 YES
INDONESIA 0.95 0.67; 0.88; −0.60 INV 0.99 1.06; −0.03; −0.03 YES
IRAN 1.04 1.73; −0.67; −0.02 YES 0.90 6.62; −6.62; 0.90 YES
IRAQ 0.77 0.15; −0.35; 0.96 YES 0.96 0.77; −0.40; 0.59 YES
IRELAND 2.16 −2.83; −5.64; 10.63 YES 1.12 1.12; −0.39; 0.39 YES
ISRAEL 0.21 −1.39; 1.08; 0.52 INV 1.16 −0.16; 0.44; 0.88 INCR
ITALY 1.04 2.24; −1.85; 0.65 YES 3.69 1.65; −7.89; 9.93 YES
JAMAICA 0.43 0.13; 0.06; 0.24 YES 2.47 −0.34; 2.06; 0.75 INV
JAPAN 1.02 0.69; 0.88; −0.55 INV 1.16 0.61; 0.42; 0.13 DECR
JORDAN 2.53 10.82; −18.20; 9.91 YES 0.93 1.28; 0.57; −0.92 DECR
KAZAKHSTAN 0.60 0.53; −5.45; 5.52 YES 2.06 −0.05; 2.37; −1.26 INV
KENYA 1.14 0.05; 0.65; 0.44 INV 1.18 0.47; 1.34; −0.63 INV
KOREA REP. 1.00 0.12; 0.87; 0.01 INV 1.04 0.60; −0.03; 0.47 YES
KOSOVO 1.02 1.00; 1.02; −1.00 INV 0.99 1.31; −0.29; −0.03 YES
KUWAIT 0.88 0.5; −0.34; 0.67 YES 1.10 0.58; −0.84; 1.36 YES
KYRGYZSTAN 0.17 −0.73; 0.26; 1.64 INCR 1.05 0.28; −0.32; 1.09 YES
LAO PDR 0.50 0.50; 0.50; −0.50 DECR 0.15 0.33; 0.74; −0.92 INV
LATVIA 0.74 1.97; −0.76; −0.47 YES 0.50 0.40; −0.22; 0.32 YES
LEBANON 1.03 0.57; 0.12; 0.34 YES 0.90 0.23; 0.06; 0.61 YES
LESOTHO 7.08 −2.86; 7.22; 2.72 INV 1.42 0.37; 1.51; −0.46 INV
LIBERIA 0.31 0.18; −0.04; 0.17 YES 4.56 0.14; 4.61; −0.19 INV
LIBYA 0.96 0.19; −0.71; 1.48 YES 0.79 −0.42; 0.56; 0.65 INCR
LITHUANIA 0.83 0.56; 0.11; 0.16 YES 2.49 −0.90; −0.52; 3.91 INCR
LUXEMBOURG 0.24 −8.55; −3.75; 12.54 INCR 1.48 1.16; −0.91; 1.23 YES
MACAO 0.29 1.14; 2.29; −3.14 INV - - -
MADAGASCAR 0.94 0.61; −0.16; 0.49 YES 0.75 0.38; −1.54; 1.91 YES
MALAWI 1.12 −0.23; 0.53; 0.82 INCR 6.46 −0.41; 0.99; 5.88 INCR
MALAYSIA 1.25 0.38; 2.79; −1.92 INV 1.30 −0.57; 1.82; 0.05 INV
MALDIVES 0.83 0.60; −0.53; 0.76 YES 1.05 −0.27; 0.70; 0.62 INV
MALI 0.64 0.59; 0.42; −0.37 DECR 7.78 −2.64; −4.96; 15.38 YES
MALTA 1.06 1.15; 0.24; −0.33 DECR 0.99 −0.73; 1.81; −0.09 INV
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MAURITANIA 1.76 −0.94; 0.29; 2.41 INCR 1.14 0.73; −0.41; 0.82 YES
MAURITIUS 4.49 −4.05; 0.36; 8.18 INCR 0.35 1.41; 0.53; −1.59 DECR
MAYOTTE 5.46 −9.46; −2.50; 17.42 INCR 1.05 0.72; −0.17; 0.50 YES
MEXICO 0.86 −1.39; 3.07; −0.82 INV 2.53 −0.55; 0.10; 2.98 INCR
MOLDOVA 1.03 2.73; −0.67; −1.03 DECR 0.36 1.27; 0.66; −1.57 DECR
MONACO 3.15 0.52; −1.93; 4.56 YES 0.54 1.02; −0.12; −0.36 DECR
MONGOLIA 10.25 1.25; 19.25; −10.25 INV 0.68 0.91; 0.25; −0.48 DECR
MONTENEGRO 1.37 2.94; −3.90; 2.33 YES 0.66 2.36; 0.26; −1.96 DECR
