
HAL Id: tel-03945305
https://theses.hal.science/tel-03945305

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning models for tabular data curation
Riccardo Cappuzzo

To cite this version:
Riccardo Cappuzzo. Deep learning models for tabular data curation. Computer Aided Engineering.
Sorbonne Université, 2022. English. �NNT : 2022SORUS047�. �tel-03945305�

https://theses.hal.science/tel-03945305
https://hal.archives-ouvertes.fr

Deep Learning Models for Tabular Data
Curation

Dissertation

submitted to

Sorbonne Université

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:

Riccardo CAPPUZZO

Scheduled for defense on the 1st APRIL, 2022, before a committee composed of:

Reviewers
Prof. Melanie HERSCHEL University of Stuttgart, Germany
Prof. Yannis VELEGRAKIS Utrecht University, Netherlands

Examiners
Prof. Raphaël TRONCY EURECOM, France
Prof. Paolo MERIALDO Università Roma Tre, Italy

Under the supervision of
Prof. Paolo PAPOTTI EURECOM, France

Modèles d’apprentissage profond pour le
nettoyage des données tabulaires

Thèse

soumise à

Sorbonne Université

pour l’obtention du Grade de Docteur

présentée par:

Riccardo CAPPUZZO

Soutenance de thèse prévue le 1er AVRIL 2022 devant le jury composé de:

Rapporteurs
Prof. Melanie HERSCHEL Université de Stuttgart, Allemagne
Prof. Yannis VELEGRAKIS Université de Utrecht, Pays-Bas

Examinateurs
Prof. Raphaël TRONCY EURECOM, France
Prof. Paolo MERIALDO Università Roma Tre, Italie

Sous la supervision de
Prof. Paolo PAPOTTI EURECOM, France

To my parents and my sister, who will always have my back.

Abstract

Data curation, defined as the problem of organizing and maintaining data so that they
can be employed for data-centric tasks, is a pervasive and far-reaching subject, touching
all fields from academia to industry. Data curation has a number of sides to it, and
no good solution for all of them. Current solutions rely on manual work from domain
users, but this does not scale with the number of datasets to clean. In the last few years,
many challenging problems in the NLP and computer vision fields have been solved by
deploying Deep Learning (DL) models. In this work, we explore the potential of applying
deep learning to data curation. However, three main challenges make the problem hard.

First, supervised systems work well, but they require labeled data that is not always
available for any given dataset, and can put a large burden on the domain expert. Second,
categorical values are pervasive in real data, however they cannot be modeled directly by
many DL-based models, instead requiring to be encoded in some numerical form; this
can lead to problems such as the “curse of dimensionality”, which reduce if not nullify
the gains that a DL model could provide. Third, DL-based models excel at representing
homogeneous data (e.g., images, text, speech), while tabular data are not homogeneous
and feature structural information that is not present in other types of data.

To tackle these challenges, we focus our work on methodologies that originate from
different fields to design unsupervised solutions for the data integration and imputation
problems. At the core of the solution, we develop models to organically produce distributed
representations (embeddings) of mixed data types by transforming relational tables into
graphs. We finally implement methods that apply deep learning techniques to tabular
data to obtain embeddings that are fed to the target applications.

Our first focus is data integration and specifically the tasks of Schema Matching
and Entity Resolution. To this end, we implement EmbDI, a system that generates
embeddings for tabular data. We first explore applications of these embeddings in a
one-table scenario, then we highlight how the geometric properties of the embeddings can
be employed to achieve state-of-the-art results in entity resolution and schema matching.

We then move to the data imputation problem by using Graph Neural Networks in a
multi-task learning framework named GRIMP. We use tabular embeddings as inputs
for a classification objective to select the correct values for filling vacancies. We also
explore methods for introducing external information in imputation systems. We leverage
the concept of attention to pilot the training of GRIMP and another ML imputation
algorithm on attributes in relationship with each other, and show that algorithms aware
of functional dependencies improve their quality results.

i

Abstract

ii

Abrégé

La conservation des données, définie comme le problème de l’organisation et de la
maintenance des données afin qu’elles puissent être utilisées pour des tâches centrées sur
les données, est un sujet omniprésent et de grande envergure, qui touche tous les domaines,
du monde universitaire à l’industrie. Le problème de la conservation des données présente
de nombreux aspects et il n’existe pas de bonne solution pour chacun d’entre eux. Les
solutions actuelles reposent sur le travail manuel des utilisateurs du domaine, mais elles ne
sont pas adaptées au nombre d’ensembles de données à nettoyer. Au cours des dernières
années, de nombreux problèmes difficiles dans des domaines tels que le langage naturel et
la vision par ordinateur ont été résolus en déployant des modèles d’apprentissage profond.
Dans ce travail, nous explorons le potentiel de l’application de l’apprentissage profond
aux tâches de curation de données. Cependant, trois défis principaux rendent le problème
difficile.

Tout d’abord, les systèmes supervisés fonctionnent bien, mais ils nécessitent des
données étiquetées qui ne sont pas toujours disponibles pour un ensemble de données
donné, et peuvent imposer une charge importante à l’expert du domaine. Deuxièmement,
les valeurs catégoriques sont omniprésentes dans les données réelles, mais elles ne peuvent
pas être modélisées directement par de nombreux modèles basés sur le langage DL, et
doivent être codées sous une forme numérique ; cela peut conduire à des problèmes tels
que le ”fléau de la dimensionnalité”, qui réduisent, voire annulent, les gains qu’un modèle
DL pourrait apporter. Troisièmement, les modèles DL excellent dans la représentation
de données homogènes (par exemple, des images, du texte, de la parole), alors que les
données tabulaires ne sont pas homogènes et comportent des informations structurelles
qui ne sont pas présentes dans d’autres types de données.

Pour relever ces défis, nous concentrons notre travail sur le développement de systèmes
de conservation de données non supervisés qui peuvent fonctionner sans intervention
humaine supplémentaire, la conception de systèmes de conservation qui modélisent
intrinsèquement les valeurs catégorielles dans leur forme brute, et la mise en œuvre
de méthodes et de techniques qui appliquent des modèles d’apprentissage profond aux
données tabulaires.

Nous tirons parti de méthodologies issues de différents domaines pour concevoir des
solutions non supervisées capables de résoudre les problèmes d’intégration et d’imputation
de données sur des données tabulaires de type mixte. Au cœur de la solution, nous
développons des modèles pour produire organiquement des représentations distribuées
(embeddings) de données discrètes en transformant des tableaux relationnels en graphes,

iii

Abrégé

puis en alimentant les graphes aux algorithmes d’embeddings de graphes.
Nous nous concentrons d’abord sur l’intégration des données, et plus particulièrement

sur les tâches de résolution d’entités et de correspondance de schémas. À cette fin,
nous implémentons EmbDI, un système qui génère des enchâssements pour les données
tabulaires ; nous explorons les applications de ces enchâssements dans un scénario simple,
à une table, puis nous soulignons comment les propriétés géométriques des enchâssements
peuvent être utilisées pour obtenir des résultats de pointe dans la résolution d’entités et
la correspondance de schémas.

Nous passons ensuite au problème de l’imputation des données en utilisant des réseaux
de neurones graphiques dans un cadre d’apprentissage multi-tâches appelé GRIMP. Nous
utilisons des encastrements de tableaux comme entrées pour un objectif de classification
visant à sélectionner les valeurs correctes pour remplir les postes vacants. Nous explorons
également des méthodes pour introduire des informations externes dans les systèmes
d’imputation. Nous exploitons le concept d’attention pour piloter l’entrâınement de
GRIMP et d’un autre algorithme d’imputation ML sur des attributs en relation les uns
avec les autres et montrons que les algorithmes conscients des dépendances fonctionnelles
améliorent la qualité de leurs résultats.

iv

Acknowledgements

I would like to thank my Supervisor, Professor Paolo Papotti, whose continuous support,
patience, and advice have been paramount for completing this PhD.
I would also like to thank the entire EURECOM Data Science department, and in partic-
ular Dr. Dimitris Milios, Dr. Simone Rossi, Dr. Giulio Franzese and Mr. Mohammed
Saeed for their unfailing assistance in both technical and personal matters.
I would like to thank Dr. Saravanan Thirumuruganathan for his invaluable contributions
towards the research that has ultimately led to this manuscript.
I would like to thank Prof. Melanie Herschel and Prof. Yannis Velegrakis for their
insightful reviews on this manuscript, as well as Prof. Paolo Merialdo and Prof. Raphaël
Troncy for their feedback during the course of the PhD.
Finally, I would like to thank my parents and my sister for their understanding and
encouragement during the high and lows of the past few years.

v

Acknowledgements

vi

Contents

Abstract . i

Abrégé [Français] . iii

Acknowledgements . v

Contents . vii

List of Figures . ix

List of Tables . xiii

Notations . 1

1 Introduction 1

1.1 Challenges . 4

1.2 Approach and Contributions . 6

1.3 Thesis Outline . 8

1.4 Publications . 9

2 Background 11

2.1 Relational tables . 11

2.1.1 Datatypes . 11

2.1.2 Functional Dependencies . 12

2.1.3 Deep Learning Representations of Tabular Data 14

2.2 Graphs . 14

2.2.1 Knowledge Graphs . 16

2.3 Vector Space Models . 17

2.3.1 Word Embedding . 17

2.3.2 Graph Embedding . 20

2.4 Multi-Task Learning . 23

2.5 Data Curation . 23

2.5.1 Data Integration . 24

2.5.2 Data Imputation . 27

2.6 Summary . 29

vii

Contents

3 Generating Table Embeddings 31

3.1 Introduction . 32

3.1.1 Local Embeddings for Data Integration 32

3.1.2 Contributions . 32

3.1.3 Outline . 33

3.2 Background . 34

3.3 Motivating Example . 35

3.3.1 Technical Challenges . 35

3.4 Constructing Local Relational Embeddings 36

3.4.1 Graph Construction . 36

3.4.2 Sentence Construction . 38

3.4.3 Embedding Construction . 39

3.4.4 Algorithm So Far . 40

3.5 Experiments . 40

3.5.1 Datasets . 40

3.5.2 Generating the Embeddings . 41

3.5.3 Evaluating Embeddings Quality 42

3.6 Summary . 44

4 Table Embeddings for Data Integration 45

4.1 Introduction . 45

4.1.1 Previous Work on Word Embeddings for Data Integration 46

4.2 Using Embeddings for Integration . 47

4.2.1 Schema Matching (SM) . 48

4.2.2 Entity Resolution (ER) . 48

4.2.3 Token Matching (TM) . 49

4.3 Improving Local Embeddings . 49

4.3.1 Handling Imbalanced Relations . 49

4.3.2 Handling Missing and Noisy Data 50

4.3.3 Incorporating External Information 51

4.3.4 Embedding Alignment . 52

4.3.5 Handling Multi-Word Tokens . 53

4.4 Experimental Results . 54

4.4.1 Schema Matching . 54

4.4.2 Entity Resolution . 56

4.4.3 Token Matching . 59

4.4.4 Ablation Analysis . 59

4.5 Summary . 62

viii

Contents

5 Relational Data Imputation with GNNs and Multi-task Learning 63

5.1 Introduction . 63

5.2 GRIMP . 65

5.2.1 Building the Graph . 67

5.2.2 Generation of node features . 69

5.2.3 Creating the Training Samples . 71

5.2.4 Multi-Task Learning Component 72

5.2.5 Attention Structures . 77

5.2.6 Training Procedure . 80

5.2.7 Imputing the Missing Values . 81

5.3 FunForest . 82

5.3.1 MissForest . 83

5.3.2 From MissForest to FunForest 83

5.4 Experimental study . 84

5.4.1 Experimental Setup . 84

5.4.2 Imputation Results . 86

5.4.3 Working with Functional Dependencies 89

5.5 Summary . 92

6 Conclusions and Future Research Directions 93

6.1 Future Work . 94

6.1.1 EmbDI, Tabular Embeddings and Data Integration 94

6.1.2 GRIMP, Data Imputation with GNNs 96

ix

Contents

x

List of Figures

1.1 An example of dirty relational data. 2

1.2 2D T-SNE projection of embeddings of a relational table that contains
data about movies. 5

1.3 This figure shows the graph built by EmbDI on the right, with the small
table that acts as source on the left. 7

2.1 Example of a simple table that includes functional dependencies. 13

2.2 An example of three different types of simple graphs: an undirected graph,
a directed graph and a bipartite undirected graph. 15

2.3 Example of adjacency matrix with weighted edges. 15

2.4 Example of multigraph with typed edges. 16

2.5 Example of different tokenization strategies. 18

2.6 Graph Convolution applied to a graph node. 21

2.7 Example of integration of two tables about movies. 24

2.8 General Entity Resolution end-to-end pipeline [1] 26

2.9 Example of missing value imputation. 28

3.1 Illustration of a simplified vector space learned from text (prior approaches)
and from data (EmbDI). 32

3.2 The EmbDI graph for the two tables also shown in Figure 3.1. 37

3.3 Heatmap of the vectors for different entities in the IMDB-Movielens dataset. 43

4.1 Example of an ideal data integration system. 46

4.2 Illustration of a simplified vector space learned from text (prior approaches). 47

4.3 Different tokenization results for the string “Adobe Photoshop CS3”. . . 54

4.4 Heatmap of the vector representations of attributes in the IM dataset. . 56

4.5 Heatmap of vectors in match for ER. 58

4.6 EmbDI ER F-measure for IM with increasing amount of missing values in
the data. 61

5.1 Overview of the GRIMP architecture. 66

5.2 Example of GRIMP graph and adjacency matrix on a table. 67

5.3 Modified version of the EmbDI graph as it is used to generate the features. 70

5.4 Example of training sample generation in GRIMP. 71

xi

List of Figures

5.5 Schema of the GRIMP Multi-task component 73
5.6 Schema of the GNN component in GRIMP. 75
5.7 Example of the distribution of training samples over different heads. . . . 76
5.8 Internals of a classification head in the multi-task model. 78
5.9 Example of K matrices for a table with three attributes. 79
5.10 Different variants of matrix K in the head relative to attribute 2, with a

functional dependency between attribute 2 and 3. 80
5.11 Example of the generation of testing samples. 82
5.12 Average redundancy with increasing error fractions over all columns. . . . 85

6.1 Distribution of wrong imputations in “Thoracic” dataset. 97
6.2 Distribution of wrong imputations in “Contraceptive” dataset. 98
6.3 Illustration d’un espace vectoriel simplifié appris à partir de texte (ap-

proches préalables) et de données (EmbDI). 105
6.4 Vue d’ensemble de l’architecture GRIMP. 108

xii

List of Tables

3.1 EmbDI dataset properties. 40
3.2 Quality results for local embeddings generation. 42

4.1 F-Measure results for Schema Matching (SM). 55
4.2 Unsupervised Entity Resolution results comparing different baselines. . . . 56
4.3 Supervised Entity Resolution results comparing pre-trained (DeepERP)

and local (DeepERL) embeddings. 57
4.4 Updated ER results with combined graph structure. 57
4.5 Effects of ntop on ER results. 59
4.6 Execution times (in seconds) for embeddings generation for EmbDI,

Node2Vec (N2V) and Harp. 61

5.1 Features of the MTL model and how they benefit training efficiency, impu-
tation accuracy and task generality compared to a single-task classification
model. 74

5.2 Table statistics for all the datasets we use in this work. 84
5.3 Imputation accuracy obtained with different imputation algorithms. . . . 87
5.4 Execution time in seconds required by different baselines on the given

datasets. 88
5.5 Comparison between different pre-trained features using linear heads and

attention heads. 90
5.6 Comparison between execution times in seconds for linear and attention

heads with different pre-trained features. 91
5.7 Imputation results of MissForest (MISF) against FunForest (FUNF)

and GRIMP-A in presence of exact functional dependencies. 92

xiii

List of Tables

xiv

Chapter 1

Introduction

In the beginning, there were data. Huge, vast reservoirs of data to be employed by
users, organizations, researchers. Unfortunately, most of these data are tainted by bad
formatting, duplicates, missing and erroneous values [2,3]. We show an example of this in
Figure 1.1, which reports a pair of (dirty) tables that contain data from the same domain,
as well as multiple imperfections. In this Figure, the data imputation problem is shown
as the missing values, which should be filled. For data integration, the schema matching
problem consists in matching attributes with inconsistent labels (e.g. “Title” and “Movie
Title”, or “Lead” and “Billed 1”), while for entity resolution the objective is linking entities
(in this case, tuples) to find duplicates and possibly combine information coming from
the different sources (e.g. by combining both the original and English version of the title
of the movie “Your Name.”).

Curating data is a tedious, time consuming process. Unfortunately, this process
cannot be overlooked if one is keen on avoiding negative or misleading outcomes in
downstream applications [4, 5]. Data curation is a remarkably practical field of research:
indeed, handling dirty and inconsistent data is a problem that must be dealt with on a
daily basis in the industry. According to a widely cited statistic, data scientists spend
60 to 80% of their time cleaning and curating data [6–8]. This makes data curation a
far-reaching and widely studied problem [9], which is made harder by the large burden it
poses on humans [10], both in the data curation step and in downstream applications.

Clean and open access to data has a number of ramifications depending on the use
that is to be made of the data. For some applications, dirty data cannot be used at all due
to the fact that erroneous or missing values would introduce unacceptable biases; in the
industry, this might lead to wrong decisions that lead to loss of capital down the line [11];
in medical fields, dirty data could drive incorrect therapies [4,12]. In other situations, data
might be “dirty” in the sense that multiple data sources contain similar information which
should be combined in a “cleaned” view by consolidating duplicates: this can be the case
when different companies merge and need to combine their databases. Performing proper
data curation is a pervasive subject that touches all kinds of data-centric disciplines. For
these reasons, advancements in the field of data curation can directly reach a large set
of applications [13], whilst remaining of paramount importance in the database domain
where most of its research originates.

1

Chapter 1. Introduction

IMDB-Movies

Lead Supporting Director Title Year Language

Viggo
Mortensen Elijah Woods P. Jackson The Two Towers 2002 English

Tom Hanks S. Spielberg The Terminal 2004 English

Ryunosuke
Kamiki

Mone
Kamishiraishi M. Shinkai 君の名は。 2016 Japanese

a table about movies

Billed 1 Billed 2 Director Movie Title Release Genre

Matthew
McConaughey Anne Hathaway Christopher

Nolan 2014 Sci-Fi

Tom Hanks Catherine Zeta-
Jones

Steven
Spielberg The Terminal 2004 Romance

Makoto Shinkai Your Name. 2016 Animation

Elijah Woods Ian McKellen Peter Jackson The Two Towers 2002 Adventure

Figure 1.1: An example of dirty relational data.
In this example, some tuples are duplicated; there are inconsistencies between values in
duplicated tuples (purple background); some values have different format but represent

the same entity (yellow background); some values are missing (yellow ovals); some
attributes do not have the same name (blue boxes); some attributes are present only in

one table and not the other (red boxes).

2

Chapter 1. Introduction

There is no easy solution for the problem. Constraints (domain constraints, functional
dependencies, conditional functional dependencies, denial constraints etc.) are employed
to enforce properties in the data and for identifying errors by observing what values
violate them. While some of these constraints can be introduced during the design phase
of the database (e.g. by specifying an attribute’s datatype and domain, then enforcing
the constraints), this is not always possible.

However, it is possible to detect and generate these rules by observing the data.
Constraints of different kinds can be employed to enforce some properties in the data,
to extract information or to match entities [14]. These constraints are usually hand-
crafted, or must be discovered by observing the data. Their discovery has been the focus
of a number of works going from rule discovery [15], to the discovery of FDs [16, 17],
Conditional FDs [18–20], Denial Constraints (DCs) [21]. This collection of tools can
allow to detect and correct some of the errors that can be found in a dirty dataset [4].

Unfortunately, these tools are not perfect: constraints are not always applicable to
all situations, functional dependencies do not always exist, the generation of rules can
become too expensive, automatically-generated rules may be too many to be checked
by a human observer [14]. Moreover, these tools are often heavily reliant on human
expertise [3, 22–26]: this is a large issue, as solutions that rely on human interaction are
time-consuming, costly, and not scalable to large quantities of data [27].

The presence of dirty or missing data is a major issue, as the generation of constraints
over dirty data can lead to incorrect rules [28–30]. Each dirty dataset has its own
idiosyncrasies and quirks, which means that ad-hoc solutions are very often the only
possible solutions. Even when data are not missing, values might not be clean due to
typos (e.g. “balck” instead of “black”), issues with encoding (does “10.002” mean “10
thousands and 2”, or “10 and 2 thousandths”?), formatting (“The Who” in one dataset
and “Who, The” in another).

The datatype of the values in a dataset can also be problematic: while numerical
errors can be handled through näıve approaches such as linear regression, or modeled
through more sophisticated Deep Learning-based systems [31–35], categorical data (i.e.,
most textual data) cannot be handled in such a way. This either means that categorical
values are converted into numerical form, or categorical-only systems must be designed.
The latter is often the only workable solution for the majority of cases in which the
number of categories becomes too large to be handled by one-hot encoding or similar
methods [36].

There are a number of sides to the data curation problem, and no good solution for
all of them. In this work, we focus on three main challenges:

• Supervised and unsupervised systems: Systems that have a human-in-the-loop
architecture do not scale well and, in some cases, it is hard to find a domain expert.
Supervised systems may rely on golden records and labeled data that are not always
available for a given dataset.

• Embeddings for tabular data: While text can be encoded by employing existing
embeddings algorithms, this is not the case for tabular data.

3

Chapter 1. Introduction

• Categorical data: Categorical values can hang up simpler architectures that work
on numerical values by causing an explosion in the number of features, which leads
to scalability issues (the well-known “Curse of dimensionality”).

Our work leverages methodologies originating from different fields to produce systems
that elegantly handle data integration and data imputation for mixed, tabular data in an
unsupervised fashion.

1.1 Challenges

Lack of human supervision. As mentioned, human-in-the-loop systems can be employed
with success in the field of data curation. However, the human factor is both a blessing and
a curse for these methods. On the one hand, human experts can select the best possible
set of rules, constraints, corrections to be applied to the data under observation; on the
other hand, there is frequently far too much data for a human to handle properly [14].
Another downside is the fact that experts in how to curate the data are not necessarily
experts in how to put their recommendations in code, that is how to “inform the system”
of what it should do [6–8]. For these reasons, we choose to work with unsupervised
methods: all the systems we discuss in this thesis are trained exclusively on the data at
hand and do not require labels, golden records, or human-defined rules to carry out their
tasks. While we do focus on unsupervised solutions, the embeddings they produce can
still be employed by external supervised methods and lead to improvements in the final
result. We developed our systems in such a way that it should be possible to apply them
without a large coding background, so that a domain expert would be able to run the
system, then correct the result if necessary.

Embeddings for tabular data. “Vector space models” (VSMs) describe algebraic
models for representing entities through vectors (or embeddings) in a high-dimensional
vector space [37]. The position in space of each vectorized entity is decided in relation
to all other entities, in such a way that correlated entities are placed closely to each
other in the vector space. Crucially, geometric properties apply to the relationship
between these vectors: numeric distances between strings can be measured, and it is
possible to “navigate” around the vector space by carrying out vector operations [37]. By
designing a system that takes the structural elements of tabular data (such as tuples and
attributes) into consideration, it becomes possible to employ the geometric properties of
these structural elements for further use.

Categorical data. For this work, we direct our attention mostly at datasets that
can contain categorical, numerical, or mixed data types. Categorical data can assume
only a limited number of different values that can be separated in “categories”. While
categorical data is normally textual, it need not be: at times, integer-valued attributes
should be treated as categorical attributes (for example, when working with ZIP codes or
numerical IDs). Due to their discrete nature, categorical values (i.e., values that can be
assigned to a category, such as strings or numerical IDs) are particularly problematic in
Machine Learning as most models require numerical features in order to function [36,38].
The lack of good answers to this problem is what motivated us to focus specifically on

4

Chapter 1. Introduction

datasets that feature a majority of categorical data. We design a set of algorithms and
systems that are not only able to handle categorical values, but also “embrace” their
discreteness through a discrete representation, that is a graph. To combine ML models
and categorical data, we elect to use vector representations to encode the latter, so that
it is possible to employ systems that require numerical features on categorical values.

Figure 1.2: 2D T-SNE projection of embeddings of a relational table that contains data
about movies.

In early applications, these VSMs have been used to generate vector representations of
words and documents. The introduction of later frameworks such as word2vec, however,
opened the door to their use for a wide variety of applications. Indeed, a fundamental
advantage of embedding models is that any kind of object can be transformed into a
numerical vector, provided that entities can be represented in a form suitable to the
training model. Our work leans heavily on this characteristic by employing embedding
techniques to encode categorical tabular data, then acting on the resulting numerical
vectors to carry out further operations that would not be possible on the original data.
Embedding vectors allow to mitigate this problem by converting categorical values into
comparatively well-behaved high-feature vectors, this in turn allows to reduce the overall
number of dimensions required by the model.

Figure 1.2 depict a 2D projection of embeddings generated on a subset of entities
related to movies (title, directors and actors), and their closest neighbors. All the points
in the space are placed based on their relationship with other points in such a way that
related values are positioned closer to each other than unrelated values.

The second reason for us to employ VSM representations (“embeddings”) is how they
can be trained in an unsupervised fashion given a properly prepared training corpus.

5

Chapter 1. Introduction

This allows us to develop pre-processing tools that, given a target dataset, produce a
suitable input representation (be it a sentence-based training corpus, or a feature-enriched
vector representation of table values) for the embedding algorithm to “digest”. With this
approach, the algorithms can be executed with little required input from human experts
other than proper setup and pre-processing.

Encoding tabular data through embedding is not a trivial endeavor [39, 40]: while
natural language is inherently redundant and homogeneous, tabular data do not share
the same homogeneity and are far less redundant, especially when considering only one
table at a time. Tabular data also contain syntactic structures that are absent from
natural language, namely tuples, attributes and a concept of “belonging” shared by the
tokens found in those structures. Furthermore, while it is possible to mitigate some of
the issues caused by categorical data, models based on Deep Learning techniques suffer
heavily from their characteristic: domains with large cardinality and highly imbalanced
data distributions are very difficult to model, which becomes a large problem whenever
classification problems come into play.

1.2 Approach and Contributions

In this work, we propose a novel, modular procedure for handling Data Curation (specifi-
cally Data Integration and Data Imputation) that relies on non-traditional representations
of tabular data and Deep Learning-based models. We provide examples of how to rep-
resent relational tables in graph form, and how to generate vector representations for
the graph nodes. These graph representations are built in such a way that the graph
nodes include table tuples and attributes, thus allowing to organically generate vector
representations for these entities as well: this is a marked change from previous work, in
which column and row representations were generated by combining the vectors of the
values in the respective column or row.

A major advantage of this modular methodology is that it becomes possible to “plug
and play” different methods: this allows to piggyback on the research carried out in
the different fields to leverage different state of the art methods and therefore enhance
the performance of the system. We provide examples of this by employing different
graph representations of tables, as well as multiple methods for generating graph node
embeddings (namely, based on DeepWalk [41,42] and on Graph Neural Networks [43]).
For example, by treating random walks as sentences it becomes possible to leverage pre-
existing algorithms originally developed for Natural Language Processing (NLP) problems
for tasks completely different from what they were designed for. Vector representations
enjoy geometric properties that can be exploited to carry out a number of operations:
here, we use them to perform entity resolution, schema matching and data imputation.
Finally, a key feature of the systems we propose is that they are unsupervised, so that
there is no hard requirement on external human involvement to run the training.

It is important to note that Deep Learning is not a silver bullet for all applications,
and suffers from some drawbacks that must be kept in consideration when applying these
solutions, or any DL solution [39,44]. We explore some of these limitations in the latter

6

Chapter 1. Introduction

ID Name Age Country

1 Riccardo 28 Italy

2 Kensuke 25 Japan

3 Lucas 22 France

R1

R2

R3

Riccardo

Kensuke

28

25

22

Italy

France

Japan

Name

Age

Country

Lucas

Figure 1.3: This figure shows the graph built by EmbDI on the right, with the small
table that acts as source on the left.

part of this manuscript.

This work focuses on attacking the data curation problem from two angles: unsuper-
vised learning and modeling of categorical data. We employ the former to get around
the human-in-the-loop issue: by designing unsupervised models, it becomes possible
to carry out multiple data curation tasks with no need for human-provided data other
than the starting datasets and the location of missing values. We design our models
around the need to model categorical data in order to expand the use of Deep Learning
in data curation: indeed, DL-based models are penalized by categorical data exactly
because these data are harder to model numerically. In our contributions, we introduce
a novel representation of relational data that allows to elegantly generate numerical
representations of categorical data: through the transformation of a relational table
into a graph such as the one displayed in Figure 1.3, it becomes possible to leverage
embedding techniques originally developed for Natural Language Processing to generate
vector representations of the nodes in the graph. We design our systems in a modular
fashion, so that it is possible to apply different strategies to represent the tables as graphs,
to generate the embeddings and to work with the resulting embeddings for different tasks.

Overall, we propose the following contributions:

• We introduce a novel architecture for restructuring tabular data which converts rela-
tional tables into a graph. This allows to employ embedding generation techniques
to produce distributed, numerical vector representations of the content of the table.
As a consequence, the discrete representation can directly be used for representing
discrete, categorical datatypes. We show how to generate the embeddings on top of
the graph and how to study their quality. This contribution tackles the challenge

7

Chapter 1. Introduction

of generating tabular embeddings for categorical data.

• We then move to a two-table scenario in which data integration is performed by
building a graph on top of the concatenation of the two tables. By doing this, the
graph embeddings encode information about the structure of both tables. The
geometric properties of these embeddings can be exploited once again, this time to
perform Schema Matching (SM) and Entity Resolution (ER). We develop EmbDI
(EMBeddings for Data Integration) to implement these contributions. With EmbDI,
we propose an unsupervised solution to the problem of data integration for categorical
data.

• We then pivot to the data imputation task by developing GRIMP (Graph embed-
dings for Relational data IMPutation), a data imputation system that combines
Graph Neural Networks with a Multi-Task classification objective function to per-
form Data Imputation over relational data. We study how to integrate Functional
Dependencies in GRIMP, as well as already established systems with FunFor-
est (Functional MissForest), a data imputation system based on the well-known
MissForest algorithm [45]. FunForest can make use of user-provided Functional
Dependencies during its training. For the data imputation problem, we once again
propose unsupervised solutions for categorical data.

For every contribution, we carry out extensive experimental campaigns to study the
system main properties and compare each of them against a number of different baseline
algorithms.

1.3 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2. This chapter introduces the basic terminology and discusses previous
work on the different subjects treated in the rest of the thesis.

Chapter 3. This chapter presents a method for generating embeddings for relational
data. The different sections of the EmbDI system are described here in detail. We present
a suite of tests that let us get a measure of the information that has been encoded in the
embeddings by relying on their geometric properties, akin to the Analogy test proposed
for word2vec embeddings.

Chapter 4. This chapter explores how EmbDI embeddings can be employed in a
two-tables scenario to perform the data integration tasks of Schema Matching and Entity
Resolution. We explore how the tables are pre-processed to improve overlapping and how
to perform the matching to maximize match precision. Finally, we describe how vector
neighbor indexing can be used to speed up the matching procedure. We also introduce
some promising applications of the table embeddings, such as geometric querying of
embeddings and token matching.

Chapter 5. This chapter focuses on data imputation, our contributions and an in-
depth discussion of our results in comparison to a number of data imputation baselines.

8

Chapter 1. Introduction

We introduce GRIMP and its major components. We show the effect of Functional
Dependencies on DL-based systems and develop FunForest, an improved version of
the MissForest algorithm that makes use of FDs to achieve better imputation results.

Chapter 6. In this chapter we wrap up the results achieved in this thesis. We highlight
some of the drawbacks of the proposed solutions and discuss several promising starting
points for future developments in the field.

1.4 Publications

Chapter 3 is partially based on the demo:

Riccardo Cappuzzo, Paolo Papotti, Saravanan Thirumuruganathan: EmbDI: Em-
beddings Generation for Integrating Relational Datasets (Demo paper in submission,
4 pages).

Chapters 3 and 4 are based on the following papers:

Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020. Cre-
ating Embeddings of Heterogeneous Relational Datasets for Data Integration Tasks.
(14 pages) In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’20). The paper has received the ACM badges for
Results Reproduced, Artifacts Available and Artifacts Evalued and Reusable

Riccardo Cappuzzo, Paolo Papotti, Saravanan Thirumuruganathan: EmbDI: Gen-
erating Embeddings for Relational Data Integration (Discussion Paper, 8 pages).
SEBD 2021

Riccardo Cappuzzo, Paolo Papotti, Saravanan Thirumuruganathan: Creating
Embeddings of Heterogeneous Relational Datasets for Data Integration Tasks
(Short Paper, 2 pages). BDA 2021

The content of Chapter 5 is based on the paper:

Riccardo Cappuzzo, Paolo Papotti, Saravanan Thirumuruganathan: Combining
Graph Neural Networks and Multi-Task Learning for Tabular Data Imputation.
Paper in preparation.

9

Chapter 1. Introduction

10

Chapter 2

Background

In this chapter, we describe the background of the subjects that are touched by this
thesis. We introduce a set of terms and concepts that are referred to over the course of
this work, as well as related work in the field. This is not an exhaustive discussion of
all the facets of the subjects in data curation and deep learning: the objective of this
section is instead to “standardize” the concepts that are the focus of this thesis.

With the final objective of innovating the field of data curation with deep learning
methods, this thesis falls at the intersection of different domains: Relational Tables,
Graphs, Vector Space Models, Multi-task Learning, and Data Curation.

2.1 Relational tables

While relational tables are an ubiquitous concept, this section will nonetheless discuss
some basic concepts to summarize their use in this thesis.

Definition 2.1.1 (Relational Table). With relational table (in the following table or dataset)
we refer to a collection of data organized in table form which includes rows (or tuples)
and columns (or attributes), with cells being the intersection of a row with a column.
Each column is defined over a domain, that is a set of values that share a datatype.

Relational tables will be used over the course of this manuscript.

2.1.1 Datatypes

Broadly speaking, datatypes can be divided in numerical datatypes, and categorical
datatypes; additional datatypes (ordinal values, dates etc.) exist, however we do not
consider them in this work. Numerical data include integers and real-valued numbers;
they can be handled using traditional distance metrics. It must be noted that, in some
cases, numerical values could instead be considered as categorical: for example, ZIP codes
would be categorical as the numerical distance between two ZIP codes does not necessarily
reflect the difference between the two numbers. Categorical datatypes are datatypes
whose values must be split in categories. It is not possible to use a numerical distance
to measure the difference between categories, although string metrics that can measure

11

Chapter 2. Background

the difference between strings exist, such as the Jaccard similarity, or the Levenshtein
distance. Unfortunately, these string metrics do not provide any information relative
to the meaning of the strings. To this end, ontologies and lexical databases such as
WordNet [46] can be used. Indeed, part of the motivation behind embedding models is
finding distances between non-numeric entities that do not rely on string similarity [47].

Depending on the application, all datatypes (categorical, integers and reals) can
cause problems for different reasons: NN-based models cannot handle categorical values
as-is, and require them to be represented through some kind of encoding such as the
one-hot encoding [36]; for some integer values it might be unclear whether they should
be considered as numbers or as categories; real numbers by their own nature cannot
be represented properly in a discrete form. Integers can be considered as ordinal types
to better represent the order relationship between different values [48], but the order
relation is not necessarily available.

2.1.2 Functional Dependencies

Definition 2.1.2 (Functional Dependencies (FDs)). Functional Dependencies [49] are
integrity constraints modeled as relationships between multiple columns, such that a set
of columns functionally determines (or, implies) the value in a different column. Given a
relation R, attribute Y is functionally dependent on attribute or set of attributes X if
for every valid instance of X, the values in X uniquely determine the value of Y . This
relationship is normally represented as:

X → Y (2.1)

Definition 2.1.3 (Determinant, Dependent). X is the determinant, or Left Hand Side
(LHS), while Y is the dependent or Right Hand Side (RHS). The LHS might include
multiple attributes that taken together imply the RHS, but that are not enough to force
the relationship when they are taken singularly .

We use Figure 2.1 as a running example for this section. Figure 2.1 gives an example
of a table that includes a number of Functional Dependencies:

• TeacherID → TeacherName

• TeacherID → TeacherSurname

• CourseV ersion → CourseName

• TeacherID,CourseV ersion → CourseID

CourseID is by itself the LHS of all other attributes as it is the table’s primary key.
For this example, tuples are be denoted as ti, where i is the value found in CourseID.

While traditionally used for schema design, Functional Dependencies can be used to
detect and correct errors, as long as said errors appear only in the Right Hand Side (the
Dependent): if the full LHS is available somewhere else in the table, then it is possible
to detect and correct errors in the RHS; if part of the LHS is not available, then error
detection or correction cannot be done through FDs alone.

12

Chapter 2. Background

CourseID CourseVersion CourseName TeacherID TeacherName TeacherSurname

11 113 Fundamentals of
Programming 22 Thomas Muller

22 120 Fundamentals of
Programming 64 Eva Cheng

33 82 Information Theory 99 Thomas Neill

44 32 Calculus I 15 Alberto Madeira

55 120 22 Janet

Figure 2.1: Example of a simple table that includes functional dependencies.

Going back to the example in Figure 2.1: here the known FDs are enough to re-
pair the missing values in CourseName and TeacherSurname, as well as to detect
the erroneous value in TeacherName. Since CourseV ersion → CourseName, tu-
ple t55 can be repaired by using the value found in t22 and attribute CourseName,
“Fundamentals of Programming”. Unfortunately, FDs are not always the solution.
Consider now the value t55[TeacherName] = Janet. This is violating the FD found
in t22. However, by relying exclusively on FDs, we do not have enough information to
decide whether the correct value is Thomas, or Janet. If more records are available, it
may be possible to solve this problem by majority voting: if there exists another tuple
t66, in which TeacherID = 22 and TeacherName = Janet, we could rule Thomas as
the erroneous value. This information is not always accessible.

