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Introduction

This thesis is interested in multiple object tracking using small or large datasets for the esti-
mation of dynamic objects trajectories in an open environment. This work is a collaboration
between the research teams of Renault Group, the ONERA, and the Gipsa-lab. It stands at
the crossroad of two applications: the estimation of road users’ kinematic parameters for Re-
nault Group and the prevention of drone intrusions in restricted aerial space for the ONERA.
For both applications, the main objective is to estimate the kinematic parameters of dynamic
objects traveling in an area covered by heterogeneous sensors.

An object is a dynamic entity perceptible by one or more sensors. Several parameters
characterize a dynamic object: for instance, its position, size, speed, or acceleration. They
are partially observable using sensors that return noisy measurements. Hence, a filtering step
is essential to reduce the measurement error and estimate non-observable parameters. For
instance, if a sensor measures the successive positions of an object, its speed and acceleration
can be deduced using an appropriate filter; Bayesian statistics enable the derivation of optimal
filters that minimize the average mean square error under specific hypotheses.

Only rare applications focus on a single object. Often, multiple objects need to be esti-
mated simultaneously, leading to an association problem between the measurements and the
objects. The field of Multi-Object Tracking (MOT) aims to tackle this problem. Moreover,
MOT algorithms need to address the sensors’ flaws: they can miss objects or detect false
alarms in addition to the measurement noise. Modeling heuristics or Bayesian statistics can
address these issues.

A significant problem in MOT arises with extended objects. An object is extended when
its size exceeds the sensor resolution and it returns multiple measurements. The number of
measurements and their spatial organization relate to the shape and size of this extended
object. Hence, in addition to the kinematic parameters, the extent of the object can be
estimated. Once again, Bayesian statistics can help build an extent model whenever small
datasets are available. However, if large datasets are available, the extent estimation process
can be directly learned from the data using deep learning. The distinction between small
and large datasets is essential. The available state of the art depends more and more on the
quantity of data available.

This work proposes an original approach relying on the extensive use of Bayesian inference
for the MOT and extended objects problems. Both the automotive and the groups of drones
tracking applications rely on the Random Finite Sets (RFS) modeling of the multi-object
system. However, the solutions differ since the groups of drones tracking application provides
small datasets, contrary to the automotive one. Hence, to track drones we adopt a promising
exhaustive Bayesian modeling, relying on the Random Matrix model to estimate extended
objects. The automotive application benefits from large datasets. Thus, the extended objects
can be detected using deep learning. From a certain point of view, the Bayesian modeling
of the extent is equivalent to learning the data features with a deep learning algorithm on a

1



2 Introduction

large dataset, except a human does it on a small dataset.

The first chapter dives into the Multi-Object Tracking problem, highlighting how some
classical filters solve the MOT problem. These filters consider only single objects for the
Bayesian inference, which is sub-optimal. Hence, more recent methods that consider the whole
multi-object system as a random variable are introduced in the second chapter: RFS-based fil-
ters. The third chapter focuses on the extended object tracking problem: several solutions are
presented, especially the random matrix model for small datasets. The two following chapters
concern the groups of drones tracking and automotive perception applications. Finally, the
manuscript is synthesized in a concluding chapter that proposes perspectives opened by this
work.



Chapter 1

Bayesian statistics for the
Multi-Object Tracking problem

Contents
1.1 Tracking objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Single object tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Single object measurement model . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Single object evolution model . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Global Nearest Neighbor Standard Filter (GNNSF) . . . . . . . . . . 9
1.3.1 Merging and pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Multi-Hypothesis Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Tracking objects

Tracking an object in an environment is a crucial perception task with various applications.
For instance, in autonomous driving applications, it is essential to track the speed and position
of surrounding road users to avoid any collision. Another example is the tracking of airborne
drones to avoid illegal intrusions into restricted areas.

These two applications rely on sensors that generate noisy detections. In the figure 1.1, a
radar sensor returns detections within its field of view at regular time intervals. The green dots
represent the ground truth. At timestamp k, one object is missed, and several measurements
are not associated with any object: they are called false alarms. In addition, at timestamp
k+1, one object disappears while a new one appears in the field of view. This simple example
covers most of the problems encountered with all sensors used for object detection. The main
objective of Multi-Object Tracking (MOT) is to tackle these problems. The solution is to filter
the measurements associated with each object throughout time, using a priori information
about the object and the sensor.

This chapter introduces the MOT problem and some of its most classical solutions. We
start with the single object Bayes filter used in the Global Nearest Neighbor Standard Filter

3



4 Chapter 1. Bayesian statistics for the Multi-Object Tracking problem

Figure 1.1: A radar sensor returns measurements issued by objects. This simple example
highlights most of the problems encountered in MOT.

(GNNSF) to address the MOT problem. Then, building on the GNNSF filter, the Multi-
Hypothesis Tracking (MHT) filter is presented.

1.2 Single object tracking

The figure 1.2 presents a single object evolving in the field of view of a radar sensor. Using
only the measurements to follow the object is an option, but the tracking result depends on
the measurement’s uncertainty, leading to a high mean square error. A minimal mean square
error can be achieved using Bayesian inference: it relies on prior information provided by a
measurement model and an evolution model. Such filter is called a Kalman filter and is name
after Kalman who was one of its primary developers [Kal60].

1.2.1 Single object measurement model

A single object at time step k is represented by a state vector xk. This state vector is partially
observable by a sensor whose measurements are subject to noise. z{1:k} = {z1, ..., zk} denotes
the sequence of k successive measurements taken with a time interval dt. Each measurement
zk can be linked to the state vector xk with the linear measurement model

zk = Hkxk + wk (1.1)

where Hk is the observation matrix, and wk is the measurement noise. wk is an additive mul-
tivariate white Gaussian noise with noise covariance Rk. A multivariate Gaussian probability



1.2. Single object tracking 5

Figure 1.2: A radar sensor returning measurements issued by one single object.

density of a vector variable x is defined as N (x; x̂,P), with

p(x) = N (x; x̂,P)

=
1√

(2π)dx |P|
e−

1
2

(x̂−x)TP−1(x̂−x) (1.2)

Here x̂ stands for the expectation of x, and P is the error covariance matrix. dx is the number
of state dimensions of x.

According to the measurement model (1.1), the measurement likelihood is given by

p(zk|xk) = p(zk|xk,Rk)

= N (zk; Hkxk,Rk)
(1.3)

with xk the state vector of the object we want to estimate.

The measurement model (1.3) assumes that xk is known, whereas only a prior estimation
of xk is available: xk is a random vector subject to Gaussian noise. Only its prior estimate is
accessible, it is given by xk|k−1 = (x̂k|k−1,Pk|k−1), an estimate that is fully represented by its
expected value x̂k|k−1, and its covariance matrix Pk|k−1:

xk = x̂k|k−1 + vk (1.4)

where vk is an additive multivariate white Gaussian noise from the probability density with
noise covariance Pk|k−1. The prior estimate xk|k−1 is built from previous measurements or a
chosen initialization state, and its probability density is denoted

p(xk|z{1:k−1}) = N (xk; x̂k|k−1,Pk|k−1) (1.5)
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also called the prior probability density. The notation p(xk|z{1:k−1}) means that the estimation
of xk benefits from all the information given by all the measurements between timestamp
1 and k. In addition, it is assumed that the tracked object itself is subject to a Markov
evolution process, meaning that all the necessary information about xk are included in the
last measurement and the prior estimate of xk.

The minimum mean square error estimator for this problem is the Kalman filter [Kal60],
it merges the a priori information of (1.5) with the measurement likelihood of (1.3) using
Bayes equation. It results in the estimation of the posterior probability density p(xk|z{1:k}),
such as:

p(xk|z{1:k}) =
p(zk|xk) p(xk|z{1:k−1})∫
p(zk|u) p(u|z{1:k−1})du

(1.6)

Here the denominator, the marginal probability of the measurement zk, is intractable in
practice. In fact, it is an integral over all the possible prior states of xk. Since it is equivalent
to a multiplicative factor, it is often ignored, keeping only the numerator for the computations,
such as:

p(xk|z{1:k}) ∝ p(zk|xk) p(xk|z{1:k−1})

= N (zk; Hkxk,Rk) N (xk; x̂k|k−1,Pk|k−1)

= N (xk; x̂k|k,Pk|k) N (zk; Hkx̂k|k−1,S)

= N (xk; x̂k|k,Pk|k) Lmarg
∝ N (xk; x̂k|k,Pk|k)

(1.7)

This equation lets the heart of Bayesian inference appear, computing the posterior probability
density using the prior and the measurement likelihood. Here, Lmarg is the marginal likelihood
of measurement zk, given the set of prior parameters and the observation model, in the case
of the single object tracking application. It is not relevant for single object tracking. The
resulting density p(xk|z{1:k}) is a Gaussian density. Its expectation x̂k|k and error covariance
matrix Pk|k are

x̂k|k = x̂k|k−1 + K(zk −Hkx̂k|k−1)

Pk|k = (Idx −KHk)Pk|k−1

K = PHT
k S−1

S = HkPk|k−1H
T
k + Rk

(1.8)

where Idx is the dx dimensional identity matrix. The explicit formula for the posterior density
is

p(xk|z{1:k}) = p(xk|x̂k|k,Pk|k)

= N (xk; x̂k|k,Pk|k)
(1.9)

Once the posterior probability density p(xk|z{1:k}) is computed, it cannot be compared to
the next measurement zk+1 as is. An intermediate step that considers the object’s motion
model is mandatory to filter the next measurement. Thus, a new prior state needs to be
estimated the posterior probability density induces a motion bias in the estimation process.
The forecasting of the future state with an evolution model alleviates this problem.
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1.2.2 Single object evolution model

This model is assumed to be a Markov process, meaning that all information about the
object state is summarized in the last posterior probability density and the last measurement
received. Of course, the evolution model is not perfect; hence it is subject to uncertainties.
With a classic linear evolution model, the evolution process density is Gaussian:

xk+1 = Fkxk + uk (1.10)

with Fk the motion model matrix and uk a Gaussian white noise sample, with covariance Qk.
Hence, this model can be

f(xk+1|xk) = N (xk+1; Fkxk,Qk) (1.11)

However, xk is not accessible as is, only a noisy estimation is available: posterior estimate
xk|k. Based on the posterior and the motion model, the Chapman Kolmogorov equation allows
computing a new prior state density, such as

p(xk+1|z{1:k}) =

∫
f(xk+1|xk) p(xk|z{1:k}) dxk (1.12)

Integrating (1.12) over xk gives the prior probability density, and for a linear Gaussian
evolution model and the posterior probability density (1.9), the computations leads to

x̂k+1|k = Fkx̂k|k

Pk+1|k = FkPk|kF
T
k + Qk

(1.13)

Once the measurement model and the Markov evolution model are set, the recursive use
of Chapman Kolmogorov (1.12) and Bayes (1.6) equations allows the estimation of the state
vector of the tracked object. In the case described above, the prior density and the posterior
density belong to the same Gaussian probability density family: it is the linear Gaussian case.
This model results in the recursive block diagram schematic of the filter pictured in the figure
1.3.

Having the same type of prior and posterior probability density is highly desirable in the
case of Bayesian inference: it allows having a recursive filter. When it is the case, the filter is
closed under Chapman Kolmogorov and Bayes equations [VV13], [GFS19]. Prior probability
densities leading to a closed formulation of the Bayes filter are called conjugate priors. With
any conjugate prior density, the block diagram shown in the figure 1.3 is valid. Notable
examples are: the Gaussian density is a conjugate prior to the Gaussian density, the Gamma
density is a conjugate prior to the Poisson density, and Inverse Wishart density is a conjugate
prior to the multivariate normal density [AOG15].

1.2.3 Application example

With a 2 dimensional space, a kinematic state vector xk = [px, vx, py, vy]
T , and a sensor

returning the measurements zk = [px, py]
T , (px, py) denotes the Cartesian coordinates along
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Figure 1.3: Block diagram of a recursive Bayes filter.

x and y axis, and (vx, vy) the speed along x axis and y axis. Hence, the observation matrix is

Hk =

[
1 0 0 0

0 0 1 0

]
(1.14)

The sensor noise is assumed independent on each axis of the sensor

Rk =

[
σ2
x 0

0 σ2
y

]
(1.15)

with σx and σy the measurement standard deviation along each axis.

The motion model is a constant velocity model, and Fk is given by

Fk =


1 dt 0 0

0 1 0 0

0 0 1 dt
0 0 0 1

 (1.16)

where dt is the period between two measurements. This model error covariance is

Qk = σ2
p


d3t
3

d2t
2 0 0

d2t
2 dt 0 0

0 0
d3t
3

d2t
2

0 0
d2t
2 dt

 (1.17)

with σp the prediction standard deviation. This error covariance comes from the Brownian
motion noise, its proof can be found in appendix C.

In order to initialize the filter, a first guess on the state vector xk at k = 1 is mandatory, it
is denoted x1|0. This is the initialization prior density N (x1; x̂1|0,P1|0). The better this first
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estimate is, the faster the filter converges: the confidence in x̂1|0 is given by the covariance
matrix P1|0.

The main parameters are the evolution and measurement models standard deviations: σp,
σx, and σy. Most of the tuning happens using these parameters. Another way to tune this
filter is to use different evolution and measurement models depending on the problem. Some
problems may require non-linear or other types of prior and posterior densities; Bayesian
statistics offer a very powerful formalism that can fit them as well.

Since the Kalman filter is an optimal filter, as it minimizes the mean square root error, it
is state of the art for single object tracking under linear Gaussian assumptions. It is a solid
backbone for the Multi-Object Tracking (MOT) filter. In addition, it can be adapted to non-
linear problems when the sensor is polar, or the motion model is non-linear. For instance, a
problem can be linearized around the expected mean and the covariance matrix using a Taylor
series expansion. This approach is known as the Extended Kalman filter [SSM62], [McE66],
[DT97]. Other linearization techniques exist, such as the Unscented Kalman filter [JU04], but
the backbone remains the Bayesian inference.

The previous problem formulation must be changed when dealing with multiple objects.
It is now assumed that several objects are tracked at each time step k, and they each return
at most one measurement. The notations evolve accordingly, the single object xk becomes
the set of nk objects {xik}

nk
i=1. Also, the measurement zk received becomes the set of mk

measurements {zk}mkj=1. Due to these changes, new problems arise in addition to the object’s
state vector estimation.

1.3 Global Nearest Neighbor Standard Filter (GNNSF)

In the figure 1.1, the typical MOT problem is illustrated with false alarms, missed objects,
death, and birth of objects. The goal is to filter these phenomena and the measurement
uncertainty. When dealing with MOT, one of the most critical information is knowing which
object has generated which measurement. It is called the association problem. Once this
question is answered, each object state vector can be estimated with a single object Kalman
filter. Hence, a straightforward solution is to separate the association problem from the state
estimation problem. The Global Nearest Neighbor Standard Filter (GNNSF) adopts this
methodology and is a common technique, as shown by Bar-Shalom et al. in [BSF88] and
[BSL95].

The GNNSF aims at propagating the posterior probability densities of each tracked object
using the best association between the measurements and the detections. In a first approxi-
mation, all the objects are detected, and there are no false alarms, so nk = mk. The figure 1.4
illustrates this case, one radar returns three measurements corresponding to three objects. Let
{xik|k−1}

nk
i=1 = {(wik|k−1, x̂

i
k|k−1,P

i
k|k−1)}nki=1 denote the set of prior parameters describing the

set of tracked objects. Here, each object xik|k−1 is described by its weight wik|k−1, its expected
value x̂ik|k−1, and its error covariance matrix Pi

k|k−1.
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Figure 1.4: A radar sensor returning measurements issued by three objects.

When receiving the set of measurements {zjk}
mk
j=1, the first step is to compute the marginal

likelihood of each measurement zjk, given each object xik|k−1 prior parameters, for all (i, j) ∈
[[1, nk]]× [[1,mk]]. Hence, the measurement likelihood is identical to the single object likelihood
(1.3).

With the same Gaussian prior and the same measurement likelihood as equations (1.5) and
(1.3), the association likelihood needs to be evaluated. This role is fulfilled by the marginal
probability of measurement zk given the prior parameters. Adapting the equation (1.7), to
the MOT case, the marginal probability density Lmarg is

p(zjk|x
i
k) = N (zjk; Hkx̂

i
k|k−1,S)

= ci,j
(1.18)

with the notation ci,j standing for the association cost. Here S is computed as in equation
(1.8).

The marginal likelihood ci,j is then stored in a cost matrix where the lines represent the
tracked objects, and the columns represent the measurements

C =


c1,1 c1,2 ... c1,mk

c1,1 c1,2 ... c1,mk

... ... ... ...

cnk,1 cnk,2 ... cnk,mk

 (1.19)



1.3. Global Nearest Neighbor Standard Filter (GNNSF) 11

The goal is to find the maximum association cost for this matrix. Finding the nk best associ-
ations between the measurements and the tracked objects is equivalent to solving

Π∗ = argmax
{(i∗,j∗)}nk

i∗=1

nk∏
i∗=1

ci
∗,j∗ (1.20)

where Π∗ = {(i∗, j∗)}nki∗=1 defines the best association map, or global association hypothesis.
It is an assignment problem that can be solved with the Munkres algorithm [Mun57]: it is a
deterministic algorithm that has a complexity O(n3), for a n × n square association matrix
[JV87]. The figure 1.5 illustrates this procedure for the example shown in the figure 1.4,
adding the missed detection hypothesis to the possible association outcomes.

Once the association map is computed, all single objects Kalman filters are up-
dated with their corresponding measurements. The resulting posterior density is noted
p(x1

k|k, ..,x
nk
k|k,Π

∗|z1
k, ..., z

mk
k ), with

wik|k = c(i∗,j∗)

x̂ik|k = x̂i
∗

k|k−1 + K(zj
∗

k −Hkx̂
i∗

k|k−1)

Pi
k|k = (Idx −KHk)P

i∗

k|k−1

(1.21)

However, in most cases, the number of measurements mk is different from that of tracked
objects nk. The modeling should account for three cases:

• the measurement zjk is generated by object xik,

• the measurement zjk is a false alarm, and an object did not generate it,

• the object xik is not detected and has generated no measurement.

When an object i is not detected, the prior density {(wik|k−1, x̂
i
k|k−1,P

i
k|k−1)} should be

kept as a posterior density, accounting for the non-detection by decreasing the prior density
weight wik|k−1. The corrected weight is a non-detection likelihood, and it is equal to the missed
detection cost, denoted ci,0. For instance, in the figure 1.5, it is not evident that measurement
z3
k was issued by the object x3

k: maybe the object was missed, and the measurement is a false
alarm.

The calculation of the missed detection cost depends on a detection probability pD(xk|k−1),
and in a first approximation it is set to a constant value pD. Using pD, the association
likelihood becomes

ci,j =

{
(1− pD)wik|k−1 if j = 0

pDw
i
k|k−1N (zjk; x̂

i
k|k−1,P

i
k|k−1) if j ≥ 1

(1.22)

and the association matrix becomes

C =


c1,0 0 ... 0 c1,1 ... c1,mk

0 c2,0 ... 0 c2,1 ... c2,mk

... ... ... ... ... ... ...

0 0 ... cnk,0 cnk,1 ... cnk,mk

 (1.23)
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Figure 1.5: Creation of the association matrix and selection of the best global association
hypothesis taking into account the missed detection hypothesis.

where the first half is a diagonal matrix for the non-detection hypothesis or missed hypothesis.

Once the best global association hypothesis Π∗ is computed using the Munkres algorithm,
the posterior density is computed according to the selected object-measurement couples. For
a detected object, the update is similar to equation (1.21). The update of a missed object,
i.e. an object whose association hypothesis (i∗, j∗) is equal to (i∗, 0), is given by

wik|k = ci
∗,0

x̂ik|k = x̂i
∗

k|k−1

Pi
k|k = Pi∗

k|k−1

(1.24)

that corresponds to the validation of the prior probability density.

As for the false alarm problem, a specific new object initialization procedure can filter
them out. For instance, new objects can be initialized using several successive measurements,
thus avoiding the initialization from an isolated false alarm.

This formulation of the GNNSF initializes new objects but never terminates any objects.
It may cause a combinatorial explosion after a few recursions. Most GNNSF filters implement
a merging and pruning algorithm to tackle this problem.

1.3.1 Merging and pruning

The idea is to merge the objects that are closer than threshold Tmerge and prune the objects
whose weight is smaller than a threshold Tprune. This algorithm takes place after the correction
step.
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The merging step relies on the Mahalanobis distance to discriminate near and far objects.
The Mahalanobis distance between the object xi1k|k and xi2k|k is given by

d(xi1k|k,x
i2
k|k) = (x̂i1k|k − x̂i2k|k)

TPi1
k|k
−1

(x̂i1k|k − x̂i2k|k) (1.25)

where Pi1
k|k is the covariance of object xi1k|k, and x̂i1k|k its expectation. If multiple objects are

closer than a threshold Tmerge, they are merged using a weighted average. Then these merged
objects are pruned according to a threshold Tthresh. The full algorithm is described in the
table 1.

Algorithm 1 Merging and pruning algorithm
Input: {(wik|k, x̂

i
k|k,P

i
k|k)}

nk|k
i=1

1: Set l = 0

2: Initialize I =
{

1, ..., nk|k
}

. Initialize a list of indexes
3: while I 6= ∅ do . While there are indexes
4: Set l = l + 1

5: Set j = argmax
j∈I

wjk|k . Take the object with the highest weight

6: Compute L =
{
i ∈ I | d(xjk|k,x

i
k|k) ≤ Tmerge

}
. Find the objects that are close

7: Compute wl =
∑

i∈Lw
i
k|k . Merge the close objects

8: Compute x̂l = 1
wl

∑
i∈Lw

i
k|kx̂

i
k|k

9: Compute Pl = 1
wl

∑
i∈Lw

i
k|kP

i
k|k

10: Set I = I\L . Discard the merged objects
11: end while
12: Set i = 0

13: for j = 1, . . . , l do
14: if wj ≥ Tthresh then . Keep the merged objects with a high weight
15: Set i = i+ 1

16: Set wik|k = wj

17: Set x̂ik|k = x̂j

18: Set Pi
k|k = Pj

19: end if
20: end for
21: nk|k = i

Output: {(wik|k, x̂
i
k|k,P

i
k|k)}

nk|k
i=1

Using this merging and pruning strategy with the GNNSF algorithm limits the risk of
combinatorial explosion. However, if the association map Π∗ is erroneous, it cannot be cor-
rected a posteriori. The Multi-Hypothesis Tracking algorithm propagates more than one global
association hypothesis to avoid this problem.
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1.4 Multi-Hypothesis Tracking

The most straightforward implementation of the Multi-Hypothesis Tracking algorithm has the
same structure as the GNNSF but keeps nH global association hypotheses after the association
matrix resolution [BSL95]. The figure 1.6 illustrates this algorithm. In this figure, two global
association hypotheses are kept: Π1∗ and Π2∗ . It should be noted that the estimated object,
as well as the cardinality, take one more index to denote the hypothesis h: contrary to the
GNNSF, where xik is the i

th tracked object, now it is xh,ik . At each correction step, a maximum
number of nH association matrices 1.23 need to be computed, then nH association maps
Πh∗ , h ∈ [[1, nH ]] is computed using the Murty assignment algorithm [Mur68]. Each global
association hypothesis h corresponds to a number nhk of tracked objects.

Figure 1.6: Creation of one association matrix and keeping a maximum of nH = 2 global
association hypotheses.

Suppose nH association maps are selected for each global association hypothesis. In that
case, nH × nH association maps result from the association process, and the number of hy-
potheses grows exponentially as the MHT recursion continues. The figure 1.7 shows this
combinatorial explosion with nH = 2.

nH global association hypotheses must be selected to avoid the combinatorial explosion:
the least plausible hypotheses are pruned after each correction step. The pruning process
requires the definition of a global association weight. Generally, it is defined as the product
of the likelihoods of association

W h =
∏

(i∗,j∗)∈Πh∗

ci
∗,j∗

=

nhk∏
i=1

wh,ik|k

(1.26)

for the hypothesis h, that consists of nhk tracked objects and the global association hypothesis
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Figure 1.7: Explosion of the number of hypotheses for nH = 2.

Πh∗ = {(i∗, j∗)}n
h
k
i∗=1. The association likelihoods wh,ik|k are computed like in equations (1.21)

and (1.24).

Once the nH best hypotheses are selected, the global hypothesis likelihood, or association
map likelihoods, are normalized such as the marginal global hypothesis probability is given by

p(Πh∗) =
W h∑nH

h′=1W
h′

(1.27)

The MHT algorithm is very similar to the GNNSF, with an additional loop to account for
the nH different global association hypotheses. The main advantage of this filter is that it is
very close to an optimal solution, especially with a large nH .

However, it is also much more computationally expensive than the GNNSF. Another dis-
advantage is the modeling of the sensor’s false alarm and detection phenomenon: they are
not explicitly modeled. It could be avoided if the problem was considered from a Multi-
Object Tracking instead of a multiple single object tracking perspective. Indeed, the MHT
and GNNSF consider the association and state estimation problems separately.

1.5 Conclusion

Other well-studied solutions to the MOT problem exist. For instance, the Joint Probabil-
ity Data Association Filter (JPDAF) is a very efficient filter that limits its computational
complexity by leveraging the moment matching approach. Instead of solving an association
matrix, the contribution of each measurement is taken into account for each tracked object.
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This algorithm is not discussed here for the sake of brevity and because it was not implemented
during our work, contrary to the Random Finite Set approaches discussed in the following
section.

The GNNSF, MHT, or JPDAF algorithms propose hybrid models, using both the Bayesian
formalism for single object state estimation and empirical reasoning for the measurement and
evolution models. While this leads to robust filters, it also raises some paradoxes in practice.
Indeed, the association map is assumed to be known in the prior, while estimated simulta-
neously [Mah07]. In addition, the sets of tracked objects and measurements are processed
like ordered sets, while they are not. Building on these observations [Mah07] proposes a
fully-fledged methodology to derive genuine Bayesian Multi-Object Tracking filters.
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Chapter 2. Modeling the Multi-Object Tracking problem with Random Finite

Sets

2.1 The Random Finite Sets (RFS)

Instead of filtering each state vector individually with Bayesian inference, the Random Finite
Set theory aims at estimating a set of state vectors all at once. Since the object of the study
is a set, the measurement likelihood and evolution model are not limited to single objects
as in the MHT or GNNSF algorithms. Let Xk = {x1

k, ...,x
nk
k } be a set of nk state vectors.

Depending on the time step k, the composition of Xk evolves:

• new objects can appear,

• tracked objects can disappear, or die,

• most of the objects survives and are still tracked.

In that regard, the cardinality of this set behaves like a random variable. In that sense, Xk is
a Random Finite Set (RFS): it is a set whose cardinality behaves like a random variable and
is finite. Hence, the RFS Xk can be modeled by a prior probability density p(Xk|Z{1:k−1}).
This formulation of the problem was first proposed by Mahler in [Mah07].

The same reasoning can be applied to the set of mk measurements Zk = {z1, ..., zmk} at
time k. It is the RFS of measurements that is subject to random effects

• most of the measurements corresponds to detected objects,

• some measurements correspond to false alarms,

• some tracked objects are not detected.

The cardinality of the set of measurements Zk behaves like a random variable. As such, it can
be modeled by a measurement likelihood p(Zk|Xk), with Xk the set of nk state vectors.

With the measurement likelihood and the prior probability density of RFS Zk and Xk,
Bayes equation can be used to get the posterior probability density:

p(Xk|Z{1:k}) =
p(Zk|Xk) p(Xk|Z{1:k−1})∫
p(Zk|U) p(U |Z{1:k−1})δU

(2.1)

This formulation is similar to the equation (1.6), but it relies on RFS instead of vectors. The
same observation can be done about Chapman Kolmogorov equation (1.12) compared to its
RFS formulation.

The evolution model f(Xk+1|Xk) can be defined for the RFS Xk, with assumptions regard-
ing the number of new objects appearing at the next time step, the number of disappearing
objects, and the number of surviving tracked objects. Using the posterior probability density
computed in (2.1), the prior probability density is given by

p(Xk+1|Z{1:k}) =

∫
f(Xk+1|Xk) p(Xk|Z{1:k}) δXk (2.2)
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which is, once again, similar to equation (1.12).

These hypothesis are usual in the field of MOT. For instance, they can be found in the
work of Mahler [Mah07], the work of Vo et al. [VM06], and the contributions of Clark et al.
[CVV07].

Even though there are some similarities between the state vector and the RFS formulations
of the Bayesian inference problem, the comparison stops here since the RFS probability density
is different from that of a state vector, as highlighted by Mahler in [Mah03]. In addition, (2.2)
relies on a set integration, which might seems odd: this notation is explained in the next
section.

The RFS theory offers a mathematical toolbox to solve Bayes and Chapman Kolmogorov
equations using set-theoretic probability densities, set evolution models, and set measurement
likelihoods. In the following sections, a more formal introduction to RFS and its statistical
toolbox, Finite Set STatistics (FISST), is proposed, followed by the presentation and imple-
mentation details of three state-of-the-art algorithms we have tested during our work. These
algorithms were developed by Clark et al. in [CPV06], Vo et al. in [VVH16], and Williams in
[Wil15b].

2.2 Formal definition

Figure 2.1: Example of three RFS whose cardinalities behave like discrete random variables.

For this section, let X be a set of vectors {x1, ...,xn} that takes their values in S, a subset
of the euclidean vector space X. For instance, X = {x1,x2,x3} could be a set of 3 objects
whose state vectors are only consisting of a range. Hence the state vectors {x1,x2,x3} could
take their values in S = [0, 100] ⊂ R, if their range varies between 0 and 100 meters.

A more formal definition of an RFS is:
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Definition 2.1 (Random Finite Set). A Random Finite Set (RFS) X is a random variable
that takes its values from the collection of all finite subsets of n vectors, n ∈ N, of the euclidean
vector space X.

Remark 2.1.1. A realization of the RFS X can be {x1, ...,xn} or ∅. The empty set is always
included in the possible realizations.

Remark 2.1.2. For MOT, the state space X is Rdx , where dx is the number of dimensions
of the vector space. For instance, if the speed and position are estimated along one spatial
dimension, dx = 2.