MOROCCO 0.90 0.36; 1.41; −0.87 INV 0.95 0.95; −0.15; 0.15 YES
MOZAMBIQUE 0.72 0.92; 0.001; −0.20 DECR 0.70 2.46; −2.45; 0.69 YES
MYANMAR 1.12 −0.75; 1.07; 0.80 INV 1.15 −1.36; −2.17; 4.68 YES
NAMIBIA 0.68 1.37; −1.82; 1.13 YES 1.22 −0.26; 0.95; 0.53 INV
NEPAL 0.74 0.35; 0.76; −0.37 INV 0.78 0.11; 0.58; 0.09 INV
NETHERLANDS 1.19 0.11; 0.11; 0.97 YES 1.04 1.05; −0.99; 0.98 YES
CALEDONIA 5.00 −2.00; 2.00; 5.00 YES 1.00 1.00; −1.00; 1.00 YES
NEW ZEALAND 0.74 2.30; −3.40; 1.84 YES 0.72 −0.52; 0.43; 0.81 INCR
NICARAGUA 0.97 −0.03; 0.97; 0.03 INV 1.02 0.86; 0.14; 0.02 DECR
NIGER 0.63 0.28; −0.12; 0.47 YES 2.21 −0.14; 0.39; 1.96 INCR
NIGERIA 1.13 0.16; 0.39; 0.58 INCR 1.02 1.38; −0.65; 0.29 YES
MACEDONIA 0.74 1.83; −1.16; 0.07 YES 0.74 1.26; −0.10; −0.42 DECR
NORWAY 0.77 −0.19; −0.61; 1.57 YES 2.13 6.02; −10.80; 6.91 YES
OMAN 3.70 0.39; 0.12; 3.19 YES 9.80 −16.87; 39.41; −12.74 INV
PAKISTAN 1.22 −0.61; 1.07; 0.76 INV 1.19 0.55; −0.11; 0.75 YES
PALESTINE 0.96 −0.18; −0.23; 1.37 YES 1.06 −0.21; 0.18; 1.09 INCR
PANAMA 0.96 0.16; 0.56; 0.24 INV 0.79 1.22; −0.16; −0.27 DECR
PAPAU NEW G. 0.49 0.35; −1.96; 2.10 YES 0.88 −0.39; 0.04; 1.23 INCR
PARAGUAY 0.59 −1.52; 1.90; 0.21 INV 1.20 −3.20;3.06; 1.34 INV
PERU 0.89 8.30; −2.47; −4.94 DECR 0.53 3.98; −4.72; 1.27 YES
PHILIPPINES 1.15 0.89; −0.08; 0.34 YES 1.54 0.07; 2.84; −1.37 INV
POLAND 0.92 2.32; −1.89; 0.49 YES 1.31 1.71; −1.63; 1.23 YES
POLYNESIA 0.66 0.22; 0.20; 0.24 YES 0.21 −1.05; 1.09; 0.17 INV
PORTUGAL 1.56 −1.34; −8.29; 11.19 YES 3.89 1.13; −4.00; 6.76 YES
QATAR 0.80 −0.84; −1.99; 3.63 YES 1.03 0.62; 0.61; −0.20 INV
ROMANIA 0.88 0.90; 0.06; −0.08 DECR 0.95 1.23; −0.48; 0.20 YES
RUSSIA 1.07 1.16; −1.00; 0.91 YES 0.87 0.83; −5.77; 5.81 YES
RWANDA 1.80 3.20; 2.20; −3.60 DECR 0.14 3.93; −2.75; −1.04 YES
SAO TOME 1.44 0.44; 0.64; 0.36 INV 2.67 2.25; −3.45; 3.87 YES
SAN MARINO 5.10 0.28; 1.14;3.68 INCR 0.26 −0.05; 2.32; −2.01 INV
SAUDI ARABIA 0.90 −1.70; 2.94; −0.34 INV 0.98 −1.05; 0.54; 1.49 INCR
SENEGAL 0.72 −0.19; 1.48; −0.57 INV 1.59 0.73; 0.23; 0.63 YES
SERBIA 1.62 −0.40; 0.47; 1.55 INCR 0.82 2.02; −0.94; −0.26 YES
SEYCHELLES 0.48 0.30; 0.51; −0.33 INV 0.54 0.38; −0.19; 0.35 YES
SIERRA LEONE 2.23 −2.93; −0.80; 5.96 INCR 1.37 0.95; −1.25; 1.67 YES
SINGAPORE 1.33 1.15; 0.51; −0.33 DECR 2.83 1.61; −2.44; 3.66 YES
SLOVAK 0.99 −2.67; 1.90; 1.76 INV 0.74 0.97; −0.73; 0.50 YES
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SLOVENIA 0.75 1.56; −0.71; −0.10 DECR 0.64 1.47; −0.47; −0.36 YES
