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L’homme peut aujourd’hui accéder à des événements
faits de lumière réelle comme jamais auparavant avec,
pour l’instant, des lasers, des flashs électroniques, des
projecteurs et l’informatique [...] Du coup, on com-
prend qu’un art nouveau de la lumière qui ne soit ni
peinture, ni fresque, ni théâtre, ni ballet, ni opéra, est
là sur le pas de notre porte. Un art par définition hors
de l’homme, même si comme dans le cas des Poly-
topes de Persépolis ou de Mycènes, des enfants ou des
chèvres porteurs de torches électriques dessinent dans
les champs ou sur la montagne des tracés lumineux
qui se confondent la nuit avec les constellations cé-
lestes. Un art comme la musique, en soi, sans réfé-
rence anthropomorphique ou réaliste. C’est cela le sens
des aventures polytopiennes (des Polytopes de Mont-
réal (1967), de Persépolis (1971), de Cluny (1972), de
Mycènes (1978), du Diatope du Centre Georges Pom-
pidou (1978)).

Iannis Xenakis
Les Polytopes

Exercice 4.2.3. Let O be an operad in a symmetric mo-
noidal category C and F : C → D a symmetric mo-
noidal functor. Show that [...] FO [is an operad] in
the symmetric monoidal category D. This fact is of
an extreme importance in applications -starting with a
"geometric" operad in the category, say, of topological
spaces, and applying the chain or homology functor one
arrives to an operad in the category of vector spaces.
This particular property of operads is another manifes-
tation of the amazing unity of mathematics.

Sergei Merkulov
Grothendieck–Teichmüller group, operads and graph

complexes : a survey
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Résumé
Le but premier de cette thèse, qui se situe à la confluence du calcul opéradique et
de la géométrie discrète, est de développer une théorie générale des approximations
cellulaires de la diagonale d’une famille de polytopes. L’application de cette théorie
aux opéraèdres, encodant la notion d’opérade à homotopie près, et aux multiplièdres,
encodant la notion de morphisme infini entre algèbres associatives à homotopie près,
permet d’obtenir des modèles topologiques pour ces deux notions, de même que des
formules universelles explicites pour leurs produits tensoriels. Les calculs effectués
s’avèrent valides pour l’ensemble des permutoèdres généralisés, une classe plus vaste
de polytopes comprenant plusieurs autres familles opéradiques.

Mots-clés

Polytopes, opérades, approximation de la diagonale, arrangements d’hyperplans,
polytopes de fibre, associaèdres, permutoèdres, graphes-associaèdres, permutoèdres
généralisés, multiplièdres, catégories A-infini.
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Abstract
The main goal of this thesis, which is situated at the confluence of operadic calcu-
lus and discrete geometry, is to develop a general theory of cellular approximations
of the diagonal for any family of polytopes. The application of this theory to the
operahedra, encoding the notion of homotopy operad, and to the multiplihedra,
encoding the notion of infinity-morphism between homotopy associative algebras,
provides topological models for these two notions, as well as explicit universal for-
mulas for their tensor products. The calculations are in fact valid for all generalized
permutahedra, a larger class of polytopes including several other operadic families.

Keywords

Polytopes, operads, approximation of the diagonal, hyperplane arrangements, fiber
polytopes, associahedra, permutahedra, graph-associahedra, generalized permuta-
hedra, multiplihedra, A-infinity categories.
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Chapitre 1

Introduction

1.1 Contexte

Le but de la topologie algébrique, née au début du XXième siècle grâce aux travaux
de Henri Poincaré (1854-1912), est l’étude des espaces topologiques à l’aide de l’al-
gèbre. À chaque espace, on associe une famille de groupes dont la structure reflète
la "forme" de l’espace considéré. Ici, la notion de "forme" est à entendre en un sens
très général (ou très particulier, selon le point de vue) : pour un topologue, la dé-
formation continue d’un espace n’altère pas sa forme. Ainsi, une tasse et un beignet
sont considérés par lui comme équivalents1, car si on les imagine faits en pâte à mo-
deler, il est possible de déformer l’un en l’autre sans couper ou recoller les morceaux.
Le rêve de Poincaré était de décrire fidèlement un espace à travers ses groupes, au
point de pouvoir le "reconstruire" à partir de ceux-ci. L’aboutissement de ce pro-
jet, s’incarnant dans les récents résultats de Michael A. Mandell [Man01, Man06],
a nécessité une transformation profonde (ou plutôt, une généralisation de grande
envergure) de la notion de groupe au sens où l’entendait Poincaré.

En effet, le dernier siècle a vu l’introduction en algèbre de la notion de déforma-
tion continue présente au niveau des espaces (la notion d’homotopie), ce qui a donné
naissance à l’algèbre homotopique. Cette "algèbre supérieure", comme elle est sou-
vent appelée ces jours-ci, a précisément pour but d’étudier les structures algébriques
venant de la topologie. Il s’agit de structures où les relations comme l’associativité
et la commutativité sont remplacées par des notions plus souples d’associativité et
de commutativité "à homotopie près". Le formalisme des opérades et la théorie de la
dualité de Koszul2 forment un cadre conceptuel permettant de définir, de manipuler
et d’étudier ces structures supérieures.

Un exemple fondamental est la notion d’algèbre associative à homotopie près,
qui est encodée par une opérade notée A∞. Rappelons qu’une algèbre associative

1Un mathématicien les dira "homotopes".
2Avec ses cygnes.

11



12 CHAPITRE 1. INTRODUCTION

classique est un complexe de chaînes (A,m1) muni d’une multiplication m2 : A ⊗
A → A qui vérifie la relation d’associativité, c’est-à-dire que pour tous a, b, c ∈ A,
on a m2(m2(a, b), c) = m2(a,m2(b, c)). Une manière commode de représenter cette
relation est d’utiliser des arbres, en écrivant

= .

Dans une algèbre associative à homotopie près, ou algèbre A∞, cette relation est
remplacée par une homotopie au sens des complexes de chaînes, c’est-à-dire une
application m3 : A⊗3 → A telle que ∂(m3) = m2(m2 ⊗ id)−m2(id⊗m2). On peut
aussi représenter cette homotopie à l’aide des arbres, via le diagramme

m3−→ .

Si l’on regarde à présent un mot de quatre lettres, on constate que ses cinq paren-
thésages possibles, plutôt que d’être égaux, sont reliés par cinq homotopies :

m3(m2⊗id⊗id)

m2(m3⊗id)

m3(id⊗m2⊗id)

m3(id⊗id⊗m2)

m2(id⊗m3)

.

Dans une algèbre A∞, on déclare ces différentes homotopies équivalentes entre elles
à l’aide d’une homotopie supérieure m4 : A⊗4 → A, et on poursuit ainsi de manière
récursive sur les mots de cinq lettres, puis six lettres, et ainsi de suite. On obtient une
tour infinie d’homotopies résolvant l’associativité "stricte" de manière cohérente.

Définition 1.1. Une algèbre A∞ est un espace vectoriel gradué A muni d’applica-
tions mn : A⊗n → A, n ≥ 1 de degré |mn| = n− 2, vérifiant les relations

∂(mn) = −
∑

p+q+r=n

(−1)p+qrmp+1+r(id
⊗p ⊗mq ⊗ id⊗r) . (1.1)

Notons que cette notion d’algèbre généralise strictement celle d’algèbre associa-
tive : une algèbre associative n’est rien d’autre qu’une algèbre A∞ où mn = 0 pour
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tout n ≥ 3. Le produit tensoriel A⊗B de deux algèbres associatives peut être muni
d’une structure d’algèbre associative en prenant

mA⊗B
1 := mA

1 ⊗ id + id⊗mB
1 (1.2)

mA⊗B
2 := mA

2 ⊗mB
2 . (1.3)

On peut maintenant se demander si cette structure se généralise au cas des algèbres
A∞.

Problème. Comment munir le produit tensoriel de deux algèbres A∞ d’une struc-
ture d’algèbre A∞ qui généralise le produit tensoriel des algèbres associatives ?

En d’autres mots, on cherche à construire à partir des opérations mA
n et mB

n

des nouvelles opérations mA⊗B
n étendant (1.2) et (1.3) et satisfaisant les relations

(1.1), sachant que les mA
n et mB

n les satisfont. Plus que cela, on est intéressé par une
solution universelle à ce problème, c’est-à-dire par une formule qui s’applique à toute
paire d’algèbres A∞. Le langage des opérades3 permet de reformuler ce problème de
manière conceptuelle.

Définition 1.2. Une opérade (non-symétrique) est une famille de complexes de
chaînes {P(n)}n≥1 munie d’applications de chaînes

◦i : P(m)⊗ P(n)→ P(m− 1 + n) , 1 ≤ i ≤ m

vérifiant les relations

(λ ◦i µ) ◦i−1+j ν = λ ◦i (µ ◦j ν) , 1 ≤ i ≤ l, 1 ≤ j ≤ m (1.4)
(λ ◦i µ) ◦k−1+m ν = (−1)|µ||ν|(λ ◦k ν) ◦i µ , 1 ≤ i < k ≤ l (1.5)

pour tous λ ∈ P(l), µ ∈ P(m), ν ∈ P(n) de même que d’un élément id ∈ P(1)
vérifiant id ◦1 ν = ν et µ ◦i id = µ pour tous µ, ν.

Définition 1.3. L’opérade A∞ est l’opérade quasi-libre sur un ensemble de géné-
rateurs {µn}n≥2 de degrés |µn| = n − 2 dont la différentielle est définie sur les
générateurs par

∂(µn) := −
∑

p+q+r=n

(−1)p+qrµp+1+r(id
⊗p ⊗ µq ⊗ id⊗r) .

Proposition 1.4. La donnée d’une structure universelle d’algèbre A∞ sur le produit
tensoriel de deux algèbres A∞ est équivalente à la donnée d’un morphisme d’opérades

A∞ → A∞ ⊗ A∞ ,

c’est-à-dire à une diagonale pour l’opérade A∞.
3Qui n’a rien à voir avec celui de l’opéra ; le terme "opérade" est en effet un mot-valise formé

de la fusion des mots "opérations" et "monade", ce qui suggère plutôt un lien avec la philosophie
de Leibniz (voir par exemple https://ncatlab.org/nlab/show/monad+%28disambiguation%29).

https://ncatlab.org/nlab/show/monad+%28disambiguation%29
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L’existence d’une telle diagonale est facile à prouver, en se servant du fait que
l’opérade A∞ est une résolution cofibrante de l’opérade associative. Cependant, la
mise au jour d’une formule particulière est un problème qui présente une difficulté
certaine. Il a été résolu pour la première fois par S. Saneblidze et R. Umble il y a
presque vingt ans [SU04]. Une autre formule a été trouvée peu après par M. Markl
et S. Schnider [MS06]. Les méthodes des deux travaux sont très différentes, mais des
calculs numériques suggèrent que les deux diagonales en fait coïncident ! Il n’existe
à ce jour pas de preuve que c’est bien le cas.

Revenons sur la construction d’une algèbre A∞. En inspectant les figures obte-
nues à chaque étape, on est amené à se demander si elles représentent des polytopes.

Définition 1.5. Un polytope P ⊂ Rn est l’enveloppe convexe d’un nombre fini de
points dans Rn.

Définition 1.6. Une face d’un polytope P ⊂ Rn est un ensemble de la forme P ∩
{x ∈ Rn | 〈d, x〉 = a} pour d, a ∈ Rn tels que 〈d, y〉 ≤ a pour tout y ∈ P .

L’ensemble des faces de P forme un treillis pour l’inclusion, noté L(P ). Une
face de codimension 1 est appelée facette. Une face d’un polytope est elle-même
un polytope. La dimension d’un polytope (ou d’une de ses faces) est donnée par la
dimension de son enveloppe affine. Les dessins que nous avons tracés précédemment
pour illustrer l’associativité "à homotopie près" des algèbres A∞ représentent bien
des polytopes, nommés "associaèdres".

Définition 1.7. Un associaèdre de dimension n ≥ 0 est un polytope dont le treillis
des faces est isomorphe au treillis formé par les arbres planaires à n + 2 feuilles
munis de la contraction de leurs arêtes internes.

En particulier, les sommets d’un associaèdre de dimension n sont en bijection avec
les arbres binaires planaires à n+2 feuilles. Dans sa thèse où il introduit pour la pre-
mière fois la notion d’algèbre A∞ [Sta63], J. Stasheff décrit les associaèdres comme
une famille de complexes cellulaires topologiques ; la riche et fascinante histoire de
leur réalisation subséquente en tant que polytopes est racontée par C. Ceballos et G.
M. Ziegler dans [CZ12]. Pour toute famille de réalisations des associaèdres {Kn}n≥1

on a la relation
C•(Kn) ∼= A∞(n) , (1.6)

où C• est le foncteur des chaînes cellulaires. Un fait capital concernant ce foncteur
est qu’il est symétrique monoidal : il envoie donc toute opérade en polytopes sur
une opérade en complexes de chaînes. Sachant que l’on peut munir les complexes de
chaînes de (1.6) d’une structure d’opérade (Définition 1.3), trois questions viennent
à l’esprit.

1. Est-il possible de munir une famille de réalisations des associaèdres {Kn} d’une
structure d’opérade topologique et cellulaire, dont l’image par le foncteur des
chaînes soit précisément l’opérade A∞ ?
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2. Peut-on définir une famille d’applications cellulaires 4n : Kn → Kn ×Kn qui
forment un morphisme d’opérades topologiques, dont l’image par le foncteur
des chaînes serait donc une diagonale pour l’opérade A∞ ?

3. Peut-on retrouver de cette manière les formules de Saneblidze–Umble [SU04]
ou de Markl–Schnider [MS06] ?

1.2 Une nouvelle méthode

Une réponse affirmative à ces trois questions vient d’être apportée par N. Masuda,
A. Tonks, H. Thomas et B. Vallette dans [MTTV21]. Les auteurs y introduisent une
nouvelle méthode, basée sur la théorie des polytopes de fibres de L. J. Billera et B.
Sturmfels [BS92], permettant de définir une approximation cellulaire de la diagonale
d’un polytope. En effet, le candidat naturel, la diagonale ensembliste 4Kn : Kn →
Kn×Kn, x 7→ (x, x) a le défaut rédhibitoire de ne pas être une application cellulaire,
c’est-à-dire que son image n’est pas une union de cellules deKn×Kn. Cette situation
n’est pas propre aux associaèdres, elle est commune à tous les polytopes4.

Définition 1.8. Pour un polytope P , une approximation cellulaire de la diagonale
est une application cellulaire 4cell

P : P → P × P qui soit homotope à la diagonale
ensembliste 4P et qui coincide avec elle sur les sommets de P .

L’idée-force du travail de Masuda–Tonks–Thomas–Vallette est la suivante : pour
tout polytope P , chaque sommet du polytope de fibre Σ(P × P, P ) associé à la
projection

π : P × P → P
(x, y) 7→ 1

2
(x+ y)

(1.7)

définit une approximation cellulaire de la diagonale de P .

Définition 1.9. Le polytope des diagonales de P est le polytope de fibre ΣP :=
Σ(P × P, P ) associé à la projection (1.7).

Le polytope des diagonales ΣP a la même dimension que P , et sous un choix
d’isomorphisme on peut voir les deux polytopes dans le même espace. Un choix de
sommet dans ΣP , et donc un choix d’approximation cellulaire de la diagonale de P ,
revient à un choix de vecteur ~v à l’intérieur d’un cône normal d’un sommet de ΣP .

Définition 1.10. Le cône normal NP (F ) d’une face F ∈ L(P ), est défini par

NP (F ) :=

{
c ∈ (Rn)∗

∣∣∣∣ ∀x ∈ F , cx = max
y∈P

cy

}
.

4À l’exception du point.
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Définition 1.11. L’éventail normal NP de P est l’ensemble de tous les cônes nor-
maux des faces de P , c’est-à-dire que NP := {NP (F ) | F ∈ L(P ) \ ∅}.

Sous l’identification canonique de Rn avec son dual, on peut voir ce vecteur ~v
dans le même espace que P . Aussi, Masuda–Tonks–Thomas–Vallette donnent une
condition suffisante sur ~v pour qu’il soit dans le cône normal d’un sommet de ΣP .

Définition 1.12. Un vecteur ~v oriente P s’il n’est perpendiculaire à aucune arête de
P . Dans ce cas, un unique sommet botP (resp. topP ) minimise (resp. maximise)
le produit scalaire avec ~v.

Définition 1.13. Un polytope P est positivement orienté par un vecteur ~v si ce
dernier oriente P ∩ (2z − P ), pour tout z ∈ P .

Proposition 1.14 ([MTTV21, Proposition 5]). Si (P,~v) est positivement orienté,
alors ~v définit une approximation cellulaire de la diagonale de P , donnée explicite-
ment par la formule

4(P,~v) : P → P × P
z 7→

(
bot(P ∩ ρzP ), top(P ∩ ρzP )

)
,

où ρzP := 2z − P dénote la réflexion de P par rapport au point z.

Dans [MTTV21], les auteurs choisissent d’étudier les réalisations de Loday des
associaèdres. Les sommets de ces réalisations, introduites par J.-L. Loday [Lod04],
sont données par un algorithme particulièrement élégant. Soit t un arbre binaire
planaire à n feuilles, dont on a numéroté les sommets internes de 1 à n− 1 en allant
de gauche à droite. On le voit comme un graphe orienté depuis les feuilles jusqu’à la
racine. Chaque sommet interne i définit deux sous-arbres de t, donnés par l’ensemble
des prédécesseurs de l’une ou l’autre des deux arêtes entrantes à i. On définit l’entier
naturel M(t)i comme le produit du nombre de feuilles contenues dans chacun de ces
deux sous-arbres. On obtient un point M(t) := (M(t)1, . . . ,M(t)n−1) ∈ Rn−1.

Définition 1.15. La réalisation de Loday Kn de l’associaèdre de dimension n − 2
est obtenue en prenant l’enveloppe convexe des points M(t), pour tous les arbres
binaires planaires t à n feuilles.

Après avoir fait un choix de vecteur d’orientation ~v pour chaque associaèdre de
Loday, les auteurs de [MTTV21] munissent cette famille de polytopes d’une structure
d’opérade topologique et cellulaire, qui commute avec les diagonales 4(Kn,~v). Cette
étape mérite notre attention : la structure d’opérade obtenue est unique [MTTV21,
Proposition 7] et sa nature "fractale" l’éloigne irrémédiablement de la catégorie des
polytopes munis des applications affines. Cette opérade en polytopes vit en effet
dans une nouvelle catégorie dont les morphismes sont beaucoup plus souples que les
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Figure 1.1 : La réalisation de Loday de l’associaèdre de dimension trois.

applications affines [MTTV21, Définition 7]. En prenant les chaînes cellulaires, on
obtient alors une diagonale pour l’opérade A∞.

Le dernier résultat de [MTTV21] est la démonstration du fait que l’on retrouve
alors la "formule magique" de Markl–Schnider [MS06, Formule (19)]. C’est la sim-
plicité insoupçonnée de cette formule qui avait poussé J.-L. Loday à l’affubler du
qualificatif "magique", repris par [MTTV21].

Proposition 1.16 ([MTTV21, Théorème 2]). L’image cellulaire de la diagonale
4n : Kn → Kn × Kn est donnée par les paires de faces F,G ∈ L(P ) vérifiant
topF ≤ botG, c’est-à-dire que

Im4n =
⋃

topF≤botG

F ×G . (1.8)

En mots, la diagonale de l’associaèdre est donnée par toutes les paires de faces
comparables (en un certain sens) pour l’ordre de Tamari. Remarquons que l’ensemble
des paires de sommets dans l’image de4n décrit l’ensemble des intervalles du treillis
de Tamari, dénombrés par F. Chapoton dans [Cha06]. C’est l’ordre partiel sur ces
intervalles donné par la formule (1.8) qui a mené ce même auteur à la découverte de
nouvelles structures combinatoires sur les chemins de Dyck dans [Cha20]. La lecture
de l’introduction de ce dernier article suggère que les liens entre les diagonales de
polytopes et la combinatoire n’ont pas encore révélés tous leurs secrets.

La formule (1.8) est propre à l’associaèdre et à d’autres familles de polytopes
dont la combinatoire présente un degré de complexité analogue ou inférieur, comme
c’est le cas pour les "freehedra" [San09, Pol21], les simplexes et les cubes [MTTV21,
Exemple 1], par exemple. On verra que celle-ci n’est plus valide dès que l’on considère
des polytopes de plus grande complexité.
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1.3 Résultats

Une formule universelle

On est mené à la question de savoir s’il existe une formule générale permettant
de décrire l’image cellulaire de la diagonale d’un polytope de manière combina-
toire. C’est là la première contribution de cette thèse. Pour l’obtenir, on introduit
un nouvel objet conceptuel associé à un polytope : son arrangement d’hyperplans
fondamental.

Définition 1.17 (Définition 2.17). L’arrangement d’hyperplans fondamental HP

d’un polytope P ⊂ Rn est l’ensemble des hyperplans perpendiculaires aux arêtes de
P ∩ ρzP , pour tout z ∈ P .

Cet arrangement, considéré comme un éventail, raffine l’éventail normal de ΣP .
Chaque chambre de HP définit donc une approximation de la diagonale de P , deux
chambres pouvant parfois définir la même diagonale. La description de l’image cel-
lulaire d’une telle diagonale est alors donnée par le théorème suivant.

Théorème 1.18 (Théorème 2.25). Soit P un polytope positivement orienté par ~v.
Pour chaque H ∈ HP , on choisit un vecteur normal ~dH tel que 〈~dH , ~v〉 > 0. Alors,
on a

(F,G) ∈ Im4(P,~v) ⇐⇒ ∀H ∈ HP , ∃i, 〈~Fi, ~dH〉 < 0 ou ∃j, 〈~Gj, ~dH〉 > 0 .

Ici, les ~Fi et les ~Gj sont des vecteurs qui définissent les cônes normaux de F
et G (voir la Définition 2.24). Cette formule ne dépend que de l’éventail normal
du polytope que l’on considère. Il s’avère qu’en plus d’être valide pour P , elle est
également valide pour tout polytope Q dont l’éventail normal est raffiné par celui
de P .

Proposition 1.19 (Section 2.2.6). Soit P un polytope positivement orienté par ~v,
et soit Q un polytope dont l’éventail normal est raffiné par celui de P . Alors, on a

(F,G) ∈ Im4(Q,~v) ⇐⇒ ∀H ∈ HP , ∃i, 〈~Fi, ~dH〉 < 0 ou ∃j, 〈~Gj, ~dH〉 > 0 .

La deuxième contribution de cette thèse est le calcul de l’arrangement d’hyper-
plans fondamental du permutoèdre, ce qui permet via les deux résultats précédents
d’obtenir une description combinatoire explicite d’une approximation cellulaire de
la diagonale de tout permutoèdre généralisé.

Définition 1.20. Le permutoèdre de dimension n− 1 dans est l’enveloppe convexe

des points
n∑
i=1

ieσ(i) ∈ Rn pour toutes les permutations σ ∈ Sn.
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Le permutoèdre de dimension trois est le polytope tout à droite de la Figure 1.2.
Son éventail normal, aussi appelé arrangement de Coxeter ou éventail de tresses, est
constitué des hyperplans xi = xj pour tous 1 ≤ i < j ≤ n. Il est représenté à gauche
de la Figure 1.3.

Définition 1.21. Un permutoèdre généralisé est un polytope dont l’éventail normal
est raffiné par celui du permutoèdre.

Figure 1.2 : Quelques permutoèdres généralisés de dimension trois, faisant partie
de la sous-famille des opéraèdres.

Théorème 1.22 (Théorème 3.22). Pour tout n ≥ 1, on écrit

D(n) := {(I, J) | I, J ⊂ {1, . . . , n}, |I| = |J |, I ∩ J = ∅,min(I ∪ J) ∈ I}.

L’arrangement d’hyperplans fondamental du permutoèdre de dimension n − 1 dans
Rn est l’ensemble d’hyperplans∑

i∈I

xi =
∑
j∈J

xj pour tous (I, J) ∈ D(n) .

Cet arrangement d’hyperplans raffine l’arrangement de tresses, comme le montre
la Figure 1.3. Un choix de chambre dans cet arrangement nous donne une diagonale
pour tout permutoèdre généralisé. Les n-ièmes contributions de cette thèse pour n ≥
3 sont issues d’un certain choix de diagonales pour deux sous-familles de polytopes
"opéradiques" : les opéraèdres et les multiplièdres.

Les facettes cachées des opéraèdres et des multiplièdres∗

Comme nous l’avons mentionné plus tôt, les associaèdres encodent la notion d’al-
gèbre A∞, ou algèbre associative à homotopie près. Les opérades à homotopie près
ont été définies par P. Van der Laan dans sa thèse [VdL03] comme généralisations

∗À lire en diagonale.
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Figure 1.3 : L’arrangement de tresses et l’arrangement fondamental du permuto-
èdre dans R4, projeté dans R3.

multi-linéaires des algèbres A∞. On peut alors se demander s’il existe une généralisa-
tion multi-linéaire des associaèdres, encodant la notion d’opérade à homotopie près.
Une telle généralisation a effectivement été mise au jour par J. Obradović [Obr19] ;
par analogie avec les associaèdres, nous avons décidé de nommer "opéraèdres" cette
famille de polytopes. On peut associer à tout arbre planaire un opéraèdre, dont les
faces sont en bijection avec le treillis des "nichages", ou "rameaux" de cet arbre
(voir la Définition 3.2)5. Quelques opéraèdres sont représentés sur la Figure 1.2.

Algèbres associatives Opérades

Algèbres assoc. à homotopie près Opérades à homotopie près

Associaèdre Opéraèdres

Le multiplièdre de dimension n − 1, quant à lui, est un polytope dont les faces
sont en bijection avec les arbres "bicolorés" ou encore "jaugés" à n feuilles (voir la
Définition 4.2). Il a, tout comme les associaèdres, été introduit par J. Stasheff en tant
que complexe cellulaire topologique, dans le but cette fois de décrire les morphismes
infinis entre algèbres A∞ [Sta70]. Sa réalisation en tant que polytope est récente,
due au travaux de S. Forcey [For08a], S. Forcey et S. Devadoss [DF08], F. Ardila et
J. Doker [AD13], ou encore F. Chapoton et V. Pilaud [CP22].