Remark 2.1.3. For each realization, {x1, ...,xn} of an RFS X, the cardinality n is the random
variable to estimate with Bayesian inference. Any discrete probability density can model it.

Remark 2.1.4. An RFS X can be decomposed into subsets. This makes the RFS theory a
powerful tool to simply describe complex phenomena arising in MOT.

The figure 2.1 is an example of three RFS, taken at three timestamps. The RFS of
measurements Z can be decomposed into the RFS of false alarms ZFA and the RFS of detected
objects ZD(X): Z = ZD(X)]ZFA with ] the union of disjoints sets. In this simple example,
the cardinality of each set behaves like a random variable.

An RFS is subject to random effects; it can be characterized by a probability density that
depends on its cardinality.

Definition 2.2 (Probability density of an RFS). The probability density of an RFS depends
on its cardinality, as it is its random variable. For an RFS X, it can be expressed as

p(X) =


p(∅) if X = ∅
p({x1}) if X = {x1}
p({x1,x2}) if X = {x1,x2}, x1 6= x2

... ...

(2.3)

Remark 2.2.1. Sets are unordered, {x1,x2} = {x2,x1}.

Remark 2.2.2. Following the previous remark, the probability density over X can also be
expressed with vector notations

p(X) =



p(∅) if X = ∅
1! p(x1) if X = {x1}
2! p(x1,x2) if X = {x1,x2}, and x1 6= x2

... ...

n! p(x1, ...,xn) if X = {x1, ...,xn}, and xi 6= xj ∀ i 6= j

(2.4)

where the factorial notation distributes the probability over all n! ordered arrangements of
the set {x1, ...,xn}.

Remark 2.2.3. If X represents a set of tracked objects, its probability density is also called a
multi-object probability density.
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To get a better understanding of the RFS probability density, a first example could be the
RFS X containing exactly one random vector such as

p(X) =


0 if X = ∅
p(x) if X = {x}
0 if X = {x1, ...,xn}, and |X| ≥ 2

(2.5)

with the notation |·| denoting the cardinality of a set, meaning the number of strictly different
elements. Here p(x) is a standard vector probability density, such as the multivariate Gaussian
probability density introduced in the section 1.2.

As a second example, let X represent the RFS of independent and identically distributed
random vectors. The probability density of X depends on the cardinality distribution of X,
the discrete density p(N = n), and the joint probability density of the vectors composing X.
For instance, with the set {x1, ...,xn},

p({x1, ...,xn}) = n! p(N = n)

n∏
i=1

p(xi) (2.6)

Indeed, because of the independence hypothesis,

p(x1, ...,xn) =
n∏
i=1

p(xi) (2.7)

In order to prove that equations (2.5) and (2.6) are indeed two probability densities, their
integral should be equal to one, such as

∫
S p(X)δX = 1, where S is the space of the state

vectors constituting X.

Definition 2.3 (Set Integral). The set integral is defined such as∫
S
p(X)δX

∆
=

∞∑
n=0

1

n!

∫
S × ...× S︸ ︷︷ ︸

n

p({x1, ...,xn})dx1 . . . dxn

= p(∅) +

∫
S
p({x})dx +

1

2

∫
S×S

p({x1,x2})dx1dx2 + . . .

(2.8)

where p(X) is a finite set function, and S is the integration region of the underlying Euclidean
space X, where the vectors of X are taking their values.

Remark 2.3.1. X is Rdx for the MOT application, where dx is the number of state dimensions
of the state vectors composing constituting a set X.
Remark 2.3.2. If p(X) is a probability density, then its integral over S = Rdx is 1.

Regarding the last remark, the integration of (2.5) and (2.6) are good examples. The set
integral of p(X), defined in (2.5), is∫

S=Rdx
p(X)δX =

∫
S
p({x})dx

=

∫
S
p(x)dx

= 1

(2.9)
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since p(x) is the state probability density of a random vector z ∈ Rdx . Thus it is a probability
density.

For the RFS X of independent random vectors x ∈ Rdx , the equation (2.6), its integration
over the entire underlying space Rdx is∫

S=Rdx
p(X)δX = p(∅) +

∞∑
n=1

1

n!

∫
S × ...× S︸ ︷︷ ︸

n

p({x1, ...,xn})dx1 . . . dxn

= 0! p(N = 0) +
∞∑
n=1

1

n!

∫
S×...

n! p(N = n)
n∏
i=1

[
p(xi)

]
dx1 . . . dxn

= p(N = 0) +
∞∑
n=1

p(N = n)
n∏
i=1

[∫
S
p(xi)dxi

]

= p(N = 0) +
∞∑
n=1

p(N = n)

= 1

(2.10)

since p(N = n) is a discrete probability density. Hence p(X) is also a probability density.

The probability density associated with independent and identically distributed events is
versatile. Depending on the choice of p(N = n), this density can model a wide variety of
phenomena. For instance, choosing p(N = n) to be a discrete Poisson probability density
leads to the RFS version of the Poisson probability density [Mah07].

The RFS-based filters we have implemented rely on three types of multi-object probability
densities; they are presented below.

2.3 Multi-object probability densities

2.3.1 Poisson multi-object probability density

A multi-object Poisson probability density describes the intensity of a process that occurs
homogeneously or heterogeneously in an area. It can be the number of objects per square
meter that lays in the field of view of a sensor. Its proper definition is:

Definition 2.4 (Poisson density). An RFS X follows a multi-object Poisson density pp(X)

when its members are identically, independently distributed, and its cardinality is subject to
a discrete Poisson probability density pλ(·). For a sample {x1, ...,xn} of the RFS X, with
xi 6= xj , ∀ 1 ≤ i < j ≤ n, the multi-object probability density is

pp(X) = n! p(N = n|λ)×
n∏
i=1

p(xi)

= e−λλn
n∏
i=1

p(xi)

(2.11)
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where p(xi) is the state probability density associated to each vector xi. p(N = n|λ) is Poisson
probability density with expected value λ.

Remark 2.4.1. An equivalent formulation can be obtained when defining the intensity as
I(xi) = λp(xi): this notation is preferred because I(xi) encapsulate all there is to know about
a Poisson multi-object density, it is its expectation.
Remark 2.4.2. The intensity can also be interpreted as the density of objects per unit of space.
Hence, the integral of the intensity I(x), over the observation area S, gives the expected
cardinality of the RFS. Thus,

∫
S I(x)dx = λ, the expected cardinality of the studied RFS.

A simple example of Poisson RFS is the set of false alarms from a Cartesian sensor, ZFA.
The false alarms can be modeled as homogeneously, independently, and identically distributed
events occurring over the observation area S. If the sensor generates an average of NFA

false alarms per scan, then I(x) = NFA

S , a constant intensity since the clutter is considered
homogeneous.

2.3.2 Multi-Bernoulli density

Bernoulli densities are helpful to model single objects with their existence probability. They
are defined as:

Definition 2.5 (Bernoulli density). An RFS X is subject to a Bernoulli density pb(X) when
its cardinality is either 0 or 1 with the existence probability r,

pb(X) =


1− r if X = {∅}
r p(x) if X = {x}
0 otherwise

(2.12)

where p(x) is the state probability density of the singleton x, or single object.

Remark 2.5.1. Since r can be interpreted as an existence probability, this type of RFS is
interesting to model the existence of an object in the observation area S.

MOT is interested in multiple objects: hence multiple Bernoulli densities are necessary to
describe a set of objects. The union of multiple Bernoulli densities is called the Multi-Bernoulli
(MB) density. The Multi-Bernoulli density is very useful to model the set of tracked objects
since each might have a different state probability density, and some might be non-existent.

Definition 2.6 (Multi-Bernoulli density). An RFS is subject to a multi-object Multi-Bernoulli
density pmb(X) when it can be decomposed into subsets, each subject to a single Bernoulli den-
sity, equation (2.12). A Multi-Bernoulli (MB) consisting of N Bernoulli RFS has a probability
density function

pmb(X = {x1, ...,xn}) =
∑

X1]...]XN=X

N∏
i=1

pib(Xi)

=

N∏
i=1

(1− ri)

 ∑
1≤i1<in≤N

in∏
ij=i1

rijpij (xj)

1− rij

 (2.13)
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where Xk is a sample of X, ] denotes the union of disjoints sets, n ≤ N and the summation
is taken over permutations of n elements within N Bernoulli densities, pib(Xi). Here pi(x) is
the state probability density associated with the ith Bernoulli density.

Remark 2.6.1. This probability density is just the product of each Bernoulli probability densi-
ties: considering that a set is unordered, this product is taken over all permutations. [Wil15b]
proposes such formulation

Remark 2.6.2. As in the Bernoulli probability density, p(X = ∅) =
∏N
i=1(1− ri). This is the

product of the non existence probabilities.

Remark 2.6.3. p(X = {x1, ...xn}) = 0 whenever n > N , since each single Bernoulli density
concerns at most a singleton.

2.3.3 Multi-Bernoulli Mixture density

One Multi-Bernoulli density corresponds to one global association hypothesis between mea-
surements and tracked objects. However, keeping more than one global association hypothesis
can be a good solution to prevent wrong associations. To do so, multiple Multi-Bernoulli
densities are required, leading to the Multi-Bernoulli Mixture (MBM) density.

Definition 2.7 (Multi-Bernoulli Mixture density). The Multi-Bernoulli Mixture density
pmbm(X) is a linear combination of several MB densities, defined in equation (2.13). It is
expressed as

pmbm(X) =
nH∑
h=1

∑
X1]...]Xnh=X

nh∏
i=1

wh,i ph,ib (Xi) (2.14)

where each component h of the nH terms of the Multi-Bernoulli Mixture represents one global
association hypothesis. wh,i and ph,ib denotes the weight and the Bernoulli component associ-
ated with the set Xi when the global association hypothesis h is considered.

Remark 2.7.1.
∏nh

i=1w
h,i = W h is the weight of global hypothesis h, and

∑nH

h=1W
h = 1. Thus

when nH = 1, the MBM density is just an MB density.

Remark 2.7.2. Here a global association hypothesis has the same signification as in the MHT
filter introduced in the section 1.4.

Depending on the modeling assumptions, these densities can be used for different RFS.
For instance, the Probability Hypothesis Density (PHD) filter relies only on Poisson RFS,
resulting in a simple yet powerful solution to the MOT problem: its Gaussian Mixture (GM)
approximation, the GMPHD filter, is a good entry point to the RFS approach [VM06]. The
derivation of an RFS filter such as the GMPHD relies on the FInite Set STatistics (FISST)
methodology.
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2.4 Finite Set Statistics: A recipe for RFS filters

This methodology proposes a systematic approach to derive MOT filters with RFS. This
chapter focuses more on the modeling steps and the choice of the prior and the posterior
densities. The FISST mathematical toolbox presentation and usage is not in the scope of this
thesis, the existing material in [Mah03], [Mah07], and [Mah07] covers this topic extensively.

To derive an RFS filter [Mah13] proposes a five steps methodology using FInite Set STatis-
tics (FISST),

1. the measurement model of the sensor and the evolution model for the objects are con-
structed using assumptions regarding the problem at hand and RFS densities,

2. these models are converted to a Markov evolution density and a measurement likelihood,
using mass belief functions,

3. the optimal Bayesian MOT filter is built, using the measurement likelihood and the
evolution model,

4. using the FISST mathematical toolbox, the Bayesian MOT filter is converted to a prob-
ability generating functional,

5. the prior and posterior densities are chosen, according to simplifying assumptions.

All the filters introduced below use the same standard evolution and measurement models,
with different simplifying assumptions regarding the choice of the probability densities of the
RFS.

2.4.1 Standard Evolution Model Assumptions

The standard evolution model proposed [Mah03] assumes that

Assumption 2.1 (Markov evolution process). Single objects are subject to a Markov evolu-
tion process, the evolution of an object from state xk to state xk+1 is described by the Markov
transition density f(xk+1|xk).

Assumption 2.2 (Surviving objects). A single object xk will survive at time step k+ 1 with
probability pS(xk), and it will die with probability 1−pS(xk). A surviving object is an object
that still exists at the next step, even if the sensor does not detect it. For all tracked objects,
this leads to the construction of a surviving object set Xs

k+1|k.

Assumption 2.3 (Birth object). Spontaneous births might happen during the evolution
process and constitute the RFS Xb.

Assumption 2.4 (Birth, death and evolution independence). Birth, death, and evolution of
tracked objects are assumed conditionally independent.
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With these assumptions presented, the standard evolution model for an RFS based MOT
filter is

Xk+1|k = Xs
k+1|k ]X

b (2.15)

Here ] denotes the disjoint union: a tracked object cannot survive and be born at the same
time. In [Mah07], the standard evolution model is completed with an RFS describing spawning
objects, but in practice, it is rarely considered because of the additional complexity; the
interested reader can refer to [LSH13] for one of the few examples.

2.4.2 Standard Measurement Model Assumptions

The standard measurement model hypotheses are

Assumption 2.5 (False alarms). The number of false alarms is a random variable that is
subject to a Poisson density. Its expectation is a constant denoted λFA, and the false alarms
spatial distribution is uniform. In addition, they are assumed to be independent. The resulting
RFS ZFA is subject to a Poisson RFS of constant intensity IFA, such as

∫
S I

FAdx = λFA.

Assumption 2.6 (Detected objects). Each object generates at most one measurement. In
other words, the object xk is either detected with probability pD(xk), or it is missed with
probability 1− pD(xk). The detections are independent of the false alarms. The resulting set
of detections is denoted ZD(Xk|k−1).

These assumptions lead to the standard measurement model

Zk|k = ZD(Xk|k−1) ] ZFA (2.16)

where ] denotes the disjoint union since a measurement cannot be an object detection and a
false alarm at the same time.

These models are then derived using assumptions regarding the probability densities that
model each RFS. For instance, in the Gaussian Mixture Probability Hypothesis Density filter,
only Poisson densities are used for the modeling step.

2.5 The Gaussian Mixture Probability Hypothesis Density fil-
ter

The first filter introduced for MOT using the RFS theory is the Probability Hypothesis Density
filter [VM06]. It relies exclusively on Poisson RFS to describe the Multi-Object Tracking
problem. As presented in the section 2.3.1, the only parameter to estimate in a Poisson density
is its intensity, denoted I(x). Many variants of this algorithm exist, but the most efficient
ones rely on a Gaussian Mixture (GM) for the intensity of non-homogeneous processes. A
Gaussian Mixture is a linear combination of n Gaussian densities, with weights wi ∈ [0; 1],

n∑
i=1

wi N (x; x̂i,Pi) (2.17)
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For instance, the tracked object posterior intensity Ik|k(x) that represents nk|k objects, is
given by the GM triplet (wik|k, x̂

i
k|k,P

i
k|k) for i ∈ J1, nk|kK; it is respectively the weight wik|k,

the expected state vector x̂ik|k, and the error covariance matrix Pi
k|k of the GM component.

The indexing of the GM triplet is moved to the superscript position to avoid overloading the
time step indication in subscript. Since Ik|k(x) is an intensity, its integral should equal the
expected number of tracked objects:

∫
S
I(x)dx =

∫
S

(nk|k∑
i=1

wik|k N (x; x̂ik|k,P
i
k|k)

)
dx

=

nk|k∑
i=1

wik|k

(∫
S
N (x; x̂ik|k,P

i
k|k)dx

)

=

nk|k∑
i=1

wik|k

(2.18)

When all components have a weight equal to wik|k = 1, all the tracked objects exist, and the
integral of the intensity gives the number of objects.

In addition to the standard measurement and evolution model assumptions, the GM-PHD
filter adds the following hypotheses:

2.5.1 Evolution Model Assumptions

Assumption 2.7 (Birth objects). It is assumed that the RFS of birth objects Xb =

{x1, ...,xn
b} is subject to a non homogeneous Poisson density, with intensity Ib(x). This

intensity is a Gaussian Mixture (GM), as given in (2.17). Ib(x) is described by the set of
parameters {(wib, x̂ib,Pi

b)}n
b

i=1.

Assumption 2.8 (Surviving objects). Surviving tracked objectsXs
k+1|k = {x1

k+1|k, ...,x
ns

k+1|k}
are also subject to a Poisson density, and the intensity is a non homogeneous Gaussian Mixture
(GM), Isk+1|k(x). Each object constituting the RFS of tracked objects is subject to a linear
Gaussian evolution model as described in 1.2. The survival probability is constant, pS(x) = pS .

Assumption 2.9 (Prior probability density). The prior probability density p(Xk+1|Z{1:k}),
computed with the help of the posterior probability density p(Xk|Z{1:k}) and the evolu-
tion model f(Xk+1|Xk), is a Poisson probability density with a Gaussian Mixture intensity
Ik+1|k(x) = Isk+1|k(x) + Ib(x) =

∑nk+1|k
i=1 wik+1|k N (x; x̂ik+1|k,P

i
k+1|k).

2.5.2 Measurement Model Assumptions

Assumption 2.10 (Detected objects). Objects are detected with a constant probability den-
sity pD(x) = pD. Their single target measurement likelihood is linear Gaussian when they are
detected, as introduced in 1.2.
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Assumption 2.11 (Posterior probability density). The prior probability density p(Xk|Z{1:k}),
computed with the help of the prior probability density p(Xk|Z{1:k−1}) and the measurement
likelihood p(Zk|Xk|k−1), is a Poisson probability density with a Gaussian Mixture intensity
Ik|k(x) =

∑nk|k
i=1 w

i
k|k N (x; x̂ik|k,P

i
k|k).

Using these assumptions and the FInite Set STatistics (FISST) mathematical toolbox, the
GM-PHD filter is derived by solving the set-theoretic Chapman Kolmogorov (2.2) and Bayes
(2.1) equations. The resulting prediction and correction recursion are detailed below.

2.5.3 Prediction with Chapman Kolmogorov equation

The prediction step aims at computing the prior density, which is the same as estimating the
intensity Ik+1|k(x), with components (wik+1|k, x̂

i
k+1|k,P

i
k+1|k) for each of the i ∈ J1, nk+1|kK.

Based on the posterior Poisson probability density, p(Xk|Z{1:k}), and the evolution model
f(Xk+1|Xk), the prediction step can be carried out with the Chapman Kolmogorov equation
(2.2).

2.5.3.1 Surviving objects prediction equations

First, we predict the future state of the tracked objects. It is the same as predicting the future
state of the Poisson intensity Ik|k(x) with parameters {(wik|k, x̂

i
k|k,P

i
k|k)}

nk|k
i=1 .

wik+1|k = pS w
i
k|k

x̂ik+1|k = Fkx̂
i
k|k

Pi
k+1|k = FkPk|kF

T
k + Qk

(2.19)

where i ∈ J1, nk|kK, and the evolution matrix Fk and the prediction error covariance matrix
Qk are taken from section 1.2.

2.5.3.2 New objects prediction equations

We also need to predict the birth of new objects. It is the role of the birth Poisson intensity
Ib(x), that is represented by its parameters (wib, x̂

i
b,P

i
b) for each of the i ∈ J1, nbK new object

component.

i′ = i+ nk|k

wi
′

k+1|k = wi
′
b

x̂i
′

k+1|k = x̂i
′
b

Pi′

k+1|k = Pi′
b

(2.20)
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where the index i′ ∈ Jnk|k, nbK denotes that the birth objects are concatenated after the
surviving objects.

The pseudo-code 2 gives the details of the GM-PHD prediction step.

Algorithm 2 GM-PHD prediction algorithm
Input: (wik|k, x̂

i
k|k,P

i
k|k), ∀ i ∈ J1, nk|kK

(wib, x̂
i
b,P

i
b), ∀ i ∈ J1, nbK

Fk, Qk

1: for i = 1, . . . , nk|k do . Predict the state of the surviving objects
2: wik+1|k = pSw

i
k|k

3: x̂ik+1|k = Fkx̂
i
k|k

4: Pi
k+1|k = FkPk|kF

T
k + Qk

5: end for
6: for i = 1, . . . , nb do . Concatenate the new objects
7: i′ = i+ nk|k
8: wi

′

k+1|k = wib
9: x̂i

′

k+1|k = x̂ib
10: Pi′

k+1|k = Pi
b

11: end for
12: nk+1|k = nk|k + nb . Update the number of objects

Output: (wik+1|k, x̂
i
k+1|k,P

i
k+1|k), ∀ i ∈ J1, nk+1|kK

2.5.4 Correction with Bayes equation.

For the correction part, the filter aims at estimating the posterior probability density, that
is represented by the Gaussian Mixture triplet (wik|k, x̂

i
k|k,P

i
k|k) for each of the component

i ∈ J1, nk|kK. This Gaussian mixture is the intensity Ik|k(x) corresponding to tracked objects.

The correction step is computed with the help of the measurement set Zk = {z1, ..., zmk},
and the measurement likelihood p(Zk|Xk). In addition, the prior probability density
p(Xk|Z{1:k−1}) is necessary, it is represented by its intensity Ik|k−1(x), with components
(wik|k−1, x̂

i
k|k−1,P

i
k|k−1).

The correction step can be decomposed into two parts: the detection and missed hypothe-
ses.

2.5.4.1 Missed hypotheses

The missed hypotheses correspond to the validation of the prior probability density, in case
there are no measurements. They rely on the detection probability pD. This step is straight-
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forward:

wik|k = wik|k−1(1− pD)

x̂ik|k = x̂ik|k−1

Pi
k|k = Pi

k|k−1

(2.21)

These correspond to the first J1, nk|k−1K components of the posterior intensity Ik|k(x).

Algorithm 3 GM-PHD correction algorithm
Input: (wik|k−1, x̂

i
k|k−1,P

i
k|k−1), ∀ i ∈ J1, nk|k−1K

Zk = {z1, ..., zmk}
Hk, Rk

1: for i = 1, . . . , nk|k−1 do
2: wik|k = wik|k−1(1− pD)

3: x̂ik|k = x̂ik|k−1

4: Pi
k|k = Pi

k|k−1

5: end for
6: for i = 1, . . . , nk−1|k do
7: for j = 1, . . . ,mk do
8: i′ = nk|k−1 + (j − 1) nk|k−1 + i

9: S = HkP
i
k|k−1H

T
k + Rj

k

10: K = Pi
k|k−1H

T
k S−1

11: wi
′

k|k = pD wik|k−1 N (zj ; Hkx̂
i
k|k−1,S)

12: x̂i
′

k|k = x̂k|k−1 + K(zj −Hkx̂
i
k|k−1)

13: Pi′

k|k = (Idx −KHk)P
i
k|k−1

14: end for
15: end for
16: nk|k = mk nk|k−1 + nk|k−1

Output: (wik|k, x̂
i
k|k,P

i
k|k), ∀ i ∈ J1, nk|kK

2.5.4.2 Detection hypotheses

The detection hypotheses are computed for all the possible associations between the mea-
surements zjk ∈ Zk and the components of the prior intensity Ik|k−1(x). With nk|k−1 prior
parameters triplets {(wik|k−1, x̂

i
k|k−1,P

i
k|k−1)}nk|k−1

i=1 , there are mk nk|k−1 detection hypotheses
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to compute:

i′ = i+ (j − 1) nk|k−1 + nk|k−1

wi
′

k|k = pD wik|k−1 N (zjk; Hkx̂
i
k|k−1,S)

x̂i
′

k|k = x̂k|k−1 + K(zjk −Hkx̂
i
k|k−1)

Pi′

k|k = (Idx −KHk)P
i
k|k−1

K = Pi
k|k−1H

T
k S−1

S = HkP
i
k|k−1H

T
k + Rj

k

(2.22)

where the observation matrix Hk depends on the problem at hand, and the measurement error
covariance matrix Rj

k depends on the measurement zjk. Here, the linear Gaussian model of
the first chapter is applied. It should be noted that the indexing i′ = i+(j−1) nk|k−1 +nk|k−1

allows the concatenation of each detection hypotheses after the missed hypotheses.

Figure 2.2: GM-PHD filter, for nk|k−1 = 2, and mk = 3.

After the correction, the intensity Ik|k(x) consist of nk|k−1mk detection hypotheses and
nk|k−1 missed hypotheses. Hence, nk|k = (nk|k−1 + 1)mk after the correction step. This is
illustrated in figure 2.2: with nk|k−1 = 3 components for the prior intensity,and mk = 3

measurements, nk|k = 12 components are estimated in the corrected intensity Ik|k(x). Hence,
there is a risk of combinatorial explosion, and a pruning and merging procedure helps to limit
this risk [VM06]. The combinatorial explosion can also be tackled with a gating algorithm.

The pseudo-code 3 gives the details of the correction algorithm.

The GM-PHD filter’s main advantage is its low complexity, even with a time-varying
number of targets. In addition, the implementation is straightforward. However, using a
pruning and merging strategy is mandatory to avoid combinatorial explosion. The number
of tracked objects estimated might have a high variance for low detection probability sensors.
In addition, the labeling is not integrated into the filter, although Clark et al. proposed a
solution in [CPV06].
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Because of its advantages, many implementations of the GM-PHD filter exist. We de-
veloped a solution to the extended object tracking problem using this filter for the MOT
problematic in [Gue+21]. This work is further developed in the chapter 4.

Another application example can be found in [Mic+17]. In this article, the GM-PHD filter
is applied to autonomous driving using multiple heterogeneous sensors, which is one of the
applications targeted in our work. However, the lack of label is a limitation in an autonomous
driving application. This thesis considers the alternate modeling proposed by the Generalized
Labeled Multi-Bernoulli (GLMB) filter to alleviate this problem.

2.6 The Generalized Labeled Multi-Bernoulli filter

When tracking a set of objects, each object is identified with a unique label. With the densities
introduced in 2.3.3, a straightforward solution is to use a labeled MBM: this is the option
chosen by [VV13], [VVH16] with the Generalized Labelled Multi-Bernoulli Filter (GLMB).
The main idea is to augment the state space X of the RFS with a unique label space L.
This means that a RFS X subject to a MBM can be associated to a unique label sequence
L = {(l1, ..., ln)}, such as X = {(x1, l1), ..., (xn, ln)}, where li 6= lj whenever i 6= j. The
labeled MBM density plmbm is given by

plmbm(X) =
nH∑
h=1

 ∑
X1]...]Xnh=X

 nh∏
i=1

wh,iph,ilb (Xi)

 (2.23)

where ph,ilb (Xi) is a labeled Bernoulli density

ph,ilb (Xi = (xi, li)) = rh,i.ph,i(xi).δlh,i(l
i) (2.24)

with δlh,i(li) representing the Kronecker delta that takes the value of 1 when lh,i = li and 0

otherwise. Here h denotes a global association hypothesis. As a reminder, it is a version of the
successive association maps. In the density (2.23), there are nH global association hypothesis.

The density (2.23) is very close to the definition 2.7 of the MBM density, except for the
labeling. In the case of the GLMB filter described in [VV13], the existence probability of each
labeled Bernoulli density is set to rh,i = 1. In that aspect, it can be seen as a deterministic
filter: either an object exists or it does not. The resulting density is called a δ-GLMB density,
it is used to model the tracked objects. As for the MBM density, a GLMB density with one
global association hypothesis is an LMB density.

For instance, if the δ-GLMB density is chosen to model a posterior density represent-
ing multiple objects, then for each object i ∈ J1, nhk|kK of each global association hypoth-

esis h ∈ J1, nHk|kK, the set of variables to estimate is (wh,ik|k, l
h,i
k|k, r

h,i
k|k, p

h,i
k|k(x)). In addition,

if the state probability density is Gaussian, then the set of variables to estimate becomes
(wh,ik|k, l

h,i
k|k, r

h,i
k|k, x̂

h,i
k|k,P

h,i
k|k).
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The GLMB filter needs additional assumptions to the standard evolution and measurement
model presented in 2.4; they are presented below.

2.6.1 Evolution Model Assumptions

Assumption 2.12 (Birth objects). The RFS of birth objects Xb is modeled by an LMB
density consisting in nb Bernoulli densities. Each single birth object is subject to a linear
Gaussian model. Hence, the set of variables to estimate for each birth object (xib, l

i
b) ∈ Xb is

(lib, r
i
b, x̂

i
b,P

i
b).

Assumption 2.13 (Surviving objects). The set of surviving objects RFS Xs is subject to
a δ-GLMB density. Each object follows a linear Gaussian model and either survives with
a constant probability pS(xi, li) = pS or dies with constant probability 1 − pS . For each
association hypothesis h ∈ J1, nhK, and each tracked object i ∈ J1, nhK, the probability density
parameters to estimate for each surviving object (xh,is , lh,is ) is (wh,is , lh,is , rh,is , x̂h,is ,Ph,i

s )

Assumption 2.14 (Prior probability density). The prior probability density is a δ-GLMB
density, with nH global association weights, {wh,i}nhi=1, n

h is the cardinality of hypothe-
sis h. Tracked objects are subject to a linear Gaussian model. For each global associ-
ation hypothesis h ∈ J1, nhK, and each tracked object i ∈ J1, nhK, the set of variables
(wh,ik+1|k, l

h,i
k+1|k, r

h,i
k+1|k, x̂

h,i
k+1|k,P

h,i
k+1|k) needs to be estimated.

2.6.2 Measurement Model Assumptions

For the measurement model, the usual measurement model hypotheses hold here:

Assumption 2.15 (Detected objects). Tracked objects are detected with a constant proba-
bility pD(xi, li) = pD. Thus, the missed detection probability is 1−pD for any tracked object.
The measurement likelihood of detected objects is linear Gaussian.

Assumption 2.16 (Posterior probability density). The posterior probability density is
a δ-GLMB. Hence, the same set of variables than for the prior needs to be estimated
for each global association hypothesis h ∈ J1, nhK, and each tracked object i ∈ J1, nhK,
(wh,ik|k, l

h,i
k|k, r

h,i
k|k, x̂

h,i
k|k,P

h,i
k|k).

2.6.3 Joint prediction and correction strategy.

The chosen implementation relies on an efficient joint prediction and update strategy that
limits the combinatorial complexity of the algorithm [VV13]. The main idea is to predict the
birth of new objects while updating already tracked objects with a measurement set Z. It is
illustrated in the figure 2.3: a set of measurements Z = {z1, z2} needs to be associated with
each global hypothesis of the tracked object density, here a δ-GLMB. Taking, for instance,
global hypothesis h, with the objects set X = {x1,x2}, and considering the newly born objects
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Figure 2.3: Two global associations, blue and red, were created from the term j of the two
tracked objects and the newly born objects densities, X ] Xb, and the measurement set Z.
n.e. stands for non-existent, and n.d. not detected.