SOMALIA 1.18 −0.16; 1.51; −0.17 INV 0.29 0.86; 0.57; −1.14 DECR
SOUTH AFRICA 0.87 0.22; 0.73; −0.08 INV 1.49 0.20; −0.04; 1.33 YES
SOUTH SUDAN 0.58 0.10; 0.16; 0.32 INCR 1.72 0.63; −0.63; 1.72 YES
SPAIN 0.38 −0.18; 0.27; 0.29 INCR 0.51 1.21; −0.86; 0.16 YES
SRI LANKA 2.13 2.73; −0.75; 0.15 YES 0.79 0.42; 1.00; −0.63 INV
ST KITTS NEVIS 2.00 0.00; 1.00; 1.00 INCR 1.07 0.25; 0.18; 0.64 YES
ST LUCIA 1.13 −0.53; −0.04; 1.70 INCR 1.00 1.00; −1.00; 1.00 YES
ST VINCENT 0.04 −0.29; 0.24; 0.10 INV 0.69 −0.24; 0.35; 0.58 INCR
SUDAN 0.36 −1.46; 2.34; −0.52 INV 2.00 0.00; 2.00; 0.00 INV
SURINAME 10.34 2.70; 18.77; −11.13 INV 1.63 2.95; −1.25; −0.07 YES
SWEDEN 0.56 0.58; −1.20; 1.18 YES 1.21 0.67; −0.91; 1.45 YES
SWITZERLAND 1.21 1.25; 0.13; −0.17 DECR 0.28 0.89; 1.18; −1.79 INV
SYRIA 1.43 1.39; 4.13; −4.09 INV 0.18 0.31; −0.68; 0.55 YES
TAIWAN 1.88 −0.13; 1.38; 0.63 INV 0.66 −5.21; 13.83; −7.96 INV
TAJIKISTAN 1.02 0.71; −0.60; 0.91 YES 1.49 1.83; −0.17; −0.17 YES
TANZANIA 0.91 −1.50; 0.18; 2.23 INCR 1.89 3.42; 14.26; −15.79 INV
THAILAND 0.69 0.42; 0.07; 0.20 YES 2.71 −1.77; −0.75; 5.23 INCR
TIMOR LESTE 5.00 1.00; 0.00; 4.00 YES 1.33 0.00; 1.00; 0.33 INV
TOGO 0.08 6.05; −6.18; 0.21 YES 1.14 0.18; 0.09; 0.87 YES
TRINIDAD 0.32 −0.26; 1.46; −0.88 INV 0.55 0.26; 0.03; 0.26 YES
TUNISIA 1.53 0.77; −0.04; 0.80 YES 2.77 −3.21; −2.41; 8.39 INCR
TURKEY 1.15 −1.50; −1.13; 3.78 INCR 2.21 19.82; −47.90; 30.29 YES
UAE 0.97 2.07; −1.11; 0.01 YES 1.15 1.25; −0.64; 0.54 YES
UGANDA 0.95 0.87; −0.37; 0.45 YES 0.64 0.44; −0.06; 0.26 YES
UKRAINE 0.96 1.35; −1.04; 0.65 YES 0.30 3.10; 1.07; −1.73 DECR
UK 0.76 −0.02; −0.76; 1.54 YES 1.03 0.43; 0.82; −0.22 INV
USA 8.42 31.42; −99.18; 76.18 YES 0.49 3.32; −0.38; −2.45 DECR
URUGUAY 0.63 0.71; 0.31; −0.39 DECR 1.03 −0.23; 0.35; 0.91 INCR
UZBEKISTAN 0.95 0.04; 0.10; 0.81 INCR 0.90 −0.03; −0.39; 1.32 YES
VENEZUELA 1.54 1.65; 2.95; −3.06 INV 0.82 1.09; −2.53; 2.26 YES
VIETNAM 3.29 −0.84; −0.39; 4.52 YES 1.43 0.76; −0.11; 0.78 YES
VIRGIN ISLANDS 0.51 0.01; −0.06; 0.56 YES 0.33 0.44; −0.22; 0.11 YES
WEST GAZA 1.00 −1.00; −2.00; 4.00 YES 0.98 0.59; −0.11; 0.50 YES
YEMEN 0.70 −0.34; 0.17; 0.86 INCR 1.50 1.00; 0.00; 0.50 YES
ZAMBIA 0.75 0.25; −0.13; 0.63 YES 1.12 1.11; −0.44; 0.45 YES
ZIMBABWE 1.44 0.24; 0.60; 0.60 INCR 1.62 1.08; −1.12; 1.66 YES
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Appendix B

Appendix

Table B.1: Parameters for first and second waves for 195 countries.

