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“When you pass through the waters, I will be with you; 

and when you pass through the rivers, they will not sweep over you. 

When you walk through the fire, you will not be burned; 

the flames will not set you ablaze.” 

Isaiah 43:2 
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Introduction 

Over the past decades, the importance of personalized and precision medicine has been 

growing more attention as shown e.g., by the increased number of drug monitoring therapies. 

One of the purposes of these approaches is to pay more attention to individual factors. This is 

even more important when drug cocktails are used, as in post-transplantation therapies. Over 

the past decades, many pharmacokinetics tools for improved dose individualization and 

pharmacogenomics have been proposed to better understand inter-individual variability. Many 

factors have been identified; however, there is still a significant unexplained part which remains 

misunderstood. Perhaps the combination of low-penetrance or rare variability factors is 

underestimated. To better understand these processes, several events that are only implicitly 

included in systemic pharmacology models need to be considered. 

Xenobiotics must cross many membranes to reach their target, get metabolized or eliminated. 

Therefore, membrane crossing events are substantial in pharmacology. Such events affect 

both drug concentration in several body compartments (pharmacokinetics – PK) as well as 

their different effects (pharmacodynamics – PD). There is a need for deeper understanding 

and finer quantification of PK/PD relationships. Drug-membrane crossing is directly involved 

in local PK, i.e., drug concentration at e.g., the target sites, whether linked with drug therapeutic 

or adverse effects. Nevertheless, knowledge about membrane crossing mechanisms is still 

fragmented [1]. 

Particular attention should be paid to human transporters which drive membrane crossing 

event. ATP-Binding Cassette (ABC) proteins and solute carrier (SLC) proteins are crucial in 

drug absorption, distribution, metabolism and elimination (ADME) [2], [3]. Some of them were 

described as “emerging clinical importance” by the International Transporter Consortium (ITC). 

For instance, ABCB1 (P-gp), SLCC22A6 (OAT1), SLCO1B1 (OATP1B1), ABCC2 (MRP2), and 

ABCC4 (MRP4) are involved in drug elimination events [2], [3]. This is indeed particularly 

important to focus on liver and kidney transporters. These organs are of crucial importance in 

the ADME model as they govern the modification and filtration of most of the drugs. 

Consequently, it is important to know more about the functioning of transporters located in 

these organs since they are directly linked with PK/PD relationship. These transporters have 

not been all structurally resolved yet, precluding the atomic resolution of their functions. 

However, one can take advantage from similar resolved transporters (e.g., from the same 

family) to have an overview and better decipher their activities. 

There is currently no single technique capable of providing a comprehensive and dynamic 

overview of xenobiotic-transporter interactions. Computational chemistry, molecular modelling 

or in silico pharmacology appear relevant to provide an atomic and dynamic picture of these 

events. Among them, all-atom molecular dynamics (MD) simulations have become a powerful 

tool to rationalize the structure and functions of transporters, including the role of the 

surrounding lipid bilayer [4]. Besides, biased MD simulations combined with machine learning 

techniques were shown to accurately describe transport cycles [5]-[8]. Machine learning can 

also be considered as advanced analysis technique to e.g., reduce the high-dimensionality of 

raw outputs from MD simulations [5]. 

In the present manuscript, computational techniques were used in order to better understand 

the role and function of ABC membrane transporters. The main focus was paid on ABCC family 

transporters, more specifically ABCC1 (MRP1) for which its bovine ortholog has been 

structurally resolved. Structural investigations were carried out using MRP1 as an ABCC 
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transporter prototype in order to better understand the function of the pharmacologically 

relevant ABCC2, ABCC3, and ABCC4. The interplay between lipid and protein interactions 

was checked, as well. Besides, a well-known lipid-transporter, namely ABCB4, was also 

investigated in the context of joint computational experimental collaboration. Finally, 

computational techniques were also used to decipher the structure and biophysics of the 

supramolecular assembly of lipid bilayers incorporating porphyrin conjugates. These systems 

have been investigated in order to ultimately develop specific drug-release pharmaceutical 

devices. 

The present manuscript is divided into six chapters. First, in Chapter I, the pharmacological 

background (section I.1), membrane components (section I.2) and different types of transports 

across them (section I.3), as well as pharmacologically important transporters (section I.4) are 

detailed. The basic concept of MD simulations is then explained in Chapter II. First a general 

description is given about the available theoretical methods (section II.1). This is followed by 

the detailed explanation of molecular mechanics (sections II.2), molecular dynamics 

(section II.3), parameter definition of force fields (section II.4), biased methods (section II.5), 

and molecular docking (section II.6). Artificial intelligence as well as machine learning based 

algorithms and methods are expounded in Chapter III. 

Chapter IV is divided into two sections, describing two main studies on ABCC1/MRP1. The 

first one (section IV.1) gives a wide overview about the dynamics of bMRP1 in different states 

along the transport cycle embedded into different POPC-, POPE-, and cholesterol-based 

membrane compositions. Section IV.2 focuses on the pre- and post-hydrolysis outward-facing 

states of bMRP1. The results of a study on another ABC transporter, namely ABCB4, is 

detailed in Chapter V in which particular attention was paid to interactions between transporter 

and small molecules. Molecular docking study was carried out to assess the influence of CFTR 

correctors on the bile secretion mediator ABCB4 transporter. Finally, Chapter VI. describes 

joint computational and experimental investigations of phospholipid-porphyrin conjugates used 

for e.g., photo-activatable drug delivery systems. 
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Chapter I. Pharmacology and drug transport across cell membranes 

I.1. Drug membrane crossing events in pharmacology 

Many different types of drugs are taken during our life. In some cases, drug usage is 

occasional. In case of some diseases, treatments take a long time. For instance, after solid 

organ transplantation, the treatment even lasts lifelong. The active substance often crosses 

several membranes until it reaches its target. Therefore, xenobiotic membrane crossing 

events, that affect both the concentration of the drugs (pharmacokinetics) and the effects of 

the drugs (pharmacodynamics), are of particular importance in pharmacological research. 

Impaired transport processes are key in various diseases. One striking and intensively 

investigated event is drug resistance in cancer cells [1]–[3]. However, in this thesis, the context 

is the treatment of transplanted people as there was no improvement in the 

post-transplantation treatment in the last decades. To improve the post-transplantation 

treatment, among other factors (e.g., patient education), it is important to gain more knowledge 

about the journey of a drug [1], [4], [5]. 

Drugs can be taken in numerous ways (Table 1). To be efficient, the active agent must reach 

its target at a sufficient concentration. Except for local treatments, xenobiotics crossing 

membranes are distributed by the blood flow, called systemic effect. The LADME-Tox 

(Liberation, Absorption, Distribution, Metabolism, Excretion, and Toxicity) model is often used 

to describe the journey of xenobiotics in the body where various events occur [1], [4]–[6]. 

Table 1. Drug dosage options [7]. 

 Enteral Parenteral 

Invasive  

Intravenous 

Intramuscular 

Subcutaneous 

Intraarterial 

Intrathecal 

Intracardiac 

Intraperitoneal 

Non-invasive 

Oral 
Sublingual Transdermal 

Buccal Inhalation 

Peroral 

 

Ocular 

Nasal 

Oticular 

Dermal 

Vaginal 

  
Rectal 

Urethral 
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I.1.1. The LADME-Tox model 

Liberation, i.e., the release of an active agent from a drug delivery device, is the first step in 

drug transport. The place of liberation determines the path of the drug in the body and the next 

steps of the drug’s journey. As mentioned above, the effect may be local, for example, if the 

uptake is via skin, eyes, or ears. However, in many cases, the molecules are absorbed to reach 

blood circulation [1], [4], [5]. 

Absorption, i.e., the uptake of xenobiotics into the blood circulation, can happen passively 

and through membrane transporters (see section I.3). The uptake depends on the 

environment, the physical barrier that the drug should cross, and the physical and chemical 

properties of the transported molecule. These attributes determine the membrane crossing 

mechanism. The different types of transport mechanisms through membranes are described 

in detail in section I.3. Absorption can be delayed to achieve a targeted effect or to prolong the 

effect of a drug. It can be accomplished by various drug delivery systems (DDSs) (see 

section I.2.4) [1], [4], [5]. 

The absorbed drugs (i.e., drugs that have reached systemic blood circulation) are distributed 

in the body. This happens fast as the blood flow is rapid. In blood, drugs may bind to human 

serum albumin which is the primary transport and reservoir protein in systemic circulation. 

Thus, albumin influence the pharmacokinetic and pharmacodynamic properties of drugs [8]. 

During distribution, drugs cross some barriers to get into the target cells. In this process, 

similar transport mechanisms play an important role like in case of absorption, but interactions 

with albumin are important, as well [1], [4], [5], [8]. 

In the body, molecules may undergo chemical transformations to reduce their toxicity. Such 

events usually take place in hepatocytes as well as in the intestinal gut wall (first pass 

metabolism) but to a lesser extent. In the liver, this native detoxifying system involves two main 

types of enzyme-mediated metabolism reactions. Phase I metabolism is often defined by 

oxidation, reduction, or hydrolysis. These catabolic reactions set up xenobiotics for phase II 

reactions. Phase II reactions lead to the conjugation of xenobiotics to e.g., glucuronic acid, 

sulfonic acid or glutathione. Overall, liver metabolism aims to produce more hydrophilic 

compounds, favouring subsequent elimination. However, metabolites may be more toxic than 

the parent xenobiotic. In pharmacology, the most studied detoxification Phase I enzymes are 

members of the cytochrome P450 family. Sometimes a drug requires to be metabolised to 

become active. In this case, the originally taken xenobiotic is called prodrug, i.e., the inactive 

precursor of the active molecule. Those xenobiotics and metabolites that are not eliminated 

during the metabolism steps can be transferred to the bile and delivered to the intestine from 

where a part can be reabsorbed thus prolonging the drug’s effect [1], [4], [5], [9]. 

Excretion can already happen in the liver for more lipophilic compounds; however, kidneys 

are the main excretory routes. The rate of excretion is different to a great extent of molecules. 

If these mechanisms do not work properly, i.e., the drugs are not excreted correctly, 

xenobiotics may accumulate and cause toxicity. It can happen, for example, because of 

altered drug metabolism in elderly people or patients with renal or liver diseases. Drug-drug 

and drug-food interactions can reduce drug pharmacokinetics, as well. The therapeutic effect 

is the result of a complex interaction between the drug and the organism depending on many 

factors (e.g., biological, chemical, and biochemical), in which individual membrane crossing 

events are key factors [1], [4], [5], [9]. 
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Liberation and toxicity are not always included in the drug quantifying descriptors, so the ADME 

acronym often appears. 

I.1.2. The ABCD model in pharmacokinetics 

For pharmacokinetics, another model, namely ABCD, has been proposed. ABCD comes from 

Administration, Bioavailability, Clearance, and Distribution. It is tightly connected to the ADME 

model; however, ABCD provides an overview from the prescription to the patient response. 

The above-mentioned absorption is important in all administration pathways (Fig. 1), except 

for intravenous injection where the drug is directly administrated into the plasma. The most 

common administration is oral whose speed depends on many factors (e.g., fed or fasted 

stomach, the acidity of the molecule). 

 

Figure 1. The routes of drugs in the body depending on the type of administration. 

[Based on Fig. 8.8 of [5] and [4].] 

The fraction of an administered drug that enters the systemic circulation is called 

bioavailability. For orally administrated drugs, bioavailability includes the first pass 

metabolism, i.e., crossing the intestinal gut wall. Bioavailability can rise if this first pass 

metabolism is reduced, for example, by an alternative, targeted delivery system (see 

section I.2.4). 

After metabolism, a part of the active drug can be excreted. The rate of elimination, i.e., the 

amount of active substance eliminated per unit of time is called clearance. In some cases, the 

excreted drug ratio concerning the available fraction is large, leading to a lower bioavailability. 
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The administrated but not excreted xenobiotics are distributed. Thanks to the distribution, 

drugs get close to their targets where they can accomplish their therapeutic effect [1], [4], [5]. 

As mentioned above, in this process, membrane crossing events are crucial. In the next 

sections, insights about membranes, membrane crossing mechanisms, and pharmacologically 

relevant membrane protein families are provided. 

I.2. The structure of a cell membrane 

I.2.1. Membrane construction 

Membranes are formed by lipid molecules. Most of the lipids contain a polar (hydrophilic) head 

group to which two non-polar (hydrophobic) fatty acid tails are bound. More about lipid 

structures is described in section I.2.3. Lipids can be organized into a thin (4-7 nm) bilayer, 

building a membrane. The fatty acid tails are oriented to each other creating a two-layers 

membrane arrangement where the hydrophilic heads form the interface with water molecules 

(Fig. 2). Different types of biological membranes can be found at diverse places in the human 

body even though they share a common structure. All types of biological membranes are thin, 

dynamic, fluid, and composed of lipids and proteins (Fig. 2). They have a separating function. 

The plasma membrane, a.k.a. cell membrane, segregates the extra- and intracellular space, 

i.e., it borders the cell from its environment. This separation is essential for Life as this 

maintains the crucial distinct contents of different cells. Intracellular membranes isolate the 

contents of cell organelles (e.g., mitochondria, endoplasmic reticulum, or Golgi apparat) to the 

cytoplasmic compartment. Connections between cell membranes but also between organelles 

within a cell are made by complicated signalling systems in which proteins are the sensors. 

Membrane composition alters dynamically according to e.g., environmental modification, but it 

is under homeostatic control, i.e., it maintains relative stable. The homeostasis of lipids is 

important as changes can be connected to various diseases which are often connected to a 

gene mutation that results in an altered lipid composition [10]. Nevertheless, our knowledge 

about the mechanisms occurring in membranes is still limited. This makes membrane protein, 

lipid, and signalling system studies substantial [1], [10], [11]. In the context of pharmacology, 

focus will be on the plasma membrane given its central role in all key steps of drug 

pharmacokinetics. 

 
Figure 2. Schematic lipid bilayer with proteins. 

Transmembrane proteins can cross the membrane by a) a single or b) multiple -helix, or c) -barrel. 

Membrane-associated proteins can anchor by d) amphiphilic -helix, e) lipid chains, f) covalent oligosaccharide 

linkage, or they can bind g-h) to other membrane proteins. [Inspired by Figure 10-17 [1], created with 

BioRender.com]. 

 

https://biorender.com/
https://biorender.com/
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I.2.2. Proteins 

There are many different types of proteins in the plasma membrane. These proteins are 

essential for the proper functioning of a cell as they play a central role in interactions between 

a cell and its environment. Membrane proteins are responsible for the various functional 

characteristics of the different cell membranes. The fraction (25-75%) of membrane proteins 

and their types are highly variable depending on cells and organelles. Membrane proteins can 

be integrated into the bilayer (transmembrane proteins) as a single or multiple -helix or as a 

-barrel. Most of the proteins span the membrane. Sometimes proteins are just anchored to 

the membrane surface by an amphiphilic -helix, lipid chains (in the inner leaflet), or a covalent 

oligosaccharide linkage (in the outer leaflet). Furthermore, proteins can bind to each other, 

including membrane or cytosol proteins creating a network (Fig. 2). Membrane transporters 

can form complexes and mediate complicated biological processes, so they are playing an 

important role in pharmacology, as well [1], [11]. The role of proteins in different types of 

transport processes across a cell membrane is explained in section I.3. Two families of 

membrane transporters, that are important in drug influx and efflux, are discussed at the end 

of this chapter (see section I.4). 

I.2.3. Lipids 

I.2.3.1. Lipids in general 

Lipids are composed of a polar head group and two non-polar fatty acid tails. The polar head 

can be split into three parts (Fig. 3a): base, phosphate and alcohol, i.e., glycerol for a typical 

phospholipid. The alcohol is linked to the fatty acid tails and the phosphate, while the 

phosphate is further linked to a small, polar group (e.g., choline) called base in general 

(Fig. 3a). The length of fatty acid chains can differ by the number of carbon atoms and double 

bonds. Saturated chains (e.g., palmitic acid) do not contain any double bonds (Fig. 4). Fatty 

acid chains that have one or more double bonds are called monounsaturated (e.g., oleic acid) 

and polyunsaturated, respectively. In presence of a double bond, the cis- or Z-configuration 

leads to a kink resulting in a shorter acyl chain length as compared to a saturated chain 

containing the same number of carbon atoms. Fatty acid chains connected to the polar head 

are often different in a lipid. One is called sn-1 chain, while the other one sn-2 chain following 

the stereospecific numbering of the head group glycerol (Fig. 3a). In mammalians, many of the 

fatty acid chains are unsaturated, often polyunsaturated [1], [10]–[12]. 
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Figure 3. Different types of lipids. 

a) Schematic representation of glycerophospholipids and the possible sn-1 linkages and head groups. b) Schematic 

representation of sphingolipids and the possible sphingoid base types and head groups. c) Schematic 

representation of cholesterol, and d) glycolipids. [Inspired by [1], [10], [11].] 
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Figure 4. Different types of side chains. 

a) Unsaturated oleic acid and b) saturated palmitic acid. [Created with BioRender.com.] 

Plasma membranes contain many various lipids; however, most of them are phospholipids, 

sphingolipids, and sterols, mostly cholesterols in mammalians. Glycolipids often have an 

important fraction, as well. These lipids will be discussed in detail in the upcoming sections. 

The ratio of the different types of lipids and proteins is associated with various cell-specific 

compositions (Table 2) and functions [1], [11]–[13]. It is important to know more about the 

membrane compositions, membrane proteins and the processes taking place in the 

membrane. Nowadays, more attention has been paid to lipid composition and its impact on 

membrane proteins and transport processes both in experimental and theoretical studies [10]. 

Table 2. Approximate Lipid Compositions of Different Cell Membranes. 

[Table10-1 from [1].] 

 

https://biorender.com/
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I.2.3.2. Glycerophospholipids 

Glycerophospholipids are the major components of cell membranes. Their polar head consists 

of a base (e.g., choline), a phosphate, and a glycerol. The combination of the two fatty acid 

chains results in the chemical diversity of glycerophospholipids. The sn-1 chain is either 

saturated or monounsaturated, while the sn-2 chain is usually mono- or polyunsaturated. There 

is a difference in side chain lengths in the distinct glycerophospholipids, but their average 

length is around 3.0-3.5 nm. The linkage of the sn-1 chain can be ester, ether, or vinyl-ether. 

Various types of head group bases induce a wider glycerophospholipid family (Fig. 4a). The 

most common phospholipids are listed in Table 3. The type of the headgroup influences the 

charge of the lipid that can have an impact on the transport processes across the cell 

membrane, for example [1], [10], [11]. 

Table 3. Common phospholipids in an averaged cell membrane [12]. 

Lipids were drawn by the ChemDraw® software. 

A
b

b
re

v
ia

-

ti
o

n
 

Chemical name 

sn1 
chain 

2D structures 
sn2 

chain 

POPC 
1-palmitoyl-2-oleoyl-
sn-glycero-3-
phosphocholine 

C16:0 

 

C18:1 

DOPC 

1,2-dioleoyl-sn-

glycero-3-

phosphatidylcholine 

C18:1 

 

C18:1 

DPPC 

1,2-dipalmitoyl-sn-

glycero-3-

phosphocholine 

C16:0 

 

C16:0 

PAPC 

1-palmitoyl-2-

arachidonoyl-sn-

glycero-3-

phosphocholine 

C16:0 

 

C20:4 
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DAPC 

1,2-diarachidoyl-sn-

glycero-3- 

phosphocholine 

C20:4 

 
C20:4 

PUPC 

1-palmitoyl-2-

docosahexaenoyl-sn-

glycero-3- 

phosphocholine 

C16:0 

 
C22:6 

POPE 
1-palmitoyl-2-oleoyl-
sn-glycero-3-
phosphoethanolamine 

C16:0 

 

C18:1 

DOPE 

1,2-dioleoyl-sn-

glycero-

phosphoethanolamine 

C18:1 

 

C18:1 

PAPE 

1-palmitoyl-2-

arachidonoyl-sn-

glycero-3-

phosphoethanolamine 

C16:0 

 

C20:4 

DAPE 

1,2-diarachidoyl-sn-

glycero-3-

phosphoethanolamine 

C20:4 

 
C20:4 
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PUPE 

1-palmitoyl-2-

docosahexaenoyl- sn-

glycero-3-

phosphoethanolamine 

C16:0 

 
C22:6 

DUPE 

1,2-

didocosahexaenoyl- 

sn-glycero-3-

phosphoethanolamine 

C22:6 

 
C22:6 

POPS 

1-palmitoyl-2-oleoyl-

sn-glycero-3-

phospho-L-serine 

C16:0 

 

C18:1 

PAPS 

1-palmitoyl-2-

arachidonoyl-sn-

glycero-3-phospho-L-

serine 

C16:0 

 

C20:4 

DUPS 

1,2-

didocosahexaenoyl-

sn-glycero-3-

phospho-L-serine 

C22:6 

 
C22:6 

POPI 

1-palmitoyl-2-oleoyl-

sn-glycero-3-

phosphoinositol 

C16:0 

 

C18:1 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 29 

License CC BY-NC-ND 4.0 

POPA 

1-palmitoyl-2-oleoyl-

sn-glycero-3-

phosphate 

C16:0 

 C18:1 

PAPA 

1-palmitoyl-2-

arachidonoyl-sn-

glycero-3-phosphate 

C16:0 

 C20:4 

I.2.3.3. Sphingolipids 

Sphingolipids have a sphingosine group which is similar to the sn-1 chain and glycerol 

backbone in glycerophospholipids (Fig. 3a-b). This sphingosine has a long acyl chain with an 

amino- and two hydroxyl groups (e.g., dihydrosphingosine (DHS), sphingosine (SPH), and 

phytosphingosine (PHS), see Fig. 3b) [14]–[16]. Sphingolipids vary in length, headgroup, and 

the number of double bonds and hydroxyl groups of their fatty acid chain. In sphingolipids, the 

fatty acid chains are more often saturated and longer than in phospholipids. Ceramides are 

precursors of complex sphingolipids, such as sphingomyelin and glycosphingolipids. 

Ceramides are composed of a sphingosine (serine and fatty acid) to which another fatty acid 

chain is bound (Fig. 3b). Sphingomyelin is formed by binding a phosphocholine head group to 

the ceramide (Fig. 3b) [1], [10], [11]. 

The attachment of oligosaccharide chains to a ceramide results in a glycosphingolipid 

(Fig. 3d). The oligosaccharide chains can vary leading to a broad range of functions depending 

on the bond locations in glycosphingolipids [1], [10], [11]. For instance, the oligosaccharide 

chains determine the various blood types (A, B, AB, and O) in erythrocytes [11]. Altogether 

with membrane glycoproteins, oligosaccharide chains form the so-called glycocalyx or cell 

coat. It has a role in cell-recognition processes (e.g., in cell-cell adhesion) through which they 

sometimes are involved in the entry of certain bacterial toxins or viruses [1], [10], [11]. 

I.2.3.4. Cholesterol 

Cholesterol is the primary mammalian sterol. The plasma membrane can contain up to one 

cholesterol for one phospholipid. The exact ratio depends on the cell type and organelles. The 

structure of cholesterol differs from the structure of lipids. It has a polar hydroxyl group at the 

C-3 position, followed by a rigid steroid ring bearing a short non-polar aliphatic tail (Fig. 3c). 

The hydroxyl group is oriented toward the water phase as the polar head of 

glycerophospholipids and sphingolipids. Due to either its biophysical properties on the 

membrane structure or interactions with membrane proteins, many biological processes 

require the presence of cholesterol. Furthermore, it often acts as a functional partner with 

sphingolipids through H-bonds (e.g., stabilizing nanodomains) [1], [10], [11]. 
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I.2.4. Synthetic phospholipids and drug delivery systems 

Some other amphiphilic molecules, that contain both hydrophilic and hydrophobic blocks, can 

self-assemble into many different types of structures, such as micelles, vesicles, planar 

bilayers, nanotubes, or nanofibers. Therefore, these types of molecules are in the focus of 

pharmaceutical and industrial applications. Phospholipid-porphyrin conjugates are versatile in 

this field. These phospholipid-porphyrin conjugates are derived from phosphatidylcholine in 

which the sn-1 and -2 chains can be substituted by a porphyrin. Binding between 

phosphatidylcholine and porphyrin moieties is ensured by a chemical linker for which length 

can differ, leading to different self-assemble membrane structures (see Chapter VI.) [17]. 

For example, phospholipid-porphyrin conjugates can be used as photoactivatable DDSs. 

DDSs (formulations or devices) aim to control the rate, time, and place of the release of drugs. 

This field has greatly developed over the last decades. Targeted DDSs specifically reach their 

target cells, organs, or tissues to e.g., reduce adverse effects, and/or improve the therapeutic 

effect. To achieve this, drugs should be packed into delivery vehicles, such as micelles, 

liposomes, or nanoparticles formed by phospholipid-porphyrin conjugates, for example [6], [7], 

[17], [18]. 

I.2.5. Membrane structures 

I.2.5.1. Asymmetry and lipid dynamics 

Membrane asymmetry is necessary for the life of cells. Lipid bilayers are two-dimensional fluids 

in which lipid molecules can freely move even though most of the lipids rarely relocate from 

one leaflet to the other. However, spontaneous flip-flop events were described to occur faster 

in case of cholesterol than other lipids [1], [11]. Special membrane proteins (namely, flippases, 

floppases and scramblases) facilitate the flip-flop of lipids (Fig. 5). Flippases move lipids 

(mostly phosphatidylserine and phosphatidylethanolamine) from the outer leaflet to the inner 

leaflet while floppases carry lipids (cholesterol, sphingolipid, and phosphatidylcholine) in the 

opposite direction. Both flippases and floppases are highly specific and ATP-dependent; thus, 

they can carry lipids against the concentration gradient. Scramblases are usually less 

substrate specific and ATP-independent; thus, they facilitate lipid translocation along the 

concentration gradient in both directions (to the outer or to the inner leaflet). Flippase and 

floppase activities are responsible for the asymmetry of eukaryotic membranes (see table 4 for 

a proposed realistic membrane composition). In general, the outer leaflet consists of more 

saturated lipids while the inner leaflet contains more unsaturated and charged lipids. The 

asymmetry is striking for glycolipids as they are always in the outer leaflet. The presence of 

certain lipid compositions on the surface is a specific signal. One example is the appearance 

of phosphatidylserine on the external cell surface which is a signal for apoptosis 

(i.e., programmed cell death). In this context, scramblases guide the fast presentation of 

phosphatidylserine lipids on the surface [1], [11], [19]. 

Besides, asymmetry in the two leaflets of a mammalian membrane, i.e., segregation of the 

lipids and proteins is observable in each leaflet. Contrary to translocation, lipid molecules 

diffuse rapidly laterally and their rotation around their long axis is fast, as well. Proteins and 

lipids, that work together to accomplish their function, often form specialized domains that are 

frequently enriched in e.g., sphingolipids and cholesterol. Large-scale segregation in living cell 

membranes is rare, the segregation is highly dynamic thanks to the lateral diffusion [1]. 
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Figure 5. Flip-flop mechanisms. 

a) Flippases, b) floppases, and c) scramblases. [Based on [19], created with BioRender.com.] 

Table 4. Realistic (asymmetric) mammalian plasma membrane composition used in our group. 

[Based on the work of Ingólfsson et al. [Table S2 [12].] 

Inner 

leaflet 

count

Inner 

leaflet 

mole 

fraction

Outer 

leaflet 

count

Outer 

leaflet 

mole 

fraction

Overall 

mole 

fraction 

POPC 550 0.059 1205 0.122 0.091

DOPC 49 0.005 106 0.011 0.008

PAPC 129 0.014 283 0.029 0.021

DAPC 16 0.002 35 0.004 0.003

PUPC 32 0.003 71 0.007 0.005

POPE 569 0.061 135 0.014 0.037

DOPE 190 0.020 44 0.004 0.012

PAPE 522 0.056 124 0.013 0.034

DAPE 332 0.036 78 0.008 0.021

PUPE 190 0.020 44 0.004 0.012

DUPE 95 0.010 22 0.002 0.006

POPS 200 0.021 0 0.000 0.010

PAPS 461 0.049 0 0.000 0.024

DUPS 20 0.002 0 0.000 0.001

POPA 46 0.005 0 0.000 0.002

PAPA 39 0.004 0 0.000 0.002

3440 0.367 2147 0.218 0.290399709
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Lateral diffusion can be calculated from the mean-squared displacement (MSD) (Eq. 1). The 

diffusion in a liquid is a random motion of particles in a medium, called Brownian motion. To a 

given extent, it can be approximated by the Einstein relation (Eq. 2), as well. Einstein relation 

describes the connection between fluctuations caused by diffusion and dissipation expressed 

by a finite mobility [1], [20]. Lateral diffusion is typical not only for the lipids but for the 

membrane proteins, as well. 

𝑫𝒍 =
𝟏

𝟐𝒏
𝒍𝒊𝒎
𝒕→∝

𝑴𝑺𝑫(𝒕) 

𝑀𝑆𝐷 = ⟨𝑥(𝑡) − 𝑥(0)⟩2 =
1

𝑁
∑(𝑥𝑛(𝑡) − 𝑥𝑛(0))

𝑁

𝑛=1

, 

𝑥𝑛(0) − reference point for particle 𝑛 

Equation 1. Lateral diffusion coefficient at a given time for all particles (N) [21]. 

𝑫 = 𝒌𝑩𝑻𝝁 

𝜇 − mobility, 𝑘𝐵𝑇 − thermal energy 

Equation 2. Einstein relation for the diffusion coefficient [20]. 

I.2.5.2. Thickness 

The thickness of a membrane strongly depends on the lipid composition. A typical total 

thickness is around 5 nm. However, pure membranes including only unsaturated chains are 

slightly thinner than those built by saturated tails containing the same number of carbon atoms. 

The thickness is strongly connected to the lipid order, as well. Ordered (gel) lipids are straight 

packed and thicker than disordered (fluid) lipids. In other words, structural parameters that 

influence the fluidity (see next section) have a strong impact on membrane thickness, as well. 

Importantly, membrane thickness values strongly depend on how it is measured or calculated 

[1], [11], [22], [23]; therefore, several thickness definitions exist. 

• DB is the overall bilayer thickness, also called Luzzati thickness, i.e., the distance between 

the locations where the water density drops half its bulk value. 

• DHH is the head-to-head distance, i.e., the distance between the two peaks in the electron 

density profile. It can be approximated by DPP. 

• DPP is the phosphate-phosphate distance, i.e., the distance between the maximal 

phosphate group densities. 

• 2DC is the hydrocarbon chain thickness. 

When calculated from simulations, all these thicknesses can be directly or indirectly compared 

to experimentally observed values [22], [23]. 

I.2.5.3. Fluidity, order of the membrane, lipid phase 

Lipid membranes can be featured by a characteristic temperature at which the liquid-to-gel 

phase transition occurs. The so-called phase transition temperature varies upon the lipid 

composition of the membrane. Indeed, at a given temperature, saturated lipids favour more 

compact, more ordered and less fluid membrane whereas unsaturated lipids have the opposite 

https://en.wikipedia.org/wiki/Particle
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impact. The fluidity is linked to the lipid order parameter that can be calculated either from 

NMR experiments or from simulations (by Eq. 3) [1], [11], [22]. 

𝑺𝑪𝑫 =
𝟏

𝟐
⟨𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏⟩ ∈ [−0.5,1] 

𝜃 − angle between a C-H bond of the lipid tail and the normal vector of the membrane (Fig. 6) 

Equation 3. Lipid order. 

𝑺 = 𝟏 means lipid chains are perfectly aligned to the membrane normal, 

𝑺 = −𝟎. 𝟓 means anti-alignment, 𝑺 = 𝟎 can mean perfect order and disorder, as well [22]. 

 

Figure 6. Definition of the 𝜽 angle in SCD calculation. 

Z is the normal of the lipid bilayer. 

The order of a membrane and its fluidity are strongly connected (Fig. 7). The liquid-disordered 

(L), also called liquid-crystalline phase, is fluid and the lipids have high lateral mobility. The 

gel phase (L) is highly ordered and the lipids have much less lateral mobility. The environment 

and the proportion of cholesterol also affect the fluidity of a lipid bilayer. The effect of the 

cholesterol depends on the original order and phase of the lipid bilayer. Cholesterol decreases 

the lipid order in the gel phase while increases it in the fluid phase. Cholesterol can shift the 

liquid-disordered and the gel phase into an intermediate phase, called liquid-ordered (Lo) [24], 

[25]. 
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Figure 7. Different types of lipid phases. 

[Figure 3.1.3. from [26].] 

I.2.5.4. Curvature, lipid shape and lipid packing 

As many membrane properties, membrane curvature depends on the saturation of the lipid 

tails and the head group of the lipids. Membrane curvature determines the shape of the whole 

compartment such as cells. Structural lipid shapes are of particular importance: cone-shaped 

lipids form micelles, while cylinder-shaped lipids, such as phospholipids, form bilayers. Lipids 

with a large or small head group on the surface induce positive or negative curvature, 

respectively. Positive and negative curvatures result in micelles and inverted micelles, 

respectively (Fig. 8). Membrane asymmetry (section I.2.6.1) plays an important role in local 

curvature of a cell membrane, as the cone- and cylinder-shaped lipids are not equally 

distributed. Furthermore, thanks to the diffusion (section I.3.3.2-3), this local curvature may be 

dynamic if no proteins are involved in maintaining the supramolecular assembly [1], [17], [27]. 

The shape of a lipid indicates its proper packing. Thus, for pure lipid bilayers, the curvature 

can be predicted from the packing parameter which is the quotient of the molecular volume of 

the hydrophobic part of the lipids (𝑣) and the product of the cross-section surface area of the 

head group (𝑎) and the length of the fatty acid chain in their all trans conformation (𝑙) [17], [27]. 

𝑷 =
𝒗

𝒂𝒍
 

Equation 4. Packing parameter [17], [27]. 

The structure of a membrane can be predicted: 

• 𝑃 <
1

3
 for micelles 

• 𝑃 = 1 for bilayers 

• 𝑃 > 1 for inverted micelles [1], [27] 
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Figure 8. Lipid bilayer curvatures and structures. 

a) Bilayer, b) micelles, c) inverted micelles, d) positive and e) negative curvature. 

[Based on Figure 1 from [27], created with BioRender.com.] 

I.2.5.5. Area per lipid 

Another parameter widely used in membrane biophysics is the area per lipid (APL) which is 

the average cross-section area occupied by a lipid polar head in the bilayer. It also depends 

on the lipid composition, and the saturation, so it is tightly connected to the order parameter 

and fluidity. APL of a pure bilayer can be easily calculated from simulations as the x-y area of 

the model divided by the number of lipids in one leaflet. It assumes that the number of lipids is 

symmetric in the two leaflets [22]. Realistic mammalian membranes are asymmetric and 

include proteins, leading to a more challenging assessment of APL. A better approximation 

can be the quotient of the volume of the bilayer and the overall bilayer thickness. However, the 

proper volume calculation can be complicated in presence of proteins [28]. 

𝑨𝑳 =
𝑳𝒙𝑳𝒚

𝒏
=

𝑽𝒃𝒊𝒍𝒂𝒚𝒆𝒓

𝑫𝑩

 

𝑛 =
𝑁𝑜.𝑜𝑓 𝑙𝑖𝑝𝑖𝑑𝑠

2
, 𝐿𝑥𝐿𝑦 − x and y length of the bilayer 

𝑉𝑏𝑖𝑙𝑎𝑦𝑒𝑟 − volume of the bilayer, 𝐷𝐵 − overall bilayer thickness 

Equation 5. Area per lipid of a pure bilayer [22]. 

https://biorender.com/
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I.3. Different types of transport across a cell membrane 

I.3.1. Overview 

Cell membranes are more or less permeable for molecules. The transport mechanism of 

molecules strongly depends on their physical and chemical properties. There exist 

spontaneous and protein mediated transports. Depending on the transport mechanism, the 

latter can be divided into three sub-categories: facilitated diffusion, primary and secondary (or 

even tertiary) active transport [1], [11]. 

Hydrophobic molecules (e.g., O2, CO2, N2, and steroid hormones) can passively cross the 

membrane as well as small uncharged polar molecules (e.g., H2O, urea, glycerol, and NH3) to 

a lesser extent. Spontaneous membrane crossing for large uncharged polar molecules (e.g., 

glucose and sucrose) is kinetically more challenging and almost unlikely. Finally, ions (e.g., 

Na+, HCO3
-, K+, Ca2+, Cl–, and Mg2+) cannot cross the membrane spontaneously. Membrane 

proteins help the transport of both large uncharged polar molecules and ions [1], [11]. 

 
Figure 9. Plasma membrane permeability of different types of molecules. 

[Based on Figure 11-1 from [1], Created with BioRender.com.] 

I.3.2. Passive permeation 

Passive permeation, earlier called diffusion, follows the concentration gradient; thus, the 

membrane crossing is passive. The rate of a small molecule’s diffusion in a solution can be 

described by the Fick’s law (Eq. 6), i.e., the molecular change of gas molecules over time. In 

case of passive membrane permeation, the rate is directly proportional to the surface area and 

the concentration gradient along the membrane, while inversely proportional to the membrane 

https://biorender.com/
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thickness. Furthermore, it depends on the diffusion coefficient that is different according to the 

size, physical, and chemical properties of the diffused molecule [1], [11]. 

𝑽𝒙 [
𝑚𝑜𝑙

𝑡
] =

∆𝑚

∆𝑡
=

𝑫𝑨∆𝑪

∆𝒙
 

∆𝑡 − time difference, ∆𝑚 −mole difference, 

𝑉𝑥 − speed of the diffusion, 𝐷 − diffusion constant, ∆𝐶 − concentration difference, 

𝐴 − surface, ∆𝑥 − membrane thickness 

Equation 6. Fick’s law [1], [11]. 