LMB density consisting in one birth, Xb = {x1
b}, two new global associations and their weights

are computed here. This process is repeated for the nH terms of the δ-GLMB density, resulting
in the creation of nH association matrices.

The figure 2.3 shows the structure of the association matrix. For the global association
history h, the first nhk−1|k−1 lines correspond to already tracked objects, and the nb following
lines correspond to birth objects.

2.6.3.1 Likelihood of already tracked objects

In the association matrix of figure 2.3, the cost ci,j for an already tracked object is computed
such as:

ci,j =


pS pD N (zjk − x̂h,ik|k−1; 0,S) if i ∈ J1, nhK, j ∈ J1,mkK
pS (1− pD) if i ∈ J1, nhK, j = 0

1− pS if i ∈ J1, nhK, j = −1

(2.25)

where j = 0, and j = −1 stand respectively for the non-detection (n.d.), and non existence
(n.e.) cases. N (zjk− x̂h,ik|k−1; 0,S) is the likelihood of associating the measurement zjk with the

tracked object (xh,ik|k−1, l
h,i
k|k−1); S is computed as in equation (1.8) of the first chapter.



2.6. The Generalized Labeled Multi-Bernoulli filter 35

2.6.3.2 Likelihood of birth objects

The construction of the cost ci,jb is similar for the new object (xib, l
i
b)

ci,jb =


ri,jb pD N (zjk − x̂i,jb ; 0,S) if i ∈ Jnh + 1, nh + nbK, j ∈ J1,mkK
ri,jb (1− pD) if i ∈ Jnh + 1, nh + nbK, j = 0

1− ri,jb if i ∈ Jnh + 1, nh + nbK, j = −1

(2.26)

with the birth existence probability ri,jb , and the measurement likelihood N (zjk − xi,jb ; 0,S)

is Gaussian, with S computed as in (1.8). Once again, j ≤ 0 stands for n.d. or n.e. cases.
The indexing of these costs follows the example set in the figure 2.3. It should be noted that
the indexing of i starts at nh + 1 since the nh first lines of the association matrix are for the
detected objects.

2.6.3.3 Selection of the best global associations

The best global association hypotheses are extracted from the association matrix using the
estimator

Πh∗ = argmax
{(i∗,j∗)}nh

i∗=1

nh∏
i∗=1

ci
∗,j∗ (2.27)

where Π∗ = {(i∗, j∗)}nhi∗=1 defines the best association map, or global association hypothesis.
It is equivalent to keeping the terms of the δ-GLMB with the highest weights, denoted W1

and W2 in 2.3.

The estimator (2.27) has proven to give good results on other datasets [GF+18]. Here it is
coupled with Murty’s algorithm to find and rank a maximum of nH hypotheses. This is done
for each global association hypothesis h ∈ J1, nHK, of the original δ-GLMB density. The result
is a predicted and updated density consisting of nH × nH global association hypothesis. This
density is truncated to the nH best hypotheses to keep the solution computationally tractable.

Once Πh∗ is obtained, all the parameters of the global hypothesis h∗ are computed. Two
cases arise: either an existing object is updated, or a new object is created.

In the case where i∗ ∈ J1, nhK, then an existing object is updated with the following
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equations

lh,i
∗

k+1|k+1 = lh,i
∗

k|k

rh,i
∗

k+1|k+1 = 1

wh,i
∗

k+1|k+1 =

{
ci∗,j∗ if j∗ ∈ J1,mkK
ci∗,0 if j∗ = mk + i∗

x̂h,i
∗

k+1|k+1 =

 Fkx̂
h,i∗

k|k + K(zj
∗

k −Hk

[
Fkx̂

h,i∗

k|k

]
) if j∗ ∈ J1,mkK

Fkx̂
h,i∗

k|k if j∗ = mk + i∗

Ph,i∗

k+1|k+1 =

{
(Idx −KHk)(FkP

h,i∗

k|k FT + Qk) if j∗ ∈ J1,mkK
FkP

h,i∗

k|k FT + Qk if j∗ = mk + i∗

(2.28)

where the first case corresponds to the detection case and the second to the missed case. All the
parameters are from the linear Gaussian model of the first chapter. The joint prediction and
update procedure appears clearly in these equations, for instance when computing x̂h,ik+1|k+1

directly from x̂h,ik|k.

If i∗ ∈ Jnh + 1, nh + nbK, then a new object is created, with the parameters:

lh,i
∗

k+1|k+1 = li
∗−nh
b

rh,i
∗

k+1|k+1 = 1

wh,i
∗

k+1|k+1 =

{
ci
∗,j∗

b if j∗ ∈ J1,mkK
ci
∗,0
b if i ∈ Jnh + 1, nh + nbK, and j∗ = mk + i∗

x̂h,i
∗

k+1|k+1 =

{
x̂i
∗−nh
b + K(zj

∗

k −Hkx̂
i∗
b ) if j∗ ∈ J1,mkK

x̂i
∗−nh
b if j∗ = mk + i∗

Ph,i∗

k+1|k+1 =

{
(Idx −KHk)P

i∗−nh
b if j∗ ∈ J1,mkK

Pi∗−nh
b if j∗ = mk + i∗

(2.29)

where the first case corresponds to detecting a new object, and the second case corresponds
to missing a new object.

In equation (2.28), and equation (2.29), only the cases with a predicted and corrected
existence probability rh,ik+1|k+1 equal to 1 are shown since otherwise the updated object does
not exist and is deleted.

The resulting filter is the joint prediction and update GLMB. It originates from the δ-
GLMB filter of [VV13], but it is much more efficient thanks to the integration of the joint
prediction and update procedure. Its pseudo-code is presented in table 4.

The main advantage of the GLMB filter is the integration of the labeling directly in the
modeling step. Its complexity is O(nH+2(nh+nb)4), it can be lowered to O(nH+2(nh+nb)3)

with the help of Gibbs sampling instead of Murty’s algorithm to compute the global association
hypothesis, leading to an efficient implementation when compared to the δ-GLMB filter of
[VVH16].
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Algorithm 4 GLMB joint prediction and update algorithm

Input: {{(wh,ik|k, r
h,i
k|k, l

h,i, x̂h,ik|k,P
h,i
k|k)}

nh
i=1}n

H

h=1

{(x̂ib,Pi
b, r

i
b)}n

b

i=1

Zk = {zj}mkj=1

Fk, Qk, Hk, Rk

1: for h = 1, . . . , nH do . For each global association hypothesis h,
2: for i = 1, . . . , nh do . compute the association matrix.
3: ci,−1 = 1− pS . Start with each tracked object,
4: ci,0 = pS (1− pD)

5: for j = 1, . . . ,mk do
6: ci,j = pS pD N (zjk − x̂h,ik|k−1; 0,S)

7: end for
8: end for
9: for i = 1, . . . , nb do . then proceed with each new object.

10: ci,−1
b = 1− rib

11: ci,0b = rib (1− pD)

12: for j = 1, . . . ,mk do
13: ci,jb = rib pD N (zjk − x̂ib; 0,S)

14: end for
15: end for
16: {Πh∗}nHh∗=1 = Murty(C, nH) . Compute the nH best associations of this matrix.
17: for h∗ = 1, . . . , nH do . Create the new global association hypotheses
18: nh

∗
= card({(i∗, j∗)| i∗ ∈ J1, nh + nbK, j∗ ≤ (nh + nb +mk)}

19: for i = 1, . . . , nh
∗ do . Update the objects, using equation (2.29) or (2.28)

20: Compute (wh
∗,i
k+1|k+1, r

h∗,i
k+1|k+1, l

h∗,i, x̂h
∗,i
k+1|k+1,P

h∗,i
k+1|k+1)

21: end for
22: W h∗ =

∏nh
∗

i=1 w
h∗,i
k+1|k+1 . Compute the weight of this new global hypothesis.

23: end for
24: end for

Output: {{(wh,ik+1|k+1, r
h,i
k+1|k+1, l

h,i, x̂h,ik+1|k+1,P
h,i
k+1|k+1)}nhi=1}

(nH)2

h=1
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However, the main drawback is the binary aspect of the existence probability rh,ik|k. Indeed,

with a "soft" existence probability rh,ik|k ∈ [0, 1], one Bernoulli density describes the existence
and non-existence case, while with a binary existence probability, two Bernoulli densities
are necessary: one set to 1 and the other set to 0. Another disadvantage is the size of the
association matrix: it is larger than for the Poisson Multi-Bernoulli Mixture filter discussed
below.

The latest development around the GLMB filter introduces Gibbs sampling as well as a
specific gating algorithm for the association matrix resolution [VVH16]. In [Mah19], Mahler
proposes a multi-sensor integration, with dynamically moving, appearing, and disappearing
sensors. Mahler acknowledges that the GLMB filter is an efficient and exact formulation of
the Bayes Multi-Object Tracker in this article.

Our contribution for this filter is an implementation for MOT in an autonomous driving
application [Gue+22]. We proposed to track seven types of objects using the GLMB filter,
and we compared the results with other state-of-the-art solutions. We used the open-source
nuScenes dataset to benchmark our implementation, [Cae+20]. This contribution is discussed
more thoroughly in the chapter 5.

2.7 The Poisson Multi-Bernouli Mixture filter

The Poisson Multi-Bernoulli Mixture filter (PMBM) is a hybrid filter that relies on a Poisson
RFS Xu to model presumably existing but not yet detected objects and a Multi-Bernoulli
Mixture RFS Xd for detected and tracked objects [Wil15b]. The idea is to benefit from the
efficient inference of Poisson RFS for undetected but predicted objects, including new objects,
while using the descriptive power of the MBM RFS for detected and tracked objects with high
existence probability. These RFS are supposed to be independent and included in the tracked
object RFS X. The resulting multi-object probability density is denoted:

ppmbm(X) =
∑

Xu]Xd=X

pp(X
u).pmbm(Xd) (2.30)

where the summation is taken over the disjoints union of the set X. As previously, the MBM
allows to keep several global association hypotheses. Contrary to the GLMB filter, there are
no explicit label in this density, and the existence probability rh,i associated to each tracked
object is not deterministic: rh,i ∈ [0, 1], and not rh,i ∈ {0, 1} like in the GLMB filter.

At any time step, the MBM part of the multi-object system is determined, for each global
hypothesis 1 ≤ h ≤ nH , by a set of state probability densities {ph,i}nhi=1, a set of existence
probabilities {rh,i}nhi=1 and a set of global association weights {W h,i}nHi=1. Hence, for each global
association hypothesis h ∈ J1, nHK, each tracked object i ∈ J1, nHK is estimated with the
couple of parameters (rh,i, ph,i). Regarding the Poisson probability density, only its intensity
Iu(xu) needs to be estimated. For each undetected object xu,i ∈ Xu the couple of parameters
(wu,i, pu,i) needs to be estimated. With a linear Gaussian model, the probability densities
ph,i(·) and pu,i(·) are determined by their mean and covariance matrix, respectively (x̂h,i,Ph,i)
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and (x̂u,i,Pu,i). The resulting PMBM density can be estimated using Bayesian inference with
the help of specific modeling assumptions [Wil15b].

2.7.1 Evolution Model Assumptions

Assumption 2.17 (Birth objects). The RFS of birth objects Xb is modeled by a Poisson
density with a non homogeneous intensity Ib(xb) =

∏nb

i=1w
b,iN (xb; x̂b,i, P b,i); the superscript

b stands for birth. Each single birth object is subject to a linear Gaussian model, and the set
of variables to estimate for each birth object xb,i ∈ Xb is (wb,i, x̂b,i, P b,i). As soon as they are
initialized, birth objects are considered as unobserved objects.

Assumption 2.18 (Surviving undetected objects). The RFS of undetected objectsXu evolves
according a linear model, and each undetected object xu,i ∈ Xu has a constant survival
probability pS(xu,i) = pS . They are modeled by a Poisson density with a non homogeneous
intensity Iu(xu) =

∏nu

i=1w
u,iN (xu; x̂u,i,Pu,i); the superscript u stands for "undetected".

Assumption 2.19 (Surviving tracked objects). The RFS of detected and surviving objects
Xd is modeled by a Multi-Bernoulli Mixture density, with a linear Gaussian state model.
The resulting set of parameters to estimate for each surviving object of a global association
hypothesis h ∈ J1, nHK is xh,i ∈ Xd is (rh,i, x̂h,i,Ph,i).

Assumption 2.20 (Prior probability density). The predicted prior probability density con-
sists of the birth objects’ Poisson density, the surviving unobserved objects’ Poisson density,
and the surviving tracked objects’ MBM density. The resulting density is the PMBM density
of equation (2.30).

2.7.2 Measurement Model Assumptions

Assumption 2.21 (Unobserved objects). Since unobserved objects are subjects to a Poisson
density, their update procedure is similar to the one of the PHD filter. Each unobserved object
gives rise to a new Bernoulli component for each measurement.

Assumption 2.22 (Detected objects). The objects have a constant detection probability
pD(x) = pD. Thus, the missed detection probability is given by 1 − pD for any object. The
measurement likelihood of detected objects is linear Gaussian.

Assumption 2.23 (Posterior probability density). The posterior probability density is a
PMBM density, as the prior density. Hence, the same set of variables as for the prior needs
to be estimated.

With the help of these modeling assumptions, the PMBM density is propagated through
the prediction and update equations. The Poisson density corresponds to unobserved objects,
therefore it is very lightweight and straightforward to estimate recursively [GF+18]. Regarding
the estimation of the MBM density for tracked objects, the prediction is straightforward too,
resulting in the prediction of the existence probability and state parameters for each object.
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2.7.3 Prediction with Chapman Kolmogorov equation

With the aforementioned hypotheses, [Wil15b] has derived a prediction procedure that is a
combination of a Poisson and MBM prediction equations. Using the posterior probability
density of the PMBM correction step, the goal is to compute the prior probability density. It
is represented by the Poisson prior parameter Iuk+1|k(x

u) for undetected objects, and the MBM

prior parameters (rh,ik+1|k, x̂
h,i
k+1|k,P

h,i
k+1|k) for each of the tracked objects xh,ik+1|k, i ∈ J1, nhk+1|kK,

h ∈ J1, nH .

2.7.3.1 Surviving objects prediction equations

With the help of the notations defined in the assumptions, the Multi-Bernoulli density pre-
diction equations are

rh,ik+1|k = pSr
h,i
k|k

x̂h,ik+1|k = Fkx̂
h,i
k|k

Ph,i
k+1|k = FkP

h,i
k|kF

T
k + Qk

nhk+1|k = nhk|k

(2.31)

for each tracked object i ∈ J1, nhk+1|kK. Here Fk and Qk denote the evolution matrix and
prediction error covariance matrix.

2.7.3.2 New and unobserved objects prediction equations

As for the Poisson intensity of tracked and unobserved objects:

wu,ik+1|k = pSw
u,i
k|k

x̂u,ik+1|k = Fkx̂
u,i
k|k

Pu,i
k+1|k = FkP

u,i
k|kF

T
k + Qk

(2.32)

And the birth intensity is incorporated to the prior intensity of tracked and unobserved objects:

w
u,i+nu

k|k
k+1|k = wib

x̂
u,i+nu

k|k
k+1|k = x̂ib

P
u,i+nu

k|k
k+1|k = Pi

b

nuk+1|k = nuk|k + nb

(2.33)

for each of the nb birth object xib ∈ Xb.

The pseudo-code associated to the prediction step is given in algorithm 5: it is just the
straightforward application of equations (2.31), (2.32), and (2.33).
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Algorithm 5 PMBM prediction algorithm

Input: {(rh,ik|k, x̂
h,i
k|k,P

h,i
k|k)}

nh
k|k
i=1 ,

{(wib, x̂ib,Pi
b)}n

b

i=1,

{(wu,ik|k, x̂
u,i
k|k,P

u,i
k|k)}

nu
k|k
i=1 ,

Fk, Qk

1: for i = 1, . . . , nk|k do
2: rh,ik+1|k = pSr

h,i
k|k

3: x̂h,ik+1|k = Fkx̂
h,i
k|k

4: Ph,i
k+1|k = FkPk|kF

T
k + Qk

5: end for
6: nk+1|k = nk|k
7: for i = 1, . . . , nb do
8: wu,ik+1|k = pSw

u,i
k|k

9: x̂u,ik+1|k = Fkx̂
u,i
k|k

10: Pu,i
k+1|k = FkP

u,i
k|kF

T
k + Qk

11: end for
12: for i = 1, . . . , nb do
13: i′ = i+ nuk|k

14: wu,i
′

k+1|k = wib

15: xu,i
′

k+1|k = xib

16: Pu,i′

k+1|k = Pi
b

17: end for
18: nuk+1|k = nuk|k + nb

Output: {(rh,ik+1|k, x̂
h,i
k+1|k,P

h,i
k+1|k)}

nh
k+1|k
i=1 ,

{(wu,ik+1|k, x̂
u,i
k+1|k,P

u,i
k+1|k)}

nu
k+1|k
i=1
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2.7.4 Correction with Bayes equation

Figure 2.4: PMBM filter association matrix, for h = 1, nhk|k−1 = 2, nuk|k−1 = 4 and mk = 2.

The correction step necessitates the creation of an association matrix, as shown in 2.4.
In this example, two measurements are received, Z = {z1, z2}, and only one component h
of the MBM density of tracked objects is considered. The Poisson density of intensity Iu(x)

corresponding to undetected objects generates one new object hypothesis per measurement.
Two new global association hypotheses are highlighted in red and blue. With the measurement
model assumptions of the PMBM filter, the non-existence (n.e.) hypothesis for each target
does not need to be explicitly computed, thanks to the use of non-deterministic existence
probabilities. This results in a more lightweight association matrix when compared to the
joint GLMB filter.

2.7.4.1 Tracked objects likelihood of association

The figure 2.4 shows that three hypotheses for each tracked and detected object are computed
during the update step: the detection hypothesis, the missed hypothesis, and the new object
hypothesis. Thus, for each global association hypothesis h ∈ J1, nHK, the missed and detection
costs are computed, such as

ci,j =

{
pD rh,ik|k−1 N (zjk − x̂h,ik|k−1; 0,S) if i ∈ J1, nhk|k−1K, j ∈ J1,mkK
1− rh,ik|k−1 + rh,ik|k−1(1− pD) if i ∈ J1, nhk|k−1K, j = 0

(2.34)

with index j = 0 denoting the missed hypothesis, and S computed as in (1.8).
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2.7.4.2 New objects likelihood of association

The new object cost is computed using the whole undetected object Poisson intensity
Iuk|k−1(xu) for each measurement:

ci,jb =
∑nu

k|k−1

l=1

(
wu,lk|k−1 pD N (zjk − x̂u,lk|k−1; 0,S)

)
+ IFA for i, j ∈ J1 + nhk|k−1, n

b + nhk|k−1K× J1,mkK
(2.35)

2.7.4.3 Selection of the best global associations

Once the association matrix is built for the global hypothesis h ∈ J1, nHK, the best global
association hypothesis are extracted using the estimator (2.27) of the GLMB filter,

Πh∗ = argmax
{(i∗,j∗)}nh

i∗=1

nh∏
i∗=1

ci
∗,j∗

The best global association hypotheses Πh∗ are ranked using Murty’s algorithm [Mur68]: in the
example of 2.4 two new global association hypotheses for component h are kept. This process
is repeated for all the 1 ≤ h ≤ nH components of the MBM density, and as previously, the
updated MBM density is truncated to contain at most nH best global association hypotheses.

Once Πh∗ = {(i∗, j∗)}nhi∗=1 is obtained, all the parameters of the global hypothesis h are
computed.

If i∗ ∈ J1, nhk|k−1K, then an already detected and tracked object is selected by the association
map (i∗, j∗). The updated set of parameters are

K = Ph,i∗

k|k−1H
T
k S−1

S = HkP
h,i∗

k|k−1H
T
k + Rk

rh
∗,i∗

k|k =


1 if j∗ ∈ J1,mkK

rh,i
∗

k|k−1
(1−pD)

1−rh,i
∗

k|k−1
+rh,i

∗
k|k−1

(1−pD)
if j∗ = 0

x̂h
∗,i∗

k|k =

{
x̂h,i

∗

k|k−1 + K(zj
∗

k −Hkx̂
h,i∗

k|k−1) if j∗ ∈ J1,mkK
x̂h,i

∗

k|k−1 if j∗ = 0

Ph∗,i∗

k|k =

{
(Idx −KHk)(P

h,i∗

k|k−1) if j∗ ∈ J1,mkK
Ph,i∗

k|k−1 if j∗ = 0

(2.36)

Otherwise, when i∗ ∈ Jnhk|k−1+1, nhk|k−1+nbK, and j∗ ∈ J1,mkK, the association map points
to the creation of a new Bernoulli component. This new tracked object is created comparing
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all the undetected hypotheses of Xu to each measurement zj
∗

k such as

rh
∗,i∗

k|k =

∑nu
k|k−1

l=1

(
wu,lk|k−1 pD (zj

∗

k − x̂u,lk|k−1; 0,S)
)

∑nu
k|k−1

l=1

(
wu,lk|k−1 pD N (zj

∗

k − x̂u,lk|k−1; 0,S)
)

+ IFA

x̂h
∗,i∗

k|k =

∑nu
k|k−1

l=1 cl,j
∗

b yl∑nu
k|k−1

l=1 cl,j
∗

b

Ph∗,i∗

k|k =

∑nu
k|k−1

l=1 cl,j
∗

b Pl + (x̂h
∗,i∗

k|k − yl)(x̂h
∗,i∗

k|k − yl)T∑nu
k|k−1

l=1 cl,j
∗

b

Sl = HkP
u,l
k|k−1H

T
k + Rj∗

k

Kl = Pu,l
k|k−1H

T
k S−1

Pl = Pu,l
k|k−1 −KlHkP

u,l
k|k−1

yl = x̂u,lk|k−1 −Kl(zj
∗

k −Hkx̂
u,l
k|k−1)

(2.37)

As for nhk|k, it is equal to the cardinality of Π∗h after the update.

Finally, the Poisson density Iu(x) corresponding to undetected yet tracked objects needs
to be updated. Since these objects are assumed unobserved, the update procedure corresponds
to the validation of the predicted intensity:

wu,ik|k = (1− pD) wu,ik|k−1

x̂u,ik|k = x̂u,ik|k−1

Pu,i
k|k = Pu,i

k|k−1

nuk|k = nuk|k−1

(2.38)

where i ∈ J1, nuk|k−1K. The algorithm 6 gives the full correction procedure.

The resulting filter is quite efficient because it benefits from the Poisson density to solve a
smaller association matrix compared to the GLMB filter. Moreover, the MBM part benefits
from existence probabilities that are non-deterministic compared to the deterministic δ-GLMB
density.

In the literature, this filter has drawn a lot of attention because of the hybrid approach
it proposes for new object initialization and the non-deterministic choice for the existence
probability rh,i that differentiates it from the GLMB filter. Amongst the latest development,
[Xia+19] proposes a multi-scan implementation of the PMBM, which is refined in [GF+20]
with the two Trajectories Poisson Multi-Bernoulli (TPMB) filter. Amongst the contributions,
the sets of trajectories are a very interesting extension to the FISST mathematical toolbox.

Our contribution aims another application, we have implemented this filter for group ob-
jects in [Gue+20]. This extension of the original work of [Wil15b] necessitates the presentation
of the extended object tracking problem in the next chapter.
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Algorithm 6 PMBM correction algorithm

Input: {(rh,ik|k−1, x̂
h,i
k|k−1,P

h,i
k|k−1)}

nh
k|k−1

i=1 ,

{(wu,ik|k−1, x̂
u,i
k|k−1,P

u,i
k|k−1)}

nu
k|k−1

i=1 ,
{zjk,R

j
k}
mk
j=1

1: for h = 1, . . . , nH do
2: for i = 1, . . . , nhk|k−1 do . Creation of the association matrix
3: for j = 0, . . . ,mk do . Compute the detection costs
4: Compute ci,j according to (2.34)
5: end for
6: for j = 1, . . . ,mk do . Compute new objects’ birth costs

7: Compute c
i+nh

k|k,j

b according to (2.35)
8: end for
9: end for

10: Compute {Πh∗}nHh∗=1 = Murty(C, nH) . Extract the nH best associations
11: for h∗ = 1, . . . , nH do . Create the nH new global association hypotheses
12: for (i∗, j∗) ∈ Πh∗ do
13: if i∗ < nhk|k−1 then

14: Compute (rh
∗,i∗

k|k , x̂h
∗,i∗

k|k ,Ph∗,i∗

k|k ) using (2.36)
15: else
16: Compute (rh

∗,i∗

k|k , x̂h
∗,i∗

k|k ,Ph∗,i∗

k|k ) using (2.37)
17: end if
18: end for
19: nh

∗

k|k = card(Πh∗) . Update the cardinality of the new hypothesis
20: end for
21: end for
22: for i = 1, . . . , nuk|k−1 do . Update the undetected objects intensity

23: Compute (wu,ik|k, x̂
u,i
k|k,P

u,i
k|k) using (2.38)

24: nuk|k = nuk|k−1

25: end for

Output: {(rh,ik|k, x̂
h,i
k|k,P

h,i
k|k)}

nh
k|k
i=1 ,

{(wu,ik|k, x̂
u,i
k|k,P

u,i
k|k)}

nu
k|k
i=1
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2.8 Conclusion

In this chapter, we have solved the MOT problem for isolated objects, objects that return at
most one measurement, using only Bayesian inference with the Random Finite Sets theory. It
proposes to use Bayesian inference on Random Finite Sets (RFS) instead of single state vectors.
With the help of the FISST mathematical toolbox, set operations such as set derivation or
integration are possible, meaning that the derivation of a Bayesian filter for sets is achievable.
Contrary to the previous chapter, the objects association and estimation problems are jointly
solved with RFS-based filters, leading to optimal solutions for the MOT problem.

Building on the standard measurement and evolution models for RFS, we have proposed
the study of three filters: the PHD filter, the GLMB filter, and the PMBM filter. They
represent the state of the art of RFS-based MOT. We implemented and tested each one of
them for this thesis in [Gue+21], [Gue+22], and [Gue+20].

The main problem we did not address in this first chapter is the question of extended
objects, i.e., objects that return more than one measurement. Indeed, one of the assumptions
of the standard measurement model is that an object returns at most one measurement per
acquisition. This assumption is too restrictive for the applications aimed in this work. The
purpose of the next chapter is to address this problem. This will lead to the multiple extended
object tracking applications of chapters 4 and 5.
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3.1 Detecting and estimating extended objects

The previous chapter presented the issue of Multi-Object Tracking (MOT) with a restrictive
measurement model: tracked objects only returned at most one measurement. It is the case
when tracked objects are far from the sensor or their size does not exceed the cell resolution
of the sensor. The cell resolution of a sensor is the minimal size of an object to be detected.
In this chapter, several solutions to this problem are presented, then we will focus on the
Random Matrix (RM) model and the modeling of group objects.

3.1.1 Definitions and available solutions

In practice, several applications question this assumption: the objects might return more than
one measurement per sensor scan. These objects are called Extended Objects (EO). This work
considers two types of EOs: rigid EOs and non-rigid EOs.

First, rigid Extended Objects (EOs) return multiple measurements per sensor scan, while
their shape remains the same through time. Rigid EOs are encountered both in automotive
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Figure 3.1: The two types of extended objects encountered in two applications targeted by
this work.

and drone tracking applications. For instance, as pictured in the figure 3.1, a lidar often
returns numerous data points on each vehicle present in a scene. Similarly, a drone larger
than the cell resolution of a radar sensor can also return several data points. Since a vehicle
and a drone are rigid objects, their shape does not evolve throughout time. Most of the objects
encountered in the automotive world have a fixed size and shape; they are rigid.

On the contrary, non-rigid EOs returns several measurements per acquisition, while their
shape evolves through time. They might arise because of the apparent shape-changing char-
acteristic of an object through time, such as an articulated bus. The other type of non-rigid
EOs consists of multiple objects that evolve as a group, such as swarms of drones. Hence, a
group object is a particular case of non-rigid EO.

Group objects are non-rigid EOs composed of multiple objects evolving in close formation
and sharing the same kinematic parameters. Here "close" is defined with respect to the
problem scale and the sensor resolution. Tracking the whole group instead of each object is
a good practice to reduce the size of the association matrix and lower the complexity of the
algorithms discussed in chapters 1 and 2.

Mostly rigid EOs are encountered in the automotive application, and the classes of interest
are cars, bicycles, pedestrians, trucks, buses, motorcycles, and trailers. Thus there is a high
diversity of shapes and sizes. However, the ground truth associated with the raw data is often
composed of bounding boxes for all the classes, i.e., all the objects are represented by straight
rectangular prisms, as illustrated in the figure 3.1. Hence, for the automotive application, an
EO has a right rectangular prism extent, whether it is a pedestrian or a car.

As pictured in the figure 3.1, groups of drones are primarily non-rigid EOs. Even a single
drone can be seen as a non-rigid EO because of its rotors. Since the shape of a group is
somewhat a fuzzy concept, we are restricting it to a smooth convex shape that circles the
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objects within it. Hence, the extent’s shape to estimate is not a bounding box but rather an
elliptical shape, highlighting a first difference with the automotive application.

The applications targeted in this manuscript differ on two points. First, the EOs have
different extents shapes. Furthermore, the quantity of data available to validate the algorithms
is different between both applications. Indeed, the automotive application provides large
datasets, while only a few small datasets are available for the drone tracking application. This
is a significant difference since the current state of the art for detecting EOs consists of deep
learning algorithms that necessitate large datasets for the learning step. While it is possible
to use deep learning for the automotive application, it is not for the groups of drones tracking
application.

The usage of deep learning for detecting EOs and estimating their shape will be discussed
in the chapter 5. This chapter focuses on the case where only a few data are available, which
prevents us from using deep learning algorithms. To bridge the gap between the quantity of
data available and the expected EOs shape, we will rely on a modeling-based approach for the
groups of drones tracking application. Amongst the modeling-based approaches, the state of
the art consists of two propositions: the Random Matrix (RM) and the Star Convex Shape
(SCS) models [GBR16].

In this chapter, we focus on the modeling of extended objects. The deep learning approach
is not discussed here. Two models are of interest to us: the Random Matrix (RM) approach
and the Star Convex Shape (SCS) approach. In the end, we have dropped the SCS model for
the reasons highlighted in the next section.