In the example we showed how “strict” Functional Dependencies can be employed to
spot and correct some errors, and how they are not infallible. Extensive work has been
done in the literature both to extend the reach of FDs by“relaxing” their requirements [50],
and to profile data with the objective of detecting them. Examples that belong to the first
category include Conditional Functional Dependencies (CFDs) [51], Temporal Functional
Dependencies [52]; [17, 53, 54] are some examples of the latter. Denial Constraints
(DCs) [21] represent an evolution of Functional Dependencies, with far more power
of expression and the capacity of handling more complex cases, such as range-based
constraints.

Functional Dependencies are used in Chapter 5.

13

Chapter 2. Background

2.1.3 Deep Learning Representations of Tabular Data

Among the various types of data that can be handled by deep neural networks (e.g.
image, video, audio, text data), tabular data stick out as the most problematic [40,55]:
tabular data are heterogeneous, with dense numerical features and sparse categorical
features; correlation between features is weaker than semantic or spatial relationships in
text or image data; variables can be correlated or independent; features have no positional
information [56]. A number of surveys [39, 40, 44] have studied how the problem has
been tackled in the literature. Overall, there are a number of challenges that temper the
effectiveness of DL-based methods in their application to tabular data [40]:

1. Training data might feature missing values (like in the simple example in Fig. 2.1),
outliers, inconsistent data. Moreover, training classes are often imbalanced.

2. There is no spatial correlation between features in tabular data [57], as the order
of columns in a table does not necessarily reflect any kind of inherent correlation
between them.

3. Categorical data require extensive pre-processing and must be encoded in a way
that can be handled by DL models. [36] surveys different encoding solutions.

4. Deep neural network models tend to be very fragile and sensitive to small modifica-
tions in the training data [58,59]. This is less problematic for homogeneous data,
but tabular data do not belong to this category. Small changes even in a binary
value can lead to large changes in the output, exacerbating the issue described in
point 1).

In fact, works such as [39] and [44] have shown that systems that rely exclusively
on Deep Neural Networks do not necessarily outperform “simpler” models in all cases.
However, DL-based solutions still work well when paired with shallower methods [44]
such as GDBT (Gradient Boosted Decision Tree) [60].

Different DL-based methods are employed in Chapter 3 and 5.

2.2 Graphs

While most of this work is based on graphs, we do not delve deeply in the graph theory
field. Still, to summarize the concepts that will come into play the most in the rest of
this work we report the following definitions.

Definition 2.2.1 (Graph, Vertex, Edge). A Graph is defined to be a pair G = (V,E),
where V is a set of n vertices vi such that vi ∈ V , and E is a set of m edges (or links),
where each edge evu = (v, u) ∈ E denotes a pair of vertices (v, u) that are put in relation
with each other.

Definition 2.2.2 (Directed graph, undirected graph). A graph G = (V,E) is said to be
directed if its set of edges E is made of ordered pairs of vertices in V : euv = (u, v) ̸=
evu = (v, u). Conversely, a graph is undirected if its set of edges E is composed of
unordered pairs: euv = evu = {u, v}.

14

Chapter 2. Background

A

D B

C

A

D B

C

1

2

3

A

B

Figure 2.2: An example of three different types of simple graphs: an undirected graph, a
directed graph and a bipartite undirected graph.

Definition 2.2.3 (Node neighborhood). The neighborhood of a node v is defined as
N (v) = {u ∈ V |(v, u) ∈ E}, and it represents the set of nodes uk that share an edge
with node v.

2

A

3

D B

1

C

5

0 0 2 3

0 0 5 0

2 5 0 1

3 0 1 0

A

A

B

C

D

B C D

Figure 2.3: Example of adjacency matrix with weighted edges.

Definition 2.2.4 (Adjacency matrix). The adjacency matrix A is a n × n matrix with
Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E.

Definition 2.2.5 (Node features). A matrix X ∈ Rn×d is a node feature matrix with
xv ∈ Rd being the feature vector of a node v.

Definition 2.2.6 (Edge features). A matrix Xe where Xe ∈ Rm×c is an edge feature
matrix, with xe

u,v ∈ Rc being the feature vector of edge euv = (u, v). Edge features might
be mono-dimensional, so that the edges might be weighted. Weights might be a measure
of the edge (for example, the distance between two cities).

Figure 2.3 shows an example of adjacency matrix with weighted edges.

Definition 2.2.7 (Bipartite graph). A Bipartite Graph is a graph in which vertices can be
partitioned in two sets A and B, and such that no edges exist between any two vertices
within each of A and B (right side of Fig. 2.2).

15

Chapter 2. Background

Facebook

Linkedin

Twitter

Facebook

Eric Zoe

Linkedin

Facebook

Linkedin

Yuki Facebook

Twitter

Susie

Figure 2.4: Example of multigraph with typed edges.
Here, each node is a different person, while each edge is typed and denotes a link on a

specific social network. In some cases, a pair of people is connected by edges with
different types.

Definition 2.2.8 (Multigraph). A Multigraph (Fig. 2.4) is a generalized graph that allows
to have more than one edge connecting the same two vertices; edges in multigraphs can
be typed, so that two vertices might be connected by multiple edges with different types.

Different types of graphs are employed in Chapters 3 and 5.

2.2.1 Knowledge Graphs

Knowledge Graphs (e.g. YAGO [61] and WikiDATA [62]) are data structures built with
a graph-like architecture to store real world entities and their relationship with other
entities. Knowledge Graphs are modeled using multigraphs whose nodes and edges have
properties that encode information relative to those entities. Entities in a Knowledge
Graph can be any abstract or concrete object of fiction or reality [63], such as Paul Rudd,
Paris, WHO. Entities can have properties (e.g. birth date, location, height etc.), and can
have relationships with other entities. Relationships connect different entities to describe
links between them.

A common standard for representing data in knowledge graphs is the Resource
Description Framework (RDF) [64]. RDF statements compose a directed graph, with
each statement being a triple that includes a node for the subject, a node for the object
and a directed edge that connects the two and acts as a predicate. For example, a possible
triple could be < PaulRudd, ActedIn, Ant−Man >.

For this work, we do not employ Knowledge Graphs directly, however we do represent
tabular values by relying on triplets reminiscent of RDF statements in Chapter 5.

16

Chapter 2. Background

2.3 Vector Space Models

Vector Space Models (VSMs) describe algebraic models for encoding entities in the form
of high-dimensional, real-valued vectors in such a way that related entities are positioned
close to each other in the vector space. In the first VSM applications, each entity (word,
sentence or document) was assigned a vector with a size equal to the number of terms in
the domain, so that each vector acts as an indicator that specifies whether an entity in
the domain is present in the document at hand. This is naturally problematic when the
size of the domain is very large: vectors can become very large and sparse, which makes
carrying out operations particularly difficult. “Bag-of-word” models are one example of
Vector Space Models.

A number of advances have led to more compact VSM representations, which removes
the need for an indicator for every value in the domain. This makes it possible to compress
the information in a smaller number of dimensions, while at the same time maintaining
the algebraic properties of the “extended” VSM representation. The CBOW (Continuous
Bag of Words) and Skip-gram [37,65] models were instrumental for bringing scalability
in the generation of the VSM, which ultimately allowed to train the models on huge
amounts of data for their application in the representation of words for Language Models.
Indeed, VSMs came to prominence thanks to their applications in the Natural Language
Processing field. We demonstrate that they are not reserved to those applications, nor
are the advancements made in the NLP field applicable exclusively to Language Models.

In this work, we focus on Word Embedding and Graph Embedding (already
described in Section 2.3.2) to perform Table Embedding. Table embeddings are methods
are used in Chapters 3 through 5.

2.3.1 Word Embedding

As hinted above, the use of VSMs to encode information about words is what has led
to the explosion in development of this field. Early word embedding algorithms include
Word2Vec [37, 65], GloVe [66] and fastText [67]: these algorithms rely on “bag-
of-words” training corpora and rely on the co-occurrence of values in their context to
generate word embeddings.

Word2Vec [37] is a neural network-based method that trains vector spaces based on
the context each word is found in. The context is a n-sized (an n-gram) window of words
centered on the target word, which slides over training sentences in the training corpus.
It is a relatively simple algorithm: by only considering the co-occurrence of words within
the n-gram, the sequence of words in the window is not considered, and the content (or
the meaning) of each “word” is unknown to the algorithm. For pure language modeling,
this is a major drawback since word order and sub-word tokens carry a lot of information
that the algorithm cannot make use of; on the other hand, this is beneficial if one is
trying to adopt Word2Vec to generate embeddings for self-contained entities, since
splitting them in sub-entities would not provide additional benefit. This is the case, for
example, when the training corpus contains random walks over a graph, like in [42] or
EmbDI itself. Word2Vec is trained by using either the CBOW or the Skipgram model:

17

Chapter 2. Background

in the first case, the model is traned by predicting a word from its context, while in the
latter the model predicts the context from a word. Word2Vec makes use of a number of
optimizations to reduce the training cost involved in the handling of the training corpora
that are required for training models for NLP. The second word embedding algorithm
we have been working is fastText [67]. fastText is trained in a similar fashion to
Word2Vec, with the main difference being how the former splits each word in a training
sentence into subwords. This is advantageous when representing natural language, since
subwords carry additional information that is lost when only the full word is considered.
A useful feature provided by the fastText library is the generation of a vector for
unknown words or sentences. For sentences, this is done by dividing each sub-word vector
in the sentence by its norm, then averaging all vectors together. Modeling sub-words
on top of words is a major advantage of fastText as it allows to handle unknown or
misspelled terms better than Word2Vec.

In order to properly train a Language Model, a very large (in the order of billions
of tokens) training corpus is necessary; as a result, the training procedure is very
computationally expensive. Pre-trained models are available in a number of different
flavors: different algorithms, different languages, different vocabulary sizes, different
sources. These pre-trained models are made available in various repositories [68,69] for
use in a number of applications, and there are works that employ these embeddings to
represent tabular data [70,71]. A disadvantage inherent in the use of pre-trained models
is the fact that vectors may include biases that are not reflected in the table at hand.

The use of pre-trained embeddings is explored in Chapters 3 and 4.

Tokenization

With tokenization we refer to the procedure of parsing a string, then splitting it in smaller
units (tokens), which have a specific representation and meaning. The “tokenization”
procedure has recently come in the spotlight thanks to NLP. Specifically, tokenization is
used in the preparation of a Language Model’s training corpus to identify what words
should be contained by the vocabulary. One of the most widely adoperated tokenizers is
the Wordpiece tokenizer model [72], which is employed, among others, by BERT [73]: the
Wordpiece tokenizer is trained over the dump of Wikipedia in the largest 100 languages,
which generates a multilingual vocabulary that contains tokens from each of those
languages. While in many cases (due to how the tokenizer vocabulary is trained, this is
more evident in the English language) tokens correspond to full words, in some cases
words are split into multiple tokens (sub-words) with flag characters to denote that a
token should be taken together its predecessor in the sentence.

process ing-

Pre-processing

Pre

Pre-processing

Pre-processing Pre processing-

Pre-processing Pre-processing

cesspro ingPre -

Figure 2.5: Example of different tokenization strategies.

18

Chapter 2. Background

Figure 2.5 displays an example of how it is possible to tokenize a word according to
different rules, producing different sets of tokens in the process.

In this work we do not focus on the training of a language model. However, tokenization
is still a major concern due to the fact that some datasets feature very long and complex
textual strings: these strings should be“unpacked” in some way to not lose the information
contained therein. This is where tokenization comes into play, although in our applications
it is sufficient to split strings by whitespaces.

We go into more detail about this in Chapter 3 and 4.

Contextual Embeddings and Attention

A major drawback of “bag-of-words” methods is their representation of homonyms, i.e.
words that have the same spelling, but unrelated meanings: for example, the word “bat”
indicates both an animal and a club-like object; “bag-of-words” methods would generate
a singular embedding for “bat” which combines the two different interpretations.

ELMo [74] was one of the first solutions to the problem of contextual embeddings,
which it solved by generating representations in such a way that each token is assigned
a vector that is a function of the entire input sentence: this allows to have word
representations that can draw from the context to better represent the meaning of the
word in the sentence.

The real revolution came to be with the application of the concept of Attention and
its use in the representation of language. “Attention” describes the process of focusing on
a specific, discrete aspect of information, while ignoring other perceptible information [75].
In a similar fashion to how neural networks attempt to mimic neurons in a brain, attention
methods in DL attempt to imitate the attention process by focusing on more relevant
parts of the piece of information at hand. DL methods can therefore “attend” to specific
parts of the input that are more relevant to the task at hand: this allows models to better
allocate resources in the training and improve results. Attention mechanisms can be
applied to all kinds of information, from images [76], to speech recognition [77], to natural
language [73, 78], to graph structures [79], to data imputation [80]. The effectiveness
of the attention mechanism has been demonstrated by the very large corpus of work
that rely on it [75], with language models such as the Transformer architecture [78] and
BERT [73] standing at the forefront thanks to the degree of disruption they caused in
the NLP field.

Interestingly, there are remarkable similarities between attention-based systems: NLP
transformer-based [78] models can be connected to GATs [79] by imagining each sentence
studied by the NLP model as a fully connected graph, with the graph attention network
attending to each word as if it were a normal graph node [81].

BERT-related models are renowned for their capability to be fine-tuned and modified
to be applied to a variety of different problems, which allows to skip the very expensive
training step and slightly modify the training weights (usually in the later layers) to better
fit to one’s application. A different, but related research direction revolves around the
production of computer-generation realistic-looking text. The GPT architectures [82–84]
are some of the main examples of generative language models.

19

Chapter 2. Background

The concept of attention is used in Chapter 5.

2.3.2 Graph Embedding

There exist a wide variety of graph analysis tasks [85, 86], with just as large a number of
algorithms for tackling them. DL-based algorithms for data analysis can be distinguished
between algorithms that produce low-dimensional representations of nodes to be used for
further tasks [85], and architectures that model an entire task end-to-end [87]. We refer
to the first category as Graph embeddings and to the second as Graph Neural Networks
(GNNs).

Graph embedding algorithms employ the low-dimensional node representations as
inputs to ML-based techniques, so that a single set of node representations can be
used for multiple applications [85, 86], such as link prediction [88], classification [89],
clustering [90]. For example, t-SNE [91] or PCA projections can be used in conjunction
with the embeddings generated by graph embedding methods for the visualization
problem [92], while clustering algorithms such as k-means or DBSCAN [93] can be
employed to perform node clustering. Conversely, GNNs include architectures that are
designed with the objective of creating an end-to-end solution that can carry out graph
analysis tasks (e.g. node classification, link prediction) without relying on external
methods. We use the first approach in Chapters 3 and 4 with EmbDI and the second in
Chapter 5 with GRIMP.

Graph Embeddings

Graph embeddings are defined as follows [85]:

Definition 2.3.1 (Graph embedding). Given a graph G = (V,E), a graph embedding
is a mapping f : vi → yi ∈ Rd ∀i ∈ [1, . . . , n] such that d ≪ |V | and the function f
preserves some proximity measure defined on graph G.

Graph embeddings generation techniques can be categorized as factorization-based,
random walk-based and deep learning-based [85]. Examples of the first category include
[94–97]. Random Walk-based models include DeepWalk [41], walklets [98], node2vec [42]
and HARP [99]. node2vec and DeepWalk work by generating random walks, then
optimizing the likelihood of observing the last k nodes and the next k nodes in a
random walk centered at a node vi. node2vec improves over DeepWalk by employing
biased random walks to balance breadth-first and depth-first movement. Optimizing
the likelihood of observing nodes in a random walk is akin to what the word2vec [37]
algorithm is doing to optimize the co-occurrence of words in a sentence: we make use of
this in the development of EmbDI.

Chapters 3 and 4 are based on graph embeddings generated with these approaches.

Graph Neural Networks

GNNs are deep learning-based methods that are inspired from the success of CNNs [100],
RNNs [101], and autoencoders [102]: these techniques have been generalized over the past

20

Chapter 2. Background

years to handle graph data [87]. In a generic GNN architecture, the network takes as input
the graph (with its adjacency matrix A) and a set of node features X, then aggregates
the features of each node with its neighbors via a message passing operation [103]; finally,
the features are transformed by a non-linear function. As a result, the representation of
each node encodes some information relative to the node itself, and to its direct neighbors.
For example, a graph convolution can be generalized from a 2D convolution of an image
by considering each pixel as a node, and the convolution to be performed over the node
neighbors. Naturally, the main difference is that graph nodes do not have a fixed number
of neighbors, unlike pixels in images. Figure 2.6 depicts an example of a graph convolution
centered on the red node, which is connected directly to the yellow nodes. Similar nodes
(either in features or neighborhoods) are placed close to each other in the vector space.
By adding more layers on top of each other, it becomes possible to propagate a node’s
features to longer distances (that is, a larger number of hops from the starting node).
The output of the stack of layers contains the distributed representations of the graph
nodes, which can then be used for node classification [43], link prediction [104,105] and
more. Unlike previous works in which the node embeddings are generated on the plain
graph, and then they are employed for carrying out a task [85], GNNs model the entire
task from end to end by combining graph structure and node features using the message
passing operation. The resulting features are then fed to a final layer that handles the
task (classification, link prediction etc.). Depending on whether the entire graph is
operated on at the same time or not, GNNs can be divided into two categories, Spectral
Convolutional GNNs (Spectral ConvGNNs) and Spatial Convolutional GNNs (Spatial
ConvGNNs) [87] respectively.

Figure 2.6: Graph
Convolution applied
to a graph node.

Spectral ConvGNNs assume that graphs are undirected, then
apply a series of transforms over the Laplacian of the entire graph
to obtain the new representation, which is then passed on to
the final task. Spectral ConvGNNs include Spectral CNN [106],
ChebNet [107] and Graph Convolutional Network (GCN) [43].
GCN reduces the scale of the convolution from taking the entire
graph at the same time, down to handling the neighborhood of
one node at a time. This is more scalable, and it is still possible
to work on the entire graph by iterating over all nodes.

In Spatial ConvGNNs, the neighborhood of a node can be
expanded by increasing the depth of the network and keeping
the weights in each layer independent from each other. Spa-
tial ConvGNNs examples include Neural Networks for Graphs
(NN4G) [108], Message Passing Neural Network (MPNN) [103],
Graph Attention Network (GAT) [79] and GraphSAGE [109].

In Spectral ConvGNNs, the combination operation is modeled
as the matrix multiplication of the graph adjacency matrix A with
the node features, filtered by a matrix that contains learnable

parameters. In these models, the output of a layer has the form [110]:

H i = f · (H i, A) = σ(AH(i−1)W i) (2.2)

21

Chapter 2. Background

Here, A is the graph adjacency matrix, σ is the activation function (generally, a ReLU),
H i is the feature matrix output of layer i, W i is the weight matrix of layer i. H0 = X
is a feature matrix that contains the embedding representation of each node in the graph.
The adjacency matrix A is often [43, 111] modified by adding an identity matrix In
to obtain Ā = In + A: this effectively allows the GNN to make use of a node’s
own features when the combination operation is carried out, which improves the overall
training performance. Adding In to the adjacency matrix has the practical effect of
introducing self-loops in the graph.

Due to scalability issues, it is not always possible (or even necessary) to work
with the full adjacency matrix. Spatial ConvGNNs represent a more efficient solution
which revolves around performing the convolution operation on one node at a time, by
aggregating only that node’s neighbors. To propagate the result of the convolution of
one node, a “message passing” [103] operation is performed. With message passing, the
results of the convolution can be passed over the edges that link different nodes; during
this operation, the features of each node are combined with those of the node’s neighbors
(either all, or a sample of the neighbors [109]). The message passing function (or spatial
graph convolution) is defined as [87,103]:

h
(k)
v = Uk(h(k−1)

v ,
∑

u∈N(v)

Mk(h(k−1)
v ,h(k−1)

u ,xe
vu)) (2.3)

Here, h
(k)
i describes the features of node i at layer k, N(v) is the set of neighbors of

v and xe
vu is the vector of features of edge vu; h

(0)
v = xv, while Uk(·) and Mk(·) are

functions with learnable parameters.

These spatial-based convolutional GNNs are far more efficient and versatile than
spectral-based GNNs, and a number of solutions that incorporate the general message-
passing framework have been developed [79,109,112]. Spatial ConvGNNs are preferred
over Spectral models for a number of reasons [87]. First, spectral models are computa-
tionally less efficient than spatial modes as they require to either compute eigenvectors
on the graph’s matrix, or to handle the whole graph in memory at the same time. Spatial
models do not have this issue, since they can propagate the convolution through message
passing, and computations can be completed in batch. Second, spectral graphs assume
that the graph is fixed and generalize poorly to new graphs, with any perturbation
requiring expensive recomputations. Third, spectral-based models cannot operate on
directed graphs, whereas spatial-based models do not have this limitation and can can
handle edge inputs, directed graphs and heterogeneous graphs [113,114]. Regardless of
the internal structure, given the graph adjacency matrix and the node features, a GNN
will produce, for each node, new features that aggregate the starting features with those
of its neighbors.

We go into the detail of how to use GNNs for data imputation in Chapter 5.

22

Chapter 2. Background

2.4 Multi-Task Learning

In Machine Learning, Multi-task Learning (MTL) [115] is a learning paradigm whose aim
is to jointly learn multiple related tasks in such a way that the knowledge contained in a
task can be leveraged by other tasks [116]. In MTL, rather than optimizing a model on a
singular objective, multiple different objective functions are optimized at the same time,
while sharing information over the course of the training. Training multiple tasks at the
same time allows each task to learn from the others, while improving the generality of
the final model.

We use the definition of Multi-Task Learning reported in [116]:

Definition 2.4.1 (Multi-Task Learning). Given a set {Ti}mi=1 of m learning tasks, where
all or a subset of the tasks are related, the objective of multi-task learning is to train the
m tasks together, in order to improve learning of a model for each task Ti by using the
knowledge contained in all or a subset of other tasks.

Depending on whether tasks lie in the same feature space or not, MTL can be either
homogeneous or heterogeneous respectively. The heterogeneous case includes settings in
which tasks include classification and regression, however it can be generalized to include
supervised learning, unsupervised learning, semi-supervised learning. On the other hand,
the homogeneous case includes tasks with only one type.

A second, orthogonal direction over which MTL methods can be characterized is the
knowledge sharing procedure used in a given architecture. Depending on what knowledge
is shared among tasks, it is possible to distinguish among feature-based, instance-based
and parameter-based multi-task learning. Feature-based MTL tries to learn features
common to different tasks as a way of sharing knowledge. Instance-based MTL identifies
useful data instances in a task for other tasks to employ. Finally, parameter-based MTL
uses model parameters in a task to help learn parameters in other tasks.

Furthermore, MTL architectures can be distinguished by their method for sharing
parameters, and thus, information, across different tasks [117]. In soft parameter sharing,
each task receives its own set of parameters, and parameter sharing architectures are
used to connect the different tasks. In hard parameter sharing, the set of parameters is
divided into shared and task-specific operations, often by having a shared layer that then
branches into task-specific structures.

Multi-task learning is a major part of the contribution described in Chapter 5.

2.5 Data Curation

Data Curation can be defined as the acquisition, care and documentation of data, its
proper packaging for reuse, and its maintenance so that data preserves its value over
time [118, 119]. For this work, we concentrate our attention on two specific problems:
Data Integration and Data Imputation.

From here on, for the sake of brevity we use the term “data curation” to refer to both
subjects at the same time, while we specify the specific task when needed.

23

Chapter 2. Background

2.5.1 Data Integration

IMDB-Movielens

Main lead
/ First
billed

Second lead
/ Second

billed
Director

Title /
Movie
Title

Year /
Release Language Genre

Tom Hanks Catherine
Zeta-Jones

Steven
Spielberg

The
Terminal 2004 English Romance

Ryunosuke
Kamiki

Mone
Kamishiraishi

Makoto
Shinkai

君の名は。
Your

Name.
2016 Japanese Animation

Elijah Woods
Viggo

Mortensen

Ian McKellen
Elijah Woods

Peter
Jackson

The Two
Towers 2002 English Adventure

Matthew
McConaughey

Anne
Hathaway

Christopher
Nolan Interstellar 2014 English Sci-Fi

Mark
Hamill

Harrison
Ford

George
Lucas Star Wars 1977 English

Sam
Worthington

Zoe
Saldana

James
Cameron Avatar 2009 Action

IMDB-Movies

Main lead Second
lead Director Title Year Language

Viggo
Mortensen

Elijah
Woods

Peter
Jackson

The Two
Towers 2002 English

Tom
Hanks

Catherine
Zeta-Jones

Steven
Spielberg

The
Terminal 2004 English

Ryunosuke
Kamiki

Mone
Kamishiraishi

Makoto
Shinkai

君の名
は。 2016 Japanese

Mark
Hamill

Harrison
Ford

George
Lucas Star Wars 1977 English

Movielens-Movies

First
billed

Second
billed Director Movie

Title Release Genre

Matthew
McConaughey

Anne
Hathaway

Christopher
Nolan Interstellar 2014 Sci-Fi

Tom
Hanks

Catherine
Zeta-Jones

Steven
Spielberg

The
Terminal 2004 Romance

Ryunosuke
Kamiki

Mone
Kamishiraishi

Makoto
Shinkai

Your
Name. 2016 Animation

Elijah
Woods

Ian
McKellen

Peter
Jackson

The Two
Towers 2002 Adventure

Sam
Worthington

Zoe
Saldana

James
Cameron Avatar 2009 Action

Figure 2.7: Example of integration of two tables about movies.

With Data Integration, we refer to the task of “integrating”, that is “combining” data
available from different sources with the objective of producing a clean view of the data
for the user to perform further operations on [118,120]. This involves the identification of
those attributes that have the same domain, thus mapping the schema of one table with
another (Schema Matching), and the matching of tuples that refer to the same entity in
the domain (Entity Resolution). Performing these tasks allows to produce a new version
of the table that “integrates” information coming from multiple sources.

We use Figure 2.7 as a running example for both entity resolution and schema
matching. On the left we have two tables that contain information about movies (their
title, cast, director, release year and additional attributes); we would like to obtain a new
version of the tables similar to what is depicted on the right, produced by an ideal Entity
Resolution algorithm. A first pass in the algorithm would perform schema matching by
aligning (matching) those columns that (despite their different name) refer to the same
domain, such as “Main lead” and “First billed”, or “Release” and “Year”. Unmatched
columns (“Language” and “Genre”) are not dropped: the information they contain can
still be employed after the entity resolution step. In the entity resolution step, rows
that refer to the same entity (in this case, to the same movie) should be matched and
their information combined. This is what happens with “The Terminal”, “Interstellar”,
“Your Name.” and “The Two Towers”. The latter two movies contain collisions (green
background), i.e., cells that share the same attribute, but different values. In this example,
we keep the values coming from both sources. Finally, some cells are left empty: this is

24

Chapter 2. Background

due to the fact that some of the movies in one table do not have a match in the other.
As a result, we lack the information required to complete the tuple.

Schema Matching

Part of the information extraction problem revolves around the problem of integrating
data coming from different sources [121,122].

Integration can be achieved by translating data in a common format, thus material-
izing it in the target schema. This is related to the problem of generating executable
data transformations between two schemas, where a schema is a formal structure that
represents an engineered artifact. Schemas need not be relational (e.g. XML), as long as
they are structured. Such problem is known as schema mapping generation [123, 124].
Schema Matching (SM) is the step that precedes schema mapping generation, in which
correspondences are sought between disconnected information atoms (e.g. attributes in
relational data), which are then used to build mappings with.

A correspondence (or matching) is a relationship between one or more elements of one
schema and one or more elements of the other; when performing schema matching with
relational tables, a match would link columns that refer to the same concepts. Similarly
to entity resolution, schema matching is a widely researched topic [122,125–128] with a
wide array of different techniques employed to treat the subject [129,130]. As we focus
on relational tables, with schema we refer in the following as the set of attributes in the
relational table.

Depending on the type of data that is taken as input by the SM algorithm, it is
possible to classify methods that rely on schema-level information, on instance data or a
combination of the two [128]. Examples of the first category include Cupid [131] and
COMA [132], GLUE [133] is an example of the second category, while QOM [134] and
Similarity Flooding [135] are examples of the latter. Depending on how the matching
operation is carried out, it is possible to further distinguish among SM methods. [130]
and [129] provide a good taxonomy of the different matching components:

• Value Overlap Matchers match attributes whose values are overlapping enough.
Data Type Matchers flag columns as relevant or irrelevant depending on their
datatype. Distribution Matchers flag columns based on their value distributions.

• Alternatively, matching can be done on the schema structure and metadata. At-
tribute Overlap Matchers rely on the similarity between attribute names, and match
attributes whose similarity is higher than a given threshold. Semantic Overlap
Matchers employ external sources of knowledge (such as knowledge bases) to derive
labels for each attribute. Then, two attributes match if their labels overlap enough.

• Finally, matching can be done by employing other types of resources, such as
auxiliary information (thesauri, dictionaries, acronyms) or matching based on usage
statistics. Embeddings Matchers match columns based on the similarity between
the columns’ embeddings. Embeddings can be generated on the data at hand, or
by reusing pre-trained embeddings.

25

Chapter 2. Background

Many SM algorithms combine and employ different matcher types at the same time,
such as Cupid [131] (attribute, semantic, data type), Similarity Flooding [135] (attribute,
data type), COMA [132] (attribute, value, semantic, data type, distribution). Schema
matching methods that rely on embedding matchers include Seeping Semantics [136] and
REMA [137].

Entity Resolution

Input Data Blocking Block
Processing

Entity
Matching

Entity
Clustering

Resolved
Data

Entiy Resolution

Figure 2.8: General Entity Resolution end-to-end pipeline [1]

Entity Resolution (ER) is the task of identifying different descriptions (normally,
records) that refer to the same real-world entity, when entity identifies are not available [1,
138–140]. Entity resolution is normally carried out over multiple datasets (record linkage)
or within the same data source (deduplication), and it aims to link descriptions that
correspond to the same entity into matches. Depending on what are the characteristics
of the input, ER problems can be split into [1, 141]:

• Clean-Clean ER, when the input consists of two overlapping, but “clean” (that is,
that do not contain duplicates) data sources.

• Dirty ER, when there exists a single, “dirty” input which contains duplicated values.

• Multi-source ER, when the input consists of more than two sources.

All ER problems listed above share the same general processing tasks that are
describe in the end-to-end pipeline depicted in Figure 2.8 [1]. We briefly discuss each
step. Blocking [142,143] is typically applied to the input data to reduce the number of
comparisons to be performed by discarding entities that are unlikely to be matches. Similar
entities are placed in “blocks”, which are identified by some blocking key. Comparisons
are then performed exclusively among entities that belong to the same block. Block
processing [144] has the objective of optimizing blocks so to reduce the number of
comparisons without significant impact on the final matching accuracy. This can be done
by removing redundant comparisons (comparisons repeated across multiple blocks) and
superfluous comparisons (comparisons between values known to not be in match). The
Entity Matching task consists in the application of a similarity function F such that,
given two entities ei and ej , F outputs F (ei, ej) = true if the entities are in match,
and F (ei, ej) = false if they do not match. Finally, the task of Entity Clustering [145]
is performed to infer indirect matches between matches that have been detected by
the similarity function, with the objective of overcoming possible shortcomings in the
similarity function. The clustering step produces as output a set of disjoint sets of

26

Chapter 2. Background

entity descriptions R = {r1, r2, . . . , rm} such that 1) ∀ei, ej ∈ rk, F (ei, ej) = true; 2)
∀ei ∈ rk, ∀ej ∈ rl, F (ei, ej) = false; 3)

⋃
ri
ri ∈ = ε, where ε describes the input entity

collection. While not every ER system implements all the functions and optimizations
described here and in Figure 2.8, all employ a combinations of at least some of them.

ER systems can be distinguished in two categories: rule-based systems such as
[146–150], which produce sets of rules for matching entities (e.g., “if these two books have
the same ISBN, then they should be matched”), and ML-based systems, which instead
train a model to extract matches [70,71,151–156]. ML-based methods often have higher
effectiveness than rule-based methods [1, 146], however they are not as interpretable
by humans; on the other hand, rule-based methods enjoy better interpretability with
tradeoffs in effectiveness; there has been a drive towards bringing interpretability in
ML-based models for ER with works such as Mojito [157].

Both schema matching and entity resolution are the focus of Chapter 4.

2.5.2 Data Imputation

With data imputation we describe the task of pre-processing data that contain missing
or erroneous values with the objective of correcting the errors on the basis of the
context provided by the existing features. This task is an important step in any pipeline
since the presence of missing values can be harmful when the data is used for training
models [158,159].

Formally, the problem of data imputation can be defined as follows [80]:

Definition 2.5.1 (Data Imputation). Given a dataset D with schema R, each attribute
Aj ∈ R can be either n numerical or categorical, with N(R) and C(R) denoting
numerical and categorical attributes respectively. The domain of attributes Aj ∈ N(R)
is dom(Aj) = R; the index domain of Ai ∈ C(R) is I = {1, . . . , |Ai|} where |Ai| is the
cardinality of Ai.

Definition 2.5.2 (Missing Value). A cell with a missing value in the i-th tuple ti ∈ D on
the j-th attribute Aj ∈ R is denoted as ti[Aj] = ∅. The set of all missing values ti[Aj]
in dataset D is MD, such that ti[Aj] ∈ MD ⇐⇒ ti[Aj] = ∅.

Definition 2.5.3 (Imputed dataset). Let D̃ be the imputed version of D, where ∀i, j with
ti[Aj] ∈ D, ti[Aj] = ∅, while for t̃i[Aj] ∈ D̃, t̃i[Aj] ̸= ∅.
D∗ denotes the ground truth dataset without missing data.

Depending on the datatype of an attribute, we measure the imputation performance
using different metrics. For numerical attributes, we rely on RMSE to measure the
imputation accuracy. It is possible to use alternatve metrics for specific distributions
(e.g. displacement error for ordinal variables [48]), however we do not use them in this
work. For categorical attributes, we use accuracy. With a slight abuse of notation, we set
ti[Aj] = tij for the next equation.

accuracy(D∗, D̃) =
1

|MD|
∑

t̃ij∈MD

1(D̃ij = D∗
ij) (2.4)

27

Chapter 2. Background

Gender State AreaCode Marital
Status Salary Rate

F RI 401 S 15000 0

M RI 401 M 100000 0

M NH 603 S 85000 8.25

M HI 808 M 90000 0

Gender State AreaCode Marital
Status Salary Rate

M RI 401 S 15000 2.05

M RI 401 M 100000 0

M NH 603 S 85000 8.25

M HI 401 M 72500 0

Ground Truth Possible Imputation

Figure 2.9: Example of missing value imputation.
Cells with yellow background need to be imputed, cells with red background have been

imputed incorrectly, cells with green background have been imputed correctly. .

Figure 2.9 shows an example of the result (exaggerated for the sake of the expla-
nation) of imputing the missing values in the ground truth. The dataset D is mixed,
with categorical attributes Gender, State and Marital Status, and numerical attributes
AreaCode, Salary and Rate. AreaCode is an example of numerical attribute that should,
however, be treated as a categorical value. In the example, the “Ground truth” table
features a Functional Dependency such that the values in the AreaCode attribute imply
the values in State (so that 401 → RI, for example). The table “Possible Imputation”
contains a number of wrong imputations, resulting in a low imputation accuracy: indeed,
the missing value in the State column is the only value that has been imputed correctly.
Here we see how the imputation algorithm is deviating to the Mode in columns Gender
and AreaCode, while the values in columns Salary and Rate are imputed by using the
average of all other missing values. While this is a toy example, it should be enough to
give an idea of some of the problems that imputation algorithms can face when handling
mixed-type relational data.

Handling missing data is not straightforward, and since, by definition, there is no
information about missing data, filling vacancies may introduce some degree of bias in
the corrected data. For this reason, a common solution to the problem is simply dropping
all training samples that include missing values [160]. It goes without saying that this is
not ideal: after all, we could be suppressing a sizeable amount of training data, especially
if nulls are distributed somewhat uniformly over the entire training corpus.

Missing data in a target dataset can belong to one of three different distributions [160–162]:

• MCAR (Missing Completely At Random): the sampling phenomenon that intro-
duces missing values is such that every single missing value is completely indepen-
dent of all factors, both present in the data and external to it. The independence
assumption is very strong, and it does not generally hold in real cases.

• MAR (Missing At Random): in this case, missing values are distributed according
to a distribution that can be reconstructed from information present in variables
that present full information.

28

Chapter 2. Background

• MNAR (Missing Not At Random): any data that is neither MCAR nor MAR
is MNAR. In this case, missing values are related to the reason they’re missing.
No assumption is made on the distribution, so real cases fall mostly in this case.
MNAR errors are prevalent in medical literature [160,162,163]

When the missing data are numeric, simple imputation techniques such as mean substi-
tution or regression are sometimes applied [160]. Neither solution, however, can reliably
fix errors due to the inherent lack of information about said missing values. MICE [164]
represents a further step in sophistication and carries out imputation by solving a chain
of regression problems.

There are a wide variety of different missing data imputation methods, that work on
various degrees of complexity [165]. In fact, there exist a number of simple methods that
can be applied to the imputation problem, ranging from imputing with the most common
catgorical value (or global average for numerical variables) [166], to K-Nearest Neighbor
imputation [167]. Rule-based methods produce a set of more or less interpretable rules,
which are then used to carry out imputation; examples of rule-based imputation systems
include RIPPER [168] and CN2 [169]. Non-interpretable models tend to include ML-
based algorithms. These can be distinguished in two categories, depending on how the
imputation is being generated. Discriminative models are trained to select a solution
in the domain to impute missing values. MIDA [170], MICE [164], MissForest [45],
Aimnet [80] belong to this category. Generative models employ a different approach in
which the imputed version of the dataset is generated by the model. Systems that belong
to this category include SVM-based imputation methods [171], HI-VAE [48], GAIN [35],
MIWAE [172].

The development of a novel data imputation method is at the center of Chapter 5.

2.6 Summary

In this chapter we introduced the fundamental concepts and ideas we work with in the
rest of the thesis: relational tables, graphs and Vector Space Models. We then discussed
the main topics of Data Integration and Data Imputation, describing the main issues in
the subjects, as well as previous work. In the next chapter we introduce EmbDI, our
first step into the design and development of a Data Integration system based on Vector
Space Models.