However, a membrane is not a homogeneous solvent. Therefore, inhomogeneous 

solubility-diffusion models were developed, by dividing a membrane into several “slices” with 

different biophysical properties. Nevertheless, these models are still limited, e.g., for small 

molecules. Recently, more advanced approaches based on e.g., Markov state models were 

proposed to describe the kinetics of drug passive permeation events. All models exhibit 

limitations as the rate limiting step depends on the type of the diffused molecule. However, 

advanced models can be used to build a structure-kinetic relationship of drug membrane 

permeation. This allows the assessment of the permeability coefficient (𝑃) of a molecule in a 

given membrane. It depends on the membrane composition and the diffused molecule. It is 

experimentally measurable, as well (Fig. 9). However, both computer and experimental 

approaches suffer from user-dependent biases and model limitations precluding their use for 

systematic large screening [1], [11], [29]. 

 
Figure 10. The permeability coefficient of various molecules. 

[Adapted from Figure11-2 of [1].] 

I.3.3. Facilitated diffusion 

Passive permeation was suggested to be either an unlikely or minor event for most of the 

xenobiotics used nowadays. Molecules that cannot cross the membrane spontaneously can 

undergo facilitated diffusion. The transport still happens following the concentration gradient; 

however, its rate is accelerated thanks to carriers (e.g., glucose transporters) or channels 

(e.g., aquaporins). Nevertheless, transport is saturable (Fig. 11) for carriers. Depending on the 

concentration gradient, carriers always open up only for one side of a cell membrane at a time, 

alternating between two states around 103 times in a second. Contrary to carriers, an open 

channel can be open on both sides of the membrane at the same time. Without the alternation 

mechanism, they facilitate the transport across a membrane faster than carriers (around 106-7 

times in a second). All channels and carriers demonstrate high specificity for their substrate. 

They can carry only one molecule at the same time (uniporter) [1], [11]. 

The maximum rate of carrier-mediated transport is connected to their affinity (KM value in 

Fig. 11) for their substrates. For example, GLUTs translocate glucose and other 
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monosaccharides with distinct affinities. Glucose affinities also vary for the different types of 

GLUTs. Interestingly, monosaccharides can exhibit larger affinities for GLUTs without 

triggering the opening, leading to the inhibition of the transporter [1], [11]. 

All cells in a human body have one or more distinct GLUT transporters whose affinities depend 

on the role of glucose in the cell. High affinity means that the change in glucose level in plasma 

does not influence the glucose uptake of the cells (e.g., liver, kidneys). Other cells (e.g., brain 

and placenta) have lower affinity and thus are more sensitive to glucose concentration. In this 

case, cell glucose uptake is limited in order to take the necessary glucose concentration for 

proper functioning [1], [11]. 

 
Figure 11. Kinetics of diffusion. 

[Figure 11-6 from [1].] 

I.3.4. Primary active transport 

Active transport requires energy for its function, as substrate transport occurs against the 

concentration gradient. ATP-hydrolysis drives the transport of ATP-driven pumps (such as 

Na+/K+-ATPase, Ca2+-ATPase, H+/K+-ATPase, and H+-ATPase), and ATP-binding cassette 

(ABC) transporters (details in section I.4). A typical example of primary active transport is the 

activity of Na+/K+-ATPase. During its transport cycle, Na+/K+-ATPase transports out three Na+ 

cations against two K+ cations which are imported into the cytoplasmic compartment. The 

transport cycle of Na+/K+-ATPase can be specifically inhibited by heart glycosides (organic 

steroid derivatives). Na+/K+-ATPase maintains the high K+ intracellular concentration in many 

cells such as erythrocytes or kidney tubular proximal cells. It also participates to maintain the 

high extracellular Na+ concentration. Na+/K+-ATPase can be found in all plasma membranes 

given its central role in maintaining the resting membrane potential. There exist other 

ATP-dependent exchangers of which membrane expression depends on the cell type. For 

example, the H+/K+-ATPases and the H+-ATPases are observed in kidneys, playing an 

important role in body homeostasis [1], [11]. 

I.3.5. Secondary (tertiary) active transport 

In case of secondary active transport, the electrochemical gradient of a compound provides 

the energy required for the transport of another molecule. For instance, the Na+ gradient 

maintained by the Na+/K+-ATPase can cover the energy required to ion coupled co- and 

anti-transporters. In case of co-transport (e.g., Na+-glucose), the two transported molecules 

are translocated in the same direction, e.g., from the cytoplasm to the extracellular 

compartment in case of SGLT1. Contrary, the direction of the transport is different for the two 

transported molecules in antiporters. OAT1 is an example of tertiary active transport (Fig. 12) 
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as it uses the gradient created by Na+/dicarboxylate cotransporter which uses itself the Na+ 

gradient from Na+/K+-ATPase. In this cascade, the Na+/dicarboxylate is a secondary active 

transporter [11], [30]–[32]. 

 

Figure 12. Secondary (NaDC3) and tertiary (OAT1/3) active transport mechanisms. 

[Slightly adapted Figure 1A. from [31].] 

I.4. Transporters in pharmacology 

I.4.1. Overview 

Membrane proteins are important in various aspects along the drug’s journey in the body. 

Transporters facilitate the uptake or elimination of a broad range of substrates. Their primary 

role is to transport nutrients and endogenous substrates, but they can also protect the body 

from toxins. Transporters can translocate a wide range of molecules, including xenobiotics that 

are structurally similar to their physiological substrates. Besides, drug transporters are mainly 

expressed in tissues with barrier functions e.g., liver and kidneys. These tissues often adopt 

an epithelial architecture in which cells are often polarized, as they are at the interface between 

distinct fluids (e.g., bile/blood or urine/blood, respectively for hepatocytes or tubular proximal 

cells). Drug transporters can be grouped depending on the direction of the xenobiotic transport. 

Influx transporters are involved in the uptake of the molecules into cells, while efflux 

transporters are responsible for their elimination. Consequently, often, cellular expressions of 

the different types of drug transport differ between polarized cell membranes. Drug membrane 

transporters belong to either the Solute Carrier (SLC) or ATP-Binding Cassette (ABC) 

superfamilies. Members of these superfamilies have been reported as pharmacologically 

important by the International Transporter Consortium (ITC) as these proteins play a central 

role in drug disposition [33], [34]. Membrane transporters located in liver and kidney are crucial 

since these organs are involved in most of the drug elimination events (ca. 95%) [9]. 

I.4.2. Solute carrier superfamily 

The SLC superfamily is ubiquitous, it includes more than 400 members divided into more than 

65 families for which transport cycles can occur under different mechanisms. Some of them 

benefit from the electrochemical potential difference of their substrates (facilitated transport), 

while others transport substrates against an electrochemical gradient using an ion gradient 

produced by a primary active transporter (secondary active transport). SLC transporters are 

mostly responsible for the uptake of drugs from the blood flow even though few members were 

described to extrude their substrates. Below the role of SLC transporters relevant in drug 

disposition namely, organic cation and anion transporters (OCTs, OATs), multidrug and toxin 
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extrusion transporters (MATEs), and organic anion transporting polypeptides (OATPs), is 

described [5], [9], [35]. 

OCTs and OATs belong to the SLC22 family. They are composed of 12 α-helical 

transmembrane helices (TMHs) divided into two bundles connected by a large intracellular 

loop between transmembrane domains (TMDs) 6 and 7. OCTs are uniporters, and they 

mediate the uptake of small positively charged substrates including both endogenous 

compounds and xenobiotics. Their transport mechanism occurs by facilitated transport i.e., 

governed by the concentration gradient. Their expression level can be associated with 

diseases. For example, hOCT1 is overexpressed in chronic myeloid leukaemia cell lines, and 

its expression is reduced in liver injuries [5], [9], [35]. 

OATs are antiporters; thus, they carry small anions, both endogenous compounds and 

xenobiotics. Their transport mechanism occurs under tertiary active transport: substrate uptake 

is ensured by the anti-transport of endogenous dianions (e.g., α-ketoglutarate). High 

intracellular concentrations of dianions are governed by the function of NADC3 which relies on 

Na+/K+-ATPase (Fig. 12). OAT1 and OAT3 are particularly important in drug disposition. They 

are mostly expressed in kidney cells participating in drug cellular uptake from blood prior to 

their elimination into the urine. Interestingly, their substrate specificity is wide and partially 

overlapping [5], [9], [30], [32], [35]. 

OATPs belong to the SLCO or SLC21 family. They transport endogenous and exogenous 

amphipathic molecules. Their transport mechanism remains unclear. Most of the OATPs are 

ubiquitously expressed; however, some of them have tissue-specific expression. For example, 

OATP1B1 and OATP1B3 are liver-specific, while OATP4C1 is kidney-specific. OATPs also 

show disease specific changes in their expression level, e.g., OATP1B3 is decreased in 

hepatocellular carcinoma [5], [9], [35]. 

MATEs are also important in cationic xenobiotic transport as OCTs. Contrary to most of the 

SLCs, MATE is responsible for drug efflux. It transports a wide range of substrates using proton 

co-transport. Many of its substrates overlap with OCT substrates. MATE is principally 

expressed in the liver and kidneys; thus, it is involved in clearing the plasma [5], [9], [35]. 

I.4.3. ATP-binding cassette proteins 

I.4.3.1. A general description 

ABC transporters use the energy from ATP-hydrolysis during their transport cycle. ABC 

proteins transport endogenous substrates, but some of them are important in drug transport, 

as well. ABC proteins can be found in both prokaryotes and eukaryotes. Among the prokaryotic 

ABC transporters, both efflux and influx proteins exist. Mammalian ABC transporters, except 

ABCA4 and ABCD4, are efflux proteins. 

ABC transporters share structural similarities. They are made of at least two transmembrane 

domains (TMDs) and two nucleotide binding domains (NBDs). Eukaryotic ABC proteins are 

divided into seven sub-families (ABCA-ABCG) from which the members of the ABCE and 

ABCF sub-families lack transmembrane domains. Therefore, they cannot act as a transporter 

or channel. ABCE and ABCF proteins are bound to their target molecules or other proteins, 

and they play a role in ribosome function and regulation [36]–[40]. The other five sub-families 

(ABCA-ABCD, ABCG) are transporters or involve in substrate membrane crossing events 

(Fig. 13a). Members of ABCB, ABCC and ABCG families play a role in drug transport, and 

some of them were reported as emerging clinical importance by the ITC [2], [5], [9], [33], [34]. 
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During many years, ABC proteins were classified into type I and type II. Recently, a new 

classification was proposed based on the TMD sequence homology and structures. This recent 

classification results in seven folds/types for which different physiological functions are 

observable (Table 5). In bacteria, all types of ABC proteins are presented, while in eukaryotes, 

only type IV-V proteins (mainly exporters) can be found [38]. The focus of this thesis is on 

eukaryotic ABC transporters (type IV and V), as they are involved in many physiological and 

pharmacological processes and their dysfunction cause various diseases. 

Table 5. New classification of ABC transporters. 

[Based on Table 1 [38].] 

Folds Function 

Examples 

Prokaryotic Eukaryotic 

Type I Importer MalFGK2 - 

Type II Importer BtuC2D2 - 

Type III Importer Folate importer - 

Type IV Exporter and importer 
Sav1866, MsbA, 

TmrAB 
P-gp, MRP1, CFTR 

Type V Exporter and importer Wzm-Wzt ABCG2 

Type VI Extractor LptB2FG - 

Type VII Mechanotransmitter MacB - 

I.4.3.2. Eukaryotic ABC transporters 

Eukaryotic ABC transporters contain six transmembrane helices (TMHs) in each TMDs. TMDs 

and NBDs can be coded as a full transporter (e.g., type IV – ABCB, ABCC, ABCD) or by 

subunits (type V – ABCA, ABCG) resulting in either homo- or heterodimer (Fig. 13a-b). The 

TMHs are longer in full (type IV) transporters, and they cross each other, while dimers (type V 

transporters) are symmetrical (Fig. 13b). NBDs are evolutionarily conserved in both types. 

ABC transporter can jointly bind two ATP molecules and two magnesium in two nucleotide 

binding sites (NBSs) which are located at the interface of the two NBDs. ATP molecules and 

magnesium cations are bound to conserved motifs (Fig. 15b). These conserved motifs are also 

involved in ATP-hydrolysis that provides the energy for the transport cycle. Each NBS is made 

of the Walker A and B motifs, A-, Q- and H-loops of one NBD and the signature motif and 

X-loop of the other NBD (Fig. 15b). An aromatic residue (often a tyrosine) in the A-loop binds 

the ATP by forming −stacking interactions between aromatic rings. The D-loops are 

responsible for the stabilization of the ATP-binding and the binding of the two NBDs together. 

The glutamic acid in Walker B, the glutamine in Q-loop, the H-loop, and the signature motif 

interact with the ATP. Moreover, these motifs may have an essential role in ATP-hydrolysis. 

The Q-loop was also suggested to participate in the signal transmission from NBDs to TMDs. 

The intracellular helices between the TMHs adopting a “ball-and-socket” conformation with 

NBDs are called coupling helices. They interact with the NBDs helping the information flow 

during the substrate translocation as well as ATP-hydrolysis [2], [38]–[40]. 
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Figure 13. Eukaryotic ABC proteins. 

a) Classification of the eukaryotic ABC proteins. b) Schematic TMD topology of type IV and type V transporters are 

taken from Figure 2 of [38]. 

The transport cycle of mammalian ABC transporters implies alternation between two 

(inward-facing – IF and outward-facing – OF) conformations. As most of the eukaryotic ABC 

proteins are exporters (exceptions are listed in Table 6), they take the drug from the cell in the 

IF conformation, and release it outside of the cell in the OF conformation (Fig. 15a). 

Conformational transition is expected to occur via occluded states where the NBDs and the 

extracellular gate are also closed. The IF-to-OF conformational change is expected to be 

facilitated by substrate-binding. ATP-hydrolysis, or as it was proposed recently, the phosphate 

release triggers the conformational changes necessary to go back from OF-to-IF conformation 

(Fig. 14) [38]–[41]. 

 
Figure 14. The thermodynamic model of an ABC transporter. 

[Fig. 3 from [40].] 
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It was also recently suggested that this transition happens via asymmetric unlock-returned 

(UR) turnover conformations, where the NBDs open only partially. This partial opening of the 

NBDs is followed by the opening of the intracellular gate. The proper opening of the NBDs and 

the ADP-to-ATP exchange is the last step, resetting the transporter for a new transport 

cycle [38], [41]. However, there are many unanswered questions. For example, it is not clear 

(i) if the substrate- or the ATP-binding happens first, and (ii) if the NBDs keep interacting along 

the transport cycle. Constant weak interactions at the NBD interface would mean that the IF 

wide open conformation may not exist under physiological conditions. In other words, resolved 

wide open structures would be an artefact from experimental conditions, e.g., when using 

detergent-purified structures [2], [39]–[42]. Thanks to Cryo-electron microscopy (cryo-EM), it 

is now possible to catch structures during changes [41]. However, our knowledge about the 

detailed atomistic mechanism is still fragmented. 

NBDs have drawn particular attention. In many ABC proteins, deviations from the consensus 

sequence were observed for all ABC families but ABCD. Sequence deviation in NBSs results 

in the preference of ATP-hydrolysis in one NBS, namely in NBS2, which is called canonical 

site. The slower ATP-hydrolysis in NBS1 also called degenerate site can be explained by 

differences in the sequence. NBS2 (canonical site) contains important residues, such as a 

glutamic acid, a tyrosine and a glycine in the Walker B motif, A-loop and signature sequence, 

respectively. When these residues are mutated, kinetics are modified leading to the existence 

of a degenerate NBS1. For instance, mutation of the signature sequence is present in all 

degenerated ABC proteins, while the other mutations are more specific [39]. 

Table 6. Non exporter eukaryotic ABC proteins [38], [39]. 

Channels 
Transporters 

ABCC7 ABCC8 ABCC9 ABCA4 ABCD4 

CFTR – 
Cystic Fibrosis 

Transmembrane-
conductance 

Regulator 

SUR1 SUR2 ABCR  

chloride channel 
sulfonylurea receptors regulating the 
Kir6.1 and Kir6.2 potassium channels 

retina-specific 
importer 

lysosomal B12 
vitamin 
importer 

I.4.3.3. ABCC family 

In many ABCC proteins (e.g., ABCC1 and ABCC4), the glycine of the signature sequence is 

replaced by valine. The swap of the C-terminal glutamic acid of the Walker B motif into aspartic 

acid results in less proper interaction with the ATP. It slows down the ATP-hydrolysis rate about 

3-fold. In some ABC proteins (e.g., ABCC7 but also in the ABCB11 a.k.a. BSEP member), the 

C-terminal glutamic acid is replaced by another amino acid (e.g., methionine or serin). In ABCC 

proteins, the A-loop tyrosine is mostly replaced by tryptophan in NBS1 which may lead to 

stronger  −stacking due to the larger overlap between molecular orbitals. Moreover, the 

interface between NBDs and TMDs may also differ in ABCC proteins. For example, in the 

NBD1 of ABCC1, there is a 10-13 residue long deletion which prevents the formation of a 

proper “ball-and-socket" arrangement which may be involved in lower signal transduction 

between NBD and TMHs. All these changes influence the ATP-binding environment, so most 

probably the ATP-hydrolysis rate, as well [2], [39], [43]. 
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Most of the ABCC proteins but also two of the ABCB proteins (transporter associated with 

antigen processing – TAP – proteins) have an extra N-terminal TMD (Table 7). The so-called 

TMD0 is expected to be involved in protein trafficking (ABCC1), but it may also be responsible 

for the connection with other functional partner proteins (as in ABCC8, and ABC9). However, 

it has been suggested that TMD0 is not involved in the substrate transport in case of ABCC1. 

For the other TMD0 containing proteins, the role of TMD0 is still elusive [2], [44]. Proteins 

containing this extra domain are called “long”, while proteins without TMD0 are called “short” 

[2], [38], [43], [44]. 

The members of the ABCC sub-family have a small helix at the N-terminal side of TMD1. The 

so-called L0 is present independently of the presence of TMD0. L0 was shown to play an 

important role in the proper folding and function of the protein. L0 is conserved in all members 

of the ABCC family even though its size may be different. In ABCC1, the fold of L0 residues is 

unusual: it folds to the membrane-cytosol interface [2], [38], [43], [44]. This remarkable fold 

may be noticeable in other ABCC proteins. 

Table 7. “Short” (without TMD0) and “long” (with TMD0) MRPs and 

other TMD0 containing proteins [2]. 

“Short” MRPs “Long” MRPs Other proteins with TMD0 

ABCC4 MRP4 ABCC1 MRP1 ABCC8 SUR1 

ABCC5 MRP5 ABCC2 MRP2 ABCC9 SUR2 

ABCC11 MRP8 ABCC3 MRP3 ABCB2 TAP1 

ABCC12 MRP9 ABCC6 MRP6 ABCB3 TAP2 

  ABCC10 MRP7 ABCB9 TAP-like 

I.4.3.4. Multidrug resistance-associated proteins 

Nine of the ABCC family (Table 7) compose a group of proteins, called multidrug 

resistance-associated proteins (MRPs), as they were originally proposed to play a role in drug 

resistance in tumour cells. Four MRPs (MRP2, MRP3, MRP4, MRP6) are present in liver 

and/or kidney cells, and three of them are involved in many pharmacological processes. For 

instance, MRP2 can be found in the canalicular membrane but also in the apical membrane of 

hepatocytes. It is also localized to the apical membrane of other polarized cells, such as renal 

proximal tubule epithelia, or intestinal epithelia. MRP2 transports a wide range of metabolized 

molecules. Moreover, the improper function of MRP2 can result in inefficient bilirubin 

elimination, the so-called Dubin and Johnson disease. MRP3 can be mainly found in the 

basolateral membrane of many cells. However, in hepatocytes, its expression is low. The 

dysfunction of MRP3 is not connected to any disease, but it is upregulated in cholestasis as it 

may be the “back-up system” of MRP2. MRP4 can be found in numerous tissues, among them 

in both membranes of liver hepatocytes, as well as in kidney proximal tubular cells. It also 

exports a large variety of substrates. It was suggested to act as a back-up partner of MRP2 [2]. 

I.4.3.5. ABCC1/MRP1 

MRP1 is ubiquitous; however, it is not expressed in liver cells. MRP1 shows appropriate 

(around 40-60%) sequence similarity to other unresolved MRPs located in the liver. The 

highest sequence similarity has been observed to MRP3 (58%). Regarding to the expression 

and substrate specificity, MRP4 is the most similar to MRP1. MRP1 seems to be a good 

candidate as a prototype for MRPs located in the liver and kidneys, as until the release of 
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Alpha Fold 2 in 2021, the availability of the resolved structures was limited [45]. Therefore, a 

common technique to study the dynamical behaviour of a non-resolved but pharmacologically 

important MRP was homology modelling or protein threading techniques as exemplified by the 

model of MRP4 proposed in 2018 [46]. MRP1 was used as a prototype for pharmacologically 

relevant MRPs, such as MRP2 and MRP4. 

Cryo-EM structures of bovine MRP1 (bMRP1) are available in different conformations, namely 

in IFapo (PDBID: 5UJ9), IF leukotriene C4 (LTC4) substrate-bound (PDBID: 5UJA), OF 

ATP-bound (PDBID: 6BHU) and OF ATP-ADP-bound (PDBID: 6UY0) [43], [44], [47]. 

Moreover, bMRP1 has high (91%) sequence similarity to human MRP1 (hMRP1) [2], [38], [44]. 

All the above mentioned cryo-EM structures were resolved with relatively high resolution 

(3.14 Å – 3.49 Å) obtained using a detergent-purified experimental setup. The resolution for 

the TMD0 is however lower [44]. The cryo-EM resolved OF structures suggested the 

importance of cholesterol in the membrane, as protein structures were co-resolved with three 

tightly bound cholesterols. It was recently acknowledged that lipids might play an important 

role in allosteric effects by facilitating the information flow, as observed in ABCB1/P-gp [48]–

[50]. Changes on one side of the protein, e.g., binding of a ligand, influence a distant site of 

the protein. Allostery seems to be important in the proper functioning of many membrane 

proteins [51]. 

The resolution of TMHs enables the examination of substrate-binding. ABCC1 bound to LTC4 

was resolved exhibiting the substrate structure 10 Å deep from the cytoplasm. Substrate 

binding was assigned to a strong H-bond network as well as van der Waals interactions with 

the TMDs, leading to two distinct binding pockets. The P-pocket contains positively charged 

residues, and it is connected to the glutathione moiety of LTC4. The H-pocket is hydrophobic, 

formed by residues only from one side of the binding site. It interacts with the lipid tail of LTC4 

(Fig. 15a). Many of the residues, forming H-bonds with LTC4, were shown to be important in 

the transport of other substrates, as well. Binding of a substrate brings the TMDs closer to 

each other which in turn is expected to favour NBD-NBD interactions. This supports the already 

mentioned theory that substrate-binding facilitates the IF-to-OF large-scale conformational 

changes. The binding pocket no longer exists in the OF conformation, residues forming the 

two pockets pulling apart. The positional changes of important binding residues help to move 

the substrate towards the extracellular space by decreasing non-covalent interactions with the 

substrate. The substrate is expected to be released before ATP-hydrolysis. OF-to-IF transition, 

i.e., the NBD dissociation was suggested to be the rate-limiting step in the transport cycle [43], 

[44], [47]. 
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Figure 15. ABCC family. 

a) Inward- and outward-facing conformations of MRP1. L0 is coloured grey, TMD1 orange, NBD1 yellow, TMD2 

blue, and NBD2 cyan. LTC4 (LTX) and ATP-Mg2+ are shown in magenta and black-red, respectively. The P- and 

H-pockets are shown in the small picture. b) Conserved motifs in the NBDs are shown as sequence (top) Fig. 2 

from [39] and on MRP1 (bottom). A-loop, Walker A, Q-loop, X-loop, Signature sequence, Walker B, D-loop, and 

H-loop are coloured differently. Important residues in these motives have CPK representation (bottom). 
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Chapter II. Computational chemistry 

II.1. General description of computational chemistry 

Many proteins are involved in drug disposition (shown in Chapter 1). For example, MRP2 and 

MRP4 were highlighted to be important in pharmacological processes in liver and kidney 

cells [1], [2]. It is essential to know more about the dynamics and substrate transport 

mechanisms of pharmacologically relevant proteins. Computational chemistry can help to 

model proteins in the membrane and to give some hints about the dynamics of proteins and 

the influence of the surrounding lipids [3]–[5]. Computational chemistry is a field in which the 

combination of mathematical methods and fundamental laws of physics are applied to study 

chemical and/or biological models. Historically, different computational approaches exist 

depending on the object of interest: electrons or nuclei respectively for quantum mechanical 

and molecular mechanics methods. 

Quantum mechanics (QM) describes molecules as collections of nuclei and electrons 

focusing on the behaviour of the latter. It is computationally expensive as it approximates the 

wave function described in the Schrödinger equation [6]. QM in detail is not part of this thesis. 

As QM is computationally expensive for large molecules, molecular mechanics (MM) is more 

commonly used to model molecules for which electronic behaviours are not considered. MM 

does not explicitly consider electrons since the nucleus and its electrons are considered as 

one atom. In molecular mechanics, molecules are described by the “ball and spring” model. 

Atoms are represented as different sized balls, while the bonds are springs with different 

lengths [6], [7]. More about MM can be found in section II.2. Both QM and MM can be used in 

the so-called hybrid QM/MM methods to take advantage of these techniques to calculate the 

free energy landscape of enzymatic reactions, for example [6]. Although, QM/MM is out of the 

topic of this thesis, as well. 

Molecular dynamics (MD) model ensembles of different molecules, such as lipids and/or 

proteins. MD methods are based on MM for which dynamics is included by iteratively solving 

the Newton’s equations of motions providing a numerical solution. MD simulations sample the 

distribution of choice [3], [8]. MD is described in detail in section II.3. However, the timescale 

of basic molecular dynamics simulations is often too short to catch biologically important 

processes. In many cases, the sampling must be either accelerated or enhanced. This can be 

achieved by using one of the enhanced sampling methods described in section II.5. 

II.2. Molecular mechanics 

II.2.1. Newton’s classical physics as the essentials of molecular mechanics methods 

MM is used to model molecules based on Newton’s laws of motion (a.k.a. classical 

mechanics). According to Newton’s first law, a body will stay in a resting state or move with 

constant velocity (𝑣) if the sum of all external forces equals zero. In accordance with the second 

law, an external force (𝐹⃗) produces an acceleration (𝑎⃗) on a body that is inversely proportional 

to the mass (𝑚) of the body (Eq. 7) [3], [7], [9]. 

𝑭⃗⃗⃗ = 𝒎𝒂⃗⃗⃗ 

Equation 7. Newton’s second law 
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The third law states that if a body “A” applies a force onto body “B”, body “B” applies equal but 

opposite force on body “A” (𝐹𝐴𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −𝐹𝐵𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗). This indicates that two objects can expend either 

attractive or repulsive forces. If well parameterized, Newton’s laws give an appropriate 

estimation for molecular systems [3]. 

From now on, this section contains how molecular systems can be described in the framework 

of classical mechanical physics [3], [7], [9]: 

• The atoms (𝑁) of a system are described by Cartesian coordinates: 

𝑋⃗ ≡ (𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑁, 𝑦𝑁 , 𝑧𝑁) where 1,2, … , 𝑁 refer to particles. 

• The motion of these particles at any time (𝑡) can be described by Cartesian position 

vectors: 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)). 

• The velocity at a given time is the derivative of the position vector: 𝑣⃗(𝑡) =
𝑑𝑟

𝑑𝑡
= 𝑟̇. 

• While the acceleration is the second derivative of the position (or the derivative of the 

velocity): 𝑎⃗(𝑡) =
𝑑2𝑟

𝑑𝑡2 = 𝑟̈ =
𝑑𝑣⃗⃗

𝑑𝑡
. 

• Newton’s second law can thus be written as 𝐹⃗ = 𝑚
𝑑2𝑟

𝑑𝑡2. It is a second order differential 

equation. To get an explicit solution, starting positions (𝑟(0)) and velocities (𝑣(0)) 

should be defined1. 

• According to Newton’s first law, the position at time (𝑡) is 𝑟(𝑡) = 𝑟(0) + 𝑣⃗𝑡. This is a 

trajectory given by a Taylor expansion2 as 𝑣⃗(𝑡) = 𝑟̇ → 𝑟(𝑡) = 𝑟(0) + 𝑟̇𝑡. 

• In the modelled systems, many particles (𝑁) can be found. The force of a particle (𝑖) 

depends on all other particles and the velocity of itself: 𝐹⃗𝑖 = 𝐹⃗𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑟̇𝑖) = 𝑚𝑟̈. 

• Often, the momenta of Cartesian coordinates (𝑝) is used: 𝑝𝑖 = 𝑚𝑖𝑣⃗𝑖 = 𝑚𝑖𝑟̇𝑖. This makes 

possible to change the space for a 6N-dimensional space called phase space where 

the state of a particle can be clearly specified by six quantities (𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧). The 

force can be written as 𝐹⃗𝑖 = 𝑚𝑖𝑎⃗𝑖 = 𝑚𝑖
𝑑𝑣⃗⃗𝑖

𝑑𝑡
=

𝑑𝑝⃗𝑖

𝑑𝑡
 in this phase space. 

• Generalized coordinates (𝑞) can be used to describe the whole system; therefore, they 

are often applied in theoretical chemistry. Generalized coordinates are another set of 

3N coordinates (𝑞⃗1, 𝑞⃗2, … , 𝑞⃗3𝑁), in a 3D system, and they derive from the original 

Cartesian coordinates (𝑟1, 𝑟2, … , 𝑟𝑁) by a coordinate transformation: 

𝑞𝛼 = 𝑓𝛼(𝑟1, 𝑟2, … , 𝑟𝑁), 𝑤ℎ𝑒𝑟𝑒 𝛼 = 1, … ,3𝑁. 

(It has a unique inverse: 𝑟𝑖 = 𝑔𝑖(𝑞⃗1, 𝑞⃗2, … , 𝑞⃗3𝑁), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑁.) 

• Taking a generalized formulation, the force can be written as 𝐹𝑖(𝑟1, 𝑟2, … , 𝑟𝑁) =
−𝜕

𝜕𝑟𝑖
𝑈(𝑟1, 𝑟2, … , 𝑟𝑁), where 𝑈(𝑟1, 𝑟2, … , 𝑟𝑁) is the potential energy function (see its 

calculation in section II.2.2). This results in the following form of Newton’s second law: 

 
1 A second order differential equation can have infinite solution from which one is calculated where 

𝑓(0) = 𝑎, 𝑓′(0) = 𝑏. 𝑎, 𝑏  are given numbers [10] 
2 Taylor series expansion of a function (𝑓) around 𝑥0 is 

𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) +
𝑓′′(𝑥0)

2!
(𝑥 − 𝑥0)2 + ⋯ +

𝑓(𝑛)(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛 [10] 
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−𝜕

𝜕𝑟𝑖
𝑈(𝑟1, 𝑟2, … , 𝑟𝑁) = 𝑚

𝑑2𝑟

𝑑𝑡2 =
𝑑𝑝⃗𝑖

𝑑𝑡
. It is a good approximation as nuclei are heavy enough 

to behave similarly as classical particles. 

• The kinetic energy of the momenta of Cartesian coordinates of given velocities can be 

calculated as 𝐾(𝑝) = 𝐾(𝑟̇1, … , 𝑟̇𝑁) =
1

2
∑ 𝑚𝑖

𝑁
𝑖=1 𝑟̇𝑖

2. 

• The total energy (𝐸) is given as the sum of the kinetic and potential energies: 

𝐸 =
1

2
∑ 𝑚𝑖

𝑁
𝑖=1 𝑟̇𝑖

2 + 𝑈(𝑟1, 𝑟2, … , 𝑟𝑁). 

II.2.2. Total potential energy 

As mentioned in the introduction of this chapter, molecules are described by the “ball and 

spring” model in molecular mechanics. Between the atoms, different forces are present to keep 

them in a proper conformation of a molecule. Interactions between atoms can be either bonded 

(i.e., the stretching of the bond, the bending of an angle and the bond torsion) or non-bonded 

(i.e., electrostatic and van der Waals interactions). These interactions characterize the 

interplay in molecules, proteins, lipids, etc. All necessary information to describe a biological 

system is defined in force fields (FFs). Many different FFs are available (more in section II.4). 

The total potential energy of an FF (𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈(𝑟1, 𝑟2, … , 𝑟𝑁)) can be approached by the sum of 

the energies resulted by the bonded and non-bonded interactions, and sometimes, by the 

coupling between bonded interactions (𝑈𝑐𝑟𝑜𝑠𝑠) (Eq. 7) [3], [7], [9]. In the next sections, these 

components of the potential energy function are detailed. 

𝑼𝒕𝒐𝒕𝒂𝒍 = 𝑼𝒃𝒐𝒏𝒅𝒆𝒅 + 𝑼𝒏𝒐𝒏−𝒃𝒐𝒏𝒅𝒆𝒅 + 𝑼𝒄𝒓𝒐𝒔𝒔 

𝑈𝑡𝑜𝑡𝑎𝑙 = (𝑈𝑠𝑡𝑟𝑒𝑐ℎ𝑖𝑛𝑔 + 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛) + (𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑈𝑣𝑎𝑛𝑑𝑒𝑟𝑊𝑎𝑎𝑙𝑠) + 𝑈𝑐𝑟𝑜𝑠𝑠 

Equation 8. An approximation of the total potential energy of a system. 

 

Figure 16. Bonded and non-bonded interactions. 

[Based on Figure 2.1 [7].] 
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II.2.2.1. Bond stretching 

The potential energy of bond stretching (𝑈𝑠𝑡𝑟) is a spring that is defined around an equilibrium 

(mathematically described as the minimum energy point) bond length (𝑟𝑒𝑞). In the simplest 

case, a harmonic potential and second order Taylor expansion are sufficient to model the 

potential energy of the bond stretching (Eq. 9) [7], [9]. 

𝑼𝒔𝒕𝒓(𝒓) = 𝑈(𝑟𝑒𝑞) +
𝑑𝑈(𝑟𝑒𝑞)

𝑑𝑟
(𝑟 − 𝑟𝑒𝑞) +

1

2

𝑑2𝑈(𝑟𝑒𝑞)

𝑑𝑟2
(𝑟 − 𝑟𝑒𝑞)

2
=

𝒌

𝟐
(∆𝒓)𝟐 

Equation 9. Bond stretching potential. 

𝑈𝑠𝑡𝑟(𝑟) can be written simply since 1) 𝑈(𝑟𝑒𝑞), the zero point for the energy scale is normally 

defined to zero; 2) 
𝑑𝑈(𝑟𝑒𝑞)

𝑑𝑟
 is zero as the first derivative in minimum is zero, and 3) the second 

derivative is the force constant following the Hooke’s law3 [7], [9]. 

In some systems, e.g., when the vibrational frequencies should be included in the FF, this 

approximation results in significantly different values compared to experiments. The FF can be 

improved by including higher order terms in the Taylor expansion. However, it has a 

computational price as more parameters should be assigned. Moreover, e.g., the cubic 

harmonic constant is negative; thus, if the higher terms end at the cubic term the molecule can 

“explode”. 

The accuracy can be improved by using the Morse potential: 𝐸𝑠𝑡𝑟(𝑀𝑜𝑟𝑠𝑒)(∆𝑟) = 𝐷(1 − 𝑒−𝛼∆𝑟)
2
, 

where 𝛼 = √
𝑘

2𝐷
 is the fitting constant and D is the dissociation energy. However, the 

computational cost of the Morse potential is significantly higher than the harmonic 

approximation, whereas the latter is reasonably accurate on the possible distances for most 

modelled systems [7], [9]. 

II.2.2.2. Angle bending 

The potential energy of angle bending is also estimated by a polynomial (Taylor) expansion 

around an equilibrium angle (𝜃𝑒𝑞) (Eq. 10). As for the bond stretching, the Taylor series usually 

terminates at second order since this approximation is already sufficient. Higher order terms 

can be included to improve the accuracy or to reproduce vibrational frequencies. Angles of the 

di- or trivalent central atoms are special, and the Taylor expansion should contain at least three 

order terms to handle boundaries for the linearity of the harmonic force constant. Special atom 

types are often defined for di- or trivalent central atoms (see section II.2.1.4) [7], [9]. 

𝑼𝒃𝒆𝒏𝒅(𝜽𝒆𝒒) =
𝒌

𝟐
(𝜟𝜽)𝟐 

Equation 10. Angle bending potential. 

 
3 Hooke’s law: 𝑈 =

1

2
𝑘(∆𝑟)2 [9] 
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II.2.2.3. Torsion angle 

Torsion angle can be defined for four (A, B, C, D) atoms in a row as it is the angle between the 

projection of two bonds, AB and CD, into the BC bond bisecting plane. By definition, this angle 

is periodic. It is defined either in the range [0, 2𝜋] or [−𝜋, 𝜋]. It would be obvious to take the 

positive angles, but for many torsion angles, 𝜋 corresponds to the minimum energy. As the 

angle is periodic, it is logical to use a periodic function as expansion, such as the Fourier series 

(Eq. 11). Thus, 𝜔 = 𝜋 results in the minimum energy as the sum is zero, as 𝑐𝑜𝑠(𝜋) = −1. 

Contrary to the bond stretching and angle bending potentials, the rotational cost around a 

single bond is often low; therefore, a bigger deviation from the equilibrium (minimum) is more 

possible. This is well represented by the periodic angle definition and the application of Fourier 

series. The first three terms of the Fourier series do not result in a perfect fitting, but in most 

cases, it gives a good estimation from the chemical point of view [7], [9]. 

𝑼𝒕𝒐𝒓𝒔(𝝎) =
𝟏

𝟐
∑ 𝑽𝒋[𝟏 + (−𝟏)𝒋+𝟏𝒄𝒐𝒔(𝒋𝝎 + 𝝍𝒋)]

𝒋

 

𝜓 − phase angle, the difference from a reference 

𝑉𝑗 − signed amplitudes, 𝑗 − set of periodicities 

Equation 11. Torsion angle potential. 