Country Name First wave Second wave CHE/GDP
Ro Exp. slope A-slope Ro Exp. slope A-slope

AFGHANISTAN 1.78 0.1070 −0.025 0.79 0.0017 −0.097 9.40
ALGERIA 2.19 0.1594 −0.040 0.86 0.0316 −0.100 6.22
ARUBA - - - - 0.0172 −0.112 -
ANDORRA - −0.0313 −0.121 - −0.0067 −0.155 6.71
ANGOLA 2.06 0.0100 −0.095 1.13 −0.0135 −0.057 2.55
ANTIGUA 4.23 - - 3.30 0.0051 −0.177 5.23
ALBANIA 1.61 0.0091 −0.138 0.99 0.0058 −0.085 5.26
ARGENTINA 2.06 0.1485 −0.060 1.19 0.0427 −0.240 9.62
ARMENIA 1.51 0.0809 −0.050 0.80 0.0570 −0.090 10.03
AUSTRALIA 2.45 0.1832 −0.054 1.11 0.0037 −0.136 9.28
AUSTRIA 2.93 0.2825 −0.053 1.05 0.0034 −0.053 10.33
AZERBAIJAN 2.11 0.1422 −0.071 0.63 0.0676 −0.130 3.51
BAHAMAS 6.33 - - 1.48 −0.0250 −0.077 6.25
BAHRAIN 1.81 0.1884 −0.079 1.24 0.0012 −0.053 4.13
BANGLADESH 3.67 0.0799 −0.033 0.92 −0.0086 −0.046 2.34
BARBADOS 4.63 - - 1.99 0.0378 −0.109 6.56
BELARUS 3.15 0.0043 −0.060 1.02 0.0159 −0.026 5.64
BELGIUM 8.28 0.1963 −0.047 0.88 −0.0182 −0.063 10.32
BELIZE 3.74 - - 1.34 −0.0004 −0.140 5.69
BENIN 2.16 0.0226 −0.133 1.55 0.0020 −0.125 2.49
BHUTAN 2.10 0.0021 −0.118 2.49 0.0126 −0.099 3.06
BOLIVIA 1.46 0.0647 −0.045 1.45 0.0152 −0.087 6.30
BOSNIA 1.70 0.0088 −0.110 0.97 −0.0118 −0.106 8.90
BOTSWANA 3.76 - - 1.43 0.0030 −0.186 5.85
BRAZIL 3.10 0.0389 −0.048 0.92 0.0092 −0.188 9.51
BRUNEI 5.00 −0.0165 −0.120 3.66 - - 2.41
BULGARIA 1.97 0.0178 −0.087 0.78 0.0049 −0.110 7.35
BURKINA FASO 2.44 −0.0227 −0.123 1.18 0.0360 −0.058 5.63
BURUNDI 2.80 - - 1.69 0.0226 −0.063 7.74
CABO VERDE 1.54 0.0247 −0.091 1.71 −0.0064 −0.110 5.36
CAMBODIA 5.55 −0.0129 −0.129 3.12 0.0010 −0.158 6.03
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Ro Exp. slope A-slope Ro Exp. slope A-slope

CAMEROON 2.56 0.0338 −0.123 1.64 0.0085 −0.207 -
CANADA 2.95 0.2432 −0.029 1.05 0.0153 −0.047 10.79
CAR 2.45 −0.0130 −0.096 4.99 - - 10.99
CHAD 2.43 −0.0108 −0.114 1.44 0.0222 −0.050 4.10
CHILE 2.42 0.1906 −0.034 1.16 0.0586 −0.090 9.14
CHINA 2.05 −0.0602 −0.088 1.07 0.0137 −0.068 5.35
COLUMBIA 1.86 0.0384 −0.040 0.99 0.0061 −0.126 7.64
COMOROS 1.93 −0.0094 −0.153 1.58 0.0397 −0.076 4.59
CONGO DEM. 1.48 0.0384 −0.052 1.10 0.0252 −0.089 3.30
CONGO REP. 2.39 0.0294 −0.152 1.43 0.0064 −0.118 2.14
COSTA RICA 1.51 0.0142 −0.110 1.08 −0.0022 −0.209 7.56
COTE D’VOIRE 1.47 0.0309 −0.080 1.35 0.0253 −0.078 4.19
CROTIA 3.95 −0.0042 −0.069 0.72 −0.0115 −0.106 6.83
CUBA 2.23 0.0706 −0.063 1.30 0.0517 −0.040 11.19
CURACAO - - - - −0.0060 −0.074 -
CYPRUS 2.21 −0.0056 −0.131 1.30 0.0273 −0.089 6.77
CZECH 2.40 0.2570 −0.067 1.22 0.0474 −0.197 7.65
DENMARK 1.60 −0.0024 −0.087 0.90 0.0092 −0.048 10.07
DJIBOUTI 2.73 0.0144 −0.094 1.47 −0.0045 −0.169 2.32
DOMINICAN 2.09 0.0309 −0.088 1.10 0.0151 −0.081 5.73
DOMINICA - - - - - - 6.59
ECUADOR 2.22 0.0157 −0.140 1.18 −0.0045 −0.175 8.14
EGYPT 1.69 0.0527 −0.042 1.33 0.0243 −0.023 4.95