5Une traduction adéquate des termes "nest" et "nesting" pour un arbre reste à trouver. Une
troisième idée serait d’utiliser "boîte" et "emboîtement".
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Pour chacune de ces deux familles de polytopes, les opéraèdres au Chapitre 3 et
les multiplièdres au Chapitre 4,

1. on choisit une famille de réalisations qui généralisent les réalisations de Loday
des associaèdres (Propositions 3.15 et 4.9),

2. on fait un choix cohérent de diagonales pour ces réalisations (Propositions 3.52
et 4.24),

3. on les munit d’une structure opéradique topologique et cellulaire compatible
(Théorèmes 3.55 et 4.25), et

4. on obtient un produit tensoriel universel pour les structures algébriques cor-
respondantes, défini par une formule explicite (Propositions 3.64 et 4.43).

1.4 Perspectives

Notons que le choix de diagonales pour ces deux familles de polytopes est contraint,
mais n’est pas forcé comme dans le cas des associaèdres : plusieurs choix différents
permettent de définir une structure opéradique (voir par exemple la Remarque 3.56
à ce sujet). Il serait intéressant d’étudier ces différents choix et leurs relations.

On montre (c’est la Proposition 2.16) que toute paire de faces (F,G) dans
l’image cellulaire d’une diagonale obtenue par la présente méthode vérifie la pro-
priété topF ≤ botG, mais que cette dernière ne caractérise pas l’image cellulaire
en général, comme c’est le cas pour les associaèdres. Ce fait, dont la démonstration
résulte d’une analyse de la relation entre le vecteur d’orientation et l’éventail normal
de P (Proposition 2.3), simplifie considérablement la démonstration d’une direction
du Théorème 2 dans [MTTV21].

Comme il a été mentionné plus haut, le calcul de l’arrangement d’hyperplans
fondamental du permutoèdre permet d’envisager des applications directes à tous
les permutoèdres généralisés. Cela comprend la sous-famille encodant les opérades
modulaires à homotopie près [War21] ainsi que toutes les sous-familles décrivant des
structures opéradiques à homotopie près étudiées dans l’article [BMO20]. On peut
également envisager d’appliquer la théorie développée ici

• aux 2-associaèdres, qui interviennent en topologie symplectique [Bot19],

• aux "freehedra", qui encodent les représentations à homotopie près d’un groupe
algébrique dérivé [ACD11, AC13, Pol20], et

• aux assocoipièdres, qui interviennent en topologie des cordes [DCPR15, PT18,
PT19].
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Les opéraèdres

Il y a déjà plusieurs exemples importants d’opérades à homotopie près dans la litté-
rature. L’un d’eux est donné par les chaînes singulières des espaces de configurations
de points dans le plan [VdL03, Section 5], qui sont quasi-isomorphes aux chaînes sin-
gulières sur l’opérade des petits disques. Un autre est donné par l’opérade des cactus
normalisés [BCL+], qui intervient dans l’étude des espaces de modules des surfaces
de Riemann. Le produit tensoriel défini ici s’applique à ces deux structures.

Du point de vue combinatoire, les opéraèdres font partie de plusieurs familles
intéressantes de polytopes. Ils peuvent donc être étudiés selon ces différents points
de vue. Ils correspondent

• aux associaèdres de graphes où le graphe sous-jacent est le graphe dual ("line
graph") d’un arbre, c’est-à-dire un graphe par blocs sans fourche [Har69, Theo-
rem 8.5],

• aux nestoèdres [FS05] et aux permutoèdres généralisés [Pos09] qui peuvent
être obtenus en retirant des équations définissant les facettes du permutoèdre
[Pil14],

• à une sous-famille des polytopes d’hypergraphes [DP11, CIO19, Obr19],

• à une sous-famille des associaèdres d’ensembles ordonnés [Gal21].

Les réalisations de Loday de poids standard des opéraèdres ont déjà été définis,
de manière différente, par V. Pilaud dans [Pil13], en tant que sous-ensemble d’une
famille plus grande de polytopes qui généralisent les réalisations de C. Hohlweg et
C. Lange de l’associaèdre [HL07]. On peut se demander si les techniques de [Pil13]
peuvent être étendues à tous les associaèdres de graphes par blocs, ce qui fait l’objet
d’un travail en cours avec Vincent Pilaud.

Les multiplièdres

Les structures tensorielles que l’on définit dans cette thèse ne forment pas des
structures monoidales au sens strict du terme. Cela n’est pas un défaut de notre
construction : dans le cas du multiplièdre, on montre qu’il n’existe pas de structure
tensorielle universelle qui soit compatible à la composition des morphismes infinis
(Théorème 4.46). Ce fait ouvre la porte à une myriade de questions intéressantes,
que l’on aborde en partie dans la Section 4.4.3. Nous esquissons ensuite plusieurs
applications potentielles de notre produit tensoriel à la topologie symplectique dans
la Section 4.4.4.
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1.5 Contenu de la thèse
Le Chapitre 2 développe la théorie générale des approximations cellulaires, qui est
ensuite appliquée aux opéraèdres au Chapitre 3 et aux multiplièdres au Chapitre 4.
Les Chapitres 2 et 3 forment ensemble un article intitulé "La diagonale des opéra-
èdres", qui sera publié dans le volume 405 de la revue Advances in Mathematics. Il
est également disponible sur arXiv au numéro 2110.14062. Le Chapitre 4 est un tra-
vail en commun avec Thibaut Mazuir, et forme un article intitulé "La diagonale des
multiplièdres et le produit tensoriel de morphismes A-infinis", qui est maintenant
disponible sur arXiv au numéro 2206.05566.

1.6 Notations et conventions
On adopte les conventions du livre de J.-L. Loday et B. Vallette [LV12] pour les
opérades et celles du livre de G. M. Ziegler [Zie95] pour les polytopes. Dans la suite
on ne considérera que des arbres planaires, on notera [n] l’ensemble {1, . . . n} et on
notera {ei}i∈[n] la base canonique de Rn. On considérera l’espace euclidien Rn muni
de la structure euclidienne standard, dont le produit scalaire sera noté 〈−,−〉.

1.7 Remerciements spécifiques
L’observation à l’origine de la Proposition 3.33 est due à Christian Gaetz, et l’ar-
gument de la Proposition 2.16 a été suggéré par Arnau Padrol. La section 4.4.4
doit beaucoup à Lino Amorim et Robert Lipshitz, qui ont accepté de discuter avec
générosité de leurs résultats et des applications possibles des nôtres en topologie
symplectique.
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2.1 Introduction
The present work lies at the intersection of the theory of polytopes and the operadic
calculus. The starting point is the following observation: for a non-trivial polytope
P , the image of the set-theoretic diagonal4P : P → P×P, x 7→ (x, x) is not a union
of faces of P × P . One is led to the problem of finding a cellular approximation to
4P , that is finding a cellular map 4cell

P : P → P ×P which is homotopic to 4P and
which agrees with 4P on the vertices of P , see Figure 2.1.

•
0

•
1

−→
•

(0, 0)
•
(1, 0)

•(1, 1)•(0, 1)

Figure 2.1: The set-theoretic diagonal of the unit interval (in red) is not cellular.
One needs to find a cellular approximation (in blue, dashed).

One can always find such an approximation, however, a problem of fundamental
importance in algebraic topology is to find coherent cellular approximations of the
diagonal for families of polytopes. For instance, the cup product on singular and
cubical cohomology comes from coherent cellular approximations of the diagonal of
the standard simplices and cubes, the Alexander–Whitney [EZ53, EML54] and Serre
[Ser51] maps, respectively.

More recently, families of greater combinatorial complexity have appeared in op-
erad theory. The first seminal example is the family of associahedra. In contrast
with the standard simplices and cubes, each face of an associahedron is not itself
an associahedron, but a product of lower-dimensional associahedra, which underlies
the algebraic structure of an operad. More precisely, the cellular chains on the asso-
ciahedra are naturally endowed with an operad structure which encodes associative
algebras up to homotopy [Sta63]. In light of this fact, finding a family of coherent
cellular approximations of the diagonal of the associahedra becomes a very desirable
objective, as it defines a functorial tensor product of A∞-algebras [SU04, MS06].
Such a universal formula has applications in different fields of mathematics, for
instance the homology of fibered spaces [Pro86], string field theories [GZ97] and
Fukaya categories [Sei08].

N. Masuda, A. Tonks, H. Thomas and B. Vallette introduced in [MTTV21] a
method for finding coherent cellular approximations of the diagonal for families of
polytopes, using the theory of fiber polytopes of L. J. Billera and B. Sturmfels
[BS92]. They applied it to the associahedra and obtained a coherent family of
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approximations, which led to a topological cellular operad structure on them. This
provided a model for topological A∞-algebras and an explicit functorial formula for
their tensor product. Applying the cellular chains functor, it is possible to recover
the formula of M. Markl and S. Shnider [MS06], which should coincide with the
one of [SU04]. The key feature, which makes this problem highly constrained, is
requiring the operadic composition maps to be compatible with the approximation
of the diagonal. Such composition maps are in fact unique [MTTV21, Proposition
7], and this uniqueness property is precisely the one allowing for the operad structure
[MTTV21, Theorem 1].

The diagonal of the associahedra admits a particularly simple description of
its cellular image in terms of the Tamari order, so unexpectedly simple that J.-L.
Loday was led to the name "magical formula". However, one cannot expect a similar
formula for other families of polytopes, and an explicit combinatorial description for
the cellular image of the approximation of the diagonal of an arbitrary polytope is
missing in the work of [MTTV21].

The first contribution of the present thesis is to give such a universal formula,
which can be applied to any polytope (Theorem 2.25), and which is expressed in
terms of a new conceptual object: its fundamental hyperplane arrangement (Defin-
ition 2.17). In the case of the simplices, the theory developed here allows one to
recover conceptually a perturbative formula due to M. Abouzaid [Abo09] for the
intersection pairing on cellular chains on a manifold, see Remark 2.5. This sug-
gests deeper connections with combinatorial algebraic topology [RS19, KMM21],
higher category theory [KV91, MM20], discrete and continuous Morse theory [For98,
FMMS21] and physics [Tho18, Tat20].

2.2 Cellular approximation of the diagonal

In this section, we study the method introduced in [MTTV21] for finding a cellular
approximation of the diagonal of a polytope and establish its general properties.
We associate to any polytope P its fundamental hyperplane arrangement HP , where
each chamber defines an approximation of the diagonal. Two different chambers can
define the same approximation, and bringing down the walls between them leads to
a new notion of "quasi-positively oriented" polytope.

An approximation of the diagonal of P always exists and it depends only on the
normal fan of the polytope. Its image admits a description in terms of the poset
structure on the vertices of P induced by the choice of a chamber in HP . In the case
of the associahedra, one recovers the Tamari order. The condition top(F ) ≤ bot(G)
in M. Markl and S. Schnider’s "magical formula" for the associahedra [MS06] turns
out to be present in any approximation of the diagonal, but it is not sufficient to
characterize its image in general, as shows the case of the permutahedra treated in
the next chapter.
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A careful study of the fundamental hyperplane arrangements leads to a universal
formula describing combinatorially the cellular image of the approximation of the
diagonal for any polytope P . Once one has established the universal formula for
P , one has in fact established the formula for any polytope Q whose normal fan
coarsens the one of P .

2.2.1 General method

In the following, we adopt notations and conventions of the monograph of G. M.
Ziegler [Zie95] on the theory of polytopes. Let P ⊂ Rn be a polytope. Except for
the case where P is the trivial polytope, the diagonal map

4P : P → P × P
z 7→ (z, z)

is not cellular, that is, its image is not a union of cells of P × P .

Problem. Find a cellular approximation of the diagonal of P , that is, a cellular
map which is homotopic to 4P and which coincides with 4P on the vertices of P .

We consider a special case of the fiber polytope construction of L. J. Billera and
B. Sturmfels [BS92], see also [Zie95, Chapter 9] for more details. Let L(P ) denote
the lattice of faces of P and let (ei)1≤i≤n+1 denote the standard basis of Rn+1. For a
polytope P ⊂ Rn and a vector ~v ∈ Rn, we consider the projection π and the linear
form φ defined respectively by

π : P × P → P and φ : Rn × Rn → R
(x, y) 7→ 1

2
(x+ y) (x, y) 7→ 〈x− y,~v〉 .

The linear map
πφ : P × P → P × R

(x, y) 7→ (π(x, y), φ(x, y))

defines a polytope P φ := Im(πφ) ⊂ Rn+1. Let

L↓(P φ) := {F ∈ L(P φ) | ∀x ∈ F, λ > 0, x− λen+1 /∈ P φ} ⊂ L(P φ)

be the family of lower faces of P φ. Then, the set of faces

Fφ := (πφ)−1L↓(P φ) ⊂ L(P × P ) ∼= L(P )× L(P )

induces a subdivision π(Fφ) of P that is called coherent. As indicated by the last
isomorphism, the faces of P × P are pairs of faces of P . Depending on the context,
we will denote such a pair by F ×G or (F,G).
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One always has dim(F ×G) ≥ dim(π(F ×G)) for all F ×G ∈ Fφ. The coherent
subdivision π(Fφ) is said to be tight if dim(F ×G) = dim(π(F ×G)) for all F ×G ∈
Fφ.

To any tight coherent subdivision π(Fφ) of P one can associate the unique section
4(P,~v) : P → P × P of π which minimizes φ in each fiber, see [Zie95, Lemma 9.5].

Proposition 2.1. Let P ⊂ Rn be a polytope. Suppose that ~v ∈ Rn induces a
tight coherent subdivision of P . Then, the associated section 4(P,~v) is a cellular
approximation of the diagonal of P .

Proof. If z is a vertex of P , then the fiber π−1(z) is the point (z, z), so 4(P,~v) agrees
with the set-theoretic diagonal on vertices. An explicit homotopy between the two
maps is given by

H : P × [0, 1] −→ P × P
(z, t) 7−→ (1− t)(z, z) + t(x, y)

where (x, y) ∈ π−1(z) is such that 〈x− y,~v〉 = min
{
φ|π−1(z)

}
.

2.2.2 Cellular description of the diagonal

Given a cellular approximation 4(P,~v) of the diagonal of a polytope P , one key
problem is to describe combinatorially its image. For more clarity, let us first recall
some standard notations. Let P ⊂ Rn be a polytope. Codimension 1 faces of P are
called facets. For a face F ∈ L(P ), the normal cone of F is the cone

NP (F ) :=

{
c ∈ (Rn)∗

∣∣∣∣ F ⊆ {x ∈ P | cx = max
y∈P

cy}
}
.

The codimension of NP (F ) is equal to the dimension of F . The normal fan of P
is the collection of the normal cones NP := {NP (F ) | F ∈ L(P ) \ ∅}. This fan is
complete, i.e. it is a partition of (Rn)∗. From now on we see NP as a subset of Rn

via the canonical identification (Rn)∗ ∼= Rn.

Remark 2.2. When P ⊂ Rn is full-dimensional, i.e. when dimP = n, one can
alternatively define the normal fan of P via the lines generated by a family of
normal vectors to the facets of P , called rays. Given a polytope P which is not
full-dimensional, one can then consider the restriction to the affine hull of P , and
define the normal fan in this space. We have decided not to follow this approach,
and consider always the normal fan to be full-dimensional.

For X a subset of Rn, the cone of X is defined by Cone(X) := {λ1x1 + · · · +
λnxn | {x1, . . . , xn} ⊆ X,λi ≥ 0} and its polar cone is defined by X∗ := {y ∈
Rn | ∀x ∈ X, 〈x, y〉 ≤ 0}. The following result, which will be at the heart of further
developments, applies to any coherent subdivision of P .
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Proposition 2.3. Let P be a polytope in Rn, let ~v ∈ Rn and let F,G ∈ L(P ) be two
faces of P . Then,

(F,G) ∈ Fφ ⇐⇒ ~v ∈ Cone(−NP (F ) ∪NP (G)) .

Proof. Elaborating on the proof of [MTTV21, Proposition 6], we have that

(F,G) ∈ Fφ ⇐⇒ @x ∈ F, y ∈ G, λ > 0 such that
(

1
2
(x+ y), 〈x− y,~v〉 − λ

)
∈ P φ

⇐⇒ @x ∈ F, y ∈ G, ~w ∈ Rn, ε > 0 such that 〈~v, ~w〉 > 0 and
(x− ε~w, y + ε~w) ∈ P × P

⇐⇒ @~w ∈ Rn such that 〈~v, ~w〉 > 0 and ~w ∈ −NP (F )∗ ∩NP (G)∗

⇐⇒ ∀~w ∈ Cone(−NP (F ) ∪NP (G))∗ we have 〈~v, ~w〉 ≤ 0

⇐⇒ Cone(−NP (F ) ∪NP (G))∗ ⊂ Cone(~v)∗

⇐⇒ Cone(~v) ⊂ Cone(−NP (F ) ∪NP (G))

⇐⇒ ~v ∈ Cone(−NP (F ) ∪NP (G)) ,

where we used that for X, Y two subsets of Rn, we have Cone(X)∗ ∩ Cone(Y )∗ =
Cone(X ∪ Y )∗ and Cone(X)∗ ⊂ Cone(Y )∗ ⇐⇒ Cone(Y ) ⊂ Cone(X).

Corollary 2.4. For all ε > 0, we have

(F,G) ∈ Fφ ⇐⇒ (NP (F ) + ε~v) ∩NP (G) 6= ∅
⇐⇒ NP (F ) ∩ (NP (G)− ε~v) 6= ∅ .

Moreover, if P is full-dimensional and if the coherent subdivision π(Fφ) is tight,
then the pairs (F,G) ∈ Fφ which satisfy dimF + dimG = dimP are in bijection
with the dimension zero cells of (NP + ε~v) ∩NP or (NP − ε~v) ∩NP .

Proof. The first part of the statement follows directly from Proposition 2.3 : for
ε > 0, we have by definition of a cone that the inclusion Cone(~v) ⊂ Cone(−NP (F )∪
NP (G)) holds if and only if ε~v ∈ Cone(−NP (F )∪NP (G)). This is equivalent to the
existence of f ∈ NP (F ) and g ∈ NP (G) such that −f + g = ε~v, which proves the
claim. For the second part of the statement, if a pair of faces (F,G) ∈ Fφ verifies
dim((NP (F ) + ε~v) ∩ NP (G)) = 0, then we have dimNP (F ) + dimNP (G) ≤ dimP
since P is full-dimensional, so we have dimF + dimG ≥ dimP . In the case where
the subdivision is tight, we must have dimF + dimG = dimP , otherwise we would
have dim(π(F ×G)) = dim(F ×G) = dimF + dimG > dimP , which is impossible
since Im(π) = P .

Corollary 2.4 is a "perturbative" way of seeing Proposition 2.3 : the pairs of Fφ
arise as intersections of the normal fan of P with a translated copy of itself in the
direction of ~v, see Figure 2.2.



2.2. CELLULAR APPROXIMATION OF THE DIAGONAL 31

~v

Figure 2.2: The normal fan NP of the 2-dimensional permutahedron (in blue), and
its perturbed copy NP + ε~v (in red, dashed).

•

•

•

•

•

•

•

•

~v

Figure 2.3: A tight coherent subdivision of the 2-dimensional permutahedron and
its dual cell decomposition.

By definition, the coherent subdivision π(Fφ) of P is given by union of the
polytopes (F + G)/2, for all the pairs of faces (F,G) ∈ Fφ. In the case where
P is full-dimensional, the dual cell decomposition of π(Fφ) is then isomorphic to
(NP + ε~v) ∩NP , see Figure 2.3.

Remark 2.5. In the case of the simplices, one recovers via Corollary 2.4 the classical
equivalence between the cup product on the simplicial cochains of a triangulation
of a manifold and the intersection pairing on cellular chains, as described by M.
Abouzaid in [Abo09, Appendix E]. We denote by (ei)1≤i≤n the standard basis of Rn

and we set e0 := 0. Let us consider the following full-dimensional realization of the
n-simplex

∆n := conv({ei | 0 ≤ i ≤ n}) .
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The rays of the normal fan N4n are generated by the vectors {−ei | 1 ≤ i ≤ n}
and (1, . . . , 1). We fix some ε > 0, and define ~v = (ε/n, . . . , ε/2, ε). Then, [Abo09,
Lemma E.4] shows that the non-empty dimension 0 intersections ofN∆n∩(N4n−ε~v)
coincide with the terms in the formula for the Alexander-Whitney map. By means
of Corollary 2.4, this is exactly what we would obtain by proving that ~v induces a
tight coherent subdivision of ∆n.

We aim now at giving a geometric meaning to the cone Cone(−NP (F )∪NP (G))
that appears in Proposition 2.3. We denote by P̊ the relative interior of a polytope
P , that is the interior of P with respect to its embedding into its affine hull.

Lemma 2.6. Let P,Q ⊂ Rn be two polytopes. There is a bijection

L(P ∩Q) ∼= {(F,G) ∈ L(P )× L(Q) | F̊ ∩ G̊ 6= ∅} .

Moreover, for any face F ∩G ∈ L(P ∩Q), we have

NP∩Q(F ∩G) = Cone(NP (F ) ∪NQ(G)) .

Proof. Any polytope P ⊂ Rn is a bounded intersection of facet-defining closed
halfspaces, one for each facet of P , and of the affine hull of P . Each halfspace has
a support hyperplane. Let x be a point in the interior of a face of P ∩ Q. Then x
is in the support hyperplanes Hi of P for a certain subset I and also in the support
hyperplanes Hj of Q for a certain subset J . Thus x is in the face F of P defined
by the Hi and in the face G of Q defined by the Hj. For the second part of the
statement, we observe that the normal cone NP (F ) of a face F is spanned by the
normal vectors of the support hyperplanes defining that face and any basis of the
orthogonal complement of P in Rn, and the result follows.

Definition 2.7. Let P ⊂ Rn be a polytope. For z ∈ P , we denote by ρzP := 2z−P
the reflection of P with respect to z, see Figure 2.4.

Proposition 2.8. Let P ⊂ Rn be a polytope, and let F,G be two faces of P . For
any z, z′ ∈ (F̊ + G̊)/2, we have

NP∩ρzP (G ∩ ρzF ) = NP∩ρz′P (G ∩ ρz′F ) = Cone(−NP (F ) ∪NP (G)) .

Proof. The result follows directly from the application of Lemma 2.6 to the inter-
section P ∩ ρzP , and the fact that for any face F of P and any z ∈ P we have
NρzP (ρzF ) = −NP (F ).

Corollary 2.9. Let P ⊂ Rn be a polytope, let ~v ∈ Rn. For two faces F,G of P , we
have

(F,G) ∈ Fφ ⇐⇒ ∀z ∈ F̊+G̊
2
, ~v ∈ NP∩ρzP (G ∩ ρzF )

⇐⇒ ∃z ∈ F̊+G̊
2
, ~v ∈ NP∩ρzP (G ∩ ρzF ) .

Proof. The result is obtained by combining Propositions 2.3 and 2.8.
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Figure 2.4: A 3-dimensional permutahedron P , its reflection ρzP and the intersection
P ∩ ρzP .

2.2.3 Pointwise description of the diagonal

We are interested in answering the following question: which choice of vector ~v gives
a tight coherent subdivision of P?

Definition 2.10 (Quasi-oriented polytope). A polytope P ⊂ Rn is quasi-oriented
by ~v ∈ Rn if the linear form 〈−, ~v〉 has a unique minimal element bot(P ) and a
unique maximal element top(P ) in P .

Definition 2.11 (Oriented polytope). A polytope P ⊂ Rn is oriented by ~v ∈ Rn if
~v is not perpendicular to any edge of P .

An orientation vector induces a poset on the vertices of P , for which the oriented
1-skeleton of P is the Hasse diagram. Dually, it corresponds to a poset structure
on the maximal cones of the normal fan NP . We observe that if P is oriented
by ~v, then so is any face of P . Any oriented polytope is quasi-oriented, but the
converse in not true in general. Consider the 3-dimensional cross-polytope ♦3 :=
conv(e1,−e1, e2,−e2, e3,−e3), and choose ~v := e3. Then, (♦3, ~v) is quasi-oriented but
not oriented, since ~v is perpendicular to the four edges contained in the xy-plane.

Definition 2.12 (Positively and quasi-positively oriented polytope). A polytope
P ⊂ Rn is positively oriented (resp. quasi-positively oriented) by ~v ∈ Rn if for any
z ∈ P , the intersection P ∩ ρzP is oriented (resp. quasi-oriented) by ~v.

Any positively oriented polytope is quasi-positively oriented, but the converse is
not true in general, see Example 2.15. We note that any quasi-positively oriented
polytope is also oriented. To see this, let e be an edge from a vertex x to a vertex y
in P , and set z := (x + y)/2. Then P ∩ ρzP = e is quasi-oriented by ~v, so ~v is not
perpendicular to e.
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Proposition 2.13. Let P be a polytope. Then,

(P,~v) is quasi-positively oriented ⇐⇒ π(Fφ) is tight.

Proof. We read the proof of [MTTV21, Proposition 5] with a new perspective. We
have that π(Fφ) is tight if and only if for any z ∈ P , the fiber π−1(z) = {(x, y) ∈
P × P | x + y = 2z} admits a unique minimal element with respect to φ. Since
the sum of x + y is constant, φ(x, y) is minimized in π−1(z) if and only if 〈x,~v〉 is
minimized and 〈y,~v〉 is maximized. On both coordinates, π−1(z) projects down to
the intersection P ∩ρzP . So, the fiber π−1(z) admits a unique minimal element with
respect to φ if and only if P ∩ ρzP admits a unique pair of minimal and maximal
elements with respect to 〈−, ~v〉.

In summary, we have the chain of implications showed in Figure 2.5.

pos. oriented =⇒ quasi-pos. oriented =⇒ oriented =⇒ quasi oriented

hyperplane tight coherent poset bot and top
arrangement subdivision on vertices

Figure 2.5: The different notions of orientation and their associated properties.

In the case where (P,~v) is quasi-positively oriented, the proof of Proposition 2.13
gives the following pointwise description of 4(P,~v).