Signed amplitudes (𝑉𝑗) and set of periodicities (𝑗) are specific to a given torsion angle (i.e., set of A, B, C, D 

atoms) [7], [9]. 

II.2.2.4. Out-of-plane bending 

A special four-atom system is when three of the atoms are connected to a central atom that is 

out of the plane. In this case, there is a significant energy penalty; therefore, a special potential 

term is often added to the equation. The deviation from the plane can be defined either by an 

angle (𝜃) or a distance (𝑟) (Fig. 17). The angle (𝜃) is defined between the central atom plane 

and the plane made by the other three atoms. The distance (𝑟) is defined as the distance 

between the central atom and its projection onto the plane made by the other three atoms. 

Torsion angles defined like this are called “improper torsions” [7], [9]. 

 
Figure 17. Out-of-plane bending angle (𝜽) and distance (𝒓) definition. 

[Based on Figure 2.5 of [9].] 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 55 

License CC BY-NC-ND 4.0 

II.2.2.5. Electrostatic interactions 

Electrostatic interactions result from the internal implicit distribution of electrons. So that a 

molecule can have “positive” and “negative” regions. Electrostatic interactions are part of 

non-bonded interactions that are weaker than bonded interactions. Electrostatic interactions 

are calculated by the first order Coulomb potential between the partial atomic charges [7], [9]. 

𝑼𝒆𝒍𝒆𝒄(𝒓𝒋,𝒊) = ∑ ∑
𝒒𝒊𝒒𝒋

𝜺𝒓𝒊,𝒋
𝒋>𝒊𝒊

 

𝑞𝑖, 𝑞𝑗 − partial atomic point charges, 𝜀 − dielectric constant 

Equation 12. Electrostatic potential. 

II.2.2.6. Lennard-Jones potential 

The Lennard-Jones (LJ) potential describes the repulsion and attraction between two 

non-connected atoms. It is zero at large distances and repulsive at very short distances. At 

intermediate distances, a small attraction is observable due to the so-called van der Waals 

interactions which are often described by a dipole-dipole interaction model between two atoms 

(A, B). A popular function to model these interactions is the 12-6 LJ potential (Eq. 13) where 

the repulsion has 𝑟−12 and the attraction 𝑟−6 dependence. In a system, this equation should 

be calculated for all pairs of atoms. However, since this term is often null at a large distance, 

distance cut-off is used to decrease the computational time [7], [9]. 

𝑼𝑳𝑱(𝒓𝑨𝑩) = 𝟒𝜺𝑨𝑩 [(
𝝈𝑨𝑩

𝒓𝑨𝑩

)
𝟏𝟐

− (
𝝈𝑨𝑩

𝒓𝑨𝑩

)
𝟔

] 

𝜎𝐴𝐵 − minimum distance, 𝜀 − depth of this min. distance, 𝑟𝐴𝐵 − actual distance 

Power twelve and six describe the repulsive and attraction terms, respectively. 

Equation 13. Van der Waals potential. 

Special attention should be paid to H-bonds, as an H-bond is a big attraction between a 

hydrogen and another negative heteroatom (e.g., O, N). A specific potential can then be used 

for H-bonds [7], [9]. 

𝑼𝑬−𝒃𝒐𝒏𝒅(𝒓𝑨𝑩) = 𝟒𝜺𝑨𝑩 [(
𝝈𝑨𝑩

𝒓𝑨𝑩

)
𝟏𝟐

− (
𝝈𝑨𝑩

𝒓𝑨𝑩

)
𝟏𝟎

] 

Equation 14. Van der Waals potential for H-bonds. 

II.2.2.7. Cross potential energy 

The above-mentioned stretching, bending and torsion are coupled, i.e., if one is changing it 

induces the change of another one. For instance, if the angle becomes smaller in a water 

molecule, the bond length becomes longer as the repulsion between the two H atoms is 

increased. In FFs, different cross terms can be defined and added to the total potential energy 

to include this coupling that can improve the FF definition [7], [9]. 
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The possible cross terms are usually written as first-order Taylor series [7]: 

• Stretch – bend for A, B, and C atoms: 

𝑈𝑠𝑡𝑟𝑒𝑡𝑐ℎ−𝑏𝑒𝑛𝑑 = 𝑘𝐴𝐵𝐶(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)[(𝑟𝐴𝐵 − 𝑟0

𝐴𝐵) − (𝑟𝐵𝐶 − 𝑟0
𝐵𝐶)] 

This is the most important term as the bond stretching and the angle bending are rather 

coupled. 

• Stretch – stretch for A, B, and C atoms: 

𝑈𝑠𝑡𝑟𝑒𝑡𝑐ℎ−𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝑘𝐴𝐵𝐶(𝑟𝐴𝐵 − 𝑟0
𝐴𝐵)(𝑟𝐵𝐶 − 𝑟0

𝐵𝐶) 

• Bend -bend for A, B, C, and D atoms: 

𝑈𝑏𝑒𝑛𝑑−𝑏𝑒𝑛𝑑 = 𝑘𝐴𝐵𝐶𝐷(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)(𝜃𝐵𝐶𝐷 − 𝜃0

𝐵𝐶𝐷) 

• Stretch – torsion for A, B, C, and D atoms: 

𝑈𝑠𝑡𝑟𝑒𝑡𝑐ℎ−𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝑘𝐴𝐵𝐶𝐷(𝑟𝐴𝐵 − 𝑟0
𝐴𝐵)𝑐𝑜𝑠(𝑛𝜔𝐴𝐵𝐶𝐷) 

• Bend – torsion for A, B, C, and D atoms: 

𝑈𝑏𝑒𝑛𝑑−𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝑘𝐴𝐵𝐶𝐷(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)𝑐𝑜𝑠(𝑛𝜔𝐴𝐵𝐶𝐷) 

• Bend – torsion – bend for A, B, C, and D atoms: 

𝑈𝑏𝑒𝑛𝑑−𝑡𝑜𝑟𝑠𝑖𝑜𝑛−𝑏𝑒𝑛𝑑 = 𝑘𝐴𝐵𝐶𝐷(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)(𝜃𝐵𝐶𝐷 − 𝜃0

𝐵𝐶𝐷)𝑐𝑜𝑠(𝑛𝜔𝐴𝐵𝐶𝐷) 

II.3. Molecular dynamics 

II.3.1. An introduction to molecular dynamics simulations 

MD techniques provide numerical solutions for the classical equations of motion and generate 

a trajectory to extract macroscopic observables. The widely used MD techniques can provide 

an atomistic description of molecular systems; therefore, they can describe the transport 

processes of different proteins as well as the influence of the membrane composition [3]–[5]. 

Basic concepts of MD [7]–[9], [11]: 

• The state of the system is described by the positions (𝑥) and momenta (𝑝) of all 

particles: 

𝑋′ = (𝑥1, 𝑦1, 𝑧1, 𝑝𝑥1, 𝑝𝑦1, 𝑝𝑧1, … ) = (𝑞, 𝑝) 

𝑞 = (𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, … ), 𝑝 = (𝑝𝑥1, 𝑝𝑦1, 𝑝𝑧1, 𝑝𝑥2, 𝑝𝑦2, 𝑝𝑧2, … ) 

• The above-mentioned Newton law-based equation 
−𝜕𝑈

𝜕𝑞
=

𝑑𝑝

𝑑𝑡
 can be solved using the 

Lagrange function or the Hamilton function (Eq. 15). The Lagrange calculation is a 

single second-order differential equation, and it can be applied only for spatial 

coordinates and velocities. The Hamilton calculation is a set of first-ordered differential 

equations and it is good for any set of non-redundant variables. This calculation is more 

general. 

a) 𝐿 = 𝑇 − 𝑉,
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑝
−

𝜕𝐿

𝜕𝑞
= 0 

b) 𝐻 = 𝑇 + 𝑉,
𝜕𝐻

𝜕𝑞
+

𝜕𝑝

𝑑𝑡
= 0,

𝜕𝐻

𝜕𝑝
−

𝜕𝑞

𝑑𝑡
= 0 

Equation 15. Calculation of Newton’s law-based equations in MD. 

a) Lagrange and b) Hamilton functions. 
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• The time step is an important parameter. It can be increased without decreasing the 

numerical stability if the degrees of freedom of the highest frequencies are removed. 

To consider the vibration of hydrogens (fastest movement in molecular systems), the 

time step should be smaller, resulting in a higher computational cost. For most MD 

simulations, bonds involving hydrogens are often restrained. A commonly applied 

algorithm to get rid of these degrees of freedom is the SHAKE which changes the 

coordinates to fulfil the distance constraints considering a relative tolerance. Another 

algorithm is the LINCS which resets the lengths after an unconstrained update. The 

second one is more stable, but it can only be used with bond constraints and isolated 

angle constraints. 

• Most MD systems have an absolute temperature (𝑇), defined at the beginning. 

Although, sometimes the so-called inverted temperature (
1

𝑘𝐵𝑇
, where 𝑘𝐵 is the 

Boltzmann constant) is used. 

• Extended (auxiliary) variable (𝜆) can be defined, as well. 𝜆 can be fix or change 

according to a pre-defined plane or dynamically. Its principle depends on the type of 

the MD simulation (see e.g., in section II.5.4). 

• The system is placed in a cubic box; therefore, it is common to use periodic boundary 

conditions (PBCs) to avoid the boiling of the solvent molecules into the “empty” space 

and to minimize surface effects. PBC means that the cubic box, in which the system is 

modelled, is duplicated in all directions. If a particle leaves the box on one side, its 

image enters into the box next to that site. An evident question is how much bigger the 

box should be than the modelled system. The size of the box should be defined 

according to the largest cutoff applied (typically 8-12 Å). 

II.3.2. Different ensembles 

Different ensembles can be considered for MD simulations, depending on the thermodynamic 

conditions to be modelled. Simulating isolated systems following the classical laws results in 

an NVE (constant number of particles, volume, and energy) ensemble also known as 

microcanonical ensemble. Closed but not heat isolated systems can be approximate as 

simulations performed in NVT (constant number of particles, volume, and temperature) 

ensemble (or canonical ensemble). Finally, NPT (constant number of particles, pressure, and 

temperature) ensemble model isothermal and isobaric conditions which are often the most 

relevant for biological systems [7]–[9], [12]. To do so, temperature and/or pressure should be 

adaptable. 

II.3.2.1. Temperature coupling (thermostats) 

Since temperature and total kinetic energy are closely related4, the velocities are scaled while 

the temperature remains constant. However, the resulted trajectory can be not totally reliable 

as it is no longer Newtonian. Several temperature coupling methods exist depending on the 

FF parametrization or the used code. Commonly used thermostats are the Berendsen [13], 

Nosé–Hoover [14], and Langevin [12]. Berendsen coupling applies a scaling between a 

surrounding constant temperature (𝑇0) thermal bath and the system by adding a dissipative 

Langevin force. In case of the Nosé-Hoover thermostat, added independent variables control 

 
4 ⟨𝐸𝑘𝑖𝑛⟩ =

1

2
(3𝑁𝑎𝑡𝑜𝑚 − 𝑁𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)𝑘𝑇 
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the temperature [7], [15]. Finally, the Langevin thermostat is a stochastic approach. It 

thermalizes each degree of freedom independently, and it uses a randomly added force 

simulating the random kicks between particles [12]. Temperature in simulations can usually be 

monitored by ensuring that velocities of particles adopt the Maxwell-Boltzmann distribution. All 

these coupling methods can be used to keep a chosen temperature or to slowly heat the 

system. For constant pressure simulations, temperature should usually be already equilibrated 

using constant volume (NVT) simulations [16]. 

II.3.2.2. Pressure coupling (barostats) 

Pressure can be coupled similarly to temperature using Berendsen barostat. A constant 

“pressure bath” is used and a Langevin force is added to the speed. On the other hand, Monte 

Carlo barostat samples volume fluctuation and it does not compute the virial5 so pressure is 

not available at runtime [16]–[18]. 

II.3.3. Solvent/water models 

Biological systems almost systematically include water molecules. Therefore, different models 

exist to mimic water molecules, but there also exist optimized forcefields for other solvents 

(e.g., methanol, dichloromethane). Solvent models can be divided into two main families: 

explicit and implicit solvent. In explicit water models, water molecules are present in the 

simulation as particles while in implicit water models, water is modelled as a homogeneous 

continuum, for which only electrostatic contribution is included. For water molecules, explicit 

models are used in MD simulations since implicit models cannot account solvent-solute 

H-bond network, which is known to play a central role in biology. Explicit models can be divided 

into two groups: 3- and 4-point models. In 3-point models, water is modelled by three points 

corresponding to its three atoms. While in 4-point models, the delocalized charge of water’s O 

atom is also included [9]. 5-point water models exist, as well (e.g., TIP5P [19]). However, the 

larger the number of points by a water molecule, the larger the computational cost. This is even 

more important as biological systems are mostly made of water molecules [9]. 

Table 8. Commonly used water models. 

3-point models 4-point models 

SPC Simple Point Charge OPC 
Optimal Point Charges 

SPC/E 
Extended Simple Point 

Charge 
TIP4P Transferable Intermolecular 

Potentials 4 Point 

TIP3P 
Transferable Intermolecular 

Potentials 3 Point 
  

II.3.4. Running MD simulations 

Prior to an MD production run, the modelled molecule should be (i) minimized, (ii) thermalized, 

and (iii) equilibrated, such as the system is slowly heated to the targeted temperature, and it 

can relax and reach a preliminary realistic configuration. After these preparation steps, 

production can be started, where the new velocities and coordinates of the system are 

calculated by applying either the leap-frog or velocity Verlet algorithm [11]. 

 
5 𝛯 =

−1

2
∑ 𝑟𝑖𝑗

𝑛𝑁
𝑖<𝑗 ⨂𝐹𝑖𝑗 
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Leap-frog does not update velocities and positions at the same time, but with a half time step 

shift (Eq. 16) [20]. 

𝑣 (𝑡 +
1

2
𝛥𝑡) = 𝑣 (𝑡 −

1

2
𝛥𝑡) +

𝛥𝑡

𝑚
𝐹(𝑡) 

𝑟(𝑡 + 𝛥𝑡) = 𝑟(𝑡) + 𝛥𝑡𝑣 (𝑡 +
1

2
𝛥𝑡) 

Equation 16. The update of velocities (𝒗) and positions (𝒓) in leap-frog algorithm. 

The velocity Verlet integrator is more precise. It is compatible with maintained (coupled) 

temperature or pressure simulations (sections II.3.1.1 and II.3.1.2). In this case, positions and 

velocities are updated at the same time (Eq. 17). For a standard MD output, where there is no 

position or velocity coupling, the two integrators are giving the same results [11]. 

𝑣(𝑡 + 𝛥𝑡) = 𝑣(𝑡) +
𝛥𝑡

2𝑚
[𝐹(𝑡) + 𝐹(𝑡 + 𝛥𝑡)] 

𝑟(𝑡 + 𝛥𝑡) = 𝑟(𝑡) + 𝛥𝑡𝑣 +
𝛥𝑡2

2𝑚
𝐹(𝑡) 

Equation 17. The update of velocities (𝒗) and positions (𝒓) in velocity Verlet algorithm. 

Both algorithms are implemented in Amber and Gromacs, in two commonly used software for 

MD [11], [16]. Moreover, different routines exist to run these algorithms on CPU and GPU. 

In Amber, two routines are implemented to run MD simulations and preparatory steps: 

1) sander (Simulated Annealing with NMR-Derived Energy Restraints) and 2) pmemd (Particle 

Mesh Ewald Molecular Dynamics). More features have been made available in both routines 

as pmemd can provide better performance. However, there are still some features that are 

only supported in sander and vice versa. Sander is using the simplest equation to calculate 

the potential energy (Eq. 18). Pmemd aims to improve the performance by treating the 

long-ranged component of the non-bonded electrostatic interactions. This is the primary engine 

for molecular dynamics in Amber. Pmemd supports the use of GPUs, even parallelly. The 

format of the MD-parameter input file (in/mdin) is the same for both routines and it contains all 

information about the run, such as temperature, MD length, timestep, etc. Both routines create 

a trajectory, often stored in a series of binary trajectory files (netcdf format). The trajectory 

could be stored in one file, but for security reasons, it is better to use separated files. To save 

space, trajectory files usually do not contain the velocities. However, velocities are stored in 

checkpoint files that are saved less often. These files make it possible to continue or restart a 

simulation from the stored point [16]. 

To run an MD simulation in Gromacs, everything should be defined in an input (mdp) file. 

Moreover, a run input (tpr) file is necessary which combines the information from a topology 

(top), a structure (gro), an MD-parameter (mdp), and optionally an index (ndx) file. This can be 

created by the gmx grompp command. Simulation, energy minimization, and normal mode 

analysis can be run by the gmx mdrun command. The two most important routines that can be 

used in parallelization are the domain decomposition and the particle mesh Ewald. In domain 

decomposition, the components of the non-bonded interactions are broken into domains 

following the principle that most interactions are local. Particle mesh Ewald is the same as in 

Amber. Both domain decomposition and particle mesh Ewald create a trajectory (trr) file storing 
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the positions, velocities, and optionally forces. Checkpoint files are created to allow the restart 

of simulations starting from a given point [11]. 

II.4. Parameter definition, the force field 

II.4.1. Basic concepts 

The use of FFs is central for molecular simulations. Potentials, described in sections 

II.2.2.1-II.2.2.7, require a careful definition of each parameter. Technically, FFs often have 

optimized parameters available in the code e.g., for proteins, lipids, water, ions and small 

molecules. A key point is the use of compatible forcefields to each other. Moreover, 

computational accuracy can be increased by combining specific FFs which were tested and 

validated as more efficient together (e.g., ff19SB [21] with OPC). 

Nowadays, various FFs are available. Some of the FFs are better fitted for large systems, 

others for small/medium sized molecules. Some FFs are better for ordered proteins; others 

are as much as possible optimized for intrinsically disordered proteins. Newer FFs aim to be 

efficient for both ordered and disordered proteins and to fit well for all system sizes. FFs differ 

in the functional form, i.e., the parameter fitting algorithm of the above-described energy 

potentials (section II.2.1). 

The most time-consuming term in the FF energy calculation is the non-bonded potential. Thus, 

many FFs apply a cutoff distance (e.g., 10 Å) for van der Waals interaction calculations. To 

avoid the distance calculation in every step, distances are calculated on the starting structure 

and saved into a list which is updated e.g., every 20 steps during the simulations. This can 

save some calculation time. However, often an optimized geometry is in the focus of interest; 

thus, for large molecules, the cutoff does not result in time gain because of a complex geometry 

optimization. The use of the same cutoff is more problematic in case of Coulomb interactions 

as its relationship with the distance is 𝑟−3 (dipole-dipole) or 𝑟−1 (charge-charge) contrary to 

𝑟−6 for van der Waals. Another problem is how to treat the electrostatic energies out of the 

cutoff. If they are set to zero, the energy function will no longer be continuous. Furthermore, it 

would neglect a significant contribution from long-range electrostatic interactions. The best is 

to use two cutoffs and a switching function that is smoothly reducing the potential to zero. 

Modern FFs use fast multipole or Ewald sum methods to achieve this smoothing as well as to 

include long-range interaction [7], [9]. The Ewald sum concept is to split the electrostatic 

interactions into near and far contributions [7]. 

FF definitions are often optimized for MD programs as often an MD software and an FF have 

been developed parallelly. However, with some limitations, it is possible to use other FFs in an 

MD program. In the next two sections, parameter definition approaches used in two extensively 

used molecular dynamics programs (namely Amber, and Gromacs) are described. Then, an 

overview about a machine learning (ML)-based force field approach is proposed. Finally, a 

technical example of how to parameterize missing terms for small molecules is explained. 

II.4.2. Parameter definition in Amber 

Parameters should be defined according to the potential energy calculation. In the simplest 

case, Amber uses the following Hamiltonian for the potential energy calculation [16]. 
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𝑼𝒕𝒐𝒕 = ∑ 𝒌𝒃(𝒓 − 𝒓𝟎)𝟐

𝒃𝒐𝒏𝒅𝒔

+ ∑ 𝒌𝜽(𝜽 − 𝜽𝟎)𝟐

𝒂𝒏𝒈𝒍𝒆𝒔

+ ∑ 𝑽𝒏[𝟏 + 𝒄𝒐𝒔(𝒏𝝓 − 𝜸)]

𝒅𝒊𝒉𝒆𝒅𝒓𝒂𝒍𝒔

+ ∑ ∑ [
𝑨𝒊𝒋

𝒓𝒊𝒋
𝟏𝟐 −

𝑩𝒊𝒋

𝒓𝒊𝒋
𝟔

+
𝒒𝒊𝒒𝒋

𝜺𝒓𝒊𝒋

]

𝑵

𝒋=𝒊+𝟏

𝑵−𝟏

𝒊=𝟏

 

𝑘𝑏 , 𝑘𝜃 − force constants, 𝑟0 − equilibrium bond length, 𝜃0 − equilibrium bond angle, 

𝑉𝑛 − torsion barrier term, 𝛾 − phase, 𝑛 − periodicity, 𝐴𝑖𝑗 , 𝐵𝑖𝑗 − specific parameters, 

𝑞𝑖 , 𝑞𝑗 − partial charges 

Equation 18. Simplest potential energy calculation in Amber. 

Many parameters, such as, 𝑘𝑏, 𝑟0, 𝑘𝜃, 𝜃0, 𝑉𝑛, 𝛾, 𝐴𝑖𝑗, and 𝐵𝑖𝑗 are defined in parameter files. For 

the torsion term, a so-called divider integer which splits the torsion term into individual 

contributions is defined, as well. Special flags SCNB and SCEE handle 1-4 non-bonded 

interactions that are interactions between two atoms connected via three consecutive bonds 

but for which non-covalent terms should be fitted. Out-of-plane is handled as a special 

improper torsion angle. The last part of the potential energy calculation describes the 

non-bonded terms where 𝐴𝑖𝑗 = 𝜀𝑅(𝑖,𝑗)𝑚𝑖𝑛
12  and 𝐵𝑖𝑗 = 2𝜀𝑅(𝑖,𝑗)𝑚𝑖𝑛

6  are specific parameters for atom 

types 𝑖 and 𝑗 to describe the van der Waals interactions. In Amber 𝜀 and 𝑅(𝑖,𝑗)𝑚𝑖𝑛 values are 

defined in parameter files for a given atom type. Partial charges (𝑞𝑖, 𝑞𝑗) do not appear directly 

in parameter files. They are pre-calculated for protein and nucleic acid atoms and stored in 

fragment libraries [16]. Recommended force field files for Amber family are listed in Table 9. 

Amber routines do not read these parameter files directly. Parameters for a system are stored 

in a special, but ASCII, topology file (prmtop). Even if it is possible to modify this topology file 

using any text editor, it is not recommended as its format should match the system reading 

routine. Amber tools, e.g., tLeaP or ParmEd can be used to generate and safely modify 

parameter files. Amber force fields were developed for the Amber software but it is possible to 

use them in other software [11], [16]. 

Table 9.Recommended force fields in Amber. 

Protein FF14SB or FF19SB 
[21], [22] 

Ions Monovalent Ion 
parameters from Joung 
& Cheatham [23], [24] 

Lipid Lipid17 or Lipid21 [25], 
[26] 

Substrates GAFF2 [27] 

Water TIP3P or OPC [28]–
[31] 

Carbohydrate GLYCAM [32] 

Nucleotides 
modified DNA.OL15 
[33], [34], modified 
RNA.OL3 [34], [35] 

ATP and other 
cofactors, ions, 
lipids, 
Carbohydrates, etc. 

AMBER parameter 
database from [36] 

II.4.3. Parameter definition in Gromacs 

The potential energy function in Gromacs (Eq. 19) can be divided into three parts: 

1) non-bonded, 2) bonded, and 3) restraints. There is a choice of function for both non-bonded 
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and dihedral interactions. Gromacs uses some extra terms during the potential function 

calculation compared to Amber [11], [16]. 

Additional terms in Gromacs [11], [16]: 

• The Urey-Brandley term represents bond-angle vibration between atom triplets 

(𝑢 = 𝑟𝑖𝑗𝑘 and 𝑢 = 𝜃𝑖𝑗𝑘 for bond and angle, respectively). 

• The simplest improper dihedral is a harmonic potential, and it keeps the planar groups 

planar. 

• The CMAP term is responsible for the torsional correction. 

• Many different restrains are available for positions, angles, and distances. These are 

available in the manual, and they will not be explained here in detail. 

𝑼𝒕𝒐𝒕 = ∑ 𝒌𝒃(𝒃 − 𝒃𝟎)𝟐

𝒃𝒐𝒏𝒅𝒔

+ ∑ 𝒌𝜽(𝜽 − 𝜽𝟎)𝟐

𝒂𝒏𝒈𝒍𝒆𝒔

+ ∑ 𝒌𝝓[𝟏 + 𝒄𝒐𝒔(𝒏𝝓 − 𝝓𝒔)]

𝒅𝒊𝒉𝒆𝒅𝒓𝒂𝒍𝒔

+ ∑ 𝒌𝒖(𝒖 − 𝒖𝟎)𝟐

𝑼𝒓𝒆𝒚−𝑩𝒓𝒂𝒏𝒅𝒍𝒆𝒚

+ ∑ 𝒌(𝝃 − 𝝃𝟎)𝟐 + ∑ 𝑼𝑪𝑴𝑨𝑷

𝝓,𝝍𝒊𝒎𝒑𝒓𝒐𝒑𝒆𝒓𝒔

+ ∑ ∑ 𝜺 [(
𝑹(𝒊,𝒋)𝒎𝒊𝒏

𝒓𝒊𝒋

)

𝟏𝟐

− (
𝑹(𝒊,𝒋)𝒎𝒊𝒏

𝒓𝒊𝒋

)

𝟔

]

𝑵

𝒋=𝒊+𝟏

𝑵−𝟏

𝒊=𝟏

+
𝒒𝒊𝒒𝒋

𝜺𝒓𝒊𝒋

+ ∑ 𝑼𝒓𝒆𝒔𝒕𝒓𝒂𝒊𝒏𝒔 

𝑘𝑏 , 𝑘𝜃 , 𝑘𝜙 , 𝑘𝑢 , 𝑘 − force constants, 𝑏0 − equilibrium bond length, 𝜃0 − equilibrium bond angle, 

𝜙𝑠 − phase, 𝑛 − periodicity, 𝑢0 − equilibrium bond-angle vibration, 𝜉0 − equilibrium improper dihedral, 

𝑅(𝑖𝑗), − specific parameters, 𝑞𝑖 , 𝑞𝑗 − partial charges 

Equation 19. Simplest potential energy calculation in Gromacs [11], [16]. 

A topology (top) file contains all connections in the system. It is an ASCII file but during the 

run, the Gromacs pre-processor (gmx grompp) creates a binary topology file. Gromacs also 

creates a specific structure file (gro) that can store the velocities, as well. The topology file calls 

(includes) force field files (itp). During the MD simulations, parameters are often included from 

the toppar folder that can be created by CHARMM-GUI [37] or “manually” by copying the 

necessary files. There is a basic forcefield.itp file that determines the atom types and all 

parameters for the potential energy calculation (Eq. 19). In addition, other itp files contain 

information for the protein, lipids and all molecules included in the system. So, force field files 

have a different structure compared to Amber [11]. CHARMM force field is often used in the 

Gromacs software but it is possible to use other FFs, e.g., from the Amber family. 

II.4.4. Machine learning-based force fields 

ML technics are involved in many fields; thus, in computational chemistry, as well. One 

promising approach is the ML-based force field generation. Other applications can be found in 

Chapter III. The idea of an ML-based FF is to treat large biological systems accurately but at 

a reasonable time and with acceptable computational resources. It can be achieved by learning 

functional relationships between inputs and outputs. Thus, suitable reference data with 

energies and forces from ab initio calculations are needed. This is currently a bottleneck, but 

if enough data are available, an ML-based FF is adaptive. It can learn new configurational 

environments at any time when data are made available [4], [38]. ML-based FFs are not yet 
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commonly used; however, this is likely the future as more and more data are available for the 

learning process and these FFs will provide a more accurate parameter set. 

II.4.5. Parameterization 

In the Amber family, parameters for a broad range of atom types are included in the General 

Amber Force Field (GAFF). However, for some bond, angle, torsion, etc. parameters may be 

not available in the applied force field. In this case, parameters should be generated. This 

parameterization is often necessary for small molecules such as ligands (e.g., substrates, 

inhibitors) as they frequently contain special chemical moieties. As electrons are not explicitly 

treated (the nucleus and its electrons are considered as one particle), only atom types, the 

connection between them and a starting geometry should be provided during parameterization. 

Parameters can be generated e.g., using the Antechamber suite that is based on the General 

Amber Force Field. Often, missing parameters can be extrapolated from QM-based 

calculations, e.g., for partial atomic charge procedures [7], [9], [16]. 

II.5. Enhanced sampling methods and free energy assessment techniques 

II.5.1. A need for enhanced sampling methods 

Often, biological events (up to seconds) are far beyond the reach of the current timescale of 

conventional MD simulations (few s). There is thus a need to speed up the sampling. An “old” 

option in many FFs is to use “united atoms”. This means that one molecule is used to model a 

group of atoms, e.g., CH2. However, often, this is nowadays not enough to catch biologically 

important processes e.g., transport cycle. 

This means that conventional all-atom or united-atom MD simulations cannot explore the full 

configuration space; thus, the system is quasi-nonergodic. In many cases, the sampling should 

be accelerated to reach the timescale of biological processes. Enhanced sampling techniques, 

that are based on statistical and physical ideas and principles, aim to achieve the ergodic 

dynamics, i.e., an infinitely long trajectory would cover the whole configurational space. Some 

of these enhanced sampling methods permit only semi-quantitative estimation (exploration), 

but many of them also enable probability distribution and free energy estimation [8]. 

Plenty of different enhanced sampling methods are available; therefore, it is difficult to choose 

the most appropriate one for a given problem. An enhanced sampling classification has been 

recently introduced by Jérôm Hénin et al. [8]. Moreover, a decision tree (Fig. 18) helping to 

find the most suitable method has been proposed, as well [8]. Even though other classifications 

are possible and different approaches can be used to solve a given problem, this initiative 

might significantly help the MD community (Fig. 18). 

Some methods are based on strategies from probability theory, others are based on physical 

properties. In many techniques, so-called collective variables (CVs) are used to accelerate the 

sampling by focusing on a given “motion” of interest. This is often achieved by introducing an 

additional potential acting on selected degrees of freedom (CV). In other words, the system 

will sample along the expected direction and map the conformational space and the free 

energy landscape according to the CV. 
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A good CV should be 

• continuously defined and differentiable, 

• low-dimensional, and 

• capable of separating target states of interest [39]. 

The definition of CVs is likely one of the most challenging steps in CV-based biased MD 

methods. Indeed, applying an extra force not on the slowest motions can easily lead to false 

results. Many different CVs (e.g., root mean square deviation – RMSD, distances, angles, or 

dihedral angles) are defined in the available MD programs. There is a possibility to define a 

unique CV, as well. However, nowadays the best methods to find the proper CVs are (partially) 

ML-dependent. The basics of ML and useful algorithms in CV definition are described in 

Chapter III.  

 

Figure 18. Enhanced sampling classification based on a decision tree. 

[Figure 1 from [8].] 

In the next sections, the focus will be on biased methods that were considered for the 

investigation of the transport cycle of MRP1 and the mapping of the free energy surface. For 

sake of time, no results will be provided in the present manuscript as this has become the 

follow-up work of the present thesis. 
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II.5.2. Metadynamics 

A well-known CV-based biased MD method is metadynamics, where the valleys of the free 

energy surface are filled by adding Gaussian hill-like potential along the simulation. Assuming 

the convergence at the end of the MD simulations, the effective potential becomes flat and the 

system can freely diffuse. Since information about the Gaussian function deposits is saved 

during the simulation, the reconstruction of the free energy surface is possible by summing all 

opposite gaussian functions. 

Visually, we can picture this approach by a pedestrian (biased simulation), who fell in a well 

(free energy local minimum) during the night. He cannot climb and see the shallowest point, 

as the simulation does not know neither in which direction is the lowest energy pathway. But 

the pedestrian adds some sand (Gaussian hills). He can slowly fill the pool and find a way out 

(metadynamics) [40], [41]. 

 

Figure 19. Illustration of biased techniques. 

a) FES according to a reaction coordinate. b) 3D free energy surface with a random walker showing the Gaussian 

hills filling in metadynamics. 

II.5.3. High temperature 

An alternative to speed up the sampling without biasing a given CV is to apply a higher 

temperature (e.g., 375 K instead of the standard 310 K) during the simulations. This has been 

successfully achieved by Goddeke et al. on a bacterial thermophilic ABC transporter, for 

example [42]. A similar approach is the simulated annealing where the system is consecutively 

heated up to high temperature several times and then smoothly cooled down in a controlled 

way [11]. 

Both methods assume that systems are more dynamic at high temperatures as the 

metastability of the system is reduced. Therefore, the possibility to capture conformational 

changes is more likely by crossing barriers of several 𝑘𝑇 which occur on the millisecond 

timescale [42], [43]. However, force field parameters might not be suitable for high 

temperatures. Moreover, the success of the sampling can also depend on the simulated 

protein. 

II.5.4. Steered molecular dynamics 

In steered molecular dynamics (SMD) simulations, an external force is applied to force a 

molecular motion while analysing the system responses. The force pulls or pushes the system 

along certain degrees of freedom defined by a CV set. Otherwise, a scaling factor () is applied 
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to control some selected potentials during the total potential energy calculation. With this 

method, the system is biased into an already defined direction; thus, a priori knowledge about 

the system is required. The applied force can be small, in which case, this method is a 

localization method since the sampling is restrained in a small region of the configurational 

space. However, usually a relatively big force can be applied to force the transition (e.g., ligand 

unbinding) that may also result in improbable states. Moreover, only one pathway is sampled 

if replicas are not used. Whereas, to get the free energy surface (FES), SMD should be run 

several times starting from different points, increasing the computational cost. However, 

preliminary SMD simulations can be carried out to provide an initial path that can be refined 

using more advanced techniques (see e.g., section II.5.6). The applied strong force leads to 

significant deviations from equilibrium, so SMD is in the out-of-equilibrium category in the 

above-mentioned classification [8], [16], [43]–[45]. 

II.5.5. Accelerated Weight Histogram method 

The Accelerated Weight Histogram (AWH) method is a multiple state reweighting method that 

belongs to the expanded ensemble group in the classification proposed by Jérôm Hénin et 

al. [8]. It is a relatively new and efficient sampling method in which the system is adaptively 

biased along the simulation using the framework of the probability weight histogram. One 

replica, called walker, moves between states along a CV set. Many walkers can be run 

parallelly to sample faster the configurational space. However, the number of walkers scales 

with the sampling speed only to a certain extent [8], [41], [43], [46]. 

The system is described by configurations (𝑥) and a system parameter (𝜆). The latter is 

updated according to a given probability distribution. Compared to other biased methods, the 

target distribution (𝜌) can be chosen freely, and it is directly controlled. A flat distribution often 

works well. The initial convergence is fast and exponential, while later it is slower, and it is in 

the order of the root square of the sample size. The main advantage is that there is only one 

convergence parameter which is uncritical, and the bias is automatically updated. The walkers 

share the same bias [8], [41], [43], [46]. 

Using an initial and arbitrary bias, the real distribution is first estimated then the bias is updated. 

This process is repeated iteratively until convergence taking advantage of bias history as well 

as new samples (Fig. 20). Different types of bias can be applied such as harmonic umbrella 

potential or Boltzmann inversions of a convolution of Gaussians (which is the default, as it is 

smooth). Therefore, the free energy should be updated iteratively (Eq. 20) following an update 

size that is constant at the beginning and following Eq. 21 when the update weight is constant. 

The only tuned parameter is the initial update size set by the initial error and the diffusion. If 

they are not set correctly, it can cause slow convergence (large parameters) or the pull apart 

of the system (small parameters) [8], [41], [43], [46]. 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 67 

License CC BY-NC-ND 4.0 

 

Figure 20. Schematic AWH method [41], [46]. 

∆𝐹𝑛(𝜆) = −𝑙𝑛 (1 +
∆𝑊𝑛(𝜆)

𝑁𝑛𝜋(𝜆)
) 

1

𝑁𝑛

 

𝑊𝑛 − collected samples, 𝑁𝑛 − prior number of samples 

𝜋 − target distribution (flat), 𝜆 − extended parameter e.g., temperature or pressure 

Equation 20. Free energy update. 

𝟏

𝑵𝟎

=
𝟏

𝑵𝟎(𝝐𝟎, 𝑫)
 𝑫𝝐𝟎

𝟐 

𝜖0 − initial error in the free energy, 𝐷 − diffusion along the reaction coordinate 

𝑁0 − initial effective number of samples 

Equation 21. Update size. 

II.5.6. String method with swarms of trajectories 

Even though a transition path in a high dimensional CV space has been already defined from 

biased techniques methods (e.g., steered MD, metadynamics), it is possible that 

conformational transition was not properly sampled to quantitatively map the FES. Also, the 

sampled path can differ in the minimum energy path, meaning that the calculated path is not 

the optimal one. Fortunately, the use of minimum energy path techniques such as the string 

method with swarms of trajectories can be particularly relevant. 

According to the above-mentioned classification, the string method with swarms of trajectories 

belongs to the adaptive seeding methods. More precisely, it is a transition path-finding method 

that belongs to the weighted ensemble methodologies. This method requires an a priori defined 

dominant transition pathway which will be refined and minimized using the average dynamic 

drift of a couple of CVs. The goal is to find the minimum free energy pathway between two 

main states using milestone conformations [8], [16], [47]–[50]. 

To achieve it, the dominant transition pathway provides starting points for a myriad of short 

and unbiased trajectories, called swarms (Fig. 21). The dynamic drift of a couple of CVs is 

estimated on-the-fly which adapts the original pathway in the direction of the minimum free 

energy pathway until convergence. Meanwhile, the convergence into the same basin should 
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be avoided; therefore, a bias is applied on the distances between path images [8], [16], [47]–

[50]. 