EL SALVADOR 1.58 0.0783 −0.052 1.29 0.0535 −0.113 7.11
EQUATORIAL G. 10.0 0.0454 −0.190 2.41 0.0142 −0.177 3.00
ERITREA 2.57 0.0083 −0.216 0.74 0.0222 −0.146 4.09
ESTONIA 2.10 −0.0254 −0.116 1.03 0.0279 −0.099 6.69
ESWATINI 2.08 0.0317 −0.071 1.34 0.0412 −0.034 6.54
ETHIOPIA 2.42 0.1259 −0.054 1.11 −0.0041 −0.136 3.30
FIJI - - - - - 3.42
FINLAND 1.66 −0.0030 −0.093 1.04 −0.0010 −0.119 9.04
FRANCE 2.68 0.2898 −0.110 1.00 −0.0096 −0.081 11.26
GABON 1.83 0.0404 −0.077 1.44 0.0187 −0.143 2.75
GAMBIA 3.21 −0.0026 −0.094 2.29 0.0145 −0.099 3.09
GEORGIA 2.19 0.2536 −0.136 0.76 0.0293 −0.057 7.11
GERMANY 2.84 0.2624 −0.050 0.98 0.0050 −0.195 11.43
GHANA 1.85 0.0463 −0.099 1.09 0.0118 −0.117 3.45
GREECE 1.72 −0.0189 −0.091 1.05 −0.0111 −0.069 7.72
GRENADA 5.78 - - 1.08 0.0106 −0.167 4.46
GUADELOUPE - −0.0131 −0.130 - −0.0084 −0.137 -
GUATEMALA 1.67 0.0880 −0.044 1.08 0.1109 −0.197 5.71
GUIANA FRENCH - 0.0391 −0.102 - 0.0238 −0.124 -
GUINEA 1.50 0.0097 −0.111 1.36 −0.0108 −0.126 3.93
GUINEA BISSAU 3.56 0.0230 −0.145 4.66 - - 7.00
GUYANA 2.49 0.0005 −0.152 1.54 −0.0021 −0.163 5.94
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HAITI 2.32 0.0565 −0.047 1.66 0.0217 −0.082 7.69
HONDURAS 1.96 0.0532 −0.086 1.59 0.0016 −0.141 7.05
HONG KONG - −0.0003 −0.060 - 0.0285 −0.041 -
HUNGARY 2.25 0.0018 −0.093 0.77 −0.0081 −0.088 6.70
ICELAND 2.89 −0.0261 −0.056 1.86 −0.0174 −0.079 8.47
INDIA 2.43 0.0331 −0.050 0.91 −0.0151 −0.048 3.54
INDONESIA 2.04 0.0391 −0.071 1.07 0.0127 −0.051 2.87
IRAN 3.61 0.2641 −0.063 1.00 0.0438 −0.140 8.66
IRAQ 1.81 0.1184 −0.084 0.96 0.0410 −0.150 -
IRELAND 2.63 −0.0021 −0.058 1.45 0.0188 −0.057 6.93
ISRAEL 2.86 −0.0047 −0.049 1.33 0.0339 −0.037 7.52
ITALY 2.99 0.2475 −0.040 1.06 −0.0057 −0.072 8.67
JAMAICA 2.43 −0.0031 −0.089 1.22 0.0034 −0.174 6.06
JAPAN 1.91 0.0872 −0.055 1.21 0.0260 −0.052 10.95
JORDAN 2.16 −0.0006 −0.155 0.93 −0.0138 −0.053 7.79
KAZAKHSTAN 2.85 0.0856 −0.064 1.05 0.0933 −0.210 2.92
KENYA 1.57 0.0413 −0.067 1.26 −0.0237 −0.310 5.17
KOREA REP. 6.06 0.1664 −0.076 0.90 0.0585 −0.090 7.56
KOSOVO 1.90 - - 0.82 - - -
KUWAIT 2.25 0.0687 −0.031 1.27 −0.0094 −0.038 5.00
KYRGYZSTAN 2.27 0.0671 −0.091 0.86 0.0271 −0.200 6.53
LAO PDR - - - - - - 2.25
LATVIA 2.32 −0.0179 −0.087 1.10 0.0224 −0.136 6.19
LEBANON 1.91 0.2286 −0.112 1.27 0.0757 −0.180 8.35
LESOTHO 1.99 0.0053 −0.206 1.36 0.0398 −0.087 9.28
LIBERIA 1.76 0.0151 −0.114 3.08 0.0046 −0.159 6.74
LIBYA 3.12 0.0493 −0.047 1.09 −0.0059 −0.099 -
LITHUANIA 1.63 0.0394 −0.096 0.98 0.0554 −0.230 6.57
LUXEMBOURG 1.99 −0.0401 −0.061 0.83 −0.0174 −0.105 5.29
MACAO - −0.0019 −0.190 - - - -
MADAGASCAR 2.48 0.0377 −0.057 1.54 0.0060 −0.211 4.79
MALAWI 3.55 0.0478 −0.088 1.66 0.0583 −0.087 9.33
MALAYSIA 2.86 0.1042 −0.101 1.15 0.0794 −0.260 3.76
MALDIVES 1.96 0.0031 −0.154 1.41 0.0007 −0.116 9.41