Proposition 2.14 (Bot-top diagonal). The map4(P,~v) associated to a quasi-positively
oriented polytope (P,~v) admits the following pointwise description

4(P,~v) : P → P × P
z 7→

(
bot(P ∩ ρzP ), top(P ∩ ρzP )

)
.

We call it the bot-top diagonal of (P,~v).

Example 2.15. We consider the pyramid

P = conv((0, 0, 1), (−1, 0, 0), (0, 1.5,−0.5), (0,−1.5,−0.5), (3, 0,−2)) ⊂ R3 ,

shown in Figure 2.6, and we set ~v = (0, 0, 1). We claim that π(Fφ) is tight while
(P,~v) is not positively oriented. For the second assertion, we let z = 0 and we
observe that four edges of P ∩ ρzP lie in the xy plane and are thus perpendicular
to ~v. For the first assertion, we first observe that directions of the rays of NP are
given by (1, 1, 1), (−1, 1, 1), (−1,−1, 1), (1,−1, 1) and (−0.5, 0,−1). Then, one can
compute that for any pair of faces (F,G) with dimF + dimG > dimP , we have
~v /∈ Cone(−NP (F ) ∪NP (G)). We conclude with Proposition 2.3.
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Figure 2.6: The pyramid P described in Example 2.15 is quasi-positively oriented
by ~v = (0, 0, 1) but not positively oriented.

2.2.4 Poset description of the diagonal

Proposition 2.16. Let (P,~v) be an oriented polytope. Then,

(F,G) ∈ Fφ =⇒ top(F ) ≤ bot(G) .

Proof. Corollary 2.4 asserts that (F,G) ∈ Fφ ⇐⇒ ∀ε > 0 ∃x ∈ NP (F ) such that
x+ ε~v ∈ NP (G).

1. Suppose that F and G are vertices of P . Let ε > 0 and choose x ∈ NP (F ) such
that x + ε~v ∈ NP (G). We consider the segment ` = {x + t~v | t ∈ [0, ε]} and
the linearly ordered set of maximal cones of NP crossed by `. They determine
a sequence of vertices F = F1, F2, . . . , Fk = G. We claim that Fi ≤ Fi+1 for
all i. Indeed, when ` goes from NP (Fi) to NP (Fi+1), it intersects the interior
of a cone NP (E), where E is a face with dim(E) ≥ 1. Since ~v orients P , this
intersection is a point. So we must have Fi = bot(E) and Fi+1 = top(E).

2. For general faces F and G, we have (F,G) ∈ Fφ =⇒ (top(F ), bot(G)) ∈ Fφ
and we can apply the preceding point.

Applying the present method to the cubes, the standard simplices and the asso-
ciahedra as in [MTTV21, Example 1 and Theorem 2], one obtains a characterization
of the form (F,G) ∈ Fφ ⇐⇒ top(F ) ≤ bot(G). Proposition 2.16 shows that these
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are the "simplest" possible formulas. In Section 3.3 we will study a family of ex-
amples where these formulas are no longer sufficient to characterize the image of the
diagonal.

2.2.5 Fundamental hyperplane arrangement and universal for-
mula

We now restrict our attention to a positively oriented polytope (P,~v). For such a
polytope, the orientation vector ~v does not live in any linear space orthogonal to
an edge of P ∩ ρzP , for any z ∈ P . That is, ~v lives in a chamber of the following
hyperplane arrangement.

Definition 2.17 (Fundamental hyperplane arrangement). Let P ⊂ Rn be a polytope.
An edge hyperplane of P is an hyperplane in Rn which is orthogonal to the direction
of an edge of P ∩ ρzP for some z ∈ P . The fundamental hyperplane arrangement
HP of P is the collection of all edge hyperplanes of P .

Here, a direction of an edge is an arbitrary choice of vector spanning its affine
hull. The fundamental hyperplane arrangement is central, i.e. every hyperplane
H ∈ HP contains the origin. We call the interior of a maximal cone in HP a
chamber. We observe that HP , considered as a fan, refines both the normal fan NP
of P and its opposite −NP .
Example 2.18 (The cubes). The fundamental hyperplane arrangement of the n-
dimensional cube Cn = [0, 1]n ⊂ Rn is the set of coordinate hyperplanes HCn =
{xi = 0 | 1 ≤ i ≤ n}. In this case, for any z ∈ Cn, the edges of Cn ∩ ρzCn are all
parallel to some edges of Cn, so HCn is just the set of hyperplanes perpendicular to
the directions of the edges of Cn.

Example 2.19 (The simplices). The fundamental hyperplane arrangement of the n-
dimensional standard simplex ∆n = {(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+xn = 1} (which
is distinct from the realization considered in Remark 2.5) is the braid arrangement
H∆n = {xi = xj | 0 ≤ i < j ≤ n}. Here again, it corresponds to the set of
hyperplanes perpendicular to the directions of the edges of ∆n.

Example 2.20 (The associahedra). The fundamental hyperplane arrangement of
the Loday realization of the n-dimensional associahedron Kn ⊂ Rn+1 is the re-
finement of the braid arrangement made of the hyperplanes defined by xi1 + xi3 +
· · · + xi2k−1

= xi2 + xi4 + · · · + xi2k , where 1 ≤ i1 < i2 < · · · < i2k ≤ n + 1 and
1 ≤ k ≤ bn+1

2
c. In contrast with the preceding examples, new directions of edges

appear when considering Kn ∩ ρzKn for some z ∈ Kn, see [MTTV21, Proposition
2].

The following proposition is useful for computing the fundamental hyperplane
arrangement of a polytope.
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Proposition 2.21. Let P be a polytope. There is a surjection{
pair of faces (F,G) of P

with codim(Cone(−NP (F ) ∪NP (G))) = 1

}
�

{
direction ~d of an edge of P ∩ ρzP

for some z ∈ P

}/
∼
,

where we identify in the target two directions which are scalar multiples of each
other.

Proof. Let (F,G) be a pair of faces of P such that codim(Cone(−NP (F )∪NP (G)) =
1. By Proposition 2.8, this condition is equivalent to codim(NP∩ρzP (G∩ ρzF )) = 1,
where z ∈ (F̊ + G̊)/2. Thus, a pair of faces satisfying this codimension 1 condition
defines an edge G ∩ ρzF of P ∩ ρzP and the application above is well-defined. Now
by Lemma 2.6, any edge of P ∩ ρzP arises as the intersection G∩ ρzF for some pair
of faces (F,G) ∈ P × P , so the application is also surjective.

Now we aim at extracting a combinatorial formula for the cellular image of the
diagonal from the geometry of the fundamental hyperplane arrangement.

Proposition 2.22 (Chamber invariance). Let P ⊂ Rn be a polytope. Two vectors ~v
and ~w belonging to the same chamber of HP define the same bot-top diagonal, that
is

4(P,~v) = 4(P,~w) .

Proof. Suppose that ~v and ~w are such that 4(P,~v) 6= 4(P,~w). This means that there
is a point z ∈ P for which bot~v(P ∩ ρzP ) 6= bot~w(P ∩ ρzP ) or top~v(P ∩ ρzP ) 6=
top~w(P ∩ ρzP ). So, there is an edge e of P ∩ ρzP such that ~v and ~w determine
two different orientations of e. If e has direction ~d, this means that 〈~d,~v〉 and
〈~d, ~w〉 have opposite signs. Thus ~v and ~w lie on opposite sides of the hyperplane
H = {x ∈ Rn| 〈~d, x〉 = 0} ∈ HP .

Remark 2.23. We note that the converse of Proposition 2.22 does not hold in gen-
eral, that is, two distinct chambers in HP can determine the same bot-top diagonal.
This is due to the fact that the condition of being positively oriented is strictly
stronger than being quasi-positively oriented.

For a vector ~d ∈ Rn defining an hyperplane H = {x ∈ Rn | 〈~d, x〉 = c ∈ R}, we
set the notation H+ := {x ∈ Rn | 〈~d, x〉 > c}.

Definition 2.24 (Outward pointing normal vector). Let F be a facet of a polytope
P ⊂ Rn. A vector ~d ∈ Rn is said to be an outward pointing normal vector for F if
it defines an hyperplane H such that P ∩H = F and P ∩H+ = ∅.
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Recall that a face F of a polytope P is equal to the intersection of a family
of facets {Fi}. If we choose an outward pointing normal vector ~Fi for each facet
Fi, then the normal cone of F is spanned by these normal vectors together with a
basis {bk} of the orthogonal complement of the affine hull of P in Rn, i.e. we have
NP (F ) = Cone({~Fi} ∪ {bk,−bk}).

For a pair of faces F,G of P , let HP (F,G) denote the set of hyperplanes H ∈ HP

such that H intersects the interior of a codimension 1 face of Cone(−NP (F ) ∪
NP (G)).

Theorem 2.25 (Universal formula for the bot-top diagonal). Let (P,~v) be a pos-
itively oriented polytope in Rn. For each H ∈ HP , we choose a normal vector ~dH
such that 〈~dH , ~v〉 > 0. We have

(F,G) ∈ Im4(P,~v)

⇐⇒ ∀H ∈ HP (F,G), ∃i, 〈~Fi, ~dH〉 < 0 or ∃j, 〈~Gj, ~dH〉 > 0 (2.1)

⇐⇒ ∀H ∈ HP , ∃i, 〈~Fi, ~dH〉 < 0 or ∃j, 〈~Gj, ~dH〉 > 0 . (2.2)

Proof. Let us write Cone(−F,G) := Cone(−NP (F ) ∪ NP (G)) = Cone({−~Fi} ∪
{~Gj} ∪ {bk,−bk}) and let us denote by C the chamber of HP containing ~v. Com-
bining Propositions 2.3 and 2.22 we have that (F,G) ∈ Im4(P,~v) ⇐⇒ ~v ∈
Cone(−F,G) ⇐⇒ C ⊂ Cone(−F,G). Moreover, we recall from Proposition 2.8
that we have

Cone(−F,G) = NP∩ρzP (G ∩ ρzF )

for any z ∈ (F̊ + G̊)/2. We observe that since every ~dH lives in the affine hull of P ,
we have 〈~dH , bk〉 = 0 for all H and for all k, so we can focus on the families of ~Fi’s
and ~Gj’s and distinguish two cases.

If dim(G ∩ ρzF ) ≥ 1, both sides of (1) are false and thus equivalent. Indeed,
in this case Cone(−F,G) is not full-dimensional, so it cannot contain C, which is
full-dimensional. Moreover, Cone(−F,G) belongs to all hyperplanes H ∈ HP (F,G),
which implies 〈~Fi, ~dH〉 = 〈~Gj, ~dH〉 = 0 for all i, j. The same argument applies to (2),
since HP (F,G) ⊂ HP .

Suppose now that dim(G∩ρzF ) = 0. In this case Cone(−F,G) is full-dimensional
and its bounding hyperplanes are precisely the hyperplanes perpendicular to the
edges of P∩ρzP which are adjacent to G∩ρzF , that is, the hyperplanes ofHP (F,G).
By definition, we have C ⊂ H+ for all H ∈ HP . We examine the first implication
( =⇒ ) of (2). Suppose that (F,G) ∈ Im4(P,~v), and let H ∈ HP . Since C is
full-dimensional, we have C ⊂ Cone(−F,G) =⇒ Cone(−F,G) ∩ H+ 6= ∅. In
particular, there exists an outward pointing normal vector in Cone(−F,G) which
has a strictly positive scalar product with ~dH , hence the right hand side of (2). This
implies the right hand side of (1). Now we prove the reverse implication ( ⇐= )
of (1) by contraposition. If C 6⊂ Cone(−F,G), then Proposition 2.22 implies that



2.2. CELLULAR APPROXIMATION OF THE DIAGONAL 39

C ∩ Cone(−F,G) = ∅. In this case, there exists an H ∈ HP (F,G) such that
Cone(−F,G) ⊂ Rn \H+. Indeed, if we had Cone(−F,G) = ∩H∈HP (F,G)H+, where
H+ := {x ∈ Rn| 〈~dH , x〉 ≥ 0}, then we would have C = ∩H∈HP

H+ ⊂ Cone(−F,G)
which is impossible. So the scalar product of the spanning vector of any outward
pointing normal vector in Cone(−F,G) with ~dH has a nonpositive value.

In practice, one uses Theorem 2.25 by first computing the directions ~dH from
the normal fan of P , and then applying (2.2). The equivalence (2.1) is of a more
conceptual nature: it says that strictly speaking, all the hyperplanes of HP are not
needed in the computation of Im4(P,~v). However, computing the set of hyperplanes
HP (F,G) for a given pair of faces seems to be more complicated than applying (2.2),
both from the combinatorial and the computational points of view.

Example 2.26 (The cubes). The n-dimensional cube Cn = [0, 1]n ⊂ Rn is positively
oriented by the vector ~v = (1, . . . , 1). We choose as normal vectors ~dH the family
{ei | 1 ≤ i ≤ n}. Any pair of subsets K,L ⊂ {1, . . . , n} with K ∩ L = ∅ defines
a face F such that NCn(F ) = Cone({ek | k ∈ K} ∪ {−el | l ∈ L}). Theorem 2.25
says that (F,G) ∈ Im4(Cn,~v) if and only if for each 1 ≤ i ≤ n, either −ei ∈ NCn(F )
or ei ∈ NCn(G). Restricting our attention to pairs with dimF + dimG = n, we
obtain directly the families {~Fi = −ei | i ∈ I} and {~Gj = ej | j ∈ J} for partitions
I ∪ J = {1, . . . , n}, which define J.-P. Serre’s approximation of the diagonal.

Example 2.27 (The simplices). The n-dimensional standard simplex ∆n ⊂ Rn+1 is
positively oriented by any vector ~v with strictly increasing coordinates. We write
[n + 1] = {1, . . . , n + 1}. We choose as normal vectors ~dH the family {ej − ei | 1 ≤
i < j ≤ n + 1} and we set ~n = (1, . . . , 1). Any subset I ⊂ [n + 1] defines a face
F such that N∆n(F ) = Cone({−ej | j ∈ [n + 1] \ I} ∪ {~n,−~n}). Theorem 2.25
says that (F,G) ∈ Im4(∆n,~v) if and only if for each pair 1 ≤ i < j ≤ n + 1,
either −ej ∈ N∆n(F ) or −ei ∈ N∆n(G). Restricting our attention to pairs with
dimF + dimG = n, we obtain directly the families {~Fi = −ei | 1 ≤ i ≤ k} and
{~Gj = −ej | k ≤ j ≤ n + 1} for k ∈ [n + 1], which define the Alexander–Whitney
map.

The case of the associahedra will be treated in the same fashion in Section 3.3,
as a special case of Theorem 3.32.

2.2.6 Universal formula and refinement of normal fans

We consider polytopes related by refinement of their normal fans. We have in mind
applications to the operahedra in Section 3.3, and to generalized permutahedra in
forthcoming work. We recall that a fan G ′ refines a fan G, or that G coarsens G ′,
if every cone of G is the union of cones of G ′ and ∪C∈GC = ∪C′∈G′C ′, see [Zie95,
Lecture 7] for more details and examples.
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Definition 2.28 (Coarsening projection). Let P and Q be two polytopes in Rn such
that the normal fan of P refines the normal fan of Q. The coarsening projection
from P to Q is the application θ : L(P ) → L(Q) which sends a face F of P to the
face θ(F ) of Q whose normal cone NQ(θ(F )) is the minimal cone with respect to
inclusion which contains NP (F ).

Proposition 2.29. Let P and Q be two polytopes in Rn such that the normal fan of
P refines the normal fan of Q. Then, their fundamental hyperplane arrangements
satisfy HQ ⊂ HP .

Proof. Let H ∈ HQ. Let F,G be two faces of Q such that the intersection G ∩ ρzF
is an edge of Q ∩ ρzQ perpendicular to H, for any z ∈ (F̊ + G̊)/2. If we write
NQ(F ) = Cone({~Fi}i∈I) and NQ(G) = Cone({~Gj}j∈J), this means that a direction
~d of this edge is solution to the system of equations 〈~Fi, ~d〉 = 0 and 〈~Gj, ~d〉 = 0.
Now we choose any F ′ ∈ θ−1(F ) and G′ ∈ θ−1(G) such that dim(F ′) = dim(F )
and dim(G′) = dim(G). We can write the normal cones of F ′ and G′ as NP (F ′) =

Cone({~F ′k}k∈K) and NP (G′) = Cone({~G′l}l∈L) where for each k and l, we have
~F ′k =

∑
i∈I αi

~Fi and ~G′l =
∑

j∈J βj
~Gj with αi, βj ≥ 0 for all i, j. So, the direction ~d

is also solution to the system of equations 〈~F ′k, ~d〉 = 0 and 〈~G′l, ~d〉 = 0. Then, the
dimension assumption shows that for any w ∈ (F̊ ′+ G̊′)/2 the intersection G′∩ρwF ′
is an edge of P ∩ ρwP with direction ~d, and thus H ∈ HP .

Corollary 2.30. Suppose that the normal fan of P refines the normal fan of Q. If
P is positively oriented by ~v, then so is Q.

Proof. This is an immediate consequence of Proposition 2.29.

Proposition 2.31. Let P and Q be two polytopes in Rn such that the normal fan
of P refines the normal fan of Q, and suppose that they are both positively oriented
by the same vector ~v ∈ Rn. Then, the coarsening projection θ commutes with the
cellular maps 4(P,~v) and 4(Q,~v).

Proof. Let F be a face of Q. By definition of the coarsening projection θ, we have
that NQ(F ) = ∪F ′∈θ−1(F )NP (F ′). It follows that⋃

F ′∈θ−1(F )
G′∈θ−1(G)

Cone(−NP (F ′) ∪NP (G′)) = Cone(−NQ(F ) ∪NQ(G)) ,

from which we conclude by using Proposition 2.3.

Proposition 2.32. Let P and Q be two polytopes such that HQ ⊂ HP , and suppose
that they are both positively oriented by the same vector ~v. For each H ∈ HP , we
choose a normal vector ~dH such that 〈~dH , ~v〉 > 0. We have

(F,G) ∈ Im4(Q,~v) ⇐⇒ ∀H ∈ HP , ∃i, 〈~Fi, ~dH〉 < 0 or ∃j, 〈~Gj, ~dH〉 > 0 .
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Proof. We denote by CP (resp. CQ) the chamber of HP (resp. HQ) containing ~v.
Since HQ ⊂ HP , we have CP ⊂ CQ. As in the proof of Theorem 2.25, we write
Cone(−F,G) := Cone(−NQ(F ) ∪ NQ(G)) and we have (F,G) ∈ Im4(Q,~v) ⇐⇒
CQ ∩ Cone(−F,G) 6= ∅ ⇐⇒ CQ ⊂ Cone(−F,G). For the first implication ( =⇒ ),
suppose that there exists an H ∈ HP such that Cone(−F,G) ⊂ H− =: {x ∈
Rn| 〈~dH , x〉 ≤ 0}. Since CP ⊂ CQ ⊂ Cone(−F,G), we have CP ⊂ H−, which is
impossible. The reverse implication (⇐= ) follows immediately from Theorem 2.25
since HQ ⊂ HP .

One can thus compute the universal formula for a polytope P and apply itmutatis
mutandis to any polytope Q whose normal fans coarsens the one of P . Alternat-
ively, one can apply the coarsening projection via Proposition 2.31. Depending on
the polytopes under consideration, one approach or the other might give a simpler
combinatorial description.
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3.1 Introduction
As already mentioned the associahedra encode homotopy associative algebras, and
homotopy operads were defined by P. Van der Laan in [VdL03] as a multi-linear
generalization of homotopy associative algebras. This leads to thinking about a
multi-linear generalization of the associahedra, which encodes homotopy operads.
Such a generalization was provided by J. Obradović in [Obr19].

Associative algebras Operads

Associative alg. up to homotopy Operads up to homotopy

Associahedra Operahedra

Multi-linear operations

The second contribution of this thesis is to define Loday realizations of the op-
erahedra, the family of polytopes encoding homotopy operads, and to apply to
it the general theory developed in the first part. In contrast with existing realiza-
tions of the operahedra, these integer-coordinates realizations, which generalize J.-L.
Loday’s realizations of the associahedra [Lod04], present simple geometric properties
that ease calculations. They allow for the definition of a coherent family of cellular
approximations of the diagonal, which lead to a compatible topological cellular op-
erad structure on the family of Loday realizations of the operahedra. This is the first
topological cellular operad structure for this family of polytopes, which provides a
model of topological and algebraic operads up to homotopy (Theorem 3.55) and an
explicit functorial formula for their tensor product (Corollary 3.61). This formula
presents interesting combinatorial properties, and agrees with the magical formula
for the associahedra [MTTV21, Theorem 2].

In addition to the associahedra, the operahedra contain yet another important
family of polytopes: the permutahedra. The (n − 1)-dimensional standard permu-
tahedron is defined as the convex hull of all the permutations of {1, . . . , n}. Closely
related to various properties of the symmetric group, it has important applications
in algebraic topology, appearing in the study of iterated loop spaces [Mil66], En-
operads [Ber97] and topological Hochschild cohomology [MS03, KZ17].

In order to define a cellular approximation of the diagonal of the permutahedron,
we first have to compute its fundamental hyperplane arrangement (Theorem 3.22).
This new hyperplane arrangement refines the braid arrangement and deserves further
study. In contrast with the cases of the simplices, the cubes and the associahedra,
there are many distinct diagonals that agree with the natural order on the vertices,
in this case the weak Bruhat order. So, for the first time, one has to make a choice
of approximation. In the case of the operahedra, this choice is further restricted,
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but not completely determined, by requiring coherence with operadic composition,
see Proposition 3.51.

General geometric arguments show that a choice of approximation of the diagonal
for a polytope P gives a choice of approximation for any polytope Q whose normal
fan coarsens the one of P (Corollary 2.30). Moreover, the universal formula for the
diagonal of P applies mutatis mutandis to Q (Proposition 2.32). Since the normal
fan of any operahedron is refined by the normal fan of the permutahedron, we restrict
our attention to the latter. In fact, the preceding argument shows that the formula
obtained here applies immediately to all generalized permutahedra [Pos09], which
precisely are the polytopes whose normal fans coarsen the one of the permutahedron.

3.2 Realizations of the operahedra

In this section we define the operahedra, the family of polytopes that will be the
center of attention for the rest of the chapter. These polytopes range from the
associahedra to the permutohedra. Their face lattices are described by the com-
binatorics of planar nested trees. Via the line graph construction, these correspond
to tubed clawfree block graphs, and the operahedra are thus instances of graph-
associahedra [CD06]. We define integer-coordinate realizations of the operahedra
by the same procedure as for J.-L. Loday’s realizations of the associahedra [Lod04].
Their fundamental geometric properties are described in Proposition 3.15. The
standard weight realizations were already studied by V. Pilaud in [Pil13], but the
construction given here is different.

3.2.1 What is an operahedron?

Let us consider the set PTn of reduced planar rooted trees with n internal vertices,
for n ≥ 1, that is trees where each internal vertex is at least bivalent. We denote
the set of internal vertices of a tree t ∈ PTn by V (t) and its set of internal edges
by E(t), and we label them as pictured in Figure 3.1: starting from the root, we
traverse around the tree in clockwise direction, numbering a vertex (resp. an edge)
only the first time we see it.

The leaves and root (resp. the leaf edges and root edge) are not considered part
of the set V (t) (resp. E(t)), and from now on, the word "vertex" (resp. "edge")
will refer exclusively to internal vertices (resp. edges). Moreover, we will abuse
terminology and use the terms leaves and root, as well as the terms inputs and
output, to designate the leaf edges and root edge, respectively.

Any subset of edges N ⊂ E(t) defines a subgraph of t whose edges are N and
whose vertices are all the vertices adjacent to an edge in N . We call this graph the
closure of N .
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Figure 3.1: A tree t ∈ PT5 with our labeling conventions and one of its maximal
nestings.

Definition 3.1 (Nest). A nest of a tree t ∈ PTn is a non-empty set of edges
N ⊂ E(t) whose closure is a connected subgraph of t.

Every nest N thus defines a subtree t(N) of t by adjoining to its closure all the
edges, leaves or root adjacent to its vertices. We call it the induced subtree of N .

Definition 3.2 (Nesting). A nesting of a tree t ∈ PTn is a set N = {Ni}i∈I of
nests such that

1. the trivial nest E(t) is in N ,

2. for every pair of nests Ni 6= Nj, we have either Ni ( Nj, Nj ( Ni or Ni∩Nj =
∅, and

3. if Ni ∩Nj = ∅ then no edge of Ni is adjacent to an edge of Nj.

Two nests that satisfy Conditions (2) and (3) are said to be compatible. We
naturally represent a nesting by circling the closure of each nest as in Figure 3.1.
We denote by N (t) the set of nestings of a tree t. We notice that for a corolla
t ∈ PT1 we have N (t) = {∅}. We call nested tree a pair (t,N ) made up of a tree
and a nesting.

Definition 3.3 (Lattice of nestings). We denote by (N (t),⊂) the poset of nestings
of a tree t ∈ PTn ordered by inclusion, together with a maximal element.

Remark 3.4. As explained in detail in [War21, Section 3.4], a nesting of a tree t is
the same as a tubing [CD06, Definition 2.2] of the line graph [Har69, Chapter 8] of
the closure of E(t). Note that the leaves and the root are not taken into account,
so any tree t′ with the same internal structure as t has the same line graph.
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Definition 3.5 (Edge contraction). The contraction of an edge e connecting vertices
v1 and v2 consists in deleting e and collapsing v1 and v2 to a new vertex v having
as inputs the union of the inputs of v1 and v2.

1

2

3

4 5

−→
1

2

3

Figure 3.2: Contraction of the edges in a nest.

We observe that trees are stable under edge contraction. Given a nested tree
(t,N ), the contraction of a nest N ∈ N consists in the contraction of all the edges
of t(N), as pictured in Figure 3.2.

Definition 3.6 (Maximal nesting). A nesting is maximal if it has maximal cardin-
ality.

We denote by MN (t) ⊂ N (t) the set of maximal nestings. If t ∈ PTn and
N ∈MN (t), we have |N | = |E(t)| = n− 1. We call fully nested tree a nested tree
(t,N ) where N is maximal.