29

Chapter 2. Background

30

Chapter 3

Generating Table Embeddings

In this chapter, we focus on the development of a system that, given a relational
table that contains mixed data, is able to produce an embedding representation of the
entities involved in the dataset. With this we consider not only the cell values or the
rows/attributes in the table, but both categories at the same time. Indeed, EmbDI is
able to organically generate embeddings for all entities thanks to a novel representation
of the table content based on a “tripartite” graph.

Deep learning based techniques have been recently used with promising results for
data integration problems [70,136]. Some methods use pre-trained embeddings that were
trained on a large corpus such as Wikipedia. Unfortunately, these pre-trained embeddings
may not always be an appropriate choice for tables that feature custom vocabularies, such
as enterprise datasets. Other methods adapt techniques from natural language processing
to obtain embeddings for the enterprise’s relational data. However, this approach blindly
treats a tuple as a sentence, thus losing a large amount of contextual information present
in the tuple.

We propose algorithms for obtaining local embeddings that are effective for data integration
tasks on relational databases. We make four major contributions. First, we describe
a compact graph-based representation that allows the specification of a rich set of
relationships inherent in the relational world. Second, we propose how to derive sentences
from such a graph that effectively “describe” the similarity across elements (tokens,
attributes, rows) in the two datasets; the embeddings are learned based on such sentences.
Third, we propose effective optimizations to improve the quality of the learned embeddings
and the performance of integration tasks. Finally, we design and implement a diverse
collection of criteria to evaluate relational embeddings and perform an extensive set of
experiments validating them against multiple baseline methods. Our experiments show
that our framework, EmbDI, produces meaningful results for data integration tasks such
as schema matching and entity resolution both in supervised and unsupervised settings.

The chapter contains part of the paper “Creating Embeddings of Heterogeneous
Relational Datasets for Data Integration Tasks” [173], as well as work from the Demo
under submission “EmbDI: Embeddings Generation for Integrating Relational Datasets”.
The rest of the paper focuses on Data Integration, and will be reported in Chapter
4. The code we developed for this contribution is available in the repository https:

31

https://gitlab.eurecom.fr/cappuzzo/embdi
https://gitlab.eurecom.fr/cappuzzo/embdi

Chapter 3. Generating Table Embeddings

Paul

iPad

Mike

Galaxy

Steve

SamsungApple

Pre-trained embeddings

Wiki,
News,
...

Doc Corpus

Word2Vec,
fastText, ...

r1 Paul r5 Apple A4 Samsung r4 Rick A3 Paul ...
r5 Paul r1 iPad_4th A2 Galaxy r3 Steve r3 Galaxy
... 3

Paul iPad 4th

Mike

Rick

Galaxy

Steve

Samsung
Apple

Local embeddingsEmbDI

Paul iPad 4th

Mike iPad 4th

Steve Galaxy

Rick Samsung

Paul Apple

Datasets

Paul iPad 4th
Mike iPad 4th
Steve Galaxy

Rick Samsung
Paul Apple

2

1

r1
r2
r3

r4
r5

A1 A2

A4A3

A1 A2

A4A3

r1

r2

r3

r4

r5

r1r2

r3
r4

r5

A1 A2 A4
A3

Figure 3.1: Illustration of a simplified vector space learned from text (prior approaches)
and from data (EmbDI).

//gitlab.eurecom.fr/cappuzzo/embdi. [173] has received the ACM badges for Results
Reproduced, Artifacts Available and Artifacts Evalued and Reusable.

3.1 Introduction

3.1.1 Local Embeddings for Data Integration

We advocate for the design of local embeddings that leverage both the relational nature
of the data and the downstream task of data integration.

Tuples are not sentences. Simply adapting embedding techniques originally developed for
textual data ignores the richer set of semantics inherent in relational data. Consider a cell
value t[Ai] belonging to an attribute Ai in tuple t, e.g., “Mike” in the first relation from the
top in Figure 3.1. Conceptually, it has a semantic connection with both other attributes
of tuple t (such as “iPad 4th”) and other values from the domain of attribute Ai (such as
“Paul”). Existing embedding techniques cannot model these semantic connections.

Embedding generation must span different datasets. Embeddings must be trained using
heterogeneous datasets, so that they can meaningfully leverage and surface similarity
across data sources. A notion of similarity between different types of entities, such as
tuples and attributes, must be developed. Tuple-tuple and attribute-attribute similarity
are important features for entity resolution and schema matching.

There are multiple challenges to overcome. First, it is not clear how to encode the
semantics of the relational datasets into the embedding learning process. Second, datasets
may share very limited amount of information, have radically different schemas, and
contain a different number of tuples. Finally, datasets are often incomplete and noisy.
The learning process is affected by low information quality, generating embeddings that
do not correctly represent the semantics of the data.

3.1.2 Contributions

We present EmbDI, a framework for building relational, local embeddings for data
integration that introduces a number of innovations to overcome the challenges above.

32

https://gitlab.eurecom.fr/cappuzzo/embdi
https://gitlab.eurecom.fr/cappuzzo/embdi
https://gitlab.eurecom.fr/cappuzzo/embdi

Chapter 3. Generating Table Embeddings

We identify crucial components and propose effective algorithms for instantiating each of
them. EmbDI is designed to be modular so that anyone can customize it by plugging in
other algorithms and benefit from the continuing improvements from the deep learning
and the database communities. The right-hand side of Figure 3.1 shows the main steps
in our solution.

1. Graph Construction. We leverage a compact “tripartite” graph-based representation
of relational datasets that can effectively represent a rich set of syntactic and semantic
relationships between cell values. Specifically, we use a heterogeneous graph with three
types of nodes. Token nodes correspond to the content of each cell in the dataset. Record
Id nodes (RIDs) assign a unique token to each tuple. Column Id nodes (CIDs) assign a
unique token to each column/attribute. These nodes are connected by edges based on
the structural relationships in the schema. This graph is a compact representation of the
original datasets that highlights overlap and explicitly represent the primitives for data
integration tasks, i.e., records and attributes.

2. Embedding Construction. We formulate the problem of obtaining local embeddings
for relational data as a graph embeddings generation problem. We use random walks to
quantify the similarity between neighboring nodes and to exploit metadata such as tuple
and attribute IDs. This method ensures that nodes that share similar neighborhoods will
be in close proximity in the final embeddings space. The corpus that is used to train our
local embeddings is generated by materializing these random walks.

3. Optimizations. Learning embeddings can be a difficult task in the presence of noisy and
incomplete heterogeneous datasets. For this reason, we introduce an array of optimization
techniques that handle difficult cases and enable refinement of the generated embeddings.
The flexibility of the graph enables us to naturally represent external information, such as
data dictionaries, to merge values in different formats, and data dependencies, to impute
values and identify errors. We propose optimizations to handle imbalance in the datasets’
size and the presence of numerical values (usually ignored in textual word embeddings).

Experimental Results. We propose an extensive set of desiderata for evaluating relational
embeddings for data integration. Specifically, our evaluation focuses on three major
dimensions that measure how well do the embeddings (a) learn the tuple-, attribute-
and constraint-based relationships in the data, (b) learn integration specific information
such as tuple-tuple and attribute-attribute similarities, and (c) improve the behavior of
DL-based data integration algorithms. As we shall show in the experiments, our proposed
algorithms perform well on each of these dimensions.

3.1.3 Outline

Section 3.2 introduces background about embeddings and data integration. Section 3.3
shows a motivating example that highlights the limitations of prior approaches and
identifies a set of desiderata for relational embeddings. Section 3.4 details the major
components of the framework. Section 3.5 reports the experiments we conducted to
measure the quality of the embeddings that we generated.

33

Chapter 3. Generating Table Embeddings

3.2 Background

Embeddings. Embeddings map an entity such as a word to a high dimensional real
valued vector. The mapping is performed in such a way that the geometric relation
between the vectors of two entities represents the co-occurrence/semantic relationship
between them. Algorithms used to learn embeddings rely on the notion of “neighborhood”:
intuitively, if two entities are similar, they frequently belong to the same contextually
defined neighborhood. When this occurs, the embeddings generation algorithm will try
to force the vectors that represent these two entities to be close to each other in the
resulting vector space.

Word Embeddings [174,175] are trained on a large corpus of text and produce as output a
vector space where each word in the corpus is represented by a real valued vector. Usually,
the generated vector space has either 100 or 300 dimensions. The vectors for words that
occur in similar context – such as SIGMOD and VLDB – are in close proximity to each
other. Popular architectures for learning embeddings include continuous bag-of-words
(CBOW) or skip-gram (SG). Recent approaches rely on using the context of word to
obtain a contextual word embedding [176,177].

Node Embeddings. Intuitively, node embeddings [42] map nodes to a high dimensional
vector space so that the likelihood of preserving node neighborhoods is maximized. One
way to achieve this is by performing random walks starting from each node to define an
appropriate neighborhood. Popular node embeddings are often based on the skip-gram
model, since it maximizes the probability of observing a node’s neighborhood given its
embedding. By varying the type of random walks used, one can obtain diverse types of
embeddings [178].

Embeddings for Relational Datasets. The pioneering work of [179] was the first to
apply embedding techniques for extracting latent information from relation data. Recent
extensions [180,181] leverage the learned embeddings to develop a “cognitive” database
system with sophisticated functionality for answering complex semantic, reasoning and
predictive queries. Termite [182] seeks to project tokens from structured and unstructured
data into a common representational space that could then be used for identifying related
concepts through its Termite-Join approach. Freddy [183] and RetroLive [184] produce
relational embeddings that combine relational and semantic information through a
retrofitting strategy. There has been prior work that learn embeddings for specific
tasks like entity matching (such as DeepER [70] and DeepMatcher [71]) and schema
matching (Rema [137]). Our goal is to learn relational embeddings that is tailored for
data integration and can be used for multiple tasks. All of the prior approaches rely on
viewing the tuple as a textual document. As we shall show later, our choice to use a
graph based representation results in better embeddings.

34

Chapter 3. Generating Table Embeddings

3.3 Motivating Example

In this section, we discuss an illustrative example that highlights the weaknesses of current
approaches and motivates us to design a new approach for relational, local embedding.

Consider the scenario where one utilizes popular pre-trained embeddings such as
word2vec, GloVe, or fastText. Figure 3.1 shows a hypothetical filtered vector spaces
for the tokens in an example with two small customer datasets. We observe that the
pre-trained embeddings suffer from a number of issues when we use them to model the
two relations.

1. A number of words in the dataset, such as “Rick”, are not in the pre-trained
embedding. This is especially problematic for enterprise datasets where tokens are
often unique and not found in pre-trained embeddings.

2. Embeddings might contain geometric relationships that exist in the corpus they
were trained on, but that are missing in the relational data. For example, the
embedding for token “Steve” is closer to tokens “iPad” and “Apple” even though
this is not implied in the data.

3. Relationships that do occur in the data, such as between tokens “Paul” and “Mike”,
are not observed in the pre-trained vector space.

Naturally, learning local embeddings from the relational data often produces better
results. However, computing embeddings for non integrated data sources is a non trivial
task. This becomes especially challenging in settings where data is scattered over different
datasets with heterogeneous structures, different formats, and only partially overlapping
content. Prior approaches express such datasets as sentences that can be consumed
by existing word embedding methods. However, we find that these solutions are still
sub-optimal for downstream data integration tasks.

3.3.1 Technical Challenges

We enumerate four challenges that must be overcome to obtain effective embeddings.

1. Incorporating Relational Semantics. Relational data exhibits a rich set of semantics.
Relational data also follows set semantics where there is no natural ordering of attributes.
Representing the tuple as a single sentence is simplistic and often not expressive enough
for these signals.

2. Handling Lack of Redundancy. A key reason for the success of word embeddings
is that they are trained on large corpora where there are adequate redundancies and
co-occurrence to learn relationships. However, databases are often normalized to remove
redundant information. This has an especially deleterious impact on the quality of learned
embeddings. Rare words, which are very common in relational data, are typically ignored
by word embedding methods.

3. Handling Multiple Datasets. We cannot assume that each of the datasets have the
same set of attributes, or that there is sufficient overlap in the tuple values, or even that
there is a common dictionary for the same attribute.

35

Chapter 3. Generating Table Embeddings

4. Handling Hierarchical Data. Databases are inherently hierarchical, with entities such
as cell values, tuples, attributes, dataset. Incorporating these hierarchical units as first
class citizens in embedding training is a major challenge.

3.4 Constructing Local Relational Embeddings

In this section, we provide a description of our approach and how these design choices
address the aforementioned technical challenges. Our framework, EmbDI, consists of
three major components, as depicted in the right-hand side of Figure 3.1.

1. In the Graph Construction stage, we process the relational dataset and transform
it into a compact tripartite graph that encodes various relationships inherent in it.
Tuple and attribute IDs are treated as first class citizens.

2. Given this graph, the next step is Sentence Construction through the use of biased
random walks. These walks are carefully constructed to avoid common issues such
as rare words and imbalance in vocabulary sizes. This produces as output a series
of sentences.

3. In Embedding Construction, the corpus of sentences is passed to an algorithm
for learning word embeddings. Depending on available external information, we
perform optimizations to the graph and the workflow to improve the embeddings’
quality.

3.4.1 Graph Construction

Why construct a Graph? Prior approaches for local embeddings seek to directly apply
an existing word embedding algorithm on the relational dataset. Intuitively, all tuples in
a relation are modeled as sentences by breaking the attribute boundaries. The collection
of sentences for each tuple in the relation then makes up the corpus, which is then used
to train the embedding. This approach produces embeddings that are customized to that
dataset, but it also ignores signals that are inherent in relational data. We represent the
relational data as a graph, thus enabling a more expressive representation with a number
of advantages. First, it elegantly handles many of the various relationships between
entities that are common in relational datasets. Second, it provides a straightforward
way to incorporate external information such as “two tokens are synonyms of each other”.
Finally, when multiple relations are involved, a graph representation enables a unified view
over the different datasets that is invaluable for learning embeddings for data integration.

Simple Approaches. Consider a relation R with attributes {A1, A2, . . . , Am}. Let t be an
arbitrary tuple and t[Ai] be a cell, that is the value of attribute Ai for tuple t. A naive
approach is to create a chain graph where tokens corresponding to adjacent attributes
such as t[Ai] and t[Ai+1] are connected. This will result in m edges for each tuple. Of
course, if two different tuples share the same token, then they will reuse the same node.
However, relational algebra is based on set semantics, where the attributes do not have

36

Chapter 3. Generating Table Embeddings

an inherent order. So, simplistically connecting adjacent attributes is doomed to fail.
Another extreme is to create a complete subgraph, where an edge exists between all
possible pairs of t[Ai] and t[Ai+1]. Clearly, this will result in

(
m
2

)
edges per tuple. With

this approach, the number of edges is quadratic in the number of attributes and ignores
other token relationships such as “token t1 and token t2 belong to the same attribute”.

Relational Data as Heterogeneous Graph. We propose a heterogeneous graph with three
types of nodes. Token nodes correspond to information found in the dataset (i.e. the
content of each cell in the relation). Multi-word tokens may be represented as a single
entity, get split over multiple nodes or use a mix of the two strategies. We describe the
effect of each strategy more in depth in Section 3.5. Record Id nodes (RIDs) represent
each tuple in the dataset, Column Id nodes (CIDs) represent each column/attribute.
These nodes are connected by edges according to the structural relationships in the
schema. This representation can produce a vector for all RIDs (CIDs) rather than
representing them by combining the vectors of the values in each tuple (column). By
using this representation, it is possible to handle challenges (1) and (4) in Section 3.3.1.

Paul iPad 4
Mike iPad 4
Steve Galaxy

Rick Samsung
Paul Apple

r1

r2

r3

r4

r5
r4

r3
r2
r1

A3

A4

A2

A1A1 A2

A3 A4

Paul

iPad 4

Galaxy

Samsung

Mike

Apple

Steve

Rick

r5

Figure 3.2: The EmbDI graph for the two tables also shown in Figure 3.1.

Consider a tuple t with RID rt. Then, nodes for tokens corresponding to t[A1], . . . , t[Am]
are connected to the node rt. Similarly, all the tokens belonging to a specific attribute
Ai are connected to the corresponding CID, say ci. This construction is generic enough
to be augmented with other types of relationships. Also, if we know that two tokens
are synonyms (e.g. via wordnet), this information could be incorporated by reusing the
same node for both tokens. Note that a token could belong to different record ids and
column ids when two different tuples/attributes share the same token. Numerical values
are rounded to a number of significant figures decided by the user, then they are assigned
a node like regular categorical values; null values are not represented in the graph. We

37

Chapter 3. Generating Table Embeddings

discuss more sophisticated approaches for handling numeric, noisy, and null values in
Section 4.3.

Algorithm 1 shows the operations performed during the graph creation with hybrid
representation of multi-word tokens (the “combination” approach). Figure 3.2 shows a
graph constructed for the datasets in Figure 3.1. Note that this could be considered
as a variant of tripartite graph. A key advantage of this choice is that it has the same
expressive power as the complete sub-graph approach, while requiring orders of magnitude
fewer edges.

Algorithm 1 GenerateTripartiteGraph

Input: relational dataset D
let G = empty graph
for all ci in columns(D) do

G.addNode(ci)
for all ri in rows(D) do

G.addNode(Ri) //Ri is the record id of ri
for all value vk in ri do
if vk is multi-word then
for all word in tokenize(vk) do

G.addNode(word)
G.addEdge(word, Ri), G.addEdge(word, ck)

else if vk is single-word then
G.addNode(vk)
G.addEdge(vk, Ri), G.addEdge(vk, ck)

Output: graph G

3.4.2 Sentence Construction

Graph Traversal by Random Walks. To generate the distributed representation of each
node in the graph, we produce a large number of random walks and gather them in a
training corpus where each random walk will correspond to a sentence. Using graphs and
random walks allows us to have a richer and more diverse set of neighborhoods than what
would be possible by encoding a tuple as a single sentence. For example, a walk starting
from node ‘Paul’ could go to node A3, and then to node ‘Rick’. This walk implicitly
defines the neighborhood based on attribute co-occurrence. Similarly, the walk from ‘Paul’
could have gone to ‘r5’ and then to ‘Apple’, incorporating the row level relationships.
Our approach is agnostic to the specific type of random walk used, with different choices
yielding different embeddings. For example, one could design random walks that are
biased towards other nodes belonging to the same tuple, or towards rare nodes. To better
represent all nodes, we assign a “budget” of random walks to each of them and guarantee
that all nodes will be the starting point of at least as many random walks as their budget.
This ensures that even rare values are represented in the embeddings (thus handling
challenge (2) in Section 3.3.1). After choosing the starting point Ti, the random walk is

38

Chapter 3. Generating Table Embeddings

generated by choosing a neighboring RID of Ti, Rj . The next step in the random walk
will then be chosen at random among all neighbors of node Rj , for example by moving
on Ca. Then, a new neighbor of Ca will be chosen and the process will continue until the
random walk has reached the target length.

We use uniform random walks in most of our experiments to guarantee good execution
times on large datasets, while providing high quality results. We compare alternative
random walks in the experiments.

Algorithm 2 GenerateRandomWalk

Input: starting node nj , random walk length l
rj = findNeighboringRID(nj)
W = seq(rj , nj)
currentNode = nj

while length(W) < l do
nextNode = findRandomNeighbor(currentNode)
W .add(nextNode)
currentNode = nextNode

Output: walk W

From Walks to Sentences. It is important to note that the path on the graph represented
by a random walk does not necessarily reflect the sentence that will be inserted in
the training corpus. For example, a possible random walk could be the following:
RaTbRcTdCeTfCgTh, where T∗, R∗, C∗ correspond to nodes of type tokens, record ids, and
column ids, respectively. We note that the random walks include nodes corresponding
to RIDs and CIDs. We noticed that the presence (or absence) of CIDs and RIDs in
the sentences that build the training corpus has large effects on the data integration
performance of the algorithm. Indeed, we observe that treating these as first order
citizens, we can represent them as points in the vector space in the same way as any
other token. For example, two nodes corresponding to different attributes might co-occur
in many random walks, resulting in embeddings that are closer to each other: this may
imply that these two attributes represent similar information. A similar phenomenon
could also be obtained for tuple embeddings. A number of prior approaches such as
DeepER [70] or DeepMatcher [71] only learn embeddings for tokens and then obtain
embeddings for tuples by averaging them or combining by using a RNN. The use of our
random walks as sentences provides additional information about the neighborhood of
each node, which would not be so easily obtained by using only the structured data
format.

3.4.3 Embedding Construction

The generated sentences are then pooled together to build a corpus that is used to train
the embeddings algorithm. Our approach is agnostic to the actual word embedding
algorithm used. We piggyback on the plethora of effective embeddings algorithms such
as Word2Vec, GloVe, fastText, and so on. Every year, improved embedding training

39

Chapter 3. Generating Table Embeddings

algorithms are released, and this has a transitive effect on our approach. Broadly, these
techniques can be categorized as word-based (such as Word2Vec) or character-based
(such as fastText). We discuss the hyperparameters for embedding algorithms such as
learning method (either CBOW or Skip-Gram), dimensionality of the embeddings, and
size of context window in Section 3.5.

3.4.4 Algorithm So Far

Algorithm 3 provides the pseudocode for learning the local and relational embeddings
based on our discussion.

Algorithm 3 Meta Algorithm for EmbDI

1: Input: relational datasets D, number of random walks nwalks, number of nodes nnodes

2: W = []
3: G = GenerateTripartiteGraph(D)
4: for all nj ∈ nodes(G) do
5: for i = 1 to (nwalks/nnodes) do
6: wi = GenerateRandomWalk(nj)
7: W .add(wi)
8: E = GenerateEmbeddings(W)
9: Output: Local relational embeddings E

3.5 Experiments

In this section we demonstrate that our proposed embeddings learn the major relationships
inherent in structured data (Section 3.5.3). We then analyze the contributions of our
design choices in Section 4.4.4. We will show the positive impact of our embeddings for
multiple data integration tasks in supervised and unsupervised settings in Chapter 4.

3.5.1 Datasets

Name (shorthand) # tuples # columns # distinct values # matches # sentences % overlap

IMDB-Movielens (IM) 49875 15 118779 4115 2810900 8.79

Amazon-Google (AG) 4589 3 5390 1166 166316 6.01

Walmart-Amazon (WA) 24628 5 45454 961 1168033 3.10

Itunes-Amazon (IA) 62830 8 53079 131 1931816 5.84

Fodors-Zagats (FZ) 864 6 3282 109 69100 9.08

DBLP-ACM (DA) 4910 7 6555 2223 191083 62.33

DBLP-Scholar (DS) 66879 4 131099 5346 3299633 2.33

BeerAdvo-RateBeer (BB) 7345 4 11260 67 310083 10.18

Million Songs Dataset (MSD) 1000000 5 870841 1292023 31180683 n.a.

Table 3.1: EmbDI dataset properties.

40

Chapter 3. Generating Table Embeddings

We used 8 datasets from the literature [70, 71, 185, 186] and a dataset with a
larger schema (IM) that we created starting from open data (https://www.imdb.com/
interfaces/, https://grouplens.org/datasets/movielens/). Details for the scenar-
ios are in Table 3.1. For the majority of the scenarios, less than 10% of the distinct data
values are overlapping across the two datasets. MSD is a dataset with only one table.

3.5.2 Generating the Embeddings

Pre-trained Embeddings. In the following, pre-trained word embeddings have been
obtained from fastText [187]. We tested also GloVe [188] and obtained comparable
quality results. We relied on state of the art methods to combine words in tuples and to
obtain embeddings for words that are not in the pre-trained vocabulary [70,153]. With
fastText [67], we create tuple embeddings by concatenating the embeddings of each
tuple entry. We observed experimentally that this approach yields the best results. We
rely on built-in fastText functions to handle out-of-vocabulary entries.

Embedding Generation Algorithms. We test four algorithms for the generation of local
embeddings from relational dataset. All local methods make use of our tripartite graph
and exploit record and column IDs in the integration tasks.

The first method is Basic, which creates embeddings from permutations of row tokens
and sentences with samples of attribute tokens. As the method is aware of the structure
of the database, it can learn representation for tuples and attributes. We fixed the size of
the sentence corpus for Basic to contain the same number of tokens in EmbDI’s corpus.

The second method is Node2Vec [42], a widely used algorithm for learning node
representation on graphs. Given our graph as input, it learns vectors for all nodes. We
used the implementation from the paper with default parameters.

The third method is Harp [178], a state of the art algorithm that learns embeddings
for graph nodes by preserving higher-order structural features. This method represents
general meta-strategies that build on top of existing neural algorithms to improve
performance. We used the implementation from the paper with default parameters.

The fourth method is the one presented in Section 3.4, we refer to it as EmbDI in the
following (https://gitlab.eurecom.fr/cappuzzo/embdi). The default configuration
uses our tripartite graph, walks (sentences) of size 60, 300 dimensions for the embeddings
space, the Skip-Gram model in word2vec with a window size of 3, and different tokenization
strategies to convert cell values in nodes. We report the numbers of generated sentences
for each dataset in Table 3.1. The number of sentences depends on the desired number of
tokens in the corpus, we discuss a rule-of-thumb to obtain reasonable sizes in the ablation
analysis.

By default, EmbDI uses optimizations in data integration tasks. However, to be fair to
pre-trained embeddings, our default configuration does not exploit external information,
therefore the techniques in Sections 4.3.2, 4.3.3, and 4.3.4 are not used - we show their
impact in the ablation study. Experiments have been conducted on a laptop with a CPU
Intel i7-8550U, 8x1.8GHz cores and 32GB RAM.

41

https://www.imdb.com/interfaces/
https://www.imdb.com/interfaces/
https://grouplens.org/datasets/movielens/
https://gitlab.eurecom.fr/cappuzzo/embdi

Chapter 3. Generating Table Embeddings

Basic Node2Vec Harp EmbDI
MA MR MC AVG MA MR MC AVG MA MR MC AVG MA MR MC AVG

BB .99 .33 .32 .55 .97 .66 .92 .85 .96 .65 .95 .85 .92 .50 .77 .73

WA .19 .27 .12 .19 mem mem mem mem .16 .32 .13 .20 .94 1.00 .99 .98

AG 1.00 .42 .10 .51 1.00 .39 1.00 .80 .99 .37 1.00 .79 1.00 .38 1.00 .79

FZ .08 .30 .00 .13 .84 .88 .62 .78 .80 .86 .89 .85 .94 .99 .94 .95

IA .09 .11 .09 .09 mem mem mem mem .81 .59 .96 .78 .89 .85 .98 .90

DA .08 .29 .02 .13 .79 .77 .18 .58 .51 .74 .49 .58 .79 .91 .66 .79

DS 1.00 .58 .69 .76 mem mem mem mem .12 .06 .06 .08 .90 .99 .99 .96

IM .99 .34 .64 .66 mem mem mem mem .07 .29 .10 .16 .74 .42 .78 .65

MSD .31 .37 .51 .39 mem mem mem mem t.o. t.o. t.o. t.o. .60 .95 .83 .79

Table 3.2: Quality results for local embeddings generation.

3.5.3 Evaluating Embeddings Quality

We introduce three kinds of tests to measure how well embeddings learn the relationships
inherent in the relational data. Each test consists of a set of tokens taken from the
dataset as input, while the goal is to identify which token does not belong to the set
(function doesnt match in Python library gensim). For the MatchAttribute (MA) tests,
we randomly sample four values from an attribute and a fifth value from a different
attribute at random in the same dataset, e.g., given (Rambo III, The matrix, E.T., A
star is born, M. Douglas), the test is passed if M. Douglas is identified. In MatchRow
(MR), we pick all tokens from a row and replace one of them at random with a value
from a different row, also selected at random from the same dataset, e.g., (S. Stallone,
Rambo III, 1952, P. MacDonald). Finally, in MatchConcept (MC), we model more subtle
relationships. We manually identify two attributes A1 and A2 that are in a one to many
relationship. For a random token x in A1, we identify all tuples T such that (A1 = x),
we take three A2 distinct values in T and we finally add a random value y (not in T)
from A2. The test is passed if y is identified as unrelated from the other tokens, e.g., (Q.
Tarantino, Pulp fiction, Kill Bill, Jackie Brown, Titanic). This test observes whether
the relationship between co-occurring elements (such as directors and their movies) is
stronger than the relationship between elements that belong to the same attribute. We
took the union of the (aligned) datasets for each scenario and created between 1000 and
11000 tests, depending on each aligned dataset’s size in terms of rows and attributes.

We report the quality results in Table 3.2, where each number represents the fraction
of passed tests. With large datasets, some methods either failed the execution or have
been stopped after a cut-off time of 10 hours. While on average the local embeddings
generated by EmbDI are superior to all other methods, our solution is beaten in few
cases. By increasing the percentage of row permutations in Basic, results improve for
MR but decrease for MA, without significant benefit for MC. This shows that complex
relationships are not modelled by row and attribute co-occurrence. Node2Vec fails on
our configuration for the larger scenarios with memory errors (mem), while Harp has

42

Chapter 3. Generating Table Embeddings

been stopped after 10 hours for MSD (t.o.). We do not report results for pre-trained
embedding as they are not aware of the relationships in the dataset and perform very
poorly for this task. For example, they obtain .33 on average for dataset BB (MA: .49,
MR: .27, MC: .24) and 0.16 on average for dataset AG (MA: .03, MR: .22, MC: .22).

Figure 3.3: Heatmap of the vectors for different entities in the IMDB-Movielens dataset.

A more qualitative indication of how EmbDI embeddings can model information
found in the dataset can be gained by projecting the embeddings of specific tuples down
to a small number of dimensions using methods such as PCA or t-SNE [91]. One such
example is depicted in Figure 3.3, where we plot the vectors of different entities from the
IMDB-Movielens dataset as heatmaps: similar colors therefore represent similar positions
in each dimension in the space. In this example, we choose a movie in the English
language (“Jurassic World”, with language “en”) and a movie in the Italian language
(“Fellini Satyricon”, “it”) along with their respective directors (“Colin Trevorrow” and
“Federico Fellini”). From this example, there are a number of observations that can be
made:

• Movies and directors are close to each other in dimension 2.

• All entities related to the Italian language share dimensions 3, 4 and 5.

• Token “en” is shared among an extremely large number of tuples in the original
dataset, so most of its dimensions become “averaged out” among all other related
tokens.

• On the other hand, “it” is shared among a comparatively smaller subset of movies,
thus making it far more correlated to “Federico Fellini”, who appears as director
with a much higher relative frequency compared to directors that work in the
English language.

Take-away : our graph preserves the structure of the dataset and EmbDI generates local
embeddings that model column, row, and inter-tuple relationships better than other
embedding generation methods.

43

Chapter 3. Generating Table Embeddings

3.6 Summary

In this chapter, we introduced the EmbDI system, a framework for building embeddings
for tabular data. We discussed the modular pipeline of EmbDI and its components.
We described the steps involved in the execution of the algorithm, starting from the
construction of the graph and the operations required by it. We then concluded with
some experimental observations made in the one-table scenario.

44

Chapter 4

Table Embeddings for Data
Integration

This Chapter is based on the second part of the paper “Creating Embeddings of Hetero-
geneous Relational Datasets for Data Integration Tasks”, and focuses specifically on the
Data Integration part of the contribution. In this Chapter, we discuss how to exploit the
geometric properties of EmbDI-generated embeddings for performing schema matching
and entity resolution.

4.1 Introduction

Data in an enterprise is often scattered across information silos. The problem of data
integration concerns the combination of information from heterogeneous relational data
sources [9]. It is a challenging first step before data analytics can be performed to extract
value from data. Unfortunately, it is also an expensive task for humans [10]. An often
cited statistic is that data scientists spend 80% of their time integrating and curating
their data [6]. Due to its importance, the problem of data integration has been studied
extensively by the database community. Traditional approaches require substantial
effort from domain scientists to generate features and labeled data or domain specific
rules [9]. There has been increasing interest in achieving accurate data integration with
dramatically less human effort.

With data integration we describe the task of “integrating” different data sources
by combining them in a new table view that contains information originating from the
different sources. Figure 4.1 provides an example of this task, where we start from two
separate relational tables in the same domain (movies) and attempt to produce a new,
integrated table that contains all the information present in the starting two values in an
easier-to-parse format. In this work, we concentrate our attention on the tasks of Entity
Resolution (ER) and Schema Matching (SM).

We design EmbDI so that the system can perform these tasks by creating a combined
graph from the concatenation of multiple tables. With this, attributes and tuples found
in different tables can be correlated through their embeddings. As a result, it becomes

45

Chapter 4. Table Embeddings for Data Integration

IMDB-Movielens

Main lead
/ First
billed

Second lead
/ Second

billed
Director

Title /
Movie
Title

Year /
Release Language Genre

Tom Hanks Catherine
Zeta-Jones

Steven
Spielberg

The
Terminal 2004 English Romance

Ryunosuke
Kamiki

Mone
Kamishiraishi

Makoto
Shinkai

君の名は。
Your

Name.
2016 Japanese Animation

Elijah Woods
Viggo

Mortensen

Ian McKellen
Elijah Woods

Peter
Jackson

The Two
Towers 2002 English Adventure

Matthew
McConaughey

Anne
Hathaway

Christopher
Nolan Interstellar 2014 English Sci-Fi

Mark
Hamill

Harrison
Ford

George
Lucas Star Wars 1977 English

Sam
Worthington

Zoe
Saldana

James
Cameron Avatar 2009 Action

IMDB-Movies

Main lead Second
lead Director Title Year Language

Viggo
Mortensen

Elijah
Woods

Peter
Jackson

The Two
Towers 2002 English

Tom
Hanks

Catherine
Zeta-Jones

Steven
Spielberg

The
Terminal 2004 English

Ryunosuke
Kamiki

Mone
Kamishiraishi

Makoto
Shinkai

君の名
は。 2016 Japanese

Mark
Hamill

Harrison
Ford

George
Lucas Star Wars 1977 English

Movielens-Movies

First
billed

Second
billed Director Movie

Title Release Genre

Matthew
McConaughey

Anne
Hathaway

Christopher
Nolan Interstellar 2014 Sci-Fi

Tom
Hanks

Catherine
Zeta-Jones

Steven
Spielberg

The
Terminal 2004 Romance

Ryunosuke
Kamiki

Mone
Kamishiraishi

Makoto
Shinkai

Your
Name. 2016 Animation

Elijah
Woods

Ian
McKellen

Peter
Jackson

The Two
Towers 2002 Adventure

Sam
Worthington

Zoe
Saldana

James
Cameron Avatar 2009 Action

Figure 4.1: Example of an ideal data integration system.
This is how an ideal data integration system could merge the two tables on the left to
obtain the table on the right. Common attributes are combined, conflicts are merged
(green background), attributes with no match are added to the table. Nulls are used

when data is not available.

possible to leverage the geometric properties of the vectors to find neighbors for each
tuple or attribute; these neighbors then become matching candidates. As both tuples
and attributes have proper embeddings, the same method can be used to match either
category.

4.1.1 Previous Work on Word Embeddings for Data Integration

Embeddings have been successfully used for data integration tasks such as entity res-
olution [70, 71, 152–155], schema matching [136, 137, 189], identification of related con-
cepts [182], and data curation in general [190, 191]. Typically, these works fall into
two dominant paradigms based on how they obtain word embeddings. The first reuses
pre-trained word embeddings computed for a given task. The second builds local word
embeddings that are specific to the dataset. These methods treat each tuple as a sen-
tence by reusing the same techniques for learning word embeddings employed in natural
language processing.

However, both approaches fall short in some circumstances. Enterprise datasets
tend to contain custom vocabulary. For example, consider the small datasets reported
in the left-hand side of Figure 4.2. The pre-trained embeddings do not capture the
semantics expressed by these datasets and do not contain embeddings for the term
“UUID20”. Approaches that treat a tuple as a sentence miss a number of signals such as
attribute boundaries, integrity constraints, and so on. Moreover, existing approaches do

46

Chapter 4. Table Embeddings for Data Integration

not consider the generation of embeddings from heterogeneous datasets, with different
attributes and alternative value formats. These observations motivate the generation of
local embeddings for the relational datasets at hand.

UUID20

Samsung

Galaxy

Mike

Apple
Steve

UUID20 iPad 4

Mike iPad 4

Steve Galaxy

Rick Samsung

UUID20 Apple
iPad 4

Wiki,
News,

...

Document corpus

word2vec,
fastText...

Recombination of
vectors

Rick

Figure 4.2: Illustration of a simplified vector space learned from text (prior approaches).
Value “UUID20” appears correctly in both tables, but it is not present in the training

corpus (it is out-of-vocabulary). Values present in the training corpus, but not found in
the tables are represented as grey dots.

For the remainder of this chapter, we carry out data integration on relational tables
and assume that we have generated suitable embeddings for the given tables according
to what has been reported in chapter 3, with the specific optimizations required by the
data integration task.

4.2 Using Embeddings for Integration

Once the embeddings are trained, they can be used for common data integration tasks.
We now describe unsupervised algorithms that employ the embeddings produced by
EmbDI to perform two tasks widely studied in data integration, Schema Matching and
Entity Resolution.

The matching algorithms we use to perform SM and ER are very similar to each
other, since both rely on the same notion of “bidirectional closeness” between nodes.
Specifically, two nodes (either CIDs or RIDs) are matched if the first node is the closest
to the second, and viceversa. In both algorithms, many elements (either RIDs or CIDs)
in one dataset will not have a match that satisfies this condition in the other dataset.
However, in datasets that involve many-to-many matches, this approach can lead to a
loss in recall due to the fact that correct matches are discarded by the default choice
of ntop = 1: by setting ntop = 1 to a larger value, the number of positive matches
increases. On the other hand, this will also lead to a reduction in the precision, because
of the larger pool of “viable” choices. Verifying the symmetry of the relationship has
the advantage of increasing the precision by reducing the False Positive Rate, without
penalizing the recall. The effect of ntop is described in Table 4.5.

The main difference between the procedures used for SM and ER lies in the blocking

47

Chapter 4. Table Embeddings for Data Integration

step that is performed before the execution of the matching operation: in both cases,
values that are not involved in the task at hand (non-RIDs for ER, non-CIDs for SM)
are removed from the model, thereby reducing the search space of each node’s neighbors.
While in the ER case, most points remain in the model, for SM the vast majority of
embeddings are removed.

4.2.1 Schema Matching (SM)

Traditional approaches rely on grouping attributes based on the value distributions or
use other similarity measures. Recently, [136] used embeddings to identify relationships
between attributes using both syntactic and semantic similarities. However, they use
embeddings only on attribute/relation names and do not consider the instances – i.e.
values taken by the attribute.