 
Figure 21. The principle of string method with swarms of trajectories illustrated on an energy 

surface of bMRP1-(ATP)2 structure in POPC membrane. 

This method is robust, and the calculation time does not scale with the number of CVs. 

However, it is biased by the original path, and thereby, it cannot find multiple pathways. Due 

to the many short simulations in parallel and the number of replicas for each, this method 

requires large computational resources [8], [16], [47]–[50]. 

II.6. Molecular docking 

Historically, molecular docking calculations aim to find the optimal orientation between two 

molecules. Nowadays, even though, molecular docking can be used between a wide range of 

pairs of molecules, it is commonly used to sample the orientation of small molecules in large 

systems such as proteins, DNA or polymers. To do so, a very simplistic FF-based model for 

non-covalent interactions is considered and minimized by, often, randomly moving small 

molecules [7], [9]. 

In the field of pharmaceutical sciences, molecular docking has been extensively used in drug 

development in order to find key non-covalent interactions between candidates and targets of 

biological interest by predicting the proper orientations. Using virtual screening, the number of 

molecules to be tested experimentally can be decreased. The docking procedure can reduce 

the time and the cost of drug development by highlighting some relevant drug candidates [7], 

[9]. 

If no information about the target binding site is available, molecular docking can be used to 

map plausible binding sites on the whole protein. The so-called blind docking; however, must 

be considered carefully since the searching space is too big for an accurate binding prediction. 

If the binding sites are known from previous blind docking calculations or resolved structure(s), 

the search area must be narrowed down. This is called refined docking [7], [9], [51], [52]. 

Docking a molecule has many degrees of freedom – three translational, three rotational and 

the conformations of small molecules (e.g., dihedral angles) can vary according to its chemical 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 69 

License CC BY-NC-ND 4.0 

environment. This is also true e.g., for the target protein residues that can rotate, as well. To 

reduce the complexity and the computational time, most of the protein residues are rigid and 

only a few selected dihedral angles of the binding site residues are allowed to rotate. Using 

this docking approach, the number of molecules that can be docked is limited. Even if the 

docking procedure is automated, it is not possible to dock billions of molecules with high 

accuracy within an acceptable time. Many poses can be generated; however, the hit rate is 

often low, as some of the poses are not relevant based on distances, others based on an 

energy rank. However, this approach must be very carefully considered since its chemical 

accuracy remains unsatisfactory. Such calculations require either strong experimental 

evidences or further computational chemistry techniques [7], [9], [51], [52]. 

Nevertheless, ML-based molecular docking methods have been recently developed. They aim 

to improve the hit discovery rate and speed up the search. They make possible the fast docking 

of many millions-to-billions molecules, and the reduction of the enormous possible molecules 

for a smaller set [51], [52]. 

The basic steps of deep docking [51]: 

• To use a big database such as ZINC15. 

• To calculate a descriptor e.g., molecular fingerprint. 

• To dock a part of the dataset using a conventional docking protocol, described above. 

• To relate docking scores to descriptors and train an ML-based model, preferably a deep 

learning approach. 

• To use the ML model to predict docking poses for the rest of the database. A part of 

the predicted virtual hits is used to augment the training dataset so that it is starting 

from the conventional docking iteratively, until a pre-defined iteration or convergence. 

At the end of these iterative steps, the most relevant hits (that can be still a lot) will be used for 

further investigation, e.g., for conventional docking methods from which finally the best 

candidates can be considered, after strong external validation, for more expensive and 

time-consuming experimental studies [7], [9], [51], [52]. 
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Chapter III. Artificial intelligence and advanced analysis tools 

III.1. The relevance of artificial intelligence in computational chemistry 

Defining important features from biological data is essential to understand biological systems. 

In other words, finding the most relevant characteristics in a big amount of data can help in 

understanding biological processes. As mentioned in Chapter II, ML-based techniques require 

a large amount of available data. The aim is often to find the most relevant features among a 

myriad of possible paths. ML techniques are increasingly present in theoretical chemistry [3]. 

In this chapter, a short description about ML (Section III.1), its importance in computational 

methods (Section III.2), such as solving the aforementioned CV definition problem, and 

ML-based analysis tools used in present thesis can be found (Section III.3). 

III.2. The basics of machine learning 

III.2.1. Artificial intelligence and machine learning 

There is no universal definition of artificial intelligence (AI). According to one of the proposed 

definitions, AI is “the study of how to make computers do things at which, at the moment, 

people are better” [4]. The goal is to create computational agents that act intelligently and can 

perform faster a task which is normally performed by human intelligence. This means that the 

computer can sense, cooperate, learn, and discover. An intelligent agent acts according to the 

circumstances, dynamically adapts to its environments and goals, learns from experience, and 

is aware of its limitations. ML improves the performance of tasks through observation and 

learning. It can identify patterns from data and use them for prediction about unseen data. ML 

acquires knowledge, so the learning procedure, called training of the model, is a key 

component [5], [6]. 

III.2.2. Training types 

Depending on the type and the amount of available data, learning can be supervised, 

semi-supervised, unsupervised, or reinforcement. Supervised learning is the most powerful 

as it learns from input and annotated output pairs. It is an iterative process. There is a prediction 

for a known target and the algorithm tries to minimize the difference between them. Thanks to 

a learned function during the training, it can well distinguish between tiny different states. 

Supervised learning can be divided into classification (discrete output) and regression 

(continuous output). Classification predicts group membership, while regression provides a 

score on a continuous scale. In case of unsupervised learning, the output for the inputs is 

unknown. Therefore, it can be used to identify trends, and patterns or cluster/classify data. 

Unsupervised learning can be divided into clustering and dimensionality reduction. Clustering 

aims to group data according to their similarity. Dimensionality reduction is useful e.g., for CV 

prediction as the goal is to find the most representative features in the dataset. 

Semi-supervised learning can be used if annotated outputs are available only partially. In 

case of reinforcement learning, a system, which can learn from the environment, is built. This 

type of learning is less popular in theoretical chemistry [6]–[10]. 

For all training types, data representation is the most important. Data should be cleaned and 

prepared. The conversion of data into a more suitable representation for an ML algorithm, 

called featurization, is often necessary as it increases the accuracy of training. In many cases, 

it is also important to clean the dataset as it often contains outliers, omissions, and errors. This 

step can include the normalization of data. For supervised learning, the dataset should be 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 74 

License CC BY-NC-ND 4.0 

divided into training, validation, and test sets. The training set is used to teach the model, while 

the validation set is important to iteratively evaluate and improve an ML model. The test set is 

used for the final evaluation. The best ratio for these sets is 70:15:15 (training:validation:test). 

The split of these sets can be achieved by a random split or by using clustered data to result 

in a diverse split. It is important to have equilibrated samples for each possible output in the 

training set to avoid over- or underfitting. Overfitting means that the model fits well for all the 

training points, but it fails to predict any data outside of the training samples as it learns the 

noise in the dataset. The underfitting is its opposite, the model fails for all input due to a poor 

fitting of real data [6]–[10]. 

It is not trivial to find a good fitting; therefore, validation of an ML model is a crucial step. The 

most known validation technique is the k-fold cross-validation. This means that the training and 

validation sets are alternating, such as every data is used for training and once also for 

validation. Different splits happen k-times (Fig. 22). 5-Fold cross-validation is a commonly used 

method as it has a good balance between computational complexity and validation accuracy. 

Other but similar methods to create train and validation sets exist, as well [6], [11]. 

 
Figure 22. 5-Fold cross-validation [6]. 

During this cross-validation and at the end of the training as well, the performance of the model 

should be assessed by a metric. The calculation of this metric depends e.g., on the training 

type, but many of the available metrics are based on ratios of the predicted and actual values 

(Table 10). True Negative (TN) means that the predicted and the actual output, both are 

negative (0), while they are both positive (1) in case of True Positive (TP). In these events, the 

prediction is good. In case of False Positive (FP) and False Negative (FN), the prediction was 

incorrect positive instead of negative and negative contrary to positive, respectively. A widely 

used metric is the accuracy (Eq. 22a). However, the calculation of accuracy does not consider 

the imbalance of a dataset. This can be treated by the balanced accuracy (Eq. 22b) [6], [11]. 
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Table 10. Connections between predicted and actual values. 

  Predicted 
A

c
tu

a
l 

 Negative Positive 

Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 

 

𝐚) 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝐛) 𝐴𝑐𝑐𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2

 

Equation 22. Calculation of accuracy. 

a) Basic definition and b) considering the imbalance of a dataset. 

Other metrics, such as precision, recall and F-score, are commonly calculated, as well 

(Eq. 23). Precision defines how accurate the model is on values predicted as positive. It is 

useful in cases where the aim is to avoid false positive values, e.g., in spam detection for which 

it is unfavourable to mark important e-mails as spam. On the other hand, recall calculates how 

many actual positive values were predicted as positive. It is useful if false negative events must 

be prevented. For example, predicting a sick patient as healthy is disadvantageous. The 

F-score is the function of these two metrics (precision and recall); thus, it helps to keep a 

balance between precision and recall. To assess the performance of the model, significance 

testing of these metrics is important to see if the model is better than random chance[6], [11]. 

𝐚) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐛) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐜) 𝐹 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 23. Some commonly used metrics. 

a) Precision, b) recall, c) F-score. 

In all learning types (supervised, unsupervised, semi-supervised, reinforcement), many 

different models exist for training. It is not always obvious which model fits better to a given 

problem. In the next sections, different training models are described. 

III.2.3. Unsupervised training models 

The algorithms presented in this section are dimensionality reduction and/or 

clustering/classifying techniques. The goal of dimensionality reduction is to result in a new, 

smaller (reduced) dataset that has fewer dimensions than the original one. At the same time, 

this new dataset carries the information contained in the original data. However, the new 

dataset will never totally contain the same information, as unimportant features are not taken 
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into account. But many models are available that provide a good approximation and keep the 

high variance of a dataset. The goal of clustering is to group the data points according to their 

similarity using a measure (similarity criterion). To run a clustering algorithm, feature (criteria) 

and similarity metric should be selected. Finally, the model should be validated. Often, the 

expected group number should be pre-defined. The success of clustering depends on the 

feature selection and the expected group number. A clustering algorithm can be partitional or 

hierarchical. In the latter, it is possible to divide a group into sub-groups. It is possible to assign 

a data point to a class (hard clustering) or calculate the probability of belonging to a group (soft 

clustering). Clustering is commonly used in molecular dynamics simulations when a criterion 

has a multipeak density distribution. It can be used to find some patterns in the dataset, but 

the separation between groups is sometimes unclear. Clustering performs dimensionality 

reduction, as well [8]. In this section, algorithms/methods to run dimensionality reduction or 

clustering will be described. 

Dimensionality reduction by Principal Component Analysis 

Principal Component Analysis (PCA) performs a linear mapping of input features to a 

low-dimensional representation, i.e., linearly uncorrelated variables called principal 

components (PCs). These PCs are orthogonal to each other. PCA is the most often used 

dimensionality reduction algorithm. Its performance is highly dependent on the input 

coordinates [3], [6], [8]. 

A data matrix (𝑀) contains the coordinates for all frames; thus, its dimension is 𝑀 × 𝑁, where 

𝑀 is the number of frames, and 𝑁 is three times (corresponding to (x, y, z) coordinates) the 

number of atoms. To guarantee the translational invariance, a zero-mean data matrix (𝑀′) is 

created by subtracting the mean of the original matrix. In the next step, the covariance matrix 

(𝐶) of the data is estimated (Eq. 24a). Diagonalization of this covariance matrix (Eq. 24b) 

provides the eigenvectors (𝒗𝛼) and eigenvalues (𝜆𝛼). Eigenvalue 𝜆𝛼 represents the variance 

of the data along the direction defined by eigenvector 𝒗𝛼 [3], [6], [8]. 

𝐚) 𝐶 = ∑
(𝑥𝑖 − 𝑥̃)(𝑦𝑖 − 𝑦̃)

𝑛 − 1

𝑛

𝑖=1

 

𝐛) 𝐶𝒗𝛼 = 𝜆𝛼𝒗𝛼 , 𝜆1 > 𝜆2, … > 𝜆𝑛 

Equation 24. Covariance matrix (a) and its diagonalization (b). 

The eigenvectors of the most relevant eigenvalues are the principal components on which the 

projection happens. The first principal component represents the most varying direction, the 

second principal component corresponds to the second most important motion, etc. As the last 

principal components only represent a small variance in the dataset, they can be omitted, i.e., 

dimensionality reduction is achieved. It is important to know which PCs are the most relevant. 

If there is a gap between their variance, that can be an obvious choice. Although, usually, there 

is no observable gap. In this case, the sum of variances should reach a given fraction which is 

often set to 0.95-0.98. The dimensionally reduced output (linear combinations of the original 

dimensions) is produced by a matrix (𝑃) containing the eigenvectors for the highest 

eigenvalues (Eq. 25) [3], [6], [8]. 
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𝑴′𝑷 = 𝑻 

𝑃 = [[𝑣1] [𝑣2] ⋯] 

Equation 25. Dimensionally reduction step in PCA. 

Using PCA, the dimension of a dataset can be greatly reduced. Though, in some cases, the 

interpretation of the results can be difficult as it is not biologically plausible. Despite some 

difficulties, PCA is widely and successfully used in theoretical chemistry and biology [3], [6], 

[8]. 

Clustering by k-means 

K-means is one of the most known clustering algorithms. “K” starting cluster centres should be 

chosen, then each data point is assigned to the nearest cluster based on a metric (e.g., 

Euclidean6 or Manhattan7 distances). The centres are redefined based on the centroid of each 

cluster and the data points are again assigned to the clusters. This is iteratively done via the 

k-means clustering algorithm, until a threshold or a given number of iterations is reached. In 

other words, the algorithm learns which data point belongs to which cluster. The definition of 

k-means does not guarantee that the global minimum is reached. Another drawback of 

k-means is that it always results in “k” clusters, even if it does not have a biological sense. 

Moreover, the clusters cannot be too much different in shape. A Gaussian Mixture Model based 

(see section III.3.1) or density-based clustering gives better results for noisy datasets, for 

example [6], [8]. 

Density-based clustering 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) relays on local density. 

Distances within a group are smaller than between groups. However, a threshold to eliminate 

noise should be defined. The choice of a threshold is not always trivial. A. Rodriguez and A. 

Laio have proposed another but similar algorithm to find density peaks. For each point, a local 

density and its distance from higher density points are calculated. Points with density maxima 

will be selected as cluster centres and all the other points will be assigned to the nearest 

cluster. Points with high distance but low density are called outliers which are single points in 

a cluster. This algorithm does not require any parameter definition; thus, it does not depend 

on a good choice of parameters [6], [12]. 

III.2.4.  Supervised training models 

The algorithms presented in this section are classification or regression techniques. The goal 

of classification is to predict group membership, i.e., label the output data using a trained 

decision function (classifier). A classification algorithm can be linear or high dimensional, but 

both result in a discrete output. The goal of regression is to analyse the relationship between 

two or more variables by providing a score on a continuous scale. Regression algorithms are 

good to describe and test relationships between an output and some input variables. The 

algorithm learns a regression function that predicts an output from input predictors [6], [13]–

 
6 Euclidean distance of 𝐴(𝑥𝑎 , 𝑦𝑎) and 𝐵(𝑥𝑏 , 𝑦𝑏) is √(𝑥𝑏 − 𝑥𝑎)2 + (𝑦𝑏 − 𝑦𝑎)2 
7 Manhattan distance of 𝐴(𝑥𝑎, 𝑦𝑎) and 𝐵(𝑥𝑏 , 𝑦𝑏) is |𝑥𝑏 − 𝑥𝑎| + |𝑦𝑏 − 𝑦𝑎| 
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[15]. In this section, algorithms/methods to run dimensionality reduction or clustering will be 

described. 

Classification by Support Vector Machine 

A Support Vector Machine (SVM) is a linear classifier that can distinguish between two classes. 

This algorithm is searching for a hyperplane (Eq. 26) that maximizes the distance (margin) 

between the support vectors of the class labels (Fig 23). It requires a set of features as input. 

Feature selection can be done a priori (filter method), or it can be part of the classifier 

(embedded and wrapped methods). In the first case, a dimensionality reduction algorithm is 

run a priori, while in the second case, the SVM can be used as a dimensionality reduction 

algorithm [6], [13]. 

𝒚 = 𝟏[𝒘𝑻𝑿 + 𝒃 > 𝟎] 
𝑦 − output label, 𝑋 − high dimensional input vector, 

1 − indicator function, 𝑤 − learnt vector of coefficients 

𝑏 − scalar bias 

Equation 26. The equation of a hyperplane for two features. 

 

Figure 23. 2-Dimensional illustration of SVM [6]. 

The hyperplane is often not curved for three or more features either. However, for more difficult 

classification problems, a curved hyperplane is necessary. In this case, a kernel method is 

required to transform the support vectors to a higher-dimensional input space [6], [13]. 

Logistic regression 

Logistic regression is an advanced version of linear regression, and it is similar to multiple 

linear regression but with a binomial response. Logistic regression gives the probability of an 

outcome based on the inputs by the natural logarithm of an odds ratio (Eq. 27). It maximizes 

the probability of being in one class or another [13]–[15]. 

𝒍𝒏 (
𝝅

𝟏 − 𝝅
) = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + ⋯ + 𝜷𝒎𝒙𝒎 

𝜋 − probability (output is the outcome of interest | X1=x1,X2=x2,…), 

𝛽0 − reference level, 𝛽𝑖𝑖 = 1, … , 𝑚 − regression coefficient, 𝑥 − input 

Equation 27. Logistic regression. 
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𝒚 = 𝑪 + 𝜷𝟏𝒙𝟏 + ⋯ + 𝜷𝒏𝒙𝒏 + 𝜺 

𝐶 − intercept, constant, 𝛽 − coefficient, 𝜀 − noise 

Equation 28. Multiple linear regression with “n” predictors. 

III.2.5. Neural networks 

Depending on the model, neural network-based algorithms can learn from labelled or 

unlabelled data, as well. In other words, both supervised and unsupervised learning is possible 

using neural networks (NNs). NNs are inspired by the neurons of the brain and their 

connections. Neurons are long, asymmetric cells. They have many dendrites to collect the 

input information, but only one axon to forward the answer (Fig. 24a). The schematic neuron 

in neural networks also has many inputs but only one output (Fig. 24b). The inputs (𝑥1, … , 𝑥𝑛) 

have a weight (𝑤1, … , 𝑤𝑛) that indicates the strength and direction between two neurons. The 

output (𝑦) is the weighted sum of the inputs passing through a nonlinear differentiable function 

(e.g., sigmoid), called activation function (Eq. 29) [6], [16], [17]. 

𝒚 = 𝒇 (∑ 𝒘𝒊𝒙𝒊

𝒏

𝒊=𝟏

+ 𝒃𝒊𝒂𝒔) 

Equation 29. The output of a neural network. 

As for the neurons in the brain, a signal is given above a threshold. Neurons are connected; 

thus, the output of one neuron is the input of another one. So that, they build layers. Neurons 

in the brain are highly connected. Traditionally, NNs have fully connected layers – input, 

hidden, and output layers (Fig. 24c). In other words, each neuron is connected to every neuron 

in the previous layer. This can result in thousands of parameters to set; thus, the neural 

networks of the current techniques are often not fully connected [6], [16], [17]. 

 

Figure 24. Basics of neural networks. 

a) A neuron, b) a schematic neuron, and c) a neural network called multilayer perceptron. 
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III.2.5.1. Multilayer perceptrons 

Multilayer perceptrons (MLPs) are fully connected neural networks with at least one hidden 

layer (Fig. 24 c). In other words, there is at least one layer in the neural network between the 

input and the output layers. Information from the inputs is forwarded (propagated) through the 

hidden layers until the output layer is reached. An error is estimated by applying a so-called 

loss (cost) function using the calculated output and the expected output. This results in a real 

number that represents the error associated with the output. This error is back propagated by 

applying the chain rule8 during the derivation of the activation function, and the initial weights 

are recalculated in each iteration of the algorithm. Thus, MLP belongs to the supervised 

methods. 

The construction of an MLP makes possible to separate non-linearly separable outputs. Most 

of the biological features are non-linearly separable, as well. A typical example of a non-linearly 

separable problem is the XOR logistic function where the output is not separable by one linear 

line (Fig. 25) [3], [19]. 

 
Figure 25. Solving the XOR problem by MLP. 

a) Truth table, b) decision boundaries, and c) multilayer perceptron for XOR function. 

III.2.5.2. Autoencoders 

Autoencoders (AEs) are unsupervised neural network-based ML models. They map the input 

to a lower dimensional data representation. AEs were developed as the non-linear extension 

of the linear PCA. An AE is built by two neural networks: an encoder and a decoder (Fig. 26). 

The encoder maps the input data (𝑥) to a latent encoding space that has a smaller dimension 

than the input (called undercomplete autoencoder). In some cases, e.g., for biomolecular 

simulation trajectories, the size of the input should be reduced before passing to the encoder. 

The decoder creates a reconstruction of the input from this latent space. This is the output (𝑥′) 

of an AE. A specific loss function gives a penalty if the output differs from the input. This 

function is called reconstruction loss and it is often the mean squared error loss function9. 

During the training, a function, that can reconstruct the input data after a dimensionality 

 
8 Chain rule:  (𝑓𝜊𝑔)′(𝑥) = 𝑓′(𝑔(𝑥))𝑔′(𝑥) [18] 
9 𝐿𝑜𝑠𝑠 = ‖𝑥 − 𝑥′‖2 
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reduction, is learnt. Thus, after the learning, the resulting code (𝒉) can be used e.g., for 

dimensionality reduction as PCA [3], [19]. 

 
Figure 26. A schematic autoencoder. 

III.3. ML in theoretical chemistry 

ML-based techniques become essential in computational chemistry. They have numerous 

advances that were out of reach because of the computational complexity. As mentioned in 

the previous Chapter, ML is more and more present in FF definition, as well. In this section, 

the focus is on those techniques that can be used to solve the CV definition problem. 

III.3.1. Techniques to solve the CV definition problem 

Many ML-based algorithms/methods were proposed to help to solve the definition of collective 

variables [3], [13], [20]–[22]. Most of them are based on one of the previously described 

algorithms (section III.2). In the next sections, two approaches are presented. As for all 

ML-based approaches, a relatively big amount of input data is required for the learning 

procedure of ML-based CV definition algorithms, as well. This means that an a priori guess or 

unbiased simulations in the states of the biological process is necessary. The idea is often to 

train the model on many possible driving forces to decipher the most important ones. This is 

dimensionality reduction of features that can be used for both analysis and CV definition. It is 

still not totally obvious which method suits best for which kind of system, but Fleetwood et al. 

benchmarked many algorithms that are good to demystify complex simulations. Moreover, a 

checklist for interpreting molecular simulations with ML is proposed (Fig. 27) [3], [8]. 

III.3.1.1. Demystifying 

Demystifying, published by Fleetwood and co-workers in 2020, is a branch of advanced 

dimensionality reduction (analysis) techniques that can be used for CV definition, as well. From 

the many tested algorithms (principal component analysis – PCA, random forests – RFs, 

autoencoders – AEs, restricted Boltzmann machines – RBMs, and multilayer perceptrons – 

MLPs), only the supervised algorithms work well for more complicated inputs (e.g., Cartesian 

coordinates) than optimal inverse interatomic distances. This statement is based on the results 

of a toy model and three biological processes on which the evaluation of the tested algorithms 

was performed. The evaluation was carried out using a metric based on the mean squared 

error between the estimated and the true feature importance profiles. The false positive values 

produced by a given method were also measured. All methods were tested using both 

Cartesian coordinates and internal coordinates, and on the full and a reduced feature set, as 

well. In general, the choice of the input features has a larger effect on the performance of the 

tested algorithms than the choice of the parameters of a given algorithm [3]. 
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Figure 27. Flowchart of the choice of ML technique for interpreting molecular simulations. 

[Based on Box 1 of [3].] 
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III.3.1.2. Automated design of CVs 

Sultan et al. proposed an ML-based automated design to solve the problem of selecting CVs 

for enhanced sampling simulations. This method suits well for those kinds of systems where 

the start and end states of the biological system are known. Therefore, the first step is to run 

short (ns up to s long) unbiased simulations in both states. On the resulted trajectories, 

features (e.g., dihedrals, distances) are calculated and used to train a classifier to distinguish 

between the two states. The classifier can be e.g., a support vector machine (SVM), where the 

signed closest distance to its hyperplane is a possible CV. The differentiable probability output 

of logistic regression is also a good CV candidate. Finally, Sultan et al. propose to use the 

function learned by a neural network-based method as a CV [13]. These algorithms are 

promising, but a priori knowledge about the system is necessary for the right feature selection. 

III.4. Advanced analysis techniques 

Even though not all analysis techniques use an ML approach, unsupervised ML techniques 

(section III.2.3) are important to analyse molecular dynamics simulations. Many state-of-the-art 

analysis techniques are typical cases of unsupervised algorithms as their goal is to find 

interesting information from a huge amount of data, from the features calculated on the 

trajectory. So, the output is unknown [8]. 

III.4.1. Inflection core state clustering 

Inflection core state (InfleCS) is a free energy clustering method along some pre-defined 

reaction coordinates (CVs). The goal is to find the metastable states in free energy minima 

based on the data, as a priori knowledge about the system is often not available. Clustering 

based on geometric criteria cannot find the boundaries well. Density-based clustering depends 

too much on the basis function. Gaussian mixture models (GMMs) do not always find the 

correct number of clusters and core boundaries. InfleCS provides metastable core states 

based on the density second-order derivative values from a GMM density estimation (Fig. 28). 

Each point on this free energy curve is either transition or metastable state which is based on 

the value of the second derivative. GMM is the sum of Gaussians with amplitude (𝒂), mean (𝝁) 

– centre – and covariance (𝚺) – width – values (Eq. 30). Gaussian parameters are optimized 

iteratively using expectation-maximization that is a maximum likelihood estimation suited for 

incomplete dataset. To find the final model, multiple GMMs are fit and evaluated in a range of 

the number of Gaussian components. The one with the smallest Bayesian information criterion 

is selected as the final model. InfleCS does not use a lot of assumptions about cluster shapes 

or dataset structure which is a big advantage [23], [24]. 

𝝆𝒂,𝝁,𝚺(𝒙) = ∑ 𝒂𝒊𝓝(𝒙|𝝁𝒊, 𝚺𝒊)

𝑵𝒃𝒂𝒔𝒊𝒔

𝒊=𝟏

 

𝑎 = (𝑎𝑖)𝑖=1
𝑁𝑏𝑎𝑠𝑖𝑠,  𝜇 = (𝜇𝑖)𝑖=1

𝑁𝑏𝑎𝑠𝑖𝑠 

Σ = (Σ𝑖)𝑖=1
𝑁𝑏𝑎𝑠𝑖𝑠, 𝒩(𝑥|𝜇𝑖 , Σ𝑖) =

1

√(2𝜋)𝑁𝑑𝑖𝑚𝑠|Σ𝑖|

𝑒𝑓̂𝑖 

𝑓𝑖 = −
(𝑥 − 𝜇𝑖)𝑇 ∑ (𝑥 − 𝜇𝑖)−1

𝑖

2
 

Equation 30. Gaussian mixture model [23]. 
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Figure 28. 1D example of InfleCS clustering. 

[Based on Figure 1. of [23].] 

III.4.2. Allosteric pathway analysis (Allopath) 

Membrane proteins are modulated by many stimuli coming from the surrounding environment 

that often has an impact on distinct sites from the functional site. This is called allosteric 

modulation. Moreover, lipids and small molecule-binding (together called cofactors) might 

contribute to this allosteric communication. Allostery is an important factor in membrane protein 

functions. Residue interaction networks can be built for isolated proteins. However, it does not 

take into account the dynamics of proteins and the constant movement of the surrounding 

cofactors. Cofactors should be translated into a static network (nodes and edges) by 

maintaining the network while perpetually reassigning the cofactors to the nodes in each frame 

of the MD trajectory. The dynamics of the protein is included in a contact map which is the 

average of continuous contact maps over frames. A mutual information matrix (𝑀) describes 

the correlation of node movement around an equilibrium position (Eq. 31). Gaussian mixture 

model is used to get the over frames mutual information [25], [26]. 

𝑴𝒊𝒋 = 𝑯𝒊 + 𝑯𝒋 − 𝑯𝒊𝒋 

𝑖, 𝑗 − nodes, 𝐻𝑖 , 𝐻𝑗 , 𝐻𝑖𝑗 − entropies 

Equation 31. Mutual information calculation. 

A network (adjacency matrix – 𝐴) is built by the elementwise product of the contact map (𝐶) 

and the mutual information matrix (𝑀)10. Current/information flow betweenness and closeness 

are used to find the most important residues in the allosteric communication between source 

and sink nodes. These measures come from electrical networks. The information flow 

betweenness measures how much a node is involved in the connection of two other nodes 

(source and sink) in the allosteric path. The information flow closeness shows the distance of 

a node to other nodes (source and sink). To calculate these values for an average of paths, 

an inverse reduced Laplacian is used. The inverse reduced Laplacian is a matrix that has zeros 

in the rows and columns for the sink nodes in the inverse of a Laplacian (diagonal matrix minus 

adjacency matrix) not including the rows and columns of the sink nodes11 [25], [26]. 

 
10 Adjacency matrix: 𝐴𝑖𝑗 = 𝐶𝑖𝑗𝑀𝑖𝑗 

11 Inverse reduced Laplacian: 𝐿̃−1 = ((𝐷 − 𝐴) − 𝑠𝑖𝑛𝑘_𝑛𝑜𝑑𝑒𝑠)−1 + 𝑧𝑒𝑟𝑜_𝑓𝑜𝑟_𝑠𝑖𝑛𝑘_𝑛𝑜𝑑𝑒𝑠 
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This study is focusing on ABCC1/MRP1. We investigated the ABC conformational space such 

as where our simulations take place compared to several resolved ABC structures. We have 

also studied the dynamics of MRP1 protein in different membranes. We have seen the 

importance of the degenerate NBS in MRP1. 

To note, this work is under major revision and is expected to be resubmitted soon. 

Abstract 

Multidrug resistance-associated proteins are ABC C-family exporters. They are crucial in 

pharmacology as they transport various substrates across membranes. However, the role of 

the degenerate nucleotide-binding site (NBS) remains unclear likewise the interplay with the 

surrounding lipid environment. Here, we propose a dynamic and structural overview of MRP1 

from ca. 110 s molecular dynamics simulations. ATP binding to NBS1 is likely maintained 

along several transport cycles. Asymmetric NBD behaviour is ensured by lower signal 

transduction from NBD1 to the rest of the protein owing to the absence of ball-and-socket 

conformation between NBD1 and coupling helices. Even though surrounding lipids play an 

active role in the allosteric communication between the substrate-binding pocket and NBDs, 

our results suggest that lipid composition has a limited impact, mostly by affecting transport 

kinetics. We believe that our work can be extended to other degenerate NBS ABC proteins 

and provide hints for deciphering mechanistic differences among ABC transporters. 

IV.1.1. Introduction 

ATP-binding cassette (ABC) transporters belong to one of the largest trans-kingdom protein 

superfamilies. The structural resolution of several ABC transporters has led to different 

conformations (namely, inward-facing – IF, outward-facing – OF, and occluded), which 

illustrate the alternating access as the most likely model to rationalize substrate translocation 

along the transport cycle1–3. ABC transporter structures are made of at least two 

transmembrane domains (TMDs) consisting of six transmembrane helices (TMHs). TMDs are 

mailto:florent.di-meo@inserm.fr
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bound to two nucleotide-binding domains (NBDs) which are evolutionarily conserved over 

species. ABC transport cycle requires the binding of two ATP molecules and the energy 

released from the hydrolysis of at least one of them3–7. ATP molecules bind at the interface of 

the NBD dimer which adopts a non-covalent pseudo-symmetric head-to-tail arrangement; 

enabling the formation of two nucleotide-binding sites (NBSs). Both NBSs are formed with the 

conserved Walker A- and B-motifs, the A-, Q- and H-loops of one NBD and the ABC signature 

sequence and the X-loop of the other NBD4,5,7,8. 

Except for a few members (CFRT, ABCA4, ABCD4, SUR1/2)2,3,9,10, eukaryotic ABC 

transporters are exporters, i.e., they extrude substrates to the extracellular compartment. 

Eukaryotic ABC transporters used to be classified into type I (ABCB, ABCC, ABCD) and type 

II (ABCA, ABCG) families. Recently, the structural and functional diversities of ABC 

transporters have led to a new folding-based classification2,3 in which the previous type I and 

type II exporters adopt the type IV and V folding, respectively.  

Multidrug resistance-associated proteins (MRPs) are NBS degenerate ABC transporters3–5,7,8. 

In the non-canonical NBS1, the Walker-B catalytic glutamate, the A-loop tyrosine, and the first 

glycine residue of the ABC-signature motif are mutated into aspartate, tryptophan, and valine 

residues, respectively. These mutations were associated with significantly lower ATPase 

activity and higher ATP-binding affinity for the degenerate NBS14,7. These observations have 

recently led to the development of a new asymmetric model for NBD function which may affect 

the dynamics and function of the whole transporter3,7. The function and kinetics of bovine 

ABCC1/MRP1 (bMRP1) were extensively and thoroughly investigated by combining structural 

information from cryo-EM experiments and single-molecule Förster Resonance Energy 

Transfer (smFRET)5. Despite the robust insights provided by the resolution of bMRP1 

structure, unexplained differences between ABCB and ABCC exporters were observed, likely 

due to the non-native detergent-based environment used for bMRP1 experiments7,11. 

ABC transporters play a crucial role in pharmacology by transporting a tremendous variety of 

substrates, including xenobiotics and endogenous compounds, across cell membranes. For 

instance, their pharmacological role has been stressed by the International Consortium 

Transporter (ITC) which draws out a list of transporters of “emerging clinical importance” for 

which interactions with new xenobiotics have to be investigated in drug development12. Over 

the past decades, ABCC transporters, in which MRPs are included, have gained a growing 

interest owing to their role in pharmacology including patient inter-individual responses to 

treatments. For instance, investigations on ABCC2/MRP2 and ABCC4/MRP4 have been 

recommended by the ITC to retrospectively provide a mechanistic explanation of clinical 

observations regarding drug dispositions13. Given the role of MRPs in local pharmacokinetics 

and pharmacodynamics relationships (PK/PD) and therefore in local drug bioavailability14, 

there is still a need to decipher in situ MRP transport cycle to provide a comprehensive 

overview of xenobiotic membrane crossing events. This is particularly relevant for MRPs 

located in proximal tubular kidney cells and liver hepatocytes since kidneys and liver are 

involved in the elimination of most worldwide used xenobiotics15. 

Unfortunately, there is no experimentally resolved structure for human MRPs yet. An 

MD-refined protein threading MRP4 structure16 has been proposed for which the computational 

resolution precludes functional investigations or thorough structural dynamics. However, 

several conformations of bMRP1 transporter have been resolved by cryogenic electron 

microscopy (cryo-EM)4,5,8. Given the high sequence similarity to the human ortholog hMRP1 

(91%) as well as within other human MRPs (ca. 40-50%), the use of bMRP1 structures appears 
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relevant for investigating MRP transporter dynamics and functions3. MRP1 exporter adopts the 

type IV folding, however, it has an extra N-terminal TMD made of five TMHs. The so-called 

TMD0 was shown not to play a role either in ABC ATPase activity or substrate transport3,4,8. 

Therefore, a TMD0-less MRP1 model can be used as a prototype for ABCC exporters even for 

those which do not possess this domain (e.g., MRP4). TMD0 is connected to conventional ABC 

TMDs by a linker (L0) which was shown to be mandatory for both trafficking and function8,17. 

The L0 sequence is conserved in all members of the ABCC subfamily even in absence of 

TMD0
8. It is important to note that since the present model does not include TMD0, the standard 

TMH labelling for ABC type IV will be used in the present manuscript, i.e., TMH1 to TMH12. 

The present work aims to map the ABC conformational space1,18 of MRP1 considering different 

bound states (namely, apo, ATP and/or leukotriene C4 – LTX – bound states8 for IF 

conformation and ATP bound state4 for OF conformation) highlighting the importance of 

asymmetry in ABC domains. Furthermore, given the importance of surrounding lipids in the 

ABCC transport cycle11,19, the interplay between the lipid bilayer membrane and protein 

dynamics was also investigated. This was achieved by using different computational 

symmetric membrane models made of (i) pure POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine), (ii) pure POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 

(iii) POPC:POPE (3:1), (iv) POPC:Chol (3:1) and (v) POPC:POPE:Chol (2:1:1); the last being 

the closest to mimic in situ MRP1 dynamics. All-atom unbiased microsecond-scaled molecular 

dynamics (MD) simulations were conducted to address the objectives. 

IV.1.2. Results 

Projection of MRP1 onto the ABC conformational space 

To examine the conformational space sampled during the simulations in POPC:POPE:Chol 

(2:1:1) accounting for bound states of bMRP1, different structural descriptors1,11,18 were 

considered. Namely, intracellular (IC) and extracellular (EC) angles were monitored for TMDs 

while NBD distance and NBD rocking-twist angle were used for NBDs (Fig. 29 and 

Supplementary Fig. 1-6). These structural descriptors were also measured on a large data set 

of experimentally resolved ABC proteins including bMRP1 cryo-EM structures4,5,8 in order to 

reconstruct the ABC conformational space1,18 (Fig. 29d and Supplementary Table 1). The 

known ABC conformations were efficiently featured, i.e., IF open and occluded, OF as well as 

the recently resolved asymmetric unlock-returned (UR) turnover1 conformations. bMRP1 MD 

simulations revealed the spontaneous closing of the intracellular cavity for all IF systems 

regardless of the bound state and the membrane composition (Fig. 29a-b, Supplementary 

Fig. 1-6 and Supplementary Tables 2-5). Average NBD distances and IC angles were 

significantly smaller than those calculated for bMRP1 cryo-EM structures. For instance, IF 

conformations converged toward similar IC angle and NBD distance values ranging from 26.0 

± 0.5 to 35.4 ± 1.8 and from 30.3 ± 1.9 to 55.0 ± 2.8 Å, respectively (Fig. 29b, Supplementary 

Fig. 1, 3-4, and Supplementary Tables 3-4). Interestingly, the spontaneous dimerization of 

NBDs was also observed in absence of ATP molecules. The difference between simulations 

and cryo-EM structure might be explained by the use of non-native detergent in 

experiments7,11. 
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Figure 29. Overview of bMRP1 milestone structures along the transport cycle in 

POPC:POPE:Chol (2:1:1). 