3.1.2 The Star Convex Shape approach

Proposed by [BH09], the star convex shape model aims at estimating the shape of an EO using
a surface-based sensor such as a lidar. The first proposal relied on a random hypersurface
model. For each measurement {zjk}

mk
j=1 of the extended object, it consists in a parametric

representation of the extent’s contour with a radial function f(θjk) and an orientation vector
p(θjk) such as

zjk = xck + p(θjk)f(θjk) + ejk (3.1)

where ejk is the measurement error, subject to an unbiased Gaussian noise, and xck is the
object’s center. The orientation vector p(θjk) is given by

p(θjk) =

[
cos(θjk)

sin(θjk)

]
(3.2)

and the radial function f(θjk) gives the radius between the center of the object and the contour
shape. The parametrization can be seen in the figure 3.2.

If the measurements arise from the interior of the extended object, the measurement model
(3.1) can be adapted using a scaling coefficient sjk ∈ [0, 1] such as

zjk = xck + sjk p(θjk)f(θjk) + ejk (3.3)
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Figure 3.2: The Star Convex Shape model parametrization. This figure is based on the work
of [WÖ15].

Baum et al. first proposed this model using a Fourier decomposition for the radial contour
function [BH09], and it was further refined in [WÖ15]. Indeed, the Fourier decomposition
formulation of the radial function is a shape-fitting technique that does not integrate well
into a stochastic approach. More precisely, the uncertainty of non-visible faces of an object’s
extension cannot be taken into account: the Fourier expansion is purely deterministic. To
solve this problem, [WÖ15] uses a Gaussian Process (GP) decomposition for the shape contour
function f(θjk).

The use of Gaussian Processes (GPs) has two advantages: the integration of the extent’s
measurement uncertainty with Gaussian densities, and the use of a spatial domain contour
function instead of a frequency domain one, enabling the learning of fine details of the contour.
This formulation is more flexible than its Fourier counterpart, and because of the uncertainty
offered by GPs, the shapes can be estimated more accurately.

However, the extent estimation with a random hypersurface model using a GP parametriza-
tion of the contour has limitations. First, even if the extent estimation is accurate, it involves
a computationally expensive Bayesian correction step for the GPs: one correction per mea-
surement. Each GP component consists of an angular sector in which a measurement can be
generated, so there is a fixed amount of GP components describing an extended object. For
autonomous driving in a dense urban environment, the number of extended objects to track
can be high, with hundreds of measurements per object, leading to heavy computations. In
addition, this model is only adapted to rigid EOs with time stable contour details. For group
objects, a fine representation is not mandatory, and they have a fast-changing shape which
can be problematic for the estimation process.
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Last but not least, the random hypersurface model assumes that the EOs are well resolved,
meaning the sensor returns many measurements per acquisition. A lidar or a high-definition
radar are two examples of dense sensors. In some of our applications, this assumption is not
compliant with the available data, forcing us to consider another model. For instance, in the
case of drone tracking, the tracked drones are often referred to as “under-resolved", returning
at most one or two measurements per acquisition. This is also true for autonomous driving
with a lidar: an object far from the sensor returns a small number of measurements.

Other contour estimation techniques exist for the SCS approach, but they do not solve the
two main problems of this approach. The often low number of measurements returned by the
objects in our applications and the fast-changing shape of group objects lead us to consider
the Random Matrix approach.

3.1.3 The Random Matrix approach

The Random Matrix model is based on an elliptic approximation of the EO’s shape. It
assumes that the measurements are generated by the whole object and not only the surface of
its extent. It was first developed in [Koc08] for aerospatial radar data, it was further extended
in [FFK11], [LL12a], and [LL12b]. This model’s main advantage is its lightness compared to
the random hyperspace approach: it necessitates the estimation of two additional parameters
during the Bayesian inference. In addition, an evolution model can be implemented for non-
rigid EOs, including group objects, as discussed in [Koc08], [GBR16]. Consequently, we used
the RM approach in our works about group objects in [Gue+22], and [Gue+20].

The main disadvantage of the Random Matrix approach is the elliptic shape assumption.
In the case of an autonomous driving environment, the elliptic shape seems inappropriate,
especially for four-wheeled vehicles with an approximately rectangular shape, as pictured in
figure 3.1.a. At first, we propose to set aside this limitation and focus on elliptic extents.
This problem will be addressed in the chapter 5. This chapter introduces the Random Matrix
(RM) model and its extension for group objects, especially drones and swarms of drones.

A group is a set of rigid EOs evolving together and returning several measurements per
acquisition. In a first approximation, a rigid EO is tracked with a radar sensor. This scenario
is illustrated in figure 3.1.b. This section aims to efficiently estimate the EO’s position and
extent with the Random Matrix model.

The Random Matrix model is a relatively inexpensive stochastic approach to EO tracking
[Koc08]; [GBR16]. In addition, it relies on Bayesian inference for the estimation process,
meaning it can be integrated seamlessly into the MOT filters described in 2: this motivated
our implementations in [Gue+21] and [Gue+20].

This chapter presents four different RM correction and prediction recursions, starting with
the original formulation and adapting it to the modeling of group objects.



52 Chapter 3. State models for extended objects

3.2 Rigid extended objects estimation with Random Matrices
(RM)

3.2.1 Correction step

The correction step’s goal is to compute the posterior probability density of the EO using a
measurement likelihood and a prior probability density.

An extended object (EO) consists of a state vector xk, and an extent matrix Xk at timestep
k. They can be estimated separately, assuming that the extent is independent of the state
vector. Hence, the joint posterior density p(xk,Xk|Z{1:k}) can be expressed as

p(xk,Xk|Z{1:k}) = p(xk|Xk, Z{1:k})p(Xk|Z{1:k}) (3.4)

where Z{1:k} is composed of k consecutive sensor swipes, and the swipe Zk at time k consists
of mk measurements: Zk = {zjk}

mk
j=1. In a first approximation, the number of measurement

mk is assumed to be constant, it is not a random variable.

It is important to emphasize the decomposition offered by equation (3.4): the first density
stands for the state vector while the second is the random matrix representation of the extent.
This matrix is a d×d positive semidefinite covariance matrix, where d is the number of spatial
dimensions of xk. These two probability densities can be deduced from the measurement
likelihood. A linear Gaussian measurement model is assumed. The goal is to find a prior
probability density that is closed under Bayes, meaning that the prior and posterior probability
densities should be the same, as described by Koch in [Koc08]. Hence, the measurement
likelihood must be computed first.

The measurement likelihood is built with the following consideration: for one extended
object returning mk measurement at each time step, the mean and the scattering matrix of
the associated point cloud are

zk =
1

mk

mk∑
j=1

zjk

Zk =

mk∑
j=1

(zjk − zk)(z
j
k − zk)

T

(3.5)

Since each measurement is subject to Gaussian noise, the measurement likelihood can be
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noted[Koc08]

p(Zk|mk,xk,Xk) =

mk∏
j=1

N (zjk; Hkxk,Xk)

=
1

(2π)mkd/2 |Xk|mk/2
e−

1
2

∑mk
j=1(zjk−Hkxk)TX−1(zjk−Hkxk)

=
1

(2π)mkd/2 |Xk|mk/2
e−

1
2

∑mk
j=1 tr((z

j
k−Hkxk)TX−1(zjk−Hkxk))

=
1

(2π)mkd/2 |Xk|mk/2
e−

1
2

∑mk
j=1 tr((z

j
k−Hkxk)(zjk−Hkxk)TX−1

k )

=
1

(2π)mkd/2 |Xk|mk/2
etr

−1

2

mk∑
j=1

(zjk −Hkxk)(z
j
k −Hkxk)

T

X−1
k


(3.6)

where (Hk) is the observation matrix, mk is the number of measurements, and d is the number
of spatial dimensions of the state vector xk. The function etr(·) stands for the exponential of
the trace. An interesting formulation of this measurements likelihood can be obtained using
the variable change

mk∑
j=1

(zjk −Hkxk)(z
j
k −Hkxk)

T =

mk∑
j=1

(zjk − zk)(z
j
k − zk)

T


+mk(zk −Hkxk)(zk −Hkxk)

T

= Zk +mk(zk −Hkxk)(zk −Hkxk)
T

(3.7)

which is possible thanks to the trick (zjk −Hkxk) = (zjk − zk + zk −Hkxk).

Substituting equation (3.7) in equation (3.6), we obtain

p(Zk|mk,xk,Xk) =
1

(2π)mkd/2 |Xk|mk/2
etr

−1

2

mk∑
j=1

(zjk −Hkxk)(z
j
k −Hkxk)

T

X−1
k


=

1

(2π)mkd/2 |Xk|mk/2
etr

(
−1

2
ZkX

−1

)
etr

(
−1

2
mk(zk −Hkxk)(zk −Hkxk)

TX−1
k

)
=

1

(mk)d/2(2π)(mk−1)d/2 |Xk|(mk−1)/2
etr

(
−1

2
ZkX

−1
k

)
N
(

zk; Hkxk,
Xk

mk

)
(3.8)

The result is a measurement likelihood that can be separated into two probability densities:
a state vector probability density and a scattering matrix probability density. It is the same
type of decomposition as in (3.4). It can be noted that the scattering matrix probability
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density is proportional to a Wishart probability density

W(Zk;mk − 1,Xk) ∝
1

(mk)d/2(2π)(mk−1)d/2 |Xk|(mk−1)/2
etr

(
−1

2
ZkX

−1
k

)
= Lscat

(3.9)

where Lscat stands for the scattering matrix likelihood. Here W(·) is the Wishart probability
density. It can be found in the appendix A.3.

The measurement likelihood (3.8) takes the form of a Gaussian density for the average
measurement zjk, and a scattering matrix likelihood Lscat that resembles a Wishart density.
To get a correction step that is closed under the Bayes equation, we must use a prior that is
conjugate to the measurement likelihood. The conjugacy means that the prior and posterior
probability densities have the same structure.

The prior probability density of the extended object, pk|k−1(xk,Xk|Z{1:k−1}), is assumed
to be separable in an extent matrix density and a state vector density as in the posterior
equation (3.4)

p(xk,Xk|Z1:k−1) = p(xk, |Xk, Z1:k−1)p(Xk|Z1:k−1) (3.10)

To get a closed filter, the state prior p(xk, |Xk, Z1:k−1) must be conjugate to the Gaussian
average measurement likelihood N (zk; Hkxk,

Xk
mk

), and the extent prior p(Xk|Z1:k−1) must be
conjugate to the scattering matrix likelihood Lscat.

Since Lscat is proportional to a Wishart density, and because its conjugate prior probability
density is an Inverse Wishart, the full prior is a Gaussian Inverse Wishart density. It relies on
a Gaussian for the state vector and an Inverse Wishart for the extent. The Gaussian Inverse
Wishart (GIW) prior is given by

p(xk,Xk|Z{1:k−1}) = N (xk; x̂k|k−1, pk|k−1 ⊗Xk)IW(Xk; νk|k−1,Vk|k−1) (3.11)

where (x̂k|k−1,pk|k−1 ⊗Xk) are the prior parameters for the state vector probability density,
and (νk|k−1,Vk|k−1) are the prior parameters for the extent probability density. The Inverse
Wishart probability density is described in appendix A.4.

The covariance matrix of the prior state vector (3.11) depends on the extent Xk and the
prior covariance matrix pk|k−1. pk|k−1 should not be mistaken with Pk|k−1. Indeed, the
symbol ⊗ describes the Kronecker product, such as

A⊗B =

(
a1 a2

a3 a4

)
⊗B

=

(
a1B a2B

a3B a4B

) (3.12)

Hence, the Kronecker product of two matrices results in a greater matrix. For instance, the
Kronecker product between a M ×M matrix and a N × N matrix results in a MN ×MN

matrix.
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The usage of the Kronecker product in (3.11) implies that on each spatial dimension, the
RM model relies on the same state covariance matrix pk|k−1, that is scaled with the extent
Xk. Thus, pk|k−1 is of dimension (dxk/d)× (dxk/d), with dxk the number of dimensions of xk
and d the number of spatial dimensions of xk. In other words, Pk|k−1 = pk|k−1⊗Xk. Having
the prior’s covariance dependent on the extent prevents the usage of any non linear model,
such as models involving a turn rate. In addition, this signifies that the kinematic state vector
uncertainty is always oriented with the extent.

Using Bayes equation with the measurement likelihood (3.8) and the prior probability
density (3.11), the posterior probability density can be computed:

p(xk,Xk|Z{1:k}) ∝ N (zk; Hkxk,
Xk

mk
) N (xk; x̂k|k−1,pk|k−1 ⊗Xk)

× Lscat IW(Xk; νk|k−1,Vk|k−1)

(3.13)

This Bayes equation can be split into a state vector update, corresponding to the product of
the state vector densities, and an extent update, the product of the matrix densities.

The product of the state vector prior with the average measurement likelihood corresponds
to a simple Kalman filter update. Using the Gaussian product formula [Koc08]:

N (zk; Hkxk,
Xk

mk
) N (xk; x̂k|k−1,pk|k−1⊗Xk) = N (xk; x̂k|k,pk|k⊗Xk) N

(
zk; Hkx̂k|k−1,SXk

)
(3.14)

This result is similar to the equation (1.7) of the chapter 1.1. The posterior probability density
parameters are

x̂k|k = x̂k|k−1 + K⊗ Id(zk −Hkx̂k|k−1)

pk|k = pk|k−1 −KSKT

S = hkpk|k−1h
T
k +

1

mk

K = pk|k−1hkS
−1

(3.15)

where Id is the d dimensional identity matrix, and hk is the observation matrix along one
dimension, such as Hk = hk ⊗ Id. Here K is computed along one dimension. Thus, the
Kronecker product K ⊗ Id is a matrix with the right dimensions. Also, it should be noted
that S is a scalar, thanks to the matrix product hkpk|k−1h

T
k .

Using the result of equation (3.14), the posterior (3.13) becomes

p(xk,Xk|Z{1,k}) ∝ N (xk; x̂k|k,pk|k ⊗Xk) N (zk; Hkx̂k|k−1,SXk)

× Lscat IW(Xk; νk|k−1,Vk|k−1)
(3.16)

With this equation, there is yet to derive the posterior probability density of the extent.
It can be carried out using the marginal likelihood of the average measurement, the extent
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prior probability density and the scattering matrix likelihood:

N (zk;Hkx̂k|k−1,SXk) Lscat
× IW(Xk; νk|k−1,Vk|k−1)

=
1

(π)d/2|SXk|1/2
etr(−1

2
(zk −Hkx̂k|k−1)(zk −Hkx̂k|k−1)TS−1X−1

k )

× |Xk|−(mk−1)/2

(mk)d/2(2π)(mk−1)d/2
etr

(
−1

2
ZkX

−1
k

)
×
|Vk|k−1|νk|k−1/2|Xk|−(νk|k−1+d+1)/2

2νk|k−1d/2Γd(νk|k−1/2)
etr(−1

2
Vk|k−1X

−1
k )

=
1

(π)mkd/2(mkS)d/2
|Vk|k−1|νk|k−1/2|Xk|−(νk|k−1+mk+d+1)/2

2νk|k−1d/2Γd(νk|k−1/2)

×
2(νk|k−1+mk)d/2Γd((νk|k−1 +mk)/2)

|Vk|k−1 + N + Zk|(νk|k−1+mk)/2

|Vk|k−1 + N + Zk|(νk|k−1+mk)/2

2(νk|k−1+mk)d/2Γd((νk|k−1 +mk)/2)

= (πmkmkS)−d/2
Γd((νk|k−1 +mk)/2)

Γd(νk|k−1/2)

V
νk|k−1/2

k|k−1

|Vk|k−1 + N + Zk|(νk|k−1+mk)/2

× IW(Xk; νk|k,Vk|k)

= Lrm IW(Xk; νk|k,Vk|k)

(3.17)

where N = (zk−Hkx̂k|k−1)(zk−Hkx̂k|k−1)TS−1, and Lrm is the likelihood of the measurement
set Zk given all the prior probability density parameters. Here, Γd(·) is the d dimensional
Gamma function. In this result, the set of posterior parameters for the extent are

Vk|k = Vk|k−1 + N + Zk

νk|k = νk|k−1 +mk

S = hkpk|k−1h
T
k +

1

mk

N = (zk −Hkx̂k|k−1)(zk −Hkx̂k|k−1)TS−1

(3.18)

with hk ⊗ Id = Hk it the observation matrix along all the spatial dimensions.

The correction equations (3.15) and (3.18) prove that the Gaussian Inverse Wishart (GIW)
prior is closed under the Bayes equation when combined with a Gaussian Wishart measurement
likelihood. Indeed, the posterior is also a GIW probability density. As discussed in the section
1.2, it ensures that the filter is recursive when using the Bayes equation. To get a fully recursive
filter, we need to ensure that the GIW model is also closed under the Chapman Kolmogorov
equation.

3.2.2 Prediction step

For the prediction step, two simplifying assumptions are necessary[Koc08]: the evolution
process is Markovian, and the evolution of the extent is independent of the state vector.
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Thus, the evolution probability density can be written as

f(xk+1,Xk+1|xk,Xk) = f(xk+1|xk,Xk+1)f(Xk+1|Xk) (3.19)

where only the predicted state vector xk+1 depends on the predicted extent Xk+1. This last
observation raises an issue when using this density within the Chapman-Kolmogorov equation.
Indeed in

p(xk+1,Xk+1|Z{1:k}) =

∫
f(xk+1|xk,Xk+1)f(Xk+1|Xk)

p(xk|Xk, Z{1:k})p(Xk|Z{1:k})dxkdXk

(3.20)

it is desirable to have two distinct integrals for simplification purposes. Hence, it can be
assumed that the object extension evolution has no impact on the state vector during the
prediction[Koc08]: f(xk+1|Xk+1,xk) ≈ f(xk+1|Xk,xk). With this approximation, the single
integral of the prediction step becomes separable

p(xk+1,Xk+1|Z{1:k}) =

∫
f(xk+1|xk,Xk)p(xk|Xk, Z{1:k})dxk∫
f(Xk+1|Xk)p(Xk|Z{1:k})dXk

(3.21)

The first integral corresponds to the predicted state vector and the second to the predicted
extent.

The evolution process for the state vector is assumed linear Gaussian. Thereby, with
the help of equations (3.21) and the posterior probability density, the state vector prediction
process is similar to a standard Kalman prediction

p(xk+1|Xk|Z{1:k}) =

∫
N (xk+1; (Fk+1 ⊗ Id)xk,Qk+1 ⊗Xk)N (xk; x̂k|k,Pk|k ⊗Xk)dxk

= N (xk+1; x̂k+1|k,Pk+1|k ⊗Xk)

(3.22)

with Fk+1 and Qk+1 the evolution matrix and prediction error covariance matrix of chapter
1 projected on one axis, such as

Fk =

[
1 dt
0 1

]
(3.23)

and

Qk = σ2
p

[
d3t
3

d2t
2

d2t
2 dt

]
(3.24)

where dt is the period between two measurements. The equation (3.22) leads to the prediction
equations

x̂k+1|k = (Fk+1 ⊗ Id)x̂k|k
Pk+1|k = Fk+1|kPk|kF

T
k+1 + Qk+1

. (3.25)

As for the extent density prediction, a heuristic approach can be considered to induce a
prediction equation closed under Chapman-Kolmogorov. Even if a more formal proof exists,
the heuristic approach is more straightforward and based on a few hypotheses [Koc08]:
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• the extent posterior probability density should be an Inverse Wishart, p(Xk+1|Z{1:k}) =

IW(Xk+1; νk+1|k,Vk+1|k), in order to get a closed prediction equation.

• the extent’s shape does not change much between two acquisitions, its expectation re-
mains the same: E[Xk+1] = E[Xk], where E[Xk] = Vk|k/(νk|k − 2d− 2).

• νk|k can be assimilated to the precision of the estimated extent. Since the precision of
the estimation should decrease with the prediction step, its effect on νk|k should be to
decrease it. Hence, it is assumed to be subject to exponential decay, with a temporal
decay τ .

With these assumptions, the evolution model of the extent is deduced

νk+1|k = e−
dt
τ νk|k

Vk+1|k =
νk+1|k − 2d− 2

νk|k − 2d− 2
Vk|k

(3.26)

The complete expression for the prediction step of the Gaussian Inverse Wishart can be
summarized as:

p(xk+1,Xk+1|Z{1:k}) =

∫
f(xk+1|xk,Xk)p(xk|Xk, Z{1:k})dxk∫
f(Xk+1|Xk)p(Xk|Z{1:k})dXk

= N (xk+1; x̂k+1|k,pk+1|k ⊗Xk)IW(Xk+1; νk+1|k,Vk+1|k)

(3.27)

with the predicted parameters from equations (3.25) and (3.26).

Finally, the full random matrix model is closed under Bayes and Chapman-Kolmogorov
equation with the Gaussian Inverse Wishart probability density as posterior and prior prob-
ability densities. However, numerous assumptions were made to achieve this goal, some of
which are questionable for group object tracking. First, the measurement noise of individual
measurements is not taken into account. Second, a non-linear model can not be used. Third,
the number of measurements returned by a group is assumed constant. These problems should
be addressed to model groups.

3.3 Modeling Groups as Ellipses

A group of objects is analogous to an extended object in some aspects: the group size is
superior to the resolution cell of the sensor, so it returns more than one measurement per
acquisition, and the objects composing the group behave similarly. However, a group has its
specificities compared to a rigid extended object. Its shape and number of elements might
evolve through time. Also, the measurement noise can be non-negligible compared to the size
of the extent. This section addresses several problems encountered when modeling groups
with the RM model, starting with the measurement noise.
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3.3.1 Taking into account the measurement noise

3.3.1.1 The additive Gaussian noise model

In equation (3.8), the measurement noise was implicitly assumed negligible when compared
to the size of the extent. It might not always be the case, whether an extended object or a
group object is considered.

To tackle this problem, Feldmann et al. propose to use an additive Gaussian noise in the
measurement model. Hence, instead of the likelihood (3.8),

p(Zk|mk,xk,Xk) =

mk∏
j=1

N (zjk; Hkxk,Y)

=
1

(2π)mkd/2 |Y|mk/2
etr

−1

2

mk∑
j=1

(zjk −Hkxk)(z
j
k −Hkxk)

T

 (Y)−1


=

1

(mk)d/2(2π)(mk−1)d/2 |Y|(mk−1)/2
etr

(
−1

2
ZkY

−1

)
N
(

zk; Hkxk,
Y

mk

)
(3.28)

where Y = λXk + Rk is the measurement noise covariance matrix with the additive Gaussian
noise model. Here, Rk is the individual measurement noise, and λ is a weighting parameter
that describes the measurement scattering in the extent. As discussed by Feldmann et al., a
value of λ = 0.25 leads to an almost uniform scattering: this is the value we have selected in
this manuscript.

Because the likelihood (3.28), the correction equation cannot be solved using the prior
(3.11). To solve this problem, Feldmann et al. propose to consider that the extent prior
probability density and the state vector prior probability density are independent

p(xk,Xk|Z{1:k−1}) = N (xk; x̂k|k−1,Pk|k−1)IW(Xk; νk|k−1,Vk|k−1) (3.29)

The prior probability density (3.29) is not entirely justifiable, since the correction of xk
and Xk using the measurement set Zk results in a dependence of xk and Xk. However, this
prior enables the use of non-linear models for the state vector since its covariance matrix does
not depend on the extent anymore. To these assumptions, Feldmann et al. also assume that
the true extent Xk is almost equal to the prior extent Xk|k−1: this is necessary to solve the
Bayesian equation analytically for the extent (3.17). The resulting equations are detailed in
the table 3.1.

3.3.1.2 The deformation matrix model

Another approach to the non-negligible measurement noise problem was proposed by Lan et
al. in [LL12a]. They consider that the observation of the extended object is deformed, and
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Table 3.1: The prediction and update proposed by Feldmann et al. [FFK11]

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

Prediction νk|k−1 = e−dt/τΥ

Vk|k−1 =
(νk|k−1−2d−2)

Υ Vk−1|k−1

Υ = (νk−1|k−1 − 2d− 2)

x̂k|k = x̂k|k−1 + Kε

Pk|k = Pk|k−1 −KSKT

νk|k = νk|k−1 +mk

Vk|k = Vk|k−1 + N + Z

ε = zk −Hkxk|k−1

Correction X = E[Xk] =
Vk|k−1

νk|k−1−2d−2

S = HkPk|k−1H
T
k + Y

mk

K = Pk|k−1HkS
−1

N = X1/2S−1/2εεTS−T/2XT/2

Z = X1/2Y−1/2ZkY
−T/2XT/2

Y = λX + Rk

they rely on a deformation matrix B that describes the distortion of the measured extension
Xk. The resulting measurement model is

p(Zk|m,xk,Xk) =

m∏
j=1

N (zjk; Hkxk,BXkB
T ) (3.30)

with the observation matrix Hk.

This formulation is flexible enough to model an approximation of the additive Gaussian
noise, indeed when

B = λE[Xk] + Rk)
1
2E[Xk]

−1
2 (3.31)

then the resulting estimated error covariance is

BXkB
T = (λE[Xk] + Rk)

1/2E[Xk]
−1/2XkE[Xk]

−T/2(λE[Xk] + Rk)
T/2

≈ λXk +Rk
(3.32)

where λ is a scalar weight, and Rk is the covariance matrix of the sensor measurement error.
The value of λ has already been discussed by Feldmann et al., or Vivone et al. [Viv+15]. It
should be set to 1

4 to model a uniform distribution of the measurements inside the extent.

This new model resembles the additive Gaussian noise model of Feldmann et al. [FFK11],
without the assumption of independence between the state vector and the extent densities after
the correction step. However, we chose nonetheless to keep the independence hypothesis, in
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Table 3.2: The prediction and update proposed by Lan et al. with our modification [LL12a]

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

Prediction νk|k−1 = 2υ(Υ−1)(Υ−2)
Υ(Υ+υ) + 2d+ 4

Vk|k−1 =
υ(νk|k−1−2d−2)

Υ AVk−1|k−1A
T

Υ = (νk−1|k−1 − 2d− 2)

x̂k|k = x̂k|k−1 + Kε

Pk|k = Pk|k−1 −KSKT

νk|k = νk|k−1 +mk

Vk|k = Vk|k−1 + N + Z

ε = zk −Hkxk|k−1

Correction X = E[Xk] =
Vk|k−1

νk|k−1−2d−2

S = HkPk|k−1H
T
k + BXBT

mk

K = Pk|k−1HkS
−1

N = S−1/2εεTS−T/2

Z = B−1ZkB
−T

B = (λX + Rk)
1/2X−1/2

order to simplify the integration of non-linear models. The prediction and correction equations
of this filter are given in table 3.2.

In addition to the deformation matrix, Lan et al. introduce another improvement for the
RM1 model: they propose to consider the extent’s evolution process. This is interesting for
group objects with an extent that continuously evolves.

We propose a simple evolution model for the extent: the group expansion at each time
step, which can be interpreted as a loss of precision due to the prediction step. The model
associated with this transition probability density is a Wishart density since it is conjugate to
the Inverse Wishart density from the update. Thus, the usage of the Chapman-Kolmogorov
equation gives [LL12a]:

p(Xk+1|Z{1:k}) =

∫
f(Xk+1|Xk)p(Xk|Z{1:k})dXk

=

∫
W(Xk+1; υk,AXkA

T )IW(Xk; νk|k,Vk|k)dXk

(3.33)

where A is the evolution matrix, and υk is the degree of freedom of the prediction. υk can be
related to the precision of the prediction. In this equation, the integration step results in a
Generalized Beta Type II density[LL12a], which can be approximated via moment matching
to an Inverse Wishart prior probability density IW(Xk+1; νk+1|k,Vk+1|k). The extent’s prior
probability parameters are presented in the table 3.2. The demonstration of these results is

1Random Matrix
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out of the scope of this manuscript; more details are available in the aforementioned paper
[LL12a], and in the original description of the RM model by Koch [Koc08].

In this work, the evolution model is an expansion model, hence we chose to express A such
as

A =

(
ρ 0

0 ρ

)
(3.34)

where ρ is an expansion coefficient.

Both the additive Gaussian noise approximation and the deformation matrix approxima-
tion are used in this manuscript. They solve an issue with the first RM model, taking into
account the noise of each measurement. However, there is still one remaining problem. In
the section 3.2, the number of measurements was assumed constant, a hypothesis that can be
questioned.

3.3.2 Time evolving number of measurements

An extended object is not guaranteed to return a constant amount of measurementsmk at each
time step. To tackle this problem, Koch proposes to set a measurement density parameter
dependent on the size of the extent. Hence, the number of measurements returned by an
extended object is proportional to its size. While it can be the case in many applications,
there is no certainty that a group will keep its density constant through time. For instance, the
group can shrink or expand, while the number of objects that compose it remains constant:
the number of measurements returned by such a group remains constant while the extent
varies.

Another solution is to consider that the number of measurements is an additional ran-
dom variable to estimate. Granström et al. propose this approach with the measurement
likelihood p(Zk|mk,xk,Xk) rewritten as p(Zk|γk,xk,Xk), where γk is the expected number of
measurements for a group [GO14].

Counting the average number of occurrences γk of an event happening during a time
interval dt is the typical application of a Poisson probability density. This Poisson density
is supposed to be independent of the shape of the group object [Gil+05]; [GS05]. Hence the
measurement likelihood (3.8) can be augmented

p(Zk|γk,xk,Xk) ∝ p(mk|γk)p(zk|xk,Xk)p(Zk|Xk)

= P(mk; γk)N (zk; Hkxk,
Xk

mk
)W(Zk;mk − 1, Xk)

(3.35)

Once again, the filter should be closed under the Bayes correction equation. Since the
conjugate prior of a Poisson distribution is a Gamma distribution, the prior probability density
of the RM model can be rewritten

p(xk,Xk|Z{1:k−1}) = G(γk;αk|k−1, βk|k−1)N (xk; x̂k|k−1,Pk|k−1)IW(Xk; νk|k−1,Vk|k−1)

(3.36)
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where αk|k−1 is the expected number of measurement arriving at an expected rate βk|k−1,
such as E(γk) = αk|k−1/βk|k−1. This prior probability density is a Gamma Gaussian Inverse
Wishart (GGIW) density [LGO13]. The posterior probability density can be computed using
the prior probability density and the measurement likelihood: it is also a GGIW density. The
correction procedure for the Gaussian and Inverse Wishart parameters are not affected by the
additional Gamma density, but two more parameters need to be estimated throughout the
Bayesian recursion: α and β. α and β update equations are available. The table 3.3. Their
derivation is available in Granström et al.’s paper [GO14].