Algorithm 4 describes the steps taken to perform schema matching between two
attributes by exploiting their cosine distance in the vector space. The cosine distance is
a widely used metric to measure the distance between points in high-dimensional spaces,
and is defined as:

cosine similarity = SC(A,B) =
A ·B

||A||||B||
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(4.1)

Consider that, to prevent false positives in the column alignment, we terminate the
algorithm after two iterations have been completed, even if some candidate pools may
still contain values: if no matches are found for an attribute after two iterations have
been completed, then the attribute is considered to be “alone” (e.g. attributes “Language”
and “Genre” in Figure 4.1).

4.2.2 Entity Resolution (ER)

Recent works used pre-existing embeddings to represent tuples [70,71]. In contrast, our
approach relies on the use of RIDs as nodes in the heterogeneous graph. This allows
EmbDI to learn better embeddings for the entire record from the data itself, rather than
relying on combination methods such as averaging or concatenating the embeddings of
the terms in the tuple. This information is then used to perform unsupervised ER by
computing the distance between RIDs. We will also discuss in the experiments how one
can piggyback on prior supervised approaches by passing the trained embeddings as
features to [70,71].

Algorithm 5 describes the steps taken to identify the matches in the Entity Resolution
task. We assume that we are working in the Clean-Clean case, so that no matches for ri
are present in D1.

If appropriate embeddings were learned for the RIDs, then this approach will produce
good matches, which is indeed what we observe in our experiments.

48

Chapter 4. Table Embeddings for Data Integration

Algorithm 4 Schema Matching

1: let C1 be the set of CIDs of dataset D1 and C2 be the set of CIDs of dataset D2

2: let d(ci) be the list of distances between column ci ∈ C1 and all other columns ck ∈ C2,
sorted in ascending order of distance (and viceversa).

3: let T = C1 ∪ C1 be the set of columns to be matched
4: while T ≠ ∅ do
5: for all ck ∈ T do
6: if d(ck) ̸= ∅ then
7: c′k = findClosest(d(ck))
8: c′′k = findClosest(d(c′k))
9: if c′′k == ck then

10: ck and c′k are matched
11: remove ck, c′k from T
12: else
13: removeCandidate(d(ck), c′k)
14: removeCandidate(d(c′k), ck)
15: else
16: remove ck from T

4.2.3 Token Matching (TM)

We also consider the problem of matching tokens that are conceptual synonyms of each
other, a task that is also known as string matching [192,193]. For example, one relation
could encode a language as “English” while other could encode it as “EN”. Note that
this is different from schema matching, where the objective is to identify attributes that
represent the same information. Instead, we are interested in finding pairs of tokens from
different relations that are related conceptually. Given two aligned attributes Ai and Aj ,
we seek to identify if two tokens tk ∈ Dom(Ai) and tl ∈ Dom(Aj) are related. Given the
token tk, we identify the set of top-n token ids that are closest to tk. We announce that
the first token tl ∈ Dom(Aj) that occurs in the ranked list is the conceptual synonym of
tk.

4.3 Improving Local Embeddings

In this section, we discuss a number of challenging issues that occur when applying
EmbDI in practice.

4.3.1 Handling Imbalanced Relations

In a real-world scenario, there often are multiple relations and local embeddings must be
learned for each of them. For a single relation, one can simply perform multiple random
walks from each token node. This approach directly ameliorates the issue of infrequent
words that plagues word embedding approaches, by guaranteeing that even rare words
will appear frequently enough to be properly represented. A further complication arises

49

Chapter 4. Table Embeddings for Data Integration

Algorithm 5 Entity Resolution

1: let R1 be the set of RIDs ∈ D1

2: let R2 be the set of RIDs ∈ D2

3: let d(ri) be the list of distances between RID ri ∈ Ri and the closest ntop RIDs ∈ Dj ,
with i ̸= j.

4: for all ri ∈ D1 ∪D2 do
5: d(ri) = findClosest(ri, ntop)
6: for all rk ∈ D1 do
7: r′k = findClosest(d(rk))
8: r′′k = findClosest(d(r′k))
9: if r′′k == rk then

10: rk and r′k are matched
11: remove rk and r′k from d(ri) ∀ri ̸= rk, r

′
k

when one relation contains many more nodes than the other. If we perform an equal
amount of random walks starting from each node, the signals from the larger dataset
might overwhelm those coming from the smaller dataset. We found that an effective
heuristic is to start random walks only from nodes that co-occur in both datasets. The
tokens contained by random walks generated with this heuristic tend to be distributed
more uniformly over the different datasets, even if there is a large difference in the size of
the datasets. Furthermore, these nodes also happen to be the most informative ones as
they connect two relationships and often quite useful for integrating these two relations.
Even with datasets with a minimum amount of overlap (less than 2%), this approach
ensures adequate coverage of all nodes and minimizes the issues due to relation imbalance.

The overlapping tokens are the bridge between the two datasets to be integrated. To
maximize their impact in the embedding creation, one could start every sentence with a
RID or CID, randomly picked from those connected to the token at hand. This small
change in the random walk creation affects the results by creating evidence of similarity
for the corresponding rows and columns.

Example. Assume that node token Ta appears in two rows Ra and Rb over two large
datasets. Since the token is rare, it will appear most likely only once as the first node
in the walk, therefore the embedding algorithm will only see it in few patterns, such as
TaRbTc or TaCdTe. To improve the modeling of the Ta we start the sentence with a RID
or CID connected to Ta, such as CdTaCc and RaTaRb. This way, even if the token is rare,
it gives strong signals that the attributes and the row that contain it are related.

4.3.2 Handling Missing and Noisy Data

Many real-world datasets contain a large amount of missing data, so any effective approach
for learning embeddings must have a cogent strategy for this scenario. The ideal approach
employs imputation techniques to minimize the number of missing values. Unfortunately,
this might not always be possible, since algorithms for imputation and data repair
often do not provide good results in a relational setting. Prior approaches for learning

50

Chapter 4. Table Embeddings for Data Integration

relational embeddings skip missing values when computing embeddings. However, this
approach is often counter-productive as missing data can be an indication of systemic
error. Approaches where all missing values are treated as if they were the same entity
(so one node for all nulls), or unique entities (individual nodes for each null) are not
appropriate. The first approach creates a super node to store all NULL values, which
has multiple negative effects on the result and produces no benefit. The second approach
creates a unique node for each NULL: this does not cause any issues, but does not
provide any additional information either. Moreover, if the number of NULLs is large,
this approach increases the processing time without any commensurate benefit.

We propose a simple mechanism to use classical database techniques such as Skolem-
ization [194] to handle missing data. Approaches for data repairs [195] are very accurate
in identifying the errors, but struggle to identify the correct updated value [196, 197].
When there is no certain update to make, most methods put a placeholder, like a variable
or the output of a function that is related to Skolemization. Our model is able to naturally
consume and model these placeholders to obtain better embeddings. Hence, the data
repairing task could be used to address both missing and noisy values.

Consider the scenario with two relations R1 and R2. Without loss of generality, let
us assume that they both have attributes A1, A2, A3, A4. Suppose there are two tuples:

R1(a,N1, c,N2) and R2(a, b, c′, N3)

Here N1, N2, N3 denote the null values. If A1 is the key attribute, we can derive three
important updates in the data, including the creation of two placeholders, and rewrite
the two tuples are follows:

R1(a, b,X1, X2) and R2(a, b,X1, X2)

where X1 models the conflict between c and c′ and X2 merges the two nulls. This
reduces the heterogeneity of the data and improves the quality of the embeddings.
Consider also that all occurrences of c and c′ are merged in the graph, even in tuples
that do not satisfy the pattern of this functional dependency. A single placeholder may
end up merging a large number of token occurrences in the original dataset.

4.3.3 Incorporating External Information

Node Merging. Our graph representation allows one to incorporate external information
such as wordnet or other domain specific dictionaries in a seamless manner. This is
an optional step to improve the quality of embeddings. For example, consider two
attributes from different relations – one stores country codes while the other contains
complete country names. If some mapping between these two exists, then we can merge
the nodes corresponding to, say, Netherlands and NL. The same reasoning applies to
tuples (attributes): if trustable information about possible token matches is available,
we merge different RIDs (CIDs) in the same node. Merging of nodes could be achieved
by using external functions, such as matchers based on syntactic similarity, pre-trained
embeddings, or clustering. This often increases the number of overlapping tokens across
datasets and produces better embeddings for data integration.

51

Chapter 4. Table Embeddings for Data Integration

Node Replacement in Random Walks. Merging of nodes is only viable if we are confident
that the two tokens refer to the same underlying entity. In practice, the mapping between
two entities is imperfect. For example, one could have a machine learning algorithm that
says that tokens Ti and Tj are similar with confidence of 0.8. The extreme approaches of
merging the two nodes (such as by applying a fixed threshold) or ignoring this strong
information are both sub-optimal. We propose the use of a replacement strategy where,
during the construction of the sentence corpus, token Ti is replaced by Tj (and vice
versa) with a probability proportionate to their closeness. Note that this only affects
the sentence construction. The random walk by itself is not affected. Specifically, if the
random walk is at node Ti, it might output Tj in the sentence instead of Ti. However,
when choosing the next node, it will only pick the neighbors of node Ti.

Handling Numeric Data. Integer and real-valued attributes are very common in relational
data. A straightforward approach is to treat them as strings, so that each distinct value is
assigned to a node in the graph. However, this simplistic approach does not always work
well, as it ignores geometric relationships between numbers such as the Euclidean distance.
One way to use this distance information is to replace two numbers if they are within a
threshold distance. Unfortunately, identifying an effective threshold is quite challenging
in general. Consider two set of tokens {1, 2, 3, . . . , } and {1, 1.00001, 1.00002, . . . , 2}. In
the former, we can plausibly replace 1 with 2 while it would not be appropriate in the
latter scenario. We apply an effective heuristic that combines node replacement with data
distribution-aware distance between two numbers. Typically, most numeric attributes can
be approximated by a small number of distributions, such as Gaussian or Zipfian. As an
example, if a particular attribute is Gaussian, we can efficiently estimate its parameters –
mean and variance. Then, given a number i, we generate a random number r around i
in accordance with the learned parameters. If the new random number is part of the
domain of the attribute, then we replace i with r.

4.3.4 Embedding Alignment

Typically, embeddings for multiple relations are trained using two extreme approaches
– either by training embeddings one relation at a time or by pooling all the relations and
training a common space. The individual approach is more scalable, but misses out on
patterns that could be inferred by pooling the data. The pooled approach must ensure
that signals from larger relations do not overpower those from smaller ones. We advocate
for a novel embedding alignment approach, adapted from multilingual translation [198].

We begin by training embeddings each relation individually. This may cause RID and
CID vectors that represent different instances of the same entity to differ from each other
when the datasets share a small number of common tokens. To mitigate this problem,
we align the embeddings of the values contained by the two datasets that were trained in
the initial execution by pivoting on the new information, basically changing the vector
space that represents one dataset to better match the vector space of the other. This
allows us to better materialize relationships between tokens, even if they do not co-occur
in a single relation. Furthermore, this approach ensures that the geometric relationships
between tokens within each individual dataset are retained.

52

Chapter 4. Table Embeddings for Data Integration

Algorithm 6 AlignEmbeddings

1: Input: relations R1, R2, E = EmbDI (concat(R1, R2))
2: let Ui be the set of unique words in Ri ∀i ∈ 1, 2
3: let A = U1 ∩ U2

4: A = E(wi) ∀ wi ∈ R1

5: B = E(wj) ∀ wj ∈ R2

6: W ∗ = argminW,A(WA−B)
7: A′ = W ∗A
8: for all wi ∈ R1 ∪ R2 do
9: if wi ∈ R1 ∩ R2 then

10: E′(wi) = average(A′(wi), B(wi))
11: else if wi ∈ R1 then
12: E′(wi) = A′(wi)
13: else
14: E′(wi) = B(wi)
15: Output: Aligned embeddings E′

Assume that we have two relations R1 and R2 with adequate overlap, and that A
and B represent the embeddings of words in R1 and R2, respectively. It is possible
to formulate an orthogonal Procrustes problem [198] by seeking a translation matrix
W ∗ = argminW,A(WA−B), with A = U1 ∩ U2 being the intersection of unique values
(the anchors) in common between the two starting relations. Applying the translation
matrix W ∗ to A yields a translated matrix A′, which minimizes the distance between
anchor points. To employ this technique in the ER and SM tasks, we use matching CIDs
and RIDs in the original embeddings as anchors to perform the rotation. We then match
again on the rotated embeddings. Algorithm 6 describes the embedding alignment.

4.3.5 Handling Multi-Word Tokens

Multi-word tokens (such as “Adobe Photoshop CS3”) are common in relational dataset.
There are two key problems: how to tokenize a multi-world cell and how to aggregate
the token embeddings to get the cell embeddings. There are no simple answers to this
problem. Indeed, there are a number of ways in which multi-word cells could be tokenized:
one simple option is to treat the entire word sequence as a single token; the other option
is to tokenize the word sequence, compute the word embeddings for each of the tokens,
and then aggregate these token embeddings to get the embedding for the multi-word cell.
In some cases, these multi-word tokens contain substrings that would yield additional
information if they were represented as stand-alone nodes (in the example above, “Adobe”
and “Photoshop” are possible candidates). Unfortunately, in the general case it is very
hard to pinpoint cases where performing the expansion would improve the results; consider
a counterexample such as “Saving Private Ryan”: in this case, we would rather have a
single node to represent the movie title as it likely is a “primary key” in the dataset and
as such would help when performing integration tasks.

53

Chapter 4. Table Embeddings for Data Integration

Adobe Photoshop CS3R452 Product

R452 Product

Adobe

Photoshop

CS3

R452 Product

Adobe

Photoshop

CS3

Adobe Photoshop CS3

Tokenization

Flattening

Combination

Figure 4.3: Different tokenization results for the string “Adobe Photoshop CS3”.

We tested multiple solutions to mitigate these issues, depicted in Figure 4.3. Tok-
enization describes the case in which the content of a cell is kept where as is, regardless
of how many sub-tokens are present in the string. Flattening is the opposite solution,
in which each token in a multi-word token is assigned a node in the graph. Finally, the
combination of the two works by creating a node for the full string (“Adobe Photoshop
CS3”) and one node for each of the substrings. This solution increases the size of the
graph, but as we will show in the experimental section, it leads to major improvements
in the results. An additional solution we employed specifically for our applications in
Data Integration consists in a simple yet effective heuristic that allows us to handle both
multi-word tokens and rare tokens at the same time. Instead of representing all unique
values in both datasets in the same way, we make a distinction between nodes that are
present in both datasets and those that appear only in one dataset. Then, we tokenize
the shared tokens and expand those that are not in common. This effectively allows
us to extract the information present within multi-word tokens and, possibly, introduce
connections that would be missed otherwise. Moreover, representing the common values
as unique tokens introduces “bridges” between the datasets, which can be exploited during
the step of random walks generation to introduce semantic connections that would not be
identified otherwise. Proper handling of tokens mitigates challenge (3) in Section 3.3.1.

4.4 Experimental Results

We test schema matching and entity resolution in every integration scenario with two
datasets and report preliminary results on token matching. In the following, we measure
the quality of the results w.r.t. hand crafted ground truth for each task with precision,
recall, and their combination (F-measure). Execution times are reported in seconds.

4.4.1 Schema Matching

We test an unsupervised setting using Algorithm 4.2.1 with overlap of columns treated as
bag-of-words (Base) and with local embeddings. We also report for an existing system
with both pre-trained embeddings (SeepP), as in the original paper [136], and EmbDI
local embeddings (SeepL), as they are the ones with competitive performance that we

54

Chapter 4. Table Embeddings for Data Integration

Unsupervised
Base EmbDI Node2Vec Harp SEEPP SEEPL

BB 1.00 1.00 1.00 1.00 .75 .75

WA 1.00 1.00 mem .60 .60 .80

AG 1.00 1.00 1.00 1.00 1.00 1.00

FZ 1.00 1.00 1.00 1.00 1.00 1.00

IA 1.00 1.00 mem 1.00 .50 .75

DA 1.00 1.00 mem .50 .75 .81

DS 1.00 .50 mem 1.00 .60 .73

IM .60 .78 mem .78 .68 .75

Table 4.1: F-Measure results for Schema Matching (SM).

could generate in all cases.

Table 4.1 reports the results w.r.t. manually defined attribute matches. All methods
are unsupervised, but we distinguish two groups. In the first group, local embeddings are
generated and then used with Algorithm 4.2.1 from Section 4.2. Basic local embeddings
lead to 0 attribute matches in this experiment and we do not report them in the table.
While EmbDI embeddings lead to the best results in most cases, for DS Harp gets
better results. While we can get comparable results with optimizations (Section 4.3),
this shows that our graph enables other, more complex embedding schemes to get good
results. Base performs very well across most datasets and it is outperformed by local
embeddings in one case.

In the second group, we compare pre-trained and EmbDI embeddings with an existing
matching system. We have two main remarks. First, the simple unsupervised method
with EmbDI embeddings outperforms by at least an absolute 10% the SeepP baseline in
terms of F-measure in all scenarios. Second, the baseline method improves by an average
absolute 6% in F-measure when it is executed with EmbDI embeddings, showing their
superior quality for SM w.r.t. pre-trained ones.

We observe that results for SeepP depend on the quality of the original attribute
labels. If we replace the original (expressive and correct) labels with synthetic ones,
SeepP obtains F-measure values between .30 and .38. Local embeddings from EmbDI
do not depend on the presence of the attribute labels. Finally, we tested a traditional
instance-based schema matcher that does not use embeddings [199,200], whose results
are lower than the ones obtained by EmbDI in all scenarios.

We employ the heatmap representation introduced in the previous chapter to display
the similarities between matched columns in the vector space. The heatmap in Fig. 4.4
displays each entry on the vertical axis (0_actor, 1_year, 0_director . . .), while the
horizontal axis reports the value of the vector representations in each dimension. It
is quite evident how attributes in different datasets have similar positions in the same
dimensions if they have the same domain. It is also possible to see how some tokens
(0_actor, 1_director, 0_title) share a very strong similarity in some dimensions when
they share the same dataset.

Take-away : EmbDI local embeddings are more effective than pre-trained ones for the

55

Chapter 4. Table Embeddings for Data Integration

Figure 4.4: Heatmap of the vector representations of attributes in the IM dataset.

Pre-trained Local
fastText EmbDI-S EmbDI-F EmbDI-O Node2Vec Harp

BB .59 .50 .82 .86 .86 .86

WA .58 .59 .75 .81 mem .78

AG .18 .14 .57 .59 .70 .71

FZ .99 .98 .99 .99 1.00 1.00

IA .10 .09 .09 .11 mem .14

DA .72 .95 .94 .95 .87 .97

DS .80 .85 .75 .92 mem .81

IM .31 .90 .64 .94 mem .95

Table 4.2: Unsupervised Entity Resolution results comparing different baselines.

schema matching task when tested with two different unsupervised algorithms.

4.4.2 Entity Resolution

For ER, we study both unsupervised and supervised settings. To enable baselines to
execute this scenario, we aligned the attributes with the ground truth. EmbDI can
handle the original scenario where the schemas have not been aligned with a limited
decrease in ER quality.

Figure 4.5 depicts two examples of movie titles that are in match. Similarly to
previous examples in this form, it is possible to recognize some patterns that are shared
between pairs in match (e.g. dimension 2, dimension 6), and that are not shared across
different pairs. This is yet another demonstration of how information can be encoded by
the embeddings.

As baseline for the unsupervised case, we use Algorithm 4.2.2 with pre-trained embed-
dings (fastText). We report for our integration algorithm with EmbDI embeddings in
three variants of the way in which we tokenize the cell values in the dataset. EmbDI-S

56

Chapter 4. Table Embeddings for Data Integration

Supervised Task specific
(5% labelled) (5% labelled)

DeepERP DeepERL DeepERP DeepERL

BB 0.51 0.53 0.54 0.58

WA 0.58 0.62 0.62 0.63

AG 0.53 0.56 0.58 0.62

FZ 1.00 1.00 1.00 1.00

IA .76 .81 .77 0.82

DA .84 .89 .86 .90

DS .80 .87 .82 .91

IM .82 .88 .84 .91

Table 4.3: Supervised Entity Resolution results comparing pre-trained (DeepERP) and
local (DeepERL) embeddings.

DATASET
HEURISTIC COMBINED WIN 3 COMBINED WIN 5

P R F P R F P R F

AG 71.51 49.6 58.57 81.40 63.77 71.52 83.48 67.07 74.38

BB 92.74 81.37 86.67 91.80 82.35 86.82 95.93 86.76 91.12

DA 98.55 91.73 95.02 99.41 97.66 98.53 99.41 97.66 98.53

DS 96.23 87.92 91.88 98.90 97.13 98.01 98.94 96.76 97.84

FZ 99.69 98.79 99.24 99.09 99.09 99.09 100.00 99.09 99.54

IM 95.91 91.18 93.65 98.98 96.65 97.80 99.01 96.82 97.90

IA 14.29 8.59 10.73 25.81 6.25 10.06 25.00 6.25 10.00

WA 86.69 77.23 81.69 82.89 76.17 79.39 86.27 80.40 83.23

Table 4.4: Updated ER results with combined graph structure.

57

Chapter 4. Table Embeddings for Data Integration

Figure 4.5: Heatmap of vectors in match for ER.

(Simple) uses the original value as a token node in the graph (e.g., “iPad 4th 2012”),
while EmbDI-F (Flatten) models it as single words (e.g., nodes “iPad“, “4th”, “2012”
connected to the same RID and to the same CID). The first strategy is more accurate in
the modeling on tokens with more than one word as each token gets its own embedding;
this is more precise than the one derived from combining the embeddings of the single
words. However, a finer granularity is mandatory for heterogeneous datasets with long
texts in the cell values for two reasons. First, accurate node merging is challenging with
long sequences of words. Second, in different datasets the same entities can be split
across attributes or grouped in one attribute. As an example, the BB datasets contain
attributes “beer name” and “brewing company” but in one dataset oftentimes the name of
the brewing company appears in the beer name brewing_company_A beer_name_1, while
in the other dataset only beer_name_1 appears in the name column. As we do not assume
any user-defined pre-processing of the attribute values, modeling the words individually is
beneficial in these cases. The third tokenization strategy, EmbDI-O (Overlap) is a trade
off between the two that preserves as token nodes the cell values that are overlapping
across the two datasets and models as single words the others.

We then tested the ER case with the combination strategy described in Section 4.3.5,
and observed that the combination of the equivalent of EmbDI-S and EmbDI-F yields,
in general, a major improvement over even the best results achieved in the previous cases.
These results are shown in table 4.4.

We also test our local embeddings in the supervised setting with a state of the art
ER system (DeepERL), comparing its results to the ones obtained with pre-trained
embeddings (DeepERP).

Results in Table 4.2 for unsupervised settings show that EmbDI-O embeddings
obtain the best quality results in three scenarios and second to the best in four cases.
In every case, local embeddings obtained from our graph outperform pre-trained ones.
For supervised settings, as in the SM experiments, using local embeddings instead of
pre-trained ones increases the quality of an existing system. In this case, supervised
DeepER shows an average 5% absolute improvement in F-measure with 5% of the ground
truth passed as training data. The improvements decrease to 4% with more training
data (10%). Similarly to SM, in the ER case local embeddings obtained with the Basic

58

Chapter 4. Table Embeddings for Data Integration

ntop
P R F

AG BB DA IA IM WA AG BB DA IA IM WA AG BB DA IA IM WA

1 .803 .929 .991 .278 .973 .925 .407 .765 .884 .039 .862 .634 .540 .839 .935 .068 .914 .752

5 .716 .885 .986 .132 .963 .853 .494 .794 .917 .055 .911 .748 .585 .837 .950 .077 .936 .797

10 .715 .885 .986 .137 .963 .841 .496 .794 .917 .078 .912 .757 .586 .837 .950 .100 .936 .797

100 .714 .885 .986 .125 .962 .834 .496 .794 .917 .078 .912 .764 .585 .837 .950 .096 .936 .797

Table 4.5: Effects of ntop on ER results.

method lead to 0 rows matched.

Finally, we investigated if our task agnostic embeddings can be fine-tuned for a specific
task. This process of pre-training followed by fine-tuning is a common workflow in NLP.
Specifically, we start with the relational embeddings learned by EmbDI and allow it
to be fine-tuned for each individual tuple pair if it improves performance. We achieve
this by modifying the embedding lookup layer of DeepER. By default, this layer does a
“lookup” of a given token from the embedding dictionary. We allow DeepER to learn an
additional weight matrix W such that the original EmbDI embeddings can be tuned for
ER. Table 4.3 shows the results.

4.4.3 Token Matching

Differently from the previous experiments, we do not claim an unsupervised solution
for this integration task. In fact, we argue that our embeddings should be used as an
additional signal to be combined with the other similarity measures used for this task,
e.g., edit distance, Jaccard, TF/IDF. We evaluated the accuracy of this approach on
the IM scenario in matching of tokens across the two datasets in two (aligned) pairs of
columns. We picked this dataset and these columns as it was possible to manually craft
the ground truth for their matches. Two columns in a pair have the information about
the same entities, but expressed in different formats, such as “DK” for “Denmark”, “UK”
for “Great Britain”, and so on. We used the unsupervised matching based on nearest
neighbor also used for ER.

For the column expressing information about countries, pre-trained embeddings and
Jaccard similarity obtain matches with 0.13 and 0.19 F-measure, respectively, while
EmbDI embeddings get 0.31. For the column about languages, the baselines obtain
0.17 and .20, while EmbDI obtains 0.30. These results suggest that local embeddings
can bring a stronger signal than pre-trained embeddings and Jaccard distance in string
matching systems.

4.4.4 Ablation Analysis

We now show the effect of the different parameters, design choices, and optimizations in
our framework.

Parameters. Several parameters in EmbDI affect the quality of the local embeddings. All
the results reported above have been obtained using a single configuration, but the quality
of the results for the different tasks increases significantly by tuning the parameters for

59

Chapter 4. Table Embeddings for Data Integration

the specific tasks.
The default setting uses walks of length 60, 300 dimensions for the embeddings space,

and the Skip-Gram model in Word2Vec with a window size of 3. We noticed that
CBOW performs better than Skip-Gram on the ER task, while having worse results in
the EQ and SM. For example, executing the ER task with CBOW increases F-measure
by at least 2 absolute points for IM and DS. Similarly, decreasing the size of the walks to
5 for the SM task raises the F-measure for DS to 1. This is because embeddings from
shorter walks better model the value overlap across columns. As this signal drives the
matching task, a lower value increases the quality of the SM matches, but reduces the
quality for EQ and ER. We also observe that an even lower value (3) decreases the results
also for SM, demonstrating that a semantic characterization in also needed. The window
size has proven to be an important parameter, with a large effect on the final performance
of the algorithm. Its effect is highly dependent on the chosen tokenization method:
while window size 3 achieves better results with the simpler methods (tokenize, flatten
and heuristic), combination strongly benefits from a larger window size (5). Reducing
the number of dimensions has limited, mixed effects on average, thus showing that our
method is robust to this parameter.

A larger corpus leads to better results in general, but we empirically observed
diminishing returns after a certain size. As a rule of thumb, we fix the total number of
tokens ntokens in the training corpus with the following formula:

ntokens = (ndist + nrows) × 1000 (4.2)

where ndist is the number of value nodes in the graph after taking into account the
tokenization method explained in Section 4.3.5 and nrows is the total number of tuples
in the table. The number of walks is derived by dividing the number of tokens by the
walk length. For example, the IM dataset contains 49875 tuples and 118779 distinct
values. If we use sentences with length 60, then the resulting number of sentences will
be (118779 + 49875) × 1000 ÷ 60 = 2810900, which is the value reported in Table 3.1.
While effective, this rule of thumb can be “overly generous” and generate far more tokens
than required if the starting graph is quite large: experimentally, we observed that a
number of tokens ranging from 1.5M to 2.5M is enough for all datasets we have worked
with, with the execption of MSD.

We set ntop = 10 in our ER experiments; by varying ntop we observe the expected
trade-offs between P and R, as reported in Table 4.5 for six datasets. Results for the FZ
scenario do not change with different ntop values and results for DS are close in values
and trend to those reported for DA.

Optimizations. We tested optimizations of the original default configuration for EmbDI.
For replacement (Section 4.3.3), we used an external dictionary for one column in each
dataset, e.g., different formats of country codes. The biggest improvement is in ER with
an absolute 3% on average, while the quality is stable for SM and EQ. For alignment
(Section 4.3.4), we fed the optimization step with the outcome of the default model, i.e.,
we got candidate RIDs and CIDs from a first execution and then refined the embeddings
with this information. This leads to a an absolute 2% increase in F-measure for ER, with
the higher contribution coming from the better recall.

60

Chapter 4. Table Embeddings for Data Integration

% null Year values

E
R

 F
-m

ea
su

re

85

90

95

100

5 10 15 20 25 30

Skip FD

Figure 4.6: EmbDI ER F-measure for IM
with increasing amount of missing values in
the data.

Figure 4.6 shows the impact on ER of
inserted missing values in the IM dataset.
We defined the FD Title,Director → Year
and inserted increasing amount of noise at
random in the column Year. As the num-
ber of records in common across the two
datasets is very low, most of the NULLs
are modifying records that are only in one
dataset. Surprisingly, this has a visible ef-
fects on the results in terms of F-measure.
While the default Skip solution (ignore
NULL values in the graph creation) stays
stable until a large number of NULLs is
introduced, the results improve for the opti-
mization that enforces the FD in the graph
construction. This improvement is driven
by the increasing precision. In fact, there
are non duplicate movies that have a large number of attribute values in common, includ-
ing the year, and that are identified as duplicates by our unsupervised method (based on
neighbor RIDs). However, the FD enforces that any missing value is treated as a new
value, distinct from the others, and this information moves the embedding of the RID
with the NULL away from the similar tuple that is not a duplicate.

Dataset Graph Walks Embeddings Walks+Embeddings N2V HARP

BB 2.47 66.7 133 200 1663 732

WA 13.4 329 1113 1442 mem 2394

AG 1.19 34.4 122 156 953 135

FZ 0.3 12.0 40.7 52.6 178 27.0

IA 32.0 533 1360 1893 mem 9122

DA 2.08 43.6 130 173 920 128

DS 33.9 919 3027 3947 mem 21659

IM 31.6 768 2772 3540 mem 8001

MSD 146 6377 27050 33427 mem t.o.

Table 4.6: Execution times (in seconds) for embeddings generation for EmbDI, Node2Vec
(N2V) and Harp.

Execution times. As the graph generation is common to all methods, we compare our
solution with Node2Vec (N2V) and Harp in terms of time to generate walks and
produce embeddings (W+E). EmbDI is faster in most cases, up to 7x in two datasets,
and, in contrast with Harp, never hits the time out (t.o.) of 10 hours. With larger
datasets, Node2Vec raised a memory error on our 32GB reference machine. EmbDI
does not suffer from this problem, even in a laptop with 16GB of main memory, we
have been able to run all tests, including the ones for the biggest dataset of 1M tuples

61

Chapter 4. Table Embeddings for Data Integration

(139MB).

4.5 Summary

In this chapter, we moved to the two-tables scenario and introduced the data integration
part of EmbDI. We described the algorithms employed by EmbDI to perform the Schema
Matching and Entity Resolution tasks. In our experimental campaign, we compared
EmbDI against different baselines in the unsupervised case and as local pre-trained
features for a supervised algorithm. We showed that EmbDI has comparable performance
to SOA graph embeddings algorithms, and outperforms them in some cases; in the
supervised case, local embeddings produced by EmbDI always outperform pre-trained
embeddings trained on external corpora such as fastText. In the ablation analysis, we
discussed how different parameters influence the imputation performance of EmbDI. We
then shifted our attention to the study of the EmbDI embeddings, and how to employ
them to perform token matching and querying over embeddings.

62

Chapter 5

Relational Data Imputation with
GNNs and Multi-task Learning

So far, we have developed a set of solutions the data integration problem, introducing
a novel approach for handling the data integration problem in an unsupervised, deep
learning-based fashion. Spurred by the very encouraging results we achieved in data
integration, we work on implementing the same tools and ideas to the data imputation
problem, which will be the focus of this Chapter.

5.1 Introduction

We introduced data imputation in Chapter 2 as the task of pre-processing dirty data by
fixing errors in cells, where an “error” could be a value that is tagged as incorrect by an
error detection algorithm, or a missing value that should be filled.

The data imputation problem is an important step in any pipeline since missing or
erroneous values can be harmful when the data is used for training models [158, 159].
There are two challenges involved in the development of systems for data imputation
that we focus on:

1. The need for supervision. Data imputation methods show good performance
when supervision is available. Unfortunately, supervision is costly and not always
accessible.

2. Deep Learning-based systems cannot naturally model tabular data. Tabular data
is structured, discrete, and can contain mixed-type data. Deep Learning-based
systems work best in presence of streamlined, homogeneous data to better translate
it in numerical form. Even when transformed into numerical features via some
kind of encoding, categorical values do not have the same distribution as “real”
numerical values, which causes issues when training DL-based methods on features
with mixed origin.

In this chapter, we introduce two novel algorithms for tackling these challenges, and
then we carry out an experimental campaign with the objective of understanding how

63

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

ML-based imputation methods learn to provide some recommendations on how to use
them. In the following, we consider datasets in which the erroneous values have already
been identified and marked as “nulls”: we do not, therefore, consider the problem of Error
Detection and instead focus on the problem of filling the vacancies present in the datasets
at hand. For the sake of brevity, we refer to a dataset that contains missing values as
“dirty dataset”.

The major contributions we introduce in this Chapter are GRIMP and FunForest,
two data imputation algorithms for mixed type (categorical and numerical) tabular data.
Both systems are designed to work in high-error rate environments and can easily handle
multiple missing values in a tuple.

Our first contribution is GRIMP (Graph embeddings for Relational data IMPutation),
a Data Imputation algorithm that combines a graph representation of tabular data, Graph
Neural Networks and an self-supervised multi-task classification objective to perform
imputation of mixed relational data. With GRIMP, we address the challenges listed
above as follows:

1. GRIMP is self-supervised, and does not require labeled or fully-clean tuples.
GRIMP is robust to noise and high error fractions.

2. GRIMP is designed to transparently handle mixed (categorical and numerical)
data types by generating an encoded vector representation of the dataset values
where categorical and numerical values are treated equally.

3. GRIMP introduces a first attempt at combining external information modeled as
functional dependencies with GNNs by piloting the training objective of columns
involved in FDs.

Similarly to EmbDI, in GRIMP the table is transformed into a graph; for GRIMP,
however, we generate the node embeddings by employing GNNs in tandem with a classifier,
rather than using the EmbDI’s word2vec-based architecture. The multitask classifier
includes an attention layer to combine attribute vectors and value vectors. This layer
can be bootstrapped by using external information such as Functional Dependencies.

During the development of the GRIMP architecture to handle Functional Depen-
dencies (FDs), we considered the problem of introducing this information in alternative,
pre-existing data imputation algorithms. As a result, we develop an enhanced version of
one the most popular data imputation algorithms, MissForest [45], and name it FunFor-
est (FUNctional MissFOREST). FunForest works by exploiting external information
under the form of Functional Dependencies. This is done by allocating a fraction of the
random forest estimator budget to a subset of attributes, so that a part of the ensemble
is being exposed exclusively to the attributes involved in FDs. Applying this constraint
allows the model to focus more on attributes that are known to be (via the FDs) directly
related to each other. As it is based on MissForest, which relies on random forests,
FunForest is unsupervised and can handle mixed data types.

In the latter part of this chapter, we carry out an in-depth experimental campaign
where we compare GRIMP and FunForest to a number of data imputation baselines,

64

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

showing their performances and how different architectures tend to fall in common pitfalls
and have very close results in practice. We try to give an explanation of why this happens,
what DL-based models are doing in their training phase and how this issue can be tested
and be accounted for.

5.2 GRIMP

GRIMP (Graph embeddings for Relational data IMPutation) is a data imputation
system that employs a combination of deep learning techniques to impute missing data
in relational tables. The architecture of GRIMP is based on two modules. First, a pre-
processing module prepares the graph representation of the input table and the training
corpus required by the second module. The second module consists of a multi-task
architecture in which each attribute of the table is assigned a task-specific head; each
head then carries out imputation by using either a multi-class classification or a regression
objective, depending on whether the head is working with categorical or numerical values
respectively.

Encouraged by the promising results achieved with EmbDI, we rely once more on a
graph representation to represent the input dirty dataset. Indeed, we have shown in the
previous chapters that graphs can be used to elegantly model tabular data and that such
a representation can be employed with success to apply Deep Learning-based methods on
tabular data. In this work, we leverage the advancements in the field of graph embedding
through the application of Graph Neural Networks [43,109], which allow us to combine
known node embeddings with the graph’s structure to produce an enhanced vector-based
representation of nodes. In short, GRIMP takes as input a table, transforms it into a
graph to feed it to a GNN, the node embeddings produced by the GNN are then passed
as input to the final step in the training procedure.

This final step is the second major innovation in this work: the application of multi-
task learning [116, 117] to the data imputation problem. We design and implement a
multi-task architecture where each sub-task (defined as head) takes as input the vector
representations of the graph nodes (that is, the cell values), then uses the information
contained in the vectors for selecting the correct imputations. In the rest of this work,
what we refer to as “heads” are task-specific sub-modules: unlike other works that feature
attention mechanisms, our current implementation includes a singular attention module
(rather than multiple “attention heads”, such as BERT’s [73]). Each head in the multi-task
architecture models the imputation problem for a single table attribute, be it numeric
or categorical: on one hand, this allows to carry out imputation in a single shot, rather
than training the model iteratively and imputing over a single column at at time, on the
other hand it allows to organically model categorical attributes, without the conflicts
that might arise between true numerical variables and numerical encodings of categorical
variables. A further advantage of the multi-task approach is how it allows to spread
the classification operation over multiple sub-tasks, each of them working over a smaller
domain than what a simpler architecture would require: this is how a näıve architecture
that employs a GNN for classification could be implemented. GRIMP is highly robust to
noise and can exploit all non-missing values in a dirty dataset by leveraging once again

65

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

its multi-task architecture: thanks to the fact that each head is separated from all others,
it becomes possible to feed the same information to different heads and obtain multiple,
different and valid outputs from each of them. This advantage is explored further in
Section 5.2.3.