Inward-facing conformations: apo-state (IF apo bMRP1), substrate-bound (bMRP1-LTX), ATP-bound 

(bMRP1-(ATP)2), ATP/substrate-bound (bMRP1-LTX-(ATP)2); Outward-facing conformation: ATP-bound (OF 

bMRP1-(ATP)2). a) Representative snapshots of the different bMRP1 systems investigated here at the beginning 

(left) and the end of MD simulations. b) Time-evolution of the IC and EC angles respectively for IF and OF structures. 

IC and EC angles were calculated according to the proposed ABC structural parameters defined in Methods 
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section1,11,18. c) Time-evolution of key NBS distances defined by inter-NBD distances between Walker A Glycine 

and ABC signature serine residues8. d) Projection of bMRP1 structural parameters, each replica was averaged over 

the last 800 ns, onto the ABC conformational space obtained from multiple resolved ABC structures. PDB IDs of 

the resolved bMRP1 cryo-EM structures are explicitly mentioned. The first and second TMDs are respectively 

depicted in orange and blue, and NBD1 and NBD2 are respectively coloured yellow and cyan.  

Indeed, resolved cryo-EM structures of bMRP1 exhibited larger IC angles and NBD distances 

than other ABC structures resolved in native environments (Fig. 29d). On the extracellular side 

of the lipid bilayer membrane, MD simulations of OF bMRP1-(ATP)2 displayed minor openings 

of the EC gate as compared to bMRP1 OF cryo-EM structures, suggesting the existence of a 

slightly more open state. However, calculated EC angles remained small (lower than 20° in 

POPC:POPE:Chol (2:1:1), see Fig. 29a and Supplementary Fig. 1-2 and Supplementary 

Table 2), which precludes the substrate re-entry1. 

Even though trajectories performed with the pre-translocation state (i.e., bMRP1-LTX-(ATP)2) 

tend to populate the conformational subspace of OF conformation (Fig. 29d), substrate 

translocation was not observed. NBD twist values calculated for bMRP1-LTX-(ATP)2 state are 

similar to OF ABC conformations. However, NBD distances remain larger than for resolved 

substrate-free OF ABC structures and OF bMRP1-(ATP)2 simulations. Distances between C 

atoms of the ABC signature motif serine and a Walker A glycine were monitored 

(i.e., Gly681-Ser1430 and Ser769-Gly1329, respectively denoted as 𝑑𝐺𝑆
𝑁𝐵𝑆1 and 𝑑𝐺𝑆

𝑁𝐵𝑆2, 

Fig. 29c, Supplementary Fig. 7-8). Structural differences between the pre- and the 

post-translocation states (i.e., bMRP1-LTX-(ATP)2 and OF bMRP1-(ATP)2, respectively) 

suggest that a conformational transition of NBD dimer is required prior to the substrate 

translocation event. Such transition from the so-called “non-competent” to “competent” NBD 

dimer conformations is likely to trigger TMD conformational transitions suggesting that it might 

be the limiting step for IF-to-OF transition.  

Asymmetric dynamics of bMRP1 and modulation of its conformational landscape 

Overall flexibilities were assessed by calculating root-mean-square fluctuations (RMSF, 

Supplementary Fig. 9). Per-residue RMSF confirms the asymmetric behaviour of NBDs7, 

NBD2 being more flexible than NBD1. For each system, backbone-based principal component 

analyses (PCA) were conducted. Only the three first largest principal components were 

considered, revealing 85.6 % to 95.9 % of the overall structural variabilities depending on the 

system (Supplementary Fig. 10). For all IF simulations, the three first largest variabilities were 

systematically assigned to asymmetric NBD motions for which NBD2 contributed the most, 

from 27.0 to 59.6% of the motion (Supplementary Fig. 11). The first principal components were 

mostly assigned to NBD twist and rocking motions (Supplementary Movies 1-5). This is in 

agreement with the experimentally suggested higher flexibility of NBDs from smFRET 

experiments along the kinetic cycle of MRP15. Regarding OF simulations, the two first principal 

components were associated with concerted NBD twist motion and opening of the extracellular 

side mediated mostly by TMH4, TMH5, TMH7 and TMH8. These TMHs have been suggested 

to behave as a single bundle in ABCB1/P-gp18. Furthermore, to a lesser extent than for IF 

conformations, NBD2 remained more involved in this shared motion than NBD1. 

The asymmetric behaviour was also pictured by the supramolecular arrangement between 

NBD1 and NBD2 for which two main subpopulations were observed for apo, bMRP1-(ATP)2 

and bMRP1-LTX states (Fig. 30a). Interestingly, interactions within NBS1 across NBDs were 

maintained along our MD simulations, even in absence of ATP molecules. In contrast, NBS2 
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is more flexible leading to either open or closed NBD dimer arrangements. Surprisingly, both 

arrangements were also observed to a lesser extent in bMRP1-(ATP)2 while ATP molecules 

were expected to maintain interactions at the NBD dimer interface. However, in presence of 

both substrate and ATP molecules, only the closed population was observed picturing the 

information transduction from the TMD substrate-binding pocket to NBDs in order to likely 

decrease the energy barrier for IF-to-OF transition in type IV folding ABC transporters20,21.  

In order to explain the asymmetric behaviour of NBDs, particular attention was paid to coupling 

helices (CH) which ensure the signal transduction from TMDs to NBDs20,21. Natively, ABC 

transporters exhibit four coupling helices linking intracellular domains of TMH2/TMH3, 

TMH4/TMH5, TMH8/TMH9, and TMH10/TMH11. The so-called CH2-3 and CH10-11 are in 

contact with NBD1 while CH4-5 and CH8-9 interact with NBD2 (Fig. 30a). Contacts between CHs 

and NBDs are not modified upon binding of ATP molecules or substrate (Supplementary Fig. 

12). Interestingly, for a given NBD, one can consider a so-called “weak CH” (namely, CH2-3 

and CH8-9 for NBD1 and NBD2, respectively) for which only a few contacts were observed. On 

the other hand, the so-called “strong CH” (namely, CH10-11 and CH4-5 for NBD1 and NBD2, 

respectively) exhibited more contact with the NBD and for which the “ball-and-socket” 

arrangement is significantly more pronounced than for the “weak CH”. Interestingly, in 

mammalian MRP1, the NBD1 sequence exhibits a 13-aminoacid deletion which is associated 

with fewer contacts and significantly weaker interactions between CH2-3 and CH10-11 as 

compared to CH4-5 and CH8-9 for NBD2 (Supplementary Fig. 13). Furthermore, the few contacts 

observed between CH2-3 and CH10-11 are slightly decreased in presence of ATP molecules 

while the contact pattern for NBD2, i.e., CH4-5 and CH8-9, is well conserved regardless of the 

presence of ATP and/or leukotriene C4. This leads to the disruption of the so-called 

“ball-and-socket” arrangements of CH2-3 and CH10-11 in NBD1 which is expected (i) to be 

responsible for the aforementioned larger flexibility of NBS1 region and (ii) to preclude the 

information transduction between TMDs and NBD18. 

IF conformations exhibited weaker NBD dimer interactions than OF conformation, explaining 

the overall larger flexibility. Likewise, MD simulations revealed slightly higher flexibility of IF 

apo state as compared to ATP- and/or LTX-bound systems. This is in agreement with previous 

observations suggesting that interactions between TMHs or between NBDs are modulated by 

the presence of substrate and/or ATP molecules4,7,8,22. Taking advantage of our extensive 

unbiased MD simulations, explored conformational subspaces were featured in terms of free 

energy using the InfleCS clustering methods23 (Fig. 30b). Given the aforementioned non-

competent NBD dimer conformations, the focus was paid to NBD structural parameters, 

namely NBD twist and NBD distance. Larger variabilities for IF conformations were observed 

leading to multiple plausible minima for which interconversion is possible but slow. The 

expected to be competent NBD twist versus NBD distance subspace tends to be populated in 

presence of ATP molecule and/or substrate. Such finding highlights the central role of ATP- 

and substrate-binding events in the ABCC1 transport cycle.  



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 93 

License CC BY-NC-ND 4.0 

 

Figure 30. Asymmetric structural dynamics of bMRP1 systems in POPC:POPE:Chol (2:1:1) and 

their conformational landscape. 
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a) Representative snapshots picturing the open and closed conformations of NBD dimers observed during MD 

simulations. IF apo bMRP1, bMRP1-(ATP)2 and bMRP1-LTX revealed two main subpopulations for which black 

arrows highlight the motion; while the pre- and post-translocation conformations (namely, bMRP1-LTX-(ATP)2 and 

OF bMRP1-(ATP)2) exhibited only the closed NBD dimer conformation. NBD1, NBD2 and coupling helices are 

respectively depicted in cyan, yellow and pink. b) System-dependent local conformational landscapes obtained 

from the GMM-based approach developed in the InfleCS method23,25 highlighting the influence of nucleotides and 

the substrate on bMRP1 structural dynamics. c) Averaged Coulomb (up) and van der Waals (down) potentials 

calculated between nucleotides and NBS1 and NBS2, separately. d) Calculated H-bond networks between ATP 

and NBS1 (left) or NBS2 (centre) and between LTX and substrate-binding pocket residues (right). 

To better decipher the NBD dimer dynamics, structural networks24 were obtained by 

considering both contact maps (Supplementary Fig. 14) and dynamic cross-correlation 

matrices (Supplementary Fig. 15). Each NBD can be globally split into two subdomains 

regardless of the conformation or the bound states driven by ATP-binding (Supplementary 

Fig. 16). Indeed, it is worth mentioning that similar so-called communities were relatively 

well-conserved over the replicas and the systems investigated (Supplementary Table 6). The 

first community is defined by the Walker A and B as well as the A- and H-loops. On the other 

hand, the second community includes Q-and X-loops and the ABC signature sequence. 

Residues involved in these communities are highly correlated suggesting that local residue 

displacement upon ATP-binding will propagate. The two communities may be considered 

almost independent thus the binding of one ATP is not expected to strongly impact the motions 

of the second community. Meanwhile, given the asymmetric NBD dimer arrangement, ATP 

and magnesium are expected to link communities across NBDs. Interestingly, dynamic 

correlations in IF apo simulations exhibited larger variabilities since communities could be split 

into subcommunities (Supplementary Table 7), so that ATP-binding is expected to strengthen 

the structural cooperation within and between NBDs. 

Conformation-dependent binding modes of ATP in degenerate and canonical NBSs 

Particular attention was paid to the binding modes of ATPs by assessing van der Waals and 

Coulomb potentials as well as H-bond networks in the NBSs (Fig. 30c-d). It is important to note 

that such analyses should not be considered quantitatively owing to the compensation of errors 

between the two potentials, especially at short distances26. However, they can be used to 

provide qualitative hints in order to compare ATP-binding driving forces. Interestingly, both 

Coulomb and dispersive interactions exhibited less attractive energies for all IF conformations 

than for OF. Given that NBDs exhibit lower flexibility in OF conformation, the subsequent tighter 

NBD dimer interactions can be rationalized by the proper local arrangement of ATP molecules 

in NBSs. For instance, calculated lower -stacking distances between ATP molecules and 

NBS conserved motifs were systematically larger in IF than in OF conformations leading to 

lower interaction energies between ATP molecules and MRP1 residues (Fig. 30c and 

Supplementary Table 8). Surprisingly, in IF conformations, NBS1 tends to exhibit lower 

dispersive interactions between ATP molecule and Trp653 A-loop residue as compared to 

Tyr1301 in NBS2 A-loop, while the spatial aromatic surface of tryptophane is larger than for 

tyrosine. On the other hand, in the OF conformation, dispersive contributions tend to be slightly 

larger for NBS1 than for NBS2. H-bond networks between ATP molecules and NBSs (Fig. 30d) 

suggest a similar network between NBSs for IF conformations. The H-bond network is well 

conserved over IF and OF conformations regarding interactions with Walker A, however, ATP-

bound IF systems do not exhibit the expected H-bond network with the signature motif as 

observed in OF simulations. Interestingly, MD simulations suggest an asymmetric behaviour 
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between NBS regarding H-bonds with Q-loop glutamine residues, namely Gln713 and 

Gln1374, respectively for NBS1 and NBS2. Calculated distances suggested that ATP 

-phosphate binding to NBS1 Q-loop was weaker than for NBS2 in the OF conformation. The 

opposite behaviour was observed in MD simulations for IF conformations. Therefore, present 

simulations underline that proper ATP-binding modes in both NBSs are key in triggering 

conformational changes required for substrate translocation. 

Towards deciphering the allosteric modulation between substrate- and nucleotide-

binding sites 

Particular attention was paid to the substrate-binding pocket and compared to the cryo-EM 

structure of bMRP1 bound to leukotriene C48. In agreement with experiments, leukotriene C4 

binding mode took place in the two so-called P- and H-pockets (“P” and “H” respectively 

standing for polar and hydrophobic). Given the amphiphilic feature of leukotriene C4, Coulomb 

and H-bond networks have been shown to be central for substrate-binding8. MD simulations 

highlighted the same key residues which were experimentally observed (Fig. 30d). For 

instance, strong salt-bridges were observed between arginine residues (Arg1248, Arg1196 

and Arg593, Fig. 30d and Fig. 31a) maintaining at least two out of the three leukotriene 

carboxylate groups in the P-pockets. Interestingly, variabilities in terms of H-bond fractions or 

interaction energies (Fig. 30d and Supplementary Fig. 17) suggest a dynamic binding mode in 

agreement with its expected breaking along the IF-to-OF large-scale conformational changes. 

Even though differences in terms of interaction energies and H-bond networks between 

bMRP1-LTX-(ATP)2 and bMRP1-LTX or bMRP1-(ATP)2 remained low, they suggest a distant 

effect between NBSs and the substrate-binding pocket. Allosteric effect was assessed 

between the substrate-binding pocket and NBS1 and NBS2, independently (Fig. 31b). This 

was achieved by considering key residues for each binding site (Supplementary Table 9) for 

allosteric pathway network analyses27,28. Efficiencies (Fig. 31c) were calculated in presence or 

absence of substrate and ATP molecules. The impact of POPC:POPE:Chol (2:1:1) lipid bilayer 

was also considered. Natively, substrate-binding pocket and NBSs are allosterically connected 

through the protein as shown by calculated efficiencies without including nucleotides or 

substrates. As expected, the presence of substrate and/or ATP molecules substantially 

increased the allosteric communication from substrate-binding pocket to both NBSs. 

Interestingly, in spite of the aforementioned NBD asymmetric dynamics, present calculations 

did not exhibit a significant difference in terms of efficiencies between NBSs. Betweennesses 

were calculated to picture the residue and domain contributions to the allosteric pathway 

(Fig. 31d and Supplementary Fig. 18-20). Particular attention was paid to ATP-bound systems, 

i.e., IF bMRP1-(ATP)2, and bMRP1-LTX-(ATP)2 as well as OF bMRP1-(ATP)2 (Fig. 32d), other 

systems are reported in Supplementary Fig. 21. The main residues involved in the binding 

pocket-NBS allosteric pathways are mostly located in the intracellular part of TMHs. 

Interestingly, an asymmetric behaviour, for which TMH4, TMH5, TMH7 and TMH8 are 

significantly more involved than TMH1, TMH2, TMH10 and TMH11, was again observed. 

bMRP1 exhibits an asymmetric feature regarding the so-called “ball-and-socket” arrangements 

which was shown to be responsible for the structural cooperation between TMHs and NBDs 

through coupling helices8. The thirteen amino acid deletion in NBD1 leads to lower cooperation 

between TMH1, TMH2, TMH10 and TMH11 with NBD1, which in turn decreases the allosteric 

communication between substrate-binding pocket and NBS1. Furthermore, it is worth 

mentioning that our calculations suggest that information mostly goes through NBD2 since the 

direct communication with NBD1 is significantly weakened by the absence of “ball-and-socket” 
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conformation for CH10-11
8. Interestingly, POPC:POPE:Chol lipid bilayer was also shown to play 

a key role in the allosteric communication between substrate-binding pocket and NBSs 

(Fig. 31c). However, even though its impact is significant, lipid bilayer contributions appeared 

milder than in e.g., Major Facilitator Superfamily membrane transporters29. 

 

Figure 31. Substrate-bMRP1 interactions and subsequent allosteric communications to 

nucleotide-binding sites. 
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a) Substrate-binding pocket highlights important residues to leukotriene C4 binding. The structure of leukotriene is 

also shown for which amphiphilic features are stressed out. b) Definition of the allosteric pathway investigated in 

the present study for which NBS1 and NBS2 were treated separately. c) Calculated allosteric efficiencies of the 

information flow between substrate-binding pocket and NBS1 (red) or NBS2 (blue) for the different systems 

embedded in POPC:POPE:Chol (2:1:1). Solid, dashed and dotted lines respectively depict efficiencies considering: 

Protein + lipids + nucleotides/substrate, Protein + nucleotides/substrate and standalone Protein. d) Protein and e) 

lipid contributions to the information flow for allosteric communication from substrate-binding pocket to NBS1 (top) 

and NBS2 (bottom) show that NBD2 and its coupling helices (CH4-5 and CH8--9) are systematically involved 

regardless of the sink region.  

On the interplay between the lipid bilayer and bMRP1 structures and dynamics 

As nowadays more attention has been paid to the interplay between the surrounding lipid 

environment11,19,22,27,29 and membrane proteins, lipid-dependent protein dynamics and lipid-

protein interactions were investigated. This was achieved by carrying out MD simulations in 

different lipid bilayers, namely POPC, POPC:Chol (3:1), POPC:POPE:Chol (2:1:1). IF apo 

bMRP1 and OF bMRP1-(ATP)2 systems were also considered in unrealistic POPE and 

POPC:POPE (3:1) lipid bilayers. 

Projection of lipid-dependent structural parameters onto the ABC conformational space 

(Supplementary Fig. 1 and 22-23) revealed that most of the present simulations tend to explore 

similar ABC subspaces regardless of the lipid bilayer membrane composition. Figure 4a 

compares structural parameter averages according to lipid bilayer compositions for all MD 

simulations performed in the present study. For IF conformations, only intracellular structural 

parameters (i.e., IC angle and NBD distance) exhibited slight deviations according to the lipid 

composition. Systems performed in pure POPC lipid bilayer exhibited slightly more open 

conformations. On the other hand, our calculations suggest that only EC angle is affected by 

lipid bilayer composition but only for OF conformations. Likewise, it is important to note that 

calculated cavity radii (Supplementary Fig. 24) exhibited tiny differences while comparing lipid 

bilayer compositions. Even if these calculations underline a relatively limited overall impact of 

membrane composition on the bMRP1 structure, they did not sufficiently picture the dynamic 

variability over MD simulations and replicas (Supplementary Fig. 1-6 and 24). 

Therefore, lipid-dependent conformational landscapes were calculated (Supplementary 

Fig. 25-26). For a given conformation and bound state, MD simulations preferentially populated 

similar regions regardless of lipid composition. However, structural variability was shown to be 

significantly affected by lipid composition. For instance, in pure POPC lipid bilayer, more open 

IF conformation subspaces, ranging from 30 to 55 Å NBD distance, were sampled. This effect 

was however reduced in presence of substrate which is expected to tend to maintain more 

contacts between TMHs and thus reduce the intracellular opening. MD simulations performed 

on POPC:POPE:Chol (2:1:1) exhibited a significantly smaller sampled region suggesting that 

the presence of PE lipids tends to close the intracellular gate of bMRP1 IF conformations, 

regardless of the bound state. On the other hand, regarding OF conformations and 

extracellular opening, global minima were interestingly observed in the same subspace of the 

conformational space as MD simulations performed in pure POPC and POPC:Chol (3:1). It 

suggests a limited impact of cholesterol on the opening of bMRP1 EC gate. However, the 

presence of PE lipids slightly shifted the calculated minima toward more opened OF structures, 

from 13.9 to 18.5°. Tilt angles between TMHs and lipid bilayer normal were measured in order 

to unravel slight differences between the distinct lipid bilayer compositions (Supplementary 

Fig. 27). Even though no clear conclusions can be drawn from these analyses, orientations of 

TMH3, TMH6 and TMH9 appeared more sensitive in absence of cholesterol. While considering 
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that TMHs act as bundles as shown for ABCB1/P-gp18, the impact of lipid bilayer membrane 

was more pronounced on the tilt orientations of given smaller bundles (Supplementary Fig. 

28), namely Bundle C & D respectively consisting in TMH3/TMH6 and TMH9/TMH12. 

Interestingly, these bundles are expected to undergo larger conformational changes along the 

transport cycle18. This suggests that even though lipid composition seems to have a rather 

limited impact on the overall structure of bMRP1, it may play a role in the kinetics of substrate 

transport by bMRP1. 

To better understand the interplay between the lipid bilayer and bMRP1, particular attention 

was paid to the lipid bilayer membrane structure. The larger structural variability in pure POPC 

membrane was explained by a significantly more fluid lipid bilayer structure pictured by lower 

order parameters (SCD) for palmitate and oleate tails (Fig. 32b). In line with the biophysics of 

pure lipid bilayers, the presence of cholesterol modulates the fluidity of POPC by increasing 

the lipid order which in turn led to lower flexibility of the lipid bilayer membrane30. To a lesser 

extent, the presence of PE lipid potentiated the structural effect of cholesterol, which is in 

agreement with the slightly lower structural variability of bMRP1 in POPC:POPE:Chol (2:1:1) 

as compared to other lipid bilayer membranes. Lipid order calculations also suggest a weak 

impact of protein dynamics on lipid bilayer structures. Indeed, IF apo and OF bMRP1-(ATP)2 

MD simulations exhibited slightly less ordered lipid tail profiles than IF bMRP1-LTX, 

bMRP1-(ATP)2 and bMRP1-LTX-(ATP)2. This may be explained by larger variability of 

intracellular and extracellular openings for IF and OF conformation, respectively, which in turn 

is likely to lead to more pronounced displacements of surrounding lipids. 

The distribution of surrounding lipids revealed important cholesterol and PE lipid hotspots. For 

instance, PE lipids were shown to preferentially bind to pre-TMH7 elbow helix as well as close 

to the L0 domain, for more than 50% of the simulation (Fig. 32c). It is worth mentioning that 

electron density maps revealed three cholesterol molecules bound to the resolved OF bMRP1 

structure. Interestingly, one by the pre-TMH7 was maintained near to its initial position with a 

probability higher than 80% (Fig. 32c) for which cholesterol is oriented in line with pre-TMH7 

elbow helix, i.e., parallel to the lipid bilayer. Pre-TMH7 cholesterol hot spots were also 

observed for example in IF-apo POPC:POPE:Chol (2:1:1) simulations (Fig. 32c). Moreover, 

pseudo-symmetrically, a cholesterol hotspot was also observed near to pre-TMH1 elbow helix 

in simulations carried out with IF bMRP1 conformations (Fig. 32c). Interestingly, allosteric 

pathway analyses underlined the key role of cholesterol molecules close to pre-TMH1 and -

TMH7 elbow helices in the information transduction from the substrate-binding pocket to NBSs 

as shown in Fig. 32d. 
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Figure 32. Interplay between bMRP1 structural dynamics and lipid bilayer according to its 

composition. 

a) Average IC angle, EC angle and NBD distance for all bMRP1 systems embedded in different lipid bilayers. b) 

Calculated C-atom lipid tail order parameters (SCD) for palmitic (sn1, left) and oleic tails (sn2, right) for all systems 

embedded in POPC-based models. Solid, dashed and dotted lines respectively depict lipid order parameters 

obtained in POPC:POPE:Chol (2:1:1), POPC:Chol (3:1) and POPC lipid bilayer models. c) Calculated binding 

hotspots obtained from cholesterol and PE lipids defined by presence likelihood higher than 80% and 50% 

respectively for cholesterol and PE lipids. Zoom on Cryo-EM resolved cholesterol (purple) is shown to highlight the 
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specific parallel orientation with respect to the lipid bilayer. d) Important lipid areas based on allosteric pathway 

analysis. The location of key cholesterol molecules involved in the allosteric communication between 

substrate-binding pocket and NBSs is shown. Both NBSs are considered, highlighting the expected central roles of 

L0, pre-TMH1 and pre-TMH7 regions in specific lipid-protein interactions which might favour bMRP1 function. 

IV.1.3. Discussion 

bMRP1 is the only member of the ABC drug exporter C-family which has been resolved by 

cryo-EM so far, given that ABCC7/CFTR is a chloride channel31 and sulfonylurea receptors 

(ABCC8 and ABCC9) are involved in the regulation of potassium channels32. Over the past 

decade, particular attention has been paid to MRP transporters including MRP1, MRP2 and 

MRP4 given their clinically and pharmacologically relevant roles in drug disposition as pointed 

out by the ITC12,13. In contrast to its cousin ABCB1/P-gp, knowledge about MRP1 dynamics 

and functions still remains fragmented although it has been resolved in multiple states, such 

as IF apo and substrate-bound states8 and two OF states under pre-4 and post-hydrolysis5 

conformations, respectively bound to either two ATP molecules or to ADP/ATP pair. In the 

present work, an extensive set of all-atom MD simulations were performed in order to capture 

conformational dynamics of bMRP1 in different states considering different mixtures of lipid 

bilayer models including PC and PE lipids as well as cholesterol. We propose an MD-based 

computational approach in order to (i) complete the experimental observations made in 

detergents and (ii) highlight structural patterns which might be extended to, at least, other ABC 

C-family transporters. 

Global conformational dynamics in POPC:POPE:Chol (2:1:1) shows significant variations of IF 

structures with respect to cryo-EM structures. In IF states, spontaneous closing of NBDs was 

systematically observed regardless of the presence of ATP molecules as pictured by IC angle 

and NBD distance values which all converged toward the same subspace. Regarding ABC 

conformational space, the presence of either ATP molecules in both NBSs or substrate in the 

TMD binding pocket mostly shifts the dynamics of NBD dimerization by modulating the NBD 

twist value (Fig. 30b and Supplementary Fig. 5). Therefore, our MD simulations are in perfect 

agreement with recent observations6,7 that wide-open IF structures are expected to be unlikely 

in membrane environments. Wide-open structures observed in cryo-EM experiments are thus 

believed to be due to artifacts owing to the use of non-physiological environments for structure 

resolution7, in agreement with structural differences observed e.g., for P-gp reconstituted either 

in detergents or in nanodiscs11. MRP1 and likely other MRPs are expected to adopt the same 

“ATP-switch” model feature as suggested for TM287/2886. ATP-bound to NBS1 is expected to 

stay over multiple transport cycles sterically acting as a pivot point in absence of substrate. 

This is e.g., pictured by the existence of two subpopulations for IF apo, ATP- and LTX-bound 

states regarding NBD dimer (Fig. 30a), namely open and close for which NBS1 is 

systematically formed. The NBD1 13 amino-acid deletion is thus expected to play a central 

role in this pivot model. Indeed, the absence of the “ball-and-socket” structure for NBD1 might 

weaken the coupling between NBD1 and TMH10/TMH11. In absence of substrate, this is 

associated with more flexibility regarding NBD1 leading to the opening of NBD dimer. However, 

in presence of ATP molecules and substrate, only close NBD dimer conformations were 

observed (Fig. 30a) highlighting the allosteric communication between TMDs and both NBSs. 

Owing to the lower coupling between TMH10/TMH11 and NBD1, allostery between TMDs and 

NBDs is expected to be mostly mediated through NBD2. Interestingly, NBS1 was also formed 

even in absence of ATP molecules (Fig. 30a). For instance, this might also explain why 

IF-to-OF transitions were experimentally observed even in absence of ATP molecules5. Our 
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results highlight the importance of NBD and NBS asymmetry as an evolution of ABC 

transporters which may result from energy saving while keeping transport function by requiring 

a single ATP hydrolysis. 

MRP1 is expected to carry mostly anionic amphiphilic substrates contrary to P-gp which mostly 

transports hydrophobic substrates2. In agreement with structural observations, substrate 

access directly from either high- or low-density lipid tail regions of the membrane is very 

unlikely owing to the absence of an access channel in the lipid bilayer contrary to P-gp8. 

However, amphiphilic substrates might partition in the high-density polar head region. 

Therefore, MRP1 substrate access is expected to occur either directly from the cytoplasm or 

from the high-density polar head region, for which access might be possible via TMH4 and 

TMH6 (Supplementary Fig. 29). On the other side of bMRP1, our MD simulations suggest that 

substrate access between TMH10 and TMH12 may be less likely for bulky substrates. 

However, such assumptions require further biochemical and structural investigations. 

In the present work, we also investigated the interplay between lipid bilayer membranes and 

protein dynamics. Our results first underline the particular importance of the use of a reliable 

membrane environment to provide robust insights into transporter dynamics and functions. By 

playing with different lipid bilayer models such as cholesterol-free and PE-free membranes, 

bMRP1 dynamics is modulated. In line with previous biophysical studies, the presence of 

cholesterol in PC-based membrane increased membrane stiffness which in turn reduced 

conformational dynamics of MRP130. The impact of PE lipids is expected to be rather limited 

for IF states. However, interestingly, EC opening under OF conformation appeared more 

favourable in presence of PE (Fig. 32a). Globally, our results also suggest that lipid bilayer 

composition is very unlikely to preclude overall transporter functions, but it is expected to 

mostly affect kinetics. This hypothesis should be considered carefully for other MRP 

transporters. Indeed, in contrast to e.g., MRP2 and MRP4, MRP1 is a ubiquitous exporter 

which was observed in different cell types for which lipid bilayer composition might differ. We 

can thus infer that other MRP members might become more sensitive to lipid bilayer membrane 

compositions. 

Out of the physical role of lipid bilayer on protein dynamics, our results support that lipid 

components also play an active role in transporter function. In line with computational 

observations made on other membrane proteins11,27,33,34, lipid components are involved in the 

allostery from TMDs to NBDs. More importantly, cholesterol bind to pre-TMH1 and pre-TMH7 

elbow helices are strongly involved in these allosteric pathways. Such findings pave the way 

regarding the role of lasso pre-TMD motif (L0) which was shown to be required for the MRP1 

transport function8,17. Even if the role of lipids might sound limited on MRP1 as compared to 

other membrane receptors and channels, more attention should be paid to lipid-protein 

interactions, not only regarding the biophysical impact on the protein dynamics but also as 

transport modulator as recently proposed for P-gp11. 

We hope that the present work provides new insights into the function and the lipid-protein 

interplay of NBS degenerate ABC transporters for further investigations such as the role of 

MRPs in local pharmacokinetics, including e.g., the impact of rare mutations/polymorphism as 

well as disease-based membrane lipid imbalance toward personalized medicine. 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 102 

License CC BY-NC-ND 4.0 

IV.1.4. Methods 

IV.1.4.1. Construction of bMRP1 models embedded in lipid bilayer membranes 

In order to have an overview of milestone structures along the transport cycle of bMRP1, 

different conformations and bound states were considered in the present study: IF apo bMRP1, 

IF bMRP1-(ATP)2, IF bMRP1-LTX, IF bMRP1-LTX-(ATP)2 and OF bMRP1-(ATP)2. The cryo-

EM structures were used as starting structures for IF (PDB ID: 5UJ98 and 5UJA8) and OF-

conformations (PDB ID: 6BHU4). It is important to note that OF conformation was resolved 

using E1454Q mutant which was shown to lower the rate of ATP hydrolysis thus promoting OF 

structure determination4. This mutation was reverted manually for the present study. The so-

called “TMD0” was not included in the present models as it has already been shown not to 

affect the substrate transport3,4,8. However, it was shown that the so-called pre-TMH1 lasso 

domain (L0) is mandatory for MRP1 function while it was not resolved in any cryo-EM MRP1 

structures8,17. Missing parts of L0 domain was modelled using either I-Tasser (Iterative 

Threading ASSEmbly Refinement) server35 or modeller v9.2336 for IF and OF conformations, 

respectively. Likewise, the missing loop between TMH6 and NBD1 was also added in the 

present models. 

IF conformations were built in different bound states, namely apo, ATP2-, LTX- and LTX-

(ATP)2-bound states while OF conformation was solely constructed in the ATP2-bound state. 

IF bMRP1-(ATP)2 and IF bMRP1-LTX-(ATP)2 were constructed by superimposing separately 

NBD of 5UJ9 and 5UJA, respectively onto the NBDs of OF conformation in which both ATP 

molecules and Mg2+ are bound to NBSs. All final models were shortly minimized in vacuum 

using the Amber18 package37,38 to avoid unphysical steric clashes. 

CHARMM-GUI input generator39,40 was used to embed the different bMRP1 models into 

different lipid bilayers, namely pure POPC, POPC:Chol (3:1) and POPC:POPE:Chol (2:1:1) 

taking advantage of bMRP1 coordinates obtained from the OPM (Orientations of Proteins in 

Membranes) database41. IF apo bMRP1 and OF bMRP1-(ATP)2 structures were also 

embedded into pure POPE and POPC:POPE (3:1) lipid bilayers in order to specifically 

investigate lipid-protein interactions with PE lipids. It is worth mentioning that the resolved cryo-

EM structure of OF bMRP1-(ATP)2 also includes three resolved cholesterol molecules which 

were kept during all simulations in order to investigate their importance. From these different 

lipid bilayer compositions, POPC:POPE:Chol (2:1:1) mixture appeared the most relevant to 

model cell membranes. The other types of membranes were considered to help understand 

the role of each lipid in protein dynamics. The original total size of every system was ca. 120 

x 120 x 180Å3 (see Supplementary Tables 10-11 for system descriptions). To mimic 

physiological conditions, 0.15 M NaCl was used, and the systems were solvated using TIP3P 

explicit water molecules42–44. The final systems are made of ca. 245 000 atoms (see details in 

Supplementary Table 12). 

IV.1.4.2. Molecular dynamics simulations 

CHARMM-GUI39,40 outputs were converted to Amber format using AmberTools scripts37,38 

(namely, charmmlipid2amber.py and pdb4amber). Regarding ATP2- and LTX-bound systems, 

substrate, nucleotides and Mg2+ ions were added after building protein-lipid systems; therefore, 

neutrality was ensured by randomly removing the corresponding number of counterions. 

Amber FF14SB45, Lipid1746 and the modified DNA.OL1547,48 force fields were used to 

respectively model protein residues, lipids and ATP molecules. Water molecules, Mg2+ ions 
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and counterions were modelled using the TIP3P water model42–44 as well as the corresponding 

monovalent and divalent ion parameters from Joung and Cheatham49,50. LTX (Leukotriene C4) 

substrate parameters were derived from the Generalized Amber Force Field version 2 

(GAFF2)51 using the Antechamber software52. LTX partial atomic charges were derived from 

quantum mechanical based calculations at the HF/6-31G* level of theory, using the R.E.D. 

server53. Each system was simulated with periodic boundary conditions. The cutoff for 

non-bonded interactions was 12 Å for both Coulomb and van der Waals potentials. Long-range 

electrostatic interactions were computed using the particle mesh Ewald method54. 

Minimization and thermalization of the systems and MD simulations were carried out with 

Amber18 and Amber20 packages37,38 using CPU and GPU PMEMD versions. Minimization 

was carried out in four steps by sequentially minimizing: (i) water O-atoms (20000 steps); (ii) 

all bonds involving H-atoms (20000 steps); (iii) water molecules and counterions (50000 steps) 

and (iv) the whole system (50000 steps). Each system was then thermalized in two steps: (i) 

water molecules were thermalized to 100 K during 50 ps under (N,V,T) ensemble conditions 

using a 0.5 fs time integration; (ii) the whole system was then thermalized from 100 K to 310 

K during 500 ps under (N,P,T) ensemble conditions with 2 fs timestep in semi-isotropic 

conditions. Then, each system was equilibrated during 5 ns under (N,P,T) ensemble conditions 

with 2 fs timestep in semi-isotropic conditions, using Berendsen barostat. Production runs were 

then carried out at the microsecond scale with 2 fs integration timestep under (N,P,T) ensemble 

conditions with semi-isotropic scaling. Temperature was maintained using the Langevin 

dynamics thermostat55 with 1.0 ps-1 collision frequency. Constant pressure set at 1 bar was 

maintained with semi-isotropic pressure scaling using either Berendsen barostat56 for IF apo 

bMRP1 and OF bMRP1-(ATP)2 or Monte Carlo barostat for IF bMRP1-(ATP)2, IF bMRP1-LTX 

and IF bMRP1-LTX-(ATP)2. The latter was used to speed up computational time. 

In order to ensure the ATP docking into NBS, it is worth mentioning that restraint-MD 

simulations were carried out using a similar approach as proposed by Wen et al.58. Shortly, a 

set of distance-based restraints were applied between the A-loop tryptophan/tyrosine residues 

(Trp653 and Tyr1301, respectively for NBD1 and NBD2) and corresponding ATP purine 

moiety. Mg2+-ATP-NBD arrangement was maintained by applying restraints between Mg2+ ions 

and ATP phosphate groups as well as between Mg2+ ions and Walker A Serine and Q-loop 

glutamine residue (namely, Ser685 and Gln713 for NBD1 and Ser1333, Gln1374 for NBD2). 

Moreover, ATP phosphate moieties were also restrained with surrounding Walker A residues. 

All distances were restrained using harmonic potentials for which minimal distances and force 

constants are reported in Supplementary Tables 13-14. Distance-based restraints were 

applied for thermalization and box equilibration steps. They were then smoothly removed along 

the first 10 ns of production runs. Restraints for Mg2+ ions were kept during the whole 

simulation. 