For the prediction step, exponential forgetting is retained for αk+1|k and βk+1|k. This
exponential forgetting is tuned such as γk+1 evolve over a time window we = η

η−1 where η
can be seen as a forgetting factor[LGO13]. Hence the prediction step for the gamma density
maintains the expected number of measurements, E(γk) = E(γk+1). The prediction equations
remain the same as before for the other densities constituting the posterior probability density;
all the equations can be found in the table 3.3.

Table 3.3: Prediction and update equations with the additional Gamma density

Granström et al. proposal [GFS19] Our proposal [Gue+20]

αk|k−1 = αk−1|k−1/η αk|k−1 = αk−1|k−1/η

βk|k−1 = βk−1|k−1/η βk|k−1 = βk−1|k−1/η

x̂k|k−1 = Fkx̂k−1|k−1 x̂k|k−1 = Fkx̂k−1|k−1

Prediction Pk|k−1 = FkPk−1|k−1F
T
k + Qk Pk|k−1 = FkPk−1|k−1F

T
k + Qk

νk|k−1 = e−dt/τΥ νk|k−1 = 2υ(Υ−1)(Υ−2)
Υ(Υ+υ) + 2d+ 4

Vk|k−1 =
(νk|k−1−2d−2)

Υ Vk−1|k−1 Vk|k−1 =
υ(νk|k−1−2d−2)

Υ AVk−1|k−1A
T

Υ = (νk−1|k−1 − 2d− 2) Υ = (νk−1|k−1 − 2d− 2)

αk|k = αk|k−1 +mk αk|k = αk|k−1 +mk

βk|k = βk|k−1 + 1 βk|k = βk|k−1 + 1

x̂k|k = x̂k|k−1 + Kε x̂k|k = x̂k|k−1 + Kε

Pk|k = Pk|k−1 −KSKT Pk|k = Pk|k−1 −KSKT

νk|k = νk|k−1 +mk νk|k = νk|k−1 +mk

Vk|k = Vk|k−1 + N + Z Vk|k = Vk|k−1 + N + Z

ε = zk −Hkxk|k−1 ε = zk −Hkxk|k−1

Correction X = E[Xk] =
Vk|k−1

νk|k−1−2d−2 X = E[Xk] =
Vk|k−1

νk|k−1−2d−2

S = HkPk|k−1H
T
k + Y

mk
S = HkPk|k−1H

T
k + BXBT

mk

K = Pk|k−1HkS
−1 K = Pk|k−1HkS

−1

N = X1/2S−1/2εεTS−T/2XT/2 N = S−1/2εεTS−T/2

Z = X1/2Y−1/2ZkY
−T/2XT/2 Z = B−1ZkB

−T
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3.4 Conclusion

This chapter discussed the notion of Extended Objects, objects generating multiple measure-
ments at each timestep. They exist in two types: with a rigid or a non-rigid extent. Since
we are targeting applications with both types of EOs, several solutions have been discussed
in this chapter.

In order to detect and estimate the extent of EOs, either large datasets are available and
can be used to train state-of-the-art deep learning models, or only a few small datasets are
available, and the extent cannot be inferred from the data, so it must be modeled. We have left
the case of deep learning approaches to the chapter 5, and we have focused on small datasets
in this chapter, favoring model-based approaches.

Amongst the existing methods, we have selected the Random Matrix model. Even if it
proposes a coarse description of the extent, relying on an elliptical shape, it is lightweight
and simple enough to cover many applications. Moreover, the precise shape of the extent is
not the most critical concern since the objective is to track group objects, and groups have
fuzzy boundaries. In addition, the RM model relies on Bayesian inference, which facilitates
its integration to Random Finite Sets Multi Object Tracking algorithms.

However, the first formulation of the RM model has some drawbacks that prevent its usage
for group objects: it considers that the EO returns a constant number of measurements, and
the measurement noise is considered negligible in front of the size of the extent. The resolution
of these problems led to the presentation of 4 prediction and correction recursion propositions
for the RM model, including our proposition.

The results of this chapter were published in [Gue+20], and [Gue+21]. These publications
proposed to bridge the gap between EO tracking and the MOT problem. With the help of
the RM models and the RFS-based MOT filters, the groups of drones tracking application is
discussed in the next chapter.
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4.1 Models for swarms and groups of drones

The last decade has seen the democratization of drones. Buying and flying a drone is simple
enough not to require a permit. Thanks to their compactness and stability, drones can even
fly in groups. For instance, during the Olympic Games of Tokyo 2020, Intel presented a flight
performance using 1824 drones evolving in close formation. However, people with malicious
intent can use drones as threats because of their ease of use. For example, two drones tres-
passing London-Gatwick airport caused a 36 hours long interruption of the aerial traffic in
2018. Hence, the surveillance of aerial spaces to prevent such attacks is mandatory nowadays.
The main objective of this chapter is to study the performances of the methods developed in
the previous two chapters using detections from radar sensors.

Our application considers that a group of drones moves following a virtual leader. A
virtual leader is the mirror of the average position and dynamic of the group, as discussed by
Blackman in [Bla86]. Early work by Salmond and Gordon in [GSF97] and [SG99], modeled
a group as a set of separable objects, with their of the of the individual state models and
an additional group model; or “bulk model” in their case. This modeling is analogous to
the “virtual leader-follower” model discussed by Mahler in [Mah07]. An implementation of
this “virtual leader-follower” model was proposed by Clark and Godsill in [CG07], using a
Gaussian Mixture Poisson Hypothesis Density filter, and further work by Swain and Clark on
the derivation of a group specific PHD filter can be found in [SC11]. These approaches all
consider that a group consists of separable individual objects. Thus, they aim to estimate the
group’s dynamic and the movements of individual objects. For our groups of drones tracking
application, the drones are not separable, which prevents us from using these approaches.

In this manuscript, the groups are composed of single indiscernible objects. They resemble
the non-rigid extended object model described in the previous chapter. Here, estimating a
group object is restricted to estimating a non-rigid extended object. The simplicity induced
by tracking a single group object instead of indiscernible close objects allows to tackle several
issues:

• the permutation of tracked objects.

• the mismatch between measurement and tracked objects.

• the early destruction of tracked objects because of successive mismatches causing their
likelihood to decrease.

Representing a group object as a non-rigid extended object is a good workaround to these
problems.

Specific additional problems tend to make groups of drones tracking a challenging task
because of the following points:

• Multiple groups of drones can merge into bigger groups or split into smaller groups. We
relied on RFS filters to model this group dynamic: we have implemented a Probability
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Hypothesis Density (PHD) filter and a Poisson Multi Bernoulli (PMB) filter for groups
of drones using the RM extended object modeling. The first filter is easy to implement
and tune because it relies on fewer parameters than the PMB filter. However, the PHD
lacks the explanatory power of the PMB filter for the existence probability and the label.

• Groups can merge or split, resulting in multiple objects where some objects might be
under-resolved. An under-resolved is a regular, isolated object: it returns at most one
measurement per sensor sweep. The under-resolved denomination emphasizes the differ-
ence with a group or extended object returning multiple measurements. Under-resolved
objects are typically single drones separating from a group. The main problem is that
under-resolved drones are not extended: a regular linear Gaussian model can model
them. We need to consider the cohabitation of two types of objects, under-resolved and
extended objects, with their measurement and evolution models.

• The shape of a group of drones depends on the sensor used for the measurement: we rely
on a passive and active radar in our applications. These sensors return two-dimensional
measurements subject to Gaussian noise. They are subject to false alarms and missed
detections.

• Radar sensor datasets are scarce. This prevents the use of deep learning detection
algorithms to detect and estimate the shape of a group of drones. Bayesian inference
is a good alternative to evaluate the extent of a group of drones. The Random Matrix
model, introduced in the chapter 3, assumes that the extent has an elliptical shape and
is subject to random effects. When tracking a group of drones with a radar sensor, the
elliptical shape assumption is a valid approximation of the reality. The shape of a group
evolves through time, and the group can shrink or expand. Even if multiple drones can
form groups with diverse shapes, an ellipse remains a flexible enough approximation for
our application.

This chapter is an application of the work presented in chapters 2 and 4. The groups
of drones tracking problem is considered from a multiple non-rigid extended objects tracking
perspective. As such, the first two sections focus on the description of the algorithms we
developed, respectively the Group Object Probability Hypothesis Density filter and the Group
Object Poisson Multi-Bernoulli filter. These filters are then tested on simulated datasets and
real datasets. The third section focuses on the simulation and real dataset of an active radar
sensor with groups of drones. The fourth section focuses on the MOT using a passive radar
sensor. Both of the last sections present the sensor’s characteristics and the parameters used
for the tunning. The final section concludes this chapter and our work on extended MOT
with a few datasets for the training.

4.2 Integrating the Random Matrix model in RFS filters

This first section aims to present the notation of the chapter and introduce the likelihood that
is used when coupling the Random Matrix approach to the Random Finite Set-based filters.



68 Chapter 4. Multiple Extended Object Tracking

In the first chapter, we have described three different RFS filters: the Gaussian Mix-
ture Poisson Hypothesis Density, the Generalized Labeled Multi-Bernoulli, and the Poisson
Multi-Bernoulli filters. They were introduced with the simple linear Gaussian model, where
each object xik ∈ {x1

k, ...,x
nk
k } is characterized by an expected state vector x̂ik and an error

covariance matrix Pi
k: an estimation of xik is given by (x̂ik,P

i
k).

We have selected the Random Matrix approach for groups of drones, as explained in the
previous chapter. It relies on the Gaussian Inverse Wishart (GIW) state probability density
introduced in the chapter 3. We have shown that this density can be estimated using Bayesian
inference: for an extended object xik ∈ {x1

k, ...,x
nk
k }, four parameters need to be estimated:

• the expected state vector x̂ik and the error covariance matrix Pi
k corresponding to the

Gaussian probability density of the state vector,

• the degree of freedom νik and the scale matrix Vi
k, that correspond to the Inverse Wishart

probability density modeling the extent.

This result in the set of parameters (x̂ik,P
i
k, ν

i
k,V

i
k) for each object xik, with the addition of the

weight of the component wik in the case of a Poisson RFS density, or the existence probability
rik in the case of the Multi-Bernoulli RFS density.

The measurement Zk = {z1
k, ..., z

mk
k } is divided into subsets Zjk = {z1

k, ..., z
mj

k }, such
as Zk =

⋃M
j=1 Z

j
k. Here there are M subsets, or clusters, and each subset consists of mj

measurements, that corresponds to an extended object. All the notations are summed up in
the figure 4.1.

The partitioning of the measurement set Zk intoM subsets is a critical question regarding
the quality of the extent estimation process. If the clusters are too small, the groups will be
fragmented, and on the contrary, if it is too coarse, there is a risk of merging the measurements
coming from different extended objects. Several methods exist to tackle this problem. For
instance, Granström proposes in [GO12c] to perform the extension estimation using several
clustering scales and merge the result depending on the likelihood of each scale. Since the
result is computed from a fine to a coarse partitioning of the measurement set, it should
converge to the correct size.

The main disadvantage of this method is its combinatorial complexity. If the result is
computed over four scales, then the Probability Hypothesis Density filter needs to be run
once per scale to get the final result.

In our case, we want to track groups of drones. We know the minimal size of a drone, and
we can fix the maximal distance between two drones to consider them as a group. Hence, it
is sufficient to use one partitioning of the measurement space. Since groups of drones have
varying densities, we relied on the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm proposed by Ester in [Est+96].

Once the measurement set is partitioned, the likelihood that the subset Zjk = {z1
k, ..., z

mj

k }
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Figure 4.1: Notations for the extended measurements.

arises from the GIW object xik is given by:

ci,j =
pD (γk)

mj e−γk

(λFA)mj ((π)mjmj |Si,j |)d/2

∣∣∣Vi
k|k−1

∣∣∣νik|k−1
/2

∣∣∣Vi,j
k|k

∣∣∣νi,jk|k/2
Γd(νi,jk|k/2)

Γd(νik|k−1/2)
wik|k−1 (4.1)

This cost is the likelihood computed in the chapter 3, more specifically the equation (3.17) for
Feldmann and Lan RM proposal. As a brief reminder, mj is the number of measurements of
the measurement cluster j. Moreover, the parameters with the subscript k|k are the posterior
parameters based on the object xik and the measurement set Zjk. In addition, Γd(·) is the
d dimensional Gamma function and Γ(·) is the Gamma function they are both given in the
appendix A. The expected number of measurements constituting the group is given by γk,
and the notation |Vi

k|k| stands for the determinant of the matrix Vi
k|k.

The likelihood (4.1) of associating the measurement cluster Zjk with the tracked object xik
is the same whether xik belongs to a Poisson RFS1 or a Multi-Bernoulli RFS. In any case,
it must be computed for each i ∈ J1, nk|kK and j ∈ J1,MK. One of the only difference is
the replacement of the factor wik|k−1 by rk|k−1 in the case of the Multi-Bernoulli multi-object
probability density.

In the likelihood (4.1), the expected number of measurements returned by an EO2 is
known. To estimate it, Koch first proposed to set the expected number of measurements γk

1Random Finite Sets
2Extended Object
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proportionally to the size of the extent [Koc08]. We used this approach for Feldmann’s and
Lan’s GIW RM implementations.

However, as discussed in the chapter 3, the density of a group object might vary during the
tracking since it is not rigid. For instance, the group of drones can switch between different
formations, changing the density of the measurements it returns at the same type. This
example is pictured in the figure 4.2. To tackle this problem, Granström et al. proposed to
estimate γk using Bayesian inference in [GO12a]. They modeled it with a Gamma probability
density, leading to the Gamma Gaussian Inverse Wishart density (GGIW).

Figure 4.2: Two groups of drones merge, changing the density of the resulting swarm of drones.

The GGIW probability density is a state and extent model that can be estimated using
Bayesian inference. With this model, an object xik ∈ {x1

k, ...,x
nk
k } is estimated using two

additional parameters when compared to the GIW density: αik, and βik, respectively the
shape and the rate of the Gamma density. Thus xik is determined by the set of parameters
(x̂ik,P

i
k, ν

i
k,V

i
k, α

i
k, β

i
k), excluding the RFS probability density additional parameters in the

case of MOT. When considering a MOT problem, the likelihood of associating the GGIW
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extended object xik with the group of measurement Zjk is

ci,j =
pD (2π)d m

j/2 (2)m
j/2

(λFA)mj (mj)d/2

∣∣∣Vi
k|k−1

∣∣∣νik|k−1
/2

∣∣∣Vi,j
k|k

∣∣∣νi,jk|k/2
Γd(νjk|k/2)

Γd(νik|k−1/2)

×
∣∣Yi,j

∣∣mj/2∣∣∣Ri,j
k

∣∣∣mj−1/2
|Si,j |1/2

Γ(αi,jk|k)(β
i
k|k−1)

αi
k|k−1

Γ(αik|k−1)(βi,jk|k)
αi,j
k|k

wik|k−1

(4.2)

The computations to obtain this result are straightforward using the measurement likelihood
(3.35), and carrying out the same computations as in equation (3.17). The Gamma function
and d-dimensional Gamma functions are still noted Γ(·) and Γd(·). The indexing is the same
as the one found in the GIW measurement likelihood (4.1). Several parameters should be
highlighted, Yi,j describes how are distributed the measurements inside the extent, taking
into account the error covariance matrix Rj

k and the extent covariance matrix Xj
k|k−1. The

computation of Yi,j is given in the chapter 3 for Lan and Feldmann RM proposals.

We have used the GIW and GGIWmodels with two RFS filters, the Probability Hypothesis
Density filter, and the Poisson Multi Bernoulli filter. The implementations are discussed in
the following sections.

4.3 The Group Object Probability Hypothesis Density filter

4.3.1 The GIW mixture as a Poisson intensity, for a stable number of
measurements

In the chapter 2, the intensity corresponding to isolated objects was assumed to be a Gaussian
Mixture. Since we are dealing with group objects in this chapter, considering a Gaussian
Inverse Wishart mixture intensity is appropriate. Being an unlabeled RFS filter, the PHD
filter is adapted to simple scenarios. In that regard, we will assume a low clutter use case with
a stable number of measurements returned by group objects for this filter. Hence, we drop
the Gamma Gaussian Inverse Wishart group state model in this section.

For the Group Object Probability Hypothesis Density (GO-PHD) filter, our goal is to
estimate the intensity I(xk) of the Poisson multi-object probability density that models the
tracked group objects:

I(xk) =

nk∑
i=1

wik N (xk; x̂
i
k,p

i
k ⊗V) IW(X; νik,V

i
k) (4.3)

With this probability density, for each tracked object xik ∈ Xk we need to estimate the
state vector expectation x̂ik and covariance matrix pik of the Gaussian density, as well as
the extent degree of freedom νik and the scaling matrix Vi

k. When considering the addition
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of the GIW mixture weight wik, this model result in the estimation of nk sets of parameters
(wik, x̂

i
k,p

i
k, ν

i
k,V

i
k), for each of the nk tracked objects xik . However, with this parametrization,

the number mj of measurements returned per object is assumed stable through time.

The integration of the GIW mixture into the Probability Hypothesis Density (PHD) filter
is seamless: it is just a matter of using the predictions and corrections equations described
in the previous chapter coupled with the measurement likelihood (4.1) for mixture weights.
Indeed, the PHD filter architecture does not depend on the object state model, meaning that
Feldmann’s or Lan’s state models described in the chapter 3 can be used interchangeably.

4.3.2 GO-PHD filter prediction

The prediction step can be decomposed into two parts: first, forecasting the state of already
tracked objects and then predicting the birth of new objects.

4.3.2.1 Already tracked group objects

At time k − 1, the nk−1|k−1 tracked group objects are described by a GIW mix-
ture. Each tracked group object xik−1|k−1 ∈ Xk−1|k−1 consists of the set of parameters
(wik−1|k−1, x̂

i
k−1|k−1,p

i
k−1|k−1, ν

i
k−1|k−1,V

i
k−1|k−1).

For each group, the prediction step consists of the application of the prediction equations
of the chosen state model, whether it is Lan’s or Feldmann’s RM model, and the predicted
weight is given by

wk|k−1 = pS wk−1|k−1 (4.4)

where pS is the survival probability of the group object. The equation (4.4) is the same as
the one found in the prediction of the PHD filter in the chapter 1. The resulting intensity is
denoted Isk|k−1(x).

4.3.2.2 New group objects

New group objects are created during the prediction step. The set of nb new group ob-
jects Xb is subject to Poisson RFS with intensity Ib(x). This intensity is a GIW mixture
consisting of nb components xb,i ∈ Xb, where each xb,i is given by the set of parameters
(wb,i, x̂b,i,pb,i, νb,i,Vb,i).

Like the PHD filter, the GO-PHD filter prediction is handled by concatenating the com-
ponents of the surviving tracked object intensity, Isk|k−1(x), with the components of the birth
object intensity, Ib(x). The resulting intensity is denoted Ik|k−1(x) = Isk|k−1(x) + Ib(x), and
it consists of nk|k−1 = nk−1|k−1 + nb components.
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4.3.3 GO-PHD filter correction

The correction step of the GO-PHD filter can also be decomposed into two parts: first, the
creation of a missed detection hypothesis for each tracked object, then the creation of a
detection hypothesis for each object and measurement couple.

4.3.3.1 Missed group objects

It is the same as for the PHD filter: if a group object is missed, the predicted component is
validated, and the weight is updated, such as

wik|k = (1− pD)wik|k−1 (4.5)

where pD is the detection probability. For each of the nk−1|k objects xik|k, it results in the
missed detection hypothesis components (wik|k, x̂

i
k|k−1,p

i
k|k−1, ν

i
k|k−1,V

i
k|k−1).

In addition to the missed hypothesis, the detection hypotheses must be computed.

4.3.3.2 Detected group objects

Each association between one extended measurement Zjk = z1
k, ..., z

mj

k ⊆ Zk =
⋃M
j=1 Z

j
k and

one predicted object intensity component xik|k−1 ∈ X
k|k−1 = {x1

k|k−1, ...,x
nk|k−1

k|k−1 } gives rise to
an updated GIW component xi

′

k|k. This new component has the index i′ = i + j × nk|k−1.
It should be noted that the index i′ starts at nk|k−1 + 1 because of the missed detection
hypotheses. The weight of this association is given by the equation (4.1), normalized over the
measurements:

i′ = i+ j × nk|k−1

wi
′

k|k =
ci,j∑M
j′=1 c

i,j′

(4.6)

The rest of the components for this association are computed according to the chosen
RM state model described in chapter 3. For each xi

′

k|k, the resulting parameters are
(wi

′

k|k, x̂
i′

k|k,P
i′

k|k, ν
i′

k|k,V
i′

k|k).

In total, there are M × nk|k−1 associations hypotheses and nk|k−1 missed hypotheses that
compose the updated components of the intensity Ik|k(x). This leads to nk|k = M × nk|k−1 +

nk|k−1 updated mixture components for the intensity Ik|k(x).

4.3.4 Implementation of the Group Objects Probability Hypothesis Den-
sity filter

The risk of combinatorial explosion, due to the correction step of the GO-PHD filter, is
managed with a merging algorithm and a pruning algorithm. They can be found in the
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chapter 1.

For the clustering algorithm, the DBSCAN algorithm with one cluster size is enough for
our application, as discussed in the section 4.2. Even if the clustering size is too small, leading
to an over-clustered measurement space, the merging algorithm will merge the resulting group
objects.

Regarding the initialization of new objects, instead of a birth object GIW intensity placed
at the edged of the field of view, we proposed a uniform intensity covering the whole field of
view. This idea is pictured in the figure 4.3.

Figure 4.3: Birth objects layout.

The implementation of the filter is detailed in the block diagram of the figure 4.4. The
GIW update or prediction equations can be found in the previous chapter. The complete filter
is not very different from the original PHD filter. It only adds the estimation of νik and Vi

k

for the extent, as well as a clustering algorithm.

Granström et al. proposed a similar filter in [GFS19]. This work was further extended
in [Gra+15], including Feldmann’s RM state model. When compared to their work, our
contributions to the extended objects tracking fields are the following:

• we have considered the measurements noise in addition to the extent by integrating
Lan’s RM model in our proposal.

• we have modified Lan’s RM model, assuming a state vector independent from the extent.

• in our application, we considered the under-resolved aspect of group objects.

• we have considered a hybrid approach to solve the cohabitation between isolated objects,
under-resolved group objects, and group objects.
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Figure 4.4: Block diagram of the GO-PHD filter.

• we have used this work on a real dataset on a passive radar sensor, in noisy conditions.

• we showed that in cases with high measurement noise, our approach can estimate the
size of the extent where Feldmann’s RM model fails.

These contributions can be found in the conference paper [Gue+21].

The main drawback of this filter is that it is an unlabeled approach, leading to the swift
destruction of tracked objects when the detection probability is low. In addition, the GIW
Random Matrix state model fails to estimate the number of detection an object should return.
Because of these inconveniences, we explored the Group Object Poisson Multi-Bernoulli (GO-
PMB) filter for more challenging datasets: a labeled RFS filter coupled with the Gamma
Gaussian Inverse Wishart (GGIW) state probability density.

4.4 The Group Object Poisson Multi-Bernoulli filter

The Poisson Multi-Bernoulli filter was presented in the chapter 2. The proposed implemen-
tation was linear Gaussian. In this chapter, we aim at tracking multiple extended objects.
Hence, this section introduces the Group Object Poisson Multi-Bernoulli (GO-PMB) filter. It
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is a Poisson Multi-Bernoulli filter associated with a Random Matrix group object model. It
relies on the efficiency of the Poisson density for unknown objects and the descriptive power of
the Multi-Bernoulli density for tracked objects. Unknown objects are objects that are assumed
to exist but that have not been detected yet.

The labeled implementation of the PMB filter was introduced in the chapter 2. Since
two RFS probability densities need to be estimated, a Poisson density and a Multi-Bernoulli
density, interfacing the Random Matrix model with a PMB filter involves two group objects
parameterization.

The group object state model we chose for this filter is the Gamma Gaussian Inverse
Wishart (GGIW) RM model first proposed by Granström et al. in [GO12a]. They suggested
adding a Gamma density to the GIW model to estimate the average number of measurements
returned by a group object.

When using the GGIW state model, two additional parameters need to be estimated
compared to the GIW model: αik, and βik for each object xik ∈ Xk. They represent the
Gamma density parameters that model the expected number of measurements returned by a
group object.

4.4.1 The GGIW mixture as a Poisson intensity for unknown and new
objects

The GO-PMB requires two Poisson intensities for unknown and birth group objects. They
are described by their intensity: a GGIW mixture. It resembles the GIW mixture, equation
(4.3), with the addition of the Gamma density:

I(x) =

nk∑
i=1

wik G(γ;αik, β
i
k) N (x; x̂ik,p

i
k) IW(X; νik,V

i
k) (4.7)

where, for each tracked object xik, we need to estimate the same parameters as in (4.3), with the
addition of the shape αik and the rate βik of the Gamma density: (wik, x̂

i
k,P

i
k, νk,V

i
k, α

i
k, β

i
k).

4.4.2 Coupling the Multi-Bernoulli density with a GGIW Random Matrix
model

Integrating the Gamma Gaussian Inverse Wishart modeling for Extended Objects in a Multi-
Bernoulli density is straightforward. From a parametrization perspective, for each tracked
object xik, it just consists in adding an existence probability density rik to the GGIW model.

More explicitly, a Multi-Bernoulli density is just the union of nk single Bernoulli densities.
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One GGIW Bernoulli density can be expressed as

ph,ib (X) =


1− rik if X = {∅}
rik G(γ;αik, β

i
k)N (x; x̂ik,P

i
kV) IW(X; νik,V

i
k) if X = {x}

0 otherwise
(4.8)

Hence, for a single object xik, the set of parameters to estimate is (rik, l
i, x̂ik,P

i
k, νk,V

i
k, α

i
k, β

i
k).

In our case, we add a label li to identify the object xik.

4.4.3 GO-PMB filter prediction

The GO-PMB filter prediction equations are composed of the prediction equations for the MB
density and the prediction equations for the Poisson unknown and birth groups intensities.

4.4.3.1 Already tracked group objects

At time k − 1, the nk−1|k−1 tracked group objects are modeled as a Multi Bernoulli
(MB). Each tracked group object xik−1|k−1 ∈ Xk−1|k−1 consists of the set of parameters
(wik−1|k−1, x̂

i
k−1|k−1,P

i
k−1|k−1, ν

i
k−1|k−1,V

i
k−1|k−1, α

i
k−1|k−1, β

i
k−1|k−1).

For each group xik−1|k−1 ∈ Xk−1|k−1, the goal of the prediction step is to compute the
prior probability density parameters (wik|k−1, x̂

i
k|k−1,P

i
k|k−1, ν

i
k|k−1,V

i
k|k−1, α

i
k|k−1, β

i
k|k−1). It

corresponds to the application of the GGIW model prediction equations for the state model,
and the predicted existence probability is given by

rik|k−1 = pS r
i
k−1|k−1 (4.9)

where pS is the survival probability of the group object. The equation (4.9) is the same as
the one found in the prediction of the PMB filter in the chapter 1. The cardinality of the
resulting MB density remains the same, nk|k−1 = nk−1|k−1.

4.4.3.2 Unknown and new group objects

The prediction step of the unknown objects’ Poisson density is the same as any Poisson density.
For each component of the updated unknown object intensity Iuk−1|k−1, the prediction step
consists of the application of the GGIW state model prediction equations. The resulting
surviving unknown objects intensity is denoted Isuk|k−1, it consists of n

u
k−1|k−1 components.

New group objects are created during the prediction step. The set of nb new group objects
Xb is subject to Poisson RFS with intensity Ib(x). This intensity is a GIW mixture consisting
of nb components xb,i ∈ Xb, with the parameters (wb,i, x̂b,i,Pb,i, νb,i,Vb,i).

Like the GO-PHD filter prediction, the components of the surviving unknown objects
intensity, Isuk|k−1(x), are concatenated with the components of the birth object intensity, Ib(x).
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The resulting intensity is denoted Iuk|k−1(x) = Isuk|k−1(x) + Ib(x), and it consists of nuk|k−1 =

nuk−1|k−1 + nb components.

4.4.4 GO-PMB filter correction

The GO-PMB filter correction step can be decomposed into three parts: the missed tracked
objects MB update, the detected object MB update, and the Poisson intensity update.

4.4.4.1 Missed group objects

If a tracked group object is missed, it either does not exist or was just not detected by the
sensor. These two cases create a bimodal Multi Bernoulli component that is reduced to a
mono-modal one using the MB mixture reduction. The resulting Bernoulli component is the
validation of the predicted GGIW density with the updated existence probability

rik|k =
rik−1|kqD

1− rik−1|k + rik−1|kqD
(4.10)

where qD is given by

qD = 1− pD + pD(
βik−1|k

βik−1|k + 1
)
αi
k−1|k−1 (4.11)

with the detection probability pD. In addition, to select only one Multi Bernoulli after the
update, the likelihood wi,0 of the missed detection is computed, such as

wi,0k|k =
rik−1|kqD

1− rik−1|k + rik−1|kqD
(4.12)

It results in the nk−1|k missed detection hypothesis components xik|k consisting of the
parameters (wik|k, x̂

i
k|k−1,P

i
k|k−1, ν

i
k|k−1,V

i
k|k−1).

In addition to the missed hypotheses, the detection hypotheses must be computed.

4.4.4.2 Detected group objects

The detection hypotheses are computed for each tracked group object and extended measure-
ment couple. With the extended measurement Zjk and the Bernoulli density xik|k ∈ Xk|k−1, it
just consists in the application of the GGIW update equations discussed in the chapter 3. In
addition, the existence probability is also updated

rik|k = 1 (4.13)



4.4. The Group Object Poisson Multi-Bernoulli filter 79

where pD is the detection probability. The likelihood of this association is also computed to
select only one Multi Bernoulli component at the end of the update. It is given by

wi,j = rik|k−1 c
i,j (4.14)

with ci,j the likelihood given in equation (4.2).