GRIMP is self-supervised: given a dataset that features missing values, GRIMP
produces an imputed version of said dataset with no labels or human supervision required
by generating its own labels on the training data. While the algorithm itself is self-
supervised, some preparation is needed before it can be executed: specifically, node
embeddings must be generated on the target dirty dataset so that the graph nodes have
features for the GNN to operate on. These features can be generated by any suitable
method, which means that unsupervised algorithms such as EmbDI or simple sentence
embeddings generated by fastText can be utilized to this end. As already mentioned,
GRIMP does not require additional external information or labels to run other than the
aforementioned embeddings. However, external information can be fed to GRIMP in
two ways: by employing pre-trained embeddings that incorporate external information
(e.g. fastText embeddings trained on Common Crawl), or by providing attribute-level
information such as Functional Dependencies.

Director

Head A

Head B

Head C

Task-specific
section

Node
Features

Feature
generation

Training
Samples

Merging
stepHeteroGNN

Vector
generation

Training
Vectors

Shared section

Multi-task model training

R3
R4

R1
R2 Director

Year

R2

Director

Year
R1

TitleDirector

TitleR3

Year

Title

R4

C. Nolan

M. Shinkai

R. Scott

The Martian

Your Name.

Tenet

2014

2015

2020

...

Graph representation

R3
R4

R1
R2

...

M. ShinkaiYour Name.
C. NolanTenet

C. NolanInterstellar
DirectorTitle

R. ScottThe Martian

... ...

2014
2020

2014
Year

2015

...

M. ShinkaiYour Name.
C. NolanTenet

C. NolanNULL
DirectorTitle

R. ScottThe Martian

... ...

2014
2020

2014
Year

2015

...

Title

Figure 5.1: Overview of the GRIMP architecture.

The GRIMP pipeline is shown in Figure 5.1. Given a target table that contains
missing values (in the example, a table on movies), two main operations are carried
out: the training corpus (denoted as training samples) is generated, and the graph
representation of the table is prepared. For the first operation (explained in more detail
in Section 5.2.3), GRIMP creates a training sample for each non-null value in the dirty
table: these training samples are then split by attribute among the various heads. For
efficiency reasons, the training samples do not contain tuple values, instead the tuple
contains the index assigned by the graph to each value: these indexes are used to build
the vector representation of each tuple at run-time far more efficiently than a more
näıve reconstruction operation based on look-ups would allow. In the graph generation
(Section 5.2.1), a quasi-bipartite, heterogeneous graph encodes the table information
by generating a node for each row and value, with typed edges linking the nodes on
either side. We say the graph is quasi-bipartite because self-loops are added to all edges,

66

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

R1
R1
R2

a1
a2
b1
b2
b3
c1
c2

R3

R2 R3 a1 a2 b1 b2 b3 c1 c2
S 0 0 0 0 B 0 0 C 0
0 S 0 0 A 0 B 0 C 0
0 0 S A 0 0 0 B 0 C
0 0 A S 0 0 0 0 0 0
0 A 0 0 S 0 0 0 0 0
B 0 0 0 0 S 0 0 0 0
0 B 0 0 0 0 S 0 0 0
0 0 B 0 0 0 0 S 0 0
C C 0 0 0 0 0 0 S 0
0 0 C 0 0 0 0 0 0 S

R1

R2

R3

NULL 2014
(c1)

2014
(c1)

2020
(c2)

Your
Name (a1)

Tenet
(a2)

Title
(A)

Year
(C)

France
(b1)

Japan
(b2)

USA
(b3)

Country
(B)

R2

a1

a2
AA

b1

b2B

b3

c1

C

c2

R1
B

C

R3

A

B

C

Figure 5.2: Example of GRIMP graph and adjacency matrix on a table.
Nodes for record IDs and values are color-coded, edge types are color-coded as well and
replicate the color of the attribute they refer to. The same attribute colors are used in

the adjacency matrix, with “S” describing a self-loop.

following a common procedure in GNN literature [43,87]. GNNs expect graph nodes to
have features that encode information about them: since we are generating the graph
from scratch starting from an unrelated data structure (that is, a relational table), an
additional step for generating these features is required. Section 5.2.2 reports different
methods for doing so.

The training step contains the shared section of the multi-task classifier, which com-
prises the GNN and a merging layer that combines the vector representations generated
by the GNN. The structure of the shared layer and of the GNN in particular is explored
in Section 5.2.4. Once the vector representations are ready, they are forwarded to the
task-specific section of the pipeline. This section is composed of multiple task-specific
sub-modules named heads (explored in Section 5.2.4), whose structure depends on their
task: each task to corresponds to an attribute in the table, and the output of each head
depends on the attribute datatype (categorical or numerical) and on its domain. If a
head’s attribute is categorical, then the head’s output becomes a multi-class classifier
with as many classes as there are distinct values in the attribute’s domain; if the attribute
is numerical, then the classifier has a single output for the specific value (number) that
should be used for the given training sample. Each head measures its own training loss
independently and according to the data type of its attribute: categorical attributes use
cross entropy loss, while numerical attributes rely on RMSE. At the end, all losses are
merged together.

We detail each component in the GRIMP pipeline in the following sections.

5.2.1 Building the Graph

Given a relational table that includes missing values, GRIMP builds a heterogeneous,
bipartite graph which encodes both the table’s content and its structure. Figure 5.2 shows
an example table on the left, together with the corresponding graph and its adjacency
matrix. In the graph, each record is assigned a RID node (highlighted in green), each

67

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

unique value in the dataset is assigned a cell node (shown in grey), then RIDs and cell
nodes are connected via a typed edge. The edge type is defined by the attribute the cell
is found in, with the number of types being equal to the number of attributes in the
table. Typed edges are color coded according to the color of the respective attribute: for
example, record R1 is connected to value b1 via a yellow edge with type ‘Country’ (‘B’).

The adjacency matrix encodes the relative position of nodes in the graph and is a
very important part of the pipeline: in fact, the graph adjacency matrix is how the GNN
combines the structure of the graph with the node embeddings that carry information
about each node.

Values that appear in multiple attributes are preemptively disambiguated so that
each occurrence is connected exclusively to the attribute it is found in:

aik ̸= ajl ∀aik ∈ Ai ∧ ∀ajl ∈ Aj ⇔ i ̸= j (5.1)

The graph is constructed by iterating over the dirty dataset row by row: a new node
is created for each tuple, and a new node is created for each unique value encountered in
the tuple; for each attribute, a typed edge connects the tuple node to the value that is
found in that attribute. If a cell contains a missing value, no additional edges are added
to the graph and the empty cell is ignored at this stage. After the creation of the graph,
the node features are assigned to each node by probing the pre-trained feature corpus.
Algorithm 7 reports the graph generation procedure.

Algorithm 7 GenerateGraph

Input: table D, node features X
let G = empty graph
for all ri in rows(D) do

G.addNode(Ri, X (Ri)) {Ri is the record id of ri}
for all value vk in ri do

G.addNode(vk, X (vk))
G.addEdge(vk, Ri, Ak)

Output: graph G

Modeling Multi-Word Tokens and Numerical Values

The problem of multi-word tokens is still present here in the same way as it was in EmbDI
(see Section 4.3.5). Differently from the data integration case, for the data imputation
task we assume that each missing value should be replaced by exactly the same value as
in the ground truth. Thus, we start from the assumption that the value to be imputed is
present in the attribute domain as-is, and we should not expand the attribute domain
to include all possible substrings: this is a common assumption for the data imputation
task [35,80,165].

The final imputation operation is modeled as a classification task. By not splitting
the content of a cell, the overall size of the domain can be kept low. This reduces the
complexity of the task and avoids introducing noise with overlapping sub-strings that

68

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

belong to different cells (e.g. common words such as “the”). This simplifies the training
objective by not forcing the model to learn both the “combined” view of the cell value
and all its sub-strings.

Numerical values are treated as strings and represented as nodes in the same way.
To handle real numbers, we first round them to a set number of decimal places (we
choose 8 places by default), then we treat them as strings and assign them a node. We
considered the idea of binning similar numeric values based on the attribute’s distribution,
but we observed experimentally that this solution did not bring improvements in the
imputation performance of numerical values, and it introduced noise in the model
by creating connections between tuples that were previously unrelated to each other.
The combination of these two drawbacks led to a general worsening of the imputation
performance. To avoid scale issues in the loss computations, numerical values are
normalized before training the model, and then de-normalized before measuring the
imputation accuracy.

5.2.2 Generation of node features

The construction of GRIMP’s table graph is the first step in the preparation of the table
for the imputation procedure carried out by the multi-task model. There is, however,
the need for an interface that transforms the table graph into a form that can be
“ingested” by the multi-task classifier: to this end, we rely on the latest advancements in
graph embedding [85,87], represented by the so-called Graph Neural Networks (GNNs).
GNN architectures combine the features of neighbors of a node with the node’s own
features to produce a merged representation of the node itself. GRIMP requires feature
representations for tuples, attributes and cell values in order to function. These features
can either be randomly generated, or prepared by relying on external methods such as
those described in the rest of this section. Unsurprisingly, randomly generated features
do not work as well as reasoned (pre-trained) features do; however, the model can still
converge to an extent even when using random features.

To this end, we propose three strategies to initialize the node features. In all strategies,
features are generated using the dirty version of the dataset, with its missing values; no
ground truth information is visible to the embeddings before training occurs.

The first solution relies on pre-trained embeddings (specifically fastText embed-
dings): cell values are passed to the pre-trained embeddings algorithm, which then
generate a new vector representation for each value. Then, the vector representation
of each tuple is prepared by averaging the vector representations of the values in the
tuple. Similarly, the vector representation of each attribute is prepared by averaging the
vectors of the values in the attribute. Works such as [70] and [71] apply this tabular
representation technique to the Entity Resolution problem.

As a second solution, we rely on local embeddings generated by EmbDI. We slightly
modify the graph used by EmbDI to better handle null values by introducing new
“possible” edges to the edge set of the EmbDI graph. For example, given a missing value
ti[Aj] in tuple ti and attribute Aj , the algorithm generates a new edge connecting ti’s
node to all values in the domain of attribute Aj . In Figure 5.3 we show a simple table

69

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

A B
a1 b1
- b2
a2 b3

R1
R2
R3

C
c1
c1
c2

a3 -R4 c2

a2

b1

b2

b3

a1

R1

R2

R3

A

B

R4
c1

c2

C

a3

Figure 5.3: Modified version of the EmbDI graph as it is used to generate the features.

with a missing value and the corresponding modified EmbDI graph: node R2 is now
connected to both a1 and a2 via the dashed lines, whereas no edges would be present
there in the original EmbDI graph. By introducing these edges, the graph is now aware
to an extent of the fact that a missing value can take any of the values in the attribute
domain. To model the fact that these edges are “possible”, rather than “exact”, each
edge eix connecting tuple ti to cell value x = ti[Aj] is weighted proportionally to the
frequency of x in attribute Aj , with more frequent values having a higher weight. As
a safeguard against imbalanced classes, weights are scaled by a function W with has a
parameter k and frequencies in the range [fmin, fmax]; given a node nt with frequency
ft, the weight wt of each edge connecting nt to a tuple node are assigned by function
W , which scales all weights in the range. The function W scales the values to a range
[fmax, k ·fmax], then normalizes the range to [1/k, 1]. This procedure assigns less-frequent
values a weight that is, at least 1/k with a parameter k; as a result, edges connected to
rare values are far more likely to be selected than they would if there were no re-scaling.
To avoid an explosion in the number of graph edges, we set a cap of maximum 20 new
edges for each missing value: without a cap, errors attributes with very large domains
would lead to the generation of too many edges.

Example 5.2.1. Given the frequency list f = {1, 15, 1, 2, 50} with fmax = 50 and scaling
parameter k = 4, the scaled output of W is W (f) = {0.25, 0.4643, 0.25, 0.2653,1}.

As our third solution, we combine the embeddings generated by fastText with the
embeddings generated on the modified EmbDI graph. This approach is motivated by
the fact that, in some cases, the embeddings generated by fastText outperform the
local embeddings generated by fastText as they contain external information coming
from the pre-training on the text corpus. By combining the two versions, we leverage
information coming from both vector spaces, which includes both the local knowledge of
the domain present in the EmbDI embeddings and external knowledge encoded by the
fastText embeddings. To combine the embeddings, we first normalize the embeddings
coming from both sources, then we concatenate them to obtain a representation of each
node that combines the features. To counter the issues (memory footprint, training time)

70

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

caused by the concatenation of very large vectors, a PCA projection of the normalized
and concatenated vectors is carried out to reduce the number of dimensions down to a
value provided by the user (by default, 64).

5.2.3 Creating the Training Samples

As mentioned in the introduction, GRIMP employs a representation of the tuples that is
efficient, and at the same time robust to noise. In GRIMP, each non-missing value (that
is, each value that is available in the dirty dataset) is used for training the model: this is
done by creating a copy of the tuple it is found in, where the value is removed. Since we
know what the correct imputation for this “fake” missing value is, we can impute this
value and measure a loss during the training. Therefore, a tuple’s training samples are
copies of the tuple, where one value at a time is replaced by a null: this null is what is
used to train the classifier.

In reality, the classifier is not expecting a training sample which contains table values:
it takes as input a vector that represents information about that training sample. This
training vector is built by replacing each value in the training sample with its vector
representation, as it is generated by the GNN. This can be a very slow operation, if done
in a näıve way, as it requires a large number of look-ups for each training sample; the
fact that the GNN updates the node representations during each epoch signifies that the
look-ups should be done in each epoch.

To carry out this operation more efficiently, we index all unique values in the table
(i.e. values that will be assigned a node in the table graph), then we use the training
samples to store the indexes of each value. The index of a value can be used to retrieve
both the value, and the vector for that value as it was generated by the GNN. In this way,
given a training sample that contains indexes, it becomes possible to build a training
vector for that training sample by selecting the vectors corresponding to the indexes
found in the training sample.

a1 c1 d1
A B C D E

a1 b2 c3 d2 e4
b3 c1

a2 NULL c2 NULL

0 4
0

4
7
7

R1
R2
R3
R4

NULL

NULL NULL

d1
(0) (0)
(0) (0)
(0) (0)

(0)
(0)

R1(D)
R1(C)
R1(A) (0)

4 7(0) (0)R3(B) (0)
NULL

NULL
7(0) (0)R3(C)

4(0) (0)R3(D)
(0)

(0)
2
2

a1 a2 b2 b3 c1 c2 c3 d1 d2 e4
0 1 2 3 4 5 6 7 8 9

Node
IDX

Figure 5.4: Example of training sample generation in GRIMP.
GRIMP training samples are generated starting from all tuples in the dataset. Given a
tuple, a training sample is generated for all attributes that contain a non-null value.

Precisely, for every tuple ti in the table, GRIMP generates a training sample for
each attribute in the table by adding a new missing value to the tuple, unless the tuple
already contains a missing value for the attribute at hand. This is shown in Figure 5.4:

71

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

given tuple R1, it creates training samples for attributes A, C and D, since they are the
attributes for which R1 contains a known value; it is not possible to generate a training
sample for attributes B and E because those attributes already contain a “true” missing
value. For each target attribute, the corresponding value is removed (shown as (0) with
a yellow background in the figure). Then, the training sample is built by concatenating
either the index of each value in the graph adjacency matrix, or a flag index that will be
replaced by a null vector.

During training, the classifier uses the indices in each training sample to generate
a training vector by probing the index for the node representation of each value, then
concatenating them.

Example 5.2.2. Given tuple R1 = [a1, NULL, c1, d1, e4], the training sample R1(A) for
attribute A is R1(A) = [−1,−1, 4, 7,−1] with −1 denoting a “null flag”. During training,
the resulting training vector becomes v = [∅,∅, c1,d1,∅].

An advantage of this approach is how it allows to employ even tuples that contain
a large fraction of “true” missing values for generating training samples. This can be
done by inserting missing values in the attributes that are still available. Looking again
at record R1 in Figure 5.4, it is possible to generate training samples for attributes A,
C and D, since attributes B and E contain missing values. Similarly, record R2 can
be used to create training samples for attributes B, C and D. Furthermore, training
sample R3(B) shows another side of how the multi-task architecture is robust to high
amounts of noise: by imputing each attribute using a separate head, samples R1(A) and
R3(B) can be used to train each head separately, even though the input to each head
is exactly the same. In a multi-class classifier where all values are in a single domain,
by passing the same exact input, we would expect the same output: in this case, the
classifier would likely select one of either R1(A) or R3(B), thus failing the imputation for
one of the training samples. Thanks to the multi-task nature of the architecture, this is
not a problem: each training vector is fed to a separate head, with a distinct domain. As
a result, the same input fed to different heads leads to different imputations.

Algorithm 8 shows the procedure building the training samples.

5.2.4 Multi-Task Learning Component

The “heart” of GRIMP is an imputation module that employs a multi-task learning
(MTL) architecture to conduct a multi-class classification operation on every attribute in
the dirty dataset. GRIMP employs a multi-task, hard parameter sharing architecture
with a shared section where all parameters are shared among all tasks, and a task-specific
section where each task is implemented by a specific head. MTL improves training
efficiency by reducing the training time compared to a normal multi-class classifier and
by exploiting all available data for training, since there is no need to remove duplicates
from the training samples (see Section 5.2.3). Furthermore, by having heads with distinct
imputation domains, the MTL model can only select values found in a head’s domain; a
traditional multi-class classifier would instead select a value from the entire domain of
the table, which increases the likelihood of selecting a value that does not belong to the

72

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Algorithm 8 GenerateTrainingSamples

Input: Table T , node index I
let S = empty list
for all ri in rows(T) do

let si = empty list
for all Aj in attributes(T) do
c = ri[Aj] {Content of the cell ri[Aj]}
if c is NULL then
si[Aj] = ∅ {∅ will be replaced by an empty vector.}

else
si[Aj] = I(c) {Find the index of value c. }

S.addSample(si)
Output: sample set S

attribute’s domain: this increases the final imputation accuracy. Finally, this approach
allows the model to handle mixed-type variables.

We report more details for this design choice in Table 5.1. Under task efficiency
we describe improvements in the process execution time, with imputation accuracy we
describe the effectiveness in the imputation task while task generality is the possibility
of applying the model to a wider set of tasks (e.g. datasets with very large fractions of
missing values, mixed-type datasets).

GNN Merging
Step

Head A

Head B

Head C

Task-specific
Parameters

Vector
generation

Training
Vectors

Training
samples

Shared Parameters

Imputations
Graph

Figure 5.5: Schema of the GRIMP Multi-task component

To explain the MTL structure implemented in GRIMP, we follow Figure 5.5. The
MTL component takes as input the table graph and the set of training samples described
in Section 5.2.3. The table graph contains all the graph information needed by the GNN,
i.e., the graph adjacency matrix and the node features. Figure 5.5 highlights the different
sections (shared and task-specific) of the MTL classifier. The shared section includes

73

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

the GNN and an additional (optional) shared layer, while the task-specific section is
composed of multiple heads, one head for each attribute. Depending on the attribute’s
datatype, the corresponding head’s output can be either a multi-class classifier or a single
valued output if the attribute is categorical or numerical respectively.

Each sub-component of the MTL classifier is be explored in more detail in its own
section.

Motivation Training
efficiency

Imputation
accuracy

Task gen-
erality

The domain size of each task is much smaller
compared to the full domain size that would be
required by a multi-class classifier trained with
the same objective. This increases imputation
accuracy and reduces the training time.

√ √

It is possible to reuse the same training tuple
for different columns, since the relative tasks are
not aware of each other and will thus produce
different outputs given the same input.

√

This architecture allows to train the model only
on a subset of the columns in the entire dataset,
which is advantageous in some circumstances.

√ √

There is no risk that the model will select imputa-
tion values belonging to other attribute domains,
which is more likely to happen when some values
appear very frequently in the table.

√

Different tasks might use different loss functions,
as long as they can be combined together. This
allows to employ both numerical- and categorical-
focused loss functions.

√ √

Table 5.1: Features of the MTL model and how they benefit training efficiency, imputation
accuracy and task generality compared to a single-task classification model.

Shared Layer and GNN

Figure 5.6 displays the heterogeneous Graph Neural Network, or Heterograph component
of GRIMP. The GNN is heterogeneous because it is built by combining a number
of different sub-modules, one for each datatype. Each sub-module can use a different
graph representation method (e.g. plain GCN, GraphSAGE, etc.) to handle edges that
belong to its type. A layer i ∈ {1, 2, . . . nlayers} comprises N sub-modules (where N
is the number of columns in the original dataset), where a sub-module is defined as
GNNij ∀i ∈ {1, 2}∧∀j ∈ [1, 2, . . . , N] and each column in the starting dataset is assigned
a sub-module. Each sub-module GNNij performs its convolution exclusively on nodes
connected by edges of the type it pertains to (e.g. values belonging to column 2 are

74

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Heterograph

Input layer NxH

GNN1N

...

GNN13

GNN12

GNN11

Layer 2 HxH

GNN2N

...

GNN23

GNN22

GNN21

Heterograph

Pretrained
features

GNN
Features

Figure 5.6: Schema of the GNN component in GRIMP.

described by sub-modules GNN12, GNN22, . . . , GNNnlayers2).
The GNN module takes as input the adjacency matrix of the heterograph built on

top of the dataset and combines it with a set of pre-trained features for each node in the
graph in each of the two convolutional layers. Each of the layers combines the pre-trained
features with the locality features given by the adjacency matrix. The output of the
overall network is the output of the final layer: the result is a new representation for each
node in the graph. In-between the convolutional layers, a pooling component combines
the node representations; the vectors that are produced at the end of the final layer are
used in the vector generation procedure to be transformed in the training vectors that
are used in the next steps of the procedure.

The vector representation of a vector v after layer k is modeled as follows:

h(k)v = σ(γ(W(k,i) · f (i)
k (h(k−1)

v , {h(k−1)
u ,∀u ∈ SN (v)}) ∀i ∈ [1, N])) (5.2)

Here, σ is a nonlinearity, γ is an aggregation function that combines the vector represen-
tation produced by each sub-module GNNi

From our experimental observations, two is the optimal number of layers: one
layer is not enough to satisfactorily represent the spatial characteristics (that is, the
neighborhood of nodes), while architectures with more than two layers produce worse
results and require a longer training. The trainable weights are not shared among sub-
modules, which allows some independence between each column while modeling each
node’s feature representation. In our implementation, we employ GraphSAGE [109] as
the convolution operation used in each sub-module, although it is in principle possible to
use a different operator in each sub-module by leveraging the fact that edges are typed.

The “merging step” box shown in Figure 5.5 is an additional, optional layer that can
be implemented with linear or attention-based components and whose role is adding a
further pooling step to the model. We have observed experimentally that this module
can improve the imputation performance for some datasets.

Once the vector representation of each node is available, it becomes possible to
prepare the training vectors by probing the node index for the indexes found in the

75

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Algorithm 9 BuildTrainingVectors

Input: node representations h, training samples S, node index I
let V = empty list
let ∅ = empty vector of size |h| {|h| = number of dimensions of the node representations}

for all si in S do
let vi = empty list
for all sij in si do
if sij = ∅ then
vij = ∅ {∅ is an empty vector.}

else
vij = h(I(sij)) {Find the representation of sij}

V.addV ector(vi)
Output: vector set V

training samples. This indexing procedure (explained in Algorithm 9) allows to efficiently
reconstruct all training vectors through what practically amounts to a “substitution”
operation, rather than a far more time-consuming iterative concatenation of vectors: the
reconstruction operation is carried out in each epoch, so an inefficient implementation
of this procedure would make training impractical. Finally, the training vectors that
are generated in this step are forwarded to the task-specific layer for the imputation
operation to be carried out.

MTL Task-specific Layers

The task-specific layer is where the actual imputation operation is carried out. Firstly,
each attribute in the dirty dataset is assigned a head, whose characteristics depend on
the type of attribute: if the attribute is categorical, then the head will be a multi-class
classifier whose domain is the same as the domain of the attribute; if the attribute is
numeric, then the head will instead be a regressor with a single output.

0
0
0

0
0

0
0

0

A B C D

Figure 5.7: Example of the distribution of training samples over different heads.

76

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Each head takes as input a subset of the training vectors relative to the attribute
the head pertains to. Figure 5.7 shows an example of this. Training vectors v1, v2, v3
are prepared for head HA, and thus their value in the attribute A is set to be empty.
Similarly, vector v8 is prepared for head HD. While the entire matrix is sent to the
task-specific layer, each head has access only to its vectors: HA does not see vectors
v6 and v7, for example. The entire collection of training vectors becomes matrix V .
Depending on the distribution of missing values in the dataset, each head might take a
different number of vectors to train on (e.g. HA has three vectors, while HD only has
one). Experimentally, this did not cause issues. Moreover, the previous shared steps help
with supplying additional information to the attributes that have fewer training vectors
to work with.

In GRIMP, heads can be implemented using linear layers that rely exclusively on the
training vectors, or through an attention layer that combines attribute-level information
with the training vectors. While the first solution is much faster to train, the latter
has better results. Linear heads provide a simple architecture for keeping some of the
parameters isolated from all other heads, so that the classification (or regression) objective
in each head is not as influenced by the other tasks. Very shallow architectures (up to
three linear layers) are normally enough to obtain good classification results. Simple
linear heads cannot make use of attribute node features, which is a major downside
compared to the attention heads we describe in the next section.

Algorithm 10 shows the steps necessary for building the task-specific heads.

Algorithm 10 BuildMultiTaskHeads

Input: table D with schema R
let N(R) = set of numerical attributes
let C(R) = set of categorical attributes
let H = empty list
for all Aj in C(R) do

Nj = |Aj | {Find the cardinality of the attribute. }
outAj = Nj {Size of the head’s output layer. }
hi = CreateHead(outAj)
H.addHead(hi)

for all Aj in N(R) do
outAj = 1
hi = CreateHead(outAj)
H.addHead(hi)

Output: H

5.2.5 Attention Structures

Inspired by the extensive work on attention mechanisms and by the very positive results
achieved in a number of fields by systems that implement them, we add an attention
mechanism to GRIMP’s classifier architecture.

77

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

We modify and incorporate the architecture introduced in AimNet [80] after optimizing
it for our scenario. The objective of our attention structure is combining the attribute-
and tuple-level features prepared in the previous steps in order to leverage the information
they contain. By employing attribute-level information on top of the already available
tuple-level information, GRIMP improves the imputation performance on all tested
datasets. We implement an attention layer both in the merging step (attention shared
across all training vectors) and in the task-specific sections of the classifier, but we
observe experimentally that the shared attention layer does not improve the imputation
performance and increases the training time. For this reason, we elected to use the
simpler linear model in the shared layer and reserve the attention structure to the multi-
task heads. We observed that the attention structure tends to smooth out the training
vectors, which are then forwarded to the later layers: it is possible that this smoothing
operation removes some of the features that the heads are exploiting to perform their
own operations.

GNN Features Index vectors

Reindex node
vectors

Q
(CxD)

K
(CxC)

m (1xH)

wOUT
(NxR)

Categorical
attribute

V
(NxCxD) Dropout

Task-specific
Head

Numerical
attribute

Dropout Imputations

wOUT
(Nx1)

Figure 5.8: Internals of a classification head in the multi-task model.

Head Attention

GRIMP’s head attention structure is shown in Figure 5.8. The “attention matrices” Q,
K and V are shown in light blue, along with the pooling vector m. For this example,
we focus on the input to a single head HA for attribute A: each head in the multi-task
model receives a set of parameter specific to that head, these parameters have the same
suffix as the head (for example, KA refers to the version of matrix K that is built for
head HA).

Given the collection of node vectors prepared by the GNN, and the index vectors
prepared as shown in Section 5.2.3 (shown as “GNN Features” and “Index vectors”
respectively in Figure 5.8), the matrix V is prepared by the “reindex node vectors” step.
The result is a N -dimensional matrix that contains all training vectors. As explained

78

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

in Section 5.2.4, head HA has only access to a subset of the vectors contained in V : we
define this subset as VA.

Matrix VA contains the vector representation of the training tuples that was prepared
in the previous step by the GNN and the shared layer. It has shape NA×C×D where NA

is the number of training vectors prepared for attribute A, C is the number of columns,
D is the number of dimensions of the vector representation of each node, i.e. the number
of output dimensions of the shared layer.

Matrix QA has shape C ×D and contains the pre-trained vectors of each column in
the dataset; matrix QA holds the attribute information that must be combined with the
information produced in the shared layer. The content of the matrix Qi is the same for
all attributes i ∈ [1, . . . , C] when the heads are built, but each head Hi modifies its own
Qi independently of other heads.

KA is a binary matrix that is used for selecting only a set of the columns that each
head should work with, assigning each column a given weight. Figure 5.9 shows the result
of constructing matrix K using the “weak diagonal” (explained later) strategy. Matrix
KA is assigned to head HA: since it pertains to attribute A, the weight given to A is
maximum, while the other columns receive a lower weight; similarly, KB refers to HA,
and thus attribute B receives the higher weight.

1 0 0

0 0.1 0

0 0 0.1

0.1 0 0

0 1 0

0 0 0.1

.`A B

... ...

C

...

0.1 0 0

0 0.1 0

0 0 1

Figure 5.9: Example of K matrices for a table with three attributes.

We tested a number of strategies for building K, which differ in the values found
on the diagonal. We have observed that different strategies have some effect on the
imputation accuracy, however there does not appear to be a strategy that dominates the
others in all cases. Figure 5.10 shows different variants of K for head 2 in a relational
table with five columns:

• Diagonal: In this variant, all columns have equal weight.

• Target column: In this variant, all columns except the head’s column are ignored.

• Weak diagonal: A “middle ground” between the previous two, where the target
column has the highest weight, but other columns are still considered with a lower
importance.

K can be used to encode additional, external information by modifying the weight that
is assigned to each column. If, for example, functional dependencies that link multiple
columns are known, it is possible to “highlight” those columns in the matrix so that the
model give them a higher weight during training. The latter two strategies in Figure 5.10

79

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Figure 5.10: Different variants of matrix K in the head relative to attribute 2, with a
functional dependency between attribute 2 and 3.

show how this can be done given target column 2 and a functional dependency that links
column 3 to column 2: Weak diagonal + FD implements the previous Weak diagonal
strategy, but assigns column 3 a higher weight; similarly, Target column + FD considers
only the target column and the column related through a FD.

Finally, m is a vector of size 1 ×C which contains only 1. This vector is used to pool
the result of the multiplication of KA and QA: this step is done to select the attributes
that should be attended to the most by the current head.

At training time, each head Hi is trained by passing Vi, a subset of the training
vectors V , which is passed to the attention layer. In each head Hi, matrix Qi and Ki are
multiplied before being pooled by vector m. After multiplying the result with matrix
Vi, the final matrix passes through a linear layer whose output size is either equal to
the cardinality of the domain of the head’s attribute if the column is categorical, or
one-dimensional if the column is numerical.

The steps we have described so far represent an extension of the attention structure
described in Aimnet [80] for a multi-task architecture. As an added advantage, matrix K
allows to encode additional information in the model by tweaking the weights assigned
to each column based on known external information. In the experimental section we
demonstrate that this attention strategy noticeably improves the imputation accuracy.

5.2.6 Training Procedure

The training procedure of GRIMP is summarized in Algorithm 11. The first step of
the pipeline revolves around the construction of the table graph and the generation of
training samples. Once the architecture is prepared, the model is trained iteratively
over a certain number of epochs. The training duration expressed as number of epochs
required varies dataset by dataset, so a fraction of the training samples is held out in
a validation step to make it possible to implement early stopping policies and stop the
training once the validation error starts increasing. To avoid contaminating the validation
step, before the training starts we remove all edges incident in the validation step from
the graph representation.

80

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Algorithm 11 Pseudocode of the GRIMP pipeline.

Input: Table D
NormalizeNumericalAttributes(table D)
G = GenerateGraph(table T)
S = GenerateTrainingSamples (table D)
H = BuildMultiTaskHeads (table D)
for epoch E in nepochs do

h = GNN(G) {Generate the node embeddings using the GNN.}
V = BuildTrainingVectors(h, S)
hshared = SharedLayer(h, V) {Feed the node embeddings to the shared layer of the
multitask classifier.}
for head Hi in H do
hi = HeadLayer(Hi, V , hshared)
if type(Hi) is numerical then

lossi = RMSE(hi, S)
else

if type(Hi) is categorical then
lossi = CrossEntropy(hi, S)

lossE =
∑nheads

i lossi

Loss Function

In each epoch, each head measures its own loss independently of the others and according
to its type: categorical attributes use Cross Entropy loss or Focal loss, while numerical
attributes use MSE. Numerical values are normalized before the training starts, so that
their MSE is comparable in magnitude to the Cross Entropy loss measured for categorical
variables: this allows to combine the loss of each head in a total loss without the need
for weights.

loss =

N∑
i

loss(Hi) (5.3)

Here, N is the number of heads used in the training.

5.2.7 Imputing the Missing Values

After model training ends (either by early stopping or by completing all epochs), the
actual imputation procedure is carried out. For GRIMP, we start from the assumption
that we do not have access to the ground truth during the training procedure. To test
the final imputation accuracy, we introduce errors in datasets that contain no missing
values, thus producing “dirty datasets” for which we have access to the ground truth
(that is, the original datasets with no missing values).

Imputation of missing values is done by probing the model through the use of testing
samples, which are structurally the same as the training samples described in Section
5.2.3, except that no additional missing values are added to the vector, other than the

81

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

0 7
7

NULL NULL

(0) (0)
(0) (0)

R1(E)
R1(B)

7(0) (0)R3(A)

NULL

a1 c1 d1

A C D

a1 b2 c3 d2 e4
b3 c1

R1
R2
R3 a1

b1 e4

d1 e2
0

2 4

4
4

E

a1 c1 d1

A C D

a1 b2 c3 d2 e4
b3 c1

R1
R2
R3 d1

EB
Dirty dataset

e2

b3 c2R4 d2 e2a2

b3R4 d2 e2a2 NULL

3R4(C) 8 91

a1 a2 b2 b3 c1 c2 c3 d1 d2 e4
0 1 2 3 4 5 6 7 8 10

Node
IDX

e2
9

b1

a1
c2

e4

B
Ground truth

Head(A) Head(B) Head(C)

Head(D) Head(E)

(0)

Figure 5.11: Example of how GRIMP generates the testing samples for the dataset on
the left.

values that are already present (and that must be imputed). Consider Figure 5.11: given
the dirty dataset built by injecting random errors in the ground truth, all values with
white background in the ground truth become training samples, while all values with
yellow background become missing values in the dirty dataset, and therefore testing
samples for which we want to test the imputation accuracy. The testing samples for the
table in the example are shown on the right hand side of the figure, together with the
head each sample is fed to for the imputation.

After generating the test samples, each sample is fed to the GRIMP pipeline and
specifically to the head relative to the test sample’s attribute: for example, in Figure
5.11, test sample R1(B) is forwarded to head B, while sample R3(A) is forwarded to
head A). For categorical values, the imputation is chosen by selecting the value with the
highest likelihood, while numerical variables are imputed by sampling the numeric head
for a value, then de-normalizing it to obtain the actual value.

A further advantage of the multi-task structure is that it is possible to organically
train the model and carry out imputation on a subset of the columns, rather than training
the full model on all attributes that include missing values.

5.3 FunForest

While we are working with unsupervised methods to ensure that they can be applied
to situations where no knowledge about the data at hand is available, it should still be
possible to include external information in the training procedure if it becomes available.
Functional Dependencies describe one such kind of information, and GRIMP’s attention
layer (described in Section 5.2.4) is a viable method for the introduction of functional
dependencies in a DL-based data imputation pipeline.

In this Section, however, we introduce FunForest, a different approach to solving the

82

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

same problem, in which we take a well-known and effective algorithm in MissForest [45]
and modify it so that it can make use of known functional dependencies. We introduce
lightweight changes that not only improve the imputation results by a large margin, but
they also speed up the convergence of the algorithm, thus reducing the execution time.

FunForest is an extension of the MissForest algorithm that exploits external
information under the form of Functional Dependencies to pilot the training algorithm so
that a larger fraction of the random forest is observing data relevant to the imputation
task at hand.

5.3.1 MissForest

The basic implementation of MissForest trains a random forest classifier (or regressor,
depending on the imputation data type) on the dataset, then performs imputation by
“predicting” for each missing value the most likely imputation. The basic algorithm
has proven to work quite well in many circumstances, and as such has been used as a
benchmark for other data imputation datasets in the literature.

Thanks to the fact that the decision trees that make up the random forest can cover
multiple combinations of attributes in the dataset, MissForest is able (to an extent) to learn
relationships between attributes akin to Functional Dependencies. Unfortunately, since
the attribute choice is random, a large faction of the estimator budget may be allocated
to spurious combinations, thus reducing the effect of the FDs on the imputation result.
On the other hand, this distributed training allows to pick up on partial relationships
between values that can be missed by systems that focus exclusively on FDs. We develop
FunForest to counter this problem.

5.3.2 From MissForest to FunForest

Our contribution enhances MissForest by exploiting external information to focus the
attention of the classifier on columns that are known to be related to each other according
to specific FDs. By “pointing” the decision trees at a subset of dataset attributes, rather
than the entire table, it is possible to reduce the noise introduced by unrelated columns
and instead focus on the values found within the more relevant attributes. This is done
by allocating a fixed budget of decision trees that are trained exclusively on a small
subset of the attributes, while the rest of the decision trees are handled in the same way
as the original MissForest algorithm did. If multiple functional dependencies are present
in the table, then the budget is split equally among all FDs.

Allocation of the Budget

One of the main hyperparameters of MissForest is the number of estimators that should
be generated to perform classification/regression, which should be specified by the user.
Since our extension of the original algorithm exploits the same architecture, a fraction
of the entire estimator budget must be allocated to those trees that will focus on the
attributes involved in FDs. Choosing this budget is not trivial, as different budgeting
strategies may lead to different results depending on the circumstances.