Snapshots were saved every 100 ps. For each system, three replicas were performed to better 

sample the local conformational space. Each production run was carried out for 2.0-2.5 s and 

1.5-2.0 s, respectively for IF and OF models (Supplementary Table 15). Indeed, simulations 

performed using OF model reached the equilibrium faster than IF conformations (see time-

dependent RMSDs in Supplementary Fig. 30). In the present study, the total MD time is 

112.4 s. 
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IV.1.4.3. Analysis and visualization 

Simulations were analysed using the CPPTRAJ59 package, and in-house Python scripts taking 

advantage of MDAnalysis module60,61. Plots were obtained using the matplotlib v3.3.1 Python 

package62. Structure visualization and rendering were prepared using VMD software63 (v1.9.3 

and the alpha-v1.9.4). The so-called ABC structural parameters (i.e., IC angle, EC angle, NDB 

distance, NBD twist and EC distance) were calculated using the same definition as proposed 

by Hofmann et al.1. Shortly, IC angle describes the IC opening of substrate entry and is defined 

by the angle between two vectors; both starting from the centre-of-mass of the whole 

extracellular region and directed toward either the IC region of TMH1, TMH2, TMH3, TMH6, 

TMH10 and TMH11 or the IC region of TMH4, TMH5, TMH7, TMH8, TMH9 and TMH12. 

Likewise, EC angle describes the EC opening for substrate release and is defined by the angle 

between two vectors starting from the centre-of-mass of both NBDs and directed toward either 

the EC region of TMH1, TMH2, TMH9, TMH10, TMH11, and TMH12 or the EC region of TMH3, 

TMH4, TMH5, TMH6, TMH7, and TMH8. EC distance was defined as the distance between 

the EC regions of TMH1, TMH2, TMH9, TMH10, TMH11, and TMH12 and the EC region of 

TMH3, TMH4, TMH5, TMH6, TMH7, and TMH8. NBD distance was defined as the distance 

between the two NBD centres-of-mass. Since these definitions were applied to the present MD 

models of bMRP1 but also to available resolved structures of other ABC transporters, 

intracellular and extracellular regions were defined based on the membrane thickness 

proposed in the OPM database41. Residue selections for each system and each structure 

parameter are reported in Supplementary Table 1. For each system and each lipid bilayer, 

local free energy landscape was calculated using the InfleCS approach which takes advantage 

of Gaussian Mixture Models (GMM)23,25. Structural parameters (i.e., IC and EC angles, NBD 

distance and twist) were taken to monitor the free energy landscape using a grid size set at 

80, from 2 to 12 gaussian components for each GMM obtained by a maximum of 20 iterations. 

H-bond analyses were performed using CPPTRAJ59 in which distance and angle cutoffs were 

set at 3.5 Å and 120°, respectively. Substrate cavities were calculated using the Hole2.2 

software64 on a trajectory made of frames selected every 10 ns of the equilibrated part of each 

replica separately. Profiles were then averaged and PC P-atom z-density profiles were used 

to define the centre of the lipid bilayer membrane (z = 0). Regarding tilt angles, all systems 

were aligned to the OF bMRP-(ATP)2 model embedded in POPC:POPE:Chol (2:1:1). Lipid 

distributions were obtained using the CPPTRAJ59 package while membrane thicknesses were 

obtained using the MEMBPLUGIN for VMD63,65. 

Principal component analyses were also performed using the CPPTRAJ59 package, focusing 

on the ABC core, defined by backbone atoms of TMH1 to TMH12, NBD1 and NBD2. System 

variabilities were investigated by carrying out independent PCA for each system for which each 

replica was aligned to an average structure of the system. Network analyses were performed 

using the VMD Network Analysis plugin63,66. Dynamic cross-correlation matrices were 

calculated separately for each replica on which C-atoms were selected as nodes and all the 

default restrictions (notSameResidue, notNeighboringCAlpha, notNeighboringPhosphate, 

notNeighboringResidue) were applied. Communities were then calculated using 

gncommunities66. Allostery network pathways were determined using the recent Allopath 

approach developed by Westerlund et al.27,28. Shortly, the distant “communication efficiency” 

between two domains was obtained from the contact map and the mutual information matrix 

of protein residues as well as non-protein interactors such as surrounding lipid and bound 

molecules (e.g., nucleotides and substrate). Such an approach also provides a betweenness 
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profile which pictures the involvement of each component (i.e., residue, lipid, substrate and 

nucleotide). For each lipid molecule, three nodes were defined corresponding to the polar head 

group and the two lipid tails. ATP was also split into three nodes: purine and ribose moiety as 

well as triphosphate tail. LTX substrate was divided into three nodes: glutathione moiety, poly-

unsaturated tail and hydroxypentanoic acid. Mg2+ ions and cholesterol molecules were 

considered as one node each. Atom selections per node are reported in Supplemental Fig. 31. 

Allosteric pathways were calculated from substrate-binding pocket to each NBS, separately, 

as defined in Supplemental Table 9. 
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In preparation 

An OF ATP-ADP-bound bMRP1 structure was published recently1; thus, simulations were run 

similarly as for the previously available bMRP1 structures (section IV.1.4.). During the analysis, 

the focus was on the differences shown by the pre- (ATP2-bound) and post-hydrolysis 

(ATP-ADP-bound) states of OF bMRP1. This was done from different point of views. First the 

mapped conformational space was investigated, following by 

Until the results will be published, supplementary information is available upon request. 

Keywords. ABCC1/MRP1, molecular dynamics, dynamic L0, post-hydrolysis state, allosteric 
communication 

IV.2.1. Materials and Methods 

Simulations were prepared similarly as in our previous study (section IV.1.4.)2. Shortly, OF 

bMRP1 ATP-ADP-bound structure was constructed using the available cryo-EM structure 

(PDB ID: 6UY0). As the so-called “TMD0” do not affect the substrate transport3–5, it was not 

included in the present model. The pre-TMH1 lasso domain (L0), which is mandatory for MRP1 

function5,6, was not totally resolved in the cryo-EM structure. Therefore, the missing part of L0 

as well as the missing loop between TMH6 and NBD1 were modelled using modeller v9.237. 

L0 was modelled based on the L0 structure from the IF structure as well as on sequence for 

that part which was clashing with TMHs. The final model was shortly minimized in vacuum 

using the Amber18 and Amber20 package8,9 to avoid unphysical steric clashes. 

OF bMRP1 ATP-ADP-bound structure was embedded into three different lipid bilayers, such 

as pure POPC, POPC:Chol (3:1), and POPC:POPE:Chol (2:1:1), using the CHARMM-GUI 

input generator10,11. The three co-crystalized cholesterol molecules were kept during the 

simulations. The original total size of the system was ca.120 x 120 x 180Å3 (Supplementary 

Table 1). To mimic physiological conditions, 0.15 M NaCl salt concentration was used, and the 

system was solvated using TIP3P explicit water molecules12. The final systems are made of 

ca. 245 000 atoms (Supplementary Table 2). 

Amber software was used to run simulations, as it was done previously2 using the parameters 

in table 11. Monte Carlo barostat was used for the production run to speed up computational 

time. Production run was carried out for 1.5 s. 

mailto:florent.di-meo@inserm.fr
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Table 11. Parameters used during the simulations 

Parameter Modelled molecules 

FF14SB13 protein residues 

Lipid17 lipids 

modified DNA.OL1514,15 ATP molecules 

TIP3P water model12,16,17, 

monovalent and divalent ion parameters 
from Joung and Cheatham18,19 

water molecules, Mg2+ ions and counterions 

 

The same analysis techniques were used to monitor the simulations as previously, see details 

in section IV.1.4.2. Shortly, analyses were performed using the CPPTRAJ20 package and 

in-house Python scripts taking advantage of the MDAnalysis module21,22 and the matplotlib 

v3.3.1 package23. Structure visualization and rendering were prepared using the VMD software 

(v1.9.3 and the alpha-v1.9.4)24. So-called ABC structural parameters25,26 were calculated and 

used to map the ABC conformational space. The GMM-based InfleCS clustering method was 

applied to decipher the free energy landscape using the ABC structural parameters as 

collective variables for the energy sampling. 

IV.2.2. Results 

IV.2.2.1. MD simulations reveals slight but relevant structural differences between the 

pre- and post-hydrolysis states 

In the present section, particular attention is paid to MD simulations performed in 

POPC:POPE:Chol (2:1:1). The influence of the membrane is discussed in section IV.2.2.3. 

Conformational spaces sampled for pre- and post-hydrolysis states (namely OF 

bMRP1-(ATP)2 and OF bMRP1-ATP-ADP) were examined focusing on key ABC structural 

parameters (Supplementary Fig. 1-2,4-5). NBD distances and intracellular (IC) angles were 

used to monitor the intracellular opening, while the extracellular angle (EC) was used to assess 

the opening towards the external cell compartments. NBD rocking-twist as originally defined 

by Moradi et al.25 was also monitored. These parameters were projected onto the ABC 

conformational space defined by measuring ABC structural parameters of a large data set of 

experimentally resolved ABC transporters (Fig. 33a). The so-called inward-facing (IF), 

outward-facing (OF) and asymmetric unlock-returned (UR) turnover26 states are explicitly 

separated using these structural parameters (Fig. 33a). For both pre- and post-catalytic states, 

IC angle shows similar trends picturing small IC opening, values ranging from 19.4 to 22.6°. 

Furthermore, they did not show large variability suggesting stable conformations (Fig. 33a, 

Supplementary Fig. 1). On the other side of the membrane, post-hydrolysis state exhibits 

slightly smaller EC angle values than pre-catalytic states, ranging from 13.8 to 23.6 and from 

12.6° to 19.3°, respectively for pre- and post-catalytic states. Interestingly, variability is larger 

than for IC angle depicting larger EC opening fluctuation (Fig. 33a, Supplementary Fig. 1-2).  

Pre- and post-catalytic states mostly differ in NBD dimer arrangement. The NBD rocking-twist 

angle of the post-hydrolysis state does not deviate from the originally resolved structure while 
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the NBD distance value is slightly larger (Fig. 33a, Supplementary Fig. 3-4). The opposite trend 

was observed in pre-catalytic state for which NBDs get closer to each other in MD simulations 

with respect to cryo-EM resolved structure. This might be explained by stronger NBD-NBD 

non-covalent interactions in biomimetic membranes compared to detergent, as suggested in 

our previous work2. Furthermore, the E1454Q mutation used for cryo-EM resolution may also 

alter ATP binding in nucleotide binding site (NBS) 2. Interestingly, the post-catalytic OF 

bMRP1-ATP-ADP state exhibit lower NBD twist than the pre-catalytic state by ca. 5°. 

Noteworthy, the post-hydrolysis state which is expected to be before the OF-to-IF transition is 

getting closer to the conformational space of the UR structures which were resolved in native 

nanodisk environment. This is in agreement with the recent structural finding suggesting that 

ABC transporter might adopt UR state prior to get back to IF conformational states, resetting 

the transport cycle26. It is important to note that the use of NBD distances should be carefully 

considered, especially for NBD degenerate ABC transporters such as MRP1 given the 

expected pivotal role of ATP-bound NBS1 in maintaining NBD dimerization along transport 

cycle27, in agreement with our previous findings2. 

Assuming that our MD simulations were long enough to independently sample the local 

conformational space of pre- and post-catalytic states, local free energy surfaces were 

calculated according to ABC structural parameters using the InfleCS framework28,29 (Fig. 33b). 

Particular attention was paid to NBD structural parameters. Interestingly, two main populations 

were captured from MD simulations performed on the post-catalytic OF bMRP1-ATP-ADP 

state regarding to NBD distance, showing a slight flexibility in term of NBD opening while it is 

unlikely to happen in pre-catalytic state. Likewise, small difference for NBD rocking-twist 

parameter between pre- and post-hydrolysis states is also captured from the free energy point 

of view, confirming that ATP hydrolysis shift the free energy surface toward more open and 

less twisted NBD dimer conformation. 

On the other side of the membrane, pre-hydrolysis state simulations show more flexible EC 

opening compared to the post-catalytic state. MD simulations performed on OF 

bMRP1-ATP-ADP state surprisingly suggest two well-separated populations. Interestingly, 

transition from one to the other requires to cross a relatively high energy barrier 

(ca. 3 kcal.mol-1). Our simulations suggest that such transition may be favoured by slightly 

closing IC gate. However, this should be carefully considered and confirmed by further 

investigations. 

Particular attention was paid to the lasso domain (L0) which connect the TMD0 and the 

functional core of MRP1. It is worth remembering that TMD0 was not included in the MRP1 

model since it was shown not to be involved in the transport function. However, experiments 

stressed out that L0-less MRP1 is not functional. MD simulations reveals large flexibility of the 

L0 domain as pictures by monitoring root-mean-square deviation (RMSD) for the whole protein 

along the simulations (Supplementary Fig. 6). This was confirmed by assessing RMSD only 

on the ABC core (i.e., extruding L0) showing much smaller deviations along the simulations of 

pre- and post-catalytic states (Supplementary Fig. 7). Domain flexibilities were also assessed 

by measuring the per-residue root-mean-square fluctuations (RMSF) over the last 400 ns (see 

Fig 33c). Interestingly, RMSF analyses suggests higher flexibility for the pre-hydrolysis state 

in membranes containing cholesterol (Fig 33c). Interestingly, in both pre- and post-catalytic 

states, L0 flexibility suggest two distinct behaviours (Supplementary Fig. 8). On one hand, 

Asn203-Lys267 does not exhibit large flexibility, remaining in close contact to pre-TMH1, 

TMH1, TMH2, TMH10 and TMH11. On the other hand, Ser268-Lys307 display large variability. 

This is in agreement with resolved structure since the latter has not been totally resolved by 
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cryo-EM techniques. MD simulations also suggest that the flexible L0-subdomain can interact 

with NBD1. Even though L0 roughly maps the same space in the pre- and post-hydrolysis 

states, dynamics shows some differences. 

 

Figure 33. Structural dynamics of OF bMRP1-ATP-ADP. 

a) Projection of bMRP1 structural parameters of the pre- and post-hydrolysis states, respectively OF-(ATP)2 and 

OF-ATP-ADP simulations, onto the ABC conformational space obtained from multiple resolved ABC structures. 

Each replica was averaged over the last 800 ns. PDB IDs of the resolved bMRP1 cryo-EM structures are explicitly 

mentioned. The zoom shows the OF area of the NBD twist – NBD distance plot. The first and second TMDs are 

respectively depicted in orange and blue, and NBD1 and NBD2 are respectively coloured yellow and cyan. 

b) System-dependent local conformational landscapes obtained from the GMM-based approach developed in the 

InfleCS method28,29 highlighting the influence of nucleotides on bMRP1 structural dynamics. c) RMSF calculated 

on the last 400 ns and structure representation of OF bMRP1-ATP-ADP POPC:POPE:Chol (2:1:1) show the 

L0-dynamics. 

IV.2.2.2. Differences in the nucleotide-binding of the pre- and post-hydrolysis states 

As NBD distance and NBD twist values showed differences in the pre- and post-hydrolysis 

states, special attention was paid to the NBSs. MRP1 belongs to NBD degenerate ABC 

transporter of which NBS1 is expected to exhibit (i) increased important ATP-binding but 

(ii) significantly lower ATP hydrolysis rate. Local key distances proposed to maintain the 

nucleotide in the binding site2,30 were monitored between either ATP or ADP molecules and 

well-known conserved motifs (Fig. 34a). Distances between ATP molecules and NBS1 binding 

motifs are globally conserved when comparing pre- and post-hydrolysis states. Only the 

distance between A-loop Trp653 and adenosyl moiety is slightly larger in the post-hydrolysis 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 113 

License CC BY-NC-ND 4.0 

state by ca. 1.0 Å. This is in agreement with former observations made on NBD degenerate 

ABC transporters suggesting that ATP remains constantly bound in NBS1 along several 

transport cycles. In contrast, all distances between the nucleotide and NBS2 motifs differ. The 

most important deviation is observed with the Q-loop motif (respectively 6.2 ± 0.1 and 

8.9 ± 0.8 Å in pre- and post-hydrolysis states).H-loop and Walker B motifs also show significant 

structural differences. This might be easily explained by the absence of -phosphate which is 

supposed to bind Q-loop motif. However, in presence of ADP in NBS2, motifs supposed to 

bind -phosphate tend anyway to locally reshape by getting closer to -phosphate moiety (e.g., 

ABC signature, H-loop and Walker B), as shown by distances measured with terminal 

-phosphate O-atom (d*post in Fig. 34a). This suggests a local rearrangement of NBDs after 

ATP hydrolysis. 

More specifically, binding modes of the nucleotides were also investigated by assessing atomic 

contacts, H-bond networks as well as van der Waals and Coulomb potentials between ATP or 

ADP molecules and NBS motifs (Fig. 34b, Supplementary Fig. 9). It must be stressed that van 

der Waals and Coulomb potentials can only provide qualitative hints to compare the binding 

sites due to a compensation of errors between the two potentials especially at short 

distances31. H-bond fractions (Fig. 34b) highlights the significant difference between pre- and 

post-hydrolysis in NBS2 H-bond network, especially regarding the ABC signature motif and 

Q-loop. This is confirmed by interatomic contact analyses since there are significantly less 

contacts in the post-hydrolysis state in NBS2. Walker A motif in NBS2 has slightly looser 

connections with the ADP than ATP which might be involved in the subsequent nucleotide 

release. NBS-nucleotide atomic contact fraction maps confirm weaker interactions between 

ADP and NBS2 ABC signature Q-loop motifs, while contact remains similar with other motifs 

(Supplementary Fig. 9). Interestingly, ABC signature motif has similar H-bond fraction in NBS1 

in pre- and post-hydrolysis states.NBS1 Walker A motif, that binds - and -phosphates, 

exhibits slightly stronger connections in the post-hydrolysis state in agreement with the 

expected maintain of ATP molecule along likely multiple transport cycles27. 

NBS structural differences between pre- and post-hydrolysis states is expected to modulate 

the NBD dimer supramolecular arrangement. In this context, NBD2 arrangement with respect 

to NBD1 were assessed by calculating RMSDs focusing on NBDs either separately or using 

NBD1 position as reference over the trajectories. Interestingly, NBD1 secondary structure is 

conserved during the hydrolysis (RMSD being 0.86 ± 0.13 Å, see Fig. 34c). NBD2 secondary 

structure slightly deviates more while comparing pre- and post-hydrolysis (RMSD being 1.36 

± 0.12 Å). However, NBD1-aligned structure clearly highlights the structural deviation of post-

catalytic NBD dimer as compared to pre-catalytic state. The pivotal role of NBS1 is confirmed 

as well as the asymmetric NBD motion along the transport cycle27. For instance, NBD2 and 

NBS2 exhibit larger RMSD values, respectively 3.33 ± 0.45 Å and 2.55 ± 0.32 Å. Moreover, 

visual inspection clearly underlines the opening of NBD dimer on the side of NBS2, as 

previously suggested2. 
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Figure 34. Nucleotide-binding sites in the pre- and post-hydrolysis states of OF bMRP1. 

a) Important distances between the nucleotides and key residues in the nucleotide-binding sites. b) Calculated 

H-bond networks between nucleotides and NBS1 (top) or NBS2 (down). c) RMSD of NBD1, NBD2 and NBS1, 

NBS2 of the post-hydrolysis state compared to the pre-hydrolysis state. The post-hydrolysis state is more open as 

it is indicated by the dashed line. Conserved motives are coloured as follows: Walker A red, Walker B blue, signature 

motif green, A-loop orange, Q-loop teal, X-loop pink, D-loop cyan, and H-loop yellow. 
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IV.2.2.3. The role of the lipids 

As observed for IF conformations2, lipid composition does not significantly affect the local 

structure of the present states. For instance, regardless of membrane components, local free 

energy minima obtained from the InfleCS28,29 approach are located in similar conformational 

space. Only, slight differences were observed. For example, even though EC opening remains 

smaller for post-catalytic state than for pre-catalytic state, protein dynamics tends to be slightly 

larger for PE-free lipid bilayers than for POPC:POPE:Chol (2:1:1) lipid bilayer (Supplementary 

Fig. 12). IC opening was not observed in MD simulations in none of the simulations 

independently on the lipid bilayer (Fig. 33a, see Supplementary Fig. 10-12). Interestingly, 

H-bond analyses showed that both NBS nucleotide binding modes of post-hydrolysis state 

remains more similar than pre-hydrolysis state in PE-free lipid bilayers (Fig. 34b, 

Supplementary Fig. 13). Overall dynamic cross-correlation between residues show less 

correlation in the post-hydrolysis state in POPC:POPE:Chol (2:1:1) membrane; however, this 

difference is not observable in pure POPC and POPC:Chol (3:1) lipid composition 

(Supplementary Fig. 14). Cryo-EM OF structures were resolved including three cholesterol 

molecules that were suggest to actively participate to the allosteric communication between 

substrate binding pocket and NBD. As observed for pre-hydrolysis state, resolved cholesterol 

remains in close contact to pre-TMH7 elbow helix all along the simulation (Fig. 35). 

Interestingly, MD simulations reveals plausible PE binding spots. It shed light on key 

PE-protein H-bond interactions and thus hotspots which are observed in the lower leaflet. This 

is in agreement with the known in vivo asymmetry for cell membrane composition, since PE 

lipids are mostly located in the lower leaflet than the upper leaflet. However, PE-binding seems 

to be more favourable prior to ATP hydrolysis, even though such assumption should be 

considered carefully given that the timescale is likely not sufficient to provide an accurate 

sampling of surrounding lipid motions. 

 

Figure 35. Key lipids in the pre- and post-hydrolysis states. 

Cholesterol (green) and PE lipid (magenta) hotspots defined by presence likelihood higher than 50%. 
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IV.2.3. Discussion 

bMRP1 is the only drug exporter in ABCC family for which there are resolved cryo-EM 

structures available, so far. The International Transporter Consortium32,33 has stressed out the 

clinical and pharmacological role of transporters of this family. Knowledge about MRP1 

dynamics and functions is still fragmented, in contrast to its cousin ABCB1/P-gp. In the present 

work, all-atom MD simulations were performed in the pre- and post-hydrolysis states, 

respectively OF bMRP1-(ATP)2 and OF bMRP1-ATP-ADP, in different bilayers including PC 

and PE lipids as well as cholesterol, to compare their dynamics and structures. 

Global conformational dynamics in POPC:POPE:Chol (2:1:1) shows unfavoured dynamic EC 

opening, smaller NBD twist, and higher NBD distance indicating that the post-hydrolysis state 

adopt a close-conformation rather than outward-open conformation. EC closing and IC 

opening are likely necessary for the OF-to-IF conformational changes. Present results as well 

as our previous studies2 clearly indicate that outward-facing open conformation is a transient 

state which may exist only for the substrate release. We here therefore suggest that the use 

of “OF” conformation for such states should perhaps be replaced by the so-called “close-

conformation” (cc) as stated for ABCB434. It is worth mentioning, that only a few V-fold ABC 

transporters were resolved with a clear open OF conformation (e.g., the historical Sav186635) 

as shown in Supplementary Fig. 15. 

Our present work also highlighted the structural dynamics of the L0 domain. MD simulations 

suggest the existence of a dynamic interaction with NBD1, which tends to be more pronounced 

in the post-hydrolysis state. Even though no clear clue was obtained to better understand its 

role, previous experiments have shown that the lasso motif is required for MRP1 function5,6. 

Surprisingly, it has been shown that co-expression of L0 is however sufficient for substrate 

transport by MRP15. Altogether with our present results, this may suggest that simply the L0-

NBD1 non-covalent interactions may play a role in triggering the OF-to-IF large scale 

conformational change. However, such assumption will require further joint experimental and 

computational investigations. 

Particular attention has been paid to the NBDs. NBD rocker-switch angle slightly but 

significantly deviate by ca. 5° between pre- and post-hydrolysis state. In agreement with 

structural insights observed in P-gp, hydrolysis induces local conformational changes in the 

conserved motifs, mostly in the signature motif36. This is in agreement with P-gp for which two 

EC opening main populations were observed depending on A-loop position37. However, in 

MRP1, calculated EC opening deviation remain lower than P-gp. This might be explained by a 

different inherent behaviour of MRP1, which may more pronounced owing to the fact the NBD1 

is degenerated. Indeed, as shown in our former study2, NBD1 coupling helix does not adopt 

the “ball-and-socket” conformation, leading to lower transduction signal from NBD to TMDs. 

Our present calculations also confirm that ATP-binding in NBS1 acts likely as pivot since NBD1 

and NBS1 are almost structurally identical regardless of the hydrolysis state. NBD2 exhibit 

pseudo-asymmetric structural deformation on the NBS2 side after ATP-hydrolysis. This was 

confirmed by the monitoring of the local distances, as well as non-covalent interactions 

between the nucleotides and the protein (including H-bond, van der Waals and Coulomb 

potentials) that suggest stronger interaction between the ATP and conserved motifs in NBS1 

than in NBS2 even in the post-hydrolysis state. This strengthen the hypothesis suggesting that 

ATP release from NBS1 is unlikely even during several transport cycles27. Finally, our present 

MD simulations also strengthen the expected central role of PE lipids in the inner leaflet as 

well as cholesterol in the so-called Cholesterol recognition amino acid consensus (CRAC) or 
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inverted (CARC) motifs. Indeed, these motifs were also observed in other ABC transporters as 

well for MRP138. However, their active role still requires to be elucidated. 
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This study investigates the role of 16 (used alone or in combination) previously reporter CFTR 

correctors that rescue the plasma membrane targeting of F508del-CFTR on another 

ATP-binding cassette transporter, namely on ABCB4 from the ABC B-family. It was a side 

project, strongly connected to my main project as ABCB4 is also important in pharmacology, 

and since it is an ABC transporter, it shows similarities to MRP1. Moreover, during this project, 

I had the opportunity to learn about molecular docking method using AutoDock Vina. 25 ABCB4 

transport phosphatidylcholine to the bile canaliculi. Genetic variations of ABCB4 are 

associated to diseases from which the progressive familial intrahepatic cholestasis type 1 and 

3 are the most important. The aim of this study is to find new therapeutical approaches. To 

achieve it the effect of known CFTR/ABCC7 correctors on ABCB4 was investigated using 

experimental techniques supported by theoretical simulations. As I was participating in the 

theoretical part, details of the experiments are not included in this thesis. 

 

 

Abbreviations: ABC, ATP-binding cassette; ABCB4cc, ABCB4-closed conformation; 
ABCB4if, ABCB4-inward facing conformation; ATP, adenosine triphosphate; CFTR, cystic 
fibrosis transmembrane conductance regulator; CH, coupling helix; ER, endoplasmic 
reticulum; HEK, human embryonic kidney; NBD, nucleotide binding domain; PC, 
phosphatidylcholine; PFIC3, progressive familial intrahepatic cholestasis type 3; TM, 
transmembrane helix; UDCA, ursodeoxycholic acid; WT, wild type. 
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Abstract 

Background & aim: ABCB4 is expressed at the canalicular membrane of hepatocytes. This 

ATP-binding cassette (ABC) transporter is responsible for the secretion of phosphatidylcholine 

into bile canaliculi. Missense genetic variations of ABCB4 are correlated with several rare 

cholestatic liver diseases, the most severe being progressive familial intrahepatic cholestasis 

type 3 (PFIC3). In a repurposing strategy to correct intracellularly retained ABCB4 variants, we 

tested 16 compounds previously validated as cystic fibrosis transmembrane conductance 

regulator (CFTR) correctors. 

Methods: The maturation, intracellular localization and activity of intracellularly retained 

ABCB4 variants were analyzed in cell models after treatment with CFTR correctors. In addition, 

in silico molecular docking calculations were performed to test the potential interaction of CFTR 

correctors with ABCB4. 

Results: We observed that the correctors C10, C13, and C17, as well as the combinations of 

C3 + C18 and C4 + C18, allowed the rescue of maturation and canalicular localization of four 

distinct traffic-defective ABCB4 variants. However, such treatments did not permit a rescue of 

the phosphatidylcholine secretion activity of these defective variants and were also inhibitory 

of the activity of wild type ABCB4. In silico molecular docking analyses suggest that these 

CFTR correctors might directly interact with transmembrane domains and/or ATP-binding sites 

of the transporter. 

Conclusion: Our results illustrate the uncoupling between the traffic and the activity of ABCB4 

because the same molecules can rescue the traffic of defective variants while they inhibit the 

secretion activity of the transporter. We expect that this study will help to design new 

pharmacological tools with potential clinical interest. 

KEYWORDS 

ABC transporters, bile secretion, cell models, cholestatic liver diseases, molecular docking, 

targeted pharmacotherapy 

Lay summary 

• CFTR correctors rescue the maturation and the in vitro localization of four distinct ER-

retained ABCB4 variants identified in patients. 

• CFTR correctors do not rescue the function of these variants even if they are relocalized 

at the plasma membrane. 

• CFTR correctors inhibit the function of wild type ABCB4. 

• In silico molecular docking analyses suggest direct interactions of CFTR correctors with 

functional domains of ABCB4. 
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V.1. Introduction 

Bile secretion is an essential function of the liver for lipid digestion and absorption as well as 

the elimination of xenobiotics and endogenous metabolites. This function mainly depends on 

transporters localized at the apical (or canalicular) plasma membrane of hepatocytes such as 

ATP-binding cassette subfamily B member 4 (ABCB4), also known as multidrug resistance 

protein type 3 (MDR3). ABCB4 belongs to the superfamily of ATP-binding cassette (ABC) 

transporters which are transmembrane proteins able to bind and hydrolyze ATP in order to 

fulfil their biological functions1,2. The expression of ABCB4 is restricted to the canalicular 

membrane of hepatocytes3 and its role is to ensure secretion of phosphatidylcholine (PC) into 

bile4. With the co-secreted cholesterol and bile salts, PC forms mixed micelles in the aqueous 

environment of bile, thus avoiding the formation of cholesterol gallstones in the biliary tract as 

well as cell membrane damage by free bile acids on the canalicular membrane of hepatocytes 

and the apical membrane of cholangiocytes (for reviews, see1,5). Until now, more than 220 

distinct variations of the ABCB4-encoding gene have been reported, mostly in patients with 

cholestatis and cholelithiasis (see https://evs.gs.washington.edu/EVS/ and 

http://abcmutations.hegelab.org/). These genetic variations of ABCB4 can affect the 

expression, the traffic, the function or the stability of the protein. Indeed, we have previously 

proposed a classification of these variants into five distinct classes: class I with no protein 

expression, class II with intracellular retention; class III with functional defects, class IV with 

stability impairment and class V with no apparent defect6,7. More details about ABCB4 function, 

genetic disorders and subsequent diseases can be found in the recent review by Kroll et al.8. 

The most severe ABCB4-related disease is progressive familial intrahepatic cholestasis type 

3 (PFIC3), which is a rare autosomal recessive disease affecting homozygous or compound 

heterozygous patients during childhood9. PFIC3 appears during the first months of life and is 

characterized by chronic cholestasis, jaundice and pruritus10. The only pharmacological 

treatment for PFIC3 patients is the administration of ursodeoxycholic acid (UDCA), a bile acid 

with low hydrophobicity which renders the bile less toxic11,12. However, more than half of PFIC3 

patients display no or little response to UDCA treatment and worsening of the disease most 

often requires liver transplantation10,13. Therefore, the therapeutic challenge is to identify new 

targeted pharmacotherapies as an alternative to liver transplantation for patients with severe 

forms of ABCB4-related diseases.  

Looking for correctors of class II endoplasmic reticulum (ER)-retained ABCB4 variants, we 

have recently shown that structural analogues of roscovitine are able to partially rescue the 

traffic, localization and function of these variants14. In the present study, in order to pursue this 

repositioning strategy, we were interested in correctors previously shown to rescue the plasma 

membrane targeting of the F508del variant of ABCC7/CFTR (cystic fibrosis transmembrane 

conductance regulator), the ABC transporter mutated in patients with cystic fibrosis (see 

Supplementary Table S1, and references therein). While we observed that CFTR correctors 

are able to rescue the maturation and the localization of several ER-retained ABCB4 variants, 

we report that they are not able to rescue their PC secretion activity and that they also inhibit 

the activity of the wild type transporter. These two effects might be due to direct interactions of 

CFTR correctors with functional domains of ABCB4 such as transmembrane domains and/or 

nucleotide binding domains, as suggested by in silico molecular docking calculations. 

 

 

https://evs.gs.washington.edu/EVS/
http://abcmutations.hegelab.org/
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V.2. Materials and methods 

Details are reported in sections 2.1-2.4 of the article. 

Shortly, plasmids encoding the wild type ABCB4 or an ER-retrained variant produced by 

site-directed mutagenesis were used in human embryonic kidney (HEK-293) cells and human 

hepatocellular carcinoma HepG2 cells. Cytotoxicity of the CFTR correctors was assessed. 

Immunoblots and indirect fluorescence analyses were performed to compare wild type and 

mutant ABCB4 expression. The ABCB4-mediated phosphatidylcholine secretion was 

measured. 

V.2.1. In silico molecular docking and calculations 

Two conformations of human ABCB4 (hABCB4) were considered for molecular docking 

calculations, namely inward-facing and closed conformations (ABCB4if and ABCB4cc, 

respectively). ABCB4if was built by homology modeling using the inward-facing human ABCB1 

(hABCB1) protein data bank structure (PDB ID: 6QEX),20 given the high sequence identity 

between hABCB1 and hABCB4 (76.8%, see Fig. S1). ABCB4cc model was built using the 

recently resolved cryo-EM structure of ABCB4cc structure trapped in ATP-bound state (PDB ID: 

6S7P).21 The non-resolved extracellular loop (residues 85-104) of ABCB4cc was built based on 

the resolved hABCB1 structure. For both models, L1-linker connecting nucleotide binding 

domain (NBD) 1 to transmembrane helix (TM) 7, and the N- and C-terminal domains were not 

included in the present study owing to their absence in both resolved hABCB1 and hABCB4 

structures (Fig. S1). Present models did not include the ATP molecules. Homology modeling 

was performed using the Modeller software version 9.23.22-24 Prior to docking calculations, both 

models were minimized in solvated membrane lipid bilayers that were removed for docking 

calculations (for further details, see Appendix S1). 

Molecular docking calculations were carried out using the Autodock Vina software.25 Given the 

absence of a priori knowledge about the interaction mechanism of CFTR correctors, the 

following procedure was performed to extensively sample plausible binding sites of CFTR 

correctors to both ABCB4if and ABCB4cc conformers. First, so-called “blind” docking 

calculations were performed with all ligands in which the whole protein was considered as 

intentionally too large volume search space centered on the protein center of mass for both 

ABCB4if and ABCB4cc conformations (Table S2A). A set of 20 replicas per CFTR corrector was 

performed, using different random seeds, providing a total of approximately 6400 poses per 

ABCB4 conformation. These molecular poses exhibited clusters located at different spatial 

regions (see Fig. S2). Refined docking calculations were then performed in which smaller 

space search volumes were used (Fig. S3), which do not exceed the recommended search 

volume of 27 000 Å3 to ensure the reliability of docking calculation results. Again, 20 replicas 

of refined molecular docking calculations were performed for each CFTR corrector. For blind 

and refined docking calculations, exhaustiveness was set to 40 and 100, respectively, to 

increase the computational effort used during molecular pose search.26 The maximum number 

of poses was set to 100 by replica, and the initial affinity cutoff was defined at 15 kcal.mol-1 

with respect to the top pose of a given replica. The list of flexible residues allowed for each 

volume search space is reported in Table S2B. Given the large number of plausible flexible 

residues, only sidechain Cβ-C bonds were allowed to rotate as a compromise within the limit 

of 32 rotatable bonds allowed by Autodock Vina software. 
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Additional information about ABCB4 and ligand preparations as well as analyses is provided 

in Appendix S1. 

V.2.2. Statistics 

Graphics and one-way ANOVA tests were performed using Prism version 7.00 (GraphPad 

Software). A P value of less than 0.05 was considered significant with *P <.05; **P <.01; ***P 

<.005; ns: not significant. Symbols always indicate the comparison between the control 

(vehicle-treated) and the other tested conditions. 

V.3. Results 

Details are reported in sections 3.1-3.3 of the article. 

To sum up, the first step was to make sure that none of the components is cytotoxic. That was 

followed by the study of the maturation and the localization of the wild type and four mutants. 

The results show that some of the correctors are able to rescue the traffic and maturation of 

all the tested variants. However, CFTR correctors do not significantly restore the function, 

moreover they inhibit the wild type. 

V.3.1. Molecular docking calculations reveal different plausible binding regions of CFTR 

correctors within ABCB4 

We hypothesized that the inhibition of ABCB4 activity by CFTR correctors could be related to 

their direct interaction with functional domains of the transporter. To test this possibility, we 

performed in silico molecular docking simulations. Blind calculations were first performed using 

large box parameters (Table S2A) with inward-facing ABCB4 (ABCB4if) and its closed 

conformation (ABCB4cc) wherein no a priori plausible structural binding regions were defined 

(for details, see Materials and Methods). This provided 6398 and 6395 molecular poses for 

ABCB4if and ABCB4cc, respectively. Molecular poses were then spatially clustered, revealing 

a single binding site for CFTR correctors within ABCB4if while three binding sites were obtained 

for ABCB4cc (Fig. S2). In ABCB4if, 95% of molecular poses are located in ABCB4 protein 

chamber (Table S3), expected to be the canonical phospholipid binding site region.21 

Regarding ABCB4cc, 81% of molecular poses can be initially divided into three distinct regions, 

namely an alternative site at the lipid–protein interface (30% of molecular poses) and the two 

known ATP-binding sites at both NBD interfaces (15 and 36% for ATP-binding sites 1 and 2, 

respectively – see Table S3). Given the low sensitivity of blind docking calculations, regions 

obtained from blind docking calculations on ABCB4if were also explored for refined docking 

calculations on ABCB4cc and vice versa (Fig. S3). It is worth mentioning that no molecular 

poses were observed for ATP-binding site regions on ABCB4if, which makes sense considering 

the large distance between the two NBDs in this conformation. Altogether, refined molecular 

docking calculations on ABCB4if highlight the relevance of the so-called protein chamber 

(Fig. 36A). Regarding ABCB4cc, molecular docking calculations suggested six possible regions 

for CFTR corrector binding; namely protein chamber, ATP-binding sites 1 and 2, and three 

alternative sites 1, 2, and 3 at the lipid–protein interface (Fig. S3 and Fig. 36A). 
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Figure 36. In silico molecular docking of CFTR correctors suggests their direct interaction with 

ABCB4. 