Definition 3.7. For any subset of edges S ⊂ E(t) of a nested tree (t,N ), we denote
by N (S) the set of nests of N containing S.

By definition of a nesting, the set N (e) is totally ordered by inclusion, for any
edge e ∈ E(t). For a maximal nesting N ∈ MN (t), the assignment e 7→ minN (e)
defines a bijection between E(t) and N .

Definition 3.8 (Poset of maximal nestings). We denote by (MN (t), <) the poset
generated by the transitive closure of the covering relations

t1

t2

t3

≺

t1

t2

t3

and
t1

t3t2 ≺
t1

t3t2
,

where t1, t2 and t3 are trees.

On the set of linear trees, i.e. trees where each vertex is connected to at most
two edges, this order relation specializes to the Tamari order [Tam51]. This can be
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seen via the bijection between the set of maximal nestings of a linear tree with n
vertices and the set of planar binary trees with n leaves shown in Figure 3.3.

2

3

1 ←→

3

2

1

[ 2 1 3 4 ]←→
1

2 3
4

Figure 3.3: Bijections between maximal nestings of a linear tree and planar binary
trees and between maximal nestings of a 2-leveled tree and permutations.

On the set of 2-leveled trees, i.e. trees where all the edges are adjacent to the
same vertex, this order specializes to the weak Bruhat order. This can be seen via
the bijection between the set of maximal nestings of a 2-leveled tree with n + 1
vertices and the elements of the symmetric group of order n shown in Figure 3.3.
For a 2-leveled tree t ∈ PTn+1 and a maximal nesting N ∈ MN (t), we construct
a permutation σ ∈ Sn in the following way. First, for each i ∈ E(t) we write
Ni := minN (i) ∈ N . Then, the image of the permutation σ is the unique ordered
sequence (σ(1), . . . , σ(n)) such that |Nσ(j)| < |Nσ(j+1)| for all j ∈ {1, . . . , n− 1}. A
covering relation in Definition 3.8 between two maximal nestings N and N ′ then
corresponds precisely to a covering relation of the weak Bruhat order between the
associated permutations σ and σ′.

Definition 3.9 (Operahedron). An operahedron is a polytope whose face lattice is
isomorphic to the dual (N (t),⊂op) of the lattice of nestings of a planar tree t ∈ PTn,
for any n ≥ 1.

The operahedron corresponding to a tree t ∈ PTn is of dimension n − 2 (by
convention, the empty set has dimension -1). The face corresponding to a nested tree
(t,N ) has codimension |N |−1, the number of non-trivial nests ofN . The oriented 1-
skeleton of an operahedron gives the Hasse diagram of the poset of maximal nestings
(MN (t), <).

Remark 3.10. Following Remark 3.4, one can see that the operahedra are a special
class of graph-associahedra, as defined in [CD06]: they are associated to line graphs
of trees, that is, clawfree block graphs [Har69, Theorem 8.5]. Hence they are also a
special class of hypergraph polytopes as defined in [DP11].

Remark 3.11. It would be interesting to know whether or not the posets (MN (t), <
) are lattices. As studied in [BM21], the poset of maximal tubings of a graph do not
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form a lattice in general. For linear and 2-leveled trees, we have lattices isomorphic to
the Tamari and weak Bruhat order lattices, respectively. For the other operahedra,
comparison with the calculations of [BM21, Section 6.1] shows that we indeed have
lattices up to dimension 3.

3.2.2 Loday realizations of the operahedra

Definition 3.12 (Weighted fully nested tree). A weighted fully nested tree is a
triple (t,N , ω) made up of a fully nested tree with n vertices together with a weight
ω = (ω1, . . . , ωn) ∈ Zn>0. We say that the weight ω has length n.

Let us fix a weighted fully nested tree (t,N , ω). For any edge i ∈ E(t), we
consider the two subtrees t1 and t2 of t(minN (i)) such that i is the root of t1 and a
leaf of t2. In other words, t1 and t2 are obtained by cutting the tree t(minN (i)) at
the edge i. We define the two sums

αi :=
∑

j∈V (t1)

ωj and βi :=
∑

j∈V (t2)

ωj .

Multiplying these two numbers together for each edge of t, we obtain the following
point

M(t,N , ω) :=
(
α1β1, α2β2, . . . , αn−1βn−1

)
∈ Zn−1 .

Remark 3.13. We will use the notations αi and βi for brevity, even though these
numbers depend on the tree t, the nesting N and the weight ω. This dependence
will be implicit but should be clear from the context.

Definition 3.14 (Loday realization of the operahedra). For any n ≥ 1, and for any
tree t ∈ PTn, the Loday realization of weight ω of the operahedron is the polytope

P(t,ω) := conv
{
M(t,N , ω) | N ∈ MN (t)

}
⊂ Rn−1 .

The Loday realization of the operahedron associated to the standard weight
(1, . . . , 1) is simply denoted by Pt. Some three-dimensional examples are shown in
Figure 3.4. For any corolla t ∈ PT1, we adopt the following convention: the polytope
P(t,ω), with weight ω = (ω1) of length 1, is made up of one point in 0-dimensional
space.

The following proposition summarizes the fundamental properties of Loday real-
izations of the operahedra and show in particular that they are indeed realizations of
the operahedra. In the case of standard weight realizations, it should be compared
with [Pil13, Theorem 56].

Proposition 3.15. For any tree t ∈ PTn and for any weight ω of length n, the
Loday realization of the operahedron P(t,ω) satisfies the following properties.
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Figure 3.4: Standard weight Loday realizations of some 3-dimensional operahedra,
from the associahedron (left) to the permutahedron (right).

1. It is contained in the hyperplane with equation∑
i∈E(t)

xi =
∑

k,`∈V (t)
k<`

ωkωl .

2. Let N be a non-trivial nest of t. For any maximal nesting N , the point
M(t,N , ω) is contained in the half-space defined by the inequality∑

i∈E(t(N))

xi ≥
∑

k,`∈V (t(N))
k<`

ωkωl ,

with equality if and only if N ∈ N .

3. The polytope P(t,ω) is the intersection of the hyperplane of (1) and the half-
spaces of (2).

4. The face lattice (L(P(t,ω)) ,⊂) is isomorphic to the dual of the lattice of nestings
(N (t) ,⊂op).

5. Any face of a Loday realization of an operahedron is isomorphic to a product
of Loday realizations of operahedra of lower dimension, via a permutation of
coordinates.

Proof.

1. We show that every nest N of a maximal nesting N satisfies the equation∑
i∈E(t(N))

αiβi =
∑

k,`∈V (t(N))
k<`

ωkωl ,

by induction on the cardinality of N . The case when |N | = 1 is clear. We
suppose that every nest N ∈ N with 1 ≤ |N | ≤ m − 1 satisfies the equation
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above. We consider now a nest N with |N | = m ≥ 2. We select j ∈ N the
unique edge such that N = minN (j). Denoting by t1 and t2 the two subtrees
of t(N) having j respectively as a root and a leaf, we have

∑
i∈E(t(N))

αiβi = αjβj +
∑

i∈E(t1)

αiβi +
∑

i∈E(t2)

αiβi

=

 ∑
k∈V (t1)

ωk

 ∑
`∈V (t2)

ω`

+
∑

k,`∈V (t1)
k<`

ωkωl +
∑

k,`∈V (t2)
k<`

ωkωl

=
∑

k,`∈V (t(N))
k<`

ωkωl .

Taking the trivial nest N = E(t), which is contained in every maximal nesting,
we obtain that every point M(t,N , ω) is contained in the hyperplane of (1).
By convexity, the same is true for the entire polytope.

2. The proof of Point (1) shows that if the nest N is in N , then

∑
i∈E(t(N))

αiβi =
∑

k,`∈V (t(N))
k<`

ωkωl .

Let us show that every nest N /∈ N satisfies the strict inequality∑
i∈E(t(N))

αiβi >
∑

k,`∈V (t(N))
k<`

ωkωl ,

by induction on the cardinality of N . The case when |N | = 1 is clear. We
suppose that every nest N /∈ N with 1 ≤ |N | ≤ m − 1 satisfies the strict
inequality above. We consider now a nest N /∈ N with |N | = m ≥ 2. We
select j the unique edge such that minN (j) = minN (N). It is clear that
this edge exists and is unique. We denote by t1 and t2 the two subtrees of
t(minN (j)) having j respectively as a root and a leaf.

If we suppose that j /∈ N , then N ⊂ E(t1) or N ⊂ E(t2) which contradicts
the assumption that minN (j) = minN (N). So we have j ∈ N . We denote
by t′1 and t′2 the two subtrees of t(N) having j respectively as a root and a
leaf. At least one of the inclusions E(t′1) ⊂ E(t1) or E(t′2) ⊂ E(t2) has to be



52 CHAPTER 3. THE DIAGONAL OF THE OPERAHEDRA

strict, otherwise we would have N = minN (N) ∈ N . Thus we have∑
i∈E(t(N))

αiβi = αjβj +
∑

i∈E(t′1)

αiβi +
∑

i∈E(t′2)

αiβi

≥

 ∑
k∈V (t1)

ωk

 ∑
`∈V (t2)

ω`

+
∑

k,`∈V (t′1)
k<`

ωkωl +
∑

k,`∈V (t′2)
k<`

ωkωl

>

 ∑
k∈V (t′1)

ωk

 ∑
`∈V (t′2)

ω`

+
∑

k,`∈V (t′1)
k<`

ωkωl +
∑

k,`∈V (t′2)
k<`

ωkωl

=
∑

k,`∈V (t(N))
k<`

ωkωl .

3. Let us denote by P the polytope defined by the intersection of the hyperplane
of (1) and the half-spaces of (2). We show that P(t,ω) = P . The first inclusion
(⊂) is obvious. For the reverse inclusion, we observe first that the equations
of Point (2), with equality, define the facets of P . Let x = (x1, . . . , xn−1) be
a point in the intersection of two facets F1 and F2 of P . We claim that the
associated nests N1 and N2 are compatible. We suppose to the contrary that
the nests N1 and N2 are not compatible. We are in one of the following two
situations. First, we suppose that N1∩N2 = ∅. We have by the proof of Point
(1) that∑

i∈E(t(N1∪N2))

xi =
∑

i∈E(t(N1))

xi +
∑

i∈E(t(N2))

xi

=
∑

k,`∈V (t(N1))
k<`

ωkωl +
∑

k,`∈V (t(N2))
k<`

ωkωl

<
∑

k,`∈V (t(N1))
k<`

ωkωl +
∑

k,`∈V (t(N2))
k<`

ωkωl +
∑

k∈V (t(N1))\V (t(N2))
`∈V (t(N2))\V (t(N1))

ωkωl

=
∑

k,`∈V (t(N1∪N2))
k<`

ωkωl ,

which contradicts the inequality of Point (2) associated to the nest N1 ∪ N2.
Second, we suppose that N1 ∩N2 6= ∅. In particular, since N1 and N2 are not
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compatible, we have N1 * N2 and N2 * N1. So, we have∑
i∈E(t(N1∩N2))

xi =
∑

i∈E(t(N1))

xi +
∑

i∈E(t(N2))

xi −
∑

i∈E(t(N1∪N2)

xi

≤
∑

k,`∈V (t(N1))
k<`

ωkωl +
∑

k,`∈V (t(N2))
k<`

ωkωl −
∑

k,`∈V (t(N1∪N2))
k<`

ωkωl

=
∑

k,`∈V (t(N1∩N2))
k<`

ωkωl −
∑

k∈V (t(N1))\V (t(N2))
`∈V (t(N2))\V (t(N1))

ωkωl

<
∑

k,`∈V (t(N1∩N2))
k<`

ωkωl ,

which contradicts the inequality of Point (2) associated to the nest N1 ∩ N2.
Thus, N1 and N2 must be compatible.

A vertex M of P is solution to a system of n−1 independent linear equations,
one of type (1) and n−2 of type (2). By the preceding argument, the associated
nests are compatible and assemble into a maximal nesting N of t. Also the
point M(t,N , ω) is solution to this system of equations, in virtue of Point (1)
and Point(2). Since the solution is unique, this implies M = M(t,N , ω) and
therefore P = P(t,ω).

4. Point (2) shows that the facets of P(t,ω) correspond bijectively to nestings
with only one non-trivial nest: the facet labeled by the non-trivial nest N
is the convex hull of the points M(t,N , ω) such that N ∈ N . Any face of
P(t,ω) of codimension k, with 0 ≤ k ≤ n − 2 is defined as the intersection
of k facets. The preceding description of facets gives that the set of faces
of codimension k is bijectively labeled by nestings with k non-trivial nests:
the face corresponding to such a nesting N is the convex hull of the points
M(t,N ′, ω) such that N ′ ⊂ N . With the top dimensional face labeled by the
trivial nest, the statement is proved.

5. The proof of the preceding point shows that it is enough to treat the case of
the facets. Let N be a nesting of t with only one non-trivial nest N . We
contract the nest N to obtain a new tree t. We define a weight ω on t as
follows. As a result of the contraction of N , the set V (t(N)) is reduced in t
to a single vertex j. We assign to this vertex the sum of the weights of the
vertices of N , that is,

ωj :=
∑

k∈V (t(N))

ωk .
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Each of the other vertices keeps its weight, only the label changes: for each
i 6= j in V (t), we define ωi := ω` for the corresponding vertex ` in V (t). We
also define a weight ω̃ on t(N), considered as an independent tree that we
denote by t̃. This weight is simply the restriction of ω to the vertices of t(N)
: for each i ∈ V (t̃), we define ω̃i := ω` for the corresponding vertex ` in V (t).

We write |E(t)| = p and |E(t̃)| = q and we renumber the edges of t̃ from p+ 1
to p+ q. We denote by σ : E(t)tE(t̃)→ E(t) the permutation mapping each
(just renumbered) edge of t and t̃ to its label in t. We obtain a (p, q)-shuffle.
We claim that the image of P(t,ω) × P(t̃,ω̃) ↪→ P(t,ω) under the isomorphism

Θ : Rp × Rq
∼=−→ Rn−1

(x1, . . . , xp)× (xp+1, . . . , xp+q) 7→ (xσ−1(1), . . . , xσ−1(n−1))

is equal to the facet defined by the weighted nested tree (t,N , ω). To see this,
we recall that the two polytopes P(t,ω) and P(t̃,ω̃) are defined by the equations∑

i∈E(t)

xi
(a)
=

∑
k,`∈V (t)
k<`

ωkωl and
∑
i∈E(t̃)

xi
(b)
=

∑
k,`∈V (t̃)
k<`

ω̃kω̃l ,

respectively, and observe that the image under Θ of the pair of equations
(a) + (b) and (b) consists exactly in the equations defining the facet labelled
by (t,N , ω).

Restricting to linear trees, we recover the weighted Loday realizations of the
associahedra of [MTTV21, Proposition 1]. Restricting to 2-leveled trees, we obtain
weighted realizations of the permutahedron. To end this section, let us point out
some geometric properties of the Loday realizations of the operahedra. They can be
visualized on the examples of Figure 3.4.

Corollary 3.16. For any tree t ∈ PTn and for any weight ω of length n, the
Loday realizations of the operahedron Pt and P(t,ω) satisfy the following geometric
properties.

1. The polytope P(t,ω) is obtained by successive truncations of a simplex.

2. The polytope P(t,ω) is obtained from the classical permutahedron by parallel
translation of its facets, i.e. it is a generalized permutahedron in the sense of
[Pos09].

3. The polytope Pt is obtained by deleting inequalities from the facet description of
the classical permutahedron, i.e. it is a removahedron in the sense of [Pil14].
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Proof. One can read off the normal fan of the operahedron P = P(t,ω) in Points
(1) and (2) of Proposition 3.15 as follows. A face F of codimension k of P is
determined by a nesting N = {Nj}1≤j≤k+1 of t, where Nk+1 is the trivial nest. For
any nest Nj ∈ N , we define its associated characteristic vector ~Nj which has a 1
in position i if i ∈ Nj and 0 otherwise. The normal cone of F is then given by
NP (F ) = Cone(− ~N1, . . . ,− ~Nk+1, ~Nk+1). If t is a 2-leveled tree, all the subsets of
edges define nests, and we have the normal fan of the permutahedron. If t is a tree
which is not a 2-leveled tree, only some subsets of edges define nests. Thus, we have
Points (2) and (3) above. For Point (1), we observe that the nests containing only
one edge of t define the normal fan of the standard simplex.

3.3 The diagonal of the operahedra

The main goal of this section is to compute the fundamental hyperplane arrange-
ment of the permutahedron which, as we shall see, turns out to be a refinement
of the braid arrangement. By the general theory of Section 2.2, any choice of a
chamber in this arrangement then gives a cellular approximation of the diagonal
of the permutahedron. Moreover, such a choice gives a cellular approximation of
the diagonal for every operahedron (in fact, any generalized permutahedra), as well
as an explicit combinatorial formula describing its cellular image. In contrast with
the cases of the simplices, the cubes, and the associahedra, the combinatorics of
the permutahedron are less constrained: many choices of chambers agree with the
weak Bruhat order on the vertices, and the condition top(F ) ≤ bot(G) is no longer
sufficient to characterize the image of the diagonal. We make a choice, motivated
by the operadic structure that will appear in the next section. The formula thus
obtained, which consists of complementary pairs of ordered partitions of {1, . . . , n},
has interesting combinatorial properties.

3.3.1 The fundamental hyperplane arrangement of the per-
mutahedra

Let us first recall from the proof of Corollary 3.16 above that a face F of codimension
k of the operahedron P = Pt is determined by a nesting N = {Nj}1≤j≤k+1 of t where
Nk+1 is the trivial nest. For any nest Nj ∈ N , we define its associated characteristic
vector ~Nj which has a 1 in position i if i ∈ Nj and 0 otherwise. The vectors − ~Nj,
1 ≤ j ≤ k are outward pointing normal vectors for the facets defining N , in the
sense of Definition 2.24. Together with the vector ~Nk+1, which forms a basis of the
orthogonal complement of the affine hull of P , they define the normal cone

NP (F ) = Cone
(
− ~N1, . . . ,− ~Nk,− ~Nk+1, ~Nk+1

)
.
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Definition 3.17 (Trinary and boolean vectors). We say that a vector ~v ∈ Rn−1 is
a trinary vector (resp. boolean) if its coordinates are 0, 1 or -1 (resp. 0 or 1).

Let us recall that two nests N1 and N2 are said to be compatible if they fulfill
Conditions (2) and (3) of Definition 3.2. Moreover, we say that they are linearly
independent if ~N1 and ~N2 are.

Proposition 3.18. Let t ∈ PTn and let us denote by P = Pt the standard weight
Loday realization of the operahedron. There is a surjection

a set of k compatible nests,
a set of l compatible nests,

with k + l = n− 3 and k, l ≥ 0 ,
mutually linearly independent and with the trivial nest


�

{
direction ~d of an edge

of P ∩ ρzP, for some z ∈ P

}/
∼

,

where two directions in the target are identified if they are a scalar multiple of each
other.

Proof. This follows from a direct application of Proposition 2.21.

Definition 3.19 (Support and length). The set of non-zero entries of a vector
~v ∈ Rn is called its support and the cardinality of this set is called its length.

Proposition 3.20 (Direction of the edges of P ∩ ρzP ). Let t ∈ PTn and let P = Pt
be the standard weight Loday realization of the operahedron. Then, representatives
for the equivalence classes of directions of the edges of P ∩ ρzP , for all z ∈ P , are
given by trinary vectors of Rn−1 with the same number of 1 and −1 and whose first
non-zero coordinate is 1.

Proof. The space of solutions of the system of linear equations in the left hand side
of the surjection in Proposition 3.18 is given by the kernel of the (n− 1)× (n− 1)
boolean matrix 

— ~N1 —

—
... —

— ~Nk+1 —
— ~N ′1 —

—
... —

— ~N ′l+1 —


, (3.1)

where the vectors are written horizontally. The k+ 1 first (resp. l+ 1 last) lines are
included in one another as elements of the boolean lattice {0, 1}n−1. We can thus
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substract the line of minimal length to the k (resp. l) others, then the line with
second minimal length to the k− 1 (resp. l− 1) others, and so on until we obtain a
family of k + 1 (resp. l + 1) lines with disjoint support, whose sum is (1, . . . , 1).

We claim that the system of linear equations obtained in this way is equivalent
to a system where the length of each line is at most 2, that is, where each line has a
1 in at most two places. We proceed by induction on n. The case n− 1 = 2 is clear.
Let n− 1 ≥ 3 and suppose that the result holds for every matrix of size k ≤ n− 2.
Let M be a matrix of size n− 1 filling the hypothesis.

1. Suppose that M contains a line of length 1, that is a line i with zeros every-
where except in place j. We can then reduce every non-zero element of the
jth column to 0 and apply the induction hypothesis to the (n − 2) × (n − 2)
matrix M ′ obtained from M by suppressing its ith line and jth column.

2. Suppose that no line of M has length 1.

(a) Suppose that k > l. The length of the sum of the k + 1 lines of the first
group is at least 2k + 2 > k + l + 2 = n− 1, which is impossible.

(b) Suppose that k = l. The length of the sum of the k + 1 lines of the first
group is, as for the l+ 1 lines of the second group, exactly 2k + 2, which
means that every line has length 2. This finishes the proof of the claim.

The kernel of (3.1) has dimension 1. Since the vector (1, . . . , 1) is in the system, the
coordinates of any non-zero vector in it sum to zero. By the preceding claim, it is
a scalar multiple of a trinary vector with the same number of 1 and −1, and whose
first non-zero coordinate is 1.

Corollary 3.21. Let t ∈ PTn be a 2-leveled tree, and let us denote by P = Pt the
standard weight Loday realization of the permutahedron. There is a bijection

{
direction ~d of an edge

of P ∩ ρzP, for some z ∈ P

}/
∼
∼=


trinary vector of Rn−1

with the same number of 1 and − 1
whose first non-zero coordinate is 1

 ,

where, in the first set, two linearly dependent directions are identified.

Proof. We prove that every trinary vector on the right-hand side is a representative
of some equivalence class of directions on the left-hand side. Let ~d ∈ Rn−1 be a
vector having p coordinates equal to 1, p coordinates equal to -1 and q coordinates
equal to 0 with p ≥ 1, q ≥ 0 and 2p + q = n − 1. We construct a system of nested
boolean vectors { ~N1, . . . , ~Np, ~N

′
1, . . . ,

~N ′q+p} that has ~d as solution. First label the
pairs of {1,−1} from left to right with {1, . . . , p} and the zeros, if there are any,
from left to right with {1, . . . , q}. Then,
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1. If p = 1, go directly to Step (2). If p ≥ 2, define p − 1 boolean vectors
{ ~N1, ~N2, . . . , ~Np−1} by the following: the vector ~Ni has as support the columns
of the ith first pairs of 1 and -1.

(2) If p = 1 and q = 0, go directly to Step (3). Otherwise, define q+p−1 boolean
vectors { ~N ′1, ~N ′2, . . . , ~N ′q+p−1} by the following: the vector ~N ′j has as support
the columns of the jth first zeros if j ≤ q; otherwise for j ≥ q + 1 (that is, if
p ≥ 2) it has as support the columns of the q zeros, the 1 of the first pair, the
-1 of the (j − q + 1)th pair, and if they exist (that is, if p ≥ 3 and j ≥ q + 2)
all the pairs from 2 to j − q.

(3) Set ~Np = ~N ′q+p = (1, . . . , 1) and add the two vectors to the system.

Choosing such vectors is possible since the permutahedron has as normal vectors to
its facets every possible non-zero boolean vector, see Point (2) of Proposition 3.15.
It is clear from the construction that the vector ~d is a basis of the space of solutions
to this system, see Figure 3.5.

~d =
(
1 0 −1 −1 1 0 0 −1 1

)


— ~N1 —
— ~N2 —
— ~N3 —
— ~N ′1 —
— ~N ′2 —
— ~N ′3 —
— ~N ′4 —
— ~N ′5 —
— ~N ′6 —


=



1 0 1 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 1 0 0
1 1 0 1 0 1 1 0 0
1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1



Figure 3.5: The result of the procedure described in the proof of Corollary 3.21 for
a vector ~d with p = 3 pairs of 1 and -1, and q = 3 zeros.

Among the fundamental hyperplane arrangements of the operahedra, the one
associated to the permutahedron plays a special role.

Theorem 3.22 (Fundamental hyperplane arrangement of the permutahedron). Let
n ≥ 1, and let us write

D(n) := {(I, J) | I, J ⊂ {1, . . . , n}, |I| = |J |, I ∩ J = ∅,min(I ∪ J) ∈ I}.
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The fundamental hyperplane arrangement of the (n−1)-dimensional permutahedron
in Rn is the set of hyperplanes defined by∑

i∈I

xi =
∑
j∈J

xj for all (I, J) ∈ D(n) .

Proof. This follows immediately from Corollary 3.21.

This hyperplane arrangement is a refinement of the braid arrangement, see Fig-
ure 3.6. Computations show that it is not a simplicial arrangement in R5, and it
seems likely that this is the case for all Rn, n ≥ 5.

Figure 3.6: The braid arrangement and fundamental hyperplane arrangement of the
permutohedron in R4, projected into R3.

Remark 3.23. The fundamental hyperplane arrangement appears as the normal fan
of a zonotope, which is itself a facet of the zonotope denoted H∞(d, 1) in [DPR21],
the facet contained in the hyperplane x1 + · · ·+xd = 0. This last zonotope is related
to matroid optimization [DMO18] and generalizes L. Billera’s White Whale [Bil18],
which has been the subject of active research in the recent years.

For a tree t, we denote by Ht the fundamental hyperplane arrangement of Pt.

Proposition 3.24. Let t, t′ ∈ PTn such that t′ is a 2-leveled tree. We have Ht ⊂ Ht′,
and if Pt′ is positively oriented by ~v, then so is Pt.

Proof. This is an immediate consequence of Proposition 3.20 and Corollary 3.21.
Alternatively, it is a special case of the general results Proposition 2.29 and Corol-
lary 2.30.
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Theorem 3.25. Let t ∈ PTn be a tree. Any vector ~v = (v1, . . . , vn−1) ∈ Rn−1

satisfying the equations ∑
i∈I

vi 6=
∑
j∈J

vj

for all (I, J) ∈ D(n− 1) defines a bot-top diagonal of Pt.