This results in the computation of M ×nk|k−1 detection hypotheses that are added to the
nk|k−1 missed detection hypotheses. The correction step also initializes new objects. They are
created with the help of the unknown object Poisson intensity.

4.4.4.3 From unknown Poisson intensity to newly detected group objects

The unknown objects intensity Iuk|k−1(x) unique purpose is to create new detected object

Bernoulli densities. The process is simple: each extended measurement Zjk gives rise to a new
Bernoulli density that is computed using the Poisson intensity Iuk|k−1(x). This is a two steps
procedure, first updating each of the nuk|k−1 components of the unknown object intensity with

the measurement Zjk:

µl = wu,lk|k−1 c
l,j

yl = x̂u,lk|k−1 −Kε

Pl = Pu,l
k|k−1 −KHPu,l

k|k−1

αl = αlk|k−1 +mj

βl = βlk|k−1 + 1

νl = νlk|k−1 +mj

Vl = Vl
k|k−1 + Zjk + N

with l ∈ J1, nuk|k−1K, and

zjk = 1
mj

∑mj

j′=1 zj
′

k
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j′=1(zj
′

k − zjk)(zj
′

k − zjk)T

X =
Vl

k|k−1

νl
k|k−1

−2 d−2

ε = (zjk −Hx̂u,lk|k−1)

S = HPu,l
k|k−1H

T + X
mj

K = Pu,l
k|k−1H

TS−1

N = X1/2S−1/2εεTS−T/2XT/2

(4.15)

where the index l denotes that these updated parameters are temporary, and cl,j is the GGIW
association likelihood given by the equation (4.2). The equations (4.15) are given using Grän-
strom et al. proposal [GFS16], and nothing prevents us from using our proposal. Indeed, the
new Bernoulli component is computed as the average of these parameters, such as
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∑nu
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(4.16)

where i starts at M × nk|k−1 + nk|k−1 + 1 to account for the missed and detected hypotheses
discussed above. Since wi′,j is the weight of this association, i′ starts at nk|k−1 + 1, following
the association matrix layout given in figure 2.4.
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At this point, the missed, detected, and birth Bernoulli hypotheses are computed. Similar
to what was done with the PMBM filter in the chapter 2, the best Multi Bernoulli density is
selected using Murty’s assignment algorithm. To complete the correction step of the GO-PMB
filter, the unknown objects’ Poisson intensity must be updated.

The Poisson intensity corresponding to unknown group objects Iuk|k−1(x) is updated as a
missed hypothesis. Hence, like for the GO-PHD or PHD filters missed detection, Iuk|k(x) is
just the validation of Iuk|k−1(x) with every components weight tempered by the non detection
probability 1− pD:

wu,ik|k = (1− pD)wu,ik|k−1 (4.17)

This leads to the updated uknown objects intensity Iuk|k(x), that is a mixture of nuk|k = nuk|k−1

GGIW state probability densities.

4.4.5 Implementation of the Group Object Poisson Multi Bernoulli filter

The implementation of this filter is straightforward: as for the GO-PHD filter, it is just the
integration of the GGIW Random Matrix model in the PMB filter. The final implementation
also benefits from the performance improvements brought by the gating, pruning, and merging
algorithms detailed in the chapter 1. As for the clustering, it is also left to the DBSCAN
algorithm. The complete implementation block diagram can be found in the figure 4.5.

Figure 4.5: Block diagram of the GO-PMB filter.

Granström et al. proposed in [GFS16] a GGIW implementation of the PMB filter based on
Feldmann’s RM state model. They only proposed a simulation study to validate their results.
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Building on this work, we have proposed in [Gue+20] the following contributions:

• using our GGIW RM state model to estimate the extent of groups of drones.

• taking into consideration under-resolved objects.

• testing the algorithms on both a simulated and a real dataset.

• incorporating an evolution model to consider the growth of groups of drones.

4.5 Tracking groups of drones with RM state models and RFS
filters

Tracking groups of drones with the RFS filters and RM state models necessitates several
additional contributions and adaptations, starting with the under-resolved objects problem.
Also, this section highlights the object management procedures we have implemented for both
filters.

4.5.1 Switching between the under-resolved and extended object state

An under-resolved extended object is an object that returns less than the minimum number
of measurements required by the RM model. In fact, νik, the degree of freedom of the Inverse
Wishart density must be greater than 2 d−2, since the extent is the expectation of the Inverse
Wishart density, given by

Xi
k =

Vi
k

νik − 2 d− 2
(4.18)

The degree of freedom νik decreases with each prediction step and increases with each correction
step. In our case, it should always be greater or equal to 7 since the number of spatial
dimensions of the extent is d = 2.

To enforce this result, several solutions are conceivable:

• groups that return less than 4 measurements are ignored.

• switch between a model for under-resolved objects and group objects. For instance,
switching between a Gaussian Mixture model for single objects and a Random Matrix
model for groups.

• if a group is under-resolved and returns less than 3 measurements, virtual measurements
can be created to turn any under-resolved objects into regular objects.

As illustrated in the figure 4.6, we have chosen the third option, turning under-resolved objects
into regular extended objects by adding virtual measurements to the groups of measurements.
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While the second proposal is more accurate than creating virtual measurements, the complex-
ity overhead can be simply avoided by using the third option.

Figure 4.6: The creation of virtual extended measurements.

In addition, creating virtual measurements is not inaccurate. Any object is extended, and
under-resolved objects are just smaller than the cell resolution of the sensor. Hence using
virtual measurements that are spread at a distance smaller than the cell resolution of the
sensor is a valid strategy.

In addition, the use of virtual measurements tackles another problem we encountered
during our experiments: it enforces that the measured extent matrix is a symmetric definite
positive matrix. For instance, if a group returns several measurements that are aligned, its
measured extent will be ill-conditioned, with a rank inferior to the dimension of the matrix.
Another example is when the measurements of a group are almost aligned, the measured
extent might appear as a flattened ellipse with an overestimated size along its main axis. This
issue is illustrated in the figure 4.6, with the group consisting of three measurements.

4.5.2 Objects management

The initialization procedure is different from what is described in most of the RFS literature.
Since both filters, the GO-PHD3 and the GO-PMB4, rely on a Poisson RFS to model the
birth of new objects, the usual layout for the initialization is to put objects at the edge of the
field of view of the sensor.

However, we chose to use a uniform distribution of the birth densities in the sensor’s field
of view. It seems appropriate since the drones can take off and land anywhere in the field of

3Group Object Probability Hypothesis density
4Group Object Poisson Multi-Bernoulli
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view. This method ensures that measurements are always close to a predicted birth object.
However, it comes with a drawback, the initialization of unwanted false alarms.

To tackle this problem, an initialization delay exists in our implementations. New objects
need to go through 3 recursions of the algorithm to be displayed. In addition, Each object’s
weight or existence probability needs to be higher than a threshold to be displayed. Both of
these assumptions ensure a good filtration of the false alarms. The birth object density is
illustrated in the figure 4.3.

Both algorithms use a delay and a pruning threshold to terminate objects that are no
longer detected by our sensor. For the GO-PHD, the pruning threshold is tuned. On the
contrary, the GO-PMB threshold is set to

Ttracked objects = wb p2
S (1− pD)3 (4.19)

where wb is the initialization weight of an object, pS is the survival probability of a tracked
object, and pD is its detection probability. This threshold ensures that tracked objects are
terminated after three iterations.

We could not take the approach of the equation (4.19) with the GO-PHD filter since it
is not a labeled filter. Pruning the weight of a mixture with such a threshold would lead
to a combinatorial explosion of the number of tracked objects. Indeed, at each update, one
component gives birth to m+ 1 component, m being the number of measurements.

Finally, the pruning and merging procedures of the objects are also implemented in the
GO-PHD and GO-PMB filters. As in the chapter 1, they rely on the Mahalanobis distance
between objects and a threshold Tmerge for the merging step, and a threshold Tthresh for the
pruning step.

4.5.3 Shape changing group objects

One of the main contributions of our work is taking into account the varying shape aspect of
the group objects. In the literature, this subject is discussed by Lan et al. in [LL12a]. They
propose to use an evolution matrix A during the prediction step. Apart from the simulated
dataset they use to validate their model, there is a lack of application to real data regarding
this approach. In addition, the data they consider corresponds to a rigid extended object, a
simulated aircraft carrier in their case. Lan et al. also proposed results on a group object in
another paper about this subject, [LL16]. However, it is a simulated dataset of a well-resolved
group object.

Thus, we propose using this model and evaluating it on real data with under-resolved
objects. In this work, the evolution matrix A is set to

A =

(
ρ 0

0 ρ

)
(4.20)
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with ρ the inverse of the square root of δk. δk is the number of degrees of freedom of the
evolution model for the extent. The higher δk, the higher the uncertainty regarding the
extent. Here, δk is set to 2 and ρ = 1√

2
.

4.6 Presentation of the metrics

Five metrics are retained here: the Optimal Sub-Pattern Assignment (OSPA) metric [SVV08],
the Generalized Optimal Sub-Pattern Assignment (GOSPA) metric [RGFS17], the cardinality
of the estimated set of objects, the average Root Mean Squared Error (RMSE), and the average
group object size.

The OSPA metric is straightforward to understand: either an object is tracked and its po-
sition RMSE compared to the ground truth can be computed, or it is missed or non-existent.
In the figure 4.7, denote by Xestim

k the set of n estimated objects xik at time k, and Xgt
k the

ground truth set that includes m true objects xgt,jk . Before computing the OSPA, an associ-
ation map Π between Xestim

k and Xgt
k is computed using the Munkres assignment algorithm

[Mun57]. This association map Π is a set of permutations over the set with the highest car-
dinality. As an example, let m ≤ n, then Π = {π1, ..., πm} is a set of m permutations, taking
their values in J1, nK. Using this set, the euclidean distance between each estimated object
and its ground truth can be computed such as

dc(xgt,jk ,xπ
j

k ) = min
(
||xgt,jk − xπ

j

k ||, c
)

(4.21)

where || · || stands for the euclidean distance between two vectors. The idea is that when these
vectors are further apart than a maximum cutoff distance c, then the cost c is applied, and
both vectors are considered independent: c can be seen as an error cost for a missed object.

The full OSPA metric takes into account the estimated yet false objects using the same
cost c. Using the example of the figure 4.7, the n −m remaining estimated objects are false
objects and participate in the OSPA with the value of (n−m) c.

dOSPA(Xestim
k , Xgt

k ) =

 1

n
min
πj∈Π

 m∑
j=1

dc(xgt,jk ,xπ
j

k )p + cp(n−m)

1/p

(4.22)

In this equation, c is the cost of a mismatch between the ground truth set and the estimated
set. The role of p is to weigh the impact of a mismatch between these sets. Indeed, if c remains
constant and p increases, the metric will drastically increase with outliers.

Nonetheless, this metric has some drawbacks. Rahmathullah et al. showed in [RGFS17]
that the normalization introduced in equation (4.22), the factor

(
1
n

)1/p, has some undesirable
effect on the metric’s behavior. For instance, let Xgt

k = {∅} and Xestim
k = {x1, ...,xn}, that is

the case where only false alarms are tracked, then the OSPA metric is equal to
(
n
n

)1/p
c = c.

Ideally, this metric should increase with the number of false alarms, which is not the case here.
That’s why Rahmathullah et al. propose to remove the normalization in the Generalized OSPA
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Figure 4.7: Example of OSPA metric computation.

metric (GOSPA). With Xgt
k = {∅} and Xestim

k = {x1, ...,xn}, the GOSPA metric is equal to
(n)1/p c, that augments with the number of false alarms.

The GOSPA metric can be defined as

dGOSPA(Xestim
k , Xgt

k ) =

(
min
j∈Π

(
m∑
i=1

dc(xgt,jk , xπ
j

k )p +
cp

α
(n−m)

))1/p

(4.23)

where Xgt
k = {x1

k, ...,x
m
k } and Xestim

k = {x1
k, ...,x

n
k}, and m < n. α is a normalization term:

if α = 1 there is no normalization, and if α = 2, the cost for a wrong assignment between the
ground truth and the estimation is the same whether it is due to a wrong assignment or a
non detected object. In our case we will always take α = 2, however, the value of c will vary
depending on the problem at hand.

In addition to the GOSPA metric, the average RMSE, the cardinality of the estimated set,
and the estimated extent are used as metrics. For the estimated extent, two parameters are
evaluated: the small half-axis size “a” and the big half-axis size “b”, as shown in the figure 4.8.

These metrics will help us to compare the results of all the filters discussed in this chapter.
We will first go through the performance of the unlabeled GO-PHD filter using two RM state
models: Lan’s approach and Feldmann’s approach. Then, we will test our RM state model
implementation using a labeled GO-PMB filter on a challenging active radar dataset.
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Figure 4.8: Extent size.

4.7 Results with a passive radar sensor

4.7.1 The passive radar sensor

Over the last few years, the interest in passive radar sensors to counter drones and swarms of
drones intrusions in protected aerial spaces has dramatically increased [Mal+17]. The passive
radar sensor technology relies on civilian radio frequency emitters, or opportunistic donors, to
detect moving objects in the electromagnetic field they emit. Some interesting opportunistic
donors are FM Frequency Modulation (FM) or Amplitude Modulation (AM) radio waves,
Digital Audio Broadcasting (DAB), Terrestrial Digital Video Broadcasting (DVB-T).

When tracking drones and groups of drones, several parameters need to be considered to
choose the most efficient emitter. For drones, the waveform parameters and properties are
important. The carrier frequency, useful bandwidth, coverage at low altitude, efficient clutter
cancellation of DVB-T emitters offer the best compromise for drone detection and tracking.
These parameters are summed up in the table 4.1.

The DVB-T emitters are opportunistic donors for passive radar sensors. They constitute
an array of civilian broadcasters working 24/7 with an “omnidirectional” illumination of the
emitters’ neighborhood. Consequently, the detection of moving objects in this widely illu-
minated area can be conducted simultaneously for all the objects. In contrast, for classical
scanning radar sensors, a wide area survey is achieved sequentially.

Another direct advantage of such a broad and constant illumination relies on the long
Coherent Integration Time (CIT). The CIT duration of observations is directly based on the
kinematic parameters of tracked objects to avoid range and Doppler migration. The typical
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Parameters Carrier Freq.v Bandwidth Power
Values 460-700 MHz 7.5 MHz 10-50 kW

Parameters Min. range Max. Range Range standard deviation
Values 10 m 3000 m 30 m

Parameters Azimuth beamwidth Elevation beamwidth Azim. standard deviation
Values 100 ° 2 ° 0.9 °

Parameters Clutter rate Sampling period pD
Values 15 FA/s 2 s 0.99

Table 4.1: DVB-T parameters.

DVB-T CIT for drones is close to 0.5 seconds (up to 1 second), leading to a 2 Hz resolution
for Doppler and frequency effects.

The propellers of a fixed-wing or multi-rotor drone are responsible for a phenomenon called
“micro-Doppler”. Indeed, the blades of a propeller can be modeled as high-velocity rotating
parts of the drone. Their contribution to the radar signature is often called the “micro-Doppler”
phenomenon.

However, we prefer the following interpretation: since the contributions of the blades are
not dependent on the carrier frequency or the drone’s motion, their distinctive contribution
cannot be considered a “micro-Doppler” phenomenon. Indeed, in its formal definition, the
Doppler effect depends on the carrier frequency and the object motion. However, the contri-
bution of the rotating blades relies on the induced periodicity of the global drone signature.
For example, when considering typical rotation speeds between 6000 revolutions per minute
(rpm) and 9000 rpm, the drone signature will present a periodicity between 100 and 150 Hz.
Since these numbers are obtained using a Doppler analysis, the “micro-Doppler” naming short-
cut appeared, even though it is not a Doppler effect. We prefer the term blade modulations
for this phenomenon.

The figure 4.9 illustrates an example of the detection of blade modulations. In this figure,
the drone is a quad-rotor, and an array of passive DVB-T receivers allow to estimate the bi-
static range, bi-static Doppler/velocity, and azimuth of the drone. In this example, the drone
performs a stationary flight for several minutes, meaning that the drone’s Doppler/velocity is
null. Nevertheless, because of the blades’ modulations and the period they induce, the drone
can be detected, and we can regress to the drone localization. The blades modulations show a
period close to 120 Hz and a harmonic around 240 Hz. Of course, the modulations are positive
and negative: when the propellers spin, their blades are getting closer and further from the
array of DVB-T antennas.
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Figure 4.9: Blade modulations detection.

4.7.2 The group of drones dataset

In this scenario, three UAS are moving in close formation. Only one of them, the “Matrix
600-Pro”, is equipped with a GPS sensor. The GPS’s black trajectory gives the ground truth
in the figure 4.10. The swarm starts the take-off at the alpha point and moves to the beta point
(at 1.2 km from the passive radar sensor). After a maneuver, the swarm continues its way to
the gamma point and returns to the beta point. It takes 12 minutes in total to complete this
trajectory.

It should be noted that the radar output is aliased due to the radar post-processing: the
measurements of an extended object are therefore mainly spread along one axis. Another
remark concerns the ground truth between the alpha and gamma points: due to an error of
the GPS, the ground truth is not accurate in this area.

As highlighted in figure 4.11.f, the ground truth is also inaccurate in two other places.
First, the ground truth is not in the sensor’s field of view during a brief moment at the point
gamma. Second, one of the drones separated from the swarm at the end of the scenario because
of an empty battery. Since it was not equipped with a GPS, there is no ground truth.

The main parameters of the filters for this scenario are summarized in the appendix B.1.
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Figure 4.10: The passive radar sensor dataset

Whether it is for the GO-PHD with Feldmann’s RM model, noted GO-PHD/F, or the GO-
PHD with Lan’s model, noted GO-PHD/L, the parameters are similar. The Generalized
Optimal Sub Pattern Assignment metric (GOSPA) is used to evaluate their performances
with the following parameters: c = 30 meters, α = 2 and p = 1.

As shown in figure 4.11.c, the positioning error for both approaches is relatively high, at
28.5 meters on average for the first one and 28.6 meters on average for the second one. These
numbers might seem significant, but the center of the group is not the position of the GPS.
Moreover, the ground truth is not perfectly aligned with the measurements, and the GPS has
its own positioning errors, inducing supplementary biases.

The sensor’s output is subject to high noise. The cell resolution of the passive radar is
low, and the drones seem to jump from one cell to another. This directly impacts the track
structure and should be considered in the cinematic model in future work. Even if the position
error is high for both approaches, they behave similarly, as attested by their GOSPA metric
in figure 4.11.a: the plots are superposed during most of the scenario.

Both algorithms seem to perform similarly tracking-wise, but we experienced that the
GO-PHD/F filter was more sensitive to false alarms and wrong associations, hence the higher
pruning threshold given in B.1. There is a high delay of 7 recursions before validating a new
object for both filters because they tend to validate false alarms too quickly.

The estimated extent of the group of drones is given in graphs 4.11.d, and 4.11.e. When
comparing the extent estimated by both approaches, Lan’s proposal provides an estimate
within the good range but with high variance, and Feldmann’s proposal converges rapidly to
a negligible estimate. This difference in terms of estimation is due to the high variance of
the measurements compared to the size of the group of drones. Feldmann’s proposal assumes
an exponential decay model for the extent estimate during the prediction, which appears
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Figure 4.11: Metrics for the passive radar dataset

to decrease exponentially because the contribution of the measured extent is not significant
during the update step. We could not get good results for this approach, except by minimizing
the exponential decay.

Regarding the drone that separates itself from the swarm of drones, at normalized time
0.8 in figure 4.11.f, the GO-PMB filter with Lan’s RM model, denoted GO-PMB/L, tracks it
during almost all its return path to the gamma point. However, it loses it midway because
the drone does not return any measurement during this timelapse. On the other hand, the
GO-PMB filter with Feldmann’s RM, denoted GO-PMB/F, struggles with this single isolated
object, tracking only the beginning and the end of its return path.

Finally, when they occur, the mismatches of the tracks are due to the unlabeled nature of
the PHD filter. As discussed in the chapter 2, one predicted object creates M + 1 new objects
after the correction, M being the number of extended measurements. Since we rely on the
estimate with the highest weight to assign the labels, as proposed by Clark et al. in [CPV06],
we have experienced some issues with tracks that seem to jump from one place to another if
the label is passed to the wrong association. In addition, a deterministic labeling approach
would allow the easy implementation of a label recycling algorithm.

In conclusion, the GO-PHD/L filter performed well on this dataset, while the GO-PHD/F
filter suffered from the high measurement noise. Our implementation of the GO-PHD/L filter
showed a more appropriate group extent size estimate. These results are in part due to the
quality of the passive radar sensor, delivering low clutter and a high detection probability for
large enough objects, despite its high measurement error noise. We propose two improvements:
first, implementing a labeled RFS filter and estimating the average number of measurements
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generated by the group object. These improvements are tested on a more complex dataset in
the next section.

4.8 Results with an active radar sensor

4.8.1 The pySim simulation tool

pySim is a python based software impulsed by Benjamin Pannetier to simulate MOT5 scenarios
with multiple heterogeneous sensors. It can also handle real datasets and compute multiple
metrics. An illustration of pySim is proposed in the figure 4.12. Our contributions to the
groups of drones tracking problem were developed in pySim.

Figure 4.12: pySim software user interface

For the simulation of radar scenarios, pySim works in three steps:

1. the creation of a scenario,

2. the launch of multiple Monte Carlo runs,

3. the computation of the metrics.
5Multi Object Tracking
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When creating a scenario, the user picks a reference point on a world map and selects
a sensor for the experiment. We use a radar sensor for the experiments; hence it is our
choice for the simulation. Among the radar sensor parameters, there are the minimum and
maximum detection ranges in meters, the elevation and azimuth aperture in degrees, and
the performance parameters of the sensor. The radar performances are characterized by four
parameters: the detection probability pD, the clutter rate in false alarms per squared meters,
and the measurement standard deviation along with the range and the azimuth.

The sensor is useless without objects traveling in its field of view, pySim allows the creation
of multiple isolated objects, with spline trajectories and random speeds if necessary. The
groups are created using multiple isolated objects evolving in close formation and at the same
speed.

The contribution of this thesis to pySim is the implementation of the metrics, as well as
the Monte Carlo procedure for the validation of the filters. In addition, we have implemented
the PMB6, GO-PHD, and GO-PMB filters. The group-oriented RFS filters exist in two forms:
Granström’s proposal and Our proposal.

4.8.2 Simulation with pySim

The objective of this first simulated dataset is to see how the algorithms react to a nonlinear
maneuver with merging, splitting, and an uneven number of objects per group. An added
difficulty comes from the fact that the top object is alone at the beginning and the end of the
scenario, as shown in the figure 4.13. Indeed, the Random Matrix model assumes that several
measurements are available for each extended or group object at each time step, which is not
always the case in our application. The group object of this scenario is slightly under-resolved
since it is the union of only five objects.

The simulated sensor is an active radar sensor. The measurements are 2D polar points
converted to Cartesian coordinates, the detection probability is set to pD = 0.9, the range
standard deviation varies between σr = {1, 4} meters, and the angular standard deviation
ranges between σθ = {0.1, 0.6} degrees. The false alarm rate is set to NFA = 40 false alarms
per radar swipe. The sampling period of the sensor is ∆t = 0.5 seconds. These parameters
are reminded in the table 4.2. Regarding the filter used in this section, their parameters can
be found in the appendix B.2.

The graphs from the figure 4.14 are the averaged results over 100 Monte Carlo runs. The
results of the PMB filter are only given in the case where σr = 1 meter and σθ = 0.1 degree,
for better readability regarding other results.

The simple Gaussian state probability density of the PMB filter leads to a highly underes-
timated number of objects, as shown in graph 4.14.b. It should be noted that the PMB filter
is tracking the actual cardinality of the problem, estimating six individual objects. However,
this filter shows poor track continuity results: it struggles to properly initialize the objects

6Poisson Multi-Bernoulli
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Figure 4.13: Simulated dataset

Parameters Min. range Max. Range Range standard deviation
Values 10 m 500 m {1, 4} m

Parameters Azimuth beamwidth Elevation beamwidth Azim. standard deviation
Values 90 ° 30 ° {0.1, 0.6} °

Parameters Clutter rate Sampling period pD
Values 80 FA/s 0.5 s 0.9

Table 4.2: Simulated radar parameters.

composing the group. When it does, it fails to maintain them because of wrong association
and phantom movements. It should be noted that the RMSE is lower for the PMB filter due
to a stark pruning policy: it prevents the wrong associations with false alarms, but at the cost
of track continuity once again.

Regarding the RM models coupled with the PMB filter, Granström RM implementation
is identified as the GO-PMB/G, and our RM implementation is denoted GO-PMB/O. The
GOSPA metric is shown in the graph 4.14.a clearly shows the impact of the Random Matrix
state models compared to the Gaussian state model. With σr = 1 and σθ = 0.1, the GO-
PMB/O and the GO-PMB/G filters seem to perform similarly. However, the higher the noise,
the more the GO-PMB/G filter struggles to estimate the number of objects properly, as shown
in graphs 4.14.e.

The additive Gaussian noise model of the GO-PMB/O shows better tracking performances
with the group object, as seen in the middle of the scenario when only one group is tracked
on the graph 4.14.e. This improved tracking performance comes with a higher RMSE with
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Figure 4.14: Metrics of the simulated dataset. One line corresponds to one scenario: a-c for
σr = 1 meter and σθ = 0.1 degrees, and d-f for σr = 4 meters and σθ = 0.6 degrees

respect to the GO-PMB/G filter: in fact, the GO-PMB/G filter converges quickly, but because
of the high noise when σr = 4 and σθ = 0.6, it fails to maintain the track continuity. Hence,
what happens is a lower RMSE for the GO-PMB/G filter, at the cost of a worst tracking
continuity, meaning a higher cardinality error, as seen in graphs 4.14.e and 4.14.f.

In conclusion, both of our implementations of the Group Object Poisson Multi-Bernoulli
filter work well with under-resolved isolated and group objects, which is very important when
tracking swarms of drones. When a drone separates from a swarm, its extent becomes neg-
ligible with respect to the sensor noise. Moreover, compared to the GO-PMB/G filter, the
GO-PMB/O filter proved to be more robust to higher sensor noise. However, even with the
contributions we proposed, these results are based on a simulated dataset. To complete our
results, we propose to run the GO-PMB filter on a real pedestrian dataset.

4.8.3 The pedestrian dataset

We have used an active radar sensor for this dataset, relying on Frequency Modulated Con-
tinuous Wave (FMCW). It was developed for aerial space surveillance applications, including
the detection and tracking of drones and swarms of drones. It can detect human-sized objects
up to 500 meters and vehicles up to 900 meters. Its parameters can be found in the table 4.3.
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Parameters Radar type Carrier frequency Power
Values FMCW 4 - 8 GHz 25 mW

Parameters Min. range Max. Range Range standard deviation
Values 10 m 500 m 1 m

Parameters Azimuth beamwidth Elevation beamwidth Azim. standard deviation
Values 90 ° 30 ° 0.1 °

Parameters Clutter rate Sampling period pD
Values 30 FA/s 1 s 0.9

Table 4.3: PSR-500 radar parameters.

The measurements are 2D polar points converted to Cartesian coordinates, and the de-
tection probability is equal to pd = 0.9. Moreover, the range standard deviation is σr = 1

meter and the angular standard deviation is equal to σθ = 0.1 degrees. The false alarm rate
is moderate, with an average of NFA = 30 false alarms per radar swipe, and the sampling
period of the sensor is ∆t = 1 second. Finally, it should be noted that the ground truth is
empirical.

Figure 4.15: Pedestrians dataset

The scenario of this dataset is the following: an initial group of 9 people walks away from
the radar sensor, denoted alpha in the figure 4.15. Then they separate at a ninety-degree
angle, at point beta, and go on the side of the road. Shortly after, they walk back to the
point beta, regroup and pause. In the last part, the pedestrians walk back to the radar sensor,
the point alpha. During this last part, the group separates once again into two groups. The
resulting tracks form a T-shape.

The first difficulty with this scenario is the low number of measurements returned by the
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group of nine walking people. Even though they are in front of the radar, they generate around
4 to 5 measurements per swipe. In addition, the detection probability of the tracked groups
is low twice during this scenario: when they separate at point beta and when they gather and
walk back to the point alpha. In the first case, they are almost invisible because of the ground
topology, both sides of the road forming depressions that occlude the groups. In the second
case, one group is occluding the other one.

Figure 4.16: Metrics for the real dataset

Both the PMB and the GO-PMB filters were tested on this dataset. For the RM state
models, Granström’s RM implementation is denoted GO-PMB/G, and our RM implementa-
tion is denoted GO-PMB/O. The parameters of all the filters can be found in the appendix
B.3.

Once again, the PMB filter struggles with track continuity. Regarding the GO-PMB/G
and the GO-PMB/O filters, they are on par with each other. Indeed, this scenario is composed
of slowly evolving groups, and the false alarm rate is low. Moreover, the sensor noise error
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covariance is also low since the objects are moving close to the sensor. It can even be approx-
imated as negligible in regard to the extent in this specific scenario. Thus the derivation and
update procedures of the original Random Matrix model[Koc08] are sufficient here. Hence,
the cardinality and errors are very similar on the graphs presented in the figure 4.16.

4.9 Conclusion

We have proposed a solution to the MOT problem for group objects and under-resolved objects
when only scarce datasets are available. For that matter, we proposed to rely on the Random
Matrix (RM) state model associated with two different RFS-based filters.

The solutions were built incrementally, using the Probability Hypothesis Density filter
coupled with Feldmann’s and Lan’s RMmodels on a passive radar dataset first. In this dataset,
the measurement uncertainty is greater than the size of the extent. It is especially problematic
for Feldmann’s RM model, whose extension estimate is poor because of the combined effect of
the exponential decay prediction step. The extent was better estimated by Lan’s RM model.
Still, the overall performance of the filter was not the best due to the unlabeled aspect of this
filter and the fixed expected number of measurements for each correction step.

We proposed two solutions using an active radar sensor dataset for validation to correct
both of these problems. First, we switched to the PMB filter to label tracked objects. Second,
we augmented Lan’s RM model with a Gamma density to estimate the number of measure-
ments returned by an extended object. The resulting filter, the GO-PMB/O filter, is compared
to two other RFS-based filters: the linear Gaussian PMB filter developed in chapter 2 and the
PMB filter coupled with Granström’s RM state model, the GO-PMB/G filter.