(A) In silico molecular docking of the six color-coded CFTR correctors was performed with ABCB4 in inward-facing 

(ABCB4if) and closed conformation (ABCB4cc) models (see Materials and Methods for details). For ABCB4if, a 

single site of potential interaction was identified in the protein chamber, whereas three sites were identified for 
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ABCB4cc in an alternative site and the two ATP-binding sites. For each CFTR corrector and for each site, the 50 

poses with the highest affinities from 20 independent simulations are shown. (B) For each of the six CFTR correctors 

of interest, the contact rate of ABCB4 residues was calculated for the four sites of interest shown in A (see Materials 

and Methods for details). For the sake of clarity, only residues for which the average contact rates (± SD) were 

higher than the thresholds indicated by the dashed lines are shown. 

Thorough analysis over all molecular poses was then performed for each binding site to stress 

out key residues possibly involved in CFTR corrector binding to ABCB4. Only poses exhibiting 

binding affinity difference with respect to top-ranked molecular poses below 2.0 kcal.mol-1 

were considered as already described.31 In total, a set of 38 670 molecular poses over 50 482 

were obtained from refined molecular docking calculations (Table S4). Accounting 

aforementioned in vitro results, special attention was paid to selected CFTR correctors, namely 

C3, C4, C10, C13, C17, and C18 (Fig. 36A). Contact analyses using a 4.5 Å cutoff were 

performed allowing to decipher key residues to CFTR corrector binding in the four regions of 

interest in ABCB4 (Fig. 36B). It is worth mentioning that contact analyses performed over the 

whole set of CFTR correctors exhibit similar profiles with respect to selected CFTR correctors 

(Fig. S4). Eleven residues are in contact with the selected CFTR correctors in at least 50% of 

calculated molecular poses in ABCB4if protein chamber (Fig. 36B). Most of these residues are 

either aromatic (histidine, phenylalanine, and tyrosine) or aliphatic (alanine, leucine), and 

presumably involved in substrate binding (Fig. 37A), as proposed recently for His989 and 

Ala99021 in ABCB4if protein chamber (underlined residues in Fig. 37A). Molecular docking 

calculations in ABCB4cc alternative site 1 clearly suggested the key role of Val192, Phe195, 

Ile354, and Phe357, for which contacts are higher than 90% (Fig. 36B and 37A). Likewise, 

binding to alternative sites 2 and 3 involved mostly contacts with aliphatic residues (Leu842, 

Val864, Ile867, Ala868, Leu987, Ala990, Ser991, and Ala994 for alternative site 2 and Leu724, 

Ala727 and Leu761 for alternative site 3). Contact analyses of ABCB4cc ATP-binding sites and 

protein chamber exhibited more residues per site owing to smaller volumes as well as more 

important steric hindrance. Indeed, molecular docking calculations revealed seventeen, ten, 

and seven residues for which contact rate is higher than 90% in ABCB4cc protein chamber, 

ATP-binding sites 1 and 2, respectively (Fig. 36B). Regarding ATP-binding sites, residue 

profile again included not only aromatic amino acids (e.g., NBD A-loop residues Tyr403 and 

Tyr1043) but also polar residues such as arginine (Arg406 and Arg1046) (Fig. 37A). Residue 

profile for ABCB4cc protein chamber included mostly polar and aliphatic residues (see Fig. 36B 

and 37A). For all ABCB4 binding sites, thorough analyses of non-covalent interactions (H-bond 

and van der Waals interactions) were performed, highlighting the key role of -stacking 

interactions between CFTR correctors’ aromatic rings and ABCB4 aromatic residues (Table 

S5). This was clearly shown for ABCB4cc alternative site 1 and ATP-binding sites 1 and 2 for 

which Phe195, Phe357, Tyr403 or Tyr1043 are involved in all π-stacked conformations. To a 

lesser extent, H-bonding were also shown to be relevant. For instance, H-bonding with Gln725 

were involved in 21% of molecular poses in ABCB4if protein chamber. Likewise, H-bonding 

between CFTR correctors and Arg904 (ABCB4cc ATP-binding site 1), Arg1046, or Glu1080 

(ABCB4cc ATP-binding site 2) are involved in 27, 21, and 21% of molecular poses, respectively 

(Table S5). 
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Figure 37. In silico molecular docking of CFTR correctors reveals putative interaction residues 

and domains in ABCB4. 

(A) ABCB4 residues indicated in Fig. 36B with dark grey bars for which the contact rate is greater than 50% 

(ABCB4if -Protein chamber) or 90% (ABCB4cc) are represented with their lateral chains in the 3D structures of 

ABCB4if and ABCB4cc. Each transmembrane domain and nucleotide binding domain are represented in different 

colors, as well as the coupling helices (see Table S6). Underlined residues are further discussed in the Discussion 

section. (B) ABCB4 transmembrane domains (TM), nucleotide-binding domains (NBD), and coupling helices (CH), 

for which potential interaction with CFTR correctors is suggested in Fig. 36B and 37A, are highlighted with the 

indicated color code. 
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Finally, molecular docking calculations and aforementioned atomic-scaled analyses allowed to 

define putative binding sites in terms of secondary structure (Table S6). ABCB4if protein 

chamber involved the lipid-embedded regions of all TMs but TM11 (Fig. 37B). ABCB4cc 

alternative site 1 is defined by TM1, TM3, TM4, and TM6 (Fig. 37B). Alternative sites 2 and 3 

are located on the other side of ABCB4cc, involving TM1, TM4-6, TM7-9, and TM12 for site 2 

and TM9, TM10-12 for site 3. Alternative sites 1 and 2 are interfacing with lower leaflet 

membrane while alternative site 3 is in contact with upper leaflet membrane. In addition to 

known residues involved in ATP binding, ABCB4cc ATP-binding site regions were also defined, 

including the coupling helices (CH), namely CHs between TM2 and 3 and TM10 and 11 for 

ATP-binding site 1, and CHs between TM4 and 5 and TM8 and 9 for ATP-binding site 2 

(Fig. 37B). Altogether, these in silico molecular docking analyses suggest that CFTR 

correctors might directly interact with functional domains of ABCB4, which could explain their 

effect on ABCB4 activity. 

V.4. Discussion 

Genetic variations of the phospholipid floppase ABCB4 are correlated with rare cholestatic liver 

diseases, the most severe form being PFIC3. Some of these genetic variations can cause 

ABCB4 misfolding, its retention in the ER and, as a result, the loss of its phospholipid floppase 

function.6 In previous studies, we and others have demonstrated that small molecules such as 

cyclosporins,6,16 4-phenylbutyrate (4-PBA), curcumin,32 and structural analogs of roscovitine14 

are able to partially rescue the intracellular traffic and the cell surface localization of 

ER-retained ABCB4 variants. However, cytotoxicity, inhibitory effect on ABCB4 function,33 

bioavailability, or the high used concentration of these molecules are major limitations for their 

therapeutic use. In the present study, to identify new correctors for ER-retained ABCB4 

variants, we explored the potential effect of several molecules, developed as CFTR correctors, 

on four distinct ER-retained ABCB4 variants identified in patients (I490T, I541F, R545H, L556R 

mapped in Fig. S5). CFTR correctors, which were used in this study, are small molecules, 

mostly identified by high-throughput screening strategies to correct the traffic of F508del-

CFTR, the most frequent genetic variation detected in patients with cystic fibrosis.34 The 

extended use of these correctors is an attractive option for multiple rare diseases associated 

with protein misfolding and missorting. Interestingly, some of these molecules have been 

shown to successfully correct the intracellular localization and the function of other defective 

ABC transporters such as ABCA335 and ABCA428 and also ER-retained variants of ATP8B136 

and α-sarcoglycan,37 proteins without CFTR similarity. Here, we show that the correctors C10, 

C13, and C17 as well as the combinations of C3 + C18 and C4 + C18 can partially rescue the 

maturation and the plasma membrane targeting of four defective ABCB4 variants. Further 

investigations at the molecular level will be required to determine the capacity of these CFTR 

correctors to rescue a proper folding of the class II ER-retained ABCB4 variants studied here, 

thus allowing their plasma membrane targeting. The fact that the floppase activity of the I541F, 

I490T, and L556R variants of ABCB4 can be partially rescued by roscovitine analogs14 

indicates that these missense variants have intrinsic activity once rescued at the plasma 

membrane. However, the CFTR correctors tested here are not able to restore the function of 

the ER-retained ABCB4 variants and they also inhibit the floppase activity of ABCB4-WT. 

Although none of the compounds used in this study have been tested in vivo or in clinics, it is 

interesting to note that rare cases of cholestasis have been reported in patients taking 

sildenafil,38,39 the parent molecule of C9 and C10, as well as cystic fibrosis patients treated with 

Orkambi, which contains VX-809/Lumacaftor – a derivative from C18/VX-534 

(https://www.ema.europa.eu/en/documents/product-information/orkambi-epar-product-
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information_en.pdf), arguing for a potential inhibitory effect of these molecules on canalicular 

ABC transporters. It is noteworthy to mention that this is not the first time that inhibitory effects 

of correctors on ABCB4 function are reported. Indeed, cyclosporin A, roscovitine and triazole 

compounds such as itraconazole were shown to inhibit ABCB4 floppase activity.14,33,40 

Sildenafil, the C10 parent molecule, has also been shown to inhibit the transport function of 

ABCB1,41 which exhibits 86% sequence-based similarity with ABCB4.42 The PgpRules 

prediction tool (https://pgprules.cmdm.tw/)43 indicates that C3, C4, C10, C13, C17, and C18 

might inhibit ABCB1 (data not shown), suggesting similar inhibitory mechanisms on ABCB4. It 

is important to note that PgpRules prediction tool is initially designed to predict ABCB1 

inhibition. Given (i) the high sequence-based similarity between both transporters and (ii) the 

inhibitor overlaps for both transporters, one can expect that they might, at least partially, share 

inhibition mechanisms, despite the divergence of substrates translocated by these two 

transporters.8 Furthermore, even if CFTR correctors belong to different chemical classes 

(quinolines, bithiazoles, quinazolines, pyrimidines),34 they share features with pharmacophore 

models of ABCB1 inhibitors previously described as hydrophobic, hydrogen bond acceptor, 

aromatic ring centered with positive ionizable moieties.44 

To explain how these CFTR correctors could correct missorting of ABCB4 variants and at the 

same time inhibit the floppase activity of the transporter, we suggest that these small molecules 

may directly interact with ABCB4. Such an interaction has already been reported for C18 with 

CFTR.45 To virtually test this hypothesis, we investigated the putative binding sites of CFTR 

correctors in ABCB4 by in silico docking simulations. Using two models of human ABCB4 in 

inward-facing and closed conformations (ABCB4if and ABCB4cc, respectively), we identified 

seven distinct plausible binding regions for CFTR correctors: protein chambers in both ABCB4if 

and ABCB4cc models; three alternative sites at the protein–lipid interface and two ATP-binding 

sites in ABCB4cc. Analysis of contact residues with a 4.5 Å cutoff around the docked poses of 

CFTR correctors indicated that several key residues could be involved in CFTR corrector 

binding. In ABCB4if, we identified His989 and Ala990 as potential interactors with CFTR 

correctors, these residues having been recently shown to be crucial for PC binding and ABCB4 

function.21 We also detected Gln725, a residue conserved in ABCB1, and implicated in the 

binding of tariquidar.46 Concerning ABCB4cc, we identified Phe357, Tyr403, and Arg1046 

located in the alternative site 1, the ATP binding sites 1 and 2, respectively. These three 

residues were previously reported to be mutated in patients suffering from PFIC3 and low-

phospholipid associated cholelithiasis syndrome,47-49 suggesting their important role in ABCB4 

expression and function. Moreover, Tyr403 and Arg1046 were also reported to be essential 

for ATP binding and hydrolysis.21,50 It is thus tempting to speculate that the predicted direct 

interaction of CFTR correctors with key residues of ABCB4 may preclude its phospholipid 

floppase activity. This view is supported by the fact that sildenafil (the C10 parent molecule) 

and C3 impair the function of ABCB1 and CFTR, respectively.41,51 It is important to note that 

present molecular docking calculations should be considered as an “idea generator” rather 

than a strong prediction. Thus, these aspects will require further joint experimental and 

theoretical confirmations, including s-scaled molecular dynamics simulations. However, in 

silico findings might help in the design of site-directed mutagenesis variants to decipher small 

molecule-dependent inhibition mechanisms of ABCB4. 

We propose that the trafficking rescue of ABCB4 variants mediated by CFTR correctors may 

be conferred through their direct interaction with critical domains of ABCB4, as suggested by 

our in silico docking analyses. We expect that our findings will help to design new non-inhibitory 

ABCB4 correctors that may lead to the preclinical development of pharmacological alternative 
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to UDCA treatment and liver transplantation. Indeed, if our hypothesis is confirmed, the next 

challenge will be to identify small molecules that are able to promote folding and trafficking of 

defective variants without compromising their activity. Thus, further investigations are eagerly 

needed to optimize bioavailability and affinity of these correctors, not only to promote traffic 

correction but also to maintain the function of the transporter. 

 

Acknowledgements, Conflict of interest, Autor contribution, Data availability, and ORCID 
are reported in the article. 

 

V.5. References 

[1] Falguières T, Aït-Slimane T, Housset C, Maurice M. ABCB4: insights from pathobiology 

into therapy. Clin Res Hepatol Gastroenterol. 2014;38(5):557-563. 

[2] Srikant S, Gaudet R. Mechanics and pharmacology of substrate selection and transport 

by eukaryotic ABC exporters. Nat Struct Mol Biol. 2019;26(9):792-801. 

[3] Smit JJ, Schinkel AH, Mol CA, et al. Tissue distribution of the human MDR3 P-

glycoprotein. Lab Invest. 1994;71(5):638-649. 

[4] Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine 

mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver 

disease. Cell. 1993;75(3):451-462. 

[5] Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3(3):1035-1078. 

[6] Delaunay JL, Durand-Schneider AM, Dossier C, et al. A functional classification of 

ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology. 

2016;63(5):1620-1631. 

[7] Vauthier V, Housset C, Falguieres T. Targeted pharmacotherapies for defective ABC 

transporters. Biochem Pharmacol. 2017;136:1-11. 

[8] Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP 

Binding Cassette Transporters. Chem Rev. 2020. 

[9] Jacquemin E, De Vree JM, Cresteil D, et al. The wide spectrum of multidrug resistance 

3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology. 

2001;120(6):1448-1458. 

[10] Jacquemin E. Progressive familial intrahepatic cholestasis. Clin Res Hepatol 

Gastroenterol. 2012;36(Suppl 1):S26-S35. 

[11] Poupon R. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for 

cholestatic liver diseases: An overview of their mechanisms of action. Clin Res Hepatol 

Gastroenterol. 2012;36(Suppl1):S3-S12. 

[12] Achufusi TGO, Safadi AO, Mahabadi N. In: StatPearls. Treasure Island (FL), ed. 

Ursodeoxycholic Acid. StatPearls Publishing; 2020. 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 131 

License CC BY-NC-ND 4.0 

[13] Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. The spectrum of liver diseases 

related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis. 

2010;30(2):134-146. 

[14] Vauthier V, Ben Saad A, Elie J, et al. Structural analogues of roscovitine rescue the 

intracellular traffic and the function of ER-retained ABCB4 variants in cell models. Sci Rep. 

2019;9(1):6653. 

[15] Delaunay JL, Durand-Schneider AM, Delautier D, et al. A missense mutation in ABCB4 

gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect 

that can be rescued by low temperature. Hepatology. 2009;49(4):1218-1227. 

[16] Gautherot J, Durand-Schneider AM, Delautier D, et al. Effects of Cellular, chemical and 

pharmacological chaperones on the rescue of a trafficking-defective mutant of the ATP-binding 

cassette transporters ABCB1/ABCB4. J Biol Chem. 2012;287(7):5070-5078. 

[17] Poupon R, Rosmorduc O, Boelle PY, et al. Genotype-phenotype relationships in the low-

phospholipid associated cholelithiasis syndrome. A study of 156 consecutive patients. 

Hepatology. 2013;58(3):1105-1110. 

[18] van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods 

Mol Biol. 2011;731:237-245. 

[19] Gautherot J, Delautier D, Maubert MA, et al. Phosphorylation of ABCB4 impacts its 

function: insights from disease-causing mutations. Hepatology. 2014;60(2):610-621. 

[20] Alam A, Kowal J, Broude E, Roninson I, Locher KP. Structural insight into substrate and 

inhibitor discrimination by human P-glycoprotein. Science. 2019;363(6428):753-756. 

[21] Olsen JA, Alam A, Kowal J, Stieger B, Locher KP. Structure of the human lipid exporter 

ABCB4 in a lipid environment. Nat Struct Mol Biol. 2019;27(1):62-70. 

[22] Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J 

Mol Biol. 1993;234(3):779-815. 

[23] Fiser A, Do RKG, Šali A. Modeling of loops in protein structures. Protein Sci. 

2000;9(9):1753-1773. 

[24] Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein 

structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29(1):291-

325. 

[25] Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a 

new scoring function, efficient optimization, and multithreading. J Comput Chem. 

2010;31(2):455-461. 

[26] Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–

ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905-

919. 

[27] Lopes-Pacheco M, Boinot C, Sabirzhanova I, Morales MM, Guggino WB, Cebotaru L. 

Combination of correctors rescue deltaF508-CFTR by reducing Its association with Hsp40 and 

Hsp27. J Biol Chem. 2015;290(42):25636-25645 

[28] Sabirzhanova I, Lopes-Pacheco M, Rapino D, et al. Rescuing trafficking mutants of the 

ATP binding cassette protein, ABCA4, with small molecule correctors as a treatment for 

Stargardt eye disease. J Biol Chem. 2015;290(32):19743-19755. 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 132 

License CC BY-NC-ND 4.0 

[29] Sormunen R, Eskelinen S, Lehto VP. Bile canaliculus formation in cultured HEPG2 cells. 

Lab Invest. 1993;68(6):652-662. 

[30] Tougeron D, Fotsing G, Barbu V, Beauchant M. ABCB4/ MDR3 gene mutations and 

cholangiocarcinomas. J Hepatol. 2012;57(2):467-468. 

[31] Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual Screening 

with AutoDock: theory and practice. Expert Opin Drug Discov. 2010;5(6):597-607. 

[32] Gordo-Gilart R, Andueza S, Hierro L, Jara P, Alvarez L. Functional rescue of trafficking-

impaired ABCB4 mutants by chemical chaperones. PLoS One. 2016;11(2):e0150098. 

[33] Andress EJ, Nicolaou M, Romero MR, et al. Molecular mechanistic explanation for the 

spectrum of cholestatic disease caused by the S320F variant of ABCB4. Hepatology. 

2014;59(5):1921-1931. 

[34] Spanò V, Montalbano A, Carbone A, Scudieri P, Galietta LJV, Barraja P. An overview on 

chemical structures as ΔF508-CFTR correctors. Eur J Med Chem. 2019;180:430-448. 

[35] Kinting S, Höppner S, Schindlbeck U, et al. Functional rescue of misfolding ABCA3 

mutations by small molecular correctors. Hum Mol Genet. 2018;27(6):943-953. 

[36] van der Woerd WL, Wichers CG, Vestergaard AL, et al. Rescue of defective ATP8B1 

trafficking by CFTR correctors as a therapeutic strategy for familial intrahepatic cholestasis. J 

Hepatol. 2016;64(6):1339-1347. 

[37] Carotti M, Marsolier J, Soardi M, et al. Repairing folding-defective α-sarcoglycan mutants 

by CFTR correctors, a potential therapy for limb-girdle muscular dystrophy 2D. Hum Mol 

Genet. 2018;27(6):969-984. 

[38] Wolfhagen FH, Vermeulen HG, de Man RA, Lesterhuis W. Initially obscure hepatotoxicity 

attributed to sildenafil. Eur Journal Gastroenterol hepatol. 2008;20(7):710-712. 

[39] Enomoto M, Sakaguchi H, Ominami M, et al. Sildenafil-induced severe cholestatic 

hepatotoxicity. Am J Gastroenterol. 2009;104(1):254-255. 

[40] Yoshikado T, Takada T, Yamamoto T, et al. Itraconazole-induced cholestasis: 

involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol 

Pharmacol. 2011;79(2):241-250. 

[41] Shi Z, Tiwari AK, Shukla S, et al. Sildenafil reverses ABCB1-and ABCG2-mediated 

chemotherapeutic drug resistance. Cancer Res. 2011;71(8):3029-3041. 

[42] Morita SY, Terada T. Molecular mechanisms for biliary phospholipid and drug efflux 

mediated by ABCB4 and bile salts. Biomed Res Int. 2014;2014:954781. 

[43] Wang PH, Tu YS, Tseng YJ. PgpRules: a decision tree based prediction server for P-

glycoprotein substrates and inhibitors. Bioinformatics. 2019;35(20):4193-4195. 

[44] Ekins S. Drug transporter pharmacophores. Transporters as Drug Carriers. 

2009;44:215-221. 

[45] Molinski SV, Shahani VM, Subramanian AS, et al. Comprehensive mapping of cystic 

fibrosis mutations to CFTR protein identifies mutation clusters and molecular docking predicts 

corrector binding site. Proteins. 2018;86(8):833-843. 

[46] Loo TW, Clarke DM. Mapping the binding site of the inhibitor Tariquidar that stabilizes 

the first transmembrane domain of P-glycoprotein. J Biol Chem. 2015;290(49):29389-29401. 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 133 

License CC BY-NC-ND 4.0 

[47] Degiorgio D, Colombo C, Seia M, et al. Molecular characterization and structural 

implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 

3 (PFIC3). Eur J Hum Genet. 2007;15(12):1230-1238. 

[48] Colombo C, Vajro P, Degiorgio D, et al. Clinical features and genotype-phenotype 

correlations in children with progressive familial intrahepatic cholestasis type 3 related to 

ABCB4 mutations. J Pediatr Gastroenterol Nutr. 2011;52(1):73-83. 

[49] Nakken KE, Labori KJ, Rødningen OK, et al. ABCB4 sequence variations in young adults 

with cholesterol gallstone disease. Liver Int. 2009;29(5):743-747. 

[50] Degiorgio D, Corsetto PA, Rizzo AM, et al. Two ABCB4 point mutations of strategic NBD-

motifs do not prevent protein targeting to the plasma membrane but promote MDR3 

dysfunction. Eur J Hum Genet. 2014;22(5):633-639. 

[51] Kim Chiaw P, Wellhauser L, Huan LJ, Ramjeesingh M, Bear CE. A chemical corrector 

modifies the channel function of F508del-CFTR. Mol Pharmacol. 2010;78(3):411-418. 

 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 134 

License CC BY-NC-ND 4.0 

Chapter VI. Phospholipid-porphyrin conjugates: deciphering the driving forces 

behind their supramolecular assemblies 

Louis-Gabriel Bronstein1#, Ágota Tóth2#, Paul Cressey1, Véronique Rosilio1, Florent Di 

Meo2* and Ali Makky1* 

1 Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France 
2 INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 rue du Prof. Descottes, F-87025, 

Limoges, France 

# Equally contributed 
* Corresponding authors: florent.di-meo@inserm.fr, ali.makky@universite.paris-saclay.fr 

Published, DOI: 10.1039/d2nr01158a 

This study investigates different phospholipid-porphyrin conjugates and the effect e.g., of the 

length of the linker on the self-assembly properties by means of experimental and molecular 

dynamics simulations. Thanks to the self-assembly capability, these conjugates show heigh 

interest in the usage for e.g., photo-activatable drug delivery systems. Although, the subject of 

this study is a bit distant from my main topic but thanks to this research, I have learnt more 

about the lipid bilayer properties described in Section I.2.3. Similarly, as in Chapter V, the 

details of the experiments are not included in this thesis 

Abstract 

Phospholipid–porphyrin conjugates (PL–Por) are nowadays considered as a unique class of 

building blocks that can self-assemble into supramolecular structures that possess 

multifunctional properties and enhanced optoelectronics characteristics compared to their 

disassembled counterparts. However, despite their versatile properties, little is known about 

the impact of the packing parameter of PL–Por conjugates on their assembling mechanism 

and their molecular organization inside these assemblies. To gain a better understanding on 

their assembling properties, we synthesized two new series of PL–Por conjugates with 

different alkyl sn2-chain lengths linked via an amide bond to either pheophorbide-a (PhxLPC) 

or pyropheophorbide-a (PyrxLPC). By combining a variety of experimental techniques with 

molecular dynamics (MD) simulations, we investigated both the assembling and optical 

properties of the PL–Por either self-assembled or when incorporated into lipid bilayers. We 

demonstrated that independently of the linker length, PhxLPC assembled into closed ovoid 

structures, whereas PyrxLPC formed rigid open sheets. Interestingly, PyrxLPC assemblies 

displayed a significant red shift and narrowing of the Q-band indicating the formation of ordered 

J-aggregates. The MD simulations highlighted the central role of the interaction between 

porphyrin cores rather than the length difference between the two phospholipid chains in 

controlling the structure of the lipid bilayer membranes and thus their optical properties. Indeed, 

while PhxLPC have the tendency to form inter-leaflet -stacked dimers, PyrxLPC conjugates 

formed dimers within the same leaflet. Altogether, this work could be used as guidelines for 

the design of new PL–Por conjugates that self-assemble into bilayer-like supramolecular 

structures with tunable morphology and optical properties. 

https://pubs.rsc.org/en/content/articlelanding/2022/NR/D2NR01158A
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VI.1. Introduction 

Amphiphilic compounds such as surfactants and phospholipids are molecules that possess 

both hydrophilic and hydrophobic blocks. When dispersed in water at sufficiently high 

concentrations (i.e., higher than their critical micelle concentration), they tend to self-assemble 

into a wide variety of supramolecular structures with a broad range of sizes and shapes such 

as micelles, vesicles, planar bilayers, nanotubes or nanofibers.1–4 These organized assemblies 

offer several functional properties with respect to their disassembled counterparts In this 

context, amphiphilic compounds have attracted great attention for biomedical, pharmaceutical, 

and industrial applications. This is particularly true regarding the assembly of amphiphilic 

porphyrins5 or porphyrinoids6,7 into supramolecular structures designed for photoactivatable 

drug delivery devices6–11 as well as light-harvesting nanosystems.12,13 Amphiphilic porphyrin 

derivatives appear as very promising scaffolds since they can self-assemble into 

supramolecular structures5 with adjustable photophysical properties and biomedical 

outcomes.14 Among the amphiphilic porphyrins that have been designed so far for the 

development of photo-activatable drug delivery systems, the phospholipid–porphyrin (PL– Por) 

conjugates initially proposed by Gang Zheng’s group9,15,16 belong to the most versatile 

compounds for biomedical applications. These conjugates are made of pyropheophorbide-a 

or bacteriochlorophyll-a photosensitizers (PSs) linked to the sn2 hydroxyl group of 1-

lysophosphatidylcholine (C16) via an esterification reaction. Such PL–Por conjugates self-

assemble into liposome-like nanostructures named “porphysomes”9 which exhibit a highly 

organized packing of the porphyrin molecules with improved optical and photophysical 

properties9,14 when compared to unconjugated porphyrin derivatives. In addition, such packed 

porphyrin organization enables the use of these assemblies in multiple applications including 

photothermal therapy (PTT), photo-triggered drug release, photoacoustic imaging or 

fluorescence imaging9 and photodynamic therapy (PDT) following their disassembly at the 

tumor site.9,17 The shape and morphology of the self-assembled structures of amphiphiles are 

usually predicted using simple models of the dimensionless geometric packing parameter 

(P = v/a·l) which is defined as the ratio between the volume of the hydrophobic part (v) of the 

amphiphiles and the optimal cross sectional surface area (a) of the hydrophilic headgroup 

times the length (l) of hydrophobic chains in their all trans conformation.1,2 Amphiphiles with 

packing parameters lower than 1/3 or between 1/3 and 1/2 form spherical and worm-like 

micelles, respectively. On the other hand, while double-tailed phospholipids exhibiting packing 

parameters lying between 1/2 and 1 form bilayers, those with P values larger than 1 self-

assemble into inverted hexagonal phases (HII).2,4 

Despite the versatile feature of PL–Por conjugates as building blocks for the design of 

multifunctional nanoplatforms,18–21 the impact of the geometrical packing parameter on the 

formation and properties of their assemblies, as well as on their mixing with host phospholipids, 

remains unclear.8,22–24 PL–Por building blocks initially consisting of a bulky porphyrin core 

directly attached to the hydroxyl group in sn2 position of 1-lysophosphatidylcholine (C16)9 

would exhibit a large area of the polar headgroup with concomitant mismatch between the 

length of the alkyl chain in sn1 position and the adjacent porphyrin. Thus, along the same line 

of thought of phospholipids assemblies, PL–Por conjugates are not expected to form bilayers, 

unless other driving forces or parameters are involved. Besides, the enlargement of the polar 

headgroup area caused by presence of the porphyrin core in its vicinity can be likely overcome 

by adding a linker between phosphatidylcholine headgroup and the porphyrin moiety. Indeed, 

changing the length of the alkyl chain in the sn2 position is expected to reduce the chain length 

difference between the two hydrophobic tails of the conjugate. It was expected that 
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chromophores grafted to a longer chain should align with the sn1 C16 alkyl chain improving 

the lateral packing properties. Indeed, Carter et al.22 used molecular dynamics simulations to 

demonstrate that conjugating devinyl hexyloxyethy-pyropheophorbide (HPPH, a pyro-a 

derivative) which possesses a hexyl ether moiety at its extremity, enabled the formation of 

stable bilayers with superior packing properties when compared to the pyro-a conjugate. Such 

high packing properties of HPPH-conjugates were related to the presence of hexyl ether moiety 

which provided a better space filling between the two bilayer leaflets.22 Beside the length 

difference between the two chains, changing the porphyrin structure should also play an 

important role in the intermolecular interaction between porphyrin cores which in turn might 

impact their stability and their photophysical properties. 

In the present work, we describe the syntheses of two new series of PL–Por conjugates 

exhibiting different alkyl chain lengths in sn2 position and linked via an amide bond to either 

pheophorbide-a (PhxLPC) or pyropheophorbide-a (PyrxLPC) (Fig. 38). The self-assemblies of 

the synthesized PL–Por conjugates as well as their incorporation into liposomes were then 

characterized in terms of morphology, optical properties and thermodynamics using cryogenic 

transmission electron microscopy (Cryo-TEM), absorbance/fluorescence spectroscopy and 

differential scanning calorimetry (DSC). Experimental observations were supported by 

molecular dynamics simulations providing an atomic-scale and dynamic pictures of porphyrin 

conjugate self-assemblies. The present joint experimental and computational investigations 

aim to provide reliable insights for understanding the role of (i) the porphyrin structure, (ii) the 

length of the linker and (iii) the role of surrounding lipid environment on the properties of PL-Por 

assemblies. 

 

Figure 38. Structure of phospholipid–porphyrin conjugates PhxLPC and PyrxLPC bearing 

pheophorbide-a and pyropheophorbide-a chromophore, respectively. 
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VI.2. Experimental section 

Details are reported in the sub-sections of the article. 

To sum up, the experimental section starts with the description of the used chemicals and the 

synthesis of all phospholipids and the lipid–porphyrin conjugates. In the experimental part 

Cryogenic transmission electron microscopy (Cryo-TEM) was used. Absorption and 

fluorescence were measured and differential scanning calorimetry (DSC) experiments were 

performed. 

Force fields and system builder 

The Amber force field (FF) Lipid17 27,28 was used to described DPPC and POPC lipid 

molecules. PhxLPC and PyrxLPC parameters were derived from GAFF2 29 and Lipid17 FF and 

are available in ESI. † Atomic charges of porphyrin core and linker moieties were derived 

applying the AM1-bcc method using the antechamber package. Lipid bilayer membranes were 

solvated using the TIP3P water model 30 using a hydration level set up at ca. 40 water 

molecules per lipid. Given the size of porphyrin core and possible interdigitation of lipid tails in 

porphyrin rings, lipid bilayer membranes were all built by a homemade script (available upon 

request) and by taking advantage of the packmol-membrane package. Briefly, 3 + 3, 13 + 13 

and 64 + 64 molecules of PL–Por respectively corresponding to 2.5 mol%, 10 mol% and pure 

PL–Por systems were put on two grids for upper and lower leaflets. Initial box and grid sizes 

were defined to prevent steric clash between porphyrins accounting DPPC and POPC area 

per lipids.31 Initial area per lipid used to build pure PL–Por system was set up to 90 Å2 to avoid 

steric clashes. Packmol was also used to (i) build DPPC or POPC lipids around PyrxLPC and 

PhxLPC molecules and (ii) solvate with water molecules. Na+ and Cl− ions were then randomly 

added in water to match NaCl = 0.154 M. It is worth mentioning that for pure PL–Por systems, 

both trans and cis configurations were considered regarding porphyrin A-ring. 

Molecular dynamics simulations 

MD simulations were carried out using the CPU- and GPU-PMEMD (Particle Mesh Ewald 

Molecular Dynamics) codes available in Amber20 32 (see https://ambermd.org/). Systems were 

first minimized. Then, they were thermalized in (N,V,T) ensemble up to 298 K for 250 ps steps 

in which lipid PC polar head groups were restrained at 2.5 kcal mol−1 Å2, using a 1 fs integration 

timestep. Temperature was maintained using the Langevin thermostat with a collision 

frequency set to 1 ps−1. Pressure equilibration MD simulations were then performed in 

semi-isotropic (N, P, T) ensemble in 5 steps in which PC polar head restraints were smoothly 

switched off as follow: (i) 125 ps, 1 kcal mol−1 Å2, (ii) 500 ps, 0.5 kcal mol−1 Å2, (iii) 500 ps, 0.1 

kcal mol−1 Å2, (iv) 500 ps, no restraints and (v) 1000 ps, no restraints, using a 2 fs integration 

timestep. Except for the last step, semi-isotropic Berendsen barostat was used to control 

pressure. Then, Montecarlo barostat was used for the last equilibration step as well as 

production runs of DPPC- and POPC-LPC mixtures. Pressure was maintained using 

Berendsen barostat regarding pure PL–Por bilayer membranes owing to the large deviation of 

box sizes occurring during equilibration from initially built systems. Production MD simulations 

were then carried at 298 K, 1 atm for 1 and 2 s respectively for mixture and pure LPC lipid 

bilayers. It is worth mentioning that our present simulations are in line with the computational 

results obtained for similar systems accounting FF families as well as chemical differences 

(e.g., porphyrin core structures, presence of metal, lipid composition).22,33,34 

https://ambermd.org/
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Analysis 

Analyses were carried out over the last 500 ns of each run, ensuring stable equilibrated 

sampling. Most of the analyses were performed using the cpptraj and pytraj packages35 

(https://amberhub.chpc.utah.edu/) from the Amber20 suite. C-Atom lipid order parameters SCD 

were extrapolated from angles between C–H bonds and the bilayer normal.36 Likewise, 

orientations of porphyrin were obtained using the angle  between the lipid bilayer and the 

porphyrin core normal vectors. Order parameters were then obtained as follows:37 

Pz =
1

2
〈3cos2θ − 1〉 

Given that  correspond to porphyrin core normal, order parameter values range from 1 to -0.5 

respectively indicating that porphyrin core is aligned either to membrane plane or to lipid tails. 

-Stacking events were also calculated using similar approach used for H-bond analysis in 

cpptraj package. Briefly, for each porphyrin pair, inter-porphyrin core distance and angle were 

calculated over MD simulations. It is worth mentioning that porphyrin core was hereby defined 

by the tetrapyrrole moiety only. Inter-porphyrin core angles were measured by calculating the 

angle between the vectors perpendicular to porphyrin cores. For each porphyrin pair, 

-stacking event was counted as 1 if both the inter-porphyrin core distance and angle were 

below 8.0 Å and 10°, respectively. For each pair of porphyrins, fractions were then obtained 

by summing the total count of -stacking events over the number of frames considered during 

the analysis. Bilayer thicknesses and thicknesses maps were obtained based on the density 

of PC head P-atoms. Thickness maps were calculated on MD trajectories with 2 Å resolution 

on the xy-plane, using VMD Membplugin tool.38 Thicknesses were then calculated by 

averaging thickness map values over the three replicas. Assessment of the packing parameter 

requires the accurate calculation of molecular volumes for porphyrin cores and sn1 lipid tail. 

However, such calculations are still relatively challenging for non-globular structures. 

Therefore, we here propose to assess packing parameters by measuring the projected 

distances between the porphyrin core and palmitic acid center-of-mass onto the xy-plane. By 

comparing these distances with the known PC cross sectional diameter extrapolated from 

cross sectional area parameter, it is thus possible to roughly estimate the shape of PL–Por 

blocks. Molecular representations were rendered using the VMD-1.9.4-alpha package.39 

VI.3. Results and discussion 

Details are reported in the sub-sections of the article. 

Shortly, six different phospholipid–porphyrin conjugates were synthesized. The differences 

were the alkyl chain lengths in sn2 position and the porphyrinoid derivatives. It is important to 

mention that pheophorbide-a has an extra methyl ester group in ortho position relative to the 

ketone functionality, therefor, racemic mixture was used. The supramolecular assembly was 

monitored through structural and optical properties. 