83

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Using too many (or too few) FD decision trees may lead to adverse results, with
the imputation algorithm either underfitting or overfitting on the given columns. In our
experiments we observed both behaviors in different situations. Specifically, in those
cases where the Functional Dependencies are not fully reliable, or there are too many
of them, high FD budgets led to a noticeable drop in the imputation accuracy. On the
other hand, when manually crafted, high quality FDs are available, low FD budgets will
produce worse results. Interestingly, in some cases overusing FD trees leads to a slight
drop in quality compared to cases where the budget fraction is 50%.

5.4 Experimental study

In this section, we report the results we obtain in our experimental campaign, where we
test GRIMP and FunForest against a number of baselines on multiple datasets. We
observe how different baselines have very close results on most datasets, and suggest some
reasons for why this happens. We focus on datasets with known functional dependencies
to test FunForest and GRIMP, and show FDs improve their effectiveness when they
are available.

5.4.1 Experimental Setup

Dataset Abbr. # rows # columns # cat. # num. Distinct Ravg

Adult AD 3016 14 9 5 289 146.10

Australian AU 690 15 9 6 957 10.82

Contraceptive CO 1473 10 8 2 65 226.62

Credit CR 653 16 10 6 918 11.38

Flare FL 1066 13 10 3 34 407.59

IMDB IM 4529 11 9 2 9829 5.07

Mammogram MM 830 6 5 1 93 53.55

Tax TA 5000 12 5 7 910 65.93

Thoracic TH 470 17 14 3 255 31.33

Tic-Tac-Toe TT 958 9 9 0 5 1724.4

Table 5.2: Table statistics for all the datasets we use in this work.
Abbr. is the abbreviation that will be used across the section instead of the full dataset
name for the sake of space. Distinct is the number of unique values found in the entire

table. Ravg is the average redundancy of values in the table.

In this section, we introduce the datasets and the algorithms we use for testing data
imputation.

Datasets

We employ mostly mixed-type datasets already known in the literature to study the
effectiveness of different imputation methods for categorical data. Adult, Australian,

84

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Contraceptive, Credit, Flare, Mammogram, Thoracic and Tic-Tac-Toe are sourced from
the UCI repository [201], IMDB was prepared to be used in our experiments for EmbDI
[173], Tax is a synthetic dataset for testing Conditional Functional Dependencies [51]
and Denial Constraints [21]. All datasets are pre-processed so that any row that includes
missing values is dropped before it is used in the pipeline, so it becomes possible to inject
synthetic missing values with a known ground truth for testing purposes.

Table 5.2 reports some additional stats in the number of distinct values contained
by a table, together with the average redundancy of values in the same table. Average
redundancy describes the average frequency of occurrence of a value that belongs to
the given dataset, defined as Ravg = nrows · ncols / ndistinct. While imperfect, we have
found the average redundancy to be a good indication of the difficulty involved in the
imputation of errors in a given dataset. Interestingly, tracking the average redundancy
over datasets with different percentages of missing values is a valid predictor of the final
imputation accuracy for all baselines, with datasets with higher average redundancy
being easier to impute. Figure 5.12 shows the average redundancy of the datasets we use
under different error fractions (missing values percentages); Tic-Tac-Toe is not shown
because of its redundancy being far larger than the average.

Figure 5.12: Average redundancy with increasing error fractions over all columns.

Algorithms

As our baselines, we use MissForest [45], AimNet [80] and DataWig [202]. We use the
default parameters for all systems. For testing GRIMP, we test different pre-trained
features and different combinations of parameters. FunForest requires known functional
dependencies to work, so it is executed only on the two datasets that feature exact FDs,
i.e., Adult and Tax. We compare the baselines against two GRIMP configurations, whose

85

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

difference lies in the pre-trained features that are used by the algorithm: GRIMP-FT uses
fastText embeddings, while GRIMP-E uses EmbDI embeddings. In both configurations,
GRIMP is using attention (as explained in Section 5.2.5) in the task-specific heads. We
observed that the combination of fastText and EmbDI embeddings does not outperform
the basic versions and therefore do not report it for the sake of space.
Experiments have been conducted on a laptop with a CPU Intel i7-8550U, 8x1.8GHz
cores and 32GB RAM.

5.4.2 Imputation Results

We test the data imputation algorithms on a number of clean datasets which we corrupt
by injecting increasing amounts of errors, starting from a relatively low error fraction of
5%, then we increase to 20 and finally 50% of missing values. Errors are injected with
a MCAR distribution over the entire table, so that each attribute contains the same
amount of missing values. The same dirty datasets are presented to each algorithm; we
then execute the algorithm and save the output. The imputation accuracy is measured
by comparing the dataset version imputed by each imputation algorithm with the ground
truth, then measuring the number of correctly imputed categorical values out of the full
set of missing values. In the following tables, we report exclusively the accuracy results
for categorical attributes. For what concerns numerical attributes and RMSE, Holoclean
outperforms other methods, while GRIMP is comparable to MISF and Datawig reports
the worst results.

Comparison with Baselines

From the results reported in Table 5.3, GRIMP outperforms the other baselines in most
cases, and remains competitive with Holoclean even in the cases in which the latter is the
best solution. Overall, Datawig gets outperformed by all other solutions, while MissForest
remains competitive w.r.t. the best solutions in most cases.

We compute the overall average imputation accuracy by measuring the average
imputation over all runs carried out by a specific configuration (GRIMP-E, GRIMP-FT,
Datawig etc.). If we combine the results with this metric to observe general trends, we
observe that solutions based on GRIMP obtain the best results on average (last line of the
table). Specifically, GRIMP with EmbDI obtains an average accuracy of 0.684, almost a
2% absolute increase over the state of the art method, Holoclean (0.665). Interestingly,
even GRIMP linear, not reported in the table, outperforms the non-GRIMP solution
with an average accuracy of 0.676. In other words, all variants of GRIMP perform better
than the state of the art solutions.

From the point of view of the execution time (reported in Table 5.4), GRIMP with
attention is often (but not always) the slowest algorithm, although Datawig is sometimes
even slower. Missforest is always among the fastest systems. GRIMP-L (linear heads)
is comparable in execution time to the faster algorithms, but tends to produce worse
imputation results.

The execution time of both GRIMP and Holoclean decreases as the fraction of missing
values increases: this is likely due to the fact that, with a larger fraction of missing values,

86

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Dataset Error % GRIMP-FT GRIMP-E MISF HOLO DWIG

Adult 5 0.752 0.773 0.733 0.670 0.275
Adult 20 0.749 0.760 0.729 0.764 0.276
Adult 50 0.688 0.694 0.659 0.699 0.266

Australian 5 0.729 0.706 0.663 0.676 0.588
Australian 20 0.692 0.668 0.691 0.700 0.590
Australian 50 0.660 0.639 0.637 0.669 0.577

Contraceptive 5 0.659 0.660 0.623 0.655 0.380
Contraceptive 20 0.643 0.642 0.618 0.649 0.442
Contraceptive 50 0.631 0.624 0.595 0.631 0.424

Credit 5 0.758 0.753 0.718 0.764 0.648
Credit 20 0.770 0.748 0.752 0.765 0.650
Credit 50 0.696 0.682 0.682 0.700 0.595

Flare 5 0.841 0.835 0.828 0.825 0.604
Flare 20 0.794 0.798 0.769 0.785 0.585
Flare 50 0.764 0.763 0.744 0.766 0.643

IMDB 5 0.351 0.352 0.351 0.333 0.105
IMDB 20 0.347 0.350 0.345 0.324 0.106
IMDB 50 0.349 0.345 0.340 0.321 0.106

Mammogram 5 0.776 0.790 0.748 0.776 0.390
Mammogram 20 0.747 0.752 0.713 0.741 0.337
Mammogram 50 0.731 0.718 0.682 0.715 0.379

Tax 5 0.646 0.800 0.689 0.622 0.389
Tax 20 0.615 0.631 0.661 0.626 0.385
Tax 50 0.577 0.585 0.571 0.561 0.348

Thoracic 5 0.868 0.871 0.848 0.854 0.762
Thoracic 20 0.860 0.859 0.840 0.857 0.764
Thoracic 50 0.827 0.828 0.820 0.829 0.740

Tic-Tac-Toe 5 0.642 0.648 0.463 0.609 0.606
Tic-Tac-Toe 20 0.576 0.581 0.468 0.565 0.557
Tic-Tac-Toe 50 0.474 0.489 0.444 0.494 0.460

Average 0.683 0.684 0.648 0.665 0.466

Table 5.3: Imputation accuracy obtained with different imputation algorithms.

87

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Dataset Error % GRIMP-L GRIMP-A MISF HOLO DWIG

Adult 5 88 710 13 52 302
Adult 20 79 726 26 47 138
Adult 50 71 552 32 48 330

Australian 5 35 130 14 16 63
Australian 20 32 147 21 16 96
Australian 50 32 152 35 16 97

Contraceptive 5 28 114 9 125 60
Contraceptive 20 28 113 23 107 150
Contraceptive 50 38 111 14 71 57

Credit 5 36 145 22 154 109
Credit 20 32 155 19 116 128
Credit 50 31 170 22 80 104

Flare 5 36 165 15 148 160
Flare 20 34 151 18 126 175
Flare 50 29 160 21 82 99

IMDB 5 176 495 120 991 165
IMDB 20 147 496 113 776 178
IMDB 50 31 469 61 436 172

Mammogram 5 10 28 6 46 55
Mammogram 20 10 27 14 41 35
Mammogram 50 9 24 4 26 44

Tax 5 156 916 18 879 606
Tax 20 151 1027 23 737 1068
Tax 50 91 665 28 506 1239

Thoracic 5 31 132 20 108 173
Thoracic 20 30 134 16 84 102
Thoracic 50 28 148 28 56 182

Tic-Tac-Toe 5 18 61 8 46 341
Tic-Tac-Toe 20 17 63 13 41 237
Tic-Tac-Toe 50 17 63 15 28 510

Table 5.4: Execution time in seconds required by different baselines on the given datasets.

88

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

fewer viable cells remain. As a result, both algorithms work over a smaller quantity of
data and terminate earlier. This is mirrored by the other two baselines in MissForest
and Datawig, whose models spend longer to train in high-error configurations.

Comparing GRIMP Configurations

Tables 5.5 and 5.6 report the results obtained by GRIMP on the same test datasets
described in the previous sections, changing the architecture of the heads. In the
“Attention” column, we report the performance of GRIMP with the same structure as in
the previous section, that is by relying on the attention structures to combine attribute
embeddings with the tuple embeddings generated by the GNN. In the “Linear” column,
we instead employ a much simpler architecture, in which each head consists only of a
number of linear layers.

It is clear from Table 5.5 that the more complex attention structure improves the
results, outperforming the linear structures in almost all situations. On the flip side,
Table 5.6 is a demonstration of how much faster the linear architecture is, compared to
using attention.

From the results, none of pre-trained features appear to clearly surpass the others in
all settings. Solutions based on EmbDI features slightly outperform the others and in
general do not fall too far behind the best solution. In any case, all solutions based on
pre-trained features outperform the random initialization (not reported in table).

5.4.3 Working with Functional Dependencies

In this section, we focus our attention on two datasets that have known, exact functional
dependencies, i.e, Adult and Tax. The first dataset contains a bi-directional functional
dependency (2 FDs over 2 attributes) while the second contains six exact FDs (over 10
attributes).

For this experiment, we again increase the fraction of injected errors from 5 to 20 and
50% over all attributes, then we measure the training time and the imputation accuracy.
The results are reported in table 5.7. Imputation accuracy is measured as the fraction of
correctly imputed categorical values over the entire set of missing values in categorical
attributes.

From observing the results, it is clear that FunForest is a major improvement over
the original MissForest algorithm when Functional Dependencies are available: indeed,
the improved version leverages the information provided by the FDs to improve (by up to
an absolute 10% in some cases) the imputation accuracy, whilst at the same time speeding
up the convergence time of the algorithm by at least 50%. We also report the results
obtained by training GRIMP with attention heads (GRIMP-A) on the same datasets.
Modeling the FDs in GRIMP always introduces improvements in the imputation accuracy
w.r.t. to the same setting without the external information. We observe that GRIMP
outperforms both MissForest and FunForest on the Adult dataset, while the random
forest methods work better on the Tax dataset with the higher error rates.

These results suggest that our approach to “piloting” FunForest’s decision trees is
very effective: by focusing the attention of the ensemble on attributes that are known

89

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Case Attention Linear

Dataset Error % EMBDI FT COMB EMBDI FT COMB

Adult 5 0.773 0.752 0.766 0.766 0.760 0.755
Adult 20 0.760 0.749 0.764 0.746 0.753 0.748
Adult 50 0.694 0.688 0.696 0.679 0.678 0.676

Australian 5 0.706 0.729 0.686 0.678 0.694 0.657
Australian 20 0.668 0.692 0.671 0.659 0.675 0.678
Australian 50 0.639 0.660 0.647 0.625 0.631 0.638

Contraceptive 5 0.660 0.659 0.647 0.618 0.624 0.617
Contraceptive 20 0.642 0.643 0.652 0.617 0.624 0.613
Contraceptive 50 0.624 0.631 0.619 0.580 0.577 0.583

Credit 5 0.753 0.758 0.755 0.739 0.739 0.733
Credit 20 0.748 0.770 0.747 0.730 0.748 0.735
Credit 50 0.682 0.696 0.678 0.673 0.676 0.676

Flare 5 0.835 0.841 0.840 0.830 0.821 0.816
Flare 20 0.798 0.794 0.796 0.770 0.771 0.775
Flare 50 0.763 0.764 0.763 0.738 0.741 0.735

IMDB 5 0.352 0.351 0.350 0.339 0.350 0.345
IMDB 20 0.350 0.347 0.349 0.333 0.345 0.334
IMDB 50 0.345 0.349 0.344 0.330 0.345 0.327

Mammogram 5 0.790 0.776 0.786 0.754 0.767 0.779
Mammogram 20 0.752 0.747 0.753 0.738 0.734 0.724
Mammogram 50 0.718 0.731 0.727 0.705 0.711 0.717

Tax 5 0.800 0.646 0.647 0.785 0.776 0.792
Tax 20 0.631 0.615 0.639 0.731 0.729 0.727
Tax 50 0.585 0.577 0.583 0.586 0.584 0.586

Thoracic 5 0.871 0.868 0.872 0.836 0.839 0.858
Thoracic 20 0.859 0.860 0.852 0.825 0.835 0.820
Thoracic 50 0.828 0.827 0.824 0.801 0.790 0.805

Tic-Tac-Toe 5 0.648 0.642 0.657 0.639 0.631 0.648
Tic-Tac-Toe 20 0.581 0.576 0.575 0.540 0.541 0.538
Tic-Tac-Toe 50 0.489 0.474 0.474 0.444 0.446 0.454

Table 5.5: Comparison between different pre-trained features using linear heads and
attention heads.

90

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Case Attention Linear

Dataset Error % EMBDI FT COMB EMBDI FT COMB

Adult 5 710 819 639 36 37 36
Adult 20 726 636 661 40 42 43
Adult 50 552 550 628 42 42 45

Australian 5 130 131 129 19 19 19
Australian 20 147 139 138 20 20 19
Australian 50 152 152 156 20 20 21

Contraceptive 5 114 111 110 15 15 15
Contraceptive 20 113 120 112 16 16 16
Contraceptive 50 111 111 111 19 16 16

Credit 5 145 143 151 20 21 21
Credit 20 155 155 155 21 21 21
Credit 50 170 169 170 21 22 22

Flare 5 165 167 173 18 18 18
Flare 20 151 151 150 20 19 20
Flare 50 160 166 156 19 20 20

IMDB 5 495 496 490 54 53 54
IMDB 20 496 487 488 52 52 51
IMDB 50 469 457 458 31 101 45

Mammogram 5 28 28 27 7 7 7
Mammogram 20 27 27 27 7 7 7
Mammogram 50 24 26 24 7 7 7

Tax 5 916 1223 1065 61 70 60
Tax 20 1027 770 1156 68 78 73
Tax 50 665 702 777 48 48 48

Thoracic 5 132 139 130 19 19 19
Thoracic 20 134 134 134 20 20 20
Thoracic 50 148 148 148 20 21 20

Tic-Tac-Toe 5 61 60 71 11 11 11
Tic-Tac-Toe 20 63 63 63 11 11 11
Tic-Tac-Toe 50 63 61 63 11 11 11

Table 5.6: Comparison between execution times in seconds for linear and attention heads
with different pre-trained features.

91

Chapter 5. Relational Data Imputation with GNNs and Multi-task Learning

Case Training time Imputation accuracy

Dataset Error % MISF FUNF GRIMP-A MISF FUNF GRIMP-A

AD 5.00 13.03 2.38 496.60 0.733 0.737 0.766

AD 20.00 25.70 6.05 551.22 0.727 0.732 0.756

AD 50.00 22.50 15.23 537.90 0.657 0.674 0.693

TA 5.00 17.47 6.00 1117.54 0.689 0.786 0.808

TA 20.00 23.18 7.62 977.62 0.661 0.757 0.632

TA 50.00 27.94 16.44 751.93 0.571 0.630 0.586

Table 5.7: Imputation results of MissForest (MISF) against FunForest (FUNF) and
GRIMP-A in presence of exact functional dependencies.

to be related to each other through external information, the algorithm is not wasting
computational budget while searching for correlations between unrelated attributes.
Clearly, this is very advantageous and the termination condition employed by MissForest
can make full use of this faster convergence.

It must be noted that, while we have been using Functional Dependencies to “infuse”
external information in the training procedure, this need not be the case: both algorithms
can in principle make use of any kind of attribute-related external information to partition
the estimator budget or steer the attention.

5.5 Summary

In this chapter, we explored the problem of implementing a system for imputation of
missing values in tabular data in presence of categorical attributes. As a solution to the
problem, we implemented GRIMP, a self-supervised imputation algorithm that combines
a graph representation of the table, Graph Neural Networks, and multi-task learning
to produce state of the art results over a wide variety of datasets. To improve the
performance and inject external information in the model, we extended the task-specific
heads with an attention mechanism tailored to the multi-task architecture. We then
develop FunForest, an improvement over the MissForest imputation algorithm that
leverages functional dependencies to pilot the model training. Finally, we carried out
an extensive experimental campaign over a number of different datasets to test the
performance of our contributions against various baselines.

92

Chapter 6

Conclusions and Future Research
Directions

Over the course of this thesis, we have introduced the concept of data curation and its
importance, then we focused on two specific subjects in the data curation domain, namely
data integration and data imputation. We developed systems that do not require human
supervision and that can naturally handle strings and categorical data.

In Chapter 2, we introduced the various concepts, methodologies and problems that
were employed in the implementation of our main contributions.

With Chapter 3, we introduced EmbDI (Embeddings for Data Integration), a modu-
lar, unsupervised framework for generating local embeddings of tabular data. We first
represented tabular data in graph form, then we generated the distributed representation
of all nodes by traversing the graph with random walks that are used for training a word
embeddings algorithm. By doing so, we were able to assign a distributed representation
(an embedding) to both categorical (i.e., discrete) data, and the table’s structural entities
(i.e., tuples and attributes). We suggested a number of optimizations and proposed
solutions to the problem of extracting information hidden within textual cells. We
introduced novel methods for testing embeddings quality and we demonstrated that the
embeddings generated by EmbDI on a single table can be employed for a number of
applications in the data integration field and outside.

In Chapter 4, we moved from the one-table scenario explored in Chapter 3 to a
two-table scenario, demonstrating how the embeddings generated by EmbDI can be
employed with great success to perform two important sub-tasks of data integration,
namely schema matching and entity resolution. By exploiting the geometric properties of
the table embeddings, we implemented a heuristic that accurately finds duplicates of a
given tuple or attribute by searching the vector space for the closest embeddings to the
target. We executed an extensive experimental campaign in which we demonstrated that
the graph architecture implemented by EmbDI can be used by generic graph embedding
algorithms for performing data integration tasks; we also showed that even simple strate-

93

Chapter 6. Conclusions and Future Research Directions

gies for generating EmbDI embeddings are competitive with ad-hoc graph embedding
algorithms, while being more efficient in practice. Finally, we demonstrated that the local
embeddings prepared by EmbDI can be used instead of generic pre-trained embeddings
to perform supervised entity resolution tasks and produce better results overall.

In Chapter 5, we considered the problem of tabular data imputation in presence
of categorical data. We designed and implemented GRIMP (Graph embeddings for
Relational data IMPutation), a data imputation algorithm that combines Graph Neural
Networks with a multi-task mixed classification/regression architecture to repair tables
that contain missing data. Through GNNs, we combined pre-trained node features with
the structural information contained in the graph to produce refined node representations
to be fed to the multi-task architecture. Thanks to the multi-task structure, we improved
the training efficiency, enhanced the robustness of the algorithm to high error scenarios
and increased the imputation accuracy for categorical data. To better integrate external
information in the model training, we implemented attention-based classification tasks,
with which it became possible to direct the training by feeding information about
known correlations between columns. Finally, we improved the well-known MissForest
algorithm by developing FunForest (Functional MissForest), a variant of the original
algorithm that can make use of known functional dependencies to direct the training of
the random forest ensemble. We demonstrated experimentally that GRIMP outperforms
known imputation baselines on a number of datasets, and showed that FunForest is
both faster and more accurate than plain MissForest in presence of known functional
dependencies.

6.1 Future Work

We describe here some possible research directions for future work.

6.1.1 EmbDI, Tabular Embeddings and Data Integration

While the architecture of EmbDI that has been described in this thesis is already well
developed on its own, there are a number of research directions that are yet to be explored;
these research options range from improvements to the implementation, to extensions of
the algorithms to leverage external information, to expansions of the scope of already
developed experiments. We are also considering the idea of querying through embeddings
as a possible future research direction.

For the first category, we are planning to modify the structure of the graph on two
different scopes. Simpler extensions would entail modifying the graph by introducing
new edges or weights to be used in the random walk generation. Preliminary results
in this direction were inconclusive: while the addition of new edges does not seem to
bring immediate positive results, edge weights can improve the embeddings quality, at
the cost of a much broader research space for the optimization of the weights. More
extensive modifications would require a major redesign of the code to make use of the
GNN architectures that we exploited with success in Chapter 5. Further extensions of

94

Chapter 6. Conclusions and Future Research Directions

the scope of EmbDI include modifications that would allow to perform many-to-many
matches, as well as improving the scalability of the data integration infrastructure from
two to n tables, e.g., in a data lake scenario.

For the second, we are looking for solutions to the problem of including external,
known information in the table graph so that the resulting embeddings can make use of
both the system architecture and said external information (e.g. textual data, or data
contained in knowledge bases). In [203], the EmbDI architecture has been successfully
extended to the KB case, so this research direction has already shown promise.

Querying with Table Embeddings

A further direction of study that can be taken to make use of the geometric properties of
embeddings can be described as operating “queries over the embeddings”. With this we
describe algebraic operations executed on the embeddings that can be used to extract
information from the vector space. These operations are akin to the famous example
king − man + woman =⇒ queen from the Word2Vec paper [37], as we are
combining vectors corresponding to different concepts, then search for the closest points
to the combined vector.

We illustrate some of the operations that can be performed through examples. In
the following listings, we take the vector of two movie directors (Quentin Tarantino and
Steven Spielberg) and we search for their movies in the vector space: we can do so by
subtracting from the vector associated to their name the vector for “director”, then adding
the vector for “title”. This listing for Quentin Tarantino:

1 v1 = model.get_vector(’quentin_tarantino ’)

2 v2 = model.get_vector(’title’)

3 v3 = model.get_vector(’director ’)

4 v_res = v1 + v2 - v3

5 res = print_most_similar(model , v_res , topn =50)

produces as output

1 quentin_tarantino 0.71

2 kill_bill_vol_2 0.52

3 kill_bill_vol_1 0.52

4 pulp_fiction 0.50

5 from_dusk_till_dawn 0.49

6 title 0.48

7 django_unchained 0.48

8 reservoir_dogs 0.48

9 the_hateful_eight 0.48

10 grindhouse 0.48

11 inglourious_basterds 0.47

12 double_dare 0.47

13 jackie_brown 0.46

A similar listing for Steven Spielberg:

1 v1 = model.get_vector(’steven_spielberg ’)

2 v2 = model.get_vector(’title’)

3 v3 = model.get_vector(’director ’)

4

95

Chapter 6. Conclusions and Future Research Directions

5 v_res = v1 + v2 - v3

6 res = print_most_similar(model , v_res , topn =50)

produces as result:

1 steven_spielberg 0.73

2 raiders_of_the_lost_ark 0.53

3 jurassic_park 0.51

4 title 0.51

5 the_color_purple 0.50

6 close_encounters_of_the_third_kind 0.49

7 jaws 0.49

8 war_horse 0.48

9 the_terminal 0.48

10 indiana_jones_and_the_last_crusade 0.47

11 night_gallery 0.46

12 saving_private_ryan 0.46

13 voices_from_the_list 0.46

In this example we search for the movie “Pulp Fiction” and display the closest vector
to the result:

1 test_name = ’pulp_fiction ’

2 v1 = model.get_vector(test_name)

3 v2 = model.get_vector(’title’)

4 v3 = v1 - v2

5 r = model.similar_by_vector(v3)

1 pulp_fiction 0.79

2 quentin_tarantino 0.42

3 199409 0.37

4 phil_lamarr 0.36

5 bruce_willis 0.31

6 eric_stoltz 0.31

While simple, these examples show that it is possible to rely on the geometric
properties of vectors to “probe” the vector space for the values that are most closely
related to the vector under observation. However, it is important to note that this
approach strongly depends on the position of some values in the vector space, and on
how nodes are modeled. Nodes that appear very frequently in the training set have a
large number of neighbors in the graph, which “averages out” their position in space.
Comparatively rarer nodes (e.g., movie actors that appear in only few titles) are much
more correlated to the values they share a tuple with. Moreover, these operations rely
solely on information that is already present in the database, which limits the extent of
new information that can be gained from these operations.

6.1.2 GRIMP, Data Imputation with GNNs

For what concerns the data imputation part of this work, there are two main avenues
to pursue. On one side, we are looking for improvements over the current GRIMP
architecture. The architecture of GRIMP is quite complex and features a large number
of parameters, whose influence on the final imputation accuracy is noticeable and non-
obvious. We are planning to optimize GRIMP by introducing hyperparameter tuning

96

Chapter 6. Conclusions and Future Research Directions

in the pipeline, so that it would become possible to select the optimal configuration for
each dataset. Besides looking for means of improving the imputation performance, we
are planning to improve the explainability of the model to better understand the overall
behavior of the algorithm and how different parameters may influence the imputation
performance.

On the other side, we are interested in carrying out a broader study of DL-based
imputation models to observe whether it is possible to estimate an upper bound on the
imputation accuracy of a generic imputation algorithm on a given, dirty dataset. Indeed,
we observed that the imputation accuracy of various algorithms can be approximated by
studying the distribution and frequency of distinct values in the dataset. Our hypothesis
is that imputation algorithms are heavily biased towards frequent values, and thus have
a higher imputation accuracy for them, while underperforming on the rarer values. We
model this hypothesis by defining the “expected fraction of incorrect imputations” of a
value v in a column A as EA

v = 1 − fv, where fv is the frequency of value v in column
A: with this simple definition, the expectation is that a generic imputation algorithm
will fail most imputations on rare values, while performing better on “easier” values.

Figure 6.1: Distribution of wrong imputations in “Thoracic” dataset.

In Figures 6.1 and 6.2, we plot the results of our experiments on the Thoracic and
Contraceptive datasets, respectively. Each subplot contains data relative to a single
attribute in the table, with the fraction of incorrectly imputed values on the y-axis (a
value of 0 on the y-axis denotes perfect imputation accuracy for that value, thus the
lower the bars, the better), and the different values in the attribute domain on the x-axis,
sorted in descending order by frequency so that rare values in the attribute domain are
on the right side of the plot. The blue bar (labeled as “expected”) displays the expected
fraction of erroneous imputations given a value’s frequency as defined above, while the
other bars show the actual fraction of erroneous imputations as they are produced by the
different imputation algorithms we have used in the experimental section. Our hypothesis
seems to be confirmed by the results: all algorithms tend to have a very high accuracy on
frequent values, while failing frequently on rarer values. While different algorithms may
exhibit different behaviors over different columns, there is a clear trend that is common

97

Chapter 6. Conclusions and Future Research Directions

Figure 6.2: Distribution of wrong imputations in “Contraceptive” dataset.

to all of them.
While these results are clearly preliminary, it is nonetheless interesting to observe

how algorithms that employ unrelated technologies tend to exhibit remarkably similar
behaviors in the performance of the final imputation task. We plan to delve deeper in
this subject, with the objective of reaching a better understanding of how these systems
model imputation and finding a heuristic that would allow to provide advice on what
algorithm to use given a dataset’s characteristics.

98

Résumé

Présentation du problème

Au début, il y avait des données. D’énormes, de vastes réservoirs de données à exploiter
par les utilisateurs, les organisations, les chercheurs, les entreprises. Malheureusement,
la plupart de ces données sont entachées d’un mauvais formatage, de fautes de frappe,
de doublons, de valeurs manquantes et erronées [2]. La conservation des données est
un processus fastidieux qui prend du temps. Malheureusement, ce processus ne peut
être négligé si l’on veut éviter des résultats négatifs ou trompeurs dans les applications
en aval [4, 5]. La curation des données est un domaine de recherche remarquablement
pratique : en effet, la gestion des données sales et incohérentes est un problème auquel il
faut faire face quotidiennement dans l’industrie. Selon une statistique largement citée,
les data scientists passent 60 à 80 Cela fait de la conservation des données un problème
de grande envergure et largement étudié [9], qui est rendu plus difficile par la charge
importante qu’il représente pour les humains [10], à la fois dans l’étape de conservation
des données et dans les applications en aval.

L’accès propre et ouvert aux données a un certain nombre de ramifications en fonction
de l’utilisation qui doit être faite des données. Pour certaines applications, les données
sales ne peuvent pas être utilisées du tout parce que des valeurs erronées ou manquantes
introduiraient des biais inacceptables ; dans l’industrie, cela pourrait conduire à des
décisions erronées qui entrâıneraient des pertes de capital en aval [11] ; dans le domaine
médical, les données sales pourraient conduire à des thérapies incorrectes [4,12]. Dans
d’autres situations, les données peuvent être ”sales” dans le sens où plusieurs sources de
données contiennent des informations similaires qui doivent être combinées dans une vue
”nettoyée” en consolidant les doublons : cela peut être le cas lorsque différentes entreprises
fusionnent et doivent combiner leurs bases de données. La conservation des données est
un sujet omniprésent qui touche toutes sortes de disciplines centrées sur les données. Pour
ces raisons, les avancées dans le domaine de la curation des données peuvent directement
toucher un large éventail d’applications [13], tout en restant d’une importance capitale
dans le domaine des bases de données où la plupart de ses recherches trouvent leur origine.

Il n’existe pas de solution simple à ce problème. Les contraintes (contraintes de do-
maine, dépendances fonctionnelles, dépendances fonctionnelles conditionnelles, contraintes
de refus, etc.) sont utilisées pour faire respecter les propriétés des données et pour identi-
fier les erreurs en observant quelles valeurs violent lesdites contraintes. Si certaines de
ces contraintes peuvent être introduites pendant la phase de conception de la base de

99

Chapter 6. Conclusions and Future Research Directions

données (par exemple en spécifiant le type de données et le domaine d’un attribut, puis
en appliquant les contraintes), cela n’est pas toujours possible.

Il est toutefois possible de détecter et de générer ces contraintes et ces règles en
observant les données. Des contraintes de différents types peuvent être employées pour
faire respecter certaines propriétés dans les données, pour extraire des informations ou
pour faire correspondre des entités [14]. Ces contraintes sont généralement créées à la
main, ou doivent être découvertes en observant les données. La découverte de telles
contraintes a fait l’objet de nombreux travaux allant de la découverte de règles [15], à
la découverte de FDs [16, 17], de FDs conditionnelles [18–20], de contraintes de déni
(DCs) [21]. Cette collection d’outils peut permettre de détecter et de corriger certaines
des erreurs que l’on peut trouver dans un jeu de données sale [4].

Malheureusement, ces outils ne sont pas parfaits : les contraintes ne sont pas toujours
applicables à toutes les situations, les dépendances fonctionnelles n’existent pas toujours,
la génération de règles peut devenir trop coûteuse, les règles générées automatiquement
peuvent être trop nombreuses pour être vérifiées par un observateur humain [14]. De plus,
ces outils sont souvent fortement dépendants de l’expertise humaine [3, 22–26] : c’est un
enjeu important, car les solutions qui reposent sur l’interaction humaine sont longues,
coûteuses et peu évolutives pour de grandes quantités de données [27].

La présence de données sales ou manquantes est un problème majeur, car la génération
de contraintes sur des données sales peut conduire à des règles incorrectes [28–30]. Chaque
ensemble de données sales a ses propres idiosyncrasies et bizarreries, ce qui signifie que les
solutions ad-hoc sont très souvent la seule solution possible. Même lorsque les données ne
sont pas manquantes, les valeurs peuvent ne pas être propres en raison de fautes de frappe
(par exemple, ”balck” au lieu de ”black”), de problèmes d’encodage (”10.002” signifie-t-il
”10 mille et 2” ou ”10 pointe 000”?), de formatage (”The Who” dans un ensemble de
données, ”Who, The” dans un autre).

Le type de données des valeurs d’un ensemble de données peut également poser
problème : si les erreurs numériques peuvent être traitées par des approches näıves
telles que la régression linéaire ou modélisées par des systèmes plus sophistiqués basés
sur l’apprentissage profond (Deep Learning), les données catégorielles (c’est-à-dire la
plupart des données textuelles) ne peuvent pas être traitées de cette manière. Cela signifie
soit que les valeurs catégorielles sont converties sous forme numérique, soit que des
systèmes uniquement catégoriels doivent être conçus. Cette dernière solution est souvent
la seule viable pour la majorité des cas dans lesquels le nombre de catégories devient trop
important pour être traité par un codage à un coup ou des méthodes similaires [36].

Deuxièmement, dans les tableaux relationnels réels, les valeurs catégoriques sont
omniprésentes, ce qui est très problématique car de nombreuses méthodes basées sur la
DL ne peuvent pas traiter les valeurs catégoriques dans leur forme brute, mais nécessitent
leur encodage dans une représentation numérique (généralement un encodage à un coup).
Cela peut bloquer les architectures plus simples en provoquant une explosion du nombre
de caractéristiques, ce qui entrâıne des problèmes d’évolutivité (la fameuse ”malédiction
de la dimensionnalité”), un problème malheureusement très fréquent puisque même les
petits ensembles de données peuvent avoir des domaines catégoriels très vastes. Enfin,
alors que les données homogènes (comme le texte, les images, la parole) peuvent être

100

Chapter 6. Conclusions and Future Research Directions

encodées en employant des algorithmes d’embeddings, ce n’est pas le cas pour les données
tabulaires : les données tabulaires sont intrinsèquement discrètes dans leur structure,
et peuvent contenir des valeurs numériques ou catégorielles, dont les distributions sont
complètement différentes et donc très difficiles à combiner.

Dans le cadre de notre travail, nous fournissons des solutions qui peuvent aborder ces
trois points : nous nous appuyons sur des méthodologies et des systèmes issus de différents
domaines (de l’intégration de mots à l’intégration de graphes, en passant par les GNN
et l’apprentissage multi-tâches) pour produire des solutions non supervisées capables
de résoudre les problèmes d’intégration et d’imputation de données, même lorsque les
données d’entrée sont de nature mixte. Comme nous l’avons mentionné, les systèmes
de type ”human-in-the-loop” peuvent être utilisés avec succès dans le domaine de la
conservation des données. Cependant, le facteur humain est à la fois une bénédiction et
une malédiction pour ces méthodes : les experts humains peuvent sélectionner le meilleur
ensemble possible de règles, de contraintes et de corrections à appliquer aux données
observées ; d’un autre côté, il y a souvent beaucoup trop de données pour qu’un humain
puisse les traiter correctement [14]. Un autre inconvénient est le fait que les experts en
matière de conservation des données ne sont pas nécessairement experts dans la manière
de mettre leurs recommandations dans le code, c’est-à-dire comment ”informer le système”
de ce qu’il devrait faire [6–8]. Pour ces raisons, nous choisissons de travailler avec des
méthodes non supervisées : tous les systèmes dont nous parlerons dans cette thèse sont
non supervisés, c’est-à-dire qu’ils sont formés exclusivement sur les données disponibles et
n’ont pas besoin d’étiquettes, de disques d’or ou de règles définies par l’homme pour mener
à bien leurs tâches. Bien que nous nous concentrions sur des solutions non supervisées,
les encastrements qu’elles produisent peuvent toujours être utilisés par des méthodes
supervisées et conduire à des améliorations du résultat final. Nous explorons ce point
plus en détail dans notre chapitre sur les embeddings tabulaires, comment les générer
et comment les utiliser. Nous avons développé nos systèmes de manière à ce qu’il soit
possible de les appliquer sans avoir de grandes connaissances en codage, de sorte qu’un
expert du domaine soit en mesure d’exécuter le système, puis de corriger le résultat si
nécessaire. Nous publions tous les codes que nous avons développés pour que les praticiens
puissent les utiliser.

Pour ce travail, nous nous concentrerons principalement sur les données relationnelles
sous forme de tableaux. Les ensembles de données que nous considérons peuvent contenir
des types de données catégoriques, numériques ou mixtes. Les données catégorielles ne
peuvent prendre qu’un nombre limité de valeurs différentes qui peuvent être séparées
en ”catégories”. Si les données catégorielles sont normalement textuelles, il n’est pas
nécessaire qu’elles le soient : parfois, les attributs à valeur entière doivent être traités
comme des attributs catégoriels (par exemple, lorsqu’on travaille avec des codes postaux
ou des identifiants numériques). En raison de leur nature discrète, les valeurs catégorielles
(c’est-à-dire les valeurs qui peuvent être assignées à une catégorie, comme les châınes
de caractères ou les identifiants numériques) sont particulièrement problématiques en
apprentissage automatique, car la plupart des données sont stockées dans des bases de
données. particulièrement problématiques en apprentissage automatique, car la plupart
des modèles ont besoin de caractéristiques numériques pour fonctionner. L’absence de

101

Chapter 6. Conclusions and Future Research Directions

bonnes réponses à ce problème est ce qui nous a motivés à nous concentrer spécifiquement
sur les ensembles de données qui comportent une majorité de données catégorielles : nous
avons ensuite conçu un ensemble d’algorithmes et de systèmes qui seraient non seulement
capables de traiter les valeurs catégorielles, mais qui ”́epouseraient” leur caractéristique
discrète à travers une représentation discrète, à savoir un graphique. Pour appliquer les
modèles ML aux données catégorielles, nous avons choisi d’utiliser des ”modèles d’espace
vectoriel” (VSM) pour attribuer des représentations vectorielles à ces dernières, afin qu’il
soit possible d’employer des systèmes numériques pour les données catégorielles.