The PMB, GO-PMB/G, and GO-PMB/O filters are compared using two active radar
datasets, one from simulated data and one from real data. The GO-PMB/O outperforms the
other filters in terms of shape estimation and tracking continuity. In addition, it shows better
performance when dealing with under-resolved objects.

To summarize the contributions we proposed in this work. First, we have modified and
implemented our RM model based on previous work. In addition, we proposed to add the
estimation of the number of measurements to the state model. This model was first used
with a PHD, and then a PMB RFS filter, and they were both compared to similar filters
in high noise scenarios. Amongst the scenarios, we proposed to use our real datasets and a
simulation using a MOT software we developed, pySim. These scenarios confronted us with
the under-resolved objects problem that we solved using a virtual measurement approach.

To further push this work, numerous perspectives exist. We could implement a Generalized
Labeled Multi-Bernoulli (GLMB) RFS filter and couple it with our RM state model to compare
it to the GO-PMB/O labeled filter. In addition, working on the extension estimation stability
could be interesting, especially in our high measurement noise scenarios when compared to
the size of the extent. Finally, a study of the impact of the deformation matrix and the
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evolution matrix on the extent estimation could be conducted. It would require a group of
drones dataset with ground truth data of the extent.
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5.1 The problems of automotive Multi Object Tracking

5.1.1 Context of the study

An autonomous vehicle first needs to perceive its environment before planning its trajectory
and executing its decision. The perception task of an autonomous vehicle concerns the de-
tection, tracking, and forecasting of the surrounding environment state. The perception task
has several applications, for instance, lane tracking to position the vehicle on the road or the
detection and estimation of other road users. In this work, we focus on the latter. To put it in
perspective of the Simultaneous Localization And Mapping (SLAM) computational problem,

99
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this work focuses on the front end, that is, the sensor data processing and the tracking of
other road users.

Since all the software blocks of autonomous driving are built upon the perception task,
enforcing the redundancy and integrity of information through this procedure is mandatory.
The redundancy is fundamental; it asserts that in the eventual case of a system failure, the
system integrity can be certified until the vehicle’s passengers are safe. Failure causes can be
software or hardware, and assessing the perfection of a system is impossible: the redundancy
features must be built at the root of the perception of an autonomous driving system.

Heterogeneous and complementary sensors equip an autonomous vehicle. Their multiplic-
ity and diversity enforce the redundancy from the start of the perception task, but it comes
at the cost of higher complexity than single-sensor approaches. Indeed, the sensors return
asynchronous measurements that may have different representations or coordinate systems.
In addition, they can contradict each other, and they are subject to varying types of noises.
The main goal of data fusion is to operate the synthesis of all the information returned by the
sensors. At the same time, it aims at leveraging the advantages of each type of sensor. Data
fusion is a field on its own, and it will not be discussed in this chapter. We will only rely on
a lidar sensor for the detection and tracking of other road users.

Several large datasets offering lidar point clouds exist: for instance, the Kitti dataset
[GLU12] or the nuScenes dataset [Cae+20]. These large datasets allow testing the perfor-
mances of the perception system in a wide variety of situations. In addition, they propose a
high-quality ground truth, together with metrics and performance indicators that allow the
scientific community to compare different perception solutions. The object perception task
is often divided into two challenges: the object detection and the Multiple Object Tracking
(MOT) challenges.

Since we focus on the MOT challenge, the detection algorithm is selected amongst the
state-of-the-art algorithms for automotive applications. The current best object detection
algorithms are based on deep learning, a supervised machine learning approach. Using massive
datasets allows automating the learning object detection. Recent research tends to prove that
most of the complexity lies in the detection process, and even with a basic MOT algorithm,
near state-of-the-art performance can be achieved with a good off-the-shelf detector. For
instance, Kim et al. achieved state-of-the-art performances with a Deep Learning based object
detector and a Global Nearest Neighbors Standard Filter (GNNSF) [KOLT21]. The same
conclusion can be drawn from the work of Yin et al., where the MOT algorithm limits itself
to a nearest neighbor association between two consecutive sensor swipes [YZK21].

While these prove to be well-performing solutions, integrity is not always treated, whereas
it is a crucial one for the automotive industry. Moreover, the comparison does not incorporate
the latest works done in MOT, represented by the Random Finite Sets (RFS) theory.

Building on the study [YZK21], the objective of this chapter is to compare the current
state of the-art of automotive MOT with an RFS based filter: the Generalized Labeled Multi
Bernoulli (GLMB) filter [VVH16]. After a short reminder on the state-of-the-art of automotive
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MOT, the object detection solution we have implemented is presented in the second section.
The third section discusses the implementation of the GLMB filter. All the algorithms dis-
cussed in this chapter are then compared using the automotive dataset nuScenes, and they
are displayed in the results section.

5.1.2 Choosing deep learning over modeling for the object detection and
extent estimation

Contrary to the previous chapter, where the detection and shape estimation process was
handled by the Random Matrix state model, in this chapter, we rely on deep learning for
these tasks. Only scarce datasets were available for the drone tracking application, which
is not the case in this application. Before these datasets were available, the perception of
autonomous vehicles heavily relied on modeling.

The first leap in autonomous driving research happened during the Darpa Grand Challenge
from 2005 to 2007 in the United States of America. During this event, the goal was for a
vehicle to navigate in different environments autonomously. The teams did not have access
to large datasets, and they relied on modeling for the object detection task. For instance,
Petrovskaya et al. proposed in [PT09] to detect cars using a lidar together with a simple
geometric ground rejection algorithm and a segmentation algorithm based on the difference
between two successive frames. While effective, this approach is based on a specific heuristic
since the navigation environment is fully controlled: it can not be easily generalized to other
scenarios because of security requirements.

As soon as the first large datasets appeared, together with the processing power, the shift
to deep learning algorithm has operated. Deep learning takes advantage of the “Unreasonable
Effectiveness of Data”, as stated by Halevy et al. in the eponymous paper [HNP09]. The idea
is that data matters more than algorithms for complex problems. It is even more valid for deep
learning, where the larger the dataset, the more a deep neural network can learn generic and
very specific features regarding the problem at hand. In that regard, deep learning approaches
seem less prone to “the curse of dimensionality” encountered with more classical techniques.

Despite all these advantages, there are some drawbacks to using deep learning. The neces-
sity to gather large annotated datasets is not the most problematic. The main inconvenience
comes from the explainability of such algorithms. Since it relies on an automatized learning
step, no one can explain why a network converges to one solution or another. In that regard,
a deep learning algorithm behaves like a black box algorithm: the inputs and the outputs are
known, but anything in between is out of reach. Most of the works in fundamental research
aim at solving this issue, such as the work of Ribeiro et al. [RSG16].

In the case of our application, this black box approach resembles what a car manufacturer
faces when outsourcing its research and development effort to suppliers. Indeed, when buying
off-the-shelf solutions, the manufacturer does not necessarily know the algorithm involved.
That’s why this research is interesting: suppliers’ algorithms are subject to errors, just like
sensors, so they require filtering to be usable. A deep learning network can be seen as a
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supplier solution that needs to be filtered, using, in our case, an RFS-based MOT tracker.

To summarize, the first object detection approaches used modeling heuristics because only
scarce datasets were available, like for the drone application. Then large datasets have been
collected and annotated, enabling the use of deep learning. Large datasets allow the algorithm
to learn the extended object representation from the data directly. It is more effective than
using a model such as the Random Matrix extended object model. However, it comes at
the cost of computing and explainability, trading a clear modeling for a black-box approach.
Nonetheless, black-box approaches solutions are common in the automobile industry. From
the MOT algorithm perspective, it can be seen as a “meta-sensor”, subject to measurement
noise, false alarms, and missed detections.

This “meta-sensor” description is compatible with RFS-based filters. Mahler described
RFS and FISST1 as a “fire and forget” method, where the fusion or detection step can be
handled in a meta-sensor that gathers all the sensors’ information [Mah04]. This chapter
uses a lidar-only approach coupled with a deep learning detection algorithm to simulate this
“meta-sensor”.

A lidar sensor returns point clouds, with each data point consisting of a 3-dimensional
position and a reflectance. An example of a lidar point cloud can be seen in the figure 5.1.
From this lidar point cloud, the goal is to estimate the bounding boxes that correspond to
the objects surrounding the autonomous vehicle. These bounding boxes are the ground truth
of the dataset: they are characterized by a position, a speed, a length, a width, a height,
an orientation, a class, and an identifier. Examples of bounding boxes can be found in the
figure 5.1. They can be considered as extended objects since they return more than one
measurement.

Estimating a bounding box is equivalent to estimating its extent, position, and kinematic
parameters. As discussed in the previous chapter, this task is achieved using Yin et al. Cen-
terPoint, a deep learning algorithm [YZK21]. Other deep learning object detection algorithms
exist, but this chapter is not state-of-the-art about deep learning. We chose to use it as a
black box. CenterPoint is amongst the best performers on Waymo and nuScenes automotive
datasets: it was the overall best choice when we began our research, even though it has since
been outperformed in terms of precision, shape, and class estimation.

The workflow of CenterPoint is summarized in the figure 5.1, it starts with a birds-eye
view projection of the lidar point cloud, turning it into an image. Hence, the point cloud is
discretized, and each pixel has three components: the maximum height reached inside it, the
median reflectance, and the number of data points that fall in this pixel. This birds-eye view
image is then passed to a first Convolutional Neural Network that detects the center of the
objects and regress to their extent, class, and orientation. We are treating it as a “black box”
algorithm.

The result is a 3-dimensional bounding box, characterized by its extent, position, orien-
tation, and class, as illustrated in the result example of the figure 5.1. As pictured in this
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Figure 5.1: Lidar only detection algorithm workflow.

example, there are a lot of false alarms, which is generally true for most object detection
algorithms for automotive applications. The false alarms are not the only problem, and three
random phenomena mainly impact a typical detector:

• false alarms, or false positives, corresponding to detections that are not associated with
an object,

• missed detections, or false negatives, whether it is due to the occlusion of the object or
the detection process,

• noisy detections inducing uncertainty directly from the measurements.

These problems are critical for an autonomous vehicle. Thus, a perception layer cannot limit
itself to the detection paradigm. In addition, the output of the object detection algorithm
lacks an identifier for each object. The role of a tracking algorithm is to tackle all these
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problems. The following section discusses MOT algorithms to filter out the false alarms and
track each extended object through time.

5.1.3 State of the art Multi-Object Tracking algorithms for autonomous
driving

In this chapter, tracked objects are referred as a set X = {(x1, l1), ..., (xn, ln)}, where each
xi = [px, vx, py, vy, pz, vz, θ, wb, lb, hb, C, s]

T is a state vector describing respectively the position
(px, py, pz) and the speed (vx, vy, vz) of the center of the object, its orientation (θ), its bounding
box dimensions (wb, lb, hb), its class (C), and its score (s). Each state vector xi is associated
to a tracking identity, or label li. The set X = {(x1, l1), ..., (xn, ln)} is estimated recursively
with detections Z = {z1, ..., zm}, where zi = [px, vx, py, vy, pz, vz, θ, wb, lb, hb, C, s]

T in the case
of CenterPoint, using the same notations as above: hence the tracking algorithms could be
reduced to the addition of a tracking identity to the measurement. It should be noted that
the measurement set and the tracked objects set cardinalities are generally different, m 6= n.
To link these two sets, the state of the art consists of two classes of algorithms:

• detect to track : the tracking occurs after a first detection step.

• simultaneous detection and tracking : tracking and detections are joints. Tracking results
are used to detect new objects, and detections can create new tracks.

We are interested in the detect to track architecture presented in [FPZ17]. It consists of
creating an association matrix between measurements and tracks that is solved using an as-
signment algorithm. Afterward, the state of each track for the next time step is predicted using
an evolution model. Then some track management is done for unassigned measurements and
undetected objects. This procedure is repeated recursively throughout the tracking. Depend-
ing on the algorithmic choices for these building blocks, we have selected three algorithms from
the automotive MOT state of the art: AB3DMOT, CenterPoint, and EagerMOT [Wen+20];
[YZK21]; [KOLT21]. These three propositions propose to use a deep learning detection algo-
rithm coupled to a simple MOT algorithm for the tracking.

AB3DMOT is the baseline tracker of nuScenes. Using only lidar point clouds, it relies on a
Munkres algorithm for the assignment, coupled with a Kalman filter for the state estimation: it
is a derivative of the Global Nearest Neighbours Standard Filter (GNNSF) algorithm presented
in the introduction.

EagerMOT also uses a GNNSF MOT algorithm, but its deep learning detector relies on two
sensors modalities: the cameras and the lidar. Thanks to a specific 2D to 3D data information
fusion strategy, it outperforms the other methods tested in this chapter. Even though it relies
on more sensors, we have decided to include it nonetheless to understand what is undermining
the performances of lidar-only solutions.

Compared to these algorithms, the tracker from CenterPoint is very straightforward: after
receiving the detection from Centerpoint, the assignment between objects and detections is
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done with a greedy algorithm. After this greedy association, the prediction is carried out using
a constant velocity model, without considering the measurement uncertainty: a Kalman filter
is not even involved for the state estimation.

The main differences between these MOT algorithms are the heuristics for tracked objects’
death and birth and the way to build the association matrix: the objects’ track management
is at the center of MOT challenges. For instance, CenterPoint initializes any unmatched
measurement as a new tracked object after the assignment, while other algorithms might
require a delay.

From a more formal perspective, solutions such as EagerMOT, AB3DMOT, and Cen-
terPoint are badly conditioned, even if they are effective. Especially, the formulation of the
association map, resulting from the resolution of the association matrix between measurements
and tracked objects, is both considered as a state variable to estimate and an observable pa-
rameter. This assumption is not correct, as discussed in the chapters 1 and 2.

RFS-based filters offer an accurate description of the multi-object system. We want to
leverage this descriptive power to model the MOT problem for the automotive task.

5.2 Automotive tracking with a GLMB filter

We have selected the Generalized Labeled Multi-Bernoulli filter introduced in the chapter
2 for the automotive MOT task. It is the only RFS filter relying only on Multi Bernoulli
densities, and Vo et al. have proven that it can run efficiently using Gibbs Sampling and
a gating algorithm in [VVH16] and [VVB19]. In addition, the GLMB filter prediction and
measurement models take into account the issues of the detection algorithm presented in the
previous section. The pseudo-code of this algorithm can be found in the section 2.6.

To compare the GLMB filter to the MOT algorithm of CenterPoint [YZK21], a similar
evolution motion model is selected: the constant acceleration model. The state vector to
estimate, yk = [px, vx, ax, py, vy, ay]

T , consists of the position, the speed, and the acceleration
along 2 dimensions, and is a partial representation of the state vector xk introduced in 5.1.3.
We do not have access to yk directly, but we do have access to its prior probability density
that is assumed to be linear Gaussian, with the expectation ŷk|k−1 and the error covariance
matrix Pk|k−1. At each time step, the set (ŷk|k,Pk|k) need to be estimated.

In order to bridge the gap between the partial state vector yk and the desired state
vector xk, yk is enriched with the class (C), the score (s), the orientation (θ), the
bounding box dimensions (wb, lb, hb), and the position and speed along the vertical axis
(pz, vz), directly taken from the measurement zk defined in 5.1.3. In other words, xk =

[(Hkyk)
T , pz, vz, θ, wb, lb, hb, C, s]

T , with Hk the observation matrix defined bellow.

The idea behind this truncation is that apart from the position [px, vx, py, vy] of the tracked
object xk, all the other state variables keep approximately the same value during the inference.
Hence, only yk = [px, vx, ax, py, vy, ay]

T is estimated with a Bayesian filter.
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5.2.1 State Evolution Model Assumptions

The constant acceleration evolution model assumes that:

• the prediction of the state is linear; thus it is similar to a classical Kalman filter predic-
tion,

• the evolution of each dimension is independent,

• the object maintains its acceleration between two sensor acquisitions, its evolution is
given by a matrix Fk,

• the evolution process is noisy, each prediction gives rise to the augmentation of the error
covariance matrix by a term Qk.

This leads to an evolution matrix Fk given by

Fk = I2 ⊗

1 dt
1
2d

2
t

0 1 dt
0 0 1

 (5.1)

where dt denotes the measurement interval in seconds, I2 is a two dimensions identity matrix
and ⊗ stands for the Kronecker product. As for the error covariance matrix Qk

Qk = σ2
pred I2 ⊗


d4t
4

d3t
2

d2t
2

d3t
2 d2

t dt
d2t
2 dt 1

 (5.2)

with σpred standing for the evolution model standard deviation. The resulting state prediction
equations are given by

ŷk+1|k = Fkŷk|k

Pk+1|k = FkPk|kF
T
k + Qk

(5.3)

5.2.2 State Measurement Model Assumptions

The measurement model assumptions for detected objects are the following:

• the measurement model is linear Gaussian, the correction step is similar to the regular
Kalman filter,

• a measurement ztk = [px, vx, py, vy] comprises the position and speed along each dimen-
sion. The associated observation matrix is denoted Hk,

• the measurement noise is independent along each dimension, and for each measured
parameter. It is represented by a diagonal covariance matrix Rk.
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The measurement ztrunk is a truncated version of the full measurement z introduced in 5.1.3:
zk = [(ztrunk )T , pz, vz, θ, wb, lb, hb, C, s]

T . y relies only on ztrun for the estimation process. As
stated earlier, all the additional information constitutive of xk are directly stripped from zk
such as xk = [(Hkyk)

T , pz, vz, θ, wb, lb, hb, C, s]
T .

The observation matrix is given by

Hk = I2 ⊗
(

1 0 0

0 1 0

)
(5.4)

and the measurement error covariance matrix

Rk = I2 ⊗
(
σ2
pos 0

0 σ2
speed

)
(5.5)

where σpos, and σspeed respectively stand for the position, and velocity standard deviations.
The final state correction equations are similar to the standard Kalman filter:

ŷk|k− = ŷk|k−1 + K(ztrun −Hkŷk|k−1)

Pk|k = Pk|k−1 −KHkPk|k−1

K = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1

(5.6)

5.2.3 Association Likelihood

In equations (2.25) and (2.26), the association likelihood was introduced. Here it is augmented
with a class specific identification function δCj (Ci), using the class of zj and xik. The notation
for the association likelihood is g

(ztrun,jk ,Cj)
(ŷik|k−1, C

i), and it is set to

g
(ztrun,jk ,Cj)

(ŷik|k−1, C
i) =

δCj (C
i)N (ztrun,jk −Hkŷ

i
k|k−1; 0,S)

ρFA

S = HkPk|k−1H
T
k + Rk

δCj (C
i) =

{
1 if Ci = Cj

0 otherwise

(5.7)

where ρFA is the false alarms intensity of the measurement model, and N (ztrun,jk −
Hkŷ

i
k|k−1; 0,S) is the marginal probability density of the measurement ztrun,jk . δCj (C

i) is
equal to 1 when the class Cj of the detection zv is the same as the class Ci of the tracked
object xik.

5.2.4 Objects’ Initialization And Destruction

The object initialization procedure is straightforward: each measurement zjk with a detection
score higher than a class-specific threshold Tnew is considered as a possible new object whose
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acceleration is set to 0 m/s2. Then, during the resolution of the association matrix, the choice
is made between a measurement generated by a false alarm, a new object, and an already
tracked object.

Once a new object is initialized, for instance the object (xb,i, lb,i), its partial state vector
yik is created, and its survival probability PS(yik, l

i) increases according to the number of times
the object is detected. It decreases when it is missed, and when an object is missed three
times, it is destroyed.

This concludes the presentation of our implementation choices, the results of the joint
prediction, and update GLMB filter are provided in the next section.

5.3 Results

5.3.1 Overview of nuScenes dataset

We rely on the nuScenes dataset that offers a Multi-Object Tracking (MOT) challenge for the
result section [Cae+20].

The ego vehicle from nuScenes relies on the typical sensors found in such datasets: 5 radars,
one lidar, six cameras, a GPS, and an inertial measurement unit. Each sensor modality covers
roughly all the surroundings of the ego vehicle. This dataset consists of 850 labeled scenes
and 150 test scenes of 20 seconds. They were collected in Singapore and Boston. Several tasks
are proposed with this dataset, including a MOT challenge.

The goal of nuScenes’ MOT challenge is to track and label objects surrounding the ego
vehicle, whether the sensors detect them or not, and despite the presence of false alarms
and noise in the measurements. Because of the heterogeneity of the sensors and due to the
complexity of the observed scene, we rely on neural networks for the detection step.

The detection algorithm we have selected is one of the state of the art solution found
in the object detection challenge of nuScenes. We have retained the CenterPoint approach
[YZK21]. In spite of its state-of-the-art performances, it suffers from certain issues regarding
false alarms rate and bike detections, which will be discussed in the result section.

One of the advantages of nuScenes is its clean ground truth. The dataset is annotated
at a rate of 500 milliseconds, and each frame is composed of multiple 3D bounding boxes.
Comparing the ground truth to the results of MOT algorithms permits the computation of
many metrics. For the MOT challenge [Cae+20], the two main metrics are the Average
Multi-Object Tracking Accuracy (AMOTA) and the Average Multi-Object Tracking Precision
(AMOTP): they are presented below.
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5.3.2 Metrics and Tuning Parameters

The AMOTA is an integral metric of the Multi Object Tracking Accuracy with Recall nor-
malization (MOTAR) over a number L of recall values:

AMOTA =
1

L− 1

∑
r∈{ 1

L−1
, 2
L−1

,1}

MOTAR (5.8)

For a given recall r, the MOTAR metric takes into account the number of Identity Switches
(IDSr), the number of False Positives (FPr), and the number of False Negatives (FNr), and
compare them to the number of Ground Truth True Positives (GTtp). It relies on a recall
normalization term (1 − r) GTtp to keep it in the [0, 1] interval, and to avoid the fading
contributions of IDSr and FPr at low recall rates; there are at least 90% FNr at 10% recall.

MOTAR =

max
(

0 , 1− IDSr + FPr + FNr − (1− r) GTtp
r GTtp

) (5.9)

The closer to 1 the MOTAR and AMOTA metrics are, the better.

The AMOTP metric is complementary to the AMOTA metric. It is also an integral metric,
but this time it is interested in the Multi Object Tracking Precision (MOTP) for a number L
of recall values:

AMOTP =
1

L− 1

∑
r∈{ 1

L−1
, 2
L−1

,1}

MOTP (5.10)

For a given recall r, the MOTP metric computes the sum of the error in localization for the
position of each tracked object i during all the time of the tracking (

∑
i,t d

i
r,t), and compares

it to the total number of True Positives selected by the tracking algorithm (
∑

t TPr,t):

MOTP =

∑
i,t d

i
r,t∑

t TPr,t
(5.11)

The result is a metric independent of the tracking accuracy and only retains information about
precision: this metric is given in meters (m). The lower the MOTP and AMOTP metrics are,
the better.

In the nuScenes dataset, the AMOTA and AMOTP metrics are computed across a number
L = 40 recall values. Secondary metrics are also calculated,

• the number of Mostly Tracked (MT) objects that are objects tracked during at least
80% of their lifespan,

• the number of Mostly Lost (ML) objects that are objects tracked during at most 20%
of their lifespan,

• the number of times the trajectory of a tracked object is Fragmented over time (Frag),
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Table 5.1: Main hyperparameters for the GLMB filter

Car Truck Bus Trailer Pedestrian Motorcycle Bicycle
Existence
prob.

0.74 0.74 0.74 0.49 0.74 0.74 0.62

σpos (m) 1.3 1.4 1.1 1.2 0.6 1.7 1
σspeed (m/s) 1.66 1.33 2.29 1.25 1.18 2.20 1.25
σaccel (m/s2) 1.125 1.75 1.75 1.75 2.375 1.75 1.75
σpred 0.5 0.5 0.5 3 0.5 1 0.5

• the Longest Gap Duration (LGD) that gives the average time a tracked object is missed
in seconds,

• the average time before the initialization of a new object in seconds (TID): if an object
is never initialized, it is accounted for in the TID metric,

• the average number of False Alarms per Frame (FAF).

These metrics are computed on the nuScenes test dataset. The object tracking is done
over seven classes: cars, bicycles, pedestrians, buses, trailers, motorcycles, and trucks. The
tracking range is limited to 40 meters for bicycles, pedestrians, and motorcycles. It extends
to 50 meters for the rest of the classes: these are the limitations imposed by the tracking
challenge.

The tuning of the GLMB is specific for each class for most of the hyperparameters. The
most important ones are reported in the table 5.1. They were tuned using randomized search
among a list of possible values with the help of the nuScenes training dataset.

5.3.3 Performance Results

The results are presented in the table 5.2. Looking at the main metrics, the tracking accuracy
(AMOTA), and the tracking precision (AMOTP), the GLMB filter outperforms the baseline
represented by AB3DMOT and is on par with CenterPoint. Of course, overall, EagerMOT
shows better metrics since it relies on two sensors modalities.

Taking a look at the AMOTA metric in the table 5.2, EagerMOT has a slight edge com-
pared to GLMB and CenterPoint MOT algorithms. The GLMB filter and CenterPoint show
very close results for the tracking accuracy, and they perform far better than the baseline,
AB3MOT.

Compared to CenterPoint and EagerMOT, the GLMB filter is lagging regarding the
AMOTP metric. Both CenterPoint and EagerMOT do not rely on a state prediction model,
while the GLMB filter average between the object’s estimated position and the measurement.
This led to a lower tracking precision for the GLMB filter. It is probably due to the over-
estimation of the measurement errors for the position. A solution to this issue could be to
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Table 5.2: Performance results

AMOTA AMOTP
(m)

MOTAR MOTP
(m)

MT ML Frag LGD
(s)

TID
(s)

FAF

AB3DMOT 0.151 1.501 0.552 0.402 1006 4428 2557 3.742 1.972 55.83
CenterPoint-
Single

0.638 0.555 0.794 0.284 5584 1681 529 0.698 0.372 57.42

EagerMOT 0.677 0.550 0.793 0.335 5303 1842 601 0.801 0.448 56.85
GLMB
(ours)

0.635 0.591 0.789 0.325 5451 1622 690 0.910 0.560 53.80

fine-tune the GLMB filter. The precision could also be improved with a better evolution
model.

As for the secondary metrics, these observations remain valid, except for the average
number of False Alarms per Frame (FAF): the GLMB filter improves the performances and
is followed by AB3DMOT. This implies that false positives have a smaller impact on the
AMOTA metric when compared to the false negatives and the identity switches, despite the
regularization term discussed in the last section. While missing an object can have dramatic
effects, the validation of too many non-existing objects can also be very dangerous for an
autonomous vehicle, leading to undesired emergency breaking. It is remarkable that even the
AB3DMOT tracker, which is lagging behind in every aspect when compared to CenterPoint
and EagerMOT solutions, remains one of the best performers for this metric on the tracking
challenge leader board.

A class-by-class comparison of the AMOTA metric is proposed in the next section, and a
plot of the resulting output to understand the situation better.

5.3.4 Further Discussions

Table 5.3: AMOTA per class

AB3DMOT
(lidar)

EagerMOT
(cam+lidar)

CenterPoint
(lidar)

GLMB (li-
dar, ours)

Bicycle 0.00 0.58 0.32 0.32
Bus 0.41 0.74 0.71 0.72
Car 0.28 0.81 0.83 0.83
Motorcycle 0.08 0.63 0.59 0.57
Pedestrian 0.14 0.74 0.77 0.75
Trailer 0.14 0.64 0.65 0.65
Truck 0.01 0.60 0.60 0.61

The average results show that our proposal is relevant for autonomous driving applications,
but the class-specific results are informative.
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Figure 5.2: The output of the GLMB filter for the first scene of the mini-test dataset of
nuScenes. The black bounding boxes represent the tracked objects and their labels. The
colored bounding boxes represent the ground truth. The lidar point cloud is visible, as well
as the road, in grey.

First, the GLMB filter and CenterPoint lag behind EagerMOT for one class, the bicycle
class. Indeed, the bicycle class is amongst the most difficult for lidar-only detectors. A bicycle
returns only a few lidar points, and it is not the most represented class; hence it is hard to train
a detector for it. In comparison, EagerMOT’s detector also relies on camera images, where
a bike is represented by thousands of pixels. Hence, adding a sensor modality brings some
improvements, but only with classes that are difficult to track with lidar-only methods. This
shows the main strength of the fusion approach compared to single sensors ones: exploiting
the benefits of each sensor while overcoming their drawbacks.

The results are very close to one another regarding the other classes: the objects are more
prominent and easier to detect with a lidar. From this observation, a second conclusion can be
drawn: the detector’s output strongly influences the MOT algorithm. In fact, for this chapter,
we tuned the GLMB filter to perform close to the CenterPoint solution, proving that RFS
filters can achieve state-of-the-art results. Hence the output of the GLMB filter is very close
to the detector’s output.

This statement is confirmed in the figure 5.2. This plot is representative of most of the
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GLMB outputs: the tracking of existing objects is effective, but false alarms are everywhere.
This leads to unusable results for real applications. It should be noted that we succeeded in
lowering the number of false alarms, at the detriment of the AMOTA metric.

The problem of false alarms is not limited to the GLMB filter: all of the MOT solutions of
the nuScenes tracking challenge return an average of over 40 False Alarms per Frame (FAF).
As discussed above, false alarms can have a dramatic effect on driving safety. Thus, this
problem should be tackled in future work, even if the FAF metric is considered as a secondary
metric.

5.4 Conclusion

We have proposed an implementation of the GLMB filter for automotive MOT using a deep
learning detection algorithm. The GLMB filter achieves state-of-the-art results and catches
up with the original CenterPoint MOT filter in terms of metrics. It proves to perform a little
better on the False Alarms metric than the other solutions we are referring to in this chapter.

However, just looking at the metrics is not very informative about the tracking quality, and
even if the performances of the GLMB filter we designed are similar to the baseline, plotting
the MOT results shows a high number of undesired false alarms. They have a minor effect on
the tracking accuracy metric. Still, their impact on driving safety is real: future work should
be done to improve the consideration of false alarms in MOT challenges.

The performances of the GLMB are deceptive compared to the other algorithms: it is just
on par with them, despite the complexity overhead. Even if our solution is more robust by
design, which is a desirable characteristic for autonomous vehicles, it is not apparent in the
results. Here, more robust by design means that it can retain multiple association hypotheses
and evaluate a comprehensive likelihood for each object. Nonetheless, the results highlight a
high dependence on the detection algorithm.