Proof. This follows directly from Proposition 3.24.

3.3.2 Universal formula for the operahedra

We restrict our attention to a certain class of orientation vectors.

Definition 3.26 (Well-oriented realization of the operahedron). Let t ∈ PTn be a
tree. A well-oriented realization of the operahedron is a positively oriented realiz-
ation which also induces the poset of maximal nestings (MN (t), <) on the set of
vertices.

Proposition 3.27. Let t ∈ PTn and let ω be a weight of length n. Any vector
~v ∈ Rn−1 with strictly decreasing coordinates induces the poset of maximal nestings
(MN (t), <) on the set of vertices of P(t,ω).

Proof. Let N and N ′ be two maximal nestings of t corresponding to a covering
relation N ≺ N ′. They differ only by a nest. We show that the corresponding edge
in P(t,ω) is of the form

−−−−−−−−−−−−−−−−→
M(t,N , ω)M(t,N ′, ω) = (0, . . . , 0, x, 0, . . . , 0,−x, 0, . . . , 0) (∗)

for some x > 0. We denote by N the unique nest of N \ N ′ and by N ′ the
unique nest of N ′ \ N . Let j and j′ be the two edges of t such that minN (j) =
N and minN ′(j′) = N ′, see Definition 3.7. Now, by the definition of the order on
the edges of t we have j < j′, see Figure 3.1 and Definition 3.8. We denote by α′iβ′i
the ith coordinate of the point M(t,N ′, ω). The fact that minN (i) = minN ′(i) for
all i 6= j, j′ implies that αiβi = α′iβ

′
i for all i 6= j, j′. We show that αjβj < α′jβ

′
j.

Since the nestings N and N ′ are maximal, we have minN (j′) = minN ′(j) and

αjβj =

 ∑
k∈V (t1)

ωk

 ∑
`∈V (t2)

ω`

 <

 ∑
k∈V (t1)

ωk

 ∑
`∈V (t2)

ω` +
∑

`∈V (t3)

ω`

 = α′jβ
′
j ,

where t1, t2 and t3 are trees with possibly only one vertex, see Definition 3.8.
Moreover, since

∑
i∈E(t) αiβi =

∑
i∈E(t) α

′
iβ
′
i is constant, we must have αjβj+αj′βj′ =

α′jβ
′
j + α′j′β

′
j′ . Defining x := αjβj − α′jβ

′
j we obtain α′j′β

′
j′ − αj′βj′ = −x, which

proves (∗). So
〈−−−−−−−−−−−−−−−−→
M(t,N , ω)M(t,N ′, ω), ~v

〉
= x(vj − vj′) > 0, and ~v induces the

poset of maximal nestings on the set of vertices.
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Remark 3.28. This poset and an orientation vector inducing it were studied in
more depth in [Pil13, Section 6]. In particular, it is shown that as soon as t is not a
linear tree, the poset (MN (t), <) is never a quotient of the weak order, see [Pil13,
Proposition 86].

Combining the results of Theorem 3.25 and Proposition 3.27, we obtain the
following one.

Corollary 3.29. Let t ∈ PTn be a tree and let ω be a weight of length n. Any
vector ~v = (v1, . . . , vn−1) ∈ Rn−1 satisfying v1 > v2 > · · · > vn−1 and

∑
i∈I vi 6=∑

j∈J vj, for all sets of indices (I, J) ∈ D(n− 1), induces a well-oriented realization
of the operahedron (P(t,ω), ~v).

Remark 3.30. Following Proposition 2.22, one can wonder how many distinct well-
oriented realizations of a given operahedron Pt exist, i.e. how many chambers in
Ht induce a well-oriented realization of Pt. For a linear tree, there is only one such
chamber [MTTV21, Proposition 3]. In the case of the permutahedra of dimensions
2, 3 and 4 there are respectively 1, 2 and 12 such chambers. It would be interesting
to count the number of chambers in higher dimensions.

Now, we make a coherent choice of cellular approximations of the diagonal of the
operahedra. By the preceding results, this amounts to a coherent choice of chambers
in the fundamental hyperplane arrangement of the permutahedra. We are motivated
by the perspective of endowing the family of standard weight Loday realizations of
the operahedra with a topological cellular operad structure, which will be done in
the next section.

Definition 3.31. A principal orientation vector is a vector ~v ∈ Rn−1 such that∑
i∈I vi >

∑
j∈J vj for all (I, J) ∈ D(n− 1).

Theorem 3.32 (Universal formula for the operahedra). Let t be a tree with n ver-
tices, let ω be a weight of length n, and let P = P(t,ω) denote the Loday realization
of the operahedron. Let ~v be a principal orientation vector. For F , G two faces of
P with associated nestings N and N ′, we have

(F,G) ∈ Im4(P,~v) ⇐⇒ ∀(I, J) ∈ D(n− 1), ∃N ∈ N , |N ∩ I| > |N ∩ J | or
∃N ′ ∈ N ′, |N ′ ∩ I| < |N ′ ∩ J | .

Proof. To any (I, J) ∈ D(n− 1), and thus to any hyperplane H in the fundamental
hyperplane arrangement of the permutohedron, we associate a normal vector ~dH ∈
Rn−1 by setting (dH)i = 1 for i ∈ I, (dH)j = −1 for j ∈ J and (dH)k = 0 otherwise.
Let us recall that the normal cone of a face F of P , defined by a nesting N =
{Ni}1≤i≤l+1, is given by NP (F ) = Cone(− ~N1, . . . ,− ~Nl,− ~Nl+1, ~Nl+1), where ~Nl+1 =
(1, . . . , 1) is the basis of the orthogonal complement of the affine hull of P . Using
Proposition 3.24, we can apply Proposition 2.32 and the result follows directly.
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Figure 3.7: Polytopal subdivisions of some 3-dimensional operahedra, from the as-
sociahedron (left) to the permutahedron (right), given by the universal formula.

Let us make explicit the image of the diagonal of the permutahedron in low
dimensions. The bijection between maximal nestings of a 2-leveled tree and per-
mutations pictured in Figure 3.3 extends in a straightforward manner to all ordered
partitions, and we use this more convenient labeling of the faces of the permutahed-
ron to write the image of the diagonal. We also restrict ourselves to the pairs (F,G)
such that dimF + dimG = dimP , since any other pair can be obtained from these
by taking faces. In dimension 1, 2, and 3, we get the following formulas:

4(P,~v)(12) = 1|2× 12 ∪ 12× 2|1

4(P,~v)(123) = 1|2|3× 123 ∪ 123× 3|2|1 ∪ 12|3× 2|13

∪ 13|2× 3|12 ∪ 2|13× 23|1 ∪ 1|23× 13|2

∪ 12|3× 23|1 ∪ 1|23× 3|12
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4(P,~v)(1234)

= 1|2|3|4× 1234 ∪ 1234× 4|3|2|1 ∪ 12|3|4× 2|134

∪ 134|2× 4|3|12 ∪ 12|3|4× 23|14 ∪ 14|23× 4|3|12

∪ 2|13|4× 23|14 ∪ 14|23× 4|13|2 ∪ 13|2|4× 3|124

∪ 124|3× 4|2|13 ∪ 1|23|4× 3|124 ∪ 124|3× 4|23|1

∪ 1|2|34× 124|3 ∪ 3|124× 34|2|1 ∪ 1|3|24× 134|2

∪ 2|134× 24|3|1 ∪ 1|23|4× 134|2 ∪ 2|134× 4|23|1

∪ 2|3|14× 234|1 ∪ 1|234× 14|3|2 ∪ 2|13|4× 234|1

∪ 1|234× 4|13|2 ∪ 12|3|4× 234|1 ∪ 1|234× 4|3|12

∪ 1|24|3× 14|23 ∪ 23|14× 3|24|1 ∪ 1|2|34× 14|23

∪ 23|14× 34|2|1 ∪ 1|23|4× 13|24 ∪ 24|13× 4|23|1

∪ 14|2|3× 4|123 ∪ 123|4× 3|2|14 ∪ 1|24|3× 4|123

∪ 123|4× 3|24|1 ∪ 1|2|34× 4|123 ∪ 123|4× 34|2|1

∪ 3|14|2× 34|12 ∪ 12|34× 2|14|3 ∪ 1|3|24× 34|12

∪ 12|34× 24|3|1 ∪ 13|4|2× 34|12 ∪ 12|34× 2|4|13

∪ 1|23|4× 34|12 ∪ 12|34× 4|23|1 ∪ 2|14|3× 24|13

∪ 13|24× 3|14|2 ∪ 12|4|3× 24|13 ∪ 13|24× 3|4|12

∪ 1|2|34× 24|13 ∪ 13|24× 34|2|1

The pairs in blue describe the image of the diagonal of the associahedron and the
pairs in bold belong to an operahedron which sits between the associahedron and the
permutahedron. The associated subdivisions of the three 3-dimensional polytopes
are shown in Figure 3.7. The number of pairs in the image of the diagonal of
the permutahedra of dimensions 0 to 7 are given by the sequence 1, 2, 8, 50, 432,
4802, 65536, which coincides with the beginning of the integer sequence A007334 in
[OEI21].

The condition top(F ) ≤ bot(G) of Proposition 2.16 characterizes completely
all the pairs in dimension 3, except eight of them: 12|34 × 2|4|13, 12|34 × 24|3|1,
1|2|34 × 24|13, 12|4|3 × 24|13, 13|24 × 3|4|12, 13|24 × 34|2|1, 1|3|24 × 34|12 and
13|4|2×34|12. In fact, the condition top(F ) ≤ bot(G) is equivalent to the conditions
in Theorem 3.32 for the pairs (I, J) of size |I| = |J | = 1.
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Proposition 3.33. For any pair of faces F,G of an (n− 1)-dimensional permuta-
hedron P ⊂ Rn, we have that

(∗) top(F ) ≤ bot(G) ⇐⇒ ∀1 ≤ i < j ≤ n− 1,∃N ∈ N , i ∈ N, j /∈ N or
∃N ′ ∈ N ′, i /∈ N ′, j ∈ N ′ .

Proof. We proceed in two steps.

1. Let us first prove the statement for F and G two vertices of P . They are
associated to ordered partitions of {1, . . . , n− 1}, from which one can extract
the nestings by reading the connected unions of blocs containing the leftmost
element. The condition on the right hand side of (∗) is then exactly the
condition that the set of inversions of F is contained in the set of inversions
of G, and thus that F ≤ G with respect to the weak Bruhat order.

2. Now let F and G be two faces of P that are not necessarily vertices. If they
satisfy the condition on the right hand side of (∗), then top(F ) and bot(G)
certainly do, so by the preceding point we have top(F ) ≤ bot(G). For the
reverse implication, suppose that we have top(F ) ≤ bot(G). Observe that
top(F ) is obtained from the ordered partition defining F by refining each bloc
in the following way: putting the elements of the bloc in strictly decreasing
order, and then making each of the elements into a new bloc. From this
description, it is clear that if i is to the left of j in top(F ) and i < j, then the
two must be in distinct blocs of F . Similarly, if i is to the right of j in bot(G)
and i < j, then the two must be in distinct blocs of G. Thus, F and G satisfy
the condition on the right hand side of (∗), which concludes the proof.

Remark 3.34. When computing Im4(P,~v), it appears that only a certain proportion
of the pairs (I, J) for |I| = |J | ≥ 2 are necessary. Is there a more "efficient" descrip-
tion of the diagonal? In particular, is there a "purely combinatorial" description in
terms of ordered partitions?

Remark 3.35. The diagonal of the permutahedron considered here differs from
that of [SU04], see Example 4 therein. In dimension 3 the two diagonals correspond
to the two chambers of the fundamental hyperplane arrangement respecting the
weak order, see Remark 3.30. It would be interesting to know if there is a choice
of chambers in all dimensions that recovers the diagonal of [SU04]. According to
[VJ07, Table 1], both diagonals have the same number of pairs in dimensions up to
7.

From the description of the diagonal of the permutohedron in terms of ordered
partitions or nestings of a 2-leveled tree, one obtains the description of the diagonal
of any operahedron by applying the coarsening projection of Definition 2.28.
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Proposition 3.36 (Coarsening projection for the operahedra). Let t, t′ ∈ PTn be
such that t′ is a 2-leveled tree but t is not. The coarsening projection θ : N (t′) →
N (t) admits the following description. To each nest N ⊂ E(t′), we associate the
minimal collection of disjoint nests N1, . . . , Nr ⊂ E(t) such that ∪1≤i≤rNi = N . To
obtains θ(N ), for any nesting N of t′, we apply this procedure to every nest of N
and then take the union of the resulting nests.

Proof. This follows from a direct translation of Definition 2.28 in terms of nestings.

Proposition 2.31 ensures that the coarsening projection for the operahedra is
surjective and commutes with the diagonal maps. We have |N | ≥ |θ(N )|, so the
dimension of a face stays the same or diminishes. To obtain the image of the diagonal
of Pt, one has to apply θ to the pairs (F,G) with dimF + dimG = dimP and keep
only those for which dim θ(F ) = dimF and dim θ(G) = dimG. In the case where t
is a linear tree, one recovers A. Tonks’ projection [Ton97].

Remark 3.37. Restricting to linear trees, we recover with a different combinatorial
description the "magical formula" of [MS06, MTTV21] and conjecturally [SU04] for
the associahedra.

3.4 Tensor product of homotopy operads

In this section, we show that there exists a topological cellular colored operad struc-
ture on the Loday realizations of the operahedra compatible with (in fact, forced
by) the above choices of diagonals. Applying the cellular chains functor, we obtain
a "Hopf" operad in chain complexes (this operad is not quite a Hopf operad since
the diagonal is not strictly coassociative) describing non-symmetric operads up to
homotopy, that is non-symmetric operads where the parallel and sequential axioms
are relaxed up to a coherent tower of homotopies. The formula for the image of the
diagonal obtained in Section 3.3 allows us to define explicitly, for the first time, the
tensor product of two non-symmetric operads up to homotopy.

3.4.1 The colored operad encoding the space of non-symmetric
operads

We work over a field K of characteristic 0. Note that since the operads that we
consider here come from set-theoretic ones, we could as well work over Z.

Definition 3.38 (Tree substitution). For any trees t′ ∈ PTk and t′′ ∈ PTl, for
any vertex i ∈ V (t′) having the same number of inputs as t′′, we define the tree
t′ ◦i t′′ ∈ PTk+l−1 obtained by replacing the induced subtree of the vertex i in t′ by
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the tree t′′. More precisely, the tree t′ ◦i t′′ has vertices (V (t′)\{i})tV (t′′) and edges
E(t′) t E(t′′), see Figure 3.8.

Definition 3.39 (The colored operad O). We denote by O the N-colored operad
whose N-colored collection is defined by

O(n1, . . . , nk;n) = K
{

Planar tree t ∈ PTk with a bijection σ : {1, . . . , k} → V (t)
such that σ(i) has ni inputs for all i

}
if n1 + · · · + nk − k + 1 = n, and the trivial vector space otherwise. Let t′ ∈ PTk

and t′′ ∈ PTl be trees with bijections σ′ and σ′′, respectively. For any i ∈ {1, . . . , k}
such that σ′(i) ∈ V (t′) has the same number of inputs as t′′, we define a partial
composition map via tree substitution

(t′, σ′) ◦i (t′′, σ′′) := (t′ ◦σ′(i) t′′, σ′ ◦i σ′′) ,

where the permutation σ′ ◦i σ′′ is defined by

σ′ ◦i σ′′(j) :=


σ′(j) if j < i

σ′′(j − i+ 1) if i ≤ j ≤ i+ l − 1
σ′(j − l + 1) if i+ l ≤ j ≤ k + l − 1 .

The symmetric groups action is given by precomposition and the corollas PT1 =
{O(n;n) | n ∈ N} give the unit elements.

The basis elements of O are called operadic trees. We represent an operadic tree
(t, σ) by labeling every vertex j ∈ V (t) with the number σ−1(j). If this labeling
coincides with the canonical labeling defined in Section 3.2.1, we say that t is a
left-recursive operadic tree.

When we restrict O to the linear trees where each vertex has only one input
(that is, we restrict the set of colors from N to 1), we obtain the symmetric operad
Ass encoding associative algebras.

When we restrict O to the two-leveled trees where each vertex of the second level
has only one input, and identify all the trees with the same number of vertices and
vertices labels, we obtain the permutad permAssh encoding associative permutadic
algebras [LR13, Section 7.6]. Here, substitution is restricted to the vertex of the
first level only, in such a way that we stay in 2-leveled trees.

Proposition 3.40. Algebras over the colored operad O are non-unital non-symmetric
operads.

Proof. We refer to [VdL03, Section 4], [DV15, Section 1] or [Obr19, Section 2] for
details.
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The operation of tree substitution naturally extends to nested trees. For n ≥ 2,
let us denote by NPTn the set of nested trees with n vertices. By convention, we
define NPT1 := PT1.

Definition 3.41 (Nested tree substitution). For any nested trees (t′,N ′) ∈ NPTk

and (t′′,N ′′) ∈ NPTl, for any i ∈ V (t′) having the same number of inputs as t′′, we
define the nested tree

(t′,N ′) ◦i (t′′,N ′′) := (t′ ◦i t′′,N ′ ◦i N ′′) ∈ NPTk+l−1 ,

where N ′ ◦i N ′′ = {(N ′ \ {i}) t V (t′′) | N ′ ∈ N ′} t N ′′.

2

3

1

◦2

3

1 2
=

4

5

1

2 3

Figure 3.8: Substitution of nested operadic trees.

We note that any nested tree can be obtained from a family of trivially nested
trees by successive substitutions. In general, these substitutions can be performed
in different orders without changing the resulting nested tree.

Definition 3.42 (Increasing order on nestings). For a nested tree (t,N ), we order
the nests of N by decreasing order of cardinality, and further order nests of the same
cardinality according to the increasing order on their minimal elements. We obtain
a total order on the set N and a corresponding unique sequence of substitution of
trivially nested trees (· · · (t1 ◦i1 t2) ◦i2 t3) · · · ◦ik tk+1) = (t,N ).

Let us recall the permutation introduced in Point (5) of Proposition 3.15.

Definition 3.43. Let t be a tree, and let N be a nesting of t with only one non-trivial
nest N . We contract the nest N to obtain a new tree t′. We write t′′ = t(N) for
the subtree induced by N , considered as an independent tree. We write |E(t′)| = p
and |E(t′′)| = q and we renumber the edges of t′′ from p+ 1 to p+ q. We denote by
σN : E(t′)tE(t′′)→ E(t) the (p, q)-shuffle mapping each just renumbered edge of t′
and t′′ to its label in t.

Definition 3.44 (The graded colored operad O∞). We denote by O∞ the graded
N-colored operad whose space of operations O∞(n1, . . . , nk;n) is given by

K
{

Planar nested tree (t,N ) ∈ NPTk with a bijection σ : {1, . . . , k} → V (t)
such that σ(i) has ni inputs for all i

}
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if n1 + · · ·+ nk − k+ 1 = n, and the trivial vector space otherwise. The homological
degree of a basis element (t,N , σ) is given by |E(t)| − |N |. Let (t′,N ′) ∈ NPTk and
(t′′,N ′′) ∈ NPTl be two nested trees with bijections σ′ and σ′′. For any i ∈ {1, . . . , k}
such that σ′(i) ∈ V (t′) has the same number of inputs as t′′, partial composition is
defined via substitution of nested trees

(t′,N ′, σ′) ◦i (t′′,N ′′, σ′′) := ±((t′,N ′) ◦σ′(i) (t′′,N ′′), σ′ ◦i σ′′)

where the permutation σ′◦iσ′′, the symmetric groups action and the units are defined
exactly as in O, and the sign is induced by the choice of increasing order on nestings.

An example of partial composition in O∞ is pictured in Figure 3.8. The degree
0 part of O∞ forms a suboperad made up of fully nested trees.

Proposition 3.45. The N-colored operad O∞ is free on operadic trees.

Proof. Substituting operadic trees produces nested trees. There is a unique way
to write a nested tree by iterating this process, up to the parallel and sequential
axioms. So, this operad is free.

Now we turn O∞ into a differential graded colored operad. The differential is the
unique derivation extending the map ∂, defined on trivially nested operadic trees by

∂(t,N , σ) := −
∑

N∈N (t)

(−1)|E(t)\N |sgn(σN)(t,N ∪ {N}, σ) ,

where the sum runs over all nests of t.

Proposition 3.46. The dg N-colored operad O∞ is the minimal model ΩO¡ of O.

Proof. One can compute the operad ΩO¡ by using the binary quadratic presentation
of O [DV15, Definition 5]. Using the fact that the colored operad O is Koszul self-
dual [VdL03, Theorem 4.3] and the bijection between composite and operadic trees
[DV15, Section 1.3], one obtains O∞ as defined above. The sign in the differential
comes from the choice of the left-levelwise order on composite trees and application
of the Koszul sign rule thereafter. The term sgn(σN) comes from the decomposition
map of O¡ and the term (−1)|E(t)\N | comes from the desuspension in the definition
of the differential in the cobar construction.

The part of O∞ made up of the linear trees where each vertex has only one
input gives the minimal model Ass∞ of the operad Ass. The part made up of the
equivalences classes two-leveled trees with restricted substitution gives the minimal
model permAssh∞ of the permutad permAssh [LR13]. Considering the associated
non-symmetric operad and permutad, one recovers the minimal models A∞ [LV12,
Section 9.2.4] and permAs∞ [LR13, Section 5.2] -see also [Mar20], of As and permAs,
respectively.



3.4. TENSOR PRODUCT OF HOMOTOPY OPERADS 69

Remark 3.47. Under the bijection between nested trees and their tubed line graphs
mentioned in Remark 3.4, we recover the operation of substitution of tubings defined
by S. Forcey and M. Ronco in [FR19], and we observe that the family of clawfree
block graphs is stable under this operation.

Algebras over the operad O∞ are non-symmetric operads up to homotopy, as
introduced by P. Van der Laan in [VdL03].

Definition 3.48 (Non-symmetric operad up to homotopy). A non-symmetric non-
unital operad up to homotopy is a family of graded vector spaces P = {P(n)}n≥1

together with operations

µt : P(n1)⊗ · · · ⊗ P(nk)→ P(n1 + · · ·+ nk − k + 1)

of degree |E(t)|− 1 for each t ∈ PTk and all k ≥ 1, where n1, . . . , nk are the number
of inputs of the vertices of t, which satisfy the relations∑

t′◦it′′=t

(−1)|E(t)\E(t′′)|sgn(σN) µt′ ◦i µt′′ = 0 ,

where the sum runs over all the subtrees t′′ of t.

The operations µt for the corollas t ∈ PT1 satisfy the relations µt ◦1 µt = 0,
so they make the spaces {P(n)}n≥1 into chain complexes. The operations for trees
with 2 vertices correspond to partial composition operations ◦i as in the definition
of a non-symmetric operad. The presence of the operations µt for trees t ∈ PT3

indicates that these partial compositions verify the parallel and sequential axioms
only up to homotopy. The operations µt for trees t ∈ PT4 are homotopies between
these homotopies, and so on.

Example 3.49. As proved by P. Van der Laan in [VdL03, Theorem 5.7], the sin-
gular Q-chains on configuration spaces of points in the plane form an operad up
to homotopy quasi-isomorphic to the operad of singular Q-chains on the little discs
operad.

3.4.2 Topological colored operad structure on the operahedra

In order to contemplate polytopal N-colored operads, we need a suitable symmetric
monoidal category of polytopes. We consider the following category, which is a slight
modification of the symmetric monoidal category defined in [MTTV21, Section 2.1].

Definition 3.50 (The category Poly).

1. The objects are the disjoint unions
∐

i=1,...,r Pi of non-necessarily distinct poly-
topes.
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2. Morphisms are disjoint union
∐

i=1,...,r fi of continuous maps fi : Pi → Qi

where for each i, fi sends Pi homeomorphically to the underlying set |Di| of a
polytopal subcomplex Di ⊂ L(Qi) of Qi such that f−1

i (Di) defines a polytopal
subdivision of Pi.

The results of [MTTV21] extend in a straightforward manner to this new cat-
egory. The symmetric monoidal structure is given by the cartesian product of poly-
topes, and the unit is the trivial polytope made up of one point in R0.

We want to endow the Loday realizations of the operahedra of standard weight
with a colored operad structure in the category Poly. The underlying set-theoretic
operad structure is given on the set of face lattices by substitution of trees. The
geometric avatar of this operation is the isomorphism Θ : Rk−1 × Rl−1 ∼= Rn−1

introduced in the proof of Point (5) of Proposition 3.15.

Problem. For each operahedron Pt, make a choice of an orientation vector ~v such
that the family of diagonal maps 4(t,~v) commutes with the maps Θ.

Suppose that we have made a choice of an orientation vector for each opera-
hedron. We fix t ∈ PTn with chosen orientation vector ~v. We let t′ ∈ PTk and
t′′ ∈ PTl be two trees, with chosen orientation vectors ~v′ and ~v′′ respectively, such
that t′ ◦i t′′ = t for some i ∈ V (t′). We denote by ω the weight (1, . . . , 1, l, 1, . . . , 1)
of length k, where l is in position i. We want the following diagram to commute

P(t′,ω) × Pt′′ Pt

P(t′,ω) × P(t′,ω) × Pt′′ × Pt′′ Pt × Pt ,

Θ

4(t′,~v′)×4(t′′,~v′′) 4(t,~v)

(Θ×Θ)(id×σ2×id)

where σ2 is the permutation of the two middle blocks of coordinates. The preimage
of ~v under Θ determines two orientation vectors ~w′ ∈ Rk−1 and ~w′′ ∈ Rl−1 of P(t′,ω)

and Pt′′ explicitly given by

~w′ = (vσ(1), . . . , vσ(k−1)) and ~w′′ = (vσ(k), . . . , vσ(k+l−1)) ,

where σ is a (k − 1, l − 1)-shuffle.

Proposition 3.51. Suppose that for each map Θ, the two orientation vectors ~w′

and ~w′′ in the preimage Θ−1(~v) are in the same chambers of Ht′ and Ht′′ as ~v′ and
~v′′ respectively. Then, the family of diagonal maps 4(t,~v) commutes with the maps
Θ.