MALI 1.61 0.0158 −0.100 0.97 0.0148 −0.115 -
MALTA 4.46 0.0712 −0.114 1.29 0.0536 −0.330 8.96
MAURITANIA 1.66 −0.0033 −0.055 0.82 0.0362 −0.037 4.58
MAURITIUS 5.40 −0.0209 −0.120 9.32 −0.0032 −0.143 5.83
MAYOTTE - 0.0129 −0.103 - 0.0065 −0.154 -
MEXICO 2.03 0.1759 −0.100 0.98 0.0117 −0.109 5.37
MOLDOVA 2.03 0.0324 −0.086 0.83 −0.0037 −0.127 6.60
MONACO 5.48 −0.0044 −0.147 1.66 0.0134 −0.136 1.60
MONGOLIA 3.12 0.0116 −0.204 1.98 0.0195 −0.127 3.79
MONTENEGRO 8.16 −0.0114 −0.171 1.07 0.0040 −0.085 8.42
MOROCCO 2.05 0.1161 −0.114 0.84 −0.0159 −0.065 5.31
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MOZAMBIQUE 2.14 0.0260 −0.109 1.59 0.0152 −0.068 8.17
MYANMAR 2.70 −0.0028 −0.113 0.83 −0.0137 −0.050 4.79
NAMIBIA 2.10 0.0315 −0.049 1.03 0.0315 −0.039 7.95
NEPAL 2.28 0.2070 −0.035 0.91 −0.0264 −0.065 5.84
NETHERLANDS 2.40 0.2485 −0.043 0.92 0.0002 −0.074 9.97
NEW ZEALAND 5.63 −0.0426 −0.087 1.89 0.0140 −0.099 9.21
NICARAGUA 5.76 - - 1.39 - - 8.56
NIGER 2.58 −0.0231 −0.083 0.96 0.0390 −0.048 7.33
NIGERIA 1.91 0.0502 −0.046 1.06 0.0333 −0.047 3.89
MACEDONIA 1.84 0.0858 −0.092 0.87 0.0528 −0.230 6.58
NORWAY 2.40 0.2716 −0.055 1.14 0.0052 −0.145 10.05
OMAN 1.73 0.0972 −0.092 1.13 0.0936 −0.130 4.13
PAKISTAN 1.90 0.1301 −0.060 1.02 0.0113 −0.047 3.20
PALESTINE - −0.0053 −0.202 - 0.0063 −0.050 -
PANAMA 2.08 0.1443 −0.063 1.13 0.1195 −0.070 7.27
PAPAU NEW G. 1.95 −0.0081 −0.115 2.45 - - 2.37
PARAGUAY 2.22 0.0196 −0.147 0.97 0.0032 −0.168 6.65
PERU 2.35 0.0915 −0.010 1.26 −0.0077 −0.111 5.24
PHILIPPINES 2.29 0.1627 −0.082 0.91 0.1772 −0.174 4.40
POLAND 2.17 0.1562 −0.079 0.99 0.0094 −0.072 6.33
POLYNESIA - - - - - −0.075 -
PORTUGAL 2.92 0.0301 −0.140 1.15 0.0431 −0.190 9.41
QATAR 2.61 0.0694 −0.070 1.16 −0.0019 −0.094 2.49
ROMANIA 2.26 0.0218 −0.056 0.91 −0.0072 −0.121 5.56
RUSSIA 2.41 0.0775 −0.020 1.00 0.0046 −0.037 5.32
RWANDA 2.03 0.0615 −0.146 1.26 0.0382 −0.064 7.54
SAO TOME 3.09 −0.0218 −0.153 3.33 0.0162 −0.127 6.27
SAN MARINO 5.88 −0.0157 −0.137 1.14 −0.0028 −0.154 7.14
SAUDI ARABIA 2.31 0.0607 −0.060 0.90 −0.0138 −0.029 6.36
SENEGAL 2.02 0.0351 −0.047 1.24 0.0387 −0.047 3.98
SERBIA 2.13 0.0042 −0.053 0.79 0.0123 −0.038 8.54
SEYCHELLES 2.68 - - 1.94 0.0313 −0.134 5.11
SIERRA LEONE 1.50 0.0143 −0.107 1.52 0.0291 −0.063 16.06
SINGAPORE 2.06 0.0551 −0.030 1.52 0.0641 −0.080 4.46
SLOVAK 1.74 −0.0286 −0.123 0.92 0.0028 −0.193 6.69
SLOVENIA 1.78 −0.0345 −0.079 1.08 −0.0004 −0.263 8.30
SOLOMON ISL. - - - - - - - 4.47
SOMALIA 1.95 −0.0085 −0.091 2.55 - - -
SOUTH AFRICA 2.54 0.257 −0.110 1.15 0.0303 −0.039 8.25
SOUTH SUDAN 2.99 0.0007 −0.152 1.59 0.0095 −0.133 6.40
SPAIN 3.85 0.3350 −0.035 1.16 0.0029 −0.080 8.98
SRI LANKA 4.14 0.0144 −0.159 1.04 0.1347 −0.160 3.76
ST KITTS NEVIS - - - - - - 5.31
ST LUCIA 1.34 - - 2.86 0.0157 −0.082 4.40