Les modèles d’espace vectoriel décrivent des modèles algébriques permettant de
représenter des entités vecteurs (ou embeddings) dans un espace vectoriel à haute dimen-
sion [37]. Ces méthodes se sont avérées très efficaces pour coder toutes sortes d’entités,
des modèles de langage [37, 67] aux graphes [85]. Dans les modèles d’espace vectoriel,
chaque entité de l’espace se voit attribuer une position dans l’espace qui est décidée
par rapport à toutes les autres entités de manière à ce que les entités corrélées soient
placées très près les unes des autres dans l’espace vectoriel : ceci est modélisé comme un
problème d’optimisation qui est résolu lorsque le modèle est entrâıné. Il est essentiel que
des propriétés géométriques s’appliquent à la relation entre ces vecteurs : les distances
numériques entre les châınes peuvent être mesurées et il est possible de ”naviguer” dans
l’espace vectoriel en effectuant des opérations vectorielles. Dans les premières applications,
ces VSM ont été utilisés pour générer des représentations vectorielles de mots et de
documents. L’introduction de nouveaux cadres tels que word2vec a toutefois ouvert la
porte à leur utilisation pour une grande variété d’applications. En effet, un avantage
fondamental des modèles d’incorporation est que tout type d’objet peut être transformé
en un vecteur numérique, à condition que les entités puissent être représentées d’une
manière appropriée au modèle d’apprentissage. Notre travail s’appuiera fortement sur
cette caractéristique en utilisant des techniques d’incorporation pour coder des données
tabulaires catégorielles, puis en agissant sur les vecteurs numériques résultants pour
effectuer d’autres opérations qui ne seraient pas possibles sur les données originales. Les
vecteurs d’incorporation permettent d’atténuer ce problème en convertissant ces valeurs
catégorielles en vecteurs à hautes caractéristiques relativement bien gérés, ce qui permet
de réduire le nombre total de dimensions requises par le modèle.

La deuxième raison qui nous pousse à utiliser les représentations VSM (“embeddings”)
est la façon dont elles peuvent être entrâınées de manière non supervisée à partir d’un
corpus d’entrâınement correctement préparé. Cela permet de développer des outils de
prétraitement appropriés qui, compte tenu d’un ensemble de données cible, peuvent
produire une représentation d’entrée adéquate (qu’il s’agisse d’un corpus d’entrâınement
basé sur des phrases ou d’une représentation vectorielle enrichie en caractéristiques des
valeurs de tables) que l’algorithme d’intégration doit ”digérer”. Nous répondons ainsi au
deuxième problème sur lequel nous nous sommes concentrés : ces algorithmes peuvent
être exécutés avec peu d’intervention d’experts humains, hormis une configuration et un
prétraitement appropriés.

Alors que les embeddings sont réputés pour leur application générique, les données
tabulaires sont connues pour être difficiles à modéliser à l’aide de modèles d’espace
vectoriel : alors que le langage naturel est intrinsèquement redondant et structuré,

102

Chapter 6. Conclusions and Future Research Directions

les données tabulaires ne partagent pas la même structure et sont beaucoup moins
redondantes, surtout si l’on ne considère qu’une seule table à la fois. Les données
tabulaires contiennent également des structures syntaxiques qui sont absentes du langage
naturel, à savoir des tuples, des attributs et un concept d’”appartenance” partagé par les
tokens trouvés dans ces structures. De plus, bien qu’il soit possible d’atténuer certains
des problèmes causés par les données catégorielles, les modèles basés sur les techniques
d’apprentissage profond souffrent fortement de leurs caractéristiques : les domaines à
grande cardinalité et les distributions de données fortement déséquilibrées sont très
difficiles à modéliser, ce qui devient un problème majeur lorsque des problèmes de
classification entrent en jeu. Nous explorons ce problème plus en détail dans la partie
de ce travail consacrée à l’imputation des données, où nous introduisons l’apprentissage
multi-tâches pour réduire l’impact des grands domaines catégoriels dans l’entrâınement
des modèles de DL.

Dans ce travail, nous proposerons une nouvelle procédure modulaire pour traiter
la curation des données (spécifiquement l’intégration des données et l’imputation des
données) qui s’appuie sur des représentations non traditionnelles des données tabulaires
et des modèles basés sur le Deep Learning. Nous fournirons des exemples de la manière
de représenter des tableaux relationnels sous forme de graphe, et de générer des repré-
sentations vectorielles pour les nœuds du graphe. Ces représentations de graphes sont
construites de telle sorte que les nœuds de graphes incluent les tuples et les attributs des
tables, permettant ainsi de générer organiquement des représentations vectorielles pour
ces entités également : c’est un changement marqué par rapport aux travaux précédents,
dans lesquels les représentations de colonnes et de lignes étaient générées en combinant
les vecteurs des valeurs dans la colonne ou la ligne respective [70].

L’un des principaux avantages de cette méthodologie modulaire est qu’il devient
possible de ”brancher et de jouer” différentes méthodes : cela permet de tirer parti des
recherches menées dans les différents domaines pour exploiter différentes méthodes de
pointe et ainsi améliorer les performances du système. Nous en donnerons des exemples en
utilisant différentes représentations graphiques des tableaux, ainsi que plusieurs méthodes
de génération d’incorporations de nœuds de graphes (notamment basées sur DeepWalk
[41,42] et sur les réseaux neuronaux graphiques [43,109]). Par exemple, en traitant les
marches aléatoires comme des phrases, il devient possible de tirer parti d’algorithmes
préexistants développés à l’origine pour des problèmes de traitement du langage naturel
(NLP) dans un domaine totalement étranger. Les représentations vectorielles bénéficient
de propriétés géométriques qui peuvent être exploitées pour effectuer un certain nombre
d’opérations : ici, nous les utilisons pour effectuer la résolution d’entités, la correspondance
de schémas et l’imputation de données. Enfin, une caractéristique clé des systèmes que
nous proposons est qu’ils sont unsupervised, de sorte qu’il n’y a pas d’exigence stricte
sur la participation humaine externe pour exécuter la formation.

Il est important de noter que l’apprentissage profond n’est pas une solution miracle
pour toutes les applications, et qu’il souffre de certains inconvénients qui doivent être
pris en considération lors de l’application de ces solutions, ou de toute autre solution
d’apprentissage profond. Nous explorerons certaines de ces limites dans la dernière partie
de ce manuscrit.

103

Chapter 6. Conclusions and Future Research Directions

Ce travail se concentrera sur l’attaque du problème de la curation des données sous
deux angles : apprentissage non supervisé et modélisation de données catégorielles.
Nous utilisons le premier pour contourner le problème de l’humain dans la boucle : en
concevant des modèles non supervisés, il devient possible d’effectuer de multiples tâches
de curation de données sans avoir besoin de données fournies par l’humain autres que
les ensembles de données de départ et la localisation des valeurs manquantes. Nous
concevons ensuite nos modèles en fonction de la nécessité de modéliser les données
catégorielles afin d’étendre l’utilisation de l’apprentissage profond dans la conservation
des données : en effet, les modèles basés sur l’apprentissage profond sont plus sensibles aux
données catégorielles, précisément parce que ces dernières sont plus difficiles à modéliser
numériquement. Dans nos contributions, nous introduisons une nouvelle représentation des
données relationnelles qui permet de générer élégamment des représentations numériques
de données catégorielles : par la transformation d’une table relationnelle en un graphe , il
devient possible de tirer parti des techniques d’intégration développées à l’origine pour le
traitement du langage naturel afin de générer des représentations vectorielles des nœuds
du graphe. Nous concevons nos systèmes de manière modulaire, afin qu’il soit possible
d’appliquer différentes stratégies pour représenter les tableaux sous forme de graphes,
pour générer les incorporations et pour travailler avec les incorporations résultantes pour
différentes tâches.

Nous introduisons notre travail en explorant le contexte théorique et les travaux
antérieurs dans les différents domaines que nous touchons. Parmi les technologies fon-
damentales, nous discutons des progrès réalisés en matière d’intégration de mots, de
tableaux et de graphes. Nous décrivons les systèmes et les méthodologies utilisés pour
effectuer les tâches d’intégration de données de résolution d’entités et de correspondance
de schémas. Nous nous penchons sur le problème de l’imputation des données et sur l’état
actuel des méthodes d’imputation des valeurs manquantes dans un ensemble de données.
Enfin, nous présentons nos contributions à l’intégration des données et à l’imputation
des données.

Intégration des données

Notre première contribution consiste à présenter EmbDI (EMBeddings for Data Integration),
une nouvelle architecture pour la restructuration des données tabulaires qui convertit les
tableaux relationnels en une représentation graphique qui est ensuite utilisée pour générer
des représentations vectorielles numériques distribuées du contenu du tableau : Ceci
représente une méthode nouvelle et élégante pour générer des représentations distribuées
de données tabulaires, un problème notoirement difficile [39,55]. Une solution courante
à ce problème consiste à s’appuyer sur des modèles d’enchâssement pré-entrâınés pour
générer des enchâssements pour les valeurs de la table, soit en transformant le vecteur
lui-même [70,71], soit en affinant le modèle [204]. Cependant, ces approches présentent
deux inconvénients majeurs. Tout d’abord, le corpus d’entrâınement peut ne pas contenir
toutes les données présentes dans la table, ce qui conduit soit à l’échec de la génération
d’enchâssements de tokens hors vocabulaire, soit à la construction de nouveaux enchâsse-
ments basés sur des combinaisons de tokens éventuellement non liés. Deuxièmement, le fait

104

Chapter 6. Conclusions and Future Research Directions

Paul

iPad

Mike

Galaxy

Steve

SamsungApple

Pre-trained embeddings

Wiki,
News,
...

Doc Corpus

Word2Vec,
fastText, ...

r1 Paul r5 Apple A4 Samsung r4 Rick A3 Paul ...
r5 Paul r1 iPad_4th A2 Galaxy r3 Steve r3 Galaxy
... 3

Paul iPad 4th

Mike

Rick

Galaxy

Steve

Samsung
Apple

Local embeddingsEmbDI

Paul iPad 4th

Mike iPad 4th

Steve Galaxy

Rick Samsung

Paul Apple

Datasets

Paul iPad 4th
Mike iPad 4th
Steve Galaxy

Rick Samsung
Paul Apple

2

1

r1
r2
r3

r4
r5

A1 A2

A4A3

A1 A2

A4A3

r1

r2

r3

r4

r5

r1r2

r3
r4

r5

A1 A2 A4
A3

Figure 6.3 : Illustration d’un espace vectoriel simplifié appris à partir de texte (approches
préalables) et de données (EmbDI).

qu’une valeur de la table puisse être trouvée dans le corpus d’entrâınement peut encore
conduire à des problèmes dans l’entrâınement, parce que l’incorporation pré-entrâınée
pour cette valeur n’est pas consciente des corrélations qu’elle pourrait avoir avec d’autres
tables, mais en même temps est biaisée par des valeurs qui pourraient ne pas apparâıtre
du tout dans la table cible.

Nous répondons à ce problème en implémentant EmbDI : EmbDI est un système non
supervisé pour la génération d’enchâssements locaux de données tabulaires qui est adapté
au problème de la réalisation de tâches d’intégration de données. Avec EmbDI, nous
introduisons une méthode pour générer des représentations locales des valeurs de la table,
et en même temps nous produisons des embeddings pour les entités structurelles de la
table, à savoir les tuples et les attributs : c’est un autre avantage de EmbDI par rapport
aux modèles pré-entrâınés car il permet de préparer organiquement les embeddings des
lignes et des colonnes pendant le temps de formation et en relation avec les valeurs qui sont
contenues dans ces lignes et colonnes. Avec les modèles pré-entrâınés, les enchâssements
de tuple et d’attribut doivent être générés en combinant les vecteurs des valeurs du tuple
ou de l’attribut par addition, moyennage ou autre moyen.

EmbDI

Le pipeline de EmbDI (décrit dans la figure 6.3) consiste en trois blocs distincts avec
des interfaces bien définies entre eux : (i) un composant graphique, qui est suivi d’un
(ii) composant de génération aléatoire de graphes qui prépare le corpus d’entrâınement
pour le composant final, (iii) un algorithme d’entrâınement pour les incorporations de
mots tel que word2vec [37]. Il s’agit d’une architecture modulaire dans laquelle les
techniques spécifiques mises en œuvre dans les blocs peuvent être remplacées par d’autres
algorithmes si nécessaire. Cette caractéristique est explorée dans la section expérimentale,
dans laquelle nous testons les performances de deux algorithmes d’intégration de graphes
(node2vec [42] et HARP [99]) entrâınés sur le graphe de table généré par EmbDI. En
outre, cela permet à EmbDI d’être raisonnablement à l’épreuve du temps en autorisant
l’utilisation de nouveaux algorithmes au lieu de ceux qui sont déjà disponibles dans
l’implémentation que nous décrivons.

105

Chapter 6. Conclusions and Future Research Directions

Composant graphique
La structure de base de EmbDI s’articule autour de la construction d’un graphe tripartite
qui unifie la structure d’un tableau avec son contenu : les lignes, les colonnes et les
valeurs des cellules sont toutes affectées à des nœuds, avec des arêtes reliant un tuple
à son contenu, et une colonne à toutes les valeurs de son domaine. Cette méthode est
avantageuse pour deux raisons : premièrement, en parcourant le graphe à l’aide de
marches aléatoires, il devient possible d’encoder les relations de même rang, de même
attribut et de proximité dans les phrases qui sont ensuite utilisées pour l’apprentissage des
mots incorporés ; deuxièmement, les rangées et les colonnes sont modélisées directement
avec les valeurs de la table, sans qu’il soit nécessaire de les produire par une étape de
post-traitement qui combine les incorporations préparées pour les valeurs de la table.
Nous développons et testons plusieurs solutions différentes pour traiter les valeurs de
cellules qui contiennent de longues châınes de caractères afin d’exploiter les informations
contenues dans la cellule et de maintenir une représentation adéquate de la châıne de
caractères complète.

Génération de structures intégrées avec des marches aléatoires
Le deuxième module est un algorithme de génération de marches aléatoires qui est exécuté
sur le graphe de la table, qui traverse le graphe plusieurs fois et collecte tous les chemins
résultants. Bien que de multiples stratégies de génération puissent être appliquées, de la
sélection complètement aléatoire des nœuds à la sélection pondérée, en passant par le
type node2vec, nous constatons que les marches aléatoires simples donnent des résultats
comparables aux méthodes plus sophistiquées, tout en étant moins coûteuses à préparer.
Pour générer la représentation distribuée de chaque nœud du graphe, nous produisons un
grand nombre de marches aléatoires et les rassemblons dans un corpus d’entrâınement où
chaque marche aléatoire correspondra à une phrase. L’utilisation de graphes et de marches
aléatoires nous permet d’avoir un ensemble de voisinages plus riche et plus diversifié que
ce qui serait possible en codant un tuple comme une phrase unique. Notre approche est
agnostique par rapport au type spécifique de marche aléatoire utilisé, différents choix
produisant différents enchâssements. Nous utilisons des marches aléatoires uniformes
dans la plupart de nos expériences pour garantir de bons temps d’exécution sur de grands
ensembles de données, tout en fournissant des résultats de haute qualité. Nous comparons
des marches aléatoires alternatives dans les expériences.

Un certain nombre d’approches antérieures, telles que DeepER [70] ou DeepMat-
cher [71], apprennent uniquement des enchâssements pour les tokens et obtiennent ensuite
des enchâssements pour les tuples en les moyennant ou en les combinant à l’aide d’un
RNN. en les moyennant ou en les combinant à l’aide d’un RNN. L’utilisation de nos
marches aléatoires sous forme de phrases fournit des informations supplémentaires sur
le voisinage de chaque nœud, qui ne seraient pas aussi facilement obtenues en utilisant
uniquement le format de données structurées. Les phrases générées sont regroupées pour
construire un corpus qui est utilisé pour entrâıner l’algorithme d’intégration. Comme pour
la génération de la marche aléatoire, il n’y a pas d’exigence stricte quant à l’algorithme
d’intégration des mots à utiliser. Nous nous appuyons sur la pléthore d’algorithmes
d’incorporation efficaces tels que word2vec, GloVe, fastText, etc. De manière générale, ces
techniques peuvent être classées en deux catégories : celles basées sur les mots (comme

106

Chapter 6. Conclusions and Future Research Directions

word2vec) et celles basées sur les caractères (comme fastText).

Applications d’EmbDI

Applications de l’EmbDI en tableau unique
EmbDI peut être appliqué à des scénarios à une ou deux tables pour différentes raisons.
Dans un scénario à table unique, EmbDI peut produire des incorporations de haute
qualité pour les valeurs de la table et ses composants structurels (lignes et colonnes).
Ces incorporations sont local, et encodent les informations de proximité des valeurs dans
l’ensemble de données d’origine : cela en fait des remplacements appropriés pour les
applications qui nécessiteraient autrement des modèles génériques pré-entrâınés (par
exemple [71]). Nous démontrons ces avantages dans la dernière partie du document, où
nous utilisons les embeddings EmbDI pour initialiser notre système d’imputation de
données. La génération d’embeddings permet de produire des représentations vectorielles
numériques distribuées du contenu de la table. Par conséquent, la représentation discrète
peut être utilisée directement pour représenter des types de données discrets et catégo-
riques. Nous montrons comment générer les embeddings sur le graphe et comment étudier
leur qualité.

De la même façon que l’on peut utiliser les enchâssements de mots ”réguliers” pour
effectuer des opérations géométriques afin de trouver des similarités complexes entre
les mots, les enchâssements de mots peuvent être utilisés pour sonder l’espace vectoriel
afin de trouver les voisins d’un nœud donné, qu’il s’agisse d’un nœud de valeur ou d’un
nœud de colonne/ligne. Cela permet, par exemple, de sonder l’espace des embeddings
pour trouver des valeurs similaires à celles qui sont données, ou de traverser l’espace des
embeddings en exécutant des opérations algébriques entre les vecteurs. . Nous effectuons
des expériences supplémentaires pour montrer le potentiel d’utilisation de l’information
stockée dans les encastrements pour de nouvelles applications, à savoir l’interrogation
géométrique des encastrements et l’appariement de jetons. Cette contribution relève le
défi de la génération d’enchâssements tabulaires pour des données catégorielles.

Applications de EmbDI à deux tableaux
Le scénario à deux tables peut être utilisé pour modéliser des problèmes d’intégration de
données. Nous mettons en œuvre le scénario à deux tables en construisant un graphe
au-dessus de la concaténation des deux tables. Ce faisant, les incorporations du graphe
encodent des informations sur la structure des deux tables. Les propriétés géométriques
de ces imbrications peuvent être exploitées une fois de plus, cette fois pour effectuer la
Résolution d’entité (ER) et Schema Matching (SM). (SM). Nous développons EmbDI
(Embeddings for Data Integration) pour mettre en œuvre ces contributions. Le problème
de la résolution d’entités consiste à rechercher des sources de données avec des domaines
similaires pour identifier les entités qui se trouvent dans les deux sources, mais qui sont
représentées différemment. Pour le Schema Matching, nous cherchons plutôt une méthode
qui, étant donné des tables qui partagent le domaine, peut identifier les attributs qui sont
présents dans les deux tables et les faire correspondre. Dans ce travail, nous démontrons
comment EmbDI peut réaliser ces deux tâches de manière élégante en s’appuyant sur les
propriétés géométriques des incorporations mentionnées ci-dessus.

107

Chapter 6. Conclusions and Future Research Directions

Director

Head A

Head B

Head C

Task-specific
section

Node
Features

Feature
generation

Training
Samples

Merging
stepHeteroGNN

Vector
generation

Training
Vectors

Shared section

Multi-task model training

R3
R4

R1
R2 Director

Year

R2

Director

Year
R1

TitleDirector

TitleR3

Year

Title

R4

C. Nolan

M. Shinkai

R. Scott

The Martian

Your Name.

Tenet

2014

2015

2020

...

Graph representation

R3
R4

R1
R2

...

M. ShinkaiYour Name.
C. NolanTenet

C. NolanInterstellar
DirectorTitle

R. ScottThe Martian

... ...

2014
2020

2014
Year

2015

...

M. ShinkaiYour Name.
C. NolanTenet

C. NolanNULL
DirectorTitle

R. ScottThe Martian

... ...

2014
2020

2014
Year

2015

...

Title

Figure 6.4 : Vue d’ensemble de l’architecture GRIMP.

Ceci est rendu possible par l’architecture de graphe de EmbDI, qui génère organique-
ment des embeddings pour les tuples et les attributs. Pour la tâche ER, nous développons
un algorithme heuristique qui recherche les doublons d’un tuple donné en sondant l’espace
vectoriel et en recherchant les tuples les plus proches selon une mesure de similarité
numérique : cette heuristique est très précise et obtient des résultats de pointe pour les
méthodes non supervisées. Dans le cas du SM, nous utilisons une méthode heuristique
similaire pour faire correspondre les colonnes qui sont proches les unes des autres dans
l’espace. Dans la section expérimentale, nous testons EmbDI et le comparons à deux
autres algorithmes d’intégration de graphes (node2vec [42] et HARP [99]) dans les tâches
ER et SM : cette approche démontre une fois de plus l’utilité de l’architecture de EmbDI,
en vertu de la façon dont il devient possible d’employer des algorithmes qui sont conçus
pour des tâches non liées au problème de la génération d’intégration de tableaux.

Dans notre campagne expérimentale, nous présentons les performances de EmbDI
dans les tâches ER et SM, à la fois dans le cas non supervisé par défaut et en tant
que corpus pré-entrâıné pour les méthodes supervisées : pour ce dernier scénario, nous
utilisons DeepMatcher [71] pour comparer les incorporations de EmbDI aux incorporations
fastText pré-entrâınées et nous observons que les incorporations locales générées sur
les données à disposition surpassent toujours les incorporations pré-entrâınées. Nous
enrichissons la section expérimentale avec une collection de figures qui démontrent
comment les enchâssements peuvent coder différentes relations dans différentes dimensions,
et comment cela peut expliquer l’efficacité démontrée dans les tâches d’intégration de
données. Nous publions également le code de EmbDI pour que les praticiens puissent
l’utiliser. Avec EmbDI, nous apportons une réponse au problème de l’intégration non
supervisée de données sur des tables relationnelles de type mixte.

Imputation de données

Tout en restant dans le domaine de la curation des données, nous passons ensuite
au problème de l’imputation des données, c’est-à-dire au remplacement des valeurs
manquantes et erronées dans un tableau sale par des valeurs correctes, sur la base des

108

Chapter 6. Conclusions and Future Research Directions

données disponibles et (si elles sont disponibles) d’informations externes. Le problème
de l’imputation de données consiste à corriger les valeurs manquantes ou erronées dans
une table sale, avec l’objectif final d’éliminer (ou du moins de réduire) les biais que les
entrées problématiques peuvent introduire dans les données. L’imputation de données est
un problème difficile, car il tourne non seulement autour du problème de la détection
des erreurs, mais il est encore compliqué par le fait que, une fois l’erreur trouvée, il faut
faire un choix sur ce qu’il faut “imputer” pour combler la vacance. Si un attribut est
numérique, ce problème s’apparente à l’échantillonnage d’une variable aléatoire numérique
pour l’imputation correcte ; si l’attribut est catéogène, cependant, le problème doit être
modélisé comme un ”choix” de la valeur correcte à imputer parmi toutes les valeurs du
domaine.

Comme nous le montrons dans la thèse, l’imputation de valeurs catégorielles est
problématique, notamment lorsqu’on s’appuie sur des modèles basés sur l’apprentissage
profond. En effet, l’imputation de données catégorielles peut être modélisée comme un
problème de classification multi-classes, où chaque imputation devient le choix d’une seule
valeur parmi toutes les valeurs du domaine de valeurs de la table. Ce domaine peut devenir
extrêmement vaste, ce qui ajoute à la ”malédiction de la dimensionnalité” à laquelle
les méthodes d’imputation axées sur les données numériques sont déjà confrontées. En
outre, si d’une part les problèmes déjà mentionnés de dépendance à l’égard des données
étiquetées et de supervision humaine entrent en jeu, d’autre part des informations externes
sont parfois disponibles, mais les modèles d’imputation ne peuvent pas les utiliser. Pour
aborder ces questions, nous proposons deux solutions au problème. Tout d’abord, nous
combinons l’architecture de graphes que nous avons développée pour EmbDI avec une
architecture d’apprentissage multi-tâches en implémentant GRIMP (Graph embeddings
for Relational data IMPutation), nous nous penchons ensuite sur le problème de la
mise en œuvre d’informations externes dans l’apprentissage des modèles et améliorons
l’algorithme d’imputation bien connu MissForest [45] en lui faisant prendre conscience de
la présence de dépendances fonctionnelles au moment de l’apprentissage, en baptisant la
version mise à jour FunForest (FUNnctional missForest).

GRIMP

GRIMP est un système d’imputation de données qui s’appuie sur une combinaison
de techniques d’apprentissage profond pour imputer des données manquantes mixtes
(numériques et catégorielles) dans des tables relationnelles. L’architecture d’GRIMP
est basée sur deux modules. Tout d’abord, un module de prétraitement prépare la
représentation graphique de la table d’entrée et le corpus d’entrâınement requis par le
second module. Ensuite, un composant DL basé sur l’apprentissage multi-tâches incorpore
différents sous-modules spécifiques aux tâches, qui sont formés sur différents attributs de
la table.

Encouragés par les résultats prometteurs obtenus avec EmbDI, nous nous appuyons
à nouveau sur une représentation graphique (discrète) pour représenter le tableau sale
d’entrée, qui peut contenir des données discrètes (catégorielles), ainsi que des valeurs
numériques. Dans ce travail, nous tirons parti des progrès réalisés dans le domaine de

109

Chapter 6. Conclusions and Future Research Directions

l’incorporation des graphes par l’application de réseaux neuronaux graphiques (RCG),
qui nous permettent de combiner des incorporations de nœuds connues avec la structure
du graphe pour produire une représentation vectorielle améliorée des nœuds.

Ces représentations vectorielles améliorées sont ensuite transmises à la deuxième
innovation majeure de ce travail : l’application de l’apprentissage multitâche [116,117]
au problème de l’imputation des données. Nous concevons et mettons en œuvre une
architecture multitâche dans laquelle chaque sous-tâche (définie comme head) modélise le
problème d’imputation pour un seul attribut de table, qu’il soit numérique ou catégorique :
d’une part, cela permet de réaliser l’imputation en une seule fois, plutôt que d’entrâıner le
modèle de manière itérative et d’imputer sur une seule colonne à la fois, d’autre part, cela
permet de modéliser de manière organique les attributs catégoriels, sans les conflits qui
pourraient survenir entre les véritables variables numériques et les encodages numériques
des variables catégorielles.

Un autre avantage de l’approche multi-tâches est qu’elle permet de répartir l’opération
de classification sur plusieurs sous-tâches, chacune d’entre elles travaillant sur un domaine
plus petit que ce qu’exigerait une architecture plus simple. Une architecture näıve qui
utilise un GNN pour la classification pourrait être mise en œuvre en utilisant la sortie
du GNN pour sélectionner une valeur unique dans l’ensemble du domaine de la table,
sans distinction entre les différents attributs : cette approche est très problématique, car
elle oblige le classificateur à sélectionner parmi une collection beaucoup plus grande de
valeurs dans l’ensemble des données. Par conséquent, l’imputation de différents attributs
en même temps prend du temps, et le modèle est beaucoup plus susceptible de prédire
des valeurs qui apparaissent fréquemment dans l’ensemble de la table, même si elles
n’appartiennent pas au domaine de la valeur qui est imputée à un moment donné. Un
modèle multi-tâches permet de séparer la tâche de sélection afin que chaque sous-tâche
ne regarde que son propre attribut à un moment donné : cela empêche le modèle de
sélectionner des valeurs qui appartiennent à un domaine différent, ce qui améliore la
précision de l’imputation et réduit le temps d’apprentissage. De plus, GRIMP est très
robuste au bruit et peut exploiter toutes les valeurs non manquantes dans un ensemble
de données sales en tirant parti, une fois de plus, de son architecture multi-tâches : grâce
au fait que chaque tête est séparée de toutes les autres, il devient possible d’alimenter
la même information à différentes têtes et d’obtenir des sorties multiples, différentes et
valides de chacune d’elles.

GRIMP est totalement non supervisé : étant donné un ensemble de données comportant
des valeurs manquantes, l’algorithme produira une version imputée de cet ensemble de
données sans étiquettes ni supervision humaine. L’algorithme nécessite la préparation
de l’intégration des nœuds sur l’ensemble de données sales cible afin que les nœuds du
graphe aient des caractéristiques sur lesquelles le GNN peut opérer. Ces caractéristiques
peuvent être générées par toute méthode appropriée, telle que EmbDI ou fastText.
Cette approche évite le problème de la supervision humaine nécessaire à la préparation
des données étiquetées. Cependant, il est toujours possible de fournir des informations
externes à GRIMP. Cela peut être fait de deux manières : en utilisant des enchâssements
pré-entrâınés qui incorporent des informations externes (par exemple, les enchâssements
fastText entrâınés sur Common Crawl), ou en fournissant des informations au niveau des

110

Chapter 6. Conclusions and Future Research Directions

attributs telles que les dépendances fonctionnelles. Cette dernière solution est implémentée
dans une couche d’attention qui combine des représentations vectorielles pré-entrâınées
des attributs et qui peut incorporer des informations externes pour corréler les attributs
qui sont connectés via une dépendance fonctionnelle.

Le pipeline GRIMP
Le pipeline GRIMP est décrit dans la figure 6.4. Étant donné une table cible qui contient
des valeurs manquantes (dans l’exemple, une table sur les films), GRIMP exécute deux
opérations principales : le corpus d’entrâınement (désigné par échantillons d’entrâınement)
est généré et la représentation graphique de la table est préparée. Lors de l’étape de
génération du graphe, un graphe hétérogène bipartite encode les informations de la table
en générant un nœud pour chaque ligne et chaque valeur, avec des arêtes typées reliant les
nœuds de chaque côté. Dans le graphe, chaque enregistrement est associé à un nœud RID,
chaque valeur unique de l’ensemble de données est associée à un nœud de cellule, puis
les RID et les nœuds de cellule sont reliés par une arête typée. Le type d’arête est défini
par l’attribut dans lequel se trouve la cellule, le nombre de types étant égal au nombre
d’attributs dans la table. Cette architecture encode élégamment les caractéristiques
discrètes d’une table relationnelle ; la structure hétérogène permet d’appliquer différents
modules aux différents attributs, augmentant encore la granularité avec laquelle le modèle
peut être adapté à un problème.

Composant multi-tâches
Le ”cœur” de GRIMP est un module d’imputation qui utilise une architecture d’appren-
tissage multi-tâches (MTL) pour effectuer une opération de classification multi-classes
sur chaque attribut de l’ensemble de données sale. L’apprentissage multi-tâches présente
un certain nombre d’avantages que nous pouvons exploiter pour améliorer les résultats
finaux de l’imputation. Il améliore l’efficacité de la formation en réduisant le temps de
formation par rapport à un classificateur multi-classes normal et en exploitant toutes les
données disponibles pour la formation, puisqu’il n’est pas nécessaire de supprimer les
doublons des échantillons de formation. De plus, en ayant des têtes avec des domaines
d’imputation distincts, le modèle MTL ne peut sélectionner que les valeurs trouvées
dans le domaine d’une tête ; un classificateur multi-classes traditionnel sélectionnerait
plutôt une valeur dans le domaine entier de la table, ce qui augmente la probabilité de
sélectionner une valeur qui n’appartient pas au domaine de l’attribut : cela augmente la
précision de l’imputation finale. Enfin, cette approche permet au modèle de traiter des
variables de type mixte grâce au fait que chaque tête a une fonction de perte distincte :
les valeurs numériques peuvent mesurer la perte à l’aide de MSE, tandis que les valeurs
catégorielles utilisent plutôt l’entropie croisée. Cela facilite l’application de GRIMP à
une plus grande variété de tableaux.

GRIMP utilise une architecture multi-tâches, partage strict des paramètres avec une
section partagée où tous les paramètres sont partagés entre toutes les tâches, et une
section spécifique à la tâche où chaque tâche est implémentée par une tête spécifique
dont les paramètres sont uniques à cette tête, et ne sont pas partagés avec les autres. La
taille du domaine de chaque tâche est beaucoup plus petite par rapport à la taille totale
du domaine qui serait requise par un classificateur multi-classes entrâıné avec le même
objectif. Cela augmente la précision de l’imputation et réduit le temps de formation. La

111

Chapter 6. Conclusions and Future Research Directions

structure de chaque tête dans le sous-module spécifique à la tâche dépend de l’attribut
auquel elle se rapporte : chaque tâche correspond à un attribut dans la table, et la sortie
de chaque tête dépend du type de données de l’attribut (catégorique ou numérique)
et de son domaine. Si l’attribut d’une tête est catégorique, alors la sortie de la tête
sera un classificateur multi-classes avec autant de classes qu’il y a de valeurs distinctes
dans le domaine de l’attribut ; si l’attribut est numérique, alors le classificateur a une
seule sortie pour la valeur spécifique (nombre) qui devrait être utilisée pour l’échantillon
d’entrâınement donné.

Dans GRIMP, les têtes peuvent être implémentées à l’aide de couches linéaires qui
s’appuient exclusivement sur les vecteurs d’entrâınement, ou par le biais d’une couche
d’attention qui combine des informations au niveau des attributs avec les vecteurs
d’entrâınement. Inspirés par les nombreux travaux sur les mécanismes d’attention et par
les résultats très positifs obtenus dans un certain nombre de domaines par les systèmes
qui les mettent en œuvre, nous ajoutons un mécanisme d’attention à l’architecture du
classificateur de GRIMP, à la fois à la couche partagée et à chaque tête. Pour ce faire,
nous adaptons et étendons le mécanisme d’attention employé dans [80] au problème
multi-tâche.

GRIMP Couche d’attention
L’objectif de notre structure d’attention est de combiner les caractéristiques de niveau
attribut et de niveau tuple afin d’exploiter les informations qu’elles contiennent. En
utilisant des informations au niveau des attributs en plus des informations déjà disponibles
au niveau des tuple, GRIMP améliore les performances d’imputation sur tous les ensembles
de données testés. Avec le mécanisme d’attention, nous mettons en œuvre un certain
nombre de stratégies différentes pour collationner l’information qui se trouve dans la
représentation vectorielle des valeurs de la table (telle que préparée par le GNN) avec
l’information qui se trouve dans les vecteurs pré-entrâınés générés pour les attributs. La
couche d’attention est la manière dont nous encodons les informations externes dans
GRIMP : en modifiant la structure de certaines des structures de données d’attention,
il devient possible de forcer le modèle à ”s’intéresser” à des attributs différents de ceux
qui seraient normalement choisis, le dirigeant ainsi vers des relations plus fortes entre les
valeurs.

FunForest

L’idée de mettre en œuvre des informations externes dans la formation d’un modèle
d’imputation de données est reprise dans notre deuxième contribution. À cette fin, nous
concevons et implémentons FunForest (Functional MissForest), une amélioration de
l’algorithme d’imputation bien connu et très efficace MissForest [45] : avec FunForest,
nous introduisons des modifications qui permettent à l’ensemble de forêts aléatoires
employé par l’algorithme original d’utiliser des informations externes. Les modifications
que nous introduisons sont simples et légères, et ne pénalisent pas le temps d’exécution
de l’algorithme, ni ses performances standard ; toutefois, lorsque des données externes
sont disponibles, nous montrons que FunForest surpasse MissForest par une marge
importante.

112

Chapter 6. Conclusions and Future Research Directions

Dans son implémentation originale, MissForest est basé sur des ensembles de forêts
aléatoires, dans lesquels un grand nombre d’arbres de décision sont formés sur l’ensemble
des données. L’entrâınement est amorcé en utilisant une méthode d’imputation simple
pour combler les vacances, puis l’algorithme affine progressivement les ”suppositions” à
chaque itération. L’apprentissage est effectué en entrâınant itérativement la forêt aléatoire
sur chaque attribut du tableau, jusqu’à ce qu’une condition de fin soit atteinte. Selon qu’un
attribut est catégorique ou numérique, les arbres de décision sont des classificateurs ou
des régresseurs. Le résultat final de l’imputation est obtenu en combinant les imputations
de chaque arbre de décision, soit en calculant la moyenne de leurs imputations si la valeur
est numérique, soit par vote majoritaire si l’attribut est catégorique. L’algorithme de base
s’est avéré très efficace dans de nombreuses circonstances et, à ce titre, il a été utilisé
comme référence pour d’autres ensembles de données d’imputation dans la littérature.

MissForest fonctionnelle
Avec notre contribution, nous travaillons à l’amélioration de MissForest en le rendant
“FD-aware”, c’est-à-dire capable d’exploiter des informations externes exprimées sous
forme de dépendances fonctionnelles. Les FDs mettent en relation les différents attributs
des tables : nous exploitons cette information en divisant le budget de l’estimateur (c’est-
à-dire le nombre d’arbres de décision qui peuvent être utilisés) en une partie ”générique”
et une partie ”dirigée”. Les arbres de décision construits à partir de la première partie
sont traités comme des arbres normaux et sont formés sur tous les attributs de la table ;
les arbres de décision qui appartiennent à la partie ”dirigée”, cependant, sont formés
exclusivement sur les colonnes qui sont connues pour être reliées entre elles par une
dépendance fonctionnelle. En orientant les arbres de décision vers un sous-ensemble
d’attributs de l’ensemble de données, plutôt que vers la table entière, il est possible de
réduire le bruit introduit par les colonnes non liées et de se concentrer sur les valeurs
trouvées dans les attributs les plus pertinents. Nous observons que, si l’affectation d’une
partie du budget de l’estimateur aux arbres dirigés est bénéfique, l’absence d’arbres
génériques pénalise le résultat final de l’imputation.