Insights into the supramolecular assembly of PL–Por conjugates from MD simulations 

MD simulations were shown to be relevant to investigate supramolecular properties of 

conventional lipid bilayers48 as well as those made of PL–Por conjugates.22 MD simulations 

were performed to get an atomic-scaled understanding about the structural influence of the 

different conjugates on the molecular organization, packing parameters of the conjugates, as 
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well as on the driving forces. Each system was made of 128 PhxLPC or PyrxLPC molecules 

(Fig. 40). Three replicas were run for 2 μs, each. MD simulations reveal structural differences 

between PhxLPC and PyrxLPC bilayers, as depicted by calculated thickness maps, averaged 

area per lipid (APL) and density profiles reported in Table 11 and Fig. S21–23. † For instance, 

the bilayers made of PyrxLPC are more ordered than PhxLPC ones, as shown by the calculated 

palmitate chain lipid order parameters (SCD, see Fig. 40B), regardless of the linker size. This 

is in line with calculated thicknesses which are slightly larger for PyrxLPC. Such result is also 

consistent with our recent monolayer study which showed that PyrxLPC conjugates form a film 

in the liquid-condensed state with subsequent appearance of well-structured domains at the 

air/water interface.49 

Likewise, the areas per lipid obtained for PhxLPC systems are larger than those for the PyrxLPC 

bilayers, regardless of the linker length. Interestingly, MD simulations reveal that PhxLPC and 

PyrxLPC molecules self-assemble to maximize dispersive interactions between porphyrin 

cores. Therefore, PhxLPC and PyrxLPC molecules are involved in a strong network of 

-stacking interactions which lead to highly ordered supramolecular assemblies in agreement 

with aforementioned experimental observations. We quantified -stacking events by using 

geometric criteria, namely (i) the distance between porphyrin cores and (ii) the angle between 

the two normal vectors of tetrapyrrole cores. -Stacking events were observed along 

simulations, for which the fractions of each porphyrin pair over time were calculated and 

summed in Fig. 40C. It is worth mentioning that -stacking interactions are sufficiently strong 

to be sometimes maintained for more than 70% of simulations (see Table S1 †). Furthermore, 

MD simulations show two types of -stacked dimers. On one hand, dimers are formed within 

the same leaflet in which dipole–dipole interactions are maximized by systematic structural 

shift between porphyrin cores along the stacking axis (Fig. 40D). 

On the other hand, inter-leaflet -stacked dimers were also observed for which dipole–dipole 

interactions were maximized by adopting an anti-parallel conformation. This provides robust 

hints to rationalize the overall structural differences between PhxLPC and PyrxLPC bilayers. 

Indeed, regardless of linker size, PhxLPC systems exhibit less -stacking events with respect 

to PyrxLPC ones (see Fig. 40C). PhxLPC molecules simply differ from PyrxLPC by the presence 

of carboxymethyl moiety on porphyrin E-ring which is associated to a less planar porphyrin 

core. Furthermore, multiple stacking on both faces of porphyrin cores was not observed during 

simulations owing to the steric bulk arising from the axial orientation of carboxymethyl moiety 

in E-ring (see Fig. 40D). Altogether, PhxLPC self-assemble into less ordered lipid bilayers than 

PyrxLPC, as pictured by both experimental and computational results. This is in perfect 

agreement with the absorbance spectra where only pure PyrxLPC molecules form 

J-aggregates. It is worth mentioning that the present MD simulations did not show the 

experimentally observed mixture of highly ordered and disordered porphyrin aggregates within 

PL–Por bilayers. This is likely due to the limited size of modeled systems (128 lipids) and the 

relatively limited timescale (2 μs). This would require the modeling of much larger membranes 

by means of coarsegrained MD simulations. 

MD simulations provided some hints about the role of linker size on the self-assembly of 

porphyrin conjugates. Even though such observations require further but challenging 

experimental validations, linker size seems to play a crucial role regarding -stacking events. 

Indeed, both Ph3LPC and Pyr3LPC systems exhibit (i) less ordered bilayers (Fig. 40B) and (ii) 

less frequent -stacking events (Fig. 40C) compared to PL–Por conjugates with either two or 

four carbon atoms in the linker. This highlights the balance between -stacking driving forces 
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and linker-driven porphyrin flexibility. The shortest linker may lead to more ordered PL–Por 

bilayer owing to a lower flexibility of porphyrin core. Whereas the longest linker may be 

sufficiently flexible to favor proper stacking of porphyrin cores which in turn increase the 

structural order of the PL–Por bilayer. The intermediate linker (Ph3LPC and Pyr3LPC) adopts 

then an intermediate behavior in which ideal -stacking is more difficult to obtain, because the 

linker is too short but sufficiently long to allow enough flexibility to the porphyrin. 

Lateral porphyrin-palmitate distances were calculated as an approximation of packing 

parameters (Fig. 40E). Both porphyrin conjugates exhibit similar behavior. Taking into account 

these results and assuming that PC headgroup cross section diameter is 9.71 Å,50 Pyr2LPC 

and Ph2LPC should adopt slightly negative curvature, owing to the lower flexibility of the linker. 

Moreover, MD simulations suggest that porphyrin conjugates with the longer linker tend to 

adopt a planar curvature since the ratio between lateral porphyrin-palmitate distance and PC 

head cross section diameter are close to 1, which is particularly true for Pyr4LPC and Ph4LPC 

systems. However, the cryo-TEM results revealed that all PL–Por conjugates assemble into 

bilayers. This demonstrates that the calculation of the packing parameter is not sufficient to 

predict assembly of the PL–Por conjugates given their shapes in contrast to conventional 

phospholipids and detergents. Such findings highlight that the interactions between porphyrin 

cores plays a central role in controlling both the structure of the lipid bilayer membranes and 

their optical properties. 

Table 12. PL–Por bilayer thickness (in Å), averaged area per lipid (APL, in Å) and lateral 

porphyrin-palmitate distance (in Å). 

  Thickness (Å) APL (Å2) 

Lateral  

porphyrin-palmitate 

distance (Å) 

PhxLPC 

x = 2 36.8 ± 1.8 92.8 ± 0.4 13.2 ± 3.0 

x = 3 34.4 ± 1.9 99.8 ± 1.6 12.2 ± 3.6 

x = 4 37.6 ± 2.0 94.5 ± 1.6 9.6 ± 2.7 

PyrxLPC 

x = 2 38.8 ± 1.6 82.5 ± 0.7 12.7 ± 2.8 

x = 3 38.0 ± 1.6 88.1 ± 1.4 11.8 ± 3.6 

x = 4 39.9 ± 1.6 80.9 ± 0.4 8.9 ± 1.9 

 

Figure 39. Absorbance spectra of DPPC assemblies 
incorporating different molar percentage (1–10 mol%) of either Ph3LPC (A and B) or Pyr3LPC (C and D), before (A 
and C) and after (B and D) their disruption by adding Triton X-100 (1% v/v). 
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Figure 40. Insights into the supramolecular assembly of PL–Por conjugates from MD 

simulations. 

(A) Representative snapshots of self-assembled Ph3LPC (left) and Pyr3LPC into bilayers from MD simulations. Both 

side (top) and top (bottom) view are displayed. PC N- and P-atoms are depicted in blue and brown spheres, 

respectively. Pheo-a and Pyro-a porphyrin cores as well as palmitate chains and linkers are colored in cyan, purple, 

black and orange respectively. (B) Calculated lipid order parameters (SCD) for palmitate carbons in PhxLPC (top) 

and PyrxLPC (bottom) simulations. (C) Overall sum of fractions of -stacking events between porphyrin cores 

calculated along MD simulations and (D) representative snaphots (top view) of Pyr4LPC (left) and Ph4LPC (right) 

-stacking organizations within the PL–Por bilayers. (E) Definition and distributions of lateral porphyrin-palmitate 

distance within PL–Por bilayers for PhxLPC (left) and PyrxLPC (bottom). Later, porphyrin-palmitate distance was 

used to approximate the shape of porphyrin conjugates and compare to PC cross sectional diameter extrapolated 

from cross sectional area parameter. 
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Details are reported in the sub-sections of the article. 

As only a few structures look like vesicles were found, lipid components incorporating 

phospholipid–porphyrin conjugates were also investigated. 2.5% and 10% of conjugates were 

embedded into POPC or DPPC membranes. The optical properties were examined and 

cryo-TEM analyses were performed. 

Atomic-scaled structures of DPPC and POPC bilayers incorporating PL–Por conjugates 

To get a better understanding of the experimental observations, DPPC-PhxLPC, 

DPPC-PyrxLPC, POPC-PhxLPC and POPC-PyrxLPC systems were investigated by means of 

MD simulations considering either 2.5 mol% or 10 mol% of PL– Por. DPPC bilayers doped 

with PL–Por conjugates exhibit the typical structural behavior of DPPC gel phase given that 

simulations were performed at T = 25 °C (Fig. 41A). The calculated thicknesses and the APL 

(Table 12 and Fig. S24–S27 †) are in line with experiments and previous studies in which e.g., 

the APL of DPPC was shown to be ca. 48 Å2 and the thickness ranged from 47 to 55 Å.59,60 

Lipid tail order SCD parameters were also computed supporting the gel and liquid phase of 

DPPC- and POPC-based lipid bilayer membranes (Fig. S29 and S30 †). 

In all simulations, PL–Por conjugates partition in the lipid bilayer membrane, regardless of their 

concentration (see Table 12). This agrees with the aforementioned experiments except for the 

incorporation of PhxLPC compounds in DPPC lipid bilayer membranes at 2.5% mol. This is 

explained by the computational setup for which PL–Por conjugates were directly all 

incorporated in a DPPC lipid bilayer membrane. Thereby, joint computational and experimental 

investigations suggest that, at low concentration, PhxLPC is kinetically less likely to insert into 

the DPPC lipid bilayer membrane with respect to PyrxLPC, owing to the presence of polar 

carboxymethyl moiety. This chemical group may increase (i) the dipole moment of porphyrin 

core and/or (ii) the steric hindrance while penetrating in ordered lipid bilayer membrane. The 

latter is strongly supported by (i) POPC-experiments in which PL–Por conjugates partition in 

the lipid bilayer membrane regardless of the PL–Por type and (ii) the expected higher energy 

cost to insert in DPPC rather than in POPC, as suggested by recent computational 

investigations.61,62 

Interestingly, MD simulations strongly support the importance of PL–Por structure and 

concentration. PhxLPC at 10 mol% concentration are more likely to modify DPPC bilayer 

structure than at 2.5 mol%. For instance, calculated thickness maps revealed local bilayer 

deformations for which thickness shrinking events are more pronounced at 10 mol% than 2.5 

mol% (Fig. S24 †). In contrast, the presence of PyrxLPC molecules is expected to have a lesser 

effect on DPPC lipid bilayer, even locally. This might be explained by the interleaflet 

interactions between porphyrin cores of PhxLPC compounds. Experiments suggested that 

DPPC/PyrxLPC systems undergo phase separation events for concentration higher than 2.5 

mol%. Unfortunately, this was not observed in MD simulations owing to the limited 

s-timescale. Indeed, phase separation is driven by phenomena for which timescales range 

from dozens of microseconds to seconds63 which require the use of coarse-grained MD 

simulations. However, present simulations provide robust hints about plausible underlying 

mechanisms which might ultimately lead to phase separation events. 

Simulations performed with POPC bilayer show that lipid bilayer membranes are almost not 

impacted by the incorporation of PL–Por conjugates, regardless of the concentration (Table 12 
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and Fig. S26, 27 †). This supports the experimental findings where the fluidity of lipid bilayer 

membrane seemed to govern the dynamic behavior of the PL–Por conjugates, rather than the 

porphyrin core structure or the linker length. This is further confirmed by assessing the 

distribution function of porphyrin depths of insertion in the lipid bilayers (see Fig. S32 †). 

While average distances of porphyrin core with respect to lipid bilayer membrane 

center-of-mass (COM) does not exhibit significant differences between the different lipid 

bilayer compositions, the distribution function reveals that porphyrin cores are more likely to 

move in fluid POPC bilayers than in DPPC-based bilayers. The more ordered the lipid bilayer 

membrane, the more localized the depth of penetration. Porphyrin orientations within a lipid 

bilayer were also investigated suggesting that the porphyrin moieties lay along the lipid tails as 

pictured by the calculation of order parameters Pz (see Fig. S31 †). 

 

Table 13. Lipid bilayer thickness. 

Bilayer thickness based on distance between P-atom density peaks (in Å), averaged area per lipid (APL, in Å2) and 

averaged distances of porphyrin core with respect to lipid bilayer membrane center of mass (dz, in Å) for DPPC- 

and POPC-PhxLPC and -PyrxLPC systems. 

% 

mol 

  DPPC/PL-Por   POPC/PL-Por 

  Thickness 

(Å) 
APL (Å2) dz (Å)  Thickness 

(Å) 
APL (Å2) dz (Å) 

2.5 % PhxLPC 
x = 

2 
46.7 ± 3.7 

45.8 ± 

1.2 

10.1 ± 

6.0 
 39.8 ± 2.0 

62.2 ± 

1.0 

11.3 ± 

2.7 

  x = 

3 
46.7 ± 3.7 

45.9 ± 

1.6 
7.3 ± 5.8  39.6 ± 1.9 

62.4 ± 

0.9 

11.3 ± 

2.8 

  x = 

4 
47.3 ± 3.6 

45.3 ± 

0.7 

10.6 ± 

5.5 
 39.6 ± 1.9 

62.7 ± 

1.0 

11.2 ± 

2.7 

 PyrxLP

C 

x = 

2 
48.2 ± 3.4 

44.3 ± 

1.0 

11.7 ± 

6.0 
 39.9 ± 2.0 

61.9 ± 

1.0 

11.0 ± 

2.7 

  x = 

3 
48.2 ± 3.3 

44.3 ± 

0.5 
9.9 ± 6.0  39.8 ± 1.9 

61.9 ± 

1.0 

10.6 ± 

2.8 

  x = 

4 
48.2 ± 3.4 

44.1 ± 

0.7 

10.6 ± 

6.1 
 39.8 ± 1.9 

62.1 ± 

0.9 

10.8 ± 

2.6 

10 % PhxLPC 
x = 

2 
46.5 ± 3.8 

49.2 ± 

0.6 

10.3 ± 

6.2 
 40.0 ± 1.9 

63.7 ± 

0.9 

10.8 ± 

3.6 

  x = 

3 
46.0 ± 3.9 

49.9 ± 

0.8 
9.0 ± 5.0  39.8 ± 2.2 

64.3 ± 

0.9 
9.5 ± 4.0 

  x = 

4 
45.8 ± 4.1 

50.2 ± 

0.7 
8.8 ± 4.9  39.7 ± 1.9 

64.5 ± 

1.0 

10.3 ± 

3.6 

 PyrxLP

C 

x = 

2 
47.2 ± 3.3 

47.7 ± 

0.6 

10.5 ± 

5.4 
 40.7 ± 1.9 

61.9 ± 

0.9 

11.1 ± 

2.8 

  x = 

3 
46.6 ± 4.0 

48.7 ± 

1.1 
9.9 ± 5.7  40.2 ± 2.2 

62.6 ± 

0.9 

10.8 ± 

2.9 

  x = 

4 
47.0 ± 3.2 

48.2 ± 

0.6 

10.6 ± 

5.3 
 40.3 ± 1.9 

63.1 ± 

1.0 

11.3 ± 

3.2 
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Figure 41. Atomic-scaled structures of DPPC and POPC bilayers incorporating PL–Por 

conjugates. 

(A) Representative snapshots of DPPC-Ph3LPC (top) and DPPC-Pyr3LPC system from MD simulations. PC N- and 

P-atoms are depicted in blue and brown spheres, respectively. Ph3LPC and Pyr3LPC porphyrin cores as well as 

palmitate chains and linkers are colored in cyan, purple, orange and black. (B) Overall sum of π-stacking event 

fractions for all DPPC- and POPC-LPC systems. (C) Representative examples of DPPC-Ph3LPC (left: 2.5 mol% 

and center: 10 mol%) and DPPC-Pyr3LPC (right: 10 mol%) -stacked conformations, highlighting inter-leaflet and 

intra-leaflet events respectively for Ph3LPC and Pyr3LPC. 

 

Rationalizing non-covalent interactions of PL–Por conjugates when incorporated in 

DPPC or POPC bilayers 

To rationalize the formation of J-aggregates within DPPC lipid bilayer, inter-porphyrin 

-stacking events were monitored along MD simulations of DPPC and POPC bilayers doped 

with PL–Por conjugates (see Fig. 41B and Table S1 †). In agreement with experimental 

observations made on J-aggregate formation, the higher the content of PL–Por incorporated 

in DPPC bilayers, the more likely the -stacking between porphyrin cores. However, the 
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calculated -stacking fractions remain low considering the number of porphyrin cores. This is 

consistent with the absorbance results since J-aggregate formation was shown to be only 

partial (Fig. 39 and 41A). However, the use of calculated -stacking fractions alone is not 

sufficient to rationalize the experimentally observed difference between POPC and DPPC 

vesicles containing PyrxLPC at 10 mol%. Indeed, while the calculated -stacking fractions 

remain in the same order of magnitude (e.g., 1.263 and 1.117 for POPC- and DPPC-Pyr3LPC, 

respectively, see Table S1 †), optical experiments revealed the absence of J-aggregate 

Q-bands in the former. Interestingly, the number of porphyrin pairs involved in -stacking 

events is systematically larger for POPC-based lipid bilayer membranes than for DPPC ones. 

In other words, a similar number of -stacking events is observed in both POPC and DPPC 

bilayers incorporating 10 mol% of PL–Por but more porphyrins are involved in the former. This 

strongly suggests that -stacked conformation lifetime is lower in POPC than in DPPC. 

J-aggregates are thus expected to be formed in POPC but for a significantly lower lifetime 

which may explain the absence of J-aggregate Q-band in the experiments. Both experiments 

and MD simulations suggest that more ordered DPPC bilayers are likely to decrease the 

diffusion of PL–Por with respect to POPC, which in turn increases -stacked conformation 

lifetime. 

Finally, particular attention was paid to the interplay between the conformation of -stacked 

dimers and the structure of a porphyrin core. Interestingly, when incorporated in DPPC bilayer 

at 10 mol%, PhxLPC compounds favor the formation of inter-leaflet dimers (Fig. 41C), while 

PyrxLPC dimers are mostly observed within the same leaflet. For instance, up to 73% of 

observed -stacked dimers involved both leaflet for PhxLPC (see Table S1 †). This could be 

related to the structural differences between the two porphyrin moieties. Indeed, the absence 

of bulky E-ring carboxymethyl moiety in PyrxLPC system favors the formation of -stacked 

dimers, regardless of which porphyrin face interacts with another porphyrin (i.e., Si/Re-like, 

see Fig. 41A). In contrast, the presence of carboxymethyl moiety in PhxLPC core (i) sterically 

decreases the likelihood of intra-leaflet π-stacked dimers and (ii) increases the dipole moment. 

Both events favor the formation of inter-leaflet antiparallel π-stacked dimers. The presence of 

inter-leaflet dimers leads to strong local deformation of DPPC lipid bilayer membrane in which 

e.g., thickness is lower (as pictured in Table 12 and Fig. 41A). This is further supported by the 

membrane undulations and fluctuations observed in the cryo-TEM experiments. Finally, 

DPPC-PyrxLPC simulations can shed light on the underlying mechanism for the suggested 

phase separation observed in both DSC thermodynamics and cryo-TEM experiments. Indeed, 

MD simulations showed that PyrxLPC cores can -stack regardless of Si/Re arrangement. 

Therefore, it is likely that more than two PyrxLPC partners can stack upon time. This event may 

be considered as a self-assembly nucleation event. It is worth mentioning that this event is 

expected to be controlled by the lateral diffusion of PyrxLPC for which the size of the linker is 

likely to play a role. This might then explain the difference observed between the DPPC-

PyrxLPC vesicles. 

VI.4. Conclusions 

PL–Por conjugates are versatile molecules that can self-assemble into supramolecular 

structures while exhibiting unique multifunctional properties. However, the driving forces 

behind their assembly remain unclear. Owing to their structural similarities with phospholipids, 

we expected that the shape and the morphology of the PL–Por conjugates self-assembled 

structures could be simply predicted from the calculation of their geometric packing 
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parameters. Hence, six new PL–Por conjugates possessing various geometrical packing 

parameters were synthesized. The new PhxLPC and PyrxLPC conjugates exhibit different 

linker lengths in sn2 position and bear either Pheo-a or Pyro-a at the linker extremity, 

respectively. It was thought that changing the linker length between the polar headgroup and 

the porphyrin core may modulate the chain length difference between the sn1 and sn2 chains 

and thus dictate the morphological structures of the assemblies. Both PhxLPC and PyrxLPC 

were able to self-assemble into supramolecular structures consistent with bilayers morphology 

and exhibiting different optical properties that were not dependent on the linker length. Indeed, 

while PhxLPC assembled into closed ovoid structures, PyrxLPC led to the formation of rigid 

open sheets. In addition, PyrxLPC assemblies displayed a significant red shift and narrowing 

of the Q-band which was related to the formation of ordered J-aggregates. The experimental 

data were strongly supported by MD simulations highlighting the central role of the interaction 

between porphyrin cores rather than the length difference between the two phospholipids 

chains in controlling the structure of the lipid bilayer membranes and thus their optical 

properties. Indeed, while PhxLPC have the tendency to form inter-leaflet π-stacked dimers, 

PyrxLPC conjugates formed dimers within the same leaflet. This explained the formation of 

hard open sheet observed for PyrxLPC and the undulated bilayers in the case of PhxLPC 

assemblies. In addition, the MD simulations shed light on the role of the linker in controlling the 

number of -stacking events. For instance, the longer linker allowed the optimal -stacking 

between the porphyrin moieties. Finally, both experimental and computational results 

demonstrated that these conjugates can be efficiently inserted in the lipid bilayer matrix with 

higher penetration depth for PyrxLPC compounds. Moreover, it appeared that the fluidity of the 

phospholipid bilayer is an important parameter to control whether J-aggregates of PyrxLPC can 

be formed or not. Altogether, this work could be used as guide for the design of new PL–Por 

conjugates that self-assemble into supramolecular structures with tunable morphology and 

optical properties by playing with (i) the planarity and dipole moment of porphyrin core, (ii) the 

linker length and (iii) the structure of host lipid bilayer membrane. 
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Conclusion 

The present work aimed to provide a comprehensive structural overview of several systems of 

importance in the broad field of pharmacology. The present thesis has clearly demonstrated 

that computational methods, mostly MD simulations, are powerful tools to rationalize 

(i) structural dynamics of ABCC drug membrane transporters, (ii) plausible binding modes of 

small molecules with ABCB4 transporters and (iii) self-assembly of original 

phospholipid-porphyrin conjugates into lipid bilayers. 

In chapter IV, structural dynamics of ABCC1/MRP1 (as an ABCC family prototype) was 

investigated by means of s-long MD simulations. These investigations point out the 

importance of the resolution method. Our simulations consistently showed the spontaneous 

closing of the NBDs in case of the IF conformations. This suggests that the wide-open 

conformation may not exist physiologically. Likewise, simulations performed on OF structures 

are in agreement with previous observations suggesting that the EC open conformation is only 

a transition state, and not a stable state. Regarding the catalytic cycle, our results support the 

pivotal role of the degenerate NBS1 based on both the dynamics and measured important 

distances between the binding site motifs and nucleotides. ATP molecule remains stable in 

NBS1 even in the post-catalytic state. In contrast, significant structural deviations were 

observed for the canonical NBS2 in which ADP logically exhibits lower binding than ATP, 

respectively in post- and pre-hydrolysis state. Such deviation is mandatory for ADP release 

prior to ATP substitution. However, further investigations are required to understand if the ADP 

release may trigger the transition to IF conformation. Indeed, in a similar idea, the phosphate 

release has been shown to be of utmost importance for large-scale conformational transition 

in another ABC transporter [1]-[2]. We might hypothesize that ADP release may also play a 

role in the overall conformation of MRP1. It is important to note that (i) the current timescale of 

unbiased MD simulations is far beyond the reach of large-scale transition of ABC transporters 

and (ii) an ATP-ADP bound state IF narrow conformation has been recently resolved for a 

bacterial ABC transporter [3]. In other words, further investigations are required to decipher if 

OF-to-IF transitions may be shared or if ABC subfamilies exhibit significantly different transport 

cycle dynamics. In line with former experiments, MD simulations have also suggested the 

functional role of L0 for which particular attention should be paid in ABCC family. It may have 

different roles depending on the transporter of interest, as well as the presence or absence of 

TMD0. For instance, it has been suggested that L0 possibly locates in the binding pocket in 

other ABC transporters (e.g., human ABCB11 [4], C. elegans P-gp (PDBID: 4F4C) [5]). 

However, such location is very unlikely in ABCC transporter with TMD0 such as MRP1 and 

MRP2. 

Finally, the interplay between surrounding lipids and MRP1 was investigated in the present 

work. This is in line with the recent literature in which membrane composition and its 

importance has gained growing interest. Our results showed that the membrane composition 

seems to have lesser impact on the local conformation of MRPs, in contrast to what have been 

suggested in SLC transporters. We can hypothesize that it may be related to ABC location in 

cell membranes. Indeed, the number of human drug ABC transporters is way smaller than SLC 

(ca. 80 vs 400, respectively). Therefore, ABC transporter location in tissue is broader in cell. 

Interestingly, we can suggest that the lower dependence on membrane lipid structure may be 

correlated with the presence of the same ABC transporter at different poles of cell membranes, 

e.g., MRP4 has been observed in apical and basolateral membrane of hepatocyte and kidney 

proximal tubular cells. Another example is the ubiquitous MRP1 cell distribution over human 
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tissues. However, it does not mean that the impact and role of lipids are negligible. Our MD 

simulations has shown that lipids play an active role in transport function, such as in the 

allosteric communication between the different ABC transporter domains, namely 

substrate-binding pocket and NBDs. This may be achieved thanks to specific cholesterol and 

PE-lipid binding spots, the latter being observed more specifically in the inner leaflet, in 

agreement with the known location of such lipids in cell membranes. 

Even tough further joint experimental and computational investigations are required, the 

present work pave the way for better understanding on ABCC transporter function and, more 

importantly in the difference between ABC transporters. 

Chapter V described the plausible non-covalent binding of CFTR correctors to ABCB4 

transporter. Even though it is not a drug membrane transporter, molecular findings are of 

interest. We focused on the plausible binding modes of the so-called CFTR correctors to 

provide hints on the experimentally overserved rescued function of ER-retained ABCB4 

variants. In spite of a careful investigation, our molecular docking approach was not accurate 

enough to ensure the rescue mechanism. However, we observed that such CFTR correctors 

may bind to ABCB4 NBS domains. Interestingly, these compounds were also shown to 

possibly rescue ABCC7/CFTR channel trafficking. ABCB4 and CFTR strongly differ in the ABC 

kingdom. However, they mostly share patterns regarding NBDs. This is why we can suggest 

the central role of NBD in term of binding. This may also explain why, if direct binding is 

confirmed, the function is challenging to rescue. Indeed, we may expect a binding to NBD, 

which may preclude the required ATP-binding for ABCB4 function. This pave the way for 

further chemico-physical investigations for which competition between ATP and correctors 

should be considered. Such assumptions also suggest that such therapeutic strategy may lead 

to only a partial recovered function. 

Finally, Chapter VI reported a study which is out of the field of ABC transporters, but of interest 

in pharmacology. The self-assembly of lipid-porphyrin conjugates was investigated from both 

experimental and computational points of view. MD simulations were used in order to better 

understand the structure and biophysics of such original structures. The central role of 

non-covalent interactions, more specifically − dispersive interactions, was highlighted. 

Interestingly, self-assembly structure seems to be correlated first by the linker size rather than 

favourable -stacking arrangements. This work paves the way for further chemical optimization 

in which lipid-porphyrin conjugates may be used for drug delivery devices. The main advantage 

of porphyrin conjugates is the ability to specially release encapsulated drugs to specific tissues 

upon light. 

As the works presented in the current thesis, as well as the studies done on SLC transporters 

[6], [7], in which I had also a contribution, support the relevance of computational models in 

the field of pharmacology. Moreover, thanks to the continuous development of computational 

devices and frame works, especially the growing use of machine learning, I strongly believe 

that computational methods will keep on complementing experimental techniques. One striking 

example is the release of Alpha Fold 2 [8] that makes possible to create sufficiently robust 

models for many proteins. Last, but not least, I believe that the present thesis provides useful 

hints about the dynamics of ABC proteins and the importance of lipids in biologically relevant 

systems. 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 152 

License CC BY-NC-ND 4.0 

References 

[1] H. Göddeke et al., ‘Atomistic Mechanism of Large-Scale Conformational Transition in a 

Heterodimeric ABC Exporter’, J Am Chem Soc, vol. 140, no. 13, pp. 4543–4551, Apr. 

2018, doi: 10.1021/jacs.7b12944. 

[2] M. Prieß, H. Göddeke, G. Groenhof, and L. V. Schäfer, ‘Molecular Mechanism of ATP 

Hydrolysis in an ABC Transporter’, ACS Cent Sci, vol. 4, no. 10, pp. 1334–1343, Oct. 

2018, doi: 10.1021/acscentsci.8b00369. 

[3] Hofmann, S. et al. Conformation space of a heterodimeric ABC exporter under turnover 

conditions. Nature 571, 580–583 (2019). 

[4] L. Wang et al., ‘Structures of human bile acid exporter ABCB11 reveal a transport 

mechanism facilitated by two tandem substrate-binding pockets’, Cell Res, vol. 32, no. 5, 

pp. 501–504, May 2022, doi: 10.1038/s41422-021-00611-9. 

[5] M. S. Jin, M. L. Oldham, Q. Zhang, and J. Chen, ‘Crystal structure of the multidrug 
transporter P-glycoprotein from C. elegans’, Nature, vol. 490, 2013, doi: 
10.1038/nature11448. 

[6] A. Janaszkiewicz et al., ‘Substrate binding and lipid-mediated allostery in the human 
organic anion transporter 1 at the atomic-scale’. bioRxiv, p. 2022.07.14.500056, Jul. 15, 
2022. doi: 10.1101/2022.07.14.500056. 

[7] A. Janaszkiewicz et al., ‘Insights into the structure and function of the human organic 
anion transporter 1 in lipid bilayer membranes’, Sci Rep, vol. 12, no. 1, p. 7057, Dec. 
2022, doi: 10.1038/s41598-022-10755-2. 

[8] M. Akdel et al., ‘A structural biology community assessment of AlphaFold 2 applications’, 
Biophysics, preprint, Sep. 2021. doi: 10.1101/2021.09.26.461876. 

 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 153 

License CC BY-NC-ND 4.0 

Appendices 

Appendices ........................................................................................................................ 153 

Appendix 1. List of publications ....................................................................................... 154 

 



Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 154 

License CC BY-NC-ND 4.0 

Appendix 1. List of publications 

1) Structural and dynamical differences shown by the pre- and post-hydrolysis states 

of ABCC1 (MRP1) 

In preparation 

Ágota Tóth, Angelika Janaszkiewicz, Veronica Crespi and Florent Di Meo 

 

2) Membrane dependency on the structural dynamics of human major facilitator 

superfamily transporters 

In preparation 

Angelika Janaszkiewicz, Ágota Tóth, Veronica Crespi and Florent Di Meo 

 

3) Substrate binding and lipid-mediated allostery in the human organic anion 

transporter 1 at the atomic-scale 

Submitted, bioRiv, DOI: 10.1101/2022.07.14.500056 

Angelika Janaszkiewicz, Ágota Tóth, Quentin Faucher, Hélène Arnion, Nicolas 

Védrenne, Chantal Barin-Le Guellec, Pierre Marquet, Florent Di Meo 

 

4) On the interplay between lipids and asymmetric dynamics of an NBS degenerate 

ABC transporter 

Submitted, bioRiv, DOI: 10.1101/2022.05.16.492073v1 

Ágota Tóth, Angelika Janaszkiewicz, Veronica Crespi and Florent Di Meo 

 

5) Phospholipid-porphyrin conjugates: deciphering the driving forces behind their 

supramolecular assemblies 

May 2022, Nanoscale, DOI: 10.1039/d2nr01158a 

Louis-Gabriel Bronstein, Ágota Tóth, Paul Cressey, Véronique Rosilio, Florent Di Meo, 

Ali Makky 

 

6) Insights into the structure and function of the human organic anion transporter 1 in 

lipid bilayer membranes 

April 2022, Scientific Reports, DOI: s41598-022-10755-2 

Angelika Janaszkiewicz, Ágota Tóth, Quentin Faucher, Marving Martin, Benjamin 

Chantemargue, Chantal Barin-Le Guellec, Pierre Marquet, Florent Di Meo 

 

https://www.biorxiv.org/content/10.1101/2022.07.14.500056v1
https://www.biorxiv.org/content/10.1101/2022.05.16.492073v1
https://doi.org/10.1039/d2nr01158a
https://www.nature.com/articles/s41598-022-10755-2


Ágota Tóth | Ph.D. Thesis | University of Limoges | 2022 155 

License CC BY-NC-ND 4.0 

7) Effect of CFTR correctors on the traffic and the function of intracellularly retained 

ABCB4 variants 

March 2021, Liver international, DOI: 10.1111/liv.14839 

Amel Ben Saad, Virginie Vauthier, Ágota Tóth, Angelika Janaszkiewicz, Anne-Marie 

Durand-Schneider, Alix Bruneau, Jean-Louis Delaunay, Martine Lapalus, Elodie Mareux, 

Isabelle Garcin, Emmanuel Gonzales, Chantal Housset, Tounsia Aït-Slimane, Emmanuel 

Jacquemin, Florent Di Meo, Thomas Falguières 

 

8) The transport pathway in the ABCG2 protein and its regulation revealed by 

molecular dynamics simulations 

September 2020, Cellular and Molecular Life Sciences, DOI: 10.1007/s00018-020-
03651-3 

Tamás Nagy, Ágota Tóth, Ágnes Telbisz, Balázs Sarkadi, Hedvig Tordai, Attila Tordai 

and Tamás Hegedűs 

 

9) Analyzing Biomolecular Ensembles 

Augustus 2019, Biomolecular Simulations, DOI: 10.1007/978-1-4939-9608-7_18 

Matteo Lambrughi, Matteo Tiberti, Maria Francesc Allega, Valentina Sora, Mads 

Nygaard, Ágota Tóth, Juan Salamanca Viloria, Emmanuelle Bignon, and Elena 

Papaleo 

 

 

https://doi.org/10.1111/liv.14839
https://link.springer.com/article/10.1007/s00018-020-03651-3
https://link.springer.com/article/10.1007/s00018-020-03651-3
https://doi.org/10.1007/978-1-4939-9608-7_18


 

Étude biophysique et structurale des transporteurs ABC par la pharmacologie 
computationnelle 

Le passage membrane des xénobiotiques est un événement important dans les processus 
pharmacologiques, en particulier dans l'absorption, la distribution, le métabolisme et 
l'élimination. Les transporteurs membranaires des cellules hépatiques et rénales sont des 
acteurs clés. Parmi elles, les exporteurs de type ABC (ATP-binding cassette) qui appartiennent 
à la famille ABCC, sont cruciales en pharmacologie car ils transportent divers substrats à 
travers les membranes. Cependant, les connaissances sur leurs dynamiques et les 
mécanismes de translocation sont encore limitées. Cette thèse, basée sur des simulations de 
dynamique moléculaire, fournit un aperçu dynamique et structural en se focalisant sur un 
prototype MRP1, pour laquelle des structures cryo-EM sont disponibles. 
L’asymétrie des NBD de ce transporteur, mais également d’autres membres des ABCC est 
probablement associé à une moindre transduction du signal du NBD1 vers le reste de la 
protéine, en raison de l'absence de conformation en boule entre le NBD1 et les hélices de 
couplage. En parallèle, le rôle central de NBS1 est souligné par nos simulations, lesquelles 
suggèrent un rôle pivot de l’ATP. Une attention particulière est accordée au rôle de 
l'environnement lipidique, ainsi qu'au rôle du site dégénéré de liaison aux nucléotides, typique 
des MRPs. Les lipides jouent un rôle actif dans la communication allostérique entre la poche 
de liaison au substrat et les NBD. Cependant, si les molécules de cholestérol et les lipides PE 
semblent se fixer sur certains sites particuliers, l'impact de la composition de la membrane sur 
les minima locaux semblent être limité. Elle semble surtout affecter la cinétique de transport.  
Nous pensons que notre travail peut être étendu à d'autres protéines ABC NBS dégénérées 
et fournir des indices pour déchiffrer les différences mécanistiques entre les transporteurs 
ABC. 

Mots-clés : dynamique moléculaire, transporteurs de liaison à l'ATP, protéines associées à la 
multirésistance aux médicaments 

Biophysical and Structural Investigation of ABC Transporters by Computational 
Pharmacology 

Membrane crossing by xenobiotics is an important event in pharmacological processes, 
especially in Absorption, Distribution, Metabolism, and Elimination. Transporters located in 
liver and kidney cells are key players of metabolism and elimination. Multidrug 
resistance-associated proteins, belonging to ABC C-family exporters, are crucial in 
pharmacology as they transport various substrates across membranes. However, knowledge 
about their transport mechanisms is still limited. This thesis, based on molecular dynamics 
simulations, provides a dynamic and structural overview of MRP1, for which cryo-EM 
structures are available along it transport cycle. 
Asymmetric NBD behaviour is ensured by lower signal transduction from NBD1 to the rest of 
the protein owing to the absence of ball-and-socket conformation between NBD1 and coupling 
helices. The pivotal role of NBS1 is confirmed by our post-catalytic simulations. Moreover, our 
results provide hints about the important role of L0. Particular attention is paid to the role of the 
surrounding lipid environment, as well as the role of the degenerate nucleotide-binding site, 
typical for MRPs. Lipids play an active role in the allosteric communication between the 
substrate-binding pocket and NBDs. However, cholesterol molecules and PE-lipids highlight 
some hotspots, the impact of the membrane composition is limited. It seems to mostly affect 
transport kinetics. 
We believe that our work can be extended to other degenerate NBS ABC proteins and provide 
hints for deciphering mechanistic differences among ABC transporters. 

Keywords: molecular dynamics, ATP-binding cassette transporters, multidrug 
resistance-associated proteins 