Proof. Proposition 2.22 shows that 4(t′, ~w′) = 4(t′,~v′) and 4(t′′, ~w′′) = 4(t′′,~v′′). The
fact that the above diagram commutes is then straightforward to verify, using the
pointwise definition of 4(t,~v).
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Recall from Definition 3.31 that a principal orientation vector ~v ∈ Rn−1 is such
that

∑
i∈I vi >

∑
j∈J vj for all (I, J) ∈ D(n− 1).

Proposition 3.52. For any choice of principal orientation vector ~v for every Loday
realization of operahedron Pt of standard weight, the family of diagonal maps 4(t,~v)

commutes with the maps Θ.

Proof. Since σ is a (k−1, l−1)-shuffle, the two vectors ~w′ and ~w′′ are again principal
orientation vectors. We conclude with Proposition 3.51.

Proposition 3.53 (Transition map [MTTV21, Proposition 7]). Let (P,~v) and (Q, ~w)

be two positively oriented polytopes, with a combinatorial equivalence Φ : L(P )
∼=−→

L(Q). Suppose that tight coherent subdivisions F(P,~v) and F(Q,~w) are combinatorially
equivalent under Φ× Φ.

1. There exists a unique continuous map

tr = trQP : P → Q ,

which extends the restriction of Φ to the set of vertices and which commutes
with the respective diagonal maps.

2. The map tr is an isomorphism in the category Poly, whose correspondence of
faces agrees with Φ.

The map tr constructed explicitly in [MTTV21] and has a strong "fractal" char-
acter. We fix a tree t ∈ PTn, a weight ω of the form (1, . . . , 1, l, 1, . . . , 1) with l ≥ 1
and a principal orientation vector ~v ∈ Rn−1. We apply Proposition 3.53 to the
polytopes Pt and P(t,ω) and obtain a map tr : Pt −→ P(t,ω).

Definition 3.54 (Partial composition and symmetric group action). We consider
the N-colored collection

O∞(n1, . . . , nk;n) :=
∐

(t,σ)∈O(n1,...,nk;n)

Pt .

Let (t′, σ′) and (t′′, σ′′) be two composable operadic trees with k and l vertices, respect-
ively. We denote by (t, σ) := (t′, σ′)◦i(t′′, σ′′) their composition at vertex σ′(i) ∈ V (t′)
in O. We denote by ω the weight (1, . . . , 1, l, 1, . . . , 1) of length k, where l is in pos-
ition i. We define the partial composition map by

◦i : Pt′ × Pt′′ P(t′,ω) × Pt′′ Pt .
tr×id Θ

For κ ∈ Sn, we define the symmetric group action on the polytopes associated to
(t, σ) and (t, κ ◦ σ) by the identity map Pt → Pt.
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Theorem 3.55.

1. The N-colored collection {O∞(n1, . . . , nk;n) | n1, . . . , nk, n ∈ N}, together with
the partial composition maps ◦i, the symmmetric group actions and the 0-
dimensional unit elements {O∞(n;n) | n ∈ N}, forms a symmetric colored
operad in the category Poly.

2. This colored operad structure extends the topological operad structure on the
vertices of the operahedra, that is, the fully nested trees.

3. The maps {4(t,~v) : Pt → Pt × Pt}(t,σ)∈O, where ~v are principal orientation
vectors, form a morphism of symmetric colored operads in the category Poly.

Proof. Once we have in hand Proposition 3.52 asserting that the diagonal maps
commute with the maps Θ, we can apply the proof of [MTTV21, Theorem 1] mutatis
mutandis. The additional facts involving the symmetric groups action and units are
straightforward to verify.

Remark 3.56. The proof of Theorem 3.55 shows that any family of orientation
vectors satisfying Proposition 3.51 induces a colored operad structure on the op-
erahedra. There is more than one such family: consider for instance the vectors
~v with strictly descreasing coordinates which satisfy

∑
i∈I vi >

∑
j∈J vj for all

I, J ⊂ {1, . . . , n} such that I ∩ J = ∅, |I| = |J | ≥ 2 and max(I ∪ J) ∈ I. It
would be interesting to know how many such families exist, and how they are re-
lated to each other.

3.4.3 Tensor product of operads up to homotopy

We consider the set of all ordered basis of a finite-dimensional vector space V . We
declare two basis equivalent if the unique linear endomorphism of V sending one
basis to the other has positive determinant. In this way, we obtain two equivalence
classes of ordered basis.

Definition 3.57. An orientation of V is a bijection between the equivalence classes
of ordered basis and the set {+1,−1}. Any basis in the first equivalence class is
called a positively oriented basis.

So there are exactly two distinct orientations of V .

Definition 3.58 (Cellular orientation of a polytope). Let P ⊂ Rn be a polytope,
and let F be a face of P . A cellular orientation of F is a choice of orientation of its
linear span. A cellular orientation of P is a choice of cellular orientation for each
face F of P .
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An orientation vector of P , in the sense of Definition 2.11, induces a cellular
orientation of the 1-skeleton of P .

Proposition 3.59. A cellular orientation of a polytope P makes it into a regular
CW complex. Moreover, the choice of a cellular orientation for every operahedron
promotes the colored operad O∞ to an operad in CW complexes and Theorem 3.55
holds in this category.

Proof. The choice of a cellular orientation of a face F is equivalent to the choice
of a generator in the top homology group of F relative to its boundary, which
is a dimF -sphere. Thus, it makes sense to choose a degree one attaching map
from the boundary of the dim(F )-ball to the boundary of F . We endow P with
the regular CW structure given by a family of such attaching maps. Now it is
clear that the morphisms in the category Poly define cellular maps, and that the
proof of Theorem 3.55 can be performed mutatis mutandis in the category of CW
complexes.

One can thus apply the cellular chains functor to O∞ and obtain a colored operad
in chain complexes.

Theorem 3.60. There is a choice of cellular orientation that yields an isomorphism
of differential graded symmetric colored operads Ccell

• (O∞) ∼= O∞.

Proof. By definition, the operadic structure of O∞ coincides cellularly with the
operadic structure of O∞, and the boundary map of Ccell

• (O∞) coincides up to sign
with the differential of O∞. We make an explicit choice of orientations and prove
that we recover the signs of O∞. We build on the work of T. Mazuir who recovered
this way in [Maz21, I,Section 4] the signs of the operad A∞. For a left-recursive
operadic tree (t, σ), we choose as orientation of the top dimensional cell of Pt the
positively oriented basis

ej = (1, 0, . . . , 0,−1j+1, 0, · · · , 0) ,

where −1 is in position j + 1 for j = 1, . . . , n − 2. For any operadic tree (t, κ ◦ σ)
obtained from (t, σ) by the action of an element κ of the symmetric group, we set
the orientation of the top-dimensional cell of P(t,κ◦σ) to be the orientation of P(t,σ)

multiplied by sgn(κ). Then, we choose the orientation of any other cell (t,N ) of
Pt to be the one induced by operadic composition as follows. We consider the
unique sequence of substitution of trivially nested trees (t,N ) = (· · · (t1 ◦i1 t2) ◦i2
t3) · · · ◦ik tk+1) arising from the increasing order on N (Definition 3.42), and we set
the orientation of (t,N ) to be the image of the positively oriented basis of the top
cells of the polytopes Pti under this sequence of operations. Computing the signs
amounts to comparing bases where the vectors have been permuted. Since we have
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chosen the increasing order on the nests, we recover precisely the signs involved in
the composition of O∞.

We claim that this choice of orientations recovers the signs in the differential of
O∞. It is enough to consider the boundary map of the top cell of Pt. Let (t,N ) be
a facet of Pt and let t′ and t′′ be two composable operadic trees with trivial nestings
such that t′ ◦i t′′ = (t,N ). Let N denote the unique non-trivial nest of N . We
denote by (e′j)1≤j≤k−1 and (e′′j )1≤j≤l−1, the positively oriented basis associated to t′
and t′′, respectively. We recall the application Θ and its associated permutation
σN : E(t′) t E(t′′) → E(t) from Point (5) of Proposition 3.15. We choose an
outward pointing normal vector ν to the facet (t,N ). The sign associated to this
facet in the sum ∂(t) is given by comparing the orientation induced by the operad
structure and the orientation of Pt. This amounts to computing the determinant
det (ν,Θ(e′j),Θ(e′′j )) in the basis ej. We distinguish two cases.

1. If N contains 1, i.e. if σN(1) 6= 1, an outward pointing normal vector ν is
given by forgetting the first coordinate of the vector ~N − (1, . . . , 1). We have
in this case

Θ(e′j) = −eσN (1)−1 + eσN (j+1)−1 , 1 ≤ j ≤ k − 1

Θ(e′′j ) = eσN (j+1+k)−1 , 1 ≤ j ≤ l − 1

and the value of the determinant is

det (ν,Θ(e′j),Θ(e′′j )) = −|E(t) \N |(−1)|E(t)\N |sgn(σN) .

2. If N does not contain 1, i.e. if σN(1) = 1, an outward pointing normal vector
ν is given by forgetting the first coordinate of the vector ~N . We have in this
case

Θ(e′j) = eσN (j+1)−1 , 1 ≤ j ≤ k − 1

Θ(e′′j ) = −eσN (1+k)−1 + eσN (j+1+k)−1 , 1 ≤ j ≤ l − 1

and the value of the determinant is

det (ν,Θ(e′j),Θ(e′′j )) = −|N |(−1)|E(t)\N |sgn(σN) .

We thus recover in both cases the sign of the differential of O∞.

Corollary 3.61. The image of the diagonal maps under the cellular chains functor
define a morphism of operads in chain complexes O∞ → O∞ ⊗ O∞, and thus a
functorial tensor product of non-symmetric operads up to homotopy.
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Proof. The cellular chains functor is strong symmetric monoidal and sends the op-
erad O∞ to the operad O∞. For P and Q two homotopy operads defined by morph-
isms of N-colored operads f : O∞ → EndP and g : O∞ → EndQ, the composite of
morphisms

O∞
Ccell
• (4)−−−−−→ O∞ ⊗O∞

f⊗g−−→ EndP ⊗ EndQ → EndP⊗Q ,

where the last arrow is given by permutation of the factors, defines the structure of
an operad up to homotopy on the tensor product of P and Q.

Remark 3.62. The diagonal 4(t,~v) is neither pointwise nor cellular coassociative
and the induced diagonal of the dg colored operad O∞ is not coassociative either.
M. Markl and S. Schnider have actually shown in [MS06, Section 6] that such a
diagonal cannot exist. So the newly defined tensor product cannot make the cat-
egory of homotopy non-symmetric operads (with strict morphisms) into a symmetric
monoidal category.

We end by computing the signs associated to our choice of cellular orientation
for the approximation of the diagonal 4(t,~v).

Definition 3.63. Let t be a tree and let N ,N ′ be a pair of nestings such that
|N | + |N ′| = |V (t)|. An edge i ∈ E(t) is said to be admissible in N if i 6=
min(minN (i)) =: infi(N ). The set of admissible edges of N is denoted by Ad(N ).

We give the set Ad(N )tAd(N ′) a total order by using the increasing order on the
nestings (Definition 3.42) and within a nest by following the numbering of the edges
in increasing order. Then, the function σNN ′ : Ad(F ) t Ad(G)→ (1, . . . , |Ad(N ) t
Ad(N ′)|) defined for i ∈ Ad(N ) by

σNN ′(i) =

{
infi(N )− 1 if i ∈ Ad(N ) ∩ Ad(N ′) and 1 6= infi(N ) < infi(N ′)
i− 1 otherwise

and similarly on i ∈ Ad(N ′) by inverting the roles of N and N ′, induces a permuta-
tion of the set {1, . . . , |Ad(N ) t Ad(N ′)|} that we still denote by σNN ′.

For convenience, let us recall that

D(n) := {(I, J) | I, J ⊂ {1, . . . , n}, |I| = |J |, I ∩ J = ∅,min(I ∪ J) ∈ I} .

Proposition 3.64 (Tensor product of operads up to homotopy). Given two non-
symmetric non-unital operads up to homotopy (P , {µt}) and (Q, {νt}), their tensor
product (P ⊗ Q, {ρt}) is given by the Hadamard tensor product of spaces (P ⊗
Q)(n) := P(n)⊗Q(n) and the operations

ρt :=
∑

N ,N ′∈N (t)
|N |+|N ′|=|V (t)|

∀(I,J)∈D(|E(t)|),∃N∈N ,|N∩I|>|N∩J |
or ∃N ′∈N ′,|N ′∩I|<|N ′∩J |

(−1)|Ad(N )∩Ad(N ′)|sgn(σNN ′) N (µt)⊗N ′(νt) σt
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where N (µt) and N ′(νt) denote the composition of the operations corresponding to
the nests of N and N ′ in the increasing orders and where σt is the isomorphism
P(n1)⊗Q(n1)⊗ · · ·⊗P(nk)⊗Q(nk) ∼= P(n1)⊗ · · ·⊗P(nk)⊗Q(n1)⊗ · · ·⊗Q(nk).

Proof. This is just unravelling the definition of tensor product arising from Corol-
lary 3.61. For a pair of faces (F,G) ∈ Im4(t,~v), the sign comes from the comparison
of our choice of orientation on F ×G, which is just the product of the orientations
of F and G, with the orientation induced by the diagonal 4(t,~v) when restricted to
(F̊ + G̊)/2. Let (ej) denote as before the positively oriented basis of the top cell
of Pt. We need to compute the sign of the determinant of the vectors 4(t,~v)(ej)
expressed in the basis {eFj ×0}∪{0×eGj } corresponding to the orientation of F ×G.
By the very definition of 4(t,~v) (Proposition 2.14), this is the same as computing
the sign of the determinant of the eFj , eGj expressed in the basis (ej), which gives the
expression appearing above.



Chapter 4

The diagonal of the multiplihedra
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4.1 Introduction

The n-dimensional associahedron, a polytope whose faces are in bijection with planar
trees with n+1 leaves, was first introduced as a topological cell complex by J. Stasheff
to describe algebras whose product is associative only up to homotopy [Sta63]. The
problem of giving polytopal realizations of these CW-complexes has a rich history
[CZ12], and the algebras that they encode, called A∞-algebras, are classical objects
in algebraic topology. A∞-algebras have found many applications, from iterated
loop spaces [May72] to Fukaya categories [Sei08], through the interpretation of the
associahedra as moduli spaces of metric trees [MW10]. Today, this notion is ubiquit-
ous and appears in different branches of mathematics such as symplectic topology,
mathematical physics, mirror symmetry, Galois cohomology or non-commutative
probability.

The n-dimensional multiplihedron, a polytope whose faces are in bijection with
2-colored planar trees with n leaves (see Definition 4.2), was first introduced as a
topological cell complex by J. Stasheff to describe morphisms between A∞-algebras
[Sta70]. The multiplihedron was only realized as a convex polytope recently, through
the work of S. Forcey [For08a], and later S. Forcey and S. Devadoss [DF08], F.
Ardila and J. Doker [AD13], and F. Chapoton and V. Pilaud [CP22]. The family
of multiplihedra has been studied both in algebraic topology [BV73] and symplectic
topology [MW10, Maz21], through their interpretation as moduli spaces of 2-colored
metric trees.

A cellular approximation of the diagonal of the associahedra allows one to define
the tensor product of two A∞-algebras [SU04, MS06, MTTV21]. In this chapter,
which is the result of a joint work with Thibaut Mazuir, our goal is to make this
tensor product "functorial", by defining and studying a cellular approximation to
the diagonal of the multiplihedra. Our results can be summarized as follows.

1. We define a cellular approximation of the diagonal of the Forcey–Loday real-
izations of the multiplihedra (Proposition 4.20);

2. We endow them with a compatible topological cellular operadic bimodule
structure over the Loday realizations of the associahedra (Theorem 4.25);

3. We describe combinatorially the cellular image of the diagonal (Theorem 4.35);

4. We apply the cellular chains functor to obtain a "functorial" tensor product
of A∞-algebras and their categorification, known as A∞-categories (Proposi-
tion 4.43).

To achieve these goals, we use the general theory developed in Chapter 2, based
on the method introduced in [MTTV21]. For this purpose, we use the idea that
the Forcey–Loday realization of the multiplihedron, as defined in [For08a], can be
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obtained from the Ardila–Doker realization of the multiplihedron [AD13] by pro-
jection. This last realization is a generalized permutahedron, in the sense of A.
Postnikov [Pos09], which allows us to apply the results of Chapter 3 directly, both
for the purpose of defining a cellular approximation of the diagonal, and to describe
its cellular image combinatorially.

Our methods provide us with an universal tensor product, in the sense that its
formula applies to any pair of A∞-morphisms. We could call such a tensor product
operadic. Unfortunately, our tensor product does not define a functor, since it is
not strictly compatible with the composition of A∞-morphisms. This is not a defect
of our construction: in Theorem 4.46, we prove that there is no operadic tensor
product satisfying this property. The proof is similar to a result of M. Markl and S.
Schnider saying that there is no operadic tensor product of A∞-algebras that satisfies
associativity [MS06, Theorem 13]. However, our tensor product of A∞-morphisms
could still be a functor in some homotopical sense. We examine in Section 4.4.3
different perspectives regarding the possibility of endowing the category of A∞-
algebras with a (homotopy) symmetric monoidal structure.

Our present results can readily be applied to different fields, prominently to
symplectic topology. The operadic bimodule structure in (2) above was used in the
work of the second author, where the structures of A∞-algebras and A∞-morphisms
are unraveled in the context of Morse theory [Maz21]. Moreover, our definition of
a "functorial" tensor product of A∞-categories by explicit formulas can be used to
study the product of Fukaya algebras of Lagrangians [Amo17], and more generally
the product of Fukaya categories of symplectic manifolds. It could also be used
in the context of bordered Heegaard Floer homology [LOT20]. These applications
are sketched in more details in Section 4.4.4. One could also think of applications
in other areas where the multiplihedron appears, such as higher category theory
[For08b].

Finally, the methods of this chapter can be straightfowardly extended to the
"multiploperahedra", a family of polytopes which is to the operahedra of Chapter 3
what the multiplihedra are to the associahedra. They belong to both the families
of graph-multiplihedra [DF08] and nestomultiplihedra [AD13]. Together with the
results of Chapter 3, one would obtain a tensor product of ∞-morphisms between
homotopy operads, defined by explicit formulas.

4.2 Realizations of the multiplihedra

Building on the work of S. Forcey in [For08a], we define Forcey–Loday realizations
of the multiplihedra, and describe their general properties in Proposition 4.9. We
show how they can be obtained from the Ardila–Doker realizations via projection.
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4.2.1 Colored trees

We consider planar rooted trees, which we will abbreviate simply trees. The term
"edge" refers to both internal and external edges. The external edges will sometimes
be called leaves.

Definition 4.1 (Cut). A cut of a tree is a subset of edges or vertices which contains
precisely one edge or vertex along the unique path from the root to any leaf.

A cut divides a tree into two parts: an upper part, that we color in blue, and a
lower part, that we color in red.

Definition 4.2 (2-colored tree). A 2-colored tree is a tree together with a cut. We
call 2-colored maximal tree a 2-colored binary tree where the cut is made of edges
only.

We denote by CTn (resp. CMTn) the set of 2-colored trees (resp. 2-colored
maximal trees) with n leaves, for n ≥ 1.

Figure 4.1: An example of a 2-colored tree.

Definition 4.3 (Face order and Tamari-type order).

� The face order s ⊂ t on 2-colored trees is defined as follows: a 2-colored tree
s is less than a 2-colored tree t if t can be obtained from s by a sequence of
contractions of monochrome edges or moves of the color frontier from a family
of edges to an adjacent vertex.

� The Tamari-type order s < t on 2-colored maximal trees is generated by the
following three covering relations:

t1 t2 t3

t4

≺

t3t2t1

t4

,

t1 t2 t3

t4

≺

t3t2t1

t4

,

t1 t2

t3

≺

t1 t2

t3

,

where ti, for 1 ≤ i ≤ 4, are 2-colored maximal trees, of respective colors each
time.
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⊂

Figure 4.2: An example of the face order s ⊂ t.

Figure 4.3: The Tamari-type poset (CMT3, <) with minimum at the top.

We often add a minimum element ∅n to the poset of 2-colored trees.

Proposition 4.4. The posets (CTn,⊂) and (CMTn, <) are lattices.

Proof. The poset of 2-colored trees was proven in [For08a] to be isomorphic to the
face lattice of a polytope, the multiplihedron; see Point (3) of Proposition 4.9. The
Hasse diagram of the poset of 2-colored maximal trees was proven to be isomorphic
to the oriented 1-skeleton of the multiplihedron, and also to be the Hasse diagram
of a lattice in [CP22, Proposition 117].

Remark 4.5. F. Chapoton and V. Pilaud introduced in [CP22] the shuffle of two
generalized permutahedra, which is again a generalized permutahedron (see Sec-
tion 4.2.4 for definition and examples). The fact that the poset (CMTn, <) is a
lattice follows from the fact that the multiplihedron arises as the shuffle of the as-
sociahedron and the interval, which both have the lattice property, and that the
shuffle operation preserves the lattice property in this case [CP22, Corollary 95].
However, the shuffle operation does not preserve the lattice property in general, see
[CP22, Remark 140].
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4.2.2 Multiplihedra

Definition 4.6 (Multiplihedra). For any n ≥ 1, an (n − 1)-dimensional multi-
plihedron is a polytope whose face lattice is isomorphic to the lattice (CTn,⊂) of
2-colored trees with n leaves.

Figure 4.4: A 2-dimensional multiplihedron.

The dimension of a face labeled by a 2-colored tree is given by the sum of the
degrees of its vertices defined by∣∣∣∣∣∣

k1 · · ·
∣∣∣∣∣∣ = k − 2 ,

∣∣∣∣∣∣
k1 · · ·
∣∣∣∣∣∣ = k − 2 ,

∣∣∣∣∣∣
k1 · · ·
∣∣∣∣∣∣ = k − 1 .

The codimension of a 2-colored tree is equal to the number of vertices of pure color.
In the example of the 2-colored tree depicted on Figure 4.1, the dimension is equal
to 4 and the codimension is equal to 5. As proven in [CP22, Proposition 117], the
oriented 1-skeleton of a multiplihedron is the Hasse diagram of the Tamari-type
poset.

Recall, for instance from [MTTV21], that one can also consider the set PTn

of planar trees and the set PBTn of planar binary trees, with n leaves. They are
equipped with similar orders and an (n−2)-dimensional polytope whose face lattice
agrees with the lattice (PTn,⊂) of planar trees is called an associahedron. The graft-
ing of trees endows planar (binary) trees with a non-symmetric operad structure and
2-colored (maximal) trees with an operadic bimodule structure over it. Regarding
the right action, we denote the operation of grafting a planar tree v at the ith-leaf
of a 2-colored tree u by u ◦i v. Regarding the left action, we denote the grafting of a
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level of 2-colored trees v1, . . . , vk on the k leaves of a planar tree by u(v1, . . . , vk). We
denote by cT

n and by cB
n the corollas with n leaves fully painted with the upper and

the lower color respectively; we denote by cn the corolla with n leaves with frontier
color at the vertex. It is straightforward to see that these two grafting operations on
corollas generate all the 2-colored trees of codimension 1: we call (B), for “bottom”,
the first type of 2-colored trees cp+1+r ◦p+1 c

T
q , with p + q + r = n and 2 ≤ q ≤ n,

and we call (T), for “top”, the second type of 2-colored trees cB
k (c1, . . . , ck), with

i1 + · · ·+ ik = n, i1, . . . , ik ≥ 1, and k ≥ 2.

type (B) type (T)

Figure 4.5: Examples of 2-colored trees of type (B) and (T) respectively.

4.2.3 Forcey–Loday realizations of the multiplihedra

Jean-Louis Loday gave in [Lod04] realizations of the associahedra in the form of
polytopes with integer coordinates. Stefan Forcey generalized this construction in
[For08a] in order to give similar realizations for the multiplihedra.

Definition 4.7 (Weighted 2-colored maximal tree). A weighted 2-colored maximal
tree is a pair (t, ω) made up of a 2-colored maximal tree t ∈ CMTn with n leaves
with some weight ω = (ω1, . . . , ωn) ∈ Rn

>0. We call ω the weight and n the arity of
the tree t or the length of the weight ω.

Let (t, ω) be a weighted 2-colored maximal tree with n leaves. We order its
n − 1 vertices from left to right. At the ith vertex, we consider the sum αi of the
weights of the leaves supported by its left input and the sum βi of the weights of the
leaves supported by its right input. If the ith vertex is colored by the upper color,
we consider the product αiβi and if the ith vertex is colored by the lower color, we
consider the product 2αiβi. The associated string produces a point with integer
coordinates M(t, ω) ∈ Rn−1

>0 . For example, if only the first and last vertices of t are
blue, we obtain a point of the form

M(t, ω) =
(
2α1β1, α2β2, . . . , αn−2βn−2, 2αn−1βn−1

)
∈ Rn−1

>0 .
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1 2

1 2 3 4

1

2

3

4

Figure 4.6: Examples of points associated to 2-colored maximal trees, with trivial
weight.

Definition 4.8 (Forcey–Loday Realization). The Forcey–Loday realization of weight
ω is the polytope

Jω := conv
{
M(t, ω) | t ∈ CMTn

}
⊂ Rn−1 .

The Forcey–Loday realization associated to the standard weight (1, . . . , 1) is
simply denoted by Jn. By convention, we define the polytope Jω, with weight ω =
(ω1) of length 1, to be made up of one point labeled by the 2-colored tree iTB := .

Proposition 4.9. The Forcey–Loday realization Jω satisfies the following properties.