Nous concluons cette section en menant une campagne expérimentale approfondie
pour étudier un certain nombre d’algorithmes d’imputation différents et leurs perfor-
mances dans de nombreux scénarios, en faisant varier la table source, la distribution des
erreurs et les hyperparamètres des algorithmes pour explorer l’effet qu’ils ont sur les
performances d’imputation des données des différents systèmes. Nous nous concentrons
également sur l’effet des dépendances fonctionnelles en testant le module d’attention dans
GRIMP, ainsi que FunForest sur des ensembles de données qui ont des dépendances fonc-
tionnelles connues et exactes. Enfin, nous tirons quelques conclusions sur les performances
potentielles des systèmes d’imputation de données basés sur DL.

Conclusions

Dans la dernière section, nous concluons et résumons les résultats obtenus dans les
domaines de l’intégration de données et de l’imputation de données. Nous racontons
comment les innovations que nous avons introduites peuvent mener à une discussion
plus approfondie sur le sujet des incorporations tabulaires et de l’apprentissage profond

113

Chapter 6. Conclusions and Future Research Directions

appliqué au domaine du nettoyage des données. Nous tirons quelques conclusions sur
les résultats obtenus, puis nous décrivons certaines directions de recherche envisagées et
suggérons des opportunités de recherche futures dans les domaines de l’intégration des
données et de l’imputation des données.

114

Bibliography

[1] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Stefanidis,“End-
to-end entity resolution for big data: A survey,” arXiv preprint arXiv:1905.06397,
2019.

[2] N. Swartz, “Gartner warns firms of’dirty data’,” Information Management, vol. 41,
no. 3, p. 6, 2007.

[3] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti,
M. Stonebraker, and N. Tang, “Detecting data errors: Where are we and what needs
to be done?” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 993–1004,
2016.

[4] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data cleaning: Overview and emerg-
ing challenges,” in Proceedings of the 2016 international conference on management
of data, 2016, pp. 2201–2206.

[5] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,
and M. Young, “Machine learning: The high interest credit card of technical debt,”
2014.

[6] FigureEight, “Data science report,” https://visit.figure-eight.com/
data-science-report.html, 2016.

[7] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise data analysis
and visualization: An interview study,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2917–2926, 2012.

[8] S. Lohr, “For big-data scientists,‘janitor work’is key hurdle to insights,” New York
Times, vol. 17, p. B4, 2014.

[9] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W. Tan, “Data integration: After
the teenage years,” in Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA,
May 14-19, 2017, E. Sallinger, J. V. den Bussche, and F. Geerts, Eds. ACM,
2017, pp. 101–106. [Online]. Available: https://doi.org/10.1145/3034786.3056124

115

https://visit.figure-eight.com/data-science-report.html
https://visit.figure-eight.com/data-science-report.html
https://doi.org/10.1145/3034786.3056124

Bibliography

[10] T. Rattenbury, J. M. Hellerstein, J. Heer, S. Kandel, and C. Carreras, Principles
of data wrangling: Practical techniques for data preparation. ” O’Reilly Media,
Inc.”, 2017.

[11] “How The London Whale Debacle Is Partly The Result Of
An Error Using Excel,” Jan 2022, [Online; accessed 6. Jan.
2022]. [Online]. Available: https://www.businessinsider.in/finance/
How-The-London-Whale-Debacle-Is-Partly-The-Result-Of-An-Error-Using-Excel/
articleshow/21358120.cms

[12] R. Hart, “When artificial intelligence botches your medical diagnosis, who’s to
blame,” 2017.

[13] IBM, “Data-driven healthcare organizations use big data analytics for
big gains,” White paper, http://www.ibmbigdatahub.com/whitepaper/
data-driven-healthcare-organizations-use-big-data-analytics-big-gains.

[14] P. S. GC, C. Sun, H. Zhang, F. Yang, N. Rampalli, S. Prasad, E. Arcaute, G. Kr-
ishnan, R. Deep, V. Raghavendra et al., “Why big data industrial systems need
rules and what we can do about it,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, 2015, pp. 265–276.

[15] J. Liu, J. Li, C. Liu, and Y. Chen, “Discover dependencies from data—a review,”
IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 2, pp. 251–264,
2010.

[16] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “Tane: An efficient
algorithm for discovering functional and approximate dependencies,” The computer
journal, vol. 42, no. 2, pp. 100–111, 1999.

[17] C. Wyss, C. Giannella, and E. Robertson, “Fastfds: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances extended ab-
stract,” in International Conference on Data Warehousing and Knowledge Discovery.
Springer, 2001, pp. 101–110.

[18] F. Chiang and R. J. Miller, “Discovering data quality rules,” Proceedings of the
VLDB Endowment, vol. 1, no. 1, pp. 1166–1177, 2008.

[19] W. Fan, F. Geerts, J. Li, and M. Xiong, “Discovering conditional functional
dependencies,” IEEE Transactions on Knowledge and Data Engineering, vol. 23,
no. 5, pp. 683–698, 2010.

[20] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu, “On generating near-
optimal tableaux for conditional functional dependencies,”Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 376–390, 2008.

[21] X. Chu, I. F. Ilyas, and P. Papotti, “Discovering denial constraints,” Proceedings of
the VLDB Endowment, vol. 6, no. 13, pp. 1498–1509, 2013.

116

https://www.businessinsider.in/finance/How-The-London-Whale-Debacle-Is-Partly-The-Result-Of-An-Error-Using-Excel/articleshow/21358120.cms
https://www.businessinsider.in/finance/How-The-London-Whale-Debacle-Is-Partly-The-Result-Of-An-Error-Using-Excel/articleshow/21358120.cms
https://www.businessinsider.in/finance/How-The-London-Whale-Debacle-Is-Partly-The-Result-Of-An-Error-Using-Excel/articleshow/21358120.cms
http://www.ibmbigdatahub.com/whitepaper/data-driven-healthcare-organizations-use-big-data-analytics-big-gains
http://www.ibmbigdatahub.com/whitepaper/data-driven-healthcare-organizations-use-big-data-analytics-big-gains

Bibliography

[22] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye,
“Katara: A data cleaning system powered by knowledge bases and crowdsourcing,”
in Proceedings of the 2015 ACM SIGMOD international conference on management
of data, 2015, pp. 1247–1261.

[23] J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker,
“Dataxformer: An interactive data transformation tool,” in Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, 2015, pp.
883–888.

[24] M. Mahdavi, Z. Abedjan, R. Castro Fernandez, S. Madden, M. Ouzzani, M. Stone-
braker, and N. Tang, “Raha: A configuration-free error detection system,” in
Proceedings of the 2019 International Conference on Management of Data, 2019,
pp. 865–882.

[25] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas, “Holodetect: Few-shot
learning for error detection,” in Proceedings of the 2019 International Conference
on Management of Data, 2019, pp. 829–846.

[26] Z. Jin, Y. He, and S. Chauduri, “Auto-transform: learning-to-transform by patterns,”
Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 2368–2381, 2020.

[27] P. Bailis, J. M. Hellerstein, and M. Stonebraker, “Readings in database systems,”
URL: http://www. redbook. io/all-chapters. html (26.09. 2017), 2015.

[28] Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and M. Stonebraker, “Temporal
rules discovery for web data cleaning,”Proceedings of the VLDB Endowment, vol. 9,
no. 4, pp. 336–347, 2015.

[29] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, and N. Tang, “Interactive
and deterministic data cleaning,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 893–907. [Online]. Available:
https://doi.org/10.1145/2882903.2915242

[30] V. V. Meduri and P. Papotti, “Towards user-aware rule discovery,” in International
Workshop on Information Search, Integration, and Personalization. Springer, 2016,
pp. 3–17.

[31] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for
matrix completion,” SIAM Journal on optimization, vol. 20, no. 4, pp. 1956–1982,
2010.

[32] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”
Foundations of Computational mathematics, vol. 9, no. 6, pp. 717–772, 2009.

[33] J. You, X. Ma, D. Y. Ding, M. Kochenderfer, and J. Leskovec, “Handling missing
data with graph representation learning,” arXiv preprint arXiv:2010.16418, 2020.

117

https://doi.org/10.1145/2882903.2915242

Bibliography

[34] Z. Huang and Y. He, “Auto-detect: Data-driven error detection in tables,” in
Proceedings of the 2018 International Conference on Management of Data, 2018,
pp. 1377–1392.

[35] J. Yoon, J. Jordon, and M. Schaar, “Gain: Missing data imputation using generative
adversarial nets,” in International Conference on Machine Learning. PMLR, 2018,
pp. 5689–5698.

[36] J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for
neural networks,” J. Big Data, vol. 7, no. 1, p. 28, 2020. [Online]. Available:
https://doi.org/10.1186/s40537-020-00305-w

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[38] K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study of categorical
variable encoding techniques for neural network classifiers,” International journal
of computer applications, vol. 175, no. 4, pp. 7–9, 2017.

[39] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not
all you need,” CoRR, vol. abs/2106.03253, 2021. [Online]. Available:
https://arxiv.org/abs/2106.03253

[40] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep
neural networks and tabular data: A survey,” CoRR, vol. abs/2110.01889, 2021.
[Online]. Available: https://arxiv.org/abs/2110.01889

[41] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2014, pp. 701–710.

[42] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in
SIGKDD. ACM, 2016, pp. 855–864.

[43] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[44] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting deep learning
models for tabular data,” CoRR, vol. abs/2106.11959, 2021. [Online]. Available:
https://arxiv.org/abs/2106.11959

[45] D. J. Stekhoven and P. Bühlmann, “Missforest—non-parametric missing value
imputation for mixed-type data,” Bioinformatics, vol. 28, no. 1, pp. 112–118, 2012.

[46] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the
ACM, vol. 38, no. 11, pp. 39–41, 1995.

118

https://doi.org/10.1186/s40537-020-00305-w
https://arxiv.org/abs/2106.03253
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2106.11959

Bibliography

[47] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continuous space
word representations,” in Proceedings of the 2013 conference of the north amer-
ican chapter of the association for computational linguistics: Human language
technologies, 2013, pp. 746–751.

[48] A. Nazabal, P. M. Olmos, Z. Ghahramani, and I. Valera, “Handling incomplete
heterogeneous data using vaes,” Pattern Recognition, vol. 107, p. 107501, 2020.

[49] T. Halpin and T. Morgan, Information modeling and relational databases. Morgan
Kaufmann, 2010.

[50] L. Caruccio, V. Deufemia, and G. Polese, “Relaxed functional dependencies—a
survey of approaches,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 1, pp. 147–165, 2016.

[51] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional func-
tional dependencies for data cleaning,” in 2007 IEEE 23rd international conference
on data engineering. IEEE, 2007, pp. 746–755.

[52] C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “Extending existing dependency
theory to temporal databases,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 8, no. 4, pp. 563–582, 1996.

[53] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann, “Data
profiling with metanome,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1860–1863, Aug.
2015. [Online]. Available: http://dx.doi.org/10.14778/2824032.2824086

[54] Z. Abedjan, P. Schulze, and F. Naumann, “Dfd: Efficient functional dependency
discovery,” in Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, 2014, pp. 949–958.

[55] A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka, “Regularization is all you
need: Simple neural nets can excel on tabular data,” CoRR, vol. abs/2106.11189,
2021. [Online]. Available: https://arxiv.org/abs/2106.11189

[56] G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein,
“SAINT: improved neural networks for tabular data via row attention and
contrastive pre-training,” CoRR, vol. abs/2106.01342, 2021. [Online]. Available:
https://arxiv.org/abs/2106.01342

[57] Y. Zhu, T. Brettin, F. Xia, A. Partin, M. Shukla, H. Yoo, Y. A. Evrard, J. H.
Doroshow, and R. L. Stevens, “Converting tabular data into images for deep learning
with convolutional neural networks,” Scientific reports, vol. 11, no. 1, pp. 1–11,
2021.

[58] Y. Mathov, E. Levy, Z. Katzir, A. Shabtai, and Y. Elovici, “Not all datasets are
born equal: On heterogeneous data and adversarial examples,” 2021.

119

http://dx.doi.org/10.14778/2824032.2824086
https://arxiv.org/abs/2106.11189
https://arxiv.org/abs/2106.01342

Bibliography

[59] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[60] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” CoRR, vol.
abs/1603.02754, 2016. [Online]. Available: http://arxiv.org/abs/1603.02754

[61] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic
knowledge,” in Proceedings of the 16th International Conference on World Wide
Web, ser. WWW ’07. New York, NY, USA: Association for Computing Machinery,
2007, p. 697–706. [Online]. Available: https://doi.org/10.1145/1242572.1242667

[62] D. Vrandecic and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,”
Commun. ACM, vol. 57, no. 10, pp. 78–85, 2014. [Online]. Available:
https://doi.org/10.1145/2629489

[63] G. Weikum, L. Dong, S. Razniewski, and F. Suchanek, “Machine knowl-
edge: Creation and curation of comprehensive knowledge bases,” arXiv preprint
arXiv:2009.11564, 2020.

[64] O. Lassila, R. R. Swick et al., “Resource description framework (rdf) model and
syntax specification,” 1998.

[65] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
neural information processing systems, 2013, pp. 3111–3119.

[66] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), 2014, pp. 1532–1543.

[67] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information,” Transactions of the Association for Computational
Linguistics, vol. 5, pp. 135–146, 2017.

[68] R. Řeh̊uřek and P. Sojka, “Software Framework for Topic Modelling with Large
Corpora,” in Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. Valletta, Malta: ELRA, May 2010, pp. 45–50, http://is.muni.cz/
publication/884893/en.

[69] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Advances in
pre-training distributed word representations,” in Proceedings of the International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[70] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang, “Dis-
tributed representations of tuples for entity resolution,” PVLDB, vol. 11, no. 11,
pp. 1454–1467, 2018.

120

http://arxiv.org/abs/1603.02754
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/2629489
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

Bibliography

[71] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-
caute, and V. Raghavendra, “Deep learning for entity matching: A design space
exploration,” in SIGMOD, 2018.

[72] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation,” arXiv preprint
arXiv:1609.08144, 2016.

[73] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[74] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), M. A.
Walker, H. Ji, and A. Stent, Eds. Association for Computational Linguistics,
2018, pp. 2227–2237. [Online]. Available: https://doi.org/10.18653/v1/n18-1202

[75] A. d. S. Correia and E. L. Colombini, “Attention, please! a survey of neural
attention models in deep learning,” arXiv preprint arXiv:2103.16775, 2021.

[76] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual attention,” in
Advances in neural information processing systems, 2014, pp. 2204–2212.

[77] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell,” CoRR,
vol. abs/1508.01211, 2015. [Online]. Available: http://arxiv.org/abs/1508.01211

[78] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[79] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[80] R. Wu, A. Zhang, I. Ilyas, and T. Rekatsinas, “Attention-based learning for missing
data imputation in holoclean,”Proceedings of Machine Learning and Systems, vol. 2,
pp. 307–325, 2020.

[81] C. Joshi, “Transformers are graph neural networks,” The Gradient, 2020.

[82] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[83] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

121

https://doi.org/10.18653/v1/n18-1202
http://arxiv.org/abs/1508.01211

Bibliography

[84] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot
learners,” arXiv preprint arXiv:2005.14165, 2020.

[85] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and perfor-
mance: A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

[86] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs:
Methods and applications,” arXiv preprint arXiv:1709.05584, 2017.

[87] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE transactions on neural networks and
learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[88] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”Advances
in neural information processing systems, vol. 31, 2018.

[89] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, 2016, pp. 1225–1234.

[90] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “Mgae: Marginalized graph
autoencoder for graph clustering,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, 2017, pp. 889–898.

[91] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of
machine learning research, vol. 9, no. 11, 2008.

[92] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale
information network embedding,” in Proceedings of the 24th international conference
on world wide web, 2015, pp. 1067–1077.

[93] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.” in kdd, vol. 96, no. 34,
1996, pp. 226–231.

[94] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola,
“Distributed large-scale natural graph factorization,” in Proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 37–48.

[95] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embed-
ding and clustering.” in Nips, vol. 14, no. 14, 2001, pp. 585–591.

[96] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[97] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global
structural information,” in Proceedings of the 24th ACM international on conference
on information and knowledge management, 2015, pp. 891–900.

122

Bibliography

[98] B. Perozzi, V. Kulkarni, and S. Skiena, “Walklets: Multiscale graph embeddings for
interpretable network classification,” arXiv preprint arXiv:1605.02115, pp. 043 238–
23, 2016.

[99] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical representation learn-
ing for networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

[100] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural
networks: Analysis, applications, and prospects,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2021.

[101] Z. C. Lipton, “A critical review of recurrent neural networks for sequence
learning,” CoRR, vol. abs/1506.00019, 2015. [Online]. Available: http:
//arxiv.org/abs/1506.00019

[102] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, ser.
Proceedings of Machine Learning Research, I. Guyon, G. Dror, V. Lemaire,
G. Taylor, and D. Silver, Eds., vol. 27. Bellevue, Washington, USA: PMLR,
02 Jul 2012, pp. 37–49. [Online]. Available: https://proceedings.mlr.press/v27/
baldi12a.html

[103] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in International conference on machine
learning. PMLR, 2017, pp. 1263–1272.

[104] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,”
Journal of the American society for information science and technology, vol. 58,
no. 7, pp. 1019–1031, 2007.

[105] A. Clauset, C. Moore, and M. E. Newman,“Hierarchical structure and the prediction
of missing links in networks,” Nature, vol. 453, no. 7191, pp. 98–101, 2008.

[106] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[107] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” Advances in neural information
processing systems, vol. 29, pp. 3844–3852, 2016.

[108] A. Micheli, “Neural network for graphs: A contextual constructive approach,” IEEE
Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, 2009.

[109] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 1025–1035.

123

http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
https://proceedings.mlr.press/v27/baldi12a.html
https://proceedings.mlr.press/v27/baldi12a.html

Bibliography

[110] Dsg, “A Review : Graph Convolutional Networks (GCN),” Jan 2022, [Online;
accessed 31. Jan. 2022]. [Online]. Available: https://dsgiitr.com/blogs/gcn

[111] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for
skeleton-based action recognition,” in Thirty-second AAAI conference on artificial
intelligence, 2018.

[112] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” arXiv preprint arXiv:1810.00826, 2018.

[113] F. P. Such, S. Sah, M. A. Dominguez, S. Pillai, C. Zhang, A. Michael, N. D. Cahill,
and R. Ptucha, “Robust spatial filtering with graph convolutional neural networks,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 884–896,
2017.

[114] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous graph
attention network,” in The World Wide Web Conference, 2019, pp. 2022–2032.

[115] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75, 1997.

[116] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint
arXiv:1707.08114, 2017.

[117] S. Vandenhende, S. Georgoulis, M. Proesmans, D. Dai, and L. Van Gool, “Revisiting
multi-task learning in the deep learning era,” arXiv preprint arXiv:2004.13379,
vol. 2, 2020.

[118] R. J. Miller, “Big data curation.” in COMAD, 2014, p. 4.

[119] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren, “Curated databases,” in
Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, 2008, pp. 1–12.

[120] M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for the relational
web,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 1090–1101, 2009.

[121] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti, “Extraction and integration of
partially overlapping web sources,”Proc. VLDB Endow., vol. 6, no. 10, pp. 805–816,
2013. [Online]. Available: http://www.vldb.org/pvldb/vol6/p805-bronzi.pdf

[122] F. Naumann, A. Bilke, J. Bleiholder, and M. Weis, “Data fusion in
three steps: Resolving schema, tuple, and value inconsistencies,” IEEE
Data Eng. Bull., vol. 29, no. 2, pp. 21–31, 2006. [Online]. Available:
http://sites.computer.org/debull/A06June/Hummer DEBull06 v2.ps

[123] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller, L. Popa, and Y. Velegrakis,
“Clio: Schema mapping creation and data exchange,” in Conceptual Modeling:
Foundations and Applications - Essays in Honor of John Mylopoulos, ser. Lecture
Notes in Computer Science, A. Borgida, V. K. Chaudhri, P. Giorgini, and

124

https://dsgiitr.com/blogs/gcn
http://www.vldb.org/pvldb/vol6/p805-bronzi.pdf
http://sites.computer.org/debull/A06June/Hummer_DEBull06_v2.ps

Bibliography

E. S. K. Yu, Eds., vol. 5600. Springer, 2009, pp. 198–236. [Online]. Available:
https://doi.org/10.1007/978-3-642-02463-4 12

[124] A. Bonifati, G. Mecca, P. Papotti, and Y. Velegrakis, “Discovery and
correctness of schema mapping transformations,” in Schema Matching and
Mapping, ser. Data-Centric Systems and Applications, Z. Bellahsene, A. Bonifati,
and E. Rahm, Eds. Springer, 2011, pp. 111–147. [Online]. Available:
https://doi.org/10.1007/978-3-642-16518-4 5

[125] Z. Bellahsene, A. Bonifati, F. Duchateau, and Y. Velegrakis, “On evaluating schema
matching and mapping,” in Schema matching and mapping. Springer, 2011, pp.
253–291.

[126] N. F. Noy, “Ontology mapping,” in Handbook on ontologies. Springer, 2009, pp.
573–590.

[127] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema
matching,” the VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[128] P. Shvaiko and J. Euzenat, “A survey of schema-based matching approaches,” in
Journal on data semantics IV. Springer, 2005, pp. 146–171.

[129] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching, ten years
later,” Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 695–701, 2011.

[130] C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, J. Brons, M. Fragkoulis, C. Lofi,
A. Bonifati, and A. Katsifodimos, “Valentine: Evaluating matching techniques for
dataset discovery,” in 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 2021, pp. 468–479.

[131] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic schema matching with cupid,”
in vldb, vol. 1. Citeseer, 2001, pp. 49–58.

[132] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm, “Schema and ontology
matching with coma++,” in Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, 2005, pp. 906–908.

[133] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to map between
ontologies on the semantic web,” in Proceedings of the 11th international conference
on World Wide Web, 2002, pp. 662–673.

[134] M. Ehrig and S. Staab, “Qom–quick ontology mapping,” in International Semantic
Web Conference. Springer, 2004, pp. 683–697.

[135] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versatile graph
matching algorithm and its application to schema matching,” in Proceedings 18th
International Conference on Data Engineering. IEEE, 2002, pp. 117–128.

125

https://doi.org/10.1007/978-3-642-02463-4_12
https://doi.org/10.1007/978-3-642-16518-4_5

Bibliography

[136] R. C. Fernandez, E. Mansour, A. A. Qahtan, A. Elmagarmid, I. Ilyas, S. Madden,
M. Ouzzani, M. Stonebraker, and N. Tang, “Seeping semantics: Linking datasets
using word embeddings for data discovery,” in ICDE, 2018.

[137] C. Koutras, M. Fragkoulis, A. Katsifodimos, and C. Lofi,“Rema: Graph embeddings-
based relational schema matching,” SEA Data workshop, 2020.

[138] V. Christophides, V. Efthymiou, and K. Stefanidis, “Entity resolution in the web
of data,” Synthesis Lectures on the Semantic Web, vol. 5, no. 3, pp. 1–122, 2015.

[139] E. Ioannou and Y. Velegrakis, “Embench++: Data for a thorough benchmarking
of matching-related methods,” Semantic Web, vol. 10, no. 2, pp. 435–450, 2019.
[Online]. Available: https://doi.org/10.3233/SW-180331

[140] F. Naumann and M. Herschel, An Introduction to Duplicate Detection, ser.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2010.
[Online]. Available: https://doi.org/10.2200/S00262ED1V01Y201003DTM003

[141] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl, “A blocking
framework for entity resolution in highly heterogeneous information spaces,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 12, pp. 2665–2682,
2012.

[142] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas, “Comparative analysis of
approximate blocking techniques for entity resolution,” Proceedings of the VLDB
Endowment, vol. 9, no. 9, pp. 684–695, 2016.

[143] P. Christen, “A survey of indexing techniques for scalable record linkage and
deduplication,” IEEE transactions on knowledge and data engineering, vol. 24,
no. 9, pp. 1537–1555, 2011.

[144] G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas, “Blocking and filtering
techniques for entity resolution: A survey,” ACM Computing Surveys (CSUR),
vol. 53, no. 2, pp. 1–42, 2020.

[145] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller, “Framework for evaluating
clustering algorithms in duplicate detection,”Proceedings of the VLDB Endowment,
vol. 2, no. 1, pp. 1282–1293, 2009.

[146] R. Singh, V. V. Meduri, A. Elmagarmid, S. Madden, P. Papotti, J.-A. Quiané-Ruiz,
A. Solar-Lezama, and N. Tang, “Synthesizing entity matching rules by examples,”
Proceedings of the VLDB Endowment, vol. 11, no. 2, pp. 189–202, 2017.

[147] L. Chiticariu, Y. Li, and F. Reiss, “Rule-based information extraction is dead!
long live rule-based information extraction systems!” in Proceedings of the 2013
conference on empirical methods in natural language processing, 2013, pp. 827–832.

[148] F. Panahi, W. Wu, A. Doan, and J. F. Naughton, “Towards interactive debugging
of rule-based entity matching.” in EDBT, 2017, pp. 354–365.

126

https://doi.org/10.3233/SW-180331
https://doi.org/10.2200/S00262ED1V01Y201003DTM003

Bibliography

[149] M. Hernández, G. Koutrika, R. Krishnamurthy, L. Popa, and R. Wisnesky, “Hil:
a high-level scripting language for entity integration,” in Proceedings of the 16th
international conference on extending database technology, 2013, pp. 549–560.

[150] M. Paganelli, P. Sottovia, F. Guerra, and Y. Velegrakis, “Tuner: Fine tuning
of rule-based entity matchers,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, CIKM 2019, Beijing,
China, November 3-7, 2019, W. Zhu, D. Tao, X. Cheng, P. Cui, E. A.
Rundensteiner, D. Carmel, Q. He, and J. X. Yu, Eds. ACM, 2019, pp. 2945–2948.
[Online]. Available: https://doi.org/10.1145/3357384.3357854

[151] M. Bilenko and R. J. Mooney, “Adaptive duplicate detection using learnable string
similarity measures,” in Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2003, pp. 39–48.

[152] C. Zhao and Y. He, “Auto-em: End-to-end fuzzy entity-matching using pre-trained
deep models and transfer learning,” in WWW, 2019, pp. 2413–2424.

[153] Ö. Ö. Çakal, M. Mahdavi, and Z. Abedjan, “CLRL: feature engineering for cross-
language record linkage,” in EDBT, 2019, pp. 678–681.

[154] J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa, “Low-resource deep entity
resolution with transfer and active learning,” arXiv preprint arXiv:1906.08042,
2019.

[155] S. Thirumuruganathan, S. A. P. Parambath, M. Ouzzani, N. Tang, and S. Joty,
“Reuse and adaptation for entity resolution through transfer learning,”arXiv preprint
arXiv:1809.11084, 2018.

[156] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu,
“Corleone: Hands-off crowdsourcing for entity matching,” in Proceedings of the
2014 ACM SIGMOD international conference on Management of data, 2014, pp.
601–612.

[157] V. D. Cicco, D. Firmani, N. Koudas, P. Merialdo, and D. Srivastava, “Interpreting
deep learning models for entity resolution: an experience report using LIME,”
in Proceedings of the Second International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, aiDM@SIGMOD 2019, Amsterdam,
The Netherlands, July 5, 2019, R. Bordawekar and O. Shmueli, Eds. ACM, 2019,
pp. 8:1–8:4. [Online]. Available: https://doi.org/10.1145/3329859.3329878

[158] A. Farhangfar, L. Kurgan, and J. Dy, “Impact of imputation of missing values
on classification error for discrete data,” Pattern Recognition, vol. 41, no. 12, pp.
3692–3705, 2008.

[159] A. d. l. V. de León, B. Chen, and V. J. Gillet, “Effect of missing data on multitask
prediction methods,” Journal of cheminformatics, vol. 10, no. 1, pp. 1–12, 2018.

127

https://doi.org/10.1145/3357384.3357854
https://doi.org/10.1145/3329859.3329878

Bibliography

[160] D. A. Bennett, “How can i deal with missing data in my study?” Australian and
New Zealand journal of public health, vol. 25, no. 5, pp. 464–469, 2001.

[161] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3, pp. 581–592,
1976.

[162] S. Fielding, P. M. Fayers, A. McDonald, G. McPherson, and M. K. Campbell,
“Simple imputation methods were inadequate for missing not at random (mnar)
quality of life data,” Health and Quality of Life Outcomes, vol. 6, no. 1, pp. 1–9,
2008.

[163] N. Resseguier, R. Giorgi, and X. Paoletti, “Sensitivity analysis when data are
missing not-at-random,” Epidemiology, vol. 22, no. 2, p. 282, 2011.

[164] S. Van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by
chained equations in r,” Journal of statistical software, vol. 45, pp. 1–67, 2011.

[165] J. Luengo, S. Garćıa, and F. Herrera, “On the choice of the best imputation methods
for missing values considering three groups of classification methods,” Knowledge
and information systems, vol. 32, no. 1, pp. 77–108, 2012.

[166] J. W. Grzymala-Busse, L. K. Goodwin, W. J. Grzymala-Busse, and X. Zheng,
“Handling missing attribute values in preterm birth data sets,” in International
Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing.
Springer, 2005, pp. 342–351.

[167] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-
stein, and R. B. Altman, “Missing value estimation methods for dna microarrays,”
Bioinformatics, vol. 17, no. 6, pp. 520–525, 2001.

[168] W. W. Cohen, “Fast effective rule induction,” in Machine learning proceedings 1995.
Elsevier, 1995, pp. 115–123.

[169] P. Clark and T. Niblett, “The cn2 induction algorithm,” Machine learning, vol. 3,
no. 4, pp. 261–283, 1989.

[170] L. Gondara and K. Wang, “Mida: Multiple imputation using denoising autoen-
coders,” in Pacific-Asia conference on knowledge discovery and data mining.
Springer, 2018, pp. 260–272.

[171] F. Honghai, C. Guoshun, Y. Cheng, Y. Bingru, and C. Yumei, “A svm regres-
sion based approach to filling in missing values,” in International Conference on
Knowledge-Based and Intelligent Information and Engineering Systems. Springer,
2005, pp. 581–587.

[172] P.-A. Mattei and J. Frellsen, “Miwae: Deep generative modelling and imputation
of incomplete data sets,” in International conference on machine learning. PMLR,
2019, pp. 4413–4423.

128

Bibliography

[173] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embeddings of
heterogeneous relational datasets for data integration tasks,” in Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 1335–1349. [Online]. Available: https://doi.org/10.1145/3318464.3389742

[174] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple and general
method for semi-supervised learning,” in ACL. ACL, 2010, pp. 384–394.

[175] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information,” CoRR, vol. abs/1607.04606, 2016. [Online]. Available:
http://arxiv.org/abs/1607.04606

[176] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[177] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer, “Deep contextualized word representations,” CoRR, vol. abs/1802.05365,
2018.

[178] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “HARP: hierarchical representation
learning for networks,” CoRR, vol. abs/1706.07845, 2017. [Online]. Available:
http://arxiv.org/abs/1706.07845

[179] R. Bordawekar and O. Shmueli, “Using word embedding to enable semantic queries
in relational databases,” in DEEM Workshop. ACM, 2017, p. 5.

[180] ——, “Exploiting latent information in relational databases via word embedding
and application to degrees of disclosure.” in CIDR, 2019.

[181] R. Bordawekar, B. Bandyopadhyay, and O. Shmueli, “Cognitive database: A step
towards endowing relational databases with artificial intelligence capabilities,” arXiv
preprint arXiv:1712.07199, 2017.

[182] R. C. Fernandez and S. Madden, “Termite: a system for tunneling through hetero-
geneous data,” arXiv preprint arXiv:1903.05008, 2019.

[183] M. Günther, “Freddy: Fast word embeddings in database systems,” in SIGMOD.
ACM, 2018, pp. 1817–1819.

[184] M. Günther, M. Thiele, E. Nikulski, and W. Lehner, “Retrolive: Analysis of
relational retrofitted word embeddings,” EDBT, 2020.

[185] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W. Shavlik, and
X. Zhu, “Corleone: hands-off crowdsourcing for entity matching,” in SIGMOD,
2014.

129

https://doi.org/10.1145/3318464.3389742
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1706.07845

Bibliography

[186] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan, R. Deep, E. Arcaute,
V. Raghavendra, and Y. Park, “Falcon: Scaling up hands-off crowdsourced entity
matching to build cloud services,” in SIGMOD, 2017.

[187] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” TACL, vol. 5, pp. 135–146, 2017.

[188] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in EMNLP, 2014, pp. 1532–1543.

[189] R. J. Miller, F. Nargesian, E. Zhu, C. Christodoulakis, K. Q. Pu, and P. Andritsos,
“Making open data transparent: Data discovery on open data.” IEEE Data Eng.
Bull., vol. 41, no. 2, pp. 59–70, 2018.

[190] M. Hulsebos, K. Hu, M. Bakker, E. Zgraggen, A. Satyanarayan, T. Kraska, c. Demi-
ralp, and C. Hidalgo, “Sherlock: A deep learning approach to semantic data type
detection,” in SIGKDD. ACM, 2019.

[191] S. Thirumuruganathan, N. Tang, M. Ouzzani, and A. Doan, “Data curation with
deep learning,” EDBT, 2020.

[192] P. Suganthan, A. Ardalan, A. Doan, and A. Akella, “Smurf: Self-service string
matching using random forests,” PVLDB, vol. 12, no. 3, pp. 278–291, 2018.

[193] E. Zhu, Y. He, and S. Chaudhuri, “Auto-join: Joining tables by leveraging transfor-
mations,” PVLDB, vol. 10, no. 10, pp. 1034–1045, 2017.

[194] R. Hull and M. Yoshikawa, “ILOG: declarative creation and manipulation of object
identifiers,” in VLDB, 1990, pp. 455–468.

[195] X. Chu and I. F. Ilyas, Data Cleaning. ACM, 2019.

[196] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti,
M. Stonebraker, and N. Tang, “Detecting data errors: Where are we and what
needs to be done?” PVLDB, vol. 9, no. 12, pp. 993–1004, 2016.

[197] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and D. Santoro,
“Messing up with BART: error generation for evaluating data-cleaning algorithms,”
PVLDB, vol. 9, no. 2, pp. 36–47, 2015.

[198] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, and H. Jégou, “Word translation
without parallel data,” arXiv preprint arXiv:1710.04087, 2017.

[199] S. Maßmann, S. Raunich, D. Aumüller, P. Arnold, and E. Rahm, “Evolution of the
COMA match system,” in International Workshop on Ontology Matching, 2011.

[200] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro, “++Spicy: an
opensource tool for second-generation schema mapping and data exchange,”PVLDB,
vol. 4, no. 12, pp. 1438–1441, 2011.

130

Bibliography

[201] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[202] F. Biessmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter, A. Taptunov, D. Lange,
and D. Salinas, “Datawig: Missing value imputation for tables.” J. Mach. Learn.
Res., vol. 20, pp. 175–1, 2019.

[203] N. Ahmadi, H. Sand, and P. Papotti, “Unsupervised matching of data and text,” in
ICDE, 2022.

[204] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu, “Turl: Table understanding through
representation learning,” arXiv preprint arXiv:2006.14806, 2020.

131

http://archive.ics.uci.edu/ml

	Abstract
	Abrégé [Français]
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Notations
	1 Introduction
	1.1 Challenges
	1.2 Approach and Contributions
	1.3 Thesis Outline
	1.4 Publications

	2 Background
	2.1 Relational tables
	2.1.1 Datatypes
	2.1.2 Functional Dependencies
	2.1.3 Deep Learning Representations of Tabular Data

	2.2 Graphs
	2.2.1 Knowledge Graphs

	2.3 Vector Space Models
	2.3.1 Word Embedding
	2.3.2 Graph Embedding

	2.4 Multi-Task Learning
	2.5 Data Curation
	2.5.1 Data Integration
	2.5.2 Data Imputation

	2.6 Summary

	3 Generating Table Embeddings
	3.1 Introduction
	3.1.1 Local Embeddings for Data Integration
	3.1.2 Contributions
	3.1.3 Outline

	3.2 Background
	3.3 Motivating Example
	3.3.1 Technical Challenges

	3.4 Constructing Local Relational Embeddings
	3.4.1 Graph Construction
	3.4.2 Sentence Construction
	3.4.3 Embedding Construction
	3.4.4 Algorithm So Far

	3.5 Experiments
	3.5.1 Datasets
	3.5.2 Generating the Embeddings
	3.5.3 Evaluating Embeddings Quality

	3.6 Summary

	4 Table Embeddings for Data Integration
	4.1 Introduction
	4.1.1 Previous Work on Word Embeddings for Data Integration

	4.2 Using Embeddings for Integration
	4.2.1 Schema Matching (SM)
	4.2.2 Entity Resolution (ER)
	4.2.3 Token Matching (TM)

	4.3 Improving Local Embeddings
	4.3.1 Handling Imbalanced Relations
	4.3.2 Handling Missing and Noisy Data
	4.3.3 Incorporating External Information
	4.3.4 Embedding Alignment
	4.3.5 Handling Multi-Word Tokens

	4.4 Experimental Results
	4.4.1 Schema Matching
	4.4.2 Entity Resolution
	4.4.3 Token Matching
	4.4.4 Ablation Analysis

	4.5 Summary

	5 Relational Data Imputation with GNNs and Multi-task Learning
	5.1 Introduction
	5.2 GRIMP
	5.2.1 Building the Graph
	5.2.2 Generation of node features
	5.2.3 Creating the Training Samples
	5.2.4 Multi-Task Learning Component
	5.2.5 Attention Structures
	5.2.6 Training Procedure
	5.2.7 Imputing the Missing Values

	5.3 FunForest
	5.3.1 MissForest
	5.3.2 From MissForest to FunForest

	5.4 Experimental study
	5.4.1 Experimental Setup
	5.4.2 Imputation Results
	5.4.3 Working with Functional Dependencies

	5.5 Summary

	6 Conclusions and Future Research Directions
	6.1 Future Work
	6.1.1 EmbDI, Tabular Embeddings and Data Integration
	6.1.2 GRIMP, Data Imputation with GNNs