ST VINCENT 5.86 - - 2.17 0.0407 −0.080 4.47
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Country Name First wave Second wave CHE/GDP
Ro Exp. slope A-slope Ro Exp. slope A-slope

SUDAN 1.97 0.0193 −0.094 0.24 0.0407 −0.039 4.51
SURINAME 1.41 0.0214 −0.061 1.27 0.0379 −0.042 7.97
SWEDEN 2.10 0.2572 −0.106 1.05 0.0123 −0.162 10.90
SWITZERLAND 2.86 0.2388 −0.044 0.95 −0.0082 −0.041 11.88
SYRIA 2.80 0.0311 −0.030 1.06 0.0086 −0.041 -
TAIWAN 3.42 0.0036 −0.084 1.84 0.0053 −0.123 -
TAJIKISTAN 1.68 0.0418 −0.066 0.54 −0.0016 −0.131 7.24
TANZANIA 5.00 0.1205 −0.125 18.4 - - 3.63
THAILAND 3.42 −0.0201 −0.055 1.63 0.0496 −0.100 3.79
TIMOR LESTE - - - - - - 4.33
TOGO 2.09 0.0093 −0.084 1.41 0.0083 −0.112 6.17
TRINIDAD 5.35 −0.0025 −0.139 1.30 −0.0102 −0.113 6.93
TUNISIA 2.64 −0.0122 −0.084 1.15 0.0053 −0.117 7.29
TURKEY 4.32 0.0120 −0.040 0.81 0.0078 −0.030 4.12
UAE 2.33 0.0484 −0.080 1.22 0.0085 −0.055 4.23
UGANDA 2.18 - - 0.88 0.0047 −0.154 6.53
UKRAINE 2.16 0.0325 −0.130 0.89 −0.0032 −0.093 7.72
UK 2.89 0.2223 −0.037 1.25 0.0106 −0.035 10.00
USA 3.85 0.2882 −0.030 0.99 0.0121 −0.060 16.89
URUGUAY 2.76 −0.0228 −0.086 1.15 0.0389 −0.039 9.20
UZBEKISTAN 1.82 0.1231 −0.088 0.71 0.0238 −0.170 5.29
VENEZUELA 2.57 0.0389 −0.073 0.94 0.0002 −0.134 3.56
VIETNAM 3.59 −0.0166 −0.158 1.94 −0.0040 −0.158 5.92
WEST GAZA 3.73 - - 0.87 - - -
YEMEN 1.57 0.0049 −0.164 2.84 0.0006 −0.150 -
ZAMBIA 2.80 0.0265 −0.134 1.73 0.0372 −0.046 4.93
ZIMBABWE 1.98 0.0367 −0.087 1.40 0.0438 −0.045 4.73

Table B.2: Africa countries data.

S/N Country Name SDG
index

EPI TBI HDI SI LE Temperature

1 Algeria 65.8 57.18 - 21 72.22 78.0 18.79
2 Angola 49.3 37.44 3.51 - 58.33 61.0 21.55
3 Benin 51.5 38.17 0.55 3.2 43.52 61.0 27.55
4 Botswana 61.6 51.70 - 20 62.04 65.0 21.50
5 Bukina Faso 53.5 42.83 0.47 0.6 22.22 63.0 28.29
6 Burundi 50.3 27.43 1.07 - 20.37 67.0 20.80
7 Cabo Verde 64.1 56.94 0.46 19 45.37 73.0 23.30
8 Cameroon 51.6 40.81 1.79 1.4 35.19 62.0 24.60
9 CAR 36.7 36.42 5.40 2.9 18.52 54.0 24.90
10 Chad 38.7 45.34 1.42 - 22.22 58.0 26.55
11 Comoros 47.6 44.24 0.35 4.2 - 66.0 25.55
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S/N Country Name SDG
index

EPI TBI HDI SI LE Temperature

12 DRC 41.6 30.41 3.20 0.1 - 61.0 24.00
13 Congo 48.7 42.39 3.73 - 47.22 61.0 24.55
14 Ivory Coast 55.6 45.25 1.37 21 25.93 61.0 26.35
15 Djibouti 49.7 40.04 - 40 37.96 65.0 28.00
16 Egypt 63.8 61.21 - 3.6 54.63 74.0 22.10
17 Equatorial 43.4 60.40 1.81 - - 66.0 24.55
18 Eritrea 43.3 39.34 0.86 0.1 86.11 66.0 25.50
19 Eswatini 52.4 - 3.63 5.0 68.52 59.0 21.40
20 Ethiopia 53.2 44.78 1.40 8.4 50.93 68.0 22.20
21 Gabon 59.4 45.05 5.21 20 50.93 69.0 25.05
22 Gambia 51.9 42.42 1.58 4.3 44.44 66.0 27.50
23 Ghana 61.2 49.66 1.44 2.5 50.93 68.0 27.20
24 Guinea 49.4 46.62 1.76 3.1 52.78 63.0 25.70
25 Guinea Bissau 45.5 44.67 3.61 1.3 - 63.0 26.75