1. Let t ∈ CMTn be a 2-colored maximal tree.
For p + q + r = n, with 2 ≤ q ≤ n, the point M(t, ω) is contained in the
half-space defined by the inequality

xp+1 + · · ·+ xp+q−1 ≥
∑

p+1≤a<b≤p+q

ωaωb , (B)

with equality if and only if the 2-colored maximal tree t can be decomposed as
t = u ◦p+1 v, where u ∈ CMTp+1+r and v ∈ PBTq.
For i1 + · · · + ik = n, with i1, . . . , ik ≥ 1 and k ≥ 2, the point M(t, ω) is
contained in the half-space defined by the inequality

xi1 + xi1+i2 + · · ·+ xi1+···+ik−1
≤ 2

∑
1≤j<l≤k

ωIjωIl , (T)
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x1 x2

x3

Figure 4.7: The Forcey–Loday realization of the multiplihedron J4.

where Ij = [i1 + · · · + ij−1 + 1, . . . , i1 + · · · + ij] and ωIj :=
∑

a∈Ij ωa, with
equality if and only if the 2-colored maximal tree t can be decomposed as t =
u(v1, . . . , vk), where u ∈ PBTk and vj ∈ CMTij , for 1 ≤ j ≤ k.

2. The polytope Jω is the intersection of the half-spaces defined in (1).

3. The face lattice (L(Jω),⊂) is isomorphic to the lattice (CTn,⊂) of 2-colored
trees with n leaves.

4. Any face of a Forcey–Loday realization of a multiplihedron is isomorphic to a
product of a Loday realization of an associahedron with possibly many Forcey–
Loday realizations of multiplihedra, via a permutation of coordinates.

Proof. Points (1)–(3) were proved in [For08a]. We prove Point (4) by induction on
n. It clearly holds true for n = 1. Let us suppose that it holds true up to n − 1
and let us prove it for the polytopes Jω, for any weight ω of length n. We examine
first facets. In the case of a facet of type (B) associated to p + q + r = n with
2 ≤ q ≤ n− 1, we consider the following two weights

ω := (ω1, . . . , ωp, ωp+1 + · · ·+ ωp+q, ωp+q+1, . . . , ωn) and ω̃ := (ωp+1, . . . , ωp+q)

and the isomorphism

Θp,q,r : Rp+r × Rq−1
∼=−→ Rn−1

(x1, . . . , xp+r)× (y1, . . . , yq−1) 7→ (x1, . . . , xp, y1, . . . , yq−1, xp+1, . . . , xp+r) .
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The image of the vertices of Jω × Kω̃ are sent to the vertices of the facet of Jω
labelled by the 2-colored tree cp+1+r ◦p+1 c

T
q . In other words, the permutation of

coordinates Θ sends bijectively Jω × Kω̃ to Jω. Similarly, in the case of a facet of
type (T) associated to i1 + · · · + ik = n with i1, . . . , ik ≥ 1 and k ≥ 2, we consider
the following weights

ω :=
(√

2ωI1 , . . . ,
√

2ωIk
)

and ω̃j := (ωi1+···+ij−1+1, . . . , ωi1+···+ij−1+ij), for 1 ≤ j ≤ k,

and the isomorphism

Θi1,...,ik : Rk−1 × Ri1−1 × · · · × Rik−1
∼=−→ Rn−1

which sends

(x1, . . . , xk−1)× (y1
1, . . . , y

1
i1−1)× · · · × (yk1 , . . . , y

k
ik−1)

to
(y1

1, . . . , y
1
i1−1, x1, y

2
1, . . . , y

2
i2−1, x2, y

3
1, . . . , xk−1, y

k
1 , . . . , y

k
ik−1) .

The image of the vertices of Kω× Jω̃1 × · · ·× Jω̃k
are sent to the vertices of the facet

of Jω labelled by the 2-colored tree cB
k (c1, . . . , ck). In other words, the permutation

of coordinates Θ sends bijectively Kω × Jω̃1 × · · · × Jω̃k
to Jω.

We can finally conclude the proof with these decompositions of facets of Jω, the
induction hypothesis, and [MTTV21, Proposition 1, Point (5)].

4.2.4 The multiplihedra as generalized permutahedra

Definition 4.10 (Permutahedron). The (n− 1)-dimensional permutahedron is the
polytope in Rn equivalently defined as:

• the convex hull of the points
n∑
i=1

ieσ(i) for all permutations σ ∈ Sn, or

• the intersection of the hyperplane

{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi =

(
n+ 1

2

)}
with the af-

fine half-spaces

{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi ≥
(
|I|+ 1

2

)}
for all ∅ 6= I ⊆ [n].

Definition 4.11 (Generalized permutahedron). A generalized permutahedron is a
polytope equivalently defined as:

• a polytope whose normal fan coarsens the one of the permutahedron, or
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• the convex set{
x ∈ Rn :

n∑
i=1

xi = z[n] ,
∑
i∈I

xi ≥ zI for all I ⊆ [n]

}
,

where {zI}I⊆[n] are real numbers which satisfy the inequalities zI +zJ ≤ zI∪J +
zI∩J for all I, J ⊆ [n], and where z∅ = 0.

Generalized permutahedra were introduced by A. Postnikov [Pos09], and are
subject of a vast literature. They present many interesting combinatorial, geometric
and algebraic properties. For instance, they are the universal family of polytopes
possessing a certain Hopf algebraic structure [AA]. They are also a class of polytopes
to which the results of Chapter 3 apply directly.

Loday realizations of the associahedra are all generalized permutahedra, while
Forcey–Loday realizations of the multiplihedra are not. However, F. Ardila and J.
Doker introduced in [AD13] realizations of the multiplihedra that are generalized
permutahedra. They are obtained from the Loday realizations of the associahedra
via the operation of "lifting". We consider here the special case q = 1/2 in their
construction.

Definition 4.12 (Lifting of a generalized permutahedron [AD13, Definition 2.3]).
For a generalized permutahedron P ⊂ Rn, its 1

2
-lifting P

(
1
2

)
⊂ Rn+1 is defined by

P
(

1
2

)
:=

x ∈ Rn+1 :
n+1∑
i=1

xi = z[n] ,
∑
i∈I

xi ≥ 1
2
zI ,

∑
i∈I∪{n+1}

xi ≥ zI for all I ⊆ [n]

 .

Proposition 4.13 ([AD13, Proposition 2.4]). The 1
2
-lifting P

(
1
2

)
of a generalized

permutahedron is again a generalized permutahedron.

Proposition 4.14. The 1
2
-lifting Kω

(
1
2

)
of the Loday realization of the associahed-

ron is a realization of the multiplihedron.

Proof. This is a particular case of [AD13, Corollary 4.10].

We call the lifting of the Loday associahedron Kω

(
1
2

)
the Ardila–Doker realiz-

ation of the multiplihedron. It is related to the Forcey–Loday realization via the
projection π : Rn+1 → Rn which forgets the last coordinate.

Proposition 4.15. The Forcey-Loday realization of the multiplihedron is the image
under the projection π of the 1

2
-lifting of the Loday realization of the associahedron,

scaled by 2. That is, we have

Jω = π
(
2Kω

(
1
2

))
.
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Proof. This follows from the vertex description of 1
2
-lifting given in [Dok11, Defini-

tion 3.5.3], together with the description of the projection from the permutahedron
to the multiplihedron given in the proof of [Dok11, Theorem 3.3.6]. The coordin-
ates of a vertex in 2Kω are of the form (2α1β1, . . . , 2αnβn). A coordinate 2αiβi
is then multiplied by 1/2 in the lifting if and only if its associated vertex in the
2-colored maximal tree is of the upper color. We thus recover the description of
Definition 4.8.

In summary, we have the following diagram:

Loday Ardila–Doker Forcey–Loday
associahedron multiplihedron multiplihedron

2Kω ↪→ 2Kω

(
1
2

) π
� Jω

Rn ↪→ Rn+1 � Rn

Gen. permutahedron Gen. permutahedron Not a gen. permutahedron

4.3 The diagonal of the multiplihedra

In this section, we define a cellular approximation of the diagonal of the Forcey–
Loday realizations of the multiplihedra, and we endow them with an operadic bimod-
ule structure over the Loday realizations of the associahedra. We use the method of
[MTTV21] and the general theory developed in Chapter 2. Results of Chapter 3 can
be applied directly to the Ardila–Doker multiplihedron, from which one obtains the
Forcey–Loday multiplihedron by projection. One can transfer the results to these
realizations, using the crucial fact that the projection preserves orthogonality for a
certain class of vectors with coordinates equal to 0, 1 or −1. Another salient feature
is that, in order to obtain the operadic structure, we need to make a choice of ori-
entation vectors that is coherent with operadic composition, see Proposition 4.24.
Finally, choosing an orientation and applying the cellular chains functor, we recover
the operadic bimodule M∞ with its usual sign conventions [Maz21].

4.3.1 Diagonal of the Forcey–Loday realizations of the mul-
tiplihedra

The projection π : Rn+1 → Rn forgetting the last coordinate defines an affine iso-
morphism between any hyperplane H of equation

∑n+1
i=1 xi = c ∈ R, and Rn. The
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inverse map (π|H)−1 is given by the assignment

(x1, . . . , xn) 7→

(
x1, . . . , xn, c−

n∑
i=1

xi

)
.

If a polytope P is contained in the hyperplane H, then the polytope π(P ) is affinely
isomorphic to P , and the projection π defines a bijection between the faces of P and
the faces of π(P ). Moreover, for every face F of P , we have dimF = dimπ(F ).

However, the projection π does not preserve orthogonality in general, so if P is
positively oriented by ~v, the projection π(P ) might not be positively oriented by
π(~v). We restrict our attention to a certain class of orientation vectors for which
this property holds, in the case where P is a generalized permutahedron.

Definition 4.16. A good orientation vector is a vector ~v = (v1, . . . , vn+1) ∈ Rn+1

satisfying
vi > 2vi+1 , for any 1 6 i 6 n , and vn+1 > 0 .

Observe that the family of good orientation vectors is stable under the projection
forgetting the last coordinate: if ~v is a good orientation vector, then so is π(~v).

Being a good orientation vector is a more restrictive condition than being a
principal orientation vector, in the sense of Definition 3.31. Thus, a good orientation
vector orients positively any generalized permutahedron.

Proposition 4.17. Let P ⊂ Rn+1 be a generalized permutahedron, and let ~v ∈ Rn+1

be a good orientation vector. Then, the polytope π(P ) is positively oriented by π(~v).
Moreover, the projection π commutes with the diagonal maps of P and π(P ), that
is 4(π(P ),π(~v)) = (π × π)4(P,~v).

Proof. Since P is a generalized permutahedron, the direction of the edges of the
intersection P ∩ρzP , for any z ∈ P , are vectors with coordinates equal to 0, 1 or −1,
and the same number of 1 and −1 (combine Proposition 2.29 and Proposition 3.20).
The direction ~d of such an edge satisfies 〈~d,~v〉 6= 0, since the first non-zero coordinate
of ~d will contribute a greater amount than the sum of the remaining coordinates in
the scalar product. For the same reason, we have 〈π(~d), π(~v)〉 6= 0. Indeed, we have
that π(P ∩ ρzP ) = π(P ) ∩ ρπ(z)π(P ), and in particular that the image of the edges
of P ∩ ρzP under π are the edges of π(P ) ∩ ρπ(z)π(P ). Thus, π(P ) is positively
oriented by π(~v). For the last part of the statement, observe that π preserves the
orientation of the edges: if we have 〈~d,~v〉 > 0, then we have 〈π(~d), π(~v)〉 > 0. Hence,
the image of the vertex top~v(P ∩ ρzP ), which maximizes 〈−, ~v〉 over P ∩ ρzP , under
π is equal to the vertex topπ(~v)(π(P ) ∩ ρπ(z)π(P )) which maximizes 〈−, π(~v)〉 over
π(P ) ∩ ρπ(z)π(P ). The argument for the minimum bot(P ∩ ρzP ) is the same.

Proposition 4.18. Let P ⊂ Rn+1 be a generalized permutahedron. Any two good
orientation vectors ~v, ~w define the same diagonal maps on P and π(P ), that is, we
have 4(P,~v) = 4(P,~w) and 4(π(P ),π(~v)) = 4(π(P ),π(~w)).
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Proof. Good orientation vectors are principal orientation vectors as in Definition 3.31.
Since all principal orientation vectors live in the same chamber of the fundamental
hyperplane arrangement of the permutahedron, they all define the same diagonal
on the permutahedron (Proposition 2.22), and thus the same diagonal on any gen-
eralized permutahedron (Corollary 2.30). So, we have 4(P,~v) = 4(P,~w). Finally,
using Proposition 4.17, we have 4(π(P ),π(~v)) = (π × π)4(P,~v) = (π × π)4(P,~w) =
4(π(P ),π(~w)).

Definition 4.19. A well-oriented realization of the multiplihedron is a positively
oriented polytope which realizes the multiplihedron and such that the orientation
vector induces the Tamari-type lattice on the set of vertices.

Proposition 4.20. Any good orientation vector induces a well-oriented realization
(Jω, ~v) of the Forcey–Loday multiplihedron, for any weight ω.

Proof. The proof of Proposition 4.17 shows that any edge of the realization of the
muliplihedron Jω is directed, according to the Tamari type order, by either ~ei or
~ei − ~ej, for i < j. Since ~v has strictly decreasing coordinates, in each case the
scalar product is positive. It remains to show that P ∩ ρzP is oriented by ~v, for any
z ∈ P . This follows directly from Proposition 4.17, and the fact that Jω arises as
the projection under π of a generalized permutahedron, see Proposition 4.15.

Any good orientation vector defines a diagonal map 4ω : Jω → Jω × Jω, for any
weight ω. These maps are all equivalent, up to isomorphism in the category Poly.

Proposition 4.21. For any pair of weights ω and θ of length n, there exists a unique
isomorphism tr = trθω : Jω → Jθ in the category Poly, which preserves homeomorph-
ically the faces of the same type and which commutes with the respective diagonals.

Proof. The arguments of [MTTV21, Sections 3.1-3.2] hold in the present case using
Proposition 4.9. Requiring commutation with the respective diagonals is really what
makes the map tr unique.

Definition 4.22. We denote by 4n : Jn → Jn×Jn the diagonal induced by any good
orientation vector for the Forcey–Loday realization of standard weight ω = (1, . . . , 1).

4.3.2 Operadic bimodule structure

We will use the transition map tr of Proposition 4.21 above to endow the family of
standard weight Forcey–Loday multiplihedra with an operadic bimodule structure
over the standard weight Loday associahedra. We will use the uniqueness property
of the map tr in a crucial way.
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Definition 4.23 (Action-composition maps). For any n,m ≥ 1 and any 1 ≤ i ≤ m,
for any k ≥ 2 and any i1, . . . , ik ≥ 1, we define the action-composition maps by

◦p+1 : Jp+1+r ×Kq J(1,...,q,...,1) ×Kq Jn andtr×id Θp,q,r

γi1,...,ik : Kk × Ji1 × · · · × Jik K(i1,...,ik) × Ji1 × · · · × Jik Ji1+···+ik ,
tr×id Θi1,...,ik

where the last inclusions are given by the block permutations of the coordinates in-
troduced in the proof of Proposition 4.9.

Now, we show that the choice of diagonal maps 4n : Jn → Jn × Jn is coherent
with operadic composition.

Proposition 4.24. The diagonal maps 4n commute with the maps Θ.

Proof. First observe that a good orientation vector has decreasing coordinates, so
it induces the diagonal maps 4n : Kn → Kn × Kn and the non-symmetric operad
structure on {Kn} defined in [MTTV21]. As shown in Proposition 3.51, to prove the
claim it suffices to show that the preimage under Θ−1 of a good orientation vector
is still a good orientation vector for each associahedron and multiplihedron. This
is easily seen to be the case from the definition of Θ, in the proof of Point (4) of
Proposition 4.9.

Theorem 4.25.

1. The collection {Jn}n≥1 together with the action-composition maps ◦i and γi1,...,ik
form an operadic bimodule over the non-symmetric operad {Kn} in the category
Poly.

2. The maps {4n : Jn → Jn×Jn}n≥1 form a morphism of ({Kn}, {Kn})-operadic
bimodules in the category Poly.

Proof. Once we have in hand Proposition 4.24 asserting that the diagonal maps
commute with the maps Θ, we can apply the proof of [MTTV21, Theorem 1] mutatis
mutandis. The uniqueness of the transition map tr is the essential ingredient, as it
forces the operadic axioms to hold.

This theorem was mentioned in [Maz21], where associahedra and multiplihedra
were interpreted as compactifications of moduli spaces of metric trees, and used to
unravel A∞ structures on the Morse cochains of a smooth compact manifold.

From the general theory of operads, we know that the data of a (P ,Q)-operadic
bimodule M is equivalent to the data of a 2-colored operad. Under the cellular
chains functor, Theorem 4.25 gives a quasi-free 2-colored operad, spanned by blue
corollas in degree |cBn | = n − 2, red corollas in degree |cTn | = n − 2 and bicolored
corollas in degree |cn| = n − 1. An algebra over this differential graded 2-colored
operad is a pair of A∞-algebras related by an A∞-morphism.
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4.3.3 Differential graded structures

Let us quickly recall the definitions of A∞-algebra and A∞-morphism, and at the
same time establish our sign conventions. For more details, we refer to [LV12,
Chapter 9].

Definition 4.26 (A∞-algebra). An A∞-algebra is a graded vector space A together
with operations

mn : A⊗n → A , n ≥ 1

of degree |mn| = n− 2, satisfying the equations∑
p+q+r=n

(−1)p+qrmp+1+r(id
⊗p ⊗mq ⊗ id⊗r) = 0 , n ≥ 1 .

An A∞-algebra is an algebra over the differential graded non-symmetric operad
A∞. This quasi-free operad is generated by the operations mn and its differential
encodes the relations that they satisfy.

Definition 4.27 (A∞-morphism). An A∞-morphism A  B between two A∞-
algebras (A, {mn}) and (B, {m′n}) is a family of linear maps

fn : A⊗n → B , n ≥ 1

of degree |fn| = n− 1, satisfying the equations∑
i1+···+ik=n

(−1)εm′k(fi1⊗· · ·⊗fik) =
∑

p+q+r=n

(−1)p+qrfp+1+r(id
⊗p⊗mq⊗id⊗r) , n ≥ 1 ,

where ε =
∑k

u=1(k − u)(1− iu).

An A∞-morphism is an algebra over the differential graded operadic bimodule
M∞. This quasi-free operadic bimodule is generated by a family of elements νn of
degree |νn| = n−1 and its differential encodes the relations satisfied by the fn above.

Now, we promote the operadic bimodule {Jn}n≥1 to an operadic bimodule in the
category of CW complexes by making a choice of orientation on the multiplihedra.
We aim at recovering, via the cellular chains functor, the previous sign conventions
for A∞-algebras and A∞-morphisms.

We make the same choices of cellular orientations as in [Maz21, I, Section 4]. For
a (2-colored) tree t, we order its vertices from bottom to top and from left to right,
proceeding one level at a time. We call this the left-levelwise order on t. There
is a unique decomposition of t = (· · · ((cn1 ◦i1 cn2) ◦i2 cn3) · · · ◦ik cnk+1

) where the
(2-colored) corollas are grafted according to this total order.
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• For the associahedra Kn ⊂ Rn−1, we choose as positively oriented basis of
the top dimensional cell the basis {e1 − ej+1}1≤j≤n−2. Then, we choose the
orientation of any other cell t of Kn to be the image of the positively oriented
basis of the top cells of the polytopes Kni

under the sequence of compositions
following the left-recursive order on t.

• For the multiplihedra Jn ⊂ Rn−1, we choose as positively oriented basis of the
top dimensional cell the basis {−ej}1≤j≤n−1. Then, we choose the orientation
of any other cell t of Jn to be the image of the positively oriented basis of the top
cells of the polytopes Kni

and Jnj
under the sequence of action-compositions

following the left-recursive order on t.

We then proceed as in Proposition 3.59 to endow the Kn and Jn with a CW
structure.

Proposition 4.28. The above cellular orientations on the associahedra and multipli-
hedra yield an isomorphism of differential graded non-symmetric operads Ccell

• ({Kn}) ∼=
A∞ and an isomorphism of operadic bimodules Ccell

• ({Jn}) ∼= M∞.

Proof. Computing the signs in the (action-)composition maps amounts to comparing
bases where the vectors have been permuted. Since we have choosen the left-levelwise
order on trees, we recover precisely the usual sign conventions for the operad A∞
and of the operadic bimodule M∞. The signs for the differentials, arising from the
boundary maps, were computed in [Maz21, I, Section 4].

The image of the diagonal maps 4n : Jn → Jn × Jn under this functor gives a
morphism of differential graded operadic bimodules M∞ → M∞ ⊗ M∞, and thus
defines the tensor product of two A∞-morphisms.

4.4 Tensor product of A-infinity morphisms
We provide a combinatorial description of the cellular image of the diagonal of the
Forcey–Loday multiplihedra, defined in the preceding section. We make use of the
universal formula of Theorem 2.25, as well as the computation of the fundamental
hyperplane arrangement of the permutahedra from Chapter 3. The key fact that
the Ardila–Doker multiplihedron is a generalized permutahedron allows us to avoid
the computation of the fundamental hyperplane arrangement of the multiplihedron
itself. Applying the cellular chains functor, we obtain an explicit and universal for-
mula for the tensor product of A∞-morphisms between A∞-algebras, and at the same
time for A∞-functors between A∞-categories. However, this formula is not strictly
compatible with the composition of A∞-morphisms. We prove in Section 4.4.3 that
this is in fact the case for any operadic tensor product, and we discuss some per-
spectives regarding the possibility of endowing the category of A∞-algebras with a
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(homotopy) symmetric monoidal structure. We conclude with an overview of some
possible applications of our results in symplectic topology.

4.4.1 Cellular formula

We introduce an equivalent description of 2-colored trees as 2-colored nested linear
graphs, a language that is more suitable for the description of the cellular image of
the diagonal maps 4n.

Let ` be a linear graph with n vertices. We number its edges from 1 to n − 1
from bottom to top. We write V (`) and E(`) for its sets of vertices and edges,
respectively. Any subset of edges N ⊂ E(`) defines a subgraph of g whose edges
are N and whose vertices are all the vertices adjacent to an edge in N . We call this
graph the closure of N .

Definition 4.29 (Nest and nesting).

• A nest of a linear graph ` with n vertices is a non-empty set of edges N ⊂ E(`)
whose closure is a connected subgraph of `.

• A nesting of a graph ` is a set N = {Ni}i∈I of nests such that

1. the trivial nest E(`) is in N ,

2. for every pair of nests Ni 6= Nj, we have either Ni ( Nj, Nj ( Ni or
Ni ∩Nj = ∅, and

3. if Ni ∩Nj = ∅ then no edge of Ni is adjacent to an edge of Nj.

Two nests that satisfy Conditions (2) and (3) are said to be compatible. We
denote the set of nestings of ` by N (`). We naturally represent a nesting by circling
the closure of each nest as in Figure 4.8. A nesting is maximal if it has maximal
cardinality |N | = |E(`)|.

Definition 4.30 (2-colored nesting). A 2-colored nesting is a nesting where each
nest is either colored in blue, red or purple, and which satisfy the following properties:

1. if a nest N is blue or purple, then all nests contained in N are blue, and

2. if a nest N is red or purple, then all nests that contain N are red.

One should think of purple nests as both colored by red and blue. We call
monochrome the nests that are either blue or red, and bicolored the purple nests.
We denote by mono(N ) the set of monochrome nests of a 2-colored nesting N . We
denote by N2(`) the set of 2-colored nesting of `. A 2-colored nesting is maximal if
it has maximal cardinality, and it is made of blue and red nests only.
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Remark 4.31. The data of a 2-colored nesting on a graph is equivalent to the data
of a marked tubing on its line graph, as defined in [DF08]. See also Remark 3.4.

Lemma 4.32. There is a bijection between 2-colored trees with n leaves and 2-colored
nested linear graphs with n vertices.

←→

a

b

c

d

←→ (a((bc)d))

Figure 4.8: Bijections between 2-colored trees, 2-colored nested linear graphs, and
2-colored parenthesizations.

Proof. This is a simple generalization of the bijection between planar trees and
nested linear graphs, see Figure 4.8. Under this bijection, vertices of 2-colored
trees correspond to nests, and their colors agree under the previous conventions.
Also, 2-colored maximal trees are in bijection with maximal 2-colored nested linear
graphs.

Definition 4.33. Let N be a 2-colored nesting of a linear graph with n vertices. We
respectively denote by B(N ), P (N ) and R(N ) the set of blue, purple and red nests
of N , and we define

Q(N ) :=
⋃

R1,...,Rk∈R(N )


k⋃
i=1

Ri ∪
⋃

B∈B(N )

B ∪
⋃

P∈P (N )

P

 ,

where the braces are the set braces, and where we allow ∪Ri = ∅.

We number the edges of the linear graph with n vertices from bottom to top
as represented in Figure 4.8, starting at 1 and ending at n − 1. To each blue nest
B ∈ B(N ) in a 2-colored nesting N of a linear graph with n vertices, we associate
the characteristic vector ~B ∈ Rn which has a 1 in position i if i ∈ B, 0 in position
i if i /∈ B and 0 in position n. To each union of nests Q ∈ Q(N ), we associate the
characteristic vector ~Q ∈ Rn which has a 1 in position i if i ∈ Q, 0 in position i if
i /∈ Q and 1 in position n. We denote moreover by ~n the vector (1, . . . , 1) ∈ Rn.
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Lemma 4.34. The normal cone of the face of the Ardila–Doker realization of the
multiplihedron labeled by the 2-colored nesting N is given by

Cone
(
{− ~B}B∈B(N ) ∪ {− ~Q}Q∈Q(N ) ∪ {~n,−~n}

)
.

Proof. This follows from the description of the Ardila–Doker multiplihedron as a
generalized permutahedron. The normal cone of a face of the former is a union
of normal cones of faces of the permutahedron. These can be easily determined
from the projection from the permutahedron to the multiplihedron, written down
explicitly in the proof of [Dok11, Theorem 3.3.6].

We are now ready to apply Theorem 2.25 to the multiplihedra. We define

D(n) := {(I, J) | I, J ⊂ {1, . . . , n}, |I| = |J |, I ∩ J = ∅,min(I ∪ J) ∈ I}.