To improve the results, increase the AMOTP metric, and lower the FAF metric, we propose
the following research perspectives:

• changing the motion model for a more accurate one. Because the constant acceleration
model does not fit all situations, switching to a Multiple Model Approach might improve
the results.

• for some vehicle class, most samples are in the parked state: a specific model could
improve the tracking results, especially for the bicycle class. Indeed, parked vehicles on
the sidewalks are often occluded by parked vehicles on the roadsides: wrong associations
or undesired object destruction might happen.

• a detector whose output contains information about the survival likelihood, the detection
likelihood, and the measurement error.
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• an object rejection algorithm based on the High Definition map (HD map).

• to gain both in robustness and accuracy, filtering over multiple frames could be inter-
esting.

• most of the algorithms only rely on keyframes for the MOT challenge locking the filter
rate to half a second: exploiting all lidar frames lead to a rate of 50 milliseconds, which
should give better results.

• of course, sensor data fusion should lead to a leap in performance.

Another exciting perspective could be to introduce deep learning to RFS-based filters. In
particular, to simplify the birth process of new objects: it could be learned from the dataset,
as well as the detection and survival probabilities of a given object, the false alarm rate, and
all other parameters involved in the MOT filter.



Conclusion and perspectives

Summary of the work

This work is a collaboration between the ONERA, the Gipsa-lab and the Renault Group. It ad-
dresses two Multi-Object Tracking applications. For the Renault Group, it is the autonomous
vehicle perception task, while for the ONERA, it is the groups of drones tracking problem.
Both problems are different versions of the multiple extended object tracking problem. We
proposed to solve them using Bayesian modeling tools to infer the information returned by
the sensors.

To tackle the MOT problem, we have used Random Finite Sets-based filters. We have
seen that adopting the RFS representation allows us to model the issues encountered in MOT
using probability densities instead of heuristics. The formalism induced by this description
led us to the presentation of three MOT filters we have implemented in this work.

In addition to MOT, both applications involved extended objects. Among all the ap-
proaches available for extended object shape estimation, we have retained two methods. For
the group of drones application, we have focused on Bayesian modeling using the Random
Matrix model. In contrast, we have relied on deep learning for the extended objects detection
task of the automotive application. Indeed, when large datasets are available, as is the case
for the automotive application, the task of detecting and estimating extended objects can be
learned directly from the data.

In the case of the groups of drones tracking application, we have studied two RFS filters
combined with four Random Matrix (RM) models. Among the RM model recursions, we
have proposed our model, integrating the measurement noise and the random number of
measurements to the extent model. In addition, we have proposed a solution to consider
under-resolved objects. We have developed pySim, a python software that can playback radar
datasets to test the algorithms we have implemented. Using simulated and real radar datasets,
we were able to validate the effectiveness of our contributions.

As for the automotive application, we have implemented an RFS tracker to filter the output
of a deep learning detection algorithm. We have achieved state-of-the-art results and have
caught up with some well-known MOT algorithms metrics-wise. Our approach to this problem
proved to perform better on the False Alarm metric while not solving this issue: future works
should address this problem.
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Perspectives

The first perspective is the integration of deep learning algorithms to improve the prior knowl-
edge available about the studied system. For MOT, the growing amount of data available for
most applications offers many perspectives. Deep learning algorithms are already bringing
major performance leaps in the detection and tracking fields. It would be interesting to learn
an adapted “meta-sensor” for RFS-based filters. By “meta-sensor”, we refer to the proposition
of Mahler in [Mah04], where the information returned by multiple sensors are merged into
“meta-observations”. Hence, these “meta-observations” seem to originate from a “meta-sensor”
adapted to an RFS-based filter. Such a sensor could bring the advantages of sensor data fusion
while offering “meta-observations” compatible with RFS-based filters.

The usage of deep learning could also benefit the evolution and measurement models of
MOT filters. For instance, one could learn the birth probability density of new objects or the
false alarm rate and detection probability. For this purpose, using a map or a High Definition
map could give cues about where to initialize new objects while preventing the validation of
false alarms occurring in odd areas.

In addition, the state evolution model could profit from the latest advancement in motion
forecasting. For instance, the work of Mercat et al. [Mer+20] takes into account the objects’
interactions and the surrounding environment to forecast the motion of tracked objects. This
perspective seems very attractive, especially to detect future occlusions between the tracked
objects or discard false alarms.

Because of the leap in performances offered by deep learning and the current research effort
channeled by this topic, it had to be mentioned for the perspectives of this thesis. However,
some applications lack data or necessitate explainable results, which prevent the usage of deep
learning. For them, the Bayesian modeling effort put into the work of this manuscript is a
good starting point.

First, most of the perspectives we have proposed using deep learning could be done using
modeling assumptions and Bayesian inference. For instance, only the classical linear evolution
model was considered for the automotive application, while a constant turn rate constant
acceleration model is more appropriate in this case. Before using deep learning methods,
numerous evolution models exist.

In addition, much information can be leveraged about the objects’ motion models using
prior knowledge. For example, in the case of autonomous vehicles, a lane detection and
tracking algorithm such as the one proposed by Camarda et al. [Cam+20], could help forecast
the future position of surrounding vehicles without relying on deep learning.

At last, a new type of sensor is on the verge of industrialization: the event camera. This
technology is promising for tracking applications: its high refresh rate and high dynamic range
offer interesting research perspectives. For instance, it can be turned into an inexpensive high-
speed camera with unmatched low light capabilities when associated with a camera. This
can be useful for demanding night environments with fast-moving objects. In addition, this
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sensor’s data stream is very lightweight compared to a camera sensor, which is an advantage
in an embedded system offering limited computational capabilities.





Appendix A

Useful functions and probability
density functions

A.1 Multivariate Gaussian probability density function

A multivariate Gaussian probability density of a vector variable x is defined as N (x; x̂,P),
with

N (x; x̂,P) =
1√

(2π)d|P|
e−

1
2

(x̂−x)TP−1(x̂−x) (A.1)

Here x̂ stands for the expectation of x, and P is the error covariance matrix. d is the number
of state dimensions of x.

A.2 d-dimensional Gamma function

The d-dimensional Gamma function is a multivariate generalization of the Gamma function.
For any positive integer m > 1, it is defined as

Γd(m) = πp(p−1)/4
d∏
j=1

Γ

(
m+

(1− j)
2

)
(A.2)

with Γ(m) the regular, univariate Gamma function:

Γ(m) = (m− 1)!

= Γ1(m)
(A.3)

A.3 Wishart probability density function

A Wishart density is a probability density on d dimensional symmetric positive definite ma-
trices. It models the uncertainty of the empirical covariance computed from Gaussian mea-
surements:

W(Z;m,X) =
1

(2)md/2 |X|m/2 Γd(
m
2 )
|Z|(m−d−1)/2 e−

1
2
tr(X−1Z) (A.4)

where Γd is the d dimensional Gamma function, m is the degrees of freedom, and X is the
scaling matrix. It should be noted that (m > d− 1) at all times.
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A.4 Inverse Wishart probability density function

An Inverse Wishart density is a probability density on d dimensional symmetric positive
definite matrices. The Inverse Wishart density is expressed as the inverse of the Wishart
density, such as :

IW(X; ν,V) =
|V|ν/2

(2)νd/2Γd(
ν
2 )
|X|−(ν+d+1)/2 e−

1
2
tr(VX−1) (A.5)

where Γd is the d dimensional Gamma function, ν is the degrees of freedom, and V is the
scaling matrix. It should be noted that (ν > d− 1) at all times.

The expectation of this density is

E(X) =
V

ν − d− 1
(A.6)

In the RM model, this expected value is the extent.

A.5 Poisson probability density function

An extended object may return a random number of measurements. A discrete Poisson
probability density can model these measurements. The discrete Poisson probability density
is given by

P(m; γ) =
γm

m!
e−γ (A.7)

with γ the expected number of measurements.

A.6 Gamma probability density function

The conjugate prior of the Poisson probability density is the Gamma probability density

G(γ;α, β) =
βα

Γ(α)
γα−1e−γβ (A.8)

with α the shape and β the rate of the studied phenomenon. Here Γ(·) denotes the Gamma
function, not to be confused with the Gamma probability density function.

The expected value of a Gamma probability density is given by

E(γ) =
α

β
(A.9)

In the case of the Gamma Gaussian Inverse Wishart model, it is the expected number of
measurements returned by an object.
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Filters parameters

B.1 Parameters for the passive radar sensor datasets

This appendix presents the GO-PHD/F and GO-PHD/L filters’ parameters for the results
presented in the section 4.7.

Parameters Birth Probability wb Num. Births pS pD
Values 0.001 348 0.99 0.98

Parameters Clutter Rate Cluster Size Tprune Tmerge
Values 5× 10−6 FA/m2 5 m (1) 30 m

Table B.1: GO-PHD/F and L parameters.

(1) Both filters are using a different threshold, Tprune = 0.001 for the GO-PHD/L filter,
and Tprune = 0.008 for the GO-PHD/F filter.

B.2 Parameters for the pySim simulated radar dataset

This appendix presents the filters’ parameters for the results presented in the section 4.8.3.

B.2.1 PMB

Parameters Birth Probability wb Num. Births pS pD
Values 0.001 10 0.95 0.9

Parameters Clutter Rate λFA Cluster Size Tprune Tmerge
Values 5× 10−7 FA/m2 Not needed 0.0001 5 m

Table B.2: PMB parameters.
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B.2.2 GO-PMB/F and GO-PMB/L

Parameters Birth Probability wb Num. Births pS pD
Values 0.001 10 0.95 0.9

Parameters Clutter Rate λFA Cluster Size Tprune Tmerge
Values 5× 10−7 FA/m2 15 m 0.001 30 m

Table B.3: GO-PMB parameters.

B.3 Parameters for the active radar sensor dataset

This appendix presents the filters’ parameters for the results presented in the section 4.8.3.

B.3.1 PMB

Parameters Birth Probability wb Num. Births pS pD
Values 0.001 10 0.95 0.9

Parameters Clutter Rate λFA Cluster Size Tprune Tmerge
Values 5× 10−6 FA/m2 Not needed 0.001 2 m

Table B.4: PMB parameters.

B.3.2 GO-PMB/F and GO-PMB/L

Parameters Birth Probability wb Num. Births pS pD
Values 0.001 10 0.95 0.9

Parameters Clutter Rate λFA Cluster Size Tprune Tmerge
Values 5× 10−6 FA/m2 3 0.001 2 m

Table B.5: GO-PMB parameters.



Appendix C

Choosing the structure of the state
noise covariance for the Brownian

models

This appendix was proposed by Professor Olivier Michel of the Gipsa-Lab.

With the goal is to determine the structure of the covariance matrix of the state noise, for
a simple state model of the form

pt2 = pt1 + vt1 dt + εpt2
vt2 = vt1 + εvt2

(C.1)

with pt1 the position of an object x according one dimension at time step t1, and vt1 the speed
along the same axis. Here t1 and t2 are two consecutive time indices. It is assumed that the
only force driving the process is a white noise process. The question is to identify the mean
and covariance matrix of the noise vector above.

This set of equations appears to be the discretized form of the following continuous time
stochastic differential equation

dvt = α dwt (C.2)

where wt is a Wiener-Levy Process (thus dwt “behaves” like a random white noise process).
Note that for physical interpretation, this amounts to assume that the Brownian driving force
is dwt. The constant α entails both the inertial mass of the object whose position and velocity
are respectively pt and vt at time t. α stands for the diffusion coefficient of the Brownian
process. As a consequence, the velocity v of the object x is the Wiener Levy (WL) process,
and the position of x is the Riemann integral of this process.

pt2 = pt1 +

∫ t2

t1

ws ds (C.3)

Assume that dt = t2 − t1 > 0, i.e., it represents the elapsed time between the dates indexed
respectively by t1 and t2.

Among the useful properties of WL processes, we have

E[wt] = 0

E[wtwt′ ] = α min(t, t′)
(C.4)
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allowing to compute the variance of x as a function of α:

var

[∫ t2

t1

ws ds

]
= E

[(∫ t2

t1

wsds

)2
]

=

∫ dt

0

∫ dt

0
E[wu ws] du ds

=

∫ dt

0

∫ dt

0
α min(u, s) du ds

= α

∫ dt

0

[∫ u

0
s ds

]
du+ α

∫ dt

0

[∫ dt

u
u ds

]
du

= α
d3
t

3

(C.5)

This means that under the dynamical model above, both the velocity and the position of
the object x are non-stationary processes of respective variances that increase like dt and

d3t
3

when dt increases. Furthermore, position and velocity being jointly consequences of the same
driving force, they appear to be correlated:

E[wt

∫ t1+dt

t1

ws ds] =

∫ dt

0
E[wdt ws]ds

= α

∫ dt

0
s ds

= α
d2
t

2

(C.6)

Finally, for our model, the state noise covariance matrix is given by

Q = E
[[
εpt
εvt

]
[εpt ε

v
t ]

]
= α

[
d3t
3

d2t
2

d2t
2 dt

] (C.7)

Interpretation: Between two time samples, as our state equation is continuous and repre-
sents the evolution of a system excited by a white process accounting for the random forces,
both the velocity and the position will exhibit non stationary behavior. Actually, the velocity
is a Wiener process, and the position is the integral of this latter. The larger the elapsed time
between consecutive samples, the larger will be their respective variances and covariance.

From a more pragmatic point of view, this quantifies the indeterminacy of both position
and velocity of x and its evolution between two measurements.
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D.1 Introduction

Le travail présenté dans ce doctorat s’intéresse au suivi de plusieurs objets et à l’estimation
de leur trajectoire dans un environnement ouvert. Ce doctorat est une collaboration entre
les équipes de recherche du groupe Renault, de l’ONERA et du Gipsa-Lab, cette synergie
s’explique par la proximité des deux applications visées. En effet, le groupe Renault s’intéresse
à l’estimation des paramètres cinématiques des usagers de la route entourant un véhicule
autonome, tandis que l’ONERA vise la défense d’espaces aériens contre les intrusions de drones
et de groupes de drones. Pour ces deux applications, l’objectif est d’estimer les paramètres
cinématiques, position et vitesse par exemple, d’objets dynamiques se déplaçant dans une zone
couverte par des capteurs hétérogènes.

Un objet est une entité dynamique observable par un ou plusieurs capteurs. Plusieurs
paramètres caractérisent un objet, comme sa vitesse, sa position, sa taille ou son accélération.
Ces paramètres sont partiellement observables en utilisant des mesures générées par des cap-
teurs bruités. Une étape de filtrage est nécessaire lors de l’estimation pour réduire l’erreur
d’estimation et estimer les paramètres non observables d’un objet. Par exemple, la vitesse
et l’accélération d’un objet peuvent être déduites de ses positions successivement mesurées.
L’inférence Bayésienne permet de construire des filtres qui minimisent l’erreur quadratique
moyenne de l’estimation : ils sont optimaux sous certaines hypothèses.

Les applications visées ici se concentrent sur le suivi simultané de plusieurs objets. La
présence de plusieurs objets ajoute un problème s’association entre mesures et objets, en plus
du problème du filtrage. La question est de savoir quel objet a généré quelle mesure, tout
en prenant en compte les défauts du capteur: par exemple des objets peuvent être manqués,
des mesures peuvent correspondre à des objets inexistants ou inintéressants. Ces problèmes
sont adressés par le domaine du suivi multi-objet, ou Mutli Object Tracking (MOT), à l’aide
d’hypothèses de modélisation et des statistiques Bayésiennes.

Parmi les multiples objets à suivre, certains peuvent être des objets étendus, leur taille
excède la résolution du capteur et ils retournent plusieurs mesures par acquisition. Le nombre
de mesures et leur organisation spatiale sont liés à la forme et l’orientation de l’objet étendu:
en plus des paramètres cinématiques, l’extension spatiale de l’objet peut être estimée. Deux
cas de figure sont possibles pour l’estimation de la taille d’un objet étendu. Si une faible
quantité de données est disponible, la construction d’un modèle de l’extension spatiale est une
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première option. En revanche, si de grands jeux de données sont à disposition, l’extension
spatiale peut être apprise pour chaque objet à l’aide de méthode d’apprentissage statistique.
Cette distinction entre grands et petits jeux de données est essentielle, puisqu’elle conditionne
l’état de l’art disponible pour l’estimation de l’extension spatiale d’un objet étendu.

Ce travail propose une approche original, qui repose sur l’utilisation de l’inférence Bayési-
enne pour la résolution du problème de suivi multi-objet et l’estimation de l’extension. Les
deux applications proposées reposent sur la modélisation du problème multi-objet à l’aide des
Ensembles Aléatoires Finis. En revanche, due à la taille des jeux de données disponibles pour
chaque application, les solutions choisies pour estimer la forme et la taille des objets étendus
diffèrent. Pour le suivi de groupes de drones, où peu de données sont disponibles, les ob-
jets étendus sont modélisés à l’aide de matrices aléatoires. Quant à l’application automobile,
l’estimation des objets étendus est réalisé à l’aide d’un réseau de neurones profond, entrainé
sur la grande quantité de données disponibles.

Le premier chapitre se concentre sur le problème du suivi multi-objet, et les filtres couram-
ment rencontrés dans l’état de l’art pour le résoudre. Il s’attarde aussi sur les limites de ces
filtres, le fait de ne considérer l’inférence Bayésienne qu’au niveau de l’objet et non du système
multi-objet, ce qui est sous optimal. Le second chapitre présente donc les ensembles aléatoires
finis, qui permettent de s’affranchir des limites évoquées dans le premier chapitre tout en ré-
solvant le problème du suivi mutli-objet. Le cas des objets étendus est traité dans le troisième
chapitre, surtout la modélisation basée sur les matrices aléatoires. Les deux derniers chapitres
se concentrent sur les applications, d’abord le suivi de drones et de groupes de drones, et
ensuite la perception pour le véhicule autonome.

D.2 Résumé des chapitres

D.2.1 Résolution du problème du suivi multi-objet avec l’inférence Bayési-
enne

Ce chapitre aborde l’estimation des paramètres cinématiques d’un objet: sa position, sa vitesse
et son accélération. Des rappels concernant le filtrage Bayésien pour un objet seul permettent
d’aborder le filtrage multi-objet et le filtre standard des plus proches voisins globaux, Global
Nearest Neighbors Standard Filter (GNNSF).

Le filtre GNNSF est une extension du filtre de Kalman: il s’agit de scinder le problème
du suivi multi-objet en deux. D’abord l’appairage entre mesures et objets est réalisé avec
un algorithme d’affectation, puis un filtre de Kalman par couple objet-mesure retourne une
estimation des paramètres cinématiques de l’objet. Lorsque plusieurs résultats d’appairage
sont retenus, plusieurs hypothèses d’associations globales sont propagées: c’est le filtre de
suivi à hypothèses multiples, Multiple Hypothesis Tracking (MHT).

Malheureusement, les filtres MHT et GNNSF ne décrivent pas explicitement la vraisem-
blance des mesures et le modèle d’évolution du système multi-objet: la création de nouveaux



D.2. Résumé des chapitres 127

objets ou les fausses alarmes sont gérées avec des hypothèses empiriques. Le formalisme offert
par les ensembles aléatoires finis permet de définir un filtre Bayésien complet.

D.2.2 Modélisation du problème du suivi-multi objet avec les ensembles
aléatoires finis

Les filtres à ensembles aléatoires finis sont des ensembles de vecteurs dont le cardinal est aléa-
toire. L’objectif est d’utiliser ces ensembles en lieu et place du vecteur d’état dans l’inférence
Bayésienne. Cela permet de définir des modèles de mesure et d’évolution qui intègrent les
problématiques du suivi multi-objet. Un avantage supplémentaire provient de la résolution
du problème d’association, qui se fait conjointement avec l’estimation de l’état des objets.

Trois filtres basés sur les ensembles aléatoires finis sont présentés dans ce chapitre. Le
premier est le filtre Probability Hypothesis Density (PHD), qui permet de suivre des objets sans
recourir à un algorithme d’affectation. C’est un filtre léger mais sujet à l’amalgame d’objets
proches, ce qui peut être un problème pour l’application automobile par exemple. Pour pallier
ce problème, le filtre Generalized Labeled Multi-Bernoulli (GLMB) est aussi présenté: il suit
la même philosophie que le filtre MHT.

Tout comme un filtre MHT, le filtre GLMB a une empreinte mémoire et un coût en
calculs bien plus élevés que le filtre PHD car il propage plusieurs hypothèses d’association
simultanément. Une alternative qui vise à résoudre ces problèmes est le filtre Poisson Multi-
Bernoulli Mixture filter, c’est une approche hybride combinant les résultats du filtre PHD et
ceux du filtre GLMB.

Ces filtres basés sur les ensembles aléatoires finis adressent les problèmes évoqués dans le
premier chapitre. En revanche, ils reposent sur l’hypothèse que les objets retournent au plus
une mesure, ce qui n’est pas vérifié dans les applications visées par cette thèse. Un nouveau
modèle d’état est donc nécessaire pour ces objets qui sont qualifiés d’étendus.

D.2.3 Les modèles d’états pour objets étendus

Les objets étendus retournent plusieurs mesures par acquisition du capteur. Parmi les modèles
d’états prenant cette caractéristique en compte, l’approche des matrices aléatoires pour les
objets étendus considère que les mesures retournées par un objet étendu sont distribuées
uniformément dans une forme elliptique. L’avantage de ce modèle est sa faible complexité: au
coût de l’hypothèse d’une forme en ellipse, l’estimation de la taille de l’objet revient à estimer
une matrice symétrique définie positive du même nombre de dimensions que le problème
étudié.

Pour estimer une matrice symétrique définie positive, le bruit de mesure est supposé
Gaussien, ce qui amène à une loi de probabilité sur les matrices aléatoires de Wishart pour
le groupe de mesure et une loi de probabilité Wishart inverse pour la taille et l’orientation
de l’objet étendu. Pour l’état cinématique de l’objet, la densité de probabilité Gaussienne est
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conservée, ce qui donne le modèle d’état Gaussien Wishart inverse pour le modèle d’état.

Le modèle d’état Gaussien Wishart inverse pour les cibles étendues souffre de plusieurs
limitations pour les applications visées dans le cadre de ce doctorat. Il est considéré que le
nombre de mesures retourné est constant et que le bruit de mesure est négligeable devant
la taille de l’objet étendu. Ce chapitre propose donc quatre récursions Bayésiennes avec des
hypothèses supplémentaires pour résoudre ces problèmes. Ces modèles d’états basés sur les
matrices aléatoires sont intégrés dans les algorithmes de suivi multi-objet dans le chapitre
suivant.

D.2.4 Le suivi multi-objet étendus pour le suivi de drones

L’intégration des quatre modèles d’état à matrices aléatoires dans des filtres multi-objets basés
sur les ensembles aléatoires finis concerne ici l’application au suivi de groupes de drones. Trois
jeux de donnés sont utilisés pour les résultats: les données issues d’un radar actif simulé, les
données issues d’un radar actif réel et les données issues d’un radar passif réel. Les tests
de performance sont réalisés avec le logiciel pySim, développé en partie dans le cadre de ce
doctorat.

Les contributions proposées dans ce chapitre sont les suivantes. Tout d’abord, la proposi-
tion d’un modèle à matrices aléatoires spécifiquement développé pour le suivi d’objets groupés
et d’objets étendus faiblement résolus. Ensuite, son intégration dans des filtres basés sur les
ensembles aléatoires finis, résultant dans des filtres limitant le nombre d’hypothèses nuisantes
au formalisme Bayésien. Enfin, l’acquisition de jeux de données pour le test des algorithmes
développés.

Ce travail ouvre plusieurs perspectives, notamment l’intégration de modèles cinématiques
non linéaires pour le suivi de groupes de drones et un travail sur la stabilité de la forme ellip-
tique dans le cas des groupes qui se déforment rapidement. De plus, des jeux de données avec
la vérité-terrain de l’extension des groupes seraient intéressants pour calculer des métriques
non empiriques concernant la taille des groupes de drones suivis. Enfin, l’étude plus complète
de l’impact de la matrice d’évolution de la forme des groupes permettrait de quantifier son
avantage par rapport à un modèle d’évolution constant.

D.2.5 Le suivi multi-objet pour le véhicule autonome

Contrairement au chapitre précédent, l’estimation de la taille des objets étendus est ici réalisée
avec des algorithmes d’apprentissage profond. En effet, en présence de grands jeux de données,
les algorithmes de détection basés sur des modèles offrent de moins bonnes performance que
leurs homologues basés sur des réseaux de neurones profonds. L’objectif de ce chapitre est de
comparer les performances en suivi multi-objet des filtres basés sur les ensembles aléatoires
finis à d’autres algorithmes proposés sur le jeu de données nuScenes.

L’implémentation d’un filtre Generalized Labeled Multi-Bernoulli (GLMB) permet
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d’atteindre les résultats de l’état de l’art sur le jeu de données nuScenes. L’avantage de
ce filtre par rapport à l’état de l’art est sa robustesse, ce qui est désirable pour un véhicule
autonome. Tous les résultats de l’état de l’art témoignent néanmoins de la dépendance à
l’algorithme d’apprentissage profond pour la détection d’objets étendus.

Plusieurs perspectives peuvent être considérées pour améliorer les résultats obtenus.
L’utilisation d’un modèle d’état à interactions multiples par exemple, pour prévenir le change-
ment de mouvement des objets entourant le véhicule autonome et la fusion multi-capteurs
sont les premières pistes à considérer.

D.3 Conclusion

D.3.1 Synthèse

Ce travail est une collaboration entre l’ONERA, le Gipsa-lab et le groupe Renault. Il se
concentre sur deux applications de suivi multi-objet. Il s’agit de la perception du véhicule
autonome pour le groupe Renault, et du suivi de groupes de drones pour l’ONERA. Ce
sont deux formulations du problème du suivi multi-objet étendu. Nous avons proposé de les
résoudre en utilisant majoritairement la modélisation Bayésienne.

Les ensembles aléatoires finis permettent de résoudre le problème du suivi multi-objet
en utilisant uniquement l’inférence Bayésienne. Le formalisme offert par cette description
permet de décrire les phénomènes observables dans les mesures du capteur et dans le modèle
d’évolution du système multi-objet, plutôt que de construire un filtre basé sur un raisonnement
heuristique. Ces observations ont permis la description de trois filtres basés sur les ensembles
aléatoires finis.

En plus du suivi multi-objet, chacune des applications impliquent des objets étendus.
Deux méthodes sont retenues pour résoudre ce problème: le modèle des matrices aléatoires
dans le cas du suivi de groupes de drones et les réseaux de neurones profonds dans le cas de
l’application automobile. Ces choix se sont basés sur la taille des jeux de données disponibles
pour chaque application.

Le suivi de groupes de drones a donné lieu à l’utilisation de deux filtres basés sur les en-
sembles aléatoires finis, et quatre modèles de matrices aléatoires pour l’extension des groupes.
Nous avons proposé un modèle d’extension spécifique pour les groupes de drones, intégrant
le bruit de mesure et le nombre aléatoire de mesures. De plus, nous avons proposé de pren-
dre en considération la possibilité de suivre simultanément des objets étendus et des objets
sous-résolus. Ces travaux sont intégrés dans pySim, un logiciel python qui permet de jouer
des scénarios de suivi de groupes de drones réels et simulés.

Quant à l’application automobile, un filtre basé sur les ensembles aléatoires finis fut aussi
développé, en utilisant les détections d’un réseau de neurones profond en guise de mesures.
Nous avons atteint des résultats au niveau de l’état de l’art sur la plupart des métriques
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étudiées. Le filtre développé à notamment validé en moyenne moins de fausses alarmes sans
résoudre totalement ce problème: cet aspect doit être abordé dans de futurs travaux.

D.3.2 Perspectives

Tout d’abord l’intégration d’algorithmes d’apprentissage profond pour tirer le plus
d’information a priori possible des jeux de données disponibles. Pour le suivi multi-objet,
cela signifierait l’apprentissage d’un “meta-capteur”, comme proposé par Mahler dans [Mah04].
Il permettrait de synthétiser les mesures générées par plusieurs capteurs dans des “meta-
observations”, qui seraient alors utilisées en entrée d’un filtre basé sur les ensembles aléatoires
finis. Ce “meta-capteur” permettrait d’explorer les avantages offerts par la fusion de données
multi-capteurs.

L’apprentissage profond pourrait aussi bénéficier aux modèles de mesure et d’évolution
des filtres multi-objets. Par exemple, certains paramètres du filtre pourraient être appris, tel
que la probabilité de détection, ou le taux de fausses alarmes. Un autre exemple, l’utilisation
de la carte haute définition permettrait d’avoir plus d’informations a priori concernant la
naissance de nouveaux objets, tout en prévenant la validation de fausses alarmes dans des
zones improbables.

Les modèles prédictifs proposés par Mercat et al. [Mer+20] serait aussi un ajout intéres-
sant pour prendre en compte l’interaction des objets avec leur environnement. Ces modèles
permettraient entre autres de prédire des variations de comportements dans la trajectoire ou
des occlusions futures.

La plupart des perspectives proposées reposent sur l’apprentissage profond, notamment car
ces algorithmes offrent des performances bien supérieures à ceux reposant sur la modélisation.
Pourtant, la modélisation est inévitable lorsque peu de donnés sont disponibles. Dans ce cas la
plupart des perspectives précédentes peuvent être abordées avec des modèles plus complexes.
Par exemple, des modèles d’évolution plus complexes, comme ceux proposés par Camarda et
al. [Cam+20], peuvent permettre de prédire les positions futures des véhicules par rapport
aux voies routières sans apprentissage profond.

Enfin, de nouveaux capteurs font leur apparition: les caméras événementielles. Ces caméras
sont asynchrones, elles retournent une information de changement de contraste lorsqu’il se
produit dans un pixel. Cette mise à jour asynchrone permet un taux de rafraichissement
et une gamme dynamique élevés. Ce capteur est intéressant dans des conditions de faible
luminosité avec des objets qui se meuvent à haute vitesse, comme ça peut être le cas sur une
autoroute de nuit. Pour ces raisons, leur intégration aux systèmes de suivi multi-objet existant
ouvre de nouvelles perspectives de recherche.
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