26 Kenya 56.6 47.25 2.67 0.9 50.93 69.0 24.75
27 Lesotho 50.9 33.78 6.54 6.8 65.74 53.0 11.85
28 Liberia 48.0 41.62 3.08 - 40.74 65.0 25.30
29 Libya - 49.79 - 34 76.85 77.0 21.80
30 Madagascar 45.6 33.73 2.33 4.9 37.04 67.0 22.65
31 Malawi 52.3 49.21 1.46 1.9 48.15 63.0 21.90
32 Mali 51.7 43.71 0.52 2.5 48.15 62.0 28.25
33 Mauritania 51.3 39.24 0.89 14 29.63 65.0 27.65
34 Mauritius 66.2 56.63 0.12 3.0 93.52 76.0 22.40
35 Morocco 64.4 63.47 - 19 76.85 73.0 18.10
36 Mozambique 51.4 46.37 3.61 5.1 55.56 56.0 23.80
37 Namibia 57.1 58.46 4.86 1.4 42.59 65.0 20.95
38 Niger 50.3 35.74 0.84 7.3 34.26 59.0 27.15
39 Nigeria 47.1 54.76 2.19 0.1 45.37 60.0 26.80
40 Rwanda 57.9 43.68 0.57 1.8 71.30 65.0 18.85
41 Sao Tome 61.8 54.01 1.14 - - 66.0 23.75
42 Senegal 57.0 49.52 1.17 12 13.89 63.0 27.85
43 Seychelles - 66.02 0.16 - 65.74 76.0 27.15
44 Sierra Leone 49.7 42.54 2.95 6.6 48.15 60.0 23.82
45 Somalia 40.1 - 2.58 - 47.22 54.0 27.05
46 South Africa 60.4 44.73 6.15 1.0 48.15 65.0 18.75
47 South Sudan 29.2 - 2.27 - 72.22 - -
48 Sudan 47.4 51.49 0.67 5.4 24.07 67.0 26.90
49 Tanzania 55.9 50.83 2.37 16 8.33 64.0 22.35
50 Togo 52.7 41.78 0.37 1.1 67.59 67.0 27.15
51 Tunisia 66.1 62.35 - 5.4 62.04 76.0 16.30
52 Uganda 54.9 44.28 2.00 0.5 53.70 68.0 22.80
53 Zambia 53.0 50.97 3.33 20 36.11 54.0 21.40
54 Zimbabwe 54.8 43.41 1.99 16 53.70 62.0 21.00
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Table B.3: Comparison between the predicted and actual values.

Day Deaths Tests

Actual/%gain Predicted Actual Predicted
1 49/43% 86 269886 120499
2 46/66% 136 251301 126261
3 50/42% 86 248354 178764
4 153/-32% 116 248910 264431
5 26/68% 82 96177 192823
6 11/72% 39 30345 75319
7 53/45% 97 247760 328075
8 78/42% 136 222942 124271
9 43/65% 124 206626 118126
10 52/70% 171 207651 237759
11 150/14% 175 214336 124387
12 39/69% 126 86361 229623
13 27/36% 42 23804 78612
14 81/-12% 72 223293 268357
15 85/51% 172 199948 360891
16 63/62% 168 191917 135525
17 63/74% 246 196259 199318
18 130/11% 146 210495 168640
19 49/71% 167 90639 160399
20 32/56% 59 25699 249580
21 69/62% 181 240612 294387
22 66/64% 185 217585 298154
23 80/57% 188 214258 150142
24 76/61% 194 231306 150122
25 109/50% 219 259073 64680
26 54/74% 209 114369 301318
27 46/41% 78 32368 45122
28 95/52% 198 299121 343681
29 108/63% 292 276013 274313
30 104/37% 165 279376 325882
31 88/68% 275 301465 284502
32 178/44% 320 322468 262879
33 89/63% 238 140298 312368
34 85/50% 169 40313 154521
35 146/67% 447 355160 390516
36 262/30% 376 321373 254298
37 163/60% 410 330328 419636
38 162/51% 329 357368 445595
39 298/38% 484 388884 217528
40 137/33% 206 165764 242920
41 116/64% 318 47485 223540
42 257/40% 430 430644 264886
43 523/-63% 320 387569 256737
44 244/55% 548 379590 484870
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