Theorem 4.35. Let Jn be the Forcey–Loday realization of standard weight of the
multiplihedron, and let ~v ∈ Rn be a good orientation vector. The cellular image of
the diagonal map 4n : Jn → Jn × Jn admits the following description. For N and
N ′ two 2-colored nestings of the linear graph with n vertices, we have

(N ,N ′) ∈ Im4n ⇐⇒ ∀(I, J) ∈ D(n),

∃B ∈ B(N ), |B ∩ I| > |B ∩ J | or
∃Q ∈ Q(N ), |(Q ∪ {n}) ∩ I| > |(Q ∪ {n}) ∩ J | or
∃B′ ∈ B(N ′), |B′ ∩ I| < |B′ ∩ J | or
∃Q′ ∈ Q(N ′), |(Q′ ∪ {n}) ∩ I| < |(Q′ ∪ {n}) ∩ J | .

Proof. The essential ingredient is the computation of the fundamental hyperplane
arrangement of the permutahedron, which was already done in Section 3.3.1. The
result follows in four steps:

1. Since a good orientation vector ~v is also a principal orientation vector (Defin-
ition 3.31), it orients positively the permutahedron.

2. Theorem 2.25 then gives a combinatorial description of the cellular image of the
diagonal of the permutahedron induced by ~v, which is precisely Theorem 3.32.

3. Using Proposition 2.32 and the description of the normal cones of the faces of
the multiplihedron in Lemma 4.34, we get the above formula for the Ardila–
Doker realizations of the multiplihedra.

4. Proposition 4.17 garantees that this formula holds for the Forcey–Loday real-
izations, which completes the proof.
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The cellular image of 4n can be represented on Jn as follows: for each pair
of faces (F,G) ∈ Im4n, draw the polytope (F + G)/2. This defines a polytopal
subdivision of Jn. The polytopal subdivision of J4 is illustrated on the first page of
this Chapter.

Let us make this formula explicit in low dimensions. We write 2-colored nestings
of a linear graph with n vertices as 2-colored parenthesizations of a word with n
letters, which are easier to read and shorter to type, see Figure 4.8. We show only
pairs of faces (F,G) such that dimF + dimG = dimP ; the other pairs can be
deduced by taking faces.

42((ab)) = (ab)× (ab) ∪ (ab)× (ab)

43((abc)) = ((ab)c)× (abc) ∪ (abc)× (a(bc)) ∪ (abc)× (a(bc))

∪ (abc)× (a(bc)) ∪ (a(bc))× (a(bc)) ∪ ((ab)c)× ((ab)c)

∪ ((ab)c)× (abc) ∪ ((ab)c)× (abc)

44((abcd)) =

(((ab)c)d)× (abcd) ∪ (abcd)× (a(b(cd))) ∪ ((abc)d)× (a(bc)d)

∪ ((ab)(cd))× (ab(cd)) ∪ ((abc)d)× (a(bcd)) ∪ ((ab)cd)× (ab(cd))

∪ (a(bc)d)× (a(bcd)) ∪ ((abc)d)× (a(bc)d) ∪ ((ab)cd)× (ab(cd))

∪ ((abc)d)× (a(bcd)) ∪ (((ab)c)d)× ((abc)d) ∪ (ab(cd))× (a(b(cd)))

∪ ((ab)(cd))× ((ab)(cd)) ∪ (a(bc)d)× (a((bc)d)) ∪ ((ab)cd)× ((ab)(cd))

∪ (a(bc)d)× (a(bcd)) ∪ (a((bc)d))× (a(bcd)) ∪ ((ab)cd)× ((ab)(cd))

∪ (a(bc)d)× (a(bcd)) ∪ ((abc)d)× (a(bcd)) ∪ ((ab)cd)× (ab(cd))

∪ (((ab)c)d)× ((ab)cd) ∪ (a(bcd))× (a(b(cd))) ∪ (((ab)c)d)× ((ab)cd)

∪ (a(bcd))× (a(b(cd))) ∪ (a(bc)d)× (a(bcd)) ∪ (((ab)c)d)× (abcd)

∪ (abcd)× (a(b(cd))) ∪ (((ab)c)d)× (abcd) ∪ (abcd)× (a(b(cd)))

∪ (((ab)c)d)× (abcd) ∪ (abcd)× (a(b(cd))) ∪ ((ab)(cd))× (ab(cd))

∪ ((abc)d)× ((a(bc))d) ∪ ((ab)(cd))× (ab(cd)) ∪ ((abc)d)× (a((bc)d))

∪ ((abc)d)× (a(bc)d) ∪ ((ab)cd)× (ab(cd)) ∪ ((abc)d)× (a(bcd))

∪ ((a(bc))d)× (a(bc)d) ∪ ((abc)d)× (a(bc)d) ∪ (((ab)c)d)× (a(bc)d)
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The number of pairs of faces of complementary dimensions in the image of4n are
given, for n = 0 to 6, by 1, 2, 8, 42, 254, 1678 and 11790, respectively. This sequence
of integers does not (yet) appear on the Online Encyclopedia of Integer Sequences
(OEIS).

For every face F of the multiplihedron Jn, a good orientation vector ~v defines
a unique vertex topF (resp. botF ) which maximizes (resp. minimizes) the scalar
product 〈−, ~v〉. By Proposition 2.16, we have that any pair of faces (F,G) ∈ Im4n

satisfies topF ≤ botG. In the cases of the simplices, the cubes and the associahedra,
the converse also holds: we can characterize the diagonal with a formula of the form
(F,G) ∈ Im4n ⇐⇒ topF ≤ botG. However, it was shown in Chapter 3 that this
does not hold anymore for the operahedra, and in particular for the permutahedra.
This property does not hold either in the case of the multiplihedra. For instance,
in dimension 3 the condition topF ≤ botG determines completely all the pairs in
Im44 except four of them: ((abc)d)× (a((bc)d)), ((abc)d)× (a(bc)d), ((abc)d)×
(a(bc)d) and (((ab)c)d)×(a(bc)d). It seems likely that the condition topF ≤ botG
is equivalent to the conditions in Theorem 4.35 for the pairs (I, J) such that |I| =
|J | = 1, as it is for the permutahedron Proposition 3.33.

Remark 4.36. Observe that our choice of diagonal differs from the one of [SU04].
For instance, the four pairs of faces above are not part of the image of the Saneblidze–
Umble diagonal in dimension 3. A way to relate the two constructions would be to
find a choice of chambers in the fundamental hyperplane arrangement of the permu-
tahedra (or the multiplihedra) recovering the latter diagonal, see also Remark 3.35.

The formula above, even though easily implemented in the computer, is not op-
timal. For instance, one could use Equation (2.1) in Theorem 2.25 to reduce the
number of pairs (I, J) on which the conditions have to be tested. One could also
compute directly the fundamental hyperplane arrangement of the Ardila–Doker or
Forcey–Loday multiplihedron. It would be desirable to obtain equivalent combinat-
orial descriptions of Im4n, with a view towards possible applications. We sketch
some of them in the next sections.

4.4.2 Application to A-infinity algebras and categories

The diagonal of the associahedra gives a tensor product of A∞-algebras, and the
diagonal of the multiplihedra gives a tensor product of A∞-morphisms. They also
define tensor products on the categorical enrichment of these two notions.

Definition 4.37. An A∞-category A consists of

• a set of objects Ob(A),

• for each pair of objects X, Y ∈ Ob(A), a graded vector space A(X, Y ), and
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• for each n ≥ 1 and each family of objects X0, . . . , Xn ∈ Ob(A), a linear map

mn : A(X0, X1)⊗ · · · ⊗ A(Xn−1, Xn)→ A(X0, Xn)

of degree |mn| = n− 2, satisfying the equations∑
p+q+r=n

(−1)p+qrmp+1+r(id
⊗p ⊗mq ⊗ id⊗r) = 0 , n ≥ 1 .

Observe that an A∞-algebra is just an A∞-category with one object. Thus, the
diagonal of the associahedra provides us with a canonical A∞-category structure on
the tensor product A⊗ B of two A∞-categories, which we describe now.

Definition 4.38. Let (`,N ) be a nested linear graph. The left-levelwise order on
N is defined as follows: we order the nests by decreasing cardinality, and we order
two nests of same cardinality by comparing their minimal elements.

The left-levelwise order on a nesting is induced by the left-levelwise order on
trees, under the bijection of Lemma 4.32.

Definition 4.39. Let ` be a linear graph.

1. For a nesting N of `, we denote by Ni the unique minimal nest of N containing
the edge i, with respect to nest inclusion.

2. An edge i of ` is admissible with respect to N if i 6= minNi. We denote the set
of admissible edges of N by Ad(N ).

3. Given a pair of nestings N ,N ′, we give the set Ad(N ) tAd(N ′) the total order
by using the left-levelwise order on the nestings and within a nest by following
the numbering of the edges in increasing order.

4. The function σNN ′ : Ad(N )tAd(N ′)→ (1, 2, . . . , |Ad(N )tAd(N ′)|) defined on
i ∈ Ad(N ) by

σNN ′(i) =

{
minNi − 1 if i ∈ Ad(N ) ∩ Ad(N ′) and 1 6= minNi < minN ′i
i− 1 otherwise ,

and similarly on i ∈ Ad(N ′) by inversing the roles of N and N ′, induces a
permutation of the set {1, 2, . . . , |Ad(N )tAd(N ′)|} that we still denote by σNN ′.

We are now ready to define the tensor product of two A∞-categories. We denote
by σn the isomorphism (A1⊗B1)⊗ (A2⊗B2)⊗· · ·⊗ (An⊗Bn) ∼= (A1⊗· · ·⊗An)⊗
(B1 ⊗ · · · ⊗Bn).
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Proposition 4.40. The tensor product A ⊗ B of two A∞-categories A and B is
given by

• the set of objects Ob(A⊗ B) := Ob(A)×Ob(B),

• for each pair of objects X1×Y1, X2×Y2 ∈ Ob(A⊗B), the space of morphisms
A⊗ B(X1 × Y1, X2 × Y2) := A(X1, X2)⊗ B(Y1, Y2),

• for each n ≥ 1 and each family of objects X0 × Y0, . . . , Xn × Yn ∈ Ob(A⊗B),
the linear map

ρn : A⊗ B(X0 × Y0, X1 × Y1)⊗ · · · ⊗ A ⊗ B(Xn−1 × Yn−1, Xn × Yn)

→ A⊗B(X0 × Y0, Xn × Yn)

defined by

ρn :=
∑

N ,N ′∈N (`)
|N |+|N ′|=|V (`)|
top(N )≤bot(N )

(−1)|Ad(N )∩Ad(N ′)|sgn(σNN ′)N (mn)⊗N ′(m′n) σn ,

where ` is a linear graph, and where N (mn) and N ′(m′n) denote the compos-
ition of the structural maps {mn} and {m′n} of A and B respectively, corres-
ponding to the nests of N and N ′ in the left-levelwise order.

Proof. The formula for the ρn’s stems from our choice of diagonal on the associ-
ahedra; the fact that they satisfy the A∞ relations follows from the construction
and the functoriality in Proposition 4.28. The signs depend on our choice of cellular
orientations on the associahedra, and they are obtained via the computation of a
determinant. We refer to the proof of Proposition 3.64 for more details.

Now we treat the case of A∞-functors between A∞-categories.

Definition 4.41. An A∞-functor f : A B between two A∞-categories consists of

• a function Ob(f) : Ob(A)→ Ob(B),

• for each n ≥ 1 and each family of objects X0, . . . , Xn ∈ Ob(A), a linear map

fn : A(X0, X1)⊗ · · · ⊗ A(Xn−1, Xn)→ B(f(X0), f(Xn))

of degree |fn| = n− 1, satisfying the equations∑
i1+···+ik=n

(−1)εm′k(fi1 ⊗ · · · ⊗ fik) =
∑

p+q+r=n

(−1)p+qrfp+1+r(id
⊗p⊗mq ⊗ id⊗r) ,

for n ≥ 1, where ε =
∑k

u=1(k − u)(1− iu).
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Observe that an A∞-functor between two A∞-categories with one object is just
an A∞-morphism between two A∞-algebras. Thus, the diagonal of the multiplihedra
provides us with a canonical A∞-functor structure from A⊗B to A′⊗B′ associated
to two A∞-functors A A′ and B  B′ .

Definition 4.42. For 2-colored nestings N and N ′, we use the same definitions as
in Definition 4.39, but with the following two modifications:

(2) We say that an edge i of g is admissible with respect to N when Ni is bicolored,
or if i 6= minNi when Ni is monochrome.

(4) The function σNN ′ : Ad(N )tAd(N ′)→ (1, 2, . . . , |Ad(N )tAd(N ′)|) is defined
on i ∈ Ad(N ) by

σNN ′(i) =


minNi if i ∈ Ad(N ) ∩ Ad(N ′), Ni is monochrome and N ′i is not
minNi if i ∈ Ad(N ) ∩ Ad(N ′), Ni and N ′i are monochrome

and minNi < minN ′i
i otherwise ,

and similarly on i ∈ Ad(N ′) by inversing the roles of N and N ′.

For convenience, let us recall that

D(n) := {(I, J) | I, J ⊂ {1, . . . , n}, |I| = |J |, I ∩ J = ∅,min(I ∪ J) ∈ I}.

Let us denote by mono(N ) the set of monochrome nests of a nesting N .

Proposition 4.43. The tensor product f ⊗ g of two A∞-functors f : A A′ and
g : B  B′ is given by

• the function Ob(f ⊗ g) := Ob(f)×Ob(g) : Ob(A⊗ B)→ Ob(A′ ⊗ B′),

• for each n ≥ 1 and each family of objects X0 × Y0, . . . , Xn × Yn ∈ Ob(A⊗B),
the linear map

hn : (A⊗ B)(X0 × Y0, X1 × Y1)⊗ · · · ⊗ (A⊗ B)(Xn−1 × Yn−1, Xn × Yn)

→ (A′ ⊗ B′)(f(X0)× g(Y0), f(Xn)× g(Yn))

defined by

hn :=
∑
N ,N ′

(−1)|Ad(N )∩Ad(N ′)|sgn(σNN ′)N (f)⊗N ′(g) σn ,

where the sum runs over the pairs N ,N ′ ∈ N2(`) such that |mono(N )| +
|mono(N ′)| = |E(`)| which satisfy the conditions in Theorem 4.35. Here, `
is a linear graph, and N (f) and N ′(g) denote the composition of the struc-
tural maps {fn} and {gn} corresponding to the nests of N and N ′ in the
left-levelwise order.
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Proof. The formula for the hn’s stems from our choice of diagonal on the multip-
lihedra; the fact that they satisfy the A∞ relations follows from the construction
and the functoriality in Proposition 4.28. The signs depend on our choice of cellular
orientations on the multiplihedra, and they are obtained via the computation of a
determinant. We refer to Section 3.4.3 for more details.

4.4.3 Monoidal structure on the category of A-infinity algeb-
ras

The introduction of the tensor product of A∞-morphisms raises questions about
the properties that it satisfies. For simplicity we focus on A∞-algebras, however
all statements have an A∞-categorical counterpart. We are interested in tensor
products of A∞-algebras and A∞-morphisms that are universal, in the sense that
they provide a formula that applies to any pair of A∞-algebras and A∞-morphisms,
respectively. These tensor products are obtained via a diagonal of the operad A∞
or a diagonal of the operadic bimodule M∞, we therefore call them operadic. We
would like to know if the category of A∞-algebras is made into a symmetric monoidal
category by the operadic tensor product defined above.

1. A first idea is to look at the category A∞-alg of A∞-algebras with strict morph-
isms, that is linear maps f : A→ B which commute with the structure operations
of A and B (equivalently, strict morphisms are A∞-morphisms where all the fn :
A⊗n → B, n ≥ 2 are equal to zero). In this category, one checks directly that the
previous tensor product defines a bifunctor −⊗− : A∞-alg×A∞-alg→ A∞-alg.
However, this tensor product is not, and in fact cannot be monoidal, for the
following reason:

Proposition 4.44 ([MS06, Theorem 13]). There is no operadic tensor product
that satisfies associativity. That is, there is no coassociative diagonal for the
operad A∞. Therefore, the operad A∞ does not admit the structure of a Hopf
operad.

The proof is a direct attempt to construct inductively a coassociative diagonal,
a process which leads to a contradiction in arity 4. One can prove with similar
methods that there is no cocommutative diagonal.

Remark 4.45. It would be interesting to know if the bifunctor −⊗− admits a
right adjoint.

2. A second idea is to consider the category ∞-A∞-alg of A∞-algebras and A∞-
morphisms. In this case our operadic tensor product does not even define a
bifunctor − ⊗ − : ∞-A∞-alg × ∞-A∞-alg → ∞-A∞-alg, as a corollary of the
following
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Theorem 4.46. There is no operadic diagonal of M∞ which is strictly compatible
with the composition of A∞-morphisms.

Proof. The proof is a straightforward computation, similar to the one of Pro-
position 4.44. We try to construct inductively a diagonal 4 which respects the
following condition: given two A∞-morphisms f i : Ai  Bi and gi : Bi  Ci for
i = 1, 2, the following identity is satisfied

(g1 ◦ f 1)⊗ (g2 ◦ f 2) = (g1 ⊗ g2) ◦ (f 1 ⊗ f 2) , (?)

where ◦ denotes the composition of A∞-morphisms. In arity 1, there is only one
possible diagonal 4((x)) = (x)⊗ (x) and the equation (?) is directly seen to be
satisfied. In arity 2, the most general diagonal has the form

4((xy)) = (xy)⊗ [α(xy) + β(xy)] + [γ(xy) + δ(xy)]⊗ (xy) .

Compatibility with the differential imposes β+δ = 1, α = δ, β = γ and α+γ = 1.
Thus, we have

4((xy)) = α[(xy)⊗ (xy) + (xy)⊗ (xy)] + (1− α)[(xy)⊗ (xy) + (xy)⊗ (xy)] .

Applying this formula to both sides of (?) and comparing the terms, we obtain
that in order for the equality to hold, we must have both α = 0 and 1 − α = 0,
a contradiction.

It seems likely that one could show with a similar method that there are no
coassociative nor cocommutative diagonals on M∞. Nevertheless, in the category
∞-A∞-alg we have the following

Proposition 4.47 ([MSS02, LOT20]). For any operadic tensor product of A∞-
algebras, there exist A∞-isomorphisms

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C) and A⊗B ∼= B ⊗ A ,

for any A∞-algebras A,B and C.

Proof. Using the fact that the operad A∞ is a cofibrant resolution of the associ-
ative operad, it is possible to show that there exists an homotopy between the
two morphisms of operads (∆ ⊗ id)∆ and (id ⊗ ∆)∆, see for instance [MSS02,
Proposition 3.136]. This means that there exists an A∞-isotopy between the A∞-
algebras A⊗(B⊗C) and (A⊗B)⊗C, which is in particular an A∞-isomorphism.
Alternatively, one can use the fact that the operad A∞ and the operadic bimodule
M∞ are contractible to deduce the existence a morphism of operadic bimodules
(a "trigonal") M∞ → M∞ ⊗M∞ ⊗M∞ compatible with the morphisms of op-
erads (∆⊗ id)∆ on the left and (id⊗∆)∆ on the right, see the proof of [LOT20,
Theorem 1.1]. Similar methods can be employed to show that there exists an
A∞-isomorphism A⊗B ∼= B ⊗ A.
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However, this kind of arguments cannot be used to determine if a certain choice
of A∞-isomorphisms makes the pentagon or the hexagon diagrams commute, and
there are a priori no reasons for them to do so.

In summary, the category ∞-A∞-alg might be the right place to work in, but to
do so one would have to come up with the right homotopical notions of bifunctor
− ⊗ − and monoidal category. A definition of "monoidal A∞-category" was
proposed recently in the context of ∞-categories [Pas18, Definition A.5.3]. It
would be interesting to know if the image of our tensor product under the Faonte–
Lurie nerve [Fao17] makes the category of A∞-algebras into a monoidal A∞-
category in this sense.

3. A third idea is to see A∞-algebras as particular instances of a more general
structure, where the preceding tensor product extends to a symmetric monoidal
one. One can see Proposition 4.44 as saying that the operad A∞ cannot be an
operad in coassociative coalgebras. It is then tempting to ask if A∞ could be
an operad in A∞-coalgebras; however, this cannot be since (by Proposition 4.44)
there is no symmetric monoidal structure on the category of A∞-coalgebras. One
could then consider the category of AA∞-algebras, that is algebras over the bar-
cobar resolution (also called W -construction, or Boardman–Vogt resolution) of
the associative operad, which is symmetric monoidal with respect to the tensor
product defined by J.-P. Serre’s cubical diagonal. Alternatively, S. Arkhipov and
D. Poliakova propose in [AP21] the category of integrated A∞-coalgebras, which
is also symmetric monoidal, as an appropriate setting to study the operad A∞.

4.4.4 Tensor products in symplectic topology

Tensor products of Fukaya algebras and Fukaya categories

Let M be a closed symplectic manifold and L ⊂ M a closed spin Lagrangian sub-
manifold. Using Lagrangian Floer theory and pseudo-holomorphic disks curves with
Lagrangian boundary conditions, K. Fukaya constructs in [Fuk10] a filtered A∞-
algebra F(L) associated to the Lagrangian L, called the Fukaya algebra of L. In
[Amo17], L. Amorim shows that given two symplectic manifolds M1 and M2 to-
gether with Lagrangians Li ⊂ Mi, the Fukaya algebra F(L1 × L2) of the product
Lagrangian L1 × L2 is A∞-quasi-isomorphic to the tensor product of their Fukaya
algebras F(L1)⊗F(L2). This tensor product of filtered A∞-algebras was previously
defined in [Amo16] as follows.

The idea is first to consider, for any filtered A∞-algebras A and B, two differential
graded associative algebras End(A) and End(B), which are A∞-quasi-isomorphic to
A and B, respectively. Then, it is possible to write the tensor product End(A) ⊗
End(B) as a deformation retract of the ordinary tensor product of A and B
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End(A)⊗ End(B) A⊗B ,h

p

i

and to apply the homotopy transfer theorem to transfer the dg-algebra structure
on End(A) ⊗ End(B) to an A∞-algebra structure on A ⊗ B. It is even possible to
choose i, p and h as to recover, when specializing to non-filtered A∞-algebras, the
"magical formula" defining the tensor product of A∞-algebras in [MS06, MTTV21],
see [Amo16, Corollary 4.2].

If the rectification process A 7→ End(A) could be applied to A∞-morphisms as
well, we could use an extended retract diagram

End(A1)⊗ End(B1) A1 ⊗B1

End(A2)⊗ End(B2) A2 ⊗B2

h

p

End(f)⊗End(g)

i

f⊗g

h

p

i

to get a tensor product of A∞-morphisms for filtered A∞-algebras. It would then
be interesting to know if the choices of i, p and h made in [Amo16] would recover
the formula obtained in the present work for the tensor product of non-filtered A∞-
morphisms. However, the rectification process A 7→ End(A) used in [Amo16] is
not functorial. One could think of applying the same idea with another type of
rectification, for instance the one of [LV12, Theorem 11.4.4], even though in this
case it is less obvious what the retract diagram should be.

A tensor product of A∞-morphisms between filtered A∞-algebras could prove
useful to study the A∞-morphisms between the Fukaya algebras of products of two
Lagrangian submanifolds, and more generally the A∞-functors between Fukaya cat-
egories of products of two symplectic manifolds. In [Fuk17], K. Fukaya shows that
for two closed symplectic manifolds M0 and M1 there exists a unital A∞-functor

Fuk(M0)⊗ Fuk(M1) Fuk(M−
0 ×M1)

which is a homotopy equivalence into its image. This A∞-functor can be composed
with the categorification A∞-functor of [MWW18, Theorem 1.1] to give an A∞-
functor

Fuk(M0)⊗ Fuk(M1) Fuk(M−
0 ×M1) Func(Fuk(M0),Fuk(M1)) .

It would be interesting to know when this composition becomes an homotopy equi-
valence. Given two A∞-categories A and B, one could also ask whether there exists
a purely algebraic A∞-functor

A⊗ B  Func(A,B) ,
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such that the previous composition is homotopy equivalent to this A∞-functor when
A := Fuk(M0) and B := Fuk(M1). A third question of interest could finally be to
understand how the tensor product of A∞-functors could be realized in symplectic
topology, using Lagrangian correspondences.

Tensor products in Bordered Heegaard Floer homology

Heegaard Floer homology gives invariants of 3-manifolds, 4-dimensional cobordisms,
and closed 4-manifolds. The invariant of closed 4-manifolds is called the "Heegaard
Floer mixed invariant" [OS06]. The 3-manifold invariants are known to be iso-
morphic to Seiberg-Witten Floer homology [KLT20, CGH11]. It is expected that
the invariants of cobordisms and closed manifolds are also equal, but that is still
an open question. In particular, the Heegaard Floer mixed invariant is expected to
be the same as the Seiberg-Witten invariant. It is known that they have many of
the same properties and agree in many examples; in particular, the Heegaard Floer
mixed invariant distinguishes exotic smooth structures in many cases.

The variant of Heegaard Floer homology (or Seiberg-Witten Floer homology)
used in the previous paragraph is a kind of S1-equivariant theory, at least philosoph-
ically. It is denoted HF+ or HF−. The simpler, non-equivariant theory is denoted
ĤF . One can compute ĤF using bordered Heegaard Floer homology [LOT14].

We learned through private communication with Robert Lipshitz that a long
term goal of his work with P. Osváth and D. P. Thurston is to develop algorithms
to compute HF+ and HF− explicitly. This involves extending bordered Heegaard
Floer homology from the non-equivariant to the equivariant setting, which requires
explicit diagonals of the associahedra and multiplihedra as follows. Given a 3-
manifold Y = Y1 ∪F Y2 with two boundary components Y1, Y2, the aforementioned
authors build in [LOT20] a "bimodule twisted complex" CFDD−(Y ), also called a
"typeDD-bimodule". The operation of gluing the two boundary components Y1 and
Y2 along a surface F to obtain Y requires, at the algebraic level, to tensor together
A∞-algebras, and thus a diagonal of the associahedra. When re-associating gluings
in this theory, one then needs a way to relate different tensor products, which can be
done through a diagonal of the multiplihedra. In particular, such a diagonal allows
one to describe associativity of tensor products. It is worth noting that the notion
of A∞-algebra needed here (among other homotopy algebraic structures) is a certain
kind of curved A∞-algebra, which is called weighted A∞-algebra in [LOT20], and
would require a non-trivial extension of the results of the present chapter.
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